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Boy: Do not try to bend the spoon. That’s
impossible. Instead only try to realize the truth.

Neo: What truth?
Boy: There is no spoon.
Neo: There is no spoon?

Boy: Then you’ll see that it s not the spoon
that bends, it is only yourself.

The Matrix, 1999.
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Abstract

We realize a family of generalized cluster algebras as Caldero-Chapoton algebras
of quivers with relations. Each member of this family arises from an unpunctured
polygon with one orbifold point of order 3, and is realized as a Caldero-Chapoton
algebra of a quiver with relations naturally associated to any triangulation of the
alluded polygon, lets call this algebra A. The realization is done by defining for every
arc j on the polygon with orbifold point a representation M (j) of the referred quiver
with relations, and by proving that for every triangulation o and every arc j € o, the
product of the Caldero-Chapoton functions of M(j) and M (j), where j' is the arc
that replaces j when we flip j in o, equals the corresponding exchange polynomial of
Chekhov-Shapiro in the generalized cluster algebra. Furthermore, we show that there
is a bijection between the set of generalized cluster variables and the isomorphism
classes of E-rigid indecomposable decorated representations of A.

The main results of this thesis appear in the paper [43], a joint work with my
advisor Dr. Daniel Labardini Fragoso.
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Capitulo

Introduccion

En los tltimos anos la teoria de representaciones de algebras ha recibido una profunda
influencia por parte de la teoria de las algebras de conglomerado. Estas éalgebras
fueron introducidas por Sergey Fomin y Andrei Zelevinsky alrededor del ano 2002,
ver [29]. Ellos estaban interesados en presentar un modelo tedrico para entender la
positividad total de ciertos grupos algebraicos.

Las algebras de conglomerado son anillos conmutativos contenidos en cierto campo
de fracciones. Estas algebras se definen a partir de algunas variables iniciales (lla-
madas variables de conglomerado iniciales) que se propagan mediante un proceso
combinatorio e inductivo conocido como mutacion. La mutacion se define a partir de
una matriz antisimetrizable.

Una variable de conglomerado = y su mutacion x’ se comparan mediante un poli-
nomio de la forma p™ + p~ que es conocido como polinomio de intercambio. Este
binomio depende del resto de variables y de los signos de las entradas de una de las
columnas de la matriz antisimetrizable. La relacion de intercambio se puede expresar
€omo

xr' =pt +p .

Fomin y Zelevinsky probaron dos resultados notables en la teoria de algebras de
conglomerado. El primero fue el fenomeno de Laurent y el segundo fue la clasifi-
cacion de aquellas algebras que tienen tnicamente un ntmero finito de variables de
conglomerado. Este ultimo se conoce como la clasificacion de tipo finito.

El fenémeno de Laurent dice que cualquier variable de conglomerado puede ser
expresada como un polinomio de Laurent en las variables iniciales. La clasificacion
de las algebras de conglomerado de tipo finito da una biyeccién entre estas y las
algebras de Lie semisimples de dimension finita sobre C. En este punto los diagramas
de Dynkin son muy utiles para ir en ambas direcciones.

Las élgebras de conglomerado tienen una estructura organica que ha encontrado
terreno fértil en diversos campos de la fisica-matematica. Por ahora nos vamos a
restringir en la relaciéon con la teoria de representaciones de algebras de dimension
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finita y las algebras de conglomerado de tipo antisimrético evidenciada por Philippe
Caldero y Frederic Chapoton en el 2005, [14].

Nos concentraremos en esa aproximacion a las algebras de conglomerado porque ha
tenido extensas repercusiones, mencionaremos algunas més adelante.

Para las algebras de conglomerado de tipo Dynkin ADE, Caldero y Chapoton
dieron una expresion explicita para las variables de conglomerado y una biyeccion
entre estas y las representaciones inescindibles del élgebra de caminos de un carcaj
del mismo tipo que estemos considerando.

Dado un carcaj @ de tipo ADE y una representacion inescindible M de C{Q),
para obtener una variable de conglomerado x);, Caldero y Chapoton, definieron un
polinomio de Laurent Ceqy(M) cuyos coeficientes estan dados por las caracteristicas
de Euler de la Grassmannianas de carcaj de subrepresentaciones de M. Este poli-
nomio de Laurent Ccgy (M) es conocido como funcién de Caldero-Chapoton y ha sido
desarrollado en contextos mas generales con el nombre de cardcter de conglomerado.

Es innegable la importancia de las funciones de Caldero-Chapoton pues ha permi-
tido el desarrollo de la teoria de las algebras de conglomerado y de la teoria de repre-
sentaciones de algebras. Por ejemplo, mediante las funciones de Caldero-Chapoton
han sido estudiadas y probadas algunas conjeturas de las algebras de conglomerado,
son de importancia para nosotros las técnicas introducidas por Harm Derksen, Jerzy
Weyman y Andrei Zelevinsky en [25] para algebras de conglomerado de tipo anti-
simétrico. Por otro lado la teoria de algebras de dimensién finita ha desarrollado
nuevos conceptos que atrapan las nociones combinatorias de las algebras de conglo-
merado como las algebras cluster-tilted y sus representaciones introducidas por Aslak
B. Buan, Robert J. Marsh e Idun Reiten.

Giovanni Cerulli Irelli, Daniel Labardini Fragoso y Jan Schréer, en [17] introdujeron
las algebras de Caldero-Chapoton, uno de los ingredientes de este trabajo. A grandes
rasgos, para un algebra A no necesariamente de dimension finita, consideraron Ay
el anillo generado por las funciones de Caldero-Chapoton de las representaciones
decoradas de A. En general A, no es conocida, pero cuando A es el algebra Jacobiana
de un carcaj con potencial (Q, W), entonces A, contiene el algebra de conglomerado
asociada a () y esta contenida en el dlgebra de conglomerado superior asociada a @),
ver |17, Proposicion 7.1].

Geifs-Leclerc-Schroer introdujeron en [34] el concepto de componentes irreducibles
fuertemente reducidas en la variedad de representaciones de un algebra. Plamondon
las estudio para élgebras de dimension finita en [51, 52]. En [17] estas son usadas
para obtener un modelo algebraico de las CC-variables o CC-conglomerados en las
algebras de Caldero-Chapoton. Este enfoque permite hablar de algunos resultados y
conceptos en wversiones genéricas (en abiertos densos de una variedad apropiada) y
permite introducir un sabor combinatorio del tipo de las algebras de conglomerado.

En este trabajo demostramos que para un algebra A(o) asociada a cada triangu-
laciéon o de un poligono con un punto orbifold de orden 3, el algebra de Caldero-
Chapoton Ay, es un dlgebra generalizada de conglomerado. En nuestro caso la
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aparicion de las componentes fuertemente reducidas puede ser considerada de forma
tangencial.

Las dlgebras generalizadas de conglomerado fueron introducidas por Chekhov y
Shapiro en [20]. Chekov-Shapiro prueban en [20| que las A-longitudes de una superfi-
cie con puntos orbifold de orden arbitrario tiene estructura de élgebra generalizada de
conglomerado. Estas algebras tienen un comportamiento similar al de las algebras de
conglomerado, su combinatoria también es gobernada por una matriz antisimetriz-
able, sin embargo, las relaciones de intercambio no son necesariamente binomios.
Estas algebras siguen satisfaciendo el fenomeno de Laurent y los trabajos de Tomoki
Nakanishi o Tomoki Nakanishi con Dylan Rupel muestran un considerable paralelismo
con las algebras de conglomerado con coeficientes principales, ver [47, 48)].

Hay otras generalizaciones de las dlgebras de conglomerado, por ejemplo las dlgebras
del fendmeno de Laurent introducidas por Thomas Lam y Pavlo Pylyavskyy en [46]
y las dlgebras de conglomerado de orbitas introducidas por Charles Paquette y Ralf
Schiffler en [50].

Los orbifolds son espacios topologicos que generalizan a las variedades. Son objetos
muy simétricos pues estan modelados por un espacio Euclidiano bajo la accion de un
grupo finito. Para nosotros cobran particular interés los orbifolds de dimensién dos o
2-orbifolds. Mas atn, estamos interesados en la accion del grupo ciclico Zs en el disco
unitario.

A continuacion desarrollaremos més el contexto tedrico de este trabajo.

1.1 Algunos resultados anteriores

Sea ) un carcaj, denotamos su dlgebra de caminos completada por C{Q). Sea
A = C{Q))/I un dlgebra basica, véase la Observacion 3.1. En [17], definen la funcion
de Caldero-Chapoton Cy(M) de una representacion decorada M de A y el algebra
de Caldero-Chapoton A, la ultima es definida como el anillo generado por todas las
funciones de Caldero-Chapoton de representaciones decoradas de A. Denotamos por
decrep(A) a la categoria de representaciones decoradas de A.

Teorema 1.1 (Caldero-Chapoton). Si Q es un carcaj de tipo Dynkin ADE, entonces
el dlgebra de conglomerado A(Q) es isomorfa al dlgebra de Caldero-Chapoton Ac(gy.
Mds ain, existe una biyeccion

{M: inescindible en decrep(C{(Q))} fcﬁ;{ variables de conglomerado A(Q)} .

El Teorema 1.1 permitié obtener las variables de conglomerado a partir de un con-
texto teorico de las representaciones de un algebra, véase |14, Theorem 3.4]. En el
Teorema 1.1 dada una representacion inescindible M de C{Q), la biyeccion esta dada
por calcular la funcion de Caldero-Chapoton Ce(qy, esta funcion es un polinomio de
Laurent en tantas variables como el niimero de vértices de (). Los coeficientes de ese
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polinomio de Laurent estan dados por calcular caracteristicas de Fuler de Grassman-
nianas de carcaj. El célculo de la caracteristica de Euler puede ser muy complicado
en la practica, sin embargo en este teorema no aparece un proceso inductivo para
calcular las variables de conglomerado. Proceso que si aparece en su propia definicon.

Derksen, Weyman y Zelevinsky, en [24, 25|, introducen el F-polinomio y g-vector de
una representacion decorada con el objetivo de estudiar las dlgebras de conglomerado
de tipo antisimétrico. Posteriormente Yan Palu introdujo el cardcter de conglomerado,
ver [49], este ha sido uno de los ingredientes en el desarrollo de la categorificacion de,
las muy mencionadas, algebras de conglomerado. Este caracter de conglomerado tam-
bién aparece en los trabajos de Caldero y Bernhard Keller, ver [16]. Como resultado
de generalizaciones o nuevas interpretaciones de las funciones de Caldero-Chapoton,
el Teorema 1.1 ha sido extendido en trabajos como [16, 25, 49, 51].

Hemos visto que la relacion entre algebras de conglomerado y la teoria de repre-
sentaciones ha generado nuevas ideas como la categorificacion de esas algebras para
ampliar el entendimiento que tenemos de ellas, sin embargo esas categorias pueden
ser complicadas de entender y poco prdcticas. Para manipular esas categorias han
sido de mucha utilidad modelos geométricos donde, por lo general, de una manera
imprecisa, objetos de una categoria corresponden a curvas sobre alguna superficie y
conglomerados corresponden con triangulaciones de la misma superficie. Este vinculo
entre la combinatoria de superficies marcadas y algebras de conglomerado fue estu-
diada desde sus mismo origen por Fomin y Zelevinsky con modelos geométricos para
las algebras de tipo ABCD, ver [31, Section 3.5|. Fomin, Shapiro y Dylan Thurston,
en [33], de manera muy general, construyeron algebras de conglomerado a partir de
superficies marcadas.

Para Caldero-Chapoton-Schiffler fue de principal interés el caso de las algebras de
tipo A,,. Consideraron un (n + 3)-dgono P y definieron una categoria C en la que a
cada diagonal j de P le corresponde una representacion M (j) de un carcaj de tipo A,,.
Ellos obtuvieron la siguiente relacién combinatoria entre las representaciones M(j) y
las traslaciones de Auslander-Reiten.

Teorema 1.2 (Caldero-Chapoton-Schiffler). Denotemos por r*(j) a la rotacion ele-
mental de j contra el sentido de las manecillas del reloj. Si M(j) no es proyectivo,
entonces T(M(j)) = M(r*(j)). Si M(j) no es inyectivo, entonces 7~ (M(j)) = r~(j),
donde r~(j) denota la rotacion elemental de j en el sentido de las manecillas del reloj.

Este resultado ha sido generalizado al considerar un poligono con una pinchadura
por Ralf Schiffler en [54, Proposicion 4.1 |, para superficies con puntos marcados sin
pinchaduras por Thomas Briistle y Jie Zhang en [12, Corolario 3.6] y para superficies
con pinchaduras por Briistle y Yu Qiu en |10, Lema 3.5]|.

Con el paso del tiempo la aparicion de modelos geométricos ha crecido y se pueden
encontrar contextos mas generales. Anna Felikson, Michael Shapiro y Pavel Tumarkin
han relacionados superficies con puntos orbifold de orden 2 con &lgebras de con-
glomerado, [28]. Chekov y Shapiro generalizaron las relaciones de intercambio de
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las algebras de conglomerado al considerar espacios de Teichmiiller de superficies
con puntos orbifold de orden arbitrario, [20]. Jan Geuenich y Labardini-Fragoso
han desarrollado mutaciones de una cierta clase de especies definidas a partir de
superficies con puntos orbifold de orden 2, [38, 39]. Inclusive en el caso de superficies
no orientables se obtienen estructuras llamadas dlgebras de cuasi-conglomerados, estas
fueron definidas por Grégoire Dupont y Frédéric Palesi en [26]. Jonathan Wilson ha
probado que estas estructuras entran en el marco de las algebras del fenémeno de
Laurent, ver [57].

En esta tesis presentamos un modelo geométrico para estudiar el algebra de Caldero-
Chapoton de un &lgebra definida a partir de un carcaj con un lazo. Carcajes con
lazos han sido considerados en estos contextos de algebras de conglomerado y teoria
de representaciones en trabajos como los de Christof Geifs, Bernard Leclerc y Jan
Schréer en [35] y por Sefi Ladkani en [45].

1.2 Nuestros resultados principales

Sea %, el poligono regular con (n + 1)-lados y con un punto orbifold de orden tres en
su interior.

Vale la pena hacer un comentario acerca de la terminologia usada previamente. En
el Capitulo 6 introduciremos los orbifolds, por ahora podemos pensar en esos objetos
como espacios topolégicos junto con la accién de un grupo finito. La expresion un
punto orbifold de orden tres, para ser mas precisos, deberia ser: un punto orbifold tipo
conico de orden tres (en este caso 3 es el orden del grupo). Sin embargo, siempre nos
referiremos al punto orbifold sin especificar su tipo conico.

Dada una triangulaciéon o of ¥, definimos un carcaj con potencial (Q(o),S(0)) y
denotamos el élgebra Jacobiana de este carcaj con potencial como A(c). El carcaj
(o) posee un lazo, este lazo esta asociado al arco pendiente de o. Este arco es un lazo
basado es un vértice de 3, y rodea al punto orbifold. El algebra A(c) es un dlgebra
de cuerdas de dimension finita para cada triangulacion o. Para cada triangulacion o
de ¥, definimos una matriz anti-simetrizable B(o).

Del hecho que A(o) es un élgebra de cuerdas podemos definir para cada arco j de
Y, una cuerda W; y una representacion decorada M(j) de A(o) como el modulo de
cuerdas correspondiente o una representacion simple negativa.

En [24] Derksen, Weyman y Zelevinsky introdujeron una medida homoldgica entre
representaciones decoradas de un (QP) carcaj con potencial invariante bajo muta-
ciones conocido como el E-invariante. En [17]| este E-invariante fue definido para
representaciones decoradas de algebras posiblemente de dimensién infinita sin que se
haya definido una mutacién de representaciones, pero que en caso de considerar dlge-
bras Jacobianas coincida con la nocion de [24]. Con esta notacion diremos que una
representacion M es E-rigida si su E-invariante es cero. En términos de la notacion
de Adachi-Iyama-Reiten, véase [1], una representacion E-rigida no es otra cosa que
una representacion 7 -rigida, aqui 7 es la traslacion inversa de Auslander-Reiten.
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Nuestro resultado principal puede ser expuesto de la siguiente manera.

Teorema 1.3. Dada una triangulacion o de %, el dlgebra de Caldero-Chapoton aso-
ciada a A(o) es un dlgebra generalizada de conglomerado de Chekhov-Shapiro definida
a partir de B(o). Mas ain, existe una biyeccion entre las variables generalizadas de
conglomerado y las representaciones inescindibles decoradas E-rigidas de A(o), vy, la
correspondencia estd dada por calcular la funcion de Caldero-Chapoton de las men-
ctonadas representaciones.

Resulta claro de las definiciones que A(o) puede ser vista como un dlgebra jacobiana
de orbitas, término introducido por Paquette y Schiffler en [50]. Se puede ver que
Y, es un buen orbifold, esto significa que puede ser cubierto, topoldgicamente, por
una superficie de Riemann, que en este caso es un disco. A partir de esa superficie
de Riemann podemos extraer un algebra Jacobiana clasica A(T), donde T es una
triangulacion de la superficie cubriente. Paquuete y Schiffler probaron que estas dos
algebras dan lugar a una cubierta de Galois A(T') — A(c). Haciendo uso de cubiertas
de Galois pudimos caracterizar las representaciones E-rigidas de A(o).

Teorema 1.4. Sea o una triangulacion y j un arco de >,.

e M(j) es E-rigida para cada arco j y esas son todas la representaciones E-rigidas

de A(o).

e Para un arco j de %, tal que M(j) no es proyectiva (resp. mo inyectiva),

entonces T(M(3)) = M(r*(3)) (resp. 7 (M(5)) = M(r=(45)))

o Existe una biyeccion entre conglomerados generalizados de Ap(y) vy triangula-
ciones de ,. Ademds, cada triangulacion de ¥, define una coleccion mdzrima
de representaciones E-ortogonales.

Estos resultados, sin lugar a dudas, muestran un sorprendente, pero agradable
comportamiento del algebra de Caldero-Chapoton asociada a este orbifold. Como las
algebras generalizadas de conglomerado poseen el fenémeno de Laurent, obtenemos
que el algebra de Caldero-Chapoton asociada a A(c) lo posee.

1.3 Organizacién de la tesis

La tesis esté organizada de la siguiente manera.

Capitulo 3. Aqui fijamos la notacién y terminologia usada a lo largo del trabajo. Aunque
la mayoria de la notacion es estdndar cabe mencionar que nos hemos cenido a
la notacion de [17]. En la Secciéon 3.2 las cubiertas de Galois son introducidas.
En la Seccion 3.3 definimos las algebras de cuerdas y sus modulos.
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Capitulo 4.

Capitulo 5.

Capitulo 6.

Capitulo 7.

Capitulo 8.

Capitulo 9.

A lo largo de este capitulo introducimos uno de los principales objetos de estudio
de este trabajo, a saber, las algebras de Caldero-Chapoton.

Aqui recordamos las definiciones y hechos bésicos de las algebra de conglomer-
ado y motivamos la definicién de las algebras de conglomerado generalizadas.

Aunque no sea estrictamente necesario para nuestros propositos y para la como-
didad del lector en este capitulo repasamos la nocién de orbifold y recordamos
algunos hechos en la clasificacion de los 2-orbifolds cerrados y compactos.

A partir de este capitulo fijamos la superficie con puntos orbifold que nos
concierne, a saber, un poligono con un punto orbifold de orden tres. A par-
tir de cada triangulaciéon de este poligono definimos un algebra Jacobiana con
la que desarrollaremos nuestros resultados en el resto de este trabajo.

Con el objetivo de probar nuestros resultados principales usamos este capitulo
para motivar el origen del proyecto. Para hacer esto escogemos una triangu-
lacion particular y obtenemos los resultados para esa triangulacion especifica.

En este capitulo son desarrollados y demostramos los resultados principales de
la tesis para cualquier triangulacion inicial.
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Chapter

Introduction

In recent years the representation theory of algebras has received a profound influence
by the theory of cluster algebras. These algebras were introduced by Sergey Fomin
and Andrei Zelevinsky circa 2002, see [29]. They were interested in presenting a
theoretical model to understand the total positivity of some algebraic groups.

Cluster algebras are commutative rings contained in a field of rational functions.
These algebras are defined from some initial variables called initial cluster variables
and they are propagated by a combinatorial and inductive process known as mutation.
The mutation is defined from a skew-symmetrizable matrix.

A cluster variable x and its mutation 2’ are compared by a polynomial of the form
pt+p~, in fact, this polynomial is a binomial and it is known as exchange polynomial.
The exchange relation can be expressed as follows

za' =pt+pT.

Fomin and Zelevinsky proved two outstanding results in the theory of cluster al-
gebras. The first one was the Laurent phenomenon and the second one was the
classification of those algebras that have only a finite number of cluster variables.
The last one is known as the finite type classification.

The Laurent phenomenon says that any cluster variable can be written as a Laurent
polynomial in the initial cluster variables. The finite type classification gives a one to
one correspondence with the semisimple Lie algebras of finite dimension over C. At
this point the Dynkin diagrams are very useful to go in both directions.

Cluster algebras have an organic structure that has found fertile ground in various
fields of physics and mathematics. For now we are going to restrict our attention to
the relationship between the representation theory of finite dimensional algebras and
skew-symmetric cluster algebras exhibited by Philippe Caldero and Frederic Chapo-
ton in 2005, [14].

We will concentrate on that approach of cluster algebras because it has had exten-
sive repercussions, some of them will be commented later.
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For the cluster algebras of Dynkin type ADE, Caldero and Chapoton gave an
explicit expression for the cluster variables and they gave a bijection between these
cluster variable and the indecomposable representations of the path algebra of a quiver
of the same type that we are considering.

Given a quiver @ of type ADE and an indecomposable representation M of C{Q)),
to obtain a cluster variable )/, they defined a Laurent polynomial Cegy (M) whose
coefficients are given by the Euler characteristic of quiver Grassmannians of sub-
representations of M. This Laurent polynomial Cc(gy(ar) is known as Caldero-Chapo-
ton function and it has been developed in more general contexts as the cluster char-
acter.

The importance of the Caldero-Chapoton functions is undeniable because it has
allowed the development of cluster algebras theory and the representation theory of
algebras. For example, some difficult conjectures about skew-symmetric cluster al-
gebras have been studied and proved by means of Caldero-Chapoton functions, see
[25]. For us, the techniques introduced by Harm Derksen, Jerzy Weyman and Andrei
Zelevinsky in |24, 25] for cluster algebras of skew-symmetric type are important. On
the other hand, the theory of finite dimension algebras has developed new concepts
that capture the combinatorial notions of cluster algebras such as cluster-tilted alge-
bras and their representations introduced by Aslak B. Buan, Robert J. Marsh and
Idun Reiten.

Giovanni Cerulli Irelli, Daniel Labardini Fragoso and Jan Schréer, in [17], intro-
duced the Caldero-Chapoton algebras, one of the ingredients of this work. Roughly
speaking, for an algebra A, not necessarily of finite dimension, they considered A, the
ring generated by all the Caldero-Chapoton functions of the decorated representations
of A. In general, A, is not known, when A is the Jacobian algebra of a quiver with
potential (@, W), then A, contains the cluster algebra associated with @) and it is
contained in the upper cluster algebra associated with @, see [17, Proposition 7.1].

Geifs-Leclerc-Schroer introduced, in [34], the concept of strongly reduced irreducible
component in the variety of representations of an algebra. Plamondon studied them
for finite dimensional algebras in [51, 52]. In [17], these are used to obtain an algebraic
model of the CC-variables or CC-clusters in the Caldero-Chapoton algebras. This
approach allows to talk about generic versions of some results and concepts, that
means we obtain results in dense opens of an suitable variety and it allows them to
introduce a combinatorial flavor as the cluster algebras.

In this work we show that for an algebra A(o) associated to each triangulation o
of a polygon with an orbifold point of order 3, the Caldero-Chapoton algebra A, ()
is a generalized cluster algebra. In our case, the appearance of strongly reduced
components can be considered tangentially.

Generalized cluster algebras were introduced by Chekhov and Shapiro in [20]. They
proved that the A-lengths of a surface with orbifold points of arbitrary order satisfy
new cluster relations. These algebras have a similar behavior to that of cluster al-
gebras, its combinatorics is also governed by a skew-symmetrizable matrix, however,
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the exchange relations are not necessarily given by binomials. These algebras sat-
isfy the Laurent phenomenon and the papers of Tomoki Nakanishi or Nakanishi with
Dylan Rupel show a surprising parallelism with the cluster algebras with principal
coefficients, see [47, 48].

There are several generalizations of cluster algebras, for instance we have the Lau-
rent phenomenon algebras (LP algebras for short) introduced by Thomas Lam and
Pavlo Pylyavskyy in [46] and the the orbit cluster algebras introduced by Charles
Paquette and Ralf Schiffler in [50].

