

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS (FÍSICA) INSTITUTO DE FÍSICA, UNAM

REACTIVIDAD DE NANOCÚMULOS BIMETÁLICOS DE ORO Y COBRE

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIAS (FÍSICA)

PRESENTA: MOISES FABIAN RAMÍREZ LARA

TUTOR PRINCIPAL: DR. LUIS ANTONIO PÉREZ LÓPEZ INSTITUTO DE FÍSICA, UNAM

MIEMBROS DEL COMITÉ TUTOR: DR. IGNACIO LUIS GARZÓN SOSA INSTITUTO DE FÍSICA, UNAM DRA. ANA CECILIA NOGUEZ GARRIDO INSTITUTO DE FÍSICA, UNAM

CIUDAD DE MÉXICO, FEBRERO 2019

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Agradezco a mi tutor, el Dr. Luis Antonio Pérez López, por el apoyo y paciencia para la realización de este trabajo.

Agradezco al Instituto de Física de la UNAM por permitirme el uso de su infraestructura y a mis compañeros de cubículo por su apoyo y sugerencias.

La investigación realizada fue posible gracias al Programa UNAM-PAPIIT IN107717 "Propiedades físicas de sistemas de baja dimensionalidad".

Agradezco al Departamento de Supercómputo de la DGTIC-UNAM por permitir el uso de la supercomputadora Miztli para llevar a cabo los cálculos presentados en este trabajo. Los recursos de supercómputo fueron otorgados por medio del proyecto LANCAD-UNAM-DGTIC-180.

RESUMEN

En esta tesis se realizó un estudio de la reactividad de nanocúmulos del tipo $\operatorname{Au}_N \operatorname{Cu}_{N-n}^q$, con 2 \leq N \leq 8, 0 \leq n \leq N y carga neta q=1,0,-1. Inicialmente, las estructuras de mínima energía de los cúmulos bimetálicos, modelados por el potencial de muchos cuerpos de Gupta, se obtuvieron por medio de una búsqueda golbal utilizando algoritmos genéticos. A un conjunto de isómeros de menor energía, al igual que aquellos con geometrías planas propuestos en la literatura, se les sometió a una relajación estructural usando las fuerzas obtenidas de cálculos mecanico-cuánticos basados en la teoría del funcional de la densidad (DFT) en la aproximación de gradiente generalizado con el objetivo de obtener los isómeros de menor energía por cada tamaño, composición y carga. La reactividad de los cúmulos bimetálicos más estables de oro-cobre con 8 átomos, neutros y cargados, hacia las moléculas de CO y O₂, fue estudiada usando la teoría de orbitales moleculares de frontera y el descriptor dual. La predicción de los sitios de adsorción más favorables realizada con las herramientas mencionadas, se corroboró calculando las energías de adsorción, transferencias de carga y distancias de enlace C-O y O-O para las diferentes configuraciones cúmulo-molécula.

ÍNDICE GENERAL

1.	Intr	roducción	4					
	1.1.	Tipos de enlace en los cúmulos	5					
	1.2.	Cúmulos bimetálicos	8					
	1.3.	Adsorción de CO y O_2 en cúmulos de oro y cobre	10					
2.	Teo	Teoría y metodología						
	2.1.	Potencial de Gupta	15					
	2.2.	Algoritmos Genéticos	16					
	2.3.	Teoría del Funcional de la Densidad	19					
		2.3.1. Teoremas de Hohenberg-Kohn y ecuaciones de Kohn-Sham	22					
	2.4.	Descriptor dual para reactividad química	32					
3.	Res	ultados	41					
	3.1.	Propiedades estructurales y electrónicas de cúmulos de oro-cobre $\ \ldots \ \ldots \ \ldots$	41					
	3.2.	Teoría de orbitales moleculares de frontera	46					
	3.3.	Adsorción de CO y O_2 en cúmulos de oro-cobre	47					
	3.4.	Descriptor dual	63					
	3.5.	Propiedades electrónicas de AuCuO ₂ y AuCuCO	66					

CAPÍTULO 1

INTRODUCCIÓN

Los cúmulos son agregados de átomos ó moléculas cuyo número puede variar entre unos cuantos y varios miles. Estas estructuras pueden estar compuestas de átomos o moléculas idénticas, o bien de dos o más especies diferentes, además de que pueden ser estudiadas en diferentes medios como haces moleculares, fase vapor, suspensiones coloidales, matrices inertes y superficies. No existe una definición universalmente aceptada que nos ayude a distinguir entre un cúmulo y una nanopartícula, sin embargo, por convención se suele decir que los cúmulos son aglomerados de átomos compuestos de hasta 100 átomos con un diámetro del orden de 1 a 10nm, mientras que las nanopartículas son agregados más grandes [1, 2]. Una de las características más importantes de estos materiales es que propiedades tales como las distancias interatómicas, la estructura electrónica, el comportamiento magnético y óptico dependen fuertemente de su tamaño y geometría [3].

Según la naturaleza de su superficie, los cúmulos pueden clasificarse en libres, soportados y pasivados. Los cúmulos libres son inherentemente inestables debido a que poseen una energía de superficie alta, que ocasiona que entre ellos se fusionen produciendo cúmulos más grandes o reaccionando con otras especies por lo que se suelen soportar en un sustrato o bien pasivarlos con un ligando apropiado. Los cúmulos soportados sobre un sustrato se encuentran fuertemente enlazados al material sólido que normalmente se escoge de tal manera que tenga un área superficial alta. En este tipo de cúmulos, algunos átomos se encuentran enlazados al soporte (usualmente a través de enlaces covalentes fuertes), mientras que los átomos restantes solo siente la interacción con los átomos del mismo cúmulo. Los cúmulos que no se encuentran soportados en sustratos poseen ventajas en comparación con las que sí los están y esto es que las propiedades intrínsecas de los cúmulos pueden ser encontradas sin considerar el efecto de la interacción soporte-cúmulo [1].

Los cúmulos metálicos pueden ser producidos por medios físicos y químicos. Los métodos físicos implican en principio una subdivisión de un material en bulto (material cuyas propiedades físicas y químicas son las mismas en todo su volumen), éste vendría a ser el precursor del cúmulo. En el

procedimiento químico se empieza desde la reducción de los iones metálicos ¹ a átomos metálicos seguido por una agregación de átomos en forma controlada [4]. Desde el punto de vista de la efectividad para producir cúmulos, los métodos químicos han tenido un mayor interés debido a la abundancia y sencillez con la que estos se pueden crear.

Tipos de enlace en los cúmulos

Ya sea que estemos tratando con un conglomerado finito de átomos y/o moléculas en sistemas tan pequeños como C_{60} y $(NaCl)_n$, o bien sistemas compuestos de un número infinito de átomos posicionados en un arreglo periódico como en el caso de los sólidos, por ejemplo la estructura cúbica centrada en las caras (FCC) en los elementos Au, Cu, Ag, es útil considerar el tipo de enlace químico que mantiene unidos a los átomos. Una forma simplificada de entender los diferentes tipos de enlaces es considerar una molécula diatómica y el modo en que los electrones de cada átomo se reagrupan para formar los enlaces. En general, los electrones fuertemente ligados al núcleo permanecerán localizados alrededor del átomo "padre", mientras que los electrones débilmente ligados tenderán a abandonarlo. Esto dependerá de las niveles de energía ocupados por los electrones en los átomos antes de formarse la molécula (ver figura 1.1).

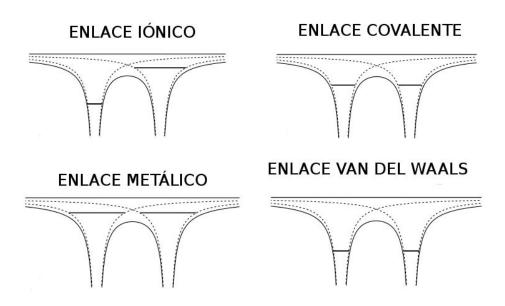


Figura 1.1: Potencial atómico (lineas punteadas) y de la molécula (linea continua). Los niveles de energía ocupados por los electrones antes de la interacción entre átomos se representan con líneas horizontales.

Idealmente, los cuatro tipos de enlace que pueden ocurrir en una molécula son iónico, covalente, metálico, y de Van der Waals, aunque en realidad siempre se tienen casos intermedios entre estos tipos de enlace.

¹Estructura molecular que se encuentra formada por un átomo central entrelazado a un arreglo ordenado de otros grupos de átomos que lo rodean llamados ligandos.

A continuación se describe de forma general la características más importantes de cada tipo de enlace, junto con algunos ejemplos (ver figura 1.1).

Enlace iónico. Un electrón débilmente enlazado es transferido del átomo con menor energía de ionización al átomo con mayor afinidad electrónica. Debido a que el electrón transferido se localiza principalmente en átomo anfitrión, éste queda cargado negativamente, mientras el átomo donador, positivamente. Este tipo de enlace se origina de la fuerza de atracción de Coulomb entre los iones compensado por una fuerza repulsiva entre núcleos. Cabe destacar que de todos lo tipos de enlace, el enlace iónico es el más fuerte con una energía de enlace de hasta 4 eV (ver tabla 1.1).

Enlace metálico. Este enlace se forma entre elementos metálicos, generalmente de la misma especie. Los elementos con un enlace metálico están compartiendo un gran número de electrones de valencia, formando un mar de electrones casi libres rodeando una malla de núcleos o cationes. Estos electrones libres son los responsables de que los metales presenten una elevada conductividad eléctrica y térmica. Este tipo de enlace se observa en elementos tales como Au, Cu, Ag, y Pt. En estos casos el nivel correspondiente al orbital d se encuentra energéticamente cercano al nivel s (ocupado por un electrón de valencia). Esto implica que la banda d debe tomarse en cuenta en la interacciones entre átomos vecinos en un cristal compuesto de estos elementos.

Enlace covalente. Este enlace involucra la compartición de electrones entre los átomos enlazados. El termino "compartir electrones" tiene un significado mas amplio en mecánica cuántica, y es que cuando los electrones ocupan los estados originados de la hibirdación entre los orbitales atómicos, la región ocupada por los electrones esta comprendida entre ambos núcleos dando como resultado que se origine una fuerza que tiende a unir a los núcleos atómicos. Se pueden distinguir dos tipos de enlaces covalentes: el polar y no polar. En los enlaces no polares los electrones se comparten en la misma proporción entre los átomos, ejemplos de este tipo de enlaces los podemos encontrar en las molécula diatómicas H₂, N₂, y Cl₂. En el caso polar los electrones no se comparten por igual entre los átomos; este enlace aparece siempre que exista una diferencia entre las electronegatividades de los átomos que componen a la molécula; ejemplos de este tipo enlace aparece en CO, CO₂, y CH₄.

Enlace Van der Waals. En el caso extremo, cuando los electrones de valencia ocupan niveles de energía muy bajos, no ocurre transferencia de carga ni carga compartida entre átomos. Los electrones permanecen enlazados al átomo "padre". En estos átomos se puede formar una distribución de carga asimétrica debido a una fluctuación, lo que crea un dipolo temporal. La interacción dipolo-dipolo originada por fuerzas de atracción electrostáticas entre los átomos es la responsable de crear el enlace.

Tipo	Ejemplos	Propiedades	Energía de enlace	
Cúmulos iónicos	$(NaCl)_n, Na_nF_{n-1}$	Enlace iónico, enlace fuerte	\sim 2-4 eV	
Cúmulos covalentes	C_{60}, S_n	Enlace covalente, enlace fuerte	\sim 1-4 eV	
Cúmulos metálicos	Na_n, Al_n, Ag_n	Enlace metálico, enlace moderado a fuerte	\sim 0.5-3 eV	
Van der Waals	Cúmulos de gases nobles: Ar_n , Xe_n	Polarización, enlace débil	$\lesssim 0.3~{\rm eV}$	

Tabla 1.1: Clasificación de los cuatro tipos de enlace en cúmulos.

Al igual que en las moléculas y sólidos, en los cúmulos atómicos se pueden presentar los mismos tipos de enlace [5]. Por ejemplo, el C₆₀ presenta enlaces covalentes entre los átomos de carbono y el cúmulo exhibe una estructura bien definida, con los electrones localizados a lo largo de las varias uniones entre los átomos. Los enlaces covalentes se dan usualmente en cúmulos formados por átomos pertenecientes al grupo del carbono. Asimismo, el Ar₁₃ es un cúmulo que presenta enlaces de Van der Waals donde cada átomo lleva consigo su propia nube electrónica el cual posee un leve traslape entre electrones pertenecientes a átomos vecinos. Este sistema puede ser considerado como una conjunto de átomos que interactúan débilmente. Como ejemplo de cúmulo con enlaces iónicos, tenemos al Na₄F₄. En este sistema cuatro electrones se del Na se transfieren al F, esto produce cuatro cationes Na⁺ sin electrones de valencia y cuatro aniones F⁻ con la carga electrónica bien localizada, el enlace se origina por la atracción electrostática entre cationes y aniones. Por ultimo tenemos a los cúmulos metálicos, los cuales constituyen una clase intermedia entre los cúmulos débilmente enlazados de Van der Waals y los cúmulos iónicos (o covalentes) que poseen un enlace fuerte. Como ejemplo de cúmulo con enlace metálico tenemos al Na₈, en donde la densidad electrónica ocupa la región entre los átomos y cubre todo el cúmulo. En los cúmulos metálicos los electrones de valencia pertenezcan al sistema como un todo y se vuelvan independientes de los iones a lo que pertenecen.

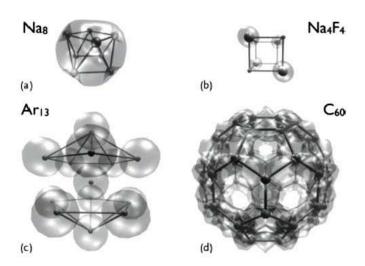


Figura 1.2: Ejemplos de los cuatro tipos de cúmulos de acuerdo al tipo de enlace. Los iones se indican como pequeñas bolas y la nube electrónica por medio de un gris transparente. Por claridad, los átomos vecinos se conectan por medio de barras.

Para este nuevo tipo de materiales se presentan propiedades que difieren de los átomos, moléculas individuales y de la materia en bulto. Una característica de estos materiales es que sus propiedades dependen del tamaño del cúmulo. Tenemos ejemplos donde la geometría y la estabilidad energética pueden cambiar de manera drástica modificando el tamaño, como es el caso de los cúmulos metálicos alcalinos con tamaños de hasta miles de átomos (también para pequeños tamaños de Cu y Ag),

donde conforme al modelo de Jellium ² se tienen ciertas nuclearidades, es decir, ciertos tamaños que son relativamente mas estables que otras (números mágicos) debido a que poseen capas electrónicas llenas [6, 7]. Por el contrario, para los cúmulos compuestos de metales de transición y algunos metales pertenecientes al grupo principal³ (por ejemplo Al, Ca y Sr), se encuentran números mágicos que corresponden a los cúmulos compuestos de una sucesión de capas poliédricas de átomos (capas geométricas) donde la energía relativa de un cúmulo esta determinado por los efectos de los átomos en su interior y en la superficie además de la forma en que estos interaccionan [8].

1.2

Cúmulos bimetálicos

La mezcla de dos o más elementos metálicos para la formación de compuestos intermetálicos o nanoaleaciones, ha tenido un gran interés en ciencia de materiales ya que sus propiedades pueden mejorarse con respecto a las de sus componentes. Asimismo, los nanocúmulos bimetálicos, también llamados nanoaleaciones, se caracterizan por el hecho de que sus propiedades químicas y físicas pueden regularse variando no solamente el tamaño y el ordenamiento atómicos (como ocurre con los nanocúmulos monometálicos), sino también variando su composición. Esto abre el camino para una gran variedad de aplicaciones potenciales [3]. En particular, cambiando las estructuras y composiciones de ciertas nanoaleaciones es posible modificar dramáticamente sus actividades catalíticas. Más aún, los catalizadores bimetálicos presentan generalmente un mejor desempeño que los catalizadores monometálicos. Estos cúmulos de aleaciones también son interesantes porque presentan estructuras y propiedades distintas a las de los cúmulos de elementos puros. Inclusive existen ejemplos de pares de elementos, como el hierro y la plata, que son inmiscibles en bulto pero se mezclan fácilmente en cúmulos finitos [9].

Con las técnicas experimentales más recientes se pueden fabricar nanoaleaciones bimetálicas A_mB_n con un cierto tamaño (m+n=N) y composición (m/n). La forma de las estructuras, el grado de segregación y mezcla entre los elementos que la conforman dependerá de las condiciones en que se generen los cúmulos bimetálicos, por ejemplo, el tipo de fuente en que se generan, temperatura, presión, etc. [4].

R. Ferrando, et al. [8] establecen que los cúmulos bimetálicos pueden clasificarse de acuerdo a su estructura geométrica y a los patrones que forman al mezclarse (orden químico) mostrados a continuación.

Cúmulos segregados en núcleo y corteza: Están formados por una capa o corteza conformada de un tipo de átomos rodeando a un núcleo formado por otro tipo de átomos, aunque puede presentarse cierto grado de mezcla entre los átomos de las capas. Este patrón de mezcla es común

²En el modelo del gas de electrones homogéneo (Jellium) se concibe al cúmulo de átomos como a un átomo de mayor tamaño y aislado, donde la distribución de carga de los núcleos iónicos es remplazada por una distribución constante y positiva de carga (densidad de Jellium). A los electrones de valencia en este modelo se les considera sujetos a un potencial efectivo esférico y simétrico que describe la distribución de carga positiva

³Los elementos representativos o grupo principal son aquellos en los cuales se basó tempranamente la química y que encabezan la tabla periódica, y son además los que manifiestan el comportamiento de periodicidad más fuerte en la tabla periódica, es decir, que si ordenamos a los elementos en orden ascendente con respecto a su número atómico, sus propiedades se repiten o presentan variaciones periódicas.

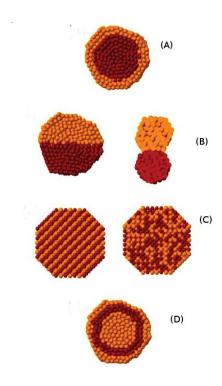


Figura 1.3: Esquema de los diferentes patrones de mezcla en un cúmulo bimetálico: (A) núcleo/corteza, (B) subcúmulo segregado, (C) mezcla, (D) tres capas.

para una gran variedad de sistemas (figura 1.2 (A)).

Cúmulos segregados por subcúmulos: En este caso se forman dos subcúmulos A y B que pueden mezclarse en la superficie o bien solo tener un pequeño número de enlaces entre los átomos A y B en la interfase (ver figura 1.2 (B)). Este tipo de formación en principio es posible teóricamente, sin embargo no se han encontrado resultados experimentales que exhiban este patrón.

Cúmulos de mezcla: Estas formaciones pueden presentar un patrón definido en el ordenamiento de los átomos (mezcla ordenada), o bien los átomos de cada elemento se ordenan de forma aleatoria (ver figura 1.2 (C)).

Cúmulos de multicapas: Se presentan capas compuestas de una solo elemento alternándose desde el núcleo hasta la capa más externa (capas A-B-A, ver figura 1.2 (D)). Estructuras metaestables de este tipo han sido observadas en aleaciones de tipo Ag-Cu ,Ni-Ag, y Pd-Ag.

El grado de segregación y mezcla como el orden atómico en las cúmulos A_mB_n depende de varios factores mostrados a continuación. Los arreglos atómicos pueden depender fuertemente de todos los factores mencionados abajo como de los métodos experimentales con los que se sintetizan las estructuras además de las condiciones experimentales.

• Fuerzas relativas entre enlaces A-A, A-B y B-B de átomos. En general, si los enlaces A-B son más fuertes, esto favorecería un patrón de mezcla, si esto no es el caso la estructura prefiere segregarse donde los átomos con los enlaces homonucleares más fuertes tienden a ubicarse en el centro (núcleo) del cúmulo.

- Energías superficiales de los elementos en bulto de A y B. Los elementos con menor energía superficial tienden a segregarse a la superficie del cúmulo.
- Tamaños atómicos relativos. Los átomos más pequeños tienden a ocupar las partes del núcleo más confinadas donde están presentes los efectos de estericidad que ocurren cuando las nubes electrónicas de los átomos se solapan considerablemente (los átomos están suficientemente cerca) produciendo efectos de repulsión o atracción.
- Transferencia de carga. La transferencia electrónica depende de la electronegatividad de las especies A y B. Si la especie A es más electronegativa entonces mayor será su capacidad para absorber carga de los átomos tipo B, situación que favorece la segregación de los átomos tipo A a la superficie para así disminuir la repulsión electostática entre ellos.

1.3

Adsorción de CO y ${\rm O}_2$ en cúmulos de oro y cobre

La motivación para investigar la adsorción del monóxido de carbono (CO) y oxígeno molecular (O_2) en cúmulos metálicos surge de la necesidad de convertir CO (que es una molécula tóxica producida en procesos petroquímicos industriales y en la combustión incompleta de combustible en los automóviles) en dióxido de carbono, que es una molécula inofensiva para el ser humano. Esta reacción química de oxidación de CO está dada por

$$CO + \frac{1}{2}O_2 \to CO_2 \tag{1.1}$$

Comúnmente, la reacción 1.1 requiere de un catalizador, el cual actúa como un intermediario para que esta reacción ocurra a temperaturas no muy elevadas. En un primer paso, el CO y el O₂ se adsorben en la superficie del catalizador, el cual disocia a la molécula de O₂. Después, un átomo de oxígeno interacciona con una molécula de CO para dar lugar a la formación de CO₂ sobre la superficie del catalizador para posteriormente ser liberado.

Cuando las moléculas de CO y O₂ interaccionan con un metal, existe transferencia de carga entre el metal y la molécula, este proceso ocurre en los dos sentidos, es decir, transferencia de carga de la molécula al metal (backdonation) y del metal a la molécula. Se ha encontrado que la trasferencia de carga a la molécula de O₂ de una superficie (111) de oro es difícil que ocurra debido a un valor grande de la función de trabajo [10]. En el trabajo de H. Nakatsuji et al. [11] se estudia de forma teórica la reactividad de superficies de oro, cobre y plata hacia O₂, encontrándose que tanto el cobre como la plata tienen la capacidad de adsorber a la molécula y de donarle electrones, siendo el cobre el mayor donador, mientras que en las superficies de oro no ocurre adsorción. Por otro lado, el estudio experimental realizado por Sandell et al. [12] mostraron que las superficies de oro y cobre son capaces de adsorber CO. Considerando esta información resulta válido preguntarse si la aleación AuCu sería capaz de mejorar la actividad catalítica de los sistemas puros.

La oxidación de CO en cúmulos en fase gaseosa y/o soportados en un sustrato involucran la adsorción del CO y O_2 con su posterior activación. A continuación se mencionan algunos aspectos

relacionados con la adsorción de CO y O_2 en cúmulos de oro y cobre. Cuando no se indique otra fuente, se entiende que la información ha sido obtenida de la referencia [13].

Como se sabe, el oro en bulto es inerte químicamente, sin embargo, los cúmulos de oro de unos cuantos nanómetros soportados en óxidos son capaces de catalizar la oxidación del CO a temperatura ambiente, siendo la transferencia de carga del catalizador a la molécula un factor importante [10]. De forma experimental y teórica [14, 15, 16] se ha encontrado que los cúmulos aniónicos de oro son capaces de adsober O_2 . Los cúmulos aniónicos que tienen un número par de átomos exhiben una fuerte afinidad hacia dicha molécula, mientras que cúmulos con un número impar de átomos presentan una débil reactividad hacia O_2 . Esto se puede explicar al considerar que la estructura electrónica del oro tiene configuración electrónica $[Xe]5d^{10}s^1$, por lo que cuando el cúmulo contiene un número par de átomos, el cúmulo aniónico tiene un electrón no apareado en el HOMO por lo que es más fácil que pueda donar un electrón a la molécula, en comparación con los cúmulos aniónicos que tienen un número impar de átomos. Por otro lado, se ha encontrado que cúmulos de oro neutros y cationes son inertes con respecto a la adsorción de O_2 , excepto el cúmulo Au_{10}^+ .

En el trabajo experimental de Hirabayashi et al. [17], se encuentra que los cúmulos $\operatorname{Cu}_N^{+/-}$ (N=3-25) adsorben O_2 dando lugar a $\operatorname{Cu}_{N-1}^{+/-}\operatorname{O}_2$ (N\le 16) y $\operatorname{Cu}_N^{+/-}\operatorname{O}_2$ (N\le 17). Esto no implica que no puedan formarse complejos $Cu_N^{+/-}O_2$ (N \leq 16) y $Cu_{N-1}^{+/-}O_2$ (N \geq 17), sin embargo la frecuencia con que estos se observan es mucho menor [17]. En el trabajo de Yuan et al. [18] se estudia la adsorción de CO en los cúmulos Cu_N (N=2-10). Se encuentra que la transferencia de carga es del cúmulo a la molécula, en donde las conformaciones Cu_NO_2 para N=6,8,10 presentan la mayor transferencia de carga del cúmulo a la molécula (rebasando la carga de un electrón). Además, se obtiene que los cúmulos con un número impar de átomos tienen energías de adsorción más grandes. Por otra parte, cúmulos pequeños de oro tanto neutros y cargados, con al menos tres átomos, son capaces de adsorber la molécula de CO. Sin embargo, se ha encontrado que los cúmulos catiónicos tienen un mayor reactividad en comparación con los aniónicos. En todos los casos se ha encontrado que al adsorberse la molécula el enlace intramolecular C-O apenas alcanza un máximo de elongación del 5% comparado con la molécula libre, lo que indica que cúmulos de oro pequeños no poseen la habilidad de activar ni de disociar CO. Asimismo, se encuentra que los cúmulos Cu_N^- (N=3-11) no adsorben CO, mientras que los cúmulos Cu_N^+ (N=3-19) si lo hacen, sin embargo la sección transversal de los complejos Cu_N^+CO es baja en comparación con los complejos $Cu_N^-O_2$. De esto se puede concluir experimentalmente que los complejos cúmulo-O2 son más estables que los correspondientes cúmulo-CO [17]. En otro estudio realizado por Hirabayashi et al. [19] en cúmulos Cu_N^- (N=4-11), se encuentra que la oxidación de CO ocurre en los aniones Cu_5^- , Cu_9^- , cuando el O_2 ha sido adsorbido previamente. También se observa una mayor reactividad de Cu_5^- en la oxidación de CO (lo que equivale a una menor energía de activación) en comparación con Cu₅⁺, lo que se atribuye a la estructura plana del anión. En un estudio realizado por Cao et al. [20], se reporta que hay transferencia de carga del CO al cúmulo. Sin embargo, la carga transferida es pequeña, alcanzado un máximo de 0.07|e|. Además, las energías de adsorción en cúmulos con un número par de átomos es levemente más grande que las de los cúmulos impares, a excepción de Cu₅.

Aunque el oro y el cobre pertenecen al mismo grupo de la tabla periódica, los cúmulos de estos metales tienen actividades catalíticas muy diferentes [21]. La oxidación de CO es una de las reacciones en las que las nanopartículas de oro son un buen catalizador, incluso a temperatura ambiente. Además, su actividad catalítica varía con el tamaño y el tipo de soporte [22, 23]. Por

otro lado el cobre, además de oxidarse fácilmente en contacto con el aire, muestra una capacidad única para convertir CO_2 en hidrocarburos así como una alta selectividad [24, 25]. A diferencia de los cúmulos de oro, se ha demostrado que los cúmulos de cobre pueden adsorber O_2 , pero no CO, independientemente del estado de carga [17]. Con respecto a los sistemas bimetálicos Au-Cu, la correlación entre la actividad catalítica y la composición (Cu, $AuCu_3$, AuCu, Au_3Cu , Au) para la reducción de CO_2 y O_2 se ha abordado con anterioridad. Para estas composiciones se ha demostrado que los efectos geométrico y electrónico dictan la actividad catalítica de estos sistemas en la reducción de dióxido de carbono [26]. Con respecto a las reacciones de reducción de oxigeno se ha demostrado que nanopartículas bimetalicas $AuCu_3/C$ AuCu/C presentan una actividad catalítica superior comparada con las de Au/C y Au/C. Esto es debido a una sinergia entre los elementos que poseen una afinidad débil (oro) y otra fuerte (cobre) hacia el oxigeno en la superficie de la nanopartícula [27].

CAPÍTULO 2

TEORÍA Y METODOLOGÍA

En este trabajo se realizó un estudio de la reactividad de nanocúmulos bimetálicos de oro y cobre hacia las moléculas de CO y O₂. Para ello, utilizamos las estructuras más estables de cúmulos bimetálicos de oro-cobre de 8 átomos, neutros y cargados, y diferentes composiciones. Dichas estructuras se obtuvieron previamente realizando una relajación estructural local de un conjunto de isómeros tridimensionales de menor energía, obtenidos a partir del potencial de Gupta y realizando una búsqueda global por medio de algoritmos genéticos, junto con un conjunto de estructuras planas reportadas en la literatura. La relajación local se llevó a cabo usando las fuerzas obtenidas a partir de DFT, usando el funcional de intercambio y correlación PBE. En todos los cálculos se uso polarización de espín.

