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Resumen

En este trabajo se estudian las propiedades ópticas y la transferencia de calor por medio del

campo eléctrico cercano, de sistemas compuestos por nanopart́ıculas polarizables. Con este

fin, el primer caṕıtulo revisa los principios f́ısicos y los antecedentes teóricos de las ondas

superficiales y los efectos de campo cercano en tales sistemas. Espećıficamente se consid-

eran los casos de nanopart́ıculas metálicas y dieléctricas. Después, el trabajo se divide en

dos partes principales. En el primero, se introduce un método para estudiar la respuesta

óptica de un sistema de nanopart́ıculas esféricas interactuantes cuando son excitados por

campos externos multipolares. El método teórico separa las propiedades geométricas y

dieléctricas y la simetŕıa del campo incidente. Permite el análisis del acoplamiento del

sistema con el campo externo, de modo que se puede predecir la geometŕıa para óptimzar

la el coeficiente de dispersión. El método explota la simetŕıa del campo electromagnético

incidente para mejorar o suprimir modos espećıficos, que, a su vez, determinan el campo

cercano eléctrico. También se obtiene cuantifica las contribuciones al campo eléctrico cer-

cano de los diferentes momentos multipolares. Se demuestra el método usando un d́ımero

plasmónico de nanoesferas. Los resultados obtenidos en este trabajo son los primeros que

utilizan la representación espectral para calcular el campo cercano eléctrico y considerar

campos externos no homogéneos. Se encontró que a pequeñas distancias de separación, el

campo externo espacialmente modulado se acopla más fuerte a más modos que el campo

externo homogéneo. Los resultados y análisis de esta sección fueron publicados en la ref.

(1).

En la segunda parte, la enerǵıa transferida a través de campos electromagnéticos ra-

diados térmicamente entre nanopart́ıculas dieléctricas a diferentes temperaturas se estudia

teóricamente considerando el acoplamiento mutlipoar completo entre los campos eléctricos

y las part́ıculas. Usando los métodos desarrollados en la primera sección para estudiar los

modos de superficie y el campo cercano eléctrico en sistemas de nanopart́ıculas interacti-

vas, mostramos que los modos acoplados entre nanopart́ıculas abren canales a través de
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los cuales los campos electromagnéticos radiados térmicamente pueden transferir enerǵıa, y

que métodos anteriores no han completamente analizado. Los modos acoplados aumentan

la potencia de intercambio en más de un orden de magnitud en comparación con los mod-

elos existentes que generalmente consideran solo interaccion dipolar. En consecuencia, la

inclusión de modos acoplados se vuelve esencial para describir el fenómeno correctamente

y podŕıa explicar las grandes desviaciones observadas en los experimentos en comparación

con los modelos actuales. Discutimos cómo la contribución de los modos acoplados cambia

según los parámetros del sistema vaŕıan para los casos de un sistema de dos y tres part́ıculas.

Esto se hace modificando el formalismo de representación espectral para el campo cercano,

incorporando momentos multipolares fluctuantes, que permiten identificar la contribución

de la transferencia de enerǵıa de cada modo acoplado. Se observó que el acoplamiento

de multipolos de orden superior puede conducir a un gran aumento en la transferencia

de enerǵıa cuando se compara con modelos que solo incluyen interacción dipolar. La con-

tribución a la transferencia de enerǵıa por diferentes modos multipolares fue luego analizada

sistemáticamente. Esta información se puede utilizar para comprender y controlar el flujo

de enerǵıa entre las nanopart́ıculas que están muy cerca. Los resultados y análisis de esta

sección fueron publicados en la ref. (2).







Abstract

This work studies the optical properties and near-field radiative heat transfer composed

of systems of polarizable nanoparticles. To this end, the first chapter reviews the physical

principals and theoretical background of surface waves and near-field effects in such systems.

Specifically the cases of metallic and dielectric nanoparticles are considered. Afterward, the

work is divided into two main parts. In the first, a method is introduced to study the optical

response of a system of interacting spherical nanoparticles when excited by multipolar

external fields. The theoretical method puts on the same footing geometric and dielectric

properties and the symmetry of the incident field. It allows the analysis of the coupling

of the system with the external field so that optimal geometry for maximum scattering

cross-section can be predicted. It exploits the symmetry of the incident electromagnetic

field to enhance or suppress specific modes, which, in turn, tunes the electric near-field.

Contribution to the near-field from the coupling of different multipolar moments are also

obtained. We first demonstrate the method by using a plasmonic dimer of nanospheres. To

the authors knowledge, the results obtained in this work, are the first that use the spectral

representation to calculate the electric near-field and consider non homogeneous external

fields. It was found that at small separation distances, the spatially modulated external

field couples stronger to more modes than the homogeneous external field. The results and

analysis of this section were published in Ref. (1).

In the second part, energy transferred via thermally radiated electromagnetic fields

between dielectric nanoparticles at different temperatures is studied theoretically by con-

sidering full coupling between all thermal electric fields for the cases of a dimer and a trimer.

Using the methods developed in the first section to study the surface modes and electric

near-field in systems of interacting nanoparticles, we show that coupled modes between

nanoparticles act as channels through which thermally radiated electromagnetic fields may

transfer energy, and which previous methods have not fully analyzed. Coupled modes in-

creases the power exchanged more than one order of magnitude as compared with existing
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models which typically consider only dipole interaction. Consequently, the inclusion of

coupled modes becomes essential to describe the phenomenon correctly and might explain

the large deviations observed in experiments as compared with current models. We discuss

how the contribution from coupled modes changes as parameters of the system are varied

for the cases of a two and three particle system. This is done by modifying the spectral

representation formalism for the near field, incorporating fluctuating multipolar moments,

allowing identification of the contribution of energy transfer of each coupled mode. It was

seen that the coupling of higher order multipoles can lead to a large increase in energy

transfer when compared to models that only include dipolar interaction. The contribution

to energy transfer by different multipolar modes was then systematically analyzed. This

information can be used to understand and control the energy flux among nanoparticles in

close proximity. The results and analysis of this section were published in Ref. (2).
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Chapter 1

General Introduction

The interaction of matter with electromagnetic (EM) fields is a process that is essential

to everyday life. To give an idea, the principal source of usable energy on earth comes

from the emission of EM fields from the sun and the ability to absorb this energy is what

allows plants to carry out the process of photosynthesis. Our sense of vision, which is our

primary manner of understanding our environment, is due light that reaches our eyes after

interacting with matter. Many of the advances in science have been thanks to the ability to

manipulate, control and trap EM fields, which has been possible thanks to the knowledge

of optical properties of different systems, allowing design and construction of devices for

particular purposes.

The word nanostructure refers to a system with a characteristic size in the range of

approximately up to a hundred nanometers (3). With the advent of nanofabrication tech-

nologies, more and more attention has been paid to physical phenomena occurring at this

scale. In particular, the study of the optical properties of nanostructures has been a very

active research area during the last decades and is relevant due to the unusual properties

found in these systems. This interest is not only of fundamental character but is based on

their possible technological application. Optical properties of these systems are of interest

due to their variety of behavior, depending on the geometrical configuration and type of

material. At this scale, the intrinsic properties (electronic, optical, thermal conductivities,

chemical reactivity, etc.) are not solely determined by the material nature and quality but

become critically dependent on the geometrical structure such as size, shape, and physical

surroundings. For example, a lot of exciting and exotic optical properties in light absorp-

tion/radiation have been achieved by utilizing metamaterials, which are artificial materials

composed of sub-wavelength structures (4). Researchers have demonstrated perfect light

absorbers which almost absorb all incoming light at normal incidence at specific wave-

lengths in the near-infrared regime (5). As new physical properties can be obtained by
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1. GENERAL INTRODUCTION

scaling down the structures, a huge work is done recently on tailoring and characterizing

the properties of such nanostructures. Tailored absorption spectrum can be applied to

many applications, including solar energy harvesting (6) , biomedical sensing (7), cloaking

(8) etc. Additionally, the study of the optical response of these materials is important in

various optical spectroscopies since they can be used to characterize the growth process

and formation as well as enhance the spectroscopic signal. Optical spectroscopies are very

convenient because of their non-destructive properties and because they can be performed

in the same device in which the growth process is carried out.

In this work, the term optical properties will not be limited to the visible spectrum;

instead, it includes the response of a material to external EM excitations over a wide range

of frequencies. Of particular interest are the response properties of nanostructures to ther-

mally emitted EM fields. The environment is typically full of thermal radiation since every

material above absolute zero emits EM waves. However, this is not always evident be-

cause objects at room temperature radiate EM waves dominantly at infrared frequencies,

which are not perceivable by the naked eye. Thermal radiation can play an important

role for scenarios when other energy transfer mechanisms, such as thermal conduction and

convection are obstructed, intentionally or unintentionally, such as devices operating in

space. Therefore, there is a demand for engineering the thermal radiation properties of an

object to control heat dissipation via radiation. This requires understanding and applica-

tion of precision-controlled energy and heat transfer mechanisms for the development of

novel engineering platforms. At the nanometer scale, traditional heat transfer formulations

cease to be valid. This deviation from the classical theory is due to so-called near-field

effects and give rise to new phenomena, such as a drastic enhancement of energy transfer

compared to known predictions. This has lead to considerable growth in research of radia-

tive heat transfer at the nanoscale. Near-field effects in radiative heat transfer, open up

new possibilities for many promising applications, such as radiative cooling(9) , nano-gap

thermophotovoltaics (10) , thermal rectifications (11) , thermal transistors (12), thermal

memory devices (13), etc.

The work presented in this thesis, we study the physical mechanisms underlying the

phenomenon of near-field radiative heat transfer and optical properties in systems of in-

teracting nanoparticles (NPs) and the dependence on the system parameters such as size,

separation distances, and dielectric properties. First, a brief introduction to the physical

phenomena underlying surface modes in dielectric and metallic nanostructures is given.

Following this, the dissertation is then divided into two parts.
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As an initial step to understanding radiative heat transfer in NP systems, in the first part

of the thesis, the optical response and near-field enhancement in systems of metallic NPs

are studied. The spectral representation of the dielectric response of a medium composed

of the mixture of two materials is advantageous in the determination of the properties from

their geometrical characteristics. Although the existence of the spectral representation

of the dielectric response of any isotropic compound medium fostered by two phases has

been demonstrated, its concrete form for a particular material has only been determined

in some cases. Rigorously, the spectral representation has been found only for isolated

particles, in various systems in the mean-field approximation and the cases of dielectric

spheres, spheroides, and concentric nanoshell systems (14) . In the latter case, multipolar

contributions were also included. The spectral representation allows us to determine the

proper active modes through the diagonalization of a Hermitian matrix that incorporates

all the geometrical properties of the system. It allows calculating the wavelength of the

resonance that is observed in the optical spectra of particles on the substrate. The role of

multipolar interaction is emphasized which allows tailoring of the systems optical properties.

The case of a homogeneous and nonhomogeneous field that satisfy ∇ · ~E = const., are

studied and compared. We point out that understanding the interaction of NPs with non-

homogeneous fields is a necessary step to understand the interaction of NPs with thermally

excited fields, since it will be seen that random thermal movement excites all orders of

multipolar EM fields.

In the second part, the physical mechanisms underlying the phenomenon of near-field

radiative heat transfer in systems of interacting NPs is studied. A method is developed

that takes into account full multipolar interaction of the thermal fields. This is achieved

by introducing fluctuating thermal sources into the spectral representation. The manner

which radiative heat transfer depends on the system parameters such as size, separation

distances, and dielectric properties and the role of interaction effects, such as the coupling

of the system’s surface modes is also examined.
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Chapter 2

Fundamentals of near-field radiation

In general, any propagating wave, whether EM, sound, etc., cannot be focused down to a

spot smaller than about half its wavelength. This restriction is commonly referred to as

the diffraction limit. In the optical and infrared frequencies, the wavelength is of the order

of hundreds of nanometers. It would appear that the diffraction limit precludes the use of

EM fields in the study of nanometric sized systems. However, it has come to be understood

that this is not always the case and that the diffraction limit can be overcome (15). The

central idea behind this is that EM fields are not restricted to freely propagating waves.

These can also exist in the form of evanescent waves, which are localized near the surface

of the objects. These fields are very intense near the object’s surface and rapidly decay

away from them, for which they are known as surface modes. The region near the surface

of an object, where evanescent fields are still appreciable is referred to as the “near field”

of the object. Conversely, the “far field” region is where evanescent fields are negligible and

propagating waves dominate. Near-field radiation is not subject to the same diffraction

limit as far-field radiation and can be used to confine EM fields to dimensions as small as

the atomic scale (16).

Evanescent waves can be generated by different mechanisms, which are partially deter-

mined by the material of the body and on the type of excitation that an external EM field

couples to. In this work, we are interested in the interaction of EM fields and matter at

the optical and infrared spectra. It is, therefore, necessary to understand the physical phe-

nomena underlying evanescent waves at this frequency range. Fig.2.1 presents a schematic

representation of the different possible types of excitations that can couple to EM fields and

the energy at which they are expected to appear. We point out two different types of exci-

tations which are important to this work and which are found at the optical and infrared

range, namely, plasmons and optical phonons. Plasmons are the collective oscillations of

the nearly free electrons found in certain types of metals and are located in the visible part
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2. FUNDAMENTALS OF NEAR-FIELD RADIATION

Figure 2.1: Chart showing optical processes in solids and the frequency and energy in which

they are typically found. Image modified from (17)

of the spectrum. The incident field generates collective oscillations of the electrons, which

move the electronic cloud with respect to the nuclei, generating a restitution force that

acts against the force due to the incident field. Interaction between a driving force at a

particular frequency and a restitution force gives rise to characteristic resonant frequencies,

similar to the case of a driven harmonic oscillator. These characteristic frequencies of each

system known as plasmonic resonances (18, 19). In conductive metals such as Au and Ag,

plasmonic resonances are found at frequencies within the visible spectrum (20). On the

other hand, phonons are the collective oscillations of the ions of a lattice. For example,

in dielectrics such as SiC or SiO2, resonant frequencies can be found in the infrared (21).

The strong coupling between photons and plasmons (phonons )results in excitations being

neither plasmons (phonons) nor photons but rather a mixed excitation, and modeled as

a quasi-particle known as a polariton. Coupling of an EM wave and a charge density of

the electrons within a metal is known as plasmon-polariton (19), while the coupling to a

phonon is known as a phonon-polariton. When this excitation occurs at a surface between

two bodies, they are known as surface-polaritons. Excitations of this kind create a charge

density localized near the body’s surface. This gives rise to intense EM fields that decay

rapidly in the direction perpendicular to the surface. Many of the optical properties of a

material will depend on the coupling of EM fields to either plasmons or phonons.

In the following section, we discuss and compare the physical phenomena responsible

for surface modes in dielectrics and metals. We give a general introduction to the interac-

6



2.1 Surface modes and evanescent fields

tion of optical and infrared EM fields with solid materials emphasizing the existence and

characteristics of the surface modes of a given system. The basic concepts of the resonant

character of plasmon and phonon modes are discussed. A review of how surface waves can

be excited by external fields, including thermal radiation, is given. The dielectric functions

necessary to describe both plasmonic and phononic resonances is also discussed. At the

nanometric scale, optical properties are not solely determined by the material but become

critically dependent on the geometrical structure. To illustrate this, the case of surface

modes existing on a plane interface are considered as well as the case of spherical particles.

Finally, the modification of surface modes in system’s of NPs due to interaction with other

polarizable structures is examined.

2.1 Surface modes and evanescent fields

In general, the interaction of EM waves with a material object can be described in terms

of physical processes such as radiation, absorption, scattering, and propagation. Radiation

refers to the manner through which energy, in the form of EM fields, emanates from a

body. This occurs when charge carriers within the body are accelerated due to random

thermal movement, converting internal energy into EM fields. Absorption can be seen as

the inverse process: energy is taken from external EM fields and converted into internal

energy. Scattering and propagation of EM fields refer to the redirection of incident fields and

is related to the phenomena of refraction, reflection,transmission, absorption etc.. These

physical processes define a system’s optical properties, i.e., the manner in which EM fields

interact with a particular body.

To calculate a system’s optical properties, Maxwell’s equations must be solved with the

corresponding boundary conditions. In general, rigorous solutions of the Maxwell equations

for an arbitrary configuration are not straightforward. In 1908, Gustav Mie found the exact

solution to the Maxwell equations for the response of a homogeneous sphere of arbitrary

size immersed in a homogeneous medium, subjected to a plane monochromatic wave (22).

For non-spherical geometries, only a few exact solutions are known: the case of spheroids

by Asano and Yamamoto (23) and for infinite cylinders by Lind and Greenberg(24). In

this work, we consider nanostructures which are large enough to employ classical EM the-

ory. However, they are small enough to observe the dependence of the optical properties

with their size and shape. Each point of the system can be described in connection to a

macroscopic dielectric function, which depends on the frequency and sometimes on its size.
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2. FUNDAMENTALS OF NEAR-FIELD RADIATION

As an illustrative example, consider the case of an interface between two semi-spaces of

different local and homogeneous media with dielectric and magnetic functions ε1(ω), µ1(ω)

and ε2(ω), µ2(ω) in the absence of sources. For simplicity we do not write the explicit spatial

dependence in the fields and constitutive relations. Maxwell’s equations in the frequency

domain are (18)

∇ · ~D = 0 ∇× ~E = −iω ~B

∇ · ~B = 0 ∇× ~H = iω ~D,
(2.1)

where ~E and ~B are the electric and magnetic fields. The constitutive relations can then be

written as ~D = εj(ω) ~E and ~B = µj(ω) ~H with j = 1, 2. Maxwell’s equations in semi-space

j can be reduced to a wave equation

1

µjεj
∇2 ~E = ω2 ~E, (2.2)

with an analogous equation for the magnetic field. Applying boundary conditions to the

fields at the interface, two types of solutions are obtained: one solution describes EM fields

that propagate perpendicular to the interface (18) and another that describes evanescent

EM fields, strongly localized at the interface, propagating in the parallel direction and

decaying exponentially in the direction to the interface. If the interface is taken to be

localized in the x-y plane as shown in Fig.2.2, solutions to equation (2.2) can be cast in the

form

~E1(~r, ω) = (Ex,1, Ey,1, Ez,1) exp
[
i
(
~K · ~R + γ1z

)]
(in medium 1),

~E2(~r, ω) = (Ex,2, Ey,2, Ez,2) exp
[
i
(
~K · ~R + γ2z

)]
(in medium 2),

(2.3)

where Eα,i are the α = x, y, z component in the i-th half space and where a point in space

is denoted by ~r = (x, y, z) = (~R, z) and ~R = (x, y) and a temporal dependence of the type

is eiωt is assumed. Similarly, a wavevector ~k = (kx, ky, kz) is denoted by ~k = ( ~K, γ), where

~K is the component parallel to the interface and γ = kz the component in the z direction.

Considering a EM wave of frequency ω, the quantity k0 = ω/c can be defined where c is

the speed of light in vacuum. The terms γ1 and γ2 can be written as

γ21 = ε1µ1k0 − ~K2 ,

γ22 = ε2µ2k0 − ~K2 .
(2.4)

8



2.1 Surface modes and evanescent fields

For simplicity, we assume a non magnetic media µ1 = µ2 = 1, and a p-polarized external

EM wave, with wavevector localized in the y-z plane. Eq. (2.3) takes the form

~E1(~r, ω) = (0, Ey,1, Ez,1) exp
[
i
(
~K · ~R + γ1z

)]
,

~E2(~r, ω) = (0, Ey,2, Ez,2) exp
[
i
(
~K · ~R + γ2z

)]
,

(2.5)

Surface modes are obtained when condition with Im(γj) > 0 is satisfied, so that the electric

field decays exponentially as distance from the interface increases. Applying boundary

conditions, i.e., continuity of the tangential electric field yields and the z component of ~D

Ex,1 = Ey,2

ε1Ez,1 = ε2Ez,2
(2.6)

furthermore Maxwell’s equation ∇ · ~E = 0 imposes a relation between the two components

of the electric field

(KEy,2 − γ2Ez,2) = (KEy,1 + γ1Ez,1) = 0, (2.7)

where K = | ~K|. Using Eqs. (2.6) and (2.7), one obtains the surface wave dispersion relation

at a material vacuum interface

K =
ω

c

√
ε1ε2
ε1 + ε2

. (2.8)

This equation is valid for an interface between two half-spaces. The particular form of

Eq.(2.8) is a consequence of the boundary conditions imposed in Eq.(2.6), illustrating how

the particular characteristics of the surface waves depend on the geometric configuration

of the system and on its dielectric properties. If we consider a dielectric-vacuum interface,

sucha that ε1 = 1, the norm of ~K becomes very large for a frequency ωres, such that

ε2(ωres) + 1 = 0. From Eq.(2.4) it can be seen that at frequency ωres, the term γi is

imaginary. Therefore, the electric field given in Eq.(2.5) is only different from zero in the

vicinity of the surface. Therefore, ε2(ωres)+1 = 0 defines a condition for the existence of an

evanescent mode known as a resonance condition. It is important to point out that when a

surface mode is excited, the concentration of the EM field at the interface is accompanied

by a strong localization of bound charges, which are due to the discontinuity of dielectric

properties of the system (16).

The surface modes of a system can be excited by coupling to an external EM field,

including thermal EM fields emitted by a body at a temperature above absolute zero. An

example of the excitation of a surface eigenmode can be seen in the phenomena of total

internal reflection of an external wave at an interface between two half-spaces with refractive

indexes m1 =
√
ε1(ω) and m2 =

√
ε2(ω) with m2 < m1. For simplicity we consider medium

9



2. FUNDAMENTALS OF NEAR-FIELD RADIATION

Figure 2.2: Schematic of a plane interface between two materials with dielectric function ε1

and ε2 and decomposition of the wavevector. Incidence of wave at an angle θi greater than or

equal to the critical angle. The evanescent wave propagates in the y direction parallel to the

interface and decays exponentially in the perpendicular direction z.

2 to be non absorbing so that m2 is a real number. Using Maxwell’s equations a relationship

between the angle of incidence and angle refraction of an incident electromagnetic wave at

the interface can be obtained.

sin θim1 = sin θrm2, (2.9)

where θi and θr are the angles of incidence and refraction respectively. From (2.9) it is seen

that at an angle θr = π/2 (sin θr = 1) the incident wave does not pass to half-space 2. This

phenomena is achieved at a so called critical angle

θi = θc = sin−1
m2

m1

.

