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Resumen

La presente tesis es el resultado de la investigación realizada junto con mi
tutor y mis compañeros durante mis estudios de doctorado. Producto de este
periodo de trabajo, recientemente publicamos un art́ıculo de investigación [1],
además de que estamos planeando redactar un par más en un futuro cercano.

El tema central de esta tesis, es el uso de la representación de Majorana
para estudiar diversos problemas desde un punto de vista geométrico. La
representación de Majorana nos permite asignarle a los estados de un esṕın s
una constelación, es decir, un conjunto de 2s puntos sobre la esfera unitaria.
Esta representación tiene la propiedad de que, si un estado es rotado, la
constelación asignada a éste rota de la misma manera. Por lo tanto, la
representación de Majorana es útil cuando se estudian problemas relacionados
con rotaciones.

Esta tesis ha sido dividida en cuatro partes.
En el capitulo 1, hacemos una breve introducción y presentamos varias

herramientas matemáticas que usaremos a lo largo de la tesis.
En el caṕıtulo 2, explicamos cómo describir al espacio projectivo de

Hilbert de un esṕın s como un haz fibrado, donde el grupo es SO(3) y la
base es el “espacio de formas”, el espacio cociente obtenido al identificar los
estados que difieren por la acción de un operador de rotación. Por medio de
la métrica de Fubini-Study, definimos una métrica para el espacio de formas
y realizamos un estudio de las geodésicas y del escalar de Ricci para ésta.
Algunas aplicaciones f́ısicas de esta construcción son discutidas brevemente.

En el caṕıtulo 3, definimos la representación estelar para los Grassma-
nianos del espacio de un esṕın s, la cual es una generalización natural a la
representación de Majorana. Siendo más precisos, explicamos una manera
de asignarle a un k-plano por el origen (subespacio vectorial de dimension k
contendido en el espacio de estados del esṕın) un conjunto de k(2s+ 1− k)
puntos en la esfera unitaria al que llamaremos constelación del k-plano. Al
igual que con la representación de Majorana, si un k-plano es rotado, su
constelación rota de la misma manera. Debido a esto, podemos usarla para
encontrar las simetrias rotacionales de un k-plano, un problema que es de
interés en el contexto de computo cuántico. Sin embargo, hay un detalle;
diferentes k-planos puedes tener la misma constelación. Debido a esto, no
basta con mirar la constelación de un k-plano para encontrar sus simetŕıas.
Para resolver este problema, presentamos dos maneras diferentes de asignarle
a un k-plano más de una constelación tales que, es posible identificar sus
simetŕıas sólo conociendo estas constelaciones. El primer procedimiento es
más simple, pero tiene el problema que solamente es válido para 2-planos.
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El segundo es computacionalmente más complicado, pero es aplicable para
k-planos en general. También encontramos cuántos k-planos tienen la misma
constelación genéricamente.

Finalmente, en el caṕıtulo 4, estudiamos la robustez del efecto Wilczek-
Zee bajo ruido externo. Para esto, consideramos el ejemplo de resonancia
cuadrupolar nuclear. En este tipo de sistemas, manipulando un campo mag-
netico adecuadamente, podemos inducir una curva cerrada en el espacio de
2-planos de un esṕın s = 3/2. Por medio del efecto Wilczek-Zee, la fase no
abeliana (la holonomia de esta curva) puede ser usada para implementar
compuertas cuánticas. En este caṕıtulo, encontramos los efectos del ruido
del campo magnético (modelandolo como un proceso estocástico) en las
compuertas. Más concretamente, hayamos la distribución de probabilidad
de las compuetas obtenidas y calculamos la distancia promedio entre la
compuerta obtenida y la del caso ideal (si no hubiera ruido en el campo
magnético). También encontramos que hay una especie de frecuencia reso-
nante que amplifica los efectos del ruido, efecto que no se encuentra reportado
en la literatura.
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Abstract

This thesis is the product of the research done with my advisor and my
colleagues as a PhD student. Some of our results have been recently published
in an article [1], and we are planning to write a couple more in the near
future.

The common theme of this thesis, is the usage of the Majorana repre-
sentation to study certain problems from a geometrical point of view. The
Majorana representation allows us to assign to the states of a spin s a con-
stellation; a set of 2s points over the unitary sphere. A nice property of
this representation is that if a stated is rotated by a certain rotation, its
corresponding constellation rotates accordingly, and therefore it is useful
when studying problems dealing with rotations.

We have divided this thesis in four main chapters.
In chapter 1, we make a brief introduction and present various mathe-

matical tools that we use throughout the thesis.
In chapter 2, we explain how to describe the projective Hilbert space of

a spin s as a fiber bundle, where the acting group is SO(3) and the base
space is “shape space”; the quotient state obtained by identifying two states
that differ by the action of a rotation operator. In terms of the Fubini-Study
metric, we define one for the shape space, and make a study of the geodesic
and the Ricci scalar of this newly defined metric. Some applications of this
construction are briefly discussed.

In chapter 3, we define the stellar representation for the Grassmannians
of the space of a spin s, a natural generalization of the usual Majorana
representation. To be more precise, we explain a way to assign to a k-plane
through the origin (contained in the state space of the spin) a set of k(2s+1−k)
points over the unitary sphere, referred as the constellation of the k-plane.
Just like with the usual Majorana representation, if a k-plane is rotated, its
corresponding constellation rotates accordingly. Because of this fact, this
representation is useful, for instance, to find the rotational symmetries of a
k-plane, a problem that might be of interest in quantum computing. However,
there is a caveat; two different k-planes might be assigned to the same
constellation, and therefore, we are not able to deduce the symmetries of a
k-plane just by looking at its constellation. To solve this issue, we present
two different procedures to assign a k-plane more than constellation, in a
way such that we can deduce the rotational symmetries of a k-plane just
by knowing these constellations. The first procedure is simpler, but it only
works for 2-planes. The second procedure is more complicated, but it works



for general k-planes. We also answer the question of how many k-planes have
the same constellation generically.

In chapter 4, by considering the example of nuclear quadrupole resonance,
we study the robustness of the Wilczek-Zee effect under external noise. In
this type of systems, by manipulating a magnetic field, one can induce a
closed curve in the space of 2-planes of a spin s = 3/2. By the Wilczek-Zee
effect, the non-abelian geometric phase (holonomy of this curve) can be used
to implement quantum gates. In this chapter, we find the effects of the noise
of the magnetic field (modeled as a stochastic process) on this gates . To be
more concrete, we find the probability distribution for the gates obtained,
and we also compute the average distance between them and the one for
the ideal case (when there is no noise present). We also find that there is
some kind of resonance frequency that amplifies the effect of the noise, effect
that is not reported in the literature and that has to be considered when
implementing this types of gates.
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Chapter 1

Introduction and
preliminaries

Introduction

Traditionally, quantum mechanics is treated as an algebraic theory. However,
this does not mean that one can not study it from a geometrical point of
view. As a matter of a fact, there are certain problems that can be more
conveniently studied via geometrical methods. In this thesis we present some
examples of such problems.

Of particular importance in quantum mechanics, is the study of a spin
s. One approach to work with it, is via the Majorana representation, a
geometrical way to visualize the states of a spin s as a set of 2s points in the
unitary sphere. Although it was introduced almost 90 years ago in 1932 [2], it
had not gotten the attention it deserves, until recently, when applications to
quantum computation are being found. More of this latter on this chapter.

In this thesis, we study three different problems relevant to quantum
computation using the Majorana representation and other geometrical ma-
chinery such as fiber bundles. The problems we tackle are: determining the
geometrical properties of the shape space of a spin s, defining the Majorana
representation for the Grassmannian and studying the robustness of the
Wilczek-Zee effect under external noise.

Before explaining in detail these problems, we present the necessary
preliminaries for the rest of the thesis. References are also provided in case
the reader wants to delve deeper into a certain topic.

1



Chapter 1. Introduction and preliminaries 2

1.1 Projective Hilbert space

In this section, we briefly introduce the notion of projective Hilbert space,
that is, according to [3], “the true state space of a quantum system”. Another
standard reference for this topic is [4].

When studying quantum mechanics, it is often said that the space state of
a physical system is a complex Hilbert space, H. This statement is imprecise
in a certain sense. Physicists tend to work only with normalized states.
Furthermore, states that only differ by a phase are physically indistinguishable.
Because of this, quantum mechanics can be completely formulated in the
space known as projective Hilbert space P(H) (although we work mostly
with kinematical problems, quantum dynamics can also be formulated in
geometrical terms in P(H), c.f. [5–7]).

P(H) is the set of all rays [ψ] in H, that is, all the linear subspaces of
the following form,

[ψ] = {λ|ψ〉, λ ∈ C} = span{|ψ〉} , (1.1.1)

where |ψ〉 is an arbitrary state. The set [ψ] is commonly known as the ray
through |ψ〉 or the projective state associated to |ψ〉. Clearly, two vectors
of H are in the same ray if and only if they differ by a factor. Since such
vectors define the same physical state (as discussed previously), there is a
one-to-one correspondence between the set of physical states of a system and
P(H), making it, in a sense, the state space of a quantum system.

Much of the structure of H can be inherited to P(H). Given a linear
operator A of H, we define an action of A on P(H) as follows,

A[ψ] ≡ [Aψ] ≡ span{A|ψ〉} . (1.1.2)

Using the inner product of H, we can canonically define an inner product1

between two rays [φ] and [ψ] in P(H)

〈[φ], [ψ]〉 = |〈φ|ψ〉|√
〈φ|φ〉〈ψ|ψ〉

. (1.1.3)

It is easy to prove that the previous expression does not depend on the
particular choice of the elements |ψ〉 and |φ〉 in each ray.

1 Note that, because P(H) is not a vector space, the product of equation (1.1.3) is not
bilinear. The same can be said about the product given in equations (1.2.4) and (1.2.3)
further down.
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In terms of this inner product, we can define the distance between [φ]
and [ψ] as follows (the Fubini-Study metric),

dP(H)([ψ], [φ]) = arccos〈[φ], [ψ]〉 , (1.1.4)

One can also verify that dP(H) satisfies the axioms of a distance.
Physically, the Fubini-Study distance is related with the transition prob-

ability between |ψ〉 and |φ〉 [8]; mathematically, it is the angle between these
two vectors. Note that the maximal distance between two rays is π/2, and
it is attained in the case that |ψ〉 and |φ〉 are orthogonal to each other.
Also, note that dP(H) is invariant under the action of a unitary operator U ,
dP(H)([ψ], [φ]) = dP(H)([Uψ], [Uφ]).

In what follows, we introduce two different formalisms to work with
P(H) that we use throughout the thesis; by using affine coordinates and by
representing it with density operators for pure states.

1.1.1 Representations of P(H)
Representation in terms of affine coordinates

Consider an orthonormal basis for H, {|e1〉, . . . , |eN 〉} (from now on, for
simplicity, we assume that H is finite dimensional). Given N − 1 complex
numbers b2, . . . , bN , consider the mapping

(b2, . . . , bN )↔ [ψ] , with |ψ〉 = |e1〉+
N∑
i=2

bi|ei〉 . (1.1.5)

The numbers b2, . . . , bN are known as affine coordinates (note that the
assignation rule depends of the choice of the basis {|ei〉, i = 1, . . . , N}), and
they can be used to cover almost all P(H), except for the states [ψ] such
that 〈ψ|e1〉 = 0. In a similar fashion, we can define a series of coordinate
patches for all the rays [ψ] such that 〈ψ|ei〉 6= 0, i = 2, . . . , N . The union of
these patches cover the whole P(H).

We could write the Fubini-Study distance (1.1.4) and the corresponding
metric in terms of these coordinates but the resulting expression (c.f. [9, eqs.
(4.45) and (4.51)]) is not very illuminating and we do not use it in this thesis.

Representation in terms of density operators

The second representation of P(H) we consider, is the one in terms of density
operators for pure states. We use this formalism mostly in chapter 2. A density
operator ρ is, by definition, a positive semidefinite self-adjoint operator such
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that Tr (ρ) = 1. Additionally, if ρ is idempotent, ρ2 = ρ, we say that ρ
describes a pure state. One can prove that this is the case if and only if there
is a normalized |ψ〉 in H such that ρ = |ψ〉〈ψ|. This result allows us to give
a bijection between the set of density operators for pure states and P(H) as
follows,

[ψ]↔ ρψ = |ψ〉〈ψ| . (1.1.6)

It is easy to prove that the previous assignment does not depend on the state
defining [ψ] (as long as it is normalized). In these terms, the left action of an
operator A on the state associated to ρ defined in (1.1.2) can be represented
as follows,

A . ρ = AρA† . (1.1.7)

In a similar way, we can naturally define a right action;

ρ / A = A† . ρ = A†ρA . (1.1.8)

In this representation, we can also describe tangent vectors in P(H) (via the
push-forward of the bijection (1.1.6)) as self-adjoint operators. The following
theorem allows us to characterize all self-adjoint operators that represent a
tangent vector at a point ρψ,

Theorem 1. Consider a pure density operator ρψ. A self-adjoint operator v
represents a tangent vector at the point [ψ] of P(H) if and only if all of the
following conditions hold,

(i) Tr (v) = 0 ,

(ii) ρv + vρ = v .

Proof. Consider a curve ρψ(t) in the space of density operators. Denote by v
the tangent vector ρ̇(0) (a dot denotes derivative w.r.t. t). By differentiating
the condition Tr (ρψ(t)) = 1 and evaluating at t = 0, we obtain (i). By doing
the same with ρ2 = ρ we obtain (ii).

As we argue in the following paragraph, tangent vectors in P(Hs) can
also be represented by elements in H. The resulting expressions are used in
section 2.1.4.

Consider a curve ρ(t) = |ψ(t)〉〈ψ(t)|. If we define |φ(t)〉 = eiγ(t)|ψ(t)〉,
it is clear that ρ can also be written as ρ(t) = |φ(t)〉〈φ(t)|. Since |φ(t)〉 is
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assumed normalized, the equality <〈φ̇(t)|φ(t)〉 = 0 holds, where < denotes
the real part. By suitably choosing the phase γ(t), we can make the whole
inner product 〈φ̇(t)|φ(t)〉 zero. We say that the vector |φ̇(t)〉 such that this
inner product is zero, represents the tangent vector ρ̇(t). This is the main
idea of the following theorem.

Theorem 2. Consider a state |ψ〉 and the density operator ρψ. Given an
operator v as in theorem 1 that represents a vector tangent at ρψ, there exists
a unique |ψv〉 in H that meets the following requirements,

(a) v = |ψv〉〈ψ|+ |ψ〉〈ψv| ,

(b) 〈ψv|ψ〉 = 0 .

Proof. Let v denote an operator that satisfies the conditions (i) and (ii) of
theorem 1. Note that this implies the equality Tr (vρ) = 0. Therefore, if we
define |ψv〉 according to the following equality,

|ψv〉 = v|ψ〉 . (1.1.9)

we can easily prove that |ψv〉 satisfies requirement (b),

〈ψv|ψ〉 = 〈ψ|v|ψ〉 = Tr (vρ) = 0 .

By substituting ρ = |ψ〉〈ψ| and (1.1.9) in the condition (ii) of theorem 1, the
requirement (a) follows immediately. The uniqueness of |ψv〉 can be proved
by projecting both sides of (a) onto the state 〈ψ|.

In the density matrix representation, the Fubini-Study distance (1.1.4)
between ρψ and ρφ is,

dP(H)(ρψ, ρφ) = arccos
√

Tr (ρφρψ) . (1.1.10)

By considering the infinitesimal version of the previous equation, we can
obtain the expression for the Fubini-Study metric. Given v1 and v2 tangent
vectors at ρψ, after some algebra, one can find that the induced inner product
between them is,

h(v1, v2) = 1
2 Tr (v1v2) . (1.1.11)

Given a metric, we can find its geodesics. In this case, the geodesic between
the points ρψi and ρψf (that turns out to be unique if 〈ψi|ψf 〉 6= 0) can be
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arc length parametrized as ρψ(t), where (a nice deduction of the following
formula can be found in [10]),

|ψ(t)〉 = cos
(
t
2
)
|ψi〉+ sin

(
t
2
)
|ψ⊥i 〉 , (1.1.12)

with

|ψ⊥i 〉 = |ψf 〉 − 〈ψi|ψf 〉|ψi〉√
1− 〈ψi|ψf 〉2

, (1.1.13)

where we assumed w.l.o.g. that |ψi〉 and |ψf 〉 are normalized and that 〈ψi|ψf 〉
is real.

1.1.2 The geometric measure of entanglement

Consider the Hilbert spaceH of a composite system. Denote byHi the Hilbert
space associated to the i-th subsystem and by M the number of subsystems.
Then, H can be written as the tensor product of the spaces of the subsystems,
H = H1⊗· · ·⊗HM . A state |ψ〉 ofH is said to be separable if it can be written
as the tensor product of states of each subsystem, |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψM 〉,
with |ψi〉 ∈ Hi. The previous characterization can be used to define separable
states in P(H) ([ψ] is separable if and only if |ψ〉 is separable). Denote by
Psep the manifold of separable states in P(H),

Psep = {[ψ], such that [ψ] is separable} .

A projective state is said to be entangled if it is not separable. Entanglement
can be considered as one of the main features of quantum mechanics, and
has many applications, for instance, in the fields of quantum teleportation,
quantum computation and quantum information [11].

Several ways to quantify the degree of entanglement of a state have been
proposed in the literature [12–14]. In this thesis, we work with the one known
as geometric measure of entanglement [15]. According to this definition, the
degree of entanglement of a projective state [ψ] is the distance (1.1.4) between
[ψ] and the closest separable state, that is,

E ([ψ]) = min
[φ]∈Psep

dP(H)([φ], [ψ]) . (1.1.14)

States where the minimum is attained are called the separable states closest
to [ψ]. In general, there might be more than one. From the previous definition,
it is clear that E ([ψ]) is zero if and only if [ψ] is separable. This measure of
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entanglement also turns out to be invariant under the action of local unitary
operators (operators U of the form U = U1 ⊗ · · · ⊗ UM , with Ui an unitary
operator of Hi) — this follows immediately from the fact that local unitary
operators map separable states to separable states and that the Fubini-Study
distance is invariant under the action of unitary operators.

In this thesis, we are interested in the subspace of symmetric states of
a system of M indistinguishable particles (symmetric under the exchange
of particles). We can study entanglement in terms of this subspace because
the separable state closest to a symmetric state is also symmetric. Although
this statement might be what the reader would expect, proving it is very
complicated. See [16, 17] for some partial proofs and [18] for the general
demonstration (in fact, in [18] the authors proved that the separable states
closest to a symmetric one are necessarily symmetric, if the number of
subsystems is greater than two). Clearly, the states that are both symmetric
and separable, are those that can be written as [ψ] with |ψ〉 = |ψ〉⊗ · · ·⊗ |ψ〉,
that is, the M -th tensor power of the one-particle state |ψ〉. Because of these
facts, the entanglement of a symmetric state |ψ〉 can be written as,

E ([ψ]) = min
[φ]∈P(H)

dP(H)([φ], [ψ]) . (1.1.15)

To conclude this section, we make a final definition. The state [ψ] for
which the entanglement is maximal is called maximally entangled state.
These states are useful in the fields of quantum information and quantum
computation; for instance, if some states are not entangled enough, they are
not suitable to be used for quantum computation [19].

1.2 The Grassmannian

In this section, we present a generalization of the projective Hilbert space
P(H). Recall that P(H) is defined as the set of rays (one dimensional sub-
spaces) in H. A natural generalization of this is the following: denote by
Grk (H) the manifold of all the k-planes2 contained in H. This manifold is
called the Grassmannian. Clearly, the concept of the Grassmannian general-
izes the one of projective Hilbert space, Gr1 (H) = P(H).

In what follows, we present some geometrical structures of Grk (H) that
we will refer to later on. Some relevant references include [9, 20–22].

2Throughout this thesis, when we mention a k-plane we actually refer to a k-plane
through the origin, that is, a k-dimensional subspace of H
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1.2.1 The space of k-frames

A k-frame |Ψ〉 is defined as a k-tuple of linearly independent vectors in H,

|Ψ〉 = (|ψ1〉, . . . , |ψk〉) .

To avoid confusion between a k-frame and an element of H, we use upper-
case Greek letters to denote a k-frame. Its elements, are denoted by the
corresponding lowercase Greek letter, as in the previous equation. If the
states defining |Ψ〉 are orthonormal among each other, we say that |Ψ〉 is an
orthonormal k-frame. Denote by L(H) the space of all k-frames (including
the non-orthogonal ones).

As we are about to show, L(H) can be naturally described as a principal
fiber bundle. As base space, we take the Grassmannian Grk (H), and define
the projection operator π as,

π( |Ψ〉) = span{|ψ1〉, . . . , |ψk〉} ∈ Grk (H) . (1.2.1)

With these definitions, k-frames that span the same k-plane are in the same
fiber. With this in mind, consider the right action3 of an invertible matrix
A ∈ GLk(C) on the k-frame |Ψ〉, defined as follows,

|ΨA〉 = (|φ1〉, . . . , |φk〉) , where |φi〉 =
k∑
j=1
|ψj〉Aji . (1.2.2)

Note that this action corresponds to a change of basis of the vectors spanning
the k-plane. It is easy to show that any two k-frames that span the same
k-plane are connected by the right action of a invertible matrix A. Because
of this, the fibers are isomorphic to GLk(C).

The last mathematical structure we define, is that of an inner product
between two k-frames. Define the product between |Φ〉 and |Ψ〉 as follows,

〈Φ |Ψ〉 = Det F (Φ,Ψ) , (1.2.3)

where F is the k × k matrix whose entry ij is,

Fij(Φ,Ψ) = 〈φi|ψj〉 .

Note that flipping the argument of the inner product gives the complex
conjugate, 〈Φ |Ψ〉 = 〈Ψ |Φ〉∗.

3 We could use the definition of principal fiber bundle in terms of left actions (as it
is the usual physicist’s convention), but we preferred to use the convention of [23] and
consider right actions.
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We can find a relationship between the inner product and the right action
(1.2.2) by computing 〈Φ |ΨA〉. By definition, this is the determinant of the
matrix F (Φ,ΨA), whose entry ij is,

Fij(Φ,ΨU) =
k∑
l=1
〈φj |ψl〉Ali =

k∑
l=1

Fil(Φ,Ψ)Ali ,

that is, F (Φ,ΨA) is equal to the matrix product F (Φ,Ψ)A. Because of this,
by computing its determinant, we conclude,

〈Φ |ΨA〉 = Det F (Φ,ΨA) = Det (F (Φ,Ψ)A) = Det F (Φ,Ψ) Det A
= Det A〈Φ |Ψ〉 ,

In the same way we can prove the equality 〈ΦA |Ψ〉 = (Det A)∗〈Φ |Ψ〉.
Of particular interest to us, is the subbundle of L(H) of orthonormal

k-frames, M(H). For this subbundle the acting group is U(k), the subgroup
of GLk(C) of unitary matrices. In this case, if the k- orthonormal frames |Ψ〉
and |Ψ′〉 are in the same fiber ( |Ψ′〉 = |ΨU〉 for a certain U ∈ U(k)) then, for
any other orthonormal k-frame |Φ〉, the equality |〈Φ |Ψ〉| = |〈Φ |Ψ′〉| holds
(recall that the modulus of the determinant of any unitary transformation
is one). This observation allows us to define an inner product between two
k-planes ΠΦ and ΠΨ as,

〈ΠΦ,ΠΨ〉 = |〈Φ |Ψ〉| , (1.2.4)

where |Φ〉 and |Ψ〉 are any orthonormal k-frames that get projected (under
π (1.2.1)) to ΠΦ and ΠΨ respectively (note that the footnote 1 on page 2
also applies for this product). This formula is completely analogous to the
one for P(H) (1.1.3), and it also allows us to define a distance between two
k-planes ,

d(ΠΦ,ΠΨ) = arccos(〈ΠΦ,ΠΨ〉) . (1.2.5)

We can give a simple geometrical interpretation of (1.2.4). Consider the
projection operator PΦ associated to ΠΦ. Since, by definition, |Φ〉 is an
orthonormal k-frame that spans ΠΦ, we can write PΦ as PΦ = ∑k

l=1 |φl〉〈φl|.
The restriction of PΦ to ΠΨ, PΦ|ΠΨ , is a linear mapping from ΠΨ to ΠΦ that
can be represented as a k × k matrix P (w.r.t. the orthonormal bases |Φ〉
and |Ψ〉) with the following entries,

Pij = 〈φi|PΦ|ψj〉 = 〈φi|
(

k∑
l=1
|φl〉〈φl|

)
|ψj〉 = 〈φi|ψj〉 = Fij(Φ,Ψ) .
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This means that F (Φ,Ψ) is the matrix representation of the operator PΦ|ΠΨ .
As such, using a well-known result from linear algebra, Det Fij(Φ,Ψ) is the
“complex volume” of the k-dimensional parallelepiped defined by the vectors
PΦ|ψ1〉, . . . ,PΦ|ψk〉. These observations allow us to characterize two k-planes
that are orthogonal to each other.

Theorem 3. Two k-planes ΠΦ and ΠΨ are orthogonal to each other ( their
inner product 〈ΠΦ,ΠΨ〉 is zero) if and only if there exists a state |ψ0〉 ∈ ΠΨ
such that |ψ0〉 is orthogonal to all the elements of ΠΦ, that is, |ψ0〉 is an
element of the space orthogonal to ΠΦ.

Proof. Suppose that the planes are orthogonal, 〈ΠΦ,ΠΨ〉 = 0. This happens
if and only if the kernel of the mapping PΦ|ΠΨ is not trivial, that is, if there
is a |ψ0〉 ∈ ΠΨ (different from zero) such that PΦ|ΠΨ |ψ0〉 = PΦ|ψ0〉 = 0. This
in turn happens if and only if |ψ0〉 is orthogonal to the whole space ΠΦ.

To conclude this section, in what follows, we mention three different ways
to represent Grk (H) that are relevant to the rest of the thesis.

1.2.2 Representations of Grk (H)
Representation in terms of affine coordinates

The affine coordinates for Grk (H) are analogous to the ones for P(H) in-
troduced in section 1.1. The main idea is to find a suitable section of L(H)
that is simple to parametrize. The procedure is explained in the following
paragraph.

Take any basis (not necessarily orthonormal) for H, |e1〉, . . . , |eN 〉 (where
N denotes the dimension of H). Just as any state in H can be represented as
a column vector in CN (w.r.t. this basis), any k-frame |Ψ〉 in L(H) can be
represented as a N × k matrix C, a matrix whose i-th column (i = 1, . . . , k)
is the representation (as a column vector) of |ψi〉. To be more precise, the
matrix C contains the coefficients of |ψi〉 in terms of this basis,

|ψi〉 =
N∑
j=1
|ej〉Cji , (i = 1, . . . , k) . (1.2.6)

As notation, C is called the matrix representation of |Ψ〉 (w.r.t. the basis
|e1〉, . . . , |eN 〉).

Since the vectors in the k-frame |Ψ〉 are linearly independent, appealing
to a classical result from linear algebra (c.f. [24, VI, §9]), there exist a square
submatrix of C of dimensions k × k (made by taking k rows of C) such that
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its determinant is different from zero. Suppose that the first k rows of C are
those such that the determinant of the submatrix build by considering them
is not zero. Denote by C̃ this submatrix (C̃ij = Cij , i, j = 1, . . . , k). Then, C
can be written in terms of C̃ as follows,

CN×k =
(

C̃k×k
D(N−k)×k

)
,

where the subscripts indicate the size of a matrix. If we multiply C by the
right by C̃−1 (that exists by hypothesis) we obtain,

TN×k ≡ (CC̃−1)N×k =
(

1k×k
B(N−k)×k

)
, (1.2.7)

where B = DC̃−1. Just like C, CC̃−1 can be regarded as the matrix repre-
sentation of a certain k-frame, call it |Φ〉. A quick computation (considering
equation (1.2.6)) shows that the elements |φi〉 defining |Φ〉 satisfy the equal-
ities |φi〉 = ∑N

l=1 |ψl〉(C̃−1)li, that is, |Φ〉 and |Ψ〉 only differ by the right
action of C̃−1 ( |Φ〉 = |ΨC̃−1〉) and hence, are in the same fiber. From this
analysis, we can conclude the following: given a generic k-frame,4 we can find
another k-frame in the same fiber such that its matrix representation is of
the form of the r.h.s. of (1.2.7). It is easy to verify that this k-frame is the
only one in the fiber with such property. On the other hand, any matrix T of
this form (1.2.7) (with arbitrary B) is the matrix representation of a k-frame
(the k-frame |Φ〉 given by the states |φi〉 = ∑N

i=1 |ej〉Tji — one can easily
show that these vectors are linearly independent for i = 1, . . . , k). When a
k-plane Π is given in terms of such matrix T , we say that Π is written in the
standard form w.r.t. the basis {|e1〉, . . . , |eN 〉}.

Thanks to the previous observations, we can build a section of L(H)
(associated to the ordered basis {|e1〉, . . . , |eN 〉}). Given any matrix B of
dimensions (N − k)× k, consider the k-frame represented by the matrix T
of (1.2.7). By taking the projection π (1.2.1) of the elements of this section,
we can give coordinates to a sector (everything except from a set of measure
zero, this is analogous to the case of affine coordinates defined in (1.1.5) for
P(H) ) of Grk (H); the entries of the matrix B serve as coordinates. From
this analysis we can also conclude that the (complex) dimension of Grk (H)
is k(N − k). By changing the order of the elements of the basis |e1〉, . . . , |eN 〉,
and following the same construction, we can define additional coordinate

4 Generic in the sense that the determinant of the submatrix C̃ build by considering
the first k rows of the matrix associated to said k-frame is not zero.
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patches such that their union covers the totality of the Grassmannian. This
situation is completely analogous to the one of the affine coordinates for
P(H).

Representation in terms of k-vectors

Given a Hilbert space H, we define the space of k-vectors ∧k(H) as the
k-th exterior power of H, that is, the linear span of vectors of the form
|ψ1〉 ∧ |ψ2〉 ∧ · · · ∧ |ψk〉, where all the states |ψi〉 are elements of H and the
wedge product is defined in the usual way,

|ψ1〉 ∧ · · · ∧ |ψk〉 =
∑
σ∈Sk

sgn(σ)|ψσ1〉 ⊗ · · · ⊗ |ψσk〉 , (1.2.8)

where Sk denotes the permutation group of k objects. Besides elements of
the form (1.2.8), ∧k(H) also contains linear combinations of such elements.
Notice that the dimension of ∧k(H) is

(N
k

)
.

We can define an inner product in ∧k(H). To this end, it is enough to
specify it for elements of the form (1.2.8). We do this in the following way,〈
|ψ1〉 ∧ · · · ∧ |ψk〉, |φ1〉 ∧ · · · ∧ |φk〉

〉
= (〈ψ1| ∧ · · · ∧ 〈ψk|)(|φ1〉, . . . , |φk〉) ,

(1.2.9)

or in other words, the inner product of the two k-vectors is the wedge product
of the dual vectors 〈ψ1| . . . 〈ψk| evaluated in terms of the hermitean inner
product at (|φ1〉, . . . , |φk〉).

The Grassmannian Grk (H) can be naturally embedded projectively in
this space as follows. Consider any k-plane Π spanned by the vectors of a
k-frame |Ψ〉. We assign to Π the following k-vector,

Π→ |ψ1〉 ∧ · · · ∧ |ψk〉 . (1.2.10)

Some algebra reveals that, if we choose a different k-frame for Π, say |ΨA〉,
then, the resulting k-vector is (Det A)|ψ1〉∧. . . |ψk〉, and therefore projectively
equivalent to |ψ1〉 ∧ . . . |ψk〉. In this sense, the representation of Grk (H) in
terms of elements in ∧k(H) is a projective representation.

Also of importance is the fact that if |Ψ〉 is an orthonormal k-frame for
ΠΨ, and |Φ〉 is one for ΠΦ, then, the inner product (1.2.4) can be written in
the following way,

〈ΠΦ,ΠΨ〉 =
∣∣〈|ψ1〉 ∧ · · · ∧ |ψk〉, |φ1〉 ∧ · · · ∧ |φk〉

〉∣∣ . (1.2.11)

We use this representation mostly in section 3.5.
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1.2.3 The Wilczek-Zee connection for M(H)

The Wilczek-Zee (WZ) connection for M(H) (the space of orthonormal k-
frames) [25, 26] has gain much interest in the recent years as it provides a
theoretical basis for the so-called holonomic quantum computation [27, 28].
In this section, we briefly introduce the WZ connection and its relation with
quantum computation.

As it is well-known, one possible way to define a connection (c.f. [23, section
1.2]) is to specify the space of horizontal vectors tangent at a point. Because
of this, first we characterize the tangent space at a point |Ψ〉 ∈M(H). To this
end, consider a curve of orthonormal k-frames |Φ(t)〉 such that |Φ(0)〉 = |Ψ〉.
Then, the tangent vector at t = 0 can be written as a k-tuple of vectors (in H)
|Ξ〉 ≡ (ξ1 ≡ |φ̇1(0)〉, . . . , ξk ≡ |φ̇k(0)〉). By differentiating the orthonormality
condition 〈φi(t)|φj(t)〉 = δij at t = 0, we obtain that the tangent space at
|Ψ〉 consists of all the k-tuples |Ξ〉 such that,

<〈ξi|ψj〉 = 0 , for i, j = 1, . . . , k ,

where denotes < real part. We say that a tangent vector |Ξ〉 is horizontal if
also the imaginary part of these products is zero, that is, if

〈ξi|ψj〉 = 0 , for i, j = 1, . . . , k . (1.2.12)

It is immediate to verify that this definition of horizontal vectors satisfy the
three necessary conditions to induce a connection. First of all, none of the
vectors satisfying (1.2.12) are vertical (tangent to the fibers) as can be easily
shown. Secondly, a quick computation reveals that the (complex) dimension
of the space of horizontal vectors tangent to a point in M(H) is k(N − k),
the same one as the one of Grk (H). Finally, it is also trivial to prove that the
pushforward of the right action of any unitary matrix U(k) maps horizontal
vectors to horizontal vectors.

This connection, as we are about to see, is the one induced by the
Schrödinger evolution in the adiabatic limit. The framework is the following.
Consider a time-dependent Hamiltonian H(t) (0 ≤ t ≤ T ) such that a certain
energy level is k-degenerate for all t. Associated to this Hamiltonian, we can
define a curve Πt in the Grassmannian Grk (H) by considering the k-plane
spanned by the states in the degenerate level at a time t.

Consider any orthonormal k-frame |Ψ0〉 that spans Π0. Via Schrödinger
evolution, we can obtain a curve |Ψt〉 in the space of orthonormal k-frames by
evolving each state of |Ψ0〉 from the initial time to t. If the time dependence of
the Hamiltonian is adiabatic [29, Chapter XVII-II], any state in the degenerate
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level remains in it throughout all the evolution. This implies that all the
elements in the frame |Ψt〉 belong to the plane Πt and, moreover, they span
it, π( |Ψt〉) = Πt. If the curve Πt is closed (Π0 = ΠT ) then, |Φ0〉 and |ΦT 〉
are in the same fiber. Because of this, they differ by the right action of a
unitary matrix Utot, |ΦT 〉 = |Φ0Utot〉. Now, we compute Utot. To this end,
denote by Et the value of the energy of the degenerate level at time t, and
consider the curve of k-frames |Φt〉 given by the following equation,

|Ψt〉 = |Φte
−iEt〉 = (e−iEt |φ1t〉, . . . , e−iEt |φkt〉) ,

where,

Et =
∫ t

0
Eτ dτ .

Clearly, |Ψt〉 and |Φt〉 are always in the same fiber as they only differ by
a phase factor. The claim is that the curve |Φt〉 is an horizontal lift of Πt

for the Wilczek-Zee connection (1.2.12). We already argued that π( |Ψt〉) =
π( |Φt〉) = Πt, what remains to be proved is that |Φt〉 is horizontal. To verify
this, consider the Schrödinger equation of the i-th element in the frame |Ψ0〉
(as usual, a dot denotes time derivative),

i|ψ̇ti〉 = H|ψti〉 ⇒ Et|φti〉+ i|φ̇ti〉 = H|φti〉 ,

where we used the equality |φti〉 = e−iEt |ψti〉 to obtain the implication. By
computing the inner product of this equation with 〈φjt| and noting that
〈φit|H(t)|φjt〉 = Etδij (since both states are eigenstates of H(t)) we obtain,

〈φtj |ξti〉 = 0 ,

where we defined |ξti〉 ≡ |φ̇ti〉. This equality implies that the tangent vectors to
the curve |Φt〉 satisfy the horizontality condition (1.2.12) and, therefore, |Φt〉
is horizontal as claimed. Denote by Ugeo ∈ U(k) the holonomy of the curve
|Φt〉. Then, by the previous argument, |ΦT 〉 = |Φ0Ugeo〉. As an holonomy,
Ugeo only depends on the trace of the curve Πt — not in its parametrization

— and therefore is termed geometrical. This matrix is known as a non-abelian
geometric phase and, in the particular case k = 1, it reduces to the well-known
Berry’s phase [30, 31]. As a side note, we mention that this construction for
the non-abelian phase can be extended to the case where the evolution of
the Hamiltonian is not adiabatic [32].

By remembering that |Ψt〉 and |Φt〉 only differ by the phase factor e−iEt ,
we can write Utot = e−iETUgeo.
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The result of the previous paragraph has an important application; if
a state |η0〉, initially in the degenerate level (so it can be written as |η0〉 =∑k
i=1 |ψ0i〉Bi for certain complex numbers Bi, i = 1, . . . , k) is evolved, after

a time T , the resulting state |ηT 〉 is given by the following expression,

|ηT 〉 = e−iET
k∑

i,j=1
|ψ0i〉(Ugeo)ijBj , (1.2.13)

that is, the unitary matrix that encodes the information of how the degenerate
states mix among each other is — except for an overall factor e−iET known
as dynamical phase — Ugeo. As stressed above, Ugeo only depends5 on the
trace of the curve Πt. Basically, this is the main idea behind the Wilczek-Zee
effect: closed curves in Grk (H) induce unitary transformations for the initial
(and therefore final) k-plane of the curve.

The proposal for quantum computation known as holonomic quantum
computation consists in using the Wilczek-Zee effect to implement quantum
gates (unitary transformations) to mix states in the degenerated space. The
main motivation is that, since the holonomy Ugeo is of a geometrical nature,
it is more robust against external noise. In section 4, we study a simple case
to see if this is the case.

Finally, to conclude this section, we mention very briefly how to find the
holonomy Ugeo in terms of a section ofM(H), as this is the approach that tends
to be easier when making actual computations. Denote the elements of the
section generically by |Ψ〉, and suppose that |Ψ(t)〉 denotes the closed curve
in the section that gets projected onto the curve in Grk (H) we are considering.
Then, the problem of finding Ugeo, reduces to the one of finding a curve of
unitary matrices U(t) such that the curve of k-frames |Ψ̃(t)〉 = |Ψ(t)U(t)〉
is horizontal and, that U(t) starts at the identity matrix, U(0) = 1. In
these terms, the non-abelian geometric phase, Ugeo is equal to U(T ). The
consideration of condition (1.2.12) leads to the following equation for U (all
the time dependence has been dropped out to improve readability),

〈ψ̃i|ṽj〉 = 0⇒
k∑

l,m,j=1
〈ψl|U∗li

(
|vm〉Umj + |ψm〉U̇mj

)
= 0 . (1.2.14)

Therefore, if we define the matrix A according to the equality

Alm ≡ i〈ψl|vm〉 = i〈ψl|ψ̇m〉 . (1.2.15)
5 As a matrix, Ugeo also depends on the initial k-frame considered. However, it is easy

to prove that the induced unitary transformation in the degenerate space (1.2.13) is unique,
the only difference is w.r.t. what basis this transformation is written.
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then, (1.2.14) can be written matricially as

U̇ = iAU . (1.2.16)

By solving the previous matrix differential equation, we can find U(T ) = Ugeo.
Note that A is an hermitian matrix (as can be easily verified) so that U(T )
is unitary.

1.3 Majorana Representation

In what follows, we introduce the Majorana representation of the projective
Hilbert space of a spin-s, P(Hs) [2]. Under this representation, a projective
state [ψ] is mapped into a set of (possibly coincident) 2s points (that we refer
to as “stars”) in the unitary sphere, the latter set known as the constellation
of the state (which we denote by Cψ). This correspondence turns out to
be one-to-one. Although the Majorana representation has not gained much
attention among physicists, the particular case of s = 1/2 is very well known.
Indeed, when s = 1/2, the Majorana representation reduces to the so-called
Bloch sphere representation, where any spin-1/2 state is characterized by
one point in the unitary sphere.

In the following paragraphs, we explain how this association between
elements of P(H) and points in the sphere is made, but first we want to stress
that the Majorana representation commutes with rotations. By this we mean
that the constellation of a rotated state D(R)[ψ] (here D(R) denotes the
representation of a three dimensional rotation R as a linear operator acting
on H) can be computed by rotating the stars in the constellation of [ψ] by R.
Note that the intrinsic properties of [ψ] are the same as the ones of D(R)[ψ]
as, in certain sense, the physical properties of a state must not be modified
if we decided to change the orientation of the axes used in the laboratory
to describe said state. This makes the Majorana representation particularly
useful to study some properties of a state. Some examples of this type of
properties that had been studied with the Majorana representation are the
degree of anticoherence of a state (c.f. section 1.3.5), the entanglement of
a system of 2s spin-1/2 particles (c.f. section 1.3.2) and the sensibility of a
state to detect rotations [33]. Besides this, the Majorana representation has
also been used in other contexts, for instance, the one of geometric phases
[34, 35].

In the literature, it is possible to find many different ways to introduce the
Majorana representation (c.f. [9]). Here we follow two different approaches.
The first one is the one that the author finds the most illuminating. The
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second one, is useful for a generalization of the Majorana representation we
present on chapter 3.

For the first approach, the outline is the following. First, in section (1.3.1),
we define the Majorana representation for the Hilbert space of completely
symmetric states (under exchange of particles) of a system of 2s spin-1/2
particles. Since this space is, mathematically speaking, the space of a spin s
(more on this on section 1.3.2), we use the previous construction to define the
Majorana representation for the state space of an arbitrary spin-s, whether
it can be seen as a system of 2s spin-1/2 particles or not.

The second approach is presented at section 1.3.4 and it is based on the
so-called spin coherent states.

1.3.1 Majorana representation for a system of 2s spin-1/2
particles

Consider the Hilbert space of a system of 2s spin-1/2 particles (the tensor
product of the spaces of 2s spin-1/2 systems). Denote by H2s

sym the subspace
of completely symmetric states (under exchange of particles). In what follows,
we show how to assign a constellation (set of 2s points in the unitary sphere)
to each state of H2s

sym via the Majorana representation. This representation
has been useful to study some physical properties of a state in H2s

sym, for
instance, it has been successfully used in [36] to study the entanglement
of symmetric states and to find the maximally entangled state (c.f. section
1.1.2).

Before going on, we fix some notation. As it is well known, every state of a
single spin-1/2 system can be characterized (up to a global phase) by a single
direction in the unitary sphere (via the Bloch sphere representation alluded
to above). We denote by | ± ẑ½〉 the state characterized by the direction ±ẑ
(that turns out to be an eigenstate of the spin angular momentum operator S
in the direction ẑ with eigenvalue ±1/2). States characterized by the direction
n̂, |n̂½〉, can be written (upto a phase) in terms of | ± ẑ½〉 as follows [37,
Chapter 1],

|n̂½〉 = cos
(
θ
2

)
|ẑ½〉+ eiφ sin

(
θ
2

)
|−ẑ½〉

= cos
(
θ
2

) (
|ẑ½〉+ ζ|−ẑ½〉

)
, (1.3.1)

where (θ, φ) denotes the spherical coordinates associated to n̂, and the complex
number ζ = tan(θ/2)eiφ is the image, via the stereographic projection from
the south pole, of n̂ (assuming n̂ is not the south pole). It is customary to
say that the state |n̂½〉 “points at” n̂.
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Given 2s directions n̂1, . . . , n̂2s, we define the state |ψ〉 in H2s
sym obtained

by symmetrizing the state |n̂½
1 〉 ⊗ · · · ⊗ |n̂½

2s〉 as follows,

|Ψ〉 = |n̂1, . . . , n̂2s〉 = 1
AΨ

∑
σ∈S2s

|n̂½
σ1〉 ⊗ · · · ⊗ |n̂

½
σ2s〉 , (1.3.2)

where S2s denotes the permutation of group of a collection of 2s objects and
AΨ is the following normalization factor,

A2
Ψ = (2s)!

∑
σ∈S2s

〈n̂½
1 |n̂½

σ1〉 . . . 〈n̂
½
2s|n̂½

σ2s〉 . (1.3.3)

An orthonormal basis for H2s
sym can be constructed by symmetrizing

the different combinations of 2s tensor products of the states | ± ẑ½〉. The
resulting basis consists of 2s+ 1 states |Dk〉 (k = 0, . . . , 2s) known as Dicke
states, and are defined according to the following equation,

|Dk〉 = | ẑ, . . . , ẑ︸ ︷︷ ︸
2s−k

,−ẑ, . . . ,−ẑ︸ ︷︷ ︸
k

〉 . (1.3.4)

By using some combinatorics, the value of the constant AΨ (1.3.3) corre-
sponding to |Dk〉 can be proved to be the following,

Ak =
√

(2s)!k!(2s− k)! . (1.3.5)

Since the Dicke states constitute an orthonormal basis for H2s
sym, any state

|ψ〉 can be written as a linear combination of them,

|ψ〉 =
2s∑
k=1

Bk|Dk〉 =
2s∑
k=1
〈Dk|ψ〉|Dk〉 . (1.3.6)

After this digression on notation, we mention how to assign a constellation
to each state in H2s

sym. As we prove in the following theorem, any state |ψ〉
in H2s

sym can be uniquely written as factor times the completely symmetric
state associated to some directions n̂1, . . . , n̂2s (1.3.2). The constellation of
|ψ〉 consists on the “stars” in these directions.

Theorem 4. For each state |ψ〉 in H2s
sym, there exists a unique set of 2s

directions n̂1, . . . , n̂2s (with possible multiplicity) such that,

|ψ〉 = C|n̂1, . . . , n̂2s〉 ,

where |n̂1, . . . , n̂2s〉 is defined as in (1.3.2) and C is a complex factor.
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The strategy we use here to prove the theorem, is the following. First,
we take an arbitrary |n̂1, . . . , n̂2s〉, and write it in terms of the Dicke states
as in (1.3.6). In this way we can find an expression for the coefficients Bk in
terms of n̂1, . . . , n̂2s. Finally, we prove that said expression is invertible for
arbitrary coefficients Bk and, therefore, the conclusion is that any state can
be written in the way the theorem claims.