La reactividad hacia CO y O_2 de los cúmulos más estables de tamaño 8, neutros y cargados, se estudio mediante el descriptor dual y la teoría de orbitales moleculares de frontera. El primero es una función escalar que nos permite predecir las zonas proclives a donar o aceptar electrones en un cúmulo o molécula. Asimismo, la teoría antes mencionada permite, en principio, predecir los sitios en el cúmulo donde el CO o O_2 puede adsorberse con mayor facilidad.

Las predicciones obtenidas con estos enfoques se corroboraron mediante cálculos explícitos de DFT. Para ello, obtuvimos las configuraciones de menor energía de los complejos cúmulo-molécula realizando relajaciones estructurales con el método de gradiente conjugado (CG) y utilizando las fuerzas de DFT-GGA, usando el cúmulo bimetálico de menor energía para una composición y carga dadas, y probando diferentes posiciones iniciales para la molécula: en grapa (staple), radial (top), y sobre el hueco generado por tres átomos superficiales (hollow).

Las distancias de enlace encontradas para las moléculas en fase gas de CO y O₂ fueron 1.15Å y 1.25Å, respectivamente. Asimismo, para los dímeros metálicos, las distancias de enlace calculadas y las energías de enlace por átomo fueron (2.57Å, 1.05eV) para Au₂ y (2.21Å,1.05 eV) para Cu₂, que son consistentes con los valores experimentales (2.47Å, 1.15eV-1.18eV) para Au₂ y (3.68Å, 3.39eV) para Cu₂ [28, 29, 30]. La constante de red y la energía de cohesión por átomo también se

calcularon para los elementos metálicos en bulto obteniendo (4.18 \mathring{A} , 3.90eV) para el oro y (3.68 \mathring{A} , 3.39eV) para cobre. Los valores experimentales son: (4.087 \mathring{A} , 3.81 eV) y (3.61 \mathring{A} , 3.49 eV) para oro y cobre, respectivamente [31, 32].

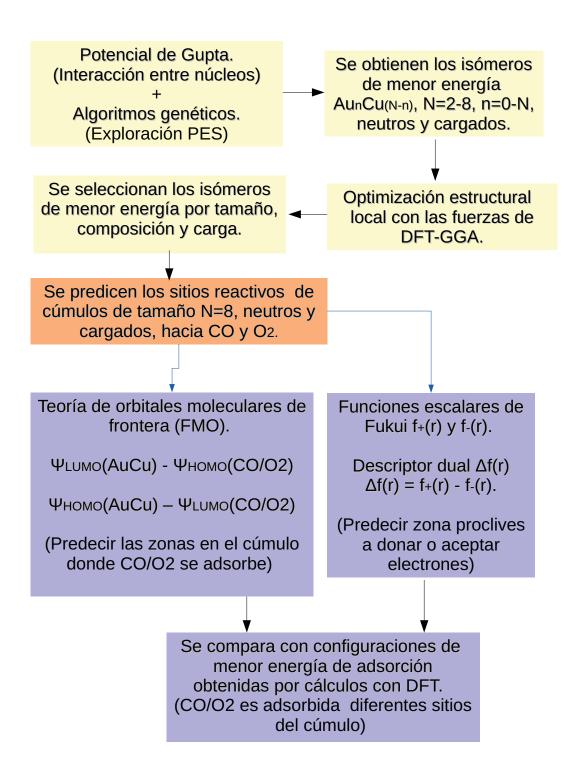


Figura 2.1: Metodología empleada en esta tesis.

POTENCIAL DE GUPTA

El enlace metálico que ocurre en nanocúmulos metálicos puede modelarse a partir del potencial de Gupta. Este potencial de muchos cuerpos provee una expresión para la energía de cohesión de metales de transición en bulto y se basa en la aproximación del segundo momento de la densidad de estados electrónicos en el modelo de amarre fuerte, el cual permite describir los electrones que se encuentran en la banda 3d de los metales de transición; con ello se incluye la estructura de bandas del enlace metálico a nivel fenomenológico [33, 34]. El potencial de Gupta consta de un término repulsivo V^r (debido a la interacción de Born-Mayer) [35] y un término atractivo V^a [34]. El potencial total se obtiene al sumar sobre todos los posibles pares de átomos en el sistema. Esto se puede expresar como.

$$V_{clus} = \sum_{i}^{N} \{ V^{r}(i) - V^{a}(i) \},$$
(2.1)

en donde cada termino se expresa como

$$V^{r}(i) = \sum_{j \neq i}^{N} A(a,b) exp\left(-p(a,b)\left(\frac{r_{ij}}{r_0(a,b)-1}\right)\right), \tag{2.2}$$

$$V^{a}(i) = \left[\sum_{j \neq i}^{N} \zeta^{2}(a, b) exp\left(-2q(a, b) \left(\frac{r_{ij}}{r_{0}(a, b) - 1} - 1 \right) \right) \right]^{1/2}.$$
 (2.3)

Tenemos que en las funciones V^r y V^a , r_{ij} es la distancia entre los átomos i y j, las etiquetas a y b denotan a los tipos de átomos que corresponde a los átomos i y j. Como se puede ver en el potencial de Gupta se definen 5 parámetros A, r_0 , ξ , p, y q. Los parámetros para especies puras son ajustados por medio de valores experimentales tales como la energía de cohesión, el parámetro de red y las constantes elásticas C_{11} , C_{12} , C_{44} (según la notación de Voigt) independientes para la estructura cristalina de referencia en equilibrio (a temperatura de 0 K).

	A(eV)	ζ (eV)	p	q	r_0
Cu	0.0855	1.224	10.96	2.278	2.506
Au	0.2061	1.79	10.229	4.036	2.8843
Au-Cu	0.1327	1.4801	10.5945	3.157	2.6951

Tabla 2.1: Parámetros usados en el potencial de Gupta para describir las interacciones Au-Au, Au-Cu, Cu-Cu.

En el estudio de los cúmulos bimetálicos de la forma Au_mCu_n , los parámetros toman diferentes valores dependiendo del tipo de interacción entre los elementos del cúmulo (Au-Au, Cu-Cu, y Au-Cu). Tenemos que para las interacciones homonucleares estos parámetros se obtienen de metales

puros en bulto [33, 34] y son tomados sin cambios para la interacción entre átomos de la misma especie en los cúmulos. Para las interacciones heteronucleares (Au-Cu) se toma la media aritmética en los parámetros p, q, y r_0 y la media geométrica en A y ζ .

Algoritmos Genéticos

Para determinar las estructuras candidatas a ser de menor energía en los nanocúmulos bimetálicos, se realiza una optimización global utilizando el potencial de muchos cuerpos de Gupta junto con una versión generalizada del algoritmo genético-simbiótico de K. Michaelian [36, 37], que ha sido probado en varios sistemas [35, 38] con una mejora considerable en comparación con los algoritmos genéticos tradicionales definidos sobre una sola celda sobre la cual se realizan todas las operaciones de cruzamiento y mutación [39].

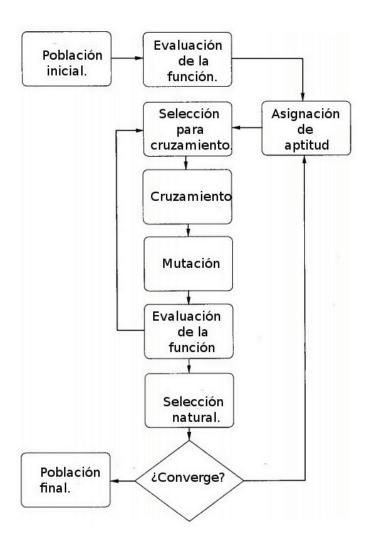


Figura 2.2: Diagrama de flujo para el programa de algoritmos genéticos.

Un algoritmo genético es una técnica de investigación basada en los principios de la evolución natural. Esta aplica operadores análogos a los procesos de evolución de cruzamiento genético, mutación y selección natural con el fin de explorar mínimos locales de una superficie de energía potencial (PES). A continuación se describen los pasos a seguir en el algortimo genetico-simbiótico de K. Michaelian para encontrar mínimos locales en el potencial de Gupta.

1.-Cúmulo inicial. Se genera un cúmulo con N átomos. Las posiciones de cada átomo en cúmulo son generadas aleatoriamente de tal forma que estén contenidos en una esfera de radio

$$r_0 = 4.35 \left(\frac{n}{75}\right)^{1/3}$$

El máximo radio alcanzado para los cúmulos de tamaño N=8 es r=2.43 Å.

2.-Representación binaria: Las coordenadas de cada individuo se codifican en una representación binaria. Se crea una cadena de N bloques compuestos de celdas (cromosoma). El bloque enésimo representa la coordenada del átomo n (n=1-N) generado aleatoriamente en la esfera. La primera celda es la especie representada con I_n que puede tomar valores de 0 y 1 dependiendo que valor le asignemos a cada elemento en un cúmulo bimetálico. Las coordenadas de cada átomo (x_n, y_n, z_n) se codifican en una representación binario de 8 bits. El número de valores que se pueden tomar en esta representación es de 2^8 =256. Los valores que puede tomar cada coordenada son

$$-r_0 < x_n, y_n, z_n < 2r_0$$

 $I_i = 0, 1$

El cromosoma formado tiene la siguiente forma

Figura 2.3: Cromosoma formado de las coordenadas de atómicas del cúmulo.

- **3.-Evolución.** Se genera una celda esférica de radio $r_c=1.88$ \mathring{A} centrada en el primer átomo generado. A las variables de de m átomos contenidos en esta celda se les hace evolucionar de acuerdo al método de algoritmos genéticos (ver diagrama 2.2).
- **3.1.-** Se crea una población inicial 10 individuos dentro de la esfera. Cada individuo esta compuesto de m átomos cuyas coordenadas son generadas aleatoriamente. Las coordenadas de los N-m átomos átomos restantes quedan fijos.
- **3.2.-** Se obtiene la aptitud de cada configuración evaluando el potencial de Gupta en la celda de m átomos

$$E_c = \sum_{l \neq k}^m A(a, b) exp\left(-p(a, b) \left(\frac{r_{lk}}{r_0(a, b) - 1}\right)\right) - \left[\sum_{l \neq k}^m \zeta^2(a, b) exp\left(-2q(a, b) \left(\frac{r_{lk}}{r_0(a, b) - 1} - 1\right)\right)\right]^{1/2}$$

Los individuos de menor energía son los más aptos para transmitir material genético a la próxima generación.

- **3.3.-** De la población inicial, se elige la mitad con mayor aptitud (menor energía potencial) para reproducirse.
- **3.4.-** Se genera una nueva población (segunda generación) de 10 individuos eligiendo parejas aleatoriamente para aplicarle operadores genéticos de cruzamiento y mutación (se cambia cero por uno).

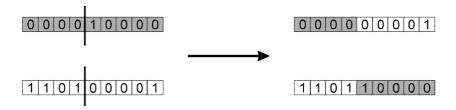


Figura 2.4: Cruzamiento entre dos cadenas de coordenadas en los cúmulos.

- **3.5.-** Se evalúa la aptitud en la nueva generación y se compara con la anterior, eligiéndose los 5 individuos mas aptos.
- **3.6.-** Se repiten los pasos 3.2-3.6 hasta que el promedio de la energía potencial de los cúmulos (o bien la energía del cúmulo mas apto) converja (ver gráfica 2.5).

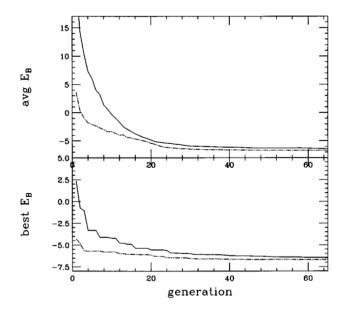


Figura 2.5: Convergencia de la población en la celda después de un cierto número de generaciones.

4.-Simbiosis. Las solución más apta generada en la celda forma una simbiosis con el resto del

cúmulo por medio de actualizar la estructura del cúmulo inicial si la energía total del cúmulo es de menor energía.

$$E_{c} = \sum_{j \neq i}^{N} A(a, b) exp\left(-p(a, b) \left(\frac{r_{ji}}{r_{0}(a, b) - 1}\right)\right) - \left[\sum_{l \neq k}^{N} \zeta^{2}(a, b) exp\left(-2q(a, b) \left(\frac{r_{ji}}{r_{0}(a, b) - 1} - 1\right)\right)\right]^{1/2}$$

 ${f 5.-M}$ ínima energía del cúmulo. Se repiten los pasos 3 y 4 para el siguiente átomo ubicado en segundo bloque del cromosoma. Al terminar los procesos de evolución y simbiosis para los N átomos el algoritmo se repite para el átomo uno. Este proceso se continúa hasta que la energía potencial total del cúmulo converja.

6.-Optimización por gradiente conjugado. Se realiza una optimización local por medio del la técnica de gradiente conjugado relajando la estructura hasta encontrar el mínimo local más cercano. La convergencia se alcanza hasta que las fuerzas sean menores a 1.0e-8 eV/Å.

Este algoritmo es capaz de generar una estadística en donde se obtiene la energía de un cúmulo y el numero de veces que se genera este cúmulo con esa energía. Se obtiene que los cúmulos de menor energía no necesariamente son los que más frecuencia se generan sino todo lo contrario. En general se encuentra que la dispersión de las energías encontradas no es grande en nuestros sistemas.

2.3

Teoría del Funcional de la Densidad

La teoría del funcional de la densidad (DFT) es formalmente una teoría exacta para tratar sistemas compuestos de muchos cuerpos en los que la función de onda electrónica satisface la ecuación no relativista de Shrödinger estática para un sistema de N electrones interactuando[40, 41, 42]

$$\hat{H}\psi_j(\mathbf{x}_1,...,\mathbf{x}_N) = E_j\psi_j(\mathbf{x}_1,...,\mathbf{x}_N)$$
(2.4)

Aquí, la función de onda antisimétrica, de N electrones $\psi_j(\mathbf{x}_1,...,\mathbf{x}_N)$ representa el j-ésimo estado del hamiltoniano \hat{H} , asociado al eigenvalor E_j . En nuestra notación, las coordenadas espaciales como de espín del j-ésimo electrón se representan en $\mathbf{x}_j \equiv (\mathbf{r}_j, \sigma_j)$. En lo que sigue no se escribirá la coordenada de espín, sólo en los casos que lo amerite.

El hamiltoniano no relativista más general que podemos encontrar para un sistema compuesto de M núcleos atómicos y N electrones contempla la energía cinética de los electrones (\hat{T}_e) , la energía cinética de los núcleos atómicos (\hat{T}_{nuc}) , la interacción entre electrones (V_{ee}) , la interacción entre núcleos atómicos y electrones (V_{e-nuc}) , y la interacción entre núcleos atómicos.

$$\widehat{H} = -\frac{1}{2} \sum_{J=1}^{M} \frac{\hbar^2}{M_J} \nabla_J^2 - \frac{1}{2} \sum_{i=1}^{N} \frac{\hbar^2}{m_e} \nabla_i^2 - \sum_{i=1}^{N} \sum_{J=1}^{M} \frac{Z_I e^2}{|\overrightarrow{r}_i - \overrightarrow{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\overrightarrow{r}_i - \overrightarrow{r}_j|} + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\overrightarrow{R}_I - \overrightarrow{R}_J|}$$

Podemos hacer la separación de este hamiltoniano en tres contribuciones: electrónica (\hat{H}_e) , acoplamiento electrón-núcleo (\hat{H}_{en}) y nuclear (\hat{H}_{nn}) .

$$\hat{H}_e = -\frac{1}{2} \sum_{i=1}^{N} \frac{\hbar^2}{m_e} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} = \hat{T}_e + \hat{V}_{ee}$$
 (2.5)

$$\hat{H}_{nn} = -\frac{1}{2} \sum_{J=1}^{M} \frac{\hbar^2}{M_J} \nabla_J^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\vec{R}_I - \vec{R}_J|} = \hat{T}_n + \hat{V}_{nn}$$
(2.6)

$$\hat{H}_{en} = \sum_{i=1}^{N} \left[\sum_{J=1}^{M} \frac{-Z_I e^2}{|\overrightarrow{r}_i - \overrightarrow{R}_I|} \right] = \sum_{i=1}^{N} V(\mathbf{r}_i; \{\mathbf{R}\})$$
(2.7)

La solución de este problema es la función de onda $\Psi(\{\mathbf{x}\}; \{\mathbf{R}\})$. En esta notación, el conjunto de coordenadas de los electrones se representan como $\{\mathbf{x}\} = (\mathbf{x}_1, ..., \mathbf{x}_N)$ y de los núcleos como $\{\mathbf{R}\} = \{\mathbf{R}_1, ..., \mathbf{R}\mathbf{x}_M\}$. Esta solución general acopla tanto el movimiento de los electrones como de los núcleos. Tratar a los electrones y núcleos al mismo nivel, es decir, como partículas puntuales al que se le asocia una masa, dificulta matemáticamente encontrar una solución exacta para la ecuación de Shrödinger. El hecho de que los núcleos atómicos son mucho mas pesados que los electrones $(M_I/m_e \simeq 2000 \text{ para H}, 46 000 \text{ para Na o } 420000 \text{ para Pb})$ nos permite tratar a los núcleos como partículas clásicas. Esta aproximación se denomina de Born-Oppenheimer y consiste en separar la ecuación general de Shrödinger en dos ecuaciones: una ecuación de Shrödinger núcleo y otra electrónica.

Al desacoplar el movimiento de los electrones y núcleos podemos escribir la función de onda como

$$\Psi(\{\mathbf{x}\};\{\mathbf{R}\}) = \phi(\{\mathbf{R}\})\Psi(\{\mathbf{x};\{\mathbf{R}\}\}) \tag{2.8}$$

donde $\phi(\{\mathbf{R}\})$ es la función de onda de los núcleos y $\Psi_R(\{\mathbf{x}\})$ es la función de onda del movimiento de los electrones.

El primer paso en esta aproximación consiste en resolver el hamiltoniano compuesto de la componente electrónica y de acoplamiento, considerando las posiciones de los núcleos fijos en las coordenadas $\{\mathbf{R}\}$.

$$\left[-\frac{1}{2} \sum_{i=1}^{N} \frac{\hbar^2}{m_e} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\overrightarrow{r}_i - \overrightarrow{r}_j|} + \sum_{i=1}^{N} V(\mathbf{r}_i; \{\mathbf{R}\}) \right] \varphi_n(\mathbf{r}; \{\mathbf{R}\}) = E_n(\{\mathbf{R}\}) \varphi_i(\mathbf{r}; \{\mathbf{R}\})$$
(2.9)

Donde el hamiltoniano \hat{H}_{en} lo podemos expresar como la suma de los potenciales externos $V(\mathbf{r}_i; \{\mathbf{R}\})$ que surgen de la interacción de los electrones con los núcleos posicionados en $\{\mathbf{R}\}$. La solución general $\Psi_R(\{\mathbf{x}\})$ la puedo expresar como una combinación lineal de las soluciones estacionarias $\varphi_i(\mathbf{r}; \{\mathbf{R}\})$.

$$\Psi_R(\mathbf{r}; \{\mathbf{x}\}) = \sum_n C_n(\{\mathbf{R}\}) \varphi_n(\mathbf{r}; \{\mathbf{R}\})$$
(2.10)

A partir de aquí hacemos una aproximación adiabática: cuando las coordenadas nucleares cambian, los electrones evolucionan del estado base electrónico asociado a las coordenadas nucleares iniciales $\{\mathbf{R}'\}_f$. Esto implica que se puede aproximar la solución general como

$$\{\mathbf{R}\}_i \to \{\mathbf{R}'\}_f$$
 (2.11)

$$\Psi_R(\mathbf{r}; \{\mathbf{x}\}) \approx \varphi_0(\mathbf{r}; \{\mathbf{R}\}) \to \Psi_R(\mathbf{r}; \{\mathbf{x}\}) \approx \varphi_0(\mathbf{r}; \{\mathbf{R}'\})$$
 (2.12)

Los núcleos se mueven tan lentamente que los electrones tienen el suficiente tiempo para reajustarse y permanecer en el estado de menor energía. En este proceso los electrones no intercambian energía con los núcleos (evolución adiabática). El error de esta aproximación escala como $\left(\frac{M_I}{m_e}\right)^-$ en varios elementos (es igual a 0.0005 para el hidrógeno).

Usando la solución $\Psi(\{\mathbf{x}\}; \{\mathbf{R}\}) \approx \phi(\{\mathbf{R}\})\varphi_0(\mathbf{r}; \{\mathbf{R}\})$ procedemos a resolver el hamiltoniano nuclear.

$$E\Psi(\{\mathbf{x}\};\{\mathbf{R}\}) = \hat{H}\Psi(\{\mathbf{x}\};\{\mathbf{R}\}) = \hat{H}\phi(\{\mathbf{R}\})\varphi_0(\mathbf{r};\{\mathbf{R}\}) =$$

$$\left[\hat{H}_e + \hat{H}_{en}\right]\phi(\{\mathbf{R}\})\varphi_0(\mathbf{r};\{\mathbf{R}\}) + \hat{H}_{nn}\phi(\{\mathbf{R}\})\varphi_0(\mathbf{r};\{\mathbf{R}\}) =$$

$$\phi(\{\mathbf{R}\})E_0(\{\mathbf{R}\})\varphi_0(\mathbf{r};\{\mathbf{R}\}) + \hat{H}_{nn}\phi(\{\mathbf{R}\})\varphi_0(\mathbf{r};\{\mathbf{R}\})$$
(2.13)

Suponiendo que la función de onda $\varphi_0(\mathbf{r}; \{\mathbf{R}\})$ no variara mucho debido a que el cambio en la posición de los núcleos con respecto a la de equilibrio es pequeña $(|\{\mathbf{R}\} - \{\mathbf{R}_0\}| << 0)$ se obtiene

$$\nabla_I^2(\phi(\{\mathbf{R}\})\varphi_0(\mathbf{r};\{\mathbf{R}\})) = \varphi_0(\mathbf{r};\{\mathbf{R}\})\nabla_I^2\phi(\{\mathbf{R}\})$$
(2.14)

Con este resultado podemos multiplicar por la izquierda las ecuación (2.13) por $\varphi_0(\mathbf{r}; \{\mathbf{R}\})$ e integrar en todo el espacio considerando que la función de onda electrónica está normalizada, obtenemos la ecuación de Shrodinger para el movimiento de los núcleos.

$$\left[-\frac{1}{2} \sum_{J=1}^{M} \frac{\hbar^2}{M_J} \nabla_J^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\overrightarrow{R}_I - \overrightarrow{R}_J|} + E_0(R_1, R_2, ..., R_N) \right] \phi(\{\mathbf{R}\}) = E\phi(\{\mathbf{R}\})$$
 (2.15)

donde $E_0(R_1, R_2, ..., R_N)$ representa la energía del estado base electrónico cuando las posiciones de los núcleos son $(R_1, R_2, ..., R_N)$.

Dada esta aproximación, nos concentraremos en resolver el hamiltoniano electrónico dado por la ecuación (2.9). A continuación se describirán los teoremas Hohenberg-Kohn, además de implicaciones importantes.

2.3.1. Teoremas de Hohenberg-Kohn y ecuaciones de Kohn-Sham

En la aproximación de Hohenberg y Kohn se formula una teoría del funcional de densidad como una teoría exacta para un sistema de muchos electrones. Esta teoría se puede aplicar a cualquier sistema en donde los electrones están sujetos a un potencial externo $V_{ext}(\mathbf{r})$ en donde los núcleos están fijos. Las soluciones estacionarias a este problema satisfacen

$$\left(\hat{T}_e + \hat{v}_{ext}(\mathbf{r}) + \hat{v}_{ee}\right)\psi_i(\mathbf{r}) = E_i\psi_i(\mathbf{r})$$
(2.16)

La teoría del funcional de densidad se basa en dos teoremas atribuidos a Hohenberg y Kohn.

Teorema 1: Para cualquier sistema de electrones interactuando sujetos a un potencial externo $v_{ext}(\mathbf{r})$ el potencial externo $v_{ext}(\mathbf{r})$ esta unívocamente determinado, salvo por una constante, por la densidad del estado base.

Teorema 2: Se puede definir un funcional universal para la energía E[n] en términos de la densidad $n(\mathbf{r})$, valida para cualquier potencial externo. La densidad que minimiza este funcional es la densidad del estado base exacta $n_0(\mathbf{r})$ y $E[n_0(\mathbf{r})]=E_0$.

Del primer teorema podemos concluir que

$$n_0(\mathbf{r}) \leftrightarrow v_{ext}(\mathbf{r}) \leftrightarrow \hat{H}[n_0] \leftrightarrow \psi_i[n_0](\mathbf{r}) \leftrightarrow \psi_0(\mathbf{r}) \leftrightarrow n_0(\mathbf{r})$$
 (2.17)

es decir, la densidad del estado base determina de forma única, salvo por una constante, el potencial externo y por lo tanto la forma hamiltoniano electrónico. Dado el hamiltoniano todas las soluciones estacionarias en 2.16 están determinadas, por lo tanto también la función de onda del estado base y/o la densidad del estado base (de esta manera se cierra ciclo).

El funcional universal para la energía (teorema 2) se expresa como

$$E_{v}[n] = \int v_{ext}(\mathbf{r})n(\mathbf{r})d^{3}r + F[n] = \int v_{ext}(\mathbf{r})n(\mathbf{r})d^{3}r + \min_{\psi \to n} \langle \psi | \hat{T}_{e} + \hat{V}_{ee} | \psi \rangle$$
(2.18)

Esta funcional satisface que la densidad del estado base la minimiza por lo que $E_v[n] > E_0$ para $n(\mathbf{r}) \neq n_0(\mathbf{r})$ satisface

$$E_{v}[n_{0}(\mathbf{r})] = E_{0} = \min_{n} \left\{ \int v_{ext}(\mathbf{r}) n(\mathbf{r}) d^{3}r + \min_{\psi \to n} \langle \psi | \hat{T}_{e} + \hat{V}_{ee} | \psi \rangle \right\}$$
(2.19)

Dada estas condiciones la solución de este problema se puede resolver por el método variacional. Con la constricción de que la función de onda del estado base debe de estar normalizada las ecuaciones de Euler se expresan como

$$\frac{\delta}{\delta n(\mathbf{r})} \left[E_v[n] - \mu \int n(\mathbf{r}) d^3 r + \mu \right]$$
 (2.20)

$$v_{ext}(\mathbf{r}) + \frac{\delta F[n]}{\delta n(\mathbf{r})} = \mu$$
 (2.21)

Teniendo estos elementos es posible reemplazar el problema de muchos electrones interactuando, por un sistema de electrones independientes, esta aproximación es llamada de Kohn-Sham. Para lograr esto es necesario considerar lo siguiente

- 1. La densidad del estado base exacto puede representarse por la densidad del estado base de un sistema auxiliar de partículas no interactuando.
- 2. El hamiltoniano auxiliar es elegido de tal forma que tenga al operador de energía cinética y un potencial efectivo local $V_{eff}^{\sigma}(\mathbf{r})$ actuando en un electrón de espín σ en el punto \mathbf{r} , este potencial tiene dependencia sobre el espín con la finalidad de dar la densidad correcta en cada espín.