A wave traveling at an incident angle greater than or equal to the critical angle will not

be transmitted to half-space 2. In these cases, the refracted wave propagates in a direction

parallel to the interface and decays exponentially in the perpendicular direction as illus-

trated in the Fig.2.2. From Eq. (2.4) and Eq.(2.5), it can be seen that these waves decay

exponentially e−γz where z is taken perpendicular to the interface. The evanescent waves

are confined to the surface since they decay rapidly in onlya few wavelengths. The localiza-

tion of EM field and bound charge at the interface account for the name of surface mode.

For example, in the optical spectrum glass can be characterized by a constant refractive

index of m2 = 1.62, while silver’s refractive index will depend on the wavelength. At a

glass- silver interface the average penetration distance, at which the intensity of the light

decays 1/e from the original intensity, is158 nm for an incident wave of 532 nm (25).

Surface modes, very often play a key role in explaining many phenomena in materi-

als science. For example, excitation of plasmon modes in metallic NPs is responsible for
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phenomena such as transport and storage of EM energy (26), as well as localization and

guiding of EM fields (27), and measuring intramolecular distances (28). Surface modes

have been shown to influence Van der Waals forces between a molecule and an interface

(21, 29). In Eq. 2.8 it was shown that at a vacuum-dielectric interface there is a resonance

whenever ε = −1. This condition coincides with resonance condition of the surface plasmon

of the metal interface, so that Van der Waals forces between the molecule and interface can

enhanced due to the excitation of surface waves. Excitation of surface plasmons in met-

als usually falls within the optical to ultraviolet spectrum; however, excitation of surface

charges has been demonstrated for SiC in the infrared (30). Surface modes in dielectric

crystals are typically found at infrared frequencies and are easily excited by thermal sources.

Although the physical principle underlying the examples mentioned vary depending on the

materials that compose the system, both can be understood in terms of the resonance of

the system’s surface modes.

2.2 Phonons

The importance of understanding phonon behavior stems from the fact that phonons are

accountable for the infrared response in most solids; thus controlling the possible applica-

tions in the infrared range. This is particularly important when considering the interaction

of a dielectric body with thermally emitted EM fields since at room temperature thermal

emission is predominantly in the infrared. Phonon response is expressed in terms of the

frequency dependent dielectric function of the material ε(ω). Obtaining ε(ω), either exper-

imentally using infrared spectroscopy or by theoretical modeling, is of utmost importance

not only for understanding interaction of matter with EM fields, but also because it im-

pacts many of the physical properties of materials such as its thermal conductivity (31).

For optical applications, a study of the physical mechanisms underlying phonon response

in the infrared regime is essential.

To obtain a physical description of the lattice vibrations in solids, and how these relate to

the dielectric function, a simplified model is presented. Assume that the mean equilibrium

position of the i- th ion in the body is found at a lattice site ~Rn (32, 33). It is also assumed

that the typical oscillation amplitude of each ion about the equilibrium position, un, is

small compared to the interatomic spacing. The position of the n-th ion can be written as

~rn = ~Rn + ~un

11



2. FUNDAMENTALS OF NEAR-FIELD RADIATION

The potential of the system is

U =
1

2

∑
n,n′

Φ(~rn − ~rn′),

where we have assumed that a pair of atoms contributes an amount Φ(~rn−~rn′) to the total

crystal potential and where Φ is an interaction potential, for example, the Lennard-Jones

potential (32). The total crystal Hamiltonian is

H =
∑
n

P 2(rn)

2M
+ U (2.10)

Where P (R) is the momentum of the atom whose equilibrium position is R and M is its

atomic mass. Following the assumption that atoms will not substantially deviate from

their equilibrium positions, and that the interaction potential acts between pairs of atoms,

the potential energy U is approximated to a quadratic form U ∝ (rn− rn′)2, using Taylor’s

theorem. Considering that solutions to un are in the form of traveling waves that propagate

within the crystal with wavenumber k and frequency ω

un(t) ∝ ei(kRn−ωt),

a set of coupled equations for amplitudes un(t), are obtained. To solve these equations, a set

of boundary conditions must be chosen to specify how the ions at the boundaries behave.

If the number of ions in the crystal is large compared to the ions at the boundaries, a

convenient choice is the Born-von Karman periodic boundary conditions (32). Solving the

equations for un, a relation for the angular frequency ω, as a function of, the wave vector ~k

is obtained. This relation is usually referred to as the dispersion relation, and depends on

the lattice symmetries and the lattice potential energy U .

It is illustrating to consider the dispersion relation of a simple case of a diatomic linear

chain of atoms of mass M1 and M2 as shown in Figure (2.3). For this case, two dispersion

relation branches are defined, known as optical and acoustic modes. Optical modes are

atomic vibrations, where two different atoms in the unit cell vibrate out of phase, generating

an oscillating dipole moment that can couple to an external EM field. Consequently, these

modes are responsible for the optical response of a crystal. In general, the crystal must

have some ionic character, such that small dipole moments within the crystal are formed,

to enable the mode to couple to an external EM field.

When an EM wave passes through a polarizable medium, it couples to the induced

polarizability, giving rise to a hybrid mode whose properties depend both on characteristics

of the EM wave and the medium itself. A relatively simple model describing the coupling
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Figure 2.3: (left) Qualitative description of optical and acoustic branches of the dispersion

relation for a diatomic linear lattice, showing the limiting frequencies at k = 0 and k =

kmax = π/a, where C is a force constant and a the lattice parameter. (right) Transverse

optical and acoustical waves in a diatomic linear lattice. Adapted from “Introduction to Solid

State Physics” by C. Kittel (31).

of EM waves to phonons of a system can be established combining a harmonic oscillator for

the description of mechanical waves, and the Maxwell equations for the description of EM

waves. Consider an external electric field excitation which is monocromatich and spatially

uniform, in x̂ direction and of the form: ~E = E0x̂e
−iωt, applied to the x̂ axis of a harmonic

oscillator, which in this case can represent phonon vibrations:

m∗
d2~x

dt2
+m∗Γ

d~x

dt
+ β~x = −e∗ ~E (2.11)

with ~x the displacement of the oscillator with respect to its equilibrium position, β is the

restoring force per unit displacement, Γ is a damping constant, m∗ and e∗ are the effective

mass and charge. Unlike metals and doped semi-conductors which involve free electrons,

dielectrics have bound charges which experience a restoring force determined by a spring

constant. As in the case of a damped harmonic oscillator, a resonant frequency exists when

ω =
√
β/m∗, which can be associated to the resonance of the optical mode ωTO. Looking

for solutions of the form x = x0e
iωt, the displacement amplitude can be obtained

x0 =
eE0

m(ωTO − ω − iΓω)
(2.12)

Associating the displacement amplitude with the dipole moment ~P = −e~x, and using the

constitutive relations ~D = ~E + 4π ~P and ~D = ε(ω) ~E, the lattice dielectric function follows

13



2. FUNDAMENTALS OF NEAR-FIELD RADIATION

as

ε(ω) = ε∞ +
Ne2

mε0

1

(ωTO − ω − iΓω)
(2.13)

where N is the density of oscillators per unit volume and ε∞ a high frequency the dielectric

constant such that ε(ω →∞) = ε∞. At low frequencies

ε(0) = εs = ε∞ +
Ne2

mε0ωTO
. (2.14)

Finally, using the Lyddane-Sachs-Teller relation (33) which relates the longitudinal and

transverse optical-mode frequencies to the dielectric constant ω2
LO/ω

2
TO = εs/ε∞, and follows

from imposing the condition that ε = 0 for the longitudinal mode to be consistent with

~D = ε(ω) ~E (32). The dielectric function can be cast as

ε(ω) = ε∞

(
1 +

ω2
LO + ω2

TO

ω2
TO − ω2 − iΓω

)
(2.15)

In Figure(2.4) we show the dielectric function for SiC, with parameters taken from ref.

(21). The peak in the imaginary part of the dielectric function corresponds to the resonant

frequency of the transverse optical mode of the crystal. Adsorption in this frequency region

will increase due to the excitation of this phonon mode. Under some conditions, such as the

Figure 2.4: SiC dielectric functions Re[ε] and Im[ε]. Parameters taken from reference (21).

case of a dielectric interface considered in Eq.(2.8), the polarization wave associated with

the polariton can be efficiently confined at the interface between two media giving rise to

a surface phonon-polariton. The conditions when this occurs depend on the dielectric and

geometric properties of the system (19). An important distinction is then made between
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bulk polaritons, that propagate in a homogeneous medium, and surface polaritons that are

confined at an interface.

2.3 Plasmon

The optical properties of metals in the visible regime are predominantly due to its con-

duction electrons, which act as nearly free particles. At optical frequencies, an external

EM wave generates collective oscillation of its conduction electrons. The Drude model

gives the most basic description of nearly free electrons in a material and describes the

frequency-dependent conductivity of metals and can also be extended to free-carriers in

semiconductors. This semiclassical model is obtained by applying kinetic theory to elec-

trons in a solid, treating them much like colliding spheres, as detailed in many references

(32, 33). Drude assumed the metal to be made up of a background of immobile positive

ions, with a cloud of nearly free conduction electrons. Consider a free-electron gas with

N carriers per unit volume, each with effective mass m and charge −e; the carriers are

embedded in a uniform background of neutralizing positive charge. Assuming that in the

whereabouts of some point x0 , the condition kx� 1 is satisfied , the incident electric field

acting on the x axis can be taken to be of the form ~E(~r, t) = E0x̂ exp(−iωt) with frequency

ω. The equation of motion of an electron is

m
d2x

dt2
= −m

τ

dx

dt
+ (−e) ~E0 exp(−iωt) (2.16)

where ~x(t) is the position of the particle, and τ is a phenomenological relaxation time. The

viscous damping term −(m/τ)ẋ is introduced without specifying the dissipative mecha-

nisms; in a broad sense it is due to random collisions between the electron and whatever

kind of impurities, ions, phonons and imperfections in the crystal. The displacement of

an electron, with average Fermi velocity vf , between two collisions is about the mean free

path Λf = vfτ ; the spatial variation of the EM field is therefore irrelevant if Λf � λ.

For example, for Au and Ag the fermi velocity is of about 1.40 × 108 cm/sec, while there

relaxation time is of the order of 10−14s so that Λf can be estimated to be of the order of

10−6cm ≈ nm. We can thus conclude that Eq. (2.16) is justified when this condition holds,

such as is the case of the visible spectrum which is of the order of hundreds of nanometers.

Assuming a solution of the form ~x(t) = ~A0 exp(−iωt), where ~A0 is an oscillation ampli-

tude, and inserting into Eq. (2.16)

~A0 =
eτ

m

1

ω(i+ ωτ)
E0x̂ (2.17)
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The amplitude of oscillation can be related to the current density by

~j = −eN d~x

dt
=
Ne2τ

m

1

1− iωτ
E0x̂ exp(−iωt). (2.18)

The complex conductivity is then obtained

σ(ω) =
ne2τ

m

1

1− iωτ
(2.19)

Notice that in general the conductivity σ(~k, ω) should depend both on the frequency ω and

on the wavevector ~k of the driving electric field;Drude theory neglects spatial dispersion

and thus provides only σ(k → 0, ω), also denoted σ(0, ω) or simply σ(ω). The conductiviy

can be related to the dielectric function using the formula ε(ω) = 1 + 4πiσ(ω)
ω

The obtained

dielectric function is then

ε(ω) = 1−
ω2
p

ω(ω + i/τ)
(2.20)

where ωp = 4πne2

m
, denotes the free electron plasma frequency. For ordinary metals, typical

values of ~ωp are in the range [3−17]eV while the quantity γ = ~/τ is of the order of 0.1eV.

In the study of the optical properties of free carriers in metals, we can roughly distinguish

three frequency regions, called non-relaxation region ω � 1/τ , relaxation region 1/τ �
ω � ωp and ultraviolet region ω ≈ ωp and ω > ωp. These regions are shown in Fig. 2.5. In

the nonrelaxation region, at small energies, the term ωτ is negligible compared to 1. The

real part of the dielectric function is negative and tends to a constant while the imaginary

part of the dielectric function is singular for ω → 0. In this regime, the reflectivity is

almost 1 and the metal is strongly reflecting. In the ultraviolet regime for energies larger

than, but still close to the plasma frequency, we see that Re[ε(ω)] is positive for ω ≥ ωp.

The reflectivity changes from nearly one to almost zero, when ω is larger than the plasma

frequency. The metal at these frequencies becomes transparent for ω > ωp

The Drude model of intraband transitions describes an ideal system of free electrons,

with spherical Fermi surface, a single relaxation time, in the local-response regime. Despite

these restrictions, the Drude theory applies reasonably well to the description of the optical

properties of many metals in the red and infrared region, sufficiently below the threshold

of interband electronic transitions. However, when modeling the optical response of small

metallic NPs, extra terms must be added to the Drude function to correctly describe inter-

band transitions and spatial dispersion due to size effects of the particle, which is explained

in Appendix A.

Summarizing, in this section the significance of the dielectric function and surface waves

in near-field were discussed. The Drude and Lorentz models were analyzed because of their
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2.3 Plasmon

Figure 2.5: Drude dielectric functions Re[ε(ω)] and Im[ε(ω)] in the non relaxation (top) and

ultraviolet region (bottom). Drude parameters for Au, ~ωp = 8.55 eV, γ = 0.1077

capability of describing the response of metals and dielectrics. A discussion was given

on how the dielectric properties of a nanostructure determine the location of the surface

modes. In the following section, the modification of surface modes due to interaction with

polarizable bodies is discussed.
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2.4 Surface modes in systems of interacting nanopar-

ticles

In the case of metallic NPs, when in the presence of an external EM field, free electrons

begin to oscillate and absorb energy from the field. When oscillation occurs coherently,

the electronic cloud moves with respect to the positive charges of the nucleus. These

oscillations generate a Coulomb attraction between positive and negative charges that acts

as a restitution force, illustrated in Fig 2.6. The force generated between positive and

negative charges acts against the force of the external field giving rise to characteristic

resonant frequencies of the system. In the following section, we outline the principal physical

concepts underlying surface modes in systems of NPs. The coupling between an EM field

Figure 2.6: Schematic of the displacement of the electron cloud due to the interaction of a

spherical metal NP with an external electric field.

and a particle is described by the particle’s susceptibility, which can be written in terms

of the dielectric function of the material. Within a homogeneous particle of susceptibility

χ(ω), the electric field generates a polarization field given by

~P (~r, ω) = χ(ω) ~E(~r), (2.21)

where ~E(~r) is the field at point ~r. Recall that the polarization field describes the dipole

moment per unit volume inside the sphere. This polarization field characterizes the modes

of the system.

To illustrate, consider an isolated homogeneous sphere with dielectric function ε(ω) =

1 + 4πχ(ω), embedded in a matrix with dielectric constant εh, within the quasi-static

approximation. When a mesoscopic particle of radius a is subject to an external field

Eext = E0êe
iωt with direction ê, amplitude E0 and frquency ω, a dipole moment is induced
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in the sphere given by (18)

~p(ω) = a3
(
ε(ω)− εh
ε(ω) + 2εh

)
E0ê = α(ω)E0ê, (2.22)

where α(ω) is the electric polarizability of the sphere. Notice that α(ω) depends on the

dielectric and geometric properties of the body and relates the external field to the dipole

moment induced on the polarizable body. In contrast quantities ε(ω) and χ(ω) depend only

on the material of the sphere and relate the electric field to the polarization field inside

the medium. From Eq. (2.22) it can be seen that at frequencies where ε(ω)/εh = −2, the

denominator of the polarizability tends to zero. This resonant behavior leads to a large

increase of the dipole moment induced on the sphere. Consequently, a resonant condition

for a small dielectric sphere can be established whenever condition ε(ω)/εh = −2 is satisfied.

Due to the assumption of that the sphere is small compared to the wavelength, delay effects

can be neglected and the polarization field satisfies ∇ · ~P = ∇× ~P = 0 inside the particle,

and ∇ · ~P 6= 0 on the surface (34, 35). This last condition implies that each mode has

a characteristic surface charge distribution. The concentration of charge near the surface

modifies the local field in the vicinity of the particle, which is the sum of the incident field

and the field scattered by the dipole, denoted as ~Es

~Elocal = ~Eext + ~Es. (2.23)

The field scattered by the induced dipole at position ~r in the vicinity of the particle, can

be written ~Es ∝ ~p (18). Excitation by an external field at the resonant frequency will make

the induced dipole moment increase, therefore increasing the magnitude of the scattered

field | ~Es|. By defining an enhancement factor as | ~Elocal|2/| ~Eext|2 and using Eq.(2.22) we

obtain
| ~Elocal|2

| ~Eext|2
∝ |1 + α(ω)|2. (2.24)

It can be concluded that when a resonant mode of the sphere is excited, the enhancement

of the electric field in its vicinity is maximum.

Resonant frequencies of a system can also be determined indirectly, by calculating the

absorption spectrum and associating a resonant mode with the intensity peaks in the spec-

trum. In the case of small particles, the absorption coefficient is given by (36)

Cabs(λ) =
4π
√
εh

λ
Im[α(λ)] (2.25)

where λ is wavelength of the exciting EM wave. From Eq.(2.25) it can be seen that the

resonant condition of the particle will appear as a peak in the absorption spectrum. In
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Fig.2.8 we show the peak in absorption and enhancement of the EM due to the excitation

of an isolated particle. In general, the number, frequencies, and intensity of the resonant

modes of a particle are determined by the dielectric, geometric and physical environment

of the system such as interaction with other polarizable objects (14).

Figure 2.7: Schematic of two interacting nano spheres modeled as point dipoles, in the

presence of an external field ~Eext.

In this work, we focus on the modification of a system’s resonant modes, and optical

properties, due to the interaction between particles. Physically, this modification is due to

interaction between charge distributions in each particle. As a consequence, the resonant

frequency and the ability to localize the EM field will depend on the configuration of the

system such as particle radius and separation distance. To illustrate, the surface modes

of an isolated particle are compared to those of an interacting dimer in vacuum, as shown

in Fig.2.8. The particles are taken to be spheres of radius a separated a distances D, and

modeled as interacting point dipoles in the quasistatic approximation in the presence of an

external field ~Eext with an EM response described by α(ω) given in Eq.(2.22). The axis

that joins the center of the spheres is aligned with the z-axis such that the vector that

joins the centers of each sphere is ~r = Dẑ. First, consider the case of an isolated particle

in the presence of an external field, which is recovered when D → ∞ and interaction is

negligible. In this case, the induced dipole moment on the sphere is given by Eq.(2.22).

The resonance condition is found when ε(ω) = −2, where the host mediums is take as

εh = 1. It is important to point out that in the case of an isolated sphere and due to the

particle symmetry, Eq.(2.22) describes a triply degenerate resonant mode. Put in other

words, the same resonant frequency is obtained for the three different possible orientations

of the electric field ~Eext. As separation distance between particles decreases, it is expected

that interaction between them will partially remove the degeneracy of surface modes. To
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2.4 Surface modes in systems of interacting nanoparticles

describe this at a first approximation, we consider dipole interactions. When interaction is

non-negligible the induced dipole in particle i will depend on the local field, which is a sum

of the external field and that produced by the neighboring particle. This interaction can

be described as

~p1(ω) = α1(ω)
[
~Eext(ω) + T12 · ~p2(ω)

]
~p2(ω) = α2(ω)

[
~Eext(ω) + T21 · ~p1(ω)

]
,

(2.26)

where Tij are 3× 3 coupling matrix given by

Tij =
3~r ⊗ ~r − r2I

r5
. (2.27)

This description is valid when both the size of the particles and their separation distances are

small compared to the wavelength of the exciting field, but large compared to the particle

radius (1, 37). Notice that the interaction matrix Tij only depends on the separation

distance. Considering identical particles, α1 = α2 = α, we can solve for the induced dipole

moments on particle 1


p1x

p1y

p1z

 =


α(ω)

1+
α(ω)

D3

0 0

0 α(ω)

1+
α(ω)

D3

0

0 0 α(ω)

1− 2α(ω)

D3




Eext,x

Eext,y

Eext,z

 . (2.28)

By looking at Eq.(2.28), a number of things can be said about the modification of resonant

modes, due to dipole interaction, compared to the isolated case. First, we can identify

an effective polarization in each direction given by αx = αy = α(ω)

1+
α(ω)

D3

and αz = α(ω)

1− 2α(ω)

D3

.

Resonant conditions will be obtained when the denominator of the effective polarizability

goes to zero. These conditions are modified with respect to the case of an isolated, ε(ωresisol) =

−2 sphere, and can be simplified to

ε(ωres) = −16σ3 − 1

8σ3 + 1
in the x-y direction

ε(ωres) = −16σ3 − 1

8σ3 − 1
in the z direction,

(2.29)

where σ = D/2a. Second, due to interaction resonant conditions for the x, y excitations are

degenerate, while the mode in the z direction is non degenerate. This causes the breaking

of symmetry due to the dimer configuration. As particle separation decreases, shift in the

resonant condition is larger, while as D →∞, the resonant conditions for all modes tend to

that of the isolated sphere ε = −2. This tendency can be observed indirectly by calculating
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the absorption spectrum using Eq.(2.25). The absorption cross section for a Ag dimer of

particles with 12 nm radius is shown in Fig.2.8. The absorption peak is seen to move from

to larger wavelengths as the separation distances increases.

Furthermore, once induced dipoles are obtained, it is possible to calculate the electric

near-field scattered by each particle. This can be found using (18)

~Es(~r) =
2∑
i=1

3n̂(~pi · n̂− ~pi)
|~x− ~xi|3

(2.30)

where ~xi is the location of particle i and n̂ is a unit vector directed from ~xi to ~x. The

induced field is directly proportional to the induced dipole moment, and an increase in field

enhancement is expected at the resonant frequency of the system as can be seen in Fig.2.8.

The symmetry of the induced field, as well as its intensity is modified due to interaction

when compared to the case of an isolated particle.

This particular example allows an analytic description of the interaction and field en-

hancement of two spherical particles in the presence of an external homogenous EM field

and illustrates the modification of the system’s surface modes with the geometric param-

eters of the system. However, exact solutions of Maxwell’s equations for particles in the

presence of EM fields exist only for simple geometries such as spheres, spheroids, and in-

finite cylinders. For more complex systems, obtaining the optical response of a system

requires numerical methods such as those based on finite differences(38) or the discrete

dipole approximation(39), to mention some. In the following section, we present an analyt-

ical method that allows the calculation of the optical response and electric near-field due

to a collection of spherical particles.
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2.4 Surface modes in systems of interacting nanoparticles

Figure 2.8: Absorption spectrum of two Ag nanoparticles of a = 12 nm for different gap

separation, where center to center separation is given as R = 2a + d. The case of an iso-

lated particle is also shown (top). Electric field enhancement of the isolated particle and the

interacting particles separated by 1 nm (bottom).
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Chapter 3

Introduction

3.1 Background

It is known that nanostructured materials possess very distinct optical response when com-

pared to their bulk properties. People had exploited this phenomenon long before it was

understood. The bright and fascinating colors of noble metal NPs have attracted consider-

able interest since historical times as decorative pigments in stained glasses and artwork. In

modern times, rapid advances in nanostructure synthesis and fabrication (40) have brought

the study of the optical properties of nanostructured systems to the forefront of nanotech-

nology research, leading to possible applications ranging from photonics (41) to biomedicine

(42). In Chapter 2, the optical response of nanostructured systems was discussed in terms

of the excitation of localized surface modes, appearing in the extinction cross-section spec-

trum as peaks at discrete wavelengths. A description of was given of how surface modes

determine a system’s optical properties, such as the location of its resonant frequencies,

absorption properties, field enhancement, etc..

This part of the work is focused on surface plasmons in metallic NPs. In particular, Ag

and Au have been the subject of a large part of plasmonics research because they support

high-quality plasmon resonances at the optical spectrum, and within this spectral range can

be designed to produce resonances at any desired frequency. This is in part due because

losses in silver and gold are relatively low compared to other metals. Copper, for example,

can also support plasmon resonances at optical frequencies, but these resonances are weak

because losses in the metal rapidly dissipate the plasmons. Silver has the lowest losses,

and thus the strongest plasmon resonances, of all known materials. However, for practical

applications, Au is more stable than silver, so it is often used instead (43). Other mate-

rials can produce plasmon resonances in other frequency ranges; aluminum, for example,

supports plasmons at ultraviolet frequencies, but this work limits the study to plasmons at
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optical and near-optical frequencies.

At the nanometric scale, the surface modes of a system are determined by the material

and the geometrical structure, as well as on the interaction with its surroundings(37).

This dependence allows the tailoring of the optical properties of a system for particular

purposes. The dependence on particle shape has been studied in detail in previous work,

including the cases of cubes, spheroids, icosahedrons, octahedral, wedges and coated NPs

(14, 34, 37, 44, 45). For example, dependence on particle morphology, including truncated

cubes, icosahedral and spheres, was thoroughly studied in Ref. (44) using a discrete dipole

approximation. Authors found that as truncation of a cube increases, the main resonance

is always blue-shifted and the width of the main SPRs decreases. Furthermore, it has been

demonstrated that sharp points result in a larger concentration of fields (45). This nanoscale

confinement of light does far more than merely reduce the size of optical components: it

dramatically increases the interaction between light and matter. For instance, metal NPs

focus light down to spots hundreds of times smaller than any ordinary lens; the light will

thus interact with the material in that spot thousands or millions of times more strongly

than it otherwise would. Consequently, effects that would previously be observable only

with specialized, high power lasers can be reached with more conventional light sources.

Similarly, the sensitivity of surface modes to the body and host dielectric properties has

also been exploited to tailor the optical properties of the system for specific purposes, as

shown in Fig. 3.1. In metals, the density of conduction electrons partially determines the

location of the resonant frequency: the larger the density involved in a plasmon oscillation,

the higher the electrostatic restoring force, and thus the higher the resonant frequency.

Partial screening due to the host mediums shifts the resonance frequency allowing the

tailoring of resonances at any desired frequency within the optical range. Additionally, as

was shown in Chapter 2, plasmons in separate NPs couple together when the particles are

brought close to one another, leading to further shifts of the resonance to lower frequencies

and further concentration of fields to small volumes. Design of nanostructured systems thus

allows plasmon resonances to be tuned to match a given optical frequency and makes it

possible to confine optical fields in three dimensions to length scales of only a few nanometers

(46, 47).

This nanoscale control over light opens up many technological opportunities. To cite a

few examples, plasmon resonances in metal nanoparticles allow for highly sensitive chem-

ical sensing and identification, down to the level of single molecules. Luminescence from

molecules or semiconductor nanostructures can be enhanced by nearby metal NPs, poten-
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tially enabling a new generation of light-emitting devices (48). Metal NPs can reduce the

size, and thus increase the performance, of photodetectors, and may improve the efficiency

of solar-energy conversion (49). Metal NPs with resonances in the near infrared can be

functionalized to attach to cancer cells selectively; illumination of these nanoparticles with

resonant light heats the particles, eliminating tumors without damaging nearby tissue (50).

The strong local electric field resulting from the excitation of a surface mode has been used,

for example in metal plasmon enhanced fluorescence (51), which has a demonstrated utility

in surface-enhanced Raman scattering (SERS) with enhancement factors large enough to

possibly allow single molecule detection (48). Tunable absorption and scattering of noble

metal nanocrystals have made them a novel class of optical and spectroscopic tags for bi-

ological sensing and imaging (52). Optical tuning obtained by combining materials with

different electric permittivities in complex arrays leads to the development of metamate-

rials and photonic/plasmonic crystals, which allow the engineering of the optical response

by tailoring the photonic energy bands (53). Metamaterials use non-diffractive arrays of

coupled resonant nanoscatterers sustaining magneto-electric resonances (54) to achieve neg-

ative refraction (55, 56, 57), resonant absorption (58), cloaking (59). On the other hand,

lattices of plasmonic structures, or photonic crystals, sustain hybrids photonic-plasmonic

modes arising from the interaction of long-range radiative coupling of resonant scatterers

and localized surface plasmons. These structures have been used, for example, to control

the light emission of the photonic crystals (60, 61, 62).

3.2 Motivation

In section 2.4, the optical response of a dimer of nanospheres was modeled by point dipoles.

The response of the system could be characterized by the induced dipole moments in each

particle. In general, the optical response of a nanostructure can be classified in terms of

the symmetry of the induced charge distribution, or multipolar charge distribution. The

relevance of a multipolar response was already clear from the solution, found by Mie, to the

problem of a metallic sphere illuminated by a plane wave when the long-wave condition is

not met, further generalized to the case of aggregates of non-identical spheres. Multipolar

resonances for many other geometries such as cubes, nanowires, nanorods, and dimers have

also been studied (63), and have been shown to exist even in the long-wavelength limit

(64). Electric quadrupoles and octupoles moments, and magnetic dipoles also emerge in

plasmonic lattices and assemblies of nanoparticles where they give rise to bright and dark
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modes and are responsible for phenomena such as electromagnetically induced transparency

(65, 66), lasing (67), superradiance (68, 69) and non-linear effects (70). Furthermore, by

coupling the external field to the different modes of the system, it is possible to modify

the symmetry and spatial distribution of the total electric field intensity in the system,

which can be useful to focus light and localize energy to subwavelength hot spots (45, 46).

Strong field gradients associated with high order multipoles can be also beneficial for optical

tweezing (71).

Rational design of resonant nanostructures is typically achieved by varying the geo-

metrical parameters and composition of the system (14, 72). The efficiency of the optical

resonances is predetermined by the geometrical parameters of the system, such as lattice

constant, dimensions and shape of the scatterers. Therefore, after the fabrication no active

control on the optical response is possible. Recently it has been proposed and experi-

mentally demonstrated that structuring the incident field leads to an externally tuneable,

dramatic change in the optical response of the illuminated object (73). However, little

attention has been paid to the relation between the symmetry of the incident field and the

resulting excitation of the resonances of a system (62, 74). Different methods have been in-

troduced to achieve this, such as wavefront shaping (75) and coherent control of absorption

and scattering via multiple beam illumination. (76, 77) Polarization of the incident light

also plays an essential role in selecting the available modes of the nanostructure (74, 78).

The combination of the geometrical design of the nanostructure with a proper sym-

metry of the illumination field can result in an intriguing additional degree of freedom to

tailor the optical response of nanostructures which has not been sufficiently studied. In

the following section, we propose a general analytical model able to compare and isolate

the contributions of the geometry, dielectric response and excitation field in the extinction

cross-section. The method quantifies the coupling strength of the incident field to a specific

multipolar resonance in the quasi-static limit. To present the method, we make use of a

dimer of metallic nanospheres placed in proximity to each other, the most straightforward

system used in the generalized multiparticle Mie (GMM) solution and the technique de-

veloped in Refs. (74, 79). However, our method shows how specific plasmonic multipolar

modes are excited by using a spatially non-uniform incident field. Our method fills the gap

between other solutions valid for nanospheres of arbitrary dimension but placed at arbitrary

distances and in the presence of a spatially uniform incident field. Our method adequately

accounts for Coulomb interactions and evanescent fields between the particles which are

responsible for the excitation and the mutual coupling of multipoles under uniform and
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non-uniform incident fields.
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3. INTRODUCTION

Figure 3.1: (top) Extinction efficiency for silver NPs with varying shape, in host medium

mh = 1.47. Image taken from Ref. (37) .(bottom) Absorption efficiency for 10 nm isolated

spherical Au NPs with varying host medium mh = 1.00, 1.33, 1.47, 1.77 corresponding to

vacuum, water, dimethyl sulfoxide or silica glass and sapphire .
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Chapter 4

Spectral Representation Method

The spectral representation (SR) is a formalism that allows the calculation of plasmonic

resonances of a system separating its geometric and dielectric properties which was intro-

duced by R. Fuchs (34) who showed that the effective polarizability of a system composed

of polarizable entities can be written as a sum over its normal modes

α(ω) = − v

4π

∑
s

C(s)

u(ω)− ns
, (4.1)

where C(s) are real values, ns the eigenvalue of mode s, v the particle volume and u(ω) is

a complex spectral variable defined by

u(ω) =
1

1− ε(ω)/εh
,

where ε(ω) is the dielectric function of the particles and εh the dielectric constant of the

medium. Fuchs also showed that eigenvalues ns satisfy

0 < ns < 1,

and that C(s) is a real term that satisfies the sum rule∑
s

C(s) = 1, (4.2)

such that C(s) can be interpreted as the coupling weights of s mode to the external field.

Eq. (4.1) allows calculation of the optical response of the system, separating geometrical

parameters such as C(s) and ns, and dielectric parameters u(ω). In the case of small

particles, the polarizability is related to the absorption cross section Cabs of the system by

means of (14, 36)

Cabs =
8π2mh

λ
Im[α](ω)], (4.3)

where mh =
√
εh is the refraction index and λ = 2πc/ω is the wavelength of the incident

field in vacuum. By separating the imaginary part of Eq. (4.1)

Im [α(ω)] =
v

4π

∑
s

C(s)u2(ω)

(u1(ω)− ns)2 + u22(ω)
, (4.4)
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4. SPECTRAL REPRESENTATION METHOD

where u1 and u2 are the real and imaginary part of the spectral function. From Eq.(4.4)

it is observed that there are poles in the polarizability of the system, which correspond to

peaks in the absorption cross section, found when

u1(ω) = ns and u2 � 1. (4.5)

Eq.(4.5) defines resonant conditions of the system. For a given resonance, absorption cross-

section will be given by a single term in the sum (4.4)

Cabs ∝ Im[α(ω)] =
vC(s)

u2(ω)
, (4.6)

so that it will be more intense when the coupling weight of the mode is large and the

imaginary part of the spectral variable is small (14). Eq. (4.1) is applicable for any system,

allowing the identification of the surface modes of a system by separating its geometric and

dielectric properties. However, the explicit form of C(s) and ns depends on the system

under consideration. In the following section, we present a methodology to obtain the

effective polarizability of a system of spheres interacting through Coulomb forces.

4.1 Multipolar spectral representation

Consider the case of a system of N non-overlapping dielectric spheres located in positions

~Ri with i = 1, 2..., N , of the same radius a in the presence of an external electric field.

The spheres dielectric properties are described by a frequency dependent complex dielectric

function ε(ω) and are embedded in a non-absorbing matrix with dielectric constant εh.

The multipolar moment of order lm induced in particle i -th, located in the position ~Ri is

written as

Qlmi = −2l + 1

4π
αlmi(ω)Vlm(i), (4.7)

where αlmi(ω) is the multipolarizability and Vlm(i) is the lm-th term of the expansion of the

local potential, which consists of the external potential and a term due to the multipolar

charge distributions induced on the other spheres

Vlm(i) = V ext
lm (i) +

∑
j 6=i

V j
lm(i), (4.8)

where term V ext
lm is the external potential, V j

lm(i) describes the potential generated in the

particle i by the multipoles of the particle j. This interaction term can be written as

V j
lm(i) =

∑
l′m′

Al
′m′j
lmi Ql′,m′j
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4.1 Multipolar spectral representation

Figure 4.1: Schematic of a configuration of two spherical NPs showing the definition of

vectors ~R12 and the corresponding angle θ12

where Al
′m′j
lmi is a coupling matrix that allows the potential in i to be expanded in terms

of the multipolar charge distribution found in particle j. The induced charge in particle i,

whose multipolarizability is αlm,i(ω) is written as

Qlmi = −2l + 1

4π
αlm,i(ω)Vlm(i)

= −2l + 1

4π
αlm,i(ω)

[
V ext
lm +

∑
l′m′j

Al
′m′j
lmi Ql′m′j

]
,

(4.9)

For this system it is convenient to use spherical coordinates, so that the lm-th moment

on the i -th sphere located at the position Ri is defined as

Qlmi =

∫
v

|~r − ~Ri|lρ(~r − ~Ri)Y
∗
lm(θ, φ)d3r (4.10)

where ρ(~r − ~Ri) is the induced charge on the i-th sphere, Ylm(θ, φ) are the spherical har-

monics of order lm; θ, φ are the angles given by r̂i = (~r − ~Ri)/|~r − ~Ri|, and the integral is

carried out over spheres volume vs.

Components of the coupling matrix written in spherical coordinates are (80)

Almil′m′j = (−1)m
′

[
Y (θij, φij)

m−m′

l+l′

]∗
Rl+l′+1
ij

×

×
[

(4π)3

(2l + 1)(2l′ + 1)(2l + 2l′ + 1)

(l + l′ +m−m′)!(l + l′ −m+m′)!

(l′ +m′)!(l +m)!(l′ −m′)!(l −m)!

]1/2
, i 6= j

(4.11)

where ~Rij = ~Ri − ~Rj is the vector that joins the center of particle i and j, and θij and

φij are the spherical angles corresponding to ~Rij. Note that this matrix only depends on
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4. SPECTRAL REPRESENTATION METHOD

geometric parameters of the system such as the distance and angles between particles and

radii of the spheres. It has been shown that the matrix Almil′m′j is a hermitian matrix (80).

Due to symmetry of the particle, multipolarizability αlmi in the quasi-static approximation

does not depend on the m index (81)

αl =
l(ε(ω)− εh)

l(ε(ω) + εh) + εh
a2l+1 =

n0l

n0l − u(ω)
a2l+1, (4.12)

where n0l = l
2l+1

and εh is the dielectric constant of the host matrix. The expression (4.9)

defines the system of equations that must be solved to obtain the multiples induced in the

spheres. Thus, replacing (4.11) and (4.12) in (4.10) gives you a system of equations for

moments Qlmi ∑
l′m′j

[
−u(ω)δll′δmm′δij +H l′m′j

lmi

]
xl′m′j = flmi, (4.13)

where u(ω) is a spectral variable, δαβ the Kronecker delta and

xlmi =
Qlmi

(la2l+1
i )1/2

, flmi = −(la2l+1
i )1/2

4π
V ext
lm ,

H l′m′j
lmi = nl0δll′δmm′δij + (−1)l

′ (ll′a
2l+1
i a2l

′+1
j )1/2

4π
Al

′m′j
lmi , (4.14)

This can be written In matrix notation as

[−u(ω)I + H] ~X = ~F, (4.15)

where H is a hermitian matrix, I is the identity matrix , and ~X and ~F are vectors. A

method to solve this type of equations is through the Green function which is outlined in

Appendix C. A solution can be found by diagonlazing matrix H, so that

~X = (−u(ω)I + H)−1 ~F = G(ω)~F ,

where G(ω) is the Green matrix corresponding to Eq.(4.15). Matrix G is written in terms

of the unitary matrix U which diagonalizes H, so that

UHU−1 = n,

where n is a diagonal matrix whose components nlmi are eigenvalues of H. The Green

matrix can be written as

Gµ′i′

µi = −
∑
µ′′i′′

Uµ′′i′′

µi (U−1)µ
′i′

µ′′i′′

u(ω)− nµ′′i′′
= −

∑
µ′′i′′

Cµ′i′

µi,µ′′i′′

u(ω)− nµ′′i′′
, (4.16)
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where we use µ for the set of indexes (l,m) and, where the terms Cµ′i′

µi,µ′′i′′ = Uµ′′i′′

µi (U−1)µ
′i′

µi′′

are the coupling weights of the external field with the µi mode. In accordance with Eqs.

(4.2) and (4.6), the terms Cµ′i′

µi,µ′′i′′ describe the coupling of the µ′ term of the external field

to the µ-th multipole moment and satisfy the sum rules (34)∑
µ′′i′′

Cµ′i′

µi,µ′′i′′ = δµi,µ′i′ (4.17)

Using the Green matrix, the induced multipoles can me obtained

Qµi = −(la2l+1)1/2
∑
µ′′i′′

Cµ′i′

µi,µ′′i′′

u(ω)− nµ′′i′′
fµ′i′ . (4.18)

4.2 Optical response and near-field enhancement

Once the induced multipolar moments, Qµ, are found, the spatial distribution of the mul-

tipolar electric near-field intensity is calculated by taking minus the gradient of the electric

potential outside of the nanospheres:

E(r) = −∇

[∑
µ

gµ(r)Qµ

]
, (4.19)

where components of the spatial function gµ(r) in spherical coordinates are given by

glm,i(r) =
4π

2l + 1

Ylm(θi, φi)

|r−Ri|l+1
(4.20)

with (θi, φi) being the angles corresponding to the vector (r−Ri). For a certain multipolar

excitation field, V µ′

ext, by using Eq. (4.18) the multipolar moments, Qµ, along with their

excitation efficiency coefficients, CCCs, can be obtained.

It is possible to relate the induced multipole moments with the absorption and scattering

cross section of the system. This is done by noting that the scattering and absorption

coefficients are written in terms of the induced dipole moments of the particles (36). These

are calculated using the relations (18)

Q10 =

√
4π

3
pz

Q1,m=±1 =

√
2π

3
(px ∓ ipy),

Using Eq. (4.18) and the symmetry properties previously mentioned we write the dipole

moment (l = 0) for m = 0, along the z axis in cartesian coordinates, to obtain (18)

pz(ω) = −
√

4πa3

3

∑
s

Cl′

1,s

u(ω)− ns
Fl

′
. (4.21)
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4. SPECTRAL REPRESENTATION METHOD

In this work, we consider the excitation with l′ = 1 for the case of a dipole excitation

and l′ = 2 for a quadrupole excitation. For a given excitation l′, its frequency-dependent

scattering cross-section depends on the value of the induced dipole moment of the system,

and can be evaluated as (18):

Csca(ω) =
16π

3

k4v

E2
0

|pz|2

=
16π

3

k4v

E2
0

∣∣∣∣∣∑
s

Cl′

1,s

u(ω)− ns
Fl

′

∣∣∣∣∣
2

sss

(4.22)

where v is the volume of the nanosphere and the term between bars is an effective Cartesian

dipole moment of the system and E0 is the magnitude of the incident field. Furthermore,

from Eq. (4.22), resonance conditions can be defined when Im[u(ω)] ' 0 and Re[u(ω)] = ns,

from this latter the resonant frequency is found. At the resonant frequency, the intensity

of the scattering cross section will depend primarily on the value of two parameters, the

coupling strength and the value of Im[u(ω)]. Therefore, a larger value of Cl′

1,s and small

values of Im[u(ω)] cause a more intense peak in the scattering cross-section.

In principle, all the matrices in the previous equations are infinite-dimensional, L→∞
and M → ∞. Since the larger l is, the weaker the coupling between multipolar moments,

numerically, we introduce a cut off at L = lmax. For lmax = 1 we recover the dipole

approximation, which is expected to be good only for large particle separations. For lmax = 2

the quadrupole approximation is obtained in which dipole-dipole, dipole-quadrupole, and

quadrupole-quadrupole moments interactions are taken into account. In general, for a given

particle separation an appropriate lmax must be chosen to ensure convergence of the physical

properties. (14)

4.3 Method outline: optical response and near-field

enhancement

In this section, we outline the procedure to obtain the optical response and near-field

enhancement of a configuration of NPs utilizing the SR method.

1. Dielectric parameters: Choose the NPs and host matrix material and the correspond-

ing model dielectric function. For metallic NPs, it is often necessary to modify the

common Drude dielectric function to include dispersion effects due to interband tran-

sitions and surface scattering for particles of sizes comparable to the mean free path
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4.3 Method outline: optical response and near-field enhancement

of its charge carriers(47). These modifications are further explained in the Appendix

A. Once the NP and host dielectric parameters are chosen, the spectral variable u(ω)

can be defined.

2. Geometric parameters: The number of particles, particle radius and positions are

defined. We point out that the SR allows the modeling of particles of different particle

sizes, as long as radii are smaller than the exciting wavelength.

3. Calculation of geometric matrices: Once the geometric parameters are defined, the

matrices A and H can be calculated using Eqs. (4.11) and (4.14) respectively. These

matrices only depend on the geometric parameters of the system and are completely

defined once the particle radii and positions are chosen.

4. Calculation of Green’s Matrix: Once matrix H is obtained, its eigenvectors and eigen-

values are calculated via an eigendecomposition method.

5. Using the spectral variable, eigenvectors, and eigenvalues, Eq. (4.16) are used to

calculate the Greens matrix at a given frequency. The Green matrix holds the infor-

mation of the system’s normal modes, and resonant frequencies of the system can be

found by calculating the poles of the matrix. Using the eigenvalues obtained in the

previous step and the spectral variable, resonant frequencies can be obtained using

Eq.(4.5). Furthermore, coupling strengths to the external fields can be obtained using

the unitary matrix that diagonalizes H.

6. Calculation of induced multipoles: In order to calculate the induced multipoles in the

system, the form of the exciting field must be determined. The multipolar SR allows

excitation by spatially homogeneous as well as multipolar fields. Once this is defined,

using the Green matrix G and Eq.(4.18), the induced multipoles in the system can

be calculated, Qlm,i.

7. Calculation of optical response: Using the Green matrix and the induced multipoles,

it is possible to define the system’s polarizability. Optical properties such as the

absorption cross section can be written in terms of this quantity. To obtain the

absorption spectrum, steps four and five must be repeated for each frequency.

8. Calculation of scattered field: Using the calculated multipole moments and Eq. (4.19),

the induced electric field can be obtained. By comparing this to the exciting field,

the total local electric field, an enhancement factor can be calculated.
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Chapter 5

Results

To demonstrate our method we use the archetypal system made of two identical spheres

of radius a, whose centers are separated by a distance D. We take the axis that joins

the centers of the spheres as the z axis. Remember that under this condition there is

no coupling between multipole moments with different m index. Moreover, the sign of

the multipole moments in the two identical spheres satisfy the relation (82): Qlm,2 =

(−1)l+1Qlm,1. Therefore, by exploiting symmetry, equations for the multipolar moments

can be considerably simplified. Additionally, the high symmetry of our system allows us

to parameterize the solution regarding only one geometrical parameter, defined in terms of

center to center separation distance D, and the particle radius a, as σ = D/2a. Defined

in this manner, when the spheres are in contact D = 2a and σ = 1, as separation distance

increases σ will also increase.

In the quasi-static limit, NPs of sizes of 40 nm and smaller can be considered, since it

has been shown that for these sizes retardation effects are negligible (83). The separation

between NP is also an essential factor since quantum effects may play an important role.

The tunneling current may partially quench the excitation of multipolar modes and limit

the possible near-field intensity enhancement. However, quantum effects are significant for

distances below 0.5 nm. (84) Therefore, the geometric parameter can take values as small

as σ = 1.0125 for the largest nanoparticles and shortest distances. One of the advantages

of this formalism is that it makes explicit that the coupling mechanism of the particles

through the excitation of multipoles solely depend on σ. Therefore, it is sufficient to rescale

the nanosphere’s diameters and distances by a factor to keep σ, retaining all the results

and the physics of the multipolar coupling. Here, we discuss the results for nanospheres

with a radius of 12.5 nm and interparticle distances of 0.5 nm and larger., i.e., σ ≥ 1.02.

For these values, we see that the influence of the multipolar coupling is still considerable,

quantum effects are negligible, and that the quasi-static approximation still holds.
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The number of multipolar moments, i.e., lmax, needed to ensure convergence in the

solutions depends on the configuration of the system, or equivalently on the value of σ,

with a more significant value of lmax needed for a smaller geometric factor, σ. We found

that to ensure convergence within the 1% of the solutions for the configurations considered

in this work, a cut-off equal to lmax = 150 is needed. In principle, the formalism outlined in

the previous section can be used for any material once the dielectric function is known. In

this work, we present results for silver nanospheres,(85) since these have shown to produce

more considerable field enhancement than gold, for example, (86).

In the following section, we discuss the principal result of the model, i.e., the introduction

of a proper multipole excitation field in Eqs. (4.14). Combining geometry and symmetry of

illumination, it is possible to modify the spectrum further, the number of excited modes,

and the near field of a nanostructure.

5.1 Excitation of Multipolar Modes as a Function of

the External Field

We consider two different types of external fields, first the case of a spatially homogeneous

external field with a parallel polarization to the axis that joins the centers of the spheres.

This is achieved by taking F µ′ 6= 0 in Eq. 4.14 with µ′ = (l′ = 1,m′ = 0, i). As a second

case, we consider a spatially inhomogeneous external field such that if felt by an isolated

sphere induce a quadrupole charge distribution. This is achieved by taking F µ′ 6= 0 with

µ′ = (l′ = 2,m′ = 0, i), and is shown in Fig. 5.1

Figure 5.1: Quadrupolar external field in the presence of spherical a = 12.5 nm NPs with a

1 nm gap .

42



5.1 Excitation of Multipolar Modes as a Function of the External Field

In Fig. 5.2 we plot the coupling strengths C1
1,s with s = 1, ..., 5, as a function of σ

for the homogeneous external field F 1,0,i. Each curve represents the coupling strength of

the dipole moment to the external field F 1,0,i, through each corresponding s−mode. For

a given geometric factor, σ, the coupling strength to each available mode varies, subject

to the constraints imposed by sum rule,(34)
∑

sC
1
1,s = 1. This can be thought of as a a

distribution of the coupling strengths among all the available modes of the dimer. For this

case, at large σ, the excitation efficiency coefficients of the mode with s = 1 dominates, i.e.

C1
1,1 → 1, while coupling strengths associated to s = 2, 3, . . . vanish, C1

1,s → 0. At large

interparticle distances, the optical response of the dimer is dominated by the dipole mode

of the isolated nanospheres, as expected. Thus, the mode s = 1 is identified with the dipole

response of the dimer. As σ decreases, coupling strengths to higher order multipole modes

become more important. By accurately selecting σ, we modify the eigenvalues of the system

and the coupling strengths and therefore, the resonant frequencies and optical response of

the dimer. Thus, it is possible to tune the spectrum of the dimer, i.e., enhance, suppress

or shift the resonant peaks by considering only the geometric parameter σ. Fig. 5.2

Figure 5.2: Coupling strengths C1
1,s for s = 1, ..., 5.

From Fig. 5.2, is can be seen that for geometric factors smaller than approximately σ ≈
1.05 the coupling strength of the dipolar mode becomes lower than that of the quadrupolar

mode. Therefore condition σ < 1.05, defines the regime where higher order multipolar

modes arise and eventually dominate. With this in mind, we concentrate our study on two

cases that fall into the different coupling regions. We label with 1 the dimer with σ = 1.02

which falls within the region with strong multipolar coupling and with 2 the dimer with

σ = 1.15 that falls in the region where the dipolar response is expected to dominate. In

43



5. RESULTS

σ s λs (nm) Im[u(λs)] C1
1,s C2

1,s ns

D
im

er
1

1.02 1 444 0.015 0.242 0.212 0.130

2 375 0.037 0.314 0.124 0.241

3 355 0.067 0.275 -0.067 0.313

4 348 0.097 0.141 -0.179 0.361

5 344 0.113 0.024 -0.094 0.392

D
im

er
2 1.15 1 370 0.043 0.751 0.346 0.251

2 350 0.087 0.247 -0.328 0.361

3 342 0.117 0.001 -0.020 0.408

Table 5.1: Resonant wavelengths (λs), imaginary part of the spectral function (Im[u(λs)])

evaluated at the resonant wavelength and strongest coupling strengths (C l
′
1,s with l′ = 1 and

2) to the modes of the two dimer configurations considered.

Fig. 5.2 these specific geometric parameters are indicated with vertical dashed lines. Once

the geometric parameters are fixed, we can calculate the eigenvalues and coupling strengths

for both dimers.

The most significative values of ns and Cl′

1,s for the two dimers are listed in Table 5.1.

For dimer 1 (σ = 1.02) the nanospheres are very close, resulting in the strongest coupling

for mode s = 2, with C1
1,2 = 0.314, followed by s = 3 with C1

1,3 = 0.275 and then by s = 1

with C1
1,1 = 0.242. Modes with s = 4 and s = 5 have significant coupling, the first five

modes account for the 99.6% of the total coupling with the homogeneous external field.

For dimer 2 (σ = 1.15) illuminated by an external field with l′ = 1, we found C1
1,1 = 0.751

when s = 1 and C1
1,2 = 0.247 when s = 2. Both modes account for the 99.8% of the total

coupling strength to the external field, thus modes with s > 2 become irrelevant at this

particular σ. Here, the s = 1 mode, corresponding to the dipole mode of the dimer at large

interparticle distances, dominates.

Once eigenvalues and coupling strengths are calculated, we fix the dielectric function of

the material to calculate first the spectral variable u(ω), and then, the resonant frequencies

or wavelengths (λs = c/ωs) from the condition, Re[u(ωs)] = ns, imposed in Eq. (4.22). The

obtained values for both dimers are listed in Table 5.1, as well as the corresponding values

of Im[u(ωs)]. It is worth pointing out that the eigenvalues, and therefore the calculated

resonant frequencies, are independent of the external field, being equal for both types

of external fields considered. In Fig. 5.3, we plot the scattering cross section spectrum
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5.1 Excitation of Multipolar Modes as a Function of the External Field

Figure 5.3: Scattering cross sections for dimers 1 and 2 made by silver nanospheres with

a = 12.5 nm.

calculated with Eq. (4.22) for dimers 1 and 2. The peaks and resonant frequencies in

the scattering cross section can be understood in terms of the coupling strengths C1
1,s and

eigenvalues ns. For dimer 2 (σ = 1.15), the intense peak around λ1 = 370 nm is associated

to the dipole mode of the dimer (s = 1). For this configuration, higher order multipole

modes are not appreciated because the corresponding coupling strengths are small and

located in a range with large values of Im[u(ωs)], compared with s = 1. In general, as

Im[u(ωs)] is larger, the energy dissipation increases and the intensity of the resonances

diminishes, in agreement with Eq. (4.6). Consequently, even though C1
1,2 ' (1/3)C1

1,1, only

a small shoulder associated with the quadrupole mode is observed around λ = 350 nm.

For dimer 1 (σ = 1.02), in Fig. 5.3 we observe 3 distinct peaks and a redshift of all the

resonances. The redshift can be understood in the following manner: because the external

field is parallel to the axis that joins the nanospheres, the field polarizes the particles, such

that, the induced local-field is in the same direction as the applied field. Both induced

and applied fields are contrary to the restoring force acting on the electron cloud, therefore

reducing the resonant frequency causing the redshift. (47). An analogous argument can be

used for the redshift of the multipole resonances. As expected, higher order modes beyond

the dipole mode have smaller resonant wavelengths, as they require larger energies to be

excited. Comparing the peaks of dimer 1 and 2, it can be seen that the intensity of the

dipole peak reduces in dimer 1 compared to dimer 2. This is because in dimer 2, the dipole

mode has a larger coupling strength than in dimer 1 as shown in table (5.1). Since the

coupling strengths of the quadrupolar (s=2) and octupolar (s=3) modes increase in dimer

1, and since the sum rule
∑

sC
1
1,s = 1 must be satisfied, the coupling strength to the dipolar
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Figure 5.4: Coupling strengths efficiency coefficients C2
1,s for s = 1, ..., 5 plotted against he

dimensionless geometric factor σ.

mode decreases. However, as seen in Eq. (4.6) peaks in the spectrum are proportional to

C1
1,2/Im[u]. Therefore, it is not always true that a larger coupling coefficient leads to a

stronger peak. For example, in spectrum of dimer 1, even though the coupling strength to

the dipolar mode (s=1) is smaller than that to the quadrupolar (s=2) and ocutupolar (s=

3) mode, C1
1,1 < C1

1,2 and C1
1,1 < C1

1,3 , the dipole peak is still more intense because the

corresponding Im[u(ωs)] value is smaller at the resonant frequency, as shown in table (5.1).

Next, we consider the case of the spatially non homogeneous exciting field, F µ′ 6= 0 with

µ′ = (l = 2,m = 0). In Fig. 5.4 the coupling strengths to the second type of external field

with l′ = 2 are shown. Interestingly, we observe that the coupling strengths C2
1,s for all

modes s qualitatively differs from those for an external field with l′ = 1. For instance, all

the curves exhibit a maximum and/or a minimum value at a particular σ and eventually all

excitation efficiency coefficients go to zero for large σ. This is consequence of the sum rule∑
sC

2
1,s = 0. (34) Recall that the C1

2,s describe the coupling strengths of the external field,

F µ′ 6= 0 with µ′ = (l = 2,m = 0), with the dipole moments induced on the particles. The

sum rule ensures that at large separation distances the only induced multipolar moment

is of the same order as the exciting field, which in this case is the quadrupolar mode, and

that the total induced dipole moment is zero. Fig. 5.4 displays C2
1,s with s = 1, ..., 5, as

a function of σ for an external field with l′ = 2 and m = 0. Distinctly, negative values

are allowed for some modes, which can be interpreted as an excitation of a given moment

opposing the external field. In Table 5.1 also C2
1,s with s = 1, ..., 5 are listed. As previously

mention, the eigenvalues do not depend on the type of exciting field, the resonant frequency

remain the same, independently of the exciting field.

The scattering cross section for dimer 1 (σ = 1.02) and dimer 2 (σ = 1.15) is shown
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Figure 5.5: Scattering cross sections for dimers 1 and 2 made by silver nanospheres with

a = 12.5 nm.

in Fig.5.5. For the case of dimer 1 (σ = 1.02), the smaller peak found at λ = 370nm,

represents an overlap of many high order modes which are spectrally too close to be resolved.

Differences in intensity obtained with a l′ = 1 and l′ = 2 external field can be explained

by comparing coupling efficiencies. For example, consider dimer 1 (σ = 1.02), with a plane

wave external field (l′ = 1), as shown in Fig. 5.3. For this configuration, coupling strengths

to the quadrupole and octupole modes are larger than in the dipolar mode. Therefore,

although there is more dissipation at the quadrupole and octupole resonances, the three

peaks are still clearly distinguished. For dimer 2, the coupling strengths to the quadrupole

field, C2
1,1 and C2

1,2 are comparable but of opposite sign. These give rise to an uneven peak

structure in the scattering cross section spectrum, shown in Fig. 5.5. Notice that this peak

is half as intense when compared with the one shown in Fig. 5.3, for an homogeneous

external field. This feature arises from the differences in the coupling strength to the

different external fields, so that there is much larger coupling to dipole mode in the case of

an homogeneous field. As in the cases of plane wave illumination (l′ = 1), higher multipole

modes (s > 1) are not appreciable in the spectrum as a consequence of the small values of

the corresponding coupling strengths for those modes and large Im[u(ω)].

Summarizing, it has been shown that for a given geometric factor and dielectric function,

the resonant wavelengths and therefore the value of Im[u(ω)] are fixed, and independent

of the external field. On the other hand, peak intensities are inversely proportional to

Im[u(ω)] and directly comparable to the coupling strengths of the mode, whose coupling

strength depends on the symmetry of the external field being used.
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Figure 5.6: Normalized near field intensity, log10
|E|2
|E0|2 , for dimer 1 illuminated by an external

field l′ = 1, at the (a) dipole (s=1), (b) quadrupole (s=2) and (c) octupole (s=3) resonances

at λ1 = 444, λ2 = 375 and λ3 = 355 nm, respectively.

5.2 Multipolar contribution to the near field

Once the multipolar moments are obtained, it is possible to calculate the electric near-

field intensity outside the nanospheres and separately analyze the contribution of each

multipolar moment by using Eq. (4.19). Notice that all the multipolar moments contribute

to the induced field, as explicitly shown in Eq. (4.19). This means that when a given mode

of the dimer s is excited, the spatial distribution of the charge density and electric field

are not only determined by the s− multipolar moment but also by all the other excited

moments that can couple to it.

First we analyze the case of an homogeneous external field. Fig. 5.6 displays the spatial

distribution of the near field intensity normalized by the intensity of the incident field for

the dipole, quadrupole and octupole modes of dimer 1 (σ = 1.02) with an external field
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Figure 5.7: Dipole l = 1 (a), quadrupole l = 2 (b) and octupole l = 3 (c) contributions to

the electric near field intensity, log10
|E|2
|E0|2 , for a quadrupole mode s = 1 at λ1 = 444 nm and

an external field l′ = 1.

with l′ = 1. This configuration is equivalent to taking nanosphere’s radius of 12.5 nm and

a separation distance of 0.5 nm. All modes exhibit the maximum of field intensity in the

gap of the dimer, which can be enhanced more than four orders of magnitude for modes

s = 1 and s = 2. For both types of external fields, we observe that for all modes, the most

significant contribution to the field enhancement and its overall shape are given by the

dipole moment, which in the induced field which can be seen to have a symmetry similar

to that of interacting dipoles.

Fig. 5.7 displays the multipolar decomposition of the electric near field intensity of mode

s = 1 of dimer 1 at λ1 = 444 nm into the first and most significant components with l = 1,

l = 2 and l = 3. That is, in Fig. 5.7 we show the multipolar decomposition of the field of

mode s = 1, shown in Fig. 5.6. The near field plots are obtained by selecting the correspond-

ing l in Eq. (4.16) for a given wavelength and then, calculating the field of each component

using Eq. (4.19). We found that as l increases the intensity of the field associated with each
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component decreases. This fact follows from the coupling of the external field to high order

moments, which is achieved indirectly via Eq. (4.16), so the field intensity enhancement

associated with them is weak. In Fig. 5.7 we can also observe the spatial distribution of

the near field for each l, which shows a symmetry related to the corresponding component.

Higher multipole moments are characterized by pronounced spatial modulations and strong

confinements of the electric field intensity around the nanospheres. For example, for l = 1

the two darker spots or nodes are along the azimuth, while for l = 2 there are three dark

spots for each nanosphere, and for l = 3 we found four dark spots for each nanosphere.

The decomposition of the near-field allows us to follow the contributions to the total field.

The total enhancement is shown in Fig. 5.6 is obtained by adding these fields as well as

contributions from the rest of the components up to lmax.

Now, we want to analyze the dimer near field when the spatially structured external

field is applied. Fig. 5.8 displays the spatial distribution of the total electric near-field

intensity for the dipole (s = 1), quadrupole (s = 2) and octupole (s = 3) modes of dimer 1

at their corresponding resonant wavelengths: λ1 = 444 nm, λ2 = 375 nm and λ3 = 355 nm

respectively. As in the case of plane wave excitation (l′ = 1), for small values of σ the

electromagnetic near-field is strongly inhomogeneous. Also for this type of illumination,

the enhancement decreases as the order of the mode increases. The effect of illumination

with l′ = 2 is to increase the overall field enhancement by up to 2 orders of magnitude

concerning the l′ = 1 illumination, as one can observe by comparing Fig. 5.8 and Fig. 5.6 at

all resonant wavelengths. The total area where the near field is enhanced displays a pattern

in the induced field which is partially due to the spatial inhomogeneity of the incident field.

Simultaneously, the intensity enhancement in the regions of the dimer outside the gap

decreases more rapidly. Therefore, multipolar illumination might be useful to increase the

light-matter interaction in nano-optics experiments or to increase the sensitivity of devices.

Notice that even though the intensity of the peaks in the scattering cross-section spectrum

in Fig. 5.5 are smaller (less than half the intensity) than in Fig. 5.3, field enhancement

for the l′ = 2 illumination is still more considerable even at the quadrupole and octupole

resonances. This result suggests that to perform spectroscopic experiments which require

large field enhancement, such as Raman spectroscopy, it is convenient to use the symmetry

of the exciting field. Moreover, for experiments, it might prove more useful to tune the

emission spectrum to low-intensity high multipole peaks rather than to the more intense

dipolar one.

In Fig. 5.9 we show the contributions to the near electric field in the wavelength of the
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Figure 5.8: Normalized electric near field intensity, log10
|E|2
|E0|2 , for an external field l′ = 2,

at the (a) dipole (s=1), (b) quadrupole (s=2) and (c) octupole (s=3) resonances at λ1 = 444,

λ2 = 375 and λ3 = 355 nm, respectively.

quadrupole resonance at λ2 = 375 nm for excitation with l′ = 2. In other words, we show

the decomposition of the field shown in Figure (??). In Fig. 5.9 it can be seen that the

most significant contribution comes from the quadrupole moment followed by the dipole

moment that shows a similar maximum intensity as the octupole. However, the symmetry

of the induced field does not always correspond to the order of the mode that is excited.

In general, the dominating contribution to the induced field will depend on the chosen

external field, the excitation wavelength through eigenmodes and the system’s geometry

through the excitation efficiency coefficients.
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Figure 5.9: Dipole l = 1 (a), quadrupole l = 2 (b) and octupole l = 3 (c) contributions to

the normalized near field intensity, log10
|E|2
|E0|2 , for a quadrupole mode s = 2 at λ2 = 375 nm

and an external field with l′ = 2.
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Chapter 6

Conlusions

A general analytical framework to describe the optical response of nanostructures in the

quasi-static limit that treats on the same footing their geometry, dielectric properties, and

incident electromagnetic field, being able to isolate the role of each of them precisely was

presented. The method is based on the multipole decomposition of both the incident field

and the polarizability of the nanostructure. The symmetry of a multipole incident field

provides an additional parameter through which it is possible to change the optical response,

spatial distribution and near-field enhancement of the illuminated system. Our formalism

gives compelling insights into the coupling efficiency of the incident field to the optical

modes of the nanostructure, facilitating the analysis of the relative interaction between

the mentioned variables. To illustrate the method two limiting geometrical configurations,

that of a dimer of metallic nanospheres and two symmetries of the external incident field

were used. It was shown that for the configuration with large separation, both types of

external fields couple mainly to the dipole mode. However, for a small separation, the

spatially modulated field strongly couples to more modes than the homogeneous external

field and therefore produces less defined peaks in the scattering spectrum, but larger field

enhancements which are covering more area.
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Part II

Near-field radiative heat transfer

between dielectric nanoparticles
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Chapter 7

Introduction

In the previous section a study of the interaction of dielectric particles with multipolar

external fields was presented. In this section, we will study the interaction of dielectric

particles with thermally emitted EM fields. It will be shown that thermal EM fields are

generated by fluctuating charge distributions, and therefore thermal fields will be composed

of, not only by spatially homogeneous and quadrupole fields as those considered in the

previous section, but by all orders of multipolar fields. Consequently, each mode in the

system can be excited by any of the multipolar components of the thermal field. In this

way, the tools developed in the previous section will be used and further modified to study

thermal radiation. For example the spectral representation, which allows a calculation of

the coupling strengths of each particle to the different multipolar external fields, and the

charge induce on each particle by the fields will be modified to describe the interaction with

thermal fields. To begin, we first present a background of the classical theory of thermal

radiation and recent work carried out in the field of near-field energy transfer.

7.1 Motivation

Classical theory of thermal radiation

It is known that a body at a temperature higher than absolute zero emits energy through

EM fields. If the object has a higher temperature than its environment, it emits more energy

than it absorbs from its surroundings. Conversely, if the object has a lower temperature

than its environment, it absorbs more energy than it emits. From this point of view,

thermal radiation is a mechanism by which an object reaches thermodynamic equilibrium

with its environment. Conceptually, emission of thermal radiation can be understood in the

following manner: when a body is at a temperature higher than absolute zero, the atoms
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and electrons that make up the body undergo random thermal motion. This accelerates

the charge carriers, which emit EM fields that can be described by EM waves over a wide

range of frequencies. The EM fields generated through this mechanism transport energy

from the body to its environment. It is clarifying to compare thermal radiation with

other mechanisms of energy transfer, such as conduction and convection. Conduction is an

energy transfer mechanism by which kinetic and potential energy is transmitted among the

microscopic constituents of a system. For example, in a solid, it can be carried out by free

electrons or by excitations of the system’s vibrational modes (phonons). Convection can

be observed in gases and liquids, where molecules with high kinetic energy are dragged by

currents generated due to temperature gradients and are replaced by molecules with low

kinetic energy, giving rise to a net energy transfer (87). Unlike convection and conduction,

radiative heat transfer is carried out by EM fields, which do not require a propagation

medium or contact between bodies.