The orbifolds are topological spaces generalizing manifolds. They are symmetric
objects because they are modeled by an Euclidean space under the action of a finite
group. For us, the orbifolds of dimension two or 2-orbifolds are particularly relevant.
Moreover, we are interested in the action of the cyclic group Z3 on the unit disk.

Then we will develop more the theoretical context of this work.

2.1 Some previous results

Let @ be a quiver, we denote its completed path algebra by C{Q). Let A = CLQ)/I
be a basic algebra, see Remark 3.1. In [17], it was defined the Caldero-Chapoton
function Cy(M) of a decorated representation M of A and the Caldero-Chapoton
algebra A, as the ring generated by all Caldero-Chapoton functions of decorated

representations of A. The category of decorated representations of A is denoted by
decrep(A).

Theorem 2.1 (Caldero-Chapoton). If Q) is a quiver of Dynkin type ADE, then the
cluster algebra A(Q) is isomorphic to the Caldero-Chapoton algebra Acqy. Moreover,
there is a bijection

C
(M indecomposable in decrep(CLQ))} <% { cluster variables of A(Q)} .

Theorem 2.1 allowed to obtain the cluster variables from a theoretical context of
the representations of an algebra, see [14, Theorem 3.4]. In Theorem 2.1, given
an indecomposable representation M of C{(Q), the bijection is given by taking the
Caldero-Chapoton function Cegy(M), this function is a Laurent polynomial in as
many variables as the number of vertices of Q).

The coefficients of that Laurent polynomial are given by calculating the FEuler
characteristic of quiver Grassmannians. The calculation of Euler characteristic can
be subtle and complicated in practice, however in this theorem the inductive process
to calculate cluster variables does not appear.

Derksen, Weyman and Zelevinsky, in [24, 25|, introduce the F-polynomial and g-
vector of a decorated representation with the aim of studying the cluster algebras of
skew-symmetric type. Subsequently, Yan Palu introduced the cluster character, see
[49], this has been one of the main tools for the development of a new approach to
understand the cluster algebras, namely the categorification of, the much-mentioned,
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cluster algebras. For instance, this cluster character also appears in the work of
Caldero and Bernhard Keller, see [16]. As a result of generalizations or new interpre-
tations of the Caldero-Chapoton functions, Theorem 2.1 has been extended in works
like [16, 25, 49, 51].

We have seen that the relationship between cluster algebras and representation the-
ory has generated new ideas such as the categorification of these algebras to broaden
our understanding of them, however these categories may be difficult to understand
and unwieldy. To manipulate these categories, geometric models have been useful,
in an imprecise way, special objects in the category correspond to curves on some
surface and clusters correspond with triangulations on the surface. This link between
the combinatorics of marked surfaces and cluster algebras was studied from its very
origin by Fomin and Zelevinsky with geometric models for the cluster algebras of
type ABCD, see |31, Section 3.5]. Fomin, Shapiro and Dylan Thurston in [33], in a
general setting, constructed cluster algebras from marked surfaces.

For Caldero-Chapoton-Schiffler the case of type A,, was of main interest. They con-
sidered a (n+3)- gon P and defined a category C in which each diagonal j of P corre-
sponds to a representation M(j) of a quiver of type A,. They obtained the following
combinatorial interplay between the representations M (j) and the Auslander-Reiten
translations.

Teorema 2.1 (Caldero-Chapoton-Schiffler). Denote by r*(j) the elementary rota-
tion of j in counter clockwise orientation. If M(j) is not projective, then T(M(j)) =
M(r*(j)). If M(j) is not injective, then 7= (M(j)) = M(r~(j)), where r=(j) denotes
the elementary rotation of j in clockwise orientation.

This result has been generalized by considering a polygon with a puncture by Ralf
Schiffler in [54, Proposition 4.1]; for surfaces with marked points without punctures
by Thomas Briistle and Jie Zhang in [12, Corollary 3.6] and in the general case of
punctured surfaces by Briistle and Yu Qiu in [10, Lema 3.5].

With the passage of time the appearance of geometric models has grown up and it
may be found in more general contexts, we are going to mention some of them. Anna
Felikson, Michael Shapiro and Pavel Tumarkin have related surfaces with orbifold
points of order 2 with cluster algebras, [28]. Chekov and Shapiro generalized the
exchange relations of cluster algebras by considering the Teichmiiller space of surface
with orbifold points of arbitrary order, [20]. Jan Geuenich and Labardini-Fragoso
have developed mutations of a certain class of species defined from surfaces with
orbifold points of order 2, [38, 39]. Even in the case of non-orientable surfaces, it is
possible to obtain some structures called quasi-cluster algebras, these were defined by
Grégoire Dupont and Frédéric Palesi in [26]. Jonathan Wilson has proven that these
algebras are LP algebras, see [57].

In this thesis we present a geometric model to study the Caldero-Chapoton algebra
associated to an algebra defined from a quiver with a loop. Quivers with loops have
been considered in cluster subjects in some other works, for instance we have; [35] by
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Christof Geifs, Bernard Leclerc and Jan Schréer, and [45] by Sefi Ladkani.

2.2  Our main results

Let ¥, be the regular polygon with (n + 1)-sides and with an orbifold point of order
three in its interior.

It is worth commenting on the terminology used previously. In Chapter 6 we will
introduce orbifolds, for now we may think on those objects as manifolds together with
the action of a finite group. The expression an orbifold point of order three, to be
more precise, should be: an orbifold point of conic type of order three (in this case 3
is the order of the alluded group). However, we will always refer to the orbifold point
without specifying its conical nature.

Given a triangulation o of ¥,, we define a quiver with potential (Q (o), S(0)) and we
denote the Jacobian algebra of this quiver with potential by A(c). The quiver Q(o)
has a loop, this loop is associated with the pendant arc' of o. This arc is a loop based
on a vertex of ¥, and surrounds the orbifold point. It turns out that the algebra
A(0) is a finite dimensional string algebra for any triangulation o, actually A(co) is a
gentle algebra. For any triangulation o of ¥, we define a skew-symmetrizable matrix
B(o).

From the fact that A(o) is a string algebra, we can define for each arc j of ¥, a
string W, and a decorated representation M(j) of A(o) as the corresponding string
module or the corresponding simple negative representation.

In [24], Derksen, Weyman and Zelevinsky introduced an homological measure be-
tween decorated representations of a quiver with potential which is invariant under
mutations known as the E-invariant.

In [17], this E-invariant was defined for decorated representations of a possibly
infinite-dimensional algebra, even without a definition of mutation of representations.
This notion coincides with the notion defined in [24] when we consider a Jacobian
algebra. With this terminology in mind, we say that a representation M is E-rigid if its
E-invariant vanishes. According to Adachi-Iyama-Reiten, an E-rigid representation
is a 77-rigid one, see |1], 7 is the Auslander-Reiten inverse. Our main result can be
stated as follows.

Theorem 2.2. Given a triangulation o of ¥, the Caldero-Chapoton algebra A(o)
associated to o is a generalized cluster algebra of Chekhov-Shapiro defined from B(o).
Moreover, there exist a bijection between the generalized cluster variables and the E-
rigid indecomposable decorated representations of A(o). The correspondence is given
by taking the Caldero-Chapoton function of all the aforementioned representations

It is clear from the definitions that A(c) can be seen as a Jacobian orbit algebra,
this concept was introduced by Paquette and Schiffler in [50]. In turns out that 3,

IThere are several works where this arc is called pending arc, however in this work we follow the
suggestion of pendant instead pending done by Sergey Fomin.
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is a good orbifold, which means it can be covered by a Riemann surface, which, in
this case, it is a disk. From that Riemann surface we can extract a classic Jacobian
algebra A(T'), here T is a triangulation of the covering. Paquette and Schiffler proved
that these two algebras give rise to a Galois covering A(T) — A(o). By using Galois
coverings we were able to characterize the E-rigid representations of A(o).

Theorem 2.3. Let o be a triangulation and let j be an arc of 3,,.
o M(j) is E-rigid for any arc j and they are all the E-rigid representations.

e Given an arc j of ¥, such that M(j) is not projective (resp. not injective), then
T(M(5)) = M(r*(j)) (resp. 7 (M(j)) = M(r~(j))).

o There exist a bijection between generalized clusters Ap(y) and triangulations of
Y,. Besides, any triangulation of ¥, define a maximal collection of E-ortogonal
representations.

These results show a surprising, but nice behavior of the Caldero-Chapoton algebra
associated to this orbifold. Since the generalized cluster algebras have the Laurent
phenomenon, we obtain that the Caldero-Chapoton algebra associated to A(o) has
it.

2.3 Organization of the thesis
The thesis is organized as follows.

Chapter 3. Here we set the notation and terminology used throughout the work. Although
most of the notation is standard it is worth mentioning that we have followed
the notation of [17]. In Section 3.2, Galois coverings are introduced. In Section
3.3 we define string algebras and their modules.

Chapter 4. Throughout this chapter we introduce one of the main objects of study of this
work, namely the Caldero-Chapoton algebras.

Chapter 5. We recall basic definitions and facts about cluster algebras and motivate the
definition of generalized cluster algebras.

Capitulo 6. Even when it is not strictly necessary we introduce the notion of orbifold and
review some facts about the classification of closed and compact 2-orbifolds.

Capitulo 7. From this chapter we fix the surface with orbifold points that concern us, a
polygon with an orbifold point of order three. From each triangulation of this
polygon we define a Jacobian algebra which we will develop our results in the
rest of this work with.
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Capitulo 8. In order to prove our main results we use this chapter to motivate the origin of
this project. To do this we choose a specific triangulation and we get the results
for that special triangulation.

Capitulo 9. In this chapter we develop and prove the main results of this thesis for any
initial triangulation.
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Chapter 3

Algebras, modules and Galois covering

In this chapter we fix notation and we recall some basic definitions and facts about
algebras and quiver representations that we will use throughout the work. The reader
can find more details in [17].

3.1 Quivers and path algebras

A quiver Q@ = (Qo,Q1,t,h) consists of a finite set of vertices @)y, a finite set of
arrows Q1 and two maps t,h : 1 — Qo (tail and head). For each a € Q; we
write a : t(a) — h(a). If Qo = {1,...,n}, we define the skew-symmetric matriz
Cq = (cij) € Mat,xn(Z) from @ as follows

cij = [{a € Qr:hla) =i,t(a) = j}| = [{a € Qu: hla) = j,t(a) = i} (3.1)

We say that a sequence of arrows a = qja;_1 - - asaq, is a path of @ if t(ap 1) =
h(ay), for k =1,...1—1, in this case, we define the length of o as [. We say that « is
a cycle if h(a;) = t(ay). In this work we deal with quivers with loops, that is, quivers
where there is an arrow a € )1 such that h(a) = t(a).

For m € N, let C,, be the set of paths of length m and let CC), be the vector space
with basis C,,. The path algebra of a quiver ) is denoted by C{(Q) and it is defined
as C-vector space as

@) = D CCh,

m=0

where the product is given by the concatenation of paths. The completed path algebra
of a quiver () is defined as vector space as

L@y = | | CCn,

m=0
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where the elements are written as infinite sums )| T, with z,, € CC,, and the

product in C{Q) is defined as

Qo)D) am) =D, D) bitm.

=0 m=0 k=0 l+m=k

m=0

Let M = [],,=; CCy, be the two-sided ideal of C{Q) generated by arrows of Q.
Then C{Q) can be viewed as a topological C-algebra with the powers of 91 as a basic
system of open neighborhoods of 0. This topology is known as 2M-adic topology. Let
I be a subset of C{Q)), we can calculate the closure of I as I = (5, (I + M).

A two-sided ideal I of C{Q) is semi-admissible if I = 9M? and it is admissible
if some power of 9 is a subset of I. Following [17] we call an algebra A basic if
A = CLQ)/I for some quiver ) and some semi-admissible ideal I. A comment
deserve to be done about basic algebras, see Remark 3.1. We follow that convention
just for convenience.

Remark 3.1. The definition of a basic algebra given in [17] is not the usual one,
we kindly ask to the reader to be cautious. Let us forget about the completed path
algebra for a while. Let A be a C-algebra. Let {ey,e,...,e,} be a complete family of
primitive orthogonal idempotents of A. The algebra A is basic if Ae; = Ae;, implies
i = j, see |6, Definition 6.1, I|. It turns out that any finite dimensional basic algebra
A is isomorphic to the quotient of a path algebra C{Q)/I by some admissible ideal
I, see [6, Theorem 3.7, II]. This is the main motivation for the notation of [17].

Remark 3.2. Now, in the infinite dimensional case, there are basic algebras that are
not of the form C{Q)/I for some semi-admissible ideal. For instance, consider the
polynomial ring C[z]. It is basic according to the previous standard definition (it has
just one non-zero idempotent) but it can not be written as a quotient of a completed
path algebra C{Q)/I by a semi-admissible ideal I. Indeed, firstly C[x] is not local
because it has a lot of maximal ideals. Secondly, any algebra of the form C{Q)/I for
some semi-admissible ideal I with |Qo| = 1, is local. Since there is only one vertex
we have that C{Q )/ = C and the arrow ideal 9T is unique with this property (see
the discussion below [24, Example 2.3]), i.e, C{Q) is local, therefore C{Q)/I is also
local.

Remark 3.3. If A is a C-algebra, then there exist a basic algebra A® such that A-mod
is equivalent to A®-mod, see |7, Corollary 2.6], i.e A and A® are Morita equivalent.
From |2, Proposition 21.10] we know that if R and S are two Morita equivalent rings,
then Z(R) = Z(S). In other words, two rings with equivalent module categories have
isomorphic centers. So, for commutative algebras finding their basic and commutative
versions is not as helpful as for non-commutative algebras.

A finite-dimensional representation of () over C is a pair ((M;)icqy, (Ma)aeq, ) Where
M, is a finite-dimensional C- vector space for each i € QQg and M, : My, — My, is a
C-linear map. Here the word representation means finite-dimensional representation.
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The dimension vector of a representation M of () is given by
dim(M) = (dim(My), .. ., dim(M,)).

We define dim(M) = 3" | dim(M;) as the dimension of M. We say M is a nilpotent
representation if there is an n > 0 such that for every path a,a,_1a...a; of length n
in @ we have M, M, ,...M, = 0. A subrepresentation of M is an n-tuple of C-
vector spaces N = (N;)ieq, such that N; < M; for each i € Qo and M,(Nya)) S Ni(a)
for every a € Q.

We denote by nilc(Q) the category of nilpotent representations of @, and by C{Q)-
mod the category of finite- dimensional left C{@Q)-modules. It is known that the
category of representations of () and the category of C{(@)-modules are equivalent.
In [25, Section 10], it was observed that nilc(Q) and C{Q)-mod are equivalent.

Given a basic algebra A = C{Q)/I we define a representation of A as a nilpotent
representation of () which is annihilated by I. We consider the category mod(A) of
finite-dimensional left modules as the category rep(A) of representations of A.

Let A = CLQ)/I be a basic algebra. We say M = (M,V) is a decorated rep-
resentation of A if M is a representation of A and V = (V4,...,V,) is an n-tuple
of finite- dimensional C-vector spaces. We can think of V' as a representation of a
quiver with n-vertices and no arrows. That is a representation of the semisimple
ring C?%. Let decrep(A) be the category of decorated representations of A. The
objects of decrep(A) are the decorated representations of A and its morphisms are
given as follows. Let (M,V) and (N,W) be two decorated representations of A.
We define the space of morhisms in decrep(A) by Homgecrep(a)((M, V), (N, W)) =
Homyep(a) (M, N) x Hom,gpceo)(V, W).

Let M = (M,V) be a decorated representation of A. If V = 0, we write M
instead M. For i € {1,...,n} we define the negative simple representation of A as
S, = (0,S;) where (5;); is Cif j =4 and (5;); = 0 in other wise.

For a representation M = ((M;)icq,; (Ma)ae, ) of A and a vector e € N” let Gre(M)
be the quiver Grassmannian of subrepresentations N of M such that dim(N) = e. We
denote the Euler characteristic of Gre(M) by x(Gre(M)). About Euler characteristic,
we are going to need the following result, see [9],

Lemma 3.4 (Biafynicki—Birula). Let T be an algebraic torus acting on an algebraic
variety X. If we denote by XT the set of fived points of the action, then x(XT) =

X (X).

The following definition plays a crucial role in some computations that will be
involved later. It was introduced in [17, Section 2.4].

Definition 3.1. Given a basic algebra A = C{Q)/I and p > 2 we define the p-
truncation of A by A, = CLQ)/(I + MP).

We are going to need some basic definitions about quivers with potential, for all
details the reader can see [24]. Let @) be a quiver, we say that S € C{Q) is a
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potential for () if S is a, possibly infinite, C-linear combination of cycles in ) . Given
two potentials S and W we say that they are cyclically equivalent and write S ~cyc W,
if S — W is in the closure of the sub-vector space of C{Q) generated by all elements
of the form aqas - - - a,_1a, —as---a,_1a,ay, with aas - - - a,_1a, a cycle on Q.

Definition 3.2. We say (Q,S) is a quiver with potential (QP) if S is a potential
for ) and if any two different cycles appearing with non-zero coefficient in .S are not
cyclically equivalent.

Given an arrow a € (1 and a cycle a,a,_1---a; in @, define the cyclic derivative
of a,a,_1---a; with respect to a as follows:

n
Oa(@nn_1 -+ 1) = ) Baa@h1p—2 " 0100 Gn_1 - - A 201,
k=1

we extend this definition by C-linearity and continuity to all potentials for Q).

Definition 3.3. Let (Q,S) be a quiver with potential. We define the Jacobian ideal
J(Q,S) as the closure of the ideal on C{Q)) generated by all cyclic derivatives d,(S)
with a € Q1. The quotient C{Q)»/J(Q,S) is called the Jacobian algebra of (Q,S)
and is denoted as P(Q, S).

3.1.1 Varieties of representations

Let A = CLQ)/I and d = (di,...,d,) € N* be a basic algebra and a vector of
non-negative integers. The representations M of ) with dim(M) = d can be seen as
points of the affine space

repy(Q) = H Homc((Cdt(a%(cdh(a))'
acQ1

Now, let repq(A) be the Zariski closed subset of repy(Q) given by the representations
N of A with dim(N) = d.

In repy(A) we have the action of Gq = []_; GL(C%) by conjugation. If g =
(91,---.9n) € Ga and M = ((M,)icqys (Ma)aeq,) € repq(A), then

9+ M = ((Mi)icqy, (90 MaGsa))aca)-

From definitions follows that the isomorphism classes of representations of A with
dimension vector d are in bijection with the Gg-orbits in repg(A). If M € repy(A), its
Gg-orbit is denoted by O(M). For (d,v) € N" x N" let decrepy , (A) be the decorated

representations variety of A. If v = (vq,...,v,), then
decrepg , (A) = repg(A) x {(C*,...,C"™)}.

We have an action of Ggq on decrepy(A) given by g- M = (g- M,V) where
M = (M,V) e decrepy (A) and g € Ggq.
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3.2 Galois coverings

In this section we are going to make a reminder about Galois G-coverings or just
Galois coverings. For a nice review of this subject, the reader can see the introductions
of [4, 8]. For our convenience we are going to present some results from [8].

In this section G will denote a finite group (in the general theory this assumption is
not required). A category A is C-linear or a C-category whose sets of morphisms are
C-modules and the composition of morphisms is C-linear. Given two objects X and Y’
of a C-linear category A, we denote the space of morphisms from X to Y by A(X,Y)
or Hom4(X,Y). We assume that we have a morphism p : G — Aut(A) from G to
the group of automorphisms of A, not the group of auto-equivalences. That means
we have an action of G on A. We will abuse of notation and we will write g instead
p(g) : A — A for every g € G. The action of G on A is called free provided g - X is
not isomorphic to X for every non-trivial element g € G and for any indecomposable
object X of A. The next definitions are due to Hideto Asashiba, see [4, Definition
1.1, Definition 1.7].

Definition 3.4. Let A and B be C-categories with GG acting on A. A C-linear functor
F : A — Bis called G-stable if there exist functorial isomorphisms d, : Fg — F such
that 0p, x0gn.x = Ognx for any g,h € G and any object X in A, see the diagram
below. In this case § = (0y)gec is called a G-stabilizer. If §, = idr for every g € G,
we say that F is G-invariant.

Foh -~ Fh
Jo
Ogn
F

Definition 3.5. Let A, B be C-categories with a group G actingon A. Let F : A — B
be a G-stable functor with stabilizer §.

(a) We say that F is a G-precovering if the following maps are isomorphisms for
any X, Y objects in A:

Fxy C—BA(X,g YY) = B(F(X), F(Y)); (ug)gec — Z Og,y T (ug),

gGG gGG
FY P A XY) - BF(X), FY)); (vg)gec > D, Fvg)d, k-
gEG gEG

(b) A G-precovering F is called a Galois G-covering if F has the following three
conditions:

(i) The functor F is almost dense. It means that any indecomposable object
Y of B is isomorphic to F(X) for some object X in A.

(ii) If X is indecomposable in A, then F(X) is indecomposable in B.
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(iii) For any indecomposable objects X, Y in A such that F(X) =~ F(Y), there
exist g € G such that g- X = Y.

Recall that a functor F : A — B is dense if for any object B € B there exist an
object A € A such that F(A) =~ B.

Remark 3.5. 1. In [4, Proposition 1.6], it is proved that 7% is an isomorphism
if and only if Fxy is an isomorphism. Note that a G-precovering is a faithful
functor, see [8, Lemma 2.6].

2. In Krull-Schmidt categories a functor is almost dense if and only if it is dense.

The following lemma allows us to find examples of a Galois GG-covering from a G-
precovering between module categories, see |8, Lemma 2.9]

Lemma 3.6. Let A, B be Krull-Schmidt C-categories with a group G acting freely on
A and let F : A — B be a G-precovering. Assume X is an object in A such that
End 4(X) s local and has nilpotent radical. Then Endg(F (X)) is local with nilpotent
radical and if Y is an object in A such that F(X) = F(Y), then there exist g € G
such that g- X =Y.

The next theorem shows an interesting application of Galois covering in Auslander-
Reiten theory, see |8, Theorem 3.7].

Theorem 3.7 (Bautista-Liu, 2014). Let A, B be Krull-Schmidt C-categories with a
group G acting freely on A and let F : A — B be a Galois G-covering. Then

1. A short exact sequence i in A is almost split if and only if F(n) is almost split.

2. An object X in A is the starting or ending term of a almost split sequence if
and only if F(X) is the starting or ending term of a almost split sequence,
respectively.

Given a C-algebra A we consider it as a C-category in the usual way, in other words,
the set of objects of A is a complete family of orthogonal and primitive idempotents
and the set of morphisms is given by A(e;,e;) = e;jAe;. In this context, the category
of left A-modules A -mod is equivalent to the category of functors from A to C-mod.

Remark 3.8. The examples at the end of this section show that Galois coverings
between C-algebras viewed as C-categories may not be morphisms of unitary rings.
That is one reason why we need to introduce this categorical approach to algebras. In-
stead of defining a new type of morphism between unitary rings, we use the functorial
language.

An action of a group G on A induces an action of G on A -mod in the following way.
Given an A-module M : A — C-mod we define g- M := Mg~!, remember that g is
thought as an automorphism of A; for a morphism w : M — N of A-mod, we define
g-u(z) = u(g~'x) for x an object of A. So, if we have a G-precovering m : A — A,
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Bongarzt and Gabriel defined the push-down functor m, : A-mod — A-mod, see |11,
Section 3.2]. In Remark 7.13 we define the push-down fuctor in our particular case.
We have a nice property for m,, see [8, Lemma 6.3].

Lemma 3.9. Let A and A be finite dimensional C-algebras with a group G acting on
A. Assume the action of G is free. If m: A — A is a Galois G-precovering, then the
push-down functor m, admits a G-stabilizer §.

With the following lemma we can construct a G-precovering from a Galois G-
covering, see [8, Theorem 6.5].

Lemma 3.10. Let A and A be finite dimensional C-algebras with a group G acting
on A. Assume the action of G is free. If m: A — A is a Galois G-covering, then

Ty : A-mod — A-mod
1s a G-precovering.

Example 3.1. Let A be the path algebra of () and A’ the path algebra of )/ where

a1

Q: 1<——2 and Q': 7~ )a.
I |
i s ey

Y2

We consider Zy acting on A by the permutation

(1234
9=\2 1 4 3)"

Then the functor f: A — A’ induced by e1, €2 — e,; €3,e4 — €,; a1, a0 — a; 6,8 — b
and 7y, 72 — d is a Galois covering. Indeed, the following maps induce ismomorphisms
of C-vector spaces.