El hamiltoniano para nuestro sistema de partículas independientes auxiliar (\hat{H}_{aux}^{σ}) esta expresado como.

$$\hat{H}_{aux}^{\sigma} = -\frac{1}{2}\nabla^2 + V^{\sigma}(\mathbf{r}) \tag{2.22}$$

Hasta este momento la forma de $V^{\sigma}(\mathbf{r})$ no se especifica. Para un sistema de $N = N^{\uparrow} + N^{\downarrow}$ electrones independientes sujetos a este hamiltoniano, el estado base tiene un electrón en cada uno de los N^{σ} orbitales ψ_i^{σ} dentro de los eigenvalores de menor energía ϵ_i^{σ} del hamiltoniano. La densidad del sistema auxiliar está dada por la suma de los cuadrados de los orbitales para cada espín.

$$n(\mathbf{r}) = \sum_{\sigma} n(\mathbf{r}, \sigma) = \sum_{\sigma} \sum_{i=1}^{N^{\sigma}} |\psi_i^{\sigma}(\mathbf{r})|^2$$
(2.23)

La energía cinética para las partículas independientes T_s esta dada por.

$$T_s = -\frac{1}{2} \sum_{\sigma} \sum_{i=1}^{N^{\sigma}} \left\langle \psi_i^{\sigma} \left| \nabla^2 \right| \psi_i^{\sigma} \right\rangle = \frac{1}{2} \sum_{\sigma} \sum_{i=1}^{N^{\sigma}} \int d^3 r \left| \nabla \psi_i^{\sigma}(\mathbf{r}) \right|^2$$
 (2.24)

El enfoque dado por Kohn-Sham fue reescribir la expresión de Hohenberg-Kohn como un funcional de energía dependiente del estado base del sistema dada de la siguiente forma.

$$E_{KS} = T_s[n] + \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{II} + E_{xc}[n]$$
(2.25)

Aquí $V_{ext}(\mathbf{r})$ es el potencial externo debido a los núcleos fijos y cualquier otro campo externo (que se asuma independiente del espín). La energía cinética está dada explícitamente como un funcional

de los orbitales. Se define la energía de Hartree como la energía debido a la interacción de Coulomb clásica de la densidad electrónica $n(\mathbf{r})$ interactuando consigo misma.

$$E_{Hartree}[n] = \frac{1}{2} \int d^3r d^3r' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$
(2.26)

Los efectos de correlación e intercambio para muchos electrones están agrupados dentro de la energía de correlación e intercambio E_{xc} . Comparando la expresión de Hohemberg-Kohn con la ecuación 2.25 se obtiene que la energía E_{xc} puede ser escrita en términos del funcional de Hohenberg-Kohn.

$$E_{xc} = F_{HK}[n] - (T_s[n] + E_{Hartree}[n])$$

$$(2.27)$$

O bien de una forma mas explicita.

$$E_{xc} = \langle \hat{T} \rangle - T_s[n] + \langle \hat{V}_{int} \rangle - E_{Hartree}[n]$$
(2.28)

Las soluciones para el sistema auxiliar de Kohn-Sham para el estado base puede ser visto como el problema de minimizar con respecto a la densidad $n(\mathbf{r}, \sigma)$ o el potencial efectivo $V_{eff}^{\sigma}(\mathbf{r})$. Desde que T_s está expresada explícitamente en términos de los orbitales pero los otros términos son considerados como funcionales de la densidad, se pueden variar las funciones de onda y usar la regla de la cadena para derivar la siguiente ecuación variacional.

$$\frac{\delta E_{KS}}{\delta \psi_i^{\sigma*}(\mathbf{r})} = \frac{\delta T_s}{\delta \psi^{\sigma*}(\mathbf{r})} + \left[\frac{\delta E_{ext}}{\delta n(\mathbf{r}, \sigma)} + \frac{\delta E_{Hartree}}{\delta n(\mathbf{r}, \sigma)} + \frac{\delta E_{xc}}{\delta n(\mathbf{r}, \sigma)} \right] \frac{\delta n(\mathbf{r}, \sigma)}{\delta \psi_i^{\sigma*}(\mathbf{r})}$$
(2.29)

Sujeta a la constricción debida a la normalización.

$$\langle \psi_i^{\sigma} | \psi_j^{\sigma'} \rangle = \delta_{i,j} \delta_{\sigma,\sigma'}$$
 (2.30)

Usando las expresiones para la energía cinética T_s y para $n^{\sigma}(\mathbf{r})$ obtenemos.

$$\frac{\delta T_s}{\delta \psi^{\sigma *}(\mathbf{r})} = -\frac{1}{2} \nabla^2 \psi^{\sigma}(\mathbf{r}) \tag{2.31}$$

Y para la función de densidad $n(\mathbf{r}, \sigma)$.

$$\frac{\delta n(\mathbf{r}, \sigma)}{\delta \psi_i^{\sigma*}(\mathbf{r})} = \psi_i^{\sigma*}(\mathbf{r}) \tag{2.32}$$

Usando el método de los multiplicadores de Lagrange para un sistema con constricción (solución normalizada) obtenemos

$$(H_{KS}^{\sigma} - \epsilon_i^{\sigma})\psi_i^{\sigma*}(\mathbf{r}) = 0 \tag{2.33}$$

Donde ϵ_i^{σ} los eigenvalores, y H_{KS} el hamiltoniano efectivo (en unidades atómicas de Hartree).

$$H_{KS}^{\sigma} = -\frac{1}{2}\nabla^2 + V_{KS}^{\sigma}(\mathbf{r}) \tag{2.34}$$

Con el potencial de Kohn-Sham dado por

$$V_{KS}^{\sigma}(\mathbf{r}) = V_{ext}(r) + \frac{\delta E_{Hartree}}{\delta n(\mathbf{r}, \sigma)} + \frac{\delta E_{xc}}{\delta n(\mathbf{r}, \sigma)} = V_{ext}(r) + V_{Hartree}(\mathbf{r}) + V_{xc}^{\sigma}(\mathbf{r})$$
(2.35)

Funcional de intercambio y correlación. El funcional de intercambio y correlación usado en este trabajo es GGA-PBE (aproximación de gradiente generalizado de Perdew-Burke-Ernzerhof) cuya forma funcional es

$$E_{xc}^{GGA}[n^{\uparrow}, n^{\downarrow}] = \int d\mathbf{r} n(\mathbf{r}) \epsilon_{xc}(n^{\uparrow}, n^{\downarrow}, |\nabla n^{\uparrow}|, |\nabla n^{\downarrow}|)$$

$$\equiv \int d\mathbf{r} n(\mathbf{r}) \epsilon_{x}^{hom}(n(\mathbf{r})) F_{xc}(n^{\uparrow}, n^{\downarrow}, |\nabla n^{\uparrow}|, |\nabla n^{\downarrow}|)$$
(2.36)

donde se incluye el espín n^{\uparrow} y n^{\downarrow} (debido a que nuestros cálculos incluyeron polarización de espín). En esta expresión F_{xc} es una función sin dimensiones y $\epsilon_x^{hom}(n(\mathbf{r}))$ es la energía de intercambio de un gas no polarizado cuando la densidad (local) es $n(\mathbf{r})$. Una de las propiedades importantes en DFT es que las funcionales de densidad de espín gracias a relaciones de escalamiento de espín pueden ser escritas en términos de funcionales de densidad para sistemas sin polarización de espín. Por ejemplo, la energía cinética de un sistema de electrones no interactuando es la suma de las contribuciones de la energía cinética de los electrones con espín arriba y espín abajo.

$$T_s[n^{\uparrow}, n^{\downarrow}] = T_s[n^{\uparrow}, 0] + T_s[0, n^{\downarrow}]$$
 (2.37)

El funcional de densidad correspondiente para un sistemas sin polarización de espín posee la siguiente relación.

$$T_s[n] = T_s[\frac{n}{2}, \frac{n}{2}] = 2T_s[\frac{n}{2}, 0]$$
 (2.38)

De donde se obtiene que $T_s[\frac{n}{2},0] = \frac{1}{2}T_s[n]$ por lo que.

$$T_s[n^{\uparrow}, n^{\downarrow}] = \frac{1}{2} T_s[2n^{\uparrow}] + \frac{1}{2} T_s[2n^{\downarrow}]$$
 (2.39)

De manera similar para la energía de correlación tenemos.

$$E_x[n^{\uparrow}, n^{\downarrow}] = \frac{1}{2} E_x[2n^{\uparrow}] + \frac{1}{2} E_x[2n^{\downarrow}]$$
 (2.40)

Esto nos permite considerar el funcional sin polarización de espín $F_x[n, \nabla n]$. Es útil trabajar en términos de gradientes de densidad reducidos de orden m definidos por ser cantidades sin dimensiones.

$$S_m = \frac{\nabla^m n}{(2k_F)^m} n \tag{2.41}$$

$$k_F = 3\left(\frac{2\pi}{3}\right)^{1/3} r_s^{-1} \tag{2.42}$$

Los términos de menor orden en la expresión F_x se pueden expresar analíticamente como.

$$F_x = 1 + \frac{10}{8!}s_1^2 + \frac{146}{2025}s_2^2 + \dots$$
 (2.43)

Sucede que esta expresión presenta problemas debido a que da resultados físicamente no aceptables al truncarla, por ejemplo, al expresar F_x tomando sólo el termino $s=s_1$ hace que la energía de correlación total sea positiva que es un resultado no físico. Por lo tanto se suelen usar otros métodos para expresar esta funcional $F_x[n, s]$. El funcional de intercambio Perdew-Burke-Ernzerhof(PBE) usado en este trabajo posee la forma.

$$F_x^{PBE} = 1 + \frac{as^2}{1 + bs^2} \tag{2.44}$$

El término de correlación es más difícil de obtener en términos de un funcional de densidad, pero su contribución a la energía total es comúnmente mucho mas pequeño que la del termino de intercambio. El funcional de correlación obtenido por Perdew-Burke-Ernzerhof se puede revisar con más detalle en la referencia [43].

Pseudopotenciales. Considerando que en la formación de enlaces los electrones de valencia son lo que intervienen directamente mientras que los electrones ligados al núcleo (electrones internos) no son reactivos, es conveniente realizar una aproximación en la que solo se traten los electrones de valencia interactuando con un potencial efectivo debido al núcleo atómico y a los electrones internos. Esto se puede lograr por medio de introducir el concepto de pseudopotencial (PsP). Veamos un ejemplo sencillo que demuestre la utilidad de usar este concepto: asumamos que tenemos un átomo aislado en el que N_c electrones son internos, ocupando los estados $\psi_c = \{\psi_1, ..., \psi_{N_c}\}$ y un electrón de valencia ocupando el estado ψ_v . Los estados son generados de resolver el hamiltoniano de KS para un solo átomo (en este caso el potencial externo se podría escribir como $\nu_{ext}(\mathbf{r}) = \frac{-Z}{r}$, donde Z es la carga nuclear). Si aumentamos el potencial de KS con un pseudopotencial V_{PsP} $(\hat{V}_{KS} \to \hat{V}_{KS} + \hat{V}_{PsP})$ de tal forma que los estados de núcleo ψ_c no aparezcan más como soluciones y el nuevo estado base presenta las mismas características que define al estado de valencia en términos de energía (mismo eigenvalor $\epsilon^{PsP} = \epsilon_v$) y mismo comportamiento después de una radio de corte r_c (no necesariamente la misma función). Los estados de núcleo ψ_c son incluidos en V_{PsP} generando en los electrones de valencia un repulsión fuera de la región del núcleo (como naturalmente ocurriría entre la interacción entre los electrones internos y los de valencia) y esto se ve reflejado en que la nueva pseudofunción de valencia no presente nodos.

Los pseudopotenciales usados en esta tesis son los que conservan la norma [44] en su forma completamente no local [45]. La propiedad principal de estos pseudopotenciales es que la funciones

de onda de valencia y la pseudofunciones de valencia son iguales a partir de un radio de corte, es decir, $\psi(\mathbf{r}) = \psi_{PsP}(\mathbf{r})$ para $r > r_c$ (esto asegura que la pseudo densidad de carga y la densidad de carga real sean iguales fuera de la región del núcleo, por eso se le suelen llamar conservadores norma). Estos pseudopotenciales se generaron con las configuraciones atómicas de valencia $5d^{10}6s^1$ (Au), $3d^{10}4s^1$ (Cu), $2s^22p^2$ (C) y $2s^22p^4$ (O). Los radios de corte (en unidades atómicas) son los siguientes: s (2.29), p (2.29), d (2.29) para Au; s (2.05), p (2.30), d (1.98) para Cu; s (1.47), p (1.47), d (1.47) para O; y s (1.54), p (1.54), d (1.54) para C.

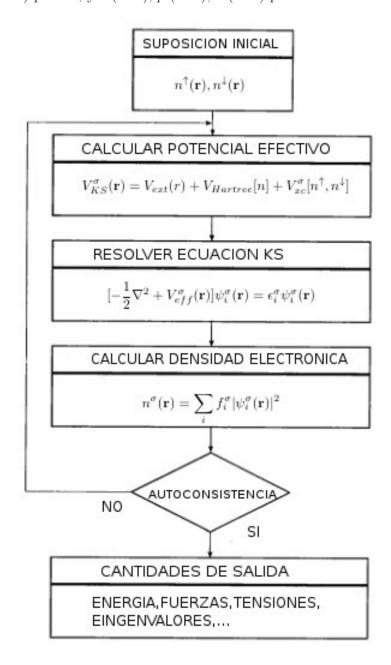


Figura 2.6: Ciclo de auto-consistencia.

Resolviendo las ecuaciones de Kohn-Sham. La ecuaciones de Kohn-Sham (KS) permiten obtener la densidad del estado base y su energía en problemas de muchos electrones usando el

enfoque de partículas independientes. Este conjunto de ecuaciones de partículas independientes debe de ser resuelto sujeto a la condición de que el potencial efectivo y la densidad sean autoconsistentes. Teniendo una forma dada en el funcional V_{xc} , y una densidad inicial n_{out} (que se pudo haber obtenido al resolverse las ecuaciones de KS para un potencial de entrada propuesto, es decir, $V^{in} \Rightarrow n^{out}$) se puede determinar el potencial efectivo, y resolverse la ecuación de Kohn-Sham. Si al comparar las densidades de entrada y salida se encuentra que no concuerdan, se define a partir de la densidad de salida n^{out} un nuevo potencial $n^{out} \Rightarrow V_{eff}^{new}$, que puede empezar un nuevo ciclo como el nuevo potencial de entrada, este ciclo se puede escribir como

$$V_i \Rightarrow n_i \Rightarrow V_{i+1} \Rightarrow n_{i+1} \Rightarrow \dots$$
 (2.45)

donde la etiqueta i es el número de pasos en la iteración. La progresión converge cuando las densidades de entrada y salida son casi las mismas $(n_{i+1} \approx n_i)$.

La expresión general para la energía de Kohn-Sham es la siguiente, donde se agrupan todos los términos potenciales en $E_{pot}[n]$.

$$E_{KS}[n] = T_s[n] + E_{pot}[n]$$
 (2.46)

$$E_{pot}[n] = \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{II}[n] + E_{xc}[n]$$
(2.47)

Los eigenvalores de la ecuación de KS están dados por la siguiente expresión.

$$\varepsilon_i^{\sigma} = \langle \psi_i^{\sigma} | H_{KS}^{\sigma} | \psi_i^{\sigma} \rangle \tag{2.48}$$

La energía cinética puede ser expresada como

$$T_s = E_s - \sum_{\sigma} \int d\mathbf{r} V^{\sigma,in}(\mathbf{r}) n^{out}(\mathbf{r},\sigma)$$
 (2.49)

donde la expresión E_s está dada por.

$$E_s = \sum_{\sigma} \sum_{N^{\sigma}}^{i=1} \varepsilon_i^{\sigma} \tag{2.50}$$

Fuerzas entre núcleos. La ecuación (2.15) es el hamiltoniano de un sistema de núcleos atómicos moviéndose en un potencial efectivo

$$\hat{H}_{nuc} = -\frac{1}{2} \sum_{J=1}^{M} \frac{\hbar^2}{M_J} \nabla_J^2 + U(\mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_M)$$
(2.51)

donde el potencial efectivo es expresado como

$$U(\mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_M) = \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\overrightarrow{R}_I - \overrightarrow{R}_J|} + E_0(R_1, R_2, ..., R_N)$$
(2.52)

Debido a que los núcleos son más pesados, podemos describirlos como partículas en lugar de ondas por lo que la fuerza sobre cada núcleo atómico se puede expresar como

$$\mathbf{F}_{I} = -\frac{\partial U(\mathbf{R}_{1}, \mathbf{R}_{2}, ..., \mathbf{R}_{M})}{\partial \mathbf{R}_{I}}$$
(2.53)

Usando la expresión (2.46) para la energía de Kohn-Sham lo anterior se puede expresar como

$$\mathbf{F}_{I} = Z_{I}e^{2} \left[\int d\mathbf{r} \frac{\mathbf{r} - \mathbf{R}_{I}}{|\mathbf{r} - \mathbf{R}_{I}|^{3}} n(\mathbf{r}) - \sum_{I \neq J} \frac{Z_{I}Z_{J}e^{2}}{|\overrightarrow{R}_{I} - \overrightarrow{R}_{J}|^{3}} \right]$$
(2.54)

Dada una posición inicial de los núcleos se busca que las fuerzas a las que es sometido cada átomo debido a la interacción con los núcleos restantes, sea cero ($\mathbf{F}_I = 0$ para todo I=1-M), lo que es equivalente a encontrar el mínimo local más cercano del potencial U(\mathbf{R}_I). La dirección en que debemos mover los átomos lo dicta el método de minimización que se use: descenso rápido, gradiente conjugado, etc. En la segunda etapa de esta tesis, la distribución de isómeros obtenida con algoritmos genéticos se usaron para una posterior reoptimización estructural local con un procedimiento de gradiente de conjugado (CG) sin restricciones, utilizando las fuerzas obtenidas de un cálculo DFT-GGA dentro de la parametrización PBE. Se dejó que los cúmulos se relajaran hasta que las fuerzas de Hellmann-Feynman fueran menores a 1 meV/ \mathring{A} .

Bases. Los orbitales atómicos centrados en cada coordenada nuclear se usan como base en la representación de las soluciones de KS satisfaciendo $H_{KS}^{\sigma}\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$ (se ignora la notación de espín por conveniencia). La forma en que se representan estas soluciones es como una combinación lineal de la forma

$$\psi_i(\mathbf{r}) = \sum_{\nu} C_{\nu}^{(i)} \phi_{\nu}(\mathbf{r}) \tag{2.55}$$

$$\phi_{\nu}(\mathbf{r}) = \phi_{nlm}(\mathbf{r} - \mathbf{R}_I) \tag{2.56}$$

donde cada índice $\nu=n,l,m,I$ representa los números cuánticos n,l,m y el átomo en el que está centrado la base (I=1-M). En esta tesis se usa base doble- ζ para los orbitales s y d además de un orbital de polarización p para cada orbital s y d, con una energía de cambio/excitación (energy shift $\delta\epsilon$) de 0.001 Ry para todos los átomos de oro y cobre. Una característica importante de la energía de cambio es que conforme más grande sea este parámetro el nodo de las bases ($\phi_{\nu}(\mathbf{r}_{c})=0$) es menor por lo que las bases se encuentran más localizadas en la región del núcleo (ver [40] para mas detalles sobre este parámetro). Considerando que la configuración electrónica del oro y el cobre involucran a los orbitales s y d, el número de bases por átomo de cobre u oro es 15 (2 para el orbital s + 10 del orbital d + 3 orbitales de polarización p = 15 funciones). En el caso de los átomos de

carbón y oxígeno, al tener en su configuración electrónica los orbitales s y p, por cada átomo se sienten 13 bases (2 para el orbital s+6 del orbital p+5 de polarización d). Dadas estas bases es posible escribir las ecuaciones de KS como una ecuación secular de la forma

$$\sum_{\nu} (H_{\mu\nu} - \epsilon_i S_{\mu\nu}) C_{\mu\nu} = 0 \tag{2.57}$$

$$H_{\mu\nu} = \langle \phi_{\mu} | \hat{H} | \phi_{\nu} \rangle \tag{2.58}$$

$$S_{\mu\nu} = \langle \phi_{\mu} | \phi_{\nu} \rangle \tag{2.59}$$

El sistema más grande estudiado en esta tesis es de 8 átomos lo que equivale a 146 bases atómicas por lo que la matriz a resolver en (2.60) es de dimensión 146, lo que significa que se obtendrían 146 eigenvalores usando esta representación. En un sistema de N electrones ocupando N estados $\psi_i(\mathbf{r})$ (i=0-N-1) (cada una expresada como una combinación lineal de la base), se puede obtener la matriz de densidad del sistema como

$$\hat{\rho} = \sum_{i=1}^{N} |\psi_i(\mathbf{r})|^2 = \sum_{i=1}^{N} \sum_{\mu\nu} \rho_{\mu\nu} \phi_{\mu}(\mathbf{r}) \phi_{nu}(\mathbf{r})$$
(2.60)

$$\rho_{\mu\nu} = \sum_{i=1}^{N} C_{\mu}^{i} C_{\nu}^{i} \tag{2.61}$$

donde la suma corre sobre todos los estado ocupados, se ha insertado la base definida en (2.55) para representar a $\psi_i(\mathbf{r})$ con sus respectivos coeficientes C^i_{ν} . Los coeficientes $\rho_{\mu\nu}$ son los elementos de la matriz de densidad $\hat{\rho}$ (también definida como $\hat{\rho} = \sum_{occupados} |\psi_i\rangle \langle \psi_i|$).

En el diagrama 2.6 se muestra que el ciclo de auto-consistencia va a parar cuando las densidades converjan, es decir, de acuerdo a nuestra notación

$$\hat{\rho}^{out} - \hat{\rho}^{in} \approx 0 \Longleftrightarrow \max_{\mu\nu} |\rho_{\mu\nu}^{out} - \rho_{\mu\nu}^{in}| < 10^{-4}$$
(2.62)

donde $\rho_{\mu\nu}^{in}$ y $\rho_{\mu\nu}^{out}$ son los coeficientes de las matrices de densidad de entrada y salida respectivamente cuya diferencia debe de ser menor aun valor de la tolerancia 10^{-4} . La convergencia también se debe dar en la energía; la tolerancia para la energía es de 10^{-4} eV.

Parámetro de mezcla lineal: Uno de los problemas clave para lograr autoconsistencia es la elección de un procedimiento con el fin de ir actualizando el potencial ν^{σ} o bien la densidad n^{σ} en cada ciclo. Uno podría variar ν^{σ} pero resulta más sencillo describir nuestro problema en términos de n^{σ} , que una función única, mientras que el potencial esta sujeto a cambiar por una constante.

La forma más simple de realizar esto es usando en enfoque de mezcla lineal, estimando una densidad de entrada n_{i+1}^{in} mejorada en el paso i+1 escribiéndola como una combinación lineal fija de n_i^{in} y n_i^{out} en el paso i.

$$n_{i+1}^{in} = \alpha n_i^{out} + (1 - \alpha) n_i^{in} = n_i^{in} + \alpha (n_i^{out} - n_i^{in})$$
(2.63)

La explicación del por qué se elige esta forma para la función de densidad de entrada en el paso i+1 se puede ver de la siguiente forma; definamos la desviación para la densidad correcta como $\delta n = n - n_{KS}$ en cada paso en la iteración. Cerca de la solución, el error en la densidad de salida esta dado como.

$$\delta n^{out}[n^{in}] = n^{out} - n_{KS} = (\chi + 1)(n^{in} - n_{KS})$$
$$\chi + 1 = \frac{\delta n^{out}}{\delta n^{in}} = \frac{\delta n^{out}}{\delta \nu^{in}} \frac{\delta \nu^{in}}{\delta n^{in}}$$

La mejor elección para la nueva densidad es una que hiciera que el error tuviera un valor cero, es decir, $n_{i+1}^{in} = n_{KS}$. Desde que tanto n_i^{out} como n_i^{in} son conocidas en el paso i y suponiendo que χ fuera también conocido, entonces podríamos escribir a la solución exacta n_{KS} como

$$n_{KS} = n_i^{in} - \chi^{-1}(n_i^{out} - n_i^{in}) \tag{2.64}$$

Si esta ecuación fuera exacta, esta sería la respuesta y la iteración podría pararse. Desde que χ no se puede obtener directamente por lo menos al tomar la forma de la ecuación 2.64 con $\alpha = \frac{-1}{\chi}$ nos puede dar una mejor densidad de entrada para la siguiente iteración i+1. El parámetro de mezcla tomado en esta tesis es de $\alpha = 0.10$ que funciona bien para alcanzar convergencia en los cúmulos metálicos.

Análisis de poblaciones de Hirshfield: En el esquema de Hirshfield a cada átomo en una molécula compuesta de M átomos se le asigna una fracción de la densidad de carga deformada definida como

$$\rho_d(\mathbf{r}) = \rho_0^{mol}(\mathbf{r}) - \sum_{\alpha} \rho_{\alpha}(\mathbf{r} - \mathbf{R}_{\alpha})$$
 (2.65)

donde $\rho_0^{mol}(\mathbf{r})$ es la densidad del estado base de la molécula (la densidad obtenida en DFT) y $\rho_{\alpha}(\mathbf{r} - \mathbf{R}_{\alpha})$ es la densidad electrónica del estado base del átomo aislado centrado en la posición del núcleo α ($\alpha = 1 - M$) del átomo. Dado un átomo α con N_{α} electrones la densidad electrónica $\rho_{\alpha}(\mathbf{r} - \mathbf{R}_{\alpha})$ se define como

$$\rho_{\alpha}(\mathbf{r}) = \sum_{i=1}^{N_{\alpha}} |\psi_{\alpha i}(\mathbf{r})|^2$$
(2.66)

donde la función de onda $\psi_{\alpha i}(\mathbf{r})$ satisface las ecuaciones de KS para un átomo (Z_{α} es la carga del núcleo atómico).

$$\left[-\frac{1}{2} \nabla^2 - \frac{Z_{\alpha}}{r} + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r} + V^{xc}[n](\mathbf{r}) \right] \psi_{\alpha i}(\mathbf{r}) = \epsilon_{\alpha i} \psi_{\alpha i}(\mathbf{r})$$
 (2.67)

La fracción que de la densidad deformada que se le asigna a cada átomo esta determinada por un peso $\omega_{\alpha}(\mathbf{r})$ definido como

$$\omega_{\alpha}(\mathbf{r}) = \frac{\rho_{\alpha}(\mathbf{r} - \mathbf{R}_{\alpha})}{\sum_{\alpha} \rho_{\alpha}(\mathbf{r} - \mathbf{R}_{\alpha})}$$
$$\sum_{\alpha} \omega_{\alpha}(\mathbf{r}) = 1$$

De esta forma la carga en el átomo α se define como

$$q_{\alpha} = -\int \rho_d(\mathbf{r})\omega_{\alpha}(\mathbf{r})d^3\mathbf{r}$$

DESCRIPTOR DUAL PARA REACTIVIDAD QUÍMICA

Las variables naturales del funcional de energía es la densidad electrónica $n(\mathbf{r})$ y el potencial externo $\nu(\mathbf{r})$.

$$E_v[n(\mathbf{r})] = \int n(\mathbf{r})\nu(\mathbf{r})d^3\mathbf{r} + F[n(\mathbf{r})]$$
(2.68)

donde $F[n] = E_{Hartree}[n] + E_{II}[n] + E_{xc}[n]$ (ver ecuación 2.47).

Se puede demostrar que la primera derivada del funcional de la energía con respecto a la densidad electrónica es el potencial químico que puede ser identificado con la derivada de la energía con respecto al número de electrones N

$$\mu = \left(\frac{\partial E}{\partial n(\mathbf{r})}\right)_{\nu(\mathbf{r})} = \left(\frac{\partial E}{\partial N}\right)_{\nu(\mathbf{r})} \tag{2.69}$$

por lo que podemos usar N y $\nu(\mathbf{r})$ como variables del funcional de energía. N tiene un significado profundo en reacciones químicas (por ejemplo en los proceso de oxidación/reducción), mientras que una variación del potencial externo significa que un sistema sufre la perturbación debido al acercamiento de un reactivo externo (por ejemplo una molécula), produciendo un nuevo reposicionamiento de los núcleos.

Supongamos que un reactivo A interactúa con un reactivo B dando como resultado un complejo AB (A+B \rightarrow AB). En una etapa inicial el reactivo A sufre una variación en el potencial externo debido a la interacción con el reactivo B ($\nu_A \rightarrow \nu_A + \Delta \nu_{A/B}$). De igual forma, suponiendo que la carga electrónica es compartida entre reactivos, el reactivo A sufrirá un cambio en el número de electrones debido a la interacción con el reactivo B ($N_A \rightarrow N_A + \Delta N_{A/B}$). Usando el desarrollo de

Taylor para el funcional de energía en las variables N y $\nu(\mathbf{r})$ es posible calcular la variación en la energía como

$$\Delta E_{A} = E[N_{A} + \Delta N_{A}, \nu_{A} + \Delta \nu_{A}] - E[N_{A}, \nu_{A}] =$$

$$\Delta N_{A} \left(\frac{\partial E_{A}}{\partial N_{A}}\right)_{\nu_{A}(\mathbf{r})} + \int \left[\frac{\partial E_{A}}{\partial \nu_{A}(\mathbf{r})}\right] \Delta \nu_{A}(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \left(\frac{\partial^{2} E_{A}}{\partial N_{A}^{2}}\right) \Delta N_{A}^{2} +,$$

$$\Delta N_{A} \int \left[\frac{\partial^{2} E}{\partial N \delta \nu_{A}(\mathbf{r})}\right] \Delta \nu_{A/B}(\mathbf{r}) + \frac{1}{2} \int \int \left[\frac{\partial^{2} E_{A}}{\delta \nu_{A/B}(\mathbf{r}) \delta \nu_{A/B}(\mathbf{r}')}\right] \Delta \nu_{A/B}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}') +,$$

$$\frac{1}{6} \Delta N_{A}^{3} \left(\frac{\partial^{3} E}{\partial N_{A}^{3}}\right) + \frac{1}{2} \Delta N_{A}^{2} \int \left[\frac{\partial^{3} E_{A}}{\partial N_{A}^{2} \delta \nu_{A/B}(\mathbf{r})}\right] \Delta \nu_{A/B}(\mathbf{r}) d\mathbf{r} +,$$

$$\frac{1}{2} \Delta N_{A} \int \int \left[\frac{\delta E_{A}}{\delta \nu_{A/B}(\mathbf{r}) \delta \nu_{A/B}(\mathbf{r}')}\right] \Delta \nu_{A/B}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}') d\mathbf{r} d\mathbf{r}' +,$$

$$\frac{1}{6} \int \int \int \left[\frac{\delta^{3} E_{A}}{\delta \nu_{A}(\mathbf{r}) \delta \nu_{A}(\mathbf{r}') \delta \nu_{A}(\mathbf{r}'')}\right] \Delta \nu_{A/B}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}') \Delta \nu_{A/B}(\mathbf{r}'') d\mathbf{r} d\mathbf{r}' d\mathbf{r}'' + \dots$$

donde las derivadas funcionales están evaluadas en el estado inicial cuando el reactivo A está aislado. De igual forma si queremos calcular la variación en la energía del reactivo B debido a la interacción con el reactivo A $(\Delta E_B = E[N_B + \Delta N_B, \nu_B + \Delta \nu_B] - E[N_B, \nu_B])$ usamos la forma del desarrollo de Taylor anterior intercambiando los índices de los reactivos, es decir, $A \leftrightarrow B$ y $A/B \leftrightarrow B/A$. La ecuación anterior da solamente la variación de la energía electrónica. Sin embargo, debido a que en un proceso químico existe un reposicionamiento de los núcleos atómicos, se debe incluir un término de repulsión entre núcleos (V_{nn}) en la variación en la energía.

Todas las derivadas de primer, segundo y hasta tercer orden pueden ser identificadas como

$$\mu = \left(\frac{\partial E}{\partial N}\right)_{\nu(\mathbf{r})} \qquad \qquad \text{Potencial químico}$$

$$n(\mathbf{r}) = \left(\frac{\partial E}{\partial \nu(\mathbf{r})}\right)_{N} \qquad \qquad \text{Densidad electrónica}$$

$$\eta = \left(\frac{\partial^{2} E}{\partial N^{2}}\right)_{\nu(\mathbf{r})} = \left(\frac{\partial \mu}{\partial N}\right)_{\nu(\mathbf{r})} \qquad \qquad \text{Dureza química}$$

$$f(\mathbf{r}) = \left(\frac{\delta^{2} E}{\partial N \delta \nu(\mathbf{r})}\right) \qquad \qquad \text{Función de Fukui}$$

$$\chi(\mathbf{r}, \mathbf{r}') = \left(\frac{\delta^{2} E}{\delta \nu(\mathbf{r}') \delta \nu(\mathbf{r}')}\right) \qquad \qquad \text{Respuesta lineal}$$

$$\chi(\mathbf{r}, \mathbf{r}', \mathbf{r}'') = \left(\frac{\delta^{2} E}{\delta \nu(\mathbf{r}) \delta \nu(\mathbf{r}') \delta \nu(\mathbf{r}'')}\right) \qquad \qquad \text{Respuesta de tercer orden}$$

$$\gamma = \left(\frac{\delta^3 E}{\partial N^3}\right)$$
 Hyper dureza
$$f^2(\mathbf{r}) = \Delta f(\mathbf{r}) = \left(\frac{\delta^3 E}{\partial^2 N \delta \nu(\mathbf{r})}\right)$$
 Descriptor dual o función de Fukui de segundo orden

donde, de acuerdo al teorema de Schwartz, las derivadas cruzadas de segundo y tercer orden deben satisfacer

$$\left(\frac{\partial^2 E}{\partial N \delta \nu(\mathbf{r})}\right) = \left(\frac{\partial^2 E}{\delta \nu(\mathbf{r}) \partial N}\right)$$
(2.71)

$$\left(\frac{\partial^3 E}{\delta \nu(\mathbf{r}) \partial N^2}\right) = \left(\frac{\partial^3 E}{\partial N^2 \delta \nu(\mathbf{r})}\right)$$
(2.72)

Definidos estos términos podemos reescribir la ecuación (2.73) en una forma más compacta como un desarrollo de Taylor hasta tercer orden

$$\Delta E_{A} = E[N_{A} + \Delta N_{A}, \nu_{A} + \Delta \nu_{A}] - E[N_{A}, \nu_{A}] =$$

$$\mu_{A}^{0} \Delta N_{A} + \int n_{A}(\mathbf{r}) \Delta \nu_{A}(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \eta_{A} \Delta N_{A}^{2} +,$$

$$\Delta N_{A} \int f_{A}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}) + \frac{1}{2} \int \int \chi_{A}(\mathbf{r}, \mathbf{r}') \Delta \nu_{A/B}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}') +,$$

$$\frac{1}{6} \Delta N_{A}^{3} \gamma_{A} + \frac{1}{2} \Delta N_{A}^{2} \int \Delta f(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}) d\mathbf{r} +,$$

$$\frac{1}{2} \Delta N_{A} \int \int \chi_{A}(\mathbf{r}, \mathbf{r}') \Delta \nu_{A/B}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}') d\mathbf{r} d\mathbf{r}' +,$$

$$\frac{1}{6} \int \int \int \chi_{A}(\mathbf{r}, \mathbf{r}', \mathbf{r}'') \Delta \nu_{A/B}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}') \Delta \nu_{A/B}(\mathbf{r}'') d\mathbf{r} d\mathbf{r}' d\mathbf{r}'' + \dots$$

La variación del potencial químico a primer orden se puede expresar como

$$\Delta \mu = \left(\frac{\partial \mu}{\partial N}\right)_{\nu(\mathbf{r})} dN + \int \left(\frac{\delta \mu}{\delta \nu(\mathbf{r})}\right)_N d\nu(\mathbf{r}) d\mathbf{r} = \eta \Delta N + \int f(\mathbf{r}) \Delta \nu(\mathbf{r}) d\mathbf{r}$$

Las cantidades más utilizadas en estudios de reactividad son el potencial químico, la dureza, y las función de Fukui de primer y tercer orden. Estas cantidades serán descritas a detalle a continuación.

Trayectoria de mínima energía. En la figura (2.7) se muestra un proceso que implica, por ejemplo, la adsorción de una molécula en un cúmulo. En este caso, el estado inicial corresponde a la amolécula y el cúmulo libres, y el final corresponde a la molécula adsorbida. En los cálculos realizados con DFT se parte del mismo estado, es decir, tanto la molécula como el cúmulo no interaccionan, después se consideran múltiples estados finales dependiendo de la configuración adoptada

por el complejo molécula-cúmulo (hollow, top, staple). Cada trayectoria seguida para llegar al estado final presenta una barrera de energía cuya altura del punto silla (estado de transición) ΔE es proporcional a la energía que sería necesaria proporcionar al sistema para la formación del complejo. Aquella trayectoria con una barrera de energía menor (trayectoria de mínima energía) sería la que se observaría experimentalmente. Una forma de determinar la altura de la barrera es calcular la pendiente de todas los posibles trayectorias al comienzo de cada reacción química; considerando que cuanto menor sea la pendiente al comienzo de la reacción, la altura de la barrera será menor.

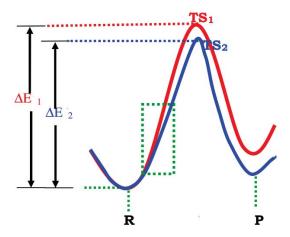


Figura 2.7: Energía potencial de dos trayectorias entre reactivos (R) y productos (P).

En general, cuanto menor sea la pendiente, menor será la variación de la energía de un estado inicial $E[n^0, \nu^0]$ a uno final representado por una perturbación del estado inicial $E[n^0 + \Delta n, \nu^0 + \Delta \nu]$, esto se puede reinterpretar de la siguiente forma: En una reacción química en el que dos reactivos A y B interacciones, el producto mas estable sera el que presente la menor variación en la energía del sistema, es decir, $\min_{A+B\to AB} \Delta E$, donde $\Delta E = \Delta E_A + \Delta E_B = (E_A[N_A^0 + \Delta N_A, \nu_A^0 + \Delta \nu_A] - E[N_A^0, \nu_A^0]) + (E_B[N_B^0 + \Delta N_B, \nu_B^0 + \Delta \nu_B] - E[N_B, \nu_B]).$

Potencial químico. Esta cantidad no local $(\mu[n(\mathbf{r})])$ describe la tendencia de los electrones a escapar del potencial externo de origen. Si uno considera un sistema cerrado que involucra la interacción de dos sistemas electrónicos A y B, la variación de la energía a primer orden se puede expresar como

$$\Delta E_{AB} = \Delta E_A + \Delta E_B = \mu_A^0 \Delta N_A + \mu_B^0 \Delta N_B = (\mu_A^0 - \mu_B^0) \Delta N_A \qquad (\Delta N_A = -\Delta N_B)$$

Si uno considera que $\mu_A^0 < \mu_B^0$, la ecuación anterior implica que la dirección de transferencia de carga que estabilizaría al sistema ($\Delta E < 0$) seria de B \rightarrow A. La transferencia de carga continuara hasta que el potencial químico entre los dos sistemas sea el mismo ($\mu_A = \mu_B$ conocido como el principio de Sanderson). Este principio se puede extender para un desarrollo de $\Delta \mu$ hasta segundo

orden. Dados dos reactivos A y B interactuando tenemos que la variación en el potencial químico de cada reactivo se puede escribir como

$$\mu_A^f = \mu_A^i + \eta_A \Delta N + \int f(\mathbf{r}) \Delta \nu(\mathbf{r}) d\mathbf{r}$$
$$\mu_B^f = \mu_B^i + \eta_B \Delta N + \int f(\mathbf{r}) \Delta \nu(\mathbf{r}) d\mathbf{r}$$

donde μ_A^i (μ_B^i) es el potencial químico del reactivo A (B) aislado y μ_A^f (μ_B^f) el potencia químico fina del reactivo A en interacción con el reactivo B. Usando el principio de Sanderson los potenciales químicos de los reactivos deben igualarse en el estado final y tomando en cuenta que $\Delta N_{sistema-cerrado} = \Delta N_A + \Delta N_B = 0$ (lo que implica $\Delta N_A = -\Delta N_B = \Delta N$) entonces podemos obtener la transferencia de carga entre reactivos

$$\Delta N = \frac{(\mu_A^0 - \mu_B^0) + \int f_A(\mathbf{r}) \Delta \nu(\mathbf{r}) d\mathbf{r} + \int f_B(\mathbf{r}) \Delta \nu(\mathbf{r}) d\mathbf{r}}{\eta_A + \eta_B}$$
(2.74)

El potencial químico atómico se suele identificar con la electronegatividad del átomo [46].

$$\chi = -\frac{\partial E}{\partial N} = -\mu = \left[\frac{\delta E}{\delta n(\mathbf{r})}\right]_{\nu_{\mathbf{r}}} = -\left[\nu(\mathbf{r}) + \frac{\delta F}{\delta n(\mathbf{r})}\right]$$

Bajo esta definición podemos reformular el principio de Sanderson como: Cuando dos o más átomos con una electronegatividad distinta se combinan químicamente, la electronegatividad del sistema en equilibrio se ajusta de tal manera que la electronegatividad de cada átomo dentro del compuesto es igual.

Otra característica importante es la asociación del potencial químico con la afinidad electrónica (A) y el potencial químico (I)

$$\mu = -\left(\frac{I+A}{2}\right) = \left(\frac{\epsilon_{HOMO} + \epsilon_{LUMO}}{2}\right) \tag{2.75}$$

donde la ultima igualdad se debe al teorema de Koopmans ($I=-\epsilon_{HOMO}$, $P=-\epsilon_{LUMO}$).

Dureza. Durante la interacción entre dos reactivos se alcanza el equilibrio y el potencial químico (electronegatividad) se igual en los dos sistemas. Es por esto que caracterizar la variación del potencial químico antes (μ^i) y después (μ^f) de la reacción químico entre dos reactivos. Considerando que la variación del potencial químico se debe sólo al cambio en el número de electrones

$$\Delta \mu = \left(\frac{\partial \mu}{\partial N}\right)_{\nu(\mathbf{r})} \Delta N = \eta \Delta N$$
$$\mu^f = \mu^i + \eta \Delta N$$

La dureza se define como la resistencia a la transferencia de carga y siempre es positiva $\eta > 0$. Considerando que un sistema se vuelve menos electronegativos cuando pierde electrones y a su ves mas electronegativo cuando recibe electrones se puede se puede obtener los siguientes dos casos

$$\Delta N < 0 \Rightarrow \Delta \chi > 0 \Rightarrow \Delta \mu < 0$$

 $\Delta N > 0 \Rightarrow \Delta \chi < 0 \Rightarrow \Delta \mu > 0$

En todos los casos el signo de ΔN y $\Delta \mu$ es el mismo por lo que se demuestra que la dureza siempre es positiva.

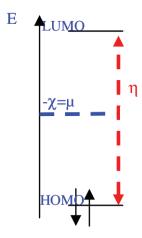


Figura 2.8: Potencial químico y dureza usando el teorema de Koopmans.

Usando el teorema de Koopmans es posible asociar dureza como la diferencia entre afinidad electrónica (A) y el potencial químico (I), dando como resultado que la dureza sea equivalente a la brecha HOMO-LUMO (HLG).

$$\eta = I - A = (\epsilon_{LUMO} - \epsilon_{HOMO}) = HLG$$
(2.76)

Las reacciones químicas siempre involucran la transferencia de electrones entre reactivos. Moléculas de baja dureza (suaves), son sensitivas a la transferencia de carga en contraste con moléculas duras (alta dureza). La estabilidad química está asociada a moléculas con gran dureza mientras que la moléculas suaves son más reactivas.

Funciones de Fukui. Además de las interacciones electrostáticas entre los reactivos, el enlace covalente es igual de importante importante en reacciones químicas. este tipo de interacción involucra la transferencia de carga entre reactivos. Una cantidad importante para medir como varia la densidad electrónica de dos reactivos durante una reacción química es la función de Fukui definida como

$$\left(\frac{\delta\mu}{\delta\nu(\mathbf{r})}\right)_{N} = \left(\frac{\partial n(\mathbf{r})}{\partial N}\right)_{\nu(\mathbf{r})} = f(\mathbf{r}) \tag{2.77}$$

$$\int f(\mathbf{r})d\mathbf{r} = 1 \tag{2.78}$$

Debido a que casi todas las reacciones pueden ser vistas como la interacción entre un ácido (receptor de electrones o electrophilico) y una base (donador de electrones o nucleofílico), uno de los reactivos ganará carga mientras el otro la perdería. Las funciones de Fukui para la molécula que gana electrones $(f^+(\mathbf{r}))$ como la que pierde electrones $f^-(\mathbf{r})$) se escribe como

$$\left(\frac{\delta\mu}{\delta\nu(\mathbf{r})}\right)_{N}^{+} = \left(\frac{\partial n(\mathbf{r})}{\partial N}\right)_{\nu(\mathbf{r})}^{+} = f^{+}(\mathbf{r}) = n_{N+1}(\mathbf{r}) - n_{N}(\mathbf{r}) \qquad \text{Ataque nucleofilico}$$

$$\left(\frac{\delta\mu}{\delta\nu(\mathbf{r})}\right)_{N}^{-} = \left(\frac{\partial n(\mathbf{r})}{\partial N}\right)_{\nu(\mathbf{r})}^{-} = f^{-}(\mathbf{r}) = n_{N-1}(\mathbf{r}) - n_{N}(\mathbf{r}) \qquad \text{Ataque electrofilico}$$

que pueden aproximarse usando la aproximación de Parr and Yang [47] como

$$f^+(\mathbf{r}) = n_{HOMO}(\mathbf{r})$$

 $f^-(\mathbf{r}) = n_{LUMO}(\mathbf{r})$

donde $n_{HOMO}(\mathbf{r})$ y $n_{LUMO}(\mathbf{r})$ son las densidades de los estados HOMO y el LUMO, respectivamente. Es por esto que a las funciones de Fukui se les denomina funciones orbitales de frontera.

Descriptor dual. El descriptor dual es una herramienta que predice la forma en que se distribuirá la carga después de que dos reactivos interaccionan. En la teoría se considera la variación de la energía total de un sistema compuesto inicialmente de dos reactivos A y B sin interacción entre ellos. Un instante después los reactivos interaccionan y la variación el a energía del sistema se calcula usando las relaciones (2.74) y (2.73) obteniendo lo siguiente

$$\Delta E = \Delta E_A + \Delta E_B = \Delta E_{cov} + \Delta E_{est} + \Delta E_{pol}$$
 (2.79)

$$\Delta E_{cov} = \frac{\left[(\mu_B^0 - \mu_A^0) + \int f_B(\mathbf{r}) \Delta \nu_{B/A}(\mathbf{r}) d\mathbf{r} - \int f_A(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}) d\mathbf{r} \right]^2}{2(\eta_A + \eta_B)}$$
(2.80)

$$\Delta E_{est} = \int \rho_{B}(\mathbf{r}) \Delta \nu_{B/A}(\mathbf{r}) d\mathbf{r} + \int \rho_{A}(\mathbf{r}') \Delta \nu_{A/B}(\mathbf{r}') d\mathbf{r}' + \Delta V_{nn}$$
 (2.81)

$$\Delta E_{pol} = \int \int \chi_{A}(\mathbf{r}, (\mathbf{r}') \Delta \nu_{A/B}(\mathbf{r}) \Delta \nu_{A/B}(\mathbf{r}') + \int \int \chi_{B}(\mathbf{r}, (\mathbf{r}') \Delta \nu_{B/A}(\mathbf{r}) \Delta \nu_{B/A}(\mathbf{r}')$$
(2.82)

donde ΔE_{cov} es el término covalente, ΔE_{elec} es el término electrostático y ΔE_{pol} el término de polarización. El primer término covalente es importante cuando la dureza de los reactivos no es

grande por lo que son capaces de compartir electrones y formar enlacen covalentes. El segundo término electrostático es importante cuando la reacción involucra dos reactivos iónicos con una dureza grande por lo que no comparten electrones y la interacción es puramente Coulombiana. Finalmente, el término de polarización describe la polarización de las nubes electrónicas de ambos reactivos y será importante cuando la interacción involucre una interacción entre un reactivo con baja dureza y otro con alta dureza. En general, como se verá en la sección de resultados, la interacción cúmulo-molécula produce una transferencia de carga tanto del cúmulo a la molécula como del cúmulo a la molécula, por lo que podemos considerar que el término que predomina en el desarrollo (2.83) en nuestros sistemas es el covalente.

Después de desarrollar el término covalente, éste se puede aproximar como una doble integral de volumen

$$\Delta E_{cov} \approx \frac{\int \int \frac{\Delta f_A(\mathbf{r}) \Delta f_B(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} d\mathbf{r} d\mathbf{r'}}{2(\eta_A + \eta_B)}$$
(2.83)

donde los descriptores duales correspondientes a los reactivos A $(\Delta f_A(\mathbf{r}))$ y B $(\Delta f_B(\mathbf{r}))$ están involucrados en la integral. El descriptor dual se puede definir como una función escalar en el espacio real:

$$\Delta f(\mathbf{r}) = \left(\frac{\partial f(\mathbf{r})}{\partial N}\right)_{\nu(\mathbf{r})} = \left(\frac{\delta \eta}{\partial \nu(\mathbf{r})}\right)_{N}$$

Las formas integrales del descriptor dual son

$$\Delta \eta = \int \Delta f(\mathbf{r}) \Delta \nu(\mathbf{r}) d\mathbf{r}$$
$$\delta n(\mathbf{r}) = f(\mathbf{r}) dN + \frac{1}{2} \Delta f(\mathbf{r}) dN^2$$
$$\int \Delta f(\mathbf{r}) d\mathbf{r} = 0$$

De las ecuaciones anteriores se encuentra que cuando una molécula de prueba electrofílica se acerca a una región con $\Delta f(\mathbf{r}) < 0$, la dureza de la molécula que es el objetivo de la molécula de prueba aumenta. A su vez, si una molécula de prueba nucleofílica se acerca a una región con $\Delta f(\mathbf{r}) > 0$, la dureza de la molécula aumenta. Esto concuerda con el principio de máxima dureza que establece que en una reacción química las moléculas tienden a alcanzar el valor de máxima dureza cuando están en equilibrio [48]. Al analizar las relaciones anteriores se puede concluir que $\Delta f(\mathbf{r})$ describe sitios atómicos dentro de la molécula que actúan como zonas electrofílicas y nucleofílicas bajo el siguiente principio:

$$\Delta f({f r}) > 0$$
 Región electrofílica
$$\Delta f({f r}) < 0$$
 Región nucleofílica

donde el descriptor dual puede ser expresado como

$$\Delta f(\mathbf{r}) = f^{+}(\mathbf{r}) - f^{-}(\mathbf{r})$$

La relación entre la dureza y el descriptor dual nos da un principio para entender el concepto de selectividad entre reactivos: las reacciones químicas más favorables son aquellas en las que regiones que son buenas receptoras de electrones se alinean con regiones que son buenas donadoras de carga. La reactividad entre dos moléculas A y B se puede clasificar en atractiva y repulsiva dependiendo de qué regiones de cada molécula estén interactuando.

$$\int \int \frac{\Delta f_A(\mathbf{r}_A) \Delta f_B(\mathbf{r}_B)}{|\mathbf{r}_A - \mathbf{r}_B|} < 0$$
 La interacción es favorable (atractiva)
$$\int \int \frac{\Delta f_A(\mathbf{r}_A) \Delta f_B(\mathbf{r}_B)}{|\mathbf{r}_A - \mathbf{r}_B|} > 0$$
 La interacción no es favorable (repulsiva)

Cabe mencionar que las funciones de Fukui y las funciones de onda de frontera (funciones de onda del HOMO y LUMO) no poseen exactamente la misma información. La información que concierne a la simetría se pierde cuando se eleva al cuadrado la función de onda. Sin embargo, el teorema de Hohenberg-Kohn menciona que la densidad electrónica lleva la misma información que la función de onda $(\varphi_i[n_0](\mathbf{r}))$. Dado este hecho, debería de existir una forma de tratar la interacción entre orbitales de frontera en DFT. Este es precisamente el propósito de usar al descriptor dual, además el descriptor dual posee varias ventajas en comparación con las funciones de Fukui, en éstas sólo se necesita una función para caracterizar a la reactividad de un sitio y no existe la necesidad de saber si molécula va a actuar como donadora y/o receptor de electrones. Para mayor información se pueden consultar los artículos originales de Christophe Morrel et. en donde se describe a detalle la teoría del descriptor dual [49, 48].

CAPÍTULO 3

RESULTADOS

3.1

Propiedades estructurales y electrónicas de cúmulos de oro-cobre

El patrón de segregación que se se observa en todos los cúmulos bimetálicos de oro y cobre es de tipo núcleo/corteza en donde los átomos de cobre ocupan el núcleo o centro del cúmulo y los átomos de oro se encuentran en la superficie del mismo. Este resultado coincide con lo reportado en la literatura para cúmulos bimetálicos de oro-cobre de hasta 38 átomos [50, 51, 52, 53]. El tamaño atómico relativo (r_0) , la energía de cohesión por átomo (E_{coh}) , la energía superficial (E_{surf}) y la electronegatividad (η) de las especies componentes son factores que influyen en el ordenamiento químico de las nanoaleaciones [8]. En este caso, las energías de cohesión por átomo cumplen E_{coh}^{Au} =3.81eV> E_{coh}^{Cu} =3.49eV [31], es decir, los enlaces Au-Au son más fuertes que los de Cu-Cu y esto podría favorecer que los átomos de oro ocuparan el centro del cúmulo. Sin embargo, los radios atómicos de oro y cobre satisfacen $r_0^{\text{Au}}=1.44\text{Å}>r_0^{\text{Cu}}=1.28\text{Å}$, favoreciendo que los átomos de Cu ocupen el núcleo a fin de disminuir las fuerzas internas de tensión. Del mismo modo, las energías superficiales del oro y del cobre satisfacen $E_s^{\text{Au}}=1.50~\text{Jm}^{-2} < E_s^{\text{Cu}}=1.83 \text{Jm}^{-2}$ favoreciendo la segregación del oro a la superficie. Finalmente, dado que la electronegatividad de Pauling del oro $(\eta^{Au} = 2.40)$ es mayor que la del cobre $(\eta^{Cu} = 1.90)$ [54], se esperaría que haya transferencia de carga electrónica de los átomos de cobre hacia los de oro, favoreciendo la segregación de los átomos de oro a la superficie, para así disminuir la repulsión Coulombiana entre ellos.

La composición en la que se produce la transición entre una estructura bidimensional (2D) y una tridimensional (3D) para un tamaño dado se ha estudiado en varios cúmulos bimetálicos, entre los que podemos mencionar Au-Ag, Pt-Sn, y Au-Sc [55, 56, 57]. Se ha encontrado que existen más estructuras planas de cúmulos de oro que de cobre y plata. Para cúmulos aniónicos y neutros, se han reportado estructuras estables planas de oro de hasta 13 átomos, mientras que para la plata y el cobre, las estructuras planas estables más grandes tienen menos de 7 átomos. Asimismo, los

cúmulos catiónicos de plata y cobre más grandes tienen 8 y 5 átomos, respectivamente [58]. Este comportamiento se debe a que en los cúmulos de oro ocurre una fuerte hibridación entre los orbitales s y d, producida por la contracción relativista del orbital s, situación que no ocurre en cúmulos de cobre y plata [52].

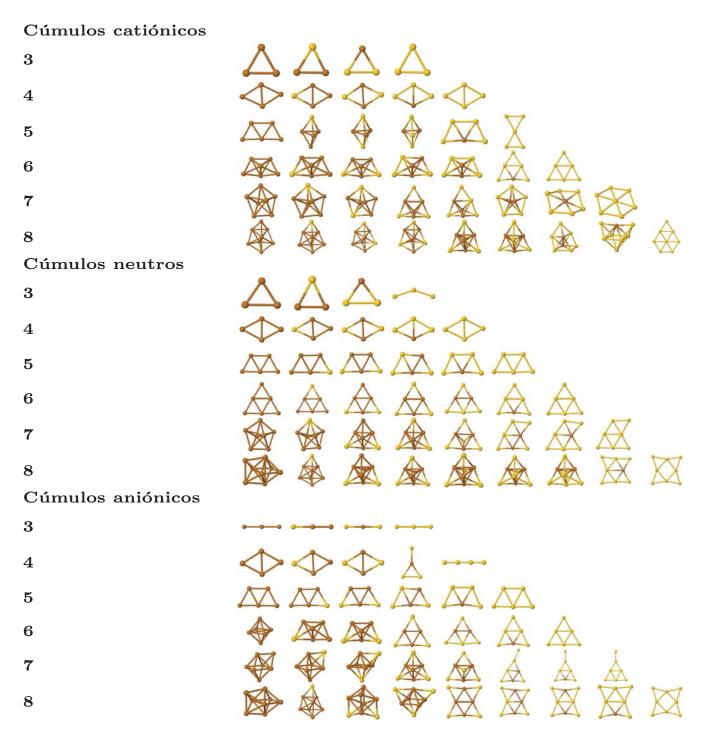


Figura 3.1: Geometrías más estables de $\operatorname{Au}_n \operatorname{Cu}_{N-n}^q$ con carga q=+1,0,-1.

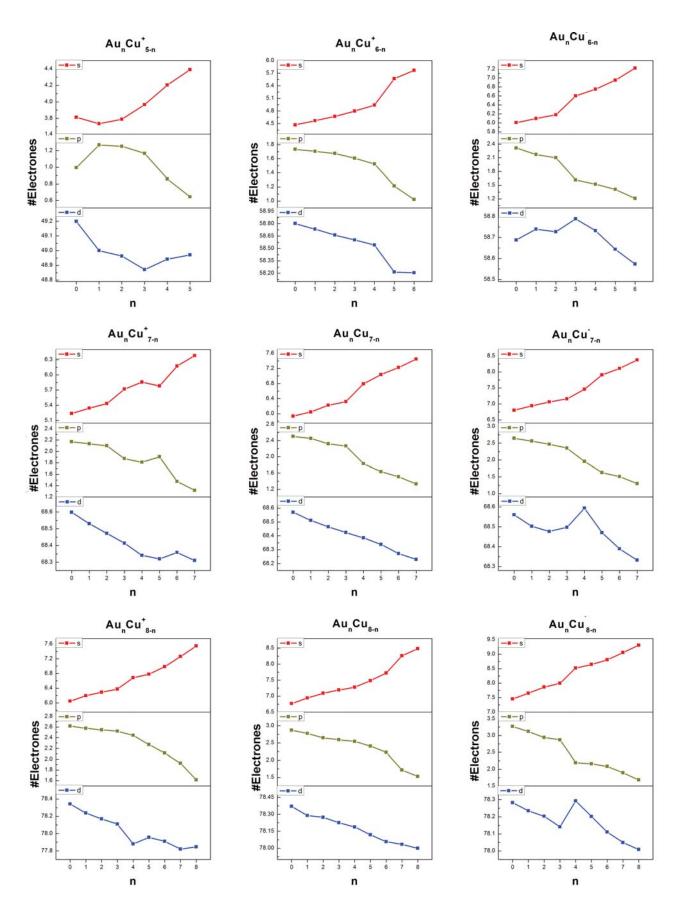


Figura 3.2: Densidad de estados integrada parcial de los orbitales s, p y d hasta el nivel de Fermi de cúmulos del tipo $\operatorname{Au}_n\operatorname{Cu}_{N-n}^q$ con N=5,6,7,8 donde ocurren transiciones 3D-2D.

