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Foreword

In a world full of misleading presentations of quantum mechanics, relativity, and
the physical sciences in general, it is of highest importance to learn things prop-
erly and from the right sources. That does not imply, however, that an intuitive,
reachable approach to the objects of study is not needed. Quantum mechanics
is how we study the physics of the very small, nothing more. It is challenging,
for it defies a lifetime of accumulated intuition. It is mesmerising, for it offers
a new outlook on physics and science itself, a whole different worldview. It is
complex, for it involves a large spectrum of seemingly unconnected branches of
knowledge. A lot of learning material is available to popularise both quantum
mechanics and the Theory of Relativity, as well as abundant specialised liter-
ature; there are not, however, many texts that can offer a “bridge” between a
basic state of comprehension and that of a senior undergraduate student, per-
haps even a way to link intuitive concepts to certain specialised technicalities.
One often finds oneself midway between two intellectual “levels” when trying to
understand some aspect of physics. Intuition plays an important role in under-
standing; it is therefore of uttermost importance to develop a feeling for physics,
just as it is to handle confidently the associated mathematical apparatus. Data
without interpretation is meager; mathematics without intuition is meaningless.
The purpose of this text is to expose the technical formalities of an introductory
version of quantum physics in such a way as to link them to a wide, structured
perspective of the subjects. It is a starting point to understand and demystify
the (perhaps) foundational, conceptual-necessities of such theory.

This text is divided into three chapters; each of them was written with a
slightly different purpose. Despite the way they are all interconnected, they can
be read separately. The first chapter is intended to explain, with an intuitive
approach, the actual experiments that motivated the creation of this new theory.
Whether by means of pure reasoning, mathematical insight, or simply experi-
mental data, quantum mechanics brings together a wide range of notions into a
whole new perspective, a brand new approach to the study of physical phenom-
ena. Instead of describing each of the experiments separately, and then trying
to assemble the different conclusions into a whole, structured theory, a discus-
sion on the notions of waves, particles, and the so-called ‘wave-particle duality’
intertwines these experimental conclusions with the historic standpoints of the
different scientists involved. The rest of chapter one is dedicated to the purpose
of presenting the most appealing conclusions of quantum theory, and a taste of
its mathematical formalism, wherein its beauty lies.

Just as chapter one presents a conceptual introduction to the physics of quan-
tum mechanics, chapter two could be described as an intuitive introduction to its
mathematical formalism. Most of modern physics (and its applications) is done
with the aid of quantum mechanics, but its mathematical foundations are often
hard to grasp since they involve at least a decent level of calculus, linear alge-
bra, group theory, probability theory, and complex analysis. Furthermore, most
of it is translated into Dirac’s notation, so the student interested in quantum
theory might find it useful to handle it confidently from the very beginning. In



contrast to any other physical description of Nature, the mathematical formali-
sation of quantum mechanics did not come from empirical knowledge, but vice
versa. Most of its notions come from theoretical explorations, and only after-
wards were they tested experimentally. This chapter is dedicated to the purpose
of explaining, with the aid of examples and visualisation, the mathematics one
needs to learn quantum mechanics comfortably and efficiently.

Chapter three is an outline of the main, controversial discussions that prevail,
even to this day, on the way quantum theory should be interpreted. From the
beginning, it was heavily scrutinised both by physicists, and philosophers; despite
its counter-intuitive nature, it continues to predict physical phenomena correctly,
and with great precision. In this chapter, the main postures are presented and
further discussed in a simple, straightforward way.

In summary, this text condenses a few years of conscientious thinking about
the best way to convey the details of such an intricate theory. Throughout the
first years of an average undergraduate programme, one usually has introduc-
tory courses on several branches of physics like analytical mechanics, thermo-
dynamics, electromagnetism, etc; each of them is a universe in itself, with their
own notation, examples, and fields of application. Likewise, one learns several
branches of mathematics, and then tries to bring all of these together to un-
derstand the language of quantum physics. This endeavour seems sometimes
overwhelming, and most texts focus on an in-depth analysis of one particular
branch, without trying to interrelate them. The goal of this text is precisely to
assemble these various topics and present them in a way that is useful for some-
one trying to grasp the nature of quantum theory, to ‘connect the dots,’ so to
speak. Hopefully, someone with an interest in an intuitive approach to the main
subjects of quantum mechanics will find it pleasant.

For the reader interested in a summarised version of the text, the paragraphs
marked with the symbol †† follow a parallel sequence that this reader might find
perhaps more welcoming than the entire text.
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Chapter 0





Præfatio: A Brief
Discussion on Knowledge

More often than not, one learns science with the aid of mathematics. Despite
an obstinate persistence to avoid this by distilling it from equations or num-
bers, one ends up paraphrasing the underlying mathematical relations in a way
that mathematics just seems to be absent, but it never really is. What is not
often done, however, is a critical analysis of the way we use, learn and think
of mathematics. How is it that the human brain, capable of logical reasoning,
understands mathematics?

There are essentially three aspects involved in an holistic appreciation of
mathematics, the first one being the natural process of logical reasoning, i.e.
the gradual construction of concepts through the assumption of a set of pre-
established facts. This is the way of school mathematics, in which we are taught
a series of basic, intrinsically primal concepts like that of numbers and the
subsequent idea of counting ; we further use them to build up gradually the
well-known operations of addition, multiplication, subtraction, and division.

With arithmetic, and further development, we manage to edify algebra, cal-
culus, and so forth. One could say this is a forward way of learning, since we
are provided with the elementary, constituent blocks, and we are expected to
build mathematics with them.

The second one is perhaps more logically obvious, however historically un-
achievable; it does not happen often in history that one unequivocally defines
concepts first, with perfect understanding of their meaning and extent, and
explore their consequences afterwards. A partial, intuitive understanding of
concepts comes first, exploration comes next, and formalisation comes third.
One does not question the given foundational entities during the learning pro-
cess; quite the contrary, they are assumed and gradually worked upon. E.g. a
question about the ontological nature of numbers, related to what numbers or
operations are, is out of the scope of school mathematics, not just the answer
to such questions, but the questions per se.

Because of the impossibility of permanently questioning the underlying struc-
ture at each and every step of the learning process, one must accept that knowl-
edge is built on seemingly unstable bases. It is only after the whole of the
arithmetical and algebraic apparatus has been extensively worked upon that
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one can take the time to step back, and ponder upon the formal meanings of
its constituent elements. If the former part of the learning process is in fact
forward, then the latter one could be said to go backwards, since it focuses on
the task of providing solid foundational backgrounds, making each and every
piece perfectly unambiguous, well-defined, and the whole system consistent.

Going backwards means asking questions, often very simple ones with in-
creasingly complex answers; it means revising the consistency of the definitions
we gave to the primal concepts and the interrelations between them, without
necessarily trying to develop the operational apparatus further. The formal
consistency of mathematics was pondered upon during the 19th century, mainly
as a matter of formality, but clear answers only appeared until the 20th cen-
tury. Proofs of consistency are a major subject of study within mathematical
logic, and their epistemological importance extends much further away than one
might guess at first glance1.

Lastly, it is the predominant role that depiction has had throughout the
history of mathematics that makes it worthy of being separately taken into
consideration. What we have learnt and discovered with the only help of intu-
ition and drawings is extraordinarily abundant; furthermore, there is profound
meaning underlying many mathematical ideas and, despite their complexity, it
can be easily conveyed through pictoric depiction. Depiction is associated to
geometry as a treatise on Earth and space, at least in its origins and develop-
ment in ancient Greece, but the true depth of its importance goes much further
than that. The mathematical depiction of space led to the possibility of taking
different, abstract spaces into consideration. It was only until the 19th century
when the first considerations of non-Euclidean geometry were explored.

Euclid wrote a treatise on geometry as a formal description of the space
around us, and it successfully portrays the structure of physical space as we
perceive it. Any other possibility would have seemed inevitably wrong, since it
did not describe space accurately. To our surprise, the discovery of spherical,
elliptic, and hyperbolic geometry meant a huge step forward in the investigation
of both real physical space and abstract mathematics2.

Diagrams and depictions have a heuristic value, but they do not, per se,
constitute a formal language. Our formal mathematical language was, however,
developed by means of diagrammatic depiction. Take, for instance, the equal
sign “=,” which was invented by the Welsh mathematician Robert Recorde in
1557 as a means to avoid the “tedious repetition” of the phrase is equal to.
The mere usage of a formal mathematical language exhibits the importance of
synthesising the wholeness of scientific thought; to this extent, equations are,
per se, a symbolic and diagrammatic means to convey sense. Despite the formal
meaning of their constituent symbols, they end up being used schematically or
diagrammatically and can thus, to a certain extent, be considered as formalised

1For an intuitive approach on the problem of consistency, Gödel’s theorems, and their
proofs see: NAGEL, E., et al (2001). Gödel’s Proof. New York University Press.

2An excellent introduction to analytical geometry and non-Euclidean geometries can be
found in: BRACHO, J. (2009). Introducción anaĺıtica a las geometŕıas. Fondo de Cultura
Económica
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depictions3.
By recreating the process of learning mathematical reasoning, we can recon-

struct its development throughout history and vice versa. We learn mathematics
almost precisely as humanity discovered (or invented) it; e.g. no one approaches
any subject for the first time by being provided with the most precise, formal
definitions (or solutions) for the most generalised cases known; we are shown, in
a very meticulous and succinct way, the path that led to the basic ideas, their
further development, and finally to their resolutions in the form of mathematical
syntax. In a way, we relive thousands of years of history during our personal
learning process. In the case of elementary mathematics, we are presented with
a plethora of notions, none of which we are allowed to question or argue. In-
stead of pondering about their ontological substance, we are supposed to grow
acquainted with them. In a way, they remain dogmatic assertions until we have
the (mathematical) maturity to examine them closely.

Once we become familiar with the operational methods, once we can fluently
handle the functional complexities to a certain degree, we go no further into
unpleasant, unnecessary complications. E.g. once we know how to multiply
three or four digits numbers, we find it pointless and perhaps annoying to try
to multiply five or six digits ones; we opt for the possibility of different, not
necessarily more complicated, knowledge4.

From the fully built mechanism of basic arithmetic, and with a bit of further
analysis and abstraction, we reach a point of deep conceptual necessity ; we
identify an epistemological need to see beyond the numbers and become sensitive
enough as to see the hidden properties of our arithmetical system. That which
lies beneath such familiar operations, is only to be found in the fertile realm of
algebra. Via this abstraction we bear witness to some of the deep interrelations
and properties of mathematical entities. From the most elementary algebraic
notions, and all the way to the most abstract ones (like those pertaining to
group theory, linear algebra, Lie Theory, etc), they all provide the mathematical
language with great means to express even the most unsuspected connections.

Once these relations are grasped, but now with algebra as a tool, and not as
an object of study, the progressive, constructive process evolves. Our “forward”
progression to achieve mathematical maturity unfolds as we refine our com-
prehension of deeper mathematical notions. More and more, powerful methods
appear as new mathematical objects come into existence. To unravel the hidden
and seemingly mysterious properties of such entities with ever-improving tools
and techniques becomes one of the process’ main goals.

3Feynman diagrams are a good example of how a diagrammatic depiction can convey
formal meaning, and connect an abstract thought with formal knowledge. Not only do they
formally represent abstract thought, they do it with a formal, operational logic, i.e. they are
a formal language from which one can deduce unequivocal results.

4An holistic view of physics involves experimentation, a process I have not included here as
an element of a complete appreciation of mathematics. It is a fundamental part of the human
endeavour, and constitutes the essence of our perception of the world around us; it shapes the
way we build knowledge and produce scientific thought.
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Every mathematical entity belongs in a definite (mathematical) place; it “in-
habits” a certain realm and not another. This classification system is important,
since it avoids contradictory notions5. At any level of abstraction, these entities
become unexpectedly mesmerising and intriguing; points, lines, paths, vectors,
surfaces, volumes, and even space itself, are part of these entities. Three di-
mensional objects constitute, however, only a few particular cases of interest;
one can eventually escape this “prison” of the third dimension and enter a won-
derful realm in multiple dimensions, where the notions of big and small, or far
and close are deprived of their usual meaning and the true nature of space is
revealed, this is the world of calculus and topology.

Calculus is where we can closely examine the very large and the utterly
small just for the sake of better understanding the space we live in (or the
different spaces we might just happen to live in). Topology allows us to speculate
about space itself, its shape, structure, and “texture”. This building method of
mathematics is exactly what is meant with the notion of “going forward,” not
in a sense of progress, but in the sense of a building process, i.e. we start up
with a few concepts and explore where we, amongst a handful of logical rules,
might just be swept off to. We explore a world that is different from our own
physical world, which we explore by means of experimentation, and yet this
abstract versions of space resemble our heuristic notions in at least some way,
shape, or form.

By the end of the 19th century there was a widespread conviction that sci-
ence, physics in particular, was an almost “complete” branch of human knowl-
edge. Mathematics was thriving, and with the exception of a list of 23 prob-
lems6, it seemed as though it was about to be “completed” as a formal, absolute,
consistent apparatus. David Hilbert (1862 - 1943), amongst other mathemati-
cians like Henri Poincaré (1854 - 1912), felt otherwise.

As suggested by Hilbert in his speech addressing the Second International
Congress of Mathematicians in Paris (1900), mathematics was supposed to face
the beginning of the century with the bold optimism of solving a few prob-
lems that would eventually “complete the puzzle,” and converge into a perfect
mathematical system.

The importance of mathematics in our conception of knowledge transcends
any geographical and chronological boundaries; it transcends even the artificial
boundaries between disciplines or different branches of knowledge, providing ev-
ery piece of our formal understanding of the Universe with a means to convey
truth and reason, even beyond the limits of humans’ lifespan. It is because of
formalised knowledge that we have managed to possess historic and scientific
consciousness. One of the 23 problems stated by Hilbert in his programme dealt
precisely with the task of now providing mathematics with formal grounds; more
precisely, it sought after a finite, concise proof that no contradiction could be

5Belonging means, in a set-theoretical sense, that every mathematical object is an element
amongst a collection of other elements of its kind, all contained in what is called a set

6Hilbert’s speech at the 1900 International Congress of Mathematicians
in Paris, France. The original speech (in German) can be found at:
https://www.math.uni-bielefeld.de/∼kersten/hilbert/rede.html
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obtained in the formalism of mathematics7. Other than intuition, there was no
formal way to know if a mathematical statement was correctly deduced, regard-
less if it was expressed in the proper mathematical language. Moreover, there
was no well-defined mathematical language and no decisive way to distinguish
a subtle error in a mathematical proof. In other words, there was no rigorous
way to know if all the work in mathematics done so far was consistent.

Hilbert suggested that any formal theory that unambiguously provided math-
ematics with solid foundations would suffice as a method to prove its consistency.
Since the development of mathematics during the 19th century had had a prolific
growth, it was indispensable to guarantee that no two branches of mathematics
would come up with (formally proved) results that could potentially contradict
each other. If mathematics was indeed a foundational subject, what could it
be formally based upon? Moreover, even if this question had an actual answer,
the problem of providing this new subject with proper foundations would arise
immediately, and the problem goes on indefinetely. Despite these difficulties,
Hilbert thought that, as any other mathematical problem, the issue of consis-
tency, i.e. of proving the consistency of the mathematical apparatus, actually
had a solution, mathematicians had just not found it yet; it would, however,
one day be found. As anyone would intuitively think, mathematical problems
are supposed to be solved; for any question there is an answer, and these two
always come in pairs. If a solution had not yet been found, new methods would
be developed until an answer was reached.

Ernst Zermelo (1871 - 1953), and Abraham A. Fraenkl (1891 - 1965), amongst
many other mathematicians, physicists, and philosophers, provided a possible
solution to the problem. Since any idea consists of a series of underlying prin-
ciples, they thought that a properly selected collection of basic, quintessential,
and undeniable notions, the most primordial notions one could describe math-
ematics with, would suffice to hold the mathematical edifice together. They
proposed a set of 14 independent axioms from which all of mathematics could
be deduced. This idea prevailed, and it constitutes the essence of our current ap-
proach on mathematics, based on the conclusions one can logically derive from
the set of axioms nowadays referred to as ZFC, i.e. Zermelo-Fraenkl-Choice8.

Axioms are starting points, statements whose validity one does not question.
Changing such rules is valid, but it constitutes the invention of another (either
different or equivalent) system. Notice that changing the axioms (rules) of an
existent, consistent theory, does not imply that the new theory will still be
consistent. Throughout history, we have had understanding of a vast diversity
of concepts. With an axiomatic approach to mathematical concepts, it is clear
that each concept’s existence is either properly justified by these axioms, or
deduced from them9. This means that any statement expressed in the language

7More on this topic can be found in: ZACH, R. ”Hilbert’s Program”, The Stanford Ency-
clopedia of Philosophy, (Summer 2019 Edition), Edward N. Zalta (ed.)

8The axiom of choice deserves a separate text on its own. It formally states a way to
choose elements from an infinite amount of sets, indistinguishable from one another.

9The rules of a game are axioms, since one does not question their validity. Take chess,
for instance, and add a rule that states that pawns can no longer capture any piece. This will

5



of mathematics is either an axiom, or it can be logically inferred from one (or
many) of these 14 statements. The set of axioms is of course independent, i.e.
none of them can be deduced from one another10.

This approach provided some clarity in the search for foundations, but it did
not solve the problem of consistency, and it came along a series of problematic
consequences. Not everything deduced from these axioms stayed within the
boundaries of human intuition. One of them, for example, states the primordial
existence of an infinite set, i.e. a collection containing an infinite amount of
elements, not potentially, but actually. This not only contradicts our intuitive
(Aristotelian) notion of infinity being inherently potential, but from the existence
of infinity as an actual (finished, i.e. not just potential) entity one can formally
prove the existence of an infinte amount of different infinities, each one being
strictly greater in size than the previous one11.

This kind of counter-intuitive results obtained from set theory were not
the only problem that arose from the Hilbert’s Programme. The mere notions
of existence, or truth, were problematic, since they had to be formally and
unambiguously defined. A solution to many of these problems was being sought,
and great efforts by the mathematical community were involved. However, one
ontological misconception about the way we create knowledge is to think that
problems constitute a biunivocal structure of questions and answers. To show
that the actual apparatus we use to prove the logical validity of other sciences
was itself logically valid, was some sort of self-referred paradox. This represented
an inevitable necessity for a paradigm shift in rational thought, since some of
the famous Hilbert’s Problems can actually be proved to be unsolvable. It was,
indeed, in 1931 that Kurt Gödel (1906 - 1978), an Austrian logician, formally
proved that12

(·) If we choose a well defined set of axioms and inference rules in which only true
statements can be deduced, there will always be statements, expressed in the
formal language of the system, which are impossible to be proved, i.e. neither
their veracity nor their falsehood can be proved.

(··) It is absolutely impossible to prove the consistency of a system within the
system itself, i.e. one cannot deduce from the axioms that the axioms will not,
eventually, exhibit any contradictions.13

lead to games that cannot go on after a few turns.
10After decades of development in set theory, some of the axioms were found to be a deduc-

tion from the others. Nowadays, there are only six axioms considered as a foundation of set
theory. A lot more on this can be found in: JECH, T., (2003). Set Theory. Springer-Verlag
Berlin Heidelberg. Springer Monographs in Mathematics.

11CANTOR, G. (1874), “Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen
Zahlen”, Journal für die Reine und Angewandte Mathematik, 77

12GÖDEL, K. 1931, “Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I”, Monatshefte für Mathematik und Physik, v. 38 n. 1, pp. 173–198.

13For a detailed discussion on the subject, see the following article (in Spanish): TORRES,
C. 2000, “La lógica matemática en el siglo XX”, Miscelánea Matemática SMM, n. 31
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The language of logic is a formalised version of the founding principles of
reason. We trust knowledge because we think it to be logic-proof. The most
basic, conceptual structures we need to understand any kind of logical reasoning,
however, are based on the primal notions of sets. Take the concept of two, for
instance; the only way to define formally what the number two is, is by thinking
of all collections one can think of that contain exactly “two” elements. It is from
the understanding of the void, i.e. the concept of nullity, of an empty set, that
we understand unity, and it is with the combination of the existence of void and
unity that we understand two. It seems then, that logic, which is the study we
undergo to comprehend our own mental structure, our language, our perception
of reality, and most importantly truth, has a very intricate relation to set theory.
Both of them seem to inspect and scrutinise the other, support their validity;
they seem mutually to provide a justification for the other’s existence, as arrows
that aim at each other.

Finally, it is through drawings, diagrams, or equations that we can grasp
the ethereal fragility of this infinite art. Just as poetry captures the essence
of language, equations withhold the essence of reason. In a non-trivial fashion
we could analyse the role played by depiction in the poetry of mathematical
reasoning. This leads to an inevitable third path taken perhaps by wonder
through the intricately complex realm of reason. There exists no way to convey
such elegance if it is not through pictorial representation. Geometry plays a
quintessential role in this process, one which is always intertwined with creativity
in order to merge it together with reason, however different the manifestations
may be.

Amongst many other comments one could assert, it is appropriate to identify
geometry as a formal representation of the levels of abstraction reached with
calculus, algebra, or any other branch of mathematics. More importantly, the
visualisation part of the learning process defines and shapes the knowledge we
are building in many different levels. The physical sciences, for example, are
notably affected by the kind of geometry they are based upon.

Our first encounter with the physical world comes along a Socratic perception
of the world; we perceive a three-dimensional flat space, a 3-D grid of 90◦

cubes that seem to contain the wholeness of physical reality. Even when we
expand this spatial perception into that of a curved, spherical Earth, we still
imagine it to be embedded in a sort of “rectangular” Universe. The more
we develop our physical understanding of this Universe, we change from this
Socratic vision, where things remain in their standing states, and try to come
back to it, unless affected by an external force, to a Newtonian perception of
reality, where movement is relative, and things actually remain on a constant,
rectilinear-motion-state until an external force acts upon them. In any case,
Euclidean geometry shapes the way we perceive reality.

By the end of the 19th century, it started to seem clear how such a geometrical
perception lacked the adequate elements to describe reality properly. Einstein’s
proposal of a general-relativistic Universe involves much more than a conceptual
paradigm-shift in physics; its true sustenance relies on the change of geometrical
foundations. One cannot understand relativistic mechanics unless one accepts
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the idea of a curved, hyperbolic Universe, where light travels not in straight
lines as understood classically, but through hyperbolae, connecting space in the
most efficient way, and allowing trully fast objects to travel in time into the
future.

It is in this exact same fashion that geometry shapes quantum mechanics,
providing it with its characteristic notions. Some of the underlying physical laws
that were presented as fundamental for quantum theory are well summarised in
Heisenberg’s relations; their geometrical implications are no less than astound-
ing, but fairly sophisticated for an introductory version. These inequalities
define a non-commutative geometry, an infinite-dimensional space where sym-
metry is encoded by operations whose order does actually influence the results of
our measurements, and where these operations are closely related to the notions
of harmony in music.

When properly developed, geometry can be a formalised path to depict the
truth of scientific endeavour. Either by pictorial representation, formalisation,
or the philosophy of the mathematical language, the means to reflect the massive
edifice of knowledge and the structure of reason continue to develop, and more
paths are found that lead us into a spiral of infinite conundrums.
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Chapter 1

Introductory Topics

§1 Our Perception of Matter and the History of the Atomic Model

†† Throughout the centuries, our perception of the physical world around us
has evolved; we have developed ever more complex experimental techniques to
explore the way our Universe works. The first inklings of an atomic theory
of matter came with the ideas of Leucippus (c. 5th cent. BCE) and his pupil,
Democritus (c. 460 BCE - c. 370 BCE). They proposed that matter is composed
of indivisible particles. Although this was a revolutionary perspective at the
time, merely by denying divine intervention in design1, or simply by suggesting
a “primitive” quantisation of matter or space, one can easily identify how this
atomic theory differs from our current understanding of matter.

§1.1 Atomism

Atoms, to begin with, were supposed to be intrinsically unchangeable, had dif-
ferent shapes and sizes, where different kinds of atoms resulted in different
textures, tastes and colours. Men, for example, were supposed to be made of
men-atoms, women of women-atoms, wood was supposed to be composed of
wood-atoms, and so forth. Atoms were essentially a solution to a metaphysi-
cal problem, finding the origin, or first principle of all things that exist (the
αρχη′). We must be cautious if we decide to include Ancient Atomism when
studying the modern atomic theories. It should suffice to say that, despite the
importance of the first atomist conceptions of the Universe, one should simply
be careful in any attempt to organise knowledge, for a simple inaccuracy may
lead to grossly misleading interpretations. The pre-Socratic perspective mostly
comes from the idea that cutting something in half enough times leads eventu-
ally to an “atomic” level, i.e. a moment when the physical matter being cut
becomes indivisible. At this point one finds the constituent elements of matter.

1BERRYMAN, S. “Ancient Atomism” The Stanford Encyclopedia of Philosophy (Winter
2016 Edition), Edward N. Zalta (ed.)
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†† However intelligent these assumptions were, especially at a time when
no previous scientific work or accumulated knowledge was available, they were
merely blind guesses of what the nature of physical reality might be. Gradually,
rigorous observation and experimental data was accumulated, allowing us to
come up with formal models of what matter might look like at its innermost
levels. These models have been refined over time as our technological capabilities
evolve and we become able to study the structure of matter at increasingly
deeper levels, each generation of scientists building up over the foundations left
by the previous generation.

The atomist ideas were then left aside, and only a handful of scientists
kept them alive during the Middle Ages and the Renaissance. Chemists of
the 18th century, almost 2,200 years after the first atomist ideas, studied the
composition of different materials, and noticed that most of them were merely a
combination of other, more simple and pure, substances. These pure substances
were composed of elements or combinations of such elements called compounds.
Compounds, e.g. water, could be broken into their constituent elements, and
they would always have the same proportions.

§1.2 Dalton

By the end of the century, chemists had already established these observations
as a physical law. A fixed amount m of a compound C that could be decom-
posed into mA grams of A and mB grams of B would always be such that the
proportions of these masses are conserved. I.e. the corresponding masses of
the products will always have the same proportions, regardless of the original
amount. This fixed ratio is referred to as the law of definite proportions. For
example, 8 grams of water are always composed of 11.11% (1 g) of hydrogen
and 88.88% (8 g) of oxygen.

Mass, as one could expect, is conserved in a chemical process, i.e. a process
where matter changes its structure, its shape and/or form. It means that matter
cannot be created or destroyed, i.e. the total mass in a chemical reaction must
remain constant. This conservation law was proposed by Antoine Lavoisier
(1743 - 1794), a French chemist, but is also attributed to Mikhail Lomonosov
(1711 - 1765), a Russian scientist and writer from the 18th century.

A refinement to these two laws was proposed by the British chemist John
Dalton (1766 - 1844) in 1808. His statement reads:

If two elements form more than one compound between them, then the ratios
of the masses of the second element which combine with a fixed mass of the
first element will be ratios of small whole numbers. As an example, consider

a fixed amount of carbon reacting with oxygen to form an oxide, a reaction
well known by chemists of the time. The product would always be one of the
two following: CO or CO2 (carbon monoxide, and carbon dioxide, in modern
notation). After a decomposition reaction, the corresponding masses of oxygen
in the two compounds that combine with this fixed mass of carbon should be,
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according to the law of multiple proportions, in a whole-number ratio. So, in
100 g of the first compound there are 57.1g of oxygen and 42.9g of carbon. This
means that the mass of oxygen relative to the mass of carbon is:

57.1

42.9
= 1.33

g of oxygen

g of carbon

I.e. 1.33 grams of oxygen per gram of carbon. Accordingly, in 100 g of the
second compound, there are 72.7g of oxygen and 27.3g of carbon. The relation
between the mass of oxygen and that of carbon is:

72.7

27.3
= 2.66

g of oxygen

g of carbon

I.e. 2.66 grams of oxygen per gram of carbon. Comparing the mass of oxygen
per gram of carbon of the second oxide with that of the first one, we obtain the
following ratio:

2.66/1.33 = 2

I.e. the masses of oxygen that combine with carbon are always in a 2:1
ratio, thus following the law of multiple proportions. This empirical evidence
showed chemists of the time how matter behaves; Dalton’s interpretation of
these observations was that these oxides consist of one (and two, respectively)
oxygen atom(s) joined to a carbon atom. Dalton acknowledged that an atomic
theory of matter would explain these and other physical observations properly.
He thus theorised that such model should obey the following axioms:

(·) Elements are composed of minuscule particles called atoms.

(··) All atoms of a given element are identical with respect to physical properties,
and thus indistinguishable from one another.

(· · · ) Atoms of a given element are different with respect to all physical prop-
erties from atoms of another element.

(· · · ·) Atoms involved in a chemical reaction unite chemically in simple numerical
proportions (e.g., 1:2, 1:3 , 2:3 etc.) to form compound atoms which are now
known as molecules. A given compound will always have the same relative
number and type of atoms.

(−) Atoms are indivisible, and cannot be sub-divided by means of any physical
or chemical process. A chemical reaction simply changes the way these atoms
are grouped together.

Dalton’s atomic model was useful to explain all the previous observations
and to predict the way (or different ways) atoms could combine themselves
to create chemical compounds. Although this atomic model was not widely
accepted at first, it was eventually recognised and approved as a correct way to
explain physical and chemical processes.
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§1.3 J.J. Thomson

By the beginning of the 19th century, scientists had a much better understand-
ing of the behaviour of atoms. Such an understanding could explain and even
predict how atoms bond to create molecules, but it did not answer the fun-
damental question why? Why do atoms behave the way they do? To answer
this question one should ponder upon the internal structure (if any) of atoms,
something that was prohibited by Dalton’s axioms.

A series of experiments with cathode rays had shed some light on what
might just be the answer to this question. A beam of cathode rays is produced
inside a tube with the aid of an electric current, flowing from a piece of a
negatively charged metal (cathode) to a piece of a positively charged metal
(anode)2. Back in 1654, the German scientist Otto von Guericke (1602 - 1686)
invented the vacuum pump, allowing physicists to experiment with high voltage
electricity travelling through low-density (rarefied) air. By the mid 1800’s it
was well known that electricity could produce glow inside a glass tube partially
evacuated of air.

It was not clear if these cathode rays were immaterial, like light, or “in
fact wholly material, and [· · · ] mark the paths of particles of matter charged
with negative electricity,”3 to quote the British physicist Joseph John Thomson
(1856 - 1940). Thomson first noticed that cathode rays travelled in straight
lines; he then noticed that their path could be bent (deflected) by the presence
of an electric field. By placing two charged plates around the glass tube, he
noticed that the beam was always bent towards the positively charged plate.
This suggested that the beam was negatively charged.

J. J. Thomson then confirmed this hypothesis by bending the beam of cath-
ode rays with a magnet. By measuring the heat generated when these rays hit a
thermal attachment, and comparing it to their magnetic deflection, he managed
to estimate the mass of the beams, if in fact these beams were actually material.
In that case, cathode rays must be composed of something that is negatively
charged. Its constituent elements must be about one thousand times smaller
and lighter than hydrogen atoms, which was already the lightest element known.
Finally, Thomson noticed that all metals could be used as anodes and cathodes
to produce cathode rays and these were always the same, they deflected the
exact same amount, and the hypothetical mass was always the same.

All these observations contributed to J. J. Thomson being the first one to
suggest, in 1897, the existence of a sub-atomic, negatively charged, particle.
According to his idea, all elements were composed of a positively charged mass
that counteracts the negatively charged particles scattered randomly throughout
the inside of the atom. He called these sub-atomic particles corpuscles and
suggested a new atomic model which he called the plum-pudding model of the
atom, reminiscent of the British dessert, with raisins randomly dispersed within

2Positively charged cations always move towards the cathode (hence their name) and neg-
atively charged anions move away from it. Reference: “Cathode” at Wikipedia, The Free
Encyclopedia 2016

3THOMSON, J. J. (1897). Cathode Rays. Philosophical Magazine. 5. 44 (269): 293.
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the pudding. The name would eventually change into the more familiar electron.
According to this perspective, the low pressure air inside the tube consists of

atoms of a particular gas, and there is enough space between the gas atoms so
that electrons can accelerate to produce the cathode rays inside the glass tube.

§1.4 Rutherford

The use of cathode rays and the possibility to experiment with photoluminescent
materials4 gave physicists of the 19 th century a great insight on the study of
the internal structure of matter. At the time, certain (radioactive) elements
were known to emit what Oceanian physicist Ernest Rutherford (1871 - 1937),
a former student of J. J. Thomson, called alpha rays. Elements like uranium
and radium spontaneously and unpredictably emit this radiation in the form of
a particle, also called an alpha particle; nowadays such particles are properly
identified as helium nuclei.

Back in 1908, Rutherford was studying this phenomenon by trying to mea-
sure their charge and mass. Since alpha particles are obviously too small to be
detected by a microscope, the way to study them was by measuring their de-
flection in a gas chamber implemented with an electric field. Gas particles were
ionised by the radiation (alpha-particles) upon collision, which would in turn
deviate their path slightly. A photosensitive material could be set, surrounding
the chamber, to detect the deflected alpha-particles.

There is no such thing as solid matter in the atomic realm; this means that
any detectable deflection should be caused by an electric field. At a macroscopic
scale, matter bounces off surfaces, like a marble against the wall, but alpha-
particles are able to pass through a thick piece of matter without a significant
deviation. One would expect from Thomson’s plum-pudding model that atoms
have a weak electric field, unable to deflect significantly (no more than a few
degrees) a beam of alpha-particles. However, Rutherford and two of his students
(and later colleagues), Hans Geiger (1882 – 1945) and Ernest Marsden (1889 –
1970), found a portion of alpha-particles being shot at a thin gold foil was being
deflected by angles close to 90◦, almost as incredible as if you fired a 15-inch
shell5 at a piece of tissue paper and it came back and hit you, in Rutherford’s
own words.

The positive charge within the Thomson atom is homogeneously spread out
over the atom’s entire volume, and electrons are randomly scattered throughout
the positively charged background. The large deviation of alpha-particles led
Rutherford to think that the positive charge in the atom is not spread out over
the atom, but in fact heavily concentrated at its centre. According to Coulomb’s
Law, which describes the interaction between charged particles, electric force is
inversely proportional to the square of the distance between such particles; i.e.
the closer a charged object is to another charge, the stronger the force, more so
given the fact that the distance should be squared.

4For instance phosphorescent and fluorescent matter, i.e. matter that can absorb electro-
magnetic radiation in the form of light and then re-emit it over a period of time

5a cannonball
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Coulomb’s law: F =
K ·Q1Q2

r2

where F is the force, K a constant, Q1 and Q2 the corresponding charges, and
r is the distance between the charged particles or objects. Mathematically, if
these two particles were to be arbitrarily close together (the distance r being
arbitrarily close to zero), the force would be infinitely large.

He called this charged cluster a nucleus, and he concluded that electrons
should be orbiting around this nucleus, introducing the firs non-static model of
an atom, precisely the planetary model many of us are used to. In that case,
positively charged particles, like alpha-particles, close to the nucleus would feel
a strong electric force repelling them. This explains the large deviation angles
constantly measured when scattering alpha-particles.

Later, Rutherford found that a nitrogen atom could eject a hydrogen nucleus
when hit with alpha particles. This led him to conclude that these hydrogen
nuclei must be a constituent part of nitrogen atoms, and in fact of all atoms
in general, a building block of matter nowadays called a proton. It is worth
to notice that the mere idea that radioactivity (alpha-radiation) was in fact
an atomic phenomenon, i.e. something that involved a change in the internal
structure of the atom, was revolutionary per se.

§1.5 Bohr

Rutherford’s model was very successful; it allowed him to discover the proton
and to understand the internal structure of the atomic nucleus itself. Further
research made it possible to count the electrons around an atom, and the neutron
was also discovered in 1931-32 (first thought to be a proton-electron neutral
combination in the nucleus). There was, however, a substantial theoretical
problem with Rutherford’s atomic model.

An accelerated charge emits electromagnetic radiation, it therefore radiates
a certain amount of energy that is proportional to the square of its acceleration.
This means that an electron revolving around the nucleus of an atom would
inevitably lose energy due to centripetal acceleration until it collided into the
nucleus. This would happen in a fraction of a second, rendering the existence
of atoms completely impossible. This meant that Rutherford’s planetary model
must be incorrect.

Niels Bohr (1885 – 1962), a Danish physicist, simply decided to postulate a
solution to the problem, as opposed to the usual experimental approach. He
took previous observations into consideration and refined Rutherford’s model
with the following principles:
(·) An atom possesses stationary orbits; to be precise, electrons revolving around
the nucleus do so in certain specific orbits in which they do not radiate energy.
These orbits correspond to fixed values of energy. Changes in the atom’s energy
are due to electron transitions between such orbits.

(··) Absorbed or emitted radiation during any transition between stationary
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states of energy E1 and E2 is monochromatic, i.e. it consists of a single frequency
given by the following relation:

∆E = hν

where ∆E = E2 − E1, h is a physical constant, ν is the radiation’s frequency,
and E2 > E1.

One can see how axiom (·) is in perfect agreement with Planck’s and
Einstein’s famous relation; it also implies that electrons cannot have any inter-
mediate orbits, i.e. between two consecutive, discrete orbits6. Thus an electron
in transition from one orbit to the other appears to change instantaneously,
hence the expression quantum leap or quantum jump. Energy is either absorbed
or emitted in quantised amounts, corresponding to such “jumps;” furthermore,
the emitted radiation has a frequency ν that is equal to the electron’s orbital
frequency. Finally, there is a lowest possible energy state, and it provides the
smallest possible orbit. From this, one can compute the radius of such orbit
to be rBohr = 5.29 × 10−11m. Bohr’s atomic model was the first to include a
quantum description.

One of the great successes of Bohr’s model was its capability to explain the
emission spectrum of hydrogen, something no previous theory could do. Back
when Isaac Newton coined the term spectrum to describe the decomposition of
white light into its constituent colours, scientists began to improve the optical
mechanisms to study light. Subsequent experiments involved not just sunlight,
but different light sources as flames, and even other stars. By burning different
elements, scientists discovered that each element has its own, characteristic
radiation spectrum.

By the end of the 19th century, physicists were using glass tubes to study
incandescent gases of various elements at different temperatures; the light they
emitted was passed through a prism, and decomposed to study its constituent
wavelengths. Instead of a rainbow, each element seemed to be composed of its
own series of spectral lines, often called Fraunhofer lines7. These lines are each
element’s fingerprint, allowing scientists to identify, for example, the constituent
elements of stars and planets just by analysing the light we receive from them.

Spectral lines are perfectly explained by Bohr’s model as an electron’s tran-
sition from one energy state to another, the line’s frequency given by the specific
energy levels the transition takes place in. Moreover, using Bohr’s model, physi-
cists were able to predict series of lines in the hydrogen’s spectrum that are out
of the range of visible light.

§1.6 Schrödinger

Elements as helium, lithium, etc, also have their own characteristic spectral
lines. Bohr’s atomic model, however, cannot explain the spectral series of any

6These concepts are properly defined and discussed in sections § 2.5 and § 3.1
7honouring the German physicist Joseph von Fraunhofer (1787–1826), who first identified

these as absortion spectral lines in sunlight.
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element beyond hydrogen. A few attempts were made to refine Bohr’s model,
but they were all unsuccessful or extremely complicated. It was revolutionary,
since it gave birth to a primitive quantum theory, but it still had classical
elements that made it insufficient. A new perspective seemed necessary in the
study of atomic mechanics, and this new theory should incorporate the quantum
nature of atoms as its founding principle.

The Bohr model was eventually replaced by quantum mechanics. Some
fundamental changes were made; the electron, for instance, is described as a
wave-function instead of as a particle; it occupies an atomic orbital with a
given probability rather than following a trajectory in an orbit. Even though
the allowed energy levels of the hydrogen atom remained the same as in Bohr’s
model, quantum theory goes way beyond the classical view and constitutes a
major paradigm shift in physics, a quantum leap if you will.

Schrödinger’s equation is, undoubtedly, a centrepiece of quantum theory. It
was published in 1926, and it describes quantum states rather than localised
particles and well-defined paths. With quantum mechanics, many of the spec-
tral phenomena that Bohr’s model failed to explain were finally and correctly
clarified.

Most of its elegance and beauty are to be found in its mathematical de-
scriptions; it is a vast subject, and it has enlightened our exploration of the
Universe at its most fundamental scale. This is, however, an ongoing quest; it
is by no means finished, and as our understanding of the inconceivable nature
of Nature progresses, the range of questions we can ask, as well as the amount
of knowledge waiting to be discovered, widens just as rapidly.

§2 The Double Slit Experiment: A Paradigmatical Anomaly

†† We begin by discussing the two familiar notions of matter and waves. In-
tuitively, matter is the quintessential constituent of everything; it provides ob-
jects with bulkiness and mass. We relate waves to oscillatory motion; something
moves and creates waves, these transfer energy (as in the waves of the ocean) and
bring information along with their oscillations (as in radio or television waves).
The intricate differences and the surprising relations between bulk matter and
periodic oscillation lie precisely at the core of the quantum nature of our Uni-
verse.
†† This distinction between matter and waves should be made carefully and

in close detail; matter can be localised in a bounded region of space, waves are
spread out and occur across the wholeness of space. However, it might not be
obvious how or why one should make this seemingly narrow-minded observation
in the first place; after all, matter and waves are not even close enough in the
macroscopic world as to produce any kind of confusion. When we think about
it further, it is not even clear why someone had to clarify this to begin with.

The story begins in the late 17th century, when a most avid discussion was
held amongst the great physicists and philosophers of the time. Some of them, as
Isaac Newton and René Descartes, believed light consisted of minute corpuscles
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which travelled through space in straight lines and interacted with matter either
by being absorbed or by being reflected. This view can explain why light bounces
off surfaces according to reflection laws; it cannot, however, explain some other
physical observations as refraction or polarisation.

Figure 1.1: Refraction (a), diffraction (b), and polarisation (c) of light

When light is travelling from one medium to another, like air and water, its
path gets angled. Its velocity in the first medium is not the same as it is in the
second one; by changing its travelling direction, light travels through the path
that optimises time. This is can be easily seen with a spoon in a glass of water;
from afar, it seems as if the spoon were broken into two separate pieces at the
surface of the water. This phenomenon is called refraction, as shown in Figure
1.1 (a).

When passing through a crystalline structure, like the wings of a butterfly,
light goes through the tiny slits between the scales of its wings. The reflected
light within the wing’s structure is usually out of phase, meaning it is misaligned
and thus cancels itself out partially. Blue light, however, comes out perfectly
aligned, thus resulting in the beautiful blue patterns we see. The notion of
“alignment” can be better explained by understanding light as an oscillatory
phenomenon. In contrast to any other colour in nature, blue does not come
from pigments, but rather from this kind of optical phenomena; this is called
diffraction, as shown in Figure 1.1 (b).

Light can also pass through a grid of aligned molecules that only allow
“parallel” beams to pass through, like camera lenses’ filters; the result is a
stream of polarised light, as is shown in Figure 1.1 (c), another phenomenon
that can only be explained by means of periodic oscillations, i.e light waves.

The corpuscular view of light, however, prevailed for more than a century,
and it was perhaps due to certain sociopolitical accounts, at least partly. Dis-
tinctively, Newton’s prestige was unprecedented; he was undoubtedly one of
the most acclaimed scientists of the century, and his views on any subject were
inevitably something people thought worth taking into consideration. Chris-
tian Huygens, a dutch contemporary of Isaac Newton for example, and Robert
Hooke, also an English natural philosopher, proposed a wave theory of light,
but this perspective was partly undermined by the scientific community.
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§2.1 The Problem with Light

The wave theory of light compared propagation of light to the motion of waves in
water, but with some sort of luminiferous æther8 as a medium of propagation.
This predicted the phenomenon of interference, something that was already
known to scientists from experiments with sound; it also suggested a correlation
between colours and wavelengths. One later experiment by Thomas Young
(1773 - 1829), an English polymath, proved how light did manifest a wave-like
behaviour under the proper circumstances, with an experiment that would turn
out to be decisive, even for the understanding of quantum physics.
†† For almost a century, the empirical evidence of Young’s experiment pre-

vailed as an experimental account for the wave theory of light. The problem
came when, at the beginning of the 20th century, another decisive experiment
proved an undeniable matter-like behaviour of light. This “undeniability” of
both facts, light being a particle, and light being a wave, has ever since re-
mained an enigma for modern physics. The most simple and elegant way out
of the problem is simply to accept both facts as true, and consider light to be
a stream of particles whenever we work with experiments of the second type,
and a set of electromagnetic radiation every time we perform experiments of the
first type: whatever suits our scientific goals.

§2.2 What we Understand as Matter

In accordance with Democritus’ ideas9, we understand matter to be composed
of tiny ατoµoι (from ατoµoς), indivisible particles; these, as all matter, can be
located as “lumps” in space. Atoms constitute the inherent structure of matter.
As obvious as this idea may sound, it is not trivial, and much less was it at the
time.

One must, however, be very careful when stating how or why Democri-
tus postulated this idea. It would be an anachronistic inaccuracy to suggest
that his ideas were in any sense equivalent to our present understanding of the
atomic theory. Moreover, it would be rather irresponsible to suggest that he,
or Epicurus whilst revising the atomist perspective, had in some way foreseen
the existence of atoms as a scientific fact. As was said before, it was only a
philosophical concept, an idea to explain the origins of matter.

The atomist ideas were mostly forgotten in Europe until the late Middle
Ages, when some texts by Aristotle were rediscovered. Empirical evidence that
support the actual existence of atoms was not found until the second half of
the 19th century. Way before that, at the beginning of the century, chemists
had already discovered a wide variety of chemical elements of which matter is

8Waves are propagated in a medium, water for instance, but light did not seem to need a
medium to do so. It was then thought that space itself was submerged in a yet undetected
medium where light was able to travel. Later experiments, namely that of Michelson and
Morley (1887) proved this wrong.

9One of the best references in philological terms, inter alia, is the Stanford Encyclopaedia
of Philosophy (SEP). More on Democritus and atomism can be found at: BERRYMAN, S.
“Democritus” The Stanford Encyclopedia of Philosophy (2016 Edition), Edward N. Zalta (ed.)
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composed. As was briefly discussed in §1, Joseph Proust’s (1754 - 1826) obser-
vations on chemical compounds breaking down into their constituent elements
led to the law of definite proportions, also influenced by Antoine Lavoisier’s
work and corroboration of the law of conservation of mass. Later work by the
English chemist John Dalton showed that such examples of fixed patterns, i.e.
definite and multiple combining proportions in chemical reactions, could be well
and elegantly explained by an atomic theory of matter.

It was not without great effort and trouble that the scientific community of
the time accepted the atomic theory. As an example, take Ludwig Boltzmann’s
(1844 - 1906) contributions to the understanding of fundamental, physical con-
cepts such as temperature. Along with other noteworthy thermodynamicists
of the time, Boltzmann established the bases of classical statistical mechanics.
Despite such noteworthy contributions, many scientific journals refused to al-
low him to refer to atoms as real entities; instead, they were to be understood
as mere theoretical concoctions. It was only after experimental confirmations
at the beginning of the 20th century that the atomic theory of matter gained
enough credibility and empirical evidence as to solidify its theoretical founda-
tions.

From a certain perspective, everything in the macroscopic world can be seen
as a simple, undivided lump of matter. For instance, seen from afar (or far
enough at least), a baseball, a mug, or even a chair can resemble an elementary
particle, so we set on a quest to decompose matter on ever smaller and smaller
constituent particles. The structure of such particles remains unknown until
better experimental methods and equipment are developed, and in the meantime
it suffices to imagine any atomic or subatomic particle as a tiny sphere (a sphere
being the most symmetric geometrical solid, thus a more convenient form than a
cube, for example). That being the case, we focus our attention to the behaviour
of tiny spheres, and asume that the microscopic world can be explained in terms
of known particles, like protons, neutrons, electrons, quarks, and so forth.

There is an almost obvious question that arises when studying the world
around us. In order to undergo a study of the structure of matter, one needs
to explore its internal components; to understand how they work, one often
requires an internal view of the objects of interest. In much simpler words, we
need to break stuff to see how it works. As rudimentary as this idea may sound,
it is the basis of many different projects in today’s research. CERN colliders,
for instance, fragment accelerated particles (“atomise” them, if you will) and
classify the remains according to energy differences and their associated masses
(among other physical properties), thus identifying them as new or already
known particles.

In order to study the behaviour of matter in different situations, let us
imagine a cannon-like device that can shoot lumps of matter, these being atomic
particles (like electrons, for instance), or whatever “chunk” of matter one wishes
to analyse. Everything is shot onto a screen, where it is collected, and the exact
location of impact is registered. A photograph is a nice example of this kind of
devices; light (whether as particles or as electromagnetic radiation, depending
on our perspective) comes through a lens or pinhole, into the camera, and lands
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on a piece of photosensitive material (a plate or film); it is later activated by
silver nitrate, and registered as an image.

If we placed, between the shooting device and the screen, a barrier with two
slits on it, then matter would bounce off of it, and just a fraction would be
able to cross through the slits, all the way onto the screen. After a while we
could remove the screen, and we would see a pattern of two straight lines. This
should come as no surprise, since particles can either bounce off the barrier, or
go through the slits; it is exactly what we would expect. Since everything we
can equate to lumps in space (like particles) will behave accordingly, let us, for
now, define matter as everything that, when collectively and progressively shot
through the two-slit barrier, replicates the two stripes pattern10.

Figure 1.2: Particle scattering

§2.3 What we Understand as Waves

On the other hand, we could perform a very similar experiment in a container of
water. This time, instead of shooting particles at the two-slits barrier, we locate
a small object at a certain distance from the barrier, and induce the propagation
of waves in the container by moving the object up and down. This oscillatory
motion would produce a chain of water-waves as concentric circles around the

10The double-slit experiment is one of the archetypical experiments that exhibit a quantum
behaviour. See the discussion found on TIPLER, P. A. (1970) Foundations of Modern Physics.
Worth Publishers, Inc. Second edition. and BEISER, A. (2003) Concepts of Modern Physics.
McGraw-Hill. Sixth edition.
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object, which would propagate throughout the water, across the barrier, and
onto the screen.

Whilst matter (lumps) either bounced off, or went through either one of the
two slits, waves would create new concentric circles at each of the slits. Notice
how the new propagation points replicate the oscillatory motion of an object
located exactly at each of the slits. Once through the slits, the disturbances
along the surface of the water would travel to the screen. Before we undergo a
study on the components of waves in water or any particular medium, compare
the approach and the technical procedures of this and the former experiment
(depicted in Figures 1.2 and 1.4 ).

As a result, some of the disturbances in the water (coming from both slits,
say, one from the left slit and one from the right slit) would add up to produce
a larger disturbance, and some of them would cancel each other out, depending
on the location on the screen. This is a phenomenon called wave interference.
The outcome is a pattern on the screen, much different from the two stripes
of the previous experiment, known as an interference pattern, manifested as a
succession of stripes, much denser at the center and dimmer at the sides (“Screen
Pattern” in Figure 1.4 ).

Figure 1.3: Waves consist of travelling “disturbances.” They have a wavelength
λ, that corresponds to the distance between crests (or troughs), an amplitude
A, that corresponds to the wave’s “height,” and a frequency, labelled ν, which
corresponds to the amount of events (disturbances) that occur at a given point
in space per unit of time.

The phenomenon of wave interference across a slit barrier which creates this
palette of stripes is called diffraction. In the example of a butterfly’s wings, light
is diffracted within the orderly structured pattern of the wing, at a microscopic
scale. Only waves manifest diffraction, so let us say that everything that, when
“shot” through the two-slit barrier, reveals an interference pattern is a wave.
In a few words, waves are not things themselves, they are disturbances that,
without manifestly moving (carrying) matter from one place to the other, can
transfer energy. For instance, if two separate people hold a string (no matter
how far they are) they can transfer a “message” of energy disturbance without
moving, by using a wave.
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Figure 1.4: Waves in the two-slit experiment

§2.4 Light as a Wave

The two-slit experiment was conceived in 1800 by Thomas Young to prove that
light has a wave-like nature. Light is then composed of waves with different
wavelengths, each range of such wavelengths associated to a particular colour,
violet light being that of shortest wavelength, followed by blue light, green, yel-
low, orange, and finally red light, with the largest wavelength. The refraction of
white light by means of a crystal prism, which has become a canonical demon-
stration in many laboratories at high-school or undergraduate level, exhibits
this orderly decomposition of light in a spectrum of colours and hues. Since
different wavelengths get refracted by a different angle, i.e. the smaller the
wavelength, the greater the angle of deviation, the components of white light
are thus exhibited with this simple experiment. (Figure 1.5 )

During the course of the same year, William Herschel (1738 - 1822), a
German-British astronomer and musician11, discovered the existence of light
beyond our visual boundaries. He had previously discovered an increase in tem-
perature whilst studying light with a red filter; he wondered if different colours
could carry different amounts of thermal energy with them, and designed the
following experimental setup: he passed light through a prism to decompose it
as a rainbow, into its constituent ingredients; he then placed a thermometer at
each of the different colours. He noticed that violet and blue light produced the
least increase in temperature, whilst red light produced the greatest. His control

11Not to be confused with his son, John William Herschel. They were both outstanding
men of science and arts, the former’s compositions having been praised even by Mozart and
Beethoven, and the latter’s work in astronomy being also of great importance.
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thermometer, however, was resting next to the others, outside of the range of
light’s decomposition; to be precise, it was right next to the one measuring red
light. He then observed an even greater increase in temperature on this far end
of the spectrum, thus concluding the existence of light after the red limit of the
visible spectrum; he had discovered infrared radiation, as it often happens in
science, quite by accident.

Figure 1.5: The prism experiment. The angle of deviation depends on the light’s
wavelength.

Figure 1.6: The electromagnetic spectrum. We now know that light consists of
this whole range of wavelengths, only 4% of which humans are able to see. Some
animals, like bats or snakes, are sensitive to wavelengths in other ranges of the
spectrum. In terms of energy and frequency, any radiation immediately before
the red side of the spectrum is called infrared light; any radiation immediately
after the violet side is called ultraviolet light.
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§2.5 Light as a Particle

By the end of the 19th century, back when most physicists and mathemati-
cians believed science was about to be completed, there were only a handful of
problems that seemed to be causing a delay, namely those involving certain phe-
nomena with light. Other than that, physics seemed a complete description of
Nature. After all, every one of its branches had already been explained in terms
of a fully satisfying mathematical theory (Maxwell’s equations had summarised
electromagnetism, thermodynamics had had an astonishing success after the
industrial revolution, and Newton’s mechanics had fully described the known
world, connecting the simplest motion at an almost microscopic scale to the
complicated mechanics of planets, galaxies, and all other celestial bodies). One
of these still unexplained phenomena was that of electric currents induced by
light of specific colours shed on the surface of different metal plates.

Some of the experiments performed to understand this phenomenon eventu-
ally led to the creation of a very “primitive” quantum description of light. As
was mentioned in §1, cathode ray tubes were used to study the internal structure
of matter. J. J. Thomson’s description of these rays as a stream of negatively
charged corpuscles had proved to be essential to the following atomic models; a
voltage (e.g. a battery) was used to create a current inside the glass tubes, but
an external source of light could be used instead to trigger this electron flow
by shining it onto one of the metal plates inside the tube. This is called the
photoelectric effect12. See Figures 1.7-1.9.

Back then, physicists had already identified this very particular situation
in which electromagnetic radiation was not behaving as they expected. When
radiated with light of different wavelengths, i.e. different colours13, a conduct-
ing material (like copper) manifested a flow of electric current from its surface,
one which depended only on the colour. Blue and ultraviolet light caused a re-
markably measurable current; red light, however, caused a much weaker electric
current, and regular white light seemed to cause no current at all. The elec-
trons on the surface “acquired” energy from the beam of light and transformed
it into kinetic energy, thus creating the electric current. The dimmest radiation
of ultraviolet light caused an electric flow.

12The photoelectric effect is one of the archetypical experiments that exhibit a quantum
behaviour. See discussion found on TIPLER, P. A. (1970) Foundations of Modern Physics.
Worth Publishers, Inc. Second edition. and BEISER, A. (2003) Concepts of Modern Physics.
McGraw-Hill. Sixth edition.

13As one should recall from the explanation of the prism experiments in the 18th century,
light is composed of a rainbow (quite literally) of different hues, each one corresponding to a
colour. For a deeper explanation of the subject, a review of both the experiments of Newton
and Herschel can be made.
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Figure 1.7: Experimental setup. Light is shed onto the metal plate on the right,
and electrons are ejected from it, thus creating an electric current through the
wire.

As bold intuition may suggest, the larger the wave is (i.e. the larger the
distance between the peak of a crest and the bottom of a trough is, see Figure
1.3, called the wave amplitude) the more energy it carries along. In other words,
when thinking of electromagnetic waves, intensity and energy are proportional;
when thinking of water waves, the taller the wave the greater the energy it
carries. To be precise, a typical sinusoidal wave of electromagnetic radiation
has an average intensity,

〈I〉 =
c · ε0

2
E2

0 ,

where 〈I〉 represents the average of the variable I (intensity), c is the speed of
light in vacuum, ε0 is a physical constant14, and E0 is the maximum electric
field strength.

Of course, if we increase the amplitude, an increment in energy will become
immediately identifiable; this is true in every aspect of the classical domain. We
should then expect a wave to be able to transfer more energy onto an object,
a particle for instance, if we increase its intensity. Moreover, if light behaves
indeed as wave, and only as a wave, all frequencies would cause electrons to
be ejected from the metal plate. If directly exposed to it, electrons should be
able to absorb electromagnetic radiation, and transform its energy into energy
of motion, what we previously referred to as kinetic energy. As expected, the
amount of energy should be proportional to the intensity of such radiation, and
we should be able to detect this by directly measuring the energy of the particles
being ejected from the surface of the metal plate.

The intriguing nature of this phenomenon, however, arises when, despite
a noticeable increment in the intensity of red light, no increase whatsoever in

14permittivity of free space
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the electric current can be detected. No explanation of this experiment can be
provided in terms of classical wave theory, and it was not until 1905 when a
satisfactory explanation was achieved, one which relates electromagnetic waves
(in the form of light) to a corpuscular nature.

Figure 1.8: The photoelectric effect

As we know from the experiments performed during the 18th century, Young’s
experiment in particular, light was already, unequivocally, proved to be a wave.
Light manifests interference patterns when passed through a two-slit barrier,
which makes it qualify as a wave, according to our previous definition. On the
other hand, it was when A. Einstein (1889 - 1955) proposed to consider light as
a stream of particles rather than as a wave, that the absolute incomprehension
of the photoelectric phenomenon came finally to an end.

From what had been observed so far, for any given metal plate that could
produce this photoelectric current, light of low frequencies did not produce the
desired effect. One could gradually increase the frequency (e.g. going from
red to violet), and still no current would be detected. However, from a certain
boundary called the threshold frequency and further, a clearly detectable flow of
electrons was triggered. Moreover, as one increased the light’s frequency even
further, the kinetic energy with which the electrons were released would also
increase, i.e. it became directly proportional to such frequency.

Any proportionality relation can be mathematically expressed by means of
a linear function of the corresponding variables. I.e. if x and y are directly
proportional, then y = ax+ b, where a is the proportionality factor and b is an
initial value. This initial value corresponds to a displacement, at the origin, in
the graph of such function. That being the case, the photoelectric effect can be
modelled by the following relation (Figure 1.9 ):
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Figure 1.9: The proportionality factor h is known as Planck’s constant, as we
shall discuss in the next two sections. E0 corresponds to the initial value; in this
case, it is the amount of energy needed for one electron to be released from the
metal plate. This value will vary between different metals. ν0 is the threshold
frequency, i.e. the “first” value for light’s frequency (colour) for which a current
is detectable.

†† If light were to behave as matter, it should be composed of particles. These
light-particles came to be known as photons, and each photon carries along with
it an energy proportional to the light’s frequency. Since higher intensities do not
produce an increment in the electric current or the kinetic energy of the ejected
electrons, the amount of energy that each individual electron can absorb is
limited to that of a photon, which is itself inherently related to that specific
light’s frequency. This suggests that light can behave as small, fixed amounts
of energy, and not only as a wave with arbitrary energies. Photons are massless
and travel through any medium as light beams. In other words, light manifests
both particle and wave-like properties.
†† One of the many conundrums this assertion conveys is that, just as matter

can be located in bounded regions of space, one should then be able to tell with
a high level of exactness where a photon is. Waves are not something we can
locate, they are spread over large regions of space. So, should we be able to
locate light in narrowly bounded regions, or should we assume light is spread out
all over space as an electromagnetic wave? How would a formal, mathematical
description be possible?

§3 Some Necessary Historical Notes

§3.1 Blackbody Radiation

Unless one has infrared or ultraviolet vision, walking into an absolutely dark
room means one is (momentarily) completely blind. It does not mean that no
electromagnetic radiation is present inside the room, for as we have previously
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discussed, the human eye is just sensitive to a small portion of the electromag-
netic spectrum. We do have, however, other ways to detect radiation. Imagine
a room with no visible light, but with an active water heater located in one
of the corners. Most people would be able to locate it precisely without the
need of visible light. This is due to the emission of a certain invisible radiation
commonly known as heat (infrared radiation) whenever a certain temperature
is reached. If one heats up an object, and moves a hand nearby, it will be no-
ticeable how the intensity of such radiation changes; wherever the heat change
increases the most we know intuitively is where the object is. The higher the
temperature, the easier it is to deduce the location of the object.

If we keep raising the temperature without burning it, this hypothetical
object will start to emit a dim red light; above 600◦ Celsius (about a third of
the average temperature of fire when burning butane on a regular gas-stove) it
will start glowing, apparently because of the mere fact of being hot. By heating
it further, up to 2,000◦ Celsius for example (about the temperature of burning
wood), it will produce an easily recognisable yellow glow, and by increasing
the temperature further it will radiate intensely with different colours, going
progressively from yellow to green, blue, violet and so on. The temperature at
which this object starts to emit radiation depends on the material properties of
the object, of course, but the phenomenon is quite familiar, easily identifiable
and easy to demonstrate, even in the average kitchen.

The fact that we see this glow of any particular colour does not mean this
object is radiating only this particular wavelength (that associated to yellow
light, for instance). When heated, the object absorbs thermal energy and will
continue to do so until it reaches a certain temperature; the moment the object
has absorbed enough energy, it starts to radiate it out, and most of this radi-
ation is concentrated around a certain wavelength (colour), depending on the
temperature it reached at this time. As the temperature increases, the intensity
peak of this radiation goes from that of reddish hues to the blueish ones of the
spectrum.

The graphs shown in Figure 1.10 depict the distribution of radiation of an
object that emits energy in the form of electromagnetic radiation due to heat
absorption. The x-axis represents the colour, and the graph shows a peak at
the specific colour for which this objects radiates the most. For higher temper-
atures, the object radiates highly in the range of shorter wavelengths (blue or
violet). Most objects have a tendency to radiate more intensely in the range of
wavelengths they are also prone to absorb. Despite the fact that the tempera-
ture needed for any specific wavelength to be the peak of the radiation curve is
different for every material, the overall properties of this thermal radiation are
totally independent of any physical characteristics of the heated object.

A black body is therefore a system which absorbs all of the radiation it
receives; it is an idealised object, but a cavity with reflecting walls and a pinhole
on one side is an excellent approximation. Light comes in through the pinhole,
and regardless of the shape of the cavity radiation stays within its walls, thus
being “trapped” inside the cavity. Such an object, a black-body, is not per se a
system of special interest in physics. It is rather its historic value what gives it
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Figure 1.10: Intensity peaks displaced towards violet light as a function of
temperature. An object at 300◦ Celsius (for example) radiates with a peak at
a certain colour (wavelength), depicted in (a). Parts (b) and (c) show how this
peak is displaced towards the blueish hues of the spectrum as temperature goes
up. Part (d) shows the peak’s tendency with increasing temperature.

a place in almost every textbook on modern physics nowadays.
The radiation absorbed and then emitted by the cavity in thermal equilib-

rium does not depend on its colour, shape, form or anything else other than its
temperature; for any given temperature T , this black-body will emit radiation
of various different wavelengths at their own different intensities, as depicted in
the graphs of Figure 1.10.

The electromagnetic radiation at the walls of the cavity must be exactly zero;
otherwise, the walls would be infinitely absorbing energy. The radiation that is
not absorbed by the interior walls is then reflected, creating an electromagnetic
radiation field within the enclosure. That being the case, we can conclude
that radiation must exist inside the cavity as stationary waves, modelled by
sinusoidal curves as the ones depicted in Figure 1.11. A stationary or standing
wave has two fixed points, one at each end. The oscillatory motion is therefore
restricted to various stable states consisting of nodes and anti-nodes15. These
standing waves have different stable oscillating frequencies, and can be seen in
everyday situations like a vibrating guitar string, or waves created by a droplet
falling on the surface of a liquid confined within a vessel.

Figure 1.11: Standing waves inside a one-dimensional cavity of length L.

15Standing waves are discussed in depth in § 6.5 of this chapter.
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Statistical physics suggests that the amount of radiant energy per wave-
length, i.e. the energy radiated for each wavelength of the spectrum, can be
multiplied by the wavelength16 to obtain the energy corresponding to an aver-
age energy and the number of possible standing nodes in that particular range
of wavelengths. To be precise, we must consider all possible wavelengths, and
add up the amount of energy per wavelength times the range of wavelengths we
take into consideration, and this sum should be the total radiating energy of the
system. Note that this is the actual, finite amount of energy of the black-body.

For the specific case of radiation trapped inside the sealed box, i.e. the
black-body, the usual theoretical approach (the only one available before quan-
tum physics) predicts an unbounded tendency for the intensity peak on the side
of ultraviolet light. Part (d) of Figure 1.10 shows how the intensity peak’s ten-
dency with increasing temperature is unbounded, meaning it can, in principle,
reach arbitrarily high values for ultraviolet light. Adding this all up means an
infinite amount of energy coming out of the pinhole!

This theoretical prediction is based on the assumption that the energy ab-
sorbed and emitted by this black-body can be transferred in any arbitrary
amount. The result would be that any such container exposed to a finite amount
of energy would radiate back an infinite amount of energy, some of it being
lethally energetic, even exceeding the range of X-rays and gamma rays!

Notice that taking all possible wavelengths into consideration means it should
be a continuous spectrum of radiation, or so it seemed...

§3.2 What does it Mean to be Discrete?

One should always look for the simplest, and preferably most elegant, solution
to a problem. On December the 14th, 1900 Max Planck (1858 - 1947), a German
physicist, chose the simplest solution to the black body radiation problem. He
looked for a mathematical description that actually fits the experimental obser-
vations. He decided to model the walls inside the cavity as an assembly of linear
oscillators that only interact with the radiation field within the enclosure. This
simplified the calculations and provided a different value for the average energy
(in this case of the oscillators). He then proposed that, instead of considering
the whole, continuous spectrum of energy, the energy within the cavity can only
be exchanged in multiples of a minimum value, which he called a quanta. I.e.
the energy inside this container was not assumed to be free to have any arbitrary
value, but actually restrained to a set of specific values, all of them multiples of
a certain “base” energy that should be proportional to the light’s frequency17,
which coincides with Einstein’s solution to the photoelectric effect.
†† The idea of considering the existence of certain quantities, like that of

matter, light, or electric charge, only in specific amounts instead of a continuous

16or rather an infinitesimal interval of wavelengths, dλ to be precise
17Frequency is related to wavelength; wavelength is the spatial distance between crests in a

wave, frequency is the number of times per second such a wave oscillates through a particular
point in space. Frequency is measured in Hertz, meaning the amount of crests passing by for
every second of time.
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range of values, this “atomisation” of the different quantities in nature, is what
we call a quantisation. So far we knew that both matter and electric charge
are quantised (in atoms and electrically charged particles like electrons); with
the discoveries previously discussed, it was made experimentally evident that
energy is also quantised. Notice that Planck’s assumption18 is that energetic
interactions between these oscillators and the radiation field can be modelled as
if they only occurred in fixed amounts, not that the oscillators per se can only
possess these fixed amounts. Planck proposed this as a solution to the black
body radiation problem, not as a fundamental law of physics; only time and
history proved its actual, fundamental quality.
†† By ca. 1910 it was starting to become a well-accepted fact that energy

behaves in accordance to Planck’s and Einstein’s quantisation laws: E = hν,
where h is Planck’s constant, E is the energy, and ν is the light’s frequency, and
also, any exchange of energy occurs in integer multiples of a minimum amount
E0 or equivalently E = nhν, where n is an integer19. Why had we not noticed
this in any previous experiment? The smallest macroscopic process involves
around 1027 quanta of energy, thus giving us the false sensation that energy
flows continuously in physical processes.

An analogy to understand this concept might come in handy. Imagine a diver
about to jump into a pool; he or she is a professional diver, and can choose freely
which platform to jump from. Regardless of the amount of heights to be chosen
from, every platform has a specific height, and will thus provide the diver with
a certain amount of kinetic energy. The diver cannot choose any height he or
she feels like choosing, like an intermediate height between two platforms, for
example, but would have to pick either one, or the next one. Unlike a ramp,
where one can decide in which height to stand (or from which height to jump
in this case), platforms constitute a discrete set of options to choose from.
††When our set of possibilities is like a ramp, we say it is continuous; when

we have to choose one or the next, but nothing in between, we say it is discrete.
The notes on a piano, for example, are discrete, for they are limited by the keys,
whilst the notes on a violin are continuous, for one can press down on the strings
at any desired length. Energy, then, was discovered to be always quantised in
the microscopic world, i.e. one would always find its values in a discrete set of
options, all of them multiples of a first fundamental value of energy called the
ground state.

18PLANCK, M. (1900). “Zur Theorie des Gesetzes der Energieverteilung im Normalspec-
trum”. Verhandlungen der Deutschen Physikalischen Gesellschaft.

19One can also find this as E = ~ω, where ~ = h
2π

, and ω is the light’s angular frequency, a
mathematical adjustment to make computations easier. These two expressions are equivalent;
they imply that ω = 2πν. This is how angular frequency and frequency relate.
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§4 The Experiment: Electron Diffraction

§4.1 The First Quantum Conjecture

Just from heuristic knowledge of everyday life, we know there is a physical con-
sequence that arises from the interaction with objects that possess mass moving
with a certain speed. We are often taught in school that the force an object
can exert is equal to the mass times its acceleration, ~F = m~a in accordance to
Newtonian mechanics, but despite what many people could say, this is not at
all an intuitive quantity. We experience forces in everyday situations, but we
can hardly measure or be sensitive to the acceleration an object is subject to.

What we do know, even before attending any lectures in physics, is that the
faster an object is travelling, the greater the effect it can have on us if we decide
to step in its way. Obviously, a bullet is barely lethal if it is not travelling at
least at a few hundred metres per second. We would rather see a toddler than
a bull running towards us, which means mass has also an important effect on
material interactions. Just as a snowball rolling down a hillside, objects have a
physical property that increases with mass and speed, pointing to the direction
of this object’s movement. This intuitive property of moving objects is called
momentum, and its mathematical definition makes its dependence on mass and
velocity evident20:

~p = m~v

where ~p is the vector representing momentum, m is the particle’s mass, and ~v
its velocity vector.

It must be observed that momentum is a physical quantity that transcends
these classical definitions. The actual, more general definition of momentum
can be more complicated to understand at first glance; it will suffice, for the
time being, to keep this as the proper definition. As it will later be seen, the
momentum of a photon, for example, exists only due to the fact that it is
travelling through space, either as a particle or as electromagnetic radiation; it
therefore exists despite the photon being a massless entity.

According to Einstein’s Special Relativity Theory21, the energy associated
to any particle is related to its mass and momentum according to the following
relation:

E2 = m2c4 + c2p2

where m is the particle’s mass, p its momentum, and c is the speed of light in
vacuum. Which means that

20Momentum is definitely a more intuitive quantity than force, but this does not mean it
was simple and obvious to scientists from the beginning; it took no less than two centuries to
formalise these notions into what we call mechanics.

21Which is out of the scope of this text
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E2 = m2c4 + c2�
�7

0

p2 =⇒ E = mc2

for particles at rest, and

E2 =��
�:0

m2c4 + c2p2 =⇒ E = cp

for massless particles.
†† So from Einstein’s and Planck’s results on the experiments relating the

energy of a photon with the frequency of the electromagnetic radiation, one can
conclude that a photon’s momentum (m = 0) is related to its wavelength λ via
the following relations:

E = cp

&

E = hν

Which implies that

cp = hν =⇒ p = hν
c and, since c = λν

(because speed is measured in metres per second, wavelength is measured in
metres, and frequency in units per second)

we get that

p =
h�c

�cλ
=⇒ p =

h

λ

†† Notice how this equation relates a purely oscillatory property, the wave-
length λ, and a typically material quantity, the momentum p. This is precisely
what was needed, a way to express with mathematical precision how the wave-
like and matter-like characteristics of light are related. What was unexpected,
though, was the foundational quality of this last relation between a photon’s mo-
mentum and wavelength via Planck’s constant. In fact, what Louis de Broglie
(1892 - 1987)22 noticed is the realm of validity of this equation; he identified

22Louis de Broglie is considered to be one of the founding fathers of quantum physics. He
came from an aristocratic French family, and his role in WWI was rather important, for he
worked as a communications engineer at the top of the Eiffel tower during the war.
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it as a fundamental fact, one that could be generalised to corpuscles of matter.
This is, essentially, the first quantum conjecture.
†† Does this mean that every macroscopic body has an associated wave-

length? If so, how and where is the associated wave located? Of course, the
de Broglie wavelength of macroscopic objects is preposterously small, as can be
easily proved by computing the associated wavelength of an everyday object23,
thus exhibiting the frontiers of quantum knowledge. Quantum mechanics works
for objects in the atomic range, not elsewhere. This does not mean that the
classical description is wrong per se, it is just a macroscopic approximation of
the physics in the quantum realm that we happened to discover first because of
our macroscopic scale.

So,

• E = hν

• E = cp

 Then, λ =
h

p
for photons.

†† Energy is proportional to frequency via Planck’s constant. The associated
“wavelength” of any quantum particle, electrons in particular, is related to its
momentum via de Broglie’s relations:

λe =
h

pe

§4.2 Davisson & Germer

The fact that this relation holds for electrons was proposed in 1924 as de
Broglie’s doctoral thesis. No one was sure at the time if such a generalisa-
tion could be valid, so the thesis was sent to A. Einstein. The thesis was then
accepted, and de Broglie obtained his PhD, but no immediate attempts to test
this assumption were made. By 1927, plenty of experiments had already been
conducted to confirm both the wave-like and the corpuscular properties of light.
Electrons, on the other hand, had been successfully isolated and could be han-
dled in such a way as to perform properly controlled experiments.

At the Bell Telephone Laboratories, in New York, C. J. Davisson (1881 -
1958) and L. H. Germer (1896 - 1971) were studying the reflection of a beam
of electrons being shot at a nickel target. An accidental break in the vacuum
system created an accumulation of oxide on the nickel surface. This accumula-
tion caused a scattering of the electron beam, which led to the accidental (and

23Planck’s constant is h ≈ 6.626176 × 10−34 Joules · second, which means an object of 1
gram moving at 1 metre per second would have an associated wavelength of about 6× 10−31

m, which exceeds by far any capacity of measurement. The size of a subatomic particle, like a
proton, is roughly 10−16 m; this is why quantum mechanics does not work on the macroscopic
realm.
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by all means interesting) discovery of electron diffraction. As it often happens
in science, a discovery was made by mere accident and not by means of the
scientific method.
†† Electrons had hit the crystallised oxide, which had worked as a double

slit barrier, and were scattered in an indisputable diffraction pattern, with the
maxima and minima that any wave would produce. With this, not just light,
but electrons were finally proved to be able to manifest both a wave-like and
a corpuscular behaviour, thus proving de Broglie’s hypothesis right. Using a
crystal as a double slit barrier and the proper experimental arrangement, it
is possible to reproduce this results, i.e. the electron interference on a screen.
Electrons were always recognised as matter; with this, their wave-like nature
was factually exhibited.

