

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

Programa de Doctorado en Ciencias Biomédicas Centro de Ciencias Genómicas

El análisis de la genómica funcional del cáncer cérvico uterino revela blancos terapéuticos, biomarcadores séricos y de membrana con potencial valor clínico.

TESIS QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS BIOMEDICAS

PRESENTA: ALBERTO CHECA ROJAS

TUTOR PRINCIPAL: SERGIO MANUEL ENCARNACIÓN GUEVARA Centro de Ciencias Genómicas, UNAM

COMITÉ TUTOR: MARCELA LIZANO SOBERÓN Instituto de Investigaciones Biomédicas, UNAM

> ALEJANDRO ZENTELLA DEHESA Instituto de Investigaciones Biomédicas, UNAM

CUERNAVACA, JULIO DE 2019 MOR.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice

Resumen	3
Introducción	4
Agente etiológico	4
Diagnóstico para el CC y sus perspectivas	4
Tratamientos	6
Modelos en animales	7
Progresión del tumor	7
Proteoma del tumor	7
Proteínas de la familia de la glutatión S-transferasa (GST)	8
Objetivo General	9
Hipótesis	9
Justificación	9
Material y métodos	. 10
Cultivo de células	. 10
Tumores generados en ratones	. 10
Extracción de proteína tumoral, análisis proteómico y espectrometría de masas.	. 10
Extracción de proteínas extracelulares in vitro y ex vivo	. 11
Identificación de proteínas secretadas a través de LC-MS / MS	. 11
Western blot	. 11
Coinmunoprecipitación e inmunoblot	. 12
Análisis bioinformático y superposición estructural	. 12
Ensayo UV	. 13
Ensayo de cisplatino	. 13
Análisis fenotípico a través de la complementación exógena de proteínas recombinantes (PAEP)	. 13
Construcción de plásmido de levadura, transformación y expresión de proteína recombinante	. 13
Transformación de la línea celular humana, purificación de proteínas y pull-dow	n . 14
GST "Knock-down" in vitro e in vivo usando oligonucleótidos de morpholino	. 14
Tinción inmunohistoquímica de tumores generados a partir de líneas celulares (CC . 14
Tinción inmunohistoquímica de tumores de CC	. 15
Análisis estadístico	. 15
Resultados	. 15
Modelo de progresión tumoral	. 15
Análisis de los geles de 2D-PAGE e identificación de proteínas	. 16

Análisis bioinformático18
GSTM3 interactúa con TRAF6 en tumores de CC18
Modulación de la señalización MAPK durante la PT19
Activadores endógenos secretados del receptor TLR4 en el CC20
GSTM3 interactúa con E7 de HPV182 [·]
Las proteínas GSTs y E7 del HPV18 contribuyen a la supervivencia celular22
La pérdida de las proteínas GST inhiben la proliferación y la supervivencia de las líneas celulares de CC23
La pérdida de GST inhibe la progresión del tumor en el cáncer de cuello uterino 28
GSTM3 y GSTP1 regulan las proteínas MAP cinasas pJNK y pp3826
GSTM3 y GSTP1 regulan la supervivencia celular mediante la inactivación de NF- кВ у pERK27
Análisis de expresión de GST en muestras de tejido de pacientes CC28
Discusión
Conclusión
Perspectivas y Recomendaciones
Referencias

Resumen

Los procesos moleculares y los marcadores proteómicos que conducen a la progresión tumoral (TP) en el cáncer de cuello uterino (CC) son aún desconocidos o solo se conocen parcialmente. El estudio de la genómica funcional nos ayuda a conocer cuáles son los mecanismos metabólicos y regulatorios que pueden identificarse como cambios proteómicos. Para identificar qué proteínas se expresan diferencialmente y para comprender los mecanismos de progresión del cáncer CC, analizamos la dinámica del proteoma tumoral, el secretoma y membranoma en líneas celulares CC. Estos análisis revelaron dos proteínas que se regulan positivamente durante TP, proteínas secretadas y de membrana que pueden ser candidatas a biomarcadores con un gran potencial clínico. Las proteínas identificadas están involucradas en el mantenimiento celular, la supervivencia celular, la respuesta de estrés celular a través de las rutas NF-κB, MAP, vía de los terpenos. Además, la inhibición de las proteínas GSTM3 y GSTP1 mostró una activación de la apoptosis y una reducción de la proliferación tumoral. La KIAA1293, junto con las GSTs indican el papel crítico en el CC y pueden ser usados como nuevos biomarcadores y las GSTs además podrían ser usadas como blancos terapéuticos para el tratamiento del cáncer de cuello uterino.

Introducción

El cáncer cérvico uterino (CC) es la cuarta causa de muerte en mujeres en todo el mundo. A pesar de que estadios tempranos es una enfermedad prevenible y curable, y en algunos países la incidencia del CC ha comenzado a decrecer debido a la aplicación de exámenes citológicos [1]. Existen muchos países en el aún como un problema de salud pública cual. permanece [2,3]. Desafortunadamente, los regímenes de detección al igual que los tratamientos actuales para el CC han demostrado tener un limitado beneficio en la supervivencia de las pacientes y más cuando estos son usados en estadios avanzados. Por otro lado, se ha observado recientemente un incremento más alto de lo esperado en el número de muertes en pacientes con CC de raza afroamericana y caucásica en los Estados Unidos con un incremento del 77% y 47% respectivamente [4]. Aunque el CC en estadios tempranas es altamente curable, en etapa avanzada o metastásicos aún son difíciles de tratar; por lo que aún es crítico y urgentemente necesario, el diseño y desarrollo de mejores estrategias para la detección temprana y el tratamiento en estadios avanzados.

Agente etiológico

Los tumores del CC están asociados a la infección con el virus de papiloma humano (HPV). El HPV se considera como uno de los principales agentes etiológicos del CC, donde la integración de su genoma se ha encontrado presente en el 99.7% de los tumores [1]. Pero recientes estudios con tecnologías de alto rendimiento y análisis genómico (*high throughput technologies*) han observado que solo el 95% de los tumores presentan la integración del HVP [5], incluso se han encontrado que la integración del genoma puede ser menor al 81.7% [6]. Este porcentaje menor nos indica que, otros factores además de la infección, pueden estar contribuyendo al proceso carcinogénico, como el microbioma, factores ambientales y los propios del hospedero [3,7].

Diagnóstico para el CC y sus perspectivas

Históricamente, el estándar de oro para el diagnóstico del CC ha sido la observación microscópica de una muestra citológica del cuello cérvico uterino (prueba de Papanicolaou), de una biopsia o una colposcopia. Si bien estos procedimientos han reducido con éxito la mortalidad a través de la detección temprana, adolece de objetividad intraobservacional [8]. La mitad de los casos de CC que se identifican cada año ocurren en mujeres que no se han evaluado adecuadamente debido a la baja cobertura de las pruebas de Papanicolaou, las limitaciones de dicha prueba que incluyen un bajo control de calidad en el procedimiento o el acceso limitado a instalaciones de salud para la detección y tratamiento [9]. En Estados Unidos se ha reportado que de los 50 millones de mujeres que se someten a exámenes de detección de CC cada año, aproximadamente del 60-80% tienen resultados ambiguos [10]. A diferencia de muchas enfermedades o infecciones genitourinarias, el CC generalmente no se asocia con síntomas tempranos como picazón, ardor o flujo vaginal [11]. Por lo tanto, aún existe un interés para buscar con tecnologías nuevas biomarcadores séricos o citológicos que puedan complementar la evaluación estándar

cito/histopatológica para determinar la presencia de las células cancerosas [9,12].

Biomarcadores para el diagnóstico y tratamiento

Un biomarcador se define como una característica biológica y puede servir como indicador de un proceso patológico o una respuesta farmacológica y puede medirse objetivamente y es reproducible [13]. La búsqueda de biomarcadores mediante el análisis genómico y/o proteómico puede ofrecer avances para el desarrollo de una medicina individualizada, y aportar una nueva visión al análisis de la enfermedad, su clasificación y tratamiento [14,15].

La búsqueda de nuevas estrategias para el descubrimiento de biomarcadores en sueros de pacientes para la detección temprana, el seguimiento de tratamientos y/o con la capacidad de prognosis, sigue siendo urgentemente necesario y una prioridad para la investigación del cáncer en especial para el CC [16,17].

Muchos estudios parten del análisis de los sueros sanguíneos de pacientes los pacientes pero dada su elevada complejidad molecular hay enmascaramiento por las proteínas de alta abundancia, el cual evita el análisis de las moléculas de baja abundancia ofreciendo poca información para el descubrimiento de biomarcadores sanguíneos [18]. Por lo que muchos investigadores han propuesto el análisis de los secretomas de líneas celulares como una estrategia más eficiente en la búsqueda de estos biomarcadores [19]. El secretoma se ha definido como el estudio de las proteínas secretadas al medio extracelular, y dado que, se puede obtener grandes cantidades de proteína soluble esto facilita su estudio [20]. Un problema de los cultivos de líneas celulares para el análisis del secretoma es el uso del suero fetal bovino (SFB) para el mantenimiento de los cultivos, ya que al igual que en los sueros de pacientes, se enmascaran las proteínas secretadas por las líneas celulares cancerosas que estarían en baja abundancia. En trabajos previos se ha reportado que el uso de lavados con solución amortiguadora de fosfatos (PBS) sobre el medio junto con una subsecuente incubación de 20-24h con medio fresco sin SFB, se elimina casi por completo las proteínas del SFB. En el presente trabajo se usó como estrategia la eliminación del uso del SFB en el crecimiento de las líneas celulares de CC, usando únicamente un medio que contiene 3 proteínas (Albumina, Transferrina humana e Insulina recombinante cadena completa) seguidas de lavados con solución salina e incubaciones de 20h con medio fresco sin proteínas. Esta estrategia ha demostrado no tener un efecto drástico en la tasa de crecimiento de estas líneas comparado con la total depleción de SFB y se obtienen secretomas libres de contaminantes del SFB, el cual nos permiten la búsqueda y descubrimiento de biomarcadores proteicos para el CC (Figura Suplementaria 6).

Estudio del Membranoma para el descubrimiento de biomarcadores celulares

Las proteínas asociadas a la membrana plasmática celular regulan procesos clave como transporte molecular, adhesión celular, interacción con la matriz extracelular, traducción de señales y señalización célula-célula. Se les ha reconocido, además, un papel crucial e importante en el tumorigénesis y el

desarrollo del cáncer por la compleja regulación de interacciones entre la superficie tumoral y su microambiente [21]. Por otra parte, esta clase de proteínas es de especial relevancia en la investigación del cáncer, ya que constituye un objetivo para la elección de terapias basadas en anticuerpos [22]. De hecho, un número de anticuerpos dirigidos a proteínas de la superficie celular han sido aprobados como terapias y han consolidado su importancia en el tratamiento del cáncer [22]. Adicionalmente, muchos estudios se centran en los procesos celulares involucrando las propiedades de la superficie celular cancerígenas como: i) la identificación de proteínas de membrana especificas del tumor, involucradas en vías de adhesión y señalización [23]; ii) ensayos de fármacos anticáncer y anticuerpos dirigidos a las proteínas de la superficie celular [24]; iii) la selección de mAbs anti-cáncer de librerías de anticuerpos [25]; iv) ensayos de unión celular y experimentos de inmuno-tinción [26]. Por otro lado, la adaptación celular a microambientes *in vitro* consiste en una recalibración de muchas vías involucradas con la superficie celular [27].

Actualmente existen una gran cantidad de estudios que se concentran en entender los papeles individuales de algunas proteínas de membrana en los diferentes tipos de cánceres humanos [28,29]. También existen algunos estudios que pretenden caracterizar el perfil de expresión del membranoma en algunos tipos de cáncer como el de colon [30]. Sin embargo, no existe un estudio con el cual se presente un panorama completo de las proteínas de membrana en el CC.

Tratamientos

Uno de los tratamientos más comunes para el CC incluye una terapia de quimiorradiación basada en cisplatino. Además, este tratamiento es regularmente la única opción para tartar cánceres en estadios avanzados, y en la mayoría de los casos no logra erradicar totalmente la enfermedad [31,32]. Por otra parte, aproximadamente el 30% de los pacientes experimentan una recurrencia hacia los nodos linfáticos y metástasis distante después del primer tratamiento [33,34]. Otro de los mayores problemas que enfrenta la investigación del CC es la resistencia a los medicamentos y la quimioterapia [35]. Una alternativa muy prometedora para el CC son las estrategias basadas en genes blancos "target gene-based strategies"; que se encargan de bloquear el crecimiento y/o la diseminación del cáncer mediante la interferencia de la expresión génica. Sin embargo, los esfuerzos de investigación para estas terapias están dirigidas principalmente a la prevención o a los estadios tempranos de la enfermedad [36,37]. En este sentido, las estrategias basadas en genes diana específicos para estadios tardíos o para la progresión tumoral aún son urgentemente necesarias en la clínica [38].

Estrategias basadas en genes blancos

En el CC existen estrategias basadas en ARN antisentido (ARN interferentes) para bloquear la traducción de los ARNm de las proteínas E6 y E7 del HPV, el análisis de estas estrategias han mostrado una reducción significativa de proteínas virales y una pérdida de muchas características de las células transformadas *in vitro* [39].

La función de las proteínas del HPV E6 y E7 es inhibir la función de las proteínas celulares p53 y pRb; relacionadas con la reparación del ADN y daño celular, por lo tanto, los tumores asociados al HPV debía revertirse mediante el reemplazo de su función. Sin embargo, los resultados de la rescisión tumoral no es suficientemente consistente [36]. El análisis de la eficacia de los tratamientos en tumores *in vivo* es un requisito de las instituciones de regulación previo antes de que la tecnología se pueda utilizar en estudios clínicos en humanos [36,40].

Modelos en animales

El éxito de los descubrimientos de la investigación básica del cáncer para una translación a la intervención terapéutica en los pacientes, dependerá en parte de la selección de modelos experimentales animales apropiados [41]. En la investigación biomédica del cáncer el uso de modelos *in vivos* con roedores son ampliamente utilizados, ya que, sostienen características propias del tumor como la estructura tridimensional y la progresión tumoral (PT) la cual gobierna numerosas interacciones autocrinas, paracrinas y endocrinas relacionadas con la tumorigenesis, y que por el otro lado un cultivo en monocapa no ofrece [42].

Progresión del tumor

La PT involucra cambios metabólicos y la desregulación de los procesos celulares que resultan en la progresión patológica de la enfermedad [43]. Tanto en tumores de pacientes como tumores experimentales, se ha explorado la importancia de diversos proteínas con una aparte relevancia en la PT e incluyen enzimas proteolíticas, moléculas de adhesión celular, factores angiogénicos y los inherentes a la coagulación [44,45]. Existen aspectos biológicos de la progresión tumoral además de la invasión hacia otros tejidos o la metástasis. Se ha observado que durante la PT las poblaciones de células tumorales aumenten su tasa de crecimiento y muestran evidencia más claras hacia un escape de los mecanismos locales de control del crecimiento manteniendo activamente la proliferación celular sin encaminarse a una diferenciación celular o la muerte celular programada (apoptosis) [46]. Estos mecanismos de evasión y desregulación del crecimiento están directamente relacionados con una alterada expresión proteica, que se da a través de una respuesta a la pérdida de receptores específicos u otros mecanismos de control [47].

En las últimas décadas se ha incrementado el interés por los enfoques proteómicos y descubrir que proteínas se encuentran alteradas durante la PT, debido a que se pueden identificar a gran escala los cambios cualitativos y cuantitativos en la composición de proteínas, incluidas las modificaciones postraduccionales. Este campo incorpora tecnologías capaces de extraer información biológica sobre la dinámica de PT en forma de biomarcadores [48]. A medida que se aclaran cada vez más las funciones biológicas del proteoma en diferentes tipos de cáncer, se considera que pueda tener la posibilidad de dilucidar además nuevos enfoques terapéuticos [18].

Proteoma del tumor

El proteoma del tumor representa una etapa metabólico particular y una entidad dinámica, que varía durante el TP. Por lo tanto, creemos que el estudio de la

dinámica del proteoma en el CC, es un componente muy valioso para comprender el TP y la progresión de la enfermedad [49,50]. Durante TP, los cambios en el proteoma de las células cancerosas favorecen el crecimiento e interrumpen la homeostasis del huésped. La medición de estos cambios proteómicos ayudará a dilucidar la interacción entre los procesos patológicos y los eventos tempranos que conducen a la progresión del cáncer [49–51].

Proteínas de la familia del glutatión S-transferasa (GST)

En diversos tipos de cáncer, se ha informado que los miembros de la familia de la glutatión S-transferasa (GST) se encuentran sobre expresados y en la mayoría de los casos están relacionados con un mal pronóstico y con una resistencia a las quimioterapia [52–55]. Las GST son una familia de enzimas que exhiben diversas funciones, que incluyen la detoxificación de compuestos xenobióticos, la evasión del sistema inmune y la inhibición de la apoptosis [56]. En particular, se ha informado que la GSTP1 y la GSTM3 se encuentran desregulados en las células del cáncer, como: cáncer de mama triple negativo [57], cáncer de próstata [58], cáncer de pulmón [59] y cáncer colorectal [53,60].

Por una parte, se sabe que la proteína GSTP1 desempeña un papel regulador a través de la interacción con TRAF2 y la disminución de la transducción de señal de los receptores en las vías de TNF- α y la cinasa JNK, que son responsables de la activación de la apoptosis [61,62]. Y por otra parte, Por otro lado, se ha observado que, la sobreexpresión de la GSTM3 en el cáncer de colon, se considera un marcador de metástasis ganglionares regionales [53], y la subexpresión de GSTM3 en el cáncer de vejiga urinaria se asocia con una mayor supervivencia [63].

La dinámica del proteoma en la PT en el CC ha sido poco explorada y entendida. En este estudio, usamos líneas celulares de CC xenotransplantadas en ratones atímicos (Nu/Nu) para analizar, a través de un enfoque proteómico, las diferencias de expresión de proteínas durante la PT. En nuestras observaciones una de las proteínas que aumentaron consistentemente sus niveles durante el crecimiento tumoral, fueron las proteínas GSTP1 y GSTM3. Además, exploramos a través de ensayos de *"knock-down"*, el papel crítico de estas proteínas para la supervivencia celular y la progresión tumoral. Además, correlacionamos la abundancia de estos niveles de proteína, en biopsias CC, con la supervivencia del paciente. Por lo tanto, creemos que al menos estos dos miembros de la familia GST podrían usarse con fines de pronóstico y posiblemente sean excelentes candidatos para estrategias basadas en genes blancos para el CC.

Objetivo General

Analizar el proteoma y secretoma en un modelo in vitro e in vivo del CC

Hipótesis

La progresión del tumor (PT) involucra cambios en la desregulación de los procesos metabólicos y celulares. El estudio de la dinámica del proteoma tumoral representará los cambios proteicos de este mecanismo de desregulación durante la TP. Por lo tanto, el estudio de la dinámica del proteoma en el CC nos proporcionara información relevante para comprender la PT y de la enfermedad.

El estudio del proteoma tumoral nos ayudará a identificar los cambios de estos mecanismos que se encuentran desregulados durante la PT. Por lo tanto, el estudio de esta dinámica del proteoma en CC nos proporcionara información que nos ayudara a comprender la PT de la enfermedad.

Justificación

El cáncer cérvico uterino (CC) es la segunda causa de muerte en mujeres en todo el mundo, a pesar de que es posible su prevención mediante la vacunación y el tamizaje de las células epiteliales [2]. Mientras que la incidencia del CC en muchos países ha comenzado a decrecer debido a la aplicación de exámenes citológicos [1], existen muchos países asiáticos y de américa latina en el cual, el CC permanece aún como un problema de salud pública [3]. Uno de los tratamientos más comunes incluye terapias de quimiorradiación basas en cisplatino. Este tratamiento es regularmente la única opción para tartar cánceres en estadios avanzados, y en la mayoría de los casos no logra erradicar la enfermedad. Además, el 30% de las pacientes se vuelven recidivas después del primer tratamiento [31–33]. Por otra parte, uno de los mayores problemas que enfrenta la investigación del CC es la resistencia a la quimioterapia [35]. Una alternativa muy prometedora son las estrategias basadas en genes blancos "target gene-based strategies" [36,37]. En este sentido, el estudio de la dinámica del proteoma tumoral podrá proporcionarnos información relevante sobre el proceso de progresión tumoral y sobre la biología del CC. Con esta información se podrá proponer estrategias basadas en genes diana específicos para tratamiento que inhiban o interrumpan la progresión tumoral, ya que, aún son urgentemente necesarias [38].

Material y métodos

Todos los experimentos con animales se realizaron con la aprobación del comité de bioética e investigación institucional del Instituto de Biotecnología de la Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos y el Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ). Todos los estudios que involucran tejidos humanos fueron aprobados por la junta de revisión institucional para investigación en sujetos humanos del Instituto Nacional de Cancerología, Ciudad de México (INCan). El consentimiento informado de los pacientes se obtuvo antes de la toma de la biopsia.

Cultivo de células

Las líneas celulares de cáncer de cuello uterino (SiHa y CaSki, positivas para HPV16, y HeLa y CaLo, positivas para HPV18) fueron proporcionadas por el Dr. Jorge Flavio Rincón y la M. en C. Rosalva Rangel Corona en el Laboratorio de Oncología Molecular, Unidad de Diferenciación Celular y Cáncer, FES-Zaragoza, UNAM. El Dr. Alejandro Zentella Dehesa en la Unidad de Bioquímica del Instituto Nacional de Ciencias Médicas y de Nutrición Salvador Zubirán, proporcionó las líneas celulares MDA-MB-231 y COLO. La línea celular HaCaT fue provista por el Dr. Alejandro García Carrancá en el Instituto Nacional de Cancerología, Ciudad de México, México. Todas las células se probaron para *Mycoplasma sp.* mediante PCR y posteriormente se mantuvieron en medio RPMI 1640 Advanced sin suero fetal bovino (SFB, Gibco, Invitrogen) y suplementado con 2 mM L-glutamina y 1% v/v de antibiótico-antimicótico (Gibco, Invitrogen) a una temperatura de 37 °C en una incubadora con 5% de CO2 y saturada de humedad.

Tumores generados en ratones

Se utilizaron ratones desnudos atímicos hembras de 4 - 6 semanas de edad (BALB/c Nu/Nu) y se inyecto vía subcutánea con un numero de células tumorales de 10^7 en 500 µL de medio RPMI 1640 sin FBS y se colectaron en 30, 45 y 50 días. Los tumores se midieron usando un calibrador Vernier, y el volumen del tumor fue obtenido calculando el volumen de un elipsoide como: Vtum= π / 6 (L * W * H), donde L: largo, W: ancho y H: alto [64].

Extracción de proteína tumoral, análisis proteómico y espectrometría de masas Las muestras de tumor se maceraron en nitrógeno líquido y un cóctel de inhibidor de proteasa (tabletas completas, Roche) seguido de sonicación en hielo 3-5 veces durante 5 segundos. Posteriormente, llevamos a cabo la extracción de proteínas fenólicas [65]. Los protocolos seguidos para la preparación de muestras, la electroforesis en gel bidimensional preparativa (2D-PAGE), el análisis de imágenes y la identificación de proteínas a través de la espectrometría de masa MALDI han sido informados previamente [66,67] (más detalles ver: MIAPE ID: 821 2D-PAGE). Brevemente, para 2D-PAGE, 500 µg de proteínas totales se enfocaron isoeléctricamente a lo largo de un intervalo de pH lineal de 3-10 y la segunda dimensión se realizó en una SDS-PAGE con acrilamida al 12%. Las imágenes digitales de 2D-PAGE se adquirieron usando un densitómetro calibrado GS-800 (BioRad). Se analizaron tres geles obtenidos de tres ensayos diferentes, y se realizó la comparación de imágenes con el software PDQuest (BioRad) (más detalles ver MIAPE ID: 10290, MALDI-TOF; MIAPE ID: 9905 MASCOT).

Extracción de proteínas extracelulares in vitro y ex vivo

Las líneas celulares se cultivaron con RPMI 1640 avanzado libre de suero hasta 70-80% de confluencia. El medio se retiró y se enjuagaron tres veces con solución salina estéril: NaCl al 0,9% (p / v). Después de los lavados, se añadió medio RPMI 1640 libre de FBS sin fenol rojo fresco (Gibco), y se incubó durante 20 h. Más tarde, el medio se recuperó y se centrifugó a 2.000 g durante 5 minutos. El sobrenadante se pasó a través de una membrana de PVDF de 0,22 µm de tamaño de poro (Millex, Millipore) y se almacenó a -70 ° C hasta su uso posterior. Para las proteínas extracelulares de tumores de los xenoinjertos, los tumores HeLa y SiHa se inocularon con 10^7 células. Después de 30, 45 y 50 días después de la inoculación, se recogieron los tumores y se lavaron 3 veces con solución salina. El procedimiento seguido para extraer proteínas secretadas de tumores se realizó como se describió previamente para las células en cultivo y el sobrenadante se almacenó a -70°C hasta su uso posterior.

Identificación de proteínas secretadas a través de LC-MS / MS

Proteínas secretadas de líneas celulares separadas en SDS-PAGE y teñidas con tinción con azul Coomassie brillante (más detalles, ver: Figura Suplementaria 2). Cada carril que contenía 30 µg de proteínas se cortó en 20 líneas en toda la columna y se a extraer y digirió las proteínas contenidas con tripsina (para más detalles ver: <u>http://conogasi.org/articulos/metodo-extraccion-de-proteinas-en-gel-para-la-identificacion-por-espectrometria-de-masas-maldi-o-lc-msms/</u>). Los péptidos generados se analizaron en un sistema nanoLC-MS / MS (Q-TOF Synapt G2 MS; Waters). La identificación de péptidos y proteínas se realizó mediante el motor de búsqueda MASCOT a través de la interfaz MASCOT Distiller (Matrix Science). La base de datos consultada fue Swiss-Prot y NCBI. Los datos de proteómica de espectrometría de masas se han depositado en el Consorcio ProteomeXchange a través del repositorio asociado PRIDE con el identificador de conjunto de datos PXD005466 [68].

Análisis del péptido señal

Se utilizó un programa bioinformático llamado SignalP 4.1, que predice la presencia y la localización de los sitios del péptido de señal en secuencias de aminoácido. El método predice e identifica los sitios de exportación del péptido de señal basada en características fisicoquímicas y una combinación de redes neurales (NN) y modelos escondidos de Markov (HMM).

Western blot

Para este método se usaron los siguientes anticuerpos comerciales: anti-GSTM3 (Abcam, ab67530, 1: 10.000), anti-GSTP1 (Abcam, ab53943, 1: 10.000), anti-TLR4 (Biolegen, 312804, 1: 10.000), anti-TRAF6 (Abcam, ab13853, 1: 10,000), anti NF- κ B p65 (sc-378,1: 1,000), anti IKB- α (sc-371, 1: 1,000), anti-JNK (sc-1648, 1: 1,000), anti-ERK (sc-94, 1: 1.000), anti-p38 (sc-535, 1: 1.000), anti-NF- κ B fosfo p65 (sc-101752, 1: 1.000), anti-fosfo-JNK (sc-6254, 1: 1.000), anti-fosfo-ERK (sc-7383, 1: 1.000), fosfo-p38 (sc-7973, 1: 1.000), anti-fosfo-IKB- α

(señalización celular, 92465, 1; 1000), anti-HSP70 y HSP60 (Biolegen, 648005 y 681502, 1: 10.000), HPV18 E7 (Abcam, ab38743, 1: 1.000), anticuerpo anti-His tag (Invitrogen, 372900, 1: 5.000). Las células se lisaron en un buffer que contenía Tris 100 mM, pH 8,6, SDS al 4%, DTT 100 mM, cóctel inhibidor de proteasa (tableta completa, Roche) y 20 pulsos de sonicación durante 1 segundo para la fragmentación del ADN. Las proteínas se resolvieron por electroforesis en SDS-PAGE al 12% o 15% y se transfirieron a membranas de PVDF usando sistema semiseco (para más detalles ver: un http://conogasi.org/articulos/metodo-extraccion-de-proteinas-en-gel-para-laidentificacion-por-espectrometria-de-masas-maldi-o-lc-msms/).

Las membranas ya transferidas se bloquearon con leche descremada al 5% o con Albumina sérica bovina en un *buffer* disolución salina y una solución de Tris que contenía Tween 20 (TBST) durante 15 min a 4 °C. Posteriormente, se retiró la albumina y/o la leche y se lavó 3 veces con TBST, para después incubarla la membrana con el anticuerpo primario a 4 °C durante la noche. Despues de retirar el anticuerpo primario las membranas se incubaron con anticuerpo secundario conjugado a peroxidasa durante 2 h para después ser revelada la membrana con una solución de Carbazol (27,2% de Carbazol Stock, 72,6% de buffer de acetato, 0,2% de H2O2), Carbazol Stock: N, N-Dimetilformamida ≥98% y 3-Amino -9-etilcarbazol (Sigma-Aldrich) 1: 8 (p / v) para generar tinción de color rojo/marrón. Las cuantificaciones relativas se realizaron con el software ImageJ.

