

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

LICENCIATURA EN CIENCIAS AMBIENTALES

Escuela Nacional de Estudios Superiores, Unidad Morelia

Uso de imágenes provenientes de vehículos aéreos no tripulados para cuantificar el impacto de tala ilegal

QUE PARA OBTENER EL TÍTULO DE

LICENCIADO EN CIENCIAS AMBIENTALES

PRESENTA

JAIRO GABRIEL LÓPEZ SÁNCHEZ

DIRECTORA DE TESIS: Dra. María Isabel Ramírez Ramírez

Co-director: Dr. Luis Miguel Morales Manilla

MORELIA, MICHOACÁN

DICIEMBRE, 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL DE ESTUDIOS SUPERIORES, UNIDAD MORELIA SECRETARÍA GENERAL SERVICIOS ESCOLARES

LIC. IVONNE RAMÍREZ WENCE DIRECTORA DIRECCIÓN GENERAL DE ADMINISTRACIÓN ESCOLAR P R E S E N T E

Por medio de la presente me permito informar a usted que en la sesión ordinaria 13 del Comité Académico de la Licenclatura en Ciencias Ambientales de la Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia celebrada el día 12 de noviembre del 2018, acordó poner o su consideración el siguiente jurado para la presentación del Trabajo Profesional del clumno Jairo Gabriel López Sánchez de la Licenciatura en Ciencias Ambientales, con número de cuenta 415027432, con el trabajo profesional titulado: "Uso de imágenes provenientes de vehículos aéreos no tripu edos para cuantificar el impacto de tala liegal", bajo la dirección como tutora de la Dra. María Isabel Ramírez Ramírez y como co-tutor ol Dr. Luis Miguel Morales Manilla.

El jurado queda integrado de la siguiente manera:

Presidente:	Dr. Diego Rafael Pérez Salicrup
Vocal:	M. en C. José Antonio Navarrele Pacheco
Secretario:	Dra. María Isabel Romírez Ramírez
Suplente 1:	Dr. Iván Franch Pardo
Suplente 2:	Dra. Jovanka Spiric

Sin otro particular, quedo de ustec.

A te n ta m e n te "**POR MI RAZA HABLARA EL ESPIRITU**" Morelia, Michaacán a, 14 de enero del 2019.

DR. VICTOR HUGO ANAYA MUNOZ SECRETARIO GENERAL

CAMPUS MORELIA Antigua Corretera a Pátzcuaro Nº 8701, Col. Ex Haciendo de Son José de la Huerta 58170, Marelia, Michadam, México, Tel: (443)689,3600 y (56)66 23,73.00. Extensión Red HNAM: 80614 www.enesmorelfa.unam.mx

AGRADECIMIENTOS INSTITUCIONALES

A la Licenciatura en Ciencias Ambientales, al Centro de Investigaciones en Geografía Ambiental y al Instituto de Investigaciones en Ecosistemas y Sustentabilidad por la formación durante mi licenciatura. Sobre todo, a los profesores, investigadores y estudiantes que estuvieron presentes durante mis estudios.

Al Laboratorio de Drones Universitarios (LUD) a cargo del Dr. Luis Miguel Morales Manilla por brindar las imágenes necesarias para el presente trabajo.

A mis sinodales; **Dr. Diego Pérez, M.C. Antonio Navarrete, Dr. Iván Franch y a la Dra. Jovanka Spiric** por revisar y comentar el presente trabajo.

A la Escuela Nacional de Estudios Superiores, Unidad Morelia, y al personal administrativo que en ella laboran, por su apoyo en los tramites, especialmente al Lic. Alejandro Rebollar y al Lic. Agustín Martínez.

Al proyecto **PAPIIT – UNAM IN302818** "La gobernanza forestal multinivel: evaluación participativa de acciones tempranas de REDD+ en México".

AGRADECIMIENTOS PERSONALES

A mis Padres (Elvira y Gabriel) por su infinita ayuda.

A mis familiares, los cuales han estado siempre a mi lado.

A la Dra. Isabel Ramírez, no solo por su aporte como tutora de este trabajo, sino también, por la inclusión a otros proyectos que han ayudado en mi formación profesional. Además, por la guía intelectual durante todo este proceso de aprendizaje y nuevos saberes.

A los "Isabelievers", y en especial a los que sufrieron la caminata al Tepozán; Ake, Ana, gracias por apoyarme en el trabajo de campo.

A la Dra. Mariana Vallejo, por sus conocimientos compartidos, así como el apoyo en el trabajo de campo.

A Nico, Paz y Bryam, por el conocimiento compartido referente a los drones.

Al Dr. Jean Francois y al equipo "Fomix" principalmente a Richard, Piña, Rafa, Uli por todo lo aprendido y el trabajo compartido. Así como al "Sector 7".

A mis compañeros de carrera, en especial a Carlos, Michelle, Karina y Pedro ya que de cada uno de ellos aprendí muchas cosas, así como las experiencias compartidas durante las clases y salidas a campo con mis demás compañeros.

Al amor de mi vida

por su apoyo, amor incondicional,

y por cada impulso que me da cuando se me complica el andar.

Resumen

En las últimas dos décadas la tasa de deforestación en el estado de Michoacán ha disminuido considerablemente. Sin embargo, aún se sigue perdiendo y degradando la cubierta forestal año con año. Esta pérdida forestal se da por múltiples factores, uno de los más importantes, por los daños ambientales que provoca y los conflictos sociales y económicos a los que se asocia, es la tala ilegal. En el presente trabajo se evaluó el potencial que tiene el uso de imágenes provenientes de Vehículos Aéreos no Tripulados (VANT), también conocidos como drones, para cuantificar el daño ocasionado por tala ilegal en el sitio llamado "El Tepozán", ubicado en Sierra Chincua, al noroeste de la zona núcleo de la Reserva de la Biosfera Mariposa Monarca, siendo un área crítica para el establecimiento de una de las principales colonias de hibernación. La metodología consistió en la obtención de imágenes 2016 y 2017 sobre 10 hectáreas previamente reportadas como afectadas por un evento de tala ilegal que sucedió en 2015. Mediante el uso de estas imágenes, técnicas fotogramétricas y Sistemas de Información Geográfica, se cuantificó a un alto nivel de detalle el arbolado removido por grados de perturbación en el sitio afectado. Una vez cuantificado el arbolado removido, se evaluó la exactitud de los datos mediante un inventario de campo, además de realizarse una comparación multifecha entre ortomosaicos del año 2016 y 2017 para conocer errores de desfase y sobrelape. Así como, una identificación de limitantes técnicas y de costo para el procesamiento de estas imágenes mediante dos programas fotogramétricos. Los resultados muestran que la cuantificación de arbolado removido solo con imágenes de drones subestima el daño ocasionado. Además, los ortomosaicos generados 2016 y 2017 presentan errores de sobrelape que van desde 8.6 m a 14.1 m y errores de desfase entre 2.1 m y 11.5 m entre las imágenes y la realidad. Sin embargo, el uso de imágenes provenientes de VANT son una herramienta que puede ser empleada para una primera estimación de respuesta rápida de daños ocasionados por tala ilegal. Así como para tener un registro cartográfico que permita el monitoreo años posteriores.

Abstract

During the last two decades, the deforestation rates in Michoacán state have decreased substantially. Nevertheless, in some forest regions, cover forest is still being lost and degraded year after year. This forest loss is due by multiple factors, one of the most important, is the illegal logging, because for the environmental disturbance, and the social and economic conflicts to which it is associated. This work evaluates, the feasibility and contributions of images obtained by Unmanned Aerial Vehicles (UAV), also known as drones, to evaluated and quantify the damage caused by illegal logging. We analyzed an illegal logged area at core zone of the Monarch Butterfly Biosphere Reserve, the critical area called "El Tepozán", located in Sierra Chincua sanctuary. This area has been historically a critical area for the establishment of one of the main monarch butterflies hibernation colonies. The methods applied consisted in obtaining images from March 2016 and March 2017, over 10 hectares affected by an intensive illegal logging operation along the second half of 2015. Through the use of these images, photogrammetric techniques and Geographical Information Systems, a highly detailed quantification of removed trees was carried out. Data accuracy was evaluated through field inventories. In addition, a multi-date of orthomosaics from years 2016 and 2017 was performed to know lag and overlap errors. Also, technical and cost restrictions of two photogrammetric softwares packages were compared. The results show that the quantification of tree removal using only drone images underestimates the damage caused by illegal logging. Also, the orthomosaics generated for 2016 and 2017 have overlapping errors from 8.6 m to 14.1 m; as well as lag errors from 2.1 m to 11.5 m, between orthomosaics and ground truth. However, UAVs images are a tool that can be used for a first estimation for rapid response to evaluated the of damages caused by illegal logging; ss well, as to have detailed spatial records that allows monitoring the affected area.

TABLA DE CONTENIDO

1. INTRODUCCIÓN	1
2. OBJETIVOS	4
	4
2.2 OBJETIVOS ESPECIFICOS	4
<u>3. MÉTODOS</u>	5
	Б
	5
3.2 Material es y métodos	8
3.2.1 PROCESAMIENTO DE IMÁGENES VANT	8
	12
3.2.3 EVALUACIÓN DE LA EXACTITUD	13
3.2.4 EVALUACIÓN DE LA COMPARABILIDAD MULTIFECHA	16
4. RESULTADOS	16
4.1 ORTOMOSAICOS GENERADOS CON WEBODM Y AGISOFT	16
4.2 SUPERFICIE AFECTADA Y EL ARBOLADO REMOVIDO.	22
4.3 DIFICULTADES EN LA IDENTIFICACIÓN VISUAL DE TOCONES	24
4.3.1 CONFUSIÓN DE FORMA	24
4.3.2 ÁREAS DE DIFICIL INTERPRETACIÓN	24
4.4 ÁREAS DE FÁCIL INTERPRETACIÓN	25
4.5 EXACTITUD DE LOS DATOS OBTENIDOS A PARTIR DE IMÁGENES DE VANT	26
4.6 COMPARABILIDAD DE IMÁGENES DE VANT PARA EL MONITOREO DE CORTO	PLAZO. 28
5. DISCUSIÓN	31

6. CONCLUSIONES

<u>8.</u>	ANEXOS	41

ANEXO 1 INSTRUCTIVO DE INSTALACIÓN DE WEB ODM MEDIANTE DOOCKERTOOLBOX	41
ANEXO 2 FORMATO PARA INVENTARIO DE CAMPO	66
ANEXO 3 FOTOGRAFÍAS DEL INVENTARIO DE CAMPO	67

ÍNDICE DE ILUSTRACIONES

FIGURAS

Figura 1. Ubicación geográfica de la Reserva de la Biosfera Mariposa Monarca (RBMM).

