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Resumen

En este trabajo se presenta el estudio teórico y experimental de la dinámica de flujo y

el comportamiento eléctrico de un generador alterno magnetohidrodinámico (MHD) de

metal lı́quido que tiene el potencial de aprovechar la energı́a del oleaje marino para su

conversión en energı́a eléctrica. El principal propósito de esta tesis es la comprensión y el

modelado fı́sico de los fenómenos ocurridos en los generadores alternos MHD, ası́ como

el diseño, construcción y caracterización experimental de un prototipo de generador MHD

a escala de laboratorio. Se presenta un panorama general de la energı́a del oleaje marino

y las diferentes tecnologı́as para aprovecharla, enfatizando el potencial de los generadores

MHD. Desde el punto de vista teórico se explora analı́ticamente mediante un tratamiento

bidimensional el flujo del metal lı́quido dentro del generador alterno MHD en las zonas

de campo magnético uniforme y no uniforme. Asimismo se utiliza el modelo analı́tico

para analizar el comportamiento eléctrico del generador MHD. En el aspecto práctico, se

presenta el diseño del prototipo de un generador alterno MHD de metal lı́quido haciendo

una descripción detallada de los sistemas que lo componen (sistema impulsor, ducto de

oscilación, sistema de medición y complementos). Posteriormente se describen las condi-

ciones experimentales de interés y las técnicas utilizadas para realizar la caracterización

del flujo y el comportamiento eléctrico del generador MHD. Más adelante se muestran los

resultados experimentales del flujo para las diferentes condiciones de operación obtenidos

mediante la técnica de Velocimetrı́a Doppler Ultrasónica. También se muestran los re-

sultados experimentales del comportamiento eléctrico del generador MHD para diferentes

condiciones de operación. Con el fin de caracterizar el generador en condiciones de op-

eración más realistas, se presenta un diseño a escala laboratorio de un generador alterno

MHD de metal lı́quido acoplado a un convertidor de energı́a de oleaje que se pretende

probar en un canal de olas. Finalmente se presentan las conclusiones de este trabajo.

.
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Abstract

In this work, the theoretical and experimental study of the flow dynamics and the electrical

behavior of an alternate liquid metal magnetohydrodynamic (MHD) generator that has the

potential to harness the energy of the marine waves for its conversion into electrical energy

is presented. The main purpose of this thesis is the understanding and physical modeling

of the phenomena occurring in the alternate MHD generators, as well as the design, con-

struction and experimental characterization of a MHD generator prototype at laboratory

scale. An overview of the energy of the marine waves and the different technologies to

harness it, emphasizing the potential of the MHD generators is presented. From the the-

oretical point of view, the flow of the liquid metal inside the alternate MHD generator in

the regions of uniform and non-uniform magnetic field is analytically explored by means

of a two-dimensional treatment. The analytical model is also used to analyze the electrical

behavior of the MHD generator. In the practical aspect, the design of the prototype of an

alternate liquid metal MHD generator is presented, making a detailed description of the

systems that compose it (impeller system, oscillation duct, measurement system and com-

plements). Subsequently, the experimental conditions of interest and the techniques used

to perform the characterization of the flow and the electrical behavior of the MHD genera-

tor are described. Later the experimental flow dynamics results for the different operating

conditions obtained by the Ultrasonic Doppler Velocimetry technique are shown. The ex-

perimental results of the electrical behavior of the MHD generator for different operating

conditions are also shown. In order to characterize the generator under more realistic op-

erating conditions, a laboratory-scale design of an alternate liquid metal MHD generator

coupled to a wave energy converter (WEC) that is intended to be tested in a wave channel

is exposed. Finally, the conclusions of this work are presented.
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Introduction

The increasing population as well as changes in the lifestyle and greater comfort of a big

part of humanity have led over the years to a significant increase in the energy consump-

tion in the world. To supply the energy demands, nowadays the main source of energy

comes from fossil fuels, such as coal, oil and natural gas, which although are available and

relatively cheap, they are finite and may be exhausted soon. In addition, a side effects of

the use of these fuels is the release of greenhouse gases in the combustion process which

are harmful to the life on the planet. As greenhouse gases are the main responsible for

global warming and climate change, it is expected that the replacement of fossil fuels by

renewable energies sources will help to mitigate the emissions of greenhouse gases and

to fight against climate change. For each source of renewable energy, say solar, eolic,

ocean, gheothermal and bio energy, appropriate technologies have been developed or are

under development to harvest and transform the energy for useful purposes [1]. Figure 1

shows a diagram of renewable energies and their different technologies. Electricity from

renewable energies can be obtained from solar energy through photovoltaics and concen-

trating solar power, geothermal energy, hydro energy, wind energy, bioenergy and ocean

energy. Renewable heat sources include geothermal heat, bioenergy, solar thermal heat

and ocean thermal energy. From a technological perspective geothermal, hydroelectric and

solar photovoltaic applications are among the most highly developed while others such as

ocean energy technologies, in particular wave energy, are emerging from the research and

development phase. Due to the huge potential of ocean energy it is of great importance to

increase the efforts to achieve the application of these technologies in the short term.

Ocean waves are created by wind, which is a product of the atmosphere redistribution

of solar energy. The wind interacts with the surface of the ocean generating ripples, which

increase in size due to the sustained energy input [2]. Figure 2 shows a sketch of the gener-

ation of ocean waves. In fact, deep-water waves can travel thousands of kilometers without

practically losing energy. On the other hand, when a wave approaches the coast (shallow

water), energy losses appear, mainly due to the friction with the bottom of the sea and the

breaking of the wave, so that a fraction of the wave energy reaches the shore [3]. The power

density available in the waves is much larger than the wind and solar power densities [3, 4].

Waves can build up over oceanic distances to power densities averaging over 1 × 105 W/m

15



16 Introduction

Fig. 1: Renewable energy sources and technologies [1] .

(note that the measure is power per meter width of wave front). Recent estimates indicate

that the global wave energy potential of oceans is 32 PWh/yr, which is roughly equivalent

to twice the world electricity supply in 2008 which was 17 PWh/yr [5, 6]. Due to the nature

Fig. 2: The generation of ocean waves [2].

of marine waves, the largest wave power density is found in areas near the poles, above the

Tropic of Cancer and below the Tropic of Capricorn (temperate zones). Figure 3 shows the

global distribution of annual mean wave power density estimates in kW/m. Although the

data shown in the figure are annual averages, in terms of consistency of wave resource is

important to mention that the power density can vary in some regions drastically among
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seasonal weathers. An important fact is that in the northern hemisphere winds are signif-

icantly less consistent than the winds in the southern hemisphere, so that the wave power

density is much more variable [7, 8, 9].

Fig. 3: Global distribution of annual mean wave power [7].

With the aim of harvesting the energy of the waves to be transformed into useful en-

ergy, different wave energy converter (WEC) designs have been proposed. Historically,

the first patent of a wave converter dates from 1799 when the French Pierre-Simon Girard

obtained a patent for a machine that mechanically captured the energy of the ocean waves

[10]. The pionner of the modern WECs technology is Yoshio Masuda, who in 1940 devel-

oped the first floating oscillating water column incorporated into a navigation buoy [11].

Since then, different devices have been proposed, each one being defined by a particular

design and power conversion system, which transforms the energy absorbed by the WEC

into electricity. One of the main ways in which WECs are classified is by location zone,

which corresponds to shoreline, nearshore and offshore. The shoreline clasification means

that the location of the device is on the coast. The term nearshore corresponds to places

relatively close to the shoreline, with water depths no greater than 50 meters. The offshore

term means depth of water greater than 50 meters [10, 12, 13]. Therefore the principal

devices can be characterized as belonging to six types, which are Point absorber (PA);

Attenuator; Submerged pressure differential (SPD); Overtopping device (OD); Oscillating

water column (OWC) and Oscillating wave surge converter (OWSC) (see fig. 4). In Titah

et al (2015), a map showing the main classes of WECs and their location zone is provided.

Another way to classify WECs is through the power conversion system. Roughly, they can

be classified into two categories, direct conversion and indirect conversion. Power direct

conversion systems transform the energy captured by the WECs into useful energy in a
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Point absorber Attenuator SPD

Overtopping device Oscillating water colum OWSC

Fig. 4: Main classes of WECs [ c© European Marine Energy Centre].

single step, for instance, the linear electric generator. On the other hand, power indirect

conversion systems transform the energy coming from the WECs in two or more steps, for

example, a system of air turbine coupled with a rotary electric generator is used to trans-

form the energy captured by an oscillating water colum into electricity [14, 15, 16]. In some

cases, such as point absorber and submerged pressure differential systems, where a linear

reciprocal movement is obtained, it is convenient to use a direct energy conversion system,

because the nature of the movement of the WECs fits perfectly with the movement of the

direct energy conversion system. Currently, the vast majority of the designs and prototypes

of WECs use indirect power generation systems, due to the infrastructure and technological

development based on the use of rotatory generators. The major drawback of the indirect

power generation system is that the overall system efficiency is affected by the turbines,

gearboxes or hydraulic system used to couple the low frequency movement of ocean waves

with the high frequency movement of the rotary generator. As a result, the power con-

version systems are bulky and expensive. On the other hand, the power direct conversion

systems reduce the mechanical complexity and therefore the overall system efficiency im-
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proves. Power direct conversion system are characterized by a big force (depending on

the size of the wave energy converter) and a low frecuency that match with the low fre-

cuency of the wave. In terms of wave energy there are very few variants of direct power

conversion systems. In a global context, almost all of the direct power conversion system

devices are based on linear generators and their variants, which have great engineering and

technological challenges, such as a high attractive force between translator and stator. This

complicates the mechanical and the bearing designs [17, 18, 19, 20]. An alternative way

to obtain useful energy from the WECs in a single step is to use a magnetohydrodynamic

(MHD) generator. Although both linear generators and MHD generators have the same

operating principle and are based on the use of permanent magnets, the main difference

between them is that the induced current and voltage in the MHD generators are generated

in an electrically conducting fluid instead of a solid conductor.

Magnetohydrodynamics (MHD) is the branch of physics which combines the subjects

of fluid dynamics and electromagnetism to study the behavior of electrically conducting,

non-magnetizable fluids interacting with magnetic fields. In nature, these kind of phenom-

ena appear in a wide range of situations from geophysical phenomena, like the dynamo

effect which originates the Earth’s magnetic field, to the formation and evolution of stars

and galaxies [21, 22]. From the technological point of view, MHD is applied in many tech-

nological developments, where electrically conducting working fluids are employed, for

instace, ionized gas (plasma), liquid metals, electrolytes and molten salts. Electromagnetic

effects can be used to control, stir, pump or levitate conducting fluids as well as for heat

transfer enhancement or the generation of electric power.

An MHD generator is a device that converts the kinetic energy of an electrically con-

ducting fluid, for instance a liquid metal, into electrical energy through the interaction with

a static magnetic field. A common MHD generator consists of a duct with a rectangular

cross-section immersed in a static magnetic field that is transversal to a pair of insulating

walls. The walls parallel to the applied field are electrical conductors (electrodes). When

a conducting fluid flows inside the duct, its motion within the imposed magnetic field in-

duces an electric current perpendicular to both the fluid motion and the applied field that

can be extracted through the electrodes connected to an external load. If the fluid motion is

unidirectional, a DC current is induced while, if the fluid carries out an oscillatory motion,

an AC current is generated. In this way, the kinetic energy of the fluid is converted directly

into electric energy without the need of mechanical parts. Many research programs on

MHD generation have been developed in different countries since the last century. MHD

plasma generators received much attention for the production of electric energy at large

scale although, among other technical problems, the requirement of working at high tem-

peratures imposed severe restrictions in their development [23]. In turn, liquid metal MHD

(LMMHD) generators were considered since the sixties as an alternative for energy pro-

duction in the space [24]. In the seventies and eighties this technology was also explored
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with the aim of developing small energy conversion systems that could use solar and low

temperature heat sources [25]. Although at large scale MHD generators have not reached

a definitive assessment, at small scale are considered as valuable options for specific ap-

plications due to particular advantages. For instance, alternate LMMHD generators avoid

global fluid circulation and may be coupled to different sources of mechanical energy, such

as thermoacoustic engines or WECs [26, 27, 28]. In the late eighties a proposal was made at

Los Alamos National Laboratory to transform acoustic power into electrical power through

a liquid metal MHD acoustic transducer [29]. In these devices, the thermoacoustic effect is

used to generate an oscillatory motion of a conducting fluid in a duct immersed in an ap-

plied transverse magnetic field [30, 31, 32]. Alternate liquid metal MHD generators were

later proposed to convert the oscillatory motion of ocean waves into electricity. In 1992 re-

ciprocating magnetohydrodynamic generator for wave energy was first proposed by Rynne

[33], where sea water passes through a duct under the presence of permanent magnets. The

problem with this concept is that the conductivity of the sea water is extremly low com-

pared with metals, so that the power output is very small. In 2005 Koslover patented a

LMMHD power generation system coupled to a WEC and also performed the theoretical

analysis about how to obtain the maximum power output [34]. In 2006 a laboratory scale

of a LMMHD generator for wave energy was designed, manufactured and set up at the In-

stitute of Electrical Engineering, Chinese Academy of Sciences [35, 36]. In 2008 Scientific

Applications & Research Associates (SARA) designed, build and tested a 100 kW labora-

tory demonstration LMMHD generator for wave energy conversion [37]. Recently in 2016

a LMMHD generator coupled with a WECs was proposed to recharge autonomus underwa-

ter vehicles, which are limited by their on-board energy storage capability [38, 39]. Since

only limited efforts have been made to couple a LMMHD with a wave energy converter, it

is necessary to perform more basic and technological research to determine the feasibility

of using wave energy to produce electricity through MHD generators.