Coinmunoprecipitación e inmunoblot

El tumor HeLa se recogió a los 50 días y se almacenó a 80 °C hasta su uso. Después de la muestra tumoral se maceraron en nitrógeno líquido y se lisaron con 500 µL *buffer* RIPA (Tris 10 mM, EDTA 1 mM, NP40 al 1%, deoxicolato de sodio al 0,1%, NaCl 140 mM) y se suplementaron con inhibidores de proteasa y fosfatasa (10 mM β -glicerofosfato, 10 mM Na₃VO₄, 10 mM de fluoruro de sodio). Los lisados celulares totales se centrifugaron a 13,000 g durante 5 min para sedimentar el material insoluble. Los lisados se incuban 2 horas con proteína A sefarosa se normalizan para la concentración de proteína total (10 µg de proteína) usando SDS - PAGE. Los anticuerpos candidatos a proteínas (GSTM3 y TRAF6) se inmunoprecipitaron incubando lisados con 6 µL de sefarosa conjugada con anticuerpo durante la noche a 4 °C. Las perlas se lavaron 3 veces con 500 µL *buffer* de lisis. Las proteínas coinmunoprecipitantes se resolvieron en SDS-PAGE al 12%. Los niveles de GSTM3 y TRAF6 se detectaron mediante inmunotransferencia usando anticuerpos anti-anticuerpos previamente descritos anteriormente.

Análisis bioinformático y superposición estructural

Un análisis de ontología genética (GO) de las 39 proteínas comunes identificadas se realizó utilizando el sitio web GeneCodis [69]. Se empleó un modelo de red de interacción proteína-proteína usando Cytoscape 2.5.1 (www.cytoscape.org) y el complemento bisogenet para obtener información sobre las interacciones proteína-proteína sobre GSTM3 y GSTP1 [70]. La superposición estructural de GSTP1 y GSTM3 se realizó con MAMMOTH (https://ub.cbm.uam.es/software/online/mamothmult.php) y se validó y visualizó

con el software de visor PDB suizo (DeepView) v4.1 [71]. Obtuvimos el modelo GSTP1 acoplado con el modelo de dímero HPV16 E7 CR3 del grupo Mileo [72], y el modelo GSTM3 se obtuvo de la base de datos PDB. Generamos un alineamiento estructural para mejorar el ajuste entre GSTP1 (estructura conocida) y GSTM3 y entre HPV16 E7 (estructura conocida) y HPV 18 E7. El servidor construyó los modelos basados en las alineaciones proporcionadas [71].

Ensayo UV

La radiación se suministró desde lámparas UV al 100% de potencia (450 μ W / cm2, a 27 mm) de acuerdo con las especificaciones del proveedor (equipo InGeniuous LHR; Syngene). Las células MDA-MB-231 se expusieron a radiación sobre la superficie de un transiluminador durante 0, 10, 15, 30 o 60 segundos. Un total de 104 células se cultivaron en placas de 24 pocillos (Nunclon). Para los experimentos y tratamientos posteriores, las células se expusieron a luz UV durante 15 segundos.

Ensayo de cisplatino

Las líneas celulares se cultivaron en medio RPMI 1640 (Sigma) libre de FBS a 37 °C en una atmósfera de CO₂ al 5% humidificado. La sensibilidad del fármaco se evaluó a la concentración 6 mM de cisplatino según estudios previos [73]. Para medir la viabilidad celular, se inició un cultivo a 10^4 células/mL y se analizó todos los días hasta el octavo día. La cantidad de células se determinó mediante tinción con cristal violeta [74]. La densidad óptica (O.D) fue medida a 550 nm usando un lector de microplacas (Bioteck).

Análisis fenotípico a través de la complementación exógena de proteínas recombinantes (PAEP)

La sensibilidad al estrés (radiación UV y tratamientos farmacológicos) se evaluó mediante complementación exógena con proteína recombinante humana y el reactivo de transfección Lipofectamina 3000 (Invitrogen). Una alícuota de 10 µL de los reactivos Lipofectamina 3000 y P3000 (Invitrogen) se mezcló con 1 µg de recombinante humano GSTM3 (Abcam), GSTP1 (Abcam), HPV18 E7 (ProteinX) o una mezcla de estas proteínas en 250 µL de suero libre medio RPMI 1640 avanzado, que luego se incubó durante 5 min a temperatura ambiente y se añadió a 10⁴ células MDA-MB-231 cultivadas en placas de 24 pocillos (Nunclon), seguido de otra incubación de 5 min [75]. Después de la incubación con la mezcla de Lipofectamina / proteína recombinante, las células se expusieron a radiación UV o a tratamientos farmacológicos en condiciones libres de FBS. La viabilidad celular se analizó hasta el final del período de recuperación (24 horas después de la radiación UV, cuatro días después de cisplatino y cinco días después de la clomipramina). El número de células se determinó mediante tinción con cristal violeta [74]. El O.D. se midió a 550 nm, usando un lector de microplacas (Bioteck).

Construcción de plásmido de levadura, transformación y expresión de proteína recombinante

Se insertó una expresión génica de GSTM3 en el plásmido pYES2 en S. cerevisiae, y se introdujeron codones adicionales de histidina (N-6x his) (más

detalles, véanse la Tabla Suplementaria 10 y la Figura Suplementaria 3). La proteína total se obtuvo a través de la lisis celular utilizando Liticasa como se describe por el proveedor (Sigma-Aldrich), y con maceración usando nitrógeno líquido. Los lisados celulares se centrifugaron a 5,520 g durante 5 min y el sobrenadante se almacenó a -20 °C. La proteína recombinante se purificó por cromatografía de quelatos metálicos usando perlas de níquel como se describe por el proveedor (PureProteome, Merck Millipore). Las proteínas eluidas se visualizaron en geles de SDS-PAGE al 12% a través de tinción con azul brillante de Coomassie. La banda correspondiente a GSTM3 fue confirmada por espectrometría de masas (MALDI-TOF, Bruker Daltonics) y western blot.

Transformación de la línea celular humana, purificación de proteínas y *pull-down*

La secuencia del gen de HPV 18 E7 se obtuvo del plásmido pBR322 HPV 18 (ATCC, 45152 D) y se transfectó en el plásmido CMV-pcDNA 3.1 usando Lipofectamina 3000 (Life Technologies) en células HeLa, usando de 18 a 26 nt oligos diseñados usando SnapGene Viewer 2.2 para insertar el gen introduciendo codones adicionales de HindIII y BamHI e histidina (C-6x his). La proteína recombinante HPV 18 E7-his se purificó mediante cuentas de níquel quelato metálico como se describe por el proveedor (PureProteome, Merck Millipore). La banda correspondiente a HPV 18 E7 se confirmó mediante western blot utilizando HPV 18 E7 (Abcam, ab 38743, 1: 1000) y un anticuerpo anti-His tag (Invitrogen, 372900, 1: 5,000).

GST "Knock-down" in vitro e in vivo usando oligonucleótidos de morpholino

Los morpholinos se diseñaron para ser blancos de la región 5'UTR de los ARN mensajeros de las GSTM3 y GSTP1 que incluyeron 25 nucleótidos y el codón de inicio ATG. Para los ensayos *in vitro* se disolvieron ambos morpholinos en PBS estéril a pH 7,5, a una concentración de 640 ng/mL. Para los ensayos *in vivo*, 15 días después de la inoculación de tumores en ratones, se inyectaron seis dosis de 400 ng por vía intratumoral, cada tercer día [76]. En el día 30 se colectaron los tumores para su posterior análisis. Se usó un morpholino aleatorio como control en ambos ensayos *in vitro* e *in vivo*, a la misma concentración. Las secuencias de los morpholino empleados en la figura 6.

Tinción inmunohistoquímica de tumores generados a partir de líneas celulares CC

Para la inmunohistoquímica (IHC) se analizaron y se cortaron los tumores (4 µm de espesor) con un criostato y se fijaron con paraformaldehído al 4% (Sigma - Aldrich) durante 1 h a 37 °C, se lavaron tres veces con PBS y después se bloquearon con 10 % Suero bovino adulto (Microlab) durante 1 h, las muestras se permeabilizaron con 0,2% Triton X-100, y las secciones de tejido se incubaron individualmente durante la noche a 4 °C con los siguientes anticuerpos primarios, como se describe anteriormente: p65 anti-NF-kappa B (fosfo-Ser 536), anti-p-JNK, anti-p-ERK y p-p38 de Santa Cruz Biotechnology; anti-GSTM3 y anti-GSTP1 (1:100, Abcam) Después de varios lavados con PBS, las secciones de

tejido anti-ratón TRITC (1: 50, Jackson Immunoresearch), anti-conejo-FITC (1:100, ThermoFisher), anti-cabra Alexa 647 (1:100, ThermoFisher) y anti-ratón-FITC (1:100, ThermoScientific). Los controles negativos incluyeron secciones de tejido incubadas sin anticuerpos como control. Finalmente, los tejidos tumorales se montaron usando medio de montaje VectaShield (H-1000, Vector Laboratories) para preservar inmunofluorescencia. Se realizó un análisis de inmunofluorescencia usando un microscopio y el software LMS 700 (ZEN 2012, Carl Zeiss). La presencia o ausencia de la marca fluorescente se determinó mediante el análisis de escaneo (5 x 5 en el Planos X, Y), combinado con el análisis *Z-stack* de tres portaobjetos ópticos separados por 0,9 μm.

Análisis de la Tinción inmunohistoquímica de tumores de CC

Todos los casos fueron revisados por tres patólogos diferentes del Departamento de Patología en INCMSZ. Los registros médicos fueron revisados, teniendo en cuenta el historial médico previo del paciente. Todos los casos fueron sometidos a un análisis inmunohistoquímico utilizando anti-GSTM 3. (Abcam, ab67530, 1: 1000) y, anti-GSTP1 (Abcam, ab53943, 1: 1000). Los bloques de parafina se muestrearon a un espesor de tejido de 5 µm y se produjeron por duplicado para cada portaobjetos. El análisis se realizó en un inmunocontenedor automatizado (Ventana Medical Systems) de acuerdo con las especificaciones del proveedor. Tres partes del tumor se evaluaron por separado en cada muestra, al igual que la presencia de tinción en las células tumorales. En este estudio, analizamos el porcentaje de la región de interés (ROI) teñida por los anticuerpos, según lo estimado utilizando el software CellSens (Olympus). Las muestras se dividieron en dos grupos para evaluar la asociación de la expresión de proteínas y la supervivencia del paciente: (W-M) que consistía en un débil ROI para GSTM3 y moderada ROI para GSTP1; y (MH-H) el cual agrupa a ROI moderado / alto para GSTM3 y alto ROI para GSTP1 [77,78]. Se emplearon curvas de supervivencia de Kaplan-Meier para este análisis utilizando XLSTAT, con el CI de Greenwood y un nivel de significación del 95%.

Análisis estadístico

El análisis estadístico se realizó utilizando la *prueba-t* de *Student* de dos colas. Se consideró un valor de p <0,05 como estadísticamente significativo.

Resultados

Modelo de progresión tumoral

Con el fin de crear un modelo adecuado que nos permita estudiar la progresión tumoral (PT), utilizamos líneas celulares de cáncer de cuello uterino (SiHa y HeLa) para generar tumores injertados en ratones. Para este fin, las células cancerosas se cultivaron al 70% de la confluencia y se inocularon 10⁷ células en ratonas hembras de la cepa Nu / Nu de 4 a 6 semanas. El volumen del tumor se midió de acuerdo con la ecuación descrita en la sección experimental, en siete momentos diferentes de progresión del tumor (5, 10, 15, 20, 30, 45, 50 días después de la inoculación). Los primeros cuatro tiempos de medición mostraron una baja progresión del crecimiento tumoral. Sin embargo, en los puntos finales de la cinética, el volumen tumoral creció exponencialmente para los tumores de células HeLa. Desde el día 30 hasta el 45 se duplicó el volumen tumoral

promedio y para el día 50 el volumen promedio fue 3 veces más que la medición anterior. Para los tumores de SiHa, las tasas de crecimiento del fue más bajas que las de HeLa, en los días 30 a 45 días. Los tumores de SiHa crecieron 1.6 veces, mientras que en los últimos cinco días los tumores fueron 1.6 veces más en promedio (Figura 1A-B). De acuerdo con estos hallazgos, decidimos evaluar más a nivel de proteoma la dinámica de TP entre los tiempos 30, 45 y 50 días después de la inoculación.

Análisis de los geles de 2D-PAGE e identificación de proteínas

Los tumores de los dos tipos de células cancerosas fueron colectados y se extrajeron las proteínas totales para analizarse por medio de geles de electroforesis de dos dimensiones (2D-PAGE). Se realizó el análisis de las imágenes de 2D-PAGE de cada repetición para cada tiempo estudiado y para cada tipo de célula. El análisis de imágenes se llevó a cabo utilizando el software PDQuest. En promedio, pudimos detectar 866 entidades electroforéticas (spots) para muestras de los tumores de HeLa en cada repetición. Para tumores SiHa, el promedio de spots detectados en las imágenes de 2D-PAGE fue de 766. A partir de los mapas de 2D-PAGE, determinamos el coeficiente de correlación entre las repeticiones para cada tiempo de tumor y tipo de célula. En todos los tumores, el coeficiente de correlación fue mayor de 0.7 en los dos tipos de células (Tabla Suplementaria 1). Además, en los tumores de HeLa se detectaron, 601 spots en los tres tiempos del TP, mientras que en los tumores SiHa el número de spots comunes fueron de 716 (Figura 1A). Para la identificación de proteínas, se seleccionaron un total de 90 puntos de gel de tumores que incluyen ambos tipos de células, en base a sus patrones de abundancia entre las edades de los tumores. Todas las manchas de gel se procesaron como se describe en la sección experimental y se identificaron después del análisis de espectrometría de masas MALDI-TOF. De los tumores HeLa, identificamos 46 proteínas diferentes (Tabla Suplementaria 2), incluyendo 34 con expresión constante a través del TP, 7 proteínas mostraron una regulación negativa a lo largo del TP, 3 proteínas aumentaron su abundancia durante el crecimiento del tumor, y 2 se encontraron con un oscilante patrón.

En el tumor de las células de SiHa, se identificaron un total de 44 proteínas (Tabla Suplementaria 3). Las proteínas identificadas se distribuyeron de acuerdo con su patrón de expresión, 20 se encontraron sin diferencias en las tres edades tumorales evaluadas, 8 disminuyeron su abundancia durante TP, mientras que 16 mostraron un patrón creciente. Analizando todas las proteínas identificadas en tumores de ambos tipos de células, encontramos que 34 proteínas se compartieron entre los dos tipos de tumores, incluyendo 14 que muestran el mismo patrón de expresión (Figura Suplementaria 1, Tabla Suplementaria 2-3).

Entre las proteínas con un patrón de sobreexpresión, identificamos dos miembros de la familia Glutatión S-transferasa (GSTM3 y GSTP1). La GSTM3 se identificó en tumores de HeLa y la GSTP1 en tumores de SiHa (Figura 1C). Los niveles de expresión de ambas proteínas se confirmaron mediante análisis de transferencia western blot (Figura 1C). Además, la transferencia por western blot reveló que los tumores SiHa se observan ambas proteínas con patrones de

sobreexpresión. Sin embargo, en tumores HeLa solo se confirmó la sobreexpresión para GSTM3, y se encontró que GSTP1 no es detectable en ninguna etapa del tumor.

Figura 1. El análisis proteómico del modelo de progresión tumoral de las líneas celulares de cáncer cervical xenotrasplantado reveló proteínas implicadas en el crecimiento tumoral: (A) Diseño experimental para estudiar la dinámica del proteoma de los tumores xenotrasplantado en un modelo murino. Las líneas celulares se cultivaron al 70% de confluencia y se inyectaron 10⁷ células en los ratones hembras Nu/Nu. Los spots se analizaron y compararon mediante 2D-PAGE (3 réplicas biológicas). El perfil proteómico se obtuvo de cada tiempo y luego se comparó para encontrar proteínas diferenciadas durante la PT y se representa en un diagrama de Venn proporcional. (B) Cinéticas de crecimiento tumoral de HeLa (amarillo) y SiHa (azul). (C) En la parte superior se muestran las regiones de los geles de 2D SDS-PAGE de ambas líneas celulares y análisis de expresión de GST durante su PT. En las regiones de 2D-SDS-PAGE de las proteínas GSTs se puede observar un aumento a lo largo del tiempo. Los niveles de expresión de las proteínas se obtuvieron mediante la normalización de la cantidad del spot (NSQ); Abajo se muestran los valores de cuantificación de la transferencia por western blot usando β-actina como control interno. La proteína GSTM3 (HeLa, línea amarilla) y GSTP1 (SiHa, línea azul). En esta figura se muestran resultados representativos del western blot de GSTM3 y GSTP1. Las muestras se mezclaron (1: 1), los lisados celulares se sometieron a transferencia western con 20 µg de proteína por muestra. En los tumores de HeLa solo expresó la proteína GSTM3 y en los tumores de SiHa expresaron ambas proteínas GSTM3 y GSTP1. Todos los ensayos se realizaron por triplicado. Los datos se presentan como medias (± desviación estándar, SD) de tres experimentos independientes. El P-valor < 0.05 y se consideró estadísticamente significativo (* P-valor <0.01, con respecto a 30 días).

Análisis bioinformático

Posteriormente, se usaron las proteínas identificadas en ambos tumores para realizar un análisis de enriquecimiento funcional basado en los procesos biológicos de las ontologías génicas (Gene Ontology: GO) (Figura 2, Tabla Suplementaria 4). Las proteínas se agruparon según sus niveles de expresión y se sometieron a un análisis de enriquecimiento. Nuestros resultados indicaron que las proteínas que aumentan sus niveles durante la PT están principalmente involucradas en anti-apoptótica, división celular, glucólisis, angiogénesis, reproducción viral y regulación de procesos apoptóticos (Figura 2A). Por otro lado, entre las proteínas cuya expresión está regulada negativamente durante la PT, los procesos biológicos encontrados enriquecidos fueron la regulación de procesos apoptóticos, el procesamiento y presentación de péptidos a través del MHC clase I, la proteína poliubiquitinación y la respuesta a proteínas desplegadas (Figura 2C). Con expresión constante, encontramos proteínas involucradas en procesos relacionados con la regulación de la apoptosis y la glucólisis entre otros (Figura 2B). Además, incluyendo todas las proteínas identificadas, los resultados sugieren que durante la PT las rutas sobrerrepresentadas están relacionadas con la respuesta celular al estrés, las rutas de señalización MAPK6 / MAPK4 y NIK / NF-kappaB (Tabla Suplementaria 4-5). Por otro lado, el análisis de minería de datos reveló que GSTM3 y GSTP1 interactúan con las proteínas de los factores asociados al receptor del factor de necrosis tumoral (TRAF). Específicamente, la interacción de GSTP1 con TRAF2 se validó previamente en células HeLa [61], y GSTM3 se informó como interactor de TRAF6 [79] (Figura 3A).

GSTM3 interactúa con TRAF6 en tumores de CC.

Para demostrar que esta interacción ocurre en condiciones fisiológicas, primero demostramos la expresión de TRAF6 en ambos tumores de HeLa y SiHa (Figura 3B). Observamos que solo en los tumores HeLa se expresaba TRAF6. Estos resultados son consistentes con otros resultados informados que indican que GSTP1 solo interactúa con TRAF2 [61]. Después de eso, desarrollamos el análisis de interacción, usando lisados de tumores HeLa de 50 días y sometidos a un ensayo de coinmunoprecipitación (IP). Encontramos que, GSTM3 coinmunoprecipita con TRAF6 y viceversa (Figura 3B). Por lo tanto, GSTM3 se asocia con tumores TRAF6 CC.

Figura 2: Análisis de enriquecimiento de la ontología génica de las proteínas identificadas en el tumor de las células HeLa y SiHa. (A) Procesos biológicos enriquecidos en las proteínas compartidas sobre-reguladas. (B) Procesos biológicos enriquecidos en las proteínas constantes. (C) Procesos biológicos enriquecidos en las proteínas sub-reguladas compartidas. El análisis se realizó a través del sitio web GeneCodis.

Modulación de la señalización MAPK durante la PT

Dada la importancia de las proteínas TRAF sobre la activación rio abajo de la cascada de la proteína cinasa activada por mitógenos (MAPK), se realizó un análisis de western blot de la PT. Nosotros analizamos, a la versión fosforilada de NF-κB p65 (ser529), ERK, JNK y p38. Nuestros resultados demostraron que la fosforilación de p38 y JNK se redujo a lo largo del tiempo en ambos tumores

del CC, pero no en pNF-κB y pERK (Figura 3C, Tabla Suplementaria 6). Estos hallazgos indican que durante la PT los procesos apoptóticos son reprimidos y, por lo tanto, la proliferación celular se activa constantemente via ERK y NF-κB.

Activadores endógenos secretados del receptor TLR4 en el CC

Por otra parte, se sabe que la activación de la ruta de TLR4 está impulsada por la presencia de lipopolisacáridos (LPS) a partir de infecciones bacterianas [80], pero también por activadores endógenos [81,82]. Para demostrar que las líneas celulares CC pueden expresar activadores endógenos del receptor tipo Toll 4 (TLR4), se realizó un análisis *in vitro* de las proteínas secretadas utilizando las líneas celulares HeLa y SiHa (Figura Suplementaria 2A, Tabla Suplementaria 7-8). Las proteínas secretadas se analizaron mediante LC-MS / MS y se identificaron un total de 432 proteínas HeLa y 447 SiHa, de las cuales 264 eran comunes entre ambas líneas celulares (Figura 3D). Entre los activadores endógenos reportados para TLR4, se identificaron dos proteínas secretadas miembros de la familia de las proteínas de choque térmico, HSP60 y HSP70 para ambas líneas celulares (Figura 3E). Para determinar si estas proteínas también se expresaron durante la PT, entonces analizamos las proteínas secretadas *ex vivo* en tumores CC por western blot (Figura 3F, Figura Suplementaria 2B). Nuestros resultados, se correlacionaron en experimentos *in vivo* y *ex vivo*, lo que

Figura 3: (**A**) Red de interacción en *Cytoscape* que representa las interacciones-presa de GSTM3. Las interacciones GSTM3-presa fueron visualizadas en los bordes de la red. Este análisis se realizó para obtener las interacciones proteína-proteína informadas en la base de datos *SysBiomics*; observamos que la proteína TRAF6 interactúa con GSTM3. (**B**) Análisis de coinmunoprecipitación de la GSTM3 y TRAF6. (**C**) Western Blot para TRAF6, ERK, pERK, NF- κ B, pNF- κ B, IKB α , pIKB α , p38, pp38, JNK, pJNK, y TLR4 en los extractos de proteínas de los tumores de HeLa y SiHa. (**D**) Diagrama de Venn proporcional de las proteínas secretadas en las líneas celulares de CC con 264 proteínas comunes. (**E**) Se identificaron dos proteínas secretadas *in vitro* que pueden activar la vía señal de TLR4: HSP60 y HPS70 (**F**). Western blot de los activadores de TRL4: HSP70 y HSP60 en los tumores de CC, HSP60 secretada en SiHa y tumores HeLa en el día 50, y la proteína HSP70 secretada en tumores SiHa a los 45 días y tumores Hela a los 30 y 50 días.

indica que la secreción de HSP60 y HSP70 podría activar la señalización de TLR4.

GSTM3 interactúa con E7 de HPV18

Previamente Mileo *et al.* demostraron que la proteína GSTP1 puede interactuar con la proteína E7 del HPV16 y esta interacción mejora la supervivencia de las células [72]. En el presente proyecto, nos preguntamos si la proteína GSTM3 podría interactuar con la proteína del E7 de HPV18 en células positivas con este serotipo de HPV. Realizamos una alineación de superposición estructural entre las proteínas GSTP1 y GSTM3 y de las proteínas E7 del HPV 16 y 18 utilizando el programa MAMMOTH [83], seguido por el software suizo PDB Viewer (Deep View) v4.1 para visualizar los resultados (Figura 4A) [71]. El modelo de acoplamiento de la proteína GSTP1 con HPV16 E7, proporcionado por el grupo Mileo, se utilizó para realizar nuestra superposición estructural. La alineación muestra regiones conservadas y no conservadas al comparar las distancias entre los carbonos alfa y las secuencias de la cadena principal de aminoácidos. Los resultados sugirieron que las proteínas GSTM3 y HPV18 E7 podrían interactuar, de manera similar a la interacción entre las proteínas GSTP1 y E7 del HPV16 (Figura 4A).

Figura 4. GSTM3 interactúa con E7 de HPV18. Las GST y E7 proporcionan ventajas de supervivencia a las células expuestas a condiciones de estrés. (A) La superposición de las proteínas de GSTP1 y GSTM3 muestran altas similitudes estructurales (verde-naranja), estructuras no conservadas (gris) y la estructura de la proteína E7 de HPV18 (azul) usando como molde la E7 de HPV16. (B) Interacción de la proteína recombinante humana ScGSTM3 N-6x his-tag con la E7 de la proteína HPV 18. (C) Las células HeLa se transfectaron con un plásmido que expresa HE718 C-6x his-tag como se indica en los métodos. Los lisados celulares se sometieron a Ni-6x para capturar a los interactores de la E7; se generó un western blot con anti-his-tag y anticuerpos específicos de GSTM3. La GSTM3 fue identificada por MALDI-TOF y/o LC-MS/MS. (D) Ensayos PAEP. Las células se expusieron a UV (UVB durante 15 segundos), y se sometieron a complementación proteica exógena con un período de recuperación de 24 horas. La línea celular MDA se usó como control negativo para HPV, GSTM3 y GSTP1. (E) Ensayo de supervivencia con 6.0 mM de cisplatino. La línea celular MDA sobrevivió, hasta el cuarto día (rojo) y la línea celular HaCaT hasta el sexto día (naranja). Las líneas celulares HeLa y SiHa CC sobrevivieron hasta el octavo día, que fue el último día que se analizó esta prueba. (F) Ensayos de PAEP, usando la línea celular MDA con 6.0 mM de cisplatino y cuatro días del período de recuperación, M3/P1/E7 con un 10.7% de supervivencia. Los ensayos se realizaron por triplicado. Los datos se presentan como medias (D.E.) de tres experimentos independientes.

Para demostrar esta interacción, se generó una construcción para expresar una proteína GSTM3 humana recombinante con una etiqueta histidina añadida en el extremo N-terminal (N-6x His-tag) en S. cerevisiae (Figura Suplementaria 3A, Tabla suplementaria 10). GSTM3 se identificó a través de western blot de anti-His v el análisis de la huella digital de la masa de los péptidos (Figura 4B, Figura Suplementaria 3A). Después de capturar a la proteína recombinante de la GSTM3, se incubó con un extracto proteico de células HeLa (HPV18-positivo) (Figura Suplementaria 3B). La proteína E7 de HPV18 coeluyó con GSTM3 N-6xhis-tag y se identificó usando un anticuerpo específico mediante western blot (Figura 4B). Para verificar esta interacción, generamos una construcción E7 de HPV18 en S. cerevisiae, pero fue posible obtener una cepa estable que expresara la proteína. Luego generamos una construcción en el plásmido que expresara una proteína recombinante de E7 de HPV18 C-6x-his-tag en la línea celular HeLa y realizaba un ensayo de pull-down (Figura Suplementaria 3C). Notablemente, nuestros resultados demostraron que GSTM3 puede interactuar con HPV18 E7 (Figura 4C, Figura Suplementaria 3D).

Las proteínas GSTs y E7 del HPV18 contribuyen a la supervivencia celular

Una vez demostrada la interacción de la proteína GSTM3 con la proteína E7 del HPV18 evaluamos la relevancia de esta interacción en la supervivencia celular. Para esto, desarrollamos un ensayo de sensibilidad al estrés con UV en una línea celular de cáncer de mama MDA-MB-231 la cual es negativa para HPV18, GSTM3 y GSTP1 (Figura Suplementaria 4A). Utilizando proteínas recombinantes de las GST y de la E7 de HPV18 se realizó un análisis de fenotipo mediante complementación exógena de las proteínas (PAEP). Este análisis demostramos que, bajo estrés de radiación UV (15 segundos UV, IC50), las células GSTM3 / HPV18 E7 exhibieron una tasa de supervivencia de 84.1%, mientras que las células GSTP1 / GSTM3 / E7 exhibieron una tasa de supervivencia de 93.7% después de un período de recuperación de 24 horas. Estos resultados podrían indicar que existe un efecto sinérgico entre las GST y las proteínas virales (Figura 4D). Dadas estas observaciones, se realizó un ensayo in vitro donde las líneas celulares de CC y las líneas celulares negativas se expusieron a 6 mM cisplatino [73]. Esta concentración de cisplatino mato por completo a la línea celular MDA-MB-231 al 4to día del tratamiento. Para la línea celular HaCaT el total de células muertas fue al 6to día (Figura 4E). Sorprendentemente, las líneas celulares que coexpresan GST y HPV E7 sobrevivieron durante al menos ocho días después del tratamiento (SiHa 17% y HeLa 24% de confluencia) (Figura 4E). Para demostrar que la interacción GST / HPV18 E7 era responsable de esta resistencia, se realizó un ensayo PAEP usando las células MDA-MB-231 que incluyendo las proteínas recombinantes GSTM3, GSTP1 y E7 de HPV18. Los resultados confirmaron que las líneas celulares que expresan miembros de la familia de proteínas GST y E7 de HPV tienen una ventaja en términos de supervivencia celular cuando se tratan con un agente xenobiótico (Figura 4E, 4F). Observamos un aumento en la supervivencia de las células que expresan cualquiera de estas proteínas (HPV18 E7, GSTM3 o GSTP1); sin embargo, el mayor incremento en la supervivencia se observó cuando tanto GST como HPV18 E7 estaban presentes (Figura 4F).

La pérdida de las proteínas GST inhiben la proliferación y la supervivencia de las líneas celulares de CC

Las GST desempeñan un papel importante en la regulación de MAP cinasas y NF-kB vías, para activar el mantenimiento celular, la proliferación y la evasión de la apoptosis [56]. Con el fin de evaluar el efecto de GSTM3 y GSTP1 en líneas celulares del CC, inhibimos la expresión de ambas proteínas por medio de morfolinos oligonucleótidos antisentido (morfolinos). Se diseñaron tres morfolinos, dos para bloquear específicamente a las proteínas y uno con una secuencia aleatoria utilizada como control (M-GSTM3, M-GSTP1 y M-Control). Primero evaluamos ocho dosis para cada morfolino en cultivo con dos líneas celulares, HeLa y HaCaT. Las dosis utilizadas fueron desde 10 a 1.280 ng/mL y fueron incorporadas al medio de cultivo, posteriormente evaluamos la proliferación celular en tres diferentes tiempos a las 24, 48 y 72 horas. En este experimento, observamos que las células HaCaT no se vieron afectadas por el tratamiento con M-GSTM3 durante el período de análisis. Solo notamos una ligera pérdida de supervivencia con la dosis más alta (1.280 ng/mL). En las células HeLa, notamos pérdidas de viabilidad después de 48 horas de tratamiento en todas las dosis de M-GSTM3 (Figura 5A). Después de 72 horas, las dosis más altas de tratamiento (640 y 1.280 ng/mL) mostraron una supervivencia inferior al 10% en comparación con las células de control. Se obtuvieron resultados similares para el tratamiento con M-GSTP1 en ambas células.

Para evaluar la respuesta celular en otras líneas celulares, seleccionamos la dosis de 640 ng/mL, porque es la dosis más alta que no afectó a la línea celular HaCaT. Además, realizamos el tratamiento con 640 ng/mL en la línea celular de CC SiHa (Figura 5B). Observamos una respuesta muy similar entre líneas celulares de cáncer, lo que indica que ambas proteínas GST son esenciales para la supervivencia celular en el CC, pero no para las células de HaCaT (no cancerosas). Para validar la efectividad del tratamiento de eliminación, se realizó un análisis de transferencia por western blot en las tres líneas celulares para ambas proteínas (Figura 5D-E). La inmunotransferencia reveló que ambas proteínas estaban de hecho reguladas negativamente durante todos los tiempos del tratamiento en las tres líneas celulares. Además, evaluamos la viabilidad celular en las tres líneas celulares después de 24 y 48 horas de tratamiento a la dosis de 640 ng/mL de los dos morfolinos (Figura 5C). Llevamos a cabo un ensavo de células vivas/muertas basado en la tinción de Syto9/ioduro de propidio. Los resultados confirmaron que las células HaCaT no se vieron afectadas por el tratamiento. Ambas células cancerosas se vieron afectadas de forma similar. En conjunto, estos resultados sugieren que las células HaCaT poseen un mecanismo alternativo de mantenimiento celular que ve comprometidas a las células de CC.

Figura 5. *Knock-down* de **GSTM3 y GSTP1 afecta la viabilidad de las líneas celulares de cáncer cervical en cultivo. (A)** Experimentos genéticos de *knock-down* de GSTM3 y GSTP1 en células de HeLa (líneas de tonos amarillos) y HaCaT (líneas de tonos azules, utilizadas como control), usando una concentración de gradiente de 10 - 1280 ng/mL. A las 24 horas no se observaron cambios en la proliferación celular después del tratamiento. A las 48 horas se observa cambios menores en las células de HaCaT a 640 ng/mL (supervivencia del 96% en GSTM3 y 95% en GSTP1), y a las 72 horas y la misma concentración, supervivencia es del 91% en GSTM3 y 94% en GSTP1. Se observó una disminución importante en las células HeLa (supervivencia del 38 - 9%, en GSTM3 y del 27 - 9% en GSTP1, a las 48 y 72 horas, respectivamente). (B) Ensayo de viabilidad con M-Control o M-GST (a 640 ng/mL), determinado por tinción con cristal violeta. (C) Ensayos de células vivas/muertas se determinó con la tinción de SYTO 9 en células tratadas con M-control y M-GST (640 ng/mL). Barra de escala 50µm. Todos los ensayos se realizaron por triplicado. (D-E). Inhibición de GST con tratamiento morfolino en líneas celulares CC. Expresión proteica relativa. El western muestra la inhibición del ensayo con los morfolinos de GST en las líneas celulares CC (HaCaT utilizado como control negativo de CC). 20 µg de proteína por muestra fue usado para los western blots. Los datos se presentan como medias (DE) de tres experimentos independientes (*** *P*-valor <0.001 con respecto al control).

La pérdida de GST inhibe la progresión del tumor en el cáncer de cuello uterino Para investigar el papel de las GST durante la PT, examinamos los efectos de los tratamientos con los morfolinos en un modelo murino (Figura 6A). Para esto, utilizamos los morfolinos (M-GSTM3, M-GSTP1, y M-Control) para tratar cuatro líneas de celulares de CC (líneas dos HPV16-positivas, SiHa y CaSki, y dos líneas de HPV18-positivas, HeLa y Calo), así como dos controles negativos de líneas celulares CC, una de cáncer de mama (MDA-MB-231) y una de colon (COLO 205). Los resultados de nuestros análisis in vivo e in vitro correlacionaron entre sí, mostrando una disminución drástica del volumen en las líneas de células tumorales de CC (Figura 6B-C). Sin embargo, los resultados para los tumores de HeLa fueron diferentes de los realizados in vitro. Los tumores de HeLa solo expresaron GSTM3, pero no GSTP1 (Figura 5D-E). Por lo que, el tratamiento con M-GSTP1 en los tumores de HeLa no afectó la PT, lo que confirma que GSTP1 no se expresa en estos tumores. Por otro lado, el tratamiento con M-GSTM3 en los tumores de HeLa disminuyeron drásticamente el volumen tumoral. En comparación con el tratamiento con el morfolino control, el volumen tumoral de HeLa con M-GSTM3 fue 14 veces menor (Figura 6B-E).

En los tumores de CaLo, encontramos que ambas proteínas expresadas GSTM3 y GSTP1 (Figura 6D-6E). El tratamiento de estos tumores con los morfolinos contra GSTM3 y GSTP1 dieron como resultado una disminución del volumen del tumor de 10 y 6 veces, respectivamente (Figura 6B-C). En el caso de los tumores de SiHa, que expresan ambas proteínas (Figura 6D-E), observamos las mayores disminuciones en el volumen tumoral después del tratamiento con ambos morfolinos, con disminuciones de 43 y 62 veces para M-GSTM3 y M-GSTP1, respectivamente (Figura 6B-C). Los tumores controles de la línea celular de CaSki también expresaron ambas proteínas. En los tumores tratados, se observó que los niveles de GSTM3 y GSTP1 no disminuyeron tanto como en otros tumores que expresaron estas proteínas (Figura 6D-E). El tratamiento con M-GSTP-1 dio como resultado una reducción del volumen del tumor de 2.6 veces en comparación con el control. En el caso del tratamiento con M-GSTM3, no pudimos observar diferencias significativas entre el volumen de los tumores control y los tumores tratados con M-GSTM3 en nuestras condiciones experimentales (Figura 6B-C). Probablemente, la baja eficacia de en la inhibición de la expresión proteica por el tratamiento, particularmente para GSTM3, fue responsable de la poca respuesta en la reducción tumoral. De acuerdo con esta observación, planteamos la hipótesis de que el GSTM3 remanente es suficiente para proporcionar un efecto protector a las células tumorales.

Además, se exploró la respuesta al tratamiento de los tumores de dos líneas celulares de diferentes orígenes, MDA-MB-231 de cáncer de mama y COLO de cáncer de colon. Ambos tumores exhibieron una baja expresión de GSTP1 en comparación con los tumores CC (Figura 6D-E). Sin embargo, los tumores COLO tratados tenían niveles 1,9 veces menores que el control (Figura 6B-C). En el caso de MDA-MB-231, los niveles de GSTP1 apenas eran detectables en los tumores de control y, como consecuencia, el tratamiento con M-GSTP1 no afectó la PT (Figura 6B-C). Los tumores de ambas líneas celulares expresaron GSTM3 y en ambos casos, el tratamiento con el morfolino redujo significativamente los

niveles de la proteína. Sin embargo, no pudimos correlacionar esta regulación negativa con la PT.

Figura 6: *Knock-down* de la GSTM3 y la GSTP1 afecta la PT en el CC. (A). Se inyectaron ratones Nu/Nu con 10⁷ células de cuatro líneas celulares tumorales de CC, HeLa, CaLo, SiHa y CaSki y dos líneas negativas al CC (MDA y COLO). Después de 15 días de la inoculación de tumores en ratones, seis inyecciones de 400 ng cada una fueron inyectadas por vía intratumoral, una cada tres días. El tratamiento con morfolino consistió en administrar un vehículo que contenía PBS / Morpholino. (B) Tamaño del tumor a los 30 días de las seis líneas celulares tratadas con M-control, M-GSTM3 y M-GSTP1 (experimentos por duplicado: R1 y R2). (C). Dinámica del crecimiento tumoral después del *knock-down* de la GSTM3 y la GSTP1. (D-E). Las inhibiciones de GSTM3 y GSTP1 fueron confirmadas por IHQ, barra de escala 20 µm y graficados la expresión proteica en unidades arbitrarias de fluorescencia (AUF). Los datos se presentan como medias (SD) de dos experimentos independientes (°*P*-valor <0.05; **P*-valor <0.025; ***P*-valor <0.01; ****P*-valor <0.001).

GSTM3 y GSTP1 regulan las proteínas MAP cinasas pJNK y pp38

Investigaciones previas han demostrado que la expresión de la proteína GSTP1 puede afectar a las MAP cinasas, lo que lleva a una disminución en la fosforilación y activación de pJNK y pp38 [61,72,84,85]. Por lo tanto, examinamos los efectos de la desactivación de la GSTM3 y GSTP1 sobre la activación de pJNK y pp38 y la fosforilación de p65 y pERK (de la vía de NF-κB) durante la PT del CC (Figura 7). Se analizó la expresión de la proteína a través de ensayos inmunohistoquímicos en todos los tumores CC tratados con

morfolinos (M-GSTM3, M-GSTP1 y M-control). Los tratamientos con M-GST dieron como resultado la fosforilación y activación de pJNK y pp38 MAP cinasas. Los tumores HeLa que solo expresan GSTM3 y, por lo tanto, solo respondieron al tratamiento con el morfolino M-GSTM3, mostrando un aumento de la fosforilación de JNK y p38 (Figura 7A-B). Por otro lado, los tumores de CaLo y SiHa, solo mostraron fosforilación de p38, con los dos tratamientos M-GSTM3 y M-GSTP1; CaLo (Figura 7C-D); y SiHa (Figuras 7E-F). Para los tumores de CaSki, ambas MAPK se regularon positivamente tras el tratamiento con M-GST (Figura 7G-H).

GSTM3 y GSTP1 regulan la supervivencia celular mediante la inactivación de NF-κB y pERK

Para investigar el papel de los GTS en la muerte celular programada y la supervivencia celular, también examinamos la inactivación de la proteína ERK y p65 NF-κB (Figura 7). Los tumores de HeLa tratados con M-GSTM3 mostraron inactivación de ambas proteínas (Figura 7A-B). En los tumores de CaLo solo pERK se inactivó después del tratamiento con cualquiera de los morfolinos para GST (Figura 7C-D). Para los tumores de SiHa solo se inactivó NF-κB por cualquiera de los tratamientos (Figura 7E-F). En los tumores de CaSki, ambas proteínas se inactivaron después de cualquier tratamiento (Figura 7G-H). Sugerimos que la inhibición de las proteínas GSTM3 y GSTP1 indujeron la

Figura 7. El *Knock-down* de la GSTM3 y la GSTP1 afecta la activación de pJNK, pp38, pNFkB, pERK en tumores CC. (A-B) IHQ y cuantificación realizada en tumores de células HeLa, (C-D) CaLo, (E-F) SiHa y (G-H) CaSki. Los ensayos se realizaron por duplicado. Barra de escala 20 μm. Los datos se presentan como medias (SD) de tres cortes de cada tumor en dos experimentos independientes (**P*-valor <0.01, ** *P*-valor <0.005, *** *P*-valor <0.001).

apoptosis y disminución en la supervivencia celular a través de las vías de NFκB y MAP-cinasas.

Análisis de expresión de GST en muestras de tejido de pacientes CC

Se sabe que la expresión de las GST en algunos tipos de cáncer se considera un signo de mal pronóstico, [52-55] y que estas proteínas pueden ser responsables de la quimiorresistencia observada en muchos pacientes con CC. Para comprender el papel de la expresión de la proteína GST en la quimiorresistencia en pacientes con CC, se realizó un estudio de seguimiento de 13 pacientes con CC que se habían sometido a quimioterapia (Figura Suplementaria 5A-B). Los análisis de expresión de proteínas se realizaron para GSTM3 y GSTP1 usando inmunohistoquímica (IHC). En este estudio, analizamos el porcentaje de la región de interés (ROI) que era inmunopositiva. Sorprendentemente, todos los pacientes expresaron ambas proteínas, pero con gran variabilidad con respecto al porcentaje de la ROI (Figura 8A, Figura Suplementaria 6A-B). Se categorizaron arbitrariamente a los pacientes en tres grupos en función al porcentaje de ROI: débil, moderado y alto para GSTM3 y GSTP1 (Figura 8B-C). Luego, realizamos un análisis de asociación de la expresión de GST y la supervivencia del paciente y generamos dos grupos: débilmoderado para GSTM3 y moderado para GSTP1 (DM-M), y otro grupo con valores moderados-altos para GSTM3 y valores altos para GSTP1 (MA-A) (Figura 8D). Los resultados mostraron que la expresión de GSTM3 y GSTP1 podría influir significativamente en la supervivencia de los pacientes con CC.

Figura 8. Correlación entre la expresión de proteínas GST y la supervivencia de pacientes CC. A. Especimenes representativos de CC invasivo con diferentes niveles de expresión de GSTM3 y GSTP1 (débil, moderado y alto). Barra de escala 100 μ m. B. ROI de GSTM3 y GSTP1 en 13 pacientes CC evaluados. El porcentaje de ROI de GSTM3 se clasificó como débil (<10%), moderado (10-20%) y alto (21-50%). B. El porcentaje de ROI de GSTP1 se clasificó como débil (<10%), moderado (20-50%) y alto (51-100%). D. Trama de supervivencia de Kaplan-Meier, para el estadio avanzado del cáncer cervicouterino según los niveles de expresión proteica de GSTM3 y GSTP1 (prueba de log-rank, p <0,05). Grupo 1: ROI débil a moderado de GSTM3 y débil a moderado de GSTP1; y grupo 2: ROI moderado-alto de GSTM3 y ROI moderado alto de GSP1.

Hubo una clara correlación entre la supervivencia del paciente y la expresión de las proteínas GST. Los pacientes que mostraron una expresión débil a moderada (DM-M) mostraron una tasa de supervivencia significativamente más alta que los pacientes que exhibieron una expresión de GST moderada a alta (MA-A) (Figura 8D, Tabla Suplementaria 12).

Discusión (Proteoma)

En este estudio, desarrollamos un modelo de progresión tumoral mediante el uso de dos líneas celulares de CC (SiHa y HeLa) xenotrasplantadas en ratones desnudos atímicos (Nu/Nu). Para analizar el proteoma de la PT, realizamos un análisis 2D-PAGE que compara tres edades diferentes de tumores de las dos líneas celulares CC. Observamos que dos miembros de la familia GST (GSTM3 y GSTP1) tenían una mayor expresión durante todo el período de tiempo. Los tumores HeLa expresaron GSTM3, y los tumores SiHa expresaron ambas GST. Estudios previos indicaron que GSTP1 desempeña un papel regulador a través de su interacción con TRAF2, que afecta la activación de la señal apoptótica [61,62]. Con base en estos hallazgos, nos preguntamos si GSTM3 juega un papel similar al de GSTP1. Para este propósito, realizamos un análisis bioinformático utilizando una red de interacción proteína-proteína. El análisis sugirió que GSTM3 interactúa con TRAF6, y confirmamos esta interacción por medio de un ensayo de co-IP de las proteínas GSTM3 y TRAF6 en tumores HeLa.

Por otro lado, se ha informado que TRAF6 estimula la vía JNK [61,86], y se requiere selectivamente la activación inducida de p38 a través del eje TRAF6-ASK1 [87]. TRAF6 y TRAF2, a su vez, reclutan los complejos TAK1 e IKK, lo que lleva a la activación de NF-κB [88]. También se ha demostrado que TRAF2 y TRAF6 se unen y activan ASK1 [87,89]. En consecuencia, si las proteínas GST están interactuando con TRAF2/6, estarían regulando JNK, p38 y NF-κB durante la PT. Por lo tanto, analizamos las proteínas relacionadas con NF-κB, JNK y p38 en las tres etapas de la PT. Los resultados mostraron que durante la PT de tumores CC, GST podrían interactuar con TRAF2 y TRAF6 y, por lo tanto, regular la supervivencia celular, la proliferación celular y la evasión de apoptosis (Figura 3B). Estos resultados fueron consistentes con los de un estudio previo, que informó que la interacción de TRAF2 y GSTP1 bloquea la apoptosis y estimular la supervivencia celular [61]. De manera similar, nuestros resultados sugieren que la interacción de GSTM3 y TRAF6 juega un papel anti-apoptótico basado en las interacciones con c-Jun N-terminal cinasa (JNK) [62].

Si bien, se sabe que la activación de las TRAF puede darse por la vía de TLR4 esta puede activarse ante la presencia de lipopolisacáridos (LPS) a partir de infecciones bacterianas [80]. Esta activación puede ser cierta para los primeros estadios del CC donde su ubicación dentro del tracto genitourinario puede tener una interacción con el LPS bacteriano. De hecho, diversos estudios han reportado que existe una fuerte asociación entre la vaginosis bacteriana y el CC [90]. Pero cuando, cuando ocurre diseminación o metástasis donde sus en tejidos u órganos distantes ya no están en interacción con el LPS. Se ha reportado que existen otros activadores proteicos endógenos como las

chaperonas HSP60 y HSP70 [81,82], estas proteínas podrían estar activado la vía de TLR4 cuando un tumor se encuentra distante de una infección bacteriana.

Por consecuente, realizamos un análisis de identificación de las proteínas secretadas de las líneas celulares SiHa y HeLa en cultivo y en tumores. En ambos experimentos, se pudo identificar a las proteínas HSP60 y HSP70 como parte del secretoma en ambas células en cultivos *in vitro*, así como en sus tumores. Estos resultados indican que la secreción de HSP60 y HSP70 podría potencialmente activar la señalización de TLR4 y, por lo tanto, inducir la supervivencia celular y la evasión de la apoptosis durante de la PT.

Por otro lado, informes anteriores además han indicado que, la interacción de GSTP1 con la proteína viral E7 de HPV16, proporciona a las células cancerosas una mejor capacidad de adaptación bajo estrés [72]. En este proyecto se demostró que la proteína GSTM3 interactúa con la proteína E7 de HPV18. Con el fin de aclarar si esta interacción puede proporcionar a las células una ventaja en términos de supervivencia celular en condiciones estresantes, realizamos experimentos de supervivencia en presencia de GSTM3, GSTP1 y E7 de HPV18. En células tratadas con UV y cisplatino, los resultados indicaron que la incorporación de cualquiera de estas proteínas proporcionaba una ventaja de supervivencia y cuando se incorporaban las tres proteínas aumentaba ligeramente en comparación con las proteínas individuales. Teniendo en cuenta estos hallazgos, concluimos que las GST y las proteínas E7 de HPV interactúan y favorecen la supervivencia celular, pero la sola presencia de cada una de estas proteínas aumenta también la supervivencia celular. Esto indica que, la interacción no es crucial para responder ante condiciones estresantes.

Se han hecho estrategias basadas en ARN antisentido (ARN interferentes) para bloquear a las proteínas E6 y E7 del HPV, el análisis de estas estrategias han mostrado una reducción significativa de proteínas virales y una pérdida de muchas características de las células transformadas *in vitro* [39]. Pero, los resultados de la rescisión tumoral no ha sido lo suficientemente consistente [36]. Por otro lado, este es el primer reporte donde se reporta la sobre expresión de las proteínas GST en CC por lo que no se han llevado a cabo estrategias basadas en el bloqueo de sus ARNm para reducir la expresión de sus proteínas y conocer su función in vitro o durante la PT. Además, se ha observado que, muchos pacientes con CC tienen una alta resistencia fármacos o a los tratamientos con quimioterapia. La expresión de las proteínas GST en algunos tipos de esta observación [54,55]. La expresión de las GST en algunos tipos de cáncer se considera como un indicador de mal pronóstico [52,53].

Teniendo esto en cuenta, propusimos inhibir la expresión de la GSTM3 y la GSTP1 tanto en cultivos celulares como en tumores xenotrasplantados. En los resultados de los cultivos, las células cancerosas SiHa y HeLa se vieron afectadas drásticamente por el bloqueo de ambas GST, mientras que las células controles HaCaT (no cancerosas) no se vieron afectadas por la inhibición de estas proteínas. Estos hallazgos apuntan a que la GSTM3 y la GSTP1 son

cruciales para la supervivencia y la proliferación de células cancerosas en cultivo. En tumores xenotransplantados, observamos que en aquellas líneas celulares de CC que expresaban al menos una de estas proteínas, el volumen del tumor disminuía drásticamente después del tratamiento con morfolinos.

Por lo tanto, sugerimos que la expresión de GST (GSTM3 o GSTP1) podrían estar involucrada en la modulación de los procesos de detoxificación en las células cancerosas y, por lo tanto, pueden participar en la respuesta de la supervivencia a la quimioterapia convencional en pacientes. Además, se ha comprobado que las GST regulan las vías de señalización de la cinasas, y se ha demostrado que la GSTM3 y la GSTP1 inhiben la señalización de JNK y previenen la activación transcripcional de las vías de estrés celular descendente [56]. Estas proteínas (GST) podrían coevolucionar durante el proceso de tumorigenesis para permitir que las células se adapten a las condiciones estresantes asociadas con el microambiente tumoral. Este mecanismo de adaptación permitiría además que las células cancerosas respondan a los agentes xenobióticos, como los agentes de la quimioterapia [84,85,91]. Aquí demostramos que la inhibición de GSTM3 o GSTP1 activa la señalización de JNK y p38 la cual conduce a las células a apoptosis y, por lo tanto, disminuye el volumen del tumor. Por otro lado, observamos que la inactivación de NF-kB y/o ERK después de la inhibición de las GST inhiben la supervivencia celular. Analizamos también, tumores de células de cáncer de mama triple negativo (TNBC) MDA-MB-231, y bajo nuestras condiciones experimentales no se observó la expresión de la proteína GSTP1 durante la PT; ni cambios en el crecimiento tumoral después del tratamiento con morfolino anti-GSTP1, contrario a lo observado por Louie Sharon y sus colaboradores, el cual observaron que en líneas celulares de TNBC sobre expresan la proteína GSTP1 e inhiben el crecimiento tumoral con un inhibidor específico para la proteína [57].

Se ha demostrado que la GSTM3 está asociado con el riesgo de contraer cáncer a nivel genético, donde la asociación de ciertos polimorfismos y/o mutaciones aumenta el riesgo de diferentes tipos de cáncer como, cáncer de pulmón [59], cáncer de próstata [58] y cáncer colorrectal [53,60]. La sobre expresión proteica de GSTM3 en cáncer de colon se considera como un marcador de metástasis de ganglios linfáticos regionales [53]. Por otro lado, la subexpresión de GSTM3 se asocia con una mejor supervivencia en el cáncer de vejiga urinaria [63]. Los estudios genéticos del CC han demostrado que los polimorfismos en el gen GSTM3 se asocian con un mayor riesgo de desarrollar este tipo de cáncer [55]. Sin embargo, no ha habido suficientes estudios que aborden las correlaciones con los puntos finales clínicos. En el presente estudio, demostramos que existe una fuerte asociación de la expresión de proteínas GSTM3 y GSTP1 y la supervivencia de los pacientes. Nuestros resultados concuerdan con los datos clínicos, ya que la supervivencia de los pacientes con CC se asoció con altos niveles de proteína GST (Figura 7C). Estos datos también estuvieron de acuerdo con estudios sobre la vejiga [63] y el cáncer de colon [53] en los que se encontró que la sobreexpresión de la proteína GSTM3 se asociaba con una tasa de supervivencia reducida de los pacientes. Por lo que proponemos un mecanismo mediante el cual las células de CC utilizan las proteínas GST para evitar la

apoptosis y activar la supervivencia y proliferación celular. Además, esta respuesta se ve afectada por la inhibición de estas proteínas (Figura 9). Estos hallazgos ilustran los papeles cruciales de al menos estas dos proteínas de la familia de GST en la progresión del CC y su resistencia a condiciones estresantes.

Figura 9. Representación esquemática del papel de las proteínas GST en tumores CC. Durante la progresión del CC, varios procesos como la supervivencia celular, la proliferación y la evasión de la apoptosis a través de las vías de las MAPK cinasas y NF-κB son estimulados por la presencia de GSTM3 y/o GSTP1. El *knockdown* de GSTM3 y GSTP1 afecta la activación de la apoptosis activada a través de la activación de JNK y p38 o la inhibición fosforilada de NF-κB y ERK.

Conclusión 1

La sobre expresión proteica de las proteínas GSTM3 y GSTP1 durante la progresión tumoral (PT) desempeña un papel regulador a través de la interacción con las proteínas TRAF2/6 y por lo tanto una evasión de la transducción de señales de la activación de la apoptosis, favoreciendo la supervivencia celular y la progresión tumoral. Además, sugerimos que la expresión de GST podrían estar involucrada en la modulación de los procesos de detoxificación en las células cancerosas y, por lo tanto, participar en la respuesta de la supervivencia a la quimioterapia convencional en pacientes con CC. En consecuencia, en este proyecto se propone que las proteínas GSTM3 y GSTP1 pueden ser novedosos y prometedores candidatos para ser usados como blancos terapéuticos y/o factores de pronóstico para pacientes con CC.

Resultados del análisis del secretoma

Identificación de proteínas secretadas de líneas celulares de cáncer de cuello uterino.

En este estudio se analizó además el secretoma de 3 líneas celulares de CC, la línea celular SiHa, HeLa y C-33A negativo a HPV y una línea celular negativa al CC HaCaT y negativo a HPV (Figura 10A). Estas líneas fueron seleccionadas por representar los tipos histológicos y genotipos virales más frecuentes en el CC (3-5). Se identificaron 1662 proteínas de las cuales 17 proteínas estaban compartidas en las 3 líneas celulares de CC y ausentes en el control (Figura 10B, Suplementario Tabla 13). Además, se identificaron 45 proteínas compartidas en las líneas celulares que son positivas al HPV (Figura 1B).

Figura 10. Análisis del secretoma de las líneas CC y su control negativo: (A) Gel de 1D SDS-PAGE. Las líneas celulares fueron cultivadas con RPMI *advanced* sin SFB hasta llegar al 70% de confluencia para posteriormente retirar el medio y colocar medio RPMI-1640 fresco sin SFB al cultivo celular e incubarlo por 20 horas, posteriormente se tomó el sobrenadante, se centrifugo y filtro con una membrana de PVDF de 0.22 µm se congelo y liofilizó para obtener el secretoma (más detalles ver métodos). El gel se cortó cada 3 mm generando 20 secciones por cada carril. Las proteínas se identificaron usando LC-MS / MS. (B) Proteínas totales, únicas y compartidas por línea celular CC y su control negativo. (C) Diagrama de Venn que muestra la intersección entre las proteínas compartidas de las líneas celulares CC y su control negativo. Además del estudio cualitativo, se realizó un análisis cuantitativo de 200 proteínas secretadas mediante la técnica cuantificación libre de marcaje, *label-free quantification* (LFQ) (Figura 11A). Se observó la sobreexpresión de 6 proteínas secretadas G3P, HSP7C, LDHb, PSBS, ROA1 Y ROA2 en las 3 líneas celulares de CC comparadas con su control negativo (Figura 11 B). Por otro lado, el análisis de jerarquía por clúster en el mapa de calor reveló una similitud en la expresión de proteínas entre las líneas celulares positivas al HPV (SiHa y HeLa). Estos análisis permitieron obtener un conjunto de proteínas comunes sobreexpresadas para las líneas de CC.

Figura 11. Cuantificación libre de marca (LFQ) de 200 proteínas del secretoma de las líneas celulares de CC vs su control negativo: (A) Graficas de *dotplot*. Se encontraron 92 proteínas totales sobreexpresadas en las 3 líneas celulares de CC según su valor Log₂ (líneas celulares CC vs HaCaT). Para HeLa: 45 proteínas sobreexpresadas, SiHa: 35 proteínas sobreexpresadas, C-33A: 12 proteínas sobreexpresadas. (B) Mapa de calor de las proteínas expresadas en las líneas celulares. La agrupación jerárquica de ligamiento completo muestra los valores en Log₂ (expresión de proteína / HSP71) en una escala de colores. (C) Grafica de expresión de 6 proteínas compartidas sobreexpresadas en las 3 líneas de CC.