La figura 3.2 muestra las densidades de estados parciales integradas hasta el nivel de Fermi para los orbitales d, s, y p de los cúmulos $Au_n \operatorname{Cu}_{N-n}^q$ como función del número de átomos de oro (n) para un tamaño (N) y carga (q) fijos.

En general, se observa que conforme n aumenta, el número de electrones que ocupan los orbitales tipo s aumenta, mientras que disminuye el número de electrones que ocupan los orbitales tipo d. También se puede observar que, en general, hay un incremento (disminución) brusco de $N_s(n)$ ($N_d(n)$) cuando ocurre una transición de una geometría 3D a una 2D.

Tipo de cúmulo	$\Delta_2 \; [eV]$	Δq_{Au} [a.u]	E_{coh} [eV]	E_{exc}^* [eV]	HLG [eV]
$\overline{\text{Cu}_{8}^{-}}$	-	-	-	0.00	0.53
AuCu ₇	0.13	-0.24	-	-0.32	0.67
$Au_2Cu_6^-$	-0.15	-0.41	-	-0.50	0.45
$Au_3Cu_5^-$	0.04	-0.60	-	-0.85	0.90
$Au_4Cu_4^{\underline{\bullet}}$	0.38	-0.89	-	-1.15	1.40
$Au_5Cu_3^{-}$	0.10	-0.95	-	-1.07	1.46
$Au_6Cu_2^{\underline{\circ}}$	0.28	-0.98	-	-0.89	1.62
Au ₇ Cu [±]	-0.03	-0.99	-	-0.43	1.18
Au_8^-	-	-	-	0.00	1.19
-Cu ₈ ⁺		_		0.00	1.31
AuCu ⁺	0.01	0.11	_	-0.42	1.32
$Au_2Cu_6^+$	0.03	0.19	_	-0.82	1.35
$Au_3Cu_5^+$	0.25	0.29	_	-1.20	1.40
Au ₄ Cu ₄ ⁺	0.33	0.39	_	-1.33	2.61
Au ₅ Cu [‡]	0.05	0.62	_	-1.13	1.37
$Au_6Cu_2^4$	0.21	0.73	-	-0.88	1.13
Au ₇ Cu ⁴	-0.04	0.89	-	-0.42	1.72
Au_8^+	-	-	-	0.00	1.01
Cu ₈ AuCu ₇ Au ₂ Cu ₆ Au ₃ Cu ₅ Au ₄ Cu ₄ Au ₅ Cu ₃ Au ₆ Cu ₂ Au ₇ Cu Au ₈	-0.24 0.11 0.00 0.86 0.07 -0.04 -0.15	-0.06 -0.11 -0.17 -0.22 -0.16 -0.10 -0.03	2.01 2.04 2.10 2.14 2.19 2.13 2.05 1.99 1.94	0.00 -0.30 -0.84 -1.27 -1.70 -1.26 -0.76 -0.31 0.00	1.43 1.19 2.06 2.16 2.29 1.87 1.89 1.18 1.59

Tabla 3.1: Segunda diferencia de energía (Δ_2) , energía de exceso (E_{exc}^*) , exceso de carga en los átomos de oro $(\Delta q_{\rm Au})$, energía de cohesión (E_{coh}) , y brecha HOMO-LUMO (HLG) para cúmulos ${\rm Au}_n {\rm Cu}_{8-n}^q$, n=0-8 y q=-1(-),0(ningun signo),+1(+).

Asimismo, con el fin de estimar la estabilidad energética de los cúmulos $\operatorname{Au}_n\operatorname{Cu}_{8-n}^q$ (n=0-8 y q=+1,0,-1) se calculó la energía de exceso (E_{exc}^*), la energía de cohesión(E_{coh}) y la segunda diferencia de energía (Δ_2) [8] (ver tabla 3.1). Estas cantidades vienen dadas por las siguientes expresiones

$$E_{exc}^{*}(n) = E_N(n) - n\frac{E_N(N)}{N} - (N-n)\frac{E_N(0)}{N}$$
(3.1)

$$\Delta_2(n) = E_N(n+1) + E_N(n-1) - 2E_N(n) \tag{3.2}$$

$$E_{coh}(n) = \frac{1}{N} (nE(Au) + (N - n)E(Cu) - E(n))$$
(3.3)

donde $E_N(n)$ es la energía del cúmulo bimetálico de tamaño N, y donde n átomos son de oro. Las energías E(Cu) y E(Au) corresponden a las energías de un sólo átomo de cobre y de oro respectivamente. Además se calcula la brecha HOMO-LUMO (HLG) como un indicador más de la estabilidad química de los cúmulos.

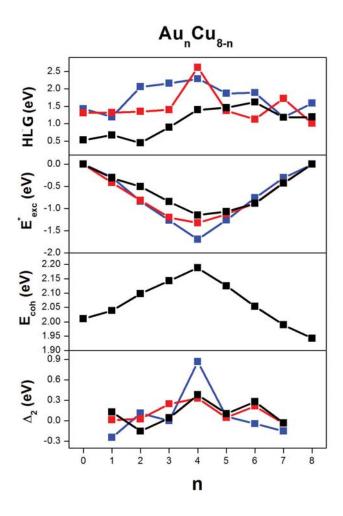


Figura 3.3: Segunda diferencia de energía (Δ_2), energía de cohesión (E_{coh}), energía de exceso (E_{exc}^*), y brecha HOMO-LUMO (HLG) en Au_nCu_{8-n}, con n=0-8 y cargas q=+1 (rojo), q=0 (azul) y q=-1 (negro).

La figura 3.3 muestra que la composición más estable es la 1:1, tanto en cúmulos neutros como cargados. En los cúmulos catiónicos y neutros el máximo valor de HLG se alcanza para esta misma composición, sin embargo, en el caso de los aniones, el máximo valor lo tiene la composición 3:1. Los aniones Cu_8^- , $AuCu_7^-$, y $Au_2Cu_6^-$ presentan lo valores más bajos de HLG y, por lo tanto, la mayor

reactividad química (o bien la menor dureza η). En los cationes Cu_8^+ , AuCu_7^+ , $\operatorname{Au_2Cu}_6^+$, y $\operatorname{Au_3Cu}_5^+$ se pueden observar valores similares para el HLG, por lo que puede esperarse que presenten un comportamiento similar en cuanto a su reactividad química. Por último, en los cúmulos neutros, los valores más bajos de HLG se alcanzan en Cu_8 , AuCu_7 , $\operatorname{Au_7}Cu$, y $\operatorname{Au_8}$.

Teoría de orbitales moleculares de frontera

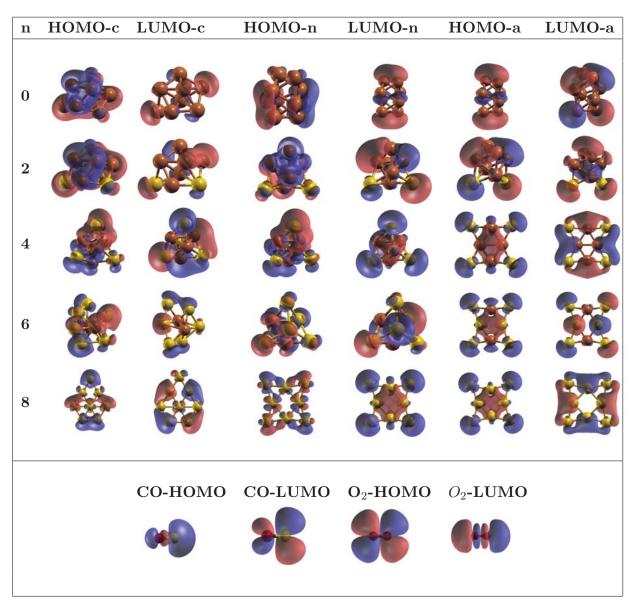


Figura 3.4: Curvas de nivel en el HOMO y LUMO para $Au_nCu_{8-n}^qX$, con q=+1,0,-1, n=0-8 y $X=CO,O_2$.

La densidad electrónica proporciona información sobre la reactividad de un sitio en un sistema iónico, mientras que la función Fukui es adecuada para sistemas neutros [49]. Sin necesidad de

buscar explícitamente la configuración más estable del sistema $\operatorname{Au_nCu_{8-n}^qX(n=0,2,4,6,8;q=+1,0,-1;X=O_2,CO)}$, la teoría molecular de orbitales de frontera (TOMF) [59, 60, 61] puede brindar información valiosa sobre el sitio de adsorción más favorable de X en un cúmulo dado. Los orbitales ocupados de cada reactivo interactúan con los orbitales desocupados del otro, causando una atracción entre ellos. Los dos orbitales moleculares de frontera (OMF) más importantes de los sistemas interactuantes son los correspondientes HOMO y el LUMO. En el caso en que la transferencia de carga sea del cúmulo hacia la molécula, los OFM relevantes que deben tenerse en cuenta son el HOMO del cúmulo y el LUMO de la molécula. A su vez, es necesario considerar el orbital LUMO del cúmulo y el HOMO de la molécula cuando la transferencia de carga es de la molécula al cúmulo. Las diferencias de energía entre los orbitales HOMO y LUMO de cada reactivo determina la dirección de la transferencia de carga que resulta más importante en la adsorción de CO o O_2 . Asimismo, cuando dos reactivos poseen electronegatividades similares, los HOMO y LUMO de cada sistema son igualmente importantes. Por otro lado, cuando se conoce de antemano el reactivo nucleofílico (donador de carga) y el nucleofílico (receptor de carga), la interacción dominante es entre el HOMO del nucleófilo y el LUMO del electrófilo.

Una forma de predecir los sitios de adsorción más favorables de moléculas sobre cúmulos, es considerar las regiones donde sucede el mayor traslape entre las densidades electrónicas de los estados LUMO (HOMO) de la molécula y el HOMO (LUMO) del cúmulo. Las electronegatividades de los elementos estudiado en este trabajo satisfacen O(3.5)>C(2.6)>Au(2.4)>Cu(1.9) [54], por lo que se esperaría que la transferencia de carga ocurra de los cúmulos hacia la moléculas de O_2 y CO. Por lo tanto los orbitales moleculares de frontera más importante serian el orbital HOMO del cúmulo y el LUMO de la molécula. Los estados HOMO y LUMO de los cúmulos $Au_nCu_{8-n}(n=0,2,4,6,8;q=1,0,-1)$ y las moléculas se muestran en la figura 3.4. En este trabajo, las regiones con alta concentración de densidad del HOMO (LUMO) en los cúmulos se traslapa con el LUMO (HOMO) de las moléculas adsorbidas (ver figuras 3.5, 3.6, 3.7,3.8,3.9,3.10). Esto es precisamente una forma de predecir las regiones donde es más probable que las moléculas de CO y O_2 se enlacen al cúmulo metálico. Se encuentra que TOFM predice correctamente las regiones donde es más probable que la molécula sea adsorbida.

3.3

Adsorción de CO y O2 en cúmulos de oro-cobre

En esta sección presentamos los resultados del estudio teórico de la adsorción de CO y O_2 en cúmulos bimetálicos del tipo $\operatorname{Au}_n\operatorname{Cu}_{8-n}^q$, con n=0,2,4,6,8 y carga q=+1,0,-1. De todas las configuraciones de adsorción analizadas, solamente presentamos, para cada composición y carga, aquellas con el máximo valor de energía de adsorción E_{ads} definida como

$$E_{ads} = E(\operatorname{Au}_n \operatorname{Cu}_m) + E(X) - E(\operatorname{Au}_n \operatorname{Cu}_m X), \tag{3.4}$$

donde $E(Au_nCu_m)$ y $E(Au_nCu_mX)$ son las energías del cúmulo libre y del cúmulo con la molécula X adsorbida, respectivamente; cuanto más positivo sea E_{ads} , más favorable es esa configuración.

n	H _{AuCu} -L _{CO}	${ m H_{CO} ext{-}L_{AuCu}}$	$\operatorname{Au}_n\operatorname{Cu}_{8-n}^+\operatorname{CO}$
n=0			
n=2			
n=4			
n=6			
n=8			

Figura 3.5: Zonas donde el traslape puede ser máximo entre el estado HOMO del cúmulo (H_{AuCu}) y el LUMO de CO (L_{CO}) o bien HOMO de CO (H_{CO}) y el LUMO del cúmulo (L_{AuCu}) . La ultima fila corresponde al sistema $Au_nCu^+_{8-n}CO$ con menor energía de adsorción.

n	H _{AuCu} -L _{CO}	${ m H_{CO} ext{-}L_{AuCu}}$	$Au_nCu_{8-n}CO$
n=0		A A A A A A A A A A A A A A A A A A A	
n=2			
n=4			
n=6			
n=8			

Figura 3.6: Zonas donde el traslape puede ser máximo entre el estado HOMO del cúmulo (H_{AuCu}) y el LUMO de CO (L_{CO}) o bien HOMO de CO (H_{CO}) y el LUMO del cúmulo (L_{AuCu}) . La ultima fila corresponde al sistema $Au_nCu_{8-n}CO$ con menor energía de adsorción.

n	${ m H_{AuCu} ext{-}L_{CO}}$	${ m H_{CO}} ext{-}{ m L_{AuCu}}$	$\operatorname{Au}_n\operatorname{Cu}_{8-n}^-\operatorname{CO}$
n=0			
n=2			
n=4			
n=6			
n=8			

Figura 3.7: Zonas donde el traslape puede ser máximo entre el estado HOMO del cúmulo (H_{AuCu}) y el LUMO de CO (L_{CO}) o bien HOMO de CO (H_{CO}) y el LUMO del cúmulo (L_{AuCu}) . La ultima fila corresponde al sistema $Au_nCu_{8-n}^-CO$ con menor energía de adsorción.

n	${ m H_{AuCu}}$ - ${ m L_{O_2}}$	$\mathrm{H_{O_2}} ext{-}\mathrm{L_{AuCu}}$	$\operatorname{Au}_n\operatorname{Cu}_{8-n}^+\operatorname{O}_2$
n=0			
n=2			
n=4			
n=6			
n=8			

Figura 3.8: Zonas donde el traslape puede ser máximo entre el estado HOMO del cúmulo (H_{AuCu}) y el LUMO de CO (L_{CO}) o bien HOMO de CO (H_{CO}) y el LUMO del cúmulo (L_{AuCu}) . La ultima fila corresponde al sistema $Au_nCu_{8-n}^-CO$ con menor energía de adso**fil**ón.

n	$\mathrm{H}_{\mathrm{AuCu}} ext{-L}_{O_2}$	${ m H_{O_2}} ext{-L_{AuCu}}$	$\operatorname{Au}_n\operatorname{Cu}_{8-n}\operatorname{O}_2$
n=0			
n=2			
n=4			
n=6			
n=8			

Figura 3.9: Zonas donde el traslape puede ser máximo entre el estado HOMO del cúmulo (H_{AuCu}) y el LUMO de CO $(L_{CO}$ o bien HOMO de CO (H_{CO}) y el LUMO del cúmulo (L_{AuCu}) . La ultima fila corresponde al sistema $Au_nCu_{8-n}^-CO$ con menor energía de adsorci g_2 .

n	${ m H_{AuCu}} ext{-L}_{{ m O}_2}$	$\mathrm{H_{O_2} ext{-}L_{AuCu}}$	$\operatorname{Au}_n\operatorname{Cu}_{8-n}^-\operatorname{O}_2$
n=0			
n=2			
n=4			
n=6			
n=8			

Figura 3.10: Zonas en donde el traslape puede ser máximo entre el estado HOMO del cúmulo (H_{AuCu}) y el LUMO de CO (L_{CO} o bien HOMO de CO (H_{CO}) y el LUMO del cúmulo (L_{AuCu}). La ultima fila corresponde al sistema $Au_nCu_{8-n}^-$ CO con menor energía de adsorción.

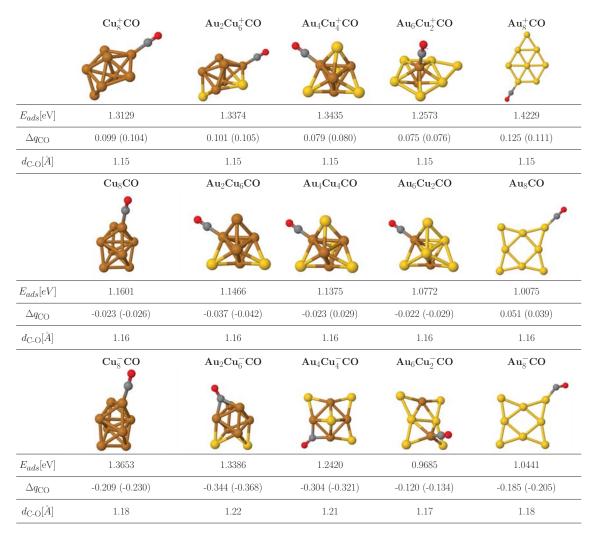


Figura 3.11: Configuraciones de menor energía de CO adsorbida en cúmulos de oro-cobre. También se muestran las correspondientes energías de adsorción del CO (E_{ads}) , excesos de carga (Δq) de Hirshfeld (Voronoi) en la molécula adsorbida y distancias de enlace de la molécula de CO adsorbida (d_{C-O}) . Las esferas amarillas, marrones, rojas y grises representan los átomos de Au, Cu, O y C, respectivamente.

En las figuras 3.11 y 3.12 se muestran las estructuras de los complejos AuCuCO y AuCuO₂, además de otras propiedades como son la energía de adsorción, exceso de carga (Δq), y las distancias de enlace entre los átomos de CO y O₂($d_{\text{C-O}}$ y $d_{\text{O-O}}$, respectivamente). El exceso de carga en la molécula X=CO/O₂ (Δq_{X}) se obtiene a partir de un análisis de poblaciones de Hirshfeld y Voronoi. Un valor positivo (negativo) de exceso de carga indica que la molécula (cúmulo) ha transferido carga al cúmulo (molécula). En general, un exceso de carga (positiva o negativa) en la molécula, con la consecuente elongación o contracción de la distancia de enlace, en este trabajo, indica la existencia de una afinidad entre la molécula con el cúmulo.

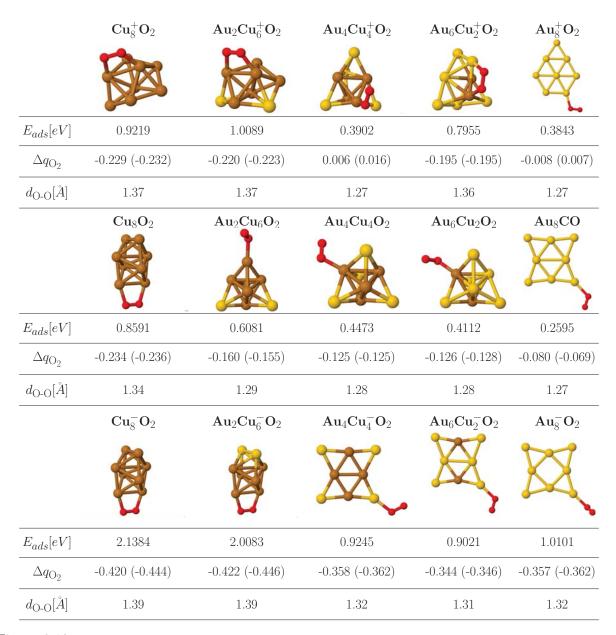


Figura 3.12: Configuraciones de menor energía de O_2 adsorbidas en cúmulos bimetálicos de oro-cobre. Las energías de adsorción E_{ads} , exceso de carga Δq usando el análisis de poblaciones de Hirshfeld (Voronoi) y distancias de enlace $d_{\text{C-O}}$. Las esferas amarillas, marrones, rojas y grises representan los átomos de Au, Cu, O y C, respectivamente.

Adsorción de CO. La molécula de CO posee un momento dipolar con la carga negativa centrada alrededor del átomo de carbono. El HOMO y el LUMO del CO corresponden a los orbitales de enlace 2σ y de antienlace $2\pi^*$, respectivamente. La densidad electrónica de los estados HOMO y LUMO se concentran en el átomo de carbono, lo que sugiere que la molécula prefiere enlazarse al cúmulo a través del carbono y no del oxígeno, debido a que de esta forma se obtiene un mayor traslape cúmulo-molécula. Esta es la razón por la que no se realizó una relajación estructural para configuraciones en las que el cúmulo se enlazara al CO a través del oxígeno.

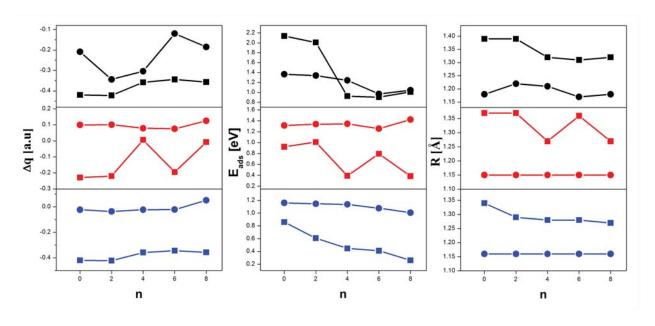


Figura 3.13: Energías de adsorción (E_{ads}) , cargas electrónicas (Δq) y distancias de enlace (R) para CO (punto circular) y O₂ (punto cuadrado) adsorbidos en los cúmulos con carga q=+1 (rojo), q=0 (azul) y q=-1 (negro).

En los cúmulos monometálicos de cobre, tanto neutros como cargados, el anión presenta la mayor afinidad hacia CO al alcanzarse los máximos valores de $\kappa = (1.3666, -0.2090, 1.800)$ en Cu_8^-CO . Merece mencionarse que el complejo Cu₈ CO presenta la mayor energía de adsorción con respecto a todos los posibles composiciones, tanto neutras como cargadas, en los que se adsorbe la molécula de CO. L. Padilla-Campos [62] en un estudio previo reporta que los cúmulos de cobre neutros interactúan débilmente con CO. Además, los complejos Cu_NO_2 presentan mayor estabilidad en comparación con los del tipo Cu_NCO ; estos resultados concuerdan con el nuestro. En cúmulos monometálicos de oro se obtiene que el anión Au_8^- CO con índice $\kappa = (1.0441, -0.1850, 1.800)$ posee la mayor capacidad para elongar a la molécula, resultado que esta correlacionado con una transferencia mayor de carga a la molécula en comparación con los complejos Au₈CO y Au₈⁺CO. A pesar de esta propiedad, Au₈⁻CO no presenta la mayor energía de adsorción que si logra alcanzar el catión Au₈⁺CO (1.4229eV). El complejo Au₈⁺CO es el que presenta el mayor valor positivo en el exceso de carga, además de poseer el mayor valor en la energía de enlace, hecho que se justifica por tener el valor más bajo en el HLG (1.01eV) entre todas las composiciones $\operatorname{Au}_n^+\operatorname{Cu}_{8-n}$ con n=0,2,4,6,8. El hecho de que el HLG sea apreciablemente mayor en los cúmulos puros de oro tanto neutro (1.59eV) como anión (1.19eV), al de los respectivos cúmulos de cobre neutro (1.43eV) y anión (0.53eV), coincide con que los cúmulos de cobre con carga positiva y negativa presentan una mayor valor en la energía de adsorción. En el caso de los cúmulos neutros puros, el HLG del cúmulo de oro es mayor al de cobre por 0.30eV, sin embargo aun es este caso se cumple lo antes mencionado con respecto a la energía de adsorción.

Para los sistemas AuCu^qCO (q=+1,0,-1), la molécula CO siempre se adsorbe a los cúmulos bimetálicos a través de la formación de un enlace Cu-C en una configuración top cuando un átomo de cobre se encuentra disponible (excepto para Au_2Cu_6^-). En términos de las electronegatividades de

los elementos que componen al cúmulo, se puede concluir que en sistemas bimetálicos el carbón se enlaza con el elemento de menor electronegativad (tomar en cuenta que los valores de C y Au son similares). De esta forma se favorece que la transferencia de carga sea del cúmulo a la molécula, lo que ocurre en complejos neutros y aniónicos. En el caso de complejos catiónicos la transferencia de carga es de la molécula al cúmulo, sin embargo esta es pequeña, tomando un intervalo de valores (0.051|e|-0.023e). Estos resultado concuerdan con la literatura [63], en donde se encuentra que CO prefiere la adsorción en el sitio con cobre en cúmulos catiónicos AuCu⁺ y la energía de adsorción disminuye conforme mayor contenido de átomos de oro. El mismo comportamiento ocurre para la adsorción del monóxido de nitrógeno (NO) en los cúmulos neutros de AuCu de tamaño menor a 5 átomos [64]. En este caso, la electronegatividad de N es 3.04 por lo tanto sigue siendo menor a la del oxígeno y en consecuencia se genera de igual manera un dipolo en la molécula.

Las cúmulos que se modifican apreciablemente a través de la adsorción de CO son Au₆Cu₂⁺CO y Au₄Cu₄⁻CO. En estos complejos los cúmulos adoptan configuraciones que son mayores en energía 0.11 eV y 0.32 eV con respecto a los cúmulos catiónico y aniónico libre, respectivamente. Esto sugiere que para estos sistemas la interacción entre los reactivos no es local sino que involucra átomos vecinos alrededor del átomo que interactúa con el carbón de la molécula de CO. En la composición Au₆Cu₂⁺, aunque en el LUMO la densidad de carga se concentra en átomos de oro, una parte del SOMO se localiza en una región que contiene un átomo de oro y cobre, formando un enlace Au-Cu (ver figura 3.4). Debido a que CO se adsorbe en *staple* en esta región del HOMO, se presume que la transferencia de carga ocurra no solo de CO al cúmulo, sino también en dirección contraria. Cabe mencionar que esta misma región de HOMO, O₂ se adsorbe en *staple* con un exceso de carga 0.195e y se caracteriza por producir la mayor elongación entre los complejos neutros y cargados con la misma composición.

Se encontró que la distancia de enlace, independientemente de la composición y el exceso de carga en CO, es la misma en cúmulos catiónicos (1.15Å) y neutros (1.16Å). Este hecho que se puede explicar por el pequeño exceso de carga en la molécula, siendo la más alta (0.125e) en Au_8^+CO . En general, para sistemas neutros y aniónicos (excepto Au_8^-CO que difiere 0.08eV en al energía de adsorción con $\text{Au}_6\text{Cu}_2^-\text{CO}$), la energía de adsorción disminuye a medida que aumenta el contenido de oro, mientras que para los catiónicos la energía de adsorción aumenta (excepto $\text{Au}_6\text{Cu}_2^+\text{CO}$). Para una composición fija, se observa que en complejos conteniendo un numero igual o mayor de átomos de oro que de cobre, las energía de adsorción en el complejo catiónico es mayor a las de los complejos neutros y aniónicos, que es un comportamiento que concuerda con un estudio previo sobre la adsorción de CO en cúmulos neutros e iónicos de hasta 6 átomos [65].

En las composiciones 1:0, 1:3, 1:1, y 0:1, las distancias de enlace como los exceso de carga satisface la desigualdades: $d_{\rm CO}({\rm AuCu}^+) < d_{\rm CO}({\rm AuCu}) < d_{\rm CO}({\rm AuCu}^-)$ y $\Delta q_{\rm CO}({\rm AuCu}^+) > \Delta q_{\rm CO}({\rm AuCu}) > \Delta q_{\rm CO}({\rm AuCu}^-)$, donde ${\rm AuCu}^q$ representa cualquier composición con carga q=+1,0,-1. Para la composición 3:1 se satisface en cambio: $d_{\rm CO}({\rm AuCu}) < d_{\rm CO}({\rm AuCu}^-) < d_{\rm CO}({\rm AuCu}^+)$ y $\Delta q_{\rm CO}({\rm AuCu}) < \Delta q_{\rm CO}({\rm AuCu}^+) < \Delta q_{\rm CO}({\rm AuCu}^-)$. En general, se encuentra que para un composición fija, la distancia de enlace $d_{\rm CO}$ aumenta, con respecto a la molécula libre de CO (1.15Å), cuando el exceso de carga crece, este resultado concuerda con la literatura [59, 60, 61]. para concluir, los complejos aniónicos presentan la mayor afinidad hacia CO además de tener la mayor capacidad para elongación en la molécula.

Adsorción de O₂. La molécula O₂ se caracteriza por tener a las densidades de los estados

HOMO y LUMO concentradas por igual en cada átomo de oxígeno, además cada átomo en la molécula posee una carga neta igual a cero. Otra propiedad importante es que la molécula tiene polarización de espín igual a uno, es decir, posee dos espines no apareados ocupando diferentes estados. A diferencia de la adsorción de CO en cúmulos bimetálicos y puros, en la adsorción de O₂ adopta la conformación staple como la mas favorable en complejos cargados, por otro lado, en los neutros solo aparece en Cu₈O₂. Este comportamiento se puede explicar al considerar que al estar los orbitales tanto del HOMO como del LUMO igualmente concentrados en cada átomo el máximo traslape entre los orbitales de frontera de la molécula y el cúmulo se lograra cuando la adsorción es en staple. En general, en todos los complejos, existe una transferencia de carga significativa del cúmulo a la molécula, debido a una mayor electronegatividad del oxígeno.

Comparando los complejos $\operatorname{Cu}_8^q\operatorname{CO}$ con $\operatorname{Cu}_8^q\operatorname{O}_2$ (q=1,0,-1), se puede observar que la afinidad es mayor en O_2 que a CO . Por otro lado, entre los complejos $\operatorname{Cu}_8^q\operatorname{O}_2$ (q=1,0,-1), es en $\operatorname{Cu}_8^-\operatorname{O}_2$ donde el cúmulo transfiere la mayor cantidad de carga a la molécula (0.420e). Un estudio experimental previo de Shinichi Hirabayashi et al [17], se estudia la capacidad de adsorción de las dos moléculas en cúmulos Cu_n^\pm tratados en este trabajo, concluyéndose que los cúmulos aniones formación complejos mas estables con la molécula. Este resultado coincide con el nuestro, donde Cu_8^- tiene la mayor afinidad hacia la molécula (κ =[2.1384,0.4200,1.3900]); cabe mencionar que el complejo $\operatorname{Au}_2\operatorname{Cu}_6^-\operatorname{O}_2$ presenta prácticamente la misma afinidad hacia O_2 (κ =[2.0083,-0.422,1.39]).

En el caso de $\operatorname{Au}_8^q \operatorname{O}_2$ (q=1,0,-1), el complejo aniónico tiene la mayor capacidad de elongación en O_2 (κ =[1.0101,-0.357,1.32]). Comparando, los complejos neutro y catiónicos poseen afinidades similares hacia el oxígeno, además la elongación de la molécula es la misma en los dos casos ($d_{\text{O-O}}$ =1.27Å). La electronegatividad del oro es menor a la del oxígeno, la molécula prefiere adsorberse en regiones donde pueda transferir carga a la molécula; esto se cumple en los complejos $\operatorname{Au}_8\operatorname{O}_2$ y $\operatorname{Au}_8^+\operatorname{O}_2$, donde O_2 es adsorbida en los átomos con mayor carga positiva que son los capaces de aceptar mas carga. La afinidad en cúmulos de oro con carga positiva hacia el oxígeno molecular se ha estudiado previamente por $\operatorname{Cox}\ et\ al.\ [66,\ 16]$, encontrándose que no reaccionan con la molécula de oxígeno (por lo que la afinidad es pequeña), resultado que coincide con el nuestro. Por ultimo, en el anión todos los átomos tienen carga negativa, sin embargo la mayor carga negativa esta concentrada en los átomo localizados en cada vértice (0.1930e), en estos sitios es donde precisamente la molécula es adsorbida. En un estudio previo realizado en $\operatorname{Cu}_N(\operatorname{N=2-10})$, Xiuxiang Yuan $\operatorname{et}\ al.\ [67]$ encuentra para todos los tamaños que O_2 es adsorbida en staple , en particular $\operatorname{Cu}_8\operatorname{CO}$; la estructura de este complejo coincide con el reportado en este trabajo.

En general, en los complejos bimetálicos, neutros y cargados, O_2 prefiere adsorberse en átomos de cobre (excepto en $Au_6Cu_2^-O_2$, $Au_4Cu_4^-O_2$, y $Au_6Cu_2^+O_2$), resultado que coincide con la literatura [68]. Se encuentra que en cúmulo neutros y cargados, la adsorción en *staple* permite al cúmulo transferir una carga mayor a la molécula en comparación con la adsorción en *top*. Los complejos $Au_4Cu_4^+O_2$ y $Au_8^+O_2$ son las únicas situaciones en donde la transferencia de carga para fines prácticos nula. Es de esperarse que en los casos donde se transfiera carga a la molécula la interacción entre el HOMO del cúmulo y LUMO de O_2 jueguen un papel importante. La elongación de la molécula después de una transferencia de carga nos da un indicio para considerar a los cúmulos tratados en este trabajo como candidatos para disociar a O_2 , que es paso determinante en la oxidación de CO.

Los resultados muestran que en cúmulos bimetálicos, tanto neutros como cargados, los cúmulos

puros de cobre y la composiciones 1:3 presentan la mayor afinidad hacia O₂. Esta comportamiento se puede explicar considerando que, a diferencia del cobre, el oro no presenta actividad catalítica hacia el oxígeno [69], por lo tanto, a mayor contenido de átomos de cobre, mayor sera la afinidad hacia O₂. Este resultado concuerda con el estudio realizado por Nanling Zhan *et al.* [27] en donde de forma experimental se encuentra que en las nanoparticulas intermetalicas compuestas de oro y cobre, soportadas en carbón, la composición AuCu₃ favorece una mayor activación de O₂ en comparación con las composiciones Au, Cu, AuCu, y Au₃Cu.

En los cúmulos planos $Au_4Cu_4^-$ y $Au_6Cu_2^-$, O_2 es adsorbida en top en un átomo de oro. Estas composiciones bimetálicas se caracterizan por tener la mayor parte de su carga negativa distribuida en los átomos de oro localizados en los vértices; la carga negativa por cada átomo en el vertice es 0.223e y 0.209e para las composiciones 1:1 y 3:1, respectivamente. Dado que estos son los sitios de adsorción concluimos que la molécula prefiere enlazarse a los átomos que puedan donar mayor carga. Por otro lado, en los complejos $Au_4Cu_4^+O_2$ y $Au_8^+O_2$, la interacción O_2 -cúmulo es puramente electrostática, es decir, el exceso de carga en O_2 es prácticamente cero. Si tenemos en cuenta que $Au_4Cu_4^+$ tiene la brecha HLG más grande (0.31eV, 2.61eV) entre el conjunto $Au_nCu_{8-n}^+$ (n=0-8), entonces se esperarse que esta sea la composición más inerte, lo que explicaría del por que la transferencia de carga sea pequeña.

Comparando cúmulos con la misma composición, se encuentra en general, excepto en $\mathrm{Au_4Cu_4^+O_2}$, que la longitud del enlace, energía de adsorción, y exceso de carga es mayor en complejos ionicos, por lo tanto, el estado de carga en estos cúmulos contribuye en gran medida a mejorar la afinidad hacia el oxígeno molecular. Existen cúmulos que tienen la misma geometría pero diferente composición, con una afinidad similar hacia $\mathrm{O_2}$, por ejemplo, $\mathrm{Au_4Cu_4^-O_2}$, $\mathrm{Au_6Cu_2^-O_2}$ y $\mathrm{Au_8^-O_2}$ se unen a $\mathrm{O_2}$ adoptando la misma estructura y compartiendo valores similares en E_{ads} , Δq , y d_{CO} . Lo anterior sucede de igual manera para los pares de cúmulos $\mathrm{Au_4Cu_4O_2}$; $\mathrm{Au_6Cu_2O_2}$ y $\mathrm{Cu_8^+O_2}$; $\mathrm{Au_2Cu_6^+O_2}$. Comparado la reactividad de los complejos bimetálicos, neutros y cargados, se concluye que los cúmulo $\mathrm{Cu_8^-}$ y $\mathrm{Au_2Cu_6^-}$, presentan el mayor capacidad para elongar $\mathrm{O_2}$, además la mayor energía de de adsorción hacia la molécula. Por ultimo, cabe mencionar que a diferencia de los cúmulos con carga positiva y neutros, la reactividad de los complejos aniónicos se ve afectada de manera apreciable por la transición de una geometría plana a una tridimensional en los cúmulos ($\mathrm{Au_2Cu_6^-O_2} \to \mathrm{Au_4Cu_4^-O_2}$).

Cambio en la brecha HLG. Una forma de estudiar la forma en que las moléculas CO/O_2 modifican la estructura electrónica de los cúmulos es por medio de comparar la forma en la brecha H-L cambia adsorberse la molécula. En la figura 3.14 se muestra esta comparación del HLG entre los cúmulos $Au_nCu_{8-n}^q$ y los complejos $Au_nCu_{8-n}^qX$, donde $X=CO/O_2$, q=+1,0,-1, y n=0,2,4,6,8.

Se puede observar que los sistemas que más sufren una cambio en el HLG son los de carga q=-1. Tanto los cúmulos libres $AuCu^-$ como los complejos $AuCu^-CO$ alcanzan un máximo en la composición 3:1, además de que el HLG disminuye en los complejos cúmulo-molécula, excepto para la composición 1:3. Para el caso de los complejos $AuCu^-O_2$, existe un cambio notable en la estabilidad, decreciendo a partir de la composición 0:1 y tomando valores constantes a partir de la composición 1:1. Merece mencionarse que tanto la energía de adsorción y el exceso de carga son similares en los complejos $Au_4Cu_4^-CO$, $Au_6Cu_2^-CO$, y Au_8^-CO . Los complejos $Cu_8^-O_2$ y $Au_2Cu_6^-O_2$ son los complejos sufren el mayor cambio en el HLG, el incremento en esta cantidad es de 1.15eV y 0.92eV, respectivamente.

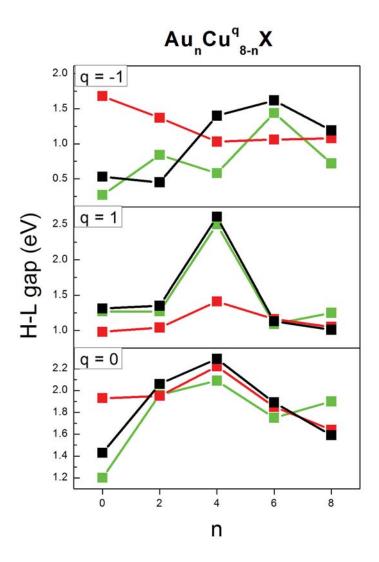


Figura 3.14: El tipo de molécula que corresponde a cada gráfica es $X=O_2(rojo)$, X=CO(verde) y X=Sin molécula adsorbida (negro).

En sistemas neutros no existe una variación considerable en el HLG ante la adsorción de CO y O_2 , excepto en los complejos Cu_8O_2 y Au_8CO donde el HLG aumenta $0.50 \mathrm{eV}$ y $0.31 \mathrm{eV}$ con respecto al de los cúmulo libres, respectivamente. Cabe mencionar que en el complejo Cu_8O_2 se produce la mayor transferencia de carga del cúmulo a la molécula (2.34e) en comparación con los complejos AuCuCO.

Au ₂ Cu ₆ CO	$q_C[e]$	$q_O[e]$	$q_X[e]$	$q_{CO}[e]$	$d_{X-C}[\mathring{A}]$	$d_{C-O}[\mathring{A}]$	$E_{ads}[eV]$
1	0.047	-0.076	0.040	-0.029	2.040	1.170	0.8085
2	0.049	-0.075	0.040	-0.026	2.040	1.170	0.8091
3	0.062	-0.057	0.084	0.005	1.870	1.160	1.0557
4	0.037	-0.074	0.083	-0.037	1.860	1.160	1.1464
5	0.041	-0.072	0.095	-0.031	1.870	1.160	1.0528
6	0.062	-0.057	0.084	0.005	1.870	1.160	1.0543
7	0.041	-0.072	0.094	-0.031	1.870	1.160	1.0519
8	0.037	-0.074	0.083	-0.037	1.860	1.160	1.1456
Au ₄ Cu ₄ CO	$q_C[e]$	$q_O[e]$	$q_X[e]$	$q_{CO}[e]$	$d_{X-C}[\mathring{A}]$	$d_{C-O}[\mathring{A}]$	$E_{ads}[eV]$
1	0.051	-0.073	0.041	-0.022	2.04	1.17	$\frac{2uas[5,7]}{0.7852}$
2	0.052	-0.072	0.041	-0.020	2.05	1.17	0.7842
3	0.052	-0.072	0.041	-0.020	2.05	1.17	0.7840
4	0.052	-0.072	0.041	-0.020	2.05	1.17	0.7839
5	0.045	-0.068	0.106	-0.023	1.86	1.16	1.1361
6	0.045	-0.068	0.105	-0.023	1.86	1.16	-1.1343
7		-0.068	0.105		1.86	1.16	
8	0.045		0.106	-0.023			1.1345 1.1363
	0.045	-0.068		-0.023	1.86	1.16	
Au ₆ Cu ₂ CO	$q_C[e]$	$q_O[e]$	$q_X[e]$	$q_{CO}[e]$	$d_{X-C}[\mathring{A}]$	$d_{C-O}[\mathring{A}]$	$E_{ads}[eV]$
1	0.050	-0.074	0.062	-0.024	2.030	1.170	0.8849
2	0.054	-0.071	0.065	-0.017	2.020	1.170	0.8798
3	0.065	-0.071	0.108	-0.006	1.990	1.160	0.9915
4	0.056	-0.071	0.064	-0.015	2.020	1.170	0.8788
5	0.066	-0.071	0.108	-0.005	1.990	1.160	0.9913
6	0.051	-0.074	0.061	-0.023	2.030	1.170	0.8835
7	0.045	-0.068	0.106	-0.023	1.870	1.160	1.0779
8	0.045	-0.068	0.106	-0.023	1.870	1.160	1.0778
	F1 12	F1 13	F1 13	F1 13			- [1
Au ₂ Cu ₆ O ₂	$q_{O(1)}[e]$	$q_{O(2)}[e]$	$q_X[e]$	$q_{CO}[e]$	$d_{X-O}[\mathring{A}]$	$d_{O-O}[\mathring{A}]$	$E_{ads}[eV]$
1	-0.059	-0.068	0.012	2.330	1.270	-0.127	0.2564
1 2	-0.059 -0.060	-0.068 -0.067	0.012 0.012	2.330 2.330	1.270 1.270	-0.127 -0.127	0.2564 0.2552
1 2 3	-0.059 -0.060 -0.080	-0.068 -0.067 -0.080	0.012 0.012 0.089	2.330 2.330 1.970	1.270 1.270 1.290	-0.127 -0.127 -0.160	0.2564 0.2552 0.6115
1 2 3 4	-0.059 -0.060 -0.080 -0.070	-0.068 -0.067 -0.080 -0.073	0.012 0.012 0.089 0.093	2.330 2.330 1.970 2.020	1.270 1.270 1.290 1.280	-0.127 -0.127 -0.160 -0.143	0.2564 0.2552 0.6115 0.4682
1 2 3 4 5	-0.059 -0.060 -0.080 -0.070 -0.072	-0.068 -0.067 -0.080 -0.073 -0.076	0.012 0.012 0.089 0.093 0.103	2.330 2.330 1.970 2.020 2.020	1.270 1.270 1.290 1.280 1.280	-0.127 -0.127 -0.160 -0.143 -0.148	0.2564 0.2552 0.6115 0.4682 0.4488
1 2 3 4 5 6	-0.059 -0.060 -0.080 -0.070 -0.072 - 0.080	-0.068 -0.067 -0.080 -0.073 -0.076 - 0.080	0.012 0.012 0.089 0.093 0.103 0.088	2.330 2.330 1.970 2.020 2.020 1.980	1.270 1.270 1.290 1.280 1.280 1.290	-0.127 -0.127 -0.160 -0.143 -0.148	0.2564 0.2552 0.6115 0.4682 0.4488 0.6143
1 2 3 4 5 6 7	-0.059 -0.060 -0.080 -0.070 -0.072 - 0.080 -0.071	-0.068 -0.067 -0.080 -0.073 -0.076 - 0.080 -0.075	0.012 0.012 0.089 0.093 0.103 0.088 0.103	2.330 2.330 1.970 2.020 2.020 1.980 2.030	1.270 1.270 1.290 1.280 1.280 1.290 1.280	-0.127 -0.127 -0.160 -0.143 -0.148 -0.160 -0.146	0.2564 0.2552 0.6115 0.4682 0.4488 0.6143 0.4495
1 2 3 4 5 6 7 8	-0.059 -0.060 -0.080 -0.070 -0.072 -0.080 -0.071 -0.068	-0.068 -0.067 -0.080 -0.073 -0.076 -0.080 -0.075 -0.072	0.012 0.012 0.089 0.093 0.103 0.088 0.103 0.093	2.330 2.330 1.970 2.020 2.020 1.980 2.030 2.020	1.270 1.270 1.290 1.280 1.280 1.290 1.280 1.280	-0.127 -0.127 -0.160 -0.143 -0.148 -0.160 -0.146 -0.140	0.2564 0.2552 0.6115 0.4682 0.4488 0.6143 0.4495 0.4605
1 2 3 4 5 6 7	-0.059 -0.060 -0.080 -0.070 -0.072 - 0.080 -0.071	-0.068 -0.067 -0.080 -0.073 -0.076 - 0.080 -0.075	0.012 0.012 0.089 0.093 0.103 0.088 0.103	2.330 2.330 1.970 2.020 2.020 1.980 2.030	1.270 1.270 1.290 1.280 1.280 1.290 1.280	-0.127 -0.127 -0.160 -0.143 -0.148 -0.160 -0.146	0.2564 0.2552 0.6115 0.4682 0.4488 0.6143 0.4495
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ -0.080 \\ -0.071 \\ -0.068 \\ q_{O(1)}[[e]] \\ -0.056 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ -\textbf{0.080} \\ -0.075 \\ -0.072 \\ q_{O(2)}[e] \\ -0.062 \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ q_X[e] \\ 0.012 \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ q_{O_2}[e] \\ -0.118 \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.290 \\ 1.280 \\ 1.280 \\ 1.290 \\ 1.280 \\ 1.280 \\ d_{X-O}[\mathring{A}] \\ 2.34 \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ d_{O-O}[\mathring{A}] \\ \hline 1.27 \\ \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ -0.080 \\ -0.071 \\ -0.068 \\ q_{O(1)}[e] \\ -0.056 \\ -0.056 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ -0.080 \\ -0.075 \\ -0.072 \\ q_{O(2)}[e] \\ -0.062 \\ -0.062 \end{array}$	0.012 0.012 0.089 0.093 0.103 0.088 0.103 0.093 $q_X[e]$ 0.012	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ q_{\mathcal{O}_2}[e] \\ -0.118 \\ -0.118 \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.290 \\ 1.280 \\ 1.280 \\ 1.290 \\ 1.280 \\ 1.280 \\ d_{X-O}[\mathring{A}] \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline d_{O-O}[\mathring{A}] \\ \hline 1.27 \\ 1.27 \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂ 1 2 3	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.061 \\ \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ q_X[e] \\ 0.012 \\ 0.011 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ \hline q_{\mathcal{O}_2}[e] \\ -0.118 \\ -0.118 \\ -0.117 \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.290 \\ 1.280 \\ 1.280 \\ 1.290 \\ 1.280 \\ 1.280 \\ d_{X-O}[\mathring{A}] \\ 2.34 \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ d_{O-O}[\mathring{A}] \\ \hline 1.27 \\ \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ -0.080 \\ -0.071 \\ -0.068 \\ q_{O(1)}[e] \\ -0.056 \\ -0.056 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.061 \\ -0.062 \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ \hline q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ q_{\mathcal{O}_2}[e] \\ -0.118 \\ -0.118 \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.290 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ d_{X-O}[\mathring{A}] \\ 2.34 \\ 2.34 \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline d_{O-O}[\mathring{A}] \\ \hline 1.27 \\ 1.27 \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂ 1 2 3	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.061 \\ -0.062 \\ -0.062 \\ -0.062 \\ \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ q_X[e] \\ 0.012 \\ 0.011 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ \hline qo_2[e] \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.125 \\ \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.290 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.35 \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O} \c \mathring{A} \c \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂ 1 2 3 4	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.061 \\ -0.062 \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ \hline q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ \hline q_{O_2}[e] \\ -0.118 \\ -0.118 \\ -0.117 \\ -0.118 \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.290 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ d_{X-O}[\mathring{A}] \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mathring{A}] \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂ 1 2 3 4 5	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.061 \\ -0.062 \\ -0.062 \\ -0.062 \\ \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ \hline q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.011 \\ 0.011 \\ 0.120 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ \hline qo_2[e] \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.125 \\ \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O} \c \mathring{A} \c \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂ 1 2 3 4 5 6	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ -\textbf{0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[[e]] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ q_{O(2)}[e] \\ -0.062 \\ -0.0$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ \hline q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ \hline qo_2[e] \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.115 \\ -0.125 \\ -0.125 \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.02 \\ 2$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mbox{\mathring{A}}] \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ \textbf{1.28} \\ 1.2$	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ \end{array}$
1 2 3 4 5 6 7 8 Au ₄ Cu ₄ O ₂ 1 2 3 4 5 6 7	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ q_{O(2)}[e] \\ -0.062 \\ -0.0$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ q_X[e] \\ 0.012 \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ 0.120 \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ q_{\mathcal{O}_2}[e] \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.115 \\ -0.125 \\ -0.125 \\ -0.125 \\ q_{\mathcal{O}_2} \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ d_{X-O}[\mathring{A}] \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mathring{A}] \\ \hline 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ \textbf{1.28} \\ \\ d_{O-O}[\mathring{A}] \\ \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \end{array}$
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_4Cu_4O_2\\ \\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_6Cu_2O_2\\ 1\\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ -\textbf{0.080} \\ -0.071 \\ -0.068 \\ q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ q_{O(2)}[e] \\ -0.062 \\ -0.0$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ q_X[e] \\ 0.012 \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ 0.120 \\ \textbf{0.120} \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ \hline \\ qO_2[e] \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.115 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.02 \\ 2$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mbox{\mathring{A}}] \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ \textbf{1.28} \\ 1.2$	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \end{array}$
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_4Cu_4O_2\\ \\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ Au_6Cu_2O_2\\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ \hline \textbf{-0.063} \\ -0.063 \\ \hline q_{O(1)}[e] \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ \hline -0.062 \\ -0.062 \\ \hline -0.0$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ q_X[e] \\ 0.012 \\ 0.012 \\ 0.011 \\ 0.120 \\ 0.120 \\ 0.120 \\ \textbf{0.120} \\ q_X[e] \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ q_{\mathcal{O}_2}[e] \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.115 \\ -0.125 \\ -0.125 \\ -0.125 \\ q_{\mathcal{O}_2} \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ d_{X-O}[\mathring{A}] \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mathring{A}] \\ \hline 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ \textbf{1.28} \\ \\ d_{O-O}[\mathring{A}] \\ \end{array} $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \\ \hline \textbf{E}_{ads}[\text{eV}] \end{array}$
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_4Cu_4O_2\\ \\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_6Cu_2O_2\\ 1\\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.065 \\ -0$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ \hline -0.062 \\ -0.062 \\ \hline -0.062 \\ \hline -0.062 \\ \hline -0.062 \\ \hline \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ 0.120 \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.012} \\ 0.0120 \\ \textbf{0.120} \\ \textbf{0.0120} \\ \textbf{0.0120} \\ \textbf{0.028} \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ \hline q_{O_2}[e] \\ -0.118 \\ -0.118 \\ -0.117 \\ -0.118 \\ -0.125 \\ -0.125 \\ -0.125 \\ \hline q_{O_2} \\ -0.118 \\ \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ \hline 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ \hline 2.02 \\ 2.02 \\ 2.03 \\ \end{array}$	-0.127 -0.127 -0.160 -0.143 -0.146 -0.140 $d_{O-O}[\mathring{A}]$ 1.27 1.27 1.27 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2476 \\ \end{array}$
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \hline \mathbf{Au_4Cu_4O_2} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \hline \mathbf{Au_6Cu_2O_2} \\ 1 \\ 2 \\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.072 \\ -0.080 \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.065 \\ -0.056 \\ -0.055 \\ -0.055 \\ \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ \hline -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ \hline -0.062 \\ -0.062 \\ \hline -0.062 \\ -0.065 \\ \hline \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ \hline q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.028} \\ 0.027 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \hline \textbf{1.980} \\ 2.030 \\ 2.020 \\ \hline \textbf{q}_{O_2}[e] \\ -0.118 \\ -0.118 \\ -0.117 \\ -0.118 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf{q}_{O_1} \\ \hline \textbf{q}_{O_2} \\ \hline \textbf$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ \hline d_{X-O}[\mathring{A}] \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.032 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.30 \\ 2.30 \\ 2.30 \\ 2.31 \\ 2.32 \\ 2.3$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mathring{A}] \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ \textbf{1.28} \\ \textbf{1.28} \\ \textbf{1.28} \\ \textbf{1.27} \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ \textbf{1.28} \\ \textbf{1.28} \\ \textbf{1.28} \\ \textbf{1.28} \\ \textbf{1.28} \\ \textbf{1.28} \\ \textbf{1.27} \\ \textbf{1.28} \\ \textbf{1.27} \\ \textbf{1.28} \\ $	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2476 \\ 0.2432 \\ \end{array}$
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \hline \mathbf{Au_4Cu_4O_2} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \hline \mathbf{Au_6Cu_2O_2} \\ 1 \\ 2 \\ 3 \\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ \textbf{-0.063} \\ -0.063 \\ \textbf{-0.063} \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.064 \\ \hline -0.056 \\ -0.055 \\ -0.046 \\ \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.059 \\ -0.059 \\ -0.053 \\ \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ \hline q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.028} \\ 0.027 \\ 0.084 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ \hline qo_2[[e]] \\ -0.118 \\ -0.117 \\ -0.118 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.118 \\ -0.114 \\ -0.099 \\ \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ \hline d_{X-O}[\mathring{A}] \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.032 \\ 2.32 \\ 2.37 \\ \end{array}$	$ \begin{array}{c} -0.127 \\ -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mathring{A}] \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ \textbf{1.28} \\ 1.27 \\$	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \\ \hline \textbf{E}_{ads}[\text{eV}] \\ \hline 0.2476 \\ 0.2432 \\ 0.2002 \\ \end{array}$
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline \\ Au_4Cu_4O_2\\ \\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline \\ Au_6Cu_2O_2\\ \\ 1\\ 2\\ 3\\ 4\\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[e] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ \textbf{-0.063} \\ -0.063 \\ \textbf{-0.063} \\ -0.056 \\ -0.055 \\ -0.056 \\ -0.055 \\ -0.055 \\ -0.046 \\ -0.055 \\ \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.059 \\ -0.053 \\ -0.059 \\ \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ \textbf{0.093} \\ q_X[e] \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.028} \\ 0.027 \\ 0.084 \\ 0.026 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ \hline qo_2[e] \\ -0.118 \\ -0.117 \\ -0.118 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.114 \\ -0.099 \\ -0.114 \\ \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.032 \\ 2.32 \\ 2.37 \\ 2.32 \\ 2.37 \\ 2.32 \end{array}$	-0.127 -0.127 -0.126 -0.143 -0.146 -0.140 $d_{O-O}[\mathring{A}]$ 1.27 1.27 1.28 1.28 1.28 1.28 1.28 1.29 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \\ \hline \textbf{E}_{ads}[\text{eV}] \\ 0.2476 \\ 0.2432 \\ 0.2002 \\ 0.2436 \\ \end{array}$
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_4Cu_4O_2\\ \\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_6Cu_2O_2\\ \\ 1\\ 2\\ 3\\ 4\\ 5\\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ -\textbf{0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[[e]] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.065 \\ -0.055 \\ -0.046 \\ -0.055 \\ -0.046 \\ \end{array}$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ -\textbf{0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.052 \\ \hline -0.059 \\ -0.059 \\ -0.052 \\ \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ \textbf{0.093} \\ q_X[e] \\ 0.012 \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ \textbf{0.120} \\ \textbf{0.120} \\ \textbf{0.028} \\ 0.027 \\ 0.084 \\ 0.026 \\ 0.083 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ 1.980 \\ 2.030 \\ 2.020 \\ \hline qo_2[e] \\ -0.118 \\ -0.117 \\ -0.118 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.118 \\ -0.114 \\ -0.099 \\ -0.114 \\ -0.098 \\ \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.32 \\ 2.37 \\ 2.32 \\ 2.37 \\ 2.32 \\ 2.37 \end{array}$	$\begin{array}{c} -0.127 \\ -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline d_{O-O}[\mbox{\Box{\mathring{A}}}] \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.27$	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \\ \textbf{E}_{ads}[\text{eV}] \\ 0.2476 \\ 0.2432 \\ 0.2002 \\ 0.2436 \\ 0.1984 \\ \end{array}$
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_4Cu_4O_2\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \hline Au_6Cu_2O_2\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ \end{array}$	$\begin{array}{c} -0.059 \\ -0.060 \\ -0.080 \\ -0.070 \\ -0.072 \\ \textbf{-0.080} \\ -0.071 \\ -0.068 \\ \hline q_{O(1)}[[e]] \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.063 \\ -0.063 \\ -0.063 \\ \textbf{-0.063} \\ \textbf{-0.063} \\ \textbf{-0.063} \\ -0.063 \\ -0.063 \\ \textbf{-0.063} \\ \textbf{-0.063} \\ -0.063 \\ \textbf{-0.063} \\ -0.063 \\ -0.063 \\ \textbf{-0.063} \\ -0.063 \\ \textbf{-0.063} \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.063 \\ -0.056 \\ -0.05$	$\begin{array}{c} -0.068 \\ -0.067 \\ -0.080 \\ -0.073 \\ -0.076 \\ \textbf{-0.080} \\ -0.075 \\ -0.072 \\ \hline q_{O(2)}[e] \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.062 \\ -0.052 \\ -0.053 \\ -0.059 \\ -0.052 \\ -0.052 \\ -0.063 \\ \end{array}$	$\begin{array}{c} 0.012 \\ 0.012 \\ 0.089 \\ 0.093 \\ 0.103 \\ \textbf{0.088} \\ 0.103 \\ 0.093 \\ \hline q_X[e] \\ 0.012 \\ 0.012 \\ 0.011 \\ 0.011 \\ 0.120 \\ 0.120 \\ \hline \textbf{0.120} \\ \textbf{0.120} \\ \hline \textbf{0.028} \\ 0.027 \\ 0.084 \\ 0.026 \\ 0.083 \\ 0.029 \\ \end{array}$	$\begin{array}{c} 2.330 \\ 2.330 \\ 2.330 \\ 1.970 \\ 2.020 \\ 2.020 \\ \textbf{1.980} \\ 2.030 \\ 2.020 \\ \hline qo_2[e] \\ -0.118 \\ -0.118 \\ -0.118 \\ -0.115 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.125 \\ -0.118 \\ -0.114 \\ -0.099 \\ -0.114 \\ -0.098 \\ -0.119 \\ \end{array}$	$\begin{array}{c} 1.270 \\ 1.270 \\ 1.270 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 1.280 \\ 2.34 \\ 2.34 \\ 2.35 \\ 2.35 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.02 \\ 2.37 \\ 2.32 \\ 2.37 \\ 2.32 \\ 2.37 \\ 2.32 \\ 2.37 \\ 2.32 \end{array}$	$\begin{array}{c} -0.127 \\ -0.127 \\ -0.127 \\ -0.160 \\ -0.143 \\ -0.148 \\ \textbf{-0.160} \\ -0.146 \\ -0.140 \\ \hline \\ d_{O-O}[\mbox{\mathring{A}}] \\ 1.27 \\ 1.27 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.28 \\ 1.27 \\ 1$	$\begin{array}{c} 0.2564 \\ 0.2552 \\ 0.6115 \\ 0.4682 \\ 0.4488 \\ \textbf{0.6143} \\ 0.4495 \\ 0.4605 \\ \textbf{E}_{ads}[\text{eV}] \\ 0.2417 \\ 0.2403 \\ 0.2404 \\ 0.2397 \\ 0.4415 \\ 0.4432 \\ 0.4422 \\ \textbf{0.4461} \\ \textbf{E}_{ads}[\text{eV}] \\ 0.2476 \\ 0.2432 \\ 0.2002 \\ 0.2436 \\ 0.1984 \\ 0.2474 \\ \end{array}$

Tabla 3.2: Exceso de carga y distancias de enlace para distintos sitios de adsorción.