In this context, the Renewable Energy Institute of the National Autonomous University

of Mexico (IER-UNAM) and the Center for Research in Applied Science and Advanced

Techology - Querétaro, of the National Polytechnic Institute (CICATA-Querétaro, IPN), as

part of the Mexican Center for Innovation in Ocean Energy (CEMIE-O), is developing a

research program on LMMHD alternate generators for harnessing wave energy, which is

one of the first programs in Mexico of this nature. In the present work, analytical and ex-

perimental studies of the LMMHD alternate generator are presented. Given the enormous

potential of Mexico for the extraction of wave energy [40], it is worthwhile to understand

deeply the different physical phenomena present in a LMMHD alternate generator and as-

sess its potential in the conversion of the energy captured by the WECs into useful energy.

The structure of this thesis is as follows. In chapter 1 a theoretical analysis of the flow

and electric features of a LMMHD alternate generator is presented. It starts by establishing

the equations that govern the MHD phenomena, which include the fluyd dynamics equa-
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tions coupled with the electromagnetic field equations. Then the flow behaviour in the

MHD generator is explored in two different regions. First, asymptotic solutions for low

and high oscillating frequencies in the uniform magnetic field region far from the magnet

edges are used to explore the phase lag produced by the Lorentz force between the velocity

and the axial pressure gradient. In addition, the analysis of the boundary layer flow in the

non-uniform magnetic field region reveals that small non-linear effects lead to the appear-

ance of steady streaming vortices superimposed on the harmonic flow. Finally, an analysis

of the LMMHD alternate generator electrical behavior is performed. In chapter 2 the ex-

perimental design of a LMMHD alternate generator at laboratory scale is described. The

experimental metodology used is detailed in chapter 3. Chapter 4 presents the experimental

results of the flow dynamics and the electrical characterization of the MHD generator. The

design of a new experimental device that couples an alternate LMMHD generator with a

WEC and that will be tested in a wave channel, is also presented. Ultimately, the conclu-

sions of the thesis are discussed in chapter 5.





Chapter 1

Theoretical analysis of a LMMHD

alternate generator

In this chapter§, an overview of the flow dynamics and electrical behavior of a liquid metal

magnetohydrodynamic (LMMHD) alternate generator is presented with the purpose of hav-

ing a better undertanding of the involved physical phenomena. A two-dimensional model

of an MHD generator is used to investigate analytically the laminar liquid metal flow cre-

ated by an oscillatory pressure gradient (for instance, produced by either thermoacoustic

effect or ocean waves) imposed at the extremes of the generator duct. We analyze the flow

in two different regions. In the first region, we consider the flow far from the edges of the

generator where the magnetic field is uniform. With the aim of understanding the interplay

of the imposed pressure gradient and the braking Lorentz force created by the interaction

of the induced current with the applied magnetic field, asymptotic solutions are derived

in the limits of low and high oscillating frequencies. The second analyzed flow region is

where the applied magnetic field is non-uniform, that is, the region where the flow enters

or leaves the magnetic field. We pay a particular attention to the behavior of the oscillatory

boundary layers immersed in the spatially varying magnetic field. These layers, which are

a combination of the Stokes and Hartmann layers, determine the flow dynamics to a large

extent. Using a perturbation solution, it is found that non-linear effects give rise to a steady

streaming vortices in the fringing magnetic field. In addition, a simplified model that allows

to characterize the electrical behavior of the LMMHD generator is presented.

1.1 Governing equations

MHD studies the motion of electrically conducting (non-magnetizable) fluids in the pres-

ence of magnetic fields. The motion of a conducting fluid in an existing magnetic field

§Part of this chapter is based on the paper: Domnguez-Lozoya, J. C., Perales, H. and Cuevas, S. ”Analysis

of the oscillatroy liquid metal flow in an alternate MHD generator”, Rev. Mex. Fs. (In press).
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induces electric currents in the medium. In turn, these currents produce an induced mag-

netic field which modifies the existing field. Additionally, the interaction of induced and

applied magnetic fields with electric currents circulating in the fluid generates a body force,

the Lorentz force, that affects the main flow. In general, the main characteristic of MHD

phenomena is the coupling of the velocity and electromagnetic fields. Therefore, the fun-

damental equations that govern MHD flows arise from the coupling of the fluid dynamics

and electromagnetic field equations and will be presented next.

1.1.1 Fluid Dynamic equations

Since liquids metals can be considered incompressible in most practical applications, the

mass conservation equation reduces to

∇ · u = 0, (1.1)

where u is the velocity field. Far from the melting point liquid metals present a Newtonian

behavior [41], therefore the momentum balance leads to the Navier-Stokes equation which

is given by
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + ν∇2u +

1

ρ
f, (1.2)

where p is the pressure field while f is the electromagnetic body force (Lorentz force) per

unit volume which will be defined below. In addition, ρ and ν are the mass density and

kinematic viscosity of the fluid, respectively. The energy conservation equation or heat

transfer equation when a electromagnetic interaction is present can be expressed as

ρCp

[

∂T

∂t
+ (u · ∇)T

]

= ∇ · (kt∇T ) +
j2

σ
+ Φν, (1.3)

where T is the temperature, j is the electric current density vector, Φν denotes the viscous

disipation that involves quadratic terms of the velocity gradients, C is the specific heat,

k is the thermal conductivity and σ is the electric conductivity. The second term on the

rigth-hand side denote the Joule dissipation in the fluid due to the circulation of currents

in the medium. Notice that the energy conservation equation is not coupled with the mo-

mentum and mass conservation equations. Evidently, the above equations are insufficient

to describe the phenomenon completely if the electromagnetic interaction is considered.

Therefore, they must be complemented with the equations of the electromagnetic field,

which in addition to the Maxwell equations and the equation for the Lorentz force, com-

prise the constitutive equations that characterize the fields in different media.

1.1.2 Electromagnetic field equations

The laws of electromagnetism are summarized in a series of expressions known as Maxwell’s

equations, which are a set of four equations that include the Gauss’s law for the electric
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field, the Gauss’s law for the magnetic field, the Faraday’s law of induction and Ampere-

Maxwell law, which synthesize the behavior of electromagnetic phenomena.The Maxwell

macroscopic equations in a homogeneous, isotropic and linear medium are briefly de-

scribed below.

Gauss’s law for the electric field indicates that the electric field flux through a closed

surface is equal to the total charge enclosed in the volume limited by this surface. In

differential form the Gauss’s law is expressed as

∇ · E = ρe

ǫ
, (1.4)

wherer E is the electric field, ρe is the electric charge density, and ǫ is the electric permittiv-

ity of the medium. The Gauss’s law for magnetism expresses the nonexistence of isolated

magnetic charges, or as they are usually known, magnetic monopoles. Distributions of

magnetic sources are always neutral in the sense that they have a north and south poles, so

their flux through any closed surface is zero, so that in differential form we have

∇ · B = 0, (1.5)

where B is the magnetic induction field. Faraday’s law of induction establishes that the

electromotive force induced in a circuit is directly proportional to the rate of change of

the magnetic flux that crosses the circuit. In other words, it establishes the possibility

of producing electric fields from time varying magnetic fields. At every point in space

Faraday’s law can be expressed in the form

∇ × E = −∂B

∂t
. (1.6)

The Ampère-Maxwell law or generalized Ampère’s law, establishes that the magnetic fields

can be produced by electrical currents or due to the time variation of electric fields. The

differential expression takes the form

∇ × B = µmj + µmǫ
∂E

∂t
, (1.7)

where µm is the magnetic permeability of the medium. Since liquid metals are non magnetic

materials, their magnetic permeability is approximately equal to the magnetic permeability

of the vacuum µ0. When applying the divergence operator to equation (1.7) and using the

Gauss law (1.4), we obtain the equation of conservation of the electric charge or continuity

equation, which establishes that there is no destruction or creation of electric charge, and

that in any electromagnetic process the total charge of an isolated system is conserved. In

its differential form, the charge conservation equation has the following form

∇ · j + ∂ρe

∂t
= 0. (1.8)
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Maxwell’s equations must be complemented by including a constitutive equation that re-

lates the electric current density in the medium with the fields E and B. The most common

equation, valid for conductive liquids and gases, is the so-called Ohm’s law. In a resting

conductor it is found that the electric current density j is proportional to the force experi-

enced by the free charges [41]

j = σEr, (1.9)

where Er is the electric field from a reference frame at rest. If the electrically conductive

material moves with respect to the laboratory system with speed u, Ohm’s law takes the

form

j = σ(E + u × B) + ρeu, (1.10)

where the second term of the right side is known as the convective current. Finally, we must

consider the electromagnetic force exerted on the medium. In a continuous medium with

charge density ρe and electric current density j, the electromagnetic force (Lorentz force)

has the form

f = ρeE + j × B. (1.11)

1.1.3 MHD approximation

The coupling of the fluid dynamics equations and the electromagneticfield equations re-

quire some considerations. The fluid dynamics equations are not relativistic which means

that are invariant before Galilean transformations. In turn, electromagnetic field equations

are relativistic which implies that are invariant before Lorentz transformations. Mixing

equations with different invariance properties could lead to an erroneous description of the

phenomenon. To solve this incompatibility we use what is known as the MHD approxi-

mation , which is based on the simplification of the electromagnetic equations using the

following assumptions:

• All considered phenomena are not relativisitc This means that the speed of the elec-

trically conducting fluid and any material object is much lower than the speed of light

(c), i.e. c2 ≫ u2. This assumption allows us to neglect the convective current (ρeu)

in the Ohm’s law and the electric term in the Lorentz force (ρeE).

• The flows take place in quasi-stationary or low frequency electromagnetic fields,

thus implying that the displacement current (µ0ǫ
∂E
∂t

) of the Ampère-Maxwell law is

negligible.

• The induced electric fields are of order u×B, which is equivalent to assuming that the

induced magnetic field is much smaller than the applied magnetic field. This implies

that the magnetic field is the same in any frame of reference.
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Under this approximation the electromagnetic field equations are simplified so that they

recover the Galilean invariance, making it possible to merge them with the equations of

the fluid dynamics and giving rise to the equations that govern the MHD phenomena. The

resulting set of equations under the MHD aproximation has the following form

∇ · u = 0, (1.12)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + ν∇2u +

1

ρ
j × B, (1.13)

∇ × E = −∂B

∂t
, (1.14)

∇ · B = 0, (1.15)

∇ × B = µ0j, (1.16)

j = σ(E + u × B). (1.17)

Note that the energy conservation equation is not included owing to the fact that the de-

termination of the thermal behavior of the system is not the goal of this work. The Gauss

equation for the electric field has been ignored since the charge density is not of interest

and the electric field is completely defined by Faraday’s law (1.14), Ampère’s law (1.16)

and Ohm’s law (1.17). The Lorentz’s force equation is implicit in the Navier-Stokes equa-

tions as the relevant body force. From equations (1.14)-(1.17) it is possible to obtain a

transport equation for the magnetic field, known as the induction equation, which describe

the magnetic field transport by diffusion and convection. This equation is expressed as

∂B

∂t
= νm∇2B + ∇ × (u × B), (1.18)

where νm = 1/µ0σ is known as the magnetic diffusivity. The diffusive transport is repre-

sented by νm∇2B, while the convective transport is given by ∇ × (u × B). The dominant

transport mechanism (convective or diffusive) in a given problem is determined to a great

extent by the value of the electrical conductivity of the fluid. In more general terms, the

dominance of diffusive or convective mechanisms is determined by the magnetic Reynolds

number defined as Rm = UL/νm = µ0σUL where U and L are characteristic scales of ve-

locity and length. When Rm << 1, the transport of magnetic field is dominated by diffusion

while for Rm >> 1 convective transport is the dominant one. Most MHD phenomena at the

laboratory and industrial scales take place under conditions where Rm << 1.

1.2 Oscillatory flow in an MHD generator

We now consider the oscillatory flow of a liquid metal in a duct of rectangular cross-section

under a transverse magnetic field. The walls perpendicular to the applied field are electrical
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insulators while those parallel to the field are perfect conductors connected to an external

load (see Fig.1.1). The oscillatory flow is driven by a zero mean, time-periodic pressure

gradient imposed at the extremes of the duct. The system of equations that govern the un-

Fig. 1.1: Sketch of the alternate MHD generator.

steady flow of an incompressible, electrically conducting viscous fluid in the presence of a

magnetic field are the continuity equation, Navier-Stokes equation, Faraday’s law of induc-

tion, Ampère’s law, Gauss’s law for the magnetic field and Ohm’s law which, respectively,

can be conveniently written in the following dimensionless form

∇ · u = 0, (1.19)

∂u

∂t
+

R

R2
ω

(u · ∇)u = −∇p +
1

Rω

∇2u +
Ha2

Rω

j × B, (1.20)
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∇ × E = −R2
ω

R

∂B

∂t
, ∇ × B = Rmj, (1.21)

∇ · B = 0, j = E + u × B, (1.22)

where the flow velocity u, the pressure p, the magnetic field B, the electric field E and

the current density j are normalized by Uo = G/ρω, Gh, Bo, UoBo and σUoBo, respec-

tively. Here, G and ω are the amplitude and frequency of the imposed oscillatory pressure

gradient, ρ and σ are the mass density and the electrical conductivity of the fluid, h is the

distance between the walls transverse to the magnetic field, and Bo is the maximum strength

of the applied field, respectively. The coordinates (x, y, z) and time t, are normalized by h

and 1/ω, respectively. Further, the dimensionless parameters Rω = ωh2/ν, R = Gh3/ρν and

Ha = Boh
√
σρν, are the frequency parameter (or oscillation Reynolds number), the ampli-

tude parameter and the Hartmann number, respectively, where ν is the kinematic viscosity.

Assuming that the physical and geometrical properties of the system remain unchanged,

these dimensionless parameters express, correspondingly, the influence of the oscillation

frequency, the amplitude of the pressure gradient and the magnetic field strength. In turn,

Rm = µ0σUoh is the magnetic Reynolds number that in this context gives an estimation of

the induced magnetic field compared with the applied field [42].

The oscillatory motion of the fluid inside the magnetic field induces an electric current

density in the spanwise (z) direction. The current, in turn, interacts with the applied field

originating a braking Lorentz force in the axial x-direction. Usually, in liquid metal MHD

flows the low magnetic Reynolds number approximation holds which means that the mag-

netic field induced by the fluid motion is much smaller than the applied field and can be

neglected [42]. Hence, the magnetic field is uncoupled from the fluid motion and governed

by the magnetostatic equations.