§4.3 The Wave Equation

Let us review the results of these experiments involving electron diffraction.
After crossing the two-slits barrier, or its crystal equivalent, electrons exhibit
an apparent deviation and an alternate pattern of constructive and destructive
interference. The screen on the background (a photographic plate, for instance)
shows the maxima and minima where electrons “landed” on the screen. One can
easily identify a greater concentration of impacts in the central stripe, as the
lateral ones appear to get dimmer when being farther away from the centre. The
next figure depicts how this electron-impacts-distribution would look like, but
most importantly, it shows a graph relating the concentration of such impacts
as a function of position. The higher the peaks, the more impacts on the screen
are visible. The wave associated to this diffraction pattern is a key starting
point for quantum theory.

Figure 1.12: The “wave” that might have caused this interference pattern was
perhaps Schrödinger’s starting point. This notion constitutes the basis of the
ensemble (or statistical) perspective of quantum mechanics.

†† By associating a wave-like description to the experiment, one can de-
scribe the statistical results obtained, not necessarily attempting to describe
the intrinsic nature of a specific electron, but trying instead to encapsulate the
observations as a whole. Since the diffraction pattern reflects the statistical
incidences of electrons on the screen verbatim, the wave-like description merely
shows global characteristics of the system, and does not necessarily describe the

35



behaviour of an electron individually. Whatever the electrons do between the
barrier and the screen is not a topic of interest to this description of nature. For
any purposes of quantum mechanics, electrons could very well act randomly,
and this stochastic24 behaviour of individual electrons would not impede a con-
sistent, statistical, collective description. The notion of trajectory is out of the
scope of this quantum mechanical description.

There are not abundant sources that can provide historical accounts of how
Erwin Schrödinger (1887 - 1961) came up with his ideas in the first place,
but in 1926 he published an article with what is now known as Schrödinger’s
equation25. This equation cannot be derived from classical physics. In an article
from the 29th volume of Physics Today magazine (1976), Felix Bloch (1905 -
1983), a Swiss-American Nobel prize laureate for physics, gives his personal
account of the story26:

Once at the end of a colloquium I heard Debye saying something like: “Schrödinger,
you are not working right now on very important problems anyway. Why don’t
you tell us some time about that thesis of de Broglie, which seems to have at-
tracted some attention.” So, in one of the next colloquia, Schrödinger gave a
beautifully clear account of how de Broglie associated a wave with a particle and
how he could obtain the quantization rules of Niel’s Bohr and Sommerfeld by
demanding that an integer number of waves should be fitted along a stationary
orbit. When he had finished, Debye casually remarked that he thought this way
of talking was rather childish. As a student of Sommerfeld he had learned that,
to deal properly with waves, one had to have a wave equation. It sounded quite
trivial and did not seem to make a great impression, but Schrödinger evidently
thought a bit more about the idea afterwards.

Just a few weeks later he gave another talk in the colloquium which he started by
saying: “My colleague Debye suggested that one should have a wave equation;
well, I have found one!” And then he told us essentially what he was about to
publish under the title “Quantization as Eigenvalue Problem” as a first paper of
a series in the Annalen der Physik.
[. . . ]
there was afterwards a lot of talk among the physicists of Zurich, including even
the students, about that mysterious “psi” of Schrodinger. In the summer of
1926, a fine little conference was held there and at the end everyone joined a
boat trip to dinner in a restaurant on the lake. As a young “Privatdozent”,
Erich Hiickel worked at that time on what is now well known as the Debye-
Huckel theory of strong electrolytes, and on the occasion he incited and helped
us to compose some verses, which did not show too much respect for the great
professors. As an example, I want to quote the one on Erwin Schrödinger in its
original German:

24stochastic = random
25SCHRÖDINGER, E. (1926). “An Undulatory Theory of the Mechanics of Atoms and

Molecules” Physical Review 28.
26BLOCH, F. (1976). Heisenberg and the Early Days of Quantum Mechanics. Physics

Today, 29 (12), 23-27. doi:10.1063/1.3024633
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“Gar Manches rechnet Erwin schon
Mit seiner Wellenfunktion.

Nur wissen mocht’ man gerne wohl
Was man sich dabei vorstell’n soll.”

In free translation:

“Erwin with his psi can do
Calculations quite a few.

But one thing has not been seen:
Just what does psi really mean?”

Well, the trouble was that Schrödinger did not know it himself. Max Born’s
interpretation as probability amplitude came only later and, along with no less
a company than Max Planck, Albert Einstein and de Broglie, he remained skep-
tical about it to the end of his life. Much later, I was once in a seminar where
someone drew certain quite extended conclusions from the Schrödinger equation,
and Schrödinger expressed his grave doubts that it could be taken that seriously;
where upon Gregor Wentzel, who was also there, said to him: “Schrödinger, it
is most fortunate that other people believe more in your equation than you do!”
Schrödinger thought for a time that a wave packet would represent the actual
shape of an electron, but it naturally bothered him that the thing had a tendency
to spread out in time as if the electron would gradually get fatter and fatter.
[. . . ]
Schrödinger’s next papers on wave mechanics appeared shortly, one after the
other. I did not learn about the matrix formulation of quantum mechanics by
Heisenberg, Born and Pascual Jordan until I read that paper of Schrödinger’s
in which he showed the two formulations to lead to the same results. It did not
take me too long to absorb these new methods, and I wish I could confer to the
younger physicists who read this article the marvellous feeling we students expe-
rienced at that time in the sudden tremendous widening of our horizon. Since we
were not burdened with much previous knowledge, the process was quite painless
for us, and we were blissfully unaware of the deep underlying change of funda-
mental concepts that the more experienced older physicists had to struggle with.
[. . . ]
†† There is [a] [. . . ] remark he once made that I consider even more character-
istic. We were on a walk and somehow began to talk about space. I had just
read Weyl’s book “Space, Time and Matter,” and under its influence was proud
to declare that space was simply the field of linear operations. “Nonsense,” said
Heisenberg, “space is blue and birds fly through it.” This may sound näıve, but
I knew him well enough by that time to fully understand the rebuke. What he
meant was that it was dangerous for a physicist to describe Nature in terms of
idealized abstractions too far removed from the evidence of actual observation.
In fact, it was just by avoiding this danger in the previous description of atomic
phenomena that he was able to arrive at his great creation of quantum mechan-
ics. In celebrating the fiftieth anniversary of this achievement, we are vastly
indebted to the men who brought it about: not only for having provided us with
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a most powerful tool but also, and even more significant, for a deeper insight
into our conception of reality.

From this point on, a whole plethora of experiments were performed both to
prove the corpuscular and the wave like nature of electrons. All of them seemed
to be decisive, so neither one of the options could be said to be a full descrip-
tion. Meanwhile, and mathematically speaking, classical descriptions of me-
chanics were failing to provide a proper explanation for the observed behaviour.
One should not, however, underestimate the scope of classical mechanics; it
was precise enough to help humanity discover planets, galaxies, particles, and
electromagnetic spectra, and make a very accurate description of both the mi-
croscopic and macroscopic Universe we live in. Keeping the political agendas
of the time aside, it even allowed humanity to land on the moon, back when
scientific endeavour was a priority.
†† Classical mechanics focuses on the trajectories of particles; it is based

on the assumption that, once knowing the position and velocity of a particle,
its whole physical history is unambiguously determined, its past and its future
are no longer unknown, and classical equations describe the particle’s complete
existence. Since it is precisely from the recently acquired factual knowledge
that Erwin Schrödinger introduced his famous equation, a problem arises when
such concrete and tangible notions as localised particles, well-defined velocities,
trajectories, etc, are left out from the quantum description of Nature. Is it ab-
solutely statistical or can something actually be said about individual particles?
The answer seems to be much more complicated than it seems a priori.
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§5 Waves and Particles: One, Both, or Neither

Figure 1.13: Constructive and destructive interference. When two waves are
perfectly aligned, they create constructive interference.

Waves consist in travelling disturbances. Sound, for example, propagates through
air as a chain of compressions that, once they reach the human eardrum, make
it resonate in synchrony with the pitch of such sound. Ocean waves are distur-
bances with transverse displacement with respect to the surface of the water.
Radio and television signals are electromagnetic oscillations that periodically
change the intensity of an electromagnetic field across the distance between the
antenna and your receiver. Normally, these disturbances propagate through
a medium, but since the beginning of the 20th century, it was well known to
physicists that light needs no medium to propagate. The experiments of Michel-
son and Morley confirm this hypothesis and unequivocally show that no such
medium is required. Any discussion on the subject is worth reading, but it
remains out of the scope of this text27.

27Anyone interested in the history of special relativity can read more on the experiments,
and find a detailed explanation in the following texts: TIPLER, P. A. (1970) Foundations of
Modern Physics. Worth Publishers, Inc. Second edition. and BEISER, A. (2003) Concepts
of Modern Physics. McGraw-Hill. Sixth edition.
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†† Although light-waves consist of a chain of disturbances, they need no
medium to propagate. Matter, on the other hand, is something; it does not
transfer anything unless it moves. Matter and waves are intrinsically distinct in
nature; at least in the macroscopic realm, they are completely different, mutu-
ally exclusive phenomena. At the beginning of the 20th century, the physicists
involved in the study of the atomic structure noticed that a wave packet, seen
from afar, can resemble a particle, a fact that seems quite sensible. However,
Louis de Broglie suggested28, in 1924, that matter could be regarded as a wave.
Perhaps he postulated this as a mathematical curiosity, as a symmetrical coun-
terpart of seeing waves as matter. Later, Davisson and Germer actually saw
an interference pattern whilst shooting electrons through a crystal, which, for
experimental purposes, can be considered as the microscopic equivalent of a
double slit barrier29, even though electrons had already been proved to be mat-
ter. The ensemble as a whole had exhibited wave-like behaviour, but exactly a
wave of what remained an unanswered question.
†† Once enough experimental observations were gathered, both phenomena

were regarded as coming from a common physical manifestation. Most texts
on the subject discuss this topics with the term wave-particle duality. By us-
ing this seemingly inoffensive terminology from the beginning, one may accept
that light (or matter) is actually both a wave and a particle. Not often does
one read any other interpretations, but for this purpose electrons can also be
thought of as well-defined particles with well-defined trajectories, but with an
intrinsic, associated but separate wave that guides their path and influences
their surroundings. If this were the case, then there would be an actual, physi-
cal particle, and an actual physical wave, instead of a simultaneous, dual entity.
De Broglie favoured this idea, and he spoke about it often, as one can read in
his correspondence with Alfred Landau30. He called this a double solution to
Schrödinger’s equation, which considered both an actual, physical wave, as well
as the abstract, statistical wave proposed by Schrödinger31. As an alternative,
electrons can be neither waves nor particles, but something else, something that
exceeds our current understanding of Nature, and whose physical manifestations
we relate to waves or particles, depending on the experimental situation, but
just due to a lack of a better description.

It is noteworthy to state that most advances in quantum theory were done in
Europe during WWII and the preceding years. W. Heisenberg’s and Schrödinger’s
contributions were not at all trivial, but suddenly, both Einstein’s and de
Broglie’s perspectives were somehow left aside. The warfare applications of
quantum theory were evident, and countries’ (like those of Germany and the
USA) objectives were focused on the atomic bomb. Quantum physics was on its
early stages back then, but a great amount of mathematical development took

28De BROGLIE, L. (1926). “Ondes et mouvements”. Solvay Conferences.
29THOMSON, G. P. (1927). “Diffraction of Cathode Rays by a Thin Film” Nature. 119

(3007): 890–890.
30DE BROGLIE, L. (1971) A New Interpretation Concerning the Coexistence of Waves

and Particles. The MIT Press, Cambridge
31More on the double solution and the pilot-wave theory is discussed in chapter 3
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place, so much that it exceeded by far the actual heuristic understanding of the
subject.

Since physicists back then were convinced of the corpuscular nature of elec-
trons, electron diffraction made no sense. The seemingly contradictory observa-
tions were part of the blossoming of a new theory, a whole new perspective that
we might call quantum mechanical thinking. Up to this day no one knows for
sure how to comprehend fully these observations, but what we have is a monu-
mental theoretical apparatus that matches every last detail of the experimental
results32. However powerful and satisfactory a mathematical tool quantum the-
ory is, the great problem that prevails is that it has no properly satisfying
physical interpretation.

§6 So, What Does it Look Like?

§6.1 Quantum Theory

So far we have discussed a few historical facts that led to the development
of quantum theory. We stated some of the problems with the description of
physical phenomena, and how they were confronted; also, we claimed that
Schrödinger’s equation was a solution to the so-called wave-particle duality prob-
lem. We have not yet, however, discussed how quantum theory works, how the
wave equation actually solves any of the problems, or even what quantum me-
chanics takes as experimental facts to describe the physics of the atomic domain
in a proper mathematical way. In lieu of an absolutely formal mathematical de-
scription, we begin by formulating how quantum mechanics describes its realm
of study.
†† Quantum physics is basically the study of the microscopic universe, where

classical descriptions are no longer valid due to a set of physical quantities that
have no net effect in the macroscopic world, but have large, noticeable effects at
the atomic and subatomic level. A quantum system is composed of the portions
of the microscopic world one considers for study. Every quantum system has an
associated wave-equation33; this is no experimental fact, it is a starting point
of the theoretical “artillery” of quantum physics.
†† This wave equation contains all the information needed to describe the

quantum system34 fully. It evolves with time, but some of its main characteris-
tics remain unchanged. One usually denotes the wave equation associated to the
system of study with the Greek letter Ψ. This wave-function is usually (though
not always) a function of time and position:

Ψ(~x, t)

32This is discussed both in § 8 and in Chapter 3
33A more profound approach to quantum theory can also introduce a density matrix. More

on this can be found in: DE LA PEÑA, L. (2003). “Introducción a la Mecánica Cuántica.”
Fondo de Cultura Económica.

34a pure quantum system, to be precise; a mixture of quantum states is again a quantum
state, but quantum states that cannot be written as a mixture of other states are called
pure quantum states. More can be found at: “Quantum State” at Wikipedia, The Free
Encyclopedia 2018
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where the vector ~x denotes the position in 3-D space, and is downsized to x
whenever one deals with one dimensional problems.

So for every point in space, and every moment in time, the wave equation
assigns a complex number, which means it is a function from the set Space ×
Time to the set of complex numbers35. The reasons for this function to be
complex are not at all evident. Complex functions allow us to convey more
information in very succinct forms; also, they are often easier to handle. A few
other properties of complex functions should be enough justification, but for the
moment, it can simply be seen as a mathematical imposition.
†† Despite the fact that this wave equation has no physical interpretation, it

is considered to contain all the relevant quantum information we can ask about
the system. This does not mean, as we will clarify further in the text, that one
can “ask” the wave equation for all that we wish to know about such system, for
the knowledge of some of the variables may influence our knowledge of the rest
of them. This is one of the most intriguing facts of quantum theory. Let not this
hinder our enthusiasm about quantum mechanics just yet; the wave equation
can answer a lot of our questions about the system, and it has continued to do
so for most of the past one hundred years.

§6.2 The Size of the Wave Function: A Probability Distribution

Probability is a very general branch of mathematics, but its role in quantum
mechanics is quintessential, since most of the experimental procedures one can
do with quantum systems consist in obtaining average measurements related
to specific physical quantities. So, in order to understand better how quantum
theory is structured, let us digress for a moment and discuss some relevant facts
about probability36.

Whenever one has a set of statistical data, there is only a range of possible
outcomes for any given experiment; that is to say, the set of all possible outcomes
should be a well defined set of parameters. For example, by tossing a die one
expects to obtain a whole number between one and six, with a certain well-

defined probability, but one would never expect such a die to fall in
π

2
, of course,

since it is not even in the range of possibilities. The set of possible outcomes is
then {1,2,3,4,5,6}, which we shall label Ω. In this case, and assuming the die

is perfectly homogeneous and even, each number has a strict
1

6
probability of

appearing in every toss.
A probability distribution for a discrete variable is called a probability mass

function; it is a function of a discrete, random variable x, labelled p(x) that
assigns a probability, a number between 0 and 1, to every member of the set
of discrete possible outcomes. In the previous example, such a distribution

would assign
1

6
to each number in the set Ω = {1,2,3,4,5,6}. The graph of

35It can also be a function from the set of momentum parameters and time, to the set of
complex numbers. As a first approach, and for simplicity, one can understand it as it is here
presented.

36More on this and other topics on probability are discussed in Chapter 2
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this particular distribution would be a simple set of horizontally aligned points.
Adding consecutive values of the function p(x) corresponds to the probability
that this random variable x lies between these specific values. Adding every
value of the function along all points of the set Ω must be equal to 1, since the
probability of getting some value of Ω is 100%.

A probability distribution for a continuous variable is called a probability
density function (or pdf for short), and is usually labelled ρ(x) (not to be con-
fused with p(x)), where x is the random variable of interest. It provides the
amount of probability per given range of values of x. In the case of age, for
instance, the question what is the probability of a random person being 26 years,
eight months, four days, two hours, one minute, six seconds... old? is abso-
lutely meaningless, since the probability of someone having any specific age is
strictly zero. One must allow a range of possible values, however small we want
it to be.

Let ∆x be the range of age we happen to be interested in. If ρ(x) is the
probability density, measured in “probability per range of age”, the value of
ρ(x) ·∆x is an actual probability. If we want to refine our measurement, we can
narrow down the range ∆x we are interested in. Loosely speaking, we label an
infinitesimally small range “dx.” For the value of ρ(x)dx to make sense, using
this infinitesimally small number, we can add a range of values and obtain the
probability that the random variable x lies precisely in the interval between a
and b.

P (a, b) =

b∑
j=a

p(xj) =⇒ P (a, b) = lim
∆x→0

b∑
j=a

ρ(xj) ·∆x =

∫ b

a

ρ(x)dx

For a discrete variable For a continuous variable

where the symbol
∫
dx represents a sum for a continuous variable.

This can be seen intuitively if one thinks of very, very small intervals ∆x
that partition the interval [a, b]. These ∆x are the bases of very thin but tall
rectangles of height ρ(x); as one adds up the area of these rectangles, each of
them represented by the product ρ(x)×∆x, i.e. the base times the height of the
rectangle, the resulting number corresponds to the area of a region underneath
the curve ρ(x). As this partition is refined, i.e. as we consider smaller and
smaller intervals ∆x, this resulting number approaches the exact value of the
area underneath the curve. It is also the probability of the variable x having a
value between a and b, i.e. along the whole interval.
†† Probability distributions ought to be representative of the whole collection

of experimental data; it should not be understood to represent exactly which the
particular outcome will be. It is impossible to predict any particular outcome.
In fact, any statistical information comes from a set of data; it reveals the
tendency of a given variable, provided a random event. If the testing conditions
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change, then that same variable x is not “prepared” in the same state, and the
information might seem biased. E.g. The average grade on a group of students
is a value that represents the whole set of grades; it does not mean it is the
most repeated value or even that an actual student got this particular grade. It
is usually helpful to resort to averages instead of actual values; average values
can be essential, and sometimes even more useful than precise data.

Perhaps an example can be more effective to illustrate this point. If one
wishes to study the dynamics of a passenger train, for instance, and one needs
to calculate how much fuel it takes to drive it from one city into the next one,
it would be useless only to consider the weight of the train. It needs fuel to
move, and the heavier it gets, the more fuel it requires. Since it will also be
carrying passengers, staff, and their luggage, one has to take a lot more mass
into account than that of the train alone. Every trip would be different, with a
different amount of passengers, baggage, etc, and even the weight of any given
passenger can be different on different days. The only way to estimate the
amount of fuel needed is to consider what the average trip looks like, i.e. how
many people travel between these two cities in average, how many pieces of
luggage they carry, and so on. Notice how this data is even more significant
than any given measurement of a certain specific trip, however precise it were.

Average quantities are very important when dealing with large sets of data.
Thermodynamics, for example, is a branch of physics that relies heavily on
statistical data and average values of physical quantities. It would be practically
impossible and even useless to have specific data about mass and velocity for
every molecule in a cubic metre of gas, especially since it contains an average
of 1025 molecules, but the average kinetic energy of its molecules allows us to
predict macroscopic variables such as temperature or pressure. Many problems
at the early stages of quantum mechanics were dealt with mathematical methods
that come from statistical thermodynamics.
†† A typical wave function in quantum mechanics contains, specifically, the

statistical information needed to obtain the average values for different physical
quantities. The average position, momentum, kinetic, and rotational energy,
etc, are examples of exactly the kind of information the wave equation has. One
“asks” the wave function for the average value of a particular physical quantity
by performing a measurement. Figure 1.14 represents the probability density
function for a particle located in a one dimensional line. Any region underneath
the curve ρ(x), bounded by two values a and b, represents the probability of
finding the particle within that interval in space; these values are always bound
to be a number between 0 and 1.
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Figure 1.14: This particular probability density function for a particle in space
is often known as a normal or Gaussian distribution. For every range dx in
space, the density function ρ(x) is a curve that shows the probability density
in that particular region. Here, xaverage is the average value (also referred to as
expectation value) for x, which does not mean one will actually find the particle
there, just that it is more likely according to the distribution. The equation for

such a distribution is the following: ρ(x) =
1√
2πσ

e−
(x−xaverage)2

2σ2 , where xaverage

is naturally the average position, and σ is related to how “far”, in average, every
element is from the average value.

The entire space is represented by the x-axis, i.e. values of x ranging from
−∞ to∞. Since the particle must be located at some point in space, by adding
up the individual probabilities of finding the particle at each point in space, we
end up having the 100% certainty (thus the number 1) of locating the particle
somewhere, i.e.

P (−∞,∞) =

∫ ∞
−∞

ρ(x)dx = 1

†† As was discussed in §4.3, classical physics is based on the assumption that,
once a particle’s initial position and velocity are determined, its whole physical
history, i.e. its whole past and future are theoretically determined. Classical
equations are deterministic; in contrast, a quantum mechanical description of a
physical system contains all the information needed to make a measurement and
obtain a precise result, but given its statistical nature, any event at the quantum
level can be considered random, and the theory provides the probability of such
an event to take place.
†† As far as quantum mechanics is concerned, anything that happened before

the measurement was made can be considered as non-existent, and the mere
act of performing a measurement destroys any previous information that the
wave function had provided, depending on the quantity one measures. This
is not a trivial fact; on the contrary, it is a key feature of quantum physics,
one that defines the core difference between the macroscopic realm and the

45



quantum world. Does this mean that Nature itself is random, and that the
particle’s physical reality was in fact undetermined before the measurement was
made? No, not necessarily, it just means the theory per se does not contain this
information; it is not part of its mathematical description.
†† A typical wave function is depicted in Figure 1.15 ; it is defined in every

point in space, and as it name suggests, its graph is usually related to a kind
of wave-like motion. One cannot emphasise enough that the wave function has
no actual physical meaning, despite the fact that it contains all the physical
information of the system. By squaring the wave function, however, we obtain
what we can call the size37 of the wave function. The graph of this new function
does have a physical meaning, it is the probability density function for the given
quantum system, a particle for example, at any given point in space38. To be
more precise,

|Ψ(x)|2 = ρ(x)

This interpretation of the norm of the wave function is due to Max Born
(1882 - 1970), a German mathematician and physicist also considered a key
figure in the development of quantum theory. The “size” of the wave function
(or any function) refers to the values the function takes, but ignoring their
orientation. So, for example, if an arbitrary function represents the relative
position of an object with respect to a certain point in space, the values this
function takes can be positive, meaning the object lies “after” the reference
point, or negative, meaning the object lies “before” the reference point; the size
of this function would represent the absolute distance between the object and
the reference point.

§6.3 Measurements

Whenever a measurement is made, the physical system of interest is disturbed,
at least ever so slightly. This is true in classical physics, and it is true in quantum
mechanics. Take, for instance, a classical measurement of temperature in a
macroscopic system. We can suppose the system is originally at a temperature
T0; when the system and the thermometer are placed in contact, a certain
amount of heat is transferred to the mercury (or alcohol) of the thermometer
to make it work, thus altering the system’s original temperature. However, the
main difference between both cases, classical or quantum, is the following:

(a) The theoretical model of classical mechanics considers every object to be
equivalent to a point in space (its centre of mass). Everything has a determined,
well-defined position and momentum, and one can measure them both. The
precision of such measurements depends only on our equipment, but it can be,
in principle, arbitrarily narrow. Once the object’s momentum and position are

37Also called the norm. The size or norm of a function is actually just |Ψ|, and here we
have written |Ψ|2; this temporary nomenclature can be useful for clarity.

38For more about Born’s perspective see BORN, M., (1969). Atomic Physics. Blackie,
Eighth Edition.
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Figure 1.15: Part (a) shows a typical (real) wave function, whilst (b) represents
its size squared. The x axis represents space. The size of the wave function
squared is a probability distribution, meaning that wherever this function takes
higher values, is where the particle is more likely to be found. As one moves
farther away from the system (far from the laboratory, for instance), the size of
the wave function gets closer, and closer to zero, which is expected, since it is
related to the probability of finding the particle there. It is obviously unlikely
to find the particle very far away from the actual experiment.

known, Newton’s equation provides everything needed to deduce the particle’s
entire existence. The more forces one takes into consideration, the wider the
range of validity of the resulting equations. Trajectories through space and time
are the core of Newtonian mechanics, and somehow we have all learnt to think
in terms of this physical model39.
†† (b) Quantum mechanics models each system with the aid of a wave function,
and the notion of trajectory is inevitably lost; it is not properly defined, and not
even considered in the theoretical model. If they exist or not at the microscopic
level is irrelevant for quantum theory, and certain interpretations of experimen-
tal evidence often suggest they do not. Throughout the years it has made it
ever more difficult to define such a notion, since quantum particles disobey some
elementary rules of classical mechanics. Measuring a particle’s position means
affecting the wave function in such a way that it seems to “force” the particle
to be where we found it to be.
†† The wave function evolves in time, it changes, but whenever we perform

a measurement and find a particle to be at some location x0, the size of the
wave function approaches zero elsewhere, and creates a large probability peak
around x0, as if the particle was materialised precisely there as a consequence of
our measurement. Why there and not somewhere else? That is an unanswered
question of quantum physics. Up to now, we consider this behaviour to be
simply stochastic. As time goes by, the wave function re-stabilises, and recovers
its form, spread out across a large region of space.
†† The only fundamental property that remains unchanged throughout this

39despite the fact that, in most cases, the resulting system of classical equations cannot be
solved analytically
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whole process is the fact that the particle has to be somewhere, and thus the
area under its probability density curve should keep adding up to 1. The form
of the wave function changes, but the area underneath it remains unchanged.
See Fig. 1.16

Figure 1.16: The probability density for a typical wave function defined on the

x axis. Part (a) shows the meaning of P (a, b) =
∫ b
a
ρ(x)dx; it is a real positive

number between 0 and 1, i.e. the probability of finding the particle in the
interval [a, b]. Part (b) shows what happens to the size of the wave function
when a measurement is made; here, the particle was found to be in a very narrow
region around the value x0. Part (c) shows how, with time, the wave function
and its size evolve to a more stable state, spread out over a larger region in
space, without losing the fundamental property P (−∞,∞) =

∫∞
−∞ ρ(x)dx = 1,

the particle is still somewhere.
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§6.4 The Typical Problem (I)

Most of what one learns whilst studying quantum physics, or almost any other
subject in physics, is how to solve problems. Problems in quantum mechanics
can be very hard to solve, but they often involve finding the associated wave
function for a given physical system. The purpose of this section is not to teach
the algebraic processes that lead to a solution of any particular problem, but to
provide an overview of how problems in quantum mechanics are usually dealt
with. Consider, for example, the following situation:

There is a quantum particle, like an electron, confined to a region of space by
means of two impenetrable walls. The electron is trapped in a one dimensional
space, meaning it can only move in a straight line, i.e. left or right, but neither
backwards or forwards, nor up or down, like in an extremely thin tubular struc-
ture. These “walls” can be in fact a pair of transverse cuts around the region
where the electron is confined in such tubular structure, two cuts that do not
allow the electron to flow to other regions of space. A voltage difference applied
with a pair of batteries40 forces the electron to stay within the boundaries of
this inescapable “box.” These specific conditions that describe the regions of
space where the quantum particle is “allowed” or not are called boundary con-
ditions; once defined, one can ask how this simple quantum mechanical system
will evolve, according to the laws of quantum mechanics41.

The first thing to do is to translate this physical problem into a mathematical
one; this is often the most complicated part of the task. After that, one can
use any mathematical tools one considers to be useful and find a mathematical
solution. Then, one reinterprets the solution again in physical terms. Finding a
solution without the use of mathematical formalism would be nearly impossible;
this is why one often requires the aid of precise mathematical formulation, it
allows us to focus on the relevant variables, and to find unequivocally true
relations between them. To solve this kind of problems, we first get rid of any
extra information, and retain only whatever we consider indispensable.

For simplicity, and since this quantum system is considered as one-dimensional,
we represent space by a segment of the x axis, and the boundaries are taken to
be absolutely impenetrable. The first task at hand is to find the associated wave
equation, which should evolve according to Schrödinger’s equation. By taking
both the Schrödinger equation and the appropriate boundary conditions, one
can successfully present this problem in the language of formal mathematics.

40A much more detailed explanation of this experiment and many other similar ones can
be found in the first chapters of DE LA PEÑA, L. (2003). “Introducción a la Mecánica
Cuántica.” Fondo de Cultura Económica.

41It should be noted that a real experimental arrangement would be much more complicated;
to begin with, everything should be done in a vacuum chamber, etc.

49



Figure 1.17: The process of problem solving in science. Both “paths” commute,
but solving the problem with the aid of mathematics is much simpler, precise,
and concise.

Figure 1.18: Schrödinger’s equation. The description of mechanical systems at
a subatomic level
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This means we are looking for a function Ψ(~x, t) that for every position in
space and every moment in time assigns a complex number z, very much like
the one depicted in Figure 1.15. This function should be such that whenever

twice differentiated, and multiplied by the factor −~
2

2m , i.e.

−~2

2m
∇2Ψ(~x, t)

and then multiplied by the spatial constrains, represented by a function V (~x)
that depends on the points in space ~x (that means it describes the allowed
regions as a function of position ~x)42, i.e.

V (~x)Ψ(~x, t)

when added, will be precisely equal to its time evolution, represented by the

function’s time derivative
∂Ψ

∂t
, and finally scaled by the factor i~, i.e.

i~
∂Ψ(~x, t)

∂t

Again, the goal of this text is not to teach a step by step solution to this problem,
or even a formal mathematical derivation, much less algebra or calculus. The
goal, however, is to demystify some of the aspects of quantum physics, and
present them as a starting point for a much deeper understanding.

So, if the symbolic representation ∂Ψ
∂t does not mean anything to you, just

read it in your mind as the time evolution of the wave equation Ψ; it tells us
how the function changes as time goes by. The “nabla” operator, ∇, is related
to how the wave function Ψ changes from place to place. The fact that it
is squared, meaning it should be performed twice, is related to the particle’s

kinetic energy Ek =
1

2
mv2. A broader explanation can be found in Appendix

3: Arriving at the Schrödinger Equation. Finally, as it was stated earlier, the
function V (~x) describes the regions in space where the particle is allowed, and
the “effort” involved in reaching such regions. It should suffice to say that in
order to understand how these mathematical operations work, one must first
familiarise oneself with the notions they represent.43

42A more intuitive approach to this kind of functions is found on section §7.5 of this chapter,
Quantum Tunneling

43This is the way we truly learn any subject. Take language as an example; one does
not learn English (or any other language), by reading thick, extensive books on grammar,
structure, etc first, and then going out to the world and trying to apply it; we grow acquainted
with it, we get involved in culture, we listen to the language in the most diverse situations
throughout our lives, we hear thousands of conversations we do not understand, we misspell
and mispronounce words we are not even sure of their meaning sometimes, we even use
grammatical structures we do not fully understand, but eventually we learn the language. It
is good advice, if you want to learn physics, to get acquainted with its language, its structures,
while also reading the formal books about it.
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§6.5 Digression: Harmonics of the Mikrokosmos

A violin, a guitar, a cello, a piano; they all work under the same principle. Taut
strings whose ends are tightly fixed to the instrument are made to vibrate, either
by striking them or rubbing them. These oscillations displace molecules of air
in a periodic motion; the train of air compressions travels through space and
into our ears; eardrums are then displaced accordingly, moving back and forth,
matching the frequency of the oscillations of the string in the instrument. Two
separate instruments can begin to match a sounding frequency just by standing
in the way of a travelling sound-wave.

Figure 1.19: When striking a guitar string, the oscillations push the air
molecules every other time, creating a chain of air compressions that travel
through the air and reach the eardrum. The wavelength λ is related to the
distance between compressions. The eardrum resonates matching the sounding
frequency of the guitar string.

Every time one presses down on a string, the distance between fixed ends
is changed. The string, however, can oscillate stably in different ways without
anyone pressing down at some point throughout its length. The different ways
a string can oscillate without changing the distance between the two fixed ends
are called stationary modes. This means that the transverse wave motion of the
string can survive without loosing or gaining energy, for it is a stable travelling
wave that reflects on both ends, but leaves fixed points called nodes. The
resulting wave pattern is also referred to as standing waves.

Figure 1.20 depicts a taut string (of a guitar, for example), where only
the ends are fixed; it shows the different ways it can vibrate, i.e. the stationary
modes of vibration. The intermediate points of equilibrium are the nodes, whilst
the points of maximum displacement are called anti-nodes. The first harmonic,
also called a fundamental in music theory, corresponds to striking a string with-
out holding it tight at any point. The second harmonic is reached by merely
touching the string exactly at the middle point and making it vibrate; this will
create two first-harmonic-like waves, each on one side. Since the new lengths
are different, the pitch will be different.

As one carries on producing harmonics, the pitch goes up, as one can see in
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the Fig. 1.20. This is very easy to recreate on a guitar or a violin. Pressing
down on any other point along the string will produce a travelling wave that is
not stationary, meaning that the fixed ends work as reflection points, and the
wave dissipates rapidly.

Figure 1.20: Harmonics in music, and the harmonic progression on the piano
keys.

53



Stationary modes L = kλ k ∈ { 1
2 , 1,

3
2 · · · }

λ1 L = 1
2λ1 =⇒ λ1 = 2L

λ2 L = λ2 =⇒ λ2 = L

λ3 L = 3
2λ3 =⇒ λ3 = 2

3L

λ4 L = 2λ4 =⇒ λ4 = 1
2L

... ... ...

Table 1.1: Stationary modes and the relations between the length L and har-
monic wavelengths λ

§6.6 The Typical Problem (II): The Solution to the Schrödinger Equation

Going back to the problem of a quantum particle trapped in a one dimensional
box of impenetrable walls, we want to find a suitable wave function that de-
scribes this particular problem. We stated earlier that such a solution should
satisfy both the boundary conditions, and the Schrödinger equation, providing
all the physical information of our system that is available at the atomic and
subatomic level. Let us not forget that the size of this wave function squared
will allow us to predict where the quantum particle is likely to be, for it is the
probability density function for positions ~x in space.

The solutions to the Schrödinger equation are exactly those of Figure 1.20,
i.e. the musical harmonics. This means that a quantum particle, trapped in a
linear segment (like a copper wire) with impenetrable boundaries provided by
the voltage difference of a pair of batteries, is subject to a wave function that
increases harmonically in half-segments of a fundamental wavelength λ. Let us
take a moment to look at the wave motions on Figure 1.20 ; when seen as the
harmonic scale of a string tuned to C, the length of the interval represents the
length of the string. The first harmonic (or fundamental) represents this pitch,
and corresponds to half a wavelength, since the whole wavelength is measured
from crest to crest, or trough to trough. (see Figure 1.3 ). The rest of the
harmonics correspond to the following ways the string can vibrate without any
extra energy, i.e. in a stable, stationary mode.

When seen as a solution to the problem of the quantum particle though,
the length of the interval represents the length of the one dimensional box,
i.e. the wire segment where the particle is trapped. The oscillation modes
correspond to valid wave functions, or in other words, valid solutions to the
Schrödinger equation. The first solution corresponds to a particle in an energetic
ground state. The next solutions are increasing levels of energy, each having an
associated wave function with half a wavelength more than the previous energy
state, i.e.
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Figure 1.21: Graphs on the left depict the wave function solutions for the first
four levels of energy. Their corresponding probability distributions on the right
exhibit where the quantum particle is likely to be located. Notice how every
node implies a point where the particle will certainly not be found.

†† In summary, we want to find a wave function that properly describes the
quantum system of interest; we impose the physical constrains proper of this
system, e.g. boundary conditions, and we ask that this wave function obeys the
fundamental property P (−∞,∞) =

∫∞
−∞ ρ(x)dx = 1, i.e. that its size squared

is in fact a probability density function (and we say it is a normalised function).
Finally, we need this wave function to satisfy Schrödinger’s equation, so we plug
it in, and by means of mathematical tools we find the wave function associated
to our quantum system.

So, quantum mechanics reveals some deep interconnections in science; it
brings a whole new perspective into our physical understanding of the Universe,
and it compels us to develop a new intuition that breaks from the paradigm of
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classical physics, but why is it so intriguing? How is it that after a hundred
years of its birth it still beguiles the physicists community, and why do we find
it so provocative?

§7 Why is it so Intriguing?

†† Throughout the decades, people have been fascinated by the conceptual im-
plications of quantum mechanics, mostly because they defy very basic notions of
our physical, heuristic experience with the world around us. Some other notions
confronted by this new paradigm are not precisely evident for someone who is
not a physicist, someone who has an “outsider’s” understanding of physics, for
they involve the debunking of certain concepts of classical mechanics that re-
quire previous knowledge, and the development of a refined intuition in the first
place.
†† E.g. to find it intriguing that a quantum particle’s angular momentum

is quantised, one first has to understand formally and intuitively what angular
momentum is. Quantum physics does have an interesting set of topics, of unan-
swered questions that provoke a deep, thoughtful rethinking of our most basic
concepts, but these topics are now so extensively popular that they have often
been misinterpreted. We now discuss some of these fascinating topics.