Análisis de las proteínas compartidas presentes en el suero de los ratones inoculados con líneas de CC

Para demostrar que las proteínas secretadas son detectables en sueros de ratones con tumores xenotransplantados con líneas celulares de CC, se realizó un modelo murino para obtener el suero con ratonas hembras de la cepa Nu/Nu que previamente se les había xenotransplantado las líneas celulares de CC (Figura 12A). Establecimos una cohorte de 9 ratones con 3 diferentes líneas celulares y sus controles en 3 diferentes tiempos de la PT (para más detalles ver métodos). Este análisis nos ayudará saber si las proteínas del secretoma *in vitro* pudieran ser candidatos a biomarcadores séricos (Figura 12B). Se analizó la proteína KIAA1293, que es una de las proteínas que se expresó únicamente en las líneas de CC, pero se encontraba ausente en la línea control (HaCaT) en el análisis cualitativo del secretoma *in vitro* (Suplementario 13). Se observó que esta proteína se expresaba en todos los sueros de los ratones con tumores, pero en los sueros de las ratonas inoculadas con SiHa se presentaron incrementos en sus niveles de expresión durante el tiempo (Figura 12C).

Figura 12. Análisis de la KIAA1293 en sueros de ratones: (**A**) Esquema de trabajo para la obtención de los sueros de las ratonas que fueron xenotransplantadas con 10^7 células con dos líneas celulares tumorales de CC (HeLa y SiHa). (**B**) Western blot de la proteína KIAA1293 en los sueros de las ratonas inoculadas con HeLa y SiHa (sueros de ratonas sin ocular fueron usadas como controles). Los sueros se sometieron a una transferencia de western blot con 20 µg de proteína por muestra. (**C**) En los sueros de las ratonas con los tumores de HeLa no hubo diferencias significativas en los cambios en la expresión de proteína KIAA1293 y en los tumores de SiHa se observó un incremento en la expresión (*P*-valor<0.01). Los ensayos se realizaron por triplicado como se muestra en los geles. Los datos de las gráficas se presentan como medias (± desviación estándar, SD) de tres experimentos independientes. El *P*-valor < 0.05 y se consideró estadísticamente significativo.

Validación de la proteína KIAA1293 como biomarcador en sueros de pacientes con CC

Para conocer el potencial como candidato a biomarcador de la KIAA1293 se realizó un estudio con una cohorte de 10 pacientes con CC y 10 controles negativos para CC (Figura 13). El análisis de expresión de la proteína KIAA1293 se realizó utilizando western blot. Todos los pacientes analizados en este estudio presentaron la expresión de la KIAA1293 (Figura 14A). Por otra parte, sorprendentemente los sueros de los controles no presentaron expresión de la proteína KIAA1293 en este estudio (Figura 14B). Se observo además que los pacientes mostraron diferencias en los niveles de expresión de cada muestra analizada (Figura 14C).

Figura 13. Validación de la proteína candidata KIAA1293 en los sueros de pacientes con CC. (A) 20 μ g de proteína sérica de pacientes con CC fueron utilizadas para la trasferencia de western blot. La proteína KIAA1293 se expresó en todas las muestras de CC (abajo gel teñido con rojo ponceau mostrando la región de la proteína y usado como control de carga). (B) 20 μ g de proteína sérica de controles para CC fueron utilizadas para la trasferencia de western blot. Ninguna muestra expresó la proteína KIAA1293 bajo nuestras condiciones experimentales. (C) Izquierda Patrones de expresión de la KIAA1293 en los sueros de pacientes con CC; derecha Grafica de caja de los datos se presentan como las medias de la expresión de la proteína KIAA1293 en pacientes CC vs Controles (± desviación estándar, SD) de las muestras independientes. El *P*-valor < 0.01 y se consideró estadísticamente significativo.

Discusión (Secretoma)

Las mejores estrategias en la búsqueda de biomarcadores parten del análisis del secretoma en líneas celulares cancerosas. Para resolver este tipo de problemas, en este estudio se utilizaron herramientas proteómicas en células en cultivo y el desarrollo de un modelo murino para el análisis de los datos del secretoma *in vitro* y su validación con muestras de pacientes con CC. Para analizar el secretoma *in vitro* realizamos un análisis mediante LC-MS/MS de 3 diferentes

líneas celulares de CC y fueron comparadas con un control negativo (HaCaT). Observamos 17 proteínas que se encontraban presentes únicamente en las líneas celulares de CC y ausentes en la línea celular negativa HaCaT. Se utilizó la proteína KIAA1293 como para demostrar su validez como biomarcador en sueros de ratones xenotransplantados con 2 líneas celulares de CC (HeLa y SiHa) para generar tumores. Usando el suero de estos ratones se comprobó la expresión de la proteína KIAA1293 en estos sueros. Se valido esta proteína en sueros de pacientes con CC y comprobó su potencial como biomarcador sérico.

La proteína humana Geraniltranstransferasa (KIAA1293) se ha demostrado que es esencial responsable de dirigir el flujo de carbono a la vía de los terpenos o isoprenoides. Por lo tanto, los cambios en la actividad de la KIAA1293 podrían alterar el flujo de los terpenos hacia otras ramas de esta vía y, por lo tanto, jugar un papel crucial en la regulación del metabolismo de los terpenos esencial para diversos procesos biológicos [92]. En consecuencia, la KIAA1293 también controla los niveles intracelulares de todos los metabolitos de isoprenoides y modula la modificación postraduccional (prenilación) de la familia Ras GTPasas (por ejemplo, H-Ras, K-Ras, N-Ras) que son esenciales para la supervivencia celular [93]. Está muy bien documentado el hecho de que las proteínas Ras mutadas son predominantes en la oncogénesis, por lo que se ha sugerido el desarrollo de inhibidores de la KIAA1293 como posibles agentes terapéuticos para el tratamiento de algunos tipos de cáncer [93].

A pesar su eficacia prometedora de estos inhibidores en análisis in vitro y preclínicos, sólo un pequeño subconjunto de pacientes responde a la terapia con inhibidores de la KIAA1293. Además, la inhibición in vivo induce modificación post-traduccional de geranilgeranilación de las proteínas Ras mutadas, restaurando su función biológica. Actualmente, los bifosfonatos que contienen nitrógeno, como el zoledronato y el risedronato, son los únicos fármacos clínicamente validados que se dirigen a la KIAA1293 humana demostrando su eficacia en múltiples tipos de tumores [94,95]. Estudios de expresión de la han demostrado que en fibroblastos la KIAA1293 se encuentra sobreexpresada y aumenta la farnesilación de la proteína de señalización de Ras y activando la cascada de señalización de ERK extracelular [96]. Notarnicola y su equipo de trabajo investigó la actividad detectable de KIAA1293 en el cáncer colorrectal humano confirmando que la KIAA1293 juega un papel significativo en la proliferación celular del cáncer colorrectal [87]. Por lo que esta proteína podría estar involucrada en el mantenimiento de la supervivencia celular en el CC. En este trabajo demostramos que la proteína KIAA1293 es secretada y es detectable en cultivos celulares, sueros de ratones inoculados y de pacientes con CC. Este es el primer reporte donde se demuestra la secreción de la KIAA1293 en líneas celulares y muestras de pacientes con CC. Si bien la KIAA1293 contiene péptido señal (Figura Suplementaria 7) aún se desconoce cuál es el mecanismo por el cual la proteína es secretada al medio extracelular y su función en el CC.

Conclusión 2

Con el análisis proteómico del secretoma se logró identificar 17 proteínas presentes en las células de CC y ausentes en su control negativo. Además, se encontraron 6 proteínas sobreexpresadas con respecto a su control. Se pudo analizar la proteína KIAA1293 en sueros de 10 pacientes con diferencias estadísticamente significativas, mostrando que esta proteína puede ser un candidato prometedor útil en la identificación de esta enfermedad. La evaluación en grandes estudios prospectivos ayudará a delinear aún más su papel en el diagnóstico y manejo de los pacientes con CC.

Si bien existen reportes sobre la expresión de la proteína en algunos tumores este es el primer estudio donde se demuestra la secreción de esta proteína y su expresión en tumores de CC. Por otro lado, aún es necesario abordar su posible papel como regulador de la supervivencia celular, la evasión en la transducción de señales de la apoptosis y la progresión tumoral.

Resultados del análisis del membranoma

Identificación de proteínas de membrana en las líneas celulares de cáncer de cuello uterino.

En este estudio se analizó el membranoma de 2 líneas celulares de CC: la línea celular SiHa y HeLa, y una línea celular negativa al CC y al HPV: HaCaT (Figura 1A). Se identificaron 1683 proteínas de las cuales 334 proteínas estaban compartidas en las 2 líneas celulares de CC y ausentes en el control negativo (Figura 15B). Además, se realizó un análisis cuantitativo de las proteínas de membrana mediante la técnica cuantificación libre de marcaje, *label-free quantification* (LFQ) (Figura 15C). Por otro lado, las proteínas identificadas se distribuyeron de acuerdo con su patrón de expresión encontramos 335 proteínas sobreexpresadas y 188 subexpresadas compartidas en las dos líneas celulares de CC comparadas con la línea control HaCaT (Figura 15D y 16A-B).

Posteriormente, se usaron las proteínas identificadas en ambas líneas celulares para realizar un análisis de enriquecimiento funcional basado en los procesos biológicos de las ontologías genicas (*Gene Ontology:* GO) (Figura 16C-D).

Figura 15. Identificación de las proteínas de membrana en el CC: (A) Gel representativo de las proteínas de membrana de las 3 líneas celulares analizadas, 2 líneas celulares de CC HeLa y SiHa; y una línea control negativo HaCaT. (B) Diagrama de Venn se observan 334 proteínas únicas en los membranomas de las líneas celulares de CC. (C) Graficas de *dotplot* de las proteínas compartidas en las 3 líneas celulares de CC según su valor Log2 (líneas celulares CC vs HaCaT). Abajo se muestra un diagrama de Venn donde se observan 430 proteínas que estaban sobreexpresadas en HeLa vs HaCaT, y 358 proteínas sobreexpresadas en SiHa vs HaCaT. 335 proteínas están compartidas en las 2 líneas celulares de CC.

Las proteínas diferencialmente expresadas se agruparon según sus niveles de expresión y se sometieron a un análisis de enriquecimiento. Nuestros resultados indicaron que las proteínas que aumentan sus niveles en el membranoma del CC están principalmente involucradas en el transporte intracelular de proteínas, interacción intraespecies de organismos, transporte regulado por vesículas, reparación de ADN, puntos de revisión del ciclo celular, organización de la membrana celular, entre otros procesos (Figura 16C). Por otro lado, entre las proteínas cuya expresión está regulada negativamente, los procesos biológicos encontrados enriquecidos fueron la regulación de la coagulación sanguínea, activación de plaquetas, procesos catabólicos GTP, movimiento del componente celular, de granulación de las plaquetas, metabolismo de carbohidratos, anti-apoptosis, vías de señalización del receptor acoplado a la proteína G, reciclaje endocítico (Figura 2C).

Figura 16. proteínas identificadas y distribución de su patrón de expresión: (A) Grafica de las 23 proteínas con mayor sobreexpresión en ambas líneas de CC. (B) Grafica de 19 proteínas con mayor subexpresión compartidas en las dos líneas celulares de CC. (C) Procesos biológicos enriquecidos en las proteínas compartidas sobre-reguladas. (D) Procesos biológicos enriquecidos en las proteínas subexpresadas compartidas. El análisis se realizó a través del sitio web GeneCodis.

Predicción bioinformática de hélices transmembranales y Proteínas de membrana presentes en CC

Se analizaron las hélices transmembranales mediante un análisis bioinformático usando el software público TMHMM 2.0, a un conjunto de proteínas presentes en las líneas celulares de CC y ausente en el control negativo HaCaT. Los resultados obtenidos mostraron 32 proteínas que contenían hélices transmembranales (Figura 17) y, por lo tanto, estas proteínas podrían ubicarse en la superficie celular o en la membrana nuclear. Las proteínas que se encontraron presentes y con hélices transmembranales (HTMM) en las líneas de CC fueron.

Figura 17. Predicción de las hélices transmembranales. Graficas esquemáticas de las proteínas. Cada proteína tuvo un número esperado de aminoácidos en las HTMM (NEH) mayor a 18 lo que es probable que la proteína tenga. La proteína MOT1 contiene la mayor cantidad de hélices transmembranales (11 hélices HTMM) predichos y un NEH=242.63, le sigue la proteína CD63 se predijeron 4 y un NEH=91.43, y MPCP con 2 HTMM y un NEH=59.96. Para el resto de las proteínas solo se predijo una hélice transmembranal y el NEH vario entre 19.6 - 51.96.

Relación de los niveles de expresión del ARNm de las proteínas con helices o transmembranales y la supervivencia en pacientes con CC

Para conocer la expresión del ARNm de estas proteínas se utilizó la base de datos del *Human Protein Atlas*, la cual tiene información de los ARN mensajeros (ARNm) y proteínas de diversos tejidos con cáncer. Se utilizó la información de esta base 291 muestras de pacientes con CC que estaba dividida en dos grupos los de baja y alta expresión (Figura 18). Se pudieron analizar 12 de las 14 proteínas el cual STX6, SEC22B, RPN1, CD63, CANX, MOT1, MYOF, RTN4, HLA-A y NICA presentaron una mayor supervivencia cuando el ARNm tenía una baja expresión. LRRC59 y SLC25A3 presentaron una mayor supervivencia cuando el ARNm estaba en alta expresión (Figura 18).

Figura 18. Supervivencia en los pacientes con CC y la expresión de los niveles de ARNm de 12 proteínas con hélices transmembranales tomadas de la base de datos *The Human Proteome Atlas*. Tomando IUsando 291 muestras de pacientes de CC se observó la probabilidad de supervivencia (Kaplan-Meier) según los niveles de expresión de su ARNm de la HLA-A (prueba de log-rank, *P*-valor <0.05).

Discusión (membranoma)

La RPN1 es una proteína que forma parte esencial del complejo de N-oligosacaril transferasa (OST) que cataliza la transferencia de un oligosacárido de alto contenido de manosa de un donador de oligosacáridos ligado a lípidos a un residuo de asparagina dentro de un motivo consenso Asn-X-Ser/Thr en las cadenas de polipéptidos nacientes [97].

CD63 funciona como receptor de superficie celular para TIMP1 y juega un papel en la activación de cascadas de señalización celular. Juega un papel en la activación de ITGB1 y señalización de las integrinas, lo que lleva a la activación de AKT, FAK/PTK2 y MAPK [98], y como se reportó en los resultados anteriores las MAPK juegan un papel importante en la supervivencia y progresión de los tumores de CC. La CD63 promueve la supervivencia celular, la reorganización del citoesqueleto de actina, la adhesión celular, la propagación y la migración. Jugando un papel importante en los procesos de transporte vesicular intracelular [99].

La CANX es una proteína de unión al calcio que interactúa con glicoproteínas recién sintetizadas en el retículo endoplásmico (RE). Puede actuar para ayudar al ensamblaje de proteínas y/o la retención dentro del RE de las subunidades de proteínas no ensambladas. Parece jugar un papel importante en el aparato de control de calidad del RE mediante la retención de proteínas incorrectamente plegadas [100]. La CANX se ha propuesto como un biomarcador sérico en cáncer de pulmón [101].

MOT1 es una proteína transportadora de monocarboxilato acoplado a protones. Esta proteína cataliza el transporte rápido a través de la membrana plasmática de muchos monocarboxilatos como lactato, piruvato, oxoácidos de cadena ramificada derivados de leucina, valina e isoleucina, y los cuerpos cetónicos acetoacetato, beta-hidroxibutirato y acetato. Dependiendo del tejido y de las circunstancias, se regula la importación o exportación de los cuerpos cetónicos y del ácido láctico. MOT1 se requiere para la asimilación normal de nutrientes, modula los niveles celulares de lactato y piruvato, pequeñas moléculas que contribuyen a la regulación de las vías metabólicas centrales y la secreción de insulina, con efectos concomitantes en los niveles de insulina en plasma y la homeostasis de glucosa en sangre [102].

Otra proteína que se encontró como presente en las líneas del CC y no en el control negativo fue RTN4. Esta proteína está asociada al retículo endoplásmico y a la mielina. Es un factor regulatorio del crecimiento y del desarrollo en el sistema nervioso [103]. La evidencia emergente ha manifestado que la proteína de RNT4 puede estar desempeñando un papel en el proceso de la apoptosis en las células cancerosas [104]. Se ha observado que variaciones genéticas en RTN4 3'-UTR puede contribuir a la susceptibilidad de contraer carcinoma de células escamosas cervicales [105].

Las moléculas de clase I HLA se encuentran en la mayoría de las células nucleadas y presentan péptidos desde el citosol hasta las células T citotóxicas; por otro lado, las moléculas HLA de clase II se encuentran en células presentadoras de antígeno (por ejemplo, células dendríticas y macrófagos) y péptidos presentes degradados en vesículas intracelulares para ayudar a las células T [106]. Las moléculas del antígeno leucocitario humano (HLA) de clase I y II juegan un papel crítico en la forma en que los péptidos del HPV se presentan ante las células T. La alta afinidad de un receptor de células T con un complejo de péptido-HLA de HPV y una señal coestimuladora es necesario para activar una respuesta de células T y puede variar con el tipo de HLA. Los cambios sutiles o el deterioro en las respuestas de las células T pueden permitir el escape de la vigilancia inmune o la inducción de la anergia inmune o la tolerancia a los péptidos del HPV [107].

NICA es la subunidad esencial del complejo γ-secretasa (GS). La GS es un complejo de enzimas compuesto de PS1, NICA, APH-1 y PEN-2 [108]. Este complejo cataliza la escisión intramembrana de proteínas tales como los receptores Notch y APP (proteína precursora de la beta-amiloide). El complejo GS desempeña un papel en las cascadas de señalización de Notch, Wnt y en la regulación de los procesos descendentes a través de su papel en el procesamiento de proteínas reguladoras clave, y mediante la regulación de los niveles de CTNNB1 citosólico. El reconocimiento de la relevancia de NICA ha llevado a investigaciones sobre su papel biológico en el cáncer. Se ha demostrado que NICA está sobreexpresado en el 47.5% de los pacientes con cáncer de mama y le confiere una peor supervivencia general en los pacientes [109]. Se ha demostrado que la inactivación estable de NICA aumenta los efectos

antitumorales de los inhibidores de EGFR mediante la inhibición de Notch y Akt [110] y que aumenta la respuesta de la quimioterapia en cáncer de colon [111].

Estas proteínas tienen una probabilidad de supervivencia mayor cuando los niveles de ARNm de estas se encuentran subexpresada. Lo que nos indica que pueden ser potenciales biomarcadores de pronóstico en pacientes de CC.

Conclusión 3

La identificación de 14 proteínas con hélices transmembranales presentes en las líneas celulares de CC son potenciales candidatos a biomarcadores celulares del CC. Además, se analizaron los niveles del ARNm de estas proteínas en pacientes mostrando que la subexpresión del mensajero está relacionada con la supervivencia del paciente. Dado estos hallazgos promisorios aún es necesario hacer una validación de la proteína en muestras de pacientes en una evaluación de estudios prospectivos que ayuden a delinear el papel diagnóstico de estas proteínas.

Perspectivas y Recomendaciones

- Los resultados presentados en este proyecto sobre el papel de las GST son los encontrados en cuatro tipos diferentes de líneas celulares de CC. Por lo que es recomendable explorar a profundidad el papel de estas proteínas primero en modelos murinos con tumores de pacientes con el fin de analizar la respuesta de la inhibición de las GST en los tumores y las vías de administración óptimas de los tratamientos. Además de su farmacodinámica y su farmacocinética para su posterior aplicación en ensayos clínicos.
- En este proyecto se usó una metodología (secretoma) para poder identificar los activadores endógenos secretados de la vía de TLR4. Además de estos análisis se han realizó un análisis del secretoma de las líneas celulares, para la búsqueda de biomarcadores séricos. Se pudo analizar una proteína candidato en sueros de ratones xenotransplantados con células de CC y en sueros de pacientes. Esta proteína podría servir como biomarcador sérico para mejorar el diagnóstico y/o la prognosis del CC. Pero debido al limitado tamaño de la cohorte podría dar como resultado la falta de validación del biomarcador en la enfermedad. Por lo que se recomienda, la evaluación en grandes estudios prospectivos para ayudar a delinear el papel diagnóstico en el manejo de los pacientes con CC. Además de validar la lista de los posibles biomarcadores en una cohorte mayor de pacientes con diferentes diagnósticos (infección con HPV, lesiones pre-neoplásicas, cáncer in situ e invasivo) para conocer su papel pronóstico.

Referencias

- 1. Moyer VA. Screening for Cervical Cancer: U.S. preventive services task force recommendation statement. Annals of Internal Medicine. 2012. p. 880–91. doi: 10.1059/0003-4819-156-12-201206190-00424.
- 2. Bosch FX, Lorincz a, Munoz N, Meijer CJLM, Shah K V. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002; 55: 244–65. doi: 10.1136/jcp.55.4.244.
- IARC. Globocan 2012. Http://Www-DeplarcFr/. 2016; GLOBOCAN: 2012– 3.
- 4. Beavis AL, Gravitt PE, Rositch AF. Hysterectomy-corrected cervical cancer mortality rates reveal a larger racial disparity in the United States. Cancer. 2017; 123: 1044–50. doi: 10.1002/cncr.30507.
- Burk RD, Chen Z, Saller C, Tarvin K, Carvalho AL, Scapulatempo-Neto C, Silveira HC, Fregnani JH, Creighton CJ, Anderson ML, Castro P, Wang SS, Yau C, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017; 543: 378–84. doi: 10.1038/nature21386.
- Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, Ding W, Yu L, Wang X, Wang L, Shen H, Zhang C, Liu H, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015; 47: 158–63. doi: 10.1038/ng.3178.
- 7. Mitra A, MacIntyre DA, Marchesi JR, Lee YS, Bennett PR, Kyrgiou M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: What do we know and where are we going next? Microbiome. 2016. doi: 10.1186/s40168-016-0203-0.
- Valdespino VM, Valdespino VE. Cervical cancer screening: state of the art. Curr Opin Obstet Gynecol. 2006; 18: 35–40. doi: 10.1097/01.gco.0000192971.59943.89.
- Villa LL. Assessment of new technologies for cervical cancer screening. The Lancet Oncology. 2008. p. 910–1. doi: 10.1016/S1470-2045(08)70238-9.
- Twombly R. New Pap Test Terminology , Management Guidelines Published. J Natl Cancer Inst [Internet]. 2002; 94: 878–80. doi: https://doi.org/10.1093/jnci/94.12.878.
- Mao C, Hughes JP, Kiviat N, Kuypers J, Lee SK, Adam DE, Koutsky LA. Clinical findings among young women with genital human papillomavirus infection. Am J Obstet Gynecol. 2003; 188: 677–84. doi: 10.1067/mob.2003.164.
- Dasari S, Wudayagiri R, Valluru L. Cervical cancer: Biomarkers for diagnosis and treatment. Clinica Chimica Acta. 2015. p. 7–11. doi: 10.1016/j.cca.2015.03.005.
- 13. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, Peck CC, Schooley RT, Spilker BA, Woodcock J, Zeger

SL. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics. 2001. p. 89–95. doi: 10.1067/mcp.2001.113989.

- Hamburg MA, Collins FS. The Path to Personalized Medicine -Perspective. N Engl J Med [Internet]. 2010; 363: 301–4. doi: 10.1056/NEJMp1006304.
- 15. Offit K. Personalized medicine: New genomics, old lessons. Human Genetics. 2011. p. 3–14. doi: 10.1007/s00439-011-1028-3.
- 16. Denny LE. Prevention of cervical cancer. Reprod Health Matters [Internet]. 2008; 16: 18–31. doi: 10.1016/S0968-8080(08)32397-0.
- Scarinci IC, Garcia F a R, Kobetz E, Partridge EE, Brandt HM, Bell MC, Dignan M, Ma GX, Daye JL, Castle PE. Cervical cancer prevention: New tools and old barriers. Cancer. 2010; 116: 2531–42. doi: 10.1002/cncr.25065.
- 18. Cho WCS. Contribution of oncoproteomics to cancer biomarker discovery. Molecular Cancer. 2007. doi: 10.1186/1476-4598-6-25.
- Makridakis M, Vlahou A. Secretome proteomics for discovery of cancer biomarkers. Journal of Proteomics. 2010. p. 2291–305. doi: 10.1016/j.jprot.2010.07.001.
- Pavlou MP, Diamandis EP. The cancer cell secretome: A good source for discovering biomarkers? Journal of Proteomics. 2010. p. 1896–906. doi: 10.1016/j.jprot.2010.04.003.
- Josic D, Clifton JG, Kovac S, Hixson DC. Membrane proteins as diagnostic biomarkers and targets for new therapies. Curr Opin Mol Ther [Internet]. 2008; 10: 116–23. Available from http://www.ncbi.nlm.nih.gov/pubmed/18386223
- 22. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nature Reviews Drug Discovery. 2003. p. 52–62. doi: 10.1038/nrd984.
- 23. Waldmann TA. Immunotherapy: Past, present and future. Nature Medicine. 2003. p. 269–77. doi: 10.1038/nm0303-269.
- Bild AH, Potti A, Nevins JR. Linking oncogenic pathways with therapeutic opportunities. Nature Reviews Cancer. 2006. p. 735–41. doi: 10.1038/nrc1976.
- Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero D a, Eisen MB, Sausville E a, et al. A gene expression database for the molecular pharmacology of cancer. Nat Genet [Internet]. 2000; 24: 236–44. doi: 10.1038/73439.
- Monaci P, Luzzago A, Santini C, De Pra A, Arcuri M, Magistri F, Bellini A, Ansuini H, Ambrosio M, Ammendola V, Bigotti MG, Cirillo A, Nuzzo M, et al. Differential screening of phage-Ab libraries by oligonucleotide microarray technology. PLoS One. 2008; 3. doi: 10.1371/journal.pone.0001508.

- 27. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008. p. 571–9. doi: 10.1038/nature06916.
- Brewer CA, Setterdahl JJ, Li MJ, Johnston JM, Mann JL, McAsey ME. Endoglin expression as a measure of microvessel density in cervical cancer. Obstet Gynecol. 2000; 96: 224–8. doi: 10.1016/S0029-7844(00)00864-4.
- Scholle F, Bendt KM, Raab-Traub N. Epstein-Barr Virus LMP2A Transforms Epithelial Cells, Inhibits Cell Differentiation, and Activates Akt. J Virol. 2000; 74: 10681–9. doi: 10.1128/JVI.74.22.10681-10689.2000.Updated.
- Simpson RJ, Connolly LM, Eddes JS, Pereira JJ, Moritz RL, Reid GE. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis. 2000; 21: 1707–32. doi: 10.1002/(SICI)1522-2683(20000501)21:9<1707::AID-ELPS1707>3.0.CO;2-Q.
- Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, Clarke-Pearson DL, Insalaco S. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999; 340: 1144–53. doi: 10.1056/NEJM199904153401502.
- Green JA, Kirwan JM, Tierney JF, Symonds P, Fresco L, Collingwood M, Williams CJ. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet. 2001; 358: 781–6. doi: 10.1016/S0140-6736(01)05965-7.
- Waggoner SE. Cervical cancer. Lancet. 2003. p. 2217–25. doi: 10.1016/S0140-6736(03)13778-6.
- Kogo R, How C, Chaudary N, Bruce J, Shi W, Hill RP, Zahedi P, Yip KW, Liu F-F. The microRNA-218~Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. Oncotarget [Internet]. 2014; 6: 1090–100. doi: 10.18632/oncotarget.2836.
- 35. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013; 13: 714–26. doi: 10.1038/nrc3599.
- Peralta-Zaragoza O, Bermúdez-Morales VH, Pérez-Plasencia C, Salazar-León J, Gómez-Cerón C, Madrid-Marina V. Targeted treatments for cervical cancer: A review. OncoTargets and Therapy. 2012. p. 315–28. doi: 10.2147/OTT.S25123.
- Dueñas-Gonzalez A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E. Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer. 2005; 4: 38. doi: 1476-4598-4-38
 [pii]\n10.1186/1476-4598-4-38.
- Zagouri F, Sergentanis TN, Chrysikos D, Filipits M, Bartsch R. Molecularly targeted therapies in cervical cancer. a systematic review. Gynecologic Oncology. 2012. p. 291–303. doi:

10.1016/j.ygyno.2012.04.007.

- Sima N, Wang S, Wang W, Kong D, Xu Q, Tian X, Luo A, Zhou J, Xu G, Meng L, Lu Y, Ma D. Antisense targeting human papillomavirus type 16 E6 and E7 genes contributes to apoptosis and senescence in SiHa cervical carcinoma cells. Gynecol Oncol. 2007; 106: 299–304. doi: 10.1016/j.ygyno.2007.04.039.
- 40. Junod SW. FDA and Clinical Drug Trials : A Short History [Internet]. FDA. 2013. Available from http://www.fda.gov/AboutFDA/WhatWeDo/History/Overviews/ucm304485. htm
- 41. Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: Utility and limitations. Drug Design, Development and Therapy. 2014. p. 1911–22. doi: 10.2147/DDDT.S49584.
- 42. Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol [Internet]. 1997; 273: C1109-23. doi: 10.1152/ajpcell.00167.2002.
- Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S. Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A. 2010; 107: 14508–13. doi: 10.1073/pnas.1006551107.
- 44. Yokota J. Tumor progression and metastasis. Carcinogenesis [Internet]. 2000; 21: 497–503. doi: 10.1093/carcin/21.3.497.
- 45. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med [Internet]. 2013; 19: 1423–37. doi: 10.1038/nm.3394.
- 46. Laborde E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death and Differentiation. 2010. p. 1373–80. doi: 10.1038/cdd.2010.80.
- 47. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell [Internet]. 2000; 100: 57–70. doi: 10.1007/s00262-010-0968-0.
- Posadas EM, Simpkins F, Liotta L a, MacDonald C, Kohn EC. Proteomic analysis for the early detection and rational treatment of cancer--realistic hope? Ann Oncol [Internet]. 2005; 16: 16–22. doi: 10.1093/annonc/mdi004.
- Wulfkuhle JD, Liotta LA, Petricoin EF. Early detection: Proteomic applications for the early detection of cancer. Nat RevCancer. 2003; 3: 267–75. doi: 10.1038/nrc1043.
- 50. Hanash S, Taguchi A. The grand challenge to decipher the cancer proteome. Nat Rev Cancer. 2010; 10: 652–60. doi: 10.1038/nrc2918.
- Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002; 420: 520–62. doi: 10.1038/nature01262.

- Huang J, Tan P-H, Thiyagarajan J, Bay B-H. Prognostic significance of glutathione S-transferase-pi in invasive breast cancer. Mod Pathol. 2003; 16: 558–65. doi: 10.1097/01.MP.0000071842.83169.5A.
- Meding S, Balluff B, Elsner M, Schöne C, Rauser S, Nitsche U, Maak M, Schäfer A, Hauck SM, Ueffing M, Langer R, Höfler H, Friess H, et al. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J Pathol. 2012; 228: 459–70. doi: 10.1002/path.4021.
- Cabelguenne A, Loriot MA, Stucker I, Blons H, Koum-Besson E, Brasnu D, Beaune P, Laccourreye O, Laurent-Puig P, De Waziers I. Glutathioneassociated enzymes in head and neck squamous cell carcinoma and response to cisplatin-based neoadjuvant chemotherapy. Int J Cancer. 2001; 93: 725–30. doi: 10.1002/ijc.1392.
- 55. Pectasides D, Kamposioras K, Papaxoinis G, Pectasides E. Chemotherapy for recurrent cervical cancer. Cancer Treatment Reviews. 2008. p. 603–13. doi: 10.1016/j.ctrv.2008.05.006.
- Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005; 45: 51–88. doi: 10.1146/annurev.pharmtox.45.120403.095857.
- Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, Miyamoto DK, Goga A, Weerapana E, Nomura DK. GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity. Cell Chem Biol. Elsevier Ltd; 2016; 23: 567–78. doi: 10.1016/j.chembiol.2016.03.017.
- Medeiros R, Vasconcelos A, Costa S, Pinto D, Ferreira P, Lobo F, Morais A, Oliveira J, Lopes C. Metabolic Susceptibility Genes and Prostate Cancer Risk in a Southern European Population: The Role of Glutathione S-Transferases GSTM1, GSTM3, and GSTT1 Genetic Polymorphisms. Prostate. 2004; 58: 414–20. doi: 10.1002/pros.10348.
- 59. Ye Z, Song H, Higgins JPT, Pharoah P, Danesh J. Five glutathione Stransferase gene variants in 23,452 cases of lung cancer and 30,397 controls: Meta-analysis of 130 studies. PLoS Med. 2006; 3: 524–34. doi: 10.1371/journal.pmed.0030091.
- 60. Loktionov a, Watson M a, Gunter M, Stebbings WS, Speakman CT, Bingham S a. Glutathione-S-transferase gene polymorphisms in colorectal cancer patients: interaction between GSTM1 and GSTM3 allele variants as a risk-modulating factor. Carcinogenesis. 2001; 22: 1053–60.
- Wu Y, Fan Y, Xue B, Luo L, Shen J, Zhang S, Jiang Y, Yin Z. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2–ASK1 signals. Oncogene. 2006; 25: 5787–800. doi: 10.1038/sj.onc.1209576.
- Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z. Regulation of JNK signaling by GSTp. EMBO J. 1999; 18: 1321–34. doi:

10.1093/emboj/18.5.1321.

- Mitra AP, Pagliarulo V, Yang D, Waldman FM, Datar RH, Skinner DG, Groshen S, Cote RJ. Generation of a concise gene panel for outcome prediction in urinary bladder cancer. J Clin Oncol. 2009; 27: 3929–37. doi: 10.1200/JCO.2008.18.5744.
- 64. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989; 24: 148–54. doi: 10.1007/BF00300234.
- 65. Hurkman WJ, Tanaka CK. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 1986; 81: 802–6. doi: 10.1104/pp.81.3.802.
- 66. Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 1995; 16: 1034–59. doi: 10.1002/elps.11501601175.
- Encarnación S, Guzmán Y, Dunn MF, Hernández M, Vargas M del C, Mora J. Proteome analysis of aerobic and fermentative metabolism in Rhizobium etli CE3. Proteomics. 2003. p. 1077–85. doi: 10.1002/pmic.200300427.
- Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016; 44: D447–56. doi: 10.1093/nar/gkv1145.
- 69. Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A. GeneCodis3: A non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 2012; 40. doi: 10.1093/nar/gks402.
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13: 2498–504. doi: 10.1101/gr.1239303.
- 71. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003; 31: 3381–5. doi: 10.1093/nar/gkg520.
- Mileo AM, Abbruzzese C, Mattarocci S, Bellacchio E, Pisano P, Federico A, Maresca V, Picardo M, Giorgi A, Maras B, Schinin ME, Paggi MG. Human Papillomavirus-16 E7 Interacts with Glutathione S-Transferase P1 and Enhances Its Role in Cell Survival. PLoS One. 2009; 4. doi: 10.1371/journal.pone.0007254.
- Chang J, Jung HH, Yang JY, Lee S, Choi J, Im GJ, Chae SW. Protective effect of metformin against cisplatin-induced ototoxicity in an auditory cell line. JARO - J Assoc Res Otolaryngol. 2014; 15: 149–58. doi: 10.1007/s10162-013-0431-y.
- 74. Kueng W, Silber E, Eppenberger U. Quantification of cells cultured on 96well plates. Anal Biochem. 1989; 182: 16–9. doi: 10.1016/0003-

2697(89)90710-0.

- 75. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen Z-Y, Liu DR. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2014; 33: 73–80. doi: 10.1038/nbt.3081.
- Owen LA, Uehara H, Cahoon J, Huang W, Simonis J, Ambati BK. Morpholino-mediated increase in soluble flt-1 expression results in decreased ocular and tumor neovascularization. PLoS One. 2012; 7. doi: 10.1371/journal.pone.0033576.
- 77. Jankova L, Robertson G, Chan C, Tan KL, Kohonen-Corish M, Fung CL-S, Clarke C, Lin BPC, Molloy M, Chapuis PH, Bokey L, Dent OF, Clarke SJ. Glutathione S-transferase Pi expression predicts response to adjuvant chemotherapy for stage C colon cancer: a matched historical control study. BMC Cancer. 2012; 12: 196. doi: 10.1186/1471-2407-12-196.
- 78. Kawano M, Mabuchi S, Matsumoto Y, Sasano T, Takahashi R, Kuroda H, Kozasa K, Hashimoto K, Isobe A, Sawada K, Hamasaki T, Morii E, Kimura T. The significance of G-CSF expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer. Sci Rep. 2015; 5: 1–13. doi: 10.1038/srep18217.
- 79. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma'ayan A. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016; 2016: baw100. doi: 10.1093/database/baw100.
- Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;
 4: 499–511. doi: 10.1038/nri1391.
- Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H, Wagner H. Endocytosed HSP60s use TLR2 and TLR4 to activate the TIR signaling pathway in innate immune cells. J Biol Chem. 2001; 276: 31332–9. doi: 10.1074/jbc.M103217200.
- Asea A, Rehli M, Kabingu E, Boch JA, Baré O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70. Role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002; 277: 15028–34. doi: 10.1074/jbc.M200497200.
- 83. Ortiz AR, Strauss CEM, Olmea O. MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci. 2002; 11: 2606–21. doi: 10.1110/ps.0215902.
- Tew KD, Townsend DM. Regulatory functions of glutathione Stransferase P1-1 unrelated to detoxification. Drug Metab Rev. 2011; 43: 179–93. doi: 10.3109/03602532.2011.552912.
- Townsend DM, Tew KD. The role of glutathione-S-transferase in anticancer drug resistance. Oncogene. 2003; 22: 7369–75. doi: 10.1038/sj.onc.1206940.
- 86. Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y. TRAF6

autoubiquitination-independent activation of the NF-kB and MAPK pathways in response to IL-1 and RANKL. PLoS One. 2008; 3. doi: 10.1371/journal.pone.0004064.

- Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, Koyasu S, Matsumoto K, Takeda K, Ichijo H. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4mediated innate immunity. Nat Immunol. 2005; 6: 587–92. doi: 10.1038/ni1200.
- Hayden MS, Ghosh S. NF-kB, the first quarter-century: Remarkable progress and outstanding questions. Genes Dev. 2012; 26: 203–34. doi: 10.1101/gad.183434.111.
- Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell. 1998; 2: 389–95. doi: 10.1016/S1097-2765(00)80283-X.
- Gillet E, Meys JFA, Verstraelen H, Verhelst R, De Sutter P, Temmerman M, Broeck D Vanden. Association between Bacterial Vaginosis and Cervical Intraepithelial Neoplasia: Systematic Review and Meta-Analysis. PLoS One [Internet]. 2012; 7: e45201. doi: 10.1371/journal.pone.0045201.
- 91. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003; 22: 7265–79. doi: 10.1038/sj.onc.1206933.
- 92. Dhar MK, Koul A, Kaul S. Farnesyl pyrophosphate synthase: A key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. New Biotechnology. 2013. p. 114–23. doi: 10.1016/j.nbt.2012.07.001.
- 93. Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nature Reviews Cancer. 2011. p. 775–91. doi: 10.1038/nrc3151.
- Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RGG, Oppermann U. The molecular mechanism of nitrogencontaining bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci [Internet]. 2006; 103: 7829–34. doi: 10.1073/pnas.0601643103.
- 95. Rondeau JM. Bisphosphonate target is FPPS farnesyldiphosphate synthase role anticancer. ChemMedChem. 2006; 1: 267.
- Reilly JF, Martinez SD, Mickey G, Maher PA. A novel role for farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction. Biochem J. 2002; 366: 501–10. doi: 10.1042/BJ20020560\nBJ20020560 [pii].
- Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R. Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol Cell. 2003; 12: 101–11. doi: 10.1016/S1097-2765(03)00243-0.
- 98. Jung KK, Liu XW, Chirco R, Fridman R, Kim HRC. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein.

EMBO J. 2006; 25: 3934–42. doi: 10.1038/sj.emboj.7601281.

- Lee SY, Kim JM, Cho SY, Kim HS, Shin HS, Jeon JY, Kausar R, Jeong SY, Lee YS, Lee MA. TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling. Biochem J [Internet]. 2014; 459: 565–76. doi: 10.1042/BJ20131119.
- Lakkaraju AKK, Abrami L, Lemmin T, Blaskovic S, Kunz B, Kihara A, Dal Peraro M, Van Der Goot FG. Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO J. 2012; 31: 1823–35. doi: 10.1038/emboj.2012.15.
- 101. Kobayashi M, Nagashio R, Jiang SX, Saito K, Tsuchiya B, Ryuge S, Katono K, Nakashima H, Fukuda E, Goshima N, Satoh Y, Masuda N, Saegusa M, et al. Calnexin is a novel sero-diagnostic marker for lung cancer. Lung Cancer. 2015; 90: 342–5. doi: 10.1016/j.lungcan.2015.08.015.
- 102. Otonkoski T, Jiao H, Kaminen-Ahola N, Tapia-Paez I, Ullah MS, Parton LE, Schuit F, Quintens R, Sipilä I, Mayatepek E, Meissner T, Halestrap AP, Rutter GA, et al. Physical Exercise–Induced Hypoglycemia Caused by Failed Silencing of Monocarboxylate Transporter 1 in Pancreatic β Cells. Am J Hum Genet [Internet]. 2007; 81: 467–74. doi: 10.1086/520960.
- 103. Acevedo L, Yu J, Erdjument-Bromage H, Miao RQ, Kim JE, Fulton D, Tempst P, Strittmatter SM, Sessa WC. A new role for Nogo as a regulator of vascular remodeling. Nat Med. 2004; 10: 382–8. doi: 10.1038/nm1020.
- 104. Li Q, Qi B, Oka K, Shimakage M, Yoshioka N, Inoue H, Hakura A, Kodama K, Stanbridge EJ, Yutsudo M. Link of a new type of apoptosisinducing gene ASY/Nogo-B to human cancer. Oncogene. 2001; 20: 3929–36. doi: 10.1038/sj.onc.1204536.
- 105. Shi S, Zhou B, Wang Y, Chen Y, Zhang K, Wang K, Quan Y, Song Y, Rao L, Zhang L. Genetic variation in RTN4 3'-UTR and susceptibility to cervical squamous cell carcinoma. DNA Cell Biol [Internet]. 2012; 31: 1088–94. doi: 10.1089/dna.2011.1548.
- 106. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000; 343: 37–49. doi: 10.1056/NEJM200010123431520.
- 107. Mota F, Rayment N, Chong S, Singer A, Chain B. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin Exp Immunol. 1999; 116: 33–40. doi: 10.1046/j.1365-2249.1999.00826.x.
- De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-Secretase complex. Neuron. 2003. p. 9–12. doi: 10.1016/S0896-6273(03)00205-8.
- 109. Filipović A, Gronau JH, Green AR, Wang J, Vallath S, Shao D, Rasul S, Ellis IO, Yagüe E, Sturge J, Coombes RC. Biological and clinical implications of nicastrin expression in invasive breast cancer. Breast Cancer Res Treat. 2011; 125: 43–53. doi: 10.1007/s10549-010-0823-1.

- Dong Y, Li A, Wang J, Weber JD, Michel LS. Synthetic lethality through combined notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res. 2010; 70: 5465–74. doi: 10.1158/0008-5472.CAN-10-0173.
- 111. Meng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB, Schwartz GK. Gamma-secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009; 69: 573–82. doi: 10.1158/0008-5472.CAN-08-2088.

Material Suplementario

Figura suplementaria 1: Proteínas compartidas en los tumores de HeLa y SiHa. Imagen representativa de cada proteína por día diferente (30, 45 y 50). (A) 14 con expresión constante en tumores HeLa y SiHa. (B) Subexpresión de 3 proteínas a lo largo del tiempo en HeLa y SiHa. (C) 17 Proteínas con diferente expresión entre los tumores de HeLa y SiHa. Se empleó la normalización puntual utilizando la densidad total en la imagen del gel, para garantizar la independencia de los datos y las variaciones experimentales entre los geles. Se realizó una prueba de *t*-Student para evaluar las diferencias entre las proteínas expresadas diferencialmente.

Figura suplementaria 2: Flujos de trabajo para obtener proteínas secretadas in vivo o ex vivo. Las líneas celulares se cultivaron en medio libre de suero RPMI 1640 (Gibco, Invitrogen) avanzado hasta que se alcanzó un 70-80% de confluencia en 500 cm² Triple Flasks (Nunc Clon). El medio se retiró y las células se enjuagaron tres veces con 500-600 mL de solución fisiológica estéril (NaCl al 0,9% (p / v)). Después del lavado, se añadió medio RPMI 1640 sin rojo fenol (Gibco, Invitrogen) y las células se incubaron durante 20 horas. Más tarde, el medio se retiró y se centrifugó a 1,500 g durante 5 minutos. El sobrenadante se pasó a través de una membrana de PVDF de tamaño de 0.22 µm (Millex, Millipore) y se almacenó a -70°C hasta su uso posterior. Para las proteínas secretadas de los tumores HeLa y SiHa, se inocularon ratones hembra Nu / Nu (de 4 a 6 semanas) con 10⁷ células. Después de 30, 45 y 50 días después de la inoculación, se recogieron los tumores (triplicado) y se lavaron 3 veces con 50 mL de solución fisiológica para luego se incubaron durante 20 horas con RMPI exento de fenol rojo y libre de suero. Como hicimos para los experimentos in vitro, el medio se retiró y se centrifugó a 1,500 g durante 5 minutos. El sobrenadante se pasó a través de una membrana PVDF de membrana de tamaño de poro de 0.22 µm (Millex, Millipore) y se almacenó a -70°C hasta su uso posterior. Posteriormente, las proteínas secretadas in vitro y ex vivo se liofilizaron y resuspendieron en 1 mL de agua ultrapura. El aislamiento de proteínas se realizó mediante extracción con fenol como se describe en Métodos.

Figura suplementaria 3: Construcción de plásmidos de levadura, transformación y expresión de proteína recombinante. (A) Se construyó una proteína recombinante humana de GSTM3 con una etiqueta de histidina (His) que se expresara en la levadura Saccharomyces cerevisiae. Las muestras se separaron en SDS-PAGE al 12%. Línea 1: Marcadores, Línea 2: Lisado ScGSTM3 (GSTM3 N-6x His-Tag en S. cerevisiae), Línea 3 y 4: Lavados de purificación, Línea 5 y 6: ScGSTM3 purificado con 300 mM de Imidazol. ScGSTM3 se identificó a través de la toma de huellas dactilares de péptidos utilizando el programa Mascot (Matrix Science). (B) Después de capturar el GSTM3 recombinante, se incubó con un extracto de proteína de células HeLa (positivo para HPV18) a 4ºC durante la noche. Se analizaron las interacciones de la proteína GSTM3 6x his-tag. Línea 1: Marcadores, Línea 2 y 3: flujo proesado ScGSTM3, Línea 4: Proteínas HeLa que no interactúan con ScGSTM3, Línea 5: Interacción de proteínas HeLa con ScGSTM3. La proteína E7 de HPV18 coeluyó con la ScGSTM3 y pudo identificarse utilizando transferencia de western blot (20 µg de proteína y un anticuerpo específico). (C) La proteína recombinante de E7 de HPV18 con una expresión de His en la línea celular HeLa. Las muestras se separaron en 15% de SDS-PAGE. Línea 1: Marcadores, Línea 2: HeLa, Línea 3 y 4: lavados de purificación, Línea 5 y 6: HeLaE718 purificado con 300 mM de Imidazol. HeLaE718 se identificó mediante western blot con anticuerpo específico his-taq. (D) Después de capturar la E7 del HPV18 recombinante 6x his-tag con perlas de níquel, se incubó a 4 ° C durante la noche con un extracto proteico de HeLa. Línea 1: Marcadores, Línea 2 y 3: lavados de purificación, Línea 4: proteínas HeLa que interactúan con HE718. La coeluye la proteína GSTM3 con la proteína E7 del HPV18 y se pudo identificar utilizando la transferencia por western blot así como LC-MS/MS la masa de los péptidos (20 µg de proteína y un anticuerpo específico).

Figura suplementaria 4: (A) MDA-MB-231 es una línea celular negativa para HPV18 y las proteínas GSTs (GSTM3 y GSTP1). Se observa en la imagen un gel de electroforesis agarosa al 1% con productos de PCR del gen de la cápside L1 del HPV y la β -globina como control interno, se realizó además una transferencia de western blot de las proteínas GSTM3 y GSTP1. (B) Expresión de las proteínas GSTM3 y GSTP1 en cortes de tumores de MDA (cáncer de mama) y COLO 237 (cáncer de colon) generados en ratonas de la cepa Nu/Nu. Se observa una expresión negativa de la proteína GSTP1 en la línea celular MDA y no presenta cambios significativos en el crecimiento tumoral. Los tumores de la línea celular COLO mostraron una disminución en la expresión de la proteína GSTP1 con el tratamiento con morfolino y una disminución del crecimiento tumoral del 47.7%.

Referencia de la Figura suplementaria 4

1. Depuydt CE. *et al.* Comparison of MY09/11 consensus PCR and typespecific PCRs in the detection of oncogenic HPV types. J Cell Mol Med. 2007 Jul-Aug;11(4):881-91.

Figura Suplementaria 5: Expresión de las proteínas GSTM3 y GSTP1 en estadios avanzados de CC. Las muestras de biopsia se tiñeron con anticuerpos anti-GSTM3 y anti-GSTP1. Se muestran una microfotografía representativa de cada biopsia de CC que fueron usadas para el análisis de % de la ROI (la región en café-marrón es positiva a la proteína GST).

Figura Suplementaria 6: Cinética de crecimiento de las líneas celulares con y sin SFB. No hay diferencias significativas cuando las células llegan a confluencia del 70% al sexto día.

Figura Suplementaria 7: Análisis de péptido señal. El análisis muestra que con un corte de 0.340 que la proteína tiene péptido señal con una puntuación D=0.343 entre las posiciones 21 and 22: y una Red neural=SignalP-noTM (sin sitios transmembranales).

Tabla Suplementaria 1. El perfil proteómico se obtuvo de cada vez y luego se comparó para encontrar proteínas diferenciadas durante la PT. Se calcularon los spots totales por tiempo y el coeficiente de correlación (CCf) para garantizar resultados representativos.

Tiempo Spots/CCf Spots /CCf T30 824/0.710 765/ 0.731 T45 763/0.723 768/0.836		HeLa/	SiHa
T30824/0.710765/ 0.731T45763/0.723768/0.836	Tiempo	Spots/CCf	Spots /CCf
T45 763/0.723 768/0.836	T30	824/0.710	765/ 0.731
	T45	763/0.723	768/0.836
150 1012/ 0.724 766/0.756	T50	1012/ 0.724	766/0.756

Tabla Suplementaria 2.	Total de proteínas	expresadas en	tumores of	de HeLa ((días 3	0, 45 y
50)	-	-				

HeLa	ID Swissprot	Puntuación MASCOT	P-valor	#st del spot (SSP)	Media T30	SD T30 CV	Media T45	SD T45 CV	Media T50	SD T50 CV	T30-1	T30-2	T30-3	T45-1	T45-2	T45-3	T50-1	T50-2	T50-3
	ANXA1	134	2.10E-08	2325	1865.10	819.0 0.44	2226.47	284.5 0.13	1785.30	39.51 0.02	1583.30	1224.20	2787.80	2517.20	1948.70	2213.50	1825.20	1746.20	1784.50
	ANXA3	148	1.00E-10	5222	1776.40	678.0 0.38	2754.67	670.0 0.24	2323.10	255.28 0.11	1430.60	1341.00	2557.60	3441.70	2719.10	2103.20	2383.30	2043.10	2542.90
	ANXA5	65	2.10E-02	7227	3509.67	1532.5 0.44	5106.23	748.5 0.15	5059.80	1342.72 0.27	2426.30	2839.60	5263.10	5956.30	4816.60	4545.80	5806.60	5863.10	3509.70
	ATPB	126	2.00E-05	7528	4676.10	1227.2 0.26	5893.30	3038.6 0.52	6607.03	586.69 0.09	3585.70	4437.50	6005.10	2811.90	5980.80	8887.20	6985.50	6904.40	5931.20
	BGH3	135	6.20E-07	1624	2941.37	771.9 0.26	3644.30	1054.0 0.29	4388.03	2202.49 0.50	2999.80	2141.90	3682.40	2737.00	3395.40	4800.50	5229.80	6045.50	1888.80
	CH60	74	3.30E-03	6643	8456.13	2667.7 0.32	12558.17	1254.3 0.10	15212.77	6054.17 0.40	9991.60	5375.70	10001.10	13901.50	12355.30	11417.70	18051.90	19325.60	8260.80
	CLIC1	80	4.80E-03	6224	2528.20	1109.7 0.44	2360.33	269.0 0.11	2022.97	320.65 0.16	2188.00	1628.40	3768.20	2425.60	2590.70	2064.70	2332.20	2044.70	1692.00
	CP21A	67	3.70E-03	4222	1317.07	180.0 0.14	1374.17	141.0 0.10	1284.90	224.60 0.17	1121.30	1354.60	1475.30	1307.40	1536.10	1279.00	1387.70	1439.70	1027.30
	DHE3	150	2.50E-08	1528	4476.60	3156.8 0.71	6127.20	1702.8 0.28	3780.67	1017.12 0.27	7936.30	1752.50	3741.00	8092.40	5200.30	5088.90	4244.60	4483.10	2614.30
	EF2	178	3.90E-11	1724	2862.37	956.7 0.33	2660.07	556.7 0.21	4106.03	1962.39 0.48	2673.20	2014.40	3899.50	3245.40	2597.50	2137.30	4844.20	5592.30	1881.60
	EIF3I	81	4.60E-03	5322	3242.80	1123.9 0.35	2258.57	81.8 0.04	2238.73	175.59 0.08	2518.30	2672.60	4537.50	2251.60	2343.60	2180.50	2391.70	2277.50	2047.00
	ENOA	92	3.80E-05	2427	11404.97	1659.6 0.15	14828.60	712.1 0.05	15107.87	2462.03 0.16	11813.20	9579.30	12822.40	15650.50	14439.50	14395.80	15980.40	17014.80	12328.40
	FSCN1	126	2.00E-05	1529	2592.37	861.5 0.33	4878.50	4689.1 0.96	2408.47	839.43 0.35	2630.00	1712.70	3434.40	10287.10	2394.10	1954.30	2730.50	3039.20	1455.70
	GDIB	83	3.40E-04	3528	1262.07	154.3 0.12	1209.37	172.6 0.14	1158.23	225.93 0.20	1440.20	1169.40	1176.60	1408.40	1118.40	1101.30	1366.60	1190.00	918.10
	GRDN	73	3.50E-03	8529	1755.97	571.3 0.33	1883.07	148.8 0.08	1556.73	165.34 0.11	1514.40	1345.10	2408.40	1999.50	1934.30	1715.40	1505.60	1423.00	1741.60
	GRP 78	189	8.20E-15	7612	6064.57	4459.7 0.74	5984.50	3058.2 0.51	1727.33	1177.12 0.68	2923.30	11169.10	4101.30	2455.60	7860.80	7637.10	1167.40	934.70	3079.90
	GSTO1	89	6.80E-04	3224	1722.73	563.9 0.33	2172.73	61.9 0.03	1924.13	266.21 0.14	1386.50	1407.90	2373.80	2230.70	2180.00	2107.50	2215.10	1864.50	1692.80
Constantes	HSP71A	78	9.40E-04	5637	8999.17	873.8 0.10	9924.87	437.1 0.04	10809.70	1693.69 0.16	8498.20	8491.20	10008.10	9471.90	9958.60	10344.10	11597.50	11966.00	8865.60
	HSPB1	136	1.40E-08	4127	2667.37	1321.0 0.50	2922.70	186.0 0.06	3385.33	712.24 0.21	1545.70	2333.00	4123.40	3125.30	2883.00	2759.80	3551.80	3999.60	2604.60
	K1C17	102	2.60E-11	7436	6685.20	998.1 0.15	7872.13	2069.5 0.26	4320.10	1038.29 0.24	5539.20	7152.60	7363.80	5482.50	9050.60	9083.30	4998.30	4837.20	3124.80
	K2C8	98	3.40E-12	4529	5006.70	1884.9 0.38	7150.30	256.7 0.04	5023.80	1171.98 0.23	3051.70	5155.70	6812.70	7282.20	6854.50	7314.20	4975.90	6219.00	3876.50
	PDIA3	165	1.70E-11	4627	4127.73	879.9 0.21	5911.90	1046.0 0.18	5440.57	2264.07 0.42	3271.00	5029.10	4083.10	6680.00	4720.60	6335.10	6648.40	6844.60	2828.70
	PGAM1	73	3.50E-03	1126	2798.63	1034.3 0.37	3264.13	61.0 0.02	2478.20	575.12 0.23	2614.40	1868.80	3912.70	3194.00	3293 50	3304.90	2198.20	3139.70	2096.70
	PHB	136	1.40E-08	5225	3560.77	1653.0 0.46	3925.70	772.7 0.20	3417.00	577.41 0.17	2451.10	2770.60	5460.60	4817.20	3447.80	3512.10	3803.90	3693.80	2753.30
	PKHA2	66	2 30E=02	7629	1744.07	397.4 0.23	1993.90	354.7 0.18	1760 73	312 56 0 18	1771 70	1333.60	2126.90	2326.80	2034.00	1620.90	2062.50	1781 30	1438.40
	PRDX2	75	1 90F=02	5134	3462.00	538 5 0 16	4914 57	1090.0.0.22	4166.27	642 56 0.15	2841.60	3808.90	3735 50	5920.60	5066.60	3756 50	4509.00	4564.80	3425.00
	PRDX4	107	1 10F=05	5133	1860.23	352.6 0.19	2515.87	273 7 0 11	1868 37	397.45 0.21	1678.00	1686 70	2266.00	2302.00	2824 30	2421 20	2159 70	2029.80	1415.60
	PSA1	73	2 10E-02	3225	2592.90	1508.8 0.58	2207 73	664.6 0.30	2167.87	264.93 0.12	1370 70	2128 70	4279 30	1969.40	2958.60	1695.20	1887.00	22023.00	2413 30
	PSAS	81	4 00F=03	8144	2322.50	1322 3 0 57	2340 57	241 3 0 10	1926.60	370 91 0 19	1473 70	1648 20	3846 20	2364 10	2569.20	2088.40	2272.90	1971 70	1535.20
	PSR4	85	1.80F=03	4129	1923.63	1161 3 0.60	1903 17	307.8 0.16	1294 60	379 35 0 29	717 30	2019 70	3033.90	1609.30	2223 20	1877.00	1644 60	1347 70	891 50
	RAN	73	2.60E-03	1125	5142.33	2118 8 0 41	6325.80	1256 1 0 20	5837 33	987.68 0.17	3898 50	3939 70	7588.80	5346 50	7742.00	5888.90	5780 30	6845.00	4871 70
	RI IVB1	85	1.80F=03	2531	947.33	620.2 0.65	1278 13	125 3 0 10	938.20	206 27 0 22	642 10	538.90	1661.00	1420.80	1186.20	1227.40	1097 50	1011 90	705.20
	TCPZ	109	8 20F=07	3634	1870 30	393 1 0 21	2108.00	209.4 0.10	2570.87	841 55 0 33	1730.00	1566.60	2314 30	2322.70	1904 30	2097.00	3173 10	2930.20	1609.30
	TPIS	102	4 10F=0F	1123	6009.80	2255.0.0.38	6574.37	1320.2 0.20	6890 77	1327 15 0 19	5304.40	4191 80	8533.20	8076.00	5595.80	6051.30	6193.80	8421 20	6057.30
	ACTS	172	4 105-13	6421	50092.17	10962.9 0.24	26467.00	9420 4 0 22	22207.67	2992.69 0.12	61104 10	20205 00	52256 50	44564 20	27070 70	27757.00	22216.20	21022.20	26542.00
		69	9.100-13	1220	6925.27	2060 1 0.44	4701 22	2121 0 0.44	2010 50	1195.09.0.27	5929 10	4475 50	10162.20	00, 9939	5262 70	2442.00	1972 40	2629 10	4126.00
	DDV2V	104	3.500-00	2724	1627.72	2003.1 0.44	4751.55	E10 4 0.44	1022.07	165.05 0.37	1742 70	1205.00	1075 50	952.40	1945.00	1096.00	059.90	000.60	1212.00
ub-rogulada	UDASA	104	2.000-00	5426	1057.75	049.7 0.15	1201.77	310.4 0.41	1025.97	105.85 0.10	6269.50	4052.00	6702.00	1067.60	2297.20	2420.00	1520.00	1070.50	11212.50
iub-regulaus	10441	154	2.905-03	93420	4614.02	346.7 0.10	4243.27	1474 2 0.24	2654.07	410.79 0.20	205.30	4952.20	E280.00	1907.00	2207.30	2420.90	4112.00	2022.20	2026.10
	TDNA	106	1.605.00	0240	4014.05	662 5 0.26	4545.55	700.2 0.27	1467.47	101 81 0.12	2208 20	4390.10	3369.90	3967.90	1227.00	3230.30	4115.90	1260.70	1620.60
	1 P IVI4	100	4 205 12	6535	2369.60	4021.2 0.44	2102.10	1490.0 0.10	2012.60	191.81 0.13	12206.20	2205.50	5335.90	15310.10	12227.00	16391.50	1502.10	1200.70	2014.60
	COD	70	4.50E-12	222	9230.07	4051.5 0.44	43945.15	756.9 0.10	4035.57	343.55 0.07	2060.70	2015.00	4270.70	2404.00	4262.60	5002 70	4105.00	4005.20	4977.20
	CSTM2	79	0.40E-04	6139	5421.77	332.0 0.24	4287.07	/30.8 0.18	4925.57	345.55 0.07	2909.70	15 40 60	45/9.70	3494.90	4503.00	3755 30	3413.90	4008.70	46/7.30
pore-regulad	1031103	81	5.70E-04	0128	1/2/.23	225.8 0.13	2855.70	449.8 0.16	5221.23	429.39 0.13	1003.50	1349.60	19/8.60	2404.60	5547.30	2/35.20	5412.80	3321.50	2/29.40
	LUHB	106	1.40E-05	4318	2509.73	b/1.8 0.2/	4/86./3	233.6 0.05	5/9/.53	2034.85 0.35	1/35.20	2860.40	2933.60	4538.20	4820.20	5001.80	0083.50	7239.20	3469.90
Oscilantes	HSP/C	134	2.00E-05	00000	4191.50	2209.4 0.54	9/50.03	395.7 0.04	5466.40	341.62 0.06	5997.60	1044.20	4932.70	9296.30	10023.20	9930.60	5197.20	5351.30	5850.70
	IPMZ	71	15.30E-03	I X328	5344.93	1993 2 0 37	393.83	3/0.7 0.94	1554.67	2151.53 1.38	4Xb8.60	⊰b⊰3.10	/533.10	/35.90	0.00	445.60	0.00	653.80	4010.20