Emission of thermal radiation is a phenomenon that has been studied since the nine-

teenth century. In 1897, Slovenian physicist Jozef Stefan established an empirical law

describing the total energy emitted by a surface at temperature T . He based his law on

experimental measurements of thermal radiation emitted by platinum wires at different

temperatures (88). Stefan proposed that the total energy radiated by a surface, per unit

area and per unit time, u(T ), is proportional to the body’s temperature raised to the fourth

power

u(T ) = σ · e · T 4, (7.1)

where T is the body’s temperature and e its emissivity, a property of the material that takes

values between 0 and 1, while σ = 5.6703× 10−8W m−2K−4 is Stefan’s constant. Employ-

ing thermodynamic arguments, Eq.(7.1) was independently derived by Austrian physicist

Ludwig Boltzmann in 1884 (88), for which it is known as the Stefan-Boltzmann law. Fur-

thermore, German physicist Gustav Kirchoff discovered a useful relationship between a

bodies emission e and absorption efficiency a. Kirchoff determined that in thermodynamic

equilibrium, the emissivity of a body equals its absorptivity e = a (87, 89). A body that

absorbs all radiant energy that it is exposed to, has emissivity and absorptivity equal to one

e = a = 1, so that it receives the name of black body. At the end of the 19th century, the

radiation spectrum of a black body was a subject of intense research, with several attempts

to formulate a theory that correctly described the phenomenon. It was not until 1900 that

Max Planck obtained the spectral distribution density, ρ(ν, T ), of the thermal radiation of

black body (89)
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ρ(ν, T ) =
8πhν3

c3
1

e
hν
kBT − 1

, (7.2)

where ν is the frequency, h the Planck constant, c the speed of light and kB the Boltzmann

constant.

To obtain Eq.(7.2) Planck modeled the black body as a box with isothermal walls of

length L, with a small hole, so that any light entering the box remains trapped inside.

He modeled the oscillating electrons in the walls of the blackbody as harmonic oscillators,

vibrating at frequency ν that could only have discrete energies ε which satisfy

ε = nhν, (7.3)

where n is a natural positive number. A statistical average of the energy of oscillators inside

the box was calculated assuming the Boltzmann probability distribution

〈ε(ν, T )〉 =

∞∑
n=0

hνe−ε/kT

∞∑
n=0

e−ε/kT
=

hν

e
hν
kBT − 1

, (7.4)

where 〈..〉 indicates a statistical average over all possible energy values that satisfy Eq.(7.3).

To carry out the sum in Eq.(7.4), it is necessary to count the number of modes at each

frequency ν that exists within the box, that is, the number of modes that satisfy the

boundary conditions. Thus, a spectral density of modes is obtained

N(ν)dν =
8πa3ν2

c3
dν. (7.5)

The spectral energy density per unit volume at a frequency ν is obtained in terms of the

density of modes Eq.(7.5), and the average energy of a harmonic oscillator of frequency ν

Eq.(7.4)

ρ(ν, T )dν =
〈ε〉N(ν)

L3
=

8πhν3

c3
dν

e
hν
kBT − 1

. (7.6)

Figure 7.1 shows the energy spectra radiated by a black body at different temperatures.

It can be seen that radiated energy is an incoherent phenomenon, in the sense that fields

are radiated over a wide spectral band. At a given temperature, the wavelength at which

maximum energy is radiated can be described by Wien’s law (89)

λw =
c~
kBT

, (7.7)

where ~ = h/2π. Clearly, at higher temperatures, Wien’s wavelength decreases. For exam-

ple, at 1K Wien’s wavelength is 2229.8µm as can be seen in Table 7.1. At a temperature
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T (K) λw(µm)

1 2298.8

100 22.9

273 8.4

1000 2.3

6000 0.38

Table 7.1: Wien wavelength as a function of temperature λW .

of 6, 000K (approximate temperature of the surface of the sun) the Wien wavelength is

approximately 0.38 µm = 380 nm, within the range of visible light To obtain the Stefan-

Boltzmann law from planks spectral density, assume that a small hole is cut into the black

body box. All radiation emanating from this hole will be moving at the speed of light c.

Also, the radiation will be uniformly distributed throughout the hemisphere of solid angles,

and one half of the energy will be oriented such that it can move outward through the hole.

The spectral radiation intensity is defined as the rate of energy emitted per unit area per

unit solid angle and per unit wavelength. The rate of energy emitted per area, B(ν) is

simply the product of the energy density derived above multiplied by c/4π:

B(ν, T )dν =
2hν3

c2
dν

e
hν
kBT − 1

. (7.8)

The total power emitted per unit area at the surface of a black body may be found by

integrating the black body spectral flux found over all frequencies, and over the solid angles

corresponding to a hemisphere above the surface

u(T ) =

∫ ∞
0

∫
hemisphere

dΩB(ν, T ) = σT 4 (7.9)

Once the radiation spectrum of a blackbody has been correctly described, it is possible

to calculate radiative energy transfer between two black bodies. Furthermore, since a

blackbody is an ideal emitter and absorber, with e = a = 1, energy transfer between

blackbodies establishes a maximum limit to the amount of energy that can be exchanged

via thermal radiation between any two bodies. Assuming that blackbody radiation is

spatially isotropic, it is possible to derive the Stefan-Boltzmann law from Planck’s spectral

distribution by integrating over the frequency spectrum. It is then possible to calculate

radiative energy transferred between two blackbody surfaces at temperatures T1 and T2,

with T1 > T2. Considering that energy radiated from one blackbody surface is perfectly
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Figure 7.1: Plank’s spectral density of black body radiation at different temperature.

absorbed by the other, energy transfer is given by

q = σ(T 4
1 − T 4

2 ) =
π2kB

60~3c2
(T 4

1 − T 4
2 ), (7.10)

where the Stefan constant has been written in terms of universal physical constants σ =

π2kB
60~3c2 , which are obtained from Planck’s law. From Eq.(7.10) it can be seen that radiative

energy transfer only depends on the bodies’ temperatures and not on the separation dis-

tance between the surfaces. This is a direct consequence of equations (7.2) - (7.7), which

do not depend on separation distances. However, given that the Wien wavelength de-

fines a characteristic distance of a system (see Table 7.1), the following question arises: Is

there a modification to the radiation spectral density at distances comparable to the Wien

wavelength? The differences in thermal radiation emitted at distances comparable to the

Wein wavelength are discussed in the following section. Afterward, a review is given on

some experimental measurements of radiative energy transfer between bodies separated by

distances smaller than the Wien wavelength.

Near-field vs. far-field thermal radiation

Planck’s theory describing the thermal emission of a black body is grounded on a critical

assumption, which is given in the first chapter of his book “Theory of Thermal Radiation”

(Theorie der Wärmestrahlung) (90):

“Throughout the following discussion, it will be assumed that the linear dimensions of

all parts of the system, [...], are large compared to the wavelength of the considered rays .”
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As a consequence, Planck’s theory is valid when typical dimensions of the system under

consideration, including size and separation distances, are large compared to the wavelength

of emitted fields. Therefore, the term far-field regime, in the context of thermal radiation,

is used for cases in which Planck’s theory is applicable. In this regime, geometric optics

is valid. This can be attributed to the fact that the coherence length is of the same order

of magnitude as the Wien wavelength, and energy transport by EM fields is incoherent at

these distance. Consequently, interference effects between waves are neglected (21), and

energy transfer due to two incident rays is merely the sum of the energies of each ray,

regardless of their respective phases.

As distances of the system decrease to sizes comparable with λw, Planck’s theory is

no longer expected to be valid, and phenomena not considered in Planck’s theory, must be

taken into account. These cases fall into what is known as the near-field regime. To continue

the discussion of the characteristics of thermal radiation and energy transfer at separation

distances from the emitting body comparable to the Wien wavelength, it will useful to

keep in mind these two limiting regimes. The transition from the far-field to the near-

field regime is determined by comparing dimensions of the system with a given paramete.,

Traditionally, this critical length scale is determined from the Wien law, and corresponds to

the wavelength of the peak emission according to the Planck blackbody distribution (91). At

room temperature, thermal wavelengths are of the order of micrometers, consequently, when

distances of this order of magnitude separate bodies, near-field effects arise and eventually

can dominate. Therefore, at small distances, it is necessary to rethink the problem of

thermal radiation and to resort to Maxwell’s equation to obtain an accurate description.

Measurments of near-field heat transfer

One of the principal difficulties in experimental setups is maintaining a fixed separation

distance between bodies. In past years three main experimental configurations have been

used to measure radiative heat transfer in the near-field: plate-plate (92), tip-plate (93),

and sphere-plate configurations (94), these are shown in Fig. 7.2. Near-field heat transfer

between parallel media is the most well-studied geometry since analytical expressions for the

heat flux can be derived from first principles (95). However, the parallel plate configuration

is the most experimentally challenging of the different geometries due to the difficulty

in keeping surfaces parallel at submicrometer vacuum gaps, as well as surface roughness

effects at such length scales. Tip-plate and sphere-plate configurations are easier to set up,
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however, the smaller volume of the emitter and receiver, significantly reduces the near-field

heat flux and makes it difficult to distinguish true heat transfer signals from surrounding

noise.

Figure 7.2: Schematic of the three main experimental setups (from top to bottom): plate-

plate, tip-plate, and sphere-plate.

The first measurements of near-field radiative heat transfer were reported by Hargreaves

in 1969, between two flat parallel chromium plates at room temperature separated by

distances of about 1µm (96). These separation distances fall within the near-field regime,

as can be seen from Table (7.1), so that Plank’s radiation law is not expected to hold. The

emitter and receiver temperatures were 323 and 306 K, respectively. The parallelism of

the plates was evaluated using both optical interferometry and by measuring the electrical
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capacitance of three individual capacitors created by three pairs of metallic plates integrated

into the emitter and receiver. Changes in parallelism of the plates resulted in a change in

the capacitance. With the emitter heated resistively, the radiative heat flow to the receiver

was calculated as the additional heat input required for maintaining the temperature of

the emitter at a constant value as the gap size was varied. Hargreaves found a strong

distance dependence of radiative heat transfer, with a noticeable increase starting at a gap

of ≈ 2.5mm, contrary to what is predicted by the Stefan-Boltzmann law.

Figure 7.3: Energy per unit area, time and degree Kelvin transmitted (transfer coefficient)

between sapphire plates separated by vacuum for different temperature gradients as measured

by Ottens (97). The solid lines represent theoretical predictions and the curves are each offset

vertically, their zeros are indicated by the horizontal lines extending from the left axis.

Later on, Ottens et al. found more conclusive evidence using parallel sapphire plates

in a vacuum chamber at 303.2◦K (97). Ottens measured the energy transfer per unit

area and temperature unit, known as transfer coefficient, for separation distances between

2µm − 100µm at different plate temperatures, shown in Figure 7.3. The emitter had a

heater wound on a copper ring attached to the back of the plate. The heater current

and voltage can be used to calculate the power required to keep the plates at a given

temperature difference and therefore measure radiative heat transfer. At distances greater

than 10µm, the transfer coefficient tends to the constant value predicted by the Stefan-

Boltzmann law. The authors point out that at lower distances energy transfer increases,

exceeding that predicted between black bodies. The transition from far-field to a near-field

regime is evident when the heat transfer coefficient starts increasing with decreasing gap.
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An increase in energy transfer of over an order of magnitude can be seen for the considered

separation distances.

Measurements of heat transfer at nanometric separation distances were finally obtained

by Müller-Hirsch et al. (1999) (98) and Kittel et al. (99). These experiments used the tip-

surface configuration to measure Near-field thermal radiation. This type of setups owe their

origin to techniques such as atomic force microscopy. The authors fabricated a scanning

probe with an integrated thermocouple tip similar. Müller-Hirsch used a 100-nm thick gold

film deposited on mica. In this case, the probe was at 300 K while the sample was set to 100

K and a change in thermovoltage measured the change in heat flow. Kittel measured the

transmitted power (Joule/sec) between a scanning tunneling microscope Au tip, and Au

and GaN surfaces in ultra-high vacuum condition shown in Figure 7.4 . Authors observed

a strong decrease in heat transfer with increasing separation distance. By modeling the

tip of the microscope as a small sphere in a dipolar approximation and the sample as a

semi-infinite surface, they theoretically calculated the transfer of electromagnetic energy

between the half-space and the sphere. A dependence on the transfer of energy with the

separation between the tip of 1/d3 was found, characteristic of the interaction between

an electric dipole and an infinite plane in the non-radiating limit (100). This dependence

was checked in the experiments as shown in Figure 7.4. It can be seen that for distances

less than 10 nm there was a discrepancy with their theoretical predictions. The authors

propose that one of the causes of the discrepancy is that at such small separation distances

multipoles of a higher order than the dipole are excited. (101) .

Figure 7.4: Heat power (J / sec) measured between a tip of a microscope (circles) and a

gold surface. The dotted line corresponds to the theoretical predictions and the black line to

an adjustment made by the authors (99).
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The sphere-plate configuration is a compromise between the plate-plate and tip-plate

system in the sense that, the large surface of the sphere allows greater heat transfer and

therefore is easier to measure, but the sphere cannot be brought as close to the surface as

the tip-plate configuration. Shen et al. (102) used this setup to measure near-field heat

flux between the silica sphere and flat substrates as shown in Fig. 7.5. Three different

substrates were used, namely, Au, Si, and SiO. Under the proximity force theorem (103),

which assumes the sphere to be locally flat, heat transfer coefficient can be approximated as

≈ B/d2 with B being a constant and d the separation distances and are compared with the

experimental results. The resultant near-field heat transfer coefficient between glass sphere

and substrate was measured to be three orders of magnitude more than that expected

between black-bodies for the smallest separation distance of 30 nm. The authors were

therefore able to experimentally demonstrate that the near-field heat transfer can exceed

blackbody radiation.

Figure 7.5: Plot of experimental near-field conductance, nW per Kelvin, measured at differ-

ent vacuum gaps. For comparison, the measured values are compared with theoretical results

from proximity force theorem shown by black lines (102).

Summarizing, these results show that at distances of separation smaller than the wave-

length of Wien, the radiative heat transfer becomes dependent on distance, unlike that

predicted by the Stefan-Boltzmann law (7.10). This can be traced back to the fact that

Planks law (7.6) only takes into account the propagating EM fields radiated by the walls

of the black body. Consequently, the radiated power described by these equations is inde-

pendent of the separation distance to the surface. This suggests that other electromagnetic
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Figure 7.6: There are two modes of radiative heat transfer between two surfaces at temper-

atures T1 and T2. a) Evanescent modes are negligible while propagating modes dominate for

separation distances d > c~/kBT b) Evanescent modes dominate energy transfer for separa-

tion distances d < c~/kBT .

(non-propagating) modes can contribute to heat transfer at distances less than the Wien

wavelength. Motivated by this, the following section presents an overview of the theoretical

models that have been used to describe radiative heat transfer in the near field.

7.2 Background

Theoretical Models: Planar Geometries

The experimental work mentioned in section 7.1 shows that at small separation distances

(d < λw) heat transfer is much higher than that predicted by the Stefan-Boltzmann equa-

tion. Keeping in mind that Plank’s theory of radiation, from which the Stefan-Boltzmann

equation follows, only takes into account propagating fields, it is expected that discrepancy

between the Stefan-Boltzmann theory and experimental measurements arise from not in-

cluding surface modes in the calculation of energy transfer (104). A distinction was made

between the near-field region (d < λw), where evanescent fields contribute to the electro-

magnetic energy density and the far-field (d � λw) where evanescent fields have almost

completely decayed and only propagating fields exist. In the far-field, power radiated by

a surface at temperature T is correctly described by the Stefan-Boltzmann law (Eq.7.1),

which only takes into account propagating fields. It should be mentioned that since the

black body has a maximum emissivity e = 1, the Stefan-Boltzmann radiation law places an

upper limit on the energy that can be transferred using propagating electromagnetic fields.

However, in the near-field (d ≈ λw) evanescent modes contribute actively to the density of

electromagnetic energy which allows the limit imposed by the law of Stefan-Boltzmann to

67



7. INTRODUCTION

be exceeded (21).

As an illustrative case, consider the transfer of radiative energy between two blackbody

surfaces at temperatures T1 and T2 with T1 > T2, as shown in Fig.7.6. Consider two cases,

in which they are separated by a distance d greater than d � c~/kBT = λw and when

d� λw. In the first case heat flow will be given by Stefan-Boltzmann law Eq.(7.10). Note

that this expression is independent of the separation distance of the bodies since for these

conditions heat transfer is dominated by propagating electromagnetic fields (illustrated in

Figure7.6 a). At short distances (comparable with λw) fields generated by excitation of a

surface mode contributes to the transfer of energy between the plates and the Eq. (7.10)

is no longer valid. The intensity of these fields depends on the separation distance of

the surfaces so that the transfer of electromagnetic energy also becomes dependent on the

separation distance.

Figure 7.7: Theoretical calculations of the spectral density of energy radiated by a surface

of SiC to T = 300 K measured at different distances z from the surface (21).

To further illustrate how evanescent modes contribute to energy transfer in Fig.7.7

theoretical calculations of the spectral density of radiated energy are shown by a surface

of SiC at 300K, at different distances from the surface including both propagating and

evanescent fields (21). These calculations were carried out by assuming that the media

is homogeneous and isotropic and modeled by a Lorentz dielectric function while the EM

energy density was obtained using the Greens function written in plane wave basis. This

system has a Wien wavelength of λw = 7.6µm. Figure 7.7 a) shows the spectral radiation

density of the surface at a distance d = 100µm ≈ 13λw. At this distance, the spectral energy

density is similar to a Planckean curve (Eq. (7.6)), the difference is due to the fact that SiC

is very reflective near ω = 170×1012rad / s, so that the emissivity is small in this frequency

range (e = 1− r). At a distance slightly less than λw, d = 1µm ≈ λw/2 the energy density

changes drastically and an intense peak appears at a frequency ω = 178× 1012rad/s which

corresponds to the excitation of a system phonon. At d = 100nm ≈ 0.1λw the density

of radiative energy becomes almost monochromatic. In the following sections it will be
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seen how this peak of EM energy density found at the resonant frequency of the surface

phonon of the system, ω = 178 × 1012rad / s . It is also seen that at this frequency, the

energy density increases more than four orders compared to the case of d = 100µm. In

contrast to the Eq. 7.1 and 7.6, at separation distances smaller than λw, the radiative heat

transfer becomes dependent on the separation distance and the spectral density of radiative

energy tends to be consistent, and may increase orders of magnitude exceeding the limit

established by the law of Stefan-Boltzmann (21, 105).

The phenomenon of heat transfer between bodies separated by nanometric distances

has been treated theoretically since the seventies (95). Much of the work has been carried

out using the theory of fluctuating electrodynamics introduced by Rytov (106). In sum-

mary, fluctuating electrodynamics proposes that thermal radiation is due to fluctuating

load distributions and currents, generated by the thermal movement of charge carriers in

a body at a temperature higher than absolute zero. The densities and currents generate

fluctuating electromagnetic fields that can be obtained by calculating the Green function

of the system. This formalism was first applied by Polder and Van Hove (95) to obtain a

theoretical description of heat transfer between parallel plates. Polder and Van Hove ob-

tained an analytical expression considering electromagnetic waves of different polarizations

with respect to the surface and separating the contribution to the thermal radiation from

the evanescent and propagating waves. Another problem that has been addressed is the

heat flux between a sphere and a substrate at different temperatures (101, 107). In this

system, the sphere is modeled as a point dipole with a Drude dielectric function. Dorofeyev

calculated the Green function of a dipole in the presence of a flat surface (108), as well

as the local fields of the sphere and the surface due to fluctuating sources in bodies (101).

In this work, two peaks were found in heat transfer spectrum, one corresponding to the

surface mode of the half-space and another to the surface mode of the sphere.

The near-field heat transfer between two media is a strong function of the geometry of

bodies. Heat transfer calculations between two parallel media are the simplest case among

different geometries. As a result, an overview of concepts used to calculate near-field heat

flux between two parallel media has been presented. These concepts will be useful for the

analysis of energy trnasfer between more complex nanostructured systems.

Theoretical Models: Non-planar geometries

As in the case of flat surfaces, in NPs systems, the excitation of surface modes increases

the density of electromagnetic energy in the near field, so it is expected that the plasmonic
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modes in NP systems play an important role in the transfer of heat (21). It is known that the

dielectric function of the particle and geometric parameters such as shape and size, as well as

interaction with another polarizable body, modify the plasmonic modes of the (14) system.

Furthermore, in a system of two interacting particles separated by nanometric distances

at different temperatures, the electromagnetic fields generated by thermal fluctuations can

be coupled to the surface plasmonic modes of the system. Therefore, to study the transfer

of heat between two particles, it is necessary to describe the surface modes in terms of

their different geometric and dielectric parameters, since these modes would modulate heat

transfer at nanometric distances.

The case of heat transfer between two spherical particles has been studied analytically,

mainly under the dipolar approximation (107, 109). For example, Chapuis et al. (107)

modeled the spheres with electric and magnetic dipoles and studied the dipole-electric

dipole-magnetic interaction. Under this approach, a dependence is obtained with the cen-

ter to center separation distance d, of 1/d6 for both magnetic and electric interaction (100).

Other work, carried out by Manjavacas et al. (109) include interactions of the electric-

dipole with the magnetic-dipole . They found that the crossed terms provide more interac-

tion mechanisms, increasing the heat transfer compared to the model that only considers

electrical-electric and magnetic-magnetic dipole interactions. However, magnetic contribu-

tions are only significant for metallic particles, due to the induced eddy currents.