§7.1 Superposition

Adding two wave functions results in another wave function; if both of these
satisfy the adequate boundary conditions, and the area underneath their sizes’
functions adds up to 1, then the resulting sum will also satisfy this set of condi-
tions, making it a new valid wave function for the quantum system of interest.
In other words, two valid solutions to the Schrödinger equation of a quantum
system can be added, and the resulting wave function will also be a valid solu-
tion. This result can be extended to any number of solutions, so any arbitrary
number of valid wave functions can be summed to obtain a new valid solution,
even an infinite number.

This is called the superposition principle. A quantum system is mathemat-
ically described by a wave function; it is said to be in a quantum state that is
either a pure state or a mixture of different quantum states. Two or more states
can be added, despite their physical meaning, and the new associated wave
function will still be valid. So, for example, the wave function representing a
particle’s rotation being strictly to the left can be added to the wave function
representing the same particle’s rotation being strictly to the right to create the
quantum state of a single particle that is in a simultaneous state of left and
right, according to the mathematical description of reality at a quantum level.
†† Superposition is mathematically consistent, but leaving this aside for a

moment, one has to stop and consider the interpretational issues this induces.
The sum of these two different wave functions should be a valid representation of
the state of a quantum system, despite the coexistence of two possible, seemingly
contradictory notions. A similar macroscopic analogue would be, for example,
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the wave function associated to the toss of a coin that is still in mid-air to be
the sum of the two possible states, the coin landing heads-side up, and the coin
landing tails-side up, simultaneously contributing to a unique, stable state of
existence. Notice that the state of the coin is not heads or tails, but heads and
tails.

There are at least two ways to understand superposition:
(a) A quantum particle’s state is described, mathematically, by a superposi-

tion of quantum states that comes from a previous statistical knowledge of an
ensemble of similar particles. The physical variables of the particle are in fact
determined, and an act of measurement will result in our knowledge of the state
of such variables, with probabilities determined by the size of the wave function.
(Realist perspective)

(b) A quantum particle is in fact in a quantum superposition of states. Its
physical variables are undetermined before any measurements are performed.
These will randomly take form in one and only one of the possible outcomes,
once the measurement is done. The probability of this particular outcome is
given by the size of the wave function. (Orthodox perspective)

The problem can be translated into a macroscopic paradox44. The idea
of a macroscopic system attached to a quantum particle was presented by E.
Schrödinger in his famous cat experiment, where a quantum system exists in a
stable superposition of seemingly opposite states, along with a Geiger radiation
detector ready to activate a poison trap inside a box, depending on the physical
manifestation of the state of the system, and a cat trapped inside this box. If
the system does actually exists as a superposition of quantum states, then the
Geiger counter also exists in a superposition of activation/non-activation, and
thus the cat remains in a stable dead/alive state of existence.

The mathematically congruent fact of adding two valid solutions into a single
new valid solution brings a new, problematic interpretation into the theory. The
verisimilitude and possibility of a macroscopic superposition of states remains
an unsolved puzzle in physics. Option (a) discards this possibility at once.

§7.2 Quantisation

As we discussed in a previous section, the solutions to the Schrödinger equation
for a particle confined in a one dimensional box are the series of harmonic modes.
This series does not stop at the sixth harmonic, but carries on infinitely into
smaller and smaller wavelengths, each one being more energetic. This means
that not every possible wavelength represents an acceptable solution, but just
those whose half multiples fit exactly in the length L of the box (recall the
relation L = n · ( 1

2λ), where n is a natural number, i.e. n ∈ {0, 1, 2, 3, ...}), thus
the idea of a quantisation of energy, and the name of quantum physics. Recall

44It is a paradox if one does not accept the notion of quantum superposition for macroscopic
systems, which seems quite reasonable.
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that being quantised45 means being discrete, bound to be exactly one or a next
one, but not any arbitrary quantity in between. For this particular case, energy
being quantised means that a quantum system is only allowed to “occupy” a
certain state from a set of infinite, discrete energy states.

The energy of this system is related to the stationary modes via the following

equation: En = n2( π
2~2

2mL2 ), where ~ is Planck’s constant46, m is the mass of the
quantum particle, L is the size of the one dimensional box, and n is again a
natural number. This is in perfect resonance with M. Planck’s and A. Einstein’s
postulate of the quantisation of energy for light.

Allowed values for energy
E0 = 0

E1 = π2~2

2mL2

E2 = 4 π2~2

2mL2

E3 = 9 π2~2

2mL2

E4 = 16 π2~2

2mL2

...

45Not to be confused with quantified, which means to have an associated quantity, as in
Love is something that cannot be quantified.

46As defined before, ~ is Planck’s original constant divided by 2π
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This is certainly a major difference with macroscopic physics; it implies that
every physical process involves the exchange of energy only in a multiple of the
minimum energy amount E1, called quanta. The fact that energy seems as a
continuous variable in the macroscopic realm is only due to the extraordinarily
large amount of these small quanta involved in everyday physics, whose discrete
nature is impossible to identify at the human scale.
†† I.e. for the electron trapped inside the “box,” the allowed values of energy

start with E0, which means there is no particle at all, but the fact that there
is a minimum amount, E1, means that trying to trap the electron in an ever
smaller box implies an enormous increase in its kinetic energy, due to the large
oscillations of its wave function.

§7.3 “Collapse” of the Wave Function

Quantum mechanical descriptions of physical phenomena come from the obser-
vation of collective phenomena. Isolating an electron is an extremely labourious
and complex task to accomplish, and isolating photons was nearly unachievable
until quite recently, so most of the experiments of particle physics are done with
large ensembles of particles. Atoms are so small, that the tiniest speck of dust
contains trillions and trillions of them, which means that the sharpest experi-
mental precision accounts only for the measurement of (very good) averages of
physical variables. This is in no detriment to a successful physical theory; as
we discussed earlier, averages can even be more significant than specific data,
and this statistical nature is not necessarily a flaw of quantum theory. Statis-
tical physics was in vogue during the last half of the 19th century due to the
vast success of thermodynamics, and many of its mathematical techniques were
useful during the development of quantum theory.

Physics is usually known for its predictive nature; unlike physics, probability
describes no real physical experimentation, but abstract mathematical scenarios.
E.g. everyone knows that the odds of tossing a fair coin and finding it to have
landed heads-up is exactly 50%, no more, and no less. Does this mean that it
comes up heads every other time? No, it definitively does not. Does it mean
that if we flip it ten times in a row, five of them will come up heads? No, it does
not, as everyday experience easily proves. Then, what does it mean, really, that
the probability of heads coming up in the first toss are 50%? Can we predict
the outcome of this experiment by knowing this statistical information? Again,
the answer is no.

Probability tells us what the overall tendency of an experiment is, but only
after thorough repetition. In the case of the coin, it means that tossing the coin
any certain number of times will approximately produce half of the outcomes as
heads, and half of the outcomes as tails. It means that if we were flip the coin
“exactly” an infinite amount of times, only then would be find exactly half of
the outcomes being heads. Since the notion of tossing a coin “an infinite amount
of times” makes no sense, one can simply describe the formal mathematics, and
predict the tendency of the experiment. One cannot predict the outcome of any
particular toss, but merely speculate about the whole set of experimental data.
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Quantum systems are analysed with the aid of statistically deduced equa-
tions, and it should not be surprising that they match any particular set of
collective data, but during the years physicists have used these equations as if
they were a correct and complete description of individual quantum particles,
and this has constantly suggested to be an appropriate assumption. Nowadays,
Schrödinger’s equation is mostly interpreted as a full description of any individ-
ual quantum particle, from the range of protons and neutrons to electrons and
quarks, and this comes with several interpretational problems.

If a quantum system exists in a stable superposition of states, its associated
wave function will be composed of a (finite or infinite) sum of different wave
equations, each one representing a different quantum state, i.e.

Ψ(~x, t) = a0ψ0(~x, t)+a1ψ1(~x, t)+a2ψ2(~x, t)+...+akψk(~x, t)+... =

∞∑
j=1

ajψj(~x, t)

where any two functions ψk(~x, t) and ψj(~x, t) may represent seemingly contra-
dictory states (as being dead and being alive, in Schrödinger’s cat example),
and the coefficients ak represent the probability amplitude of the system to be
in the state ψk(~x, t).
††We know from experience that neither cats are ever in a dead/alive super-

position, nor are objects in two different locations at once, but the associated
wave functions of quantum particles seem to imply they are. However, when we
perform a measurement, as we discussed in a previous section, the wave func-
tion seems to concentrate highly around a precise state x0, which is the state
where we find our quantum system to be. This is usually referred to as the
collapse of the wave function, because the whole wave equation, which is spread
out over large regions of space, “collapses” into a single state. I.e. the quantum
superposition collapses into one of its constituent states. The probability den-
sity function creates a large peak around the specific value x0, where we found
the particle. This can be interpreted as if the particle was not there before the
measurement, but everywhere else, and was rather created there because of the
measurement (Orthodox view). This interpretational complexity derived from
an orthodox perspective has troubled the physicists community for decades, and
no convincing answer seems to satisfy everyone completely.

§7.4 Heisenberg’s Inequalities: “Uncertainty”

Heisenberg’s inequalities are undoubtedly one of the most controversial, thought-
provoking topics in quantum theory. The original German word, “Unschärferelation,”
is perhaps better translated as un-sharpness relation, which is not exactly the
same as uncertainty. We now discuss three different approaches to understand-
ing what these “uncertainty” relations mean.
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Physical Experiment: An Intuitive Approach

We are able to see objects around us because light bounces off their surfaces.
Besides the particle behaviour of light, its wave-like character as electromagnetic
oscillations is useful to understand plenty of the natural phenomena of our
everyday lives. Light travels around us as this electromagnetic flux47, and we
find our way through space by locating objects via the light they reflect. Some
animals, like bats, are mostly blind; they find their way (significantly better than
we do, even through complete darkness) by producing a noise (imperceptible to
the human ear) and locating objects around them, i.e. their brain interprets
the way disturbances in the air bounce off the objects of their surroundings,
and helps them build a perfectly sharp image of the place around them. Bats
are very good listeners, but based on our definition of seeing, they are almost
absolutely blind. But, are they? It is clear that some of our definitions hold
merely to the realm of human understanding, and we want to go much further
than that.

When we enter the subatomic world, observing (measuring) a quantum sys-
tem seems actually to alter the outcome of the experiments, and even more
counter-intuitively, the possibilities of making a precise measurement at this
scale become very limited. In §6.2 we said that a measurement alters any in-
formation of a quantum system prior to the measurement. The confidence with
which we can measure certain variables can be narrowed down to obtain a bet-
ter, more accurate result. The means by which we narrow down this margin of
error can affect the accuracy to measure another variable.

In 1927, Werner Heisenberg published an article48 about the “Un-sharpness”
relations, his latest results at that time. These can be interpreted as to estab-
lish an impossibility, not just experimentally but also theoretically, of measuring
both the position and the momentum (or velocity) of a particle simultaneously.
In any other world-view or scientific perspective it is fundamental to know the
attributes of the objects of study, and never is it questioned if one can (either
practically or theoretically) know them or not; if one considers an orthodox
interpretation of quantum mechanics, this limitation lies in the formal mathe-
matical structure of the theory.

However hard or impossible it may be in practice
to know the location of something with absolute preci-
sion and exactness, no one ever doubts that an object
(e.g. a particle) is really somewhere. One thing is not
knowing its location, and something very different is
to recognise that the idea of physically being some-
where is per se nonsensical. Part of the paradigm

shift in quantum mechanics is to accept that many of the common and elemen-

47Any course on Electromagnetism can be useful to understand more about the nature of
light. For a very precise and clear explanation see: GRIFFITHS, D. J., (1999). Introduction
to Electrodynamics. Prentice Hall, Third Edition.

48HEISENBERG, W. (1927). “Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik”. Zeitschrift für Physik.

61



tary notions of the scientific world are meaningless in the subatomic domain.
Any two variables whose relation is governed by this principle, are commonly
said to have an uncertainty relation, e.g. position and momentum, the energy
of a particle at a certain event and the time this event took place, etc. Let
us try to understand this fundamental characteristic of nature that seems so
reminiscent of Heraclitus’ 49 fragment, Φυσις κρυπτεσθαι φιλει (Nature
loves to hide itself ).

To grasp the full extent of Heisenberg’s discovery we need to rethink our very
notion of seeing. What does it mean, for example, to see an electron? What
if we were so small that the concept of seeing turned out to be preposterous.
Macroscopically speaking, we see because photons, particles of light, hit the
objects around us, bounce off of them, travel into our eyes, and hit our retinae.
Photons are so small, they can be considered to have length zero, not close
to zero, but strictly zero. They normally have no influence on objects whilst
hitting them and being reflected (if someone crashes into you and bounces off,
you will certainly be pushed away as well, but not if a speck of dust impacts
against you).

Electrons, however, are so small that they do “feel” the effects of being
observed, i.e. of photons crashing into them. They are deflected from their
normal paths. In order to locate an electron by observing it, we need to perform
some measurement, and eventually use light to see it. As regards electrons, light
can behave both as a particle and as a wave, so let us take it as a wave for a
moment. If we wished to locate the electron with the best of precisions, we
would have to use light with a very short wavelength; that way we can trap
the particle inside the wave with great precision and exactness. The shorter the
wavelength, the more precise our measurement will be. On the other hand, if
we wished to know its velocity, we would want to alter its path and energy the
least we can.

Evidently, waves with greater wavelength carry less energy than those with
shorter wavelength. Think of a baby with floaters bouncing up and down in the
middle of a pool. If he bounces slowly and with the least up-down displacement,
a bug standing in the water far away from him will hardly notice its presence.
If the baby bounces up and down harshly and very rapidly, the bug far away
will feel a lot more and will probably be very much affected. So, by using large-
wavelength light, we alter the electron the least, and our precision to measure
velocity increases. Analogously, by using short-wavelength light, we alter the
electron the most, but our precision to determine its position increases. We
can now almost clearly see how we sacrifice precision to determine one of the
physical variables whilst determining the other and vice versa (See Figure 1.22 ).
†† In the words of Max Born50, one of the founders of the theory of quantum

mechanics, “The theory speaks of the orbit and the velocity of an electron round
the nucleus, without regard to the consideration that we cannot determine the
position of the electron in the atom at all, without immediately breaking up the

49HERACLITUS. B123-DK
50BORN, M., (1969). Atomic Physics. Blackie, Eighth Edition. The original version was

published in 1935.
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whole atom. In fact, in order to define its position with any exactness within the
atom (whose diameter is of the order of magnitude of a few Angström units),
we must observe the atom with light of definitely smaller wave-length than this,
i.e. we must irradiate it with extremely hard X-rays or with γ-rays; in that case,
however, the [...] recoil of the electron is so great that its connection with the
atom is immediately severed...”

Figure 1.22: Trying to visualise uncertainty.
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Fourier and Conjugate Variables: A More Formal Approach

†† Given a periodical signal, e.g. a musical note, we can plot the air pressure
differences at a fixed point in space as a function f(t) of time t. If it were
electromagnetic radiation, or any other oscillatory system, the mathematical
description would be exactly the same. Take, for instance, a musical note with a
frequency ν, measured in Hz, meaning the air pressure differences occur at a rate
of ν times per second51. Given this function f(t), there is another function f̂(ν)
called its Fourier transform that provides the composing frequency, frequencies,
or range of frequencies. All sound is composed of a combination of frequencies, so
this Fourier transform would provide accurate information of these constituent
frequencies.

Figure 1.23: A musical note that starts sounding at some time t and is sustained
over a long period of time.

This almost pure note would be decomposed into a very narrow range of
frequencies. Noise, i.e. impurities in a note’s signal, is translated into a broader
peak on the function’s Fourier transform’s (f̂(ν)) graph. A pure note would
constitute a single, infinitely narrow peak in its Fourier transform’s graph; a
chord, the superposition of various different notes, would be decomposed into a
series of peaks, located at the constituent frequencies in f̂(ν). A sheet music is
precisely the Fourier transform of music, the notes on the staff being a depiction
of the chord’s constituent frequencies.

51E.g. a guitar plays the note A as a vibration of a string at a rate of 440 times per second.
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Figure 1.24: Its fourier transform f̂(ν) has a large peak around the frequency
of the musical note, and is close to zero elsewhere.

The Fourier transform can only provide sensible information if the musical
note is sustained over a large period of time. Naturally, the shorter the note,
the more it seems like a click or a hand-clap, and any attempt to decompose it
into a series of composing frequencies becomes meaningless.
†† In this case, time and frequency are said to have an uncertainty relation,

since a well-defined frequency means the note cannot be located precisely in
time; analogously, a sound that can be located precisely in time cannot have a
well defined frequency, and its Fourier transform will be spread out across the
frequency domain. In quantum mechanics, position and momentum are a pair
of such variables, meaning one is the other’s Fourier transform, thus the uncer-
tainty involved in their measurements. Mathematically, the Fourier transform
is considered a change of coordinate system (e.g. from time to frequency and
vice-versa).

Operators and Measurements:

The action of performing a measurement in position is usually denoted with the
action X̂; likewise, performing a measurement in momentum is denoted by the
action P̂ . Since the act of measuring one of these alters the measurement of the
other, performing both actions in different order results in a different outcome.
This can be better expressed by means of their commutation rules, i.e.

X̂P̂ − P̂ X̂ 6= 0⇐⇒ X̂P̂ 6= P̂ X̂

The action of measuring first position, and then momentum produces a different
outcome than the action of measuring first momentum, and then position. In
quantum mechanics, conjugate variables are defined as pairs of physical observ-
ables whose actions (mathematically known as operators), e.g. X̂ and P̂ , do
not commute.
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†† To give this a more statistical interpretation, we can say that for all the
elements of an ensemble of quantum particles to have the same, fixed momen-
tum, all particles should be uniformly distributed throughout the whole space.
This does not permit the determination of any particle’s trajectory, but only
statistic properties of their movement as a whole. This would not necessarily
mean that such trajectories do not exist, just that they are not considered in
the mathematical formalisation of quantum theory.

If ∆x represents how close, in average, every member of the ensemble is to the
average position 〈x〉, whilst ∆p represents how close, in average, every particle’s
momentum is to the average momentum 〈p〉, then Heisenberg’s inequalities can
be represented as follows:

∆x∆p ≥ ~
2

Notice how an increment in precision for one variable implies a proportional
decrease in precision for the conjugate variable.

§7.5 Quantum Tunneling

If one throws a ball on a flat surface that turns into a small hill, the ball comes
back after running uphill for a brief moment; it moves at a certain speed, and
slows down as it goes up. After it has reached a certain height, all its kinetic
energy is lost, and it comes to a full stop. For the briefest moment, it stops
completely, and then comes back to its starting point. How high the ball can go
depends on how much kinetic energy we confer upon it; the greater the energy,
the higher it goes.

Kinetic energy is related to an object’s velocity by the following relation52,

Ek =
1

2
mv2

where m is the mass of the object, and v its velocity. Notice how a higher
velocity is translated into a much larger kinetic energy, due to the fact that v
is squared.

Potential energy, denoted as V (~x) in a previous section (also V (x) if the
problem is one dimensional), defines the regions of space which are harder for
an object, the ball for instance, to reach. The hill in the previous example
would be one of such places, since reaching the top of this small hill requires
a larger amount of kinetic energy. This energy due to motion was transferred
to the ball by an external source, and it was not necessarily kinetic energy
before being transferred. The idea that energy can be accumulated, and then
transformed into a different kind of energy, but never changing a total amount,
denoted ETotal, is the core of the law of conservation of energy. This principle
is a central piece in theoretical physics.

52This equation can be derived using calculus; if the reader is not familiarised with calculus,
this equation can be taken as a definition.
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Energy is conserved by constantly changing its manifestations. For example,
nuclear energy is released from Helium atoms in the Sun’s core. From there,
it is radiated as electromagnetic radiation, and travels through space as light
for about eight and a half minutes before reaching the Earth’s surface. Plants
absorb this radiation, and capture its luminous energy, storing it in molecules
called glucose. Animals feed on plants and profit from this energy, saving some
of it as fats or muscle tissue. Humans feed on plants and animals, using oxygen
to burn out the energy that was saved in meat as sugar or fats by the process of
breathing. This energy is released and used by humans to move objects, walk,
think, read, etc. Plants do the exact opposite chemical process by using the
energy from the sun to transform carbon dioxide and water into food.

Gathering energy and saving it in sugar molecules or any other means is very
useful for living beings. Saved energy can be transformed into movement (kinetic
energy), heat (thermal energy), sound (an acoustic form of mechanical energy),
electricity (electric energy), etc. The fact that it is stored means that it can be
transformed into any kind of manifested energy, hence the name potential.

Imagine a graph like the one in Figure 1.25, where every place in a portion
of space has its correspondent height marked by the graph h(x); the two peaks
can represent two small hills seen from one side. Place a ball at the point A, and
let it roll downhill. It will reach the next peak, go past it, and fly off, perhaps
out of sight; i.e. it has enough energy to go past the boundary, and reach the
other side. Placing the ball at point B, however, will result in an oscillating,
harmonic motion inside the valley between the two peaks. This means that the
ball did not have enough energy to cross the barrier into the next region to the
right.

Figure 1.25: Potential wells.

If one can understand the dynamics of the ball in the graph h(x), one can
just as easily understand the graph of a potential function V (x) like the one
on the right hand side of Figure 1.25. I.e. the dynamics of a particle in a one
dimensional space x, subject to a potential V (x), would be that of a ball moving
through the heights marked by h(x).

So, in general, a potential function V (x) shows the energetic restrictions for
an object moving along the one dimensional space x, and it should be read as we
did for the ball and the two peaks, i.e. higher regions are harder to reach, and
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thus more energy is needed for an object (a particle for example) to be there.
If an object does not have enough energy to cross a barrier, it will stay on one
side, either swinging back and forth in the valley (sometimes called a potential
well), or simply sitting at the lowest point.
†† As any regular particle would do, a quantum particle that is launched

from the left against a potential barrier will be reflected if it does not have the
right amount of energy to surpass it. The quantum particle, as opposed to a
classical particle, is described by a wave function, and not by a well-defined tra-
jectory; its associated wave function will be partially reflected, but also partially
transmitted, however small this transmission is. This phenomenon is known as
quantum tunneling, for it seems as if the particle had “tunneled” its way out
of the barrier. It is very counter-intuitive, but also very useful. Its practical
applications vary from electronic microscopy to high precision laboratory tools.

Figure 1.26: The wave function of this particle decreases severely after the
barrier, but is not strictly zero, which means the particle can, in principle, be
found there. It is very unlikely, but it is possible; in classical physics, any
particle with this amount of energy will definitely, with 100% certainty, not be
found there.

§7.6 EPR

The following discussion is about the phenomenon known as quantum entangle-
ment, one of the most controversial phenomena in today’s physics. It enables
quantum-computing, and most of the problematic consequences it gives rise to
are still an open problem in physics. As we know from Einstein’s famous equa-
tion, we can turn energy into matter and vice versa. When matter is created out
of energy, both a particle and an anti-particle are created. This process is very
much like minting; when one makes a coin, one cuts a round piece of material
and, inevitably, ends up with a counter-piece, like the “negative” image of the
coin, exactly as round, but opposite.
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Suppose we create, out of energy, a matter/antimatter pair (e.g. an electron
and a positron). These two particles possess an intrinsic, unchanging value for
their rotational energy which we call “spin,” and every time one of them has an
associated value for spin, the other one will have the opposite value. In other
words, if the electron has a clockwise rotational energy, then the positron will
have an anti-clockwise one.

It is useful and didactic to think of spin as an amount of energy associated
to an intrinsic rotation of particles. Spin “up” is a good way to label a clockwise
rotation, and spin “down” a good way to label an anti-clockwise rotation. It
is not something considered by quantum theory, or even remotely measurable,
if a quantum particle does actually rotate around its own axis or not; this is a
mere approximation to understand a much more intricate property of quantum
particles.

Whenever a physical quantity is conserved, there is an associated number
that remains constant throughout any physical processes. E.g. the total energy
of a system is conserved, and thus the sum of its potential and kinetic energy
remains as a constant number throughout any process the system may undergo.
That is to say,

ETotal = EKinetic + EPotential = constant

i.e. a fixed value

†† For a pair electron/positron, this conserved amount is the total spin of the
system. If one has spin up, we can associate it a number 1; consequently, the
other one has spin down, and we associate the number −1. This way one could
say that the system as a whole always adds up to zero53. Quantum systems
like this one are intrinsically connected, so their states are not independent,
and the whole system is described by the same wave function. This means that
whatever happens to one of the particles will have an effect on the other one.
Measurements, for example, affect the entire system, and there is a “collapse”
of the conjoint wave function. When this happens, the two particles are said to
be entangled.

Let us clarify this concept by means of a simpler example. We describe the
state of a system with the following notation54: |ψ〉. So, for instance, tossing
two different coins can result in the following outcomes:

|h〉 |h〉 |h〉 |t〉
|t〉 |h〉 |t〉 |t〉

53A particle’s spin, its “amount of rotational energy,” is always quantised, so no value for
rotational energy can fall between any two multiples of the accepted ones ~

2
, but for purposes

of this example we just consider spin to be 1 and −1.
54The state of the system should be read as “ket psi.” Kets represent states, in this case

the label for such state is psi.
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where |h〉 represents a coin falling heads-up, and |t〉 represents a coin falling
tails-up. The first ket represents the outcome of the first coin, and the next one
the outcome of the second coin. These are not entangled states, for they exist
independently of one another.

The cat inside the box with a poison trap, however, cannot have this same
arbitrary set of states, because

|Catalive〉 |Poisoninact〉 is possible, but |Catalive〉 |Poisonact〉 is impossible;
|Catdead〉 |Poisoninact〉 is impossible, but |Catdead〉 |Poisonact〉 is possible.

Here, of course |Catalive〉 |Poisoninact〉 means the cat is alive whilst the poison
was not activated, |Catalive〉 |Poisonact〉 means both the cat is alive and the
poison was activated, and so forth.

So the pair electron/positron is an entangled system, and can be denoted
as55

|ψ〉 = |↑〉e |↓〉p + |↓〉e |↑〉p
since it exists in a superposition of both states before we perform any measure-
ments.

Recall that the wave function of a quantum system contains all the physi-
cal information of the system. This wave function is spread out over space, but
concentrates highly whenever we perform a measurement. Position, momentum,
spin, polarisation, these are all physical quantities that involve a measurement,
and some of them relate via the Heisenberg inequalities.

Figure 1.27: Minting re-
sults in a coin/anti-coin
pair. Creating matter
inevitabily creates anti-
matter

As we discussed before, performing a measurement
on any of these quantum particles will result in an al-
teration of the wave function describing the entire sys-
tem. These measurements are said to be correlated,
and it means that if someone measures the electron
to have a spin value of 1, the spin of the positron
will be immediately determined to be −1, and the
superposition of both states will “collapse” into this
well-defined state of existence.

To summarise, consider this pair of mat-
ter/antimatter, created out of energy somewhere in
the galaxy. They are entangled, and they share the
exact same characteristics (electric charge, spin, mass,

etc) but in an opposite way56. They do so in such a fashion that everything that
occurs to the former will be “felt” by the latter, as in a physical manifestation of
symmetry. Let us say, for instance, that after their creation, the positron trav-
els through the galaxy all the way into a laboratory, and the electron travels to

55Of course, no normalisation factors were taken into account, only for the sake of a clear
exposition.

56except for mass, mass is the same for both since it is a real, positive quantity
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the other side of the galaxy, and into another laboratory. Whatever observable,
physical quantity one can measure, the other laboratory can do as well. If one
measures, for example, its spin to be ‘up’, the other could do the experiment
and always find it to be ‘down’.

Suppose that once the particles are far enough, one laboratory actually mea-
sures the electron’s spin; that would produce an immediate “collapse” of the
wave function, causing the immediate response of the positron. This violates
the Special Relativity principle that nothing can travel faster than the speed
of light, since the information of an experiment being done on one particle was
transferred immediately to its entangled counterpart at the other end of the
galaxy. Moreover, the first laboratory could also measure its particle’s position
with great precision57, and the other one, in turn, could measure its particle’s
speed. Since both particles left the same place in space with equal speed, but
just opposite directions, knowing one particle’s speed implies knowing the other
one’s. People from both laboratories could travel all the way through the galaxy
to meet each other and discuss the physics of the experiment; they can exchange
results and just switch signs. By knowing the opposite values of their results
they can infer both particles’ velocity and position, which were incompatible
variables according to the uncertainty relations. Heisenberg’s relations result
from statistical analysis, but they are mostly interpreted as if the accuracy of a
measurement of momentum implies a corresponding inaccuracy in the measure-
ment of position, meaning the knowledge of both quantities violates a theoretical
impossibility.

This experiment was first proposed by A. Einstein, Boris Podolsky, and
Nathan Rosen in 1935, and it is now known as the EPR Paradox58.

Solutions to the Paradox

(·) There exists some spooky action at distance in between the two particles by
which nature will “keep us” from knowing both quantities at the same time.
I.e. there will be something to restrain us from successfully performing one of
the measurements.

(··) There is some sort of communication between the two particles that instan-
taneously makes one aware that its partner has been “observed,” and thus telling
the other one into which state it should collapse. Since both laboratories are
located at different ends of the galaxy, this violates Einstein’s postulate, which
implies that either Special Relativity is wrong, or quantum mechanics is missing
the consideration of a set of physical variables, and is therefore incomplete.

(· · · ) Particles carry a kind of “DNA” called local hidden variables that allows
them to know the nature of their counterparts before any measurement is per-

57We could consider any pair of variables that hold an uncertainty relation. Spin works
perfectly, and the real experiment is quite different and more profound. It is here modified
and simplified for didactic reasons.

58EINSTEIN, A., & PODOLSKY, B., & ROSEN, N. (1935). “Can Quantum-Mechanical
Description of Physical Reality be Considered Complete?” Physical Review 47
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formed upon them, and even know beforehand the state in which they should
be found when observed. This would imply that, despite the chaotic nature of
our Universe, these experiments were bound to happen since the beginning of
time, and the outcomes were already a pre-established fact for Nature. Another
possibility is that all particles are aware of each other, and thus carry an enor-
mous amount of information with them or, even more interestingly, all electrons
in the Universe are one and only, that simply manifests itself differently as in
different “quantum states.”

(· · · ·) The assumption that a quantum experiment can remain as an entangled
system even through large scale, relativistic distances is perhaps too audacious,
and even an irresponsible extrapolation. One has to consider that quantum
mechanics deals with the physics at the scale of Planck’s constant (10−35m),
whilst Special Relativity focuses on scales of the order of 3 × 108 metres. In
that case, a more realistic task would be to try to delimit the actual boundaries
of quantum physics.

There was an attempt during the decade of 1960 to solve these weird con-
sequences, explained in terms of a mathematical inequality 59, which basically
states that EPR does not quite hold for our Universe. The possible incomplete-
ness of quantum theory has been tried to be both demonstrated and debunked.
Up to now it is still an open question in physics. It is interesting to note that
Newtonian mechanics lasted for more than 300 years; it helped humanity under-
stand an enormous range of scales. It would not be surprising if it took quantum
mechanics another 200 years of refinement before we find a better theory.

“The dividing line between the wave and particle nature of matter and radiation
is the moment ‘now.’ As this moment steadily advances through time it coagu-
lates a wavy future into a particle past. . . Everything in the future is a wave;
everything in the past is a particle.”

W. L. Bragg60

§8 Interpretations

There are essentially two interpretations of quantum theory: the statistic or en-
semble interpretation, and the orthodox, or Copenhagen interpretation. Both
were briefly mentioned in §7.1 without any further explanation. It is worth
mentioning that the Copenhagen interpretation was dominant throughout the
1930’s and 1940’s, and has prevailed throughout the decades. Most of today’s
physics is done without any reference to a particular interpretation; quantum
mechanics has been very useful to predict phenomena that was impossible to

59John Bell’s theorem. BELL, J. (1964). “On the Einstein Podolsky Rosen Paradox”.
Physics 1

60William Bragg. Attributed. BEISER, A. (2003) Concepts of Modern Physics. McGraw-
Hill. Sixth edition.
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describe or understand in terms of classical physics, and the technological ad-
vances achieved by its correct predictions are undeniably great in number. These
successes have gradually left the problem of finding an acceptable interpretation
aside, and physicists nowadays mostly consider it to be irrelevant.

§8.1 The Ensemble Interpretation

The statistical interpretation of quantum mechanics is considered to be a realis-
tic approach to the physical consequences of the theory. It can be summarised
in the following principles:

• The quantum state |ψ〉 of a system is a mathematical description that
applies only to an ensemble of identically prepared quantum systems; it
does not represent the state of any individual element of the physical
system.

• Quantum mechanics is a statistical theory; it is not necessarily a complete
description of physical reality.

• Properties like trajectories are not part of a quantum description of phys-
ical reality, but this does not mean they do not exist.

The ensemble interpretation requires the fewest assumptions; it need the
least “extra” explanations of the physical phenomena.

§8.2 The Copenhagen Interpretation

The Copenhagen interpretation of quantum mechanics can be summarised in
the following principles:

• The position, momentum, etc of a quantum particle are, in fact, non-
existent before any measurement is done. These variables are not un-
known, nor are they out of the scope of the mathematical description, but
de facto undetermined.

• The measurement process “creates” the physical reality of the quantum
particle; Nature randomly selects the outcome of the measurement from
a well-established set of options called the spectrum of the operator asso-
ciated with the measurement.

• The quantum state |ψ〉 is the superposition of realities that “collapses” into
that which we see, the result of the measurements. It is the interaction
of the “observer” with the quantum system that causes the wave function
to “collapse” into one of its constituent states. It does so with greater
incidence in those values corresponding to the states in which it is most
probable to find the system.
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The orthodox interpretation rejects the objective reality of the quantum
world. “Reality is in the observation, not in the electron.61”

In the double slit experiment, for example, electrons are waves that go
through one slit, the other, both, and none at the same time. Once mea-
sured, electrons “become” particles again, and go back to forming the regular
two stripes pattern. This is perhaps a good example of the reasons this inter-
pretation is so popular amongst physicists.

§9 A Somewhat Satisfying Justification

††Mathematics has always been the language to convey the a posteriori meaning
of scientific explorations, and mathematical descriptions often encompass the
core of rational thought, of that which we consider to be true and consistent.
Mathematical models of natural phenomena usually come from a great cumuli
of well-understood knowledge. Before the 20th century, physics had used the
mathematical apparatus as an apex of conceptual and factual comprehension.
With quantum mechanics it was the other way around, and this particular
aspect made it sombre from the beginning62. Quantum theories arose from
an abstract, unfamiliar (even to the physicists) mathematical formalism at the
beginning of the century. There was no previous, heuristic understanding of the
phenomena, and yet physics was extracted from the mathematical model. From
then on, we have been trying to interrelate the physics and the mathematics of
quantum theory into a full, convenient comprehension of the Universe.

§9.1 Præliminaris

In order to present a taste of the mathematical formalism of quantum mechanics,
one has to introduce a few mathematical concepts that may seem unrelated to
physics at first glance. As discussed before, quantum theory arose from this
mathematical formalism, and it was unfamiliar even to the physicists at that
time. It is the pinnacle of decades of research and theoretical refinement, and
it has undergone exhaustive revision throughout the years. It should not be
surprising that it seems so sombre at first.

As was said before, a physical process, e.g. a measurement, is often referred
to as an operator in the language of quantum mechanics. The mathematical
representation of such an operator is usually a matrix. Mathematically speaking,
everything we can observe or measure can be represented by these extensive
numerical arrays. Matrices can be so complex in structure so as to possess even
an infinite amount of rows and columns; they belong in abstract spaces which,
as one might just expect, are said to be infinite-dimensional spaces63. Despite
the common misuse of technical terms as operator, matrix, space, dimensions,

61Paul Davies, from the prologue to HEISENBERG, W. (1958) Physics and Philosophy.
Penguin Books.

62For a complete reference see: DE LA PEÑA, L. (2003). “Introducción a la Mecánica
Cuántica.” Fondo de Cultura Económica.

63The simplest matrix, a 1x1 matrix, is simply a number
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etc, one has to keep in mind that no “metaphysical” connotations come along
with them. They are simply mathematical objects with fancy names that are
sometimes reminiscent of science fiction.

We say that the states a physical system can find itself in are elements that
belong to very specific mathematical spaces called Hilbert spaces, in honour of
the German mathematician David Hilbert64. The geometry we need to use to
describe Nature quantum-mechanically can be referred to as quantum geometry ;
it is the study of the shape and structure of these abstract spaces. How close or
far away can things be in this kind of quantum structures is a concern of this
branch of mathematics, usually called non-commutative geometry, as a reference
to the way quantum-mechanical operators do not commute.

Figure 1.28: Examples of matrices

Matrices can have as many entries as we need. A matrix can possess all
the information needed to describe a physical system. We begin by studying
an oversimplification of the quantum-mechanical description of the nucleon pro-
posed by Heisenberg, Condon, and Cassen in 193265. Here, we retake the study
of the plane R2 from a quite different perspective, and describe it with the usual
coordinates (x, y). This time, however, we decompose this description by saying
that (x, y) = x(1, 0) + y(0, 1), where x and y are real numbers and the vectors
can be represented both as rows or as columns, according to what is most com-

fortable in context. I.e.

(
x
y

)
and (x y) mean exactly the same thing. We

also define a matrix-vector multiplication by the following rules:

64The notion of Hilbert Spaces generalises the notions of Euclidean Spaces; most impor-
tantly, it deals with the minutiae of possibly having infinite dimensions.

65SRIVASTAVA, B. B., (2006), Fundamentals of Nuclear Physics, Rastogi Publications,
India.
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Figure 1.29: Rules of matrix-vector multiplication. The rows of the matrix
“act” on the column vector and create a new vector. Here a, b, c, d, as well as
x, y, are all real numbers.

Figure 1.30: How the first row acts on the column; the result is the first entry
of the new vector.

§9.2 Condon & Cassen: A Primitive Formalism

We now define protons and neutrons to be the fundamental elements of this two-
dimensional space, i.e. (1, 0) and (0, 1), which from now on we only represent
as column-vectors. The nucleon is then understood to be just a particular state
of a particle that is simultaneously a neutron, and a proton when “no-one is
watching,” but collapses into either one or the other in the precise moment when
someone decides to look (measure). We carry on to identify these collapses with
four mathematical operators that represent verbatim what we wish to portray.

Figure 1.31: Vector representation of the proton |p〉, the neutron |n〉, and the
four quantum-mechanical operators: π̂−, π̂+, q̂−, and q̂+

As we can see by applying the rules of matrix-vector multiplication, each
operator represents a physical process (Fig. 1.32 ). The first one shows how
a proton is turned into a neutron; the second one how a neutron becomes a
proton. The third operator annihilates the proton, and the last one annihilates
the neutron. This kind of mathematical description is usually referred to as
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matrix mechanics or Jordan mechanics, in honour of the German physicist Ernst
P. Jordan (1902 - 1980), and is perfectly equivalent to the wave mechanics
proposed by E. Schrödinger. With these (and much more complex) tools, it is
possible to give a full description of how the Universe behaves at such scales,
regardless of the human notions that may now seem more of an inconvenience
than a helpful linguistic resource.

Figure 1.32: Quantum-mechanical operators acting on the fundamental particles

At this point, all of the knowledge developed in the previous sections becomes
essential to grasp fully some of the implications of quantum theory. A. Einstein,
amongst many other physicists of his time, was opposed to the paradigm sug-
gested by a strict interpretation of quantum mechanics. He believed the Universe
ought to follow certain deterministic rules, and not be condemned to chance,
probabilities, and randomness.
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An Overview of the Mathematics behind Quantum Theory
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An Overview of the
Mathematics behind
Quantum Theory

Quantum mechanics is based on its mathematical formalism. Some physical
theories, like electromagnetism or thermodynamics, were only formalised in the
language of mathematics after a thorough understanding of the real, physical
phenomena. Quantum theory, on the other hand, was built upon concepts that
were previously anticipated by theoretical explorations, but not actually seen
in physical situations. As opposed to any other formal physical model, the
mathematics of quantum mechanics came first, and the actual physics came
last.

Much of the beauty of quantum mechanics comes from its theoretical struc-
ture. As was mentioned in section §9 of chapter 1, quantum mechanics has two
equivalent descriptions, namely matrix mechanics, and wave mechanics. There
are essentially three major branches of mathematics that hold matrix mechanics
together, linear algebra, group theory, and probability theory. Fourier analysis
is the basis of wave mechanics, and the equivalence between these two versions
allows us to understand quantum theory from both perspectives at once.

This section is dedicated to the sole purpose of providing an overview on
selected topics that could allow a smooth transition into the formalities of quan-
tum theory. Dirac’s notation is extremely useful to do the actual calculations
needed for a course on quantum physics, so it is better to introduce it and grow
acquainted with it as soon as possible. The mathematical spaces and opera-
tors used in quantum physics can be quite abstract, but once its fundamentals
have been understood at an elementary level, it is fairly simple to extend this
knowledge to the level needed to handle all computations confidently. It is also
important to acquire an intuition for the mathematical concepts dealt with in
quantum theory.
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§1 Vectors & Vector Spaces

Every quantum mechanical system has an associated wave function. Wave func-
tions belong to a set of real or complex functions that has a linear structure.
Linear structures are a wide and profoundly important topic in the fields of both
mathematics and physics, the most fundamental of these are vector spaces. We
begin by analysing the notions of vectors and vector spaces.

§1.1 What is a vector?

A vector is, roughly speaking, an element of a vector space. Our first encounter
with vectors is usually related to the study of kinematics and dynamics, in
Newtonian physics. Vectors are commonly defined as quantities with magnitude
and direction, but there is much more to vectors than this. The most common
way to introduce vectors is by describing the plane R2, which is perhaps the
simplest example of a vector space. Vector spaces are sets with an underlying
structure. These sets are equipped with a binary operation called addition,
defined for elements of the set; this means that two vectors can be combined
into a new vector. Vectors can be scaled up or down, i.e. shortened or elongated,
by means of a scalar multiplication1.

But, intuitively speaking, what do we mean by vectors and vector spaces?
The best way to think of a vector space is by recurring to the most basic,
intuitive examples, i.e. R2 and R3. Elements of R2 are usually thought of

as “points” in the plane with coordinates

(
x
y

)
, but we also find it useful to

describe forces, velocities, accelerations, etc with arrows whose length represents
a magnitude and whose coordinates point in the vector’s direction. For any
practical purposes, these two notions are merely two ways of interpreting the
exact same object, just as a cup can be used to drink coffee or tea, and one
never thinks of it as two different objects.

So, whether we describe forces with vectors, whose magnitude and direction
are encoded in the vector ~F and its coordinates, or we think of an abstract
object belonging to a structured set V called a vector space, we are talking
about the exact same thing. However, we can distinguish both notions by means
of notation, that way it is perfectly and unequivocally clear what is meant. I.e.
we shall write

~x =

(
x
y

)
whenever we use vectors to describe arrows, i.e. quantities with length and
direction, and

|x〉 =

(
x
y

)
whenever we use vectors as abstract elements of a vector space. “|x〉” is read
ket x, whilst “〈x|” is read bra x ; of course, “〈x|y〉” is the bra(c)ket of x and y.

1Precise definitions for this and other algebraic structures are given in Appendix 5: Re-
minders of Algebraic Definitions
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Figure 2.1: The plane R2 and a vector ~x ∈ R2.

§1.2 The Pythagorean Theorem: Norm

A vector ~x as the one depicted in Figure 2.1 has coordinates x and y; its length,
also called its norm, can be deduced from the Pythagorean theorem if we identify
each coordinate as the side of a right-angled triangle with angle α. This means
that the vector’s norm is given by this triangle’s hypotenuse, labelled ‖~x‖ in the
diagram. Therefore,

x2 + y2 = ‖~x‖2

where ‖~x‖ is the vector’s length (norm). If we define a matrix multiplication as
we did in section §1.7, then the norm of ~x (squared) can be expressed as

(x y)

(
x
y

)
= x2 + y2

where the numerical array with the coordinates of ~x is seen as a matrix. This is
useful to define a more generalised expression for a vector’s length. To see this,
we can study the case of a vector ~x ∈ R3

In this case, ~x casts a shadow over the XY-plane that resembles the hy-
potenuse of a right-angled triangle with sides x and y, whose length is obviously√
x2 + y2, also there is a standing right-angled triangle with sides z and the

XY-shadow of ~x, and hypotenuse ‖~x‖. Therefore, the square of the norm of
~x ∈ R3 is simply

(
√
x2 + y2)2 + z2 = x2 + y2 + z2 = ‖~x‖2

again by the Pythagorean theorem.
So, in general, we can say that the length (squared) of a vector |x〉 is given
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Figure 2.2: The norm of ~x for a vector ~x ∈ R3.

by the matrix multiplication

(x y z)

 x
y
z

 = x2 + y2 + z2

§1.3 Matrix Multiplication

The previous example shows the usefulness of multiplying matrices, and perhaps
justifies the way we decided to define matrix multiplication. In general, any
matrix is an m× k array (labelled Â) that can only be multiplied from the left
to another k × n matrix B̂, resulting in a m× n matrix, where m, k, n ∈ N, i.e.

ÂB̂ =

a11 a12 . . . a1k

...
...

am1 am2 . . . amk




b11 . . . b1n
b21 . . . b2n

...
...

bk1 . . . bkn


=


∑k
j=1 a1jbj1 . . .

∑k
j=1 a1jbjn

...
...∑k

j=1 amjbj1 . . .
∑k
j=1 amjbjn



where the multiplication rule is given for rows and columns as follows:
The first row of matrix Â is multiplied by the first column of matrix B̂ to

obtain the first entry of matrix ÂB̂. This means that the first element of row
one in Â is multiplied by the first element of column one in B̂, and each of these
pairs is added up to obtain the complete sum.
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ÂB̂11 =

a11 a12 . . . a1k




b11

b21

...

bk1


=


∑k
j=1 a1jbj1 . . .

...



and the same for the rest of the entries

(ÂB̂)il =


...

ai1 ai2 ai3 . . . aik
...





b1l
b2l

. . . b3l . . .
...

bkl


=


...

. . .
∑k
j=1 ajibjl . . .

...



This way, a vector |x〉 ∈ R3 is also a 1 × 3 matrix that can be multiplied by
itself to produce a scalar (a 1×1 matrix, if you will) corresponding to its length
squared, as we did in the previous section.

It is important to notice that matrix multiplication is, in general, not com-
mutative, i.e. ÂB̂ 6= B̂Â. Moreover, for some matrices ÂB̂ is defined, but B̂Â
is not2. Of course, Â always commutes with Â.

§1.4 Transposition

It might be useful then, to define a new matrix obtained by the “transposition”
of vector |x〉, i.e.

|x〉 =

 x
y
z

 =⇒ 〈x| = (x y z)

This way, the square of the length of vector |x〉 can be written in a much
simpler form as

〈x|x〉 = (x y z)

 x
y
z

 = x2 + y2 + z2 = ‖~x‖2

And we can generalise the concept of transposition to any m× n matrix as
follows3,

2What happens if Â is a m× k matrix, and B̂ is a k × n matrix, where m 6= k 6= n?
3One can notice that a different notation is used to transpose matrices than to transpose

vectors, which are also matrices. This should not represent a problem; this is only a way to
identify easily a vector from a matrix without explicitly writing its components. This means
that 〈x| = ~xt
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Ât =

a11 a12 . . . a1k

...
...

am1 am2 . . . amk


t

=



a11 . . . am1

a12 . . . am2

...
...

a1k . . . amk


One can imagine the matrix Â as being a sticker that can be removed from

the page; the transposition operation would be to remove this “sticker” from
the top-right corner, and replacing it backwards, leaving the bottom-left corner
at the top-right.

§1.5 What to Imagine when Talking about Rn

Most problems in physics involve more than three independent variables, and
the corresponding graphs exceed the three dimensions one can visualise. In Ap-
pendix 1: The Structure of Space and Time, the notion of the fourth dimension
is discussed in depth; it is not something one can draw or imagine, but fortu-
nately we need not to. Geometrically speaking, it suffices with the analysis of
shadows, projections from higher dimensions onto the space R3; algebraically,
however, it is as simple as adding new coordinates to the spaces of interest. So,
for instance, R4 corresponds to the vector space whose elements are

x
y
z
w

 ∈ R4

and one can imagine a space similar to R3, knowing there is an extra axis
that points in a direction simultaneously perpendicular to all X, Y , and Z axes.
Just as we draw R3 in a flat piece of paper by drawing two perpendicular axes
and one tilted line representing the third direction, we can imagine the space R3

with a new tilted axis that represents the fourth direction, being always aware
that it is, in fact, perpendicular to the rest of the axes.

In general, the space Rn is just a vector space with n orthogonal4 axes
and whose elements can be represented by n-dimensional arrays. We can also
define the length of these vectors in Rn by simply extending the Pythagorean
theorem as we did from R2 to R3. This should be justified by the fact that the
“shadow” this vector casts over any two-dimensional plane will make a right-
angled triangle with these two coordinates. So, for vectors in R4

‖~x‖2 = 〈x|x〉 = (x y z w)


x
y
z
w

 = x2 + y2 + z2 + w2

4orthogonal = perpendicular
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And in general,

‖~x‖2 = 〈x|x〉 = (x1 x2 . . . xn)


x1

x2

...
xn

 =

n∑
j=1

x2
j

for any |x〉 ∈ Rn. 5

§1.6 More on Matrix Multiplication

In general, two different vectors |x〉 , |y〉 ∈ Rn can be matrix-multiplied to obtain
a scalar, using the transposition operation defined in §1.4, e.g.

〈x|y〉 = (x1 x2 . . . xn)


y1

y2

...
yn

 =

n∑
j=1

xjyj

This operation is called the inner product of |x〉 and |y〉. Notice also that matrix
multiplication rules allow us to multiply these two vectors in the inverse order,
and the resulting object is a n× n matrix

|x〉 〈y| =


x1

x2

...
xn

 (y1 y2 . . . yn) =


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
xny1 xny2 . . . xnyn


The geometric meaning of these last two operations will be discussed later.

As a mnemonic device, one can draw scalars, vectors, and the corresponding
matrices that “act” on such vectors, as dots, lines and rectangles. Matrix mul-
tiplication rules are depicted on the cover of Part II.

§1.7 Inner Product and its Geometrical Meaning

Transposing a vector |x〉 and matrix-multiplying it to |y〉 from the left to obtain
a scalar is a useful operation, not only to compute one vector’s length, but
also to visualise, without the need of a graph, how any two vectors |x〉 and
|y〉 interact geometrically. Any one vector lies on a one dimensional line; any
two vectors lie, in general, on a two-dimensional plane, provided they are not
a scaled version of the same vector. Three vectors span a three-dimensional
space, and so on. To understand how two given vectors relate geometrically, we
focus our attention to the case of |x〉 and |y〉 in a plane.

5This is why books on topology define the Euclidean norm as ‖~x‖ =
√∑n

j=1 x
2
j , which is

simply an extension of the Pythagorean theorem.
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Figure 2.3: Inner product The vector |x〉 casts a shadow Pxy over |y〉. Analo-
gously, |y〉 casts a shadow over the axis where |x〉 lies. If Pxy is the projection
of |x〉 over |y〉, then Pyx is the projection of |y〉 over |x〉

Vectors |x〉 and |y〉 in Figure 2.3 are detached of any coordinate system; the
origin could be very far away and rotated some unknown angle with respect to
our perspective. Regardless, one could easily attach a new frame of reference in
which, for example, vector |y〉 lies entirely on the X-axis. In that case, the new
coordinates describing these vectors would be

|x〉 =

(
Pxy
x2

)
& |y〉 =

(
‖~y‖
0

)
where Pxy represents the projection of |x〉 over |y〉. Consequently, the inner
product of |x〉 and |y〉 is

〈x|y〉 = (Pxy x2)

(
‖~y‖
0

)
= Pxy · ‖~y‖

If a light-source is then placed “over” |x〉 as in Figure 2.3, it will cast a shadow
Pxy perpendicularly onto |y〉 so that it forms a right-angled triangle. From
the definition of cos(θ) one can readily see that the “shadow” of |x〉 over |y〉
corresponds precisely to the adjacent side of the angle θ, and the norm of |x〉
corresponds to the triangle’s hypotenuse, i.e.

cos(θ) =
adjacent

hypotenuse
=
Pxy
‖~x‖

From these last two equations it is fairly uncomplicated to prove that

Pxy = ‖~x‖ · cos(θ) & Pxy =
〈x|y〉
‖~y‖
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which implies that 〈x|y〉 = ‖~x‖‖~y‖ · cos(θ), where 〈x|y〉 =
∑n
j=1 xjyj (as was

defined above), θ is the angle between the two vectors, ‖~x‖ =
√
〈x|x〉, and

‖~y‖ =
√
〈y|y〉.

To handle confidently the following relations might be useful hereafter, and they
should be understood as follows:

Pxy =
〈x|y〉
‖~y‖

is the projection of |x〉 on |y〉

Pyx =
〈x|y〉
‖~x‖

is the projection of |y〉 on |x〉

〈x|x〉 = ‖~x‖2

is the norm of |x〉 squared

The value of these last three equations can hardly be overstated, first because
they emphasise the importance of the transposition operation, by means of which
a vector |x〉 is transformed into 〈x| to understand the way it interacts with
another vector |y〉. These equations have no specific reference to a particular
vector space V , so their validity can be extended to any vector space that allows
the definition of an inner product, however abstract it may be.

§2 Linear Transformations

One particular case of matrix multiplication that is especially important for
both physics and mathematics is that of a vector multiplied from the left by a
matrix, e.g.

Â |x〉 =

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
as was shown in section §9 of chapter 1. The result is another vector |y〉 ∈ V ,
in this case R2. Matrix Â must forcefully have as many columns as vector |x〉
has entries, otherwise the resulting vector would not be properly defined. The
geometric meaning of this new vector |y〉 = Â |x〉 can be seen in Figure 2.4.
The new vector |y〉 is a scaled and/or rotated version of the original vector |x〉.
This means that Â transformed |x〉 by means of a scalar multiplication and a
rotation.
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Figure 2.4: Geometric meaning of |x〉,
and the way it is transformed by Â into
a new vector Â |x〉

A linear transformation is a func-
tion, an operation that preserves the
so-called linear structure of the vector
space. The matrix Â in the previous
example represents precisely what a
linear transformation is. We defined
vector spaces as sets whose elements
can be added and scaled, so an op-
eration that preserves this structure
should allow the resulting elements to
be also added and scaled. We be-
gin by studying the algebraic and ge-
ometric structure of vector addition.

§2.1 Basis Vectors

Any vector |x〉 is uniquely defined by
its coordinates, provided one establishes a fixed frame of reference. In the case
of R2, it is the pair of components x and y that define the vector unequivocally.
These two scalars can be interpreted as an elongation of two basis vectors |e1〉
and |e2〉. I.e.

|x〉 =

(
x
y

)
= x

(
1
0

)
+ y

(
0
1

)
Or simply |x〉 = x |e1〉+ y |e2〉, provided we define the following: 6

|e1〉 :=

(
1
0

)
& |e2〉 :=

(
0
1

)
Notice that |x〉 is a vector, an element of the vector space V , not to be

confused with the scalar x, a real number that scales the basis vector |e1〉, and

provides the first component of the matrix representation

(
x
y

)
.

Of course, a vector |x〉 ∈ R3 can also be decomposed into the basis vectors
of R3, i.e. |e1〉, |e2〉, and |e3〉, i.e.

|x〉 =

 x
y
z

 = x

 1
0
0

+ y

 0
1
0

+ z

 0
0
1


Or |x〉 = x |e1〉+ y |e2〉+ z |e3〉, where

|e1〉 :=

 1
0
0

 , |e2〉 :=

 0
1
0

 & |e3〉 :=

 0
0
1


6The symbol := means the quantity on the left is given as a definition
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Notice how |e1〉 as a basis element of R2 is totally different from |e1〉 as a
basis element of R3. Every vector space V has its own set of basis elements, and
every vector |v〉 ∈ V can be expressed unambiguously as a combination of these
basis elements. This combination is called a linear combination. The number of
basis vectors needed to describe vectors |v〉 ∈ V is called the dimension of V .

Of course, vectors |x〉 ∈ R4 are decomposed as linear combinations of basis
elements as follows,

|x〉 =


x
y
z
w

 = x


1
0
0
0

+ y


0
1
0
0

+ z


0
0
1
0

+ w


0
0
0
1


Or |x〉 = x |e1〉+y |e2〉+z |e3〉+w |e4〉, where {|ej〉}4j=1 is the set of basis vectors.

So, R2 is a vector space of dimension 2, and R3 is a vector space of dimension
3 ; evidently, Rn is a vector space of dimension n, since every element |x〉 ∈ Rn
is such that

|x〉 =

n∑
j=1

λj |ej〉

where each λj represents the coordinate in the jth direction. Despite the fact
that one cannot imagine these vectors, it suffices with their algebraic expansion
as a linear combination of the set of basis vectors {|ej〉}nj=1 to operate and
calculate anything related to such abstract spaces.

§2.2 Linearity

If |v〉 and |u〉 are vectors in a vector space V , then the scaling λ |v〉 or ξ |u〉 are
also vectors in V , provided λ, ξ ∈ R; of course, |w〉 = λ |v〉+ξ |u〉 is also a vector
in V .

Then, if T̂ is a linear transformation, T̂ applied to the sum of |v〉 and |u〉
should be the sum of the individual transformations, provided one wishes to
preserve the linear structure of the space V , i.e. the ability to scale and add
elements of the space. Scaling |v〉 by the factor λ and then transforming it by
T̂ should be equivalent to applying T̂ first, and then scaling it by λ. This is
precisely the definition of linearity for a given transformation T̂ .

To be precise, a linear transformation from a space into itself 7 is a T̂ : V −→
V such that |v〉 ∈ V is transformed into another vector8 T̂ |v〉, also in V , which
means that

T̂ (|v〉+ |u〉) = T̂ |v〉+ T̂ |u〉
7A linear function can transform vectors from one space into another, not necessarily the

same one. We now focus on the former particular case.
8In traditional notation, the vector ~x would be transformed by the linear transformation

f as f(~x), instead of something like F̂ |x〉.

92



Figure 2.5: The geometric meaning of vector addition. Vector |v〉 is scaled
by the factor λ, whilst vector |u〉 is scaled by ξ. Adding these two vectors is
equivalent to a displacement from the origin to the tip of λ |v〉, and then ξ |u〉
from the resulting point. The new vector (λ |v〉 + ξ |u〉) is the diagonal of the
parallelogram with sides λ |v〉 and ξ |u〉.

Also, 9

T̂ (λ |v〉) = λ(T̂ |v〉)

9This can be proved for vector in R2 as follows: Â(|x〉 + |y〉) =(
a b
c d

�((
x1
x2

�
+

(
y1
y2

��
=

(
a b
c d

�(
x1 + y1
x2 + y2

�
=

(
a(x1 + y1) + b(x2 + y2)
c(x1 + y1) + d(x2 + y2)

�
=

(
ax1 + bx2 + ay1 + by2
cx1 + dx2 + cy1 + dy2

�
=

(
(ax1 + bx2) + (ay1 + by2)
(cx1 + dx2) + (cy1 + dy2)

�
=

(
(ax1 + bx2)
(cx1 + dx2)

�
+

(
(ay1 + by2)
(cy1 + dy2)

�
=

(
a b
c d

�(
x1
x2

�
+

(
a b
c d

�(
y1
y2

�
=

Â |x〉+ Â |y〉

The scaling property is quite easy to prove as well.
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Figure 2.6: (Left) The linear transformation Â acting on the basis vectors |e1〉
and |e2〉. Any vector |x〉 is transformed by Â in a linear form; this implies that
Â |x〉 = Â(x |e1〉+ y |e2〉) = x(Â |e1〉) + y(Â |e2〉). Thus, knowing how Â affects
the basis vectors implies knowing how Â affects any vector.
(Right) The vector space R2 can be fully described by the grid spanned by |e1〉
and |e2〉; equivalently, R2 can be described by the grid spanned by Â |e1〉 and
Â |e2〉. This means that Â |e1〉 and Â |e2〉 are also a basis for R2.

§2.3 To Illustrate...

Linear functions can be classified by means of the way they transform the basis
vectors. A few examples might be useful to illustrate this point. A linear
transformation Â as the one depicted in Figure 2.6 distorts the unit square
spanned by the two basis vectors |e1〉 and |e2〉 (each of length 1) into a new
parallelogram with sides Â |e1〉 and Â |e2〉, with a new area corresponding to
the span of these two new vectors.

In this particular case (Figure 2.6 ), Â =

(
2 1
1 2

)
, so that Â |e1〉 =

(
2 1
1 2

)(
1
0

)
=(

2
1

)
and Â |e2〉 =

(
2 1
1 2

)(
0
1

)
=

(
1
2

)
.

For any given linear transformation Â that distorts the usual grid of R2 into
a new grid, the area of the new parallelogram is a good criterion to classify
the amount of “distortion” this transformation induces. Any linear transforma-
tion L̂ that preserves the value of the area spanned by any two vectors, despite
distortions, is classified into a group under the name of special linear transfor-
mations, as long as their relative orientation with respect to each other is also
preserved. For the space R2 of dimension 2, the group is abbreviated as SL(2).
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Rotations

Figure 2.7: (Left) The linear transformation R̂ represents a rotation by an angle
α. This means that for any vector |v〉 ∈ R2, R̂ rotates |v〉 into a new vector
R̂ |v〉. R̂ is a linear transformation, so it suffices to know how R̂ transforms the
basis vectors in order to deduce how it transforms any other vector.
(Right) The new grid spanned by R̂ |e1〉 and R̂ |e2〉.

The rotation R̂ by an angle α does not distort the area spanned by |e1〉 and
|e2〉, thus it is said rotations are rigid transformations. It is linear since the
rotation of the sum of two scaled vectors is the same as the sum of the two
vectors individually rotated and scaled, i.e.

R̂ (λ |x〉+ ξ |y〉) = λ(R̂ |x〉) + ξ(R̂ |y〉)

Linear transformations that preserve the area spanned by any two vectors,
their relative orientation with respect to each other, and the angle between them,
are classified into a group under the name of special orthogonal transformations.
For the space R2 of dimension 2, the group is abbreviated as SO(2).
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Reflections

Figure 2.8: (Left)The linear transformation M̂ represents a reflection through
a line passing by the origin at an angle of −45◦. This means that for any vector
|v〉 ∈ R2, M̂ transforms |v〉 into a new mirror version of itself M̂ |v〉.
(Right) The new grid spanned by M̂ |e1〉 and M̂ |e2〉 matches the original grid.

The reflection M̂ through this line by the origin does not distort the area
spanned by |e1〉 and |e2〉, it does, however, reverse the orientation of any two
vectors in R2. Notice how Â |e1〉 is always to the right of Â |e2〉 in all other
previous examples; in this case, however, the resulting vectors of M̂ |e1〉 and
M̂ |e2〉 have an inverted orientation. It is linear since the reflection of the sum
of two scaled vectors is the same as the sum of the two vectors individually
reflected and scaled.

Linear transformations that preserve the area spanned by any two vectors
and the angle between them, but fail to preserve their relative orientation with
respect to each other, are classified into a group under the name of orthogonal
transformations. For the space R2 of dimension 2, the group is abbreviated as
O(2).
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§2.4 Examples in R3

Rotations

A rotation in R3 transforms the basis vectors |e1〉, |e2〉, and |e3〉 into new vectors
R̂ |e1〉, R̂ |e2〉, and R̂ |e3〉. In this case, the volume spanned by the three basis
vectors is a cube with sides of length 1, and thus V = 1. When transformed
by this rotation R̂, this volume is preserved, and the resulting grid spans the
whole three-dimensional space, analogous to what happened with the rotation
of R2 in Figure 2.7. Figure 2.9 depicts how the cube spanned by the three basis
vectors is transformed under the action of R̂, a three-dimensional rotation.

Figure 2.9: A transformation R̂ ∈ SO(3)
Linear transformations that preserve the volume spanned by any three vectors
in R3, their relative orientation with respect to each other, and the angle be-
tween them, are classified into a group under the name of special orthogonal
transformations. For the space R3 of dimension 3, the group is abbreviated as
SO(3), to distinguish it from SO(2).
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General Transformations

In the case of a linear transformation D̂ that distorts the basis vectors |e1〉,
|e2〉, and |e3〉 into a flat surface, thus “collapsing” at least one of the three
dimensions, D̂ is said to be degenerate. There are different degrees of degeneracy,
according to how many dimensions are “collapsed” during the transformation,
but whenever a transformation Â is non-degenerate, we classify it into the group
of general linear transformations, abbreviated GL(2), for transformations of the
vector space R2, and GL(3) in the case of R3.

Figure 2.10: A linear transformation L̂ ∈ GL(3) that transforms the cube
spanned by the set of basis vectors into a new parallelepiped. The set GL(3)
of non-degenerate functions consists of all linear transformations that take the
basis vectors |e1〉, |e2〉, and |e3〉 into a new set of vectors L̂ |e1〉, L̂ |e2〉, and L̂ |e3〉
that span a non-zero volume.
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Special Transformations

When the linear transformation L̂ distorts the cube of basis vectors in such a
way that the vectors per se and the angles between them are not preserved, but
the volume spanned by the old and new vectors is, we classify L̂ into the group
of special linear transformations, abbreviated SL(3) for the case of R3.

Figure 2.11: A linear transformation L̂ ∈ SL(3) that preserves volume, despite
re-orienting the three basis vectors |e1〉, |e2〉, and |e3〉.

§2.5 The Determinant: A Useful Criterion I

The brief discussions in the previous examples exhibit the importance of area
and volume to classify how linear transformations change the vector spaces they
act upon. As long as the linear transformation Â : R2 −→ R2 is non-degenerate,
the resulting vectors Â |e1〉 and Â |e2〉 span a parallelogram as the one in Figure
2.12. In the case of Â : R3 −→ R3, every non-degenerate transformation Â
transforms the three basis vectors into a new set Â |e1〉, Â |e2〉, and Â |e3〉 that
span a parallelepiped as the ones depicted in Figures 2.9, 2.10, and 2.11.

In general, a parallelogram covers an area A = base · height. To find the
area spanned by the two vectors Â |e1〉 and Â |e2〉 we will need two auxiliary
elements. First we draw a new vector (Â |e1〉)rotated90◦ by rotating Â |e1〉 90◦

to the left. Then we identify the new angle θ2, which is complementary to θ1,
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Figure 2.12: (Left) Parallelogram formed by Â |e1〉 and Â |e2〉.
(Right) Auxiliary vector (Â |e1〉)rotated90◦ and angles θ1 and θ2.

i.e. θ1 + θ2 = 90◦. The base of this parallelogram corresponds to the norm of
Â |e1〉, and the height to the vertical projection of Â |e2〉 onto Â |e1〉 (as defined
in §1.7), which can be deduced from the definition of sin(θ), i.e.

sin(θ1) =
opposite

hypotenuse
=

height

‖Â |e2〉 ‖
which implies that

height = ‖Â |e2〉 ‖ · sin(θ1)

and thus,
A = base · height = ‖Â |e1〉 ‖ · ‖Â |e2〉 ‖ · sin(θ1)

However, ‖Â |e2〉 ‖ ·sin(θ1) can be expressed in a different and much more recog-
nisable form if we identify the following facts:

First, for any pair of complementary angles, sin(α) = cos(90◦ − α), which
can be seen by drawing a right-angled triangle and using the definition of sin(α)
and cos(β) for the two non-right angles. This means that sin(θ1) = cos(θ2).

The size of Â |e1〉 is not changed by the 90◦ rotation, i.e.

‖Â |e1〉 ‖ = ‖(Â |e1〉)rotated90◦‖

So from these two facts we can conclude that

A = base·height = ‖Â |e1〉 ‖·‖Â |e2〉 ‖·sin(θ1) = ‖(Â |e1〉)rotated90◦‖·‖Â |e2〉 ‖·cos(θ2)

which is precisely the inner product of (Â |e1〉)rotated90◦ and Â |e2〉. So, if we
compute

Â |e1〉 =

(
a b
c d

)(
1
0

)
=

(
a
b

)
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we can identify that (Â |e1〉)rotated90◦ has coordinates (Â |e1〉)rotated90◦ =(
−b
a

)
, which can be easily seen by rotating the whole plane 90◦ to the right

and now drawing the vector’s x-coordinate in the Y -axis, and its y-coordinate in
the X-axis with the proper sign adjustment. In the case of Â |e2〉, its coordinates
are given by

Â |e2〉 =

(
a b
c d

)(
0
1

)
=

(
c
d

)
Which means that the area spanned by both vectors is exactly

A = ‖(Â |e1〉)rotated90◦‖ · ‖Â |e2〉 ‖ · cos(θ2) = (−b a)

(
c
d

)
= −bc+ ad

This suggests we can define a new quantity (ad− bc) for the matrix Â, since
the area spanned by the two new vectors only depends on the four parameters
a, b, c, and d. We define the determinant of matrix Â as

det(Â) = det

(
a b
c d

)
= ad− bc

and we identify det(Â) as the area spanned by the two vectors

(
a
b

)
and(

c
d

)
.

This fact can be extended to any arbitrary vector space of dimension n, so
we can reformulate our criterion to classify linear transformations according to
the area or volume spanned by the transformation of the basis vectors with the
aid of our new mathematical tool, the determinant.

§2.6 More on Vector Transposition

We recall the importance of vector transposition to compute norms. A vector
|x〉 was transposed into 〈x| to be matrix multiplied from the left to produce a
scalar, namely the vector’s norm squared. So, what happens when we compute
the norm of a vector that has been transformed by the matrix Â. In the case
of R2, we find that(

Â |x〉
)t

=

[(
a b
c d

)(
x
y

)]t
=

[(
ax+ by
cx+ dy

)]t
= (ax+ by cx+ dy)

but this vector corresponds precisely to

(ax+ by cx+ dy) = (x y)

(
a c
b d

)
= 〈x| Ât

This means that, (
Â |x〉

)t
= 〈x| Ât
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and thus
‖Â |x〉 ‖ =

(
〈x| Ât

)
Â |x〉 = 〈x| ÂtÂ |x〉

corresponds to the norm of Â |x〉. 10 One can generalise this operation for any
two vectors and a matrix Â as follows:

〈x| Â |y〉 = (x1 y1)

(
a c
b d

)(
x2

y2

)
which is simply a real number.

§2.7 The Determinant: A Useful Criterion II

We now summarise and reformulate the discussions given in sections §2.3 and
§2.4 of this chapter in terms of determinants.

Mn×n(R)

The set of all possible n×n matrices M̂ with real entries corresponds to matrices
of the form

M̂ =

(
a b
c d

)
where a, b, c, and d are all real numbers 11. This includes matrices that

span the set of basis vectors into a parallelogram of area A = 0 for the case
of R2, and a parallelepiped of volume V = 0 for the case of R3, i.e. the set of
degenerate matrices.

We concluded in section §2.5 that the geometrical meaning of det(Â) corre-
sponds to the area (or volume) that results from the transformation Â. That
being the case, Mn×n(R) contains matrices with arbitrary determinants, i.e.
det(Â) can be any real number, including zero, corresponding to degenerate
transformations.

10Explicitly,

‖Â |x〉 ‖ = 〈x| ÂtÂ |x〉 = (x y)

(
a c
b d

�(
a b
c d

�(
x
y

�
11The case of Mn×n(C) will be discussed in a further section.
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GL(2) and GL(3)

If we decide to filter for non-degeneracy, we will define a new set of linear
transformations L̂ such that the volume spanned by the resulting vectors of L̂
is non-zero. As was stated before, this set is referred to as the general linear
group, GL(2) for the case of R2, and GL(3) for the case of R3. I.e.

L̂ =

(
a b
c d

)
such that det(L̂) 6= 0.

SL(2) and SL(3)

Linear transformations Ŝ that preserve the volume and orientation spanned by
the set of basis vectors {|ej〉}, for j = 2 or j = 3, are part of a group of
matrices called special linear transformations. As a consequence, these linear
transformations preserve the area or volume spanned by any set of vectors.
Since, in particular, the area or volume spanned by the basis vectors is preserved,
the determinant of this kind of transformations should always be exactly 1. As
was stated before, this set is abbreviated SL(2) for the case of R2, and SL(3)
for the case of R3. I.e.

Ŝ =

(
a b
c d

)
such that det(Ŝ) = 1.

SO(2) and SO(3)

The set of linear functions Û that preserve the area or volume spanned by
the basis vectors, but also preserve the angle between them, and their rela-
tive orientation is classified as the group of special orthogonal transformations,
abbreviated SO(2) for the case of R2, and SO(3) for the case of R3. The condi-
tion of preserving area or volume is already given by det(Û) = 1, but the second
condition cannot be expressed in terms of determinants.

However, we know that there is information regarding the angle θ between
any two vectors in their inner product. Specifically,

〈x|y〉 = ‖~x‖ · ‖~y‖ · cos(θ) =⇒ cos(θ) =
〈x|y〉
‖~x‖ · ‖~y‖

Since det(Û) = 1 implies that norms are preserved, we need cos(θ), and thus
〈x|y〉, to be preserved as well. This means that for every pair of vectors |x〉 and
|y〉 their inner product 〈x|y〉 is the same as that of Û |x〉 and Û |y〉, i.e.

〈x|y〉 = (〈x| Û t) Û |y〉 = 〈x| Û Û t |y〉

=⇒ Û Û t = 1
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where 1 is the identity matrix 12.
So the special feature for any linear transformation Û ∈ SO(n) is that

Û Û t = 1 and det(Û) = 1.

O(2) and O(3)

A special instance occurs when a linear transformation Ô is such that det(Ô) =
−1. In this case, the orientation of the vector space V is changed by the linear
transformation, as in the reflection example of Figure 2.8, §2.3.

The set of all linear transformations that preserve areas, or volumes in the
case of R3, and angles between vectors, but reverse the orientation of V , belong
to the group of orthogonal transformations, labelled O(2) and O(3) respectively.
Obviously, SO(2) ⊂ O(2) and SO(3) ⊂ O(3), so the defining conditions for
Ô ∈ O(n) are ÔÔt = 1 and det(Û) = ±1.

§2.8 Coordinate Transformations

Notice how a vector |x〉 ∈ R2 can be expressed as a linear combination of the
usual basis elements |e1〉 and |e2〉, but also as a combination of the new basis
Â |e1〉 and Â |e2〉, as can be seen in Figure 2.13. The coordinates that describe
|x〉 uniquely and unambiguously are determined by the frame of reference once
chooses to work with. Whilst coordinates are artificial to a certain extent, the
vector per se is unaltered by the way one decides to describe it.

Figure 2.13: Coordinate transformation.

12The matrix equivalent of the real number 1,

1 |x〉 =

(
1 0
0 1

�(
x
y

�
=

(
x
y

�
= |x〉
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The point |v〉 ∈ V can be described from the frame of reference of |e1〉 and

|e2〉, where it has the pair of coordinates |v〉 =

(
3
3

)
, or from that of Â |e1〉

and Â |e2〉, where its coordinates are given by |v〉 =

(
1
1

)
.

There are two important facts about the way a linear function affects co-
ordinates that one has to handle confidently in general. We concluded in §2.2,
Figure 2.6 that knowing how a linear transformation Â affects the basis vec-
tors implies knowing how Â affects any vector. Â |x〉 = Â(x |e1〉 + y |e2〉) =
x(Â |e1〉) + y(Â |e2〉). Thus, for any linear transformation,

Â |e1〉 =

(
a b
c d

)(
1
0

)
=

(
a
c

)
& Â |e2〉 =

(
a b
c d

)(
0
1

)
=

(
b
d

)
.

In the case of R3,

Â |e1〉 =

a b c
d e f
g h i

 1
0
0

 =

 a
d
g

 Â |e2〉 =

a b c
d e f
g h i

 0
1
0

 =

 b
e
h



&

Â |e3〉 =

a b c
d e f
g h i

 0
0
1

 =

 c
f
i

 .