Tabla Suplementaria 3. Total de proteínas expresadas en tumores de SHa (días 30, 45 y 50)

SiHa	ID Swissprot	Puntuación MASCOT	P-valor	# st del spot	Media T30	SD T30	CV	Media T45	SD T45	CV	Media T50	SD T50	CV	T30-1	T30-2	T30-3	T45-1	T45-2	T45-3	T50-1	T50-2	T50-3
	ACTS	122	3.70E-07	6320	38672.87	12109.62	0.31	32128.57	4010.37	0.12	34332.97	2117.95	0.06	32620.90	52615.50	30782.20	28266.90	36272.70	31846.10	34201.70	36513.50	32283.70
	ACTG	107	4.00E-07	6107	310.43	150.73	0.49	286.43	105.63	0.37	447.00	72.42	0.16	179.70	276.30	475.30	164.50	350.20	344.60	527.60	426.00	387.40
	ANXA1	132	3.40E-08	1224	3621.63	923.53	0.26	3057.57	419.43	0.14	3517.53	349.09	0.10	2610.90	4421.50	3832.50	2579.20	3362.30	3231.20	3613.50	3808.60	3130.50
	ANXA5	102	4.10E-06	7219	3587.80	654.46	0.18	4171.63	670.86	0.16	3489.53	559.67	0.16	2834.20	3915.80	4013.40	3646.20	4927.30	3941.40	3978.70	3610.70	2879.20
	BGH3	83	3.60E-04	618	2273.73	515.34	0.23	1985.43	443.09	0.22	2393.33	391.71	0.16	2860.80	1896.00	2064.40	1907.00	1586.80	2462.50	2832.40	2267.90	2079.70
	CH60	122	3.70E-07	6523	6878.37	730.47	0.11	7829.80	1802.77	0.23	5622.30	994.25	0.18	6042.00	7201.90	7391.20	6315.40	9823.90	7350.10	6759.10	5192.80	4915.00
	DHE3	80	7.40E-04	414	2640.43	522.86	0.20	1797.27	247.72	0.14	2139.90	333.64	0.16	3112.60	2730.20	2078.50	2043.30	1547.90	1800.60	2217.20	2428.10	1774.40
	EF2	184	2.60E-14	808	2165.43	109.99	0.05	2250.53	568.24	0.25	1840.63	347.82	0.19	2270.10	2175.40	2050.80	2906.50	1909.10	1936.00	1465.60	1903.70	2152.60
	FSCN1	108	8.60E-06	415	2368.73	562.97	0.24	2136.60	681.36	0.32	3003.27	418.87	0.14	2650.60	2735.10	1720.50	2167.10	1440.50	2802.20	3317.00	3165.20	2527.60
Constant	HNRH3	153	2.70E-10	1225	1827.20	273.28	0.15	1471.17	96.31	0.07	1547.50	375.96	0.24	1863.70	2080.40	1537.50	1475.00	1373.00	1565.50	1827.10	1695.30	1120.10
Constant	HSP71	183	2.70E-13	5608	25594.10	3780.18	0.15	20830.23	1472.30	0.07	22524.20	3422.15	0.15	21568.70	29068.60	26145.00	22383.50	20652.10	19455.10	24469.80	24530.00	18572.80
	HSP7C	134	2.60E-09	6728	30144.83	2193.76	0.07	26819.93	1890.32	0.07	24420.63	4543.62	0.19	27991.50	32376.90	30066.10	25176.70	26397.30	28885.80	28174.10	25718.50	19369.30
	K1C17	192	2.60E-10	7428	14700.97	2712.26	0.18	13857.93	1202.35	0.09	12488.87	1254.08	0.10	15575.60	16868.00	11659.30	15123.80	13718.80	12731.20	13120.00	13302.00	11044.60
	LDHB	111	5.20E-07	4231	2533.37	744.36	0.29	2168.33	86.79	0.04	2046.77	331.85	0.16	2345.70	3353.60	1900.80	2071.80	2239.90	2193.30	2426.00	1904.70	1809.60
	PCNA	114	2.60E-07	8214	3886.47	1071.27	0.28	3254.73	217.41	0.07	2526.83	531.56	0.21	3007.70	3571.90	5079.80	3478.50	3241.40	3044.30	3065.70	2511.90	2002.90
	PDIA3	135	1.70E-08	4524	18853.20	1215.36	0.06	15363.17	899.16	0.06	16913.97	1991.38	0.12	19498.50	17451.30	19609.80	16249.50	15388.30	14451.70	17538.00	18518.60	14685.30
	РНВ	131	5.20E-09	5132	2585.33	589.62	0.23	2697.03	403.67	0.15	2611.73	891.49	0.34	2135.70	3252.90	2367.40	2295.80	2692.20	3103.10	3620.60	1930.10	2284.50
	PRDX4	80	7.40E-04	4125	1115.17	169.31	0.15	1170.77	170.05	0.15	977.60	252.65	0.26	1094.90	1293.70	956.90	1064.50	1366.90	1080.90	1205.80	1020.90	706.10
	PSB4	75	2.20E-03	4124	679.57	196.00	0.29	884.63	173.90	0.20	1059.23	219.82	0.21	755.80	826.00	456.90	861.60	1068.90	723.40	1311.10	960.60	906.00
	PSA1	90	2.30E-05	1123	1248.93	307.17	0.25	1609.87	136.03	0.08	1075.20	331.27	0.31	1068.00	1603.60	1075.20	1525.70	1766.80	1537.10	1373.70	1133.10	718.80
	ATPB	174	1.30E-12	7429	4633.60	708.41	0.15	4806.33	780.84	0.16	2889.47	286.18	0.10	3992.10	5393.90	4514.80	4623.40	5662.40	4133.20	2979.50	3119.80	2569.10
	DDX3X	134	2.10E-08	616	2101.83	487.09	0.23	1312.73	76.83	0.06	1314.57	253.17	0.19	2664.00	1835.90	1805.60	1244.60	1396.00	1297.60	1437.50	1482.80	1023.40
	GRP75	75	2.20E-03	5616	3316.50	562.63	0.17	3077.10	465.16	0.15	1818.20	330.00	0.18	2773.50	3896.90	3279.10	3488.60	2572.40	3170.30	1716.80	2187.00	1550.80
	K1C17	176	3.30E-12	7427	17383.87	2609.60	0.15	14693.57	1421.69	0.10	12178.77	480.77	0.04	14944.80	17071.00	20135.80	16135.20	14652.80	13292.70	12259.60	12614.00	11662.70
down-regulated	RUVB1	137	1.10E-08	2416	1558.97	331.12	0.21	1208.17	49.26	0.04	775.37	75.42	0.10	1359.90	1941.20	1375.80	1241.60	1151.60	1231.30	820.40	817.40	688.30
	TPM4	106	1.60E-06	8217	2460.47	282.69	0.11	2057.77	366.84	0.18	1904.40	147.80	0.08	2184.70	2447.10	2749.60	2476.90	1901.30	1795.10	1797.70	2073.10	1842.40
	TCPZ	158	8.60E-11	2522	2391.67	249.60	0.10	2042.13	117.60	0.06	1279.07	76.23	0.06	2263.60	2232.10	2679.30	2050.90	2155.10	1920.40	1346.00	1295.10	1196.10
	VIME	147	1.30E-10	7519	4466.83	1602.48	0.36	4439.43	610.38	0.14	1479.73	212.31	0.14	6316.50	3586.80	3497.20	4270.10	3931.60	5116.60	1407.20	1313.20	1718.80
	ACTB	101	4.00E-06	6110	625.20	144.37	0.23	1295.33	61.60	0.05	2354.73	323.61	0.14	616.10	773.90	485.60	1255.70	1366.30	1264.00	2691.10	2045.60	2327.50
	ANXA3	168	8.60E-12	4230	827.80	143.91	0.17	715.23	114.98	0.16	1149.93	28.07	0.02	676.10	844.90	962.40	847.20	636.60	661.90	1151.10	1177.40	1121.30
	CLIC1	83	3.60E-04	7114	464.90	161.04	0.35	1562.10	590.45	0.38	1782.03	443.71	0.25	321.10	638.90	434.70	882.20	1946.00	1858.10	2261.50	1385.90	1698.70
	EIF3I	99	7.50E-05	5226	757.03	240.09	0.32	827.37	164.00	0.20	1418.23	325.82	0.23	484.30	850.30	936.50	642.40	884.70	955.00	1794.40	1224.50	1235.80
	ENOA	81	2.10E-04	413	13972.77	2948.32	0.21	22504.47	2187.51	0.10	42801.30	1634.96	0.04	13067.80	17267.50	11583.00	20008.40	24087.80	23417.20	43938.90	40927.70	43537.30
	ENOA*	114	2.60E-07	1423	2896.87	943.63	0.33	5586.13	1169.98	0.21	7411.30	1482.10	0.20	2509.10	3972.60	2208.90	5104.80	6920.00	4733.60	6101.30	7112.60	9020.00
	GSTP1	74	5.40E-03	5125	1487.63	415.55	0.28	3905.73	671.05	0.17	4307.23	411.65	0.10	1019.70	1813.60	1629.60	3202.10	3976.50	4538.60	4719.00	3895.70	4307.00
the second stand	GRP78	154	2.60E-11	7734	975.83	219.27	0.22	832.73	85.12	0.10	5417.27	931.48	0.17	925.80	785.90	1215.80	739.80	906.90	851.50	4909.60	4849.90	6492.30
up-regulated	HSPB1	108	1.00E-06	4123	1083.77	202.00	0.19	1221.53	118.27	0.10	1885.70	100.80	0.05	1082.90	1286.20	882.20	1309.60	1267.90	1087.10	1769.40	1948.00	1939.70
	K1C17	154	2.60E-11	7422	21871.13	2239.79	0.10	17487.90	7746.82	0.44	42040.53	1149.65	0.03	23911.50	22227.30	19474.60	25771.00	16271.40	10421.30	43349.00	41192.30	41580.30
	K2C8	172	3.40E-12	4518	10981.20	796.29	0.07	11326.63	2281.73	0.20	29800.17	3620.02	0.12	10063.60	11389.20	11490.80	13175.20	12028.20	8776.50	30703.90	32882.70	25813.90
	PGAM1	135	2.10E-09	112	2038.97	629.36	0.31	4312.10	1948.68	0.45	5768.03	1291.59	0.22	1652.90	2765.20	1698.80	2688.80	3774.30	6473.20	6195.10	4317.00	6792.00
	PRDX2	121	5.20E-08	5010	1290.37	251.32	0.19	2961.93	1731.26	0.58	2852.03	905.70	0.32	1217.40	1570.10	1083.60	1205.70	3013.00	4667.10	2520.90	2158.50	3876.70
	PSA5	96	1.20E-04	8117	892.80	284.71	0.32	1580.50	762.59	0.48	2025.77	376.98	0.19	918.30	1163.90	596.20	708.50	2122.60	1910.40	2444.30	1712.90	1920.10
1	RAN	113	2.40E-07	121	1202.30	335.93	0.28	1745.97	819.94	0.47	2951.50	951.81	0.32	1397.40	1395.10	814.40	1392.90	1161.70	2683.30	3863.20	1964.10	3027.20
	TPIS	81	5 00F-04	113	2334 50	850 53	0.36	7416.60	2611.26	0.35	8598 30	3344 19	0.39	1724 60	3306.10	1972 80	4646.00	7771 60	9832 20	10923 90	4765.80	10105 20

Expresión	Ítems	Detalles del ítem	Conteo	Hyp	Hyp. c	Genes
Expresion	GO:0006096	glicolisis	conteo	1 18E-06	1 77E-05	I DHB TPI1 PGAM1
	GO:0006916	anti-anontosis		3 425±04	1.04E-04	
	GO:0000310	interaction ontro organismos interespecies		1 015 02	1 165 02	
	G0.0044413	transporto transporto do ionos		2 1.01E-02	1.100-02	
	G0:000810,G0:00088	proceso motobolico do corbobidratos, proce	-	1 965 05	1.130-03	TRI1 DCAM1
	G0.0003973,G0.00000	proceso metabolico de carbolidatos, proce	-	1.000-03	2.205.02	
Sohro	GO:0007049,GO:005150	cicio celular, division celular, mitosis		2 1.22E-03	2.26E-03	
roguladas	GU:0044267	procesos metabolicos proceinas celulares		2 7.03E-03	9.54E-05	
regulauas	GO:0006916,GO:00430	anti-apoptosis, regulación negativa de los p		2 3.42E+04	7.15E-05	
	GU:0042981	regulation de los procesos apoptoticos	-	2 3.42E+04	4.06E-03	
	GO:0016070,GO:001607	Procesos metabolicos del ARN, procesos me		2 3.42E+04	4.5/E-03	PSIMAS, HSPB1
	GU:0016032	reproducción viral	-	2 1.01E-02	1.08E-02	PSWA5,KAN
	G0:0006200	proceso catabolico del ATP		2 3.42E+04	0.00E-04	
-	G0:0001525	angiogenesis	-	2 3.42E+04	2.50E-03	
	GU:0051603	Proteolisis involucrada en los procesos celu		2 7.15E-05	2.68E-04	
	GO:0044419	Interspecies interaction between organisms	4	4 2.87E-05	1.00E-04	KAN, KR18, VIIVI, DDX3X
	GO:0006096	giycolysis		3 2.03E-06	1.42E-05	LDHB, IPI1, PGAM1
	GO:0006916	anti-apoptosis		3 3.42E+04	1.78E-04	HSPB1,HSPA5,PRDX2
	GO:0006928	Componente del movimiento celular		3 3.42E+04	1.90E-05	HSPB1, TPM4, VIM
	GO:0030049	muscle filament sliding		3 3.42E+04	1.10E-06	TPM4,VIM,ACTA1
	GO:0006915	apoptotic process	-	2 3.42E+04	4.20E-02	PSMA5,VIM
	GO:0006810,GO:000681	transport , ion transport		2 3.42E+04	2.80E-03	ATP5B,CLIC1
	GO:0005975,GO:000600	carbohidrate metabolic process ,glucose me	2	2 2.65E-05	1.11E-04	TPI1,PGAM1
	GO:0007049,GO:005130	ciclo celular ,cell division ,mitosis	2	2 1.72E-03	2.58E-03	RAN,RUVBL1
Sub-reguladas	GO:0044267	cellular protein metabolic process	2	2 1.07E-02	1.25E-02	CCT6A,EIF3I
	GO:0006916,GO:004306	anti-apoptosis, regulacion negativa de los p	-	2 3.42E+04	1.00E-04	HSPB1,HSPA5
	GO:0042981	Regulación de los procesos apoptoticos	1	2 3.42E+04	5.70E-03	PSMA5,PRDX2
	GO:0016070,GO:001607	Procesos metabolicos del ARN, procesos me	1	2 3.42E+04	6.40E-03	PSMA5,HSPB1
	GO:0016032	Reproducción viral	2	2 1.42E-02	1.50E-02	PSMA5,RAN
	GO:0006200	Procesos catabólicos del ATP		2 3.42E+04	1.80E-03	ATP5B,HSPA5
	GO:0001525	angiogenesis	1	2 3.42E+04	3.50E-06	ATP5B,HSPB1
	GO:0006979	Respuesta al estres oxidativo	2	2 3.42E+04	1.60E-03	TPM4,PRDX2
	GO:0006928,GO:003004	Componente del movimiento celular, muscle		2 3.42E+04	1.70E-06	TPM4,VIM
	GO:0006936,GO:003004	muscle contraction, muscle filament sliding	2	2 3.42E+04	3.90E-04	TPM4,ACTA1
	GO:0051603	Proteolisis involucrada en los procesos celu		2 1.02E-04	2.30E-04	PSMA5,HSPA5
	GO:0044419	interspecies interaction between organisms		7 3.01E-08	3.91E-07	HSPD1,HSPA8,RAN,KRT8,PSMB4,VIM,DDX3X
	GO:0007165	Transducción de señales		5 3.42E+04	9.60E-04	PHB,PDIA3,RAN,ANXA5,ANXA1,CLIC1
	GO:0044267	Procesos metabolicos de las proteínas celula		5 8.70E-06	1.41E-05	EEF2,PDIA3,CCT6A,HSPD1,EIF3I
	GO:0006916	anti-apoptosis	5	5 3.42E+04	1.58E-06	HSPB1,HSPA5,ANXA5,PRDX2,ANXA1
	GO:0042981	Regulación de los procesos apoptoticos	5	5 3.42E+04	1.78E-06	PSMA5,PHB,PSMA1,PSMB4,PRDX2
	GO:0016070,GO:001607	Procesos metabolicos del ARN, procesos me	5	5 3.42E+04	2.40E-06	PSMA5,HSPB1,HSPA8,PSMA1,PSMB4
	GO:0006915	apoptotic process	4	4 3.42E+04	2.76E-03	PSMA5,PSMA1,PSMB4,VIM
	GO:0043065	Regulación positiva de los procesos apoptot	4	4 3.42E+04	2.91E-05	PDIA3,HSPD1,ANXA5,ANXA1
	GO:0002474	Procesamiento de antigeno y presentación o	4	4 3.42E+04	2.33E-06	PSMA5,PDIA3,PSMA1,PSMB4
	GO:0043066	regulacion negativa de los procesos apoptot		4 3.42E+04	1.50E-04	HSPB1,HSPA5,HSPD1,ANXA1
	GO:0016032	Reproducción viral	4	4 3.10E-04	4.03E-04	PSMA5,RAN,PSMA1,PSMB4
	GO:0034641	Procesos celulares del metabolismo de los c	4	4 3.42E+04	4.58E-05	PSMA5,PSMA1,PSMB4,GLUD1
0	GO:0006200	Procesos catabólicos del ATP		4 3.42E+04	1.35E-06	ATP5B,HSPA5,HSPD1,HSPA8
Constantes	GO:0006928	Componente del movimiento celular	4	4 3.42E+04	2.43E-06	HSPB1,TPM4,VIM,ANXA1
	GO:0051603	Proteolisis involucrada en los procesos celul	4	4 1.40E-08	3.65E-07	PSMA5,HSPA5,PSMA1,PSMB4
	GO:0006915,GO:000247	Procesos apoptoticos, procesamiento y pres	3	3 3.42E+04	6.04E-07	PSMA5,PSMA1,PSMB4
	GO:0007165,GO:004306	Transducción de señales, Regulación positiv		3 3.42E+04	7.39E-06	PDIA3,ANXA5,ANXA1
	GO:0006986,GO:000695	Respuesta a las proteínas no plegadas, resp	3	3 3.42E+04	1.01E-06	HSPB1,HSPD1,HSPA8
	GO:0045892	Regulación negativa de la transcripción. DNA		3 3.42E+04	7.31E-03	PHB,ENO1,HSPA8
	GO:0005975,GO:000600	Proceso metabolico del carbohidrato, proce		3.24E-07	2.11E-06	ENO1,TPI1,PGAM1
	GO:0007049	Ciclo celular		9.12E-03	9.12E-03	RAN,RUVBL1,ANXA1
	GO:0006096	glicolisis		3 1.18E-07	1.02E-06	LDHB,ENO1,TPI1,PGAM1
	GO:0006916.GO:004306	anti-apoptosis, regulacion negativa de los p		3 3.42E+04	2.58E-06	HSPB1,HSPA5,ANXA1
	GO:0006457	protein folding		3 3.42E+04	7.85E-04	PDIA3,CCT6A,HSPA8
	GO:0001525	angiogenesis		3.42E+04	5.40E-04	ATP5B.HSPB1.TGFBI
	GO:0030049	deslizamiento del filamento muscular		3 3.42E+04	6.81E-06	TPM4,VIM,ACTA1

Tabla Suplementaria 4. Análisis de enriquecimiento de proteínas compartidas en los tumores de HeLa y SiHa, usando GeneCodis: Procesos Biológicos

Tabla Suplementaria 5. Vías de Reactome de las proteínas compartidas en los tumores HeLa y SiHa

Identificador de vías	 Nombre de la vía 	#Entidades encontradas	🗐 #E. total 🛉	- Relación -	P-Valor	+ FDR	- #Reacci - #Re	eac total	- Rel de reacc.	- Entidades envi - Entidades - Identifica - es de reacción encontrados	s
R-HSA-392499	Metabolismo de proteínas	16	200	9 0.183052	5.74E-0	0.007011	49 54	3	99 7.52	E-02 Q13347;P13639;Q Q13347;P136 R-HSA-1299475;R-HSA-156930;R-HSA-129	99478;R-HS
R-HSA-2262752	Respuesta celular al estrés	7	40	5 0.036902	4.29E-0	0.007011	49 21	1	81 1.70	E-02 P11021;P11142;P3 P11021;P111 R-HSA-5251955;R-HSA-5251959;R-HSA-56	618098;R-H
R-HSA-450531	Regulación del ARNm y estabilidad de proteínas que unen a elementos ricos en A	6	8	8 0.008018	5.89E-0	07 1.37E-	04 3		26 2.45	E-03 P11142;P0DMV8;F P11142;P0DN R-HSA-450551;R-HSA-450580;R-HSA-4504	466
R-HSA-397014	Contracción muscular	5	20	5 0.018679	6.83E-0	0.007011	49 9		39 3.67	E-03 P08670;P04083;PE P08670;P040 R-HSA-390597;R-HSA-445700;R-HSA-3905	598;R-HSA-3
R-HSA-5687128	Señalización de MAPK6/MAPK4	4	8	8 0.008018	2.45E-0	0.007011	49 2		40 3.76	E-03 P28066;P04792;P2 P28066;P047 R-HSA-5687121;R-HSA-5687112	
R-HSA-5689603	Proteinasas UCH	4	9	6 0.008747	3.41E-0	0.007011	49 3		11 1.03	E-03 Q9Y265;P28066;P2 Q9Y265;P280 R-HSA-5665854;R-HSA-5665871;R-HSA-56	689544
R-HSA-382556	Familia de proteínas ABC mediadas por transportadores	4	10	4 0.009476	4.60E-0	0.007011	49 2		28 2.63	E-03 P28066;P02647;P2 P28066;P026 R-HSA-382553;R-HSA-8866553	
R-HSA-6785807	Señalizaión de la interleukin-4 y 13	4	11	1 0.010114	5.87E-0	0.007011	49 3		46 4.33	E-03 P11142;P08670;Q1P11142;P086 R-HSA-6785895;R-HSA-6797269;R-HSA-67	790041
R-HSA-70263	Gluconeogenesis	3	3	4 0.003098	2.31E-0	0.007011	49 3		25 2.35	E-03 P06733;P18669;PE P06733;P186 R-HSA-70481;R-HSA-71445;R-HSA-70494	
R-HSA-211733	Regulación de la activadad PAK-2p34 mediada por la degradación por proteasom	3	5	0 0.004556	7.08E-0	0.007011	49 1		2 1.88	E-04 P28066;P28070;P2 P28066;P280 R-HSA-211715	
R-HSA-1236978	Presentación cruzada de antígenos exógenos solubles (endosomas)	3	5	0 0.004556	7.08E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-1236970	
R-HSA-350562	Regulación de la ornitidina decarboxilasa (ODC)	3	5	1 0.004647	7.50E-0	0.007011	49 1		4 3.76	E-04 P28066;P28070;P2 P28066;P280 R-HSA-353125	
R-HSA-69017	Fosforilación mediada por CDK y eliminación de Cdo6	3	5	1 0.004647	7.50E-0	0.007011	49 1		4 3.76	E-04 P28066:P28070:P2 P28066:P280 R-HSA-69016	
R-HSA-69229	Dependencia de la ciclina D1 dependiente de ubiguitina	3	5	1 0.004647	7.50E-0	0.007011	49 1		5 4.70	E-04 P28066:P28070:P2 P28066:P280 R-HSA-75825	
R-HSA-75815	Dependencia de la ciclina D1 dependiente de ubiquitina	3	5	1 0.004647	7.50E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-75825	
R-HSA-349425	Autodegradación de la ubicuitina ligasa E3 COP1	3	5	2 0.004738	7.93E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-264458	
R-HSA-180534	Degradación mediada por Vpu de CD4	3	5	3 0.004829	8.37E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-180573	
R-HSA-169911	Regulación de la apoptosis	3	5	3 0.004829	8.37E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-211715	
R-HSA-69610	Respuesta al daño al ADN, independiente a p53	3	5	3 0.004829	8.37E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-69600	
R-HSA-69601	Degradación mediada por ubiquitina de Cdc25A fosforilada	3	5	3 0.004829	8.37E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-69600	
R-HSA-69613	Punto de control G1/S al daño al ADN independiente de p53	3	5	3 0.004829	8.37E-0	0.007011	49 1		5 4.70	E-04 P28066;P28070;P2 P28066;P280 R-HSA-69600	
R-HSA-8854050	FBXL7 regula negativamente a AURKA durante la entrada mitótica y la mitosis ter	3	5	5 0.005011	9.31E-0	0.007011	49 2		6 5.64	E-04 P28066;P28070;P2 P28066;P280 R-HSA-8854071;R-HSA-8854044	
R-HSA-174113	Degradación mediada por SCF-beta-TrCP de Emi1	3	5	5 0.005011	9.31E-0	0.007011	49 1		3 2.82	E-04 P28066;P28070;P2 P28066;P280 R-HSA-174203	
R-HSA-4641257	Degradación de AXIN	3	5	5 0.005011	9.31E-0	0.007011	49 2		8 7.53	E-04 P28066;P28070;P2 P28066;P280 R-HSA-3640874;R-HSA-4641256	
R-HSA-8941858	Regulación de la expresión y actividad de RUNX3	3	5	5 0.005011	9.31E-0	0.007011	49 1		9 8.47	E-04 P28066;P28070;P2 P28066;P280 R-HSA-8952408	
R-HSA-180585	Degradación mediada por Vif de APOBEC3G	3	5	6 0.005103	9.81E-0	0.007011	49 1		4 3.76	E-04 P28066;P28070;P2 P28066;P280 R-HSA-180603	
R-HSA-69541	Estabilización de p53	3	5	7 0.005194	1.03E-0	0.007011	49 1		15 1.41	E-03 P28066;P28070;P2 P28066;P280 R-HSA-264458	
P. USA. 5676500	NIX -> reñalización NE-kB no canónica	2		0 005276	1 145.0	0 007011	10 1		0 9.47	E.04 020056-020070-02 020056-0200 0.USA.5607721	

Tabla Suplementaria 6. Niveles relativos de las MAPK, NFkB, TRAF6 and TLR4

HeLa/proteína	Tiempo	Media (R. a Actina)	SD	SiHa/proteí	Tiempo	Media (R. a Actina)	SD
ERK	30	0.53	0.18	ERK	30	0.32	0.01
	45	0.54	0.14		45	0.33	0.05
	50	0.55	0.08		50	0.26	0.01
pERK	30	0.13	0.03	pERK	30	0.11	0.01
	45	0.06	0.02		45	0.13	0.02
	50	0.09	0.01		50	0.17	0.05
JNK	30	0.17	0.08	JNK	30	0.11	0.02
	45	0.17	0.01		45	0.12	0.02
	50	0.24	0.06		50	0.15	0.04
pJNK	30	0.04	0.02	pJNK	30	0.01	0.00
	45	0.03	0.02		45	0.03	0.02
	50	0.04	0.01		50	0.01	0.00
p38	30	0.32	0.08	p38	30	0.52	0.06
	45	0.36	0.06		45	0.42	0.03
	50	0.34	0.10		50	0.41	0.06
pp38	30	0.04	0.02	pp38	30	0.01	0.00
	45	0.06	0.01		45	0.01	0.00
	50	0.03	0.01		50	0.01	0.00
NF-kB	30	0.34	0.01	NF-kB	30	0.39	0.02
	45	0.37	0.01		45	0.26	0.03
	50	0.22	0.04		50	0.43	0.01
pNF-kB	30	0.13	0.04	pNF-kB	30	0.11	0.02
	45	0.19	0.04		45	0.14	0.01
	50	0.15	0.03		50	0.11	0.02
ΙΚΒα	30	0.27	0.01	ΙΚΒα	30	0.20	0.00
	45	0.25	0.01		45	0.22	0.02
	50	0.24	0.01		50	0.20	0.02
ρ-ΙΚΒα	30	0.00	0.00	ρ-ΙΚΒα	30	0.00	0.00
	45	0.00	0.00		45	0.00	0.00
	50	0.08	0.01		50	0.00	0.00
TRAF6	30	0.14	0.02	TRAF6	30	0.00	0.00
	45	0.25	0.06		45	0.00	0.00
	50	0.25	0.09		50	0.00	0.00
TRL4	30	0.06	0.02	TRL4	30	0.93	0.05
	45	0.15	0.02		45	0.24	0.04
	50	0.46	0.05		50	0.71	0.08

Tabla Suplementaria 7. Proteínas secretadas en células HeLa. 432 proteínas identificadas. Los datos de proteómica de espectrometría de masas se han depositado en el Consorcio ProteomeXchange a través del repositorio de socios PRIDE con el identificador de conjunto de datos PXD005466.

P62258 P61981	14-3-3 protein epsilon 14-3-3 protein gamma	29155	21	8 P35557 8 P05744	Glucokinase Glucose - 6 - nl	63107	36	3 Q14980 6 P15531	Nuclear mito Nucleoside c	238115	81 348	6 P:	18206	Vinculin www.Willebrz	123722	358	9	
P63104	14-3-3 protein zeta/delta	27728	137	B Q8TCUS	Glutamate [/	125385	48	4 P22392	Nucleoside c	17287	284	7 Q	8IZQ1	WD repeat a	0	38	5	
Q4KWH8	1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-1 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase eta-1	0	40	4 P78417 4 P04406	Glyceraldeh	36030	572	2 Q12830 2 Q9NTK5	Obg-like ATF	44715	3b 118	1 A	9142LD 6NE52	WD repeat-c WD repeat-c	180192	36	4	
D75038 P62081	1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase eta-2 405 ribosomal protein S7	0 22113	37	4 P01215 3 Q8WXG9	Glycoproteir G-protein co	13066	47	2 Q5V5T9 4 Q98YG4	Obscurin	867940	45	6 A- 3 Q	4UGR9 5T200	Xin actin-bin Zinc finger C	0	36	5	
P08865	405 ribosomal protein SA	32833	38	2 P62826	GTP-binding	24408	179	4 P62937	Peptidyl-pro	18001	285	3 P	52746	Zinc finger p	187758	34	3	
P10809	60 kDa heat shock protein, mitochondrial	61016	109 1	PODMV8/PODMV9	Heat shock 7	70009	639	2 095613	Pericentrin	0	39	6						
PG2899	605 ribosomal protein P0 605 ribosomal protein L31	34252 14454	54	2 P17066	Heat shock 7 Heat shock 7	70331 70984	345 253	2 Q06830	Peroxidasin Peroxiredox	22096	34	4						
Q02878 P52209	605 ribosomal protein L6 6-phosphogluconate dehydrogenase, decarboxylating	32708 53106	59	2 P11142 2 P04792	Heat shock c Heat shock p	70854 22768	661 79	1 P32119 4 Q13162	Peroxiredox	21878 30521	378 205	8						
P11021 08/776	78 kDa glucose-regulated protein Abnormal spindle-like microcenhaly-associated omtein	72288	51	L P07900 5 P08238	Heat shock p Heat shock n	84607 83212	874	12 P30041 10 P30085	Peroxiredox	25019	237	5						
Q98WD1	Acetyl-CoA acetyltransferase, cytosolic	41324	77	L Q96RW7	Hemicentin-	613001	42	6 000750	Phosphatidy	0	40	3						
P68133	Actin, alpha cardiac muscle 1 Actin, alpha skeletal muscle	41992 42024	180	2 Q8NDA2 2 P69905	Hemicentin- Hemoglobin	15248	56	2 P00558	Phosphogluc Phosphoglyc	61411 44586	668	1						
P62736 P60709	Actin, aortic smooth muscle Actin, cytoplasmic 1	41982 41710	93	2 P68871 1 P51858	Hemoglobin Hepatoma-d	15988 26772	38 63	1 P18669 2 Q9Y617	Phosphoglyc Phosphoseri	28786 40397	135	5						
P63261 P25054	Actin, cytoplasmic 2 Adenomatous polynosis coli protein	41766	40	Q13151	Heterogenei Heterogenei	0	46	1 Q9H7P9 1 Q15149	Pleckstrin hc Plectin	147877	39	4						
D00468	Agrin	214706	43	7 Q32951	Heterogenei	34204	94	1 Q9UIW2	Plexin-A1	210933	44	4						
P12814	Alpha-actinin-1	102993	55 79 1	4 P51991 8 Q14103	Heterogenei	38410	114	3 P98161	Polycystic bi Polycystin-1	0	53	5						
P35609 D43707	Alpha-actinin-2 Alpha-actinin-4	103788 104788 1	34	2 P22626 5 P0C058	Heterogener Histone H2A	37407 14083	217 134	3 P0CG47 1 P0CG48	Polyubiquiti Polyubiquiti	25746 76982	158 148	3						
P06733 Q96L96	Alpha-enolase Alpha-protein kinase 3	47139 1 201148	39	5 P04908 5 Q93077	Histone H2A Histone H2A	14127 14097	134	1 Q6S8J3 1 P02545	POTE ankyrir Prelamin-A/	121286 74095	444	4						
Q8TCU4	Alstrom syndrome protein 1 Anivrin-2	0	47	7 P20671 5 096KK5	Histone H2A Histone H2A	14099	134	1 Q9UIV9 1 Q5H9U9	Probable ATI Probable ATI	0	35	3						
Q12955	Ankyrin-3	480113	36	5 Q99878	Histone H2A	13928	134	1 Q15751	Probable E3	0	37	3						
P04085	Annexin A2	38580	49	D Q8IUE6	Histone H2A	13987	58	1 000507	Probable ubi	0	33	4						
P08758 P46013	Annexin AS Antigen KI-67	35914 358474	57	5 Q16777 5 Q7L7L0	Histone H2A Histone H2A	13980 14113	134	1 P07737 1 Q07954	Profilin-1 Prolow-dens	15045 504276	46	4						
D00203	AP-3 complex subunit beta-1 Apolipoprotein B-100	0 515283	34	8 Q98TM1 5 P16104	Histone H2A Histone H2A	14011	134 58	1 Q8NBP7 1 P25786	Proprotein c Proteasome	74239 29537	340 188	5						
D43150	Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 Arginingsurcinate synthase	0	36	2 Q93079 2 OSONW6	Histone H28 Histone H28	13884	100	4 P25787 4 P25788	Proteasome	25882	178	6						
P17174	Aspartate aminotransferase, cytoplasmic	46219	188	8 P68431	Histone H3.1	15394	158	6 P60900	Proteasome	27382	303	8						
Q5T9A4	AT-HOR-COntaining transcription factor ATPase family AAA domain-containing protein 3B	0	46	4 Q71DI3	Histone H3.2	15379	158	6 P20618	Proteasome	2/8/0	125	3						
Q96QE3 Q98ZC7	ATPase family AAA domain-containing protein 5 ATP-binding cassette sub-family A member 2	0 269701	38	4 P84243 5 Q6NXT2	Histone H3.3 Histone H3.3	15318 15204	160 44	6 P49720 1 P28070	Proteasome Proteasome	22933 29185	150 93	5						
Q8/ZY2 P53396	ATP-binding cassette sub-family A member 7 ATP-citrate synthase	234201 120762	37	7 014686	Histone H4 Histone-lysic	11360 593017	178 49	7 P28074 6 P28072	Proteasome	28462 25341	355 155	7						
P98160	Basement membrane-specific heparan sulfate proteoglycan core protein	468532	43	4 Q8NEZ4	Histone-lysic	0	42	6 QBIVF2	Protein AHN	0	38	5						
P25098	Beta-adrenergic receptor kinase 1	0	34	3 Q96L73	Histone-lysic	0	42	5 Q9UPA5	Protein bass	416214	46	1						
P13929 Q96T60	Beta-enorase Bifunctional polynucleotide phosphatase/kinase	46902	32	4 Q4G0P3	Homeobox p Hydrocephal	0	38 60	3 Q9P219 4 P07237	Protein Dapl Protein disul	228091 57081	37 98	5						
Q8NFC6 D14514	Biorientation of chromosomes in cell division protein 1-like Brain-specific angiogenesis inhibitor 1	0	42	5 Q9Y6R7 4 P14735	IgGFc-bindin Insulin-degra	571639 0	40 36	3 P30101 3 Q15084	Protein disul Protein disul	56747 48091	635 172	13						
D60241	Brain-specific angiogenesis inhibitor 2 Brofeldin Authibited suspine nucleotide.evrhanee nrotein 2	0	33	3 075578 1 012906	Integrin alph Interleukin c	95279	32	4 Q62UX3 3 Q578A9	Protein FAM Protein furn	111084	33	3						
Q96GW7	Brevican core protein	99056	43	2 Q8WYAD	Intraflagella	0	43	4 Q9Y219	Protein jaggi	133277	42	2						
P31327	Carbamoyl-phosphate synthase [ammonia], mitochondrial	164835	133	8 P13645	Keratin, type Keratin, type	58792	962	11 Q13796	Protein Shro	176302	34	6						
Q9UBR2	Cathepsin D Cathepsin Z	33846	167	4 P13646	Keratin, type Keratin, type	49557	91	2 Q81F72 3 Q725N4	Protein shro Protein sidel	0	34	3						
Q8TDN4 Q965N8	CDK5 and ABL1 enzyme substrate 1 CDK5 regulatory subunit-associated protein 2	0	41 35	1 P02533 3 P19012	Keratin, type Keratin, type	51529 49181	252	4 Q5T011 3 Q9C0D5	Protein SZT2 Protein TAN	0	38	6						
Q9NXG0 P49454	Centlein Centromere protein F	161504 367537	47	8 P08779 5 Q04695	Keratin, type Keratin, type	51236 48076	184	4 Q9ULC6 4 Q14517	Protein-argin Protocadher	74618	42	1						
Q02224	Centromere-associated protein E	0	54	5 P05783	Keratin, type	48029	103	3 Q8TDW7	Protocadher Burino ourle	505209	35	4						
D00299	Chloride intracellular channel protein 1	26906	128	2 Q7Z3Z0	Keratin, type	49287	73	3 Q98YX7	Putative bet	41989	230	5						
Q7Z460	Clume O-acceptoansieraae CLIP-associating protein 1	0	66	4 Q723Y7	Keratin, type Keratin, type	50536	149	4 Q58FF8	Putative hea	44321	237	3						
P10909 P23528	Clusterin Cofilin-1	52461 18491	195	3 P35527 3 Q9N582	Keratin, type Keratin, type	62027 64801	1295 85	12 POC7M2 3 Q9C0F0	Putative het Putative Poly	34202 241767	113 37	4						
Q96LX7 A2IDD5	Colled-coll domain-containing protein 17 Colled-coll domain-containing protein 78	0	37 42	2 P04264 3 Q7Z794	Keratin, type Keratin, type	65999 61864	1475 217	16 Q9H853 3 P14618	Putative tub Pyruvate kin	27534 57900	39 661	2						
Q9NVE4 D567U6	Colled-coil domain-containing protein 87 Colled-coil domain-containing protein 93	0	44	4 P35908 4 Q01546	Keratin, type Keratin, type	65393 65800	1547	13 P31150 4 P50395	Rab GDP diss Rab GDP diss	50550 50631	44 549	2						
P02461	Collagen alpha-1(III) chain Collagen alpha-10(III) chain	138479	33	P12035	Keratin, type	64378	177	3 P35241	Radixin	68521	524	3						
Q99715	Collagen alpha-100) chain	332941 1	47 3	L P13647	Keratin, type	62340	352	6 P23467	Receptor-typ	224161	35	3						
Q8/2C6	Collagen alpha-2000/Itilain Collagen alpha-2000/Itilain	0	45	7 P04259	Keratin, type	60030	330	4 Q8/WN7	Retinitis pigi	0	43	3						
P13942 P12111	Collagen alpha-2(xi) chain Collagen alpha-3(VI) chain	0	37	2 Q35Y84	Keratin, type Keratin, type	51354 57256	124	4 Q9H7B2	Ribosome pr	35560	3/	ь 4						
Q8WZ74 Q96PZ7	Cortactin-binding protein 2 CUB and sushi domain-containing protein 1	0 388621	40	3 Q14CN4 3 Q86Y46	Keratin, type Keratin, type	55842 58887	97 157	3 Q9P2E9 4 Q5TZA2	Ribosome-bi Rootletin	0 228388	47	6						
D60494 Q86VP6	Cubilin Cullin-associated NEDD8-dissociated protein 1	398480 136289	47	Q7RTS7	Keratin, type Keratin, type	57830 59524	118 140	4 Q92736 3 Q9NZI4	Ryanodine re Sacsin	564206 0	52	7						
P01034 D14204	Cystatin-C Cytoplasmic dynein 1 heavy chain 1	15789 532072	54	L Q8N1N4 GSXKE5	Keratin, type Keratin, type	0	42	3 Q07955 4 Q9NRP7	Serine/argin Serine/three	27728	47	2						
Q96HP0	Dedicator of cytokinesis protein 6	0	50	B P05787	Keratin, type	53671	131	4 Q13535	Serine/three	0	35	4						
P15924	Desmoplakin	331569	49	4 Q6UWL6	Kin of IRRE-II	0	46	3 Q9Y3S1	Serine/three	0	50	4						
P09622 Q9P265	Dihydrolipoyl dehydrogenase, mitochondrial Disco-interacting protein 2 homolog B	54143	32	5 Q9P2E2 3 Q86Y91	Kinesin-like Kinesin-like	0	34	2 P35237 4 P50454	Serpin B6 Serpin H1	42594 46411	160 145	4						
D75417 D60673	DNA polymerase theta DNA polymerase zeta catalytic subunit	197474	35	4 Q96Q89 5 Q9ULI4	Kinesin-like Kinesin-like	0 194458	58 47	2 P02768 2 Q9UPX8	Serum albun SH3 and mult	69321 0	267 43	4						
P78527 075165	DNA-dependent protein kinase catalytic subunit Dnal homolog subfamily C member 13	468788	65 49	P25391 015230	Laminin subi Laminin subi	336867	34 32	5 Q98YB0 5 P52630	SH3 and mult Signal trans/	0	44 46	6						
Q6PKX4	Docking protein 6 Dwein heavy chain 10 avonemal	0	36	2 P11047	Laminin subi	177489	35	2 Q13813	Spectrin alph	284364	343	4						
Q96DT5	Dynein heavy chain 11, axonemal	520711	55	5 Q55007	Leucine-rich	0	48	3 Q9NRC6	Spectrin bet	0	39	5						
Q8TD57	Dynein heavy chain 2, axonemai Dynein heavy chain 3, axonemai	470468	46	+ upV2K9 5 P50851	Leucine-rich Lipopolysacc	151462	44 34	5 Q9NY15	Stabilin-1	48960	36	2						
Q8TE73 Q9C0G6	Dynein heavy chain 5, axonemal Dynein heavy chain 6, axonemal	528684 475679	47 35	5 P00338 7 Q62MR3	L-lactate del L-lactate del	36665 36484	534 55	4 QBTER0 2 Q4LDE5	Sushi, nidogi Sushi, von W	0	55 39	2						
Q96JB1	Dynein heavy chain 8, axonemal Dynein heavy chain domain-containing omtein 1	514335	84	5 Q9BYZ2	L-lactate del	41916	120	4 Q9ULW0	Targeting pro	0	33	2						
Q03001	Dystonin Detrophysion	0	50	4 Q9NZR2	Low-density	515159	45	7 P22105	Tenascin-X Tencin-1	0	36	6						
P11532	Dystrophin	0	34	3 075581	Low-density	180314	39	3 P10599	Thioredoxin	11730	187	1						
L196191 P49792	EIA-binding protein p400 E3 SUMO-protein ligase RanBP2	343276 357974	35 68	5 Q8NB78	Lysine-speci Lysine-speci	92039	37	5 Q8WZ42	Titin	3813810	392	10						
095714 Q72627	E3 ubiquitin-protein ligase HERC2 E3 ubiquitin-protein ligase HUWE1	526895	46	5 P40925 1 P40926	Malate dehy Malate dehy	36403 35481	351 113	5 Q98XR5 3 Q5SR76	Toll-like rece TPR repeat-c	0	40 34	2						
Q5T4S7 Q6ZMW3	E3 ubiquitin-protein ligase UBR4 Echinoderm microtubule-associated protein-like 6	0	52 37	2 Q8/W19 4 P01033	MAX gene-a Metalloproti	0 23156	47 90	6 A6H8Y1 2 P02786	Transcriptior Transferrin r	293705 84818	35 896	7						
P68104 P26641	Elongation factor 1-alpha 1 Elongation factor 1-gamma	50109 50087	185	4 Q8NFU7 L Q96PK2	Methylcytos Microtubule	0 669721	49 50	4 Q9Y4A5 7 O95359	Transformati Transformini	437318 309237	52	7						
P13639	Elongation factor 2	95277	198 59	Q9UPN3	Microtubule	0	44	5 P55072	Transitional	89266	338	1						
Q14240	Eukaryotic initiation factor 4A-II	46373	58	L Q5JR59	Microtubule	0	53	5 Q13428	Treacle prote	0	42	5						
Q8NEV8	Eukaryotic peptide chain release factor GTP-binding subunit EKP38 Exophilin-5	0	40	5 P26038	Moesin	67778	719	6 075962	Triple function	26653	51	1b 4						
L185XX4 P15311	Extracellular matrix protein FRAS1 Ezrin	442646 69370	3b 804	Q725P9	Mucin-16 Mucin-19	0 597790	59 37	5 P68363 4 Q9BQE3	rubulin alph Tubulin alph	50120 49863	715	15 15						
Q9NVI1 P14324	Fanconi anemia group I protein Farnesyl pyrophosphate synthase	149229 48245	40	4 075095 2 Q9BU76	Multiple epi Multiple mw	161072 29394	38 36	5 P68366 3 Q9NY65	Tubulin alph Tubulin alph	49892 50062	39 39	2						
Q16658 P49327	Fascin Fatty acid synthase	54496 273254	53 53 ?	7 Q7Z406 8 P11055	Myosin-14 Myosin-3	227863 223766	38 39	2 P07437 4 Q13509	Tubulin beta Tubulin beta	49639 50400	442 245	9						
Q4ZHG4	Fibronectin type III domain-containing protein 1 Fibronec sheath-interacting rentein 2	0	43	7 A7E2Y1	Myosin-78 Myosin-X ^{1/}	221251	41	6 Q32CM7	Tubulin beta	49744	102	3						
P20930	Filaggrin	434922	45 1	014513	Nck-associat	208409	41	6 P62987	Ubiquitin-60	14719	167	3						
P04075	Fructose-bisphosphate aldolase A	39395	813 1	3 Q8NF91	Nesprin-1	1010398	39	8 Q9Y485	Uncharacteri	50628 0	50	3						
P09382	⊧ructose-eispnospnate aldolase C Galectin-1	39431 14706	44	4 U62NJ1 L Q09666	Neurobeach Neuroblast c	0 628699	39 76	4 Q2LD37 9 Q5VZ46	Uncharacteri	0	59 40	6						
Q08380 P09104	Galectin-3-binding protein Gamma-enolase	65289 47239	28 1	7 P21359 2 Q9UM47	Neurofibron Neurogenic I	0	37 37	4 Q969H8 4 Q95399	UPF0556 pro Urotensin-2	18783 0	218 34	7						
Q3V6T2 P14136	Girdin Glial fibrillary acidic protein	0 49850	37 81	2 Q8NEY1 2 Q15818	Neuron navi Neuronal pe	0 47093	43 240	4 P46939 10 Q5THJ4	Utrophin Vacuolar pro	394220 491535	38 44	4						

Tabla Suplementaria 8. Proteínas secretadas en células SiHa. 447 proteínas identificadas Los datos de proteómica de espectrometría de masas se han depositado en el Consorcio ProteomeXchange a través del repositorio de socios PRIDE con el identificador de conjunto de datos PXD005466.