Proof of theorem 4. As we have already mentioned in the previous outline,
first we find explicitly the coefficients Bk (1.3.6) for the expansion of the
state |Ψ〉 = |n̂1, . . . , n̂2s〉. For the moment, assume that no direction n̂i points
towards the south pole. By considering the equality Bk = 〈Dk|Ψ〉 and more
combinatorics, we obtain the following expression for Bk,

Bk = (2s)!
AkAΨ

∑
σ∈S2s

k∏
i=1
〈−ẑ½|n̂½

σi〉
2s∏

i=k+1
〈ẑ½|n̂½

σi〉 . (1.3.7)

By substituting the equations (1.3.5) and (1.3.1) in the previous expression
for Bk we obtain, after some straight-forward algebra

Bk = λ

AΨ

√
(2s)!√

k!(2s− k)!
∑
σ∈S2s

k∏
i=1

ζσi , (1.3.8)

where ζi = tan (θi/2)eiφi is the image under stereographic projection of n̂i,
and λ is defined as follows; λ = ∏2s

i=1 cos(θi/2).
The next step is to invert (1.3.8) to write the complex numbers ζi in

terms of the coefficients Bk and thus conclude the proof. The trick is to
consider the following equalities between polynomials in the complex variable
ζ,

2s∏
i=1

(ζ − ζi) =
2s∑
k=0

ζ2s−k (−1)k
k!(2s− k)!

∑
σ∈S2s

k∏
i=1

ζσi . (1.3.9)

By multiplying (1.3.8) by (−1)kζ2s−k(2s
k

)1/2, summing the resulting equations
from k = 0 to k = 2s and considering (1.3.9) we obtain,

2s∑
k=0

ζ2s−k(−1)k
(

2s
k

)1/2

Bk = λ(2s)!
Aψ

2s∏
i=1

(ζ − ζi) . (1.3.10)

Note that the polynomial in the l.h.s. of the previous equation can be
defined solely in terms of the coefficients Bk. On the other hand, the roots
of this polynomial are the complex numbers ζi (i = 1, . . . , 2s) associated
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to the directions n̂i. This is the relationship we were after. To find the
“constellation” of a state |ψ〉 written as in (1.3.6), the recipe is the following.
First, we construct the polynomial in the variable ζ in terms of the coefficients
Bk as defined in the l.h.s. of equation (1.3.10). Then, we find the complex
roots of said polynomial, ζ1, . . . , ζ2s. Finally, we map these complex numbers
in the unitary sphere using the stereographic projection.

In the case that l of the 2s directions n̂1, . . . , n̂2s point towards the south
pole, by using the same reasoning, it is easy to prove that the degree of the
polynomial at the l.h.s. of (1.3.10) is 2s− l. Therefore, if, for a certain state,
the degree of (1.3.10) turns out to be 2s− l, then, 2s− l of the directions
in the constellation of |ψ〉 are given by the roots of this (1.3.10), and the
remaining l stars are in the south pole.

Note that the constellation of the state |ψ〉 is the same as the one for
α|ψ〉 (here α denotes an arbitrary factor). Because of this property, we can
unambiguously define the constellation of the projective state [ψ] — just
take the constellation of |ψ〉. As an example, one can readily compute the
constellation of the Dicke states (1.3.4), the constellation of |Dk〉 consists of
k stars in the south pole and 2s− k in the north pole.

Since the polynomial defined in the previous proof turns out to be very
useful, we define the “Majorana polynomial” of a state |ψ〉 = ∑2s

k=0Bk|Dk〉
as,

Pψ(ζ) =
2s∑
k=0

ζ2s−k(−1)k
(

2s
k

)1/2

Bk . (1.3.11)

Note that the previous mapping induces a linear isomorphism between H2s
sym

and the space of polynomials of degree at most 2s. We use this mapping
frequently throughout the thesis.

1.3.2 A system of 2s spin-1/2 particles as a spin-s

In this section, we prove that H2s
sym is, in a formal sense, the space of a

spin s. Mathematically speaking, the space of a spin s is defined as the
vector space (unique up to isomorphisms) of dimension 2s + 1 where an
irreducible representation of SO(3) acts. One can show that H2s

sym satisfy
these requirements. Indeed, in H2s

sym we can naturally define the angular
momentum operators Si (i = x, y, z) as follows,

Si =
2s∑
k=1

S
(1/2,k)
i , (1.3.12)



21 1.3. Majorana Representation

where S(1/2,k)
i denotes the angular momentum operator (in the direction i)

that acts only in the k-th spin,

S
(1/2,k)
i = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

k−1 times

⊗S(1/2)
i ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

2s−k times

,

being 1 the identity operator and S
(1/2)
i the angular momentum for the

space of a single spin-1/2. From this definition, it is trivial to show that this
operators are self-adjoint and that they satisfy the well-known commutation
relationships between angular momentum operators (taking h̄ = 1),

[Si, Sj ] = iεijkSk .

The representation of a 3-dimensional rotation R as a linear operator on
H2s

sym, D(R), can be obtained by considering the exponential map of a linear
combination of the angular momentum operators (1.3.12),

D(R) = D(R)(1/2) ⊗ · · · ⊗D(R)(1/2) . (1.3.13)

where D(R)(1/2) denotes the corresponding rotation operator for the space
of a single spin s. One can also prove without much effort that the 2s + 1
Dicke states (1.3.4) are eigenstates of the operator S2 = S2

x + S2
y + S2

z with
eigenvalue s(s+ 1), and of Sz

Sz|Dk〉 = (s− k)|Dk〉 ,

Clearly, the possible eigenvalues of Sz are −s,−s+1, . . . , s−1, s, and |Ds+m〉
is an eigenstate of Sz with eigenvalue m. A quick computation reveals the
following equality,

S±|Ds+m〉 =
√
s(s+ 1)−m(m± 1)|Ds+m±1,m± 1〉 ,

where S± = Sx±Sy. From these facts we can conclude that the action defined
in (1.3.13) is irreducible, and that |Ds+m〉 is the state usually denoted by
|s,m〉.

This proves our claim; that H2s
sym is the space of a spin s. Because of

this, we can reformulate the results in the previous section to the case for
a general spin-s simply by making the substitutions |Ds+m〉 → |s,m〉 and
k → s + m. In the following section, we show the results obtained in this
fashion.

Finally, we prove that the proposed way to assign a constellation to a
state defined in the previous section commutes with rotations, as claimed at
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the beginning of section 1.3. To this end, consider a rotation R in SO(3),
and take take the corresponding rotation operator D(R) as in (1.3.12).
Take an arbitrary state |ψ〉 written as |ψ〉 = |n̂1, . . . , n̂2s〉 (in virtue of
theorem 4). Then, by definition, the constellation of |ψ〉 is made up by
stars in the directions n̂1, . . . , n̂2s. Since, for a certain phase γ, the equality
D(R)(1/2)|n̂½〉 = eiγ |Rn̂½〉 holds, we can conclude the following expression,

D(R)|n̂1, . . . , n̂2s〉 = e2siγ |Rn̂1, . . . , Rn̂2s〉 .

This means that the constellation of D(R)|ψ〉 consists on the stars in the
directions Rn̂1, . . . , Rn̂2s; the directions obtained by rotating the ones of the
constellation of |ψ〉, just as claimed.

1.3.3 Majorana representation of a spin s

In this section, we formulate the results of the previous sections for a general
spin s, whether it is the composite system of 2s spin-1/2 particles or not.

Given a spin-s state |ψ〉 written in the eigenbasis of the angular momentum
operator Sz as follows,

|ψ〉 =
s∑

m=−s
Bm|s,m〉 ,

define its Majorana polynomial (written as a function of the complex variable
ζ) as,

pψ(ζ) =
s∑

m=−s
(−1)s−mBm

(
2s

s+m

)1/2

ζs+m . (1.3.14)

In terms of this polynomial, we define the constellation of a state, as outlined
in the following paragraph.

Given a state |ψ〉, call ζ1, . . . , ζ2s to the 2s roots of pψ (in case that the
degree of pψ, n, is lower that 2s, assume the missing roots 2s − n are at
infinity). The constellation of |ψ〉, Cψ is defined as the collection of the 2s
directions in the sphere (with possible multiplicity) obtained by applying the
stereographic projection to the complex numbers ζ1, . . . , ζ2s (the image of
infinity is assumed to be the south pole). This procedure is schematically
show in figure 1.1.

Since multiplication by scalars leaves the constellation of a state invariant,
we also define the constellation of the projective state [ψ] as Cψ. Note that
this mapping between P(Hs) and the space of 2s points in the sphere is one-
to-one. Given a constellation C = {n̂1, . . . , n̂2s}, we denote by [n̂1, . . . , n̂2s]
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Figure 1.1: Schematic procedure to find the constellation of a state. The first step
is to build the Majorana polynomial (1.3.14). The second step is to find the roots of
this polynomial. Finally, via the stereographic projection, these roots are mapped
onto the sphere. The obtained directions constitute the constellation.

the ray such that its constellation is C, and by |n̂1, . . . , n̂2s〉 to any normalized
state in this ray.

As we have already proved, this procedure to define Cψ commutes with
rotations. Because of this, the Majorana representation is particularly useful
to find all the rotational symmetries of a state — they are the same as the
ones of the constellation. In figure 1.2 we show the constellation of certain
states with rotational symmetries.

1.3.4 An approach to the Majorana representation by spin
coherent states

Before presenting a second approach to introduce the Majorana represen-
tation, we define the spin coherent states. Some relevant references on this
topic are [1, 38, 39].

We say that a spin-s state |ψ〉 is coherent in the direction n̂ if and only
if it is an eigenstate of the angular momentum operator S · n̂ with maximal
projection, that is, if the equality S · n̂|ψ〉 = s|ψ〉 holds. Since the spectrum
of this type of operators is not degenerate, the coherent state in the direction
n̂ is, up to an overall factor, unique.

Perhaps, the simplest example of coherent state is the one pointing
towards ẑ, |s, s〉. It is easy to see that the coherent state in any direction
can be obtained by applying a suitable rotation to |s, s〉. Indeed, if R is
any rotation of 3-dimensional space that maps ẑ into n̂ then, D(R)|s, s〉
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Figure 1.2: Example of the constellation of various states with rotational symmetries;
a) a regular tetrahedron, b) an equilateral triangle at the equator, c) an octahedron,
d) the eigenstates of Sz and e) a coherent state (1.3.16).

is a coherent state in the direction n̂ (to quickly prove this, recall that
S · n̂ = D(R)SzD(R)†). From this, one can notice that, when working in
H2s

sym, the coherent states are those where all the constituent spins “point in
the same direction” — if we rotate the state |s, s〉 = |D0〉 = |ẑ, . . . , ẑ〉 (see
equations (1.3.2) and (1.3.4)) by D(R), the resulting state is proportional to
|n̂, . . . , n̂〉). This means that the constellation of the coherent states consist
of only one direction (degenerated 2s times) and, therefore, the coherent
states are the only separable ones in H2s

sym (c.f. section 1.1.2).
The previous observations can be used to find an expression for a coherent

state |n̂〉 associated to n̂ in terms of the basis |s,m〉, m = s, . . . ,−s. Indeed,
since the constellation of |n̂〉 has 2s stars in n̂, its Majorana polynomial pn̂
only has one root (with multiplicity 2s). Therefore, pn̂ can be written as,

pn̂(ζ) ∝ (ζ − ζ0)2s =
s∑

m=−s
(−1)s−mζs+mζs−m0

(
2s

s−m

)
, (1.3.15)

where ζ0 denotes the image of n̂ under the stereographic projection. By
inverting the equation defining the Majorana polynomial (1.3.14), we see
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that,

|n̂〉 = 1
An̂

s∑
m=−s

(
2s

s−m

)1/2

ζs−m0 , (1.3.16)

where An̂ is the following normalization factor,

An̂ =
(

s∑
m=−s

(
2s

s−m

)
|ζ0|2(s−m)

)1/2

= (1 + |ζ0|2)s .

Before going on, we want to mention three additional properties of the
coherent states that we refer to later on. The first one, is that the space of
coherent states [n̂] is topologically a sphere, and the Fubini-Study distance
(1.1.4) between the [n̂] and [m̂] is,

dP(H)([m̂], [n̂]) = arccos
(
cos2s θ

2

)
, (1.3.17)

where θ denotes the angle between m̂ and n̂. This formula can be easily
verified by computing the product between the states |ẑ〉 = |ẑ, . . . , ẑ〉 and
|n̂〉 = |n̂, . . . , n̂〉, and noting that the distance between [n̂] and [m̂] only
depends of the angle between m̂ and n̂.

The second one, is that they maximize the magnitude of the vector vψ,
defined for any |ψ〉 as follows,

vψ = 〈ψ|(Sx, Sy, Sz)|ψ〉 . (1.3.18)

In fact, it is easy to prove that for |n̂〉 the equality vn̂ = sn̂ holds. The
previous property implies immediately that coherent states also minimize
the uncertainty relationship

∆S2
x + ∆S2

y + ∆S2
z = s(s+ 1)− vψ · vψ . (1.3.19)

The previous equality can be obtained with a little bit of algebra. In this
sense, coherent states are the “most classical ones”.

The third property we want to stress is that they provide a resolution of
the identity operator 1,

1 = 2s+ 1
4π

∫
S2

|n̂〉〈n̂|dΩ , (1.3.20)

where S2 denotes the unitary sphere and dΩ, the volume element of S2. In
section 3.1, we give a proof of this equality for a more general case.
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Now we mention how to find define the Majorana representation via spin
coherent states. Given a state |ψ〉, define the Husimi function Hψ associated
to it according the following equation,

Hψ(n̂) = 2s+ 1
4π |〈n̂|ψ〉|2 . (1.3.21)

Then, as we prove in the following theorem, we can characterize Cψ in terms
of the zeros of Hψ.

Theorem 5. Consider a state |ψ〉 and its constellation Cψ. Then, Cψ is the
set of all the directions n̂ such that Hψ(−n̂) = 0.

Proof. The proof is straightforward. First, write |ψ〉 = ∑m
−mBm|s,m〉. Using

the expression for a coherent state (1.3.16), we can compute the product
〈−n̂|ψ〉. Denote by ζ0 the complex number associated to n̂ (via stereographic
projection) and, by ζ0A, the one associated to −n̂, the complex number
antipodal to ζ0. As it is well-known, ζ0A = −1/ζ∗0 . Using these equations, we
obtain the following,

〈−n̂|ψ〉 = 1
(1 + |ζ0|2)s

s∑
m=−s

Bm

(
2s

s−m

)1/2

(ζ∗0A)s−m

= 1
(1 + |ζ0|2)s

s∑
m=−s

(−1)s−mBm
(

2s
s−m

)1/2

ζm−s0

= 1
ζ2s

0 (1 + |ζ0|2)s
s∑

m=−s
(−1)s−mBm

(
2s

s−m

)1/2

ζm+s
0

= pψ(ζ0)
ζ2s

0 (1 + |ζ0|2)s ,

where we used (1.3.14) to deduce the last equality. Because of this, the Husimi
function (1.3.21) Hψ evaluated at −n̂ is proportional to |pψ(ζ0)|2. Since the
proportionality factor is nowhere zero, Hψ(−n̂) is zero if and only if the
Majorana polynomial evaluated at ζ0 is zero, pψ(ζ0) = 0. This concludes the
proof.

The previous theorem allows us to give a physical interpretation of the
directions of the stars in the constellation of a state |ψ〉. If there is a star
in the direction n̂ then, by the previous theorem, the equality Hψ(−n̂) ∝
|〈−n̂|ψ〉|2 = 0 holds. This implies that |ψ〉 is orthogonal to |−n̂〉. Since |−n̂〉
is the only eigenstate (up to a phase) of the angular momentum operator
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−S · n̂ with projection s, by Born rule, the probability of getting the value
s when measuring the spin projection in −n̂ of a system in the state |ψ〉 is
zero. This result can be generalized for stars with multiplicity greater than
one. Before stating the theorem, denote by |n̂,m〉 the usual eigenstate of
S · n̂ with eigenvalue m. Now we state the theorem.

Theorem 6. Consider a state |ψ〉 and its constellation Cψ. Then, there is a
star in n̂ in Cψ with multiplicity l (1 ≤ l ≤ 2s) if and only if |ψ〉 is orthogonal
to | − n̂,m〉 for all m such that s − l + 1 ≤ m ≤ s. In physical terms, the
probability of producing the values s, s− 1, . . . , s− l + 1 when measuring the
spin projection in the direction −n̂ of a system in the state |ψ〉 is zero.

Proof. First, we argue that it is enough to prove the theorem in the particular
case that n̂ points toward the south pole. Indeed, if the star in consideration
is not in the south pole, we can always consider a rotation R that maps the
point n̂ to the south pole. Then, since the Majorana representation commutes
with rotations, there are l stars in the constellation D(R)|ψ〉 in the south pole.
Now, we can apply the particular case of the theorem we are about to prove.
Finally, we rotate everything back to conclude the general case (it is easy to
show that, up to a phase, |n̂,m〉 is equal to D(R−1)|ẑ,m〉 for arbitrary m;
also recall that the rotation operator D(R) is unitary and therefore preserves
the inner product of Hilbert space). We use this kind of argument frequently
throughout the thesis.

Now we prove this particular case. Note that there are l stars in the south
pole in Cψ if and only if “infinity is a root of the Majorana polynomial” pψ
(1.3.14) with multiplicity l. By convention, this means that the degree of pψ
is 2s − l, that is, the coefficients of the orders ζ2s, . . . ζ2s−l+1 of pψ(ζ) are
zero. By considering (1.3.14), we note that this happens if and only if the
coefficients of |ψ〉 (when expanded in the basis |s,m〉 with m = −s, . . . , s)
corresponding to |s, s〉, . . . |s, s− l + 1〉 are all zero. But, since this basis is
orthonormal, this is equivalent to the statement that |ψ〉 is orthogonal to
|s,−s〉, . . . |s,−s+ l − 1〉. This concludes the proof.

1.3.5 Spin anticoherent states

In a certain sense, coherent states are the most classical ones, as they define
one single direction — their Majorana constellation consist on a single 2s-
degenerate star. From here, it is natural to pose the opposite question, which
states are the most quantum ones? Intuitively speaking, the constellation of
such kind of states must consist of stars spread as evenly as possible over the
unitary sphere.
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There are many related problems that deal with the question of distribut-
ing a certain number of points uniformly over the surface, some examples
include [40–42]. Here, we use the definition of anticoherent states given in
[43]; we say that a state [ψ] in P(Hs) is anticoherent of order k if and only
if, for any m ≤ k, the quantity

〈ψ|(S · n̂)m|ψ〉 is independent on n̂.

The motivation of this definition is the following. Being the opposite to
coherent states, we would like an anticoherent state [ψ] to be the most
adirectional possible. Naturally, this leads to the requirement that the vector
(1.3.18) vψ = 〈ψ|S|ψ〉 is zero — otherwise, we could use it to define a
direction. One can easily verify that the states with this property are the
anticoherent states of order one. However, states that satisfy this property
are not completely adirectional, for instance, [ψ0] = [s, 0] (for an integer spin
s) is anticoherent of order zero, but it clearly defines two directions, ẑ and −ẑ.
These directions can be singled out by considering the uncertainty function
over the unitary sphere

∆S2
n̂ = 〈ψ0|(S · n̂)2|ψ0〉 − (〈ψ0|S · n̂|ψ0〉)2 = 〈ψ0|(S · n̂)2|ψ0〉 .

This function only has two zeros, ẑ and −ẑ (as [ψ0] is an eigenstate of Sz).
If we want a state [ψ] to be more adirectional than an anticoherent state of
order one, we could impose the condition that, besides being anticoherent of
order one, the uncertainty function ∆S2

n̂ = 〈ψ|(S · n̂)2|ψ〉 associated to it is
independent of n̂. In this way, no direction is associated to [ψ] up to second
order in S. Going on with this line of reasoning, we see that anticoherent
states of order k do not define any direction up to k-th order in S.

A quick computation reveals that there are no anticoherent states for spin
s = 1/2. For s = 1, 3/2, the highest order of anticoherence possible is one. In
both of these cases, there is essentially one anticoherent state, for s = 1, the
only anticoherent states are those whose constellation consists of antipodal
stars; for s = 3/2, the stars of the constellations of the only anticoherent
states define a maximal equilateral triangle (an equilateral triangle contained
in a great circle of the sphere). For s = 2, the highest order is two [43]. In
general, for a given s, the highest order of anticoherence possible is at most
bsc (where b.c denotes the floor function) [44]. In [45] the authors prove that
there are states of any order of anticoherence, provided s is big enough.

From a mathematical point of view, anticoherent states are interesting
since their constellation tend to spread uniformly over the sphere [43, 46].
From a physical point of view, anticoherent states have applications to
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quantum metrology [47, 48] (there, the anticoherent states are refereed as
“kings of quantumness”) and to quantum information [45].





Chapter 2

Geometry of the shape space
of a spin s

As we have mentioned briefly in the previous chapter, when a spin state in
P(Hs) is rotated, its physical properties remain the same. Because of this,
it is natural to identify states that only differ by a rotation. We call shape
space the quotient space obtained via this identification . In this chapter,
we present how to use this construction to describe P(Hs) as a principal
fiber bundle, where the base space is the shape space and the acting group
is SO(3). We also mention many geometrical properties derived from this
particular description and the Fubini-Study metric.

The concept of shape space also appear in mathematics [49], and in other
branches of physics, for instance, in classical mechanics [50] and in general
relativity [51–53].

2.1 P(Hs) as a fiber bundle

For the rest of this chapter, we work mainly with the representation of P(Hs)
in terms of pure density operators mentioned in section 1.1. As a matter of
nomenclature, when we mention the constellation of the density matrix ρ, we
are referring to the constellation of the state represented by ρ. Using (1.1.8),
we can naturally define an action by the right of a rotation R ∈ SO(3) on
the ρ as follows,

ρ / R = ρ / D(R) = D(R)†ρD(R) . (2.1.1)

31
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By of the results of section 1.3, the constellation of ρ / R can be obtained by
rotating the one of ρ by R−1. This situation occurs because we are working
with right actions instead of left actions.

In terms of this action, we define the shape space S as the quotient
space obtained by identifying states that differ by the action of a rotation.
Note that, in terms of the Majorana representation, two states are in the
same equivalence class if and only if their corresponding constellations can
be connected by a rotation.

By considering the infinitesimal version of (2.1.1), we can define the action
of so(3) on P(Hs). Indeed, by considering a rotation D(R) = e−itS·n̂, we can
compute the action of A = S · n̂ on ρ as follows,1

ρ /A = d/dt(eitAρe−itA)t=0 = i[A, ρ] ≡ A](ρ). (2.1.2)

The tangent vectors A] obtained in this way are called fundamental vertical
vectors and it is easy to prove that they satisfy the conditions mentioned
in theorem 1. If we fix A and repeat this procedure for all pure density
operators ρ, we obtain a fundamental vector field, denoted by A](ρ). On the
other hand, if we fix ρ and vary A over so(3), we obtain the vertical tangent
space at the point ρ.

With this definition, we can naturally decompose P(Hs) as a fiber bundle,2
where the base space is S , the group is SO(3) and the projection operator
π maps the state ρ to its equivalence class in S . If two different states ρ
and ρ′ are in the same fiber, we say that ρ and ρ′ have the same shape, but
different orientation. As already argued, all the physical scalars associate to
a state (for example, its entanglement or its degree of anticoherence) must
induce a well-defined function over shape space, that is, its value must be
the same for all the states with the same shape.

Generically speaking, the fibers are isomorphic to SO(3). In the generic
case, the constellation of a certain ρ has no rotational symmetries, so no
rotation of SO(3) fixes ρ. By applying to ρ all possible rotations, we obtain all
the points in its fiber. In this way we can construct the following isomorphism
ϕρ between these fibers and SO(3),

R ∈ SO(3) ϕρ←→ ρ / R . (2.1.3)

Note that, the fundamental vectors of equation (2.1.2) are the pushforward
under this isomorphism of the elements of so(3).

1 Formally, the operators Si are representations of the elements of so(3), not the elements
themselves. However, to simplify the notation, we denote them by the same symbol.

2 We refer to P(Hs) as a fiber bundle despite the fact that some fibers are not isomorphic
to SO(3). See the paragraph after (2.1.3) for more details.
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However, if a state has some rotational symmetries, its fiber is no longer
isomorphic to SO(3). For instance, it is easy to verify that the fiber of the
states |s,m〉, with m 6= 0 (for example, the coherent state |s, s〉) is isomorphic
to the sphere S2, while the one of |s, 0〉 is isomorphic to the real projective
space RP2. Further discussion about the topology of the fibers can be found
in [54].

Since the real dimension of P(Hs) is 4s, the one of S is 4s− 3. This is
relevant from a numerical point of view, for instance, to find the maximally
entangled state (c.f. section 1.1.2) — the space where the numerical search
is performed is reduced by three.

In general, it is not an easy task to assign coordinates to S . A first
approach to solve this problem, is to use the tensor representation of spin
states to find such coordinates [55]. A second approach, is to use the Majorana
representation to find particular sections of the total space P(Hs) that can
be easily parametrized. In the following paragraphs, we exemplify this second
approach for two different values of s; s = 1 and s = 3/2. We skip the
case s = 1/2 since it is trivial; indeed, for s = 1/2 shape space is only one
point — the constellation of any state consists only in one star, so any two
constellations of two different states can be trivially connected by a rotation.
From this case we can also conclude that, in general, S is not a manifold
but an orbifold [56].

First, we begin with the case of s = 1, where the constellation of any state
in P(Hs) has two stars. By a suitable rotation, we can obtain a constellation
where the two stars are in the xz plane and are bisected by the ẑ axis. If
we denote by q the angle between the original stars (0 ≤ q ≤ π), then, the
directions of the ones obtained after applying the rotation are,

n̂1 = (sin q
2 , 0, cos q2) , n̂2 = (− sin q

2 , 0, cos q2). (2.1.4)

Since the complex numbers associated to n̂1 and n̂2 (via the stereographic
projection) are tan(q/2) and − tan(q/2) respectively, then, the Majorana
polynomial for a state |q〉 with constellation made by the directions (2.1.4),
is given by,

pq(ζ) ∝ (ζ − tan q
2)(ζ + tan q

2) .

By inverting (1.3.14), and normalizing, we find, after a direct computation,
that the state represented by ρ(q) associated to this constellation is,

ρ(q) = |q〉〈q| , (2.1.5)
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where (|q〉 is written as column vector w.r.t. the standard basis {|s = 1,m〉,
m = 1, 0,−1})

|q〉 = 1√
3 + cos q (cos q2 + 1, 0, cos q2 − 1) .

The function ρ(q) defines a section over P(Hs). By construction, any state
has the same shape as ρ(q) (for a suitable q), and, if q 6= q′, then ρ(q) and
ρ(q′) have different shapes — this is obvious from the fact that rotations
preserve the angle between the stars. Because of this, we conclude that, for
s = 1, S is topologically equivalent to the closed interval [0, π]. In the case
q = 0, the stars of equation (2.1.4) coincide, so q = 0 corresponds to the
“shape of coherent states”. On the other hand, if q = π, the stars are antipodal
and this case corresponds to the shape of the only anticoherent state of order
one for s = 1 (c.f. section 1.3.5).

Now, we make a similar analysis for s = 3/2. In this case, the constellation
of states has three stars. Since any three points in the sphere are coplanar,
we can rotate them in a way such that they lie in a plane parallel to xy.
Then, by applying a rotation around the ẑ axis, we can make one of them
intersect the meridian that goes from ẑ to x̂. The resulting constellation after
these rotations is shown in figure 2.1. The directions of its stars are,

n̂1 = (sin θ, 0, cos θ) ,
n̂2 = (sin θ cosφ1, sin θ sinφ1, cos θ) , (2.1.6)
n̂3 = (sin θ cosφ2, sin θ sinφ2, cos θ) .

A careful analysis reveals that the rotations mentioned can be taken so
that the equalities 0 ≤ θ ≤ π

2 and 0 ≤ 2φ1 < φ2 ≤ 2π − φ1 hold. This
method to assign coordinates is illustrated in figure 2.1. Just like in the
previous case, by considering the states which constellation is given by
the directions (2.1.6), we can define a section of P(Hs) and assign coordi-
nates to S . Some algebra reveals that this section can be parametrized as
ρ(θ, φ1, φ2) = |θ, φ1, φ2〉〈θ, φ1, φ2|, where,

|θ, φ1, φ2〉 = N−1
(

2
√

3 cos3 θ
2 ,

1
2(eiφ1 + eiφ2 + 1) sin2 θ csc θ

2 ,

sin θ
2 sin θ(ei(φ1+φ2) + eiφ1 + eiφ2), 2

√
3 sin3 θ

2e
i(φ1+φ2)

)
,

(2.1.7)
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Figure 2.1: Left:Visual representation of the coordinates θ, φ1 and φ2 used to
build the section (2.1.7). Right:Portion of the (φ1, φ2, θ) space needed to cover S .
Different points in the prism might get mapped to the same shape.

and N is the following normalization factor,

N 2 = 9 + cosφ1 + cosφ2 + cos(φ1 − φ2)
− (cos(φ1 − φ2) + cosφ1 + cosφ2 − 3) cos 2θ.

Let us consider some examples. When θ = 0, all the stars in the constellation of
ρ coincide and, therefore, it is a coherent state. When θ = π/2, φ1 = 2π/3 and
φ2 = 4π/3, the stars describe an equilateral triangle, that is an anticoherent
state of order one.

We also want to stress that, unlike in the previous case, the coordinates
(θ, φ1, φ2) are not in a one-to-one correspondence with the elements of S ,
for instance, the points of the section with (θ = θ0, φ1 = 0, φ2 = π) and
(θ = π/2, φ1 = 0, φ2 = 2θ0) have the same shape — they both describe a
shape where two stars coincide and the direction of the third one makes
angle of 2θ0 with the one of the first two, but they are different points in the
prism of figure 2.1.

Similar procedures can be used to find sections to parametrize S for
higher spins. For instance, one can consider a section where one star is in
the north pole, a second one is in the xz plane and use the direction of the
remaining stars as coordinates. Of course, just like the case of s = 3/2, this
set of coordinates is not in a one-to-one correspondence with the points of
S .
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2.1.1 Structures induced by the Fubini-Study metric

As we show in the paragraphs below, the decomposition of P(Hs) as a fiber
bundle — together with the Fubini-Study metric — allows us to define a
series of geometrical structures in a straightforward way. Note that, the right
action defined in (2.1.1), leaves the Fubini-Study metric (1.1.10) invariant.
Indeed, using these equations, one can prove that the equality d(ρ1, ρ2) =
d(ρ1 / R, ρ2 / R) holds. By this invariance, any scalar defined in terms of
this metric is constant for all the points in the same fiber. As a matter of
nomenclature, recall that we say that a function of P(Hs) defines a function
in shape space if it attains the same value for different points in the same
fiber.

Although most of the remaining of this section is mostly mathematical,
we want to stress that we have reasons to believe that our results are of
physical interest. We address the concrete applications of these constructions
in a future work.

Some relevant background for the following calculations includes [23,
Chapter 9], [57, Chapter 5] and [58].

First, we endow P(Hs) with a connection. This can be done with the
Fubini-Study metric h (1.1.11) in a very simple fashion; we say that a vector
v tangent to ρ is horizontal if and only if it is perpendicular to all the
fundamental vectors (2.1.2). We show in equation (C.2.3) of appendix C
that this horizontality condition does meet all the necessary requirements to
define a connection.

Denote by ω the so(3) valued 1-form associated to this connection. By
definition, this means that ω satisfies the following equalities,

ω(A]) = A for all A ∈ so(3), ω(v) = 0 for all horizontal vectors v .
(2.1.8)

Also, denote by Ω the so(3)-valued curvature form for ω. Note that, because
of the invariance of the Fubini-Study metric emphasized at the beginning of
the section, the scalar Tr (Ω2) frequently considered in Yang-Mills theories,3
defines a function in shape space.

With the help of the connection ω, we can decompose the tangent space
at a point as the direct sum of the vertical and horizontal spaces. Note that

3 If we write Ω in terms of coordinates qA (A = 1, . . . , 4s) for P(Hs) as,

Ω = 1
2

3∑
α=1

4s∑
A,B=1

Sα ΩαAB dqA ∧ dqB , then, Tr (Ω2) =
3∑

α,β=1

4s∑
A,B=1

ΩαABΩβABh(S]α, S]β) .
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these are orthogonal by definition. This decomposition allows us to define
two new structures, a vertical metric for SO(3) and an horizontal metric for
S , as we explain in what follows.

By considering the restriction of the Fubini-Study metric to the fiber
of a state ρ, we can compute the induced metric over it. Some examples
of this construction can be found in [59, 60]. In these terms, the vertical
metric k(ρ) for SO(3) is defined as the pullback of the induced one under
the isomorphism ϕρ (2.1.3). It is an easy exercise to prove that k(ρ) is a
right invariant metric for SO(3) and therefore, the Ricci scalar R(k(ρ)) is the
same for all the elements of SO(3). One can also prove that SO(3) with the
metric k(ρ/r) is isometric to SO(3) with k(ρ) for any rotation r (to find the
isometry, it is useful to recall that, for any fiber bundle, the pushforward of
A] under the right action of r is (r−1Ar)]) and therefore, R(k(ρ)) also defines
a function in shape space.

In particular, we can evaluate k(ρ) at the elements Sα and Sβ (α, β =
x, y, z) in so(3). A little bit of algebra reveals,

k
(ρ)
αβ ≡ k

(ρ)(Sα, Sβ) ≡ h(S]α, S
]
β) = <〈SαSβ〉 − 〈Sα〉〈Sβ〉 , (2.1.9)

where the expectation values are computed w.r.t. ρ. The 3× 3 matrix with
entries k(ρ)

αβ is the matricial representation of k(ρ) w.r.t. the basis {Sx, Sy, Sz}
of so(3). Abusing of notation, we denote this matrix also by k(ρ). In terms of
it, we can express R(k(ρ)) as follows (the details of the calculation can be
found in appendix C, equation (C.1.23)),

R(k(ρ)) = Tr (k(ρ))2 − 2 Tr ((k(ρ))2)
2Det k(ρ) . (2.1.10)

Next, we define the horizontal metric for S , g. Just as the vertical one
is defined by restricting the Fubini-Study metric to vertical vectors, the
horizontal metric is defined in terms of the horizontal ones. Given u and
v vectors tangent to a point S in S , define their inner product g(u, v) as
follows,

g(u, v) = h(u, v) , (2.1.11)

where u and v are any two horizontal vectors tangent to a point in P(Hs)
that get projected to u and v respectively, π∗u = u, π∗v = v. Using the fact
that the Fubini-Study metric is invariant w.r.t. the action of SO(3), it is
straightforward to prove that the particular choice of u and v is irrelevant.
Denote by R(g) the Ricci scalar for the metric g.
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Figure 2.2: Visual representation of the formula (2.1.12). SO(3) is mapped onto the
fiber of ρ using ϕρ (2.1.3). ϕρ sends the identity rotation e to ρ. By decomposing
u and v in their vertical and horizontal components (that are orthogonal), we can
compute h(u, v) in terms of the metrics g for S , and k(ρ) for SO(3).

Notice that, because vertical and horizontal vectors are orthogonal to
each other by construction, the inner product h between two vectors u and
v tangent at ρ can be written in terms of k and g in the following way,

h(u, v) = g(π∗u, π∗v) + k(ρ)(ω(u), ω(v)) . (2.1.12)

In figure 2.2, we present a representation of the previous result.
Note that, by (2.1.12), if u and v are two tangent vectors that get projected

to the same vector in S (that is, if π∗u = π∗v), but u is horizontal while
v is not, it is clear that the magnitude of u is smaller than the one of v,
h(u, u) < h(v, v) (since ω(u) is zero).

This observation has two interesting consequences. The first one is that
the length of a horizontal curve in P(Hs) is smaller than the one of a non-
horizontal curve (as long as their projection in S is the same) . The second
one is that the h-length of a horizontal curve is equal to the g-length of its
projection in S .

Finally, we introduce two extra functions in shape space. First, define Φ
as follows,

Φ = ln Det k(ρ) , (2.1.13)

where k(ρ) denotes the matrix for the vertical metric defined in (2.1.9). In
equation (C.2.37), we show that Det k(ρ) does define a function in shape
space.
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The second function we define is closely related to the degree of coherence
|〈S〉| of a state ρ = |ψ〉〈ψ| defined in [61] as follows: given vψ the spin expec-
tation value of ρ (see eq. (1.3.18)) , define |〈S〉| as the euclidean magnitude
of the vector vψ. Since, under the right action (1.1.8), vψ only rotates, it is
easy to verify that |〈S〉| defines a function in shape space. The quantity ` we
introduce is very similar, but we consider the magnitude of vψ w.r.t. to the
metric k(ρ) (regarding vψ as a vector in so(3)) instead of the euclidean one,

` =

 3∑
α,β=1

k
(ρ)
αβ 〈Sα〉〈Sβ〉

1/2

. (2.1.14)

It is simple enough to prove that, just as |〈S〉|, ` also defines a function in
shape space.

In the previous paragraphs, we have introduced five functions for shape
space, mainly, Tr (Ω2),R(k(ρ)),R(g), Φ and `. As it turns out, these quantities
are not independent. The following relationships come from a big calcula-
tion that can be found in appendix C.2. These relations are (we omit the
superindex (ρ) from now on),

R(h)− 3(8s+ 2) + 3`2
2eΦ = R(g)− 3

4 Tr (Ω2) , (2.1.15)

and,
Tr (Ω2) = 3

s
R(h)− 4R(k) + ||∇S Φ||2S + 2∇2

S Φ , (2.1.16)

where we used the metric g of S to define the gradient of Φ (∇S Φ), its
Laplacian (∇2

S Φ) and the magnitude of∇S Φ (||∇S Φ||S ). Also,R(h) denotes
the (constant) Ricci scalar for the Fubini-Study metric h (c.f. appendix C.2.3),

R(h) = 8s(2s+ 1) .

A plot of these functions is presented in figure 2.3 for the case of s = 3/2.
These graphics were produced in terms of the coordinates presented in figure
2.1. Since S is three-dimensional in this case, we fixed θ = π/2 and made
the corresponding plot in the φ1φ2 plane.

Notice that all the functions have special behavior at two particular
kinds of shapes; the ones where all the stars are in a diameter of the sphere
(the black and blue dots in the figure), and the one where they make a big
equilateral triangle (the red dots), the shape of the only anticoherent state for
a spin-3/2. For instance, Tr (Ω2) has a pole in the black and blue dots, while
it attains a minimum at the red point, the only zeros of ` occur for these types
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of points, and so on. This behavior appears to continue for higher values of s,
in particular, the shape of anticoherent states of the highest degree possible
(for a certain value of s) appear to be local minima of Tr (Ω2). These facts
suggest that these quantities are related with the degree of anticoherence
of a state, but, as we have already mentioned, finding their precise physical
meaning is a problem we will address in a future work.
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(a) ln(Tr(Ω2))

(b) R(k) (c) ln(R(g))

(d) Φ (e) `

Figure 2.3: Plot of the functions ln(Tr (Ω2)),R(k), ln(R(g)), Φ and ` for s = 3/2, using the coordinates
of figure 2.1 with θ = π/2. The domain of the functions is shown as a gray triangle. Three type
of shapes are highlighted in the domain, the red point corresponds to the shape of a big equilateral
triangle; the blue point, to the one of coherent states and the black one, to the one where two stars
coincide and the remaining one is antipodal to the other two.
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2.1.2 A simple example, the s = 1 case

In what follows, we specify the definitions of the previous sections to the
s = 1 case. This value of s is relevant because the resulting expressions are
algebraically manageable. The results are written in terms of the coordinates
introduced in (2.1.5). Because shape space is one dimensional in this case,
the following equalities hold trivially,

R(g) = Tr (Ω2) = 0 .

The points of the section defined in (2.1.5), can be written as a matrix in
the following way,

ρ(q) = 1
3 + cos q

4 cos4 q
4 0 − sin2 q

2
0 0 0

− sin2 q
2 0 4 sin4 q

4

 . (2.1.17)

By taking the derivative w.r.t. q, we can calculate the representation of the
tangent vectors,

w = ∂qρ = − 2
(3 + cos q)2

sin3 q
2 0 sin q

0 0 0
sin q 0 − sin3 q

2

 (2.1.18)

By making a direct computation, we find the following expression for the
vertical vectors (2.1.2),

S]x =
2i
√

2 cos q2
3 + cos q

 0 − cos2 q
4 0

cos2 q
4 0 − sin2 q

4
0 sin2 q

4 0


S]y = 2

√
2

3 + cos q

 0 − cos2 q
4 0

− cos2 q
4 0 sin2 q

4
0 sin2 q

4 0

 (2.1.19)

S]z =
2i sin2 q

2
3 + cos q

0 0 −1
0 0 0
1 0 0


A visual representation of ρ, ∂qρ and the vertical vectors is presented in figure
2.4.

After some algebra, one can notice that the inner product h between w
and the vertical vectors is zero. This implies that w is a horizontal vector
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(this is the main reason why we define the coordinates q as in (2.1.5)), so we
can use it to compute the metric g (2.1.11),

gqq ≡ 1
2 Tr (w2) =

sin2 q
2

(3 + cos q)2

Now, we proceed to compute the vertical metric. Using the expression (2.1.9)
we obtain that kρ is diagonal in this case, and it is given by the following
expression,

k(ρ) =

∆S2
x 0 0

0 ∆S2
y 0

0 0 ∆S2
z

 = 2
3 + cos q


cos2 q

2 0 0
0 1 0

0 0 2 sin4 q
4

3+cos q

 (2.1.20)

By considering the determinant of k(ρ), we obtain the following expression
for Φ (2.1.13),

Φ = ln
{

4 sin2 q
2 sin2 q

(3 + cos q)4

}
. (2.1.21)

The result for the Ricci scalar (2.1.10) turns out to be, after some algebra,

R(k) = 2 , (2.1.22)

that is independent of q.
Next, we find an expression for ` (2.1.14). To this end, first we compute

the spin expectation value vψ (1.3.18). The result is,

vψ =
4 cos q2

3 + cos q (0, 0, 1) .

The magnitude ` of this vector according to the metric k(ρ) turns out to be,

` =
4 sin q

2 sin q
(3 + cos q)2 .

Note that this result can also be obtained by considering the expression for
Φ (2.1.21) and equation (2.1.15).

Finally, by integrating the square root of the metric √gqq from 0 to q,
we can compute the geodesic distance (in S ) between the shape of coherent
states and the one of ρ(q). As we see in the next subsection, this corresponds
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Figure 2.4: Visual representation of ρ (2.1.17), ∂qρ (2.1.18) and of the vertical
vectors of equation (2.1.19). The constellation of ρ (2.1.4) is shown in red. The
small rectangles denote the tangent space of the sphere at the red points, and ∂qρ,
S]x, S]y and S]z are represented as vectors in these spaces. The arrows for S]α were
obtained by considering an infinitesimal rotation of the red dots around the axis α,
while the ones for ∂qρ, by applying an infinitesimal change in the parameter q.

to the geometric entanglement of ρ(q) (when regarding the spin as a system
of 2s spin-1/2). In this case the result is,

E(q) =
∫ q

0

√
gqq(t)dt = π

4 − arctan
(
cos q2

)
.

A plot of gqq(q) and of E(q) is presented in figure 2.5. Clearly, when q = 0,
E(q) is also zero. This is because q = 0 denotes the shape of coherent
states, the only separable ones. The maximally entangled state corresponds
to q = π, that is, to the shape where the two stars are antipodal to each
other. Therefore, the diameter of S is π/4. Compare this with π/2, the one
of projective Hilbert space.

From the same figure 2.5, notice that gqq is zero when q is equal to
zero. This is not a singularity of the metric, but merely an effect of the
coordinates we are using — at this point the pushforward of the mapping
between coordinates and shapes becomes singular. This type of effects tends
to occur for shapes where two or more stars coincide. See [62] for an extended
discussion (in this article, the authors consider the mapping between the
coefficients of a polynomial and its roots; by reinterpreting their results in
terms of the Majorana representation, we can arrive at the same conclusions
for our case).
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Figure 2.5: Plot of the metric gqq and of the entanglement E(q)

2.1.3 Geodesics in P(Hs) and in S

In terms of the metric g (2.1.11), we can define the geodesic distance dS

between two shapes S1 and S2. Denote by f1 and f2 the fiber of S1 and S2
respectively. As we prove in the following paragraph, dS (S1,S2) has a simple
geometrical interpretation; it is the shortest distance (defined as in 1.1.4))
between the elements of f1 and f2,

dS (S1,S2) = min
ρ1∈f1,ρ2∈f2

dP(Hs)(ρ1, ρ2) = min
ρ2∈f2

dP(Hs)(ρ0
1, ρ2) , (2.1.23)

where ρ0
1 denotes any state in f1. The fact that we can fix any element in f1

and only minimize over f2 comes from the invariance of the Fubini-Study
metric under the right action of rotations.

Now we prove the equality (2.1.23). Let ρ0
2 be an element in f2 that

minimizes the right side of (2.1.23). Denote by γ the shortest h-geodesic
that connects ρ0

1 with ρ0
2. Note that its length is dP(Hs)(ρ0

1, ρ
0
2). Since ρ0

2 is
the state in f2 closest to ρ0

1, among all curves that starts at ρ0
1 and ends at

any point of f2, γ is of minimal length. As argued just after (2.1.12), this
implies that γ is a horizontal curve and, therefore, the length of its projection,
π(γ) = γ, is the same as the one of γ, dP(Hs)(ρ0

1, ρ
0
2). Note that, as we are

about to prove, γ is the shortest curve in S that connects S1 with S2, and
therefore its length is also dS (S1,S2) by definition. To verify that γ is indeed
the shortest one, assume a shorter curve γ̃ exists. Consider a horizontal curve
γ̃ that begins at ρ1

0 and gets projected onto γ̃. By construction, γ̃ begins at
ρ1, ends at a point of f2, and its length — that is equal to the one of γ̃ — is
smaller than the one of γ, a contradiction. By equating both results for the
length of γ just obtained, we conclude that (2.1.23) holds.

We can use this definition to give a geometrical characterization of the
measure of entanglement (1.1.15) of a state. As noted in section 1.3.4, coherent
states are the only separable ones. Therefore, the entanglement of ρ is the
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Figure 2.6: Sketch of the proof of (2.1.23). Since ρ0
2 is the element in f2 closest to

ρ0
1, γ, the h-geodesic that joins them, is horizontal. Therefore, its h-length, λh(λ), is

equal to both, the r.h.s. of (2.1.23) and the length of its projection γ, λg(γ) = λh(λ).
From here, we can conclude γ is the shortest curve connecting S1 with S2, as any
other curve γ̃ might be lifted to a horizontal curve γ̃ (preserving its length) that is
longer than γ. Therefore, λg(γ) is also equal to the l.h.s. (2.1.23).

distance dS between the shape of ρ and the shape of coherent states. In
some cases, this simplifies the calculation of the entanglement of a state, as
shown in the previous subsection. In these terms, the maximally entangled
states are those such that their shape is the furthest away from the one of
coherent states.

As noted previously, the geodesic that connects ρ with the closest coherent
is horizontal. This renders them relevant in the context of the quantum
brachistochrone problem [63, 64], where the fastest way (under a certain set
of conditions, see [64] for details) to evolve a state ρi to a final state ρf is
sought. As it turns out, the answer is that the optimal evolution occurs along
the geodesic connecting ρi with ρf . In this context, if we want to evolve ρi
into any separable state as fast as possible, we have to follow the horizontal
geodesic connecting ρi with the closest coherent state.

Although useful when studying rotations, the Majorana is less intuitive
when working with horizontal geodesics. For example, consider the horizontal
geodesic that connects the state with constellation {s1, s2, s3} (see fig. 2.7)
and ends in the coherent state in the direction x̂. One might expect that, as
we advance in the geodesic, the stars would follow great circles to get to the
blue point, but this is not the case. As we can see in the figure, initially s1
gets away from the blue point, only to get close again (after coinciding with
s2) following a complicated trajectory.

In the previous paragraphs we proved that any horizontal geodesic gets
projected by π onto a geodesic of S . This raises the question, does this occur
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Figure 2.7: Visualization of an horizontal geodesic that begins at the state with
constellation {s1, s2, s3} and ends in the coherent state associated to the direction
shown in blue. As we advance in the geodesic, the stars move in the trajectory shown
in the figure. The value of the arclength parameter of the geodesic is color coded
according to the bar legend in the right. Notice that s1 is almost still throughout
most of the geodesic. Eventually, the stars s1 and s2 coincide in the green point
A. Afterwards, they spread equiangularly in the direction of the green arrows, until
the three of them coincide in the blue point. This type of spreading after two stars
coincide has already been reported in [65].
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for all type of geodesics (including not horizontal ones)? The answer is no,
as we show in the following paragraphs. Although here we present only the
final results, the intermediate calculations can be found in appendix C.3.

Consider a geodesic in P(Hs) parametrized as ρ(t). Denote by ρ(t) its
projection, π(ρ(t)) = ρ(t). Suppose ρ(t) is arclength parametrized. For any t,
the vector tangent to ρ(t) can be written as,

ρ̇(t) =
∑

α=x,y,z
vαS]α +

4s−3∑
i=1

viEi , (2.1.24)

where Ei (i = 1, . . . , 4s− 3) denotes the elements of a orthonormal basis for
horizontal space chosen continuously over an open set containing ρ(t). For
the remainder of this chapter, we use Einstein notation for sum over repeated
indices. Also, we drop the superindex (ρ) in k(ρ) from now on. Greek letters
range over x, y and z, while Latin indices, over 1, 2, . . . , 4s− 3. We also use
the metrics g and k(ρ) to raise and lower indices. Note that we are working
in an anholonomic basis, since the vector fields S]α, S]β, Ei and Ej do not
commute in general.

In terms of (2.1.24), ρ̇(t) can be computed as,

ρ̇(t) = viπ∗(Ei) . (2.1.25)

where π∗ denotes the pushforward of π.
After some algebra that can be found in the previously mentioned ap-

pendix, we obtain that the equations for vα and vi are,

d
dt(vα) = 0 ,

v̇i + Γ(g)ijkvjvk + Ωα
k
ivkvα + 1

2k
αβ

,
ivαvβ = 0 , (2.1.26)

where Γ(g)ijk denotes the components of the Levi-Civita connection of the
metric g (the equivalent of the Christoffel symbols for anholonomic basis)
and f,i is a shorthand notation for the derivative of the function f in the
direction of Ei, f,i = Ei . f .

Notice that vα (with the index lowered with the metric) is a conserved
quantity. In particular, if all the components vα are zero for a certain t, they
are zero always. This implies that, if the tangent vector of a geodesic is
horizontal at some particular t then the entire geodesic is horizontal.

The second equation of (2.1.26) answers our question; in general, geodesics
in P(Hs) do not get projected onto geodesics of S . Indeed, by considering
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(2.1.25), we can conclude that only when the sum of the third and fourth
term in the l.h.s of (2.1.26) is zero (for example, when ρ is horizontal) ρ is a
geodesic.

Note that ρ(t) is not arclength parametrized in general (w.r.t. g) . We
can reparametrize everything so it is. Denote by τ the arclength parameter
of ρ and by a prime derivatives w.r.t. τ . By writing ρ′(τ) = uαS]α +uiEi, one
can find that the resulting equations for uα and ui are,(

uα√
1 +Q2

)′
= 0 ,

ui
′ + Γ(g)ijkvjvk + Ωα

k
iukuα + 1

2k
αβ

,
iuαuβ −

(Q2)′
1 +Q2u

i = 0 , (2.1.27)

where Q is the magnitude of the vertical component of ρ′, Q2 = uαuβkαβ.
If we suppose that (2.1.27) is the equation of motion of a particle living
in S , said particle would not be free, there would be a Lorentz-type force
Ωα

k
iukuα plus another force dependent on its velocity (unless, Q2 is zero).
Finally, we use the previous equations to characterize the coherent state

closest to ρ0 = |ψ0〉〈ψ0|. Denote it by ρn̂ = |n̂〉〈n̂|. By writing |ψf 〉 = |n̂〉 in
equation (1.1.12), we can characterize the geodesic ρ(t) connecting ρ0 with
ρn̂. As already argued, since ρn̂ is the closest coherent state, ρ(t) is horizontal.
By the argument following (2.1.26), this curve is horizontal if and only if ρ̇
is horizontal for a particular t, say, the initial one, t = 0. By applying, the
horizontality condition to ρ̇(0), we can conclude that

h(ρ̇(0), S]α) = 0 ,

for all vertical vectors S]α. By considering (1.1.12), it is easy to see that the
previous condition reduces to,

〈ψ0|Sα|ψ⊥0 〉 = 〈ψ⊥0 |Sα|ψ0〉 ,

where |ψ⊥0 〉 is given by equation (1.1.13). By substituting |ψ⊥0 〉 ∝ |n̂〉 −
〈ψ0|n̂〉|ψ0〉 we obtain, after some straightforward algebra, that the horizon-
tality condition is equivalent to the following,

〈ψ0|Sα|n̂〉 = 〈n̂|Sα|ψ0〉

Note that the previous condition is linear in Sα. In particular, if we consider
the raising operator in the direction n̂, S+

n̂ , the condition implies,

〈n̂, s− 1|ψ0〉 = 0 ,

that is, |ψ0〉 is orthogonal to |n̂, s−1〉. This is the same condition we obtained
in [1] but deduced in a completely different way.
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2.1.4 Horizontal and vertical vectors and Berry curvature,

In this section, we find expressions for the Berry curvature KB [31] when
evaluated at horizontal and vector fields. These results also allow us to give
a relatively simple expression for the components Ωαij of the curvature Ω.
Most of the explicit calculations can be found in appendices C.4 and C.6.

These results are written using the notation introduced in theorem 2. In
these terms, the horizontal vectors Ei tangent at a point ρ = |ψ〉〈ψ| can be
uniquely written as,

Ei = |ψ〉〈ψi|+ |ψi〉〈ψ| ,
where |ψi〉 satisfy the equality 〈ψi|ψ〉 = 0.

The Berry curvature at the point ρ = |ψ〉〈ψ|, evaluated at two vertical
vectors, S]α and S]β, can be written as

KB(S]α, S
]
β) = εγαβ〈Sγ〉 ,

where the expectation values are computed w.r.t. ρ and εγαβ denotes the
components of the Levi-Civita tensor,

εγαβ =


0 if any two indices are the same
1 if (α, β, γ) is an even permutation of (x, y, z)
−1 if (α, β, γ) is an odd permutation of (x, y, z)

.

For one horizontal vector and one vertical the result is,
KB(S]α, Ei) = 〈Sα〉,i ,

where ,i denotes the derivative in the direction Ei.
Finally, we deal with the case of two horizontal vectors. The resulting

expression is,
KB(Ei, Ej) = 2=〈ψi|ψj〉 .

The previous equation can also be written in terms of the coefficients of the
curvature Ω. The result is,

KB(Ei, Ej) = 4=〈ψi|Sα|ψj〉 − Ωαij

2〈Sα〉
.

By combining the previous results we obtain,
Ωαij = 4=〈ψi|(Sα − 〈Sα〉1)|ψj〉 .

This is one of the simplest expressions (from a numerical point of view) we
have found that determines the coefficients of the curvature Ω. Another
expression worth checking out is (C.7.3) of appendix C.7.1.



Chapter 3

Stellar representation for the
Grassmannians

Given a certain k-plane through the origin contained in Hs, what are the
rotations that leave it invariant? This type of problem is relevant in the
context of quantum computing, as these rotations might be used to implement
quantum gates [66].

For the case k = 1, 1-planes are projective rays, and their symmetries
can be found immediately by looking at the constellation of a state in the
ray. To solve this problem for k ≥ 2, in this chapter we define the stellar
representation for Grk (Hs); a generalization of the Majorana representation
that assigns to a k-plane a constellation. As we find further down, by looking
at the constellation of a k-plane — and some extra ingredients — we can
deduce its rotational symmetries.

The recipe to define a constellation of a k-plane Π presented in this
chapter is very similar to the one used in section 1.3.4 for the constellation
of a state; first, we define the coherent k-plane associated to the direction n̂,
Πn̂. Then, the constellation of Π consists of all the directions n̂ such that
the product (1.2.4) 〈Π−n̂,Π〉 is zero. In the rest of this chapter, we work
this recipe in detail, and mention some interesting properties we have found
about this representation.

3.1 The coherent k-planes

We define a coherent plane in the direction n̂ as follows,

Πn̂ = span{|n̂, s〉, |n̂, s− 1〉|n̂, s− 2〉, . . . , |n̂, s− k + 1〉} ,

51



Chapter 3. Stellar representation for the Grassmannians 52

where |n̂,m〉 denotes the eigenstate of S · n̂ with eigenvalue m. An explicit
expression for these states can be found in (B.0.10). When k = 1, we recover
the usual coherent states, Πn̂ = [n̂].

The coherent k-planes satisfy many properties analogous to the ones
satisfied by spin coherent states. Here we mention some of them.

If we take a coherent plane and rotate it,1 the resulting space is also
a coherent plane. Furthermore, by choosing a single coherent plane, and
rotating it in all the possible ways, we obtain the whole space of coherent
k-planes. This space can be shown to be topologically a sphere, and the
distance (1.2.5) between two coherent planes is the following,

d(Πm̂,Πn̂) = arccos
(
cosk(2s−k+1) θ

2

)
, (3.1.1)

where θ denotes the angle between m̂ and n̂. This result is analogous to the
one for coherent states (1.3.17). A proof of this formula is given right before
equation (3.5.6).

Coherent planes are also the most classical in a sense. Given a plane Π,
denote by P the projection operator onto Π. The restriction of an operator
A of Hilbert space to Π is defined as follows,

AΠ = PAP . (3.1.2)

In these terms, we define the expected spin vector vΠ for Π as follows,

vΠ = (Tr (SΠ
x ),Tr (SΠ

y ),Tr (SΠ
z )) .

As it turns out, in analogy with (1.3.18), the coherent planes are those that
maximize the magnitude of vΠ. A nice proof of this fact can be found in [66].

The final property we want to mention, is that coherent planes also
provide a resolution of the identity, just like the coherent states (1.3.20). The
precise statement is contained in the following theorem

Theorem 7. Denote by Pn̂ the projection operator for Πn̂. Then, the fol-
lowing equality holds,

U ≡
∫
S2

dΩPn̂ = 4πk
2s+ 11 , (3.1.3)

1The rotation of a k-plane Π by R is defined in the following way,

RΠ ≡ {D(R)|ψ〉 where |ψ〉 ∈ Π} .
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Proof. Let R be any rotation. Then we have the following,

D(R)Pn̂D(R)† =
k∑

µ=1
D(R)|n̂, s+ 1− µ〉〈n̂, s+ 1− µ|D(R)†

=
k∑

µ=1
|Rn̂, s+ 1− µ〉〈Rn̂, s+ 1− µ|

= PRn̂ .

Then, for any rotation R,

D(R)UD(R)† =
∫
S2

dΩD(R)Pn̂D(R)† =
∫
S2

dΩPRn̂ = U ,

where U is defined in (3.1.3). The infinitesimal version of the previous
equation states that U commutes with all the rotation generators Sx, Sy and
Sz. Since the only operators that commute with all these three are multiples
of the identity, we can conclude that U = λ1 for a certain λ. By taking trace
over both sides we obtain,

Tr


∫
S2

dΩPn̂

 = λTr (1)⇒
∫
S2

dΩ Tr (Pn̂) = λ(2s+ 1)

⇒
∫
S2

dΩ k = λ(2s+ 1)⇒ 4πk = λ(2s+ 1)⇒ λ = 4πk
2s+ 1 ,

where, for the second implication, we used the fact that the trace of a
projection operator is the dimension of the subspace it projects onto. This
concludes the proof. Note that for the case k = 1, we recover (1.3.20).

3.1.1 Writing Πn̂ in the standard form

It is often useful to write the coherent planes Πn̂ in the standard form w.r.t.
the basis {|s,m〉,m = s, . . . ,−s} (c.f. equation (1.2.7) of section 1.2). This
is what we do in what follows.

Denote by ζ0 the complex number associated to n̂. As we prove at the end
of this section, the resulting expression for the standard form of Πn̂, does not
depend on ζ∗0 explicitly. This might be surprising at first, as the expression
for the states |n̂,m〉 (c.f. equation (B.0.10)) that defines the coherent plane
Πn̂ does depend of ζ∗0 . An important consequence of this result is that Πn̂
can be written as an analytical function of ζ0, and therefore, the zeros of
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〈Π−n̂,Π〉 are given by an analytic function of ζ0. This implies, for instance,
that the constellation of a k-plane is a discrete set of points in the unitary
sphere. We take advantage of this fact in the following sections.

In the same way we can map a state |ψ〉 to its Majorana polyno-
mial pψ using the linear isomorphism (1.3.14), we can assign to a k-plane
Π = span{|ψ1〉, . . . , |ψk〉} a k-plane PΠ contained in the linear space of
polynomials of degree 2s as follows,

PΠ = span{pψ1 , . . . , pψk} . (3.1.4)

It is easy to prove that PΠ does not depend on the basis chosen for Π. If we
specify the previous definition to PΠn̂ we obtain,

PΠn̂
= span{(ζ − ζ0)2s, (ζ − ζ0)2s−1(ζ − ζ0A), . . . , (ζ − ζ0)2s−k+1(ζ − ζ0A)k−1}
= (ζ − ζ0)2s−k+1span{(ζ − ζ0)k−1, (ζ − ζ0)k−2(ζ − ζ0A), . . . , (ζ − ζ0A)k−1}
= (ζ − ζ0)2s−k+1span{ζk−1, ζk−2, . . . , 1} , (3.1.5)

where ζ0A denotes the complex number antipodal to ζ0. The last equality is
due to the fact that the polynomials (ζ−ζ0)k−1, (ζ−ζ0)k−2(ζ−ζA0), . . . , (ζ−
ζ0A)k−1 are of degree k − 1, linearly independent (as can be easily checked)
and there are k of them, so they provide a basis for the space of polynomials
of degree at most k − 1. Notice that this expression implies that ζ0 is a root
of all the elements of PΠn̂ with multiplicity 2s− k + 1 or greater. From this
observation, we can conclude the following characterization of the coherent
plane Πn̂,

Theorem 8. The k-coherent plane Πn̂ is the space of all the states such that
their constellation has at least 2s+ 1− k stars in the direction n̂.

Note that in the previous characterization, ζ0A does not appear in any
shape or form. From here it is more or less clear that we can write Πn̂ in
standard form without appealing to ζ0A.

The procedure we follow, consists of two steps. As the first one, we write
PΠn̂ in the standard form w.r.t. the canonical basis V for the space of
polynomials, V = {ζ2s, ζ2s−1, . . . , 1}. This can be done by finding a k-frame
W = (P1, . . . , Pk) of PΠn̂ such that, the matrix representation A of W w.r.t.
V is of the form shown in (1.2.7),

A =

 1k×k

Ã(N−k)×k

 , (3.1.6)
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where subindices indicate the size of submatrices. If A is written as alluded
to above, then, it is the matrix representation of PΠn̂ in standard form we
seek. Algebraically, the previous condition states that the matrix A used to
write the elements of W in terms of the ones of V in the following way,

Pj(ζ) =
2s+1∑
i=1

ζ2s+1−iAij , (3.1.7)

is such that its components satisfy the relation Aij = δij if i ≤ k.
As the second and final step, we use the isomorphism (1.3.14) of the

Majorana polynomial to map W onto a k-frame for Πn̂. Note that the
Majorana polynomials of the states in the basis {|s, s〉, . . . , |s,−s〉} are (up to
some rescaling) the elements of V . Because of this observation, the expression
for Πn̂ in the standard form we seek is equal to the matrix representation of
such k-frame (after some rescaling of its elements, more details on this later
on) w.r.t. {|s, s〉, . . . , |s,−s〉}.

To find the k-frame W mentioned above, first we compute the matrix
representation M w.r.t. V of the frame for PΠn̂ found in (3.1.5). Note that
its last element, (ζ − ζ0)2s−k+1, can be written in terms of the members of
V as follows,

(ζ − ζ0)2s−k+1 = ζ2s−k+1 +
2s−k+1∑
j=1

(
2s− k + 1

j

)
(−1)jζj0ζ2s−k+1−j .

Since the previous expression only involves the following elements of V ,
ζ2s−k+1, ζ2s−k, . . . , 1, and the coefficient for ζ2s−k+1 is exactly one, then, the
representation of (ζ − ζ0)2s−k+1 w.r.t. V as a column vector is the following,

(ζ − ζ0)2s−k+1 →

 ~0k−1
1

~v2s−k+1

 , (3.1.8)

where ~0k−1 indicates the zero column vector in k dimensions and ~v2s−k+1
denotes the vector in 2s− k + 1 dimensions whose j entry is,

vj =
(

2s− k + 1
j

)
(−1)jζj0 . (3.1.9)

In equation (3.1.8), subindices indicate the length of the vector.
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Then, consider the next to last element for PΠn̂, (ζ − ζ0)2s−k+1ζ. Using
the same procedure, we see that its expression w.r.t. V is the following,

(ζ − ζ0)2s−k+1ζ →


~0k−2

1
~v2s−k+1

0

 .

By using the same argument, we can conclude the representation for the
other elements of the frame found in (3.1.5),

(ζ − ζ0)2s−k+1ζm →


~0k−m−1

1
~v2s−k+1
~0m

 , (3.1.10)

expression that is valid for all 0 ≤ m ≤ k − 1.
By putting all these columns in the same matrix, we find the following

expression for M ,

M =



1 0 0 . . .
~v2s−k+1 1 0 . . .

0 ~v2s−k+1 1 . . .
... 0 ~v2s−k+1 . . .
...

...
... . . .

0 0 0 . . .


(2s+1)×k

Notice the ordering of the columns of the matrix, for the first one, we took
the value m = k − 1, for the second one, m = k − 2 and so on. In particular,
the last column is the one shown in (3.1.8).

Since M is not of the form shown in (3.1.6), M is not the representation
of PΠn̂ in the standard form. To find the actual representation, instead of
considering the basis (3.1.5) of PΠn̂, we define recursively new polynomials
Qi (i = 1, . . . , k) using “backward substitution”,

Q0(ζ) = (ζ − ζ0)2s−k+1 ,

Qm(ζ) = (ζ − ζ0)2s−k+1ζm −
m∑

m′=1
vm′Qm−m′(ζ)

= (ζ − ζ0)2s−k+1ζm −
m∑

m′=1
(−1)m′

(
2s− k + 1

m′

)
ζm
′

0 Qm−m′(ζ) ,
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where we used (3.1.9) to obtain the last line. By construction, if we consider
the frame W for PΠn̂ whose i-th element is Pi = Qk−i, i = 1, . . . , k, its
matrix representation A is of the form shown in (3.1.6). Denote it by A. As
mentioned previously, this implies that A satisfies the properties established
in (3.1.7) and the line after it.

Finally, we use this result to write Πn̂ as a matrix in standard form w.r.t.
the basis {|ẑ, 2s〉, . . . , |ẑ,−2s〉}. Denote by Tmajorana the mapping that takes
a Majorana polynomial to its corresponding state in Hilbert space, that is,
the inverse mapping of (1.3.14). By applying Tmajorana to equation (3.1.7),
we obtain,

Tmajorana(Pj) =
2s+1∑
i=1

AijTmajorana(ζ2s+1−i)

=
2s+1∑
i=1

Aij(−1)i−1
(

2s
i− 1

)−1/2

|ẑ, s+ 1− i〉 ⇒

(−1)j−1
(

2s
j − 1

)1/2

Tmajorana(Pj) =
2s+1∑
i=1

Bij |ẑ, s+ 1− i〉 ,

where the last equation defines the matrix B. Note that B satisfies the same
properties as A stressed previously, mainly that B is a (2s+ 1)× k matrix
such that Bij = δij if i ≤ k.

This implies that, if we consider the k-frame W̃ for Πn̂ which j-th ele-
ment is (−1)j−1( 2s

j−1
)1/2

Tmajorana(Pj), j = 1, . . . , k, then, the resulting matrix
representation B of W̃ , is the expression for Πn̂ in standard form w.r.t.
{|ẑ, 2s〉, . . . , |ẑ,−2s〉}. Note that the coefficients of B do not depend on of
ζ∗0 , as claimed.

To conclude this section, we give the formal definition of the constellation
of a k-plane. Let Π be a k-plane. Then, the constellation of Π, CΠ, is the
set of all the directions n̂ such that 〈Π−n̂,Π〉 is zero (the degree of the zero
has to be taken into consideration; we make this statement precise in the
following section).

From this definition, it is clear that if we rotate a k-plane, its corre-
sponding constellation rotates in the same way, just like with the Majorana
representation for P(Hs). However, as we show later in this chapter, there
is one important difference between the Majorana representation for P(Hs),
and the stellar one for Grk (Hs) that we want to stress; different k-planes
might have the same constellation. Because of this, the rotational symmetries
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of a k-plane Π might not coincide with the ones of its constellation CΠ; in
general Π has fewer symmetries, as a rotation in the symmetric group of CΠ
might map Π onto a different plane with the same constellation.

The above definition for the constellation of a k-plane involves the product
(1.2.4) between k-planes and therefore becomes hard to compute for large
values of k. In the following section, we present a simpler characterization of
the constellation of a k-plane.

3.2 The Majorana polynomial for a k-plane Π
In the previous section, we argued that the constellation of a k-plane is given
by the zeros of an analytic function. In this section, we prove that such
function is a polynomial that we refer as the Majorana polynomial of the
k-plane in analogy with the one for the Majorana representation.

The first step, is to prove the following theorem,

Theorem 9. Let Π be a k-plane. Then, n̂ is in the constellation of Π if and
only if there is a state |ψ〉 ∈ Π such that the constellation of |ψ〉 has k (or
more) stars in the direction n̂.

Proof. Suppose that the constellation of Π has a star in the direction n̂. By
definition, this happens if and only if 〈Π−n̂,Π〉 = 0. As noted in theorem 3,
this product is zero if and only if there is a state |ψ〉 in Π that is orthogonal
to all the elements of Π−n̂. Since the states | − n̂, s〉, . . . , | − n̂, s + 1 − k〉
constitute a basis for Π−n̂ by definition, the orthogonality of |ψ〉 to Π−n̂ is
equivalent to the following equalities,

〈−n̂,m|ψ〉 = ±〈n̂,−m|ψ〉 = 0, m = s, . . . , s− k + 1 .

The previous equality implies that, the probability of obtaining the value
−m when measuring the spin projection in n̂ for a system in the state |ψ〉,
is zero. By considering theorem 6, we see that this happens if and only if the
constellation of |ψ〉 has at least k stars in the direction n̂.

The previous theorem allows us to define the Majorana polynomial for a
plane. Suppose we have a k-plane Π generated by the states |φ1〉, . . . , |φk〉.
Suppose that n̂ is an element of CΠ. Denote by ζ0 its stereographic projection.
Let pµ be the Majorana polynomial associated to the state |φµ〉. Then, PΠ
(3.1.4) can be written as, PΠ = span{p1, . . . , pk}. In terms of polynomials,
theorem 9 guarantees that n̂ is an element of CΠ if and only if there is a
polynomial in PΠ such that ζ0 is a root with multiplicity k of said polynomial,
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in other words, that a certain linear combination of the polynomials pµ
(µ = 1, . . . , k) spanning PΠ can be written in the following way,∑

µ

Aµpµ(ζ) = q(ζ)(ζ − ζ0)k , (3.2.1)

where q is a polynomial of degree 2s−k. As is well-known from linear algebra,
a complex number ζ0 is a root of a polynomial p with multiplicity greater or
equal than k if and only if ζ0 is a root of p, p′, ..., p(k−1) (a prime indicates the
derivative of a function w.r.t. its argument; superscripts between parenthesis
indicates the number of times the polynomial was differentiated). Therefore,
ζ0 is a root of ∑µAµpµ(ζ) with multiplicity greater or equal to k if and only
the following equalities hold, ∑

µ

Aµpµ(ζ0) = 0 ,
∑
µ

Aµp
′
µ(ζ0) = 0 ,

...∑
µ

Aµp
(k−1)
µ (ζ0) = 0 .

These equations can be regarded as a linear system of k equations with
k unknowns, Aµ, µ = 1, . . . , k. As we know, this system has a nontrivial
solution if and only if the following determinant is zero (when evaluated at
ζ = ζ0),

pΠ(ζ) = Det

∣∣∣∣∣∣∣∣∣∣
p1(ζ) p2(ζ) . . . pk(ζ)
p′1(ζ) p′2(ζ) . . . p′k(ζ)

...
... . . . ...

p
(k−1)
1 (ζ) p

(k−1)
2 (ζ) . . . p

(k−1)
k (ζ)

∣∣∣∣∣∣∣∣∣∣
. (3.2.2)

We immediately recognize the previous expression as the Wronskian of the
polynomials p1, . . . , pk. From this line of reasoning, we can conclude the
following theorem,

Theorem 10. Let Π denote k-plane. Define its Majorana polynomial pΠ as
in (3.2.2) (that is, the Majorana polynomial pΠ is the Wronskian of any set
of k polynomials that provide a basis for PΠ). Then, the constellation CΠ is
given by the zeros of pΠ via the stereographic projection.
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Determining the zeros of the Majorana polynomial to find the constellation
of a plane is in general much simpler than the approach presented in the
previous section. Note that a change of the basis chosen for PΠ, only changes
the Majorana polynomial by an overall factor.

From theorem 10, we can also determine the number of stars in the
constellation of a k-plane, as stated in the following theorem,

Theorem 11. The degree of the Majorana polynomial of a generic k-plane,
and hence the number of stars in the constellation of Π, is k(2s+ 1− k).

Proof. Let p1, . . . , pk denote the elements of a basis for PΠ. Then, the Majo-
rana polynomial pΠ is the determinant of the k × k matrix that appears at
(3.2.2). As we show in the following paragraphs, by applying elementary row
transformations, we can transform it to a matrix where all the entries are
polynomials of degree 2s+1−k. Since this type of transformations leaves the
determinant invariant, and the one of this new matrix is the sum of certain
products of k of these polynomials, the degree of pΠ is k(2s+ 1− k).

Finally, we prove the claim of the previous paragraph; that by applying
elementary row operations, we can take the matrix of (3.2.2) into one where
all the entries are polynomials of degree 2s+ 1− k. Consider any polynomial
p of degree 2s. Decompose it in the following way,

p(ζ) =
2s−k+1∑
i=0

Aiζ
i +

2s∑
i=2s−k+2

Aiζ
i ≡ f(ζ) + g(ζ) , (3.2.3)

that is, f is the sum of all the terms of p of degree less or equal than
2s− k + 1 and g is the sum of the remaining ones. Since g can be written as
a linear combination of the polynomials ζ2s, ζ2s−1, . . . , ζ2s−k+2, the following
Wronskian is zero,∣∣∣∣∣∣∣∣∣∣

ζ2s ζ2s−1 . . . ζ2s−k+2 g(ζ)
2sζ2s−1 (2s− 1)ζ2s−2 . . . (2s− k + 2)ζ2s−k g′(ζ)

...
... . . . ...

(2s)!
(2s−k+1)!ζ

2s−k+1 (2s)!
(2s−k)!ζ

2s−k . . . (2s−k+2)!
(2s−2k+3)!ζ

2s−2k+3 g(k−1)(ζ)

∣∣∣∣∣∣∣∣∣∣
= 0.

(3.2.4)

It is clear that ζ2s−k+1 is a common factor of the terms in the first column;
ζ2s−k, of the terms in the second one, and so on. By taking these factors out
of the determinant, and assuming they are not zero, we obtain the following
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equality,∣∣∣∣∣∣∣∣∣∣
ζk−1 ζk−1 . . . ζk−1 g(ζ)

2sζk−2 (2s− 1)ζk−2 . . . (2s− k + 2)ζk−2 g′(ζ)
...

... . . . ...
(2s)!

(2s−k+1)!
(2s)!

(2s−k)! . . . (2s−k+2)!
(2s−2k+3)! g(k−1)(ζ)

∣∣∣∣∣∣∣∣∣∣
= 0.

Similarly, we factorize ζk−1 from the first row, ζk−2 from the second one and
so on. This procedure leads to,∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 g(ζ)
ζk−1

2s (2s− 1) . . . (2s− k + 2) g′(ζ)
ζk−2

...
... . . . ...

(2s)!
(2s−k+1)!

(2s)!
(2s−k)! . . . (2s−k+2)!

(2s−2k+3)! g(k−1)(ζ)

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.2.5)

By computing the determinant by minors w.r.t. the last column, and multi-
plying the resulting equality by ζk−1 we conclude,

M0g(ζ) +M1g
′(ζ)ζ + · · ·+Mk−1g

k−1ζ(k−1) = 0 ,

where Mi denotes the minor of the matrix of (3.2.5) corresponding to the
element g(i)(ζ). Note that Mi does not depend on ζ of on g. This equality,
together with (3.2.3), implies that,

p(ζ) + M1
M0

p′(ζ)ζ + · · ·+ Mk−1
M0

pk−1ζ(k−1) =

f(ζ) + M1
M0

f ′(ζ)ζ + · · ·+ Mk−1
M0

fk−1ζ(k−1) . (3.2.6)

Since f is of degree 2s+ 1− k, the l.h.s. of the previous equation is of this
same degree. The punchline of what we just proved is the following: given
any polynomial p of degree 2s, the l.h.s of (3.2.6) is of degree 2s + 1 − k
(the fact that M0 is not zero can be deduced by considering the function
g(ζ) = 1; in this case, since the polynomials ζ2s, ζ2s−1, . . . , ζ2s−k+2, 1 are
linearly independent, the determinant of equation (3.2.5) can not be zero,
but it would be if M0 were zero).

Denote by ri the i-th row of (3.2.2). Because of the result of the previous
paragraph, if we replace r1 by the following row,

r1 → r1 + M1
M0

r2 + · · ·+ Mk−1
M0

rk ,
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the matrix obtained is such that all the polynomials of the first row are of
degree 2s+ 1− k; that is, the same degree as the one of the polynomials in
the last row. By applying this same procedure to the remaining rows, we can
prove the claim made in the first paragraph of the proof.

From the previous theorem, we can conclude that the space of Majorana
constellations of k-planes is of complex dimension k(2s+ 1− k). As proved
at the end of section 1.2, this is also the dimension of Grk (Hs); the space we
are representing. Using the Majorana polynomial for a k-plane, we present
some examples of constellations in the next section.

3.2.1 Examples of constellations

The constellation for coherent k-planes

As a first example, we find the constellation of an arbitrary coherent k-plane.
To find this constellation, first we find the one for a coherent plane Πẑ. By
rotating this constellation accordingly, we can find the constellation of any
coherent k-plane.

Consider the plane Πẑ. By definition, this space is spanned by the states
|s,m〉 (m = s, s − 1, . . . , s − k + 1). Therefore, PΠẑ is spanned by the
polynomials ζ2s, ζ2s−1, . . . , ζ2s−k+2. By computing their Wronskian, we can
compute the Majorana polynomial pΠẑ

,

pΠẑ
(ζ) =

∣∣∣∣∣∣∣∣∣∣
ζ2s ζ2s−1 . . . ζ2s−k+1

2sζ2s−1 (2s− 1)ζ2s−2 . . . (2s− k + 1)ζ2s−k

...
... . . . ...

(2s)!
(2s−k+1)!ζ

2s−k+1 (2s)!
(2s−k)!ζ

2s−k . . . (2s−k+1)!
(2s−2k+2)!ζ

2s−2k+2

∣∣∣∣∣∣∣∣∣∣
.

This determinant is very similar to the one that appears in (3.2.4). By using
a similar procedure used to compute it, we find,

pΠẑ
(ζ) =ζk(2s+1−k)∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
2s (2s− 1) . . . (2s− k + 1)
...

... . . . ...
(2s)!

(2s−k)!
(2s)!

(2s−k−1)! . . . (2s−k+1)!
(2s−2k+1)!

∣∣∣∣∣∣∣∣∣∣
.

From here, we can conclude that the Majorana polynomial for Πẑ only has
one root, ζ = 0, so its constellation has k(2s+ 1− k) stars in the north pole.
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The constellation of a k-plane spanned by eigenstates of S · n̂

As a second example, we compute the constellation of the following k-plane,

Π = span{|n̂,m1〉, |n̂,m2〉, . . . , |n̂,mk〉} ,

where s ≥ m1 > m2, · · · > mk ≥ −s. Just like in the previous example, it is
enough to calculate the one for the case n̂ = ẑ. To obtain the one for the
generic case, one can rotate the one computed here accordingly.

In this case, PΠ is spanned by the polynomials ζs+m1 , . . . , ζs+mk . A
calculation very similar to the one for the coherent k-plane reveals the
following expression for pΠ,

pΠ(ζ) ∝ zm1+···+mk+ks− k(k−1)
2 .

By looking at the previous polynomial, we can conclude that CΠ has m1 +
· · ·+mk + ks− k(k−1)

2 stars in the north pole. Since the number of stars of
a constellation is k(2s + 1 − k), just as in the case of the usual Majorana
representation for P(Hs), the remaining stars are in the south pole. Therefore,
in the generic case, CΠ has m1 + · · ·+mk + ks− k(k−1)

2 stars in n̂ and the
rest in −n̂.

Notice that, if two different collections of numbers s ≥ m1 > m2 >
· · · > mk ≥ −s and s ≥ m̃1 > m̃2 > · · · > m̃k ≥ −s have the same sum,
m1 + · · ·+mk = m̃1 + · · ·+ m̃k, then, the constellation for the planes

Π = span{|n̂,m1〉, |n̂,m2〉, . . . , |n̂,mk〉} ,
Π̃ = span{|n̂, m̃1〉, |n̂, m̃2〉, . . . , |n̂, m̃k〉} ,

is the same, despite Π and Π̃ being different k-planes. The fact that they are
not the same, can be seen by considering a certain m̃i that is not any of the
numbers mj . In this case, |n̂, m̃i〉 is an element of Π̃ but is orthogonal to all
the elements of Π. For example, the following planes are different, but their
constellation is the same,

Π = span{|n̂, 3/2〉, |n̂,−3/2〉} , Π̃ = span{|n̂, 1/2〉, |n̂,−1/2〉}. (3.2.7)

The constellations for these 2-planes are represented in figure 3.1.
This is a concrete example of the previously mentioned fact, that the

stellar representation for the Grassmannian is not one to one — different
k-planes might have associated the same constellation. From here a natural
question arises, how many k-planes share the same constellation? We give
the answer to this question in section 3.3.
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Figure 3.1: Constellation of the 2-planes Π and Π̃ of equation (3.2.7). It consists of
2 stars in n̂ and 2 stars in −n̂. Although both 2-planes are different, they share the
same constellation.

Constellation of the plane orthogonal to a k-plane

Given a k-plane Π, we define its orthogonal complement Π⊥ as the 2s+ 1−k-
plane containing all the states orthogonal to Π. If we know the constellation
CΠ, what can we say about CΠ⊥? The answer is contained in the following
theorem.
Theorem 12. Let Π be a k-plane and let Π⊥ be its orthogonal complement.
Then, the constellation of Π⊥ is the antipodal to the one of Π, that is, if
the constellation of Π is {n̂i, i = 1, . . . , k(2s+ 1− k)} then, the one of Π⊥ is
{−n̂i, i = 1, . . . , k(2s+ 1− k)}.
Proof. Suppose that n̂ is an element of CΠ. Then, by definition, the product
〈Π−n̂,Π〉 is zero. Note that the orthogonal complement to Π−n̂ is the coherent
2s + 1 − k plane Πn̂. By this observation and theorem 3, there exists an
element of Π that is also an in Πn̂. Since the orthogonal complement to Π⊥ is
Π, the statement of the previous sentence can be formulated as follows: there
is an element of Πn̂ that it is orthogonal to Π⊥. By considering theorem 3
again, this implies that 〈Πn̂,Π⊥〉 is zero. By definition, this means that there
is a star in the direction −n̂ in CΠ⊥ . This concludes the proof.

3.2.2 The multiplicity of the stars of a constellation

In theorem 9, we stated an interpretation for the direction of the stars in the
constellation of a plane. In this subsection, we find a similar characterization
for the case when a direction appears more than once in the constellation.
Theorem 13. Let Π be a k-plane. The constellation of Π has at least two
stars in the direction n̂ if and only if any of the following two conditions
hold,
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(i) There exists an element of Π which constellation has at least k+ 1 stars
in the direction n̂.

(ii) There exists an element of Π which constellation has at least k stars in
the direction n̂, and another one (linearly independent to the first) with
k − 1 (or more) stars in the direction n̂.

Proof. Suppose n̂ appears twice or more in CΠ. Denote by ζ0 the stereographic
projection of n̂. Then, by theorem 9, there is a polynomial p in PΠ such
that ζ0 is a root of p with multiplicity greater or equal than k, that is, ζ0 is
root of p and of its first k − 1 derivatives. Complete {p} to a basis for PΠ,
{p, p2, . . . , pk}. Then, pΠ is the Wronskian of these polynomials. Since CΠ
contains two stars in the direction n̂, ζ0 is a root of pΠ and of its derivative.
Because of this, the following equalities hold,

0 = p′Π(ζ0) =

∣∣∣∣∣∣∣∣∣∣
p(ζ0) . . . pk(ζ0)
p′(ζ0) . . . p′k(ζ0)

... . . . ...
p(k)(ζ0) . . . p

(k)
k (ζ0)

∣∣∣∣∣∣∣∣∣∣
= (−1)k−1p(k)(ζ0)

∣∣∣∣∣∣∣∣∣∣
p1(ζ0) . . . pk(ζ0)
p′1(ζ0) . . . p′k(ζ0)

... . . . ...
p

(k−2)
1 (ζ0) . . . p

(k−2)
k (ζ0)

∣∣∣∣∣∣∣∣∣∣
,

where the first line was obtained using the well-known formula for the
derivative of a Wronskian, and the second one, by expanding by minors the
determinant w.r.t. the first column and recalling that ζ0 is a root of p and its
first k derivatives. Note that the last product of the previous equation is zero
if and only if p(k) is zero (this is case (i) of the theorem) or if the Wronskian
of the polynomials p1, . . . , pk is zero. In the latter case, by theorem (9), there
is a polynomial q in the span of p1, . . . , pk such that ζ0 is a root of q with
multiplicity k − 1. This is case (ii).

Using essentially the same techniques, we can prove an analogous result
for stars with multiplicity three,

Theorem 14. Let Π be a k-plane. The constellation of Π has at least three
stars in the direction n̂ if and only if any of the following three options occur,

(i) There exists an element of Π which constellation has at least k+ 2 stars
in the direction n̂.



Chapter 3. Stellar representation for the Grassmannians 66

(ii) There exists three linealy independent elements of Π such that the
constellation of the first one has at least k + 1 stars in n̂, the one of
the second element has k (or more) stars in n̂ and the one for the third
element has k − 1 (or more) stars in n̂.

(iii) There are two different states in Π which constellations have at least k
stars in the direction n̂.

By considering theorem 13 we can prove the following statement,

Theorem 15. Let Π be a k-plane. The constellation of Π has exactly one
star in the direction n̂ if and only if all the following conditions hold,

• There is a unique element of Π whose constellation has exactly k stars
in the direction n̂,

• The constellation of any other state in Π has at most k − 2 stars in
the direction n̂.

Proof. Suppose there is only one star in the direction n̂ in the constellation
associated to Π. Then, by theorem 9, there is a state |ψ〉 in Π whose con-
stellation has at least k stars in the direction n̂. By the first condition of
theorem 13, the number of stars pointing towards n̂ in the constellation of
|ψ〉 can not be k + 1 or more, therefore, it must be exactly k. This proves
the first claim of the theorem. Also, by considering the second condition of
theorem 13, the constellation of any other state can not have k − 1 stars or
more in the direction n̂. This proves the second claim.

3.3 The number of k-planes with the same constel-
lation

Unlike the Majorana representation for P(Hs), the stellar representation
for Grk (Hs) is not one-to-one, as different k-planes are associated to the
same constellation. As we have already argued, both, Grk (Hs) and the space
of constellations for k-planes have the same dimension, so only a discrete
number of planes share the same constellation. From here the question is,
how many k-planes share the same constellation generically? This is the
question we answer in this section

In general, the computations to find how many k-planes have the same
constellation are rather cumbersome. As we show explicitly in the following
section, the number of 2-planes with the same constellation is two for s = 3/2,
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nine for s = 2 and fourteen for s = 5/2. As it turns out, these numbers are
well-known in the branch of mathematics known as Schubert calculus [67], as
they appear in the following theorem [68],

Theorem 16 (Schubert, 1886). Let H denote a complex vectorial space of
dimension m+ k. Consider a collection {Πi, i = 1, . . . , k ·m} of m-planes
through the origin. Then, there are

D(m, k) = 1! 2! 3! . . . (k − 1)!
m! (m+ 1)! . . . (m+ k − 1)!(m · k)! (3.3.1)

k-planes through the origin (counting multiplicity) that intersect all the m-
planes Πi non trivially (that is, the intersection contains more points besides
the origin).

Taking advantage of this theorem, we can find the number of k-planes
with the same constellation,

Theorem 17. For a spin s, the number of k-planes with the same constel-
lation is D(m, k), where m = 2s+ 1− k

Proof. By theorem 11, the number of stars in the constellation of a k-plane is
km. Therefore, by theorem 16, it is enough to prove the following claim: n̂ is
an element of CΠ if and only if the intersection of Π with the coherent m-plane
Πn̂ is not trivial. In a sense, this means that specifying the constellation of a
k-plane Π is equivalent to giving a list of all the km coherent m-planes that
intersect Π non trivially.

To prove the claim of the previous paragraph, let n̂ denote the direction
of a star in the constellation of Π. Then, by theorem 9, this occurs if and only
if there is a state |ψ〉 in Π whose constellation has k stars in the direction n̂.
By the characterization of coherent m-planes of theorem 8, this means that
|ψ〉 is also an element of the coherent m-plane Πn̂, that is, the intersection
Π⋂Πn̂ is not trivial. This concludes the proof.

Since the previous theorem takes into account multiplicity, the number
of different k-planes with the same constellation might be less than the one
stated. One important example of this fact is the one for coherent k-planes;
they are the only ones where the (2s+ 1− k)k stars coincide. To prove this
statement, first we prove two useful lemmas,

Lemma 18. Let Π denote a k-plane such that all the stars in CΠ are in n̂.
Then, Π is invariant under all rotations around n̂.
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Proof. Assume the contrary. Then, there is a rotation Rn̂,θ around n̂ by an
angle θ such that the rotated plane Rn̂,θΠ is different from Π. Because of
this, the curve contained in Grk (Hs) obtained by rotating Π around n̂,

Π(t) = Rn̂,tΠ , 0 ≤ t ≤ θ ,

contains at least two different points, Π(0) and Π(θ), and therefore, and
infinite number of them. Clearly, the constellation of Π(t) also consists of a
single star in n̂, as it can be obtained by rotating CΠ around n̂. Therefore, there
is an infinite number of k-planes with the same constellation, a statement
that is in contradiction with theorem 17.

Lemma 19. Let Π denote a k-plane that is invariant under all rotations
around n̂. Then, Π is spanned by certain eigenstates of the spin operator
S · n̂.

Proof. Let |ψ〉 be any element of Π. Then, S · n̂|ψ〉 is also in Π. Indeed, as
the following curve,

|ψ(t)〉 = e−itS·n̂|ψ〉 ,

is contained in Π by hypothesis, its derivative at t = 0 is also an element of
Π, but said derivative is proportional to S · n̂|ψ〉.

Let (S · n̂)Π denote the restriction of S · n̂ to Π, as defined in (3.1.2). As
it can be easily checked, (S · n̂)Π is self-adjoint and therefore, diagonalizable.
Consider a basis of Π made by eigenstates of (S · n̂)Π, {|φi〉 , i = 1, . . . , k}.
We claim that its elements are also eigenstates of S · n̂. This can be proved
by considering the following implications,

(S · n̂)Π|φi〉 = λi|φi〉 ⇒ PS · n̂|φi〉 = λi|φi〉 ⇒ S · n̂|φi〉 = λi|φi〉 ,

where the first implication was obtained just by applying the definition (3.1.2),
and the second one comes from the previously proved fact that S · n̂|φi〉 is an
element of Π, and therefore, P leaves it invariant. Since {|φi〉 , i = 1, . . . , k} is
a basis for Π and only consists on eigenstates of S · n̂, the claim is proved.

Finally, with these two lemmas, we can prove the uniqueness of the
constellation of the coherent states,

Theorem 20. Let Π denote a k-plane such that all the stars in CΠ are in n̂.
Then, Π is the coherent k-plane Πn̂.
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Proof. By the two previous lemmas, any k-plane Π with such characteristics
is spanned by certain eigenstates of S · n̂. Let {|n̂,m1〉, . . . , |n̂,mk〉,m1 ≥
m2 · · · ≥ mk} denote a basis for Π. As computed in section 3.2.1, the
constellation of this type of planes has m1 + · · ·+mk + ks− k(k−1)

2 stars in
n̂ and the remaining ones in −n̂. Since by hypothesis there are no stars in
−n̂ in CΠ, the sum m1 + · · ·+mk must attain its maximal value. This value
is attained only when m1 = s,m2 = s− 1, . . . ,mk = s− k + 1, that is, if Π
is a coherent k-plane

Not only different k-planes might have the same constellation, but if said
constellation has a rotational symmetry, these k-planes may be permuted
under the action of said rotation. We give an example of this fact in the
following subsection.

3.3.1 Characterizing all the 2-planes whose constellation is
a double tetrahedron

Consider the case of a spin s = 5/2 where, by theorem 11, the number of
stars in the constellation of a 2-planes is eight. In this subsection, we find all
the 2-planes for this particular value of s such that their constellation has
two stars in each of the following four directions that define a tetrahedron,

v1 = (0, 0, 1) , v2 =
(

2
√

2
3 , 0,−1

3

)
,

v3 = −
(√

2
3 ,−

√
2√
3
,
1
3

)
, v4 = −

(√
2

3 ,

√
2√
3
,
1
3

)
. (3.3.2)

We call this constellation a double tetrahedron and denote it by C.
To find all the 2-planes which constellation is C, consider a generic 2-plane

PΠ in the space of polynomials of degree five written in the standard form
as a matrix (w.r.t. the basis {ζ5, ζ4, ζ3, ζ2, ζ1, 1}) in the following way,



1 0
0 1
A3 B3
A2 B2
A1 B1
A0 B0


. (3.3.3)



Chapter 3. Stellar representation for the Grassmannians 70

This implies that PΠ = span{p, q} where

p(ζ) = ζ5 +
3∑
i=0

Aiζ
i , q(ζ) = ζ4 +

3∑
i=0

Biζ
i .

By imposing the condition that the zeros of the Wronskian of p and q are
given by the directions of the double tetrahedron (3.3.2), we find a system
of equations for the coefficients Ai and Bi. By solving it analytically in
Mathematica, we obtain fourteen different 2-planes PΠi, (i = 1, . . . , 14) such
that their Wronskian have the zeros we want. By considering (3.1.4), we
conclude there are fourteen 2-planes Πi, (i = 1, . . . , 14) contained in Hs such
that their constellation is C (we omit their explicit expression since it is not
necessary for the following arguments).

Note that, the rotations that leave C invariant are the elements of the
rotational symmetry group of the tetrahedron, commonly referred to as A4.
However, in general, the rotations in A4 permute the 2-planes Πi among
themselves instead of leaving them invariant. In this sense, we say that A4
acts on the set {Πi, i = 1, . . . , 14}. Under this action, some mixing between
2-plane occurs. For instance, if we take Π1, and apply to it all the elements
of A4, the 2-planes obtained are the following,

{Π1,Π5,Π9,Π11,Π12,Π14} . (3.3.4)

This set is the orbit of Π1 and it is invariant under the action of A4. Similarly,
we can compute the orbit of Π2. The result is,

{Π2,Π4,Π10,Π13} , (3.3.5)

while the one for Π3 is simply

{Π3} , (3.3.6)

that is, Π3 is invariant under all the rotations of A4. Finally, the last orbit is,

{Π6,Π7,Π8} . (3.3.7)

By considering these orbits we can divide the fourteen 2-planes Πi in
four different types, that we refer simply as first type (3.3.4), second type
(3.3.5) and so on. In what follows, we further characterize these types. The
procedure is explained in the following paragraph.

By theorem 9, for each direction v̂j in CΠi , there is a state |ψv̂j 〉 (that in
these cases turns out to be unique up to scalar multiplication) in Πi such
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that its constellation has at least 2 stars in the direction n̂. In this way,
given a 2-plane Πi, we can assign to each vertex vj of the tetrahedron (3.3.2)
a constellation, namely, the one of |ψv̂j 〉. These constellations completely
determine Πi, as it can be computed as the span of the states |ψv̂j 〉, (j =
1, . . . , 4). This is what we do in what follows.

First type

The planes of the first type (3.3.4) can be labeled by two vertices of the
tetrahedron. Since there are six ways to chose 2 vertices, there are six planes
of the first type.

For simplicity, assume we consider the 2-plane associated to the vertices
v3 and v4. The planes labeled by another pair of vertices behave essentially
in the same way. In this case, the constellations associated to v4 and v3 are
the following,

v4 → {v1, v2, v4, v4, v4}, v3 → {v1, v2, v3, v3, v3} . (3.3.8)

Therefore, this 2-plane is the span of the states whose constellation is given
in the previous equations.

For this particular plane labeled by v3 and v4, we can also compute the
constellation associated to v1. The result is,

v1 → {v1, v1, v2, s
I
1, s

I
2} , (3.3.9)

where,

sI
1 = −v1 , sI

2 =
(
−2
√

2
3 , 0,−1

3

)
.

Note that sI
1 in the point antipodal to v1. All these stars are in a kite in a

great circle of the sphere. These constellations are illustrated in figure 3.2.
The constellation corresponding to v2 is also a kite and can be obtained by
rotating the one for v1.

Second type

The 2-planes of the second type (3.3.5) can be labeled by one vertex of the
tetrahedron. Therefore, there are four 2-planes of this type. We only give the
constellation of the vertices for the 2-plane labeled by v2. The ones for the
other planes of this type can be obtained by rotating the ones shown below.
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Figure 3.2: Constellations for the vertices v1 (left) and v4 (right) for the 2-plane
labeled by v3 and v4 . The constellation for v1 (3.3.9) is shown in red, while the
one corresponding to v4 (3.3.8) is shown in purple. The vertex v1 in red is doubly
degenerate, while v4 in purple is triply degenerate. In both figures, the tetrahedron
is the constellation C of the 2-planes in consideration.

The constellations for v1, v3 and v4 are all analogous. Here we only present
the one for v1,

v1 → {v1, v1, v1, v2, s
II
1 } (3.3.10)

where,

sII
1 =

(
−4
√

2
9 , 0,−7

9

)
.

The direction sII
1 is such that the triangle v2 sII

1 v1 is isosceles. In figure 3.3,
we show this triangle.

For this plane labeled by v2, the constellation associated to v2, is the
following,

v2 → {v2, v2, s
II
2 , s

II
3 , s

II
4 } , (3.3.11)

where,

sII
2 ≈ (−0.77, 0,−0.63), sII

3 ≈ (0.34,−0.74, 0.57), sII
4 ≈ (0.34, 0.74, 0.57).

In this case, the vertices v2, sII
2 , sII

3 and sII
4 constitute a non-regular tetrahedron,

where three of the faces are an isosceles triangle, and the remaining one (the
one defined by sII

2 , sII
3 and sII

4 ), is an equilateral triangle. The orientation
of this tetrahedron differs from the original one (3.3.2) by a rotation of 60◦
around the v2 axis. This constellation is shown in figure 3.3.
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Figure 3.3: Constellations of the vertices of the tetrahedron for the second type
plane labeled by the vertex v2. Left: Constellation associated to v1 (3.3.10). The
vertex v1 is triply degenerate. Middle and right: Constellation for v2 (3.3.11) shown
from two different viewpoints. The vertex v2 is double degenerated

Third type

There is only one 2-plane of the third type (3.3.6). As such, the constellations
for the vertices are all analogous. Here we present just the one for v1,

v1 → {v1, v1, v2, v3, v4} ,

that is, all the stars are in the double tetrahedron.

Fourth type

For the fourth type (3.3.7), each 2-plane is labeled by two pairs of vertices.
Since there are three ways of choosing two pairs of vertices, there are three
planes of this kind.

If the chosen pairs are (v1, v3) and (v2, v4), the constellation corresponding
to v1 is,

v1 → {v1, v1, v1, s
IV
1 , sIV

2 } (3.3.12)

where,

sIV
1 ≈ (−0.72, 0.29,−0.62) , sIV

2 ≈ (0.10, 0.77,−0.62) ,

while the one associated to v3 is,

v3 → {v3, v3, v3, s
IV
3 , sIV

4 } , (3.3.13)

where,

sIV
3 ≈ (−0.22,−0.57, 0.79) , sIV

4 ≈ (0.60,−0.09, 0.79) .
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Figure 3.4: Constellations of the vertices of the double tetrahedron for the fourth-
type plane labeled by the pairs of vertices (v1, v3) and (v2, v4). The constellation
for v1 (3.3.12) is shown in red, and the one for v3, (3.3.13) in green. The vertices
v1 and v3 are triple degenerate. The two triangles shown are equal (up to a rigid
transformation) and are isosceles.

In figure 3.4, these constellations are shown. The ones corresponding to the
remaining pair of vertices (v2, v4) are analogous to the ones presented in the
figure.

As we can see, just by looking at the constellation of a k-plane, we can
not find all its rotational symmetries, some extra information is needed. In
the two following sections, we give two different approaches of what this
extra information might be. Although the first one is simpler to compute, it
only works for 2-planes, while the second one is general.

3.4 A secondary constellation for a 2-plane

In this section we explain a procedure to assign a secondary constellation to
a 2-plane. In this way, we can assign to each 2-plane a pair of constellations,
the one previously defined or primary constellation and the secondary one
just mentioned. As we check further down, this pair of constellations has two
very important properties; first of all, the procedure to build it commutes
with rotations, secondly, two 2-planes are the same if and only if their pair of
constellations is the same. Therefore, by looking at the rotational symmetries
of the pair of constellations, we can infer the ones of the 2-plane.

The procedure to build the secondary constellation is based on the
following theorem,

Theorem 21. Consider a 2-plane Π and let n̂ be the direction of a star in
the primary constellation of Π. Assume that there are no other stars in n̂.
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Then, there exists a unique direction m̂ such that the state | −n̂, . . . ,−n̂︸ ︷︷ ︸
2s−1

,−m̂〉

is orthogonal to Π.

Proof. Consider the 2s − 1 plane spanned by the states orthogonal to Π.
Call it Π⊥. By theorem 12, there is only one star in the direction −n̂ in
the constellation of Π⊥. Then, by theorem 15, there is a unique state |ψ〉
in Π⊥ such that its constellation has 2s− 1 stars in the direction −n̂. This
implies that |ψ〉 can be written as follows, |ψ〉 = | −n̂, . . . ,−n̂︸ ︷︷ ︸

2s−1

,−m̂〉, for a

certain direction m̂. The uniqueness of |ψ〉 implies the uniqueness of m̂. This
concludes the proof.

By applying theorem 21 to each of the stars in the primary constellation
of any 2-plane , we obtain a new set of 4s− 2 (c.f. theorem 11) points in the
sphere, which we call the secondary constellation of Π. By definition, it is
easy to check that it is well-behaved under rotations — for any rotation R,
the secondary constellation of RΠ can be obtained by rotating the one of Π
by R.

For this construction, we are assuming the generic case in which the
primary constellation is not degenerate. By continuity arguments, one can
extend it for all 2-planes.

As we will prove in the next theorem, this secondary constellation, together
with the primary one, completely characterizes Π.

Theorem 22. Let n̂i, i = 1, . . . , 4s− 2 be the directions of the stars in the
primary constellation of a 2-plane Π. For each star in CΠ apply theorem 21
to obtain a total of 4s− 2 extra directions m̂i, i = 1, . . . , 2s; the secondary
constellation. Define the set SΠ as SΠ = {(n̂i, m̂i), i = 1, . . . , 4s− 2}. Then
SΠ completely characterizes the 2-plane Π, that is, two 2-planes Π and Π′
are equal if and only if SΠ = SΠ′.

Proof. Suppose we know the set SΠ. To prove the theorem, it is enough to
show that we can construct Π only in terms of SΠ. By the definition of m̂i,
it is clear that | −n̂i, . . . ,−n̂i︸ ︷︷ ︸

2s−1

,−m̂i〉 is an element of Π⊥. Notice that the

dimension of Π⊥ is 2s− 1. Therefore, by considering all the directions m̂i,
we have the following,

Π⊥ = span{|−n̂i, . . . ,−n̂i︸ ︷︷ ︸
2s−1

,−m̂i〉 , i = 1, . . . , 4s− 2} .
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From here we have found Π⊥. Since the orthogonal complement to Π⊥ is Π,
we can reconstruct Π from SΠ.

Before going on, we want to make some remarks. The constellation of Π
and SΠ are not independent of each other. In fact, given a constellation C,
by theorem 17, there are only (4s− 1)−1(4s−1

2s
)

possible sets SΠ associated
to C. Also, notice that it is not enough to know both constellations to build
the plane, one has to know how their elements are paired together. In this
sense, SΠ can be described as a list of 4s− 2 oriented segments, where each
one of them begins at a point of the primary constellation and ends in
the corresponding star of the secondary one. By the previous theorem, the
symmetries of this list of segments coincides with the one of the plane. This
is the content of the following corollary,

Corollary 23. Let Π be a 2-plane and consider the set SΠ. Given a rotation
R, define RSΠ as RSΠ = {(Rn̂i, Rm̂i), i = 1, . . . , 4s− 2}. Then, a rotation
R leaves Π invariant if and only if RSΠ = SΠ.

The previous corollary is useful to find all the rotational symmetries
of a given 2-plane. We illustrate this procedure with two examples in the
following subsection.

In theorem 22, we proved that if we know SΠ then, we can rebuild the
2-plane Π. As a matter of a fact, we have the conjecture that the following
stronger claim holds,

Conjecture 24. Let Π be a 2-plane through the origin contained in Hs.
Then, Π can be completely characterized by knowing its primary constellation
and just one pair (n̂i, m̂i) in SΠ.

In section 3.4.3, we prove the conjecture for the following particular values
of s, s = 3/2, 4/2, 5/2.

3.4.1 Examples of SΠ

As an example, consider the case s = 5/2 and the 2-plane Π1 of section
3.3.1 of the first type. Recall that its primary constellation is the double
tetrahedron given in equation (3.3.2). In figure 3.5 we show the primary and
secondary constellation associated to this plane. In this case, the set SΠ is,

SΠ = {(v1, v1), (v1, v1), (v2, v2), (v2, v2), (v3, m̂3), (v3, m̂3), (v4, m̂4)(v4, m̂4)} ,
(3.4.1)
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Figure 3.5: The secondary constellation of a 2-plane with a tetrahedral constellation,
shown in blue. The primary constellation 2-plane is shown in red, where each vertex
is double degenerate. The vertices v1 and v2 are in both constellations. See equation
(3.4.1)

where,

m̂3 = 1
9

(√
2

3 ,−11
√

2
3 ,

1
3

)
, m̂4 = 1

9

(√
2

3 , 11
√

2
3 ,

1
3

)
.

Since the primary constellation of the plane is the double tetrahedron, all
its rotational symmetries are the ones of the tetrahedron, A4. Since the
equalities m̂1 = v1 and m̂2 = v2 hold, any non-trivial symmetry of Π1 must
interchange these vertices; the only one in A4 with this property is the
rotation by π around the axis (1/

√
3)(
√

2, 0, 1). A quick computation shows
that this rotation also interchanges v3 with v4 and m̂3 with m̂4, thus leaving
SΠ invariant. By of corollary 23, this is the only symmetry rotation of Π1.

As a second example, consider the 2-plane of the third type of section
3.3.1, Π3. In this case, SΠ turns out to be,

SΠ = {(v1, v1), (v1, v1), (v2, v2), (v2, v2), (v3, v3), (v3, v3), (v4, v4), (v4, v4)} ,

that is, the secondary constellation is equal to the primary one. From here,
it is clear that all the rotational symmetries of the tetrahedron leave this
2-plane invariant.

In the following subsections we prove the conjecture 24 of the previous
section for the cases s = 3/2, 4/2, 5/2, but before that, we prove some technical
theorems.



Chapter 3. Stellar representation for the Grassmannians 78

3.4.2 Study of 2-planes: an approach based on differential
equations

In this subsection, we prove some theorems that are useful to prove later
results.

First we find necessary and sufficient condition for a polynomial p (which
we assume has no repeated roots) to be an element of a 2-plane PΠ such
that, the constellation of Π, is given by the zeros of W .

From now on, W , p and q denotes polynomials of degrees 4s−2, 2s and 2s
respectively. We remind the reader that we denote the Majorana polynomial
(3.2.2) of Π by pΠ. The condition alluded to above is stated in the following
theorem,
Theorem 25. Consider W and p polynomials. Denote by ζi, (i = 1, . . . , 2s)
the roots of p (all assumed to be different). Then, there is a 2-plane Π such
that pΠ is proportional to W , and p is an element of PΠ if and only if, the
following equalities hold,

W ′(ζi)
W (ζi)

= p′′(ζi)
p′(ζi)

, for all i = 1, . . . , 2s. (3.4.2)

Proof. Suppose the polynomials p and q constitute a basis for PΠ, where
Π is a 2-plane such that pΠ = W . Then, the following chain of implications
holds,∣∣∣∣∣p p′

q q′

∣∣∣∣∣ = W ⇒ pq′ − p′q = W ⇒ p2
(
q

p

)′
= W ⇒

(
q

p

)′
= W/p2

⇒ q = p

∫
W

p2 . (3.4.3)

Since q is a polynomial, the indefinite integral
∫

(W/p2) must be a rational
function. Note that the degree of p2 is 4s, while the one of W is 4s− 2. This
implies thatW/p2 is a proper rational function and thus can be decomposed in
partial fractions as follows (recall that p has no repeated roots by hypothesis),

W (ζ)
p2(ζ) =

2s∑
i=1

(
Ai

ζ − ζi
+ Bi

(ζ − ζi)2

)
, (3.4.4)

where Ai and Bi are complex numbers. By integrating the previous equation
we obtain,∫

W (ζ)
p2(ζ) dζ = constant+

2s∑
i=1

(
Ai ln(ζ − ζi)−

Bi
ζ − ζi

)
. (3.4.5)
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From the previous expression, we can conclude that
∫

(W/p2) is a rational
function if and only if all the coefficients Ai are zero. In this case, by multi-
plying (3.4.5) by p, it is clear that p

∫
(W/p2) is a polynomial of degree less

of equal than the one of p, 2s. By equation (3.4.3), this implies the following;
there are polynomials p and q whose Wronskian is W if and only if the
indefinite integral

∫
(W/p2) is a rational function. As previously noted, this

occurs if and only if the coefficients Ai are zero.
To conclude the proof, we find a general expression for the coefficient Ai,

and equal it to zero. As we check further down, (3.4.2) immediately follows
from this equality.

To find an expression for Ai, we perform the summation in the right side
of (3.4.4) and cancel out p2. The result is,

W (ζ) =
2s∑
i=1

(
Ai(ζ − ζi)pı̂(ζ) +Bip

2
ı̂ (ζ)

)
, (3.4.6)

where pı̂ denotes the polynomial obtained by omitting the factor ζ − ζi from
p, that is,

pı̂(ζ) = p(ζ)
ζ − ζi

. (3.4.7)

Note that pı̂ is zero when evaluated on the roots of p, except for ζi. Because
of this (as it is usual when working with partial fractions) we can evaluate
both sides of (3.4.6) in ζi to obtain Bi,

W (ζi) = Bip
2
ı̂ (ζi)⇒ Bi = W (ζi)

p2
ı̂ (ζi)

.

From (3.4.7), we can compute pı̂(ζi) by considering the following limit,

pı̂(ζi) = lim
ζ→ζi

p(ζ)
ζ − ζi

= p′(ζi) , (3.4.8)

where we used L’ Hôpital rule for limits to produce the result. By substituting
this expression in the equation we previously found for Bi, we obtain the
following,

Bi = W (ζi)
(p′(ζi))2 . (3.4.9)
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Similarly, we can compute the coefficient Ai we seek. If we differentiate
(3.4.6), and evaluate the result at ζ = ζi, we obtain,

W ′(ζi) = Aipı̂(ζi) + 2Bipı̂(ζi)p′ı̂(ζi)⇒ Ai = W ′(ζi)
pı̂(ζi)

− 2Bi(ζi)p′ı̂(ζi) .

(3.4.10)

From (3.4.7), we can compute p′ı̂(ζi). First, we differentiate (3.4.7), and then
we use L’ Hôpital rule twice as follows,

p′ı̂(ζ) = (ζ − ζi)p′(ζ)− p(ζ)
(ζ − ζi)2

⇒ p′ı̂(ζi) = lim
ζ→ζi

(ζ − ζi)p′(ζ)− p′(ζ)
(ζ − ζi)2 = lim

ζ→ζi

(ζ − ζi)p′′(ζ)
2(ζ − ζi)

= p′′(ζi)
2 .

By substituting (3.4.8), (3.4.9) and the previous expression in (3.4.10) we
obtain,

Ai = W ′(ζi)
p′(ζi)

− W (ζi)p′′(ζi)
(p′(ζi))2 .

Since we required Ai to be zero, the Wronskian of p and q is W if and only
if the following equality holds,

W ′(ζi)
W (ζi)

= p′′(ζi)
p′(ζi)

.

This completes the proof.

The previous theorem can be restated in a way that is often more useful
as follows,

Theorem 26. There exist a 2-plane Π such that pΠ is proportional to W ,
and p is an element of PΠ if and only if there exist a polynomial m such
that the following equality holds,

Wp′′ −W ′p′ +mp = 0 . (3.4.11)

Proof. Consider the polynomial Q = Wp′′ − W ′p′. By the result of the
previous theorem, such plane Π exists if and only if Q(ζi) = 0 for all the
roots ζi of p. From basic algebra, we know that this occurs if and only if p
divides Q, that is, if Q can be written as Q = −m · p for some polynomial
m.
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The polynomialsm defined in the previous theorem, allow us to distinguish
different planes with the same constellation, The precise way is encoded in
the following theorem,

Theorem 27. The set of 2-planes whose constellation is given by the zeros
of W , is in one-to-one correspondence with the set of polynomials m such
that the solutions p to the differential equation (3.4.11) are all polynomials
of degree (at most) 2s.

Proof. First, given a m such that all the solutions of (3.4.11) are polynomials
of degree 2s, we assign to it a 2-plane. To this end, denote by PΠ the solution
space (in the space of polynomials) of (3.4.11). Denote by Π the corresponding
2-plane in Hs, as in (3.1.4). Then, CΠ is given by the zeros of W . Indeed,
denote by p any solution to the differential equation (3.4.11). Define q as in
(3.4.3). Using essentially the same algebra used to prove theorem 25, it is
easy to check that q is also a solution to (3.4.11) and that the Wronskian of
p and q is W .

Reciprocally, suppose Π is such that CΠ is given by the zeros of W . We
proceed to find such m. Take p0 and q0 elements of a certain basis for PΠ.
Suppose they are scaled in a way such that,

W =
∣∣∣∣∣p0 p′0
q0 q′0

∣∣∣∣∣⇒W ′ =
∣∣∣∣∣p0 p′′0
q0 q′′0

∣∣∣∣∣
Since any element p of PΠ can be written as a linear combination of p0 and
q0, the following Wronskian needs to be zero,∣∣∣∣∣∣∣

p p′ p′′

p0 p′0 p′′0
q0 q′0 q′′0

∣∣∣∣∣∣∣ = 0⇒
∣∣∣∣∣p′0 p′′0
q′0 q′′0

∣∣∣∣∣ p−
∣∣∣∣∣p0 p′′0
q0 q′′0

∣∣∣∣∣ p′ +
∣∣∣∣∣p0 p′0
q0 q′0

∣∣∣∣∣ p′′ = 0

⇒Wp′′ −W ′p′ +mp = 0 , (3.4.12)

where m is the following polynomial

m =
∣∣∣∣∣p′0 p′′0
q′0 q′′0

∣∣∣∣∣ .
By the uniqueness theorem of differential equations, any solution to (3.4.12)
is a linear combination of p0 and q0, and hence, a polynomial of degree at
most 2s. This concludes the proof.
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Given a W , the polynomials m such that the solutions of (3.4.11) are also
polynomials are known as Van Vleck polynomials. Therefore, the number of
2-planes that share the same constellation is equal to the number of Van
Vleck polynomials for equation (3.4.11)[69].

Theorem 27 also allows us to find the number of 2-planes in certain
particular cases. In what follows, we illustrate this procedure for s = 3/2.

An example: s=3/2

In the case of s = 3/2 the degree of W is four. Therefore, W can be written
in the following way,

W (ζ) = aζ4 + bζ3 + cζ2 + dζ + f . (3.4.13)

By theorem 27, to find all planes whose constellation is given by the zeros
of W , it is enough find all the polynomials m such that the solutions of the
differential equation (3.4.11) are all polynomials of degree 2s = 3 or less.
Because of this, given any solution p, it must also satisfy the equation p(4) = 0.
The strategy is therefore to find conditions on m so that the equation p(4) = 0
holds for all the solutions of (3.4.11).

From (3.4.11), we can compute p(4). First, if we solve for p′′ in (3.4.11)
we obtain,

p′′ = W ′p′ −mp
W

.

By differentiating (3.4.11), we can calculate p′′′,

Wp′′′ −W ′′p′ +m′p+mp′ = 0⇒ p′′′ = (W ′′ −m)p′ −m′p
W

Finally, by differentiating again and using the previous equations, after some
algebra, we obtain the following expression involving p(4),

Wp(4) + (2m′ −W ′′′)p′ + 1
W

(Wm′′ − (m−W ′′)m−W ′m′)p = 0 .

Since p(4) must be zero for all the solutions p, the terms multiplying p and
p′ are also zero, that is,

2m′ −W ′′′ = 0 , Wm′′ − (m−W ′′)m−W ′m′ = 0 .
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The first equation implies that m = W ′′/2 + κ, for some constant κ. After
using this expression in the second equation, we obtain,

WW (4)

2 −
(
W ′′

2 + κ−W ′′
)(

W ′′

2 + κ

)
− W ′W ′′′

2 = 0⇒

⇒ κ = ±1
2

√
2WW (4) − 2W ′W ′′′ + (W ′′)2 .

By using (3.4.13) we obtain,

κ = ±
√
c2 + 12af − 3bd ,

expression that is independent of ζ, as it was assumed. Therefore, all the
2-planes whose Majorana polynomial is proportional to W , are given by the
following polynomials m,

m(ζ) = W ′′(ζ)
2 ±

√
c2 + 12af − 3bd , (3.4.14)

that is, there are generically two different planes with the same constellation
when s = 3/2. Using the same procedure, one can prove that for s = 2, there
are generically five possible two planes with the same constellation. The
furthest we have managed to push this procedure, is for s = 5/2, where one
can prove that there are fourteen 2-planes with the same constellation.

3.4.3 Determining a 2-plane Π by knowing CΠ and one pair
in SΠ

In general, by theorem 23, if we know the set SΠ, we can completely determine
the plane Π. In this section, we prove the conjecture 24 for the cases s =
3/2, 4/2, 5/2. To simplify the calculations, assume the pair (n̂, m̂) we know
is such that n̂ = −ẑ. If this was not the case, one could simply consider a
rotation that maps n̂ to −ẑ and the results would still hold.

First, we prove the following theorem for a general s,

Theorem 28. Consider a 2-plane Π such that there is a unique star in −ẑ.
If the pair (−ẑ, m̂0) is an element of SΠ, then ζ0, the stereographic image
of m̂0, is the only complex number such that P (2s−1)(ζ0) = 0 for all the
Majorana polynomials P in PΠ.

Proof. The strategy used to prove this theorem is as follows; first, we prove
that such number ζ0 exists. Then, we prove it is the image under the stereo-
graphic projection of m̂0. Let Π be a 2-plane in the space of a spin s. Suppose
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that there is only one star pointing towards the south pole in the constellation
of Π.

Since there is only one star in −ẑ in CΠ, then, by theorem 15, there is
exactly one state (up to multiplication by scalars) in Π whose constellation
has precisely two stars in the south pole. Furthermore, the constellation of
any other state has no stars in the south pole. This implies that we can find
a basis {p, q} for the space PΠ such that the degree of p and q are 2s− 2 and
2s respectively. By construction, any polynomial P in PΠ can be written
as P = Ap+Bq, where A and B are complex numbers. By differentiating
(2s− 1) times P and recalling that p is of degree 2s− 2, we can conclude the
following,

P (2s−1) = Ap(2s−1) +Bq(2s−1) = Bq(2s−1) . (3.4.15)

Since q(2s−1) is of degree one, it only has one root, ζ0. The previous equation
is valid for any P in PΠ, so ζ0 is a root of the (2s− 1) derivative of all the
polynomials in PΠ and from the way we found it, it is unique.

Finally, we check that ζ0 is the image under stereographic projection of
m̂0. If we denote by ζ̃0 the projection of m̂0, then, what we want to prove is
ζ̃0 = ζ0. We are going to prove that P (2s−1)(ζ̃0) is zero for all the polynomials
in PΠ and hence, ζ̃0 is equal to ζ0. Consider the state |ψ〉 used to find m̂0 of
theorem 21. Recall that, by definition, |ψ〉 is in Π⊥ and its constellation has
2s− 1 stars in the north pole and one in −m̂, so its Majorana polynomial
(1.3.14) is (up to a factor) the following,

pψ(ζ) = ζ2s−1
(
ζ + 1

ζ̃∗0

)
= ζ2s + 1

ζ̃∗0
ζ2s−1 ,

so that |ψ〉 can be written as,

|ψ〉 = |s, 2s〉 − 1√
2sζ∗0

|s, 2s− 1〉 .

Consider any state |φ〉 = ∑
mCm|s,m〉 in Π and therefore orthogonal to |ψ〉.

The orthogonality between |ψ〉 and |φ〉 implies the following expression for
the coefficients Cm,

C2s−1 =
√

2sζ̃0C2s ,

which in turn implies the following for the Majorana polynomial associated
to |φ〉,

pφ(ζ) = C2s
(
ζ2s − 2sζ̃0ζ

2s−1
)

+
s−2∑
m=−s

(−1)s−m
(

2s
m

)1/2

Cm ζ
s+m .
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By differentiating the previous expression 2s− 1 times we obtain that,

p
(2s−1)
φ (ζ) = C2s (2s)!

(
ζ − ζ̃0

)
.

Clearly, the only zero of pφ is ζ̃0. Therefore, ζ0 is equal to ζ̃0, as claimed.

By virtue of the previous result, given a 2-plane Π with a star in the
south pole, we can assign to it a complex number ζΠ. As we show in the
following theorems, for s = 3/2, 4/2, 5/2, the primary constellation of a
2-plane, together with ζΠ, uniquely determine a 2-plane.

First we state the theorems for the cases s = 3/2, 3/2, 5/2. Then, we
establish the proof for s = 3/2. The one of the other cases is similar in nature,
but the calculations become much more cumbersome.

Theorem 29. For spin s = 3/2, let Π be a 2-plane such that CΠ contains a
star in the south pole and is given by the zeros of W (that in this case is a
polynomial of degree three). Then, ζΠ is a root of W ′,

And reciprocally, given a third degree polynomial W , for each root ζ0 of
W ′, there exist a unique 2-plane Π such that ζΠ = ζ0 and CΠ is given by the
zeros of W . In this sense, we say that the set of 2-planes Π such that CΠ is
given by the zeros of W is in a one-to-one correspondence with the set of the
roots of W ′.

Notice that W ′ is a polynomial of degree two and, therefore, there are
generically two 2-planes with the same constellation. This is the same con-
clusion that was reached in section 3.4.2.

For s = 2, a theorem analogous to the previous one can be stated as
follows,

Theorem 30. Consider a spin s = 2. Let C be a set of six stars, where
one star is in the south pole. Suppose that C is given by the zeros of W , a
polynomial of degree five. Then, the 2-planes whose constellation is C are in
a one-to-one correspondence (as defined in theorem 29) with the roots of the
following fifth degree polynomial,

1
5W

(5)W − 1
3W

(4)W ′ +W (3)W ′′ .

From here, we can conclude that there are generically five 2-planes with
the same constellation.

Finally, for the case s = 5/2, the corresponding theorem is the following,
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Theorem 31. Consider a spin s = 5/2. Let C be a set of eight stars, where
one star is in the south pole. Suppose that C is given by the zeros of W , a
polynomial of degree seven. Then, the set of 2-planes whose constellation is
C is in a one-to-one correspondence with the roots of the following fourteenth
degree polynomial,

5184
343 W

2(W (7))3 + 36WW (6)(W (5))3 − 128(W (3))3(W (6))2 − 81(W (5))4W ′

− 648
7 WW (4)W (7)(W (5))2 + 1296

7 W (7)(W (5))2(W ′′)2

− 5184
49

(
W (W (7))2W (5)W ′′ +WW (3)W (4)(W (7))2 − (W (3))2(W (7))2W ′

)
− 648W (3)(W (4))2(W (5))2 + 324W (4)(W (5))3W ′′

+ 864
7 WW (3)W (6)W (7)W (5) + 1152

7 (W (3))2W (6)W (7)W ′′

− 1296
7 W (3)W (7)(W (5))2W ′ + 576(W (3))2W (4)W (6)W (5)

− 144W (3)W (6)(W (5))2W ′′ − 2592
7 W (3)W (4)W (7)W (5)W ′′ .

From here, we check that there are generically fourteen different 2-planes
with the same constellation.

Finally, we present the proof of theorem 29.

Proof of theorem 29. Before making the actual proof, we give some prelimi-
nary definitions and observations.

Consider a 2-plane Π such that CΠ has a star in the south pole. Suppose
that PΠ is generated by the polynomials p and q. Call W the Wronskian of
these polynomials. Then, W is of degree 3.

Just like in the proof of theorem 28, assume that p and q are of degree
2s− 2 = 1 and 3 respectively. Define the polynomial wi,j as follows,

wi,j =
∣∣∣∣∣p(i) q(i)

p(j) q(j)

∣∣∣∣∣ . (3.4.16)

Note that the polynomials wi,j are not independent for all i and j, as they
satisfy the following relations,

w′i,j = wi+1,j + wi,j+1 , wi,j = −wj,i . (3.4.17)
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Also, since p and q are of degree 1 and 3 respectively, wi,j is zero if i and
j are greater than two or if either i or j is greater than four. Furthermore,
for any 4 indices a, b, c, d, one can also prove with a little algebra that the
following equality must hold,

wa,bwc,d = wa,cwb,d − wa,dwb,c . (3.4.18)

Note that the Wronskian W of p and q is w0,1 and that W ′ = w0,2. Take any
element P in the 2-plane PΠ. Then, the following equality holds,∣∣∣∣∣∣∣

P p q
P ′ p′ q′

P ′′ p′′ q′′

∣∣∣∣∣∣∣ = 0⇒ Pw1,2 − P ′w0,2 + P ′′w0,1 = 0 . (3.4.19)

By comparing this equation with the result of theorem 27, it is clear that
PΠ is completely characterized by the polynomial w1,2 (provided we also
know W ).

Note that it is possible to find all the polynomials w1,2 that satisfy the
relationships (3.4.17) and (3.4.18). As already noted, w2,3 is equal to zero.
Since the derivative of w1,3 can be computed as w′1,3 = w2,3 = 0, then w1,3
is a constant. A quick computation reveals the expression W (3) = 2w1,3, so
that said constant is W (3)/2 (recall that W is of degree three ). Since, by
equation (3.4.17), the equality w′1,2 = w1,3 holds, then, w1,2 can be written
as w1,2(ζ) = (W (3)/2)(ζ − ζ0), for a certain complex number ζ0. But, by
definition, we have the following,

w1,2 =
∣∣∣∣∣p′ q′

p′′ q′′

∣∣∣∣∣ = p′q′′, (3.4.20)

so that the zeros of w1,2 are the zeros of q′′ (since p′ is constant). By theorem
28 this root is the complex number we denoted as ζΠ, that is, ζ0 = ζΠ.

Now, we are ready to prove the first implication of the theorem. By using
(3.4.18) for the indices 0,1,2 and 3, we obtain the following expression,

w0,1w2,3 = w0,2w1,3 − w0,3w1,2 ⇒ 0 = w0,2w1,3 − w0,3w1,2 , (3.4.21)

where we used the fact that w2,3 is zero, as noted at the beginning of the
previous paragraph. By evaluating the functions in (3.4.21) at ζΠ we obtain
(recall that w1,2(ζΠ) = 0 and that w1,3 is constant)

w0,2(ζΠ) = 0⇒W ′(ζΠ) = 0 , (3.4.22)
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where we used the equality W ′ = w′0,1 = w0,2 to obtain the last implication.
This means that the numbers ζΠ are roots of the polynomial W ′, as claimed.

Reciprocally, given ζ0 a root of the W ′, define the polynomials w1,2(ζ) =
(W (3)/2)(ζ − ζΠ), w0,1 = W , w0,2 = W ′. Define PΠ as the solution space
of the differential equation (3.4.19). Our claim is that Π, the 2-plane in Hs
corresponding to PΠ, is the 2-plane we seek. To prove this, we have to show
two claims; that the solutions are polynomials of degree three, and that the
Wronskian of a basis of PΠ is W . The second claim is a direct application of
Abel’s differential equation identity. In the following paragraph, we prove the
first claim.

Let p and q be a basis for PΠ. By construction, in terms of p and q
(see equation (3.4.16)), the equalities w1,2(ζ) = (W (3)/2)(ζ − ζΠ), w0,1 = W ,
w0,2 = W ′ hold. By the repeated use of equations (3.4.17) and (3.4.18), it is
possible to prove that w0,4 = w1,4 = 0. Let P be an element of PΠ. Since P
can be written as a linear combination of p and q, the following determinant
is zero, ∣∣∣∣∣∣∣

P p q
P ′ p′ q′

P (4) p(4) q(4)

∣∣∣∣∣∣∣ = 0 .

By expanding by minors the previous determinant, we obtain the equality
P (4)W = 0. This implies that P (4) is zero, that is, P is a polynomial of degree
three, as claimed. Another way to prove that PΠ is a space of polynomials,
is to show that w1,2(ζ) as previously defined, coincides with the polynomial
m of equation (3.4.14), when a = 0.

3.5 The stellar representation in terms of k-vectors

The construction of the previous section allows us to completely characterize a
2-plane in terms of two constellations. This approach only works for 2-planes.
Here we present an alternative procedure to characterize a k-plane in terms
of two or more constellations that it is valid for any k. The only drawback of
this new approach, is that the calculations to find the new constellations are
more complicated. In what follows, we work in the representation of Grk (Hs)
in terms of k-vectors introduced in section 1.2.2.

In a natural way, we can define action of the rotation group SO(3) on
∧k(Hs). To this end, is enough to define it for the following elements,

R(|ψ1〉 ∧ · · · ∧ |ψk〉) ≡ (R|ψ1〉) ∧ · · · ∧ (R|ψk〉) . (3.5.1)
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Notice that, if |ψ1〉∧ · · ·∧ |ψk〉 represents a plane Π, then, R(|ψ1〉∧ · · ·∧ |ψk〉)
represents the plane RΠ. Also of importance is the fact that this action
leaves the inner product (1.2.9) invariant, and therefore, this action of SO(3)
is unitary.

By considering the infinitesimal version of (3.5.1), we can define the action
of the generators of rotations Si on ∧k(Hs) in the following way,

Si(|ψ1〉 ∧ · · · ∧ |ψk〉) ≡
(Si|ψ1〉) ∧ · · · ∧ |ψk〉+ · · ·+ |ψ1〉 ∧ · · · ∧ (Si|ψj〉) ∧ · · · ∧ |ψk〉
+ · · ·+ |ψ1〉 ∧ · · · ∧ (Si|ψk〉) . (3.5.2)

In these terms, the eigenstates of Sz are of the following form,

Sz(|s,m1〉 ∧ · · · ∧ |s,mk〉) = (m1 + · · ·+mk)|s,m1〉 ∧ · · · ∧ |s,mk〉 .

In particular, the highest weight for Sz is s1 = s+ s− 1 + · · ·+ s− (k− 1) =
ks− k(k−1)

2 , and the highest weight vector is |s, s〉 ∧ · · · ∧ |s, s− (k − 1)〉, a
k-vector that corresponds to the coherent k-plane Πẑ. Since the dimension
of ∧k(Hs) is

(2s+1
k

)
, in general, the action (3.5.1) is not irreducible. As such,

using a well-known theorem of representation theory (c.f. [70]), ∧k(Hs) can
be decomposed as the following direct sum,

∧k(Hs) = Hs1 ⊕Hs2 ⊕ · · · ⊕ HsM ,

where each subspace is an irreducible representation of SO(3) and therefore,
the state space of a spin s. We also assume w.l.o.g. that si ≥ si+1.

In these terms, any element v in ∧k(Hs) can be written uniquely as
follows,

v =
M⊕
i=1
|Ψi〉 , (3.5.3)

where |Ψi〉 is an element of Hsi . By considering the constellation for all the
states |Ψi〉, we can assign to v an ordered set of M different constellations
(in the case of si = 0, as a definition, we say that the constellation of |Ψi〉
contains no stars) {C1, . . . , CM}, where Ci is the constellation of |Ψi〉. Note
that if v is rotated, by construction, these constellations rotate by the same
rotation.

However, knowing this set of M constellations is not enough to determine
the k-vector v, as the following w has assigned the same set of constellations
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as v,

w =
M⊕
i=1

µi|Ψi〉 ,

where µi (i = 1, . . . ,M) is an arbitrary complex number. Because of this, one
possible way to completely determine a k-vector v, is to choose a representa-
tive state for each possible constellation (for arbitrary spin). Then, besides
specifying the set of M constellations Ci, one would also need to specify a
M -tuple of complex numbers, (ν1, . . . , νM ). In this case, v can be written as,

v =
M⊕
i=1

νi|Ψ̃i〉 , (3.5.4)

where |Ψ̃i〉 is the representative state for the constellation Ci.
If we consider a k-vector v that represents a k-plane Π as shown in

equation 1.2.10, we can use the previous construction to assign an ordered
set of M constellations to k-planes. Note that the particular choice of v is
irrelevant, all of them produce the same set. Denote it as {C1

Π, . . . , CMΠ } These
are the constellations mentioned at the beginning of this section. Note that
this construction is very different from the one for the secondary constellation
defined in 3.4. In that case, the secondary one has the same number of stars
as the primary, and only two constellations were defined. On the other hand,
in this case, a k-plane might be assigned more than two constellations (even
if k = 2), and each of them has different number of stars.

As we check in the following paragraph, C1
Π is CΠ. Notice that the rotations

that leave Π invariant also leave each of the constellations invariant. This
fact can be used to find the rotational symmetries of a 2-plane. We do this
in the following subsection.

In this paragraph, we show that the first constellation C1
Π is CΠ. Let v

be a k-vector that represents Π. As already mentioned, the k-vector |s, s〉 ∧
· · · ∧ |s, s− (k − 1)〉 is an element of Hs1 . Since this space is invariant under
rotations, all the states vn̂ = |n̂, s〉 ∧ · · · ∧ |n̂, s− (k − 1)〉 that represent the
coherent k-plane Πn̂ are also elements in Hs1 . As such, the inner product
(1.2.9) between v, written as in (3.5.3), and vn̂ is,

〈vn̂, v〉 = 〈vn̂, |Ψ1〉〉 , (3.5.5)

where we used the fact that the spaces Hsi and Hsj are orthogonal if i 6=
j. As already noted in (1.2.11), the product 〈Πn̂,Π〉 can be computed as
〈Πn̂,Π〉 = |〈vn̂, v〉|. Therefore, the constellation of Π is given by the zeros
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(as a function of n̂) of the r.h.s. (3.5.5). On the other hand, |Ψ1〉 is a spin s1
state, so its constellation is also given by the zeros of r.h.s. (3.5.5). Therefore,
CΠ is equal to the constellation of the state |Ψ1〉, C1

Π.
Finally, we use this line of reasoning to find the inner product between

two coherent k-planes Πm̂ and Πn̂. Since vm̂ and vn̂ can be treated as states
of spin s1, by equation (1.3.17), their inner product is,

〈Πm̂,Πn̂〉 = |〈vm̂, vn̂〉| = cos2s1 θ
2 ,

where θ denotes the angle between m̂ and n̂. Therefore, the distance (1.2.5)
between Πm̂ and Πn̂ is,

d(Πm̂,Πn̂) = arccos
(
cos2s1 θ

2

)
, (3.5.6)

as was previously claimed in (3.1.1).

3.5.1 Examples

In this subsection, we carry out in detail the calculations to find the set of
constellations of some of the 2-planes of section 3.3.1.

In this case, we are working with a spin s = 5/2 and with 2-planes.
Therefore, the dimension of ∧k(Hs) is

(2s+1
2
)

= 15. We proceed to decompose
it in terms of the invariant subspaces Hsi .

First, we begin with Hs1 . As already mentioned, the 2-vector |5/2, 5/2〉 ∧
|5/2, 3/2〉 is an element of Hs1 . From here, it is clear that s1 is equal to
s1 = 5/2 + 3/2 = 4. To obtain a basis for Hs1 , we apply the operator
S− repeatedly to |5/2, 5/2〉 ∧ |5/2, 3/2〉 (S− acts in ∧k(Hs) via the usual
definition, S− = Sx− iSy, where the action of Sx and Sy is defined in (3.5.2)).
To simplify the notation, we denote the elements of this basis simply as
|4,m〉, that is,

Hs1 = span{|4, 4〉, |4, 3〉, . . . , |4,−3〉, |4,−4〉} ,

where,

|4, 4〉 = |5/2, 5/2〉 ∧ |5/2, 3/2〉 ,

|4,m− 1〉 = 1√
4(4 + 1)−m(m− 1)

S−(|4,m〉) .

Then, we proceed to find Hs2 . Note that |4, 3〉 is the only eigenstate of Sz
with eigenvalue 3 (up to a complex factor). On the other hand, the space of
eigenstates of Sz with spin projection 2 is two dimensional, as it is spanned
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by the vectors |5/2, 3/2〉 ∧ |5/2, 1/2〉 and |5/2, 5/2〉 ∧ |5/2,−1/2〉. Since |4, 2〉
is the only eigenstate with eigenvalue 2 in Hs1 , the eigenstate of Sz with
eigenvalue 2 orthogonal to |4, 2〉, is an element of another invariant space,Hs2 ,
with s2 = 2. By making the calculations, we find the following expression for
|4, 2〉,

|4, 2〉 = 1√
14

(
√

5|5/2, 3/2〉 ∧ |5/2, 1/2〉+ 3|5/2, 5/2〉 ∧ |5/2,−1/2〉) .

Therefore, we have the following expression for Hs2 ,

Hs2 = span{|2, 2〉, |2, 1〉, |2, 0〉, |2,−1〉, |2,−2〉} ,

where,

|2, 2〉 = 1√
14

(3|5/2, 3/2〉 ∧ |5/2, 1/2〉 −
√

5|5/2, 5/2〉 ∧ |5/2,−1/2〉) ,

|2,m− 1〉 = 1√
2(2 + 1)−m(m− 1)

S−(|2,m〉) .

Finally, we find the last invariant subspace, Hs3 . Just like with the previous
case, we find that the eigenvalue 0 of Sz is triply degenerate, so there is an
eigenstate of Sz with eigenvalue 0 in Hs3 and s3 is zero. This state need to
be orthogonal to |4, 0〉 and |2, 0〉. Therefore, by doing the calculation we find,

Hs3 = span{|0, 0〉} ,

where,

|0, 0〉 = 1√
3

(|5/2, 5/2〉 ∧ |5/2,−5/2〉 − |5/2, 4/2〉 ∧ |5/2,−4/2〉

+ |5/2, 1/2〉 ∧ |5/2,−1/2〉) .

