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Boy : Do not try to bend the spoon. That’s
impossible. Instead only try to realize the truth.

Neo: What truth?

Boy : There is no spoon.

Neo: There is no spoon?

Boy : Then you’ll see that it is not the spoon
that bends, it is only yourself.

The Matrix, 1999.
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Abstract

We realize a family of generalized cluster algebras as Caldero-Chapoton algebras
of quivers with relations. Each member of this family arises from an unpunctured
polygon with one orbifold point of order 3, and is realized as a Caldero-Chapoton
algebra of a quiver with relations naturally associated to any triangulation of the
alluded polygon, lets call this algebra Λ. The realization is done by defining for every
arc j on the polygon with orbifold point a representation Mpjq of the referred quiver
with relations, and by proving that for every triangulation σ and every arc j P σ, the
product of the Caldero-Chapoton functions of Mpjq and Mpj1q, where j1 is the arc
that replaces j when we flip j in σ, equals the corresponding exchange polynomial of
Chekhov-Shapiro in the generalized cluster algebra. Furthermore, we show that there
is a bijection between the set of generalized cluster variables and the isomorphism
classes of E-rigid indecomposable decorated representations of Λ.
The main results of this thesis appear in the paper [43], a joint work with my

advisor Dr. Daniel Labardini Fragoso.
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Capı́tulo 1
Introducción

En los últimos años la teoría de representaciones de álgebras ha recibido una profunda
influencia por parte de la teoría de las álgebras de conglomerado. Estas álgebras
fueron introducidas por Sergey Fomin y Andrei Zelevinsky alrededor del año 2002,
ver [29]. Ellos estaban interesados en presentar un modelo teórico para entender la
positividad total de ciertos grupos algebraicos.
Las álgebras de conglomerado son anillos conmutativos contenidos en cierto campo

de fracciones. Estas álgebras se definen a partir de algunas variables iniciales (lla-
madas variables de conglomerado iniciales) que se propagan mediante un proceso
combinatorio e inductivo conocido como mutación. La mutación se define a partir de
una matriz antisimetrizable.
Una variable de conglomerado x y su mutación x1 se comparan mediante un poli-

nomio de la forma p` ` p´ que es conocido como polinomio de intercambio. Este
binomio depende del resto de variables y de los signos de las entradas de una de las
columnas de la matriz antisimetrizable. La relación de intercambio se puede expresar
como

xx1 “ p` ` p´.

Fomin y Zelevinsky probaron dos resultados notables en la teoría de álgebras de
conglomerado. El primero fue el fenómeno de Laurent y el segundo fue la clasifi-
cación de aquellas álgebras que tienen únicamente un número finito de variables de
conglomerado. Este último se conoce como la clasificación de tipo finito.
El fenómeno de Laurent dice que cualquier variable de conglomerado puede ser

expresada como un polinomio de Laurent en las variables iniciales. La clasificación
de las álgebras de conglomerado de tipo finito da una biyección entre estas y las
álgebras de Lie semisimples de dimensión finita sobre C. En este punto los diagramas
de Dynkin son muy útiles para ir en ambas direcciones.
Las álgebras de conglomerado tienen una estructura orgánica que ha encontrado

terreno fértil en diversos campos de la física-matemática. Por ahora nos vamos a
restringir en la relación con la teoría de representaciones de álgebras de dimensión
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finita y las álgebras de conglomerado de tipo antisimrético evidenciada por Philippe
Caldero y Frederic Chapoton en el 2005, [14].
Nos concentraremos en esa aproximación a las álgebras de conglomerado porque ha

tenido extensas repercusiones, mencionaremos algunas más adelante.
Para las álgebras de conglomerado de tipo Dynkin ADE, Caldero y Chapoton

dieron una expresión explícita para las variables de conglomerado y una biyección
entre estas y las representaciones inescindibles del álgebra de caminos de un carcaj
del mismo tipo que estemos considerando.
Dado un carcaj Q de tipo ADE y una representación inescindible M de CxQy,

para obtener una variable de conglomerado xM , Caldero y Chapoton, definieron un
polinomio de Laurent CCxQypMq cuyos coeficientes están dados por las características
de Euler de la Grassmannianas de carcaj de subrepresentaciones de M . Este poli-
nomio de Laurent CCxQypMq es conocido como función de Caldero-Chapoton y ha sido
desarrollado en contextos más generales con el nombre de carácter de conglomerado.
Es innegable la importancia de las funciones de Caldero-Chapoton pues ha permi-

tido el desarrollo de la teoría de las álgebras de conglomerado y de la teoría de repre-
sentaciones de álgebras. Por ejemplo, mediante las funciones de Caldero-Chapoton
han sido estudiadas y probadas algunas conjeturas de las álgebras de conglomerado,
son de importancia para nosotros las técnicas introducidas por Harm Derksen, Jerzy
Weyman y Andrei Zelevinsky en [25] para álgebras de conglomerado de tipo anti-
simétrico. Por otro lado la teoría de álgebras de dimensión finita ha desarrollado
nuevos conceptos que atrapan las nociones combinatorias de las álgebras de conglo-
merado como las álgebras cluster-tilted y sus representaciones introducidas por Aslak
B. Buan, Robert J. Marsh e Idun Reiten.
Giovanni Cerulli Irelli, Daniel Labardini Fragoso y Jan Schröer, en [17] introdujeron

las álgebras de Caldero-Chapoton, uno de los ingredientes de este trabajo. A grandes
rasgos, para un álgebra Λ no necesariamente de dimensión finita, consideraron AΛ

el anillo generado por las funciones de Caldero-Chapoton de las representaciones
decoradas de Λ. En general AΛ no es conocida, pero cuando Λ es el álgebra Jacobiana
de un carcaj con potencial pQ,W q, entonces AΛ contiene el álgebra de conglomerado
asociada a Q y está contenida en el álgebra de conglomerado superior asociada a Q,
ver [17, Proposición 7.1].
Geiß-Leclerc-Schröer introdujeron en [34] el concepto de componentes irreducibles

fuertemente reducidas en la variedad de representaciones de un álgebra. Plamondon
las estudió para álgebras de dimensión finita en [51, 52]. En [17] estas son usadas
para obtener un modelo algebraico de las CC-variables o CC-conglomerados en las
álgebras de Caldero-Chapoton. Este enfoque permite hablar de algunos resultados y
conceptos en versiones genéricas (en abiertos densos de una variedad apropiada) y
permite introducir un sabor combinatorio del tipo de las álgebras de conglomerado.
En este trabajo demostramos que para un álgebra Λpσq asociada a cada triangu-

lación σ de un polígono con un punto orbifold de orden 3, el álgebra de Caldero-
Chapoton AΛpσq es un álgebra generalizada de conglomerado. En nuestro caso la
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aparición de las componentes fuertemente reducidas puede ser considerada de forma
tangencial.
Las álgebras generalizadas de conglomerado fueron introducidas por Chekhov y

Shapiro en [20]. Chekov-Shapiro prueban en [20] que las λ-longitudes de una superfi-
cie con puntos orbifold de orden arbitrario tiene estructura de álgebra generalizada de
conglomerado. Estas álgebras tienen un comportamiento similar al de las álgebras de
conglomerado, su combinatoria también es gobernada por una matriz antisimetriz-
able, sin embargo, las relaciones de intercambio no son necesariamente binomios.
Estas álgebras siguen satisfaciendo el fenómeno de Laurent y los trabajos de Tomoki
Nakanishi o Tomoki Nakanishi con Dylan Rupel muestran un considerable paralelismo
con las álgebras de conglomerado con coeficientes principales, ver [47, 48].
Hay otras generalizaciones de las álgebras de conglomerado, por ejemplo las álgebras

del fenómeno de Laurent introducidas por Thomas Lam y Pavlo Pylyavskyy en [46]
y las álgebras de conglomerado de órbitas introducidas por Charles Paquette y Ralf
Schiffler en [50].
Los orbifolds son espacios topológicos que generalizan a las variedades. Son objetos

muy simétricos pues están modelados por un espacio Euclidiano bajo la acción de un
grupo finito. Para nosotros cobran particular interés los orbifolds de dimensión dos o
2-orbifolds. Más aún, estamos interesados en la acción del grupo cíclico Z3 en el disco
unitario.
A continuación desarrollaremos más el contexto teórico de este trabajo.

1.1 Algunos resultados anteriores

Sea Q un carcaj, denotamos su álgebra de caminos completada por CxxQyy. Sea
Λ “ CxxQyy{I un álgebra básica, véase la Observación 3.1. En [17], definen la función
de Caldero-Chapoton CΛpMq de una representación decorada M de Λ y el álgebra
de Caldero-Chapoton AΛ, la última es definida como el anillo generado por todas las
funciones de Caldero-Chapoton de representaciones decoradas de Λ. Denotamos por
decreppΛq a la categoría de representaciones decoradas de Λ.

Teorema 1.1 (Caldero-Chapoton). Si Q es un carcaj de tipo Dynkin ADE, entonces
el álgebra de conglomerado ApQq es isomorfa al álgebra de Caldero-Chapoton ACxQy.
Más aún, existe una biyección

tM : inescindible en decreppCxQyqu oo
CCxQy // t variables de conglomerado ApQqu .

El Teorema 1.1 permitió obtener las variables de conglomerado a partir de un con-
texto teórico de las representaciones de un álgebra, véase [14, Theorem 3.4]. En el
Teorema 1.1 dada una representación inescindible M de CxQy, la biyección está dada
por calcular la función de Caldero-Chapoton CCxQy, esta función es un polinomio de
Laurent en tantas variables como el número de vértices de Q. Los coeficientes de ese
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polinomio de Laurent están dados por calcular características de Euler de Grassman-
nianas de carcaj. El cálculo de la característica de Euler puede ser muy complicado
en la práctica, sin embargo en este teorema no aparece un proceso inductivo para
calcular las variables de conglomerado. Proceso que sí aparece en su propia definicón.
Derksen, Weyman y Zelevinsky, en [24, 25], introducen el F -polinomio y g-vector de

una representación decorada con el objetivo de estudiar las álgebras de conglomerado
de tipo antisimétrico. Posteriormente Yan Palu introdujo el carácter de conglomerado,
ver [49], este ha sido uno de los ingredientes en el desarrollo de la categorificación de,
las muy mencionadas, álgebras de conglomerado. Este carácter de conglomerado tam-
bién aparece en los trabajos de Caldero y Bernhard Keller, ver [16]. Como resultado
de generalizaciones o nuevas interpretaciones de las funciones de Caldero-Chapoton,
el Teorema 1.1 ha sido extendido en trabajos como [16, 25, 49, 51].
Hemos visto que la relación entre álgebras de conglomerado y la teoría de repre-

sentaciones ha generado nuevas ideas como la categorificación de esas álgebras para
ampliar el entendimiento que tenemos de ellas, sin embargo esas categorías pueden
ser complicadas de entender y poco prácticas. Para manipular esas categorías han
sido de mucha utilidad modelos geométricos donde, por lo general, de una manera
imprecisa, objetos de una categoría corresponden a curvas sobre alguna superficie y
conglomerados corresponden con triangulaciones de la misma superficie. Este vínculo
entre la combinatoria de superficies marcadas y álgebras de conglomerado fue estu-
diada desde sus mismo origen por Fomin y Zelevinsky con modelos geométricos para
las álgebras de tipo ABCD, ver [31, Section 3.5]. Fomin, Shapiro y Dylan Thurston,
en [33], de manera muy general, construyeron álgebras de conglomerado a partir de
superficies marcadas.
Para Caldero-Chapoton-Schiffler fue de principal interés el caso de las álgebras de

tipo An. Consideraron un pn ` 3q-ágono P y definieron una categoría C en la que a
cada diagonal j de P le corresponde una representaciónMpjq de un carcaj de tipo An.
Ellos obtuvieron la siguiente relación combinatoria entre las representaciones Mpjq y
las traslaciones de Auslander-Reiten.

Teorema 1.2 (Caldero-Chapoton-Schiffler). Denotemos por r`pjq a la rotación ele-
mental de j contra el sentido de las manecillas del reloj. Si Mpjq no es proyectivo,
entonces τpMpjqq “Mpr`pjqq. Si Mpjq no es inyectivo, entonces τ´pMpjqq “ r´pjq,
donde r´pjq denota la rotación elemental de j en el sentido de las manecillas del reloj.

Este resultado ha sido generalizado al considerar un polígono con una pinchadura
por Ralf Schiffler en [54, Proposición 4.1 ], para superficies con puntos marcados sin
pinchaduras por Thomas Brüstle y Jie Zhang en [12, Corolario 3.6] y para superficies
con pinchaduras por Brüstle y Yu Qiu en [10, Lema 3.5].
Con el paso del tiempo la aparición de modelos geométricos ha crecido y se pueden

encontrar contextos más generales. Anna Felikson, Michael Shapiro y Pavel Tumarkin
han relacionados superficies con puntos orbifold de orden 2 con álgebras de con-
glomerado, [28]. Chekov y Shapiro generalizaron las relaciones de intercambio de
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las álgebras de conglomerado al considerar espacios de Teichmüller de superficies
con puntos orbifold de orden arbitrario, [20]. Jan Geuenich y Labardini-Fragoso
han desarrollado mutaciones de una cierta clase de especies definidas a partir de
superficies con puntos orbifold de orden 2, [38, 39]. Inclusive en el caso de superficies
no orientables se obtienen estructuras llamadas álgebras de cuasi-conglomerados, estas
fueron definidas por Grégoire Dupont y Frédéric Palesi en [26]. Jonathan Wilson ha
probado que estas estructuras entran en el marco de las álgebras del fenómeno de
Laurent, ver [57].
En esta tesis presentamos un modelo geométrico para estudiar el álgebra de Caldero-

Chapoton de un álgebra definida a partir de un carcaj con un lazo. Carcajes con
lazos han sido considerados en estos contextos de álgebras de conglomerado y teoría
de representaciones en trabajos como los de Christof Geiß, Bernard Leclerc y Jan
Schröer en [35] y por Sefi Ladkani en [45].

1.2 Nuestros resultados principales
Sea Σn el polígono regular con pn` 1q-lados y con un punto orbifold de orden tres en
su interior.
Vale la pena hacer un comentario acerca de la terminología usada previamente. En

el Capítulo 6 introduciremos los orbifolds, por ahora podemos pensar en esos objetos
como espacios topológicos junto con la acción de un grupo finito. La expresión un
punto orbifold de orden tres, para ser más precisos, debería ser: un punto orbifold tipo
cónico de orden tres (en este caso 3 es el orden del grupo). Sin embargo, siempre nos
referiremos al punto orbifold sin especificar su tipo cónico.
Dada una triangulación σ of Σn definimos un carcaj con potencial pQpσq, Spσqq y

denotamos el álgebra Jacobiana de este carcaj con potencial como Λpσq. El carcaj
Qpσq posee un lazo, este lazo está asociado al arco pendiente de σ. Este arco es un lazo
basado es un vértice de Σn y rodea al punto orbifold. El álgebra Λpσq es un álgebra
de cuerdas de dimensión finita para cada triangulación σ. Para cada triangulación σ
de Σn definimos una matriz anti-simetrizable Bpσq.
Del hecho que Λpσq es un álgebra de cuerdas podemos definir para cada arco j de

Σn una cuerda Wj y una representación decorada Mpjq de Λpσq como el módulo de
cuerdas correspondiente o una representación simple negativa.
En [24] Derksen, Weyman y Zelevinsky introdujeron una medida homológica entre

representaciones decoradas de un (QP) carcaj con potencial invariante bajo muta-
ciones conocido como el E-invariante. En [17] este E-invariante fue definido para
representaciones decoradas de álgebras posiblemente de dimensión infinita sin que se
haya definido una mutación de representaciones, pero que en caso de considerar álge-
bras Jacobianas coincida con la noción de [24]. Con esta notación diremos que una
representación M es E-rígida si su E-invariante es cero. En términos de la notación
de Adachi-Iyama-Reiten, véase [1], una representación E-rígida no es otra cosa que
una representación τ´-rígida, aquí τ´ es la traslación inversa de Auslander-Reiten.
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Nuestro resultado principal puede ser expuesto de la siguiente manera.

Teorema 1.3. Dada una triangulación σ de Σn, el álgebra de Caldero-Chapoton aso-
ciada a Λpσq es un álgebra generalizada de conglomerado de Chekhov-Shapiro definida
a partir de Bpσq. Más aún, existe una biyección entre las variables generalizadas de
conglomerado y las representaciones inescindibles decoradas E-rígidas de Λpσq, y, la
correspondencia está dada por calcular la función de Caldero-Chapoton de las men-
cionadas representaciones.

Resulta claro de las definiciones que Λpσq puede ser vista como un álgebra jacobiana
de órbitas, término introducido por Paquette y Schiffler en [50]. Se puede ver que
Σn es un buen orbifold, esto significa que puede ser cubierto, topológicamente, por
una superficie de Riemann, que en este caso es un disco. A partir de esa superficie
de Riemann podemos extraer un álgebra Jacobiana clásica ΛpT q, donde T es una
triangulación de la superficie cubriente. Paquuete y Schiffler probaron que estas dos
álgebras dan lugar a una cubierta de Galois ΛpT q Ñ Λpσq. Haciendo uso de cubiertas
de Galois pudimos caracterizar las representaciones E-rígidas de Λpσq.

Teorema 1.4. Sea σ una triangulación y j un arco de Σn.

• Mpjq es E-rígida para cada arco j y esas son todas la representaciones E-rigídas
de Λpσq.

• Para un arco j de Σn tal que Mpjq no es proyectiva (resp. no inyectiva),
entonces τpMpjqq “Mpr`pjqq (resp. τ´pMpjqq “Mpr´pjqq).

• Existe una biyección entre conglomerados generalizados de ABpσq y triangula-
ciones de Σn. Además, cada triangulación de Σn define una colección máxima
de representaciones E-ortogonales.

Estos resultados, sin lugar a dudas, muestran un sorprendente, pero agradable
comportamiento del álgebra de Caldero-Chapoton asociada a este orbifold. Como las
álgebras generalizadas de conglomerado poseen el fenómeno de Laurent, obtenemos
que el álgebra de Caldero-Chapoton asociada a Λpσq lo posee.

1.3 Organización de la tesis

La tesis está organizada de la siguiente manera.

Capítulo 3. Aquí fijamos la notación y terminología usada a lo largo del trabajo. Aunque
la mayoría de la notación es estándar cabe mencionar que nos hemos ceñido a
la notación de [17]. En la Sección 3.2 las cubiertas de Galois son introducidas.
En la Sección 3.3 definimos las álgebras de cuerdas y sus módulos.
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Capítulo 4. A lo largo de este capítulo introducimos uno de los principales objetos de estudio
de este trabajo, a saber, las álgebras de Caldero-Chapoton.

Capítulo 5. Aquí recordamos las definiciones y hechos básicos de las álgebra de conglomer-
ado y motivamos la definición de las álgebras de conglomerado generalizadas.

Capítulo 6. Aunque no sea estrictamente necesario para nuestros propósitos y para la como-
didad del lector en este capítulo repasamos la noción de orbifold y recordamos
algunos hechos en la clasificación de los 2-orbifolds cerrados y compactos.

Capítulo 7. A partir de este capítulo fijamos la superficie con puntos orbifold que nos
concierne, a saber, un polígono con un punto orbifold de orden tres. A par-
tir de cada triangulación de este polígono definimos un álgebra Jacobiana con
la que desarrollaremos nuestros resultados en el resto de este trabajo.

Capítulo 8. Con el objetivo de probar nuestros resultados principales usamos este capítulo
para motivar el origen del proyecto. Para hacer esto escogemos una triangu-
lación particular y obtenemos los resultados para esa triangulación específica.

Capítulo 9. En este capítulo son desarrollados y demostramos los resultados principales de
la tesis para cualquier triangulación inicial.



8 Introducción



Chapter 2
Introduction

In recent years the representation theory of algebras has received a profound influence
by the theory of cluster algebras. These algebras were introduced by Sergey Fomin
and Andrei Zelevinsky circa 2002, see [29]. They were interested in presenting a
theoretical model to understand the total positivity of some algebraic groups.
Cluster algebras are commutative rings contained in a field of rational functions.

These algebras are defined from some initial variables called initial cluster variables
and they are propagated by a combinatorial and inductive process known as mutation.
The mutation is defined from a skew-symmetrizable matrix.
A cluster variable x and its mutation x1 are compared by a polynomial of the form

p``p´, in fact, this polynomial is a binomial and it is known as exchange polynomial.
The exchange relation can be expressed as follows

xx1 “ p` ` p´.

Fomin and Zelevinsky proved two outstanding results in the theory of cluster al-
gebras. The first one was the Laurent phenomenon and the second one was the
classification of those algebras that have only a finite number of cluster variables.
The last one is known as the finite type classification.
The Laurent phenomenon says that any cluster variable can be written as a Laurent

polynomial in the initial cluster variables. The finite type classification gives a one to
one correspondence with the semisimple Lie algebras of finite dimension over C. At
this point the Dynkin diagrams are very useful to go in both directions.
Cluster algebras have an organic structure that has found fertile ground in various

fields of physics and mathematics. For now we are going to restrict our attention to
the relationship between the representation theory of finite dimensional algebras and
skew-symmetric cluster algebras exhibited by Philippe Caldero and Frederic Chapo-
ton in 2005, [14].
We will concentrate on that approach of cluster algebras because it has had exten-

sive repercussions, some of them will be commented later.
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For the cluster algebras of Dynkin type ADE, Caldero and Chapoton gave an
explicit expression for the cluster variables and they gave a bijection between these
cluster variable and the indecomposable representations of the path algebra of a quiver
of the same type that we are considering.
Given a quiver Q of type ADE and an indecomposable representation M of CxQy,

to obtain a cluster variable xM , they defined a Laurent polynomial CCxQypMq whose
coefficients are given by the Euler characteristic of quiver Grassmannians of sub-
representations of M . This Laurent polynomial CCxQypMq is known as Caldero-Chapo-
ton function and it has been developed in more general contexts as the cluster char-
acter.
The importance of the Caldero-Chapoton functions is undeniable because it has

allowed the development of cluster algebras theory and the representation theory of
algebras. For example, some difficult conjectures about skew-symmetric cluster al-
gebras have been studied and proved by means of Caldero-Chapoton functions, see
[25]. For us, the techniques introduced by Harm Derksen, Jerzy Weyman and Andrei
Zelevinsky in [24, 25] for cluster algebras of skew-symmetric type are important. On
the other hand, the theory of finite dimension algebras has developed new concepts
that capture the combinatorial notions of cluster algebras such as cluster-tilted alge-
bras and their representations introduced by Aslak B. Buan, Robert J. Marsh and
Idun Reiten.
Giovanni Cerulli Irelli, Daniel Labardini Fragoso and Jan Schröer, in [17], intro-

duced the Caldero-Chapoton algebras, one of the ingredients of this work. Roughly
speaking, for an algebra Λ, not necessarily of finite dimension, they considered AΛ the
ring generated by all the Caldero-Chapoton functions of the decorated representations
of Λ. In general, AΛ is not known, when Λ is the Jacobian algebra of a quiver with
potential pQ,W q, then AΛ contains the cluster algebra associated with Q and it is
contained in the upper cluster algebra associated with Q, see [17, Proposition 7.1].
Geiß-Leclerc-Schröer introduced, in [34], the concept of strongly reduced irreducible

component in the variety of representations of an algebra. Plamondon studied them
for finite dimensional algebras in [51, 52]. In [17], these are used to obtain an algebraic
model of the CC-variables or CC-clusters in the Caldero-Chapoton algebras. This
approach allows to talk about generic versions of some results and concepts, that
means we obtain results in dense opens of an suitable variety and it allows them to
introduce a combinatorial flavor as the cluster algebras.
In this work we show that for an algebra Λpσq associated to each triangulation σ

of a polygon with an orbifold point of order 3, the Caldero-Chapoton algebra AΛpσq

is a generalized cluster algebra. In our case, the appearance of strongly reduced
components can be considered tangentially.
Generalized cluster algebras were introduced by Chekhov and Shapiro in [20]. They

proved that the λ-lengths of a surface with orbifold points of arbitrary order satisfy
new cluster relations. These algebras have a similar behavior to that of cluster al-
gebras, its combinatorics is also governed by a skew-symmetrizable matrix, however,
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the exchange relations are not necessarily given by binomials. These algebras sat-
isfy the Laurent phenomenon and the papers of Tomoki Nakanishi or Nakanishi with
Dylan Rupel show a surprising parallelism with the cluster algebras with principal
coefficients, see [47, 48].
There are several generalizations of cluster algebras, for instance we have the Lau-

rent phenomenon algebras (LP algebras for short) introduced by Thomas Lam and
Pavlo Pylyavskyy in [46] and the the orbit cluster algebras introduced by Charles
Paquette and Ralf Schiffler in [50].
The orbifolds are topological spaces generalizing manifolds. They are symmetric

objects because they are modeled by an Euclidean space under the action of a finite
group. For us, the orbifolds of dimension two or 2-orbifolds are particularly relevant.
Moreover, we are interested in the action of the cyclic group Z3 on the unit disk.
Then we will develop more the theoretical context of this work.

2.1 Some previous results
Let Q be a quiver, we denote its completed path algebra by CxxQyy. Let Λ “ CxxQyy{I
be a basic algebra, see Remark 3.1. In [17], it was defined the Caldero-Chapoton
function CΛpMq of a decorated representation M of Λ and the Caldero-Chapoton
algebra AΛ as the ring generated by all Caldero-Chapoton functions of decorated
representations of Λ. The category of decorated representations of Λ is denoted by
decreppΛq.

Theorem 2.1 (Caldero-Chapoton). If Q is a quiver of Dynkin type ADE, then the
cluster algebra ApQq is isomorphic to the Caldero-Chapoton algebra ACxQy. Moreover,
there is a bijection

tM : indecomposable in decreppCxQyqu oo
CCxQy // t cluster variables of ApQqu .

Theorem 2.1 allowed to obtain the cluster variables from a theoretical context of
the representations of an algebra, see [14, Theorem 3.4]. In Theorem 2.1, given
an indecomposable representation M of CxQy, the bijection is given by taking the
Caldero-Chapoton function CCxQypMq, this function is a Laurent polynomial in as
many variables as the number of vertices of Q.
The coefficients of that Laurent polynomial are given by calculating the Euler

characteristic of quiver Grassmannians. The calculation of Euler characteristic can
be subtle and complicated in practice, however in this theorem the inductive process
to calculate cluster variables does not appear.
Derksen, Weyman and Zelevinsky, in [24, 25], introduce the F -polynomial and g-

vector of a decorated representation with the aim of studying the cluster algebras of
skew-symmetric type. Subsequently, Yan Palu introduced the cluster character, see
[49], this has been one of the main tools for the development of a new approach to
understand the cluster algebras, namely the categorification of, the much-mentioned,



12 Introduction

cluster algebras. For instance, this cluster character also appears in the work of
Caldero and Bernhard Keller, see [16]. As a result of generalizations or new interpre-
tations of the Caldero-Chapoton functions, Theorem 2.1 has been extended in works
like [16, 25, 49, 51].
We have seen that the relationship between cluster algebras and representation the-

ory has generated new ideas such as the categorification of these algebras to broaden
our understanding of them, however these categories may be difficult to understand
and unwieldy. To manipulate these categories, geometric models have been useful,
in an imprecise way, special objects in the category correspond to curves on some
surface and clusters correspond with triangulations on the surface. This link between
the combinatorics of marked surfaces and cluster algebras was studied from its very
origin by Fomin and Zelevinsky with geometric models for the cluster algebras of
type ABCD, see [31, Section 3.5]. Fomin, Shapiro and Dylan Thurston in [33], in a
general setting, constructed cluster algebras from marked surfaces.
For Caldero-Chapoton-Schiffler the case of type An was of main interest. They con-

sidered a pn`3q- gon P and defined a category C in which each diagonal j of P corre-
sponds to a representation Mpjq of a quiver of type An. They obtained the following
combinatorial interplay between the representations Mpjq and the Auslander-Reiten
translations.