P31946 P62258	14-3-3 protein beta/alpha 14-3-3 protein epsilon	28307 29486	78 287	3 P06744 5 Q8TCU5	Glucose-6-phosphate isomerase Glutamate [NMDA] receptor subur	63579 127005	660 32	2 Q92614 6 Q6T4R5	Myosin-XVIIIa Nance-Horan syndrome prote	234920 178183	55 33	6 P07477 4 P68363	Trypsin-1 Tubulin alph	27159 50964	44 432	2
P27348 P63104	14-3-3 protein theta 14-3-3 protein zeta/delta	28128 28011	75	3 P78417 4 P04405	Glutathione S-transferase omega- Glyceraldehyde-3-phosphate dehy	27945 36361	68 619	3 Q86VF7 3 Q8WXH0	Nebulin-related-anchoring p Nesprin-2	198688	43	3 Q98QE3 6 P68366	Tubulin alph Tubulin alph	50708 50810	430	1
Q9NQ66 Q4KWH8	1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-1 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase eta-1 27 anterior sendet content of the sender of the sende	0	39	3 P62826 2 Q8NDA8	GTP-binding nuclear protein Ran HEAT repeat-containing protein 7A	24643	227 34	6 Q62NJ1 3 Q09666	Neuroblast differentiation-a	306093 633316	44	3 Q9NY65 7 P07437	Tubulin alph Tubulin beta	50906 50375	138 400	1
P62269 P62847	Abs protease regulatory subunit b8 405 ribosomal protein S18 405 ribosomal entein S24	47644 17740 15509	96 73 61	3 PUDIVIV8/PL 3 P34931 1 P34932	Heat shock 70 kDa protein 1A/1B Heat shock 70 kDa protein 1-like Heat shock 70 kDa protein 4	70913	410 381 75	8 Q8NEY1 3 015818	Neuron navigator 1 Neuronal pentravin. 1	203760	53 90 119	7 P68371 4 P42584	Tubulin beta Tubulin beta	51147 50551 129675	103 54 54	1
P62081 P08865	405 ribosomal protein S7 405 ribosomal protein SA	22145	119	4 P17066 4 P11142	Heat shock 70 kDa protein 6 Heat shock cognate 71 kDa protein	71608	320	5 Q99574	Neuroserpin Niban-like protein 2	46717	103	1 P22314 4 OSTEA3	Ubiquitin-lik Uncharacteri	119260 134101	163	10
P32754 P10809	4-hydroxyphenylpyruvate dioxygenase 60 kDa heat shock protein, mitochondrial	45256 61478	313 288	7 Q12931 8 P04792	Heat shock protein 75 kDa, mitoch Heat shock protein beta-1	80654 22858	108 95	2 P29474 2 Q15233	Nitric oxide synthase, endot! Non-POU domain-containing	135130 0	36 51	4 Q9Y485 1 Q9Y2F5	Uncharacteri Uncharacteri	0	37 49	4
P05388 P62913	605 acidic ribosomal protein PO 605 ribosomal protein L11	34567 20516	229 114	5 P07900 2 P08238	Heat shock protein HSP 90-alpha Heat shock protein HSP 90-beta	85333 0	367 518	11 Q8/V19 3 Q92621	Nostrin Nuclear pore complex protei	0	42 38	3 Q2LD37 3 Q5VZ46	Uncharacteri Uncharacteri	561392 127754	47 35	6
P30050 P83731	605 ribosomal protein L12 605 ribosomal protein L24	18011 17930	51 46	1 P54652 1 Q96RW7	Heat shock-related 70kDa protein Hemicentin-1	70428 624433	398 47	7 P15531 6 P22392	Nucleoside diphosphate kina Nucleoside diphosphate kina	17389 17481	354 273	2 075445 8 P46939	Usherin Utrophin	587541 0	47 37	5
P52209 P11021	6-phosphogluconate dehydrogenase, decarboxylating 78 kDa glucose-regulated protein	53852 72580	257 410	4 Q8NDA2 9 P09651	Hemicentin-2 Heterogeneous nuclear ribonucleo	550521 38933	53 117	4 Q9NTKS 3 Q5VST9	Obg-like ATPase 1 Obscurin	45059 881261	100 56	1 Q709C8 5 Q96QK1	Vacuolar pro Vacuolar pro	0 92765	62	4
Q8TE58 Q8IZT6	A disintegrin and metalloproteinase with thrombospondin motifs 15 Abnormal spindle-like microcephaly-associated protein	106076 414501	37 44 70	1 Q32P51 6 P61978	Heterogeneous nuclear ribonuclec Heterogeneous nuclear ribonuclec	34471 51426	117	3 Q504Q3 3 Q9BYG4	PAB-dependent poly(A)-spei Partitioning defective 6 hom	137244 41150	37 34	3 P18206 2 O43497	Vinculin Voltage-dep	266470	56 34	5
P68032 P68133	Active acception acception of the second sec	42596	280 1 280 1	2 09UQL6	Histone deacetylase 5 Histone H2A tyne 1	0	50	2 P23284 1 006830	Peptidyl-protyl cis-trans ison Peptidyl-protyl cis-trans ison Perovicedorin-1	23865	319	6 Q96JG9 4 Q97493	Zinc finger p	414696	43	7
P62736 P60709	Actin, aortic smooth muscle Actin, cytoplasmic 1	42644 42330	108 721	2 P04908	Histone H2A type 1-B/E Histone H2A type 1-C	14143	103	1 P32119 1 013162	Peroxiredoxin-2 Peroxiredoxin-4	22065	296 202	6				
P63261 P53999	Actin, cytoplasmic 2 Activated RNA polymerase II transcriptional coactivator p15	42386	721 1	19 P20671	Histone H2A type 1-D Histone H2A type 1-H	14115	103	1 P30041 1 P30086	Peroxiredoxin-6 Phosohatidylethanolamine-b	25197 21190	379	13				
P23526 P00568	Adenosylhomocysteinase Adenylate kinase isoenzyme 1	48521 21815	188	5 Q99878 2 Q6FI13	Histone H2A type 1-J Histone H2A type 2-A	13944 14119	103 103	1 P36871 1 P00558	Phosphoglucomutase-1 Phosphoglycerate kinase 1	61892 45216	230 710	8				
Q01518 P84077	Ademylyl cyclase-associated protein 1 ADP-ribosylation factor 1	52493 20838	62 48	2 Q16777 2 Q7L7L0	Histone H2A type 2-C Histone H2A type 3	14012 14129	103 103	1 P07205 1 P18669	Phosphoglycerate kinase 2 Phosphoglycerate mutase 1	45413 28996	181 331	7				
P61204 P84085	ADP-ribosylation factor 3 ADP-ribosylation factor 5	20742 20727	48 48	2 Q98TM1 1 Q71UI9	Histone H2A.J Histone H2A.V	14027 13517	103 55	1 P13797 1 Q15149	Plastin-3 Plectin	71560 534517	83 58	3				
P12814 043707	Alpha-actinin-1 Alpha-actinin-4	104005 105636	340 1 483 1	12 POCOSS 15 Q96A08	Histone H2A.Z Histone H2B type 1-A	13561 14207	55 41	1 P11940 2 Q8TDX9	Polyadenylate-binding prote Polycystic kidney disease pro	71306	51 44	5 4				
P06733 Q8TCU4	Alpha-enolase Alstrom syndrome protein 1	47631 463685	885 1 50	0 P33778 5 P62807	Histone H2B type 1-B Histone H2B type 1-C/E/F/G/I	13990 13946	110 148 440	2 P98161 2 Q658J3	Polycystin-1 POTE ankyrin domain family	468373 123582	87 307	7				
Q53LP3	Ankyrin repeat domain-containing protein Suk Ankyrin repeat domain-containing protein S7 Ankyrin 2	56003	45 36 42	3 Q93079	Histone H28 type 1-D Histone H28 type 1-H	13932	148	2 P0CG38	POTE ankyrin domain family POTE ankyrin domain family PRAME family member 10	123530	30 70 27	4				
P07355	Annexin A2 Annexin A5	38952	330	6 O60814	Histone H2B type 1-5 Histone H2B type 1-K Histone H2B type 1-1	13930	148	2 P02545 2 P07502	Prelamin-A/C Proartivator nolvoentide	74540	81	3				
P46013 P04114	Antigen KI-67 Anningen meters 8, 100	361481	62	5 Q99879 6 Q99877	Histone H28 type 1-M Histone H28 type 1-N	14029	148	2 Q9HD20 2 Q9Y4D8	Probable cation-transporting Probable F3 ubiouitin-protein	0	47	1				
043150 P00966	Arf-GAP with SH3 domain, ANK repeat and PH domain-containing prote Argininosuccinate synthase	0 46935	40 310 1	3 P23527 0 Q16778	Histone H2B type 1-0 Histone H2B type 2-E	13946 13960	110 110	2 075592 2 Q9NR48	Probable E3 ubiquitin-proteir Probable histone-lysine N-m	519504 0	48 33	4				
P54136 P15848	Arginyl-tRNA synthetase, cytoplasmic Arylsulfatase B	76415 0	33 36	3 Q5QNW6 2 Q8N257	Histone H2B type 2-F Histone H2B type 3-B	13960 13948	148 156	2 Q02809 2 P07737	Procollagen-lysine,2-oxoglut Profilin-1	84285 15296	68 306	4				
P17174 Q72591	Aspartate aminotransferase, cytoplasmic AT-hook-containing transcription factor	46543 156176	111 56	4 P57053 4 P68431	Histone H2B type F-S Histone H3.1	13984 15557	148 64	2 P12004 3 Q9UQ80	Proliferating cell nuclear anti Proliferation-associated prot	29252 44299	97 144	2				
Q5T9A4 Q96QE3	ATPase family AAA domain-containing protein 38 ATPase family AAA domain-containing protein 5	0 209929	41 35	5 Q16695 3 Q71D13	Histone H3.1t Histone H3.2	15677 15484	64 64	3 Q8NBP7 3 P25786	Proprotein convertase subtili Proteasome subunit alpha ty	75866 29950	423 54	2				
Q86UQ4 Q81ZY2	ATP-binding cassette sub-family A member 13 ATP-binding cassette sub-family A member 7	582507 236929	46 40	4 P84243 3 Q6NXT2	Histone H3.3 Histone H3.3C	15408 15350	66 66	3 P25787 3 P25788	Proteasome subunit alpha ty Proteasome subunit alpha ty	26076 28787	140 43	4				
Q03989	AT-rich interactive domain-containing protein SA	0	39	2 014686	Histone H4 Histone-lysine N-methyltransferas	601158	155 69	4 P25789 6 P60900	Proteasome subunit alpha ty Proteasome subunit alpha ty	29846	36 133	4				
Q5H9F3 013884	BCL-6 core pressor-like protein 1 BCL-6 core pressor-like protein 1 BCL-6 core pressor-like protein 1	0	33	4 Q4G0P3 3 P00492	Hydrocephalus-inducing protein h Hydrocephalus-inducing protein h	582477	33 48 49	3 P20618	Proteasome subunit appraity Proteasome subunit beta typ	26844	70	2				
Q562R1 P13929	Beta-actin-like protein 2 Beta-enolase	42596 47394	156	4 Q14974 3 O00410	Importin subunit beta-1 Importin-5	98826 125730	68 34	4 P28074 2 P28072	Proteasome subunit beta typ Proteasome subunit beta typ	28761 25713	249 143	6				
Q8NFC6 060241	Biorientation of chromosomes in cell division protein 1-like Brain-specific angiogenesis inhibitor 2	0	35 52	4 Q14573 7 P13645	Inositol 1,4,5-trisphosphate recept Keratin, type I cytoskeletal 10	0 59120	35 1084	6 Q8IVF2 11 Q9UPA5	Protein AHNAK2 Protein bassoon	620521 0	66 52	4				
Q9NYQ6 Q9NYQ7	Cadherin EGF LAG seven-pass G-type receptor 1 Cadherin EGF LAG seven-pass G-type receptor 3	335176 363521	71 32	5 Q99456 4 P13646	Keratin, type I cytoskeletal 12 Keratin, type I cytoskeletal 13	53832 50113	101 119	3 P07237 4 P30101	Protein disulfide-isomerase Protein disulfide-isomerase	57567 57281	177 269	7				
Q9H251 Q8N3K9	Cadherin-23 Cardiomyopathy-associated protein 5	0 451703	39 43	6 P02533 4 P19012	Keratin, type I cytoskeletal 14 Keratin, type I cytoskeletal 15	52117 49653	113 99	3 Q15084 3 Q9Y6V0	Protein disulfide-isomerase i Protein piccolo	48577 0	161 36	4				
Q8WXD9 Q9UBR2	Caskin-1 Cathepsin Z	0 34610	33 136	4 P08779 3 Q04695	Keratin, type I cytoskeletal 16 Keratin, type I cytoskeletal 17	51754 48521	261 83	3 Q14160 3 O95785	Protein scribble homolog Protein Wiz	175955 180520	36	6				
Q14004 Q9HC77	Cell division protein kinase 13 Centromere protein J	0	38	3 P08727 4 Q2M2I5	Keratin, type I cytoskeletal 19 Keratin, type I cytoskeletal 24	44223	58	2 Q9NYQ8 3 Q6V017	Protocadherin Fat 2 Protocadherin Fat 4	483217	45	5				
Q5VT06	Centrollere-associated protein E Centrosome-associated protein 350 Chiestika intracellular dhaneel esotain 1	0	3b 37 126	4 Q7Z3Y8	Keratin, type I cytoskeretal 25 Keratin, type I cytoskeletal 27 Keratin, type I cytoskeletal 28	49970 50515 51219	42 65	2 (2963(20 3 P00491	Protocadherin-16 Purine nucleoside phosphory Butative elemention factor 1	32517	34 210 450	7				
Q12873 Q00610	Chromodomain-helicase-DNA-binding protein 3 Clathrin heavy chain 1	0	37 143 1	6 P35527	Keratin, type I cytoskeletal 9 Keratin, type I cytoskeletal 9 Keratin, type II cuticular Hb4	62435	1034 :	2 P0C7M2	Putative heat shock protein F Putative heat shock protein F	44671 34469	83 117	5				
Q72460 P10909	CUP-associating protein 1 Clusterin	0 53287	35 115	4 P04264 2 Q7Z794	Keratin, type II cytoskeletal 1 Keratin, type II cytoskeletal 1b	66301 62329	1422 : 155	21 B82234 7 P46087	Putative protein shisa-8 Putative ribosomal RNA metl	52202 0	48 44	4				
Q9UBF2 P23528	Coatomer subunit gamma-2 Cofilin-1	0 18783	32 245	4 P35908 4 Q01546	Keratin, type II cytoskeletal 2 epide Keratin, type II cytoskeletal 2 oral	65795 66588	941 109	14 Q9H853 3 P14618	Putative tubulin-like protein Pyruvate kinase isozymes M1	27915 58736	77 742	1 2				
Q02388 Q99715	Collagen alpha-1(VII) chain Collagen alpha-1(XII) chain	296298 334878	46 493	4 P12035 16 P19013	Keratin, type II cytoskeletal 3 Keratin, type II cytoskeletal 4	64741 57816	101 177	3 P50395 3 Q13671	Rab GDP dissociation inhibito Ras and Rab interactor 1	51287 0	318 37	7				
P39060 P08123	Collagen alpha-1(XVIII) chain Collagen alpha-2(I) chain	0 129917	42 34	5 P13647 4 P02538	Keratin, type II cytoskeletal 5 Keratin, type II cytoskeletal 6A	62776 60421	258 348	3 P51157 6 P10586	Ras-related protein Rab-28 Receptor-type tyrosine-prote	0 214774	50 35	2				
P13942 P12111	Collagen alpha-2(XI) chain Collagen alpha-3(VI) chain	0 345759	60 42	4 P04259 6 P48668	Keratin, type II cytoskeletal 68 Keratin, type II cytoskeletal 6C	60448	346	8 Q9P227 8 P60891	Rho GTPase-activating protei Ribose-phosphate pyrophosp	163666 35469	38	2				
Q8W274 P12277 ORO/IDE	Certactine-binding protein 2 Creatine kinase 8-type Cellin-screat thed MEDOR discreatisted protein 1	183844 43083 1295.25	37	2 Q3SY84	Keratin, type II cytoskeletal 7 Keratin, type II cytoskeletal 71 Keratin, type II cytoskeletal 71	0	118 89 73	3 Q9H782 3 Q9P2E9 3 Q9P1G1	Ribosome production factor - Ribosome-binding protein 1	153020 123891	4/ 64	3				
P01034 014204	Cystatin-C Cystatin-C Cytonlasmir dynein 1 beaw chain 1	16081	128	2 Q86Y46 6 078TS7	Keratin, type II cytoskeletal 72 Keratin, type II cytoskeletal 73 Keratin, type II cytoskeletal 74	59611	151 83	5 Q5TZA2	Rootletin Reangine recentor 2	229066	53	5				
Q96HP0 Q43598	Dedicator of cytokinesis protein 6 Deoxyribonucleoside 5-monophosphate N-alvcosidase	0	40	4 095678 1 08N1N4	Keratin, type II cytoskeletal 75 Keratin, type II cytoskeletal 78	59942	185	5 Q15413 2 Q9UQ35	Ryanodine receptor 3 Serine/arginine repetitive m	560001 300720	40	3				
014531 014689	Dihydropyrimidinase-related protein 4 Disco-interacting protein 2 homolog A	0 172887	41	4 Q5XKE5 5 P05787	Keratin, type II cytoskeletal 79 Keratin, type II cytoskeletal 8	58229 53927	97 159	4 Q9Y351 4 P62140	Serine/threonine-protein kir Serine/threonine-protein ph	244868 38073	47 59	3				
O60673 Q02880	DNA polymerase zeta catalytic subunit DNA topoisomerase 2-beta	0 184682	32 33	3 Q02241 3 Q9ULI4	Kinesin-like protein KIF23 Kinesin-like protein KIF26A	0	32 47	3 Q13315 5 P02787	Serine-protein kinase ATM Serotransferrin	356828 79494	37 35	5				
P27695 014802	DNA-(apurinic or apyrimidinic site) lyase DNA-directed RNA polymerase III subunit RPC1	35979	50 36	2 Q63ZY3 2 Q03252	KN motif and ankyrin repeat doma Lamin-B2	0 67985	42 33	2 Q8IW75 2 P35237	Serpin A12 Serpin B6	0 43256	35 112	5				
075165 Q6PKX4	unai nomolog subfamily C member 13 Docking protein 6	0	35	s P25391 5 P24043	Laminin subunit alpha-1 Laminin subunit alpha-2	0 353874	35 34	5 P50454 5 P02768	Serpin H1 Serum albumin	46751 71464	231	4				
Q96DT5	Dynem meavy chain 10, axonemal Dynein heavy chain 17, axonemal Donein heavy chain 17, axonemal	0	40 38 42	* r-48b34 7 Q96JM7 5 Q55007	Lethal(3)malignant brain tumor-lik	229564 89921 290688	48 37 49	+ Q9UPX8 3 Q9BY80 4 Q9H2Y9	SH3 and multiple ankyrin rep SH3 and multiple ankyrin rep Solute carrier organic second	0	50 57 30	4				
Q9P225 Q8TD57	Dynein heavy chain 2, axonemal Donein heavy chain 3, axonemal	0	37 48	6 Q5V2K9 5 Q9UIQ6	Leucine-rich repeat-containing pro	153228	36	3 Q9H3E2 2 Q9UBP0	Sorting nexin-25 Spastin	0	35	3				
Q8TE73 Q96M86	Dynein heavy chain 5, axonemal Dynein heavy chain domain-containing protein 1	0	42	5 Q8N3X6 4 P00338	Ligand-dependent nuclear recepto L-lactate dehydrogenase A chain	0	37 537	2 Q13813 2 Q9H254	Spectrin alpha chain, brain Spectrin beta chain, brain 3	285976 290693	51	4				
Q03001 Q72627	Dystonin E3 ubiquitin-protein ligase HUWE1	867875 0	62 1 51	0 Q98YZ2 4 P07195	L·lactate dehydrogenase A·like 6B L·lactate dehydrogenase B chain	42508 37065	147 673	2 Q9NRC6 1 P11277	Spectrin beta chain, brain 4 Spectrin beta chain, erythroc	0	45 46	6				
Q6ZT12 Q8IUD2	E3 ubiquitin-protein ligase UBR3 ELKS/Rab6-interacting/CAST family member 1	0	33 37	2 Q9NZR2 3 075096	Low-density lipoprotein receptor- Low-density lipoprotein receptor-	536259 217797	34 50	4 Q9P0W8 6 Q13838	Spermatogenesis-associated Spliceosome RNA helicase B/	68430 49664	64 66	3				
P68104 Q05639	Elongation factor 1-alpha 1 Elongation factor 1-alpha 2	50649 50962	450 173	1 Q12912 1 P10519	Lymphoid-restricted membrane pr Lysosomal protective protein	0 55145	35 41	2 Q12770 1 Q15772	Sterol regulatory element-bi Striated muscle preferential	141819 357376	48 40	2 4				
P29692 P26641	Elongation factor 1-delta Elongation factor 1-gamma	31281 50525	88 201	3 P40925 1 Q8WI9	Malate dehydrogenase, cytoplasm MAX gene-associated protein	36775	168 41	2 (360279 3 Q8TER0	Sushi domain-containing pro Sushi, nidogen and EGF-like c	68953 158397	37	5				
P13639 015083	Elongation factor 2 ERC protein 2 Colonization factor 2 ERC protein 2	96711	350 44	5 Q15648 4 Q96JG8	Mediator of RNA polymerase II tra Melanoma-associated antigen D4	0 81843	46 41	3 Q9Y490 2 Q9Y4G6	Talin-1 Talin-2	272726 274829	40	4				
P60642 P63241 086004	Eukaryotic translation initiation factor 5A-1 Eukaryotic translation initiation factor 5A-1 Petracellular matrix enrotes in FBAS1	40028 17145 454911	48	1 P01033 7 096PK2	Metalloproteinase inhibitor 1	23904 675712	*1 61 58	2 P78371 9 P50991	T-complex protein 1 subunit	0 58040 58550	33 35 77	1				
P15311 P14324	Ezrin Farnesvi pyrophosphate synthase	69726	450 1	2 P78559	Microtubule-actin cross-linking fac Microtubule-actin cross-linking fac	0	42	6 P48643 4 099837	T-complex protein 1 subunit T-complex protein 1 subunit	60481 60107	93	3				
Q16658 P49327	Fascin Fatty acid synthase	55198 276610	348 500	7 P11137 11 O60307	Microtubule-associated protein 2 Microtubule-associated serine/thr	0	37 44	4 P49368 3 P50990	T-complex protein 1 subunit T-complex protein 1 subunit	61427	231 70	5				
ADAVI2 Q4ZHG4	Fer-1-like protein 5 Fibronectin type III domain-containing protein 1	0 206145	36 40	3 Q5/R59 5 Q9NU22	Microtubule-associated tumor sup Midasin	151203 640088	33 42	2 P40227 7 Q99973	T-complex protein 1 subunit Telomerase protein compone	58676	141 41	5				
075369 Q68DA7	Filamin-B Formin-1	280749 159015	41 46	4 Q8N4C8 5 Q99797	Misshapen-like kinase 1 Mitochondrial intermediate peptic	150873 81817	45 34	2 Q9UKZ4 5 Q9HBL0	Teneurin-1 Tensin-1	0 187026	36 52	6				
Q552K8 P04075	FRAS1-related extracellular matrix protein 2 Fructose-bisphosphate addolase A	0 39915	33 507 1	5 095819 13 P26038	Mitogen-activated protein kinase I Moesin	0 68198	37 466	2 QSSRH9 12 P10599	Tetratricopeptide repeat pro Thioredoxin	0	32 40	3				
P09972 Q9UKJ3	Fructose-bisphosphate aldolase C G patch domain-containing protein 8	39894 165218	181 39	3 Q8WXI7 4 Q725P9	Mucin-16 Mucin-19	2366624	80 37	9 Q16881 4 P07202	Thioredoxin reductase 1, cyte Thyroid peroxidase	71841 104851	36 65	4				
P09382 Q08380	Galectin-1 Galectin-3-binding protein	15080 66361	45	z U15746 5 P35749	Myosin light chain kinase, smooth Myosin-11	213816	44	3 Q8WZ42 3 P31629	Transcription factor HIVEP2	3849990	140 44	36				
092820	Gamma-glutanyi hydrolase	36452	49	2 A7E2Y1	Myosin-78 Moscie 9	223355	33 41 22	~ Puz /8b 5 Q15582 4 855072	Transforming growth factor-b	45506 75496	115 52	1				
P14136 P11413	Glial fibrillary acidic protein Glucose-6-phosphate 1-dehvdrozenase	50099 59907	88	2 P35579 3 Q9UKN7	Myosin-9 Myosin-XV	228467 398694	51 35	3 P29401 3 P60174	Transketolase Triosephosphate isomerace	68739 26986	742	1 3				

	Proteína											
Distancia	E7 de HF	PV 18	GST	M3								
	Aminoácido	Posición	Aminoácido	Posición								
	HIS	51	ASP	102								
	TYR	52	ARG	82								
٦Å	ASN	53	ASN	106								
ZA	PHE	57	GLN	76								
	MET	84	LYS	73								
	GLU	85	ASP/PHE	60/61								
	LEU	87	PHE	61								
		Pro	oteína									
Distancia	E7 de HF	PV 18	GST	M3								
	Aminoácido	Posición	Aminoácido	Posición								
	ALA	50	GLU	95								
	HIS	51	ASP	102								
	TYR	52	ARG/GLU	82/105								
	ASN	53	GLU/ASN	105/106								
	PHE	57	GLN	76								
٦Å	ARG	66	ASN	106								
SA	HIS/LYS	63/71	LYS	98								
	LEU	83	PHE	61								
	MET	84	LYS	73								
	GLY	85	ASP/PHE	60/61								
	THR	86	PHE	61								
	LEU	87	PHE	61								
	GLY	88	PHE	61								

Tabla Suplementaria 8. Distancias en 2 y 3 Ångströms (Å) entre el GSTM3 y el E7 HPV18.

Tabla Suplementaria 10. Lista de cebadores usados para generar la proteína GSTM3 recombinante. El protocolo de la PCR se usó el siguiente programa: 94 ° C durante 1 minuto, 62 ° C durante 45 segundos y 72 ° C durante 2 minutos 30 ciclos.

Nom	Secuencia 5' > 3'
bre	
M3-1	ATGTCGTGCGAGTCGTCTATGGTTCTCGGGTACTGGGATATTCGTGGGCTGGC
	GCACGCCATCCGCCTGCTCCTGG
M3-2	CATAGTCAGGAGCTTCCCCGCACGTGTACCGTTTCTCCTCATAAGAGGTATCCG
	TGAACTCCAGGAGCAGGCGGATGG
M3-3	GGAAGCTCCTGACTATGATCGAAGCCAATGGCTGGATGTGAAATTCAAGCTAGA
	CCTGGACTTTCCTAATCTGCCCTACC
M3-4	GCTTGCGAGCGATGTAGCGCAAGATGGCATTGCTCTGGGTGATCTTGTTCTTCC
	CATCCAGGAGGTAGGGCAGATTAGG
M3-5	GCTACATCGCTCGCAAGCACAACATGTGTGGTGAGACTGAAGAAGAAAAAGATTC
	GAGTGGACATCATAGAGAACC
M3-6	CAGTTTTTCGTGGTCAGAGCTGTAACAGAGCCTTATCAGTTGTGTGCGGAAATC
	CATTACTTGGTTCTCTATGATGTCC
M3-7	
	GCTCTGACCACGAAAAACTGAAGCCTCAGTACTTGGAAGAGCTACCTGGACAAC
	TGAAACAATTCTCCATGTTTCTGG
M3-8	GGTGAGAAAATCCACAAAGGTGAGCTTTTCCCCGGCAAACCATGAGAATTTCCC
	CAGAAACATGGAGAATTG
M3-9	CCTTTGTGGATTTTCTCACCTATGATATCTTGGATCAGAACCGTATATTTGACCC
	CAAGTGCCTGGATGAGTTCC
M3-	CCAAGTGCCTGGATGAGTTCCCAAACCTGAAGGCTTTCATGTGCCGTTTTGAGG
10	CTTTGGAGAAAATCGCTGCC

M3-	CCACTGGGCCATCTTGTTGTTGATGGGCATCTTGCAGAACTGATCAGACTGTAA
11	GTAGGCAGCGATTTTCTCCAAAGC
M3-	CCATCAACAACAAGATGGCCCAGTGGGGCAACAAGCCTATATGCTGA
12	
GST	ATAGAC AAGCTT AACAAAATGTCTGGGTCGTCG <mark>CACCATCACCACCATCAT</mark> TCG
M3-	TGCGAGTCGTCTATGG
Hindl	NOTA: Este oligo contiene el HindIII (negrita), el sitio de iniciación de la traducción y
=	los codones para 6 histidinas (en negrita y subrayados).
GST	ATACAA GGATCC TCAGCATATAGGCTTGTTGC
M3-	NOTA: Este oligo contiene el sitio de restricción BamHI (negrita).
Bam	
HI	
N = 4	

Material y métodos suplementarios de la tabla suplementaria 10.

El gen GSTM3 sintético se diseñó de acuerdo con el uso del codón de S. cerevisiae con el programa Synthetic Gene Designer (Wu G et al. 2005). Los oligos de 60 a 80 nucleótidos se disolvieron a una concentración final de 25 µM, y la temperatura de fusión (Tm) se ajustó a aproximadamente 60 ° C (Tabla Suplementaria 10). Los resultados superpuestos para oligoconjuntos siguiendo el método de PCR de dos pasos se usaron para la construcción del gen sintético (Dillon PJ. & CA Rosen. 1990). AccuPrime Pfx DNA polimerasa (Invitrogen) se añadió a la primera ronda de PCR, usando una temperatura de hibridación de 60 °C, y se usaron tiempos de elongación secuencial de 30 segundos hasta 2 min durante 3-5 ciclos. Se empleó un total de 2 µL de los productos como molde para la segunda PCR usando cebadores con sitios de restricción que flanquean el producto de longitud completa. Los productos de PCR se cortaron con las enzimas HindIII y BamHI (Fermentas) y se insertaron en el plásmido pYES2. Los plásmidos de expresión resultantes se replicaron en E. coli DH5a y luego en cepa S. cerevisiae Σ 1278B (MAT α ura3). Las células se cultivaron rutinariamente en medio YEPD, y la transformación de levadura con los plásmidos de expresión se realizó tal como se describe en el manual del usuario (versión K) del kit pYES2 (Invitrogen). Las células de levadura transformadas se seleccionaron en placas mínimas que contenían 0.67% de YND (Difco, BD) con aminoácidos (sin Leu), dextrosa al 2% y agar al 2%. La inducción de la proteína recombinante se realizó en matraces de 150 mL con 50 mL de medio de inducción (0.67% de YNB con aminoácidos (sin Leu), 2% de L-galactosa y 2% de rafinosa). Inoculamos los cultivos con aproximadamente 5 x 105 células de levadura/mL en cada matraz. Después de 72 horas de incubación a 30 °C con agitación constante (200 rpm), las células se recogieron, se congelaron rápidamente y se almacenaron a -80 ° C. Las células de levadura inducidas se lavaron con 50 mL de ddH2O tres veces y se resuspendieron en 1 mL de Buffer Kpi 50 mM (pH 7,0), con glicerol al 5% y un cóctel de inhibidor de proteasa (tableta completa, Roche).

Referencia de la Tabla Suplementaria 10

Dillon PJ, Rosen CA. Un método rápido para la construcción de genes sintéticos utilizando la reacción en cadena de la polimerasa. Biotechniques. 1990; 9: 298, 300.

Wu G, Bashir-Bello N, Freeland S. El diseñador de genes sintéticos: una plataforma web flexible para explorar el espacio de secuencias de genes sintéticos para la expresión heteróloga. 2005 IEEE Comput Syst Bioinforma Conf Trabajo Póster Abstr. 2005. página 258-9.

Tabla Suplementaria 11. *Primers* utilizados para la amplificación y clonación del gen E7 del HPV18. El protocolo de la PCR se usó el siguiente programa: 94 ° C durante 1 minuto, 60 ° C durante 45 segundos y 72 ° C durante 2 minutos 30 ciclos.

Nombre	Secuencia 5' > 3'	Comentario
E718-1	ATGCATGGACCTAAGGCAACC ATT	
E718-2*	CTGCTGGGATGCACACCA	
E7-18-Hind		contiene el sitio HindIII (negrita) y la secuencia inicial HP\
111	ATACAA AAGCTT ATGCATGGACCTAA	18 (negrita).
E7HPV18-		contiene un fragmento de secuencia de histidina 6x
his*	GATGGTGATGATG CTGCTGG	(negrita).
Univ His-		
Tag BamH		contiene el sitio BamHI (negrita) y el fragmento 6x histidin
*	TACGTG GATCCTAGTGGTGATGGTG	(negrita)

Tabla Suplementaria 12. ROI de proteínas GST de pacientes CC

Proteína	ID	Media Sum de la tinción (Area) (µm²)	Media Sum de la no tinción (Area) (μm²)	Area total de células (μm²)	Media del % ROI de la FRACCIÓN DE ÁREA	Clasificación	Proteína	Media Sum de la tinción (Area) (µm²)	Media Sum de la no tinción (Area) (μm²)	Area total de células (μm²)	Media del % ROI de la FRACCIÓN DE ÁREA	Clasificación
	502	311,243.79	735,599.42	1,046,843.21	29.73	High	-	814,269.62	442,021.41	1,256,291.03	64.8	High
GSTM3	300	36,571.91	527,141.79	563,713.70	6.49	Weak		536,105.53	566,210.48	1,102,316.01	48.6	Moderated
	698	67,007.39	177,911.74	244,919.13	27.36	High		511,678.95	488,372.19	1,000,051.14	51.2	High
	324	113,134.55	580,128.64	693,263.20	16.32	Moderated		895,090.00	448,948.52	1,344,038.52	66.6	High
	345	450,109.91	838,099.43	1,288,209.34	34.94	High		577,972.52	686,381.85	1,264,354.38	45.7	Moderated
	944	126,711.35	655,983.41	782,694.77	16.19	Moderated	GSTP1	516,617.31	696,180.99	1,212,798.30	42.6	Moderated
	535	253,528.44	564,860.42	818,388.86	30.98	High		869,484.57	380,402.05	1,249,886.62	69.6	High
	241	236,100.04	639,148.15	875,248.19	26.98	High		232,216.69	761,975.89	994,192.58	23.4	Moderated
	209	22,949.68	484,613.05	507,562.73	4.52	Weak		265,209.56	355,823.84	621,033.40	42.7	Moderated
	592	39,824.78	830,366.61	870,191.39	4.58	Weak		221,299.66	490,337.19	711,636.84	31.1	Moderated
	440	200,506.09	985,348.59	1,185,854.68	16.91	Moderated		877,113.35	420,341.69	1,297,455.04	67.6	High
	552	113,462.72	617,323.87	730,786.59	15.53	Moderated		240,094.59	345,836.90	585,931.49	41.0	Moderated
	537	72,269.62	680,970.07	753,239.69	9.59	Weak		37,216.89	708,046.98	745,263.87	5.0	weak

Tabla Suplementaria 13. Conjunto de proteínas comunes del análisis del secretoma cualitativo de las líneas de CC.