The analytical dipolar models of radiative heat transfer between particles were compared

with a numerical method performed by Domingues et al. (110). In this work, interaction

between particles of the system was modeled by electrostatic potentials that take into

account multipolar interactions beyond the dipole moment. For particles less than 2 nm

in radius, they obtained good agreement with the dipolar model for separation distances

between 8 and 100nm. However, for distances less than 8 nm (4 times the radius of

the particles) numerical simulations predict a transfer higher than that calculated by the

dipolar model. The authors attribute the discrepancy to multipolar contributions that are

not taken into account in the dipolar interaction model. Therefore, to describe the transfer

of radiative heat at distances comparable to the sizes of the particles correctly, a description

is required that takes into account multipolar moments beyond the dipolar.

Formalisms that consider multipolar moments have been proposed by Pérez-Madrid

et al. (111) and Dorofeyev (101). Pérez-Madrid et al. they used a multipolar expansion

method of the Coulomb interaction in the electrostatic approximation as well as a multipolar

fluctuation-dissipation theorem. As a further approximation, Pérez-Madrid et al. worked
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within the single scattering approximation, that is multiple scattering between particles

was not taken into account. With this method, they calculated the heat transfer, as a

function of the distance including interactions up to quadrupole order, which is the next

multipolar order after the dipole moment. They compared their results with those obtained

numerically by Domingues (110), obtaining a more significant agreement for separation

distances less than four times the radius of the particles that the results obtained under

the dipolar approximation. Dorofeyev established similar equations for the calculation

of the radiative energy transfer between a sphere and a substrate including multipolar

moments(101). He calculated the energy transfer between a surface and a silver sphere of

500 nm at a separation distance of 104nm including a maximum of 8 multipole moments

within the single scattering approximation. However, a more in-depth study is needed of

the contribution of multipolar moments at small distances, for example, an analysis of how

the interaction of multipolar moments changes the system’s modes as a function of the

separation distance, and its influence on the flow of heat between the particles.

In this thesis, heat transfer in the quasi-static approach in NPs systems, depending on

the parameters of the system such as size, separation distance, and dielectric properties

is studied. The near electric field emitted at separation distances smaller than the ther-

mal wavelength will be studied using a method that includes multipolar contributions and

that allows systematic analysis of multipolar contributions to heat transfer and field aug-

mentation. Also, it will be investigated how resonant modes can mediate the transfer of

electromagnetic energy and how it depends on the dielectric and geometric parameters of

the system.
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Chapter 8

Model & Method

In this chapter a review of fluctuation electrodynamics is given. This has been the most

commonly used analytical method in the study of near-field radiative heat transfer and is

based on the fluctuation-dissipation theorem to describe fluctuating sources and the dyadic

Greens function. This tool is already more than 60 years old and was developed in the

1950s by physicists in the former Soviet Union starting with Sergei M. Rytov (106). The

method has been used to model energy transfer between parallel slabs separated by nano

and micrometer and has fitted well with experimental results considering separations up

to a few nanometers (112, 113). Afterwards, energy transfer between spherical NPs is

obtained in the quasistatic approximation which relies on the multipolar decomposition of

the fluctuating fields and the NP response. This is then used within the multipolar spectral

representation to obtain a new method for calculating radiative heat transfer which includes

full multipolar interactions and permits an analysis of how couple modes of the system

contributes to energy transfer.

8.1 Fluctuational electrodynamics

Maxwell’s equations describe the relationship between EM fields, and charge and current

densities within a system. The constitutive equations complete the description by providing

a relationship between EM fields and the response of the material that comprises the system.

For example, absorption of radiation by a body can be related to the imaginary part of its

dielectric function and the field scattered by a body can be calculated directly from the

Maxwell equations by applying the appropriate boundary conditions. However, emission

of radiation due to thermal movement of the charge carriers is not included in Maxwell’s

equations. The electrodynamic theory of fluctuations, introduced by Rytov (106), serves

as a link between Maxwell’s equations and thermal radiation and has been one of the
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most widely used methods for calculating radiative heat transfer at the nanoscale (114).

In the following section, Rytovs theory is briefly outlined, highlighting the fundamental

concepts and methods used to calculate thermal EM fields. A review is given, implementing

macroscopic electrodynamics, where the material response is assumed to happen locally.

Ohm’s law, for example, is written ~j = σ ~E where all quantities are evaluated at the same

(~r, ω). In metals, this approximation is expected to work on spatial scales longer than

the mean free path of charge carriers and the Fermi wavelength. To the same level of

approximation, interfaces between materials are assumed to be ‘sharp.’ The permittivity

ε(~r, ω), for example, varies like a step function across the boundary. This is accompanied

by suitable boundary conditions for the macroscopic fields. The other approximation that

is commonly applied is the linearity of the response of the system to external EM fields.

The linear approximation provides a simple link between the probability distributions of

the random forces and the field, yielding eventually to statistics which are completely

characterized by mean values and the correlation spectra, described in the fluctuation-

dissipation theorem (FDT).

Fluctuating currents and charge distributions

From a microscopic point of view the source of thermally emitted EM fields are fluctuating

charge and current densities produced by random thermal movement of the constituents

of a body, such as electrons, atoms or ions. However, fluctuational electrodynamics works

at a macroscopic level, so that thermal EM fields are modeled as produced by fluctuations

of volume densities of charges and currents. In other words, the electromagnetic field are

produced by sources that are also macroscopic i e. charge and current volume densities.

Fluctuational electrodynamics is built on this simple macroscopic description. Fluctuating

charge and current sources depend on the temperature and dielectric properties of the body

and are denoted by ρ(0) and ~j(0) respectively. This assumes a macroscopic material system

whose internal temperature imposes the steady state properties of the radiation field. The

sources are unable to thermalize by themselves and are taken to be in thermal equilibrium

with a heat bath. Fluctuating sources emit thermal EM fields, ~E(0) and ~B(0), that act as

external fields when interacting with other polarizable bodies in the system. The physical

description of fluctuating sources, relies on the assumption that each emitting body in the

system is at a local equilibrium temperature T . Consequently, fluctuating charges and

currents generated by thermal random movement satisfy the conditions〈
ρ(0)(~r, t)

〉
= 0,

〈
~j(0)(~r, t)

〉
= 0, (8.1)
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where 〈...〉 indicates a statistical average over all possible values of ρ(0) and ~j(0) at a given

time t. This condition states that there is no creation or destruction of charge due to

thermal movement, and that averaged charge and current distributions are zero. The total

charge and current densities in a given system can be separated into a fluctuating and

external part. The external charge and density refers to any charge in the system that is

not due to thermal fluctuations, so that the total charge is given by

ρ(~r, t) = ρ(0)(~r, t) + ρext(~r, t), ~j(~r, t) = ~j(0)(~r, t) +~jext(~r, t). (8.2)

The fluctuating sources can be described by its temporal autocorrelation function, de-

fined as the average of a given variable of the system 〈X(t)X(t′)〉, where X = ρ, ~Jα, and

where the statistical average is taken over all possible values of variable X at time t and

t′ (114). It is convenient to use the Fourier transform of the autocorrelation function, for

which the Wiener-Khinthcin theorem is used. This theorem states that Fourier components

of autocorrelation functions with different frequencies are zero (115, 116). The autocorre-

lation function can be written as〈
X(~r, t), X(~r′, t′)

〉
=

∫ ∞
−∞

dω

2π
eiω(t−t

′)
〈
X(~r, ω), X(~r′, ω)

〉
(8.3)

where as a consequence of the Wiener-Khinthcin theorem, there is no correlation between

terms with different frequencies, so that 〈X(~r, ω)X(~r′, ω′)〉 = 2π 〈X(~r, ω)X(~r′, ω′)〉 δ(ω−ω′).
A connection between 〈X(~r, ω)X(~r′, ω)〉 and the local temperature of the body can be es-

tablished by means of the FDT, which is a semi-classical approach that uses quantum

theory to describe macroscopic quantities. The FDT can be seen as a general relationship

between the microscopic fluctuations of a linear dissipative body in thermal equilibrium

to its macroscopic parameters (resistance and temperature). Simply stated, it draws a

relationship between the fluctuations of a dynamical variable of a system in thermody-

namic equilibrium and the dissipative properties of the body in the presence of an external

perturbative force.

To outline the principal concepts behind the FDT, consider a dynamical variable of a

given system, denoted by X, which couples to an external force f(t) in the following manner

ε = −Xf(t), (8.4)

and assume that a linear relation exists between the driving force and the variable X,

X(ω) = α(ω)f(ω), (8.5)
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Figure 8.1: Current density spectrum for SiC (top) and Ag (bottom) near the isolated

particle resonant frequencies calculated at 300 ◦K.

where α(ω) is known as a generalized susceptibility corresponding to variable X and force

f . The FDT establishes a relation between fluctuations of X and susceptibility α when the

system is in thermal equilibrium at temperature T (114)

〈X(ω)X∗(ω′)〉 =
4π

ω
Im [α(ω)] Θ(ω, T )δ(ω − ω′), (8.6)

where

Θ(ω, T ) =
~ω

e~ω/kBT − 1
(8.7)

is the average energy of a quantum harmonic oscillator in thermal equilibrium at tempera-

ture T . An outline of a derivation of the FDT is found in Appendix B. From the relation

given in equation (8.6), it can be seen that the FDT can be used either to derive the suscep-

tibility of a system based on an analysis of its thermal fluctuations, or to derive properties

of its fluctuations using a known susceptibility. By means of the FDT, fluctuational elec-

trodynamics can describes thermal EM fields in terms of the susceptibility and temperature

of the body that generates them.

To illustrate these concepts, consider the fluctuating dipole moment, ~p(0) induced on

a spherical particle due to random thermal motion of its charge carriers. Consider small

homogeneous particle in vacuum with complex dielectric function ε(ω) , so that the polar-

izability of the particle can be described by the equation

α(ω) = a3
(
ε(ω)− 1

ε(ω) + 2

)
.

Using Eq. (8.6), the correlation function of the fluctuating dipole moment can be written

as 〈
p
(0)
k (~r, ω)p

∗(0)
l (~r′, ω)

〉
=

4π

ω
Θ(ω, T )Im[α(ω)]δ(ω − ω′)δlk. (8.8)
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From Eqs. (8.8) and (8.7) it can be seen that the fluctuating dipole depends the polariz-

ability α(ω) and on the function Θ. The dipole correlation function will therefore increase

near the poles of the polarizability α(ω). However, at room temperature Θ(T, ω) is many

order of magnitude larger near infrared frequencies than in the visible spectrum, and falls

off exponentially where the plasmon resonances of metals are usually found. It is therefore

expected that the correlation function of the dipole moment to be much smaller for metals

than dielectrics.

To illustrate, the spectral correlation function of the fluctuating dipole moment within

10 nm Ag and SiC NPs at room temperature is calculated. Since this work focuses on

the coupling of thermal EM with the surface modes of NPs, the current density is plotted

near the resonant frequencies of a SiC and Au spherical NP as can bee seen in Fig.8.1.

For the case of SiC, the resonant frequency of the optical mode is found near 0.1 eV, at

infrared wavelength, where as for Ag it is found in the visible range, near 3.5 eV. At these

energy range fluctuating currents are orders of magnitude larger for SiC than in Ag. Since

Θ(ω, T ) decreases at larger energies, the resonance of the Ag particles is only visible as a

small shoulder, while the resonance of the SiC particle can be clearly appreciated. Since

resonances in metals are usually in the visible part of the spectrum while those of, they are

much more difficult to thermally excite than dielectrics.

Maxwell equations with fluctuating sources

By introducing fluctuating sources into Maxwells equations it is possible to obtain a de-

scription of the EM fields emitted by a body at a temperature T > 0. To this, consider

Maxwell’s equations

∇ · ~D(~r, t) = 4πρ(~r, t), ∇× ~E(~r, t) = −1

c

∂

∂t
~B(~r, t),

∇ · ~B(~r, t) = 0, ∇× ~H(~r, t) =
4π

c
~J(~r, t) +

1

c

∂

∂t
~D(~r, t),

(8.9)

where ~E is an electric field and ~B is a magnetic induction. The displacement field ~D and

magnetic field ~H are defined as

~D = ~E + 4π ~P ,

~H = ~B − 4π ~M,
(8.10)

where ~P and ~M are the electric polarization and magnetization respectively, while ρ(~r, t)

and ~J(~r, t) are charge and current densities. Equations (8.9) describe the relationship
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between sources (ρ, ~J), dielectric properties of the material and the resulting EM fields

( ~E, ~B). Eqs. (8.9) in frequency space are

∇ · ~D(~r, ω) = 4πρ(~r, ω), ∇× ~E(~r, ω) = −1

c
iω ~B(~r, ω),

∇ · ~B(~r, ω) = 0, ∇× ~H(~r, ω) =
4π

c
~J(~r, ω) +

1

c
iω ~D(~r, ω).

(8.11)

The central idea of fluctuational electrodynamics, is to add fluctuating sources ρ(0) and

~J (0), in Maxwell’s equation (117). We add the superscript (0) to differentiate from external

sources, that do not depend on the temperature of the system. The total charge and current

densities can be inserted in Eqs.(8.9). The present work focuses on the case when there

is an absence of external sources, so that Eq.(8.2) only has a fluctuating term. Maxwell’s

equations are reduced to

∇ · ~D(~r, ω) = 4πρ(0)(~r, ω), ∇× ~E(~r, ω) = −1

c
iω ~B(~r, ω),

∇ · ~B(~r, ω) = 0, ∇× ~H(~r, ω) =
4π

c
~J (0)(~r, ω) +

1

c
iω ~D(~r, ω),

(8.12)

consequently fields ~E , ~D , ~B and ~H are fluctuating and satisfy the conditions
〈
~X
〉

= 0

where ~X = ~E, ~D, ~B, ~H. These equations must be solved in addition with adequate boundary

conditions to take into account discontinuities at the interface between media. Furthermore,

the theory assumes that ρ(0) and ~J (0) act as isolated sources, in the sense that they are not

effected by the EM fields, and only depend on the temperature and dielectric properties of

the emitting body (117).

A method commonly used to solve Maxwell’s equations is by using the Green function.

In frequency space, the fluctuating sources and the fields they generate are related by means

of (18)

~E(ω,~r) = iωµ0

∫
V

d~r′GE(~r, ~r′, ω) · ~J (0)(ω, ~r′),

~H(ω,~r) =

∫
V

d~r′GH(~r, ~r′, ω) · ~J (0)(ω, ~r′),

(8.13)

where GH y GE are second-order tensors known as magnetic and electric Green functions.

These relate the current density at a point ~r prime with the electric and magnetic fields at

another point ~r. Due to the linear relation that exists between the source and the field,

and by using condition
〈
~J (0)(~r, t)

〉
= 0, it can be concluded that the statistical average of

the EM fields is also zero. However, quantities of the form

〈
Ei(~r, ω)E∗j (~r

′, ω′)
〉

= −ωω′µ2
0

∫
d~r′′
∫
d~r′′′GE

ik(~r, ~r
′′, ω)G∗Ejn (~r′, ~r′′′, ω′)

〈
J
(0)
k (~r′′, ω)J∗(0)n (~r′′′, ω′)

〉
.
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are written in terms of
〈
J
(0)
k (~r′′, ω)J

∗(0)
n (~r′′′, ω′)

〉
which is related to the temporal correlation

function of ~J (0)(~r′′, t). To illustrate this, consider de following temporal correlation function〈
J (0)
n (~r, t)J

∗(0)
k (~r, t′)

〉
, (8.14)

where Jn y Jk are the Cartesian coordinates of the current density ~j(~r, t). The temporal

Fourier transform is

~J(~r, t) =

∫ ∞
−∞

~J(~r, ω)e−iωtdω,

substituting in Eq. (8.14)〈
~J (0)
n (~r, t) ~J

∗(0)
k (~r, t′)

〉
=

∫ ∞
−∞

∫ ∞
−∞

〈
J
(0)
k (~r, ω)J∗(0)n (~r, ω′)

〉
ei(ωt−ω

′t′)dωdω′. (8.15)

In general, terms of the form
〈
J
(0)
k (~r, ω)J

∗(0)
n (~r, ω′)

〉
6= 0 and can be written in terms

of the system’s temperature using the FTD. Due to this property, the statistical av-

erage of physical quantities of the form
〈
~E(~r, ω) · ~H∗(~r′, ω′)

〉
,
〈
~E(~r, ω) · ~E∗(~r′, ω′)

〉
and〈

~H(~r, ω) · ~H∗(~r′, ω′)
〉

as well as the Poynting vector and the EM energy density will be

different than zero.

8.2 Near-field power exchange: quasi-static approxi-

mation

In the previous section Maxwell’s equations with fluctuating sources were introduced, as well

as a commonly used method to solve them. In this section, the problem of energy transfer

between spherical NPs with small radii compared to thermal wavelength, separated by

nanometric distances is approached. For these cases a quasi-static approach can be used,

and Maxwell’s equations are significantly simplified. In this section a new method that

takes into account full multipolar interaction between NPs and separates the dielectric and

geometric parameters of the system is proposed. This was achieved by a modification of

the spectral representation presented in the first part of this thesis. By taking into account

full interaction, the spectral representation method allows identification of each coupled

mode and its contribution to energy transfer as the dielectric and geometric parameters

of the system are varied. Furthermore, the system’s eigenmodes can be calculated once

the geometrical parameters are fixed. By correctly choosing the dielectric properties of

the particles, the calculated eigenmodes can then me used to enhance or suppress energy

transfer.
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8. MODEL & METHOD

First consider the case of two non-overlapping, non-magnetic, polarizable spheres of radii

a with complex dielectric function ε(ω) at temperatures T1 and T2 respectively, immersed in

a host medium characterized by dielectric constant εh and located at positions ~R1 and ~R2,

where R = |~R2 − ~R1|. A schematic model is shown in Figure (8.2). In the previous part of

this thesis we studied the modification of the local electric field due to the charges induced

on polarizable particles by an external field. In this case, random thermal movement of

charge carriers in each particle generate fluctuating charge distributions which produce

thermal electric fields. The thermal fields, which now take the role of the ”external fields”

of the previous section, induce charges on neighboring particles. Induced charges on each

particle in the system then interact with each other through the near-field.

Figure 8.2: Schematic illustration of the interaction between two particles of radius a with

center to center separation distance R with temperatures T1 and T2.

The rate of energy transfer, or power exchange, from particle 2 to 1 is given by (118? )

W2→1 = −
∫
v1

〈
~J ind1 (~r, t) · ~E2(~r, t)

〉
dv (8.16)

where ~J ind1 (~r, t) is the induced density current in particle 1, ~E2(~r, t) is the total field pro-

duced by particle 2, the brackets represent an average in the statistical sense, i.e. as an

averaging over the probabilities of all possible values at time t (114), and the integral is

performed over v1, the volume of particle 1. In the quasi-static regime, the above equation

can be integrated by parts, and by use of the continuity equation, ∇· ~J(~r, t) = −∂ρ(~r, t)/∂t,

and the divergence theorem, (? ) recast as

W2→1 = −
∫
v1

〈[
∂

∂t
ρind1 (~r, t)

]
V2(~r, t)

〉
dv, (8.17)

where ρind1 (~r, t) is the induced charge distribution on particle 1 and V2(~r, t) is the scalar

potential, such that, −∇V2(~r, t) = ~E2(~r, t).

Taking the Fourier transform, A(t) = 1
2π

∫∞
−∞A(ω)e−iωtdω, of both quantities in the

integral of Eq. (8.17) and deriving respect time, obtain

W2→1 =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

iω

[∫
v1

〈
ρind1 (~r, ω)V2(~r, ω

′)
〉
dv

]
e−i(ω+ω

′)tdωdω′. (8.18)
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8.3 Multipolar spectral representation with fluctuating sources

By taking the multipolar expansion of the potential, V2(~r, ω) =
∑
µ

Vµ2(ω)rµYµ(r̂) (18),

where Yµ(r̂) are the spherical harmonics of order µ, with r = |~r| and r̂ = ~r/r; the volume

integral in Eq. (8.18) can be carried out, such that, it is written as

W2→1(ω) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

iω
∑
µ

〈
Q∗indµ1 (ω)Vµ2(ω

′)
〉
e−i(ω+ω

′)tdωdω′ . (8.19)

Here, Vµ2(ω) is the corresponding µ-th term of the total potential due to particle 2 and

the µ-th multipolar charge distribution is given as, Qµ(ω) =
∫
v
rµρ(~r, ω)Y ∗µ (r̂)dv, where (∗)

means complex conjugated. Thus, Q∗indµ1 (ω) is the complex conjugate of the µ-th multipole

moment on particle 1. Assuming a linear response by the particles to the total external

potential, the µ-th multipole moment satisfies the relation, Qµ1(ω) = −αµ1(ω)Vµ2(ω), where

αµ1(ω) is the particles multipolarizability, so that Eq. (8.19) can be recast as

W2→1(ω) = − 1

4π2

∫ ∞
−∞

∫ ∞
−∞

iω
∑
µ

〈
α∗µ1(ω)V ∗µ2(ω)Vµ2(ω

′)
〉
e−i(ω+ω

′)tdωdω′ (8.20)

To further simplify Eq. (8.20) Vµ2(ω) need to be related to the fluctuating multipoles on

particles 2. It can be achieved by noting that a linear relation exists between ρ02, the fluc-

tuating charge density in particle 2 and V2(~r), due to the Maxwell equations. A multipolar

derivation of the rate of energy transfer or power exchange is presented in the following

subsection.

8.3 Multipolar spectral representation with fluctuat-

ing sources

The total charge density on a given particle can be written as ρ = ρ(0) + ρind, where ρ(0) is

the fluctuating charge density due to the thermal movement of the particles charge carriers

and ρind is the induced charge due to interaction between particles. Consequently, the µ-th

multipole moment on particle i can be written as the sum

Qµi = Q
(0)
µi +Qind

µi , (8.21)

where i can be 1 or 2, and Q
(0)
µi represent the fluctuating multipole terms due to ρ(0) and Qind

µi

the induced multipole moments due to ρind. We stress that Q
(0)
µi , unlike Qind

µi , depends only

on the properties of particle i, such as temperature and dielectric function, but not on the

system configuration, such as number of particles, their separation distances or interaction

with other polarizable objects.
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8. MODEL & METHOD

The µ-th component of the multipolar expansion of the potential acting on particle i

can be written as

Vµi = V
(0)
µi + V ind

µi , (8.22)

where V
(0)
µi and V ind

µi are the potentials due to neighboring particle charge distributions

ρ(0) and ρind respectively. The interaction term V ind
µi is expected to fall off to zero as the

separation distance between particles increases. In this manner, V
(0)
µi can be thought of as

the potential generated by the fluctuating sources in the absence of interaction i.e. as if it

were an isolated particle. As particles are brought together, the term V
(0)
µi induces charge

distributions on neighboring particles, which in turn give rise to V ind
µi . The potential written

in Eq. (8.22) acts on particle i and induces a multipole moment given by Qind
µi = −αµi(ω)Vµi.

Potential Vµi can be further decomposed, writing it in terms of the multipoles on the

neighboring particle, indexed by i′:

Vµi =
∑
µ′

(−1)µ
′
Aµ

′i′

µi Qµ′i′

=
∑
µ′

(−1)µ
′
Aµ

′i′

µi

[
Q

(0)
µ′i′ +Qind

µ′i′

] (8.23)

where Aµ
′i′

µi is the matrix defined in Eq. (4.11). Recall that Aµ
′i′

µi is a matrix that describes

the expansion of the total potential about the center of the i-th particle, as a sum over the

µ′ multipoles of the i′-th particle. Using Eq. (8.23), the induced multipolar moment are

obtained as:

Qind
µi = −2l + 1

4π
αµi(ω)

∑
i′ 6=i

∑
µ′

(−1)µ
′
Aµ

′i′

µi

[
Q

(0)
µ′i′ +Qind

µ′i′

]
(8.24)

where αµi is the multipolarizability of the i-th sphere given in Eq. (4.12). A system of

equations for the induced multipoles Qind
lmi, are obtained as:∑

l′m′i′

[
−u(ω)δl

′

l δ
m′

m δi
′

i +H l′m′,i′

lmi

]
xl′m′,i′ = flm,i, (8.25)

where

xlm,i =
Qind
lm,i

(la2l+1
i )1/2

, flm,i = −(la2l+1
i )1/2

4π

∑
i′′ 6=i

∑
l′′m′′

(−1)l
′′
Al

′′m′′,i′′

lm,i Q
(0)
l′′m′,i′′ ,

H l′m′,i′

lm,i = nl0δll′δmm′δii′ + (−1)l
′ (ll′a2l+1

i a2l
′+1

i′ )1/2

4π
Al

′m′,i′

lm,i . (8.26)

and where u(ω) is a complex spectral variable defined as u(ω) = 1
1−ε(ω)/εh

. In matrix form

we obtain

[−u(ω)I + H] ~X = ~F , (8.27)
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8.3 Multipolar spectral representation with fluctuating sources

where ~X and ~F are vectors whose corresponding elements are xµi and fµi, as defined in

Eq. (8.26). These equations are equivalent to Eqs.(4.14), however the sources now are of a

fluctuating nature. The Greens matrix solutions method can then be carried over to this

problem. The systems Green function is now

Gµ′i′

µi (ω) = −
∑
µ′′i′′

Uµ′′
µ (U−1)µ

′

µ′′

u(ω)− nµ′′
, (8.28)

where U is the unitary matrix that diagonalizes H, such that U−1HU = n, where n is

a diagonal matrix formed by the real and positive eigenvalues of H. It is important to

point out that while resonant conditions of the coupled modes are given by the poles of the

Green function, resonant conditions for the isolated modes can be obtained from the poles

of the polarizabilities Eq. (4.12), which are satisfied whenever Re[u(ω0
s)] = n0

s. Moreover,

as particle separation increases eigenvalues ns tend to ns0 and resonant frequencies of the

coupled modes tend to those of isolated modes: ωs → ω0
s .(82).

Solutions to Eq. (8.27) are found by

~X = G~F , (8.29)

which establishes a method for obtaining the multipole moments. Once multipole moments

are obtained, the total potential can be calculated and set in terms of Q
(0)
µ . Using Eq. (8.29)

and Eq. (8.23) in Eq. (8.22), the µ-th term of the potential acting on particle i can be written

in the form

Vµi =
∑
µ′

χµ
′i′

µi (ω)Q
(0)
µ′i′ , (8.30)

where χµ
′i′

µi (ω) are components of a matrix given by

χµ
′i′

µi (ω) =
∑
µ′′µ′′′

(−1)µ
′′
Aµ

′′i′

µi

[
(−1)µ

′+1(a2µ
′′+1

i′ µ′′a2µ
′′′+1

i µ′′′)1/2

4π
Aµ

′i′

µ′′′iG
µ′′′i
µ′′i′(ω) + δµ

′

µ′′

]
. (8.31)

From the above equation it is possible to identify terms describing different contributions to

potential Vµi. For instance, the first term describes interaction between induced multipoles

and retains information of coupled modes through Greens function Gµ′′′

µ′′ (ω). Meanwhile,

the second term in Eq. (8.31) describes first interaction of the thermal fields with particles,

i.e., the single scattering approximation or without coupling. Dependence of each term

on particle separation distance can be obtained using Eq. (??) where, Aµ
′
µ ∝ 1/Rµ+µ′+1.

Therefore first terms in brackets in Eq. (8.31) fall off as 1/Rµ+µ′+µ′′+µ′′′+2 while second

terms as 1/Rµ+µ′′+1. Consequently, terms describing interaction fall off more rapidly than
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8. MODEL & METHOD

those without coupling. Thus, at large separation distances, single scattering terms will

dominate and interaction terms will be negligible. However, at short separation distance

the interaction terms can modify the near-field and now, they are not longer negligible.

8.4 Eigenmode Description of Power Exchange

In Eq. (8.20) an expression that describes power exchange between particles in the quasi-

static limit and a relation between the multipolar moments on each particle and the total

potential Eq. (8.31) was presented. Using these expressions in Eq. (8.20) a multipolar

representation of energy transfer is obtained

W2→1(ω) = − 1

4π2

∫ ∞
−∞

∫ ∞
−∞

iω
∑
µ,µ′,µ′′

α∗µ1(ω)χ∗µ
′2

µ1 (ω)χµ
′′2
µ1 (ω′) (8.32)

×
〈
Q
∗(0)
µ′2 (ω)Q

(0)
µ′′2(ω

′)
〉
e−i(ω+ω

′)tdωdω′ .

Using the fluctuation-disipation theorem given by (111, 118)〈
Q
∗(0)
µi (ω)Q

(0)
µ′i′(ω

′)
〉

=
4π

ω
Θ (Ti, ω) Im[αµi(ω)]δ(ω′ + ω)δµµ′δii′ , (8.33)

where Θ (Ti, ω) = ~ω
e~ω/kBT−1 , Eq. (8.32) takes the form

W2→1 =

∫ ∞
0

2

π

∑
µ,µ′

Im[αµ1(ω)]Im[αµ′2(ω)]
∣∣∣χµ′2µ1 (ω)

∣∣∣2 Θ(T2, ω)dω. (8.34)

Here, each particle is taken to be in local thermal equilibrium allowing the fluctuating

multipole moments to be characterized by the fluctuation-dissipation theorem.

Calculating an equivalent quantity for the power exchange from particle 1 to particle 2,

the net power exchange at frequency ω between particles is

W (ω) = W2→1(ω)−W1→2(ω)

=
2

π

∑
µ,µ′

Im[αµ1(ω)]Im[αµ′2(ω)]
∣∣∣χµ′µ (ω)

∣∣∣2 {Θ(T2, ω)−Θ(T1, ω)} .
(8.35)

where
∣∣∣χµ′2µ1 (ω)

∣∣∣ =
∣∣∣χµ′1µ2 (ω)

∣∣∣ is used and therefore omit the i and i′ indexes. In the case of

more than two particles, a quantity equivalent to Eq. 8.35 can be calculated for the set of

particles i and j by a simple substitution of indexes. Total power exchange is found by

integrating over all frequencies, and can be cast into the form

Wtot =

∫ ∞
0

Φ(ω) {Θ(T2, ω)−Θ(T1, ω)} dω, (8.36)
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where

Φ(ω) =
2

π

∑
µ,µ′

Im[αµ1(ω)]Im[αµ′2(ω)]
∣∣∣χµ′µ (ω)

∣∣∣2 , (8.37)

is a dimensionless generalized flux that carries the geometric and dielectric parameters of

the system. From Eq. (8.37) notice that the generalized flux depends on particle radius

and separation distances through the polarizablities and through χµ
′
µ (ω). Naturally, larger

volumes and closer proximity between particles, lead to larger flux. Furthermore, from

Eq. (8.37) it can be seen that Φ(ω) will increase when Im[αµ] or χµ
′
µ (ω) are large. It can

be associated with two frequency-dependent mechanisms which modulate the generalized

flux: the excitation of isolated particle modes, given through the multipolarizabilities, and

excitation of the system’s coupled modes, given through χµ
′
µ (ω). Recall that resonant

conditions of the isolated modes are met when u(ω) = n0
l , while those for coupled modes

when u(ω) = nµ, with the additional condition that Im[u(ω)] � 1. Consequently, the

inclusion of coupled modes provide an additional mechanism through which energy can be

transferred, mainly when resonant conditions are met.

8.5 Method outline: heat transfer

In this section we outline the procedure to obtain the radiative energy transfer in a system

of NPs.

1. Dielectric parameters: Choose the NPs and host matrix material and the correspond-

ing model dielectric function.

2. Geometric parameters: The number of particles, particle radius, positions and tem-

peratures are defined. We point out that the SR allows the modeling of particles of

different particle sizes, as long as radi are smaller than the exciting wavelength.

3. Calculation of geometric matrices: Once the geometric parameters are defined, the

matrices A and H can be calculated using Eqs. (4.11) and (8.26) respectively. These

matrices only depend on the geometric parameters of the system and are completely

defined once the particle radii and positions are chosen.

4. Calculation of Green’s Matrix: Once matrix H is obtained, its eigenvectors and eigen-

values are calculated via an eigen decomposition method. Using the spectral variable,

eigenvectors and eigenvalues, Eq. (4.16) is used to calculate the Greens matrix at a

given frequency. The Green matrix holds the information of the system’s normal
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modes. Resonant frequencies of the system can be found by calculating the poles of

the matrix.

5. Using interaction matrix A and the Green matrix G we can define the response matrix

χ shown in Eq. (8.31).

6. Once the response matrix χ is found, heat flux spectrum and total rate of energy

transfer can be calculated using Eq.(8.36)
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Chapter 9

Results

In this chapter we present the main results obtained with the fluctuating multipolar spec-

tral method. First, to illustrate the method, energy transfer between a dimer of dielectric

spheres is analyzed in the dipolar approxaimation. This allows analytical expressions of the

energy flux spectrum and a simple tracking of the modes of the system and their contri-

bution to energy transfer. We then analyze the same system taking into consideration full

multipolar interaction and compare these results with the dipole approximation. Finally,

we consider the case of a trimer of spheres. The rate of energy transfer is calculated between

particles and compared to the case of a dimer. With this method it is possible to consider

small separation distances, i. e. cases where the center to center separation distances is

R < 3a.

9.1 Dipolar Interaction

Let us verify our method by comparing with exiting theories within the dipolar approxima-

tion. Then, we identify the effects due to the coupling between dipolar modes. So, defining

Lmax as the highest order multipole taken into account, indexes l and m can take values

l = 1, 2, ...Lmax and once l is given m = −l, ..., 0, ..., l. As a first example, we consider the

case of two spheres in the dipole approximation, which is achieved by taking Lmax = 1 and

then, m = −1, 0, 1. The problem of power exchange by two interacting dipoles, including

radiation terms, has been studied in the single scattering approximation (107) and with

coupling or full interaction(109).

Within the dipole approximation and using the spectral representation, the generalized
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flux in Eq. (8.35) is reduced to three terms

Φ(ω) =
2

π
Im[α1(ω)]Im[α2(ω)]

×
1∑

m=−1

{[
A1m

1m

]4 [
G1m

1m(ω)
]2

+ 2
[
A1m

1m

]3
Re[G1m

1m(ω)] +
[
A1m

1m

]2}
,

(9.1)

where matrix elements from Eq. (??) are: A1m
1m = (−1) 4π

R3

(
1
3

)
if m = ±1 and A1m

1m = 4π
R3

(
2
3

)
if m = 0. The first two terms result from the coupling or full interaction and are multiplied

by the Green function in Eq. (8.28), while the last term is given by the single scattering. In

this particular case, A1m
1m ∝ 1/R3, so that the last term in Eq. (9.1) falls off as 1/R6 while

the remaining terms fall off as 1/R9 and 1/R12. Consequently, for large separations power

exchange is dominated by its last term, which describes the interaction of the thermal fields

in the single scattering approximation. Moreover, at large separations, coupled modes of

the system tend to zero and Eq. (9.1) tends to that derived by Volokitin et al. (104) and

Chapuis et. al. (107) taking the quasi-static limit. However, at smaller separations, coupled

terms are comparable to single scattering terms, and provide additional channels through

which energy can be transferred, particularly when resonant conditions are met. By keeping

all terms in Eq. (9.1) we recover the formalism of interacting dipoles used for example by

Manjavancas (109).

To further illustrate, we consider two systems comprised of spherical SiC particles, which

support surface modes in the infrared which can be more easily excited by thermal fields

near room temperatures. To explore geometrical factors besides the separation distance,

we consider dimer A with particle radii a1 = a2 = 5.0 nm and dimer B with radii a1 =

2.5 nm and a2 = 7.5 nm. The parameters for the Drude-Lorentz dielectric function of SiC

were taken from Joulain et al. (21). In Figure (9.1) we compare Φ(ω) calculated using

Eq. (9.1) and equations found in reference (107), at two different separation distances for

both systems. We can see that Φ(ω) is larger for dimer A for both separations distances by

nearly half order of magnitude. This is because Φ(ω) depends on the multiplication of the

volume of the spheres(107), which is larger for dimer A. In Figure (9.1) a) and b) particle

centers are separated by R = 35 nm. For this configuration interaction between spheres

is negligible and the spectrum calculated using Eq. (9.1) and equations found in Ref. 107

match perfectly. Notice that one peak is observed, corresponding to an energy of the dipole

resonant frequency of an isolated SiC sphere. From the definition of dipole polarizability,

α(ω) ∝ [1/3− u(ω)]−1 we obtain that the resonant energy is found at 0.1154 eV.

We point out that the total number of modes that are obtained depends on the value of

Lmax and the number of particles in the system. For two particles in the dipole approxima-
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Figure 9.1: Φ(ω) in the dipole approximation (Lmax = 1) for dimer A (left) and dimer B

(right) separated by a) and b) 35 nm and c) and d) 11 nm. Solid line is calculated with

coupling using Eq. (9.1) and dotted using single scattering approximation (without coupling)

in Ref. [104]. In e) and f) the real (black line) and imaginary (gray line) part of the spectral

variable are shown and their intersection with coupled modes shown in horizontal lines.
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tion Lmax = 1 and m = −1, 0, 1, a total of 6 eigenmodes are obtained. At large separations,

the interaction between particles is negligible resulting in one mode six-time degenerate.

Therefore, at R = 35 nm the system behaves as two isolated spheres and all eigenvalues ns

tend to that of an isolated sphere, n0 = 1/3. When particles are brought closer together,

interaction breaks symmetry, partially removing degeneracy of the modes and shifting the

resonant frequencies with respect to isolated modes. From Table 9.1 it can bee seen that

at R = 11 nm eigenmodes corresponding to m = 0 are non degenerate. This is due to the

breaking of symmetry in the z direction, parallel to the axis that joins the center of the

spheres. Meanwhile modes with indexes m = −1, 1 are doubly degenerate, reflecting the

symmetry that exist in the x-y directions. Furthermore, shift of the resonant frequencies is

larger for dimer A than dimer B. This can be traced to the dependence of the interaction

terms on the multiplication of the volume of spheres, as can be seen in Eq. (8.26), which

is larger for dimer A than dimer B. A stronger interaction gives rise to a larger frequency

shift of the modes. In Fig. 9.1 c) and d), Φ(ω) is shown for R = 11 nm. In contrast

to the case of R = 35 nm, two additional shoulders can be seen in the spectrum, which

corresponds to an excitation of coupled modes. This is corroborated in Figure (9.1) e) and

f) where the spectral variable is shown along with the eigenvalues of the coupled modes

of the system, where resonant conditions are met when Re [u(ω)] = ns. The spectrum is

asymmetric since the shoulder at smaller energies are more intense than those at larger

energies. The asymmetry in the spectrum can be traced to the fact that modes at lower

energy correspond to smaller values of Im[u(ω)], and therefore are excited more intensely.

In Figure (9.2) we show the calculated power exchange for dimer A and B varying

the separation distance, using Eq. (8.36). To show how the coupled modes modify power

exchange, we compare it with results within the single scattering approximation or without

coupling. Power exchange was done by integrating the power spectrum from 0.1100 −
0.1200 eV, as contributions from the rest of the range were negligible. Since power exchange

depends on the polarizabilities which are proportional to the product of particle volumes,

dimer A has more substantial power exchange than dimer B for all distances. It is seen

that for R > 20 nm, interaction becomes negligible. Moreover, at these separation distances

power exchange falls off as 1/R6. As particles are brought closer, interaction causes power

exchange to deviate from that calculated in the single scattering approximation or without

coupling. At R = 11 nm, single scattering terms account for only 25 % of the power

exchange in dimer A and up to 35 % in dimer B. It can be argued that interaction between

particles generates coupled modes, which are additional channels through which energy may

90



9.1 Dipolar Interaction

Dimer A: a1 = a2 = 5.0 nm

m Eigenvalue (ns) Resonant Energy (eV)

0 0.271 0.1142

0 0.396 0.1163

1,-1 0.302 0.1149

1,-1 0.365 0.1160

Dimer B: a1 = 2.5 nm, a2 = 7.5 nm

m Eigenvalue (ns) Resonant Energy (eV)

0 0.293 0.1147

0 0.374 0.1160

1,-1 0.313 0.1151

1,-1 0.354 0.1158

Table 9.1: Eigenvalues and resonant frequencies of the coupled modes of dimer A and B

with R = 11 nm in the dipole approximation.

be transferred. These are the same mechanisms that bring about an enhancement of the

electric field near the sphere’s surface when exciting coupled modes(? ). Almost an order

of magnitude increases total power exchange, consequently, at small separation distances,

it is insufficient to work in the single scattering approximation or when mode coupling is

not taken into account.

Summarizing, for large separation distances the system’s eigenmodes tend to those of

found using single scattering (82). As separation decreases and interaction is stronger, the

degeneracy of the system’s modes is broken and shifted concerning isolated modes. Φ(ω)

undergoes an overall broadening with decreasing separation distance due to the shift of the

resonant frequencies of the system’s modes, as well as an increase in intensity. At small

distances, full scattering effects mainly contribute to the Φ(ω) and should be included in

power exchange calculations. Therefore, the single scattering approximation at distances

comparable to the particle radius is insufficient and coupling between modes becomes es-

sential.
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Figure 9.2: Power exchange at the dipole approximation as a function of separation, d =

R− a1 − a2, for dimer A and dimer B, where SiC spheres are at 300 and 400 K.

9.2 Multipolar Interaction

It is known that at small separation distances multipolar interactions beyond the dipolar

are needed to correctly describe the coupled modes of the system and consequently the

power exchange between particles. (82, 111) In the following section we include higher

order multipoles to calculate Φ(ω) and show its dependence with the maximum order of

multipole interactions considered. We label by Lmax the order of the multipole approxima-

tion considered, to define convergence criteria. It is done by increasing the number of Lmax

until the largest difference between calculated Φ(ω) spectrum is less than 1 %, which for

the systems considered here it is achieved by taking Lmax = 50. The convergence criteria

used, as well as the number of multipolar terms required to obtain consistent solutions,

depends on the specific problem and has been discussed in the literature in the context of

electromagnetic scattering and near-field interaction between particles. (119) In general,

the Lmax needed for convergence increases as the separation distance decreases. (119)

In Figure (9.3) we show Φ(ω) for two SiC particles of 5 nm radius with varying values

of R. While the maximum intensity of the generalized flux is not significantly increased,

an overall broadening of the spectrum, with respect to the dipole approximation, is easily

appreciated. We have included the dipolar case in Figure (9.3) for comparison. From

Eqs. (8.31) and (8.37) we recall that both coupled and isolated modes contribute to Φ(ω).

The overall broadening of the spectrum can be attributed to the excitation of both coupled

and isolated modes. For example, because resonant frequencies of isolated modes do not

depend on separation distance, we can identify the non-coupled dipole resonance, at the
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Figure 9.3: Generalized flux with all multipoles of dimer A with varying center to center

separation distance for R = 11, 12, 13, and 14 nm. Systems with uncoupled and coupled

modes corresponding to the dipolar approximation at R = 11 nm are also shown.

same energy of 0.1154 eV for all values of R, as well as the non-coupled quadrupolar

excitation at 0.1164 eV. Peaks found at higher energies, between 0.1160 − 0.1180 eV, are

mainly due to non-coupled modes of higher order than dipole and quadrupole. In contrast,

the shoulders found below 0.1154 eV, which vary with separation distance, can be associated

primarily to the excitation of coupled high-multipolar modes with the dipole mode. As

separation distance between NPs decreases, the resonant frequency of this mode is red-

shifted to energies with smaller Im[u(ω)] and therefore are excited more intensely.

In Figure (9.4) we show the total power exchange between two SiC spheres at tem-

peratures T2 = 400◦ K and T1 = 300◦ K with radius a1 = a2 = 5 nm. The integration

limits for calculation of the power exchange are taken to be 0.1000− 0.1500 eV. By varying

the limits we verified that contributions from the rest of the spectrum are not significant

for SiC spheres at the temperatures considered. Furthermore comparing Figures (9.3) and

(9.2), it can be seen that inclusion of multipolar interactions provides more active modes

for energy transfer and the power exchange for all separation distances compared to the

dipole approximation increases. For R > 20 nm power exchange falls off as R−6, therefore

defining the region where the dipole approximation is valid. However at smaller values of

R power exchange increases at a faster rate than predicted by the dipole approximation.
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Figure 9.4: Total power exchange for temperatures T1 = 400 and T2 = 300 at the non-

interacting dipole, interacting dipole and interacting multipole (Lmax = 50) plotted against

separation distance d = R− 2a for dimer A.

Power exchange due to the inclusion of multipoles increases by nearly a factor of three

compared to the dipole single scattering approximation and nearly doubles compared to the

interacting dipole approximation as can be seen in Figure (9.4). As expected, inclusion of

coupling increases power exchange when compared to the single scattering approximation.

As a final remark, power exchange between particles depends on the multiplication of the

volume of the spheres. Therefore, dimer A shows largest power exchange and this decreases

as the system becomes more asymmetric, in other words, when the ratio between spheres

a1/a2 is different from unity. Furthermore, contribution to power exchange due to coupled

modes increases as the system becomes more symmetric, i.e., a1/a2 tends to one. For

example, in dimer A with R ≈ 11 nm, coupled modes contribute up to nearly 25% of total

power exchange between particles.