Teorema 2.1 (Caldero-Chapoton-Schiffler). Denote by r`pjq the elementary rota-
tion of j in counter clockwise orientation. If Mpjq is not projective, then τpMpjqq –
Mpr`pjqq. If Mpjq is not injective, then τ´pMpjqq –Mpr´pjqq, where r´pjq denotes
the elementary rotation of j in clockwise orientation.

This result has been generalized by considering a polygon with a puncture by Ralf
Schiffler in [54, Proposition 4.1]; for surfaces with marked points without punctures
by Thomas Brüstle and Jie Zhang in [12, Corollary 3.6] and in the general case of
punctured surfaces by Brüstle and Yu Qiu in [10, Lema 3.5].
With the passage of time the appearance of geometric models has grown up and it

may be found in more general contexts, we are going to mention some of them. Anna
Felikson, Michael Shapiro and Pavel Tumarkin have related surfaces with orbifold
points of order 2 with cluster algebras, [28]. Chekov and Shapiro generalized the
exchange relations of cluster algebras by considering the Teichmüller space of surface
with orbifold points of arbitrary order, [20]. Jan Geuenich and Labardini-Fragoso
have developed mutations of a certain class of species defined from surfaces with
orbifold points of order 2, [38, 39]. Even in the case of non-orientable surfaces, it is
possible to obtain some structures called quasi-cluster algebras, these were defined by
Grégoire Dupont and Frédéric Palesi in [26]. Jonathan Wilson has proven that these
algebras are LP algebras, see [57].
In this thesis we present a geometric model to study the Caldero-Chapoton algebra

associated to an algebra defined from a quiver with a loop. Quivers with loops have
been considered in cluster subjects in some other works, for instance we have; [35] by
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Christof Geiß, Bernard Leclerc and Jan Schröer, and [45] by Sefi Ladkani.

2.2 Our main results
Let Σn be the regular polygon with pn` 1q-sides and with an orbifold point of order
three in its interior.
It is worth commenting on the terminology used previously. In Chapter 6 we will

introduce orbifolds, for now we may think on those objects as manifolds together with
the action of a finite group. The expression an orbifold point of order three, to be
more precise, should be: an orbifold point of conic type of order three (in this case 3
is the order of the alluded group). However, we will always refer to the orbifold point
without specifying its conical nature.
Given a triangulation σ of Σn we define a quiver with potential pQpσq, Spσqq and we

denote the Jacobian algebra of this quiver with potential by Λpσq. The quiver Qpσq
has a loop, this loop is associated with the pendant arc1 of σ. This arc is a loop based
on a vertex of Σn and surrounds the orbifold point. It turns out that the algebra
Λpσq is a finite dimensional string algebra for any triangulation σ, actually Λpσq is a
gentle algebra. For any triangulation σ of Σn we define a skew-symmetrizable matrix
Bpσq.
From the fact that Λpσq is a string algebra, we can define for each arc j of Σn a

string Wj and a decorated representation Mpjq of Λpσq as the corresponding string
module or the corresponding simple negative representation.
In [24], Derksen, Weyman and Zelevinsky introduced an homological measure be-

tween decorated representations of a quiver with potential which is invariant under
mutations known as the E-invariant.
In [17], this E-invariant was defined for decorated representations of a possibly

infinite-dimensional algebra, even without a definition of mutation of representations.
This notion coincides with the notion defined in [24] when we consider a Jacobian
algebra. With this terminology in mind, we say that a representationM is E-rigid if its
E-invariant vanishes. According to Adachi-Iyama-Reiten, an E-rigid representation
is a τ´-rigid one, see [1], τ´ is the Auslander-Reiten inverse. Our main result can be
stated as follows.

Theorem 2.2. Given a triangulation σ of Σn, the Caldero-Chapoton algebra Λpσq
associated to σ is a generalized cluster algebra of Chekhov-Shapiro defined from Bpσq.
Moreover, there exist a bijection between the generalized cluster variables and the E-
rigid indecomposable decorated representations of Λpσq. The correspondence is given
by taking the Caldero-Chapoton function of all the aforementioned representations

It is clear from the definitions that Λpσq can be seen as a Jacobian orbit algebra,
this concept was introduced by Paquette and Schiffler in [50]. In turns out that Σn

1There are several works where this arc is called pending arc, however in this work we follow the
suggestion of pendant instead pending done by Sergey Fomin.
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is a good orbifold, which means it can be covered by a Riemann surface, which, in
this case, it is a disk. From that Riemann surface we can extract a classic Jacobian
algebra ΛpT q, here T is a triangulation of the covering. Paquette and Schiffler proved
that these two algebras give rise to a Galois covering ΛpT q Ñ Λpσq. By using Galois
coverings we were able to characterize the E-rigid representations of Λpσq.

Theorem 2.3. Let σ be a triangulation and let j be an arc of Σn.

• Mpjq is E-rigid for any arc j and they are all the E-rigid representations.

• Given an arc j of Σn such that Mpjq is not projective (resp. not injective), then
τpMpjqq –Mpr`pjqq (resp. τ´pMpjqq –Mpr´pjqq).

• There exist a bijection between generalized clusters ABpσq and triangulations of
Σn. Besides, any triangulation of Σn define a maximal collection of E-ortogonal
representations.

These results show a surprising, but nice behavior of the Caldero-Chapoton algebra
associated to this orbifold. Since the generalized cluster algebras have the Laurent
phenomenon, we obtain that the Caldero-Chapoton algebra associated to Λpσq has
it.

2.3 Organization of the thesis

The thesis is organized as follows.

Chapter 3. Here we set the notation and terminology used throughout the work. Although
most of the notation is standard it is worth mentioning that we have followed
the notation of [17]. In Section 3.2, Galois coverings are introduced. In Section
3.3 we define string algebras and their modules.

Chapter 4. Throughout this chapter we introduce one of the main objects of study of this
work, namely the Caldero-Chapoton algebras.

Chapter 5. We recall basic definitions and facts about cluster algebras and motivate the
definition of generalized cluster algebras.

Capítulo 6. Even when it is not strictly necessary we introduce the notion of orbifold and
review some facts about the classification of closed and compact 2-orbifolds.

Capítulo 7. From this chapter we fix the surface with orbifold points that concern us, a
polygon with an orbifold point of order three. From each triangulation of this
polygon we define a Jacobian algebra which we will develop our results in the
rest of this work with.
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Capítulo 8. In order to prove our main results we use this chapter to motivate the origin of
this project. To do this we choose a specific triangulation and we get the results
for that special triangulation.

Capítulo 9. In this chapter we develop and prove the main results of this thesis for any
initial triangulation.
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Chapter 3
Algebras, modules and Galois covering

In this chapter we fix notation and we recall some basic definitions and facts about
algebras and quiver representations that we will use throughout the work. The reader
can find more details in [17].

3.1 Quivers and path algebras

A quiver Q “ pQ0, Q1, t, hq consists of a finite set of vertices Q0, a finite set of
arrows Q1 and two maps t, h : Q1 Ñ Q0 (tail and head). For each a P Q1 we
write a : tpaq Ñ hpaq. If Q0 “ t1, . . . , nu, we define the skew-symmetric matrix
CQ “ pci,jq P MatnˆnpZq from Q as follows

ci,j “ |ta P Q1 : hpaq “ i, tpaq “ ju| ´ |ta P Q1 : hpaq “ j, tpaq “ iu| . (3.1)

We say that a sequence of arrows α “ alal´1 ¨ ¨ ¨ a2a1, is a path of Q if tpak`1q “

hpakq, for k “ 1, . . . l´ 1, in this case, we define the length of α as l. We say that α is
a cycle if hpalq “ tpa1q. In this work we deal with quivers with loops, that is, quivers
where there is an arrow a P Q1 such that hpaq “ tpaq.
For m P N, let Cm be the set of paths of length m and let CCm be the vector space

with basis Cm. The path algebra of a quiver Q is denoted by CxQy and it is defined
as C-vector space as

CxQy “
à

mě0

CCm,

where the product is given by the concatenation of paths. The completed path algebra
of a quiver Q is defined as vector space as

CxxQyy “
ź

mě0

CCm,
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where the elements are written as infinite sums
ř

mě0 xm with xm P CCm and the
product in CxxQyy is defined as

p
ÿ

lě0

blqp
ÿ

mě0

amq “
ÿ

kě0

ÿ

l`m“k

blam.

Let M “
ś

mě1 CCm be the two-sided ideal of CxxQyy generated by arrows of Q.
Then CxxQyy can be viewed as a topological C-algebra with the powers of M as a basic
system of open neighborhoods of 0. This topology is known as M-adic topology. Let
I be a subset of CxxQyy, we can calculate the closure of I as I “

Ş

lě0 pI `Mlq.
A two-sided ideal I of CxxQyy is semi-admissible if I Ď M2 and it is admissible

if some power of M is a subset of I. Following [17] we call an algebra Λ basic if
Λ “ CxxQyy{I for some quiver Q and some semi-admissible ideal I. A comment
deserve to be done about basic algebras, see Remark 3.1. We follow that convention
just for convenience.

Remark 3.1. The definition of a basic algebra given in [17] is not the usual one,
we kindly ask to the reader to be cautious. Let us forget about the completed path
algebra for a while. Let A be a C-algebra. Let te1, e2, . . . , enu be a complete family of
primitive orthogonal idempotents of A. The algebra A is basic if Aei – Aej, implies
i “ j, see [6, Definition 6.1, I]. It turns out that any finite dimensional basic algebra
A is isomorphic to the quotient of a path algebra CxQy{I by some admissible ideal
I, see [6, Theorem 3.7, II]. This is the main motivation for the notation of [17].

Remark 3.2. Now, in the infinite dimensional case, there are basic algebras that are
not of the form CxxQyy{I for some semi-admissible ideal. For instance, consider the
polynomial ring Crxs. It is basic according to the previous standard definition (it has
just one non-zero idempotent) but it can not be written as a quotient of a completed
path algebra CxxQyy{I by a semi-admissible ideal I. Indeed, firstly Crxs is not local
because it has a lot of maximal ideals. Secondly, any algebra of the form CxxQyy{I for
some semi-admissible ideal I with |Q0| “ 1, is local. Since there is only one vertex
we have that CxxQyy{M – C and the arrow ideal M is unique with this property (see
the discussion below [24, Example 2.3]), i.e, CxxQyy is local, therefore CxxQyy{I is also
local.

Remark 3.3. If A is a C-algebra, then there exist a basic algebra Ab such that A -mod
is equivalent to Ab -mod, see [7, Corollary 2.6], i.e A and Ab are Morita equivalent.
From [2, Proposition 21.10] we know that if R and S are two Morita equivalent rings,
then ZpRq – ZpSq. In other words, two rings with equivalent module categories have
isomorphic centers. So, for commutative algebras finding their basic and commutative
versions is not as helpful as for non-commutative algebras.

A finite-dimensional representation of Q over C is a pair ppMiqiPQ0 , pMaqaPQ1q where
Mi is a finite-dimensional C- vector space for each i P Q0 and Ma : Mtpaq ÑMhpaq is a
C-linear map. Here the word representation means finite-dimensional representation.
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The dimension vector of a representation M of Q is given by

dimpMq “ pdimpM1q, . . . , dimpMnqq.

We define dimpMq “
řn
i“1 dimpMiq as the dimension of M . We say M is a nilpotent

representation if there is an n ą 0 such that for every path anan´1a . . . a1 of length n
in Q we have ManMan´1 . . .Ma1 “ 0. A subrepresentation of M is an n-tuple of C-
vector spaces N “ pNiqiPQ0 such that Ni ďMi for each i P Q0 and MapNtpaqq Ď Nhpaq

for every a P Q0.
We denote by nilCpQq the category of nilpotent representations of Q, and by CxxQyy-

mod the category of finite- dimensional left CxxQyy-modules. It is known that the
category of representations of Q and the category of CxQy-modules are equivalent.
In [25, Section 10], it was observed that nilCpQq and CxxQyy-mod are equivalent.
Given a basic algebra Λ “ CxxQyy{I we define a representation of Λ as a nilpotent

representation of Q which is annihilated by I. We consider the category modpΛq of
finite-dimensional left modules as the category reppΛq of representations of Λ.
Let Λ “ CxxQyy{I be a basic algebra. We say M “ pM,V q is a decorated rep-

resentation of Λ if M is a representation of Λ and V “ pV1, . . . , Vnq is an n-tuple
of finite- dimensional C-vector spaces. We can think of V as a representation of a
quiver with n-vertices and no arrows. That is a representation of the semisimple
ring CQ0 . Let decreppΛq be the category of decorated representations of Λ. The
objects of decreppΛq are the decorated representations of Λ and its morphisms are
given as follows. Let pM,V q and pN,W q be two decorated representations of Λ.
We define the space of morhisms in decreppΛq by HomdecreppΛqppM,V q, pN,W qq “
HomreppΛqpM,Nq ˆ HomreppCQ0 qpV,W q.
Let M “ pM,V q be a decorated representation of Λ. If V “ 0, we write M

instead M. For i P t1, . . . , nu we define the negative simple representation of Λ as
S´i “ p0, Siq where pSiqj is C if j “ i and pSiqj “ 0 in other wise.
For a representationM “ ppMiqiPQ0 , pMaqaPQ1q of Λ and a vector e P Nn let GrepMq

be the quiver Grassmannian of subrepresentations N ofM such that dimpNq “ e. We
denote the Euler characteristic of GrepMq by χpGrepMqq. About Euler characteristic,
we are going to need the following result, see [9],

Lemma 3.4 (Biaĺynicki-Birula). Let T be an algebraic torus acting on an algebraic
variety X. If we denote by XT the set of fixed points of the action, then χpXT q “

χpXq.

The following definition plays a crucial role in some computations that will be
involved later. It was introduced in [17, Section 2.4].

Definition 3.1. Given a basic algebra Λ “ CxxQyy{I and p ě 2 we define the p-
truncation of Λ by Λp “ CxxQyy{pI `Mpq.

We are going to need some basic definitions about quivers with potential, for all
details the reader can see [24]. Let Q be a quiver, we say that S P CxxQyy is a
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potential for Q if S is a, possibly infinite, C-linear combination of cycles in Q . Given
two potentials S andW we say that they are cyclically equivalent and write S „cyc W ,
if S ´W is in the closure of the sub-vector space of CxxQyy generated by all elements
of the form a1a2 ¨ ¨ ¨ an´1an ´ a2 ¨ ¨ ¨ an´1ana1, with a1a2 ¨ ¨ ¨ an´1an a cycle on Q.

Definition 3.2. We say pQ,Sq is a quiver with potential (QP) if S is a potential
for Q and if any two different cycles appearing with non-zero coefficient in S are not
cyclically equivalent.

Given an arrow a P Q1 and a cycle anan´1 ¨ ¨ ¨ a1 in Q, define the cyclic derivative
of anan´1 ¨ ¨ ¨ a1 with respect to a as follows:

Bapanan´1 ¨ ¨ ¨ a1q “

n
ÿ

k“1

δa,akak´1ak´2 ¨ ¨ ¨ a1anan´1 ¨ ¨ ¨ ak`2ak`1,

we extend this definition by C-linearity and continuity to all potentials for Q.

Definition 3.3. Let pQ,Sq be a quiver with potential. We define the Jacobian ideal
J pQ,Sq as the closure of the ideal on CxxQyy generated by all cyclic derivatives BapSq
with a P Q1. The quotient CxxQyy{JpQ,Sq is called the Jacobian algebra of pQ,Sq
and is denoted as PpQ,Sq.

3.1.1 Varieties of representations

Let Λ “ CxxQyy{I and d “ pd1, . . . , dnq P Nn be a basic algebra and a vector of
non-negative integers. The representations M of Q with dimpMq “ d can be seen as
points of the affine space

repdpQq “
ź

aPQ1

HomCpCdtpaq ,Cdhpaqq.

Now, let repdpΛq be the Zariski closed subset of repdpQq given by the representations
N of Λ with dimpNq “ d.
In repdpΛq we have the action of Gd “

śn
i“1GLpCdiq by conjugation. If g “

pg1, . . . , gnq P Gd and M “ ppMiqiPQ0 , pMaqaPQ1q P repdpΛq, then

g ¨M “ ppMiqiPQ0 , pghpaqMag
´1
tpaqqaPQ1q.

From definitions follows that the isomorphism classes of representations of Λ with
dimension vector d are in bijection with the Gd-orbits in repdpΛq. IfM P repdpΛq, its
Gd-orbit is denoted by OpMq. For pd,vq P NnˆNn let decrepd,vpΛq be the decorated
representations variety of Λ. If v “ pv1, . . . , vnq, then

decrepd,vpΛq “ repdpΛq ˆ tpCv1 , . . . ,Cvnqu.

We have an action of Gd on decrepd,vpΛq given by g ¨M “ pg ¨ M,V q where
M “ pM,V q P decrepd,vpΛq and g P Gd.
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3.2 Galois coverings
In this section we are going to make a reminder about Galois G-coverings or just
Galois coverings. For a nice review of this subject, the reader can see the introductions
of [4, 8]. For our convenience we are going to present some results from [8].
In this section G will denote a finite group (in the general theory this assumption is

not required). A category A is C-linear or a C-category whose sets of morphisms are
C-modules and the composition of morphisms is C-linear. Given two objects X and Y
of a C-linear category A, we denote the space of morphisms from X to Y by ApX, Y q
or HomApX, Y q. We assume that we have a morphism ρ : G Ñ AutpAq from G to
the group of automorphisms of A, not the group of auto-equivalences. That means
we have an action of G on A. We will abuse of notation and we will write g instead
ρpgq : A Ñ A for every g P G. The action of G on A is called free provided g ¨X is
not isomorphic to X for every non-trivial element g P G and for any indecomposable
object X of A. The next definitions are due to Hideto Asashiba, see [4, Definition
1.1, Definition 1.7].

Definition 3.4. Let A and B be C-categories with G acting on A. A C-linear functor
F : AÑ B is called G-stable if there exist functorial isomorphisms δg : Fg Ñ F such
that δh,Xδg,h¨X “ δgh,X for any g, h P G and any object X in A, see the diagram
below. In this case δ “ pδgqgPG is called a G-stabilizer. If δg “ idF for every g P G,
we say that F is G-invariant.

Fgh

δgh ""

δg // Fh
δh
��
F

Definition 3.5. LetA,B be C-categories with a groupG acting onA. Let F : AÑ B
be a G-stable functor with stabilizer δ.

(a) We say that F is a G-precovering if the following maps are isomorphisms for
any X, Y objects in A:

FX,Y :
à

gPG

ApX, g ¨ Y q Ñ BpFpXq,FpY qq; pugqgPG ÞÑ
ÿ

gPG

δg,YFpugq,

FX,Y :
à

gPG

Apg ¨X, Y q Ñ BpFpXq,FpY qq; pvgqgPG ÞÑ
ÿ

gPG

Fpvgqδ´1
g,X .

(b) A G-precovering F is called a Galois G-covering if F has the following three
conditions:

(i) The functor F is almost dense. It means that any indecomposable object
Y of B is isomorphic to FpXq for some object X in A.

(ii) If X is indecomposable in A, then FpXq is indecomposable in B.
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(iii) For any indecomposable objects X, Y in A such that FpXq – F pY q, there
exist g P G such that g ¨X – Y .

Recall that a functor F : A Ñ B is dense if for any object B P B there exist an
object A P A such that FpAq – B.

Remark 3.5. 1. In [4, Proposition 1.6], it is proved that FX,Y is an isomorphism
if and only if FX,Y is an isomorphism. Note that a G-precovering is a faithful
functor, see [8, Lemma 2.6].

2. In Krull-Schmidt categories a functor is almost dense if and only if it is dense.

The following lemma allows us to find examples of a Galois G-covering from a G-
precovering between module categories, see [8, Lemma 2.9]

Lemma 3.6. Let A,B be Krull-Schmidt C-categories with a group G acting freely on
A and let F : A Ñ B be a G-precovering. Assume X is an object in A such that
EndApXq is local and has nilpotent radical. Then EndBpFpXqq is local with nilpotent
radical and if Y is an object in A such that FpXq – F pY q, then there exist g P G
such that g ¨X – Y .

The next theorem shows an interesting application of Galois covering in Auslander-
Reiten theory, see [8, Theorem 3.7].

Theorem 3.7 (Bautista-Liu, 2014). Let A,B be Krull-Schmidt C-categories with a
group G acting freely on A and let F : AÑ B be a Galois G-covering. Then

1. A short exact sequence η in A is almost split if and only if Fpηq is almost split.

2. An object X in A is the starting or ending term of a almost split sequence if
and only if FpXq is the starting or ending term of a almost split sequence,
respectively.

Given a C-algebra Λ we consider it as a C-category in the usual way, in other words,
the set of objects of Λ is a complete family of orthogonal and primitive idempotents
and the set of morphisms is given by Λpei, ejq “ ejΛei. In this context, the category
of left Λ-modules Λ -mod is equivalent to the category of functors from Λ to C -mod.

Remark 3.8. The examples at the end of this section show that Galois coverings
between C-algebras viewed as C-categories may not be morphisms of unitary rings.
That is one reason why we need to introduce this categorical approach to algebras. In-
stead of defining a new type of morphism between unitary rings, we use the functorial
language.

An action of a group G on Λ induces an action of G on Λ -mod in the following way.
Given an Λ-module M : Λ Ñ C -mod we define g ¨M :“ Mg´1, remember that g is
thought as an automorphism of Λ; for a morphism u : M Ñ N of Λ -mod, we define
g ¨ upxq “ upg´1xq for x an object of Λ. So, if we have a G-precovering π : Λ Ñ A,
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Bongarzt and Gabriel defined the push-down functor π˚ : Λ -mod Ñ A -mod, see [11,
Section 3.2]. In Remark 7.13 we define the push-down fuctor in our particular case.
We have a nice property for π˚, see [8, Lemma 6.3].

Lemma 3.9. Let Λ and A be finite dimensional C-algebras with a group G acting on
Λ. Assume the action of G is free. If π : Λ Ñ A is a Galois G-precovering, then the
push-down functor π˚ admits a G-stabilizer δ.

With the following lemma we can construct a G-precovering from a Galois G-
covering, see [8, Theorem 6.5].

Lemma 3.10. Let Λ and A be finite dimensional C-algebras with a group G acting
on Λ. Assume the action of G is free. If π : Λ Ñ A is a Galois G-covering, then

π˚ : Λ -mod Ñ A -mod

is a G-precovering.

Example 3.1. Let A be the path algebra of Q and A1 the path algebra of Q1 where

Q : 1
α1 //

OO

δ

2OO
β

α2

oo

4
γ1 // 3
γ2

oo

and Q1 : xOO
b

aee

y dee

.

We consider Z2 acting on A by the permutation

σ “

ˆ

1 2 3 4
2 1 4 3

˙

.

Then the functor f : AÑ A1 induced by e1, e2 ÞÑ ex; e3, e4 ÞÑ ey; α1, α2 ÞÑ a; δ, β ÞÑ b
and γ1, γ2 ÞÑ d is a Galois covering. Indeed, the following maps induce ismomorphisms
of C-vector spaces.

f e1,e1 : Ape1, e1q‘Ape2, e1q Ñ A1pex, exq; pµ1pα2α1q
m, µ2pα1α2q

nα1q ÞÑ µ1a
2m
`µ2a

2n`1,

f e3,e1 : Ape3, e1q ‘ Ape4, e1q Ñ A1pey, exq;

pλ1pα2α1q
m1α2βpγ1γ2qm2 ` λ2pα1α2q

m3δpγ2γ1q
m4γ2,

λ3pα2α1q
n1δpγ2γ1q

n2 ` λ4pα2α1q
n3α2βpγ1γ2q

n4γ1q

ÞÑ λ1a
2m1`1bd2m2 ` λ2a

2m3bd2n4`1
` λ3a

2n1bd2n2 ` λ4a
2n3`1bd2n4`1,

where µ1, µ2, λi P C andm,n,mi, ni P Ně0 for i “ 1, 2, 3, 4. This proves, thanks to the
symmetry, that f is a Galois covering. In order to explain Remark 3.8 observe that if
f were a morphism of rings, then fpe1`e2`e3`e4q “ fpe1q`fpe2q`fpe3q`fpe4q “

2ex ` 2ey “ 2 ¨ pex ` eyq, this means that f would not be unitary.
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Example 3.2 (Non-example). Let A be the path algebra generated by 1
α1 //

2α2

oo

and let A1 be the algebra Crxs{xx2y. On A we have the natural action of Z2 by the
transposition p1 2q. Consider the functor g : A Ñ A1 induced by e1, e2 ÞÑ 1 and
α1, α2 ÞÑ x. Then g is not a Galois covering. Indeed, the space Ape1, e2q is infinite
dimensional and A1p1, 1q is 2-dimensional.
Here we have another example for Remark 3.8. If g were a morphism of rings, then

gpe1 ` e2q “ gpe1q ` gpe2q “ 2.

Remark 3.11. The previous example would be a positive example if we impose the
relations α1α2 “ 0 “ α2α1.

Example 3.3 (Non-free action). Consider the path algebra generated by the following
quiver

Q : 1

α
��

2
β
// 5 4δoo

3

γ

OO

and the action of Z4 on CxQy induced by the cycle σ “ p1 2 3 4q. This action has
a fixed point. If you take the quiver Q1 : x

a // y , then the canonical projection
π : CxQy Ñ CxQ1y is a dense functor but it is not a Galois covering.

3.3 String algebras
In this section we recall some definitions and results about string algebras exposed
in [13] and that work is due to Michael C.R. Butler and Claus Michael Ringel. Let
Q be a quiver and let P be a subset of paths in CxQy and denote by xP y the ideal
generated by P . The algebra Λ “ CxQy{xP y is called a string algebra if the following
conditions hold:

(S1). Any vertex i P Q0 is the tail or head point of at most two arrows of Q, that is,
|ta P Q : tpaq “ iu| ď 2 and |ta P Q : hpaq “ iu| ď 2.

(S2). For any arrow a P Q1 we have |tb P Q1 : tpaq “ hpbq and ab R P u| ď 1 and
|tc P Q1 : tpcq “ hpaq and ca R P u| ď 1.

(S3). The ideal xP y is admissible on CxQy.

To describe the finite-dimensional indecomposable Λ-modules we need the concept
of string. We introduce an alphabet consisting of direct letters given by each arrow
a P Q1 and inverse letters given by a´1 for each arrow a P Q. The head and tail
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functions extend to this alphabet in the obvious way, that is, hpa´1q “ tpaq and
tpa´1q “ hpaq for every arrow a P Q1. For a letter l in this alphabet we denote its
inverse letter with l´1 and we write l instead pl´1q´1. A word in this alphabet of length
r ě 1 is a sequence of letters lr ¨ ¨ ¨ l1 such that tpli`1q “ hpliq for i “ 1, . . . , r´ 1. For
a word W “ lr ¨ ¨ ¨ l1 we denote its inverse word by W´1 “ l´1

1 ¨ ¨ ¨ l´1
r . It is clear we

can extend the head and tail functions to words. A string of length r ě 1 is a word
W “ lr ¨ ¨ ¨ l1 such that W and W´1 do not contain sub-words of the form ll´1 for a
letter l and no sub-words of W belongs to P .
We introduce strings of length 0 in the following way. For each vertex i P Q0

we have two strings of length 0 denoted by 1pi,uq with u P t1,´1u. In this case
hp1pi,uqq “ i “ tp1pi,uqq. By definition 1´1

pi,uq “ 1pi,´uq.
We recall the definition of two functions to deal with strings. In [13] it is shown we

can choose two functions σ, ε : Q1 Ñ t1,´1u such that the following conditions are
satisfied

1. If a1 ‰ a2 are arrows with tpa1q “ tpa2q, then σpa1q “ ´σpa2q.

2. If b1 ‰ b2 are arrows with hpb1q “ hpb2q, then εpb1q “ ´εpb2q.

3. If a, b P Q are arrows with tpbq “ hpaq and ba R P , then σpbq “ ´εpaq.

For an arrow a P Q1 we have σpa´1q “ εpaq and εpa´1q “ σpaq. For a string
W “ lr ¨ ¨ ¨ l1 we define σpW q “ σpl1q and εpW q “ εplrq. Besides we have σp1pi,uqq “ ´u
and εp1pi,uqq “ u. Note that if W1 and W2 are strings such that W2W1 is a string,
then σpW2q “ ´εpW1q. For pi, uq P Q0 ˆ t1,´1u let Wpi,uq be the set of all strings W
with hpW q “ i and εpW q “ u. Let W be the set of all strings and define on W an
equivalence relation given by W1 „ W2 if and only if W2 P tW1,W

´1
1 u. Let W be a

complete set of representatives of the corresponding equivalence classes.