1.3 Flow in the uniform magnetic field region

We now assume that the aspect ratio of the generator is very large, that is, w/h >> 1 (see

Fig. 1.1) so that the conducting walls (electrodes) are located at distant positions z = ±zo,

connected to an external electrical circuit. Under this approximation, we can consider that

the oscillatory flow is two-dimensional, confined between the insulating walls transverse to

the magnetic field (see Fig. 1.2). Since the current is induced in the direction perpendicular

to the plane of motion, there must exist an electric field, Ez, the value of which depends

on the external electrical load. As the magnetic field remains unperturbed, Faraday’s law

of induction reduces to ∇ × E = 0 and the electric field becomes potential. In fact, it can

be shown that under the present assumptions Ez is spatially constant and it is at most a

function of time [43].
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Fig. 1.2: Two-dimensional model of the flow in an MHD alternate generator.

We now restrict to the region where the applied field is uniform so that, in dimensionless

terms, B = ŷ. In this region the flow is fully developed, therefore, u = u(y, t) x̂ and the

Navier-Stokes equation reduces to

∂u

∂t
= −∂p

∂x
+

1

Rω

∂2u

∂y2
− Ha2

Rω

(Ez + u). (1.23)

We disregard transient solutions and consider that the harmonic axial pressure gradient that

drives the flow is given by the real part of −∂p/∂x = eit. Assuming that the axial velocity

component and the electric field are also harmonic functions of time, u = u0(y)eit and

Ez = −Keit, with K a constant known as the load factor [44], a solution to the Eq. (1.23)

that satisfies the no-slip boundary conditions can be found, namely,

u(y, t) = Umeitλ

(

cosh λ − cosh λy

λ cosh λ − sinh λ

)

, (1.24)

where λ =
√

Ha2 + iRω and Um is the dimensionless spatial average of the velocity profile

in the cross-section. From this solution it is possible to establish a model of the alternate

MHD generator that allows to assess the electrical performance of the device [44], as it will

be shown in section 1.5.

In the present section the attention is focused in the interplay of inertia and the braking

Lorentz force. The explicit form of the velocity profile (1.24) is, however, not particularly

insightful. In order to get a better understanding of the physical behavior of this oscillatory

MHD flow, we look for asymptotic solutions in the limits Rω ≪ 1 and Rω ≫ 1, which

correspond to the low and high frequency oscillatory motions, respectively.
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1.3.1 Low-frequency solution: Rω ≪ 1

In the low frequency limit it is possible to obtain a regular asymptotic solution in the flow

domain [45]. Since we are interested in the limit when Rω takes very small values, it is

convenient to use the rescaled variables û = u/Rω and Êz = Ez/Rω, so that Eq. (1.23)

becomes

Rω

∂û

∂t
= −∂p

∂x
+
∂2û

∂y2
− Ha2(Êz + û). (1.25)

Substituting the harmonic pressure gradient and assuming solutions given as the real part

of the expressions û = ĝ(y)eit and Êz = −K̂eit, an equation for the function ĝ(y) is found.

We expand this function as a perturbation series on the small parameter Rω, namely,

ĝ(y) = ĝo(y) + Rωĝ1(y) + O(R2
ω), (1.26)

and solve the corresponding equations with no-slip boundary conditions at each order on

the parameter Rω. After taking the real part, the final result is

û(y, t) = ûop

{[

1 − cosh Ha y

cosh Ha

]

cos t + Rω

[

1

2Ha

(

y
sinh Ha y

cosh Ha

− tanh Ha
cosh Ha y

cosh Ha

)

+
1

Ha2

(

1 − cosh Ha y

cosh Ha

)]

sin t

}

+O(R2
ω), (1.27)

where ûop = Ha−2+K̂. At zero-order in Rω, a quasi-steady Hartmann flow in phase with the

pressure gradient oscillation, is obtained. As usual, the profile is flattened as Ha increases

[42]. An out of phase contribution is also found at O(Rω), but it is modulated by terms of

O(Ha−1) and O(Ha−2) which become negligible the higher the Ha values are. When the

Hartmann number is very small, i.e. Ha→ 0, a purely hydrodynamic flow is recovered

û(y, t) =

[

(1 − y2)

2
cos t +

Rω

24
(1 − y2)(5 − y2) sin t

]

, (1.28)

which shows an in-phase Poiseuille flow contribution. The phase angle between the pres-

sure gradient and the velocity is given by

θ = arctan

















−Rω

[

1
2Ha

(

y
sinh Hay

cosh Ha
− tanh Ha

cosh Hay

cosh Ha

)

+ 1
Ha2

(

1 − cosh Hay

cosh Ha

)]

[

1 − cosh Hay

cosh Ha

]

















. (1.29)

Note that when Ha→ 0 viscosity originates a non-zero phase angle, namely, θ = − arctan[Rω(5−
y2)/12]. In turn, when Ha→ ∞, the phase angle reduces to zero indicating that the flow is

frozen by the strong magnetic field interaction.
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1.3.2 High-frequency solution: Rω ≫ 1

At high frequencies a uniform asymptotic solution for the whole domain does not exist.

Therefore, matching asymptotic solutions in the core and the boundary layer has to be

sought. For the core, we start from Eq. (1.23) and introduce the variables u = g(y)eit and

Ez = −Keit, assuming that −∂p/∂x = eit. Hence, we get the equation

ig − 1 =
1

Rω

[

d2g

dy2
− Ha2(g − K)

]

. (1.30)

We now look for a solution g(y) as an expansion in the small parameter R−1
ω , namely,

g(y) = go(y) +
1

Rω

g1(y) + O(R−2
ω ). (1.31)

Here, we assume that Ha2 = γRω, where γ is a positive real number. Then in the limit

Rω → ∞, from Eq. (1.30) and (1.31), the first order solution in the core is go = (1 +

γK)/(γ + i) = (1 + γK)(γ − i)/(γ2 + 1). Therefore, the core velocity field is

uc =
(1 + γK)

(γ2 + 1)
(γ cos t + sin t) + O(R−2

ω ). (1.32)

This represents a uniform time-periodic flow that lags behind the imposed pressure gradient

according to the value of γ, where the phase angle between the pressure gradient and the

core velocity is θc = − arctan[1/γ]. For γ ≪ 1, a purely hydrodynamic flow is obtained.

In this case, the Lorentz force is negligible and there is a lag of −π/2 in the motion of the

core with respect to the pressure gradient. In turn, if γ = 1, the Lorentz force is of the same

order of magnitude as the inertial acceleration and the core flow presents a phase difference

of −π/4 with respect to the pressure gradient. When γ ≫ 1, the Lorentz force is dominant,

therefore, the phase lag is negligible and the core follows the pressure gradient oscillation.

Let us now consider the boundary layer flow. We introduce the stretched variable Y =

R
1/2
ω (1+ y) in the bottom boundary layer, hence at the wall, Y = 0 and u(0, t) = 0. Then Eq.

(1.30) becomes

d2gb

dY2
− igb + 1 = γ(gb − K). (1.33)

for the corresponding function gb in the boundary layer. Expressing gb as a series like

(1.31), the solution of Eq. (1.33) that satisfies no-slip boundary conditions and that matches

with the core flow (gb |Y≫1= (1+γK)/(γ2 + 1)) within an error of order O(R−1
ω ), leads to the

boundary layer flow

u(Y, t) =
(1 + γK)

(γ2 + 1)

{[

γ − exp(−αY)(γ cos βY − sin βY)
]

cos t

+
[

1 − exp(−αY)(cos βY + γ sin βY)
]

sin t
}

+ O(R−2
ω ), (1.34)
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where

α

β

}

=















√

γ2 + 1 ± γ
2















1
2

, (1.35)

The phase angle between the boundary layer and the pressure gradient is given by

θb = arctan

{−[1 − exp(−αY)(cos βY + γ sin βY)]

γ − exp(−αY)(γ cos βY − sin βY)

}

. (1.36)

Again, in-phase and out-of-phase contributions are obtained in the boundary layer, the

structure of which depends on the value of γ. Provided γ ≪ 1, a purely hydrodynamic

(Stokes) boundary layer is found [45]. When γ = 1, a mixture of Stokes and Hartmann

layers results. Finally, in the case γ ≫ 1, magnetic forces dominate and a Hartmann layer

oscillating in phase with the pressure gradient (û ≈ (1/Rω)[1 − e−
√
γY] cos t) is obtained.

An illustrative way of visualizing the phase lag produced by the Lorentz force between

the velocity and the pressure gradient is by noticing that these quantities satisfy the para-

metric equations of an ellipse in the plane u vs. −∂p/∂x [46]. If we define X = −∂p/∂x

and Y = u, we get for either the core or the boundary layer flows

(

a2

b2
+ 1

)

X2 − 2a

f b2
XY +

Y2

f 2b2
= 1, (1.37)

where f (γ) = (1+ γK)/(γ2 + 1). For the core flow, a = γ and b = 1, while for the boundary

layer flow, we have a = γ − exp(−αY)(α cos βY − sin βY) and b = 1 − exp(−αY)(cos βY +

γ sin βY . In Figures 1.3 and 1.4, equation (1.37) is plotted during a whole cycle for the case

Rω = 30, K = 0.8, and different γ values. Some interesting information can be extracted

from these plots, particularly because they clearly compare the velocity amplitude before

and after the pressure gradient inversion. In fact, the vertical coordinate axis indicates

the precise moment at which the pressure gradient is inverted. In the second and fourth

quadrants, the pressure gradient acts in favor of the fluid motion, while in the first and third

quadrants it acts against the fluid motion. Figure 1.3 shows the curves corresponding to the

core flow. As it was shown, in the laminar hydrodynamic regime (γ = 0, i.e. Ha = 0) the

core flow presents a phase difference of −π/2 with respect to the pressure gradient when

Rω ≫ 1, and the corresponding curve is a circle. For increasing values of γ, the curve is

distorted and rotated clockwise as a result of stronger magnetic interaction which changes

the phase difference between the velocity and the pressure gradient. When the Lorentz

force is of the same order of magnitude as the inertial acceleration (γ = 1), a tilted ellipse

is obtained while in the case γ ≫ 1 (Ha→ ∞), no phase difference exists between the flow

and the pressure gradient, therefore, the curve reduces to a straight line. The corresponding

curves for the boundary layer flow are shown in Figure 1.4. Although similar ellipses are

formed note that they are not the same as in the core flow since, in addition to the magnetic

interaction, viscosity also affects the phase difference between the velocity and the pressure
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gradient. In fact, no circle is formed even when Ha = 0. However, when γ ≫ 1 (Ha→ ∞)

a straight line is formed indicating that the phase difference disappears.
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Fig. 1.3: The phase-like plane for the core velocity solution for different γ values and

K = 0.8.
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Fig. 1.4: The phase-like plane for the boundary layer velocity solution for different γ

values, Y = 0.5 and K = 0.8.
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1.3.3 Summary

We have explored the zero-mean oscillatory two-dimensional flow of a liquid metal in an

alternate MHD generator driven by an imposed harmonic pressure gradient. In the uni-

form field region, characteristic flows were explored through asymptotic solutions for a

small (Rω ≪ 1) and high (Rω ≫ 1) oscillation frequencies and arbitrary Hartmann num-

bers. For small frequencies, a first order quasi-steady Hartmann flow in phase with the

pressure gradient is obtained, while an out of phase contribution is found at O(Rω). For

high frequencies a solution for the core and boundary layer was obtained. The core solu-

tion represent a uniform time periodic flow that lags from the imposed pressure gradient

according to the strength of the magnetic field. When the magnetic field is negligible, a

purely hydrodynamic flow is obtained and the lag between the core and the pressure gra-

dient is π/2. For very strong magnetic field, the lag is negligible and the core follows the

pressure gradient oscillation. Out of phase and in phase contributions were also found in

the boundary layer, where a purely hydrodynamic (Stokes) boundary layer is obtained for

negligible field while a Hartmann layer, oscillating in phase with the pressure gradient, is

obtained for strong fields. These results can be conveniently synthesized graphically.



36 Chapter 1. Theoretical analysis of a LMMHD alternate generator

1.4 Flow in the non-uniform magnetic field region

In this section, we address the oscillatory flow of the liquid metal close to the edges of the

magnets where the magnetic field is non-uniform. In this region, the transverse magnetic

field varies from its maximum strength to zero as the x distance to the edge of the magnet

increases. Although the cross-section of the duct does not change, this can be considered

as an entrance flow problem due the non-homogeneity of the magnetic field. Forced oscil-

lations produced by the imposed pressure gradient in the outer flow produce an oscillatory

flow in the Stokes-Hartmann boundary layer, however, due to the action of viscosity, the

flow oscillations in this layer do not average to zero but a net steady flow is produced,

known as steady streaming [47, 48]. The steady streaming is induced by the non-linear

Reynolds stresses in the boundary layer that appear due to the axial dependence of the

streamwise velocity, produced in this case by the existence of the non-uniform field. In

hydrodynamic flows, steady streaming appears, for instance, at the entrance of a rigid tube

when a zero-mean oscillatory flow is imposed [49] or in the classic problem of oscillating

bluff bodies [48, 50]. The most relevant characteristic feature of this kind of oscillatory

flows is the persistence of the steady streaming motion beyond the boundary layer [51].

The action of a uniform transverse magnetic field on the steady streaming produced by an

oscillatory laminar boundary layer close to an insulating curved wall was previously stud-

ied using a perturbation expansion taking the inverse of the Strouhal number as a small

parameter [52]. Following a similar procedure, we explore here the appearance of steady

streaming in the boundary layers of the MHD generator promoted by the non-uniformity

of the applied transverse magnetic field.

As in section 1.3, we consider the oscillatory motion of the liquid metal limited by two

infinite insulating plane walls at rest under a transverse magnetic field. We are now focused

on the region close to the edges of the magnets, so the transverse magnetic field is expressed

in the form B = By(x)ŷ , where the variation of the field in the axial direction is given in

dimensionless form as [53, 54]

By(x) =
1

1 + e−x/x0
. (1.38)

Here x0 is a positive constant whose magnitude governs the magnetic field gradient. Figure

1.5 shows the magnetic field distribution for different vales of x0. We can observe that

By → 0 as x → −∞ and By → 1 as x → ∞. Although this field is not curl-free, it is a

reasonable approximation that take into account the streamwise variation of the magnetic

field [53, 54].

