
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

INSTITUTO DE INVESTIGACIONES EN MATEMÁTICAS APLICADAS Y EN SISTEMAS
INTELIGENCIA ARTIFICIAL

DETERMINATION OF THE STRUCTURE OF
 POLYNOMIAL MULTIVARIATE APPROXIMATORS

 USING MACHINE LEARNING

TESIS
QUE PARA OPTAR POR EL GRADO DE

MAESTRO EN  EN CIENCIAS E INGENIERÍA DE LA COMPUTACIÓN

PRESENTA:
SANTIAGO DE JESÚS GONZÁLEZ MEDELLÍN

DIRECTOR DE TESIS:
DR. ÁNGEL FERNANDO KURI MORALES

CIUDAD DE MÉXICO, ENERO 2019

Margarita
Texto escrito a máquina

Margarita
Texto escrito a máquina
POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

Margarita
Texto escrito a máquina

Margarita
Texto escrito a máquina



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



Contents

1 Introduction 4

1.1 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the art 8

3 Genetic Multivariate Polynomial Approximation 13

3.1 Eclectic Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Ascent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 The Minimax Polynomial for the Internal Set . . . . . . . . . . . . . . . . . 17

3.4 Perturbation and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Experimentation Methodology 21

4.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Genetic Multivariate Polynomial Model Evaluation . . . . . . . . . . . . . . 24

5 Determining the Number of Terms 32

5.1 Cases of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Yacht Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Analyzing Categorical Data . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.3 Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.4 Mv Synthetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.5 Treasury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2



CONTENTS 3

6 Conclusions 47



Chapter 1

Introduction

In the machine learning area there are techniques used to fit a mathematical model, not
necessarily closed, to a set of data points. This is of particular interest in fields where data
is collected experimentally. In this data two kinds of variables may be identified: target and
predictor variables, where the target variables are explained and affected by the behavior of
the rest of the predictor variables. The models studied in maching learning represent the
relationship of a target variable as a function of the predictor variables. These models are
calculated through a process known as learning. In this process the coefficients of the model
are calculated in order to produce the desired output.

There are two types of learning: supervised and unsupervised. The supervised learning
models are those in which you have labeled data and want to express patterns within the
variables which lead to the labels. In unsupervised learning the data is not labeled and you try
to classify it into clusters reflecting similarities of the elements of the clusters. Among these
models we find those of the artificial neural networks (ANN). The artificial neural network
models are inspired in the understanding of the structure and function of the biological neural
networks. These models are proposed to extract relevant features from the input data and
perform a pattern recognition task by learning from examples without explicitly stating the
rules for performing the task[1].

Among these we can find, for example, multilayer-perceptron networks (MLPN)[2], ra-
dial basis function networks[3], support vector machines[4] and the Polynet[5]. When im-
plementing these models one can realize that the main concern is that of the parameters’
configuration and the model selection. However, there are some techniques for selecting the
parameters to generate the model, such as cross validation[6], grid search, or Akaike Informa-
tion Criterion[7], for large volumes of data they may require too much computation time. In
the MLPNs the number of hidden layers, the number of neurons in each layer, the activation
functions selected and the initial weights values affect in a significant way the performance of
the learned model. In spite of being universal approximators[8] MLPNs require methods to
estimate a suitable set of parameters. However, some advances have been made to estimate
the said parameters. In [9], a lower bound to estimate the number of neurons in the hidden
layer is found. A dynamic node creation algorithm is proposed in [10]. On the other hand
there is the black-box problem in the MLPNs. This means that, in spite of learning high

4



CHAPTER 1. INTRODUCTION 5

degree and dimension relations between the variables, MLPNs do not make explicit how they
are related to each other. In other words, the neural networks can model the result given an
input vector of data but the user can not justify the outcome.

An alternative model inspired on neural networks is given in [11]. This model is a mul-
tivariate non linear polynomial in which the relation of each variable in the model is made
explicit, making it possible to know the inferring process that was made to produce the out-
come. The methodology to generate the polynomial model combines a genetic algorithm with
a regression algorithm to find the best set of coefficients for a given configuration of variables
in each monomial term within the polynomial to adequately approximate a dataset. There
are parameters related to each algorithm mentioned before and must be tuned to find the
best approximator. The parameters of the genetic algorithm are the probabilities of crossover
and mutation processes, the number of individuals and the generations the algorithm must
iterate. On the other hand, since the regression algorithm is iterative, it requires of a con-
vergence criterion to stop. It is also needed to specify the parameters for the structure of the
polynomial model such as the number of terms and the maximum degree of the polynomial.
These algorithms and the full methodology are explained later in this document. In figure 1.1
a general sketch of the methodology to generate a multivariate polynomial model is shown.
It can be seen that the structure of the model must be specified with some parameters as
the number of terms and the degree of the polynomial.

Figure 1.1: General solution diagram.

One of the parameters which can be hard to adjust is the number of terms, since the
genetic algorithm iterates through a large number of individuals and for each of them many
matrix and vector operations must be done. The time it takes to evaluate a dataset is critical,
so it is not advisable to fine tune the parameters testing each value in a given range. In the
current work we search for the bounds on the number of terms in the polynomial model. The
search space of this parameter may grow exponentially depending on the chosen degree of
the polynomial and the number of variables in the data. Let us assume, for example, five
independent variables in the data and a max degree of five. The possible number of terms in



CHAPTER 1. INTRODUCTION 6

a full multivariate polynomial is

T =
5∑

a1=0

5∑
a2=0

5∑
a3=0

5∑
a4=0

5∑
a5=0

xa11 x
a2
2 x

a3
3 x

a4
4 x

a5
5 = 65 (1.1)

which yields a total of 7,776 terms, which is a very large number of terms. We limit this
space to a lower and upper bound which statistically ensures that the genetic algorithm will
(with a high probability) find a proper approximator for the given problem.

1.1 Justification

The method to generate a multivariate polynomial model has been proven to have a good
performance[11]. However, as in other machine learning methods, there is the problem of
tunning the parameters to find the best model to fit a dataset. In the case of this method
the number of terms is a parameter which is hard to tune for its large space of search. There
exists other ways of finding an adequate set of parameters, like cross-validation. Although,
in this case, depending on the number of variables of the training dataset and the number of
terms this method may take a large amount of computational time to generate the polynomial
model, making the tunning process overwhelming. This is why having a method to simplify
this search would be advantageous in the implementation of this method.

1.2 Hypothesis

From the tunning process arises the following question: Is there a way to determine an
appropriate value for the number of terms in the multivariate polynomial model generated
by the studied methodology? There are 2 main hypotheses that we can state: 1) there is
a way to obtain an adequate value for the number of terms such that the generated model
yields the lowest error measure within a range of values. 2) It is possible to obtain this value
before the training process from the characteristics of the dataset of the problem to be solved.
To validate them a

1.3 Objectives

The main objective of this work is to find a method to estimate an adequate number of terms
of a multivariate polynomial model generated by a methodology which combines a genetic
algorithm and a regression method. To achieve this objective the following goals must be
achieved.

• Analyze and implement the methodology which generates a multivariate polynomial
model.



CHAPTER 1. INTRODUCTION 7

• Evaluate the methodology variating the number of terms in each case.

• Analyze the results and propose a method to calculate, before the training step, an
proper number of terms for the multivariate polynomial model.

• Evaluate the proposed method.

• Apply the method in study cases.

This document is presented in the following order: in Chapter 2 some of the works in
the state of the art in multivariate polynomial models are discussed. In Chapter 3 the
methodology which generates a multivariate polynomial model and its two main components
is described. In Chapter 4 the methodology to analyze the problem is given. In Chapter 5
it is described how a bound is found for the number of terms in the polynomial model. And
finally in Chapter 6 some conclusions about the results found are given.



Chapter 2

State of the art

The study of predictive models has been of interest in areas such as mining [12], environment
[13], biology[14], military aeronautics [15], etc. The importance of these models lies in how
well they can express the relations between the observed variables in each particular problem.
The models which approximate a function to a dataset are called regressive models. The
polynomial model is commonly used to solve problems for their simplicity of structure. This
model has brought a lot of attention because of the power they have to describe complex
nonlinear input-output relationships in an effective way. It is tractable (i.e. it can be solved in
polynomial execution time) for optimization, sensitivity analysis, and prediction of confidence
intervals[16]. Besides it has been proven (in the Stone-Weiestrass theorem) that any function
can be uniformly approximated by a polynomial[8]. Consequently, multivariate polynomial
regression provides us with an effective way to describe complex nonlinear input-output
relationships[17]. A single variable polynomial function with degree k has the form y =∑n

k=0 akx
k where x is the independent variable and y the dependent variable. Generalizing

to a d-dimensional space a multivariate polynomial is defined as follows[18].

Let F be a field and n ∈ N.

• Each exponent vector e = (e1, e2, ..., en) ∈ Nn defines a monomial in F [x1, x2, ..., xn] :
xe = xe11 , x

e2
2 , ..., x

en
n

• A term in F [x1, x2, ..., xn] is the product of a non-zero coefficient c ∈ F , i.e. c · xe.

• A polynomial f ∈ F [x1, x2, ..., xn]] is a finite set of terms. It is written ]f for the
number of terms in f .

• The maximum degree of a polynomial is the highest exponent: maxdeg
xe :=‖ e ‖∞= maxdeg 1≤i≤n(ei)

In the literature there are linear and non-linear polynomial regression models. The simple
linear regression models are defined as the linear relationship between a continuous response
variable Y and a set of explanatory variables X [19]. On the other hand, the multiple linear
regression models express the lineal combination between the explanatory variables, an error
variable and the dependent variable[20]. The traditional regression models usually fail to

8



CHAPTER 2. STATE OF THE ART 9

separate the corresponding effects given the complex structure in the correlation between the
variables[21]. In the univariate case almost all problems are well established and solved. In
the multivariate case there remain issues to be analyzed[22]. In spite of being simple there
are some drawbacks in the polynomial models. Most of the polynomial methods have[5]: 1)
non-optimal term generation and storage, 2) generalization error, 3) network complexity (in
the case of network structural polynomial systems), 4) high complexity in training, 5) low
accuracy.