En los los complejos catiónicos $AuCu^+CO$ el HLG no sufre una variación apreciable, este fenómeno se encuentra correlacionado con el hecho de que la transferencia de carga entre molécula-cúmulo es pequeña en estos complejos; el exceso de exceso de carga de la molécula ronda entre los valores (0.079|e|-1.01|e|), alcanzándose el máximo valor en el complejo Au_8^+CO donde el HLG aumenta levemente 0.11 eV. En los complejos $AuCu^+O_2$ se puede apreciar un disminución notable en el HLG en las composiciones 0:1, 1:3, y 1:1, mientras que en las composiciones 3:1 y 1:0 el HLG no cambia. Merece mencionarse que tanto la energía de adsorción y el exceso de carga son similares en los complejos $Au_8^+O_2$, y $Au_2Cu_6^+O_2$, además tienen los máximos valores en la energía de adsorción y exceso de carga. Por ultimo en los complejos catiónicos el sistema $Au_6Cu_2^+O_2$, aunque presenta un exceso de carga casi nulo, produce una elongación pequeña en O_2 , además se encontró que la magnetización de este complejo es 2.82 Bohr mag/cell, propiedad que difiere de todos todos los demás complejos tanto neutros como cargados.

En resumen, para los grupos de Au-Cu, se fomenta la elongación de la molécula O_2 a medida que aumenta el contenido de cobre, por lo que los cúmulos que tienen más contenido de cobre son más reactivos a O_2 . Segundo, a diferencia de la adsorción de CO, la actividad catalítica de los cúmulos a O_2 es altamente sensible al cambio de estructura y al estado de carga. En general, los aniones son considerablemente más reactivos con el oxígeno que los neutros y los cationes. Finalmente, notamos que una variación en los valores del HLG de los cúmulos libres al ser adsorbida las moléculas de CO/O_2 , nos puede dar un indicio de que el cúmulo es capas de activar a la molécula.

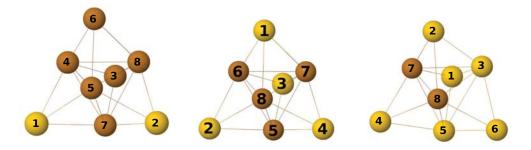


Figura 3.15: Diferentes sitios de adsorción numerados en cada átomo para los cúmulos $\operatorname{Au}_n\operatorname{Cu}_{8-n}$ (n=2,4,6). Los sitios equivalentes se numeran aunque se sabe de antemano que darán el mismo resultado.

Adsorción en sitios atómicos de oro y/o cobre. Con el fin de entender la razón por la cual tanto CO como O₂ prefieren adsorberse en los sitios atómicos de cobre, se realizo lo siguiente: en los cúmulos bimetálicos neutros con composiciones 1:3, 1:1, y 3:1 se consideraron todas las posibles conformaciones en top de las moléculas CO/O₂ (ver figura 3.15). La tabla 3.2 muestra el exceso de carga, las distancias de enlace y las energías de adsorción de las moléculas para distintas conformaciones. De estos datos se puede concluir lo siguiente:

■ La molécula de CO prefiere adsorberse en sitios donde la transferencia de carga hacia los átomos de C y O es mayor. Como se puede observar en la tabla, los átomos del cúmulo que favorecen una mayor transferencia de carga son los de cobre. Tomando en cuenta que molécula CO es un dipolo con momento dipolar μ =(0.60|e|)(1.15 \mathring{A})=0.69 |e| \mathring{A} , podemos concluir que la molécula de CO prefiere ser adsorbida en sitios donde la fuerza de atracción electrostática (interacciones intermolecular) entre C y O es mayor y por lo tanto la distancia de enlace $d_{\text{C-O}}$ en menor. Esto se puede corroborar cuando se observa que en los sitios de cobre la

molécula de CO presenta una distancia de enlace de $1.16\mathring{A}$, mientras que en el oro es de $1.17\mathring{A}$, independientemente de la composición.

■ La molécula O₂ prefiere adsorberse en los sitios donde la transferencia de carga sea mayor y la distribución de carga en cada átomo sea uniforme, es decir, el exceso de carga en cada átomo de oxígeno es el mismo. Esto nos indica que la molécula prefiere adsorberse en los sitios que favorezcan una mayor repulsión electrostática y como consecuencia una mayor separación entre átomos. El exceso de carga en cada átomo de oxígeno después de adsorción del dioxígeno en lo cúmulos Au₂Cu₆, Au₄Cu₄, y Au₆Cu₂ es de 0.080e, 0.063|e|, 0.063|e|, respectivamente. Como podemos notar, este comportamiento difiere totalmente al del monóxido de carbono. Este comportamiento se podría explicar al considerar que cada átomo de oxígeno, al formarse el oxígeno molecular, posee la misma electronegatividad lo que favorece una redistribución de carga uniforme en la molécula, al adsorberse en el cúmulo la molécula preferirá los sitios que conserven esta distribución de carga. Las composiciones 1:1 y 3:1 presentan prácticamente los mismos valores en todas las cantidades calculadas para CO y O₂ lo que representa un caso en donde sistemas bimetálicos con diferente composición pero misma geometría poseen reactividades similares.

3.4

DESCRIPTOR DUAL

Para obtener información sobre la formación de enlaces y la reactividad local, usamos la teoría de orbitales moleculares de frontera (TOMF) [59] y el descriptor dual $\Delta f(\mathbf{r})$ [48, 49]. La función escalar $\Delta f(\mathbf{r})$ se define como

$$\Delta f(\mathbf{r}) = f^{+}(\mathbf{r}) - f^{-}(\mathbf{r}) \tag{3.5}$$

donde $f^+(\mathbf{r})$ y $f^-(\mathbf{r})$ son las funciones de Fukui para zonas electrofílicas (electroaceptoras) y nucleofílicas (electrodonadoras), respectivamente. Las funciones de Fukui se obtienen a partir de las densidades electrónicas del sistema con N-1 ($\rho(N-1)$) y N+1 ($\rho(N+1)$) electrones conservando la geometría del sistema con N electrones ($\rho(N)$)

$$f^{+}(\mathbf{r}) = \rho_{N+1}(\mathbf{r}) - \rho_{N}(\mathbf{r}) \tag{3.6}$$

$$f^{-}(\mathbf{r}) = \rho_N(\mathbf{r}) - \rho_{N-1}(\mathbf{r}) \tag{3.7}$$

Cabe mencionar que existen estudios previos donde el descriptor dual y las funciones de Fukui se han usado para predecir los sitios reactivos en moléculas orgánicas [70, 71] y en cúmulos compuestos de metales de transición [72]. Usando el descriptor dual es posible encontrar regiones nucleófilicas $(\Delta f(\mathbf{r}) < 0)$ y electrofílicas $(\Delta f(\mathbf{r}) > 0)$ en los cúmulos bimetálicos tratados en esta tesis. En las figuras 3.16,3.17, 3.18) se muestran las curvas de nivel de las regiones positivas y negativas del descriptor dual en color rojo y azul, respectivamente. El exceso de carga en la molécula CO/O₂

es indicativo de la región (nucloeofílica o electrofílica) mas probable en el que el cúmulo se podría adsorber (ver figuras 3.11 y 3.12). A continuación veremos casos particulares en los que el descriptor dual es válido, además de situaciones en los que nos proporciona información sobre los sitios de mayor reactividad.

De los complejos estudiados en este trabajo, sabemos que CO se adsorbe en cationes por medio de una pequeña transferencia de carga al cúmulo (la máxima alcanza el valor 0.125 |e| en cúmulo puro de oro). En el caso de los cúmulos neutros y aniones la situación es lo contrario. Esto nos sugiere que si buscamos regiones electrofílicas en los cúmulos catiónicos, y nucleofílicas en los neutros y aniónicos, los sitios reactivos hacia la molécula de CO tendrían que coincidir con los sitios de adsorción obtenidos en la sección anterior. En el oxígeno molecular, debido a que prácticamente en todos los complejos el exceso de carga es negativo, por los que los sitios de adsorción tendrían que coincidir la regiones donde el descriptor dual opte por tomar valores negativos.

En general, en cúmulos puros de oro y cobre, el descriptor dual predice correctamente cuáles átomos son capaces de aceptar carga (Cu₈⁺ y Au₈⁺) y donar carga (Cu₈, Au₈, Au₈⁻, y Cu₈⁻), sin embargo, tenemos situaciones en las que no se distingue claramente regiones nucleofílicas y electrofílicas, debido que estas se concentran en los mismos sitios atómicos. Esto sugiere que entre el cúmulo y la molécula ocurre una transferencia de carga en los dos sentidos en la misma proporción, dando como resultado que la carga neta en la molécula se pequeña. Como ejemplo, veamos Cu₈ (ver figura 3.17), donde de acuerdo con $\Delta f(\mathbf{r}) > 0$, los extremos superior e inferior corresponden a regiones electrofílicas. La carga asignada a esos átomos es positiva, mientras que los átomos restantes tienen carga negativa. Esto quiere decir que estos átomos son más susceptibles a aceptar electrones. Sin embargo, de acuerdo con $\Delta f(\mathbf{r}) < 0$, los átomos de cobre también pueden donar electrones y esto es lo que sucede. Otro ejemplo es Au₈, donde CO es adsorbida en uno de los átomos situados en los vértices de la estructura en forma de estrella; esto átomos tienen carga neta 0.193e (estos sitios se caracterizan por ser nucleofílicos y electrofílicos)
y los demás átomos una carga menor de 0.057e. En la adsorción de O₂ en cúmulos puros, este método es capaz de predecir los sitios de mayor reactividad en el cúmulo, es decir, zonas donde la transferencia de carga del cúmulo a la molécula es mayor; este es el caso de $Cu_8^-O_2$ y $Cu_8^+O_2$.

En los cúmulos bimetálicos catiónicos, los sitios de adsorción de CO en $\operatorname{Au_2Cu_6^+}$ y $\operatorname{Au_4Cu_4^+}$ son predichos correctamente por el descriptor dual. Sin embargo, $\operatorname{Au_6Cu_2^+}$ no cumple con la predicción de adsorberse en las zonas donde $\Delta f(\mathbf{r}) > 0$, lo cual ocurre principalmente en los átomos de oro. Con respecto a la adsorción de la molécula $\operatorname{O_2}$, las regiones nucleofílicas del cúmulo serían los sitios más probables de adsorción. En $\operatorname{Au_4Cu_4^+}$, las zonas donde $\Delta f(\mathbf{r}) < 0$, están concentradas en una región que excluye a dos átomos de oro, en esta región es precisamente donde la molécula de oxígeno se adsorbe donando una carga prácticamente nula al cúmulo (0.006e). Cabe destacar que este descriptor predice que la adsorción de la molécula de oxígeno ocurre en la posición staple en los complejos $\operatorname{Au_2Cu_6^+O_2}$ y $\operatorname{Au_6Cu_2^+O_2}$.

En los cúmulos bimetálicos neutros, la predicción de los sitios de adsorción de CO resulta complicado si uno observa que las regiones nucleofílicas abarcan todos los átomos del cúmulo. Solamente analizando las zonas donde $\Delta f(r) > 0$ es posible predecir las zonas de adsorción de CO. Por ejemplo, las zonas electrofílicas de Au₄Cu₄ se concentran principalmente los átomos de oro, por lo que podría esperarse que el CO se adsorba en átomos de cobre. Lo mismo se puede aplicar en el caso de Au₆Cu₂, donde CO se adsorbe fuera de las regiones donde el descriptor dual es negativo para el

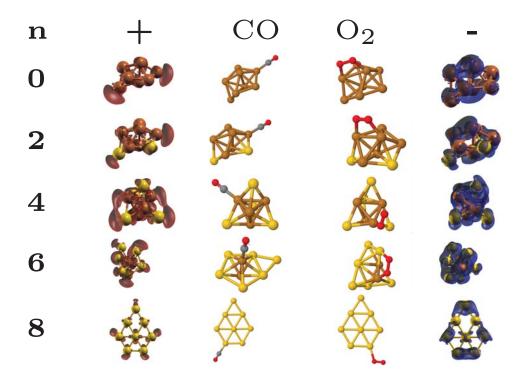


Figura 3.16: Descriptor dual $\Delta f(\mathbf{r})>0$ (+) y $\Delta f(\mathbf{r})<0$ (-) para $\mathrm{Au}_n\mathrm{Cu}_{8-n}^+.$

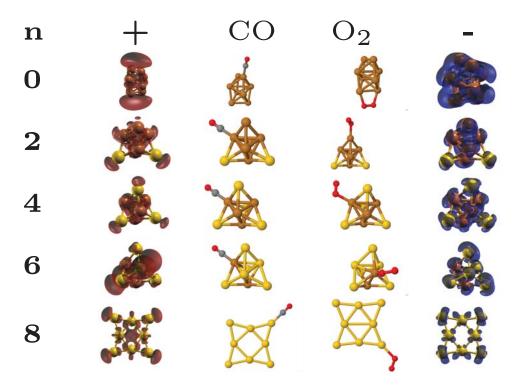


Figura 3.17: Descriptor dual $\Delta f({\bf r})>0$ (+) y $\Delta f({\bf r})<0$ (-) para ${\rm Au}_n{\rm Cu}_{8-n}.$

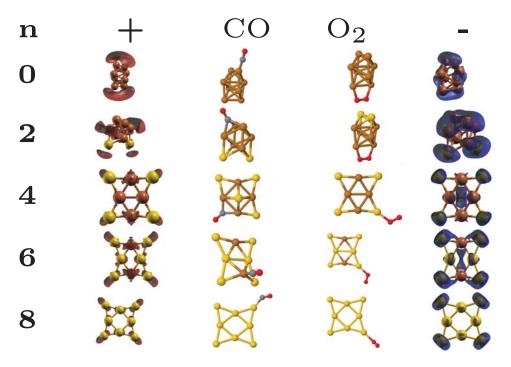


Figura 3.18: Descriptor dual $\Delta f(\mathbf{r}) > 0$ (+) y $\Delta f(\mathbf{r}) < 0$ (-) para $\mathrm{Au}_n \mathrm{Cu}_{8-n}^-$.

cúmulo. Usando este mismo criterio es posible predecir los sitios de adsorción de O_2 en los cúmulos.

En los cúmulos bimetálicos aniónicos el descriptor dual puede predecir el sitio de adsorción del CO en $\mathrm{Au_2Cu_6^-}$. Sin embargo para $\mathrm{Au_4Cu_4^-}$ y $\mathrm{Au_4Cu_4^-}$ la predicción falla. En estos sistemas las zonas nucleofílicas se concentran en los átomos de oro. A pesar de este hecho, CO se adsorbe preferentemente en los átomos de cobre. En la adsorción de $\mathrm{O_2}$, como era de esperarse, la molécula se adsorbe en regiones donde $\Delta f(r) < 0$. El descriptor dual predice correctamente que los átomos de oro situados en las puntas de los cúmulos $\mathrm{Au_4Cu_4^-}$ y $\mathrm{Au_2Cu_6^-}$ en forma de estrella son los sitios más favorables para donar electrones a la molécula $\mathrm{O_2}$.

3.5

Propiedades electrónicas de AuCuO₂ y AuCuCO

En las secciones anteriores se mostró que, en general, la transferencia de carga, ocurre del cúmulo a la molécula, excepto cuando el CO se adsorbe en cúmulos catiónicos de oro y cobre. A pesar de que el exceso de carga y la energía de adsorción son importantes para conocer el grado de interacción cúmulo-molécula, no es posible reconocer, a partir de esta cantidad, los orbitales de la molécula y del cúmulo que están involucrados en los enlaces que permiten la formación del complejo, además del grado de hibridación dichos los orbitales. Para ello es necesario realizar un análisis de la densidad de estados total (DOS) y parcial (PDOS). Antes de analizar estas cantidades, es importante repasar la estructura electrónica de las moléculas de CO y O_2 (ver figura 3.19).

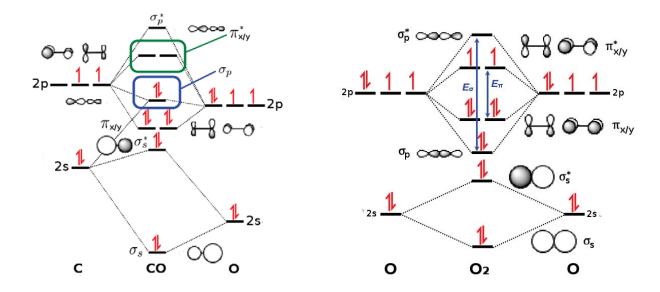


Figura 3.19: Diagrama de los orbitales moleculares de CO y O₂. La hibridación entre los orbitales atómicos 2s se denota como σ_s (σ_s^*) y para la hibridación entre los orbitales atómicos 2p se tiene el conjunto σ_p (σ_p^*), π_x (π_x^*), π_y (π_y^*).

Antes de formarse la molécula de O₂ ó CO, cada átomo de oxígeno tiene dos electrones ocupando el orbital 2s y cuatro electrones ocupando el orbital 2p. Al formarse enlaces surgen nuevos orbitales moleculares debido a la hibridación entre orbitales atómicos; los orbitales involucrados son 2s y 2pde cada átomo. La hibridación de los orbitales 2s da como resultado un estado de enlace $\sigma=\sigma_s$ y otro de antienlace $\sigma^* = \sigma_s^*$. Cada uno de estos estados son ocupados por dos electrones. Por otro lado, la hibridación de los orbitales 2p genera seis estados, 3 de enlace $\pi = {\sigma_p, \pi_x, \pi_y}$ y 3 de antienlace $\pi^* = {\sigma_p^*, \pi_x^*, \pi_y^*}$. En O₂ los estado de enlace son ocupados por 6 electrones mientras que cada estado de antienlace π_x^* y π_y^* es ocupado por un electrón. De esta manera se tienen dos estados semillenos π_x^* , π_y^* y uno vacío σ_p^* . Para CO, sin embargo, tenemos una situación distinta; el átomo de carbono tiene un orbital 2s y tres 2p donde cada orbital es ocupado por dos electrones. En la molécula CO se generan (de manera análoga a O_2) estados de enlace σ_s , σ_p , π_x , π_p y los correspondientes estados de antienlace. En la molécula de CO todos los estados $\sigma_s, \, \sigma_s^*, \, \sigma_p, \, \pi_y$ y π_z están llenos, mientras que los estados de antienlace $\sigma_p^*, \, \pi_y^*$ y π_z^* están vacíos. En el proceso de adsorción de la molécula, si el cúmulo dona electrones a la molécula, es de esperarse que los electrones ocupen los estados antienlace π^* en CO ó $O_2(LUMO)$. Sin embargo, si la molécula dona electrones al cúmulo, los orbitales s y d del cúmulo serían poblados.

Con el fin de conocer como se mezclan los orbitales del cúmulo (AuCu q , q+1,0,-1) y la molécula (X=CO,O₂) cuando se forma el complejo cúmulo-molécula (AuCuX, X=CO,O₂), se calcularon la densidad de estados total (DOS(E)) y parcial (PDOS(E)) como función de la energía E. Los orbitales a considerar son s y d del cúmulo que denotaremos por s(AuCu) y d(AuCu), respectivamente, mientras que para las moléculas X=CO ó O₂ consideraremos los orbitales p y s, que denotaremos como p(X) y s(X), respectivamente. Las gráficas de DOS(E) y PDOS(E) se muestran en las figuras 3.20, 3.21, y 3.22 para los complejos Au $_n$ Cu $_{8-n}^q$ X (n=0,2,4,6,8; X=CO ó O₂; q =+1,0,-1). La notación usada para la densidad de estados parcial es pdos $_l$ (E) (X=CO,O₂, ó AuCu; l=s,p,d

(s=0, p=1, d=2)). En todas las gráficas las energías han sido ajustadas de tal forma que el valor de la energía de Fermi sea igual a 0eV.

Sea E_p la energía para la cual la integral de la densidad de estados parcial p $dos_l^{CO}(E)(pdos_l^{O_2}(E))$, con momento angular l=s, p satisface

$$\int_{-\infty}^{E_p} \operatorname{pdos}_p^{\mathcal{O}_2}(E) dE = 8 \tag{3.8}$$

$$\int_{-\infty}^{E_p} p \operatorname{dos}_p^{CO}(E) dE = 6 \tag{3.9}$$

De acuerdo con la figura 3.19, el número de electrones ocupando los estados de enlace (π_p, σ_p) y antienlace (π_p^*, σ_p^*) , cuando las moléculas O_2 y CO son libres, es ocho y seis, respectivamente. Se define el intervalo $\delta p = [E_p, E_F]$ como el intervalo de energías en el cual los orbitales π^* de la molécula adsorbida se mezclan con los orbitales s y d que corresponden al cúmulo. Los valores que toma δp para O_2 se encuentran dentro del intervalo de energías (0.06eV-0.88eV), mientras que en CO, el correspondiente intervalo es significativamente más grande (2.71eV-7.40eV). Debido a que los orbitales antienlace de CO se hibridan en un intervalo más extenso de energías, a diferencia del O_2 , la hibridación ocurre a niveles más bajos de energía en el cúmulo y estos niveles corresponden a los orbitales d del mismo. En el caso de O_2 , la hibridación ocurre a niveles más altos de energía que corresponden a los orbitales s del cúmulo.

A continuación se describirán las densidades de estados parciales y totales de los sistemas $\operatorname{AuCu^qCO}$ y $\operatorname{AuCu^qO_2}$, con q=+1,0,-1 (ver figuras 3.20 y 3.21). El comportamiento de estas dos funciones está correlacionado con la estructura del complejo y con del exceso de carga en la molécula. Es por esto que de manera paralela se compararon los resultados de las figuras 3.11 y 3.12 con los obtenidos en esta sección. Por último, el grado de hibridación entre orbitales $s(\operatorname{AuCu})$, $d(\operatorname{AuCu})$ y s(X) y p(X) (X=CO,O₂) de las moléculas, se puede cuantificar por medio de los cocientes $\operatorname{pdos}_i^X(\operatorname{HOMO})/\operatorname{DOS}(\operatorname{HOMO})$, donde l=s,p,d y X=CO,O₂(ver figuras 3.24).

 $AuCu^+X$, X=CO, O_2 . En general, por debajo del nivel de Fermi, las contribuciones de los orbitales s(AuCu) y d(AuCu) dominan en todos los complejos, además, en todos ellos existe una contribución apreciable de p(X) y s(X) en DOS(E). Cabe mencionar que la hibridación entre los orbitales p(X), s(AuCu), y d(AuCu) es apreciablemente mayor en los complejos $AuCu^+O_2$. Por otro lado, en los complejos $AuCu^+CO$, las contribuciones de s(AuCu) y d(AuCu) son las dominantes en el HOMO.

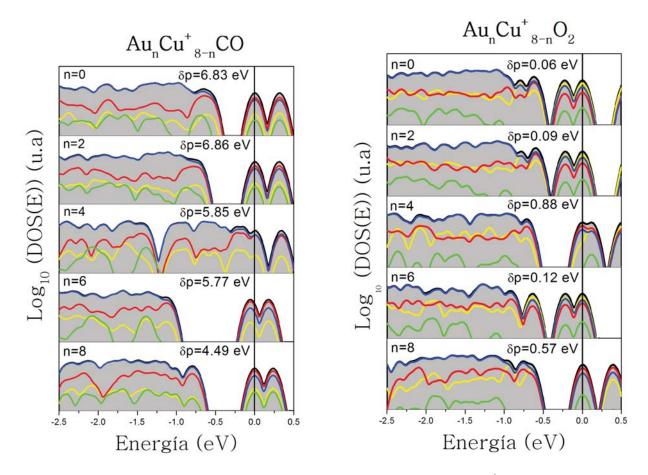


Figura 3.20: Densidades de estados totales y parciales de los complejos $\operatorname{Au}_n\operatorname{Cu}_{8-n}^+X$, con n=0,2,4,6,8 y X=CO ó O₂. Los orbitales que se muestran para cada densidad de estados parcial son el $s(\operatorname{AuCu})$ (rojo), $d(\operatorname{AuCu})$ (azul), p(X) (amarillo), s(X) (verde).

En AuCu⁺CO la contribución del orbital p(CO) en el HOMO aparece en todas las composiciones, sin embargo, no existe contribución s(CO) en las composiciones 1:1, 3:1, mientras que en 1:0, 1:3 y 0:1, tanto s(CO) como p(CO) tienen contribuciones similares, es decir, pdos $_s^{CO}(HOMO) \sim pdos_p^{CO}(HOMO)$. En los complejos Au₄Cu₄⁺CO y Au₆Cu₂⁺CO el exceso de carga (0.079|e| y 0.075|e|, respectivamente) es apreciablemente menor con respecto a los demás complejos (donde el exceso de carga toma valores en el intervalo 0.99|e|-1.25|e|). De lo anterior, se puede concluir que cuando la transferencia de carga de la molécula al cúmulo es pequeña, los orbitales π son los responsables de donar carga al cúmulo. En contraste, en el caso en que la transferencia de carga sea mayor, los orbitales π y σ (σ *) sería los responsables de donar carga al cúmulo.

En los complejos $\operatorname{AuCu^+O_2}$ la hibridación $s(\operatorname{AuCu})$ - $p(\operatorname{O_2})$ esta más marcada que en los complejos $\operatorname{AuCu^+CO}$ a energías menores al niveles de Fermi. Un hecho importante es que en las composiciones 1:0, 1:3, y 3:1 el valor del orbital $p(\operatorname{O_2})$ en el HOMO es mayor al de los orbitales $s(\operatorname{AuCu})$ y $d(\operatorname{AuCu})$. Estas son precisamente las composiciones para las cuales la adsorción de $\operatorname{O_2}$ adopta una posición staple. Esto sugiere que debida a que la adsorción en staple involucra a dos átomos de oxígeno enlazados a dos átomos del cúmulo, la hibridación del orbital $p(\operatorname{O_2})$ con los orbitales del cúmulo es mayor. En el caso de la composición 1:1 la adsorción de la molécula es en top por los que la

contribución de $p(O_2)$ es menor a las de s(AuCu) y d(AuCu). En $Au_4Cu_4^+O_2$ el exceso de carga es de 0.006|e| y al igual que $Au_4Cu_4^+CO$ y $Au_6Cu_2^+CO$, en donde el exceso de carga es pequeño, no existe contribución $s(O_2)$ en el HOMO. Por ultimo, para el complejo $Au_8^+O_2$ la contribución $p(O_2)$ es la misma que d(AuCu) en el HOMO, por lo que este complejo se caracteriza por una tener la mayor hibridación $p(O_2)$ -d(AuCu). En este complejo (sin contenido de cobre), a pesar de que el exceso de carga es pequeño (-0.008|e|), el orbital $s(O_2)$ contribuye en el HOMO.