We assume that far from the walls (outer flow) the fluid presents an irrotational zero-

mean oscillatory motion in the axial direction produced by the imposed pressure gradi-

ent which in dimensionless form can be expressed as the real part of U(x, t) = U0(x)eit.

Due to continuity, the component of the velocity in the direction normal to the wall is

−(y + c)(dU/dx)eit where c is a complex constant. In dimensionless form, the outer flow is
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Fig. 1.5: Dimensionless applied magnetic field distribution as a function of the axial coor-

dinate x in the magnet edge region for different values of the x0 parameter.

governed by the equations

∂U

∂t
+ ǫsU

∂U

∂x
= −Nω

∂p

∂x
− NωJzBy, (1.39)

Jz = Ez + UBy,
∂Jz

∂z
= 0, (1.40)

where the outer velocity U, the pressure p, the outer current density Jz and the electric

field Ez are normalized by U∞ , σU∞B2
0
h, σU∞B0 and U∞B0h, respectively. Here U∞ is

the amplitude of the outer flow velocity. Likewise, the coordinates (x, y, z) and time t are

normalized by h and 1/ω, respectively. In addition the dimensionless parameters,

ǫs =
U∞
ωh

, Nω =
Ha2

Rω

=
σB2

0

ρω
, (1.41)

are respectively, the inverse of the Strouhal number and the oscillation interaction param-

eter [52]. ǫs and Nω may be interpreted as the ratio of the amplitude of the oscillation to

the characteristic length h and the ratio of the magnetic to the inertial forces, respectively.

Equation (1.39) corresponds to the Euler equation while equations (1.40) express the Ohm’s

law and conservation of current in the outer flow. We assume that the small amplitude of

oscillation approximation applies, that is ǫs ≪ 1, which ensures that boundary-layer sepa-

ration will not arise.
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From equations (1.39) and (1.40), the explicit form of the function U0(x) can be deter-

mined at the lowest order in ǫs, namely,

U0(x) =
Nω(1 + ByK)

i + NωB2
y

(1.42)

where the harmonic variation of the electric field was assumed.

The governing equations for the inner layer flow are

∂u

∂x
+
∂v

∂y
= 0 (1.43)

∂u

∂t
+ ǫs

(

u
∂u

∂x
+ v

∂u

∂y

)

= −Nω

∂p

∂x
+

1

Rω

∂2u

∂y
− Nω jzBy (1.44)

jz = Ez + uBy,
∂ jz

∂z
= 0, (1.45)

where the velocity components in x− and y−directions, u and v, respectively, are normal-

ized with U∞ while the inner current density, jz, is normalized with σU∞B0. In order to

ensure the validity of the boundary-layer approximation for the inner flow, it is assumed

that Rω ≫ 1. The boundary conditions to be satisfied by the inner flow are

u(x, 0, t) = 0, (1.46)

v(x, 0, t) = 0, (1.47)

u(x, y, t) −→ U(x, t); as y −→ ∞, (1.48)

where (1.46) and (1.47) represent the no-slip condition of the velocity components at the

wall and condition (1.48) matches the inner flow to the outer flow.

1.4.1 First order solution

We now look for a solution of the boundary layer problem as a perturbation expansion in

the small parameter ǫs. From the incompressible condition, the velocity components are

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (1.49)

where ψ is the stream function that can be expressed in the form

ψ(x, y, t) = ψ0(x, y, t) + ǫsψ1(x, y, t) + O(ǫ2
s ). (1.50)

where subindexes 0 and 1 denote the first and second approximations, respectively. By

eliminating the pressure gradient and current densities in Eq. (1.44) with the substitution
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of equations (1.39), (1.40), (1.45), and using (1.49) and (1.50), we find that ψ0 satisfies the

equation
∂2ψ0

∂t∂y
− 1

Rω

∂3ψ0

∂y3
+ NωB2

y

∂ψ0

∂y
=
∂U

∂t
+ NωB2

yU, (1.51)

with boundary conditions
∂ψ0

∂y
(x, 0, t) = 0, (1.52)

∂ψ0

∂x
(x, 0, t) = 0, (1.53)

∂ψ0

∂y
(x, y, t) −→ U(x, t); as y −→ ∞. (1.54)

Assuming that

ψ0(x, y, t) = U0(x)ξ0(x, y)eit, (1.55)

the function ξ0 satisfies

∂3ξ0

∂y3
− ∂ξ0

∂y

[

iRω + Ha2B2
y

]

= −(Ha2B2
y + iRω), (1.56)

with boundary conditions

ξ0(x, 0) =
∂ξ0(x, 0)

∂y
= 0,

∂ξ0(x, y)

∂y
−→ 1 as y −→ ∞. (1.57)

The solution of (1.56) that satisfies conditions (1.57) is

ξ0(x, y) = y − 1

α + iβ
(1 − e−(α+iβ)y), (1.58)

where

α(x) =

























√

Ha4B4
y + R2

ω + Ha2B2
y

2

























1
2

, β(x) =

























√

Ha4B4
y + R2

ω − Ha2B2
y

2

























1
2

.

From the solution (1.58) it is possible to estimate the thickness of the Stokes-Hartmann

boundary layer, namely, δ ≈ 1/[α(x)2+β(x)2]1/2. Notice that due to the streamwise variation

of the magnetic field, the layer thickness is not uniform in this region. The layer is much

thinner where the magnetic field is strong (By ≈ 1). If Ha2 ≫ Rω, the layer thickness is of

the order of the Hartmann layer, namely, δ ≈ Ha−1 [42]. Far enough from the magnet edges,

say x < 10x0, the magnetic field vanishes so that Ha = 0, and the velocity components

reduce to

u0 = U0(x)eit(1 − e−(1+i)η),
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v0 = −
dU0

dx
eit

(

η − 1

2
(1 − i)

[

1 − e−(1+i)η)
]

)

,

which coincide with the ordinary hydrodynamic limit [47], where η = y
√

Rω/2. In that

region, the layer thickness reduces to that of the Stokes layer, that is δ ≈ 1/R
1/2
ω .

1.4.2 Second order approximation

To O(ǫ), the equation for the second order approximation ψ1 has the form

∂2ψ1

∂t∂y
− 1

Rω

∂3ψ1

∂y3
+ NωB2

y

∂ψ1

∂y
= U

∂U

∂x
− ∂ψ0

∂y

∂2ψ0

∂x∂y
+
∂ψ0

∂x

∂2ψ0

∂y2
. (1.59)

Note that the products of the harmonic functions and derivatives on the right-hand side

of (1.59) introduce terms proportional to sin 2t and cos 2t, as well as steady-state terms.

Therefore, the non-linear convective contribution gives rise to time independent terms that

are responsible of the steady streaming phenomenon. In order to solve Eq. (1.59) we

assume that

ψ1(x, y, t) = U0

dU0

dx

(

ξ1t(x, y)e2it + ξ1s(x, y)
)

, (1.60)

where the real part of U0(x) must be taken. Function ξ1t satisfies the equation

∂3ξ1t

∂y3
− (Ha2B2

y + 2iRω)
∂ξ1t

∂y
= − Rω

2

[

1 −
(

∂ξ0

∂y

2

+
∂ξ0

∂y

∂2ξ0

∂x∂y

U0(x)

U′
0
(x)

)

+ξ0

∂2ξ0

∂y2
+

U0(x)

U
′
0
(x)

∂ξ0

∂x

∂2ξ0

∂y2

]

, (1.61)

with boundary conditions

ξ1t(x, 0) =
∂ξ1t

∂y
(x, 0) = 0 and

∂ξ1t

∂y
−→ 0 as y −→ ∞. (1.62)

The solution is given in the form

ξ1t(x, y) =
Rω

4U′
0
(x)

[

κt1e−λy + κt2e−γy + κt3e−2γy + κt4

]

, (1.63)

with γ = α(x) + iβ(x) and λ = αt(x) + iβt(x), where

αt(x) =

























√

Ha4B4
y + 4R2

ω + Ha2B2
y

2

























1
2

, βt(x) =

























√

Ha4B4
y + 4R2

ω − Ha2B2
y

2

























1
2

.

The constants κt1, κt2, κt3, and κt4 in (1.63) are defined in the Appendix.
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In the limit of a vanishing magnetic field, (1.63) correctly reduces to the hydrodynamic

solution [47]. In particular, the contribution to the tangential velocity takes the form

∂ξ1t(x, y)

∂y
=

1

2

[

−ie−(1+i)
√

2η + ie−(1+i)η − (i − 1)ηe−(1+i)η
]

. (1.64)

The steady state contribution, ξ1s, satisfies the boundary value problem

∂3ξ1s

∂y3
− λ2

s

∂ξ1s

∂y
=

Rω

4















2 − 2
∂ξ0

∂y

∂ξ0

∂y
+ ξ0

∂2ξ0

∂y2
+ ξ0

∂2ξ0

∂y2
+

U0(x)

U′
0
(x)

(

− ∂ξ0

∂y

∂2ξ0

∂x∂y
− ∂ξ0

∂y

∂2ξ0

∂x∂y
+
∂2ξ0

∂y2

∂ξ0

∂x
+
∂2ξ0

∂y2

∂ξ0

∂x

)















, (1.65)

ξ1s = ξ
′
1s = 0, at y = 0, (1.66)

ξ
′
1s −→ 0, as y −→ ∞, (1.67)

where the overbar stands for complex conjugate quantities and λs = Ha2By(x). The solution

of equation (1.65) that satisfies the required boundary conditions is

ξ1s(x, y) =
Rω

U′
0
(x)κs6

(

κs1e−2αy + 2κs2e−λsy − e−αy(κs4eiβy + κs5e−iβy) + κs3

)

, (1.68)

where constants κs j( j = 1 to 6) are defined in the appendix.

When the magnetic field vanishes, Eq. (1.68) and its derivative reduce to

ξ1s ≈
13

8
− 3

4
η − 1

8
e−2η − 3

2
e−η cos η − e−η sin η − 1

2
ηe−η sin η, (1.69)

∂ξ1s

∂η
= −3

4
+

1

4
e−2η + 2e−η sin η +

1

2
e−η cos η − 1

2
ηe−η(cos η − sin η), (1.70)

which coincide with the corresponding expressions of ordinary hydrodynamic case [47].

The second order steady velocity component parallel to the wall for the inner layer is

u1s = ǫsU0

dU0

dx

∂ξ1s

∂y
,

where ∂ξ1s/∂y can be obtained from Eq. (1.68) for the MHD case and by Eq. (1.70)

for the hydrodynamic case. The latter presents the peculiarity that u1s does not vanish as

the distance from the wall tends to infinity. Actually, in the hydrodynamic problem it is

impossible to satisfy both the condition u1s → 0 as η→ ∞ and the no-slip condition at the

wall [47, 51]. Therefore, the condition at infinity must be relaxed, making that u1s remains

finite when η→ ∞. Then, the inner velocity at the outer edge becomes

lim
η→∞

u1s = −
3

4
ǫsU0

dU0

dx
. (1.71)
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Fig. 1.6: ∂ξ1s/∂y as a function of the y-coordinate for different values of Nω at a fixed

position within the fringing field (x = 0.5). Rω = 10, K = 0.8 and x0 = 0.5.

This means that the steady streaming motion extends beyond the boundary layer into the

potential flow. The finite velocity given by (1.71) may be considered as the inner boundary

condition for the outer flow [51]. Although far form the magnet edges ∂ξ1s/∂y tends to the

hydrodynamic limit (−3/4) as y → ∞, notice that dU/dx → 0 when the magnetic field is

negligible. Therefore, the steady streaming disappears in the purely hydrodynamic region.

Evidently, dU/dx is also zero in the uniform magnetic field region.

Unlike the hydrodynamic case, when a magnetic field is present the steady solution

(1.68) does satisfy the vanishing of the streaming flow as the distance from the walls tends

to infinity. This means that the streaming motion does not penetrates from the boundary

layer into the potential flow. Figure 1.6 shows the contribution to the tangential veloc-

ity ∂ξ1s/∂y as a function of the y-coordinate at a fixed position within the fringing field

(x = 0.5) for increasing values of Nω, with Rω = 10, K = 0.8 and x0 = 0.5. It can be

observed that as Nω increases ∂ξ1s/∂y → 0 and therefore the steady streaming becomes

weaker as the strength of the field grows. This means that the disturbance created by

streaming vortices at the extremes of the generator should not affect its performance dras-

tically.