JErer s Aler, e)@A(eg, e1) = A'(eas €2); (pa(azon)™, pa(ran)"an) = pna® +ppa®

fe s Ales, e1) @ A(eq, e1) — A'(ey, e);
(A1) ™ anB(1172)™ + Aa(araa)™ 0 (7271) ™72,
Az(a20)™ 6 (7271)™ + Ad(anan)™ aaB(1172)™ 1)
N A1a2m1+1bd2m2 + )\2a2m3bd2n4+1 + )\3a2n1bd2n2 + /\4a2n3+1bd2n4+1,

where 1, pg, A; € C and m, n, m;,n; € Nyg for i = 1,2, 3,4. This proves, thanks to the
symmetry, that f is a Galois covering. In order to explain Remark 3.8 observe that if
f were a morphism of rings, then f(e; +ex+es3+es) = f(e1)+ fle2) + f(es) + fles) =
2e, +2e, = 2- (e, + €,), this means that f would not be unitary.
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a1

Example 3.2 (Non-example). Let A be the path algebra generated by 1 <———— 2

a2
and let A’ be the algebra C[z]/{z*). On A we have the natural action of Zy by the
transposition (1 2). Consider the functor g : A — A’ induced by ej,es — 1 and
aj,a — x. Then g is not a Galois covering. Indeed, the space A(ey,ez) is infinite
dimensional and A’(1,1) is 2-dimensional.
Here we have another example for Remark 3.8. If g were a morphism of rings, then

gler +e2) = gler) + glea) = 2.

Remark 3.11. The previous example would be a positive example if we impose the
relations ajag = 0 = apoy.

Example 3.3 (Non-free action). Consider the path algebra generated by the following
quiver
Q : 1

9 -5<% 4

E
3
and the action of Z, on C{Q)) induced by the cycle ¢ = (1 2 3 4). This action has

a fixed point. If you take the quiver Q' : x —"=y, then the canonical projection
7 C(Q) — C{Q’) is a dense functor but it is not a Galois covering.

3.3 String algebras

In this section we recall some definitions and results about string algebras exposed
in [13] and that work is due to Michael C.R. Butler and Claus Michael Ringel. Let
@ be a quiver and let P be a subset of paths in C{(Q) and denote by {(P) the ideal
generated by P. The algebra A = C(Q)/{P) is called a string algebra if the following
conditions hold:

(S1). Any vertex i € QQ is the tail or head point of at most two arrows of ), that is,
Hae @:tla) =i} <2and |[{aeQ: h(a) =i} < 2.

(S2). For any arrow a € @)1 we have |{b € Q;: t(a) = h(b) and ab ¢ P}| < 1 and
{ce Q1:t(c) = h(a) and ca ¢ P}| < 1.

(S3). The ideal (P) is admissible on C{Q).

To describe the finite-dimensional indecomposable A-modules we need the concept
of string. We introduce an alphabet consisting of direct letters given by each arrow
a € Q and inverse letters given by a=! for each arrow a € ). The head and tail
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functions extend to this alphabet in the obvious way, that is, h(a™') = t(a) and
t(a™') = h(a) for every arrow a € ;. For a letter [ in this alphabet we denote its
inverse letter with [~ and we write [ instead (I71)~!. A word in this alphabet of length
r > 11is a sequence of letters [, - - - [y such that t({;,1) = h(l;) fori=1,...,r—1. For
a word W = I,---I; we denote its inverse word by W= = [;*-..[71. It is clear we
can extend the head and tail functions to words. A string of length » > 1 is a word
W =1,---1; such that W and W~ do not contain sub-words of the form (/="' for a
letter [ and no sub-words of W belongs to P.

We introduce strings of length 0 in the following way. For each vertex i € @)y
we have two strings of length O denoted by 1(,) with v € {1,—1}. In this case
h(1(w) =i = t(1iu)- By definition 157, = 16 ).

We recall the definition of two functions to deal with strings. In [13] it is shown we
can choose two functions o,e: @1 — {1,—1} such that the following conditions are
satisfied

1. If ay # ay are arrows with t(a;) = t(az), then o(a;) = —o(asg).
2. If by # by are arrows with h(by) = h(by), then (b)) = —e(bs).
3. If a,b e Q are arrows with ¢(b) = h(a) and ba ¢ P, then o(b) = —¢(a).

For an arrow a € @Q; we have o(a™') = €(a) and e(a™') = o(a). For a string
W =1,---1; wedefine o (W) = o(l;) and e(W) = €(l,). Besides we have o(1(;,)) = —u
and e(l(im)) = u. Note that if W; and Wy are strings such that W5W; is a string,
then o(W;) = —e(W1). For (i,u) € Qo x {1, =1} let W; .y be the set of all strings W
with h(W) =i and €(W) = u. Let W be the set of all strings and define on W an
equivalence relation given by Wy ~ W, if and only if W, € {Wi, W, '}. Let W be a
complete set of representatives of the corresponding equivalence classes.

Remark 3.12. In this thesis we are not going to use this functions € and o, but it is
useful to remember that for string algebras the strings can be thought of as sequence
of signs. What this means is that a string is not determined by its tail and head but
it is determined by its tail, head and the sequence of values of those functions.

In [13], it was also defined the set B of bands. A string W € W belongs to B if
length of W is positive, W™ € W for all n € N and W is not the power of some string
of smaller length.

3.3.1 Indecomposable string modules

For a string W, in [13], it was defined a A-module N (W), for convenience we repeat
this definition. For the string 1(; ) we define N(1(;,,) as the simple representation S;
at the vertex i € Q. If W =1, ---1y, then N(W) is a representation of C-dimension
r + 1. For describe the structure of A-module let po = t(l;) and p, = h(l;) for
k =1,...,r vertices of ). By definition dim(N(W);) is |{k € [1,7 + 1]: pr = 4}|. If
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{20, , 2} is a basis of N(W) with 2z, € N(W),, for k =0,...,r, then the action of
the arrows is given by the following way

ll l2 ln—l ln
2ot Z1 s Zp—1" Zn-

If I is a direct letter, then N (W), (z5—1) = 2; if Ii, is a inverse letter, then we have
NW), (2k—1) = zx with & = 1,...,n; if a € Q1 and N(W),(2x) is not defined yet,
then N(W)4(z,) = 0.

In [13], it was observed that N (W) is isomorphic to N(W™='). The modules N (W)
are called string modules. The next result is a special case of the more general result
of Butler and Ringel proved in [13, Section 3].

Theorem 3.13 (Butler-Ringel). Let A be a string algebra. If B = &, then the A-
modules N(W) with W € W form a complete list of indecomposable, pairwise non-
isomorphic A-modules.

To end this section we introduce other definitions. Let W = [, ---1; be a string of
positive length, we define its support as Supp(W) = {t(l1)} v {h(lx): k = 1,--- ,r}.
If W = 14, then Supp(W) = {i}. Given a string of positive length W = [,.-- -1y, we
say that a string V' is a sub-string of W it V' = [, ;- - -I; is a subword of W and there
are no arrows a,b € (1 such that aV and Vb~! are subwords of W. For technical
reasons we introduce the zero string 0 which is sub-string of any string. Now, given
a string W we denote by Cam (W) the set of all sub-strings of W.

Remark 3.14. We use Cam from the word in spanish caminata for walk. On one
hand the elements of Cam(W') can be thought as walks in the quiver. On the other
hand, there are a lot of W’s in our notation.

There exist an outstanding family of string algebras called gentle algebras. Since
they are not the central subject of this work, we wrote down the general results for
string algebras and postponed its appearance up to before Proposition 7.9.
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Caldero-Chapoton algebras

In this chapter we review one of the most relevant subjects of this thesis, namely the
Caldero-Chapoton algebras introduced by Giovanni Cerulli Irelli, Daniel Labardini
Fragoso and Jan Schréer in [17].

4.1 Homological data

In this section we recall some definitions and facts we work with. This definitions
were introduced in [17, Section 3.4|. They were motivated by the theory of mutation
of quivers with potential developed in |25] and the Caldero-Chapoton functions intro-
duced in [14]. In this section let A = C{{@))/I be a basic algebra, recall definitions
in Section 3.1.

4.1.1 g-vectors

For a decorated representation M = (M,V) of A the g-vector of M is given by
gr(M) = (g1, ..., 9n) where

gi := g;(M) = —dim Homy (S;, M) + dim Ext} (S;, M) + dim(V;).
It is clear that g(M) € Z™. We denote by I; to the injective envelope of the simple

representation S; in A-mod. We recall an interesting result to compute the g-vector
of M, see [17, Lemma 3.4| for a general version.

Lemma 4.1. Let M = (M,V') be a decorated representation of a finite dimensional
algebra A and let gn(M) = (g1,-..,9n) be its g-vector. Assume we have a minimal
ingective presentation of M

0> M— I((M)— (M),
where Io(M) = @, I and I,(M) = @, I". Then

g; = —a; + b; + dim(V;).
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4.1.2 Auslander-Reiten translations

In this section, we give a brief reminder of Auslander-Reiten translations, for details
an proofs the reader can see [6, Section 2, IV]. Let M € A-mod be a representa-
tion. Suppose that P, and I°* are a minimal projective presentation and an injective
presentation of M, respectively;

PP sp M 0, I°: 0 M-,
The Nakayama functor v: A-mod — A-mod is given by v(—) = D Homu(—,A),
where D(—) = Homc(—, C) is the standard duality. If we restrict v to the full subcat-
egory of projective modules A-proj of A-mod, then induces an equivalence between
A -proj and the full subcategory of injective modules A-inj of A-mod. The quasi-
inverse of this restriction is given by v~! = Homy (D(A), —), see [6, Proposition 2.10,
III]. We use |6, Propostion 2.4 IV] to define the Auslander-Reiten translations.

Definition 4.1. Assume P, and I* as above. We define the Auslander-Reiten trans-
lations 7 and 7~ of M from the following exact sequences.

(a)
0 (M) vP sy Py 2y M ——0,

(b)
v 1o v i

0—v™ M v~ 1 v I T (M) ——=0.

Remark 4.2. In order to stress the algebra A in the definition of the Auslander-Reiten
translations we write 75 (resp. 7, ) instead of 7 (resp. 77).

We will summarize the main properties of Auslander-Reiten translations for finite
dimensional algebras. The reader can see [6, Proposition 2.10, IV] for the next result.T

Proposition 4.3. Let A be a basic finite dimensional algebra. Assume M and N are
indecomposable A-modules in A -mod.

(al) The AR-translation TM 1is zero if and only if M is projective.
(a2) The AR-translation inverse T~ M 1is zero if and only if M is injective.

(b1) If M is a non-projective module, then TN is indecomposable non-injective and
T TM = M.

(b2) If N is a non-injective module, then 7= N is indecomposable non-projective and
77T~ N =~ N.

(c1) If M and N are non-projective, then M =~ N if and only if there is an isomor-
phism TM =~ TN.
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(c2) If M and N are non-injective, then M =~ N if and only if there is an isomor-
phism 7~ M =~ 7 N.

For the next result we need to introduce the stable categories A-mod and A-mod.
Given two modules M and N in A-mod we denote by P(M, N) and Z(M, N) the
subsets of Homy (M, N) consisting of all morphisms that factor through a projective
A-module and an injective A-module respectively.

The projectively stable category A-mod is defined with the same objects as those of
A -mod. The C-vector space of morphisims between two objects M and N of A-mod
is defined by

HO_HM(Ma N) = HOII]A(M, N)/P(Mv N)

The injectively stable category A-mod is defined with the same objects as those of
A-mod. The C-vector space of morphisims between two objects M and N of A-mod
is defined by

Homy (M, N) = Homy (M, N)/Z(M, N).

The next result is one of the most celebrated results in Auslander-Reiten theory,
see |6, Theorem 2.13, IV].

Theorem 4.4 (The Auslander-Reiten formulas). Let A be a basic finite dimensional
algebra and M, N be two modules in A-mod. Then there exist C-linear isomorphisms

DHom, (1~ N, M) = Ext} (M, N) = DHomy (N, 7M),

that are functorial in both entries.

4.1.3 The E-invariant
For decorated representations M = (M, V) and N’ = (N, W) of A let

Ex(M,N) = dim Homy (M, N) —i—Zdlm Dgi(N).

i=1

The E-invariant of M is defined as Ex(M) = Ex(M, M).
In [17] it was shown that the E-invariant has a homological interpretation in terms
of the Auslander-Reiten translation h, of truncations of A, see Definition 3.1.

Proposition 4.5 ([17, Proposition 3.5]). Let M = (M,V) and N = (N,W) be
decorated representations of A. If p > dim(M ), dim(N), then

EA(MLN) = By, (M, N) = dim Homy, (7 (N), M) + Zdlm ) dim ().

This proposition is quite useful for us because the basic algebras we are considering
satisfy A, = A for a sufficiently large p.
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4.2 Caldero-Chapoton functions and algebras

Let M = (M, V) be a decorated representation of A. For f= (fi,..., f,) € Z" by x!
we mean [ [ 2/t The Caldero-Chapoton function (CC function for short) associated

=11

to M of A is the Laurent polynomial in n-variables x1, ..., z, defined by
Ca(M) = xM X"y (Gre(M))xee,
ecN"

where C is defined as in Section 3.1. From definitions, Cy(M) € Z[zf, ..., 2F], and
Ca(S;) = x;. The set of Caldero-Chapoton functions associated to A is

Ch = {CA(M): M € decrep(A)}.

The next lemma was proved in [17]. It is convenient for computations of g-vectors
and Caldero-Chapoton functions.

Lemma 4.6 (|17, Lemma 4.1]). If M = (M,V) and N' = (N,W) are decorated
representations of A, then the following hold:

1. gp(M@N) = gA(M) + ga(N).
2. Cp(M) = Cu(M,0)CA(0, V).
3. CA(M@N) = Ca(M)CA(N).

Definition 4.2. The Caldero-Chapoton algebra Ap associated to A is the subalgebra
of C[x7,...,2%] generated by C,.

From Lemma 4.6(iii) follows that Cj generates A, as C-vector space, see [17,
Lemma 4.2].

Example 4.1. Let () be the quiver

al a2z an—2

1 2 n—12"%n

and let A = C{(Q). For each sub-interval e = [, j] of [1,n] with i < j we define an
indecomposable representation M, of A the following way. Set (M), = Cif k € e
and (Me)r = 0if k ¢ e, for k € [1,n]. For an arrow a; with [ € [1,n — 1] define (Me),,
as idc if t(a;), h(a;) € e and zero in other wise. Note that the dimension vector of M,
can be identified with the sub-interval e. If 1 < i, then we have

—1itk =y,
gn(Mo)e =3 Tifh=i—1,
0 in other wise.
If i = 1, then ga(Me); = —1 and ga(Me)r, = 0 for & # j. We have Ey(Me) = 0
for each sub-interval e of [1,n]. From [14, Theorem 3.4] we have that A, can be
identified with the cluster algebra associated to Q).
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4.3 Strongly reduced components

In this section we recall some facts about strongly reduced irreducible components
which were introduced in [34, Section 1.5|. For our convenience we follow the exposi-
tion of [17], the reader can see [17, Sections 5 and 6] for a complete treatment about
strongly reduced components in Caldero-Chapoton algebras.

Let A be a basic algebra and consider dimension vectors (d,v) € N* x N*. We
denote by Irrq(A) and declrrq(A) the set of irreducible components of repgq(A) and
decrepg  (A) respectively. For Z € declrrq,y(A) we write dim(Z) = (d,v). We define

Irr(A) = UIrrd(A) and declrr(A) = U declrrq v (A)
d (d,v)

the corresponding sets of irreducible components. From Section 3.1.1 we have that
decrepy.,(A) = repa(A) x {(C™,...,C")}.

It is clear that T : decrepy , (A) — repq(A) with (M, CY) — M is an isomorphism of
affine varieties. In this way results on the variety of representations can be transported
to the variety of decorated ones. We introduce further notation in order to define
strongly reduced components.

Let Z, Zy, Zy € declrr(A) be irreducible components, define

ca(Z) = min{dim(Z) — dim O(M): M e Z},
ea(Z) = min{dim Ext} (M, M): M = (M,V) e Z},
ext} (Z1, Zy) = min{dim Ext} (M, M) : M; = (M, V;) € Z,, fori = 1,2}.

From the semi-continuity of the functions dim Homy(—,?) and dim Ext}(—,?), see
[21, Lemma 4.3], there exist an open set U of Z such that Ey(M) = E\(N) for all
M N € U. Then we define Fr(Z) = Ex(M) for M € U. In a similar way we define
Ex(Z1, 7).

The following lemma is proved in |17, Lemma 5.2].

Lemma 4.7. Let Z, 7y, Zy € declrr(A) be irreducible components. The following
inequalities hold

CA(Z) < GA(Z) < EA(Z) and ethlx(Zl, ZQ) < EA(Zl,ZQ).
The following definition comes from [34].

Definition 4.3. Let Z € declrr(A) be an irreducible component. We say that Z is
strongly reduced if cy(Z) = Ep(Z).



32 Chapter 4

We say that an irreducible component Z € Irr(A) (resp. Z € declrr(A)) is inde-
composable if there exist a dense open U < Z which contains only indecomposable
representations (resp. indecomposable decorated representations).

William Crawley Boevey and Jan Schroer gave a canonical decomposition at the
level of irreducible components. This seems something as the Krull-Schmidt property
at that level, see [21, Theorems 1.1 and 1.2].

Theorem 4.8 (CB-S). Let Zy,...,Z; be irreducible components in Irr(A). The fol-
lowing two statements are equivalent:

o /1 ® - ®Z; 1s an irreducible component.
o exth(Z;,Z;) =0, fori+# j withi,j€{1,...,t}.
Moreover, the following hold:

o If W € Trr(A) is an irreducible component, then there exist indecomposable
irreducible components Wy, ..., Wy, in Irr(A) such that W =W @ ---® W, and
this decomposition is unique up to a permutation.

We wrote down the Crawley-Boevey and Schroer theorem in its original version for
rep(A), but it is true for decrep(A) as is stated in |17, Theorem 5.3].

Now, we get something similar for strongly reduced components, see [17, Theorem
5.11].

Theorem 4.9 (CI-LF-S). Let Zy,...Z; be irreducible components in declrr(A). The
following two statements are equivalent:

o /1 ® - ®Z; is a strongly reduced irreducible component.

o For any Z; we have that it is strongly reduced and Ex(Z;, Z;) = 0 for all i # j
with 1,5 € {1,...,t}.

We want generic Caldero-Chapoton functions. For each (d, v) € N*xN" we consider

the function

Ca, v: decrepg (A) — Z[zf, ... z;}],
defined by M — Cy(M). Since this function is constructible, then its image is finite.
It turns out that for any irreducible component Z € declrrq, v(A) there exist a dense
open subset U < Z where Cy, v is constant in U. We define C)(Z) = Cy(M), for
any M e U.

The set of irreducible components is denoted by decIrr®"(A). We define the graph
['(decIrr®*(A)) of strongly reduced irreducible components as follows: it has a vertex
for any indecomposable strongly reduced component and there is an edge between
vertices Y and Z if EA(Y,Z) = 0 = Ex(Z,Y) . Note that Y can be equal Z. The
graph of irreducible components I'(Irr(A)) was defined in |21, Section 12.3|
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Let I' be a graph. We consider graphs with single edges and loops. We denote by
[y the set of vertices of I'. By I'yy we denote the full subgraph of ', whose set of
vertices is U.

We call [y, complete if for any vertices ¢ # j in U there is an edge between them.
A complete I'y, subgraph is called mazimal if for any other complete subgraph I'y
with U < U" we have U = U'.

We define a component cluster of A as the set of vertices of a maximal complete
subgraph of I'(declrr®"(A)). A component cluster U is E-rigid whenever Fy(Z) = 0
for all Z el.

The following notions were introduced in |17, Section 6.5].

Definition 4.4. Let U = {Z1,Z5,...,7Z;} be a component cluster. We define the
CC-cluster of A associated to U by Cyy = {Ca(Z1),Ca(Zs),...,Ca(Z:)}.

The notation C'C' comes from sets of Caldero-Chapoton functions. Cerulli Irelli,
Labarini-Fragoso and Schroer introduced the notion of Laurent phenomenon for
Caldero-Chapoton algebras, see [17, Section 6.5].

Definition 4.5. The Caldero-Chapoton algebra A, has the Laurent phenomenon
property provided for any E-rigid component cluster {Z1, ..., Z;} of A, we have

Ax € C[CA(Z1)E, .. .CA(Z)7].
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Chapter

Cluster algebras and generalized cluster
algebras

In this chapter we review the basic definitions and results about cluster algebras and
then we will introduce the generalized cluster algebras. Generalized cluster algebras
are needed to present our main result. These algebras are associative and commuta-
tive algebras with a rich combinatorial structure governed by a skew-symmetrizable
matrix and some procedure called mutation.

In their beginning, cluster algebras were introduced in order to provide a combina-
torial approach for total positivity of algebraic groups. On the other hand, generalized
cluster algebras are related, in their beginnings, to the structure of the Teichmiiller
space of orbifolds.

5.1 Cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky around the year 2002 in
[29]. All the definitions and results of this section can be found in [29, 32]. For our
convenience and transparency in the exposition of our results we will work without
coefficients.

We say a matrix B € Mat,,x,,(Z) is skew-symmetrizable (by the left) if there exist
positive integers d, . . ., d,, such that DB is skew-symmetric with D = diag(dy, ..., d,)
a diagonal matrix. In this case we call D a skew-symmetrizer of B.

Given a skew-simmetrizable matrix B and an integer k € {1,...,n}, the mutation
of B with respect to k is the matrix ju,(B) with entries b; defined as follows

ifk=iork=j,

b ——{ bl\jb |br+bir|br. ;|
1] i i+b; glose s .
J —’“’”2’“’” if 1 #k # j.

bij +



36 Chapter 5

Example 5.1. We present a 3 x 3 matrix and its mutation at direction 1.

0 -1 2 0 1 —2
B=|1 0o =2, mB=[-10 o0
-1 1 0 1 0 0

Note that D = diag(1, 1,2) is a skew-symmetrizer for B and u,(B).
Remark 5.1. Some observations deserve to be done.

e In this work skew-symmetrizable means skew-symmetrizable by the left, how-
ever we can write the another natural definition. We say that B is skew- sym-
metrizable by the right if there exist a diagonal matrix E such that BE is
skew-symmetric.

e B is skew-symmetrizable by the left if and only if B is skew-symetrizable by
the right.

e If D is a skew-symmetrizer for B, then D is a skew-symmetrizer for p(B).

Let F be the field of the rational functions in n algebraic independent variables
with coefficients in Q, in other words F = Q(uy, ..., uy,).

Definition 5.1. A seed in F is a pair (B,x) where B is a skew- symmetrizable
matrix and X = (z1,...,x,) is an n-tuple of algebraic independent elements of F
which generate it.

Definition 5.2. For a seed (B,x) and k € {1,...,n}, the mutation of (B, x) with
respect to k is the pair pug(B,x) = (ux(B), (X)) where ug(x) = (2f,...,2,) is the
n-tuple of elements of F given by

/ b —b
xTr. = 1 T l,lc+1—l . Lk
7 b; 1.>0"1 by .<0 1 . .
Lk Lk if k =1.

Tk

Definition 5.3. For a seed (B, x), let
X=A{zxepu, - p,x):ke{l,. .. ,n}and r =0}

The cluster algebra associated to (B,x), denoted by A(B) = A(B,x), is the subring
of F generated by X.

The elements of X are known as cluster variables and a cluster is an element of the
set {pu, - - iy (X): k€ {1,...,n} and r = 0}. In the theory of cluster algebras there
are two outstanding results. One is about the classification of those cluster algebras
with a finite number of cluster variables and the another one is the celebrated Laurent
phenomenon. These two results were proved by Fomin and Zelevinsky.
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Theorem 5.2 (The Laurent phenomenon). Any cluster variable can be expressed as
a Laurent polynomaial in the initial variables x;.

By the very definition of cluster mutation it is clear that any cluster variable can
be expressed as a rational function of the initial cluster variables, the Laurent phe-
nomenon asserts that the rational function is, in fact, a Laurent polynomial.

5.1.1 The cluster algebra of a quiver

In the previous section we started with a skew-symmetrizable matrix but the case
when we consider a skew-symmetric matrix has a convenient visual approach.

Lemma 5.3. There is a bijection between the set of skew-symmetric n x n integer
matrices, and the set of 2-acyclic quivers without loops with set of vertices Yy =
{1,2,...,n}.

Proof. Assume @ is a 2-acyclic quiver without loops. We define a skew- symmetric
matrix By = (b; ;) in Mat,,«,(Z) as follows

bij = [{a € Qu:h(a) =i t(a) = j}| — {a € Qr:ha) = j,t(a) = i},
it turns out that this defines the aforementioned correspondence. O

Now, it makes sense ask by a quiver mutation.