From this we can infer that the columns of any matrix Â consist precisely of the
resulting coordinates of the transformation Â applied to the basis vectors 13.

Suppose we have a vector |v〉 ∈ R2 as the one depicted in Figure 2.13. As
was discussed above, someone trying to describe |v〉 in terms of the standard,

canonical basis of R2 will say it has coordinates

(
3
3

)
, as opposed to someone

describing it from the perspective of the new basis Â |e1〉 and Â |e2〉, where its

coordinates are simply

(
1
1

)
.

This suggests that we need a method to translate any pair of coordinates
from one frame of reference to the other, a pair of transformations T̂ and its
inverse T̂−1 that change |v〉, described in terms of one basis, into |v〉 described
in terms of the other basis and vice versa.

For this particular example, Â =

(
2 1
1 2

)
, so

Â |v′〉 =

(
2 1
1 2

)(
1
1

)
=

(
3
3

)
13also called the image of |ej〉 under the action of Â
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We applied Â to the description of |v〉 in terms of the new basis Â |e1〉 and
Â |e2〉, which we labelled |v′〉, and it returned |v〉 in terms of the old, standard
basis. This suggests that the matrix T̂−1 that “returns” the coordinates of |v〉
to the old basis is precisely the matrix Â. One would just have to make an
important, conceptual distinction between Â as an active transformation that
takes |e1〉 and |e2〉 into a new pair of vectors Â |e1〉 and Â |e2〉, and Â as a passive
transformation that takes the coordinates of |v′〉 in terms of the basis Â |e1〉 and
Â |e2〉, and translates them into their original description in terms of |e1〉 and
|e2〉.

Analogously, the matrix

Â−1 |v〉 =

(
2/3 −1/3
−1/3 2/3

)(
3
3

)
=

(
1
1

)
We applied Â−1 to the description of |v〉 in terms of the old, standard basis

|e1〉 and |e2〉, and it translated |v〉 to the new basis Â |e1〉 and Â |e2〉. This
suggests that the matrix T̂ that translates the coordinates of |v〉 from the old
to the new basis is precisely the matrix Â−1.

Notice also that

ÂÂ−1 =

(
2 1
1 2

)(
2/3 −1/3
−1/3 2/3

)
=

(
4/3− 1/3 −2/3 + 2/3
2/3− 2/3 −1/3 + 4/3

)
=

(
1 0
0 1

)
i.e.

ÂÂ−1 = 1

which justifies the fact that we called Â−1 the inverse of Â. In summary, the
matrix Â, when seen as a passive transformation, i.e. as a change of coordinates
T̂ , satisfies the following relations 14:

T̂ = Â−1 & T̂−1 = Â

An arbitrary vector |x〉 has length ‖~x‖ =
√
〈x|x〉, but it is said to be nor-

malised if it is divided by its norm, thus having a new length of 1, i.e.

|x〉√
〈x|x〉

has length 1

We recall that
√
〈x|x〉 =

√∑n
j=1 x

2
j , which involves the sum of its coordinates

squared, but a change in coordinates will result in a different value for such
a sum, and thus a different norm. This cannot be right, for any change of
coordinates is merely a change of reference frame that should not induce a
different value for norms of vectors. E.g.

〈v|v〉 = (3 3)

(
3
3

)
= 32 + 32 = 18

14For an excellent course on linear algebra, see FRIEDBERG, S. H., INSEL, A. J., &
SPENCE, L. E. (1989). Linear algebra. Englewood Cliffs, N.J., Prentice Hall.
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when described with the canonical set of basis vectors, but also,

〈v′|v′〉 = (1 1)

(
1
1

)
= 12 + 12 = 2

when described with the new set of basis vectors. What went wrong?

We see that {|ej〉}2j=1 is a set of normal, perpendicular vectors. Any set of such

vectors can work as a basis for R2, and the inner product will remain unchanged,
regardless of the reference frame one chooses to describe a vector with15. So
we know for sure that 〈v|v〉 = 18 is the correct value. The problem before was
that {Â |ej〉}2j=1 is not a set of normal, orthogonal vectors, hence the problem
to compute the right value for 〈x|x〉.

To compensate for this non-perpendicular change of coordinates T̂ = Â−1,
we need first to re-describe |v′〉 in terms of the original coordinate system,
compute the norm, and then return to the new coordinates given in terms of

{Â |ej〉}2j=1. I.e. suppose we have the coordinates |v′〉 =

(
1
1

)
in terms of the

new frame of reference, then

|v′〉 = Â−1 |v〉 as was seen before, and

|v〉 = Â |v′〉

So,

〈v|v〉 =
(
〈v′| Ât

)
Â |v′〉 = 〈v′| ÂtÂ |v′〉

which means we can re-define a new inner product in the new frame of reference,
where vectors are described in terms of the new coordinates, given by Â |e1〉 and
Â |e2〉, as follows:

〈x′|y′〉A = 〈x′| Ĉ |y′〉 where

Ĉ := ÂtÂ is the adjustment due to the coordinate transformation

In this particular case,

Ĉ = ÂtÂ =

(
2 1
1 2

)(
2 1
1 2

)
=

(
5 4
4 5

)
15As we saw in §2.7, an orthogonal transformation Ô is such that 〈x|x〉 = 〈x| ÔtÔ |x〉

because ÔtÔ = 1. As a consequence, the computation of the inner product is invariant under
orthogonal changes of basis.
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Then,

〈v′|v′〉A = 〈v′| Ĉ |v′〉 = (1 1)

(
5 4
4 5

)(
1
1

)
= 18

as was expected.

§2.9 A Reformulation of Known Analytical Geometry

Dirac’s notation was introduced as a way to describe quantum states as vectors
of a special kind of vector spaces. Its ability to express inner products and
linear transformations, regardless of the complexity or dimension of the vectors
spaces it deals with, in such a clean, succinct, and straightforward presentation,
made it quite attractive for both physicists and mathematicians at the time. It
is nowadays accepted as the standard notation for quantum mechanics, mainly
because of the simplicity to perform certain computations with Dirac’s notation,
as opposed to any other.

To highlight the convenience and advantages of this notation, it is useful to
reformulate some well known geometrical facts in terms of bras and kets. We
begin by studying the cases of R2 and R3. Any equation involving two real

variables x and y has an associated set of points

(
x
y

)
∈ R2 that satisfy this

equation; satisfying the equation means that a point in this set is such that its
coordinates will always obey the relation established by this equation. E.g. the

point

(
2
4

)
satisfies the equation y = x2 because 4 = 22.

So a one-dimensional surface in R2, like the parabola y = x2, has an
associated equation involving the two variables x and y; analogously, a two-
dimensional surface in R2 has an associated equation involving the three vari-
ables x, y, and z, and this idea can be generalised to any dimension. The
different properties of these surfaces depends on the relation between the differ-
ent variables, and not all surfaces are smooth and continuous, but we can focus
on a few particular examples to grasp the idea fully before trying to understand
the pathological cases.

Circles, Spheres, and Hyperspheres

The equation of a circle in R2 is given, by definition, by the points in the plane
that lie equidistant to the centre, the origin for example. So for a fixed length
r, any point in the plane at this distance from the origin lies in the circle of
radius r; the corresponding equation is

d[~0,~x] = x2 + y2 = r

Or, in the new notation

〈x|x〉 = (x y)

(
x
y

)
= x2 + y2 = r2
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Figure 2.14: A circle C ⊂ R2

which is only a different way of saying that the distance between the point

|x〉 =

(
x
y

)
and the origin is precisely r. If one applies this definition to

points |x〉 ∈ R3, the resulting set of points is the surface of a sphere. Of course,
a sphere of radius r, centred at the origin in R3, has an equation

〈x|x〉 = (x y z)

 x
y
z

 = x2 + y2 + z2 = r2

The hypersphere of radius r, centred at the origin in R4, has an equation

〈x|x〉 = (x y z w)


x
y
z
w

 = x2 + y2 + z2 + w2 = r2

and any arbitrary, n-dimensional hypershpere of radius r, centred at the origin
in Rn, has an equation

〈x|x〉 = (x1 x2 . . . xn)


x1

x2

...
xn

 = r2

So, in general, the equation 〈x|x〉 = r2 suggests the idea of a sphere, a fixed
length from the origin, and the dimension of this sphere is left out of the equa-
tion.

Ellipses

Given two fixed points, F1 and F2 in R2, and a fixed distance d, the set of points
whose distance to F1 plus their distance to F2 add up to the distance d, lie in
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Figure 2.15: An ellipse E ⊂ R2

an ellipse with focii F1 and F2. They satisfy the following relation16:

αx2 + βy2 = c

where α and β are two real, positive parameters. Or, in the new notation

〈x| Ê |x〉 = (x y)

(
α 0
0 β

)(
x
y

)
= αx2 + βy2 = c

Hyperbolae

Figure 2.16: Hyperbola H ⊂ R2

Given two fixed points, F1 and F2 in R2, and a fixed distance d, the set of
points whose distance to F1 minus their distance to F2 is exactly d lie in an

16which can be easily obtained from the canonical form:
x2

a2
+
y2

b2
= 1 by defining a :=

√
−c
α

and b :=

√
−c
β

. It should be clear that the constant c < 0.
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hyperbola with foci F1 and F2. They satisfy the following relation17:

αx2 − βy2 = c (2.1)

where α and β are two real, positive parameters. Or, in the new notation

〈x| Ĥ |x〉 = (x y)

(
α 0
0 −β

)(
x
y

)
= αx2 − βy2 = c

Parabolas

Figure 2.17: Parabola P ⊂ R2

Given a fixed point, F1 in R2, and a fixed line L, the set of points whose
distance to F1 equals their distance to the line L lie in a parabola with focus
F1. They satisfy the following relation18:

αx2 + ey = c

where α and e are two real parameters. Or, in the new notation

〈x| P̂ |x〉+ 〈d|x〉 = (x y)

(
α 0
0 0

)(
x
y

)
+ (0 e)

(
x
y

)
= αx2 + ey = c

where |d〉 =

(
0
e

)
. So, in general, any polynomial equation describing a conical

section αx2 +βy2 +γxy+dx+ey+k = 0, that can be displaced from the origin,
thus the linear part dx + ey, and/or rotated by an angle θ, thus the non-zero
term γxy, can be expressed in Dirac’s notation as 〈x| Â |x〉+ 〈d|x〉+ c = 0, since

〈x| Â |x〉+ 〈d|x〉+ c = (x y)

(
α γ/2
γ/2 β

)(
x
y

)
+ (d e)

(
x
y

)
+ c

17which, again, can be easily obtained from the canonical form:
x2

a2
−
y2

b2
= 1 by defining

a :=

√
−c
α

and b :=

√
−c
β

. It should be clear that the constant c < 0.

18usually expressed in the canonical form y = ax2 + b
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= αx2 + γxy + βy2 + dx+ ey + c

and we can classify conic sections in terms of the properties of their associated
linear transformations as follows:

Circle 〈x|x〉 = 〈x|1 |x〉 = r2

1 =

(
1 0
0 1

)
=⇒ det

(
1 0
0 1

)
= 1

Ellipse 〈x| Ê |x〉 = c

Ê =

(
α 0
0 β

)
=⇒ det

(
α 0
0 β

)
= αβ > 0

Hyperbola 〈x| Ĥ |x〉 = c

Ĥ =

(
α 0
0 −β

)
=⇒ det

(
α 0
0 −β

)
= −αβ < 0

Parabola 〈x| P̂ |x〉+ 〈d|y〉 = c

P̂ =

(
α 0
0 0

)
& |d〉 =

(
0
e

)
=⇒ det

(
α 0
0 0

)
= 0

§2.10 Complex Numbers

Complex numbers are frequently used in physics. They are useful, and almost
indispensable, to describe wave functions, light polarisation and even the most
elementary quantum systems, so we now take a moment to study their origin,
geometry and some algebraic properties.

Anyone who has tried to solve a quadratic equation of the form ax2 + bx+

c = 0 knows that a problem arises when (b2 − 4ac) in x =
−b±

√
b2 − 4ac

2a
is a negative number, since square roots only exist for positive numbers. The
problem can be solved by defining the quantity i :=

√
−1 and providing any

quadratic equation with a general solution of the form a+ ib, where a and b are
real numbers19.

The geometrical properties of this new element i are not often discussed.
Let us first see what the operation “multiply by −1” means geometrically. We
depict the set of real numbers by a straight line that extends from −∞ to ∞
centred at 0. A positive, real number a lies on this line, to the right of 0, as

19A more adequate definition for i is given by i2 := −1, to avoid the possible confusion with
i2 = i · i =

√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1
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shown in Figure 2.18. Multiplying a by −1 results in a 180◦ or π rotation from
the origin.

This suggests that the operation “multiply by i” is such, that performed twice
results in a multiplication by −1. This is equivalent to a π rotation, so a·i would
be geometrically equivalent to a 90◦ or π

2 rotation. Thus, multiplication by i
done twice is equivalent to multiplication by i2, i.e. −1.

Figure 2.18: Geometric meaning of multiplication by i and i2.

Figure 2.18 illustrates this relation, which is a nice depiction of i and the
way it interacts with the set of real numbers; it clearly does not belong in R,
but it seems to be “floating” on top of it. If i lies over the line of real numbers,
then so do 2i, 3i, −i, −2i, and all other scalar factors of i. This also suggests a
very clear identification between the set of complex numbers C (numbers of the
form x+ iy), and the plane R2, as is shown in Figure 2.19.

One should be careful though, when comparing the plane R2 and the set C;
the former has two real dimensions, but the latter could be said to have just
one complex, or “imaginary” dimension, since one needs only one (complex)
number to describe it fully. R2 and R3 are said to be two, and three-dimensional,
respectively, because one needs two and three real numbers to refer to any of its
elements. Any complex number z, however, can be uniquely and unequivocally
referred to with just one complex number, itself 20.

One of the most interesting features of the plane C, as opposed to R2, is its
algebraic structure. Vectors |x〉 ∈ R2 can be added and multiplied by scalars,
but they cannot be multiplied by other vectors. Complex numbers, however,
like real numbers, can be added and multiplied. Let us see how this works
algebraically. If z = a+ ib and w = c+ id, then

z · w = (a+ ib)(c+ id) = ac+ i2bd+ iad+ ibc = (ac− bd) + i(ad+ bc)

What would this multiplication look like, provided we identify z and w with

20One could argue that z is composed of two real numbers, namely z = x+ iy, and this is
true, so C has one complex dimension, but two real dimensions. This is why it is isomorphic
to R2.
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Figure 2.19: The plane of complex numbers C.

their corresponding vectors in R2? To see this, we first identify

z ∈ C where z = a+ ib to

(
a
b

)
∈ R2

as was done for z in Figure 2.19, and

w ∈ C where w = c+ id to

(
c
d

)
∈ R2

This way, we can perform the same identification process, and interpret the
result of zw geometrically as the new complex number

z · w = (ac− bd) + i(ad+ bc) =⇒
(
ac− bd
ad+ bc

)
This establishes the main difference between the plane R2 and the complex

plane C. The algebra of complex numbers allows not just addition (the equiva-
lent of vector addition if we identify complex numbers with vectors in R2) but
also multiplication 21. This multiplication by a single complex number can be
seen as a matrix multiplication provided we identify one of the complex numbers
to a matrix as follows:

z · w =

(
a −b
b a

)(
c
d

)
=

(
ac− bd
ad+ bc

)
21not just scalar multiplication.
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and since complex number multiplication commutes, this is equivalent to

w · z =

(
c −d
d c

)(
a
b

)
=

(
ac− bd
ad+ bc

)
As an example, z = 5 + i and w = 1 + 2i in Figure 2.20 can be multiplied to
obtain a new complex number z ·w whose length ‖z ·w‖ = ‖z‖ · ‖w‖, and whose
angle with respect to the real axis is the sum of the angles z and w make with
the real axis.
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Figure 2.20: Matrix multiplication of complex numbers and its geometrical
interpretation.

The norm of any complex number z = a+ ib has to correspond to the norm
of its associated vector in R2, i.e. ‖z‖ = a2 + b2, so we define a new complex
number z∗ = a− ib so that

‖z‖ = z∗ · z = (a− ib)(a+ ib) = a2 + b2

A single complex number z can be decomposed as a pair of 2 × 2 matrices to
determine completely how the algebra of complex numbers works. I.e. for every
z ∈ C,

z =

(
a 0
0 a

)
+

(
0 −b
b 0

)
or equivalently 22,

z = a+ ib = a1 + b̂i

22One should check how this is compatible with complex number multiplication as defined
previously, i.e.

z · w =

[(
a 0
0 a

�
+

(
0 −b
b 0

�][(
c 0
0 c

�
+

(
0 −d
d 0

�]
=

(
a 0
0 a

�(
c 0
0 c

�
+

(
0 −b
b 0

�(
c 0
0 c

�
+

(
a 0
0 a

�(
0 −d
d 0

�
+

(
0 −b
b 0

�(
0 −d
d 0

�
=

(
ac 0
0 ac

�
+

(
0 −bc
bc 0

�
+

(
0 −ad
ad 0

�
+

(
−bd 0

0 bd

�
=

(
ac− bd 0

0 ac− bd

�
+

(
0 −(bc+ ad)

bc+ ad 0

�
= z · w
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if we define

1 =

(
1 0
0 1

)
& î :=

(
0 −1
1 0

)
If we wish to create complex spaces of greater dimension as we do with R, R2,
R3, and so on, we need to redefine vector transposition to keep consistency in
the way we compute norms. So for |z〉 ∈ C2, which is isomorphic to R4 since it
has four different parameters,

|z〉 =

(
z
w

)
where z, w ∈ C

This means that
〈z| = (z∗ w∗)

so that

〈z|z〉 = (z∗ w∗)

(
z
w

)
= z · z∗ + w · w∗ = a2 + b2 + c2 + d2

It is easy to identify how these two-dimensional numbers C are closely related to
matrices, and thus how they differ from regular, one-dimensional numbers (real
numbers). The Irish mathematician William R. Hamilton discovered, whilst
going for a walk with his wife, that there are no three-dimensional numbers; the
next possible algebra is that of four-dimensional numbers, called quaternions.
From these, only eight-dimensional numbers (octonions), sixteen-dimensional
numbers (sedenions), etc, can exist. Each step up means a loss of an algebraic
property, e.g. complex numbers have no order, meaning there is no such thing
as z > w, quaternion multiplication is not commutative, octonion multiplication
is neither commutative nor associative, and so on.

§2.11 Matrices: Some Examples of Different Interpretations

Besides linear transformations of R2 and R3, matrices can be interpreted and
used in a wide variety of situations. One of the most common ways to introduce
matrices is with systems of linear equations. These systems have also a geo-
metric approach, which might seem more familiar provided one has previously
worked with matrices as linear transformations. We begin by studying systems
of linear equations with two variables.

Systems of Linear Equations

A line L is a subset of R2 with an associated equation ax + by = c. The point
of intersection of any two lines L1 : a1x + b1y = c1 and L2 : a2x + b2y = c2 in

the plane has coordinates

(
x0

y0

)
that satisfy both equations, i.e.

a1x0 + b1y0 = c1
a2x0 + b2y0 = c2
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which can also be seen as a linear transformation Â : R2 −→ R2 such that

Â |x〉 =

(
a1 b1
a2 b2

)(
x
y

)
=

(
c1
c2

)
where the determinant of Â plays an important role, since

Â |x〉 = |c〉

If we multiply Â−1 from the left

Â−1Â |x〉 = Â−1 |c〉

1 |x〉 = Â−1 |c〉

|x〉 = Â−1 |c〉

but

Â−1 =
1

det Â

(
b2 −b1
−a2 a1

)
so the system Â |x〉 = |c〉 has a solution if and only if det(Â) 6= 0. Otherwise,
the two lines L1 and L2 are either parallel or the same line.

This result can be extended to any system of n variables, where

Â =

a11 a12 . . . a1n

...
an1 an2 . . . ann

 , |x〉 =


x1

x2

...
xn

 & |c〉 =


c1
c2
...
cn


and, again, the system Â |x〉 = |c〉 has a solution if and only if det(Â) 6= 0.

System of Linear Differential Equations

Suppose the position in space ~x of a particle is given as a function of time as

~x(t) =

 x(t)
y(t)
z(t)

. Then the velocity vector at a certain time t0 corresponds to

the time derivative of this vector, i.e.

d~x

dt
=



dx(t)

dt

dy(t)

dt

dz(t)

dt


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If each individual velocity is a linear combination of the coordinates as functions
of time, this system of differential equations can be expressed as follows:

dx

dt
= a1x(t) + b1y(t) + c1z(t)

dy

dt
= a2x(t) + b2y(t) + c2z(t)

dz

dt
= a3x(t) + b3y(t) + c3z(t)

and thus, the velocity vector
d~x

dt
can be expressed as a linear transformation as



dx(t)

dt

dy(t)

dt

dz(t)

dt


=

a1 b1 c1
a2 b2 c2
a3 b3 c3

 x(t)
y(t)
z(t)



and accordingly, the system ~v = Â~x has a solution if and only if det(Â) 6= 0.

N th-order Homogeneous Differential Equation

Any homogeneous differential equation of the form23 d3y

dt3
+ a · d

2y

dt
+ b · dy

dt
+ c ·

y(t) = 0
can be reduced to a system of linear equations of degree 1 by defining the
following variables:

x1 := y(t)

x2 :=
dy

dt

x3 :=
d2y

dt2

This transforms the previous equation into
dx3

dt
+ ax3 + bx2 + cx1 = 0 or,

23An equation of the form a·
d3y

dt3
+b·

d2y

dt
+c·

dy

dt
+d·y(t) = 0 can easily be transformed into an

equation like the one above by dividing everything by a, i.e.
d3y

dt3
+
b

a
·
d2y

dt
+
c

a

dy

dt
+
d

a
y(t) = 0
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equivalently 

dx3

dt

dx2

dt

dx1

dt


=

 0 1 0
0 0 1
−c −b −a

 x1

x2

x3



which can be generalised for homogeneous equations of any order n.

§2.12 Dual Spaces

A linear function in general may not only transform vectors from one vector
space V into itself, but also between different vector spaces. A linear transfor-
mation T̂ : V −→ W may transform, for example, R2 into R3, and one would
represent T̂ with a 3× 2 matrix. Analogously, if T̂ transforms R3 into R2, one
would then represent T̂ with a 2× 3 matrix.

R, R2, R3, · · · , Rn, · · · are all canonical examples of vector spaces with
elements |x〉, but the set of linear transformations between two vector spaces is
also a vector space, e.g. M2×2(R) is a vector space with elements of the form

Â =

(
a b
c d

)
.

In particular, the set of linear transformations 〈x| : V −→ R is also a vector
space, since it takes a vector |x〉 ∈ V and transforms it into a scalar a ∈ R
via left matrix multiplication. I.e. if the space formed by |x〉 is a vector space
(as R2 or R3), then the space of 〈x| is also a vector space, consisting of 1 × n
matrices that form a set of linear transformations from Rn to R.

For any arbitrary vector space V , this new vector space is denoted as V ∗

and is called the dual space; it consists of all linear transformations from V to
the field of real numbers24 R. Since every |x〉 ∈ V has a dual element 〈x| ∈ V ∗,
the dimension of V ∗ is exactly the dimension of V . One should be careful with
these last two assertions and the way one associates an element with its dual,
for there are certain subtleties that are only true for finite dimensional vector
spaces; it is, however, a good starting point to understand further studies in
linear algebra.

The basis of V has a corresponding dual basis; for example, R3 has its
associated dual space, and the new basis is obtained by transposing

|e1〉 =

 1
0
0

 =⇒ 〈e1| = (1 0 0)

|e2〉 =

 0
1
0

 =⇒ 〈e2| = (0 1 0)

24or the field of complex numbers C in case V is defined as a complex vector space
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|e3〉 =

 0
0
1

 =⇒ 〈e3| = (0 0 1)

This implies that a vector, decomposed as a linear combination of the basis
elements, has an associated dual vector given by

|x〉 = x |e1〉+ y |e2〉+ z |e3〉 =⇒ 〈x| = x 〈e1|+ y 〈e2|+ z 〈e3|

for x, y, z ∈ R the vector’s coordinates25.
Notice that

〈e1|e1〉 = (1 0 0)

 1
0
0

 = 1 , 〈e1|e2〉 = (1 0 0)

 0
1
0

 = 0

〈e1|e3〉 = (1 0 0)

 0
0
1

 = 0

Analogously,

〈e2|e1〉 = 0 , 〈e2|e2〉 = 1 & 〈e2|e3〉 = 0

〈e3|e1〉 = 0 , 〈e3|e2〉 = 0 & 〈e3|e3〉 = 1

which is often abbreviated as 〈ei|ej〉 = δij , where

δij =

{
0 if i 6= j

1 if i = j

Vectors satisfy the previous condition if and only if they are orthogonal. Vectors
that are both normal and orthogonal are said to be orthonormal.

§2.13 Outer Products and Projectors

In §1.6 and §1.7 of this chapter we defined the operation inner product of a bra
and a ket as the scalar 〈x|y〉. We now define the outer product of a ket and a
bra as |x〉 〈y| and study its geometrical properties.

25or

|z〉 = z |e1〉+ w |e2〉+ u |e3〉 =⇒ 〈z| = z∗ 〈e1|+ w∗ 〈e2|+ u∗ 〈e3|

in the case of a vector in a complex vector space like |z〉 ∈ C3.
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For two elements of a vector space and its dual |y〉 and 〈x|, the result of the
outer product |x〉 〈y| is a linear transformation Ô

|x〉 〈y| =


x1

x2

...
xn

 (y1 y2 . . . yn) =


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
xny1 xny2 . . . xnyn


which can be then applied to another vector |a〉 ∈ V . For example, |x〉 〈y|
applied as a linear function to the vector |a〉 is

|x〉 〈y| (|a〉) = |x〉 〈y|a〉 = (〈y|a〉) |x〉

means the vector |a〉 is first projected to |y〉, and then this factor scales the
vector |x〉; the result is a vector pointing out in the |x〉 direction. In particular,
for a vector |x〉 of length 1, we have

|x〉 〈x| (|a〉) = |x〉 〈x|a〉 = 〈x|a〉 |x〉

is an operator that finds the projection of |a〉 on the vector |x〉, and is then
directed in the |x〉 direction, since ‖~x‖ = 1 =⇒ 〈x|a〉 = ‖~x‖ · ‖~a‖ · cos(θ) =
‖~a‖ · cos(θ) = Pax.

So we define the projector of ket |x〉 as26

P̂x = |x〉 〈x|

§2.14 Function Spaces

So far we have studied examples of finite-dimensional vector spaces. Our first
example of an infinite dimensional vector space is the set of real-valued functions

F = {f : I ⊆ R −→ R| f is continuous}

which has a vector space structure if we identify functions f, g ∈ F as vectors
with pointwise addition, i.e.

(f + g)(x) := f(x) + g(x) for all x ∈ I ⊆ R

and scalar multiplication given by

(λf)(x) := λf(x) for all x ∈ I ⊆ R

Once we have defined both vector addition and scalar multiplication, the alge-
braic structure we have provided makes it clear that it is, in fact, a vector space.
This does not show, however, what this abstract space might actually look like.
Moreover, finding a proper basis for this vector space means finding a subset of

26Not to be confused with p̂x a momentum operator in the x-dimension.
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functions β ⊂ F such that any other function f could be uniquely expressed as
a linear combination of elements of β.

A more simple example can be useful to grasp the idea of a function vector
space. Suppose we narrow the spectrum of real functions to cubic polynomials,
i.e. polynomials of degree at most 3. That being the case, every function f has
the form

f(x) = a+ bx+ cx2 + dx3

where a, b, c, d ∈ R. We can define a basis β = {f0(x) = 1, f1(x) = x, f2(x) =
x2, f3(x) = x3} and identify any polynomial of degree 3 as a linear combina-
tion of this set of basis elements, i.e. every cubic function can be expressed in
terms of these four functions. The function f(x) = 3x3 − 2x2 + 1, for example,
can be decomposed as follows:

f(x) = 1 · f0(x) + 0 · f1(x)− 2 · f2(x) + 3 · f3(x)

and could be expressed in terms of its coordinates as

|f〉 =


1
0
−2
3


which clarifies how β is a basis for the vector space of cubic polynomials. This
function space is generated by four different, independent polynomials, so the
dimension of this vector space is 4.

Similarly, the function space of polynomials of degree at most n is an (n+1)-
dimensional space generated by the basis β = {f0(x) = 1, f1(x) = x, f2(x) =
x2, f3(x) = x3, . . . fn(x) = xn}. Thus, every polynomial function of de-
gree n can be expressed as a linear combination of basis elements as follows:

f(x) = λ0 · f0(x) + λ1 · f1(x) + λ2 · f2(x) + λ3 · f3(x) + · · ·+ λn · fn(x)

i.e.

|f〉 =


λ0

λ1

λ2

...
λn


Finally, the function space of all polynomials of arbitrary degree is an infinite
dimensional vector space with basis β = {f0(x) = 1, f1(x) = x, f2(x) =
x2, f3(x) = x3, . . . fn(x) = xn, . . . } and every element has an infinite
array of coordinates corresponding to the series of coefficients that constitute
its expansion as a linear combination of basis functions.
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§2.15 Taylor Series

The way to describe a polynomial as a vector, i.e. a linear combination of
single functions of degree 0 through n, is quite straightforward. A more general
function like f(x) = sin(x), however, does not seem to have any alternative to
use this kind of approach. Any polynomial function that approached sin(x) at
any given point would merely approximate it within a region (a, b) ⊂ R.

For a given x close to x = 0, the linear function f1(x) = x seems like a

good approximation of sin(x); once we get closer to x =
π

2
, these two functions

diverge significantly. By adding a cubic term, f(x) = −x
3

3!
we obtain a new

function that resembles sin(x) in a larger region around x = 0, but again, these
two functions diverge once x is far from the range (−π, π). Figure 2.21 shows
how polynomials can approach the function f(x) = sin(x) as we add terms of
higher order.

(a) f1(x) = x (b) f3(x) = x− x3

3!

(c) f13(x) = x − x3

3!
+

x5

5!
− · · · +

x13

13!

Figure 2.21: Polynomials can approach the function f(x) = sin(x) as we add
terms of higher order.
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The coefficients we used to approach this function with polynomials were
obtained with the following reasoning. We want, ideally, to express the function
f(x) = sin(x) as a linear combination of powers of x. Suppose we will use a
polynomial of degree n, labelled Pn(x).

Pn(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n

For a particular value, e.g. x = 0, we need f(0) = Pn(0) if Pn(x) is to
approach sin(x). If we want Pn(x) to match f(x) verbatim, we will need more
than one point convergence; after all, there are infinitely many functions that
coincide with sin(x) at x = 0. A stronger condition would be for Pn(x) to have
the same slope at x = 0 than f(x) = sin(x). This translates into the following
equation at x = 0:

dPn
dx

=
df

dx

Accordingly, we can extend this logic and ask, as a condition, that every
derivative of Pn(x) coincides with the corresponding derivative of f(x) at x = 0.
I.e.

Pn(x) = f(x)

dPn
dx

=
df

dx

d2Pn
dx2

=
d2f

dx2

...

dnPn
dxn

=
dnf

dxn

If all these conditions are met simultaneously as n −→ ∞, the two functions
could actually be recognised as identical. I.e. if we solve for the coefficients aj
in the following system,

a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n = sin(x)

a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 = cos(x)

2a2 + 3 · 2a3x+ · · ·+ n · (n− 1)anx
n−2 = − sin(x)

...

n!an =
dnf

dxn

we can then evaluate these last n+ 1 equations in the desired value, e.g. x = 0,
and find these coefficients. The resulting polynomial Pn(x) is called the Taylor
expansion27 or Taylor series of f(x). It provides a unique decomposition of
continuous, smooth real functions in terms of the coefficients aj .

27Maclaurin expansion if it is specifically around x = 0
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§2.16 Linear Combinations and Infinite Basis

A function like f(x) = sin(x) has a Taylor expansion as power series that cor-
responds to its coordinates when seen as a vector |f〉 ∈ F . It is advisable to
know and grow acquainted with the most common Taylor expansions. They
are useful to solve differential equations when the exact solution cannot be
found numerically, since they provide an approximation that can be as precise
as needed depending on the degree one chooses to work with. To have a better
approximation, one just takes more terms of the power series into account.

Frequently, taking the approximation of degree 2 is more than enough to
obtain a satisfactory solution. It is important to notice that a function f is
only equal to its Taylor expansion if one considers the whole, infinite sum. This
sum must be equal to the function when evaluated at a particular value x, so
the issue of convergence is non-trivial. One has to check that a Taylor series
does not diverge to infinity at certain values. The most common expansions are
described below.

The function f(x) = sin(x) is expanded as an alternating power series as

sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
· · · where



0

1

0

− 1
3!

0

1
5!

...


would be the infinite set of coordinates when described as a vector |f〉 ∈ F ,
in terms of the basis β = {f0(x) = 1, f1(x) = x, f2(x) = x2, f3(x) =
x3, . . . fn(x) = xn, . . . }, defined in §2.14. This suggests why sin(x) is
commonly said to be an odd function.
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The function f(x) = cos(x) is expanded as an alternating power series as

cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
· · · where



1

0

−x
2

2!

0

x4

4!

...


would be the infinite set of coordinates when described as a vector |f〉 ∈ F , in
terms of the basis β. This suggests why cos(x) is commonly said to be an even
function.

The function f(x) = ex is expanded as a power series as

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
· · · where



1

1

1
2!

1
3!

...


would be the infinite set of coordinates when described as a vector |f〉 ∈ F , in
terms of the basis β. Differentiating this function as a polynomial makes it clear

why
d

dx
ex = ex

As was discussed before, one needs, in general, an infinite amount of coef-
ficients to describe a smooth, real function f(x) as an element of the function
space F .

§2.17 Inner Product

In previous sections we defined the inner product of two vectors as 〈x|y〉 =∑n
j=1 xjyj where xj is the jth coordinate of |x〉. If we have two functions f, g as

vectors (and we shall now represent them as kets) described by the sequences

|f〉 =


λ0

λ1

λ2

...

 and |g〉 =


ξ0
ξ1
ξ2
...


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then their inner product should be given by the infinite sum

〈f |g〉 =

∞∑
j=1

λjξj

where λj and ξj are the functions’ Fourier coefficients. If one wants to work
with complex-valued functions, also expressed in their Fourier coefficients, then
their inner product is given by the following relation:

〈f |g〉 = (λ∗0 λ∗1 λ∗2 . . . )


ξ0
ξ1
ξ2
...

 =

∞∑
j=1

λ∗jξj

The reasons for this were discussed in §2.10 Complex Numbers.

As was discussed in §2.8, this computational process only works when we
describe vectors in terms of an orthonormal basis. The basis β used in Taylor
expansions is not an orthonormal basis, but there is another particular set of
functions that can be used as an orthormal basis for the vector space of real-
valued functions.

The set of Fourier functions, given by

f1(x) = sin

(
2π

λ
x

)

f2(x) = sin

(
2π

λ
2 · x

)

f3(x) = sin

(
2π

λ
3 · x

)
...

fn(x) = sin

(
2π

λ
n · x

)
is in fact an orthonormal basis of F . This means that every function f(x) can be
expressed as a series of harmonic functions28. The coefficients of f(x) obtained
from its Fourier expansion can be used to compute inner products in the usual
way.

28Recall §6.5 of chapter 1, Harmonics of the Mikrokosmos where the quantum state Ψ of an
electron trapped in a box was described in terms of harmonic functions within the boundaries
of L.
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It is not trivial to define infinite sums, since addition is a binary operation
that we learn to extend by means of the associative law. An infinite sum can
converge into a finite number, in this case the “projection” of the function f
over g, but it can also diverge to infinity, depending on the values. When two
functions are bounded, meaning the values of f(x) remain under a certain, finite
value, their inner product converges29 and we can define it properly. Quantum
mechanics deals precisely with bounded functions.

We generalise the definition of inner product to the case where we do not have
the functions f and g in their Fourier expansion, but in their usual representation
as follows:

〈f |g〉 =

∞∑
j=1

λjξj =⇒ 〈f |g〉 =

∫
D

f(x)g(x)dx

for real-valued functions, where D is the domain of f and g, and

〈f |g〉 =

∞∑
j=1

λ∗jξj =⇒ 〈f |g〉 =

∫
D

f∗(x)g(x)dx

for the case of complex-valued functions.
The integral over the domain of f and g should not seem unfamiliar since it

is reminiscent of a sum over a series of points x in the domain30.

§3 Group Theory

Despite a wide variety of didactic examples of groups in mathematics, the truly
interesting examples arise with groups of transformations. In §2.3 through §2.7
we classified linear transformations into different groups, but we used the term
group lightly. Appendix 4 : Reminders of Algebraic Definitions provides a formal
treatment of concepts like group, vector space, etc, and justifies the usage of the
term in previous sections.

Quantum mechanics is often expressed in the language of group theory;
Symmetry, for instance, is a physical property that can be best explained by
means of invariance under a group of transformations. The level of abstraction
needed to understand group theory is not trivial, so we begin this section by
building an intuition on the structure of mathematical spaces.

§3.1 Topology of R2 and R3: Grasping an Intuition

We know from the analysis of real numbers that an interval (a, b) ⊂ R is called
open because it does not include its boundaries, the two numbers a and b. The
same interval is said to be closed if it does contain its two boundaries, and is

29There can be pathological cases where it does not, but one can leave such cases aside in
a first approach.

30For an excellent introduction on Fourier analysis, see BUTKOV, E. (1968). Mathematical
physics. Reading, Mass, Addison-Wesley Pub. Co. 18th edition.
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denoted [a, b] ⊂ R. An interval [a, b) that is neither exactly closed nor exactly
open, but somewhat both closed and open, is called a half-open interval.

These same notions can be extended to R2 and R3. An open set G ⊂ R2 is
open if every one of its points ~x has a neighbourhood Nε(~x), centred at ~x, of
nearby points, lying all within some distance ε, and the entire neighbourhood
is contained in the set G. Intuitively speaking, the set G is open if it does not
include its boundaries, as is the case for open intervals in R.