Current machine learning models are based on linear algebra and probability theory. Some
of them search linear relations as in Linear Regression, or Naive Bayes. Unfortunately, in real
world problems it is common to have non-linear relations. Various applications of regression
models have been explored and in some cases the models can only express linear relationships
between variables. For instance in [23] a comparison of simple and multivariate models and
logistic regression models is made. In [12] static hand-made models proposed before are
studied and compared against MLPNs and reached the conclusion that MLPNs have better
accuracy since these models have the capacity to express high order relationships. In [24]
a probabilistic learning algorithm is presented based on incremental mixture of Gaussians
implementing the maximum expectation algorithm[25]. In [13] an ensemble of MLPNs with
other regression models is proposed to measure the air quality. Cortina proposes a multiple
regression model adequate to fit the necessities of modeling social interactions[26]. He uses
the Moderated Hierarchical Multiple Regression (MHMR) to test the presence of interactions.
The model deals with at most 3 variables, with degrees of order ≥ 1. In other cases, the
models capable of expressing higher order relationships are usually hand-made to be applied
in very specific contexts [27, 12, 15, 28].

There have been other attempts to fit a multivariate polynomial model into a dataset.
One of the early attempts to achieve polynomial models similar to NN was the polynomial
neural networks which where an implementation of GMDH[29] with the Kolmogorov-Gabor
polynomials as basis function. This method offers a very complex polynomial model since
the number of terms can grow exponentially. In GMDH the idea is to create a single node
function (in the original case a two-input second-order polynomial) which, when cascaded in
a multilayer architecture, produces permutations of monomial product terms which comprise
an estimation of higher order terms necessary to approximate various functions. However
GMDH has some issues: 1) training cannot be straight forward, 2) computes excessive terms
which are not necessary in the model, 3) may be over-fitted problems, 4) they are susceptible
to local minimum problems.

Ivakhnenko models input-output relationship of a complex system using a multi-layered
perceptron type network[30], each layer implements a non-linear function of its inputs. This
function is usually a second-order polynomial of the inputs. The function implemented by
each element in one of the layers is the following

y = A2(X) = a0 + a1x1 + a2x2 + a3x
2
1 + a4x

2
2 + a5x1x2 (2.1)

There must be 3 or 4 layers in the architecture so the maximum degree relationships
between the variables learned by the model are of 6th degree. The coefficients of each
element in the network are determined the following way: consider N input vectors of p



CHAPTER 2. STATE OF THE ART 10

variables Xn = (xn1, ..., xnp) and the nth output as φn. Then a set of six coefficients for
this element (which has inputs xni and xnj) must be found such that the mean-squared error
between the outputs of this element yn, and the true output φn is minimized. The coefficients
are obtained from the “Gauss normal equations”. In matrix form φ = XA where matrices
φ,X and A are of order N × 1,N × 6 and 6 × 1, (the first element in each row of the X
matrix is 1), the normal equations are formed by premultiplying both sides by transpose of
X, XT = (XTX)A. Matrix XTX is a 6x6 matrix and the solution is found by inverting the
matrix A = (XTX)−1XTφ. Locally weighted polynomial regression is a popular algorithm
for learning continuous non-linear mappings[31]. The regression is calculated according to a
point xquery. A linear map (in the case of linear regression) is constructed and is influenced
by data points that lie close to the query point according to some scaled euclidean distance
metric, where, for example, a very close data point to the query point has a weight of 1 and
a very far away point a weight of zero. The polynomial of M terms that are being minimized
by means of mean-squared error, is of the form:

ŷ(x) = β1t1(x) + β2t2(x) + · · ·+ βM tM(x) (2.2)

which can be written as ŷ(x) = βT t(x) where tj is a function that produces the j-th term in
the polynomial

N∑
i=1

w2
k(yk − βT tk)2 (2.3)

This does not need gradient descend. It can be inferred from β = (XTX)−1XTy. More
succinctly the authors write XTX =

∑N
k=1w

2
ktkt

T
k , X

Ty =
∑N

k=1w
2
kyktk where N is the

number of points to train. Although the model is powerful for fitting multivariate noisy
data with non linearities, it requires to scan each point in the dataset. All data points
have their weighted contribution added into the XTX and XTy matrices. Four ways of
preventing to scan all the points are given by[31]: 1) Picking a smaller subset, resulting in
detail loss. 2) Build a multivariate spline model. Unfortunately, continuous interpolation
above 2 dimensions is too expensive. 3) Range searching with KD-trees: given a query data
point the nearest data points within a distance given are returned without searching the
entire dataset, which may result too expensive for high dimensions. 4) A modified KD-tree
structure to select the subset of more spread points. For high-dimensional and high-order
systems, multivariate polynomial regression becomes impractical due to its huge amount of
product terms [16]. Nevertheless there have been efforts to overcome this issues and make
the polynomial models viable for regression and classification tasks.

In [16] we can observe also a polynomial model which is aimed to be reduced with a
series of linear transformations and convert the full polynomial to a few terms. This model is
suitable for small features and large number of examples. In this work the authors present 2
ways of working with high dimensionality problems: 1) By means of compact universal basis
functions like perceptron and radial basis functions. Another example are Fourier series and
wavelets. 2) Dimension reduction techniques, which compromises the approximation capa-
bility. The reduced multivariate polynomial model proposed in their work is the following.



CHAPTER 2. STATE OF THE ART 11

f̂MN(α, x) = α0 +
∑
j

αj(x
n1
1 , x

n2
2 , ..., x

nl
l ), j = 1, 2, ..., K (2.4)

The full model is formed by K = 1 + r(l + 1) terms where r is the sum of the degrees
of the polynomial and l is the number of independent variables. The reduced model has
K = 1+r+l(2r−1) terms. The model needs to calculate a gradient from a set of weights, and
the matrix operations are made over the full training set. To avoid multilinearity problem
they stabilize the weights (coefficients of the polynomial) with a regularization term bL2

(where b is a regularization constant) which can be added to the least squares minimization
by α = (P TP + bI)−1P Ty,also known as ridge regression where I is the identity matrix. The
reduced model works with another representation of the full multivariate polynomial model
where there are weights in each of variables of each of the monomials.

Shaposhnyk et. al.[32] propose improvements to algorithms made for polynomial model
selection (parameter estimation) on multivariate datasets with outliers in response and ex-
planatory variables. These methods were tested in polynomials up to 3rd degree on synthetic
functions. A polynomial neural network is trained by calculating weights in each neuron of
each layer with least squares regression, they also propose another way (with robust statistics,
i.e. without assuming normality on the data) to train this type of artificial neural networks.

In the work of [33] an evolutionary algorithm is used to determine the structure of poly-
nomial fuzzy models. The model implements a multivariate fuzzy function. This fuzzy
functions are obtained from a predefined library of multivariate fuzzy polynomials. They
test the proposed procedure with 2 independent variables polynomials to 2nd degree (shown
to give the best results).

In [17] the authors investigate the frequently encountered under-determined system with
ANN estimation formulation based on ridge regression. This model works with the whole
expansion of terms (up to 12650 terms). The way they estimate the parameter is similar to
least squares.

Lastly in [5] a new algorithm is introduced for implementing a single layer polynomial
network that can be rapidly generated and trained to approximate multidimensional nonlinear
and continuous-output functions of significant complexity. This algorithm generates only non
repeated monomial terms in a single-layer architecture which is easily trained with simple
ordinary least squares algorithm. This method still uses the full range in the polynomial,
making it not quite visually manageable.

In [34] a methodology is proposed to train a multivariate polynomial model to fit a
dataset in which, instead of generating the full range of terms, generates the combination
of a preselected number of terms. This is accomplished by means of the ensemble of a
breed of a genetic algorithm and a regression algorithm, in which the individuals of the
genetic algorithm represent a set of monomials with different combination of variables and
their exponents and the regression algorithm computes the coefficients of the terms in such
way that the minimax error function (or Linf) is minimized. The current work is based on
this methodology. It is well known that the polynomial models may have an exponential
number of terms as the input variables and the order of the polynomial grows[17], so it is



CHAPTER 2. STATE OF THE ART 12

not advisable to have more than, let us say, 20 terms. For this reason, in this methodology,
an adequate number of terms must be set in order to generate a model which approximates
properly the problem. It can represent in a simpler way (with fewer terms) the relationships
of higher orders between explanatory variables. As the number of terms grow, and depending
on the volume of the training data, evaluating this methodology to find the best tune in the
parameters may become an overwhelming task. It is of great interest to find a boundary
which reduces the search space for this parameter. Hence there is a way to determine a
proper value which brings us closer to the number of terms necessary for best fit. In the
current work we search for these boundaries and propose a tool to estimate this value.



Chapter 3

Genetic Multivariate Polynomial
Approximation

As mentioned in the previous chapter, polynomial models are important because of their
power to express functional relationships between explanatory variables in a simple structural
way. However, the number of terms that make up the model may be very high. This is why
the model of [11] deals with this issue allowing the user of this methodology to establish a
desired number of terms with which the model is going to train. This methodology raises
from the Universal Approximation Theorem (UAT) which states the following[8].

Let φ(·) be a non constant, bounded, and monotonically-increasing continuous function. Let
ImO denote the mO-dimensional unit hypercube [0, 1]. The space of continuous functions on
ImO is denoted by C(ImO). Then, given any function f ∈ C(ImO) and ε > 0, there exist an
integer M and sets of real constants ai , bi and wij, where i = 1, 2, · · · ,mI and j = 1, 2, ...,mO

such that we may define:

F (x1, · · · , xmO) =

mI∑
i=1

[
ai · φ

(
mO∑
j=1

wijxj + bi

)]
(3.1)

as an approximate realization of a function f(), that is,

|F (x1, · · · , xmO)− f(x1, · · · , xmO)| < ε (3.2)

for all the x1, · · · , xmO in the input space.

This theorem is directly applicable to the multilayer perceptron networks by adding the
bias value to the theorem.

F (x1, · · · , xmO) = a0 +

mI∑
i=1

[
ai · φ

(
mO∑
j=1

wijxj + bi

)]
(3.3)

From the UAT we know that a MLPN only needs one hidden layer to accurately approx-

13



CHAPTER 3. GENETIC MULTIVARIATE POLYNOMIAL APPROXIMATION 14

imate a function. Also it is mentioned that the function to be approximated needs to be
continuous. This is, in practice, impossible due to the limitations of a computer to represent
very small numbers. As continuity is a property that must be satisfied the data may be
augmented so there are more points which the algorithm can process, getting closer to a
“more continuous” space. Further in this work the topic of augmenting the data to comply
this property is treated.