Definition 5.4. Let () be a 2-acyclic quiver without loops and k € )y, we define the
mutation (@) at direction k of @) as the quiver we obtain by applying the following
three steps

1. Replace every arrow c incident to k& by an arrow c+ in the opposite direction.
2. For any pair of arrows j —*>k —">1i add an arrow [ba] from j to i.

3. Delete 2-cycles one by one.

Example 5.2. We present a quiver ¢) and its mutation at one vertex

Q: 1——2, (Q): 1———=2
4 Tﬁ 4 [57] lﬁ*

From definitions we get the following lemma

Lemma 5.4. Q,, () = 1uk(@p).

Definition 5.5. Let @) be a 2-acyclic quiver without loops. We define the cluster
algebra A(Q) associated to @) as the cluster algebra A(Bg) associated to Bg.

Remark 5.5. By the finite type classification of cluster algebras provided by Fomin
and Zelevinsky, if @ is a quiver of Dynkin type, then A(Q) has a finite number of
cluster variables, see |30, Theorem 1.4].
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5.1.2 Geometric realization of type A

In this section we review a pleasant description of cluster algebras of type A, see [30,
Section 12.2]. Consider the Dynkin diagram A,

1—— 92— ... ——(n—1)—n,

A quiver @ is of type A if its underlying graph is a Dynkin diagram of type A. Below
we depicted a quiver of type As.

l<——2—>3 (5.1)

Let P, be a (n + 3)-regular polygon. Assume we label the vertices of P, counter-
clockwise with the numbers {1,2,...,n +2,n + 3}. From [30, Section 12.2] we know
that the cluster variables are in correspondence with the diagonals of P, and the
clusters are in correspondence with the triangulations of P,. The exchange relations
are given by the Ptolemy’s relation.

A triangulation T' = {ji1, jo ..., jn} of P, is a snake if j; is a segment of the form
[, + 2] (ie, a segment connecting two vertices neighbouring a vertex) for some
[l € {l,...,n + 1}, any two consecutive arcs of T" are incident in one vertex, and
non-consecutives arcs of 7" do not have common vertices, see Figure 5.1.

2 1
Ji

J2

J3

4 5
Figure 5.1: A snake for n = 3.

For any triangulation 7" of P, we can associate a quiver Q(T'): the set of vertices is
given by the arcs of T" and the set of arrows is described as follows. For each triangle
of T we put arrows in clockwise orientation. In (5.1) the quiver associated to the
triangulation T of Figure 5.1 is drawn. Compare this definition with Remark 7.1. If
we start with a snake 7" of P,, then we obatin a quiver Q(T') of type A,.

Given any triangulation 7" of P, and j € T" an arc we define the flip of j with
respect to T as the unique arc of P, such that 77 = T\{j} u {j'} is a triangulation of
P,. In this case j is denoted by flip;(j) and the new triangulation 7" is denoted by
flip;(T"), we also say that T" and T" are related by a flip at j.

A straightforward and useful observation is that flips and mutations are compatible.
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Lemma 5.6. If T and T" are two triangulations of P, related by a flip at j, then
1 (Q(T)) = Q(T7).

We denote by z; the initial cluster variable associated to the arc j; of T"in Figure 5.1.
The exchange relations are given by a combinatorial interpretation of the Ptolemy’s
theorem. Indeed, see Figure 5.2, from the definition of mutation we get the exchange
relation for xo,

To Ty =wm1 w3+ 11 (5.2)

J1

J2

J3
4 5

Figure 5.2: On the left we have the quiver associated to the snake and on the right
we have the quadrilateral containing j, with thick lines.

Equation (5.2) can be interpreted as the Ptolemy’s relation from the thick quadri-
lateral on the right side of Figure 5.2. Here the boundary segments are interpreted as
1 and the product of the cluster variables associated to the diagonals is the sum of the
products of the cluster variables associated to the opposite sides of the quadrilateral
containing the aforementioned diagonals.

5.2 A toy example of a group action on cluster alge-
bras

In this section we present a simple example to motivate generalized cluster algebras
and orbifolds somehow, for more examples the reader is suggested to see [50].

Consider the polygon P3; and a triangulation 7" such that it is invariant under the
rotation by an angle of 120°, see Figure 5.3.

Let us make some observations. The action of G = Z3 on P; has one fixed point,
namely the center of the polygon. On the set of vertices of P; we have two orbits,
G-1={1,3,5} and G-2 = {2,4,6}.The action of G on the vertices of P3 induces an
action on the arcs of P3, hence GG acts on T'. This action let T' invariant as we said
before and 1" is the orbit of any arc, for instance, T'= G - j;.

In order to present some concepts in the future we recall some general definitions
although in this case all the generality it is not needed. The reader can find more
details in [41].
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2 1 2 1
3 73 6 3 73 6
4 5 4 5

Figure 5.3: An example of a triangulation 7" invariant under the natural action of Z3
(left) and the quiver associated to that triangulation (right).

Definition 5.6. Let X be a topological space and H a group of homeomorphisms of
X.

e H acts properly discontinuously on X if and only if each point z € X has a
neighborhood V' such that A(V) n'V # 0 for only finitely many h € H.

e A subset D of X is a fundamental region for the action of G on X if:

1. D is the closure of a non-empty open of X, for instance D = D.
2. Upeg M(D) = X.
3. Dnh(D) =¢.

In our example, a fundamental region is depicted in Figure 5.4.

1

Figure 5.4: Every quadrilateral between dashed lines is a fundamental region for the
action of Zs3 on Pj.

Cut out from P5 one of the fundamental regions, say the blue one in Figure 5.4.

Now, by definition every point in the interior is not related by G' with another point,
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Figure 5.6: By gluing the corresponding sides we obtain the triangulation of P3 which
we start with.

however points in the dashed lines are related by G. Let us to glue this points, see
Figure 5.5.

On the right side of Figure 5.5, we have a triangulation of an orbifold. The cross
(x) reminds us of the fixed point of the action in P3; and the blue dashed line is
reminding us the surgery and sewing we made along the boundary of a fundamental
region. The cross is going to be an orbifold point of order three.

From the right of Figure 5.5 we can recover the information of 5.4 making another
surgery. Indeed, take three digons as on the right of Figure 5.5. We take three copies
of the digon because the stabilizer of the center of the polygon has order three. We
are going to make an incision along the dashed lines and then we will glue the result
of those incisions around the pairs of dashed lines, see Figure 5.6. After do that, we
obtain Figure 5.4.
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In the next chapters we are going to review more details about 2-orbifolds or sur-
faces with orbifold points.

The action of G on Pj; induces an action of G' on the cluster algebra A(Q(T))
associated to Q(T). If we denote by z; the initial cluster variable associated to j; for
each [ = 1,2, 3, see Figure 5.3, then all the initial cluster variables are in the same G-
orbit.

If we think in the geometric quotient of Figure 5.4 we obtain the triangulated
orbifold on the right of Figure 5.5, that is a digon with one orbifold point of order
three. This is no longer a Riemann surface. What about the cluster algebra quotient?
Before going on, it is good to say that this approach is not given by Chekov and
Shapiro, but by Paquette and Schiffler. In the algebraic setting we do not obtain a
cluster algebra anymore. What kind of structure are we going to get?

For addressing this question let us make some remarks. We are interested in getting
some cluster structure in the quotient, so we are interested in the exchange polyno-
mials. Denote by 7 the morphism that sends the cluster variable x; to its orbit ;.
If we start with the naive idea that in order to get the new exchange polynomials we
need just apply 7 to the old ones, we can start with the mutation at 1, recall that
we are in the coefficient free case, this means that all the coefficients in our cluster
algebras are 1,

To + X3

r_ 5.3
.’171 T ) ( )
then .
() = hroy_ 2.
n

This is not satisfactory because if 7(z}) were the mutation of y;, then it would be
a constant.

On the other hand note that for Py there is an unique triangulation T by flipping
T simultaneously and such a way that T is again G-invariant, se Figure 5.7.

Let us express the cluster variables associated to ji, j, and j3, namely zj, x; and

z;; in terms of the initial cluster variables x1 o and z3, see Figure 5.7.

To + T3 + 1 To + T3 + I1

To + X3+ X
Ty =—"—— rp=——— and x5 = 2T (5.4)
173 T122 3 ToT3
If we compute y17 (7)), we have
() = Y1+t n — 3= yir(zy) = Y1+ tn — () = Y1+t n
J1 U1 J2 U1 J3 Y1
(5.5)

In turn 7(x;) = 3/y, does not depend on [. So, w(x;) may be considered as a cluster
mutation of y; somehow. Indeed, it will be the generalized cluster mutation of y;.
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2 1 .
3¢ Jo 6
4 5 2

Figure 5.7: The corresponding triangulation 7" from T on the left and the correspond-
ing triangulated orbifold from T on the right.

Note that if we start with 7" and we want to obtain an orbifold as we did with T,
we get the right side of Figure 5.7. This will be considered as the flip of the black arc
on the right side of Figure 5.5.

5.3 Generalized cluster algebras

We review the definition of generalized cluster algebras introduced by Chekhov and
Shapiro in [20]. One of the motivations of generalized cluster algebras came from the
interplay between cluster algebras and Poisson geometry, see [37].

For a detailed treatment of generalized cluster algebras with principal coefficients,
in parallel with the one for cluster algebras, the reader can see [47].

Now we assume that B is skew-symmetrizable with skew-symmetrizer D and by /dy
is an integer for all i € {1,...,n}.

For k€ {1,...,n} we define the polynomials

di
+ by ke /dx, - —by 1 /dg B 1 dp—l1
vy = | | x, . Uy = | | x, and  Op(u,v) = » wo* .

by, x>0 by, <0 1=0

x)and ke {1,...,n},
puk(B), k(X)) where

Definition 5.7 (Generalized cluster mutation). For a seed (B
the mutation of (B, x) with respect to k is the pair p(B,x)
pr(x) (2, ..., ) is the n-tuple of elements of F given by

, Xy, if £ # i,
Ti = Olvfop)

Cifk =1

k3

In this thesis the polynomials 6, (v, v; ) are often called polynomials of Chekhov-
Shapiro.
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Definition 5.8. For a seed (B, x), let
X=A{zxepu, p,X):ke{l,. .. ,n}andr =0}

The generalized cluster algebra associated to (B,x), denoted by A(B) = A(B,x), is
the subring of F generated by X.

Note that exchange polynomials do not have to be binomials. In [20, Theorem 2.5],
the Laurent phenomenon was proved.

Theorem 5.7 (The Laurent phenomenon). Any generalized cluster variable can be
expressed as a Laurent polynomial in the initial variables x;.

Remark 5.8. The reader should be cautious by comparing the definitions of [20] with
this ones because there they take skew-symmetrizer by the right and here we did by
the left.

Example 5.3. Take the matrix of Example 5.1

The third column is divisible by 2. In this case d; = 1, ds = 1 and d3 = 2. Then we
can express the polynomials of Chekhov-Shapiro.

vy = x9, v] =3, 01(u,v) =u+ v,
vy =3, Uy =21, O2(u,v) =u+ v, (5.6)

v =21, vy = @9, O3(u,v) = U+ uv + V7.
The first exchange relations are the following

/ / / 2 2
TiT1 = Ty + T3, ToTy = T3+ T1, T3Ts = &7 + 1122 + X5. (5.7)
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2-Orbifolds

In this chapter we present a review of the basic definitions about 2-orbifolds. The
reader can see [55, 56| for more details.

6.1 Introduction to orbifolds

In Section 5.2 we gave an example of orbifolds. In this section we write down other
examples in order to present the ideas behind an orbifold. We are going to take some
finite groups acting on R? by isometries.

Example 6.1 (The mirror case). Consider a non-zero vector v in R? and denote by
s, the reflection along the perpendicular line v+ to v, then we obtain an action of Z
on R? by reflection. In this case a fundamental region for this action is one of the
half-planes generated by v, see Definition 5.6.

Example 6.2 (The cone case). Consider the cyclic group Z, with n > 1 acting on
R? by rotation. In this case a fundamental region is a cake section between two lines
which meet at origin in an angle of 27/n. If you imagine that cut a paper with the
shape of that section and you glue the edge of this section you get a cone.

Definition 6.1. A dihedral group is a group with the following structure for some
n>1
D, ={a,b: a®> = b* = (ab)" = id).

Example 6.3 (Corner reflector case). This case can be considered as a combination
of the two previous ones, see [55, Example 5.1.2]. We act on R? with D,,. In this case
the fundamental region for the action is a section between two lines which meet in an
angle of 2w /n. To picture this case take a piece of paper, if you want, you can take a
circle of paper. Fold that paper up to get an angle of 30°. If you cut a figure in the
folded paper, then we get a patter with snowflake symmetry, here the group is Dg.
For some authors this example is known as a paper pattern.
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It is not a coincidence that:
Lemma 6.1. A finite subgroup of O(2) is either cyclic or dihedral.

The reader can see, |3, Theorem 19.1| for a proof of this result. As a historical
remark, this result is attributed to Leonardo da Vinci.

What have we done? Well, we have considered the orbit space of the action on R? of
a finite group of symmetries of R?. So, that can be the first idea of an orbifold. They
can be thought locally as the quotient space of a model space by a finite subgroup of
its symmetries. These three examples we have given are local pictures of 2-orbifolds.

6.2 Basic definitions

In this section we present the basic concepts about orbifolds. Almost all the material
is contained in [55].

Definition 6.2. An orbifold is a pair @ = (Xg,{U;}), where X¢ is a Hausdorff
space and {U;} is an open cover of X closed under finite intersections such that for
each open U; there exist V; an open subset of R™ and a finite group I'; acting on
R"™ and homeomorphisms v, : V;/I'; — U;. Moreover, whenever U; < Uj;, there is
an injective group homomorphism f;; : I' — I'; and an embedding ¢, ; : V; — V;
which is equivariant with respect to f;;, i.e, for any v € I'; and = € V; we have
Vi (v -x) = fi;j(7) - i ;(z) such that the following diagram commutes.

Vi g

vi Vi/Ts
Yj

U————U;
inclusion ’
Example 6.4. Every n-manifold M has an orbifold structure Mg. Indeed, take an
atlas for M, say (M, {U;}), closed under finite intersections, then take any I'; as the
trivial group.

Example 6.5. Consider the mirror case on Example 6.1. For instance, think on the
upper-half plane H = {(z,y) € R*: y > 0}. This is a surface with boundary or a
2-manifold with boundary. We can take the interior of H with the trivial group and
for every point (z,0) we can take a neighborhood U, on H such that is homeomorphic
to a neighborhood V, on R? module the action of Z, by reflection.
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Remark 6.2. In [55, Section 5.2.14], William P. Thurston says that the word orbifold
was coined after a democratic process during his course at Princeton in 1976-1977.
In [22, page 5|, Michael W. Davis tells us more details about that democratic process.

The definition of an orbifold with boundary is parallel to the definition for manifolds.
An orbifold with boundary () is a Hausdorff space X locally modeled on R™ modulo
finite groups and R’} modulo finite groups. R’ is the set of points in R™ which first
coordinate is not negative.

Orbifolds can be seen as a generalization of manifolds with some nice algebraic
behavior. For the next proposition see [55, Proposition 5.2.6].

Proposition 6.3. Let M be a manifold and a group I' acting on M properly discon-
tinuous, recall Definition 5.6. Then, M /T is an orbifold.

Idea of proof. Consider 't € M /T and denote by I', the stabilizer of x € T". Since
the action is properly discontinuous there exist a neighborhood V, on M such that
is I',-invariant and with empty intersection with the translations of elements not in
[',. The canonical projection 7 : M — M/T" induces a homeomorphism between
V./I'z and (V). Note that we should verify that this define the orbifold structure
required. ]

If the action is free, then we get that M/T" is a manifold. So, points where the
action has a non-trivial stabilizer are special.

Definition 6.3. The singular locus of an orbifold () is
Yo = {x e Xg : I'; is non-trivial}.

In [55, Proposition 5.2.7| a nice property about the singular locus is provided. In
our combinatorial setting these points will be called orbifold points.

Proposition 6.4. The singular locus of an orbifold is a closed set with empty interior.

In order to generalize some notions, for instance the fundamental group of a mani-
fold, it is necessary generalize the notion of covering.

Definition 6.4. A covering orbifold of an orbifold () is an orbifold @ , with a projec-
tion p : X5 — X¢ between the underlying spaces, such that each point x € X¢ has
a neighborhood U = V/I" (where V' is an open subset of R™) for which each compo-
nent C; of p~1(U) is isomorphic to V/T';, where T'; < T is some subgroup. Also, the
isomorphism must respect the projections and we write p : @ — (@ for the covering

orbifold.

An example is given by the situation at Proposition 6.3. Let M be a manifold
and a group I acting on M properly discontinuous, then M — M /I" is an orbifold
covering because M is an orbifold.
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Definition 6.5. An orbifold is good provided it can be covered by some orbifold
which is a manifold, otherwise it is bad.

An example of a bad orbifold is the teardrop, that is, an orbifold with underlying
space S? and with one singular point whose neighborhood is modeled by the action of
Z,, by rotations. For the proof of the next result the reader can see [56, Proposition
13.2.4]. For technical reasons we need path-connected orbifolds, therefore we consider
based orbifolds, that means we take a base point x € Xp\¥¢ that is just an element
of Xo\X¢ and concentrate our attention to the path component of the base point .

Proposition 6.5. An orbifold ) has a universal cover. If x € Xo\Xq is a base point
for Q, then the universal covering orbifold p : CNQ — () 1s a connected covering with
base point T with p(T) = x, and with following universal property. For any other
cover q : P Q with base point T', there exist a unique lifting p’ : @ -~ P of p to a
covering map of P with q(¥) = ¥'.

Fix an orbifold (@, z) and fix a universal covering p : (@, 7)— (Q,x).

Definition 6.6. A deck transformation of p : (@,f) — (@, ) is a base point pre-
serving automorphism ¢ of (@, Z) such that p = p o ¢.

It turns out that p: @ — @ is a regular covering: for any pair of preimages 7’ and
Z of the base point z, there is an automorphism of ) taking ¥ to 7’

From the unbranched and branched covering theory we get the following result, see
[27, Theorem 4.16]:

Lemma 6.6. Ifp: CNQ — @ is a covering orbifold, then each point of x € Xg\Xq is
covered the same number of times, i.e. p~*(x) has the same number of elements for
each x € Xg\Xq.

That constant number is known as the sheet number of the cover p.

Definition 6.7. The fundamental group m (Q,x) of an orbifold (Q,x) is the group
of deck transformations of p: (Q,7) — (Q, z).

The FEuler characteristic also can be generalized to orbifolds.

Definition 6.8. Let ) be an orbifold, with a cell division on X, which is small
enough so that the group acting on the interior of every cell is the same. Then we
define the Fuler characteristic of () as follows,

_ o \dim(e) L

where ¢; ranges over cells of the cell decomposition of X¢ and |I'(¢;)| is the order of
the group associated to the cell ¢;. As the definition suggest x (@) may be a rational
number, see Example 6.6.
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This definition has a multiplicative property with the sheet number of a covering,
see [55, Proposition 5.5.2].

Proposition 6.7. [ p: @ — @ 1s an orbifold covering with sheet number k, then

~

X(Q) = kx(Q).

Example 6.6. Consider the orbifold @ given by R?/Z,, where Z, acts on R? by the
reflection in the z-axis. Then we can see that R? is a 2-sheeted covering of ). Since
x(R?) = 1, then we get that x(Q) = 1/2.

6.3 About the classification of 2-orbifolds

So far we have seen orbifolds as a natural generalization of manifolds. We know that
oriented compact 2-manifolds are classified by orientability.

In this case, orientable and closed 2-orbifolds can also be classified. However, it is
not the goal of this section to present the complete list of 2-orbifolds. First of all we
may not expect a short list as for the Riemann surfaces. We are going to give some
ideas in order to state a qualitative classification. The reader is kindly suggested to
look at [22, 53, 55] for the complete classification.

We state the relevance of the three examples of the beginning of this chapter, see
[55, Proposition 5.4.2].

Proposition 6.8. The singular locus of a 2-orbifold has these types of local points.
o The mirror, R?/Zy where Zy acts by reflection in the x-ais.
e Cone points of order n: Z, acts on R? by rotations.

e Corner reflectors of order n: D,, acting on R?. The action of D,, is generated
by the reflection of two lines that meet at an angle of w/n.

This proposition is a consequence of Lemma 6.1. The Euler characteristic has a
nice interpretation for 2-orbifolds, see [40, Theorem 4|, it is the Riemann-Hurwitz
formula.

Proposition 6.9. A 2-orbifold QQ with m corner reflectors of order m; , 1 <i<m
and n cone points of order nj, 1 < j <n has Euler characteristic

Q=X -3 3 (1- 1) -3 (1- 1),

Any closed 2-dimensional orbifold can be defined by its underlying space the cone
points and corner reflectors where (nq,...,ng;ms,...m;) denotes k cone points of
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orders nq,...n, and j corner reflectors of orders my,...,m;. Here the orders are
written in increasing order.
We write (;my, ..., m;) when there are not cone points and we write (nq, ..., n;)

when there are not corner reflectors.

Example 6.7. With Proposition 6.7 and Proposition 6.9 it is clearer that the teardrop
S? with (n;) is a bad orbifold. The Euler characteristic of the teardrop is (n + 1)/n.
Any cover T of the teardrop would have Euler characteristic greater than 2.

We are going to describe the bad orbifolds, the reader can see |55, Theorem 5.5.3].
Proposition 6.10. There are only four 2-dimensional bad orbifolds without boundary:

o Xo = 5% and (n;), with positive Euler characteristic equals 1 + %

nt+l _ m—1

o Xo = 5% and (n,m;), with positive Euler characteristic equals e i

o Xo =D and (;n), with positive Euler characteristic equals % + %

o Xo =D and (;n,m), with positive Euler characteristic equals 32—:1 — "2‘—;11
The reader must note that all bad orbifolds do have positive Euler characteristic.

Again, the reference for the next theorem is [55, Theorem 5.5.3].

Theorem 6.11. Every orientable closed 2-orbifold other than those mentioned in the
above proposition have the geometric structure of S* (elliptic structure), R? (Euclidean
structure), or H? (hyperbolic structure). Moreover, the geometric structure of a good
orbifold is determined by the sign of its Fuler characteristic.

Remark 6.12. The elliptic orbifolds have positive Euler characteristic, the FEuclidean
orbifolds have Euler characteristic equals zero and the hyperbolic orbifolds have ne-
gative Euler characteristic.
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The polygon with one orbifold point and
Jacobian algebras

In this chapter we are going to concentrate at polygons with one orbifold point of
order three to generate Jacobian algebras. Here, an orbifold point of order three
means a cone point of order three.

7.1 Basic combinatorics of surfaces with orbifolds
points

We will work with polygons with one orbifold point of order three but for convenience
we recall some definitions of surfaces with orbifold points. For more details about
surfaces with orbifold points of order two or three and relations with generalized
cluster algebras the reader can see [20] and references therein, for example [18, 19].
For an interesting and beautiful application of surfaces with orbifold points and group
actions in some cluster structures the reader is kindly asked to look at [50].

7.1.1 Basic definitions

Let 3 be a compact connected oriented 2-dimensional real surface with possible empty
boundary. The pair (3, M) where M is a finite subset of > with at least one point
from each connected component of the boundary of ¥ is called a bordered surface or
just a surface. The points of M are called marked points and the points of M that lie
in the interior of ¥ are called punctures. A triple (X, M, Q) where (X, M) is a bordered
surface and O is a finite subset of ¥\(M u 0¥) is called a marked surface with orbifold
points. The points of @ are called orbifold points and they will be denoted by a cross
x in the surface. In this thesis we will work with surfaces with boundary, without
punctures and with just one orbifold point of order three.
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7.1.2 Triangulations and flips

Let (X, M, Q) be a marked surface with orbifold points of order three, without punc-
tures, with boundary and we assume O is not empty. An arc i on (X, M, Q) is a curve
i: [0,1] — X satistying the following conditions

e the endpoints of ¢ are both contained in M.
e ¢ does not intersect itself, except that its endpoints may coincide.
e ¢ does not intersect O and ¢ does not intersect M except in its endpoints.

e if ¢ cuts out an monogon, then such monogon contains just one orbifold point.
In this case 7 is called a pendant arc or the loop of a orbifold point.

Two arcs ¢ and j are isotopic relative to M U Q if there exist a continuous function
H :[0,1] x ¥ — X such that

e H(0,z) =z, for all x € ¥;
o H(1,i) = j;
e H(t,p)=pforall pe M u O

e For every t € [0, 1] the function H;: ¥ — ¥ with  — H(t,z) is a homeomor-
phism.

We will consider arcs up to isotopy relative to MluQ), parametrization and orientation.

Given an arc i, we denote by ¢ its isotopy class. Let i and j be two arcs. We say i
and j are compatible if either ¢ = j or ¢ # j and there are arcs i; € ¢ and j; € j, such
that 4; and j; do not intersect in 3\M.

Definition 7.1. A triangulation of (¥,M,0) is a maximal collection of pairwise
compatible arcs.

Given a triangulation o of the surface we define a triangle of o as the closure of
a connected component of the complement on 3 of all traces of non-pending arcs.
An orbifold triangle is a triangle containing an orbifold point. A triangle without an
orbifold point in its interior is called an ordinary triangle. If a triangle intersects the
boundary of the surface at most in three points it is called an internal triangle.

Let o be a triangulation of (3, M, Q). If i is an arc of o, the flip of i with respect
to o is the unique arc ¢’ such that ¢’ = (o\{i}) U {7’} is a triangulation of (3, M, Q).
In this case we denote i’ = flip, (i) and we say that ¢’ is obtained from o by a flip
of i € 0. In our case, flips act transitively on triangulations of (3, M, Q), see |28,
Theorem 4.2].
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7.2 Polygons with one orbifold point

Let >, be, for n > 2, a disk with boundary, n + 1 marked points in its boundary,
without punctures and one orbifold point of order three. In this work we often refer
to X, as the (n+ 1)-gon with one orbifold point, the marked points are called vertices
and they are denoted by {vg,v1,...,v,}. We order the vertices in counterclockwise
order. In pictures the orbifold point is drawn with the symbol x.

Let o be a triangulation of ¥,,. We have that |o| = n, see [50, Lemma 4.1]. In this
case we have two types of triangles for o, see Figure 7.1

Figure 7.1:  An ordinary triangle (left) and an orbifold triangle, i.e. a triangle
containing the orbifold point (right) .

We associate a quiver (o) to a triangulation o of the orbifold 3, in the following
way: the vertices of Q(o) are the arcs of o and the set of arrows is described as
follows. For each triangle A of ¢ and arcs ¢ and 7 in A we draw an arrow from j to
1 if 7 succeeds j in the clockwise orientation, with the understanding that no arrow
incident to a boundary segment is drawn. Finally, we draw an arrow starting and
ending at the pendant arc of 0. We refer to this arrow as the loop of Q(o).

Remark 7.1. In the classical context of marked Riemann surfaces without orbifold
points no loop is drawn. For instance the quiver of a triangulation 7" of a polygon
P without punctures and without orbifold points will be denoted by Q(T') and it is
constructed as above but, as we said, it does not have loops.

Denote by H(o) the collection of all internal triangles A of a given triangula-
tion 0. Any element A of H(o) defines a 3-cycle cabaan on Q(o) up to cyclical
equivalence. If we denote by e the loop of o, then the potential associated to o is

Definition 7.2. For any triangulation o of ¥, we define the basic algebra A(o)
associated to o as the Jacobian algebra A(c) = P(Q(0), S(0)).

Example 7.1. Consider the triangulation o of Figure 7.2. We see that the algebra
A(o) is C{Q(0))/I, where I is the ideal generated by ba, cb, ac and £* (compare with
[50, Example 2.3]).

Definition 7.3. A weighted quiver is a pair (@), d) where @) is a quiver without loops
and d = (d;)ieq, is an n-tuple of positive integers.
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Figure 7.2: One triangulation o of 33 and its quiver Q(o).

Let Q(0)* be the quiver obtained from (o) by deleting the loop. Now we denote
by (Q(0)*,d,) the weighted quiver associated to o where (d,); = 2 if j is the pendant
arc and (d,); = 1 in other wise.

Fix an n-tupled = (d; . ..,d,), in [44, Lemma 2.3| it was proved that there is a bi-
jection between the set of 2-aclycic weighted quivers (@, d) and the collection of skew-
symmetrizable matrices B with skew-symmetrizer given by D = diag(dy,...,d,). In-
deed, given a quiver @, if ¢;; is as in Section 4.1, then b;; = d;c;;/ged(d;, d;) define a
matrix Bg skew-symmetrized by D.

Following [44, Lemma 2.3|, we denoted by B(c) the skew-symmetrizable matrix
associated to (Q(o),d,) and we call it the adjacency matriz associated to o.

We finish this section with some calculations on 3,,.
Lemma 7.2. The number of triangulations on ¥, is (27).

Proof. Fix a pendant arc p of ¥,. The first observation is that there are n + 1
pendant arcs on X, one for any vertex of ¥,,. Now, how many triangulation do we
have containing the arc p? Well, we have as many as triangulation of a (n + 2)-gon.

It is the Catalan number C,, = %H(%?). Since a triangulation of >, has one and only
one pendant arc, we get that the number of triangulations is (27). O

Lemma 7.3. The number of arcs on 3, is n(n + 1).

Proof. Any arc j of ¥, generates two regions D;-“ and D; . They are the connected
components of ¥,,\j where D; does not contain the orbifold point and D} does. Let
t; be the number of elements of the set Ej of arcs j such that D;f subtends [ vertices
in the boundary different to the endpoints of j, note that 1 < [ < n. The claim is
that ¢, = n + 1 for any [ € [1,n]. Fix [ and take one arc j such that D subtends
[ vertices in the boundary of ¥, without take into account the end points of j. By
rotating j successively by an angle of 27 /(n + 1) we obtain n+ 1 arcs in F;. They are
all because D;f does not contain the orbifold point. We conclude that the number of
arcs is n(n + 1). O
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7.3 The algebra associated to a triangulation of the
orbifold as an orbit Jacobian algebra

In this section we shall note that A(o) can be seen as an orbit Jacobian algebra. With
this observation we are going to obtain some results about Galois coverings. For
details and missing definitions about orbit Jacobian algebras the reader can see [50],
where such algebras were introduced. At the end of the section we will define the arc
representations of A(o).

Let in be the regular (3n+3)-gon with uy, us, . .., us, 3 vertices in counterclockwise
orientation and let 8 be the rotation by 120° on in which sends a vertex v; to viy (n41)

modulo (3n+3). In the terminology of [50], &y, is the Zs-orbit space of 3,. We consider
0 as a generator of G = Z3. We can see that G acts freely on {uy, us, ..., us, 3}, that
is, if g € G\{e}, then g - u; # u; for i € [1,3n + 3].

We say that an arc 3 of ¥, is G-admissible or just admissible if 5 belongs to some
G-invariant triangulation 7' of o

Remark 7.4. We see that ; is admissible on &, if and only if D;f or D} subtend at

most n vertices different to its endpoints, here G - 3 =7.

Lemma 7.5. The number of admissible arcs of S, is 3n(n+1).

In(n +1). We want to compute the total

number of non-admissible arcs. Fix a vertex u, of in Draw all the non-admissible
arcs from u,. There are n of those arcs, namely they are [, ; = [ug, Upini14;] for
1 < j < n. We make the same thing for u,,;. We get n non-admissible arcs
les1k = [Uzt1, Uzs14nt1+k]- It turns out that I, and [,11, are in the same G-orbit.
Moreover, they are the unique two arcs in the same orbit between the 2n arcs we
are considering. We have n + (n — 1) non-admissible arcs, if we continue this process
along the points gz 9, ..., Upipn_1, Weget n+n—14+---24+1 = w non-admissible
arcs such that they are not in the same orbit of any other. Since non-admissibility is
preserved by rotation, we have that there are w non-admissible arcs. Then the
number of admissible arcs is
In(n+1) 3n(n+1) 6n(n+1)

: - 5 = 5 =3n(n+1).

Proof. The total number of arcs on 5, is

The lemma is completed. O

Let T be a triangulation of 5, and suppose that T" is G-invariant. Consider Q(T")
the quiver associated to T', see Remark 7.1. We can define a potential for Q(T") as
S(T) = ZAGH(T) vaPaan. Note that G acts freely on Q(T)o and for any aafaya
we have that g - (aafa7va) is again a summand, up to cyclic rotation, of S(T'), for
all ¢ € G. We can define, [50, Section 2.1|, the orbit quiver Q(T)g of Q(T') in the
obvious way. We define the potential S(T)¢ for Q(T")¢ as the image of S(7') under the
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canonical morphism 7 : C{(Q(T")) — C{Q(T")¢) induces by (i) = G - i for i € Q(T)o
and m(a) = G - a for a € Q(T);, note that 7 is a Galois G-covering. We define
the orbit Jacobian algebra of the orbit quiver with potential as P(Q(T),S(T))g =
P(Q(T)q, S(T)e). We make the following convention A(T) = P(Q(T),S(T)) and
A(T)e =P(Q(T),S(T))q, see Example 7.2. The following result shows that we get
a Galois covering, see |50, Proposition 3.1].

Lemma 7.6 (Paquette-Schiffler). The Galois G-covering m : C{Q(T')) — C{Q(T)q)
induces a Galois G-covering m: AN(T) — ANT)¢.

Remark 7.7. Let o be a triangulation of ¥, and let T" be the triangulation of S
such that G - T = o. In T there exist an unique triangle Ay such that it is G-
invariant and the other triangles in #(7") have a trivial stabilizer. The triangle Ar
corresponds to the pendant arc of o and the G-orbit of any triangle A different to
A corresponds with a triangle of H (o). We conclude that Q(0) = Q(T')¢ and with
the above observation we get that A(o) = A(T)¢.

Example 7.2. Let o be the triangulation of 33 depicted on the right of Figure 7.3.
Let T be the corresponding triangulation on 3 depicted on the left of Figure 7.3.
The quiver Q(T) is drawn below

13

y

J3

ks
N\
Ky = —

Consider the potential S(T) = e1e9e3 associated to T'. Let G =< 6 > be the cyclic
group of order 3 with generator f. Then G acts freely on (@, .S) by increasing by one,
module 3, the indices of the symbols. Passing to the orbit space of this action we get

C ) 2 J2=5, 2

Q(T)g : i’8—>j 2 -k Qa and the potential S(T)g = €°,

WhereizG-il,j=G~j1, ]{ZIG’kl,Oé:G‘Oél,BZG'ﬁl and&‘:G'&fl. The
orbit Jacobian algebra P(Q(T)q, S(T)g) is nothing else but A(c) = C{Q(c))/{e?).

Proposition 7.8. Let o be a triangulation of ¥,,. Then A(o) is finite dimensional.

Proof. From Lemma 7.6 we have that 7 : A(T) — A(T)¢ is a Galois G-covering. In
particular we have an isomorphism 7; ; : @ . AT)(es, g-€;) — A(o)(m(e;), 7(e;)) for
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any idempotent e; and e; of A(7"). We know that A(7") is finite-dimensional, the reader
can see finite-dimensionality of Jacobian algebras associated to a triangulation for
surfaces with non-empty boundary in [42, Theorem 36|), so A(c) is finite dimensional.
The proof of the lemma is completed. O

(%1 Vo

V2 U3

Us

Figure 7.3: We obtain a triangulation of a square with one orbifold point of order 3
as the G-orbit space of a triangulation of a dodecagon.

A string algebra B = C{(Q)/{P) is a gentle algebra if the following conditions are
satisfied:

(Gtl). P is generated by paths of length 2.

(Gt2). For any arrow a € @Q; we have [{b € Q;: t(a) = h(b) and ab € P}| < 1 and
{ce @Q1: t(c) = h(a) and ca € P}| < 1.

Proposition 7.9. For any triangulation o of 3, the algebra A(o) is gentle.

Proof. Let T be the triangulation of in such that G - T = o. The proof is an
adaptation of proof |5, Lemma 2.5|, from that lemma we have that A(T) is gentle.
By definition A(o) = C{Q¢)/J(Qa, S¢) and it is clear that J(Qg, Se) is generated
by paths of length two. Since we have Proposition 7.8, only remains to prove (Gt2),
(S1) and (S2), recall the definition of string algebras, see Section 3.3.

(S1). First, let j be the pendant arc of . We consider j an element in 7=1(5). We
have that j is contained in two triangles of 7. One of those triangles has the other
preimages of j as sides, say A(j), in other words, A(j) is invariant under G. By the
definition of S(T") we can conclude that there is a loop based at j and there is at most
one arrow starting at j and one arrow ending at j. Now, one component of in\{j},
precisely those which do not contain the other preimages of j, it is a fundamental
region for the action of G on T'. If k is not a pendant arc of o, we can consider a
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preimage of k in the fundamental region above, recall A(T") is gentle, this implies (S1)
for k. For this reason we just have to prove (S2) and (Gt2) in the orbifold triangle.
(S2) and (Gt2). This two properties follow from the fact that there is a loop based
at the pendant arc j and at most one arrow with starting at j and at most one arrow
with ending at j. This conclude the proof. O]

By Lemma 3.10 and Lemma 7.6 we know the following.

Lemma 7.10. Let o be a triangulation of ¥,. Then the push-down functor m, :
A(T)-mod — A(o)-mod is a G-precovering.

—1 Us 4
W; = ay casar ~ ay ay € "as

1

Figure 7.4: Let j be the blue arc (right). We define W; from the left. In this case «
can be the blue, red or green arc. Note that W; can be read directly from the right.

Remark 7.11. For black and white versions of this document just take the arcs
[y, u10], [ue, us] and [ug, ug] on the left hand of Figure 7.4 and compare the strings
associated to them. It turns out that they are the same up to equivalence.

We are going to define a string W; (o) of A(o) for every arc j ¢ o of 3,,. We denote
by m: 33, — %, the canonical projection. We know that 7—1(j) = {;, 39,392}. Recall
that G = (0) = Z3. Let T be the triangulation in I corresponding to o, see Figure
7.4.

Let j be an arc of ¥, such that j ¢ 0. Choice a € 771(j), by definition « is an arc
of in and « joints two vertices u; and u;,, of in Every time « crosses two adjacent
initial arcs v : 45, — 4s, of T, we write the letter G -y (a letter on Q(0)) if a crosses
781 first from u; to u;,, or we write the letter (G -~)~! in otherwise, see Example 7.2.
This construction does not depend of the choice of o up to string equivalency, see
Section 3.3. Denote by W;(o) the string of A(c) obtained in this way. In Figure 7.4
we show an example of this construction.
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Definition 7.4. Let o be a triangulation of ¥,,. For any arc j ¢ o we define the
arc representation M (j,o) of j with respect to o as the string module associated
to W;(o), i.e M(j,0) = N(W;(0)), see Section 3.3.1. Since a string and its inverse
give rise to isomorphic string modules, we have that M(j,0) is well defined up to
isomorphism. Now, for any arc j € o we define M(j,0) := S; as the corresponding
negative simple representation of A(co).

As long as there is no confusion we ease the notation and write W; := W;(o) and

M(j) == M(j,0).

Remark 7.12. The notation M(j) or M(j, o), for any arc j of %, correspond with
the usual convention of the letter M for a module over a ring instead of N(W;(c)). We
want a special notation for those representations coming from arcs of 3,. Note that
there are A(o)-modules N (W) for some strings W that are not arc representations.

Remark 7.13. For convenience we are going to define explicitly the push-down func-
tor in our situation. Let T be a triangulation of ¥,. Set A = A(T") and consider
7w : A — Ag the canonical projection of the action, where A¢ = A(T)g. We define
the push-down functor 7, : A-mod — Ag-mod as follows.

For objects: let M € A-mod be a A-representation. For i € Qg we define m,(M)g.; =
D,ec Mgi- Let a i — j be an arrow of (). We are going to define m.(M)g.q
@gee Mgy; = @jeq Mh.;. Now, by definition, for any h € G we have an isomorphism
Tihi* Dgeqg Mg 4,0 j) = Ag(G -i,G - j). So, G-a =3, ;m(an,) for any he G
and we define m,(M)g.oa = (Ahg)ghec-

For morphims: let f : M — N be a morphism in A-mod. For any ¢ € Qg we need
to define m.(f)c.i : Dyeq Mygi = Dpeq Nni- We set mi(f)e = diag(fyi: g€ G) as a

diagonal map.
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Chapter 8

The Caldero-Chapoton algebra for a
specific initial triangulation

In this chapter we shall see some preliminary results in order to address our general
problem.

8.1 The polygon without orbifold points

First of all we are going to see one example that motivated the first approach at the
beginning of this project. This example can be seen as a particular case of the main
result of Caldero-Chapoton in [14], rewritten conveniently.

Let P, be the (n+3)-regular polygon without punctures and without orbifold points.
Let {ug, 1, ..., Up, Upi1, Unso} the set of vertices of P, ordered in counterclockwise
orientation. We are going to define a specific triangulation T of P,. For every
[ € [2,n+ 1] we draw an arc ¢;_; from ug to u;. Set Ty = {i1,...,i,}. Denote by A(Tp)
to the Jacobian algebra of (Q(Ty), S(Tp)). In this case A(T}) is nothing but the path

algebra C(Q(Tp)).
We introduce some notation that, albeit non-standard, shall be useful to us. Given
a vector v = (vy,...,,v,)" € Z™ we write v = vi[1] + - - + v,[n]. Moreover, we write

[n1,n2] < [1,n] to simplify 1[ny] + -+ + 1[ng]. For example, with this notation,
2[ny, ny] means 2[n;] + - - - + 2[ns].

The next proposition is well known from [14], here we present a slightly different
approach.

Proposition 8.1 (Caldero-Chapoton). Using notation in Figure 8.1, for any trian-
gulation T of P, and for any arc j € T we have that

Caero) (M (5))Ca) (M (5") = Caz) (M (51))Caro) (M (j3)) +Cacryy (M (j2))Caz) (M (),

where 7' is the flip of 7 with respect to T .
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u83+1

Usy+1

Figure 8.1: Quadrilateral of j with respect to a triangulation 7.

Proof. We ease the notation with @ := Q(7p) and A := A(Tp). We are going to show
the proposition when all the arcs {7, 7', j1,J2, 73,74} < T are internal arcs, we also
assume that neither j nor j’ belong to Ty. The rest of possibilities are similar and
they are left to the reader. Recall that Cam(M(j)) is the set of all sub-strings of
W (j). Since A is an algebra of type A, we shall regard to Cam(M(j)) as the set of
all dimension vectors of subrepresentations of M(j). Note that if e € Cam(M(j)),
then Supp(e) = {l € [1,n]: ¢ # 0} is a sub-interval of [1,n], see [15, Lemma 2.2|.
We will prove the proposition by means of defining a function

p: Cam(M(j)) x Cam(M(j")) —
Cam(M (j1)) x Cam(M (j3)) v Cam(M (j2)) x Cam(M (ja)),

such that ¢ is bijective and with the following extra property. Recall the definition
of the skew-symmetric matrix Cg associated to @, see (3.1).

Proposition 8.2. If o(e, f) = (u,v) € Cam(M (ji, ,)) x Cam(M (jz, ) with lep €
{1,2} and t(ep € {3,4}, then

Caole+ 1) +9a(M(j)) +ga(M(5") = Co(utv) +ga(M(ji, ) + 90 (M (e, ,))- (8.1)

It is clear from the definition of Caldero-Chapoton functions that if we define ¢ as
above the proof is completed.

Definition 8.1. If (e, f) € Cam(M (j)) x Cam(M(j')), then we define (e, f) by cases

as follows

1. f,, = 0: in this case f = [mg, s3 — 1] and e = [me, 54 — 1] with so < ms < s3 and
So+1 < me < s4. Then (e, f)) = ([mg, s3—1],e) € Cam(M (j2)) x Cam (M (j4)),
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2. e, = 0 and f;, # 0: in this case € = [me, 54 — 1] with s3 < me < s4 and f =
[mg, s3] with mg < s2. Then p(e, f)) = ([mg, s2—1], [me, sa—1]) € Cam(M (j1)) x
Cam(M (j3)),

3. es; # 0 and f;, # 0: in this case € = [me,s4 — 1] with s3 > me < s4 and
f = [mg, s3 — 1] with mg < so. Then ¢(e,f)) = ([me,s3 — 1], [mg, 54 — 1]) €
Cam(M (j5)) x Cam(M/(j4)).

We are going to prove that ¢ is bijective:

¢ is injective. Let X = (e,f) and Y = (g,h) be elements of Cam(M(j)) x
Cam(M(j')). We want to prove that o(X) # @(Y) if X # Y. Since the image
of ¢ is contained in the disjoint union of two sets we have to concentrate in cases
when ¢(X) and ¢(Y) are in the same component of the image of ¢. By the very
definition of ¢ we only need to consider the following case: X satisfies condition (1)
and Y satisfies (3).

Assume X satisfies condition (1), Y satisfies condition (3) and X # Y. In this
case € = [Me, 54 — 1], f = [mg, 53 — 1], g = [mg, 54 — 1] and h = [my, s3 — 1] with
89+ 1 < me < 84, S < Mg, Mg < S3 and my, < 2. By applying Definition 8.1 we get
o(X) = ([mg, s3 — 1], [me, s4 — 1]) and ¢(Y') = ([mg, s3 — 1], [mn, sS4 — 1]). Note that
©(X) # p(Y) because my, < s and so + 1 < me < 4.

¢ is surjective. Let W =(a, b) be an element of Cam (M (j;)) x Cam(M (js)). Then
a=[ma,so — 1] and b = [myp, 54 — 1] with s +1 < m, < s and s3 + 1 < myp, < s4.
We define e = [mp, sy — 1] and f = [ma, s3 — 1] and it is clear that (e, f) satisfy (2).
Hence ¢(e, f) = (a,b).

Now, let W = (a,b) be an element of Cam(M (j2)) x Cam(M(j4)). We know that
a = [ma,s3 — 1] and b = [my,, s4 — 1] with so + 1 < m, < s3 and 57 + 1 < my, < s4.
In case that s; < myp we have that ¢([mp, s4 — 1], [ma, s3 — 1]) = W, by Definition
8.1(1). If < mp < s9, then ¢([ma, s4 — 1], [mn, s3 — 1]) = W, by Definition 8.1(3).
The proof that ¢ is bijective is completed. In order to finish the proof of Proposition
8.1 we write down the proof of Proposition 8.2.

Proof of Proposition 8.2. The proof is going in cases as Definition 8.1. Let (e, f) be
an element of Cam(M (j)) x Cam(M(j')).

1. f,, = 0: in this case we have

gn(M(ja)) + Cqlme, s4 — 1] + ga(M (ja)) + Cqlms, s3 — 1] =
= ga(M(5)) + ga(M(5")) + Cg[me, sa — 1] + Cqlmg, s3 — 1],

because ga(M (7)) + ga(M(5')) = ga(M(j2)) + ga(M (ja).)
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2. e;, = 0 and £, # 0: in this case we have
ga(M(j1)) + Colme, so — 1] + ga(M(j3)) + Co[me, s — 1] =

gA(M(jl)) + gA<M(j3)) + CQe + CQf— CQ[SQ, S3 — 1]
= Cge + Cof + ga(M(7)) + ga(M(5")),

because ga(M(51)) + ga(M(js)) = [s1] + [ss] = [s2 = 1] = [s4 — 1].

3. e, # 0 and £, # 0: in this case we have

9a(M(j2)) + Colme, 54 = 1] + ga(M(ja)) + Colme, s3 — 1] =
gA(M(5)) + ga(M(5')) + Cqlms, s3 — 1] + (Colss, 51 — 1] + Cg[me, s — 1])
= gA(M(5)) + ga(M(5)) + Cof + Cge.

The proof of Proposition 8.2 is completed. O]

The proof of Proposition 8.1 is completed. O

8.2 Specific initial triangulation

In this section we will study the Caldero-Chapoton algebra Ay 4, for a specific trian-
gulation o of 3,,. Tag the vertices of ¥,, in counter clockwise order {vg...,v,}. Let
in be the pendant arc at vy. We denote the pendant arc at vy as i, for K = 0,...,n.
With this notation we see that i{, = i,,. Let i), be the arc from vy to vi41 going in
counterclockwise for k = 1,...,n— 1. We define the special triangulation oq of 3, as
the collection of arcs {iy,...,i,}, see on the right hand of Figure 7.3.

For oy we have a nice description of the concepts introduced in Section 7.1, for
instance, the weighted quiver associated to o looks like

Q(UO)*: 1‘11 2 @ ... 4n—2 n—lun, and do’o = (171a-"7172)'

The matrix B(oy) is going to be our input to obtain the polynomials of Chekhov-
Shapiro and we are going to describe a basic algebra associated to oy.

Let A := A(og) be the basic algebra associated to oy, it is clear that A is given by
C{Q(0¢))/I where Q(oy) is the quiver

120 2 ‘n—1—‘>nQ (8.2)

and I is the ideal generated by 2.
For every arc j of ¥, we defined a decorated indecomposable representation M(j)
of A with respect to g, see Definition 7.4.
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Remark 8.3. For any arc j ¢ og, Definition 7.4 can be rewritten up to isomorphism
by counting intersection numbers directly in X,,. Taking this approach,
dim(M (j)); = |i; » j| in the interior of %,.

Given an arrow a; with [ = 1,...,n — 1, we define M (j),, as follows:
o if 0 < dim(M(j)ia)) < dim(M(j)n(ay), then M(j)a, = (7);

o if 0 < dim(M(J)i(a,)) = Am(M (j)n(a,)), then M(j),, acts as the corresponding
identity;

e M(j)s = 0 in otherwise.

If dim (M (5),) # 0, then M(j). = (§5)-
Remark 8.4. From Definition 7.4 and Theorem 3.13 we know M () is indecomposable
in decrep(A) for every arc j. Remark 8.3 allow us to compute M (j) without %,,.

For any arc j ¢ og we define the support of M(j) as Supp M (j) = {l: M(j), #
0}. The same argument of [15, Lemma 2.2| can be applied here to conclude that
Supp M (j) is connected as a subset of [1,n]. So, we are going to think that Supp M (j)
is an interval.

Example 8.1. For n = 5, we compute M (j;) with [ = 1,2 and 3, see Figure 8.2.

We have

M(j1): 0 c—4C 0 0o,

. 0 ) 01
M(jg):() C id C (1) C2 id CQQ(OO))
M(js) : 0 C2_id_2_id_po i @23(86).

As illustration we have the Caldero-Chapoton function Ca (M (j2))

zlxgxgxi +'xlzgz§x4 + 1X223T4%5 +'x1w2x§ + 2x1227375 +'x1w2x§ +'zlx4x§ +'w3x4m§ + x173T475 +'I§Z4$5

xgxgxixs
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8.2.1 AR translations, E-invariant and g-vectors of arc repre-
sentations

Let 7 be an arc of ¥,,. We introduce some notation. Given two vertices v, and v; of X,
withr+1 < land r e {1,...,n—2} we have two arcs from v, to v; denoted by [v,, v;]"
and [v,,v;]”. Indeed, if 0 < r, then [v,,v]" does not intersect i, in the interior of
Y., while [v,,v;]” does. For example, in the Figure 8.2 we have j; = [vq, v5]" and
Ja = [va,v4]. For r = 0 we say that i, = [vg,vg1]” and [vg, vg41]t is the another
arc from vy to vgyq with & = 1,...,n — 1. In the case | = r + 1, we have [v,, v, 1]~
is not a boundary segment.

Remark 8.5. If n > 4, with the above notation we can describe W; explicitly for any
J ¢ 0o.

® Wiy ont = n—z---a; and Wy, , - =¢---a;
® Wy = s @i and Wy o)~ = a;tatie g for0<iandi+2 <1<
n;

1 -1

o Wi+ = L+ and Wiy, - =a; ---a,~e---a; for [ =1+ 2and i <n—2

1

o Wim- =a; cartiecagiforl=i+land0<i<n—2:;

n—1

hd W['Unflwn]* = &ap—1;

i W[”Oﬂ’l]+ =Qpo---qfor 1 <l<n-—1,;

o Wy, =a;'a e ap for 1<k <n—1:;

o VVZ‘;L =E.

The reader can compare the following lemma with the A,, case, [15, Theorem 2.13|,
compare also with [10]. Given an arc j we denote by r*(j) (in [15], it would be
r~) the arc of 3, that we obtain by rotating j counterclockwise by 27/(n + 1). We
denote by r~(7) (in [15], it would be r*) the arc obtained by rotating j clockwise by
2n/(n + 1).

Lemma 8.6. Let j be an arc of 3, such that j ¢ og.

(a) If M(j) is not projective, then T(M(j)) = M(r*(j)), where T denotes the
Auslander-Reiten translation.

(b) If M(j) is not injective, then 7= (M (j)) = M (r~(j)).

Proof. We prove this result in Corollary 9.3 for any triangulation o, however we prove
(b) here. The lemma can be proved by cases using Remark 8.5 and the classification
of the Auslander-Reiten sequences containing string modules from [13, p.p 170-172].
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Let W; be the string associated to j. Since M(j) is not an injective A-module we get
that W; is not one of the following strings
L4y, 1, G201, .. Gp_g---a1, ay'---a,ya, - ay.
We are going to consider all possibilities for j such that W; is not one of the above
strings.

Case 1. j = [v1,v,]” or j = [Ugy1,Vke3]T with & = 2,...,n — 2: from [13] we know
that 77 (N(Lks1,4)) = N(Lg4)) for & = 2,...,n — 2, and for £ = n — 1 we
get 77 (N(an---a1)) = N(1—1,4)). So, from Remark 8.5, 77 (M ([Vk+1, Vg+3] ")
= M([vg, vks2]T) here v,41 = vy. Note that [vg, vria]|T = r~([vrs1, Vi3] T) for
kE=1,...,n—2. For k = n—1 we have 7= (M ([v1,v,]7)) = M([vo,vn-1]")
with = ([v1,v,]7) = [vo, vn_1].

Case 2. j = [v;,v]" for 1 <i<i+2 < <n: in this case W; = q;_3---a; and from
[13], we get 77 (N(W;)) = N(aj—4---a;—1). Note that 7~ (j) = [vi—1,v,-1]" and
W[vi717vl_1]+ = Al—q " Ai—1.

Case 3. j = [v;,v] for1 <i<i+2<1l<n: weobtain that W; =a;'---a, ' a, - a

and 7= (N(W;)) = a; ', -+~ a, a, - a;_1. Tt is clear that v~ (j) = [vi_1,v1]"
and W[Ui—lyvl—1]7 = a;ll Ce agilan Ce Q1.

Case 4. j = [v;,v]” withi =1and [ =i+1: in thiscase W; =a3'---a,' a, - ay, by

[13], we have 77 (N (W;)) = N(an—2---az) = N(Wiyw,+) and 7 () = [vo, v2] ™.
Case 5. j = [vi,v]” withl=i+1land 1 <i<n—2: now, W, =a, " -a, a, - a;,

from [13], we get 77 (N(W;)) = N(alil1 . ~a;i1an---ai_1) = N([vi—1,v-1]—)
and r~(j) = N([vi—1,v-1] -

Case 6. j = [vp—1,v,] ¢ in this case W, = a,a,_1, by [13|, we obtain that 7= (N (W;)) =
N(a;ilanan—lan—Q) = N(W[Un—27vn71]7) and Ti(j) = [Un—2avn—1]7'

Case 7. j = [vo,v]" with1 <l <n—1: inthis case W, = a,_ - - - @;, from [13] it is clear
that 77 (N(W;)) = N(an—3---ai—1) = N(Wpy,_, v+ and 77 (j) = [vi—1, v, ™.

Case 8. j = 4, with 2 < k < n: in this case W, = a;l--'an--'ak and we have
T (N(apty - an---ap-1)) = N(W/i;) and r7(j) = i;_.

The proof of (a) is similar and follows from [13]. O
Lemma 8.7. Assume that j is an arc of ¥,,. Then Ex(M(j)) = 0.

Proof. We prove this lemma for any initial triangulation ¢ in Corollary 9.5. Just to
show that this initial triangulation o allows us to make explicit computations we
are going to write down the proof in this particular case. For i with &k = 1,... n,
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we get that M (i) = S, and E,(S,)) = 0. Now, for p > n we know that A, = Aa,
see Definition 3.1. So, we are able to apply Proposition 4.5 and Lemma 8.6(b). The
case when M (j) is injective is clear by Proposition 4.5. Only remains to prove that
dim Homy (M (r~ (7)), M (j)) = 0 when M (j) is not injective. We consider cases for j.

o If j = [v,y]f for 1 < i <i+2 <1 <mn,then r(j) = [v;_1,v1]". Since
M(r=(j))i—1 # 0 and M(j);—1 = 0 a direct inspection shows that the dimension
of Homa (M (r~(j)), M(j)) is zero.

o If . We have M(ij,_,)k—1 # 0 and

j =1, with 2 < k < n, then = (j) = ),
M (%})k—1 = 0. Then dim Homu (M (4},_), M(i})) = 0.

o If j = [v, ] for 2 < < n, then r~(j) = [vo,v;_1]". Since M(j), # 0 and
M(r=(j))n = 0 we have dim Homy (M (v~ (j)), M(j)) = 0.

The lemma is completed. O

Lemma 8.8. Assume j is an arc of X, such that j ¢ oog. Then pd M(j) < 1 and
idM(j) < 1. Here pd M(j) (resp. id M (j)) denotes the projective dimension of M (j)
(resp. the injective dimension of M(j)).

Proof. The lemma follows from [35, Proposition 3.5| and the definition of M (j).
Indeed, in the language of [35], if we take

2 -1 0 ... 0 O 10 0 0
-1 2 -1 ... 0 0 0 1 0 0
o -1 2 ... 0 O

c={(. . . . .., D=1 Do
o0 0 2 o 00 . 10
0 0 0 -1 2

and Q = {(i+1,i): 1 <i<n-—1}, then we get A = H(C, D,<). By definition M (j)
is locally free A-module for every arc j ¢ op (see [35, Section 1.5]). O

Remark 8.9. In [36], Geift-Leclerc-Schréer have proved that, in particular, for this
algebra A = H(C, D, ) of the previous lemma, we can recover a classic cluster algebra
by means of Caldero-Chapoton functions. However, they consider the quasiprojective
variety Gy ¢ (r, M) of locally free submodules N of M with rank vector r instead
Gre(M) as we made her, see Example [36, Section 13.1].

Remark 8.10. Lemma 8.8 ensures that id M (j) < 1, now it can be seen that we have
the following minimal injective presentation of M (j) for each arc j ¢ oy, this is a
consequence of [13].
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. . . . o -1 .
1. j crosses to in: in this case W; = a, € ap; with m; < n;. Then the

following exact sequence is a minimal injective presentation of M (j),

. p;
OﬁM(j);N<a1_1"‘6’"a1>uN(anj—2"’a/l>®N<am]-—2"'a1)-

Here we define N(a,_s---aq) as zero if r = 1 and it is the simple representation
at 1 if » = 2. Besides, 7 is the canonical inclusion and p;, po are the canonical
projections.

2. j does not cross to i,: in this case W; = ap; - ap, with n —2 > n; = m;.
Then the following exact sequence is a minimal injective presentation of M (),

0_>M(j)_i>N(anj"'al)—p>N(amj—2"'a1)7

where ¢ is the canonical inclusion and p is the canonical projection
Proposition 8.11. If j; and js are not arcs of oy, then the following hold:
e There exists a C-linear isomorphism

Exty (M (j1), M(j2)) = Homa (77 (M (j2)), M (j1)).

e There exists a C-linear isomorphism
Homy (M (j1), 7(M(j2))) = Homa (77 (M (j1)), M(j2))-

Proof. The proposition follows from Lemma 8.8, [6, Corollary (IV) 2.14(b)| and [6,
Corollary (IV) 2.15(a)]. O

Albeit the previous proposition is true for any modules with projective and injective
dimension at most 1 we stated it in that fashion for convenience.

Lemma 8.12. Let o be a triangulation of X,. If j1 and jo are arcs of o, then
Ex(M(j1), M(j2)) = 0.

Proof. 1f js € ¢ or M(j2) is injective, then Fy (M (j1), M(j2)) = 0 for all arc j; € o
by definitions and Proposition 4.5. So, we can suppose js is not in og and M (js) is
not injective.

Case 1. j; =i for some 1 < k < n: in this case M(j;) is the negative simple represen-
tation of A at k. It is clear that Fx (M (j2), M (ix)) = dim M (js)x by Proposition
4.5, but ix, jo € o, then dim M (j2)x = 0.
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Case 2. j; ¢ o9 and M (jy) is injective: then Ea(M(j2), M (j1)) = 0 for all jo € o.
We have to prove Ea(M(j1), M(j2)) = 0. By Proposition 4.5 we know that
Ex(M(j1), M(j2)) = dim Homp (77 (M (j2), M (j1)). If M(j1) is injective, then
J1 = [v1,u]" with 2 <1 < n, j;1 =i} or j = [vg,v1]*. Since ji,j2 € o and
M (j2) is not injective, Supp(M (j1)) N Supp(7~M(j2)) = & and we obtain that
Homa (7 (M(j2)), M(jr)) = 0.

Case 3. ji ¢ 0g and M (j;) is not injective: we have to prove Ex(M(j1), M (j2)) = 0 and
Ex(M(j2),M(j1)) = 0. For [ = 1,2, let m; be the minimum positive integer
such that M ((r=)™(j;)) is injective.

If my < my , then by [6, Corollary (IV) 2.15 (c)] and Proposition 4.5 we have
EA(M(j1), M(j2)) = dim Homy ((77)"™ (M (ja), (7)™ M (j1)).

[6, Corollary (IV) 2.14 (b)] implies dim Ext'((77)™ M (5,), (7)™ (M (5,))) =
OEAl(\IM(jl), M(j2)). Since (77)™ (M (j1)) is injective, we get Ex (M (j1), M (j2)) =
 EA(M(). M(3)) = dim Hom (+ (M(j). M(j2)).

Since my < mgy, we apply [6, Corollary (IV) 2.15 (¢)] to obtain
EA(M(j2), M(j1)) = 0.
The case my < m; is similar.
The lemma is completed. O
Lemma 8.13. Given an arc j ¢ oy we have Ext*(M(5), M(j)) = 0.

Proof. By Proposition 4.5 we have Ej(M (])) = dim Homy (77 (M(5), M (j)). Propo-
sition 8.11 implies Ey(M(j)) = dim Ext'(M(5), M(j)). The lemma follows from
Lemma 8.7. [

The following result is a consequence of Voigt’s Lemma, see [23, Sections 1.6 and
1.8].

Lemma 8.14. Assume j ¢ 0g. Then the Gg-orbit O(M(j)) is open in repy(A).

Proof. By Lemma 8.13 we have Ext'(M(j), M(j)) = 0, this implies that O(M) is
open, for example see [23, 1.7 Corollary 3]. O

By Lemma 8.7 we have examples of E-rigid indecomposable A- modules. The next
result shows that we already know all E-rigid A-modules, this result can be seen as
a consequence of Lemma 9.5, but we have mentioned that for oy the proof of some
results may be made with explicit computations.
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Proposition 8.15. If N is a indecomposable A-module and N is not of the form
M(j) for some arc j of ¥, then Ex(N) > 0.

Proof. Let W be the string associated to N and assume that N is not F-rigid. Given
a non-initial arc j of X, we have the string IW; is one of the following

L4y, withie [1,n —1],

€ Uy, With mj e [1,n — 1],

@y € Gy With my <y and m; € [1,n — 1],

U+ Ay With n—2 > n; = m;.

Therefore W is different to W; for any arc j of X,, here we use Remark 8.5. If
W = an_1---a; with [ > 1 we have N (W) looks like

0 0 cd ... ._d_c.

By [13] we get 77 (N(W)) = N(e'a,_1---a;_1). Since

. . 1 01
N(g—lan_l...al_l):Oé...#@#@&...&@@@QQ(OD)7

we get Homy (77 (N(W)), N(W)) # 0. Proposition 4.5 implies Ex(N(W)) > 0. The
case when [ = 1 is similar and follows from [13].

W =a,) - ap, with 1 <my < ny, then

A . 1 ‘ . 01
N(W):O—>.--—>0—>(Cli>...il(c(_ol@?_li_,,l;@2;)(oo)

and by [13] we get 77 (N(W)) = N(anyy -1 W amy,—1)-

From definitions we get Homy (77 (N(W)), N(W)) # 0, so EA(N(W)) > 0. The
case when my, = 1 is similar and follows from [13|. Since the indecomposable A-
modules are parametrized by strings, the proposition follows from Theorem 3.13. [

Now we interpret the g-vector of a representation M (j) in terms of intersection
numbers. The three lemmas below follow from Remark 8.10 and Lemma 4.1. For
instance:

Lemma 8.16. For a pendant arc i), with k€ {1,2,...,n} we have
2ifl=k—1,
ga(M(@) = —1ifl=n,

0 n otherwise.
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Proof. We start with the pendant arc ¢. From Remark 8.10 we obtain

[n:N(al_l...g...al)

and N(an;—2---a1) = N(@m;—2---a1) because n; = k = m; (remember that the
string associated to i), is a,;l -+-g---ag). On the other hand I;_1 = N(ax_2---ay).
The result follow from Lemma 4.1. O

Lemma 8.17. Let j be a non-initial arc. If j is not a pendant arc and intersects iy
in the interior of ¥, then we have

1if 1+ 1 is the minimum of k such that dim(M(j)), = 1,
. 1if I + 1 is the minimum of k such that dim(M (7)), = 2,
worGy=4 / (M)

0 in otherwise.

Lemma 8.18. Let j be a non-initial arc. If j is not a pendant arc and does not
intersect 1,,, then we have

1 if L + 1 is the minimum of k such that dim(M (j))r = 1,
gA(M(5)) =< —1ifl is the mazimum of k such that dim(M(j))x # 0,
0 in otherwise.

Proposition 8.19. The set
{CA(M(5)): j is an arc of ¥,}
is linearly independent over C.

Proof. From the three lemmas above we know that the g-vectors gx(M(j)) are pair-
wise different. For n even the result follows directly from [17, Proposition 4.3] since
ker(Cq) = 0. For n arbitrary we can adapt the argument in proof of [17, Proposition
4.3] as follows. Define

Q% = {(z1,22,...,2,) € Q"1 z; = 0 for all i},
Qg = {(.Tl,.fﬁg, s axn) € @;0: x; #0 1mphes Tiy1 # 0 }’
QG = {(z1,29,...,2,) € QL) z,, = 0}.

We can define two partial orders in Z". Let a,b € Z" be vectors. We say a < b
if there exist some e € Qg such that a = b + Cpe and a < b if there exist some
f € Qp such that a = b + Cpf. These two orders induce two partial orders on the
set of Laurent monomials in n variables z1, 29, ..., 7,. We say x* < xP if a < b and
x? < xP if a < b. We define the degree of x* as deg(x?) = a.

If soc(M(j)) = S, (the socle of M(j)), then Cy(M(j)) has an unique monomial
of maximal degree g5 (M (7)) with respect to <. If soc(M(j)) = S; with i # n, then
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Ca(M(j)) has an unique monomial of maximal degree with respect to < given by
ga(M(5)). Tt can be seen that if soc(M(j)) = S,, then x9M0) does not occur as
a summand of any Cy (M (k)) with soc(M(k)) = S; and i < n. Since the g-vectors
are pairwise different, the Caldero-Chapoton functions are pairwise different. Now,
assume \;Cp(M(j1)) + -+ + MCa(M(j;)) = O for some \; € C.

If there exists an index sq such that M(js,) has socle S, then there exists an index
s such that x9MUs) is <-maximal in the set {xMG): soc(M(5;)) = Sn}. Since
the g-vectors are pairwise different we can conclude that A\, = 0. Indeed, x92(M(s))
does not occur as a summand of any Ca(M (j;)) with [ # s.

If soc(M (j5;)) # S, for all [, then there exist an index 7 such that x9+(MUr) js <-
maximal in the set of {x9(0): 1 <[ < t}. Since the g-vectors are pairwise different
we have that x9 (M) does not occur as a summand of any of the Cy(M(j;)) with
[ # r. Thus A\, = 0 and we can repeat this argument in order to conclude that
Ca(M(j1)),...,CaA(M(j;)) are linearly independent. O

8.2.2 Generic version

In this section we study a generic version of the results of the last section. Given
a triangulation o of ¥,, we construct a strongly reduced irreducible component Z, of
decrep(A), see Section 4.3. Recall that A corresponds to oy.

Denote by Z; the irreducible component of decrep(A) that contains O(M(j)). We
know O(M(j)) is open, so it is dense in Z;. Then Ex(Z;) = EA(M(j)) = 0. In
the notation of Section 4.3 this means, in particular, that Z; is a strongly reduced
irreducible component of decrep(A). We can think that some generic homological
data of Z; is encoded in the homological data of M(j).

Proposition 8.20. Given a triangulation o of ¥, and two arcs ji,jo € 0 we have
Ex(Zj,, Zj,) = 0.

Proof. By Lemma 8.12 we know FEj (M (j1), M(j2)) = 0. It can be seen that the set
O(M(j1)) x O(M(j2)) is open in Zj, x Z;,. Indeed, from Lemma 8.14 we know that
O(M(j;)) is open in Zj, for [ = 1,2. The claim follows from the equality of sets

Ax B\(C x D) =[(A\C) x B] u[A x (B\D)],

because Z; x Z;,\[O(M(j1)) x O(M(j2))] would be the union of two closed sets.

If (M,N) e O(M(j1)) x O(M(j2)), then Ex(M,N) = 0. Since Z; and Z;, are

irreducible, we have O(M (j1)) x O(M(jz)) is dense in Z;, x Zj,. Then Ex(Z;,, Z;,) =

0. O
The next result is a consequence of Theorem 4.9 and Proposition 8.20.

Proposition 8.21. Given a triangulation o = {j1,...,jn} of ¥y, the closed set

Z, =2, ® @7,

is a strongly reduced irreducible component of decrep(A).
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The next proposition generalizes |17, Proposition 9.4].

Proposition 8.22. The set
{CA(Z): Z € declrt®* (M), Ex(Z) = 0}

generates the Caldero-Chapoton algebra Ap as C-algebra, where declrr®*(A) denotes
the strongly reduced irreducible components of decrep(A).

Proof. Only remains to prove that the Caldero-Chapoton functions of the non- E-rigid
representations can be expressed in terms of the Caldero-Chapoton functions of the
E- rigid representations. Let L = a;ll coe €@y, With my < ny be a string and let
mo < n be an integer. A direct calculation yields the following equations

Ca(N(LY)) = Ca(N(L1)) + Ca(N Wiy ny—-21)),
CA(N(W[m2,n])> = CA(N<W[m2,n—1])) + CA(S;LQ—l)'

Here we set Wy = 0 and S; := 0. The proposition follows from Proposition 8.15.
Recall the notation at the beginning of Section &.1.

Indeed, let us verify the first equality: set Ny = N(Ly), N| = N(L}) and M =
N (Wi, ni—2))- With that convention we obtain that gx(N;) = [ny — 1] + [my — 1] —
[n] = ga(N7) and gx(M) = —[ny — 2] + [my —1].

For M: the dimension vector of sub-representations are given by hy = 0 and h; =
[n1 —i—1,n1 —2], where i € [1,n; —my —1]. From this we get the vectors Cohy = hy
and Coh; = [n1 —1,ny —2] —[ny —2—4,ny — 1 —i], where i e {1,...,ny —my; — 1}.
Therefore,

ni—mi—1
CA(M) _ Xf[n172]+[m171] Z Xf[n1fi72,n1fifl]+[n171]+[n172].
=0

Note that all the dimension vectors of N; are dimension vector of V] and the only
vectors that are dimension vectors of N| but not of Ny are e; = [n — j + 1, n|, where
j€[n—mny+2,n—my+1]. Besides, if we consider a as dimension vector of Ny, then
X(Gra(N1)) = x(Gra(V7)) and x(Gre, (V7)) = 1. for all i e {1,...,ny —m; — 1}.

In the following sum, a runs over all the dimension vectors of Nj:
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n—mi+1
CA(N{) = X[n171]+[m171]*[n] < X(Gra(N{))XCQa + Z XCer>
a j=n—ni+2
n—mi+1
= x5 (G (V))x 002 4 xm-Him—t=ll - Ny Caey
a Jj=n—ni+2

n—mi+1
= CA(Nl) 4 X[n171]+[m171]7[n] 2 Xf[nfi,n7i+1]+[n]

j=n—ni+2

ni—mi—1
=Cp(NV1) + xlr=1]+[mi—1]=[n] Z « [ —i=2ni—i-1]+[n]

=0
ny—mi—1
= CA(Nl) + X[n1—1]+[m1—1] Z X—[nl—i—Z,nl—i—l]
=0
ni—mi—1
= CA(Nl) + X(—[n1—2]+[n1—2])+[n1—1]+[m1—1] Z X—[nl—i—Z,nl—i—l]
=0
ni—mi—1

= CA(Nl) + X*[n172]+[m171] Z Xf[nl7i72,n17i—1]+[n171]+[n172]

=0

= CA(Nl) + CA(M)

The first equality is completed. Now we verify the second equality. Set Ny =
N(Whngm-11) and Ny = N(Wn, 7). From definitions we get that ga(Na2) = [ma —
1] = [n — 1] and ga(N3) = [ma — 1].

For Nj: the dimension vector are given by fy = 0 and f; = [n — j,n — 1], where
je{1,2,...,n—mso}. Therefore Cofy = fy and Cof; = —[n—j—1,n—j]+[n—1]+[n].
In this case we know that x(Grg;(N2)) = 1 for all j € [0,n — my]. Then

C<N2>_Xm2 1]— 2 —[n—j—1n—75]+[n—1,n]

For NJ: the dimension vector are given by ey = 0 and e; = [n — (i — 1),n],
for i € {1,2,...,n — mg + 1}. From this, we get that Cgey = ey and Cpe; =
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—[n—i,n—i+ 1]+ [n] where i € {1,2,...,n —mgy + 1}. Then

n—mo+1

CA(Né): [ma—1] Z X~ [n—i,n—i+1]+[n]

n—mo+1
mz 1] <1+ Z x~ [n—in—i+1]+[n ])
n—ms
m21<1+an]1n]+[]>

n—ms
:X[m21+xm21 Z —[n—ji—1,n—j]+[n]

n—ms
:X[mg 1]+Xm2 1]- Z [n—j—1n—jl+[n—1]+[n]

= X[m2_1] + CA(NQ)
= CA(Sppy—1) + Ca(MN2)

The second equality is completed. O

8.3 The case of the pendant arc

Let o be a triangulation of ¥,,. Throughout of this section j will be the pendant arc of
0. Before proving the exchange relation when we flip at 7, we need some preparation.

We shall relate Lemma 3.4 with Section 3.3.1. For each e € N” we want to define
an action of C* in Gre(M (j)).

Definition 8.2. Given an interval &§ # e = [m,,n.] < [1,n] where m, < n,, let W,
be the string [, ---{; of direct letters such that Supp(W,) = e. If e = &, then we
define Wy as the zero string.

For any arc j of 3, let Suppy(M(j)) = {i € @ : dim(M(j)); = 2}. Note that
Supp,(M (7)) is a sub-interval of [1,n].

We define an action of C* in Gre(M(j)) for any non-initial arc j of %,. First,
assume j is a pendant arc. In this case, M (j) looks like

0 0 0 C?—%>C % —=C? ) (8).-

We have dimM () = 2[m;, n| where [m;,n] = Supp,(M(j)) = Supp(M(j)) < [1,n].
Let e € N™ be a vector. First, we consider two cases for e. When e = [me,n] or
e = 2[me, n] with m; < me we have that Gre(M (7)) is a point, so the action is trivial
and we have just one fixed point. Note that here Supp(e) = [me,n]. Finally, assume
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e = [Mme, n] + [ne, n] with m; < me < ne < n. In this case we have Supp(e) = [me, 1|
and Supp,(e) = [ne,n]. It can be shown that Gre(M(j)) is isomorphic to P! := P!(C).
Define the action C* x Gre(M(j)) — Gre(M(j)) by t - [a : b] = [ta : b]. In this case
we have two fixed points, namely [0 : 1] and [1 : 0]. These fixed points correspond to
the sub-strings W and W’ of W, such that dim(/N(W)) = e = dim(N(W’)). We have
W; = a;ﬁ_ c-aplie - am, and e = [me,n] + [ne,n]. The fixed points correspond to
W=a-a e ap and W =a,l-a et

We consider the case when j is not a pendant arc. In this case M (j) may have the
following form

Q-

0
0_>0_>..._>o_><c_id>...£‘>(c(_12<c2li<c2ﬁ>..._id><c2;)(g(1]) ,

If Supp(M(j)) = [mj,n] and Supp,(M(j)) = [n;,n] with m; < n; < n, then
dim(M (j)) = [m;,n]+[n;,n]. We want to define an action of C* in Gre(M (j)). In the
cases when e is [m,, n| with m; < m. <n, 2[me,n] with n; < me or [me, n] + [ne, 7|
with me < n; < ne we have that C* acts trivially in Gre(M (7)) because Gre(M(j))
is a point. If € = [me,n]| + [ne,n] with n; < me < ne, then we identify Gre(M(j))
with P! and proceed as in the case of a pendant arc. In other words, in this case we
have two fixed points, i.e two sub-strings of W;.

Up to now what we have done is interpret x(Gre(M(j)) as combinatorial data of
M (j), namely as the number of sub-strings W of W; such that the dimension vector
of N(W) is e.

o . . 1 -1 -1 .

Definition 8.3. Given a string L = a,’ re 4177 Q1€ O, with m. < n., we
: r o —1_-1 -1 -1

define the dual string of L as L' = a,,- Upo 117" Oy 1 & Qi

Proposition 8.23. Assume that j and j' = flip,(j) are not the initial pendant arc
in. Let g1 and jo be the arcs of o incidents to j, see Figure 8.5. We assume that

jlajZ ¢ 0o, then

Ca(M(5))CA(M(5")) = Ca(M (51))? + CA(M(j1))Ca(M (j2)) + Ca(M(52))%.  (8.3)
Thanks to Section 8.1 to prove (8.3) we are going to define a function ¢

Cam(M (7)) x Cam(M(j)) —
Cam(M (j1)) x Cam(M (j1)) u Cam(M (j1)) x Cam(M (j2)) u Cam(M (j2)) x Cam(M (j2))
(8.4)

with some properties implying (8.3), recall Proposition 8.2.

Definition 8.4. If h = [my,n] < [1,n] is an interval, we denote by Dy, », = [s1, S2 —
1] A [mp, n]. We write W, ,,,, instead Wp,_,, see Definition 8.2.
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Figure 8.3: j is a pendant arc.

Definition 8.5. We use the notation in Figure 8.3. The definition is given by cases.
Let (L1, Lg) € Cam(M (j))xCam(M (j')) be a pair of strings. For relaxing the notation
we denote by e the dimension vector of N(L;) and by f the dimension vector of N (L,).

1. L1 =0o0r Ly = ap_1 -+ ay, withm, > so: (L1, Ly) = (L1, Lg) € Cam(M (jo)) x
Cam(M (j2)).

2. L1 = an,l---ame Wlth me < So. gO(Ll,LQ) = (Wis2,me7L2> S Cam(M(jl)) X
Cam(M (j2)).

3. Ly = aytayt - raptE @, with ne = me > sot (L1, La) = (L1, L) €

Cam (M (jz)) x Cam(M (jz))-

-1
n—

4. L = a;ja;elﬂ Cee Q1€ Oy, With me < S92 Yy Me < e
¢(L1, Ly) = (L1, Ly) € Cam(M (ja)) x Cam (M (j2)),
gD(Lll, Lg) = (LQ, Ll) € Cam(M(]g)) X Cam(M(jz))

“1,-1 -1 . i
5. L1 =, Q. 1 Ay 1€ Ay, With me < 8ot

(a) Ly =0: ¢(Ly, La) = (Wi, me, Wi, m,) € Cam(M (1)) x Cam(M (j1)).

(b) Lo = ap_1- ap, with my > s
©(Ly, Ly) = (Wsz,me, a;nlfa;laﬂ ce agilg ),

where ¢(Ly, Ly) € Cam(M (jy)) x Cam(M (j2)).
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—1,-1 -1 : ,
(€) Lo =ay Gy 1 Qu i€ Qmy With myp <mnpy my > so:

_ -1 -1 -1 -1 -1 -1
@(Ll, L2) - (anf anf+1 Y an—lg e ame7 amfamf+1 e a/n—lg e a’me)7

where (L, Ly) € Cam(M (j2)) x Cam(M (52));

N _ -1 ~1, -1 -1
o(L1, Ly) = (amfamfﬂ Tl 1 On Oy Gy Gy gy 0 Ay 180 (. ),

where ¢(Lq, L) € Cam(M (ja)) x Cam(M (j2)).
(d) Ly = a;ﬁéa;néﬂ caplie g, with my > so:

_ -1 -1 -1 -1 -1 -1
@(L]-? L2) - (amfamf+1 T a“n—lg e a'me7 amfamf+1 e an_1€ e ame)7

where ¢(Lq, Ly) € Cam(M (j2)) x Cam(M (ja)).

_ 1,1 -1 S '
6. L1 =a, a, 1" 0, 1€ Ay, With i;, + 1 <me <ne < s9:

(a) Ly =0:
SO(Lh L2> = (W82,me7 Wsz,ne) € Cam<M(j1)) x Cam(M(]l))a

(L, La) = (Wi, nes Weym,) € Cam(M (j1)) x Cam(M (j1)).

sgsMe)

(b) Ly = an_1- " ap, wWith my > s

P(L1, Lo) = (Way e gy gy g2 am, ) € Cam(M (51)) x Cam (M (j2)),
P(LY, L2) = (Wi mes Gy Gl - 216 -+ a, ) € Cam(M (j1)) x Cam(M (52)).
(c) Ly = a;fl ,:le cantie e am, with my < ngy my > sy

_ (-1 -1 -1 -1 -1 -1
(L1, Lo) = (@, ap g+ =18 iy UppQppyr s Ay & O, )

where p(Lq, Ly) € Cam(M (j)) x Cam(M (jo));

I -1 1 -1 - -
@(Lb LQ) - (a’nf aanrl Gy 1€ Oy A, Qpoq " Ay 1€ amf)

where p(Lq, L) € Cam(M (j2)) x Cam(M (j2));

/ _ -1 _—1 —1 -1 _—1 —1
QO(LD L2> - (a’nf aanrl i lp 1€ Oy Ay Ay 1 " " Ay 1€ 7 amf)

where (L, Ly) € Cam(M (j2)) x Cam(M (j2));
(LY, L) = (Gppi e 1+ Oy € iy, G Ly - Gy E - i)

Me ny nf+1 n—1

where (L}, L) € Cam(M (j2)) x Cam(M (ja)).
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(d) Ly =ayta, !y aylye - am, with my > sy:

mygong n—1
_ -1 -1 -1 -1 —1 -1
QO(LL LQ) - (amfamf+1 TGy 1E 0 lp,, A my mf+1 Crr Gy qE ame)

where p(Lq, Ly) € Cam(M (ja)) x Cam(M (jo));

/ _ -1 -1 —1 -1 -1 —1
SO(L]_, LQ) - (amfamf-i-l o an—lg e a’me7 amfamf-i-l e a/n—lg e ane)

where € Cam(M (j2)) x Cam(M (jz2)).

We want to prove that ¢ is a bijection and the analogue of Proposition 8.2. We
need a way to relate the exponents of the monomials in both sides of (8.3).

Let (L1, Ly) € Cam(M (j)) x Cam(M (j')) be a pair of strings. We are going to prove
that the monomials corresponding to (Ly, Ls) and ¢(Ly, L) are the same. Given a
string W we denote by ey the dimension vector of N ().

Proposition 8.24. If o(Ly, L) = (W1, W2) € Cam(M (jy,,, ,)) x Cam(M (ji, ,.)))

with l(Ll,Lg) € {1,2} Yy t(L1,L2) € {1,2}, then

CQ(eLl +er,) +9A(M(])) +ga(M(j )) CQ(6W1 +6W2)+9A(M<jl(L1,L2))) +gA(M(jt(L1 Lo) ))
(8.5)

Proof. To ease the notation set C' := Cg, e = ey, and f = er,. We proceed case by
case as Definition 8.5.

Loga(M (7)) + ga(M(j")) + Ce+ Cf = ga(M(j2)) + ga(M(jz2)) + Ce + Cf, since
gA(M (7)) + ga(M(5')) = 294 (M (j2))-
2. ga(M (1)) + ga(M(j2)) + Clme,is, — 1]+ Cf =
= ga(M (1)) + 9a(M(j2)) — [me — L,me] + [is, — L,is,] + Cf
= ga(M (7)) + ga(M(5")) = [me — 1,me] + [n] + Cf
= ga(M(5)) + ga(M(5)) + Ce + CF.

3. Follows from definitions, it is similar to case 1.
4. It is similar to case 1.

5. We follow four cases as in the definition of ¢.

(a) ga(M (1)) + ga(M (1)) + 2C[me, 52 — 1] =
= gA(M(5)) + ga(M(5) + 2[n] + 2[s2 — 1, 52] — 2[me — 1, mc]
= ga(M(j)) + 9a(M(j')) + Ce.

(b)  ga(M(j1)) + ga(M(ja)) + Clme, s2] + C[me,n] + Cf =
= grA(M(j1)) + ga(M (j2)) + [s2 — 1, 82] = 2[me — 1,me] + [n] + Cf
= ga(M(5)) + ga(M(5") + Ce + Cf.
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(c) 2g9A(M(j2)) + C[me,n] + C[nys,n] + C[me,n| + Clms,n] =
ga(M(5)) + ga(M(5)) + 2C[me, n] + Cny,n] + Clmy, n]
ga(M(5)) + ga(M(j')) + Ce + Cf.

(d) 2a(M(j)) + 2C[me, n] + 2C[my, n] = ga(M(§)) + ga(M(7")) + Ce + CF.
6. Again we have four cases.

(a) 297A(M (1)) + Clme, s2 — 1] + Clne, s2 — 1] =
=2g7A(M(j1)) + Ce + 2[sy — 1] + 2[s2] — 2[n]
= ga(M(5)) + ga(M(5")) + Ce.

(b) We have to analyze two cases
(b.1)  9a(M(51)) + 9a(M(j2)) + Clne, 52 — 1] + +C[me, n] + Cf =
= 9a(M(j1)) + 9a(M(j2)) + Ce + Cf + [s2 = 1] + [s2] — [1]
= 9A(M(j)) + ga(M(j')) + Ce + CF.

(b.2) ga(M (1)) + ga(M(j2)) + Cme, so — 1] + +C[ne,n] + Cf =
= ga(M(j1)) + ga(M(j2)) + Ce+ Cf + C[sq,n]
gA(M(j)) + ga(M(5")) + Ce + CFf.

(c) It is analogous to the previous case.

(d) 29a(M(j2))+C[ne, n]+2C[mys, n]+C[me,n] = ga(M(5))+ga(M(j'))+Ce+Cf.
The proof of the proposition is completed. O

Now we are going to prove that ¢ is a bijection. First we prove that ¢ is one to
one.

Lemma 8.25. ¢ is an injection.

Proof. We have to prove that ¢(X) # ¢(Y) if X # Y. Let (L, Lo),(I'1,I2) €
Cam(M (7)) x Cam(M (j')) be pairs of strings and assume that (L, Ly) # (I'1, ).
Since the image of ¢ is the disjoint union of three sets we have to concentrate in the
cases when ¢(L1, Ly) and ¢(I'1, ['y) are in the same component of the image of ¢. We
need to consider the cases when both (L1, Ly) and (I';,T's) satisfy the conditions in
the definition of ¢ such that ¢(L, Ls) and ¢(I'1,T'y) are in the same component of
the image of . We have three cases.

o If (L1, Ls) and (I'y,T'y) satisfy one of the conditions (1), (3), (4), (5.c), (5.d),
(6.c) or (6.d), then ¢(Lq, Ly) and ¢(I'y,I's) are in Cam(M (j2)) x Cam(M (jz)).

o If (L1, L) and (I'1,I'y) satisfy one of the conditions (2), (5.b) or (6.b), then
©(L1, Ly) and ¢(I'1,T'y) are in Cam(M (j1)) x Cam(M (jz)).
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o If (L, Ly) and (I'y, I'9) satisfy one of the conditions (5.a) or (6.a), then ¢(Lq, Lo)
and p(I'y, ') are in Cam(M (j,)) x Cam(M (j1)).

We begin with the first case. If (L1, L) and (I'y, T'g) satisfy both the same condition
in Definition 8.5 and they are different, then their images under ¢ will be different. So
the interesting cases are those which (Lq, Lo) and (I'y, I'y) satisfy different conditions.
Assume (Ly, Lo) satisfies one of the conditions (1), (3) or (4) in Definition 8.5. By
construction we have that if (L1, Ls) # (I'1,'y), then ¢(Ly, L) # ¢o(I'1, ).

Now suppose that (Li, Ly) satisfies the condition (5.c) and (I';,I's) satisfies the
condition (5.d). In this case we have

Ly = Gy O 1 G248 i

Ly = a;ﬁla;&l“ cea e Uy, With me, < s3, my <ny and my > ss.
Wi= gl azl oy arhie .

Wy = a;ﬁba;ﬁbﬂ ceatie Uy, With me, < sy y my, > so.

By definition it is clear that ((I'y,T'y) is different to ¢(Ly, L) and o(Ly, Ly) since
Mey <My
Assume (Lq, Ly) satisfies (5.c) and (I'y, I'y) satisfies (6.c), in this case we have

Ly = Gy Gt 4177 Gyl 1€ A,

Ly = a;llflar_niﬁl ceatie Uy, Withme, < s, my <ny and my, < so.

Fl — ar—Lel2 a7—LElQ+1 . a;ilg e a’me27

Iy = aﬁflﬂﬁéﬂ ceatie Uy, With 51+ 1< me, <ne, < 52 and ny,, >my, > so.

Following Definition 8.5 we get

AL L) = (071071 ot o2, ),

By observing the definitions, ¢(L1, Ly) and (L1, L) can not be equal to ¢(I';,T'5),
o(T1,T%), oI, Ty) or (I, T) because me, < n., < sy and my, > .

The case (L1, Ly) satisfies (5.c) and (I'1, T'y) satisfies (6.d) is similar to the previous
one. The cases when (Ly, Ly) satisfies (5.d), (6.c) or (6.d) are analogous to the above
discussion. That finish our first consideration.

Now we are going to deal with the second case. Again the interesting considerations
are those which (Lj, Ly) and (I'1,T'9) satisfy different conditions in Definition 8.5.
Assume (L1, Lo) satisfies (2) and (I'y, I'y) satisfies (5.b). Then we have

IS R | —1
I'y=a,, a T 4E O,

I'y =a,_1-- Oy, s with me, < sp and my, > s.
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Following the definitions we get that o(Ly, Ly) = (Wi, m.,, L2) and
P(T1,T2) = Wiy Gy Gy 1 Gy - iy )

Observe that Supp(Ls) € [s2 + 1,n] and me, < sq, so Ly is different to

-1 -1

—1
amf2amf2+l CrQp 1 Gn o Qe -

The case when (I'y,I'y) satisfies (6.b) is similar. Suppose (L1, L) satisfies (5.b) and
(I'y,T'9) satisfies (6.b), that means
Ly = Gy Gy 4177 Gyl 1€

Ly =a,_1- - ap, with m., < sy and my, > so.

f1
_ -1 -1 -1
I' = oy Qg 11 """ Oy 1€ iy

'y = ap—1-ap, with me, <n., < sy and my, > ss.

f2

By applying ¢ we get

_ -1 -1 -1

()O(L17L2) - (Wi527m617amfla'mh+1 o 'an—lg' : 'a'mel)a
_ -1 -1 -1

SO(F17 F2) - (Wisg,neg ) a’mf2 a’mjc2+1 e a’nflg e a’m62>7
/ -1 -1 -1

SO(PI’FQ) = (Wi327mf2’amf2amf2+l o .an—lg' ’ ‘a’meQ)'

If me, = ney, then me, < me, and ©(Ly, Ly) # ¢(I'1, ). Since m,, < so < my,, we
have ¢(L1, Ly) # @(I'},T3). The case when (Lj, Ls) satisfies (6.b) is similar to the
previous discussion.

For the last case assume (L1, Lo) satisfies (5.a) and (I'1, I'y) satisfies (6.a). We have

-1 -1 -1
L, = Uy, Crpg 41" Oy 1€ " Qg
Ly = 0 with m,, < so.

Iy =alal

—1
Neg "My +1 Ty € am627

Iy =0 with me, < ne, < sso.

Since m,, < n., we conclude that ¢(L1, Ls) # ¢(I'1,I's) and ¢(Ly, L2) # (I}, T'y).
This proves that ¢ is injective. O

Lemma 8.26. ¢ is surjective.

Proof. We need to show that ¢ is surjective on
i) Cam(M (j1)) x Cam(M (j1)),
ii) Cam(M(j1)) x Cam(M (j2)),
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iii) Cam(M(j2)) x Cam(M (j2)).

Case i). Suppose (Ry, Ry) € Cam(M (j1)) x Cam(M (j1)) with Ry # 0 # Ry and Ry #
Ry. Inthis case Ry = W, ,,, and Ry = W, ,, by hypothesis we can assume m; < ma.
Since my < S, if we define L; = a;éa;éﬂ -ova;tie- -y, then by the definition
of ¢ (6.a) we have ¢(L1,0) = (Ry, R2). If my < my, then ¢o(L},0) = (R, Ry). If
Ry = Ry # 0, we define Wy = a;}a, - a, e am, and o(Wi,0) = (Ry, Ry).

Suppose R; = 0 and Ry # 0, we define

I = a;gla;;rl e Uy
Then ¢(I'},0) = (R1, Re). The case when Ry = 0 or Ry = 0 is similar to the above
case. This shows that ¢ is surjective in Cam(M (j;)) x Cam(M (j1)).
Case ii). Suppose (R;, Ry) € Cam(M(j;)) x Cam(M (jo)) where R; # 0 and
Ry # 0. We have that Ry = W,,,,, and consider some cases for Ry. If Ry =
1o 1 a,tie - am, of Ry = ay_1 -+ Gy, With sy < my < ny, then

a, a
Sp(an—l ©r Gy, RQ) = (Rb RQ)

Hagl-ay
by the condition (2) of the definition of . If Ry = a,}a,),, - a, e+ ap, with
me < S < ng and mo < my, then we define L; = a;}l ;111+1---@;i18---am,4,, Ly =
Ap—1-- Ay, and Y; = a;ﬁza;nlﬁl wa e am,,. In the case my < my, we have
©(Ly1, Ls) = (Ry, R2) by the condition (6.b) in the definition of ¢ and if m; < ma,
we have (Y], L) = (Ry, Ry). The cases when R; = 0 or 5 = 0 follow from similar
arguments to the previous discussion.

Case iii). Suppose (Ry, Ry) € Cam(M (j2)) x Cam(M(j2)). Now we assume that
Ry =0o0r Ry = ap_1--+ap, With my > s, and

Ry=a,1- - am, or Ry = a;ja;jﬂ e a,ﬁla Sy
with sg < mg < ng. So p(Ry, Re) = (Ry, Ry) by the first condition in Definition 8.5. If
Ry =a'al - a; e am, withm; < ny and R, such that Supp(Ry) < [so+1,n],
then (R, Ry) = (Ry, Ry) by the conditions (3) and (4) in the definition of ¢. If Ry
is a string such that Supp(R;) < [s2 + 1,n] and Ry = a,}a, ), ;- a,t e - ay,, with
my < ng and my < so, then we have p(RS, Ry) = (Ry, R2) by the condition (4) of
Definition 8.5.

Note that until now we have been dealt with the cases when R; or R, have support
contained in [sy + 1,n]. Assume that Ry = Ry = a,la, 'y, --a,lie - ay, with
my; < ny; and my,n; < so. If we define L; = agllagllﬂ'--a;ils---am and Ly, =
aptayl  cocantie s am,, e get o(Ly, Ly) = (Ri, Re) by (5.d) of Definition 8.5.

Suppose Ry # Rs. Let Ry = a_'a; ! ate. A, and

ny n1+1“' n—1

11 1
Ry = Uppy Qi1 """ Oy 1€+ * iy

where my < ny, mg < Ng, My, My < So, My = My and sy < nNo < ny. If we define
-1

fr— _1 ... 71 o o. . fr— _1 71 o oe . 71 ... fr—
Ly =apa,, Q1€ Qp and Ly = ay a1 - -0y € Gy, then (L, Ly) =
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(R1, R2) by the condition (5.c) in the definition of ¢. The case where ny < ny is
similar.

Let Ry and R, be as in the above case but suppose m; < mg and ny < ny. If
we define I'y = a,,] ;11“ eaytiean, and Ty = s ;}H ceaytie s an,, we get
©(I'1,T'y) = (R1, R2) by the condition (6.c) of Definition 8.5. The case when mq < my
is analogous.

Given R; and R, as before we assume mo < m; and ny = ne > so. If we define
Wi=a,tat - atieam, and Wa = aytayly - ay e a,,, by the condition
(6.d) in the definition of ¢, we have (Wi, Ws) = (L1, Ly). The case when m; < my
is similar to the previous one.

This proves that ¢ is a surjection. L]

Now (8.3) follows from Lemma 8.26, Lemma 8.25 and Proposition 8.24.
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Chapter

The Caldero-Chapoton algebra for any
initial triangulation

In this chapter, we will present the main results of this work by means of Galois
coverings.

9.1 E-rigid representations

Let ¢ be any triangulation of ¥, and let A(o) be the algebra associated to o. In this
section we will characterize the E-rigid representations of A(o).

We can find a triangulation T of in such that G -T = o. By Lemma 7.10 we have
that the push-down functor 7, : A(T)-mod — A(¢)-mod is a G-precovering. Recall
that G = Zs3 acts on N by an appropriate rotation. In this section we are going to
prove that m, is a G-covering. We are going to use this to characterize the E(q)-rigid
representations.

We are following the notation of [50, Section 5|. For o = {t1,ts,...,t,} we write,
unless we say something else, the triangulation 7' according to its orbits, namely
T = {ti1,t12,t13,---,tn1,tn2,tns}. If we denote by z;; the initial cluster variable
associated with the arc ¢; ;, then the initial cluster will be

Xp = (xl,la Z1,2,21,35---,Tn1;Tn,2, (L’n,3>.