(Elaboración propia)	5
Figura 2. Ubicación geográfica del sitio de estudio.	7
Figura 3. VANT DJI Mavic Pro	8
Figura 4. Diagrama del procesamiento metodológico utilizado.	9
Figura 5. VANT DJI Phantom 4 Pro	10
Figura 6. Equipos computacionales utilizados en el procesamiento fotogramétrico.	11
Figura 7. Procesamiento de imágenes de VANT.	11
Figura 8. Mapa de condición forestal de El Tepozán, RBMM, marzo 2016.	12
Figura 9. Interpretación visual de tocones.	13
Figura 10. Medición de diámetros de tocones de forma irregular	15
Figura 11. Ortomosaico Tepozán 2016.	17
Figura 12. Ortomosaico Tepozán 2017. VANT DJI, Phantom Pro 4	18

Figura 13. Comparación de calidad visual WebODM vs Agisoft: distorsión en copas de

árboles	_20
Figura 14. Comparación de calidad visual WebODM vs Agisoft: nitidez del ortomosaico	_20
Figura 15. Comparación de calidad visual WebODM vs Agisoft: Sombras.	_21
Figura 16. Identificación de tocones mediante interpretación visual.	_23
Figura 17. Tocones en duda por confusión de forma.	_24
Figura 18. Imágenes de áreas de difícil interpretación por los árboles remanentes, arbust	os y
material muerto presente.	_25
Figura 19. Imágenes de áreas de fácil interpretación con suelo expuesto.	_25
Figura 20. Mapa de los sitios de muestreo.	_27
Figura 21. Error de desfase - ortomosaico 2016.	_28
Figura 22. Zoom - error de desfase (Izquierda imagen 2016, derecha 2017).	_29
Figura 23. Error de desfase - Ortomosaico 2016	_30

TABLAS

Cuadro 1. Intensidad de muestreo por condición del arbolado	_14
Cuadro 2. Comparación de tiempos requeridos por programa para el procesamiento de	
imágenes provenientes de drones	_19
Cuadro 3. Principales requerimientos técnicos y operacionales para el procesamiento	
fotogramétrico de imágenes de VANT con WebODM y Agisoft.	_22
Cuadro 4. Cuantificación de tocones mediante interpretación visual.	_23
Cuadro 5. Tocones obtenidos mediante inventario de campo	_26
Cuadro 6. Estimación de tocones del área total mediante inventario de campo.	_26
Cuadro 7. Errores de desfase entre ortomosaicos y puntos GPS.	_ 29

1. INTRODUCCIÓN

Durante las últimas tres décadas, las tasas de pérdida de superficie forestal a nivel global se han reducido; no obstante, en un periodo de 25 años se perdieron 129 millones de hectáreas (FAO, 2015). Esta disminución de bosques que aún se presenta se da por múltiples causas directas, que tienen lugar por actividades locales como minería, extracción forestal y agricultura; pero que responden a factores económicos y sociales, que pueden originarse lejos de los sitios en donde se da el cambio de cobertura (Contreras-Hermosilla, 2000). Muchos de esos factores subyacentes han conducido a la ilegalidad en todas las etapas de los procesos de extracción y comercialización de la madera (Merino y Martínez, 2014).

Se estima que en algunos países cerca del 90 % de la perdida forestal se ha dado a causa de tala ilegal, es decir; extracción de madera sin los permisos oficiales requeridos o en violación a estos (Banco Mundial, 2012). Esto llega a generar ganancias ilícitas de entre 10 y 15 billones de dólares anualmente en todo el mundo (Banco Mundial, 2006; 2012). Por ejemplo, la Procuraduría Federal de Protección al Ambiente (PROFEPA, 2018) estima que en México 30% de la madera producida se da por la tala ilegal.

En México, entre los años 2000 – 2005 se perdieron anualmente un promedio de 235 mil hectáreas de bosques y selvas, para 2005 – 2010 esta cifra se redujo a 155 mil hectáreas por año. Esas pérdidas equivalen a tasas de deforestación de 0.5% y 0.2%, respectivamente (FAO, 2010), que permiten proyectar una tasa de deforestación de 0.15% para el 2020 (FAO, 2015). En el caso del estado Michoacán, las tasas de deforestación también se han reducido en las últimas décadas: entre 1976 - 2000 las tasas de deforestación para bosques templados y tropicales eran de 0.25% y 0.76%, respectivamente (Mas *et al.*, 2004), y se redujeron a 0.16% y 0.18% para 2004-2007 y a 0.09% y 0.06% durante 2007-2014 (Mas *et al.*, 2017).

La deforestación de las últimas décadas en Michoacán se manifiesta principalmente en un número alto de fragmentos de pequeña superficie, con una media cercana a tres hectáreas (Mas *et al.*, 2017). Muchos de estos pequeños fragmentos se generan por la deforestación asociada a la tala ilegal para diferentes propósitos, como cambio de uso del suelo para abrir espacios a cultivos de alto valor comercial, expansión urbana, o para la venta y tala clandestina de madera (CONAFOR, 2014; España-Boquera y Champo-Jiménez, 2016). Esta tala ilegal sucede incluso en áreas con un alto valor socio-ambiental, por lo que es necesario un monitoreo constante de las áreas que han sufrido algún daño, tanto para cuantificarlo como para promover actividades de restauración efectivas.

Tal es el caso de la Reserva de la Biosfera Mariposa Monarca (RBMM), la cual forma parte del sistema de Áreas Naturales Protegidas de México "*como una estrategia de política ambiental para frenar los procesos de deterioro ambiental, conservar la biodiversidad y fomentar el uso sustentable de los recursos naturales*" (Programa de Manejo RBMM, 2001). Esta reserva está ubicada entre los estados de Michoacán y Estado de México, y es considerada como un área de relevancia ecológica, científica, histórica, cultural, educativa y recreacional (CONANP, 2001). Esta reserva, tan solo en su porción en el estado de Michoacán, sufrió una deforestación de 5, 239 hectáreas de bosques en el periodo de 1993-2006, de las cuales el 61 % fueron tala ilegal (Navarrete *et al.*, 2011).

A pesar de que se ha documentado una reducción de este problema en los últimos años, Vidal *et al.*, (2014) reportaron para el periodo de 2001-2012 una perturbación en el Área Núcleo de la Reserva de 2,179 hectáreas, de las cuales el 94% fueron a causa de tala ilegal, y solo 6 % por eventos naturales (*i.e.*, caída de árboles por viento y sequía).Para 2013–2017 se reportó una perturbación en el área núcleo de 126 hectáreas de las cuales el 32 % fue a causa de la tala ilegal (WWF y Fondo Monarca, 2013; 2014; 2015; 2016; 2017).

Actualmente, mediante Sistemas de Información Geográfica (SIG) y Sistemas de Teledetección (ST) se emplean diferentes imágenes de satélite como insumos de

Página |2

percepción remota para identificar y cuantificar la perdida forestal. Por otro lado, el reciente auge de los Vehículos Aéreos No Tripulados (VANT) (*i.e.,* aeronave a propulsión, no tripulada y reutilizable que opera mediante control a distancia y autónomamente; Addati, *et al.,* 2014) conocidos también como drones, ha hecho que el abanico de usos de esta tecnología aumente, tanto a diferentes escalas como para muy diversos propósitos de teledetección ambiental (Pla *et al.,* 2017).

En los últimos años, las imágenes provenientes de VANT se han utilizado para el estudio de bosques templados, donde a diferencia de las imágenes satelitales han permitido mediciones y monitoreo de muy alto detalle (Torresan *et al.*, 2017) como: 1.-Estimación de parámetros dendrométricos, 2.- Identificación de árboles por especie, 3.-Cuantificación espacial de brechas en bosques, 4.- Monitoreo de recuperación postincendio y medición de afectación por incendios forestales, 5.- Monitoreo de sanidad y mapeo de enfermedades forestales 6.- Estimación de desplazamientos de suelo postaprovechamiento forestal. De esta manera, el uso de VANT se orienta a áreas que requieran de una resolución espacial y temporal muy alta. Además, el uso de VANT en los inventarios forestales se presenta como una buena opción respecto al componente multitemporal detallado de los datos (Stefano *et al.*, 2015)

De esta manera, las imágenes de VANT presentan gran potencial para cuantificar el daño forestal ocasionado por la tala ilegal, ya que permiten obtener un nivel de detalle mayor que las imágenes de satélite, pudiendo identificarse madera muerta en pie y mortalidad de arbolado (Dunford *et al.,* 2009). Además, existe una ventaja significativa frente a los inventarios de campo, ya que, al ser zonas en conflicto por misma tala ilegal, se pueden volver peligrosas para llevar actividades que demanden mediciones en campo de forma directa (Shi y Xu, 2011; Xiang y Tian, 2011). Sin embargo, las imágenes de VANT en el sector forestal se encuentran poco estudiadas por lo que es necesario una evaluación de las mismas para conocer de manera detallada, las limitantes y ventajas frente a otros insumos.

Por todo lo anterior surgen las siguientes preguntas de investigación: ¿Hasta dónde permiten las imágenes provenientes de VANT evaluar el daño forestal ocasionado por

tala ilegal? ¿Qué ventajas tiene esta herramienta sobre los inventarios de campo para medir el daño causado por tala ilegal en áreas pequeñas (*e.g.,* áreas menores a treinta hectáreas)? ¿Es posible el monitoreo a corto plazo de áreas afectadas por tala ilegal utilizando imágenes de VANT? ¿Qué requerimientos técnicos y operacionales deben de tener los usuarios de imágenes de VANT?

2. OBJETIVOS

2.1 Objetivo General

• Evaluar el potencial del uso de imágenes de muy alta resolución provenientes de VANT para cuantificar el daño forestal ocasionado por tala ilegal.

2.2 Objetivos Específicos

- Identificar los principales requerimientos y limitantes técnicas, de tiempo y costo para procesar las imágenes de VANT en dos programas diferentes.
- Cuantificar la superficie afectada y el arbolado removido mediante el uso de imágenes de VANT.
- Evaluar la exactitud de los datos obtenidos a partir de imágenes de VANT.
- Evaluar la comparabilidad de imágenes de VANT para el monitoreo de corto plazo.

3. MÉTODOS

3.1 Área de estudio

El área de estudio del presente trabajo se ubica dentro de la Reserva de la Biosfera Mariposa Monarca (RBMM). Esta reserva se decretó el 10 de noviembre del año 2000, y comprende tres zonas núcleos, con una superficie de 13,551 hectáreas, que son aquellas áreas que contienen los recursos naturales considerados de mayor relevancia ambiental, así como las especies representativas de la biodiversidad de la región y que requieren su preservación y restauración, por lo que las actividades de aprovechamiento se encuentran restringidas (CONANP, 2001).