In this methodology φ(x) = logistic(x) is selected as the nonlinearity function of the
MLPN. It is known[35] that the logistic function may be approximated by a polynomial
Pn(x) of degree n with an error ε = |Pn(x) − logistic(x)| where ε → 0 as n → ∞. It is
known[36] that a function y = f(x) in [0, 1) may be approximated by a polynomial with
Chebyshev orthogonal basis minimizing the least squared error and achieving the minimum
maximum absolute value. In [11] it is demonstrated that any function as in equation 3.3
may be approximated with a linear combination of polynomials having only terms of odd
degree. Also it is shown that only 20 power combinations for the expansion of the logistic
are possible. These combinations are shown in table 3.1

1 11 33 63

3 15 35 77

5 21 45 81

7 25 49 99

9 27 55 121

Table 3.1: Combination of odd powers for the multivariate polynomial model

To accomplish the task of looking through the possible combinations of powers in the
variables two main components of this machine learning algorithm work together: the Eclectic
Genetic Algorithm (EGA)[34] and the Ascent algorithm[37] which are going to be explained
in detail in the following sections.

3.1 Eclectic Genetic Algorithm

Genetic algorithms are a breed of the family of the evolutionary algorithms. The evolutionary
algorithms, in general, are inspired in the biological process of evolution in which a population
of certain species of individuals is tested in the environment where only the best adapted ones
are selected to breed a new generation of individuals which can, with a given probability, be
slightly different of their ancestors by means of a mutation process. The new individuals are
going to be tested as well. This process is repeated over various generations in order to find
the individuals that are best adapted to the provided environment.

The individuals in the population of the evolutionary algorithms are solutions to a specific
problem (which may be seen as the environment) codified into a numeric representation. Each
individual is evaluated against the problem obtaining a fitness value which indicates how well
one single individual is solving the problem. Once all the individuals were tested they are
sorted and selected based in a non deterministic way. Then, the selected individuals go



CHAPTER 3. GENETIC MULTIVARIATE POLYNOMIAL APPROXIMATION 15

through a process where sections of them are combined to generate new individuals which
may have the properties of their parents. This process is called crossover. After the crossover
process the new individuals are randomly (with a low probability) altered. This is based in the
natural mutation process in which some individuals may come out with new characteristics
which previous individuals did not have and improve in the given problem. The algorithm
runs until some convergence criterion is achieved, e.g. it may be a maximum number of
generations or a threshold fitness value.

Genetic algorithms are one of the most frequently encountered type of evolutionary algo-
rithms. The first genetic algorithm was proposed by Holland [38]. This GA has the following
characteristics: the individuals are encoded in binary fixed size strings, the individuals for
mating are selected by Roulette Wheel Selection in which each individual has a probability
of being selected proportional to their fitness value. The crossover is assumed to be single-
point crossover, in which two parent individuals are selected from the mating pool and, with
crossing probability pc, a point is randomly chosen and the strings are swapped with respect
the crossover point between the two parents. The mutation operation is executed bit-wise
with probability pm. When it occurs a 0 is changed for a 1 and vice versa. One problem
arises from this first approach made by Holland. When the algorithm finds an optimal value
the probability of losing the individual in further generations is 1. To overcome this issue the
n best individuals are kept so the optimal solutions are never dropped. This is called elitism.
With this simple technique the GA convergence to an optimal value is guaranteed[39].

The genetic multivariate polynomial methodology implements the Eclectic Genetic Al-
gorithm (EGA)[40] which was demonstrated to have better performance than other regular
types of GA[34]. This algorithm is used to minimize the error in the polynomial model. The
EGA incorporates the following characteristics:

1. Full Elitism. The best n individuals are kept in a population of n individuals.

2. Deterministic Selection. The best individual is crossed with the worst. In general
the i-th individual is crossed with the (n-i+1)-th individual to ensure variety in the
next generation’s breed.

3. Annular Crossover. When mating, the individuals are treated as rings instead of
vectors where the leftmost bit is contiguous to the rightmost bit.

4. Uniform Mutation. Each bit of each individual is swapped from 1 to 0 and vice
versa with a probability pm.

The individuals of the EGA are encoded to represent polynomial structures. As it is
known, the full multivariate polynomial models have an exponential number of terms de-
pending on the order of the model and the number of variables. The number of unique non-
repeated terms in a complete polynomial of a particular order is given by number of terms =
(o+k)!
o!k!

where o is the order of the polynomial and k is the number of inputs.

To explore such huge search space the EGA is an appropriate technique. The polynomial
structures that each individual represents are of the following form:



CHAPTER 3. GENETIC MULTIVARIATE POLYNOMIAL APPROXIMATION 16

y = c1X1 + c2X2 + · · ·+ cmXm (3.4)

where Xi denotes a combination of independent variables and ci is the coefficient corre-
spondent to the i-th monomial. To calculate the coefficient of each monomial in the polyno-
mial structure this methodology implements the Ascent Algorithm (AA).

3.2 Ascent Algorithm

The purpose of this algorithm is to express the behavior of a dependent variable y as a
function of a set of n independent variables v, thus

y = f(v1, v2, · · · , vn)

y = f(v)
(3.5)

The approximant has the form of equation 3.4. This method requires a sample of size N
such that for every set of the independent variables v there is a known value of the dependent
variable f . By convention N stands for the number of objects in the sample and M = m+ 1
where m = number of desired terms of the approximant.

The goal of the Ascent Algorithm (AA) is to find the values of the coefficients in 3.4
such that the approximated values minimize the difference between the known values of
the dependent variable f in the subset and those calculated from 3.4 for all the objects
in the subset. The approximation error is defined as εMAX = max(ε1, · · · , εm) where εi =
abs(fi − yi). Here fi stands for the value of the dependent variable of object i and yi stands
for the value which the approximant yields when the Xi are put into 3.4. The AA is based
on a two-phase iterative methodology. First, a subset (of size M) is selected (this is called
the inner set) and the best approximant (a set of coefficients) in the minimax sense is found.
Second, the approximant is tested to see whether y = f(X) satisfies the minimax norm for
the remaining N −M objects (this set of cardinality N −M is called the outer set). That
is, the yi are calculated for the external set. If the minimax condition is attained by all the
objects the algorithm ends: the coefficients are those of the best possible approximant. If at
least one of the objects in the outer set does not comply with the minimax condition then an
object of the inner set is swapped with an object in the outer set and the process is repeated.
In every step (τ) of the process there are two errors of interest:

(a) The largest absolute approximation error of the internal set (denoted by εθ(τ))

(b) The largest absolute approximation error of the external set (denoted by εφ(τ))

εθ(t) is calculated during phase 1; εφ(t) is calculated during phase 2. The convergence
condition is that εθ(t) ≥ εφ(t). It may be shown [11] that εθ(t + 1) ≥ εθ(t) monotonically
and that εφ(t + 1) ≤ εφ(t) non-monotonically. Therefore, they approach each other and the
convergence condition is always reached.



CHAPTER 3. GENETIC MULTIVARIATE POLYNOMIAL APPROXIMATION 17

3.3 The Minimax Polynomial for the Internal Set

In what follows we use |X| to denote det(X) as opposed to abs(X). The proper interpretation
of this notation will be apparent from the context. We know that εθ = max(ε1, · · · , εM),
also that εi = abs(fi − yi) and yi = c1Xi1 + c2Xi2 + · · · + cmXim. Therefore, εi = abs(fi −
(c1Xi1 + c2Xi2 + · · ·+ cmXim)),i = 1, 2, . . . ,M .

Without loss of generality we may take the positive value of εi and then εi + c1Xi1 +
c2Xi2 + · · ·+ cmXim = fi. We can write

ε1 + c1X11 + c2X12 + · · ·+ cmX1m = f1

ε2 + c1X21 + c2X22 + · · ·+ cmX2m = f2

· · ·
εM + c1XM1 + c2XM2 + · · ·+ cmXMm = fM

(3.6)

. Making εi = siεθ, where si are constants to be determined, we have

s1εθ + c1X11 + c2X12 + · · ·+ cmX1m = f1

s2εθ + c1X21 + c2X22 + · · ·+ cmX2m = f2

· · ·
smεθ + c1XM1 + c2XM2 + · · ·+ cmXMm = fM

(3.7)

Applying Cramer’s rule to system (3.7) we have

εθ =

∣∣∣∣∣∣
f1 X11 · · · X1m

· · · · · · · · · · · ·
fM XM1 · · · XMm

∣∣∣∣∣∣
s1

∣∣∣∣∣∣
X21 · · · X2m

· · · · · · · · ·
XM1 · · · XMm

∣∣∣∣∣∣− · · ·+ sM

∣∣∣∣∣∣
X11 · · · X1m

· · · · · · · · ·
Xm1 · · · Xmm

∣∣∣∣∣∣
(3.8)

Using Xi∗ to mean that the i − th row and the first column of the determinants in the
denominator of (3.8) have been deleted we put

εθ =
∆

s1|X1∗| − s2|X2∗|+ s3|X3∗ | − · · ·
(3.9)

or,

εθ =
∆

s1∆1∗ − s2∆2∗ + s3∆3∗ − · · ·
(3.10)

Where ∆ is the determinant of the numerator of (3.8) and ∆i∗ = |Xi∗|. In more compact
notation:



CHAPTER 3. GENETIC MULTIVARIATE POLYNOMIAL APPROXIMATION 18

εθ =
∆∑M

i=1 si(−1)i−1∆i∗
(3.11)

It can be seen that for εθ to be minimized the denominator of (3.11) has to be maximized.
This implies that:

(a) All its products must be maximized, and

(b) All its addends must be of the same sign

This observation leads to an algorithm which allows us to solve (3.11) minimizing εθ and
thus finding the coefficients of (3.4) in the minimax sense. Since εi = siεθ it follows that
si ≤ 1 and sθ = 1. Hence, for the si∆i to be maximized, we have to

(a) Take the largest values of the si

(b) Set the values of the si such that si = sgn[(−1)i−1∆i∗]

The first condition is fulfilled iff si = 1 ∀i. To fulfill the second condition we must
determine the signs of the ∆i∗. The best way to do this is by resorting to the following
cofactor property: “if the cofactors of one column of a determinant are multiplied by the
elements of a different column and summed, the result is zero”. To illustrate consider the
next determinant:

A =

∣∣∣∣∣∣
σ1 X1 Y1
σ2 X2 Y2
σ3 X3 Y3

∣∣∣∣∣∣ (3.12)

Denoting the cofactors of column 1 with σi, from the property we know that

σ1X1 + σ2X2 + σ3X3 = 0

σ1Y1 + σ2Y2 + σ3Y3 = 0
(3.13)

which is a system lacking one condition to be solved. However, we may assign the value
of one of the determinants arbitrarily, since we only care for its sign and not its magnitude.
Notice that its sign is irrelevant since we are minimizing the absolute value of the error. For
simplicity, we may set σ3, from which

σ1X1 + σ2X2 = X3

σ1Y1 + σ2Y2 = Y3
(3.14)

We know that sgn(∆i∗) = sgn(σi) and, since their absolute value is 1, we may easily solve



CHAPTER 3. GENETIC MULTIVARIATE POLYNOMIAL APPROXIMATION 19

∣∣∣∣∣∣∣∣∣
σ1 X11 X12 · · · X1m

σ2 X21 X22 · · · X2m
...