Remark 3.12. In this thesis we are not going to use this functions ε and σ, but it is
useful to remember that for string algebras the strings can be thought of as sequence
of signs. What this means is that a string is not determined by its tail and head but
it is determined by its tail, head and the sequence of values of those functions.

In [13], it was also defined the set B of bands. A string W P W belongs to B if
length of W is positive, W n PW for all n P N and W is not the power of some string
of smaller length.

3.3.1 Indecomposable string modules

For a string W , in [13], it was defined a Λ-module NpW q, for convenience we repeat
this definition. For the string 1pi,uq we define Np1pi,uqq as the simple representation Si
at the vertex i P Q0. If W “ lr ¨ ¨ ¨ l1, then NpW q is a representation of C-dimension
r ` 1. For describe the structure of Λ-module let p0 “ tpl1q and pk “ hplkq for
k “ 1, . . . , r vertices of Q. By definition dimpNpW qiq is |tk P r1, r ` 1s : pk “ iu|. If
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tz0, ¨ ¨ ¨ , zru is a basis of NpW q with zk P NpW qpk for k “ 0, . . . , r, then the action of
the arrows is given by the following way

z0
� l1 // z1

� l2 // ¨ ¨ ¨
� ln´1 // zn´1

� ln // zn.

If lk is a direct letter, then NpW qlkpzk´1q “ zk; if lk is a inverse letter, then we have
NpW qlkpzk´1q “ zk with k “ 1, . . . , n; if a P Q1 and NpW qapzkq is not defined yet,
then NpW qapzkq “ 0.
In [13], it was observed that NpW q is isomorphic to NpW´1q. The modules NpW q

are called string modules. The next result is a special case of the more general result
of Butler and Ringel proved in [13, Section 3].

Theorem 3.13 (Butler-Ringel). Let Λ be a string algebra. If B “ H, then the Λ-
modules NpW q with W P W form a complete list of indecomposable, pairwise non-
isomorphic Λ-modules.

To end this section we introduce other definitions. Let W “ lr ¨ ¨ ¨ l1 be a string of
positive length, we define its support as SupppW q “ ttpl1qu Y thplkq : k “ 1, ¨ ¨ ¨ , ru.
If W “ 1pi,tq, then SupppW q “ tiu. Given a string of positive length W “ lr ¨ ¨ ¨ l1, we
say that a string V is a sub-string of W if V “ lt`j ¨ ¨ ¨ lt is a subword of W and there
are no arrows a, b P Q1 such that aV and V b´1 are subwords of W . For technical
reasons we introduce the zero string 0 which is sub-string of any string. Now, given
a string W we denote by CampW q the set of all sub-strings of W .

Remark 3.14. We use Cam from the word in spanish caminata for walk. On one
hand the elements of CampW q can be thought as walks in the quiver. On the other
hand, there are a lot of W’s in our notation.

There exist an outstanding family of string algebras called gentle algebras. Since
they are not the central subject of this work, we wrote down the general results for
string algebras and postponed its appearance up to before Proposition 7.9.
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Caldero-Chapoton algebras

In this chapter we review one of the most relevant subjects of this thesis, namely the
Caldero-Chapoton algebras introduced by Giovanni Cerulli Irelli, Daniel Labardini
Fragoso and Jan Schröer in [17].

4.1 Homological data
In this section we recall some definitions and facts we work with. This definitions
were introduced in [17, Section 3.4]. They were motivated by the theory of mutation
of quivers with potential developed in [25] and the Caldero-Chapoton functions intro-
duced in [14]. In this section let Λ “ CxxQyy{I be a basic algebra, recall definitions
in Section 3.1.

4.1.1 g-vectors

For a decorated representation M “ pM,V q of Λ the g-vector of M is given by
gΛpMq “ pg1, . . . , gnq where

gi :“ gipMq “ ´ dim HomΛpSi,Mq ` dim Ext1
ΛpSi,Mq ` dimpViq.

It is clear that gΛpMq P Zn. We denote by Ii to the injective envelope of the simple
representation Si in Λ -mod. We recall an interesting result to compute the g-vector
ofM, see [17, Lemma 3.4] for a general version.

Lemma 4.1. Let M “ pM,V q be a decorated representation of a finite dimensional
algebra Λ and let gΛpMq “ pg1, . . . , gnq be its g-vector. Assume we have a minimal
injective presentation of M

0 ÑM Ñ I0pMq Ñ I1pMq,

where I0pMq “
Àn

i“1 I
ai
i and I1pMq “

Àn
i“1 I

bi
i . Then

gi “ ´ai ` bi ` dimpViq.
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4.1.2 Auslander-Reiten translations

In this section, we give a brief reminder of Auslander-Reiten translations, for details
an proofs the reader can see [6, Section 2, IV]. Let M P Λ -mod be a representa-
tion. Suppose that P‚ and I‚ are a minimal projective presentation and an injective
presentation of M , respectively;

P‚ : P1
p1 // P0

p0 //M // 0, I‚ : 0 //M
i0 // I0

i1 // I1.

The Nakayama functor ν : Λ -mod Ñ Λ -mod is given by νp´q “ DHomΛp´,Λq,
where Dp´q “ HomCp´,Cq is the standard duality. If we restrict ν to the full subcat-
egory of projective modules Λ -proj of Λ -mod, then induces an equivalence between
Λ -proj and the full subcategory of injective modules Λ -inj of Λ -mod. The quasi-
inverse of this restriction is given by ν´1 “ HomΛpDpΛq,´q, see [6, Proposition 2.10,
III]. We use [6, Propostion 2.4 IV] to define the Auslander-Reiten translations.

Definition 4.1. Assume P‚ and I‚ as above. We define the Auslander-Reiten trans-
lations τ and τ´ of M from the following exact sequences.

(a)
0 // τpMq // νP1

νp1 // νP0
νp0 // νM // 0,

(b)

0 // ν´M
ν´i0 // ν´I0

ν´i1 // ν´I1
// τ´pMq // 0.

Remark 4.2. In order to stress the algebra Λ in the definition of the Auslander-Reiten
translations we write τΛ (resp. τ´Λ ) instead of τ (resp. τ´).

We will summarize the main properties of Auslander-Reiten translations for finite
dimensional algebras. The reader can see [6, Proposition 2.10, IV] for the next result.T

Proposition 4.3. Let Λ be a basic finite dimensional algebra. Assume M and N are
indecomposable Λ-modules in Λ -mod.

(a1) The AR-translation τM is zero if and only if M is projective.

(a2) The AR-translation inverse τ´M is zero if and only if M is injective.

(b1) If M is a non-projective module, then τN is indecomposable non-injective and
τ´τM –M .

(b2) If N is a non-injective module, then τ´N is indecomposable non-projective and
ττ´N – N .

(c1) If M and N are non-projective, then M – N if and only if there is an isomor-
phism τM – τN .
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(c2) If M and N are non-injective, then M – N if and only if there is an isomor-
phism τ´M – τ´N .

For the next result we need to introduce the stable categories Λ-mod and Λ-mod.
Given two modules M and N in Λ -mod we denote by PpM,Nq and IpM,Nq the
subsets of HomΛpM,Nq consisting of all morphisms that factor through a projective
Λ-module and an injective Λ-module respectively.
The projectively stable category Λ-mod is defined with the same objects as those of

Λ -mod. The C-vector space of morphisims between two objects M and N of Λ-mod
is defined by

HomΛpM,Nq “ HomΛpM,Nq{PpM,Nq.

The injectively stable category Λ-mod is defined with the same objects as those of
Λ -mod. The C-vector space of morphisims between two objects M and N of Λ-mod
is defined by

HomΛpM,Nq “ HomΛpM,Nq{IpM,Nq.

The next result is one of the most celebrated results in Auslander-Reiten theory,
see [6, Theorem 2.13, IV].

Theorem 4.4 (The Auslander-Reiten formulas). Let Λ be a basic finite dimensional
algebra and M , N be two modules in Λ -mod. Then there exist C-linear isomorphisms

DHomΛpτ
´N,Mq – Ext1

ΛpM,Nq – DHomΛpN, τMq,

that are functorial in both entries.

4.1.3 The E-invariant

For decorated representationsM “ pM,V q and N “ pN,W q of Λ let

EΛpM,N q “ dim HomΛpM,Nq `
n
ÿ

i“1

dimpMiqgipN q.

The E-invariant ofM is defined as EΛpMq “ EΛpM,Mq.
In [17] it was shown that the E-invariant has a homological interpretation in terms

of the Auslander-Reiten translation τ´Λp of truncations of Λ, see Definition 3.1.

Proposition 4.5 ([17, Proposition 3.5]). Let M “ pM,V q and N “ pN,W q be
decorated representations of Λ. If p ą dimpMq, dimpNq, then

EΛpM,N q “ EΛppM,N q “ dim HomΛppτ
´
Λp
pNq,Mq `

n
ÿ

i“1

dimpMiq dimpWiq.

This proposition is quite useful for us because the basic algebras we are considering
satisfy Λp “ Λ for a sufficiently large p.
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4.2 Caldero-Chapoton functions and algebras
LetM “ pM,V q be a decorated representation of Λ. For f “ pf1, . . . , fnq P Zn by xf

we mean
śn

i“1 x
fi
i . The Caldero-Chapoton function (CC function for short) associated

toM of Λ is the Laurent polynomial in n-variables x1, . . . , xn defined by

CΛpMq “ xgΛpMq
ÿ

ePNn
χpGrepMqqxCQe,

where CQ is defined as in Section 3.1. From definitions, CΛpMq P Zrx˘1 , . . . , x˘n s, and
CΛpS´i q “ xi. The set of Caldero-Chapoton functions associated to Λ is

CΛ “ tCΛpMq : M P decreppΛqu.

The next lemma was proved in [17]. It is convenient for computations of g-vectors
and Caldero-Chapoton functions.

Lemma 4.6 ([17, Lemma 4.1]). If M “ pM,V q and N “ pN,W q are decorated
representations of Λ, then the following hold:

1. gΛpM‘N q “ gΛpMq ` gΛpN q.

2. CΛpMq “ CΛpM, 0qCΛp0, V q.

3. CΛpM‘N q “ CΛpMqCΛpN q.
Definition 4.2. The Caldero-Chapoton algebra AΛ associated to Λ is the subalgebra
of Crx˘1 , . . . , x˘n s generated by CΛ.

From Lemma 4.6(iii) follows that CΛ generates AΛ as C-vector space, see [17,
Lemma 4.2].

Example 4.1. Let Q be the quiver

1
a1 // 2

a2 // ¨ ¨ ¨
an´2 // n´ 1

an´1 // n

and let Λ “ CxQy. For each sub-interval e “ ri, js of r1, ns with i ď j we define an
indecomposable representation Me of Λ the following way. Set pMeqk “ C if k P e
and pMeqk “ 0 if k R e, for k P r1, ns. For an arrow al with l P r1, n´ 1s define pMeqal
as idC if tpalq, hpalq P e and zero in other wise. Note that the dimension vector of Me
can be identified with the sub-interval e. If 1 ă i, then we have

gΛpMeqk “

$

&

%

´1 if k “ j,
1 if k “ i´ 1,
0 in other wise.

If i “ 1, then gΛpMeqj “ ´1 and gΛpMeqk “ 0 for k ‰ j. We have EΛpMeq “ 0
for each sub-interval e of r1, ns. From [14, Theorem 3.4] we have that AΛ can be
identified with the cluster algebra associated to Q.



Caldero-Chapoton algebras 31

4.3 Strongly reduced components
In this section we recall some facts about strongly reduced irreducible components
which were introduced in [34, Section 1.5]. For our convenience we follow the exposi-
tion of [17], the reader can see [17, Sections 5 and 6] for a complete treatment about
strongly reduced components in Caldero-Chapoton algebras.
Let Λ be a basic algebra and consider dimension vectors pd,vq P Nn ˆ Nn. We

denote by IrrdpΛq and decIrrd,vpΛq the set of irreducible components of repdpΛq and
decrepd,vpΛq respectively. For Z P decIrrd,vpΛq we write dimpZq “ pd,vq. We define

IrrpΛq “
ď

d

IrrdpΛq and decIrrpΛq “
ď

pd,vq

decIrrd,vpΛq

the corresponding sets of irreducible components. From Section 3.1.1 we have that

decrepd,vpΛq “ repdpΛq ˆ tpCv1 , . . . ,Cvnqu.

It is clear that T : decrepd,vpΛq Ñ repdpΛq with pM,Cvq ÞÑ M is an isomorphism of
affine varieties. In this way results on the variety of representations can be transported
to the variety of decorated ones. We introduce further notation in order to define
strongly reduced components.
Let Z,Z1, Z2 P decIrrpΛq be irreducible components, define

cΛpZq “ mintdimpZq ´ dimOpMq : M P Zu,

eΛpZq “ mintdim Ext1
ΛpM,Mq : M “ pM,V q P Zu,

ext1
ΛpZ1, Z2q “ mintdim Ext1

ΛpM1,M2q :Mi “ pM1, Viq P Z1, for i “ 1, 2u.

From the semi-continuity of the functions dim HomΛp´, ?q and dim Ext1
Λp´, ?q, see

[21, Lemma 4.3], there exist an open set U of Z such that EΛpMq “ EΛpN q for all
M,N P U . Then we define EΛpZq “ EΛpMq forM P U . In a similar way we define
EΛpZ1, Z2q.
The following lemma is proved in [17, Lemma 5.2].

Lemma 4.7. Let Z,Z1, Z2 P decIrrpΛq be irreducible components. The following
inequalities hold

cΛpZq ď eΛpZq ď EΛpZq and ext1
ΛpZ1, Z2q ď EΛpZ1, Z2q.

The following definition comes from [34].

Definition 4.3. Let Z P decIrrpΛq be an irreducible component. We say that Z is
strongly reduced if cΛpZq “ EΛpZq.
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We say that an irreducible component Z P IrrpΛq (resp. Z P decIrrpΛq) is inde-
composable if there exist a dense open U Ď Z which contains only indecomposable
representations (resp. indecomposable decorated representations).
William Crawley Boevey and Jan Schröer gave a canonical decomposition at the

level of irreducible components. This seems something as the Krull-Schmidt property
at that level, see [21, Theorems 1.1 and 1.2].

Theorem 4.8 (CB-S). Let Z1, . . . , Zt be irreducible components in IrrpΛq. The fol-
lowing two statements are equivalent:

• Z1 ‘ ¨ ¨ ¨ ‘ Zt is an irreducible component.

• ext1
ΛpZi, Zjq “ 0, for i ‰ j with i, j P t1, . . . , tu.

Moreover, the following hold:

• If W P IrrpΛq is an irreducible component, then there exist indecomposable
irreducible components W1, . . . ,Wt in IrrpΛq such that W “ W1 ‘ ¨ ¨ ¨ ‘Wt and
this decomposition is unique up to a permutation.

We wrote down the Crawley-Boevey and Schröer theorem in its original version for
reppΛq, but it is true for decreppΛq as is stated in [17, Theorem 5.3].
Now, we get something similar for strongly reduced components, see [17, Theorem

5.11].

Theorem 4.9 (CI-LF-S). Let Z1, . . . Zt be irreducible components in decIrrpΛq. The
following two statements are equivalent:

• Z1 ‘ ¨ ¨ ¨ ‘ Zt is a strongly reduced irreducible component.

• For any Zi we have that it is strongly reduced and EΛpZi, Zjq “ 0 for all i ‰ j
with i, j P t1, . . . , tu.

We want generic Caldero-Chapoton functions. For each pd,vq P NnˆNn we consider
the function

Cd, v : decrepd, vpΛq Ñ Zrx˘1 , . . . , x˘n s,

defined byM ÞÑ CΛpMq. Since this function is constructible, then its image is finite.
It turns out that for any irreducible component Z P decIrrd, vpΛq there exist a dense
open subset U Ď Z where Cd, v is constant in U . We define CΛpZq “ CΛpMq, for
anyM P U .
The set of irreducible components is denoted by decIrrs.rpΛq. We define the graph

ΓpdecIrrs.rpΛqq of strongly reduced irreducible components as follows: it has a vertex
for any indecomposable strongly reduced component and there is an edge between
vertices Y and Z if EΛpY, Zq “ 0 “ EΛpZ, Y q . Note that Y can be equal Z. The
graph of irreducible components ΓpIrrpΛqq was defined in [21, Section 12.3]
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Let Γ be a graph. We consider graphs with single edges and loops. We denote by
Γ0 the set of vertices of Γ. By ΓU we denote the full subgraph of Γ, whose set of
vertices is U .
We call ΓU complete if for any vertices i ‰ j in U there is an edge between them.

A complete ΓU subgraph is called maximal if for any other complete subgraph ΓU 1
with U Ď U 1 we have U “ U 1.
We define a component cluster of Λ as the set of vertices of a maximal complete

subgraph of ΓpdecIrrs.rpΛqq. A component cluster U is E-rigid whenever EΛpZq “ 0
for all Z P U .
The following notions were introduced in [17, Section 6.5].

Definition 4.4. Let U “ tZ1, Z2, . . . , Ztu be a component cluster. We define the
CC-cluster of Λ associated to U by CU “ tCΛpZ1q, CΛpZ2q, . . . , CΛpZtqu.

The notation CC comes from sets of Caldero-Chapoton functions. Cerulli Irelli,
Labarini-Fragoso and Schröer introduced the notion of Laurent phenomenon for
Caldero-Chapoton algebras, see [17, Section 6.5].

Definition 4.5. The Caldero-Chapoton algebra AΛ has the Laurent phenomenon
property provided for any E-rigid component cluster tZ1, . . . , Ztu of Λ, we have

AΛ Ď CrCΛpZ1q
˘, . . . CΛpZtq

˘
s.
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Chapter 5
Cluster algebras and generalized cluster
algebras

In this chapter we review the basic definitions and results about cluster algebras and
then we will introduce the generalized cluster algebras. Generalized cluster algebras
are needed to present our main result. These algebras are associative and commuta-
tive algebras with a rich combinatorial structure governed by a skew-symmetrizable
matrix and some procedure called mutation.
In their beginning, cluster algebras were introduced in order to provide a combina-

torial approach for total positivity of algebraic groups. On the other hand, generalized
cluster algebras are related, in their beginnings, to the structure of the Teichmüller
space of orbifolds.

5.1 Cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky around the year 2002 in
[29]. All the definitions and results of this section can be found in [29, 32]. For our
convenience and transparency in the exposition of our results we will work without
coefficients.
We say a matrix B P MatnˆnpZq is skew-symmetrizable (by the left) if there exist

positive integers d1, . . . , dn such thatDB is skew-symmetric withD “ diagpd1, . . . , dnq
a diagonal matrix. In this case we call D a skew-symmetrizer of B.
Given a skew-simmetrizable matrix B and an integer k P t1, . . . , nu, the mutation

of B with respect to k is the matrix µkpBq with entries b1ij defined as follows

b1ij “

"

´bij if k “ i or k “ j,

bij `
|bik|bkj`bik|bk,j |

2
if i ‰ k ‰ j.
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Example 5.1. We present a 3ˆ 3 matrix and its mutation at direction 1.

B “

¨

˝

0 ´1 2
1 0 ´2
´1 1 0

˛

‚, µ1pBq “

¨

˝

0 1 ´2
´1 0 0
1 0 0

˛

‚

Note that D “ diagp1, 1, 2q is a skew-symmetrizer for B and µ1pBq.

Remark 5.1. Some observations deserve to be done.

• In this work skew-symmetrizable means skew-symmetrizable by the left, how-
ever we can write the another natural definition. We say that B is skew- sym-
metrizable by the right if there exist a diagonal matrix E such that BE is
skew-symmetric.

• B is skew-symmetrizable by the left if and only if B is skew-symetrizable by
the right.

• If D is a skew-symmetrizer for B, then D is a skew-symmetrizer for µkpBq.

Let F be the field of the rational functions in n algebraic independent variables
with coefficients in Q, in other words F “ Qpu1, . . . , unq.

Definition 5.1. A seed in F is a pair pB,xq where B is a skew- symmetrizable
matrix and x “ px1, . . . , xnq is an n-tuple of algebraic independent elements of F
which generate it.

Definition 5.2. For a seed pB,xq and k P t1, . . . , nu, the mutation of pB, xq with
respect to k is the pair µkpB,xq “ pµkpBq, µkpxqq where µkpxq “ px11, . . . , x1nq is the
n-tuple of elements of F given by

x1i “

#

xi if k ‰ i,
ś

bl,ką0 x
bl,k
l `

ś

bl,kă0 x
´bl,k
l

xk
if k “ i.

Definition 5.3. For a seed pB,xq, let

X “ tx P µkr ¨ ¨ ¨µk1pxq : kr P t1, . . . , nu and r ě 0u.

The cluster algebra associated to pB,xq, denoted by ApBq “ ApB,xq, is the subring
of F generated by X .

The elements of X are known as cluster variables and a cluster is an element of the
set tµkr ¨ ¨ ¨µk1pxq : kr P t1, . . . , nu and r ě 0u. In the theory of cluster algebras there
are two outstanding results. One is about the classification of those cluster algebras
with a finite number of cluster variables and the another one is the celebrated Laurent
phenomenon. These two results were proved by Fomin and Zelevinsky.
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Theorem 5.2 (The Laurent phenomenon). Any cluster variable can be expressed as
a Laurent polynomial in the initial variables xi.

By the very definition of cluster mutation it is clear that any cluster variable can
be expressed as a rational function of the initial cluster variables, the Laurent phe-
nomenon asserts that the rational function is, in fact, a Laurent polynomial.

5.1.1 The cluster algebra of a quiver

In the previous section we started with a skew-symmetrizable matrix but the case
when we consider a skew-symmetric matrix has a convenient visual approach.

Lemma 5.3. There is a bijection between the set of skew-symmetric n ˆ n integer
matrices, and the set of 2-acyclic quivers without loops with set of vertices Q0 “

t1, 2, . . . , nu.

Proof. Assume Q is a 2-acyclic quiver without loops. We define a skew- symmetric
matrix BQ “ pbi,jq in MatnˆnpZq as follows

bi,j “ |ta P Q1 : hpaq “ i, tpaq “ ju| ´ |ta P Q1 : hpaq “ j, tpaq “ iu| ,

it turns out that this defines the aforementioned correspondence.

Now, it makes sense ask by a quiver mutation.

Definition 5.4. Let Q be a 2-acyclic quiver without loops and k P Q0, we define the
mutation µkpQq at direction k of Q as the quiver we obtain by applying the following
three steps

1. Replace every arrow c incident to k by an arrow c˚ in the opposite direction.

2. For any pair of arrows j a // k b // i add an arrow rbas from j to i.

3. Delete 2-cycles one by one.

Example 5.2. We present a quiver Q and its mutation at one vertex

Q : 1 α //
OO

δ

2OO
β

4 γ
// 3

, µ3pQq : 1 α //
OO

δ

2

β˚

��
4 oo

γ˚

rβγs

99

3

From definitions we get the following lemma

Lemma 5.4. QµkpBq – µkpQBq.

Definition 5.5. Let Q be a 2-acyclic quiver without loops. We define the cluster
algebra ApQq associated to Q as the cluster algebra ApBQq associated to BQ.

Remark 5.5. By the finite type classification of cluster algebras provided by Fomin
and Zelevinsky, if Q is a quiver of Dynkin type, then ApQq has a finite number of
cluster variables, see [30, Theorem 1.4].
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5.1.2 Geometric realization of type A

In this section we review a pleasant description of cluster algebras of type A, see [30,
Section 12.2]. Consider the Dynkin diagram An

1 2 ¨ ¨ ¨ ¨ ¨ ¨ pn´ 1q n,

A quiver Q is of type A if its underlying graph is a Dynkin diagram of type A. Below
we depicted a quiver of type A3.

1 oo 2 // 3 (5.1)

Let Pn be a pn ` 3q-regular polygon. Assume we label the vertices of Pn counter-
clockwise with the numbers t1, 2, . . . , n` 2, n` 3u. From [30, Section 12.2] we know
that the cluster variables are in correspondence with the diagonals of Pn and the
clusters are in correspondence with the triangulations of Pn. The exchange relations
are given by the Ptolemy’s relation.
A triangulation T “ tj1, j2 . . . , jnu of Pn is a snake if j1 is a segment of the form

rl, l ` 2s ( i.e, a segment connecting two vertices neighbouring a vertex) for some
l P t1, . . . , n ` 1u, any two consecutive arcs of T are incident in one vertex, and
non-consecutives arcs of T do not have common vertices, see Figure 5.1.

j1

j2

j3

12

3

4 5

6

Figure 5.1: A snake for n “ 3.

For any triangulation T of Pn we can associate a quiver QpT q: the set of vertices is
given by the arcs of T and the set of arrows is described as follows. For each triangle
of T we put arrows in clockwise orientation. In (5.1) the quiver associated to the
triangulation T of Figure 5.1 is drawn. Compare this definition with Remark 7.1. If
we start with a snake T of Pn, then we obatin a quiver QpT q of type An.
Given any triangulation T of Pn and j P T an arc we define the flip of j with

respect to T as the unique arc of Pn such that T 1 “ T ztju Y tj1u is a triangulation of
Pn. In this case j1 is denoted by flipT pjq and the new triangulation T 1 is denoted by
flipjpT q, we also say that T and T 1 are related by a flip at j.
A straightforward and useful observation is that flips and mutations are compatible.
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Lemma 5.6. If T and T 1 are two triangulations of Pn related by a flip at j, then
µjpQpT qq – QpT 1q.
We denote by xl the initial cluster variable associated to the arc jl of T in Figure 5.1.

The exchange relations are given by a combinatorial interpretation of the Ptolemy’s
theorem. Indeed, see Figure 5.2, from the definition of mutation we get the exchange
relation for x2,

x2 ¨ x
1
2 “ x1 ¨ x3 ` 1 ¨ 1. (5.2)

j1

j2

j3

12

3

4 5

6

j1

j2

j3

j12

12

3

4 5

6

Figure 5.2: On the left we have the quiver associated to the snake and on the right
we have the quadrilateral containing j2 with thick lines.

Equation (5.2) can be interpreted as the Ptolemy’s relation from the thick quadri-
lateral on the right side of Figure 5.2. Here the boundary segments are interpreted as
1 and the product of the cluster variables associated to the diagonals is the sum of the
products of the cluster variables associated to the opposite sides of the quadrilateral
containing the aforementioned diagonals.

5.2 A toy example of a group action on cluster alge-
bras

In this section we present a simple example to motivate generalized cluster algebras
and orbifolds somehow, for more examples the reader is suggested to see [50].
Consider the polygon P3 and a triangulation T such that it is invariant under the

rotation by an angle of 120˝, see Figure 5.3.
Let us make some observations. The action of G “ Z3 on P3 has one fixed point,

namely the center of the polygon. On the set of vertices of P3 we have two orbits,
G ¨ 1 “ t1, 3, 5u and G ¨ 2 “ t2, 4, 6u.The action of G on the vertices of P3 induces an
action on the arcs of P3, hence G acts on T . This action let T invariant as we said
before and T is the orbit of any arc, for instance, T “ G ¨ j1.
In order to present some concepts in the future we recall some general definitions

although in this case all the generality it is not needed. The reader can find more
details in [41].
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j1

j3

j2

12

3

4 5

6

j1

j3

j2

12

3

4 5

6

Figure 5.3: An example of a triangulation T invariant under the natural action of Z3

(left) and the quiver associated to that triangulation (right).

Definition 5.6. Let X be a topological space and H a group of homeomorphisms of
X.

• H acts properly discontinuously on X if and only if each point x P X has a
neighborhood V such that hpV q X V ‰ 0 for only finitely many h P H.

• A subset D of X is a fundamental region for the action of G on X if:

1. D is the closure of a non-empty open of X, for instance
˝

D “ D.

2.
Ť

hPH hpDq “ X.

3.
˝

D X hp
˝

Dq “ H.

In our example, a fundamental region is depicted in Figure 5.4.

12

3

4 5

6

Figure 5.4: Every quadrilateral between dashed lines is a fundamental region for the
action of Z3 on P3.

Cut out from P3 one of the fundamental regions, say the blue one in Figure 5.4.
Now, by definition every point in the interior is not related by G with another point,
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12

3

1

2

3

ˆ

1

2

Figure 5.5: Gluing the dashed lines of the fundamental region D.

‚

‚

‚
ˆ

‚

‚

‚

ˆ

‚

‚‚

ˆ

Figure 5.6: By gluing the corresponding sides we obtain the triangulation of P3 which
we start with.

however points in the dashed lines are related by G. Let us to glue this points, see
Figure 5.5.
On the right side of Figure 5.5, we have a triangulation of an orbifold. The cross

(ˆ) reminds us of the fixed point of the action in P3 and the blue dashed line is
reminding us the surgery and sewing we made along the boundary of a fundamental
region. The cross is going to be an orbifold point of order three.
From the right of Figure 5.5 we can recover the information of 5.4 making another

surgery. Indeed, take three digons as on the right of Figure 5.5. We take three copies
of the digon because the stabilizer of the center of the polygon has order three. We
are going to make an incision along the dashed lines and then we will glue the result
of those incisions around the pairs of dashed lines, see Figure 5.6. After do that, we
obtain Figure 5.4.
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In the next chapters we are going to review more details about 2-orbifolds or sur-
faces with orbifold points.
The action of G on P3 induces an action of G on the cluster algebra ApQpT qq

associated to QpT q. If we denote by xl the initial cluster variable associated to jl for
each l “ 1, 2, 3, see Figure 5.3, then all the initial cluster variables are in the same G-
orbit.
If we think in the geometric quotient of Figure 5.4 we obtain the triangulated

orbifold on the right of Figure 5.5, that is a digon with one orbifold point of order
three. This is no longer a Riemann surface. What about the cluster algebra quotient?
Before going on, it is good to say that this approach is not given by Chekov and
Shapiro, but by Paquette and Schiffler. In the algebraic setting we do not obtain a
cluster algebra anymore. What kind of structure are we going to get?
For addressing this question let us make some remarks. We are interested in getting

some cluster structure in the quotient, so we are interested in the exchange polyno-
mials. Denote by π the morphism that sends the cluster variable xl to its orbit y1.
If we start with the naive idea that in order to get the new exchange polynomials we
need just apply π to the old ones, we can start with the mutation at 1, recall that
we are in the coefficient free case, this means that all the coefficients in our cluster
algebras are 1,

x11 “
x2 ` x3

x1

, (5.3)

then
πpx11q “

y1 ` y1

y1

“ 2.

This is not satisfactory because if πpx11q were the mutation of y1, then it would be
a constant.
On the other hand note that for P3 there is an unique triangulation T by flipping

T simultaneously and such a way that T is again G-invariant, se Figure 5.7.
Let us express the cluster variables associated to j11, j12 and j13, namely xj11 , xj12 and

xj13 in terms of the initial cluster variables x1 x2 and x3, see Figure 5.7.

xj11 “
x2 ` x3 ` x1

x1x3

, xj12 “
x2 ` x3 ` x1

x1x2

and xj13 “
x2 ` x3 ` x1

x2x3

. (5.4)

If we compute y1πpx
1
jl
q, we have

y1πpxj11q “
y1 ` y1 ` y1

y1

“ 3 “ y1πpxj12q “
y1 ` y1 ` y1

y1

“ y1πpxj13q “
y1 ` y1 ` y1

y1

.

(5.5)
In turn πpxj1lq “ 3{y1 does not depend on l. So, πpxj1lq may be considered as a cluster
mutation of y1 somehow. Indeed, it will be the generalized cluster mutation of y1.
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j11

j12

j13

12

3

4 5

6
ˆ

1

2

Figure 5.7: The corresponding triangulation T from T on the left and the correspond-
ing triangulated orbifold from T on the right.

Note that if we start with T and we want to obtain an orbifold as we did with T ,
we get the right side of Figure 5.7. This will be considered as the flip of the black arc
on the right side of Figure 5.5.

5.3 Generalized cluster algebras

We review the definition of generalized cluster algebras introduced by Chekhov and
Shapiro in [20]. One of the motivations of generalized cluster algebras came from the
interplay between cluster algebras and Poisson geometry, see [37].
For a detailed treatment of generalized cluster algebras with principal coefficients,

in parallel with the one for cluster algebras, the reader can see [47].
Now we assume that B is skew-symmetrizable with skew-symmetrizer D and bik{dk

is an integer for all i P t1, . . . , nu.
For k P t1, . . . , nu we define the polynomials

v`k “
ź

bl,ką0

x
bl,k{dk
l , v´k “

ź

bl,kă0

x
´bl,k{dk
l and θkpu, vq “

dk
ÿ

l“0

ulvdk´l.

Definition 5.7 (Generalized cluster mutation). For a seed pB,xq and k P t1, . . . , nu,
the mutation of pB, xq with respect to k is the pair µkpB,xq “ pµkpBq, µkpxqq where
µkpxqpx11, . . . , x1nq is the n-tuple of elements of F given by

x1i “

#

xi, if k ‰ i,
θkpv

`
k ,v

´
k q

xi
, if k “ i.

In this thesis the polynomials θkpv`k , v
´
k q are often called polynomials of Chekhov-

Shapiro.
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Definition 5.8. For a seed pB,xq, let

X “ tx P µkr ¨ ¨ ¨µk1pxq : kr P t1, . . . , nu and r ě 0u.

The generalized cluster algebra associated to pB,xq, denoted by ApBq “ ApB,xq, is
the subring of F generated by X .

Note that exchange polynomials do not have to be binomials. In [20, Theorem 2.5],
the Laurent phenomenon was proved.

Theorem 5.7 (The Laurent phenomenon). Any generalized cluster variable can be
expressed as a Laurent polynomial in the initial variables xi.

Remark 5.8. The reader should be cautious by comparing the definitions of [20] with
this ones because there they take skew-symmetrizer by the right and here we did by
the left.

Example 5.3. Take the matrix of Example 5.1

B “

¨

˝

0 ´1 2
1 0 ´2
´1 1 0

˛

‚.

The third column is divisible by 2. In this case d1 “ 1, d2 “ 1 and d3 “ 2. Then we
can express the polynomials of Chekhov-Shapiro.

v`1 “ x2, v
´
1 “ x3, θ1pu, vq “ u` v,

v`2 “ x3, v
´
2 “ x1, θ2pu, vq “ u` v,

v`3 “ x1, v
´
3 “ x2, θ3pu, vq “ u2

` uv ` v2.

(5.6)

The first exchange relations are the following

x11x1 “ x2 ` x3, x12x2 “ x3 ` x1, x13x3 “ x2
1 ` x1x2 ` x

2
2. (5.7)
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2-Orbifolds

In this chapter we present a review of the basic definitions about 2-orbifolds. The
reader can see [55, 56] for more details.

6.1 Introduction to orbifolds
In Section 5.2 we gave an example of orbifolds. In this section we write down other
examples in order to present the ideas behind an orbifold. We are going to take some
finite groups acting on R2 by isometries.

Example 6.1 (The mirror case). Consider a non-zero vector v in R2 and denote by
sv the reflection along the perpendicular line vK to v, then we obtain an action of Z2

on R2 by reflection. In this case a fundamental region for this action is one of the
half-planes generated by vK, see Definition 5.6.

Example 6.2 (The cone case). Consider the cyclic group Zn with n ą 1 acting on
R2 by rotation. In this case a fundamental region is a cake section between two lines
which meet at origin in an angle of 2π{n. If you imagine that cut a paper with the
shape of that section and you glue the edge of this section you get a cone.

Definition 6.1. A dihedral group is a group with the following structure for some
n ą 1

Dn “ xa, b : a2
“ b2

“ pabqn “ idy.

Example 6.3 (Corner reflector case). This case can be considered as a combination
of the two previous ones, see [55, Example 5.1.2]. We act on R2 with Dn. In this case
the fundamental region for the action is a section between two lines which meet in an
angle of 2π{n. To picture this case take a piece of paper, if you want, you can take a
circle of paper. Fold that paper up to get an angle of 30˝. If you cut a figure in the
folded paper, then we get a patter with snowflake symmetry, here the group is D6.
For some authors this example is known as a paper pattern.



46 Chapter 6

It is not a coincidence that:

Lemma 6.1. A finite subgroup of Op2q is either cyclic or dihedral.

The reader can see, [3, Theorem 19.1] for a proof of this result. As a historical
remark, this result is attributed to Leonardo da Vinci.
What have we done? Well, we have considered the orbit space of the action on R2 of

a finite group of symmetries of R2. So, that can be the first idea of an orbifold. They
can be thought locally as the quotient space of a model space by a finite subgroup of
its symmetries. These three examples we have given are local pictures of 2-orbifolds.

6.2 Basic definitions
In this section we present the basic concepts about orbifolds. Almost all the material
is contained in [55].

Definition 6.2. An orbifold is a pair Q “ pXQ, tUiuq, where XQ is a Hausdorff
space and tUiu is an open cover of XQ closed under finite intersections such that for
each open Ui there exist Vi an open subset of Rn and a finite group Γi acting on
Rn and homeomorphisms ψi : Vi{Γi Ñ Ui. Moreover, whenever Ui Ă Uj, there is
an injective group homomorphism fi,j : Γi Ñ Γj and an embedding ψi,j : Vi Ñ Vj
which is equivariant with respect to fi,j, i.e, for any γ P Γi and x P Vi we have
ψi,jpγ ¨ xq “ fi,jpγq ¨ ψi,jpxq such that the following diagram commutes.

Vi
ψi,j //

��

Vj

��
Vi{Γi

ψi,j

//

ψi

��

Vj{Γi

��
Vj{Γj

ψj
��

Ui
� �

inclusion
// Uj

Example 6.4. Every n-manifold M has an orbifold structure MQ. Indeed, take an
atlas for M , say pM, tUiuq, closed under finite intersections, then take any Γi as the
trivial group.

Example 6.5. Consider the mirror case on Example 6.1. For instance, think on the
upper-half plane H “ tpx, yq P R2 : y ě 0u. This is a surface with boundary or a
2-manifold with boundary. We can take the interior of H with the trivial group and
for every point px, 0q we can take a neighborhood Ux on H such that is homeomorphic
to a neighborhood Vx on R2 module the action of Z2 by reflection.
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Remark 6.2. In [55, Section 5.2.14], William P. Thurston says that the word orbifold
was coined after a democratic process during his course at Princeton in 1976-1977.
In [22, page 5], Michael W. Davis tells us more details about that democratic process.

The definition of an orbifold with boundary is parallel to the definition for manifolds.
An orbifold with boundary Q is a Hausdorff space XQ locally modeled on Rn modulo
finite groups and Rn

` modulo finite groups. Rn
` is the set of points in Rn which first

coordinate is not negative.
Orbifolds can be seen as a generalization of manifolds with some nice algebraic

behavior. For the next proposition see [55, Proposition 5.2.6].

Proposition 6.3. Let M be a manifold and a group Γ acting on M properly discon-
tinuous, recall Definition 5.6. Then, M{Γ is an orbifold.

Idea of proof. Consider Γx P M{Γ and denote by Γx the stabilizer of x P Γ. Since
the action is properly discontinuous there exist a neighborhood Vx on M such that
is Γx-invariant and with empty intersection with the translations of elements not in
Γx. The canonical projection π : M Ñ M{Γ induces a homeomorphism between
Vx{Γx and πpVxq. Note that we should verify that this define the orbifold structure
required.

If the action is free, then we get that M{Γ is a manifold. So, points where the
action has a non-trivial stabilizer are special.

Definition 6.3. The singular locus of an orbifold Q is

ΣQ “ tx P XQ : Γx is non-trivialu.

In [55, Proposition 5.2.7] a nice property about the singular locus is provided. In
our combinatorial setting these points will be called orbifold points.

Proposition 6.4. The singular locus of an orbifold is a closed set with empty interior.

In order to generalize some notions, for instance the fundamental group of a mani-
fold, it is necessary generalize the notion of covering.

Definition 6.4. A covering orbifold of an orbifold Q is an orbifold rQ , with a projec-
tion p : X

rQ Ñ XQ between the underlying spaces, such that each point x P XQ has
a neighborhood U “ V {Γ (where V is an open subset of Rn) for which each compo-
nent Ci of p´1pUq is isomorphic to V {Γi, where Γi Ă Γ is some subgroup. Also, the
isomorphism must respect the projections and we write p : rQ Ñ Q for the covering
orbifold.

An example is given by the situation at Proposition 6.3. Let M be a manifold
and a group Γ acting on M properly discontinuous, then M Ñ M{Γ is an orbifold
covering because M is an orbifold.
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Definition 6.5. An orbifold is good provided it can be covered by some orbifold
which is a manifold, otherwise it is bad.

An example of a bad orbifold is the teardrop, that is, an orbifold with underlying
space S2 and with one singular point whose neighborhood is modeled by the action of
Zn by rotations. For the proof of the next result the reader can see [56, Proposition
13.2.4]. For technical reasons we need path-connected orbifolds, therefore we consider
based orbifolds, that means we take a base point x P XQzΣQ that is just an element
of XQzΣQ and concentrate our attention to the path component of the base point x.

Proposition 6.5. An orbifold Q has a universal cover. If x P XQzΣQ is a base point
for Q, then the universal covering orbifold p : rQ Ñ Q is a connected covering with
base point rx with pprxq “ x, and with following universal property. For any other
cover q : rP Ñ Q with base point rx1, there exist a unique lifting p1 : rQ Ñ rP of p to a
covering map of rP with qprxq “ rx1.

Fix an orbifold pQ, xq and fix a universal covering p : p rQ, rxq Ñ pQ, xq.

Definition 6.6. A deck transformation of p : p rQ, rxq Ñ pQ, xq is a base point pre-
serving automorphism φ of p rQ, rxq such that p “ p ˝ φ.

It turns out that p : rQÑ Q is a regular covering : for any pair of preimages rx1 and
rx of the base point x, there is an automorphism of rQ taking rx to rx1.
From the unbranched and branched covering theory we get the following result, see

[27, Theorem 4.16]:

Lemma 6.6. If p : rQ Ñ Q is a covering orbifold, then each point of x P XQzΣQ is
covered the same number of times, i.e. p´1pxq has the same number of elements for
each x P XQzΣQ.

That constant number is known as the sheet number of the cover p.

Definition 6.7. The fundamental group π1pQ, xq of an orbifold pQ, xq is the group
of deck transformations of p : p rQ, rxq Ñ pQ, xq.

The Euler characteristic also can be generalized to orbifolds.

Definition 6.8. Let Q be an orbifold, with a cell division on XQ, which is small
enough so that the group acting on the interior of every cell is the same. Then we
define the Euler characteristic of Q as follows,

χpQq “
ÿ

ci

p´1qdimpciq
1

|Γpciq|

where ci ranges over cells of the cell decomposition of XQ and |Γpciq| is the order of
the group associated to the cell ci. As the definition suggest χpQq may be a rational
number, see Example 6.6.
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This definition has a multiplicative property with the sheet number of a covering,
see [55, Proposition 5.5.2].

Proposition 6.7. I p : rQÑ Q is an orbifold covering with sheet number k, then

χp rQq “ kχpQq.

Example 6.6. Consider the orbifold Q given by R2{Z2, where Z2 acts on R2 by the
reflection in the x-axis. Then we can see that R2 is a 2-sheeted covering of Q. Since
χpR2q “ 1, then we get that χpQq “ 1{2.

6.3 About the classification of 2-orbifolds
So far we have seen orbifolds as a natural generalization of manifolds. We know that
oriented compact 2-manifolds are classified by orientability.
In this case, orientable and closed 2-orbifolds can also be classified. However, it is

not the goal of this section to present the complete list of 2-orbifolds. First of all we
may not expect a short list as for the Riemann surfaces. We are going to give some
ideas in order to state a qualitative classification. The reader is kindly suggested to
look at [22, 53, 55] for the complete classification.
We state the relevance of the three examples of the beginning of this chapter, see

[55, Proposition 5.4.2].

Proposition 6.8. The singular locus of a 2-orbifold has these types of local points.

• The mirror, R2{Z2 where Z2 acts by reflection in the x-axis.

• Cone points of order n: Zn acts on R2 by rotations.

• Corner reflectors of order n: Dn acting on R2. The action of Dn is generated
by the reflection of two lines that meet at an angle of π{n.

This proposition is a consequence of Lemma 6.1. The Euler characteristic has a
nice interpretation for 2-orbifolds, see [40, Theorem 4], it is the Riemann-Hurwitz
formula.

Proposition 6.9. A 2-orbifold Q with m corner reflectors of order mi , 1 ď i ď m
and n cone points of order nj, 1 ď j ď n has Euler characteristic

χpQq “ χpXQq ´
1

2

m
ÿ

i“1

´

1´
1

mi

¯

´

n
ÿ

j“1

´

1´
1

nj

¯

.

Any closed 2-dimensional orbifold can be defined by its underlying space the cone
points and corner reflectors where pn1, . . . , nk;m1, . . .mjq denotes k cone points of
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orders n1, . . . nk and j corner reflectors of orders m1, . . . ,mj. Here the orders are
written in increasing order.
We write p;m1, . . . ,mjq when there are not cone points and we write pn1, . . . , nk; q

when there are not corner reflectors.

Example 6.7. With Proposition 6.7 and Proposition 6.9 it is clearer that the teardrop
S2 with pn; q is a bad orbifold. The Euler characteristic of the teardrop is pn` 1q{n.
Any cover T of the teardrop would have Euler characteristic greater than 2.

We are going to describe the bad orbifolds, the reader can see [55, Theorem 5.5.3].

Proposition 6.10. There are only four 2-dimensional bad orbifolds without boundary:

• XQ “ S2 and pn; q, with positive Euler characteristic equals 1` 1
n
.

• XQ “ S2 and pn,m; q, with positive Euler characteristic equals n`1
n
´ m´1

m
.

• XQ “ D and p;nq, with positive Euler characteristic equals 3
2
` 1

2n
.

• XQ “ D and p;n,mq, with positive Euler characteristic equals 3n`1
2n

´ m´1
2m

.

The reader must note that all bad orbifolds do have positive Euler characteristic.
Again, the reference for the next theorem is [55, Theorem 5.5.3].

Theorem 6.11. Every orientable closed 2-orbifold other than those mentioned in the
above proposition have the geometric structure of S2 (elliptic structure), R2 (Euclidean
structure), or H2 (hyperbolic structure). Moreover, the geometric structure of a good
orbifold is determined by the sign of its Euler characteristic.

Remark 6.12. The elliptic orbifolds have positive Euler characteristic, the Euclidean
orbifolds have Euler characteristic equals zero and the hyperbolic orbifolds have ne-
gative Euler characteristic.



Chapter 7
The polygon with one orbifold point and
Jacobian algebras

In this chapter we are going to concentrate at polygons with one orbifold point of
order three to generate Jacobian algebras. Here, an orbifold point of order three
means a cone point of order three.

7.1 Basic combinatorics of surfaces with orbifolds
points

We will work with polygons with one orbifold point of order three but for convenience
we recall some definitions of surfaces with orbifold points. For more details about
surfaces with orbifold points of order two or three and relations with generalized
cluster algebras the reader can see [20] and references therein, for example [18, 19].
For an interesting and beautiful application of surfaces with orbifold points and group
actions in some cluster structures the reader is kindly asked to look at [50].

7.1.1 Basic definitions

Let Σ be a compact connected oriented 2-dimensional real surface with possible empty
boundary. The pair pΣ,Mq where M is a finite subset of Σ with at least one point
from each connected component of the boundary of Σ is called a bordered surface or
just a surface. The points of M are called marked points and the points of M that lie
in the interior of Σ are called punctures. A triple pΣ,M,Oq where pΣ,Mq is a bordered
surface and O is a finite subset of ΣzpMYBΣq is called a marked surface with orbifold
points. The points of O are called orbifold points and they will be denoted by a cross
ˆ in the surface. In this thesis we will work with surfaces with boundary, without
punctures and with just one orbifold point of order three.
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7.1.2 Triangulations and flips

Let pΣ,M,Oq be a marked surface with orbifold points of order three, without punc-
tures, with boundary and we assume O is not empty. An arc i on pΣ,M,Oq is a curve
i : r0, 1s Ñ Σ satisfying the following conditions

• the endpoints of i are both contained in M.

• i does not intersect itself, except that its endpoints may coincide.

• i does not intersect O and i does not intersect M except in its endpoints.

• if i cuts out an monogon, then such monogon contains just one orbifold point.
In this case i is called a pendant arc or the loop of a orbifold point.

Two arcs i and j are isotopic relative to MYO if there exist a continuous function
H : r0, 1s ˆ Σ Ñ Σ such that

• Hp0, xq “ x, for all x P Σ;

• Hp1, iq “ j;

• Hpt, pq “ p for all p PMYO;

• For every t P r0, 1s the function Ht : Σ Ñ Σ with x ÞÑ Hpt, xq is a homeomor-
phism.

We will consider arcs up to isotopy relative toMYO, parametrization and orientation.
Given an arc i, we denote by ĩ its isotopy class. Let i and j be two arcs. We say i

and j are compatible if either ĩ “ j̃ or ĩ ‰ j̃ and there are arcs i1 P ĩ and j1 P j̃, such
that i1 and j1 do not intersect in ΣzM.

Definition 7.1. A triangulation of pΣ,M,Oq is a maximal collection of pairwise
compatible arcs.

Given a triangulation σ of the surface we define a triangle of σ as the closure of
a connected component of the complement on Σ of all traces of non-pending arcs.
An orbifold triangle is a triangle containing an orbifold point. A triangle without an
orbifold point in its interior is called an ordinary triangle. If a triangle intersects the
boundary of the surface at most in three points it is called an internal triangle.
Let σ be a triangulation of pΣ,M,Oq. If i is an arc of σ, the flip of i with respect

to σ is the unique arc i1 such that σ1 “ pσztiuq Y ti1u is a triangulation of pΣ,M,Oq.
In this case we denote i1 “ flipσpiq and we say that σ1 is obtained from σ by a flip
of i P σ. In our case, flips act transitively on triangulations of pΣ,M,Oq, see [28,
Theorem 4.2].
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7.2 Polygons with one orbifold point
Let Σn be, for n ě 2, a disk with boundary, n ` 1 marked points in its boundary,
without punctures and one orbifold point of order three. In this work we often refer
to Σn as the pn` 1q-gon with one orbifold point, the marked points are called vertices
and they are denoted by tv0, v1, . . . , vnu. We order the vertices in counterclockwise
order. In pictures the orbifold point is drawn with the symbol ˆ.
Let σ be a triangulation of Σn. We have that |σ| “ n, see [50, Lemma 4.1]. In this

case we have two types of triangles for σ, see Figure 7.1

ˆ

Figure 7.1: An ordinary triangle (left) and an orbifold triangle, i.e. a triangle
containing the orbifold point (right) .

We associate a quiver Qpσq to a triangulation σ of the orbifold Σn in the following
way: the vertices of Qpσq are the arcs of σ and the set of arrows is described as
follows. For each triangle ∆ of σ and arcs i and j in ∆ we draw an arrow from j to
i if i succeeds j in the clockwise orientation, with the understanding that no arrow
incident to a boundary segment is drawn. Finally, we draw an arrow starting and
ending at the pendant arc of σ. We refer to this arrow as the loop of Qpσq.

Remark 7.1. In the classical context of marked Riemann surfaces without orbifold
points no loop is drawn. For instance the quiver of a triangulation T of a polygon
P without punctures and without orbifold points will be denoted by QpT q and it is
constructed as above but, as we said, it does not have loops.

Denote by Hpσq the collection of all internal triangles ∆ of a given triangula-
tion σ. Any element ∆ of Hpσq defines a 3-cycle c∆b∆a∆ on Qpσq up to cyclical
equivalence. If we denote by ε the loop of σ, then the potential associated to σ is
Spσq “

ř

∆PHpσq c∆b∆a∆ ` ε
3.

Definition 7.2. For any triangulation σ of Σn we define the basic algebra Λpσq
associated to σ as the Jacobian algebra Λpσq “ PpQpσq, Spσqq.

Example 7.1. Consider the triangulation σ of Figure 7.2. We see that the algebra
Λpσq is CxQpσqy{I, where I is the ideal generated by ba, cb, ac and ε2 (compare with
[50, Example 2.3]).

Definition 7.3. A weighted quiver is a pair pQ,dq where Q is a quiver without loops
and d “ pdiqiPQ0 is an n-tuple of positive integers.
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Corollary 14.1. If Λ is the algebra associated to Σn and AΛ is its Caldero-Chapoton algebra. Then AΛ is
a generalized cluster algebra of Chekhov-Shapiro.

Proof. The corollary is a consequence of Proposition 9 and Theorem 10.4. �

15. An example of a change of initial triangulation

ˆ

τ0

i2

v0

ˆ

τ

v0

Figure 15.

In this section we take another initial triangulation τ for Σ3, see Figure 15. The reader can compare this
section with [9, Example 9.4.2] and with [34, Example 2.3]. Note that τ and τ0 are related by a flip at i2,
see Figure 15. Let Q be the quiver

3

c

��

ε

��

1

b

??

2
a

oo

and let Λ :“ Λp3, τq “ CxQy{I, where I is the ideal generated by ba, cb, ac and ε2. From Theorem 5.2 we
have that the indecomposable Λ-modules are parametrized by the strings

11, 12,
ε, a,
εb, cε,
cεb, b´1εb, cεc´1.

13,
b, c,
b´1ε, εc´1,
b´1εc´1.

We have 12 indecomposable E-rigid decorated representations of Λ of which 9 are given by the strings
on the left in the above list and the remaining three are the negative simple representations of Λ. We say
that a string W is E-rigid if its string module NpW q is E-rigid. By definition CΛpS´i q “ xi for i “ 1, 2, 3.
In Figure 16 we write the string module corresponding to every arc of Σ3. The Caldero-Chapoton functions
associated to the 9 E-rigid strings of Λ are

ˆ

S1

v0

ˆ

S2

v0
ˆ

Npcεbq

v0

ˆ
Npεq

v0

ˆ

Npaq

v0

ˆ

Npcεc´1q

v0

ˆ

Npεbq

v0

ˆ

Npcεq

v0

ˆ

Npb´1εbq

v0

Figure 16.

Figure 7.2: One triangulation σ of Σ3 and its quiver Qpσq.