If we associated the variable z; to the arc t;, then we obtain a morphism of algebras
T (C[:E:—r]] — C[2]], given by 7(;;) = z fori =1,...,n and j = 1,2,3. The action
of Z3 on T allow us to define the following function

ENEL n ty
7 N" >N, 7((a11,012,013,.-,0n1,0n2,0n3) )i = Qi1 + Qo + ;3.

We hope that the reader is not confused with our unfortunately choice of 7 for dif-
ferent maps. For us the arc ¢, € o will denote the pendant of the triangulation and
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tn1,tn2, tn,3 are the three sides of the triangle invariant under the action of Zz on in
Therefore the matrix Cgr) has a decomposition in blocks of size 3 x 3. Recall that
by definition Cg(ry is skew-symmetric, moreover Cqr) is skew-symmetric by blocks
and every block is a multiple of the identity of size 3, except for the block n,n that
corresponds to the adjacency of the 3-cycle of Q(T") with vertices ¢, 1,t,.2,tn3.

Lemma 9.1. The push down functor m, : A(T')-mod — A(c)-mod is a Galois G-
COVETING.

Proof. By Lemma 3.6 we only need to prove that 7, is dense. Well, by Proposition 7.8
and Proposition 7.9 we know that A(c) is a finite-dimensional gentle algebra. From
Theorem 3.13 we have that the strings parametrize the indecomposable modules of
A(o). Since we work in Krull-Schmidt categories we need to prove that the Galois
G-covering 7 : A(T") — A(o) induces a surjective function between the set of all string
of those algebras and that 7, (N (W)) = N(W) where W is a string of A(T) such that
G -W = W, recall that N(W) denotes the string module associated to W. The last
fact follows from definitions.

Suppose the pendant arc of o is based at v;. Assume W = Woe* W, is a string
for A(o) with W; a string without the letter € for i = 1,2 and k(W) € {—1,0,+1}.
Recall that ¢ is the loop based at the pendant arc of o. It is clear that if W; does
not contain the letter €, then W; can be lifted to a string with letters contained in
one of the three fundamental region divided by the dashed blue lines, see Figure 9.1,
say that is contained in the region that contains to [u;, u;+n+1]. Note that the final
letter of W, must be a; or b;', see Figure 9.1. Now, if k(W) = 0, then W itself can
be lifted to a word in that region. If k(W) = 1, we choose €3; and W; can be lifted
to a string in the third fundamental region containing [u;, u;1o(m+1)]. If (W) = —1,
we put the letter €97 and it is clear that W, can be lifted to a string of A(T") with
letter of the second fundamental region containing [t n+1, Uito(n+1)]- Therefore the
string T can be lifted to one string W of A(T). Note that W depends on where we
lifted the tail point of W;. The proof of the lemma is completed. n

Lemma 9.2. The push down functor m, : A(T')-mod — A(c)-mod induces a Galois
G-covering m, : decrep(A(T')) — decrep(A(0)).

Proof. Let R = C9T) be the vertex span of A(T). We can see that Rg = C?@)o is
the vertex span of A(o). With this notation it is clear that a decorated representation
(M,V) is a pair where M € A(T)-mod and V' € R-mod. For V € R-mod we can
define 7,(V') € R -mod as in Remark 7.13. We put m,(M, V) = (m.(M), m(V)) and
the lemma follows from the fact that

Homdecrep(A(T)) ((Mv V)v (N7 W)) = HomA(T)<Ma N) @ HOIHR(M W)

Now, we can extend Lemma 8.6 to other triangulations.
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Figure 9.1: Fundamental regions in S,. The sub-index in the red arrows indicates
which fundamental regions they connect.

Corollary 9.3. Let o be a triangulation of 3, and let j be an arc of ¥, not in o.
(a) Assume M(j, o) is not projective, then 7(M(j,0)) = M(r*(j),0).
(b) Assume M(j,0) is not injective, then 7= (M(j,0)) = M(r=(j),0).

Proof. Since we have Lemma 9.1, the corollary is a consequence of the A,, case from
[15, Theorem 2.13] and Theorem 3.7. Let 7 be a lifting of j in 5., and let & be the
lifting of o.

(a). From [15, Theorem 2.13| we see that 7(M(},5)) = M(r*(j),5) and by apply-
ing 7, from [8, Theorem 4.7 (1)], we get what we want, 7(M(j,0)) = M(r*(j), o).
The proof of (b) is similar. O

The reader can compare the next proposition and |50, Proposition 7.15].

Proposition 9.4. Let o be a triangulation of ¥, and let A(o) be the algebra asso-
ciated to o. Suppose T is the triangulation of in such that G -T = o. If M is an
indecomposable representation of A(T)-mod, then m, (M) is En-rigid if and only if
Exery(M,g- M) =0 for any g€ G.

Proof. The proposition follows from Proposition 4.5 and the following equalities

dim Hom (o) (77 (74 (M)), 7, (M) = dim Hom (o) (7 (77 (M), 7, (M))
= dim@ Hom (g -7 (M), M)
geG

= Z dim Homy 7y (7" (g - M), M).
geG
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Since m, is a Galois G-covering, Lemma 9.1, the first equality follows from Theorem
3.7, see [8, Theorem 4.7 (1)]. The second line follows from definition of G-precovering
and the third line is a consequence that g - — is an isomorphism of categories. This
conclude the proof. O

Lemma 9.5. Let N be an indecomposable representation of A(o). Then N is Ey-rigid
if and only if N = M(j,0) for some arc j of ¥,,.

Proof. Let M be a representation of A(c) such that m,(M) = N, recall that m,
is dense. From [15, Corollary 2.12] we know that there is a bijection between the
indecomposable representations of A(T) and the diagonals of ¥, not in 7. Then
M = M(}, T) for some arc j of 3,,. By Proposition 9.4 we know that N is Ep(r)-rigid
if and only if Exqy(M,g- M) = 0. We need to analyze dim Hom (77 (g - M), M).
Suppose ] = [ur, w4 ] for some [ € [0,3n+1] , then g-M = M ([w—(n+1), Wirk—@ns1)): T)
and 7 (g - M) = M([wj—n—2,U+k—n—2],T). This means, in particular, that g - M
is an arc representation. By [15, Lemma 2.5|, the Auslander-Reiten formulas and
[15, Remark 2.15] if Ey¢)(M,g- M) = 0 for any g € Zs, then we can conclude

that j has to be an admissible arc of 5., therefore G .7 = jis an arc of ¥, and
N =m.(M(j,T)) = M(j,0). The proof of the lemma is completed. O

Remark 9.6. Let F : A — B be a Galois G-precovering. Then F is faithful, see |8,
Lemma 2.6 (2)].

Lemma 9.7. Let I; be the indecomposable injective at | € Q(T). Then m.(I}) = g,
where g is the indecomposable injective at G - [.

Proof. The lemma follows from Lemma 9.1 and Theorem 3.7. Indeed, the Galois
covering m, preserves AR-sequences by Theorem 3.7, so preserves injectives and pro-
jectives. We will write down a proof without using Theorem 3.7 in order to show the
level of computations involved with Galois coverings. This might be instructive for
some readers.

Let D = Homg¢(—,C) be the standar C-dual functor. Remember that [;(k) =
D Hom(eg, ¢;) and m([))(G - k) = P,.,. DHom(g - e, e;). By definition there exist
an isomorphism 4" : Dz, Hom(g - ex, e1) — Hom(G - e, G - ). In other words,
for any k € Q(T)y we get an isomorphism 75! : I5,(G - k) — 7w (L)(G - k). In-
deed, from definitions we have the following isomorphism D7i! : D Hom(G - e, G -
er) = D[@D,cz, Hom(g - ex, e;)]. Denote with ©*! the standard isomorphism @**
D[@g€Z3 Hom(g €k, 6[)] - @9623 DHOII](g " Ck, 6l)’ [ (90571(f))9€G = (ng)g€G7
where 1}, is the inclusion ¢, : Hom(h - ex, e;) — @, _,. Hom(g - ey, ;). Then 78! :=
phl o Drit.

Let o : ky — ky € Q(T) be an arrow, we are going to show that 7! o (I5)g.a =

9E€ZL3

9EZL3
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Tu([})G.o © To0L in other words, we will see that the following diagram commutes.

-

w0 (k) =7 (1) (m (R )
fﬂm(w(a))l lw*un(w(a))
w() (7 (k2)) —x me (D) (m(R2))

*

Suppose that f € Homc(Hom(G - ey, , G - ¢;), C). We have that

Te(l)ga 0 T (f) = mu(I) a9t 0 DRt ()
= m(L)ea((E3 (DT () ncc)
= 7)o (DT (fin)hec)

=~

Fix hy € G and suppose that w € Home(Hom(hg - €, e, ), C).

T (1) o (DT (Fing) (W) = D Di(h o) (DT (f)thy) (w)

geG
— Z D7rk1 f)ing(Warn, g), Z m(any) = ()
geG geG
= X F s (ony (wang )
geG
= Z f waho g
geG
= (D] m(wany))
geG
= [(r(wa)).

Now we compute the another side

T2 o (Iga)ga = (037 (12! (L (()) () e,

for hy and w as before we get the following

e (! Ly (m()) () (w) =

The proof of the lemma is completed. [
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Lemma 9.8. If f: M — N is injective in A(T)-mod, then my(f) : me(M) — 74 (N)
is injective in A(o)-mod.

Proof. Remember that f = (f;)icq(r), is a 3n-tuple of linear transformations and by
hypothesis we have that dimrank f; = dim M;. The lemma follows from Remark 7.13
and that dimrank 7, (f)g.i = X,z dimrank fy.;. O

gEZLs3
Lemma 9.9. Let J be an arc of %,. For M := M(j) € A(T)-mod, let

!

0 M Iy,—2=1,

be a minimal injective presentation of M. Then

0—— o (M) 2L (1) L (1)

is a minimal injective presentation of w.(M(c)).

Proof. The lemma follows from Lemma 9.7 and Lemma 9.8 and from the fact that
simples of A(T)-mod are sent to simples of A(o)-mod, specifically m,(S;) = Sg.z-
Indeed, let X # 0 be a submodule of m,(ly), then there exist a simple submodule
Sgzy < X for some xg € Q(T)y. If the G-orbit of z¢ is {x¢,z{,z(}, we get that
Sy < Iy for y € G - zy. By hypothesis we know that im(f) n S, what implies that
im (74 (f)) N Sguzy- For me(g) the argument is similar, so the lemma is completed. [

We shall discuss about the Caldero-Chapoton algebras associated to different tri-
angulation. Let 77 and 75 be triangulations of 3J,. Denote by A; := Ay the
Caldero-Chapoton algebra corresponding for i = 1,2. Let D; the C-subalgebra of A,
generated by Ca(r,) (M (7, T;)) for any admissible arc j of 3, for i = 1,2,

Lemma 9.10. With the above notation Dy and Dy are isomorphic as C-algebras.

Proof. Let ¢ : Ay — Ay be the corresponding isomorphism of cluster algebras. This
isomorphism sends a cluster variable to the corresponding Laurent Polynomial in the
initial seed associated to T, i.e x; — Ca(ry) (M (i, T3)) for an arc 7in Ty. Suppose that
we can get Ty from T; by the flip sequence (sy,s;-1,...,51). From [25] we conclude
that CA(T1)(M(j7 Tl)) = CA(T2)(MS1M82 o ':usz(M(ja T2)))7 then

e(Cairy(M(5,T1))) = Caery) (M (5, Ti)).

That means that ¢ can be restricted to D; and we obtain the isomorphism desired.
The lemma is completed. O

Remark 9.11. Let IV be a string of %,,. Consider a lifting W of W on S, Iffisa
dimension vector of some sub- representation of N (W), then 7(y“em¥) = zCaw@ ™),
Indeed, we need to prove that

CQ(T)iJ'f CQ(T)i,z'f CQ(T)@?,'f . CQ(o)i'W(f)
( i1 1,2 0,3 ) =2

(9.1)
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for any i € [1,n], here Cq(r),, denote the (i, j)-th row of the matrix Cgr). For
i < n the calculation is straightforward and we will concentrate in the case when
© = n. Assume ¢ = n, we orient the arcs t,,1,t,.2, t, 3 in counter clockwise on »,,. This
orientation determines the (n,n) block of Cg(ry. In order to obtain (9.1) we need
that

(fn,2 - fn,l) - (fn,3 - fn,l) + (fn,3 - fn,Z) =0. (92)

The observation is that (9.2) is true in case f is the dimension vector of an indecom-
posable representation of A(T).

Lemma 9.12. Let o be a triangulation of ¥, and let A(o) be the algebra associated
too. Let W be a string on Q(o) and let W be a lifting of W in Q(T), where T is the
triangulation of ¥, such that G -T = o. Then for any dimension vector e of N(W)

we get N
Y, X(GrgN(W)) = x(Gre(N(W))).
Fir(f=e

Proof. First, we are going to introduce some notation. We write j := j(W¥) for the
arc determined by W, note that this arc can have self intersections. We will denote
M(j) := N(W). Suppose j connects v and v; with k£ < [I. So, we orient j from vy, to
v;. Let x,, be the first intersection point between j and the pendant arc p(o) of o.
Let z,, be the second intersection point between j and p(c). We divide the arc j in
three parts;

e The top part jio = [k, Zp, |-
e The center part ji1 = [2p,, Tp,]-
e The buttom part jo1 = [z,,,v1].

Let up; = {z;: x; = j10 N i with i € o} be the upper points of j. Let bp; = {y;: y; =
Jo1 N i with i € o} be the below points of j. For convention if j does not cross p(o),
then z,, = v, zp, = vy and bp; = up;, see Figure 9.2.

Let L € Grg(M(j)) be a sub-representation of M (j) with dimension vector e. We
are going to define an action of C* on Gre(M(j)). For t € C* we define t- L as follows:

(ty-C if Ly = () -C and dim M (j), = 2,

(t- L) = { L; in other wise.

Indeed, this deﬁne an action of C* on Gre(M(j)). By Lemma 3.4 we know that
X(Gre(M(5))*) = x(Gre(M(5))). In this case Gro(M (7)) is a finite set, then the
Euler characteristic is its cardinality. Denote by Q(j) the full sub-quiver of Q(o)
defined by j. We consider the lifting j of j on Z On E we can also define the
corresponding top, center and bottom part of j 7.
Note that if the arc j does not cross p(o), then 3 is completely contained in one
fundamental region of the action and 7 acts as a bijection between dimension vectors
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of sub-representations of M (}) and dimension vector of sub-representations of M (j).
In other words, there exist an unique fsuch that 7(f) = e. Therefore x(Grg(N(W))) =
Y(Gro(N(W)) = 1.

Let L € Gre(M(5))C" be a sub-representation of M(j). It is clear that L define
a walk in Q(j) and also an unique subset F'(L) of bp, Uup;. Indeed, the action we
have defined allows to identify every subspace L; with points of F'(L) = bp; uup, in
the following way. If L; is generated by (1,0)", then we take the corresponding upper
point of j. If L; is generated by (0,1)", then we take the corresponding below point
of j. In case L; is 2 dimensional, then we take both, the upper and below point of
j. Tt is clear that F(L) determines an unique vector f, of M(j) such that =(f,) = e.
This implies that ~

D, X(Gre(N())) = x(Gre(N(W))).
f: w(f)=e

~

For any vector f of some sub-representation of N(W) with 7(f) = e we can find a
subset Dy of bp; uup; corresponding to a sub-representation of N(W), namely we
obtain the image under m, of the representation given by f. We make this by cuting
the arc ; on ¥, along the boundary of the fundamental regions that it crosses and
gluing that parts on X, according to the orientation we fixed on 5 This subset
corresponds to a sub-representation Lg of N(W). By the definition of the action we
can conclude that L € Gre(M(5))C". This shows the another inequality. Hence the
lemma is completed. ]

¢ // whf f .
STV TN

Figure 9.2: An arc 5 on X, with respect to a triangulation o.

The next proposition follows from Lemma 9.9, Remark 9.11 and Lemma 9.12. The
reader can compare this result with the discussion of [50, Remark 7.9].

Proposition 9.13. Let o be a triangulation of ¥, and let A(o) be the algebra asso-
ciated to o. Assume T is the triangulation of X, such that G -T = o. Then for any
string W of A(o) the following equation is true

T(Car) (N(W))) = Caoy (N (W)).
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Proof. By expanding Cy (N (W)) and reording its monomials as in Lemma 9.12
we are able to apply Lemma 9.9 and Remark 9.11 to any monomial. Note that
from Lemma 9.9 we have that (gar)(N(W))) = ga@)(IN(W)). The proposition is
completed. O

9.2 The Caldero-Chapoton algebra is a generalized
cluster algebra

Before state and prove our main result we need some previous propositions.

Proposition 9.14. Let o be a triangulation of ¥, and let A(o) be the algebra associ-
ated to o. Assume T is the triangulation of ¥, such that G-T = o and j ¢ 0. Then
the Gg-orbit O(M (j)) is open in repy4(A(0)).

Proof. By [23, 1.7 Corollary 3| we need to prove that for any arc j of 3, we have
that Exta)(M(j), M(j)) = 0. This is clear by the Auslander-Reiten formula since
E(M(5)) = 0 = dim Hom(7~(M(5)), M(5))- =

If we denote by Z(j) the irreducible component containing M (j), then O(M(y)) is
dense in Z(j). Therefore M(j) is generic and all its homological data is generic in
Z(7). We can take generic versions of the results of the above section as in Section
8.2.

Repeating the arguments of Proposition 9.4 and applying what we know for the A,
case, for instance see [15, Remark 2.15|, we have

Proposition 9.15. Given a triangulation o’ of 3, and two arcs ji,jo € o' we have
EA(U)<Zj1> ij) = 0.

The next proposition shows that the E-rigid representations generate the corre-
sponding Caldero-Chapoton algebra.

Proposition 9.16. The set
{Cr(0)(2): Z € decrt™ (A), Ex)(Z) = 0}
generates the Caldero-Chapoton algebra Ay as C-algebra.

Proof. As in Proposition 8.22 we are going to prove that the Caldero-Chapoton func-
tions of E-rigid representations generate the remaining Caldero-Chapoton functions.
Let 3 be an arc of ¥, such that it does not belong to any triangulation invariant
under the action of Zz. By Proposition 9.4 from these arcs come all the non- E-rigid
representations of A(o), so what we need to do is to prove the result in this case. In
other words, we are going to prove that the Caldero-Chapoton function of (M (3))
can be expressed in terms of the Caldero-Chapoton functions of E-rigid representa-
tions. For ; we construct a quadrilateral in the following way; first, we choose an
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ending point of 5, say u;. Then we draw the triangle invariant under the Zs-action
incident to u; with sides given by jl, ] and ]4 Fmally, we complete the quadrilateral
with the other ending point of j such that j and j' are the respective diagonals. We
label the remaining sides with 7, and ]3 This construction is depicted in Figure 9.3.
From Proposition 8.1, see [14], we have that

Caery (M (7))Cacry(M(5)) = Cary(M (71))Cacry (M (Js)) + Cacry(M (j2))Cary (M ()

Note that j;, ;" and J4 are in the same orbit. By applying the algebras homomorphism
7 to the above equation, from Proposition 9.13, we obtain

Cor(o) (e (M (1)))Co) (ma (M (F))) =

“ . . o (03)
Ca(o) (M (M (5))Ca o) (T (M (73))) + Caro) (e (M (52)))Ca (o) (2 (M (7))
Since we are in an integral domain, we have the desired relation
Cato) (me(M (7)) = Cao) (ma(M (3))) + Cao (m (M (J2))).
The proposition is completed. [

U;

Uitn+1

Ui+2(n+1)
J

3

Figure 9.3: The quadrilateral with 5 as diagonal and with two adjacent sides of one
invariant triangle of X3,,.

From the above proposition we obtain our main result.

Theorem 9.17. For any triangulation o of ¥, we have that the Caldero-Chapoton
algebra Ay is isomorphic to the generalized cluster algebra A(B(0y)).
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Proof. Let T} and T5 be triangulations of f] Denote by A; := Az, the Caldero-
Chapoton algebra corresponding for ¢ = 1,2. Let D; the C-subalgebra of A; generated
by Caery(M (7,T;)) for any admissible arc j of 5, for i = 1,2. By Lemma 9.10 we
have that D, and D, are isomorphic. The previous Prop081t10n and Proposition 9.13
show that the Caldero-Chapoton algebra associated to o; = G- T; is 7(D;) for i = 1, 2.
We conclude that the Caldero-Chapoton algebras A; and A, are isomorphic. Now,
from [50] we know that the image of A(op) under 7 is a Chekhov-Shapiro generalized
cluster algebra with initial seed (B(0y),ds,). Indeed, from [50, Lemma 5.6] and [50,
Lemma 5.7] we know that the exchange polynomial are those of Chekhov-Shapiro.
The theorem is completed. O

9.3 Example

The example in this section illustrate our main result. It can also be considered a
complement to [17, Example 9.4.2|. Let oy be the special triangulation of 33 and let
o be the triangulation of Example 7.1, see Figure 9.4.

U1 Vo U1 Vo

(%) U3 V2 U3

Figure 9.4: On the left side we can see the special triangulation oy and on the right
side we have a triangulation o of ¥s.

It is clear that o and o are related by a flip at one arc. To ease the notation we set
A = A(0), see Example 7.1. From Theorem 3.13 we know that the indecomposable
A-modules are parametrized by the strings of A. We say that a string W is E-rigid if
its string module N (W) is E-rigid. There are 12 indecomposable E-rigid decorated
representations of A of which 9 are given by the E-rigid strings 14, 1o, €, a, €b, cs,
ceb, b~teb and cec™!; and the remaining three are the negative simple representations
of A. The non-E-rigid strings are 13, b, ¢, b1, ec™! and b~tec™!.

By definition C(S;") = y; for i = 1,2,3. In Figure 9.5 we write the string module
corresponding to every arc of 3. The Caldero-Chapoton functions associated to the
9 E-rigid strings of A are

2 2
Ca(N(et)) = ST T, Ca(s) = 8,

Y1Y3 Y1
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Vo Vo Vo Vo Vo
g g o Ar
Sy So N(ceb) N(e) N(a)
Vo Vo Vo Vo
o g o
N(cec™) N(eb) N(ce) N(b~teb)

Figure 9.5: The nine E-rigid representations of A with respect to the triangulation o
on 23.

+ i + +y2 n
Ca(N(ce)) = Ny T Y1 T Y1y2 yz7 CA(Sy) = hn y37
Y2Ys3 s
+ U+ e + Y+ et
Ca(N(ceb)) = HETI TR TS TIE, CA(N(a) = 2B
iRy Y2
2 2 9 ) )
2913 Yy T Yays T 4iye F + Y1y +
Cr(N(cee ™)) = BB TR TR TR T - o\(N(e)) = AT T 0
Y2Y3 U
2 2 2
+ +y; + 2 + 2 +
CA(N(b7'eb)) = Yi Ty T Yo : Y2Ys T Y5 + Y1Ys
Y1ys

The Caldero-Chapoton functions associated to the non-FE-rigid strings of A are

Tyt +yr +
Ca(Ss) = y1 + v2, CA(N(b) = LT 2T CA(N(c)) = BTN T8
Y1 Yo
2 2
+ Y1ye + Y1y + Y5 +

CA(N(b1e)) = LT Y1+ Uils = 45 + UoYs

Y1Ys

+yi+ + e

CA(N(ec™)) = Yiys T Y1+ Yl +Yays T

Y2Y3

+Yr Y + Y5+ Yays T Y3+ Yiys +
CA(N(b_lsc_l)) _ Y1Y3 yl Y1Y2 y2 Y2Ys y3 Y1Ys3 y2y3'
Y1Y293

Remark 9.18. According to Proposition 9.16 we have that the Caldero-Chapoton
functions of indecomposable E-rigid representations generate the remaining Caldero-
Chapoton functions. In this case we have the following relations

Ca(S3) = CA(Sy) + Ca(Sy),
Ca(N(b)) = Ca(S1) + 1,
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Ca(N(c)) = Cp(S2) + 1,
Ca(N(b7"e)) = Ca(N(eD)) + 1,
Ca(N(ec™)) = Ca(N(ee)) + 1,

CA(N(b7tec™)) = Co(N(ceb)) + Ca(N(a))

These relations correspond to the procedure of the proof of Proposition 9.16. With
the notation of [17, Example 9.4.2] we can define the following isomorphism of the
corresponding Caldero-Chapoton algebras ¢ : Axep) — An@y). We set y1 — a4,
Y2 = Chr(op)(2) = ®2% and y3 — 23. This morphism sends the Caldero-Chapoton
function of the arc representation associated to one arc of o to the Caldero-Chapoton
function with respect to A(op) of the same arc.
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