...
...

. . .
...

σM XM1 XM2 · · · XMm

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

εθ
c1
c2
...
cm

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
f1
f2
...
fm

∣∣∣∣∣∣∣∣∣ (3.15)

We remarked earlier that Xi in (3.4) denotes a combination of the independent vari-
ables. A common choice is, as mentioned, some linear combination of the monomials of the
independent variables. To illustrate, assume that our choice has been the following:

w(x, y) =
1∑
i=0

2∑
j=0

cijx
iyj = c00 + c01y + c02y

2 + c10x+ c11xy + c12xy
2 (3.16)

This determines thatX1 = (1, y1, y
2
1, x1, x1y1, x1y

2
1), ... , XN = (1, yN , y

2
N , xN , xNyN , xNy

2
N).

In this case m = 6, M = 7 and, from our experiments, N = 150. Before outlining the algo-
rithm which will allow us to do so, there is still one issue to take into account.

3.4 Perturbation and Stability

It may be seen that it is easy to find (from the above procedure) data where a set of rows
or columns may be linearly dependent. In such case the system of equations which will be
formulated may become numerically unstable or simply have no solution. For instance, if
yi ≈ 1∀i the first three columns of (3.15) will be very nearly 1. Therefore, we replace the
elements in the data matrix X thus:

X∗i =

{
Xi × (1 + ρu ∗ δH) if Xi 6= 0

ρu ∗ δH if Xi = 0
(3.17)

where ρu denotes a uniformly distributed random variable 0 ≤ ρu < 1 and δH = O(10−6).
This tends to replace linearly dependent vectors by linearly independent ones. The approxi-
mation coefficients are very closely correct and no further modifications are needed. It may
be shown [11] that the relative approximation error is of O(δH). More precisely:

|F ∗τ − Fτ |
Fτ

< δH
∑
i

di (3.18)

where F ∗τ is the value of the function approximating the disturbed vectors in (the convergence)
step τ of the algorithm, Fτ is the value of function approximating the original undisturbed
vectors, δH is the size of the perturbation constant and di denotes the highest degree of the
i-th variable.

The ascent algorithm works as follows[11]



CHAPTER 3. GENETIC MULTIVARIATE POLYNOMIAL APPROXIMATION 20

Algorithm 1 Ascent Algorithm

1: Input data vectors (call them D)
2: Input the degrees of each of the variables of the approximating polynomial.
3: Map the original data vectors into the powers of the selected monomials (call them P ).
4: Stabilize the vectors of P by randomly disturbing the original values as above (call the

resulting data S).
5: Select a subset of size M from S. Call it I. Call the remaining vectors E.
6: Obtain the minimax signs (call the matrix incorporating the σ’s A).
7: B ← A−1

8: loop
9: Calculate the coefficients C ← fB. The maximum internal error εδ is also calculated.

10: Calculate the maximum external error εφ by evaluating C in E. Call its index IE.
11: if εθ ≥ εφ then
12: Stop, the coefficients of C are those of the minimax polynomial for the D vectors.
13: else
14: Calculate λ vector λ = AIEB
15: Calculate β vector which maximizes σ

IE
λj
Bj

. Call its index II .

16: Interchange vectors IE and II .
17: Calculate the new inverse B̂. Make B ← B̂
18: end if
19: end loop



Chapter 4

Experimentation Methodology

To find out whether there are boundaries to search the value for the number of terms in
the multivariate polynomial model a Multi Layer Perceptron Network approach was taken,
since we know from [8] that they are universal approximators. For this we collected 46
datasets from the University of California Machine Learning dataset repository [41] and the
Knowledge Extraction Evolutionary Learning dataset repository [42]. From the 46 datasets
32 were chosen to evaluate the multinomial genetic model to find the best fit RMS error
varying the number of terms t ∈ [3, 15]. From the results a lower bound is statistically
inferred. Some characteristics of the datasets are obtained (such as the number of attributes,
the number of rows in the dataset, the total information, etc.) and the lower bound of the
number of terms obtained before is put as function of these characteristics in order to train
a MLPN. The rest of the datasets are used as recall data for the trained MLPN model. The
results obtained show that there is a delimited range of search. As a result of the process
to find these boundaries a tool to calculate the proper number of terms in the polynomial
model was created. This is statistically proven and some case studies are made to test the
elaborated tool.

4.1 Data collection

The data collected was aimed to be of heterogeneous nature. In the consulted repositories
there is a large number of different datasets from different areas of knowledge: from specific
industrial problems to classic ones which have been well studied (as the Iris setosa or the
wine classification datasets). The objective of collecting a wide variation of data is to validate
that the current methodology works in any of them, yielding a good performance.

4.1.1 Data Preprocessing

There are certain properties the data must satisfy for the model to work properly and ensure
a good performance. It must be taken into account that most of the collected data is not
cleaned (e.g. it has missing values), the data which the model works with is all numerical and

21



CHAPTER 4. EXPERIMENTATION METHODOLOGY 22

scaled into the range [0, 1). Hence the datasets are preprocessed before training the model.
The preprocessing phases in this methodology are (not necessarily in the following order) the
following: 1. Feature selection, 2. Categorical encoding, 3. Fill missing values, 4. Scaling, 5.
Stabilization, 6. Sub Sampling, 7. Data Augmentation.

Feature selection. In many datasets there are features which provide no relevant infor-
mation to the learning algorithm. For example, an Id attribute whose values are all different
and have no pattern in them. Another case could be a feature which has many missing values
(i.e. > 70%). It may be difficult to fill those missing values, so the field is removed. If that
is the case, then the whole column is removed. It’s important to note that more predictor
variables do not make a better model, but identify the variables which may contribute in a
better way to the learning process of the model (i.e. those with more variating values). Also
a correlation analysis is made to check linear relations between variables. In the case there
exists a high correlation index between two or more variables (i.e. > 85%) one variable is
chosen to be kept and the others are removed.

Categorical encoding. As most of the machine learning strategies, the polynomial
model in this work deals only with numerical values. Because of this, there must be a way
in which the values from the categorical variables are transformed into numbers. There are
many ways to encode categorical variables, although is not clear yet which one is the best.
This is due to the difficulty of preserving numerically the meaning of the instances of the
categories. Some ways (such as assigning an integer number to each value) may induce an
order which the original value did not have. For example a variable which represents a
color (colors do not have order). Other ways such as one hot encoding may increase the
dimensionality of the data set making it difficult to work with. In this methodology one-
hot encoding is used in the case the categorical attribute has only two values (like sex) so
the dimensionality does not increase. In the case of multiple values an alternative method
called CESAMO (Categorical Encoding by Statistical Applied Modeling)[43] is applied. The
aim of CESAMO is to find numerical codes such that the patterns in the original categorical
variable are preserved. In this method, random numerical codes are assigned to each instance
of a categorical variable. With the assigned codes the mean of a function f representing the
relationship between the categorical variable xi and xj!=i for i = 1, · · · , n where n is the
number of variables. This process is made until the distribution of the means of the samples
becomes Gaussian to achieve statistical stability (this means that further samples will not
make a significant difference in the characterization of the population). For the current work
the f =Pearson’s correlation. The compliance of the Gaussian distribution is calculated
using χ2 goodness-of-fit test, establishing the maximum correlation as best coding criterion
over 3600 means per categorical variable.

Fill missing values. In datasets there are often missing values caused by the way they
were collected. To ensure the data is complete one may fill these values in ways which can
make sense accordingly to the other values (the ones which are not missing). For this we
use a technique called cubic spline interpolation. The idea is to generate a series of cubic



CHAPTER 4. EXPERIMENTATION METHODOLOGY 23

polynomials which fit between each of the data points in each feature column of the form[44]

S(x) =


s1(x) if x1 ≤ x < x2

s2(x) if x2 ≤ x < x3
...

sn−1(x) if xn−1 ≤ x < xn

(4.1)

where si is a third degree polynomial defined by

si = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (4.2)

Using natural splines the missing data is calculated and the values remain coherent in the
feature column.

Scaling. As mentioned before, to comply with the assumptions of the UAT1 [8], the
data vectors must lay within the range [0, 1], the data is scaled in the following form xnew =
(x− xmin)/(xmax − xmin).

Stabilizing. The current method implement matrix operations such as the inverse of a
matrix and the solutions of a system of equations we must ensure that the feature columns
in our dataset are not linearly dependent on other feature column. As there may exist a
dataset with this property we replace the original data X for X∗ as follows:

X∗i =

{
Xi × (1 + ρu ∗ δH) if Xi 6= 0

ρu ∗ δH if Xi = 0
(4.3)

where ρH denotes a uniformly distributed random variable such that 0 ≤ ρ < 1 and δ = 10−6.
The resulting vectors are no longer unstable. It is possible to do the desired operations on
them.

Sampling. Some of the datasets may have a large amount of data which can seriously
impact on the performance of the algorithm in the use of memory and the processing time.
Even more, there may exist redundant data which do not contribute with extra information
which was already learned so it is advisable to work with a subset of the original dataset. A
subset which contains the most possible non-redundant data for this the minimum sample
size is calculated based on the entropy of each feature vector.

Data Augmentation. There may be datasets with very few instances (i.e. < 600)
which can lower the learning power of the algorithm. As assumed in the UAT, the MLPN
approximating capabilities refer to continuous functions. It is difficult to ensure continuity
from a small finite set of data. As in [9], to ensure this continuity natural splines (as in the
step where the missing data is filled) are used to generate data from the cubic polynomial
functions calculated between each value in each feature column. The resulting spline will
exhibit the minimum curvature of all possible collocating functions if the following conditions
are fulfilled[45]: Let S(x) be a natural spline, Si(x) its i-th element and f(x) the unknown

1Universal Approximation Theory



CHAPTER 4. EXPERIMENTATION METHODOLOGY 24

function corresponding to the observed data, then a) S(xi) = f(xi)i = 0, · · · , n, b) S ′i(xi) =
S ′i+1(xi)i = 1, · · · , n− 2, c) S ′′i (xi) = S ′′i+1(xi)i = 1, · · · , n− 2, and d) S ′′(x0) = S ′′(xn) = 0.
This is the only way (mathematically) which minimizes the curvature in the structure of the
values in each feature. In the cases data contained few values it was augmented up to 1000
or 1200 records.

Compression analysis. In this step the data is compressed with the PPMZ2 algorithm
[46] in order to obtain the compression ratio and the compressed file size which are going to
be used in later analysis of the dataset. This values represent the actual effective information
within the file, which may be an important parameter which affects in some way the number
of terms in the polynomial model.

4.2 Genetic Multivariate Polynomial Model Evaluation

The genetic polynomial model is implemented in a specialized software. This software runs
the algorithms in the methodology to generate a multivariate polynomial model from a
dataset. The evaluation of the 46 experiments (32 for training and 14 for testing) was
made with the original software. Each problem took about 2 hours to get evaluated. This
software lasts too much for large parameter values (i.e. terms in the polynomial > 10)
and relatively large volumes of data (let us say tuples > 1500 and attributes > 10). To
improve the performance of the methodology this software is replicated using programing
language c++. The use of pointers made this new version about 4 times faster (and in some
cases generating more accurate models than the original one) and was used to generate the
multivariate polynomial models for the experiments shown in the section of cases of study.

In the newly developed software the data files must be defined and some parameters
adjusted as seen in figure 4.1.

Figure 4.1: Parameters configuration.

In the box:



CHAPTER 4. EXPERIMENTATION METHODOLOGY 25

1. Number of Terms is user specified and sets the number of terms the polynomial will
have.

2. Quasi-Minimax indicates that the Ascent Algorithm will not stop when the convergence
condition is reached but rather when 1− εφ/εθ is less or equal than the value specified
in the quasi-minimax box.

3. Stabilization Factor indicates the factor δ by which the data is going to be stabilized
as mention before.

4. Cross Probability stands for the cross probability of the EGA and is the probability of
two individuals to perform the cross over procedure.

5. Mutation Probability is the mutation probability of th EGA which indicates the prob-
ability of every bit in the individuals to change.

6. Individuals and Generations is the number of individuals in the EGA and generations
is the number of iterations the algorithm will run.

7. Optimize indicates which error function will be the objective function of the EGA to
be minimized.

8. Generations establishes the number of generations of the EGA.

9. Individuals is the number of individuals in each generation of the EGA.

10. Maximum Degree is the degree of the polynomial model. This value should be one of
the possible values shown in table 3.1.

To test the first 32 datasets the parameters were set as follows: the quasi-minimax value
was set to 5%, the regularization factor value is 10−6, the cross probability was established
to 1 to ensure the individuals always do the crossover procedure, the mutation probability
is set to 0.05, the number of individuals was set to 50 and the number of generations to
100 and the minimizing error function is set to RMS in all the cases. The number of terms
varies from 3 to 15 taking the values 3,6,9,12 and 15 to test the performance of the algorithm
in each case (Table 4.1). To train the model 80% of the whole data was used as training
set and the remaining 20% as test set. The evaluation of each problem in each of the term
values took up to 1 hour depending on various characteristics of the dataset as the number
of fields, the number of records and the number of terms in the polynomial model. In some
cases the software outcome had repeated terms (i.e. it has the same variables with the same
exponents) and the number of terms is reduced.

From the five experimental values obtained (one for each term value tested) we find an
approximated relationship RMSerror = f(T ), where T is the number of terms. To do this,
a regression tool (shown in figure 4.2) is used to find the equation which better the five
points given by the pairs (RMS error, number of terms) obtained from the evaluation of the
algorithm.



CHAPTER 4. EXPERIMENTATION METHODOLOGY 26

Number of Terms Resulting RMS

3 0.264978493
6 0.257745103
9 0.294190045
10 0.328746804
13 0.312208313

Table 4.1: RMS error is calculated for each value of T

Figure 4.2: Regression tool[47] to find the error as function of the number of terms.



CHAPTER 4. EXPERIMENTATION METHODOLOGY 27

Then we obtain the full range of values of the RMS errors evaluating the calculated
equation with missing number of terms in [3, 15] ⊂ Z. In the case of the example of the
figure 4.2 the calculated equation which approximates the five points is y = a+ bcos(cx+ d)
where a = 0.29941952, b = 0.03878902, c = 2.36955707, d = 1.95233267. With the full range
in hand now we can calculate the average RMS error and the standard deviation.

Number of Terms Resulting RMS

3 0.264978493
4 0.315765152
5 0.31224719
6 0.257745103
7 0.33635578
8 0.281217922
9 0.294190045
10 0.328746804
11 0.261903206
12 0.31942511
13 0.312208313

Table 4.2: The full range of values is calculated from the approximating equation

The minimum error is calculated from this range of values. Recalling the Chebyshev
theorem[48]:

P (µT − kσT ≤ T ≤ µT + kσT ) > 1− 1

k2
(4.4)

and making k = 3, the probability of finding the minimum expected error 3 standard devia-
tions below the average value is ≈ 88%. For the example of the table 4.2, σ = 0.028110234,
µ = 0.298616647 and the minimum expected error = µ− 3σ = 0.214285945. Afterwards, the
number of terms is put as function of the RMS error and a new approximation equation is
calculated from this values. The approximation equation calculated for the values in table
4.2 is of the form y = (a+bx)

1+cx+dx2
with coefficients a = 3.99, b = −15.1, c = −5.48, d = 6.41.

Evaluating the minimum expected error in the equation we find the expected value of terms
to minimize the error in the data set.

In table 4.3 it is shown the name of the evaluated datasets and the information which led
to the expected number of terms(T) which yields the minimum RMS error when generating
a multivariate polynomial model. As it is seen, the information which was extracted from
each dataset are: the number of attributes (or fields), the number of tuples, the size in bytes
of the dataset, the compressed size of the dataset in bytes and the ratio of the compression
of the file.



CHAPTER 4. EXPERIMENTATION METHODOLOGY 28

ID Dataset Name # Attributes # Tuples Size Comp Size Comp Ratio Expected T

1 Breast Cancer wisconsin 10 364 38121 1003 38.0070 8
2 Protein localization sites 7 336 28140 7548 3.7281 7
3 Servomechanism 13 167 22610 771 29.3256 6
4 Yeast 9 1484 140066 32021 4.3742 7
5 Abalone 11 3133 360864 39891 9.0463 6
6 Car Evaluation 22 1728 216384 34636 6.2474 10
7 CPU 36 209 28398 5348 5.3100 9
8 Hepatitis 16 125 30384 5906 5.1446 7
9 Wine 14 125 25986 8876 2.9277 13
10 IRIS 4 150 9120 2685 3.3966 5
11 Facebook 21 500 55200 14521 3.8014 6
12 Whole Sale 10 440 46112 13649 3.3784 8
13 3D road network 2 871 53261 15941 3.3400 10
14 Air quality 8 1200 217522 52252 4.1600 6
15 Air foil self noise 5 1503 182089 43915 4.1500 4
16 Concrete strength 8 1030 18752 52062 3.5900 8
17 Auto mpg 6 398 64368 14798 4.3500 5
18 Credit approval 15 690 215937 42663 5.0600 6
19 Gas turbine propulsion 2 1000 966816 259129 3.7300 5
20 Energy efficiency 11 768 185506 36553 5.0700 9
21 Fertility diagnosis 24 100 50934 8950 5.6900 6
22 Student knowledge 5 403 48989 11119 4.4100 5
23 Ecoli 7 336 54386 12223 4.4500 10
24 Glass type 5 214 43368 11014 3.9400 1
25 Indian liver 10 583 129229 28143 4.5900 10
26 Steel plates 22 1000 461770 114179 4.0400 6
27 Vertebral column 7 310 50200 13628 3.6800 11
28 Bank note authentication 4 500 138766 38100 3.6400 6
29 Leaves 9 340 68694 19654 3.4951 9
30 Mammographic masses 5 835 101261 18568 5.4535 9
31 Indian woman diabetes 8 768 104448 30897 3.3805 9
32 Seeds 4 210 15960 5836 2.7347 7

Table 4.3: Resulting number of terms which yielded the minimum RMS error from the
evaluation of the methodology



CHAPTER 4. EXPERIMENTATION METHODOLOGY 29

To find some relation between the number of terms and the features which were extracted
from the datasets we put the expected number of terms in function of each one of them
(Attributes, Tuples, Size, Compression Size and Compression Ratio). As we can see from the
Table 4.3 there are some outliers (as the abalone dataset which presents very large values in
comparison to the other datasets). These outliers were omitted in this first analysis to focus
on the other data. In the scatter plots shown in figures from 4.3 to 4.7 we can observe that
the number of terms behaves in accordance to the features. The plots suggest that when the
values of the features are small the number of terms seem to agglomerate in a different way
than the case when the values are large. However, it is not clear that there exists a linear
relation between each one of these features separately and the number of terms. This is fine
since the aim of this work is to find a relationship of this features of the integrated data and
a suitable number of terms. To find out whether there is a higher order relationship between
the data collected a MLPN is used and the results are analyzed.