Let Qpσq˚ be the quiver obtained from Qpσq by deleting the loop. Now we denote
by pQpσq˚,dσq the weighted quiver associated to σ where pdσqj “ 2 if j is the pendant
arc and pdσqj “ 1 in other wise.
Fix an n-tuple d “ pd1 . . . , dnq, in [44, Lemma 2.3] it was proved that there is a bi-

jection between the set of 2-aclycic weighted quivers pQ,dq and the collection of skew-
symmetrizable matrices B with skew-symmetrizer given by D “ diagpd1, . . . , dnq. In-
deed, given a quiver Q, if cij is as in Section 4.1, then bij “ djcij{gcdpdi, djq define a
matrix BQ skew-symmetrized by D.
Following [44, Lemma 2.3], we denoted by Bpσq the skew-symmetrizable matrix

associated to pQpσq,dσq and we call it the adjacency matrix associated to σ.
We finish this section with some calculations on Σn.

Lemma 7.2. The number of triangulations on Σn is p 2n
n q.

Proof. Fix a pendant arc p of Σn. The first observation is that there are n ` 1
pendant arcs on Σn, one for any vertex of Σn. Now, how many triangulation do we
have containing the arc p? Well, we have as many as triangulation of a pn ` 2q-gon.
It is the Catalan number Cn “ 1

n`1p
2n
n q. Since a triangulation of Σn has one and only

one pendant arc, we get that the number of triangulations is p 2n
n q.

Lemma 7.3. The number of arcs on Σn is npn` 1q.

Proof. Any arc j of Σn generates two regions D`j and D´j . They are the connected
components of Σnzj where D`j does not contain the orbifold point and D´j does. Let
tl be the number of elements of the set El of arcs j such that D`j subtends l vertices
in the boundary different to the endpoints of j, note that 1 ď l ď n. The claim is
that tl “ n ` 1 for any l P r1, ns. Fix l and take one arc j such that D`j subtends
l vertices in the boundary of Σn without take into account the end points of j. By
rotating j successively by an angle of 2π{pn` 1q we obtain n` 1 arcs in El. They are
all because D`j does not contain the orbifold point. We conclude that the number of
arcs is npn` 1q.
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7.3 The algebra associated to a triangulation of the
orbifold as an orbit Jacobian algebra

In this section we shall note that Λpσq can be seen as an orbit Jacobian algebra. With
this observation we are going to obtain some results about Galois coverings. For
details and missing definitions about orbit Jacobian algebras the reader can see [50],
where such algebras were introduced. At the end of the section we will define the arc
representations of Λpσq.
Let rΣn be the regular p3n`3q-gon with u1, u2, . . . , u3n`3 vertices in counterclockwise

orientation and let θ be the rotation by 120˝ on rΣn which sends a vertex vi to vi`pn`1q

modulo p3n`3q. In the terminology of [50], Σn is the Z3-orbit space of rΣn. We consider
θ as a generator of G “ Z3. We can see that G acts freely on tu1, u2, . . . , u3n`3u, that
is, if g P Gzteu, then g ¨ ui ‰ ui for i P r1, 3n` 3s.
We say that an arc rj of rΣn is G-admissible or just admissible if rj belongs to some

G-invariant triangulation T of rΣn.

Remark 7.4. We see that rj is admissible on rΣn if and only if D`j or D´j subtend at
most n vertices different to its endpoints, here G ¨ rj “ j.

Lemma 7.5. The number of admissible arcs of rΣn is 3npn` 1q.

Proof. The total number of arcs on rΣn is 9
2
npn ` 1q. We want to compute the total

number of non-admissible arcs. Fix a vertex ux of rΣn. Draw all the non-admissible
arcs from ux. There are n of those arcs, namely they are lx,j “ rux, ux`n`1`js for
1 ď j ď n. We make the same thing for ux`1. We get n non-admissible arcs
lx`1,k “ rux`1, ux`1`n`1`ks. It turns out that lx,1 and lx`1,n are in the same G-orbit.
Moreover, they are the unique two arcs in the same orbit between the 2n arcs we
are considering. We have n` pn´ 1q non-admissible arcs, if we continue this process
along the points ux`2, . . . , ux`n´1, we get n`n´1`¨ ¨ ¨ 2`1 “ npn`1q

2
non-admissible

arcs such that they are not in the same orbit of any other. Since non-admissibility is
preserved by rotation, we have that there are 3npn`1q

2
non-admissible arcs. Then the

number of admissible arcs is

9npn` 1q

2
´

3npn` 1q

2
“

6npn` 1q

2
“ 3npn` 1q.

The lemma is completed.

Let T be a triangulation of rΣn and suppose that T is G-invariant. Consider QpT q
the quiver associated to T , see Remark 7.1. We can define a potential for QpT q as
SpT q “

ř

∆PHpT q γ∆β∆α∆. Note that G acts freely on QpT q0 and for any α∆β∆γ∆

we have that g ¨ pα∆β∆γ∆q is again a summand, up to cyclic rotation, of SpT q, for
all g P G. We can define, [50, Section 2.1], the orbit quiver QpT qG of QpT q in the
obvious way. We define the potential SpT qG for QpT qG as the image of SpT q under the
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canonical morphism π : CxQpT qy Ñ CxQpT qGy induces by πpiq “ G ¨ i for i P QpT q0
and πpaq “ G ¨ a for a P QpT q1, note that π is a Galois G-covering. We define
the orbit Jacobian algebra of the orbit quiver with potential as PpQpT q, SpT qqG “
PpQpT qG, SpT qGq. We make the following convention ΛpT q “ PpQpT q, SpT qq and
ΛpT qG “ PpQpT q, SpT qqG, see Example 7.2. The following result shows that we get
a Galois covering, see [50, Proposition 3.1].

Lemma 7.6 (Paquette-Schiffler). The Galois G-covering π : CxQpT qy Ñ CxQpT qGy
induces a Galois G-covering π : ΛpT q Ñ ΛpT qG.

Remark 7.7. Let σ be a triangulation of Σn and let T be the triangulation of rΣn

such that G ¨ T “ σ. In T there exist an unique triangle ∆T such that it is G-
invariant and the other triangles in HpT q have a trivial stabilizer. The triangle ∆T

corresponds to the pendant arc of σ and the G-orbit of any triangle ∆ different to
∆T corresponds with a triangle of Hpσq. We conclude that Qpσq “ QpT qG and with
the above observation we get that Λpσq “ ΛpT qG.

Example 7.2. Let σ be the triangulation of Σ3 depicted on the right of Figure 7.3.
Let T be the corresponding triangulation on rΣ3 depicted on the left of Figure 7.3.
The quiver QpT q is drawn below

i3

β3

��
j3

α3

��
k3

ε3

��
i1 β1

// j1 α1

// k1

ε1
??

k2ε2
oo j2α2

oo i2β2

oo

Consider the potential SpT q “ ε1ε2ε3 associated to T . Let G “ă θ ą be the cyclic
group of order 3 with generator θ. Then G acts freely on pQ,Sq by increasing by one,
module 3, the indices of the symbols. Passing to the orbit space of this action we get

QpT qG : i
β // j

α // k εee and the potential SpT qG “ ε3,

where i “ G ¨ i1, j “ G ¨ j1, k “ G ¨ k1, α “ G ¨ α1, β “ G ¨ β1 and ε “ G ¨ ε1. The
orbit Jacobian algebra PpQpT qG, SpT qGq is nothing else but Λpσq “ CxQpσqy{xε2y.

Proposition 7.8. Let σ be a triangulation of Σn. Then Λpσq is finite dimensional.

Proof. From Lemma 7.6 we have that π : ΛpT q Ñ ΛpT qG is a Galois G-covering. In
particular we have an isomorphism πi,j :

À

gPG ΛpT qpei, g ¨ejq Ñ Λpσqpπpeiq, πpejqq for
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any idempotent ei and ej of ΛpT q. We know that ΛpT q is finite-dimensional, the reader
can see finite-dimensionality of Jacobian algebras associated to a triangulation for
surfaces with non-empty boundary in [42, Theorem 36]), so Λpσq is finite dimensional.
The proof of the lemma is completed.

u0

u1

u2

u3

u4
u5

u6

u7

u8

u9

u10

u11

ˆ

v0v1

v2 v3

Figure 7.3: We obtain a triangulation of a square with one orbifold point of order 3
as the G-orbit space of a triangulation of a dodecagon.

A string algebra B “ CxQy{xP y is a gentle algebra if the following conditions are
satisfied:

(Gt1). P is generated by paths of length 2.

(Gt2). For any arrow a P Q1 we have |tb P Q1 : tpaq “ hpbq and ab P P u| ď 1 and
|tc P Q1 : tpcq “ hpaq and ca P P u| ď 1.

Proposition 7.9. For any triangulation σ of Σn the algebra Λpσq is gentle.

Proof. Let T be the triangulation of rΣn such that G ¨ T “ σ. The proof is an
adaptation of proof [5, Lemma 2.5], from that lemma we have that ΛpT q is gentle.
By definition Λpσq “ CxQGy{JpQG, SGq and it is clear that JpQG, SGq is generated
by paths of length two. Since we have Proposition 7.8, only remains to prove (Gt2),
(S1) and (S2), recall the definition of string algebras, see Section 3.3.
(S1). First, let j be the pendant arc of σ. We consider j̃ an element in π´1pjq. We

have that j̃ is contained in two triangles of T . One of those triangles has the other
preimages of j as sides, say ∆pjq, in other words, ∆pjq is invariant under G. By the
definition of SpT qG we can conclude that there is a loop based at j and there is at most
one arrow starting at j and one arrow ending at j. Now, one component of Σ̃nztj̃u,
precisely those which do not contain the other preimages of j, it is a fundamental
region for the action of G on T . If k is not a pendant arc of σ, we can consider a
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preimage of k in the fundamental region above, recall ΛpT q is gentle, this implies (S1)
for k. For this reason we just have to prove (S2) and (Gt2) in the orbifold triangle.
(S2) and (Gt2). This two properties follow from the fact that there is a loop based

at the pendant arc j and at most one arrow with starting at j and at most one arrow
with ending at j. This conclude the proof.

By Lemma 3.10 and Lemma 7.6 we know the following.

Lemma 7.10. Let σ be a triangulation of Σn. Then the push-down functor π˚ :
ΛpT q -mod Ñ Λpσq -mod is a G-precovering.

u0

u1

u2

u3

u4
u5

u6

u7

u8

u9

u10

u11

a1 a2

ε
a´1

1

a´1
2

ε´1

a2

a´1
1

a´1
2

ε´1

a2

Wj “ a´1
2 εa2a1 „ a´1

1 a´1
2 ε´1a2

a´1
2

ˆ

v0v1

v2 v3

a1
a2 ε

a´1
2

Wj “ a´1
2 εa2a1

Figure 7.4: Let j be the blue arc (right). We define Wj from the left. In this case α
can be the blue, red or green arc. Note that Wj can be read directly from the right.

Remark 7.11. For black and white versions of this document just take the arcs
ru1, u10s, ru2, u5s and ru6, u9s on the left hand of Figure 7.4 and compare the strings
associated to them. It turns out that they are the same up to equivalence.

We are going to define a string Wjpσq of Λpσq for every arc j R σ of Σn. We denote
by π : rΣn Ñ Σn the canonical projection. We know that π´1pjq “ trj,rjθ,rjθ2u. Recall
that G “ xθy “ Z3. Let T be the triangulation in rΣn corresponding to σ, see Figure
7.4.
Let j be an arc of Σn such that j R σ. Choice α P π´1pjq, by definition α is an arc

of rΣn and α joints two vertices ul and ul`r of rΣn. Every time α crosses two adjacent
initial arcs γ : ris1 Ñ ris2 of T , we write the letter G ¨ γ (a letter on Qpσq) if α crosses
ris1 first from ul to ul`r or we write the letter pG ¨ γq´1 in otherwise, see Example 7.2.
This construction does not depend of the choice of α up to string equivalency, see
Section 3.3. Denote by Wjpσq the string of Λpσq obtained in this way. In Figure 7.4
we show an example of this construction.
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Definition 7.4. Let σ be a triangulation of Σn. For any arc j R σ we define the
arc representation Mpj, σq of j with respect to σ as the string module associated
to Wjpσq, i.e Mpj, σq “ NpWjpσqq, see Section 3.3.1. Since a string and its inverse
give rise to isomorphic string modules, we have that Mpj, σq is well defined up to
isomorphism. Now, for any arc j P σ we define Mpj, σq :“ S´j as the corresponding
negative simple representation of Λpσq.

As long as there is no confusion we ease the notation and write Wj :“ Wjpσq and
Mpjq :“Mpj, σq.

Remark 7.12. The notation Mpjq or Mpj, σq, for any arc j of Σn, correspond with
the usual convention of the letterM for a module over a ring instead of NpWjpσqq. We
want a special notation for those representations coming from arcs of Σn. Note that
there are Λpσq-modules NpW q for some strings W that are not arc representations.

Remark 7.13. For convenience we are going to define explicitly the push-down func-
tor in our situation. Let T be a triangulation of rΣn. Set Λ “ ΛpT q and consider
π : Λ Ñ ΛG the canonical projection of the action, where ΛG “ ΛpT qG. We define
the push-down functor π˚ : Λ -mod Ñ ΛG -mod as follows.
For objects : letM P Λ -mod be a Λ-representation. For i P Q0 we define π˚pMqG¨i “

À

gPGMg¨i. Let α : i Ñ j be an arrow of Q. We are going to define π˚pMqG¨α :
À

gPGMg¨i Ñ
À

hPGMh¨j. Now, by definition, for any h P G we have an isomorphism
πj,h¨i :

À

gPG Λpg ¨ i, h ¨ jq Ñ ΛGpG ¨ i, G ¨ jq. So, G ¨ α “
ř

gPG πpαh,gq for any h P G
and we define π˚pMqG¨α “ pαh,gqg,hPG.
For morphims: let f : M Ñ N be a morphism in Λ -mod. For any i P Q0 we need

to define π˚pfqG¨i :
À

gPGMg¨i Ñ
À

hPGNh¨i. We set π˚pfqG¨i “ diagpfg¨i : g P Gq as a
diagonal map.
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Chapter 8
The Caldero-Chapoton algebra for a
specific initial triangulation

In this chapter we shall see some preliminary results in order to address our general
problem.

8.1 The polygon without orbifold points
First of all we are going to see one example that motivated the first approach at the
beginning of this project. This example can be seen as a particular case of the main
result of Caldero-Chapoton in [14], rewritten conveniently.
Let Pn be the pn`3q-regular polygon without punctures and without orbifold points.

Let tu0, u1, . . . , un, un`1, un`2u the set of vertices of Pn ordered in counterclockwise
orientation. We are going to define a specific triangulation T0 of Pn. For every
l P r2, n`1s we draw an arc il´1 from u0 to ul. Set T0 “ ti1, . . . , inu. Denote by ΛpT0q

to the Jacobian algebra of pQpT0q, SpT0qq. In this case ΛpT0q is nothing but the path
algebra CxQpT0qy.
We introduce some notation that, albeit non-standard, shall be useful to us. Given

a vector v “ pv1, . . . , , vnq
t P Zn we write v “ v1r1s ` ¨ ¨ ¨ ` vnrns. Moreover, we write

rn1, n2s Ď r1, ns to simplify 1rn1s ` ¨ ¨ ¨ ` 1rn2s. For example, with this notation,
2rn1, n2s means 2rn1s ` ¨ ¨ ¨ ` 2rn2s.
The next proposition is well known from [14], here we present a slightly different

approach.

Proposition 8.1 (Caldero-Chapoton). Using notation in Figure 8.1, for any trian-
gulation T of Pn and for any arc j P T we have that

CΛpT0qpMpjqqCΛpT0qpMpj
1
qq “ CΛpT0qpMpj1qqCΛpT0qpMpj3qq`CΛpT0qpMpj2qqCΛpT0qpMpj4qq,

where j1 is the flip of j with respect to T .
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us1`1

us2`1

us3`1

us4`1

u0

j4

j1

j2

j3

j1

j

Figure 8.1: Quadrilateral of j with respect to a triangulation T .

Proof. We ease the notation with Q :“ QpT0q and Λ :“ ΛpT0q. We are going to show
the proposition when all the arcs tj, j1, j1, j2, j3, j4u Ă T are internal arcs, we also
assume that neither j nor j1 belong to T0. The rest of possibilities are similar and
they are left to the reader. Recall that CampMpjqq is the set of all sub-strings of
W pjq. Since Λ is an algebra of type An we shall regard to CampMpjqq as the set of
all dimension vectors of subrepresentations of Mpjq. Note that if e P CampMpjqq,
then Supppeq “ tl P r1, ns : el ‰ 0u is a sub-interval of r1, ns, see [15, Lemma 2.2].
We will prove the proposition by means of defining a function

ϕ : CampMpjqq ˆ CampMpj1qq ÝÑ

CampMpj1qq ˆ CampMpj3qq \ CampMpj2qq ˆ CampMpj4qq,

such that ϕ is bijective and with the following extra property. Recall the definition
of the skew-symmetric matrix CQ associated to Q, see (3.1).

Proposition 8.2. If ϕpe, fq “ pu, vq P CampMpjlpe,fqqq ˆ CampMpjtpe,fqqq with lpe,fq P
t1, 2u and tpe,fq P t3, 4u, then

CQpe` fq`gΛpMpjqq`gΛpMpj
1
qq “ CQpu`vq`gΛpMpjlpe,fqqq`gΛpMpjtpe,fqqq. (8.1)

It is clear from the definition of Caldero-Chapoton functions that if we define ϕ as
above the proof is completed.

Definition 8.1. If pe, fq P CampMpjqqˆCampMpj1qq, then we define ϕpe, fq by cases
as follows

1. fs2 “ 0: in this case f “ rmf, s3´ 1s and e “ rme, s4´ 1s with s2 ă mf ď s3 and
s2`1 ď me ď s4. Then ϕpe, fqq “ prmf, s3´1s, eq P CampMpj2qqˆCampMpj4qq,
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2. es3 “ 0 and fs2 ‰ 0: in this case e “ rme, s4 ´ 1s with s3 ă me ď s4 and f “
rmf, s3s withmf ď s2. Then ϕpe, fqq “ prmf, s2´1s, rme, s4´1sq P CampMpj1qqˆ

CampMpj3qq,

3. es3 ‰ 0 and fs2 ‰ 0: in this case e “ rme, s4 ´ 1s with s3 ě me ď s4 and
f “ rmf, s3 ´ 1s with mf ď s2. Then ϕpe, fqq “ prme, s3 ´ 1s, rmf, s4 ´ 1sq P
CampMpj2qq ˆ CampMpj4qq.

We are going to prove that ϕ is bijective:

ϕ is injective. Let X “ pe, fq and Y “ pg,hq be elements of CampMpjqq ˆ
CampMpj1qq. We want to prove that ϕpXq ‰ ϕpY q if X ‰ Y . Since the image
of ϕ is contained in the disjoint union of two sets we have to concentrate in cases
when ϕpXq and ϕpY q are in the same component of the image of ϕ. By the very
definition of ϕ we only need to consider the following case: X satisfies condition p1q
and Y satisfies p3q.
Assume X satisfies condition p1q, Y satisfies condition p3q and X ‰ Y . In this

case e “ rme, s4 ´ 1s, f “ rmf, s3 ´ 1s, g “ rmg, s4 ´ 1s and h “ rmh, s3 ´ 1s with
s2 ` 1 ď me ď s4, s2 ă mf, mg ď s3 and mh ď s2. By applying Definition 8.1 we get
ϕpXq “ prmf, s3 ´ 1s, rme, s4 ´ 1sq and ϕpY q “ prmg, s3 ´ 1s, rmh, s4 ´ 1sq. Note that
ϕpXq ‰ ϕpY q because mh ď s2 and s2 ` 1 ď me ď s4.

ϕ is surjective. LetW “pa,bq be an element of CampMpj1qqˆCampMpj3qq. Then
a “ rma, s2 ´ 1s and b “ rmb, s4 ´ 1s with s1 ` 1 ď ma ď s2 and s3 ` 1 ď mb ď s4.
We define e “ rmb, s4 ´ 1s and f “ rma, s3 ´ 1s and it is clear that pe, fq satisfy p2q.
Hence ϕpe, fq “ pa,bq.
Now, let W “pa,bq be an element of CampMpj2qq ˆ CampMpj4qq. We know that

a “ rma, s3 ´ 1s and b “ rmb, s4 ´ 1s with s2 ` 1 ď ma ď s3 and s1 ` 1 ď mb ď s4.
In case that s2 ă mb we have that ϕprmb, s4 ´ 1s, rma, s3 ´ 1sq “ W , by Definition
8.1p1q. If ď mb ď s2, then ϕprma, s4 ´ 1s, rmb, s3 ´ 1sq “ W , by Definition 8.1p3q.
The proof that ϕ is bijective is completed. In order to finish the proof of Proposition
8.1 we write down the proof of Proposition 8.2.

Proof of Proposition 8.2. The proof is going in cases as Definition 8.1. Let pe, fq be
an element of CampMpjqq ˆ CampMpj1qq.

1. fs2 “ 0: in this case we have

gΛpMpj2qq ` CQrme, s4 ´ 1s ` gΛpMpj4qq ` CQrmf, s3 ´ 1s “

“ gΛpMpjqq ` gΛpMpj
1
qq ` CQrme, s4 ´ 1s ` CQrmf, s3 ´ 1s,

because gΛpMpjqq ` gΛpMpj
1qq “ gΛpMpj2qq ` gΛpMpj4q.q



64 Chapter 8

2. es3 “ 0 and fs2 ‰ 0: in this case we have

gΛpMpj1qq ` CQrmf, s2 ´ 1s ` gΛpMpj3qq ` CQrme, s4 ´ 1s “

“ gΛpMpj1qq ` gΛpMpj3qq ` CQe` CQf´ CQrs2, s3 ´ 1s

“ CQe` CQf` gΛpMpjqq ` gΛpMpj
1
qq,

because gΛpMpj1qq ` gΛpMpj3qq “ rs1s ` rs3s ´ rs2 ´ 1s ´ rs4 ´ 1s.

3. es3 ‰ 0 and fs2 ‰ 0: in this case we have

gΛpMpj2qq ` CQrmf, s4 ´ 1s ` gΛpMpj4qq ` CQrme, s3 ´ 1s “

“ gΛpMpjqq ` gΛpMpj
1
qq ` CQrmf, s3 ´ 1s ` pCQrs3, s4 ´ 1s ` CQrme, s3 ´ 1sq

“ gΛpMpjqq ` gΛpMpj
1
qq ` CQf` CQe.

The proof of Proposition 8.2 is completed.

The proof of Proposition 8.1 is completed.

8.2 Specific initial triangulation

In this section we will study the Caldero-Chapoton algebra AΛpσ0q for a specific trian-
gulation σ0 of Σn. Tag the vertices of Σn in counter clockwise order tv0 . . . , vnu. Let
in be the pendant arc at v0. We denote the pendant arc at vk as i1k for k “ 0, . . . , n.
With this notation we see that i10 “ in. Let ik be the arc from v0 to vk`1 going in
counterclockwise for k “ 1, . . . , n´ 1. We define the special triangulation σ0 of Σn as
the collection of arcs ti1, . . . , inu, see on the right hand of Figure 7.3.
For σ0 we have a nice description of the concepts introduced in Section 7.1, for

instance, the weighted quiver associated to σ0 looks like

Qpσ0q
˚ : 1

a1 // 2
a2 // ¨ ¨ ¨

an´2 // n´ 1
an´1 // n, and dσ0 “ p1, 1, . . . , 1, 2q.

The matrix Bpσ0q is going to be our input to obtain the polynomials of Chekhov-
Shapiro and we are going to describe a basic algebra associated to σ0.
Let Λ :“ Λpσ0q be the basic algebra associated to σ0, it is clear that Λ is given by

CxQpσ0qy{I where Qpσ0q is the quiver

1
a1 // 2

a2 // ¨ ¨ ¨
an´2 // n´ 1

an´1 // n εee (8.2)

and I is the ideal generated by ε2.
For every arc j of Σn we defined a decorated indecomposable representation Mpjq

of Λ with respect to σ0, see Definition 7.4.
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Remark 8.3. For any arc j R σ0, Definition 7.4 can be rewritten up to isomorphism
by counting intersection numbers directly in Σn. Taking this approach,

dimpMpjqql “ |il X j| in the interior of Σn.

Given an arrow al with l “ 1, . . . , n´ 1, we define Mpjqal as follows:

• if 0 ă dimpMpjqtpalqq ă dimpMpjqhpalqq, then Mpjqal “ p 0
1 q;

• if 0 ă dimpMpjqtpalqq “ dimpMpjqhpalqq, then Mpjqal acts as the corresponding
identity;

• Mpjqal “ 0 in otherwise.

If dimpMpjqnq ‰ 0, then Mpjqε “ p 0 1
0 0 q.

Remark 8.4. From Definition 7.4 and Theorem 3.13 we knowMpjq is indecomposable
in decreppΛq for every arc j. Remark 8.3 allow us to compute Mpjq without rΣn.

For any arc j R σ0 we define the support of Mpjq as SuppMpjq “ tl : Mpjql ‰
0u. The same argument of [15, Lemma 2.2] can be applied here to conclude that
SuppMpjq is connected as a subset of r1, ns. So, we are going to think that SuppMpjq
is an interval.

Example 8.1. For n “ 5, we compute Mpjlq with l “ 1, 2 and 3, see Figure 8.2.

ˆ

j1

v0

ˆ
j2

v0

ˆ
j3

v0

Figure 8.2: Some arcs for n “ 5.

We have

Mpj1q : 0 // C id // C // 0 // 0 0ee ,

Mpj2q : 0 // C id // C
p 0

1 q // C2 id // C2 p 0 1
0 0 q

gg ,

Mpj3q : 0 // C2 id // C2 id // C2 id // C2 p 0 1
0 0 q

gg .

As illustration we have the Caldero-Chapoton function CΛpMpj2qq

x1x2x2
3x

2
4 ` x1x2x2

3x4 ` x1x2x3x4x5 ` x1x2x2
3 ` 2x1x2x3x5 ` x1x2x2

5 ` x1x4x2
5 ` x3x4x2

5 ` x1x3x4x5 ` x2
3x4x5

x2x3x2
4x5

.
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8.2.1 AR translations, E-invariant and g-vectors of arc repre-
sentations

Let j be an arc of Σn. We introduce some notation. Given two vertices vr and vl of Σn

with r`1 ă l and r P t1, . . . , n´2u we have two arcs from vr to vl denoted by rvr, vls`
and rvr, vls´. Indeed, if 0 ă r, then rvr, vls` does not intersect in in the interior of
Σn while rvr, vls´ does. For example, in the Figure 8.2 we have j1 “ rv2, v5s

` and
j2 “ rv2, v4s

´. For r “ 0 we say that ik “ rv0, vk`1s
´ and rv0, vk`1s

` is the another
arc from v0 to vk`1 with k “ 1, . . . , n ´ 1. In the case l “ r ` 1, we have rvr, vr`1s

´

is not a boundary segment.

Remark 8.5. If n ě 4, with the above notation we can describe Wj explicitly for any
j R σ0.

• Wrv1,vns` “ an´3 ¨ ¨ ¨ a1 and Wrv1,vns´ “ ε ¨ ¨ ¨ a1

• Wrvi,vls` “ al´3 ¨ ¨ ¨ ai and Wrvi,vls´ “ a´1
l ¨ ¨ ¨ a´1

n´1ε ¨ ¨ ¨ ai for 0 ă i and i` 2 ă l ă
n;

• Wrvi,vls` “ 1pi,`q and Wrvi,vls´ “ a´1
l ¨ ¨ ¨ a´1

n´1ε ¨ ¨ ¨ ai for l “ i` 2 and i ď n´ 2;

• Wrvi,vls´ “ a´1
l ¨ ¨ ¨ a´1

n´1ε ¨ ¨ ¨ ai for l “ i` 1 and 0 ă i ă n´ 2: ;

• Wrvn´1,vns´ “ εan´1;

• Wrv0,vls` “ an´2 ¨ ¨ ¨ al for 1 ď l ă n´ 1;

• Wi1k
“ a´1

k ¨ ¨ ¨ a´1
n´1ε ¨ ¨ ¨ ak for 1 ď k ď n´ 1: ;

• Wi1n “ ε.