Similarly, a closed set F ⊂ R2 is such that its complement is open31; but,
intuitively speaking, a closed set F is such that it contains its boundaries.

(a) An open set G in R2 (b) A closed set F in R2

It is useful to define these topologic properties in terms of their algebraic
relations, such as being at a distance d < ε from the point ~x0; that way one can
extend the meaning of “being open” or “being closed” to any dimension n > 3.

Notice that neither the open set G nor the closed set F need forcefully to
be connected. Roughly speaking, a set A is connected if one can freely move
between any two points ~x, ~y ∈ A through a path32 without leaving A.

The set consisting of all open intervals (a, b) ⊂ R such that a, b ∈ Z is an
example of an open, unbounded, disconnected set in R. A set is bounded if it
does not extend to infinity in any direction; to be specific, the set B is bounded
if there exists some number M ∈ R such that for every point ~x ∈ B, ‖~x‖ < M .

A set B either in R2 or R3 is said to be compact if it is both closed and
bounded.

All these definitions can be extended to Rn, or any other mathematical space
where the notion of distance is already defined. The topology of any space is
the way its open sets are related; it provides the notions of near and far, it
allows us to understand the structure of mathematical spaces, and it provides

31It is utterly important to point out that an open (or closed) set in R2 may not necessarily
be open (or closed) in R3. I.e. the topological notions of open and closed depend tremendously
on the space the set is embedded into.

32To be precise, this is actually the definition of path connected, which implies connectedness,
but not vice versa. For an excellent introduction to classical and functional analysis, see
MARSDEN, J. E., & HOFFMAN, M. J. (1993). Elementary Classical Analysis. New York,
W.H. Freeman.
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(a) An open set G in R3 (b) A closed set F in R3

the necessary tools to classify the sets and elements of the different spaces one
happens to work with.

§3.2 Continuity: A Criterion

A function f : A −→ B is said to be continuous if it maps “close” elements a ∈ A
to “close” elements b ∈ B, where the notion of being close depends on each set’s
topology. Notice that A and B can have different topologies, and thus quite
different notions of distance. The important feature here is that, regardless of
what near means in A, a continuous function f preserves the notion of nearness
when mapping A into B.

Figure 2.24: An open subset of B that comes from a subset of A under a
continuous function.
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This fact will turn out to be essential to classify the groups of transformations
we are interested in, as well as to understand the topology of the different groups
of transformations.

§3.3 The Space of Transformations

As was discussed in §2.12, the set of linear transformations between vector
spaces also has a vector space structure. However, when we classified how
these transformations acted upon vectors of R2 or R3, we realised that certain
groups of transformations are contained in others. For example, orthogonal
transformations are part of the group of special linear transformations.

Since the determinant det : Mn×n(R) −→ R is a continuous function that
maps the set of matrices into the set of real numbers, it is a useful criterion
to understand how the different groups of transformations are related. For the
sake of generality, we discuss the following results for Rn and the groups of
transformations that act upon Rn. For simplicity and clarity, one can only read
them as if they were about R2 or R3.

The group GL(n) ⊂ Mn×n(R) is mapped under the function determinant
onto the set of real numbers excluding 0, since for every Ĝ ∈ GL(n) =⇒
det(Ĝ) 6= 0 as was discussed in §2.7.
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Figure 2.25: The group GL(n), called general linear group is mapped onto the
open set R − {0} Therefore, GL(n) exists as an open, disconnected set within
the space of linear transformations Mn×n(R).

The group SL(n) ⊂ GL(n) ⊂ Mn×n(R) is mapped under the function de-
terminant into the point 1 on the line of real numbers, since for every Ŝ ∈
SL(n) =⇒ det(Ŝ) = 1 as was discussed in §2.7.

Figure 2.26: The group SL(n), called special linear group, is mapped onto the
closed set {1} ∈ R. Therefore, SL(n) exists as a closed set within the space of
linear transformations Mn×n(R).

The groups O(n), SO(n) ⊂ GL(n) ⊂ Mn×n(R) of orthogonal transfor-
mations are mapped under the function determinant into the points 1, and
−1, depending on whether or not they preserve orientation. For every Û ∈
SO(n) or Ô ∈ (O(n)− SO(n)) =⇒ det(Û) = 1 & det(Ô) = −1 as was
discussed in §2.7.

Figure 2.28: Topological relations
within the space of linear transforma-
tions.

Finally, Figure 2.28 depicts the
whole structure of the space of lin-
ear transformations and the differ-
ent groups it consists of. As we can
see, GL(n) ⊂ Mn×n(R) is a discon-
nected, open group within the whole
space; SL(n) ⊂ GL(n) is a closed,
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Figure 2.27: The groups SO(n) and O(n), called special orthogonal group and
orthogonal group, are mapped onto the closed set {1}

⋃
{−1} ⊂ R. Therefore,

O(n) exists as a disconnected, closed set within the space of linear transforma-
tions Mn×n(R).

connected group of transformations
that preserve volumes and orienta-
tion; SO(n) ⊂ O(n) is the group
of rigid transformations that preserve
orientation, volumes, and angles, it is
a closed subgroup of the whole space,
and “half” of the space of orthogonal
transformations O(n), that includes
reflections; O(n) is a closed, discon-
nected subgroup of the whole space
of transformations.

§4 Probability

Probability theory is a fundamental part of quantum physics. As was deeply
discussed in chapter 1, a measurement performed on any quantum system re-
sults in a value within a narrow set of possible outcomes. For a given kind of
measurement there is a quantum-mechanical linear transformation that has an
associated expectation value, a value for the state in which the system is more
likely to be found. As was said before, these linear transformations are called
operators; the term is commonly used to describe transformations that act on
functional vector spaces, that map the space into itself. The derivative is an
example of a linear operator; it transforms a function into another function.

Quantum theory is based upon the assumption that a given set of quantum
systems prepared in the same state will always produce the same results for a
given measurement. This probabilistic approach leaves determinism aside and
assumes, axiomatically, that the actual state of a system is unknown. Most
contemporary physicists suppose that there is no such thing as the actual state
of the system, that there is nothing more to physics than its stochastic nature;
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a realist perspective perceives a stochastic, probabilistic nature of the theory,
which does not necessarily imply anything about Nature itself.

We now discuss some elementary topics of probability theory.

§4.1 Mean Value: Why is it not Enough?

We often consider average values to be representative of a sample of data; they
seem to provide enough information about the overall behaviour of the system
of interest. There are, however, a few problems if one works only with average
values, not because they are not accurate enough, but because they contain
only a limited amount of information. Life expectancy is a good example to
understand the different probabilistic variables one needs in order to produce a
veracious description of a system. One often reads that life expectancy during
the Middle Ages was about 35, but this does not mean that people usually died
at 35; actually, most people who made it to 30 could easily expect to live another
20 years. So, what is wrong with the analysis?
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Suppose one wants to study life expectancy in a certain society, at a certain
moment in time. One has an available set of data that relates the age of people
involved in the study, and the amount of people who died at a certain age.
People are divided into nine different groups consisting of the first ten years of
age, then the second, and so forth. A graph like the one depicted in Figure 2.29
is called a histogram for this particular set of data.

We first define a random variable x, an association of the set of abstract
possible outcomes and an actual, measurable value, usually a subset of the real
numbers R. In this case, our random variable is the age of death, measured
in a scale from 0 to 90. Notice that the real interval [0, 100] contains way too
much information, for it is of no interest if someone has precisely π years of
age, for example, or any other exact parameter in the set of real numbers. We
approximate the age of a person within an interval ∆x.

Figure 2.29: A histogram for a sample of 170 people. Fifty died between age 0
and 10, ten between 10 and 20, and so on. The Y axis presents the frequency,
or incidence, of deaths at a certain age, which we can label f(x). The X axis
presents the value of the random variable x associated to age of death.

If we want to compute the average life expectancy in this sample, we should
add up all the values of x of this particular sample, and divide it by the total
amount N = 170. From the histogram, we do not have information on the
precise age of death, but just an interval of 10 years, so we can define a rep-
resentative parameter for each group. Without any loss of generality, we can
choose the centre value; so we consider the people of the first group to have
made it to the age 5, people of the second group to have made it to 15, etc. To
be more succinct, we add the first value 50 times, the next one 10 times, ..., and
the last value 5 times. I.e.

〈x〉 =
50 · (5) + 10 · (15) + · · ·+ 5 · (85)

170
=

∑9
j=1 f(xj) · xj

N

where〈x〉 is the average value (also called expectation value for experiments that
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allow long-run repetitions). xj is the representative value for each of the nine
groups, j = 1 through j = 9, and f(xj) is the frequency of deaths for the value
xj . The expectation value for this sample is 〈x〉 = 40.29, i.e. life expectancy for
this society, at this particular moment in time, is about 40 years.

Notice how deviated this value is; the high child mortality rate affected this
value drastically. So perhaps we need to define new parameters to describe this
situation better. In the last equation, we divided the result of the sum by N ,
the total amount of people in the sample. Since N is constant, we can distribute

the value
1

N
in the sum, i.e.

〈x〉 =

9∑
j=1

f(xj)

N
xj

However,
f(xj)

N
is precisely the amount of occurrences for the value xj with

respect to the total N . In other words, it is a normalised version of this value.

For example,
50

170
= 0.2941, then the amount of children who made it only to

age 5± 5 represents 29.41% of the sample. So, we can define a new normalised
histogram that depicts the fraction each case represents from the total 1.

Figure 2.30: Normalised histogram, we can define a new function

ρ(xj) :=
f(xj)

N
in that case 〈x〉 =

∑9
j=1 ρ(xj) · xj
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If we take one person from the sample at random, ρ(xj) =
f(xj)

N
is the

probability that such a person reached the age xj . Adding all these probabilities
individually results in

9∑
j=1

ρ(xj) =

9∑
j=1

f(xj)

N
=

∑9
j=1 f(xj)

N
=
N

N
= 1

which is expected, since a random element of this sample must have died at
some age between 0 and 90.

§4.2 Expectation Values, Variance, and Standard Deviation

A function ρ(x) as the one defined above is called a probability distribution; it is
a probability mass function for discrete variables, and probability density function
for continuous variables. It is useful to compute other probabilistic variables,
and averages of different quantities. For example, if we want to average not
exactly the ages x, but some particular function g(x), like the ages squared x2,
we would have to sum the value of such function, instead of the value xj , times
the frequency for each group, the result would be

〈g(x)〉 =
∑
j∈I

f(xj)

N
· g(xj) =

∑
j∈I

ρ(xj) · g(xj)

Where I is an index that depends on the amount of intervals one considers.
With this in mind, we can define the new variables that will allow a better
description. First, it would be useful to know how far from the average value is
any given element of the sample. This is obvious if one thinks of a set of students
in a school, separated into three classrooms, both of them with an average grade
of 5 out of 10. One of these could be the consequence of every classmate getting
a 5, while another classroom could have had half of its students with a grade
very close to 10, and half with something very close to 0; the third classroom
could have had half of the students with 2.5, and the other half with 7.5.

In the first case, the distribution ρ is totally concentrated at the average
value 5. In the second case, there are two highly concentrated regions, namely
around 0 and 10, and in the third case the distribution would show two highly
concentrated regions around 2.5 and 7.5.

Whatever the case may be, we define the function g(xj) = xj − 〈x〉, which
represents how much any element xj differs from the average value 〈x〉. If we
now average this value, we obtain

〈g(x)〉 =
∑
j∈I

ρ(xj) · g(xj) =
∑
j∈I

ρ(xj) · (xj − 〈x〉) =

∑
j∈I

ρ(xj) · xj −
∑
j∈I

ρ(xj) · 〈x〉 = 〈x〉 − 〈x〉 ·
∑
j∈I

ρ(xj) =

〈x〉 − 〈x〉 · 1 = 0

138



So the value of g(xj) was not useful, since there are as many elements that
exceed the expectation value as there are elements that remain below it. We
could, however, fix this problem by squaring g(xj) before computing its expec-

tation value. We then define the variance σ2 := 〈(xj − 〈x〉)2〉, and we compute
its expectation value as follows:
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σ2 = 〈(xj − 〈x〉)2〉

=
∑

ρ(xj) · (∆x)2 =
∑

ρ(xj) · (xj − 〈x〉)2

=
∑

ρ(xj) · x2
j − 2 ·

∑
ρ(xj)xj · 〈x〉+

∑
ρ(xj) · 〈x〉2

=
∑

ρ(xj) · x2
j − 2 · 〈x〉

∑
ρ(xj) · xj + 〈x〉2 ·

∑
ρ(xj)

=
∑

ρ(xj) · x2
j − 2 · 〈x〉 · 〈x〉+ 〈x〉2

= 〈x2〉 − 2 · 〈x〉2 + 〈x〉2

= 〈x2〉 − 〈x〉2

And we define the standard deviation σ as σ :=
√
σ2 =

√
〈x2〉 − 〈x〉2.

These new variables, together with the expectation value, provide a much
more accurate description of any statistical system.

§4.3 Distributions

This kind of discrete distributions can be adjusted to a continuous, real-valued,
positive function ρ(x) as is done in Figure 2.31.

Figure 2.31: Adjusted histogram, the discrete distribution ρ(xj) is transformed
into a continuous, real-valued, positive function ρ(x).

140



And we generalise the probabilistic variables defined previously as follows:

〈x〉 =
∑
j∈I

ρ(xj) · xj =⇒ 〈x〉 =

∫ ∞
−∞

ρ(x) · xdx

and the expectation value of any function g(x) as

〈g(x)〉 =
∑
j∈I

ρ(xj) · g(xj) =⇒ 〈g(x)〉 =

∫ ∞
−∞

ρ(x) · g(x)dx

where ∑
j∈I

ρ(xj) = 1 =⇒
∫ ∞
−∞

ρ(x)dx = 1

The integral over the whole domain of real numbers should seem intuitive at
this point, since it represents the sum of probabilities over the whole domain33.
This is also explained in §6.2 of chapter 1, The Size of the Wave Function: A
Probability Distribution. This last equation simply translates into “the proba-
bility that a random element has any one of the possible values is exactly 1, or
100%, equivalently.”

§5 Die Zusammenfassung

We now summarise the mathematical formalism of quantum mechanics with the
aid of all the mathematical tools we have developed so far. We begin by stating
the space where quantum physics is done.

§5.1 The Space of Quantum Mechanics

The wave function associated to a quantum system, as those discussed in chapter
1, is a complex valued function Ψ : A ⊂ R2 −→ C that takes a pair (x, t) (in the
case of one-dimensional problems) and returns a complex number Ψ(x, t) ∈ C.
For any given time t = t0, the norm of this wave function Ψ(x, t) is a probability
distribution.

|Ψ(x)|2 = Ψ∗Ψ = ρ(x)

That being the case, we impose that

Ψ is

{
·Smooth, i.e. continuous and with continuous derivatives

·Square integrable, i.e. its norm |Ψ| is integrable over the whole domain.

so that this wave function can actually represent a realistic physical system.
Also,

lim
x→±∞

Ψ(x) = 0 & 〈Ψ|Ψ〉 :=

∫ ∞
−∞

Ψ∗(x)Ψ(x)dx

33A very similar discussion is given in the book GRIFFITHS, D. J. (2005). Introduction to
Quantum Mechanics. Upper Saddle River, NJ, Pearson Prentice Hall. 2nd edition.
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This expression of ‖Ψ‖ is in perfect accordance with our definition of inner
product of functions. I.e. if we express Ψ(x) with its Fourier expansion, then

Ψ(x) =

∞∑
j=1

aj · sin
(

2π

λ
j · x

)
+ i ·bj cos

(
2π

λ
j · x

)
& ‖Ψ‖2 =

∞∑
j=1

a2
j +b2j

This means the space of quantum mechanics is a vector space H of functions
|Ψ〉 where each vector’s coordinates are given by their Fourier coefficients. The
notion of metric and distance between vectors is given, as usual, by the inner
product 〈Ψ|Φ〉. One must notice that, since a wave function is bounded, and the
limiting value of any wave function as x approaches infinity is zero, all norms
and their associated infinite sums are convergent. This kind of vector spaces,
where any convergent series of vectors approaches elements within the vector
space, i.e. not in its boundaries as defined by the space’s topology34, is called a
Hilbert space.

As was deeply discussed in §6.2 of chapter 1, The Size of the Wave Func-
tion: A Probability Distribution, the norm squared |Ψ(x)|2 = Ψ∗(x)Ψ(x) = ρ(x)
should be such that being able to find the particle somewhere in space is a
certainty. Then,

〈Ψ|Ψ〉 =

∫ ∞
−∞

Ψ∗(x)Ψ(x)dx =

∫ ∞
−∞

ρ(x)dx = 1

Or, in terms of vectors, 〈Ψ|Ψ〉 = 1, and we say the wave function Ψ is normalised.

§5.2 Expectation Values

The probabilistic definition of an expectation value, for example the average
position x of a quantum particle, is given classically by

〈x〉 =

∫ ∞
−∞

ρ(x) · xdx

which is translated into the language of quantum mechanics as

〈x〉 =

∫ ∞
−∞

Ψ∗(x)xΨ(x)dx

The expectation value of any linear transformation T̂ of the vector |Ψ(x)〉 is
defined analogously as

〈g(x)〉 =

∫ ∞
−∞

ρ(x) · g(xj)

and is translated into quantum mechanical language as

〈Ĝ〉 = 〈Ψ| Ĝ |Ψ〉 =

∫ ∞
−∞

Ψ(x)∗ĜΨ(x)dx

34Recall §3.1 Topology of R2 and R3: Grasping an Intuition.
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§5.3 The Schrödinger Equation and Eigenvalue Equations

Suppose we define a linear transformation Ĥ that acts on the Hilbert space of
wave functions Ψ(x, t) as follows:

Ĥ := − ~2

2m
∇2 + V (x)

that differentiates a function twice with respect to position, and then adds a
potential function V (x). This linear transformation is called the Hamiltonian
of the system; then35

Ĥ |Ψ〉 = − ~2

2m

∂2Ψ

∂x2
+ V (x) ·Ψ(x, t)

We then define a linear transformation associated to the energy of the system,
acting on wave-function vectors as

Ê := −i~ ∂
∂t

that differentiates a function with respect to time, i.e

Ê |Ψ〉 = −i~∂Ψ

∂t

The Schrödinger Equation can be then rewritten as

Ĥ |Ψ〉 = Ê |Ψ〉

For a fixed value of energy, for example the ground state of a quantum particle
E1,

− ~2

2m

∂2Ψ

∂x2
+ V (x) ·Ψ(x, t) = E1Ψ(x, t)

We can multiply this whole equation by Ψ∗(x, t) from the left and integrate over
the entire domain

− ~2

2m

∫ ∞
−∞

Ψ∗(x, t)
∂2

∂x2
Ψ(x, t)dx+

∫ ∞
−∞

Ψ∗(x, t)V (x) ·Ψ(x, t)dx

=∫ ∞
−∞

Ψ∗(x, t)E1Ψ(x, t)dx

So

〈E〉 =

∫ ∞
−∞

Ψ∗(x, t)E1Ψ(x, t)dx = E1

∫ ∞
−∞

Ψ∗(x, t)Ψ(x, t)dx = E1 · 1

35If this part is not clear enough, refer to Appendix 3: Arriving at the Schrödinger Equation.
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since
∫∞
−∞Ψ∗(x, t)Ψ(x, t)dx = 1, then, the average value of this quantum parti-

cle is simply
〈E〉 = E1

I.e. for a system with a fixed energy E0 in a quantum system |Ψ0〉 with an
associated wave function Ψ0(x, t)

Ĥ |Ψ0〉 = E0 |Ψ0〉

In this case, E0 is referred to as the eigenvalue of the linear transformation
Ĥ, and |Ψ0〉 is referred to as the associated eigenvector36. In general, an eigen-
vector is a vector that remains unchanged by the linear transformation; it is,
at most, scaled by a factor λ, its eigenvalue. Eigenvectors are very useful since
they provide a basis of H, the vector space (Hilbert space) in which the linear
transformation has an extremely simple representation, it is diagonal. In this
representation, this linear transformations only “stretches” the basis vectors (in
this case, the transformation’s eigenvectors). E.g.

T̂ =

λ1 0 0
0 λ2 0
0 0 λ3


In the example of a quantum particle trapped inside a box, the harmonic

solutions to the Schrödinger Equation form, precisely, an orthogonal basis for
the vector space of wave functions; they are eigenfunctions of the Hamiltonian
operator Ĥ. Eigenvalue equations play a major role in quantum mechanics.

36or eigenfunction in this case
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The Problem with
Quantum Mechanics

§1 Interpretations

“The elegance of modern theoretical physics is largely to be found in its formal
languages, not in the images with which it seeks to comprehend the world.”

Peter R. Holland 1

A consistent quantum description of microscopic reality emerged only from the
observation of collective phenomena. Its regularities are evident not on single
measurements, but overall in large amounts of data, coming from ensembles
of such events. Despite being an extraordinarily precise formulation, capable
of predicting every single phenomenon it has been tested with, quantum the-
ory lacks a set of notions characteristic of physical reality, such as well-defined
positions and momenta of particles or their individual trajectories.

One must not, however, mistake an accurate description of physical phe-
nomena for an explanation. Every theory must take something for granted as a
starting point; at least some set of notions has to be postulated. From these ap-
parent ex nihilo assumptions other physically familiar (dynamic) variables are
defined, the fundamental relations are given in the language of formal math-
ematics, and the rest of the theory is deduced in terms of the mathematical
relations one can derive from the axiomatic notions one accepts. One assumes
the existence of the latter, but nothing else, since it would be unnecessary for
the purposes of the theory. E.g. one does not question the existence (or even the

1HOLLAND, P. R.(1993) The Quantum Theory of Motion: An Account of the de Broglie-
Bohm Causal Interpretation of Quantum Mechanics. Cambridge: Cambridge University
Press.
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meaning) of a concept like inertia in Newtonian mechanics, nor is one allowed
to ask what mass is or why it exists.

Other notions are simply left aside if their relevance to the theory or the
phenomena the theory deals with is negligible. This does not mean that these
notions can be neglected absolutely or discarded from all other formal descrip-
tions; it is just clear that such a theory does not need these variables to predict
whatever it is capable of predicting.

§1.1 Collective vs. Individual

The discrete and statistical characteristics of phenomena in the quantum realm,
in contrast to the continuous and determinist characteristics of classical (macro-
scopic) experiments, are well described by the formalism of quantum theory.
A description of the actual individuals is not, however, a part of its original
exposition. To assume that the wave function, that which contains the infor-
mation needed to predict the statistical behaviour of the system, is valid for
an individual quantum particle such as an electron, is to assume that quantum
mechanics is a complete description of physical reality. Thus, according to such
an assumption, any notions left aside by quantum theory can and should be
neglected since they belong neither to the theory nor to physical reality.

§1.2 The Problem per se

Thus, the main problem regarding quantum mechanics can be summarised as
follows:

Given the state of a system

|Ψ〉 =

n∑
j=1

aj |ψj〉

where ‖Ψ‖2 is taken to be the probability density for the quantum system and
each ‖aj‖ represents the probability contribution of the state |ψj〉, one can
interpret this as being an intrinsic property of the quantum realm, e.g. that a
quantum particle is actually in such a superposition of states and its existence in
a certain delimited region of space is created by the act of measurement (hence
the idea of a collapse of the wave function), with the proper probability given by
the above equations; or one can, on the other hand, recognise no such attributes
and interpret this in a purely statistical sense. Then, the quantum system is
actually in a real physical state (independent of our acts of measurements) and
the above equations merely represent the probabilities of the outcomes given a
specific experiment.
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§2 Axiomatisation: The de Broglie Hypothesis

“When I conceived the first basic ideas of wave mechanics in 1923–24, I was
guided by the aim to perform a real physical synthesis, valid for all particles,
of the coexistence of the wave and of the corpuscular aspects that Einstein had
introduced for photons in his theory of light quanta in 1905.”

Louis de Broglie 2

As it is the case with any scientific model, quantum theory is an attempt to con-
tain the wholeness of Nature’s intricate patterns at the atomic and subatomic
scale within a set of rules, usually stated with the formality and precision of
mathematical language. These rules are exactly what science look for; scien-
tists (namely physicists) call them physical laws, and intend to express them as
formally and unambiguously as possible. Within the scope of the mathematical
language, these physical laws are called axioms, and they are the assumptions
one makes from which everything else is to be predicted. Nothing comes ex
nihilo, and if theory matches reality, we say the model works, and it works until
Nature proves it wrong.

It is considered elegant to have as few laws as possible, since everything
within the scope of the “theory” is to be logically inferred by means of the well-
accepted schemes of mathematical logic. I.e. the set of assumptions, which can
be any set of consistent starting-points, has a theoretical spectrum, a closure
of truth consisting of every statement (theorem) that can be deduced from it.
This is precisely what we formally call a theory. It is important to understand
the formal structure of physical theories; the following examples might illustrate
the point better.

In the case of Newtonian mechanics, it is the connection between the dynamic
variables of the system, and the kinematic ones, what we state as an axiom (the

former given in the form of a function ~F , and the latter being the way momentum
changes over time). The interpretation and precise meaning of the variables is
related to the physical properties we have means to measure. A problem arises
when the mathematical apparatus evolves faster than terminological precision.
As an example, consider the concept of mass, which has been extensively used
throughout the history of physics, and yet we have no accurate, fully-accepted
definition for it.

~F (~q, ~p, t) = d~p
dt

Newton’s Equation

In the case of thermodynamics, for example, it is from the existence of a funda-
mental state function and particular restrains that one derives the theory. Such
a function, like the internal energy U(S, V, {Ni}i∈I), contains all the thermody-
namic information of the system of interest. From the way this function changes

2Louis de Broglie. DE BROGLIE, L. (1970) The Reinterpretation of Wave Mechanics.
Vol. 1, No. 1.
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one associates the following physical concepts with their formal mathematical
description:

dU = ∂U
∂S dS + ∂U

∂V dV +
∑
i∈I

∂U
∂Ni

dNi
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where

T := ∂U
∂S is defined as the Temperature,

P := − ∂U∂V is defined as the Pressure, and

µi := ∂U
∂Ni

is defined as the Chemical Potential of the substances involved.

It is relevant to notice the difference between the axioms and the deriva-
tion and definition of concepts. In the previous example, the existence of a
state function containing all the physical information of a system is an axiom,
but the following definitions are mere mnemotechnical devices. The theorem of
equipartion of energy or Maxwell’s relations are consequences of these assump-
tions, i.e. they can be deduced from the axioms of thermodynamics.

§2.1 Mathematics vs. Physics

Mathematics defines concepts, it then studies the kind of mathematical entities
that might fit these definitions, regardless if they resemble the perhaps intuitive
concepts that inspired such definitions. Physics deals with reality, with real ob-
jects and experimental facts; it therefore defines concepts from the real objects.
It cannot freely explore what kind of abstract objects fit these definitions; it has
to prove if the definitions actually describe the real objects. This is a fundamen-
tal difference, for physics must prioritise reality over its models. Mathematics
has a certain freedom to “wander about” with concepts and definitions.

In physics, predictions are made, tested against collected data, and as long
as the theory continues to serve its purpose well, it remains as a fixed paradigm.
It is only when sufficiently large discrepancies arise, that the need of revision
re-emerges, a new theoretical model is concocted, and the cycle starts all over
again.

Quantum theory has had a remarkable resistance due to all its applica-
tions and experimental verification. Throughout its development, it has been
subjected to scrutiny both by physicists and philosophers; despite its counter-
intuitive nature, it continues to predict physical phenomena that is utterly un-
expected, and has done so with astounding precision.

The birth of quantum mechanics can probably be traced back to de Broglie’s
thesis about wave properties of matter. This first quantum conjecture led to
the development of wave mechanics, starting with Schrödinger’s equation, and
eventually the quantum theory as we know it nowadays. Even as the first
inklings of debate just kindled among the physicists community, Louis de Broglie
was already taking a position on the argument, stating:

“That the orthodox interpretation was not at all what I had in mind in 1923-1924
when I arrived at the idea forming the basis of wave mechanics: that the notion
of coexistence of particles and waves extend to all particles. This coexistence
had been discovered by Einstein in 1905 for light in his theory of photons or
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light quanta. Pursuing the same course, I had been led to envisage, under the
name of ’the theory of double solution,’ an interpretation of wave mechanics...”

His schism with the more traditional school of thought, that of the Copenhagen
Interpretation, only came formally into being after almost fifteen years of fol-
lowing the lead of the physicists of the time. After careful revision, he came up
with the idea of a Pilot-Wave, a wave associated to a single particle, one that
was supposed to “guide” the particle and that is only related to ψ via a scalar
factor.

“The wave is, according to my notions, a physical wave of very weak amplitude
whose essential role is to guide the motion of strong local concentrations of en-
ergy constituting the particles. The wave may not be arbitrarily normalised and
is therefore distinct from the wave ψ, of statistical nature, utilised in quantum
mechanics. I designate by v the physical wave and, in order to recover the sta-
tistical sense of the wave ψ, I define the latter by the relation ψ = Cv, where C
is a normalisation factor. It is this essential distinction between [...] v and ψ
[...] which prompted me to name my theory the ’theory of the double solution.’”
3

During the 1920’s there was an avid debate on whether or not the wave function
and the indeterminist nature of the theory could be a complete description of
physical reality, thus revealing a true, inherent, stochastic and indeterminist
nature of individual systems. De Broglie pursued to develop a more realist view
by introducing both the notion of a pilot wave and a second field additional to
ψ. According to his original perspective, matter waves associated to physical
particles should be thought of as coexisting in physical space-time with such
particles; the wave function per se was to be associated with the whole ensem-
ble of identical particles. Such a wave function does match the probabilistic
distribution of particles in space (given by ‖ψ‖2 naturally), but exerts also a
physical influence on the particle, guiding it into specific regions according to
ψ, hence the name pilot-wave theory.

§3 Bohmian Mechanics

By 1952, almost 25 years after the emergence of these ideas, David Bohm de-
veloped de Broglie’s programme further enough explicitly to demonstrate that
the assumptions of completeness4 in the description of individual systems (e.g.
particles) is not a logical necessity. These results are the basis of what is often

3Louis de Broglie on a text dedicated to Alfred Landé. DE BROGLIE, L. (1971) A New
Interpretation Concerning the Coexistence of Waves and Particles. The MIT Press, Cam-
bridge

4For a deeper explanation and further understanding of the subject, see
HOLLAND, P. R.(1993) The Quantum Theory of Motion: An Account of the de Broglie-Bohm
Causal Interpretation of Quantum Mechanics. Cambridge: Cambridge University Press.

154



called “Bohmian Mechanics,” an interpretation of the quantum phenomena that
differs from the Copenhagen Interpretation, but that predicts the exact same
results in every non-relativistic experiment done so far. It is an alternative
formalism that adheres to a realistic and deterministic perspective of quantum
physics.

Bohm’s work was done independently from de Broglie’s, the former being
recognised as a causal interpretation whereas the latter as a pilot wave theory.
Both developments coincide in the realistic perspective; the theory as a whole
is often called De-Broglie-Bohm Theory of Motion, even though they might not
be equivalent verbatim. A brief account of its fundamental notions could be
summarised with the following axioms:

(·) A system has an associated wave that travels through space-time.

(··) This wave ψ is a physical wave that is also a solution to the Schrödinger
equation.

(· · · ) ψ is such that ψ = Re(i/~)S and the particle, not just the flow, has a

velocity ~v = ~̇x = 1
m∇S, i.e. if S is taken to be the action: the momentum

corresponds to its gradient.

(· · · ·) The probability density is still given by ρ = ‖ψ‖2 = R2

Bohm tried to bring the notions of



• Trajectory

• Well defined


– position

–
momentum

back into the theory.

Once all the proper derivation is done, and Schrödinger’s equation applied, the
result is a non-linear equation with an extra term interpreted as a quantum
potential. The non-linearity of Bohm’s equations made them very unpopular at
his time, and further critique was done to the fact that some stationary solutions
for the Hydrogen atom imply that the velocity of an electron can, in principle,
be strictly zero, which suggests a static model of the atom.

§4 Further Discussion (Some Final Thoughts)

§4.1 Ignoramus et ignorabimus

When the first set of weather-predicting equations was proposed, their non-
linearity posed a major drawback. Plus, the high sensitivity to initial conditions
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made any attempt to solve the problem seem futile. It was, however, this
ignorance that prompted the sought for a new model.

Once chaos and its regularity were identified, mainly with the work of Benoit
Mandelbrot and the clear recognition of nature’s fractal patterns, these equa-
tions were finally seen with a different perspective. Nowadays, chaos and fractal
geometry play an important role in science. It was from our ignorance that the
new discoveries came into being.5

Figure 3.1: Paintings like Hokusai’s Great Wave suggest an early, intuitive
identification of fractals in nature, way before Mandelbrot’s work.

The problems with quantum physics as we know it nowadays seem to be
closely related to our current inability to identify and study certain properties
at the atomic scale. Despite our experimental capacity, the quantum realm re-
mains unfamiliar, even to today’s physicists community. Most of our research
is done separately, and different areas within atomic physics often remain un-
communicated. Mathematical languages evolve faster than our capacity to learn
them, and different branches of atomic physics have such a level of specialisation,
that an integral development of physics seems hardly achievable. Given the level
of precision quantum theory has had in terms of prediction, its foundations are
not currently being revised, and many of its notions escape our epistemological
grasp. The goal of current theoretical and experimental research in quantum
mechanics is usually focused in applications. Few researchers dedicate them-
selves to examine the foundational notions of quantum theory. It might be the
task of physical research of the 21st century to pose the question if our current
state of ignorance might, as has happened before, trigger an even more fruitful
and solid understanding of Nature6.

5Painting:
Hokusai, Katsushika The Great Wave (1833). British Museum, London.

6“In August 1997, Max Tegmark polled 48 participants of the conference “Fundamen-
tal Problems in Quantum Theory,” held at the University of Maryland, Baltimore County,
about their favorite interpretation of quantum mechanics. The participants completed a ques-
tionnaire containing 16 multiple-choice questions probing opinions on quantum-foundational
issues. Participants included physicists, philosophers, and mathematicians. We describe our
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findings, identify commonly held views, and determine strong, medium, and weak correlations
between the answers. Our study provides a unique snapshot of current views in the field of
quantum foundations, as well as an analysis of the relationships between these views.” See
SCHLOSSHAUER, M. et al (2013). A Snapshot of Foundational Attitudes Toward Quantum
Mechanics. Stud. Hist. Phil. Mod. Phys. 44, 222-230,DOI: 10.1016/j.shpsb.2013.04.004
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Appendices

§1 Appendix 1: The Structure of Space and Time

There are plenty aspects involved in an holistic appreciation of physics; but
certainly one of them is closely related to the Φυσις (nature, essence) of space
and time. The more we understand the geometry of space, i.e. its structure, the
mathematical meaning of time, and the richness of the incorporated concept of
space-time, the more sense we can find in the internal mechanics of the Universe.
Some of the concepts related to space and time have, through the every day us-
age, grown to be so familiar that we seldom even question their true significance.
Two concepts in particular, matter and waves, seem so semantically distant in
the realm of human perception that one might never notice how limited to our
physical scale they are. Since these definitions (and many others) fail once we
leave the human scale, either by studying the very big or very small, we are
forced to rethink the range of validity of our most basic notions.

§1.1 Flatland

Let us just paraphrase the idea of Edwin Abott’s 1884 “Flatland”1 to attain
the exact idea of what is meant with the structure of space. It is the tale of a
two-dimensional creature who struggles to understand the third-dimension. For
the sake of pedagogical purposes, I shall take the liberty to modify the story;
on the other hand, we can simply pretend we are following another character
that lives in the same place as those from Abott’s original story2.

1ABBOTT, E. A., & HARPER, L. M. (2010). Flatland: a Romance of Many Dimensions.
Peterborough, Ont, Broadview Editions.

2The inspiration for this section, and a very clear and similar exposition of these subjects
can be found at RUCKER, R. v. B. (1977). Geometry, Relativity and the Fourth Dimension.
Dover Publications.
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Imagine Mr. B. Square, a two dimensional figure that lives a tranquil and
relatively normal life on the plane of Flatland. He, as most figures in Flat-
land, has a job and a house, where he lives by himself. Inhabitants of this
region of Flatland know a great deal of mathematics, physics, and geometry.
They recognise, specifically, all the possible directions where one could possibly
travel; they know about the North, the South, the East & the West, and all
possible combinations between them. They do not know, however, about the
third dimension. We did not expect them to know about it, of course. Their
bi-dimensional nature limits their understanding of what the three dimensional
world might look like. It should suffice to say that, epistemologically speaking,
they simply cannot possibly imagine what it is, or what it might be.

One evening as Mr. B. Square prepared himself to go to bed, he heard
a mysterious, however clear voice coming out of nowhere. “Hello!” Said the
bodiless voice. “This is Mr. A. Sphere; I am a visitor from above.” Mr. B.
Square was baffled and overwhelmed by such an obstreperous intervention. How
impolite it is to intrude on someone’s privacy in the middle of the night! But
most importantly, where was this visitor?

Figure 4.1: Mr. A. Sphere in Flatland

Ashamed of his behaviour, Mr. A. Sphere decided to be more specific. “I
am here, good sir, just above your house.” Startled, Mr. B. Square tried to
hide himself. Above? Where on Flat-Earth is this above thing? He obviously
had never heard of such thing as “above,” and he could not see his strange
visitor anywhere around. Two-dimensional beings perceive the world in 2-D,
just as we perceive our own world in 3-D. They take one-dimensional pictures
and paint one-dimensional portraits, just as we take and paint two-dimensional
ones; they cast a one-dimensional shadow just as we cast a two-dimensional one.
Their buildings, houses, and restaurants are two-dimensional boxes, just as ours
are three-dimensional ones. And so Mr. A. Sphere decided to show himself by
penetrating Flatland and crossing the two-dimensional plane from one side to
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the other. Only then was Mr. B. Square able to “see” him. Sadly, since Mr. B.
Square is a two-dimensional being, he could only see what appeared to be slices
of Mr. A. Sphere. It was just the two-dimensional circle that results from the
intersection between his world and the unexpected visitor that he was able to
see, broadening and narrowing.