Figura 1. Ubicación geográfica de la Reserva de la Biosfera Mariposa Monarca (RBMM). (Elaboración propia)

También incluye dos zonas de amortiguamiento con un total de 42,708 hectáreas ubicadas alrededor de las zonas núcleos, cuya función principal es orientar las actividades de aprovechamiento hacia un desarrollo sustentable, creando condiciones de conservación a largo plazo (CONANP, 2001). La RBMM abarca parte de seis municipios en Michoacán y cuatro en el Estado de México (Figura 1).

La RBMM se divide en dos bloques, el principal que comprende las sierras Chincua, Campanario y Pelón-Cacique, y otro menor más al norte conocido como Cerro Altamirano. Este último se ubica entre las coordenadas 19° 59' 42" y 19° 57' 07" latitud norte y 100° 09' 54" y 100° 06' 39" longitud oeste. Y las coordenadas extremas del bloque Chincua-Cerro Pelón son 19° 44' 27" y 19° 18' 32" latitud norte y 100° 22' 26" y 100° 09' 07" longitud oeste, con una extensión territorial de 56,259 hectáreas (CONANP, 2001).

3.1.1 Sitio de estudio

En la Sierra Chincua, al norte del bloque principal, se encuentra nuestro sitio de estudio, llamado El Tepozán. Este se eligió debido a que en 2015 se presentó un evento de tala ilegal en el que se afectó una superficie aproximada de 10 hectáreas de zona núcleo, en un área crítica para las colonias de hibernación de la mariposa monarca (Brower *et al.*, 2016). La estimación de superficie afectada que presentaron Brower et al. (2016) se realizó mediante la comparación de dos imágenes de resolución espacial submétrica (*i.e.*, imágenes con un tamaño de pixel menor a un metro) del 30/Nov/2013 y 29/Nov/2015, y para identificar el periodo en el que se llevó a cabo esa tala ilegal, utilizaron imágenes de mediana resolución Landsat (*i.e.*, imágenes con un tamaño de Pixel menor a treinta metros), con fechas de 15/Abr/2015, 13/Ago/2015 y 22/Sep/2015, en las que se determinó que la mayor parte de la corta ilegal se llevó a cabo entre abril y agosto de 2015. Adicionalmente, utilizaron imágenes oblicuas (*i.e.*, imágenes de satélite con una resolución espacial submétrica) provenientes de VANT en las que se visualizan claros sin vegetación arbórea y material muerto derivado de la tala ilegal.

El Tepozán, es un sitio crítico para la hibernación de la mariposa Monarca, ya que ha sido un sitio de presencia histórica de colonias con registros desde 1977 (Brower et al., 2016). Es el sitio donde con mayor frecuencia se ha formado una de las colonias más grandes de este fenómeno de hibernación. De esta manera, la tala ilegal presente en la zona amenaza la integridad del ecosistema y de las colonias de mariposa Monarca (Brower et al., 2016). En cuanto a la vegetación, el sitio de estudio al encontrarse en la parte alta de Sierra Chincua (*i.e.*, 3,300 metros de altitud) está compuesto por bosques de Oyamel, Oyamel-pino y algunos encinos cerca de los arroyos. Además, el área se encuentra inmersa en uno de los cuatro santuarios más visitados, que en conjunto recibieron alrededor de 235 mil visitantes durante la temporada 2017-2018, dejando económica 150 una derrama aproximada de millones de pesos. (lavozdemichoacan.com.mx 2018).

La tala ilegal de las 10 hectáreas se llevó a cabo solo dentro de la Propiedad Estatal, la cual pertenece al estado de Michoacán, con una superficie de 70 hectáreas, colindando al norte con la Propiedad Federal (561 ha), al oeste con el ejido Jesús Nazareno, al este el ejido Cerro Prieto, y al sur con el ejido Hervidero y Plancha (Figura 2).

Figura 2. Ubicación geográfica del sitio de estudio. (Elaboración propia)

3.2 Materiales y métodos

El procedimiento se llevó a cabo en cuatro etapas: 1) compilación, procesamiento de imágenes de VANT y la identificación de limitantes técnicas y de procesamiento para el programa fotogramétrico Agisoft PhotoScan y WebODM, 2) interpretación visual de los ortomosaicos, 3) verificación de campo para la evaluación de la exactitud, y 4) evaluación de la comparabilidad multifecha (Figura 4).

3.2.1 Procesamiento de imágenes VANT

3.2.1.1 Insumos y programas

Se utilizaron un total de 339 imágenes, 99 del año 2016 y 240 de 2017 a una altura de vuelo de 300m y 200m respectivamente. Las imágenes de ambas fechas fueron proporcionadas por el Laboratorio Universitario de Drones (LUD), del Centro de Investigación en Geografía Ambiental y la Escuela Nacional de Estudios Superiores, Morelia.

Las imágenes del 2016 se tomaron el 15 de marzo a las 12 del día con un VANT modelo DJI Mavic Pro (Figura 3) con una cámara integrada de 12.3 megapíxeles.

Figura 3. VANT DJI Mavic Pro. www.dji.com/es/mavic

Figura 4. Diagrama del procesamiento metodológico utilizado.

Por su parte, las imágenes del 2017, se tomaron el 16 de marzo también a medio día con un VANT modelo DJI Phantom 4 Pro (Figura 5) con una cámara integrada de 20 megapíxeles.

Figura 5. VANT DJI Phantom 4 Pro. www.dji.com/es/phantom-4-pro

A partir de esas imágenes se obtuvieron ortomosaicos georreferenciados. Para este procesamiento se utilizaron los programas de fotogrametría OpenDroneMap (github.com/OpenDroneMap/WebODM) de código abierto, y Agisoft PhotoScan Professional (Licencia CIGA-UNAM), así como el Sistema de Información Geográfica (SIG) de código abierto Qgis 2.18. Estos se usaron en dos equipos computacionales de diferentes características técnicas (Figura 6), para llevar a cabo la comparación en tiempos y capacidades computacionales para realizar el procesamiento fotogramétrico.

El procesamiento fue el mismo en ambos equipos computacionales, para lo cual se implementó un registro de tiempos en cada uno de los procesos. Además, se elaboró un reporte que incluye: observaciones y problemas durante el procesamiento de las imágenes, ventajas y desventajas de los requerimientos de cada programa, abarcando; tipo de licencia, costo de licencia, sistema operativo, tipo de plataforma y demanda de recursos computacionales.

Figura 6. Equipos computacionales utilizados en el procesamiento fotogramétrico.

El procesamiento de imágenes (Figura 7) en el programa Agisoft se llevó a cabo realizando procesos similares a los descritos por Volkmann y Barnes (2014) así como por los manuales de uso y recomendaciones descritas por el mismo programa. Asimismo, la instalación del programa WebODM como el procesamiento de imágenes se realizó siguiendo los procedimientos descritos en el de instrucciones de manual ese programa (Github.com/OpenDroneMap/WebODM).

Figura 7. Procesamiento de imágenes de VANT.

3.2.2 Interpretación visual

3.2.2.1 Clasificación de la condición del arbolado del área afectada

Se utilizó la clasificación y delimitación de la condición forestal que anteriormente un grupo de científicos y actores locales habían definido en un ejercicio participativo para el diseño de diferentes actividades de monitoreo y restauración del área talada ilegalmente en El Tepozán (Saéz *et al.,* 2016) (Figura 8).

Figura 8. Mapa de condición forestal de El Tepozán, RBMM, marzo 2016.

3.2.2.2 Cuantificación de arbolado removido

Para obtener la cuantificación del arbolado removido se utilizó el Sistema de Información Geográfica (SIG) de código abierto Qgis 2.18, en el cual se identificaron de manera visual, a escala 1:300, todos aquellos objetos con forma circular y que claramente se asocian a la forma de un tocón. Esta interpretación visual se llevó a cabo apoyándose de una malla de 50 x 50 metros para realizar la cuantificación de manera sistemática (Figura 9) sobre el ortomosaico resultante del procesamiento de imágenes.

Figura 9. Interpretación visual de tocones.

3.2.3 Evaluación de la exactitud

3.2.3.1 Inventario de campo

Los inventarios de campo juegan un papel muy importante para la validación de datos obtenidos mediante percepción remota, ya que permiten conocer la exactitud temática de la información que se está presentando. De esta manera, el inventario de campo tuvo como objetivo la validación de la exactitud de los datos generados sobre la estimación del arbolado removido en El Tepozán 2016.

3.2.3.2 Diseño del Muestreo

Para la parcela de muestreo se eligió una figura geométrica de fácil trazado, en este caso un círculo de 1000 m² de superficie (radio 18 m), dentro del cual se registró cada tocón observado.

Para determinar el número de unidades de muestreo se empleó un muestreo estratificado al azar. En el que el tamaño de la muestra se definió a una intensidad de muestreo del 5% (Cuadro 1), entendiendo ésta, como la relación porcentual de la superficie de la muestra con respecto a la superficie total.

Representación:

f=(n/N) 100

Donde:

f= Intensidad de muestreo en porcentaje

n= Número de unidades de la muestra

N= Número de unidades de toda la población

Descripción	Zona	Superficie / ha	Superficie muestreo 5% / ha	Número de parcela
Claro total con suelo expuesto	I	6.4	0.32	3
Claro total con arbustos	П	4.1	0.20	2
Claros parciales y áreas de borde	Ш	6	0.30	2
Áreas de protección de arroyos	IV	3.2	0.10	2
				9

Cuadro 1. Intensidad de muestreo por condición del arbolado

3.2.3.3 Materiales y parámetros del inventario de campo.

El material utilizado en el inventario de campo, fue el siguiente:

- Formatos de campo
- Mapa de ubicación y diseño de muestreo
- GPS
- Cintas métricas de 30m. y flexómetros de 5m.

Para cada uno de los tocones encontrados dentro de cada parcela de 1000m² se midieron y registraron los siguientes parámetros:

- Coordenada de cada tocón
- Altura del tocón, desde el punto más alto de la pendiente del terreno.
- Diámetro del tocón (Si el tocón presentaba una forma irregular, se medía el diámetro de los dos ejes principales).

Figura 10. Medición de diámetros de tocones de forma irregular

3.2.4 Evaluación de la comparabilidad multifecha

La precisión geométrica de las imágenes es de suma importancia a la hora de comparar dos fechas diferentes, ya que es el principal componente del que dependerá que su comparación multifecha pueda ser llevada a cabo de manera cuantitativa.

Para este estudio, la comparabilidad multifecha se llevó a cabo para los ortomosaicos del año 2016 y año 2017. Esta evaluación permitió conocer la exactitud con la que dos ortomosaicos de diferentes fechas y provenientes de diferentes VANT se pueden usar para el monitoreo de cambio a corto plazo, sin contar con puntos de referencia en el terreno para corregir el geoposicionamiento de las imágenes.

El método utilizado para medir el error de geoposicionamiento horizontal fue de comparación; puntos GPS – Ortomosaico (Goudarzi y Landry, 2017). Se usaron 8 puntos fácilmente identificables tanto en el ortomosaico como en el terreno para conocer la diferencia de geoposicionamiento, asumiendo como verdad los puntos tomados en campo mediante GPS. Los puntos en campo fueron tomados con el mínimo error posible (3 m), además de tomar varias veces el mismo punto para evitar las variaciones en el GPS. Para el levantamiento de estos puntos, se utilizó un GPS Garmin modelo GPSMAP 64s.

4. RESULTADOS

4.1 Ortomosaicos generados con WebODM y Agisoft

El procesamiento fotogramétrico que requieren las imágenes de VANT es de suma importancia para poder darle un uso cartográfico, ya que de otra manera solo se tendría fotografías sin una referencia espacial. Estos procesos, tienen como característica la demanda de grandes cantidades de recursos computacionales, ya que su proceso genera gran cantidad de información.

Como primer resultado del análisis fotogramétrico de las 339 imágenes provenientes de VANT, se obtuvieron los ortomosaicos del área del Tepozán para

el año 2016 (Figura 11) y año 2017 (Figura 12) con una resolución espacial de 10cm por pixel.

Figura 11. Ortomosaico Tepozán 2016. VANT DJI, Mavic Pro.

Figura 12. Ortomosaico Tepozán 2017. VANT DJI, Phantom Pro 4.

Para el caso del ortomosaico 2016, se obtuvo una comparación de los tiempo que requieren los diferentes procesos fotogrametricos empleados en el programa Agisoft Photoescan y WebODM (Cuadro 2). En el cual se pueden obsevar las diferencias a grandes rasgos de los tiempos requeridos por cada programa en relacion a la memoria RAM instalada en cada equipo de computo.

		Programa utilizado			
		ODM/ WebODM Agisoft PhotoScan			
		RAM (GB)			
		8	16	8	16
		10cm	10cm	10cm	10cm
Imágenes procesadas	Proceso				
	Alineación de fotos	Nose	00:36:20	06:10:00	04:05:00
	Nube de puntos	pudo			
99	Malla de puntos	ejecutar			
	Construir textura				
	Ortomosaico				
	MDE				

Cuadro 2. Comparación de tiempos requeridos por programa para el procesamiento de imágenes provenientes de drones

Los procesamientos llevados a cabo con el programa fotogramétrico WebODM requirieron menor tiempo de procesamiento y demandaron menos memoria tanto RAM como de almacenamiento en comparación con Agisoft. No obstante, al ejecutarse en un equipo con solo 8 Gb de RAM, WebODM no pudo procesar más de 81 imágenes. Además, el ortomosaico presenta menor calidad y mayor distorsión en relación con Agisoft, la calidad del ortomosaico no es homogénea, es decir, en las zonas con mayor cobertura arbórea tiende a aumentar la distorsión (Figura 13).

Figura 13. Comparación de calidad visual WebODM vs Agisoft: distorsión en copas de árboles.

En cuanto a la nitidez del ortomosaico, Agisoft presento una calidad superior de manera global. Sin embargo, en algunas zonas WebODM presentó mejores resultados, tanto en la nitidez como en la distorción de la imagen (Figura 14).

Figura 14. Comparación de calidad visual WebODM vs Agisoft: nitidez del ortomosaico.

En lo que se refiere al error de sombra; el ortomosaico realizado por WebODM presento un incrmento mayor en cuanto a la sombra mostrada, simulando un angulo mayor en la toma de las imágenes, por otra parte Agisoft brindo sombras mas apegadas a la realidad (Figura 15).

Figura 15. Comparación de calidad visual WebODM vs Agisoft: Sombras.

En cuanto a las ventajas y desventajas, así como los requerimentos tecnicos y operacionales que demanda cada uno de los dos programas utilizados se presentaron de manera variada (Cuadro 3). Sin embargo, dos de las ventajas sobresalientes de cada uno de estos programas son: 1.- WebODM es un programa gratuito, por lo que su instalación y uso no requiere de una licencia. 2. – Agisoft brinda mejores resultados en cuanto al procesamiento de las imágenes. En ambos casos es necesario contar con conocimientos basicos en Sistemas de Información Geografica y estar familiarizado con los conceptos y procesos generales de fotogrametria empleados por estos programas.

Cuadro 3. Principales requerimientos técnicos y operacionales para el procesamiento fotogramétrico de imágenes de VANT con WebODM y Agisoft.

Requerimiento	ODM - W	/ebODM	Agisoft PhotoScan		
Requeilmento	PROS	CONS	PROS	CONS	
Licencia	• Gratuita.	 Instalación por comandos. 	 Costo de 179 USD para una PC. 	 Costo de 3,499 USD para múltiples computadoras. 	
Sistema operativo	 Ambiente Nativo Linux. Disponible también para Mac OS y Windows (¹). 		 Ambiente Nativo. Disponible también para Mac OS y Linux. 		
Dificultad en el uso	 Muy fácil (casi automático). 		 Fácil (mediante un flujo de trabajo) 		
Interfaz del programa	 La configuración del proceso se realiza solo una vez. 	 No permite configurar procesos por separado. Los procesos se muestran a manera de texto. 	 Permite configurar procesos por separado. Genera un reporte del procesamiento de las imágenes. 		
Demanda de almacenamiento		 Grandes cantidades de memoria de almacenamiento 		 Grandes cantidades de memoria de almacenamiento 	
Demanda de memoria RAM		 16 GB RAM recomendado por el programa Con 4 GB RAM procesamiento de menos de 100 imágenes 		 32 GB RAM recomendado por programa Con 4 GB RAM procesamiento entre 30 y 50 imágenes 	

¹ La instalación de WebODM para Windows, Mac Os y Linux es mediante comandos. Además, para Windows se necesita instalar algunos componentes extras (i.e., Docker, Python y Git)

4.2 Superficie afectada y el arbolado removido.

Del ortomosaico 2016 se identificaron 525 tocones mediante interpretación visual (Figura 16), de los cuales; 67% se encontraron en la zona clasificada como "Claro total con suelo expuesto", 18% en " Claro total con abundantes arbustos remanentes", 14% en "Áreas con protección de arroyos" y solo el 1% en "Claros parciales y áreas de borde" (Cuadro 4).

Zona	Descripción	Hectáreas	Tocones por
			interpretación
			visual
I	Claro total con suelo expuesto	6.4	353
II	Claro total con abundantes arbustos remanentes	4.1	93
Ш	Claros parciales y áreas de borde	6.1	7
IV	Áreas de protección de arroyos	3.2	72
	Total	20	525

Cuadro 4. Cuantificación de tocones mediante interpretación visual.

Figura 16. Identificación de tocones mediante interpretación visual.

4.3 Dificultades en la identificacion visual de tocones

4.3.1 Confusión de forma

Al llevarse a cabo la interpretación visual de tocones se identificaron areas que presentaban confusión de forma, como fueron; claros parciales y áreas de proteccion a arroyos (Figura 17), ya que se podian observar objetos con formas y colores similares a la de los tocones, algunos de estos ejemplos eran rocas, troncos tirados y ramas apiladas y que debido a la resolución de la imagen se complicaba asegurar si se trataba de un tocon o no. Aún asi, se lograron identificar tocones con diametros de 25 cm y 1 m aproximadamente.

Figura 17. Tocones en duda por confusión de forma.

4.3.2 Áreas de dificil interpretación

Estas áreas fueron principalmente aquellas que presentaban remanentes de cobertura arborea o arbustiva, asi como material muerto (troncos y ramas) que podían estar cubriendo la visibilidad de identificar la forma circular a la que se asocian los tocones (Figura 18). De esta manera, en la zona III clasificada como "*Claros parciales y áreas de borde*", solamente se identificaron 7 tocones en un aproximado de 6 hectáreas.

Figura 18. Imágenes de áreas de difícil interpretación por los árboles remanentes, arbustos y material muerto presente.

4.4 Áreas de fácil interpretación

En los sectores del ortomosaico donde se encuentra la Zona I "*Claros totales con suelo expuesto*", fue fácil la identificación de tocones, ya que no existe cobertura arbórea o arbustiva que los cubra o dificulte su identificación (Figura 19), esto permitió detectar de manera sencilla la forma y color a los que se asocia un tocón.

Figura 19. Imágenes de áreas de fácil interpretación con suelo expuesto.

4.5 Exactitud de los datos obtenidos a partir de imágenes de VANT

Mediante los 9 sitios levantados en campo (Figura 20) se cuantificaron 117 tocones, de los cuales el 58% pertenece a *Abies* sp., 41% a *Pinus* sp., y 0.9% a *Quercus* sp., (Cuadro 5) presentando diámetros que van desde los 15 cm a más de 1m.

Sitio	Zona	Tocones	Abies sp.	Pinus sp.	Otro	Diámetro promedio
1	I	25	18	7		46
2	I	15	7	8		73
3	I	9	3	5	1	64
4	П	37	30	7		51
5	П	6	5	1		62
6	III	6	0	6		67
7	III	2	0	2		74
8	IV	9	4	5		65
9	IV	8	1	7		71
TOTAL		117	68	48	1	64

Cuadro 5. Tocones obtenidos mediante inventario de campo.

Al realizar la extrapolación de los datos se obtuvo un total de 2,340 tocones en el área de estudio (Cuadro 6).

Zona	Descripción	Hectáreas	Tocones por interpretación visual	Estimación de acuerdo a datos del inventario
I	Claro total con suelo expuesto	6.4	353	980
II	Claro total con abundantes arbustos remanentes	4.1	93	860
111	Claros parciales y áreas de borde	6.1	7	160
IV	Áreas de protección de arroyos	3.2	72	340
	Total	20	525	2340

Cuadro 6. Estimación de tocones del área total mediante inventario de campo.

Figura 20. Mapa de los sitios de muestreo.

4.6 Comparabilidad de imágenes de VANT para el monitoreo de corto plazo.

En el ortomosaico 2016 se obtuvieron errores que van desde los 8.6 metros a los 14.1 metros (Figura 21 y Cuadro 7).

En cambio, para el ortomosaico 2017 estos errores disminuyeron considerablemente, en donde el error de desfase se encuentra entre 1.5 metros y 7.9 metros (Figura 22 y Cuadro 7).

Figura 21. Error de desfase - ortomosaico 2016.