The reader can compare the following lemma with the An case, [15, Theorem 2.13],
compare also with r10s. Given an arc j we denote by r`pjq (in [15], it would be
r´) the arc of Σn that we obtain by rotating j counterclockwise by 2π{pn ` 1q. We
denote by r´pjq (in [15], it would be r`) the arc obtained by rotating j clockwise by
2π{pn` 1q.

Lemma 8.6. Let j be an arc of Σn such that j R σ0.

(a) If Mpjq is not projective, then τpMpjqq – Mpr`pjqq, where τ denotes the
Auslander-Reiten translation.

(b) If Mpjq is not injective, then τ´pMpjqq –Mpr´pjqq.

Proof. We prove this result in Corollary 9.3 for any triangulation σ, however we prove
pbq here. The lemma can be proved by cases using Remark 8.5 and the classification
of the Auslander-Reiten sequences containing string modules from [13, p.p 170-172].
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Let Wj be the string associated to j. Since Mpjq is not an injective Λ-module we get
that Wj is not one of the following strings

1p1,`q, a1, a2a1, . . . , an´2 ¨ ¨ ¨ a1, a
´1
1 ¨ ¨ ¨ a´1

n´1an ¨ ¨ ¨ a1.

We are going to consider all possibilities for j such that Wj is not one of the above
strings.

Case 1. j “ rv1, vns
´ or j “ rvk`1, vk`3s

` with k “ 2, . . . , n ´ 2: from [13] we know
that τ´pNp1pk`1,`qq “ Np1pk,`qq for k “ 2, . . . , n ´ 2, and for k “ n ´ 1 we
get τ´pNpan ¨ ¨ ¨ a1qq “ Np1pn´1,`qq. So, from Remark 8.5, τ´pMprvk`1, vk`3s

`q

“ Mprvk, vk`2s
`q here vn`1 “ v0. Note that rvk, vk`2s

` “ r´prvk`1, vk`3s
`q for

k “ 1, . . . , n ´ 2. For k “ n ´ 1 we have τ´pMprv1, vns
´qq “ Mprv0, vn´1s

`q

with r´prv1, vns
´q “ rv0, vn´1s

`.

Case 2. j “ rvi, vls` for 1 ă i ă i ` 2 ă l ă n : in this case Wj “ al´3 ¨ ¨ ¨ ai and from
[13], we get τ´pNpWjqq “ Npal´4 ¨ ¨ ¨ ai´1q. Note that r´pjq “ rvi´1, vl´1s

` and
Wrvi´1,vl´1s

` “ al´4 ¨ ¨ ¨ ai´1.

Case 3. j “ rvi, vls´ for 1 ă i ă i`2 ă l ă n : we obtain that Wj “ a´1
l ¨ ¨ ¨ a´1

n´1an ¨ ¨ ¨ ai
and τ´pNpWjqq “ a´1

l´1 ¨ ¨ ¨ a
´1
n´1an ¨ ¨ ¨ ai´1. It is clear that r´pjq “ rvi´1, vl´1s

´

and Wrvi´1,vl´1s
´ “ a´1

l´1 ¨ ¨ ¨ a
´1
n´1an ¨ ¨ ¨ ai´1.

Case 4. j “ rvi, vls´ with i “ 1 and l “ i`1: in this case Wj “ a´1
3 ¨ ¨ ¨ a´1

n´1an ¨ ¨ ¨ a1, by
[13], we have τ´pNpWjqq – Npan´2 ¨ ¨ ¨ a2q “ NpWrv0,v2s`q and r´pjq “ rv0, v2s

`.

Case 5. j “ rvi, vls´ with l “ i` 1 and 1 ă i ă n´ 2: now, Wj “ a´1
l ¨ ¨ ¨ a´1

n´1an ¨ ¨ ¨ ai,
from [13], we get τ´pNpWjqq “ Npa´1

l´1 ¨ ¨ ¨ a
´1
n´1an ¨ ¨ ¨ ai´1q “ Nprvi´1, vl´1s´q

and r´pjq “ Nprvi´1, vl´1s
´.

Case 6. j “ rvn´1, vns
´ : in this caseWj “ anan´1, by [13], we obtain that τ´pNpWjqq “

Npa´1
n´1anan´1an´2q “ NpWrvn´2,vn´1s´q and r´pjq “ rvn´2, vn´1s

´.

Case 7. j “ rv0, vls
` with 1 ă l ă n´1: in this caseWj “ an´2 ¨ ¨ ¨ al, from [13] it is clear

that τ´pNpWjqq “ Npan´3 ¨ ¨ ¨ al´1q “ NpWrvl´1,vns` and r´pjq “ rvl´1, vns
`.

Case 8. j “ i1k with 2 ď k ď n : in this case Wj “ a´1
k ¨ ¨ ¨ an ¨ ¨ ¨ ak and we have

τ´pNpa´1
k´1 ¨ ¨ ¨ an ¨ ¨ ¨ ak´1qq “ NpWi

1

k
q and r´pjq “ i

1

k´1.

The proof of paq is similar and follows from [13].

Lemma 8.7. Assume that j is an arc of Σn. Then EΛpMpjqq “ 0.

Proof. We prove this lemma for any initial triangulation σ in Corollary 9.5. Just to
show that this initial triangulation σ0 allows us to make explicit computations we
are going to write down the proof in this particular case. For ik with k “ 1, . . . , n,
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we get that Mpikq “ S´k and EΛpS
´
k q “ 0. Now, for p ą n we know that Λp “ Λa,

see Definition 3.1. So, we are able to apply Proposition 4.5 and Lemma 8.6(b). The
case when Mpjq is injective is clear by Proposition 4.5. Only remains to prove that
dim HomΛpMpr

´pjqq,Mpjqq “ 0 when Mpjq is not injective. We consider cases for j.

• If j “ rvi, vls
˘ for 1 ă i ă i ` 2 ă l ă n, then r´pjq “ rvi´1, vl´1s

˘. Since
Mpr´pjqqi´1 ‰ 0 and Mpjqi´1 “ 0 a direct inspection shows that the dimension
of HomΛpMpr

´pjqq,Mpjqq is zero.

• If j “ i1k with 2 ď k ď n, then r´pjq “ i1k´1. We have Mpi1k´1qk´1 ‰ 0 and
Mpi1kqk´1 “ 0. Then dim HomΛpMpi

1
k´1q,Mpi

1
kqq “ 0.

• If j “ rv1, vls
´ for 2 ă l ă n, then r´pjq “ rv0, vl´1s

`. Since Mpjqn ‰ 0 and
Mpr´pjqqn “ 0 we have dim HomΛpMpr

´pjqq,Mpjqq “ 0.

The lemma is completed.

Lemma 8.8. Assume j is an arc of Σn such that j R σ0. Then pdMpjq ď 1 and
idMpjq ď 1. Here pdMpjq (resp. idMpjq) denotes the projective dimension ofMpjq
(resp. the injective dimension of M(j)).

Proof. The lemma follows from [35, Proposition 3.5] and the definition of Mpjq.
Indeed, in the language of [35], if we take

C “

¨

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1 0 . . . 0 0
´1 2 ´1 . . . 0 0
0 ´1 2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2 ´2
0 0 0 . . . ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‚

, D “

¨

˚

˚

˚

˚

˚

˝

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 2

˛

‹

‹

‹

‹

‹

‚

and Ω “ tpi` 1, iq : 1 ď i ď n´ 1u, then we get Λ “ HpC,D,Ωq. By definition Mpjq
is locally free Λ-module for every arc j R σ0 (see [35, Section 1.5]).

Remark 8.9. In [36], Geiß-Leclerc-Schröer have proved that, in particular, for this
algebra Λ “ HpC,D,Ωq of the previous lemma, we can recover a classic cluster algebra
by means of Caldero-Chapoton functions. However, they consider the quasiprojective
variety Grl.f.pr,Mq of locally free submodules N of M with rank vector r instead
GrepMq as we made her, see Example [36, Section 13.1].

Remark 8.10. Lemma 8.8 ensures that idMpjq ď 1, now it can be seen that we have
the following minimal injective presentation of Mpjq for each arc j R σ0, this is a
consequence of [13].
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1. j crosses to in : in this case Wj “ a´1
nj
¨ ¨ ¨ ε ¨ ¨ ¨ amj with mj ď nj. Then the

following exact sequence is a minimal injective presentation of Mpjq,

0 //Mpjq
i // Npa´1

1 ¨ ¨ ¨ ε ¨ ¨ ¨ a1q
p
p1
p2 q // Npanj´2 ¨ ¨ ¨ a1q ‘Npamj´2 ¨ ¨ ¨ a1q .

Here we define Npar´2 ¨ ¨ ¨ a1q as zero if r “ 1 and it is the simple representation
at 1 if r “ 2. Besides, i is the canonical inclusion and p1, p2 are the canonical
projections.

2. j does not cross to in : in this case Wj “ anj ¨ ¨ ¨ amj with n ´ 2 ě nj ě mj.
Then the following exact sequence is a minimal injective presentation of Mpjq,

0 //Mpjq
i // Npanj ¨ ¨ ¨ a1q

p // Npamj´2 ¨ ¨ ¨ a1q ,

where i is the canonical inclusion and p is the canonical projection

Proposition 8.11. If j1 and j2 are not arcs of σ0, then the following hold:

• There exists a C-linear isomorphism

Ext1
ΛpMpj1q,Mpj2qq – HomΛpτ

´
pMpj2qq,Mpj1qq.

• There exists a C-linear isomorphism

HomΛpMpj1q, τpMpj2qqq – HomΛpτ
´
pMpj1qq,Mpj2qq.

Proof. The proposition follows from Lemma 8.8, [6, Corollary (IV) 2.14(b)] and [6,
Corollary (IV) 2.15(a)].

Albeit the previous proposition is true for any modules with projective and injective
dimension at most 1 we stated it in that fashion for convenience.

Lemma 8.12. Let σ be a triangulation of Σn. If j1 and j2 are arcs of σ, then
EΛpMpj1q,Mpj2qq “ 0.

Proof. If j2 P σ0 or Mpj2q is injective, then EΛpMpj1q,Mpj2qq “ 0 for all arc j1 P σ
by definitions and Proposition 4.5. So, we can suppose j2 is not in σ0 and Mpj2q is
not injective.

Case 1. j1 “ ik for some 1 ď k ď n : in this case Mpj1q is the negative simple represen-
tation of Λ at k. It is clear that EΛpMpj2q,Mpikqq “ dimMpj2qk by Proposition
4.5, but ik, j2 P σ, then dimMpj2qk “ 0.
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Case 2. j1 R σ0 and Mpj1q is injective: then EΛpMpj2q,Mpj1qq “ 0 for all j2 P σ.
We have to prove EΛpMpj1q,Mpj2qq “ 0. By Proposition 4.5 we know that
EΛpMpj1q,Mpj2qq “ dim HomΛpτ

´pMpj2q,Mpj1qq. If Mpj1q is injective, then
j1 “ rv1, vls

` with 2 ă l ď n, j1 “ i11 or j “ rv0, v1s
`. Since j1, j2 P σ and

Mpj2q is not injective, SupppMpj1qqX Supppτ´Mpj2qq “ H and we obtain that
HomΛpτ

´pMpj2qq,Mpj1qq “ 0.

Case 3. j1 R σ0 andMpj1q is not injective : we have to prove EΛpMpj1q,Mpj2qq “ 0 and
EΛpMpj2q,Mpj1qq “ 0. For l “ 1, 2, let ml be the minimum positive integer
such that Mppr´qmlpjlqq is injective.

If m1 ď m2 , then by [6, Corollary (IV) 2.15 (c)] and Proposition 4.5 we have

EΛpMpj1q,Mpj2qq “ dim HomΛppτ
´
q
m1`1

pMpj2q, pτ
´
q
m1Mpj1qq.

[6, Corollary (IV) 2.14 (b)] implies dim Ext1
ppτ´qm1Mpj1q, pτ

´qm1pMpj2qqq “

EΛpMpj1q,Mpj2qq. Since pτ´qm1pMpj1qq is injective, we get EΛpMpj1q,Mpj2qq “
0. Now,

EΛpMpj2q,Mpj1qq “ dim HomΛpτ
´
pMpj1q,Mpj2qq.

Since m1 ď m2, we apply [6, Corollary (IV) 2.15 (c)] to obtain

EΛpMpj2q,Mpj1qq “ 0.

The case m2 ă m1 is similar.

The lemma is completed.

Lemma 8.13. Given an arc j R σ0 we have Ext1
pMpjq,Mpjqq “ 0.

Proof. By Proposition 4.5 we have EΛpMpjqq “ dim HomΛpτ
´pMpjq,Mpjqq. Propo-

sition 8.11 implies EΛpMpjqq “ dim Ext1
pMpjq,Mpjqq. The lemma follows from

Lemma 8.7.

The following result is a consequence of Voigt’s Lemma, see [23, Sections 1.6 and
1.8].

Lemma 8.14. Assume j R σ0. Then the Gd-orbit OpMpjqq is open in repdpΛq.

Proof. By Lemma 8.13 we have Ext1
pMpjq,Mpjqq “ 0, this implies that OpMq is

open, for example see [23, 1.7 Corollary 3].

By Lemma 8.7 we have examples of E-rigid indecomposable Λ- modules. The next
result shows that we already know all E-rigid Λ-modules, this result can be seen as
a consequence of Lemma 9.5, but we have mentioned that for σ0 the proof of some
results may be made with explicit computations.
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Proposition 8.15. If N is a indecomposable Λ-module and N is not of the form
Mpjq for some arc j of Σn, then EΛpNq ą 0.

Proof. Let W be the string associated to N and assume that N is not E-rigid. Given
a non-initial arc j of Σn we have the string Wj is one of the following

1pi,`q, with i P r1, n´ 1s,

ε ¨ ¨ ¨ amj with mj P r1, n´ 1s,

a´1
nj
¨ ¨ ¨ ε ¨ ¨ ¨ amj with mj ď nj and mj P r1, n´ 1s,

anj ¨ ¨ ¨ amj with n´ 2 ě nj ě mj.

Therefore W is different to Wj for any arc j of Σn, here we use Remark 8.5. If
W “ an´1 ¨ ¨ ¨ al with l ą 1 we have NpW q looks like

0 // ¨ ¨ ¨ // 0 // C id // ¨ ¨ ¨
id // C.

By [13] we get τ´pNpW qq “ Npε´1an´1 ¨ ¨ ¨ al´1q. Since

Npε´1an´1 ¨ ¨ ¨ al´1q : 0 // ¨ ¨ ¨ // 0 // C id // ¨ ¨ ¨
id // C

p 1
0 q// C2 p 0 1

0 0 q
gg ,

we get HomΛpτ
´pNpW qq, NpW qq ‰ 0. Proposition 4.5 implies EΛpNpW qq ą 0. The

case when l “ 1 is similar and follows from [13].
If W “ a´1

nW
¨ ¨ ¨ ε´1 ¨ ¨ ¨ amW with 1 ă mW ă nW , then

NpW q : 0 // ¨ ¨ ¨ // 0 // C id // ¨ ¨ ¨
id // C

p 1
0 q// C2 id // ¨ ¨ ¨

id // C2 p 0 1
0 0 q

gg

and by [13] we get τ´pNpW qq “ NpanW´1WamW´1q.
From definitions we get HomΛpτ

´pNpW qq, NpW qq ‰ 0, so EΛpNpW qq ą 0. The
case when mW “ 1 is similar and follows from [13]. Since the indecomposable Λ-
modules are parametrized by strings, the proposition follows from Theorem 3.13.

Now we interpret the g-vector of a representation Mpjq in terms of intersection
numbers. The three lemmas below follow from Remark 8.10 and Lemma 4.1. For
instance:

Lemma 8.16. For a pendant arc i1k with k P t1, 2, . . . , nu we have

gΛpMpi
1
kqql “

$

&

%

2 if l “ k ´ 1,
´1 if l “ n,

0 in otherwise.
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Proof. We start with the pendant arc i1k. From Remark 8.10 we obtain

In “ Npa´1
1 ¨ ¨ ¨ ε ¨ ¨ ¨ a1q

and Npanj´2 ¨ ¨ ¨ a1q “ Npamj´2 ¨ ¨ ¨ a1q because nj “ k “ mj (remember that the
string associated to i1k is a´1

k ¨ ¨ ¨ ε ¨ ¨ ¨ ak). On the other hand Ik´1 “ Npak´2 ¨ ¨ ¨ a1q.
The result follow from Lemma 4.1.

Lemma 8.17. Let j be a non-initial arc. If j is not a pendant arc and intersects in
in the interior of Σn, then we have

gΛpMpjqql “

$

’

’

&

’

’

%

1 if l ` 1 is the minimum of k such that dimpMpjqqk “ 1,
1 if l ` 1 is the minimum of k such that dimpMpjqqk “ 2,
´1 if l “ n,

0 in otherwise.

Lemma 8.18. Let j be a non-initial arc. If j is not a pendant arc and does not
intersect in, then we have

gΛpMpjqql “

$

&

%

1 if l ` 1 is the minimum of k such that dimpMpjqqk “ 1,
´1 if l is the maximum of k such that dimpMpjqqk ‰ 0,

0 in otherwise.

Proposition 8.19. The set

tCΛpMpjqq : j is an arc of Σnu

is linearly independent over C.

Proof. From the three lemmas above we know that the g-vectors gΛpMpjqq are pair-
wise different. For n even the result follows directly from [17, Proposition 4.3] since
kerpCQq “ 0. For n arbitrary we can adapt the argument in proof of [17, Proposition
4.3] as follows. Define

Qn
ě0 “ tpx1, x2, . . . , xnq P Qn : xi ě 0 for all iu,

Qn
s “ tpx1, x2, . . . , xnq P Qn

ě0 : xi ‰ 0 implies xi`1 ‰ 0 u,

Qn
0 “ tpx1, x2, . . . , xnq P Qn

ě0 : xn “ 0u.

We can define two partial orders in Zn. Let a,b P Zn be vectors. We say a ď b
if there exist some e P Qns such that a “ b ` CQe and a ĺ b if there exist some
f P Qn

0 such that a “ b ` CQf. These two orders induce two partial orders on the
set of Laurent monomials in n variables x1, x2, . . . , xn. We say xa ď xb if a ď b and
xa ĺ xb if a ĺ b. We define the degree of xa as degpxaq “ a.
If socpMpjqq “ Sn (the socle of Mpjq), then CΛpMpjqq has an unique monomial

of maximal degree gΛpMpjqq with respect to ď. If socpMpjqq “ Si with i ‰ n, then



specific triangulation 73

CΛpMpjqq has an unique monomial of maximal degree with respect to ĺ given by
gΛpMpjqq. It can be seen that if socpMpjqq “ Sn, then xgΛpMpjqq does not occur as
a summand of any CΛpMpkqq with socpMpkqq “ Si and i ă n. Since the g-vectors
are pairwise different, the Caldero-Chapoton functions are pairwise different. Now,
assume λ1CΛpMpj1qq ` ¨ ¨ ¨ ` λtCΛpMpjtqq “ 0 for some λl P C.
If there exists an index s0 such that Mpjs0q has socle Sn, then there exists an index

s such that xgΛpMpjsqq is ď-maximal in the set txgΛpMpjlqq : socpMpjlqq “ Snu. Since
the g-vectors are pairwise different we can conclude that λs “ 0. Indeed, xgΛpMpjsqq

does not occur as a summand of any CΛpMpjlqq with l ‰ s.
If socpMpjlqq ‰ Sn for all l, then there exist an index r such that xgΛpMpjrqq is ĺ-

maximal in the set of txgΛpMpjlqq : 1 ď l ď tu. Since the g-vectors are pairwise different
we have that xgΛpMpjrqq does not occur as a summand of any of the CΛpMpjlqq with
l ‰ r. Thus λr “ 0 and we can repeat this argument in order to conclude that
CΛpMpj1qq, . . . , CΛpMpjtqq are linearly independent.

8.2.2 Generic version

In this section we study a generic version of the results of the last section. Given
a triangulation σ of Σn we construct a strongly reduced irreducible component Zσ of
decreppΛq, see Section 4.3. Recall that Λ corresponds to σ0.
Denote by Zj the irreducible component of decreppΛq that contains OpMpjqq. We

know OpMpjqq is open, so it is dense in Zj. Then EΛpZjq “ EΛpMpjqq “ 0. In
the notation of Section 4.3 this means, in particular, that Zj is a strongly reduced
irreducible component of decreppΛq. We can think that some generic homological
data of Zj is encoded in the homological data of Mpjq.

Proposition 8.20. Given a triangulation σ of Σn and two arcs j1, j2 P σ we have
EΛpZj1 , Zj2q “ 0.

Proof. By Lemma 8.12 we know EΛpMpj1q,Mpj2qq “ 0. It can be seen that the set
OpMpj1qq ˆOpMpj2qq is open in Zj1 ˆ Zj2 . Indeed, from Lemma 8.14 we know that
OpMpjlqq is open in Zjl for l “ 1, 2. The claim follows from the equality of sets

AˆBzpC ˆDq “ rpAzCq ˆBs Y rAˆ pBzDqs,

because Zj1 ˆ Zj2zrOpMpj1qq ˆ OpMpj2qq] would be the union of two closed sets.
If pM,Nq P OpMpj1qq ˆ OpMpj2qq, then EΛpM,Nq “ 0. Since Zj1 and Zj2 are
irreducible, we have OpMpj1qqˆOpMpj2qq is dense in Zj1ˆZj2 . Then EΛpZj1 , Zj2q “
0.

The next result is a consequence of Theorem 4.9 and Proposition 8.20.

Proposition 8.21. Given a triangulation σ “ tj1, . . . , jnu of Σn, the closed set

Zσ “ Zj1 ‘ ¨ ¨ ¨ ‘ Zjn

is a strongly reduced irreducible component of decreppΛq.
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The next proposition generalizes [17, Proposition 9.4].

Proposition 8.22. The set

tCΛpZq : Z P decIrrs.r
pΛq, EΛpZq “ 0u

generates the Caldero-Chapoton algebra AΛ as C-algebra, where decIrrs.rpΛq denotes
the strongly reduced irreducible components of decreppΛq.

Proof. Only remains to prove that the Caldero-Chapoton functions of the non-E-rigid
representations can be expressed in terms of the Caldero-Chapoton functions of the
E- rigid representations. Let L1 “ a´1

n1
¨ ¨ ¨ ε ¨ ¨ ¨ am1 with m1 ă n1 be a string and let

m2 ď n be an integer. A direct calculation yields the following equations

CΛpNpL
1
1qq “ CΛpNpL1qq ` CΛpNpWrm1,n1´2sqq,

CΛpNpWrm2,nsqq “ CΛpNpWrm2,n´1sqq ` CΛpS´m2´1q.

Here we set WH “ 0 and S´0 :“ 0. The proposition follows from Proposition 8.15.
Recall the notation at the beginning of Section 8.1.
Indeed, let us verify the first equality: set N1 “ NpL1q, N 1

1 “ NpL11q and M “

NpWrm1,n1´2sq. With that convention we obtain that gΛpN1q “ rn1 ´ 1s ` rm1 ´ 1s ´
rns “ gΛpN

1
1q and gΛpMq “ ´rn1 ´ 2s ` rm1 ´ 1s.

For M : the dimension vector of sub-representations are given by h0 “ 0 and hi “
rn1´ i´1, n1´2s, where i P r1, n1´m1´1s. From this we get the vectors CQh0 “ h0

and CQhi “ rn1 ´ 1, n1 ´ 2s ´ rn1 ´ 2´ i, n1 ´ 1´ is, where i P t1, . . . , n1 ´m1 ´ 1u.
Therefore,

CΛpMq “ x´rn1´2s`rm1´1s
n1´m1´1
ÿ

i“0

x´rn1´i´2,n1´i´1s`rn1´1s`rn1´2s.

Note that all the dimension vectors of N1 are dimension vector of N 1
1 and the only

vectors that are dimension vectors of N 1
1 but not of N1 are ej “ rn´ j ` 1, ns, where

j P rn´n1` 2, n´m1` 1s. Besides, if we consider a as dimension vector of N1, then
χpGrapN1qq “ χpGrapN

1
1qq and χpGreipN

1
1qq “ 1. for all i P t1, . . . , n1 ´m1 ´ 1u.

In the following sum, a runs over all the dimension vectors of N1:
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CΛpN
1
1q “ xrn1´1s`rm1´1s´rns

˜

ÿ

a

χpGrapN
1
1qqx

CQa
`

n´m1`1
ÿ

j“n´n1`2

xCQej

¸

“ xrn1´1s`rm1´1s´rns
ÿ

a

χpGrapN1qqxCQa
` xrn1´1s`rm1´1s´rns

n´m1`1
ÿ

j“n´n1`2

xCQej

“ CΛpN1q ` xrn1´1s`rm1´1s´rns
n´m1`1
ÿ

j“n´n1`2

x´rn´i,n´i`1s`rns

“ CΛpN1q ` xrn1´1s`rm1´1s´rns
n1´m1´1
ÿ

i“0

x´rn1´i´2,n1´i´1s`rns

“ CΛpN1q ` xrn1´1s`rm1´1s
n1´m1´1
ÿ

i“0

x´rn1´i´2,n1´i´1s

“ CΛpN1q ` xp´rn1´2s`rn1´2sq`rn1´1s`rm1´1s
n1´m1´1
ÿ

i“0

x´rn1´i´2,n1´i´1s

“ CΛpN1q ` x´rn1´2s`rm1´1s
n1´m1´1
ÿ

i“0

x´rn1´i´2,n1´i´1s`rn1´1s`rn1´2s

“ CΛpN1q ` CΛpMq.

The first equality is completed. Now we verify the second equality. Set N2 “

NpWrm2,n´1sq and N 1
2 “ NpWrm2,nsq. From definitions we get that gΛpN2q “ rm2 ´

1s ´ rn´ 1s and gΛpN
1
2q “ rm2 ´ 1s.

For N2: the dimension vector are given by f0 “ 0 and fj “ rn ´ j, n ´ 1s, where
j P t1, 2, . . . , n´m2u. Therefore CQf0 “ f0 and CQfj “ ´rn´j´1, n´js`rn´1s`rns.
In this case we know that χpGrfjpN2qq “ 1 for all j P r0, n´m2s. Then

CΛpN2q “ xrm2´1s´rn´1s
n´m2
ÿ

j“0

x´rn´j´1,n´js`rn´1,ns

For N 1
2: the dimension vector are given by e0 “ 0 and ei “ rn ´ pi ´ 1q, ns,

for i P t1, 2, . . . , n ´ m2 ` 1u. From this, we get that CQe0 “ e0 and CQei “
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´rn´ i, n´ i` 1s ` rns where i P t1, 2, . . . , n´m2 ` 1u. Then

CΛpN
1
2q “ xrm2´1s

n´m2`1
ÿ

i“0

x´rn´i,n´i`1s`rns

“ xrm2´1s

˜

1`
n´m2`1
ÿ

i“1

x´rn´i,n´i`1s`rns

¸

“ xrm2´1s

˜

1`
n´m2
ÿ

j“0

x´rn´j´1,n´js`rns

¸

“ xrm2´1s
` xrm2´1s

n´m2
ÿ

j“0

x´rn´j´1,n´js`rns

“ xrm2´1s
` xrm2´1s´rn´1s

n´m2
ÿ

j“0

x´rn´j´1,n´js`rn´1s`rns

“ xrm2´1s
` CΛpN2q

“ CΛpS´m2´1q ` CΛpN2q

The second equality is completed.