The steady part of the stream function, ψ1s(x, y) = U0
dU0

dx
ξ1s, is shown in Fig. 1.7 as a

function of the x−coordinate for different values of the constant x0 that modulates the mag-

netic field gradient. The influence of the fringing region is clearly shown, the largest values

of ψ1s occur when the field gradient is more pronounced. This shows that the stronger the
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magnetic field gradient the more confined the streaming vortices are and the more intense

the flow is. In Fig. 1.8, the streamlines in the fringing field region are displayed for the

cases x0 = 0.5 and x0 = 1.5. Two steady recirculations are observed which extend, accord-

ingly to the value of x0, across the zone where the magnetic field passes from a uniform

value to zero.
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Fig. 1.7: Steady part of the stream function, ψ1s(x, y) = U0
dU0

dx
ξ1s as a function of the

x-coordinate at y = 1, for different values of the constant x0 that modulates the magnetic

field gradient. Rω = 10, Nω = 10, K = 0.8.
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Fig. 1.8: Stream lines of the steady streaming flow ψ1s(x, y) = U0
dU0

dx
ξ1s in the region of

non-uniform magnetic field. Rω = 10, Nω = 10 and (a) x0 = 0.5 and (b) x0 = 1.5.
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1.4.3 Summary

The finite extension of the applied magnetic field transverse to the electrically insulating

duct walls was considered for exploring the flow behavior. The analysis of the entrance os-

cillatory flow in the fringing field region at the edges of the MHD generator was carried out

for high oscillation frequencies using a perturbation method, assuming the small amplitude

of oscillation approximation. From the first order solution, the thickness of the boundary

layer was estimated, and it resulted a combination of the Stokes and Hartmann layers, each

of which are recovered in the corresponding limits. The second order solution revealed

that, superimposed to the primary oscillatory flow, a secondary flow composed by a time

periodic motion oscillating with twice the original frequency and a steady streaming con-

tribution exist. A pair of steady streaming vortices emerges in the fringing field region as a

consequence of non-linear effects caused by the spatial variation of the magnetic field. The

extension and intensity of the vortices grow as the magnetic field gradient increases. Unlike

the hydrodynamic case, these vortices do not penetrate into the potential flow but remain

confined in the boundary layer and, moreover, their strength decreases as the magnetic field

becomes stronger. Although the disturbance created by the steady streaming vortices is not

expected to affect the performance of the MHD generator, one could conveniently consider

a smooth magnetic field gradient for design purposes.
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1.5 Analytical model of the MHD generator

Now, in order to have a better understanding of the electrical behavior of an alternate MHD

generator, an analytical model is presented in this section. The model is focused on de-

termining the behavior of the electric current, the voltage, the electric output power and

the electric efficiency of the generator. The starting point is the dimensional system of

Eqs. 1.12 - 1.17 simplified by considering a two-dimensional problem. Here we follow

the equivalent circuit approach as presented in Ref. [55] for the case of a DC MHD gen-

erator. As in the previous sections, it is considered a two-dimensional oscillatory flow of

an incompressible, electrically conducting, viscous fluid confined between two insulating

parallel walls of infinite length (i.e. we consider only the region where the applied field

is uniform) and separated by a distance h=2D under a uniform magnetic field B = B0ŷ,

where B0 is the magnitude of the magnetic field and ŷ is the unit vector in the y-direction,

transverse to the walls. We consider the existence of perfectly conducting walls at the dis-

tant positions z = ±z0, connected to an external electric circuit; therefore, there must exist

an electric field Ez the value of which depends on the electric circuit conditions. As the

magnetic field remains unperturbed, Farady’s law of induction reduces to ∇ × E = 0 and

the electric field becomes potential. We also assume that there is only an axial velocity

component which depends on the transversal coordinate and time u = (u(y, t), 0, 0)), so that

continuity equation satisfies identically. The flow is driven by a periodic presure gradient

set at the extremes of the duct which can be expressed as the real part of −dp/dx = Geiωt.

Therefore, we assume that the velocity and electric field are also harmonic fuctions of t, that

is, u = (u0(y)eiωt, 0, 0) and E = (0, 0, Ez0eiωt), where Ez0 is a constant. Neglecting the tran-

sient flow, the solution of momentum equation that satisfies no-slip boundary conditions,

u(−D) = 0 and u(D) = 0 is

u(y, t) = u0eiωt = Umλ1

(

cosh λ1 − cosh λ1
y

D

λ1 cosh λ1 − sinh λ1

)

eiωt (1.72)

where λ1 =
√

Ha2 + iRω and Um is the spatial average of the velocity profile in the cross-

section given by

Um =
1

2D

∫ +D

−D

u0dy =
D2

λ2
1

(

G

µ
+

Ha

D

√

σ

µ
Ez0

) (

tanh λ1

λ1

− 1

)

(1.73)

The current induced in the generator due to the interaction of the oscillating conducting

liquid and the applied magnetic field is given by Ohm’s law, that is

Jz = Jz0eiωt = (σEz0 + σu0B0) eiωt, (1.74)

Jz0 = σEz0 + σB0Umλ1

(

cosh λ1 − cosh λ1
y

D

λ1 cosh λ1 − sinh λ1

)

, (1.75)
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or, in terms of the Hartmann number

Jz0 = σEz0 +
HaUmλ1

√
σµ

D

(

cosh λ1 − cosh λ1
y

D

λ1 cosh λ1 − sinh λ1

)

. (1.76)

The total induced electric current per unit length that can be extracted from the generator

through an external electrical load resistance, Rc, connected to the terminals of the genera-

tor, is given by

I

L
=

I0eiωt

L
, (1.77)

I0

L
=

∫ D

−D

Jz0dy =

∫ D

−D

(

σEz0 +
HaUmλ1

√
σµ

D

(

cosh λ1 − cosh λ1y/D

λ1 cosh λ1 − sinh λ1

))

dy, (1.78)

I0

L
= 2DσEz0 + 2HaUm

√
σµ, (1.79)

where I is the total current passing through the external circuit and L is the length of the

electrodes. The terminal voltage between the electrodes that are located at z = −b and z = b

is given by

ΦT = ΦT0eiωt = −
∫ b

−b

E0eiωtdz, (1.80)

ΦT0 = −
∫ b

−b

Ez0dz, (1.81)

ΦT0 = −2bEz0. (1.82)

Taking Ez0 from equation (1.79) and substituting it in equation (1.82), we get

ΦT0 =















−bI0

LDσ
+

2HaUmb
√

µ/σ

D















. (1.83)

A common approach to model an MHD generator is to visualize it as an equivalent circuit

so that the relevant electrical parameters are easily calculated . The equivalent circuit can

be determined from the Thevenin’s theorem which states that any array of batteries and

resistances with two output terminals can be replaced by an internal resistance and a battery

(voltage source) in series [55]. The equivalent voltage source is the electric potential in the

output terminals when the electric current is zero, that is, the open circuit voltage. In turn,

the equivalent or internal resistance is obtained as the ratio of the equivalent voltage to the

electric current when the load resistance is zero, that is, to the short circuit current. Hence,

if I0 = 0 we obtain the equivalent voltage source (open circuit voltage) in the form

Φ0oc =
2HaUmb

√

µ/σ

D
. (1.84)
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In turn, if the terminal voltage is zero, ΦT0 = 0, we get the short circuit current that is

I0sc = 2HaUmL
√
µσ. (1.85)

Therefore, the equivalent or internal resistance of the MHD generator can be obtained as

follows

Ri =
Φ0oc

I0sc

=
b

DLσ
. (1.86)

Applying the Kirchhoff’s law of voltages to the equivalent circuit we obtain

Φ0oc − I0(Ri + Rc) = 0, (1.87)

and therefore,

I0 =
2HaUmb

√

µ/σ

D

(

1

Ri + Rc

)

, (1.88)

where Rc is the external resistance of the circuit. Combining equations (1.79) and (1.88)

we can obtain the value of Ez0 in the form

Ez0 = −
HaUm

√

µ/σ

D
K, (1.89)

where K is the load factor of the generator defined by

K =
1

1 + Ri/Rc

. (1.90)

Since Ez0 depends on the total ohmic resistance of the circuit, the load factor offers a mea-

sure of the relative importance of the electrostatic field caused by the external load and

the electromotive force induced by the motion of the liquid in the magnetic field. When

K = 1, the open circuit condition is obtained, which means that the load resistance is much

larger than the internal resistence (Rc → ∞) and the current closes its trajectories inside

the generator, that is, the current circulates within the liquid metal. If K = 0, the short

circuit condition is obtained, which means that the load resistance is much smaller than the

internal resitance (Rc → 0) and the current circulates without restriction through the circuit.

In terms of the load factor, the total current and the current density can be expressed in the

form

I0 =
2HaUmb

√

µ/σ

DRi
(1 − K), (1.91)

Jz0 =
HaUm

√
µσ

D

[

−K + λ1

(

cosh λ1 − cosh λ1y/D

λ1 cosh λ1 − sinh λ1

)]

. (1.92)

We can calculate now the total output power of the generator that is given by

Pe =

∫

V

J · EdV =

∫

v

ℜ[Jz]ℜ[Ez]dV (1.93)



1.5. Analytical model of the MHD generator 49

where V denotes the volume and ℜ[] indicates the real part of the expression in brackets.

Explicitly, the output power takes the form

Pe =
Φ2

oc

Ri

[1 − K]K cos2 ωt. (1.94)

From the equations expressed above, it can be seen that both the voltage and the total

electric current are directly proportional to the spatial average velocity of the fluid and the

magnitude of the magnetic field. It can also be seen that the electrical output power is

proportional to the square of the averaged velocity and the square of the magnetic field.

The maximum electrical output power is obtained when K = 0.5, or in other words, when

the internal resistance of the generator equals the load resistance (Rc = Ri). On the other

hand, the mechanical flow power necessary to counteract the Lorentz force exerted on the

fluid due to its motion under the applied magnetic field is given by the real part of the

integral

P f =

∫

V

(J × B) · udV (1.95)

It is common to define the electrical isotropic efficiency of the generator as the ratio of the

output electric power, Pe, and the push power, P f , integrated over the total volume V of the

MHD channel. In the case of an alternate MHD generator, time integration over a whole

period, (or an integer number of periods) must also be performed, namely [44]

ηe =

ω
2π

∫ 2π/ω

0
Pedt

ω
2π

∫ 2π/ω

0
P f dt

. (1.96)

ηe gives the fraction of the mechanical work done by the fluid in overcoming the magnetic

force that is converted into useful electric power. Eq. (1.96) involves integration over the

total volume V. Since Pe and P f contain products of harmonic functions of time, both a time

harmonic contribution and a steady part exist. The former disappears after time integration,

while the latter gives a non-zero value. Figures 1.9, 1.10 and 1.11 show the electric isotropic

efficiency as a function of the oscillatory Reynolds number (Rω), the Hartmann number

(Ha) and the load factor (K), respectively. In figure 1.9 the electrical efficiency, Eq. (1.96),

as a function of Rω is shown for maximum output power conditions, i.e., K = 0.5, and

different Hartmann numbers (1, 10, 50, 100). The scale in the ordinate axis is amplified

to observe the slight changes in ηe that take place from Rω = 101 to 106. The behavior of

the four curves is very similar, the efficiency ηe tending to the asymptotic value 0.5 for Rω

larger than 106. In fact, this behavior is typical of an ideal MHD Faraday generator at high

Hartmann numbers where the electrical efficiency tends to the load factor value, ηe → K.

This is also observed in figure 1.10, where ηe , scaled by K, is plotted versus the Hartmann

number for different load factor conditions and Rω = 15. Figure 1.11 displays ηe versus

the load factor for four Hartmann number values (1, 10, 50, 100) and Rω = 15. It can
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be observed that the maximun output power (K = 0.5) does not coincide with maximum

efficiency.

Fig. 1.9: Electric isotropic efficiency of the alternate MHD generator as a function of Rω
for maximum output power condition (K = 0.5) and different Hartmann numbers.

Fig. 1.10: Electric isotropic efficiency of the alternate MHD generator as a function of Ha

for different load factors and Rω = 15 .
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Fig. 1.11: Electric isotropic efficiency of the alternate MHD generator as a function of K

for different Hartmann numbers and Rω = 15.

Despite the simplifications introduced, the analytical model offers a suitable description of

the electrical behavior of the generator and provides a better undertstanding of the under-

lying physical phenomena.





Chapter 2

Experimental design

This chapter presents the design of a laboratory-scale alternate LMMHD generator. The

prototype involves three main systems: the impeller system, the oscillation duct and the

measurement system. The impeller system generates the oscillatory motion that is trans-

ferred to the liquid metal, simulating the periodic motion of the waves. The oscillation

duct is where the oscillatory liquid metal is confined and comprises the MHD generator

that transform the oscillatory motion of the conducting fluid into electricity. In addition,

the measurememnt system includes the adaptations made in the prototype with the aim of

analyzing quantitatively the flow dynamics of the oscillating liquid metal as well as per-

forming the electrical characterization of the device. The complementary devices include

the drain and the leveling system.

2.1 Impeller system

The impeller system transfers the oscillatory motion to the working fluid. This can be

accomplished by transforming the angular motion of an electric motor into a linear os-

cillatory motion through a connecting rod-crank-sliding mechanism. For this purpose, an

electric motor Baldor AP7401 with 1725 RPM and 0.13 HP was used. With the aim of

improving the control of the RPM delivered by the electric motor, it was required to couple

it with a gearbox with a ratio of 1/60. The gearbox decreases the RPM and increases the

torque, allowing to overcome the friction of the piston at low revolutions. The gearbox is

connected to a rod-crank mechanism which has a special design so that the amplitude of

the movement can vary bettwen 5 cm - 10 cm. The crank is 22 cm long and is attached to a

piston with 2 inches in diameter which is in direct contact with the working fluid, enabling

to transfer the linear oscillatory movement to the liquid metal contained in the MHD duct.

The piston housing has a flange on one of its ends with the purpose of joining mechan-

ically the MHD duct with the impeller system. Since a fluid is involved, avoiding leaks

in the whole device is of vital importance, therefore, the piston and the joint flange have

53
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mechanical seals which prevent spills. Figure 2.1 shows a sketch of the impeller system.

Fig. 2.1: Experimental impeller system

2.2 Oscillation duct

The liquid metal in oscillatory motion is confined in a duct with a rectangular cross section.

The duct is 755 mm long and is composed of two acrylic plates one on top of the other and

joined by screws. In the bottom plate, a cavity of rectangular cross-section of 60 mm width

and 12 mm height was engraved. A linear seal was placed between the two plates along

the whole duct so that when the two plates are attached by screws the linear seal is pressed

creating a mechanical seal to prevent leakage. The flange-union, which joins the oscillation

duct with the impeller system, is located at one end of the duct. The measuring zone, which

consists of an area open to the atmosphere where the UDV probe can be entered into the
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liquid metal, is located at the other end of the duct. To ensure the absence of splilling,

this area has vertical walls that allow the liquid metal to oscillate in the vertical direction,

as an oscillating column. In the middle zone of the duct the MHD generator (or MHD

transducer) is located, which transforms the energy of the oscillating conductive fluid into

electrical energy. The main components of the MHD transducer include two permanent

magnets with the shape of a rectangular prism 120 mm long, 80 mm wide and 7 mm high,

and magnetized in the direction normal to the larger face. The magnets are placed in special

receptacles engraved on the top and bottom walls of the duct so that they remain parallel

forming a magnetic field configuration with north and south poles in the gap between them.

In addition, copper electrodes also with a shape of rectangular prisms 130 mm long, 100

mm wide and 12 mm high are inserted on the duct forming the lateral walls that constitute

the electrodes of the generator. Figure 2.2 shows the oscillation duct in isometric view

while Fig. 2.3 shows a cross-section view of the MHD transducer.

Fig. 2.2: Isometric view of the oscillation duct.
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Fig. 2.3: Cross-section view of the MHD transducer. Blue and red colors in the permanent

magnets indicate the north and south polarities, respectively.

2.3 Measuring system

In order to perform the flow and electrical characterization of the experimental device,

it was necessary to design implements which allow to carry out detailed measurements.

Since the liquid metal is an opaque medium, it is not possible to use optical techniques to

measure the velocity field. A suitable alternative is the use of acoustic techniques such as

the Ultrasound Doppler Velocimetry (UDV) applied in the present work, that in the last

decades has consolidated as the most used technique for velocity measurements in liquid

metals [56, 57]. UDV is based on the pulse-echo method and the measurement requires

acoustic inhomogeneities in the fluid such as oxides found in pure metals or alloys. In

the simplest implementation, as the one used in the present work, an ultrasonic measuring
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system utilizes a single ultrasound transducer that serves as emitter as well as receiver of

acoustic waves. It emits short ultrasonic pulses which propagate in direction of the normal

of the transmission plane (the acoustic axis) as a longitudinal wave with the sound velocity

of the media. By registering the differences in transit time of the scattering echos between

consecutive pulse emissions, resulting from a finite shift of particle position, the movement

of the scattering particles and consequently a profile of the axial velocity component in the

propagation direction can be determined. A detailed explanation of the operation principle

of UDV can be found in Ref. [58] from where the previous synthesis was extracted. To

implement this technique, it was necessary to design a tool able to hold the UDV transducer

and to vary the position of the transducer acoustic axis to perform the measurements in the

liquid metal. This implement consists of a fixed base, a rotating mount and a support

for the transducer. The fixed base is secured to the duct by screws. The rotating mount

allows to vary the angle of the measurement axis (acoustic axis) with respect to the main

longitudinal axis of the oscillation duct, making possible to measure at different transverse

positions (i.e along the width of the duct). The transducer support is the link between the

UDV transducer and the rotating mount. Figure 2.4 shows in detail the device used for the

velocity measurement in the liquid metal.
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Fig. 2.4: Isometric view of the measuring device for the velocity measurement of the liquid

metal using the UDV transducer.

The electrical output of MHD generators is characterized by delivering low voltages and

high currents, which results problematic when making measurements with traditional de-

vices (multimeters). The main complication arises when measuring currents, since the re-

sistance of multimeters is much greater than the internal resistance of the generator (K ≈ 1),

causing the currents to short-circuit inside the generator while only a small portion of them

is measured by the multimeter. To avoid this problem the current is inferred by a Hall ef-

fect sensor, whose output voltage is related to the induced magnetic field in a conductor

(variable electric load ) through which the electric current delivered by the MHD generator

passes. An array of copper bars (one of which can be varied) were used as electric load so

that its electric resistance was approximately of the same order of magnitude as the inter-

nal resistance of the generator, allowing the measurement of considerable electric current

values. Figure 2.5 shows an isometric view of the external electric load with the Hall effect
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sensor.

Fig. 2.5: Isometric view of the total external electric load with the Hall effect sensor.

2.4 Complementary devices

An important part of the experimental prototype is the drain, since it allows to remove all

the liquid from the oscillation duct and thus be able to clean the experiment or make any

required change. The drain of the oscillation duct is made through a gate valve, which is

located near the measurement zone. Another important issue is the leveling of the entire

experimental device which is accomplished by means of special supports that can modify

the vertical position of the oscillation duct and piston as well as of the reductor and the

electric motor. The oscillation duct and the piston are supported by five equal bases, while

the electric motor and the gearbox are supported by two similar bases. Figure 2.6 and 2.7

show the two different supports used to level the experimental device.
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Fig. 2.6: Isometric view of the leveling mechanism of the duct and the piston.

Fig. 2.7: Isometric view of the leveling mechanism of the reductor and the electric motor.
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Fig. 2.8: Isometric view of the design of the complete experimental prototype of an alter-

nate LMMHD generator at laboratory scale.

Figure 2.8 shows the integration of the different systems of the prototype of the alternate

LMMHD generator at laboratory scale. Based on this design, all the components were

built and assembled in the MHD Laboratory of the Renewable Energy Institute, UNAM. A

photograph of the prototype, mounted on an optical table, is shown in figure 2.9.
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Fig. 2.9: Photograph of the experimental prototype of the alternate LMMHD generator

assembled at the MHD laboratory of the Renewable Energy Institute of UNAM.
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Experimental methodology

As previously mentioned, the purpose of the experimental prototype is to characterize both

the electrical response of the alternate LMMHD generator as well as the flow dynamics

that take place in the oscillation duct. In this chapter a description of the experimental

methodology implemented to perform the aforementioned characterizations is presented.

3.1 Experimental conditions

According to the experimental design presented in the previous chapter, the results ob-

tained from the operation of the prototype are in function of different parameters, such as

the oscillation frequency and amplitude of the piston, the magnitude and distribution of the

applied magnetic field, the external electrical load and the physical properties of the electri-

cally conductive liquid. It has to be mentioned that due to the nature of the rod-crank-slide

mechanism, the motion transmitted to the liquid metal in the oscillation duct is not a fully

uniform periodic motion. As previously mentioned, the impeller system is responsible for

transforming the rotary movement of an electric motor into linear oscillatory motion, which

is transferred to the electrically conductive liquid by a piston. Given the specifications of

the components of the impeller system, it is possible to reach oscillation frequencies in

the range of 0.02-0.5 Hz. This range of experimental frequencies comprises values that

can be found in waves of the Mexican coasts [59, 60]. In turn, the amplitudes of the oscil-

lating motion that can be obtained with the experimental device are in the range of 5-10 cm.

On the other hand, the applied magnetic field is provided by a pair of parallel neodymium

permanent magnets of rectangular shape separated by a distance of 22 mm. This magnetic

field configuration grants a maximum magnetic field strength of 180 mT at a distance of 11

mm from the surface of the magnets (center of the duct). Figure 3.1 shows the distribution

of the magnetic field configuration at the mid plane of the duct. Note that although the

permanent magnets are suposed to have a uniform magnetization, the distribution of mag-
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netic field is not homogeneous, the stronger intensities being confined at the corners while

a weaker intensity is found at the central zone.
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Fig. 3.1: Magnetic field distribution obtained at the mid plane of the duct with two parallel

neodymium magnets of rectangular shape.

The liquid metal used to perform the characterization of the experimental device is an

eutectic alloy based on gallium, indium and tin (Galinstan) that remains in the liquid phase

at room temperature. Table (3.1) shows the physical properties of Galinstan.

Density [kg m−3] 6360

Dynamic viscosity [kg m−1s−1] 2.2 ×103

Kinematic viscosity [m2 s−1] 3.3 ×10−7

Surface tension [N m−1] 0.533

Electrical conductivity [Ω−1 m−1 ] 3.46 ×106

Sound velocity [m s−1] 2725

Magnetic permeability [N A−2] 4π × 10−7

Melting temperature [◦C] 10.5

Table 3.1: Physical properties of Ga68%In20%Sn12% at 20 ◦C.
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In order to have an idea of the physical conditions prevailing in the experiment, it is conve-

nient to estimate the relevant dimensionless parameters defined in section 1.2. For instace,

the oscillatory Reynolds number is given by Rω = ωh2/ν, where ω = 2π f is the angular fre-

quency, while f is the forcing frequency and h is the characteristic length scale of the flow.

Taking into account the range of the experimental forcing frequency ( 0.02-0.5 Hz) and

considering the characteristic length scale as half the distance between the upper and lower

walls transverse to the magnetic field (h = 6 mm), we get that the oscillation Reynolds

number varies in the range Rω = 14 − 300. In turn, considering the spatial average of

the magnetic field strength at the mid plane of the duct and in the area of the electrodes

(B0 = 100 mT) the Hartmann number can be estimated as Ha = B0h
√

σ/ρν = 24, con-

firming the dominance of magnetic forces over viscous forces. Finally, it can be estimated

that the amplitude parameter varies in the range R = Gh3/ρν = 0.003 − 0.84, where the

amplitude of the pressure gradient, G, can be deduced from the volumetric flow rate Q.

Since the nonlinear term in the equation of motion is of the order R/R2
ω (see equation 1.20)

the variation range of the oscillation Reynolds number and the amplitude parameter indi-

cates that nonlinear effects are small (< 10−5) and, therefore, result negligible under the

experimental conditions.

3.2 Experimental measurements

In the following subsections, the methodology used to perform the characterization of the

flow dynamics and electrical performance of the alternate LMMHD generator is presented.

3.2.1 Flow measurements

To carry out the axial velocity measurements in the experimental device, the technique of

Ultrasonic Doppler Velocimetry (UDV) was applied. The UDV 3010 Signal Processing

system with the transducer TR0810LS of 8 MHz were used [61]. The trasducer is attached

to the flow measurement implement described in the previous chapter that can move along

the width of the duct, so that the axial velocity can be measured in the central region as well

as close to the lateral walls. Acoustic reflection problems were found when measurements

were made in the central area of the oscillation duct, so it was not possible to make quality

measurements in this zone. These problems are produced by the acoustic waves reflected

in the metal face of the piston, which is aligned normal to the direction of the sound wave.

To avoid the reflections, measurements were made near the side walls of the channel by

placing first the transducer in the normal direction to the main flow and then varying the

direction of the transducer (acoustic axis) with a certain angle with respect to the main

flow direction. By taking the projection in this direction, the axial velocity component is

obtained. Figure 3.2 shows the initial location of the UDV transducer near the side wall of

the oscillation duct and the measuring or acoustic axis (dotted line) along the duct. Note
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that measurements are taken not only in the region affected by the magnetic field but also

outside of this region. The variation of the angle between the transducer acoustic axis and

the direction of the main flow allows to have values of the axial velocity component for

different positions in the transversal z-direction, making it possible to calculate the average

axial velocity of the flow. Figure 3.3 shows examples of the trajectory of the acoustic

axis for different measurement angles in the oscillation duct. Measurements were made by

placing the transducer close to both side walls of the duct while eight different measuring

angles were used on each side, which correspond to 0◦, 1◦, 2◦, 3◦, 4◦, 5◦, 6◦ and 7◦. Flow

measurements were made for different oscillation frequencies and amplitudes of the piston.

Fig. 3.2: Sketch of the location of the UDV transducer to perform axial velocity measure-

ments.
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Fig. 3.3: Sketch of the angle variation of the UDV transducer to perform axial velocity

measurements.

3.2.2 Electrical characterization

Due to the electrical output conditions of the generator that involves low voltages and

high currents, it is necessary to use non-conventional measurement methods, since it is

practically impossible to get reliable measurements with ordinary devices. To overcome

this complication, the current is inferred from a Hall effect sensor, where its output voltage

is related to the induced magnetic field in a conductor (variable electric load) through which

the electric current of the MHD generator passes. With the aim of varying the load factor

of the generator, three different electric loads were used. As we mentioned before, the load

factor is a relevant parameter, which relates the internal resistance of the generator (Ri) and

the total resistance of the external load Rc. The internal resistance of generator measured

experimentally is equal to Ri ≈ 1.0× 10−5 ohm. The total load resistance (Rc) is the sum of

the resistence of all the components of the external load, that include a fixed electric load

plus a variable load (see figure 2.5). For the majority of the explored cases the fixed electric

load is composed of two copper electrodes in contact with the liquid metal (lateral walls),

two copper circular bars (3/8 in diameter and 10 cm long) and two rectangular copper bars

(20 cm long and a rectangular cross section of 2 in × 1/4 in). Adding the resistance of each

component the fixed resistance has a value of R f = 9.1 × 10−5 ohm. The variable electric
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resistance consisted of three metallic bars of different materials with a rectangular cross

section and 25 cm long. Table 3.2 shows the material of each bar, its electric resistance,

the total load resistance and the corresponding value of the load factor. Resistances were

measured using the four-wire method [62]. In order to improve the operation of the MHD

generator, in addition to conditions shown in Table 3.2, a special configuration of fixed

electrical resistance was used, which is based on reducing the resistance of the circular

copper bars, putting in parallel other resistances. This special configuration allowed to

obtain a fixed resistance value of R f = 6.7 × 10−5 ohm and a total resistance of Rc =

8.6 × 10−5 ohm with a load factor K = 0.88.

Material Variable resistance Toltal resistance K = 1/(1 + Ri/Rc)

Copper 1.9 × 10−5Ω 1.1 × 10−4Ω 0.916

Aluminum 2.51 × 10−5Ω 1.16 × 10−4Ω 0.920

Steel 36.36 × 10−5Ω 4.6 × 10−4Ω 0.978

Table 3.2: Properties of the different variable electric load.

The Hall effect sensor Allegro A1324 was used to estimate the total current that passes

through the external electrical load, with a sensitivity of 5 mV/G. Since the response of the

sensor depends on the magnetic field induced in the metal bar and, in turn, the magnetic

field induced is a function of the characteristics of the bar, such as geometry, it was neces-

sary to perform the calibration of the metal bars used to carry out the characterization of

the MHD generator. The calibration was done by applying electric currents provided by

a power supply to each of the variable external loads. Each of the applied currents cor-

responds to a voltage value of the sensor output, which behaves linearly with respect to

the current. Figures 3.4 and 3.5 show the calibration for the aluminum and the steel bar

used as variable loads, respectively, where the slope change between figures is due to the

polarization of the injected current used to perform the characterization.
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Chapter 4

Experimental results

This chapter presents the experimental results obtained from the laboratory prototype of

the alternate LMMHD generator. The results comprise the analysis of the flow dynam-

ics of the liquid metal in the oscillation duct as well as the electrical characterization of

the MHD generator. The flow analysis include the measurements of the axial velocity of

the liquid metal performed with the Ultrasonic Doppler Velocimetry under different condi-

tions. For the electrical characterization, output currents and voltages obtained for different

electric loads and oscillation frequencies are shown. In addition, the behavior of both the

electrical power output and the isotropic electrical efficiency are presented as functions of

the oscillation frequency and the load factor.

4.1 Flow dynamics in the oscillation duct

The liquid metal impelled by the piston in the oscillation duct describes essentially an os-

cillatory motion with a zero mean that comprises regions exterior to the applied magnetic

field, where the flow behaves hydrodynamically, and a region affected by the magnetic field

where MHD flow effects are important. Owing to the prescribed experimental conditions,

that is, the ranges of oscillation frequencies and amplitudes, non-linear effects are negligi-

ble and therefore, the explored flow is in laminar regime (see Section 3.1). Nevertheless,

small non-linear effects that may lead to steady streaming flows exist in the edges of the

magnets where the magnetic field is strongly non-uniform, as it was analyzed theoretically

in chapter 1. Although oscillatory liquid metal MHD flows in ducts have been studied in

the past analytically and numerically, it appears that no experimental results have been re-

ported in the literature for this kind of flows.

Since the motion of the liquid metal in the oscillation duct is mainly unidirectional, only

the velocity component parallel to the symmetry axis of the duct was measured using the

Ultrasound Doppler Velocimetry technique. Figures 4.1, 4.2 and 4.3 show examples of
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the axial velocity maps of the liquid metal near the wall with a direction normal to the

main flow as a function of the axial distance (penetration depth) and time, for the cases

Rω =14.2, 29.9 and 62.1, respectively, while the Hartmann number (Ha = 24) and the

oscillation amplitude (9.2 cm) remained fixed. The axial distance equal to zero corresponds

to the location of the transducer while different colors represent the magnitude of the axial

velocity. The red color (positive direction) indicates that the flow moves away from the

transducer and the blue color (negative direction) indicates that the flow approaches the

transducer. The vertical alternating colored regions show that the axial velocity behaves

in a periodic way. The black horizontal lines represent the location of the edges of the

magnets, where the electromagnetic effects are more intense. Observe that as the oscillation

Reynolds number (i.e. the oscillation frequency) increases, the vertical alternating colored

regions become narrower and more clearly defined. Figure 4.4 shows the axial velocity

componet as a function of time at a distance of 15 mm from the side wall (z = 15 mm)

and at the axial distance x = 209 mm (which corresponds to the center of the magnets), for

Ha = 24, amplitude of 9.2 cm and different oscillation Reynolds numbers (i.e. oscillating

frequencies); it can be observed that the magnitude of the axial velocity increases as Rω

increases. Notice that the variation of Rω involves also a phase shft. Figure 4.5 shows a

comparison of the axial velocity profiles at the center of the oscillation duct (z = 30 mm)

along the symmetry axis in the hydrodynamic region (x = 340 mm) and at the mid point

of the permanent magnets (x = 209 mm) as a function of time for Rω = 29.9, Ha = 24

and amplitude of 9.2 cm. Since the Lorentz force brakes the flow within the magnetic

field, the velocity within this region is smaller than the velocity outside the magnetic field

(hydrodynamic region). In the present case the reduction is about 11.3 %. In figure 4.6 the

axial velocity component as a function of the axial distance at a distance of 15 mm from

the side wall of the oscillation duct (z = 15 mm) and at different times during half cycle

is shown. As usual, the position x = 0 corresponds to the position of the transducer while

the vertical red lines represent the zone affected by the magnetic field. Note that the higher

values (either positive or negative) of the axial velocity are found upstream of the magnetic

field region, that is, when the liquid metal is entering this region.
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Fig. 4.1: Axial velocity map obtained with UDV as a function of the axial distance and

time for an oscillation amplitude of 9.2 cm with Ha = 24 and Rω = 14.2.

Fig. 4.2: Axial velocity map obtained with UDV as a function of the axial distance and

time for an oscillation amplitude of 9.2 cm with Ha = 24 and Rω = 29.9.

Fig. 4.3: Axial velocity map obtained with UDV as a function of the axial distance and

time for an oscillation amplitude of 9.2 cm with Ha = 24 and Rω = 62.1.
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Fig. 4.6: Axial velocity component as a function of the axial distance at the fixed transver-

sal position z = 15 mm (15 mm from the lateral wall) for different times during half cycle

with Rω = 14.2 and Ha = 24.

In order to estimate the volumetric flow rate in the oscillation duct, measurements were

made by varying the angle of the transducer acoustic axis with respect to the direction of

the main flow. In this way, it was possible to estimate the average axial velocity of the

liquid metal in the oscillation duct and thereby infer the volumetric flow. Figure 4.7 shows

the axial velocity map as a function of the axial distance and time for different measure-

ment angles, where it can be observed the change of the axial velocity distribution as the

measurement angle changes.

From the measurements at different angles it is possible to obtain axial velocity profiles

at a given axial distance for different positions in the transverse z-coordinate. Figure 4.8

shows axial velocity profiles as a function of the z-coordinate with Rω = 14.2, Ha = 24,

oscillation amplitude 9.2 mm and a fixed axial distance of 209 mm (center of the magnets)

for different times during approximately one cycle. Figures 4.8(a) and 4.8(b) show, respec-

tively, the first and second half cycles. Note that the laterals walls of the oscillation duct

are located at z = 0 and z = 60 mm. At the axial distance of 209 mm (center of the mag-

nets) the measurements closest to the wall that allowed the used technique corresponded to

positions z = 10 mm and z = 50 mm. The almost overlaped pair of values shown in the

velocity profiles at different times correspond to measurements from each of the side walls

with the same experimental conditions. This gives confidence in the reproducibility of pro-

files independently of the side wall from which measurements are taken. The inversion of

the axial velocity from positive to negative values as the oscillation cycle advances is also

observed. Since the side walls are parallel to the applied magnetic field, the boundary lay-
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ers attached to these walls should be a combination of Stokes layer and Shercliff layer [42].

Unfortunately the precise thickness of this layer has not been determined yet. Therefore,

with the aim of giving an approximate estimate of the involved boundary layer we consider

it as if it were a Stokes layer. The thickness of the Stokes boundary layer can be estimated

as LR
−1/2
ω , where L correspond to the distance between the copper electrodes. Then, tak-

ing L = 60 mm and Rω = 14.2 the Stokes boundary layer for the particular experimental

conditions shown in figure 4.8 is 15.93 mm, which means that the two measured points

closest to the side walls of the oscillation duct are inside of the Stokes layer. Evidently, as

the Rω increases the thickness of the Stokes layer becomes smaller and for an Rω =300 the

thickness of the Stokes layer is approximately 3.4 mm.
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Fig. 4.7: Axial velocity map as a function of the axial distance and time with Rω = 14.2,

Ha = 24, oscillation amplitude of 9.2 cm and for different measurement angles. (a):

θ = 0◦. (b): θ = 2◦. (c): θ = 4◦.
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Fig. 4.8: Axial velocity profiles as a function of the z-coordinate at different times with

Rω = 14.2, Ha = 24 and oscillation amplitude of 9.2 cm. (a) and (b) show the first and

second half cycles, respectively.

From the velocity profiles at different z-positions, it is possible to calculate the averaged

velocity in the transverse section of the oscillation duct as a function of time, which has

a periodic bahavior, as shown in figure 4.9 for different vales of Rω. Again, note that the

change in Rω introduces a phase shift. Figure 4.10 shows the root mean square (RMS) of the

average axial velocity in the oscillation duct duct for different Rω values and two oscillation
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amplitude values. From Figures 4.9 and 4.10, it can be observed that both the amplitude as

well as the RMS value of the axial velocity component increase as Rω increases.
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Fig. 4.9: Average axial velocity at the transversal mid plane of the magnets as a function

of time for different Rω values and Ha = 24 and oscillation amplitude of 9.2 cm.
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4.2 Electric experimental results

Evidently, the electrical response of the LMMHD generator is linked to the driving source

that powers the device. Therefore, as a result of the reciprocating linear movement of the

piston transmitted to the liquid metal, the output electrical signals, that is, induced current

and voltage, have an alternating behavior. As mentioned in chapter 3, the electrical be-

havior of the generator depends on several physical and geometrical parameters, namely,

the size (volume) of the generator, the oscillation frequency and amplitude of the liquid

metal, the internal and external electrical resistance of the generator, the strength and dis-

tribution of the applied magnetic field and the physical properties of the liquid metal. Once

the design of the prototype was defined, some parameters remained fixed such as the size

and internal resistance of the generator, the applied magnetic field and the properties of the

liquid metal. This means that the Hartmann number takes the fixed value Ha = 24. The

electrical response of the generator was then explored by varying the oscillation frequency

and amplitude of the liquid metal as well as the external electric resistance (load factor).

The variation of these parameters are in turn restricted by the limitations of the experimen-

tal prototype. Figures 4.11 and 4.12, respectively, show the induced current and voltage as

a function of time for different values of the oscillation Reynolds number. The oscillation

amplitude was 9.2 cm while the load factor and Hartmann number correspond to K = 0.88

and Ha = 24, respectively. First, notice that induced currents, inferred from the output of

the Hall effect sensor, are of the order of magnitude of Ampéres (A) while induced volt-

ages remain in the order of millivolts (mV). It can also be observed that the amplitude of

induced currents and voltages increases as the oscillation frequency (i.e. Rω) increases,

while a phase shift also appears with the variation of this parameter. In both figures the

signal corresponding to the smaller frequency (Rω=94.3) shows a slight deformation with

respect to a pure sinusoidal signal what could be due to perturbations introduced by the

impeller system. A useful way to represent oscillatory values of the electrical output vari-

ables is through the root mean square (RMS), defined as the square root of the arithmetic

mean of the squares of the instant values of the variable during one cycle. Figures 4.13

and 4.14 show, respectively, the RMS value of induced current and voltage as a function

of the oscillation Reynolds number for different load factors with Ha = 24 and an oscil-

lation amplitude of 9.2 cm. It can be observed that current and voltage increase almost

linearly with respect to the oscillation frequency. For the induced current the fastest growth

is found for the smallest load factor explored (K = 0.88) while the slowest corresponds to

the higher load factor (K = 0.97). As expected, this behavior is inverted for the induced

voltage although differences in growth rate for different load factors are rather small. For

the lowest load factor explored (K = 0.88), the highest RMS values for the induced current

and voltage are 7.4 A and 0.72 mV, respectively.

The performance of the alternate LMMHD generator is characterized to a large extent

by the output electric power which can be obtained from the product of the induced current



4.2. Electric experimental results 81

and the induced voltage. Figure 4.13 shows the output electric power as a function of

time for different oscillation Reynolds numbers with K = 0.88, Ha = 24 and oscillation

amplitude of 9.2 cm. It can be observed that the amplitude of the output power increases

as Rω increases and reaches around 10 mW for the highest Rω value shown (Rω = 270.7).

Note also that the peak amplitude presents slight variations. The RMS value of the output

electric power is shown in figure 4.16 as a function of the oscillation Reynolds number

for different load factors with Ha = 24 and oscillation amplitude of 9.2 cm. A quadratic

variation with the oscillation Reynolds number if found, the fastest growth corresponding

to the largest Rω value (Rω = 270.7).
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number for different load factors with Ha = 24 and oscillation amplitude of 9.2 cm.

The electrical characterization of the alternate LMMHD generator requires the calcu-

lation of the efficiency. In section 1.5, the electrical isotropic efficiency was defined as

the ratio of the output electric power, Pe, and the ”push power” or mechanical power, P f ,

required to overcome the Lorentz force exterted on the fluid due to its motion within the

magnetic field, integrated over the total volume of the generator and over a whole time

period or an integer number of periods, that is

ηe =
Pe

P f

=

∫

dt
∫

V
J · EdV

∫

dt
∫

V
(J × B) · udV

. (4.1)

Note that the integral in the numerator is the product of the current and voltage. As it

was mentioned before, ηe gives the fraction of the mechanical work done by the liquid

metal in overcoming the Lorentz force that is converted into useful electric power. Since

it was not possible to estimate the push power directly from the experiments, an analytical

estimation was used with the experimental parameters. Since the available experimental

results involve integral quantities such as the RMS values of the flow velocity (URMS ),

current (IRMS ) and voltage (ΦRMS ), the RMS value of the analytical estimation was used.

The electrical efficiency can be estimated in the following way.

ηe =
Pe RMS

P f RMS

=
IRMS VRMS

[∫

V
(J × B) · udV

]

RMS

. (4.2)
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Figure 4.17 shows the electrical efficiency estimated using the expression (4.2) as a function

of the oscillation Reynolds number for different values of the load factor with Ha = 24 and

oscillation amplitude of 9.2 cm. It can be observed that the highest efficiency (ηe = 0.2)

is obtained for the smallest load factor explores (K = 0.88) while the lowest efficiency

(ηe = 0.085) corresponds to the largest load factor (K = 0.97). For each load factor the

efficiency remains practically constant in the whole range of Rω, although a very slight in-

crease is found with this parameter. Figure 4.18 shows the electrical efficiency estimated

from (4.2) as a function of the load factor for Rω = 60, Ha = 24 and oscillation amplitude

9.2 cm. The symbols represent the experimental data while the black line corresponds to a

fit. Only one value of Rω is presented due to the very small change of the efficiency with re-

spect to this parameter, therefore, this curve is essentially the same for any other Rω value.

It can be observed that the maximum efficiency is obtained for K = 0.88, in agreement with

Figure 4.17. Recall that maximum efficiency does not mean maximun power output which

according to the analytical model (see section 1.5), is obtained when K = 0.5.

When compared with the values of output electric power and electrical efficiency pre-

dicted by the analytical model (see section 1.5), the values obtained experimentally are

approximately, 50 % lower. This reflects in part the idealizations introduced in the an-

alytical model which considers the flow in the MHD generator as two-dimensional and

under a completely uniform magnetic field. The existence of lateral walls (electrodes), not

considered explicitlly in the model, introduces additional friction losses as well as contact

resistance effects between the copper walls and the liquid metal that affect the performance

of the generator. In turn, the non-homogeneity of the magnetic field and the finite size of

the magnets that produce it, originate modifications in the flow field as well as in the elec-

trical response of the device. In particular, the abrupt variation of the magnetic field at the

edges of the permanent magnets and the finite size of the electrodes give rise to end-effects

which divert the induced electric currents out of the electrode area forming short-circuited

loops outside the generation zone [63].