The conclusion from this first analysis is that there may be a higher degree relationship
(which is why we used a MLPN) for the gathered data and the results may then be analyzed
and tested as illustrated in figures from 4.3 to 4.7.

Figure 4.3: Terms as function of compressed size



CHAPTER 4. EXPERIMENTATION METHODOLOGY 30

Figure 4.4: Terms as function of number of attributes

Figure 4.5: Terms as function of compression rate



CHAPTER 4. EXPERIMENTATION METHODOLOGY 31

Figure 4.6: Terms as function of number of tuples

Figure 4.7: Terms as function of size in bytes



Chapter 5

Determining the Number of Terms

As mentioned before, a MLPN was used to find the relationships between the features of a
dataset and a desired number of terms in the polynomial model. The data must be scaled to
the range [0, 1). Therefore, before training a MLPN the datasets must be preprocessed. To
do so the same methodology described in the previous chapter is applied to the data collected
shown in table 4.3. The preprocess is described next.

1. More data is created using natural splines. During this process the data is stabilized.
The data is augmented up to 500 tuples.

2. The data is scaled in the range [0, 1)

3. A correlation analysis is made, and the results show that the variables size of the file
and compressed size are correlated with a > 90% of relevance so the size of the file
variable is removed from the final dataset.

4. The dataset is compressed to obtain the compression ratio (cr ≈ 2.578893) with which
we can calculate the effective sample size, i.e. the effective number of tuples which may
contain the necessary information to be representative of the population.

5. The number of tuples for the effective sample size is s = 500/2.578893 ≈ 194 tuples,
with this piece of information we calculate the number of hidden neurons as done in [9]
in the architecture of the neural network (figure 5.1).

The dataset is divided in train and test sets (80% and 20% respectively) the architecture
of the MLPN was tuned varying the values of the parameters to find the best configuration
of parameters which are described next.

The four input variables correspond to: 1) the number of tuples in the dataset, 2) the
number of attributes, 3) the compressed size of the data set and 4) the compression rate.
The MLPN has one hidden layer as the UAT suggests, the number of hidden neurons are
tested with values from 1 to 3 neurons to ensure that 2 hidden neurons are enough to train
the MLPN. The activation function in the hidden layer was tested with hyperbolic tangent

32



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 33

Figure 5.1: Calculation of hidden neurons in MLPN

function, logistic function and linear function. The learning strategy used is the well known
backpropagation training algorithm. To improve convergence the learning rate is set in the
hidden and output layers. The learning rate was tested in the hidden layer with the values
.1, .2, .3 and .25, on the other hand the learning rate in the output layer was tested for
the values .1, .01 and .001. In the learning process a momentum term was added. Adding
momentum allows the adjustments on the weights to depend also on the previous changes.
If the momentum is equal to 0, the change depends only on the gradient, while a value of 1
means that the change will only depend on the last change. The value of the momentum in
the hidden and output layers was tested for values 0.3, 0.5 and .8. The weights were initialized
with uniform random numbers in the range [−0.1, 0.1] ∈ R. The learning strategy used was
stochastic in which each input creates a weight adjustment. The MLPN is trained for 10,000
epochs with a test every 100 epochs.

To implement and train the MLPN architecture the software Data Engine[49] was used.
After testing several configurations of the architecture of the MLPN, the best results were
obtained with the following values.

• Architecture

– Input Layer

∗ Number of Neurons = 4

∗ Activation Function = Linear

– Hidden Layer

∗ Number of Neurons = 2

∗ Activation Function = Logistic

– Output Layer

∗ Number of Neurons = 1

∗ Activation Function = Linear

– Number of connections = 10

• Learning Method

– Learning = Backpropagation



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 34

– Learning Strategy = Stochastic Learning

–

• Learning Parameters

– Hidden Layer

∗ Learning Rate = 0.25

∗ Momentum = 0.5

– Output Layer

∗ Learning Rate = 0.001

∗ Momentum = 0.8

In figure 5.2 we can see the architecture of the trained MLPN. There were in total 10
connections in the hidden layer denoted with wij where i = 0, ...4 for the input neurons (and
the bias input) and j = 1, 2 for the hidden neurons and the bias. In the output layer there are
3 connections denoted with w′j1. The output of the MLPN is a function represented by the
trained model which yields the number of terms(T) that induces the minimum RMS error in
the model.

Figure 5.2: Architecture and connections of the trained MLPN

The model was trained and the learning curve presented during the epochs is shown in
figure 5.3. It is see that after a few epochs the RMS error does not change significantly.

After the MLPN was trained with the best configuration of parameters the RMS errors
shown in table 5.1 indicate that, in fact, there exists a relationship of the number of terms
as function of the characteristics gathered. This value is enough to try to establish a search
bound for the number of terms. Moreover the trained MLPN can be used as a tool to calculate
the terms in a polynomial model which leads to the minimum error given the characteristics



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 35

Figure 5.3: MLPN learning curve.

Max. Training Error 0.49867762

RMS Training Error 0.12281852

Max. Test Error 0.45594774

RMS Test Error 0.11719234

Table 5.1: Best training and test errors of the MLPN

with which the MLPN was trained (number of attributes, number of tuples, compressed file
size and compression ratio).

The weights for the connections of the MLPN are shown in table 5.2. These values plus the
activation functions depicted above express the relationship of the extracted characteristics of
a dataset and the optimum number of terms such that the RMS error of a multivariate poly-
nomial model generated with the methodology studied in this work is, with high probability,
the minimum within a range of possible values. These weights determine the architecture of
the MLPN to allow us to build a program that can calculate this parameter (the number of
terms) in an automated way.

The next step is to validate it against the remaining experiments (14 experiments). The
data of the experiments were preprocessed the same way as the first 32 experiments. The
information obtained from the preprocessing step is shown in table 5.3. This information was
fed to the MLPN to get the expected number of terms in the polynomial model which yields
the best fit error. In table 5.4 we can observe the number of terms (Estimated T ) which are
expected to be near the optimum fit. In the table it is shown near values for the number of
terms are evaluated (RMS(T ± 2)) to confirm that the calculated value is, or is near, to the
suitable one. In each row of the table 5.4 the lower RMS is highlighted to make notice of the
number of terms which resulted in that error.

In figure 5.4 we can see that in most cases the optimum value of the number of terms is
within T ± 2. As mentioned before, the experiments are of heterogeneous nature. In table
5.4 the actual values of the RMS errors given by the tested terms are shown. Also it is seen
the estimated number of terms given by the MLPN which is expected to yield the optimum
error value. These values (the optimum number of terms) are obtained from the information



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 36

First Layer

Weights Values

w0,1 9.93878

w0,2 −1.277238

w1,1 12.794103

w1,2 2.149855

w2,1 −32.754846

w2,2 9.336392

w3,1 1.290772

w3,2 −8.214893

w4,1 8.711606

w4,2 −21.087847

Second Layer

Weights Values

w′0,1 −0.018833

w′1,1 0.452167

w′2,1 0.531239

Table 5.2: Weights of the MLPN which calculates the optimum number of terms of a multi-
variate polynomial model

ID DB Name # Attributes # Tuples compressed size compression ratio

1 pima indian diabetes database 8 768 32,360 3.227688

2 yacht hydrodynamics 6 308 9,174 3.558752

3 image segmentation 20 2310 213,221 3.42

4 Analizing categorical data 7 900 25,627 4.249424

5 appendicitis 7 106 3,024 3.189815

6 balance 4 625 10,881 4.365407

7 baseball salaries 13 337 21,125 3.366011

8 hayes-roth 4 160 298 22.013422

9 house prices 15 1300 111,601 2.807322

10 laser 4 993 21,357 3.533642

11 mv synthetic 10 1300 75,388 2.862524

12 phonems 5 1200 38,677 2.823383

13 treasury 5 1049 36,651 2.60454

14 weather izmir 7 1461 53,229 3.32114

Table 5.3: Validation experiments



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 37

ID Estimated T Rounded T RMS(T-2) RMS(T-1) RMS(T) RMS(T+1) RMS(T+2)

1 8.6634990936 9 0.412718594 0.406120106 0.4200713649 0.410491696 0.418528407

2 7.4266991038 7 0.037526053 0.061839319 0.03250066 0.031067453 0.032766126

3 2.8167562596 3 0.207598173 0.214679407 0.229129966 0.224681547 0.225307872

4 8.477513871 8 0.067469116 0.050167953 0.04093897 0.043811914 0.04796777

5 7.2928672806 7 0.337443754 0.319763624 0.318348383 0.313419036 0.313209334

6 7.7389574277 8 0.340522415 0.325661129 0.334526005 0.308926934 0.324996133

7 7.7052644686 8 0.119055026 0.11559727 0.108739684 0.124787914 0.117380777

8 6.2126030641 6 0.258552437 0.245556743 0.241290077 0.26038423 0.269854381

9 8.0014918908 8 0.101553883 0.096687173 0.101330919 0.102006909 0.100162057

10 8.5616749213 9 0.086605404 0.0839230232 0.082046364 0.078676946 0.076810137

11 7.5255321089 8 0.074918077 0.063573936 0.076393697 0.056997275 0.06215833

12 7.0866960532 7 0.395806995 0.400738082 0.405261065 0.392372343 0.399877438

13 8.6697108438 9 0.068657151 0.068666017 0.062620414 0.061057446 0.062685869

14 5.7585208346 6 0.14429961 0.137041337 0.130248103 0.140362715 0.135891573

Table 5.4: Terms calculated by MLPN on validation experiments

Figure 5.4: RMS errors calculated with near values of T.



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 38

shown in the table 5.3. Even when trained with different kind of experiments the objective
of estimating a proper number of terms in this polynomial model is achieved. With the
calculated number of terms of the test problems it is possible to set an appropriate lower
bound of T calculating the mean (µT ) and the standard deviation (σT ) of the resulting number
of terms given by the trained MLPN. This is derived from Chebyshev’s theorem (equation 4.4)
which does not assume that the form of the distribution of T, making these values general.
Thus, given for example k = 2.5, and having µT = 7.2812705158 and σT = 1.55237372.