8.3 The case of the pendant arc
Let σ be a triangulation of Σn. Throughout of this section j will be the pendant arc of
σ. Before proving the exchange relation when we flip at j, we need some preparation.
We shall relate Lemma 3.4 with Section 3.3.1. For each e P Nn we want to define

an action of C˚ in GrepMpjqq.

Definition 8.2. Given an interval H ‰ e “ rme, nes Ď r1, ns where me ď ne, let We

be the string lr ¨ ¨ ¨ l1 of direct letters such that SupppWeq “ e. If e “ H, then we
define WH as the zero string.

For any arc j of Σn let Supp2pMpjqq “ ti P Q : dimpMpjqqi “ 2u. Note that
Supp2pMpjqq is a sub-interval of r1, ns.
We define an action of C˚ in GrepMpjqq for any non-initial arc j of Σn. First,

assume j is a pendant arc. In this case, Mpjq looks like

0 // 0 // ¨ ¨ ¨ // 0 // C2 id // C2 id // ¨ ¨ ¨
id // C2 p 0 1

0 0 qgg .

We have dimMpjq “ 2rmj, ns where rmj, ns “ Supp2pMpjqq “ SupppMpjqq Ď r1, ns.
Let e P Nn be a vector. First, we consider two cases for e. When e “ rme, ns or
e “ 2rme, ns with mj ď me we have that GrepMpjqq is a point, so the action is trivial
and we have just one fixed point. Note that here Supppeq “ rme, ns. Finally, assume
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e “ rme, ns`rne, ns with mj ď me ă ne ď n. In this case we have Supppeq “ rme, ns
and Supp2peq “ rne, ns. It can be shown that GrepMpjqq is isomorphic to P1 :“ P1pCq.
Define the action C˚ ˆ GrepMpjqq Ñ GrepMpjqq by t ¨ ra : bs “ rta : bs. In this case
we have two fixed points, namely r0 : 1s and r1 : 0s. These fixed points correspond to
the sub-strings W and W 1 of Wj such that dimpNpW qq “ e “ dimpNpW 1qq. We have
Wj “ a´1

mj
¨ ¨ ¨ a´1

n´1ε ¨ ¨ ¨ amj and e “ rme, ns ` rne, ns. The fixed points correspond to
W “ a´1

ne ¨ ¨ ¨ a
´1
n´1ε ¨ ¨ ¨ ame and W 1 “ a´1

ne ¨ ¨ ¨ a
´1
n´1ε

´1 ¨ ¨ ¨ ame .
We consider the case when j is not a pendant arc. In this case Mpjq may have the

following form

0 // 0 // ¨ ¨ ¨ // 0 // C id // ¨ ¨ ¨
id // C

p 0
1 q// C2 id // C2 id // ¨ ¨ ¨

id // C2 p 0 1
0 0 qgg .

If SupppMpjqq “ rmj, ns and Supp2pMpjqq “ rnj, ns with mj ă nj ď n, then
dimpMpjqq “ rmj, ns`rnj, ns. We want to define an action of C˚ in GrepMpjqq. In the
cases when e is rme, ns with mj ď me ď n, 2rme, ns with nj ď me or rme, ns ` rne, ns
with me ă nj ď ne we have that C˚ acts trivially in GrepMpjqq because GrepMpjqq
is a point. If e “ rme, ns ` rne, ns with nj ď me ă ne, then we identify GrepMpjqq
with P1 and proceed as in the case of a pendant arc. In other words, in this case we
have two fixed points, i.e two sub-strings of Wj.
Up to now what we have done is interpret χpGrepMpjqq as combinatorial data of

Mpjq, namely as the number of sub-strings W of Wj such that the dimension vector
of NpW q is e.

Definition 8.3. Given a string L “ a´1
ne a

´1
ne1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame with me ă ne, we

define the dual string of L as L1 “ a´1
ne a

´1
ne1`1 ¨ ¨ ¨ a

´1
n´1ε

´1 ¨ ¨ ¨ ame .

Proposition 8.23. Assume that j and j1 “ flipσpjq are not the initial pendant arc
in. Let j1 and j2 be the arcs of σ incidents to j, see Figure 8.3. We assume that
j1, j2 R σ0, then

CΛpMpjqqCΛpMpj
1
qq “ CΛpMpj1qq

2
` CΛpMpj1qqCΛpMpj2qq ` CΛpMpj2qq

2. (8.3)

Thanks to Section 8.1 to prove (8.3) we are going to define a function ϕ

CampMpjqq ˆ CampMpj1qq Ñ
CampMpj1qq ˆ CampMpj1qq \ CampMpj1qq ˆ CampMpj2qq \ CampMpj2qq ˆ CampMpj2qq

(8.4)

with some properties implying (8.3), recall Proposition 8.2.

Definition 8.4. If h “ rmh, ns Ď r1, ns is an interval, we denote by Ds2,h “ rs1, s2 ´

1s X rmh, ns. We write Ws2,mh instead WDs2,h
, see Definition 8.2.
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ˆ

vs1`1

vs2`1

j2j

j1j1

Figure 8.3: j is a pendant arc.

Definition 8.5. We use the notation in Figure 8.3. The definition is given by cases.
Let pL1, L2q P CampMpjqqˆCampMpj1qq be a pair of strings. For relaxing the notation
we denote by e the dimension vector of NpL1q and by f the dimension vector of NpL2q.

1. L1 “ 0 or L1 “ an´1 ¨ ¨ ¨ ame withme ą s2: ϕpL1, L2q “ pL1, L2q P CampMpj2qqˆ

CampMpj2qq.

2. L1 “ an´1 ¨ ¨ ¨ ame with me ď s2: ϕpL1, L2q “ pWis2 ,me
, L2q P CampMpj1qq ˆ

CampMpj2qq.

3. L1 “ a´1
ne a

´1
ne`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame with ne ě me ą s2: ϕpL1, L2q “ pL1, L2q P

CampMpj2qq ˆ CampMpj2qq.

4. L1 “ a´1
ne a

´1
ne`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame with me ď s2 y me ă ne:

ϕpL1, L2q “ pL1, L2q P CampMpj2qq ˆ CampMpj2qq,

ϕpL11, L2q “ pL2, L1q P CampMpj2qq ˆ CampMpj2qq.

5. L1 “ a´1
mea

´1
me`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame with me ď s2:

(a) L2 “ 0: ϕpL1, L2q “ pWis2 ,me
,Wis2 ,me

q P CampMpj1qq ˆ CampMpj1qq.

(b) L2 “ an´1 ¨ ¨ ¨ amf with mf ą s2 :

ϕpL1, L2q “ pWs2,me , a
´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ameq,

where ϕpL1, L2q P CampMpj1qq ˆ CampMpj2qq.
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(c) L2 “ a´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf with mf ă nf y mf ą s2:

ϕpL1, L2q “ pa
´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame , a

´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ameq,

where ϕpL1, L2q P CampMpj2qq ˆ CampMpj2qq;

ϕpL1, L
1
2q “ pa

´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1an ¨ ¨ ¨ ame , a

´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ameq,

where ϕpL1, L
1
2q P CampMpj2qq ˆ CampMpj2qq.

(d) L2 “ a´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf with mf ą s2:

ϕpL1, L2q “ pa
´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame , a

´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ameq,

where ϕpL1, L2q P CampMpj2qq ˆ CampMpj2qq.

6. L1 “ a´1
ne a

´1
ne`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame with is1 ` 1 ď me ă ne ď s2:

(a) L2 “ 0:

ϕpL1, L2q “ pWs2,me ,Ws2,neq P CampMpj1qq ˆ CampMpj1qq,

ϕpL11, L2q “ pWis2 ,ne
,Ws2,meq P CampMpj1qq ˆ CampMpj1qq.

(b) L2 “ an´1 ¨ ¨ ¨ amf with mf ą s2:

ϕpL1, L2q “ pWs2,ne , a
´1
mf

a´1
mf`1 ¨ ¨ ¨ a´1

n´1ε ¨ ¨ ¨ ameq P CampMpj1qq ˆCampMpj2qq,

ϕpL11, L2q “ pWis2 ,me
, a´1
mf

a´1
mf`1 ¨ ¨ ¨ a´1

n´1ε ¨ ¨ ¨ aneq P CampMpj1qqˆCampMpj2qq.

(c) L2 “ a´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf with mf ă nf y mf ą s2:

ϕpL1, L2q “ pa
´1
ne a

´1
ne`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf , a

´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ameq

where ϕpL1, L2q P CampMpj2qq ˆ CampMpj2qq;

ϕpL1, L
1
2q “ pa

´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame , a

´1
ne a

´1
ne`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf q

where ϕpL1, L
1
2q P CampMpj2qq ˆ CampMpj2qq;

ϕpL11, L2q “ pa
´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ane , a

´1
mea

´1
me`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf q

where ϕpL11, L2q P CampMpj2qq ˆ CampMpj2qq;

ϕpL11, L
1
2q “ pa

´1
mea

´1
me`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf , a

´1
nf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ aneq

where ϕpL11, L12q P CampMpj2qq ˆ CampMpj2qq.
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(d) L2 “ a´1
mf
a´1
nf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf with mf ą s2:

ϕpL1, L2q “ pa
´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ane , a

´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ameq

where ϕpL1, L2q P CampMpj2qq ˆ CampMpj2qq;

ϕpL11, L2q “ pa
´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame , a

´1
mf
a´1
mf`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ aneq

where P CampMpj2qq ˆ CampMpj2qq.

We want to prove that ϕ is a bijection and the analogue of Proposition 8.2. We
need a way to relate the exponents of the monomials in both sides of (8.3).
Let pL1, L2q P CampMpjqqˆCampMpj1qq be a pair of strings. We are going to prove

that the monomials corresponding to pL1, L2q and ϕpL1, L2q are the same. Given a
string W we denote by eW the dimension vector of NpW q.

Proposition 8.24. If ϕpL1, L2q “ pW1,W2q P CampMpjlpL1,L2q
qq ˆCampMpjtpL1,L2q

qq

with lpL1,L2q P t1, 2u y tpL1,L2q P t1, 2u, then

CQpeL1`eL2q`gΛpMpjqq`gΛpMpj1qq “ CQpeW1`eW2q`gΛpMpjlpL1,L2q
qq`gΛpMpjtpL1,L2q

qq.
(8.5)

Proof. To ease the notation set C :“ CQ, e “ eL1 and f “ eL2 . We proceed case by
case as Definition 8.5.

1. gΛpMpjqq ` gΛpMpj
1qq ` Ce ` Cf “ gΛpMpj2qq ` gΛpMpj2qq ` Ce ` Cf , since

gΛpMpjqq ` gΛpMpj
1qq “ 2gΛpMpj2qq.

2. gΛpMpj1qq ` gΛpMpj2qq ` Crme, is2 ´ 1s ` Cf “

“ gΛpMpj1qq ` gΛpMpj2qq ´ rme ´ 1,mes ` ris2 ´ 1, is2s ` Cf

“ gΛpMpjqq ` gΛpMpj
1
qq ´ rme ´ 1,mes ` rns ` Cf

“ gΛpMpjqq ` gΛpMpj
1
qq ` Ce` Cf.

3. Follows from definitions, it is similar to case 1.

4. It is similar to case 1.

5. We follow four cases as in the definition of ϕ.

(a) gΛpMpj1qq ` gΛpMpj1qq ` 2Crme, s2 ´ 1s “

“ gΛpMpjqq ` gΛpMpj
1
qq ` 2rns ` 2rs2 ´ 1, s2s ´ 2rme ´ 1,mes

“ gΛpMpjqq ` gΛpMpj
1
qq ` Ce.

(b) gΛpMpj1qq ` gΛpMpj2qq ` Crme, s2s ` Crme, ns ` Cf “

“ gΛpMpj1qq ` gΛpMpj2qq ` rs2 ´ 1, s2s ´ 2rme ´ 1,mes ` rns ` Cf

“ gΛpMpjqq ` gΛpMpj
1
qq ` Ce` Cf.
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(c) 2gΛpMpj2qq ` Crme, ns ` Crnf , ns ` Crme, ns ` Crmf , ns “

“ gΛpMpjqq ` gΛpMpj
1
qq ` 2Crme, ns ` Crnf , ns ` Crmf , ns

“ gΛpMpjqq ` gΛpMpj
1
qq ` Ce` Cf.

(d) 2gΛpMpj2qq ` 2Crme, ns ` 2Crmf , ns “ gΛpMpjqq ` gΛpMpj
1
qq `Ce`Cf.

6. Again we have four cases.

(a) 2gΛpMpj1qq ` Crme, s2 ´ 1s ` Crne, s2 ´ 1s “

“ 2gΛpMpj1qq ` Ce` 2rs2 ´ 1s ` 2rs2s ´ 2rns

“ gΛpMpjqq ` gΛpMpj
1
qq ` Ce.

(b) We have to analyze two cases

(b.1) gΛpMpj1qq ` gΛpMpj2qq ` Crne, s2 ´ 1s ` `Crme, ns ` Cf “

“ gΛpMpj1qq ` gΛpMpj2qq ` Ce` Cf ` rs2 ´ 1s ` rs2s ´ rns

“ gΛpMpjqq ` gΛpMpj
1
qq ` Ce` Cf.

(b.2) gΛpMpj1qq ` gΛpMpj2qq ` Crme, s2 ´ 1s ` `Crne, ns ` Cf “

“ gΛpMpj1qq ` gΛpMpj2qq ` Ce` Cf ` Crs2, ns

“ gΛpMpjqq ` gΛpMpj
1
qq ` Ce` Cf.

(c) It is analogous to the previous case.

(d) 2gΛpMpj2qq`Crne, ns`2Crmf , ns`Crme, ns “ gΛpMpjqq`gΛpMpj1qq`Ce`Cf.

The proof of the proposition is completed.

Now we are going to prove that ϕ is a bijection. First we prove that ϕ is one to
one.

Lemma 8.25. ϕ is an injection.

Proof. We have to prove that ϕpXq ‰ ϕpY q if X ‰ Y . Let pL1, L2q, pΓ1,Γ2q P

CampMpjqq ˆ CampMpj1qq be pairs of strings and assume that pL1, L2q ‰ pΓ1,Γ2q.
Since the image of ϕ is the disjoint union of three sets we have to concentrate in the
cases when ϕpL1, L2q and ϕpΓ1,Γ2q are in the same component of the image of ϕ. We
need to consider the cases when both pL1, L2q and pΓ1,Γ2q satisfy the conditions in
the definition of ϕ such that ϕpL1, L2q and ϕpΓ1,Γ2q are in the same component of
the image of ϕ. We have three cases.

• If pL1, L2q and pΓ1,Γ2q satisfy one of the conditions (1), (3), (4), (5.c), (5.d),
(6.c) or (6.d), then ϕpL1, L2q and ϕpΓ1,Γ2q are in CampMpj2qq ˆCampMpj2qq.

• If pL1, L2q and pΓ1,Γ2q satisfy one of the conditions (2), (5.b) or (6.b), then
ϕpL1, L2q and ϕpΓ1,Γ2q are in CampMpj1qq ˆ CampMpj2qq.
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• If pL1, L2q and pΓ1,Γ2q satisfy one of the conditions (5.a) or (6.a), then ϕpL1, L2q

and ϕpΓ1,Γ2q are in CampMpj1qq ˆ CampMpj1qq.

We begin with the first case. If pL1, L2q and pΓ1,Γ2q satisfy both the same condition
in Definition 8.5 and they are different, then their images under ϕ will be different. So
the interesting cases are those which pL1, L2q and pΓ1,Γ2q satisfy different conditions.
Assume pL1, L2q satisfies one of the conditions (1), (3) or (4) in Definition 8.5. By
construction we have that if pL1, L2q ‰ pΓ1,Γ2q, then ϕpL1, L2q ‰ ϕpΓ1,Γ2q.
Now suppose that pL1, L2q satisfies the condition (5.c) and pΓ1,Γ2q satisfies the

condition (5.d). In this case we have

L1 “ a´1
me1

a´1
me1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame1 ,

L2 “ a´1
mf1

a´1
mf1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf1 with me1 ď s2, mf1 ă nf1 and mf1 ą s2.

W1 “ a´1
me2

a´1
me2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame2 ,

W2 “ a´1
mf2

a´1
mf2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf2 with me2 ď s2 y mf2 ą s2.

By definition it is clear that ϕpΓ1,Γ2q is different to ϕpL1, L2q and ϕpL1, L
1

2q since
me1 ă mf1 .
Assume pL1, L2q satisfies (5.c) and pΓ1,Γ2q satisfies (6.c), in this case we have

L1 “ a´1
me1

a´1
me1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame1 ,

L2 “ a´1
mf1

a´1
mf1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf1 withme1 ď s2, mf1 ă nf1 and mf1 ď s2.

Γ1 “ a´1
ne2
a´1
ne2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame2 ,

Γ2 “ a´1
nf2
a´1
nf2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ amf2 with s1 ` 1 ď me2 ă ne2 ď s2 and nfs2 ą mf2 ą s2.

Following Definition 8.5 we get

ϕpL1, L2q “ pa
´1
nf1
a´1
nf1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame1 , a

´1
mf1

a´1
mf1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame1 q.

By observing the definitions, ϕpL1, L2q and ϕpL1, L
1

2q can not be equal to ϕpΓ1,Γ2q,
ϕpΓ1,Γ

1

2q, ϕpΓ11,Γ2q or ϕpΓ11,Γ
1

2q because me2 ă ne2 ď s2 and mf2 ą s2.
The case pL1, L2q satisfies (5.c) and pΓ1,Γ2q satisfies (6.d) is similar to the previous

one. The cases when pL1, L2q satisfies (5.d), (6.c) or (6.d) are analogous to the above
discussion. That finish our first consideration.
Now we are going to deal with the second case. Again the interesting considerations

are those which pL1, L2q and pΓ1,Γ2q satisfy different conditions in Definition 8.5.
Assume pL1, L2q satisfies (2) and pΓ1,Γ2q satisfies (5.b). Then we have

L1 “ an´1 ¨ ¨ ¨ ame1 , with me1 ď is2 ,

Γ1 “ a´1
me2

a´1
me2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame2 ,

Γ2 “ an´1 ¨ ¨ ¨ amf2 , with me2 ď s2 and mf2 ą s2.
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Following the definitions we get that ϕpL1, L2q “ pWis2 ,me1
, L2q and

ϕpΓ1,Γ2q “ pWis2 ,me2
, a´1

mf2
a´1
mf2`1 ¨ ¨ ¨ a

´1
n´1an ¨ ¨ ¨ ame2 q.

Observe that SupppL2q Ď rs2 ` 1, ns and me2 ď s2, so L2 is different to

a´1
mf2

a´1
mf2`1 ¨ ¨ ¨ a

´1
n´1an ¨ ¨ ¨ ame2 .

The case when pΓ1,Γ2q satisfies (6.b) is similar. Suppose pL1, L2q satisfies (5.b) and
pΓ1,Γ2q satisfies (6.b), that means

L1 “ a´1
me1

a´1
me1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame1 ,

L2 “ an´1 ¨ ¨ ¨ amf1 with me1 ď s2 and mf1 ą s2.

Γ1 “ a´1
ne2
a´1
me2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame2 ,

Γ2 “ an´1 ¨ ¨ ¨ amf2 with me2 ă ne2 ď s2 and mf2 ą s2.

By applying ϕ we get

ϕpL1, L2q “ pWis2 ,me1
, a´1

mf1
a´1
mf1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame1 q,

ϕpΓ1,Γ2q “ pWis2 ,ne2
, a´1

mf2
a´1
mf2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame2 q,

ϕpΓ11,Γ2q “ pWis2 ,mf2
, a´1

mf2
a´1
mf2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame2 q.

If me1 “ ne2 , then me2 ă me1 and ϕpL1, L2q ‰ ϕpΓ1,Γ2q. Since me1 ď s2 ă mf2 , we
have ϕpL1, L2q ‰ ϕpΓ11,Γ2q. The case when pL1, L2q satisfies (6.b) is similar to the
previous discussion.
For the last case assume pL1, L2q satisfies (5.a) and pΓ1,Γ2q satisfies (6.a). We have

L1 “ a´1
me1

a´1
me1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame1 ,

L2 “ 0 with me1 ď s2.

Γ1 “ a´1
ne2
a´1
me2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ ame2 ,

Γ2 “ 0 with me2 ă ne2 ď s2.

Since me2 ă ne2 we conclude that ϕpL1, L2q ‰ ϕpΓ1,Γ2q and ϕpL1, L2q ‰ ϕpΓ11,Γ2q.
This proves that ϕ is injective.

Lemma 8.26. ϕ is surjective.

Proof. We need to show that ϕ is surjective on

i) CampMpj1qq ˆ CampMpj1qq,

ii) CampMpj1qq ˆ CampMpj2qq,
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iii) CampMpj2qq ˆ CampMpj2qq.

Case i). Suppose pR1, R2q P CampMpj1qqˆCampMpj1qq with R1 ‰ 0 ‰ R2 and R1 ‰

R2. In this caseR1 “ Ws2,m1 andR2 “ Ws2,m2 , by hypothesis we can assumem1 ă m2.
Since m2 ď s2, if we define L1 “ a´1

m2
a´1
m2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 , then by the definition

of ϕ (6.a) we have ϕpL1, 0q “ pR1, R2q. If m2 ă m1, then ϕpL11, 0q “ pR1, R2q. If
R1 “ R2 ‰ 0, we define W1 “ a´1

m1
a´1
m2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 and ϕpW1, 0q “ pR1, R1q.

Suppose R1 “ 0 and R2 ‰ 0, we define

Γ1 “ a´1
s2
a´1
s2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2 .

Then ϕpΓ11, 0q “ pR1, R2q. The case when R1 “ 0 or R2 “ 0 is similar to the above
case. This shows that ϕ is surjective in CampMpj1qq ˆ CampMpj1qq.
Case ii). Suppose pR1, R2q P CampMpj1qq ˆ CampMpj2qq where R1 ‰ 0 and

R2 ‰ 0. We have that R1 “ Ws2,m1 and consider some cases for R2. If R2 “

a´1
n2
a´1
n2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2 or R2 “ an´1 ¨ ¨ ¨ am2 with s2 ă m2 ă n2, then

ϕpan´1 ¨ ¨ ¨ am1 , R2q “ pR1, R2q

by the condition (2) of the definition of ϕ. If R2 “ a´1
n2
a´1
n2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2 with

m2 ď s2 ă n2 and m2 ă m1, then we define L1 “ a´1
m1
a´1
m1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2 , L2 “

an´1 ¨ ¨ ¨ an2 and Y1 “ a´1
m2
a´1
m1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 . In the case m2 ă m1, we have

ϕpL1, L2q “ pR1, R2q by the condition (6.b) in the definition of ϕ and if m1 ă m2,
we have ϕpY 11 , L2q “ pR1, R2q. The cases when R1 “ 0 or r2 “ 0 follow from similar
arguments to the previous discussion.
Case iii). Suppose pR1, R2q P CampMpj2qq ˆ CampMpj2qq. Now we assume that

R1 “ 0 or R1 “ an´1 ¨ ¨ ¨ am1 with m1 ą s2 and

R2 “ an´1 ¨ ¨ ¨ am2 or R2 “ a´1
n2
a´1
n2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2

with s2 ă m2 ă n2. So ϕpR1, R2q “ pR1, R2q by the first condition in Definition 8.5. If
R1 “ a´1

n1
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 withm1 ď n1 and R2 such that SupppR2q Ă rs2`1, ns,

then ϕpR1, R2q “ pR1, R2q by the conditions (3) and (4) in the definition of ϕ. If R1

is a string such that SupppR1q Ă rs2 ` 1, ns and R2 “ a´1
n2
a´1
n2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2 with

m2 ă n2 and m2 ď s2, then we have ϕpR12, R1q “ pR1, R2q by the condition (4) of
Definition 8.5.
Note that until now we have been dealt with the cases when R1 or R2 have support

contained in rs2 ` 1, ns. Assume that R1 “ R2 “ a´1
n1
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 with

m1 ă n1 and m1, n1 ď s2. If we define L1 “ a´1
n1
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ an1 and L2 “

a´1
m1
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 , e get ϕpL1, L2q “ pR1, R2q by (5.d) of Definition 8.5.

Suppose R1 ‰ R2. Let R1 “ a´1
n1
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 and

R2 “ a´1
n2
a´1
n2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2

where m1 ă n1, m2 ă n2, m1,m2 ď s2, m1 “ m2 and s2 ă n2 ď n1. If we define
L1 “ a´1

m1
a´1
m1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 and L2 “ a´1

n1
a´1
n2`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ an2 , then ϕpL1, L2q “
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pR1, R2q by the condition (5.c) in the definition of ϕ. The case where n1 ă n2 is
similar.
Let R1 and R2 be as in the above case but suppose m1 ă m2 and n2 ă n1. If

we define Γ1 “ a´1
n1
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2 and Γ2 “ a´1

n2
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am1 , we get

ϕpΓ1,Γ2q “ pR1, R2q by the condition (6.c) of Definition 8.5. The case when m2 ă m1

is analogous.
Given R1 and R2 as before we assume m2 ă m1 and n1 “ n2 ą s2. If we define

W1 “ a´1
m1
a´1
m1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ am2 and W2 “ a´1

n1
a´1
n1`1 ¨ ¨ ¨ a

´1
n´1ε ¨ ¨ ¨ an1 , by the condition

(6.d) in the definition of ϕ, we have ϕpW1,W2q “ pL1, L2q. The case when m1 ă m2

is similar to the previous one.
This proves that ϕ is a surjection.

Now (8.3) follows from Lemma 8.26, Lemma 8.25 and Proposition 8.24.
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Chapter 9
The Caldero-Chapoton algebra for any
initial triangulation

In this chapter, we will present the main results of this work by means of Galois
coverings.

9.1 E-rigid representations
Let σ be any triangulation of Σn and let Λpσq be the algebra associated to σ. In this
section we will characterize the E-rigid representations of Λpσq.
We can find a triangulation T of rΣn such that G ¨ T “ σ. By Lemma 7.10 we have

that the push-down functor π˚ : ΛpT q -mod Ñ Λpσq -mod is a G-precovering. Recall
that G “ Z3 acts on rΣn by an appropriate rotation. In this section we are going to
prove that π˚ is a G-covering. We are going to use this to characterize the EΛpσq-rigid
representations.
We are following the notation of [50, Section 5]. For σ “ tt1, t2, . . . , tnu we write,

unless we say something else, the triangulation T according to its orbits, namely
T “ tt1,1, t1,2, t1,3, . . . , tn,1, tn,2, tn,3u. If we denote by xi,j the initial cluster variable
associated with the arc ti,j, then the initial cluster will be

x0 “ px1,1, x1,2, x1,3, . . . , xn,1, xn,2, xn,3q.

If we associated the variable zi to the arc ti, then we obtain a morphism of algebras
π : Crx˘i,js Ñ Crz˘i s, given by πpxi,jq “ zi for i “ 1, . . . , n and j “ 1, 2, 3. The action
of Z3 on T allow us to define the following function

π : N3n
Ñ Nn, πppa1,1, a1,2, a1,3, . . . , an,1, an,2, an,3q

t
qi “ ai,1 ` ai,2 ` ai,3.

We hope that the reader is not confused with our unfortunately choice of π for dif-
ferent maps. For us the arc tn P σ will denote the pendant of the triangulation and
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tn,1, tn,2, tn,3 are the three sides of the triangle invariant under the action of Z3 on rΣn.
Therefore the matrix CQpT q has a decomposition in blocks of size 3 ˆ 3. Recall that
by definition CQpT q is skew-symmetric, moreover CQpT q is skew-symmetric by blocks
and every block is a multiple of the identity of size 3, except for the block n, n that
corresponds to the adjacency of the 3-cycle of QpT q with vertices tn,1, tn,2, tn,3.