From equations (1.84), (1.86) and (1.94), it is found that the output electric power in-

creases linearly with the electric conductivity of the fluid, the squared average flow velocity

and the squared strength of the magnetic field. Since the variation in electric conductivity

among different liquid metals (the best available working fluids) with adequate melting

temperatures is rather small, an increase in the output power should rely mostly in the in-

crease of both the flow velocity and the strenght of the applied magnetic field. The average

flow velocity of the oscillating liquid metal in the MHD generator could be increased by

a proper design and coupling with a WEC, while to increase the strength of the magnetic

field it is required the use of improved magnetic materials and proper magnetic field con-

figurations. Since MHD electric generation is a volumetric effect, the increase in size of

the MHD generator and/or the coupling of several MHD generators could be an alternative

to the increment of the output electric power.
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Reynolds number for different load factor with Ha = 24 and a oscillation amplitude of 9.2
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4.3 Future experiments: coupling the LMMHD generator

to a WEC

The main goal of the present work was to design, built and characterize experimentally

an alternate LMMHD generator at laboratory scale. As it was presented in the previous

sections, it was possible to analyze both the flow behavoir in the oscillation duct and the

electrical response of the generator under the conditions imposed by the impeller system.

Since this system reproduces an approximately regular oscillatory motion, the operation

conditions of the prototype are still different from those that would take place if the gen-

erator were coulpled to a WEC. Therefore, the next step within the frame of CEMIE-O

is to develop and test an experimental device operating in more realistic conditions. This

involves the design, construction and characterization of an alternate LMMHD generator

coupled to a WEC that can be tested in the wave channel facility of the Engineering In-

stitute of UNAM. The new conceptual design presented here also includes changes aimed

at improving the electrical performance of the generator. The wave channel is a rectangu-

lar cross section open channel with 80 cm at the base, 120 cm high and 39 m long. The

laterals walls and the bottom of the wave channel are made with 12 mm thick tempered

glass. Above the wave channel, two steel rails anchored to the laboratory roof and aligned

with the channel, allow to support and fix the experimental devices to be characterized.

The new design comprises an alternate LMMHD generator placed vertically, a wave en-

ergy converter coupled to the generator, the fastening system and different measurement

systems. Figure (4.19) shows a sketch of the new experimental device to be installed in

the wave channel. The main purpose of the new design is to replace the impeller system

used in the laboratory prototype by a WEC able to transmit the wave motion of the water

into an oscillatory motion of the liquid metal. This can be achieved by a buoy whose up

and down motion caused by the water waves is communicated through a diaphragm to the

liquid metal inside the vertical oscillation duct.

The new design of the LMMHD generator was adapted to the dimensions of the wave

channel where it will be tested. The oscillation duct with a rectangular cross section is

made of two acrilyc plates joined by screws and sealed by a linear seal. In the central

zone of the duct (generation zone) two permanent magnets are placed externally in two

of the duct walls and two copper electrodes are located at the side walls of the duct. The

permanent magnets are rectangular prism with dimensions of 80 mm × 80 mm × 7 mm

and magnetized in the direction normal to the larger face. The electrodes are copper plates

of 8 cm width and 5 mm thick. The region that composes the MHD transducer has a

rectangular cross section of 7 cm × 0.5 cm with a length of 8 cm. At one end of the

duct a rolling diaphragm is used to seal the device and avoid direct contact of the liquid

metal with other elements. The diaphragm is made of elastomeric materials, which offer

the flexibility to deform allowing to pump the liqud metal. The other end of the duct
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has an open area, which allows the liquid metal to oscillate as an oscillating colum. The

most important differences between the new design of the LMMHD generator and the one

presented in the chapter 2 are the dimensions of the generator, since the volume of liquid

metal in the new version corresponds approximately to one tenth of the previous design.

Another inmportant change is that, with the aim of increasing the mean velocity of the

liquid metal and reducing the end effects produced by the abrupt change of the magnetic

field at the edges of the permanent magnets, a reduction of the area of the rectangular

cross section in the generation zone (i.e. where the magnets and the copper electrodes

are located) was introduced in the oscillation duct. Figure 4.20 shows two section views

of the new LMMHD generator design, where changes in the geometry of the oscillation

duct are displayed. The fastening system is responsible for fixing and loading almost the

entire weight of the experimental device, giving freedom of movement to the liquid metal.

The oscillatory motion of the water generated in the channel is transferred to the liquid

metal through a WEC consisting in a buoy attached to the lower part of the oscillation

duct so that the wave motion is converted into a linear oscillatory movement in the vertical

direction. The motion of the buoy is limited to the vertical direction by means of linear

bearings, which serve as a guide to the shafts attached to the lateral ends of the buoy.

The buoy is designed so that the buoyancy force is approximately twice the weight of

the liquid metal. In the central area of the buoy the shaft responsible for transferring the

linear oscillatory movement in the vertical direction to the diaphragm located at the lower

end of the oscillation duct is located. The electrical characterization of the device will be

carried out by measuring the magnetic field induced in the external load by means of a

Hall effect sensor. Figure 4.21 shows a cross-section view of the oscillation duct, where the

arrangement of the total electric load connected to the LMMHD generator is presented. The

total electric load consist in two C-shape copper electrodes (lateral walls of the duct) and

a metal bar which closes the circuit. Theoretically, the internal resistance of the LMMHD

generator is approximately 50 × 10−6 ohms. The external load consist of a metal sheet of

5 mm thick which connects the electrodes. To be able to characterize the performace of

the LMMHD generator by varying the load factor, different metals can be used as well as

different thicknesses of the metal sheet. The electrical resistance of the external circuit will

be characterized by the four wire technique. Theoretically, an estimate of the electrical

resistance of the total external circuit can be made for different electrical loads. The fixed

electrical resistance corresponding to the two C-shape electrodes is approximately 17×10−6

Ohms. Table 4.1 shows the different configurations of the metal sheets proposed to perform

the electrical characterization of the generator with different load factors. Notice that these

calculations do not take into account the contact resistance between the materials. With the

different configurations of the electrical load it is possible to characterize a wide range of

load factors.



4.3. Future experiments: coupling the LMMHD generator to a WEC 89

Fig. 4.19: Design of the LMMHD generator coupled to a wave channel.
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(a)

(b)

Fig. 4.20: Section views of the oscillation duct, where changes in the cross-section can be

observed.
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Fig. 4.21: Cross-section view of the LMMHD design.

Material dimensions
Electric

resistance

Toltal

electric

resistance

K

steel

90cm × 10cm × 0.5cm

90cm × 20cm × 0.5cm

90cm × 35cm × 0.5cm

90cm × 60cm × 0.5cm

90cm × 80cm × 0.5cm

36 × 10−5Ω

18 × 10−5Ω

10 × 10−5Ω

6.0 × 10−5Ω

4.5 × 10−5Ω

37.7×10−5Ω

19.7×10−5Ω

11.7×10−5Ω

7.7 × 10−5Ω

6.2 × 10−5Ω

0.88

0.80

0.70

0.60

0.55

Table 4.1: Properties of the different configuration of the external electric load.
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Conclusions

In the present work, a theoretical and experimental study of a liquid metal magnetohydro-

dynamic (LMMHD) generator which has the potential of converting useful energy from

marine waves into electricity was carried out. As direct power conversion systems, MHD

generators present an alternative to linear generators where the main difference with these

devices is the use of a fluid as conducting medium. MHD generators are also able to work

at low frequencies, matching the low frequencies of ocean waves. The main motivation of

the work was the understanding and modelling of the physical phenomena involved in the

conversion process as well as the design, construction and experimental characterization of

a prototype at laboratory scale of an alternate LMMHD generator.

After establishing the set of fundamental equations of magnetohydrodynamics, that com-

prise fluid dynamics and electromagnetic field equations, a two-dimensional analytical

model of a laminar liquid metal duct flow driven by an oscillatory pressure gradient un-

der the presence of a transverse magnetic field was analyzed. First, the attention was fo-

cused in the flow far from the edges of the generator where the magnetic field is uniform

with the aim of exploring the phase lag produced by the Lorentz force between the ve-

locity and the axial pressure gradient. The flow was analyzed by asymptotic techniques,

obtaining solutions in the limits of low and high oscillation frequencies and for arbitrary

Hartmann numbers. Solutions in the corresponding limits have terms in phase and out of

phase with respect to the pressure gradient, where the importance of each term is affected

by the magnitude of the applied magnetic field. The main results were conveniently syn-

thesized graphically. In addition, the oscillatory flow of the liquid metal close to the edges

of the magnets where the magnetic field is non-uniform was analyzed, paying a particular

attention to the behavior of the oscillatory boundary layers (a combination of the Stokes

and Hartmann layers) immersed in the spatially varying magnetic field. The solution was

found using a perturbation method for high oscillation frequencies and assuming the small

amplitude of oscillation approximation. It was found that non-linear effects give rise to a

steady streaming vortices in the fringing magnetic field that are not expected to affect the

93



94 Chapter 5. Conclusions

performance of the MHD generator. The analytical two-dimensional approach was also

used to develop a theoretical model that describes the electrical performance of the gener-

ator, obtaining expressions for the total current, voltage, internal resistance, output power,

flow power and isotropic efficiency. Although the analytical model incorporates strong sim-

plifications, it offers a suitable description of the electrical behavior of the generator and a

deeper insight of the underlying physical phenomena. In fact, it also served as a guide for

the design of the experimental LMMHD generator.

The design of a prototype that could be tested experimentally in laboratory involved the

requirement of having a system capable of emulating the oscillatory wave motion. This was

solved by designing a device that allows to transform the rotary movement of an electric

motor into a linear motion transferred to the liquid metal confined in the oscillation duct,

where the MHD generator is located. Complementary equipment to carry out flow velocity

and electrical measurements was also designed. The vast majority of the experimental pro-

totype was manufactured at IER-UNAM, with the help of a computing numerical control

(CNC) machine.

As the working fluid is a liquid metal, flow velocity measurements were done using the

technique of Ultrasound Doppler Velocimetry. To the best of our knowledge, no reported

experimental UDV data of oscillatory liquid metal duct flows exist in the specialized litera-

ture. By introducing the UDV transductor in the liquid metal at the extrem of the oscillation

duct, the axial velocity component was measured along the duct axis for differents exper-

imental conditions but always under laminar regime. The periodic behavior of the flow

velocity was characterized by UDV velocity maps (that record the velocity magnitude as

a function of time in the whole oscillation duct) as well as by velocity profiles as a func-

tion of time and the transversal coordinate. The braking effect caused by Lorentz forces

when the liquid metal flows through the zone affected by the applied magnetic field was

also detected. Moreover, it was found that for the explored range of governing parameters,

the average axial velocity increases in a linear way with respect to the oscillatory Reynolds

number.

A characteristic feature of LMMHD generators is to deliver low output voltages and high

output currents so that typical measurement techniques do not work. To overcome this situ-

ation the electric current flowing in the external load was inferred from a Hall effect sensor

while the load resistance was measured using a multimeter and applying the 4-wire tech-

nique. It was found that the RMS values of the current and voltage increase in a linear

way as the oscillating Reynold number increases, while the output electric power, being

the product of the current and voltage, increases quadratically as the oscillating Reynolds

number increases. On the other hand, due to the smallness of the internal resistance of the

generator, it was difficult to get load factor values close to K=0.5 where the highest output

power is obtained (when the load resistance equals the internal resistance). Maximum RMS
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values around 5 mW were reached for the lowest load factor explored (K = 0.88) and a

high oscillation Reynolds number of 273. In turn, the highest isotropic efficiency estimated

experimentally for K = 0.88 was about 20% in the whole range of Rω explored. This is

much lower than the efficiency predicted by the anlytical model due to several factors. In

the first place, the analytical model is two-dimensional and assumes that the applied mag-

netic field is everywhere uniform which is far from reality. In fact, the non-homogeneity of

the magnetic field and the finite length of the electrodes cause the end-effects of the gener-

ator, which are responsible for the biggest losses in the generator. This is an issue that has

to be addressed in future designs with the aim at improving the efficiency of the generator.

In the last part of this work, a new experimental prototype able to operate in more re-

alistic conditions was proposed. The objective of the new prototype is to test a LMMHD

generator in a wave channel avoiding the impeller system used in the laboratory prototype.

This implies to couple the generator to a wave energy converter, which is responsible for

transferring the oscillating motion of the wave generated in the channel to the alternate

LMMHD generator. The new design of the oscillation duct introduces modifications which

will allow a better performance of the generator. In particular, a geometric modification of

the oscillation duct which reduces the losses due to end-effects in the alternate LMMHD

generator is considered.

Although there are still many challenges to overcome in order to apply the MHD tech-

nology in the field of ocean energy, the present work showed the feasibility of alternate

LMMHD generators at laboratory scale, providing experimental results that will be of rel-

evance for future designs. It deepened the understanging of the main physical phenomena

involved in the energy conversion process and identified the relevant factors and parameters

that affect the operation of the device. Although a more wide assessment is required, alter-

nate LMMHD generators could be a suitable alternative to convert ocean wave energy into

electricity at small-scale. For instance, the power supply to offshore scientific intstrumen-

tation could be considered as an interesting application. If required, higher output power

could be reached by coupling several generators. Among the remaining challenges is the

development of a conversion system for transforming the electrical output of the alter-

nate LMMHD generator, characterized by high currents and low voltages, to the standard

requirements of conventional electric devices. It is expected that results obtained in the

present work will set the basis for future research and development leading to a complete

assessment of MHD technology for wave energy conversion.
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The constants appearing in equation (1.63) are defined as follows:

κt1 =
ϑt1 + ϑt2

ϑt3

,

κt2 =
ϑt4 + ϑt5

ϑt6

,
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U0 (α′ + iβ′)

γ2
(
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