Punto	Desfase (m) 2016	Desfase (m) 2017
1	9.9	3.0
2	11.5	3.6
3	8.6	1.5
4	8.7	2.6
5	10.6	2.5
6	10.1	3.3
7	14.1	2.1
8	10.4	7.9

Cuadro 7. Errores de desfase entre ortomosaicos y puntos GPS.

Figura 22. Zoom - error de desfase (Izquierda imagen 2016, derecha 2017).

Por otro lado, los errores de traslape, los cuales se ven reflejados directamente al traslapar los dos ortomosaicos varían a lo largo del área de interés. Los errores van desde 6.25 metros a 15.85 metros (Figura 23).

Figura 23. Error de desfase - Ortomosaico 2016.

5. DISCUSIÓN

Los resultados de este trabajo muestran que las imágenes de VANT son una herramienta que puede usarse para una respuesta rápida de la cuantificación del daño forestal ocasionado por tala ilegal. Sin embargo, estos resultados tienden a subestimar el arbolado removido respecto a los inventarios en campo. Dentro de la literatura no se encontraron datos previos que analicen la detección y cuantificación de tocones desde una interpretación visual de las imágenes RGB (*i.e.*, imágenes de colores visibles) provenientes de VANT. Sin embargo, Puliti *at al.*, 2018, desarrolló una metodología para detectar, segmentar, clasificar y medir tocones en áreas post-aprovechamiento mediante algoritmos de aprendizaje automático ("machine learning"). Si bien, no se pueden comparar los resultados con los nuestros, es importante resaltar varios aspectos que influyen directamente en la detección visual o no de los tocones, uno de ellos y tal vez el más importante es la altura de vuelo y la resolución espacial de los ortomosaicos.

En nuestro caso, obtuvimos ortomosaicos con una resolución espacial de 10cm a alturas de vuelo entre 200 y 300m con dos diferentes modelos de VANT, un DJI Phantom 4 Pro con una cámara integrada RGB de 20 megapíxeles (ortomosaico 2017) y un DJI Mavic Pro con una cámara integrada RGB de 12.3 megapíxeles (ortomosaico 2016). Puliti *et al.*, 2018 obtuvo ortomosaicos con una resolución espacial de 1.7cm con una altura de vuelo de 40m y una cámara RGB de 12.4 megapíxeles integrada en un VANT DJI, Phantom 4.

Así mismo, tanto en Puliti *et al.*, 2018 y nuestro estudio se encontraron ciertas dificultadas para la identificación de tocones, lo cual está asociado directamente a la subestimación en el número de tocones respecto a los datos obtenidos directamente en campo, una de las principales dificultades es la confusión de forma; que se asocia a la decoloración o confusión entre diferentes objetos como rocas o residuos de madera, así como la falta de visibilidad de la superficie del tocón del árbol, ya sea porque existen arboles remanentes o arbustos que no permiten tener una clara visión de este.

La confusión de forma encontrada en este estudio, podría disminuir al aumentar la calidad de los ortomosaicos con cámaras de mejor resolución o alturas de vuelo menores. Sin embargo, los problemas de visibilidad difícilmente se podrían mejorar con aumentar la resolución espacial, por lo que se tendrían que explorar nuevas opciones como es el uso de otros sensores, principalmente sensores activos (*e.g.,* LiDAR) en combinación con interpretación visual para áreas cercanas a 20 hectáreas.

Otro trabajo que refiera a la estimación del tamaño y detecciones de tocones en claros totales después de un aprovechamiento forestal legal o ilegal es el de Samiappan *et al.*, 2017, al igual que el trabajo antes mencionado, sus resultados no se pueden comparar directamente con los nuestros debido a que se utilizó una metodología de detección semiautomática, con algoritmos de reconocimiento de patrones de imágenes. Sin embargo, es interesante ver las dificultades a las que se enfrentaron en la detección y cuantificación de tocones, donde las principales limitantes fueron; la forma no circular de los tocones y la resolución del ortomosaico. Ya que usaron como insumo un video 4K, a una altura de vuelo de 61m con un VANT DJI Phantom 3 Pro con una cámara RGB incluida de 12 megapíxeles. De esta manera, es importante resaltar que la resolución espacial es de suma importancia para la detección de tocones, ya que si bien las imágenes obtenidas mediante VANT son de muy alta resolución es necesario tener ortomosaicos con una resolución espacial menor o igual a 5 cm.

En cuanto a la evaluación del geoposicionamiento horizontal, algunos autores han usado imágenes de muy alta resolución disponibles en programas gratuitos, como Google Earth Pro para estimar los errores de georreferencia de diferentes imágenes. Por ejemplo, Potere (2008) estimó errores en imágenes que van desde los 0.4 a 171.6 metros en zonas urbanas y periurbanas. Vargas-Ramírez (2017) por otro lado, utilizo ortofotos, imágenes de satélite de muy alta resolución y puntos de GPS obteniendo errores en ortomosaicos que van desde los 3.8 a 593 metros, si bien estos errores están en relación a los diferentes ortomosaicos con diferentes superficies y en áreas variadas, es interesante ver la variabilidad con que los errores de geoposicionamiento horizontal se presentan.

Página |**32**

En nuestro caso, obtuvimos errores que van desde 3.03 a 10.4 metros, estos datos se obtuvieron utilizando puntos en campo y comparándolos con los dos ortomosaicos. Además, existe una variación en cuanto a los dos ortomosaicos, ya que las imágenes 2016 y 2017 fueron tomadas con diferentes modelos de VANT y por lo tanto incluían diferentes cámaras, lo que permite observar que dependiendo del GPS que incorpore el modelo de VANT y la cámara, los errores de geoposicionamiento serán mayores o menores, así como la resolución. En este estudio los ortomosaicos generados a partir de las imágenes provenientes del VANT Phantom 4 Pro obtuvieron un error menor en comparación a las imágenes provenientes del VANT Mavic Pro.

Así mismo, los errores de sobrelape entre ortomosaicos van desde 6.87 a 15.85 metros, lo cual complica la posibilidad de comparar cuantitativamente los diferentes datos que pudieran extraerse, ya que al tener una resolución espacial de 10cm y errores de sobrelape que llegan a 15.85 metros se necesita georreferenciar mediante un SIG estos desfases (solo hay que tener en cuenta que al realizar estos ajustes se puede disminuir la resolución espacial).

Para el caso concreto del conteo de tocones, no se recomienda llevar a cabo el ajuste de georreferencia antes de la interpretación visual o automática de la cuantificación de tocones, ya que se generaría un estiramiento en los pixeles y puede llegar a presentar mayor confusión de forma la cual se menciona anteriormente.

Existen recomendaciones para evitar y corregir errores de geoposicionamiento, los cuales se basan en utilizar puntos de control del terreno (PCT), los cuales se incorporan al procesamiento de imágenes y podrían ayudar a disminuir los errores de distorsión en el ortomosaico. Sin embargo, esto no garantiza que los errores de sobrelape entre dos ortomosaicos se corrija, ya que de acuerdo a Vargas-Ramírez (2017) en donde hace una medición del error de geoposicionamiento horizontal de un ortomosaico generado a partir de imágenes de drones contra ortofotos disponibles en WMS INEGI, teniendo como resultado errores que van desde 3.7 a 8 metros con PCT y errores que van de 3.8 a 7.6m sin PCT. De esta manera, es necesario tomar en cuenta otras consideraciones tales como: Modelo y cámara del VANT, GPS integrado al VANT para los sobrevuelos, programa utilizado para el P á g i n a **33**

procesamiento de imágenes, aplicación y programa para la planeación y ejecución del vuelo, sobrelape de las imágenes, así como la topografía y cubierta del suelo, ya que de estos últimos dependen algunas especificaciones a considerar a la hora del procesamiento fotogramétrico de las imágenes.

Por otra parte, el procesamiento de imágenes de VANT requiere grandes cantidades de memoria tanto para ir guardando los procesos como para generarlos, de esta manera se recomienda trabajar con 16 Gb de memoria RAM, ya que de otra manera los procesos se vuelven muy lentos o en algunos casos no se pueden finalizar. Tal fue el caso del procesamiento de imágenes del año 2016 en el programa WebODM, el cual fue montado en un programa llamado "Docker", este programa tiene como finalidad crear máquinas virtuales ligeras para poder instalar programas que no son del sistema operativo en uso, por ejemplo; el sistema operativo natural de WebODM es Linux, por lo que si se va usar en una computadora con sistema operativo Windows, se necesita instalar un Docker (Anexo 1. Instructivo de instalación de WebODM en Windows 10 mediante Docker Toolbox).

Al realizar el procesamiento fotogramétrico en WebODM en una computadora con 8GB de memoria RAM (usando solo 4 y 6 GB efectivas), solo se pudieron procesar 81 imágenes en comparación con Agisoft que hizo el proceso sin contratiempos (Agisoft utilizo los 8Gb disponibles en el equipo de cómputo). Aquí es importante mencionar que WebODM cada día se encuentra en constante actualización, por lo que se sugiere hacer el proceso meses posteriores o reportar el error a GITHUB para una posible solución (este proceso se hizo en el año 2017 por lo que ahora este error podría no presentarse).

Open Dron Map (ODM) y su herramienta WebODM a pesar de ser de código abierto solo se encontraron 2 estudios previos, uno por Park *et al.*, 2016 y otro por Powel Burdziakowski, 2017, este segundo evalúa el programa ODM, concluyendo que, si bien el programa aún está en desarrollo, es interesante contar con un programa de código abierto al cual se le puedan hacer mejoras y ajustes por expertos en el tema.

De esta manera, al comparar WebOBM con uno de los mejores programas de fotogrametría como lo es Agisoft (Núñez Calleja, 2016). Nos permitió conocer las mejoras que ha ido consiguiendo WebODM a lo largo del tiempo, si bien aún sigue estando por debajo de la calidad de Agisoft, ya muestra grandes mejoras en sus resultados finales, convirtiéndose en una opción para aquellos usuarios que optan por el uso de programas de código abierto o bien, aquellos que no cuentan con la posibilidad de pagar alguna licencia. Ya que el costo de las licencias es una de las principales limitantes de los programas para procesar imágenes de VANT, aunado a la gran cantidad de memoria RAM y de almacenamiento que demandan.

Por último, se muestra una lista de consideraciones para el procesamiento de las imágenes provenientes de VANT:

- Los ortomosaicos generados a partir de diferentes alturas de vuelo y diferentes cámaras generan errores mayores para la comparabilidad multifecha de ortomosaicos.
- Vegetación abundante y pendientes accidentadas dificultan la obtención de un buen ortomosaico (susceptible a generar distorsiones).
- Contar con puntos de control terrestre podrían ayudar a disminuir las distorsiones en los ortomosaicos y reducir los errores de sobrelape entre ortomosaicos.
- Zonas con vegetación abundante dificultan la identificación y cuantificación visual de tocones.
- WebODM, aunque sus resultados presentan una menor calidad, permite que la generación de ortomosaicos este más abierta al público en general.
- Agisoft, a pesar del costo elevado de su licencia, existe una versión de uso académico la cual baja considerablemente su costo, haciéndolo accesible a este sector, a diferencia de otros programas fotogramétricos que no cuentan con esta opción.