P (3.4003362157 ≤ T ≤ 11.1622048159) > .84 (5.1)

Without loss of generality if Tmin = µT − 2.5σT then P (T > Tmin) > .84 which is a good
interval to start with. To start looking for a good value for T it is enough (given the previous
value of k) to search in the interval [3, 11] ∈ Z.

5.1 Cases of Study

In this section 5 problems are selected to illustrate the performance of the methodology stud-
ied and replicated in this work. The resulting multivariate polynomial model was generated
with the new version of the specialized software with which the first experiments were eval-
uated. The datasets were preprocessed the same way the training data was and is described
shortly in each case. The description of the datasets is provided in the source repositories.
The number of terms selected in these experiments are those of the minimum RMS error
shown in figure 5.4. It can be noticed that in some of the cases the RMS error was lower
than the values obtained from the old version of the software. The selected experiments are:
1) Yatch Hydrodynamics with T=8, 2) Analyzing Categorical Data with T=8, 3) Laser with
T=11, 4) mv synthetic with T=9 and 5) Treasury with T=8. In some of the cases the results
obtained were better than the ones in the validation process. The descriptions of the datasets
are extracted from UCI Machine Learning Repository[41] and KEEL repository[42].

5.1.1 Yacht Hydrodynamics

Dataset description: Variations concern hull geometry coefficients and the Froude number,
the measured variable is the residuary resistance per unit weight of displacement (number
7):

1. Longitudinal position of the center of buoyancy

2. Prismatic coefficient

3. Length-displacement ratio

4. Beam-draught ratio

5. Length-beam ratio



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 39

6. Froude number

7. Residuary resistance per unit weight of displacement

Preprocessing: The data was stabilized with a factor of 0.000001 and then scaled into
the range [0, 1].

The polynomial model generated with 8 terms with the following coefficients and combi-
nation of variables is shown in table 5.5

Resulting Model:

Coefficient Variables
0.0131043094 x4x

10
6

0.016130096 x1
0.0137365978 x53x

2
5

−0.0087693701 -
−0.0304941186 x33
0.9395045761 x56
−0.2292907978 x2x

4
6

0.0581267797 x72

Table 5.5: Polynomial model for Yacht Dataset

The test RMS error is 0.0263822472 and the performance of the model is shown in the
graphic in figure 5.5.

Figure 5.5: Recall graph for yacht dataset.



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 40

5.1.2 Analyzing Categorical Data

Dataset description: This section describes main characteristics of the ANACAT data set
and its attributes. This is one of the data sets used in the book Analyzing Categorical Data
by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The data contains information
about the decisions taken by a supreme court. The attribute description and domain are
presented next.

1. Actions taken, domain values: [0.0, 11.0]

2. Liberal, domain values: [0.0, 1.0]

3. Unconstitutional, domain values: [0.0, 1.0]

4. Precedent alteration, domain values: [0.0, 1.0]

5. Unanimous, domain values: [0.0, 1.0]

6. Year of decision, domain values: [1953.0, 1988.0]

7. Lower court disagreement, domain values: [0.0, 1.0]

8. Log exposure, domain values: [0.0, 2.3]

Preprocessing: This data was stabilized with a factor of 0.000001 and then scaled into
the range [0, 1].

The polynomial model generated with 8 terms with the following coefficients and combi-
nation of variables is shown in table 5.6.

Resulting Model:

Coefficient Variables
0.139010414487 x4x

4
6

−0.629731670578 x1x22

−0.916572823218 x96
0.003401718461 x2x

4
4

0.755120351943 x31x
6
2

0.025789136673 x6
0.006570008701 x2x

2
3

0.990483840766 −

Table 5.6: Polynomial model for ANACAT Dataset

The test RMS error is 0.0429532553 and the performance of the model is shown in the
graphic in figure 5.6.



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 41

Figure 5.6: Recall graph for ANACAT dataset.

5.1.3 Laser

Dataset description: This data set was originally a univariate time record of a single
observed quantity, recorded from a Far-Infrared-Laser in a chaotic state. The original set
1000 points has been adapted for regression by considering every set of four consecutive
values as inputs, and the next one as output. Duplicated instances has been removed. The
dataset is meant to be for regression tasks. It was generated in a laboratory, it contains 4
features, 993 instances and has no missing values. The attributes description and domain
are presented next.

1. Input1, domain values: [2.0, 255.0]

2. Input2, domain values: [2.0, 255.0]

3. Input3, domain values: [2.0, 255.0]

4. Input4, domain values: [2.0, 255.0]

5. Output, domain values: [0.0, 255.0]

Preprocessing: The data was stabilized with a factor of 0.000005 and then scaled into
the range [0, 1].

The polynomial model generated with 11 terms with the following coefficients and com-
bination of variables is shown in table 5.7.

Resulting Model:

The test RMS error is 0.0735489535 and the performance of the model is shown in the
graphic in figure 5.7.



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 42

Coefficient Variables
−6.5820194996 x21x

3
4

−21.5876022399 x2x
2
4

0.471648252 x1
3.3484027071 x21x4
1.0830207183 x4
−6.1327683209 x53x

4
4

−0.1930334406 x31
0.0237993135 −

26165.9848278958 x21x
3
2x

4
4

−18.9788413155 x41x2
−2.249784998 x1x3x4

Table 5.7: Polynomial model for Laser Dataset

Figure 5.7: Recall graph for Laser dataset.

5.1.4 Mv Synthetic

Dataset description: This is an artificial data set with dependencies between the attribute
values. The cases are generated using a fixed method (see KEEL repository reference for
more information). The variables and their domain are described next.

1. X1, domain values: [−5.0, 5.0]

2. X2, domain values: [−15.0,−10.0]

3. X3, domain values: [0, 2]

4. X4, domain values: [−7.5, 2.5]

5. X5, domain values: [−1.0, 1.0]



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 43

6. X6, domain values: [−37.5, 12.5]

7. X7, domain values: [0, 1]

8. X8, domain values: [0, 1]

9. X9, domain values: [100.0, 500.0]

10. X10, domain values: [1000.0, 1200.0]

11. Y, domain values: [−41.8222, 2.49978]

Preprocessing: The data was stabilized with a factor of 0.000001 and scaled into range
[0, 1]. After a correlation analysis no strong correlations were found. The polynomial model
generated with 9 terms with the following coefficients and combination of variables is shown
in table 5.8.

Resulting Model:

Coefficient Variables
6.133907E − 06 x2x

2
5

0.8220042186 x38
−2.940906E − 06 x1x5x7
−0.0119412039 −
−0.0003841958 x8

0.225612967 x1
−1.024745422 x6x

2
8

1.1220534102 x6
−0.1217373969 x31x

2
8

Table 5.8: Polynomial model for Mv Synthetic Dataset

The test RMS error is 0.0402891528 and the performance of the model is shown in the
graphic in figure 5.8.

5.1.5 Treasury

Dataset description: This file contains the Economic data information of USA from
01/04/1980 to 02/04/2000 on a weekly basis. From given features, the goal is to predict
1 Month CD Rate. The dataset was meant to be a regression problem, it was obtained from
the real world, contains 15 features with 1049 instances and no missing values. The attributes
description and domain are presented next.

1. (v1)1Y-CMaturityRate, domain values: [77.055, 142.645]

2. (v2)DemandDeposits, domain values: [105.6, 533.0]



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 44

Figure 5.8: Recall graph for Mv Synthetic Dataset

3. (v3)30Y-CMortgageRate, domain values: [3.02, 17.15]

4. (v4)FederalFunds, domain values: [225.8, 412.1]

5. (v5)3M-Rate-AuctionAverage, domain values: [6.49, 18.63]

6. (v6)MoneyStock, domain values: [2.86, 20.06]

7. (v7)3M-Rate-SecondaryMarket, domain values: [2.67, 16.75]

8. (v8)CheckableDeposits , domain values: [381.1, 1154.1]

9. (v9)3Y-CMaturityRate, domain values: [2.69, 16.76]

10. (v10)LoansLeases, domain values: [269.9, 803.4]

11. (v11)5Y-CMaturityRate , domain values: [4.09, 16.47]

12. (v12)SavingsDeposits, domain values: [868.1, 3550.3]

13. (v13)BankCredit, domain values: [4.17, 16.13]

14. (v14)TradeCurrencies, domain values: [175.6, 1758.1]

15. (v15)Currency, domain values: [1130.9, 4809.2]

16. (f1)1MonthCDRate, domain values: [3.02, 20.76]

Preprocessing: This dataset was also stabilized with a factor of 0.000001 and scaled
into range [0, 1]. When a correlation analysis was made many of the variables were correlated
(with a correlation rate > .95). In the figure 5.9 the correlated variables are shown. The



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 45

variables which names have a black mark on the left side are removed from the dataset as
they may contribute to the learning algorithm the same way as the other variables they are
correlated to.

Figure 5.9: Correlated variables of treasury dataset.

The polynomial model generated with 8 terms with the following coefficients and combi-
nation of variables is shown in table 5.9.

Resulting Model:

Coefficient Variables
0.7196892288 x5
76.5866688178 x1x

3
2x

3
4

0.1710131977 x41x2
−6.6544156776 x1x2x4
1.5053294251 x21x3
−0.4845971345 x4x

2
5

1.5111485565 x2
−4.9529806175 x42x4
−0.4229015954 −
0.2365384053 x1

Table 5.9: Polynomial model for Treasury Dataset

The test RMS error is 0.0610590967 and the performance of the model is shown in the
graphic in figure 5.10.



CHAPTER 5. DETERMINING THE NUMBER OF TERMS 46

Figure 5.10: Recall graph for Treasury dataset.



Chapter 6

Conclusions

In this work a methodology to generate a multivariate polynomial model was studied, eval-
uated and replicated. As discussed, one of the parameters which is difficult to tune is the
number of terms that will conform the model. In order to improve the parameter tunning
of this methodology a set of experimental data was evaluated with a specialized software
that implements the algorithms to generate the model. The experimental data took about
80 hours to get evaluated. To overcome this issue a new version of this software was devel-
oped. The new version is implemented in C++ with the use of pointers to optimize vector
operations. It also was able to run up to 4 times faster and, in some cases, generate more
accurate models. Some case studies were presented to show the performance of this new
version. For completeness of the methodology, the resulting weights of the trained MLPN
were implemented into a tool capable of calculating the appropriate number of terms in the
multivariate polynomial model. Functionality to apply some preprocessing job to data (as
scaling, stabilizing and compressing analysis) is added to this software.

As stated in the hypothesis we could find close bounds in which we can find a suitable
value for the number of terms in the genetic polynomial model that was studied in this work.
The search was restricted to the interval [1, 15] ∈ Z since we wanted to have a manageable
polynomial which can be further analyzed. The preprocessing phase was proposed to establish
a standard in the format of the data to be used for the methodology to generate the model.
Therefore no matter how complex the structure of the data could be (it may have large
amount of variables or data rows) after preprocessing it will be numerical data scaled in [0, 1].
In the case there is few the data it will be augmented, in the contrary case, a representative
subset will be selected to work with.

The MLPN tool allows us to avoid unnecessary search through the range of the number of
terms, making the use of this method more efficient. As seen in the case studies, the proper
number of terms obtained from the recall experiments may present a better performance.
An interesting thing that can be noticed is that in spite of the heterogeneous nature of the
datasets used to train and test the MLPN, there was a relationship found in the structure
of the datasets and a proper value of the number of terms in the generated multivariate
polynomial model. This allows the MLPN to work with any kind of problem.

For future works it would be interesting to analyze the relationships of the resulting

47



CHAPTER 6. CONCLUSIONS 48

multivariate polynomial models. It would be possible to extend the methodology to work
not only with polynomials but enable the genetic algorithm to somehow encode other non-
linear functions into the individuals and test the methodology with this new characteristic.



Bibliography

[1] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[2] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin, Neural networks and learning
machines. Pearson Upper Saddle River, NJ, USA:, 2009, vol. 3.

[3] M. D. Buhmann, Radial basis functions: theory and implementations. Cambridge
university press, 2003, vol. 12.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

[5] M. S. Pukish, P. Różycki, and B. M. Wilamowski, “Polynet: A polynomial-based learn-
ing machine for universal approximation,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 3, pp. 708–716, 2015.

[6] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation and
model selection,” in Ijcai, vol. 14, no. 2. Montreal, Canada, 1995, pp. 1137–1145.

[7] Y. Sakamoto, M. Ishiguro, and G. Kitagawa, “Akaike information criterion statistics,”
Dordrecht, The Netherlands: D. Reidel, vol. 81, 1986.

[8] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[9] A. Kuri-Morales, “Closed determination of the number of neurons in the hidden layer of
a multi-layered perceptron network,” Soft Computing, vol. 21, no. 3, pp. 597–609, 2017.

[10] T. Ash, “Dynamic node creation in backpropagation networks,” Connection science,
vol. 1, no. 4, pp. 365–375, 1989.

[11] A. Kuri-Morales and A. Cartas-Ayala, “Polynomial multivariate approximation with
genetic algorithms,” in Canadian Conference on Artificial Intelligence. Springer, 2014,
pp. 307–312.

[12] M. Darbor, L. Faramarzi, and M. Sharifzadeh, “Performance assessment of rotary
drilling using non-linear multiple regression analysis and multilayer perceptron neural
network,” Bulletin of Engineering Geology and the Environment, pp. 1–13, 2017.

49



BIBLIOGRAPHY 50

[13] S. S. Ganesh, P. Arulmozhivarman, and R. Tatavarti, “Forecasting air quality index
using an ensemble of artificial neural networks and regression models,” Journal of Intel-
ligent Systems, 2017.

[14] H. B. Bashir, S. S. Ahmad, and M. N. Nawaz, “Modeling some plant species distribution
against environmental gradients using multivariate regression models,” Kuwait Journal
of Science, vol. 44, no. 4, 2017.

[15] A. Nizamitdinov, Y. Şöhret, A. Shamilov, and T. H. Karakoç, “Statistical model devel-
opment for military aircraft engine exhaust emissions data,” in Advances in Sustainable
Aviation. Springer, 2018, pp. 177–187.

[16] K.-A. Toh, Q.-L. Tran, and D. Srinivasan, “Benchmarking a reduced multivariate poly-
nomial pattern classifier,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 26, no. 6, pp. 740–755, 2004.

[17] K.-A. Toh, “Pattern classification adopting multivariate polynomials,” in Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth In-
ternational Conference on. IEEE, 2014, pp. 1–6.

[18] D. Roche, “Introduction to symbolic computation,” 2009.

[19] L. Moutinho and G. D. Hutcheson, The SAGE dictionary of quantitative management
research. Sage, 2011.

[20] C. M. Dayton, “Logistic regression analysis,” Stat, pp. 474–574, 1992.

[21] H. Thaden, “Effect separation in regression models with multiple scales,” Ph.D. disser-
tation, Georg-August-Universität Göttingen, 2017.

[22] S. D. Marchi, “Lectures on multivariate polynomial interpolation,” 2015.

[23] T. A.-R. A.-M. Al et al., “A comparison study of linear and nonlinear regression models,”
Journal of Progressive Research in Mathematics, vol. 12, no. 4, pp. 2039–2056, 2017.

[24] J. M. Acevedo Valle, K. A. Trejo Ramı́rez, and C. Angulo Bahón, “Multivariate re-
gression with incremental learning of gaussian mixture models,” in Recent Advances in
Artificial Intelligence Research and Development: Proceedings of the 20th International
Conference of the Catalan Association for Artificial Intelligence, Deltebre, Terres de
l’Ebre, Spain, October 25–27, 2017. IOS Press, 2017, pp. 196–205.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the em algorithm,” Journal of the royal statistical society. Series B (method-
ological), pp. 1–38, 1977.

[26] J. M. Cortina, “Interaction, nonlinearity, and multicollinearity: Implications for multiple
regression,” Journal of Management, vol. 19, no. 4, pp. 915–922, 1993.



BIBLIOGRAPHY 51

[27] M. Tian and Y. Su, “Multiple nonlinear regression model for predicting the optical per-
formances of dielectric crossed compound parabolic concentrator (dccpc),” Solar Energy,
vol. 159, pp. 212–225, 2018.

[28] P. Somarathna, B. Minasny, and B. P. Malone, “More data or a better model? figuring
out what matters most for the spatial prediction of soil carbon,” Soil Science Society of
America Journal, 2017.

[29] A. G. Ivakhnenko, “The group method of data of handling ; a rival of the method of
stochastic approximation,” Soviet Automatic Control, vol. 13, pp. 43–55, 1968. [Online].
Available: https://ci.nii.ac.jp/naid/10004319713/en/

[30] ——, “Polynomial theory of complex systems,” IEEE transactions on Systems, Man,
and Cybernetics, no. 4, pp. 364–378, 1971.

[31] A. W. Moore, J. Schneider, and K. Deng, “E cient locally weighted polynomial regression
predictions,” in Proceedings of the 1997 International Machine Learning Conference.
Morgan Kaufmann. Citeseer, 1997.

[32] V. Shaposhnyk, A. E. Villa, and T. Aksenova, “Advances in structural modeling robust
to outliers in explanatory and response variables,” in Neural Networks (IJCNN), The
2010 International Joint Conference on. IEEE, 2010, pp. 1–8.

[33] J. J. Buckley, T. Feuring, and Y. Hayashi, “Multivariate non-linear fuzzy regression,” in
Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International,
vol. 2. IEEE, 1999, pp. 714–718.

[34] A. F. Kuri-Morales, E. Aldana-Bobadilla, and I. López-Peña, “The best genetic algo-
rithm II,” in Mexican International Conference on Artificial Intelligence. Springer,
2013, pp. 16–29.

[35] E. Bishop, “A generalization of the stone-weierstrass theorem,” Pacific Journal of Math-
ematics, vol. 11, no. 3, pp. 777–783, 1961.

[36] K. R. Koornwinder T, ong R and S. R, NIST Handbook of Mathematical Functions.
Cambridge University Press, 2010.

[37] H. UGOWSKI, “Remarks on the ascent algorithm for the linear minimax problem,”
COMPEL - The international journal for computation and mathematics in electrical
and electronic engineering, vol. 8, no. 3, pp. 181–184, 1989. [Online]. Available:
https://doi.org/10.1108/eb010058

[38] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

[39] G. Rudolph, “Convergence analysis of canonical genetic algorithms,” IEEE transactions
on neural networks, vol. 5, no. 1, pp. 96–101, 1994.



BIBLIOGRAPHY 52

[40] A. K. Morales and C. V. Quezada, “A universal eclectic genetic algorithm for constrained
optimization,” in Proceedings of the 6th European congress on intelligent techniques and
soft computing, vol. 1, 1998, pp. 518–522.

[41] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[42] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and F. Her-
rera, “Keel data-mining software tool: data set repository, integration of algorithms and
experimental analysis framework.” Journal of Multiple-Valued Logic & Soft Computing,
vol. 17, 2011.

[43] A. Kuri-Morales, “Transforming mixed data bases for machine learning: A case study,”
visited on October 16, 2018. [Online]. Available: http://www.micai.org/2018/

[44] S. McKinley and M. Levine, “Cubic spline interpolation,” College of the Redwoods,
vol. 45, no. 1, pp. 1049–1060, 1998.

[45] L. F. Shampine and R. C. Allen, Numerical computing: an introduction. Harcourt
Brace College Publishers, 1973.

[46] C. Bloom, “Ppmz–high compression markov predictive coder,”
http://www.cbloom.com/src/ppmz.html acce[accessed 18 January 2009], 1999.

[47] D. G. Hyams, “Curve expert,” 2017. [Online]. Available: https://www.curveexpert.net/

[48] J. G. Saw, M. C. Yang, and T. C. Mo, “Chebyshev inequality with estimated mean and
variance,” The American Statistician, vol. 38, no. 2, pp. 130–132, 1984.

[49] J. Angstenberger, R. Weber, and W. Meier, “Dataengine: a software tool for intelligent
data analysis,” in Proceedings of WESCON ’94, Sept 1994, pp. 348–350.


	Portada
	Contents
	Chapter 1. Introduction
	Chapter 2. State of the Art
	Chapter 3. Genetic Multivariate Polynomial Approximation
	Chapter 4. Experimentation Methodology
	Chapter 5. Determining the Number of Terms
	Chapter 6. Conclusions
	Bibliography