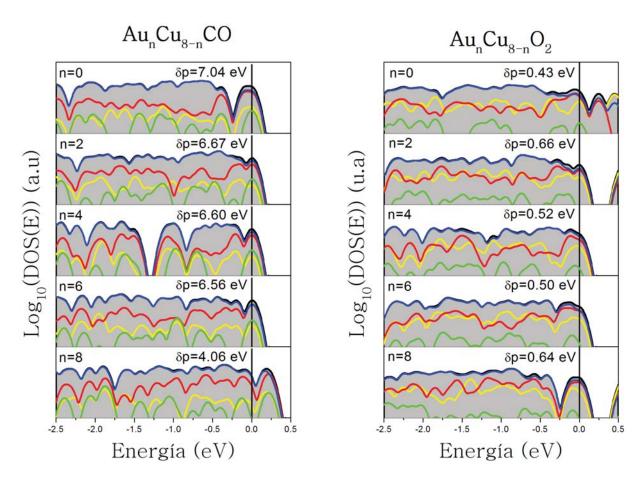


Figura 3.21: Densidad de estados total y parcial para los complejos $\operatorname{Au}_n\operatorname{Cu}_{8-n}X$, con n=0,2,4,6,8, q=0,-1, y X=CO/O₂. Los orbitales que se muestran para cada densidad de estados parcial son el $s(\operatorname{AuCu})$ (rojo), $d(\operatorname{AuCu})$ (azul), p(X) (amarillo), s(X) (verde).

AuCuX, X=CO, O₂. En complejos catiónicos, en el HOMO, la contribución del orbital s(X) es mayor en X=CO. Al igual que en complejos positivos, cuando existe una contribución apreciable de los orbitales s(CO) y p(CO) en el HOMO (en neutros ocurre en composiciones 0:1, 1:3, 1:1 y 1:3), estos orbitales exhiben contribuciones similares en el HOMO. Una propiedad común de estas composiciones es que el exceso de carga es pequeño (0.037e-0.022e). En la composición 1:0 (Au₈CO) la contribución p(CO) es pequeña y s(CO) es prácticamente nula. Este comportamiento se explica debido a que en el complejo Au₈CO el exceso de carga en CO es pequeño (0.051|e|), además, cabe resaltar que la energía de adsorción (1.0075eV) es el mínimo valor alcanzado entre los complejos AuCuCO.

En la adsorción de O_2 la contribución $p(O_2)$ en el HOMO es apreciablemente mayor a la de los complejos AuCuCO. El exceso de carga en estos sistemas se encuentra en el intervalo $(0.080e^{-0.234e})$. Los complejos en los cuales el orbital $p(O_2)$ contribuyen en mayor medida en el HOMO son Cu_8O_2 y $Au_2Cu_6O_2$, además el valor que toman en el exceso de carga (0.234e y 1.600e, respectivamente) es el mas grande entre los complejos $AuCuO_2$. En conclusión, en AuCuCO los orbitales s(CO) y p(CO) contribuyen en la misma medida en la formación de enlaces (excepto en $Au_8CO)$, mientras que en $AuCuO_2$ el orbital $p(O_2)$ participa mayoritariamente en la formación de enlaces en un intervalo de energía δp mucho más pequeño dado por (0.43eV-0.64eV). En general, en los complejos AuCuCO, se satisface las densidades parciales $pdos_d^{AuCu}(E)$ y $pdos_s^{AuCu}(E)$ son toman valores que son mayores a $pdos_s^{CO}(E) > pdos_p^{CO}(E)$, en un rango de energías menor a E_F ; este comportamiento se repite en $AuCu^+CO$

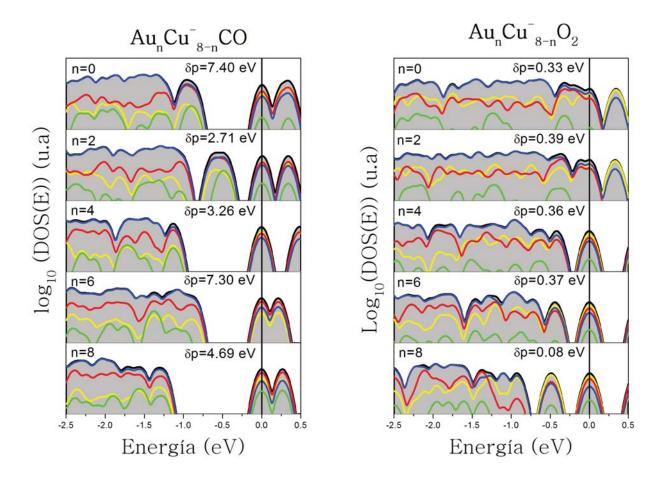


Figura 3.22: Densidad de estados total y parcial para los complejos $\operatorname{Au}_n\operatorname{Cu}_{8-n}^-X$, con $n=0,2,4,6,8,\ q=0,-1$, y X=CO/O2. Los orbitales que se muestran para cada densidad de estados parcial son el $s(\operatorname{AuCu})$ (rojo), $d(\operatorname{AuCu})$ (azul), p(X) (amarillo), s(X) (verde).

 $AuCu^-X$, X=CO, O_2 . En todos los complejos aniónicos $AuCu^-CO$, a diferencia de los complejos catiónicos y neutros, los orbitales p(CO) contribuyen apreciablemente en el HOMO, a tal grado que $pdos_p^X(HOMO)$ toma valores similares a $pdos_{s/d}^{AuCu}(HOMO)$, lo que indica que en la adsorción de CO se alcanza la máxima hibridación p(CO)-s(AuCu) y p(CO)-d(AuCu) en los complejos aniónicos.

La contribución del orbital s(CO) en el HOMO solo existe en las composiciones 0:1, 1:3, y 1:0, mientras que en composiciones 1:1 y 1:3 es nula. Una peculiaridad que presenta las composiciones 1:1 y 1:3 es que tienen la menor energía de adsorción (1.2420eV y 0.9685eV, respectivamente) con respecto a las demás composiciones.

En los complejos $\operatorname{AuCu^-O_2}$ las composiciones 0:1 y 1:3 no exhiben prácticamente contribuciones $s(O_2)$ en el HOMO. Las composiciones 0:1 y 1:3 tienen la peculiaridad de presentar los máximos valores del exceso de carga (-0.420|e| y -0.422|e|, respectivamente), además de que son las que presentan la mayor hibridación $p(O_2)$ - $s(\operatorname{AuCu})$, en todo el todo el intervalo de energía menor a E_F . Por el contrario, en las composiciones 1:1, 3:1, y 1:0, donde $s(\operatorname{CO})$ contribuye el HOMO, el exceso de carga toma valores en el intervalo (0.358e-0.344e). Por ultimo, a diferencia de $\operatorname{AuCu^-CO}$, se puede apreciar una hibridación $s(\operatorname{AuCu})$ - $p(O_2)$ en los complejos $\operatorname{AuCu^-O_2}$; este resultado se repite también en complejos neutros a catiónicos donde $\operatorname{O_2}$ es adsorbida.

Carga transferida entre orbitales. Los resultados presentados anteriormente sugieren la existencia de una relación entre el exceso de carga y la hibridación entre los orbitales s(AuCu) y d(AuCu) del cúmulo con los p(X) y s(X) de la molécula X=CO,O₂ Una forma de probar esta relación es graficar el exceso de carga en el orbital $p(\delta q_p)$ en molécula adsorbida, relacionados con los orbitales π (π *), en función de la composición del cúmulo (ver figura 3.23). El exceso de carga en el orbital p o s de la molécula X=CO, O₂, se define como

$$\delta q_p^{\text{CO}} = 6 - \int_{-\infty}^{E_F} \text{pdos}_p^{\text{CO}}(E) = \int_{E_p}^{E_F} p dos_p^{\text{X}}(E) < 0$$
 (3.10)

$$\delta q_p^{O_2} = 8 - \int_{-\infty}^{E_F} \text{pdos}_p^{O_2}(E) = \int_{E_p}^{E_F} \text{pdos}_p^{X}(E) < 0$$
 (3.11)

$$\delta q_s = 4 - \int_{-\infty}^{E_F} \operatorname{pdos}_s^{X}(E) > 0 \tag{3.12}$$

donde la energía E_P se definió en las ecuaciones (3.8) y (3.9) y el signo positivo indica que el orbital transfirió carga al cúmulo, mientras un signo negativo lo contrario. El signo, en las ecuaciones anteriores, se justifica al obtenerse que en todos los complejos ocurre una transferencia de carga del cúmulo a los orbitales p(CO) y $p(O_2)$, mientras que los orbitales p(CO) y $p(O_2)$ transfieren carga (p(CO)) al cúmulo. En la tabla 3.3 se muestran los valores de p(CO) y p(CO) y p(CO) transfieren carga (p(CO)) al cúmulo. En la tabla 3.3 se muestran los valores de p(CO) y p(CO) transfieren carga (p(CO)) y p

Para las cargas q=+1,0,-1, se encuentra que los complejos $\operatorname{AuCu^qCO}$ satisfacen que $\delta q_s \in [0.799|e|, 1.025|e|]$, mientras que en $\operatorname{AuCu^qO_2}$ se tiene que $\delta q_s \in [0.252|e|, 0.299|e|]$. Este resultado nos sugiere que en la adsorción de CO y $\operatorname{O_2}$ la interacción $\operatorname{H_{CO}-L_{AuCu}}$ es mayor que en $\operatorname{H_{CO}-L_{AuCu}}$. Esta interacción entre el HOMO de la molécula y el LUMO del cúmulo es el principal responsable de que la transferencia de carga ocurra de la molécula al cúmulo.

Debido a que en los complejos AuCu⁻O₂, $|\delta q_p| > |\delta q_s|$, lo que implica que la interacción H_{AuCu}--L_{O₂ domina sobre H_{AuCu}--L_{O₂. En los complejos AuCu⁺O₂ las composiciones 0:1, 1:3, y 1:3 satisfacen $\delta q_p > \delta q_s$, mientras que para el resto de las composiciones ocurre lo contrario. Finalmente, en los complejos neutros AuCuO₂ las composiciones 0:1 y 1:3 satisfacen $\delta q_p > \delta q_s$, mientras que $\delta q_p \approx \delta q_s$ para el resto de las composiciones.}}

	X=CO			$X=O_2$		
\overline{n}	HLG	δq_p	δq_s	HLG	δq_p	δq_s
0-	0.27	-0.677	0.921	1.68	-0.709	0.267
2^{-}	0.84	-0.810	1.007	1.37	-0.713	0.268
4^{-}	0.58	-0.851	1.025	1.03	-0.548	0.253
6^{-}	1.44	-0.599	0.902	1.06	-0.540	0.256
8-	0.72	-0.702	0.779	1.08	-0.554	0.252
0+	1.27	-0.404	0.918	0.98	-0.511	0.263
2^+	1.27	-0.411	0.920	1.04	-0.509	0.265
4^+	2.50	-0.424	0.922	1.41	-0.172	0.299
6^+	1.09	-0.433	0.927	1.16	-0.491	0.255
8+	1.25	-0.469	0.901	1.05	-0.190	0.264
0	1.20	-0.497	0.909	1.93	-0.496	0.276
2	1.96	-0.504	0.913	1.95	-0.353	0.298
4	2.09	-0.501	0.903	2.22	-0.289	0.298
6	1.75	-0.503	0.902	1.85	-0.287	0.298
8	1.90	-0.518	0.868	1.64	-0.260	0.270

Tabla 3.3: Carga transferida a los orbitales p y s de las moléculas CO y O_2 .

En las figura 3.23 se muestra el exceso de carga del orbital p en la molécula en función de la composición del cúmulo. Al comparar estas gráficas con 3.13 se obtiene que para los complejos AuCu $^-$ O₂, AuCu $^+$ O₂ y AuCu $^-$ CO (excepto para el sistema Au $_2$ Cu $_6^-$ CO), existe el mismo comportamiento en δq_p y $\Delta q_{\rm CO}$ como función del contenido de oro, lo que indica que existe una relación $\delta q_p \sim \Delta q_{\rm CO}$ en estos complejos.

De acuerdo a la figura 3.2, en los cúmulos libres $\operatorname{Au}_n\operatorname{Cu}_{8-n}^q$ (q=+1,0,-1), el numero de electrones ocupando el orbital s (mas proclives a donar carga) es siempre mayor al en el orbital d (mas proclives a aceptar carga) en el cúmulo. Esto sugiere que los electrones ocupando los orbitales $s(\operatorname{AuCu})$ en el cúmulo son los responsables de poblar a los estados $\pi(\pi^*)$ de la molécula, mientras que los electrones ocupando el orbital $\sigma(\sigma^*)$ son los responsables de poblar el orbital $s(\operatorname{AuCu})$ del cúmulo. La dirección en la transferencia de carga se puede expresar como: $s(\operatorname{CO}) \to d(\operatorname{AuCu})$ y $s(\operatorname{AuCu}) \to p(\operatorname{CO})$. Por ultimo, en los complejos AuCuO_2 , conforme el contenido de oro aumenta, el exceso de carga en $p(\operatorname{CO})$ siguiendo el mismo argumento la dirección de la transferencia de carga se puede expresar como: $s(\operatorname{O}_2) \to d(\operatorname{AuCu})$ y $s(\operatorname{AuCu}) \to p(\operatorname{CO})$.

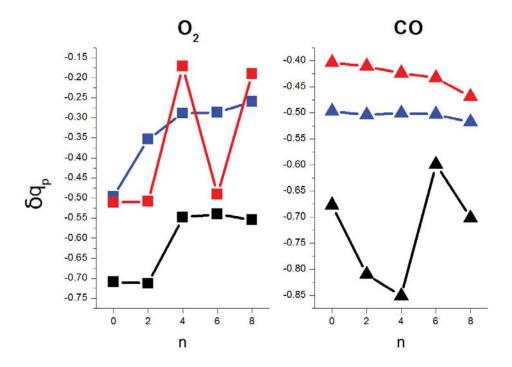


Figura 3.23: Carga electrónica transferida a los orbitales π^* - σ^* (δq_p) de las moléculas CO y O₂. Los cúmulos originalmente son catiónicos (líneas rojas), neutros (líneas azules) y aniónicos (líneas negras).

Los cocientes $\operatorname{pdos}_l^X(\operatorname{HOMO})/\operatorname{DOS}(\operatorname{HOMO})$, donde l=s, p, d y X=CO, O₂ mostrados en la figura 3.24 exhiben dos tipos de comportamientos en la adsorción de CO y O₂ en cúmulos neutros y cargados. En los complejos $\operatorname{AuCu}^q\operatorname{CO}$, se puede observar que en los sistemas con carga q=+1,0 el orbital $s(\operatorname{CO})$ y $p(\operatorname{CO})$ no contribuyen apreciablemente en el HOMO, sin embargo los sistemas con carga q=-1 el orbital $p(\operatorname{CO})$ contribuyen notablemente en el HOMO y se alcanza el máximo en el cociente $\operatorname{pdos}_p^{\operatorname{CO}}(\operatorname{HOMO})/\operatorname{DOS}(\operatorname{HOMO})$ en $\operatorname{Au_4\operatorname{Cu}_4^-CO}$ superando inclusive a los cocientes $\operatorname{pdos}_s^{\operatorname{AuCu}}(\operatorname{HOMO})/\operatorname{DOS}(\operatorname{HOMO})$ y $\operatorname{pdos}_d^{\operatorname{AuCu}}(\operatorname{HOMO})/\operatorname{DOS}(\operatorname{HOMO})$.

En los complejos $\operatorname{AuCu}^q O_2$ el orbital $p(O_2)$ participa en el HOMO tanto en sistemas neutros como cargados, sin embargo, en los sistemas cargados es donde mas contribuye este orbital (excepto $\operatorname{Au}_4\operatorname{Cu}_4^+O_2$). En $\operatorname{Au}_n\operatorname{Cu}_{8-n}^+O_2$ los máximos del cociente $\operatorname{pdos}_p^{O_2}(\operatorname{HOMO})/\operatorname{DOS}(\operatorname{HOMO})$ se alcanzan en $\operatorname{Cu}_8^+O_2$, $\operatorname{Au}_2\operatorname{Cu}_6^+O_2$, y $\operatorname{Au}_6\operatorname{Cu}_2^+O_2$; en los complejos $\operatorname{Au}_n\operatorname{Cu}_{8-n}^-O_2$) los mismos son $\operatorname{Au}_4\operatorname{Cu}_4^-O_2$, $\operatorname{Au}_6\operatorname{Cu}_2^-O_2$, y $\operatorname{Cu}_8^-O_2$. Comparando estos resultados con la figura 3.12 se concluye para los complejos AuCu^+O_2 (AuCu^-O_2), que las composiciones donde la energía de adsorción y el exceso de cargo son máximos (mínimos), el orbital $p(O_2)$ contribuye más en el HOMO. Este resultado coincide con el que en los complejos AuCu^+O_2 (AuCu^-O_2) la molécula O_2 prefiere adsorberse en sitios átomos de cobre (oro), además de que la dirección de la transferencia de carga es de la molécula al cúmulo (del cúmulo a la molécula).

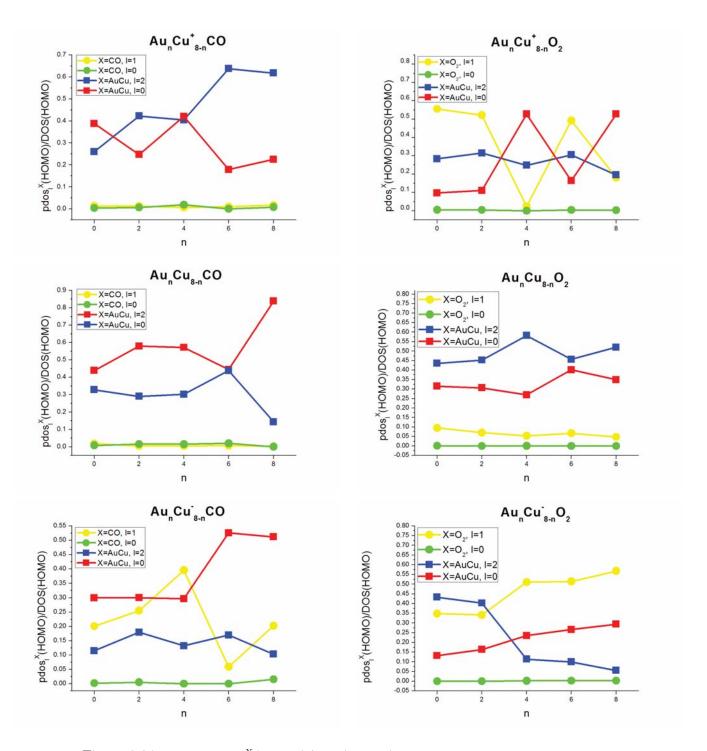


Figura 3.24: Cociente $pdos_l^X(HOMO)/DOS(HOMO)$, donde l=s, p, d y $X=CO,O_2$.

CONCLUSIONES

En esta tesis se realizó un estudio teórico basado en cálculos de DFT-GGA de la interacción entre moléculas simples, como el CO y el O_2 , y nanocúmulos bimetálicos del tipo $Au_NCu_{N-n}^q$, con N=8, n=0,2,4,6,8 y carga neta q=1,0,-1 (en unidades de la carga de un electrón). Asimismo, comparamos las predicciones de la teoría de orbitales moleculares de frontera y del descriptor dual con cálculos explícitos de la adsorción de CO y O₂ en dichos cúmulos. Se encontró que, salvo en complejos catiónicos AuCu⁺CO, la transferencia de carga es del cúmulo a las moléculas de O₂ y CO. En los complejos neutros, la transferencia de electrones disminuye a medida que aumenta el contenido de oro, lo que produce que la elongación entre átomos de oxígeno y la energía de adsorción disminuyan en igual medida. Para los cúmulos aniónicos, cantidades como la energía de adsorción, exceso de carga, y distancia de enlace en función del contenido de oro se ven afectadas por la transición entre estructuras bidimensionales y tridimensionales de los cúmulos adsorbentes, mientras que, para los cúmulos catiónicos, se encuentra un comportamiento alternante para las propiedades mencionadas, además los máximos de estas cantidades se presentan en las composiciones 1:3 y 3:1. En general, los nanocúmulos de oro y cobre presentan una mayor afinidad hacia O_2 que hacia el CO. Se encuentra que un factor importante en la adsorción de CO y O₂ es la electronegatividad de los elementos involucrados. Las moléculas se adsorben con mayor energía en los átomos menos electronegativos del cúmulo, es decir, en los átomos de cobre. Por último, comparando los resultados de la teoría de orbitales moleculares de frontera (OMF) y el descriptor dual con los cálculos explícitos de adsorción, se concluye que OFM predice correctamente las regiones donde es más probable que la molécula se adsorba, mientras que el descriptor dual predice correctamente las zonas electrofílicas y nucleofílicas en los cúmulos puros y bimetálicos.

BIBLIOGRAFÍA

- [1] Klaus D.Sattler (Ed.). (2010). "Handbook of Nanophysics: Clusters and Fullerens", Vol. 2. Bimetallic nanoclusters (capitulo 4). CRS Press, London.
- [2] G. Schmid et al., Phil. Trans. R. Soc. A 368, 1207 (2010).
- [3] Purusottan Jena, A.Welford Castleman Jr (Ed.). (2010). Nanoclusters: a bridge across disciplines. En Introduction to Atomic Clusters (págs. 1-30). ELSEVIER, Amsterdam, 2010.
- [4] Toshima, Naoki et al., New J. Chem. 22, 1179 (1998).
- [5] Phuong Mai Dinh, Paul-Gerhard Reinhard, Eric Suraud. (2014). An Introduction to Cluster Science. WILEY-VCH, Weinheim, Germany.
- [6] Brack, Matthias, A. Phys. Soc. 65, 677 (1993).
- [7] E. N. Economou. (2010). "The Physics of solids Essentials and Beyond". Springer, Berlin.
- [8] R. Ferrando, et al., Chem. Rev. 108, 845 (2008).
- [9] Z. Fan et al., Mat. Sci. and Techn. 17, 837 (2001).
- [10] Nakatsuji, H., Nakai, H. Chem. Phys. Lett. 174, 283 (1990).
- [11] Nakatsuji, H. et al., Surf. Sci. **387**, 328 (1997).
- [12] Sandell, A. et al., Surf. Sci. **310**, 16 (1994).
- [13] Minh Tho Nguyen and Boggavarapu Kiran Editors, "Clusters: Structure, Bonding and Reactivity", Challenges and Advances in Computational Chemistry and Physics, Volume 23, Springer Gewerbestrasse, Switzerland.
- [14] Bokwon Yoon et al., J. Phys. Chem. A **107**, 4066 (2003).
- [15] Wei Huang et al., J. Am. Chem. Soc. **132**, 4344 (2010).

- [16] Cox D.M. et al., Phys. D. **19**, 353 (1991).
- [17] Shinichi Hirabayashi et al., J. Phys. Chem. A 116, 8799 (2012).
- [18] Xiuxiang Yuan et al., J. Phys. Chem. A 115, 8705 (2011).
- [19] Shinichi Hirabayashi et al., Eur. Phys. J. D **67**, (2013) 35.
- [20] Zexing Cao et al., J. Phys. Chem. B, **106**, 9649 (2002).
- [21] Charlotte L. Bracey et al., Chem. Soc. Rev. 38, 2231 (2009).
- [22] Britt Hvolbæk et al., Nan. Tod. 2, 14 (2007).
- [23] S.Zhao et al., Comp. Theor. Chem. **993**, 90 (2012).
- [24] Andrew A. Peterson et al., J. Phys. Chem. Lett. 3, 251 (2012).
- [25] Andrew A. Peterson at al., Energy Environ. Sci. 3, 1311 (2010).
- [26] Dohyung Kim et al., Nat. Commun. 5, 1 (2014).
- [27] Nanlin Zhang et al., Small 10, 2662 (2014).
- [28] Meng Zhang et al., Eur. Phys. J. D **67**, 11 (2013).
- [29] A. H. Pakiari at al., J. Phys. Chem. A 48, 9212 (2010).
- [30] Ya-Ru Zhao et al., J. Phys. Chem. A 115, 569 (2011).
- [31] C. Kittel (2005). "Introduction to Solid State Physics", eight edition. John Wiley & Sons, Inc, EEUA, .
- [32] Neil W.Ashcroft, N.David Mermin. (1976). "Solid State Physics". Harcourt College Publishers, EEUA.
- [33] Cleri, Fabrizio y Rosato, Vittorio, Phys. Rev. B 48, 22 (1993).
- [34] Gupta, Raju P., Phys. Rev. B 23, 6265 (1981).
- [35] I.L. Garzon et al., Eur. Phys. J. D 9, 211 (1999).
- [36] K. Michaelian, Chem. Phys. **293**, 202 (1998).
- [37] K. Michaelian, Phys. Rev. **60**, 2000 (1999).
- [38] K. Michaelian, et al. PHYS. REV. B 60, 3 (1999).
- [39] K. Michaelian Am. J. Phys. 66, 232 1998
- [40] Richard M.Martin. (2004). "Electronic Structure: Basic Theory and Practical". Cambridge University Press, Cambridge, U.K.
- [41] Kieron Burke and friends, "The ABC of DFT", Department of Chemistry, University of California, April 10, 2007

- [42] Wolfram Koch, Max C. Holthausen. (2001)."A Chemist's Guide to Density Functional Theory", Wiley-VCH, Weinheim, Germany.
- [43] J.P. Perdew et al., Phys. Rev. Lett. 77, (1996) 3865.
- [44] N. Troullier et al., Phys. Rev. B 43, 1993 (1991).
- [45] Leonard Kleinman et al., Phys. Rev. Lett. 48, 1425 (1982).
- [46] Iczkowski, R. P. et al., J. Am. Chem. Soc. 83 3547 (1961).
- [47] Parr, R.G. et al., Am. Chem. Soc. 106, 4049 (1984).
- [48] Christophe Morell at. al, Chem. Phys. Lett **425**, 342 (2006)
- [49] Christophe Morell et al., J. Phys. Chem. A **109**, 205 (2005).
- [50] Y. Kadioglu et al., Int. J. M. Phys. C **25**, 1450011 (2014).
- [51] J. Laxmikanth Rao and G. Krishna Chaitanya and S. Basavaraja and K.
- [52] Christopher J. Heard et al., Eur. Phys. J. D 67, 34 (2013).
- [53] Tran, Dung T. et al., Phys. Chem. Chem. Phys. 11, 10340 (2009).
- [54] Amit Arora. (2005). "Text Book Of Inorganic Chemistry". Discovery Publishing House.
- [55] L. Hong et al., J. Comput. Theory Chem. 993, 36 (2012).
- [56] X. Huang et al., J. Cluster Sci., 26, 389 (2015).
- [57] G.X. Ge et al., Eur. Phys. J. D, 2013, 67, 361.
- [58] J. R. Soto at al., RSC Adv. 4, 8157 (2014).
- [59] Ian Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, 1976.
- [60] G. Gao et al., Chemical Physics Letters **625**, 128 (2015).
- [61] Yu Zhao et al., Phys. Chem. Chem. Phys., 11, 2329 (2009).
- [62] L. Padilla-Campos at al., J. Mol. Struct. THEOCHEM 15, 851 (2008).
- [63] Y. Zhao, Zhenyu Li, J. Yang, Phys. Chem. Chem. Phys. 11, 2329 (2009).
- [64] Shuang Zhao et al., Comp. Theo. Chem. 993, 90 (2012).
- [65] X. Wu et al., J. Chem. Phys. 117, 4010 (2002).
- [66] D.P. Woodruff (ed.). (2007), "The Chemical physics of solid surfaces. Atomic Clusters: From Gas Phase to Deposited Vol. 12". Elseiver, Warwick, U.K.
- [67] Xiuxiang Yuan et al., J. Phys. Chem. A 115, 8705 (2011).
- [68] Razieh Habibpour et al., Int. J. Nano Dimens. 7, 208 (2016).

- [69] Didier Astruc (Ed.). (2008). "Nanoparticles and Catalysis Vol.1", WILEY-VCH, Weinheim.
- [70] Daniel Glossman-Mitnik, Chem. Cent. J. 7, 155 (2013).
- [71] Juan Frau et al., Mol. **21**, 1650 (2016).
- [72] Xiyuan Sun et al., Eur. Phys. J. D 68, 211 (2014).