By adding up the dimensions of Hs1 , Hs2 and Hs3 , we obtain fifteen, the
dimension of ∧k(Hs). Therefore, we have finished the decomposition of ∧k(Hs)
in terms of invariant spaces.

In these terms, by taking advantage of the fact that states |si,m〉, si =
4, 2, 0; m = −si, . . . , si constitute an orthonormal basis, we can write any
2-vector v as follows,

v =

 4∑
m=−4

〈4,m|v〉|4,m〉

⊕
 2∑
m=−2

〈2,m|v〉|2,m〉

⊕ (〈0, 0|v〉|0, 0〉) ,
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where 〈si,m|v〉 denotes the inner product
〈
|si,m〉, v

〉
. By using equation

(1.3.14), we can find the Majorana polynomials of the terms between paren-
thesis, and therefore, their constellation. These are the constellations C1

Π, C2
Π

and C3
Π. By definition, the constellation for the spin s = 0 subspace has no

stars.
As a concrete example, we find the constellations of two of the 2-planes

of section 3.3.1; the one we described for the first type, Π1, and the one for
the third type Π3. Recall that the primary constellation for both planes is a
double tetrahedron whose vertices are in the directions shown in equations
(3.3.2), that Π1 can be written as,

Π1 = span{|v1, v2, v4, v4, v4〉, |v1, v2, v3, v3, v3〉} , (3.5.7)

while Π3 is,

Π3 = span{|v1, v1, v2, v3, v4〉, |v2, v2, v1, v3, v4〉} . (3.5.8)

The constellations for both 2-planes are shown in figure 3.6. For the case
of Π1, C1

Π1
is a double tetrahedron (as already mentioned) and the C2

Π1
is a

rectangle. The only rotation that leaves both constellations invariant, is the
one by π around the axis 1/

√
3(
√

2, 0, 1). Therefore, this is the only rotation
that leaves Π1 invariant. This is the same result as the one obtained in section
3.4.

For the case of Π3, the constellation C2
Π3

is the tetrahedron dual to the
one of C1

Π3
(the dual tetrahedron is the one such that its vertices are in the

antipodal directions to the ones of the original tetrahedron). Notice that there
is only one star per direction in C2

Π3
. The figure made by a tetrahedron and

its dual is known as a stella octangula. Since the symmetries of a tetrahedron
coincide with the ones of its dual, the rotations that leave Π′ invariant are all
the symmetries of tetrahedron. This also coincides with the result of section
3.4.
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Figure 3.6: Constellation C1
Π shown in red and C2

Π shown in blue for the 2-plane
Π1 (3.5.7) in the left and for the 2-plane Π3 (3.5.8) in the right. In the left figure,
the vector shown in black represents the axis of the only rotation that leaves Π1
invariant.



Chapter 4

Robustness of the
Wilczek-Zee effect under
external noise

Probably, most of the renewed interest in the Wilczek-Zee effect (c.f. section
1.2.3) comes from its possible applications to quantum computing, the so-
called holonomic quantum computing. The naive main idea is that, because of
their geometrical nature, quantum gates realized by means of the Wilczek-Zee
effect are robust to external noise. There are many works in the literature
that deal with the robustness of the holonomic quantum computation. Some
of them, deal with the effects of decoherence [71–73] while some others
are related with the fact that, however small, there are always errors while
implementing experimentally a certain Hamiltonian [74–76]. In this chapter
of the thesis, we deal with the latter. Two relevant references are [77, 78]
where they studied the robustness of holonomic quantum computation for
the abelian case.

First, we explain very briefly the method we used to study the robustness
of holonomic quantum computation. To make this analysis, we work with
nuclear quadrupole resonance (NQR), a simple physical system where the
Wilczek-Zee effect can be studied [79, 80]. In NQR, a spin-3/2 particle is
coupled to a magnetic field in such a way that the energy spectrum consists
in two energies, each with degeneracy two. The 2-planes spanned by the
states with the same energy depend only on the direction of the magnetic
field. By varying it, appealing to the Wilczek-Zee effect, we can mix states
within the same energy level or, in the language of quantum computing, we
can implement quantum gates that operate on the space of a single qubit.

95
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Within this framework, suppose that an experimentalist wants to produce
a certain quantum gate, and to do this, he must manipulate the magnetic
field in a certain way. Because of practical limitations, the resulting field is
not exactly what he wants, there is always certain noise beyond his control
that produces fluctuations. As a result, the resulting gate is not precisely
the one desired. What we are going to do in what remains, is to find a way
to quantify this error (the difference between the desired gate and the one
obtained), to find its value in average (considering a certain ensemble of
noises for the magnetic field) and to find the probability to obtain a certain
gate.

4.1 The Wilczek-Zee connection and NQR

In this chapter, we study one of the simplest systems exhibiting the Wilczek-
Zee effect, the one for nuclear quadrupole resonance. In this case, a spin-3/2 is
coupled to an external magnetic field according to the following Hamiltonian,

H(B) = µ(S ·B)2 , (4.1.1)

where µ is a coupling constant. The eigenstates of H(B) are trivial to obtain,
they are the same as the ones for the operator S · B̂. As we have been doing
through this thesis, denote by |B̂,m〉 an eigenstate of S · B̂ with eigenvalue
m. Clearly, the states |B̂,±m〉 have the same energy, therefore, the spectrum
of H(B) consists of two energies,

E(1/2) = µ

4 , E(3/2) = 9µ
4 ,

where the degenerate 2-plane for E(1/2) is Π(1/2)(B̂) = span{|B̂,±1/2〉}, and
the one for E(3/2) is Π(3/2)(B̂) = span{|B̂,±3/2〉}. In figure 3.1, we show
the constellation for these 2-planes.

An expression for |B̂,±m〉 can be found in appendix , equation (B.0.10).
If we denote by (Θ,Φ) the spherical coordinates defining the direction of
B̂ we have (the states are written as a row vector w.r.t. the ordered basis
|3/2, 3/2〉, . . . , |3/2,−3/2〉),

|B̂, 3/2〉 = C3
Θ

(
1,
√

3eiΦTΘ,
√

3e2iΦT 2
Θ, e

3iΦT 3
Θ
)
,

|B̂, 1/2〉 = C3
Θ

(
−
√

3e−iΦTΘ, 1− 2T 2
Θ, e

iΦTΘ(2− T 2
Θ),
√

3e2iΦT 2
Θ
)
,

|B̂,−1/2〉 = C3
Θe

iΦ(√3e−2iΦT 2
Θ, e

−iΦTΘ(T 2
Θ − 2), 1− 2T 2

Θ,
√

3eiΦTΘ
)
,

|B̂,−3/2〉 = C3
Θ

(
− e−3iΦT 3

Θ,
√

3e−2iΦT 2
Θ,−
√

3e−iΦTΘ, 1
)
,
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where TΘ and CΘ are defined by the equalities TΘ = tan(Θ/2) and CΘ =
cos(Θ/2). The phase factor eiΦ multiplying the r.h.s. of the third equation
does not come from (B.0.10), it was added by hand so later calculations
become simpler. Clearly, the previous states are ill-defined when B̂ points
toward the north or south pole. We assume this is never the case.

Now, suppose that the angles Θ and Φ are varied cyclically in time (in a
rate that permits invoking adiabaticity). Denote by Θ(t) and Φ(t) (0 ≤ t ≤ T )
the time dependence of these angles. Associated to this variation, we have two
closed curves in the Grassmannian, Π(1/2)(B(t)) and Π(3/2)(B(t)), and each
of them induces a unitary transformation in Π(1/2)(B̂(0)) and in Π(3/2)(B̂(0))
respectively (via the Wilczek-Zee effect). To find them, we use (1.2.16).
To this end, consider the following orthonormal 2-frames for π(1/2)(B̂) and
π(3/2)(B̂),

|Ψ(3/2)(B̂)〉 = (|B̂, 3/2〉, |B̂,−3/2〉) , |Ψ(1/2)(B̂)〉 = (|B̂, 1/2〉, |B̂,−1/2〉) .

For the first one, the matrix A(1/2)(t) of equation (1.2.15) turns out to be
(after some algebra),

A(3/2) = −3 sin2 Θσ3 Φ̇ ,

while, for the second one, the result is

A(1/2) = σ2 Θ̇ +
(
−1

2 σ0 − sin Θσ1 + cos Θ
2 σ3

)
Φ̇ , (4.1.2)

where σ0 denotes the identity matrix and σi (i = 1, .., 3), the Pauli matrices,
that is,

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In the previous equations, we did not write the functional dependence on t
explicitly.

Note that A(3/2) is a diagonal matrix, and as such, it commutes at different
times, [A(3/2)(t1), A(3/2)(t2)] = 0. Therefore, in this case, no matter how the
magnetic field is manipulated, the problem is essentially abelian and it reduces
to the one studied in [78]. On the other hand, for A(1/2), non-abelian effects
can (and will) occur, that is why in the following sections we work only with
A(1/2).
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4.1.1 Implementing a quantum gate: the ideal case

Perhaps the simplest example that exhibits all the non-abelian features we
are interested in is the following. Suppose that we want to implement a
quantum gate that can be obtained (via the Wilczek-Zee effect) by making
the magnetic field B precess around the z axis according to the following
equations,

Φ(t) = ωt , Θ(t) = Θ0 , 0 ≤ t ≤ 2π/ω. (4.1.3)

with Θ0 a constant angle. After a time t = 2π/ω, the magnetic field comes
back to its initial direction and a unitary transformation — the quantum
gate we wish to implement — is induced in the initial 2-plane Π(1/2)(B̂(0)).
Now, we find an analytical expression for this gate.

Since the result only depends on the trace of the curve Π(1/2)(B(t)), we
reparametrize B(t) “in terms of the angle Φ itself”, the result being the
following,

Φ(t) = t , Θ(t) = Θ0 , 0 ≤ t ≤ 2π. (4.1.4)

Note that the parameter t in the previous equation is dimensionless. By using
this parametrization, the expression for A(1/2) (4.1.2) turns out to be,

A(1/2) =
(
−1

2 σ0 − sin Θ0 σ1 + cos Θ0
2 σ3

)
,

Since A(1/2) does not depend on t, the solution to the differential equation
(1.2.16) is U(t) = exp(iA(1/2) t). By evaluating at t = 2π, we obtain the
expression we seek for the quantum gate U0,

UI ≡ U(2π) = e−iπe2iπ
(
− sin Θ0 σ1+ cos Θ0

2 σ3
)

= −e2iπ
(
− sin Θ0 σ1+ cos Θ0

2 σ3
)
.

(4.1.5)

4.1.2 Implementing a quantum gate: the real case

From an experimental point of view, it is impossible to produce a magnetic
field that precesses exactly as in (4.1.3), there are always small fluctuations
due to noise effects. Because of this, the actual curve followed by the angles
Θ and Φ can be written as follows,

Φ(t) = ωt+ εφ̃(t) , Θ(t) = Θ0 + εθ̃(t) , 0 ≤ t ≤ 2π/ω, (4.1.6)

where ε� 1 and φ̃(t) and θ̃(t) are stochastic processes describing the noise
effects. To work within the Wilczek-Zee effect framework, just like the authors
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of [78], we assume that the noise is periodic, φ̃(0) = φ̃(2π/ω), θ̃(0) = θ̃(2π/ω).
If we do not make this assumption, we have to work with some generalization
of the Wilczek-Zee effect for non-closed curves, for instance, the one defined
in [66].

Since we are assuming that ε is small, we can invert the first equation of
(4.1.6) in order to write t in terms of Φ. In this way, we can reparametrize
everything in terms of Φ. The result — that is analogous to (4.1.4) — can
be written as follows,

Φ(t) = t , Θ(t) = Θ0 + εθ(t) , 0 ≤ t ≤ 2π , (4.1.7)

where θ(t) is a periodic stochastic process, θ(0) = θ(2π). For simplicity, we
omit the expression that relates the noise θ with the functions θ̃ and φ̃.
Instead, we work only with θ itself, ignoring the particulars of how it came
to be.

After Φ varies from 0 to 2π, a unitary transformation UR for the initial
degenerate space is induced. Our goal, is to measure the distance in average
between UR (the produced gate) and UI (the actual gate obtained). To this
end, we need to define a distance between unitary matrices and to specify
the statistics of θ(t). We do these in sections 4.1.3 and 4.1.4.

But, before that, note that it does not have any physical sense to measure
the distance between UI and UR if θ(0) 6= 0 as in this case, the quantum
gates operate in different spaces. To remedy this situation, we “complete the
curve” (4.1.7) so that it starts and ends in the same point as the one for the
ideal case (4.1.4) in the following manner,

Θ(t) =


Θ0 + ε(t+ 1)θ(0), if − 1 ≤ t ≤ 0
Θ0 + εθ(t), if 0 ≤ t ≤ 2π
Θ0 + ε(2π + 1− t)θ(0), if 2π ≤ 2π + 1

, (4.1.8)

Φ(t) =


0, if − 1 ≤ t ≤ 0
t, if 0 ≤ t ≤ 2π
2π, if 2π ≤ 2π + 1

(4.1.9)

In figure 4.1, we show schematically the previous curves in the sphere. In
each of them, A(1/2) takes the following form,

A(1/2)(t) =


εθ(0)σ2, if − 1 ≤ t ≤ 0
A0 + εA1 +O(ε2), if 0 ≤ t ≤ 2π
−εθ(0)σ2, if 2π ≤ 2π + 1

, (4.1.10)



Chapter 4. Robustness of the WZ effect 100

Figure 4.1: Left: An example of a particular realization of the noise θ(t). Right: The
curve followed by the direction of the magnetic field whose spherical coordinates are
given by (4.1.7) is shown in blue. For visual clarity, we took the value ε = 0.1. The
corresponding curve for the ideal case (4.1.4) is shown in orange. The green curve is
used to “complete the blue curve” as in (4.1.9), so it beings and ends in the same
point as the orange one

where,

A0 = −1
2σ0 − sin Θ0σ1 + 1

2 cos Θ0σ3 ,

A1 = − cos Θ0θ(t)σ1 + θ̇(t)σ2 −
1
2 sin Θ0θ(t)σ3 . (4.1.11)

To solve the equation (1.2.16) for the piecewise defined matrix A(1/2), we
can multiply the solution of each segment. Therefore, UR can be written as,

UR = e−iεθ(0)σ2Uc(2π)eiεθ(0)σ2 , (4.1.12)

where Uc(t) is the solution to (1.2.16) for the middle segment of (4.1.10) and
the remaining terms are the holonomies corresponding to the first and last
segments (since A(1/2) is independent of t in these cases, the holonomies are
trivial to compute).

To find Uc(2π), since A0 in (4.1.11) is time-independent, it is easier to
work in the interaction picture to apply time-dependent perturbation theory.
Suppose that Uc(t) can be written as Uc(t) = eiA0tW (t). Then, W satisfies
the following differential equation (dropping terms of order O(ε2)),

Ẇ = iεA1W , (4.1.13)
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where A1 = e−iA0tA1eiA0t. Some algebra reveals the expression A1 = v · σ,
where Ω =

√
1 + 3 sin2 Θ0 and,

v1(t) = cos Θ0
Ω2

(
(1− Ω2 − cos(Ωt))θ(t)− Ω sin(Ωt)θ̇(t)

)
,

v2(t) = cos(Ωt)θ̇(t)− sin(Ωt)
Ω θ(t) , (4.1.14)

v3(t) = sin Θ0
2Ω2

(
(4− Ω2 − 4 cos(Ωt))θ(t)− 4Ω sin(Ωt)θ̇(t)

)
.

With these expressions, we can compute W of equation (4.1.13) up to second
order in ε through a Magnus expansion [81]. The result is the following,

W (2π) = eiε
∫ 2π

0 dt1 A1(t1) . (4.1.15)

Using this result along with the definition of W , we obtain the following
expression for UR (4.1.12),

UR = e−iεθ(0)σ2e2iπA0W (2π)eiεθ(0)σ2 = UIe
εiκ·σ , (4.1.16)

where we defined eεiκ·σ = e−2iπA0e−iεθ(0)σ2e2iπA0W (2π)eiεθ(0)σ2 , and noted
that e2iπA0 is the gate for the ideal case — what we named UI in (4.1.5). A
little bit of algebraic manipulation reveals,

κ · σ ≡ θ(0)w · σ +
∫ 2π

0
dt1 v(t1) · σ , (4.1.17)

where,

w · σ = cos Θ0 sin(2πΩ)
Ω σ1 + (1− cos(2πΩ))σ2 + 2 sin Θ0 sin(2πΩ)

Ω σ3 .

(4.1.18)

Note that κ is linear in θ. Now that we have an expression for the resulting
gate, we proceed to find a way to measure distance between gates.

4.1.3 Quantifying the error in the implementation of a quan-
tum gate

In this subsection, we find a way to define a distance between the gate obtained
in the ideal case, UI , and the one obtained in the real case, UR. When working
in the context of quantum computing, it is customary to use the concept
of fidelity to quantify the distance between two states. For pure states, the
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fidelity essentially reduces to the Fubini-Study distance (1.1.4). Because of
this, fidelity can not distinguish between states that differ by a phase and,
therefore, it is too coarse for our purposes. It also has the disadvantage that
it measures distance between states, and we are interested in the one between
the gates themselves. As such, we need a notation of distance between unitary
matrices. There are various proposals in the literature to define such concept
(c.f. [82]). For this work, we use the one that we consider the simplest — we
give the details in the following paragraph.

As it is well-know , the only bi-invariant metric on SU(2) (unique up to
scaling) assigns the following value to the distance between the matrices U
and V [83],

d(U, V ) = arccos
(1

2 Tr (UV †)
)
.

Note that the invariance of d implies that the distance between matrices
does not depend on the basis used to express them. We can not extend this
definition to the whole unitary group U(2) because, in this case, d is no
longer a real number. To remedy this situation, we propose the following
definition of d for any two elements of U(2),

d(U, V ) =
∣∣∣∣arccos

(1
2 Tr (UV †)

)∣∣∣∣ . (4.1.19)

In this way, as it is desirable, the result is still independent of the basis used
to express the matrices in question.

Finally, to conclude this section, we compute d for a case that is of interest
in the following sections: the distance between an element of the form eib·σ

(being b a 3-dimensional vector with a magnitude |b| between 0 and π) and
the identity matrix 1 is,

d(eib·σ,1) =
∣∣∣∣arccos

(1
2 Tr (eib·σ)

)∣∣∣∣ = |b| , (4.1.20)

where we used the well-known relation for the exponential of the Pauli
matrices, eib·σ = cos |b|1 + i sin |b| b̂ · σ, to conclude the last equality. With
this notion of distance, we can quantify the experimental error when trying to
implement the gate UI for one realization of the noise θ. To find its average,
we need to specify the statistics of the noise. We do this in the following
subsection.
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4.1.4 The statistics of the noise

In this subsection, we mention the statistics to model the noise θ. We try to
maintain the results as general as possible. We only assume four properties
for the stochastic process θ,

• For each realization, θ(t) is a periodic function of the parameter t = φ,
with period 2π.

• In average (over the ensemble of noises considered) θ(t) is zero for all
0 ≤ t ≤ 2π.

• No angle φ is privileged, that is, the statistical properties of the system
do not depend of φ.

• The time evolution of the total magnetic field B is slow enough so that
it can be considered adiabatic.

The first property implies that the noise can be written as a Fourier series
in the following way,

θ(t) = 1√
2π

∞∑
m=−∞

θme
imt , (4.1.21)

where the relation θm = θ∗m holds, so that θ(t) is a real-valued function. In
these terms, giving the statistics of the stochastic process θ is equivalent to
specifying the ones of the coefficients θm, m ≥ 0.

If we denote the average over the ensemble of noises by an upper line, the
second property implies θ(t) = 0. The third one guarantees that the correla-
tion function θ(t1)θ(t2) only depends on the difference t1 − t2, θ(t1)θ(t2) ≡
R(t1 − t2). In particular, θ2(t) = R(0) is independent of t. By differentiat-
ing R(t1 − t2) w.r.t. t1 (a dot denotes the derivative of a function w.r.t. its
argument), and Ṙ(t1−t2) w.r.t. t2, we can compute the following correlations,

Ṙ(t1 − t2) = θ̇(t1)θ(t2) , R̈(t1 − t2) = −θ̇(t1)θ̇(t2) . (4.1.22)

As we show in appendix A.1, in terms of the coefficients θm = θ<m + iθ=m,
these properties translate to the following,

θ<m = θ=m = 0, θ<mθ=n = 0, (θ<m)2 = (θ=m)2 ≡ ρ2
m, θ

<
mθ
<
n = δm,−n ρ

2
m . (4.1.23)

By considering the average of these coefficients, we can write R as,

R(t1 − t2) = ρ2
0

2π + 2
π

∞∑
m=1

ρ2
m cos(m(t1 − t2)) . (4.1.24)
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Finally, the fourth property implies that the modulus of the coefficients θm
have to decay quickly enough. The precise details are related with the source
of the noise and its relative magnitude with the magnetic field.

4.1.5 Finding the average distance between the ideal gate
and the real one

Using the results from the previous sections, we can quantify the average
error when trying to realize the gate UI . We define this average error drms as,

d2
rms = d2(UR, UI) = d2(eiεκ·σ,1) = ε2|κ|2 , (4.1.25)

where we used (4.1.16), (4.1.19) and (4.1.20) to obtain the last equality. What
follows is a long calculation. The details can be found in appendix A.2. Here
we just present the final result,

d2
rms = ε2

Ω2 − 1
2Ω2

2π∫
0

dt R(t)
(
tΩ2 + 4(2π − t)(Ω2 − 1) cos(Ωt)

− 4Ω sin(Ωt) + 4Ω sin(2πΩ− Ωt)− 4t− 2πΩ2 + 8π
)
.

(4.1.26)

Note that there are no terms involving θ̇. This is because they were integrated
by parts using (4.1.22). Also, note that the result is linear in R. Therefore,
by using (4.1.24), we can calculate the integral explicitly. The result is,

d2
rms = ε2

(
1
4d

2
rms,0 ρ

2
0 +

∞∑
m=1

d2
rms,m ρ

2
m

)
,

where,

d2
rms,m =


2(Ω2−1)(4(Ω2−1) sin2(πΩ)+π2Ω2(4−Ω2))

πΩ4 if m = 0
8(Ω2−1)2(m2+Ω2) sin2(πΩ)

πΩ2(m2−Ω2)2 if m > 0
. (4.1.27)

In figure 4.2, we present a plot of drms,m as a function of Θ0 for various values
of m. Note that all the plots, except for the one for m = 2, behave more or
less in the same manner. Their value is zero for Θ0 = 0, Θ0 = π/2, and their
amplitude decrease at higher frequencies. This is very similar to the abelian
case, where the geometric phase is proportional to the area enclosed by the
magnetic field after a full turn.
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Figure 4.2: Plot of d2
rms,m vs Θ0 for equation (4.1.27). The values considered for

the left graph were m = 0 (blue), m = 1 (orange), m = 2 (green). For the right one,
m = 3 (blue), m = 4 (orange), m = 5 (green), m = 6 (red) and m = 7 (purple).
Note the difference in scale between the two graphs.

However, for m = 2, the behavior is completely different, the function
attains a maximum at Θ0 = π/2 and the scale is bigger than the one for
the other ones. This is a non-abelian effect and has to be considered when
realizing quantum gates. For example, if an experimentalist wants to use the
angle Θ0 where the error is minimum, the answer for the abelian case would
be to consider Θ0 = π/2. For the non-abelian case, this is no longer the case,
as the error for this angle is maximal.

4.1.6 Probability distribution for the gates obtained

Finally, to conclude this section, we find an analytical expression for the
probability to obtain a certain gate after a single realization of the noise,
assuming the distribution of the coefficients θ<m and θ=m is Gaussian. As it
was shown in (4.1.16), the gate obtained after one experiment is UIU iκ·σ. If
we know the vector1 κ, we know the gate produced. We could specify κ by its
three Cartesian components (κx, κy, κz), but the expressions get considerably
simpler if we work with the frame x̂′, ŷ′, ẑ′ where,

x̂′ = cos ηx̂+ sin ηẑ , ŷ′ = ŷ , ẑ′ = − sin ηx̂+ cos ηẑ , (4.1.28)

with η being defined by the equality cos η = cos Θ0/Ω. Note that, if we make
the following definitions, σ1′ ≡ x̂′ · σ, σ2′ ≡ ŷ′ · σ and σ3′ ≡ ẑ′ · σ, then, we

1 Note that κ does not represent a direction in physical space, it is only related with
the basis |B̂,±3/2〉 of the degenerate space with respect to which the Pauli matrices σi
are defined.
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can write A0 of equation (4.1.11) simply as,

A0 = −1
2σ0 + Ω

2 σ3′ .

In these terms, we can find the distribution of κ for a noise θ(t) (4.1.21) of a
single frequency m 6= 0,

θ(t) = 1√
2π

(θmeimt + θ∗me
−imt) . (4.1.29)

The details of the following calculation can be found in the appendix A.3. In
this case, the resulting vector κm after a single realization is (the components
of κm are written w.r.t. the frame (4.1.28)),

κm3′ = 0 ,
(
κm1′
κm2′

)
= 4

(
Ω2 − 1

)
sin(πΩ)√

2πΩ(Ω2 −m2)

(
Ω cos(πΩ) m sin(πΩ)
Ω sin(πΩ) −m cos(πΩ)

)(
θ<m
θ=m

)
.

(4.1.30)

By inverting the previous equation, we can find the distribution of κm1′ and
κm2′ , provided we know the one of θ<m and θ=m. As we already mentioned, we
assume their probability is Gaussian. Because of the equations (4.1.23), θ<m
and θ=m must be statistically independent and their corresponding probability
density function is the same, namely,

Pr
[
θ<m = α

]
= Pr

[
θ=m = α

]
= 1√

2πρm
e
− α2

2ρ2m . (4.1.31)

By making the computation, the probability density function for the resulting
vector κm turns out to be (c.f. appendix A.3),

Pr [(κm1′ , κm2′ , κm3′ ) = (k1′ , k2′ , k3′)] = mΩ
2πρ̃2

m

e
− 1

2ρ̃2m
(Ω2p2+q2m2)

δ(k3′) , (4.1.32)

where δ denotes the Dirac delta function and,

ρ̃m = 4m sin(πΩ)(Ω2 − 1)√
2π(Ω2 −m2)

ρm

p = sin(πΩ)k1′ − cos(πΩ)k2′ , (4.1.33)
q = cos(πΩ)k1′ + sin(πΩ)k2′ .

The equation (4.1.32) has been verified by generating random noise according
to (4.1.31) and computing the corresponding holonomy numerically. As we
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Figure 4.3: Numerical verification of equation (4.1.32). 5000 random realizations
of noise of a single frequency (4.1.29) were generated according to the distribution
(4.1.31). (a): Representation of the generated noise in the θ<mθ=m plane by a blue
point. Curves of constant probability density –circles of radius ρm and 2ρm– are
shown in orange. Since (4.1.31) is a 2d Gaussian distribution, roughly 68.2% of the
points are inside the inner circle and 86.4%, inside the outer one. For each point,
the holonomy for this noise was computed numerically taking ε = 0.001 and m = 2.
(b)-(d): Representation of the vector κ obtained after each realization in the κ1′κ2′

plane for different values of Θ0. The orange ellipses are curves of constant probability
density according to (4.1.32). As predicted by (4.1.32), for each graph, around 68%
of the points are inside the inner ellipse and around 86.4%, inside the outer one. The
values for Θ0 considered were (b) Θ0 = π/8, (c) Θ0 = π/4 and (d) Θ = 9π/20. For
other values of m, m 6= 0, the plots look more or less the same.
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can see in figure 4.3, there is an excellent agreement between the numerical
results and the analytical expression.

Now, we consider a noise where only the zero mode is present,

θ(t) = 1√
2π
θ<0 . (4.1.34)

In this case, the resulting vector κ = κ0 for a single realization is,

κ0
1′ = sin(2πΩ)(Ω2 − 1)√

2πΩ2 θ<0 ,

κ0
2′ = 2 sin2(πΩ)(Ω2 − 1)√

2πΩ2 θ<0 , (4.1.35)

κ0
3′ = 3

√
2π sin(2Θ0)

4Ω θ<0 .

Note that all the possible vectors κ0 that can be obtained for different
realizations of the noise lie on a line. If we assume the probability distribution
for θ0 is like in (4.1.31), the resulting density for κ0 is given by the following
expression,

Pr
[
(κ0

1′ , κ
0
2′ , κ

0
3′) = (k1′ , k2′ , k3′)

]
= δ (k1′ − µk3′) δ (k2′ − νk3′)

1√
2πρ̃0

e
−
k2
3′

2ρ̃20 ,

(4.1.36)
where,

µ = 2 sin(2πΩ)(Ω2 − 1)
3πΩ sin(2Θ0) , ν = 4 sin2(πΩ)(Ω2 − 1)

3πΩ sin(2Θ0) , ρ̃0 = 3
√

2π sin(2Θ0)
4Ω ρ0,

Finally, by considering the previous cases, we can compute the probability
distribution for a general noise (4.1.21). As noted right after (4.1.17), κ is
linear in θ. Therefore, for the general case,

κ =
∞∑
m=0

κm . (4.1.37)

Since the vectors κm are linearly independent, we can calculate the distribu-
tion of their sum. The details are in appendix A.4. The result is,

Pr [(κ1′ , κ2′ , κ3′) = (k1′ , k2′ , k3′)] = 1
(2π)3/2λ1λ2ρ̃0

e
− 1

2

(
u2
λ2

1
+ v2
λ2

2
+
k2
3′
ρ̃20

)
,

(4.1.38)
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where,

u = sin(πΩ)(k1′ − µk3′)− cos(πΩ)(k2′ − νk3′) ,
v = cos(πΩ)(k1′ − µk3′) + sin(πΩ)(k2′ − νk3′) ,

and,

λ1 = 1
Ω

√√√√ ∞∑
m=1

ρ̃2
m , λ2 =

√√√√ ∞∑
m=1

ρ̃2
m

m2 ,

that is, the probability distribution of the gates obtained is also Gaussian.





Conclusions

In this thesis, we used the Majorana representation to study three related
yet different problems. Each one of them is a line of investigation that it is
worth exploring further.

For chapter 2, most of the mathematical work is already done; we have
already found simple enough expressions to compute the Ricci scalar of
the horizontal metric, R(g) and the coefficient for the curvature Tr (Ω2).
What remains, it is to find a clearer physical meaning of these quantities.
In particular, it might be interesting to study their relationship with the
degree of anticoherence of a state or with their degree of entanglement. It
would also be very interesting to describe quantum mechanics in terms of
shape space, as it is being done for instance, in general relativity. One of
the objectives that we have not been able to fulfill, is to find an action that
yields the metric g as a solution to the corresponding equations.

In what concerns chapter 3, we are mostly on uncharted territory. We
have just introduced the stellar representation for the Grassmannian, so
there are many directions to explore. For instance, one could try to find the
physical relation between two k-planes with the same constellation, or try to
shed some light on why the number of k-planes with the same constellation
is the one shown in theorem 17. Also of interest, is to check if the conjecture
24 holds, or to generalize theorems 13-15 for an arbitrary degeneration of
a star in the constellation of a plane. In addition to this, we are currently
looking for a way to describe a k-plane in terms of mathematical objects
with rotational properties easy to visualize. The results of section 3.5 are
very close to what we are looking for, but it has the disadvantage that the
M -tuple (ν1, . . . , νM ) of equation (3.5.4) transforms in a complicated way
when a k-plane is rotated.

Regarding chapter 4, one could try to extent the results of section 1.2.3 to
consider the quantum nature of the magnetic field. We have made a similar
analysis for the abelian case in [84], but the generalization to the non-abelian
case is far from straightforward. In particular, difficulties arise when one
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tries to assign a geometric phase to the subsystem of the spin, as the full
quantum system also includes the magnetic field. We are also interested in
revisiting the calculations of said chapter to see if they can be done in a
simpler way; in particular, it would be useful to understand why there is a
sort of resonance for the frequency m = 2, as this kind of resonances are the
ones an experimentalist would want to avoid when implementing a quantum
gate.

We do not claim that we will find the answers to all the question posed
above, but we think they have interesting answers. Currently, we are working
mostly in the questions for chapter 3.
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Appendix A

Calculations of chapter 4

In this appendix we carry out some of the calculations of chapter 4.

A.1 Statistics of the coefficients θ<m and θ=m

In this section we prove formula (4.1.23), that is, if θ denotes a stochastic
process as in (4.1.21), and the correlation function θ(t1)θ(t2) only depends
on the difference t1 − t2, then, the following relations hold,

θ<m = θ=m = 0, θ<mθ=n = 0, (θ<m)2 = (θ=m)2 ≡ ρ2
m, θ

<
mθ
<
n = δm,−n ρ

2
m . (4.1.23)

where we wrote θm in terms of its real an imaginary parts, θm = θ<m + iθ=m.
By making the calculation explicitly we have,

θ(t1)θ(t2) = 1
2π

∞∑
m,n=−∞

θmθne
imt1eint2 = 1

2π

∞∑
m=−∞

eimt1
∞∑

n=−∞
θmθne

int2 .

(A.1.1)

By hypothesis, the previous result can be written as a function R of t1 − t2
solely. Clearly R can also be expanded in terms of Fourier modes,

θ(t1)θ(t2) = R(t1 − t2) = 1
2π

∞∑
m=∞

cme
im(t1−t2) = 1

2π

∞∑
m=∞

eimt1cme
−imt2 .

By the uniqueness of the coefficients in a Fourier decomposition, by comparing
the previous equation with (A.1.1) and considering the coefficient for eimt1 ,
we can conclude the following,

∞∑
n=−∞

θmθne
int2 = cme

−imt2 .
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Again, by appealing to the uniqueness of the Fourier expansion, we see that
the following expression holds,

θmθn = cmδm,−n .

Now, suppose that m and n are such that m 6= n, m 6= −n. By writing this
coefficients in terms of their real and imaginary parts, θm = θ<m + iθ=m, we
conclude from θmθn = 0 the following equalities,

θ<mθ
<
n − θ=mθ=n = 0 , θ=mθ

<
n + θ=n θ

<
m = 0 .

Now, by considering the expression θmθ−n = 0 and recalling that θ−n = θ∗n
(as noted right after (4.1.21)) we obtain,

θ<mθ
<
n + θ=mθ

=
n = 0 , θ=mθ

<
n − θ=n θ<m = 0 .

By combining the previous four equalities, we can conclude that the variables
involved are statistically independent,

θ<mθ
<
n = θ=mθ

=
n = θ=mθ

<
n = θ=n θ

<
m = 0 .

Finally, the expression θmθm = 0 implies,

(θ<m)2 = (θ=m)2 , θ<mθ
=
n = 0 .

The previous six equalities implies (4.1.23), provided we define ρm as the
standard deviation of the variable θ<m, ρ2

m = (θ<m)2.

A.2 Calculation of the average distance d2
rms

In this section, we present the calculations that leads to the expression
(4.1.26) for d2

rms. From (4.1.25), we know we can write d2
rms in terms of the

vector κ as d2
rms = ε2|κ|2. By considering (4.1.17), we can compute κ as,

κ = θ(0)w +
∫ 2π

0
v(t1) ≡ θ(0)w + P . (A.2.1)

Therefore, the square of the norm of κ is, in average,

|κ|2 = θ(0)2|w|2 + |P |2 + 2θ(0)P · w . (A.2.2)

The calculation of |w|2 is straight-forward from equation (4.1.18),

θ(0)2|w|2 = 4 sin2(πΩ)R(0) . (A.2.3)
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rms

Now we make the one for |p|2. By using the definition of P (A.2.1) we
conclude,

|P |2 =

 2π∫
0

dt v(t)

 ·
 2π∫

0

dt v(t)

 =
2π∫
0

dt1

2π∫
0

dt2 v(t1) · v(t2) . (A.2.4)

By using the definition of v (4.1.14), we obtain after some algebra,

v(t1) · v(t2) =
(

64 cos(∆Ω)− 12Ω4 + 63Ω2 − 51
64Ω2

)
R(∆)

+ 2
Ω sin(∆Ω)Ṙ(∆)− cos(∆Ω)R̈(∆) , (A.2.5)

where we defined ∆ = t1 − t2, and used (4.1.22) to express the average of
products involving θ and θ̇. Note that the previous expression only depends
on the difference ∆, and furthermore, it is even in ∆ (because R(t) (4.1.24) is
even). Because of this, the value of the integral (A.2.4) is twice the one for the
integral over the triangle contained in the portion of the square [0, 2π]×[0, 2π]
(in the t1t2 plane) where t2 ≤ t1, that is ,
2π∫
0

dt1

2π∫
0

dt2 v(t1) · v(t2) = 2
∫
dt1dt2 v(t1) · v(t2) = 2

2π∫
0

d∆
2π∫
σ

dt1 v(t1) · v(t2)

= 2
2π∫
0

d∆ (2π −∆)v(t1) · v(t2) .

Integrating by parts, we can get rid of the derivatives of R in the integrand
(A.2.5). Most of the resulting boundary terms are zero; this comes from the
equalities R(0) = R(2π) (because R is periodic) and Ṙ(0) = Ṙ(2π) (since Ṙ
is an even function). The result is,

|P |2 =
2π∫
0

dt1

2π∫
0

dt2 v(t1) · v(t2) = 4 sin2(πΩ)R(0) +Q , (A.2.6)

where Q is given by the following integral,

Q =
(
1− Ω2)

2Ω2

2π∫
0

d∆
(

8Ω sin(∆Ω)

+ (2π −∆)
(
4(Ω2 − 1) cos(∆Ω) + 4− Ω2

))
R(∆) .

(A.2.7)
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Now, we compute the vector θ(0)p of equation (A.2.2). By recalling the
relations θ(0)θ(t) = R(t) and (4.1.14) we conclude,

θ(0)P1 = cos Θ0
Ω2

 2π∫
0

dt(1− Ω2 − cos(Ωt))R(t)− Ω
2π∫
0

dtṘ(t) sin(Ωt)

 ,

θ(0)P2 = − 1
Ω

2π∫
0

dtR(t) sin(Ωt) +
2π∫
0

dt Ṙ(t) cos(Ωt) ,

θ(0)P3 = sin Θ0
2Ω2

 2π∫
0

dt
(
4− Ω2 − 4 cos(Ωt)

)
R(t)− 4Ω

2π∫
0

dt Ṙ(t) sin(Ωt)

 .

Just as with the calculation of |P |2, we can integrate parts the terms involving
Ṙ. By making this, and calculating the dot product with w we obtain:

2w · θ(0)P = −8 sin2(πΩ)R(0) + 4
(
Ω2 − 1

)
Ω sin(πΩ)

2π∫
0

dt cos((π − t)Ω)R(t).

(A.2.8)
Finally, by substituting (A.2.3), (A.2.6) and (A.2.8) in (A.2.2) we get the
final result,

d2
rms = ε2

Ω2 − 1
2Ω2

2π∫
0

dt R(t)
(
tΩ2 + 4(2π − t)(Ω2 − 1) cos(Ωt)

− 4Ω sin(Ωt) + 4Ω sin(2πΩ− Ωt)− 4t− 2πΩ2 + 8π
)
.

(4.1.26)

Note that the terms proportional to sin2(πΩ)R(0), cancelled among each
other.

A.3 Calculation of the probability density func-
tion for κm

In this section, we prove formulas (4.1.32) and (4.1.36). First, we compute
the vector κ (4.1.17) for a single realization of a noise with a single frequency
m 6= 0, (4.1.29). In this case, all the integrals can be computed explicitly.
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After making the integration, the result for the vector P (A.2.1) is,

P1 = Λ cos Θ0(θ<m(1−m2)Ω cos(πΩ) + θ=m(1− Ω2)m sin(πΩ)) ,
P2 = ΛΩ(θ<m(1−m2)Ω sin(πΩ)− θ=m(1− Ω2)m cos(πΩ)) ,
P3 = 2 tan Θ0P1 ,

where Λ = 2
√

2 sin(πΩ)√
π(m2−Ω2)Ω2 . Also, in this case, θ(0) =

√
2
πθ
<
m. By substituting

these results in (A.2.1) and projecting in the x̂′ŷ′ẑ′ frame (4.1.28), we obtain
the following expression for the vector κm = κ,

κm3′ = 0 ,
(
κm1′
κm2′

)
= 4

(
Ω2 − 1

)
sin(πΩ)√

2πΩ(Ω2 −m2)

(
Ω cos(πΩ) m sin(πΩ)
Ω sin(πΩ) −m cos(πΩ)

)(
θ<m
θ=m

)
.

(4.1.30)

The previous equation can be easily inverted to express θ<,=m in terms of
κm1′,2′ = k1′,2′ as follows,(

θ<m
θ=m

)
=

√
2π(Ω2 −m2)

4m (Ω2 − 1) sin(πΩ)

(
m cos(πΩ) m sin(πΩ)
Ω sin(πΩ) −Ω cos(πΩ)

)(
k1′
k2′

)
. (A.3.1)

In terms of p, q and ρ̃m (4.1.33), the previous equalities can be written as,

θ<m = qmρm
ρ̃m

, θ=m = pΩρm
ρ̃m

. (A.3.2)

Since θ<m and θ=m are statistically independent as shown in (4.1.23), the
density probability function that the pair (κm1′ , κm2′ ) attains the value (k1′ , k2′)
is proportional to the product of the density functions that θ<,=m takes the
values shown in (A.3.2), that is,

Pr [(κm1′ , κm2′ , κm3′ ) = (k1′ , k2′ , k3′)] = J Pr
[
θ<m = qmρm

ρ̃m

]
Pr
[
θ=m = pΩρm

ρ̃m

]
,

being J the Jacobian of the transformation (A.3.1), J = mΩρ2
m

ρ̃2
m

. Finally, by
substituting the probability density functions for θ<,=m (4.1.31) we obtain,

Pr [(κm1′ , κm2′ , κm3′ ) = (k1′ , k2′ , k3′)] = mΩ
2πρ̃2

m

e
− 1

2ρ̃2m
(Ω2p2+q2m2)

δ(k3′) . (4.1.32)

The Dirac delta was added since κm3′ is necessarily zero (4.1.30).
The calculation for a noise θ where only the mode m = 0 is present

(like in (4.1.34)) is essentially the same as the one presented. The result is
expressed in (4.1.36).
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A.4 Calculation of the probability density func-
tion for κ

In this section, we compute the distribution for the vector κ. As argued
just before (4.1.37), in the general case, κ can be written as a superposition
of the vectors κm. In the previous section, we found that their probability
density function is Gaussian in p and q for m 6= 0. For a given m, the
variance for the variable p turned out to be ρ̃2

m/Ω2 and ρ̃2
m/m

2 for q. Since
the probability distribution of the sum of Gaussian variables is also Gaussian,
the sum ∑

m6=0 κ
m is also Gaussian in p and q, and its variances, λ2

1 and λ2
2

respectively, is the sum of the variances of the original Gaussians,

λ2
1 = 1

Ω2

∞∑
m=1

ρ̃2
m , λ2

2 =
∞∑
m=1

ρ̃2
m

m2 .

Denote by K = ∑
m 6=0 κ

m. Because the previous observation we have,

Pr [(K1′ ,K2′ ,K3′) = (k1′ , k2′ , k3′)] = 1
2πλ1λ2

e
− 1

2

(
p2

λ2
1

+ q2

λ2
2

)
δ(k3′)

≡ f(p)g(q)δ(k3′) (A.4.1)
Finally, as it is well known in the theory of probability, the distribution of κ,
that is the sum of κ0 with K, is given by the following convolution,∫

d3x′ Pr
[
(κ0

1′ , κ
0
2′ , κ

0
3′) = (x1′ , x2′ , x3′)

]
·

Pr [(K1′ ,K2′ ,K3′) = (k1′ − x1′ , k2′ − x2′ , k3′ − x3′)] .
The integration over the variables x1′ and x2′ is trivial because of the Delta
functions in (4.1.36). The result is,

1√
2πρ̃0

∫
dx′3 f(ũ)g(ṽ)e

−
x2
3′

2ρ̃20 δ(k3′ − x3′) ,

where,
ũ = sin(πΩ)(k1′ − µx3′)− cos(πΩ)(k2′ − νx3′) ,
ṽ = cos(πΩ)(k1′ − µx3′) + sin(πΩ)(k2′ − νx3′) .

By substituting f and g from (A.4.1) and making the integral thanks to the
Delta function we obtain the final result,

Pr [(κ1′ , κ2′ , κ3′) = (k1′ , k2′ , k3′)] = 1
(2π)3/2λ1λ2ρ̃0

e
− 1

2

(
u2
λ2

1
+ v2
λ2

2
+
k2
3′
ρ̃20

)
,

(4.1.38)
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where u and v are obtained by substituting x3′ for k3′ in the expressions for
ũ and ṽ.





Appendix B

An algorithm to implement
rotations

In this appendix, we find a closed expression for the matrix that represents
a rotation in the space of a spin s, Hs. The resulting expressions are much
more efficient than computing the exponential matrix of the generators (for
instance, using the built-in function of Mathematica) and were used for most
of the thesis. Although they are not as powerful as the ones in [85, 86], they
have the advantage that they are relatively easy to implement, and much
more simpler to deduce.

As we have already discussed in section 1.3.2, Hs can be regarded as
the space of symmetric states of a system of 2s spin-1/2. We work in this
representation for the rest of this appendix. To find the matrix that represents
a rotation, it is enough to compute the image of the state |s,m〉 (the standard
eigenstate of Sz with eigenvalue m) under this rotation. As already mentioned
in that section, in this representation, |s,m〉 can be written as the following
completely symmetric state (see equation (1.3.2)),

|s,m〉 = | ẑ, . . . , ẑ︸ ︷︷ ︸
s+m

,−ẑ, . . . ,−ẑ︸ ︷︷ ︸
s−m

〉 ,

that is, |s,m〉 is the completely symmetric state associated to the one where
s+m of the constituent spins are in the state |ẑ½〉, and, the remaining ones,
in |−ẑ½〉. Clearly, there are only T =

( 2s
s+m

)
states (in the space of a system

of 2s spin-1/2) with this property, that is, the sum of (1.3.2) corresponding
to |s,m〉 only involves T different summands. Indeed, if we define N and k
by N = 2s and k = s+m, it is easy to see that the problem of counting such
states reduces to the one of finding the number of ways to place k objects

123



Appendix B. An algorithm to implement rotations 124

in N boxes, one object per box. Number this states and denote them by
|k; ẑ½,−ẑ½〉i, i = 1, . . . , T . In these terms we have,

|s,m〉 = 1√
T

T∑
i=0
|k; ẑ½,−ẑ½〉i (B.0.1)

Consider a rotation R around an axis n̂ = (n1, n2, n3) by an angle θ. In this
space, the matrix representation of R is,

D(R) = e−
iα
2 σ·n̂ ⊗ · · · ⊗ e−

iα
2 σ·n̂︸ ︷︷ ︸

2s times

, (B.0.2)

where σi (i = 1, 2, 3) denotes the Pauli matrices. Using the well-known
relation for the exponential of the Pauli matrices we have,

e−
iα
2 σ·n̂ = cos

(
α
2
)
1− i sin

(
α
2
)
σ · n̂ (B.0.3)

=
(

cos
(
α
2
)
− i sin

(
α
2
)
n3 −i sin

(
α
2
)

(n1 − in2)
−i sin

(
α
2
)

(n1 + in2) cos
(
α
2
)

+ i sin
(
α
2
)
n3

)
(B.0.4)

≡
(
u −v∗
v u∗

)
, (B.0.5)

from where we can conclude the following equalities,

|ψ+〉 ≡ e−
iα
2 σ·n̂|ẑ½〉 = u|ẑ½〉+ v|−ẑ½〉 ,

|ψ−〉 ≡ e−
iα
2 σ·n̂|−ẑ½〉 = −v∗|ẑ½〉+ u∗|−ẑ½〉 .