Lemma 9.1. The push down functor π˚ : ΛpT q -mod Ñ Λpσq -mod is a Galois G-
covering.

Proof. By Lemma 3.6 we only need to prove that π˚ is dense. Well, by Proposition 7.8
and Proposition 7.9 we know that Λpσq is a finite-dimensional gentle algebra. From
Theorem 3.13 we have that the strings parametrize the indecomposable modules of
Λpσq. Since we work in Krull-Schmidt categories we need to prove that the Galois
G-covering π : ΛpT q Ñ Λpσq induces a surjective function between the set of all string
of those algebras and that π˚pNpW̃ qq – NpW q where W̃ is a string of ΛpT q such that
G ¨ W̃ “ W , recall that NpW q denotes the string module associated to W . The last
fact follows from definitions.
Suppose the pendant arc of σ is based at vi. Assume W “ W2ε

kpW qW1 is a string
for Λpσq with Wi a string without the letter ε for i “ 1, 2 and kpW q P t´1, 0,`1u.
Recall that ε is the loop based at the pendant arc of σ. It is clear that if W1 does
not contain the letter ε, then W1 can be lifted to a string with letters contained in
one of the three fundamental region divided by the dashed blue lines, see Figure 9.1,
say that is contained in the region that contains to rui, ui`n`1s. Note that the final
letter of W1 must be a1 or b´1

1 , see Figure 9.1. Now, if kpW q “ 0, then W itself can
be lifted to a word in that region. If kpW q “ 1, we choose ε3,1 and W2 can be lifted
to a string in the third fundamental region containing rui, ui`2pn`1qs. If kpW q “ ´1,
we put the letter ε2,1 and it is clear that W2 can be lifted to a string of ΛpT q with
letter of the second fundamental region containing rui`n`1, ui`2pn`1qs. Therefore the
string W can be lifted to one string W̃ of ΛpT q. Note that W̃ depends on where we
lifted the tail point of W1. The proof of the lemma is completed.

Lemma 9.2. The push down functor π˚ : ΛpT q -mod Ñ Λpσq -mod induces a Galois
G-covering π˚ : decreppΛpT qq Ñ decreppΛpσqq.

Proof. Let R “ CQpT q0 be the vertex span of ΛpT q. We can see that RG “ CQpσq0 is
the vertex span of Λpσq. With this notation it is clear that a decorated representation
pM,V q is a pair where M P ΛpT q -mod and V P R -mod. For V P R -mod we can
define π˚pV q P RG -mod as in Remark 7.13. We put π˚pM,V q “ pπ˚pMq, π˚pV qq and
the lemma follows from the fact that

HomdecreppΛpT qqppM,V q, pN,W qq – HomΛpT qpM,Nq
à

HomRpV,W q.

Now, we can extend Lemma 8.6 to other triangulations.
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¨

ui

ui`n`1

ui`2pn`1q

ε3,1

ε2,3

ε1,2

a1

b1

Figure 9.1: Fundamental regions in rΣn. The sub-index in the red arrows indicates
which fundamental regions they connect.

Corollary 9.3. Let σ be a triangulation of Σn and let j be an arc of Σn not in σ.

(a) Assume Mpj, σq is not projective, then τpMpj, σqq “Mpr`pjq, σq.

(b) Assume Mpj, σq is not injective, then τ´pMpj, σqq “Mpr´pjq, σq.

Proof. Since we have Lemma 9.1, the corollary is a consequence of the An case from
[15, Theorem 2.13] and Theorem 3.7. Let rj be a lifting of j in rΣn and let rσ be the
lifting of σ.
(a). From [15, Theorem 2.13] we see that τpMprj, rσqq “Mpr`pj̃q, rσq and by apply-

ing π˚, from [8, Theorem 4.7 (1)], we get what we want, τpMpj, σqq “ Mpr`pjq, σq.
The proof of (b) is similar.

The reader can compare the next proposition and [50, Proposition 7.15].

Proposition 9.4. Let σ be a triangulation of Σn and let Λpσq be the algebra asso-
ciated to σ. Suppose T is the triangulation of rΣn such that G ¨ T “ σ. If M is an
indecomposable representation of ΛpT q -mod, then π˚pMq is EΛpσq-rigid if and only if
EΛpT qpM, g ¨Mq “ 0 for any g P G.

Proof. The proposition follows from Proposition 4.5 and the following equalities

dim HomΛpσqpτ
´
pπ˚pMqq, π˚pMqq “ dim HomΛpσqpπ˚pτ

´
pMqq, π˚pMqq

“ dim
à

gPG

HomΛpT qpg ¨ τ
´
pMq,Mq

“
ÿ

gPG

dim HomΛpT qpτ
´
pg ¨Mq,Mq.
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Since π˚ is a Galois G-covering, Lemma 9.1, the first equality follows from Theorem
3.7, see [8, Theorem 4.7 (1)]. The second line follows from definition of G-precovering
and the third line is a consequence that g ¨ ´ is an isomorphism of categories. This
conclude the proof.

Lemma 9.5. Let N be an indecomposable representation of Λpσq. Then N is EΛ-rigid
if and only if N “Mpj, σq for some arc j of Σn.

Proof. Let M be a representation of Λpσq such that π˚pMq “ N , recall that π˚
is dense. From [15, Corollary 2.12] we know that there is a bijection between the
indecomposable representations of ΛpT q and the diagonals of rΣn not in T . Then
M “Mprj, T q for some arc rj of rΣn. By Proposition 9.4 we know that N is EΛpT q-rigid
if and only if EΛpT qpM, g ¨Mq “ 0. We need to analyze dim HomΛpT qpτ

´pg ¨Mq,Mq.
Suppose rj “ rul, ul`ks for some l P r0, 3n`1s , then g¨M “Mprul´pn`1q, ul`k´pn`1qs, T q
and τ´pg ¨ Mq “ Mprul´n´2, ul`k´n´2s, T q. This means, in particular, that g ¨ M
is an arc representation. By [15, Lemma 2.5], the Auslander-Reiten formulas and
[15, Remark 2.15] if EΛpT qpM, g ¨ Mq “ 0 for any g P Z3, then we can conclude
that rj has to be an admissible arc of rΣn, therefore G ¨ rj “ j is an arc of Σn and
N “ π˚pMprj, T qq “Mpj, σq. The proof of the lemma is completed.

Remark 9.6. Let F : A Ñ B be a Galois G-precovering. Then F is faithful, see [8,
Lemma 2.6 (2)].

Lemma 9.7. Let Il be the indecomposable injective at l P QpT q. Then π˚pIlq – IG¨l,
where IG¨l is the indecomposable injective at G ¨ l.

Proof. The lemma follows from Lemma 9.1 and Theorem 3.7. Indeed, the Galois
covering π˚ preserves AR-sequences by Theorem 3.7, so preserves injectives and pro-
jectives. We will write down a proof without using Theorem 3.7 in order to show the
level of computations involved with Galois coverings. This might be instructive for
some readers.
Let D “ HomCp´,Cq be the standar C-dual functor. Remember that Ilpkq “

DHompek, elq and π˚pIlqpG ¨ kq “
À

gPZ3
DHompg ¨ ek, elq. By definition there exist

an isomorphism πk,l˚ :
À

gPZ3
Hompg ¨ ek, elq Ñ HompG ¨ ek, G ¨ elq. In other words,

for any k P QpT q0 we get an isomorphism πk,l˚ : IG¨lpG ¨ kq Ñ π˚pIlqpG ¨ kq. In-
deed, from definitions we have the following isomorphism Dπk,l˚ : DHompG ¨ ek, G ¨
elq Ñ Dr

À

gPZ3
Hompg ¨ ek, elqs. Denote with ϕk,l the standard isomorphism ϕk,l :

Dr
À

gPZ3
Hompg ¨ ek, elqs Ñ

À

gPZ3
DHompg ¨ ek, elq, f ÞÑ pϕk,lg pfqqgPG “ pfιgqgPG,

where ιh is the inclusion ιh : Homph ¨ ek, elq Ñ
À

gPZ3
Hompg ¨ ek, elq. Then πk,l˚ :“

ϕk,l ˝Dπk,l˚ .
Let α : k1 Ñ k2 P QpT q be an arrow, we are going to show that πk2,l

˚ ˝ pIG¨lqG¨α “
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π˚pIlqG¨α ˝ π
k1,l
˚ , in other words, we will see that the following diagram commutes.

Iπplqpπpk1qq
π
k1,l
˚ //

Iπplqpπpαqq

��

π˚pIlqpπpk1qq

π˚pIlqpπpαqq

��
Iπplqpπpk2qq

π
k2,l
˚

// π˚pIlqpπpk2qq

Suppose that f P HomCpHompG ¨ ek1 , G ¨ elq,Cq. We have that

π˚pIlqG¨α ˝ π
k1,l
˚ pfq “ π˚pIlqG¨αpϕ

k1,l ˝Dπk1,l
˚ qpfq

“ π˚pIlqG¨αppϕ
k1.l
h pDπk1,l

˚ pfqqqhPGq

“ π˚pIlqG¨αppDπ
k1,l
˚ pfqιhqhPGq

Fix h0 P G and suppose that w P HomCpHomph0 ¨ el, ek2q,Cq.

π˚pIlqG¨αpDπ
k1,l
˚ pfqιh0qpwq “

ÿ

gPG

Ilpαh0,gqpDπ
k1,l
˚ pfqιh0qpwq

“
ÿ

gPG

Dπk1,l
˚ pfqιh0pwαh0,gq,

ÿ

gPG

πpαh,gq “ πpαq

“
ÿ

gPG

fpπk1,l
˚ pιh0pwαh0,gqqq

“
ÿ

gPG

fpπpwαh0,gqq

“ fp
ÿ

gPG

πpwαh0,gqq

“ fpπpwαqq.

Now we compute the another side

πk2,l
˚ ˝ pIG¨lqG¨α “ pϕ

k2,l
h pπk2,l

˚ pIπplqpπpαqqpfqqqhPGq,

for h0 and w as before we get the following

ϕk2,l
h0
pπk2,l
˚ pIπplqpπpαqqpfqqqpwq “ πk2,l

˚ pIπplqpπpαqqpfqqqpιh0pwqq

“ Iπplqpπpαqqpfqpπ
k2,l
˚ pιh0pwqqq

“ Iπplqpπpαqqpfqpπpwqq

“ fpπpwqπpαqq

“ fpπpwαqq.

The proof of the lemma is completed.
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Lemma 9.8. If f : M Ñ N is injective in ΛpT q -mod, then π˚pfq : π˚pMq Ñ π˚pNq
is injective in Λpσq -mod.

Proof. Remember that f “ pfiqiPQpT q0 is a 3n-tuple of linear transformations and by
hypothesis we have that dim rank fi “ dimMi. The lemma follows from Remark 7.13
and that dim rankπ˚pfqG¨i “

ř

gPZ3
dim rank fg¨i.

Lemma 9.9. Let rj be an arc of rΣn. For M :“Mprjq P ΛpT q -mod, let

0 //M
f // I0

g // I1

be a minimal injective presentation of M . Then

0 // π˚pMq
π˚pfq // π˚pI0q

π˚pgq // π˚pI1q

is a minimal injective presentation of π˚pMpαqq.

Proof. The lemma follows from Lemma 9.7 and Lemma 9.8 and from the fact that
simples of ΛpT q -mod are sent to simples of Λpσq -mod, specifically π˚pSxq “ SG¨x.
Indeed, let X ‰ 0 be a submodule of π˚pI0q, then there exist a simple submodule
SG¨x0 ď X for some x0 P QpT q0. If the G-orbit of x0 is tx0, x

1
0, x

2
0u, we get that

Sy ď I0 for y P G ¨ x0. By hypothesis we know that impfq X Sy what implies that
impπ˚pfqqXSG¨x0 . For π˚pgq the argument is similar, so the lemma is completed.

We shall discuss about the Caldero-Chapoton algebras associated to different tri-
angulation. Let T1 and T2 be triangulations of rΣn. Denote by Ai :“ AΛpTiq the
Caldero-Chapoton algebra corresponding for i “ 1, 2. Let Di the C-subalgebra of Ai
generated by CΛpTiqpMprj, Tiqq for any admissible arc rj of rΣn for i “ 1, 2.

Lemma 9.10. With the above notation D1 and D2 are isomorphic as C-algebras.

Proof. Let ϕ : A1 Ñ A2 be the corresponding isomorphism of cluster algebras. This
isomorphism sends a cluster variable to the corresponding Laurent Polynomial in the
initial seed associated to T2, i.e xri ÞÑ CΛpT2qpM p̃i, T2qq for an arc ri in T1. Suppose that
we can get T2 from T1 by the flip sequence psl, sl´1, . . . , s1q. From [25] we conclude
that CΛpT1qpMprj, T1qq “ CΛpT2qpµs1µs2 ¨ ¨ ¨µslpMprj, T2qqq, then

ϕpCΛpT1qpMprj, T1qqq “ CΛpT2qpMprj, T2qq.

That means that ϕ can be restricted to D1 and we obtain the isomorphism desired.
The lemma is completed.

Remark 9.11. Let W be a string of Σn. Consider a lifting ĂW of W on rΣn. If f is a
dimension vector of some sub- representation of NpĂW q, then πpyCQpT q¨fq “ zCQpσq¨πpfq.
Indeed, we need to prove that

πpy
CQpT qi,1 ¨f
i,1 y

CQpT qi,2 ¨f
i,2 y

CQpT qi,3 ¨f
i,3 q “ z

CQpσqi ¨πpfq
i (9.1)
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for any i P r1, ns, here CQpT qi,j denote the pi, jq-th row of the matrix CQpT q. For
i ă n the calculation is straightforward and we will concentrate in the case when
i “ n. Assume i “ n, we orient the arcs tn,1, tn,2, tn,3 in counter clockwise on rΣn. This
orientation determines the pn, nq block of CQpT q. In order to obtain (9.1) we need
that

pfn,2 ´ fn,1q ´ pfn,3 ´ fn,1q ` pfn,3 ´ fn,2q “ 0. (9.2)

The observation is that (9.2) is true in case f is the dimension vector of an indecom-
posable representation of ΛpT q.

Lemma 9.12. Let σ be a triangulation of Σn and let Λpσq be the algebra associated
to σ. Let W be a string on Qpσq and let ĂW be a lifting of W in QpT q, where T is the
triangulation of rΣn such that G ¨ T “ σ. Then for any dimension vector e of NpW q
we get

ÿ

f : πpfq“e

χpGrfpNpĂW qqq “ χpGrepNpW qqq.

Proof. First, we are going to introduce some notation. We write j :“ jpW q for the
arc determined by W , note that this arc can have self intersections. We will denote
Mpjq :“ NpW q. Suppose j connects vk and vl with k ď l. So, we orient j from vk to
vl. Let xp1 be the first intersection point between j and the pendant arc ppσq of σ.
Let xp2 be the second intersection point between j and ppσq. We divide the arc j in
three parts;

• The top part j1,0 “ rvk, xp1s.

• The center part j1,1 “ rxp1 , xp2s.

• The buttom part j0,1 “ rxp2 , vls.

Let upj “ txi : xi “ j1,0 X i with i P σu be the upper points of j. Let bpj “ tyi : yi “
j0,1 X i with i P σu be the below points of j. For convention if j does not cross ppσq,
then xp1 “ vl, xp2 “ vk and bpj “ upj, see Figure 9.2.
Let L P GrfpMpjqq be a sub-representation of Mpjq with dimension vector e. We

are going to define an action of C˚ on GrepMpjqq. For t P C˚ we define t ¨L as follows:

pt ¨ Lqk “

"

p tab q ¨ C if Lk “ p ab q ¨ C and dimMpjqk “ 2,
Lk in other wise.

Indeed, this define an action of C˚ on GrepMpjqq. By Lemma 3.4 we know that
χpGrepMpjqq

C˚q “ χpGrepMpjqqq. In this case GrepMpjqq
C˚ is a finite set, then the

Euler characteristic is its cardinality. Denote by Qpjq the full sub-quiver of Qpσq
defined by j. We consider the lifting rj of j on rΣn. On rΣn we can also define the
corresponding top, center and bottom part of rj.
Note that if the arc j does not cross ppσq, then rj is completely contained in one

fundamental region of the action and π acts as a bijection between dimension vectors
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of sub-representations of Mprjq and dimension vector of sub-representations of Mpjq.
In other words, there exist an unique f such that πpfq “ e. Therefore χpGrfpNpĂW qqq “
χpGrepNpW qqq “ 1.
Let L P GrepMpjqq

C˚ be a sub-representation of Mpjq. It is clear that L define
a walk in Qpjq and also an unique subset F pLq of bpj Y upj. Indeed, the action we
have defined allows to identify every subspace Li with points of F pLq Ă bpj Y upj in
the following way. If Li is generated by p1, 0qt, then we take the corresponding upper
point of j. If Li is generated by p0, 1qt, then we take the corresponding below point
of j. In case Li is 2 dimensional, then we take both, the upper and below point of
j. It is clear that F pLq determines an unique vector fL of Mprjq such that πpfLq “ e.
This implies that

ÿ

f : πpfq“e

χpGrfpNpĂW qqq ě χpGrepNpW qqq.

For any vector f of some sub-representation of NpĂW q with πpfq “ e we can find a
subset Df of bpj Y upj corresponding to a sub-representation of NpW q, namely we
obtain the image under π˚ of the representation given by f. We make this by cuting
the arc rj on rΣn along the boundary of the fundamental regions that it crosses and
gluing that parts on Σn according to the orientation we fixed on rj. This subset
corresponds to a sub-representation Lf of NpW q. By the definition of the action we
can conclude that Lf P GrepMpjqq

C˚ . This shows the another inequality. Hence the
lemma is completed.

p(τ)

j

vk

vl

xp1
xp2

xikxik+1

yil yil+1

Figure 9.2: An arc j on Σn with respect to a triangulation σ.

The next proposition follows from Lemma 9.9, Remark 9.11 and Lemma 9.12. The
reader can compare this result with the discussion of [50, Remark 7.9].

Proposition 9.13. Let σ be a triangulation of Σn and let Λpσq be the algebra asso-
ciated to σ. Assume T is the triangulation of rΣn such that G ¨ T “ σ. Then for any
string W of Λpσq the following equation is true

πpCΛpT qpNpĂW qqq “ CΛpσqpNpW qq.
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Proof. By expanding CΛpT qpNpĂW qq and reording its monomials as in Lemma 9.12
we are able to apply Lemma 9.9 and Remark 9.11 to any monomial. Note that
from Lemma 9.9 we have that πpgΛpT qpNpĂW qqq “ gΛpσqpNpW qq. The proposition is
completed.

9.2 The Caldero-Chapoton algebra is a generalized
cluster algebra

Before state and prove our main result we need some previous propositions.

Proposition 9.14. Let σ be a triangulation of Σn and let Λpσq be the algebra associ-
ated to σ. Assume T is the triangulation of rΣn such that G ¨ T “ σ and j R σ. Then
the Gd-orbit OpMpjqq is open in repdpΛpσqq.

Proof. By [23, 1.7 Corollary 3] we need to prove that for any arc j of Σn we have
that ExtΛpσqpMpjq,Mpjqq “ 0. This is clear by the Auslander-Reiten formula since
EpMpjqq “ 0 “ dim Hompτ´pMpjqq,Mpjqq.

If we denote by Zpjq the irreducible component containing Mpjq, then OpMpjqq is
dense in Zpjq. Therefore Mpjq is generic and all its homological data is generic in
Zpjq. We can take generic versions of the results of the above section as in Section
8.2.
Repeating the arguments of Proposition 9.4 and applying what we know for the An

case, for instance see [15, Remark 2.15], we have

Proposition 9.15. Given a triangulation σ1 of Σn and two arcs j1, j2 P σ
1 we have

EΛpσqpZj1 , Zj2q “ 0.

The next proposition shows that the E-rigid representations generate the corre-
sponding Caldero-Chapoton algebra.

Proposition 9.16. The set

tCΛpσqpZq : Z P decIrrs.r
pΛq, EΛpσqpZq “ 0u

generates the Caldero-Chapoton algebra AΛpσq as C-algebra.

Proof. As in Proposition 8.22 we are going to prove that the Caldero-Chapoton func-
tions of E-rigid representations generate the remaining Caldero-Chapoton functions.
Let rj be an arc of rΣn such that it does not belong to any triangulation invariant
under the action of Z3. By Proposition 9.4 from these arcs come all the non-E-rigid
representations of Λpσq, so what we need to do is to prove the result in this case. In
other words, we are going to prove that the Caldero-Chapoton function of π˚pMprjqq
can be expressed in terms of the Caldero-Chapoton functions of E-rigid representa-
tions. For rj we construct a quadrilateral in the following way; first, we choose an
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ending point of rj, say ui. Then we draw the triangle invariant under the Z3-action
incident to ui with sides given by rj1, rj1 and rj4. Finally, we complete the quadrilateral
with the other ending point of rj such that rj and rj1 are the respective diagonals. We
label the remaining sides with rj2 and rj3. This construction is depicted in Figure 9.3.
From Proposition 8.1, see [14], we have that

CΛpT qpMprjqqCΛpT qpMprj
1
qq “ CΛpT qpMprj1qqCΛpT qpMprj3qq ` CΛpT qpMprj2qqCΛpT qpMprj4qq.

Note that rj1, rj1 and rj4 are in the same orbit. By applying the algebras homomorphism
π to the above equation, from Proposition 9.13, we obtain

CΛpσqpπ˚pMprjqqqCΛpσqpπ˚pMprj
1
qqq “

CΛpσqpπ˚pMprj
1
qqqCΛpσqpπ˚pMprj3qqq ` CΛpσqpπ˚pMprj2qqqCΛpσqpπ˚pMprj

1
qqq.

(9.3)

Since we are in an integral domain, we have the desired relation

CΛpσqpπ˚pMprjqqq “ CΛpσqpπ˚pMprj3qqq ` CΛpσqpπ˚pMprj2qqq.

The proposition is completed.

¨

ui

ui`n`1

ui`2pn`1q

rj1

rj1
rj4

rj

rj2

rj3

Figure 9.3: The quadrilateral with rj as diagonal and with two adjacent sides of one
invariant triangle of rΣn.

From the above proposition we obtain our main result.

Theorem 9.17. For any triangulation σ of Σn we have that the Caldero-Chapoton
algebra AΛpσq is isomorphic to the generalized cluster algebra ApBpσ0qq.
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Proof. Let T1 and T2 be triangulations of rΣn. Denote by Ai :“ AΛpTiq the Caldero-
Chapoton algebra corresponding for i “ 1, 2. Let Di the C-subalgebra of Ai generated
by CΛpTiqpMprj, Tiqq for any admissible arc rj of rΣn for i “ 1, 2. By Lemma 9.10 we
have that D1 and D2 are isomorphic. The previous Proposition and Proposition 9.13
show that the Caldero-Chapoton algebra associated to σi “ G ¨Ti is πpDiq for i “ 1, 2.
We conclude that the Caldero-Chapoton algebras A1 and A2 are isomorphic. Now,
from [50] we know that the image of Λpσ0q under π is a Chekhov-Shapiro generalized
cluster algebra with initial seed pBpσ0q,dσ0q. Indeed, from [50, Lemma 5.6] and [50,
Lemma 5.7] we know that the exchange polynomial are those of Chekhov-Shapiro.
The theorem is completed.

9.3 Example
The example in this section illustrate our main result. It can also be considered a
complement to [17, Example 9.4.2]. Let σ0 be the special triangulation of Σ3 and let
σ be the triangulation of Example 7.1, see Figure 9.4.

ˆ

v0v1

v2 v3

ˆ

v0v1

v2 v3

Figure 9.4: On the left side we can see the special triangulation σ0 and on the right
side we have a triangulation σ of Σ3.

It is clear that σ and σ0 are related by a flip at one arc. To ease the notation we set
Λ “ Λpσq, see Example 7.1. From Theorem 3.13 we know that the indecomposable
Λ-modules are parametrized by the strings of Λ. We say that a string W is E-rigid if
its string module NpW q is E-rigid. There are 12 indecomposable E-rigid decorated
representations of Λ of which 9 are given by the E-rigid strings 11, 12, ε, a, εb, cε,
cεb, b´1εb and cεc´1; and the remaining three are the negative simple representations
of Λ. The non-E-rigid strings are 13, b, c, b´1ε, εc´1 and b´1εc´1.
By definition CΛpS´i q “ yi for i “ 1, 2, 3. In Figure 9.5 we write the string module

corresponding to every arc of Σ3. The Caldero-Chapoton functions associated to the
9 E-rigid strings of Λ are

CΛpNpεbqq “
y2

1 ` y1y2 ` y
2
2 ` y2y3

y1y3

, CΛpS1q “
y2 ` y3

y1

,
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ˆ

S1

v0

ˆ

S2

v0

ˆ

Npcεbq

v0

ˆ

Npεq

v0

ˆ

Npaq

v0

ˆ

Npcεc´1q

v0

ˆ

Npεbq

v0

ˆ

Npcεq

v0

ˆ

Npb´1εbq

v0

Figure 9.5: The nine E-rigid representations of Λ with respect to the triangulation σ
on Σ3.

CΛpNpcεqq “
y1y3 ` y

2
1 ` y1y2 ` y

2
2

y2y3

, CΛpS2q “
y1 ` y3

y2

,

CΛpNpcεbqq “
y1y3 ` y

2
1 ` y1y2 ` y

2
2 ` y2y3

y1y2y3

, CΛpNpaqq “
y2 ` y3 ` y1

y1y2

,

CΛpNpcεc
´1
qq “

y2
3 ` 2y1y3 ` y

2
1 ` y2y3 ` y1y2 ` y

2
2

y2
2y3

, CΛpNpεqq “
y2

1 ` y1y2 ` y
2
2

y3

,

CΛpNpb
´1εbqq “

y2
1 ` y1y2 ` y

2
2 ` 2y2y3 ` y

2
3 ` y1y3

y2
1y3

.

The Caldero-Chapoton functions associated to the non-E-rigid strings of Λ are

CΛpS3q “ y1 ` y2, CΛpNpbqq “
y1 ` y2 ` y3

y1

, CΛpNpcqq “
y3 ` y1 ` y2

y2

,

CΛpNpb
´1εqq “

y2
1 ` y1y2 ` y1y3 ` y

2
2 ` y2y3

y1y3

,

CΛpNpεc
´1
qq “

y1y3 ` y
2
1 ` y1y2 ` y2y3 ` y

2
2

y2y3

,

CΛpNpb
´1εc´1

qq “
y1y3 ` y

2
1 ` y1y2 ` y

2
2 ` y2y3 ` y

2
3 ` y1y3 ` y2y3

y1y2y3

.

Remark 9.18. According to Proposition 9.16 we have that the Caldero-Chapoton
functions of indecomposable E-rigid representations generate the remaining Caldero-
Chapoton functions. In this case we have the following relations

CΛpS3q “ CΛpS´1 q ` CΛpS´2 q,
CΛpNpbqq “ CΛpS1q ` 1,
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CΛpNpcqq “ CΛpS2q ` 1,

CΛpNpb
´1εqq “ CΛpNpεbqq ` 1,

CΛpNpεc
´1
qq “ CΛpNpcεqq ` 1,

CΛpNpb
´1εc´1

qq “ CΛpNpcεbqq ` CΛpNpaqq.

These relations correspond to the procedure of the proof of Proposition 9.16. With
the notation of [17, Example 9.4.2] we can define the following isomorphism of the
corresponding Caldero-Chapoton algebras ϕ : AΛpσq Ñ AΛpσ0q. We set y1 ÞÑ x1,
y2 ÞÑ CΛpσ0qp2q “

x1`x3

x2
and y3 ÞÑ x3. This morphism sends the Caldero-Chapoton

function of the arc representation associated to one arc of σ to the Caldero-Chapoton
function with respect to Λpσ0q of the same arc.
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