6. CONCLUSIONES

- Es importante generar cartográfica detallada de muy alta resolución que ayude a cuantificar y monitorear el daño forestal ocasionado por diferentes contingencias ambientales. Además, a partir de esta cartografía detallada se pueden implementar acciones de manejo y restauración del sitio postevento.
- La cuantificación de arbolado removido realizado únicamente con imágenes de VANT subestima el daño ocasionado por esta perturbación, ya que no permite identificar arbolado con dímetros menores a 20cm (aclarando que esta identificación estará en función del balance entre el tamaño de pixel de las imágenes y el detalle que se busca obtener), al igual que arbolado removido en áreas con cobertura arbórea. Sin embargo, es una herramienta que puede ser empleada para una primera estimación de respuesta rápida de daños ocasionados por contingencias ambientales y/o actividades antrópicas que requieran un monitoreo, como es el caso de la tala ilegal.
- La exploración de programas de código abierto para el procesamiento de imágenes provenientes de VANT brinda una opción para todos aquellos usuarios que no cuenten con la posibilidad de pagar una licencia, ampliando así, el uso de estas imágenes para diferentes propósitos.
- El presente trabajo compone una primera aproximación a la evaluación de las imágenes de VANT para la cuantificación del daño forestal ocasionado por tala ilegal. Considerando, que aún se requieren hacer estudios en cuanto a la fiabilidad de los datos obtenidos con estas imágenes; tanto a diferentes escalas temporales como espaciales para conocer e incrementar los alcances y utilidades que este tipo de imágenes podrían tener.

7. BIBLIOGRAFÍA

- Agisoft. Agisoft Photoscan User Manual: Professional Edition, Version 1.3; Agisoft: St. Petersburg, Russia, 2017.
- Brower, L. P., Slayback, D. A., Jaramillo-López, P., Ramirez, I., Oberhauser, K. S., Williams, E. H., & Fink, L. S. (2016). Illegal logging of 10 hectares of forest in the Sierra Chincua monarch butterfly overwintering area in Mexico. *American Entomologist*, 62(2), 92-97.
- Burdziakowski, P. (2017). Evaluation of open drone map toolkit for geodetic grade aerial drone mapping–case study.
- Comisión Nacional de Áreas Naturales Protegidas [CONANP]. (2001). Programa De Manejo De La Reserva De La Biosfera Mariposa Monarca.
- Comisión Nacional Forestal [CONAFOR]. (2018) Programa Nacional Forestal 2014-2018. Consultado de www.dof.gob.mx/nota_detalle.php?codigo=5342498&fecha=28/04/2014 (10 de octubre de 2018).
- Contreras-Hermosilla, A. (2000). The underlying causes of forest decline (No. 30). Bogor (Indonesia): Center for International Forestry Research.
- DJI. Phantom 4 User Manual v1.6; DJI: Shenzhen, China, 2017.
- Dunford, R., Michel, K., Gagnage, M., Piégay, H., & Trémelo, M. L. (2009). Potential and constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest. *International Journal of Remote Sensing*, 30(19), 4915–4935.
- Mas, J. F., Lemoine-Rodríguez, R., González, R., López-Sánchez, J., Piña-Garduño, A., & Herrera-Flores, E. (2017). Evaluación de las tasas de deforestación en Michoacán a escala detallada mediante un método híbrido de clasificación de imágenes SPOT. *Madera Bosques*, 23(2), 119–131.

- Mas, J. F., Lemoine-Rodríguez, R., González-López, R., López-Sánchez, J., Piña-Garduño, A., & Herrera-Flores, E. (2017). Land use/land cover change detection combining automatic processing and visual interpretation. *European Journal of Remote Sensing*, 50(1), 626–635.
- Mas, J. F., Velázquez, A., Díaz-Gallegos, J. R., Mayorga-Saucedo, R., Alcántara, C., Bocco, G., ... Pérez-Vega, A. (2004). Assessing land use/cover changes: A nationwide multidate spatial database for Mexico. *International Journal of Applied Earth Observation and Geoinformation*, *5*(4), 249–261
- Mas, J., Velázquez, A., & Couturier, S. (2009). La evaluación de los cambios de cobertura/uso del suelo en la República Mexicana. *Investigación Ambiental*, *1*(1), 23–39.
- Merino, L., & Martínez, A. E. (2014). A vuelo de pájaro: las condiciones de las comunidades con bosques templados en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).
- Morales-Hidalgo, D., Oswalt, S. N., & Somanathan, E. (2015). Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 68–77.
- Navarrete, J. L., Isabel Ramírez, M., & Pérez-Salicrup, D. R. (2011). Logging within protected areas: Spatial evaluation of the monarch butterfly biosphere reserve, Mexico. *Forest Ecology and Management*, *262*(4), 646–654.
- Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2010). *Evaluación de los recursos forestales mundiales 2010* (Informe Principal 163). Roma, Italia: FAO
- Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2015). *Evaluación de los recursos forestales mundiales 2015* (Compendio de datos) Roma, Italia: FAO

- Pla, M., Duane, A., & Brotons, L. (2017). Potencial de las imágenes UAV como datos de verdad terreno para la clasificación de la severidad de quema de imágenes landsat: Aproximaciones a un producto útil para la gestión post incendio. *Revista de Teledeteccion*, 2017(49 Special Issue), 91–102.
- Potere, D. (2008). Horizontal positional accuracy of Google Earth's high-resolution imagery archive. Sensors, 8(12), 7973-7981.
- Procuraduría Federal de Protección al Ambiente, consultado de www.gob.mx/profepa/prensa/combate-profepa-con-firmeza-tala-clandestinaal-verificar-legalidad-de-la-madera-que-se-utiliza-en-el-pais (21 de noviembre de 2018).
- Puliti, S., Talbot, B., & Astrup, R. (2018). Tree-Stump Detection, Segmentation, Classification, and Measurement Using Unmanned Aerial Vehicle (UAV) Imagery. *Forests*, 9(3), 102.
- QGIS Development Team. (2018). QGIS geographic information system. Open Source Geospatial Foundation Project. Las Palmas: QGIS Development Team.
- Sáenz-Romero, C., Isabel Ramírez, M., & Blanco-García, A. (2016). Reporte de la visita al paraje El Tepozán, Propiedad Estatal de la Reserva de la Biosfera Mariposa Monarca. Reporte interno.
- Sánchez, S., & Velázquez, A., (2008). Estado y transformación de los ecosistemas terrestres por causas humanas. Il Estudio de país. *México, DF*.
- Shi, J., Wang, J., & Xu, Y. (2012). Object-Based Change Detection Using Georeferenced Uav Images. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/(September), 177–182.
- Vidal, O., López-García, J., & Rendón-Salinas, E. (2014). Trends in Deforestation and Forest Degradation after a Decade of Monitoring in the Monarch

Butterfly Biosphere Reserve in Mexico. *Conservation Biology*, 28(1), 177–186.

- Volkmann, W., & Barnes, G. (2014). Virtual Surveying: Mapping and Modeling Cadastral Boundaries Using Unmanned Aerial Systems (UAS). FIG Congress 2014: Engaging the Challenges - Enhancing the Relevance, (June 2014), 1–8.
- WWF México y Fondo Monarca. (2013) Degradación Forestal en la Zona Núcleo de la Reserva de la Biosfera Mariposa Monarca 2012-2013. 3pp.
- WWF México y Fondo Monarca. (2014) Disminuye la degradación forestal por factores climáticos en la Reserva Monarca, pero persiste la tala clandestina a gran escala. Consultado de www.wwf.org.mx/noticias/noticias_mariposa_monarca.cfm?uNewsID=30913
 0 (23 octubre de 2018)
- WWF México y Fondo Monarca. (2015) Se concentra en una comunidad 96% de la degradación forestal en los santuarios de hibernación de la mariposa monarca durante 2014-2015. Consultado de www.wwf.org.mx/?251350/Seconcentra-en-una-comunidad-96-por-ciento-de-degradacion-forestal-ensantuarios-de-mariposa-monarca-2014-2015 (25 octubre de 2018)
- WWF México y Fondo Monarca. (2016) Degradación Forestal en la Zona Núcleo de la Reserva de la Biosfera Mariposa Monarca 2015-2016.
- WWF México y Fondo Monarca. (2017) Degradación Forestal en la Zona Núcleo de la Reserva de la Biosfera Monarca 2016-2017. Consultado de www.wwf.org.mx/?230231/Disminuye-degradacion-forestal-por-factores-climaticos-en-Reserva-Monarca-pero-persiste-la-tala-clandestina (22 octubre de 2018)
- Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). *Biosystems Engineering*, *108*(2), 174–190.

ANEXOS

Anexo 1.- Instructivo de instalación de WebODM en Windows 10 mediante DockerToolbox para el procesamiento de imágenes de VANT.

A continuación, se deja un manual paso a paso para la instalación de la herramienta WebODM, la cual sirve para el procesamiento fotogramétrico de imágenes provenientes de VANT.

Este manual, no forma parte de los objetivos de la tesis. Sin embargo, ya que WebODM es uno de los pocos programas gratuitos para el procesamiento fotogramétrico y además de código abierto, creo que es importante dejar el procedimiento que se siguió para el correcto funcionamiento de esta herramienta en el Sistema Operativo Windows 10, siendo este Sistema el más usado en la actualidad. De esta manera, se espera que el presente manual sirva para que más personas puedan hacer uso de esta herramienta, teniendo así, una opción más para el procesamiento de imágenes provenientes de drones u otras imágenes RGB (Imágenes de colores visibles), ya que el programa tiene distintas aplicaciones.

Para llevar a cabo la instalación de WebODM en Windows 10 se necesitan otros programas complementarios, estos programas son los siguientes:

1.- Phyton

2.- Docker Toolbox

3.- Notepad++

La instalación de los programas antes señalados es bastante simple. Sin embargo, se describirá la instalación de cada uno de estos para posteriormente continuar a la instalación de WebODM. (Nota: Si alguno de los tres programas complementarios no es instalado, no se puede continuar a la instalación de WebODM).

1.- Instalación de Phyton

Para llevar a cabo la instalación de Phyton, vamos al siguiente enlace (<u>www.python.org/downloads/</u>) (Nota: Instalamos la última versión disponible, para este manual se instaló la versión 3.7.1 disponible en ese momento).

 Hay que asegurarse que la versión que se está descargando es para Windows, ya que existen versiones para Linux, MacOS y otros.

Pasos a seguir para la instalación de Python:

1.- Una vez descargado el programa, vamos a ejecutarlo. Para esto damos clic derecho sobre el archivo descargado
 python-3.7.1

Se abre una ventana como la siguiente; escogemos la opción Ejecutar como administrador.

Una vez esto, puede emerger una ventana la cual dirá: ¿Quiere permitir que esta aplicación realice cambios en tu dispositivo? Damos clic en Si y esperamos a que comience el proceso de instalación.

2.- Como siguiente, se desplegará la ventana que indica el inicio del proceso de instalación. Vamos a seleccionar las 2 casillas ubicadas en la parte inferior (1) de la siguiente ventana y damos clic en **Install Now** (2).

3.- Como paso final, damos clic en Disable path length limit (1) y cerrar (2).

2.- Instalación de Docker Toolbox

El segundo programa lo descargamos del siguiente enlace: (docs.docker.com/toolbox/toolbox install windows/).

In	stall Docker Toolbox on Windows
	gacy desktop solution. Docker Toolbox is for older Mac and Windows systems that do not meet the requirements Docker for Mac and Docker for Windows. We recommend updating to the newer applications, if possible.
Estim	ted reading time: 10 minutes
Dock	er Toolbox provides a way to use Docker on Windows systems that do not meet minimal system requirements for the er for Windows app.
If yo	have not done so already, downle Clic para comenzar la descarga

Una vez descargado el archivo seguimos el mismo procedimiento del **paso 1 de la** instalación de Phyton, solo que esta vez damos clic derecho sobre el archivo DockerToolbox.

Al iniciar el proceso de instalación nos saldrá una venta en la que dejaremos todo por default y daremos clic en el botón Next (1), (este paso lo realizaremos de igual forma en la ventana numero dos que nos aparezca).

😤 Setup - Docker Toolbox	– 🗆 X
	Welcome to the Docker Toolbox Setup Wizard
	This will install Docker Toolbox version 18.03.0-ce on your computer.
	It is recommended that you close all other applications before continuing.
	Click Next to continue, or Cancel to exit Setup.
-	Help Docker improve Toolbox.
	This collects anonymous data to help us detect installation problems and improve the overall experience. We only use it to aggregate statistics and will never share it with third parties.
	1 Next > Cancel

2. En la tercera ventana, debemos asegurar que la casilla llamada Git for Windows se encuentre seleccionada, después damos clic en Next.

Which components shou	ld be installed?			
Select the components y install. Click Next when y	ou want to install; ou are ready to c	; clear the compon ontinue.	ents you do	not want to
Full installation				\sim
Docker Client for Wi	ndows			36.5 MB
✓ Docker Machine for	Windows			72.2 MB
Docker Compose for	Windows			7.3 MB
✓ VirtualBox				80.5 MB
Kitematic for Window	ws (Alpha)			144.5 MB
Git for Windows				30.1 MB
Current selection require	es at least 372.1 M	1B of disk space.		

3.- En la siguiente ventana vamos a seleccionar la siguiente casilla llamada Install VirtualBox with NDISS driver (default NDIS6), proseguimos a dar clic en Next, y en la ventana siguiente damos clic en Install.

(Nota: una vez dando clic en Install se tardará un par de minutos en terminar. Si sale alguna ventana de nuestro antivirus preguntando si deseamos instalar el programa o permitir el acceso le indicamos que **SI**).

Como siguiente paso, nos saldrá la siguiente ventana en la cual daremos clic en **Instalar** y esperamos a que termine el proceso.

ः Seguridad de Windows	×
¿Desea instalar este software de dispositivo?	
Nombre: Oracle Corporation Controladoras de bus Editor: Oracle Corporation	
Confiar siempre en el software de "Oracle Instalar Corporation".	<u>N</u> o instalar
Solo debería instalar software de controlador de proveedores en los que o puedo decidir qué software de dispositivo es seguro para instalar?	onfíe. <u>¿Cómo</u>

Por último, saldrá esta ventana en la que damos clic en Finish.

Una vez terminada la instalación, nos saldrán dos iconos. Posteriormente estaremos utilizando el programa **Docker Quickstart Terminal**, por el momento pasaremos a configurar un aspecto dentro del entorno de Windows 10.

Para asegurarnos que **Docker Quickstart Terminal** se ejecute correctamente dentro de nuestro Sistema Operativo, vamos a escribir *Administrador de tareas* en el buscador de nuestra computadora.

Se nos abrirá una ventana, en la que seleccionamos la pestaña <u>Rendimiento</u> (1) y revisamos que nuestra Virtualización se encuentre habilitada (2).

Nota: Si la virtualización (VT) se encuentra desactivada se necesita entrar al BIOS de la PC y activarlo. Cada maquina se comporta diferente dependiendo del hardware con que este equipado. Aquí dejo unos enlaces que guían paso a paso el procedimiento para la activación de la Virtualización en Windows: www.qnap.com/es-es/how-to/faq/article/cómo-habilitar-intel-vt-x-y-amd-svm/

support.bluestacks.com/hc/es/articles/115003174386--Cómo-puedo-habilitar-lavirtualización-VT-en-mi-PC-

Si por alguna razón no pueden habilitar la Virtualización, dejo mi contacto para ayudar en el tema: ils@gmx.es o bien, pueden contactar algún técnico en soporte informático para este proceso.

* Este procedimiento solo se realiza una vez en el equipo de cómputo.

3.- Instalación de Notepad ++

Para llevar a cabo la descarga del tercer programa vamos a la siguiente liga (//notepad-plus-plus.org/download/v7.6.html).

Descargamos la opción de 32 o 64 bits según su sistema operativo. (En mi caso, sería 64 bits).

Download 64-bit x64

- Notepad++ Installer 64-bit x64: Take this one if you have no idea which one you should take.
 Notepad++ zip package 64-¹t x64: Don't want to use installer? Check this one (zip format).
- Notepad++ 7z package 64-bit x64: Don't want to use installer? 7z format.
- Notepad++ minimalist package 64-bit x64: No theme, no plugin, no updater, quick download and play directly. 7z format.
- SHA-1/MD5 digests for binary packages: Check it if you're paranoid.

La instalación es sumamente sencilla, ya que dejaremos toda la configuración de la instalación por default. Por lo que una vez descargado, damos clic derecho y seleccionamos Ejecutar como administrador (al igual que en los otros programas).

Escogemos el idioma del programa, al aparecer las ventanas de instalación, damos clic en Siguiente, aceptamos la licencia, seguimos dando siguiente hasta que aparezca una ventana con la opción Instalar, y finalmente, saldrá una ventana con el botón Terminar, dando clic en Terminar, habrá concluido la instalación.

Configuración de memoria virtual.

Una vez terminada la instalación de los programas, vamos a configurar el entorno del programa **Docker Quickstart Terminal** para obtener mayor capacidad de memoria de almacenamiento. Este paso es sumamente importante, ya que al llevarse a cabo el procesamiento de las imágenes de drones se generan grandes cantidades de información. De esta manera, lo que vamos hacer ahora es aumentar la capacidad de memoria de almacenamiento del programa.

Como paso 1, vamos ir a la ubicación en donde se encuentra instalado el programa **Docker Quickstart Terminal.**

En mi caso se encuentra instalado en la siguiente dirección:

C:\Program Files\Docker Toolbox

Que quiere decir esta dirección...

Abrí mi disco C, busque la carpeta con el nombre **Program Files** (Archivos de **Programa**) y dentro de esa carpeta, busque una subcarpeta llamada **Docker Toolbox**. Una vez ahí, nos deben de aparecer los siguientes archivos:

Ahora vamos a crear una copia del archivo start.

Para crearlo damos un clic sobre el icono start para seleccionarlo y después

💿 start		•• •	
🕍 unins000		Abrir	ING
🛱 unins000	È	Compartir	
_		Abrir con	
	€	Verificar con 360 Total Security	
		Ejecutar en 360 Sandbox	
	€	Forzar eliminación con 360 Total Security	
	1	Añadir al archivo	
		Añadir a "start.rar"	
	1	Añadir y enviar por email	
	1	Añadir a "start.rar" y enviar por email	
	0	Create a Data Image	
		Restaurar versiones anteriores	
		Enviar a >	
		Cortar	
		Copiar	
		Crear acceso directo	
	•	Eliminar	
	•	Cambiar nombre	
		Propiedades	

damos clic derecho y seleccionamos la opción copiar.

Posterior a eso, damos un clic en la parte blanca de la ventana para **deseleccionar**.

En la parte blanca, damos clic derecho y seleccionamos la opción Pegar. Aparecerá una ventana en la que nos preguntará si damos permiso a realizar la acción que indicamos, por lo que seleccionamos la opción Continuar *(Ese archivo que creamos nos servirá de respaldo por si algo nos sale mal en la configuración y necesitáramos volver al archivó original)*.

Una vez terminado el proceso de copiado, cerramos la carpeta y nos vamos al escritorio de nuestra PC.

Una vez en el escritorio de la PC, escribimos en nuestro buscador de windows **Notepad++.**

Damos clic sobre la primera opción que nos parece en la parte superior de la barra y se nos abrirá el programa.

Una vez dentro del programa, vamos a la opción Archivo/Abrir

Se nos abrirá una ventana de búsqueda, ahí buscamos el archivo ejecutable **start** en la dirección C:\Program Files\Docker Toolbox. Lo seleccionamos y lo abrimos.

📔 Abrir	
Buscaren:	📜 Docker Toolbox
Acceso rápido Escritorio Bibliotecas	Nombre installers kitematic boot2docker docker docker docker-compose docker-machine docker-quickstart-terminal start - copia
Este equipo Red	Start [™] unins000
	Tipo de archivo: All types (*.*)

Una vez abierto, se desplegará el siguiente código:

Nos vamos a la línea número 69.

Seleccionamos la línea y la remplazamos con:

"\${DOCKER_MACHINE}" create -d virtualbox --virtualbox-disk-size "100000" \$PROXY_ENV "\${VM}"

Lo que hacemos al pegar la línea es aumentar el espacio de almacenamiento a 100 Gb aproximadamente. Una vez pegado, la línea nos debe de quedar así:

Damos clic en Archivo/guardar

🧾 *C:\Pr	ogram F	iles\Doc	ker Too	olbox\	start.sh -	Notepad
Archivo	Editar	Buscar	Vista	Codi	ficación	Lenguaj
Nue	vo				С	trl+N
Abri	r				С	trl+O
Abri	r la carp	eta cont	enedor	a		>
Ope	n in Def	ault Viev	ver			
Abri	r carpet	a de trab	oajo			
Reca	argar de	sde disc	D			
Gua	rdar			N	C	trl+S
Gua	rdar con	no		W	Ctrl+	Alt+S
Gua	rdar una	copia c	omo			
Gua	rdar tod	0			Ctrl+Sh	ift+S
Ren	ombrar					
Cerr	ar				Ct	rl+W
Cerr	ar todas	1			Ctrl+Shi	ft+W
Cerr	ar más					>
Borr	ar del d	isco				
Car	gar sesió	n				
Gua	rdar sesi	ón				
Imp	rimir				C	trl+P
Imp	rimir aho	ora				
Salii	r				A	lt+F4

Y seleccionamos SI y después cerramos el programa.