Now, we find an expression for D(R)|s,m〉. By applying (B.0.2) to (B.0.1)
we get,

D(R)|s,m〉 = 1√
T

T∑
i=0
|k;ψ+, ψ−〉i , (B.0.6)

where |k;ψ+, ψ−〉i = D(R)|k; ẑ½,−ẑ½〉i denotes the state obtained by chang-
ing the states |±ẑ½〉 by |ψ±〉 in the decomposition of |k; ẑ½,−ẑ½〉i in terms
of its constituent spins. By computing the product between |s,m′〉 and
D(R)|s,m〉 we obtain,

〈s,m′|D(R)|s,m〉 = 1√
TT ′

T ′∑
i′=0

T∑
i=0

i′〈k′; ẑ½,−ẑ½|k;ψ+, ψ−〉i ,
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where k′ and T ′ are defined analogously to k and T . Note that, because of
the permutational symmetries of the problem, the result of fixing an i′ and
making the sum over i is independent of i′. Because of this,

〈s,m′|D(R)|s,m〉 =
√
T ′

T

T∑
i=0

1〈k′; ẑ½,−ẑ½|k;ψ+, ψ−〉i , (B.0.7)

Up to now, the choice for |k′; ẑ½,−ẑ½〉1 has been arbitrary. For the rest of
the calculation, we consider,

|k′; ẑ½,−ẑ½〉1 = | ẑ½, . . . , ẑ½︸ ︷︷ ︸
k′

,−ẑ½, . . . ,−ẑ½︸ ︷︷ ︸
N−k′

〉 .

Now, we can characterize the summands of (B.0.7). Suppose that i (1 ≤ i ≤ T )
is such that, between the first k′ spins-1/2 that constitute |k;ψ+, ψ−〉i, there
are r spins in the state |ψ+〉 and k′ − r in the state |ψ−〉. Then, for the
remaining N−k′ spins-1/2, there must be k−r spins in |ψ+〉 andN−k−k′+r
in |ψ−〉. Therefore, for this particular i, we have,

1〈k′; ẑ½,−ẑ½|k;ψ+, ψ−〉i = ur(−v∗)k′−rvk−r(u∗)N−k−k′+r

= ηk−rηr−k
′

A uk(u∗)N−k , (B.0.8)

where we defined η ≡ v
u and ηA ≡ − 1

η∗ . By finding a suitable r, all the
summands of (B.0.7) can be written as in (B.0.8).

Now the question is the following: for a given r, how many times the
summand (B.0.8) appears in (B.0.7)? After a little bit of thought, one can see
that the answer to this question is equal to the number of ways to distribute
k indistinguishable objects in N numbered boxes such that r objects are in
the first k′ boxes. It is easy to check that this number is

(k′
r

)(N−k′
k−r

)
. Since the

arguments of the binomials coefficients involved must be positive, and the
lower one must be smaller than the upper one, we can conclude the following
inequalities, k′ ≥ r, k−r ≥ 0 and N − k′ ≥ k − r. That is, the allowed values
for r are,

max{0, k + k′ −N} ≤ r ≤ min{k, k′}.

Now we calculate (B.0.7). By taking into account all the previous consider-
ations, if we define rmin = max{0, k + k′ −N} and rmax = min{k, k′} then,
we have,

〈s,m′|D(R)|s,m〉 = uk(u∗)N−k
√
T ′

T

rmax∑
r=rmin

(
N − k′

k − r

)(
k′

r

)
ηk−rηr−k

′

A .
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Equivalently, we can write everything in terms of m and s by recalling the
expressions k = m+ s and N = 2s. The result is,

〈s,m′|D(R)|s,m〉 = N
√
T ′

rmax∑
r=rmin

(
s−m′

s+m− r

)(
s+m′

r

)
ηs+m−rηr−s−m

′

A ,

(B.0.9)

where, T ′ =
( 2s
s+m′

)
, rmin = max{0,m+m′}, rmax = min{s+m, s+m′} and

N is the following factor independent of m′,

N = us+m(u∗)s−m
(

2s
s+m

)− 1
2

.

The previous expression determines D(R). As benchmark, we mention that
this expression can be used to find analytical expressions for a general rotation
for up to spin 100 in a couple of minutes. In contrast, using Mathematica’s
built-in exponential matrix, one has to struggle to find rotations for spin 10

As an important application of the previous formula, we can calculate the
eigenstates of S ·ω̂ with projection m, |ω̂,m〉. Denote by θ and φ the spherical
coordinates that characterize ω̂. Then, |ω̂,m〉 can be computed by rotating
the state |s,m〉 by an angle α = θ around the axis n̂ = (− sinφ, cosφ, 0). By
considering this observation and comparing with (B.0.5) we obtain,

u = u∗ = cos θ2 , v = sin θ
2e
iφ, η = tan θ

2e
iφ = ζ ,

where ζ denotes the complex number associated to ω̂ via the stereographic
projection. Also note the following,

uu∗ = u2 = 1
1 + ζζ∗

.

By substituting this expressions in (B.0.9) we obtain finally,

〈s,m′|ω̂,m〉 = N
√
T ′

rmax∑
r=rmin

(
s−m′

s+m− r

)(
s+m′

r

)
ζs+m−rζr−s−m

′

A ,

(B.0.10)

where

N = 1
(1 + ζζ∗)2

(
2s

s+m

)− 1
2

.



Appendix C

Calculations of chapter 2

C.1 Curvature of a Lie group with a right invari-
ant metric

Suppose we have a Lie group endowed with a metric k that is right invariant
In this appendix, we compute the curvature (the Ricci scalar) in general for
this type of metric. Einstein notation for sum over repeated indices is used
throughout this chapter.

Since multiplication by the right is an isometry by hypothesis, the curva-
ture is constant for all the elements of the group, so it is enough to make the
calculation at the identity. Let eα denote an orthonormal basis for the Lie
algebra. Denote by Cαβγ the structure constants w.r.t.
to this basis, that is, we have the following equalities,

[eα, eβ] = Cγαβeγ . (C.1.1)

Denote by Eα the right invariant vector field associated with eα. Because k
is right invariant, it is clear that the following holds for all the elements of
the group,

k(Eα, Eβ) = ±δαβ . (C.1.2)

Denote by ϕα the dual basis of eα. Also, denote by ϕ the canonical Lie-algebra
valued form, defined in the following way,

ϕ(X) = Rg−1∗X . (C.1.3)

where Rg denotes the action of g in the group by right multiplication (we
opted for this notation in this appendix instead of /g used in the rest of the
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thesis so that the resulting expressions become simpler) and X is any vector
tangent at g. With this definitions, it is clear the following equality holds,

ϕ = eαϕ
α . (C.1.4)

Using the Maurer-Cartan equation [23, Remark 2.2.17] we can write the
following,

dϕ+ 1
2[ϕ,ϕ] = 0 . (C.1.5)

By substituting the expression for ϕ (C.1.4) in the previous equality we
obtain the following,

dϕα + 1
2C

α
βγϕ

β ∧ ϕγ = 0 . (C.1.6)

From here, we can calculate the Riemann tensor. Given some orthonormal
fields Eα and its dual forms ϕα, it is a well known theorem that if we find a
matrix of 1-forms θαγ such that the following equations hold,

dϕα = −θαγ ∧ ϕγ , (C.1.7)
θαγ + θγα = 0 .

then we can calculate the Riemann tensor according to the following equa-
tion [23, theorem 6.2.6 and lemma 9.3.9],

1
2R

α
βδµϕ

δ ∧ ϕµ = dθ
α
β + θ

α
γ ∧ θ

γ
β . (C.1.8)

In our particular case, by examining equation (C.1.6), it is clear that the
following expression satisfies the requirements mentioned in (C.1.7),

θ(k)αγ = 1
2(Cαβγ − Cγβα − Cβγα)ϕβ ≡ Tαβγϕβ . (C.1.9)

Indeed, if we lower the index α in the previous equation, the resulting term,
θ(k)αγ , is antisymmetric in γ and α. Moreover, since the sum of the last two
terms of Tαβγ is symmetric in β and γ, when we contract it with ϕβ ∧ ϕγ ,
the result is zero; therefore, the first equality in (C.1.7) holds.

From here, the components of the Riemann tensor can be calculated using
the equality (C.1.8). By a direct computation, we obtain the following,

dθ(k)αβ = Tαγβdϕ
γ = −TαγβT γδµϕδ ∧ ϕµ ,

θ(k)αγ ∧ θ(k)γβ = TαδγT
γ
µβϕ

δ ∧ ϕµ ,
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so that by evaluating (C.1.8) at the fields Eδ and Eµ, we conclude the
following expression,

R(k)αβδµ = −Tαγβ(T γδµ − T γµδ) + TαδγT
γ
µβ − TαµγT γδβ . (C.1.10)

Once we have the Riemann tensor, we can calculate the scalar curvature,

R(k) = R(k)αβαβ = −Tαγβ(T γαβ − T γβα) + TααγT
γ
β
β − TαβγT γαβ

= T γβαT
α
γ
β − T γαβTαγβ + TααγT

γ
β
β − TαβγT γαβ

Note that the last term is the negative of the first one, so that they cancel
each other out and we obtain the following,

R(k) = TααγT
γ
β
β − T γαβTαγβ (C.1.11)

In the following paragraphs, we calculate each term of the previous equation.
Using the definition (C.1.9), we have the following equality,

Tααγ = 1
2(Cααγ − Cαγα − Cγαα) = 1

2(Cααγ − Cαγα) , (C.1.12)

where the last term was canceled out because the structure constants are
asymmetric in the last two indices. In the same way we have,

T γβ
β = 1

2(Cγβ
β − Cββγ − Cββγ) = −Cββγ , (C.1.13)

where the first term was canceled by the asymmetry of the structure constants
and we noted that the second term is equal to the third one. By multiplying
the last two equalities, we obtain the following result,

TααγT
γ
β
β = 1

2Cαγ
αCβ

βγ − 1
2C

α
αγCβ

βγ . (C.1.14)

Now, we calculate the remaining term of (C.1.11). In this case we have,

T γαβT
α
γ
β = TγαβT

αγβ = 1
2Tγαβ(Cαγβ − Cγβα − Cβγα) = 1

2TγαβC
αγβ ,

(C.1.15)
where we use the fact that Tγαβ is antisymmetric in β and γ while the sum
of the last two terms is symmetric.

Going on with the calculation, we obtain the following,

1
2TγαβC

αγβ = 1
4(Cγαβ − Cαβγ − Cβαγ)Cαγβ
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= 1
4CαβγC

αβγ − 1
4CγαβC

αβγ + 1
4CβαγC

αβγ

= 1
4CαβγC

αβγ − 1
4CγαβC

αβγ − 1
4CβαγC

αγβ

= 1
4CαβγC

αβγ − 1
2CγαβC

αβγ , (C.1.16)

where, again, we used the fact that the coefficients C are antisymmetric in
the last two indices to conclude the last equality.

Finally, by using the previous equation and (C.1.14) in (C.1.11), we obtain
the following result for the scalar curvature,

R(k) = 1
2Cαγ

αCβ
βγ − 1

2C
α
αγCβ

βγ − 1
4CαβγC

αβγ + 1
2CγαβC

αβγ

= Cαγ
αCβ

βγ − 1
4CαβγC

αβγ + 1
2CγαβC

αβγ . (C.1.17)

In the next section, we compute this scalar for the rotation group SO(3).

C.1.1 The case of SO(3)
Consider the Lie algebra of SO(3), and denote by Si the standard generators
of rotations. Suppose that, for a certain right orthonormal frame (of R3) m̂,
n̂ and p̂, the metric k has the following expression w.r.t. the basis {S · m̂,
S · n̂, S · p̂} (in the next section we check that this is indeed the case for the
metric k we are interested in),

k = 2

∆S2
1 0 0

0 ∆S2
2 0

0 0 ∆S2
3

 (C.1.18)

Define e1 according to the following equation, e1 = S · m̂/(
√

2∆S1). Also,
define e2 and e3 in a similar fashion. Clearly, by construction, the matrix
representation of k respect to the basis {e1, e2, e3} is the identity matrix.
This implies that raising and lowering indices in this case is trivial.

Using the well known commutation relationships for S · m̂, S · n̂ and S · p̂,
we obtain the following (no sum over α and β implied),

[eα, eβ] = i
∑
γ

(
∆Sγ√

2∆Sα∆Sβ

)
εγαβeγ , (C.1.19)

where εγαβ denotes the components of the Levi-Civita tensor. From here we
can obtain the structure constants (again, there is no sum implied),

Cγαβ =
(

∆Sγ√
2∆Sα∆Sβ

)
εγαβ , (C.1.20)
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By using the previous equation and (C.1.17), we can calculate the curvature
in this case. Note that, because of the asymmetric properties of the Levi-
Civita tensor, the first two terms of (C.1.17) are zero. Now, we calculate the
remaining terms. We have,

CαβγC
αβγ = C123C

123 + C132C
132 + C231C

231 + C213C
213

+ C321C
321 + C312C

312

= 2C123C
123 + 2C231C

231 + 2C321C
321

= ∆S2
1

∆S2
2∆S2

3
+ ∆S2

2
∆S2

1∆S2
3

+ ∆S2
3

∆S2
2∆S2

1
,

while, for the last term, we have the following,

CγαβC
αβγ = C123C

231 + C132C
321 + C213C

132 + C231C
312 + C312C

123 + C321C
213

= 1
∆S2

3
+ 1

∆S2
2

+ 1
∆S2

1
.

Putting everything together in (C.1.17) we obtain,

R(k) = 1
2∆S2

3
+ 1

2∆S2
2

+ 1
2∆S2

1
− ∆S2

1
4∆S2

2∆S2
3
− ∆S2

2
4∆S2

1∆S2
3
− ∆S2

3
4∆S2

2∆S2
1

(C.1.21)
After some simplification, the result is,

R(k) = 2(∆S2
1∆S2

2 + ∆S2
1∆S2

3 + ∆S2
2∆S2

3)− (∆S4
1 + ∆S4

2 + ∆S4
3)

4∆S2
1∆S2

2∆S2
3

.

(C.1.22)
But, by looking at the expression for the matrix k (C.1.18) (the matrix
written w.r.t. the basis {S · m̂, S · n̂, S · p̂}), we can note the following,

Tr(k) = 2(∆S2
1 + ∆S2

2 + ∆S2
3) ,

Tr(k2) = 4(∆S4
1 + ∆S4

2 + ∆S4
3) ,

(Tr(k))2 − Tr(k2) = 8(∆S2
1∆S2

2 + ∆S2
1∆S2

3 + ∆S2
2∆S2

3)
Det(k) = 8(∆S2

1∆S2
2∆S2

3) ,

So that the expression for R in terms of the matrix k is the following,

R(k) = (1/4){(Tr(k))2 − Tr(k2)} − (1/4)Tr(k2)
(1/2)Det(k) = (Tr(k))2 − 2Tr(k2)

2Det(k)
(C.1.23)

Note that the previous equation is left invariant if k is replaced for the matrix
U †kU (being U an unitary transformation). Therefore, this equation allow
us compute the curvature without the need to diagonalize the metric k first.
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C.2 P(Hs) as a fiber bundle

Remarks on notation

Here, we recall some of the notation introduced in the previous chapters of
the thesis that is relevant for our calculation. We also introduce some new
one.

Denote by N = 2s the real dimension of P(Hs). To carry out the calcu-
lations, we use the representation ofP(Hs) in terms of density matrices, as
prescribed in (1.1.6). To simplify the final expressions, instead of defining
the Fubini-Study metric h as in (1.1.11), we drop the factor 1/2 and define
it simply as,

h(v1, v2) = Tr (v1v2) . (C.2.1)

Of course, the results presented in section 2.1 were properly rescaled so they
are valid for the original metric h (1.1.11).

As mentioned in 2.1, P(Hs) can be decomposed as a fiber bundle where
the base space is S and the fiber is generically isomorphic to SO(3). We
denote by π the projection operator for this bundle. Given a element r in
SO(3) the right action of r in P(Hs) is defined as in (2.1.1). However, instead
of denoting the action as ρ / r, we opt for the more compact notation Rrρ,
that is,

Rrρ = D(r)†ρD(r) , (C.2.2)

Given an element A in so(3), we define the fundamental vector field A]

as in (2.1.2). Another important definition is the one of the connection ω
(2.1.8); we say that a vector v tangent at ρ is horizontal if and only if it
is perpendicular (w.r.t. the Fubini-Study metric) to all the vertical vectors
(2.1.2). We denote by Ω the curvature form corresponding to ω.

We can readily check that this characterization of horizontal vectors
indeed defines a connection. The required condition is that the right action
of the group maps horizontal vectors into horizontal vectors. This is indeed
the case, as the right action maps vertical vectors into vertical vectors (this
property is valid for any fiber bundle) and preserves the Fubini-Study metric.
To check this, consider a point ρ representing an element of projective space
and two vectors v and w tangent at ρ. For any r ∈ SO(3), compute the
product of Rr∗v with Rr∗w,

h(Rr∗v,Rr∗w)=Tr (Rr∗vRr∗w)=Tr (D(r)†vwD(r))=Tr (vw)=h(v, w),
(C.2.3)

that is the product between v and w. This proves the claim
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The horizontal metric g for S is defined as in (2.1.11). In a similar way,
given a point ρ we can define a metric in so(3) as in (2.1.9). However, because
of the rescaling we made of the Fubini-Study metric, the expression for the
matrix k(ρ) is,

k(ρ)(Sα, Sβ) = k
(ρ)
αβ = 2<〈SαSβ〉 − 2〈Sα〉〈Sβ〉 . (C.2.4)

in terms of k(ρ) and g, Fubini-Study metric can be written as in (2.1.12).

A particular section of P(Hs)
In the following paragraphs, we briefly mention a particular section of P(Hs)
that we use throughout all the calculation. As it turns out, this section is
well define except for a set of measure zero.

Consider an operator ρ representing a point in P(Hs). At ρ, the 3 × 3
matrix for the vertical metric k(ρ) (C.2.4) is real and symmetric. Then, as
guaranteed by a standard result in linear algebra, k(ρ) is diagonalizable, and
it can be diagonalized by a rotation matrix in SO(3). Call r to said matrix.
Then, we have the following,

rTk(ρ)r = Diag(λ1, λ2, λ3)⇒ rαµk
(ρ)
αβ r

β
ν = δµνλµ . (C.2.5)

where λi denotes the eigenvalues of k(ρ). By rewriting the l.h.s. of the equality
after the implication we obtain,

rαµk
(ρ)
αβ r

β
ν = rαµk

(ρ)(Sα, Sβ)rβν = k(ρ)(rαµSα, rβνSβ)

= k(ρ)(S · rµ, S · rν) (C.2.6)

where rµ denotes µ-th column of r written as a 3 dimensional vector and
S · rµ denotes the angular momentum operator associated with the vector
rµ. But, by using the algebra of rotations, one can check that the following
equality holds„

S · rσ = D(r)SσD(r)† .

Substituting this equation in (C.2.6) we obtain,

rαµk
(ρ)
αβ r

β
ν = k(ρ)(D(r)SµD(r)†, D(r)SνD(r)†)

= h({D(r)SµD(r)†}], {D(r)SνD(r)†}])
= h(Rr∗{D(r)SµD(r)†}], Rr∗{D(r)SνD(r)†}])
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= h(S]µ, S]ν) = k(Rrρ)(Sµ, Sν) = k(Rrρ)
µν .

where we used the definition of the metric k(ρ) to obtain the second line
and the fact that the metric h is invariant under the right action to obtain
third one. Direct substitution of this result in equation (C.2.5) produces the
following,

k(Rrρ)
µν = δµνλµ . (C.2.7)

Mathematically speaking, this means that at the point Rrρ, the metric k is
diagonal w.r.t. the basis {Sx, Sy, Sz}. In turn, this implies that, given any
ρ, we can always find a point in the same fiber such that in said point the
metric k is diagonal w.r.t. the basis {Sx, Sy, Sz}. By choosing this point
continuously for different shapes, we can build a section where the metric is
diagonal. This fact also justify that the matrix k can be written as claimed
in (C.1.18).

C.2.1 Relationship between R(h), R(k) Tr (Ω2) and R(g): a first
equation

In this section, we calculate the curvature R(h) of the projective Hilbert
space at a point ρ in terms of the curvature of g, of k(ρ) and of the curvature
of the connection Tr (Ω2). To simplify the notation, sometimes we write k
instead of k(ρ).

First, we make some definitions. Consider F = N − 3 orthonormal
fields in S , E1, · · · , EF . Denote by ϕ1, · · · , ϕF their dual one forms in S .
Furthermore, assume w.l.o.g. [23, theorem 9.3.7] that the vector fields are
such that, at the point S = π(ρ), the following expressions hold,

dϕi|s = 0 , i = 1, · · · , F . (C.2.8)

Let E1, · · · , EF be the horizontal lifts of the vector fields E1, · · · , EF . We
denote the elements Sx, Sy and Sz of so(3) generically as Sα. In general, we
use Greek letters for the vertical indices. Denote by σ the section defined in
the previous section. Furthermore, suppose that the point ρ we are considering
is in the section, σ(S) = ρ.

Over the points of the section, define the vector fields Eα as the fun-
damental vertical field associated to lα = Sα/(

√
2∆Sα) (no sum implied),

Eα = l]α. In this way, by definition of σ, the vector fields Eα constitute an
orthonormal set. Extend these vector fields to the rest of the fiber using the
right action. Denote by Cαβγ the structure constants of so(3) w.r.t. the basis
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lα (see equation (C.1.20)). To simplify the notation, we make the following
convention for the indices; indices such as i, j, k, l,m, n denote horizontal
quantities, indices like α, β, γ, δ, µ, ν, as already mentioned, denote vertical
indices and indices such as a, b, c, d, e, denote both vertical and horizontal
indices. Note that by construction, the vector fields Ea are all right invariant.

We also denote by ϕa the 1-forms in projective Hilbert space dual to
the orthonormal fields Ea. If we define hab = h(Ea, Eb), using the equation
(2.1.12) and the previous definitions, we can easily check that for any point
ρ′ in projective Hilbert space, we have the following,

hij = g(Ei, Ej) ≡ gij ,
hαβ = k(ρ′)(lα, lβ) ≡ δαβ ,
hiβ = hβ i = 0 .

As we can note, the metric is block diagonal when considering Latin indices
versus Greek ones. Because of this, we can lower and raise Greek indices with
the metric k and the Latin indices with the metric g.

Suppose we have a point ρ′ = Rgσ(S ′), with S ′ a point in shape space in
the domain of σ. In said point, we define the following so(3) valued 1-form,

ω̃(ρ′) = R∗g−1 ω(σ(S ′)) , (C.2.9)

Since ω̃ is a 1-form valued in so(3), we can write it as ω̃ = ω̃αlα, where ω̃α is
a real valued 1-form. Note that, at the section, the ω̃α = ϕα holds. Indeed, it
is easy to check that both forms are zero when evaluated at horizontal vectors
and, because in the section the equality ω(Eα) = lα holds by construction,
ω̃αEβ = ϕαEβ = δαβ also holds. In the same way, since Ω is a 2-form valued
in so(3), we can write it as Ω = lα

2 Ωα
ijϕ

i ∧ϕj . In the previous sum there are
no terms of the form ϕβ because by definition, Ω is zero if any of the vectors
it is valuated on is vertical.

Next, we proceed to find the relation we seek. The technique is to use
(C.1.8) with the vector fields Ea, that are orthonormal by construction. First,
we calculate the term dϕγ , using the well known formula,

dϕγ(Ea, Eb) = Ea(ϕγ(Eb))− Ea(ϕγ(Eb))− ϕγ([Ea, Eb])
= −ϕγ([Ea, Eb]) ,

where Ea(f) denotes the action of the tangent vector Ea on the function f .
Since the fields are all right invariant (and as a consequence their dual forms
are also right invariant) we can easily check that the previous quantity is
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constant along the same fiber. Indeed, if we calculate it in the point Rgσ(s),
using the following equalities,

Ea|Rgσ(s) = Rg∗Ea|σ(s) ,

ϕa|Rgσ(s) = R∗g−1ϕa|σ(s) ,

we can conclude that,

dϕγ(Ea, Eb)|Rgσ(s) = −R∗g−1ϕγ([Rg∗Ea, Rg∗Eb]) = −R∗g−1ϕγ(Rg∗[Ea, Eb])
= −R∗g−1R∗gϕ

γ([Ea, Eb]) = −ϕγ([Ea, Eb]) , (C.2.10)

where the field and fields are evaluated at the section. Because of this, it is
enough to calculate the commutators at the points in the section.

Consider the following three possible cases,

• Ea = Eα and Eb = Eβ. Then we have,

dϕγ(Eα, Eβ) = −ϕγ([Eα, Eβ]) . (C.2.11)

To calculate the commutators, we do the following trick. Since Ω is
zero when evaluated at vertical fields, we have the following,

0 = Ω(Eα, Eβ) = dω(Eα, Eβ) + [ω(Eα), ω(Eβ)]
= Eαω(Eβ)− Eβω(Eα)− ω(Eα, Eβ) + [lα, lβ] , (C.2.12)

but (all the derivatives are evaluated at t = 0. Also recall the following
expression for a fundamental field, l]α = d/dtRe−ilαt),

Eαω(Eβ) = d
dtω(Eβ|R

e−ilαt
) = d

dtω(Re−ilαt∗Eβ) = d
dte

ilαtω(Eβ)e−ilαt

= d
dte

ilαtlβe
−ilαt = −[lα, lβ] , (C.2.13)

where Ea|ρ is a shorthand notation for Ea evaluated at ρ. Obviously,
in the same way, we have an analogous expression for Eβω(Eα). By
substituting these expressions in (C.2.12) we obtain (recall that, in the
point of the section, ω = ϕγlγ),

0 = [lβ, lα]− ω([Eα, Eβ])⇒ ω([Eα, Eβ]) = [lβ, lα]
⇒ ϕγ([Eα, Eβ])lγ = −Cγαβlγ .
⇒ ϕγ([Eα, Eβ]) = −Cγαβ .

By considering these expression in (C.2.11), we obtain,

dϕγ(Eα, Eβ) = Cγαβ . (C.2.14)
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• Ea = Ei and Eb = Ej . Like in the previous case, we calculate the
necessary commutator (C.2.10) using the curvature Ω. Since both fields
are horizontal,

Ω(Ei, Ej) = dω(Ei, Ej) = Eiω(Ej)− Ejω(Ei)− ω([Ei, Ej ])⇒
Ωγ

ijlγ = −ϕγ([Ei, Ej ])lγ ⇒ Ωγ
ij = −ϕγ([Ei, Ej ]) .

A similar analysis like the one done for the previous case leads to the
following expression,

dϕγ(Ei, Ej) = Ωγ
ij .

• Ea = Eα and Eb = Ei. Suppose [Eα, Ei] = −Dβ
α iEβ (as we check at

the end of the section, this commutator needs to be vertical). Note that
the coefficients D are constant along any fiber. In this case we have,

dϕγ(Eα, Ei) = Dγ
α i . (C.2.15)

We define Dβ
iα in an analogous way.

Considering all the previous cases, we can write the following,

dϕγ = 1
2(Cγαβϕα ∧ ϕβ + Ωγ

ijϕ
i ∧ ϕj +Dγ

α iϕ
α ∧ ϕi +Dγ

i αϕ
i ∧ ϕα)

≡ Qγabϕa ∧ ϕb , (C.2.16)

where Q is given by the following equalities,

Qγαβ = 1
2C

γ
αβ , Qγij = 1

2Ωγ
ij ,

Qγαi = 1
2D

γ
αi , Qγiα = 1

2D
γ
iα .

Note that Qn+γ
ab = −Qn+γ

ba.
Next, we calculate dϕi. Note that ϕi = π∗ϕi. Indeed, it is a matter of

routine to check that both forms are zero when evaluated in vertical vectors
and coincide when evaluated in the horizontal field Ej . Because of this, we
have the following equality, dϕi = π∗dϕi. But, by considering the Levi-Civita
connection for the metric g, we have, using (C.1.7)

dϕi = −π∗{θ(g)ij ∧ ϕj} = −{π∗θ(g)ij} ∧ ϕj = Qiabϕ
a ∧ ϕb , (C.2.17)

where,

Qij α = Qiα j = Qiα β = 0 ,
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Qikj = 1
2(π∗θ(g)ikj − π∗θ(g)ijk) , (C.2.18)

where we wrote π∗θ(g)ij as π∗θ(g)ij = π∗θ(g)ijkϕk. Again, we can note that
Q is antisymmetric in the lower indices by construction. Just as we did in
section C.1, we propose the Levi-Civita for the metric h as the following,

θ(h)ab = (−Qacb +Qbc
a +Qcb

a)ϕc , (C.2.19)

as we can easily check that it satisfies the requirements of (C.1.7).
Now, we compute the coefficients the Levi-Civita connection explicitly.

In this case we have,

θ(h)αβ = (−Qαc β +Qβ c
α +Qc β

α)ϕc

= −1
2C

α
γβϕ

γ − 1
2D

α
iβϕ

i + 1
2Cβγ

αϕγ + 1
2Dβi

αϕi + 1
2Cγβ

αϕγ

= Tαγβϕ
γ + 1

2(Dβi
α −Dα

iβ)ϕi

= θ(k)αβ −Dαiβϕi . (C.2.20)

The last line defines D. Note that T and D are constant along the fibers, but
they are not in the horizontal directions. We can make exactly the same for
the rest of the components,

θ(h)αi = (−Qαc i +Qi c
α +Qc i

α)ϕc

= −1
2D

α
γ iϕ

γ − 1
2Ωα

jiϕ
j + 0 + 1

2Dγ i
αϕγ

= 1
2(Dγ i

α −Dα
γ i)ϕγ −

1
2Ωα

jiϕ
j

= Mγ i
αϕγ − 1

2Ωα
jiϕ

j , (C.2.21)

where we defined M in the last line. Of course, this implies the following
relation,

θ(h)iα = −Mγ
i
αϕ

γ + 1
2Ωαj

iϕj . (C.2.22)

And finally, the remaining components,

θ(h)ij = (−Qic j +Qj c
i +Qc j

i)ϕc

= 1
2(− π∗θ(g)ikj + π∗θ(g)ijk + π∗θ(g)jki − π∗θ(g)j ik + π∗θ(g)kji

− π∗θ(g)kij)ϕk + 1
2Ωγj

iϕγ
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= π∗θ(g)ijkϕk + 1
2Ωγj

iϕγ

= π∗θ(g)ij + 1
2Ωγj

iϕγ . (C.2.23)

With all the components of the Levi-Civita tensor in hand, we calculate their
derivatives, so we can compute the Riemann tensor afterwards. Therefore we
have,

dθ(h)αβ = dθ(k)αβ −Dαiβ,jϕj ∧ ϕi

= Tαγβ,iϕ
i ∧ ϕγ + Tαγβdϕ

γ −Dαiβ,jϕj ∧ ϕi

= Tαγβ,iϕ
i ∧ ϕγ − Tαγβθ(h)γa ∧ ϕa −Dαiβ,jϕj ∧ ϕi

= Tαγβ,iϕ
i ∧ ϕγ − Tαγβθ(h)γi ∧ ϕi − Tαγβθ(h)γδ ∧ ϕδ −Dαiβ,jϕj ∧ ϕi

= Tαγβ,iϕ
i ∧ ϕγ − TαγβMµ i

γϕµ ∧ ϕi + 1
2T

α
γβΩγ

jiϕ
j ∧ ϕi

− Tαγβθ(k)γδ ∧ ϕδ + TαγβDγiδϕi ∧ ϕδ −Dαiβ,jϕj ∧ ϕi

= (Tαµβ,i + TαγβMµ i
γ + TαγβDγiµ)ϕi ∧ ϕµ

− Tαγβθ(k)γδ ∧ ϕδ +
(1

2T
α
γβΩγ

ji −Dαiβ,j
)
ϕj ∧ ϕi .

Recall that, as a matter of notation, we denote the derivative of a function
Ea(f) as f,a. In the first equation we took advantage of the fact that at our
point, dϕi = 0. Going on with the other components,

dθ(h)αi = Mγ i
α
,jϕ

j ∧ ϕγ − 1
2Ωα

ji,kϕ
k ∧ ϕj

−Mγ i
αθ(h)γβ ∧ ϕβ −Mγ i

αθ(h)γj ∧ ϕj

= Mγ i
α
,jϕ

j ∧ ϕγ − 1
2Ωα

ji,kϕ
k ∧ ϕj

−Mγ i
αθ(k)γβ ∧ ϕβ +Mγ i

αDγjβϕj ∧ ϕβ

−Mγ i
αMβ j

γϕβ ∧ ϕj + 1
2Mγ i

αΩγ
kjϕ

k ∧ ϕj

= (Mγ i
α
,j +Mβ i

αDβjγ +Mβ i
αMγ j

β)ϕj ∧ ϕγ

+ 1
2(Mγ i

αΩγ
kj − Ωα

ji,k)ϕk ∧ ϕj −Mγ i
αθ(k)γβ ∧ ϕβ .

Note that the following equality holds

Mβi
αDβjγ +Mβi

αMγj
β = Mβi

αDβ
jγ . (C.2.24)
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Because of this, we have,

dθ(h)αi = (Mγ i
α
,j +Mβ i

αDβ
jγ)ϕj ∧ ϕγ

+ 1
2(Mγ i

αΩγ
kj − Ωα

ji,k)ϕk ∧ ϕj −Mγ i
αθ(k)γβ ∧ ϕβ .

With a very similar calculation we obtain,

dθ(h)iα = −(Mγ
i
α,j +Mβ

i
αD

β
jγ)ϕj ∧ ϕγ

− 1
2(Mγ

i
αΩγ

kj − Ωαj
i
,k)ϕk ∧ ϕj +Mγ

i
αθ(k)γβ ∧ ϕβ .

And finally, we derive the remaining component,

dθ(h)ij = π∗dθ(g)ij + 1
2Ωαj

i
,kϕ

k ∧ ϕα − 1
2Ωαj

iθ(h)αa ∧ ϕa

= π∗dθ(g)ij + 1
2Ωαj

i
,kϕ

k ∧ ϕα

− 1
2Ωαj

i
(
Mγ k

αϕγ ∧ ϕk − 1
2Ωα

mkϕ
m ∧ ϕk

)
− 1

2Ωαj
i
(
θ(k)αβ ∧ ϕβ −Dαkβϕk ∧ ϕβ

)
= π∗dθ(g)ij + 1

4Ωαj
iΩα

mkϕ
m ∧ ϕk

+ 1
2
(
Ωαj

i(Dαkβ +Mβ k
α) + Ωβj

i
,k

)
ϕk ∧ ϕβ

− 1
2Ωαj

iθ(k)αβ ∧ ϕβ

= π∗dθ(g)ij + 1
4Ωαj

iΩα
mkϕ

m ∧ ϕk

+ 1
2
(
Ωαj

iDα
kβ + Ωβj

i
,k

)
ϕk ∧ ϕβ − 1

2Ωαj
iθ(k)αβ ∧ ϕβ .

Now, we calculate the terms of the form θ(h)ab ∧ θ(h)bc, which are also
necessary to obtain the Riemann tensor according to equation (C.1.8). First,

θ(h)αb ∧ θ(h)bβ = θ(h)αi ∧ θ(h)iβ + θ(h)αγ ∧ θ(h)γβ

=
(
Mγ i

αϕγ − 1
2Ωα

miϕ
m
)
∧
(
−Mγ

i
βϕ

γ + 1
2Ωβj

iϕj
)

+
(
θ(k)αγ −Dαiγϕi

)
∧
(
θ(k)γβ −Dγjβϕj

)
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= 1
2
(
−Mµ j

αΩβi
j + Ωα

imMµ
m
β

)
ϕi ∧ ϕµ

−Mγi
αMδ

i
βϕ

γ ∧ ϕδ + θ(k)αγ ∧ θ(k)γβ

+
(
−1

4Ωα
jkΩβi

k +DαjγDγiβ
)
ϕj ∧ ϕi

+Dγiβϕi ∧ θ(k)αγ −Dαiγϕi ∧ θ(k)γβ .

Then,

θ(h)αb ∧ θ(h)bi = θ(h)αj ∧ θ(h)j i + θ(h)αγ ∧ θ(h)γi

=
(
Mγ j

αϕγ − 1
2Ωα

mjϕ
m
)
∧
(
π∗θ(g)j i + 1

2Ωγi
jϕγ

)
+
(
θ(k)αγ −Dαjγϕj

)
∧
(
Mβ i

γϕβ − 1
2Ωγ

miϕ
m
)

= Mγ j
αϕγ ∧ π∗θ(g)j i

− 1
2Ωα

kjϕ
k ∧ π∗θ(g)j i + 1

2Mγ j
αΩβi

jϕγ ∧ ϕβ

+Mβ i
γθ(k)αγ ∧ ϕβ −

(
DαjδMγ i

δ + 1
4Ωα

jkΩγi
k
)
ϕj ∧ ϕγ

− 1
2Ωγ

jiθ(k)αγ ∧ ϕj + 1
2D

α
kγΩγ

jiϕ
k ∧ ϕj

= 1
2Mγ j

αΩβi
jϕγ ∧ ϕβ +Mβ i

γθ(k)αγ ∧ ϕβ

−
(
DαjδMγ i

δ + 1
4Ωα

jkΩγi
k
)
ϕj ∧ ϕγ

− 1
2Ωγ

jiθ(k)αγ ∧ ϕj + 1
2D

α
kγΩγ

jiϕ
k ∧ ϕj ,

where in the last equality we took advantage of the fact that θ(g) is zero at
our point of interest.

For the remaining product we have,

θ(h)ib ∧ θ(h)bj = θ(h)ik ∧ θ(h)kj + θ(h)iα ∧ θ(h)αj

=
(
π∗θ(g)ik + 1

2Ωγk
iϕγ

)
∧
(
π∗θ(g)kj + 1

2Ωβj
kϕβ

)
+
(
−Mβ

i
αϕ

β + 1
2Ωαm

iϕm
)
∧
(
Mγ j

αϕγ − 1
2Ωα

kjϕ
k
)
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=
(1

4Ωβj
kΩγk

i +Mγ j
αMβ

i
α

)
ϕγ ∧ ϕβ

+ 1
2
(
Mβ j

αΩαk
i − Ωα

kjMβ
i
α

)
ϕk ∧ ϕβ

− 1
4Ωα

kjΩαm
iϕm ∧ ϕk .

Finally we have all the necessary ingredients to calculate the full Riemann
tensor. For our purposes, we only calculate the components that are relevant
for the scalar curvature. We have then,

R(h)αβγδ = −TαµβTµγδ + TαµβT
µ
δγ + TαγµT

µ
δβ − T

α
δµT

µ
γβ

−Mγ i
αMδ

i
β +Mδ i

αMγ
i
β

= R(k)αβγδ −Mγ i
αMδ

i
β +Mδ i

αMγ
i
β

R(h)ijkl = π∗dθ(g)ij(Ek, El) + 1
2Ωαj

iΩα
kl −

1
4Ωα

ljΩαk
i + 1

4Ωα
kjΩαl

i

= R(g)ijkl + 1
2Ωαj

iΩα
kl −

1
4Ωα

ljΩαk
i + 1

4Ωα
kjΩαl

i

R(h)αiγj = −(Mγ i
α
,j +Mβ i

αDβ
jγ)

+
(
DαjδMγ i

δ + 1
4Ωα

jkΩγi
k
)
− 1

2Ωβ
jiT

α
γβ ,

so that,

R(h)αβαβ = R(k)αβαβ −Mα i
αMβ

i β +Mβ i
αMα

i β

= R(k)−Dα i
αDβ

i β

+ 1
4(Dβ i

α +Dα
i β)(Dβ i

α +Dα
i β)

= R(k)−Dα i
αDβ

i β

+ 1
2(Dβ i

αDβ i
α +Dβ i

αDα
i β)

R(h)ij ij = R(g)ij ij + 1
2Ωαj

iΩα
i
j − 1

4Ωα
j
jΩαi

i + 1
4Ωα

ijΩα
ji

= R(g)− 3
4Ωα

ijΩα
ij (C.2.25)

R(h)αiαi = −(Mα
iα
,i +Mβ i

αDβi
α)

+
(
DαiδMα i

δ + 1
4Ωαi

kΩαi
k
)
− 1

2Ωβi
iT

α
αβ
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= −1
2(Dβi

αDβi
α +Dα

i βD
βi
α)−Mα

iα
,i

+ 1
4Ωα

ijΩα
ij ,

where we used the fact that M is symmetric in the first and third index while
D is antisymmetric. Going on with the calculation we have,

−Mβ i
αDβi

α +DαiδMα i
δ = −1

2(Dβ i
α +Dα

iβ)Dβi
α . (C.2.26)

Finally, we calculate the scalar curvature,

R(h) = R(h)abab = R(h)αβαβ +R(h)αiαi +R(h)iαi+α +R(h)ij ij
= R(h)αβαβ +R(h)ij ij + 2R(h)αiαi

= R(k)−Dα i
αDβ

i β + 1
2(Dβ i

αDβ i
α +Dβ i

αDα
i β)

+R(g)− 3
4Ωα

ijΩα
ij − (Dβi

αDβi
α +Dα

i βD
βi
α)

− 2Mα
iα
,i + 1

2Ωα
ijΩα

ij

= R(k) +R(g)− 1
4Ωα

ijΩα
ij − 1

2(Dβi
αDβi

α +Dα
i βD

βi
α)

− 2Dα
iα
,i −Dα i

αDβ
i β (C.2.27)

Until now, we have not specified the coefficients D. We calculate them in
terms of the connection. Recall that they were defined by the equation
[Eα, Ei] = −Dβ

αiEβ, so that we need to calculate the commutator of such
fields.

First we prove that it is indeed vertical, as was previously claimed. This
is a consequence of the fact that the commutator of a right invariant field
and a fundamental field is zero, as can be proved by noting that the right
invariant field is constant along the integral lines of the fundamental field.
Suppose that V is a vertical field and HR is a right invariant vector field. We
have then that,

[V,HR] = [V αS]α, HR] = −S]αHR(V α) + V α[S]α, HR] = −S]αHR(V α) .
(C.2.28)

For the first equality, we used the fact that the fundamental vectors are a
basis of the vertical space. For the second one, we use the product rule for
commutators. Clearly, this implies that the commutator [Eα, Ei] is vertical,
as previously claimed.



Appendix C. Calculations of chapter 2 144

Now we calculate the commutator, using the trick of the curvature as
usual,

0 = Ω(Eα, Ei) = dω(Eα, Ei) + [ω(Eα), ω(Ei)]
= dω(Eα, Ei) = Eαω(Ei)− Eiω(Eα)− ω([Eα, Ei])
= −Eiω(Eα)− ω([Eα, Ei])⇒
ω([Eα, Ei]) = −Eiω(Eα) . (C.2.29)

Recall that we are working over a point in the section σ. Define the coefficients
Aαi according to the following equality,

σ∗(Ei) = Ei +AαiS
]
α . (C.2.30)

In other words, this means that the vertical component of the vector σ∗(Ei)
is AαiS]α. Note that the coefficients Aαi are defined in terms of the vectors
S] instead of the fields Eα. This simplifies later expressions. By substituting
this expression in (C.2.30), we obtain the following,

ω([Eα, Ei]) = −σ∗(Ei)ω(Eα) +AβiS
]
βω(Eα) . (C.2.31)

Now we consider each term. Recall that, in the section, ω(Eα) = lα. Clearly,
the integral curves of σ∗(Ei) lie completely on the section. Because of this,
we have (no sums implied in the following equations),

−σ∗(Ei)ω(Eα) = −σ∗(Ei)lα = − 1√
2
Sασ∗(Ei)

1
∆Sα

= (∆Sα),i√
2∆S2

α

Sα = (∆Sα),i
∆Sα

lα . (C.2.32)

Since ∆Sα is constant along the fibers (regarding it as one of the eigenvalues
of the matrix k), we can change the action of σ∗(Ei) by the one of Ei.

For the second term of (C.2.31), we have the following,

AβiS
]
βω(Eα) =

√
2∆SβAβil]βω(Eα) =

√
2∆SβAβiEβω(Eα) . (C.2.33)

The last quantity was already calculated in equation (C.2.13), so, by consid-
ering it, we obtain the following expression,

AβiS
]
βω(Eα) = −

√
2∆SβAβi[lβ, lα] = −

√
2∆SβAβiCγβαlγ

=
√

2∆SβAβiCγαβlγ . (C.2.34)
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By substituting everything in (C.2.31) and writing the connection as ω = ϕγlγ
we obtain the following,

ϕγ([Eα, Ei])lγ =
((∆Sα),i

∆Sα
δαγ +

√
2∆SβAβiCγαβ

)
lγ ⇒

ϕγ([Eα, Ei]) =
((∆Sα),i

∆Sα
δαγ +

√
2∆SβAβiCγαβ

)
⇒

−ϕγ(Dβ
αiEβ) =

((∆Sα),i
∆Sα

δαγ +
√

2∆SβAβiCγαβ
)
⇒

Dγ
αi = −

((∆Sα),i
∆Sα

δαγ +
√

2∆SβAβiCγαβ
)
⇒

Dγ
iα = (∆Sα),i

∆Sα
δαγ +

√
2∆SβAβiCγαβ .

Now, we make some heavy calculations involving D. Since the metric is
diagonal in the basis we are working on, we can raise and lower indices
without talking too much care. We have in this case,

Dα
iα =

∑
α

(∆Sα),i
∆Sα

=
∑
α

(ln ∆Sα),i = 1
2
∑
α

(ln ∆S2
α),i

= 1
2
∑
α

(ln 2 + ln ∆S2
α),i = 1

2
∑
α

(ln 2∆S2
α),i = 1

2

(∑
α

ln 2∆S2
α

)
,i

= 1
2

(
ln
∏
α

2∆S2
α

)
,i

= 1
2 (ln Detk),i , (C.2.35)

where k is given by the equation (C.1.18). The missing term is zero because
the term Cααβ as noted in (C.1.20). Using the previous result we obtain,

Dα
iα
,i = 1

2
∑
i

(ln Detk),ii Dαi
αDβ

iβ = 1
4
∑
i

(ln Detk),i2 . (C.2.36)

Even though we calculated Det k in points in the section, we can readily
check that it is constant along points in the same fiber. Indeed, consider a
point ρ and a point Rgρ in the same fiber. We have in this case,

k
(ρ)
αβ = hρ(S]α, S

]
β) = hRgρ(Rg∗S]α, Rg∗S

]
β) = hRgρ((g−1Sαg)], (g−1Sβg)]) ,

where we used the fact that the metric is right invariant to obtain the first
equation and denote as g−1Sαg as the adjoint action of g in the element Sα.
Since we are working in SO(3), said action is given by a rotation matrix,



Appendix C. Calculations of chapter 2 146

that is, g−1Sαg = GµαSµ, with G a rotation matrix. With this definition we
have,

k
(ρ)
αβ = GµαGνβhRgρ(S]µ, S]ν) = GµαGνβk(ρ)

µν = GT αµk(ρ)
µν Gνβ ,

or, written as a matrix,

k(ρ) = GTk(Rgρ)G = k(ρ) = G−1k(Rgρ)G ,

where we used the fact that the matrix G represents a rotation, so that
the following holds, GT = G−1. Clearly this implies that the determinant is
constant along the fibers,

Det k(ρ) = Det k(Rgρ) . (C.2.37)

Now, we have for the last term,

(Dβi
αDβi

α +Dα
i βD

βi
α) = (Dβi

α +Dα
i β)Dβi

α .

But,

(Dβi
α +Dα

i β) = 2(∆Sα),i
∆Sα

δαβ +
√

2∆SγAγi(Cβαγ + Cαβγ) .

Using the fact that the metric is diagonal, and the expression (C.1.20), we
can easily check that,

Cαβγ = −
(

∆Sα
∆Sβ

)2

Cβ
α
γ , (C.2.38)

so that,

(Dβi
α +Dα

i β) = 2(∆Sα),i
∆Sα

δαβ +
√

2∆SγAγiCβαγ

1−
(

∆Sα
∆Sβ

)2
 .

(C.2.39)
Note that,

1− ∆S2
α

∆S2
β

= ∆Sα
∆Sβ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)
, (C.2.40)

∆Sα
∆Sβ

Cβ
α
γ = ∆Sα

∆Sβ

(
∆Sβ√

2∆Sα∆Sγ

)
εβ
α
γ ,= −

(
1√

2∆Sγ

)
εαβγ , (C.2.41)
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so that,

(Dβi
α +Dα

i β) = 2(∆Sα),i
∆Sα

δαβ −Aγiεαβγ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)
, (C.2.42)

We also rewrite the term Dβi
α in a more convenient fashion,

Dβi
α = (∆Sα),i

∆Sα
δαβ +

√
2∆SγAγi

(
∆Sβεβαγ√
2∆Sα∆Sγ

)

= (∆Sα),i
∆Sα

δαβ +Aµiε
β
αµ

(∆Sβ
∆Sα

)
(C.2.43)

Now we have to multiply the terms of (C.2.42) and (C.2.43) and sum over α,
β and i. As we can easily check, there are no cross terms mixing δαβ with
the Levi-Civita tensor ε. The reason is that the first is only non zero when
α = β, while the second one is only non zero when α 6= β. Because of this,
the product under consideration only has two terms. The first one being,

∑
αβi

2(∆Sα)2
,i

∆S2
α

δ2
αβ = 2

∑
αi

(∆Sα),i2
∆S2

α

, (C.2.44)

while the second one is,

−
∑
αβi

{
Aγiε

α
βγ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)
Aµiε

β
αµ

}(∆Sβ
∆Sα

)
,

Notice that, in the previous equation, the term inside the braces is antisym-
metric in α, β since it is the product of three antisymmetric terms. Because of
this, we can consider only the antisymmetric part of the last term to obtain,

−1
2
∑
αβi

Aγiε
α
βγ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)
Aµiε

β
αµ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)
=

− 1
2
∑
αβi

Aγiε
α
βγA

µ
iε
β
αµ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

,

Putting everything together, we obtain,

(Dβi
αDβi

α +Dα
i βD

βi
α) = (Dβi

α +Dα
i β)Dβi

α
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= 2
∑
αi

(∆Sα)2
i

∆S2
α

− 1
2
∑
αβi

Aγiε
α
βγA

µ
iε
β
αµ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

,

(C.2.45)

By substituting (C.2.45) and (C.2.36) in (C.2.27), and using the fact that,
for the projective Hilbert space of a spin s, the curvature is R(h) = 4s(2s+ 1)
(as it is proved in equation (C.2.67) further down) we obtain,

4s(2s+ 1) = R(k) +R(g)− 1
4Ωα

ikΩα
ik

+ 1
4
∑
αβi

Aγiε
α
βγA

µ
iε
β
αµ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

−
∑
αi

(∆Sα),i2
∆S2

α

−
∑
i

(ln Detk),ii −
1
4
∑
i

(ln Detk),i2 .

(C.2.46)

C.2.2 Relationship between R(h), R(k) Tr (Ω2) and R(g): a
second equation

In this section, we rewrite the result (C.2.46) of the previous section so that
the resulting one does not involve the coefficients A of the particular section
σ we chose; that is, we write (C.2.46) in a covariant way.

First, consider the term Ei(kαβ). Using equation (C.2.30) we can rewrite
it as,

Ei(kαβ) = σ∗(Ei)kαβ −AµiS]µkαβ . (C.2.47)

For points over the section, the first term in the r.h.s. is non zero only if
α = β. In the other cases, by construction of σ, kαβ is zero along the points
in the section, so its derivative in directions tangent to the section is of course
zero.

In case that α = β we have, using the expression (C.1.18) (no sum implied
over α),

σ∗(Ei)kαα = 2σ∗(Ei)∆S2
α = 4∆Sασ∗(Ei)∆Sα = 4∆Sα(∆Sα),i , (C.2.48)

where, we used the fact that ∆Sα is constant along the fibers (just like we
did in the previous section) to change the derivative σ∗(Ei) by the one with
respect Ei to conclude the last equality.
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By considering the previous observations we obtain,

σ∗(Ei)kαβ = 4∆Sα(∆Sα),iδαβ . (C.2.49)

Now, we calculate S]µkαβ at our point of interest, ρ0 = σ(S). Note that an
integral curve of the field S]µ is ρ(t) = Rg(t)ρ0, with g(t) = e−iSµt. Along this
curve, the function kαβ has the following values,

kαβ = hρ(t)(S]α, S
]
β) = hRg(t)ρ0(S]α, S

]
β) = hρ0(Rg(t)−1∗S

]
α, Rg(t)−1∗S

]
β)

= hρ0((gSαg−1)], (gSβg−1)]) , (C.2.50)

where we used the fact that the metric is right invariant for the third equality,
and the way the fundamental vectors transform with the pushforward of
the right action in any fiber bundle to conclude the last one. By taking the
derivative w.r.t. t, and by remembering that, at the section σ, k is diagonal
we obtain,

S]µ(kαβ) = hρ(−i[Sµ, Sα]], S]β) + hρ(S]α,−i[Sµ, Sβ]])

= hρ(εγµαS]γ , S
]
β) + hρ(S]α, εγµβS]γ) (C.2.51)

= 2∆S2
βε
β
µα + 2∆S2

αε
α
µβ = 2εβµα(∆S2

β −∆S2
α) (C.2.52)

From this, by considering (C.2.47), (C.2.49) and (C.2.52), we conclude fol-
lowing equation, (no sum over α, β or i implied),

kαβ,i = Eikαβ = 4∆Sα(∆Sα),iδαβ − 2Aµiεβµα(∆S2
β −∆S2

α) . (C.2.53)

Using this equation, we can compute the following term,∑
αβi

kαµkβνkαβ,ikµν,i

=
∑
αβi

(4∆Sα(∆Sα),iδαβ − 2Aµiεβµα(∆S2
β −∆S2

α))

· (4∆Sγ(∆Sγ),iδγδ − 2Aνiεδνγ(∆S2
δ −∆S2

γ))kαγkδβ

=
∑
αβi

(4∆Sα(∆Sα),iδαβ − 2Aµiεβµα(∆S2
β −∆S2

α))

· (4∆Sγ(∆Sγ),iδγδ − 2Aνiεδνγ(∆S2
δ −∆S2

γ)) δαγδγδ
4∆S2

α∆S2
β

=
∑
αβi

1
4∆S2

α∆S2
β

(4∆Sα(∆Sα),iδαβ − 2Aµiεβµα(∆S2
β −∆S2

α))

· (4∆Sα(∆Sα),iδαβ − 2Aνiεβνα(∆S2
β −∆S2

α))
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=
∑
αβi

1
∆S2

α∆S2
β

(2∆Sα(∆Sα),iδαβ −Aµiεβµα(∆S2
β −∆S2

α))

· (2∆Sα(∆Sα),iδαβ −Aνiεβνα(∆S2
β −∆S2

α))

=
∑
αβi

(
2(∆Sα),i

∆Sβ
δαβ −Aµiεβµα

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

))

·
(

2(∆Sα),i
∆Sβ

δαβ −Aνiεβνα

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

))
,

where the sums over µ and ν are left implied. Note that, as it has already
happened in the previous section, the terms proportional to the Kronecker
delta and the ones to the Levi-Civita tensor do not mix; when one of them
is not zero the other one is. Because of this, after making the product, there
are only two non zero terms. The first one is,

∑
αβi

4(∆Sα),i2
∆S2

β

δ2
αβ = 4

∑
αi

(∆Sα),i2
∆S2

α

, (C.2.54)

while the second one is,

∑
αβi

Aµiε
β
µαA

ν
iε
β
να

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

, (C.2.55)

By putting together the last three equations, we obtain,∑
αβi

kαµkβν(kαβ),i(kµν),i

= 4
∑
αi

(∆Sα),i2
∆S2

α

+
∑
αβi

Aµiε
β
µαA

ν
iε
β
να

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

= 4
∑
αi

(∆Sα),i2
∆S2

α

−
∑
αβi

Aµiε
β
αµA

ν
iε
α
βν

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

, (C.2.56)

where the last term was computed in following way,

∑
αβi

Aµiε
β
µαA

ν
iε
β
να

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

=
∑
αβi

Aµiε
β
αµA

γ
iε
β
αγ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2
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= −
∑
αβi

Aµiε
β
αµA

γ
iε
α
βγ

(
∆Sβ
∆Sα

− ∆Sα
∆Sβ

)2

. (C.2.57)

By substituting (C.2.56) in (C.2.46), we conclude,

4s(2s+ 1) = R(k) +R(g)− 1
4Ωα

ikΩα
ik − 1

4
∑
i

kαµkβνkαβ,ikµν,i

−
∑
i

(ln Detk),ii −
1
4
∑
i

(ln Detk),i2 . (C.2.58)

Finally, recall that the basis {Ei} is orthonormal by definition. Therefore, to
compute the gradient or Laplacian of a function f (denoted by ∇S f and
∇2

S f respectively), we can use the well known formulas valid for Euclidean
spaces. Also, we can trivially raise the index i. This implies,

4s(2s+ 1) = R(k) +R(g)− 1
4 Tr (Ω2)− 1

4k
αµkβνkαβ,

ikµν,i

−∇2
S Φ− 1

4 ||∇S Φ||2S , (C.2.59)

where we defined,

Φ ≡ ln Det k , Tr (Ω2) ≡ Ωα
ikΩα

ik . (C.2.60)

Checking the formulas for s = 1

In this subsection, we check the formula (C.2.46) for s = 1. This calculation
also serves as an example to see how to deal with the terms appearing in
said formula.

We make our calculations using the section defined in (2.1.5). In section
2.1.2, we can find the expression for the metric k along with the one of ∆Sα
–note that some rescaling has to be done because of the redefinition of the
Fubini-Study metric done in (C.2.1). As noted in 2.1.2, the vectors v tangent
to the section are horizontal. Also, the metric k, is diagonal when evaluated
at the points of the section. Because of this, the section of (2.1.5) coincides
with the section σ used to obtain (C.2.46). The horizontality of v implies
(see (C.2.30)),

Aαi = 0 . (C.2.61)
Now we need to find the expression for terms of the type f,i. Since in this
case S is one dimensional, the index i can only take the value 1. Although
the vector ∂q is horizontal, it is not of unitary magnitude. Because of this we
have to work with the normalized field Eq ≡ Eq = 1√

gqq
∂q = 3+cos q√

2 sin(q/2)∂q.
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From equation (2.1.20), we can read the coefficients ∆S2
α (no rescaling

needed in this case). From (2.1.21), we can obtain Det k. After rescaling
accordingly, the result is,

Det k = 32 sin2(q/2) sin2(q)
(3 + cos q)4 .

With the help of Mathematica, we find the following expressions,

−
∑
αi

(∆Sα),i2
∆S2

α

= −
3∑

α=x,y,z

(Eq(∆Sα))2

∆S2
α

= −
69 + (2 + cos q + 64 csc4 q

2) cos q
4(1 + cos q) ,

−
∑
i

(ln Detk),ii = −Eq(Eq(ln Detk)) = (3 + cos q)4

4(cos q − 1)2 cos2 q
2
,

−1
4
∑
i

(ln Detk),i2 = −1
4(Eq(ln Detk))2 = (cos 2q − 20 cos q − 13)2

16(cos q − 1) sin2 q
,

Surprisingly enough, the sum of these three terms is 11,

−
∑
αi

(∆Sα),i2
∆S2

α

−
∑
i

(ln Detk),ii −
1
4
∑
i

(ln Detk),i2 = 11 . (C.2.62)

Since S is one dimensional in this case, the equalitiesR(g) = −(1/4)Ωα
ijΩα

ij =
0 hold. By substituting these equalities, (C.2.61), (C.2.62) and s = 1 in
(C.2.46) we obtain,

12 = R(k) + 0 + 0 + 0 + 11 , (C.2.63)

This result implies that R(k) is equal to one, just as was obtained in (2.1.22)
(after properly rescaling). From here we can conclude that (C.2.46) holds ,at
least, for the case of s = 1.

C.2.3 Ricci scalar for P(Hs)

Up to now in this appendix, we have barely used that we are working with
the Fubini-Study metric h. In fact, a close examination reveals that (C.2.46)
and (C.2.59) are valid for any fiber bundle where the acting group is SO(3).
In this section, we use the fact that we are working with P(Hs). The first
step is to compute the Riemann tensor for h. Here we do not make all the
calculations, since that can be found in the literature (c.f. [9, 87]). We just
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present them here so we can reference them later on. we present it here to
later reference some partial results.

To make this calculation, we work with affine coordinates (c.f. equation
(1.1.5)). Denote them by z1, . . . , z2s. Suppose zj can be written in terms
of its real and imaginary parts as zj = xj + iyj . In these terms, define the
following complex tangent vectors,

∂zj = 1
2(∂xj − i∂yj ) , ∂z̄ = 1

2(∂xj + i∂yj ) . (C.2.64)

We can calculate the metric h in terms of ∂j and ∂ı. The calculation is
straightforward, but a little lengthy. Here we only present the final result,

hik̄ ≡ h(∂zi , ∂z̄k) = N
2δik − z̄izk

N 4 , hı̄k ≡ h(∂z̄i , ∂zk) = N
2δik − ziz̄k

N 4 ,

hik ≡ h(∂zi , ∂zk) = 0 , hı̄k̄ ≡ h(∂z̄i , ∂z̄k) = 0 , (C.2.65)

where N denotes the positive factor defined by the following equation,

N 2 = 1 +
2s∑
z=1
|zi|2

Note that, at the point where all the coordinates zi are zero, the metric
reduces simply to hik̄ = hı̄k = δik. By inverting the previous equations, the
inverse metric for a generic point can be written as,

hik̄ = N 2(δik + z̄izk) , hı̄k = N 2(δik + ziz̄k) , hik = hı̄k̄ = 0 . (C.2.66)

Since the projective Hilbert space with the Fubini-Study metric is a Kähler
space, the components of the Riemann tensor R can be computed using the
formulas of [9]. The result is the following,

Rabf̄e = −δabhef̄ − δaehbf̄ = −Rabef̄ , Rāb̄f ē = −δabhēf − δaehb̄f = −Rāb̄ēf ,

while the rest of the components are zero. Using this expressions and the one
for the metric (C.2.66), we obtain the following results (that are useful for
the calculation of the curvature R(h)) ,

Rābc̄d = hbeRāec̄d + hbēRāēc̄d = hbēRāēc̄d = hbē(δaehc̄d + δachēd)
= hbāhc̄d + δacδbd ,

Rābād = hbāhād + δaaδbd = δbd + (2s)δbd = (2s+ 1)δbd ,

Rab̄cd̄ = Rb̄ad̄c = hb̄ahd̄c + δacδbd ,
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Rab̄ad̄ = hb̄ahd̄a + δaaδbd = (2s+ 1)δbd ,
Rabcd = hbeRaecd + hbēRaēcd = 0 ·Raecd + hbē · 0 = 0 ,

Rāb̄c̄d̄ = 0 .

From these expressions, we can calculate the Ricci tensor, obtaining the
following expressions,

Rbf = Rabaf +Rābāf = (2s+ 1)δbf , Rb̄f̄ = Rab̄af̄ +Rāb̄āf̄ = (2s+ 1)δbf .

Finally, we can conclude,

R(h) = Raa +Rāā = 2s(2s+ 1) + 2s(2s+ 1) = 4s(2s+ 1) . (C.2.67)

To conclude this section, we write an expression that is useful for some
calculations of the next section. Recall that, at the point where all the
coordinates zi are zero, the metric (C.2.65) is simpler. Therefore, in said
point, we have the following expressions for the Riemann tensor,

Rābc̄d = δbaδcd + δacδbd , (C.2.68)

while the rest of the non zero components can be obtained using the symme-
tries of Riemann tensor.

C.2.4 Relationship between R(h), R(k) Tr (Ω2) and R(g): a
third equation

By considering equation (C.2.25), we can calculate the term Ωα
ijΩα

ij in
terms of the curvature R(g), provided we calculated previously the term
R(h)ij ij . This what we do in this section.

First we check that R(h)ij ij is independent of the basis in tangent space
chosen, as long as the basis consist only on vertical and horizontal vectors.
Suppose we have a new basis {Va} for tangent space, defined in the following
way (using the notation of the previous sections),

Vα = ΛβαEβ , Vi = Gj iEj ,

Wα = (Λ−1)αβϕβ , W i = (G−1)ijϕj ,

where W a is the dual basis of Va. Note that, by construction, Vα is a vertical
vector, while V i is horizontal. From here, it is immediate that R(h)ij ij is
invariant under the mentioned changes of basis; indeed, if we compute it
w.r.t. the basis {Va}, we obtain the following,

RV (h)ij ij = R(h)(W i,W j , Vi, Vj)
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= (G−1)ik(G−1)j lGmiGnjR(h)(ϕk, ϕl, Em, En)
= δkmδ

l
nR(h)(ϕk, ϕl, Ek, El) = R(h)(ϕk, ϕl, Ek, El) = R(h)klkl ,

so R(h)ij ij produces the same result for both basis. Using this fact, one
can also prove that this term is constant along the fibers; this is immediate
from the fact that the right action Rr∗ maps horizontal vectors in horizontal
vectors and vertical vectors in vertical vectors and that it is an isometry.

Now, we proceed to make the actual calculation. Since it does not depend
on the basis (as long as it consists only on horizontal and vertical vectors)
we work in a whole new basis that simplifies the calculation. In the following
paragraphs, we explain how to build said basis. The ideas is to give some
special coordinates to P(Hs) and then take the partial derivatives as basis
vectors.

Consider any normalized state in Hilbert space. Call it |ψ0〉. Now, we
show how to calculate R(h)ij ij in the fiber associated with the point [ψ0] (as
we have already proved that this is a constant quantity along the fibers). To
this end, consider the states |ψα〉 = iSα|ψ0〉 Note that we are considering
the state iSα|ψ0〉 instead of −iSα|ψ0〉 as one may expect. This because we
are working with a right actions of with left one. Because of this, the state
resulting of rotating |ψ0〉 infinitesimally around the axis α is |ψ0〉+iεSα|ψ0〉 =
|ψ0〉+ iε|ψα〉.

Complete the set {|ψ0〉, {|ψα〉}} to a basis of Hilbert space

{|ψa〉} = {|ψ0〉, |ψx〉, |ψy〉, |ψz〉, |ψ1〉, . . . , |ψ2s−3〉} ,

in such way that the equalities 〈ψi|ψ0〉 = 〈ψi|ψα〉 = 0, 〈ψi|ψj〉 = δij , hold
for all 1 ≤ i, j ≤ 2s− 3 (this can be achieved, for instance, using the Gram-
Schmidt procedure).

In terms of the states, we give complex coordinates to projective Hilbert
space za (a = 1, . . . , 2s) by considering the following,

|ψ〉 = |ψ0〉+ za|ψa〉 , {za} → [ψ] (C.2.69)

Note that this expression is analogous for the one for affine coordinates (1.1.5),
the difference being that there the set |ψ〉 was orthonormal while the one
we are considering here is not –the vectors |ψ0〉, {|ψα〉} are not orthogonal
among each other. Because of this, the expressions found for the Riemann
tensor in C.2.3 does not hold. We could make a calculation very similar to
the one made in said section to find the components of the Riemann tensor
w.r.t. the basis {∂za}, but we have found to just transform the expressions
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of C.2.3 to obtain the one in our basis. We explain how to make this in the
following paragraphs.

Consider some states |ηα〉 in the linear space spanned by the vectors
{|ψ0〉, |ψα〉} such that the set {|ψ0〉, {|ηα〉}} is orthonormal (again, this can
be accomplished by using the Gram-Schmidt procedure). This implies that the
set {|ψ0〉, {|ψi〉}, {|ηα〉}} is orthonormal, and now we can use the expressions
of the section C.2.3. Since |ηα〉 can be written in terms of |ψ0〉, {|ψα〉} by
definition, we can define the matrix H according to the following equations,

|ηα〉 = (H−1)0
α|ψ0〉+(H−1)µα|ψµ〉 , |ψα〉 = H0

α|ψ0〉+Hµ
α|ηµ〉 . (C.2.70)

Since the set |ψ0〉, |ηα〉 is orthonormal, the coefficients H are not arbitrary,
they have to satisfy some relations. This relations can be deduced by consid-
ering the equations 〈ψ0|ηα〉 = 0 and 〈ηα|ηβ〉 = δαβ . The first equations imply
that (H−1)0

α = −(H−1)µα〈ψ0|ψµ〉. This in turn implies,

|ηα〉 = (H−1)µα(|ψµ〉 − 〈ψ0|ψµ〉|ψ0〉) . (C.2.71)

By substituting this equation in 〈ηα|ηβ〉 = δαβ we obtain the following,

δαβ = 〈ηα|ηβ〉 = (H−1)µβ 〈ηα|(|ψµ〉 − 〈ψ0|ψµ〉|ψ0〉) = (H−1)µβ 〈ηα|ψµ〉
= (H−1)να(H−1)µβ (〈ψν | − 〈ψν |ψ0〉〈ψ0|)|ψµ〉 = (H−1)να(H−1)µβNνµ ,

where a bar denotes complex conjugation, and we made the following defini-
tion,

Nνµ = 〈ψν |ψµ〉 − 〈ψν |ψ0〉〈ψ0|ψµ〉 . (C.2.72)

Note that, the equality Nµν = N̄νµ holds.
In the same way, we can check the following equality,

〈ψ0|ψα〉 = 〈ψ0|(H0
α|ψ0〉+Hµ

α)|ηµ〉 = H0
α ,

so that,

〈ψβ|ψα〉 = (H̄0
β〈ψ0|+ H̄ν

β〈ην |)(H0
α|ψ0〉+Hµ

α|ηµ〉) = H̄0
βH

0
α + H̄ν

βH
µ
αδνµ

= 〈ψ0|ψα〉〈ψβ|ψ0〉+ H̄ν
βH

µ
αδνµ .

From were we can conclude the following expression,

H̄ν
βH

µ
αδνµ = H̄µ

βH
µ
α = Nβα . (C.2.73)
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Next, we prove an equality that may seem obvious at first glance, but in fact,
it is not completely trivial. The matrix H that maps the basis {|ψ0〉, {|ηα〉}}
into {|ψ0〉, {|ψα〉}} can be written in the following way,

H =


1 0 0 0
H01 H11 H21 H31
H02 H12 H22 H32
H03 H12 H23 H33

 ,

while its inverse matrix H−1 is given by the following expression,

H−1 =


1 0 0 0

(H−1)01 (H−1)11 (H−1)21 (H−1)31
(H−1)02 (H−1)12 (H−1)22 (H−1)32
(H−1)03 (H−1)12 (H−1)23 (H−1)33

 .

Since the product of H and H−1 is the identity matrix, when we multiply
the α-th row of H by the β-th column of H−1 we obtain,

(H−1)βνHν
α = δβα .

In the same fashion we obtain,

Hβ
ν(H−1)να = δβα .

Finally we prove another identity for the coefficients H. Since the set
{|ψ0〉, {|ψα〉}} is orthonormal, when restricted to the linear space spanned
by said set (which includes the states |ψα〉), we have the following (1 denotes
the identity operator of this subspace),

1 = |ψ0〉〈ψ0|+ |ηµ〉〈ηµ| ⇒ 〈ψβ|ψα〉 = 〈ψβ|ψ0〉〈ψ0|ψα〉+ 〈ψβ|ηµ〉〈ηµ|ψα〉 .

By substituting the expression for |ηµ〉, and remembering the definition of
Nαβ (C.2.72), we obtain the following,

Nβα = (H−1)σµ(H−1)νµ〈ψβ|(|ψσ〉 − 〈ψ0|ψσ〉|ψ0〉)(〈ψν | − 〈ψν |ψ0〉〈ψ0|)|ψα〉 .
= (H−1)σµ(H−1)νµNβσNνα .

If we denote the elements of the inverse matrix of N as Nβα the previous
equality can be written as,

NσβNβαN
αν = (H−1)σµ(H−1)νµ ⇒ (H−1)σµ(H−1)νµ = Nσν .
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In the following lines, we put together all the relevant equations in order to
refer them later,

(H−1)σµ(H−1)νµ = Nσν ,

Hβ
ν(H−1)να = δβα ,

(H−1)βνHν
α = δβα , (C.2.74)

H̄µ
βH

µ
α = Nβα ,

(H−1)να(H−1)µβNνµ = δαβ

Now, we compute the Riemann tensor. Given 2s complex numbers ζa, give
affine coordinates to P(Hs) by considering the following basis,

{|ψ0〉, |ηx〉, |ηy〉, |ηz〉, |ψ1〉, . . . , |ψ2s−3〉} .

w.r.t. this basis, the equations of section C.2.3 holds. What remains is to see
how to transform between the coordinates za /C.2.69) and the coordinates
ζa. Given some coordinates za, the corresponding state |ψ〉 is the following,

|ψ0〉+ zi|ψi〉+ zα|ψα〉 = |ψ0〉+ zi|ψi〉+ zαH0
α|ψ0〉+ zαHµ

α|ηµ〉
= (1 + zαH0

α)|ψ0〉+ zi|ψi〉+ zαHµ
α|ηµ〉 .

But, projectively, this state is equivalent to the following one,

|ψ0〉+ zi

1 + zαH0
α
|ψi〉+ zβ

1 + zαH0
α
Hµ

β|ηµ〉 = |ψ0〉+ ζi|ψi〉+ ζµ|ηµ〉 .

From here we obtain the transformation law between coordinates,

ζi = zi

1 + zαH0
α
, ζµ = zβ

1 + zαH0
α
Hµ

β .

By differentiating the previous equalities we obtain the following,

dζi = dzi

1 + zαH0
α
− ziH0

γ

(1 + zαH0
α)2dz

γ

dζµ = Hµ
β

1 + zαH0
α
dzβ − zβH0

γ

(1 + zαH0
α)2H

µ
βdz

γ .

By evaluating at the origin (where all the za are zero) we obtain the following
expressions valid at [ψ0],

dζi = dzi , dζµ = Hµ
βdz

β . (C.2.75)
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This equation, along with (C.2.74), implies the following set of equalities,

∂zi = ∂ζi , ∂zµ = Hβ
µ∂ζβ , dzi = dζi , dzµ = (H−1)µβdζβ . (C.2.76)

∂z̄i = ∂ζ̄i , ∂z̄µ = H̄β
µ∂ζ̄β , dz̄i = dζ̄i , dz̄µ = (H−1)µβdζ̄β .

By using this results with (C.2.68), we can check that, up to symmetries, the
only non zero components of the Riemann tensor are the following,

Rz
iz̄j

zk z̄l = R(dzi, dz̄j , ∂zk , ∂z̄l) = R(dζi, dζ̄j , ∂ζk , ∂ζ̄l) = δijδkl + δilδjk ,

Rz
iz̄α

zj z̄β = R(dzi, dz̄α, ∂zj , ∂z̄β ) = (H−1)αµH̄ν
βR(dζi, dζ̄µ, ∂ζj , ∂ζ̄ν )

= (H−1)αµH̄ν
β(δijδµν + 0) = δijδαβ ,

Rz
iz̄α

zβ z̄j = (H−1)αµHν
βR(dζi, dζ̄µ, ∂ζν , ∂ζ̄j ) = 0 + 0 = 0 (C.2.77)

Rz
αz̄β

zµz̄ν = (H−1)ασ(H−1)βλHγ
µH̄

τ
νR(dζσ, dζ̄λ, ∂ζγ , ∂ζ̄τ )

= (H−1)ασ(H−1)βλHγ
µH̄

τ
ν(δσλδγτ + δσγδλτ )

= (H−1)αλ(H−1)βλHτ
µH̄

τ
ν + (H−1)ασ(H−1)βλHσ

µH̄
λ
ν

= NνµN
αβ + δαµδβν ,

where we used the equations (C.2.74) to obtain the last line.
To perform the calculation of R(h)ij ij , we need a basis made up just of

vertical and horizontal vectors. By inspection of (C.2.69) we can check that
the vectors ∂xα (with za = xa + iya) is a basis for vertical space. Since |ψi〉 is
orthogonal to |ψα〉 by construction, it is easy to check that the vectors ∂xi and
∂yi are orthogonal to ∂xα , so they are horizontal. The vectors ∂yα , however,
are not perpendicular to ∂xβ in general, and therefore are not horizontal. To
have an horizontal basis, consider the vectors uα defined as the horizontal
component of the vector ∂yα ,

∂yα = uα +Bµ
α∂xµ , (C.2.78)

where the coefficients B encodes the result of applying the connection ω to
the state ∂yα , ω(∂yα) = Bµ

α∂xµ .
By computing the product of ∂yα with ∂xβ we obtain the following,

h(∂xβ , ∂yα) = Bµ
αh(∂xβ , ∂xµ) . (C.2.79)

On the other hand, we can calculate their product directly using (C.2.64)
and (C.2.65). Recall that, in the origin, the metric satisfies hik̄ = hı̄k = δik.
Therefore, we obtain in this case,

h(∂xβ , ∂yα) = ih(∂zβ + ∂z̄β , ∂zα − ∂z̄α) = ih(∂z̄β , ∂zα)− ih(∂zβ , ∂z̄α)
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= iH̄ν
βH

λ
αh(∂ζ̄ν , ∂ζλ)− iHν

βH̄
λ
αh(∂ζν , ∂ζ̄λ)

= iH̄ν
βH

λ
αδνλ − iHν

βH̄
λ
αδνλ = iH̄ν

βH
ν
α − iHν

βH̄
ν
α

= i(Nβα −Nαβ) .

In an analogous fashion, we have the following,

h(∂xβ , ∂xα) = h(∂zβ + ∂z̄β , ∂zα + ∂z̄α) = h(∂z̄β , ∂zα) + h(∂zβ , ∂z̄α)
= H̄ν

βH
λ
αh(∂ζ̄ν , ∂ζλ) +Hν

βH̄
λ
αh(∂ζν , ∂ζ̄λ)

= H̄ν
βH

λ
αδνλ +Hν

βH̄
λ
αδνλ = H̄ν

βH
ν
α +Hν

βH̄
ν
α

= Nβα +Nαβ .

Substituting this expression in (C.2.79) produces the following result,

i(Nβα −Nαβ) = Bµ
α(Nβµ +Nµβ) . (C.2.80)

At last, we are ready to make the actual calculation. Note that the basis

{{∂xα}, {∂xi}, {∂yi}, {uα}} , (C.2.81)

consist only on vertical vectors and horizontal vectors, so we can calculate
R(h)ij ij using it. Abusing of notation, denote the dual basis as

{{dXα}, {dXi}, {dY i}, {Uα}} .

Clearly, we have the following equalities,

Uβ(∂xα) = Uβ(∂xi) = Uβ(∂yi) = 0 .

By using equation (C.2.78) we can also conclude that,

Uβ(∂yα) = δβα .

The previous equalities implies that the following expression holds, Uβ =
dyβ. By using essentially the same argument, we can obtain the following
relations, dXi = dxi, dY i = dyi. By evaluating dXβ in the basis vectors
{{∂xα}, {∂yα}, {∂xi}, {∂yi}}, we conclude,

dXβ(∂xα) = δβα , dXβ(∂xi) = dXβ(∂yi) = 0 , dXβ(∂yα) = Bβ
α ,

so that,

dXβ = dxβ +Bβ
αdy

α . (C.2.82)
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Since the set {{∂xi}, {∂yi}, {uα}} contains all the horizontal vectors, we have,

R(h)ij ij =
R(dXi, dXj , ∂xi , ∂xj ) +R(dY i, dY j , ∂yi , ∂yj ) + 2R(dXi, dY j , ∂xi , ∂yj )

+ 2R(Uα, dXi, ua, ∂xi) + 2R(Uα, dY i, ua, ∂yi) +R(Uα, Uβ, ua, uβ) .
(C.2.83)

Now, we calculate term by term. Note that the term in the first line is,

R(dxi, dxj , ∂xi , ∂xj ) +R(dyi, dyj , ∂yi , ∂yj ) + 2R(dxi, dyj , ∂xi , ∂yj ) ,

that is simply the curvature of a projective Hilbert space with complex
dimension 2s−3, –the one corresponding to a spin s−3/2 (the original space
has complex dimension 2s. From this space we are removing 6 real vectors,
uα and ∂xα , this gives as a result a space with complex dimension 2s− 3).
Using the result of eq. (C.2.67) we obtain,

R(dXi, dXs, ∂xi , ∂xs) +R(dY i, dY s, ∂yi , ∂ys) + 2R(dXi, dY s, ∂xi , ∂ys)
= 4(s− 3/2)(2s− 3 + 1) = (4s− 6)(2s− 2) = 4(2s− 3)(s− 1) .

(C.2.84)

For the next term of the (C.2.83), using (C.2.78), we have the following,

2R(Uα, dXi, ua, ∂xi) = 2R(dyα, dxi, ∂yα −Bµ
α∂xµ , ∂xi)

= 2R(dyα, dxi, ∂yα , ∂xi)− 2Bµ
αR(dyα, dxi, ∂xµ , ∂xi) .

(C.2.85)

But, by (C.2.64),

2R(dyα, dxi, ∂yα , ∂xi) = 1
4R(dzα − dz̄α, dzi + dz̄i, ∂zα − ∂z̄α , ∂zi + ∂z̄i) .

By looking at (C.2.77), we note that the only non zero component of the
Riemann tensor are those where in the first two indices there is one with a
bar and one without a bar. Because of this we have,

2R(dyα, dxi, ∂yα , ∂xi) = 1
2(Rzαz̄izαz̄i −Rz

αz̄i
z̄αzi −Rz̄

αzi
zαz̄i +Rz̄

αzi
z̄αzi)

= 1
2(2δααδii) = (3)(2s− 3) = 3(2s− 3) .

Using the same line of reasoning we obtain,

R(dyα, dxi, ∂xµ , ∂xi) = −i4 (Rzαz̄izµz̄i +Rz
αz̄i

z̄µzi −Rz̄
αzi

zµz̄i −Rz̄
αzi

z̄µzi)
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= −i4 (δαµδii − δαµδii) = 0 .

By substituting the previous expressions in (C.2.85) we obtain,

2R(Uα, dXi, ua, ∂xi) = 3(2s− 3) (C.2.86)

In a very similar way we can calculate 2R(Uα, dY i, ua, ∂Y i) of (C.2.83). In
this case we have,

2R(Uα, dY i, ua, ∂yi) = 2R(dyα, dyi, ∂yα −Bµ
α∂xµ , ∂yi)

= 2R(dyα, dyi, ∂yα , ∂yi)− 2Bµ
αR(dyα, dyi, ∂xµ , ∂yi) .

For the first term we have,

2R(dyα, dyi, ∂yα , ∂yi) = 1
2(Rzαz̄izαz̄i −Rz

αz̄i
z̄αzi −Rz̄

αzi
zαz̄i +Rz̄

αzi
z̄αzi))

= 1
2(2δααδii) = 3(2s− 3)

while we have for the remaining one,

R(dyα, dyi, ∂xµ , ∂yi) = −1
4(Rzαz̄izµz̄i −Rz

αz̄i
z̄µzi +Rz̄

αzi
zµz̄i −Rz̄

αzi
z̄µzi)

= −−1
4 (δαµδii − δαµδii) = 0 .

This together with the previous equalities gives the following result,

2R(Uα, dY i, ua, ∂Y i) = 3(2j − 3) . (C.2.87)

Now, we calculate the longest term of (C.2.83). The calculation goes as
follows,

R(Uα, Uβ, ua, uβ)
=R(dyα, dyβ, ∂yα −Bµ

α∂xµ , ∂yβ −Bν
β∂xν )

=R(dyα, dyβ, ∂yα , ∂yβ )−Bν
βR(dyα, dyβ, ∂yα , ∂xν )

−Bµ
αR(dyα, dyβ, ∂xµ , ∂yβ ) +Bµ

αB
ν
βR(dyα, dyβ, ∂xµ , ∂xν )

= R(dyα, dyβ, ∂yα , ∂yβ )− 2Bν
βR(dyα, dyβ, ∂yα , ∂xν )

+Bµ
αB

ν
βR(dyα, dyβ, ∂xµ , ∂xν ) , (C.2.88)

where we used the fact that the third and the fourth terms are the same to
obtain the last line (this can be checked using the symmetries of the Riemann
tensor and renaming the indices).
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As usual, we make the calculation term by term in the following para-
graphs. For the first term we have,

R(dyα, dyβ, ∂yα , ∂yβ )

= 1
4(Rzαz̄β zαz̄β +Rz

αz̄β

z̄αzβ +Rz̄
αzβ

zαz̄β +Rz̄
αzβ

z̄αzβ )

= 1
4(NβαN

αβ −NαβN
αβ −NβαN

βα +NαβN
βα + δααδββ

− δαβδβα − δαβδβα + δααδββ)

= 1
4(NβαN

αβ −NαβN
αβ −NβαN

βα +NαβN
βα) + 1

2(δααδββ − δαβδβα)

= 1
4(2δββ − 2NαβN

αβ) + 1
2(9− δαα) = 3

2 + 3− 1
2NαβN

αβ

= 9
2 −

1
2NαβN

αβ . (C.2.89)

For the second term we have,

R(dyα, dyβ, ∂yα , ∂xν )

= − i4(−Rzαz̄β zαz̄ν +Rz
αz̄β

z̄αzν −Rz̄
αzβ

zαz̄ν +Rz̄
αzβ

z̄αzν )

= − i4(−NναN
αβ −NανN

αβ +NναN
βα +NανN

βα − δααδβν − δανδβα

+ δανδβα + δααδβν)

= − i4(−δνβ −NανN
αβ +NναN

βα + δν
β) = − i4(NναN

βα −NανN
αβ)

= 1
2=(NναN

βα) , (C.2.90)

where we use the fact that the equalities Nαν = N̄να and Nαβ = N̄βα hold.
Note that, by contracting NναN

βα) with Bν
β and adding some zeros we

obtain the following,

Bν
βNναN

βα = Bν
β(Nνα +Nαν)Nβα −Bν

βNανN
βα

= i(Nαβ −Nβα)Nβα −Bν
βδν

β

= i(δαα −NβαN
βα)−Bν

ν = i(3−NβαN
βα)−Bν

ν ,
(C.2.91)

where we used (C.2.80) to conclude the second line. Since the coefficients
B are real, and the term NβαN

βα is also real (as can be easily checked), we
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have the following,

<(Bν
βNναN

βα) = −Bν
ν , =(Bν

βNναN
βα) = 3−NβαN

βα . (C.2.92)

By putting together the previous equalities, we obtain the following expres-
sion,

−2Bν
βR(dyα, dyβ, ∂yα , ∂xν ) = NβαN

βα − 3 (C.2.93)

For the last term of (C.2.88) we have,

R(dyα, dyβ, ∂xµ , ∂xν )

= − 1
4(−Rzαz̄β zµz̄ν −Rz

αz̄β
z̄µzν −Rz̄

αzβ
zµz̄ν −Rz̄

αzβ
z̄µzν )

= 1
4(Rzαz̄β zµz̄ν +Rz

αz̄β
z̄µzν +Rz̄

αzβ
zµz̄ν +Rz̄

αzβ
z̄µzν )

= 1
4(NνµN

αβ −NµνN
αβ −NνµN

βα +NµνN
βα + δαµδβν − δανδβµ

− δανδβµ + δαµδβν)

= 1
4(NνµN

αβ −NµνN
αβ −NνµN

βα +NµνN
βα) + 1

2(δαµδβν − δανδβµ)

= 1
2(<(NνµN

αβ)−<(NµνN
αβ)) + 1

2(δαµδβν − δανδβµ) . (C.2.94)

To continue with the calculation, we have to contract the previous term with
Bµ

αB
ν
β. The result of contracting it with NνµN

αβ is,

Bµ
αB

ν
βNνµN

αβ = Bµ
αB

ν
β(Nνµ −Nµν)Nαβ +Bµ

αB
ν
βNµνN

αβ

= −iBµ
αB

ν
βB

λ
µ(Nνλ +Nλν)Nαβ +Bµ

αB
ν
βNµνN

αβ

= −iBµ
αB

λ
µB

ν
β(Nνλ +Nλν)Nαβ +Bµ

αB
ν
βNµνN

αβ

= Bµ
αB

λ
µ(Nλβ −Nβλ)Nαβ +Bµ

αB
ν
βNµνN

αβ

= Bµ
αB

λ
µ(NαβNλβ − δαλ) +Bµ

αB
ν
βNµνN

αβ

= Bµ
αB

λ
µN

αβNλβ −Bµ
αB

α
µ +Bµ

αB
ν
βNµνN

αβ .

But, the first term of last line of the previous equation, can be simplified in
the following way,

Bµ
αB

λ
µN

αβNλβ = Bµ
αN

αβBλ
µ(Nλβ +Nβλ)−Bµ

αN
αβBλ

µNβλ

= iBµ
αN

αβ(Nβµ −Nµβ)−Bµ
αB

λ
µδ
α
λ

= iBµ
α(δαµ −NαβNµβ)−Bµ

αB
λ
µδ
α
λ
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= iBµ
µ − iBµ

αN
αβNµβ −Bµ

αB
α
µ

= iBµ
µ − i(i(3−NαβN

αβ)−Bµ
µ)−Bµ

αB
α
µ

= 2iBµ
µ + 3−NαβN

αβ −Bµ
αB

α
µ ,

where we used (C.2.91) to get the fifth line. Using this expression in the
previous one we obtain,

Bµ
αB

ν
βNνµN

αβ = 2iBµ
µ + 3−NαβN

αβ − 2Bµ
αB

α
µ +Bµ

αB
ν
βNµνN

αβ .

By remembering that the coefficients B are real, and taking the real part in
the previous equation we obtain,

Bµ
αB

ν
β(<(NνµN

αβ)−<(NµνN
αβ)) = 3

2 −
1
2NαβN

αβ −Bµ
αB

α
µ .

Combining this expression with (C.2.94) we obtain,

Bµ
αB

ν
βR(dyα, dyβ, ∂xµ , ∂xν )

= 3
2 −

1
2NαβN

αβ −Bµ
αB

α
µ + 1

2B
µ
αB

ν
β(δαµδβν − δανδβµ)

= 3
2 −

1
2NαβN

αβ −Bµ
αB

α
µ + 1

2B
µ
µB

ν
ν −

1
2B

µ
αB

α
µ

= 3
2 −

1
2NαβN

αβ + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ . (C.2.95)

Direct substitution of (C.2.89), (C.2.93) and (C.2.95) in (C.2.88), produces
the following result,

R(Uα, Uβ, uα, uβ) =
(9

2 −
1
2NαβN

αβ
)

+
(
NβαN

βα − 3
)

+
(3

2 −
1
2NαβN

αβ + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ

)
= 3 + 1

2B
µ
µB

ν
ν −

3
2B

µ
αB

α
µ . (C.2.96)

By substituting (C.2.84), (C.2.87), (C.2.86) and (C.2.96) in (C.2.83) we
obtain the following result,

R(h)ij ij = 4(2s− 3)(s− 1) + 3(2s− 3) + 3(2s− 3)

+
(

3 + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ

)
= 4(2s− 3)(s− 1) + 12s− 15 + 1

2B
µ
µB

ν
ν −

3
2B

µ
αB

α
µ
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= 4(2s− 3)(s− 1) + 12s− 12− 3 + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ

= 4(2s− 3)(s− 1) + 12(s− 1)− 3 + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ

= (s− 1)(8s− 12 + 12)− 3 + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ

= 8s(s− 1)− 3 + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ . (C.2.97)

Up to now, the calculation has been completely general in the sense that we
have not assumed any specifics about the states {|ψα〉}. The next step, is to
simplify the result using the structure of said states.

By remembering that |ψα〉 = iSα|ψ0〉, we have the following expression
for Nµν (C.2.72)

Nνµ = 〈SνSµ〉 − 〈Sν〉〈Sµ〉 ,

(the expectation values are referred the state |ψ0〉) so that the expression
(C.2.80) involving B turns out to be the following,

−2=〈SβSα〉 = Bµ
α · 2(<〈SβSµ〉 − 〈Sβ〉〈Sµ〉) = Bµ

αkµβ , (C.2.98)

where k denotes the metric in the vertical space (C.2.4). By using the
commutation relationships of so(3), we can simplify the left side,

[Sβ, Sα] = iεγβαSγ ⇒ 〈SβSα〉 − 〈SαSβ〉 = iεγβα〈Sγ〉
⇒ 2i=〈SβSα〉 = iεγβα〈Sγ〉 ⇒ 2=〈SβSα〉 = εγβα〈Sγ〉 .

By substituting the last equality in (C.2.98) we obtain,

εγαβ〈Sγ〉 = Bµ
αkµβ ⇒ Bµ

α = kβµεγαβ〈Sγ〉 . (C.2.99)

In particular, for the term Bµ
µ we have, Bµ

µ = kβµεγµβ〈Sγ〉. Since kβµ is
symmetric in βµ while εγµβ is antisymmetric, we can conclude that Bµ

µ is
zero. Another consequence of (C.2.99) is the following,

Bµ
αB

α
µ = kβµεγαβ〈Sγ〉kναελµν〈Sλ〉 .

If we work in a point in the section σ, where the vertical metric k is diagonal
and can be written as in (C.1.18), the previous equation reduces to,

Bµ
αB

α
µ =

(
δβµ

1
2∆S2

µ

εγαβ〈Sγ〉
)(

δνα
1

2∆S2
ν

ελµν〈Sλ〉
)
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= 1
4∆S2

µ∆S2
ν

εγνµε
λ
µν〈Sλ〉〈Sγ〉

= −
(
〈Sx〉2

2∆S2
y∆S2

z

+ 〈Sy〉2

2∆S2
x∆S2

z

+ 〈Sz〉2

2∆S2
x∆S2

y

)

= −
∆S2

x〈Sx〉2 + ∆S2
y〈Sy〉2 + ∆S2

z 〈Sz〉2

2∆S2
x∆S2

y∆S2
z

= −4
∆S2

x〈Sx〉2 + ∆S2
y〈Sy〉2 + ∆S2

z 〈Sz〉2

Det k = −
2∑α,β kαβ〈Sα〉〈Sβ〉

Det k ,

= −2`2
eΦ , (C.2.100)

where Φ is defined as in (C.2.60), and ` is defined according to the following
equation,

` =
∑
α,β

kαβ〈Sα〉〈Sβ〉 .

After considering the previous expression, equation (C.2.97) becomes,

R(h)ij ij = 8s(s− 1)− 3 + 3`2
eΦ .

Although we obtained this result considering a point in the section, since the
terms involved are constant over the fibers, the result holds for any point of
the fiber. Using this result in (C.2.25), we finally obtain,

8s(s−1)−3− 3
2B

µ
αB

α
µ = 8s(s−1)−3+ 3`2

eΦ = R(g)− 3
4 Tr (Ω2) . (C.2.101)

For the ease of the mind of the reader, we mention that this formula has
been verified numerically for various random points in the case of s = 3/2
and s = 2.

C.2.5 Relationship between R(h), R(k) Tr (Ω2) and R(g): a
fourth equation

In the same way we calculated R(h)ij ij in the previous section, we can also
calculate R(h)αβαβ and substitute it in (C.2.25) to obtain a fourth equation.
For this calculation, we work with the basis {{∂xα}, {∂xi}, {∂yi}, {uα}} in-
troduced in (C.2.81) of the previous section. Just as for R(h)ij ij , it is easy
to check that R(h)αβαβ is base independent and constant along the fibers.
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To compute R(h)αβαβ, we are only contracting vertical indices, that is,
the ones corresponding to the vectors {∂xα}. Because of this we have,

R(h)αβαβ = R(dXα, dXβ, ∂xα , ∂xβ )
= R(dxα +Bα

µdy
µ, dxβ +Bβ

νdy
ν , ∂xα , ∂xβ )

= R(dxα, dxβ, ∂xα , ∂xβ ) +Bα
µR(dyµ, dxβ, ∂xα , ∂xβ )

Bβ
νR(dxα, dyν , ∂xα , ∂xβ ) +Bα

µB
β
νR(dyµ, dyν , ∂xα , ∂xβ )

= R(dxα, dxβ, ∂xα , ∂xβ ) + 2Bα
µR(dyµ, dxβ, ∂xα , ∂xβ )

+Bα
µB

β
νR(dyµ, dyν , ∂xα , ∂xβ ) , (C.2.102)

where we used equation (C.2.82) to get to the second line and the fact that
the second and third terms of the third line are equal (as can be easily
verified) to obtain the last one.

We calculate each term separately,

R(dxα, dxβ, ∂xα , ∂xβ ) = 1
4(Rzαz̄β zαz̄β +Rz

αz̄β

z̄αzβ +Rz̄
αzβ

zαz̄β +Rz̄
αzβ

z̄αzβ )

= 9
2 −

1
2NαβN

αβ , (C.2.103)

where in the last line we used the fact that the term in the second line is
equal to the one in eq. (C.2.89).

For the second term of (C.2.102), we see that after some renaming of the
indices, it can be written as follows,

2Bα
µR(dyµ, dxβ, ∂xα , ∂xβ ) = 2Bν

βR(dyβ, dxα, ∂xν , ∂xα)
= 2Bν

βR(dxα, dyβ, ∂xα , ∂xν ) .

Going on with the calculation,

R(dxα, dyβ, ∂xα , ∂xν )

= − i

4(−Rzαz̄β zαz̄ν −Rz
αz̄β

z̄αzν +Rz̄
αzβ

zαz̄ν +Rz̄
αzβ

z̄αzν )

− i

4(−NναN
αβ +NανN

αβ −NναN
βα +NανN

βα − δααδβν + δανδβα

− δανδβα + δααδβν)

= − i

4(− δνβ +NανN
αβ −NναN

βα + δν
β) = − i4(NανN

αβ −NναN
βα)

= i

4(NναN
βα −NανN

αβ) = − 1
2=(NναN

βα) .
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But, by using (C.2.92) in the previous expressions we obtain,

2Bα
µR(dyµ, dxβ, ∂xα , ∂xβ ) = −2Bν

β ·
1
2=(NναN

βα) = NβαN
βα − 3 .

(C.2.104)

Finally, for the last term of (C.2.102) we have, after some renaming,

Bα
µB

β
νR(dyµ, dyν , ∂xα , ∂xβ ) = Bµ

αB
ν
βR(dyα, dyβ, ∂xµ , ∂xν )

= 3
2 −

1
2NαβN

αβ + 1
2B

µ
µB

ν
ν −

3
2B

µ
αB

α
µ .

= 3
2 −

1
2NαβN

αβ − 3
2B

µ
αB

α
µ , (C.2.105)

where we used (C.2.95) to get the second line and the fact that Bµ
µ is zero

(as was proven in the previous section). By using the equations (C.2.103),
(C.2.104) and (C.2.105) in (C.2.102), we obtain the following result,

R(h)αβαβ = 3− 3
2B

µ
αB

α
µ .

Now, consider the first equation of (C.2.25) and eq. (C.2.27). If we add them
up together, we can conclude the following result,

R(h) +R(h)αβαβ = R(k)−Dαi
αDβ

iβ +R(k) +R(g)− 1
4Ωα

ijΩα
ij

− 2Dα
iα
,i −Dα i

αDβ
i β

= 2R(k) +R(g)− 1
4 Tr (Ω2)− 2Dαi

αDβ
iβ − 2Dα

iα
,i .

In (C.2.67), we obtained the value of R(h), R(h) = 4s(2s+ 1). Substituting
this along with the expression we just obtained for R(h)αβαβ in the previous
equation, produces the following result,

4s(2s+ 1) + 3− 3
2B

µ
αB

α
µ = 2R(k) +R(g)− 1

4 Tr (Ω2)

− 2Dαi
αDβ

iβ − 2Dα
iα
,i . (C.2.106)

This expression can be rewritten in a more convenient fashion. Using equation
(C.2.35), we have the following,

−2Dαi
αDβ

iβ = −1
2
∑
i

(ln Det k),i = −1
2 ||∇S Φ||2S , (C.2.107)
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where Φ is defined as in (C.2.60). By using equation (C.2.36) we also have,

−2Dα
iα
,i = −

∑
i

(ln Det k)ii = −∇2
S Φ . (C.2.108)

Finally, we also have the expression (C.2.100) for the term Bµ
αB

α
µ. After

using all this equalities in (C.2.106), the result is,

4s(2s+ 1) + 3 + 3`2
eΦ = 2R(k) +R(g)− 1

4 Tr (Ω2)− 1
2 ||∇S Φ||2S −∇2

S Φ ,

(C.2.109)

By subtracting this equation from (C.2.101) and solving for Tr (Ω2), we obtain
the following expression, quantities. By subtracting the previous expressions
we obtain the main result of this section,

Tr (Ω2) = 12(2s+ 1)− 4R(k) + ||∇S Φ||2S + 2∇2
S Φ . (C.2.110)

C.3 Projection of geodesics of P(Hs) in S

In this section, we study the projection of geodesics of P(Hs) into S . To
this end, first we give some mathematical preliminaries. Suppose that we
have 2s vectorial fields Xa that are linearly independent. In general, the
coefficients of the Levi-Civita connection for the metric h (the generalization
of the Christoffel symbols for non coordinate basis) w.r.t. this fields can be
written as,

Γ(h)abc = 1
2(Cacb − Cbca − Ccba + hadhdb,c + hadhdc,b − hadhbc,d) , (C.3.1)

where the subindex ,b (like in the previous sections) denotes the derivative
along the field Xb and the coefficients C are defined according to the following
equations,

[Xb, Xc] = CabcXa .

For this calculation, we work with the fields defined in section C.2.1,

Xi = Ei , Xα = S]α .

Now, we calculate the coefficients Γ(h). To this end, we need the commutators
between the fields. We have already calculated some of them in section (C.2.1).
The results are the following,

[S]α, S
]
β] = εγαβS

]
γ , [S]α, Ei] = 0 , [Ei, Ej ] = −2QlijEl−Ωα

ijS
]
α . (C.3.2)
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where Q is defined in equation (C.2.18). In these term, the expressions for
the metric h, are the following,

hij = δij , hαj = 0 , hαβ = kαβ .

Using this results in the expression for the Christoffel symbols (C.3.1),
produces the following results,

Γ(h)ijk = Γ(g)ijk, Γ(h)iαk = 1
2kαβΩβ

ki, Γ(h)ikα = 1
2kαβΩβ

ki,

Γ(h)iαβ = − 1
2kαβ,i, Γ(h)αij = 1

2Ωα
ij ,Γ(h)αiβ = 1

2k
αγkγβ,i = Γ(h)αβi,

Γ(h)αβγ = 1
2(εαγβ + εγβ

α + εβγ
α).

(C.3.3)

Most of the calculations are straightforward, except for the one for the last
Christoffel symbol. We briefly mentioned how to compute it. By the first line
of result (C.2.52), kαβ,γ is given by the following expression,

kαβ,γ = εµγαkµβ + εµγβkµα = εβγα + εαγβ . (C.3.4)

By using this expression in the one for the Christoffel symbols (C.3.1), we
have the following,

Γ(h)αβγ = 1
2(εαγβ − εβγα − εγβα + kαδkδβ,γ + kαδkδγ,β − kαδkβγ,δ)

= 1
2(εαγβ − εβγα − εγβα + kαδ(εδγβ + εβγδ) + kαδ(εδβγ + εγβδ)

− kαδ(εγδβ + εβδγ))

= 1
2(εαγβ − εβγα − εγβα + εαγβ + εβγ

α + εαβγ

+ εγβ
α − εγαβ − εβαγ)

= 1
2(εαγβ − εγαβ − εβαγ) = 1

2(εαγβ + εγβ
α + εβγ

α) ,

as claimed. Finally, we have all the necessary ingredients for the geodesic
equation. Suppose the tangent vector to a geodesic can be written as in
(2.1.24)

ρ̇(t) =
∑

α=x,y,z
vαS]α +

4s−3∑
i=1

viEi . (2.1.24)
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Then, if we consider a non vertical index i, the corresponding geodesic equation
for the component vi reads as follows,

v̇i + Γ(g)ijkvjvk + kαβΩβ
kiv

kvα − 1
2kαβ,iv

αvβ = 0 , (C.3.5)

while the equation for a vertical one vα is,

v̇α + 1
2Ωα

ijv
jvk + kαγkγβ,iv

ivβ + 1
2(εαγβ + εγβ

α + εβγ
α)vγvβ = 0 ⇒

v̇α + kαγkγβ,iv
ivβ + 1

2(εγβα + εβγ
α)vγvβ = 0⇒

v̇α + kαγkγβ,iv
ivβ + εγβ

αvγvβ = 0 . (C.3.6)

Note that the vertical components, the charge, in general is not conserved.
This is unlike the case of [23], where it is. This is because in the case of [23]
they assumed that the vertical metric was bi-invariant, this implies that the
third term of the previous equation is zero (c.f. lemma 9.3.8 of said book). In
fact, in our case, if we assume that k is bi-invariant, we would have that k is
a multiple of the identity, which would implies that εγβα is antisymmetric
in γβ. In our case is not. In [23], the author also assume that the vertical
metric is “constant” (see definition 9.3.4 of the book and compare it with
(2.1.12), where k depends on the point ρ in projective Hilbert space). In his
case, this implies that kαβ,i = 0. If we also impose this two conditions, we
also obtain that the charge is conserved.

C.3.1 Parametrizing with respect to length in shape space

The geodesics in the previous section are parametrized by arclength w.r.t. the
Fubini-Study metric. Because of this, its projection in S is not parametrized
by arclength. In this subsection, we parametrize them by arclength in shape
space.

By considering the projection of (2.1.24) into shape space, one can see
that the projected curve has as tangent vector viEi. Since the vector fields
Ei constitute an orthonormal set, the squared size of the tangent vector at an
arbitrary t is ∑i(vi)2. Because of this, if we call τ to the arclength parameter
in shape space and t the one in the total space (P(Hs)), it is well known that
the following relationship holds,

dt
dτ = 1√∑

i(vi)2
. (C.3.7)
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Let µ be the curve parametrized using τ as a parameter, µ(τ) = ρ(t(τ)),
and denote its tangent vector as uaXa. In general, we use a dot to denote
derivatives w.r.t. t and a prime for derivatives w.r.t. τ . Using the chain rule,
we have the following,

uaXa = dt
dτ ρ̇ = 1√∑

i(vi)2
vaXa ⇒ ua = va√∑

i(vi)2
(C.3.8)

Since the geodesic is parametrized w.r.t. arclength in total space, the following
relationship holds, ∑

i

(vi)2 + kαβv
αvβ = 1 .

By substituting (C.3.8) in the previous equation we obtain,∑
i

(vi)2(1 + kαβu
αuβ) = 1 ⇒

∑
i

(vi)2 = 1
1 + kαβuαuβ

≡ 1
1 +Q2 ,

where we defined Q as Q2 = kαβu
αuβ. By using this expression in (C.3.7)

and (C.3.8) we obtain,

dt
ds =

√
1 +Q2 , va = ua√

1 +Q2 ,
d
dt = 1√

1 +Q2
d
dτ .

If we use this expressions in the geodesic equation for the component va, we
obtain the following,

1√
1 +Q2

d
dτ

(
ua√

1 +Q2

)
+ 1

1 +Q2 Γ(h)abcubuc = 0⇒

1
1 +Q2u

′a − ua

2(1 +Q2)2
dQ2

dτ + 1
1 +Q2 Γ(h)abcubuc = 0⇒

u′a + Γ(h)abcubuc −
ua

2(1 +Q2)
dQ2

dτ = 0 . (C.3.9)

The previous expression imply that, the equations for the movement w.r.t.
the parameter τ , can be obtained from (C.3.5) and (C.3.6) by substituting u
for v and adding the extra term − ua

2(1+Q2)
dQ2

dτ . We can further simply this
expression by calculating the derivative of Q2 w.r.t. τ . Using the product
rule we have

dQ2

dτ = dkαβ
dτ uαuβ + 2kαβ

duα
dτ u

β (C.3.10)
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but, by using the chain rule we have,

dkαβ
dτ = kαβ,iu

i + kαβ,γu
γ .

Note that the term εβγαu
γuα is zero, because εβγα is antisymmetric in αγ

while uγuα is symmetric. This, together with (C.3.4), implies that,

kαβ,γu
γuαuβ = 0⇒ dkαβ

dτ uαuβ = kαβ,iu
iuαuβ .

Using this result in (C.3.10) produces the following expression,

dQ2

dτ = kαβ,iu
iuαuβ + 2kαβ

duα
dτ u

β

= kαβ,iu
iuαuβ − 2kαβ

(
kαγkγµ,iu

iuµ + εγλ
αuγuλ − uα

2(1 +Q2)
dQ2

dτ

)
uβ

= kαβ,iu
iuαuβ − 2kβµ,iuiuµuβ − 2εγλβuγuλuβ + kαβu

αuβ

1 +Q2
dQ2

dτ

= −kαβ,iuiuαuβ + Q2

1 +Q2
dQ2

dτ = −kαβ,iuiuαuβ +
(

1− 1
1 +Q2

) dQ2

dτ ,

where we used the equation (C.3.9) and (C.3.6) to obtain the second line,
and noticed that εγλβuγuλuβ is zero because the symmetric properties of the
indices involved to get the last line. This implies that,

1
1 +Q2

dQ2

dτ = −kαβ,iuiuαuβ . (C.3.11)

Substitution of this result in (C.3.9) produces the following result,

u′a + Γ(h)abcubuc + 1
2kαβ,iu

iuauαuβ = 0 .

Finally, by using the expressions for the Christoffel symbols (C.3.3), we obtain
the following equations; in shape space,

u′i + Γ(g)ijkujuk + Ωαkiu
kuα − 1

2kαβ,iu
αuβ + 1

2kαβ,ju
juiuαuβ = 0 ,

(C.3.12)

and the equation for the charge,

u′α + kαγkγβ,iu
iuβ + εγβ

αuγuβ + 1
2kγβ,iu

iuγuαuβ = 0 . (C.3.13)
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If we contract the previous equation with kαµ, we obtain the following,

kαµu
′α + kαµk

αγkγβ,iu
iuβ + kαµεγβ

αuγuβ + 1
2kαµkγβ,iu

iuγuαuβ = 0⇒

kαµu
′α + kµβ,iu

iuβ + εγβµu
γuβ + 1

2kγβ,iu
iuγuµu

β = 0⇒

kαµu
′α + kµβ,iu

iuβ + εγβµu
γuβ + εµβγu

γuβ + 1
2kγβ,iu

iuγuµu
β = 0⇒

kαµu
′α + kµα,iu

iuα + εγαµu
γuα + εµαγu

γuα + 1
2kγβ,iu

iuγuµu
β = 0⇒

kαµu
′α + kµα,iu

iuα + kµα,γu
γuα + 1

2kγβ,iu
iuγuµu

β = 0⇒
d
dτ (kαµuα) + 1

2kγβ,iu
iuγuµu

β = 0⇒
duµ
dτ + 1

2kγβ,iu
iuγuµu

β = 0⇒

duµ
dτ −

1
2(1 +Q2)

dQ2

dτ uµ = 0⇒

1√
1 +Q2

duµ
dτ −

1
2(1 +Q2)3/2

dQ2

dτ uµ = 0⇒

d
dτ

(
uµ√

1 +Q2

)
= 0

where we used the equation (C.3.4) to obtain the fifth line and (C.3.11) to
obtain the sixth. By using equation (C.3.7), the previous equality implies
that vµ is conserved. Because of this, it is more convenient to write everything
in terms of uµ instead of uµ, since its movement equation is simpler. This
produces the following set of equations, (

uµ√
1 +Q2

)′
= 0 ,

u′i + Γ(g)ijkujuk + Ωα
k
iukuα + 1

2k
αβ

,
iuαuβ −

(Q2)′
2(1 +Q2)u

i = 0 ,

(Q2)′
1 +Q2 = kαβ,ju

juαuβ ,

where we used the following equalities in (C.3.12) to obtain the second line,

kαβk
αµkβν = kµν ⇒ kαβ,

ikαµkβν + kαβk
αµ
,
ikβν + kαβk

αµkβν ,
i = kµν,

i ⇒
kαβ,

ikαµkβν + kνµ,
i + kµν,

i = kµν,
i ⇒ kαβ,

ikαµkβν = −kµν,i ⇒



Appendix C. Calculations of chapter 2 176

kαβ,
ikαµkβνuµuν = −kµν,iuµuν , .

If the curve is parametrized w.r.t. arclength in the total space, from the
previous results we can see the equations are the following,

v̇µ = 0 ,

v̇i + Γ(g)ijkvjvk + Ωα
k
ivkvα + 1

2k
αβ

,
ivαvβ = 0 .

C.4 The Berry curvature and the connection ω

As it is well known, the Berry connection allows us to define geometric phases
for closed curves in P(Hs). By talking closed curves infinitesimally small, we
can define a curvature form, KB. In this section, we study the behavior of KB
when evaluated at horizontal and vertical vectors according to the connection
ω introduced in the previous chapters. First, we give some preliminaries.

The sphere of normalized states in Hs can be regarded as a fiber bundle,
where the acting group is U(1), the fiber is P(Hs) and the projection operators
maps |ψ〉 to [ψ]. Given a normalized state |ψ〉, the space tangent to it can
be represented in the following way,

T|ψ〉 = {|µ〉 ∈ H such that <〈ψ|µ〉 = 0} .

The Berry connection is defined for this fiber bundle. Given a normalized
state |ψ〉 and a vector |µ〉 tangent to it, the Berry connection evaluated at
|φ〉 produces the following element of u(1),

ωB(|µ〉; |ψ〉) = −i〈ψ|µ〉 . (C.4.1)

By integrating the previous connection, we assign geometric phases to closed
curves in P(Hs). If we calculate the exterior derivative of ωB, and project
the result to P(Hs), we can compute the curvature form KB, defined for two
tangent vectors of P(Hs). This is what we do in the following paragraphs

Consider a point |ψ〉 in the unitary sphere and two tangent vectors |µ〉
and |ν〉. Let A and B be Hermitian operators such that −iA|ψ〉 = |µ〉 and
−iB|ψ〉 = |ν〉 (finding such operators is always possible, as unitary operators
acts transitively in the sphere of normalized states), and consider the vectorial
fields tangent to the sphere: V (|φ〉) = −iA|φ〉 and W (|φ〉) = −iB|φ〉. In
these terms, the integral line of V and W through the point |φ〉 can be
parametrized as e−iAt|φ〉 and e−iBt|φ〉 respectively.

We know that we can compute dωB in a coordinate free manner as follows,

dωB(V,W ) = V (ωB(W ))−W (ωB(V ))− ωB([V,W ]) . (C.4.2)
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We calculate each term. By considering (C.4.1), it is easy to check that at an
arbitrary point |φ〉, the following equality holds, ωB(W ) = −i〈φ|(−iB|φ〉) =
−〈B〉. Using this fact, we have (evaluating the derivative at t = 0),

V (ωB(W )) = − d
dt〈φ|e

iAtBe−iAt|φ〉 = −i〈[A,B]〉 .

In the same way, the second term can be written as,

W (ωB(V )) = −i〈[B,A]〉 .

Now, we treat the last term of (C.4.2). Since V and W are the vectorial fields
associated to A and B, it is a well known result that their commutator is
the field associated to [A,B]. Therefore,

[V,W ](|φ〉) = [A,B]|φ〉 ⇒ ωB([V,W ]) = −i〈[A,B]〉 .

By putting the previous results in (C.4.2), we obtain,

dωB(V,W ) = i〈[B,A]〉 = −i〈[A,B]〉 .

By considering our original point |ψ〉 where A|ψ〉 = i|µ〉 and B|ψ〉 = i|ν〉, we
obtain,

dωB(|µ〉, |ν〉) = −i(〈AB〉 − 〈BA〉) = −i(〈µ|ν〉 − 〈ν|µ〉) = −i2i=〈µ|ν〉
= 2=〈µ|ν〉 .

Finally, we project everything to P(Hs) to obtain KB. Consider a point
ρ = |ψ〉〈ψ| and take two tangent vectors v1 = |ψ〉〈µ| + |µ〉〈ψ| and v2 =
|ψ〉〈ν|+ |ν〉〈ψ| as stated in theorem 2. By using the previous results we have,

B(v1, v2) = 2=〈µ|ν〉 = −iTr{ρ[v1, v2]} .

The last equation was obtained by simple inspection. We can check that it
indeed holds in the following way,

−iTr{ρ[v1, v2]} = −i〈[v1, v2]〉

But,

〈v1v2〉 = 〈(|ψ〉〈µ|+ |µ〉〈ψ|)(|ψ〉〈ν|+ |ν〉〈ψ|)〉 = 〈µ|ν〉 ,

where we used the fact that 〈v1|ψ〉 and 〈v2|ψ〉 = 0 are zero. In the same way,
〈v2v1〉 = 〈ν|µ〉. Because of these, we have simply,

−i〈[v1, v2]〉 = −i(〈µ|ν〉 − 〈ν|µ〉) = 2Im〈µ|ν〉 = KB(v1, v2) ,
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as claimed.
The previous result allow us to study the behavior of the curvature KB

when evaluated in horizontal and vertical vectors. By taking |µ〉 = iSα|ψ〉
and |ν〉 = iSβ|ψ〉 we can study the behavior for two vertical vectors,

KB(S]α, S
]
β) = 2=〈ψ|SαSβ|ψ〉 = −i〈[Sα, Sβ]〉 = −iεγαβ〈Sγ〉 .

If we consider |µ〉 = iS]α|ψ〉 and |ν〉 = |ψi〉, where Ei = |ψ〉〈ψi|+ |ψi〉〈ψ| we
have the following expression for one horizontal vector and one vertical,

KB(S]α, Ei) = − 2=i〈ψ|Sα|ψi〉 = 2<〈ψ|Sα|ψi〉 = 〈ψ|Sα|ψi〉+ 〈ψi|Sα|ψ〉
= 〈Sα〉,i .

Finally, if we consider |µ〉 = |ψi〉 and |ν〉 = |ψj〉 we obtain the expression for
two horizontal vectors,

KB(Ei, Ej) = 2=〈ψi|ψj〉 . (C.4.3)

The previous expression can be written in terms of the coefficient for the
connection Ω. Before computing this relation, we give some preliminaries in
the following sections.

C.5 The little group of a point in P(Hs)
As it is well known, the unitary group U(2s + 1) acts on Hs by the left,
and has (real) dimension (2s + 1)2. Given a state |ψ〉, we can define the
little group given by |ψ〉 –the subgroup of U(2s + 1) consistent on all the
operators that fixes |ψ〉. Simple counting argument show that this space has
real dimension (2s)2 = 4s2, and that the corresponding little algebra is given
by all the self adjoint operators H such that H|ψ〉 = 0. In this section, we
find a basis for this little algebra. The result of this section are useful for
later sections.

We can build a basis for this little algebra. To this end, consider an
orthonormal basis that includes |ψ〉 = |ψ1〉, {|ψi〉, i = 1, . . . , 2s+ 1}. Then,
a possible basis for the little algebra is,

ρi = |ψi〉〈ψi| , (2 ≤ i ≤ 2s+ 1) ,
Xik = |ψi〉〈ψk|+ |ψk〉〈ψi| , (2 ≤ i ≤ 2s+ 1, 2 ≤ k < i) ,
Yik = −i(|ψi〉〈ψk| − |ψk〉〈ψi|) , (2 ≤ i ≤ 2s+ 1, 2 ≤ k < i) . (C.5.1)



179 C.5. The little group of a point in P(Hs)

Note that X is symmetric in its indices while Y is antisymmetric. We can
make a similar analysis for P(Hs). Consider a point ρ = |ψ〉〈ψ|. As U(2s+ 1)
also acts in P(Hs) by conjugation (c.f. (1.1.7)), we can define a little group
for ρ

As it is easy to check, a possible basis for the little algebra consists on
the operators of equation (C.5.1) and additionally the operator ρ1 (it is clear
that e−itρ fixes ρ). For completeness, here we list some of the commutator
relationships, (in all cases, 2 ≤ i, k, l ≤ 2s + 1, and different indices have
different values)

[ρi, Xik] = |ψi〉〈ψk| − |ψk〉〈ψi| = iYik ,

[ρi, Yik] = −i|ψi〉〈ψk| − i|ψk〉〈ψi| = −iXik ,

[Xik, Xil] = |ψk〉〈ψl| − |ψl〉〈ψk| = iYkl ,

[Xik, Yil] = −i|ψk〉〈ψl| − i|ψl〉〈ψk| = −iXkl ,

[Xik, Yik] = 2iρi − 2iρk ,
[Yik, Yil] = |ψk〉〈ψl| − |ψl〉〈ψk| = iYkl ,

while the missing relationships are either zero or can be obtained from the
previous commutators using the symmetric properties of Xij and Yij .

Finally, we make some useful observations for later reference. Consider
an arbitrary element A of u(2s + 1). By the right action, we can consider
the tangent vector A] at ρ1 as in (2.1.2). A quick computation reveals the
following expression for the interior product h (C.2.1) between this type of
vectors,

h(A], B]) = 2<〈AB〉 − 2〈A〉〈B〉 . (C.5.2)

Clearly, A is in the little algebra of ρ if and only if A] is zero. Because of this,
we have that (A+B)] = B] for all B in u(2s+ 1) and A in the little algebra.
In particular, the equality (B − 〈B〉ρ)] = B] holds for any B. But clearly,
the expectation value (computed w.r.t. ρ) 〈B − 〈B〉ρ〉 is zero. Since the right
action of u(2s+ 1) is transitive, we can conclude the following observation.
Given any vector v tangent at ρ, there exist an (not unique) element B in
u(2s+ 1) such that

B] = v , 〈B〉 = 0 . (C.5.3)
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C.6 The Berry curvature evaluated at two hori-
zontal fields

In this section, we come back to subject of expressing the Berry curvature
evaluated at two horizontal vectors in terms of Ωα

ij presented in C.4.
Suppose that the horizontal vector fields Ei can be written as Ei(ρ) =

Hi(ρ)], for certain operators Hi(ρ) in U(2s + 1). Because of the results of
the previous section, we can assume w.l.o.g. that 〈H(ρ)〉 is zero for each ρ in
projective Hilbert space. We stress that this operators depend on ρ. In fact,
one can prove that the operators Hi must depend on ρ –it is impossible to find
an operator Hi such that H]

i is horizontal for each ρ. A simple computation
reveals the following

It is possible to compute the commutator [Ei, Ej ] in terms of Hi(ρ) and
Hj(ρ). Because of their dependence on ρ, the result is not simply the field
−i[Hi(ρ), Hj(ρ)]], additional terms appear. For the calculation, we use the
following expression for the commutator of two fields,

[Hi(ρ)], Hj(ρ)]] = lim
t→0

χ−1
t∗ ◦Hj(ρ)] ◦ χt(ρ)−H]

j(ρ)
t

, (C.6.1)

where χt(ρ) denotes the evolution operator associated with the flow of the
field H]

i (ρ).
We can calculate the flow operator χt(ρ) up to first order in t as follows,

χt(ρ) = ρ+ tHi(ρ)] , χ−1
t (ρ) = ρ− tHi(ρ)] ,

From previous equation, we can calculate the pushforward of the mapping
χ−1
t by considering the following relation,

χ−1
t (ρ+ τHj(ρ)]) = ρ+ sHj(ρ)] − tHi(ρ+ τHj(ρ)])] .

By taking the derivative w.r.t. τ and evaluating at τ = 0 we obtain the
following,

χ−1
t∗ (Hj(ρ)]) = Hj(ρ)] − t d

dτ Hi(ρ+ τHj(ρ)])] , (C.6.2)

but (ignoring the terms of higher order in τ),

Hi(ρ+ τHj(ρ)])] = i[Hi(ρ+ τHj(ρ)]), ρ+ τHj(ρ)]]
= i[Hi(ρ), ρ] + iτ [Hi(ρ), Hj(ρ)]] + iτ [dHi(Hj(ρ)]), ρ]
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= i[Hi(ρ), ρ] + iτ [Hi(ρ), Hj(ρ)]] + τ(dHi(Hj(ρ)]))] ,
(C.6.3)

so that,

d
dτ Hi(ρ+ τHj(ρ)])] = i[Hi(ρ), Hj(ρ)]] + (dHi(Hj(ρ)]))] ,

which implies (by substituting the previous equation in (C.6.2)),

χ−1
t∗ (Hj(ρ)]) = Hj(ρ)] − it[Hi(ρ), Hj(ρ)]]− t(dHi(Hj(ρ)]))] .

By evaluating this expression at χt(ρ) = ρ+ tHi(ρ)] and only considering
the terms of lower order we obtain,

χ−1
t∗ (Hj(ρ+ tHi(ρ)])])

= Hj(ρ+ tHi(ρ)])] − it[Hi(ρ), Hj(ρ)]]− t(dHi(Hj(ρ)]))]

= i[Hj(ρ), ρ] + it[Hj(ρ), Hi(ρ)]] + t(dHj(Hi(ρ)]))]

− it[Hi(ρ), Hj(ρ)]]− t(dHi(Hj(ρ)]))]

= Hj(ρ)] + it([Hj(ρ), Hi(ρ)]]− [Hi(ρ), Hj(ρ)]]) + t(dHj(Hi(ρ)])
− dHi(Hj(ρ)]))] ,

where we interchanged i with j and changed τ to t in equation (C.6.3) to
obtain the second line. We can simplify the result a little bit more by noticing
the following,

[Hj(ρ), Hi(ρ)]] = [Hj(ρ), [Hi(ρ), ρ]] = i[Hj(ρ), Hi(ρ)], ρ] + [Hi(ρ), i[Hj(ρ), ρ]]
= [Hj(ρ), Hi(ρ)]] + [Hi(ρ), Hj(ρ)]]

By using this equality in the one previous to it, we obtain,

χ−1
t∗ (Hj(ρ+ tHi(ρ)])]) = Hj(ρ)] + it[Hj(ρ), Hi(ρ)]]

+ t(dHj(Hi(ρ)])− dHi(Hj(ρ)]))] .

Finally, by using this result in (C.6.1), we get the following expression for
the commutator of the two fields,

[Hi(ρ)], Hj(ρ)]] = i[Hj(ρ), Hi(ρ)]] + t(dHj(Hi(ρ)])− dHi(Hj(ρ)]))]

= i[Hj(ρ), Hi(ρ)]] + t(dHj(Hi(ρ)])− dHi(Hj(ρ)]))]

= (i[Hj(ρ), Hi(ρ)] + dHj(Hi(ρ)])− dHi(Hj(ρ)]))] .
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By comparing the previous equation with (C.3.2), we conclude

[Hi(ρ)], Hj(ρ)]] = [Ei, Ej ] = −2QlijEl − Ωα
ijS

]
α = (−2QlijHl − Ωα

ijSα)] ,

so that,

(−2QlijHl − Ωα
ijSα)] = (i[Hj(ρ), Hi(ρ)] + dHj(Hi(ρ)])− dHi(Hj(ρ)]))] .

If two operators in u(2s+1) satisfy the equality A] = B], we can not conclude
that they are equal; the most general statement we can do is that they differ
by an element of the little algebra of the point in consideration. Because of
this we have,

−2QlijHl − Ωα
ijSα + a = i[Hj(ρ), Hi(ρ)] + dHj(Hi(ρ)])− dHi(Hj(ρ)]) ,

(C.6.4)

where a is an element of the little algebra for ρ. Consider the basis for the
little algebra that consists on the operators of equation (C.5.1) and ρ. Note
that |ψ〉 (where ρ = |ψ〉〈ψ|) is annihilated for all the elements of the basis
except for ρ. Because of this, if we write a as a = ∆ρ+Θiρi+GijXij +ΛijYij ,
we have the following equality,

a|ψ〉 = ∆|ψ〉 .

Because of this, by applying the l.h.s. and r.h.s. of (C.6.4) to |ψ〉 we obtain
the following (from now on, we stop writing the explicit dependence of Hi

on ρ)

(−2QlijHl − Ωα
ijSα + ∆)|ψ〉 = (i[Hj , Hi] + dHj(H]

i )− dHi(H]
j))|ψ〉 .

(C.6.5)

Before going on manipulating (C.6.5), we find an useful identity. Recall that,
by construction, the expected value of Hj is always zero, 〈Hj〉 = 0. Because
of this, its derivative in the direction H]

i , that 〈Hj〉,i is zero, but,

〈Hj〉,i
= Tr (ρHj),i = Tr (ρ,iHj) + Tr (ρHj ,i) = Tr (H]

iHj) + Tr (ρdHj(H]
i ))

= iTr ([Hi, ρ]Hj) + 〈dHj(H]
i )〉 = iTr (HiρHj − ρHiHj)) + 〈dHj(H]

i )〉
= iTr (ρHjHi − ρHiHj) + 〈dHj(H]

i )〉 = i〈[Hj , Hi]〉+ 〈dHj(H]
i )〉 .

Since this quantity has to be zero, we can conclude that,

〈dHj(H]
i )〉 = −i〈[Hj , Hi]〉 .
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By changing i with j, we also obtain the following,

−〈dHi(H]
j)〉 = i〈[Hi, Hj ]〉 = −i〈[Hj , Hi]〉 .

Because of this we have,

〈dHj(H]
i )− dHi(H]

j)〉 = 〈dHj(H]
i )〉 − 〈dHi(H]

j)〉 = −2i〈[Hj , Hi]〉 . (C.6.6)

Now we get back to (C.6.5). By projecting in 〈ψ| in both sides of (C.6.5),
remembering that 〈Hl〉 = 0, and using (C.6.6) we obtain,

−Ωα
ij〈Sα〉+ ∆ = −i〈[Hj , Hi]〉 . (C.6.7)

In this way, if we find the valued of ∆, we can write the expected value
〈[Hj , Hi]〉 in terms of the curvature Ω. To find ∆, we calculate the projection
of (C.6.5) into 〈ψ|Sµ. The result is,

〈−2QlijSµHl − Ωα
ijSµSα + ∆Sµ〉
= 〈Sµ[Hj , Hi] + SµdHj(H]

i )− SµdHi(H]
j)〉 . (C.6.8)

Our claim is that the real part of the first term is zero. Indeed, since H]
i is

horizontal, <〈SµHi〉 is is zero (recall that 〈Hi〉 is zero and equation (C.5.2)).
Also, by considering the derivative of <〈SµHi〉 in the direction Hj(ρ)], we can
simplify the r.h.s. of (C.6.8). The reasoning is as follows. First, we compute
said derivative,

〈SµHi〉,j = Tr (H]
jSµHi) + Tr (ρSµdHi(H]

j))

= Tr (i[Hj , ρ]SµHi) + 〈SµdHi(H]
j)〉

= iTr ((Hjρ− ρHj)SµHi)) + 〈SµdHi(H]
j)〉

= iTr (ρSµHiHj)− iTr (ρHjSµHi) + 〈SµdHi(H]
j)〉

= i〈SµHiHj〉 − i〈HjSµHi〉+ 〈SµdHi(H]
j)〉 .

Since the real part of the previous expression needs to be zero, we can
conclude the following,

0 = <〈SµHi〉,j = <(〈SµdHi(H]
j)〉+ i〈SµHiHj〉 − i〈HjSµHi〉)

⇒ <〈SµdHi(H]
j)〉 = < i〈HjSµHi − SµHiHj〉 .

By interchanging i with j from the previous equation and subtracting it from
the original one, we obtain,

<〈SµdHi(H]
j)− SµdHj(H]

i )〉 = < i〈HjSµHi −HiSµHj − Sµ[Hi, Hj ]〉
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= 2< i〈HjSµHi〉 − < i〈Sµ[Hi, Hj ]〉 ,

where we used the fact that−i〈HiSµHj〉 is the complex conjugate of i〈HjSµHi〉
so that they have the same real part. By taking into consideration these
equalities in (C.6.8), we conclude,

−Ωα
ij<〈SµSα〉+ ∆〈Sµ〉 = 2< i〈HiSµHj〉 . (C.6.9)

The previous equation is valid for any value of µ. By considering (C.6.7) and
(C.2.4) in (C.6.9) we can conclude,

−Ωα
ij

(
kµα
2 + 〈Sα〉〈Sµ〉

)
+ ∆〈Sµ〉 = 2< i〈HiSµHj〉 ⇒

−Ωµij

2 + 〈Sµ〉(−Ωα
ij〈Sα〉+ ∆) = 2< i〈HiSµHj〉 ⇒

−Ωµij

2 + 〈Sµ〉(−i〈[Hj , Hi]〉) = 2< i〈HiSµHj〉 ⇒

i〈[Hj , Hi]〉 = − 1
〈Sµ〉

(Ωµij

2 + 2<i〈HiSµHj〉
)
. (C.6.10)

Define |ψj〉 = iHj |ψ〉 and |ψi〉 = iHi|ψ〉. Then, H]
j can be written as,

H]
j = i[Hj , ρ] = |ψj〉〈ψ|+ |ψ〉〈ψj | ,

while

〈ψ|ψj〉 = i〈Hj〉 = 0 .

Because of this, we see that |ψj〉 is the vector defined in theorem 2. The same
can be said for |ψi〉. In terms of this vectors,

i〈[Hj , Hi]〉 = i(〈ψj |ψi〉 − 〈ψi|ψj〉) = 2=〈ψi|ψj〉 = KB(Ei, Ej) ,
2<i〈HiSµHj ]〉 = 2<i〈ψi|Sµ|ψj〉 = −2=〈ψi|Sµ|ψj〉 , (C.6.11)

where we used equation (C.4.3) for the first line. Direct substitution of this
equalities in (C.6.10), produces the following result,

KB(Ei, Ej) = 2=〈ψi|Sµ|ψj〉 − Ωµij

2〈Sµ〉
. (C.6.12)

In principle, we can use this equation (with any value of µ) along with
(C.6.7) to write the geometric phase (C.4.3) in terms of Ω. By using (C.2.4)
in (C.6.9) we obtain the following,

The previous equation has been checked numerically for various points
in the case of j = 3/2 and j = 2.
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C.7 Applications of the little algebra

C.7.1 Another expression for the coefficients of the connec-
tion Ω

In this section, we introduce some new mathematical concepts that allows
us to find a simpler expression for Ωµij .

Given a generic point ρ in P(Hs), consider the basis for u(2j + 1) that
consists on the angular momentum operators Sα, the horizontal operators
Hi(ρ) introduced in the previous section, ρ and the little algebra (C.5.1).
Denote the elements of this basis generically as OA, where Greek indices
denotes vertical quantities, Latin, horizontal and primed Latin indices refer
to the members of the little group. Denote the structure functions w.r.t. this
basis as C ; [OA, OB] = iCD

ABOD.
To find an alternative expression for Ωµij , consider the following term of

(C.6.10),

2< i〈HiSµHj〉 = i〈HiSµHj〉 − i〈HjSµHi〉
= i(〈HiSµHj〉 − 〈SµHiHj〉+ 〈SµHiHj〉 − 〈SµHjHi〉

+ 〈SµHjHi〉 − 〈HjSµHi〉)
= i(〈[Hi, Sµ]Hj〉+ 〈Sµ[Hi, Hj ]〉+ 〈[Sµ, Hj ]Hi〉)
= i(iCA

iµ〈OAHj〉+ iCA
ij〈SµOA〉+ iCA

µj〈OAHi〉) .

By taking the real part in both sides of the previous equation, we obtain the
following result,

2< i〈HiSµHj〉 = −CA
iµ<〈OAHj〉 − CA

ij<〈SµOA〉 − CA
µj<〈OAHi〉 .

(C.7.1)

We simplify (C.7.1) by considering each term separately. To compute the
first one, note the following,

<〈O1′Hj〉 = 〈Hj〉 = 0 ,
<〈OA′Hj〉 = 0 ,

<〈OνHj〉 = <〈SνHj〉 = hνj
2 = 0 , (C.7.2)

<〈HkHj〉 = gkj
2 .

The index 1′ corresponds to ρ, the index A′, denote the rest of the elements
of the little algebra. The first two equalities can be obtained by a direct
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computation. The third one, can be deduced by recalling (C.5.2) and the fact
that horizontal vectors are perpendicular to verticals. Finally, the last one can
also be obtained from (C.5.2). These equalities implies that CA

iµ<〈OAHj〉 =
(1/2)C k

iµgkj = (1/2)Cj iµ. In the same way, the third term of (C.7.1) is
CA

µj<〈OAHi〉 = (1/2)Ciµj . For the remaining term, CA
ij<〈SµOA〉, by a

similar procedure used to obtain (C.7.2), we have the following,

<〈SµO1′〉 = 〈Sµ〉 ,
<〈SµOA〉 = 0 ,

<〈OµOν〉 = <〈SµSν〉 = kµν
2 + 〈Sµ〉〈Sν〉 ,

<〈SµHk〉 = hµk
2 = 0 .

so,

CA
ij<〈SµOA〉 = C 1′

ij〈Sµ〉+ C ν
ij

(
kµν
2 + 〈Sµ〉〈Sν〉

)
= (C 1′

ij + C ν
ij〈Sν〉)〈Sµ〉+ Cµij

2 .

On the other hand, by considering (C.6.11), we have the following,

KB(Ei, Ej) = −i〈[Hi, Hj ]〉 = −i(iCA
ij〈OA〉) = CA

ij〈OA〉

= C 1′
ij + C ν

ij〈Sν〉 ,

where we used the fact that all the operators OA have zero expectation value
except for ρ and Sα. By using this expression in the previous one, we obtain
the following expression,

CA
ij<〈SµOA〉 = KB(Ei, Ej)〈Sµ〉+ Cµij

2 .

Substituting the terms we just obtained in (C.7.1), we obtain,

2< i〈HiSµHj〉 = −1
2(Cjiµ + Ciµj + Cµij)−KB(Ei, Ej)〈Sµ〉 ⇒

−4< i〈HiSµHj〉 = Cjiµ + Ciµj + Cµij + 2〈Sµ〉KB(Ei, Ej) .

Finally, the usage of this result in expression (C.6.10), together with (C.6.11),
produces the following equation after some algebra,

Ωµij = Cjiµ + Ciµj + Cµij . (C.7.3)
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C.8 Relationship with the Schrödinger equation

Suppose that the temporal evolution of a spin s is given by a Hamiltonian
H. Call ρ(t) the evolution of the system in projective Hilbert space. As it is
well known, the time derivative of ρ is given by the following equation,

ρ̇ = −i[H, ρ] = −H] ≡ vαS]α + viEi ,

The components vα can be regarded as a speed in the fibers, and the coeffi-
cients vi as a speed in S . We can find an expression for this components.
By calculating the product of ρ̇ and S]β on one hand, we have the following,

h(ρ̇, S]β) = vαkαβ = vβ .

On the other hand, by equation (C.5.2),

h(ρ̇, S]β) = −h(H], S]β) = −2(<〈HSβ〉 − 〈H〉〈Sβ〉) = −2 Corr(H,Sβ) ,

where we defined the correlation of two operators Corr(A,B) as Corr(A,B) =
〈AB〉 + 〈BA〉 − 〈A〉〈B〉. Note that Corr(A,B) is a function defined over
projective Hilbert space. By considering both expressions for h(ρ̇, S]β), we
can write,

vβ = −2 Corr(H,Sβ) .

We can make exactly the same for horizontal vectors. The result is

vi = −2 Corr(H,Hi(ρ)) .

The punchline of this results is the following, the speed va is related with
the correlation between the operator Oa and the Hamiltonian H.
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