Figure 4.2: The Sphere crossing the plane

After witnessing the almost traumatising effect this intervention caused on
Mr. B. Square, the three-dimensional guest decided to give a further explanation
of the third-dimension. He told Mr. B. Square how he could see the entirety of
his two-dimensional world by peacefully standing in just one spot. He told him
how he could see inside all of his neighbours’ houses without even having to go
inside; he did not even have to move! He even tried to explain mathematically
that the third dimension is just pointing out of the plane of Flatland into a
direction that is perpendicular to all possible directions Mr. B. Square could
think of.

All this was just too much for poor Mr. B. Square; he never managed to
appreciate fully the whole complexity of the third-dimension. He was, however,
able to deduce what Mr. A. Sphere and his world may look like by carefully
analysing and bringing together the knowledge he just recently acquired. By
understanding the fact that there is much more to reality than that which he
could materially experience, he was able to grasp further knowledge of the world
he lived in.

The quintessential notion of this tale, the moral if you will, is the challenge
that arises, this time for us, whilst seeking to imagine what is foreign to us, to
our world-view. What is usually called a hyper-sphere, a sphere that exists in
the fourth-dimension, challenges our own imagination, and forces us to learn
from what we can deduce mathematically and leave tangible intuition behind.
From its place, this fourth-dimensional sphere would be able to see us com-
pletely, without us even noticing. If we wished to point at it we would find our
efforts futile, since we would have to do so in a direction that is simultaneously
perpendicular to all directions we can think of.
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Figure 4.3: n-dimensional worlds

It would have the ability to see
through us, it could touch our hearts
(not just figuratively) without pierc-
ing us or slicing us. It would cast a
three-dimensional shadow and would
be able to see all of our world just by
standing still at one place. It would
be able to see inside our house, and
our neighbours’ without having to go
inside or even move, just exactly as
Mr. A. Sphere did in the flat land !

If it ever showed up and decided
to intervene in our world the way
Mr. A. Sphere did in some particu-
lar region of Flatland, i.e. by cross-
ing from one side to the other, all we
would see are the three-dimensional,
sphere-like intersections of it and our
world. This is how we approach the
study of the fourth-dimension, a new
direction, different to all those we
know or have ever experienced. Un-
derstanding the fourth-dimension is
useful (ultimately essential) to under-
stand space, time, and the intricate
relation they hold.

What we call space-time is always
one dimension greater than regular space. We should be extremely careful to
see that this has just a geometrical connotation; the word dimension has no
physical meaning per se, and, therefore, no weird or “spooky” connotation.

§1.2 What is a Shadow?

It is easy to rush and answer this question by stating that a shadow is a man-
ifestation of the absence of light, or perhaps even that a shadow is the darkish
“image” an opaque object casts over a flat surface when exposed to a lumi-
nous source. Not often do we reflect upon the geometrical meaning of shadows,
beyond our usual three-dimensional environment. Just as a bidimensional crea-
ture’s epistemic reach is bounded to a flat comprehension of the Universe, so is
our own comprehension bounded to our three-dimensional experience.
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Figure 4.4: A rhombic triacontrahedron. By shining light onto it, we can see its
different projections onto a plane.

(a) Flat shadow of the tri-
acontrahedron with two-
fold symmetry.

(b) Flat shadow of the
triacontrahedron with
three-fold symmetry.

(c) Flat shadow of the tri-
acontrahedron with five-
fold symmetry.

Just as the prisoners in Plato’s cave allegory3, we are epistemically bound to

3More on this topic can be found on: SILVERMAN, A. ”Plato’s Middle Period Metaphysics
and Epistemology”, The Stanford Encyclopedia of Philosophy (Fall 2014 Edition), Edward N.
Zalta (ed.)
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think in three dimensions; four-dimensional objects can only be seen in a three-
dimensional realm by means of the shadows they cast. Four or more dimensional
objects can be projected into our space, and they produce a three-dimensional
shadow. For us, such shadows would be indistinct from the rest of the objects
around us, the same way a flat shadow would be indistinguishable from the
inhabitants of the bidimensional plane.

The current physical model of our Universe comprises, precisely, a four di-
mensional description of our κoσµoς, with curvature and an intrinsic hyperbolic
nature. Shadows of this four dimensional world reveal only a portion, a slice, of
the wholeness and richness of its complexity. It is easy to create false impres-
sions from shadows, to present merely partial information of the objects they
come from, and forget they only suggest their physical structure. In terms of
Plato’s allegory, it is easy to be carried away by the idea that shadows are the
objects they represent, as a flat being might misinterpret the shadows of the
rhombic triacontrahedron.

Figure 4.6: Different three-dimensional shadows of a four-dimensional cube

§1.3 Space-Time

In an attempt to grasp what the concept of space-time fully comprises, we start
by taking a one dimensional example. Let us now consider Mr. C. Point, who
lives in a one-dimensional world. He considers himself to be a point, of course,
and a rather active one; we consider him nevertheless to be zero-dimensional,
due to the way he inhabits his 1-D world. Since he is not a one-dimensional
segment living in a one-dimensional world, he is not the equivalent of Mr. B.
Square inhabiting Flatland (a line, not necessarily a straight one, living in Flat-
land would be the proper analogy). The importance of this remark shall become
evident later.

165



Figure 4.7: Points in the 1-D world vs 1-D people

In order to appreciate fully how Mr. C. Point moves and lives within his
world we can do an interesting refashioning of the way we observe his world. He
knows all the possible directions in which he can move, forwards and backwards
of course. Allow me to call these directions positive and negative. His world
consists, for the moment, of a straight, and infinite line. Therein lies his 1-D
house and all of his possessions. By considering time, as we usually do, as a
continuous parameter, as a real number4, we will be able to understand (and
properly see) more of Mr. C. Point’s life. We now think of the two-dimensional
plane as a combination, a perpendicular intersection, of the world Mr. C. Point
lives in, and time. One has to be awfully careful at this point, since in this
case the plane is not to be interpreted as Flatland, but rather as an abstract
depiction of the space we study in combination with time at its full extension.
Space-time and space per se are two different concepts, not to be mixed up.

The following explanation of what we presently study should justify, or at
least clarify, the usage of the term space-time. Its full profoundity shall remain
unexposed, but the clarity it will soon unravel is of significant importance. We
will now cease to see Mr. C. Point as a point in a 1-D world (which he certainly
is), and begin to see his whole life (his entire existence, his trajectory through
the geography and chronology of a portion of Lineland, if I may call it that way)
as a curve (a drawing) in the space-time diagram.

4Real in the set-theoretical sense, i.e. belonging to the set R of real numbers
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Figure 4.8: A part of Mr. C. Point’s life in the Space-time diagram

No one in Lineland, or Flatland, can see the temporal dimension (direction),
just as we do not see time, much less perceive it as a different direction in
which we can freely travel. Inhabitants of Lineland see themselves as what
they are, points. It is only we, three-dimensional beings in the attempt to
study this world, that see their lives as a curve in 2-D space-time. Let us
now take the abstraction one level up. Objects that, like Mr. B. Square, live
in a two-dimensional world like Flatland, have a corresponding space-time as
well. As one might infer from the extrapolation of our previous reasoning, this
corresponding space-time is a three-dimensional one, consisting of two spatial
dimensions, and one temporal one. That way, Mr. B. Square’s entire life can
be seen as a 3-D object, a complex, crooked, worm-like thing in the three-
dimensional representation of space and time. In the diagram (Figure 4.8 ) we
can see a portion of Mr. B. Square’s life. Notice that he (and anyone around
him) would only perceive himself as moving to the right. We could say that his
whole world is a mere slice of space-time.
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Figure 4.9: Contrast between motion in Space-Time and motion in Space

So far we know that one-dimensional space has a corresponding two-dimensional
space-time; two-dimensional space has a corresponding three-dimensional space-
time; from this we can clearly deduce that our own three-dimensional space has
a corresponding four-dimensional space-time. It is just as impossible to draw
4-D space-time as it is to imagine it; we would have to think of a perpendicular
direction to all possible directions we know, which is intrinsically impossible.
We can merely describe our space-time by a 4-D arrangement (vector) with the
three spatial coordinates and a temporal one. This is only a mathematical and
geometrical concoction; no physical implications come intrinsically along. Let
us try to go deeper into the study of the geometry of space and time, now with
a slightly different orientation. Up to this point, all of our examples have been
about (what we call) flat spaces, i.e. spaces with no curvature.

(t, x, y, z) ε R4

Mathematically speaking, an event is just a vector in R4

§1.4 Curvature

Let us try not to digress on this subject, but rather give a simple and short
description of curved spaces, and eventually of curved space-time. If we recall
Mr. C. Point, living in his one-dimensional world, we can see that we assumed
this 1-D world (the space, not the space-time, we will forget about time for
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the moment) was a straight line. This does not have to be the case, however.
Notice that there is no way Mr. C. Point can feel or perceive the curvature
of his space. In just the same way we (as three-dimensional beings) can see
curved 1-D space, we can also see, draw, and describe curved 2-D space. Just as
Mr. C. Point, however, we would not be able to perceive curvature in our own
3-D world. Curvature stretches, bends, or contracts regular “flat” space as if it
were a sheet and, in the 2-D case, we can see this without any problem. But,
once again, Mr. B. Square has no straight-forward way to notice the curvature
in his world. The obvious question that arises is, could it be that our own
three-dimensional space were curved? Is there any possible experimental way
to notice this curvature? Let us first consider a few spooky consequences about
curvature and depict some different possibilities.

Figure 4.10: Flat and curved 1-D spaces

For the sake of simplicity we leave the case of a three-dimensional space for
a later examination, and focus on a two-dimensional one, like Flatland. In order
to curve a two-dimensional space we need not think of it as an infinite sheet;
that is an option, and in that case, space is unbounded, i.e. it has no limits.
There are, nevertheless, means to curve a finite space in such way that it will
remain unbounded. Let us think of different examples where 2-D space curves,
but is not infinite. Certain strange properties of space appear in some of the
cases. In all of the three cases illustrated below, an infinite sheet, the sphere,
and the cylinder, if Mr. B. Square decided to walk East and just kept walking
forever, he would never reach a limit of space. (See Figures 4.7 and 4.8 )
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However, if Mr. B. Square took the risk of setting course to the East in
the infinite flat sheet, none of his friends and relatives would ever know of him
again, since he would eventually be infinitely far away. In the sphere and the
cylinder however, he would (sooner or later) come back from the other side,
contradicting every reasonable intuition of flat-landers. If our Universe were
the 3-D space we know, but in the form of a 3-D sphere (the equivalent of
the sphere that Flatland just might be, but with three degrees of freedom of
movement) we would be able to sail away (in a space ship, for instance) from the
north pole on our planet Earth, into the dark emptiness of space, and eventually
(many years from now, maybe) come back to Earth at the south pole. Most
interestingly, as we shall study in our last two-dimensional example, is the case
of the Möbius strip5; here, if Mr. B. Square decided to walk East, he would end
up exactly where he started (just like in the sphere or the cylinder), but since
the strip twists in the third-dimension, he would come back as a mirror image
of himself. Remember that unlike the flat faces of three-dimensional polyhedra,
objects in 2-D space have no three-dimensional orientation, i.e. creatures here
have no “top” or “bottom” faces. If he was right-handed, he would now be
left-handed. As a consequence, and since space is smooth and continuous, he
would see everybody else as a mirror image of themselves.

What if our own space were a 3-D Möbius strip? That would mean that if
two people were to travel in an interstellar cruise across the Universe, going in
a particular direction (up perpendicularly to the plane of the solar system, for
example, or heading towards the next galaxy but just kept going), they would
end up arriving at the exact same spot where they left, here on Earth if that
were the case.

Figure 4.11: Flat and curved 2-D space

Moreover, let us suppose one of them was travelling in the seat right next
to the other, to the right. Once they came back to the exact spot where they

5Much more and very adequate information can be found in the article “Möbius Strip” at
Wikipedia, The Free Encyclopedia 2016
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left, they would be mirrored images of themselves! They would come back left-
handed (assuming they were right-handed when they left), with their hearts on
the right side, and the person on the right would now be sitting on the left. That
is, at least, what observers here would see; they would, however, see everyone
else mirrored, and to them, the traveller originally sitting on the right seat
would still be sitting on the right seat. This picture is not at all inconsistent;
everyone sees them as mirror images of the friends who left Earth, whilst they
see everyone else mirrored. This is why we say that both the Möbius strip and
the Klein Bottle6, the three dimensional analogue of the Möbius strip, which
accordingly twists in the fourth dimension, are impossible to orientate.

Figure 4.12: More examples of curved 2-D space. The Möbius strip is a non-
orientable surface.

§1.5 Physics & Geometry

What would physics be like in spaces like these? Notice how straight lines bend
in curved 2-D spaces. What could a straight line look like if we lived in curved
3-D spaces, which are impossible to draw or imagine? It turns out that, even
though Euclid7 invented regular (flat) Geometry precisely to describe and study
the world we live in, a weird curved space called hyperbolic space, proposed by
Felix Klein8 (et al.) at the end of the 19th century as a mathematical curiosity,
and further studied and applied to physics by Lorentz and Einstein9, turned out
to be an actual closer description of reality. Two-dimensional hyperbolic spaces

6Much more and very adequate information can be found in the article “Klein Bottle” at
Wikipedia, The Free Encyclopedia 2016

7The Euclidean description of space is the first one that is recorded. It is an attempt to
formalise the knowledge of Geometry of the time; it is also, by the way, the antonomastic
reference of an axiomatic system. There are several modern editions of Euclid’s (Elements)
that can work as a reference.

8KLEIN, F. (1890). Vorlesungen über Nicht-Euklidische Geometrie. Göttingen.
9LORENTZ, H. A. (1904). “Electromagnetic Phenomena in a System Moving with any

Velocity Smaller than that of Light” Proceedings of the Royal Netherlands Academy of Arts
and Science
EINSTEIN, A. (1905). “Zur Elektrodynamik bewegter Körper” Annalen der Physik.
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are difficult to draw; evidently, three-dimensional hyperbolic space is impossible
to draw or imagine. It will suffice at the moment to say that the main char-
acteristic of hyperbolic space is the way “straight lines” behave. The shortest
path between any two points is achieved by travelling through a hyperbola.

Figure 4.13: Examples of spaces with hyperbolic curvature

Einstein proposed that we, most likely, live in a hyperbolic 4-D space-time,
which means we live in a 3-D space plus a temporal dimension; this space is
curved in a hyperbolic fashion, and light travels through hyperbolae, since light
has to travel in straight lines.

Figure 4.14: Flat and, curved 3-D space?

Another physical law he came up with, is that nothing can ever travel faster
than light, not even light itself. This is remarkably counter-intuitive, and its
consequences are often overseen. Not even light emitted from a travelling beam
of light can travel faster than the speed of light, which stands in complete
opposition to our common notions. Imagine a vehicle travelling at a considerably
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high speed (relative to an observer, at least), going by just next to where the
observer stands. If an object is fired from this vehicle in the same direction
of motion, this object will obviously have a greater velocity than that of the
vehicle, the sum of the two velocities, to be precise (with respect to the observer
of course, i.e. everything measured in the same frame of references). A beam of
light, on the other hand, can be projected from a rocket travelling almost at the
speed of light and, both the observer standing outside, and someone travelling
inside the rocket, will measure the velocity of the beam to be 2.99792458 x 108

m/s, not the sum of the two velocities in the case of the standing observer.
As counter-intuitive as it may seem, everyone (travellers on that rocket, people
outside, another beam of light that was in the vicinity, etc.) would record the
same data for the speed of light.

We draw the limits of light and its speed with the help of a light-cone di-
agram. It is possible to make one-dimensional light-cone diagrams, as well as
two-dimensional ones. Three-dimensional ones are impossible to depict, since
we are dealing with space-time representations and would thus need a 4-D di-
agram. Hopefully, with the help of the previous explanations, the 2-D (space-
time) light-cone diagram shown below will suffice. Here, light is considered to
travel at a speed of 1 unit per second; this unit obviously represents 2.99792458
x 108 metres. Since nothing can possibly travel faster than light, everything
that could happen is inside the cone. I.e. all possible events occur in the inside,
the cone represents light itself, and everything outside the cone is a physical
impossibility. Time goes by from bottom to top; the present lies exactly at the
origin in the diagram, the past lies at the bottom, inner part of the cone, and
the future lies at the upper one. Space is represented by the 2-D, XY-plane,
and the shortest path between any two events (points) in hyperbolic space-time
is a hyperbola. Important fact : if we managed to accelerate very close to the
speed of light, we would move in space-time through a path very similar to a
hyperbola, not an exact one. If that happened, we would arrive “faster” in
the future, and we would have travelled in time. Another way to express this
is by saying time has elapsed differently for us. This has been experimentally
proved10.

10Any course on the Theory of Relativity can be useful for a better understanding of both
Special and General Relativity . For a very precise and clear explanation see: COLEMAN, J.
A., (1961). Relativity for the Layman. Penguin Books, Great Britain.
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Figure 4.15: The two-dimensional Light-cone diagram
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§2 Appendix 2: Hydrodynamic Quantum Analogue, A Macroscopic
Revision of Quantum Mechanics

§2.1 What are HQA’s?

A few years ago, Yves Couder and Emmanuel Fort discovered11, whilst working
in the laboratory, a series of phenomena that resembled properties once believed
to be characteristic of quantum mechanical systems only. The experimental ar-
ray they used is quite simple; by placing a droplet of a fluid (often silicone
oil) over the thin layer of air that forms over the surface of a vibrating plate
containing a sample of the same fluid, such a droplet is able to bounce stably
and behave as a particle standing over the fluid. Although this particle-like
behaviour depends strongly on the frequency of the oscillations, it is only un-
derneath a critical acceleration under which the droplet will coalesce. So long
as this threshold is exceeded, the droplet can be controlled, but only under a
range of frequencies that depend on the droplet’s size. This walking droplet has
shown to behave as a quantum mechanical system, exhibiting both single and
double slit diffraction, quantised orbits, quantum tunneling, and the Zeeman
effect, just to name a few examples. The aim of this appendix is to present the
nature of the wave-particle duality present in the quantum realm by assuming
that, at least to a certain extent, these apparent manifestations of quantum
effects in the macroscopic world actually portray verbatim how particles in the
quantum realm behave.

§2.2 Fluid Mechanics

The study of wave phenomena and the study of fluid motion can hardly be
separated from each other. Although an exhaustive description of the basics of
hydrodynamics would be ideal, a brief description of the variables of interest
and their relations will suffice. In order to understand the interrelation between
fluid dynamics and the analysis of corpuscular behaviour one needs first to
understand the experimental setup of this particular study. Apart from any
detailed description of the experimental processes and the material used, the
basic ideas underlying this kind of experiments exhibit how this connection
could work. It serves as an example as well as a starting point for other research
in quantum analogies.

To start with, one needs an environment, a Universe so to speak, where
the droplets (which from now on shall be referred to as ’particles’) can move
freely as any free-particle would do under no potential constraints. The role of
this Universe shall be played by a flat, rigid plate containing an oil bath. The
relative size of this plate with respect to the droplet should be large enough

11“Floating droplets on a vibrating bath were first described in writing by Jearl Walker
in a 1978 article in Scientific American. Recently in 2005, Yves Couder and his lab were
the first to systematically study the dynamics of bouncing droplets and discovered most of
the quantum mechanical analogs. John Bush and his lab expanded upon Couder’s work and
studied the system in greater detail.” Quote from: Wikipedia contributors. “Hydrodynamic
quantum analogs.” Wikipedia, The Free Encyclopedia, May 2018.
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to consider the “particle” to be free; also, border effects can be avoided if the
plate is large enough. Many different fluids would theoretically work; silicone
oil, however, provides us with enough viscosity and yet good manageability so
as to control the different variables easily. The oil is where the particles can
move, a medium were both waves and particles can coexist.

Droplets of any fluid placed on the surface of such a fluid would normally
coalesce. When the whole environment vibrates at certain specific frequencies,
the time it takes for the thin layer of air between the droplet and the surface of
the fluid to disappear is longer than the time it takes the fluid to bounce the
droplet back into the air. This way, droplets remain as separate entities over
the surface; they can behave as a standing particle, or move around the fluid
depending on the relation between the bouncing frequency of the droplet and
the vibrating frequency and amplitude of the plate as a whole.

A speaker connected to a function generator produces regular up-down os-
cillations. If properly attached to the speaker, the flat plate will vibrate ac-
cordingly and both the frequency and the amplitude of the oscillations can be
regulated via the function generator. For every frequency, there is a span of
amplitudes inside of which no Faraday waves appear, i.e. the fluid can oscillate
steadily without any trace of standing waves at the surface.
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Faraday waves12 are nonlinear standing wave patterns that appear on the
surface of any oscillating fluid constrained to a closed area. Such patterns
form once a critical frequency, either from above or below, is crossed. Chladni
plates13 operate precisely on this principle, and the symmetries formed both by
the oscillating fluid and the Chladni plates are characteristic for each frequency.
The fact that the frequencies at which the patterns appear constitute a discrete
set of values, and that the conditions of specific frequencies and amplitudes at
which the droplets are able to stand, walk or orbit around a point, also correlate
to the importance of the notion of quantisation in nature.

§2.3 Setup for the Experiments

The setup for such experiments is as follows. First, a function generator is con-
nected to an amplifier. This generator’s task is to produce a single-frequency
sinusoidal wave; the frequency of such a wave, as well as its amplitude, can be
controlled up to a hundredth of a Hertz and a thousandth of a Volt respectively.
After the signal has been amplified it travels to the speaker, where the plate
containing the oil bath is attached. Once the plate starts oscillating, it is rel-
atively easy to determine the range where Faraday waves do not appear. This
threshold depends on both the frequency and the amplitude, and droplets are
to be placed over the oil bath only within this range.

Figure 4.1: Setup for the experiment. A function generator is connected to an
amplifier which is itself connected to the loudspeaker. The flat, rigid plate with
the oil is fixed on top of the speaker, thus forcing it to oscillate in resonance.

12There is abundant literature on this very important subject of fluid mechanics. A broader
and detailed explanation can be found in the following paper:
MILES, J. (1993) On Faraday waves, Journal of Fluid Mechanics. Cambridge University
Press, 248, pp. 671–683. doi: 10.1017/S0022112093000965.

13For a better understanding of this phenomenon see the explanation provided by The
Science Teaching Collection of the Smithsonian Institution. The link to it is attached below.
http://americanhistory.si.edu/science/chladni.htm
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Figure 4.2: As the speaker reproduces the “monochromatic” wave, i.e. the single
frequency coming out of the amplifier, the flat plate containing the fluid, fixed
to the cone (diaphragm) of the speaker, oscillates.

§2.4 The Analogy: Connecting the Dots

The analogy works as follows, the droplet, which has been seen to stand still
and move about the surface of the fluid, represents a quantum particle, such
as an electron. Different “potentials,” such as single and double slits, crystal
structures, corrals, etc, can be modelled using acrylic glass14, and the wave it
produces whilst bouncing on the surface inevitably interacts with itself once a
barrier-like object (where this wave can be reflected) is near. Depending on
the amplitude of the plate’s vibrations one can make the particle move. If the
bouncing droplet’s frequency does not match that of the plate by the smallest
of phases, the droplet will be pushed around and guided by its associated wave.

This should be reminiscent of de Broglie’s Pilot-Wave Theory, for droplets
are actual particles whose dynamics may obey the laws of quantum mechanics
(given by the Schrödinger equation), but they also have an associated, physical
wave that produces an overall wave-like behaviour.

If this actually resembles a real quantum system, we could eventually achieve
a better understanding of the quantum world by developing an intuition in this
kind of macroscopic systems, the results of which could permit the formulation
of a new, realistic quantum theory, perhaps deprived from the interpretational
problems all current models have.

14Polymethyl-methacrylate, commonly known as “Plexiglas”, a transparent thermoplastic

179



Figure 4.3: A particle with its associated wave standing over the fluid bath.

Trajectories of a walking droplet are well defined, however random they
might be. As the droplet bounces, it creates a radial wave that propagates
through the surface of the fluid and interacts with any nearby objects, e.g.
another droplet, and itself. This guiding wave and its long term interaction
with the particle could be the equivalent to a quantum particle interacting with
itself.

Figure 4.4: Once the Faraday threshold is exceeded, Faraday waves appear at
the surface of the fluid.
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Figure 4.5: Standing droplets/particles. The interference pattern is recognisable
on the waves associated to the droplets on the left of the picture.

Figure 4.6: A set of droplets/particles.
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§3 Appendix 3: Arriving at the Schrödinger Equation

Schrödinger’s equation is a theoretical starting point in quantum mechanics, but
a convincing derivation can be done with the aid of some basic physical notions.
We begin by stating that the total energy of any system, be it in the classical
or quantum domain, is conserved, i.e.

ETotal = EKinetic + EPotential

where ETotal is a constant.
For a classical system, we defined momentum as ~p = m~v, where a particle’s

velocity is the ratio of spatial displacement ∆x over a given time interval ∆t.
Obviously, a fixed spatial displacement traversed over a short time interval is
translated into a larger value for ~v, whereas this same displacement traversed
over a larger time interval translates into a smaller value for ~v 15.

v := lim
∆t→0

∆x

∆t
=
dx

dt

So momentum can be seen as a physical quantity derived from the trajectory
x(t), both in a literal and metaphorical sense, and can thus be written as

~p = m
d

dt
~x(t)

Let us not forget that the particle’s trajectory ~x(t) is the desired function in
classical mechanics; it contains all the kinematic information of the system, and

its dynamics are then given by Newton’s relation ~F = m
d2

dt2
~x(t).

Finally, the system’s kinetic energy can be re-written as

Ek =
1

2
mv2 =

p2

2m

and the energy conservation statement can be written as follows:

p2

2m
+ V (x) = ETotal

§3.1 Wave Function

Since we assumed any quantum system is described by a complex-valued16 wave
function, we can begin with the simplest wave equation17:

Ψ(x, t) = ei(kx+ωt) = cos(kx+ ωt) + i · sin(kx+ ωt)

15If ~v is a vector, then v represents ‖v‖
16though sometimes real-valued
17If you are not convinced of the following equality, simply expand eix as a Taylor polyno-

mial, i.e.

eix =
∑∞
n=0

(ix)n

n!
= 1 + ix− x2

2!
− ix3

3!
+ · · ·

and compare it with sine’s and cosine’s Taylor expansion

cos(x) + i · sin(x) =
∑∞
n=0

(−1)n

(2n)!
x2n + i

∑∞
n=0

(−1)n

(2n+1)!
x2n+1 = 1 − x2

2!
+ x4

4!
− · · · +

i(x− x3

3!
+ x5

5!
− · · · )
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where of course

k =
2π

λ
& ω =

2π

T
= 2πν

and turn it into a “quantum mechanical” equation by assuming Planck’s and
De Broglie’s relations

λ =
h

p
=

2π~
p

& E = ~ω

This means that

k =
2π

λ
=

2π(
2π~
p

) =
p

~
& ω =

E

~

and the associated wave function can be re-written as

Ψ(x, t) = ei(kx+ωt) = e
i
~ (px+Et)

or, if it is more comfortable,

Ψ(x, t) = cos

(
p

~
x+

E

~
t

)
+i·sin

(
p

~
x+

E

~
t

)
= cos

(
i

~
(px+ Et)

)
+i·sin

(
i

~
(px+ Et)

)

§3.2 Finding the Time and Spatial Derivatives

Let us find a few derivatives from this associated wave function, namely the
first two spatial derivatives, and one time derivative. Recall that a function
f(x) that depends on just one variable has a total derivative df

dx , whereas a

function f(x, y, z) that depends on multiple variables has partial derivatives ∂f
∂x ,

∂f
∂y , and ∂f

∂z , where one derives f over one variable whilst the rest of the variables
are held fixed. So,

∂Ψ

∂x
=
i

~
p · e i~ (px+Et)

∂2Ψ

∂x2
= − 1

~2
p2 · e i~ (px+Et)

184



also,

∂Ψ

∂t
=
i

~
E · e i~ (px+Et)

This means that

∂2Ψ

∂x2
= − 1

~2
p2 ·Ψ(x, t)

and

∂Ψ

∂t
=
i

~
E ·Ψ(x, t)

Or, equivalently

p2Ψ(x, t) = −~2 ∂
2

∂x2
Ψ(x, t)

EΨ(x, t) =
~
i

∂

∂t
Ψ(x, t) = −i~ ∂

∂t
Ψ(x, t)

Part of the great paradigm shift with quantum mechanics is the relation between
physical quantities and mathematical operators. An operator is a function, a
transformation, but it is commonly used to refer to functions that take functions
and transform them into other functions, e.g. derivatives or integrals. Quantum
mechanics is done in vector spaces, so quantum mechanical operators transform
the vector space of wave functions. We associate an operator to any measurable
physical quantity, like energy, momentum, and so forth. We can then take these
two last equations, and define a new “quantum mechanical” momentum operator
that is reminiscent of classical momentum, and acts upon Ψ(x, t) as

~p =
d

dt
~x(t) =⇒ P̂ := −i~ ∂

∂x

so that P̂ 2Ψ(x, t) =

(
i~
∂

∂x

)2

Ψ(x, t) = −~2 ∂
2

∂x2
Ψ(x, t)

And consequently
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Ek =
1

2
mv2 =

p2

2m
=⇒ Êk =

−~2

2m

∂2

∂x2
Ψ(x, t)

We can define the energy operator as

Ê := −i~ ∂
∂t

Finally, since the total energy of the system corresponds to the sum of kinetic
plus potential energy, we state that

P̂ 2

2m
+ V̂ (x) = Ê

where V̂ (x) = V (x). This is an operator equation, but also(
P̂ 2

2m
+ V̂ (x)

)
·Ψ(x, t) = Ê ·Ψ(x, t)

where the operators are explicitly acting on Ψ(x, t) from the left, and we arrive
at the desired equation

−~2

2m

∂2Ψ

∂x2
+ V (x)Ψ(x, t) = −i~∂Ψ

∂t

Or, in a more general form

Ĥ |Ψ〉 = Ê |Ψ〉

where Ĥ = (Êk+V (x)) is called the Hamiltonian operator. This operator corre-
sponds, in general, to the sum of kinetic and potential energy. When we analyse
stationary systems, like the one described in section §6.6 of chapter 1 regarding
the quantum particle trapped inside a box, we say that such systems do not
evolve in time, and so we use the time independent version of Schrödinger’s
equation,

−~2

2m

∂2Ψ

∂x2
+ V (x)Ψ(x, t) = EΨ

where E is the constant value for each of the different energy levels.
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N.b. Other wave-like functions can be expressed as a combination of simple
wave functions, like the one used in the above example, with different frequen-
cies. In general, the associated wave function for a quantum system is a linear
combination of such functions, as in the following example:

Ψ(~x, t) = a0ψ0(~x, t) + a1ψ1(~x, t) + a2ψ2(~x, t) + ...

Ψ(~x, t) = a0e
i(kx+ω0t) + a1e

i(kx+ω1t) + a2e
i(kx+ω2t) + ...
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§4 Appendix 4: Reminders of Algebraic Definitions

The following are a few algebraic notions that are useful to understand the
mathematical formalism of quantum theory. The main difference between set
theory and algebra is the notion of structure. Sets per se have no distinction
for hierarchy, order, or the way their elements relate to each other beside set
membership, denoted as x ∈ X. Algebraic structure provides the foundations
for operational mechanisms. We work with nonempty sets, and we begin with
sets that have exactly one operation.

§4.1 Structures with one Binary Operation on a Set

Group

A group G is a set with an operation ◦ : G×G −→ G such that

∀g∀h
(
g, h ∈ G −→ ◦(g, h) ∈ G

)
[Closure]

I.e. the group operation applied to any two elements of G is again an element
of G

∃e
(
e ∈ G ∧ ◦(g, e) = ◦(e, g) = g

)
[IdentityElement]

I.e. there exists a “1”

∀g
(
g,∈ G −→ ∃g−1

(
g−1 ∈ G ∧ ◦(g, g−1) = e ∈ G

))
[InverseElement]

I.e. for every element of G there is an inverse element (also in G) that “cancels”
it out.

N.b. The group operation, represented by ◦, can be different in every case.
For the integers, the operation addition provides them with a group structure.
In that case, ◦(g, h) should be interpreted as “m + n” which is shorthand for
+(m,n). The identity element is the number 1, and for every m ∈ Z the
inverse element is −m. Notice that the group operation need not be abelian
(commutative).

E.g. The Rubik’s cube forms a group structure with the seven elements: Identity
(doing nothing), “Quarter rotation of one side a,” “Quarter rotation of one side
b,” and so on, provided we labelled each of the six sides with the letters a
through f. The group operation is the composition of such quarter-rotations,
i.e. performing one after the other.

In Physics, though, one usually focuses on groups of operations (actions, trans-
formations). The set of rotations in 3-D space is a group; the group operation
is again the act of successive rotations.
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§4.2 Structures with two Binary Operations on a Set

Rings18

A ring R is a set with two operations ⊕ : R × R −→ R and � : R × R −→ R
such that

∀a∀b
(
a, b ∈ R −→ ⊕(a, b) ∈ R ∧ �(a, b) ∈ R

)
[Closure]

There exists an identity element for “multiplication,” which one can denote as
“1.”19

There exists an identity element for “addition,” which one can denote as “0.”

For every element a of R there is an inverse element, with respect to the oper-
ation �, which one can denote 1

a (also in R) that “cancels” it out to 1.

For every element a of R there is an inverse element, with respect to the op-
eration ⊕, which one can denote −a (also in R) that “cancels” it out to 0.

“Multiplication” is associative, i.e. (a · b) · c = a · (b · c)

“Addition” is also associative, i.e. (a+ b) + c = a+ (b+ c)

Very Important: The “addition” operation is commutative, i.e. a + b = b + a,
but that does not imply that a · b = b · a.

Both operations combine via the distribution law, i.e. a · (b + c) = a · b + a · c
when it is left distribution, and (b+ c) · a = b · a+ c · a for right distribution.

N.b. Ring-like structures are precisely characterised by the distribution law,
a · (b + c) = a · b + a · c, which tells us how the two group operations combine.
A field, like the set of real numbers R, is a special type of commutative ring
structure; it is a totally ordered set with continuous parameters that is often
used as a basis to construct other algebraic structures.

E.g. The set of integers, Z, has a ring structure with both multiplication
and addition. The set of residues, given the integer-operation “divide by 5,”

18“Zahlring,” coined by David Hilbert. In 20th century German, the word ring meant
association, as in “a ring of mathematicians and philosophers.” It is still common within
some contexts in modern English.

19Recall these are any arbitrary operations defined on the set; they need not be the usual
addition or multiplication. Since they are so reminiscent to these familiar operations, one can
simply call them by these usual names.
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{0, 1, 2, 3, 4} has a ring structure, provided we define addition the following
way:

0 + 1 = 2

2 + 1 = 3

3 + 1 = 4

4 + 1 = 0

and so forth.

§4.3 Structures with two Binary Operations on two Sets

If A and F are both sets, then the two binary operations are defined as
• ⊕ : A×A −→ A

• · : F×A −→ A

Vector Spaces (Linear Structures)

A set V is a vector space over a field F with the operations · and ⊕ if

· V is an abelian (commutative) group with respect to ⊕
· F is a commutative ring

Which means that addition is closed, associative, commutative, and has both
an identity element and inverse elements. Scalar multiplication is defined for
elements in the field F and elements of V , and is a distributive operation, i.e.

There is left scalar distribution: λ · (v + w) = λ · v + λ · w

There is right scalar distribution: (v + w) · λ = v · λ+ w · λ

N.b. Elements of vector spaces are called vectors, and we denote them by |v〉 or
~v, depending on context. Usually, ~v is used in contexts of Newtonian mechanics,
where it is useful to think of vectors as arrows with length and direction; |v〉
is more useful when thinking of vectors as abstract elements of vector spaces,
mainly where these are functional vector spaces.

E.g. The field R per se is a vector space, but naturally R2, R3, R4, ..., Rn are
vector spaces. Of course,{(

1
0

)
,

(
0
1

)}
is a basis of R2,
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
 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 is a basis of R3,




1
0
...
0

 ,


0
1
...
0

 , ...,


0
0
...
1


 is a basis of Rn, etc

The space of 3× 3 matrices over the field of real numbers, M3×3(R), is a vector
space, where the 0 and 1 are given by the matrices

0̂ =

0 0 0
0 0 0
0 0 0

 and 1 =

1 0 0
0 1 0
0 0 1


and this space can be seen as the set of linear transformations of R3 on it-
self. The analogous examples for R4, ... ,Rn are also vector spaces of linear
transformations.

§4.4 Structures with three Binary Operations on two Sets

Algebra (over a field)

A vector space V over the field F is an algebra if it is equipped with and extra
operation � : V × V −→ V such that � is closed, and both right and left
distribution hold, i.e.

u · (v + w) = u · v + u · w

(v + w) · u = v · u+ w · u

N.b. This new operation (multiplication) is not necessarily commutative or
associative.

E.g. The space of n × n matrices over the field of real (or complex) numbers,
Mn×n(R) or Mn×n(C), are both algebras under matrix multiplication.

Of course, the set of real numbers R is an algebra over itself (as a field of
numbers).
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§4.5 In General

If an algebra has an inner product (as the one defined in Part II), where the
length or norm of its elements is defined from this inner product, and converging
sequences of such elements always converge within the space itself, we call this
a Banach Algebra.

A Hilbert Space is a vector space with an inner product and the corresponding
topology; this vector space should also be complete, meaning that converging
sequences of such elements always converge within the space itself.

A Lie Algebra is an example of a non-associative algebra over a field F. The
non-associative multiplication operation is defined with a Lie bracket [f, g] such
that

[λf + ξg, h] = λ[f, h] + ξ[g, h]

[f, λg + ξh] = λ[f, g] + ξ[f, h]

which means the operation is bilinear,

[f, f ] = 0

and
[f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0 (JacobiIdentity)
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a la Mecánica Cuántica.” Fondo de Cultura Económica.
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