

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Programa de Maestría y Doctorado en Ciencias Bioquímicas

ANÁLISIS DEL TRANSCRIPTOMA DE LOS ENDOSIMBIONTES DE Dactylopius coccus

TESIS

QUE PARA OPTAR POR EL GRADO DE: Maestro en Ciencias

> PRESENTA: RAFAEL BUSTAMANTE BRITO

TUTOR PRINCIPAL DRA. MA. ESPERANZA MARTÍNEZ ROMERO CCG-UNAM

MIEMBROS DEL COMITÉ TUTOR DR. J. ADELFO ESCALANTE LOZADA DRA. CLARITA OLVERA CARRANZA IBt-UNAM

Cuernavaca, Morelos. Noviembre, 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. El presente trabajo se realizó bajo la dirección de la Dra. Esperanza Martínez Romero en el laboratorio de Ecología Genómica del Centro de Ciéncias Genómicas-UNAM.

El comité tutoral durante el desarrollo del proyecto estuvo conformado por:

Dra. Clarita Olvera Carranza (Ibt-UNAM)

Dr. J. Adelfo Escalante Lozada (IBt-UNAM).

Durante el estudio de maestría recibí una beca otorgada por el Consejo Nacional de Ciencia y Tecnología (CONACyT), CVU 783288. El proyecto realizado fue financiado por CONACyT 253116 y PAPIIT-UNAM IN207718.

También conté con el apoyo de financiamiento para la estancia en la Universidad de Regensburg-Alemania en el ACELab dirigido por el Dr. Tomer Czaczkes, por parte del proyecto PAPIIT-UNAM IN-226917.

El comité de examen estuvo integrado por:

Dra. Rosa María Gutierrez Rios (IBt-UNAM)

Dr. Alfredo Martínez Jimenez (IBt-UNAM)

Dra. Cinthia E. Nuñez López (IBt-UNAM)

Dr. Diego Cortez Quezada (CCG-UNAM)

Dra. Svetlana Shishkova (IBt-UNAM)

Agradecimientos

A la Dra. Esperanza Martíez por permitirme realizar mi maestria en su grupo de trabajo, muchas gracias por darme la oportunidad de pertenecer a este grupo en el cuál me sentí muy feliz y logré realizar varias cosas, por el apoyo y la guía recibida durante este periodo y el apoyarme durante todo el proyecto.

A los miembros de mi comité tutoral, Dra. Clarita y Dr. Adelfo muchas gracias por el apoyo y sus valiosos comentarios durante todo el desarrollo de mi trabajo, fueron de mucha ayuda y lograron darle un mejor enfoque y calidad al mismo.

A la Dra. Mónica Rosenblueth, gracias por los valiosos comentarios y el apoyo durante todo este trayecto. Gracias por ayudarme a aclarar mis ideas, dudas y la guía, por introducirme a este interesante tema de los endosimbiontes.

A la M. en C. Verónica Jimenez Jacinto por toda la ayuda brindada para los análisis de RNA-Seq, gracias por todo Vero por estarme ayudando siempre que necesitaba y por enseñarme muchas cosas que fueron de gran importancia para mi trabajo.

A la QFB Xochitl del Carmen Alvarado, por la ayuda brindada durante la obtención de las microscopías y por siempre buscar obtener imágenes de calidad.

A mis sinodales, Dr. Alfredo Martines, Dra. Cinthia Nuñez, Dra. Rosa Gutierrez, Dra. Svetlana Shishkova, Dr. Diego Cortez, a todos por sus valiosos comentarios al revisar mi tesis.

A Toño y Gloria por su valiosa ayuda en la realización de todos los trámites, y por su siempre buena disposición en apoyarte.

Gracias especialmente a mi familia, a mis padres Benjamín y Emelia, a mi abue Esperanza y a mi hermana Ali por su apoyo brindado durante todo este trayecto, muchas gracias por todo por darme animos cuando los necesitaba y por estar siempre presentes. Por escuchar mis problemas y alentarme a seguir, siempre van a ser parte importante en mi vida y una motivación, los amo. Gracias a mi familia (tios, primos, etc) en general, a todos por su apoyo.

A mi novia Pilar, muchas gracias por todo por ayudarme siempre a seguir adelante, por estar siempre presente cuando lo necesitaba, eres una gran persona y agradezco mucho que estés conmigo. Por aguantarme cuando estaba todo estresado y ayudarme a tranquilizarme y ver las cosas de mejor forma. Por ser esa persona tan especial!. Te amo!

A mis amigos de generación a todos muchas gracias chicos por compartir sufrimientos y alegrías, por compartir todos esos memes que nos hacían reir un poco cuando estaba todo tenso el ambiente por los exámenes o por los tutorales. Por esas platicas de los proyectos en los que siempre encontraba comentarios buenos y ayuda cuando la necesitaba.

A mis amigos del "insects lab", Arturo, Tabi, Tona, Viol y Victor, por todo ese tiempo muy bueno toda esa convivencia con ustedes muy divertida, por todas sus enseñanzas y por esas idas al parlant para olvidarnos un rato del trabajo y pasar buenos tiempos. ¡Gracias por hacer mas llevadera mi estancia en el lab!

Índice

	Página	
I. Índice Figuras	i	
II. Índice Tablas	ii	
III. Resumen	iii	
1. Introducción	1	
1.1 Interacciones entre insectos y bacterias	1	
1.2 Transferencia vertical de endosimbiontes	4	
1.3 Reducción del genoma de los endosimbiontes y transferencia horizo	ontal de	
genes	5	
1.4 Endosimbiontes de insectos escama	6	
2. Antecedentes	9	
3. Justificación	14	
4. Hipótesis	15	
5. Objetivos	16	
6. Material y métodos	17	
6.1 Extracción de RNA	17	
6.1.1 Método kit RNeasy Qiagen	17	
6.1.2 Método CTAB	18	
6.1.3 Método TRIzol Invitrogen	19	
6.1.4 Método kit RNeasy Qiagen modificado	20	
6.2 Análisis Transcriptómico	21	
6.2.1 Análisis Bioinformático	21	
6.2.2 Análisis de Expresión Diferencial	22	
6.2.3 Reconstrucción del modelo y análisis filogenético de algunos ge	enes de	
interés	22	
6.2.4 Categorización funcional de genes diferencialmente expresados	23	
6.3 FLUORESCENT in situ HYBRIDIZATION de Candidatus Dactylipiiba	icterium	
carminicum	23	
7. Resultados	25	
7.1 Extracción de RNA	25	
7.2 Análisis Bioinformático	26	
7.3 Análisis de Expresión Diferencial	28	
7.4 Reconstrucción del Modelo Metabólico	38	
7.5 Análisis Filogenético de algunos Genes de Interés	41	
7.6 Identificación de Posibes Blancos del sistema CRISPR/Cas.		
7.7 Análisis de la Localización de Candidatus Dactylopiibacterium carr	ninicum	
Mediante Microscopía de Fluorescencia	45	
8. Discusión	48	
9. Conclusiones	55	
10. Anexos	56	
11. Bibliografía	91	

Índice Figuras

	Página
Figura 1. Endosimbiontes localizados dentro de bacteriomas	2
Figura 2. Representación esquemática de la localización de los simbiontes dentro de	
su insecto hospedero	4
Figura 3. Análisis filogenético de <i>Candidatus</i> Dactylopiibacterium carminicum	10
Figura 4. Candidatus. Dactylipiibacterium carminicum participa en la fijación	
biológica de nitrógeno	12
Figura 5. FLUORESCENT in situ HYBRIDIZATION para la localización de Candidatus	13
Dactylopiibacterium carminicum en ovario	
Figura 6. Integridad del RNA de la réplica 3.	26
Figura 7. Boxplots de las cuentas para la condición intestino vs hemolinfa	28
Figura 8. Boxplots de las cuentas para la condición intestino vs ovario	29
Figura 9. Boxplot de las cuentas para la condición hemolinfa vs ovario	29
Figura 10. PlotMDS de las cuentas sin normalizar de la condición intestino vs	
hemolinfa	30
Figura 11. PlotMDS de las cuentas sin normalizar de la condición intestino vs ovario	30
Figura 12. PlotMDS de las cuentas sin normalizar de la condición hemolinfa vs ovario	31
Figura 13. PCA plot de las cuentas normalizadas de la condición intestino vs hemolinfa	32
Figura 14. PCA plot de las cuentas normalizadas de la condición intestino vs ovario	32
Figura 15. PCA plot de las cuentas normalizadas de la condición hemolinfa vs ovario	33
Figura 16. plotMD de la condición intestino vs hemolinfa	33
Figura 17. plotMD de la condición intestino vs ovario	34
Figura 18. plotMD de la condición hemolinfa vs ovario	34
Figura 19. Análisis de COG para la condición de intestino vs hemolinfa	35
Figura 20. Análisis de COG para la condición de intestino vs ovario	36
Figura 21. Análisis de COG para la condición de hemolinfa vs ovario	37
Figura 22. Reconstrucción del modelo de expresión para intestino/hemolinfa	39
Figura 23. Reconstrucción del modelo de expresión para ovario	40
Figura 24. Árbol filogenético de la proteína Csv4 del sistema CRISPR/Cas	42
Figura 25. Árbol filogenético de la proteína Mce.	43
Figura 26. Hibridación fluorescente <i>in situ</i> de ovarios control	46
Figura 27 Hibridación fluorescente <i>in situ</i> de ovarios con sonda específica para	10
Candidatus Dactyloniihacterium carminicum	47
Figura 28 Hibridación fluorescente <i>in situ</i> de ovarios con sonda específica para	τ,
Candidatus Dactyloniibacterium carminicum	47
	77

Índice Tablas

	Página
Tabla 1. Ejemplos de endosimbiontes de insectos escama	7
Tabla 2. Características del genoma de Candidatus Dactylopiibacterium carminicum	11
Tabla 3. Análisis de calidad de las muestras de RNA	25
Tabla 4. Análisis de calidad de los datos crudos	27
Tabla 5. Resultados del mapeo obtenido con Bowtie2	27
Tabla 6. Lista de algunos genes diferencialmente expresados por condición	38
Tabla 7. Spacers presentes en el sistema CRISPR/Cas y posibles blancos de estos	45

RESUMEN

La cochinilla de la grana (*Dactylopius coccus*) tiene un especial interés económico y se ha empleado desde tiempos prehispánicos para la obtención del ácido carmínico, un colorante natural que es usado en la industria con varios fines, tales como: tinte de telas, colorante en alimentos y en productos cosméticos. La cochinilla pasa todo su ciclo de vida adherida a los cladodios del nopal alimentándose, obteniendo una dieta deficiente de compuestos nitrogenados. Varios insectos como en este caso, llevan consigo bacterias simbiontes, las cuales proporcionan a sus hospederos los compuestos nitrogenados necesarios que no pueden obtener de su dieta.

En este trabajo se realizó el análisis transcriptómico del endosimbionte principal de *D. coccus* una beta-proteobacteria a la cual se le denominó *Candidatus* Dactylopiibacterium carminicum. Se identificaron los genes expresados en diferentes tejidos del insecto (hemolinfa, intestino y ovarios) con la finalidad de determinar en qué tejidos se encontraba fijando nitrógeno, además de analizar qué pasaba con el nitrógeno fijado.

Los resultados obtenidos demostraron que hubo fijación de nitrógeno en intestino y en hemolinfa, además de encontrar expresada la maquinaria necesaria para la asimilación del amonio (glutamato sintasa, glutamato amonio ligasa) y, para la síntesis de aminoácidos. Por otra parte, se realizó el análisis de expresión diferencial, encontrando 122 genes sobre expresados y 95 genes sub expresados cuando se compararon los patrones de expresión de genes en intestino vs hemolinfa; 128 genes sobre expresados y 0 genes sub expresados para la comparación de intestino vs ovario, y 314 genes sobre expresados y 662 genes sub expresados para la comparación de hemolinfa vs ovario. Sin embargo, las funciones metabólicas se mantienen en los tres tejidos a excepción de la fijación y asimilación del nitrógeno la cual se mostró ausente en los ovarios al igual que la expresión de toxinas, el sistema de CRISPR/Cas, el sistema de secreción tipo II y la proteína denominada mammalian cell entry.

Con este análisis se pudo corroborar que la función de este endosimbionte es la de proporcionar los compuestos nitrogenados al hospedero. Nuestros resultados también indican que el endosimbionte pudiera proporcionar algunas vitaminas y protección contra algunas bacterias y/o virus (mediante algunas toxinas o, los sistemas de CRISPR/Ca

1. Introducción

1.1 Interacciones entre insectos y bacterias

Una repetida diferenciación de especies preexistentes ha generado la biodiversidad actual, además, la tendencia que tienen las especies para asociarse también ha contribuido a esta diversificación. Entre éstas la de mayor importancia es la simbiosis que se ha considerado un motor en la evolución ya que ha originado cambios evolutivos rápidos (Gray y Doolittle, 1982).

Entre los organismos multicelulares, los insectos son un grupo que ha mostrado una mayor capacidad para asociarse con diferentes microorganismos, dentro y fuera de sus cuerpos. Los insectos han mostrado un estilo de vida de los más exitosos que existen, debido a la adaptación a una amplia variedad de dietas, lograda en parte debido a los endosimbiontes que residen en ellos. El aporte del simbionte no sólo se ha limitado a aspectos nutricionales, también pueden participar en la defensa del insecto o en tolerancia a estrés; se ha demostrado además que estos son heredados por transferencia vertical, es decir, de la madre a su progenie. Debido al alto grado de interdependencia entre los insectos y las bacterias simbiontes, los insectos han desarrollado ciertas células especializadas llamadas bacteriocitos, en las cuales residen los endosimbiontes; estas células al agruparse dan origen a estructuras denominadas bacteriomas que se muestra en la Figura 1 (Ishikawa, 1989 y 2003; Douglas, 2014; Moriyama, *et al.* 2015).

Figura 1. Endosimbiontes localizados dentro de bacteriomas. La agrupación de los bacteriocitos en los cuales residen los simbiontes dan origen a órganos especializados llamados bacteriomas; estos varían de 1 a 4 dependiendo el hospedero y por lo general se encuentran en el abdomen (Tomada de Moran y Bennet, 2014).

Entre los endosimbiontes más estudiados se encuentran las proteobacterias y entre las proteobacterias abunda el subgrupo de las gamma-proteobacterias, sin embargo, algunas alfa y beta-proteobacterias también pueden llevar a cabo estas relaciones mutualistas. Por otro lado, los bacteroidetes han establecido una relación mutualista con los insectos durante un largo periodo de tiempo (Ishikawa, 2003; Heddi y Gross, 2012; Kikuchi, *et al.*, 2011).

De acuerdo al grado de interdependencia y de la estabilidad (el mantenimiento de estas bacterias a través de las generaciones) que tienen los insectos por las bacterias simbiontes éstas pueden clasificarse en diversos tipos (Sudakaran, *et al.,* 2017; Rosenblueth, *et al.,* 2017):

- a) Simbiontes primarios: éstos son esenciales para el insecto debido a que si son eliminados este muere. Este tipo de endosimbiontes proveen a los insectos algunos nutrientes esenciales de los cuales carece su dieta, tales como: aminoácidos esenciales y vitaminas. (Moran *et al.*, 2005).
- b) Simbiontes secundarios: la ausencia de estos no repercute al hospedero, es decir, el insecto puede sobrevivir sin ellos; pueden encontrarse dentro de los bacteriocitos o fuera de ellos (en las glándulas salivales o en hemolinfa). Estos pueden participar en la defensa contra

patógenos como las avispas parasitoides, hongos, bacterias y virus (Xie *et al.*, 2014; Jaenike *et al.*, 2010); también pueden estar involucrados en la degradación de compuestos tóxicos de las plantas (provenientes de la dieta de los insectos) o protegerlos contra temperaturas altas (Tsuchida *et al.*, 2004; Burke *et al.*, 2010); por otra parte, otros son capaces de manipular la taza reproductiva de sus hospederos (Werren *et al.*, 2008).

- c) Simbiontes intestinales albergados en criptas: este tipo de endosimbiontes se ha encontrado únicamente en la superfamilia Pentatomomorpha, éstos son transmitidos verticalmente mediante la colonización de huevos, coprofagia o cápsulas simbióticas, o bien estos pueden ser adquiridos del ambiente a través de la dieta; se encargan de la degradación de algunos compuestos tóxicos, además de proveer algunos nutrientes esenciales (Kikuchi *et al.*, 2007 y 2009).
- d) Simbiontes intestinales: éstos por lo general se obtienen de la dieta; están involucrados en la degradación de compuestos tóxicos y toxinas. Éstos también pueden ser transferidos a la progenie mediante ingesta fecal o inoculación de los huevos (Degli-Esposti y Martínez-Romero 2017; Salem *et al.*, 2015).

Como se refirió anteriormente la localización puede estar relacionada con el grado de dependencia y la función que tienen los simbiontes dentro de los insectos, en la Figura 2 se ejemplifica de manera más esquemática en dónde están albergados estos simbiontes y algunas de las estructuras que se han generado en los insectos para el mantenimiento de estos.

Figura 2. Representación esquemática de la localización de los simbiontes dentro de su insecto hospedero. A) simbiontes localizados de manera intracelular dentro de bacteriomas (simbiontes en verde); B) bacterioma con dos simbiontes intracelulares diferentes albergados en bacteriocitos independientes (simbiontes en verde y naranja); C) simbiontes extracelulares (indicados en morado) que se encuentras albergados en el intestino; D) simbiontes extracelulares (indicados en rojo) que se encuentran albergados en el intestino en criptas especializadas (tomada de Sudakaran, et al., 2017).

1.2 Transferencia vertical de endosimbiontes

Se conoce como transferencia vertical de endosimbiontes al proceso que llevan a cabo los insectos de pasar los endosimbiontes a su progenie, lo cual promueve el mantenimiento de estas bacterias en el hospedero. Los endosimbiontes se transmiten desde la embriogénesis, de manera tal que al nacer los insectos ya los llevan consigo (McFall-Ngai., 2002).

A pesar que la mayoría de los endosimbiontes llevan una relación de millones de años con sus insectos hospederos, algunos de estos han sido reemplazados ya sea por transferencia horizontal de un insecto a otro o por la misma adquisición del ambiente (generación de un endosimibonte a partir de una bacteria de vida libre); esto tiende a repercutir directamente en el insecto hospedero, ya que, al adquirir un nuevo endosimbionte y este llegase a ser funcional, el insecto puede adquirir nuevas características (por ejemplo, ampliar su capacidad metabólica y por lo tanto la capacidad de

obtener nuevas fuentes de alimento) (Moran, 2007; Bennett y Moran, 2015; Husnik y McCutcheon, 2016).

1.3 Reducción del genoma de los endosimbiontes y transferencia horizontal de genes

Un evento que ha ocurrido en los endosimbiontes es la reducción de su genoma, esto es a consecuencia de los largos periodos de tiempo que llevan en asociación con sus insectos hospederos. Los endosimbiontes han perdido la mayoría de los genes necesarios para la vida libre y únicamente conservan aquellos que bajo presión de selección de las características del ambiente en el que habitan son necesarios para su supervivencia y simbiosis (Bennett y Moran, 2013).

Se ha observado que, durante el proceso de reducción del genoma, al inicio ocurre una serie de deleciones de bloques completos de DNA y la presencia de elementos móviles es baja; seguido de esto, ocurre una serie de mutaciones al azar en las cuales los genes que pierden la funcionalidad son deletados o en algunos casos aún se llega a encontrar la presencia de pseudogenes, lo cual indica que el proceso de reducción del genoma es continuo. Hasta este punto aún podría ser posible cultivar estas bacterias, sin embargo, el proceso de reducción del genoma puede continuar al aumentar el número de elementos móviles en el genoma (en esta instancia suele ocurrir un rearreglo cromosómico). Al comparar las bacterias endosimbiontes con algunos de sus parientes relacionados filogenéticamente de vida libre se puede observar que la mayoría de los genes perdidos son aquellos indispensables para la supervivencia en ambientes fuera del insecto y debido a esto, el cultivarlas en medios sintéticos es prácticamente imposible pero aún se logran crecer en cultivos celulares. El genoma de los endosimbiontes se puede reducir de tal manera que llegue a un estado en el que no sea posible cultivarla; además se sabe que los endosimbiontes poseen genomas ricos en AT y debido al ambiente en el que viven las tasas de recombinación con otras bacterias es prácticamente nula. Debido al proceso de mutaciones y reducción del genoma de los endosimbiontes, puede llegar a ocurrir que el endosimbionte pierda genes necesarios ya sea para su propia supervivencia o bien para beneficio del insecto, esto puede provocar que otra bacteria complemente las vías que perdió, o en dado caso el reemplazo del mismo (Moran, 2003; Manzano-Marín y Latorre, 2016; Latorre y Manzano-Marín, 2016; Campbell et al., 2015; Husnik, et al., 2013).

La transferencia horizontal de genes de los endosimbiontes a sus insectos hospederos es un fenómeno que se ha descrito en varios casos, uno de los más representativos es el de los áfidos, en

los que han encontrado genes bacterianos en el genoma del insecto; la mayoría de estos genes son pertenecientes a otra bacteria la cual ya no es simbionte de estos (Wolbachia), sin embargo, se han encontrado también la presencia de genes de Buchnera (endosimbionte de los áfidos). Otro ejemplo es el de un grupo de hemípteros, pertenecientes a los pseudococcidos, los cuales portan una betaproteobacteria como endosimbionte principal y dentro de esta se encuentra una gammaproteobacteria la cual se ha demostrado que ha sido reemplazada en varias ocasiones (Husnik y McCutcheon, 2016); este caso en particular muestra una transferencia horizontal de genes de las bacterias al genoma del insecto y recientemente se demostró que la beta-proteobacteria posee algunos genes provenientes de gamma-proteobacterias Estos genes de origen bacteriano que se encuentran en el insecto (y en el caso de la beta-proeobacteria simbionte de los pseudococcidos) son funcionales y su expresión se encuentra aumentada en el bacterioma, en los cuales la mayoría de estos son genes involucrados en la síntesis de algunos aminoácidos, procesamiento de material genético y de vitaminas. Se podría decir que durante el transcurso de la coevolución entre los hospederos y sus simbiontes se han logrado desarrollar "parches génicos" en los cuales existe una complementación de las vías metabólicas necesarias para la supervivencia de ambas partes, así como una dependencia estricta en la cual la ausencia de uno podría repercutir de manera drástica en el otro (Nikoh, et al., 2010; Sloan, et al., 2014; Wilson, et al., 2015; Gil et al, 2017; Husnik, et al., 2013 y 2016).

1.4 Endosimbiontes de insectos escama

Los insectos escama son un grupo perteneciente a la superfamilia Coccoidea (Hemiptera: Sternorryncha: Coccoidea), los cuales tienen como característica la presencia de una cubierta tipo cerosa que les confiere protección contra depredadores. Existen alrededor de 7,800 especies, la mayoría de estas se alimentan de la savia de las plantas que parasitan. Presentan por lo general dimorfismo sexual en el cual los machos son alados y de menor tamaño que las hembras, estas a su vez permanecen durante todo su ciclo de vida adheridas a la planta de la cual se alimentan al introducir su estilete por lo cual permanecen inmóviles.

Asociados a estos insectos se han descrito varios microorganismos endosimbiontes y co-simbiontes (simbiontes secundarios). Con ayuda de las nuevas tecnologías de secuenciación se ha podido estudiar más a fondo su diversidad, los genomas y el aporte que estos le brindan al insecto (suministro de aminoácidos, vitaminas y cofactores). La gran mayoría de estos endosimbiontes pertenecen a las flavobacterias sin embargo, se ha visto que estas han sido sustituidas por algunas

gamma y beta-proteobacterias y algunas alfa-proteobacterias como endosimbiontes secundarios, en la Tabla 1 se ejemplifican algunos de los endosimbiontes más estudiados en insectos escama. (Rosenblueth *et, al.,* 2012 y 2017)

		T			
Endosimbionte	Hospedero (Familia)	Tamano			Referencia
		de	Función	Tejido que	
		genoma	i uncion	habita	
(Clase)		(pb)			
Walczuchella					Rosas-Pérez , <i>et al</i> .
mononhlehidarum		309 299	Provisión de	Bacterioma y	(2014)
(flavobactoria) ^p	Llaveia axin axin	000)200	aminoácidos	ovarios	()
	(MONOPHLEBIDAE)		D	D	
Sodalis IME1 (y-		3,400,00	Provision de	Bacterioma y	Rosas-Perez , et al.
proteobacteria) ^s		0	aminoácidos	ovarios	(2017)
Tremblaya	Phenacoccus avenae		Provisión de		Husnik and
phenacola (β-		170,756	aminoácidos y	Bacterioma	McCutcheon (2016)
proteobacteria) ^P	(PSEUDOCOCCIDAE)		vitaminas		
			Provisión de		Husnik and McCutcheon
Tremblaya princeps		138,415	aminoácidos v	Bacterioma	(2016)
(β -proteobacteria) ^P	Maconellicoccus	130,413	vitaminas		()
	hirsitus (PSEUDOCOCCIDAE)				
Doolittlea endobia			Provisión de	Citoplasma de	Husnik and McCutcheon
(v-proteobacteria) ^s		834,723	aminoácidos y	Tremblava	(2016)
(F proceedational)			vitaminas		
			Provisión de	e	Husnik and McCutcheon
Tremblaya princeps		129 027	aminoácidos	Pactorioma	(2016)
(β-proteobacteria) ^P		138,327	vitaminas	Bacterionia	
	Planococcus citri				
Moranella	(PSEUDOCOCCIDAE)	-	Provisión de	e	Husnik and McCutcheon
andohialu		528 204	aminoácidos	Citoplasma de	(2016)
		556,254	vitaminas	Tremblaya	
proteobacteria) ³					
			Provisión de	2	Husnik and McCutcheon
Tremblaya princeps		144 042	aminoácidos	Bacterioma	(2016)
(β-proteobacteria) ^P	Pseudococcus	144,042	vitaminas	Dacterionia	
	lonaisninus				
			Provisión de	2	Husnik and McCutcheon
2 Sodalis-allied (γ-	(F3LUDUCUCCIDAE)	8,190,81	aminoácidos	Citoplasma de	(2016)
proteobacteria) ^s		6	vitaminas	Tremblaya	

Tabla 1. Ejemplos de endosimbiontes de insectos escama

Continuación Tabla 1

Dactylopiibacterium carminicum (β-proteobacteria) ^p	Dactylopius - coccus (DACTYLOPIIDAE)	3, 589,384	Fijación de nitrógeno Ciclo de la Urea	Ovarios	Vera-Ponce de León <i>et</i> al. (2017)
Wolbachia bourtzisii wDacA (α-proteobacteria) ^s		1,170,000	Provisión de Riboflavina	SD	Ramirez-Puebla <i>et al.</i> (2016)
Wolbachia pipientis wDacB (α-proteobacteria) ^s		1,498,000	Provisión de Riboflavina	SD	Ramirez-Puebla <i>et al.</i> (2016)

p=endosimbionte primario; s=endosimbionte secundario; SD= sin datos. En negritas se muestran los endosimbiontes de Dactylopius coccus. Tomada y editada de Rosenblueth et al., 2017

2. Antecedentes

Dentro de los insectos escama existen varios de interés económico, ya sea porque son insectos que se consideran plaga de plantas de importancia económica o bien porque estos insectos producen algún compuesto de interés; tal es el caso de *Dactylopius coccus*, también nombrado como la cochinilla de la grana ya que a partir de este insecto se obtiene el ácido carmínico. Este insecto pertenece a la familia Dactylopiidae la cual consiste de un solo género (*Dactylopius* (Costa)) con nueve especies reportadas (Pérez-Guerra y Kosztarab, 1992). Cinco de estas especies han sido reportadas en México: *D. ceylonicus*, *D. confusus*, *D. opuntia*, *D. tomentosus* y *D. coccus*. Estos insectos se alimentan de la savia de plantas cactáceas de los géneros *Opuntia* y *Nopalea*. Además, la cochinilla es capaz de producir el ácido carmínico, como ya se mencionó anteriormente, el cual es usado por los insectos como mecanismo de defensa contra los depredadores. El ácido carmínico, ha sido utilizado por las culturas prehispánicas como colorante y actualmente es empleado en la producción de colorantes en cosméticos, alimentos, medicamentos y productos textiles. Dentro de estas especies, la más utilizada es *D. coccus* debido a su domesticación por el hombre y a su alta productividad y calidad del ácido carmínico. (Chávez-Moreno, *et al.*, 2009; Lech, *et al.*, 2014)

Ramírez-Puebla *et al.*, (2010) realizaron el análisis filogenético del género *Dactylopius* empleando las regiones 12S del rRNA mitocondrial y 18S del rRNA nuclear agrupando a las especies *D. confusus*, *D. opuntia*, *D. ceylonicus* con un 99% de identidad, y a *D. austrinus* cerca de este cluster; *D. coccus* se encontró separado mientras que *D. tomentosus* fue el más alejado de todos. En este estudio se identificó una beta-proteobacteria, la cual se denominó *Candidatus* Dactylopiibacterium carminicum y se encuentra relacionada con *Uliginosibacterium*, un fijador de nitrógeno de vida libre asociada a pastos.

En el estudio del análisis metagenómico de *Dactylopius coccus* se obtuvieron secuencias pertenecientes a *Wolbachia* (Ramírez-Puebla *et al.,* 2016) y se describieron dos tipos diferentes de *Wolbachia* (wDacA y wDacB), pertenecientes a las especies *Candidatus* Wolbachia bourtzissi (wDacA) y *Candidatus* Wolbachia pipientis (wDacB), siendo esta última más abundante. Dentro de las secuencias que se recuperaron se encontraron genes involucrados en la producción de vitaminas, síntesis de cofactores, sistemas de secreción, entre otros.

Con estos datos se pudo realizar el ensamble del genoma de la beta-proteobacteria *Candidatus* Dactylopiibacterium carminicum y es considerada el endosimbionte principal de los insectos pertenecientes al género *Dactylopius*, ya que en todas las especies de este insecto que se estudiaron está presente esta bacteria; al realizar la filogenia se observó que está relacionado con *Uliginosibacterium* (Figura 3); algunas de las características del genoma de *Candidatus* Dactylopiibacterium carminicum se muestran en la Tabla 2, en la cual se describe el tamaño aproximado del genoma, la cantidad de genes que contiene, el % de GC, entre otras características. (Vera-Ponce de Leon, *et al.*, 2017)

0.010

Figura 3. Análisis filogenético de *Candidatus* **Dactylopiibacterium carminicum.** En el árbol filogenético se observa que el endosimbionte está relacionado con *Uliginosibacterium*; se realizó bajo el método de Máxima-Verosimilitud con el parámetro 2 de Kimura empleando el marcador 16S rRNA.

Al realizar la anotación del genoma se encontró que esta bacteria posee todos los genes implicados en la fijación de nitrógeno (genes *nif*) por lo cual en el grupo de trabajo se realizó un ensayo para corroborar si había fijación biológica de nitrógeno, la cual se realizó con la prueba de reducción de acetileno en varios tejidos del insecto y se confirmó que había fijación en hemolinfa y en los ovarios (Figura 4). Estos resultados indicarían que esta bacteria pudiera estar suplementando los compuestos nitrogenados los cuales son carentes en la dieta del insecto. Por otra parte, se ha intentado identificar la localización de este endosimbionte en el insecto empleando la técnica de FISH (Fluorescent *In Situ* Hybridization), la cual es ampliamente utilizada para este tipo de estudios; los resultados que se han obtenido hasta el momento indican que probablemente *Candidatus* Dactylipiibacterium carminicum se encuentre en los ovarios y en la hemolinfa (Figura 5) (Vera-Ponce de León, *et al.*, 2017).

Características	NFE1
Número de Contigs	122
N50 (pb)	50,206
Tamaño estimado del genoma(pb)	3,589,384
G+C (%)	62.74
CDS genes	3633
Con Función	2793
Hipotéticos	840
RNA genes	49
rRNA	3
tRNA	46

Tabla 2. Características del genoma de Candidatus Dactylopiibacterium carminicum

Figura 4. Candidatus *Dactylipiibacterium carminicum* participa en la fijación biológica de nitrógeno. A) Ensayo de reducción de acetileno en hemolinfa y ovarios. B) Genes *nif* presentes en el endosimbionte.

Con toda esta información aún no es claro cuál es el aporte y/o la función que tiene esta betaproteobacteria en la relación simbiótica con la cochinilla. Por esa razón el grupo de trabajo sigue indagando aún más para poder esclarecer y tener un panorama más amplio de la función de los endosimbiontes presentes en este insecto utilizando herramientas moleculares que se tienen hoy en día, como lo son las tecnologías de secuenciación de siguiente generación.

Figura 5. FLUORESCENT IN SITU HYBRIDIZATION para la localización de *Candidatus* Dactylopiibacterium carminicum en ovario de *Dactylopius coccus*. Microscopía de fluorescencia donde los puntos rojos observados indican la presencia del endosimbionte utilizando la sonda Cy5-END1-390 la cuál hibrida con el 16S rRNA.

3. Justificación

Las interacciones entre los endosimbiontes y sus insectos hospederos han sido base de diversos estudios a diferentes niveles. Sin embargo, poco se sabe acerca del papel que desempeña *Candidatus* Dactylopiibacterium carminicum en la simbiosis con el insecto *Dactylopius coccus*. Con el empleo de tecnologías de secuenciación de siguiente generación se podría dilucidar su función en la simbiosis al estudiar su genoma para así localizar genes de importancia y verificar su expresión con ayuda de un análisis transcriptómico.

4. Hipótesis

Si analizamos la expresión génica de *Candidatus* Dactylopiibacterium carminicum en los distintos tejidos de la cochinilla podremos inferir qué funciones cumple esta bacteria dentro de su hospedero y determinar los tejidos donde fija nitrógeno, así como, algunas otras funciones de interés.

5. Objetivos

- Objetivo general: realizar el análisis transcriptómico global de *Candidatus* Dactylopiibacterium carminicum de la cochinilla del carmín para conocer más acerca de su fisiología y su aporte en la simbiosis en diferentes tejidos del hospedero.
- Objetivos particulares:
- Analizar el transcriptoma de los endosimbiontes en búsqueda de genes de interés (fijación de nitrógeno, asimilación de nitrógeno, vías de síntesis de vitaminas, etc.).
- Dilucidar la localización de Candidatus Dactylopiibacterium carminicum en el insecto hospedero.

6. Materiales y métodos

6.1 Extracción de RNA

Para todos los métodos utilizados se esterilizaban previamente las pinzas con las que se realiza la disección. Se utilizaron diferentes pinzas para tomar los tejidos de intestino y ovarios a los cuales se les daba lavados con PBS antes de agregarlos al conjunto. Para el caso de la hemolinfa se utilizaban puntas estériles libres de RNAsas para colectarla. Entre cada individuo las pinzas se limpiaron de restos de tejidos, posteriormente se limpiaron con alcohol y se flamearon, seguido de una nueva limpieza con RNAzap[®] y de nuevo se flameaban.

6.1.1 Método RNeasy Qiagen

Se realizó la extracción siguiendo las indicaciones del kit, se hizo la disección de 10 insectos para obtener ovarios, intestinos y hemolinfa empleando un microscopio estereoscópico, se obtuvo un conjunto de 10 individuos y esto fue realizado por triplicado. Los tejidos se conservaron en RNAlater[®] (Thermofisher) en hielo hasta su utilización para la extracción.

Las muestras se centrifugaron 1 minuto a 8,000 rpm para retirar el RNAlater. Los tejidos se resuspendieron en 100 µL de Buffer de elución (proporcionado por el kit) y se le adicionó a cada tubo 2µL de proteinasa K mezclando con un ligero vortex el cual se dejó incubar durante 5 minutos a 37°C. Posteriormente se le adicionó 350 µL de buffer RLT (con beta-mercaptoetanol) a 60°C y se mezcló con vortex, seguido de esto se adicionó 250µL de etanol absoluto y se mezcló suavemente con la pipeta, resultando un volumen final de 700µL.

La mezcla se transfirió a una columna minispin (proporcionada por el kit) y se centrifugó 15 segundos a 10,000 rpm descartando la elución, seguido se adicionó 350 µL de buffer RW1 centrifugando durante 15 segundos a 10,000 rpm descartando la elución. Se realizó la digestión de DNA en columna agregando 80µL de DNAsa I (10µL de DNAsa I stock + 70µL de buffer RDD) y se dejó incubar 15 minutos a temperatura ambiente.

Se agregó 350µL de buffer RW1 y se centrifugó 15 segundos a 10,000 rpm descartando la elución, la columna se transfirió a un tubo colector nuevo de 2 mL (proporcionado por el kit) y se le adicionó 500 µL de buffer RPE y se centrifugó 15 segundos a 10,000 rpm descartando la elución. Se adicionó nuevamente 500µL de buffer RPE y se centrifugó durante 2 minutos a 10,000 rpm descartando la elución. La columna se transfirió a un tubo Eppndorf libre de RNAsas de 1.5mL (proporcionado por el kit), al cual se le adicionó 25µL de agua libre de RNAsas (proporcionada por el kit) y se centrifugo a 10,000 rpm durante 1 minuto. Este paso se repitió para obtener un volumen final de 50µL.

Para verificar la integridad del RNA se corrió un gel de agarosa al 2% durante 10 min a 120 mV empleando 2 µL de RNA; además se realizó la lectura correspondiente en el nanodrop para verificar la calidad y cantidad empleando 2µL de RNA.

6.1.2 Método CTAB

Se siguió el protocolo de Masoomi-Aladizgeh *et al.*, (2017), se realizó la disección de 20 y 30 individuos para obtener ovarios, intestinos y hemolinfa con ayuda de un microscopio estereoscópico. Se realizó un conjunto de los tejidos por triplicado y estos se mantuvieron en RNAlater[®] en hielo hasta su utilización. Previo al inicio de la extracción se le adicionaron 10µL de beta-mercaptoetanol por cada mililitro de buffer de extracción (CTAB 3% (p/v); 2M NaCl; 100mM Tris-HCl pH 7.5; 25mM EDTA; 2% polivinilpirrolidona (PVP)).

Las muestras se centrifugaron 1 minuto a 8,000 rpm para retirar el exceso de RNAlater[®]. Se adicionaron 500µL de buffer de extracción al tubo Eppendorf donde se tenían los tejidos. Se agregó nitrógeno líquido y con ayuda de un pistilo estéril se lisaron; al terminar la lisis el volumen se ajustó a 1mL.

Con ayuda de vortex se mezcló y se dejaron incubando a 65° C durante 10 minutos. Al terminar la incubación se le adicionó 600μ L de cloroformo: alcohol isoamílico (24:1) y se homogenizó en vortex para después centrifugar a 12,000 g durante 10 minutos a 4°C.

La fase acuosa se transfirió a un tubo Eppendorf de 1.5mL estéril, y se le adicionó 700µL de isopropanol frío, mezclando por inversión 3-4 veces suavemente; se centrifugó a 12,000 g durante 10 minutos a 4°C descartando el sobrenadante. La pastilla obtenida se lavó con 500µL etanol al 70% y se centrifugó a 8,000 g durante 5 minutos a 4°C, removiendo el sobrenadante y el exceso de etanol se dejó evaporar en campana.

A partir de este paso se resuspendió con 300µL buffer RLT y el contenido se transfirió a una columna minispin del kit RNeasy[®], del cual se siguió el protocolo de digestión en columna de DNA y purificación de RNA de acuerdo a las instrucciones del kit, para obtener el RNA en un volumen final de 50µL.

Para verificar la integridad del RNA se corrió un gel de agarosa al 2% durante 10 min a 120 mV empleando 2 µL de RNA; además se realizó la lectura correspondiente en el nanodrop para verificar la calidad y cantidad empleando 2µL de RNA.

6.1.3 Método TRIzol Invitrogen

La extracción se realizó según las indicaciones del proveedor, se hizo la disección de 15 y 20 insectos para obtener los ovarios, intestinos y hemolinfa con ayuda de un microscopio estereoscópico, se realizó un conjunto de los tejidos por triplicado y estos se mantuvieron en RNAlater[®] en hielo hasta su utilización.

Las muestras se centrifugaron 1 minuto a 8,000 rpm para retirar el exceso de RNAlater[®], se le adicionó 500µL de TRizol y los tejidos se lisaron empleando pistilos estériles; al tener el homogenizado el volumen se llevó a 1mL y se dejó incubar 3 minutos a temperatura ambiente. Se adicionó 200µL de cloroformo y se dejó incubar 5 minutos a temperatura ambiente.

Se centrifugó a 12,000 g durante 15 minutos a 4°C, la fase acuosa obtenida se separó a un tubo Eppendorf nuevo estéril y se le añadieron 500µL de isopropanol frío y se dejó incubar durante 10 minutos a temperatura ambiente; posteriormente se centrifugó a 12,000 g durante 10 minutos a 4°C y se decantó.

A la pastilla obtenida se le adicionó 1mL de etanol al 75% y se le dio vortex durante 30 segundos, posteriormente se centrifugó a 15,000 g durante 5 minutos a 4°C y se decantó el contenido. Se dejó secar durante 5-10 minutos en campana.

La pastilla se resuspendió con 100µL de agua libre de RNAsas más 350µL de buffer RLT (proporcionados por el kit RNeasy) y se mezcló suavemente con la pipeta para después transferir el contenido a una columna minispin (proporcionada por el kit); a partir de este paso se procedió con el protocolo de digestión de DNA y purificación de acuerdo al protocolo del kit RNeasy para obtener una elución final de 50µL.

Para verificar la integridad del RNA se corrió un gel de agarosa al 2% durante 10 min a 120 mV empleando 2 µL de RNA; además se realizó la lectura correspondiente en el nanodrop para verificar la calidad y cantidad empleando 2µL de RNA.

6.1.4 Método RNeasy Qiagen modificado

Se realizó la disección del insecto para obtener los ovarios, intestinos y hemolinfa con ayuda de un microscopio estereoscópico, se obtuvo un conjunto de 30 individuos y esto se hizo por triplicado; los tejidos se conservaron en RNAlater[®] (Thermofisher) en hielo hasta su utilización para la extracción.

Para la extracción de RNA se empleó el protocolo del kit RNeasy (Qiagen[®]) con algunas modificaciones hechas por Guerrero-Castro *et al.*, (2018). Antes de iniciar la extracción se le adicionó 10 μL de beta mercaptoetanol por 1mL de buffer RLT; y se preparó la lisozima 200μL por reacción (20 mg de lisozima en 1 mL de Tris/EDTA) al igual que la DNAsa I de la cual se emplean 80μL por reacción (10μL del stock de DNAsa en 70 μL de buffer RDD).

Se centrifugaron las muestras 1 minuto a 8,000 rpm para retirar el RNAlater y se le adicionó la lisozima la cual se dejó actuar durante 20 minutos a temperatura ambiente; posteriormente se centrifugaron (15 segundos a 12,000 rpm) y se resuspendieron en 700µL de buffer RLT y agitó con vortex durante 30 segundos; seguido de esto se transfirió el contenido a un microtubo con cierre de seguridad de 2mL el cual contenía perlas de óxido de zirconio (0.5mm, Next Advance) aproximadamente la misma cantidad de perlas por tejido (v/v) y se procedió a realizar la lisis en un disruptor celular (Bullet Blender Storm24) a máxima velocidad durante 5 minutos. Posteriormente se transfirió el contenido a dos tubos, a cada uno se le transfirió 350 µL para después adicionar una cantidad igual de etanol al 70%, se mezcló el contenido pipetenado suavemente y pasando el mismo a una columna minispin provisionada por el kit RNeasy y se centrifugó 10 segundos a 15,000 rpm; este último paso se repitió para así transferir todo el contenido de los dos tubos obtenidos anteriormente.

Después se procedió por completo con el protocolo indicado por el kit RNeasy (Qiagen) con la digestión de DNA en columna la cual se dejó durante 20 minutos a temperatura ambiente y al final se eluyó en un volumen final de 55 μL con agua libre de RNAsas.

Para verificar la integridad del RNA se corrió un gel de agarosa al 2% durante 10 min a 120 mV empleando 2 µL de RNA; además se realizó la lectura correspondiente en el nanodrop para verificar la calidad y cantidad empleando 2µL de RNA.

El RNA obtenido se precipitó con acetato de sodio 3M pH 5.5 /etanol y se envió a secuenciar a Macrogen Korea, la tecnología elegida para la secuenciación fue una línea de Illumina Hiseq 4000 (paired end) la cual da un tamaño de 100 pb; se utilizó el kit RiboZero (Mouse/Human/Rat) y RiboZero (Bacteria) para la eliminación de los RNA's ribosomales.

6.2 Análisis Transcriptómico

6.2.1 Análisis Bioinformático

Los datos de secuenciación se descargaron del servidor de Macrogen a el servidor Chichen (dirección IP: 132.248.220.19) del CCG-UNAM. Primeramente, se realizó el análisis de calidad de la descarga empleando md5sum, al corroborar la calidad de descarga se procedió a realizar el análisis de calidad de las secuencias empleando FastQC con los parámetros de default; debido a la buena calidad obtenida en la secuenciación no fue necesario realizar el trimming de las secuencias.

Los datos se organizaron por carpetas de acuerdo a los tejidos de los que provenían, en cada carpeta se tenían las tres réplicas (6 sets de datos por carpeta, es decir, 3 réplicas cada una con las secuencias forward y reverse); para el análisis se empleó el genoma de referencia de la beta-proteobacteria *Candidatus* Dactylipiibacterium carminicum el cual se encuentra bajo el número de acceso MQNN0000000 depositado en el GenBank de NCBI bajo el número de proyecto Bioproject PRJNA355137.

El genoma de referencia se utilizó para realizar el índice necesario para el mapeo de las lecturas obtenidas de la secuenciación, para esto se ocupó el programa bowtie2-build versión 2.3.0; una vez tenido listo el índice se procedió a realizar el mapeo de las lecturas utilizando el genoma de referencia como base, para esto se utilizó el programa bowtie2 version 2.3.0 empleando los siguientes parámetros para el mapeo: bowtie2 --very-sensitive -q -p 20 -x ../Beta_indice -1 X_R1_1.fastq -2 X_R1_2.fastq -S X1.sam, así para cada una de las réplicas (Langmead and Salzberg, 2012).

Posteriormente se empleó el programa samtools para los siguientes pasos: obtener los resultados en formato .bam empleando la opción –bS; una vez en formato .bam se procedió a obtener las estadísticas de los mapeos con el argumento stats; con el argumento sort se obtuvieron los datos mapeados y sorteados en un archivo con la extensión ".bam.sorted" para cada una de las réplicas.

Con el programa Artemis se adquirieron las cuentas obtenidas por los mapeos (Carver *et al.,* 2012); se cargaron los archivos .fasta y .gff del genoma de *Candidatus* Dactylopiibacterium carminicum en el programa y se utilizó de molde para cargar los archivos ".bam.sorted" de las 3 réplicas obtenidas por tejido; con esto se obtuvo el número de lecturas que caen en cada gen y de esta manera se cuantificaron para así guardarse en un archivo con formato de tabla.

Para realizar el análisis de expresión diferencial se empleó awk para concatenar las tablas de conteo, con la siguiente expresión: awk 'NF > 1{ a[1]"\t"\$4} END {for(i in a) print i a[i]}' ./Hemo/count_table ./Ov/count_table > Hemo_Ov_merged.art ; quedando así 3 tablas diferentes, las cuales fueron: Intestino vs Hemolinfa, Intestino vs Ovario y Hemolinfa vs Ovario.

6.2.2 Análisis de Expresión Diferencial

Para el análisis de expresión diferencial se empleó el programa R; se utilizaron las paqueterías ggplot y NOIseq. Las tablas de conteo obtenidas en el análisis bioinformático se emplearon para este análisis; a cada una se le calculó el log2 y empleando plotMDS y boxplot se construyeron las gráficas correspondientes para observar la distribución de las lecturas mapeadas antes de realizarles algún tratamiento de normalización de datos.

Los datos fueron normalizados por "tmm" (Trimmed mean of M-values por sus siglas en inglés) utilizando la paquetería de NOIseq versión 2.24.0. De los genes diferencialmente expresados, fueron seleccionados aquellos que cumplieran con las siguientes condiciones: un Log Fold Change \geq 1 y una prob \geq 0.95. Con estos datos se obtuvieron las tablas de los genes sobre y sub expresados en comparación entre los tejidos de los que fueron obtenidas las lecturas (Liu, *et al.*, 2012; Tarazona, *et al.* 2015).

Con los datos obtenidos se procedió a realizar las gráficas correspondientes (MD plot) para evaluar la expresión diferencial de los genes de acuerdo a la comparación de los tejidos del que provenían.

6.2.3 Reconstrucción del modelo y análisis filogenético de genes de interés

Con los datos obtenidos de los mapeos se procedió a realizar un modelo del metabolismo empleando imágenes prediseñadas (Lahortiga y Cox, 2018), en el cuál se describe la fisiología de la bacteria, así como algunas proteínas de interés de las cuales encontramos evidencia de expresión génica; para esto se tomó como criterio presencia o ausencia de lecturas en los genes, debido a la

similitud de expresión geníca entre hemolinfa e intestino estos se agruparon en un solo diagrama y la expresión en ovario se realizó por separado.

Por otra parte, se tomaron 2 genes que pudieran estar desempeñando un papel importante durante el proceso simbiótico y además, se encontraron expresados, a estos se les hizo un análisis filogenético (empleando las secuencias de aminoácidos) utilizando CLUSTALX 2.0 (Larking *et al.,* 2007) para el alineamiento de las secuencias, jModelTest (Posada, 2008) para estimar el mejor modelo y PhyML 3.1 (Guindon *et al.,* 2010) para la construcción del árbol por el método de Máxima Verosimilitud; posteriormente se empleó el programa MEGA7.0 (Kumar *et al.,* 2016) para la edición del mismo; este análisis sirvió para dilucidar su origen. El modelo seleccionado para la proteína Csy4 del sistema CRISPR/Cas fue LG+G (valor gama= 0.715) en tanto el modelo seleccionado para la proteína "mammalian cell entry" (*mce*) fue LG+G+F (valor gama=5.44).

Para el caso del sistema CRISPR/Cas se realizó una búsqueda de los spacers que contienen utilizando la plataforma en línea CRISPRFinder (https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index) la cual identifica los sistemas de CRISPR/Cas y además predice los spacers que se encuentran en estos; seguido de la obtención de los spacers se empleó la plataforma de viruSITE para realizar un BLAST dentro de su base de datos y de esta manera determinar posibles blancos contra los que podría actuar el sistema CRISPR/Cas presente en *Candidatus* Dactylopiibacterium carminicum. (Grissa *et al.,* 2007; Stano *et al.,* 2016)

6.2.4 Categorización funcional de genes diferencialmente expresados

Se empleó la base de datos del COG ("Cluster of Orthologous Groups" por sus siglas en inglés) del NCBI (https://www.ncbi.nlm.nih.gov/COG/) para clasificar los genes diferencialmente expresados de las tres condiciones probadas y asignarlos en las categorías funcionales correspondientes. Posteriormente se le realizó un análisis estadístico (t de student) para verificar que categoría funcional se encontraba estadísticamente diferenciada; se tomó un valor de p-value \leq 0.05 para establecer significancia.

6.3 FLUORESCENT *in situ* HYBRIDIZATION de *Candidatus* Dactylopiibacterium carminicum

Se realizó el procedimiento del FLUORESCENT *in situ* HYBRIDIZATION (FISH) de acuerdo al protocolo descrito por Koga *et al.,* (2009) con algunas modificaciones, se tomaron insecto ninfa 2 y se realizó

la disección de 24 individuos para colectar las células de la hemolinfa y ovarios. Se procedió a realizar la deshidratación con etanol: 30, 50, 75 y 100%, dejando 15 minutos por cada uno a temperatura ambiente. Se fijaron con solución de Carnoy´s (etanol: cloroformo: ácido acético; 6:3:1 v/v) durante toda la noche, al día siguiente se enjuagaron con etanol al 100% (5 minutos, 3 veces) para retirar el exceso de la solución de Carnoy´s. Se colocaron en una solución de H_2O_2 al 6% en etanol para disminuir la autofluorescencia (durante 1 semana cambiando la solución cada 3 días).

Para la hibridación con la sonda los tejidos se pasaron a un portaobjetos colocando un solo tejido por portaobjeto. Se procedió a realizar la serie de lavados: 3 lavados con etanol al 100% 5 minutos cada uno, 3 lavados con PBS tween (0.02%) 5 minutos cada uno y 3 lavados con buffer de hibridación (Tris-HCl 20mM a pH 8, NaCl 0.9M, SDS 0.01%, Formamida 30%) sin sonda 10 min cada uno, se añadieron 200 µL de buffer de hibridación con la sonda Cy5-END1-390 (5'-Cy5-

AAACCATTTCTTTCCGACTG-3') para *Candidatus* Dactylopiibacterium carminicum (Vera-Ponce de León, 2017) (a una concentración final de 100 pmol/ml) a la par se añadieron controles sin la sonda; se hibridaron durante toda la noche a 28 °C en cámara húmeda a 28 °C. A la par se realizaron los controles con RNAsa empleando 4µL de la misma dejando actuar durante 45 y 60 minutos a 31 °C, pasando este tiempo se les realizaron dos lavados con PBS tween y se hibridó de la misma manera.

Pasado el overnight se lavó con PBS tween a 42°C durante 10 min, seguido de dos lavados con PBS tween 10 minutos cada uno a temperatura ambiente; se tiñeron con DAPI (2.4 μ g/mL diluido en agua miliQ) durante 10 minutos; se dejaron secar y se les adicionó 1 gota de Citfluor, se cubrieron con un cubreobjetos limpio y se sellaron empleando barniz transparente.

Las muestras se observaron en el microscopio confocal Olymps FV1000 Confocal 2P uprighty las imágenes obtenidas fueron procesadas con el software ImageJ.

7. Resultados

7.1 Extracción de RNA

Se realizó la extracción de RNA de diversos tejidos (hemolinfa, intestino y ovario) de *Dactylopius coccus* de un conjunto de 30 insectos empleando diferentes metodologías. Los resultados obtenidos por los métodos de RNeasy kit, CTAB y TRIzol no se muestran debido a que la calidad y/o cantidad de RNA obtenidos no fueron las ideales para emplearlas en la secuenciación; además, los métodos de kit RNeasy y CTAB contenían remanentes de pigmento. Únicamente se muestran los resultados del método modificado del kit RNeasy (Qiagen).

El RNA extraído fue cuantificado en el nanodrop para tener una idea de su calidad y de la cantidad que se tenía, los resultados de las muestras enviados y procesadas por Macrogen se muestran en la Tabla 3, y se observó la integridad del RNA en gel (Figura 6).

Nombre de	Concentración	µg Totales	Volumen	RIN
la muestra	RNA (ng/μL)		final(µL)	
Dc_R1_HM	15.273	0.718	47	8.5
Dc_R1_OV	34.56	1.624	47	8.1
Dc_R1_GUT	14.885	0.7	47	6.9
Dc_R2_HM	12.591	0.592	47	8.6
Dc_R2_OV	38.409	1.805	47	8.5
Dc_R2_GUT	27.188	1.278	47	7.3
Dc_R3_HM	25.643	1.205	47	8.8
Dc_R3_OV	46.001	2.162	47	8.7
Dc_R3_GUT	102.149	4.801	47	7.7

Tabla 3. Análisis de calidad de las muestras de RNA

Gut: Intestino; HM: Hemolinfa; OV: Ovarios

Figura 6. Integridad del RNA de la réplica 3. Corrimiento electroforético del RNA extraido de los tejidos de hemolinfa (HM), intestino (Gut) y ovarios (Ov) de *Dactylopius coccus* con el protocolo modificado del kit Qiagen, el marcadorde talla molecular (MTM) empleado fue 1Kb Plus (Thermofisher).

7.2 Análisis Bioinformático

Las muestras de RNA se procesaron en Macrogen, empleandose la tecnología de secuenciación HiSeq 4000 de Illumina deplentado los RNA ribosomales con el kit RiboZero, los resultados de la secunciación se descargaron al servidor Chichen; dónde se corroboró la calidad de los mismos (Tabla 4) empleando el programa FastQC.

Con el genoma de *Candidatus* Dactylopiibacterium carminicum ya secuenciado se procedió a realizar el mapeo de las lecturas con el programa Bowtie2 empleando el flag - -very –sensitive. Utilizando samtools se obtuvieron estadísticas del mapeo, además de obtener los archivos ".bam.sorted" los cuales fueron necesarios para realizar el conteo de lecturas mapeadas en el programa Artemis. En la Tabla 5 se muestran los resultados obtenidos de los mapeos, en donde se denota que en intestino hubo un número mayor de lecturas mapeadas, seguidas de las lecturas en hemolinfa y al final las lecturas en ovario, en el cual se obtuvo la menor cantidad. Se calculó la cobertura de las lecturas en el genoma de la siguiente manera: C=LN/G en donde C= cobertura; L= longitud de las lecturas; N= número de lecturas; G=Longitud del genoma.

Muestra	Lecturas Totales	GC(%)	Q20(%)	Q30(%)
Dc_R1_HM	100,557,256	43.35	98.361	95.49
Dc_R1_OV	94,852,212	40.588	98.359	95.607
Dc_R1_GUT	75,390,068	42.704	98.405	95.573
Dc_R2_HM	98,198,606	41.032	98.292	95.458
Dc_R2_OV	95,631,842	41.697	98.466	95.751
Dc_R2_GUT	88,800,034	42.91	98.473	95.768
Dc_R3_HM	82,309,038	40.395	98.307	95.487
Dc_R3_OV	74,674,214	39.575	97.737	93.712
Dc_R3_GUT	60,908,808	44.109	98.343	95.453

Tabla 4. Análisis de calidad de los datos crudos.

Gut: Intestino; HM: Hemolinfa; OV: Ovarios

Tabla 5. Resultados del mapeo obtenido con Bowtie2

Muestra	Lecturas	Lecturas		Cobertura
	Totales	mapeadas	% (t/m)	
Gut1	100,557,256	1,196,517	1.58	33.33
Gut2	94,852,212	2,068,409	2.32	57.62
Gut3	75,390,068	1,199,740	1.96	33.42
HM1	98,198,606	430,934	0.42	12.00
HM2	95,631,842	246,291	0.25	06.86
HM3	88,800,034	317,682	0.38	08.85
OV1	82,309,038	224,855	0.23	06.26
OV2	74,674,214	183,954	0.19	05.12
OV3	60,908,808	159,832	0.21	04.45

Gut: Intestino; HM: Hemolinfa; OV: Ovarios; t/m= lecturas totales entre lecturas mapeadas

Las cuentas de las lecturas mapeadas al genoma de *Candidatus* Dactylopiibacterium carminicum se obtuvieron empleando el programa Artemis; con esto se generaron tres tablas las cuales se ocuparon para el análisis de expresión diferencial.

7.3 Análisis de Expresión Diferencial

Con los datos crudos de las tablas se procedió a realizar los gráficos correspondientes para ver la dispersión de las lecturas y la distribución de las mismas. Para eso se empleó el log2(cuentas+1) de las cuentas y se realizaron los boxplot correspondientes (Figuras 7, 8 y 9). Además, se empleó, plotMDS para ver la distribución de las mismas (Figuras 10,11 y 12).

Figura 7. Boxplots de las cuentas para la condición intestino vs hemolinfa. En las gráficas se observa el comportamiento de las cuentas crudas sin aplicar ningún criterio de normalización.

Figura 8. Boxplots de las cuentas para la condición intestino vs ovario. En las gráficas se observa el comportamiento de las cuentas crudas sin aplicar ningún criterio de normalización.

Figura 9. Boxplots de las cuentas para la condición hemolinfa vs ovario. En las gráficas se observa el comportamiento de las cuentas crudas sin aplicar ningún criterio de normalización.

Figura 10. PlotMDS de las cuentas sin normalizar de la condición intestino vs hemolinfa. En la imagen se muestra la distribución de los datos sin normalizar.

Figura 11. PlotMDS de las cuentas sin normalizar de la condición intestino vs ovario. En la imagen se muestra la distribución de los datos sin normalizar.

Figura 12. PlotMDS de las cuentas sin normalizar de la condición hemolinfa vs ovario. En la imagen se muestra la distribución de los datos sin normalizar.

Con la paquetería de NOISeq se realizó la normalización de las cuentas empleando el método "tmm"; con los datos normalizados se procedió a realizar los PCA correspondientes para observar la distribución de las muestras entre las condiciones antes mencionadas (Figuras 13,14 y 15). En el caso de la réplica 1 de ovarios al momento de realizar la normalización de los datos esta no se agrupaba con las otras dos réplicas, esta se agrupó con la condición contra la que se comparaba (intestino o hemolinfa), por lo tanto, se decidió quitar esta réplica para el análisis de expresión diferencial y únicamente trabajar con aquellas dos que se agrupaban entre sí (Figuras suplementarias 1 y 2).

Una vez normalizados los datos, se procedió realizar el análisis de expresión diferencial, tomando como criterio de selección un Log2FoldChange \geq 1 y un valor prob \geq 0.95. Con estos parámetros se obtuvieron un total de 122 genes sobre expresados y 95 genes sub expresados para la condición intestino vs hemolinfa; 128 genes sobre expresados y ningún gen sub expresado (a pesar de que cumplían con el Log2FoldChange asignado, estos genes no cumplían con el valor estadístico de corte asignado) para la condición de intestino vs ovario; 314 genes sobre expresados y 662 genes sub expresados para la condición de hemolinfa vs ovario. Con estos datos se procedió a realizar las gráficas MDplots (Figuras 16,17 y 18 respectivamente).

Figura 13. PCA plot de las cuentas normalizadas de la condición intestino vs hemolinfa. En la imagen se muestra la distribución de los datos normalizados, en la cual se observa el agrupamiento de las réplicas. Gut= intestino HM=hemolinfa.

Figura 14. PCA plot de las cuentas normalizadas de la condición intestino vs ovario. En la imagen se muestra la distribución de los datos normalizados, en la cual se observa el agrupamiento de las réplicas. Gut =intestino, OV=ovario.

Figura 15. PCA plot de las cuentas normalizadas de la condición hemolinfa vs ovario. En la imagen se muestra la distribución de los datos normalizados, en la cual se observa el agrupamiento de las réplicas. HM =hemolinfa, OV=ovario.

Figura 16. plotMD de la condición intestino vs hemolinfa. En la imagen se observa la distribución de la expresión de los genes de acuerdo a las cuentas obtenidas en el eje y y el valor de Log2FoldChange en el eje x; los genes diferencialmente expresados se muestran como puntos rojos quedando como sobre expresados la condición de intestino, en tanto la de hemolinfa como sub expresados.

Figura 17. plotMD de la condición intestino vs ovario. En la imagen se observa la expresión de los genes de acuerdo a las cuentas obtenidas en el eje y y el valor de Log2FoldChange en el eje x; los genes diferencialmente expresados se muestran como puntos rojos quedando como sobre expresados la condición de intestino, en tanto la de ovario como sub expresados.

Figura 18. plotMD de la condición hemolinfa vs ovario. En la imagen se observa la expresión de los genes de acuerdo a las cuentas obtenidas en el eje y y el valor de Log2FoldChange en el eje x; los genes diferencialmente expresados se muestran como puntos rojos quedando como sobre expresados la condición de hemolinfa, en tanto la de ovario como sub expresados.

Con los genes que se encontraron diferencialmente expresados se realizó la agrupación por función de acuerdo a la base de datos del COG (NCBI), a los cuales se les asignó su código correspondiente y se les otorgó una categorización funcional. Aquellos genes que no se les asignó un código quedaron agrupados en "NONE" (la mayoría de estos pertenecientes a proteínas hipotéticas y algunos otros correspondían a rRNA's y tRNA's). Se realizaron las gráficas correspondientes por condición (Figuras 19, 20 y 21), en las cuales en el eje "x" representa el número de genes por categoría y en el eje "y" se encuentran las categorías a las que estos fueron asignados.

Posteriormente, se realizó un análisis estadístico (*t* de student) para observar cuáles agrupaciones funcionales presentaban diferencia significativa entre condiciones, tomando como valor de corte un p-value de 0.95 marcando con un esterisco las columnas que cumplían esta condición.

Figura 19. Análisis de COG para la condición de intestino vs hemolinfa. Gut=intestino, Hemo=hemolinfa. En la gráfica se observa la distribución del número de genes agrupados por función; en el eje x se encuentra el número de genes y en él y la agrupación funcional. Las barras señaladas don un asterisco representan aquellas donde hubo un cambio significativo. Código funcional: A: "RNA processing and modification"; B: "Chromatin structure and dynamics"; C: "Energy production and convertion"; D: "Cell cycle control, cell division, chromosome partitioning"; E: "Amino acid transport and metabolism"; F: "Nucleotide transport and metabolism"; G: "Carbohydrate transport and metabolism"; H: "Coenzyme transport and metabolism"; I: "Lipid transport and metabolism"; J: "Translation, ribosomal structure and biogenesis"; N: "Cell motility"; O: "Posttranscriptional modification, protein turnover, chaperones"; P: "Inorganic ion transport and metabolism"; Q: "Secondary metabolites biosynthesis, transport and catabolism"; R: "General function predicted only"; S: "Funcion unknown"; T: "Signal transduction mechanism"; U: "Intracellular trafficking, secretion, and vesicular

transport"; V: "Defense mechanism"; W: "Extracellular structures"; X: "Mobilome: prophages, transposons"; Y: "Nuclear structure"; Z: "Cytoskeleton".

Figura 20. Análisis de COG para la condición de intestino vs ovario. Gut=intestino. Código funcional: A: "RNA processing and modification"; B: "Chromatin structure and dynamics"; C: "Energy production and convertion"; D: "Cell cycle control, cell division, chromosome partitioning"; E: "Amino acid transport and metabolism"; F: "Nucleotide transport and metabolism"; G: "Carbohydrate transport and metabolism"; H: "Coenzyme transport and metabolism"; I: "Lipid transport and metabolism"; J: "Translation, ribosomal structure and biogenesis"; K: "Transcription"; L: "Replication, recombination and modification"; M: "Cell wall/membrane/envelope biogenesis"; N: "Cell motility"; O: "Posttranscriptional modification, protein turnover, chaperones"; P: "Inorganic ion transport and metabolism"; Q: "Secondary metabolites biosynthesis, transport and catabolism"; R: "General function predicted only"; S: "Funcion unknown"; T: "Signal transduction mechanism"; U: "Intracellular trafficking, secretion, and vesicular transport"; V: "Defense mechanism"; W: "Extracellular structures"; X: "Mobilome: prophages, transposons"; Y: "Nuclear structure"; Z: "Cytoskeleton".

Function code

Figura 21. Análisis de COG para la condición de hemolinfa vs ovario. Ovary=ovario, Hemo=hemolinfa. En la gráfica se observa la distribución del número de genes agrupados por función; en el eje x se encuentra el número de genes y en él y la agrupación funcional. Las barras señaladas don un asterisco representan aquellas donde hubo un cambio significativo. Código funcional: A: "RNA processing and modification"; B: "Chromatin structure and dynamics"; C: "Energy production and convertion"; D: "Cell cycle control, cell division, chromosome partitioning"; E: "Amino acid transport and metabolism"; F: "Nucleotide transport and metabolism"; G: "Carbohydrate transport and metabolism"; H: "Coenzyme transport and metabolism"; I: "Lipid transport and metabolism"; J: "Translation, ribosomal structure and biogenesis"; N: "Cell motility"; O: "Posttranscriptional modification, protein turnover, chaperones"; P: "Inorganic ion transport and metabolism"; Q: "Secondary metabolites biosynthesis, transport and catabolism"; R: "General function predicted only"; S: "Funcion unknown"; T: "Signal transduction mechanism"; U: "Intracellular trafficking, secretion, and vesicular transport"; V: "Defense mechanism"; W: "Extracellular structures"; X: "Mobilome: prophages, transposons"; Y: "Nuclear structure"; Z: "Cytoskeleton".

De la lista de genes se seleccionaron cinco, los cuales se consideraron los más importantes para cada condición, los cuales se muestran en la Tabla 6. Los criterios de selección fueron aquellos cuya función se considerase importante para el proceso de simbiosis sin tomar en cuenta los valores de Log2FoldChange y de prob.

Tabla 6	5. Lista	de algunos	genes	diferencialmente	expresados	por condición.
	. EIJtu	ac algunos	Sches	ancientiannente	chpi coudoo	por condicion.

Gen	Log2FoldChange	prob				
Intestino vs hemolinfa sobre expresados						
Cobalamin biosynthesis protein CobW	2.583	0.97				
Prevent host death family protein	2.29	0.96				
Isochorismate synthase	2.19	0.97				
Type II secretion system protein Gspl	1.96	0.96				
Flagellar protein FliT	1.52	0.96				
Intestino vs hemolinfa sub expresad	los					
Bifunctional [glutamate—ammonia ligase]-adenylyl-L-tyrosine						
phosphorylase/ [glutamate—ammonia ligase]						
adenylyltransferase	-2.08	0.98				
Cytochrome c	-2.06	0.97				
Cytochrome c5 family protein	-1.9	0.97				
c-type cytochrome biogenesis protein CcmI	-1.8	0.98				
DNA mismatch repair protein MutS	-1.7	0.95				
Intestino vs ovario sobre expresado	os					
Glucose-6-phosphate dehydrogenase	2.35	0.97				
Type IV pilus biogenesis/stability protein PilW	1.84	0.96				
Pectate lyase	1.66	0.96				
Cytochrome-c oxidase 2C cbb3-type subunit I	1.17	0.96				
Amino acid ABC transporter substrate-binding protein	1.01	0.96				
Hemolinfa vs ovario sobre expresad	os					
Cell division protein FtsK	2.00	0.99				
Nitrogen regulatory protein P-II	1.76	0.99				
Cytochrome c oxidase cbb3-type subunit I	1.19	0.99				
Cytochrome b	1.1	0.97				
Glutamate synthase subunit alpha	1.06	0.99				
Hemolinfa vs ovario sub expresado	S					
Nitrate ABC transporter substrate-binding protein	-2.71	0.99				
Type IV secretion system-associated protein TagF	-2.37	0.99				
Dinitrogenase iron-molybdenum cofactor biosynthesis protein	-1.13	0.95				
Prevent host death protein	-1.13	0.95				
Nitrogen fixation negative regulator NifL	-1.13	0.95				

Dentro de los genes diferencialmente expresados se encontraron algunos implicados en la fijación de nitrógeno, así como en la asimilación; algunos implicados en la movilidad como las proteínas flagelares y proteínas de los sistemas de secreción.

7.4 Reconstrucción del Modelo Metabólico

Con los datos obtenidos del mapeo se procedió a proponer un modelo del metabolismo para *Candidatus* Dactylopiibacterium carminicum. Debido a la similitud que presentaban los tejidos de hemolinfa e intestino se agruparon en un solo esquema (Figura 22) y para ovario se realizó por separado ya que presentaba diferencias en cuanto a la expresión génica (Figura 23).

El modelo metabólico de *Candidatus* Dactylopiibacterium carminicum muesta que el metabolismo central se mantiene en los tres tejidos, al igual que la síntesis de aminoácidos y vitaminas, así como, la capacidad de tener un metabolismo aerobio y anaerobio. La expresión de tranportadores, pili y flagelo de igual manera se encuentran en los tres tejidos.

Por otra parte, la proteína mammalian cell entry, el sistema de secreción tipo dos y la fijación y asimilación de nitrógeno se encontraron expresados solamente en los tejidos de hemolinfa e intestino.

7.5 Análisis Filogenético de algunos Genes de Interés

Dentro de los genes que se encontraron expresados en hemolinfa e intestino que podrían tener una función importante durante el proceso simbiótico de la bacteria con el insecto hospedero se encontraron dos, estos fueron: *mce* y csy4, el gen *mce* se ha encontrado implicado en la internalización de las células bacterianas a células eucariotas, por otra parte, el gen *csy4* codifica para un sistema CRISPR el cuál podría estar brindando protección al hospedero. Para ello se emplearon las secuencias aminacídicas para realizar un análisis filogenético.

Para este análisis se utilizó el método de Máxima Verosimilitud para ambos genes, aplicando 1000 boostraps. El modelo LG+G (valor gama= 0.715) se utilizó para la proteína Csy4 del sistema CRISPR/Cas (Figura 24); en tanto el modelo para la proteína "mammalian cell entry (*mce*)" (Figura 25) fue LG+G+F (valor gama=5.44).

Figura 24. Árbol filogenético de la proteína Csy4 del sistema CRISPR/Cas. Empleando el método de Máxima Verosimilitud, con el modelo LG+G y un valor gama de 0.715 aplicando 1000 bootstraps. En rojo se resalta a *Candidatus* Dactylopiibacterium carminicum el cual queda dentro de un clado formado por gama-proteobacterias.

Ambos genes (*mce* y *csy4*) muestran una posble transferencia horizontal, de estos el gen *mce* pudiera provenir de actinobacterias y fue transferido a las beta-proteobacterias en las cuales se encuentran algunos endófitos de pastos (*Uliginosibacterium* y *Azoarcus*), en tanto el gen *csy4* proviene de gama-proteobacterias y este a su vez fue transferido a otras beta y gama-proteobacterias que no han sido reportadas como endófitos o endosimbiontes.

7.6 Identificación de Posibes Blancos del sistema CRISPR/Cas.

Los sistemas CRISPR/Cas se han descrito como mecanismos de protección de las bacterias en contra de virus, en este trabajo se encontró expresión de estos genes. Por lo que, se procedió a realizar un análisis para dilucidar los posibles virus contra los cuales podría estar confiriendo protección.

Para este análisis se empleó la plataforma de CRISPRFinder, con la cual se obtuvieron los spacers presentes en el sistema de CRISPR/Cas que se encuentra en *Candidatus* Dactylopiibacterium carminicum.

Con los spacers encontrados se procedió a identificar los posibles blancos contra los que podrían estar actuando utilizando la plataforma de BLAST en viruSITE (Tabla 7). Con este análisis se lograron identificar 3 spacers de diferentes longitudes cada uno, en tanto los posibles blancos fueron muy variados; el spacer1 podría estar dando protección contra virus de bacterias (*Clavibacter* phage CMP1, *Mycobacterium* phage Ariel, etc.), sin embargo, para el spacer2 y 3 se identificaron secuencias de posibles virus de insectos (*Hubei leech* virus 1 y *Apis mellifera* filamentous virus para el spacer2 y *Leucania separata* nucleopolyhedrovirus para el spacer3).

Spacer	Secuencia	Posibles blancos
Spacer1	CAAGCCCCCACGCTTTCCCGCTGCGCGGGCTCGCT	Pandoravirus dulcis
	GCCCCCCGAGGGGGTGC	Bovine aplhaherpervirus
		Clavibacter phage CMP1
		Pandoravirus salinus
		Bovine astrovirus B170/HK
		Mycobacterium phage Ariel
		Mycobacterium phage Bane1
		Mycobacterium virus Fionnbarth
		Mycobacterium virus Omega
Spacer2	GGAGAAAAGCCCCCACGCTCTCCCGCTCCGCGG	Hubei leech virus 1
		Apis mellifera filamentous virus
		Echerichia virus SSL2009a
		Gordonia phage CarolAnn
		Human herpesvirus 4 type 2
		Murid betaherpesvirus 1
		Planktothrix phage Pav-LD
Spacer3	GCAGAAGTGGCCGCGTTCGATCAGAGCCGAG	Leucania separata
		nucleopolyhedrovirus
		Mycobacterium phage Estave1
		Mycobacterium phage Hades
		Mycobacterium phage Llama
		Mycobacterium phage Sparkdehlily
		Mycobacterium virus CheB
		Mycobacterium virus Pacc40
		Salmonella phage SKML-39
		Shigella phage Ag3
		Achromobacter phage phiAxp-2
		Bovine alphaherpesvirus 5
		Gordonia phage Bowser
		Pandoravirus dulcis

Tabla 7. Spacers presentes en el sistema CRISPR/Cas y posibles blancos de estos.

En negritas se muestran aquellos virus patógenos de insectos.

7.7 Análisis de la Localización de *Candidatus* Dactylopiibacterium carminicum Mediante Microscopía de Fluorescencia

Se realizó microscopía de fluorescencia con el fin de analizar la presencia de *Candidatus* Dactylopiibacterium carminicum en los ovarios y en la hemolinfa del insecto hospedero. Las imágenes obtenidas fueron procesadas con el software ImageJ en el cual se realizó la reconstrucción de las mismas utilizando los planos tomados en el eje Z con el microscopio confocal agrupándolas para así obtener una reconstrucción en tercera dimensión (3D) del tejido, los resultados obtenidos se tomaron a 10 y 40 aumentos. En la Figura 26 se muestran los resultados obtenidos para el control con RNAsa; la Figura 27 es la imagen obtenida a 10X en 3D donde se logra observar la señal para la sonda específica para *Candidatus* Dactylopiibacterium carminicum en color rojo. En la Figura 28 se observa un aumento de 40x de una región del ovario en donde se observa una ovariola con un huevo en formación y señal de la sonda dentro del mismo. En cuanto a las observaciones en células de hemolinfa, no se logró observar ninguna señal, además en todas las muestras procesadas se recuperaron muy pocas células (0-2 por campo).

Figura 26. Hibridación fluorescente *in situ* **de ovarios control.** Ovarios control con el tratamiento de RNAsa, en la imageno no se observa ninguna señal, indicando un buen tratamiento control.

Figura 27. Hibridación fluorescente *in situ* de ovarios con sonda específica para *Candidatus* **Dactylopiibacterium carminicum.** En la imagen se observa la presencia de *Candidatus* Dactylopiibacterium carminicum (puntos rojos) en el ovario con una reconstrucción en 3D a un aumento de 10x.

Figura 28. Hibridación fluorescente *in situ* de ovarios con sonda específica para *Candidatus* **Dactylopiibacterium carminicum.** En la imagen se observa la presencia de *Candidatus* Dactylopiibacterium carminicum (puntos rojos) en el ovario con una reconstrucción en 3D a un aumento de 40x.

8. Discusión

El presente trabajo se realizó con la intención de analizar la simbiosis que lleva a cabo la betaproteobacteria *Candidatus* Dactylopiibacterium carminicum con su hospedero *D. coccus*; para esto se emplearon tecnologías de secuenciación de siguiente generación. En un análisis previo realizado por el grupo de trabajo (Vera-Ponce de León, *et al.*, 2017) se ensambló y anotó el genoma de la beta-proteobacteria en el cuál se encontró la presencia de los genes *nif* y se corroboró su funcionalidad mediante estudios de reducción de acetileno.

En el presente trabajo se realizó un análisis metatranscriptómico, empleando la tecnología Illumina HiSeq 4000, en donde se procedió a obtener el RNA total de diferentes tejidos del insecto. El método modificado de Qiagen propuesto por Guerrero-Castro *et al.*, (2018) ajustando ciertas modificaciones como el número de insectos disectados por conjunto, la cantidad de lisozima y los tiempos de acción de esta misma y la cantidad de perlas empleadas para lisar los tejidos, resultó ser el mejor ya que nos permitió obtener una muestra libre de pigmento (en algunos de los otros métodos no se eliminaba) y además con una buena concentración en comparación con los otros métodos también probados.

Una vez obtenida la muestra, se mandó secuenciar, previa eliminación de los rRNA's con el kit Ribozero. Con los datos obtenidos de la secuenciación y después de haber realizado el análisis de calidad de las secuencias se procedió a mapear las lecturas contra el genoma de referencia. Los valores del porcentaje de lecturas mapeadas al genoma de *Candidatus* Dactylopiibacterium carminicum son similares a algunos datos publicados por Mann *et al.*, (2017). Ellos obtienen un porcentaje que va de 0.85 a 1.19 en el cromosoma y de 0.05 a 0.09 en el plásmido del endosimbionte *Cardinium hertigii* de la avispa parasitioide *Encarsia suzannae* empleando insectos machos y hembras completas para la extracción del RNA. Los porcentajes de mapeos también son similares a los publicados por Bing *et al.* (2017) en donde, para los endosimbiontes *Wigglesworthia* y *Sodalis* de la mosca *Glossina m. morsitans* fueron de 35 y 0.1 respectivamente, de la muestra obtenida de bacteriomas de la mosca.

En nuestro estudio se obtuvieron un promedio de 1.95, 0.35 y 0.21% de lecturas mapeadas de *Candidatus* Dactylopiibacterium carminicum en los tejidos de intestino, hemolinfa y ovarios respectivamente. En los estudios previamente mencionados y en el nuestro se observa un porcentaje de mapeos a los genomas de los endosimbiontes relativamente bajo, esto podría

deberse a que la mayoría de las lecturas pertenecen al insecto hospedero y además existe la presencia de otras bacterias en algunos tejidos (como en los intestinos) de los insectos. Todo esto disminuye la cantidad de lecturas de los endosimbiontes. Además, la abundancia relativa y la vida media de cada RNA al momento de extraer las muestras impacta directamente con la cantidad de lecturas totales que mapean en el sistema que se encuentran. Por otra parte, la presencia de bacteriomas bien definidos como en el caso de la mosca *Glossina* enriquece la cantidad de bacterias endosimbiontes, tal es el caso de *Wigglesworthia* para el cual se tuvo un porcentaje de mapeos mayor en comparación con los obtenidos para *Cardinium* (endosimbionte de la avispa parasitoide) y *Candidatus* Dactylopiibacterium carminicum de nuestro trabajo en el que en ambos insectos no se han encontrado bacteriomas.

La dispersión de las lecturas que se observa en los datos obtenidos para los tejidos de hemolinfa y ovarios, en los cuales la media de las lecturas no es similar podría deberse a que a pesar de que los criterios *a priori* que se tomaron (estadio ninfal 2, sin desarrollo de huevecillos en los ovarios), los insectos podrían haber estado en proceso de desarrollo diferente entre las réplicas por lo que los niveles y la expresión *per se* de los endosimbiontes se vio afectada, otra posible explicación podría ser que este endosimbionte se encuentra transladandose de un tejido a otro (de la hemolinfa propiamente a los ovarios, o del intestino a la hemolinfa).

Los fijadores de nitrógeno como *Rhizobium* se encuentran intracelularmente, en cambio algunos otros fijadores de nitrógeno asociados a plantas, como *Azoarcus* (el cuál es cercano filogenéticamente a *Candidatus* Dactylopiibacterium carminicum) son extracelulares y en general la fijación de nitrógeno llevada a cabo por los simbiontes intracelulares comparada con los de vida libre son más altos (Hurek, *et al.*, 2002; Herridge, *et al.*, 2008; James, 2000).

La presencia de bacterias con capacidad de fijar nitrógeno en insectos se ha observado en algunas hormigas, termitas y escarabajos. Estos organismos se encuentran en los intestinos de los insectos hospederos, de manera más abundante en la región del intestino posterior y cerca o en los túbulos de Malpighi. Estos son considerados ectosimbiontes ya que no se ha visto que se encuentren dentro de las células de los hospederos, sin embargo, se ha logrado observar la formación de pliegues en las paredes de los intestinos formando de esta manera criptas en las cuales se quedan albergadas las bacterias (van Borm, *et al.*, 2002; Hongoh, *et al.*, 2008).

La formación de pliegues en el intestino de los insectos permite generar un ambiente con baja disponibilidad de oxígeno. Esto lo demostraron Ceja-Navarro *et al.,* (2014) en el escarabajo

49

Odontotaenius disjunctus los perfiles de concentración de oxígeno en las diferentes secciones del intestino (anterior, medio y posterior) en una profundad de 500μm a 1500μm (para la región anterior y posterior del intestino posterior) y 3000μm (para la región media y anterior del intestino posterior) la concentración es prácticamente de 0μmolL⁻¹. Encontraron una mayor expresión de los genes *nifH* en la porción anterior del intestino posterior en comparación con las demás porciones del intestino del escarabajo, en este caso el rol de la fijación de nitrógeno se lo atribuyen a algunas especies de Bacteroidetes (*Paludibacter*), de igual manera hacen referencia a la presencia de algunos otros géneros que también podrían estar participando en la fijación (*Clostridium, Azoarcus, Bradyrhizobium*), pero estos no se encontraron presentes en la región en la que hubo una mayor expresión de los genes *nifH*.

Samoylova *et al.* (2015) midieron mediante ensayos de reducción de acetileno la fijación de nitrógeno por las bacterias en los intestinos de dos especies de escarabajos (*Agriotes obscurus* y *Selatosomus aeneus*), obteniendo 2.67nmol etileno h ⁻¹ tejido g ⁻¹ y 9.9nmol etileno h ⁻¹ tejido g ⁻¹ respectivamente. Estos datos comparados con los reportados por Vera-Ponce de León *et al.* (2017) para *Candidatus* Dactylopiibacterium carminicum, muestran una menor tasa de fijación. En el caso de este simbionte se reporta que la fijación fue de 38nmol etileno h ⁻¹ tejido g ⁻¹ en hemolinfa y de 11.58nmol etileno h ⁻¹ tejido g ⁻¹ en ovarios.

Se tiene como idea presuntiva que *Candidatus* Dactylopiibacterium carminicum se encuentra de manera intracelular durante la simbiosis con su insecto hospedero y de esta manera podría estar potenciando la fijación de nitrógeno. Esto se sustenta con la presencia un gen llamado *mce* (mammalian cell entry) el cual codifica para una proteína transmembranal con la actividad de inducir a las células eucariotas de internalizar a las bacterias mediante la interacción de las β -integrinas presentes en la superficie de las membranas celulares y se encontró expresado en las muestras provenientes de los tejidos de hemolinfa e intestino.

La proteína MCE de *Candidatus* Dactylopiibacterium carminicum pertenece al tipo I de los dominios MCE, en el cual dentro del contexto genético presenta un dominio transmembrana seguido del gen *mce*, rio arriba este gen se encuentran transportadores tipo ABC (ATPasa) y permeasa y rio abajo se encuentra un dominio DUF3460 los cuales corresponden a los dominios tipo I MCE presentes en beta-proteobacterias. Posiblemente al tener todo el contexto genético y además haber encontrado expresión de este gen, se puede dilucidar que es funcional. Esto se debe comprobar realizando

microscopia electrónica de barrido y transmisión (Chitale, *et al.*, 2001; Isom, *et al.*, 2017; Zhang, *et al.*, 2018).

Para el análisis de expresión diferencial se evaluaron 3 comparaciones (intestino vs hemolinfa, intestino vs ovarios y hemolinfa vs ovarios). En este análisis la réplica 1 de ovarios fue descartada debido a que presentaba diferencias con las otras dos réplicas. Esto podría deberse a que a pesar de extraer el RNA al mismo tiempo y que los insectos fueron seleccionados de una misma penca de nopal y al momento de realizar la disección aquellos que presentaran huevecillos desarrollados eran eliminados, algunos podrían estar en estadios menos avanzados, lo cual posiblemente modificó la expresión de los genes del endosimbionte.

Con estos datos se obtuvieron los mapeos y las cuentas crudas de cada gen mediante un análisis bioinformático y posteriormente con la paquetería NOISeq en R se identificaron los genes diferencialmente expresados, los cuales se ocuparon para realizar el análisis por categoría funcional empleando los COG (Clúster of Orthologous Groups, por sus siglas en inglés).

En la categorización funcional por COG se encontró que algunas de las categorías más importantes detectadas fueron el transporte y metabolismo de aminoácidos en las muestras provenientes de los tres tejidos; replicación, recombinación y reparación sólo en las muestras provenientes de hemolinfa y ovarios; movilidad celular en las muestras de hemolinfa y ovarios; mecanismos de defensa en las muestras de intestino y hemolinfa; mecanismos de traducción en todas las muestras.

Candidatus Dactylopiibacterium carminicum al parecer se encuentra metabólicamente más activa en la hemolinfa (donde podría estar brindando un mayor aporte de nutrientes a su hospedero), en contraste con las muestras de ovarios en donde la expresión de genes y las categorías funcionales asignadas fueron menores en comparación con las muestras provenientes de los otros dos tejidos.

Para los genes diferencialmente expresados se tomó en cuenta un criterio de un Log2FoldChange >= 1 y un valor de prob > 0.95, para la comparación entre intestino vs hemolinfa se encontraron 122 genes sobre expresados y 95 sub expresados; dentro de los genes sobre expresados algunos de los más importantes dentro del proceso simbiótico fueron la proteína CobW la cual está implicada en la síntesis de riboflavina, una antitoxina, la isocorismato sintasa y una proteína flagelar; de los genes subexpresados se encontró toda una serie de citocromos (cbb3), los cuales forman parte de la cadena respiratoria anaerobia (utiliza nitratos como último aceptor de electrones), esto es

importante ya que se puede dilucidar que en la hemolinfa están en un ambiente reducido y puede propiciar la fijación de nitrógeno (Pitcher y Watmough, 2004).

En la comparación entre intestino y ovarios únicamente se encontraron 128 genes sobre expresados, ya que dentro de los sub expresados ninguno de ellos alcanzó un valor de corte aún si cumplían con el valor puesto de Log2FoldChange. De los genes sobre expresados se encontraron los citocromos cbb3, los cuales como ya se mencionó anteriormente están implicados en la fijación de nitrógeno, elementos de movilidad y adherencia celular (proteínas estructurales de pilis), y pectato liasas las cuales les podría permitir utilizar fuentes de carbono complejas como la pectina la cual se encuentra en el nopal del cual se alimenta el insecto hospedero.

Por último, para la comparación entre hemolinfa y ovarios, se tuvo un total de 314 genes sobre expresados y 662 genes sub expresados. Dentro de los genes sobre expresados, los más importantes fueron los citrocromos cbb3, una proteína reguladora de nitrógeno y la glutamato sintasa subunidad alfa. En conjunto, estos datos sugieren que se está llevando a cabo la fijación de nitrógeno en la hemolinfa. Por otra parte, dentro de los genes sub expresados se encontraron el sistema toxina antitoxina; el regulador negativo de la fijación de nitrógeno, lo cual junto con la ausencia de lecturas en los genes *nif*, refuerza la idea de que en los ovarios no se está llevando a cabo la fijación de nitrógeno.

Con los datos obtenidos de los mapeos se logró realizar los modelos metabólicos de acuerdo con el tejido, esto sirvió para conocer más acerca de la fisiología de *Candidatus* Dactylopiibacterium carminicum y su posible aporte para la simbiosis. De manera global a pesar de estar filogenéticamente más relacionado este endosimbionte con *Uliginosibacterium* su fisiología es más parecida a la de *Azoarcus*.

Candidatus Dactylopiibacterium carminicum utiliza dicarboxilatos de cuatro carbonos como principal fuente de carbono, tiene la glucolisis completa, la vía de las pentosas fosfato, el ciclo de los ácidos tricarboxílicos como metabolismo central, síntesis de lípidos y bases nitrogenadas. Además, tiene la capacidad de respirar tanto oxígeno como nitratos o fumarato. Así mismo, tiene activos, el ciclo de la urea el cuál es importante para el proceso simbiótico ya que ayuda a la depuración de compuestos nitrogenados, la fijación de nitrógeno y la síntesis de vitaminas y cofactores (Hurek *et al.,* 2002; Hang-Yeon, *et al.,* 2008; Oren, 2014). Otro punto importante es que aún conserva un número considerable de tRNA's comparado con otro endosimbionte beta-proteobacteria (*Tremblaya*), él cuál ha perdido algunos (varia de entre 31 a 10 tRNA's de acuerdo a

52

la especie y el hospedero) y se ve complementado por su cosimbionte o por su insecto hospedero (Husnik y McCutcheon, 2016).

De los genes expresados por *Candidatus* Dactylopiibacterium carminicum en los diferentes tejidos, se encontró que la fijación de nitrógeno se lleva a cabo en hemolinfa e intestino. La asimilación de nitrógeno y la incorporación a aminoácidos; la expresión de sistemas toxina/antitoxina se encontró en los tres tejidos: genes que codifican para algunas de estas funciones se encontraron más expresados en las muestras provenientes de intestino, lo cual podría indicar que provee protección contra algunas bacterias invasoras. La presencia de pectato liasas expresadas en los tejidos de intestino y hemolinfa provee información de que esta bacteria es capaz de degradar pectina. Sin embargo, esta actividad podría ser propia de las poblaciones del intestino ya que es prácticamente imposible que este polímero pase la barrera intestinal, pero dado la posible presencia del monómero (ácido galacturónico) en la hemolinfa podría estar induciendo la expresión de estos genes (James y Hugouvieux-Cotte-Pattat, 1996).

La presencia de flagelos demuestra que esta bacteria tiene la capacidad de desplazarse dentro del insecto hospedero, para poder llegar a los diferentes tejidos en donde se establece. Además, los pilis y el sistema de secreción tipo II que tiene esta bacteria pudiera estar ayudándola a la adherencia a las células del hospedero para después internalizarse a las mismas empleando la proteína MCE antes mencionada (Hernandes, *et al.,* 2013).

El análisis realizado al sistema CRISPR/Cas que se encontró activo en la hemolinfa y en intestino, muestra que éste pudo ser adquirido por una transferencia horizontal. A pesar de que algunas betaproteobacterias cuentan con este sistema, este endosimbionte presenta uno similar al subtipo Ypest, el cual comprende a los genes *csy* de gama-proteobacterias (Haft *et al.*, 2005). Con la búsqueda de los spacers que contiene este sistema se encontró que podría estar brindando protección al hospedero, ya que éste puede actuar contra algunos virus de insectos.

Además, con los resultados obtenidos a partir de la microscopia de fluorescencia, se refuerza la hipótesis de que este endosimbionte es transferido a la progenie de *Dactylopius* de manera vertical, ya que se encontró en las células germinales las cuales darán origen a huevecillos, propiciando así el mantenimiento del mismo como sucede con otros endosimbiontes (Camacho, *et al.*, 2017).

Con los datos obtenidos en este estudio nosotros proponemos que es factible cultivar a esta bacteria, ya que aún cuenta con un genoma bastante completo como para poder ser aislada en medios sintéticos.

9. Conclusiones

- El método modificado de Qiagen resultó ser el mejor para obtener RNA de calidad, además de retirar por completo el ácido carmínico.
- La dispersión en los datos de las muestras de hemolinfa y ovario sugieren que hay poblaciones que presentan algunas diferencias entre ellas.
- Candidatus Dactylopiibacterium carminicum desempeña un papel importante en proporcionar compuestos de nitrógeno a su hospedero, ya que se encontraron expresadas las vías metabólicas para la fijación y asimilación de nitrógeno, así como, las vías de síntesis de aminoácidos.
- Candidatus Dactylopiibacterium carminicum se encuentra metabólicamente más activa en el tejido de hemolinfa seguido de intestino y por último en ovario.
- Las toxinas, los transportadores tipo MDR's y los sistemas de CRISPR/Cas que se encontraron expresados pudiesen estar desempeñando un papel de protección a la misma bacteria y al mismo tiempo al hospedero de agentes patógenos (bacterias y virus) o evitando la colonización por microorganismos provenientes de la dieta o del ambiente.
- La proteína de membrana "mammalian cell entry" podría estar relacionada con la internalización/colonización de las células del hospedero.
- A pesar de ser un endosimbionte esta bacteria aún cuenta con un genoma bastante completo y además funcional.

10. Anexos

	prob	log2FC	Gene	COG
cds2040	0.99999998	4.10295059	hypothetical protein	none
cds1002	0.96440622	3.51441802	aminoacetone oxidase family FAD-binding enzyme	COG2081
cds1605	0.9815572	3.50247831	short-chain dehydrogenase	COG0300
id47	1	3.45800542	16S ribosomal RNA	none
rna19	1	3.45800542	16S ribosomal RNA	none
cds3406	0.97893059	3.17794395	LysR family transcriptional regulator	COG0583
cds109	0.963293	3.04238421	hypothetical protein	COG2382
cds2849	0.96645883	3.01597044	hypothetical protein	none
cds1791	0.97958137	2.98730973	chemotaxis protein CheA	COG0643
id44	1	2.85479983	23S ribosomal RNA	none
rna16	1	2.85479983	23S ribosomal RNA	none
cds2608	0.97177308	2.80563285	hypothetical protein	none
cds1837	0.97415333	2.76359692	hypothetical protein	COG2199
cds764	0.98201516	2.67379431	pilus assembly protein	COG3419
cds1019	0.97638121	2.65700124	hypothetical protein	COG3895
cds384	0.97973584	2.60158673	excinuclease ABC subunit A	COG3549
cds517	0.97994412	2.58358073	cobalamin biosynthesis protein CobW	COG0523
cds490	0.96710588	2.57266039	multidrug transporter subunit MdtA	COG0845
cds1256	0.97393347	2.56973095	SAM-dependent methyltransferase	COG2230
cds2716	0.97437085	2.5208742	hypothetical protein	none
cds2430	0.97471105	2.49162364	ABC transporter	COG4181
cds2775	0.97739521	2.47667539	hypothetical protein	none
cds805	0.98067892	2.44979556	TonB-dependent receptor	COG4771
cds544	0.96948179	2.44793887	23S rRNA (cytidine(2498)-2'-O)-methyltransferase RImM	COG2933
entE	0.97919103	2.44095476	2%2C3-dihydroxybenzoate-AMP ligase	COG1021
cds1788	1	2.43338368	hypothetical protein	none
cds3114	0.96755608	2.42507251	hypothetical protein	none
cds1338	0.99540716	2.42198624	granule-associated-like protein	COG5490
cds1964	0.96717123	2.32489088	hypothetical protein	COG3150
cds1745	0.97755795	2.30001335	hypothetical protein	COG0642
cds2833	0.96725636	2.29129305	prevent-host-death family protein	COG2886
cds2682	0.97713324	2.28219209	bifunctional metallophosphatase/5'-nucleotidase	COG0737
cds488	0.96743989	2.2734842	sulfonate ABC transporter permease	COG4986
cds1776	0.96815015	2.26194578	chromosome segregation protein SMC	COG1196
argC	0.95885553	2.25200377	N-acetyl-gamma-glutamyl-phosphate reductase	COG0002

Tabla 9. Genes sobre expresados de la condición Intestino vs Hemolinfa.

cds1280	0.96812255	2.25094083	Fe3+/spermidine/putrescine ABC transporter ATP- binding protein	COG3842
cds3306	0.96826162	2.22322924	hypothetical protein	COG3287
cds888	0.97552257	2.22023712	ABC transporter ATP-binding protein	COG0488
cds2773	0.9676741	2.21797776	hypothetical protein	none
cds2726	0.98077686	2.20461448	metalloprotease TldD	COG0312
cds655	0.95884682	2.20285639	hypothetical protein	COG3111
cds2700	0.97836013	2.19887464	isochorismate synthase	COG1169
cds230	0.95945594	2.19119562	biopolymer transporter ExbD	COG0848
cds531	0.98063468	2.1873535	acyltransferase	COG4645
mtgA	0.97635963	2.18430649	monofunctional biosynthetic peptidoglycan	COG0744
			transglycosylase	
cds3429	0.98819956	2.1591227	amino acid permease	COG0531
cds3099	0.97792267	2.10757923	hypothetical protein	COG2207
cds386	0.98736765	2.08865681	hypothetical protein	COG3617
cds1773	0.95901396	2.07077674	TonB-dependent siderophore receptor	COG4771
cds2429	0.98061738	2.06003919	hypothetical protein	none
cds1772	0.96828324	2.05725237	SAM-dependent methyltransferase	none
cds50	0.95671351	2.05605709	BolA family transcriptional regulator	COG0271
cds2778	0.96826088	2.05293974	hypothetical protein	none
cds2791	0.96826088	2.05293974	terminase	COG5525
cds997	0.9712904	2.0512972	hypothetical protein	none
cds3245	0.98786429	2.04393966	hypothetical protein	COG0457
cds1341	0.9746117	2.01855556	phenylphosphate carboxylase subunit delta	COG1778
cds1607	1	2.00426621	hypothetical protein	none
cds1832	0.96123028	2.00264761	metal-dependent hydrolase	COG1451
cds1307	0.96737755	2.00079502	TIGR00730 family Rossman fold protein	COG1611
emrB	0.96709628	1.99485233	MFS transporter	COG2814
cds3442	0.97932587	1.98433693	hypothetical protein	none
cds3011	0.97007053	1.97493979	chorismate synthase	COG0082
gspl	0.96720094	1.96226609	type II secretion system protein Gspl	COG2165
cds2738	0.96722049	1.95706322	colicin V production protein	COG1286
cds229	0.9641742	1.89682302	biopolymer transporter ExbB	COG0811
cds1126	0.96218945	1.88780588	acyl carrier protein	COG0236
cds613	0.9674932	1.86120689	MFS transporter	none
gabD	0.9674932	1.86120689	succinate-semialdehyde dehydrogenase (NADP(+))	COG1012
cds1539	0.98055713	1.82333448	TonB-dependent siderophore receptor	COG4771
cds1061	0.97730483	1.80458208	hypothetical protein	none
cds1603	0.97724191	1.8024331	cell division protein FtsN	COG3087
cds1840	0.97581294	1.79945258	TIGR01777 family protein	COG1090
cds2848	0.95933734	1.79929614	hypothetical protein	COG0679
cds530	0.98185006	1.79230085	glucan biosynthesis protein D	COG3131

cds2834	0.96069939	1.78729766	DUF3368 domain-containing protein	COG2405
cds1510	0.96560734	1.78188406	flavin reductase	COG1853
cds1789	0.9799123	1.77430946	chemotaxis protein	COG0840
cds827	0.96722871	1.77086729	phosphoribosylaminoimidazolesuccinocarboxamide	COG0152
			synthase	
cds451	0.95449455	1.73232708	sugar ABC transporter permease	COG0395
cds1396	0.95034539	1.72980757	hypothetical protein	COG2165
cds2607	0.96712124	1.69736174	transcription elongation factor GreAB	COG0782
rpoE	0.98808813	1.64699475	tRNA polymerase sigma factor RpoE	COG1595
cds444	0.95496267	1.63505883	LysR family transcriptional regulator	COG0583
cds260	0.96752346	1.62062163	GGDEF domain-containing protein	none
cds228	0.95615946	1.6099801	energy transducer TonB	COG0810
cds1182	0.96729847	1.55941728	hypothetical protein	COG0672
cds2341	0.98074074	1.55226686	hypothetical protein	COG1345
cds361	0.96834536	1.5447874	ATP-binding protein	COG0642
cds2343	0.96779232	1.52603352	flagellar protein FliT	none
cds2980	0.96811331	1.51758063	SIMPL domain-containing protein	COG2859
cds663	0.96690619	1.49738831	glycoside hydrolase	COG0791
cds1441	0.97427984	1.47552867	alkyl hydroperoxide reductase subunit F	COG3634
cds2431	0.96718465	1.47049767	arylesterase	COG2755
cds455	0.96368415	1.43144914	hypothetical protein	none
cds1604	0.96163531	1.41702338	twin-arginine translocation pathway signal protein	COG1651
cds2344	0.97236121	1.39875273	flagellar hook-length control protein FliK	none
cds2069	0.96712244	1.39712369	hypothetical protein	none
cds268	0.97889751	1.39626155	hypothetical protein	COG3133
cds1808	0.97117731	1.37480719	BadM/Rrf2 family transcriptional regulator	COG1959
cds3106	0.97962082	1.3740863	peptidase M16	COG0612
cds1528	0.9721342	1.35377708	hypothetical protein	COG5316
cds2228	0.9828123	1.34764196	hypothetical protein	none
cds869	0.96718226	1.34555026	electron transfer flavoprotein-ubiquinone	COG0644
			oxidoreductase	
cds2372	0.96829537	1.33415023	hypothetical protein	COG0642
cds429	0.97412412	1.33176332	transcriptional regulator	COG1396
cds3392	0.98031241	1.31772023	transporter	COG4395
cds1527	0.96387182	1.30958493	NADPH-dependent FMN reductase	COG0431
cds672	0.96752937	1.30896711	ABC transporter ATP-binding protein	COG1131
cds1771	0.9758439	1.29635678	repressor LexA	COG1974
cds1755	0.9640082	1.29560072	phosphoribosyl-ATP diphosphatase	COG0140
cds402	0.9799665	1.28629235	anti-sigma 24 factor	COG3073
zwf	0.95318897	1.27682245	glucose-6-phosphate dehydrogenase	COG0364
cds2037	0.97922931	1.23994694	hypothetical protein	COG4575

cds1175	0.96710124	1.12853942	hypothetical protein	none
cds1644	0.95897749	1.10633436	peptidase	COG0265
cds3115	0.9677784	1.08723993	hypothetical protein	none
id46	0.96588003	1.0835452	tRNA-Ile	none
rna18	0.96588003	1.0835452	tRNA-Ile	none
cds2095	0.9678046	1.08073468	GTP cyclohydrolase	COG0302
msrA	0.96709607	1.03658116	peptide-methionine (S)-S-oxide reductase	COG0225

Tabla 10. Genes sub expresados de la condición Intestino vs Hemolinfa.

	prob	log2FC	Gene	COG
cds2304	0.99161956	-3.185655163	hypothetical protein	none
cds1831	0.97556107	-2.521400123	ribose 5-phosphate isomerase A	COG0120
cds591	0.9808403	-2.474445731	phosphate starvation-inducible protein PhoH	COG1702
cds2300	0.99018876	-2.416171122	hypothetical protein	none
cds2706	0.99191777	-2.398512827	glucokinase	COG0837
cds28	0.97425571	-2.368405205	NAD+ synthase	COG0171
cds1725	0.98270328	-2.312857676	segregation/condensation protein A	COG1354
cds237	0.98882018	-2.137931785	septum formation inhibitor Maf	COG0424
cds2321	0.9879528	-2.116214194	biopolymer transporter ExbD	COG0848
cds466	0.9879528	-2.116214194	hypothetical protein	COG2200
cds2995	0.97693151	-2.096697883	thioredoxin	none
cds379	0.97808641	-2.086774106	hypothetical protein	none
cds2856	0.98843675	-2.081192991	bifunctional [glutamateammonia ligase]-adenylyl-	COG1391
			L-tyrosine phosphorylase/[glutamateammonia-	
			ligase] adenylyltransferase	
cds1937	0.9794758	-2.065475257	cytochrome C	COG2010
cds658	0.97392339	-2.050405742	GNAT family N-acetyltransferase	none
rna0	0.97596701	-2.003820098	tRNA-Ala	none
id5	0.97596701	-2.003820098	tRNA-Ala	none
cds3227	0.98716541	-2.001255018	lipid hydroperoxide peroxidase	COG2077
yccS	0.9732736	-1.961860106	TIGR01666 family membrane protein	COG1289
cds3027	0.97329039	-1.949951722	cytochrome c5 family protein	COG3245
cds3269	0.9735302	-1.942717323	hypothetical protein	COG2984
cds3131	0.97715654	-1.941188675	tRNA adenosine(34) deaminase TadA	COG0590
cds2219	0.95315612	-1.924820881	AraC family transcriptional regulator	COG2207
cds2460	0.97666212	-1.917852307	outer membrane lipoprotein carrier protein LolA	COG2834
cds618	0.96740499	-1.87451843	murein transglycosylase	COG2821
cds276	0.99192837	-1.842524091	acetyl-CoA carboxylase carboxyl transferase subunit	COG0825
			alpha	
cds639	0.96460936	-1.808154189	hypothetical protein	none
	0.0000000	-1 806707275	tyrosino rocombinaso VorC	COC/072

ccml	0.98367091	-1.806171604	c-type cytochrome biogenesis protein CcmI	COG4235
cds2305	0.99190873	-1.793949777	hypothetical protein	none
cds1601	0.97325004	-1.787489924	ribonuclease PH	COG0689
cds941	0.98156159	-1.775207034	IS110 family transposase	COG3547
cds7	0.97781512	-1.77467654	hypothetical protein	COG1215
cds2638	0.98171141	-1.77385502	hypothetical protein	none
cds3229	0.97296811	-1.769638497	aromatic amino acid transporter AroP	COG1113
cds2322	0.96477747	-1.762949102	tetraacyldisaccharide 4'-kinase	COG1663
cds585	0.95022933	-1.759552856	hypothetical protein	none
cds1230	0.95637161	-1.75388397	aldo/keto reductase	COG0667
cds1877	0.96162492	-1.742076231	FMN-dependent NADH-azoreductase	COG1182
cds1428	0.96162492	-1.742076231	Co2+/Mg2+ efflux protein ApaG	COG2967
cds2271	0.95228817	-1.706813477	DNA mismatch repair protein MutS	none
glyA	0.98450029	-1.699857091	serine hydroxymethyltransferase	COG0112
cds1781	0.96243471	-1.694446248	peptide chain release factor 2	COG1186
rna1	0.96894032	-1.643175786	tRNA-Glu	none
id6	0.96894032	-1.643175786	tRNA-Glu	none
cds3012	0.9836848	-1.641765152	2-alkenal reductase	COG0265
cds1315	0.9550124	-1.637298848	hypothetical protein	COG0715
ybgC	0.98376589	-1.627795218	tol-pal system-associated acyl-CoA thioesterase	COG0824
cds2281	0.98577381	-1.623419626	cell shape determination protein CcmA	COG1664
cds1034	0.97971484	-1.614435402	GNAT family N-acetyltransferase	none
cds2674	0.98092006	-1.587162665	NADP-specific glutamate dehydrogenase	none
leuD	0.97540992	-1.573767022	3-isopropylmalate dehydratase small subunit	COG0066
aspA	0.97866616	-1.551197828	aspartate ammonia-lyase	COG1027
cds512	0.98134754	-1.537994443	hypothetical protein	none
cds1940	0.96594498	-1.536928897	ATP-dependent DNA helicase Rep	COG0210
cds1983	0.98922235	-1.528368263	hypothetical protein	none
cds1039	0.95525492	-1.524486564	chromosome partitioning protein	COG1192
cds1373	0.9574248	-1.511408551	DNA-binding response regulator	COG2197
cds2178	0.96855301	-1.494179735	recombination protein RecR	COG0353
cds411	0.97638234	-1.458097602	phosphate acyltransferase	COG0416
cds1858	0.96603382	-1.446254322	peroxiredoxin	COG1225
cds938	0.98296932	-1.432468476	hypothetical protein	COG2361
cds2072	0.984991	-1.427377858	hypothetical protein	none
pstA	0.95250168	-1.427246018	phosphate ABC transporter%2C permease protein PstA	COG0581
cds836	0.97827311	-1.424885351	sigma-54-dependent Fis family transcriptional regulator	COG2204
cds2275	0.96004386	-1.415625377	glycosyl transferase family 39	COG1807
cds2174	0.95708283	-1.405353491	alkaline phosphatase	COG1785
cds1482	0.95563125	-1.404206712	hypothetical protein	COG3149

cds2303	0.97677309	-1.362065705	hypothetical protein	none
cds976	0.98067466	-1.355479888	histidine kinase	COG2208
cds3172	0.98670521	-1.355315436	lysine decarboxylase	COG1982
cds2251	0.97446264	-1.324997482	efflux transporter periplasmic adaptor subunit	COG0845
ррх	0.96766196	-1.280956666	exopolyphosphatase	COG0248
cds3187	0.98377818	-1.278778512	pectate lyase	none
cds2923	0.97988983	-1.277787889	type II secretion system protein F	COG1459
cds2117	0.95030365	-1.271577185	LysR family transcriptional regulator	none
cds2438	0.98572312	-1.267681217	undecaprenyl-phosphate glucose	COG2148
			phosphotransferase	
iscA	0.96177155	-1.244079833	iron-sulfur cluster assembly protein IscA	COG0316
cds1496	0.9755535	-1.240677686	lytic transglycosylase	COG0741
cds2756	0.98811515	-1.212519603	cupin	COG1917
cds2414	0.99138883	-1.118832074	30S ribosomal protein S6	COG0360
phoU	0.95013266	-1.108894722	phosphate transport system regulatory protein PhoU	COG0704
cds3298	0.97969858	-1.105279133	aspartate kinase	COG0527
cds2873	0.97569098	-1.100196759	amino acid ABC transporter substrate-binding	COG0834
			protein	
gshA	0.98041465	-1.098866671	glutamatecysteine ligase	none
rpmG	0.95436126	-1.07962823	50S ribosomal protein L33	COG0267
cds231	0.97669694	-1.078857006	hypothetical protein	COG1716
cds348	0.96380035	-1.075881827	hypothetical protein	COG2207
phaR	0.97822247	-1.066851601	polyhydroxyalkanoate synthesis repressor PhaR	COG5394
cds2230	0.98321115	-1.059213876	hypothetical protein	COG2873
cds1859	0.97325078	-1.053213174	peptidylprolyl isomerase	COG1047
hisA	0.95527819	-1.051335584	1-(5-phosphoribosyl)-5-[(5-	COG0106
			phosphoribosylamino)methylideneamino]imidazole-	
			4-carboxamide isomerase	
cds270	0.97118655	-1.043988739	UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine	COG0774
			deacetylase	
cds2403	0.96437648	-1.032301742	hypothetical protein	COG1253
cds412	0.98129709	-1.007178541	50S ribosomal protein L32	COG0333

Tabla 11. Genes sobre expresados	s de la condición Intestino vs Ovar	rio.
----------------------------------	-------------------------------------	------

	prob	log2FC	Gene	COG
cds1607	1	3.23460191	hypothetical protein	none
cds1527	0.98755812	2.95555061	NADPH-dependent FMN reductase	COG0431
cds81	0.98250236	2.54683127	dihydrolipoyllysine-residue succinyltransferase	COG0508
cds3115	0.97852261	2.53837787	hypothetical protein	none
cds3392	0.98515538	2.50267635	transporter	COG4395
cds2879	0.9869113	2.49748616	ketodeoxygluconokinase	COG0524
cds1772	0.9813798	2.3811155	SAM-dependent methyltransferase	none

zwf	0.97258387	2.3547329	glucose-6-phosphate dehydrogenase	COG0364
cds206	0.97848077	2.33356131	hypothetical protein	none
cds513	0.98520172	2.32404107	long-chain fatty acidCoA ligase	COG0318
cds2430	0.98559215	2.27247758	ABC transporter	COG4181
cds2037	0.98176593	2.26049093	hypothetical protein	COG4575
cds1841	0.98030816	2.17949748	hypothetical protein	COG2133
cds1604	0.98541475	2.15516868	twin-arginine translocation pathway signal protein	COG1651
cds1756	0.98305674	2.14880837	histidine triad nucleotide-binding protein	COG0537
cds2535	0.98555895	2.11574947	adenosylhomocysteinase	COG0499
cds2849	0.96715585	2.09987102	hypothetical protein	none
cds2228	0.97492262	2.06982108	hypothetical protein	none
cds2660	0.96688223	2.06294562	valinetRNA ligase	COG0525
cds1998	0.97565715	2.02777947	NADH-quinone oxidoreductase subunit L	COG1009
cds989	0.98548154	2.01564455	twitching motility protein Pill	COG0835
cds2177	0.96641453	2.01059918	YbaB/EbfC family nucleoid-associated protein	COG0718
cds2341	0.96310485	2.00589079	hypothetical protein	COG1345
cds1641	0.97961052	2.00523869	3-dehydroquinate synthase	COG0337
epsl	0.96560619	1.95445171	EpsI family protein	none
cds1135	0.96699254	1.9413164	sulfite reductase	COG0155
argC	0.96610401	1.94117288	N-acetyl-gamma-glutamyl-phosphate reductase	COG0002
cds2039	0.96683208	1.93637598	hypothetical protein	none
cds1865	0.96692588	1.92619427	hypothetical protein	none
cds2372	0.96696904	1.9170924	hypothetical protein	COG0642
cds160	0.96684461	1.89550428	diguanylate cyclase response regulator	none
cds402	0.96973315	1.89530028	anti-sigma 24 factor	COG3073
cds2928	0.96694421	1.88142772	YihA family ribosome biogenesis GTP-binding protein	COG0218
cds2650	0.98351994	1.87519003	hypothetical protein	none
cds1755	0.96693328	1.86646287	phosphoribosyl-ATP diphosphatase	COG0140
cds2758	0.96635832	1.86347184	DNA ligase (NAD(+)) LigA	COG0272
cds281	0.96309581	1.8462741	type IV pilus biogenesis/stability protein PilW	COG3063
cds646	0.96711233	1.83106368	citramalate synthase	COG0119
rrf	0.96711328	1.83088994	rrf	none
cds268	0.96308767	1.81208695	hypothetical protein	COG3133
flgM	0.96696803	1.79530446	flagellar biosynthesis anti-sigma factor FlgM	COG2747
cds2404	0.96737096	1.78668662	MFS transporter	COG2223
cds530	0.9852497	1.78531348	glucan biosynthesis protein D	COG3131
cds3079	0.96425023	1.78393903	RND transporter	COG1538
cds2429	0.9520798	1.78366326	hypothetical protein	none
id51	0.97939479	1.73941916	id51	none
cds987	0.96686184	1.73684989	two-component system response regulator	COG0745
cds672	0.9673293	1.72886838	ABC transporter ATP-binding protein	COG1131

cds2035	0.96691385	1.72202353	energy-dependent translational throttle protein EttA	COG0488
cds89	0.96691385	1.72202353	malate dehydrogenase	COG0039
cds109	0.96599995	1.70558375	hypothetical protein	COG2382
cds2059	0.96693253	1.70267712	helicase	none
cds2992	0.96692596	1.69976462	hypothetical protein	COG1807
cds1621	0.96602866	1.69684622	ABC-F family ATPase	COG0488
cds509	0.97916075	1.6966145	IS3 family transposase	none
cds244	0.96687811	1.69655329	DNA polymerase III subunit chi	COG2927
cds361	0.96708111	1.69377516	ATP-binding protein	COG0642
cds1425	0.96576565	1.67784864	sugar kinase	COG1940
cds3376	0.96694186	1.6759265	50S ribosomal protein L10	COG0244
cds3429	0.96424855	1.67572345	amino acid permease	COG0531
cds1633	0.96698159	1.66669684	hypothetical protein	none
cds634	0.96685944	1.66475023	pectate lyase	COG1331
cds2523	0.98557137	1.664388	bifunctional 4-hydroxy-2-oxoglutarate aldolase/2- dehydro-3-deoxy-phosphogluconate aldolase	COG0800
cds394	0.96692837	1.66127167	GTPase Era	COG1159
cds3348	0.9853701	1.64943439	50S ribosomal protein L15	COG0200
cds267	0.96729427	1.63646322	carbohydrate kinase family protein	COG0524
cds370	0.96688556	1.60563412	oxidoreductase	COG0673
cds2040	0.96699055	1.60368749	hypothetical protein	none
argH	0.96233923	1.60203389	argininosuccinate lyase	COG0165
cds294	0.96281586	1.59776239	adenylosuccinate synthase	COG0104
cds656	0.96624891	1.5967831	threonine synthase	COG0498
cds250	0.95648943	1.59430844	hypothetical protein	none
psd	0.96310788	1.5910109	phosphatidylserine decarboxylase	COG0688
cds2344	0.9576987	1.5903514	flagellar hook-length control protein FliK	none
cds1089	0.9566177	1.5877058	phosphocarrier protein HPr	COG1925
cds832	0.9566177	1.5877058	DNA-binding protein YbiB	COG0547
rnr	0.96553742	1.56801786	ribonuclease R	COG0557
cds2246	0.96615173	1.55821266	transglycosylase	COG0741
cds2213	0.96533055	1.53866176	diguanylate cyclase	COG5001
cds1701	0.96574225	1.53397674	phosphatidate cytidylyltransferase	COG0575
cds1795	0.96572456	1.50443017	amidase	COG0154
atpD	0.95683358	1.5009204	F0F1 ATP synthase subunit beta	COG0055
id47	0.99998832	1.49995179	16S ribosomal RNA	none
rna19	0.99998832	1.49995179	16S ribosomal RNA	none
cds531	0.95959212	1.49421226	acyltransferase	COG4645
cds2383	0.95959212	1.49421226	Si-specific NAD(P)(+) transhydrogenase	COG1249
cds1809	0.96710968	1.49211727	transcription elongation factor GreB	COG0782
cds2467	0.95839934	1.47738521	ATP-dependent exodnase subunit beta	COG1074
cds2269	0.96696838	1.45858867	IS3 family transposase	none

fusA	0.96696279	1.45147803	elongation factor G	COG0480
cds1743	0.96177646	1.43619314	phosphoribosylformylglycinamidine synthase	COG0046
id42	0.99993611	1.43391913	id42	none
cds3145	0.96734705	1.43300487	addiction module protein	none
cds1738	0.96724206	1.42326679	isoleucinetRNA ligase	COG0060
id128	0.9822452	1.41882118	id128	none
hflK	0.96716858	1.41093131	FtsH protease activity modulator HflK	COG0330
cds1452	0.9660168	1.40816136	peptidase M23	COG0739
cds163	0.99979423	1.36553171	peptidase S41	COG0793
cds3309	0.97719194	1.35910015	cell division protein FtsZ	COG0206
cds3352	0.96682932	1.3444183	50S ribosomal protein L6	COG0097
der	0.9669909	1.34143234	ribosome biogenesis GTPase Der	COG1160
cds1528	0.96449988	1.33822475	hypothetical protein	COG5316
cds1127	0.96328635	1.33356131	3-phosphoglycerate dehydrogenase	COG0111
cds299	0.96686913	1.30557629	LPS biosynthesis protein	COG1452
cds1442	0.97045736	1.28694962	threoninetRNA ligase	COG0441
cds142	0.96451838	1.28560123	penicillin-binding protein	COG5009
cds164	0.96237291	1.28524611	peptidase M23	COG4942
cds3362	0.9606198	1.28145062	50S ribosomal protein L22	COG0091
cds429	0.96698777	1.27668664	transcriptional regulator	COG1396
id44	0.99956486	1.23084383	23S ribosomal RNA	none
rna16	0.99956486	1.23084383	23S ribosomal RNA	none
id136	0.9649777	1.21622099	id136	none
cds2473	0.96603618	1.21513295	hypothetical protein	COG0642
cds1771	0.95417302	1.21298942	repressor LexA	COG1974
id177	0.98006294	1.21219609	id177	none
id175	0.9516432	1.18541339	tRNA-Gly	none
rna50	0.9516432	1.18541339	tRNA-Gly	none
ccoN	0.96678848	1.17149657	cytochrome-c oxidase%2C cbb3-type subunit I	COG3278
cds2859	0.95244008	1.15307335	metalloprotease TldD	COG0312
id48	0.98519104	1.13537025	id48	none
id126	0.97931712	1.11262247	id126	none
cds3320	0.97806913	1.10632025	cell division protein	COG0768
cds1644	0.96876784	1.09286609	peptidase	COG0265
id103	0.96723666	1.07581009	id103	none
cds1443	0.96259854	1.06263583	translation initiation factor IF-3	COG0290
cds3088	0.97166364	1.02199405	glycoside hydrolase	COG2730
id117	0.96432119	1.01577612	id117	none
cds2253	0.96737516	1.00273694	amino acid ABC transporter substrate-binding protein	COG0834
	prob	log2FC	Gene	COG
---------	-------------	------------	--	---------
cds2660	0.987943313	2.92120956	valinetRNA ligase	COG0525
cds81	1	2.89875221	dihydrolipoyllysine-residue succinyltransferase	COG0508
cds634	1	2.62196347	pectate lyase	COG1331
cds2383	0.994777212	2.4863299	Si-specific NAD(P)(+) transhydrogenase	COG1249
cds370	0.99326768	2.40897233	oxidoreductase	COG0673
cds2177	0.993022007	2.38848251	YbaB/EbfC family nucleoid-associated protein	COG0718
cds165	0.991482788	2.37417709	2%2C3-diphosphoglycerate-dependent	COG0588
			phosphoglycerate mutase	
cds3236	0.994046052	2.28060227	glutamatecysteine ligase	COG2170
cds646	0.991382004	2.26109953	citramalate synthase	COG0119
cds2851	0.992129031	2.22425776	hypothetical protein	COG1638
gshA	0.992906194	2.18539681	glutamatecysteine ligase	none
cds89	0.991164336	2.18230618	malate dehydrogenase	COG0039
cds2159	0.993692239	2.18170953	hypothetical protein	COG1192
secF	0.988143451	2.1308622	protein translocase subunit SecF	COG0341
cds1864	0.99540422	2.11982354	peptidase M23	COG0739
cds2411	0.993120432	2.11830042	50S ribosomal protein L9	COG0359
cds2879	0.992623914	2.10039287	ketodeoxygluconokinase	COG0524
epsG	0.997440832	2.08029185	chain length determinant protein tyrosine kinase EpsG	COG0489
cds2526	0.991003019	2.06900086	tryptophantRNA ligase	COG0180
typA	0.991299035	2.05010846	translational GTPase TypA	COG1217
cds1983	0.994790673	2.04905226	hypothetical protein	none
cds1998	0.994907349	2.04837434	NADH-quinone oxidoreductase subunit L	COG1009
cds3168	0.995345923	2.03525883	iron-sulfur cluster carrier protein ApbC	COG0489
cds2957	0.997130279	2.0192367	LysR family transcriptional regulator	COG0583
cds1641	0.991292981	2.01605828	3-dehydroquinate synthase	COG0337
phaR	0.99183084	2.00738536	polyhydroxyalkanoate synthesis repressor PhaR	COG5394
cds1996	0.991167804	2.00591748	NADH-quinone oxidoreductase subunit NuoN	COG1007
cds2461	0.995451417	2.00299276	cell division protein FtsK	COG1674
cds513	0.993766018	1.99673582	long-chain fatty acidCoA ligase	COG0318
cds1984	0.988383129	1.96331937	orotate phosphoribosyltransferase	COG0461
cds2650	1	1.96155959	hypothetical protein	none
phoB	0.995204344	1.95146763	phosphate regulon transcriptional regulatory protein PhoB	COG0745
cds2873	0.994738866	1.95120436	amino acid ABC transporter substrate-binding protein	COG0834
cds2531	0.992183874	1.94822178	16S rRNA processing protein RimM	COG0806
cds656	0.988544614	1.93179131	threonine synthase	COG0498
cds3311	0.993408132	1.92464891	cell division protein	COG1589
cds2084	0.988132959	1.91202923	glutamine-hydrolyzing GMP synthase	COG0519

Tabla 12. Genes sobre expresados de la condición Hemolinfa vs Ovario.

cds2858	0.989722588	1.90880511	acyltransferase	COG0388
cds1738	0.992400912	1.90592549	isoleucinetRNA ligase	COG0060
cds3187	0.996023022	1.90281665	pectate lyase	none
cds3359	0.992003036	1.89832984	50S ribosomal protein L29	COG0255
cds2384	0.993705608	1.89705045	isocitrate dehydrogenase (NADP(+))	COG2838
cds645	0.988537907	1.89225146	ABC transporter substrate-binding protein	COG4166
cds1135	0.993305055	1.88656541	sulfite reductase	COG0155
cds1601	0.990559385	1.86579405	ribonuclease PH	COG0689
cds253	0.990071548	1.86092438	acetolactate synthase small subunit	COG0440
cds1795	0.992056644	1.8561522	amidase	COG0154
cds395	0.988143764	1.84287596	ribonuclease III	COG0571
cds3328	0.988610553	1.84006223	ribulose-phosphate 3-epimerase	COG0036
cds1425	0.991909605	1.82908355	sugar kinase	COG1940
cds3309	0.987472801	1.82501482	cell division protein FtsZ	COG0206
cds1798	0.98940236	1.80112369	ethanolamine utilization protein EutN	COG0683
cds1638	0.994245541	1.8002037	pilus assembly protein PilP	COG3168
bamA	0.991530852	1.79754925	outer membrane protein assembly factor BamA	COG4775
cds3376	0.993541809	1.79477946	50S ribosomal protein L10	COG0244
cds160	0.990087922	1.79342537	diguanylate cyclase response regulator	COG3706
cds1089	0.993925443	1.78921459	phosphocarrier protein HPr	COG1925
cds2404	0.994807184	1.78478988	MFS transporter	COG2223
cds2072	0.990013092	1.78464549	hypothetical protein	none
cds987	0.99368717	1.77973746	two-component system response regulator	
				COG0745
cds1756	0.991893605	1.77783039	histidine triad nucleotide-binding protein	COG0537
cds1502	0.993359238	1.76248974	nitrogen regulatory protein P-II	COG0347
priB	0.992783085	1.74427829	primosomal replication protein N	COG2965
cds340	0.994023126	1.73586665	fimbrial assembly protein	COG4968
cds2535	0.993271515	1.73560881	adenosylhomocysteinase	COG0499
cds989	0.982379418	1.72888064	twitching motility protein Pill	COG0835
cds206	0.991940914	1.72238779	hypothetical protein	COG2922
cds1697	0.994085136	1.72007225	elongation factor Ts	COG0264
cds2626	0.99329546	1.71316164	D-mannonate oxidoreductase	COG1028
cds509	1	1.70902406	IS3 family transposase	none
cds3352	0.993710681	1.7083963	50S ribosomal protein L6	COG0096
cds1527	0.979256204	1.70759163	NADPH-dependent FMN reductase	COG0431
cds2401	0.991272282	1.70737998	3-ketoacyl-ACP synthase	COG1028
cds2060	0.992786974	1.69533081	hypothetical protein	COG1638
cds1049	0.993435823	1.68589428	chromosomal replication initiator protein DnaA	COG0593
cds1422	0.993435823	1.68589428	bifunctional tRNA (5-methylaminomethyl-2- thiouridine)(34)-methyltransferase MnmD/FAD-	COG4121

			dependent 5-carboxymethylaminomethyl-2-	
			thiouridine(34) oxidoreductase MnmC	
cds1743	0.991305307	1.68313811	phosphoribosylformylglycinamidine synthase	COG0046
cds2298	0.991842147	1.67017713	regulator	COG3434
cds184	0.981982939	1.6690873	cell division protein ZapD	COG4582
atpD	0.991165006	1.66427775	F0F1 ATP synthase subunit beta	COG0055
ylqF	0.988911001	1.66231905	ribosome biogenesis GTPase YlqF	COG1161
cds2744	0.984188975	1.65958273	phosphoribosylanthranilate isomerase	COG0135
cds2516	0.993297704	1.65121113	3-hydroxyisobutyrate dehydrogenase	COG2084
cds1848	0.993327959	1.64634152	replicative DNA helicase	COG0305
cds2910	0.993489186	1.64121787	cytidylate kinase	COG0283
cds958	0.983228606	1.63867919	hypothetical protein	COG2814
cds3339	0.983037725	1.6378925	excinuclease ABC subunit A	COG0178
cds873	0.990713133	1.6375653	ferredoxinNADP(+) reductase	COG1018
rpmH	0.991869627	1.63232094	50S ribosomal protein L34	COG0230
dksA	0.983219289	1.62952707	RNA polymerase-binding protein DksA	COG1734
cds545	0.990827143	1.62626438	DEAD/DEAH box helicase	COG0513
cds3350	0.997172156	1.62391262	30S ribosomal protein S5	COG0098
cds1246	0.991256402	1.61084148	DUF4440 domain-containing protein	COG5010
cds1640	0.980734942	1.61001539	shikimate kinase	COG0703
cds1253	0.983338509	1.60818021	metalloprotease PmbA	COG0312
cds596	0.982326835	1.6070425	flagellar biosynthesis protein FlgH	COG2063
cds3320	1	1.60499314	cell division protein	COG0768
cds2176	0.993064275	1.60021966	DNA polymerase III subunit gamma/tau	COG2812
cds1762	0.982066494	1.59113198	LysR family transcriptional regulator	COG0583
cds3005	0.982504049	1.58294908	hypothetical protein	COG5267
cds1656	0.993460555	1.57550588	threonine-phosphate decarboxylase	COG1270
cds181	0.99017113	1.5657187	hypothetical protein	none
cds3119	0.979258115	1.55986074	hypothetical protein	none
cds729	0.981981658	1.54589328	5-methyltetrahydropteroyltriglutamate	COG0620
			homocysteine S-methyltransferase	
cds2523	0.993012963	1.54560925	bifunctional 4-hydroxy-2-oxoglutarate aldolase/2-	COG0800
1.0000			dehydro-3-deoxy-phosphogluconate aldolase	
cds3269	0.9820584/1	1.53888453	hypothetical protein	COG2984
pyrB	0.98318735	1.53098038	aspartate carbamoyltransferase catalytic subunit	COG0540
cds3115	0.993423448	1.530628	hypothetical protein	none
cds1508	0.983876318	1.52857637	30S ribosomal protein S20	COG0268
cds2859	0.996442628	1.51905891	metalloprotease TIdD	COG0312
cds1400	0.987328371	1.51886599	general secretion pathway protein GspE	COG2804
cds3477	0.984301219	1.51630343	ribonucleotide reductase	COG0208
cds860	0.993341222	1.51578647	DNA-binding response regulator	COG4566
secD	0.993776368	1.51422759	protein translocase subunit SecD	COG0342

cds1975	0.983080954	1.51096494	4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase	COG1947
cds2300	0.982807859	1.51043672	hypothetical protein	none
cds3362	0.996421026	1.48429052	50S ribosomal protein L22	COG0091
cds2325	0.983218885	1.48261469	adenylate kinase	COG0563
cds1344	0.983631999	1.48159339	mannose-1-phosphate	COG0836
			guanylyltransferase/mannose-6-phosphate	
cds1952	0.974156308	1.47995735	hypothetical protein	COG0346
cds1753	0.982697052	1.47620978	imidazole glycerol phosphate synthase subunit HisF	COG0107
rnpA	0.974802102	1.46255248	ribonuclease P protein component	COG0594
cds3203	0.994071876	1.46235604	channel protein TolC	COG1538
cds2473	0.989942008	1.46199821	hypothetical protein	COG0642
cds1127	0.993634094	1.45840835	3-phosphoglycerate dehydrogenase	COG0111
cds182	0.983966231	1.44306396	cell division protein ZapA	COG3027
cds2163	0.983911693	1.43935054	ABC transporter permease	none
cds2741	0.983325245	1.43743709	acetyl-CoA carboxylase carboxyl transferase subunit beta	COG0777
cds3129	0.984137955	1.4325093	hypothetical protein	COG0210
pnp	0.994083031	1.42773269	polyribonucleotide nucleotidyltransferase	COG1185
cds2114	0.98070183	1.42406762	tyrosinetRNA ligase	COG0162
cds2145	0.988445135	1.42374694	GTP cyclohydrolase I FolE2	COG1469
cds93	0.984325276	1.41957738	hypothetical protein	COG0492
cds1688	0.98247733	1.41836603	flagellar biosynthesis protein FlgI	COG1706
cds1161	0.992800274	1.41725721	phosphomethylpyrimidine synthase ThiC	COG0422
cds2195	0.970503553	1.41477935	hypothetical protein	none
cds1642	0.979368001	1.4145884	deoxyguanosinetriphosphate triphosphohydrolase	COG0232
cds2226	0.983376062	1.41154665	hypothetical protein	COG0698
cds2192	0.979551361	1.41034089	hypothetical protein	COG2327
cds294	0.984439644	1.40416817	adenylosuccinate synthase	COG0104
der	0.988211858	1.40067906	ribosome biogenesis GTPase Der	COG1160
cds2073	0.982210479	1.39951457	hypothetical protein	COG0840
cds3087	0.995171081	1.39495939	XylR family transcriptional regulator	COG1609
cds3343	0.986082831	1.39012273	30S ribosomal protein S11	COG0100
cds1442	0.995446174	1.38655393	threoninetRNA ligase	COG0441
cds394	0.984430558	1.38467396	GTPase Era	COG1159
cds2213	0.979689599	1.38430282	diguanylate cyclase	COG5001
cds343	0.983307171	1.38277257	hypothetical protein	COG2165
cds3088	0.993492447	1.38231299	glycoside hydrolase	COG2730
pcm	0.982699167	1.37945051	protein-L-isoaspartate O-methyltransferase	COG2518
cds2979	0.979980909	1.37884581	branched chain amino acid aminotransferase	COG0115

pssA	0.984366358	1.37317647	CDP-diacylglycerolserine O-	COG1183
			phosphatidyltransferase	
id175	0.983203928	1.3712916	tRNA-Gly	none
rna50	0.983203928	1.3712916	tRNA-Gly	none
cds692	0.97969443	1.36726974	hypothetical protein	none
id33	0.980237698	1.36639095	tRNA-Pro	none
rna12	0.980237698	1.36639095	tRNA-Pro	none
cds2305	0.981981075	1.36472115	hypothetical protein	none
ftsW	0.979255677	1.3627514	putative lipid II flippase FtsW	COG0772
cds345	1	1.36199171	pilus assembly protein	COG3419
cds3147	0.993877192	1.35776436	hypothetical protein	none
cds1784	0.982584827	1.35661362	ferredoxin	COG1146
cds1479	0.982584827	1.35661362	ubiquinone biosynthesis protein UbiH	COG0654
cds3145	0.993999837	1.35477985	addiction module protein	none
cds2039	0.961952328	1.35402754	hypothetical protein	none
artP	0.980274376	1.34904129	arginine transporter ATP-binding subunit	COG1126
cds1608	0.983111879	1.34724158	ATP-binding protein	COG0433
cds3312	0.9844404	1.3380642	D-alanineD-alanine ligase	COG1181
cds887	0.999999927	1.33759218	PbsX family transcriptional regulator	COG3866
cds7	0.98323344	1.33643593	hypothetical protein	COG1215
cds2929	0.979456719	1.33276268	porphobilinogen synthase	COG0113
aceE	1	1.33041144	pyruvate dehydrogenase (acetyl-transferring)%2C homodimeric type	COG2609
cds254	0.993480662	1.32958571	ketol-acid reductoisomerase	COG0059
grxD	0.983423533	1.32779859	monothiol glutaredoxin%2C Grx4 family	COG0278
id107	0.98254602	1.31597203	tRNA-Gly	none
rna29	0.98254602	1.31597203	tRNA-Gly	none
cds631	0.969274174	1.31597014	hypothetical protein	none
minD	0.979263174	1.30982588	septum site-determining protein MinD	COG2894
cds2302	0.980432026	1.3088183	ferritin	none
flgM	0.982454501	1.30822226	flagellar biosynthesis anti-sigma factor FlgM	COG2747
glnA	0.994831528	1.30733565	type I glutamateammonia ligase	COG0347
cds2758	0.96988175	1.30674296	DNA ligase (NAD(+)) LigA	COG0272
cds1448	0.977913687	1.30615475	integration host factor subunit alpha	COG0776
cds166	0.979436915	1.30449602	sulfurtransferase	COG0607
cds1841	0.983246732	1.30376114	hypothetical protein	COG2133
cds1971	0.999999988	1.30226913	GTPase	COG0699
cds3351	0.993134079	1.2999995	50S ribosomal protein L18	COG0256
cds1607	0.99342012	1.29340493	hypothetical protein	none
cds163	1	1.29141949	peptidase S41	COG0793
cds2050	0.983202508	1.28315371	peptidase M48	COG4783
cds3298	0.99477707	1.28173144	aspartate kinase	COG0527

cds1260	0.982071504	1.27944044	glucoamylase	COG3387
cds2033	0.983763738	1.27884658	autonomous glycyl radical cofactor GrcA	COG3445
cds1144	0.977853432	1.2751672	energy transducer TonB	COG0810
cds3392	0.971149162	1.27516449	transporter	COG4395
cds352	0.97929013	1.27290818	nicotinate-nucleotide diphosphorylase	COG0157
			(carboxylating)	
cds2027	0.97609681	1.27242806	S-(hydroxymethyl)glutathione dehydrogenase/class	COG1062
cdc2476	0.07600691	1 27242906	III alcohol denydrogenase	nono
cds2470	0.97009081	1.27242800	outer membrane protein assembly factor BamD	COG/105
cds11/6	0.979192402	1 26104501	Asp-tRNA(Asp)/Glu-tRNA(Glp) amidotransferase	COG0154
CU31140	0.983799498	1.20104501	GatCAB subunit A	000134
cds281	0.979862038	1.25874408	type IV pilus biogenesis/stability protein PilW	COG3063
cds841	0.979522571	1.25102888	16S rRNA (uracil(1498)-N(3))-methyltransferase	COG1385
cds3172	0.985451876	1.2503785	lysine decarboxylase	COG1982
flgG	0.979464178	1.24949522	flagellar basal-body rod protein FlgG	
				COG4786
epsl	0.964931694	1.24781757	EpsI family protein	none
cds940	0.979538386	1.24484845	3-deoxy-7-phosphoheptulonate synthase	COG0722
cds3151	0.974613696	1.24438367	RpiR family transcriptional regulator	COG1737
cds2085	0.969946055	1.24051187	MFS transporter	COG2814
hflK	0.983662854	1.22892169	FtsH protease activity modulator HflK	COG0330
cds2664	0.968897499	1.22604742	sugar ABC transporter permease	COG4214
argH	0.979363681	1.22581655	argininosuccinate lyase	COG0165
cds237	0.979255285	1.22561211	septum formation inhibitor Maf	COG0424
cds40	0.979531182	1.22234366	murein hydrolase effector protein LrgB	COG1346
cds3472	0.979399753	1.21906779	ATP-dependent Clp protease proteolytic subunit	COG0740
cds2509	0.978946075	1.21429096	inositol monophosphatase	COG0483
cds3353	0.983909051	1.21344709	30S ribosomal protein S8	COG0096
cds735	0.979483188	1.20350169	hypothetical protein	COG2199
cds2035	0.972461036	1.19989805	energy-dependent translational throttle protein EttA	COG0488
cds1982	0.98013606	1.19975447	DNA-binding response regulator	COG3279
cds1633	0.977736651	1.19926159	hypothetical protein	none
rnr	0.972384653	1.1988028	ribonuclease R	COG0557
cds2437	0.991887918	1.19546715	hypothetical protein	none
ccoN	0.990919293	1.19424573	cytochrome-c oxidase%2C cbb3-type subunit I	COG3278
cds3227	0.979025637	1.19238254	lipid hydroperoxide peroxidase	COG2077
cds3238	0.965813612	1.18973342	dihydroorotase	COG0418
cds2248	0.96639852	1.18865944	hypothetical protein	none
cds2399	0.977106361	1.18821269	alpha/beta hydrolase	COG0657
epsD	0.988530254	1.18582179	peptidyl-prolyl cis-trans isomerase%2C EpsD family	?
cds3079	0.981436256	1.17767602	RND transporter	COG1538

cds1987	0.981436256	1.17767602	3-oxoacyl-ACP synthase	COG0304
cds2306	0.982227714	1.168611	heavy metal translocating P-type ATPase	COG2217
cds3358	0.97603593	1.167614	30S ribosomal protein S17	COG0186
cds3348	0.989728241	1.16458773	50S ribosomal protein L15	COG0200
cds2136	0.9789359	1.16348044	oligogalacturonate lyase	none
cds1865	0.958953476	1.15526987	hypothetical protein	none
cds1873	0.979280761	1.15481266	hypothetical protein	COG0642
zwf	0.952375116	1.14637293	glucose-6-phosphate dehydrogenase	COG0364
cds1443	0.993164303	1.14352026	translation initiation factor IF-3	COG0290
cds3157	0.95880995	1.14010756	chemotaxis protein	COG0840
cds2303	0.983239092	1.13906637	hypothetical protein	none
cds594	0.984206378	1.13804946	cell division protein Ftsl	none
cds3437	0.990187021	1.13774218	GTP-binding protein	COG0523
gspD	0.970096158	1.13665556	type II secretion system protein GspD	COG1450
cds2059	0.970923204	1.13552505	helicase	none
cds2881	1	1.1308613	galactonate dehydratase	COG2721
pyrG	0.983865291	1.12648013	CTP synthetase	COG0504
cds2911	0.993917666	1.12421179	30S ribosomal protein S1	COG0539
cds918	0.968810385	1.12412795	oligopeptidase B	COG1770
cds61	0.968810385	1.12412795	bifunctional diguanylate cyclase/phosphodiesterase	COG2200
cds1373	0.966054275	1.1226636	DNA-binding response regulator	COG2197
ssrS	0.966054275	1.1226636	ssrS	none
cds1757	0.950282906	1.12089011	twin-arginine translocase subunit TatA	COG1826
cds612	0.950282906	1.12089011	Kef family K(+) transporter	COG4651
cds2403	0.979507225	1.1202687	hypothetical protein	COG1253
cds299	0.984425753	1.11721167	LPS biosynthesis protein	COG1452
cds644	0.953398844	1.11663607	hypothetical protein	COG2852
corA	0.953398844	1.11663607	magnesium and cobalt transport protein CorA	COG0598
cds86	0.983244711	1.1164221	fumarate reductase (quinol) flavoprotein subunit	none
cds231	0.975252637	1.11339396	hypothetical protein	COG1716
cds1437	0.955396794	1.11250052	heme biosynthesis protein HemY	COG3071
cds283	0.962377416	1.11175683	4-hydroxy-3-methylbut-2-en-1-yl diphosphate	COG0821
			synthase	
cds2839	0.979439093	1.10967289	cytochrome b	COG1290
cds2093	0.957772448	1.10957701	membrane-bound O-acyltransferase family protein	COG1696
ygbF	0.966253481	1.10943587	tol-pal system protein YbgF	COG1729
ssrA	1	1.10512229	ssrA	none
id26	0.992976427	1.10167351	id26	none
cds29	0.96987564	1.10016468	NAD(P)(+) transhydrogenase (Re/Si-specific) subunit	COG1282
	0.000005.404	4 00070070	beta	6060045
cas2251	0.983865401	1.099/80/8	emux transporter periplasmic adaptor subunit	CUG0845
cds2037	0.979496415	1.09965824	nypothetical protein	COG4575

gcvP	0.968945819	1.0992329	glycine dehydrogenase (aminomethyl-transferring)	COG1003
flgF	0.968945819	1.0992329	flagellar basal-body rod protein FlgF	COG4787
fliJ	0.97859702	1.09682769	flagellar export protein FliJ	COG2882
cds1450	0.963480367	1.09649511	5'/3'-nucleotidase SurE;	COG0496
uxuA	0.993278244	1.09541842	mannonate dehydratase	COG1312
leuD	0.970112695	1.09407515	3-isopropylmalate dehydratase small subunit	COG0066
cds2005	0.993101817	1.09386121	NADH-quinone oxidoreductase subunit NuoE	COG1905
cds1452	0.983457897	1.09174723	peptidase M23	COG0739
cds1333	0.984111902	1.09064959	glycinetRNA ligase subunit beta	COG0751
cds3349	0.965068206	1.09038427	50S ribosomal protein L30	COG1841
accC	0.956021479	1.08903525	acetyl-CoA carboxylase biotin carboxylase subunit	COG0439
cds3346	0.964620926	1.08085539	translation initiation factor IF-1	COG0361
cds2438	0.979343426	1.08082155	undecaprenyl-phosphate glucose phosphotransferase	COG2148
cds412	0.979500774	1.06937726	50S ribosomal protein L32	COG0333
cds1725	0.979416312	1.06900086	segregation/condensation protein A	COG1354
rpsB	0.993334323	1.06733927	30S ribosomal protein S2	COG0052
cds381	0.992557038	1.06632217	glutamate synthase subunit alpha	COG0069
cds1635	0.979336027	1.06180257	pilus assembly protein PilM	COG4972
cds2330	0.969654407	1.06121638	ribosome assembly RNA-binding protein YhbY	COG1534
parC	0.953964484	1.05755294	DNA topoisomerase IV subunit A	COG0188
cds2253	0.988809526	1.05545149	amino acid ABC transporter substrate-binding protein	COG0834
cds2004	0.992863664	1.05355071	NADH-quinone oxidoreductase subunit F	COG1894
fabG	0.979334855	1.05304493	3-oxoacyl-ACP reductase	COG1028
cds413	0.979509914	1.0522092	metal-binding protein	COG1399
cds3476	0.983423924	1.05049684	ribonucleoside-diphosphate reductase subunit alpha	COG0209
id117	0.991099814	1.04839037	id117	none
cds2269	0.979479923	1.04532526	IS3 family transposase	none
cds2324	0.973477963	1.04433334	3-deoxy-manno-octulosonate cytidylyltransferase	COG1212
cds161	1	1.04377369	flagellar transcriptional regulator FlhD	none
cds1233	0.958215397	1.04188696	TIGR00730 family Rossman fold protein	COG1611
cds3446	0.995770134	1.04133361	hypothetical protein	none
rроН	1	1.040037	RNA polymerase sigma factor RpoH	COG0568
cds2649	1	1.03938211	hypothetical protein	COG4677
cds1679	1	1.03582648	molecular chaperone DnaK	COG0443
cds2162	0.979091053	1.02887203	leucinetRNA ligase	COG0495
cds2117	0.964050263	1.02299861	LysR family transcriptional regulator	none
cds2747	1	1.02273052	hypothetical protein	COG3170
cds2194	0.952900268	1.02164022	hypothetical protein	none
cds1653	0.978537997	1.02081453	FAD-linked oxidase	COG0277

cds3205	0.952165744	1.01981915	protein-L-isoaspartate O-methyltransferase	COG2518
cds1054	0.958824917	1.0192367	hypothetical protein	COG1284
cds669	0.955150833	1.01833483	ABC transporter	COG2853
cds362	0.960234702	1.01692628	DNA-binding response regulator	COG0745
cds3290	0.959198022	1.01436897	poly(A) polymerase	COG0617
id13	0.999999996	1.0043938	id13	none

Tabla 13. Genes sub expresados de la condición Hemolinfa vs Ovario.

	prob	log2FC	Gene	COG
cds2166	0.98045499	-3.97681693	glutamate 5-kinase	COG0263
cds536	0.99595171	-3.88720288	hiazole synthase	COG2022
cds1791	0.98602556	-3.80401477	chemotaxis protein CheA	COG0643
cds2698	0.98280465	-3.68105044	2%2C3-dihydro-2%2C3-dihydroxybenzoate synthetase	COG1535
cds2043	0.98719782	-3.56687639	hypothetical protein	none
fliR	0.9952741	-3.47319469	flagellar biosynthetic protein FliR	COG1684
cds2243	0.9952741	-3.47319469	RNA-binding protein	COG1188
cds1683	0.9952741	-3.47319469	hypothetical protein	none
cds506	0.98116935	-3.41450469	AraC family transcriptional regulator	COG4977
cds794	0.98116935	-3.41450469	two-component sensor histidine kinase	COG0642
cds2619	0.9953615	-3.36638759	peptidase S1	COG0265
cds1856	0.99543476	-3.2854622	SAM-dependent methyltransferase	COG0220
pdxH	0.99549344	-3.17084927	pyridoxamine 5'-phosphate oxidase	COG0259
purE	0.99380369	-3.12107453	5-(carboxyamino)imidazole ribonucleotide mutase	COG0041
cds526	0.9775494	-3.11137124	hypothetical protein	none
cds1834	0.99512398	-3.05159055	metal ABC transporter permease	COG2011
cds1300	0.99145224	-3.00955161	etR family transcriptional regulator	COG1309
cds3139	0.99066651	-2.95569681	MFS transporter	COG2814
cds491	0.99193218	-2.92862622	multidrug transporter subunit MdtC	COG0841
cds3178	0.99100543	-2.87477142	glycoside hydrolase family 24	COG3772
cds2380	0.99486235	-2.71863388	hypothetical protein	none
cds716	0.99486235	-2.71863388	RNA pseudouridine synthase	none
cds764	0.99486235	-2.71863388	pilus assembly protein	COG3419
cds1731	0.99486235	-2.71863388	ribosome-binding factor A	COG0858
cds437	0.99486235	-2.71863388	nitrate ABC transporter substrate-binding protein	COG0715
cds3035	0.99486235	-2.71863388	D-cysteine desulfhydrase	COG2515
cds3089	0.99486235	-2.71863388	hypothetical protein	COG1305
cds2266	0.99486235	-2.71863388	hypothetical protein	COG3811
cds2778	0.99486235	-2.71863388	hypothetical protein	none
cds2986	0.99486235	-2.71863388	hypothetical protein	none
cds1594	0.99028959	-2.69540275	DUF3460 domain-containing protein	none
cds2716	0.99028959	-2.69540275	hypothetical protein	none

cds553	0.99212611	-2.67938388	hypothetical protein	COG1593
cds1773	0.99048562	-2.67385555	TonB-dependent siderophore receptor	COG4771
cds523	0.99550107	-2.67368348	polyisoprenoid-binding protein	COG2353
cds1894	0.99550107	-2.67368348	MFS transporter/Arabinose efflux permease	COG2814
rna2	0.99550107	-2.67368348	tRNA-Asp	none
cds2560	0.99550107	-2.67368348	esterase	COG0657
id121	0.99550107	-2.67368348	tRNA-Pro	none
cds2703	0.99550107	-2.67368348	phosphopantetheine-binding protein	COG3433
cds2257	0.99550107	-2.67368348	L-asparaginase	COG0252
id7	0.99550107	-2.67368348	tRNA-Asp	none
rna35	0.99550107	-2.67368348	tRNA-Pro	none
tatB	0.99550107	-2.67368348	twin-arginine translocase subunit TatB	COG1826
cds1337	0.99550107	-2.67368348	hypothetical protein	COG1451
cds1964	0.99520057	-2.64772817	hypothetical protein	COG3150
cds1539	0.97917637	-2.61238509	TonB-dependent siderophore receptor	COG4771
cds1057	0.99035957	-2.61182679	hypothetical protein	none
cds1065	0.99035957	-2.61182679	polar amino acid ABC transporter permease	COG0765
cds473	0.99035957	-2.61182679	ABC transporter ATP-binding protein	COG1116
cds2765	0.99035957	-2.61182679	two-component system response regulator	COG0784
cds1654	0.99035957	-2.61182679	peptide deformylase	none
cds2208	0.99162104	-2.61159073	LysR family transcriptional regulator	COG0583
cds1182	0.98258337	-2.58802594	hypothetical protein	none
cds727	0.99247113	-2.56687639	DNA (cytosine-5-)-methyltransferase	COG2852
cds496	0.99247113	-2.56687639	hypothetical protein	none
cds3230	0.99247113	-2.56687639	hypothetical protein	none
cds684	0.99247113	-2.56687639	N-acetylmuramoyl-L-alanine amidase	COG3023
cds3473	0.99247113	-2.56687639	QacE family quaternary ammonium compound efflux	COG2076
			SMR transporter	
cds1009	0.9914485	-2.49815755	GNAT family N-acetyltransferase	COG0456
cds488	0.9914485	-2.49815755	sulfonate ABC transporter permease	COG4986
cds1662	0.9914485	-2.49815755	adenosylmethionine8-amino-7-oxononanoate transaminase	COG0161
cds2607	0.99160804	-2.47319469	transcription elongation factor GreAB	COG0782
cds1785	0.99087729	-2.45570626	hypothetical protein	none
cds2658	0.99087729	-2.45570626	hypothetical protein	none
cds2555	0.99211856	-2.45320715	GntR family transcriptional regulator	COG2186
cds891	0.99211856	-2.45320715	hypothetical protein	COG3666
cds426	0.99134122	-2.45023178	short-chain dehydrogenase	COG0300
cds384	0.9962736	-2.42923232	excinuclease ABC subunit A	COG3549
cds2611	0.99534935	-2.41382633	ribonuclease E/G	none
cds2608	0.99126445	-2.39412898	hypothetical protein	none
cds1355	0.9918208	-2.3922693	hydrolase	COG0402

cds2071	0.9918208	-2.3922693	hypothetical protein	COG3876
cds579	0.99097446	-2.37795514	YraN family protein	COG0792
cds946	0.99097446	-2.37795514	methyltransferase	none
cds1412	0.99097446	-2.37795514	RNA pseudouridine synthase	COG0564
cds2773	0.99097446	-2.37795514	hypothetical protein	none
cds140	0.99097446	-2.37795514	LysR family transcriptional regulator	COG0583
cds2434	0.99097446	-2.37795514	hypothetical protein	COG0791
gabD	0.99097446	-2.37795514	succinate-semialdehyde dehydrogenase (NADP(+))	COG1012
cds1605	0.99097446	-2.37795514	short-chain dehydrogenase	COG0300
cds2498	0.99097446	-2.37795514	type VI secretion system-associated protein TagF	COG3913
cds26	0.99097446	-2.37795514	hypothetical protein	COG2199
cds2197	0.99097446	-2.37795514	hypothetical protein	COG0438
cds820	0.99129954	-2.37756787	hypothetical protein	COG0642
cds2206	0.99107056	-2.33300474	nitrate ABC transporter ATP-binding protein	COG1116
cds1671	0.99107056	-2.33300474	cytochrome B	COG3658
cds3443	0.99107056	-2.33300474	methyltransferase	COG2890
cds559	0.99536524	-2.31756043	cysteine methyltransferase	COG0350
cds3307	0.99098697	-2.29740383	2-C-methyl-D-erythritol 2%2C4-cyclodiphosphate	COG0245
			synthase	
cds2440	0.99098697	-2.29740383	hypothetical protein	none
cds1308	0.99096421	-2.29314156	ABC transporter permease	COG0600
cds69	0.99146694	-2.28759999	hypothetical protein	none
cds1062	0.99083046	-2.2807371	hypothetical protein	none
cds813	0.99083046	-2.2807371	dipeptide/oligopeptide/nickel ABC transporter ATP-	COG4608
cds1338	0 9958545	-2.27646183	granule-associated-like protein	COG5/90
cds1/0/	0.99547147	-2.27462113	hypothetical protein	0003430
cds1573	0.99088149	-2.25499081	nrimosomal protein N'	COG1198
cds2567	0.99088149	-2.25499081		0001100
cds680	0.99088149	-2 25499081	hypothetical protein	none
cds681	0.99088149	-2.25499081	hypothetical protein	none
cds1112	0.99088149	-2.25499081	thioredoxin	0060526
cds2961	0.99088149	-2.25499081	spermidine/nutrescine ABC transporter permease	COG1177
cds3478	0.99289822	-2.2357867	integrase	COG4974
cds544	0.99172013	-2.2357867	23S rRNA (cvtidine(2498)-2'-O)-methyltransferase	COG2933
003544	0.55172015		RImM	002555
xdhC	0.99172013	-2.2357867	xanthine dehydrogenase accessory protein XdhC	COG1975
cds1760	0.99172013	-2.2357867	MFS transporter	COG2223
cds805	0.99172013	-2.2357867	TonB-dependent receptor	COG4771
cds3025	0.99190684	-2.2297777	hypothetical protein	COG4221
cds2419	0.99210521	-2.22282746	beta-ketoacyl-ACP reductase	COG1028

cds1893	0.99083392	-2.21004041	hypothetical protein	none
cds3074	0.99083392	-2.21004041	hypothetical protein	none
cds2069	0.99206027	-2.20981913	hypothetical protein	none
cds440	0.99117536	-2.20496214	zinc ABC transporter permease	COG1108
cds3116	0.99117346	-2.20113601	hypothetical protein	COG1721
cds964	0.99117346	-2.20113601	polyketide cyclase	none
cds3080	0.99148544	-2.19314084	efflux transporter periplasmic adaptor subunit	COG0845
cds356	0.99137765	-2.18183243	ureidoglycolate lyase	COG3194
cds986	0.99075365	-2.16091246	hydroxymethylpyrimidine/phosphomethylpyrimidine	COG0351
			kinase	
cds907	0.99077697	-2.15618561	hypothetical protein	none
cds1318	0.99077697	-2.15618561	hypothetical protein	none
cds1384	0.99075002	-2.15607173	multidrug transporter	COG1538
id81	0.99152575	-2.14190207	id81	none
id49	0.99124005	-2.12164779	id49	none
cds971	0.9911005	-2.11480341	hypothetical protein	COG0697
cds1256	0.9952491	-2.11137124	SAM-dependent methyltransferase	COG2230
cds2625	0.99031596	-2.10910942	hypothetical protein	COG1533
cds2502	0.9894649	-2.04959658	hypothetical protein	none
cds3013	0.99213768	-2.04616976	Nif3-like dinuclear metal center hexameric protein	COG0327
cds138	0.98883302	-2.03448619	U32 family peptidase	COG0826
cds1972	0.98860461	-2.03197932	DNA-formamidopyrimidine glycosylase	COG0266
cds3137	0.9914368	-2.02176733	hypothetical protein	none
cds1017	0.99152388	-2.00022014	hypothetical protein	none
cds2506	0.99152388	-2.00022014	hypothetical protein	none
id94	0.99152388	-2.00022014	tRNA-Phe	none
rna24	0.99152388	-2.00022014	tRNA-Phe	none
cds27	0.99152388	-2.00022014	hypothetical protein	COG2202
cds2165	0.99152388	-2.00022014	competence/damage-inducible protein A	COG1058
cds1887	0.98940284	-1.98702892	globin	COG2346
cds495	0.98940284	-1.98702892	transcriptional regulator	none
cds2752	0.98940284	-1.98702892	transcriptional regulator	none
cds2108	0.98940284	-1.98702892	spermidine/putrescine ABC transporter substrate-	none
			binding protein	
cds434	0.99083565	-1.97681693	ABC transporter ATP-binding protein	COG1116
cds2042	0.99103031	-1.97613857	30S ribosomal protein S4	none
rdgB	0.9915252	-1.96939205	non-canonical purine NTP pyrophosphatase%2C	COG0127
	0.000044700	1 06745644	RdgB/HAM1 family	6060046
cas104	0.98644798	-1.90/15011	metnyl-accepting chemotaxis protein	
cas998	0.99126862	-1.95526974	SAIVI-dependent methyltransferase	
cds1979	0.99126862	-1.95526974		COG1917
cds1810	0.9907574	-1.9549481	hypothetical protein	COG5481

cds2014	0.98153193	-1.95492866	protein sphX	COG0226
cds292	0.99023052	-1.95437251	DUF2065 domain-containing protein	COG3242
cds2137	0.99080864	-1.94461563	transglycosylase	COG0741
cds257	0.99103842	-1.92482307	hypothetical protein	COG3308
cds2978	0.98713869	-1.91739391	NUDIX hydrolase	COG1051
prmC	0.98521825	-1.91609164	protein-(glutamine-N5) methyltransferase%2C release factor-specific	COG2890
urtD	0.9844821	-1.90466647	urea ABC transporter ATP-binding protein UrtD	COG4674
cds1566	0.98093828	-1.89908081	amino acid ABC transporter substrate-binding protein	COG0834
cds503	0.99133165	-1.87987267	hypothetical protein	none
cds2570	0.99133165	-1.87987267	amino acid ABC transporter permease	COG0765
cds1107	0.99133165	-1.87987267	3-oxoacyl-ACP synthase	none
id47	1	-1.87704528	16S ribosomal RNA	none
rna19	1	-1.87704528	16S ribosomal RNA	none
cds2705	0.98694699	-1.87477142	amidohydrolase	COG1473
cds2897	0.98684276	-1.87139323	DNAase	COG0084
cds2023	0.98684276	-1.87139323	hypothetical protein	none
cds1732	0.98684276	-1.87139323	tRNA pseudouridine(55) synthase TruB	COG0130
cds3468	0.98684276	-1.87139323	histidine kinase	COG1639
cds3331	0.98159454	-1.86799659	glycosyl transferase	COG0463
cds1183	0.99150192	-1.86164619	error-prone repair protein UmuD	COG0175
cds3162	0.98540914	-1.85971607	hypothetical protein	COG3216
cds925	0.98540914	-1.85971607	Na+/H+ antiporter subunit D	COG0651
cds3067	0.98540914	-1.85971607	electron transporter RnfD	COG4658
id42	1	-1.85236046	id42	none
cds152	0.98840798	-1.82644283	dioxygenase	COG3384
cds187	0.98840798	-1.82644283	type III pantothenate kinase	COG1521
cds803	0.98840798	-1.82644283	hemin-degrading factor	COG3720
nifS	0.99145528	-1.82277414	cysteine desulfurase NifS	COG1104
cds983	0.97847162	-1.81222479	spermidine synthase	COG0421
cds148	0.9837234	-1.79850997	hypothetical protein	COG1192
cds1087	0.99145015	-1.79424829	homoserine O-acetyltransferase	none
cds1847	0.97971975	-1.79314967	AraC family transcriptional regulator	COG2207
cds2834	0.97977373	-1.78654012	DUF3368 domain-containing protein	COG2405
cds1807	0.99142122	-1.7706925	regulator SirB	COG3094
cds2678	0.99142122	-1.7706925	hypothetical protein	COG0683
azu	0.99142122	-1.7706925	azurin	COG3241
cds1828	0.99142122	-1.7706925	glyoxalase	COG0346
cds1861	0.99142122	-1.7706925	transcriptional regulator	COG0640
pncB	0.99142122	-1.7706925	nicotinate phosphoribosyltransferase	COG1488
cds3111	0.99142122	-1.7706925	hypothetical protein	COG1131
cds3114	0.99142122	-1.7706925	hypothetical protein	none

cds533 0.99142122 -1.7706925 hypothetical protein COG282 cds3138 0.99142122 -1.7706925 TetR family transcriptional regulator COG130 cds3143 0.99142122 -1.7706925 NADPH-dependent F420 reductase none cds554 0.00142122 1.7706925 TPAD transcription and regulator COG282
cds3138 0.99142122 -1.7706925 TetR family transcriptional regulator COG130 cds3143 0.99142122 -1.7706925 NADPH-dependent F420 reductase none cds514 0.99142122 1.7706925 TPAD transcriptional regulator COG130
cds3143 0.99142122 -1.7706925 NADPH-dependent F420 reductase none cds5144 0.00142122 1.7706925 TBAD transport to a service and Data 0.00142122<
COG309
cds557 0.99142122 -1.7706925 hypothetical protein none
cds5710.99142122-1.7706925C4-dicarboxylate ABC transporter permeaseCOG309
cds2808 0.99142122 -1.7706925 hypothetical protein none
cds1027 0.99142122 -1.7706925 ectoine/hydroxyectoine ABC transporter ATP-binding COG112
protein EhuA
cds2811 0.99142122 -1.7/06925 hypothetical protein none
cds2818 0.99142122 -1.7/06925 glycoside hydrolase COG377
cds2385 0.99142122 -1.7/06925 dUTP diphosphatase COG075
cds1529 0.99142122 -1.7706925 nitrobenzoate reductase COG077
modA 0.99142122 -1.7706925 molybdate ABC transporter substrate-binding protein COG072
cds1538 0.99142122 -1.7706925 RNA polymerase subunit sigma COG159
cds1556 0.99142122 -1.7706925 hypothetical protein COG134
cds212 0.99142122 -1.7706925 chemotaxis response regulator protein-glutamate none
metnylesterase
$\frac{1.7706925}{1.7706925} = \frac{1.7706925}{1.7706925} = \frac{1.7706925}{1.7$
cds727 0.99142122 1.7706925 hypothetical plotein COG107
cdc2285 0.00142122 -1.7706925 by notherical protein
Cusses 0.99142122 1.7706925 Hypothetical protein none rnp2 0.99142122 -1.7706925 tBNA_Glu none
rna8 0.99142122 -1.7706925 tRNA-lou
Initial 0.39142122 1.7706925 Lateral flagellar book-associated protein 2 COG134
cds2561 0.99142122 -1.7706925 efflux transporter periplasmic adaptor subunit COG084
cds2574 0.99142122 -1.7706925 MES transporter COG281
hemN 0.99142122 -1.7706925 hemN none
cds1779 0 99142122 -1.7706925 PIN domain nuclease COG374
id21 0 99142122 -1.7706925 tRNA-Leu none
cds3032 0.99142122 -1.7706925 nitrate ABC transporter substrate-binding protein none
cds3044 0.99142122 -1.7706925 molybdate ABC transporter permease subunit COG414
cds467 0.99142122 -1.7706925 adenvlate kinase none
cds469 0.99142122 -1.7706925 hypothetical protein none
cds920 0.99142122 -1.7706925 lipid A export ATP-binding/permease MsbA COG113
cds921 0.99142122 -1.7706925 hypothetical protein COG174
cds3065 0.99142122 -1.7706925 electron transport complex subunit RsxE COG466
cds472 0.99142122 -1.7706925 NnrS family protein none
id89 0.99142122 -1.7706925 tRNA-Pro none
cds490 0.99142122 -1.7706925 multidrug transporter subunit MdtA COG084
cds2222 0.99142122 -1.7706925 adenine phosphoribosyltransferase COG050

cds1426	0.99142122	-1.7706925	hypothetical protein	none
cds1910	0.99142122	-1.7706925	phage head morphogenesis protein	COG2369
cds2789	0.99142122	-1.7706925	DNA modification methylase	none
cds114	0.99142122	-1.7706925	iron ABC transporter ATP-binding protein	COG4604
cds1946	0.99142122	-1.7706925	glycerophosphodiester phosphodiesterase	COG0584
cds133	0.99142122	-1.7706925	C4-dicarboxylate ABC transporter permease	COG3333
id8	0.99142122	-1.7706925	tRNA-Glu	none
cds613	0.99142122	-1.7706925	MFS transporter	none
rna23	0.99142122	-1.7706925	tRNA-Pro	none
nifV	0.99142122	-1.7706925	homocitrate synthase	COG0119
cds2416	0.99142122	-1.7706925	hypothetical protein	none
cds3286	0.99142122	-1.7706925	peptidase M48	COG0501
cds2433	0.99142122	-1.7706925	D-tyrosyl-tRNA(Tyr) deacylase	COG1490
cds1121	0.99142122	-1.7706925	acyltransferase	none
cds1625	0.99142122	-1.7706925	DNA-binding protein	none
cds1628	0.99142122	-1.7706925	hypothetical protein	none
cds306	0.99142122	-1.7706925	VapC toxin family PIN domain ribonuclease	COG1487
cds318	0.99142122	-1.7706925	cobyric acid synthase CobQ	COG1492
cds804	0.99142122	-1.7706925	hypothetical protein	none
cds2617	0.99142122	-1.7706925	RNA-binding protein	COG2501
cds2618	0.99142122	-1.7706925	LysR family transcriptional regulator	COG0583
cds1309	0.99142122	-1.7706925	nitrate ABC transporter ATP-binding protein	COG1116
cds2179	0.99142122	-1.7706925	hypothetical protein	none
cds1336	0.99142122	-1.7706925	hypothetical protein	COG1451
cds103	0.97847121	-1.76727438	chemotaxis protein CheA	COG0643
cds687	0.98598943	-1.76334533	transcriptional regulator	COG2944
cds347	0.99091931	-1.75969678	spermidine synthase	COG0421
cds3217	0.99076611	-1.75686486	30s ribosomal protein S12 methylthiotransferase	COG1944
			accessory protein YcaO	
cds2974	0.98194696	-1.74757714	serinetRNA ligase	COG0172
cds647	0.99245582	-1.7440992	hypothetical protein	COG5001
nth	0.98104212	-1.74285658	endonuclease III	COG0177
cds2365	0.9865768	-1.72799348	23S rRNA (adenine(2030)-N(6))-methyltransferase RlmJ	COG2961
cds2019	0.99136774	-1.72690504	hypothetical protein	none
cds389	0.9881592	-1.72455345	terminase	COG5525
cds1289	0.98959929	-1.71863388	hypothetical protein	COG4727
cds1304	0.98959929	-1.71863388	aldo/keto reductase	COG0667
cds1330	0.98959929	-1.71863388	trypsin	COG0265
ccmB	0.97361963	-1.71074796	heme exporter protein CcmB	COG2386
cds1849	0.99650246	-1.70965039	hypothetical protein	none
cds1470	0.98193841	-1.70114546	two-component system response regulator KdpE	COG0745

cds3330	0.97880843	-1.69982609	hypothetical protein	COG0451
cds2668	0.98288014	-1.69976008	EmrA/EmrK family multidrug efflux transporter	COG1566
			periplasmic adaptor subunit	
cds3393	0.98288014	-1.69976008	xylanase	none
cds2338	0.98263571	-1.69540275	flagellin	COG1344
cds2534	0.98072894	-1.68893	hypothetical protein	COG1189
cds893	0.99115107	-1.68570289	ABC transporter permease	COG0395
cds3015	0.98179281	-1.67385555	hypothetical protein	none
cds1102	0.99096526	-1.67368348	diacylglycerol kinase	COG0818
cds1172	0.99096526	-1.67368348	aldo/keto reductase	none
cds47	0.99096526	-1.67368348	two-component system response regulator OmpR	COG0745
cds2214	0.99130568	-1.67347446	hypothetical protein	none
cds1375	0.98953478	-1.67347446	hypothetical protein	COG1872
cds519	0.98953478	-1.67347446	LysR family transcriptional regulator	COG0583
cds520	0.98953478	-1.67347446	lactaldehyde reductase	COG1454
cds2345	0.98953478	-1.67347446	hypothetical protein	COG2257
cds1014	0.98953478	-1.67347446	hypothetical protein	none
cds1531	0.98953478	-1.67347446	hypothetical protein	none
cds1537	0.98953478	-1.67347446	iron dicitrate transport regulator FecR	COG3712
cds2878	0.98953478	-1.67347446	tRNA (uridine(34)/cytosine(34)/5-	COG0219
			carboxymethylaminomethyluridine(34)-2'-0)-	
		4 67247446	methyltransferase TrmL	
cds2889	0.98953478	-1.6/34/446	histidine kinase	COG1639
cds1571	0.98953478	-1.6/34/446	hemerythrin HHE cation-binding protein	COG3945
cds2053	0.98953478	-1.6/34/446	hypothetical protein	none
cds790	0.98953478	-1.67347446	multidrug transporter	COG0845
cds2091	0.98953478	-1.67347446	hypothetical protein	none
cds2099	0.98953478	-1.67347446	hypothetical protein	COG2911
cds1229	0.98953478	-1.67347446	thiamine biosynthesis protein ThiJ	COG4977
cds1780	0.98953478	-1.67347446	hypothetical protein	COG2161
cds912	0.98953478	-1.67347446	AAA family ATPase	COG0714
cds961	0.98953478	-1.67347446	PadR family transcriptional regulator	COG1695
cds966	0.98953478	-1.67347446	glutamine amidotransferase	COG0693
cds972	0.98953478	-1.67347446	hypothetical protein	COG0697
cds2268	0.98953478	-1.67347446	acyl-CoA thioesterase	COG1607
cds1916	0.98953478	-1.67347446	hypothetical protein	COG4387
cds2793	0.98953478	-1.67347446	hypothetical protein	none
cds134	0.98953478	-1.67347446	hypothetical protein	none
cds697	0.98953478	-1.67347446	D-serine/D-alanine/glycine transporter	none
cds19	0.98953478	-1.67347446	hypothetical protein	none
cds310	0.98953478	-1.67347446	hypothetical protein	COG0123
cds810	0.98953478	-1.67347446	gamma-glutamyltransferase	COG0405

cds2107	0.98953478	-1.67347446	spermidine/putrescine ABC transporter ATP-binding	COG3842
cds863	0.98953478	-1.67347446	cold-shock protein	COG1278
cds883	0.98953478	-1.67347446	hypothetical protein	none
cds1295	0.977405	-1.67327187	hypothetical protein	COG2707
cds3249	0.977405	-1.67327187	two-component sensor histidine kinase	COG0642
cds1402	0.97940091	-1.66320145	hypothetical protein	none
cds2704	0.99064201	-1.6597528	non-ribosomal peptide synthetase	COG1020
entE	0.98274071	-1.65619506	2%2C3-dihydroxybenzoate-AMP ligase	COG1021
cds315	0.98274071	-1.65619506	cobalamin-binding protein	COG0614
carB	0.99073021	-1.6405544	carbamoyl phosphate synthase large subunit	COG0458
cds2738	0.98034172	-1.63956817	colicin V production protein	COG1286
cds1169	0.98034172	-1.63956817	hypothetical protein	COG2205
cds2571	0.9775675	-1.62832147	ABC transporter permease	COG0765
id45	0.9775675	-1.62832147	tRNA-Ala	none
cds2274	0.9775675	-1.62832147	glycosyltransferase	COG1807
rna17	0.9775675	-1.62832147	tRNA-Ala	none
cds1154	0.97419563	-1.62300706	septal ring lytic transglycosylase RIpA family lipoprotein	COG0797
cds824	0.97419563	-1.62300706	hypothetical protein	COG2314
cds1775	0.97616907	-1.62053336	two-component sensor histidine kinase	COG0642
cds814	0.97616907	-1.62053336	ABC transporter permease	COG1173
cds2669	0.97128383	-1.61950615	fusaric acid resistance protein	COG1538
cds354	0.97128383	-1.61950615	hypothetical protein	COG1346
cds1675	0.97971104	-1.6193796	hypothetical protein	COG0330
cds399	0.97971104	-1.6193796	protease Do	COG0265
cds1026	0.98124992	-1.61182679	polar amino acid ABC transporter substrate-binding protein	COG0834
cds2081	0.98124992	-1.61182679	hypothetical protein	COG2253
cds2701	0.97949776	-1.59845849	ATP-binding protein	COG3391
cds1789	0.97676303	-1.59584622	chemotaxis protein	COG0840
cds1823	0.97366629	-1.59562698	amino acid transporter	COG1279
cds2682	0.9906566	-1.59557932	bifunctional metallophosphatase/5'-nucleotidase	COG0737
cds2018	0.9807043	-1.59557932	hypothetical protein	none
rfbC	0.9807043	-1.59557932	dTDP-4-dehydrorhamnose 3%2C5-epimerase	COG1898
cds2316	0.99131032	-1.59387336	histidine kinase	COG3712
cds2681	0.98354392	-1.59387336	ferredoxin	COG1143
cds2686	0.98354392	-1.59387336	beta-N-acetylhexosaminidase	COG1472
cds1842	0.98354392	-1.59387336	MFS transporter	COG2814
cds1884	0.98354392	-1.59387336	cell division protein FtsX	COG2177
cds3125	0.98354392	-1.59387336	hypothetical protein	COG1538
cds597	0.98354392	-1.59387336	molybdopterin adenylyltransferase	COG0521

cds2357	0.98354392	-1.59387336	MFS transporter	none
cds1558	0.98354392	-1.59387336	flavin reductase	COG1853
mtgA	0.98354392	-1.59387336	monofunctional biosynthetic peptidoglycan	COG0744
			transglycosylase	
cds700	0.98354392	-1.59387336	hypothetical protein	COG1638
cds760	0.98354392	-1.59387336	efflux transporter periplasmic adaptor subunit	COG0845
cds2045	0.98354392	-1.59387336	tRNA glutamyl-Q(34) synthetase GluQRS	COG0008
cds1235	0.98354392	-1.59387336	hypothetical protein	none
cds2580	0.98354392	-1.59387336	hypothetical protein	COG0834
cds1285	0.98354392	-1.59387336	Asp/Glu racemase	COG4126
id160	0.98354392	-1.59387336	tRNA-Leu	none
cds951	0.98354392	-1.59387336	hypothetical protein	COG0840
cds2709	0.98354392	-1.59387336	hypothetical protein	COG4251
cds2270	0.98354392	-1.59387336	alpha/beta hydrolase	COG0582
cds1902	0.98354392	-1.59387336	hypothetical protein	none
cds105	0.98354392	-1.59387336	chemotaxis protein CheW	COG0835
cds1949	0.98354392	-1.59387336	hypothetical protein	none
cds1995	0.98354392	-1.59387336	NUDIX hydrolase	COG0494
rna43	0.98354392	-1.59387336	tRNA-Leu	none
cds665	0.98354392	-1.59387336	hypothetical protein	none
cds1627	0.98354392	-1.59387336	hypothetical protein	none
gspl	0.98354392	-1.59387336	type II secretion system protein Gspl	COG2165
cds1649	0.98354392	-1.59387336	ABC transporter ATP-binding protein	COG3842
cds1311	0.98354392	-1.59387336	short-chain dehydrogenase	COG1028
cds1353	0.98378915	-1.58996521	hypothetical protein	COG1196
cds3200	0.97881663	-1.58973016	benzoate transporter	COG0463
cds2651	0.97787483	-1.58758877	bifunctional demethylmenaquinone	COG2226
			methyltransferase/2-methoxy-6-polyprenyl-1%2C4-	
			benzoquinol methylase UbiE	
cds446	0.97420556	-1.57805666	hypothetical protein	none
id153	0.97638903	-1.57558295	tRNA-Arg	none
rna42	0.97638903	-1.57558295	tRNA-Arg	none
cds2247	0.97098804	-1.57455575	5-formyltetrahydrofolate cyclo-ligase	COG0212
cds1043	0.97935734	-1.57351728	hypothetical protein	none
cds386	0.99121836	-1.56687639	hypothetical protein	COG3617
cds2479	0.98224721	-1.56687639	flagellar biosynthetic protein FlhB	COG1377
cds3433	0.96989714	-1.55626341	DNA-binding response regulator	COG2197
cds3235	0.97634244	-1.55232462	peptidase C26	COG2071
cds2696	0.98164089	-1.55062892	ABC transporter substrate-binding protein	COG0614
cds1855	0.98164089	-1.55062892	dihydrouridine synthase	COG0042
cds614	0.98164089	-1.55062892	hypothetical protein	COG3001
cds627	0.98164089	-1.55062892	hypothetical protein	COG0840

cds1599	0.9918868	-1.54904196	serine/threonine protein kinase	COG0515
id44	1	-1.54458869	23S ribosomal RNA	none
rna16	1	-1.54458869	23S ribosomal RNA	none
cds992	0.97709533	-1.5383203	tRNA dihydrouridine synthase DusB	COG0042
cds1804	0.97419668	-1.52914588	transcriptional regulator NrdR	COG1327
cds1999	0.97690545	-1.5151601	NADH-quinone oxidoreductase subunit NuoK	COG0713
cds1713	0.99142322	-1.51248559	peptide chain release factor 1	COG0216
cds1745	0.98005803	-1.50754077	hypothetical protein	COG0642
cds1250	0.97274371	-1.5070248	UDP-2%2C3-diacylglucosamine diphosphatase	COG2908
cds757	0.9741686	-1.49815755	hypothetical protein	none
cds1367	0.96858521	-1.49721386	prepilin-type cleavage/methylation domain-containing protein	COG2165
cds2388	0.96858521	-1.49721386	hypothetical protein	COG3038
cds3258	0.96858521	-1.49721386	DNA-binding response regulator	COG0745
trpD	0.98261647	-1.49575551	anthranilate phosphoribosyltransferase	COG0547
cds1240	0.97523107	-1.47527536	hypothetical protein	COG0840
cds3132	0.97851517	-1.46826666	rRNA methyltransferase	COG0820
cds2906	0.97851517	-1.46826666	histidinol-phosphate transaminase	COG0079
cds1808	0.99358726	-1.46097138	BadM/Rrf2 family transcriptional regulator	COG1959
cds728	0.96975317	-1.45355029	LysR family transcriptional regulator	COG0583
cds2355	0.97479706	-1.45320715	electron transporter RnfG	COG4659
cds1541	0.97479706	-1.45320715	CoA-binding protein	COG1832
cds1970	0.97479706	-1.45320715	anaerobic ribonucleoside-triphosphate reductase	COG1180
			activating protein	
recJ	0.97479706	-1.45320715	single-stranded-DNA-specific exonuclease RecJ	COG0608
cds1030	0.96853235	-1.45226346	LysR family transcriptional regulator	COG0583
cds642	0.96853235	-1.45226346	peptide ABC transporter permease	COG4239
cds2980	0.97356405	-1.44879229	SIMPL domain-containing protein	COG2859
cds1965	0.9921873	-1.44672074	hypothetical protein	COG0784
cds655	0.97302688	-1.43635985	hypothetical protein	COG3111
amrB	0.96826964	-1.43584709	AmmeMemoRadiSam system protein B	COG1355
cds3296	0.96826964	-1.43584709	hypothetical protein	COG0666
cds15	0.98369795	-1.43287412	TonB-dependent receptor	COG4771
cds1383	0.97027357	-1.43003678	TetR family transcriptional regulator	COG1309
cds3170	0.97027357	-1.43003678	hypothetical protein	COG0400
cds682	0.97027357	-1.43003678	hypothetical protein	none
cds2273	0.97950531	-1.42331626	hypothetical protein	COG4702
cds115	0.97950531	-1.42331626	chemotaxis response regulator protein-glutamate methylesterase	COG2201
bioF	0.97950531	-1.42331626	bioF	none
cds260	0.97269495	-1.41880296	GGDEF domain-containing protein	none
cds2685	0.98526913	-1.41450469	holo-ACP synthase	COG0736

cds1393	0.98526913	-1.41450469	MFS transporter	COG2814
cds562	0.98526913	-1.41450469	dienelactone hydrolase	COG1539
cds3164	0.98526913	-1.41450469	hypothetical protein	none
cds2339	0.98526913	-1.41450469	hypothetical protein	none
cds1005	0.98526913	-1.41450469	phosphoenolpyruvate synthase regulatory protein	COG1806
cds2827	0.98526913	-1.41450469	hypothetical protein	none
cds2828	0.98526913	-1.41450469	chromosome partitioning protein ParB	COG1475
cds1586	0.98526913	-1.41450469	ABC transporter permease	none
cds230	0.98526913	-1.41450469	biopolymer transporter ExbD	COG0848
cds2591	0.98526913	-1.41450469	histone deacetylase	COG0123
id113	0.98526913	-1.41450469	tRNA-Val	none
cds1767	0.98526913	-1.41450469	methyltransferase type 11	COG2226
id54	0.98526913	-1.41450469	tRNA-Asn	none
cds137	0.98526913	-1.41450469	hypothetical protein	COG3734
rna20	0.98526913	-1.41450469	tRNA-Asn	none
cds174	0.98526913	-1.41450469	bifunctional 2-acylglycerophosphoethanolamine	none
			acyltransferase/acyl-ACP synthetase	
rna33	0.98526913	-1.41450469	tRNA-Val	none
cds3251	0.98526913	-1.41450469	hypothetical protein	none
cds3272	0.98526913	-1.41450469	methyltransferase type 12	COG4123
cds3273	0.98526913	-1.41450469	peptidase S16	COG2802
cds1122	0.98526913	-1.41450469	acyl-CoA synthetase	COG4261
cds36	0.98526913	-1.41450469	DJ-1 family protein	COG0693
cds62	0.98526913	-1.41450469	hypothetical protein	COG0834
cds3460	0.98526913	-1.41450469	hypothetical protein	COG0438
cds878	0.98526913	-1.41450469	hypothetical protein	none
cds2623	0.98526913	-1.41450469	GNAT family N-acetyltransferase	COG1670
cds1307	0.98526913	-1.41450469	TIGR00730 family Rossman fold protein	COG1611
cds2180	0.98526913	-1.41450469	hypothetical protein	none
cds3326	0.97699461	-1.4110529	phosphoglycolate phosphatase	COG0546
cds1857	0.97013175	-1.40859989	zinc/iron-chelating domain-containing protein	COG0727
cds3444	0.96897122	-1.40182634	hypothetical protein	COG2509
cds2697	0.96667484	-1.40151093	2%2C3-dihydro-2%2C3-dihydroxybenzoate	COG1028
			dehydrogenase	
cds2994	0.96667484	-1.40151093	glutathione peroxidase	COG0386
cds2652	0.96358029	-1.39850776	1-(5-phosphoribosyl)-5-((5-	COG3536
			phosphoribosylamino)methylideneamino)imidazole-4-	
cdc210		-1 2020575	carboxamide isomerase	COC1422
cus218	0.99095745	1 2020575	nypotnetičal protein	COG1432
cas1350	0.98201137	-1.22222/2	polysaccharide/polyol phosphate ABC transporter	0061134
cds1396	0.98201137	-1.3929575	hypothetical protein	0062165
1 2 2	2.2.2.2.2.2.2.2.2.7			2202100

cds1872	0.98201137	-1.3929575	alginate lyase	none
cds538	0.98201137	-1.3929575	transcriptional regulator	none
cds540	0.98201137	-1.3929575	hypothetical protein	COG4767
cds8	0.98201137	-1.3929575	pantoatebeta-alanine ligase	COG0414
cds3185	0.98201137	-1.3929575	dihydroneopterin triphosphate diphosphatase	COG0494
cds2347	0.98201137	-1.3929575	cation-efflux pump	COG0053
cds2350	0.98201137	-1.3929575	electron transport complex subunit RsxB	COG2878
aroA	0.98201137	-1.3929575	3-phosphoshikimate 1-carboxyvinyltransferase	COG0128
cds725	0.98201137	-1.3929575	cytoplasmic protein	none
cds734	0.98201137	-1.3929575	EamA family transporter	COG0697
cds791	0.98201137	-1.3929575	hemolysin D	none
cds2550	0.98201137	-1.3929575	peptide ABC transporter ATP-binding protein	COG1124
cds2551	0.98201137	-1.3929575	hypothetical protein	none
cds2577	0.98201137	-1.3929575	DoxX family protein	COG2259
cds1251	0.98201137	-1.3929575	hypothetical protein	COG2199
cds1290	0.98201137	-1.3929575	hypothetical protein	none
cds424	0.98201137	-1.3929575	GNAT family N-acetyltransferase	COG0456
cds3037	0.98201137	-1.3929575	hypothetical protein	none
cds2201	0.98201137	-1.3929575	HNH endonuclease	none
cds2217	0.98201137	-1.3929575	transcriptional regulator	COG1733
cds1403	0.98201137	-1.3929575	hypothetical protein	none
cds2784	0.98201137	-1.3929575	hypothetical protein	none
cds1929	0.98201137	-1.3929575	adenine methyltransferase	COG0863
cds2798	0.98201137	-1.3929575	Clp protease ClpP	COG0616
cds120	0.98201137	-1.3929575	hypothetical protein	none
cds126	0.98201137	-1.3929575	hypothetical protein	none
cds2407	0.98201137	-1.3929575	amino acid ABC transporter substrate-binding protein	none
cds2486	0.98201137	-1.3929575	hypothetical protein	none
cds2489	0.98201137	-1.3929575	hypothetical protein	none
cds307	0.98201137	-1.3929575	serine/threonine protein kinase	COG2334
cds837	0.98201137	-1.3929575	1%2C6-anhydro-N-acetylmuramyl-L-alanine amidase	COG3023
			AmpD	
cds844	0.98201137	-1.3929575	DNA gyrase inhibitor YacG	COG3024
cds2632	0.98201137	-1.3929575	hypothetical protein	COG1309
cds1312	0.98201137	-1.3929575	ABC transporter substrate-binding protein	COG0715
cds558	0.98180814	-1.39293537	glutamate-5-semialdehyde dehydrogenase	COG0014
cds1722	0.97406022	-1.3922693	phosphatase	COG0613
cds2265	0.95490463	-1.38745676	SAM-dependent methyltransferase	COG2226
cds146	0.98035106	-1.38060702	hypothetical protein	COG2206
cds482	0.97707323	-1.37795514	hypothetical protein	none
cds2953	0.97707323	-1.37795514	hypothetical protein	none
fabD	0.95789326	-1.37756787	[acyl-carrier-protein] S-malonyltransferase	COG0331

cds2367	0.96172446	-1.36611552	hypothetical protein	none
cds198	0.95488118	-1.36587699	6%2C7-dimethyl-8-ribityllumazine synthase	COG0054
cds3099	0.97138397	-1.3641275	hypothetical protein	COG2207
cds195	0.97138397	-1.3641275	hypothetical protein	COG1846
cds2941	0.97138397	-1.3641275	hypothetical protein	COG0840
cds52	0.97138397	-1.3641275	enoyl-[acyl-carrier-protein] reductase Fabl	COG0623
cds3427	0.97138397	-1.3641275	pilus (MSHA type) biogenesis protein MshL	COG1450
cds1104	0.96700095	-1.35656053	2-octaprenyl-6-methoxyphenyl hydroxylase	COG0654
cds229	0.96348892	-1.35355736	biopolymer transporter ExbB	COG0811
cds977	0.96487178	-1.35014012	hypothetical protein	none
cds1360	0.95382618	-1.34250636	hypothetical protein	COG2197
cds714	0.95382618	-1.34250636	hypothetical protein	none
cds2640	0.97976799	-1.32519718	class I poly(R)-hydroxyalkanoic acid synthase	COG3243
cds686	0.97517473	-1.32454326	hypothetical protein	none
cds1521	0.97287782	-1.3191771	hypothetical protein	none
cds1178	0.97287782	-1.3191771	YggW family oxidoreductase	none
cds3179	0.97724737	-1.31756043	chemotaxis protein CheD	COG1871
cds3182	0.97724737	-1.31756043	anti-sigma B factor antagonist	COG1366
cds1012	0.97724737	-1.31756043	hypothetical protein	none
cds2874	0.97724737	-1.31756043	flagellar motor switch protein FliN	COG0456
flgK	0.97724737	-1.31756043	flagellar hook-associated protein FlgK	COG1256
cds3004	0.97724737	-1.31756043	hypothetical protein	COG0840
cds439	0.97724737	-1.31756043	ABC transporter substrate-binding protein	COG0803
cds911	0.97724737	-1.31756043	hypothetical protein	COG1721
cds1658	0.97724737	-1.31756043	CoA pyrophosphatase	COG0494
cds826	0.97724737	-1.31756043	hypothetical protein	none
cds3475	0.97724737	-1.31756043	hypothetical protein	COG2199
cds2395	0.97725575	-1.30808028	peroxide stress protein YaaA	COG3022
cds2317	0.96022605	-1.29296554	RNA polymerase subunit sigma	COG1595
cds2234	0.99028562	-1.29059818	UDP-N-acetylenolpyruvoylglucosamine reductase	COG0812
cds1533	0.98177572	-1.28988418	bifunctional diguanylate cyclase/phosphodiesterase	COG2200
cds2054	0.96321705	-1.2854622	hypothetical protein	COG2931
cds1657	0.98537256	-1.28357698	hypothetical protein	COG0840
cds1768	0.96503836	-1.2807371	flagellar hook-associated protein FlgK	COG1256
cds1574	0.95919658	-1.27992539	uroporphyrinogen decarboxylase	COG0407
id66	0.95919658	-1.27992539	id66	none
cds993	0.95919658	-1.27992539	Fis family transcriptional regulator	COG2901
cds1399	0.97786467	-1.27333677	type II secretion system protein	COG1459
cds1145	0.95396576	-1.26971805	ribonuclease II	COG0557
cds1826	0.96362009	-1.26413059	hypothetical protein	none
cds3113	0.96362009	-1.26413059	dialkylrecorsinol condensing enzyme	none

cds547	0.96362009	-1.26413059	pseudouridine synthase	COG1187
cds3142	0.96362009	-1.26413059	LysR family transcriptional regulator	COG0583
cds1	0.96362009	-1.26413059	transglutaminase	none
cds1513	0.96362009	-1.26413059	PAS domain-containing sensor histidine kinase	COG0642
cds1525	0.96362009	-1.26413059	VanZ family protein	none
cds1064	0.96362009	-1.26413059	amino acid ABC transporter substrate-binding protein	none
cds2884	0.96362009	-1.26413059	16S rRNA pseudouridine(516) synthase	COG1187
cds733	0.96362009	-1.26413059	DNA-binding response regulator	COG3706
cds785	0.96362009	-1.26413059	conjugal transfer protein TrbF	COG3701
cds788	0.96362009	-1.26413059	transporter	COG1538
flil	0.96362009	-1.26413059	flagellar protein export ATPase Flil	COG1157
cds2552	0.96362009	-1.26413059	ABC transporter permease	COG0601
id170	0.96362009	-1.26413059	tRNA-Ser	none
cds3046	0.96362009	-1.26413059	hypothetical protein	none
rsmD	0.96362009	-1.26413059	16S rRNA (guanine(966)-N(2))-methyltransferase RsmD	COG0742
cds468	0.96362009	-1.26413059	GNAT family N-acetyltransferase	COG1246
cds109	0.96362009	-1.26413059	hypothetical protein	COG2382
cds3239	0.96362009	-1.26413059	hypothetical protein	none
rna46	0.96362009	-1.26413059	tRNA-Ser	none
cds3292	0.96362009	-1.26413059	hypothetical protein	COG3169
cds14	0.96362009	-1.26413059	AraC family transcriptional regulator	COG2207
fdx	0.96362009	-1.26413059	ISC system 2Fe-2S type ferredoxin	COG0633
cds50	0.96362009	-1.26413059	BolA family transcriptional regulator	COG0271
cds68	0.96362009	-1.26413059	transcriptional regulator	COG1396
cds895	0.96362009	-1.26413059	ABC transporter substrate-binding protein	COG1653
cds2646	0.96362009	-1.26413059	hypothetical protein	COG5341
cds2527	0.96091125	-1.25977881	hemolysin secretion protein D	none
cds2178	0.96102479	-1.25841674	recombination protein RecR	COG0353
cds1010	0.96089332	-1.25499103	phage tail protein	COG4675
bioD	0.96089332	-1.25499103	dethiobiotin synthase	COG0132
cds2823	0.96121729	-1.25499081	hypothetical protein	none
cds1932	0.96121729	-1.25499081	secretion protein HyID	COG1566
cds3225	0.96121729	-1.25499081	glycosyl transferase family 1	COG0438
cds3181	0.96051766	-1.24801514	methyl-accepting chemotaxis protein	none
rna0	0.97664828	-1.24410768	tRNA-Ala	none
id5	0.97664828	-1.24410768	tRNA-Ala	none
cds203	0.96638076	-1.2357867	damage-inducible protein CinA	COG1546
cds1936	0.96638076	-1.2357867	choline dehydrogenase	COG2303
cds1439	0.95945491	-1.23497499	magnesium/cobalt efflux protein	COG4535
cds1061	0.97812381	-1.21004041	hypothetical protein	none
cds2757	0.97812381	-1.21004041	hypothetical protein	none

hflX	0.96213003	-1.21004041	GTPase HflX	COG2262
cds3126	0.9707435	-1.20878053	efflux transporter periplasmic adaptor subunit	COG0845
cds171	0.95150486	-1.20397034	5-dehydro-4-deoxy-D-glucuronate isomerase	COG3717
cds1514	0.95852683	-1.20042945	flagellar M-ring protein FliF	COG1766
glmU	0.99141715	-1.18053684	UDP-N-acetylglucosamine	COG1207
			diphosphorylase/glucosamine-1-phosphate N-	
	0.00004050	1 17070010	acetyltransferase	0004604
xdhB	0.96261253	-1.17676019	xanthine dehydrogenase molybdopterin binding	COG4631
cds685	0 96261253	-1.17676019	hypothetical protein	none
cds155	0.95777762	-1.15618561	type VI secretion system protein TssA	0063515
cds3426	0.95100742	-1.14885231	hypothetical protein	COG0840
cds565	0.96185742	-1.13975333	30S ribosomal protein S21	
cds1968	0.99105216	-1.13901128	hypothetical protein	COG2913
cds2921	0.97434028	-1.13807898	EmdB family transcriptional regulator	COG2313
cds376	0.96986726	-1.13744784	GTP cyclohydrolase	none
cds1086	0.95155583	-1.13744784	diguanylate phosphodiesterase	none
cds762	0.95155583	-1.13744784	metal-hinding protein	0063019
cds2508	0.95155583	-1.13744784	tRNA (cytosine(32)/uridine(32)-2'- Ω)-	0000565
CU32500	0.55155565		methyltransferase TrmJ	0000000
cds2082	0.95155583	-1.13744784	hypothetical protein	none
cds1284	0.95155583	-1.13744784	GntR family transcriptional regulator	COG1802
id31	0.95155583	-1.13744784	tRNA-His	none
cds3055	0.95155583	-1.13744784	dinitrogenase iron-molybdenum cofactor biosynthesis	none
			protein	
cds930	0.95155583	-1.13744784	prevent-host-death protein	COG2161
cds1472	0.95155583	-1.13744784	ParentABC transporter permease	none
rna10	0.95155583	-1.13744784	tRNA-His	none
nifL	0.95155583	-1.13744784	nitrogen fixation negative regulator NifL	COG0642
uvrC	0.95155583	-1.13744784	excinuclease ABC subunit C	COG0322
cds2648	0.95155583	-1.13744784	aromatic acid decarboxylase	COG0163
cds2654	0.95155583	-1.13744784	hypothetical protein	COG1752
cds663	0.96535725	-1.13180979	glycoside hydrolase	COG0791
cds1073	0.95234489	-1.1197746	hypothetical protein	COG0463
cds456	0.95234489	-1.1197746	MATE family efflux transporter	COG0534
bioB	0.95234489	-1.1197746	biotin synthase BioB	COG0502
cds1446	0.96786902	-1.11485369	phenylalaninetRNA ligase subunit alpha	COG0016
cds1736	0.98386515	-1.11137124	peptidylprolyl isomerase	COG1047
cds108	0.98386515	-1.11137124	hypothetical protein	COG2200
cds3176	0.97744117	-1.11137124	cytotoxic translational repressor of toxin-antitoxin	COG2026
			stability system	
cds2894	0.97744117	-1.11137124	ABC transporter ATP-binding protein	COG1127
cds217	0.97744117	-1.11137124	hypothetical protein	none

cds2205	0.97744117	-1.11137124	ABC transporter permease	none
cds2700	0.97744117	-1.11137124	isochorismate synthase	COG1169
cds997	0.97744117	-1.11137124	hypothetical protein	none
cds3276	0.97744117	-1.11137124	putative toxin-antitoxin system toxin component%2C PIN family	COG1569
cds1114	0.97744117	-1.11137124	ABC transporter permease	COG4591
cds1126	0.97744117	-1.11137124	acyl carrier protein	COG0236
cds2490	0.97744117	-1.11137124	electron transfer flavoprotein subunit alpha	COG2025
cds1634	0.97744117	-1.11137124	hypothetical protein	none
cds864	0.97744117	-1.11137124	phosphotyrosine protein phosphatase	COG0394
cds888	0.97744117	-1.11137124	ABC transporter ATP-binding protein	COG0488
cds1301	0.97744117	-1.11137124	hypothetical protein	none
rna1	0.98852829	-1.09911161	tRNA-Glu	none
cds1457	0.98852829	-1.09911161	hypothetical protein	none
id6	0.98852829	-1.09911161	tRNA-Glu	none
cds2492	0.96903602	-1.09388282	TetR family transcriptional regulator	COG1309
cds1885	0.95073223	-1.09388282	cell division ATP-binding protein FtsE	COG2884
cds1000	0.95073223	-1.09388282	histidine kinase	COG0517
cds1555	0.95073223	-1.09388282	hypothetical protein	COG0840
cds3332	0.95073223	-1.09388282	GDP-mannose 4%2C6-dehydratase	COG1089
cds761	0.95073223	-1.09388282	CusA/CzcA family heavy metal efflux RND transporter	COG3696
cds1264	0.95073223	-1.09388282	hypothetical protein	COG3678
cds465	0.95073223	-1.09388282	EamA family transporter	COG0697
cds2220	0.95073223	-1.09388282	lysine transporter LysE	COG1280
cds2227	0.95073223	-1.09388282	hypothetical protein	none
cds2724	0.95073223	-1.09388282	hypothetical protein	COG4178
cds1459	0.95073223	-1.09388282	hypothetical protein	COG1247
cds112	0.95073223	-1.09388282	iron ABC transporter permease	COG4606
cds1103	0.95073223	-1.09388282	glycoside hydrolase	COG0438
cds2946	0.95073223	-1.09388282	diguanylate cyclase	COG2200
cds2496	0.95073223	-1.09388282	peptidase M15	COG3108
cds2996	0.95073223	-1.09388282	Na+/H+ antiporter	COG0025
cds1306	0.95073223	-1.09388282	cyclophilin-like superfamily protein	none
cds932	0.95578761	-1.08521746	GNAT family N-acetyltransferase	COG0456
cds1241	0.96844403	-1.0563745	hypothetical protein	COG0840
cds56	0.95962081	-1.04731517	diguanylate cyclase response regulator	COG3706
cds3011	0.95052344	-1.04688187	chorismate synthase	COG0082
cds274	0.95776119	-1.04173948	arginyltransferase	COG2935
cds2925	0.9617816	-1.00022014	cytochrome C biogenesis protein	COG4137

Figura suplementaria 1. PCA plot de las cuentas normalizadas de la condición intestino vs ovario. En la imagen se muestra la distribución de los datos normalizados, en la cual se observa el agrupamiento de las réplicas. Gut= intestino, Ov=ovarios.

Figura suplementaria 2. PCA plot de las cuentas normalizadas de la condición hemolinfa vs ovarios. En la imagen se muestra la distribución de los datos normalizados, en la cual se observa el agrupamiento de las réplicas. HM=hemolinfa, Ov= Ovarios.

11. Bibliografía

Bennett, G.M. & Moran, N.A. (2013). Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. *Genome Biology and Evolution*, *5*, 1675–1688. DOI: 10.1093/gbe/evt118.

Bennett, GM and Moran, NA. (2015). Herytable simbiosis: The advantages and perils of an evolutionary rabbit hole. PNAS, 112, 10169–10176. DOI: 10.1073/pnas.1421388112

Bing, X. L., Attardo, G. M., Vigneron, A., Aksoy, E., Scolari, F., Malacrida, A., Weiss, B. L., and Aksoy, S. (2017). Unravelling the relationship between the tsetse fly and its obligate symbiont *Wigglesworthia*: transcriptomic and metabolomics landscapes reveal highly integrated physiological networks. Proc. R. Soc. B 284, 1-10. DOI: 10.1098/rspb.2017.0360.

Burke, G., Fiehn, O. & Moran, N.A. (2010). Effects of facultative symbionts and heat stress on the metabolome of pea aphids. *The ISME Journal*, *4*, 242–252.

Camacho, M., Oliva, M., and Serbus, L. R. (2017). Dietary saccharides and sweet tastants have differential effects in colonization of *Drosophila* oocytes by *Wolbachia* endosymbionts. The Company of Biologists. 6, 1074-1083. DOI: 10.1242/bio.023895

Campbell, MA., Van Leuven, JT., Meister, RC., Carey, KM., Simon, C. and McCutcheon, JP. (2015). Genome expansión via lineage splitting and genome reduction in the cicada endosymbiont *Hodgkinia*. PNAS. 112, 10192-10199. DOI: 10.1073/pnas.1421386112

Carver, T., Harris, S. R., Berriman, M., Parkhill, J. and McQuillan J. A. (2012). Artemis: an integrated plataform for visualization and analysis of high-throughput sequence-based experimental data. Genome analysis. 28, 464-469. DOI: 10.1093/bioinformatics/btr703

Ceja-Navarro, J. A., Nguyen, N. H., Nguyen, Karaoz, U., Gross, S. R., Herman, D. J., Andersen, G. L., Bruns, T. D., Pett-Ridge, J., Blackwell, M., and Brodie, E. L. (2014). Compartamentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of *Odontotaenius disjunctus*. The ISME Journal. 8, 6-18. DOI: 10.1038/ismej.2013.134

Chávez-Moreno, C., Tecante, K. A., and Casas, A. (2009). The *Opuntia* (Cactaceae) and *Dactylopius* (Hemiptera: Dactylopiidae) in Mexico: a historical perspective of use, interaction and distribution. Biodivers. Conserv. 18: 3337-3355.

Chitale, S., Ehrt, S., Kawamura, I., Fujima, T., Shimono, N., Anand, N., Lu, S., Cohen-Gould, L., and Riley, L. W. (2001). Recombinant *Mycobacterium tuberculosis* protein associated with mammalian cell entry. Cellular Microbiology. 3, 247-254.

Degli Esposti, M. & Martinez Romero, E. (2017). The functional microbiome of arthropods. *PLOS One*, DOI: 10.1371/journal.pone.0176573.

Douglas, A. E. (2014). The molecular basis of bacterial-insects symbiosis. J. Mol. Biol. 426: 3830-3837

Gil, R., Vargas-Chavez, C., López-Madrigal, S., Santos-García, D., Latorre, A. and Moya, A. (2017). Tremblaya phenacola PPER: an evolutionary beta-gammaproteobacterium collage. The ISME Journal (2017). 1-12. DOI:10.1038/ismej.017.144.

Gray, M. W. and Doolittle, W. F. (1982). Has the endosymbiont hypothesis been prove? Microbiol. Rev. 46: 1-42.

Grissa, I., Vergnaud, G. and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acid Research. 35, W52-W57. DOI: 10.1093/nar/gkm360.

Guerrero-Castro, J., Lozano, L. and Sohlenkamp, C. (2018). Dissectin the Acid Stress Response of *Rhizobium tropici* CIAT 899. Front. Microbiol. 9:846, 1-14. DOI: 10.3389/fmicb.2018.00846.

Guindon, S., Dufayart, J. F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59, 307-321. DOI: 10.1093/sysbio/syg010.

Hang-Yeon, W., Byung-Young, K., Seung-Hee, Y., Soon-Wo, K., Seung-Joo, G. and Stackebrand, E. (2008). Uliginosibacterium gangwonense gen. nov., isolated from wetland, Yongneup in Korea. IUMS. 58,131-135. DOI: 10.1099/ijs.0.64567-0.

Heddi, A. and Gross, R. (2012). Proteobacteria as primary Endosymbionts of Arthropods. In: E. Zchori- Feis and K. Bourtzis. 1st ed. Broken Sound Parkway, N.Y.: CRC PRESS, 1-20.

Hernandes, R. T., De la Cruz, M. A., Yamamoto, D., Giron, J. A. and Gomes, T. A. T. (2013). Dissection of the role of Pili and Type 2 and 3 Secretion Systems in Adherence and Biofilm Formation of an Atypical Enteropathogenic *Escherichia coli* strain. IAI Journals. 81, 3793-3802. DOI: 10.1128/IAI.00620-13.

Herridge, D. F., Peoples, M. B., and Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil. 311, 1-18. DOI: 10.1007/s11104-008-9668-3

Hongoh, Y., Sharma V. K., Prakash, T., Noda, S., Toh, H., Taylor, T. D., Kudo, T., Sakaki, Y., Toyda, A., Hattori, M., and Ohkuma, M. (2008). Genome of an Endosymbiont Coupling N₂ Fixation to Cellulysis Within Protist Cells in Termite Gut. SCIENCE. 322,1108-1109. DOI: 10.1126/science.1165578

Hurek, T., Handley, L.L., Relnhold-Hurek, B., and Plché, Y. (2002). *Azoarcus* Grass Endophytes Contribute Fixed Nitrogen to the Plant in an Unculturable State. The American Phytopathological Society. 15,233-242. DOI: 10.1094/MPMI.2002.15.3.233

Husnik, F. & McCutcheon, J.P. (2016). Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. *Proceedings of the National Academy of Sciences of the United States of America*, *113*, E5416-24. DOI: 10.1073/pnas.1603910113.

Husnik, F., Nikoh, N., Koga, R., Ross, L., Duncan, R.P., Fujie, M., Tanaka, M., Satoh, N., Bachtrog, D., Wilson, A.C., von Dohlen, C.D., Fukatsu, T. & McCutcheon, J.P. (2013). Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. *Cell, 153,* 1567–1578.

Ishikawa, H. (1989). Biochemical and molecular aspects of endosymbiosis in insects. Int. Rev. Cytol. 116: 1-45

Ishikawa, H. (2003). Insects symbiosis: An introduction. In: K. Bourtzis and T. Miller, ed., Insect Symbiosis, 1st ed. Washington D.C.: CRC PRESS, 1-16.

Isom, G. L., Davies, N. J., Chong, Z., Bryant, J. A., Jamshad, M., Sharif, M., Cunningham, A. F., Knowles, T. J., Chng, S., Cole, J. A., and Henderson, I. R. (2017). MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis. Sci Rep. 7:8608: DOI: 10.1038/s41598-017-09111-6

Jaenike, J., Unckless, R., Cockburn, S.N., Boelio, L.M. & Perlman, S.J. (2010). Adaptation via symbiosis: recent spread of a *Drosophila* defensive symbiont. *Science*, *329*, 212–215.

James, E. K. (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research. 65, 197-209.

James, V. and Hugouvieux-Cotte-Pattat. (1996). Regulatory systems modulating the transcription of the pectinase genes of *Erwinia chrysanthemi* are conserved in *Escherichia coli*. Microbiology. 142, 2613-2619. DOI: 10.1099/00221287-142-9-2613.

Koga, R., Tsuchida, T., and Fukatsu, T. (2009). Quenching autofluorescence of insect tissues for *in situ* detection of endosymbionts. Appl. Entomol. Zool. 44: 281-291.

Kikuchi, Y. et al. (2007) Insect-microbe mutualism without vertical transmission: A stink bug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316.

Kikuchi, Y. et al. (2009) Host-symbiont cospeciation and reductive genome evolution in gut symbiotic bacteria of acanthoso- matid stinkbugs. BMC Biol. 7, 2.

Kikuchi, Y., Hosokawa, T., and Fukatsu T. (2011). An ancient but promiscuous host-symbiont association between *Burkholderia* gut symbionts and their heteropteran hosts. The ISME Journal. 5: 446-460.

Kumar, S., stecher, G. and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33, 1870-1874. DOI: 10.1093/molbev/msw054.

Lahortiga, I. and Cox, L. (2018). *somersault18:24*. Grote Markt, Belgium. Dirección: http://www.somersault1824.com/resources/

Langmead, B., and Salzberg, S. L. (2012). Fast grapped-read alignment with Bowtie2. Nat. Methods. 9, 357-359. DOI: 10.1038/nmeth.1923.

Larking, M. A., Blackshields, G., Brown, N. P., Cheena, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T. J. and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics. 23, 2947-2948. DOI: 10.1093/bioinformatics/btm404

Latorre, A. and Manzano-Marín, A. (2016). Dissecting genome reduction and trait loss in insect endosymbionts. Ann. N.Y. Acad. Sci.1389, 52-75. DOI: 10.1111/nyas.13222

Lech, K., Witkós, K., and Wilenska B. (2014). Identification of unknown colorants in pre-Culombian txtiles dyed with American cochineal (*Dactylopius coccus* Costa) using high-performance liquid chromatography and tandem mass spectrometry. Anal. Bioanal. Chem. 407: 855-867.

Liu, S., Chougule, N. P., Vijayendran, D. and Bonning, B. C. (2012). Deep Sequencing of the Transcriptome of Soybean Aphid and Associated Endosymbionts. PLOS. 7: 1-14.

Mann, E., Stouthamer, C. M., Kelly, S. E., Dzieciol, M., Hunter, M. S., and Schmitz-Esser, S. (2017). Transcriptome Sequencing Reveals Novel Candidate Genes for *Cardinium hertigii*-Caused Cytoplasmatic Incompatibility and Host-Cell Ineraction. mSystems 2:e00141-001417. DOI: 10.1128/mSystems.00141-17.

Manzano-Marín, A., Latorre, A. (2016). Snapshots of a shrinking partner: Genome reduction in *Serratia symbiotica*. *Scientific Reports, 6,* 32590. DOI: 10.1038/srep32590.

McFall-Ngai, MJ. (2002). Unseen forces: the influence of bacteria on animal development. *Developmental Biology, 242,* 1-14.

Moran, N.A. (2003). Tracing the evolution of gene loss in obligate bacterial symbionts. *Current Opinion in Microbiology, 6,* 512–518.

Moran, N.A. (2007). Symbiosis as an adaptive process and source of phenotypic complexity. *Proceedings of the National Academy of Sciences of the United States of America, 104,* 8627–8633.

Moran, NA and Bennet, GM. (2014). The Tiny Tiniest Genome. Annu. Rev. Microbiol. 68, 195-215. DOI: 10.1146/annurev-micro-091213-112901.

Moriyama, M., Nikoh, N., Hosokawa, T., Fukatsu, T. (2015). Riboflavin Provisioning Underlines *Wolbachia*'s Fitness Contribution to Its Insects Host. Issue. 6: 1-8.

Masoomi-Aladizgeh, F., Jabbari, L., Khayam Nekouei R., and Aalami A. (2017). A simple and Rapid System for DNA and RNA Isolation from Diverse Plants Using Handmade Kit. Protocol Exchange. Nature. 1-8.

Nikoh, N., McCutcheon, J. P., Kudo, T., Miyagishima, S., Moran, N, A. and Nakabachi, A. (2010). Bacterial Genes in the Aphid Genome: Absence if Functional Gene Transfer from Buchnera to Its Host. PLOS, 6, 1-21. DOI: 10.1371/journal.pgen.1000827.

Oren, A. (2014). The Family *Rhodocyclaceae*. In The Book of Prokaryotes. Alpha and Beta Proteobacteria, 976-998- Berlin-Germany.Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-642-30197-1_396.

Pérez-Guerra, G. and Kosztarab, M. (1992). Biosystematics of the family *Dactylipiidae* (Homoptera: Coccinea) with emphasis on the life cycle of *Dactylopius coccus* Costa. Studies on the morphology and systematics of scale insects. Bull. Virginia Agric. Exp. Station. 92: 1-90.

Pitcher, R. S., and Watmough, N. J. (2004). The bacterial cytochrome cbb3 oxidase. BBA-Bioenergetics. 1655, 288-299. DOI: 10.1016/j.bbabio.2003.09.017

Posada, D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol Evol.,7,1120-1123. DOI: https://doi.org/10.1093/molbev/msn083.

Ramírez-Puebla, S.T., Ormeño-Orrillo, E., León, Vera-Ponce de León, A., Lozano, L., Sánchez, A., Rosenblueth, M., and Martínez-Romero, E. (2016). Genomes of *Candidatus* Wolbachia Bourtzisii wDacA and *Candidatus* Wolbachia Pipientis wDacB from the Cochineal insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3 *Genes/Genomes/Genetics, 6*, g3.116.031237. DOI:10.1534/G3.116.031237.

Ramírez-Puebla, S.T., Rosenblueth, M., Chávez-Moreno, C.K., Catanho Pereira de Lyra, M.C., Tecante, A. & Martínez-Romero, E. (2010). Molecular phylogeny of the genus *Dactylopius* (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteria. *Environmental Entomology, 39,* 1178–83. DOI:10.1603/EN10037.

Ramírez-Puebla, S.T., Servín-Garcidueñas, L.E., Ormeño-Orrillo, E., Vera-Ponce de León, A., Rosenblueth, M., Delaye, L., Martínez, J. & Martínez-Romero, E. (2015). Species in *Wolbachia*? Proposal for the designation of "*Candidatus* Wolbachia bourtzisii", "*Candidatus* Wolbachia onchocercicola", "*Candidatus* Wolbachia blaxteri", "*Candidatus* Wolbachia brugii", "Candidatus Wolbachia taylori", "Candidatus Wolbachia collembol". *Systematic and Applied Microbiology, 38*, 390–9. DOI: 10.1016/j.syapm.2015.05.005.

Rosenblueth, M., Martínez-Romero, J., Ramírez-Puebla, S. T., Vera-Pónce de León, A., Rosas-Pérez, T., Bustamante-Brito, R., Rincón-Rosales, R. and Martínez-Romero, E. (2017). ENDOSYMBIOTIC MICROORGANISMS OF SCALE INSECTS. TIP Revista Especializada en Ciencias Químico-Biológicas, 21,53-69. DOI: 10.1016/j.recqb.2017.08.006

Rosas-Pérez, T., Rosenblueth, M., Rincón-Rosales, R., Mora, J. and Martínez-Romero, E. (2014). Genome sequence of "*Candidatus* Walczuchella monophlebidarum" the flavobacterial endosymbiont of *Llaveia axin axin* (Hemiptera: Coccoidea: Monophlebidae). *Genome Biology and Evolution, 6,* 714–726. DOI: 10.1093/gbe/evu049

Rosas-Pérez, T., Vera-Ponce de León, A., Rosenblueth, M., Ramírez-Puebla, S.T., Rincón-Rosales, R., Martínez-Romero, J., Dunn, M.F., Kondorosi, E. and Martínez-Romero E. (2017). Chapter 5. The symbiome of Llaveia Cochineals (Hemiptera: Coccoidea: Monophlebidae) includes a Gammaproteobacterial cosymbiont Sodalis TME1 and the known Candidatus Walczuchella monophlebidarum. In: Agricultural and Biological Sciences "Insect Physiology and Ecology", Shields VDC (Ed.) ISBN 978-953-51-3034-5, ISBN 978-953-51-3033-8, DOI: 10.5772/66442.

Rosenblueth, M., Sayavedra, L., Sámano-Sánchez, H., Roth, A. and Martínez-Romero, E. (2012). Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). *Journal of Evolutionary Biology, 25,* 2357–2368.

Samoylova, E. S., Kostina, N. V., and Striganova, B. R. (2015). Non-symbiotic Nitrogen Fixation in the Intestine of Click Beetle Larvae (Coleoptera, Elateridae). Doklady Biological Sciences, 461, 242-245. DOI: 10.1134/S0012496615020052

Salem, H., Florez, L., Gerardo, N. and Kaltenpoth, M. (2015). An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. *Proceedings of the Royal Society B: Biological Sciences, 282,* 20142957. DOI: 10.1098/rspb.2014.2957.

Sloan, D. B., Nakabachi, A., Richards, S., Qu, J., Canchi Murali, S., Gibbs, R. A and Moran, N. A. (2014). Parallel Histories of Horizontal Gene Transfer Facilitated Extreme Reduction of Endosymbiont Genome in Sap-Feeding Insects. Mol. Biol. Evol. 31, 857-871. DOI: 10.1093/molbev-7msu004.

Sudakaran, S., Kost, C. and Kaltenopth, M. (2017). Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends in Microbiology. 1-16. DOI: 10.1016/j.tim.2017.02.014

Stano, M., Beke, G. and Klucar, L. (2016). viruSITE-integrated database for viral genomics. Database. 2016,1-6. DOI: 10.1093/database/baw162.

Tarazona, S., Furió-Tarí, P., Turrá, D., Di Pietro, A., Nueda, M. J., Ferrer, A. and Conesa, A. (2015). Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research. 43, e140. DOI: 10.1093/nar/gkv711.

Tsuchida, T., Koga, R. & Fukatsu, T. (2004). