

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES ACATLAN COORDINACION DEL PROGRAMA DE INGENIERIA

CI/158/1986.

UNIVERSIDAD NACIONAL AUTÓNOMA DE México

> SR. ARTURO JUAREZ CONTRERAS Alumno de la carrera de Ingeniería Civil. Presente.

De acuerdo a su solicitud presentada con fecha 20 de febrero de 1985, me complace notificarle que esta Coordinación tuvo abien asig narle el siguiente tema de tesis: "Diseño de una Plataforma Marina Tipo Jacket", el cual se desarrollará como sigue:

- Prólogo.
- Introducción.
- I.- Descripción de una plataforma.
- II.- Descripción del lanzamiento.

III.- Determinación de solicitaciones.

- IV.- Análisis y diseño.
- V.- Ejemplo de aplicación.
 - Conclusiones.
 - Bibliografía.

Asimismo fue designado como Asesor de Tesis el señor Ing, Juan José Camarena Hernández, profesor de esta Escuela.

Ruego a usted tomar nota que en cumplimiento de lo especifica do en la Ley de Profesiones, deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito básico para sustentar examen profesional, así como de la disposición de la Dirección General de Ser vicios Escolares en el sentido de que se imprima en lugar visible de los ejemplares de la tesis, el título del trabajo realizado. Esta comunicación deberá imprimirse en el interior de la tesis.

Sam

PF-R

ING. HERMENEETLDO ARCOS SERRANO Coordinador del Programa de Ingeniería.

HAS'JAM/rcn.

PR	DLOGO .	· · · · · · · · · · · · · · · · · · ·		
IN.	TRODUCCI	ON		
Ī	DESCRIPCION DE UNA PLATAFORMA			
	1.1	Cimentación (pilotes), Subestructura (Jacket),		
		Superestructura		
	1.2	Instalaciones y Equipo		
	1.3	Tipos de Plataformas		
11	DESCR	IPCION DE LANZAMIENTO		
· · .				
	11.1	Transporte del patio de Fabricación al sitio de		
		Montaje		
•	11.2	Secuencia del Lanzamiento 22		
	11.3	Secuencia de Instalaciones e Izaje24		
111	DETERN	MINACION DE SOLICITACIONES		
	III.1	01eaje		
	111.1.4	a)Teoría de Airy		
	111.1.1)Teoría de Stokes		
	III.1.	c)Teoría de Gerstener o Trocoidal		
	111.1.6	i)Teoría de la ola solitaria 40		
	III.1.	e)Teoría de la cla senoidal 42		

111.1.2	Fuerzas de oleaje sobre Plataformas Marinas 43
III.1.2.a)	Fórmula de Morison
111.1.3	Cálculo de las Fuerzas de Oleaje sobre una Estructura
	Marina
III.1.3.a)	Determinación de la longitud de la ola 47
III.1.3.b)	Cálculo de perfíl de la ola
III.1.3.c)	Determinación de las velocidades y aceleraciones de
	las partículas de agua
III.1.3.d)	Velocidad de la corriente
III.1.3.e)	Superposición de la velocidad de la corriente con la
	velocidad orbital horizontal
III.1.3.f)	Cálculo de la fuerza de oleaje
111.2	Viento
111.2.1	Conceptos Generales
III.2.1.a)	Ecuaciones de análisis por viento
III.2.1.b)	Variación de la velocidad con la altura63
111.2.2	Viento en la Superestructura
III.2.2.a)	Fuerzas debidas al viento
111.2.2.b)	Coeficientes de forma
ANALISIS Y	DISENO
11.1	Análisis
IV.1.a)	Método de las rigideces
IV.2	Diseño

IV.

	1V.2.1	Generalidades
	11.2.2	Comportamiento General de Miembros Cílindricos de
		Acero
	IV.2.2.a)	Pandeo Local
	IV.2.2.b)	Flexión
	IV.2.2.c)	Esfuerzos Cortantes
	IV.2.2.d).	Flexocompresión
	IV.2.2.e)	Relación de Esbeltez
	IV.2.3	Fatiga:
	IV.2.3.a)	Diseño de Fatiga
	IV.2.3.b)	Análisis por Fatiga
		•
	11.2.4	Colapso Hisdrostático
	IV.2.4.a)	Diseño del Cilindro 🖒
	IV.2.4.b)	Diseño del anillo
	IV.2.4.c)	Interacción entre compresión y colapso hidrostát <u>i</u>
		co
	IV.2.4.d)	Interacción entre tensión y colapso hidrostático.85
	IV.2.5.	Conexiones
	IV.2.5.a)	Conexión de miembros a tensión y compresión87
	IV.2.5.b)	Sujeción y contracción
	IV,2.5.c)	Juntas tubulares
۷	EJEMPLO DE	APLICACION
	¥.1	Descripción del Modelo

V.2	Descripción del Programa
V.2.a)	General
V.2.b)	Condiciones y datos requeridos por el programa95
V.3	Corrida e Interpretación de los Resultados del
	Programa
V.4	Diseño Final
CONCLUSI	DNES
BIBLIOGR	AFIA

PROLOGO

En la carrera de Ingeniería Civil, dentro del área de estructuras sobresalen como parte destacada las Plataformas Marinas ya que estas, están sometidas a solicitaciones tan diversas que se salen del grueso de otras estructuras construidas en tierra firme.

Así para tomar en cuenta estas solícitaciones en el diseño, se deben elabo rar estudios muy complejos acerca del comportamiento del mar, lugar en el -cual serán construidas las citadas estructuras.

Siendo el océano una parte del globo terrestre que aún encierra muchos mis terios lo cual se traduce en serias ingertidumbres al momento de tomar decisiones en el diseño de una Plataforma Marina; estos son motivos importantespara que surgiera la inquietud de presentar el presente trabajo que sirve para estudiar de una manera más cercana el comportamiento del mar y los -efectos que produce en la estructura de una Plataforma Marina.

A.J.C.

INTRODUCCION

Desde tiempos remotos, el mar ha estado lleno de misterios para la humanidad. Hoy en día, exploramos sus profundidades con métodos científicos pero sigue permaneciendo latente la sensación de impenetrabilidad e imponderabilidad.

En realidad, nuestro conocimiento sobre los océanos sigue siendo bastante $l\underline{i}$ mitado en muchos aspectos. Así por ejemplo, los procesos físicos y químicos que tienen lugar en los mares, la vida en sus profundidades, las existencias de materias primas en los mares y debajo de ellos, distan todavía mucho de h<u>a</u> ber sido estudiados en toda su magnitud. Por otro lado, a través de las e<u>x</u> ploraciones marítimas nos ha sido posible ya aprender mucho sobre la geología y el desarrollo de las zonas costeras. Este campo, al igual que la explor<u>a</u> ción espacial, representa una fuente inagotable de futuras investigaciones.

Es difícil predecir con exactitud los descubrimientos que se alcanzarán con la investigación de los mares. Lo que sí puede asegurarse, es que serán de vital importancia para el futuro de la humanidad.

Nuestro planeta Tierra está cubierto por el agua en más del 70% de su superf<u>i</u> cie. Pero hay regiones del globo terráqueo en que los océanos representan una proporción mucho más elevada aún. Así, podemos dividir la Tierra en dos hemisferios, uno de los cuales abarca básicamente las regiones situadas al sur de la Línea Ecuatorial y está cubierto hasta en un 90% por las aguas. Si bien tenemos conocimiento de las enormes riguezas que guardan los océanos en

cuanto a materias primas, alimentos y energía, actualmente obtenemos de los mares tan sólo el 1% de nuestra alimentación y el 2% de la explotación mundial de minerales. Con el creciente aumento de la población mundial y el progresivo agotamiento de los yacimientos de materias primas en tierra fi<u>r</u> me, el mar irá cobrando cada vez mayor importancia como la gran reserva del futuro. El agua del mar contiene, según estudios efectuados, más de 70 el<u>e</u> mentos diferentes, si bien, en concentraciones tan bajas que su explotación todavía no es redituable en la actualidad.

Los elementos más frecuentes, citados según su importancia, son los siguien tes: cloro, sodio, magnesio, azufre, calcio, potasio, bromo, estroncio y carbono.

Los yacimientos submarinos de minerales probablemente más importantes para el futuro lo representan los módulos de mineral de manganeso.

La explotación actual de manganeso es superada con mucho, en lo que a su im portancia económica se refiere, por la explotación de yacimientos submarinos de petróleo y gas natural, sobre todo porque en este renglón están dadas ya las condiciones necesarias de tecnología y costeabilidad. La crisis ener<u>gé</u> tica contemporánea ha contribuido también, en buena parte, a acelerar las actividades en este último sector. Las primeras perforaciones petroleras en la plataforma continental se efectuaron en la década de los años treinta. En la actualidad el 20% de la extracción petrolífera mundial procede de r<u>e</u>

giones marítimas. Este porcentaje es más elevado aún en lo que se refiere al gas natural. Las regiones marítimas petroleras conocidas hasta ahora se distribuyen por todo el globo terrestre. Los países de Medio Oriente p<u>o</u> seen también aquí, al igual que en los yacimientos de tierra firme, la m<u>a</u> yor proporción de riqueza petrolífera.

La importancia de la carrera mundial por la apertura de nuevos yacimientos petrolíferos en la plataforma continental se pone de manifiesto al observar el incremento anual de las inversiones (25 al 30%) para la construcción y op<u>e</u>ración de grandes instalaciones de perforación.

El aprovechamiento de los yacimientos de petróleo y gas natural localizados debajo del fondo marino, sigue en lo fundamental, el mismo esquema utiliz<u>a</u> do en tierra firme.

El primer paso lo dan los geólogos y geofísicos al emprender la búsqueda de nuevos yacimientos, valiéndose para ello de sus conocimientos de historia natural.

La mayoría de los yacimientos descubiertos hasta la fecha tienen su origen en el período terciario, en el cretácico, en el paleozoico primario y en el cámbrico, es decir, de 10 a 600 millones de años antes de nuestra era.

La búsqueda de los yacimientos marinos sigue concentrándose todavía en las plataformas continentales, o sea en las regiones ubicadas entre las costas

y el quiebre de los continentes hacia las regiones abismales de los océanos. Estas regiones, con una profundidad en el borde de unos 200 metros, abarcan en su conjunto una superficie del tamaño de Africa y prometen dar un gran rendimiento petrolífero.

Pero también en el borde continental se intuye la presencia de grandes dep<u>ó</u> sitos de hidrobarburos; sin embargo, las concepciones técnicas para su explotación no rebasan aún la fase de planeación.

La localización de los yacimientos en el mar, es decir costa fuera, requiere de un esfuerzo científico y técnico mucho mayor que el que se exige para las explotaciones en tierra firme.

No importa cuán optimistas sean los resultados de las investigaciones de los geólogos; la última palabra en cuanto a la existencia dentro del subsue lo de yacimientos de petróleo puede darla únicamente una perforación de prueba. A fin de poder efectuar este tipo de perforaciones en el mar se han desarrollado en los últimos años, diferentes tipos de estructuras de so porte para los equipos de perforación. No considerando los aparatos emplea dos para la navegación espacial, casi es imposible concebir un sistema técnico que esté sujeto a tan diversas exigencias como lo están estas instala ciones móviles de perforación.

Una vez que las perforaciones preliminares y las pruebas de producción de-

muestra la existencia de un yacimiento económicamente explotable, se ini cia la explotación del campo. Para ello es necesario por una parte efec tuar una serie de perforaciones de producción y por la otra instalar el equipo de producción. Esta es una tarea larga y costosa. Así por ejemplo, para un campo marino a profundidades de 150 m transucren, si todo se reali za de acuerdo con el programa, alrededor de 3 años entre la terminación de las pruebas de producción y la iniciación de la explotación comercial. En primer término se determinan los sitios en que se colocarán las plataformas de perforación. El costo de una instalación de este tipo es alto. por lo tanto, es necesario situar la plataforma de tal manera que desde ella sea posible efectuar el mayor número de perforaciones. La elección del sitio, especialmente cuando se tienen grandes profundidades, desempeña un papel de terminante. El número de las perforaciones de producción depende de la ex tensión del yacimiento, de su capacidad calculada, de la profundidad del ya cimiento y del tirante de aqua en el sitio, así como de la naturaleza de la roca sedimentaria que contiene los hidrocarburos.

Una vez que se tiene localizada la posición de la plataforma en forma exa<u>c</u> ta, se hecha mano de toda la información metereológica y se hacen estudios oceanográficos ya que la tecnología del diseño de una plataforma marina ti<u>e</u> ne que ver con las condiciones atmosféricas e hidrosféricas de la zona de interés.

Toda la información y los estudios anteriormente descritos son una base muy

importante para elaborar el proyecto de una plataforma marina que es el tema del presente trabajo, en el cual inicialmente se describen las tres partes constituyentes de la estructura marina como lo son los pilotes, el jacket y la superestructura; asimismo, en esta parte inicial se tr<u>a</u> ta acerca de las instalaciones y equipo, así como los tipos de plataformas que existen.

El capítulo II toma mucha importancia sobre todo en lo que a construcción se refiere, ya que es aquí donde se hace una descripción racional del proc<u>e</u> so tan importante y definitivo como lo es el lanzamiento de la subestructura (también conocida como jacket), el éxito de esta operación es sumamente importante ya que se habrá dado un paso muy grande en la instalación de la plataforma.

Cuando se empieza a hablar de solicitaciones de carga en el capítulo III habremos entrado a una etapa cumbre del presente escrito; ya que uno de los objetivos primordiales de éste, es el dar a conocer una metodología para po der calcular las presiones hidrodinámicas que genera el oleaje, es esta una solicitación muy importante de tomar en cuenta en el diseño para garantizar una seguridad aceptable en una plataforma.

Siendo el oleaje una solicitación primordial, también lo es el tener investigaciones y estudios que se encuentren a la altura de las exigencias de un proyecto tan delicado y complejo como lo es el de una estructura marina.

El capítulo III también contiene conceptos para poder hacer un diseño por viento, aquí nos auxiliamos del Manuel de Obras Civiles de C.F.E. y aún más, se reforzó con los planteamientos del API (American Petroleum Instit<u>u</u> te). Siendo este último una institución de reconocido prestigio en el ca<u>m</u> po petrolero mundial, sirvió como un gran refuerzo para la concepción de e<u>s</u> te párrafo.

Todos los requerimientos y exigencias de diseño son planteados en el cuarto capítulo; aquí se presenta mediante un resumen las condiciones que deben reunir los miembros estructurales para que puedan ser aceptados como miembros componentes de una plataforma marina.

Aparte de reunir las características mecánicas para soportar, flexión, cortante, compresión y tensión axial; los miembros deben estar diseñados para prevenir un colapso por la presión hidrostática del agua oceánica, asimismo en este capítulo se establecen los requisitos para hacer las revisiones tan importantes como lo son la interacción del colapso hidrostático con la fue<u>r</u> za axial de compresión y de tensión respectivamente. Aquí también se trata en forma escueta los problemas de cargas cíclicas que produce el oleaje y que a su vez inducen problemas de fatiga en la estructura.

En el capítulo IV se plantean algunas situaciones de análisis estructural en particular del método de las rigideces, se mencionan algunos métodos o<u>p</u> timizados para computadora.

Finalmente en este capítulo se trata brevemente lo concerniente a juntas; es importante mencionar que todo este capítulo hace mucho hincapié en mie<u>m</u> bros de sección cilíndrica ya que éstos son la base para construir la sube<u>s</u> tructura y la cimentación.

El quinto capítulo comprende el diseño de una subestructura (jacket), para esto se aprovecharon las ventajas del programa de cómputo del IMP (Instit<u>u</u> to Mexicano del Petróleo), el cual permite ahorrar tiempo y sistematizar los cálculos de oleaje así como del análisis, reduciendo con ésto el posible error humano.

Para la realización de este capítulo se implementó un modelo de un jacket, mismo que es descrito con exactitud en el primer párrafo del capítulo, su<u>b</u> secuentemente se describe el programa empleado, sus datos requeridos y las condiciones de diseño a que fue sometido el modelo.

En otro punto de vital interés y que es el colofón de este trabajo, se ll<u>e</u> va a cabo el diseño de la subestructura de la plataforma marina; para esto se hechó mano de las especificaciones y recomendaciones planteadas en el c<u>a</u> pítulo anterior; las cuales permiten elaborar el diseño de una manera ópt<u>i</u> ma y racional.

El mejor deseo es que el presente trabajo sirva como una sencilla apor tación para la divulgación de la tecnología de diseño aplicada a estruct<u>u</u>

ras tan sofisticadas y complejas como lo son las plataformas marinas y de esta manera el estudiante pueda inclinarse hacia esta área de la Ingeniería Civil.

> Mayo de 1986 Arturo Juárez Contreras

I DESCRIPCION DE UNA PLATAFORMA

I.1 CIMENTACION, SUBESTRUCTURA Y SUPERESTRUCTURA

Una plataforma Marina de perforación y yacimientos petroleros esta compue<u>s</u> ta principalmente por tres partes importantes que son:

1.- Superestructura

2.- Subestructura

3.- Cimentación (Pilotes)

La figura No.I.1 muestra en forma esquemática estas partes. Se puede n<u>o</u> tar claramente que la parte correspondiente a la cimentación esta integrada a base de pilotes, mismos que llegan a alcanzar profundidades de 56 a 60 me tros a partir del fondo del lecho marino. Los pilotes son normalmente de a-cero y con sección circular hueca cuyos diámetros varían entre 36 y 54 pulgadas y sus espesores varían de 0.75 a 2.5 pulgadas.

Para su colocación en el sitio donde será instalada una plataforma marina se hincan en el lecho marino usando martillos de vapor de doble acción.

La zona crítica de diseño de los pilotes es aquella inmediata al lecho mar<u>i</u> no debido a que en ella existe un cambio brusco de rigideces, generándose momentos y fuerzas cortantes importantes, lo que se traduce en espesores más grandes de pared de los pilotes. Es importante señalar que no sólo se r<u>e</u> -quieren ahí los mayores espesores de pared (2 a 2.5 pulgadas) sino también se requiere emplear aceros de alta resistencia como el ASTM-A-633, Con un Fy=50 Ksi.

En el resto de los segmentos de pilote ya sea arriba o abajo del lecho mar<u>i</u>no se requieren generalmente espesores de 1.5 a 2.0 pulgadas y acero ASTM - A-36.

Con respecto a la subestructura de la figura No. I.1 se observa que la sub estructura se extiende desde la conexión columna-pilote hasta un poco más

arriba del nivel medio del mar.

Las subestructuras de plataformas marinas son armaduras tridimensionales hechas con elementos tubulares y constan de contraventeos en el plano horizo<u>n</u> tal y vertical. Dependiendo de los requerimientos estructurales de rigidez y y de fuerza cortante; los contraventeos que se utilizan en estas estructu-ras son de tipo diagonal sencilla en "X" o en "K".

La función de la subestructura es resistir las fuerzas laterales inducidas por el oleaje o por el sismo. Otra función muy importante de la subestructura es la de servir de plantilla y de guia para el hincado de los pilotes y además porporcionar a estos soportes laterales en varios puntos a lo largo de su longitud; lo que les permite aumentar su capacidad de carga; ya que son los pilotes los que reciben las cargas que provienen de la superestructura,según se muestra en la figura No.1.2.

Como ya se mencionó las secciones transversales de la subestructura son ci<u>r</u> culares y huecas mismas que oponen poca resistencia al paso del agua de las olas, por lo cual también los elementos diagonales tendrán dicha sección tubular.

Las subestructuras estan formadas generalmente por 3, 4, 6, 8 y 12 piernas siendo las más comunes las de 8 piernas, los diámetros de éstas varían de 36 a 60 pulgadas y los elementos de contraventeo horizontal y vertical tienen diámetros de 14 a 24 pulgadas, cabe hacer notar que en la parte superior de las piernas de la subestructura es el único punto de unión entre las colum nas de la superestructura, los pilotes y las patas de la subestructura (Ver figura No. I=2); la unión de estos tres elementos se lleva a cabo mediante un proceso de soldadura como se indica en la figura No.I.3.

En ningún otro punto a lo largo de las piernas de la subestructura existe una conexión con capacidad de transmitir fuerzas axiales al pilote.

En la intersección de cada uno de los planos se contraventeo horizontal con cada una de las piernas de la subestructura se colocan unas placas de relleno en el interior de estas que servirán como transmisores de las fuerzas lat<u>e</u> rales de la subestructura a los pilotes.

En cada nivel de contraventeo horizontal de las plataformas de perforación existen plantillas de guía para la instalación de conductores o camisas para proteger las barras de perforación de estos conductores que son de sección -circular se hincan hasta una profundidad de 60 metros, bajo el lecho marino. Estos conductores además de cumplir con su función básica, se aprovechan para reducir el cortante que actúa sobre los pilotes ya que también los conducto<u>c</u> res contribuyen a la rigidez de la estructura. Las conexiones entre la subestructura y los conductores no tienen capacidad para transmitir carga axial, solo lateral; la contribución a la resistencia de las cargas laterales de los conductores del orden del 20%.

La superestructura (Figura No.I.1) empieza en la conexión pilote-subestructura-superestructura y se eleva sobre el nivel del mar hasta alturas de 15 a 20 metros; siendo su finalidad la de soportar las cargas que provienen directame<u>n</u> te de las diversas instalaciones que conforman el proceso de perforación de la plataforma.

Una superestructura esta formada generalmente de una o dos cubiertas siendo mas comunes las de dos cubiertas construídas a diferente nivel (figura No.I.4) En la cubierta del nivel superior se construye la torre con todos sus implementos de perforación así como los tanques de lodos y líquidos a los lados de esta; en la otra mitad de la cubierta principal se localiza la zona de alma -

cén de productos químicos y de máquinas. Usualmente formando parte integral de esta última zona se construye el módulo de vivienda en cuyo techo se in<u>s</u> tala un helipuerto. Una plataforma de perforación siempre incluye dos grúas que pueden formar parte integral de algunos de los equipos instalados en las diversas zonas.

A un nivel de 15 mts. arriba del nivel medio del mar, se localiza la cubierta inferior algunas veces llamada cubierta de producción; debido que es aquí donde se alojan todas las tuberías, válvulas de control y trampas de diablos empleadas para recolectar el aceite de los pozos y enviarlo a la batería de separación en tierra, mediante una línea llamada "RISER", la cual baja desde la superestructura por la subestructura debidamente instalada, protegida y aislada eléctricamente hasta llegar al fondo del mar; en donde se coloca el oleogasoducto que va hacia tierra firme.

Asimismo en esta cubierta estan instalados todos los dispositivos de med<u>i</u> ción necesarios para evaluar la cantidad de petróleo extraído de cada pozo. La estructuración típica de estas cubiertas consta de trabes de acero de 3 placas soldadas en ambos sentidos; cuyos peraltes oscilan entre 1.0 y 2.0 metros. Los sistemas de piso son a base de largueros de perfiles laminados y de rejillas electrosoldadas; las cubiertas estan soportadas por columnas de acción tubular; generalmente de 1.20 metros de diámetro y de espesores de 1.0 a 1.5 pulgadas.

ESTRUCTURAS MARITIMAS

.

I.2 INSTALACIONES Y EQUIPO

Es en la parte correspondiente a la superestructura el lugar donde se alojan todas las unidades y equipos necesarios para llevar a cabo el proceso de la extracción del fluído formado por fósiles y algunos otros componentes orgánicos a través de miles de años.

La superestructura esta formada por dos cubiertas: una superior y una inf<u>e</u> -rior. Es precisamente en la superior en la que se aloja la mayoría de equipo y unidades requeridas como son principalmente: la torre de perforación, los_ tanques de lodos, las unidades habitacional y de maquinaria y los almacenes de productos químicos y combustibles.

La unidad habitacional tiene un peso aproximado de 175 toneladas con capacidad para albergar a 45 personas; cuenta con los siguientes servicios: comedor, cocina, baños, camarotes, cuarto de T.V., enfermería y un helipuerto en la parte superior para recibir helicópteros hasta de 7.6 toneladas.Esta cuenta con una serie de escaleras móviles y fijas, con tubos de escape para descender a las otras instalaciones, equipo telefónico para comunicarse a la plataforma y de radio para el circuíto comunicativo desde la plataforma a tierra.

El almacén de productos químicos tiene un peso aproximado de 320 toneladas; -cuenta con los recipientes necesarios para conservar las materias requeridas_ durante la operación de la perforación

Los tanques de lodo pesan 70 toneladas aproximadamente, están provistos de -equipo para manejar y preparar las diferentes combinaciones de lodos y cementantes empleados en el procedimiento de perforación.

El almacén de combustibles cuyo peso es de 75 toneladas aproximadamente, com prende varios implementos para guardar diesel, agua potable y aceites. La ma yor parte del combustible empleado en la plataforma es el diesel.

La unidad de maquinaria tiene un peso aproximado de 280 toneladas; sumini<u>s</u> tra energía a todas las instalaciones de la plataforma e involucra a la un<u>i</u> dad de bombas y compresores que cooperan para el funcionamiento en el proceso productivo.

La torre y el paquete de perforación son equipos sumamente importantes, ya que de ellos depende en gran parte el obtener los resultados más óptimos en la extracción del petróleo.

Para el accionamiento de las instalaciones de perforación, actualmente se em plean grupos motrices diesel-eléctricos y diesel-hidraúlicos; todos los meca nismos de la instalación de perforación accionada por un grupo motriz dieseleléctrico (Figura No. I.5) se hallan montados en 4 bloques principalmente: el bloque torre-rotor, el del malacate y los dos de las bombas.

En la base metálica del bloque torre-rotor esta montado el rotor (10), con su motor eléctrico individual y se haya instalada una torre en forma de "A" de -29 metros de altura con su aparejo el cuadernal (7), el montón(5), el gancho (4) y el cable (6). Para el traslado a las plataformas el bloque torre-rotor_ se desarma en secciones.

El bloque del malacate consta de un bastidor metálico en el que estan instala

Instalación de perforación con una capacidad elevadora de 50 ff accionada por un grupo motriz Diesel-eléctrico: otriz: 2, manguera de sondeo: 3, cabeza giratoria de inyección; 4, garcho: cable de aparelo: 7, pistorma de cuadrunai; 4, ramal del cable de aparejo enja-tambor del malacate: 9, malacate: 10, color: 11, bombas: 12, nangueras de succión: de recepción de las bombas: 14, conducto de impuisión: 25, canales: 16, insta-lación de criba hidrociciónica; 17, grupo motriz Diesel-eléctrico ita

FIGURA I.5

tantes empleados en el procedimiento de perforación.

El almacén de combustibles cuyo peso es de 75 toneladas aproximadamente, com prende varios implementos para guardar diesel, agua potable y aceites. La ma yor parte del combustible empleado en la plataforma es el diesel.

La unidad de maquinaria tiene un peso aproximado de 280 toneladas; sumini<u>s</u> tra energía a todas las instalaciones de la plataforma e involucra a la un<u>i</u> dad de bombas y compresores que cooperan para el funcionamiento en el proceso productivo.

La torre y el paquete de perforación son equipos sumamente importantes, ya que de ellos depende en gran parte el obtener los resultados más óptimos en la extracción del petróleo.

Para el accionamiento de las instalaciones de perforación, actualmente se em plean grupos motrices diesel-eléctricos y diesel-hidraúlicos; todos los meca nismos de la instalación de perforación accionada por un grupo motríz dieseleléctrico (Figura No. I.5) se hallan montados en 4 bloques principalmente: el bloque torre-rotor, el del malacate y los dos de las bombas.

En la base metálica del bloque torre-rotor esta montado el rotor (10), con su motor eléctrico individual y se haya instalada una torre en forma de "A" de -29 metros de altura con su aparejo el cuadernal (7), el montón(5), el gancho (4) y el cable (6). Para el traslado a las plataformas el bloque torre-rotor_ se desarma en secciones.

El bloque del malacate consta de un bastidor metálico en el que estan instala

dos un malacate (9) con una caja de cambio de dos velocidades, dos electromotores de corriente alterna, el regulador de avance del trépano y el tablero de mando del perforador.

Cada uno de los bloques de bombas representa un bastidor metálico soldado, en el cual estan instalados el motor diesel (17), con un generador de corriente_ alterna y la bomba de sondeo (11), unida con el generador mediante un embr<u>a</u> gue neumático de llanta a través de un reductor de engranajes.

La instalación de perforación esta dotada de un regulador de avance del trép<u>a</u> no (13), que se une mediante una transmisión en cadena a la transmisión que bloquea los electromotores; hay también un electromotor individual que recibe alimentación de la red eléctrica común.

Las bombas (5), reciben la potencia de la instalación diesel-generadora 1 y 2 a través del embrague neumático de llanta (3) y del reductor (4).

La energía del generador se usa para las necesidades auxiliares o para el acon dicionamiento del malacate. El rotor se pone en marcha con el electromotor individual (6) a través de una caja de cambio de velocidades y un árbol cardán al conectar el embrague neumático de llanta. Mediante el cambio de conexión de la rueda dentada doble con z=30, z=20 en la caja de cambio de velocidades, se obtienen dos valores de la velocidad angular de rotación de la mesa del r<u>o</u> tor.

El equipo auxiliar y principal de la instalación de perforación esta soportado con bases metálicas que forman dos bloques; el de la torre y el de impul -

sión y bombeo. La instalación se pone en movimiento con dos grupos motríces, cada cual consta de un motor diesel y un turbotransformador.

La potencia de los grupos motrices es transferida a través de los árboles car dán y los embragues neumáticos de llanta a un reductor de cadena (al conectar el embrague neumático de llanta), a través de un árbol cardán y una transmisión inclinada de cadenas a la caja de cambio de velocidades. Esta última ti<u>e</u> ne dos velocidades directas y una inversa cuya conexión se realiza manejando manualmente un acoplamiento de garras.

El tambor del malacate y el rotor se ponen en movimiento por medio de sus embragues neumáticos de llanta. El tambor del malacate también puede ser puesto en giro con el mecanismo de levantamiento de emergencia constituído por un -electromotor, un reductor y un freno de zapatas.

El peso de la torre de perforación, malacate, controles y demás es de 280 toneladas aproximadamente.

I.3 TIPOS DE PLATAFORMAS

Tratar de clasificar los diferentes tipos de plataformas que se construyen pu<u>e</u> de resultar complicado, ya que existen diversas variantes de una plataforma a otra y éstas se diseñan para necesidades específicas.

Sin embargo el API ha hecho una clasificación muy general de las plataformas marinas, siendo la siguiente: a) Escatillón.

Una plataforma tipo Escatillón consiste de:

- La subestructura o estructura especial tubular soldada diseñada para servir como escatillón de guía a los pilotes y con un refuerzo lateral para_ los mismos.
- Los pilotes anclan permanentemente la plataforma al lecho marino y soportan las cargas verticates y laterales.
- La superestructura consistirá de una armadura y una o dos cubiertas para_ soportar las cargas operacionales y otras.
- b) Plataforma tipo torre.

Es aquella que tiene las piernas relativamente cortas (5 metros aproximad<u>a</u> mente). La torre puede ser flotante para transportarla al sitio donde será colocada e inundar las piernas para posicionarla verticalmente.

La plataforma tipo torre puede ó no ser soportada por pilotes. Cuando se usan, éstos se guían a través de cada una de las piernas de la torre pen<u>e</u> trando el suelo para soportar la plataforma. Los pilotes pueden también ser vir como pozos conductores. Si los soportes de la estructura son propo<u>r</u> cionados por la ampliación de la base en lugar de los pilotes, los pozos -conductores pueden ser instalados uno a uno dentro o fuera de las piernas.

c) Flotante.

Una plataforma flotante es aquella que está soportada fundamentalmente por elementos a tensión y soporta un pozo de perforación.

II DESCRIPCION DEL LANZAMIENTO

II.1 TRANSPORTE DEL PATIO DE FABRICACION AL SITIO DEL MONTAJE.

Después de que la subestructura ha sido fabricada en los patios de fabric<u>a</u> ción en tierra firme con acceso al mar; ésta debe ser transportada mar adentro hasta el sitio en el cual será montada, para lo cual se emplea normalme<u>n</u> te el siguiente equipo:

Dos chalanes o barcazas, una para la subestructura y otra para la superes -tructura, un remolcador, equipo de corte y máquinas de soldar. El chalán para transportar la subestructura, esta diseñado para cargar estructuras con un máximo de profundidad de 60.96 metros y peso máximo de 1000 toneladas; so bre la cubierta del chalán se localiza el sistema de lanzamiento. Este equipo de lanzamiento incluye correderas de vía, balancines, malacates, bloques y cables, bombas, andamios y redes.

Maniobra de carga de la subestructura: La maniobra consiste en deslizar la subestructura de tierra hacia arriba del chalán de transporte y lanzamiento, para lo cual se realizan los preparativos siguientes: (Ver figura No.II.1)

- a) El chalán por medio del remolcador se coloca en posición de carga (Las trado), se procede a alinear sus correderas de vía para lanzamiento con los extremos de las vigas deslizadoras de la subestructura.
- b) Colocación de estrobos entre el polipasto del malacate (Winche), y las orejas del deslizamiento de la subestructura.
- c) Engrase del patín de las vías para el lanzamiento del chalan.
- d) Se procede a jalar, iniciando así el deslizamiento de la subestructura
- e) Colocación de dos gruas a los lados de la subestructura, con cables templadores sujetos al chalan de carga para mantenerlo en posición y pegado al estero.

Una vez terminada la carga se sujeta a la subestructura con el chalán por <u>me</u> dio de secciones de acero estructural tubular mismas que se soldan para unir al chalán y a la subestructura; esto se hace para evitar movimientos vibratorios laterales producidos con la maniobra y que ponen en riesgo la estabil<u>i</u> dad de la estructura durante el trayecto del viaje hasta el sitio de instalación.

En el caso de la maniobra de carga de la superestructura, se emplea el mismo chalán usado para cargar la subestructura y la secuencia de carga es idéntica a la de la subestructura.

En el chalán de carga de la superestructura se transportan también los el<u>e</u> mentos restantes de la plataforma como son pedestal de grúa, tubos para la succión de agua salada, barandales de cubierta de perforación, escaleras,etc. El chalán que transporta tanto la superestructura como la subestructura es remolcado por un remolque de una potencia promedio de 3200 hp.

II.2 SECUENCIA DEL LANZAMIENTO

Podría decirse que el proceso del lanzamiento se inicia en el momento en que la subestructura, después de estar en equilibrio con las aguas oceánicas ---(Ver figura No. II.6), comienza a girar en relación con la barcaza hasta que se desliza a lo largo de las correderas por peso propio, el conocimiento de la trayectoria seguida por la subestructura durante el lanzamiento, así como su posición de flotación libre garantizará una instalación éxitosa.

Es importante señalar que debido a las características tubulares de la estru<u>c</u> tura y a los sistemas de sello que se le implementan; estos le permitirán tener una recuperación hasta que flote libremente, en este proceso la subestructura no debe tocar el fondo del lecho marino, ya que esto le podría ocasionar d<u>a</u> ños no previstos.

La posición que adopte cuando se encuentre en posición de flotación libre debe ser tal que permita el acceso para efectuar maniobras de colocación en el sitio, asímismo, los esfuerzos transitorios que aparecen durante estas operaciones no deben ser damasiado grandes puesto que ocasionarían problemas en la subestructura.

En general, para fines de simplificación de cálculos así como de los modelos matemáticos que se elaboran para el lanzamiento de la subestructura; se ha - elaborado una secuencia tradicional del lanzamiento que esta conformada a b<u>a</u> se de cuatro etapas, las cuales son:

ETAPA O: La subestructura desliza a lo largo del balancín.

ETAPA 1: La subestructura gira con respecto al punto pivote del balancín.

ETAPA 2: La subestructura gira alrededor del punto pivote del balancin y desliza a lo largo del mismo.

ETAPA 3: La subestructura deja la barcaza y permanece en el agua buscando su posición de flotación libre.
Estas cuatro etapas son representadas mediante el esquema de la figura No. -11.2.

En la figura No. II.3 se muestra la subestructura una vez que ha sido lanzada, ahí se puede observar como la estructura se sumerge una distancia determinada sin tocar el lecho marino hasta que toma su posición de flotación, <u>pa</u> ra finalmente quedar en una posición horizontal lista para ser izada en una barcaza-grúa para posteriormente ser montada.

II.3 SECUENCIA DE INSTALACIONES E IZAJE

Una vez que se tiene la subestructura en flotación después de que fué lanzada al mar, es acercada aproximadamente a 12 metros a la popa de la barcaza para enganchar los estrobos, éstos estrobos se agarran a las orejas del l<u>e</u> vantamiento de la subestructura.

Estas orejas van colocadas en la parte superior de las cuatro columnas ce<u>n</u> - trales de levante al block de la grúa de 500 toneladas.

A continuación la grúa levanta un poco la estructura para dejar al descubie<u>r</u> to los manerales de operación de las válvulas de admisión de agua y de expu<u>l</u> sión de aire. Las columnas a medida que se fueron lastrando, hicieron que la estructura buscara la verticalidad. Antes que la estructura sea asentada en el fondo del mar se verifica su colocación con el SHORT-ANGLE¹ y se le dá la orientación requerida por el proyecto;finalmente la subestructura es asentada en el fondo del mar. (Ver la figuras II.4 y II.5).

Una vez que la estructura descansa en el lecho marino se procede al hincado de los pilotes requeridos por la estructura para su fijación y cimentación,este hincado se hace hasta una profundidad mínima de 54 metros a partir del lecho marino. La profundidad final a la que se hincan los pilotes, se determina por medio de un pilote prueba que se hinca hasta una profundidad igual o mayor a la misma antes citada, siempre y cuando satisfaga las siguientes condiciones:

- a) Requerir un promedio de 50 golpes para penetrar 30 cms. durante una longi tud de 15 metros.
- b) Requerir un promedio de 40 golpes para penetrar 30 cms. durante una longi tud de 24 metros.

¹ El SHORT-ANGLE es un sistema mediante el cual se localiza el sitio exacto donde se fijará una plataforma marina.

II.3 SECUENCIA DE INSTALACIONES E IZAJE

Una vez que se tiene la subestructura en flotación después de que fué lanzada al mar, es acercada aproximadamente a 12 metros a la popa de la barcaza para enganchar los estrobos, éstos estrobos se agarran a las orejas del l<u>e</u> vantamiento de la subestructura.

Estas orejas van colocadas en la parte superior de las cuatro columnas ce<u>n</u> - trales de levante al block de la grúa de 500 toneladas.

A continuación la grúa levanta un poco la estructura para dejar al descubie<u>r</u> to los manerales de operación de las válvulas de admisión de agua y de expu<u>l</u> sión de aire. Las columnas a medida que se fueron lastrando, hicieron que la estructura buscara la verticalidad. Antes que la estructura sea asentada en el fondo del mar se verifica su colocación con el SHORT-ANGLE¹ y se le dá la orientación requerida por el proyecto;finalmente la subestructura es asentada en el fondo del mar. (Ver la figuras II.4 y II.5).

Una vez que la estructura descansa en el lecho marino se procede al hincado de los pilotes requeridos por la estructura para su fijación y cimentación,este hincado se hace hasta una profundidad mínima de 54 metros a partir del lecho marino. La profundidad final a la que se hincan los pilotes, se determina por medio de un pilote prueba que se hinca hasta una profundidad igual o mayor a la misma antes citada, siempre y cuando satisfaga las siguientes condiciones:

- a) Requerir un promedio de 50 golpes para penetrar 30 cms. durante una longi tud de 15 metros.
- b) Requerir un promedio de 40 golpes para penetrar 30 cms. durante una longi tud de 24 metros.

¹ El SHORT-ANGLE es un sistema mediante el cual se localiza el sitio exacto donde se fijará una plataforma marina.

c) Requerir un promedio de 30 golpes para penetrar 30 cms. durante una longi tud de 42 metros.

Al cubrir cualquiera de las condiciones señaladas se deja al pilote de prueba un reposo de 24 horas. Después se reanuda el hincado hasta que satisfaga cualquiera de las condiciones siguientes:

- Requerir un promedio de 300 golpes para penetrar 30 cms. durante una lon gitud de 3 metros.
- Requerir un promedio de 300 golpes para penetrar 30 cms. durante una lon gitud de 1.50 metros.

3.- Requerir un promedio de 500 golpes para penetrar 30 cms.

Una vez que ha sido instalada la subestructura y sus correspondientes pilotes se procede al montaje de la superestructura; para esta operación el chalán de carga de la superestructura generalmente es atracada a la barcaza en el lado de babor dependiendo de la dirección de la corriente dominante.

Posteriormente se procede a engrilletar los estrobos (4) a las orejas del l<u>e</u> vante de la superestructura continuando con el corte de las piezas que suj<u>e</u> tan a la superestructura al chalán de carga. Una vez terminadas estas oper<u>a</u> ciones se enganchan los estrobos a la pasteca de la grúa de 500 toneladas y se procede a la operación de montaje; la superestructura es levantada liger<u>a</u> mente y llevada hasta la subestructura; una vez que se tienen alineadas las columnas de estas con los pilotes, la superestructura es colocada sobre la subestructura. (Ver figura No. II.7).

Una vez terminada esta operación se afinan los biceles de las uniones entre pilotes y columnas (de la superestructura), continuando con el soldado de las mismas.

III. DETERMINACION DE SOLICITACIONES

III.1 OLEAJE

El mar siempre ha sido una zona de muchos misterios aunque el hombre se ha preocupado por desentrañarlos; hasta la fecha no ha sido posible conocer a fondo todos los secretos y leyes que rigen en el comportamiento de los oce<u>a</u> nos. Sin embargo,dado el incremento de la población y con ella las necesidades humanas de contar con más y mejores satisfactores, siendo el mar una fuente de recursos inagotables, es por esto que se llegó a la necesidad de investigar y estudiar el comportamiento y las leyes de esta región tan importante.

De entre todos los recursos marinos se podría decir que son parte destacada los mantos petrolíferos que se encuentran en el subsuelo del fondo marino. Debido a que el mar cuenta con este energético y que éste a su vez es un -

insumo definitivo en la economía de cualquier país; por ello se ha dado a la tarea de su exploración y explotación.

De entre los numerosos estudios que se han hecho acerca del mar citaremos los correspondientes al comportamiento del oleaje, ya que estos son de suma importancia para el diseño de la estructura de una plataforma marina de perforación.

Es importante señalar que los estudios que se han hecho hasta la fecha con en fin de definir el comportamiento de las olas y el efecto que éstas producen en las estructuras marinas aún sigue en proceso la investigación para su perfeccionamiento ya que actualmente las teorías o hipótesis que se plantean se basan en coeficientes determinados empiricamente y por otro la do las teorías no describen total y cabalmente el real comportamiento del oleaje, sin embargo, si tienen rangos de aceptación y son adecuados para el diseño de estructuras en el mar; estas teorías que tratan de explicar el movimiento de las olas marinas son básicamente cinco:

26

- + Teoría de Airy
- + Teoría de Stokes
- + Teoría de Gerstener o trocoidal
- + Teoría de la ola solitaria
- + Teoría de la ola senoidal

Debido a que el comportamiento de las olas del mar es bastante irregular y complejo esto provoca serias dificultades para su investigación, sin embargo, para simplificación de su estudio se parte de la consideración de que las olas son regulares e ideales.

Las soluciones que nos dan las teorías para describir el oleaje son adecuadas ya que esas teorías se apoyan en análisis matemáticos y experimentales así co mo en principios de hidrodinámica, cabe notar que cada teoría conduce a resul tados diferentes, esto es en virtud de las condiciones e hipótesis específ<u>i</u> cas en que se basa cada una de las teorías; en particular debido a esto se han creado rangos de utilización de las teorías.

Antes de entrar al desarrollo de cada teoría, es necesario hacer unas defin<u>i</u> ciones de parámetros y términos que se emplean en el estudio del movimiento de las olas.

Altura de la ola (H): es la distancia vertical de la cresta al valle de la ola.

Período de la ola (T): es el tiempo que tardan en pasar dos crestas o valles consecutivos sobre un punto fijo.

Tirante del agua: es la distancia desde el fondo marino hasta el nivel de la superficie estática.

Longitud de la ola (L): distancia horizontal entre crestas y/o valles.

La celeridad o velocidad de la ola (c): es la velocidad de desplazamiento de la ola y se determina por:

Altura del perfil (n): desnivel entre cualquier punto de la superficie de la onda y el nivel del reposo.

En la figura III.1 se pueden ver estos parámetros.

III.1.a) TEORIA DE AIRY

Hasta el presente no se dispone con una solución matemática única que permita obtener todas las características físicas del oleaje como son, por ejemplo; la forma de la superficie libre, el movimiento de las partículas, la distrib<u>u</u> -ción de presiones, etc.

Sin embargo, se dispone de varias teorías o soluciones parciales que son de -gran utilidad y que permiten obtener respuestas adecuadas dentro de rangos -acotados de aplicación.

Es así como la Teoría de Airy, llamada así ya que fué Airy en 1845 quién primero la desarrollara; es conocida también como primera aproximación, esto debido a que existen oleajes que son definidos con suficiente exactitud por esta teoría sin necesidad de utilizar una segunda aproximación que implicaría el empleo de otra teoría.

La teoría esta basada en que las olas tienen forma de senoide y además considera que la viscosidad del agua es nula, esto es , la fricción interna de las partículas no existe, de esta manera se tiene un movimiento irrotacional de las olas y por lo tanto la velocidades vertical (v) y horizontal (u) de las partículas se pueden derivar de una velocidad potencial, así tenemos:

$$u(x,z,t) = \frac{\partial \phi(x,z,t)}{\partial x}$$

$$v(x,z,t) = \frac{\partial \phi(x,z,t)}{\partial z}$$

Esto origina una simplificación considerable en el análisis, ya que únicamen te hay que tomar en cuenta el parámetro ϕ para la solución.

Considerando el agua como flujo homogéneo e incomprensible (Ø=cte).La ec.de continuidad se puede expresar como:

 $\frac{\partial w}{\partial x} + \frac{\partial v}{\partial z} = 0$

o en términos de la velocidad potencial.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 v}{\partial z^2} = 0$$

La cual es conocida como la ecuación de continuidad de Lapace.

Para conocer el movimiento orbital de la ola se tiene que encontrar una solución a la ecuación de Lapace.

Las condiciones frontera que permite resolver las ecuaciones planteadas y ll<u>e</u> gar a la solución son:

1) La velocidad vertical en el fondo vale cero.

v(x,z=-h,t)=0

2) La presión en la superficie del agua es igual a la presión atmosférica. Es ta se puede derivar la Ec. de Bernoulli.

$$\frac{P}{P} = \frac{d\phi}{dt} - \frac{1}{2} (u^2 + v^2) - gz$$

Otra simplificación de la teoría, consiste en que considera olas de pequeña amplitud y el tirante del agua es mucho mayor que "H", así tenemos.

$$\frac{H}{L} \ll 1 \frac{\gamma}{H} \frac{h}{H} \gg 1$$

En base a lo anterior se realiza un análisis matemático y se llega a obtener una solución para la ecuación de Laplace.

En esta solución la ecuación del perfíl de la ola queda expresado como:

$$n(x, t) = \frac{H}{2} \cos \theta$$

$$e = Angulo de Fase = \left(\frac{2\pi}{L} \times \frac{-2\pi}{T} t\right)$$

Donde:

n = n es la elevación de la superficie estática del agua a la órbita de la ola.

El perfil de la ola es "senoidal". Al factor k = $\frac{21}{L}$ se le denomina número de ola y al factor $\nabla = \frac{21}{L}$ radian de frecuencia, ya que f = $\frac{1}{T}$ donde f es la - frecuencia, así la ecuación del perfil queda:

$$n(x, t) = \frac{H}{2} \cos(kx - \nabla t)$$

Nótese que las coordenadas de los ejes son tales que el eje "x" es positivo en la dirección del movimiento de la ola y el eje "z" es positivo hacia arriba. -El orfgen de los ejes coordenados se encuentra sobre el nivel de la superficie estática del agua. (Ver Figura No. III.2).

Así estamos en condiciones de presentar las expresiones que permiten obtener las características del oleaje.

La longitud de la ola en función de la ecuación de Laplace es:

$$L = \frac{g_{1}^{*} \Gamma^{2}}{2\pi} \quad tanh \left(\frac{2\pi h}{L}\right)$$

Haciendo un análisis de esta ecuación se observa que cuando h (tirante del agua) es grande (aguas profundas), la tanh ($\frac{2 \, n}{L}$) tiende a "1" esto hace que tanto la longitud como la celeridad tiendan a:

$$L = \frac{gT^2}{2\pi} \qquad C = \frac{L}{T} = \frac{gT}{2\pi}$$

En el caso donde " h " sea pequeña (aguas bajas) se tiene que:

$$\tanh\left(\frac{2\pi}{L}\right) \approx \frac{2\pi}{L}$$
 y por lo tanto

La velocidad y aceleraciones vertical y horizontal de las partículas del agua dentro del movimiento orbital de la ola estan proporcionadas por las siguientes ecuaciones:

Velocidad (componente horizontal):

$$u = \frac{\P H}{T} \frac{\cosh \left[K(z+h) \right]}{\sinh (Kh)} \cos (Kx + \nabla t)$$

Aceleración (componente horizontal):

$$\frac{du}{dt} = \frac{2 \Pi^2 H}{T^2} \frac{\cosh \left[K (z+h)\right]}{\sinh (Kh)} \operatorname{sen} (Kx - \nabla t)$$

Velocidad (componente vertical):

$$V = \frac{\Pi H}{T} \frac{\text{senh} [k (z+h)]}{\text{sen} (kh)} \text{ sen} (kx-\nabla t)$$

Aceleración (componente vertical)

$$\frac{du}{dt} = \frac{-2 \, 1^2 \, H}{T^2} \quad \frac{\text{senh} \left[k \left(z+h\right)\right]}{\text{senh} \left(kh\right)} \quad \cosh \left[kx - \nabla t\right]$$

Estas ecuaciones se observan complejas, pero si las analizamos veremos su sim plicidad.

El movimiento orbital que expresan es sobre un círculo y/o una elipse con di<u>á</u> metro mayor "d" y diámetro menor "s", los cuales quedan expresados por las s<u>i</u> guientes ecuaciones:

$$d = H \frac{\cosh \left[k (z_{o} + h) \right]}{\sinh (kh)}$$
$$s = H \frac{\sinh \left[k (z_{o} + h) \right]}{\sinh (kh)}$$

Como podemos observar estos diámetros varian a lo largo de la coordenada "z" viêndose afectados por el tirante del agua (h).

Así tenemos que para aguas profundas los diámetros d y s son iguales, ya que el valor de cosh [k ($z_o + h$)] para un h muy grande tiende a ser igual a:

$$senh[k(z_o + h)]$$

Esto nos conduce a tener una órbita de las partículas de aguas circular con --

una variación de diámetro exponencialmente (Ver Figura No. III.3), expresada - esta por la ecuación de la siguiente forma:

Donde k (número de ola) es el factor de decrecimiento exponencial del diáme-tro con respecto a la coordenada z donde k está expresado por:

$$k = \frac{2\pi}{Lp} = \frac{2\pi}{\left(\frac{q}{2\pi}\right) T}$$

Para valores grandes de k, el diámetro disminuye más rapidamente con la pr<u>o</u> - fundidad.

En aguas bajas el diámestro "s" tiende a ceró siendo la órbita de las partíc<u>u</u> las del agua elíptica muy alargada (Ver Figura No. III.3), donde el diámetro_ permanece constante a lo largo de la expresión profundidad del agua expresado por:

$$d = \frac{HT}{2\pi} \cdot \sqrt{\frac{g}{h}} = \frac{H}{kh}$$

s = 0

.

III.1.b) TEORIA DE STOKES

La teoría de Airy fué desarrollada para olas de amplitud pequeña, y es inad<u>e</u> cuada para olas de altura finita. Stokes presenta una solución similar para olas de altura finita usando en el análisis matemático series trigonométr<u>i</u> cas. La aproximación del método de Stokes tiene como fin conservar aquellos miembros que contienen <u>H</u> elevadas a la segunda y mayores potencias.

Cuando la altura de olas es pequeña, conservar esos miembros no es signific<u>a</u> tivo en los resultados, no sucede así cuando la altura de la ola es grande.-Es por eso que el método de Stokes ha sido desarrollado para varias aproximaciones por distíntos matemáticos en su aplicación directa. Mostrando la aproximación de segundo órden, para la ecuación del perfíl de la ola se tienen:

$$\frac{\eta = H \cos (Kx - \nabla t) + \frac{1}{8} \frac{H^2}{L} \frac{\cosh (Kh) (2 + \cosh (2Kh))}{\sin h} \cos [2(Kx - \nabla t)]}{\sin h} \cos [2(Kx - \nabla t)]$$

Donde en aguas profundas $\frac{h}{L_p}$ 71 reduce a:

 $\frac{n = H_{p}}{3} \cos 2^{q} \left(\frac{x}{L_{p}} - \frac{t}{T} \right)^{+} \frac{q}{4L_{p}} \cos^{4^{q}} \left(\frac{x}{L_{p}} - \frac{t}{T} \right)$

Analizando esta ecauación observamos que cuando $\frac{H}{L}$ es pequeño, el segundo miem bro desaparece y la ecuación se reduce a la obtenida por la teoría de Airy.En la figura No. III.4 se ha graficado el perfíl de la ola tanto para la ecua ción de Stokes como para la de Airy, Así se puede apreciar que el perfíl de -Stokes aumenta su tamaño de cresta pero disminuye su duración, y en el valle decrece el perfíl aumentando su duración. Se tiene que a 4 de la cresta y del valle los segundos términos de la ecuación del perfil de Stokes toman un -valor negativo. Siendo estos puntos donde se interceptan las curvas. Las velocidades tanto horizontal como vertical tienen la misma variación que el perfil, al compararla con las ecuaciones de velocidad en algún punto (x,z) para el segundo órden de aproximación son:

u (componente horizontal):

$$u = \frac{\Psi H}{T} \frac{\cos \left[\frac{k(z+h)}{senh(kh)} \right]^{2} \cos \left[\frac{2k(z+h)}{senh(kh)} \right]^{2} \cos \left[\frac{2k(z+h)}{senh(kh)} \right]^{2}}{\left[\frac{\Psi H}{T} \right]^{2} \cos \left[\frac{2k(z+h)}{senh(kh)} \right]^{2}} \cdot \cos \left[\frac{2k(z+h)}{senh(kh)} \right]^{2}}$$

$$v = \frac{\Psi H}{T} \frac{\sinh \left[\frac{k(z+h)}{senh(kh)} \right]^{2} \sin \left(\frac{kx-\nabla t}{s} \right) + \frac{3}{4} \left[-\frac{\Psi H}{z} \right]^{2} \cos \left[\frac{senh[2k(z+h)]}{senh(kx)} \right] \cdot \sin \left[\frac{2(kx-\nabla t)}{senh(kx)} \right]^{2}}$$
Por lo que respecta a la celeridad y longitud de la ola se tiene
$$c = \frac{gT}{24} - \frac{\tanh \left(\frac{2\Psi h}{L} \right) \left[\frac{1}{senh(24)} + \frac{\Psi H}{senh^{4}(24)} \frac{2}{h/L} \right]$$

Si $\left[\frac{h}{L}\right]^2$ es pequeño, la celeridad de la ola se reduce a la dada por Airy en aguas profundas, esta ecuación es:

 $c = \frac{gT}{2\pi} [1 + (\frac{\pi Hp}{Lp})^2]$

Dado un periódo de ola y un tirante de agua existe un límite superior para la altura de la ola de la teoría de Stokes, en la cual la ola llega a ser -inestable y rompe. Stokes asume que cuando la velocidad de las partículas de agua en la cresta llega a exceder la celeridad de la ola se derriba hacia -adelante y rompe. Mitchell encontró que en aguas profundas el límite es:

$$\begin{bmatrix}\frac{H_p}{L_p}\end{bmatrix}_{\max} = 0.142 \doteq \frac{1}{7}$$

Y para olas en cualquier tirante esta dada por:

$$\begin{bmatrix} \frac{H}{L} \end{bmatrix}_{\max} = \begin{bmatrix} \frac{H_{P}}{L_{P}} \end{bmatrix}_{\max} \quad \tanh(\frac{2 - h}{2}) = 0.142 \tanh(kh)$$

III.1.c) TEORIA DE GERSTENER O TROCOIDAL

La primera solución fué hecha para olas periódicas de altura finita, fué des<u>a</u> rrollada por Gerstener(1802); su solución es limitada a olas de agua de tirante infinito. Las ecuaciones son desarrolladas por esta teoría considerando al perfíl de la ola de forma trocoidal.

La forma trocoidal es generada por el movimiento de un punto (punto 'A" de la figura No. III.5) interior de un círculo, dónde el círculo rueda a lo largo - de la cara interior de una línea.

Observando la figura No. III.5, si "R" es el radio del círculo, entonces la longitud de la ola será L= 21 R (el radio del círculo es 1) la altura será -H= 2r donde r es la distancia radial del centro del círculo al punto "A".La teoría satisface la condición de presión en la superficie y la continuidad -del agua.

Para un ángulo de rotación O la ecuación del perfil de la ola es:

$$\eta = \frac{H}{7} \quad (1 - \cos \Theta)$$

Cuando <u>H</u> llega a ser pequeña (el punto "A" se acerca al centro), el perfíl -<u>L</u> de la ola se asemeja al dado por la teoría de Stokes; cuando H se acerca a c<u>e</u> ro, la forma de la ola tiende a ser senoidal.

Así tenemos que en este límite, la ola corresponde a la dada por la teoría de Airy en aguas profundas.

La posición de la cresta y el valle con respecto al nivel estático del agua - es:

Altura de la cresta =
$$\frac{H}{2} + \frac{\Pi H^2}{4 L}$$

Peralte del valle =
$$\frac{H}{2} - \frac{\Pi H^2}{4L}$$

Como puede verse la amplitud es más que la mitad de la. altura de ola en la cresta y menos en el valle.

La órbita de las partículas es:

$$d = s = H e^{kz}$$

Es la misma para aguas profundas de la teoría de Airy el diámetro de los cí \underline{r} culos decrece exponencialmente con la profundidad.

Las ecuaciones de longitud de ola, celeridad y velocidad (horizontal y verti cal) son las mismas dadas por la teroría de Airy.

III.1.d) TEORIA DE LA OLA SOLITARIA

La ola solitaria como su nombre lo indica, es una ola con una sola cresta, no es oscilatoria como las olas de las teorías anteriores, por lo tanto no existe periódo ni longitud de ola asociados a ella; es por esto que esta teoría no es útil para describir las olas periódicas originadas por el viento en -aguas profundas. Sin embargo, cuando las olas oceánicas entran a aguas bajas su cresta se torna picuda y separada por un valle extendido por lo que se hace adecuado tratar a la ola como una serie de olas individuales.

Se ha descrito en el párrafo anterior que para aguas bajas el periódo de la ola no es significativo en las características de la ola, influyendo más la profundidad del agua.

Por esta razón, el no considerar el periódo de la ola para describir sus ca_{-} racterísticas en aguas bajas resulta razonable y permite un tratamiento matemático sencillo.

El perfil y la notación de la ola solitaria se muestran en la figura No.III.6 y su ecuación esta dada por:

$$n = H \operatorname{sech}^2 \sqrt{\frac{3}{4} \frac{H}{h} \frac{x}{h}}$$

Donde n es la coordenada vertical medida desde el nivel estático en una distan cia horizontal x con un orígen en la cresta. A la relación altura de ola en tre tirante de agua $\frac{H}{h}$ se le representa como γ . La ecuación de la celeridad esta dada según Laitone en aproximaciones de gran órden por:

$$c = \sqrt{gh} \left(1 + \frac{1}{2} + \frac{H}{h} - \frac{3}{20} + \frac{H}{h}^2 + \dots \right)$$

Puede observarse que la celeridad es mayor en magnitud que la ola de Airy en

aguas bajas. La ola solitaria considerada para la altura de las olas finitas tiene una celeridad:

 $c=\sqrt{gh(1+H/h)}=\sqrt{g(h+H)}$

que es la ecuación determinada empíricamente por Russell, y obtenida como - primera aproximación por Boussinesq. Para valores de $\frac{H}{h} < 0.4$ es más práctico - usar esta ecuación.

Mientras la ola solitaria avanza dentro de las aguasbajas, la altura de la ola se incrementa hasta un punto donde la ola llega a ser inestable y rompe. La inestabilidad sucede cuando la velocidad orbital de las partículas de agua en la cresta se iguala a la celeridad.

El límite más aceptable para esta condición es el dado por McCowan donde:

$$\Upsilon = \left[\frac{H}{h}\right]_{max} = 0.78$$

La velocidad de las partículas del agua esta dada por:

$$u = \frac{Nc}{[\cos(Mz/h) + \cosh(Mx/h)]^2}$$
$$v = \frac{Nc}{[\cos(Mz/h) + \cosh(Mx/h)]^2}$$
$$v = \frac{Nc}{[\cos(Mz/h) + \cosh(Mx/h)]^2}$$

Donde los valores de M y N se obtienen de la gráfica de Munk (Ver figura No. III.6.a).

.

III.1.e) TEORIA DE LA OLA SENOIDAL.

La ola senoidal, es una ola periódica que se distingue por tener un perfil -formado por crestas extensas separadas por anchos valles (Ver. figura No.111.7) esta teoría es aplicada a las olas fuera de la zona de rompiente. Se hará patente a continuación que la ola senoidal se encuentra entre dos lími tes, uno originado cuando el periódo tiende a infinito y la ola se comporta co mo la ola solitaria y el otro, en la dirección opuesta tiende a la ola de Airy.

La ecuación del perfil de la ola esta dado por:

$$\eta = H cn^2 [2k (k) (\frac{x}{L} - \frac{t}{c}) k]$$

Donde k (k) es la integral elíptica del módulo k,y n es la vertical desde el nivel estático del agua a una distancia x (Ver figura No. \pm 11.7). El término cn (r) es el jacobiano o elíptico de la función r.

Una vez presentadas las cinco teorías que existen para dar una serie de expresiones matemáticas que valoren los diferentes parámetros de una ola; debido a que cada teoría de ola existe una gráfica diferente, se han formulado unas grá ficas comunes a las cinco teorías, las cuales se les ha llamado áreas o rangos de aplicación de las teorías de olas (Ver figura No. III.8).Esta gráfica nos sirve de apoyo para saber qué teoría de ola emplear y para hacer uso de ella, sólo se requiere determinar el valor de los parámetros h/L y H/h y con ellos se entra a la gráfica encontrándose la teoría de ola a emplear.

AREAS DE APLICACION DE LAS TEORIAS

III.1.2 FUERZAS DE OLEAJE SOBRE PLATAFORMAS MARINAS

III.1.2.a) FORMULA DE MORISON

Una vez presentadas las teorías de olas, se tratará lo referente a la obtención de las fuerzas producidas por el oleaje. Actualmente se emplea la fórmula de Morison para calcular las fuerzas que inducen las olas sobre las estructuras marinas. Esta ecuación de Morison está basada en experimentos so bre cilindros aislados sujetos al oleaje, se forma de la superposición de dos componentes independientes entre sí. Una de ellas se encuentra en función de la velocidad del fluído, llamada fuerza de arrastre; da otra conocida como fuerza de inercia. Dentro de estas fuerzas se encuentran involucrados dos coeficientes el de arrastre (C_D), y el de inercia (C_m), estos han sido obtenidos de una manera empírica. Así tenemos que la ecuación de Morison está dada por:

$$F = \frac{1}{2} \rho A C_{D} u | u | + \rho v C_{m} \frac{du}{dt}$$

Donde:

A = Area expuesta

u = Velocidad del agua

C_D= Coeficiente de Arrastre

'C_m= Coeficiente de Inercia

v = Volúmen de Agua desplazada

du= Aceleración de las partículas del agua dt La fuerza de arrastre es originada por la transformación de carga de velocidad en carga de presión sobre el cuerpo sumergido en el agua. Está en función del cuadrado de la velocidad del flujo, del área expuesta y del coeficiente – C_n .

Para el cálculo de la velocidad se emplean las teorías anteriormente expue<u>s</u> tas.Debe tenerse en cuenta que la velocidad total del flujo que se emplea para el cálculo, es la suma de la velocidad orbital del agua más la velocidad de la corriente.

$$F d = \rho C_{p} A \frac{u^{2}}{2}$$

Donde:

Fd = Fuerza de arrastre

A = Area expuesta

 $u = Velocidad de agua = u_{o} + V_{c}$

 C_{p} = Coeficiente de arrastre

V = Velocidad de la corriente

ρ = Densidad del agua

La fuerza de inercia es debida a la aceleración relativa entre un cuerpo y un fluído; es proporcional a la masa desplazada por un cuerpo, a la aceleración - orbital de las partículas de agua y al coeficiente C_m

$$Fi = P VC_M \frac{du}{dt}$$

Donde:

Fi = Fuerza de inercia

P = Densidad del agua

V = Volumen de agua desplazada

 C_m = Coeficiente de inercia

<u>du</u> = Aceleración de las partículas de agua dt

El rango adecuado de aplicación de la ecuación de Morison requiere que la --fuerza de inercia y la de arrastre sean de magnitud comparable. Este rango se define cuando el diámetro del cilindro es menor que el 20% de la longitud de ola. Este rango se debe a las hipótesis asumidas en las soluciones matemát<u>i</u> cas; a qué tanto la velocidad como la aceleración del agua son constantes enuna distancia (desde el cilindro) igual al diámetro del cuerpo. Los estudios originales realizados por Morison sobre este tema fueron enfocados a tubos -simples sumergidos en agua y se ha generalizado a tubos múltiples conectados entre sí. Así tenemos que la ecuación queda:

 $F' = F'_{U} + F'_{I} = \frac{1}{2} \rho_{Du} |u| C_{D} + \frac{\rho_{T}}{4} \frac{D^{2}}{D^{2}} C_{m} \frac{du}{dt}$

Donde:

F' = Fuerza por unidad de longitud del cilindro
Fd = Fuerza de arrastre por unidad de longitud del cilindro
Fd = Fuerza de inercia por unidad de longitud del cilindro

Puede observarse que la expressión $\frac{1}{4}D^2$ es el área del agua desplazada (área de la sección transversal del cilindro), que multiplicada por la longitud del

cilindro nos dá el volúmen de agua desplazada.
III.1.3 CALCULO DE LAS FUERZAS DE OLEAJE SOBRE UNA ESTRUCTURA MARINA

III.1.3.a) DETERMINACION DE LA LONGITUD DE LA OLA

Una vez que ya se presentó la metodología utilizada para determinar las fuer zas debidas al oleaje sobre estructuras marinas, se proporciona en este capí tulo un cálculo manual para el entendimiento de la misma. La estructura que se analizará se puede observar en la figura No.III.9. Esta es una plataforma pequeña donde sólo se presenta la subestructura o jacket que es la parte men estudio; cabe mencionar que, el análisis que se hará, sólo será en el pl<u>a</u> no y no en forma tridimensional como comunmente se maneja en computadoras. Otra situación muy importante es que el análisis y diseño de estructuras marinas se debe tomar en cuenta la posición de la ola que produzca la máxima fuerza total sobre la estructura; en este caso también se emplean programas de computadora que se encargan de calcular la ola de diseño y las cargas de la misma. Para el ejemplo que se resuelve se situa la cresta de la ola en el centro de la plataforma. En la figura No. III.10 se ha graficado y superpue<u>s</u> to el perfil de la ola sobre la subestructura, más adelante se indica la -forma en que se realizó.

Es necesario contar con ejes coordenados de referencia para determinar las velocidades, aceleraciones orbitales de los nudos de la estructura. Estos d<u>e</u> ben situarse de tal forma que el eje "x" (horizontal) coincida con el nivel de aguas estáticas y el eje "z" (vertical) con la cresta de la ola, pasando por la parte simétrica de la onda. Asímismo se requiere el diámetro de los miembros de jacket, esto se dá en la figura No. III.9.

Conociendo ya la geometría de la subestructura se pasa a recopilar datos que son obtenidos mediante estudios oceanográficos que se realizan en el sitio de instalación de la estructura; para nuestro caso en particular tenemos los

siguientes datos para la condición de tormenta:

T = Periódo de la ola = 5 seg. H = Altura de la ola = 7 ft = 2.13 m. h = Tirante del agua = 35 ft = 10.67 m. V_c= Velocidad de la corriente = 1.0 ft/seg = 0.305 m/seg. Y = Viscocidad cimemática del agua salada = 2.016 x 10^{-3} pulg²/seg P = Densidad del agua salada = 0.0019875 Kseg²/ ft⁴ g = Aceleración de la gravedad = 32.2 ft/ seg.

Determinación de la longitud de ola (L). Usando la teoría de Airy, conoceremos la longitud de la ola en estudio, para ello se emplea la siguiente fórmula:

$$\frac{L}{2\pi} = \frac{gt^2}{2\pi} \tanh\left(\frac{2\pi}{L}\right)$$

Sustituyendo:

$$L = \frac{32.2 \ (5)^2}{21} \ tanh \ \frac{(21)35}{L}$$

Esta ecuación se resuelve iterativamente, y la solución queda

L = 121.44 = 37.01 pulg.

III.1.3.b) CALCULO DEL PERFIL DE LA OLA

Para el cálculo del perfil de la ola se emplea la gráfica (Ver figura No.III.8) de áreas de aplicación de las teorías de olas para saber cual ez la teoría de olas que se deben emplear; para esto es necesario determinar los factores h/L, H/h, estos nos darán un punto en la gráfica indicándonos la zona de la teoría que se debe emplear, así tenemos que:

$$\frac{h}{L} = \frac{35}{121.44} = 0.288 \qquad \frac{H}{h} = \frac{7}{35} = 0.20$$

Estos valores nos sitúan en la zona de la teoría de Airy y es la que utiliza remos; la fórmula para determinar el perfil de la ola esta proporcionada se gún la teoría de Airy, anteriormente vista y es:

$$n = \frac{H}{2} \cos (Kx - \nabla t)$$

con:

$$K = \frac{2\P}{L}$$

El valor del tiempo se toma a cero, ya que la ola que se analiza es estática tomada en el instante en que se pasa la cresta por el centro de la plataforma; así tenemos:

ť=0

$$n = \frac{H}{2} \cos Kx$$

Sustituyendo valores:

$$K = 21 = 21 = 0.05174$$
 rad
L 121.44 ft

La ec. del perfil queda:

$$n = \frac{7}{2} \cos (0.055174x) + 3.5 \cos (0.05174x)$$

Con esta ecuación se obtuvieron varios puntos del perfil de la ola. (Ver tabla No. III.1) y se graficaron a escala formando el perfil de la ola superpuesto sobre la subestructura; de esta manera se pueden determinar los puntos de intersección de la ola con la subestructura (Ver figura No. III.10)

COORDENADA "x" (ft)	ኪ (ft)
4 5	- 2.40
40	- 1. 67
30	0.065
20	1, 79
10	3.04
0	3.50
- 10	3.40
- 20	1.79
- 30	0.065
- 40	- 1.67
4 5	- 2.40

TABLA II.I

III.1.3.c) DETERMINACION DE LAS VELOCIDADES Y ACELERACIONES DE LAS PARTICULAS DEL AGUA.

Para conocer las fuerzas sobre cada uno de los elementos de la estructura a los que les pega la ola, es necesario señalar las coordenadas de los nudos de la -subestructura y los puntos de intersección del perfil de la ola con la misma. -(Ver figura No. III.10), una vez conocido esto, se puede determinar la velocidad horizontal y vertical, así como su correspondiente aceleración; para esto se emplean las fórmulas de la teoría de Airy.

Debido a que la ola se analiza estáticamente, es por esto que se toma t=O, así las ecuaciones de velocidad y aceleración de las partículas de agua quedan:

Vel. Horizontal:

$$u = \underline{T} \frac{H}{T} \frac{\cosh [K (z+h)]}{\sinh (kh)} \cos kx$$

Vel. Vertical

$$v = \frac{\pi H}{T} \frac{\operatorname{senh} [k (z+h)]}{\operatorname{senh} (kh)} \operatorname{sen} (kx)$$

Aceleración Horizontal:

$$a_{h} = \frac{2\pi^{2}H}{T^{2}} \frac{\cosh[k(z+h)]}{\sinh(kh)} \text{ sen } (kx)$$

Aceleración Vertical:

$$\frac{a_{v}}{T^{2}} = \frac{2 \sqrt{2}}{T^{2}} \frac{\operatorname{senh}\left[k\left(z+h\right)\right]}{\operatorname{sen}\left(kh\right)} \cos\left(k\lambda\right)$$

Existen valores en estas ecuaciones que no están en función de las coordenadas (x,z) solo de los parámetros de la ola y de la profundidad del mar, éstos perma

necen constantes en este problema, así tenemos:

$$\frac{1H}{T} = \frac{1(7)}{5} = 4.398 \text{ ft/seg.}$$

$$\frac{2r}{r^2} \frac{2}{H} = \frac{2r}{25} \frac{2}{(7)} = 5.527 \text{ ft/seg}^2$$

Senh (Kh) = Senh $(\frac{21}{L}h)$ = senh $\frac{21}{121.44}$ = 2.977

K = 21 = 21 = 0.0517 rad L 121.44 ft

Así ya podemos calcular las velocidades y aceleraciones. Por lo tanto, tenemos tomando el miembro 7 limitado por los nudos 3 y 2 .

NUDO No.	"x" COORDE	NADAS "z"
NUDO 3	- 43.42	- 3.0
NUDO 2	52.5	-35.0 ·

 $u_3 = 4.398 \cosh \left[0.0517 (-3+35) \right] \cos \left[(0.0517) (-43.42) \right] = \frac{2.977}{u_3} u_3 = 4.398 \left[\frac{2.710}{2.977} \right] (\cos -2.24) = -2.50 \frac{ft}{5eg}$

Velocidad vertical

$$V = \frac{H}{T} \frac{\text{senh} [k(z+h)]}{\text{senh} (kh)} \text{ sen } (kx)$$

 V_3 = 4.938 <u>senh[0.0517 (-3+35)]</u> sen [(0.0517) (-43.42)]= 2.977

V₃= -2.91 <u>ft</u> seg

 V_2 = 4.398 <u>senh[0.0517 (-35+35)]</u> sen (0.0517) (52.5)=

 $V_2 = 0.0 \frac{ft}{seg}$

Aceleración horizontal

 $a_{h_2} = 5.527 \frac{\cosh [0.0517 (-35+35)]}{2.977}$ sen [0.0517 (52.5)]=

 $ah_2 = 0.769 \frac{\text{ft}}{\text{seg}^2}$

 $ah_{3}=5.527 \quad cosh [0.0517 (-3+35)] \\ 2.977 \quad sen [0.0517 (-43.42)]=$

 $a_{h_{3}}$ -3.94 $\frac{ft}{seg^2}$

Aceleración vertical

 $a_{v_2} = 5.527$ <u>senh[0.0517 (-35+35)]</u> cos (0.517) (-52.5)=

 $a_{v_2} = 0.0 \frac{\text{ft}}{\text{seg}^2}$

 $a_{v_3} = 5.527 \text{ senh } [0.0517 (-3+35)] \cos [0.0517 (-43.42)] = 2.977$

 $a_{v_3} = 2.918 \frac{ft}{seg^2}$

III.1.3.d) VELOCIDAD DE LA CORRIENTE

La velocidad de la corriente marina debe ser tomada en cuenta al hacer el análisis de solicitaciones, pués también es importante generadora de cargas y ad<u>e</u> más es necesario, ya que los valores de la velocidad de la corriente se superponen a la velocidad orbital horizontal y la resultante es la que se aplica ~ en la fórmula de Morison.

Los datos de la velocidad de la corriente son obtenidos mediante estudios oce<u>a</u> nográficos realizados en el sitio de instalación de la estructura.

En la tabla No. III.2, se muestran datos de un reporte de variación de la vel<u>o</u> cidad de la corriente respecto a la profundidad; los datos deben ser para la condición de tormenta; con este reporte de calcula la velocidad para cada uno de los puntos de la plataforma en estudio, de acuerdo a su porcentaje de pr<u>o</u> fundidad, esto es: $\frac{Z}{h}$ X 100, así para los puntos 3 y 2 tenemos:

Punto 3

$$\frac{3}{35}$$
 (100) = 8.6% = 0.94 $\frac{ft}{seg}$

Punto 2

 $\frac{35}{35}$ (100) = 100% = 0.14 $\frac{ft}{seg}$

(%)	VELOCIDAD
PROFUNDIDAD	ft / seg
0	1.0
10	0,93
20	0.87
30	0.80
40	0.73
50	0.67
60	0.60
70	0.53
80	0.46
90	0.34
100	0.14

TABLA III. 2

VARIACION DE LA VELOCIDAD DE LA CORRIENTE CON LA PROFUNDIDAD

III.1.3.e) SUPERPOSICION DE LA VELOCIDAD DE LA CORRIENTE CON LA VELOCIDAD ORBITAL HORIZONTAL.

Punto 3

$$u_R = V_C + u_2 = 0.94 + (-2.50) = -1.56 \frac{ft}{seg}$$

Punto 2

$$u_{R} = V_{C} + u_{3} = 0.14 + (-1.344) = -1.204 \frac{ft}{seq}$$

Cálculo de la velocidad y aceleración perpendicular al eje del cilindro: λ_7 -2.91= V_3

-1.56 = Urs
-1.56 = Urs
U_R=1.204
U_R=1.204
(Hor) u_{P3} =1.56 sen 18°.45*10.50 ft
seg
(Vert)v_{P3} =-2.91 cos18°.45*2.76 ft
seg
(Hor) u_{P2} =-1.204 sen18°.45*-0.38 ft
seg
(Vert)v_{P2} = 0.0 ft
seg
RESULTANTE

$$v_{P_{R_3}} = -0.50-2.76=3.26 ft
seg
v_{PR2} = -0.38 ft
seg$$

III.1.3.e) SUPERPOSICION DE LA VELOCIDAD DE LA CORRIENTE CON LA VELOCIDAD ORBITAL HORIZONTAL.

Punto 3

$$u_R = V_C + u_2 = 0.94 + (-2.50) = -1.56 \frac{ft}{seg}$$

Punto 2

 $u_{R} = V_{C} + u_{3} = 0.14 + (-1.344) = -1.204 \frac{ft}{seg}$

Cálculo de la velocidad y aceleración perpendicular al eje del cilindro: $a_1-2.9|=V_3$

$$(Hor) u_{P_3} = 1.56 \text{ sen } 18^{\circ}.45 \Rightarrow 10.50 \text{ ft} \\ (Wert) v_{P_3} = -2.91 \text{ cos} 18^{\circ}.45 \Rightarrow 2.76 \text{ ft} \\ seg \\ (Wert) v_{P_2} = -1.204 \text{ sen} 18^{\circ}.45 = -0.38 \text{ ft} \\ seg \\ (Wert) v_{P_2} = 0.0 \text{$$

RESULTANTE

$$v_{P_{R_3}} = -0.50 - 2.76 = 3.26 \frac{ft}{seg}$$

 $v_{PR_2} = -0.38 \frac{ft}{seg}$

Obtención de las aceleraciones perpendiculares al eje del cilindro.

$$a_{hp_3} = -394$$
 sen 18°.45 = -1.25 $\frac{ft}{seg^2}$

 $a_{vp_3} = 2.918 \cos 18^{\circ}.45 = 2.76 \frac{\text{ft}}{\text{seg}^2}$

Resultante nudo 3

 $a_{\rm RP_3} = 2.76 - 1.25 = 1.51 \frac{ft}{seg^2}$

 $a_{hp_2} = 0.769$ sen 18°.45 = 0.24 $\frac{ft}{seg}$ 2

$$a_{vp_2} = 0.0 \frac{ft}{seq^2}$$

Resultante nudo 2

$$a_{\text{RP}_2} = 0.24 \quad \underline{\text{ft}}_{\text{seq}_2}$$

III.1.3.f) CALCULO DE LA FUERZA DEL OLEAJE

Es aquí donde se emplea la fórmula de Morison una vez que se tienen todos los datos requeridos. Es importante mencionar que los coeficientes $C_D \ y \ C_m \ son$ - obtenidos de manera empírica.

Datos:

Ø Tubo= 20 pulgadas

Velocidades y aceleraciones perpendiculares al eje de los elementos:

Velocidades	Aceleraciones	
Nudo 3	Nudo 3	
V _p = -3.26 <u>ft</u> seg	$a_{R}=1.51 \frac{ft}{seg^2}$	
Nudo 2	Nudo 2	
$V_p = -0.38 \frac{ft}{seg}$	$a_{\rm R} = 0.24 \frac{\rm ft}{\rm seg^2}$	
$C_{\rm D} = 1.2$		
C _m = 1.36		
ρ = 0.0019875 k seg ² /ft ⁴ = 1.9	875 16 seg ² /ft	

Fuerza de arrastre (unitaria)

$$F_{D} = C_{D\rho} \frac{D}{2} u |u| \left(\frac{1b}{f+1}\right)$$

Fuerza de inercia (unitaria)

$$F_{I} = C_{m} \quad \frac{\rho I D^{2}}{4} \quad \frac{du}{dt} \quad (\frac{1b}{ft})$$

Cálculo de la fuerza Nudo 3:

$$F_{D} = 1.2 (1.9875) - \frac{\pi (1.667)}{2} (-3.26)/3.26/ = -66.37 \frac{1b}{ft}$$

$$F_{I} = 1.36 [1.9875 - \frac{\pi (1.667)^{2}}{4}](1.51) = 8.91 \frac{1b}{ft}$$

Nudo 2

$$F_{D} = 1.2 (1.9875) - \frac{\pi (1.667)}{2} (-0.38)/0.38 = 0.90 \frac{1b}{ft}$$

$$F_{I} = 1.36(1.9875) - \frac{\pi (1.667)^{2}}{4} (0.24) = 1.42 - \frac{1b}{ft}$$

Asi tenemos:

Nudo 3

$$F_{D} = -66.37 \quad \frac{1b}{ft}$$

$$F_{I} = 8.91 \quad \frac{1b}{ft}$$

Fuerza Total (F_{T})

$$F_{\rm T} = -66.37 + 8.91 = -57.46 \frac{1b}{ft}$$

Nudo 2

$$F_{D} = 0.90 \frac{1b}{ft}$$
$$F_{I} = 1.42 \frac{1b}{ft}$$

Fuerza Total

 $F_{\rm T} = 0.90 + 1.42 = 2.32 \frac{\rm lb}{\rm ft}$

Este mismo procedimiento se sigue de una manera secuencial para cada uno de los miembros de la subestructura y de esta forma se obtienen las fuerzas de oleaje_ para toda la estructura planteada.

III.2 VIENTO

III.2.1 CONCEPTOS GENERALES

El viento además de ser un importante generador de oleaje, es una solicitación que también se presenta en la superestructura y produce efectos muy importantes de considerar.

Debido a que las plataformas se encuentran en pleno mar, es muy común que es tas se encuentren requeridas en su seguridad estructural por las cargas de ac ciones que producen los ciclones y ráfagas que se presentan, dependiendo de la ubicación de la misma. Por eso es muy importante hacer un estudio detallado de esta solicitación para la elaboración de una plataforma marina.

Es necesario anotar que las investigaciones realizadas hasta la fecha no son del todo suficientemente profundas y avanzadas y aún queda mucho por investigar en todo lo que respecta a este renglón.

Por otro lado los requisitos generales para un diseño por viento, son una serie de pasos y recomendaciones que se deben seguir para tener ciertos factores y rangos que garanticen la seguridad de la estructura.

Una superestructura se analiza suponiendo que el viento pueda actuar por lo me nos en dos direcciones horizontales y perpendiculares entre sí; haciendo hinca pié que se deben elegir las dos direcciones que presenten las condiciones más desfavorables para la estructura. Para tener una seguridad sobre el volteo de la estructura, se debe analizar el posible volteo suponiendo que las cargas vivas son nulas ya que estas contribuyen a disminuir este efecto. El momento esta

bilizador no debe ser menor de 1.5 veces el momento actuante de volteo.

También se deben tomar las provisiones necesarias para evitar el deslizamiento de las estructuras sujetas a la acción del viento.

Al analizarse esta posibilidad se deberán suponer nulas las cargas vivas y la relación entre la resistencia y el deslizamiento.

El deslizamiento horizontal actuante debe ser cuando menos igual a 2. Para fines de diseño se tomará a las plataformas marinas como integrantes del grupo "A" en cuanto a la clasificación de acuerdo a su destino del tipo I en lo que respecta a características de respuesta ante el viento⁽¹⁾.

III.2.1.a) ECUACIONES DE ANALISIS POR VIENTO

Velocidad básica:

La velocidad básica del viento $V_{\rm B}$, se obtiene a partir de la velocidad regional $V_{\rm D}$ de acuerdo a la siguiente expresión:

$$V_{B} = kV_{R}$$

donde k es un factor que depende de la topografía del sitio, se tomará de -1.20.

 V_R es la velocidad máxima probable en una zona o región determinada para un cierto período de recurrencia; para efectos de este trabajo será igual a:

> V_R = 185 km/hr (zona eólica 4) estructura grupo "A" T_R = 200 años.

(1) Esta clasificación es tomada del manual de obras civiles de C.F.E.

Velocidad de diseño:

Para obtener la velocidad de diseño $V_{\rm B}$ se tomará en cuenta el efecto de ráfagas en la estructura, multiplicándolo por la velocidad del viento $V_{\rm g}$

 $V_{D} = F_{R} V_{z}$

 $F_{\rm R}$ = 1.0 (Estructura tipo I)

 V_z = Velocidad de viento (ver siguiente inciso)

III.2.1.b) VARIACION DE LA VELOCIDAD CON LA ALTURA

La velocidad del viento varía con la altura sobre el terreno según se muestra esquemáticamente en la siguiente figura:

Vs= Velocidad gradiente

S = Altura gradiente

 V_{z} = Velocidad a una altura z

z = Altura sobre el terreno

 V_{p} = Velocidad básica (a 10 mts. sobre el terreno)

Para fines de diseño se supondrá que la velocidad del viento a la altura z, - V_{z} esta dada por las siguientes expresiones:

$$V_z = V_B \left(\frac{z}{10}\right)^6$$
 para $10 < z < 6$

V₂ = V_B para **z**⊅10 m.

V₂ = Vs para z⊽s

z yden mts.

V, en Km/hr.

Los valores \propto y δ son función de la topografía del lugar y para plataformas m<u>a</u>rinas.

∝ = 0.14 mts.

8 = 200 mts.

El API (American Petroleum Institute) describe al perfíl de la velocidad del viento como :

 $\frac{V_{y}}{V_{H}} = \left(\frac{\gamma}{H}\right) \frac{1}{n}$

Donde :

- V = Velocidad del viento a la altura "y"
- V_H = Velocidad del viento con respecto a la altura comunmente son 10 mts. arriba del nivel medio del mar.
- $\frac{1}{n} = \text{Exponente que oscila entre } \frac{1}{13} \text{ y } \frac{1}{7} \quad \text{dependiendo del estado del mar, rela$ tivo a la distancia de tierra firme y a la duración de la velocidad de diseño.

Este exponente es aproximadamente igual a $\frac{1}{3}$ para rafagas y $\frac{1}{8}$ para vien to sustentado en mar abierto.

111.2.2 VIENTO EN LA SUPERESTRUCTURA

III.2.2.a) FUERZAS DEBIDAS AL VIENTO

Presiones y succiones: los efectos del viento se tomarán equivalentes a los de una fuerza distribuída sobre el área expuesta; dicha fuerza se supodrá perpend<u>i</u> cular a la superficie en que actúa y su valor por unidad de área se calcula con la siguiente expresión:

$$P = 0.0048$$
 G c V_D^2

Donde:

c = Coeficiente de empuje (adimensional)

P = Presión o succión debida al viento en Kg/m²

 $V_{\rm p}$ = Velocidad de diseño en km/hr.

 $G = \frac{8 + h}{8 + 2h}$ (Factor de reducción de densidad de la atmósfera a la altura h en km sobre el nivel del mar, para el caso de plataformas G = 0, ya que h = 0).

Cuando c es positivo se trata de presiones sobre el área expuesta, cuando c es negativo, son succiones.

III.2.2.b) COEFICIENTES DE FORMA

Para efectos de diseño local de elementos de dimensiones transversales pequeñas en comparación con su longitud, como es el caso de armaduras especiales -

(plataformas marinas) el empuje del viento se definirá por las componentes de la fuerza debida a viento por unidad de longitud del elemento.

Para viento actuado normalmente al eje de la pieza, los valores de dichos componentes se calcularán de acuerdo con las ecuaciones siguientes:

 $F_{T} = 0.0048 \text{ G C BV}_{D}^{2}$

 $F_{\rm m} = 0.0048 \ {\rm G} \ {\rm C} \ {\rm BV}_{\rm D}^2$

Donde:

 $F_L = Empuje de la dirección del viento en kg/m.$ $F_T = Empuje transversal en kg/m.$ $C_L = Coeficiente de arrastre (adimensional)$ $C_T = Coeficiente de empuje transversal (adimensional)$ B = Ancho de la superficie expuesta en m. G = 1 (Para plataformas marinas) V = Velocidad de diseño

La tabla siguiente representa los valores para C_L y C_T para algunos perfíles comunes, según la clasificación del manual de obras civiles de la C.F.E.

No.		CL	C _T
1		2.03	0
2	v → []	2.00	0
3	↓	2.04	0

El API presenta las siguientes ecuaciones para obtene las fuerzas de viento para el diseño local de elementos:

$$F = 0.00256 (V)^2 C_{g} A$$

Fórmula métrica:

$$F = 0.0473 (V)^2 C_{g} A_{-}$$

Donde:

F = Fuerza del viento (kg)

V = Velocidad del viento (km/hr)

C_S= Coeficiente de forma

A = Area expuesta

Los coeficientes de forma (C_S) que proporciona el API son los siguientes:

Vigas	•	•	1.50
Caras de edificios		•	1.50
Secciones cilíndricas			0.50
Areas proyectadas de plataformas.			1.0

IV ANALISIS Y DISENO

IV.1 ANALISIS

IV.1.a) EL METODO DE LAS RIGIDECES

El objetivo de analizar una estructura, es determinar su respuesta cuando se le somete a las solicitaciones de carga que se encuentranactuando en ella; esto im plica que el análisis estructural permite conocer las fuerzas, momentos y defor maciones que se generan en cualquier punto o tramo-de la estructura analizada.

El método de las rigideces desarrollado por medio del álgebra matricial, no hubiese sido posible que alcanzara los niveles actuales de desarrollo, si no se hubiesen implementado las computadoras, ya que éstas son un instrumento muy poderoso que permite resolver problemas o ecuaciones muy complejas en breve tiempo y una adecuada exactitud. Para estructuras tan complejas como lo son las pl<u>a</u> taformas marinas, se utilizan métodos de análisis programables como lo es este método.

Cuando se aplica el método de las rigideces, también conocido como el método de los desplazamientos en la solución de una estructura hiperestática, se requiere determinar primero las componentes independientes de los desplazamientos lineales y angulares que se desconocen; estos desplazamientos se consideran incógnitas del problema y utilizando las relaciones esfuerzo-deformación, se podrán d<u>e</u> terminar las fuerzas internas de la estructura.

En un programa de computación para el análisis de una estructura por este método, se divide convenientemente en varias fases. Para esto, desde el principio

se trabaja con todos los datos pertenecientes y conocidos de la estructura; las fases incluyen la formación de una matriz de rigidez, que es una propiedad inh<u>e</u> rente de la estructura. Subsecuentemente se manipulan los datos de carga, después de lo cual se calculan los resultados finales del análisis; esta secuencia se considera eficiente si se toma en cuenta más de un sistema de carga, ya que las fases iniciales de los cálculos no necesitan repetirse.

Las fases de un análisis estructural empleando el método de las rigideces y una computadora pueden ser:

- a) Ordenación de los datos de la estructura.La información que se refiere a la estructura debe ser ordenada y registrada. Esta información incluye el núme ro de miembros, el número de nudos, el número de grado de libertad y las propiedades elásticas del material. La localización de los nudos de la estruc tura está especificada por medio de coordenadas geométricas, además de dar las propiedades de las secciones de cada miembro de la estructura. Finalmen te, las condiciones de restricción en los apoyos de la estructura deben iden tificarse.
- b) Generación e inversión de la matríz de rigidez. La matriz de rigidez es una propiedad inherente de la estructura y está basada en los datos de la misma. En un programa de computación es conveniente obtener la matriz de rigidez de nudo, sumando las contribuciones de las matrices de rigidez de miembros ind<u>i</u> viduales. El cambio esencial del camino previo, consiste en generalizar la matriz de rigidez de nudo a partir de una que se relaciona únicamente a los grados de libertad en la estructura a una que se refiera a todos los desplazamientos de los nudos. Esa matriz de rigidez generalizada se llama matriz

de rigidez global.

La resolución de esta matríz de rigidez con sus restricciones es un paso muy importante del método, ya que aquí normalmente se invierte la matríz para su resolución del sistema de ecuación planteado.

Como ya se mencionará, las plataformas marinas son estructuras a tal grado complejas, que manejan una gran cantidad de elementos teniendo como cons<u>e</u> -cuencia que el órden de la matríz de rigidez sea muy grande, por lo cual es necesario aplicar métodos numéricos para la inversión de la misma. Estos métodos son programables y se pudiera usar cualquiera de ellos; sin embargo, debido al costo del tiempo de procesamiento por parte de la computadora, esto hace que se elijan métodos que optimicen el tiempo y con ello el costo de la máquina; para ello se aprovechan las propiedades intrínsecas de la matríz de rigidez, como es el hecho de que ésta es una matríz definida positiva, s<u>i</u> métrica y además es esparcida. Esto último permite su solución por difere<u>n</u> tes métodos, siendo uno de los más empleados el método de Cholesky, el que debido a su planteamiento permite que la computadora realice el menor número de operaciones aritméticas en comparación de otros y esto se traduce en el consabido ahorro en tiempo de máquina.

También es importante anotar que el ancho de banda y con ello el costo de -tiempo-computadora, será más reducido dependiendo de la experiencia y crit<u>e</u> rio del proyectista al momento de hacer la numeración de nudos que intervienen en la estructura que se analiza.

c) Ordenar los datos de carga.-Se deben especificar de una manera tal todas las

cargas que actúan en la estructura y que sean propias para un programa de computación se deben dar tanto las cargas en nudos como en los miembros. Las primeras se pueden manejar directamente, pero las últimas se manejan indirectamente dando como datos las acciones de empotramiento causadas por las cargas de los miembros.

- d) Generación de vectores asociados con cargas. Las acciones de empotramien to debidas a las cargas en los miembros se pueden convertir a cargas equi valentes a nudo. Estas cargas reales de nudo para producir un problema en que la estructura está imaginariamente cargada tan sólo en sus nudos.
- e) Cálculo de resultados. En la fase final del análisis son calculados todos los desplazamientos de nudo, reacciones y acciones de extremo de miembros. En esta fase hay también ciertas modificaciones al acercamiento previo. En particular, uno ejecuta el cálculo de las acciones de extremo del miembro por miembro en vez de considerar la estructura como un todo. Tales cálculos requieren el uso de matrices de rigidez del miembro.

Es importante señalar que existen muchas posibles variaciones en la organ<u>i</u> zación del método de las rigideces para programas de computación, por lo cual, las etapas de análisis antes citadas constituyen un acercamiento o<u>r</u> denado que tiene ciertos rangos esenciales que son ventajosos al tratar con estructuras grandes y complicadas como lo son las plataformas marinas y no pretende ser un proceso único.

IV.2. DISERO

IV.2.1 GENERALIDADES

En el diseño de plataformas marinas se emplean en gran parte las especific<u>a</u> ciones del American Institute Steel Construction (AISC), en su sección para especificaciones para el diseño, la fabricación y el montaje de estruct<u>u</u> ras de acero en su última edición.

Cuando las cargas que actúan en los elementos estructurales no son cubiertas por el AISC, lo más adecuado es hacer un análisis racional, a fín de determi nar los esfuerzos básicos permisibles con factores de seguridad iguales a los del AISC.

Sin embargo, dados los estudios que se han realizado, existen actualmente una serie de normas y procedimientos de cálculo para diseño desarrollados por el American Petroleum Institute (API), con los cuales es posible abarcar o compl<u>e</u> mentar las especificaciones del AISC, para poder así diseñar estructuras marinas en condiciones adecuadas tanto a lo que respecta al órden económico como - al órden de seguridad y funcionalidad de dichas estructuras.

Es así como se presentan los procedimientos de diseño de plataformas empleados actualmente a nivel mundial; se hará mucho énfasis en miembros cilíndricos, ya que la cimentación y subestructura está integrada a base de ese tipo de miembros.

IV.2.2 COMPORTAMIENTO ESTRUCTURAL DE MIEMBROS CILINDRICOS DE ACERO IV.2.2.a) PANDEO LOCAL

Los miembros cilíndricos fabricados con acero estructural, deberán ser estudi<u>a</u> dos con mayor detenimiento para el pandeo local debido a la compresión axial y flexión cuando:

$$\frac{D}{t} > 60$$

Donde:

D = Diámetro nominal en mm.

t = Espesor de la pared del tubo en mm.

Cuando la relación D/t es excedida, el esfuerzo elástico crítico de pandeo local debe estar determinado por cilindros con t ≥ 0.25 pulg. y D/t < 300.

$$F_{xc} = 0.6 E \frac{t}{D}$$

Donde:

E = Hódulo de elasticidad o de Young

El esfuerzo permisible a compresión axial y flexión debe estar determinado por una sustitución de esfuerzo por pandeo local F_{xc} por F_y en las fórmulas de diseño del AISC.

 F_{xc} es obtenido de:

$$F_{xc} = F_y [1,64 - 0.23 (D/t)^{0.25}] \leq F_{xc}$$

Donde:

 F_v = Resistencia última del acero en kg/cm²

Por otro lado, los miembros tubulares pueden considerarse compactos conforme al diseño plástico (AISC parte 2) y para la distribución de momentos (AISC par te 1 - Flexión), solamente cuando:

$$\frac{D}{t} \neq \frac{1300}{F_{y}}$$

Ó

$$\frac{D}{t} \leq \frac{8962}{F_v}$$

б

El esfuerzo permisible a flexión para tubos circulares debe tomarse como:

$$F_{b} = .0.66 F_{y}$$

 $F_{b} = 0.66 F_{xc}$ cuando $\frac{D}{+} > 60$

IV.2.2.c) ESFUERZOS CORTANTES

Debe ser usada como área efectiva un medio del espesor del área de la sección transversal cuando se calculen esfuerzos cortantes en tubos circulares.

IV.2.2.d) FLEXOCOMPRESION

Cuando los miembros cilíndricos estan sujetos a flexocompresión, las secciones que se diseñen deben estar proporcionadas para satisfacer los siguientes requ<u>e</u> rímientos:

$$\frac{f_a}{F_a} + \frac{C_m \sqrt{fb_x^2 + fb_y^2}}{(1 - fa/Fe')Fb} \leq 1.0 \qquad \frac{f_a}{0.6F_y} + \frac{\sqrt{fb_x^2 + fb_y^2}}{Fb} \leq 1.0$$

cuando $\frac{fa}{Fa} \leq 0.15$ la siguiente fórmula puede ser usada en lugar de las anteri<u>o</u>res:

$$\frac{fa}{Fa} + \frac{fb_x^2 + fb_y^2}{F_b} \leq 1.0$$

Esta última ecuación dá por hecho que el mismo valor de C y Fe' son apropiados para fb_x y fb_y

Si son aplicados diferentes valores, la siguiente fórmula muestra un análisis_ más racional; debe ser empleada preferentemente esta ecuación en estos casos:

$$\frac{fa}{Fa} + \frac{\left[C_{mx} fbx / 1 - Fa/F'_{ex}\right]^2 + \left[C_{my} fby / 1 - Fa/F'_{ey}\right]^2}{Fb}$$

Los términos no definidos estan especificados por el AISC.

IV.2.2.e) RELACION DE ESBELTEZ

1. La determinación de la relación de esbeltez $\frac{kL}{r}$ para miembros cilíndricos sujetos a compresión, debe ser calculada de acuerdo a las especificaciones del AISC.

Un análisis racional para la definición del factor de longitud efectiva debe considerar un nudo fijo y un nudo en movimiento; además una definición r<u>a</u> cional del factor de amplificación debe considerar el carácter de la sección transversal y las cargas actuantes en el miembro. Sin embargo, en lugar de - MIEMBRO FACTOR Piernas de superestructura 1.0 Jacket, piernas y pilotes 1.0 Deck, armaduras y otros miembros en el plano 0.8 Jackets diagonales principales 0.8 Miembros secuendarios (horizontales) 0.7 Miembros tipo "X" 0.9 Miembros tipo "K" 0.8

dicho análisis se puede emplear la siguiente tabla; proporcionada por el API.

2. Para calcular el factor C_m se emplean las especificaciones del AISC.

a) 0.85

- b) 0.6-0.4 ($\frac{M_T}{M_g}$) 0.4 y no mayor de 0.85 c) 1 - 0.3 ($\frac{fa}{F'e}$)
- Para cargas laterales en pilotes (abajo del nivel medio del mar en el -jacket), la columna tiende a pandearse y esto debe ser considerado.

El pandeo de la columna no tiene problema en el diseño del pilote; la deflexión por carga con grandes cargas axiales debe ser considerada.

Un método efectivo de análisis lo será un modelo de pilote considerado c<u>o</u> mo una columna en cimentación inelástica.
Para las cargas en que 1/3 de incremento se aplica, debe checarse el siguie<u>n</u> te esfuerzo:

 $\frac{f_a}{0.8F_y} + \frac{fb}{1.33Fb} \le 1.0$

IV.3 FATIGA

IV.3.a) DISEÑO A FATIGA

En el diseño de conexiones tubulares, debe considerarse los esfuerzos locales_ cíclicos que pueden producir problemas.

- + Para las plataformas con periódos naturales menores que 3 segundos, fabrica das con acero dúctil y estructural, las siguientes prevenciones pueden ser usadas en lugar de un análisis más riguroso por fatiga.
- + El máximo esfuerzo nominal de arriostramiento (fa + fb) debido al diseño -(involucra cargas de viento, oleaje, etc.), no debe exceder a 20 Ksi en la junta o nudo.
- + La soldadura en las juntas complejas deben ser diseñadas fuera de discontinuidades abruptas, así la última fuerza del nudo desarrollará el Fyen los miembros de la junta.
- + En lugar de lo anterior donde hay concentración de esfuerzos, existen factores conocidos para juntas tubulares. Estas juntas deben estar diseñadas con el máximo punto de esfuerzos debido a cargas del medio ambiente que imperan y los esfuerzos no deben exceder los 60 ksi.

IV.3.b) ANALISIS POR FATIGA

Un análisis detallado de fatiga acumulada cuando se requiera, debe ser ejecut<u>a</u> do como sigue:

79

- + La longitud de la ola debe derivarse de las mejores bases disponibles. A es te estado se le debe agregar todos los estados posibles del mar, para des pués condensar toda la información para propósitos de análisis estructural discretizando los estados del mar en bloques. Cada bloque del estado del mar puede ser caracterizado por un número constante de amplitud de los ci clos de las olas o sustituirse por un espectro.
- + Un análisis global de toda la estructura en el espacio debe ejecutarse para obtener la respuesta estructural en términos de los esfuerzos nominales en cada miembro para dar las fuerzas de oleaje aplicadas a la estructura. P<u>a</u> ra cada bloque del mar usado le corresponde una respuesta de esfuerzos que puede ser caracterizada por un número de ciclos en un rango significativo de esfuerzos.

El rango significativo de esfuerzos es análogo a la altura sifnificativa de ola y puede ser definido como 4 Mo, donde Mo es el área interior del espe<u>c</u> tro del esfuerzo. De lo contrario puede ser obtenido por un análisis dete<u>r</u> minístico usando la ola significativa para cada estado del mar.

Una amplificación dinámica se debe usar para estructuras que tienen periódos mayores de 3.0 segundos.

 + El esfuerzo local que existe en las conexiones tubulares debe estar consid<u>e</u> rado en términos de esfuerzo cortante o esfuerzo por temperatura máxima, usando geometrías adecuadas y factores de concentración de esfuerzos.

Los efectos a microescala ocurridos en la punta de la soldadura son refleja dos con un rango adecuado de aproximación en la figura de la curva S-N. Por

CURVAS DE FATIGA

ejemplo las curvas "D", "x" y "k" (Figuras S-N) asume que las soldaduras son lisas con el metal base. Para soldaduras fuera de semejante perfil, las $l\underline{1}$ neas punteadas de la figura S-N son aplicables.

+ Para cada localización alrededor de cada intersección de miembros de interés en la estructura, el esfuerzo en término corto que responde para el bloque del estado del mar, debe ser calculado dando adecuada consideración para el global de ambos y por efectos locales.

El esfuerzo en término corto debe combinarse en toda la longitud hasta el término de la distribución de esfuerzos, el cual deberá usarse para calcular la fatiga acumulada y la relación de desperfecto (D).

 $D = \Sigma(-h)$

Donde:

h = Número de ciclos aplicados para dar el bloque de esfuerzos.

n = Número de ciclos para que dado el esfuerzo del rango más adecuado debe estar en el permisible dado en la curva S-N.

En general en el diseño a fatiga, la vida de cada junta y cada miembro debe considerarse dos veces mínimo como seguridad de la vida de servicio de cada parte componente de la estructura. Para el diseño por fatiga "D", no debe exceder a la unidad. Para los elementos críticos, de quien su sola falla s<u>e</u> ría catastrófica, se debe usar un márgen adicional de seguridad y éste puede ser considerable.

IV.4 COLAPSO HIDROSTATICO

IV.4.a) DISENO DEL CILINDRO

El esfuerzo activo alrededor de la sección circular (f_h) no debe exceder al esfuerzo crítico por pandeo alrededor de la misma sección (F_{hc}); dividido este último por un factor de seguridad como sigue:

$$f_h = \frac{P_D}{2t} \leqslant \frac{F_{hc}}{SF_h}$$

Donde:

 $P_{\rm D}$ = Presión de diseño

SF_h= Factor de seguridad contra colapso

Para plataformas de miembros tubulares⁽¹⁾, F_{hc} puede ser determinado por las - siguientes fórmulas:

Determinación del esfuerzo elástico por pandeo circular

$$F_{he} = \frac{2cEt}{D}$$

Donde:

 $c = 0.44 \frac{t}{D} - \cos M_{0}^{2} 1.6 \frac{D}{t}$ $c = 0.44 \left(\frac{t}{D}\right) + \frac{0.21 \left(\frac{D}{t}\right)^{3}}{M^{4}} - \cos 0.825 \frac{D}{t} \le M < 1.6 \cdot \frac{D}{t}$ $c = 0.736/ (M-0.630) - 3.5 \le M < 0.825 \cdot \frac{D}{t}$

(1) Aplica para miembros que satisfagan la especificación 2B del API-RP2 A

$$c = 0.755/(M-0.559)$$
 $1.5 \le M \le 3.5$

"M" es un parámetro geométrico definido como:

$$M = \frac{L}{D} \left(\frac{2D}{t}\right)^{\frac{1}{2}}$$

Donde:

L = Tramo del cilindro entre anillos rígidos (atiesados), diafragmas o en el fin de las conexiones.

Determinación de F_{hc} mediante una fórmula adecuada

 $F_{hc} = F_{he}$ $F_{he} = 0.667 F_{v}$

$$F_{he} = \frac{2.53 \text{ Fy}}{2.29 + (\frac{Fy}{F_{he}})} 0.66 \text{ Fy} F_{he} \leq 4.2 \text{ Fy}$$

$$F_{hc} = F_v$$
 $F_{he} = 74.2 F_v$

IV.4.b) DISENO DEL ANILLO

El tamaño de la circunferencia del anillo (sección transversal atiesada),puede ser seleccionado siguiendo las fórmulas que se expresan a continuación:

$$I_c = \frac{t L D^2}{8 E} F_{he}$$

Donde:

I_ = Momento de incercia requerido por la sección del anillo circular

L = Espaciamiento de anillos

IV.4.c) INTERACCION ENTRE COMPRESION Y COLAPSO HIDROSTATICO

Para miembros sujetos a la combinación entre compresión axial y compresión externa, las siguientes tres ecuaciones deben cumplirse:

$$\frac{fx - 0.5 Fh_a}{F_{a_1} - 0.5 Fh_a} + \left(\frac{fh}{Fh_a}\right)^2 \leq 1.0$$

$$\frac{fx}{Fxc}$$
 (SFx) ≤ 1.0

$$\frac{\mathbf{F}_{1}}{\mathbf{Fh}_{2}}$$
 (SFh) ≤ 1.0

Donde:

Faa= Fxe/SFx

 $F_{ha} = Fhe/SFh$

 $fx = f_a + fb + (0.5 fh)70.5 Fh_a$

SFx= Factor de seguridad para compresión axial

Nota: No es necesario que se cheque la primera de las tres ecuaciones anteriores, cuando fx ≤ 0.5 Fha

IV.4.d) INTERACCION ENTRE TENSION Y COLAPSO HIDROSTATICO

Cuando la combinación entre el esfuerzo por tensión axial y el esfuerzo circu<u>n</u> ferencial por compresión (colapso hidrostático) ocurre simultáneamente, para estar dentro de un rango de seguridad se debe cumplir con la siguiente fórmula de interacción:

$$A^2 + B^2 + 2 r A |B| \leq 1.0$$

Donde:

 $A = \left(\frac{f_{a} + f_{b} - (0.5 f_{h})}{F_{y}}\right) SF_{x}$

 $B = \left(\frac{fh}{Fh_c}\right) SFh$

r = Relación de Poisson (0.3)

 F_v = Esfuerzo de fluencia del acero

f_a = Esfuerzo activo axial

fb = Esfuerzo activo a flexión

SFx = Factor de seguridad por tensión axial

SFh = Factor de seguridad para compresión circunferencial

Para el cálculo de esfuerzos permisibles, los factores de seguridad(en la tabla siguiente) deben ser usadas convenientemente con el pandeo local y las fórmulas de interacción entre la tensión o la compresión y el colapso hidrostático.

CONDICION DE DISERO	TENSION AXIAL	COMPRESION AXIAL	COMPRESION CIRCULAR
 Cuando se use el es- fuerzo admisible bá- sico durante la ins- talación o durante - la vida de la estru<u>c</u> tura. 	1.67	1.67 a 2.0	2.0 a 2.5
2. Donde el esfuerzo ad misible es incremen- tado 1/3 o cuando se considera la interac ción entre cargas y la condición de tor- menta.	1.25	1.25 a 1.5	1.5

IV.5 CONEXIONES

IV.5.a) CONEXION DE MIEMBROS A TENSION Y COMPRESION

Las conexiones en la junta de los miembros de tensión y/o compresión, deben d<u>e</u> sarrollar el esfuerzo requerido por el diseño de cargas, pero no debe ser m<u>e</u> nor del 50% del F_y del miembro. La soldadura en conexiones en la junta de los miembros tubulares no debe ser menor que el requerido para el desarrollo de la capacidad igual a lo siguiente:

1. La fuerza del brazo del miembro debe estar abajo de la resistencia.

IV.5.b) SUJECION Y CONTRACCION

Los detalles deben estar de tal manera, que se minimice la contracción del com portamiento dúctil, con el fin de evitar una concentración de la soldadura y para proporcionar un acceso simple para el proceso de soldadura.

Las juntas o uniones deben ser diseñadas de tal forma, que se minimice el e<u>s</u> fuerzo debido a la contracción del metal de aportación y que el metal base te<u>n</u> ga un enfriamiento adecuado.

IV.5c) JUNTAS TUBULARES

La junta tubular simple sin traslape entre los brazos principales y no tenie<u>n</u> do ángulos de refuerzo, diafragmas atiesadores se debe usar la siguiente guía:

 El arriostramiento, las cargas axiales y los momentos flexionantes son esen ciales para la integridad de la estructura; éstos deben estar incluídos en el cálculo de la acción del esfuerzo cortante por penetración (La terminología es definida en la Figura No.IV.1).

El arriostramiento, las cargas axiales y los momentos flexionantes son escenciales para la integridad de la estructura; éstos deben estar incluídos en el cálculo de la acción del esfuerzo cortante por penetración para - arriostramientos diagonales. En el diseño se toma únicamente de todas las cargas la componente perpendicular para de esta forma obtener el espesor de pared del tubo necesario y además se debe tener una cierta holgura en el diseño para garantizar la seguridad de los miembros y por lo tanto, de toda la estructura. Esta holgura puede ser tomada del incremento de la lo<u>n</u> gitud de la ola potencial.

El esfuerzo cortante por penetración puede ser calculado como:

$$V_{f} = r\left[\frac{f_{a} sen e}{k_{a}} + \frac{fb}{kb}\right]$$

Donde:

 θ y r son definidos en la Figura No. V.1 V_f = Cortante activo de penetración f_a = Esfuerzo axial nominal fb_y= Esfuerzo a flexión en el plano considerado (eje y) fb_z= Esfuerzo a flexión fuera del plano......(eje z) k_a y fb son definidos en la Figura No.IV.2

Las juntas que se clasifican como "k", "T" y "Y" para el diseño, se debe anal<u>i</u> zar cada brazo por separado y haciendo un cuidadoso análisis de cargas para e<u>m</u> plear las combinaciones adecuadas.

Para considerar una junta tipo "k", la fuerza cortante debe ser equilibrada por las cargas en las otras riostras en el mismo plano y en el mismo lado de la ju<u>n</u> ta.

En las juntas en "T" y en "Y" la fuerza cortante produce reacciones como el cor tante en vigas en la cuerda; en riostras que llegan a miembros principales, la fuerza cortante es sostenida directamente por éstas. Para riostras cuya parte de sostenimiento de las cargas es una junta tipo "k" y parte es tipo "T" y "Y"o atraviesan, se debe interpolar con base en la porción de cada una en total para revisión por penetración. Ejemplos de estas juntas se presentan en la Figura No. IV.3.

El esfuerzo cortante activo por penetración en cada pared de tubo no debe exc<u>e</u> der el esfuerzo cortante admisible presentado por el AISC o un esfuerzo corta<u>n</u> te admisible de:

$$V_{\mathbf{p}} = Q_{\mathbf{q}} Q_{\mathbf{p}} Q_{\mathbf{f}} \frac{F_{\mathbf{y}}}{0.9 0.7}$$

Donde:

 $V_{\mathbf{P}}$ = Esfuerzo cortante admisible

 $V = \frac{R}{r}$ es el radio de la cuerda dividido por el espesor de la cuerda.

 $Q_q = Es$ un factor para contar los efectos de cada tipo de carga a lo largo de la geometría del miembro de este factor, esta dado en la Tabla IV.4

 Q_f = Es el factor de reserva plástica. Ver tabla No.IV.4 y esta dado por:

$$Q_P = \cos \left[90^\circ \left(\frac{f_a}{f_a + fb} \right) \right] + \left(\frac{f_a}{f_a + fb} \right)$$

p, h, -y ę definen la geometría de la junta; son mostrados en la figura IV.1.

Y y 🕶 son parámetros de espesor

β (1-0.833β)

		TIPO DE CARGA E Tensión axial y Comp. Fle	EN LA RAMA DEL M exión en el punto	IEMBRO Flexión fuera del planc
		1.5 más ver 2.22.c.2	2.5	1.0
JUNTAS (* TIPO (* "K" (*)	\$∠ .15	1.3-2	2.25	1.0
	15 ج ۽	1.0	2.25	1.0
	P> . 6	Use Q _s si es mayor que el anterior	2.25	Qs
	h>1.0	Use 1/n veces del valor de arriba	mayor/n (1.5 min.)	mayor/æ (1.0 min.)
JUNTAS β ≤ TIPO β> "T" y "Y" (γ>1	β ≤ .6	1.4 1.0	2.0	1.0
	β> .6	más largo de 1.4 d Q ₆	2.0	Qs
	(>1.0	Use 1/n veces del valor de arriba	mayor a/n (1.5 min.)	mayor a/ŋ (1.0 min.)

 $Q_{s} = \frac{0.3}{0.3}$

 $f_a y f_b$ son esfuerzos axiales a la flexión, respectivamente, en el miémbro de la rama.

Q_p = Es un factor de diseño para la presencia de carga axial en la cuerda. Q_p = 1.0 para A≦0.44 Q_f = 1.22 - 0.5 A para A₹ 0.44

Donde A es el radio para la cuerda dado en el AISC, o :

 $A = \frac{|f_a| + |f_b|}{-0.6 F_y}$ (un tercio de incremento es aplicable en el denominador)

 $f_{a}\ y\ f_{b}\ son\ esfuerzos\ axiales\ y\ aflexión\ en\ la\ cuerda\ del miembro.$

Algunas recomendaciones especificadas para juntas serían las siguientes:

Si un incremento del espesor de la pared en la cuerda en la junta es requerido, debe estar extendido a lo último del borde exterior del arriostramiento, por lo menos a una cuarta parte de la cuerda o 12 pulgadas. Ver Figura No. IV.5.

Donde en lugar de incrementar el espesor de la pared del tubo se emplea acero especial en las riostras en el área de la junta debe extenderse un mínimo de un diámetro de la riostra o brazo.

Los nudos muy concentrados pueden ser detallados mediante puntos de trabajo (intersecciones de la riostra y el centro de la línea de la cuerda), compe<u>n</u> sando en cualquier dirección por lo mucho con un cuarto del diámetro de la cuerda, para así obtener un claro mínimo de distancia z" entre el no traslape de riostras o para reducir el grueso de la pared en la cuerda (Ver Figura No. IV.5).

Las juntas simples que no pueden ser detalladas para proporcionar la z" mín<u>i</u> mo de claro de distancia entre riostras dentro de los límites admisibles co<u>m</u> pensando o rebajando el punto de trabajo establecido anteriormente; deben e<u>s</u> tar diseñadas para un esfuerzo transferido y especialmente detallado en los planos.

.92

V EJEMPLO DE APLICACION

V.1 DESCRIPCION DEL MODELO.

El modelo planteado para este ejemplo de aplicación, es una plataforma en su parte correspondiente a la subestructura o jacket; consta de cuatro piernas, por lo que técnicamente se le conoce como "tetrápodo". Esta subestructura es tá integrada también con contraventeos horizontales de tipo "X" en la base y sencillos en toda la estructura.

En la Figura No. V.1 se muestran los diámetros correspondientes a cada miembro, tanto en lo que respecta a las piernas como a los arriostramientos. Se consideró para todos los miembros que son de sección tubular hueca, fabricados con acero A-36 con sus consiguientes propiedades.

Asimismo, se puede observar en la Figura No. V.1, las acotaciones y con ello la geometría de esta armadura tridimensional que se dan en pies y centímetros. La altura total del jacket en estudio es de 33.528 metros; su base mide 32.004 metros y el miembro horizontal de la cabeza 15.24 metros.

En la Figura No. V.2 se ilustra el modelo en estudio, así como las condici<u>o</u> nes oceanográficas en lo que respecta a tirante del mar.

V.2 DESCRIPCION DEL PROGRAMA

V.2.a) GENERAL

El programa empleado para analizar el modelo en estudio es un paquete que comprende varios módulos que fueron diseñados exclusivamente para analizar y dis<u>e</u> ñar plataformas marinas, ya que siendo estas una obra ingenieril que destaca de otras estructuras por su situación propia de ser una estructura construída en alta mar; esto hacía necesario implementar paquetes de cómputo, con el fin de abarcar de una manera científica y racional el problema del análisis y el diseño de estas estructuras.

Para la resolución del modelo en estudio, sólo se empleó el "Módulo 1 Platafo<u>r</u> mas", el cual es un módulo de los más importantes y más empleados de todo el p<u>a</u> quete; esto es debido a que éste módulo es un programa muy poderoso que permite analizar estructuras marinas que pueden tener un máximo de 999 nudos, lo -cual, se puede traducir en unos miles de miembros de la plataforma por anal<u>i</u> zar. Todo esto nos dá una idea de la magnitud y el alcance que posee este mód<u>u</u> lo para analizar estructuras de grado de dificultad alto.

El "Modulo 1 Plataformas", permite analizar estructuras con cargas de opera -ción (carga muerta + carga viva), cargas de peso propio, cargas sísmicas, cargas de viento, cargas por masa adherida y cargas hidrodinámicas generadas por el oleaje. Aquí cabe mencionar que este módulo no solo realiza el análisis estructural de la plataforma en cuestión, sino que, también calcula las cargas producidas por el oleaje; esto se traduce con una gran ayuda, ya que simplifica todos los cálculos manuales como los del ejemplo del capítulo III.1.3.

Para poder hacer uso del programa "Módulo 1 Plataformas" del IMP (Instituto -Mexicano del Petróleo), es necesario en primera instancia elaborar una topolo gía del modelo en estudio, la cual servirá de partida para la codificación de los datos requeridos por el programa; esta topología informa sobre la geome tría, el tamaño de las secciones transversales de cada uno de sus miembros; también la incidencia de los nudos para cada elemento (numeración nodal).Para este ejemplo se han ido numerando los nudos`con respecto a la altura vertical (eje "z") (Ver Figura No.V.3), y se ha situado el orígen (0,0,0) coincidiendo con el centro de la plataforma el eje "z", y los ejes "x" y "y" coinciden con el nivel medio del mar.

Asímismo, en el esquema de esta topología se muestra el tirante del agua oceánica empleado en este ejemplo.

Además se enlistan todas las cargas a las que va a estar sometida toda la estructura; para efectos de este modelo se consideró la carga de peso propioylas cargas hidrodinámicas producidas por dos olas de periódo y amplitud diferentes.

V.2.b) CONDICIONES Y DATOS REQUERIDOS POR EL PROGRAMA

Una vez que se tiene elaborada la topología de la estructura en estudio, in cluyendo en ésta todas las cargas a las que va a estar sometida la sube<u>s</u> -tructura, entonces se esta en condiciones de codificar los datos que serán alimentados al programa "Módulo 1 Plataformas" y que son:

- Número total de miembros

95

- Número total de nudos
- Número total de condiciones de carga
- Número total de combinaciones de carga
- Número total de cargas adicionales a las del peso propio
- Número de condiciones de carga debida al oleaje
- Número de cargas debido al viento
- Número de propiedades de cada uno de los diferentes miembros

Datos de oleaje(1)

- Periódo de la ola
- Amplitud de la ola
- Angulo de incidencia de la ola
- Tiempo de incidencia de la ola
- Velocidad de la corriente marina
- Altura de la marea máxima astronómica
- Profundidad del mar

Coeficientes (2)

- Coeficiente de arrastre

El exponente de variación de la velocidad con la profundidad es obtenido de un reporte de estudios oceanográficos realizados "in situ". En este ejemplo se tomaron los datos del reporte oceanográfico realizado por la Cía H. Glenn -& Associates en la sonda de Campeche para el IMP.

⁽¹⁾ Los datos de oleaje son obtenidos mediante estudios oceanográficos realizados en el sitio donde será instalada la plataforma marina ; algunos valores emplea dos son los mismos que usa el IMP.

⁽²⁾ Los coeficientes aquí empleados son obtenidos en forma empírica ; tal es el ca so de los coeficientes de arrastre y masa adherida ; este último se refiere a la fauna y algas marinas que se van impregnando a los miembros del jacket. El coeficiente de forma sólo se usa cuando existen cargas por viento en la su perestructura.

Coeficiente de forma

Coeficiente de variación de la velocidad con la profundidad

Los datos planteados para la solución de la estructura del modelo aquí estudi<u>a</u> do son los siguientes:

Número de miembros	= 60
Número de nudos	= 24
Número de condiciones de carga calculadas	= 11 -
Número de combinaciones de carga	= 10
Número de condiciones de oleaje	= 10
Número de grupos de propiedades	= 4
Profundidad del tirante oceánico	= 27.43 m
Coeficiente de arrastre **	= 0.75
Coeficiente de masa adherida **	= 1.60
Coeficiente de forma	= 0.00
Cargas de flotación	= 4

Nota: Se proporcionaron diez condiciones de carga por oleaje*, cinco para la ola de amplitud 3.04 m. y cinco para la de 6.10 m.;esto fué con el fin de obtener el tiempo en que la ola proporcionara las máximas fuerzas, p<u>a</u> ra ello se fué variando el tiempo de incidencia de la ola como lo mue<u>s</u> tra la siguiente figura para la ola de mayor amplitud:

* Para datos de oleaje ver listado del programa.

** Los coeficientes de arrastre y de masa adherida, son los mismos empleados por el IMP.

V.3 CORRIDA E INTERPRETACION DE RESULTADOS

Con los datos explicados en el párrafo anterior, se llevó a cabo la corrida del programa "Módulo 1 Plataformas".

Los resultados arrojados fueron los esperados, ya que los elementos mecánicos se encuentran dentro de los rangos adecuados.

Una explicación general de los valores que computarizó el programa es la s<u>i</u> guiente:

En primer término, calculó la longitud de cada miembro con tan solo los datos modales (Ver hoja No. 2) de la corrida; después calculó las cargas por peso propio que se aplicarán en cada nudo de la estructura para su análisis ver hoj ja No. 3. Enseguida calcula las cargas hidrodinámicas que genera cada una de las diez condiciones de oleaje requeridas y enlista los datos y coeficientes empleados para cada condición según el caso; estas cargas también serán cons<u>i</u> deradas en el análisis estructural (hojas 4 a 13).

En las hojas 14 y 15 imprime las diez combinaciones de carga que se solicitaron, es importante mencionar que el proyectista es quien elije e integra las combinaciones de acuerdo a sus necesidades específicas de proyecto. En este caso sólo se combinó cada una de las diez condiciones de oleaje con peso propio.

Los resultados correspondientes a los cálculos de radio de giro y la relación de esbeltez para cada uno de los miembros en sus dos direcciones, así como sus

correspondientes módulos de sección son mostrados en las hojas 16 y 17.

Las siguientes páginas (hojas 18-22) muestran los resultados que computa el programa respecto a los desplazamientos ocurridos en cada elemento constit<u>u</u> yente de la estructura analizada; estos desplazamientos se calculan y se im primen para cada una de las diez combinaciones de carga requeridas.

Finalmente, de la hoja 23 en adelante se muestran los elementos arrojados por el análisis estructural como lo son las fuerzas axiales, cortantes, los mome<u>n</u> tos torsionantes y flexionantes en los dos planos. Cada uno de estos eleme<u>n</u> tos mecánicos son computarizados al igual que los desplazamientos, para cada elemento y para cada una de las diez combinaciones de carga solicitadas al programa.

Una vez explicados los datos listados por el "Módulo 1 Plataformas", est<u>a</u> mos en condiciones de continuar con el diseño.

V.4 DISERO FINAL

DISEÑO DE LAS PIERNAS DEL JACKET:

Para el diseño de estos miembros se hace un análisis de los elementos mecán<u>i</u> cos que obran en ellos y se eligen los más críticos y con ellos se diseña.

Miembro 8: Acero A-36 Longitud: 1030 cm Combinación de carga = 4 (P_o P_o + 4^a/₋ condición de oleaje) Area = 896 cm² $r_y = 53.07 \text{ cm}^2$ $r_x = 53.07 \text{ cm}$ $S_y = 33206 \text{ cm}^3$ $S_x = 33206 \text{ cm}^3$ $P_{axial} = 4 481 000 \text{ kg}$ V_{max} . = 1 642 000 kg $M_y = 5 951 000 \text{ kg cm}$ $M_x = 6 637 000 \text{ kg cm}$ k_x , $k_y = 1.0$

1. Relación de esbeltez

$$\frac{k1}{r_x} = \frac{k1}{r_y} = \frac{1.0 (1030)}{53.07} = 19.4 \le 200 \text{ BIEN}$$

2. Esfuerzos axiales

$$(\frac{K_1}{r}) = 19.4 \Rightarrow F_2 = 1455 \text{ kg/cm}^2$$

 $fa = \frac{4\ 481\ 000}{896} = 5001\ kg/cm^2$

 $\frac{f_a}{F_a} = \frac{5001}{1455} = 3.44$ MUY EXCEDIDO

3. Esfuerzos a flexión

$$Fb_{x} = \frac{6\ 637\ 000}{33\ 206} = 200\ kg/cm^{2}$$

$$Fb_{y} = \frac{5\ 951\ 000}{33\ 206} = 179\ kg/cm^{2}$$

Interacción =
$$\frac{fa}{Fa}$$
 + $\frac{fb_x}{Fb_x}$ + $\frac{fb_y}{Fb_y}$ =
= $\frac{5001}{1455}$ + $\frac{200}{1520}$ + $\frac{179}{1520}$ = 3.68 >> 1.0 NO SE ACEPTA

Nota: Es muy notorio que este miembro desde la revisión por carga axial, esta resulta excesiva, por esto desde la interacción de $f_{\rm B}$ / $F_{\rm b}$ = 3.44 se ve que el perfíl no es el adecuado. Se tiene que proponer otra sección tubular.

Se propone la siguiente sección:

$$ext = 100^{-1}$$

A = 3911 cm
 $r_y = r_x = 88.05$ cm
 $S_y = S_x = 238781$ cm
k = 10

1. Relación de esbeltez

 $\frac{k1}{r_x} = \frac{k1}{r_y} = \frac{1.0 (1030)}{88.05} = 11.70 \quad F_a = 1438 \text{ kg/cm}^2$

2. Esfuerzos axiales

 $fa = \frac{4\ 481\ 000}{3911} = 1145.74\ kg/cm^2$

$$\frac{fa}{Fa} = \frac{1145.74}{1483} = 0.77 > 0.15$$

3. Esfuerzos a flexión

$$fb_x = \frac{6\ 637\ 000}{238\ 781} = 27.80\ kg/cm^2$$

$$fb_y = \frac{5\ 951\ 000}{238\ 781} = 24.92\ kg/cm^2$$

Interacción = $\frac{fa}{Fa}$ + $\frac{fbx^2 + fby^2}{Fb}$ 41.0

Interacción = 0.77 +
$$\frac{(27.80)^2 + (24.92)^2}{1520}$$
 = 0.80 BIEN

4. Revisión por pandeo local:

$$\frac{D}{t} = \frac{254}{5.08} = 50 < 60 \text{ NO EXISTEN PROBLEMAS POR PANDEO}$$
(Ver parte IV.2.2.a)

5. Diseño contra colapso hidrostático. Se debe cumplir que:

$$fh = \frac{P_D}{2t} \le \frac{Fh_C}{SF_h}$$

$$P_D = \Upsilon H = 1000 \quad (23.47) = 23470 \text{ kg/m}^2$$

$$fh = \frac{2.347}{2(5.08)} = 0.231$$

$$Fhc= Fhe \qquad Fhe= 0.667 \text{ Fy} = 1688$$

$$2.52 \quad (2530)$$

$$Fhc = \frac{2.53 (2530)}{2.29 + (2530/1688)} = 1689$$

$$Fh = 0.23 \leq \frac{Fh_c}{SFh} = \frac{1689}{2.50} = 675.6$$
 NO EXISTE PROBLEMA POR COLAPSO HIDROSTATICO.

6. Revisión de la interacción entre compresión y colapso hidrostático:

Las tres ecuaciones siguientes se deben cumplir.

$$\frac{f_{x} - 0.5 Fh_{a}}{F_{aa} - 0.5 Fh_{a}} + \left(\frac{fh}{Fh_{a}}\right)^{2} \le 1.0 \dots (1)$$

$$\frac{f_x}{F_{xe}} (SF_x) \leq 1.0 \quad \dots \quad \dots \quad \dots \quad (2)$$

$$\frac{fh}{Fhc} (SFh) \leq 1.0 \quad \dots \quad \dots \quad \dots \quad (3)$$

Donde:

 $F_{aa} = Fx_c/Sf_x$ Cálculo de Fx_c

$$Fx_{c} = F_{y} [1.64 - 0.23 (\frac{D}{t})^{0.25}] < Fx_{e}$$

 $Fx_c = 2530 [1.64 - 0.23 (\frac{254}{5.08})^{0.25} = 2602$

Cálculo de Fxe

$$Fx_e = 0.6 E \frac{t}{D} = 0.6 (2X10^6) \frac{5.08}{254} = 24\ 000$$

Fxc < Fxe BIEN

Cálculo de F_{aa}

$$F_{aa} = \frac{24\ 000}{2.5} = 9600$$

Cálculo de Fha

$$Fh_a = Fh_e / SF_h = \frac{1688}{2.5} = 675.2$$

Cálculo de fx

$$fx = fa + fb (0.5 fh) > 0.5 Fh_a$$

$$fx = 1145.74 + 27.80 + [0.5 (675.6)] = 1511.34$$

Revisión de la primera ecuación

$$\frac{1511.34 - 0.5 (675.2)}{9 \ 600 \ - \ 0.5 (675.2)} + \left(\frac{0.231}{675.2}\right)^2 = 0.13 \le 1.0 \text{ BIEN}$$

Revisión de la segunda ecuación

$$\frac{1511.34}{2602}$$
 (2.0.) = 1.16 = 1.0 BIEN

Revisión de la tercera ecuación

$$\frac{0.231}{1689} = 0.00014 < 1.0$$
 BIEN

No existen problemas por colapso hidrostático y compresión... se acepta la sec

ción circular de ϕ = 100" ya que cumple con todas las revisiones requeridas.

Nota: Como no se presentó la tensión en las piernas del jacket, no se hizo la revisión de ésta con el colapso hidrostático.
DISEÑO DEL CONTRAVENTEO DEL JACKET

```
Miembro: 60
  Acero A-36
 Longitud = 1700 cm
 Combinación de carga = 4 (P_oP_o + 4^{\underline{a}} condición de oleaje)
            500 cm<sup>2</sup>
 A
      =
            35.51 cm
 rx
      =
           35.51 cm
 rv
      2
           12359 cm<sup>3</sup>
s<sub>v</sub> =
           12359 cm<sup>3</sup>
S<sub>x</sub> =
Paxial = 48520 Kg (tensión)
M<sub>v</sub> =
          110 100 000 kg cm
M<sub>x</sub> =
         107 500 000 Kg cm
K_{X}, K_{y} = 1.0
```

1. Relación de esbeltez

$$\frac{KL}{r_{X}} = \frac{KL}{r_{y}} = \frac{1.0 (1700)}{35.51} = 47.87 < 200$$

2. Esfuerzos axiales

$$\frac{KL}{r} = 47.87$$
fa = $\frac{48520}{500} = 97.04 \text{ kg/cm}^2$

$$\frac{fa}{Fa} = \frac{97.04}{1520} = 0.064$$

3. Esfuerzos a flexión

$$fb_r = \frac{110\ 100\ 000}{12359} = 8908.5 \ \text{Kg/cm}^2$$

$$fb_{X} = \frac{107\ 500\ 000}{12359} = 8698.1\ \text{Kg/cm}^{2}$$

Interacción = $0.064 + \frac{8908.5}{1520} + \frac{8698.1}{1520} = 11.64 >> 1.0$ NO SE ACEPTA

Se propone la siguiente sección:

1. Relación de esbeltez

 $\frac{KL}{r_X} = \frac{KL}{r_y} = \frac{1.0 (1200)}{70.07} = 24.26$

2. Esfuerzos axiales

$$fa = \frac{48520}{3162} = 15.35 \text{ Kg/cm}^2$$

 $\frac{fa}{Fa} = \frac{15.35}{1520} = 0.010$

$$fb_{y} = \frac{110 \ 100 \ 000}{152 \ 792} = 720.6 \ \text{Kg/cm}^{2}$$

$$fb_{y} = \frac{107 \ 500 \ 000}{152 \ 792} = 703.6 \ \text{Kg/cm}^{2}$$

Inter**E**ción = $0.010 + \frac{720.6}{1520} + \frac{703.6}{1520} = 0.95$ BIEN

4. Revisión por pandeo local

$$\frac{D}{t} = \frac{203.2}{5.08} = 40 \ \textbf{4} \ \textbf{60} \ \textbf{NO} \ \textbf{EXISTEN PROBLEMAS POR PANDEO}$$

5. Diseño contra colapso hidrostático

- Nota: Como este miembro sobresale en su punto inferior 1.52 mts sobre el nivel medio del mar .'. No requiere diseño por colapso hidrostáti co ni la revisión de la interacción de este último con la tensión.
- ... Se acepta la sección circular de \emptyset = 80" ya que cumple con todas las revisiones de diseño requeridas.

Finalmente el diseño del jacket queda:

Ø En pulgadas

CARA TIPICA DEL JACKET EN ESTUDIO

CONCLUSIONES:

Actualmente y según la exposición de este trabajo, es notorio que se han dado las condiciones de técnica para la construcción de plataformas marinas de ac<u>e</u> ro y únicamente se trabaja en la optimización y el mejoramiento de los proc<u>e</u> dimientos de construcción y montaje.

Se expuso la metodología para calcular fuerzas de oleaje utilizando las fórm<u>u</u> las planteadas por las teorías de olas, estos cálculos resultan demasiado laboriosos, por lo que se hace indispensable del uso de computadora para sist<u>e</u> matizarlos y con esto obtener rápidamente resultados muy exactos.

Un fundamento de las teorías que existen para describir en forma matemática el comportamiento del oleaje es que las olas son regulares e ideales; es not<u>o</u> rio que esto no sucede; ya que el comportamiento de las olas es muy irregular y complejo, es por ello que estas teorías aún se encuentran en proceso de investigación para que sus resultados se acerquen aún más a lo real y de esta forma se puedan calcular presiones y fuerzas hidrodinámicas más exactas y estas a su vez redunden en diseños más óptimos.

Las fuerzas de oleaje son calculadas con la fórmula de Morison, esta fórmula hace uso de dos coeficientes, el coeficiente de arrastre y el de inercia; estos son de gran importancia, ya que influyen en el cálculo de las fuerzas de oleaje. Esto hace que sea de vital importancia concentrar las investigaciones y estudios respecto de estos coeficientes ya que hasta la fecha son obtenidos de forma empírica. Las cargas cíclicas que generan las olas marinas inducen serios problemas de fatiga en las plataformas marinas y estas a su vez pueden producir un colapso de la estructura. En lo que respecta a este renglón el País cuenta con escasas investigaciones y toda la información que se posee proviene de estudios e investigaciones realizadas en el extranjero, esto hace necesario que en México se aceleren los trabajos de investigación respecto a este tema.

Para el diseño de una plataforma marina se emplean coeficientes de seguridad que llegan a superar el 200% de lo requerido, esto se da por la serie de incertidumbres a que se enfrentan los diseñadores de este tipo de estructuras como lo son, el comportamiento del oleaje, del viento, de las cargas cíclicas, de la fauna marina, etc., por lo tanto el diseño será más óptimo a medida que se cuente con estudios más profundos al respecto y con experiencias de otras plataformas ya funcionando.

Finalmente es importante señalar que México es un país tecnológicamente dependiente y que los logros que se han tenido en el renglón de plataformas ma rinas han sido en parte al apoyo que se ha tenido por parte de las autoridades, pero aún más al vigoroso empuje de los ingenieros mexicanos que se han preocupado por tratar de contar con una tecnología propia que pueda redituar diversos beneficios al **f**aís; esta tarea sólo podrá proseguir por buen camino si existe un apoyo total al técnico y al científico mexicano para de esta forma dejar de ser un país que siempre esté dependiendo de tecnología extra<u>n</u> jera.

BIBLIOGRAFIA

- AMERICAN INSTITUTE OF STEEL CONSTRUCTION. 7th edition, New York, N.Y. 1970.
- AMERICAN PETROLEUM INSTITUTE. "Recommended Practice for Planning, -Designing and Constructing Fixed offshore Platforms", January 1980.
- 3.- CARNEIRO, F.L.L.B Y FERRANTE, A.J. "Offshore Structures Engineering", Vol. I y II, Brazil 1977.
- 4.- C.F.E. "Manual de Diseño de Obras Civiles", Estructuras, C.1.4. Diseño por Viento, México 1981.
- C.F.E. "Manual de Diseño de Obras Civiles", Hidrotecnia, A.2.13. Hidráulica Marítima, México 1983.
- 6.- CIA. A. H. GLENN AND ASSOCIATES. "Datos Oceanográficos", Septiembre de 1985.
- 7.- C.G. DORIS. "Optimización del Comportamiento a la Fatiga por Flexión y Torsión de Estructuras Metálicas", Offshore, Jornadas Técnicas Franco-Mexicanas sobre Petróleo y Gas. Instituto Mexicano del Petróleo 1986.
- 8.- I.M.P. "Estudios Oceanográficos y Meteorológicos en la Sonda de Campe che", México 1983.
- 9.- GUZMAN, RICARDO Y CALLES, PLUTARCO. "Diseño de Plataformas Marinas de Acero en la Bahía de Campeche", 3er. Simposium Nal. de Estructuras Me tálicas, Guadalajara, Jalisco 1982.
- 10.- HERREJON DE LA TORRE, LUIS. "Estructuras Marítimas", 2a. ed. México 1976.
- 11.- LOPEZ RIOS, JORGE Y VALLE M., OSCAR. "Análisis de Plataformas Marinas Metálicas Fijas", 3er. Simposium Nal. de Estructuras Metálicas, Guadalajara, Jalisco 1982.
- 12.- LUTHE, RODOLFO. "Análisis Estructural", México 1971.
- 13.- "OFFSHORE TECHNOLOGY CONFERENCE PROCEDINGS", Houston, Texas 1983.

- 14.- OFFSHORE SOUTH EAST ASIA. "A Reliability Approach for Design and Evaluation of Offshore Structures", Singapore 1984.
- PESTEL AND LECKIE. "Matrix Methods in Elastomechanics", Mc Graw Hill, 1963.
- 16.- SEREDA, N.G. Y SOLOVIOV, E.M. "Perforación de Pozos de Petróleo y de Gas Natural", Moscú. U.R.S.S. 1978.
- 17.- THE INSTITUTION OF CIVIL ENGINEER. "Desing and Construction of Offshore Structures", London 1977.
- U.N.A.M. "Revista Ingeniera", Organo Oficial de la Facultad de Ingenie ría No. 2, 1979.
- WILLIANS, NICHOLS, M. LUCAS. "Matrix Analysis for Structural Engineers", Prentice Hall 1968.

JALISIS PLATAFORMA NODULO 1 CORRIDA DE LA PLATAFORMA MODULO 1 CON PROFUNDIDAD DE 27.430%. GT EGCABS86/ -PLATAFORMAS2 1 PLATAFORMA MODELO "I" P.T. NUMERO DE NIEMBROS DE LA PLATAFORMA = 60 NUMERO DE NUDOS DE LA PLATAFORMA 26 NUMERO DE CONDICIONES DE CARGA CALC.# 11 NUMERO DE COMBINACIONES DE CARGA 10 NUMERO DE CONDICIONES ADIC. DE CARGA= 0 NUMERO CARGAS VERTICALES ADICIONALES= 4

NUMERO DE CONDICIONES DE OLEAJE	=	10
NUMERO DE GRUPOS DE PROPIEDADES	#	4
LONGITUD DE LA SEMIBASE PLATAFORMA	2	-00 MTS
PROFUNDIDAD DEL AGUA	=	27.43 MTS
COEFICIENTE DE ARRASTRE		.75
COLETCIENTE DE MASA	=	1-60

4A L 3 5	515 P.	LATAFO	RHA H	ODULO	1					
13431	67692		9999) 		62 # 4 Ch	. 3 4 5	4784 23456-840	214552840812	2156284-511444	
1000	R E	STR	T C.	C I 0	NE:	5	COORD EN AD A-X	COORDENADA	-Y COORDENADA-2	
1	1	1	1	1	1	1	1600-20	1600-20	-2743-00	
2	1	1	1	1	1	1	~1600.20	1600.20	-2743-00	
3	1	1	1	1	1 1	1	-1600.20	-1600-20	-2743-00	
4	. 1	1	1	1	1	1	1600.20	-1600.20	-2743-00	
5	0	0	Q,	0	0	Ũ	1501.14	1501.14	-2346-76	
6	0	0	0.	0	0	O	-1501-14	1501.14	-2346.76	
7	0	0	0	0	0	0	-1501.14	-1501-14	-2346.76	
8	0	0	0	0	Ο,	0	1501.14	- 1501 - 14	-2346.76	
	0	0	0	0	0	0	1257.30	1257.30	-1371.40	
10	U.	0	0	0	0.	0	-1257-30	1257.30	-1371.40	
11	ŭ	Ŭ		0	0:	G	-1257.30	~1257.30	-1371.40	
12	0	0	0	0	0	0	1257.30	-1257.30	-1371-40	
15	v	0	Q (0	0	0	028.70	1028 .70	-457.00	
14	v	U	<u> </u>	O O	0	0	-1028.70	1028-70,	-457.00	
13	2	U	v v	Ŭ	0	Ö	-1 (28.70	-1028.70	-457-00	
10	0	0	v v	0	0	0	1028.70	-1028.70	-457.00	
11	<u> </u>	Ň		0	U *{	0	876-30	876-30	152.60	
10	ů.	, U	0	0	ů l	0	-576-30	876.30	152.60	
30	Ň	N N	2	ŭ	v v	0 0	-876.30	-876.30	152.60	
20	Ň		2	Š.	0	ັນ	876-30	~876.30	152.60	
21	ŭ		U 1	v	U	0	762.00	762-00	609.80	
22	Ň	N N	v i	· U	O S	0	-762.00	762.00	689,,80	
22	ŭ		. <u>v</u>	0	0	0	-762.00	-762 -00	609480	
36	Ň	U N	N 1	0	U	U	762-00	-762 -00;	609.80	
34	Ň		ų i	Š.	o i	0	•00	•00	10800000.00	
60	v	i v	u i	U	U	0	10000000.00	-00	-00	
		1	1		•					
	TIE	HPO DE	DISH	INUCI	ON DE	ANC	HO DE BANDA=	1.94		

VALISIS	PLATA	FORMA MOI	DULO 1	1				
MIEMBRO	NUDOI	NUDOJ: NI	UDOK N	TERIAL	PR OP IE	DAD DIAMETR	O LONGIT	UÞ
1	1	5	26	1	2	145 .D	4 - 2	
2	2	6	26	!	2	145.0	4.2	
1	3	7	26	1	2	145.0	4 - 2	
- 4	1	8	20			143.0	4.2	
,	1	10	26		-	152.0	10.3	
7	1 7	11	26	i	i	152.0	10.3	
8	8	12	26	i	i i	152.0	10.3	
9	9	13.	26	1		152.0	9.7	
10	10	14	26	1	1	152.0	9.7	
11	11	15	26	1	1	152.0	9.7	
12	12	16	26	!	6	152.0	9.7	
13	13	1/1	20		-	152.0	0.2	
15	15	10	26			152.0	6.5	
16	16	20.	26		5	152.0	6.5	
17	17	21	26	1	5	152.0	4.8	
18	18	22	26	. 1	1	152.0	4.8	
19	19	23	26	1	1	152.0	4 • B	
20	20	24	26	1	1	152.p	4.8	
21	5	6	25	11		76.0	30-0	
22	: 7	ŝ	25	. 1	<u>_</u>	76.0	30.0	
23	1 2	5	23		<u> </u>	70.0	30.0	
26		10	25		- 2	76.0	25.1	
26	11	10	25	1	2	76.0	25.1	
27	12	11:	25	1 1		76.0	25.1	
28	12	9,	25	1	6	76.D	25.1	
29	13	14	25	1	8	76.0	20.6	
30	15	14	25	1	4	76.p	20.6	
31	16	15	25	. 1	<u>, </u>	76.0	20-6	
32	10	13	25	1	2	70.0	20.0	
34	10	12	25	-	2	76.0	17.5	
35	20	19	25	i	2	76-0	17-5	
36	20	17	25	. 1	4	76.0	17.5	
37	21	22	25	1	4	76.0	15 -2	
38	23	22	25	1	4	76.0	15-2	
- 39	24	23	25	1	- ÷	76.D	15.2	
40	124	21	25	1.	4	76.0	15.2	
42		10	25		- 2 .	102.0	29.4	
43	÷	'nt	25		5	102.0	20 4	
44	11	5	25	i	3	102-0	29.4	
45	; 8	11	25	1 1	3	102.0	29.4	
46	12	7	25	1	3	102.0	29.4	
47	8	9	25	1	3	102.0	29.4	
48	12	5	25	. 1	3	102.0	29.4	
- 49		14	25	1	3	102.0	24.7	
51		11	25		2	102.0	24 - 1	
52	16	0	25	1	ž	102.0	24.7	
53	17	14	25	1	3	102-0	20-1	
54	19	14	25	1 1	3	102.0	20.1	
55	16	19	25	1	3	102.D	20.1	
56	16	17	25	1 1	3	102.0	20.1	
57	17	22	25	1	3	102.0	17.0	
28	79	22	25	1	3	102.0	17-0	UNIA ?
37		17	23		2	102.0	17+0	HOWH L
60	24	17	. 25	1	3	102.0	17 - 0	

HODULG 1 s 0 FORMA

NUDD	COND.	RX	RY	RZ -	HX.	NX	村工
1	1	.0	•0	2049.7	-0	÷0	•
2	i !	.0	<u>.</u> Ó	2049.7	-0	•0	•
-	i	.0	.0	2049.7	•0	•0	
ĩ	i	10	.0	2049.7	•0	.0	•1
5	1	.0	.0	7955.5	•0	• 0	•1
6		.0	.0	7955.5	•0	•0	•
7	1 C	.0	-0	7955.5	•0	•0	
8	- i -	-0	.0	7955.5	•0	• 0	•
ŏ	i	10	.0	12376-5	•0	+ 0	-1
10		Lö	-0	10238.1	•0	•0	
4 1	i 1	Lñ	.0	12376-5	•0	•0	
15	1	Lõ	-0	10238.1	•0	• 0	
	1 I I I I I I I I I I I I I I I I I I I	50	.0	6198.4	•0	• 0	•
41		Lõ	-0	10071-6	•0	<u>.</u> 0	
12		[ñ		6198.4	-0	.0	•
14		Eñ.	-0	10071-6	<u>.</u> 0	• 0	•
17		Ĩň	-0	-42250-8	-0	.0	
49		-0	.0	-14420-6	-0	.0	· •
40		.0	1 .0	#42250-B	-0	.0	
20		50	0	-14420-6	-0	.0	
24		Ĩň	-0	-60668-7	-0	.0	. f
52		۲ŏ.	-0	-73454-2	-0	• 0	
22		Ĩň	-0	-60668-7	-0	.0	
24		Ľŏ		-73454-2	.0	.õ	-
25	1	- Că	-0	-0	-0	.0	
22			.0	-0	-0		

HOJA 3

HALISIS PLATAFORMA MODULO 1

	COND.		RX	i RY	RZ	HX	N.A.	HZ
1	2 ;	-1-2		•0	•6	-14.3	-15.0	-7.3
2	2	4-8		•2	-•5	-14.3	388.2	100.6
3	2	4.8		2	-•5	, 14.3	388+2	-100+6
4	2	-1-2		•0	•6	14 -3	-15.0	7.3
5	2	380.7		-27.0	152.9	-24898.1	109916.6	161700.0
6	2	471.3		59.3	-62.7	-24917.6	130224.0	194915.2
7	2 1	471.3		~59.3	-62.7	24917.8	130224.0	-194915.2
8	2	380.7		27-0	152-9	24898.1	109916.6	-161700.0
9	2	2841.7		-28.7	940+3	-201356.0	176602.7	823895 • 1
10	2	1853+9		-7.0	274.7	-86932.3	-93950.4	442068.2
11	2	2939-0	-	241.6	73.9	201409.9	323583.6	-885239.4
12	2	1797-2		-65.4	331.8	86882.2	-104226.3	-396452.1
13	2	-2055-2		31.3	-145.1	27783.7	-642259.1	-3820.6
14	2	10617-9		78.5	160-3	-45754.9	622776.0	2361387.1
15	2	6493.6	-	235.2	-788+0	-17865.7	569803.4	-655439.3
16	2	-4665-3		71.0	-1072-2	-275828.5	-2482756.4	1257835.9
17	2 (-11004-4	-12	700.5	-56626.5	3502714.5	-38713469.5	1296575.7
18	2 '	3820-5		186-2	-6870.6	-38.2	2354996.4	-155516.2
19	2	18632.5	1	324.5	-45290.5	-917066.9	19679398.5	-2485175.6
20	2	-3263-1		-54.8	-9594.3	13928.5	-3789795.1	-130465.7
21	2	•0		•0	.0	.0	+0	•0
22	2	-1783760	-4	870.7	-57974.4	-2441496.1	28328018.0	-1666689.8
23	2	•0		•0	.0	i .0	• 0	•0
24	2	24339-1	-17	504.0	-78466.6	1180994.6	-27761715.8	2708531.5
25	2	10 J		•0	•0	.0	• 0	•0
26	2	-0		-0	-0	•0	•0	•0
	OLEAJE	CON STOK	ES DE S	DRDEN	-D4 W			
	ANGULO	DE THCED	ENCTA DE	1.4.01.4.8		NEC		
	TICHPO	DE THETO	ENPTA DE			Pro		1
	PERIOD	O DE LA O			2.61 SEGS	1		
	AL THPA	DE LA MA	RFA	-	2.00 #			
	LONGT	10 NE 44	01 4		28.40 8	1	ł .	
	FAUDT I	ve er ce	***	: T	n	1		

CORRIENTE MARRIA DE 2.40 M/SEG Angulo de incedencia de corriente Exponente variación vel con prof. Cofficiente ce +00 RADIANES z z

i

HOTA 4 . • ۹.

0.01	COND .		RX	RY RY		RZ	MX N	MX	MZ
	3	110		•0		1.1	-24-6	157.9	33.
2	3	5.4		•5		9	4.6	449.4	111.
5	3	5.4		2	1	9	-4.6	449.4	-111.
	3	tLO		-0	1	1.1	24-6	157.9	-33.
	3 1	444,5		-27.8	1 1	61.4	-28564+0	120439.6	184139.
	3	519.9		51.6		97.3	-7360+1	136856.0	212467
	3	519.9		-51.6		97.3	7360-1	136856.0	-212467
	3	444,5		27.8	1 1	61.4	28564-0	120439+6	-184139
	3	3420-9		-20.0	1 5	22.5	-250797.6	200890.6	977485.
	3	2187-1		1.7	. 2	24.6	-56294-4	-127014.9	505233
	3 '	3358,8	-	259-4	1 1	40.2	187855.9	237891.9	-981185.
	31	2195.5		-67.9	1 1	14.9	87876.8	-104333.8	-463021
	3	2800.0		807.5	- ¹ 41	65.6	-628361.3	-125911.5	241462
	3	2500.5	-1	505 .8	-60	77.1	2142005.7	445716.5	729926
	3	724.0		232.1	-19	92.0	-159643.0	47297.1	-108431
	3	5259-7	-2	374.6	108	14.6	3895481.5	-998940-6	-894845
	3 :	-3221-3	-8	719.9	- 158	70.1	-2258664.9	-8468989.4	1219231
	3	4672.2	-1	923.0	- 119	62.2	-292830-2	1851887.8	-36426
	3	13092-5	-3	417.3	-436	87.4	-5258769.8	7959560.9	-1719422
	3	2311-0	-	741.5	80	63.9	-185903-B	-1658685-0	7091
	3	-11455-3		.0	-4 94 1	70.2		-75311545.0	
	3	-1907-8	-	408-3	-236	43.0	-112347.4	11557135.8	-202992
	3	-1636.5		•0	- 22 1	87.2	.0	10758792.1	
	3	50606.9	-5	170.5	-7663	80.9	: 2874970.9	-122745299.0	1556459
	3	.0		•0	1	.0	.0	0	
	3	Lo		.0	-	.0	.0	1.0	
		i i		ł					
							!	!	
	ABDI TTI	LUM SIUKE	3 82 3	UNDEN	2 04 8		:		
	ANEULA	NE TUCIAS	NCTA NE	144 014	3.00		NEC		
	TIFMDA .	NE INCINE	NCTA DE	DA OLA		SCCC	nc a	1	
	DESTANA	DE LAIDE		EN OLA		5000			
	AL THOA	DE LA MAD			- 2.00	3263	i i	•	
		NE LA 988			- 37 40			4	
	LONDITO	V VE LA C		1	- 20 001				
	,			•	'		1		
	1	1			:				
	-	-	N.F.	6 40 MA	ee e ¹				
	CORALCA	12 NAKINA	WE AS		200				
	EXBURCH	VE INCEDE Te vadyaa	100 Vr.	CONKIE		1 00	RAPIANES	2	
	EAPPHEN	IE VARAAL	TON AFF	LON PR	01.	1.00			

144.812.12

OUDO	COND.	R)	C RY	RZ	. ях	NY	HZ
1	4	3.5	1	1.3	-21.7	329.5	77.
ż	4	4.1	•1	~1.3	19.5	373.9	88.
3	4	4-1	1	-1.3	-19.5	373.9	-88-
ž	i	3.5	.1	1.3	21.7	329.5	-77.
ŝ	à I	499.5	-36-1	144.3	-18589.7	131185.7	204436
6	4	524-0	40.3	-135.9	13159.7	135982.6	214462.0
7	i.	524-0	-40-3	-135.9	-13159.7	135982.6	-214462.0
Å	2	499-5	. 36-1	144.3	18589.7	131185.7	-204436-
ŏ	4	4225 4	-115.4	634-3	-138547.8	337825.2	1239979.4
10		2569.4	5.5	51.0	-472.4	-110202.3	552558.
11	2	4002-0	-267-1	-17.2	131257.9	238560.9	-1169018.
	7	2648-4	-41.9	171.0	46972.5	-62109.7	-533807.
ii	1	12854-7	214-8	2687.2	-390840.1	636170.6	1193315.4
14		-1587-3	293.3	5954.6	-1547345.5	-1371596.8	22762.
15	1	-1920-2	-445-3	2936-9	468927.2	-704374.6	-19379.
16	2	27690.5	-697.9	5488.7	2562332.0	1336333.3	-6725666.
17	2	265932-1	24563-2	75694-0	-43168716.0	3600343.1	46465241.
18	i i	+4706-5	42.0	-3384-5	52696.3	2900678.9	134455.
10	2	-966216	-2274-7	-31429.7	824607.2	17313906.0	-49407.
20	2	141878-0	-16236-7	28493.4	11176197.1	2781221.6	-12232471.
2 9	71	103806-8	18674-7	-127412.6	2225831.8	-32268302.8	-2184037.
		58110	-157.7	-6645.9	-36355.0	3171419.8	-98357.
23	2	137.5		-6277-0	.0	3043760-1	
54	7	486544 -8	-17890-8	-321552.4	71141118.0	-142482856-0	-36972391
24	2	-0		•0	-0	•0	
56	7	Eň			-n	. 1	

OLEAJE CON STOKES DE 5 ORDEN AMPLITUD DE LA OLA = 3 ANGULO DE INCIDENCIA DE LA OLA= TIEMPO DE INCIDENCIA DE LA OLA= PERIODO DE LA OLA = ALTURA DE LA MAREA = LONGITUD DE LA OLA = 3.04 # -00 RADIANES .62 SE65 = 2.61 SEGS = 2.00 H = 23.69 H

CORRIENTE MARINA DE 2.40 M/SEG Angulo de incidencia de corriente = Exponente variación vel con prof. .00 RADIANES 1.00 COEFICIENTE CH .00

HOJA G

00	COND.		RX	RY	RZ	MX	RY	#Z
	5	5.3		2	.9	-4.7	447.0	110.
	5	1-1		•0	-1.2	24.9	167 - 1	35
	5	1-1		•0	-1.2	-24.9	167 - 1	-35
	5	5.3	i i	•2	•9	4.7	447.0	-110
	5	528-3	i	-51.3	100-1	5904.3	138563.7	216461
	5	471,-1		28+5	-166-1	30281.9	125764.9	195955
	5	471-1		-28.5	-166-1	-30281.9	125764.9	-195955
	5 .	528-3		51.3	100-1	-5904-3	138563+7	-216461
	21	4467=6	, -	354.9	-195.2	250545.0	410166.8	1359431
	2	2770-4			-351.0	87233.8	-58000.8	240198
	2	420312	-	112.9	-838.4	-1///38.9	3500/3+8	-1340040
	21	213961		2261	-199.0		->1/U2+3	-0/03//
	2	1009450	-	201+0	-2002+1	6000U/+C	23/338+0	3336011
	2	1320263		513+1 514 0	74770	-1020444.7		-1003133
	1	2710220		470 7	- 47117 4	-5 507040 9	750075 8	-1073333
	51	411372LR	-67		-17464.1	R2010272.0	15718638.8	172748887
	3	1032.3	-07	859.0	011.7	170028.0	221180-4	-108754
	3 (9454.8	,	001.7	10005-6	2795571.9	-164547.8	-2041476
	5	143325-1	21	971.2	-84288-2	-12013443-B	3896264 . 9	-17618688
	5	2021910-3	-79	745-8 -1	278184.9	325489756-0	-18120951-0	443335004
	5	-1057-1	• •	-24.4	-1885.3	-72107.0	1136526.8	25748
	5 -	.0		. 0	.0	.0	•0	
	5	2997749-9	-144	566.7 -1	871004.4 -	462 826780.0	-67895195.0	-656026960
	5	-0	l.	_0	•0	0	• 0	
	5	•0		-0	•0	.0	•0	
	OLEAJE	CON STOR	ES DE 5	ORBEN		}	:	
	ANCHIO	AS THEM	ULA Emeta de			NEC	i	
	TIENDO	DE INCES	ENCIA DE	LA OLAN	DB RCCE	NE D		
	PERTON	O DE LALA	ENCIA VE	EN VEN-	7.41 5565	1		
	AL THRA	DE LA MA	BFA		5.00 H	1		
	LONGIT	UDDEFIL	OLA	. = :	8.69 H			
			-	•	7	•		
		l		1		1		· .
	CORRIE	NTE MAREN	A DE	2.40 M/SE	5			
	ANGULO	DE INCLO	ENCIA DE	CORRIENT	E =00	RADIANES		
	EXPONE	NTE VARBA	CION VEL	CON PROF	= 1.00	÷ •	1	
	COEFIC	IENTE CL			= .00	1		
		÷				1		
	{	:			ł	1		
		;						2
				· •	1	1	and the second second	
	-	1		•	1			and the second
				4	1	+		
		1		1		1 · · · · ·		
		•			1			
				1				
				5	1			
						1		

£ .

. ...

IOJA T

. 5

;

NALISIS PLATAFORMA MODULO 1

6 4.9 2 .2 14.4 395.9 102 6 -1.2 .0 6 -14.0 -11.8 -6 6 -1.2 .0 6 -14.0 -11.8 -6 6 41.9 .2 .2 -14.4 395.9 -102 6 495.6 -61.3 61.5 26412.8 134318.6 20528 6 397.1 27.5 -155.8 -26005.3 112902.5 169313 6 397.1 27.5 -155.8 -26055.3 112902.5 169313 6 397.1 27.5 -155.8 -26005.3 112902.5 169313 6 3105.2 -95.7 -523.0 41588.3 290831.2 104314 6 2240L4 -96.3 -545.7 116974.7 -34811.5 45724 6 315.7 69.1 -1450.2 -11750.5 -107230.0 -506355 6 32179.9 33.7 -938.6 239274.7 161414.1 805087 6 -45274.8 3500.7	UÞG	CON	•	RX	RY	RZ	HX	HY	. HZ
6 -1.2 .0 6 14.0 -11.8 -6 6 4.9 .2 .2 .14.4 395.9 -102 6 4.95.6 -61.3 61.5 264.12.8 133.18.6 205028 6 397.1 27.5 -155.8 26065.3 112902.5 169313 6 397.1 27.5 -155.8 -20065.3 112902.5 169313 6 397.1 -27.5 -155.8 -20065.3 112902.5 169313 6 3390.2 -395.7 -523.0 415388.3 299831.2 1041348 6 22400.4 -96.3 -545.7 116974.7 -38811.5 45724 6 3715.7 69.1 -3978.0 7500.5 -107250.0 -506355 6 -3974.6 -9731.3 -3978.0 75045.7 146141.1 6050.67 6 32170.9 33.7 -9386.8 2395924.7 164141.1 6050.67 6 -7952	1	6	4.9	1	2	•2	14.4	395.9	102 •
6 -1.2 .0 6 -14.4 395.9 -102 6 4.99 .2 .2 -14.4 395.9 -102 6 4.95.6 -61.3 61.5 26412.8 115318.6 205928 6 397.1 27.5 -155.8 26065.3 112902.5 169313 6 495.6 61.3 61.5 -26412.8 135318.6 205928 6 3390.2 -395.7 -523.0 415388.3 299831.2 1041346 6 2240L4 -96.3 -545.7 116974.7 -34811.5 457247 6 3715.7 69.1 -1450.2 -415746.0 338492.0 -1113720 6 2055.9 37.3 -3978.0 750045.5 -694022.0 1041346 6 32179.9 13.7 -9384.8 239924.7 161414.1 8050457 6 7652.0 1756.5 -11977.8 -4160789.5 -104722.7 10463736 6	2	6	-1.2	!	•0	6	14.0	-11.8	-6.
6 4.9 .2 .2 -14.4 395.9 -102 6 495.6 -61.3 61.5 26412.8 15318.6 20065.3 112902.5 169313 6 397.1 -27.5 -155.8 26065.3 112902.5 169313 6 397.1 -27.5 -155.8 -20065.3 112902.5 169313 6 3390.2 -395.7 -523.0 415388.3 29831.2 1041346 6 2240L4 -96.3 -545.7 116974.7 -34811.5 457247 6 2075.9 37.3 -398.5 -117505.7 -107230.0 -506355 6 -2374.6 -931.3 -3978.0 7500.45.9 -60422.0 -111372 6 -3277.1 126.5 -11977.8 -414078.5 -20289.7 164144.1 8050687 6 -7322.0 1756.5 -11977.8 -414078.5 -20289.7 1647262 6 -7360.2 5167.2 23189.8 12672.7 <td>3</td> <td>6 1</td> <td>-1-2</td> <td></td> <td>+ •0</td> <td>6</td> <td>-14.0</td> <td>-11.8</td> <td>6.</td>	3	6 1	-1-2		+ •0	6	-14.0	-11.8	6.
6 4951.6 -61.3 61.5 26412.8 134318.6 20522 6 397.1 27.5 -155.8 -26065.3 112902.5 -169313 6 495.6 61.3 61.5 -26412.8 134318.6 -20592 6 3970.2 -355.7 -523.0 415388.3 29831.2 1041348 6 22401.4 -96.3 -545.7 116974.7 -34811.5 457247 6 2395.4 -40.3 -545.7 116974.7 -34811.5 457247 6 2095.9 37.3 -398.5 -117505.7 -107230.0 -506355 6 -3974.6 -931.3 -3978.0 750045.4 -064029.0 110468 6 13277.9 33.7 -9388.6 2395924.7 161414.1 805087 6 -46391.4 202.0 -5247.0 756.5 -11977.8 -410789.5 -2023899.7 16472628 6 73228.4 3600.7 -40348.1 -9555694.6	4	6	4-9	•	.2	•2	-14.4	395.9	-102 -
6 397-1 27.5 -155.8 20065.3 112002.5 169313 6 397.1 +27.5 -155.8 -20065.3 112002.5 -169313 6 495.6 61.3 61.5 -26412.8 134318.6 -205928 6 3390.2 -395.7 -523.0 413388.3 290831.2 104134 6 2240L4 -96.3 -545.7 116974.7 -34811.5 457247 6 2095.9 37.3 -398.5 -117505.7 -107230.0 -506355 6 -3974.6 -931.3 -3978.0 750045.0 -38482.0 -1512407 6 32179.0 33.7 -9388.8 2395924.7 1614141.1 805087 6 14639.4 202.0 -5247.3 -63818.7 -748228.0 -1512407 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -7052.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -7327.1 128.5 -63290.9 15294568.4 2007507.4 -1527652 6 773284.8 3800.7 -40384.1 -955594.6 548355.7 8581170 6 -73284.8 3800.7 -40384.1 -955594.6 548355.7 858170 6 -1176.1 -183.0 155.6 -20958.4 165429.0 36117 6 -73284.8 3800.7 -40348.1 -955594.6 548355.7 858170 6 -1176.1 -183.0 155.6 -20958.4 165429.0 36117 6 2582.1 -356.3 1705.0 -811434.6 -313623.8 38861 6 -73284.8 3800.7 -40384.1 -955594.6 548355.7 858170 6 -10 0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	5	6	495-6		-61.3	61.5	26412.8	134318+6	205928
6 397.1 +27.5 -155.8 -2005.3 112902.5 -169313 6 495.6 61.5 -26412.8 134318.6 -205928 6 3390.2 -395.7 -523.0 415388.3 299831.2 1041348 1 6 2240L4 -906.3 -545.7 116974.7 -34811.5 457247 6 2095.9 37.3 -398.5 -117505.7 -107230.0 -506355 6 -3974.6 -931.3 -3978.0 75045.4 -04029.0 110468 6 32179.9 33.7 -9388.8 239524.7 1614141.1 805087 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -7952.7.1 128.5 -6320.9 15295568.4 2007507.4 -15276523 6 73600.7 -12751.8 5787.8 15635840.5 -19040.02 -26672818 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 858170 6 -32678.4 -6132.6 -209580.4 1654629	6	6	397-1		27.5	-155+8	26065.3	112902.5	169313
6 495.6 61.3 61.5 -26472.8 134318.6 -205928 6 3390.2 -395.7 -523.0 415388.3 290831.2 1041340 6 2240L4 -96.3 -545.7 116074.7 -34811.5 457247 6 3715.7 69.1 -1450.2 -415746.0 338492.0 -1113720 6 2095.9 37.3 -398.5 -117505.7 -107230.0 -506355 6 -3974.6 -931.3 -3978.0 750045.9 -694029.0 110468 6 32179.9 33.7 -9386.8 2393924.7 1614141.1 8050807 6 146394 202.0 -5247.3 -658818.7 748228.0 -1512407 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -97327.1 128.5 -63290.9 15294568.4 2007507.4 -15276523 6 78600.2 5617.2 23819.8 -9254790.3 -1228212.7 10643734 6 150603.7 -12751.8 57887.8 15635840.5 -1940402.1 -26672818 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 858170 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 858170 6 -1176.1 -183.0 155.6 -20958.4 165429.0 36117 6 2582.1 -356.3 1705.0 -811434.6 -313623.9 83851 7 6 3252.7 -115.2 231.6 -25977.1 -127258.9 38107 6 -36278.4 -6132.6 -25977.1 -127258.9 38107 6 -36278.4 -6132.6 -2968.4 15429.0 36117 7 0 .0 .0 .0 .0 .0 0 LEAJE CON STOKES DE 5 0RDEM AMPLITUD DE LA OLA = 3.04 M AMGULO DE INCIDENCIA DE LA OLA= -300 RADIAMES 7 1EMPO DE INCIDENCIA DE LA OLA= -2068.4 2007 0.0 .0 0 .0 .0 .0 0 .0 .0 0 .0 .0 0 .0	7	6	397-1		-27.5	-155+8	-26065-3	112902.5	-169313
6 3390.2 -395.7 -523.0 415388.3 299831.2 1041348 6 2240L4 -96.3 -545.7 116974.7 -34811.5 657247 6 3715.7 69.1 -1450.2 -415746.0 338492.0 -1113720 6 2095.9 37.3 -398.5 -117505.7 -107230.0 -506355 6 32179.9 33.7 -9386.8 2393924.7 164141.1 8050687 6 14639.4 202.0 -5247.3 -658818.7 748228.0 -1512407 6 -7952.0 1756.5 -11977.8 -440789.5 -2023899.7 1647262 6 -7952.0 1756.5 -11977.8 -440789.5 -202389.7 1647262 6 -78600.2 5617.2 23819.8 15635840.5 -152762.3 172650.3 -1228212.7 1064374 6 -150603.7 -12751.8 57887.8 15635840.6 54672.61 36117 6 -37284.8 3800.7 -40348.1 -9553694.6 548355.7 858170 6 -176.1	8	6	495-6	,	61.3	61.5	-26412.8	134318.6	-205928
6 2240L4 -94.3 -545.7 11674.7 -34811.5 457247 6 3715.7 69.1 -1450.2 -415746.0 38492.0 -1113720 6 2095.9 37.3 -398.5 -117505.7 -007230.0 -506355 6 -3974.6 -931.3 -3978.0 750045.0 -694029.0 110468 6 32179.9 33.7 -9386.8 2393924.7 164141.1 8050687 6 -7452.0 1756.5 -11977.8 -440780.5 -2023899.7 1647262 6 -7952.0 1756.5 -11977.8 -440780.5 -2023899.7 1647262 6 -7952.0 1756.5 -11977.8 -440780.5 -2023899.7 1647262 6 -7952.7 1756.5 -11977.8 -440780.5 -2023899.7 1647262 6 -7600.2 5617.2 23819.8 -9254790.3 -1228212.7 10643734 6 -176.1 -183.0 155.6 -20958.4 165429.0 36117 6 -132678.4 -6132.6 -20958.4	9	6	3390-2		-395.7	; -523.0	415388.3	299831.2	1041348.
6 3715-7 69-1 -1450.2 -415746-0 338492.0 -1113720.0 6 2095.9 37.3 -398.5 -117505.7 -094029.0 110468 6 -3974.6 -931.3 -3978.0 750045.0 -694029.0 110468 6 -32179.9 33.7 -9384.8 2303924.7 1614141.1 8050.87 6 -7952.0 1756.5 -11977.8 -65818.7 74828.0 -1512407 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -7952.0 1756.5 -11977.8 -4140789.5 -202389.7 1647262 6 -79327.1 128.5 -63290.9 152045.8.4 2007507.4 -15276523 6 150603.7 -12751.8 57887.8 15635840.5 -1940402.1 -26672818 6 -313623.8 3800.7 -40348.1 -9553694.6 548355.7 858170 6 -3282.7 -115.2	0	6 ;	224064	•	-96.3	-545-7	116974.7	-34811.5	457247
6 2095.9 37.3 -398.5 -117250.7 -107250.0 -506355 6 -32179.9 33.7 -9386.8 2393924.7 1614141.1 8050687 6 14639.4 202.0 -5247.3 -658818.7 748228.0 -1512407 6 -7952.0 1756.5 -11977.8 -4140789.5 -202389.7 164762 6 -7952.0 1756.5 -11977.8 -4140789.5 -202389.7 164762 6 -7952.0 1756.5 -11977.8 -4140789.5 -202389.7 1647622 6 -7952.0 1756.5 -11977.8 -4140789.5 -202389.7 1647622 6 150605.7 -12751.8 57887.8 15635840.5 -190402.1 -26672818 6 -13284.8 3800.7 -40348.1 -9555840.6 548355.7 8581170 6 -1328.4 3800.7 -40348.1 -9553694.6 -548355.7 8581170 6 -3328.4 -6132.6 1705.0 -811454.6 -313623.8 838517 6 -36278.4 -6132.6	1	6	3715-7	,	69+1	-1450 - 2	-415746-0	338492.0	-1113720.
6 -3974.6 -931.3 -3978.0 75045.0 -694029.0 110468 6 32179.9 33.7 -9386.8 2393924.7 1614141.1 8050687 6 14639.4 202.0 -5247.3 -658818.7 748228.0 -1512407 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -79327.1 128.5 -63290.9 15294568.4 2007507.4 -1527623 6 78600.2 5617.2 23819.8 -9254790.3 -1228212.7 1064374 6 150605.7 -12751.8 57887.8 15635840.5 -1940402.1 -2667248 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 8581170 6 -176.1 -185.0 155.6 -20958.4 165429.0 36117 6 2582.1 -356.3 1705.0 -811434.6 -313623.9 838051 6 -36278.4 -6132.6 -20958.4 211457.1 5642507 6 -0 .0 .0 .0 .0	2	6 '	2095+9	•	37.3	-398+5	-117505-7	-107230-0	-506355.
6 32179,9 33.7 -9386.8 23924.7 1614141.1 8050687 6 14639,4 202.0 -5247.3 -658818.7 748228.0 -1512407 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -97327.1 128.5 -63290.9 15294588.4 2007507.4 -15276223 6 78600.2 5617.2 23819.8 -9254790.3 -122812.7 10643734 6 150603.7 -12751.8 57887.8 15635840.5 -1940402.1 -26672818 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 8581170 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 8581170 6 -7328.8 3800.7 -40348.1 -9553694.6 548355.7 8581170 6 -313623.8 3800.7 -40348.4 -207958.4 16476420.0 36117 6 -327.7 -115.2 231.6 -25177.1 -127258.9 38109 6 -36278.4 -6132.6	3	6	-3974,6	•	-931.3	-3978.0	750045.9	-694029.0	110468 -
6 146394.4 202.0 -5247.3 -658818.7 748228.0 -1512407 6 -7952.0 1756.5 -11977.8 -4140789.5 -2023899.7 1647262 6 -97327.1 128.5 -63290.9 15294568.4 2007507.4 -15276523 6 78600.2 5617.2 23819.8 -9254790.3 -1228272.7 10643734 6 150603.7 -12751.8 57887.8 15635840.5 -1940402.1 -26672818 6 -73284.8 3800.7 -4036.1 -9535494.6 548355.7 858170 6 -71276.1 -183.0 155.6 -20958.4 165429.0 36117 6 -7328.8 3800.7 -4036.1 -25177.1 -127258.9 38109 6 -36278.4 -6132.6 -20958.4 165429.0 36117 6 -36278.4 -6132.6 +29689.6 -5157325.4 2111437.1 5642507 6 -0 .0 .0 .0 .0 .0 .0 .0 7 -1152.2 231.6 -25177.1	4	6 :	32179-9		33.7	-9386.8	2393924 .7	1614141.1	8050687.
6 -7952-0 1756-5 -11977.8 -4140780-5 -2023899.7 1647262 6 -97327+1 128.5 -63290.9 15294568.4 2007507.4 -15276523 6 78600-2 5617.2 23819.8 -9254790.3 -1228212.7 10643734 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 8581170 6 -1176.1 -183.0 155.6 -20958.4 165429.0 361170 6 2582,1 -356.3 1705.0 -811434.6 -313623.8 838051 6 -32278.4 -6132.6 -2069.6 -23177.1 -12758.9 38109 6 -36278.4 -6132.6 -2069.6 -5157325.4 211457.1 5642507 6 -0 .0 .0 .0 .0 .0 .0 .0 7 104.7 .0 .0 .0 .0 .0 .0 .0 6 -36278.4 -6132.6 -20689.6 -5157325.4 211457.1 5642507 7 156.5 2069.6	5	6	14639,4	,	202.0	+ -5247+3	-658818.7	748228.0	-1512407.
6 -97327-1 122.5 -63290.9 15296586.4 2007507.4 -15276523 6 78600.2 5617.2 23819.8 -9254790.3 -122827.7 10643734 6 150603.7 -12751.8 57867.8 15635840.5 -19940402.1 -26672618 6 -73284.8 3800.7 -40348.1 -9555694.6 548355.7 8581170 6 -7328.1 -356.3 1705.0 -811434.6 -313623.8 838851 6 932.7 -115.2 231.6 -20958.4 613620.9 36117 6 -36278.4 -6132.6 429689.6 -5157325.4 2111437.1 5642507 6 -30 .0 .0 .0 .0 .0 .0 .0 6 -30278.4 -6132.6 429689.6 -5157325.4 2111437.1 5642507 6 -0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0	6	6	-7952+0	•	1756.5	⊨11977.B	-4 1407 89 .5	-2023899.7	1647262.
6 78600.2 5617.2 23819.8 -9254790.3 -1228212.7 10643734 6 150603.7 -12751.8 57887.8 15635840.5 -1940402.1 -26672818 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 858170 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 858170 6 -73284.7 -356.3 1705.0 -811434.6 -313623.8 838651 6 -36278.4 -6132.6 -20958.4 165429.0 38107 6 -36278.4 -6132.6 -20177.1 -127288.9 38106 6 -36278.4 -6132.6 -20689.6 -5157325.4 2111437.1 5642507 6 -0 .0 .0 .0 .0 .0 .0 .0 7 0 .0 .0 .0 .0 .0 .0 .0 6 -36278.4 -6132.6 -20689.6 -5157325.4 2111437.1 5642507 7 1.6 .0 .0 .0 .0<	7	6	-97327+1		128.5	-63290.9	15294568-4	2007507.4	-15276523 -
6 150603-7 -12751.8 57887.8 15635840.5 -1940402.1 -26672818 6 -73284.8 3800.7 -40348.1 -9553694.6 548355.7 8581170 6 -1176.1 -183.0 155.6 -20958.4 165429.0 36117 6 2582.1 -356.3 1705.0 -811434.6 -313623.8 838651 6 932.7 -115.2 231.6 -25177.1 -127258.9 38109 6 -36278.4 -6132.6 -2068.0 -5157325.4 211437.1 5642507 6 -0 .0 .0 .0 .0 .0 .0 .0 6 -0 .0 .0 .0 .0 .0 .0 .0 6 -0 .0 .0 .0 .0 .0 .0 .0 7 15.6 -2068.0 -5157325.4 2111457.1 5642507 6 .0 .0 .0 .0 .0 .0 7 .0 .0 .0 .0 .0 .0 </td <td>8</td> <td>6</td> <td>78600.2</td> <td></td> <td>5617.2</td> <td>23819.8</td> <td>-9254790.3</td> <td>-1228212.7</td> <td>10643734</td>	8	6	78600.2		5617.2	23819.8	-9254790.3	-1228212.7	10643734
6 -73284.8 3800.7 -40348.1 -953504.6 548355.7 8581170 6 -1176.1 -183.0 155.6 -20958.4 165429.0 36117 6 2582.1 -356.3 1705.0 -811434.6 -313623.8 838851 6 932.7 -115.2 231.6 -25177.1 -127258.9 38109 6 -36278.4 -6132.6 -20689.6 -5157325.4 2111437.1 5642507 6 -0 .0 -0 .0 .0 .0 .0 .0 6 -0 .0 .0 .0 .0 .0 .0 .0 6 -0 .0 .0 .0 .0 .0 .0 .0 6 -0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0	9	6	150603-7	-11	2751.8	57887.8	15635840.5	-1940402.1	~26672818.
6 -1176-1 -183.0 155.6 -20958.4 165429.0 36117 6 2582,1 -356.3 1705.0 -811434.6 -313623.8 838651 6 932,7 -115.2 231.6 -25177.1 -127258.9 38109 6 -36278,4 -6132.6 +29689.6 -5157325.4 2111437.1 5642507 6 -0 .0 .0 .0 .0 .0 .0 .0 6 -0 .0 .0 .0 .0 .0 .0 .0 6 -0 .0 .0 .0 .0 .0 .0 .0 7 0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0	0	6	-73284.8	1	5800.7	-40348-1	-9553694.6	548355.7	8581170.
6 2582-1 -356-3 1705.0 -811434.6 -313623.8 838651 6 932.7 -115.2 231.6 -25177.1 -127258.9 38109 6 -36278.4 -6132.6 -2968.9.6 -5157325.4 211437.1 5642507 6 -0 -0 -0 -0 -0 -0 -0 -0 6 -0 -0 -0 -0 -0 -0 -0 -0 -0 6 -0 <	1	6	-1176+1	-	-183.0	155.6	-20958.4	165429.0	36117.
6 932.7 -115.2 231.6 -25177.1 -127258.9 38109 6 -36278.4 -6132.6 -29689.6 -5157325.4 2111437.1 5642507 6 0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 0 .1 .0 .1 .0 .0 .0 1 .0 .0 .1 .0 .	2	6	2582-1	•	-356+3	1705.0	-811434.6	-313623.8	838851.
6 -36278,4 -6132.6 +29689.6 -5157325.4 2111437.1 5642507 6 0 .0 .0 .0 .0 .0 .0 6 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0 .0 .0 .0 .0 .0 0 0 .0 .0	3	6	932-7	•	-115.2	231.6	-25177.1	-127258.9	38109.
6 0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 AMPLITUD DE LA OLA = 3.0 A .0 RADIAMES 71EHPO DE INCIDENCIA DE LA OLA = 2.61 SEGS PERIODO DE LA OLA = 2.61 SEGS ALTURA DE LA MAREA = 2.00 H LONGITUD DE LA OLA = 25.69 H CORRIENTE MARINA DE P.40 M/SEG .00 RADIAMES ANGULO BE INCIDENCIA DE CORRIENTE .00 RADIAMES EXPORMENTE VARIACION VEL CON PROF. = .00 COEFICIENTE CL .00	4	6	-36278+4	-6	5132.6	-29689.6	-5157325.4	2111437.1	5642507.
6 0 .0 .0 .0 .0 0LEAJE CON STOKES DE 5 ORDEN AMPLITUD DE LA OLA = 3.04 M AMBULO DE INCIDENCIA DE LA OLA= .00 RADIAMES TIEMPO DE LA OLA = 1.31 SEGS PERIDOD DE LA OLA = 2.61 SEGS ALTURA DE LA MAREA = 2.00 H LONGITUD DE LA OLA = 23.69 M CORRIENTE MARINA DE 2.40 M/SEG ANGULO BE INCIDENCIA DE CORRIENTE = .00 RADIAMES EXPONENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00	5	6	-0		• • 0	•0	. • 0	•0	•
OLEAJE CON STOKES DE 5 ORDEN AMPLITUD DE LA OLA = 3.04 H ANGULO DE INCIDENCIA DE LA OLA= 000 RADIAMES TIEMPO DE INCIDENCIA DE LA OLA= 7.31 SEGS PERIODO DE LA OLA = 2.61 SEGS ALTURA DE LA MAREA = 2.00 H LONGITUD DE LA OLA = 23.69 M CORRIENTE MARINA DE 2.40 M/SEG ANGULO DE INCIDENCIA DE CORRIENTE = .00 RADIANES EXPOMENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00	6	6	-0		1 .0	•0	.0	÷ .0	
AMPLITUD DE LA OLA = 3.04 M ANGULO DE INCIDENCIA DE LA OLA= .00 RADIAMES TIEMPO DE INCIDENCIA DE LA OLA= 7.31 SEGS PERIODO DE LA OLA = 2.61 SEGS ALTURA DE LA NAREA = 2.00 H LONGITUD DE LA OLA = 23.69 M CORRIENTE MARINA DE 2.40 M/SEG ANGULO DE INCIDENCIA DE CORRIENTE = .00 RADIANES EXPONENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00		OLFAJ	E CON STOR	ES DE 5	ÖRDEN				
ANGULO DE INCIDENCIA DE LA OLA= .00 RADIAMES TIEMPO DE INCIDENCIA DE LA OLA= 1.31 SEGS PERIODO DE LA OLA = 2.61 SEGS ALTURA DE LA MAREA = 2.00 H LONGITUD DE LA OLA = 23.69 M CORRIENTE MARINA DE 2.40 M/SEG ANGULO DE INCIDENCIA DE CORRIENTE = .00 RADIAMES EXPONENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00		AMPLI	TUD DE LA	OLA	= 3,	04 H	[•	
TIEMPO DE INCEDENCIA DE LA OLA= 1.31 SEGS PERIODO DE LA OLA = 2.61 SEGS ALTURA DE LA MAREA = 2.00 H LONGITUD DE LA OLA = 23.69 M CORRIENTE MARINA DE 2.40 M/SEG ANGULO BE INCIDENCIA DE CORRIENTE = .00 RADIANES EXPONENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00		ANGU	O DE INCID	ENCIA DE	LA OLA	.00 RADIA	NES		
PERIODO DE LA OLA = 2.61 SEGS ALTURA DE LA MAREA = 2.00 H LONGITUD DE LA OLA = 25.69 N GORRIENTE MARINA DE 2.40 M/SEG ANGULO DE INCIDENCIA DE CORRIENTE = .00 RADIANES EXPONENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00		TIEM	O DE INCED	ENCIA DE	LA OLA=	1.31 SEGS	,		
ALTURA DE LA MAREA = 2.00 H LONGITUD DE LA OLA = 23.69 M CORRIENTE MARINA DE 2.40 M/SEG ANGULO DE INCIDENCIA DE CORRIENTE = .00 RADIANES EXPONENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00		PERÌ	DO DE LA O	LA	=	2.61 SE65	i		
LONGITUD DE LA OLA = 25.69 M CORRIENTE MARINA DE 2.40 M/SEG ANGULO BE INCIDENCIA DE CORRIENTE = .00 RADIANES EXPONENTE VARIACION VEL CON PROF. = 1.00 COEFICIENTE CL = .00		ALTÜR	A DE LA ÑA	REA		2.00 H	1		
CORRIENTE MARINA DE 2.40 M/SEG Angulo de incidencia de corriente = .00 radianes Exponente variacion vel con prof. = 1.00 Coeficiente cl = .00		LONG	TUD DE LA	OLA		23.69 1			
CORRIENTE MARINA DE 2.40 M/SEG Angulo de incidencia de corriente = .00 radianes Exponente variación vel con prof. = 1.00 Coeficiente cl = .00		l			• • •				
ANGULO DE INCIDENCIA DE CORRIENTE = .UO RADIANES Exponente variacion vel con prof. = 1.00 Coeficiente cl = .00		CORRI	ENTE MARIN	A DE	2.40 M/SE				
EXPONENTE VARIACION VEL CON PROF. = 1.00 Coeficiente CL = .00		ANGUL	O BE INCID	ENCIA DE	CORRIENTS	# •00	RADIANES		
COEFICIENTE CL = .00		EXPO	ENTE VARIA	CION VEL	CON PROF	= 1.00	1		
		COEFI	CIENTE CL		1	× •00	; I	i	
		1			1	i -			
						1	1		
						1	* · · · · · · · · · · · · · · · · · · ·		

· HOJA 8

						10 10 10					
00	COND.		RX		RY		RZ		MX	HY	H.
	<u>7</u> ·	-3-5		•	1		1.0		-32-0	-158.2	-4
	1	6.9		•	3		-2		-32.1	519.5	, 13
	41	0.9			3	F I	•Z	1	32.1	519.5	-13
	7	-3.5			1	1	1.0	1	32.0	-158 • 2	4 1 1 1 1 1
	7 :	347.8		-12.	3	1	97.0	-48	696.0	102194.7	14835
	7 :	478+3		72.	6	- <u>-</u>	17+3	-48	548.2	133813-4	196794
	7 ;	478,3		-72.	6	· •	7.3	48	548 •Z	133813.4	-196794
	7	347,8		12.	3	11	}7 ₊0	48	496.D	102 194 + 7	-14835
	7	2824.5		115.	9	15	62.7	-466	718.0	165348.2	79522
	7	1528.6		28.	0	: 6'	11.5	-1709	710.0	-123286-8	40820
	7	2356,7		-363.	5	7	14.7	4649	207.0	286793.7	-71610
	7 (1795-4		-106.	5	6;	29.3	- 170	732.3	-96270.8	-36705
	7	2491.8	1	443.	9	25	99.0	-4122	252.7	-280199.7	25824
	7	102.2		288.	7	, 436	54.9	-14622	2.42	339315.4	24555
		-183.0	l .	-495.	8	19	79.3	3851	151.5	211534.6	-4999
	7	5223.6		-626.	1	623	39.6	18958	374.0	-1237275.8	-89736
	7	1864-9		5453.	7	-214	40.8	-659	206.4	-12607719-0	122358
	ż	-110.8		215.	8	-21	14.2	531	324.3	1368864.8	-1029
	ż	1807.5		1044.	8	- 14 10	18.7	7253	\$13.9	8681473-9	-11312
	7	232.6		-276.	a i	-50	22.0	-56	50.5	-2383874-4	4593
	2				ň				.0	- 0	
	7	-4379.4	_	1688.	ŏ	- 1629	งละจั	-6654	40.4	6986483-8	-63790/
	21				ń	1	.0			- 0	
	;	45407 4		Abon.	ž	- 550	11.7	6921	22 2	-14294047-1	442024
	2	12001.44		or ou.	2			002		-1467404161	\$127240
	-	•0		•	ň		•		•	-0	
	•	1		-	•	1				,	
	OLEAJE	CON STOK	ES DE 5	ORDE	Ν	6					
	ANCLU	OD DE LA	ULA .		~~~ °						
	TICHOO	DE INCED	ERCIA D	E LA '		1.00	RAUIA	inc a		•	1
	DEDION	DE INCLO	EUCIV D	C LA	ULA-	T 05	2693				
	AL TION	NE PA MA	051	1	-	3 002	3263				
	LONGIT	DE LA MA	NCA		-	2.00					
	LONGIN	JU DE LA	ULA		Ŧ	24 .00					
		i									
		1									
	-	ITT MANES		- / n		-					
	AUCINA	TIC BAREN	A VE	2.4U	7735	5 *`_					
	CHRONE	DE INCED	ENLIA D	LUK	KIENI	L; =	•00	KADIANE	з,		
	COLLINE	VIE VARIA	CION AF	L CON	PKOF	• =	1.00	ł.	1	14	
	COCATC					1	•00				
	1			;		1					
	1			1		1		ŧ.,	4		
				1		1			. !		
		;				1					
	· · · · ·			1		1					
								•			
	:	1									
	i i			:		1					
				1		1		1			
				1		1 -					
)				i i			
	;	i		ì							
				1		1.					
	1	· 1		1		1		•			
		1.1.1.1				1			, L	1011 9	

	8		• • • • •	54	· • • • • • • • • • • • • • • • • • • •		
	- 1	1-3	1	1.9	-46-6	194 - 0	36
	8	8.8	.3	-1.1	1.2	689 - 6	172
	8	8 - 8	3	-1-1	-1-2	689 - 6	-172
	8 .	1.3	1	1.9	46.6	194 - 0	-36
	8	469-1	-16.9	201.1	-50069-5	120791-4	191588
	8	577-5	60-9	-73.5	-19529-5	146152.7	232555
	8	577-5	-60.9	-73-5	19529-5	144 152 . 7	-232555
	8	469-1	16.9	201.1	50069-5	120791.4	-191588
	8	4117.2	-10-1	1099.8	-347942-6	223759.7	1176548
	8 .	2375-2	37.3	473.8	-112452-2	-128293.5	541505
	8	360814	-180.2	680.0	384040-8	258840.4	-1062237
	R i	2623.3	-71-3	451.7	141575-3	.87007.7	-505115
		7643.1	262 0	3770 7	474790 7	-93463 0	74444
	9	120204	500 3	2110.5		-02122.0	49709L
		1317 /	AX 4 4 T	1047 0	T45743 7	-14754 6	-492039
	0	121364		1701.07	303702.07		-104030
	0	12420+3	~903+4	5123.9	2213012-0	-1229740+1	-3412943
	8	24060.0	-3981.8	14089-7	-2901494-8	~6094865.0	3224201
	6	-30+0	00.0	-2095.7	19403-0	1135204.0	-1740
	8	-48952	1/0.6	-6308-9	490575+3	4084230+8	-226790
	8 (8256+3	-1085.4	3438-8	-172143-4	-1942588.0	145951
	8	₽ 0	•0	•0	•0	•0	
	8	-616.4	-7168.5	-3997.6	-272885 4	1847569.8	-515946
	8	•0	•0	•0	•0	•0	
	8	164341Z	-2184.4	~76847.4	778496-4	-13341285.0	545705
	8	P 0	, •Q	•0	•0	•0	
	8	0	•0	•0	•D	. •0	
c) DLEAJE (CON STOKES	DE 5 ORDEN		-	4	
- 1	AMPLITU	D DE LA OLI	A ; = 6	-10 M		1	
- 1	VNENFO	DE INCIDEN	CIA DE'LA OLA=	-00 RADIA	WES		
1	TIEMPO .	DE INCEDEN	CIA DE LA OLA=	.38 SEGS			
F	PERIODO	DE LA OLA	=	3.05 SEGS		i	
	ALTURA I	DE LA MARE.	A =	2.00 M			
Ľ	LONGITU	D DE LA OL	A _ =	24 .60 M	1		
	1				1		
	CORRIEN	TE HARINA .	DE 2.40 M/SE	6	, 1		
1	ANGULO	DE INCIDEN	CIA DE CORRIENT	E = .00	RADIANES	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
	EXPONEN	TE VARIACI	ON VEL CON PROI	- 1.00			
i	COEFICI	ENTE CL					

NALISIS PLATAFORMA MODULO 1

HOJA ID

NUDO	CON	D. R	X RY	RZ RZ	HX.	HY	MZ
1	9	6.3	1	1.9	-34.2	543.9	127.
2	9	6.6	•1	-2.0	33.8	569.6	133 • 9
3	9	6.6	1	-2.0	-33.8	569.6	-133-9
4	9	6 - 3	-1	1.9	34.2	543.9	-127-4
5	9	572-6	-36.9	152.4	-23062.7	140433.2	230319+2
6	9	596,5	39-1	-150.9	21299.9	144887.7	240277.6
7	9	596-5	-39-1	-150.9	-21299.9	144887.7	-240277.0
8	9 l	572.6	36.9	152.4	23062.7	140433.2	-230319.2
9	9 '	5059.5	-244-1	216.3	429.4	348063.5	1493330.4
10	9	3067+3	14.7	47.9	9207.2	-102501.6	629975 .1
11	9	4748.0	-293.6	68.4	119473-1	260461.5	-1386517.3
12	9	3172.7	-6+2	32.1	29545.3	-66108.5	-619872-8
13	- 9 (12154-7	-450-2	-546-4	90679.6	183547.6	1345205.6
14	9	6991-9	545.Z	7100.2	-1494687.6	-1159774.3	1809172.3
15	9 :	3692-6	-613+6	2583.2	453873.0	-374422.5	-493863.0
16	9	26273.3	940.2	-4615.6	-436931.2	-38881.8	-6523082.2
17	9	148452-3	-1172-1	-26348.1	-2318195.8	-1413842.6	30273222+5
18	9	-622-9	242.3	-1402.2	62772.0	1157420.0	-804 • 1
19	9	990.0	118.6	-3245.8	1015243.7	4564426.9	-761728-9
20	9	84980.7	666.7	-8428.0	963986.0	228178.4	-8392240.8
21	9	41103-6	273-0	-57471.5	17860.0	-13132847.5	-1099359.8
22	9	-132-5	-83.9	-2923.8	-25137.9	1420474+0	-46299+8
23	9	-202-9	•0	-2568-2	•0	1245364.0	-0
24	9	214092-7	-16608-8	-183518.3	5512848.8	-48072821.5	-26745661.5
25	9	. 0	-0	, •O	•0	•0	-0
26	9	÷0	•0	.0	•0	÷0	•0
		1	,				
	1					1	
	OLEA	JE CON STOKES	DE 5 ORDEN				
	AMPL	ITUD DE LA OL	A =	6.10 M			
	ANGU	LO DE INCIDEN	CTA DE LA OLA	≖ 1.00 RADIA	NES		
	TIEN	PO DE INCIDEN	CIA DE LA OLA	= .76 SEGS '			
	PERI	ODO DE LA OLA	1	= 3.05 SEGS		1	÷
	ALTU	RA DE LA NARE	A	= 2.00 M			

ł,

,

. .

dis

CORRIENTE MARINA DE 2.40 M/SEG ANGULO DE INCIDENCIA DE CORRIENTE = .00 RADIANES Exponente variacion vel con prof. = 1.00 Coeficiente c. = .00

HOJA II

۵

NALISIS PLATAFORMA NOBULO 1 2345621901224467 2456782012

ISIS PLATAFORMA MODULO 1

0.01	cohn-		D.M.			D Y O		87	1 mm		# 7
	10	, a	. 7		=-2			1.1		0.084	171
	10	1			- 1		· .	1.0	46.R	228.2	45
	10 :		. 6		1			1.0	-46-8	228.2	-49
	10		.7				1	1.1	1.9	AR9_0	-171
	10	50.5			-41.3			77.1	17073.2	149501.0	242224
i.	101	521	0		19.7			4.7	50375-3	130293-7	214529
;	10	521	ČÓ.		-10.7		-20	4.7	-50375-3	130203.7	-214525
1	10	508	Ĩź.		61.3			7.1	-17073.2	149501.0	-747774
5	10 1	4884		-	463.6		-67	1.3	412749.7	411850.1	1402415
Ϋ́	10	1201		_	-44.4		1	7 8	475744 7	-50102 4	418201
	10	2603						0.4	-272043 3	111770 0	-1610270
	10	30137			55.0		-43	17.7	-100805.1	-44542 0	-1510804
		2013		_4	2200			5.5.62	749474 4	101044 5	-031901
	10	44070		-,	2/0.7		1 4 7		100070.0	14/9737 0	1303201
		10232		_	640.7 580 3		1 44	11.4	100455 5	-244918 0	-1114012
	10	240/4			93082 900 7					-20401067	
	10	21040					1 17 0	77.0		4774487 /	
	10	2417	10 J	-23	120.0	•	1 22 0		32469/01+3	10/7/0 0	-04571
	10 :	0703			47761 (88 4		670	10.00	1722C+U	-104/00-0	-1064004
	10	9202	-0		* 30 * 0		2/1	10.0	123009344	-1040437+3	-2030774
	10	54314	- Y	- 24	D/2.1		- 38 61		-3401028.4	-70004.3	-8207303
	10	20100	P [-21			- 1021	3446	-1003920+2		-123/903
		-413			20.1		-01		-20200-0	42333760	
		344.038					Lenn	• • • •			1767/777
		200920	20	-34	24202		11721:		-+10300+r+h	-1400402941	-41024360
	10		-0		•0		1	•0	· •	• 0	
	10		PU		••			÷U .	•••	• U	
	1				Ì				1	1	
			L				1				
	ULEAJE	CON SI	OKES 8	E >	PRPEN		ha -		1	i	
	AMPLI	OD DE L	A ULA			- 0			ilen i	1	
	ANGULO	PE INC	IDENCI	ADE	LAU	LAT		KAD II	HES !		
	LIENA	DE TUC	ADENLI	A PE	LAU	LAT	1.14	2603	1		
	PERIOR	O DE LA	OLA		(-	2-02	5565	-F		
	ALIBRA	DE LA	MAREA		,		K -00	<u> </u>	1		
	FONDI	UD DE L	A OLA		•		(p +0 U	π			
	i i		i		t				1		
	3		1		l		•		· ·		
	cosh		L						-		1
	CURRIE	NIC HAN	LINA DE		2.40	RESE					
				- 85							

NALISIS PLATAFORMA MODULO 1

NUDC	COND.	R	K	R2	用文	RY	#2
1	11	5.2	3	6	42.0	392.7	108.7
2	11	-4.6	·1	4	18.0	-251.3	-67.3
3	11	-4-6	.1	4	-18.0	-251.3	67.3
4	11	5.2	•3	6	-42-0	392.7	~108.7
5	11	472,7	-76.0	9.1	54109-1	133929+8	199413.4
6	11	340-1	18.2	-179-1	38216-4	102546.6	149702.9
7	11 1	340-1	-18-2	-179.1	-38216.4	102546.6	-149702.9
8	11	472,7	76.0	9-1	-54109.1	133929.8	-199413.4
9	11	2748-4	-378.3	-608.0	474141.9	323385.4	869365.6
10	11	2068.2	-118.2	-752-0	165094.2	-36649.9	425346 B
11	11	3512.4	139.4	-1851.7	-539232.8	311811.0	-1054424-6
12	11	1682-5	30.7	-526.7	-177525.3	-104952-4	-464452-1
13	11	-3166.2	-449.9	-1401.7	397633-4	-160780.9	27895.2
14	11	25104-8	-989.9	- 13648-4	3722998.9	1239995.3	6238114-0
15	11 E	11163,.4	524.8	-6016.7	-772204-1	383952.9	-1298076.6
16	11	-5554-9	360.5	-2610.5	-1716767.7	434960-7	1105667.5
17	11	-19517-3	476.1	4294.2	1062037.0	3286488.9	-2866852.6
18	11 1	70706-1	2039.3	- 17295 - 9	378099-4	526383.1	8779677.1
19	11	155232.1	-8330.1	-8359.0	-253766.7	-1000434.9	-29978327.5
20	11	-8009-4	79.4	6640.9	29946-6	2043026.1	-186783-4
21	11	-0	i ₊ 0	•0	•0	• 0	.0
22	11	21651-0	-1321.4	1317.0	-1982968.D	-2741174.6	6517294-3
23	11	7089-3	-879.5	-2501-8	-31788.1	-991562-6	255837-7
24	11 .	- 0	•0	•0	.0	•0	•D
25	11	.0	0	.0	-0	.0	-0
26	11	.0	.0	.0	.0		.0
	Ţ			1			
	1	1	i i	;			1

OLEAJE CON STOKES DE 5 DRDEN AMPLITUD DE LA OLA = 6.10 M ANGULO DE INCIDENCIA DE LA OLA= .00 RADIANES TIEMPO DE INCIDENCIA DE LA OLA= 1.70 SEGS PERIODO DE LA OLA = 3.05 SEGS ALTURA DE LA MAREA = 2.00 M LONGITUD DE LA OLA = 24.60 M

2

CORRIENTE MARINA DE 2.40 M/SEG ANGLEO DE INCIDENCIA DE CORRIENTE = .00 RADIANES Exponente Variación Vel con Prof. = 1.00 Cofficiente CL = .00

2343619901:

HOTA 13

NALISIS PLATAFORMA MODULO 1 *# 901 23456* # 90 234 . . **** COMBINACION DE CARGA NO. 1 FD=1.0C.FT CONDICION CONCEPTO PORCENTAJE PESD PROPIO 100.02 1 PRIMERA CONDICION DE CARGA POR OLEAJE 100.01 2 2 COMBINACION DE CARGA NO. FD=1.00.FT ******* -----CONDICION CONCEPTO PESO PROPIO PORCENTAJE 100.01 1 3 SEGUNDA CONDICION DE CARGA POR DLEAJE 100.01 COMBINACION DE CARGA NO. 3 FD=1.00.FT ----**** CONCEPTO PESP PROPIO PORCENTAJE CONDICION 100.0X 1 TEREERA CONDICION DE CARGA POR OLEAJE 100.02 4 CONDINACION DE CARGA NO. 4 FD=1.00.FT CONCEPTO CONDICION PORCENTAJE PESO PROPIO 100-02 5 CUARTA CONDICION DE CARGA POR OLEAJE 100.01 COMBINACION DE KARGA NO. 5 FD=1.00.FT CONCEPTO CONDICION PORCENTAJE PESD PROPIO 1 100.0X 6 QUINTA CONDICION DE CARGA POR OLÉAJE 100.0X COMBINACION DE CARGA NO. 6 FD=1.00.FT -----CONCEPTO PESO PROPIO PORCENTAJE CONDICION 100.02 1 100.0% SEXTA CONDICION DE CARGA POR OLEAJE 7 HOJA 14 1 50 12345 · · · · · · · · · · ·

NALISIS PLATAFORMA HODULO 1 22434104612225 /01224362-95123456714 c taketi COMBINACION DE CARGA NO. 7 FD=1.0C.FT PORCENTAJE CONDITION CONCEPTD RESO PROPIO 100 -0X 1 SEPTIMA CONDICION DE CARGA POR OLEAJE 100.02 8 CONBINACION DE CARGA NO. 8 F0=1.00.FT **** CONDICION CONCEPTO PORCENTAJE 1 PESO PROPIO 100.0X ٥ OCTAVA CONDICION DE CARGA POR OLEAJE 100.0x COMBINACION DE BARGA NO. 9 FD=1.00.FT ***** ******* ******* CONCEPTO CONDICION PORCENTAJE ... PESD PROPIO 100.0X 1 10 NOVENA CONDICION DE CAREA POR OLEAJE 100.02 COMBENACION DE CARGA NO. 10 FD=1.00.FT CONDICION CONCEPTO PORCENTAJE PESD PROPIO 100.02 1 11 DECEMA CONDICION DE CARGA POR OLEAJE 100.02 TIENPO DE GENERAR' CARGAS MIEMBROS TRIDIMENSIONALES..... UNERO DE MIEMBROS 60 UMERO DE MILHBHUDS - 0 UMERO DE GRUPOS DE PROPIEDADES GEOMETRICAS = 4 UMERO DE GRUPOS DE FUERZAS DE EMPOTRAMIENTO= 0 UMERO DE GRUPOS DE MATERIALES - 1 ATERIAL MODULO (RELACION DENSIDAD YOUND POTSCOM MASA DENSIDAD MASA ΕY POISSON TOUNG 2100000 -ີ**.**30000ື .00000 1 2530,00000 PROPIEDADES GEONETRICAS DE LOS HIEMBROS IPO DE AREA AREA AREA INERCIA INERCIA INERCIA LEMENTO X ¥ z 1 0. 1 896.0 ٥. 5047254. 2523627. 2523627. ż 1119.2 0. C. 0. 5683398. 2841699. 2841699. 3 500+0 1260733. 0. 630307. 630307. Ā 294.0 0. 10. 410161. 205081. 205081. HOJA 15 2345+793 11234567896 1214567896 1224-715 12 3452 ++++

		÷.,									e 1
					. •						
L I SI 4 3 4 1	S PLATA	567570.J	DULO 1	73434-440	122451784			151.22	+	, . :	• •
M	AREA	R¥	RZ	57	SZ		LONG.	KY	KZ	KLŰR	KL/R
	LHC.	LP	LN		643						-
2	1119.	50.39 50.39	50.39 50.39	39196. 39196.	39196. 39196.	145-	420.	1.00	1.00	8. 8.	8.
5	1119.	50.39	50-39	39196.	39196.	145 -	420.	1.00	1.00	8.	8. ,
6	1119.	50.39	50.39	39196.	39196+	145.	420.	1.00	1.00	8+ 10.	8
5	896.	53.07	53.07	33206.	33200 -	152.	1035	1.00	1.00	19.	19.
7	896.	53.07	53.07	33206.	33206 -	152.	1035.	1.00	1.00	19.	19.
3	896.	53.07	53.07	33206.	33206 -	152.	1035.	1.00	1.00	19.	19-
n i	896.	53.07	53-07	33206.	33200-	152.	970.	1.00	1.00	18.	18.
Ĭ	896 .	53.07	53.07	33206.	33206.	152.	970.	1.00	1.00	18.	18.
2	896.	53.07	53.07	33206 -	33206 -	152-	970.	1.00	1.00	18.	18.
5. z	890.	53.07	53.07	33200+ :	33200+	152+	647.	1.00	1.00	12.	12.
5	896 -	53.07	53.07	33206 · i	33206 -	152.	647.	1.00	1.00	12.	12.
6	896 -	53.07	53.07	33206.	33206 -	152.	647.	1.00	1.00	12.	12.
2	896.	53.07	53.07	33200.	33206-	152.	485.	1.00	1.00	9. 9.	y •
9 .	896 •	53.07	53.07	33206.	33206 -	152.	485.	1.00	1.00	9.	9.
ן כ	896 .	53.07	53.07	33206.	33206-	152.	485.	1.00	1.00	9+	9.
1	294.	26.41	26-41	5397.	5397.	76.	3002.	1.00	1.00	114.	114.
5 5	294	26.41	26-41	5397.	5397 -	76.	3002.	1.00	1.00	114.	114.
6	294 .	26.41	26.41	5397.	5397 -	76.	3002.	1.00	1.00	114.	114.
5	294 -	26.41	26-41	5397 -	5397 -	76.	2515.	1.00	1.00	95.	95.
,	204	20.41	20+41	5397.	5397-	76.	2515.	1.00	1.00	95.	95.
3	294 .	26.45	26.41	5397.	5397.	76.	2515.	1.00	1.00	95.	95.
2	294 .	26 . 41	26.41	5397.	5397.	76.	2057.	1.00	1.00	78.	78.
2	294.	20.41	20-41	5397.	5397.	70.	2057.	1.00	1.00	78.	78+ 78-
	294.	26.41	26.41	5397.	5397	76.	2057.	1.00	1.00	78.	78.
5	294 -	26.41	26.41	5397.	5397.	76.	1753.	1.00	1.00	66.	66.
	294 •	26.41	26=41	5397.	5397 -	76.	1753.	1.00	1.00	66.	66.
5	294	26.41	26.41	5397	5397.	76.	1753.	1.00	1.00	66.	66.
	294.	26.41	26-41	5397.	5397.	76.	1524.	1.00	1.00	58.	58.
i	294.	26.41	26+41	5397.	5397.	76.	1524.	1.00	1.00	58.	58
	294.	26.41	26.41	5397.	5397-	76.	1524.	1.00	1.00	58.	58.
	500.	35.58	35.51	12359.	12359 -	102.	2936.	1.00	1.00	83.	83.
2	500.	35.51	35.51	12359.	12359 -	102.	2936.	1.00	1.00	83.	83.
	500.	35.51	35-51	12339.	12339+	102.	2936.	1.00	1.00	83.	83.
5	500.	35.59	35.51	12359.	12359 -	102.	2934.	1.00	1.00	83.	83.
5	500.	35.51	35+51	12359-	12359 -	102-	2936.	1.00	1.00	83.	83.
3	500.	35.51	32+21	12339+	12339+	102.	2936.	1.00	1.00	83.	83.
>	500.	35.51	35.51	12359.	12359 .	102	2473.	1.00	1.00	70.	70.
3	500 -	35.51	35-51	12359.	12359 .	102.	2473.	1-00	1.00	70.	70.
,	500+	32.51	32+51	12559.	12359+	102.	24/3.	1.00	1.00	70.	70.
3	500.	35.51	35.51	12359.	12359-	102.	2006.	1.00	1.00	56.	56.
	500.	35.51	35-51	12359.	12359 -	102.	2006.	1.00	1.00	56.	56-
5	500.	35.51	35-51	12359.	12359 -	102.	2006.	1.00	1.00	56.	56.
7	500+	35.51	35+51	12359-	12359+	102.	1705-	1.00	1.00	- 0 c - 68 -	20. 48.

ALISIS PLATAFORMA NOBULO 1 114567892:23414 \$ \$ 6 1 3 5 اد ہ 1 2 3 4 9 00.11 A 18 40 2.3 48. 1705 -1705 -1705 -1.00 1.00 1.00 1.00 1.00 1.00 12359. 102. 12359. 102. 12359. 102. 48. 48. 48. 12359. 12359. 12359. 132 48 132

HOJA 17

+ 5 1

INALISIS PLATAFORMA MODULO 1

• * -	· 4 v ;	1	2345678553.	2345: 347 1	23456789	12.25275525232	N 8 7 8 9 1 1 1 1 1 1 1 1 1
	DESP	LAZAMIENIO	S T GIROS DE	LOS NUDD	5		
VUD O	COND. CARGA	X	1 1 1 1 1	t	Z	XX Y	74 22
-1	1	•000	.000	.000	-00	•00	.00
•	ż	-000	.000	-000	.00	•00	•00
	3	.000	.000	-000	-00	.00	.00
	4	•000	.000	•000	-00;	-00	•00
	5	•000	•000	•000	•00°	•00	-00
	6	•000	.000	•000	• 00	•00	•00
	7	•000	•000	•000	-00	•00	•00
	8	-000	-000	•000	•00	•00	•00
	9	•000	-000	-000	-00	+00	•00
	10	-000	•000	•000	•00	•00	-00
2	1	•000	-000	.000	•00	•00	-00
	2	•000	•000	•000	-00	•00	•00
	3	•000	•000	•000	•00	+00	•00
	4	+000	-000	•000	•00	• 00	•00
	2	-000	-000	•000	•00'	•00	-00
	°.	•000	•000	-000	•00	•00	•00
	(-000	-000	•000	-00	-00	•00
	0	-000	-000	-000 000	-00	•00	+00
	10	000	000	•000	•00	•0µ	.00
	10			.000	•00	-00	••••
3	1	•000	•000	.000	•00	, • OD	•00
	2	•000	-000	•000	•00	+00	-00
	3	•000	-000	•000	•00	-00	•00
	4	•000	.000	-000	•00	•00	• 0 0
	5	•000	•000	-000	•00	-00	-00
	<u> </u>	.000	-000	-000	•00	-00	•00
	<i>(</i>	.000		•000	•00	•00	•00
	8	-000		•000	•00	•00	•00
	10	-000	-000	+000	-00	-00	•00
	10	-000		•000	•00	•uh	•00
4	1	-000	-000	•000	+00	-00	•00
	2	-000	•000	•000	•00	•00	•00
	5	-000	•000	-000	•00	-00	•00
	2	.000	.000	.000	•00	•00	-00
	4	6000	.000	•000	•00	+00	•00
	7	-000	-000	-000	-00	-00	-00
	8	-000	-000	-000	-00	-00	-00
	ŷ.	.000	-000	-000	-00	-00	-00
	10	+000	.000	.000	•00	-00	.00
5	1	A-276-003	-7-201-003	-2-032-0	[2 2-37H	-0.05 -1-93-005	7-51-005
-	ż -	2-092-002	4.751-002	-9-044-0	02 -8-84-	005 -1-68-004	8-82-005
	3	2-875-001	6.686-002	-1-920-0	02 -2-59-	004 7-31-004	5-22-004
	4	1.472+000	4.983-002	-3-711-0	01 -1.78-	004 3-63-003	2.71-003
	5	1.072-002	5.442-003	-2.226-0	C2 3.27-	005 4-58-005	-1.16-004
	6	9-944-003	1-526-003	-1.486-0	02 -2.81-	006 2.30-006	5.64-005
	7	3.797-002	9.659-003	-8.618-0	03 -3.42	005 8.56-005	8 - 14 - 005
	8	1.571-001	2.009-002	-2.580-0	02 -8-06-	005 3.86-004	2 .97-004
	9	1.615-001	-1-794-002	-4.057-D	02 5-38-	005 3.97-004	2 .94-004
	10	8.493-002	5.307-003	-1 . 132-0	02 1.18-	005 2.56-004	-9-76-006
			:	i		HO	TA 18
. 134	• • • 0	123454 1870	12345678961	1201813	57420,40	33455148023385	14749 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ANALISIS PLATAFORMA MODULO 1

	;	10		315-7246 21.	بهقين والتعالم		18.4614.2
6	1	-7.115-003	-9.171-005	-2.387-002	1 88-005	7-03-006	-1-40-005
	2	-6-176-002	8-293-003	-3-359-002	4-97-006	-1-01-004	-6-67-005
	3	3-104-001	1-868-003	-1-780-002	-2-95-005	8-31-004	4-82-005
	4	1-564+000	-7-161-002	3-128-012	-1-06-004	4.20-003	-6-65-005
	Ś	3-717-003	-4-069-003	-1-064-002	6-03-005	-1-40-005	1.72-004
	á	1-035-003	5.428-003	-1-181-002	-3-13-006	1-97-005	-5-75-006
	~	1.665-002	6 032-003	-1.334-002	-3.24-004	1.02-004	2.31-005
	6	9++04-002	2 647-007	-10334-002	-9.00-000	1.02-004	2.033-005
	8	1.030-001	2.011-003	-1.570-012	7 7/.004	4.43~004	4 + 31-005
		1.002-001	-1-333-003	-1.401-002	3.74-000	4.4/-004	2 - 2 2 - 402
	10	0-002-002	~3.208-003	-1.901-002	2+20-002	2.07-004	2.03-004
		1	1				
7	1	2-142-002	-1.227-002	-2-433-002	1.73-005	8-83-005	-9.87~006
	2	-4-211-002	-1.353-002	-4-414-002	1.43-005	-5.66-005	7.43-005
	3	3.946~001	1.613-002	-1-476-002	5-37-006	1.24-003	-1-01-005
	- 4	1-643+000	8 .020- 002	9.570-002	1.55-004	5.09-003	9.99-005
	5	1-982-002	-1.043-002	-8.084-003	-1-88-005	1.89-005	-1-96-004
	6	1-230-002	-4-114-003	-1-768-002	-7.94-007	5.56-005	1.07-006
	7	2.738-002	-2.051-003	-1.780-002	-8.66-006	9-69-005	-1-63-005
	8	1.913-001	5-527-003	-1-341-002	-2-84-006	6-02-004	-3-02-005
	õ	1-917-001	4-105-003	-6-897-003	-1-96-006	5-89-004	-6-72-005
	10	1-127-001	-7.300-003	-1-698-002	-2-80-005	3.06-004	-7.81-004
	10		1 100 - 000	-14070-006	-2.000-002	200-004	-2.031-004
		4 107-003	-7 746-007	-2 200-002	4 03-00F	7 4/-006	
ø		6 047-002	-6 854-002	-1 212-001	-5 57-005	7.04-003	*2*31*003
	~	2.003-003		-1.212-001	-3+37-003	-9+33-003	-1.00-004
	2	4.820-007	3.077-002	-5-809-002	-4+92-005	1.10-003	-0.28-004
	4	1.966+000	-2.965-001	-4-251-001	7.61-004	4.28-003	-2.62-003
	2	3-042-002	-9.936-003	-2+101-002	-2-28-005	9.20-005	1.15~004
	6	2.606-002	-1.062-002	-1.669-002	2.38-005	4.38-805	-5-28-005
	7	4.346-002	-1-845-003	-1.641-0.02	7.36-006	8.47-005	-8.56-005
	8	2.396-001	-9.593-003	-4.016-DC2	3.51-005	5.32-004	-3.26-004
	9	2-404-001	-6-100-002	-5.296-0(2	1.48-004	5.29-004	-2.79-004
	10	1.380-001	-1-006-002	-5.956-003	9-44-008	3-58-004	-1-63-007
				1			
9	1	1.854-003	-4-075-002	-9.647-002	1.55-006	~6.91-005	2-57-004
	2	-6-668-002	7-995-002	-3.937-001	1-06-005	-1-86-004	4-79-004
	3	9-305-001	1.383-001	-1-280-001	-2-60-004	2-11-004	1-54-003
	4	4-914+000	-2-562-001	-1-696+0.00	-7-26-004	1-02-003	7-51-003
	5	3-379-002	4-431-003	-1-017-001	1.37-004	0.54-005	-4.08-004
	Ã	2.120-002	-7-343-003	-7.744-0.02	-1.34-005	-7 03-005	4 92-004
	ž	1 114-001	1 747-000	.F. 000 0 CD	7 48 005		3 402 - 004
		F 039-001	2 724 000		-3-40-003	9-31-000	2+38-004
	8	5.443-004	· 2.520-002	-(+34(-00)	-1-12-004	1-08-004	6 -49-004
	Y .	2+103-001	-1.005-001	-1-943-001	-1.48-005	1-23-004	7.56-004
	10	2.658-001	2.149-003	-6-455-0C2	8-23-005	1.71-004	-1-52-004
							1
10	1	-1-366-002	5.272-003	-1.035-001	-4.58-006	1.66-005	-3 -33-005
	2	-7.211-002	1.743-002	-1.741-001	-2.30-005	2.26-005	-1.05-004
	3	6.420-001	2.114-002	1.871-002	-1-26-004	6.21-004	-1-85-004
	- 4	3.465+000	-6.595-002	5-849-001	-7.68-004	3-56-003	-1.77-003
	5	6.912-003	-2.922-003	-4-366-002	1.38-004	-1-62-004	5-49-004
	6	2.428-003	9.808-003	-6-312-002	-5-56-006	1.36-005	-2-83-005
	7	6.696-002	6.993-003	-5.095-002	5.68-006	5-03-005	1-30-005
	8	3.428-001	1-141-002	-2-017-002	-4-34-005	3-16-004	-4-43-005
	.9	3-538-001	7-232-003	-1.133-0.02	-2-90-005	3.10-004	1.48-005
	10	1-643-001	9.452-004	-5-053-002	1-20-004	-2.82-005	5.46.001
				• • • • •			2 0 - 0 0 -
11	4	7.887-002	-2.448-005	-1-007-004	-1 04-005	0 58-005	1 17.000
• •	5	-610-002	-2.000-000		-1 60 001	7.70-003	2.02~00>
	2	1 31 BADDO		-6 177-001	-1600-000	2.00-004	1.80-004
	2	2 700+000	0.010-002	-3.337-002	1.10-004	1.03-003	2.97-004
	2	2.010.007000	2+089-001	4-1/9-007	8-25-004	4+70-003	2.67-003
	2	1-019-002	-2-235-002	-4.281-002	-1.77-004	~4.35-005	-6-31-004
		1911 - 1 - 1	1			HOTA	19
			······································	and a second			•

ANALISIS	PLATAFORNA	MODULO 1

	ANALI	515	PLATAFORNA	MOBULO 1					
	1221	· · •	9r1133455 8+2	5 # 5 E 7 e + 2 ¹ F 2	3456 69611234	1501-2012345	6	111	· 3 ¢
		6	4.403-002	-6-198-003	-7-946-002	8-26-007	6-35-005	4 - 44 - 005	
		1	9-174-002	-3-340-003	-/-/20-002	-8-01-006	8.78-005	~3.04-006	
		ŝ	0+372-001 A-768-001	2+333-002	-2+02+-042	-3.05-006	5.20-004	1.92-004	
		10	5-670-001	-1-181-002	-7-117-0.02	-1-76-006	1.18-004		
	•						1010-004	-0.00-004	
	12	1	8.161-002	-5-613-002	-1-181-001	6-32-005	-2-09-006	-1-21-004	
		2	3-865-002	-2.640-002	-4.960-001	2.45-005	-1-90-004	-3-44-004	
		3	9-559-001	-1.456-002	-3-716-p01	3-11-004	3-11-004	-1.32-003	
		4	4-358+000	-6-317-003	-2.357+000	1-30-003	5-05-003	-6.54-003	
		5	8-317-002	-2.328-002	-9-821-002	-9-74-005	1.85-004	3 .97-004	
		°,	P-233-002	-2+320-002	-8-200-002	3-70-005	~2.03-005	-1.36-004	
		, f	6-512-002 4-881-001	~4.850-002	-2.402-002	1 97-005		-2.12-004	
		ğ	5-217-001	-1-444-001	-3-036-001	2-22-004	2.22-004	-6-91-004	
		10	2-729-001	-2-675-002	-7-571-002	-4-46-005	2-53-004	1-59-004	
			1						
	13	1	2.348-002	-1-119-001	-1-878-001	-4.97-005	-1.25-004	6.01-004	
		2	-9-135-002	2-336-002	-7.191-001	-2-47-004	-3-54-004	1-15-003	
		3	1.735+000	-1-918-003	-1-227-001	-7.70-004	1.95-005	3+83-003	
		4	9-136+000	-1-258+000	-2-448+000	-4.11-003	2.76-004	2.00-005	
		2	1.925-002	-4 175-002	-1.959-801	2.97-004	1.97-004	-1+12-003	
		7	2-017-001	-4-173-002	-8-749-001		-8-02-003	3+30-904	
		8	9-334-001	-4-202-002	-1-882-001	-6-00-004	-1.03-005	2.01-007	
		9	9-385-001	-2.597-001	-3-052-001	-2.84-004	1.56-005	1-80-003	
		10	4-453-001	-3-810-002	-1-013-001	1.49-004	2-73-004	-3-71-004	
				1					
	- 14	1	-5-809-002	3-030-004	-1-788-001	4.26-006	-3-93-005	-2-01-004	
		2	-1.771-001	6-860-003	-2-939-001	5.44-005	5-73-005	-3-64-004	
		3	8-6844000	7-759-002	~1.405-001	-1.88-004	1+22-003	-7-00-004	
		2	P-389+040	-2.974-002	4-928-004	-1-05-005	7.89-003	-4-62-003	
		6	-8-312-003	1-665-002	-1-138-061	-3.22-005		1-32-003	
		7	1.576-001	9.987-003	-1-093-001	-8-37-006	1.22-004	~6.84-005	
		8	8-856-001	3.753-002	-1-278-D01	-7-39-005	6-25-004	-2 -68 -004	
		9	9-204-001	2.832-002	-1-172-001	-1-56-005	6-36-004	-9-22-005	
		10	4.525-001	-9-290-003	-1_483-001	4-37-004	1-67-004	1.30-003	
			A 433 600						
	12	5	A 100-003	-7-340-002	-2-143-001	3-22-005	1-08-004	2-06-004	
		2	2-584+000	7-428-002	-3-260-001	1.37-004	1.81-001	5 + 23 - 004	
		Ă.	1-178+001	-1-576-002	-3-137-001	1-60-003	9-01-003	5.27-003	
		5	1-878-001	1-526-002	-1-139-001	-4-25-004	-2.24-004	-1-40-003	
. •		6	7.753-002	4-571-005	-1-553-001	2-86-005	7.80-005	1.85-004	
		7	1-666-001	-1-249-003	-1.570-001	1-86-005	8.27-005	9.66-005	
		. 8	1.285+000	3-053-002	-2-193-001	1-25-004	8.44-004	5 • 16~004	
		.9	1-378+000	2-356-002	-1.937-001	4-94-005	8.73-004	1.96-004	
		10	1-128-001	-2-135-003	-1-988-001	-4-08-004	3.37-005	-1.51-003	
	16	1	841-001	-1-320-001	-1 847-001	+ +7-00F	7 00-005	7 74 00/	
		2	163-001	-4-799-002	-14047-001	2.07-005	3.70-005	-2+30-004	
		3	2-625+000	2.457-002	-3-695-001	6-40-004	1.51-004	-3-54-003	
		4	1.173+001	-1-682+000	-2.637+000	6.38-003	3.99-003	-1-57-002	
		5	1-502-001	-3-936-002	-1.708-001	-3.52-004	1.20-004	1.15-003	
		6	1.094-001	-5.463-002	-1.424-001	9-03-005	-2.08-005	-2-61-004	
		7	1.857-001	-1-596-002	-1.425-001	1.23-004	-7.17-006	-4 -37-004	
		ð	1-298+000	-9-334-002	-2-803-001	4.38-004	5.91-004	-1-89-003	
		10	1.305+000	-5-577-001	-3-559-001	6.23-004	5-23-004	-1-65-603	
			web20~001	-Jenst-nut	-0+1 78-0 02	-1-33-004	**************************************	**********	
	1	* 1	19111111111	· • • • • • • • • • • • • • • • • •		156789 1 234		, co	0 .
				•		•			

								1
						•		
FNAL 1	212	PLA 14FURNA	100000 1 1113456789012		A 6 2 4 4 1 2 3 4 1	6- 1- 1 - 1 + 1 + 1 + 1 - 1 - 1 + 1 + 1 - 1 -	**************************************	
17	1	-11.065-001	-1.727-001	-2.930-001	-1.98-005	-1.00-003	7-46-004	
	2	-1.861-001	-2.044-003	-9-599-001	-6.15-005	-1.05-003	1-71-003	
	3	2-346+000	3.541-002	-7.003-002	-1.82+003	-5.10-004	3.38-003	
	4	1.378+001	-1.810+000	-2.710-001	-3+20-003 6-87-004	4-01-005	-1.65-003	
	6	-3-690-003	-6-212-002	-2-054-001	-3.47-005	-3.80-004	3.72-004	
	7	2.018-001	-6-577-003	-1.285-001	-1+06-004	-2.69-004	4-45-004	
	8	1.224+000	-1.114-001	-2.239-001	-5.24-004	-3.62-004	2.90-003	
	9	1+286+000	-4-740-001	-3.935-001	2.60-004	-7.63-00>	2-80-003	
	10	5.562-001	-5.116-002	-1.26>-001	1.82-004	2.00-004	-)	
4.0	4	-1-880-001	-3-201-002	-2-108-001	-8-41-005	1.41-005	-6.25-004	
10	ż	-2.781-001	-3.487-002	-3.513-001	-1-21-004	-7.86-005	-6-76-004	
	3	2-233+000	1.021-001	-3.009-001	-2.86-004	8.47-004	-1-01-003	
	- 4	1-376+001	1.249-001	-9-144-001	-2.14+003	8.44-003	-6-91-003	
	5	1.455-001	-2.822-002	-1.419-001	2+84-004		-2-64-004	
	2	1.044-001	-1-014-002	-1-584-001	1-29-005	8.70-005	-1-70-004	
	Å	1.175+000	4-154-002	-2-306-001	-1.19-004	4.46-004	-5-14-004	
	Ģ	1.263+000	3.683-002	-2.265-001	-1-07-004	5.20-004	-4-01-004	
	10	6.900-001	-4-103-002	-2.490-001	4.67-004	-3.38-004	1-88-003	
		1	4 /84 000	2 029 001	5 74-005	5 03-004	3 30-004	
19	2	2+230-001	-1.001-002	-2.928-001	3-68-005	3-54-004	7-92-004	
	- 7	3-472+000	1-279-001	-5-404-001	3.92-004	1.93-003	2.15-003	
	- Ă	1-665+001	2.436-001	-1-128+000	1-15-003	9-45-003	8.32-003	
	5	2+265-001	-3+473-002	-1-322-001	-1-36-004	-4.50-004	-2.00-003	
	6	1-152-001	4.647-003	-2.118-001	4-64-005	2.72-004	2.59-004	
		1.492+001	5-447-003	-1-349-001	1-42-004	8-32-004	8-81-004	
	õ	1-846+000	5.048-002	-3-099-001	4-62-005	7.99-004	5-19-004	
	10	9-134-001	-1-392-002	-2.708-001	-4.75-004	-3.13-004	-2.14-003	
20	1	3-046-001	-1-572-001	-2.140-001	1.27+004	-3.00-003	-4.04-004	
	2	4-984-001	1.921-001	-1.04/4000	1-64-003	4-29-005	-6-89-003	
	4	1.487+001	-4-297+000	-1.741+0.00	1-22-002	-6.98-004	-3 -45-002	
	5	5-945-002	-2.861-002	-2-499-001	-6.23-004	5-21-004	2 -07-003	
	6	1-608-001	-5.535-002	-1.841-001	4.84-005	-7.43-005	-3-37-004	
	7	2-535-001	-6-375-003	-1.859-001	5-19-005	-1-17-004	-4 -25-004	
	8	1-946+000	-1.129-001	-2-844-001	1-05-003	-4-49-005	-3.16-003	
	10	8-587-001	-5-204-002	-5-648-002	-1-59-004	3.25-004	6-16-004	
			4		1			
21	1	-R-237-001	-2.297-001	-3.571-001	-9-35-005	-2.13-004	8-16-004	
	2	-1-034+000	~2.839-001	-1.108-001	2410-004	-4+01-003	5.12-003	
	2	2_029+001	~5-381+000	-2-187+000	3-62-003	1.00-003	4-49-002	
	5	1-664-002	-9-059-002	-2.967-001	4-19-004	4-49-004	-1-49-003	
	6	-5-729-002	-9-211-002	-2.446-001	-1.61-005	-1.45-004	3-80-004	
	7	1-543-001	-2.922-002	-1-636-001	-1.94-005	-1-94-004	4 •05 - 004	
	8	1.242+000	-2.080-001	-2.783-001	-4-35-004	-1.11-003	2.02-003	
	10	5-852-001	-7,99%-00%	-4.433-001	2.15-004	1.57-004	-5.40-004	
	10		10773-008	10479-041		1121-004		
22	1	-8-775-002	-3-797-002	-2.758-001	-2+01-004	1.16-003	-6.62-004	
	5	-3-570-001	-3-841-002	-3-816-001	-1-57+004	4-58-004	-7 -28 - 004	
	3	2.371+000	1-305-001	-3-478-001	-3.67-004	4.99-004	-1.11-003	
	ŝ	1+0+0+001	-3-617-001	-1.417-000	3_95-004	-5-48-004	1.23-003	
	-			10-11-001		HOIA	21	
1.4.5	5 . 7 1	1914 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-1-24567	1.142 4.444 (1.2.4)	136 BY 234			

ANALI	1515	PLATAFORMA	MODULO 1				Arrana
		8 140-003	-1-295-002	-1-884-001	-5-07-005	3-30-004	-2 -67-004
	7	1-998-001	-2-482-002	-1-853-001	-1-85+005	1.00-004	-1-95-004
		1.251+000	4-902-002	-2-680-001	-1-78-004	2.82-004	-6-10-004
	ŏ	8-374+000	5-008-002	-2.721-001	-1-71-004	3-55-004	-5-66-004
	10	6-071-001	-1-782-002	-2-403-001	2-74-004	-7-40-004	1.60-003
•		1					
23	1	2.751-001	-1-434-003	-3-289-001	6.09-005	9-85-005	4.27-004
	Ę	A . 927-002	5-076-002	-7.047-001	4 85-004	1.45-003	2.42-003
	5	3.9079000	F 0(0-001	-7.017-001	4 87-004	4 48-002	0 47-001
	÷	2.024-001	-5 343-002	-1-303-070	-5-44-004	200-08-4	-1-62-003
	7	1-531-001	1.070-002	-2-433-001	1-45-005	1-06-084	2 - 69 - 004
	ž	2-107-001	8-938-003	-2-344-001	-4-08-006	8-50-005	1.80-004
		8.9474000	9-314-002	-4-273-001	1-54-004	8-25-004	1-01-003
	ő	2-204+000	9.333-002	-4-266-001	4-36-005	9-85-004	6-47-004
	10	9-475-001	5-249-003	-3-022-001	-5-41-004	-4-54-004	-1-72-003
24	1	1-839-001	-1-846-001	-2.818-001	1-54-004	-1-11-003	-2-97-004
	2	-1-366-001	1.159-003	-1-434+D00	3-62-004	-5-06-003	-1.67-003
	3	3-844+000	-1.656-001	-3-296-001	4-14-003	-6-61-003	-7-21-003
	- 4	2+090+001	-2-262+000	-2-046+000	-6-44-003	-5-13-003	-5-83-002
	5	1.636-001	-2-477-002	-2-519-001	-5-32-004	7-76-004	1.87-003
	6	9-378-002	-5-755-002	-2-365-001	7-88-005	-5-95-804	-2-38-004
	7	1.697-001	-1-82-005	-2+4 9U-0 U1	8-80-005	-0.32-004	-3-10-004
	8	1-891+000	-1-522-001	-3-202-001	9-91-004	-2-40-003	-3+(8-003
	Å,	2+200+000		-7 244-002	-0+12*004	4 30-004	4 47-005
	10	0.032-001	-Jecco-uuc	-rectil-ote	-1472-004	1650-004	0100-004
25	1	.000	-000	-000	•00	.00	.00
	2	•000	•000	•000	-00	•00	•00
	3	+000	•000	•000 j	•00	•00	-0 0
	4	.000	-000	-000	•00	•00	-00
	5	.000	•000	-000	•00	•00	•00
	6	•000	•000	-000	•00	•00	•00
	7	-000	•000	•000	•00	•00	•00
	8	-000	-000	-000	.00	-00	•00
	4	-000	-000	-000	.00	+00	•00
	10	•000	-000	-000	•00	•00	•40
26	1	-000	.000	•000	.00	.00	.00
	2	.000	.000	.000	.00	-00	•00
	3	.000	.000	-000	-00¦	•00	•00
	- 4	•000	.000	•000	+00	•00	.0 0
	5	-000	•000	-000	•00	•00	.00
	6	.000	:000	-000	.00	•00	•00
	7	-000	-000	•000	•00	•00	•00
	8	•000	•000	•000	•00	•00	-00
	.9	-000	000	-000	•00	-00	-00
	10	-000	-000	-000	•00	•00	.00
		LETRERO NO	• 1 =			,	
		LETRERO NO	- 2 =				
		LETRERO NO	- 3 =				
		LETRERO NO	• 4 =				
		LETRERO NO	. 5 :	1		401	4 22
	• • • •	1	0	234567890142	4567.596 1234	1, 0 1,	

IEFB.CARE. AXIAL CORTANTE CORTANTE TORSION FLEXION	••••	FUE	RZAS MOMENT	OS Y ESFUERZ	05				
NO. R1 R2 R3 H1 R2 H3 1 1 1,059+005 -1,006+003 3.127+003 7-620+005 -1.243+006 -3.932+005 2 5.119+005 1.302+003 -3.127+003 7-620+005 -1.702+004 4.834+006 3 5.664+005 -9.274+004 -1.569+006 3.302+006 -3.124+007 3 5.664+005 -9.274+004 -2.284+004 -4.159+006 3.102+006 -3.124+007 -5.664+005 -9.274+004 -2.284+004 -4.159+006 5.164+006 -3.124+007 1 5 1.387+005 -1.564+003 -1.235+006 5.164+004 -5.539+004 -5.624+005 -1.539+006 -1.539+006 -1.539+006 -1.539+006 -3.629+005 -1.539+006 1 6.9.349+004 -2.279+003 -1.239+005 -1.539+006 -1.539+006 -1.539+006 1 1.529+003 -1.239+005 -1.239+006 -1.319+006 -1.739+006 -1.739+006 -1.739+006 -1.739+006 -1.739+006 <th>16#8</th> <th>-CA</th> <th>RGA AXIAL</th> <th>CORTANTE</th> <th>CORTANTE</th> <th>TORSION</th> <th>FLEXION</th> <th>FLE XION</th> <th>E:</th>	16#8	-CA	RGA AXIAL	CORTANTE	CORTANTE	TORSION	FLEXION	FLE XION	E:
$ \begin{array}{c} 1 & 1 & 1 & 0.05 + 0.05 & -1.906 + 0.03 & 3.127 + 0.03 & -7.620 + 0.05 & -1.243 + 0.06 & -3.612 + 0.05 \\ -1.053 + 0.05 & 1.000 + 0.03 & -3.127 + 0.03 & 7.620 + 0.06 & 1.701 + 0.04 & -4.08 + 10.05 \\ -5.119 + 0.05 & 1.333 + 0.04 & -1.1672 + 0.04 & -1.566 + 0.06 & 1.701 + 0.06 & -3.012 + 0.06 \\ -5.119 + 0.05 & 1.333 + 0.04 & -1.1672 + 0.04 & -1.566 + 0.06 & 1.701 + 0.06 & -3.012 + 0.06 \\ -5.64 + 0.05 & -2.714 + 0.01 & -2.284 + 0.04 & -4.556 + 0.06 & -3.704 + 0.06 & -3.744 + 0.07 \\ -5.64 + 0.05 & -2.714 + 0.01 & -2.284 + 0.04 & -4.155 + 0.06 & -3.704 + 0.06 & -3.745 + 0.07 \\ -5.64 + 0.05 & -2.714 + 0.01 & -2.284 + 0.01 & -4.156 + 0.06 & -3.745 + 0.00 + -3.45 + 0.07 \\ -5.64 + 0.05 & -2.724 + 0.03 & -4.275 + 0.02 & 1.396 + 0.06 & -3.745 + 0.07 \\ -1.357 + 0.05 & -1.544 + 0.03 & -4.275 + 0.02 & -1.356 + 0.06 & -3.745 + 0.07 \\ -5.530 + 0.04 & -2.726 + 0.03 & -7.457 + 0.05 & -1.458 + 0.05 & -3.479 + 0.05 \\ -7.353 + 0.04 & -2.726 + 0.03 & -7.457 + 0.05 & -1.458 + 0.05 & -3.479 + 0.05 \\ -7.353 + 0.04 & -2.726 + 0.03 & -7.457 + 0.05 & -1.458 + 0.05 & -3.479 + 0.05 \\ -7.656 + 0.05 & -3.080 + 0.04 & -3.077 + 0.03 & -7.057 + 0.05 & -1.358 + 0.05 & -4.050 + 0.04 + 0.078 + 0.05 \\ -7.669 + 0.05 & -3.080 + 0.04 & -3.077 + 0.03 & -7.057 + 0.05 & -1.358 + 0.05 & -1.458 + 0.05 \\ -1.358 + 0.05 & -3.080 + 0.04 & -6.677 + 0.03 & -1.261 + 0.06 & -3.110 + 0.04 & -4.618 + 0.07 \\ -4.032 + 0.05 & -3.080 + 0.04 & -6.677 + 0.03 & -1.861 + 0.06 & -3.710 + 0.05 & 3.453 + 0.05 & -1.464 + 0.06 \\ -1.786 + 0.05 & -2.709 + 0.03 & 1.223 + 0.03 & -1.461 + 0.05 & -3.767 + 0.05 & -1.464 + 0.06 \\ -1.786 + 0.05 & -2.683 + 0.04 & -2.775 + 0.03 & -1.416 + 0.05 & -3.767 + 0.05 & -3.873 + 0.05 \\ -1.351 + 0.05 & 2.687 + 0.02 & -1.728 + 0.05 & -3.687 + 0.06 & -3.778 + 0.05 & -3.873 + 0.05 \\ -1.351 + 0.05 & 2.687 + 0.02 & -1.728 + 0.05 & -3.587 + 0.05 & -3.487 + 0.05 \\ -1.384 + 0.05 & -2.683 + 0.02 & -7.785 + 0.05 & -3.587 + 0.05 & -3.587 + 0.05 \\ -2.649 + 0.05 & -2.683 + 0.02 & -7.785 + 0.05 & -7.704 + 0.05 & -3.877 + 0.05 \\ -3.224 + 0.06 & -3.388 + 0.05$	NO.	N	0. R1	R2	R 3	81	M2	#3	
$ \begin{array}{c} 1 & 1 & 1_{10} 059 + 005 & -1_{10} 069 + 003 & 3.127 + 003 & 7.622 + 005 & -7.1243 + 006 & -4.061 + 005 \\ -5.119 + 005 & 1.343 + 004 & -1.912 + 004 & -1.569 + 006 & 7.708 + 006 \\ -5.119 + 005 & 1.343 + 004 & -1.912 + 004 & -1.569 + 006 & 7.708 + 006 \\ -5.119 + 005 & 1.343 + 004 & -1.912 + 004 & -1.559 + 006 & 7.270 + 006 & -3.124 + 007 \\ -5.644 + 005 & 9.214 + 004 & 2.284 + 004 & -4.159 + 006 & 2.308 + 008 + 0.518 + 008 \\ -5.962 + 006 & -4.461 + 005 & -8.392 + 003 & 1.901 + 007 & -1.852 + 006 & -3.458 + 007 \\ -5.644 + 005 & 9.214 + 004 & -2.284 + 004 & -4.159 + 006 & 2.348 + 007 \\ -5.644 + 005 & 1.529 + 003 & -4.275 + 002 & 1.396 + 006 & 1.279 + 005 & -9.159 + 004 \\ -5.962 + 006 & -2.729 + 003 & 1.261 + 002 & -1.358 + 006 & 5.184 + 004 & -3.468 + 007 \\ -4.387 + 005 & 1.529 + 003 & -2.275 + 002 & 1.396 + 006 & 1.378 + 005 & -8.100 + 005 \\ -7.369 + 004 & -2.729 + 003 & 1.261 + 003 & -7.057 + 005 & -3.519 + 004 \\ -7.102 + 005 & 1.233 + 004 & -3.077 + 003 & -7.057 + 005 & -3.519 + 004 \\ -7.102 + 005 & 1.233 + 004 & -3.077 + 003 & -7.057 + 005 & -3.519 + 005 \\ -7.369 + 005 & -1.233 + 004 & -2.729 + 003 & -2.278 + 006 & -2.759 + 005 & -1.718 + 006 \\ -7.759 + 005 & -1.233 + 004 & -2.729 + 003 & -1.261 + 006 & -2.775 + 006 & -1.718 + 007 \\ -3.666 + 005 & -2.089 + 004 & 6.677 + 003 & -1.861 + 006 & -2.775 + 006 & -1.4718 + 007 \\ -1.351 + 005 & 2.099 + 003 & -1.223 + 003 & -1.449 + 006 & -3.119 + 004 & -4.204 + 006 \\ -1.786 + 005 & -2.681 + 004 & -2.795 + 003 & -1.426 + 005 & -3.873 + 007 \\ -1.281 + 005 & 2.699 + 003 & -1.223 + 003 & -1.426 + 005 & -3.873 + 007 \\ -1.282 + 005 & -2.681 + 004 & -2.795 + 003 & -1.426 + 005 & -3.873 + 007 \\ -3.129 + 005 & -2.281 + 004 & -1.427 + 007 & -3.876 + 006 & -3.789 + 005 \\ -2.694 + 005 & -2.681 + 004 & -2.795 + 003 & -1.426 + 005 & -3.872 + 004 & -1.559 + 007 \\ -3.129 + 005 & -2.681 + 004 & -1.878 + 003 & -1.786 + 006 & -3.789 + 006 \\ -3.129 + 005 & -2.681 + 004 & -2.855 + 003 & -1.469 + 005 & -3.872 + 006 \\ -3.129 + 005 & -3.829 + 005 & -3.829 + 005 & -3.872 + 006 \\ -3.129 +$	•			Ì		:			
$\begin{array}{c} -1.059+005 & 1.008+003 & -3.127+003 & 7.420+006 & -7.116+004 & -4.08+005 \\ 2 & 5.119+005 & 1.333+004 & 1.192+004 & 1.569+006 & 3.202+006 & -3.124+007 \\ -5.64+005 & 9.217+004 & 2.284+004 & -4.159+006 & 2.330+006 & -3.124+007 \\ -5.64+005 & 9.217+004 & 2.284+004 & -4.159+006 & 2.330+006 & -1.535+008 \\ -3.962+006 & 4.481+005 & 8.392+003 & 1.901+007 & -1.632+006 & -1.635+005 \\ -3.962+006 & 4.481+005 & 8.392+003 & 1.901+007 & -1.632+006 & -3.485+005 \\ -1.337+005 & 1.524+003 & -4.275+000 & 5.159+006 & -3.485+005 \\ -1.337+005 & 1.233+004 & -4.275+003 & -2.084+005 & -1.458+005 & -4.050+006 \\ -9.350+004 & 2.730+003 & 1.281+001 & -5.826+005 & -1.458+005 & -4.050+004 \\ -1.022+005 & -1.233+004 & -3.075+003 & -2.078+005 & 3.697+005 & -1.136+006 \\ -3.69+005 & -5.000+004 & -5.075+003 & -2.278+006 & 1.763+006 & -1.684+007 \\ -3.69+005 & -5.000+004 & -5.075+003 & -2.678+005 & -4.05+006 \\ 10 & 4.022+005 & -5.089+004 & -6.195+003 & -2.278+006 & 1.763+006 & -1.684+007 \\ -4.032+005 & -5.089+004 & -6.77+003 & -1.661+06 & -2.775+006 & -1.718+007 \\ -4.032+005 & -2.089+004 & 1.223+003 & -1.861+006 & -2.775+005 & -1.136+006 \\ -1.766+005 & -2.099+003 & 1.223+003 & -1.861+006 & -2.775+005 & -1.136+006 \\ -1.760+005 & -2.099+003 & 1.223+003 & -1.460+005 & -3.119+004 & 4.204+006 \\ -1.760+005 & -2.099+003 & 1.223+003 & -1.420+005 & 3.343+005 & -2.184+006 \\ -1.331+005 & -2.639+004 & 1.223+003 & -1.740+005 & 5.701+005 & 3.931+005 \\ -1.331+005 & -2.639+004 & 1.223+003 & -1.740+005 & 5.701+005 & 3.931+005 \\ -2.320+006 & -3.129+005 & -2.639+004 & -1.729+003 & 4.126+005 & -3.799+003 & 4.009+006 \\ 2 & 33129+005 & -1.292+005 & 8.057+002 & -1.720+006 & -3.87+005 & -3.87+007 \\ -3.221+006 & -3.180+002 & -2.879+003 & -1.720+006 & -3.87+005 & -3.87+007 \\ -3.221+006 & -3.180+002 & -2.879+003 & -1.720+006 & -3.89+005 & -3.87+007 \\ -4.232+005 & -4.292+005 & -2.879+005 & -3.299+005 & -3.87+007 \\ -4.232+005 & -4.292+004 & -2.492+004 & -3.799+005 & -3.87+005 \\ -7.320+004 & -3.669+004 & -2.655+003 & -7.795+005 & -3.87+005 \\ -7.320+004 & -3.669+004 & -2.45$	1	1	1,059+005	-1-90 6+003	3 • 127+003	-7+620+005	-1.243+006	-3_93 2+005	
$ \begin{array}{c} 1 & 2 & 5.119 \times 005 & 1.333 \times 006 & -1.92 \times 004 & -1.559 \times 006 & 3.302 \times 006 & -3.512 \times 000 \\ -5.64 \times 005 & 9.216 \times 004 & -2.284 \times 004 & -4.559 \times 006 & 7.270 \times 006 & -3.512 \times 007 \\ -5.64 \times 005 & 9.216 \times 004 & -2.284 \times 004 & -4.559 \times 006 & 7.270 \times 006 & -3.55 \times 0008 \\ -3.962 \times 006 & -4.461 \times 005 & -8.392 \times 003 & -1.901 \times 007 & -1.652 \times 006 & -7.55 \times 0008 \\ -3.962 \times 006 & -4.461 \times 005 & -8.392 \times 003 & -1.901 \times 007 & -1.652 \times 006 & -7.55 \times 0008 \\ -3.962 \times 006 & -4.54 \times 003 & -4.281 \times 002 & -1.356 \times 0005 & -1.55 \times 0008 & -4.65 \times 0005 \\ -3.137 \times 005 & -1.233 \times 004 & -3.077 \times 002 & -1.368 \times 005 & -4.67 \times 0005 \\ -9.550 \times 006 & -7.233 \times 004 & -3.077 \times 003 & -2.273 \times 006 & -1.645 \times 0005 & -4.767 \times 005 \\ -7.550 \times 005 & -5.000 \times 004 & -6.195 \times 003 & -2.273 \times 006 & -1.648 \times 007 \\ -3.69 \times 005 & -5.000 \times 004 & -6.195 \times 003 & -2.273 \times 006 & -1.768 \times 006 & -1.718 \times 006 \\ -1.082 \times 005 & -5.000 \times 004 & -6.195 \times 003 & -2.275 \times 006 & 8.405 \times 005 & -4.767 \times 006 \\ -3.69 \times 005 & -5.000 \times 004 & -6.195 \times 003 & -2.275 \times 006 & 8.405 \times 005 & -4.767 \times 006 \\ -4.032 \times 005 & -5.000 \times 004 & -6.275 \times 003 & -2.275 \times 006 & 8.405 \times 005 & -4.767 \times 006 \\ -1.786 \times 005 & -5.000 \times 004 & -1.223 \times 003 & -1.861 \times 000 & -2.775 \times 006 & -1.718 \times 007 \\ -4.032 \times 005 & -2.669 \times 004 & -1.223 \times 003 & -1.426 \times 005 & 5.701 \times 005 & -2.818 \times 006 \\ -1.786 \times 005 & 2.699 \times 003 & 1.225 \times 003 & -1.426 \times 005 & 7.902 \times 005 & -2.818 \times 006 \\ -1.786 \times 005 & -2.683 \times 004 & -2.795 \times 003 & -1.426 \times 005 & 7.902 \times 005 & -2.818 \times 006 \\ -2.694 \times 005 & -2.683 \times 004 & -2.795 \times 003 & -1.426 \times 005 & 7.902 \times 005 & -3.679 \times 007 \\ -3.129 \times 005 & -2.683 \times 004 & -2.795 \times 003 & -1.426 \times 005 & 7.902 \times 005 & -3.679 \times 007 \\ -3.129 \times 005 & -2.683 \times 0002 & -7.200 \times 006 & -3.84 \times 0007 & -3.58 \times 0007 \\ -2.694 \times 005 & -2.683 \times 0002 & -7.20 \times 006 & -3.84 \times 0005 & -3.793 \times 005 \\ -7.870 \times 004 & -3.38 \times 005 & -2.873 \times 0001 & -1.718 \times 007 & -3.87 \times 0006 \\ -7.870 \times 004 & -7.88 \times 003 & -2.277 \times 003 & -1.226 \times 005 & -3.793 \times 005 \\ -7.870 \times 004 & -7.88 \times 003 & -2.279 \times 003 & -7.895 \times 005 & -3.793 \times 005$			-1-059+005	1.905+003	-3 -127+003	7+620+005	-7.116+004	-4.08 1+005	
-5,110*005 +1.333*004 1.192*004 1.559*006 1.708*006 -7.50*006 -5,684*005 0.27*006 -2.28*004 4.159*006 2.330*006 -7.50*006 -3,962*006 4.461*005 8.392*003 -1.901*007 5.158*006 -7.50*006 -3,962*006 4.461*005 8.392*003 1.901*007 5.158*006 -7.55*0005 -1.387*005 -1.54*000 4.227*002 1.396*006 5.18*004 -3.55*0005 -1.387*005 -1.54*003 4.227*002 1.396*006 5.18*004 -3.55*0005 -9,350*006 2.730*003 1.261*001 -5.826*005 -1.458*005 -4.050*004 -9,350*006 2.730*003 -1.388*003 5.826*005 1.458*005 -4.050*004 -9,350*005 1.232*004 3.07**003 7.057*005 3.269*005 -4.050*004 -1.02*005 1.232*004 3.07**003 7.057*005 3.269*005 -4.050*004 -3.69*005 1.232*004 6.19**003 2.278*006 1.778*005 -4.050*004 -3.69*005 1.232*004 6.19**003 2.278*006 1.778*005 -4.778*007 -3.69*005 1.49**004 6.19**003 2.278*006 1.778*005 -4.778*007 -4.032*005 5.808*004 6.467**003 1.861*006 -2.777**005 -4.784*007 -4.032*005 5.808*004 6.467**003 1.861*006 -2.777**006 -1.718*007 -4.032*005 5.808*004 6.467**003 1.861*006 5.7110*004 -4.204*006 -1.786*005 1.2.69**003 1.225*003 1.140*005 5.701*003 3.931*005 -1.351*005 7.2.700*004 -1.225*003 1.140*005 5.701*003 3.931*005 2.2.69**005 2.681*004 -2.795*003 1.800*005 7.280*005 1.800*005 7.284*006 2.3.129*005 2.681*004 2.795*003 1.420*005 3.845*005 7.284*006 2.3.129*005 2.681*004 2.795*003 1.420*005 3.845*005 7.284*006 2.3.220*006 -3.38*003 2.875*003 -1.4720*006 -3.827*006 7.508*007 3.129*005 2.681*004 2.795*003 -1.4720*006 -3.827*005 4.09*006 2.321*006 6.318*005 2.875*003 -1.4720*006 -3.827*005 4.09*006 2.545*004 7.508*002 2.553*004 1.7720*006 -3.827*005 4.201*005 2.545*005 -2.583*004 2.795*003 -1.4720*006 -2.802*005 -3.77*007 3.129*005 -3.287*004 1.1803 9.740*004 3.277*005 4.538*007 2.541*006 4.538*002 2.853*003 3.77*005 -3.57*005 1.269*005 2.545*004 4.1008*002 -2.553*003 -7.740*004 3.27*005 4.53*007 2.540*004 3.569*004 2.553*003 -7.740*004 3.27*005 4.23*007 2.540*004 3.569*004 2.550*003 -7.702*005 -5.03*004 -7.50*005 2.20*006 -3.180*005 -2.95*005 -5.03*004 -7.50*005 2.20*005 -7.429*005 -2.463*003 -7.70*005 -2.38*006 3.400*004 2.5	1	2	5=119+005	1.343+004	-1-192+004	-1-569+006	3-302+006	4-83 6+006	
$ \begin{array}{c} 1 & 3 & 5.68 \pm 005 & \pm 0.216 + 006 & -2.28 \pm 004 & -4.359 \pm 000 & 7.276 \pm 006 & -3.576 \pm 006 \\ -3.668 \pm 005 & 0.216 \pm 004 & 2.28 \pm 004 & -4.599 \pm 006 & -7.550 \pm 006 \\ -3.550 \pm 006 & -3.550 \pm 006 & -3.550 \pm 006 & -3.550 \pm 006 \\ -3.550 \pm 006 & -3.550 \pm 005 & -3.251 \pm 002 & -1.556 \pm 006 & 5.158 \pm 006 & -3.550 \pm 005 \\ -3.387 \pm 005 & -1.545 \pm 002 & -1.566 \pm 006 & 5.184 \pm 004 & -5.550 \pm 005 \\ -9.350 \pm 004 & -2.729 \pm 003 & 1.221 \pm 002 & -1.586 \pm 005 & -1.592 \pm 006 & -3.674 \pm 006 \\ -9.350 \pm 004 & -2.729 \pm 003 & 1.221 \pm 002 & -1.586 \pm 005 & -1.582 \pm 005 & -3.679 \pm 005 \\ -9.350 \pm 004 & -2.729 \pm 003 & -1.281 \pm 003 & -7.657 \pm 005 & -2.231 \pm 005 & -3.679 \pm 005 \\ -1.082 \pm 005 & -1.233 \pm 004 & -3.077 \pm 003 & -7.057 \pm 005 & -2.374 \pm 006 & -3.664 \pm 007 \\ -3.669 \pm 005 & -3.009 \pm 004 & -6.193 \pm 003 & -2.278 \pm 006 & 8.403 \pm 005 & -4.763 \pm 006 \\ -3.669 \pm 005 & -3.009 \pm 004 & -6.677 \pm 003 & -1.281 \pm 006 & -3.116 \pm 006 & -3.116 \pm 006 \\ -4.032 \pm 005 & -5.008 \pm 004 & -1.223 \pm 003 & -1.446 \pm 006 & -3.116 \pm 006 & -2.716 \pm 006 \\ -1.786 \pm 005 & -2.699 \pm 004 & 1.223 \pm 003 & -1.440 \pm 005 & -3.116 \pm 006 & -2.481 \pm 006 \\ -1.786 \pm 005 & -2.633 \pm 004 & -2.795 \pm 003 & -1.726 \pm 005 & -3.87 \pm 006 \\ -1.786 \pm 005 & -2.633 \pm 004 & -2.795 \pm 003 & -1.726 \pm 005 & -3.87 \pm 006 \\ -3.129 \pm 005 & -2.633 \pm 004 & -2.795 \pm 003 & -1.726 \pm 005 & -3.87 \pm 007 \\ -3.129 \pm 005 & -2.633 \pm 004 & -2.795 \pm 003 & -1.726 \pm 005 & -3.87 \pm 007 \\ -3.129 \pm 005 & -2.633 \pm 005 & -2.67 \pm 003 & -3.67 \pm 006 & -3.57 \pm 007 \\ -3.129 \pm 005 & -1.292 \pm 005 & 8.057 \pm 002 & -1.720 \pm 006 & -3.87 \pm 006 & -3.53 \pm 007 \\ -2.321 \pm 006 & -3.18 \pm 005 & -2.68 \pm 004 & -1.728 \pm 003 & -1.720 \pm 006 & -3.87 \pm 006 \\ -3.26 \pm 004 & \pm 0.292 \pm 005 & 8.057 \pm 002 & -3.78 \pm 006 & -3.78 \pm 006 \\ -3.26 \pm 004 & \pm 0.28 \pm 004 & -2.75 \pm 006 & -3.78 \pm 006 & -3.78 \pm 006 \\ -3.26 \pm 004 & \pm 0.28 \pm 004 & -2.78 \pm 006 & -3.78 \pm 006 & -3.78 \pm 006 \\ -3.26 \pm 004 & \pm 0.28 \pm 006 & -2.87 \pm 006 & -3.78 \pm 006 & -3.78 \pm 006 \\ -3.26 \pm 004 & \pm 0.28 \pm 005 & -2.87 \pm 003 & -3.78 \pm 006 & -3.78 \pm 006 \\ -3.26 \pm 004 & \pm 0.28 \pm 004 & -3.08$		_	-5-119+005	-1-343+004	1-192+004	1-569+006	1.708+006	8-079+005	
	1	3	5-684+005	-9-217+004	-2-284+004	-4-159+008	7.270+006	-3.124+00/	
$ \begin{array}{c} 1 & 3,862*006 & 4.481*005 & 8.392*003 & -1.901*007 & 5.159*006 & -1.93.85*005 \\ -3.87*005 & -1.5544*003 & 4.275*002 & 1.359*006 & 5.154*004 & -5.550*005 \\ -1.387*005 & 1.529*003 & 4.281*002 & -1.359*005 & 1.279*005 & -9.159*004 \\ 1 & 6.9,349*004 & -2.729*003 & -1.281*002 & -1.382*005 & -1.458*005 & -8.000*005 \\ -9,530*004 & 2.730*003 & -1.381*001 & -3.826*005 & 1.398*005 & -4.050*006 \\ -1.082*005 & -1.233*004 & -3.077*003 & -7.057*005 & 9.231*005 & -4.050*006 \\ -1.082*005 & -5.000*004 & -6.075*003 & 7.057*005 & 3.697*005 & -4.050*006 \\ -3.696*005 & -5.000*004 & -6.07*003 & -1.861*006 & -2.775*006 & -1.718*007 \\ -4.032*005 & -5.089*004 & 6.677*003 & 1.861*006 & -3.110*004 & -4.204*006 \\ -1.786*005 & 5.086*004 & -6.677*003 & 1.861*006 & -3.110*004 & -4.204*006 \\ -1.786*005 & -2.699*004 & 1.225*003 & -7.895*005 & 1.800*005 & -2.8181*006 \\ -1.786*005 & 2.689*004 & -1.235*003 & -1.40*005 & 5.701*005 & 3.931*005 \\ -1.351*005 & -2.114*003 & -1.235*003 & -1.40*005 & 5.701*005 & 3.931*005 \\ -1.351*005 & -2.689*004 & 2.795*003 & 4.126*005 & 7.902*005 & 4.009*006 \\ 2 & 3.129*005 & 1.292*005 & 8.037*002 & 1.720*006 & -5.827*004 & -1.535*007 \\ 2 & 4.584*004 & 9.750*003 & -1.2720*006 & -5.827*004 & -1.538*007 \\ 2 & -2.521*006 & -6.318*005 & -2.873*004 & 1.778*007 & -3.87*007 \\ 3.429*005 & 1.292*005 & 8.03*1002 & 1.720*006 & -3.827*004 & -1.93*007 \\ 2 & 4.584*004 & 9.750*001 & 2.587*004 & 1.178*007 & -3.87*005 & -3.87*007 \\ 3.429*005 & -3.69*004 & 2.795*003 & -1.40*004 & 3.277*005 & -3.87*007 \\ 3.5261*004 & 1.465*004 & -1.982*003 & -7.06*004 & 3.78*005 & -3.87*007 \\ 1.294*005 & -6.364*002 & -1.631*003 & -7.40*004 & 3.277*005 & -3.87*007 \\ 1.204*005 & 6.766*004 & 1.982*003 & -7.195*005 & -3.82*005 & -1.59*005 \\ -7.60*004 & 6.318*005 & -2.873*004 & -7.95*005 & -3.87*006 & -1.204*008 \\ 2 & -1.60*004 & -6.631*002 & -1.631*003 & -7.40*004 & 3.27*005 & -3.29*005 \\ -1.60*004 & -6.631*002 & -1.631*003 & -7.40*004 & 3.27*005 & -3.29*005 \\ -1.60*004 & -6.633*002 & -1.631*003 & -7.40*004 & -2.74*005 & -4.55*005 & -2.99*005 \\ -7.$	· .		-5-684+005	9.216+004	2.284+004	4-159+006	2.330+006	-7.500+000	
$\begin{array}{c} -3,02,0000 & 4,481,0005 & -4,275,002 & -1,376,000 & 5,184,000 & -3,283,70005 \\ -1,387,0005 & -1,534,0003 & -4,275,002 & -1,376,0006 & 1,279,0005 & -9,159,004 \\ -9,359,0004 & 2,729,0003 & +2,61,001 & -5,826,0005 & -1,458,0005 & -3,479,0005 \\ -9,359,0004 & 2,729,0004 & -3,077,003 & -7,0057,0005 & 9,231,0005 & -4,050,0006 \\ -1,082,0005 & 1,232,0004 & -3,077,003 & -7,057,0005 & 9,231,0005 & -4,050,0006 \\ 1 & 3,666,0005 & -5,000+004 & -6,195,0003 & -2,278,0006 & 8,405,0005 & -4,153,0006 \\ 1 & 3,666,0005 & -5,000+004 & -6,195,0003 & -2,278,0006 & 3,079,0005 & -4,158,0005 & -4,167,0006 \\ 1 & 4,032,0005 & -5,089,0004 & 6,677,003 & -1,2278,0006 & -3,100,0005 & -4,167,0006 \\ -4,032,0005 & -5,089,0004 & -6,077,003 & -1,88,01006 & -2,775,0006 & -1,2718,0007 \\ -4,032,0005 & -5,089,0004 & -4,274,003 & -1,223,0005 & -3,343,0005 & -2,184,0006 \\ -1,786,0005 & -2,700,0004 & -1,223,0003 & -1,480,0005 & -2,184,0006 \\ -1,786,0005 & -2,683,0004 & -2,795,003 & -1,420,0005 & -3,100,005 & -2,184,0006 \\ -1,226,04,0005 & -2,683,0004 & -2,795,003 & -4,126,0005 & -3,807,0005 & -2,881,0006 \\ -2,604,0005 & -2,683,0004 & -2,795,003 & -4,126,0005 & -3,807,0005 & -2,881,0006 \\ -2,2694,0005 & -2,683,0004 & -2,795,003 & -4,126,0005 & -3,807,0007 \\ 3,129,0005 & 1,202,0005 & 8,005,0002 & -1,720,0006 & -3,807,0006 & -1,904,0008 \\ 2,321,0006 & 6,318,0005 & -2,873,0004 & -1,7720,0006 & -3,807,0006 & -1,904,0008 \\ 2,321,0006 & 6,318,0005 & -2,873,0004 & -1,7720,0006 & -3,807,0006 & -7,508,0007 \\ -3,429,4005 & 1,202,0005 & -2,687,0004 & -1,782,0006 & -3,807,0006 & -7,508,0005 & -2,780,0001 \\ 2,524,1004 & 1,406,0002 & -1,637,0003 & -7,809,0005 & -3,793,0003 \\ -7,809,0006 & 6,318,0005 & -2,873,0004 & -1,718,0007 & -3,873,0005 & -3,793,0003 \\ -7,809,0006 & 6,318,0005 & -2,873,0004 & -1,782,0005 & -2,508,0005 & -7,908,0005 \\ -7,809,0006 & 6,318,0002 & -2,803,0004 & -7,908,0005 & -7,908,0005 \\ -7,809,0006 & 6,318,0002 & -2,803,0003 & -7,098,0005 & -2,909,0006 \\ -1,162,0005 & -6,709,0004 & -1,832,0003 & -1,719,0005 & -6,334,0004 & -2,959,0005 \\ 2,126,4$	1	- 4	3-962+006	-4.481+005	~8.392+003	-1-901+007	~1.632+006	-1-2224008	
$ \begin{array}{c} 1 & 5 & 1.5374005 & 1.5294003 & 4.2874002 & 1.53064006 & 1.2794003 & -2.8504006 & 1.2794005 & -9.1594004 \\ 1 & 6 & 9.5394004 & -2.7294003 & 1.2814002 & -1.33064005 & -1.4584005 & -8.0004005 \\ -9.5504004 & 2.7394003 & -1.384001 & -5.8264005 & 1.3984005 & -4.0504006 \\ -1.0824005 & -1.2334004 & 3.0754003 & -7.0574005 & 9.2314005 & -4.0504006 \\ -1.0824005 & -5.0094004 & -6.0754003 & -2.2734006 & 1.2634005 & -4.0504006 \\ -3.6964005 & -5.0094004 & -6.0774003 & -2.2734006 & 8.4054005 & -4.7674006 \\ -3.6964005 & -5.0894004 & 6.6774003 & 1.8614006 & -3.1104004 & -4.2044006 \\ -3.6964005 & -5.0894004 & -6.0774003 & -1.8614006 & -3.1104004 & -4.2044006 \\ -1.7864005 & -2.7094004 & -1.2254003 & -7.8954005 & 3.5334005 & -2.1814006 \\ -1.7864005 & -2.6834004 & -1.2254003 & -7.8954005 & 3.8654005 & -2.81814006 \\ -1.7864005 & -2.6834004 & -2.7954003 & 4.1264005 & 5.7014005 & 3.9314005 \\ -1.3514005 & -2.6834004 & -2.7954003 & 4.1264005 & 5.8024005 & -2.81814006 \\ -2.6944005 & -2.6834004 & -2.7954003 & 4.1264005 & 5.8024004 & -1.534007 \\ -2.224006 & -2.6834004 & 2.7954003 & 4.1264005 & -3.8024005 & -3.8774007 \\ -3.1294005 & -1.2924005 & 8.0574002 & -1.7204006 & -2.8024005 & -3.8774007 \\ -3.1294005 & -1.2924005 & 8.0574002 & -1.7204006 & -2.8024005 & -3.8774007 \\ -4.5844004 & 9.7504001 & 2.5534004 & -1.4784007 & -3.8764006 & -7.5084007 \\ 2 & -3.2244006 & 6.3184005 & -2.8734004 & -1.4784007 & -3.8794006 & -7.5084007 \\ -4.5844004 & 1.0084002 & -2.68734004 & -1.9824003 & 3.0134004 & 3.5784005 & -1.5974006 \\ 2 & 7.4504004 & 6.3794002 & -1.6314003 & -7.6954006 & -2.764006 & 3.7994006 \\ -7.6704014 & 6.3764002 & -1.6314003 & -9.764004 & 3.5784005 & -1.5974007 \\ 1.4694005 & -6.7694004 & -1.9824003 & -1.7184007 & -3.8784005 & -1.5974006 \\ 2 & 7.4504004 & 6.4794002 & -1.6314003 & -7.8954005 & -2.9664006 \\ -1.4694005 & -6.60440002 & -2.6354003 & -9.764004 & 3.5784005 & -1.5974006 \\ -1.6204004 & 6.4794002 & -1.6314003 & -2.77954005 & -2.5964006 \\ -7.6704004 & -3.6694004 & -1.4874002 & -7.7954005 & -6.6334004 & -2.0574005 \\ 1.4694005 & -$		_	-3-962+006	4.487+005	8-392+003	1.901+007	5.159+000	-5-48 5+002	
-1.387005 1.2294003 1.2314001 -1.43864005 1.2594003 -9.154584005 -3.479405 -9.350404 2.7304003 -1.3884001 5.8264005 1.3984005 -3.479405 -1.8024005 1.2334004 -3.0754003 7.0574005 9.2314005 -4.0504006 1 8 3.6964005 -5.0004004 -6.1954003 2.2784006 8.4054005 -4.1504006 1 9 4.0324005 -5.0004004 -6.41954003 -2.2784006 8.4054005 -4.1674006 1 9 4.0324005 -5.0004004 -6.41954003 -2.2784006 8.4054005 -4.1674006 1 0 1.7864005 2.50044004 -6.6774003 -1.6614006 -2.7754005 -1.7184007 -4.0324005 -5.0004004 -6.4774003 -1.8614006 -2.7754006 -1.7184007 -4.0324005 -5.0004004 -6.4774003 1.8614006 -5.7014005 -2.1814006 -1.7264005 2.6094004 1.2234003 -1.2854005 1.8004005 -2.1814006 -1.7864005 2.6094004 1.2234003 -1.4204005 5.1144004 4.9134005 -1.3514005 2.6094004 1.22354003 1.1404005 -5.701405 3.4034006 4.49134005 -1.3514005 2.6094004 1.22354003 -1.4204005 5.1144004 4.9134005 -1.3514005 2.6094004 2.77954003 4.1264005 5.8454005 4.4004 4.9134005 -2.6094005 2.66814004 -2.77954003 -4.1264005 5.8454004 4.9134005 2.25244006 2.66814004 2.7954003 -4.1264005 5.8454004 4.9134005 2.25244006 -3.184005 2.8734004 -1.7204006 -5.8274004 -1.5349007 3.1294005 1.2924005 8.0574002 -1.7204006 -5.8274004 -1.5349007 3.1294005 1.2924005 8.0574002 -1.7204006 -2.8024005 -3.5774007 3.1294005 1.2924005 2.8734004 -1.4784007 -3.8764004 -3.5784007 2 4.23244006 -6.3184005 2.8734004 -1.4784007 -3.8764006 -7.5884004 2.5244006 -6.3184005 2.8734004 -1.4784007 -3.8764006 -2.7444005 4.2014008 2 5 4.5844004 +1.0084002 -2.6534003 -1.47640006 -2.7444005 -3.2794006 -1.9244005 -6.7694004 -1.4874003 -3.7454004 -2.7454005 -3.279400 2 6 7.8649004 +1.4654004 -1.9824003 -3.7454004 -2.7464005 -3.2794005 2 7 3.2614004 +1.4654004 -1.9824003 -3.7454004 -2.7454005 -4.5564005 2 9 -1.4694005 -6.8044004 -1.9824003 -3.7454005 -4.2544005 -2.5994005 2 3.2614004 +1.4654004 -2.9594003 -1.7024005 -6.3254005 -2.9964006 2 9 -1.4694005 -6.804004 -2.8554003 -1.7024005 -6.2374005 -4.254005 3 2 3.6644005 -6.8274003 2.9664003 -7.1784006 -2.7774005 -4.4554005 3 2 3.6644005	1	5	16387+005	-1-544+003	-4-275+002	1-596+006	5.184+004	-> +> UTUU>	
$ \begin{array}{c} 1 & 6 & 9,39+004 & -2.729+003 & 1.209+007 & -3.826+005 & -1.439+005 & -3.479+005 \\ -8,350+004 & 2.730+004 & -3.077+003 & -7.057+005 & 9.231+005 & -3.479+005 \\ -1.082+005 & 1.232+004 & -3.077+003 & -7.057+005 & 3.697+005 & -1.436+006 \\ 1 & 3.696+005 & -5.099+004 & 6.195+003 & -2.278+006 & 8.405+005 & -4.467+006 \\ 1 & 4.032+005 & -5.099+004 & 6.677+003 & -1.861+006 & -2.775+006 & -1.716+007 \\ -4.032+005 & -2.699+004 & -6.677+003 & -1.861+006 & -2.775+006 & -1.716+007 \\ -4.032+005 & -2.699+004 & -3.231+005 & -3.85+005 & 3.345+005 & -9.164+006 \\ -1.786+005 & 2.699+004 & -1.225+003 & -1.861+006 & -3.110+004 & -4.204+006 \\ -1.786+005 & 2.699+004 & 1.225+003 & -1.480+005 & -5.701+005 & 3.931+005 \\ -1.4351+005 & -2.681+004 & -2.795+003 & -1.426+005 & 3.845+005 & 7.2614+006 \\ -2.694+005 & 2.681+004 & -2.795+003 & -1.126+005 & 3.827+007 & 3.931+005 \\ -2.694+005 & -2.683+004 & 2.795+003 & -1.126+005 & 7.902+005 & 4.009+006 \\ 2 & 3 & -3.129+005 & -1.292+005 & 8.057+002 & -1.720+006 & -5.827+004 & -1.535+007 \\ 2 & 4.584+004 & -7.592+005 & -1.694+002 & -1.5819+006 & -1.593+007 \\ 2 & -2.321+006 & -6.318+005 & -2.873+004 & -1.178+007 & -3.876+006 & -1.593+007 \\ 2 & -2.321+006 & -6.318+005 & -2.873+004 & -1.178+007 & -3.876+006 & -1.593+007 \\ 2 & -3.261+004 & +1.465+004 & -1.982+003 & -7.409404 & 3.578+005 & -3.791+005 \\ -7.870+004 & 6.479+002 & 1.630+003 & -7.409+004 & 3.578+005 & -3.791+005 \\ -7.870+004 & 6.479+002 & 1.630+003 & -7.409+004 & 3.578+005 & -3.591+005 \\ 2 & 7.480+004 & -4.353+005 & -2.873+004 & -1.718+007 & -3.876+006 & -7.508+005 & -3.879+006 \\ 2 & -3.261+004 & +1.465+004 & -1.982+003 & -7.405+004 & -3.579+005 & -3.791+005 \\ 2 & 7.480+004 & -4.353+002 & -7.405+004 & -3.579+005 & -3.291+005 \\ 2 & -7.870+004 & -6.378+004 & -1.982+003 & -7.405+004 & -3.597+005 & -3.591+005 \\ 2 & -1.469+005 & -6.804+004 & 1.355+003 & -6.565+005 & -2.690+006 \\ -1.469+005 & -6.804+004 & 1.355+003 & -7.405+005 & -2.59+005 & -2.590+005 \\ -1.469+005 & -4.859+004 & -2.873+003 & -6.565+005 & -2.879+005 \\ -2.606+007 & -1.463+005 & -$			-1-38/+005	1.529+003	4.201+002	-1-390+000	1.2797003	-y.159+004	
$\begin{array}{c} -9,330,004 & -1,330,004 & -1,330,001 & -1,330,001 & -1,30,0005 & -4,230,005 & -4,230,0006 & -4,050,0066 & -4,050,0066 & -4,050,0006 & -4,160,0006 & -4,050,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -4,020,0006 & -2,014,0006 & -2,004,0006 & -2,004,0006 & -2,004,0006 & -2,004,0006 & -2,004,0006 & -$	1	6	9-349+004	-2-729+005	1-201+007	~5.826+005	-1-420+005		
$ \begin{array}{c} 1 & 7 & 1.02 \times 005 & -1.23 \times 004 & -3.07 \times 003 & -7.057 \times 005 & 7.637 \times 005 & -1.136 \times 006 \\ 1 & 8 & 3.696 \times 005 & -5.000 \times 004 & -6.195 \times 003 & -2.273 \times 006 & 1.4.538 \times 006 & -1.684 \times 007 \\ -3.696 \times 005 & -5.089 \times 004 & 6.677 \times 003 & -1.861 \times 006 & -2.475 \times 006 & -4.167 \times 006 \\ 1 & 9 & 4.032 \times 005 & -5.089 \times 004 & -6.677 \times 003 & -1.861 \times 006 & -2.775 \times 006 & -4.167 \times 006 \\ 1 & 01 & 7.766 \times 005 & 5.086 \times 004 & -6.677 \times 003 & -1.861 \times 006 & -2.775 \times 006 & -4.167 \times 006 \\ -1.786 \times 005 & 5.086 \times 004 & -6.677 \times 003 & -1.861 \times 006 & -2.775 \times 006 & -4.167 \times 006 \\ -1.786 \times 005 & 5.086 \times 004 & -4.223 \times 003 & 7.895 \times 005 & 3.343 \times 005 & -2.181 \times 006 \\ -1.786 \times 005 & 2.699 \times 004 & 1.225 \times 003 & -1.140 \times 005 & 5.114 \times 004 & 4.913 \times 005 \\ -1.351 \times 005 & -2.014 \times 003 & -1.235 \times 003 & -1.140 \times 005 & 5.114 \times 004 & 4.913 \times 005 \\ -2.694 \times 005 & -2.681 \times 004 & -2.795 \times 003 & -1.126 \times 005 & 5.817 \times 007 \\ -2.694 \times 005 & -2.681 \times 004 & -2.795 \times 003 & -1.126 \times 005 & -3.877 \times 007 \\ -2.694 \times 005 & -2.681 \times 004 & -2.873 \times 0004 & -1.720 \times 006 & -5.827 \times 004 & -1.553 \times 007 \\ 2 & -2.321 \times 006 & -3.18 \times 005 & -2.873 \times 004 & -1.720 \times 006 & -5.827 \times 004 & -1.553 \times 007 \\ 2 & -2.321 \times 006 & -6.318 \times 005 & -2.873 \times 004 & -1.720 \times 006 & -7.897 \times 005 & -3.877 \times 007 \\ -3.584 \times 004 & -7.50 \times 001 & 2.553 \times 003 & -7.60 \times 006 & -7.897 \times 005 & -3.793 \times 005 \\ -7.870 \times 004 & -4.584 \times 002 & -1.633 \times 003 & -7.40 \times 004 & 3.578 \times 005 & -3.591 \times 007 \\ -7.870 \times 004 & -4.584 \times 004 & -1.982 \times 003 & -7.40 \times 004 & 3.578 \times 005 & -3.591 \times 005 \\ -7.870 \times 004 & -7.697 \times 004 & -1.487 \times 003 & -7.405 \times 004 & -7.872 \times 005 & -3.591 \times 005 \\ -7.870 \times 004 & -4.634 \times 002 & -7.873 \times 003 & -7.872 \times 005 & -3.591 \times 005 \\ -7.870 \times 004 & -4.634 \times 002 & -7.405 \times 004 & -7.872 \times 005 & -3.591 \times 005 \\ -7.870 \times 004 & -4.634 \times 002 & -7.453 \times 003 & -7.872 \times 005 & -3.591 \times 005 \\ -7.870 \times 004 & -7.697 \times 004 & -1.487 \times 003 & -7.405 \times 005 & -3.591 \times 005 \\ -7.870 \times 004 & -7.697 \times 003 & -7.695 \times 003 & -7.7195 \times 005 & -3.594 \times 005 & -3.594 \times 005 \\ -7.606 \times 004 & -3.669 \times 004 & -2.853 \times 003 $	-	-	-9-350+004	2.730+003	-1.388+001	5.820+005	1.398+005	~3.4(Y+UU)	
-1.02*005 1.23*004 -6.195*003 7.05*005 3.07*005 -1.130*006 1 9 4.032*005 5.085*004 -6.67*003 1.2278*006 1.763*006 -4.167*006 1 9 4.032*005 5.085*004 -6.67*003 1.861*006 -2.775*006 -1.718*007 -4.032*005 5.085*004 -6.67*003 1.861*006 -2.775*006 -1.4718*007 -4.032*005 5.085*004 -1.223*003 7.893*005 3.343*005 -2.184*006 1 10 1.786*005 2.099*003 1.235*003 1.140*005 5.701*005 3.931*005 -1.351*005 2.099*003 1.235*003 1.140*005 5.701*005 3.931*005 2.694*005 2.681*004 -2.795*003 4.126*005 3.845*005 7.261*005 2.694*005 2.681*004 2.795*003 -4.126*005 3.845*005 7.261*005 2.694*005 -2.683*004 2.795*003 -4.126*005 7.802*005 4.009*006 2 3.129*005 1.292*005 8.064*002 -1.720*006 -5.827*004 -1.553*007 3.129*005 1.292*005 8.064*002 -1.720*006 -5.827*004 -1.553*007 2 4.2321*006 6.318*005 2.873*004 1.178*007 -3.876*006 -1.904*008 2.321*006 6.318*005 2.853*003 -1.178*007 -3.876*006 -1.508*007 2 4.584*004 9.750*001 2.554*003 9.740*004 3.578*005 -3.791*005 2 7.3226*004 6.318*002 -2.553*003 -1.178*007 -3.876*005 -3.791*005 2 7.3226*004 6.318*002 -1.631*003 9.740*004 3.578*005 -3.791*005 2 7.3226*004 6.318*002 -1.631*003 9.740*004 3.578*005 -3.791*005 2 7.326*004 6.308*002 -1.631*003 9.740*004 3.578*005 -3.791*005 2 7.326*004 6.379*002 1.630*003 9.740*004 3.578*005 -3.791*005 2 7.326*004 6.679*004 -1.487*002 -7.195*005 -6.382*005 -1.597*006 2 7.326*004 6.379*004 1.363*003 9.740*004 3.578*005 -3.597*006 2 9.1469*005 6.766*004 1.382*003 3.013*004 4.557*005 -4.556*006 2 9.1469*005 6.766*004 1.352*003 -7.195*005 -6.338*004 -7.905*006 2 9.1469*005 6.766*004 1.354*003 -7.195*005 -6.382*005 -4.876*006 2 9.1469*005 6.766*004 1.354*003 -7.195*005 -6.382*005 -4.876*006 3 1 1.162*005 8.264*003 -2.959*003 -1.702*005 -6.338*004 -7.940*006 2 9.1469*005 6.766*004 1.354*003 -5.295*005 -6.338*005 -2.966*007 1.469*005 6.766*004 1.354*003 -2.7195*005 -6.338*005 -2.960*005 3 5.3061*005 -1.275*003 2.960*003 -1.702*005 -6.338*005 -2.960*005 3 5.3064*005 -1.275*003 2.960*003 -1.702*005 -6.338*005 -2.960*005 3 5.061*005 -1.275*00	1		1.082+005	-1-233+004	-3.077+003	*/+05/+005	9.231+005	-++0207040	
$ \begin{array}{c} 1 & 3 & 5.050 + 0005 & -3.000 + 004 & -3.175 \pm 000 & -2.275 \pm 000 & -1.603 \pm 0007 & -1$		•	-1-082+005	1.232+004	3.075+003	7.05/4005	3.09/4005	-1.130-000	
-3.090005 -3.099004 6.1934003 22.20000 -3.013400 -4.2000 -4.2014000 -4.0324005 -5.0894004 6.6774003 -1.8644006 -3.1104004 -4.2014006 1 10 1.7864005 -2.7004004 -1.2234003 7.8954005 3.343705 -9.1644006 -1.7864005 2.0994003 1.2254003 7.8954005 3.343705 -9.1644006 -1.7864005 2.6994003 1.2254003 7.8954005 3.8454005 -2.1814004 2 1 1.3514005 2.6994004 1.2254003 1.1404005 5.1144004 4.9134005 2 2.4694005 2.6814004 2.7954003 4.1264005 3.8454005 7.2614006 -2.6944005 -2.6144005 -1.2254003 4.1264005 3.8454005 7.2614006 -2.6944005 -2.6834004 2.7954003 4.1264005 3.8454005 7.2614006 -2.6944005 -1.2924005 8.0574002 1.7204006 -2.8024004 4.0094006 2 3 -3.1294005 1.2924005 8.0574002 -1.7204006 -2.8024004 -1.5534007 3.1294005 1.2924005 8.0574002 -1.7204006 -2.8024004 -1.5534007 2 4.23214006 6.3184005 2.8734004 -1.1784007 -3.8764006 -7.5084007 -4.5844004 9.7504001 2.5534003 9.7404004 3.2774006 -1.5084007 -4.5844004 4.10084021 -2.5534003 9.7404004 3.2784005 -3.7934005 -7.86740004 6.4794002 1.6314003 9.7404004 3.2784005 -1.5974006 2 7 3.2614004 14.4654004 1.9824003 9.7404004 3.2784005 -1.5974006 2 7 3.2644004 1.4654004 1.4874003 -7.1954005 -0.3884004 -2.0474007 1.2944005 6.7664004 1.3534003 -5.2954005 -0.3384004 -2.0474007 1.2944005 6.7664004 1.3534003 -5.2954005 -0.3384004 -2.0474007 1.2944005 6.67664004 1.3534003 -5.2954005 -0.3384004 -2.0474007 1.2944005 6.67664004 1.3534003 -5.2954005 -0.3384004 -2.0474007 1.2944005 6.67664004 1.3534003 -5.2954005 -0.3384004 -2.0474007 1.2944005 6.8034004 -2.3134003 -5.2954005 -0.3384004 -2.0474007 1.4694005 6.8034004 -2.3134003 -3.4084005 -0.3384004 -2.0474007 1.4694005 6.8034004 -2.3134003 -3.4084005 -0.3334004 -7.4047005 3 1 1.4624005 -8.2794003 2.9604003 -1.7024005 -4.8754005 -4.8754006 3 3 -4.6364005 1.2754003 2.9604003 -1.7024005 -4.8754005 -4.8754006 3 3 -4.6364005 1.2754	1	8	3=090+005	-5.000+004	-0-195+005	-2.2/3+000	1.703+000	-1-004-100/	
$\begin{array}{c} 1 & 9 & 4.032 + 005 & -5.08 + 004 & 6.677 + 003 & -1.86 + 7006 & -2.779 + 006 & -1.718 + 007 \\ -4.032 + 005 & 5.088 + 004 & -6.677 + 003 & 1.861 + 006 & -3.110 + 004 & -4.204 + 006 \\ -1.786 + 005 & 2.699 + 004 & 1.223 + 003 & 7.895 + 005 & 1.800 + 005 & -2.181 + 006 \\ -1.786 + 005 & 2.699 + 004 & 1.225 + 003 & -1.400 + 005 & 5.701 + 005 & 3.931 + 005 \\ -1.351 + 005 & -2.114 + 003 & -1.235 + 003 & -1.140 + 005 & 5.114 + 004 & 4.913 + 005 \\ -2.694 + 005 & -2.681 + 004 & -2.795 + 003 & -4.126 + 005 & 3.845 + 005 & 7.261 + 006 \\ -2.694 + 005 & -2.681 + 004 & -2.795 + 003 & -4.126 + 005 & 3.845 + 005 & -3.877 + 007 \\ 3 + 129 + 005 & -1.292 + 005 & 8.057 + 002 & -1.720 + 006 & -3.802 + 005 & -3.877 + 007 \\ 3 + 129 + 005 & 1.292 + 005 & 8.057 + 002 & -1.720 + 006 & -3.817 + 006 & -1.553 + 007 \\ 2 & -2.321 + 006 & -6.318 + 005 & -2.6873 + 004 & -1.178 + 007 & -3.197 + 006 & -1.904 + 008 \\ 2.321 + 006 & -6.318 + 005 & -2.6873 + 004 & -1.178 + 007 & -3.8176 + 006 & -7.508 + 005 \\ 2 & 5.4584 + 004 & +1.008 + 002 & -2.553 + 003 & -1.963 + 006 & -7.588 + 005 & -7.508 + 005 \\ -4.584 + 004 & +1.008 + 002 & -2.553 + 003 & -1.963 + 006 & -7.588 + 005 & -3.973 + 005 \\ -3.261 + 004 & -3.662 + 004 & -1.631 + 003 & -7.46 + 004 & 3.578 + 005 & -4.553 + 005 \\ -3.261 + 004 & -1.465 + 004 & -1.487 + 002 & 7.195 + 005 & -6.384 + 004 & -2.047 + 007 \\ -3.261 + 004 & -1.465 + 004 & -1.487 + 002 & 7.195 + 005 & -6.384 + 004 & -2.047 + 007 \\ -1.469 + 005 & -6.769 + 004 & -1.487 + 002 & 7.195 + 005 & -6.333 + 004 & -2.047 + 007 \\ -1.469 + 005 & -6.769 + 004 & -1.487 + 002 & 7.195 + 005 & -6.334 + 004 & -2.047 + 007 \\ -1.469 + 005 & -6.804 + 004 & -2.865 + 003 & -1.713 + 006 & -9.325 + 005 & -1.277 + 005 \\ 2 & 1.264 + 005 & -6.8279 + 003 & 2.960 + 003 & -1.713 + 006 & -2.717 + 005 & -4.513 + 006 \\ -1.162 + 005 & 8.264 + 003 & -2.959 + 003 & -1.713 + 006 & -2.717 + 005 & -4.875 + 005 \\ -3.061 + 005 & -1.422 + 004 & 2.313 + 003 & -5.655 + 005 & -4.845 + 005 & -2.99 + 006 \\ -3.3 + 02776 + 006 & 5.188 + 003 & -2.959 + 003 & -1.713 + 006 & -$	-	•	-3.696+005	4.998+004	6 . 193+003	2.278+006	8.405+005	-4.767+006	
$\begin{array}{c} -4.052+005 \\ 1 10 \\ 1.786+005 \\ -1.786+005 \\ -2.700+004 \\ -1.223+003 \\ -1.225+003 \\ -1.225+003 \\ -1.351+005 \\ -2.699+004 \\ 1.225+003 \\ -1.250+005 \\ -2.699+004 \\ 1.225+003 \\ -1.250+005 \\ -2.699+003 \\ -1.250+005 \\ -2.699+003 \\ -1.250+005 \\ -2.699+003 \\ -1.250+005 \\ -2.699+005 \\ -2.681+004 \\ -2.795+003 \\ -1.260+005 \\ -2.692+005 \\ -2.681+004 \\ -2.795+003 \\ -1.260+005 \\ -2.692+005 \\ -3.292+005 \\ -3.292+005 \\ -4.584+004 \\ +1.008+002 \\ -2.553+003 \\ -1.633+006 \\ -7.4870+004 \\ -7.4870+004 \\ -6.354+002 \\ -1.633+003 \\ -9.740+004 \\ -3.261+005 \\ -4.554+004 \\ -2.682+003 \\ -2.685+003 \\ -3.295+005 \\ -5.056+005 \\ -2.064+004 \\ -2.669+004 \\ -2.865+003 \\ -7.195+005 \\ -5.056+005 \\ -2.066+004 \\ -2.669+004 \\ -2.865+003 \\ -7.195+005 \\ -5.056+005 \\ -2.090+006 \\ -2.669+004 \\ -2.865+003 \\ -7.195+005 \\ -5.056+005 \\ -2.090+006 \\ -2.669+004 \\ -2.865+003 \\ -7.195+005 \\ -5.056+005 \\ -2.090+005 \\ -2.090+006 \\ -2.669+004 \\ -2.865+003 \\ -7.195+005 \\ -5.056+005 \\ -2.090+005 \\ -2.090+006 \\ -2.865+003 \\ -7.195+005 \\ -4.825+005 \\ -2.090+006 \\ -2.865+003 \\ -7.195+005 \\ -4.825+005 \\ -2.990+006 \\ -2.102+004 \\ -2.669+004 \\ -2.865+003 \\ -1.713+006 \\ -2.717+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -2.990+006 \\ -2.865+003 \\ -7.195+005 \\ -4.825+005 \\ -2.990+006 \\ -2.865+005 \\ -4.855+005 \\ -2.990+005 \\ -4.875+005 \\ -2.990+006 \\ -2.865+005 \\ -4.855+005 \\ -2.990+005 \\ -2.990+006 \\ -2.865+005 \\ -4.855+005 \\ -4.855+005 \\ -2.990+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.875+005 \\ -4.87$	1	y	4+032+005	-2.089+004	0.077+003	-1-861+000	-2.775+000	-16/18+00/	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			-4.032+005	5.086+004	-6.677+005	1-861+006	-3.110+004	-4.204+006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T	10	1+786+005	-2.700+004	-1+223+003	7-895+005	3.343+005	-9.164+006	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-1.786+005	2.699+004	1.225+603	-7-895+005	1+800+005	~2,181+006	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	1.351+005	2,099+003,	1.235+003	1-140+005	-5.701+005	3 .931+005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-1.351+005	-2.114+003	-1.235+003	-1-140+005	5.114+004	4.913+005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Z	26694+005	2.681+004	-2.795+003	4-126+005	3.845+005	76261+006	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-2'+694+005	-2.683+004	2.795+003	-4-126+005	7.902+005	4.009+006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	3	-3.129+005	-1.292+005	8:057+002	1.720+006	-2.802+005	-3.877+007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3-129+005	1.292+005	-8-049+002	-1.720+006	-5.827+004	-1-553+007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	- 4	-2:320+006	-6.318+005	2+873+004	1.178+007	-8.197+006	-1.904+008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.321+006	6.318+005	-2.873+004	-1.178+007	-3.876+006	-7.508+007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	- 5	4-584+004	9.750+001	2.554+003	-1-963+006	~7.989+005	-3,793+005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-4-584+004	-1.008+002	-2.553+003	1.963+006	-2.744+005	4-201+005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	7-869+004	-6.364+002	-1.631+003	9.740+004	3.578+005	-3-913+005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		-7-870+004	6.179+002	1.630+003	-9.740+004	3.277+005	1269+005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	7	3-261+004	-1.465+004	-1-982+003	3+013+004	4.547+005	-4-556+006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	_	-3-261+004	1.462+004	1.982+003	-3+013+004	3.782+005	~1_597+006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	8	-1.294+005	-6.769+004	-1.487+002	7.195+005	-6.384+004	-2.047+007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	1+294+005	6.766+004	1.499+002	-7.195+005	1.265+005	-7.969+006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	9	-1-469+005	-6.804+004	1.354+003	5.295+005	-5.056+005	-2.06 6+007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· .		1+469+005	6.803+004	-1.353+003	-5-295+005	-6.333+004	-7.940+006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	10	-1-801+004	-3.669+004	2.865+003	-1.713+006	-9-325+005	-1.127+007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1-802+004	3-669+004	-2 +86 5+00 3	1.713+006	-2.717+005	-4.153+006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		•	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	1-162+005	-8.279+003	2.960+003	-1.702+005	-8.208+005	-2.990+0006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-1-162+005	8.264+003	-2.959+003	1.702+005	-4.231+005	-4.876+005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	2	3+061+005	1.422+004	2.313+003	~6.565+005	-4.875+005	4.023+006	
3 3 -4.636+005 -1.275+005 -5.667+003 -3.108+006 2.091+006 -4.393+007 4.636+005 1.274+005 5.667+003 3.108+006 2.909+005 -9.630+006 3 4 -2.776+006 -5.188+005 -1.950+004 -1.4553+007 6.411+006 -1.788+008 2.776+006 5.188+005 1.950+004 1.453+007 1.784+006 -3.926+007 3 5 3.4026+004 -7.607+003 2.727+003 2.014+006 -9.337405 -2.532+006 -3.025+004 7.604+003 -2.728+003 -2.014+006 -2.127+005 -6.649+005		_	-3+061+005	-1-423+004	-2.313+003	6.565+005	-4-845+005	1.95 4+006	
4:636+005 1.274+005 5.667+003 3.108+006 2.909+005 -94630+006 3 4.21776+006 -5.188+005 -1.950+004 -1.453*007 6.411+006 -1.788+008 2:776+006 5.188+005 1.950+004 1.453*007 1.784+006 -3.926+007 3 5 3.602+004 -7.607+003 2.727+003 2.014+006 -9.337+005 -2.532+006 -3.025+004 7.604+003 -2.728+003 -2.014+006 -2.127+005 -6.649+005 HOJA 23 -3.025+004 -3.025+004 -3.928 -3.928 -3.928	3	3	-4-636+005	-1.275+005	-5.667+003	-3.108+006	2.091+006	-4.393+007	
3 4 -2:776+006 -5:188+005 -1:950+004 -1:453+007 6:411+006 -1:788+008 2:776+006 5:188+005 1:950+004 1:453+007 1:784+006 -3:926+007 3 5 3:026+004 -7:607+003 2:727+003 2:014+006 -9:337+005 -2:532+006 -3:025+004 7:604+003 -2:728+003 -2:014+006 -2:127+005 -6:649+005 MOJA 23 -2:014+006 -2:12742 -2:014+006 -2:127405 -6:649+005	_		4,636+005	1.274+005	5 .667+00 3	3.108+006	2.909+005	-9463 0+006	
2:776+006 5.188+005 1.950+004 1.4534007 1.784+006 -3.926+007 3 5 3.026+004 -7.607+003 2.727+003 2.014+006 -9.337+005 -2.532+006 -3.025+004 7.604+003 -2.728+003 -2.014+006 -2.127+005 -6.649+005 <i>MOJA</i> 23	3	- 4	-21-776+006	~5•188×005	-1.950+004	-1-453+007	6-411+006	-1.788+008	
3 5 31026+004 -7.607+003 2.727+003 2.014+006 -9.337+005 -2.532+006 -3.025+004 7.604+003 -2.728+003 -2.014+006 -2.127+005 -6.649+005 HOTA 23	-	_	2.776+006	5.188+005	1.950+004	1.453+007	1.784+006	-3-926+007	
-31-025+004 7-604+003 -2-728+003 -2-014+006 -2-127+005 -6-649+005 HOJA 23	3	5	3-050+004	-7.607+003	2.727+003	2.014+006	-9+337+005	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -	
HOJA 23			-3-025+004	7+604+003	-2.728+003	-2.014+006	-2+127+005	-6.649+005	
			. ه. به و ر بای د	1 14*****			HOTA	73	

•					
	•••				
	NALISIS PLATAFORMA	MODULO 1			
	3 6 8.240+004	-4 -783+003 5-656+002	-1-528+005	-5-933+004	-1-767+006
	-8-240+004	4-765+003 -5-644+002	1-521+005	-1-782+005	-2440 6+005
	-6-047+004	1+699+002 1+699+002	5.957+004	-1.095+005	-6 76 5+005
	3 8 -1-888+005 1-888+005	-6-225+004 -2-177+003	-1-230+006	8-859+005	-2-147+007
	3 9 -2 217+005	-6-191+004 -1-352+003	-8.195+005	5.704+005	-2-135+007
	2 218+005 3 10 -4 938+004	6.190+004 1.351+003 -3.863+004 1.203+003	8.195+005	-2.224+003	-4-664+006
	4-938+004	3 .863+004: -1.204+003	~1.664+006	-1+362+005	-3+134+006
		1	1		
	4 1 2-059+005	-1-452+004 8-177+003	4.768+005	-2.287+006	-4-287+006
	4 2 6-520+005	9.185+003 -6.740+003	1.213+006	2.612+006	2.84 5+006
	-6-520+005	-9-194+003 6-741+003	-1-213+006	2.207+005	1.016+006
	-9-011+005	1.941+005 1.626+004	-3.520+006	1.589+006	-2.352+007
	4 4 5,224+006	-7.630+005 9.974+004 7.630+005 -9.974+004	1-787+007	-2.645+007	-2-283+008
	4 5 1-640+005	-1-089+004 2-488+003	-1-478+006	-6.557+005	-3-160+006
	4 6 1,364+005	-8.944+003 3.283+003	4-927+005	-8.825+005	-2.666+006
	-1-364+005	8-945+003 -3-281+003	-4-927005	-4.969+005	-1.094+006
	-1-462+005	1.615+004 5.758+002	-6-822+005	1+337+004	-1.93 5+006
	4 8 5 -402+005	9-457+004 1-629+003	2.081+006	-2.002+005	-2-832+007
	4 9 6-765+005	-9.259+004 2.224+004	1-890+006	-6.249+006	-2.77 (+007
	4 10 2-266+005	9-256+004 -2-226+004	-1.590+006	-3.100+006	-1.121+007 -1.693+007
	-2-266+005	5.710+004 -3.870+003	9.198+005	-5-213+005	-7+065+006
	5 1 1-143+005	8.765+002 -2.112+002	-7-431+005	-1-044+004	5 +05 7+005 5 -24 9+005
	5 2 5.143+005	3.838+002 2.040+002	-1.376+006	-1-063+006	-1-594+005
	5 3 4 928+005	7.618+003 1.038+002	-4.260+006	-1-398+006	7 = 19 7 + 005 5 = 30 7 + 006
	-4-928+005	-8.117+003 -1.186+002	4.260+006	1.280+006	2-747+006
	-3-616+006	-3-230+004 -6-713+001	2.076+007	3.618+006	9.591+006
	5 5 1+458+005 -1-457+005	-9-216+001 6-170+001	1.230+006	-1-937+005	1-096+005
	5 6 9.977+004	6-476+002 6-647+001	-5-153+005	-1.451+005	4-14 4+005
	-9-982+004 5 7 1-057+005	-9.960+002 -1.152+002 1.351+003 1.243+002	5-153+005	6.068+004 -2.713+005	3•73 5+005 9•26 1+005
	-1-058+005	+1.854+003 -1.688+002	6-539+005	1-272+005	6-433+005
	-3-364+005	-5.048+003 -4.181+001	2.339+006	5.394+005	1.759+006
	5 9 36777+005 36777+005	4.326+003 -2.888+002	-2-035+006	-1.296+005	3.078+006
	5 10 1-675+005	1.608+003 3.727+001	5-142+005	-2.249+005	1-467+006
	-1-0 /4+005	-1-970+003 1-458+001	-5-142+005	2.034+005	3-315+005
	6 9 4 497.005			2 222.00/	
	-1-417+005	9-038+001 -5-730+001	-1.024+005	-1.135+005	-1,195+005
	6 2 2 492+005	-4-956+003 9-317+002 4-477+003 -9-439+002	2-849-005	-4-247+005	-3,088+006
	224567892 . 1456779	0 1 2 1 4 5 6 7 8 9 61 2 3 4 5 6 7 8 9 61 1	1435/2000	HOTA	24
	1	1			
	•				
					an a
			en en en e		

NALI	SIS	i P	LATA	FORM	N NO	DUL	0 1	ı .													
•		8 9 7	1.5.4	5 4 7 5	1.1.1	2 4 5	5 19 9 6	1.33	45.6		101.	115	e ' a'	9 011	1115	11	4 (1) 1			1145.	
6	3	-1	- 965	+005	- ; Z	•26	1+004	n =	4.9	641	FOD 5	: 7	•60	15+	005	5	•249	+005	1.	208+0	07
		1	965	+005	2	. 31	6+ 004		5.0	38	r dù s	- 1	7.60)5+	005	-7	-688	+003	1.	050+0	ur
6	- 4	-1	-762	+006	1	•11	5+005	-	8.3	924	003	i (5.32	25†I	006	5	-840	+006	6	205+0	07
		1	.762	+006	1	.11	9+005	;	8.4	204	003		5.32	:5+	006	2.	.851	+006	- 5 e	Z4 5+0	07
6	5	5	576	+004	-6	.05	5+002	-	1.2	884	00 2		1.61	11+	006	1.	.661	+005	-1-	333+0	04
•		-5	-573	+004	2	.21	0+002		1.5	724	00 2	1	.61	13+1	006	-2.	430	+004	-4-	925+0	05
6	6	8	.579	+004	-1	-35	4+002		4.0	654	00 2	. 1	3.77	164	004	-2	.289	+005	2 •	879+0	04
-	-	-8	LSAL	4004	- 13	.31	2+002		4.5	524	002		3.77	64	004	-2	.073	+005	-2-	793+0	04
	7	š	105	+004	2	.16	8+003		٦.8	454	002	_	.79	2+	004	-2	.418	+005	1.	439+0	06
v	•		400	1004	2	.40	64003		4.1	0.64	- 00 2		79	24	004	-1	.629	+005	9.	963+0	05
				1004	- 14	44	0+003	1 -	200	6.84	00 2				005	2	147	+005	6-	793+0	06
0	•	-0	570	-004		- 10	4.004	1 -	2.8U 7 4	001		_		0.	005		202	+001	5.	418+0	06
,	~			1004	- 74	426	17004	1	2 • 7	707	002	_			005		104	1005		RXKAN	06 A0
0	Y		-131	+004		•11	U+UU4	1 7	2	001	002				004	4	187	1005	5	440+0	06
		0	-141	+004	-11	•22	7+044		2.7	2 21	002	-9						+005		704+0	00
6	10	2	-248	+004	5	•84	5+003	-]• (181	• UU 2	-	-29	0.4	000		.002	+005	2.	7 7 4 1 0	00
		-2	₽ <u>243</u>	+004	- +6	-18	0+003	,	2.7	984	002		->4	•8+I	006	-04	•992	+004	2.	20140	00
			}					1						1							
			,																_		
7	1	1	271	+005	6	.20	8+002	! -	2.1	144	+ GD 2	-1	1.52	4+	005	3	.050	+005	3+	795+0	05
		-1	.271	+005	-1	.01	5+003	5	2.3	724	+ OD 2	1	•52	44	005	-7.	-816	+004	- 4 - 1	08 Z+O	05
7	2	2	-982	+005	6	.74	2+001		2.1	491	• 0b 2	- (5.40	15+1	005	1.	.744	+005	-1,	057+0	06
		-2	-982	+005	-5	.46	3+002		2.0	274	+ 0D 2	. (5.40	15+1	005	-3	.938	+005	1	299+ 0	96
7	3	3	629	+005	7	-52	2+003		1.1	874	003		2.16	52+	006	-5	. 154	+005	5 -	747+0	06
•	-	- 3	629	+005	-8	-04	3+003		1.1	944	003		-16	2+	006	-7.	161	+005	2.	215+0	06
7		-2	185	+004	ાં ર	.54	1+004			254	100 1		.79		006	-2	.737	+006	2.	347+0	07
•	-		195	1006	1.5	581	0.004			ςί.	003	Ċ	5.70		006	-1	850	+004	1	332+0	07
7	5	2	305	+000		.83	04001		1.6	284	1002			3+	000	1	723	+005	÷.	477+0	05
•			100	1004		24	(. 0 0 7	_	1 0	47.	00 2				000		403	1005	40	27 6+0	ñ.
-			- 202	1004		*61	*******		1.07	472	002		1 406		000		177 172	1005	2	55 7AA	00 05
	D	2		+004	12	• 43	2+002		<u>.</u>	113	002		- 40		005		467	1002	51	020-0	05
-	_	-9	-321	+004	- 71	•240	5+002	1	(# f	041	ruu z				005	0	• 12 (1004	P	72 UTU	07
7	7	_ 7	÷552	+004	. 9	-14	7+002		8.0	731	001	-	••13	56+	004	2	•210	+004	25	87240	05
		-7	"555	+004	-1	•44	3+003		1.0	684	1002	4	•15	64	UUA	5.	•/09	+004	2.	>> 0+0	02
7	8	-1	-356	+005	- 4	•25	1+003		5.5	134	CO 2		.74	4+	005	Z .	.075	+005	2.	95 5+0	06
		1	-356	+005	-4	. 86	7+003	-	5.6	354	002	7	.74	4+1	005	-3	•688	+005	1.	658+0	06
7	9	-1	.689	+005	- 4	.81	2+003		5.4	841	FC0 5		5.70)9+	005	-1.	•649	+005	2.	97.9+0	06
		1	-690	+005	5	•38	7+003		5.9	29+	002	3	•70	19+1	005	-4,	•180	+005	2.	191+0	06
7	10	-1	.418	+004	- 3	.26	4+003		3.3	104	+ CO 2	! 1	1.74	9+	006	5	.549	+004	2.	160+0	06
		1	.423	+004	- ⊢ 3	.60	1+003		3.7	304	002	. -1	.74	9+1	006	-4.	.105	+005	1.	328+0	06
			1					1													
			t		i			1			:						÷		÷		
8	1	1	1946	+005	2	-38	5+003	-	1.6	694	003		5.37	154	005	8	.977	+005	1.	570+0	06
•	•	-1	-946	+005		.74	1+001		1.6	044	00 3		1.37	15+	005		-368	+005	- 1	020+0	06
8	2	Ā	663	+005	-1	.02	0+003			114	002		.04	0+	006	-3.	.216	+005	-7Ľ	72 0+0	05
e		- 6	647	1005		LQ	8×003			714	. nn 2		1.04	0.4	00.6	-1	280	+005	- 1	071+0	30
	7	-0	404	1005	1	100	2+001		• 2	25	002	_ ,		0.4	000		507	1005		07010	nž
0	2		4001	+005	2	• • • • •	7.004	'i		227	003			0.	000		-01. 407	4003	- 11	77740 87740	07
		~;	4007	+005	_ T2	•21	(+004			407	003					2	400	1003		004.0	07
8	- 4	- 5	- 481	+006	1	•40	4+005	-	!•9	4.51	004						.107	+007	t	70 1 70	07
_	-	- 1	481	+000	-1	•40	9+005		1.0	421			•••	11	007					03/10	07
8	5	1	-607	+005	ុខ	•Z6	8+003	- I	5.1	664	00 Z	-	1.Z0	15+1	006	- 16	\$359	4005	1.	10.3+0	00
		-1	-607	+005	-2	.70	1+003	; '	7 •8	804	CO 2		1.20	15+	900	4	•023	+005	1-	399+0	06
8	6	1	-346	+005	1	•45	1+003	- 1	5.5	474	00 2		5.82	30	005	3	•904	+005	9.	790+0	05
		-1	347	+005	- 1	.76	9+003	i) 1	7.0	344	+ CO 2	-	3.82	23*	005	- 3	.025	+005	6 .	08 9+0	05
8	7	1	6420	+005	, S	.56	5+003	: 4	6.9	554	0D 1	i (5.06	64	005	2	.629	+003	16	719+0	06
		~1	6421	+005	+3	.06	8+003	-	5.1	354) CD C	- (5.06	6+	005	-3	.838	+004	1.	105+0	06
8	8	i i	672	+005	1	.59	1+004	-	8.6	044	00 2		2.08	1+	006	3	.029	+005	91	692+0	06
-	-		672	+005	1	.65	1+004	. I	8.7	534	i ch a	_	2.08	19+	006	5	.937	+005	6	979+0	06
R	0	ĸ	[RAT	+005	14	.67	4+004	1 _	ĩ.>	11	1001			5.	006	ź	395	+006	ġ.	516+0	06
0	,	ر ء_	844	4005		.40	1+004		4.2	044	- nn	-		5	004		.079	+004	7.	591+0	06
0	10	-2	001	+002	Γ.	+0Y	17004			1.24		_			000	E 1	. 7 4 5	1000	E E	82140	04
8	10	1	040	+005	17	+191	₩7UU5 4±004	-	9 • 0 9 • 7	111	002	:	7834 5727	74	002	7	*617 .783	4003	21	5 E 140	00
		-1	640	+005	- 1	•01	0+004		0.5	4 4 1	ru z		2.34	14	005	د	.104	1003	20	⇒•a 0×U	00
			* 		and the		1.40	11									y cul	ЧŲJĄ	65		
			1	20.0				1						1					,		

NAL	[\$1	5 P	LAT/	FORM	HODULO	1					
°;≮	5 m P	3 9 9	$ \mathbf{h} ^{2,1}$	15978	90123456	0 9 8 1	1234267593	12345 - 189	113450	789011 - 450	1940 - B. 1949
		,	1		i						
					i	1			1	5	4
9	1	1	441	\$+005	-1.917+	002	8.659+C	02 -1.471	+006 -	-6.139+005	-7.998+004
		-1	.244	+005	-9.422+	002	-9.922+0)2 1.471	+006 -	-2.849+005	4.392+005
9	2	5	1.575	+005	1.545+	003	3 . 372+0	3 -3.087	+006 -	-1.181+006	9.706+005
		-5	587	+005	-3-384+	003	-3.678+0	3 3.087	+006 -	-2.175+006	1.285+006
9	3	2	942	+005	-4-558+	003	2-094+0	3 -9-793	+006 -	-1-245+006	-3-946+006
•	-	-2	04	14005	1.312	003	-2-273+0	0 9.791	+006	-8-324+005	6-186+005
0	4	2	84	4004	-1.1164	004	2-975+0	14 -5-343	4007	-1-220+007	-1-766+007
•		_2	847	7+005	8-1374	003	-2-935+0	04 5-343	+007	-1.655+007	7.897+006
	c	- 4	6 10	4005	-1.0104	003	4.765+0		-	-1.257+005	7.605+004
,	2	_1	641	14005	3.1404	005	4.743+0	11	4006	-1-867+005	-5-8244005
~	,		401		5.1001	002	9 20 24 0		000	- F 1064005	
	0		404		- 1 1074	002		JZ -00700 N7 4 749	4005	-4 3404005	4 0184005
•	_	-1	0190	57005	-1+1927	003	~1.200+0		+005	-4.30UTUU3	1.69384003
y	(. !	F001	+005	-2-051-	003	0.032+0	02 -8+318	+005	-3.280+005	-/-005+005
_		-1	.003	5+005	+1.020+	003	-9-214+0	12 8+518	+005	~3.042+005	-1-852+005
9		2	-558	3+005	-3 -583+	003	1.656+0	03 -5.008	+006 ·	-7.779+005	-2-240+006
		-2	1 556	5+005	+2.658+	002	-1.583+0	03 5.008	+006 -	-8-148+005	1 •04 5+005
9	9	- 3	+260)+005	-2.944+	003	2.676+0	03 -4.529	+006 -	-1.174+006	-1.936+006
		-3	\$254	+005	-2-629+	001	-2.151+0(03 4.529	+006 -	-1.270+006	1,807+005
9	10	1	-311	+005	-1.724+	003	7.752+0	02 1.03 7	+006 -	-3+850+005	-9-97.6+005
		-1	307	200+	1.759+	003	-3.408+0	2 -1.037	4006 -	-2.161+005	-4.738+005
			1			;					
			1			1					
10	1	1	-556	+005	-1-311+	003	-2.061+0	2 5-989	+005 -	-1.567+005	2-861+004
••	•	-1	1558	+005	-9-110+	000	7-980+0	1 -5-989	+005	2-97+005	-8-025+005
10	2	5	633	+005	3.434	0.03	-7.134+0	17 0.827	4005	2.723+005	2.009+004
	-	-2	. 6.72	+005	LA. 4444	003	1.077+0	13 -0-823	+005	1-735+004	1-874+004
10	7	_4	502	1005		005	-4 340400		4004	1 034+005	-1 24 44 007
10	5	- 4	504		-201007	004		J2.6097	A004	1 0574004	- 1 - 2 4 0 + 0 07
40	,		8391	1005	1	004	7.037700	JC -COVJ	0007	1 398.004	-/ 102.007
10	•	-1	+023	+006	78.0/44	004	-4.421+0	JJ 1.000	+007 -	-1.200+000	-0.192+007
	-	1	+023	+000	18.5201	004	4.404+0	03 -1.500	+007	5.020+000	-2.294+007
10	<u>ک</u>	6	+80.	5+004	3.520+	003	-7.865+6	32 -3.357	+008	-5.210+004	5-286+005
		~6	-815	+004	+6+765+	003	1.307+0	03 3.357	+006	9+649+005	3-888+006
10	6	- 9	-883	5+004	-2.669+	002	3 •86 0+ CI	01 5.215	+005 -	-7.373+004	-3.558+004
		-9	.924	+004	1.751+	002	-4 • 73 5+ 0	02 -5+215	#005 ·	-1.140+005	-3.924+004
10	7	6	. 656	5+004	-2 •233+	003	-9.342+0	00 4.078	84005 -	-7.894+004	-1.298+006
		-6	-702	2+004	1.288+	003	-4+047+0	02 -4.07 8	+005 -	-4.590+004	-5.340+005
10	8	-3	-961	+004	- <u>-</u> 1.138+	004	-3.785+0	02 1.225	+006 -	-4.156+004	-6.536+006
		- 3	-926	\$+004	8.660+	003	1.263+0	02 -1.225	+006	3.505+005	-3.393+006
10	9	-5	571	+004	+1-110+	004	-5.179+C	02 7.344	+005	-3-191+004	-6-586+006
		Ś	.575	+004	7-073+	003	6-619+0	02 -7-344	+005	6.083+005	-2-757+006
10	10	Ā	261	+004	-2-179+	003	-1-764+0	17 -112	+006	9-884+004	-2-855+006
		-6	100	200+0	LA .035+	0.02	2.381+0	3.112	+004	1-800+006	1-661+006
			••••				2001-0			10000.000	
					1		I				
11	1	4	L551	+005	-2 -0854	003	-8-445+0	7.27	iènns	4-174+005	+7 -02 54 0.05
	•		880		7 44/-	000	0.7004	v⊾ −/•∠/3 17 7 7071	-003	4.407+007	
	2		040	1005	1.4.4444	002	7010040	JC 14613 37 -4 430	4004	T 0/0+005	-0+210+003
	ć			+005		003	-1-1YOT U	JJ -1.420	-000	3.9494003	-1.403+000
	-	-4	9 950	1+005	3.4074	003	1.353+0	1.428	+006	8.280+005	-2.3294100
11	3		-133	5+004	+1.192+	004	8+182+0	32 -4-141	+006 -	-3-010+005	-8.014+000
		- 7	101م	+004	1.026+	004	-5-438+00	J2 4-14 1	+006 -	-4-303+005	-2.135+006
11	- 4	-1	+297	+006	- <u>-</u> -3 -4 62+	004	1.098+0)4 -1.5 38	+007 -	-4.850+006	-3 -58 7+007
		1	h297	+006	3.108+	004	-1.102+0	1.53 8	+007 -	-5-844+006	3-510+006
11	5	- 5	-913	5+004	-1-958+	003	-3.109+0	3.476	006	4-172+005	-7-593+085
		-5	\$865	+004	-1.287+	003	-2.097+0	2 -3.476	+006 -	-2+657+005	-1,372+005
11	6	1	-184	+005	-8-999+	002	-7.898+0	2 -5.993	+005	4-561+005	-2,473+005
		-1	-188	+005	8.081+	002	1.225+0	3 5.993	+005	4-601+005	-4-415+005
11	7	1	L09P	+005	-2-150+	003	-6.728+0	12 -4-160	+005	3-415+005	-6-800+005
• •	•	-1	10	+005	9-050+	002	1.087+0	3 4.160	+005	4-450+005	-7-807+005
		•	۲. v		, , , , , , , , , , , , , , , , , , , ,				1.000	HOTA	26
234		89ú	120	456/9	9- 2345 :	190	12:15/1690	1234511490	12323	The state of the s	17. s . s . s . s . s . s . s . s . s . s
							ţ		'	1 · · ·	

					21 - C																		
			NONU O 1																				
RALI		5 FERIATURDA 8 - 214.2152	12345625901	2215 ATAN dias	131149511231	1.2.2	• 2																
11	8	9-741+003	+7-248+003	1.291+001	-1-707+006	1.829+003	-4_497+006																
••	-	-1-009+004	4-524+003	2.393+002	1-707+006	4.381+004	-1-420+006																
11	9	-2-947+004	-7.409+003	1.580+002	-9.782+005	-8.696+004	-4-837+006																
		2,950+004	3 .386+003	-3-020+002	9.782+005	-1-404+005	-9-310+005																
11	10	6-981+004	-4.005+003	1.936+001	3.863+006	2.873+004	-2.447+005																
		-6-919+004	1.133+003	-6.3664002	-3-863+006	-2.558+005	-5.19 1+005																
			1		Ì	ì																	
		2.079.005		4 8944037	4.371+005	-8-887+005	-1-171+006																
12	•	-2-040+005	2.004+003	-1-755+683	-4.371+005	-8-766+005	-2-279+005																
12	2	6-934+005	8-245+003	-2-083+003	2.189+006	6.954+005	1.742+006																
		-6-937+005	-1.008+004	2.388+003	-2-189+006	1.410+006	7.011+006																
12	3	7 417+005	-1-480+004	2.489+002	7-949+006	5.413+005	-1.618+007																
	-	-7-418+005	1.156+004	-6.993+001	-7-949+006	-7.357+005	2+917+006																
12	- 4	4-366+006	-1.131+005	-2.617+004	3.922007	-3.483+006	-7.706+007																
		-4-366+006	1.101+005	2.577+004	-3-922+007	2.876+007	-3-156+007																
12	5	1-710+005	-6-501+003	1-954+003	-3-164+006	-5-499+005	-1.650+006																
		-1.705+005	5-807+003	-2.473+003	3-164+006	~1.495+006	-4,1027000																
12	6	1-4534005	+1-559+003	2.488+002	5-490+005	-2-030+005	-1-121+005																
	-	-1-428+005	1.98/+002	-4 407+002	0.5744005	1.603+005	-1-322+006																
12	(1+2107002	-1-434+002	0+472+002	-9.524+005	5-675+005	-1-227+005																
12	8	41632+005	-9.600+003	8.293+002	4-3234006	-4-534+005	-8.183+006																
	Ŭ	-4-630+005	5.760+003	-9.024+002	-4-323+006	-3.647+005	2.035+005																
12	9	51792+005	-1.291+004	2.284+003	3.885+006	-2.175+006	-8.810+006																
		-5-786+005	9.938+003	-2-810+003	-3+885+006	-1.927+005	-2.609+016																
12	10	1-843+005	-9.547+003	1.049+003	-1-597+006	-5.576+005	-5,267+006																
		-1-839+005	9.581+003	-1.483+003	1.597+006	-6.103+005	-3,791+006																
		1	1		i.		1																
		4 574.005		7	3 4484004	4 1774005	-5 57 14005																
13	1	1-576+005	-2.0/9+004	-3-234+003	-2-118+006	1+4337003																	
13	2	5 767+005	-1-788+004	-1-474+684	-4-062+006	1-692+006	-1-083+006																
15	. *	-5-801+005	1.407+004	1-219+004	4-062+006	7.016+006	-9-511+006																
13	3	2-998+005	-1-246+004	1-318+004	-1-271+007	4.391+005	-1-820+006																
	-	-2.988+005	-1.952+004	-1.602+004	1-271+007	-9.497+006	-5-580+004																
13	4	2,858+006	7-511+004	-8-389+004	-7-509+007	1.340+007	-1.484+007																
		-2-846+006	+8.982+004	9.119+004	7+509+007	4.223+007	6.663+007																
13	5	1-663+005	7+462+003	-8.679+003	4.055+006	1.004+006	9.402+005																
		-1-658+005	1-824+004	1.239+004	-4.055+006	5+418+006	-4./594005																
13	6	1-304+005	-8-751+005	-1-155+003	-0.500+005	3+3/14004	-4:8574004																
47	-	-1-317+005	7-7874003	2.525+002	-5 0284005	1.2314005	-4-0374000																
13	C	-1-122-005	-3-0044003	-2.101407002	5-028+005	-2-774+005	-2-449+004																
13	8	2.644+005	-2.620+003	-5-324+003	-6.007+004	9.130+005	-6.879+005																
	•	-2.608+005	-1-123+004	5.987+003	6.007+006	2.683+006	-5.077+005																
13	9	3.359+005	6.816+002	-2-431+004	-5.580+006	1.744+006	-5.042+005																
		-3-295+005	-1.005+004	2.853+004	5,580+006	1.489+007	3-212+006																
13	10	1-360+005	2.129+003	-1.416+003	1.089+006	5.964+005	4.780+005																
		-1-378+005	9.851+003	1.987+003	-1-089+006	5.387+005	-1.558+006																
		4 -	1																				
	•	4		a an the	-		7 1000004																
14	1	1-547+005	7.129+003	9.004+002	2+734+006	-3-969+005	3 #49 940 00																
47	2	- 1-224005	E 4504002	-0+020+UU2	1.0144004		1.5504004																
14	2	-1-931+005	-5 -07 5 10 10 10 10	3-8544803	-1-9144004		-1-328+0.04																
14	3	7 988+004	-1.007+004	-7-242+002	1.441+006	4.819+005	-2.732+005																
• •	-	-8-070+004	1 .768+004	-2-050+002	-1-441+006	-3.730+005	-8.553+006																
14	4	-3-870+005	-6 -27 2+004	-2.030+004	1.608+007	1.053+007	-1.93 6+007																
		3-831+005	5 .766+004	1.792+004	-1.608+007	1.851+006	-1.917+007																
			1			HOJA	27																
	:07	, entran - 19 - 9 e	1 43674401	11430191.			r																
		-																					
---	------------	--------	------------	------------------	--------------	------------------	-----------------------	---------------	--------------	------------	-----------	-------	----------------	------------	--------------	--------------------	-----------------	------------	------------------	--------	--------	--------------------	----------
:	N#1	1515	i P	LAT	AFOR	2 8 9 9 -	- HO - 1- 2		2 7 6/63	, di	234	5 5 7	623	1. 2.1	45.6	785	م و <u>د ان</u>	5 . 7	4 4 0		• .	134511	546
	14	5	5	51	9+00	34	-1	.795	;+n0	4	1.	.06	2+0	04	-2.	78	5+006	-	1.33	1+006	-7	178+00	6
	• •	-	-5	43	3+00	4	+1	-501	+00	4	-1.	00	õ+0	P 4	2	785	+006	-	5.09	8+006	-2	-591+00	6
	14	6	1	-05	0+00	35	÷3	.448	3+00	3	1.	-34	7+0	D 3	7	.090	3+005	-	9.37	7+005	1	02 5+00	6
	. .	-	-1	-07	4+00	55	-3	•024	+00	3	-2.	20	7+0	03	-7.	.090	+005	-	2.45	1+005	9	629+00	5
	14	7	, v	11 جم	1+00	34	- 3	.256	5+00	Z	_1.	44	6+0 0+0	03	5	213	7005		9.50 7.70	1+005		427400	5
	14	8	- 9	51	(+UU 8+0()4)6	17	.58/	+00	3		47	0∓0 2+C	03	-20	267	+005	_	2.46	8+005	-4	-266+00	5
	• •	•	-8	.66	9+00	14	7	.664	+00	3	-1.	35	ō+0	03	-1	262	+006	-:	3.45	2+005	-4	.305+00	6
	14	9	6	.97	9+00	34	-1	.169	+00	6	-6.	74	6+C	D Z	1.	.798	3+006		3.42	3+005	-1	. 492+00	6
			-7	-14	5+00	34	: 6	.000	+00	3	-3.	41	2+0	<u>p</u> 2	-1.	.798	+006	-	5-50	4+005	~3	B37+00	6
	14	10	_9	-33	1+00)4 14	13	•960 •03	5+00 ****	4	3.	32	2+0	D3	-4.	244	+006	_	2.20 4.43	9+005	-2	473400	6
			-0	•71(5700	14	-6	•003	+00	3	-3.	. 43	170	υz				-	1.00	04000	- 3	.012400	0
										i				1									
	15	1	1	<mark>65'</mark>	1+00	05	9	.523	1+00	3	1.	70	2+0	03	-1.	353	+006	-	3.09	6+005	9	+554+00	5
			-1	-65	7+00)5	+1	-811	+00	4	-1.	74	0+0	03	1.	355	+006	-1	8.14	9+005	7	.973+00	6
	15	2	3	.06	5+00	35	1	•030	+00	4	5.	85	3+0	03	-1.	.744	+006	-	8.12	2+005	2	-499+00	6
	15	T	25	87	07UU 7±00	15	20	017		44 / 14	-1.	47	3∓U & ≜ 0	04		784		-	0.00 0.00	27000		*******	5 #
		2	5	-75	5+00	14	7	.711	+00	3	5.	11	9 ¥ U 8 ¥ O	02	-2	781	+006		9-01	14005	-7	-354+00	6
	15	4	-1	-28	s+00	36	-4	.471	+00	4	8.	71	7+C	03	-1	812	+007		6.85	9+006	-1	.120+00	7
			1	-28	2+00	6	3	966	+00	4	-6.	33	7+Ö	03	1.	812	+007		1.17	5+007	-1	-568400	7
	15	5	5	.89	8+00)4	-6	-69 C	+00	3	-1.	09	3+6	04	3.	449	+006	-	1.57	0+005	1	439+00	5
			-5	-81	2+00	14	÷2.	626	+00	4	1.	03	6+0	D 4	-3.	449	+006		6.78	5+006	2	.365+006	5
	15	6	1	•28	5+00	35	6	•727	+00	3	6.	03	6+0 / • 0	0 Z	~6.	358	+005		4 - 68	74004	0		5
	15	7	-1	- 27	5+0U 0+nr	15 15	-0	•303 .149	+00	3. T	5	50	9 ¥ U 5 + C	02 n 2	-6	761	14005		2 • 10 1 - 12	0+004	с Я	- 32 5+000	5
		•	-1	20	5+00	15	-4	.002	+00	3	-1.	13	7+0	ŏź.	-4.	741	+005	-	1.55	0+0.15	1	-301+00	5
	15	8	Ż	.03	8+00	54	-1	485	+00	3	3.	93	4+Ö	02	-2	175	+006	ł	5.25	8+005	4	-529+00	5
			2	-18	9+00)4	1	563	+00	3,	6.	15	4+0	02	2.	.175	+006		4.12	100+0	1	.240+00:	6
	15	9	-2	-14	5+00)4	~6	-263	+00	3	3.	31	6+0	D 5	-1.	.810	1+006		5.73	6+005	-4	-389+00	~
			1	97	9+00	14	5	•744	+00	Z	6.	84	3+0	DZ	!•	810	+006	-	4.73	7+005	-1	•777+00	6
	15	10		a 174	97UL 1400	34 16	-8	•/// 345	+00	2	-2.	003	0 = 0 2 = 0	02		347	000 T	-	2020 0.77	34005	-7	-2434UU -964300	2 5
			0									**								1.001			,
				ŀ										1									
	16	1	1	.79	4+0 0)5	-9	.260	+00	3(-5.	18	3+0	01	1.	.464	+006		1.19	7+005	-3	is398+00	6
		-	-1	-79	9+00)5	1	.607	+00	4	-1.	45	3+0	02	-1,	464	+006	-	1.51	4+005	-4	627+00	6
	16	2		•81 •81	1+00	35	3	•155	+00		-1-	83	0+0 7+0	03	5	960	1+006		2.28	24006	-9	+204+00	2
	16	3	-1	82	1 4 N L	75 15	47	+004 -670	+00	2		90	7 + 0 7 + 0	0.5	- 24	357)+000 2+007		2002 5.88	44005		+821+00	7
			-4	81	1+00)s	4	.432	+00	4	2.	36	1+0	04	-2.	357	+007		8.08	5+006	2	495+00	7
	16	- 4	2	.85	7+00	26	-2	.310	+00	4	1.	28	0+0	05	1.	275	+008	-	5.09	2+007	-6	.753+00	6
			-2	-84	5+00	6	8	.387	+00	3	-1.	35	3+0	05	-1,	275	÷008	-	3-32	5+007	-4	-960+00	6
	16	·5	1	•48	0+00	35	11	.803	+00	4	5.	21	3+ C	03	-6.	.492	2+006	-	1.65	4+006	3	-577+00	6
	44		-1	-47	5+00	15		•073	+00	5	-8.	92	4 4 U 7 4 0	03	, 6 ,	496	.+006	. -	2	7+006	2	-7224000	6
	10	0	-1		40C	72	T?	+32 -357	+00		-10	20	(+u	ינט חז		. 4 0 . . 4 4 0	1+003 1+005		2.37	3+005		+254+00 -132+11	6
	16	7	1	56	5+00	35	-9	.746	+00	3	-1.	38	2+0	03	-1	361	\$+004		1.17	5+006	-1	-504+00	6
		•	-1	-58	8+00	5	-2	.320	+00	3	4.	07	0+0	03	1	368	+004	;	2.50	8+005		-04 0+00	6
	16	8	3	-27	5+00)5	-3	.274	+00	4	8.	77	2+0	0 Z	1.	.074	+007	-	5.81	2+005	-6	-597+00	6
	<u>.</u> .	-	-3	-23	9+00)5	1	-289	+00	4	-1.	54	0+0	03	-1.	074	+007	-	1.39	3+005	-1	+02 0+00	7
	16	9	3	-89	(+00	15	-1	.228	F+00	4	2.	03	5+0	14	1	.047	r+007	-	1.11	5+006	-1	.825+00	6
	14	10	د- و	1024 1024	9400 9400	75 16	10	•710 -570	1400	2	- <u></u>	47	J ¥ Ŭ Q ♠ ſ	52	-14	077	.≠UU/ 1ènn=	-	0.94 0.85	34004	د~	43 4400	A
	.0		~0	17	5+00	54	1	102	+00	4	-1.	20	0+ n	02	- 24	971	1003 1005		7002	64004		2074400	6
				ŗ			+ '			1		L.7	.	٢			1	-					-
										1							4						
	17	1	7	-23.	1+00)4	-3	.841	+00	4	-3.	30	5+0	03	8.	600	+005		1.90	3+006	-1	#787+00	7
			-7	53	+00	14	. 3	-841	+00	4	3.	30	5+0	p 3	~8.	600	+005	-	2.99	6+005	-7	-589+00	5
	. 234	5 + 71	8 4 e	1.2	1 N E	• . •	• • • •	3 4 5	L · : 0	۵,	: : . !		÷ 5. 0	12:	+ : .	÷ • .		a 1	• • •	MUJA	60	1	,
				•						'							1		1			•	

INALI	515	P	LATA	FORM	AMO	DUL	01								.t.			- 1
	5 . 7 .	9 V C		3624 1005			7+00E	4	04	2400	Â.	-1.30	164007		160+0	107	7-853+004	4
17	2	2	1003	+005	- 74	•43	74005	_4	00e 84	2+00	2	9.30	164007	2.	866+0	10.6	-6-784+007	,
47	7	-0	0000	+005		-63	1+005		. 10	2+00	2	6.10	14+005	-2.	254+0	07	-1-839+000	5
11	2		744	+005	5	74	24004	-6	.00	2+00	7	-6.10	4005	-1.	481+0	06	~2-093+002	į
47		- 2	744	+005			34005		•77 **	2+00	2	-2.30	44008	×.	707+0	07	-9-878+007	,
17	4		- 10	+006			21005	-0	•00	4.00	Ē	-6+37		7	04240	0.0	7.587+007	,
-		-]	6008	+006	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	:	7+005	7	• []	1400	7	-1 40	151004	2.	90210	00	-4.209+004	Ł
17	2	0	1212	+004	14	-26	2+004	-7	• (0	8 T UU .	2	- 1+07			76140		4 400-00	• c
		-0	745	+004	4	•51	1+003	2	.10	2+00	4	1.01	/3+UU0		707TU) L
17	Ċ.	c	-000	+004		•11	27004		•00	7 4 00 1	2	4641		-24	001-00		- 7 7 4 000	
	_	-0	-686	+004	11	•11	2+004	-9	-06	7+60	٤.		10+005	-!-	21010	0.5		2
17	7	6	-421	+004		• 32	4+003		• 56	9+00.	2	0.11	15-005	e	07270	00	-1.304+000	
		-6	421	+004	3	•32	4+003	-3	•56	9+0p	3	-0.11	15+005	-7-	892+0	104	-1.0/9+003	2
17	8	1	j 389	+005	-6	•21	7+004	3.	•83	6+00.	3	9.71	99005	-1-	263+U	00	-1.995+004	2
		-1	168	+005		•35	6+004	-3	•78	2+0D:	3	-9.71	9+005	-1-	994+0	105	-8.399+000	2
17	9	1	6028	+005	- [-1	•85	3+004	-2.	• 47	7+004	4	2.46	4+006	1.	676+0	07	2+429+000	2
		-6	758	+004	-5	•31	7+004	5	•85	5+0D+	4	-2.46	54+006	3.	708+0	05	-3.585+005	į.,
17	10	6	170	+004	5	•52	5+003	2	•45	3+001	3	-2.12	1+005	-1-	034+0	06	2.505+006	,
		-6	170	+004	-5	•52	5+003	-2	• 45	3+00:	3	2.12	21+005	-1-	558+0	05	1.737+005	ŧ.
										:		_	-i					_
18	1	1	-405	+005	. 4	.89	5+004	5	.96	8+002	2	2.78	38 , 006	- Z.	888+0	05	-1+47 5+005	i.
		-1	.405	+005	— - 4	.89	5+004	-5	• 96	8+CD :	2	-2-78	38,006	-5.	782+0	105	2,389+007	ŗ.,
18	2	1	.797	+005	- 4	.26	9+004	-3,	81	8+003	3	1.54	2+006	8.	389+0	05	4.801+006	,
		-1	1797	+005	-4	.26	9+004	3.	-81	8+CP:	3	-1.54	2+ 006	1.	013+0	06	1-590+007	,
18	3	- 7	109	+004	. 2	•51	2+004	7.	.08	8+007	2	2.52	24+005	6.	610+0	05	1.004+007	,
		-7	.109	+004	-2	.51	2+004	-7.	•O8	8+00:	2	-2.52	24+005	-1.	005+0	06	2.145+006	5
18	- 4	3	941	+005	-4	.77	8+004	-2	•41	9+001	3	1.26	50+007	1.	539+0	05	1:062+007	r
		3	1941	+005	÷ 4	.77	8+004	2	.41	9+000	3	-1-26	50+007	1.	019+0	06	-3-379+007	1
18	5	6	.575	+004	4	.61	9+003	1.	.15	1+00	4	3.72	8+006	-5.	943+0	06	5.172+006	Ĵ
		-6	904	+004	- ÷1	.54	0+004	-1	.54	2+00/	4	-3.72	28+006	-1.	298+0	06	1.081+006	5
18	6	9	.200	+004	1	.38	0+004	-1.	.93	0+002	2	6.17	1+005	3.	014+0	05	5.966+005	í
		-9	.200	+004	÷1	.38	0+004	1.	.93	0+002	2	-6.17	1+005	-2.	079+0	05	6.095+006	5
18	7	8	.008	+004	6	.67	2+003	-4	42	9+002	2	2.87	2+005	3.	702+0	05	1.547+006	5
		-8	.008	+004	~6	.67	2+003	4	.42	9+003	2	-2.87	2+005	-1.	555+0	05	1.689+006	5
18	8	7	.441	+004	1	.26	3+004	-3	.50	6+007	ż	5.50	14 4 005	5.	775+0	05	5.051+006	5
	-	-7	.441	+004	1	.26	3+004	3.	50	6+002	2	-5.50	4+005	-4.	075+0	05	1.072+004	5
12	9	5	.904	+004	5	.68	6+003	-1.	.03	8+0D	3	1.10	4+006	6.	177+0	05	3.567+006	5
		-5	904	+004	- 45	.68	6+003	1	.03	8+001	3	-1-10	34+006	-1.	142+0	05	-8-094+005	;
18	10	6	.779	+004	-1	.07	5+004	4.	.67	0+00	3	1.84	2+006	4.1	848+0	05	7.137+006	5
		-6	412	+004	-2	-54	3+004	-4	.95	0+ CD 1		-1-84	2+006	-2.	764+0	06	3.602+005	;
			1								•				1		1	
										{							1	
19	1	7	045	+004	2	-17	4+004	-1.	-58	1+002	2	1.73	\$8 + 004	-5.	512+0	04	9-817+006	5
	•	-7	-045	+004	-2	.17	4+004	1	-58	1+00:	2	-1.73	18+004	1-	318+0	105	7-250+005	5
19	2	1	-085	+005	15	-30	9+004	4	.98	6+00	3	-2.73	7+006	-1.	884+0	06	1.199+007	P
		-1	-085	+005	-5	30	9+004	-6	.08	6+00	1	2.71	7+006	-5.	339+0	0.5	1-375+007	,
19	3	8	.357	+004	13	.15	7+004	1	.47	0+003	2	-1.77	3+006	-5.	143+0	05	1-133+007	r
••	•	-8	\$357	+004	- 13	.15	7+004	-1	47	0+00	2	1.77	73+006	- 4.	430+0	05	3-980+006	5
19	4	3	245	+004	1	.20	2+005	र	.41	4+004	4	-1.40	3+007	-1-	145+0	07	-4.76 1+007	,
		-3	245	+004		.20	2+005	-3	41	4+00	4	1.40	3+007	~5.	104+0	80	-1-502+007	7
19	5	5	646	+004	1.1	.51	7+004	-1	.72	2+00/		-2.14	0+006	1.	013+0	07	1-43 6+006	5
••	-	÷5	975	+004	4		6+003	2	.11	3+00/	2	2.14	9+006	-1.	223+0	05	-2-99 6+005	;
19	6		647	+004	9	1.84	2+0.03	-1	.80	5+00	Ύ.	1.52	5+005	7.	486+0	05	3.978+004	5
	v		647	+004	La	RA	2+007		.8n	5+00	ĩ	-1-52	5+005	1.	26040	05	3-09 8+004	ŝ
19	7	Ă	561	+004	2	.74	1+007		.71	3+001	ĩ	1.22	0+004	7.	351+0	05	2-010+004	ŝ
• •	•		547	+004		. 74	1+007		.71	7+00.	ĩ	-1 27	20+004	6	567+0	n.	2.98 1+004	ŝ
10	R		000	+004			R4002	0	- 1 - 7 °	1+ ch :	2	-1.04	2+004	<i>.</i>	364+0	05	2.1044004	ί.
• *	•		000	+004	L	. 07	3+003		.7e	4+002	5	1 04	24004		662+0	nί	1.2534004	Á.
10	0		040	+004		476	0+005	- 0	.77	7+001	5	-1-77	24004		705+0	05	-4-4034004	
• /	,	A	0000	4004	- T-	47	91004	-0	.77	7+007	5	1 27	24000		57940	105	-1-22 44004	ś
		- 0	-000	.004	('		++UU44	0	• • •		٤.	10.31	4.000		110	TA 2	a	1
7 3 4			1231	5578	2011			1234		19.01	2		- 1121	• t.	no	in L	P 123.	
					1					1			1		+			

40	40	1 970	1000		-4 7704007		7 4904004	4 4 4 04 0 04
19	10	-6-509	+004	-1.166+004	6+619+003	2.929+006	-9.127+004	~5.910+005
20	1	1.626	HC 05	-4.948+004	7-064+002	9-392+005	-1.776+005	-1+672+005
	•	-1-626	+005	4 .948+004	-7.064+002	-9-392+005	-1.649+005	-2.383+007
20	2	8-148	+005	-1-805+005'	3-423+003	8-530+006	6-889+005	8.392+006
20	7	-8,148	+005	7.805+005:	-3+423+003	-8.530+006	-2.349+006	-9.591+007
20	د	-41838	+005	6-766+004	1.188+005	~2.0669007	4-763+007	-9.959+007
20	4	2.980	+006	-9.483+003	9.856+005	1.605+008	1.841+007	-8.630+006
		-2-872	+006	-3-653+005	-1.090+006	-1-605+008	-5-104+008	5-104+007
20	5	9.575	+004	1.090+004	1.630+004	1.750+006	-5.033+006	-5.500+006
20		4 3 35	S+004	-2.501+004	-1.955+0U4 3.325+002	-1+750+008	-4-201+000	-4-709+004
20	0	-1-325	+005	2.591+004	-3-325+002	-3-117+005	1.654+005	-1-207+007
20	7	1.495	+005	-2.064+004	-7.679+002	2-437+005	-1.426+005	7.382+005
		-1-495	+005	2.064+004	7.679+002	-2.437.005	5.150+005	-1.075+007
20	8	3-192	+005	-9-182+004	5-846+003	7.760+006	-3+827+005	7.666+006
20	٥	-25971	+005	6+089+003	-5.901+003	-7.760+006	-2.550+000	-3.04 6+007
20		-3-216	+005	+5-132+004	-1-164+005	-8-523+006	~4-527+007	-1-699+006
20	10	71977	+004	6.507+003	1.037+003	-5.645+004	1.095+005	3-774+006
		-7'-977	+004	-6.507+003	-1.037+003	5-645+004	-6.126+005	-6-189+005
		-7 75/	1007	4 400+000	-4 9974004	- 5 7404002	4 440+004	-7 70 440.07
21		2-754	+003	9.081-001	1-887+001	5-360+002	1.554+004	-7-415+007
21	2	-8-399	+003	+8.812+001	1.301+000	1.031+004	2.026+004	-1.412+005
	<u>, 1</u>	8,399	+003	8-549+001	-1-302+000	-1-031+004	-2.417+004	-3-22 4+005
21	3	4.717	+003	4 -494+002	-1-510+002	2-530+004	2.946+005	6-584+005
-	,	-46717	+003	-4 .497+002	1.510+002	-2.530+004	1.587+005	6-87 1+005
21	•	-1-894	14004 14004	-2-160+003	7.341+002	-7 8944003	7.0384005	3+1/4+000
21	5	-1-440	+003	8-765+000	-1.426+001	3-043+003	-1.991+004	1-866+004
	-	1.440	+003	-4 .979+000	1.426+001	-3-043+003	6-272+004	2-015+003
21	6	-1-832	+003	3.089+000	-1.585+001	-3.512+001	3+543+004	7.362+003
~.		1-832	+003	-9.127+000	1.585+001	3-512+001	1.516+004	1-098+004
21	ſ	-0-84U	4002	5.0464001	-2.930+001	3-409+003	5.2324004	8+123+004
21	8	1.328	+003	2.399+002	-9-416+001	7-901+003	1.778+005	314734005
	•	-1-328	+003	-2.400+002	9.416+CD1	-7-901+003	1.049+005	3.637+005
21	9	9.523	+002	2 .421+002	-1+043+002	-5-521+003	1.902+005	3-493+005
~ <	**	-9.519	+002	-2-378+002	1.043+002	5-521+003	1.230+005	3=64 4+005
21	10	86139 -86142	+002	1.358+002	-5.383+001 5.383+001	5+276+003 -5+276+003	5.025+004 1.114+005	2507 5005
						i	1	
22	1	-2-505	+003	4.583+000	-4.855+001	8-970+003	1.354+004	1=22 5+004
22	7	2.505	+003	+1.593+001	-7.314+001	-8.970+003	-5-045+004	g -85 4+004
"	۲	41488	+003	-3-9147000°	-6.614+001	4-9494003	5+1214004	3.7164003
22	3	2,933	+003	-5-347-001	~5.733+001	4-537+004	1.613+004	-1.509+003
		-2-933	+003	1-211+001	-6.767+001	-4-537+004	-3.165+004	-1-748+004
22	- 4	3-122	+004	3-479+001	-4.883+001	9-768+004	4.363+004	8-125+004
22		-31122	+004	-1.778+001	-5+991+001	-9.768-004	-6.026+004	-2.334+003
"	2	11309	**UU3 •#Nnt	+ T .796+001	-5.653+001	3+6272003	-4.358+004	1-013+004
22	6	-1.962	+003	-1.387+001	-6.165+001	3-962+003	2.963+004	-8-65 2+003
	-	1.962	+003	-1.015+001	-6.749+001	-3.962+003	-3.840+004	3.070+003
		i		•			110 11	

INALISIS	PLATAFORMA	MODULO	1
----------	------------	--------	---

4 *	,	110	1123					4.5	6 7	•	12.1	4.5	61	890	ի.	11.	, e	• 4	Υ.	, : .	\cdot		1	. n : t	e ' 7	5	, e ,	2
22	7	~1	662	+0	03	÷-5		361	+0	00	7	.1	0	5+0	י מנ	ł –	-5	.0	77	+002	3	5.7	43	+004	4	-8.0	04	+003
	•	- 1	665	+0	03	17		677	'+ñ	001	-7	-i	128	1+0	'n	1	5	.0	77	+002		2.7	25	+00/	٤.	-4.8	13	+003
22	8	ġ	OR/	40	0.2	- 12		145	÷n	00	-6		6	+	10 1		1	.7	4 R	1004		.3	83	+004	6	1.5	18	+003
••		-ś	08/		0.2			277	-	0.1	-7		R	+1	'n.		-i	.7	Å Å	+004			6.	+00/	<u>.</u>	-1.0	138	+004
22	•				07					04		- 4	12 1		ίĥ,	i	4		70.	1004			¥7	4001	r.	4.0	00	10.04
22	Ŷ	1		110	03							• :					1	<u>ہ</u>	70	1004			ζ.			_ / 7		1007
•		-1	111	s+0	03		•	565	+0	UT	-0	- 2	00	s+ (.0		-1	•2	<i>c</i> u	+004				+004			202	1005
22	10	~8	þ410	5+0	02	; 1	•	731	+0	01,	~2	• 5	07	?+ C	10.		1	•0	67	+004	-9	5.1	56	+004	4	5.00	08	+003
		8	6416	5+0	02	— ⊢1	•	332	+0	00	-4	• 9	82	+ 0	100		-1	•0	67	+004		2.4	33	+004	4	5+5	9 Z	+004
			ł			ļ									1					1								
						1									1													
23	1	-4	L041	+0	03	- i 4		563	+0	01	1	• 5	\$97	*+0)b 1		-3	.5	20	+003		5.0	18	\$+004	4	6.5	82	+004
		4	041	+0	03	-4		>33	+0	01	-1	• 5	97	+ 0	1 D 1		3	•5	20	¥003	- 1	.7	77	+004	4	7.2	73	+004
22	2		701	+0	0.7	4		760	+0	01	1	.1	41	+ 0	10 1		7	_7	18	+003	-4		33	+004	٤.	-9-1	23	+004
• •	•	6	2701	i i n	07	16		506	+0	ñ1	-1	.1	41	+ 0	sh i		-7	.7	18	+003		2.0	52	+003	Ś	-8.0	19 A	+0.04
27			700		67			117		02			5.9	- 0	ĥ.	5	Å	٦'n.	25	4003	_		75	+00	ç.	0.7	1.4	-005
63	2	-	709		07			146	10	n5	_4	- 0	50	i i n	in :		- 4	n	26	1003		Ō	22	+00	ś	1.0	4 6	+08A
		. !			04					02	-;	• •	0.0			;	~0		~ ~		_		22	100			4 7	1004
23	- 4	-0	e02 (:+0	104	15		20.4	+0	22	ç	•••	0.0		Υ.		-0	•0	Y 3	1004	Ξ.		2		0	2+1	0.0	1000
	_	6	-052	+0	04	- 14		207	+0	03	-0	• 1	0 9	+ 0	20 2		0	•0	23	1004		•0	22	+00:	2	- 14 a L	u u	1000
23	- 5	-2	- 1 81	1+0	03	13	•	IZO	+0	01	2	• 3	27	7+0)0 1		- 4	-4	05	+005		2.5	97	+00.	5	2.4	25	+004
		- 2	. 181	+0	03	-2	•7	741	+0	01	-2	•3	27	+0	101)	-4	•4	05	+ 002		79	46	+004	6	3.3	77	+004
23	6	-2	-829	+0	03	î 2	:.!	567	*+ 0	01	1	• 3	66)+(30.	1	-2	•7	16	+ 003		2.8	15	;+004	4	4.2	207	+004
		2	829	+0	03		-1	171	+0	01'	-1	•3	60)+i O)D 1		2	•7	16	003 h		1.2	68	+004	4	444	08	+004
23	7	-3	300	5+Ö	03	5		514	+0	01	ź	. 9	23	s + C	'n.	1	-1	.7	67	+003	-	5.3	82	+00/	6	7.8	42	+004
		Ť	307	7+N	03			14	+0	n 1 :	-2	. 9	21	+ 0	10 1	i i	1	.7	67	+003		5.3	04	+004	4	8.0	0 6	+004
23	8	_õ	019	• • n	103			240	+ 0	02	ō	Ĩ	2.	+ 0	10 1	i	-4	1	RR	+003		1.0	15	+00	Ś	4.7	17	+005
22		-,	010	2.0	n t	_1		24.1	10	02		Ċ	25		10 1		2	4	R 2.	4003	_ '		25	400	ř.	4.0	17	1005
	•			110	0.5			4.0	10	02		•7	2.0		0		_1	•	40	4002			05	100	é .	1.4		4005
د ع.	7	-:	+00	1.0	24		•	107		02			2.0				- 1	•0	20	1004			22			1 1		
~ ~	40	_ 1	-001	+0	04		•	20	+0	02	-0	• 0	00	+ U	in i		1	•0		1004	- 1	.•¥	!!	100	•		02	1005
23	10	->	-202	5+0	03	- 11	•	233	+0	UZ:	0	• 2	0	+ 4	Έ.		د-	•0	90	003		5•2	44	+004	4	2.05	1	+005
		5	208	5+0	03	- 1	• 5	576	+0	02	-6	• 5	62	+0	ių i		3	•0'	96	+00 3	- 1	5	16	+00:	>	5.0	05	+045
						1				:						•												
						:																						
24	1	-3	-280)+0	03	1	.4	72	+0	011	-4	.4	63	+0	10 1		1	.0	56	+004		i . 2	99	+003	3	-3µ1	32	+004
		3	280	+0	03	-2	-6	502	+0	01	-4	.5	33	+0	ib 1	r -	-1	.0	56	+004		5.3	45	+003	5	2.9	84	+004
24	2	-1	.077	+0	04	-5		52	+0	01	-4	.1	34	+ 0	0 1	t	8	.2	68	+003		.7	42	+004	ι.	-760	44	+004
		1	077	'+ō	õ4	3		84	+ŏ	01	-6	.2	78	+ 0	ið 1		-8	.2	68	+003	-1	.4	76	+004	4 .	-7.1	2 Z	+004
24	3	-7	427	·+0	03	1		124	+0	02	Ř		0.3	+ 0	ñ r	1	4	.0	3.8	+004			60	+00	5	-911	71	005
	-	7	422	+n	n i			50.4	÷ň.	n 1	-1			+ 0	0.7		-7	.0	38	1004			80	+004	í.	-1.7	'nz	005
24	4	-7	422	40	ñ.			2 4 5	-0	0.2	ż		23	40	in r		7		R.R.	1004			22	+00	5	3.7	00	+005
	-	÷,	122	10	01	_	•	.76	10	02	-1	•	24	1.0	in 2			-	80	-004	_		20	100	Ś	410	4 4	1005
31	F	- 7	44-		0.7				10	22		• •	21		10 2		-:	•	00	1004			70					1007
24	2	-2	- 102		202	10	-	500	τU	00		• 0	90	ŦU	h l		2	• 1	02	-003		2•7	62			-2.01	21	1002
~ .		د	- 104	+0	0.5	4	•	20	+0	00	-0	•0	ru	+ u	in i		-2	•] !	021	+003	- /	• !	27	+004	<u>+</u>	¥.0	48	+UU5
24	0	-2	647 5	s+u	03	-6	•	502	+0	00	-3	• 6	74	+0	10 T	ł –	4	•5	83	+003		1.2	63	+00.	5	6.1	55	+003
•	-	2	-498	+0	03	-1	•7	65	+0	01	-4	•0	83	i+ 0	10 1		-4	•5	6B	+003	- 7	•4	07	+003	5	1.0	88	+004
Z4	7	-2	•366	+0	03	-2		662	+0	01	-5	•0	169	+(:01	1	-1	•0	35	+002	- 5	5.6	42	+000	0.	-1,5	79	+004
		2	-366	5+O	03	-6		279	+0	00	-5	• 5	15)+(:0 '	1	1	.0	35	+002	-(5.7	41	+001	3	-1:1	74	+004
24	8	-6	-1 03	5+0	03	-2		578	+0	01	-4	•3	45	+0	101	1	1	•6	11:	+004	-9	>.0	74	+004	4 ·	-1.2	26	+004
		6	<mark>-10</mark> 3	+0	03	5		779	+0	00	-9	.1	65	;+0	00	1	-1	.6	11	+004		.8	38	+004	6 ·	-3.5	11	+004
24	9	-8	857	+0	03	Ś		590	+0	01	-6		38	+ Ō	101	1	1	.4	52	+004	-1	5.0	04	+00/	6	9.7	72	+004
	-	Ř	857	/+n	07				.+n	01:			0.2	+	in -		-i		5 2	+004		7,7	57	+004	4	6.0	7 6	+0.04
24	10		161	+0	ñĩ	1		1 R	÷0	61			07	- 1	10 1	í		.1	27.	+004		i . A	5-	+004	i i	1.2	ξR.	1004
		- -	1 444	1.0	0.7							•					1						۲,				0.0	.004
		د	a 10	ΨŲ	03	11		124	ΨU	01	-/	• 2	73	ΨL	10	1	-1	• 1	c ()	-vu4		203	22	+00	-	0.07	7 4	+002
						1									1									•				
75		-								أمم		~											<u>ا</u> ـ			- I.a.		
23	7	-3	000	+0	03	.+2		99	+0	U1 :	-1	+0	64	+0	10 2		-8	•0	64	+002		•8	\$ 5	+00!	<u>,</u>	-2,9	27	+0.04
•••	-	3	-806	+0	03	1		571	+0	01	1	•0	164	+ 0	:07	2	8	•0	B4	002	1	5.4	p5	+00/	4	-1.9	O Ç	+004
25	2	-1	6329	+0	03	- , 1	•1	54	+0	02)	-1	• 3	23	+0	10 2	2	-4	.4	22	+003		- 6	65	+00	5	-1.9	44	+005
		1	-329	+0	03	- i 1	••)58	+0	02	1	•3	23	+ 0	01	2	- 4	.4	22	+003		5.6	34	+004	4 ·	-1.3	62	+005
25	3	-7	.083	+0	04	3	•1	534	+0	02.	-5	.1	49	+0)D a	2	1	.7	67	+004	•	.4	26	+005	5	311	01	+005
		7	.083	+0	04	- -3	•1	370	+0	02	5	. 1	49	+0	01	?	-1	.7	67	+004		5.5	21	+00	5	4.4	91	+005
			ł												1				1	l			1	4051	431	1		
4 - 4	567	• • 9	1994	, , ;	. 7 4	* C F .	. 1	15	578		334	15	5	: • -	1				۹.,	, 1 A	•	• •		,		·		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

NAL	[5]5	i P	LA	TA	FORM	A	10	DUL	0	!					• • •									
	5 . * :	• • :	11	3.4	5	: • C	12)	÷ '	# 9 O;	: 234		. 7 8	• 0, .	. 14:	5.6.								A. A. A.
25	- 4	-3	- 5	58	+005		1	•17	0+0	003	2	•4	09	• OD 3	5 -	5.5	75	+003		.01	7+00	0	9.90	0+005
		- 3	.5	58.	+005	•	-1.	•16	0+0	03	2	.4	094	• 0 þ 3	•	5.5	75	+003	1	.44	0+00	6	1687	1+006
25	5	-6	6	02·	+003		-3	.83	9+(01	-5	•5	134	+ OD 1	1	1.0	165	+002	-9	.46	7+00	4 -	-2.32	9+004
		6	6	C2 ·	+003		5	.45	1+1	001:	5	•5	14	+ cb 1		-1.0	165	+002	2	.33	3+00	15	-9.29	0+004
25	*	-1	· .	57.	+003		-1	.85	5+1	101:	-6	. 8		001	L I	1-0	26	003	1	.22	1+00	5	-7-69	0+003
	v	-7	ĨĂ	26.	1003		4	03	5.46	504	Ă	. a	11	00.1	i .	.1.0	26	-003	Ś	.00	2+00	í.	-2-68	3+0.04
	-	- 7		20		• •	4	eUJ E0		101	ž	•••					1.0	-003		47	6.00		5 25	84006
25	(-1	÷U	Y 0'	+004		1	•20	1-1	201		• 7	241	UU I		2+2	61	003		.03	3400	3	2.22	1.004
		1	-0	96	+004	•	-B	•10	9 + (101	9	• ?	3 61	+001	-	5+3	27	+003	8	•63	5+00	4	3.97	5+004
25	8	-3	»9	28.	+004	· ·	2	•14	9+(202	-3	•2	484	• 00 S	!	9.3	92	+003	- 5	.61	3+00	5	1.57	6+005
		- 3	₽9	28	+004	•	-2	•15	5+1	200	- 3	• 2	481	• OD 2		-9.3	92	+003	2	.55	4+00	5	2.28	3+005
25	9	-3	Lo	90-	+004		1	.79	7+0	20(-3	.5	184	+ 0D 2		1.8	80	+003	5	.69	2+00	5	1.19	4+005
		Ť	ίa	on.	+004		-1	.73	7+1	102		-5	18	+ 00 2	,	1.8	80	+003	3	.15	4+00	5	2.08	6+005
25	10	~2	Ξź.	óž.			÷		n+1	101	-1	. Á	n 74	002	;	4.9	10	+003	Ř	.25	2+00	i k	7.64	41004
23	10		77	~ ~			5	44				••		001			40	-007		24	E + 0.0		4 74	44007
		4	- 4	9Z.	+004		-2	• 10	346	101	1	•0	071	r uju z			10	+003	ు	• 2 1	3400		90J4	140.04
			1											1										
			1																					
26	1	-7	-3	Q4 ·	+003		-1.	•01	1+(02	-4	.8	771	002	!	1.0	43	+004	1	.98	8+00	5	-5.13	9+0.04
		7	-3	<u>64</u> -	+003		- 8	.48	2+(201 ¹	-5	.4	554	ob 2		1.0	43	+004	-2	.71	5+00	5	3.09	4+004
26	2	-1	24	Ă6 -	•004		- 8 .	.73	ñ+1	001	-6	.1	734	r 0 0 2		2.3	39	1004	3	-37	2+00	5	-5.27	4+004
	-	4		44.	400/			20	0	0.4		ī.	7.04	100 2		. 2 7	10.	1004		75	0+00	ŝ.	-4.21	3+003
~ /	-	- 1	- 1	29.	1004		1	-20	7.4	201	-9	*0				2 2	27		- 2		2100	ř.	4 4 4 4	74007
20	2	<u> </u>	P U	22.	+004	•	• 2 -	•YU	3-1	101	-2	• 0	7 37	002		2+2	y4,	FUUA	2	• 20	2400	2	0.19	14005
		-1	۵ م	35.	+004	<u>ا</u> ۱	Z	•28	4+(201	-7	• 1	181	r cb s	-	5.3	94	+004	-4	•92	2+00	5	-7.51	3+0114
26	- 4	6	.7	49.	+004	.	6	•20	8+(101;	-2	-61	0 04	+ OD 2		1.5	094	+005	- 5	•51	7+00	5	2.74	1+005
		-6	47	49-	+004		1.	•24	1+()02 ¹	-1	•0	354) dia 3	-	1.5	09	+005	-1	.52	6+00	6 .	-3.52	0+0.05
26	5	-4	27	64.	1003	1	÷.	.01	<u>0+0</u>	02	-5	-03	294	00 2		1.5	624	+004	2	.94	5+00	4 .	-2.31	1+004
	-	- 1	5.2		+003		4	. 32	1+1	102		. 1	124	+ rn 2		1.5	62	4004	-1	.0.4	A+00	Ś.	-1.59	8+004
24	4			20.	.003		. •	07		102	_1	- 2				4 6	0 1	007		07	0.00	é.	-9 76	840.04
20	0	-2	77	20.	1005			104	340	200		-0.		002		2.00	0	005	<u>د</u>	+01	2.00		-0450	4.004
	_	5	69	30	+003	•	-1	•67	8+1	202	-4	•7	9.51	P UD 2		0.0	81	+UU3		• ()	5+00	2	0.24	01004
26	- 7.	-2	÷5	86-	+003		-1,	•31	6+()0Z	-6	• 12	244	002		4.9	49	+003	2	•28	6+00	5	-6,71	2+004
		2	þ5	86	+003	-	-1	-12	4+(202 ,	-6	•2	034	00 2	-	4.9	49	+003	-2	• 68	6+00	5	4.29	8+004
26	8	3	4	18	+003		-1	.54	9+()01 [°]	-6	• 81	224	002		2.6	37	+004	3	.00	1+00	5	-9.12	0+003
		-3	1	18	+003		2	.01	7+0	001	-7	-6	754	00 2		2.6	37	+004	~4	.07	3+00	5	-3.57	2+004
24	Ö O	Ē	5	18.	4003		4	. 14	n+1	כחר		. s	014	nn 2		2.8	RA	-004	,	.24	2+00	ŝ	3.48	4+004
	•	-1	ΓĒ.	40.	1003		4	50	ň	102		Ťő	. 74			.7 0	BA.	4004		-20	4400	ś.	-8.93	1004
24			" 2	10.	1000		1	• • • •		102	-0	• •		002			20	-004		• 2 0	*****		-0.03	1.004
20	10	-2	•1	21.	+003		1	• 39	5*!	102	-4	- 2	37	CU 2		1.4	22	+004	~ 8	•02	3400		-1.20	34004
		- 3	₩T.	51·	+003		Т	•98	9+1	105,	-6	• 3	4 31	r up z		-1-9	25	004	-1	• 5 3	4+00	<u>ہ</u>	-2,04	5+004
			1			1								1										
			1			1												1					1	
27	1	-6	.6	84	+002	1	2	.97	4+1	01	2	.4	294	1 001	- 1	9-6	88	+003	-5	.74	4+00	4	3.74	6+004
		6	6	я ь .	+002		- 6	-10	1+1	101	-2	- 4	201	001		0.6	BR	003	-1	.64	8+00	3	5.18	40049
27	2	-2	٢ŏ,	8 T.	.002		-	50		104		Ξe		on 1		τ.4	10	1003	- 1	78	3+00	5	-1 42	3+0.05
			ru.	0.J.		'	2				ž	•:					40	1000			4.00	-	1 4 4	0.000
	_		۶Ų	63.	+004	'	2	•24	271	101	-0	• 2	2.27	100		2.49	1.4	+003	0	•••	0700	. <u> </u>		77004
27	- 3	9	•6	38	+004		4	•85	7+1	1 0 2	2	• 6	961	F002	-	2.5	66	+004	-6	+67	Z+00	15	4.48	6+005
_	•	-9	66	38	+004	, 4	-4	•89	3+1	102	-2	•6	961	+ OD 5	!	2.5	66	+004	-1	.08	0+00	4	6.93	7+005
27	- 4	- 3	b 5	11	+005	; '	1	.88	5+(03	1	•3	084	+ QD 3	- 1	-6-3	19	+004	- 3	.22	1+00	6	1.86	4+006
		-3	15	11.	+005		-1.	-87	5+(03	-1	-3	084	003		6.3	19	+004	-6	.89	1+00	4	2179	5+006
27	5	-3		91	•003		Å.	.75	n+1	101	ò	~5	204	• CD 1		1.0	47	+004	š	. 63	5+00	4	7.97	1+004
	-	- 5	1	ó1.	1003	 13	8 + 1	101	ó	Ĭŝ	204	00.1		1.0	67	4004	ź	04	n+00	5	2.00	7+004
- 7		5		7 T.			1					•••	E 7								0.00		2 70	74004
61	o		20	23.	+003	· .	1	-08	4+1	101		•]	591	+001		4.0	43	+003	~ (- 04	0+00	-	2	1+004
	_	2	•0	33.	+003	1	-1	•90	4+1	101	-3	•1	581	r qu i		4+8	45	+005	-8	+>5	6+00	5	1=24	4+004
27	7	1	-6	30·	+003		7	•57	8+1	01	8	•7	244	+ 0/D 1	- 1	•6 • 1	9₽	+003	-1	+46	0+00	5	4.24	1+004
		-1	6	30	+003	1	-8	• 18	6+1	01	-8	•7	241	001	t i	6.1	99	\$003	-7	.33	5+00	4	5.18	4+004
27	8	- 4	2	024	+004	, 1	2	.88	2+1)02 ¹	2	.0	46	cb z	2 -	·2.0	89	+004	-4	. 18	7+00	15	2.21	4+005
	-	-4	5	ñ24	+004		-2		Ř+1	102		<u>_</u>	664	002		2.0	80	+004		- 57	2+00	6	3.48	8+005
27	0		[.	08	1004	,	5		5.4	102	5	Ĩ'n	A 0.	• rn 7		.2.0	147	+00×			2+00	5	2.24	7+005
÷.	,	2	٢Ÿ	00	- 004		5	-01	27) 8 4 1	102		-0	071			2.67	47	1004	- 3	107	~	e.	1 27	24005
		2	•0	081	1004	1	- 2 -	• (5	; + [102	-2	•0	<u>69</u>	002		4.9	05	TUU4	-1	ود.	0+00	2	2.2(29007
21	TU	2	•3	124	+004		1	• 26	4+(105	1	• 8	271	+ cp z	-	• 7 • 7	53	+004	-9	+ 67	5+00	4	0.5	/+005
		-2	-3	124	+004		-1	-18	0+(02	-1	•8	281	+ 0 D 2	2	1.7	33	+004	-3	• 65	8+00	5	1.75	6+0 0 5
			í.															-						
														1							HOI	A 3	2	
										,												-	-	
1224	: • •	ə + .,	<u>ب</u> ا	3.4	: (2)	0	2.4	145	6 /	e 9 uj	1234	s e	$1 \in$	0 1 2		\$ 57	10	i 2 👎	• • •			2.3	+ 1	1 T
										+				,										

							•
						·.	
10463	571 571	P 70 1 7 1 5 6 7 5 5	51234567895	and	as ser pra	Same Acres	1 + + oli = + + + + + + + + + + + + + + + + + +
28	1	-3-776+003	-7.334+001	-5.154+002	8.830+003	1.826+005	-51116+003
		3 776+003	-1.122+002	-4.559+CD2	-8.830+003	-1.077+005	5.399+004
28	Z	-21611+004	-1.024+0.02	-5+750+002	5 21 19002	1+251+005	-2=/22+004
28	3	-3-753+004	+9-863+001	-7.039+002	1.314+004	-1.180+005	6.787+003
	-	3,753+004	1.820+001	-5.409+002	-1.314+004	3.228+005	-1.537+005
28	- 4	-9-219+004	7-649+001	-1-241+003	1.314+005	-1-392+006	3.986+005
	-	9-219+004	3.281+001	-8.405+001	-1+314+005	2.847+006	-5.43/+005
28	2	-0-004+003 AL804+003	9.077+002	-6.281+002	-1-179+004	-4-264+005	1.147+004
28	6	-4.384+003	-1.691+002	-4.578+CD2	2.502+003	1-505+005	-5-957+004
	-	4-384+003	-1.807+002	-4.405+002	-2.502+003	-1-287+005	7 420+004
28	7	-6-555+003	+1.475+002	-6.096+002	-3.620+003	2.007+005	-5.957+004
		6-555+003	-1+270+002	-5.736+002	3+620+003	-1.554+005	3+381+004
20	ь	1.7424004	-2-703+001	-1-204+602	-4-594+003	2.240+004	-4-823+004
28	9	-9-305+003	1.642+002	-7.624+C0 2	1.303+004	1.020+005	1.519+005
		9-305+003	6.599+001	-7.132+002	-1.303+004	-4.016+004	-2.851+004
28	10	-7-097+003	1.904+002	-5.684+CD2	1.084+004	2.993+005	7=02 5+004
		7-097+003	1+668+002	-5.672+002	-1-084+004	-2.979+005	-4.066+004
			1				
29	1	-2-446+004	-2.329+002	-3-113+002	8+681+003	4.881+005	-2.37 0+004
		2-446+004	3.999+001	3.113+002	-8.681+003	1-523+005	-2-129+005
29	2	-2-568+004	-2.649+002	-4.711+002	4-852+004	8-019+005	-3-75 5+005
	с. • у	2-572+004	4.732+002	4 • 712+0p Z	-4-852+004	1.674+005	-4.019+005
29	3	-1-533+004	+1+510+005	-1+960+003	-9-364+004	2+900+000	1.104+005
29	4	7-589+004	4.086+003	-1.009+004	4.941+005	1.553+007	2.053+006
		-7, 598+004	-4-272+003	1-009+004	-4.941+005	5.237+006	51414+006
29	5	5-419+003	-3.392+002	-1.322+002	1-823+004	-3+794+005	-7-856+004
		-5-417+003	-4.860+002	1.321+002	-1.823+004	6+513+005	1.124+005
29	. •	1-1-300+004	4 +212 TUUI 3 -522 +002:	1.506+002	-1-003+003	5-381+004	-2-589+005
29	7	-1-319+004	6.912+002	-2.266+002	1.156+004	3.365+005	3-157+005
		1-316+004	-2.424+002	2.266+002	-1-156+004	1.298+005	2.010+004
29	B	-1-437+004	1.330+003	-1.122+003	5+247+004	1-631+006	4-34 5+005
20	0	1=429+004	-9.703+002		-5-247+004	6.772+005	6+075+005
	,	5459+003	-1.202+003	1.216+003	-4-327+004	8.539+005	7-02 3+005
29	10	24092+003	-2.974+002	-5.846+002	4.632+004	2.514+005	6-190+004
		-2-048+003	-4.781+002	5.846+002	-4.632+004	9.513+005	4.757+005
						1	
30	1	-4-4004003	7 502+000	-1 4304003	2 3664006	5. 1074005	0.119+003
50	•	4-400+003	15.087+000	-1.667+003	-2.366+004	-7.548+005	-6-834+083
30	2	-8-691+003	1.015+002	-3.539+CD2	1.971+004	2.797+005	7.415+004
	_	8+691+003	2.549+001	-4.460+0D2	-1.971+004	-3.744+005	4_079+003
30	3	-96941+002	-1.241+003	-3.700+002	9.536+004	4.938+005	-3-443+005
30	4	7×7417002	-463+002	-1.953+002	-y+2207004	2-076+006	2 . YY 04005
	•	-4-193+003	-9.507+002	-3.989+003	-1.807+005	-4.168+006	-1.14 5+005
30	5	1-039+004	1.749+003	-3.529+003	-2-139+004	5.900+005	4-290+005
**		-1-039+004	1.793+003	-3.774+003	2.139+004	-8-423+005	-4.742+005
50	6	-36024+003	-1.068+003	-1+258+002	6.058+003	9-699+004	-3.83 1+005
30	7	-3-372+003	-1-015+003	-1+760+002 -6-138+002	-6-3544003	-1+480+005	3+280+005
	•	3-372+003	-1.036+003	-5.901+002	6-354+003	-2+352+005	3.457+005
30	8	-2-101+003	-1.184+003	-1.454+003	3-527+004	6.206+005	-3.929+005
		2-101+003	-1-137+003	-1-625+003	-3.527+004	-7-967+005	3-447+005
			•			11071	F 4 F 4

HONA 33

48.41.1	1513	S PLATAFORMA	HODULO T	an example of the		ere de la companya de	
		e 4 54 2 3 4 5 5 7 8 4	17 444	2 3 4 5 6 7 5 4 C - 2 :		0 700 JUL 2 5	19123456744
30	Ŷ	-1,430+003	+3.004+002	-2.882+003	2-203-004	9-398+003	-1-527+005
		14430+003	-3.169+002	-3+302+C03	-5-809+004	-1-369+006	8,172+004
30	10	2-147+003	1.961+003	-3.030+003	-2.146+004	Z+888+005	5-085+005
		-2,147+003	1.985+003	-3.602+CD3	2+146+004	-8.779+005	~5p335+005
							1
				1			
31	1	-1-091+004	-1.999+001	-5.237+001	-8.773+003	-3.855+004	1.989+005
		1.091+004	-1.729+002	5.239+001	8.773+003	1-463+005	2'+463+003
31	2	-1-564+004	9.310+001	2.339+002	-1-484+004	-5.449+005	6.861+004
		1.568+004	1.152+002	-2.339+002	1-484+004	6.376+004	-1-095+005
31	3	-1-251+004	2.743+003	1.282+003	-4-949+004	-2-352+006	2-151+006
		1.248+004	-2-185+003	-1.282+003	4.949+004	-2-862+005	2 18 54006
31	4	1-250+004	7-100+003	5.340+003	-7-691+005	-0.884+004	5-705+004
51	-	-1 250+004	-7 204+007	-5 7404007	7 4014005	-1 121-006	7 0914004
71	c	1 1204004	LA 704+002	5 2204023	-1 485+000	-101211000	-9 7004005
31	,	-1.420+004	.7 9574002	-1 340+002	- 10103-004		
	,	-15120+004	-34031+002	-1.2194002	1+103-004	-0.591+005	-26733+003
51	0	-9+488+003	1.286+002	1.034+001	-9.936+003	-1.047+005	2-169+005
	_	9-488+003	2.088+005	-1.038+001	9.936+003	8.280+004	-1,776+005
31	7	-6-589+003	6.802+002	1.991+002	-1.687+004	-3.166+005	3,186+005
		6.563+003	r2.314+002	-1.992+002	1.687+004	-9.320+004	-5-42 4+003
- 31	8	-4,001+003	1.835+003	7.657+002	~5.050+004	-1.292+006	1,037+006
		3,926+003	+1+476+003	-7.657+002	5.050+004	-2.837+005	1.04 6+006
31	9	3,704+003	1.312+003	6.592+002	-9.237+004	-1.064+006	7.150+005
	-	-3-784+003	-1-672+003	-6-592+002	9-237+004	-2-926+005	1-129+006
31	10	91899+003	-2-076+002	5,993+002	-4-430+004	-1-981+005	223 8+005
5.		-9.855+003	-5-679+002	-5.003+002	4.430-004	-1-035+006	4 08 54005
			20013-002		46430.004	-100351000	4670 31003
		1	1	i			1
7.7		4 373 007	17 2/2.004		A		E
,		-0+277+003	-1 437+001		2+04/7004	0.01207004	2 38 7 007
~ ~		0.2114003	-1.023-001	-2.26/+002	-2.6474004	1-822+005	-0-26/+003
32	2	-2-141+004	-1-483+003	-7.721+002	7.807+004	~1.552+005	-4-98 5+005
	_	2-141+004	-1-278+003	-7.493+CD2	-7+807+004	1.788+005	2 879+005
32	- 3	7,950+003	+1 +115+003	-2.519+003	2.397+005	-8+892+005	-2-39 54005
		-7,950+003	-6.636+002	-3.218+CD3	-2.397+005	1.700+005	-2,126+005
32	- 4	-1-272+005	3 132+003	-4.674+003	5.975+005	-5.071+006	4 760+006
		1,272+005	5 •938+002	-2.508+003	-5+975+005	7.299+006	-1-548+006
32	5	-1:020+004	1.845+003	-7.808+CD2	-1.229+004	7.111+005	5.03 2+005
		1-020+004	1.881+003	-8.963+002	1.229+004	-8-299+005	-5 42 0+0 05
32	6	-4-463+003	-1.080+003	-8.107+002	9.571+003	1-643+005	-3 337+005
		4-463+003	-1-142+003	-8-025+002	-9.571+003	-1-558+005	3481+005
32	7	-3-417+003	-1-050+003	-2.0114(03	6.572-003	5.310+005	3484005
•••	•	3-417+003	-1-047+003	-2.010+003	-4.572-003	-5 208+005	2 28 AANOS
32	R	-9-4004003	1 6004007	-7 7574603	0 031400/	- 7-20-005	3 44 74005
96	5	0.4004003	2 2374002		7+0617004	2.47294000	251437003
່າວ	0	20/4-00/	2.024.002	-3+04 3+00 3	-9.0211004	-2.099+002	-2678 3+093
υc	7	-247414004	2.034-003	-3+374+003	8.172+004	3.049+005	1-028-000
* 2		26941+004	1.681+005	~5 • 68 8+ UU 3	-8-172+004	-6-848+002	-6-651+005
32	10	-3-744+003	1.164+003	-3.112+GD2	3.202+004	2.411+005	36727+005
		36744+003	1.104+003	-4 + 53 8 + 00 2	-3.202+004	-3.879+005	-3,112+005
			. I				
33	1	-24818+004	8 .066+003	-2.361+002	-1.217+004	5-441+005	3-278+006
		2-818+004	7.057+003	2.374+002	1.217+004	-1.291+005	-3,52.5+006
33	2	-3-105+004	-7.164+003	-8.370+002	-1.128+004	1.319+004	-1-36 4+005
		3-234+004	6.353+003	8-369+002	1.128+004	1-474+005	-3-395+006
33	3	-4-028+004	2-056+004	-3,905+Mh 7	2.895+005	5-042+004	5 43 14004
	-	3.910+004	4.167.001	3.0074007	_2.805knor	1.00/1004	-1.53 44004
33	7	-7.5514003	2.6444004	-2.3614003	-2+07JTUUJ 5 8874005	1.0041000	-1973 ATUU0
	-7	5.420+007	-6.57E1007	3 7441004		1.007+007	7 84 4-004
27	5	512844003		2+30 17004	-3.00/7005	1.0947007	7 5 7 5 7 07 0 00
22	2	5 201 -001	-1.541+002	-1-0424002	-7+622+004	-7.404+005	7-082+004
		-2.004+004	1+541+002	7 + 04 2 + 00 2	7.622#004	9.290+005	-3-409+005
514	. •	Apple Lat 1. a	01234547020			HOTA	34

2.1

ANALI	515	PLATAF	ORMA	MODULO	1						
72		-1	007	A. 340	1+003			00.2	4.5134003	2-840+005	1-967+006
2.5	0	61693+	003	3.093	+0.03	1.	496+	002	-4-513+003	-2-520+004	-1-519+006
33	7	-1.982+	003	2.946	+002	-2	277+	CD 2	2.258+004	3.507+005	9.897+005
		2,598+	003	2.466	+003	2.	280+	00 Z	-2.258+004	4-847+004	-1-14 5+006
33	8	-1,742+	004	1.133	+004	-2.	156+	003	7.651+004	2.730+006	2.657+006
•		1,664+	004	2.131	+003	2.	157+	003	-7.651+004	1.050+006	-8-314+005
33	9	-8,908+	003	8.374	+003	-2.	555+	003	-6.947+004	3.040+006	1.471+006
		7.973+	003	1.532	+002	2.	556+	00 3	6.947+004	1.430+006	1-290+005
33	10	4,797+	004	-7.164	+003	-1.	132+	CO 3	5.383+004	3.950+005	-1.065+006
		-4,703+	004	+3.831	+002	7.	132+	003	-5.583+004	1+588+006	8=335+004
										ř	
34	4	5 3554	003	1 047	+0.02	6	6744	60.2	0 241+004	-1.2004005	-5-809+094
24		-513554	003	1.047	+012	-6.	4314	002	-9.241+004	-7-982+005	-1-25 54005
34	2	411234	003	-2.276	+002	ž	2524	002	8-182+004	1-635+005	-1-607+005
	•	-6 123+	003	2.276	+002	-2.	2524	002	-8-182+004	-5-582+005	-2-382+005
34	3	9-104+	003	-1.401	+002	2.	287+	CO 2	2.039+005	5.772+005	4-373+004
	-	-9-104+	003	1.401	+002	-2.	287+	0D 2	-2.039+005	-9-781+005	-2-893+005
34	4	4-182+	004	-1.035	+003	1.	580+	003	1.921+005	2.359+006	-9.779+004
		-4,182+	004	1.035	+003	-1.	580+	003	-1.921+005	-5-129+006	-1.716+006
34	5	-2.296+	003	-2.992	+004	-3.	590+	004	-2.437+003	9.732+006	-9.038+006
		2,296+	003	-3.018	+004	-3.	646+	0D 4	2.437+003	-1+022+007	9-272+006
34	6	2-059+	003	-2.704	+001	1.	537+	002	3.818+004	-1-113+004	-9-660+003
	_	-2.059+	003	2.704	+001	-1.	537+	0D 2	-3.818+004	-2.583+005	-3-773+004
34	7	1.813+	003	-1.487	+001	1.	264+	001	1.374+004	6.898+004	-1.015+004
• •	•	-1.815+	003	1.48/	+001	-1-	2644	007	-T+374+004	-9.714+004	-1-592+004
34	5	4.2247	003	-0.054	+001	1.	070+	002	7.2004004	1.102+005	
. 1/	•	4.2047	003	-1 716	+001	-1.	50/07	002	-/*CYY+UU4	-3.0/4+003	
24	7	-41809+	003	1.315	+002		5044	102	-5-2704004	-4.280+005	-1-530+005
34	10	0.540+	003	1.017	+002	-2	7054	002	4.850+003	7.181+006	3.364+005
		-9 549+	003	1.002	+003	-2	8824	604	~4.850+003	-7-941+006	-3-84 5+005
								1	40030-003	10/41-000	50049-009
									;		
35	1	-24825+	004	9.450	+003	-3.	056+	00 1	-1.399+004	-1.662+005	4-610+006
		2,825+	004	5.673	+003	2.	923+	001	1.399+004	2.185+005	-2.431+006
35	2	-1'-538+	005	-6.001	+003	8 -	800+	CO 2	-4-164+004	-1-418+006	9+877+005
		1,551+	005	5.191	+003	8 -	799+	5 QD	4-164+004	-1.236+005	-2-482+006
22	3	-25019+	005	2.205	+004	- 4 -	046+	003	-2.350+005	-5.769+006	6.607+006
15	4	-7 017+	005	2.680	+003	-4.	048+	003	2.350.005	-1-524+006	-1-011+005
55	•	7.704	004	LE 074			7474	004	-2.094+000	-2.077+00/	0.010000000
35	5	5.225+	004		+005		7674	004	0.2434000	1.0504004	1.0144005
	•	-5-865+	004	5.330	+001	5.	7474	n i	-9.213+004	-9-407+005	-2-852+005
35	6	-1-588+	004	6.815	+003	2	390+	001	-3.746+002	-1.627+005	2.435+006
		1:588+	004	2.589	+003	-2.	472+	CD 1	3.746+002	1-199+005	-1-102+006
35	7	-2'-010+	004	4.751	+0.02	2.	255+	00 2	-5-132+003	-3+403+005	1-167+006
		2-072+	004	2.286	+003	-2.	258+	CD 2	5.132+003	-5.503+004	-1.007+006
35	8	-9-983+	004	1.193	+004	1.	963+	003	-1.376+005	-2.775+006	3.147+006
		9.904+	004	1.525	+003	-1.	964+	CO 3	1.376+005	-6.677+005	-2.58 6+005
35	9	-3-614+	004	8.817	+003	1.	576+	003	-1.899+005	-2.286+006	1.799+006
		3,520+	004	-2.906	+002	-1.	577+	CD 3	1-899+005	-4.779+005	5.786+005
35	10	21009+	004	+7.007	+003		248+	003	-5-982+004	-4.152+005	-9-195+005
		-16912+	004	-5+409	+002	-1.	2474	003	5.9824004	-1.770+006	2.139+005
									i		
36	1	5-464+	003	1-661	+002	1-	4954	002	1-838-005	-4-260+005	8-816+005
	•	-5464+	003	-1.661	+002	-1.	495+	CD 2	-1.838+005	1+640+005	1.095+005
36	2	-6.811+	003	8.099	+001	7	700+	002	1.629+005	-1-547+006	1.492+005
		6-811+	003	-8.099	+001	-7.	700+	0D 2	-1.629+005	1.976+005	-7.236+003
,					ا د					HOJA	35
··••		1 1 4 4 4	0/44	, . , , , , , , , ,	0	13713		°1 '		··	
					•						

INALI	\$15		RODULO T				
	67.81	10,122455. 9	0-234567890	123452-4201.	· 4 5 8 7 8 4 - 1 2 3 4 3	5 e 7 = + , ' . 3 - 5 e	ې د د ا
. 36	3	5-519+004	-3.175+004	-3-239+CD4	1-044+005	5.026+006	-8,872+006
36	4 -	8-740+005	3.997+004	-4.646+004	-5-294+005	-5.051+006	2.01 1+007
		8,740+005	2.684+004	-5-526+004	5-294+005	-2.652+006	-8.604+006
36	5	4-067+003	3.1924004	2-858+004	2.260.004	-7-525+006	9-38 1+006
36	6	2,385+003	3 - 199+001	1-284+002	5.785+004	-2-866+005	4 .84 2+004
• /		2.385+003	-3.199+001	-1-284+002	-5-785+004	6-155+004	7-648+003
20	' -	7.131+001	1.011+002	-3-298+001	~2.875+004	1-850+005	-4.7724004
36	8 -	5-069+002	+2 .797+003	-2-424+004	4-104-004	5-093+006	-3-333+005
74	0 -	5 069+002	+3.378+003	-2.653+004	-4-101+004	-7-099+006	8-420+005
50	, -	5 139+004	1.465+004	-2.649+004	-5.932+003	-7-013+006	~3-915+006
36	10 -	3,097+002	8 .727+001	2.328+002	1-079+004	8+175+004	-7-300+003
		3,097+002	-8-727+001	-2-328+002	-1-079+004	-4-898+005	1=602+005
			1	1		i	
37	1	5-506+004	9.310+002	-4-516+002	-2-332+004	7-619+005	3-223+005
37	2	2-627+005	4-878+005	4.516+002	-7-081+004	-7-379+004	1=097+006
•••	-	2 758+005	2.853+004	2.313+003	7.981+004	8-547+005	-1-410+007
37	3 -	1,432+004	1-380+005	-5-009+003	6-730-004	5-642+006	1-915+007
37	4 -	1-553+006	7-631+003	5+020+003	-6.730+004	2.007+006	-3-583+006
	•	1,553+006	-7.631+003	7.063+004	1.320+006	3-298+007	7-458+006
37	5	1-829+004	-3.364+002	2.064+002	-5.159+003	-9-271+005	2.555+004
37	~ -	2651+004	3.304+002	-2.064+002	5-159+003	6+125+005 3-665+005	-5-383+005
	Ŭ -	2 651+004	-1.242+002	2.413+002	7.512003	1.218+003	2-287+005
37	7	1-844+004	-7.340+001	-2.434+002	1.988+002	3-561+005	-1.391+005
37	8	2-387+003	5-627+004	-2-604+003	-1.988#002	7+485+004	2+727+004
		4 010+003	3.500+003	2+608+003	-5-592+004	1.076+006	-1.563+006
37	9 -	3-918+004	-1.717+002	-2.933+003	7-451+004	3.041+006	-3-239+005
37	10	8-876+003	-5.070+002	-1-266+003	-/+451+004 1-273+004	3-608+005	6+221+004 -1-332+005
•••	-	8-876+003	5.070+002	1.266+003	-1.273+004	1.568+006	-6-395+005
				i	1		
38	1	1-480+004	-2.331+002	7.918+002	-2-301+005	-2-957+005	-1-037+005
		1_480+004	2.331+002	-7.918+002	2+301+005	-9-110+005	-2-515+005
38	2	2-802+004	-2.329+002	2.177+002	1-037+004	3.409+005	-8-421+004
38	3	2-285+004	-3.856+002	8-680+002	2-495+005	3.372+005	-5-329+004
	-	2 285+004	3 .856+002	-8.680+002	-2.495+005	-1.660+006	-5.344+005
38	4	9-840+004	-1-779+003	5.320+003	9-686+005	1-117+006	-1-454+005
38	5 -	61872+003	-1.591+002	-5+320+003 6-393+002	-9+080+005 1-348+004	-1.292+006	-3-85 4005
		6 872+003	1.591+002	-6-393+002	-1-348+004	3+180+005	1+432+005
38	6	1-326+004	-1.204+002	2-089+002	-4-858+004	~7.788+003	-7.336+004
38	7	1-367+004	-9.685+001	4-572+002	4-828+004	7-119+004	-4-974-005
	_	1-367+004	9.685+001	-4-572+001	3.247+003	-1-409+005	-7.786+004
38	8	1-787+004	-2.592+002	5-663+002	1-180+005	2.726+004	-1.03 6+0.05
38	9	1.752+004	+3.676+002	~5+663+002	-T+T80+005	~8.903+005	-2,914+005
		1-752+004	3.676+002,	-1.091+003	-1-369+005	-1.174+006	-3,407+005
38	10	9-346+003	-3-877+002	6-343+002	6-198+004	-1.420+006	-5.257+005
	•	×= 546+003	3.877+002	-6+343+002	-6-198+004	4.539+005	-6.50 410 04
7)	1 - 4 1		01234562475	121135789	1+567=9 AS	MUIA	26

NAL	ISIS	PLATAFORMA	MODULO 1				
,	, , ,	M P C - 23345 F 24 - 1	- 1,1 2 3 4 5 6 7 P + 0]*		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
							A
39	1	3-694+004	-1.053+003	-4.113+002	-2-024+004	1.089+005 5.180+005	-6-617+005
39	2	6-386+004	4.878+005	5 95 5 + CD 2	-4.088+004	-1-251+006	6-890+007
	-	-7-696+004	2.854+004	-6.348+002	4+088+004	2.907+005	-1.403+007
39	3	5-061+004	1.348+005	4.798+003	-7.948+005	-6.385+006	1.518+007
		-4.951+004	1.125+004	-4.809+003	7.948+005	-9.424+005	-4.503+000
39	4	1232+005	7.047+003	-5-026+004	-1-798+006	-1-915+007	1.001+007
39	5	1616+004	1.580+002	-1.755+002	-1-966+003	1.102+006	4-77 1+005
•	•	-1-816+004	-1.580+002	1.755+002	1.966+003	-8-345+005	-2.363+005
39	6	2-405+004	-5-343+002	-1.475+002	-1-399+004	-3.097+004	-6+055+005
	-	-2+405+004	5.343+002	1.475+002	1-399#004	2.557+005	-2.00.84005
34	'	-2-005+004	6-301+002	-1-388+602	2-001004	3.496+004	-2-774+005
39	8	2103+004	5.554+004	2.712+003	-1-819+005	-3-424+006	6.526+006
	-	-2-266+004	4.227+003	-2.717+003	1-819+005	-7-163+005	-1.582+006
39	9	1-732+003	2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 •	3.415+003	1.425+005	-4-042+006	-3.206+005
		-1-732+003	-2.580+002	-3.415+003	-1-425+005	-1.161+006	7 139+005
39	10	2-604+004	+2.492+001	1.092+003	⇒1⇒>88≠004 7.588±004	-1.505+005	-1-86 1+005
		-2.004.004	2 8472 4001	-1-072.003	1.500,004	-1.505.000	
					1	1	
40	1	1-831+004	1.774+002	1.736+001	-1-942+005	-3.279+005	2+051+005
	-	-1-831+004	-1 774+002	-1.736+CD1	1.942+005	3.014+005	6-524+004
40	2	-1-155+005		A + 087+002	-2+401+004	-1-400+000	4.135+005
40	3	-26831+004	3.577+003	4.193+003	-9-233+005	-6-736+006	4-087+006
	-	21831+004	-3.577+003	-4.193+003	9.233+005	3.470+005	1.365+006
40	4	1-264+006	1.259+006	-1.721+006	-1-334+006	4.192+008	3.255+008
	-	-1-264+006	1.265+006	-1.708+006	1-334+006	-4.093+008	-3,299+008
40	>	20074004	~0+078+001	-1.410+002	7+104+004	1.041+000	-2-22 3+005
40	6	1.400+004	8.152+001	6.300+001	-9-802+004	-2-226+005	8-895+004
	-	-1-400+004	-8.152+001	-6.300+001	9-802+004	1.266+005	31529+004
40	7	1-124+004	+4.839+001	-7.778+001	-9.518+004	-1.461+005	-6-543+003
	•	-16124+004	4.839+001	7.778+001	9-518+004	2.646+005	-6.720+004
40	8	2=239+004	- 5 +570+002	-2 -24 04 00 3	-2-933+003	-3+314+000	2 44 24004
40	9	7-285+004	-1.174+003	3.439+003	-1-125+005	-4-525+006	-9.22 5+005
	•	-7-285+004	1.174+003	-3.439+003	1-125+005	-7.161+005	-8.666+005
40	10	11121+004	1.298+002	2.981+002	-5.757+003	1.129+005	-1.630+004
		-1-121+004	-1.298+002	-2.981+002	5-757+003	-5.673+005	2.14 1+005
				i			
41	1	4-409+003	6-170+001	-2.794+002	-2-781+004	4.741+005	-1.004+005
	-	-4-405+003	1.797+002	2.081+002	2.781+004	2.055+005	-1-680+005
41	2	4-657+004	-2.599+002	-3-544+002	-6-712+004	6.942+005	-6.388+005
	-	-4-657+004	5.479+002	2.811+002	6-712+004	1.998+005	-7-080+005
	د	1.912+005	9.905+002;	4 75 54 00 7	-1+145+005	1 1474004	1 73 14004
41	*	-9-261+005	3.256+002	-6-839+003	-7-625+005	1.326+007	3-053+006
•••		9-261+005	-2.936+003	6.772+003	7-625+005	6+686+006	5.828+006
41	5	9-671+002	2.200+002	2.284+002	4-493+004	-6.352+005	1.681+005
,.	,	-9-728+002	4.562+001	-2.914+002	-4-493+004	-1+529+005	-4.916+004
41	0	-21-142+002 21-230+000	1.1005+002	-2.217+002	-1+979+004	3+475+005 4 544±00F	-2.155+004
41	7	-2 117+004	3,202+002	-2.885+002	-1.716+004	4.564+005	1.593+005
	•	2-117+004	9 494+000	2.109+002	1.716+004	2.315+005	7 978+004
• •						HOTA	37
. •		• • • • • • • • • • • • • • • • • • •		23456744011,	· · · · · · · · · · · · · · · · · · ·		

	INAL 3					•	11		
	INAL 3								
	INAL 1 1 2 3 4 1								
	INAL 3					-			
	41	1515			MODULO 1				
	41		3 4 0 1 2	345073-		2	1. 11567693123	(5-1) 8 4 2 2 2 4 5 -	
		8	-9-92	22+004	6 -650+00	2 -8.502+0	2 -6-803+004	1.543+006	4-801+005
	14	0	-0.01	22+004	-2.903+00	2 7.757+0	02 6.803+004	8.026+005	6-338+005
		,	9.0	364004	+2-749+00	2 7 524+0	2 8.3512004	8-285+005	4 -40 00000
	41	10	-5-3	95+004	4+349+00	2 -3.506+0	1 3.245+004	-1.398+005	4-683+005
			5 3	94+004	-2 •164+00	2 -2+309+0	1 -3+245+004	1.395+005	4-103+005
						1	1		
	42	1	3.5	55+003	-2 -757+00	1 -2.973+0	1 4-324+003	1-195+005	1-218+004
			-3.5	60+003	-2.339+00	2 9.225+0	1 -4-324+003	4-364+004	1.599+005
	42	2	-8-1	58+003	-1-371+00	2 8.965+0	4-912+004	-4-346+004	-2-192+005
		7	8-1	55+005	+1.574+00	2 -2 -509+0	0T -4.912+004	-1.521+005	7-259+004
	46	2	-111	33+005	-1.415+00	3 2.110+0)2 -1.217+005	-2-247+004	1-757+000
	42	- 4	5 5	28+005	5 .619+00	3 -5-221+0	3+210+005	2+776+006	8.317+006
		_	-5-52	28+005	-5.916+00	3 5.947+0	2 -3+210+005	-1.174+006	8-443+006
	42	5	1.0	15+003	-1-848+00	2 -4.004+0		3.087+005	-1.131+005
	42	~	3-4	544003	-3-002+00	1 4+/42+0	02 4+827+004	9+333+005 6-300+00/	-1-/14+005
		Ť	-3-4	62+003	-2.223+00	2 6.388+0	1 -9.192+003	2.198+004	1.334+005
	42	7	1 44	59+004	7.818+00	1, -5-241+0	1 1.984+004	1.194+005	1.957+005
		_	-1-4	70+004	-3.979+00	2 1.135+0	2 -1-984+004	1-020+005	2+833+005
	42	8	-6-14	60+004 66+004	5 •472+00 •8 •984+00	2 -1.647+0	2 4.945+004	4.004+005	8.904+005
	42	9	6.1	39+004	5-196+00	2 -2-802+0	12 -4+9497004 12 2_600+003	5-602+005	8-505+005
			~6.1	88+004	-8-480+00	2' 3.553+00	2 -2.600+003	3.295+005	9+379+005
	42	10	3.1	21+004	1.223+00	2 -4-856+0	2 -3-708+004	4-800+005	3.728+005
			-3,12	20+004	+3.439+00	2 5+628+0	3.708+004	1.014+006	2+201+005
			4		ł ł	1			0
1	43	1	4.5	53+003	2 .747+00	1 -1.560+0	2 2.669+004	1.606+004	6-807+004
		-	-4-5	57+003	-1-321+00	2 -6-329+0	12 -2+669+004	-3.724+005	1.028+005
	- 43	2	5.9	23+003	7.578+00	1 -2.361+0	2 -4.034+003	2.029+005	1-312+005
	43	3	-1-3	207003	-2-504+00	2 70+221+0	12 4.0344003 12 2.266+005	-4-098+005	1+051+005
		•	1,3	01+004	3.144+00	2 -1.233+0	03 -2.266+005	-1.112+006	-4-57 4+005
	43	- 4	-6-3	15+004	+1.504+00	3 2.669+0	3 7-410+005	-3-575+006	-1-893+006
		-	6-3	15+004	1.669+00	3 -3-534+0	3 -7-410+005	-5.101+006	-2+680+006
1.1	43	,	200	557UU5 844007	; 1.839+00 La 1a0+00	2 -2.538+0	12 -3.1364004	2-997+005	1.593+005
	43	6	110	12+003	-3-842+00	1 -1-996+0	2 1.721004	0+113+VU3 8-365+004	2+387+002
		-	-1-0	19+003	-1.813+00	2 -5.703+0	2 -1.721+004	-3.122+005	9.293+004
	43	7	-2-7	71+002	+9.450+00	0 -2.768+0	2 1.141+004	1+313+005	-9.95 6+003
		•	Z .7	10+002	-9.215+00	1 -6-865+0	2 -1.141+004	-3-043+005	5-130+004
	- 3	0	5.6	70+003	1.627+00	2 -9-847-1	JI 94284#004 12 mg.5844004	-2+084+005	-1-517+005
	43	9	-543	39+003	-2.082+00	1 -5.882+0	1 8.239+004	-2.212+005	-9.267+004
	-		5 3	44+003	2.705+00	2 -9.109+0	2 -8.239+004	-5-368+005	-2-15 4+005
	43	10	-3-1	51+002	1.400+00	2 -4.072+0	1.458+004	6-409+004	8-07 5+004
			3-2	201402	,8•822+00	1 -2.537+0	JZ -1+458+004	4.977+005	1+335+002
			1						
	44	1	-5-4	10+002	+1.205+00	2 -5.381+0	2-398+004	2.692+005	-1.023+005
		_	5.4	53+002	1-584+00	1 -2.508+0	2 -2-398+004	-1-912+005	-3-447+004
	. 44	Z	7-9	87+003	-1.359+00	2 -7-427+0	6.928+004	6.064+005	-1-537+005
		٦	-60	10+003 N9+00%	7.015+00	21 -7+464+0	J2 -6-928+004	-1-362+005	-1=581+005
		5	620	09+003	-1.775+00	2 1.07040		2-617+000	2 +0 3 4 4 U U 2 2 10 0 + 0 0 5
	44	4	-7.7	15+004	1.711+00	3 -2.913+0	3 -1.794+005	4-860+006	2+825+006
			7.7	15+004	-1-545+00	3 2.047+0	1.794+005	1.991+006	1,870+006

ANAL	1515	P	LA		FOR	MA.	NO	DUL	.0	1	۰.																
	s `8 		12	1 4 		· 1.	11.2	34	56,	, . 0	1.2	34		7 8 i	1 L L L	343					-			1 J C			
44	>	-4	2	20	+00	3	+1	•33	6+	001	i •	-0	30	124	1 10-		8-9	10	+004		•:•	01	0+0	10.5	- 24	212	+005
		- 4	h2i	80	+00	5	1	•70	0+	002		-0.	00		UU Z	-	8.9	10	004		· • •	22	0+0	05			+005
44	0	2	-0	19	+00	3	-2	.01	15+	002		-2.	123	-34	COZ		8.0	121	• UU:		<u>،</u>	UB	U+U	105	-1-	101	2002
	-	-2	6	17	+00	3	-1	.91	7+	100	•	-2 -	10	6+	00 2	-	8.0	31	•003	-	1.	22	>+0	105	-2-	200	+004
44	7	2	⊨ 7∶	22	+00	3	-1	•20	16+	002		-7 -	03	6+	COZ	-	1-2	89	+003		3.	35	5+0	105	-8.	749	+004
•		-2	-7	17	+00	3	1	.90	13+1	001	-	-2 -	59	7+	00 2		1.2	89	+003	i -	-1.	12	3+0	05	-3.	746	+0.04
- 44	8	-2	-2	75	+00	3	1	•21	2+	002	-	-9.	25	6+	002		5.5	97	+003		6.	61	7+0	05	1.	44 5	+005
		2	-2	75	+00	3	-3	•02	1+	001	. •	-1.	26	1+	- CO S	-	5.5	97	+003	i	3.	68	3+0	103	5.	789	+004
44	9	-5	11	00	+00	3	2	.38	7+	002	. •	-7.	63	6+	2 00 ·		2.8	20	004		4.	04	9+0	05	1.	.679	+005
		- 5	0	95	+00	3	11	.09	6+1	001		-2 -	.06	1+	002	-	2.8	20	004		-7.	94	7+0	04	4.	690	+004
44	10	-5	Lō:	5 1	+00	3	15	.45	1+	001		-4.	14	0+	001		7.2	22	004	-	•7.	90	9+0	05	-2.	127	+005
		5	[n	24	+00	7	1	.73	7+1	002		-6	19	5+	002	-	7.2	22	+004		-3.	94	1+0	105	-1.	.003	+005
		-	Ĩ-	-		-					i -			-								1					
											:																
45	1	2	21	٦¢.	•00	۲	1	. 27	0+0	002	! .	.1.	40	7+	00.1	-	3-0	25	+004	-	.2 -	49	0+0	40	2.	514	+005
	•	_5		, s.	100	2	LT		6.4	002			75	54	00 1		3.0	25	+004		0.	85	7+0	0.2	3.	773	+005
/ 5	2		9 J I I E 1	7 C .	100	7	10	407	64	002			'nñ	44	001	_	2.4	794	-00-		÷.	63	n.+0		5	527	+0.01
40	٤	-2	2	7.7	100	2	19	**2	4.4	001			2.6	11	001		2.4	78	-004	_	4	52	610	0.5	1	1961	4005
	.,	2	•2.	2	100	2	Τ.	*/7		602			27	n.	001	_	2 4 7	24	- 004			20	210			505	1005
40	د	<u> </u>	-0	10.	100	2	11	•10	34	203	-	• •		0.	001	-	0	21	- 004			20	2 70		£ •		0000
		-2	-8	96	+00	5	÷Ζ	.01	4.4	003	-	-4 •	32	2+	001		ğ•5	51	+004		2.	.33	7+0	105	2.	0/0	+006
45	- 4	1	510	59	+00	6	17	.01	5+1	203	-	· 8 •	.55	2+	002	-	2.9	981	•005		.].	04	4+0	00		010	+007
		-1	•1	69	+00	6	-7	•31	1+	003		7.	60	6+	002		5.9	98	+005		3.	42	2+0	06		069	+007
45	5	1	•6.	32	+00	4	-4	-20	5+1	001		4.	96	6+	00 Z		3.9	65	004	-	-4.	07	2+0	05	6.	147	+004
		-1	•6	32	+00	4	-2	•02	9+1	042	•	-5 -	70	4+	CD S	-	3.9	65	+004	-	-1.	11	9÷0	106	6.	431	+0.04
45	6	1	• 3	36	+00	4	į 5.	.78	9+1	001	-	-2 .	30	1+	0D 1	-	1.9	26	004		·2 .	27	5+0	04	- 1.	509	+005
		-1	.3	37	+00	4	-3	.11	1+	002	-	-3.	49	3+	001		1.9	26	+004	•	2.	18	6+0	04	2	6666	+005
45	7	2	-3	54.	+00	4	1	.16	5+6	D U 7.		5.	88	7+	001	-	1.4	61.	+004	-	.1.	38	1+0	05	2.	337	+005
		-2	-3	54	+00	4	-4	.36	2+	002	-	.1.	20	0+	00 2		1.4	61.	+004		-1.	02	3+0	105	3.	578	+005
45	8	1	4	19	+00	5	8	.24	7+1	062		6.	03	1+	001	-	6.1	42.	+004		3.	26	1+0	05	1.	272	+006
	-	-1	4	19	+00	5	-1	.17	6+1	003	-	-1.	28	34	CD 2		6.1	42.	+004		8.	20	7+0	04	1.	405	+006
45	0	1	4	19	+00	5	8	.12	6+1	102	:	8.	94	1+	001	-	8.7	021	004		. 2 .	66	4+0	05	1.	251	+006
	. 1	-1	17	10	100	ŝ	LI	. 12	1+	007		. Ť .		54	cn 2		8.7	02	+004			61	8+0	104	1.	TUR	+0.06
45	10	8	1	76.	+ññ	í.	13	30	7+1	ากร์	•	5.	72	ź.	602		žīn	17	004		. š .	70	5+0	0.5	_ <u>k</u> [617	+005
		_2	7	75.	100	2	20	50	741	101			10		60.2	-	2 0	47	-00/			17	0.0	0.4	Č,	720	1005
		0	• •		100	•	- 2	• 7 6	3*1	00:		• 0•		0.4	up z		2.00	07	• • • • •				770	00		1.20	
																		١									
1.6		-7	-	77.		7	i e	40	n			4	40		002		1 2	n1		_		τk.		O.K	1	. 4 4	4004
40			7		100	2	-	•00	744	102			00	0 T	002		1.7	0.2	-002			53	240			777	1007
	•			22.				وہ در ہ	371	101		.0.	77	4.	001	-	?• 2	227	002		·	22	2 40			0 Z 3	+003
40	2		• O	23	100	<u>,</u>	<u>ج</u>	• 77	910	102		٤.	80	17	002		?• 0	13			·?•	22	9 7 0	05		147	1007
			•0	12	100	*	ာ	•01	941	205	-	· .	00	27	002	-	9.0	13	TUUA		• T •	43	270	0.5		442	1005
40	د	-1	•	23	+00	2	11	-32	2+1	003		1.	29	5+	CD 3		7.8	20	+004	•	· 7 ·	43	5+0	00	1.	242	+006
		1		23	+00	5	11	.00	1+0	003	-	-1.	22	2+	003	-	7.8	204	+004	-	•] •	22	s+0	0.0	1.	959	+006
46	- 4	-5	- 9	99	+00	5	÷ 4	•65	0+0	003	i –	5.	68	1+	0D 3		4.7	82	+005		•1•	12	4+0	107	5.	132	+006
<u> </u>	-	5	•91	79	+00	5	-4	•33	2+1	03	i -	-5 .	61	3+	003	-	4.7	824	+005	-	·5 •	30	5+0	06	7.	848	+006
46	5	-1	•0	20	+00	4	3	•19	4+	002	~	-1-	74	7+	00 2	-	4.7	47	+004	,	5.	61	Z+0	05	3.	396	+005
		1	•0)	20	+00	4	-5	•38	1+	001		2.	37	7+	002		4.7	47	+004		6.	9B	0+0	104	7.	132	+004
46	6	-4	•8	16	+00	3	: 1	.46	5+	002	;	1.	69	6+	CO 2		5.5	05	+003	- I	-2 -	54	4+0	05	2.	858	+004
		4	•8	25	+00	3	19	.89	5+1	001	· -	-9.	45	7+	001	-	5.5	05	+003	- 1	·9.	17	6+0	104	54	2 O Z	+004
- 46	7	-1	•0	96	+00	4	2	•76	0+	002		2.	62	7+	00 2		1.0	69	+004		-4.	13	8+0	105	8.	359	+004
		1	60	77	+00	4	5	•36	1+1	001		-1.	85	1+	002	-	1.0	69	004		.1.	98	2+0	05	2.	594	+004
46	8	-7	1	10	+00	4	17	.82	7+	002	ē –	7.	59	4+	CO 2		3.4	44	+004		.1.	38	5+0	06	5.	942	+005
		7	1	10	+00	4	÷4	•0B	1+1	DOŽ	· •	-6 -	84	9+	002	-	3.4	44	004		.6 -	94	3+Ö	05	8	.655	+005
46	9	-7	1:	22	+00	4	7	.67	8+	002		6 -	83	1+	002		9.5	37	+001	- 1	1	24	8÷Л	106	6	33.0	+005
	-	7	.1	21	+00	4	44	.10	2+	002		-6	15	9 +	002	-	9.5	37	.003	-	6	28	R+0	05	8	50.9	+005
46	10	-4	66	28	+00	4	5	.80	2+	002		7	08	1.	chi		3.7	97	+004		1.	.01	240	0.5	Ă.	RAT	+005
		L	6	77	•00	4	2	.70	64	nn>	-		24		00.1		3.7	07	+004		.,	ň	0 + N	io s	X	120	1005
		-	201		.00	-				502				0.1	90.1		J + F	*1	- 004		- 4 •		7 V U		0.4	+33	1003
							1																				
47	4				.00	2	1	80	7.	n n +							4 .					~	***			* 4 *	
	•	_*		40	100	7	L	•07 •07	1 4			.,	, , , , , , ,	1		_	1.0	120	VUU	•	1.	¥0 2 P	170	103		1 T C	1005
		-1	• > •	-0	-00	-	۲'	÷У0	44	002	1 -	-2 -	123	0.4	002	-	1.0	201	+004	,		00	0 4 U	107		900	4002
· : · 4	5671				5+		3 .		5 5 7	× 9 č		3.13	5	.,,								, <i>.</i>	H	OVA	39		
	-									•	1.		•		•					-							

					1			
	NAL.	151	S PLATAFO	RMA MODULO 7		345 67 89 211 , 343		······································
	47	S	1-753+0	03 7-194+001	-6+000+002	-3-554-004	4+207+005	1-170+005
	47	3	-14450+0	04 +1.537+002	-1.804+CD2	3+554+004	5-630+005	24425+005
			1.450+0	04 5.488+001	5-034+001	-3.305+004	1.768+006	-2.793+005
	47	4	-21250+01	05 1,170+003 05 -1,147+003	-4+760+003	~1.480+005 1.480+005	1-981+006	2.515+006
	47	5	4-866+01	03 1.979+002	4-256+001	6-381+004	-6-506+004	1.968+005
	47	6	-4-861+0	03 -8+055+001	-9.078+002	-6-381+004	-9-314+005	2.872+005
			-5-385+0	03 -2 .347+002	-3.312+002	1.064+003	8-044+004	1.232+005
	47	7	-3-777+0	02 -6.786+001	-3.921+082	-1-396+004	2-215+005	-1-561+004
	47	8	8-015+0	03 -1.910+000	-7.210+002	-1.441+003	2-404+005	1.157+005
	47	0	-8+016+0	03 +1-018+002	-2.894+002	1.441+003	8.771+005	2-216+002
	- /	,	-4+026+0	04 -1.687+002	-3-451+002	-8-287+003	2.677+005	4-000+005
	47	10	6-655+0	03 2.170+002	-4-415+001	8.086.004	-1.185+005	2.358+005
		÷	~Q+0+0+UI	US 1.002+001	-1-103+002	~8+086+004	~5.895+005	1+840+005
	4.9		-2. 594 404	07 0 700.004	7 0 - 0 - 0			
	40	. *	2-590+00	03 -5.353+001	-2.979+002	2-933+004	~1.189+004	~6+174+003 2-956+006
	-48	2	2-512+0	04 -3.919+002	-1.777+02	4-591+004	-4.969+005	-4.111+005
	48	3	3-436+0	04 ;2+397+002 04 +3-174+002	-0.095+002	-4-591+004	-5-116+005	-4.409+005
			-3-436+00	04 2.185+002	-1.058+003	-9.149+004	-4-944+005	-6-205+005
	48	4	-9-266+00	04 +6.651+002 04 6.880+002	2.761+003	5-838+005	-8-883+006	-2-737+805
	48	5	1-521+0	03 -3.719+001	-8.677+002	-1-758+004	8-889+005	-2-155+005
	48	6	-1-525+0	03 1.545+002	2-404+000	1.758+004	-1-031+004	-1-412+005
		Ī	-6 101+0	02 -5.637+001	-2+880+002	-1.601+004	~1.824+005	6,22 6+003
	48	7	4-261+00	03 +2,226+002	-4-644+002	2.471+003	-7.242+004	-1-10 5+005
	48	8	1.233+00	04 -1.456+002	-2.713+0D2	4.919+004	-1-988+005	-6.610+004
	4.8	0	-1-233+00		-7.392+002	-4-919+004	-3-555+005	-2-257+005
		,	5-401+00	02 -1.262+001	-6.948+002	-6-124+004	-0.869+005	1+509+005
	48	10	2+455+00	03 5.764+001	-7-244+002	-2-198+004	5-571+005	-1-201+005
			-24403+01	US 1./64+0U2	-9-011+007	2-198+004	1-394+004	-1-805+005
	40	4	-8 000.00	NT T 054.000			-	•
			8-960+00	03 -7.722+002	2+266+000	7-188+004	3-142+005	-1-803+005
	49	2	-6-190+00	04 -5-134+002	1-185+001	1-543+005	4-814+005	-5.065+005
	49	3	2=953+0	04 -3•296+002 05 ±1•363+003	2-278+002	-1-543+005	-2.367+005	1-098+004
	40		-26954+01	05 -2-185+003	8-128+002	-4-065+005	-1-472+005	2.767+006
	Φ¥.	4	-1-499+00	06 18+057+003 06 19-756+003	-2.745+003	1-987+006	9-428+006	6.479+006
	49	5	-7-210+00	02 -4.744+002	-1.280+003	-1-706+005	7-267+005	-2.172+005
	40	6		02	1.632+003	1.706+005	2.696+006	2.732+005
		~	2-518+0	03 -2-249+002	9+631+001	-4.593+004	-8-495+004	-3+352+004
	49	7	2-710+00	04 1.538+001	-5-866+001	6-103-004	3-180+005	1.710+005
	49	8	1.498+00	05 6-563+002	-5-224+002	2.054.005	1-269+005	4+170+005 6+564+005
	40	0	-1-498+01	05 -2.039+003	6.979+CDZ	-2.054+005	2.567+005	1-626+006
1		. *	-1-518+0	05 -2.413+003	1.085+003	1.483+005	T+520+006 7-767+005	4 .74 7+005 1 .73 3+00A
		5 e 7	3 4 - 1 2 2 4 4 8 C				HOJA	40
		•	1	1	· · · · · · · · · · · · · · · · · · ·			• • • • • •

			and the first second	1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -				
NAL.	1515	PLATAFORMA	HODULO 1					
	. 5.7	8 9 6 1 2 3 4 5 5 1 6 9	10/22/1256 1890	1145 67894 1	(a f 6 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11-30-2043 ···	an a	
49	10	8-600+004	-1.270+002	-1.539+003	-8.634+004	1.167+006	1.767+005	
		-8-588+004	-1-398+003	1.936+003	8.634+004	2.894+006	9.034+005	
				1	ł			
			•					
50	1	6-476+003	L1.730+002	-5.578+002	8-695+004	5.950+004	-5+292+004	
•		~6,500+003	+2.935+002	-1-841+603	-8-695+004	-1.104+006	1.963+005	
50	2	3,370+003	-1-077+002	-5.801+002	1-361+005	1.222+005	-4.305+003	
		-3-396+003	-5.068+002	-1-492+003	-1.361+005	~1.301+006	3.493+005	
50	- 3	-5,158+003	-4.391+002	-5.069+002	1.369+005	2+542+005	-2.820+005	
		5,103+003	-6.652+002	-2.468+003	-1.369+005	-2-418+006	-2+24 5+005	
50	- 4	1-789+004	↓1.173+003	2.941+003	-3-447+004	-6.331+005	-5-09 4+0 05	
		-1-790+004	1.528+003	-7.968+0D3	3.447+004	-1.111+007	-3.048+006	
50	- 5	8-010+003	9.849+002	-2.200+003	-3-053+005	7.678+005	4 .71 6+005	
		-7-925+003	1.463+003	-2.191+003	3+053+005	9.954+005	1.461+005	
50	6	-1,700+003	-6.027+002	-4.460+002	3.914.004	9.132+004	-2.998+005	
		1.627+003	-1.263+003	-6.752+002	-3.914#004	-5-934+005	4:328+005	
50	7	-2.933+003	+5-019+002	-1.042+003	-3.085+003	4-137+005	-2.709+005	
		2.853+003	-1.234+003	-1+427+003	3.085+003	-7-438+005	4.292+005	
50	8	-2.468+003	-2+634+002	-1-252+003	3.239+004	5-348+005	-1.886+005	
		2-407+003	-7.302+002	-2 • 92 5 + 0D 3	-3-239+004	-1.739+006	5.474+004	
50	9	8,538+002	3+202+002	-1-520+003	-1-916+004	5.765+005	9-598+004	
		-8.476+002	4 + 66 2+002	-4.046+CD3	1.916+004	-1+893+006	-2:963+005	
50	10	7.807+003	1.159+003	-2.016+003	-3.342+005	6.373+005	5-565+005	
		-7-697+003	1.706+003	-2.032+003	3.342+005	8.842+005	6.938+004	
51	1	-2-525+004	2.821+002	3.350+002	6.577+003	-4+235+005	3.030+005	1
		2.528+004	3.927+002	-6+092+0D1	-6+577+003	6.655+003	-1.678+005	
51	2	3.709+004	7.528+002	1.242+003	9-355+004	-1+887+006	1.337+004	
		-3,702+004	6.072+002	-8.863+002	-9-355+004	-5.694+005	-5.051+005	
51	- 3	-4,501+005	4 -361+003	4.118+003	4-124+005	-7.020+006	3.700+006	
		4,501+005	-2.147+003	-3.771+003	-4.124+005	-2.565+006	2.59 C+006	
51	- 4	-1-781+006	6.371+003	1.703+004	7.040+005	-3-117+007	5.916+006	
		1-781+006	-4 .857+003	-1+683+004	-7-040+005	-1.071+007	6 .897+006	
51	- 5	-1-073+004	-2.695+002	-8.733+002	-2.106+005	2.000+006	6-213+004	
		12065+004	3.347+002	1.012+003	2.106+005	2+433+005	-1,778+005	
51	6	-1.369+004	7.594+002	5.101+002	1.574+004	-5.716+005	3.590+005	
		1.377+004	5.359+002	-1.543+002	-1.574+004	-8+640+004	-3-383+005	
51	- 7	-2,732+004	1+728+003	8.655+CD2	1.971+004	-1.038+006	5.389+005	
		2%736+004	2.859+002	-4.863+0D2	-1.971+004	-4+217+005	-1.771+005	
51	8	-2+110+005	3.109+003	2.377+003	1+584+005	-3-826+006	1,-720+006	
		2,110+005	+7 •897+002	-2.054+0p3	-1.584+005	-1.490+006	1-022+006	
5,1	9	-2-050+005	2.007+003	1.909+003	1.988+004	-3-234+006	1.103+006	
		2+049+005	-5+894+002	-1.709+003	-1.988+004	-1-233+006	9.147+005	
51	10	-1-229+005	1+518+002	-1.562+001	-1-980+005	5-479+005	8+632+005	
		1,+229+005	-2.884+002	1•576+0p2	1.980+005	-4+403+005	5 • 8 4 4+005	
			1					
• •								
52	1	-1-513+004	-3.253+002	-8.258+0D2	1.194+005	-1-163+004	-1-04 4+005	
		1-516+004	-2 .998+002	-1.074+003	-1-194+005	-4-114+005	1.029+005	
52	2	Z-869+004	-1-277+003	-6+537+002	3-430+005	-9-954+005	-5-184+005	
	-	-26864+004	+1+629+002	-1.866+003	-3-430+005	-8-198+005	-1-452+005	
52	3	5.983+004	+6.886+002	4 • 13 2 + 0D 2	1+302+006	-5.338+006	Z-34 4+005	
		-> 982+004	-Z +821+002	-4.835+0D3	-1-302+006	-2-625+006	-2.206+005	
52	4	-1-444+005	6.710+003	1.100+004	4.927+006	-2+742+007	1-076+007	
	-	16443+005	-5.155+003	-1.609+004	-4.927+006	-7.875+006	2.94 0+006	
52	5	~16830+003	1.284+003	-2.235+003	-2.461+005	2.421+006	-1.764+005	
		1.748+003	9.105+002	-3+057+CD2	2.461+005	-Z-405+005	-5.02 1+005	
52	6	-4-853+003	-1.345+003	-1-034+003	7.853+004	1.086+004	-4-173+005	
		41-926+003	-6.718+002	-1.077+003	-7.853+004	-4-543+005	3-011+005	
						HOTA 4	4	
		ration and the	4	2041 - Ya	• .	•• • • • •	• *	

UNL -	LOX	<u>р</u> г	En i		A	.	10				!					٠.												
-	<u> </u>		1.			• • •	1					••••									2							-
>2	- (- 4	-20	0+0	103		-1	•04	21	100	12			19		202		1.0	120	+005		<u><u> </u></u>		005			3+00:	2
		-4	p52:	5+Q	103	1	- 2	•06	534	101	75	~1	• 1	11	5+1	003	-	1.0	120	+005	•	-7.5	501	1005	I	-78	+00:	2
52	8	8	-27	5 + 0	103		2	•71	174	00	72	-1	• 5	77	2+(003		6.2	ZZZ	+005	•	-2.0	664	006		.05	\$+00	5
		-8	2310	6+O	03	•	- Z	•08	384	00	72	-•3	•	58	9+(003	-	6.2	222	+005	•	-1.8	161	006	-4		74 004	÷.
52	9	-3	99	[.÷0	104	1	2	•07	741	00	33	-1	•8	39	5+(DD 3		5.4	622	+005		-1.8	40	006		1-45	3+006	5
		- 3	-981	7+0	04		2	•76	531	00)1	-3	.4	661	3+(DD 3	-	5.4	122	+005	•	-1.8	274	006	2	2.69	1+003	5
52	10	-3	182	7+0	003	1	1	.14	604	+0(33	-9	- 0	251	0+0	002		9.5	571	+003		1.0	1554	006	•	-47	+00	5
		3	[77		103	1	7		564	ññ	12	-6		\$5	2+1	nn 2	-	0.5	71	+003		-4.3	844	005	-1		>+00	ŝ
		-	1		.05	;	•	• • •				, v								1					•			
						ł										1				1								
£ 7					.	1	~				77	-								Loor		~ ~	÷.		_			
22		2	122		104	;	4	•20	5.51		5			201		<u>nn 3</u>	-			1005		2.0	124	000		/ • Y • i	57003	2
		- 2	624	0-10	104			-01			12		•	24		50.5		1+1	10	TUU5		[•]	011	005	•	1=04	5+ UUG	2
\$3	2	1	611	B+0	05		-3	•8	141	104	32	-4		264	6 4 1	003	-	3.0	163	+005		4.1	624	000	-	5-02	5+000	5
		-1	•10 [.]	1+0	05		4	•02	274	101	93	2	•	28,	+	QD 3.		3-0)63	+005		1.1	574	000			5+006	5
53	3	-3	+42	2+0	05		Z	•25	254	00	04 1	-1	• 6	221	0+(DID 4	-	5.4	699	+005		1.4	94	HOQ 7	1	5-87	9+008	5
		3	641	6+0	105	÷	-9	.37	744	00)2	1	•0)3(5+6	004		2.4	69 9	+005		6.1	644	1006		.001	3+006	5
53	- 4	-1	.86	4+0	006	1	1	.98	374	00	04	-5		201	2+(CD 4	~	3.9	760	+006		8.4	264	007	8	.36	+006	5
		1	686	2+0	06	- 1	-1.	.25	554	00	34	5	• 9	8	5+(004		3.9	760	+006		3.5	864	007	1	.572	+007	1
53	5	- 4	-89	8+0	04	1	4	.39	74 4	00	33	6	. 5	29	7+1	002		3.4	74	+005		-2.9	944	006	1	-32	s+ 0.0 <i>6</i>	5
	-	-4	84	1+0	104	_ 1	-5		134	5nr	12.	-1		11		103	_	3.4	76	+005		7.0	124	005	2	.05	+005	÷
53	6	- 5	10	s + 0	04	1	7	.07	6.	ō	13	-1	12			10.1		ő.4	QR	1004		1.0	104	NON.	Å	25	14005	í.
	•		47		04		à.	.04								50.5		<u> </u>	0.0	4004		2 0	944	0000		000	4005	ż
67	7	2				1	E.	•U 1	10.		15		• 6			202		7 • 4 / 7	200	1004		4 7	0.41	003				
25		- 1	107UC) - 0	04	i	20	104			, <u>, ,</u>			150		202	-	?-(00			1.3	y y y y	000		-430	1000	
			274	110		- 1	1	• 2 3	: - :		121		• 0	22		in s		***	00	TOUS		2	11	005		-23	+003	1
22	0	-1		2 10	102		1	• • • •			14	-0	-2	20		10.2	-	3.1	00	1005		<u>[•</u> [921	000			+000	2
	~		620	2+0	202	1	-1	•43	01		12	2	• 2	00	(† (103		3.1	100	1005		5.5	301	000	5	-90	+005	
22	У	-1	221	3+0	105	- 1	2	•30		U	12	->	- 2	0	1+1	10.2	-	0.1	22	+005		[•[504	000	3	-051	+002	<u>.</u>
		1	-21	5 ÷ U	105	Ť	٠ç ·	• 5 4		100	13	2	- 5		5+	10.2		0.1	152	+005		4.2	531	0006	1	+283	+006	2
ిన	10	~2	•04:	5+0	104	1	2	•//	01		11	-1	•3	24	+	10.3		4 •]	17	+005		1-1	504	005	1	•748	+005	<u>_</u>
		2	-00	(+0	04	1	-1	•07	21	UU	12	9	-0	159	? +{	002	-	4.1	17	+005		2+1	434	000		.97	1+005	÷
						1					- 1									f								
			1			1														1								
54	1	-1	-484	4+0	03		6.	•05	514	00	ן וו	-1	•0	33	5+(304		1.7	78	+005		3.2	181	006	1	+023	\$+005	j –
		1	-26	2+0	03		2	•21	154	00	22	-2	•5	56()+(003	-	1.7	778	+005	•	-1.7	691	006	2	2.10	3+005	5
54	2	1	281	8+0	04	1	1	•97	741	00	141	-7	•7	15!	5+(DD 3	-	3.4	46	+004		2.8	691	006	4	.98	+006	5
		-1	-38	8+0	04		4.	•48	354	100	33	3	•3	514	6+1	ob z		3.4	666	+004		-3.9	934	005	-7	-34	5+006	5
54	- 3	1	a751	8+0	104	- 1	-3,	•45	541	00	33	7	•0)74	6+(Dip 3	-	1.2	21	+005		1.0	084	006	-6	.59	4005	5
		-1	.74	6+0	04	Ļ	-1.	.65	764	00)3'	2	• 2	231	5+(003		1.2	221	+005		-1.8	854	005		-59	2+005	ÿ
54	- 4	2	.71	2+0	104	÷	-1.	.03	584	00	341	-1	•0)64	\$+(004	-	1.3	328	+006		1.3	874	007	-7	.00	7+005	5
		-2	666	1+0	04	- +	-2	.87	44	00	33	-1	-4	.73	2+1	s da		1.3	528	+006		-6.9	111	006	:	-93	5+005	5
54	5	-8	-90	Ď+Ö	03	-	-3	.8:	581	Ō	33	-3	. 4	7	5+1	004		3.6	\$39	+005		6.2	23	006		.22	+005	5
		8	.77	6+0	03	Í	3	-67	74	-00	13	-1		55	<u>.</u> +1	004	_	3.6	539	+005		-5.6		006	_	-66	5+00	5
54	6	5	-00	B+0	03	4	-3	.52	34	00	53	-8		11	5+1	002		4.9	DE	+004		5.6	26	PODS	_	-07	4 00r	ś.
	•	-4	1.81		ίnτ		-1	.17	214	•01	13.			-		001	_	1.0	ne	+004		1.8	784	1005		24	74 0.04	ŝ
54	7		[L 4 N	ίñτ	1	-1			- nr	57		-	1	1.	107	_	4.7	768	+ n n 4		5.1	284	-005		144	400	ć
			55	8.4.0	107	-					15									4004				000	-	34	1.005	é
E /	0	-0			03		-0	- VC 4 4		200	12		•	200				1.1		1004				004		-20		2
24	a	2			103	1	- 2	• 10			12	-8	- 2	2		202	-	8.2		1004		1.0	331	0000	-]	•14	+000	2
	~	-7	PCC	1 - 0	203	. 7	- 1-	• • • •	2		121	~?	• 0	22		200		8	000	-004	•	-(•8	05	005		-29.	+00	
24	Y	2	603	/+0	10.5		->	• 10	5.5	UL	15	-0	•	571	5+L	HO 3	-	1.0	\$35	+004		2.5	154	006	-1	.370	000	2
		-4	-79	7+0	03	•	-8	•75	64	100)2	-3	• 2	29()+(003		1.8	335	+004	•	-2.0	954	006		.66	3+005	5
54	10	-1	-20	7+0	03	i	9	•41	104	00) <u>3</u> _	-2	• 2	27	5+(D P 4		3•3	\$50	+005		2.3	641	006	- 2	-142	+006	Ś
		9	071م	3+0	02		6	•40)44	00	33.	-1	- 2	261)+(0,04	-	3.3	550	+005	•	-4.5	424	000		2-104	(+00 <i>l</i>	5
																1				ţ						ł.		
	-										_					Ł							1					
55	1	3	-19	5+0	04	1	1	-64	51	00	33.	-7	•6	597	2+(s qa	-	1.2	13	+005		2.5	534	005	1	-80	+000	5
		-3	+204	\$+0	04		4	•53	554	00	13	- 4	•0	121	7+(2 Q C		1.2	13	005		7.6	164	005	-8	-218	+ 005	i
55	2	-8	-37	5+0	104		6	•32	211	00)2	-1	•3	583	5+(CO 2	-	3.5	64	+005	•	-1.1	074	006	7	.63	+005	5
		8	-30	2+0	104	•	- 2	•83	514	00	72	2	•2	24 (5+(2 qa		3.5	64	+005		1.0	764	006	3	-45	\$4005	ŝ.
55	3	- 4	-44)+O	05		7.	•53	121	00	3.	1	•5	6	5+(DD 3	-	1.0)14	+006		-5.2	914	006		46	\$+008	5
		-4	43	5+0	05		1	•73	84	00)3	-2	•4	61	1+(003		1.0)14	+006		1.5	441	006	6	.229	+0 06	5
			I			1					:												H	OTA	42			
	287	e 4 j	1122	4 : -		• 0	10	14	36	18	• ^ ! !	731	5	67	591	L	- :		• • *	234	•	1 e P .		,			1 7	9

NALISIS PLATAFORMA MODULO 1

ŝ

NAL	151:	PLATAFORMA	HODULO T				
	1		2 2404004	F 3/04007	-4 1384004	-1 0274007	1.841+007
>>	•	26124+000	2.209+004	5.2407003	-0+420+000	-1.921 TUUT	2 5244007
		-26124+006	-2.14/+004	-> •/1 >+ 0U 3	4 4424000	5 0791006	-2-118+000
22	2	361314004	-3.4337002	1.903+LU3	-4 443+005	-3 7274004	-2 3044004
		-36189+004	3.004+003	-1+071+003	-001124005	-J. F. D. 000	-2.504+000
>>	0	1-1/3+004	2.475+002	-6.U21+LU2	-1.097+003	7 2454005	- / 007+005
		-1.146+004	2.535+003	~1.084+002	1.097+005	3.2134003	-4.00/+003
55	- 7	1-285+004	1.677+003	8.653+001	-1.435+005	-0.909+005	1.213+000
	_	-1-314+004	1.774+003	-3.0954002	1+455+005	-4.180104	-4.920+000
55	8	1.987+005	4.272+003	1.075+003	-5.797+005	-2.931+000	3.02 5000
		-1-991+005	+3.736+003	-1.211+003	5.797+005	4.517+005	3.229+000
55	9	2-151+005	3.387+003	8.839+CD2	-6.228+005	-2.161+006	2.248+006
		-2-154+005	-3-250+003	~9.125+002	6.228+005	3.356+005	2.875+006
55	10	1-454+005	-1.490+ 003.	3.415+CD3	2.704+005	-1.673+006	-5.0554004
		-1-447+005	-1.256+0.04	-4.181+003	-2+704+005	-5.250+006	2.857+006
			1	1	i		
56	1	2;544+004	8.873+002	2.757+CD3	3.465+005	-1.656+006	6.178+005
		-2,552+004	6.175+002	6.069+003	-3.465+005	4.068+006	-3.098+005
56	2	-1-771+004	-6.609+003	-1.981+003	1.510+005	-2.887+005	-2.355+006
		1-716+004	-7.616+003	1.123+003	-1.510+005	3.185+006	3,428+006
56	3	-6-414+004	-7.359+003	-1.372+004	-5.292+005	1.317+006	-3-06 7+006
		6-429+004	r1.401+004	-2.955+004	5.292+005	-1.245+005	-4,164+004
56	- 4	1.212+005	1.212+004	-4.391+004	-7.010+006	6.816+006	1,461+007
		-1,196+005	2.680+004	9.187+002	7.010+006	5.460+007	-1-314+007
56	5	1-028+004	7.692+003	6.132+003	3.363+005	-2.131+006	3.084+006
• -		-1-021+004	1-797+004	2.215+004	-3.363+005	2.729+006	-3.537+006
56	6	8-149+003	-2.695+003	-8.126+002	7.081+004	-1.355+005	-8.166+005
	-	-8-343+003	-2-325+003	4.753+002	-7-081+004	7-849+005	1-06 6+006
56	7	-6467+003	-4-314+003	-5.063+003	-1-851+004	1.494+006	-1-710+006
••	•	6-134+003	-1-230+0.04	-9-017+003	1-851+004	-1-923+006	3-222+006
56	8	-2-768+003	2.257+002	-1.179+004	-3-175+005	2-583+006	6-03 5+005
	-	3-296+003	3-260+002	-2-171+004	3-175+005	-1.899+006	-1-024+006
56	9	6-097+004	8-447+003	-1-071+004	-4-196+005	2-499+006	4-853+006
	-	-6-004+004	1-407+004	-1-753+004	4.196+005	-7-887+005	-3-019+006
56	10	4-533+003	2.832+003	4-015+003	2-697+005	-1-723+006	1.067+006
		-4-803+003	3-159+003	1.060+004	-2.697+005	1.786+006	-6-001+005
		40005-005	20107-000			11100.000	
				1 -			
57	1	1-726+004	3.784+004	1.231+004	2-082+005	-2-123+006	3-255+007
	•	-1-576+004	6-033+004	4.117+003	+2-082+005	1.094+004	-2-642+007
57	2	-1-974+005	2 98 24004	A-343+603	3-050+005	2.316+006	1.726+006
	•	1-983+005	4-688+003	2.701+003	-3-959+005	3-620+005	-2-364+006
57	τ	A 847+004	4 551+003	-4.2754007	1.045+004	1 2804007	1-24 5+006
	-	-6-434+004	-0.707+002	1.044+004	-1-945+006	4-337+006	1.612+006
57	4	1.500+004	4 4004004	-4.404+004	8-450+004	8.508+007	2.172+007
	-	-1:50/+006	-1.813+004	4.382+004	-8-450+000	2.305+007	1-961+007
57	5	1.805+000		3 43 14003	-6 675+000	-2 340+004	-1 87 44005
21	-	-1-8054004	1.064+003	-3,1314002	6.6754005	1.8152004	-1-6264004
57		8 024+007	0 7104007	-38131+002 5 1/94 mm	1 2154005	-4 #57+000	7 75 34006
2.		-4 700+007	4 547.00/	4 7/8.087	1 345-005	-0.03/+00J	1 4 4 3 4 4 0 0 4
67	7	-067094003	-/ 1/0+007	7 04 44 00 3	1 4704005	-1 7574005	-0.02 4+000 5 0004005
	•	7	-0+1407003	3.000+003	1.079.005	- 1 - 7 3 7 + 00 3	
67	۵	-1#00/T005	9 0470700. 7 7451007	1+0227003	7 970+005	7 3401004	7 7104005
21	0		1 0504000		-7 270-005	2 440-004	1 07 177007
67	0	-JaUUY+UU4	J + UJ E T UUZ	-7 05/+003	- 1001UVUUD	6 30414000	3 8 3 3 4 003
21	7	-4 50/ +004	1 . TO F . DAA	7 75 7+007	Jelovy002	7	1 L04+005
57	10	5 035+004	-1 064+00*	2 UU TC CI+1	-JAIOUTUUJ	1.00240004	-4.21/14/07
21	10		1 0644007	1 4474007	-3+312+003	100767000	-1 4044004
			1.0007003	3+10/TU3	3 63 1 2 4 UU 7	2007000	-1.0747000
			1 [linta	12
		l.				HUIH	イン
		a + 2345+ ···	11234:675404	2315-789012	1567890		
		4	· · · · · · · · · · · · · · · · · · ·		1	1	

54 1 22554004 - 8.0734002 -3.070403 -2.2053405 -1.7743406 -4.5524005 -2,2554004 [8.0734002 -3.070403 2.063405 -3.2844006 -9.010405 -7,5774003 9.3424002 -1.7414003 1.0974005 -3.2844004 -3.8144005 -7,5774003 9.3424002 -1.7414003 -1.9774005 -2.6404006 -3.8144005 -1.2104004 -1.0504003 -2.5484003 -1.3724006 -4.303406 -1.404006 -4.6994004 -5.6554003 -1.3764004 -4.4034006 -2.3994007 -7.4724006 -4.6994004 -5.6554003 -1.3764004 -4.4024005 -3.2844005 -1.093406 -9.2704003 -2.4294003 -3.488403 4.8224005 -3.2844005 -1.093406 -9.2704003 -2.4294003 -3.488403 4.8224005 -3.284406 -5.384406 -9.2704003 -2.4294003 -3.498403 4.8224005 -3.284406 -5.384406 -7.6984004 -2.200402 -6.5084002 -5.1614004 -1.414406 -5.3644064 -7.6984003 1.1584002 -2.7454002 -8.254404 -1.414406 -5.3644064 -7.6984003 1.1584002 -2.7454002 -8.254404 -1.414406 -5.3644064 -7.6984003 1.1584002 -2.7454002 -8.254404 -1.414406 -5.3644065 -7.6984003 1.1584002 -2.7454002 -8.254404 -1.8544005 -1.6354005 -1.038404 -5.4764002 -1.509403 -5.673405 -2.2834006 -4.55244005 -1.2654004 7.0334002 -2.403403 -4.3744003 -2.2034005 -2.4884005 -1.2654004 7.0334002 -2.403403 -4.3744003 -2.3054005 -1.4574006 -2.77984003 -3.5344003 -1.4514002 -1.5394007 -3.4734006 -2.77984003 -3.5344003 -1.6314004 -2.3744005 -1.5394006 -3.574406 -7.7984003 -3.5344003 -1.6314004 -3.837405 -1.5394006 -2.574406 -7.7984003 -3.5344003 -1.6314004 -3.837405 -5.544006 -1.4574006 -9.77984003 -3.5344003 -1.6314003 -5.544006 -3.7344005 -2.6054004 -3.5344003 -1.5614001 -3.384007 -3.4734006 -9.77984003 -3.5344003 -1.6314003 -3.5344006 -2.5744006 -3.574400 -9.77984003 -3.5744002 -1.699405 -5.574400 -3.7347005 -2.574400 -3.574400 -3.574400 -3.574400 -3.5744002 -3.574400 -3.574400 -3.574400 -3.5744002 -3.574400 -3.574400 -3.574400 -3.5744002 -3.574400 -3.574400 -3.5744002 -3.574400 -3.574400 -3.574400 -3.574400 -3.574400 -3.574400 -3.574400 -3.574400 -3.57	NAL	1515	PLATAFORMA	HODULO 1				
$ \begin{array}{c} 52 & 1 & 2255+004 & -8.073+002 & 3.070+003 & -2.083+005 & -1.473+006 & -9.20+005 \\ -2.255+004 & 8.073+002 & -3.070+003 & 2.083+005 & -3.49+006 & -9.51+006 \\ -7.577+003 & -9.342+002 & -1.741+003 & 1.977+005 & -2.84+006 & -9.51+006 \\ -1.210+004 & -1.050+003 & 2.548+003 & 1.372+006 & -4.305+006 & -4.80+006 \\ -4.099+004 & -5.655+003 & -1.376+004 & -4.035+006 & -4.305+006 & -4.80+006 \\ -4.099+004 & -5.655+003 & -1.376+004 & -4.035+006 & -2.395+007 & -7.472+006 \\ -9.270+003 & -2.200+002 & 8.508+002 & 5.161+004 & -3.85+006 & -1.80+006 \\ -9.270+003 & -2.200+002 & 8.508+002 & 5.161+004 & -3.852+005 & -1.25+004 \\ -7.058+003 & -1.158+002 & 2.765+002 & 5.161+004 & -3.852+005 & -1.25+004 \\ -7.058+003 & -1.158+002 & 2.765+002 & -5.25+004 & -4.854+005 & -1.28+005 \\ -7.058+003 & -1.158+002 & 2.765+002 & -0.225+004 & -4.854+005 & -1.28+005 \\ -1.265+004 & -7.033+002 & -2.403+003 & -3.673+005 & -2.283+006 & -6.85+005 \\ -1.265+004 & -7.033+002 & -2.403+003 & -3.573+005 & -2.85+006 & -4.55+006 \\ -5.569+004 & -7.359+003 & -5.326+004 & -3.837+005 & -1.593+007 & -3.797+006 \\ -3.2090+004 & 3.407+004 & 1.866+004 & 1.069+005 & -2.85+006 & -4.53+005 \\ -1.268+005 & 2.403+003 & -3.532+004 & -3.837+005 & -1.593+007 & -3.073+005 \\ -2.265+004 & -7.033+002 & -2.03+003 & -3.57+005 & -1.593+007 & -3.073+005 \\ -3.259+005 & 2.407+003 & -3.254+004 & -3.837+005 & -1.593+007 & -3.073+005 \\ -2.262+005 & 3.470+004 & 1.866+004 & 1.069+005 & -3.554+006 & -1.784+007 \\ -2.260+004 & -7.003+002 & -3.526+004 & -3.184+005 & -3.584+006 & -1.784+007 \\ -2.260+004 & -3.002+003 & -3.526+004 & -3.027+005 & -3.584+006 & -3.73+005 \\ -2.262+005 & 3.470+004 & 1.866+004 & 1.069+005 & -3.88+007 & -3.584+006 & -1.784+007 \\ -2.260+004 & -3.002+003 & -3.584+003 & -1.584+007 & -3.38+007 & -1.58+007 \\ -2.428+005 & 1.438+005 & 1.584+005 & -3.584+005 & -3.584+005 & -3.584+005 \\ -3.133+004 & -3.438+002 & -3.584+003 & -3.584+005 & -3.584+005 & -3.584+005 \\ -3.133+004 & -3.090+002 & -3.584+003 & -1.584+005 & -3.684+005 \\ -3.133+004 & -3.713+002 & -3.738+003 & -1.584+005 & -3$	2	· 6 · 8	4011 23 45 5 4 4 7	1 2 3 4 5 6 7 8 9 31	231567892113	156789.2315		1
$\begin{array}{c} -2,255+004 & [8.073+002 & -3.070+003 & 2.063+005 & -3.491+006 & -9.200+005 \\ 8 & 7,577+003 & 0.322+002 & -1.741+003 & -1.917+005 & -3.264+005 & -3.84+1005 \\ -7,577+003 & 0.322+002 & -1.741+003 & -1.917+005 & -2.640+004 & -3.84+1005 \\ -1.210+004 & 1.050+003 & -2.58+003 & -1.372+006 & -3.05+006 & -3.28+1006 \\ -4.999+004 & 5.655+003 & -1.376+004 & -4.622+006 & -2.396+007 & -7.472+006 \\ 5 & 5 & 8649+003 & -5.253+003 & -1.376+004 & -4.622+005 & -3.251+006 & -5.38+006 \\ -9,270+003 & -2.429+003 & -3.566+003 & -4.822+005 & -3.251+006 & -2.653+005 \\ -9,270+003 & -2.429+003 & -3.566+003 & -4.822+005 & -3.251+006 & -2.653+006 \\ -7,958+003 & -1.58+002 & -2.765+003 & -2.765+005 & -2.053+006 & -5.38+006 \\ -7,958+003 & -1.58+002 & -2.765+003 & -2.255+004 & -4.553+006 & -4.525+005 \\ -1,025+004 & -7.035+002 & -1.509+003 & -5.73+005 & -2.283+006 & -4.552+005 \\ -1,025+004 & -7.035+002 & -3.206+004 & -3.832+005 & -2.283+006 & -4.552+005 \\ -1,265+004 & -7.035+002 & -3.206+004 & -3.837+005 & -2.764+006 & -7.437+005 \\ 58 & 0 & 1,027+004 & -7.490+003 & -5.73+005 & -2.283+006 & -4.552+005 \\ -3,265+004 & -7.035+002 & -2.403+003 & -4.374+005 & -3.78+006 & -7.437+005 \\ -9,798+003 & +3.554+003 & -1.631+004 & 3.837+005 & -5.540+006 & 2.097+006 \\ -9,798+003 & +3.554+003 & -1.631+004 & 3.837+005 & -5.540+006 & 2.097+006 \\ -9,268+005 & 2.810+004 & 3.799+002 & -1.069+005 & -3.316+006 & -3.73+006 \\ 59 & 1.2,641+004 & 8.017+004 & 1.866+004 & 1.669+005 & -2.856+006 & 2.515+007 \\ -2,268+005 & 2.430+005 & -3.56+001 & 4.318+005 & -2.850+006 & 2.515+007 \\ -2,268+005 & 2.430+006 & -3.630+003 & -4.524+005 & -5.540+006 & -3.73+006 \\ 59 & 1.2,641+004 & 8.017+004 & -1.458+005 & -2.850+006 & -3.73+006 \\ 59 & 1.237+004 & -3.730+002 & -2.650+003 & -3.380+006 & -3.73+006 \\ 59 & 1.237+004 & -3.730+002 & -2.550+003 & -3.580+006 & -3.73+006 \\ 59 & 1.237+004 & -3.730+002 & -2.250+003 & -3.580+006 & -3.73+006 \\ 59 & 1.237+004 & -3.73+006 & -3.620+005 & -3.83+006 & -3.73+006 \\ 59 & 1.237+004 & -3.73+006 & -3.620+005 & -3.680+005 & -3.68+005 \\ -2.204+005 & 1.$	58	1	2,255+004	-8.073+002	3.070+003	-2.063+005	-1.743+006	-4.56 2+005
$ \begin{array}{c} 58 & 2 & 7,577+003 & -9,542+002 & -1.741+003 & -1.917+005 & -2.640+006 & -9.514+006 \\ -7,577+003 & -0,542+002 & -1.741+003 & -1.917+005 & -2.640+006 & -9.514+006 \\ -1.210+004 & -1.050+003 & -2.548+003 & -1.372+006 & -3.814+006 & -3.844+006 \\ -4.699+004 & -5.655+003 & -1.376+004 & -4.603+006 & -2.050+007 & -7.472+006 \\ -9,99+004 & -5.655+003 & -1.376+004 & -4.603+006 & -2.050+007 & -7.472+006 \\ -9,720+003 & -2.200+002 & -3.568+002 & -3.104+004 & -3.322+005 & -3.218+006 \\ -9,790+004 & -2.200+002 & -3.508+002 & -5.101+004 & -1.414+006 & -2.657+005 \\ -1,096+004 & -2.200+002 & -5.08+002 & -5.101+004 & -1.414+006 & -2.657+005 \\ -1,096+004 & -2.200+002 & -5.08+002 & -5.101+004 & -1.312+006 & -4.84+004 \\ -7.958+003 & -1.158+002 & -2.745+002 & -2.255+004 & -1.535+006 & -6.84+005 \\ -1.258+004 & -5.476+002 & -1.509+003 & -5.673+005 & -2.203+005 & -2.481+005 \\ -1.258+004 & -5.476+002 & -1.509+003 & -5.673+005 & -2.203+005 & -2.481+005 \\ -1.256+004 & -7.033+002 & -2.403+005 & -2.351+006 & -2.451+005 \\ -1.256+004 & -7.033+002 & -2.403+005 & -2.554+006 & -2.451+005 \\ -2.658+003 & -3.526+004 & -5.554+005 & -2.554+006 & -2.51+007 \\ -2.658+003 & -3.526+004 & -3.526+005 & -2.856+006 & 2.51+007 \\ -2.658+003 & -3.526+004 & -3.63+005 & -2.856+006 & 2.51+007 \\ -2.658+005 & -3.554+005 & -3.554+006 & -3.554+006 \\ -2.728+005 & -3.518+007 & -1.568+006 & -1.58+007 \\ -2.626+006 & -3.690+003 & -1.568+005 & -3.554+006 & -3.734+005 \\ -2.626+006 & -3.726+003 & -1.568+006 & -3.734+005 \\ -2.626+006 & -3.648+003 & -1.890+003 & -2.657+006 & -3.518+007 \\ -2.626+006 & -3.648+003 & -1.890+003 & -2.657+006 & -3.518+007 \\ -2.626+006 & -3.648+003 & -1.680+005 & -2.680+006 & -1.580+007 \\ -2.626+006 & -3.648+003 & -1.680+005 & -2.680+006 & -1.580+007 \\ -2.626+006 & -3.648+003 & -1.680+005 & -2.680+005 & -3.518+007 \\ -2.626+006 & -3.648+003 & -1.680+005 & -2.680+005 & -3.518+007 \\ -2.626+006 & -3.648+005 & -3.648+005 & -2.680+005 & -3.518+007 \\ -2.626+006 & -2.626+003 & -1.626+005 & -2.680+005 & -2.518+007 \\ -2.626+006 & -2.626+003 & -1.620+005 & -$			-2,255+004	8.073+002	-3•070+CD3	2.063+005	-3.491+006	-9-20 0+005
$\begin{array}{c} -7,577+003 & 0,342+002 & -1,741+003 & -1,917+005 & -2.640+006 & -3.84+0005 \\ \mathbf{s} & 1,050+004 & -1,050+003 & -2.548+003 & -1,372+006 & -3.305+006 & -1,4160+006 \\ -4,999+004 & 5,655+003 & -1,376+004 & -4,632+006 & -2.396+007 & -7,472+006 \\ \mathbf{s} & 58169+003 & -2.655+003 & -1,376+004 & -4,822+005 & -3.251+006 & -2.388+0008 \\ -9,270+003 & -2.429+003 & -3.556+003 & -4.822+005 & -3.251+006 & -2.659+005 \\ \mathbf{s} & 1,096+004 & -2.000+002 & -8.508+002 & -5.161+004 & -1.114+006 & -2.659+005 \\ \mathbf{s} & 1,096+004 & 2.200+002 & -8.508+002 & -5.161+004 & -1.518+002 & -2.659+005 \\ \mathbf{s} & 7,1958+003 & -1.58+002 & -2.745+002 & -9.225+004 & -4.831+005 & -1.288+005 \\ \mathbf{s} & 7,1958+003 & -1.58+002 & -2.745+002 & -9.225+004 & -4.532+006 & -4.552+005 \\ \mathbf{s} & 7,1038+004 & 5.476+002 & -1.509+003 & -5.73+005 & -2.283+006 & -4.552+005 \\ \mathbf{s} & 9,1265+004 & 7.033+002 & -2.403+003 & -4.374+005 & -1.282+006 & -7.437+005 \\ \mathbf{s} & 9,1265+004 & 7.033+002 & -2.403+003 & -4.374+005 & -3.764+006 & -7.437+005 \\ \mathbf{s} & 9,1265+004 & 7.439+003 & -1.631+004 & 3.837+005 & -5.549+006 & -3.029+070 \\ -9.798+003 & +3.554+003 & -1.631+004 & 3.837+005 & -5.549+006 & -3.029+07 \\ \mathbf{s} & 2.264+005 & 2.432+005 & -3.536+006 & -3.029+07 \\ \mathbf{s} & -2.643+005 & 2.432+005 & -3.536+006 & 2.515+007 \\ -3.900+004 & 3.496+004 & 3.759+002 & -1.069+005 & 3.574+006 & -3.59+007 \\ \mathbf{s} & 2.264+005 & 2.432+005 & -3.554+006 & -3.029+07 \\ \mathbf{s} & 2.264+005 & 2.432+005 & -3.554+005 & -3.554+006 & 3.002+07 \\ \mathbf{s} & 2.264+005 & 2.432+005 & -3.564+004 & -3.102+005 & -3.338+006 & -3.73+006 \\ \mathbf{s} & 4.643+003 & -1.489+005 & -1.564+007 & -3.338+006 & -3.73+006 \\ \mathbf{s} & 5.460+004 & -7.068+002 & -7.656+001 & 4.318+005 & -2.856+006 & -3.73+006 \\ \mathbf{s} & 5.460+004 & -7.068+002 & -7.456+005 & -3.338+006 & -3.73+006 \\ \mathbf{s} & 5.460+004 & -7.068+002 & -7.456+003 & -1.458+006 & -3.73+006 \\ \mathbf{s} & 5.460+005 & -3.489+005 & -3.56+001 & -4.388+005 & -3.73+006 \\ \mathbf{s} & 5.460+005 & -3.48+005 & -3.56+001 & -3.38+006 & -3.73+006 \\ \mathbf{s} & 5.460+005 & -3.48+005 & -3.56+001 & -3.38+006 & -3.48+006 \\ \mathbf{s}$	58	2	7,577+003	-9.342+002	1.741+003	1.917+005	-3-284+005	-6.410+005
$ \begin{array}{c} s_8 & 1 \\ s_1 \\ s_1 \\ s_1 \\ s_2 \\ s_1 \\ s_1 \\ s_1 \\ s_2 \\ s_1 \\ $			-7-577+003	9.342+002	-1.741+003	-1.917+005	-2-640+006	-9-51 6+005
$ \begin{array}{c} -1 (210 + 004 + 1.050 + 003 + -2.548 + 003 + -1.372 + 006 + -4.305 + 006 + -2.168 + 003 + -2.458 + 003 + -3.556 + 004 + -4.822 + 005 + -2.358 + 004 + -4.823 + 006 + -2.358 + 006 + -2.358 + 006 + -4.822 + 005 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.358 + 006 + -2.458 + 003 + -1.558 + 002 + 2.745 + 002 + 9.255 + 004 + -2.455 + 005 + -2.655 + 005 + -2.655 + 005 + -2.655 + 005 + -2.655 + 005 + -2.655 + 005 + -2.655 + 006 + -2.558 + 002 + -2.653 + 003 + -2.653 + 0005 + -2.653 + 0005 + -2.653 + 0005 + -2.653 + 0005 + -2.653 + 0005 + -2.653 + 0005 + -2.653 + 0005 + -2.655 + 0005 + -2.655 + 0005 + -2.655 + 0005 + -2.655 + 0005 + -2.655 + 0005 + -2.655 + 0005 + -2.555 + 0006 + -2.555 + 0005 + -2.555 + 0006 + -2.555 + 0006 + -2.555 + 0005 + -2.555 + 0006 + -2.555 + 0005 + -2.555 + 0006 + -2.555 + 0005 + -2.555 + 0006 + -2.555 + 0005 + -2.555 + 0006 + -2.555 + 0005 + -2.55$	58	3	1-210+004	-1.050+003	2.548+003	1.372+006	-3-814+004	-3.84 1+005
$ \begin{array}{c} s_8 & 4 & 4 & 699 + 004 & -5 & 655 + 003 & -1.376 + 004 & -4.403 + 006 & -5.90 + 001 & -7.472 + 006 \\ -9.270 + 003 & -3.83 + 004 & -3.55 + 001 & -4.482 + 005 & -2.514 + 004 & -2.472 + 006 \\ -9.270 + 003 & -3.428 + 001 & -3.556 + 001 & -4.822 + 005 & -3.521 + 004 & -2.617 + 006 \\ -9.270 + 003 & -3.428 + 001 & -3.528 + 001 & -3.522 + 005 & -3.521 + 004 & -2.659 + 005 \\ -1.096 + 004 & -2.200 + 002 & -8.508 + 002 & -5.161 + 004 & -3.532 + 005 & -4.68 + 004 \\ -7.058 + 003 & -1.158 + 002 & -2.745 + 002 & -9.225 + 004 & -4.814 + 005 & -1.289 + 005 \\ -7.058 + 003 & -1.158 + 002 & -2.745 + 002 & -9.225 + 004 & -4.814 + 005 & -1.289 + 005 \\ -7.058 + 003 & -1.158 + 002 & -3.603 + 003 & -5.673 + 005 & -2.283 + 006 & -6.85 + 005 \\ -7.058 + 003 & -7.033 + 002 & -4.603 + 003 & -5.673 + 005 & -2.283 + 006 & -4.552 + 005 \\ -7.058 + 003 & -7.033 + 002 & -4.603 + 003 & -4.573 + 005 & -2.283 + 006 & -4.552 + 005 \\ -7.058 + 001 & -7.033 + 002 & -4.603 + 003 & -4.374 + 005 & -1.372 + 006 & -4.572 + 005 \\ -7.058 + 001 & 7.033 + 002 & -5.326 + 004 & -3.387 + 005 & -1.079 + 007 & -3.973 + 006 \\ -9.708 + 001 & -7.033 + 002 & -5.326 + 004 & -3.387 + 005 & -2.554 + 006 & -4.552 + 005 \\ -9.708 + 001 & 3.469 + 004 & 3.759 + 002 & -1.069 + 005 & 8.976 + 005 & -1.598 + 001 \\ -9.252 + 0016 & 3.469 + 004 & -2.265 + 003 & -4.254 + 005 & -5.554 + 006 & -1.568 + 007 \\ -2.261 + 006 & -4.645 + 003 & -1.584 + 005 & -4.553 + 006 & -1.584 + 007 \\ -2.261 + 006 & -4.645 + 003 & -1.584 + 005 & -3.514 + 007 & -1.568 + 007 \\ -2.261 + 006 & -4.645 + 003 & -1.584 + 005 & -3.514 + 006 & -1.584 + 007 \\ -2.261 + 006 & -4.645 + 003 & -1.584 + 005 & -2.584 + 006 & -1.584 + 007 \\ -5.660 + 004 & -7.006 + 002 & -5.516 + 007 & -5.354 + 006 & -7.538 + 007 \\ -2.261 + 006 & -4.645 + 003 & -7.584 + 005 & -2.584 + 006 & -3.738 + 005 \\ -5.660 + 004 & -7.006 + 002 & -5.516 + 003 & -7.158 + 004 & -7.584 + 005 & -5.514 + 006 \\ -5.660 + 004 & -7.006 + 002 & -5.516 + 003 & -7.158 + 004 & -7.584 + 005 & -5.518 + 006 \\ -5.660 + 004 & -7.687 + 003 & -2.564 + 005 & -7.584 + $	• •	-	-1 210+004	1.050+003	-2.548+003	-1.372+006	-4-305+006	-1-40 6+006
$ \begin{array}{c} -4 \left[\begin{array}{c} 99 + 0104 \\ -8 \left\{ \begin{array}{c} 81 \\ 85 \\ 86 \left\{ \begin{array}{c} 81 \\ 86 \left\{ \begin{array}{c} 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 $	58	4	41999+004	-5-655+003	1.376+004	4.403+006	5.002+005	-2.168+006
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			-4 099+004	5-655+003	-1-376+004	-4-403+006	-2-396+007	-7.472+006
$\begin{array}{c} 0 & -9 & -9 & -9 & -9 & -9 & -9 & -9 & $	5.8	5	8 849+003	-3-283+004	-3-556+004	-4-822+005	2-391+006	-5-38 9+006
$ \begin{array}{c} 58 & 6 & 1 \\ 606 + 001 \\ -2 \\ -2 \\ 1096 + 001 \\ -2 \\ -1 \\ 096 + 001 \\ -1 \\ 098 + 002 \\ -1 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 098 + 003 \\ -1 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 003 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 004 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ -7 \\ 008 + 005 \\ -7 \\ 008 $	20		-0.270+003	-2-420+003	-3-498+003	4-822+005	-3-251+004	2-017+006
$ \begin{array}{c} 100 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+003 \\ -1,009+004 \\ -1,009+003 \\ -2,009+004 \\ -2,009+003 \\ -1,009+004 \\ -1,009+003 \\ -1,009+004 \\ -1,009+003 \\ -1,009+004 \\ -1,009+003 \\ -1,009+004 \\ -1,009+003 \\ -1,009+004 \\ -1,009+003 \\ -1,009+004 \\ -1,009+004 \\ -1,009+005 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+006 \\ -1,009+006 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -1,009+004 \\ -2,009+004 \\ -2,009+004 \\ -1,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -1,009+002 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -1,009+002 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -1,009+002 \\ -2,009+004 \\ -2,009+004 \\ -2,009+004 \\ -1,009+002 \\ -1,009+005 \\ -2,009+004 \\ -2,0$	5.0	4	4 0044004	-2-200+002	8-508+002	5.161+004	-3-362+005	-1.09 3+005
$\begin{array}{c} 58 & 7 & -1684003 & -2.1580002 & -2.745 \times 002 & -9.225 \times 004 & -4.8540005 & -2.8654005 \\ -7.9584003 & -1.588002 & -2.745 \times 002 & -9.225 \times 004 & -4.854005 & -2.285006 \\ -1.038004 & 5.4764002 & -1.5094003 & -5.673 \times 005 & -2.285006 & -6.8514005 \\ -1.2654004 & 7.033002 & -2.4034003 & -4.3744005 & -2.2854006 & -7.4574005 \\ -1.2654004 & 7.033002 & -2.4034003 & -4.3744005 & -2.7644006 & -7.4574005 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -5.55494006 & -7.4574005 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -5.55494006 & 2.0974006 \\ -9.7984003 & -3.5344004 & 3.47594002 & -1.0694005 & 8.9764005 & -1.5954007 \\ -3.0904004 & 3.4964004 & 3.7594002 & -1.0694005 & 8.9764005 & -1.5954007 \\ -2.6834005 & 2.6324005 & 1.1934004 & 4.2544005 & -5.55494006 & 2.0974006 \\ 2.2614006 & -2.0504003 & -4.2544005 & -5.55494006 & 3.0024007 \\ -2.6834005 & 2.6324005 & 1.1934004 & 4.2544005 & -5.55494006 & 3.0024007 \\ 2.4204005 & 1.51724005 & 9.9564004 & -3.1024005 & -3.5114007 & 7.2304007 \\ 2.26241006 & 6.4634003 & -1.1894005 & -1.5614007 & -1.4644008 & -5.7778086 \\ -2.2641006 & 6.4634003 & -1.1894005 & -1.5614007 & -1.4644008 & -5.7778086 \\ -5.6604004 & 7.0064002 & 6.5164001 & -4.3184005 & -2.8574008 & -3.7784060 \\ -2.2644006 & 1.4354005 & 2.5544004 & -2.4884006 & -3.7784005 \\ -2.2644006 & 1.4354005 & 2.5544004 & -4.4884006 & -3.7784005 \\ -2.20454004 & 1.3354004 & 3.025402 & -7.1304004 & 7.7074008 & -5.7784005 \\ -2.20454004 & 1.3354004 & 3.025402 & -7.1304004 & 7.7074003 & -2.5014006 \\ -2.2304004 & 4.3884003 & -3.5464003 & -2.9544004 & -3.484006 & -3.7824006 \\ -1.6634005 & 1.4694002 & 4.5184003 & -1.4854006 & -3.7824006 \\ -3.4344006 & 1.544007 & -2.2344002 & -2.2544004 & -2.6547005 \\ -2.2304004 & 1.2354002 & -2.2344003 & -7.4384006 & -3.6844005 \\ -3.4344006 & -3.244002 & -2.23784003 & -1.4454006 & -3.4844006 & -3.6874005 \\ -3.4344006 & -3.244002 & -2.23784003 & -1.2484006 & -3.4844006 & -3.6844005 \\ -3.464004 & 1.8654005 & -3.2344002 & -1.2344006 & -3.4844006 & -3.6544005 \\ -1.8344004 & -2.244002 & -2.23784003 & -1.$	20	0	-4 094+004	2 200+002	-8 508+002	-5-161+004	-1-114+006	-2-659+085
$\begin{array}{c} 36 & 7 & 1525 (003) & -1.358 (002) & -2.745 (002) & -7.225 (004) & -1.858 (003) & -1.28 (003) \\ -7.058 (003) & -1.358 (002) & -2.473 (002) & -2.625 (004) & -1.28 (005) & -2.48 (005) & -2.48 (005) \\ -1.265 (004) & -7.033 (002) & -2.403 (003) & 4.374 (005) & -2.283 (006) & -4.55 (2006) \\ -1.265 (004) & -7.033 (002) & -2.403 (003) & 4.374 (005) & -2.764 (006) & -7.437 (005) \\ -5.265 (004) & -7.039 (004) & -7.489 (003) & -5.374 (003) & -2.774 (006) & -7.437 (005) \\ -9.798 (003) & -7.353 (002) & -2.403 (003) & 4.374 (005) & -2.856 (006) & 2.515 (007) \\ -3.009 (004) & -7.489 (004) & -1.451 (004) & -3.837 (005) & -2.856 (006) & 2.515 (007) \\ -3.009 (004) & -3.69 (004) & -3.637 (002) & -1.069 (005) & -2.856 (006) & -3.69 (005) \\ -2.683 (005) & 2.812 (004) & -2.050 (003) & -4.254 (005) & -5.555 (006) & -3.602 (007) \\ -2.683 (005) & 2.812 (006) & -2.635 (004) & -3.102 (005) & -3.551 (007) & -7.23 (007) \\ -2.683 (005) & 2.817 (006) & -2.635 (004) & -3.102 (005) & -3.358 (006) & -1.728 (007) \\ -2.683 (005) & 2.817 (006) & -2.655 (014) & -3.102 (005) & -3.358 (006) & -1.728 (007) \\ -2.683 (005) & 2.817 (006) & -2.651 (001) & -4.318 (005) & -3.386 (006) & -1.728 (007) \\ -2.623 (006) & -7.006 (002) & -5.516 (001) & -4.318 (005) & -2.857 (006) & -1.568 (006) \\ -5.54 (006) & -7.006 (002) & -5.516 (001) & -4.318 (005) & -2.898 (006) & -1.728 (007) \\ -2.65 (006) & 1.708 (007) & -3.65 (002) & -7.130 (006) & -7.338 (006) & -1.728 (007) \\ -2.65 (006) & 1.338 (005) & -3.56 (02) & -7.130 (006) & -7.38 (006) & -1.728 (007) \\ -2.65 (006) & 1.438 (005) & -3.56 (02) & -7.130 (006) & -7.208 (006) & -3.738 (006) \\ -5.54 (006) & 1.438 (005) & -3.56 (02) & -7.130 (006) & -7.208 (006) & -7.208 (006) \\ -5.58 (006) & -3.58 (006) & -3.58 (006) & -3.738 (006) \\ -5.58 (006) & -3.58 (006) & -3.58 (006) & -3.738 (006) \\ -5.58 (006) & -3.68 (005) & -3.68 (005) & -1.38 (006) & -1.738 (006) & -1.58 (006) \\ -1.26 (006) & 1.438 (002) & -3.26 (02) & -1.438 (005) & -1.488 (006) & -1.58 (06) \\ -1.26 (006) & 1.438 (002) & -3.26 (02) & -1.438 (005) & -1$		-	-100701004	4 45 94007	2 7454002	0 225+004	1.553+004	-84 0+004
$\begin{array}{c} -7,928,0003 & -1,938,0002 & -1,839,0003 & -1,823,9003 & -2,868,9003 & -2,868,9003 & -2,868,9003 & -2,868,9003 & -2,868,9003 & -2,803,9005 & -2,803,9005 & -2,868,9006 & -2,859,9006 & 2,907,9006 & -2,859,9006 & 2,907,9006 & -2,859,9007 & -3,534,9003 & -1,631,900 & -4,357,9005 & -5,554,9006 & 2,907,9006 & -2,979,8003 & -3,534,9003 & -1,631,900 & -4,254,9005 & -2,855,9006 & 2,907,9006 & -2,859,9007 & -2,858,9006 & 2,209,74006 & -2,059,9003 & -4,254,9005 & -2,554,9006 & 2,505,9007 & -2,854,9006 & -2,859,9003 & -4,254,9005 & -5,554,9006 & 2,505,9007 & -2,854,9006 & -2,859,9003 & -4,254,9005 & -5,554,9006 & 2,505,9007 & -2,854,9006 & -2,859,9003 & -4,254,9005 & -5,554,9006 & -5,554,9007 & -2,854,9003 & -2,857,9006 & -2,857,9006 & -2,857,9007 & -2,854,9006 & -2,857,9006 & -2,857,9006 & -2,857,9006 & -2,854,9006 & -2,858,9006 & -2,858,9006 & -2,858,9006 & -2,858,9006 & -3,758,9005 & -5,514,9007 & -1,454,9008 & -5,77,9006 & -2,854,9006 & -3,758,9005 & -5,514,9007 & -2,381,9006 & -3,758,9005 & -5,514,9007 & -2,381,9006 & -3,758,9005 & -5,514,9006 & -3,758,9005 & -5,514,9006 & -3,758,9005 & -5,514,9006 & -2,230,9004 & 4,383,9003 & -3,504,9003 & -1,309,9006 & -2,858,9005 & -2,858,9006 & -2,858,9006 & -2,858,9005 & -2,858,9006 & -2,858,9006 & -2,858,9005 & -2,858,9006 & -2,858,9006 & -2,858,9005 & -2,858,9006 & -2,858,9006 & -2,858$	28	r	759364003	-1.158+002	2 - 7 4 5 4 00 2	-0 2254004	3004150	-1 28 04005
$ \begin{array}{c} 38 & 8 & 1.0580004 & -5.4760002 & -1.5094003 & -5.6734003 & -2.2834006 & -4.5524005 \\ -1.2658004 & 7.0334002 & 2.4034003 & 4.3744005 & -1.3324006 & -4.5524005 \\ -1.2658004 & 7.0334002 & 2.4034003 & 4.3744005 & -2.2844006 & -7.4374005 \\ -9.7984003 & -3.5344003 & -3.53264004 & -3.8374005 & -2.8564006 & 2.0974006 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -5.5544006 & 2.0974006 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -5.5544006 & 2.0974006 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -5.5544006 & 2.0974006 \\ -9.7984003 & -2.6504004 & 3.4964004 & 3.7594002 & -1.0697003 & 8.9764005 & -1.5954007 \\ -3.0904004 & 3.4964004 & 3.7594002 & -1.0697003 & 8.9764005 & -1.5954007 \\ -2.6834005 & 2.8104004 & -2.0504003 & -4.2544005 & -5.5544006 & 3.0024007 \\ -2.6834005 & 2.8104004 & -2.0504003 & -4.2544005 & -3.534004 & -1.5864007 \\ 2.4204005 & 3.7104004 & -1.1584004 & 3.1024005 & -3.5144007 & 7.2304007 \\ 2.4204005 & 3.7104004 & -1.1584004 & 3.1024005 & -3.5314007 & -1.6394007 \\ -2.6254004 & 7.0064002 & -5.1564001 & -4.3184005 & 2.8574006 & -3.7364005 \\ -5.6604004 & 7.0064002 & -5.1564001 & -4.3184005 & 2.8574006 & -3.7364005 \\ -5.6604004 & 7.0064002 & -5.516400 & -4.3184005 & 2.8084006 & -3.7364005 \\ -2.6254004 & 3.0027003 & -2.544004 & -1.4584007 & -2.5084006 & -3.7364005 \\ -2.6254004 & 7.0054002 & -5.2544003 & -1.4584007 & -2.6084006 & -3.7364005 \\ -2.6254004 & 7.0074003 & -3.5244003 & -1.4584007 & -1.3584007 & -1.6394005 \\ -2.6254004 & 7.6974004 & 3.8204003 & -7.1304004 & -7.3184005 & -2.4844006 & -5.47847005 \\ -2.62304004 & 7.6974004 & -3.6244003 & -2.544005 & -4.6374005 & -5.5874005 \\ -3.6044005 & 1.4804002 & -5.2144002 & -2.544005 & -1.4584007 & -1.6384007 & -1.6384007 \\ -1.0574003 & -8.0904002 & -2.2544003 & -1.4384005 & -2.6954005 & -4.8274006 & -5.8244005 \\ -3.6244004 & -2.7134002 & -2.2544003 & -2.6944005 & -4.6874005 & -5.884005 \\ -3.1374004 & -2.7134002 & -2.254003 & -1.2854005 & -2.6954005 & -4.8274006 & -2.6184004 \\ -3.4849003 & -8.0904002 & -2.2344005 & -2.6954005 & -7.636$		•	-7,958+005	1.158+002	-2.01434002		-3 001+005	-7 49 5+005
$\begin{array}{c} -1,038004 (5.4764002 -1.5094003 -2.673003 -2.6374005 -4.552005 \\ -1.2654004 7.0334002 -2.403403 -4.3744005 -1.3324006 -4.552005 \\ -1.2654004 7.0334002 -2.403403 -4.3744005 -2.7644006 -7.4374005 \\ -9.7984003 -3.5344003 -1.6314004 3.8374005 -2.8564006 2.5154006 \\ -9.7984003 -3.5344003 -1.6314004 3.8374005 -2.8564006 2.5154007 \\ -3.0904004 3.4694004 3.7594002 -1.0694005 8.9764005 -1.5954007 \\ -2.6834005 2.8104004 -2.050403 -4.2544005 -5.5544006 3.0024007 \\ -2.6834005 2.8104004 -2.050403 -4.2544005 -5.5544006 -3.7364006 \\ -2.5174005 2.8174005 -2.654004 -3.1024005 -3.3864006 -1.7864007 \\ -2.6834005 3.7124005 9.9564004 -3.1024005 -3.3864006 -1.7424007 \\ -2.4204005 3.7104044 -1.4184005 -1.5641007 -1.4944008 -5.3774086 \\ -2.26414006 -6.4634003 -1.4894005 -1.5641007 -5.3314007 -1.6394007 \\ -2.6649004 -7.0064002 -6.5164001 4.3184005 -2.9684006 -3.7344005 \\ 59 6.1944004 7.064002 -6.5164001 4.3184005 -2.9684006 -3.7344005 \\ -2.6649004 -7.064902 -6.5164001 4.3184005 -2.8684006 -3.7344005 \\ -2.6649004 -7.064902 -6.5164001 4.3184005 -2.8684006 -3.7344005 \\ -2.6649004 -7.064902 -6.5164001 4.3184005 -2.8684006 -3.7344005 \\ -2.6659004 -7.064902 -5.564004 3.9074005 -1.5884007 -2.4884006 -3.7344005 \\ -2.6649005 1.4684005 2.4647003 -7.1394007 -1.5914006 5.1824006 \\ -2.6049005 1.4684005 2.464005 2.5446004 3.9074005 -2.4884006 -5.1824006 \\ 59 0 -1.8044005 4.3384002 8.2044003 -2.4544005 -2.6344005 -2.4544005 -3.6344006 -3.4344006 -3.4344006 \\ -3.4344006 -3.4344002 -3.2784002 -3.2784005 -3.6344005 -3.6484005 \\ -3.4394003 -8.0904002 -3.2784003 -2.2644005 -4.6274006 -2.7714007 -2.5644005 \\ -3.4374004 -2.7134002 -3.2784003 -2.2644005 -3.6484005 -3.6484005 \\ -3.4374004 -3.2744004 -3.2544005 -2.21244006 -3.4374006 -2.2714007 -2.5644005 \\ -3.4374004 -2.7134002 -3.27$	28	8	1-038+004	-5.470+002	1.509+003	3.0134003	-2.903+003	-2.40 JV00J
$ \begin{array}{c} 58 & 9 & 1,2654004 & 7,0334002 & 2,4034003 & 4.3744005 & -1.3324006 & -7.4574005 \\ -1.2654004 & 7.0374002 & -2.403402 & -3.8374005 & 1.0794007 & -3.9734006 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -2.7644006 & 2.4074006 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -2.8564006 & 2.0974006 \\ -3.0904004 & 3.4964004 & 3.7594002 & -1.0694005 & 8.9764005 & -1.5954007 \\ -3.0904004 & 3.4964004 & 3.7594002 & -1.0694005 & -2.8564006 & 2.5154006 & 3.0024007 \\ -2.6834005 & 2.8324005 & 1.1934004 & -2.0504003 & -4.2544005 & -3.5544006 & -1.5864007 \\ -2.6834005 & 2.8314004 & -2.0504003 & -4.2544005 & -3.5544006 & -1.5864007 \\ -2.6834005 & 2.8174005 & -2.0504003 & -4.2544005 & -3.5144007 & -7.2304007 \\ 2.4204005 & 3.7104004 & -1.1584004 & -3.1024005 & -3.5864006 & -1.7424007 \\ 2.2614006 & 6.4631003 & -1.1894005 & 1.5641007 & -1.4844008 & -5.3774006 \\ -2.6604004 & 7.0064002 & -6.5164001 & -4.3184005 & 2.8974006 & 1.5649007 \\ -5.6604004 & 7.0064002 & -6.5164001 & -4.3184005 & -2.9684006 & -3.7364005 \\ -5.6604004 & 7.0064002 & -6.5164001 & -4.3184005 & 2.8974006 & 1.5649007 \\ -2.20454004 & 5.6104004 & 7.4154003 & 9.2544004 & -1.4184006 & 1.2814007 \\ -2.230404 & 4.9384003 & -3.5464002 & -7.1304004 & -1.51514006 & 1.1544007 \\ -2.230404 & 4.9384003 & -3.546400 & -7.3047005 & -2.4884006 & -5.1824006 \\ 1.6044005 & 1.4604005 & 2.4564004 & 3.9074005 & -1.384007 & 1.9394007 \\ 1.1094005 & 1.1624004 & -6.8674003 & -3.9074005 & -2.4884006 & -5.1824006 \\ 1.8044005 & 1.4384002 & -8.2014003 & 1.2404006 & -1.43544006 & -5.8244006 \\ -3.41394003 & 8.09074002 & -1.2854003 & -7.4394005 & -7.6364005 & 5.584006 \\ -3.41394003 & 8.09074002 & -1.2854003 & -7.4384005 & -7.6844005 \\ -3.41394003 & 8.09074002 & -1.2854003 & -1.4384005 & -1.8954006 & 9.5844005 \\ -3.41394003 & 8.09074002 & -1.2854003 & -1.4384005 & -1.8954006 & 9.5844005 \\ -3.41394003 & 8.09074002 & -2.2344003 & -2.244004 & -2.6484005 & -2.6484005 \\ -3.41394003 & 8.09074002 & -2.234005 & -1.8954005 & -2.8844005 & -2.6844005 \\ -3.41394004 & -3.2449002 & -2.234005 & -$			-1-038+004	5.476+002	-1+509+003	-5.673+005	~2.283+000	-0.821+005
$\begin{array}{c} -1.2654004 & 7.0334002 & -2.4034003 & -4.3744005 & -2.7644006 & -7.874006 \\ -9.7984003 & -7.8974003 & -5.3544004 & 3.8374005 & -5.55494006 & 2.0974006 \\ -9.7984003 & -3.5344003 & -1.6314004 & 3.8374005 & -5.55494006 & 2.0974006 \\ -3.0904004 & 3.4964004 & 3.7594002 & -1.0694005 & 8.9764005 & -1.5954007 \\ -3.0904004 & 2.4504004 & 3.7594002 & -1.0694005 & 8.9764005 & -1.5954007 \\ -2.6634005 & 2.8104004 & -2.0504003 & -4.2544005 & -5.5544006 & -1.5864007 \\ -2.6634005 & 2.8104004 & -2.0504003 & -4.2544005 & -5.5544006 & -1.7424007 \\ 2.4204005 & 3.710-0064 & -1.5864001 & -3.1024005 & -3.3864006 & -1.7424007 \\ 2.4204005 & 3.710-0064 & -1.41894005 & -1.5641007 & -1.4944008 & -5.3774086 \\ 2.2614006 & 6.4634003 & -1.1894005 & -1.5641007 & -1.4944008 & -5.3774086 \\ 2.2614006 & 6.4634003 & -1.1894005 & -1.5641007 & -1.4944008 & -5.3774086 \\ -5.6604004 & 7.0064002 & -6.5164001 & 4.3184005 & 2.8574006 & 1.5684006 \\ -5.6604004 & 7.0064002 & -6.5164001 & 4.3184005 & -2.9684006 & -3.7344005 \\ 59 & 61.9144004 & 7.6974004 & 3.8209003 & 7.1304004 & 7.7074003 & -2.5014006 \\ 7.16634004 & 7.6974004 & 3.8209003 & 7.1304004 & 7.7074003 & -2.5014006 \\ 59 & 71.6634004 & 7.6974004 & 3.820403 & -7.1304004 & 7.7074003 & -2.5014006 \\ 59 & 71.6634004 & 7.6974004 & 3.820403 & -7.1304004 & 7.7074003 & -2.5014006 \\ 59 & 71.6634004 & 7.6974004 & 3.820403 & -7.1304004 & 7.7074003 & -2.5014006 \\ 59 & 1.1084005 & 1.4624002 & 8.2014003 & 1.2404006 & -1.6554007 & -1.6094006 \\ 1.3374004 & 2.7134002 & 3.2784003 & -6.2944005 & -7.6564005 & 5.5874005 \\ -3.1394003 & 8.0907002 & 1.2854003 & -1.2854005 & -7.6564005 & 5.5874005 \\ -3.41394003 & 8.0907002 & 1.2854003 & -1.2844006 & -7.2084006 & 9.8884005 \\ -3.41394003 & 8.0907002 & 1.2854003 & -1.7464006 & -7.2084006 & 9.6884005 \\ -3.41394003 & 8.0907002 & 1.2854003 & -1.2144006 & 3.4814005 & -1.8954005 & 5.5874005 \\ -3.1374004 & 2.7134002 & -2.2514003 & -2.254005 & -7.656005 & 5.5874005 \\ -3.41374004 & 2.7134002 & -2.255002 & -7.6354005 & -7.656005 & 5.5874005 \\ -3.41374004 & 2.4134002 & -2.255002 & -7.$	58	9	1-265+004	- 7.033+002	2.403+003	4-374+005	-1-332+000	-4-55 2+005
$ \begin{array}{c} 58 & 10 & 1 1027+004 & -7.899+003 & -5.326+004 & -3.837+005 & 1.079+007 & -3.973+006 \\ & -9.798+003 & +3.534+003 & -1.631+004 & 3.837+005 & -5.549+006 & 2.097+006 \\ & -3.090+004 & 3.496+004 & 3.759+002 & -1.069+005 & 8.976+005 & -1.595+007 \\ & -2.683+005 & 2.632+005 & 1.193+004 & 4.254+005 & -5.554+006 & -1.595+007 \\ & -2.683+005 & 2.632+005 & 1.193+004 & 4.254+005 & -5.554+006 & -1.586+007 \\ & -2.683+005 & 2.632+005 & 1.193+004 & 4.254+005 & -3.551+007 & 7.236+007 \\ & -2.683+005 & 3.710+004 & -1.458+004 & 3.102+005 & -3.511+007 & 7.236+007 \\ & 2.420+005 & 3.710+004 & -1.458+005 & 1.561+007 & -5.351+007 & 7.236+007 \\ & 2.420+005 & 3.710+004 & -1.458+005 & 1.561+007 & -5.351+006 & -1.564+007 \\ & 2.261+006 & -4.645+003 & -1.180+005 & -1.561+007 & -5.331+007 & 1.639+007 \\ & -2.643+004 & 7.006+002 & 6.516+001 & -4.518+005 & -2.968+006 & -3.737+006 \\ & -5.660+004 & 7.006+002 & 6.516+001 & -4.518+005 & -2.968+006 & -3.737+006 \\ & -5.660+004 & 7.607+004 & 3.802+003 & 9.254+004 & -1.418+006 & 1.281+007 \\ & -2.653+004 & 1.333+004 & 3.025+002 & -7.130+004 & -7.470+003 & -2.501+006 \\ & 1.663+004 & 7.607+004 & 3.802+003 & -7.130+004 & -7.770+003 & -2.501+006 \\ & 1.408+005 & 1.458+005 & 1.458+003 & -3.970+005 & -1.488+006 & -5.182+007 \\ & 1.109+005 & 1.162+1004 & -5.620+003 & -3.907+005 & -2.488+006 & -5.182+006 \\ & 1.804+005 & 1.458+002 & 8.201+003 & -3.907+005 & -2.488+006 & 8.676+005 \\ & 5.9 & 0 & -1.337+004 & 2.713+002 & -3.278+003 & -6.294+005 & -7.656+005 & 5.587+005 \\ & 0 & 1 & 3.139+003 & 8.090+002 & -1.285+003 & 1.143+005 & -1.85+006 & 8.298+005 \\ & -3.139+003 & -8.090+002 & -1.285+003 & 1.746+006 & -7.208+006 & -8.676+005 \\ & -3.139+004 & -3.224+002 & -5.214+005 & -1.489+005 & -4.682+005 & -6.682+005 \\ & -3.139+004 & -3.224+005 & -3.622+005 & -4.682+005 & -4.682+005 \\ & -3.139+004 & -3.224+005 & -3.622+005 & -4.682+005 & -4.682+005 \\ & -3.139+004 & -3.251+005 & -3.224+005 & -4.680+005 & -2.638+005 \\ & -1.283+004 & -3.251+005 & -3.224+005 & -7.458+006 & -2.771+007 & 2.924+007 \\ & -2.612+004 & -3.254+002 & -$			-1-265+004	7.033+002:	-2-403+CD3	-4-374+005	-2.764+006	-7.437+005
$\begin{array}{c} -9.798+003 + 3.534+003 - 1.631+004 3.837+005 - 5.549+006 2.097+006 \\ \hline \\ 59 1 2.941+004 3.496+004 3.759+002 - 1.069+005 - 2.856+006 2.515+007 \\ -3.690+004 3.496+004 3.759+002 - 1.069+005 - 2.856+006 - 1.595+007 \\ -2.683+005 2.830+004 - 2.650+003 - 4.254+005 - 4.553+006 - 1.566+007 \\ -2.683+005 2.830+004 - 2.650+003 - 4.254+005 - 5.553+006 - 1.742+007 \\ -2.420+005 3.710+004 - 1.158+004 3.402+005 - 3.531+007 - 7.230+007 \\ -2.420+005 6.463+003 - 1.189+005 - 1.561+007 - 7.333+007 - 1.639+007 \\ -2.261+006 6.463+003 - 1.189+005 - 1.561+007 - 7.333+007 - 1.639+007 \\ -2.261+006 6.463+003 - 1.189+005 - 1.561+007 - 5.331+007 - 1.639+007 \\ -2.263+004 - 7.006+002 - 6.516+001 - 4.318+005 - 2.8968+006 - 3.736+005 \\ -5.660+004 - 7.006+002 - 6.516+001 - 4.318+005 - 2.8968+006 - 3.736+005 \\ -2.645+004 - 1.335+004 - 3.025+002 - 9.254+004 - 4.4818+006 - 3.736+005 \\ -2.230+004 - 1.335+004 - 3.025+002 - 7.130+004 - 3.51+006 - 1.561+007 \\ -2.230+004 - 1.459+003 - 3.546+002 - 7.130+004 - 7.07+003 - 2.501+006 \\ 59 8 - 1.168+005 - 1.469+003 - 2.546+004 - 7.07+005 - 2.518+006 - 5.182+006 \\ -3.804+005 - 1.438+002 - 8.201+003 - 1.240+0061.458+007 - 1.639+007 \\ -3.837+004 - 2.713+002 - 3.278+0033.629+0053.438+006 - 5.182+006 \\ -3.438+002 - 8.201+0031.420+0063.438+006 - 5.182+006 \\ -3.438+002 - 3.278+0033.527+0051.438+0052.959+005 - 5.48+006 \\ -3.438+002 - 3.278+0033.278+0031.429+0053.438+006 & 8.676+005 \\ -3.139+003 - 8.090+002 - 1.285+0031.438+0052.959+005 - 5.48+006 \\ -3.438+002 - 3.278+0033.278+0033.438+0052.959+005 - 5.48+006 \\ -3.438+002 - 3.278+0033.278+0033.438+0052.959+005 - 5.48+006 \\ -3.438+004 - 3.254+0023.278+0033.438+0057.208+006 - 9.99+1006 \\ -3.438+004 - 3.254+0053.234+0053.638+0073.878+0052.959+005 - 5.46+005 \\ -3.439+004 - 3.254+0053.234+0053.638+0073.878+0053.638+006 \\ -3.489+004 - 3.254+0053.234+0053.638+0073.838+006 \\ -3.489+004 - 3.254+0053.629+0053.638+0073.878+0053$	58	10	1,027+004	+7.899+003	-5.326+004	-3.837+005	1.079+007	-3.973+006
			-9'-798+003	+3+534+003	-1.631+004	3.837+005	-5+549+006	2.097+006
$ \begin{array}{c} 59 & 1 & 2.941+004 \\ -3.090+004 & 3.496+004 & 1.866+004 & 1.069+005 & -2.856+006 & 2.515+007 \\ -3.090+004 & 3.496+004 & 3.759+002 & -1.069+005 & 8.976+005 & -1.5954007 \\ -2.683+005 & 2.810+004 & -2.050+003 & -4.254+005 & -4.563+004 & -1.586+007 \\ -2.683+005 & 3.710+004 & -1.158+004 & 3.102+005 & -3.516+006 & -1.742+007 \\ -2.420+005 & 3.710+004 & -1.158+004 & 3.102+005 & -3.586+006 & -1.742+007 \\ -2.640+006 & 6.463+003 & -1.189+005 & -1.561+007 & -1.595+006 \\ -2.261+006 & 6.463+003 & -1.189+005 & -1.561+007 & -1.531+007 & 1.639+007 \\ -5.660+004 & -7.006+002 & -6.516+001 & -4.318+005 & 2.857+006 & -5.377+086 \\ -5.660+004 & -7.006+002 & -6.516+001 & -4.318+005 & 2.857+006 & -3.736+005 \\ -5.660+004 & -7.006+002 & -6.516+001 & -4.318+005 & -2.668+006 & -3.736+005 \\ -2.065+004 & 1.335+004 & 3.025+002 & -7.130+004 & -1.618+006 & 1.154+007 \\ -2.205+004 & 1.335+004 & 3.025+002 & -7.130+004 & 7.707+003 & -2.501+006 \\ 59 & 7 & 1.663+004 & 7.697+004 & 3.820+003 & 7.130+004 & 7.707+003 & -2.501+006 \\ 59 & 8 & -1.168+005 & 1.162+004 & -6.867+003 & -3.97+005 & -1.338+007 & 1.639+007 \\ -1.337+004 & 2.713+002 & 2.278+003 & -6.294+005 & -1.489+006 & 8.676+005 \\ 59 & 9 & -1.804+005 & 4.358+002 & 8.201+003 & -1.2895+005 & -4.887+006 & 8.676+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.439+005 & -2.488+006 & 8.676+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.439+005 & -2.698+006 & -5.87+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.439+005 & -2.698+006 & 8.676+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.439+005 & -2.698+006 & 8.676+005 \\ -3.139+003 & 8.090+002 & -2.278+003 & -2.208+005 & -7.636+006 & 8.676+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.439+005 & -2.698+006 & -3.694+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.489+006 & 8.676+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.489+006 & -7.208+006 & 9.888+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.489+006 & -2.694+005 & -2.694+005 \\ -3.139+004 & -3.278+005 & -2.239+005 & -1.489+006 & -2.694+005 & -2.604+006 & -2.694+005 & -2.604+006 & 4.664+005 & -2$			1			1		
$ \begin{array}{c} 59 & 1 & 2 + 941 + 004 \\ -3 & 50 + 004 \\ -3 & 50 + 005 \\ -3 & 50 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 688 + 005 \\ -2 & 660 + 006 \\ -1 & 748 + 003 \\ -1 & 188 + 005 \\ -2 & 660 + 006 \\ -1 & 700 + 002 \\ -2 & 660 + 006 \\ -1 & 646 + 646 + 003 \\ -1 & 188 + 005 \\ -3 & 561 + 007 \\ -2 & 261 + 006 \\ -3 & 660 + 006 \\ -7 & 006 + 002 \\ -5 & 516 + 001 \\ -2 & 660 + 006 \\ -7 & 006 + 002 \\ -5 & 516 + 001 \\ -2 & 064 + 004 \\ -7 & 006 + 002 \\ -5 & 516 + 001 \\ -2 & 064 + 004 \\ -7 & 006 + 002 \\ -5 & 516 + 001 \\ -2 & 064 + 004 \\ -7 & 006 + 002 \\ -5 & 516 + 004 \\ -2 & 064 + 004 \\ -7 & 006 + 002 \\ -5 & 188 + 005 \\ -2 & 054 + 004 \\ -7 & 188 + 005 \\ -2 & 054 + 004 \\ -7 & 006 + 002 \\ -2 & 054 + 004 \\ -2 & 054 + 004 \\ -7 & 006 + 002 \\ -2 & 054 + 004 \\ -2 & 054 + 004 \\ -7 & 006 + 002 \\ -2 & 054 + 004 \\ -2 & 054 + 004 \\ -7 & 006 + 002 \\ -2 & 054 + 004 \\ -7 & 006 + 002 \\ -2 & 054 + 004 \\ -2 & 054 + 005 \\ -2 & 254 + 004 \\ -7 & 056 + 005 \\ -2 & 254 + 004 \\ -7 & 056 + 005 \\ -2 & 254 + 004 \\ -7 & 056 + 005 \\ -2 & 254 + 006 \\ -1 & 057 + 004 \\ -2 & 057 + 004 \\ -2 & 057 + 004 \\ -2 & 057 + 004 \\ -2 & 057 + 004 \\ -2 & 057 + 004 \\ -2 & 057 + 004 \\ -2 & 057 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -2 & 058 + 005 \\ -3 & 057 + 006 \\ -7 & 058 + 005 \\ -3 & 057 + 006 \\ -7 & 058 + 005 \\ -2 & 058 + 005 \\ -3 & 057 + 006 \\ -7 & 058 + 005 \\ -7 &$				1	1	1		
$\begin{array}{c} -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -2 \\ -2 \\$	59	1	2,941+004	8.017+004	1.866+004	1.069+005	-2.856+006	2.515+007
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			-3-090+004	3.496+004	3.759+002	-1-069+005	8.976+005	-1.595+007
$\begin{array}{c} -26834005 & 2.8104004 & -2.0504003 & -4.2544005 & -4.5634004 & -1.5864007 \\ 59 & 3 -2.5174005 & 5.4774005 & 9.956404 & -3.1024005 & -3.5114007 & 7.2304007 \\ 2.4204005 & 3.710404 & -1.1584004 & 3.1024005 & -3.5844008 & -5.3774086 \\ 2.2614006 & 6.4634003 & -1.1894005 & -1.5614007 & -1.4944008 & -5.3774086 \\ 2.2614006 & 6.4634002 & 6.5164001 & -4.3184005 & 2.8874006 & -3.7344005 \\ -5.6604004 & 7.0064002 & -6.5164001 & -4.3184005 & -2.9684006 & -3.7344005 \\ -5.6604004 & 7.0064002 & -6.5164001 & -4.3184005 & -2.9684006 & -3.7344005 \\ -2.0454004 & 1.3354004 & 3.0254002 & -7.1304004 & 7.0774003 & -2.5014006 \\ -2.0454004 & 1.3354004 & 3.8204003 & 7.1304004 & 7.0774003 & -2.5014006 \\ -2.22304004 & 4.9384003 & -3.5464002 & -7.1304004 & 7.0774003 & -2.5014006 \\ 59 & 8 & -1.1684005 & 1.4804005 & 2.5464004 & 3.9074005 & -1.3384007 & 1.9394007 \\ 1.1094005 & 1.4684002 & -8.2014003 & 1.2404006 & -3.45844006 & 8.6764005 \\ 1.8044005 & 4.3484002 & -8.2014003 & -1.7454006 & -3.45844006 & 8.6764005 \\ 1.3374004 & 2.7134002 & -2.2384003 & -1.4584005 & -7.6364005 & 5.5874005 \\ -3.1394003 & -8.0904002 & -1.285505 & -1.1439005 & -2.9594005 & -5.4824006 \\ -3.13374004 & 2.7134002 & -2.2314005 & -1.2144006 & -2.7594005 & -2.6984005 \\ -2.224004 & -5.2144002 & -4.5184003 & -1.7464006 & -4.8274005 & -9.9914004 \\ -3.27144002 & -4.5184007 & -1.2859005 & -7.6364005 & -9.6884005 \\ -3.1394003 & -8.0904002 & -1.285905 & -1.1439005 & -2.9594005 & -5.48274006 \\ -3.1374004 & -5.2144002 & -4.5184007 & -1.2849005 & -2.6994005 & -2.6994005 \\ -3.2244004 & -5.2144002 & -4.5184007 & -1.2849005 & -2.9594005 & -2.6994005 \\ -1.2834004 & -3.2544005 & -2.2314005 & -1.2348005 & -2.9594005 & -3.68274007 \\ -1.3374004 & -3.2544002 & -2.2314005 & -1.3884007 & -2.9594005 & -2.6684005 \\ -1.2834004 & -3.6744002 & -2.2744004 & -3.2544005 & -2.7854005 & -2.7854005 \\ -1.2834004 & -3.6744002 & -2.2254004 & -3.8784005 & -1.1594006 & 4.659407 \\ -1.2834004 & -3.6744002 & -2.2254004 & -3.8784005 & -1.1594006 & 4.659407 \\ -1.2834004 & -2.404004 & -2.2254004 & -1.2914004 &$	59	2	2 526+005	2.632+005	1.193+004	4-254+005	-5.554+006	3.002+007
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		-	-2-683+005	2.810+004	-2.050+003	-4.254+005	-4.563+004	-1.586+007
$\begin{array}{c} 2,420+005 \\ 2,420+005 \\ 59 \\ 4-21261+006 \\ 2,261+006 \\ 2,261+006 \\ 4,463+003 \\ -5,660+004 \\ -5,060+004 \\ -7,006+002 \\ -5,516+005 \\ -5,660+004 \\ -7,006+002 \\ -5,516+005 \\ -5,660+004 \\ -7,006+002 \\ -5,516+005 \\ -4,318+005 \\ -2,968+006 \\ -3,736+005 \\ -3,736+005 \\ -2,968+006 \\ -3,736+005 \\ -3,736+005 \\ -2,968+006 \\ -3,736+005 \\ -3,736+005 \\ -2,968+006 \\ -3,736+005 \\ -3,736+005 \\ -2,608+004 \\ -2,008+004 \\ -2,008+004 \\ -2,008+004 \\ -2,008+004 \\ -3,008+002 \\ -2,008+004 \\ -2,008+004 \\ -2,008+004 \\ -3,736+005 \\ -2,008+004 \\ -3,736+005 \\ -2,008+004 \\ -3,736+005 \\ -2,008+004 \\ -3,736+005 \\ -2,008+004 \\ -3,250+004 \\ -2,250+004 \\ -2,250+004 \\ -2,250+004 \\ -2,250+004 \\ -2,250+004 \\ -2,250+004 \\ -2,250+004 \\ -2,250+004 \\ -2,250+004 \\ -3,88+005 \\ -1,480+005 \\ -4,388+002 \\ -8,201+003 \\ -1,260+005 \\ -1,438+006 \\ -5,182+006 \\ -5,182+006 \\ -5,182+006 \\ -5,182+006 \\ -5,182+006 \\ -5,182+006 \\ -5,182+006 \\ -3,484+005 \\ -3,488+002 \\ -8,201+003 \\ -1,285+003 \\ -8,090+002 \\ -1,285+003 \\ -1,240+006 \\ -3,484+005 \\ -3,488+005 \\ -3,258+005 \\ -1,285+005 \\ -1,285+005 \\ -1,285+005 \\ -1,285+005 \\ -1,285+006 \\ -2,277+006 \\ -2,277+006 \\ -3,254+005 \\ -1,285+004 \\ -3,254+005 \\ -3,486+005 \\ -1,285+006 \\ -2,012+004 \\ -3,254+005 \\ -3,486+005 \\ -1,285+006 \\ -2,012+004 \\ -3,254+005 \\ -3,486+005 \\ -1,285+006 \\ -2,012+004 \\ -3,254+005 \\ -3,486+005 \\ -1,285+006 \\ -2,012+004 \\ -3,254+005 \\ -3,486+005 \\ -1,285+006 \\ -2,012+004 \\ -3,254+005 \\ -3,486+005 \\ -1,285+006 \\ -2,012+004 \\ -3,254+002 \\ -2,255+004 \\ -3,254+007 \\ -3,254+005 \\ -1,285+006 \\ -3,282+006 \\ -3,282+006 \\ -3,282+006 \\ -3,282+006 \\ -3,282+006 \\ -3,282+006 \\ -3,282+006 \\ -3,282+007 \\ -3,282+006 $	59	3	-2 517+005	5.172+005	9.956+004	-3.102+005	-3.511+007	7.230+007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	2-420+005	3-710+004	-1-158+004	3-102+005	-3.386+006	-1.74 2+007
$\begin{array}{c} 22261+006 & -6.463+003 & -1.189+005 & -1.561+007 & -5.331+007 & 1.639+007 \\ 59 & 5.8660+004 & 7.006+002 & -6.516+001 & -4.318+005 & -2.968+006 & -3.736+005 \\ -5.660+004 & 7.006+002 & -6.516+001 & 4.318+005 & -2.968+006 & -3.736+005 \\ -2.665+004 & 1.335+004 & 3.025+002 & -9.254+004 & -1.418+006 & 1.281+007 \\ -2.636+004 & 7.697+004 & 3.820+003 & 7.130+004 & -1.451+006 & 1.54+007 \\ -2.630+004 & 7.697+004 & 3.820+003 & 7.130+004 & -1.451+006 & 1.54+007 \\ -2.230+004 & 4.938+003 & -3.544+002 & -7.130+004 & 7.707+003 & -2.501+006 \\ 59 & 8 & -1.168+005 & 1.460+005 & 2.546+004 & 3.907+005 & -1.351+006 & 1.54+007 \\ 1.804+005 & 1.480+005 & 2.546+003 & -3.907+005 & -1.458+006 & -5.182+006 \\ 1.804+005 & 4.348+002 & 8.201+003 & 1.240+006 & -3.458+006 & 8.676+005 \\ 59 & 10 & -1.337+004 & 2.713+002 & 3.278+003 & -6.294+005 & -7.636+005 & 5.587+005 \\ 1.437+004 & 2.713+002 & 3.278+003 & -6.294+005 & -7.636+005 & 5.587+005 \\ -3.139+003 & 8.090+002 & -1.285+003 & -1.746+006 & -7.208+006 & 9.888+005 \\ -8.224+004 & 5.214+002 & 4.518+003 & -1.746+006 & -7.208+006 & 9.888+005 \\ -8.224+004 & -3.254+002 & -4.518+003 & -1.746+006 & -4.95+005 & -9.991+004 \\ 60 & 3 & 1.749+004 & -3.254+002 & -2.231+005 & -1.308+007 & 7.208+006 & 9.888+005 \\ -8.224+004 & -3.254+002 & -2.231+005 & -1.240+006 & -2.771+007 & 2.924+007 \\ -8.465+005 & -8.962+005 & -1.038+007 & 7.208+006 & 9.888+005 \\ -1.285+004 & 3.382+004 & -3.878+005 & -1.435+006 & 4.65+005 \\ -2.612+004 & -7.21+004 & -7.513+004 & -3.878+005 & -1.459+006 & 4.65+005 \\ -1.283+004 & 3.137+004 & 3.382+004 & -3.878+005 & -1.459+006 & 4.65+005 \\ -1.283+004 & 3.137+004 & 3.382+004 & -3.878+005 & -1.459+006 & 4.65+005 \\ -1.283+004 & 3.137+004 & 3.382+004 & -3.878+005 & -1.459+006 & 4.65+005 \\ -1.283+004 & 3.137+004 & 2.487+002 & -2.225+005 & -4.837+006 & 4.65+005 \\ -1.283+004 & 2.487+002 & -2.225+002 & -7.825+004 & -8.331+006 & 4.65+005 \\ -1.285+004 & 2.487+002 & -2.225+002 & -7.825+004 & -8.331+006 & 4.65+005 \\ -2.610+004 & 2.487+002 & -2.225+002 & -7.825+004 & -3.831+005 & -4.845+007 \\ -2.610+$	50	4	-2-261+006	6-643+003	1-189+005	1-561+007	-1-496+008	-5-37 7+006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	21261+006	-6-463+003	-1-189+005	-1.561+007	-5-331+007	1.639+007
$ \begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 1 \\ 5 \\ 7 \\ -2 \\ 5 \\ 6 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 6 \\ 1 \\ -2 \\ 5 \\ 1 \\ 1 \\ 5 \\ 7 \\ -2 \\ 2 \\ 2 \\ 3 \\ 0 \\ 0 \\ 1 \\ -2 \\ 2 \\ 3 \\ 0 \\ 0 \\ 1 \\ -2 \\ 2 \\ 3 \\ 0 \\ 0 \\ 1 \\ -2 \\ 2 \\ 3 \\ 0 \\ 0 \\ 1 \\ -2 \\ 2 \\ 3 \\ 0 \\ 0 \\ 1 \\ -2 \\ 2 \\ 3 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$	50	5	5 660+006	7.004+002	6.516+001	-4-318+005	2.857+006	1.568+006
$\begin{array}{c} 59 & 61 \cdot 914 \cdot 004 & 5.610 \cdot 004 & 7.413 \cdot 003 & -1.413 \cdot 005 & -1.413 \cdot 006 & -1.413 \cdot 007 \\ -2.045 \cdot 004 & 1.335 \cdot 004 & 3.025 \cdot 002 & -9.254 \cdot 004 & -1.413 \cdot 006 & -1.231 \cdot 006 \\ 59 & 7 \cdot 1.663 \cdot 004 & 7.607 \cdot 004 & 3.020 \cdot 003 & 7.130 \cdot 004 & -1.551 \cdot 006 & 1.154 \cdot 007 \\ -2.230 \cdot 004 & 4.938 \cdot 003 & -3.546 \cdot 002 & -7.130 \cdot 004 & 7.707 \cdot 003 & -2.501 \cdot 006 \\ 59 & 8 \cdot 1.168 \cdot 005 & 1.460 \cdot 005 & 2.546 \cdot 004 & 3.907 \cdot 005 & -1.338 \cdot 007 & 1.039 \cdot 007 \\ 1.109 \cdot 005 & 1.162 \cdot 004 & -6.867 \cdot 003 & -3.907 \cdot 005 & -2.488 \cdot 006 & -5.182 \cdot 006 \\ 1.804 \cdot 005 & 4.348 \cdot 002 & 8.201 \cdot 003 & -3.907 \cdot 005 & -2.488 \cdot 006 & -5.182 \cdot 006 \\ 1.804 \cdot 005 & 4.348 \cdot 002 & 3.278 \cdot 003 & -6.294 \cdot 005 & -7.636 \cdot 005 & 5.587 \cdot 005 \\ 1.837 \cdot 004 & 2.713 \cdot 002 & 3.278 \cdot 003 & -6.294 \cdot 005 & -7.636 \cdot 005 & 5.587 \cdot 005 \\ 1.337 \cdot 004 & 2.713 \cdot 002 & 3.278 \cdot 003 & -6.294 \cdot 005 & -4.827 \cdot 006 & -9.618 \cdot 004 \\ \end{array}$	27	2	-5 4404004	7 004+002	-4 5144(01	4.318+005	-2-068+006	-3-73 44005
$\begin{array}{c} 3 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	60	4	4:0144004	5 44040041	7 145+003	0 2544004	-1.418+004	11281+007
$\begin{array}{c} -2.503+004 & 1.333+004 & 3.823+02 & -9.23+004 & 3.803+003 & -3.54004 & -1.351+000 & -1.51+0003 & -2.501+0006 \\ -2.230+004 & 4.938+003 & -3.546+002 & -7.130+004 & 7.707+003 & -2.501+006 \\ 59 & 8 & -1.168+005 & 1.480+005 & 2.566+004 & 3.907+005 & -2.488+006 & -5.182+006 \\ 1.804+005 & 1.452+004 & -6.867+003 & -3.907+005 & -2.488+006 & -5.182+006 \\ 1.804+005 & 4.348+002 & 8.201+003 & 1.220+006 & -3.434+006 & 8.676+005 \\ 1.804+005 & 4.348+002 & 3.278+003 & -6.294+005 & -7.616+005 & 5.587+005 \\ 1.337+004 & 2.713+002 & 3.278+003 & -6.294+005 & -7.616+005 & 5.587+005 \\ 1.337+004 & -2.713+002 & -3.278+003 & -6.294+005 & -4.827+006 & -9.618+004 \\ \hline 0 & 1 & 3.139+003 & 8.090+002 & -1.285+003 & 1.143+005 & -1.895+006 & 8.298+005 \\ -3.139+003 & -8.090+002 & -1.285+003 & -1.143+005 & -2.959+005 & 5.494+005 \\ -3.139+004 & -5.214+002 & 4.518+003 & -1.766+006 & -7.208+006 & 9.888+005 \\ -8.224+004 & -5.214+002 & -4.518+003 & -1.766+006 & -7.208+006 & 9.888+005 \\ -8.224+004 & -5.214+002 & -2.231+005 & -1.214+006 & 3.215+007 & -6.137+007 \\ 1.317+004 & -7.021+004 & -7.513+004 & 1.214+006 & -2.771+007 & 2.924+007 \\ 60 & 4 & -4.852+004 & 5.830+005 & -8.962+005 & 1.038+007 & 7.203+007 & 1.075+008 \\ 3.466+004 & 1.863+005 & -3.486+005 & -1.038+007 & 7.203+007 & 1.075+008 \\ 3.466+004 & 1.863+005 & -3.486+005 & -1.038+007 & 7.203+007 & 1.075+008 \\ 3.466+004 & 1.863+005 & -3.486+005 & -1.038+007 & 7.203+007 & 1.075+008 \\ -1.283+004 & 1.115+003 & 2.512+003 & 3.878+005 & -2.600+006 & 4.576+006 \\ -1.283+004 & 1.415+003 & 2.512+007 & -1.859+007 & -1.859+006 & 4.565+007 \\ 60 & 1.187+004 & 2.197+002 & 6.700+002 & 2.126+004 & -7.853+005 & -2.600+006 & 4.576+006 \\ -1.283+004 & 1.415+003 & 2.512+003 & 3.878+005 & -1.607+006 & 2.867+005 \\ -1.283+004 & 1.415+003 & 2.512+003 & 3.878+005 & -1.607+006 & 2.867+005 \\ -1.283+004 & 1.415+003 & 2.512+002 & 7.825+004 & -8.331+005 & -4.184+004 \\ -2.160+004 & 2.487+002 & 2.225+002 & 7.825+004 & -8.331+005 & -4.184+004 \\ -2.160+004 & 2.487+002 & 2.225+002 & 7.825+004 & -7.353+005 & -3.822+005 \\ 60 & 8 1.7$	28	C	167147004	4 77 . 004		782 344004	- 104301000	-4 9954004
$\begin{array}{c} 59 & 7 & 1 \\ -2 \\ 23 \\ -2 \\ 23 \\ -2 \\ 23 \\ -2 \\ 23 \\ -2 \\ 23 \\ -2 \\ 23 \\ -1 \\ -1 \\ -2 \\ -2 \\ -2 \\ -1 \\ -2 \\ -2$		_	-260434004	1.3337004	3.0237102	-9+2347004	3.04 94003	4 45 / 1007
$\begin{array}{c} -2 \lfloor 230 \pm 004 & 4.938 \pm 003 & -3.546 \pm 002 & -7.134 \pm 004 & 7.707 \pm 005 & -2.501 \pm 006 \\ 59 & -1.109 \pm 005 & 1.468 \pm 005 & 2.566 \pm 004 & 3.907 \pm 005 & -1.338 \pm 007 & 1.939 \pm 007 \\ 1.109 \pm 005 & 1.462 \pm 004 & -6.867 \pm 003 & -3.907 \pm 005 & -2.488 \pm 006 & -5.182 \pm 006 \\ 1.804 \pm 005 & 4.348 \pm 002 & 8.201 \pm 003 & 1.240 \pm 006 & -3.434 \pm 006 & 8.676 \pm 005 \\ 1.837 \pm 004 & 2.713 \pm 002 & 3.278 \pm 003 & -6.294 \pm 005 & -7.636 \pm 005 & 5.587 \pm 005 \\ 1.337 \pm 004 & 2.713 \pm 002 & 3.278 \pm 003 & 6.294 \pm 005 & -7.636 \pm 005 & 5.587 \pm 005 \\ 1.337 \pm 004 & 2.713 \pm 002 & -3.278 \pm 003 & 1.143 \pm 005 & -2.959 \pm 006 & -9.618 \pm 004 \\ \hline 0 & 1 & 3.139 \pm 003 & -8.090 \pm 002 & 1.285 \pm 003 & 1.143 \pm 005 & -2.959 \pm 005 & 5.494 \pm 005 \\ -3.139 \pm 003 & -8.090 \pm 002 & -1.285 \pm 003 & -1.143 \pm 005 & -2.959 \pm 005 & 5.494 \pm 005 \\ -3.139 \pm 003 & -8.090 \pm 002 & -1.285 \pm 003 & -1.746 \pm 006 & -7.208 \pm 006 & 9.888 \pm 005 \\ -3.2224 \pm 004 & -5.214 \pm 002 & -4.518 \pm 003 & -1.746 \pm 006 & -4.945 \pm 005 & -9.991 \pm 004 \\ 60 & 3 -1.749 \pm 004 & -5.214 \pm 005 & -2.231 \pm 005 & -1.214 \pm 006 & 3.215 \pm 007 & -6.137 \pm 007 \\ 1.317 \pm 004 & -7.021 \pm 004 & -7.513 \pm 004 & 1.214 \pm 006 & -2.771 \pm 007 & 2.924 \pm 007 \\ 60 & 4.5852 \pm 004 & 5.830 \pm 005 & -3.486 \pm 005 & -1.038 \pm 007 & -1.013 \pm 006 & 4.576 \pm 006 \\ -1.283 \pm 004 & 1.863 \pm 005 & -3.486 \pm 005 & -1.038 \pm 007 & -1.013 \pm 006 & 4.576 \pm 006 \\ -1.283 \pm 004 & 1.485 \pm 004 & 3.387 \pm 004 & 3.878 \pm 005 & -2.600 \pm 06 & 4.576 \pm 006 \\ -1.283 \pm 004 & 1.115 \pm 003 & 2.312 \pm 003 & 3.878 \pm 005 & -2.600 \pm 06 & 4.576 \pm 006 \\ -1.283 \pm 004 & 1.485 \pm 002 & -2.2126 \pm 004 & -7.185 \pm 004 & 4.65 \pm 005 \\ -2.100 \pm 004 & -2.487 \pm 002 & -2.225 \pm 002 & 7.825 \pm 004 & -7.185 \pm 004 & 4.518 \pm 004 \\ -2.180 \pm 004 & -2.487 \pm 002 & -2.225 \pm 002 & 7.825 \pm 004 & -7.185 \pm 004 & 4.582 \pm 004 \\ -2.180 \pm 004 & -2.487 \pm 002 & -2.225 \pm 002 & 7.825 \pm 004 & -7.185 \pm 004 & 4.582 \pm 005 \\ -2.012 \pm 004 & -5.715 \pm 003 & -4.343 \pm 004 & 7.195 \pm 004 & -1.600 \pm 007 & -2.556 \pm 006 \\ -2.012 \pm 004 & -5.715 \pm 003 & -4.343 \pm 004 & 7.195 \pm 004 & -1.600 \pm 007 & -2.556 \pm 006 \\ -2.012 \pm 004 $	28	1	1+005+004	1.69/+004	3.820-003	7.150.004	-1.351+000	1.134100/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-26230+004	4.938+003	-3.546+CU2	-7-130+004	7-707+003	-2.501+000
$\begin{array}{c} 1.109+005 & 1.162+004 & -6.267+005 & -3.907+005 & -2.488+006 & -5.182+006 \\ 59 & 9 & -1.804+005 & 4.348+002 & 8.201+003 & 1.240+006 & -3.434+006 & 8.676+005 \\ 1.804+005 & 4.348+002 & -8.201+003 & -1.220+005 & -7.616+005 & 5.587+005 \\ 1.337+004 & 2.713+002 & 3.278+003 & -6.294+005 & -7.616+005 & 5.587+005 \\ 1.337+004 & -2.713+002 & -3.278+003 & -6.294+005 & -4.827+006 & -9.618+004 \\ \hline \\ 60 & 1 & 3.139+003 & 8.090+002 & -1.285+003 & 1.143+005 & -2.959+005 & 5.494+005 \\ -3.139+003 & -8.090+002 & -1.285+003 & -1.143+005 & -2.959+005 & 5.494+005 \\ -8.224+004 & -5.214+002 & 4.518+003 & -1.766+006 & -7.208+006 & 9.888+005 \\ -8.224+004 & -5.214+002 & -4.518+005 & -1.246+006 & -4.945+005 & -9.991+004 \\ 60 & 3 & -18.749+004 & -3.254+005 & -2.231+005 & -1.214+006 & 3.215+007 & -6.137+007 \\ -1.317+006 & -7.021+006 & -7.513+004 & 1.214+006 & -2.771+007 & 2.924+007 \\ -1.331+004 & 1.863+005 & -3.486+005 & -1.038+007 & 7.203+007 & 1.075+008 \\ 3.466+004 & 1.863+005 & -3.486+005 & -1.038+007 & -1.101+002 & -8.465+007 \\ 60 & 5 & 1.331+004 & 3.137+004 & 2.197+002 & 6.700+002 & 2.126+004 & -1.670+006 & 2.867+005 \\ -1.283+004 & 1.115+003 & 2.312+003 & 3.878+005 & -1.6159+006 & 4.465+005 \\ -2.160+004 & +2.487+002 & 2.225+002 & 7.825+004 & -7.185+004 & 8.774+004 \\ -2.160+004 & +2.487+002 & 2.225+002 & 7.825+004 & -7.185+004 & 8.774+006 \\ -2.160+004 & +2.487+002 & -2.225+002 & 7.825+004 & -7.185+004 & 8.774+006 \\ -2.012+004 & -2.487+002 & -2.225+002 & 7.825+004 & -7.185+004 & 8.774+006 \\ -2.012+004 & +2.240+004 & -1.291+005 & -7.195+004 & 2.100+007 & -2.556+006 \\ -2.012+004 & -5.715+003 & -4.343+004 & 7.195+004 & -1.600+007 & -2.556+006 \\ -2.012+004 & -5.715+003 & -4.343+004 & 7.195+004 & -1.600+007 & -2.556+006 \\ -2.012+004 & -5.715+003 & -4.343+004 & 7.195+004 & -1.600+007 & -2.556+006 \\ -2.012+004 & -5.715+003 & -4.343+004 & 7.195+004 & -1.600+007 & -2.556+006 \\ -2.012+004 & -5.715+003 & -4.343+004 & 7.195+004 & -1.600+007 & -2.556+006 \\ -2.012+004 & -5.715+003 & -4.343+004 & 7.195+004 & -1.600+007 & -2.556+006 \\ -2.012+004 &$	59	8	-1-168+005	1.480+005	2.546+004	3.9070005	-1-588+007	1.939+007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.109+005	1.162+004	-6.867+003	-3.907+005	-2-488+000	-2.182+000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	9	-1.804+005	-4.348+002	8 • 20 1 + 00 3	1.240+00c	-1-055+007	-1.609+006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1-804+005	4.348+002	-8,201+003	-1,240+006	-3-434+006	8.676+005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59	10	-1-337+004	2.713+002	3-278+003	-6.294+005	-7.636+005	5.587+005
			1-337+004	-2.713+002	-3.278+003	6.294+005	-4.827+006	-9.618+004
			1	. 1	1	+	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ļ		1	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	1	3-139+003	8.090+002	1.285+003	1.143+005	-1.895+006	8.298+005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-3 139+003	-8-090+002	-1-285+003	-1.143+005	-2.959+005	5.494+005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	2	8-224+004	5-214+002	4-518+003	-1.746+006	-7.208+006	9.888+005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-8-224+004	-5-214+002	-4-518+CD 3	1.746+006	-4.945+005	-9-991+004
$ \begin{array}{c} 1,317+004 & +7.021+004 & -7.513+004 & 1.214+006 & -2.771+007 & 2.924+007 \\ 60 & 4-4,852+004 & 5.830+005 & -8.962+005 & 1.038+007 & 7.203+007 & 1.075+008 \\ & 3.486+004 & 1.863+005 & -3.486+005 & -1.038+007 & -1.101+002 & -8.465+007 \\ 60 & 5 & 1,331+004 & 3.137+004 & 3.582+004 & -3.878+005 & -2.600+006 & 4.576+006 \\ & -1.283+004 & 1.115+003 & 2.312+003 & 3.878+005 & -1.159+006 & 4.465+005 \\ 60 & 6 & 1,187+004 & 2.197+002 & 6.700+002 & 2.126+004 & -1.070+006 & 2.867+005 \\ & -1.187+004 & +2.197+002 & -6.700+002 & 2.126+004 & -7.185+004 & 8.774+004 \\ 60 & 7 & 2.160+004 & +2.487+002 & 2.225+002 & 7.825+004 & -8.331+005 & -4.184+004 \\ & -2.160+004 & +2.487+002 & -2.225+002 & 7.825+004 & 4.538+005 & -3.822+005 \\ 60 & 8 & 1.729+004 & +2.200+004 & -1.291+005 & -7.195+004 & 2.100+007 & -2.556+006 \\ & -2.012+004 & -5.715+003 & -4.343+004 & 7.195+004 & -1.600+007 & 1.918+006 \\ \end{array}$	60	3	-1.740+004	-3-254+005	-2-231+005	-1-214+006	3-215+007	-6-137+007
$ \begin{array}{c} 60 & 4 & -4 & 852 + 004 \\ & -4 & 852 + 004 \\ & -5 & 830 + 005 \\ & -3 & -486 + 005 \\ & -3 & -486 + 005 \\ & -3 & -886 + 005 \\ & -1 & -283 + 004 \\ & -1 & -283 + 004 \\ & -1 & -283 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -1 & -187 + 004 \\ & -2 & -197 + 002 \\ & -6 & -700 + 002 \\ & -2 & -255 + 004 \\ & -2 & -185 + 004 \\ & -2 & -187 + 002 \\ & -2 & -255 + 002 \\ & -2 & -255 + 004 \\ & -2 & -287 + 004 \\ & -2 & -287 + 002 \\ & -2 & -288 + 002 \\ & -2 & -288 + $			1 317+004	17-021+004	-7-513+004	1-2144006	-2.771+007	2-924+007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	-4 852+004	5 8304005	-8.0424005	1.0384007	7.203+007	1-075+008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	•	3 4644004	1 8414005	-1 4944005	-1.0384007	-9.101+002	-8-445+007
$\begin{array}{c} 00 & 5 & 1125314004 & 3.1374004 & 3.2824014 & -3.084005 & -1.280006 & 4.94654005 \\ & -1.2834004 & 1.1154003 & 2.312403 & 3.8784005 & -1.1594006 & 4.4654005 \\ & -1.1874004 & 2.1974002 & 6.7004002 & -2.1264004 & -1.0704006 & 2.8674005 \\ & -1.1874004 & +2.1974002 & -6.7004002 & 2.1264004 & -7.1854004 & 8.7744004 \\ & 60 & 7 & 2.1604004 & +2.4874002 & -2.2254002 & -7.8254004 & -8.3314005 & -4.1844004 \\ & -2.1604004 & 2.4874002 & -2.2254002 & 7.8254004 & -8.3314005 & -4.1844004 \\ & -2.1604004 & 2.4874002 & -2.2254002 & 7.8254004 & 2.1004007 & -2.5564006 \\ & -2.0124004 & -5.7154003 & -4.3434004 & 7.1954004 & -1.6004007 & 1.9184006 \\ \end{array}$	40		4 774.00/	1.0034003	T T0340D/	-1-030-007	-7-400-004	1 5744004
$\begin{array}{c} -1 \\ -1 \\ -2 \\ -1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1$	00	2	100011004	3+15/7004	3 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	-3+0104003	4 450407006	483104000
60 6 7 2-107+004 -2-177+002 -6-700+002 2-126+004 -7-185+004 2-126+004 60 7 2-160+004 -2-487+002 2-225+002 -7-825+004 -8-331+005 -4-184+004 -2-160+004 2-487+002 2-225+002 7-825+004 -8-331+005 -4-184+004 -2-160+004 2-487+002 -2-225+002 7-825+004 4-538+005 -3-822+005 60 8 1.729+004 +2-260+004 -1-291+005 -7.195+004 2-100+007 -2-556+006 60 8 1.729+004 +5-715+003 -6-343+004 7.195+004 -1-600+007 -2-556+006 -2-012+004 -5-715+003 -6-343+004 7.195+004 -1-600+007 1.918+006		,	41.497.004	1.1157003	4 700+003	3.0/84005	-1.1391000	9 84 74005
$\begin{array}{c} -1.587+004 + 2.197+002 - 6.700+002 2.126+004 -7.185+004 8.774+004 \\ 60 7 2.160+004 + 2.487+002 2.225+002 -7.825+004 -8.331+005 -4.184+004 \\ -2.160+004 2.487+002 -2.225+002 7.825+004 4.538+005 -3.822+005 \\ 60 8 1.729+004 +2.240+004 -1.291+005 -7.195+004 2.100+007 -2.556+006 \\ -2.012+004 -5.715+003 -4.343+004 7.195+004 -1.600+007 1.918+006 \\ \end{array}$	οU	6	167874004	2.19/+002	0 -/00+002	-2.1201004	-1.0r0+006	2.00/1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		~	-1-187+004	+2.197+002	-6./00+002	2.1264004	-7.185+004	8-774+004
$\begin{array}{c} -c_{1} + 00 + 004 & 2 + 87 + 0021 & -2 + 225 + 002 & 7 + 825 + 004 & 4 + 538 + 005 & -3 + 822 + 005 \\ 60 & 8 & 1 + 729 + 004 & +2 + 240 + 004 & -1 + 291 + 005 & -7 + 195 + 004 & 2 + 100 + 007 & -2 + 556 + 006 \\ -2 + 012 + 004 & -5 + 715 + 003 & -4 + 343 + 004 & 7 + 195 + 004 & -1 + 600 + 007 & 1 + 918 + 006 \\ 3 + 2 + 27 + 27 + 27 + 27 + 27 + 27 + 2$	60	7	2-160+004	+2 +487+002	2 • 22 5 • CD 2	-7-825+004	-8.331+005	-4-184+004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-21-160+004	2 .487+002	-2 -225+002	7-825+004	4.538+005	-3-822+005
-2.012+004 -5.715+003 -4.343+004 7.195+004 -1.600+007 1.918+006	60	8	1.729+004	+2.240+004	-1-291+005	-7.195+004	2.100+007	-2.556+006
and the second s			-2-012+004	-5.715+003	-4.343+004	7.195+004	-1.600+007	1.918+006
ana ana ang na mang sang sang na garang na pang							HOTA	44
	3.	a. " *	1. 1 × 4	n. 145676 (• • • • • • • • • • • •	1 4 - P N 1224		-

NALI	SIS	PLATAFORMA	MODULO 1				
	1.4	2 2 2 4 2 2 4 5 6 7 5 4 	1111111111	2 1 4 5 6 7 8 7 5 1 4 1	46 - 1 9 0 19 3 4 1	567	74.00 17.0
60	9	3-342+004	1.818+005	-2+067+005	6.936+005	3.863+007	4 n06 4+007
		-3-831+004	6.042+004	-8.601+004	-6.936+005	-2-944+007	-21167+007
60	10	3.874+003	8.410+001	4.502+002	-2.883+005	4 .877+005	-2.110+005
		-3-874+003	-8.410+001	-4.502+002	2.883+005	-1-255+006	3.544+005
		1				1	
-1 I	ENF	OS DE EJECU	CION	14			
						0	

FORMA MATRIZ DE REGIDEZ DE ELEMENTOS	7.83
ENTRADA DE CARGAS,	6.40
FORMA MATRIZ DE RIGIDEZ TOTAL	4.69
RESUELVE ECUACIONES	4.78
CALCULA ESFUERZOS EN ELEMENTOS	23.87
TIEMPO TOTAL DE SOLUCION	62.35

201.2

8K2,E

HOTA 45