Configuración de WebODM para su instalación:

Como último proceso, vamos a instalar la herramienta WebODM, para esto escribimos en el buscador de Windows **Docker Quickstart Terminal.**

Damos clic en la primera opción

Una vez abierto, se desplegará una terminal como la siguiente:

Demorara un poco en lo que configura la Máquina Virtual.

Cuando nos aparezca la siguiente ventana

Docker estará configurada en su sistema. Cerramos la ventana y ahora solo falta un paso antes de iniciar la instalación.

Vamos a nuestro buscador de Windows y escribimos **Virtual Box**, damos clic en la primera opción.

Una vez en el programa, damos clic derecho/cerrar/apagar

🔮 Oracle VM Virtua	IBox Administrador		- 🗆 ×
Archivo Máquina	Ayuda		
Nueva Configuración	Descartar Mostrar	Detalles 🗱	Herramientas de máquina Herramientas globales
default	General		Previsualización
Corriendo	🤪 Configuración	Ctrl+S	
	Ge Clonar	Ctrl+O 4.x (64-	
	😹 Eliminar	Ctrl+R	tenning for an effective the sector of the sector part is particle of the sector of th
	agrupar	Ctrl+U	Provided Ing. Cost / The Sector Report The Cost Cost of a feature of the Cost
Clia danaaha	i Mostrar	Disco	 is 45127 (mission). repeated bit is a static bit is
Cilc derecno	Pausar	Ctrl+P aginación	$\label{eq:constraint} \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2$
	Reiniciar	Ctrl+T X,	
	✓ Cerrar	🕨 🧮 Guard	dar estado Ctrl+V
	Descartar el estado guardado	Ctrl+J 🕖 Apag	ado ACPI Ctrl+H
	Mostrar historial de eventos	Ctrl+L 😃 Apag	ar Ctrl+F
	Actualizar	bilitado	
	Mostrar en explorador		
	Crear un acceso directo en el escrit	orio boot2docker	r.iso (45.00 MB)
	💱 Ordenar	1al, 19,53 G	8)

Una vez apagada, saldrá el icono de esta manera:

Ahora damos doble clic en sistema

Y nos aparece la siguiente ventana:

General	Sistema	
🛒 Sistema	Placa base Procesador Aceleración	
جم Pantalla	ermite navegar pria base:	1024 MB
Almacenamiento	le preferencias de	8192 MB
冲 Audio	Optica Solution	
📑 Red		
Puertos serie	Chipset: PIIX3 🔻	
🄌 USB	Dispositivo apuntador: Ratón PS/2 Características extendidas: Habilitar I/O APIC	
Carpetas compartida	S Habilitar EFI (sólo SO especiales)	
🔲 Interfaz de usuario	Reloj hardware en tiempo UTC	
	Configuración inválida detectada 😡	Aceptar Cancela

Damos clic, en Sistema y en la parte derecha aumentamos la memoria base hasta donde termina el color verde.

Una vez terminado, damos aceptar y cerramos el programa.

Como siguiente paso, vamos abrir **Docker Quickstart Terminal** como se hizo anteriormente al inicio de este apartado.

Pasos para instalar WebODM

1.- Tener abierta Docker Quickstart Terminal

😶 MINGW64:/c/Program Files/Docker Toolbox	
##	
## ## ==	
## ## ## ## ===	
/""""""""""""""""""""""""""""""""""""""	
~~~~~~ {~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~	
\ o/	
to be applicated to use the default particle with TD 400,400,00,400	
socker is contigured to use the default machine with 1P 192.108.99.100	
For help getting started, theck out the docs at https://docs.docker.com	
Start interactive shell	
wi10@DESKTOP-I93ECT3 MINGW64 /c/Program Files/Docker Toolbox	
\$	

2.- Escribir lo siguiente:

#### cd C:

Nota: Cada vez que escribamos algo y queramos ejecutarlo damos ENTER.



3.- Escribir lo siguiente:

ls





4.- Escribimos lo siguiente:

# git clone https://github.com/OpenDroneMap/WebODM --config core.autocrlf=input

wi10@DESKTOP-I93ECT3 MINGW64 /c
\$ git clone https://github.com/OpenDroneMap/WebODM --config core.autocrlf=input
Cloning into 'WebODM'...
remote: Enumerating objects: 10, done.
remote: Counting objects: 100% (10/10), done.
remote: Compressing objects: 100% (9/9), done.
remote: Total 7523 (delta 3), reused 4 (delta 1), pack-reused 7513
Receiving objects: 100% (7523/7523), 98.36 MiB | 3.43 MiB/s, done.
Resolving deltas: 100% (4770/4770), done.
Checking connectivity... done.

Esto demorara un poco...

5.- Escribimos lo siguiente:

ls



6.- Escribimos lo siguiente:

cd WebODM

Página | 61


7.- Escribimos lo siguiente:

## ./webodm.sh start

Una vez dado ENTER, esto demorara varios minutos. Dejen a la maquina configurar y descargar lo necesario.

Cuando salga la siguiente ventana estaremos listos para usar WebODM.

	webapp webapp oapp	congratulations!
$\langle$	webapp webapp	If there are no errors, WebODM should be up and running!
	webapp webapp	Open a web browser and navigate to http://localhost:8000
	broker	1:M 10 Dec 2018 02:41:35.159 * Ready to accept connections
	broker	1:M 10 Dec 2018 02:46:35.032 * 100 changes in 300 seconds. Saving
	broker	1:M 10 Dec 2018 02:46:35.033 * Background saving started by pid 17
	broker	17:C 10 Dec 2018 02:46:35.169 * DB saved on disk
	broker	17:C 10 Dec 2018 02:46:35.172 * RDB: 0 MB of memory used by copy-on-write

Ahora, sin cerrar el programa de **Docker Quickstart Terminal**, abrimos nuestro buscador, de preferencia Google Chrome o Mozilla FireFox y escribimos en la parte superior lo siguiente: **192.168.99.100:8000** 

Welco	ome - Web	ODM	×	+			
$\leftarrow \   \rightarrow$	G	192.168.9	9.100:8	000	I		
gg w	ebO[ 8	Welcome	e - Web0	DDM -	192.168.99.100:8000		



Se desplegará la siguiente ventana de bienvenida a WebODM

Welcome - WebOI	DM × +						
← → C (0	No es seguro   192.1	68.99.100:8000	)/welcome/				
WebODM							
			Welcome! Before we get sta	Control of the second s	administrator account for	you:	*
* *	81		Nombre de usuario Contraseña	Requ <mark>er</mark> ido. 150 carácter	res como máximo. Únicame	nte letras, dígitos <mark>y</mark> @	//+/-/_ *
л ^а х	*		•	Create Account		e.	• • •

Creamos un usuario y una contraseña:

Welcome! ©									
Before we get started, we need to create an administrator account for you:									
Nombre de	Jairo								
usualio	Requerido. 150 carácteres como máximo. Únicamente letras, dígitos y @/./+/-/_								
Contraseña	••••								
	Create Account								

¡Listo!

Tenemos instalada y lista para usar WebODM

OO WebODM		<u>م</u> -
🍘 Dashboard	Welcome! ©	
GCP Interface	To create a map, press the "Select Images and GCP" button, or drag and drop some images into a project.	
Ciagnostic	<ul> <li>You need at least 5 images</li> <li>Images must overlap by 65% or more</li> </ul>	
le OpenAerialMap	<ul> <li>For great 3D, images must overlap by 83%</li> <li>A GCP file is optional, but can increase georeferencing accuracy</li> </ul>	
Processing Nodes	•	<ul> <li>Add Project</li> </ul>
📽 Administración	First Project	View Man
🔊 API	C Edit	
Customize <		

Una vez que procesemos algunas imágenes, solo basta con cerrar sesión y cerrar el buscador.



También es necesario cerrar el programa Docker Quickstart Terminal.

Para abrir nuevamente WebODM, sigue los siguientes pasos:

- 1.- Abrir Docker Quickstart Terminal
- 2.- Escribir:

cd C:

3.- Escribir:

ls



4.- Escribir:

## cd WebODM

5.- Escribir:

## ./webodm.sh start

6.- Abrir Google Chrome o Mozilla FireFox y escribir 192.168.99.100:8000



A continuación, se muestra la secuencia de los pasos antes mencionados en la terminal:

<pre>## . ## ## ## == ## ## ## ## === /**********************************</pre>									
Start interactive shell wi10@DESKTOP-I93ECT3 MINGW64 /c/Program Files/Docker Toolbox \$ cd C:									
wi10@DESKTOP-I93 <b>\$ ls</b> '\$360Section'/ '\$Recycle.Bin'/ 360SANDBOX/ Config.Msi/ hiberfil.sys	ECT3 MINGW64 /c Intel/ OpenForis/ pagefile.sys PerfLogs/ 'Program Files'/	Program Files (x86)'/ ProgramData/ Python27/ Recovery/ Sen2Cor-02.05.05-win64/	<pre>swapfile.sys 'System Volume Information'/ Users/ WebODM/ Windows/</pre>	windows-version.txt					
<pre>wi10@DESKTOP-I93ECT3 MINGW64 /c \$ cd WebODM wi10@DESKTOP-I93ECT3 MINGW64 /c/WebODM (master) \$ ./webodm.sh start</pre>									

Página | 65



## Anexo 2.- Formato para inventario de campo

INVENTARIO DE CAMPO - CONTEO DE TOCONES										
Sitio No.:	1 2 3 4 5 6 7	8 9 10 11 12 :	13 14			Fecha:				
Hora de ir	nicio:	Hora de termino:								
Coordena X:	ida	Coordenada Y:				Zona UTM:				
Altitud (m	1.s.n.m.):	_								
Observa	aciones generales del sitio:									
(Regeneració	n, reforestación, presencia de ramas o álboles caidos, etc.)									
Responsa	bles:									
Anotador	:									
Tocón No.	Especie / Nom. común	Diam	etro	Altura						
110.		1 2			Observaciones (tocón descubierto, tapado por ramas.		oado por ramas)			





Anexo 3.- Fotografías del inventario de campo