9.3 Effects of many-body multipolar interactions

In this section we use a system comprised of three spherical particles, aligned on a same axis,

to illustrate collective effects. Emergent phenomena due to many particle interactions, have

been studied largely using the coupled dipole approximation (120). As we have discussed,

this is valid for cases where the ratio of radius to center-center separation distance is larger
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9.3 Effects of many-body multipolar interactions

than R/a ≈ 3. However, at smaller ratios, i.e. smaller separation distances for a fixed

radius, the dipole approximation is no longer valid and multipolar interactions become

important. The multipolar spectral representation presented in this work, allows us to

investigate the many-body interactions in closely spaced particles.

We compare the power exchange between two 5 nm SiC particles separated by a center-

center distance R (dimer) and two 5 nm SiC particles separated by the same distance R

with a third particle of the same radius whose center lies at the midpoint (trimer). The

condition R ≥ 4a must hold to avoid overlapping of particles. In Figure (9.5) we show

the flux spectrum between particle 1 and 2 with a separation distance of 22 nm for the

dimer and trimer. It can be seen that the flux spectrum of the dimer is dominated by the

isolated resonances of the dipolar mode, with a small contribution from the quadrupolar

one. In this system coupled modes have contribute little to the flux spectrum compared to

the isolated modes. In contrast to dimer, the flux spectrum of the trimer has a contribution

from the isolated dipole, quadrupole and octupole modes. Furthermore, multipolar coupled

modes have a large contribution, with peak intensities of coupled modes comparable to the

peak intensities of the dipolar isolated mode. It is seen that there is an overall broadening

of the spectrum, in particular for energies smaller than the dipole resonance. This can

be explained by noticing that at this energy range, the imaginary part of the spectral

variable decreases with decreasing energy and therefore modes at this smaller energies

couple stronger to the fluctuating thermal fields of the other particles. Consequently, for

this separation distance, coupled modes that are shifted to lower energies with respect to

their corresponding isolated mode will contribute larger to the spectrum than those that

are shifted towards higher energies.

For the following analysis it is convenient to define a normalized heat flux as

ϕ(ω) = Φ
(trimer)
1→2 /Φ

(dimer)
1→2 (9.2)

where Φ
(dimer)
1→2 is the spectral heat flux from particle 1 to particle 2 in the dimer and Φ

(trimer)
1→2

is the heat flux from particle 1 to particle 2 in the trimer. An equivalent quantity for the

total power exchange can be defined as P = P
(trimer)
1→2 /P

(dimer)
1→2 . In Figure (9.6) we show the

enhancement of the flux spectrum and power exchange with varying separation distance

when particles 1 and 2 are at 400 and 300 K respectively. Since we calculate energy transfer

between particles 1 and 2, only the temperatures of these particles enter into the power

exchange equation. For simplicity we consider the middle particle to be at temperature

T3 = 0, so that it does not generate additional fields. Inclusion of multipole interaction

allows the consideration of small separation distances where the dipole approximation is no
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9.3 Effects of many-body multipolar interactions

longer accurate.

In Figure (9.6) we show power enhancement versus the ratio of separation distance

to sphere radius R/a. It can be seen that a power enhancement (P ) curve is obtained

similar to those found in references (120) where a coupled dipole approximation is used.

Results show that an enhancement of power exchange of up to an order of magnitude was

found due to interactions with a third body. However, this enhancement falls off quickly

as separation distance is increased. We point out that this tendency is not monotonic, but

rather has a maximum for a given separation distance. To help understand this behavior

and the role of coupled modes in the enhancement of power exchange, in Figure (9.6)

we show the normalized and generalized heat flux spectrum calculated at and near the

maximum of enhancement. We point out that the generalized flux in Figure (9.6) (c)

is in a log scale, and that largest contribution to total energy transfer comes from the

region localized near the non-coupled dipoles resonance, at the same energy of 0.1154 eV.

For configurations with ratios R/a > 6.5 there is a tendency of increasing enhancement

with decreasing separations distance. We notice that normalized flux for the R/a = 7.0

and R/a = 6.5 configurations are very similar for energies near the non-coupled dipole

resonance. This is en part due to the fact that resonant energies of coupled modes are

distributed near 0.1154 for both configurations. However, coupled modes in the R/a =

6.5 configuration can be excited more strongly by the thermal fields than in the R/a =

7.0 due to the smaller separation distance. For configurations with ratios R/a < 6.5 a

tendency of decreasing enhancement with decreasing separation distance is observed. In

particular, for a ratio of R/a = 6.0, an increase of the normalized flux can be seen at nearly

all energies, except near the non-coupled dipole resonance. This is because interaction

between particles shifts the resonant energies of the coupled modes away from non-coupled

resonant energy. Consequently, even though enhancement at the non-coupled resonance

is only slightly less than the enhancement at this same energy for R/a = 6.5, the overall

effect is a decrease in total energy transfer. Therefore, for smaller ratios than R/a = 6.5,

although the normalized flux continues to increase with decreasing separation distance,

coupled modes are not excited as strongly at 0.1154 eV, leading to a smaller enhancement

of power exchange.

From these results we can see that heat flux spectrum is enhanced by more than an order

of magnitude for certain energies and separation distances, leading to an enhancement of

power exchange of up to an order of magnitude. It is seen that multipolar modes play

an important role at separation distances comparable to the radius of the spheres, which
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Figure 9.6: Enhancement of power exchange in the trimer system when compared to the

dimer.

previously have not been considered in many body systems. Inclusion of a third sphere

opens new channels of energy transfer compared to the dimer even though the third particle

is taken to be at zero temperature. An overall broadening of flux spectrum is observed, as

in the two particle case, however in three particle system the intensity and broadening of

flux spectrum is much larger.
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Chapter 10

Conclusions k

A study of the role of coupled surface modes in radiative energy transfer between small

spherical nanoparticles mediated by multipolar interactions was presented. The impor-

tance of including multipolar distributions as well as full interaction and coupling between

particles at nanometer separation distances was shown, and an identification of the regime

where the single scattering approximation is valid was obtained. An analysis was presented

of how multipolar interaction affects coupled surface modes which are additional channels

through which energy is transferred and which is commonly neglected or calculated at the

dipole level increasing energy transfer nearly an order of magnitude. Furthermore, it is

shown that excitation of multipole coupled modes brings about an overall broadening of

the flux spectrum leading to a substantial increase of power exchange compared to the

single scattering or dipole approximations. The increase of energy transfer brought about

by the excitation of multipolar coupled modes at nanometric separation distances may help

account for deviations observed in experiments when compared to current models. This was

achieved by developing a new method that combines the fluctuation-dissipation theorem

and a multipolar spectral representation which separates dielectric and geometric parame-

ters of the system, allowing unambiguous identification of coupled surface modes. With this

formalism, we have also studied the radiative energy transfer in a system of three particles

with varying separation distance. The inclusion of multipole interactions was used to study

many body effects at small separation distances where the dipole approximation has been

typically used but is insufficient to describe full interactions. Optimal parameters for the

enhancement of energy transfer, of up to an order of magnitude due to a third particle were

found which were found to depend on the tendencies of the coupled modes of the system.

In the trimer system, heat flux spectrum is enhanced by up to 2 orders of magnitude for

specific energies and separation distances leading to an enhancement of power exchange of

up to an order of magnitude relative to the dimer.
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10. CONCLUSIONS K

In this thesis we have studied the multipolar nearf-field radiative heat transfer between

dielectric NPs, however much room is left for future work. For example, the radiative heat

tranfer between multilayer planar materials has been recently studied by Perez-Rodriguez

et. al. (121). In the work by Perez-Rodriguez, heat transfer is controlled by modifying the

dielectric properties one of the layered media by adding nanocavities or NPs. The incrusta-

tion and porosity are added in a random manner and described by effective medium theory

and shift the polariton resonance of the material. The question remains of how energy

transfer would be effected by adding closely spaced and/or ordered NPs or nanocavities.

Furthermore, by using the method presented in this thesis, large filling factors and small

separation distances between particles could be studied.

Along a similar line, much recent research has been focused on the optical properties of

plasmomic hexagonal lattices and hexagonal ribbons (122). Many of the electronic prop-

erties found in 2-d systems such as graphene have found an analogy plasmonic arrays.

For example, the plasmonic band structure found in 2-d hexagonal systems composed of

metallic NPs, posses Dirac cones in the K points of the Brilluoin zone. Likewise, the band

structure of plasmonic honeycomb ribbons, posses edge states which give rise to flat edge

bands, similar to those found in graphene ribbons. However, the modeling of these systems

has been carried out mainly in the dipole approximation and remains valid for separa-

tion distnaces comparable to the particle radius. The question remains of how multipolar

interaction could effect the plasmonic bands and other optical properties of the system.
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Appendix A

Dielectric Function for metallic nanoparticles

In chapter 2 we discussed a model to obtain the dielectric function of bulk metals which

describes the response of nearly free electrons to an external EM field. This model accounts

for what is known as intraband transitions. Intraband contributions come from electron

transitions at the Fermi level in incompletely filled bands, or when a filled band overlaps

in energy with an empty band. These transitions also provide an absorption mechanism

but at lower energies. Electrons at the Fermi level in metals are excited by photons of very

small energies, such that, they are essentially “free” electrons. However, when modeling

the dielectric function of metallic nanoparticles, modifications must me made to describe

size effects and possible intraband transitions. Interband contributions are due to electron

transitions from occupied to empty bulk bands separated by an energy gap. The electrons

are bound by a restoring force given by the energy difference between ground and excited

electronic states in metals, usually at the ultra violet (UV) region. These effects can usu-

ally be explained satisfactorily with classical EM theory and a size-adapted bulk dielectric

constants. Experimentally measured dielectric functions εexp(ω), have contributions from

interband (inter) and intraband (intra) electron transitions, which we assume are additive

so that the total dielectric function is written as

ε(ω) = εinter(ω) + εintra(ω) (A.1)

Intraband transitions are described by the drude model

εintra(ω) = 1−
ω2
p

ω(ω + iγω)
(A.2)

where ωp is the plasma frequency and 1/τ the damping constant which is related to the

dispersion of electrons. Since are interested in small nanoparticles we have to consider

that electrons can be also dispersed by the NP surface, because the free electron’s mean

free path is now comparable or larger than the dimension of the particle. Therefore, it is
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A. DIELECTRIC FUNCTION FOR METALLIC NANOPARTICLES

Figure A.1: Absorption spectrum of two Ag nanoparticles of a = 12 nm for different gap

separation, where center to center separation is given as R = 2a + d. The case of an iso-

lated particle is also shown (top). Electric field enhancement of the isolated particle and the

interacting particles separated by 1 nm (bottom).

necessary to include an extra damping term τ(a) to εexp , due to the surface scattering of

the “free” electrons. The surface dispersion not only depends on the particle size, but also

on its shape.

To include surface dispersion we need modify the intraband contributions by changing

the damping term. From Eq.(A.2), we obtain the input of the bound charges by sub-

tracting the free electron contribution from the bulk dielectric function. The free electron

contributions are calculated with Drude and using the theoretical values of ωp. Now, we

include the surface damping by adding the extra damping term τ(a) to the Drude model.

Finally, we obtain a dielectric function, which also depends on he NP size, and includes the

contributions of (i) the free electrons, (ii) surface damping, and (iii) interband transitions

or bound electrons, given by

ε(ω, a) = εinter(ω) + εintra(ω)

= [εexp(ω)− εintra(ω)] +

[
1−

ω2
p

ω(ω + iγω)

] (A.3)

dispersion of a sphere of radius a given by 1/τ(a) = vf/a, where vf is the fermi velocity of

the free electrons. The smaller the particle, the more important is the surface dispersion

effect.
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Appendix B

Fluctuation-Dissipation Theorem

Charge carriers within a body at temperature T > 0, undergo random thermal movement,

which results in fluctuating charge distributions and current densities. The statistical de-

scription of the fluctuating sources is obtained by means of the fluctuation-dissipation

theorem (FDT), which provides a general relationship between the dissipation properties of

a system and its thermal fluctuations. Therefor, the statistical behavior of thermal fluctua-

tions can be described in terms of the system’s dissipative properties. The theorem is based

on work done by Nyquist (123), who studied voltage fluctuations through a resistance. The

generalized form of the theorem was derived by Callen and Welton using quantum theory

(124). In the context of fluctuational electrodynamics, the FDT is usually derived in its

quantum form (114, 124) and then applied in macroscopic electromagnetic theory, convert-

ing the fluctuational electrodynamics into a semiclassical theory (125). Since our system of

polarizable particles is macroscopic, in the FDT is also developed in a classical way, however

to take into account the quantization of electromagnetic modes, necessary for the correct

description of thermal radiation, a quantum term is introduced at end of the derivation.

Assume that a system of N particles is in thermodynamic equilibrium at a temperature

T and can be described using a canonical assembly. The state of the system is determined

by its generalized coordinates s = [~q1...~qN ; ~p1, ....~pN ]. Taking x = x(s(t)) as a dynamical

variable of the system 1 whose expectation value can be calculated as

〈x(t)〉 =

∫
dsρ(s)x(s, t)∫

dsρ(s)
, (B.1)

where ρ(s) = e−H/kBT , H the Hamiltonian of the system. In stationary systems, such as

systems in equilibrium, the expected value is independent of time so that 〈x(t)〉 = 〈x〉.
1 Variable x is dependent on time through the generalized coordinates of the system

x(s(t)) = x(~qN (t), ~pN (t)).
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B. FLUCTUATION-DISSIPATION THEOREM

It is considered that the system is subject to a perturbation force dependent on time

f(t) and that it is coupled to the amount x(s), so that it generates a perturbative term in

the Hamiltonian of the system given by

H ′ = −x(s)f(t). (B.2)

For example, f(t) can be an external electric field ~Eext(t) and x(s) the electric dipole

moment that the field induces in the body, so that the interaction potential is given by

−~p · ~Eext(t). Denoting the fluctuations of x as

X(t) = 〈x(t)〉 − 〈x〉 , (B.3)

where 〈x〉 is the expectation value in thermodynamic equilibrium. Eq. (B.3) describes

deviations from the expected value.

For a system in equilibrium the average of the fluctuations is zero 〈X(t)〉 = 0, however

for a system subject to an external force, the generalized susceptibility is defined α̂ as an

operator that relates the perturbative force f(t) and the average value 〈X(t)〉

〈X(t)〉 = α̂f(t) =

∫ t

−∞
α̃(t− t′)f(t′)dt′, (B.4)

where α̃(t − t′) is a function of time that depends on the properties of the system. It has

been assumed that the system is stationary i.e. is independent of the temporary origin so

that α(t, t′) = α̃(t− t′) is satisfied. The response of the system to the disturbance must be

causal so that α̃(t− t′) = 0 if t > t′.

The FDT seeks to obtain an expression of the generalized susceptibility in terms of

the statistical properties of the system. To simplify the deduction and analyze the physical

implications of the theorem, a specific form of the perturbative force is considered, however,

the result obtained is equal to the general case. A more detailed and general derivation

can be found, for example, in works by Kubo (126), Landau (114). Considering a system

where the perturbative force is applied from an infinite time in the past and is “ turned off

” at time t = 0. So that

f(t) = f0 si t < 0,

f(t) = 0 si t > 0.

Eq. (??) can be reduced to

〈X(t)〉 = f0

∫ ∞
t

α̃(τ)dτ, (B.5)
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where τ = t − t′. Assuming that the generalized susceptibility and its derivative tend to

zero for times t→∞, the generalized susceptibility can be cleared to obtain

α̃(t) =
Θ(t)

f0

d

dt
〈X(t)〉 , (B.6)

where Θ(t) is the Heavside function, which guarantees causality (α̃(t − t′ = 0) for t′ > t).

The expected value of the fluctuations 〈X(t)〉 can be related to the correlation function

of x using the Eq.(B.1) and expanding the distribution function ρ. At time t = 0 the

distribution function is given by

ρ(s) ∝ e−(H0+H′)/kBT = ρ0e
−H′/kBT = ρ0

[
1− 1

kBT
H ′ + ...

]
, (B.7)

where ρ0 = e−H/kBT . Inserting Eq.(B.7) in Eq.(B.1) and expanding to first order in the

perturbation H ′

〈x(t)〉 = 〈x〉 − 1

kBT
[〈H ′(s)x(s, t)〉 − 〈H ′(s)〉 〈x(s, t)〉] , (B.8)

donde al tomar los promedios estad́ısticos 〈...〉 se utiliza la función de distribución sin la

perturbación ρ0. Dado que al tiempo t = 0 el término H ′ = −x(s)f0 la ecuación anterior

se reduce a

X(t) = 〈x(t)〉 − 〈x〉 = − 1

kBT
[〈H ′(s)x(s, t)〉 − 〈H ′(s)〉 〈x(s, t)〉]

= − f0
kBT

[〈x〉 〈x〉 − 〈x(s, 0)x(s, t)〉]

= − f0
kBT

〈[x(s, 0)− 〈x〉] [x(s, t)− 〈x〉]〉

= − f0
kBT

[〈X(0)X(t)〉] ,

(B.9)

where X(t) = 〈x(t)〉−〈x〉 are fluctuation in time t and is the temporal correlation function

〈X(0)X(t)〉 = 〈x(s, 0)〉 〈x(s, t)〉 − 〈x(s, 0)x(s, t)〉 .

Inserting Eq.(B.9) in (B.6)

α̃(t) = −Θ(t)

kBT

d

dt
[〈X(0)X(t)〉] , (B.10)

the classic time-dependent FDT (127). The theorem shows that it is possible to write the

response of a system (susceptibility) in terms of the temporal correlation function of system

fluctuations.

The FDT can be passed to the frequency space using the Fourier transform of the

fluctuations

X(ω) =
1

2π

∫
X(t)eiωtdt, X(t) =

∫
X(ω)e−iωtdω.
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B. FLUCTUATION-DISSIPATION THEOREM

Consider the correlation function 〈X(ω)X∗(ω′)〉. Taking its Fourier transform

〈X(ω)X∗(ω′)〉 =
1

4π2

∫ ∫ ∞
−∞
〈X(τ)X(τ ′)〉 ei(τω′−τ ′ω)dτdτ ′

=
1

4π2

∫ ∫ ∞
−∞
〈X(τ)X(t+ τ)〉 ei(ω−ω′)τeiωtdτdt,

(B.11)

where the asterisk indicates the complex conjugate and in the second equality the change

of variable tau prime = t+ tau was used. The Wiener-Khintchine theorem states that the

Fourier components of the autocorrelation function with different frequencies are annulled

(115, 116). So that

〈X(ω)X∗(ω′)〉 = δ(ω − ω′) 1

2π

∫ ∞
−∞
〈X(τ)X(t+ τ)〉 ei(ω−ω′)τeiωtdt. (B.12)

The term in the integral is known as the spectral density. Using the Wiener-Khintchine

theorem and performing the Fourier transform of each term of Eq. (B.9) and using Eq.

(B.12)

[α(ω)− α∗(ω)] δ(ω − ω′) =
4πiω

kBT
〈X(ω)X∗(ω′)〉 , (B.13)

which is the classic TFD in the Fourier space 1 .

The principle of equipartition of energy identifies the factor kBT with the average energy

per degree of freedom of the system. This term results from the assumption that the energy

distribution of the system is continuous. However, according to quantum mechanics the

energy levels of the system and, therefore, the transitions between the states of the system

will be quantized. The system absorbs energy ∆E = En − Em = ~ωnm, where En, Em are

system energy levels. As a consequence, the average energy kBT must be replaced by

kBT →
~ω

e~ω/kBT − 1
+

~ω
2
, (B.14)

which corresponds to the average energy of a quantum harmonic oscillator. In the kBT �
~ω limit, the classic term kBT is retrieved. The quantum version of the TFD remains

〈X(ω)X∗(ω′)〉 =
4π

iω2

(
~ω

e~ω/kBT − 1
+

~ω
2

)
[α(ω)− α∗(ω)] δ(ω − ω′). (B.15)

Defining the quantity

Θ(ω, T ) =
~ω

e~ω/kBT − 1
+

~ω
2
,

Eq. (B.15) becomes

〈X(ω)X∗(ω′)〉 =
4π

ω
Im [α(ω)] Θ(ω, T )δ(ω − ω′). (B.16)

1The following Fourier transform of the Heavside function is used Θ(ω) = 1
2δ(ω)− 1

2π
1
iω .
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Appendix C

Solutions to (−aI + H)~x = ~b

In this work we are interested in solving equations of the form

(−uI + H) · ~x = ~b (C.1)

where H is an N ×N hermitian matrix, I the N ×N identity matrix and u a scalar. In this

appendix we discuss a method to solve this type of linear system, which consist of writing

the solutions ~x in terms of the eigenvalues and eigenvectors of matrix H.

Assuming that H is a hermitian matrix with linearly independent eigenvectors, it can

be factorized as

U†HU = n (C.2)

where U is a unitary matrix with the property that UU† = I, and n is a diagonal matrix

n =


n1 0 . . . 0

0 n2 . . . 0
...

...
. . .

...

0 0 . . . nN

 (C.3)

whose elements ni are eigenvalues of H. Inserting this in Eq. (C.1) we have

−uI + H = −uI + UnU†

= U(−uI)U† + UnU†

= U (−uI + n) U†

= UYU†,

(C.4)

where Y = −uI + n. We are interested in the inverse matrix, which we label as G, written

as

G = (−uI + H)−1 =
(
UYU†

)−1
= U†Y−1U

(C.5)
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where we used the property U† = U−1. The components of this matrix are

Gij =
∑
αβ

U†iαYαβ
−1Uβj

=
∑
αβ

U†iαYαβ
−1Uβj

=
∑
αβ

U†iα(−u+ nβ)−1δαβUβj

= −
∑
α

U†iαUαj

(u− nα)
.

(C.6)

Solutions can then be found in terms of the eigenvalues and eigenvector of H

~x = G ·~b = (−uI + H)−1 ·~b. (C.7)

Note that matrix G = G(u) must be calculated for each value of u.
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Jacques Greffet. Surface electromagnetic waves thermally excited: Radiative heat

transfer, coherence properties and casimir forces revisited in the near field. Surface

Science Reports, 57(3):59–112, 2005. 6, 11, 14, 62, 68, 69, 70, 88

112



BIBLIOGRAPHY
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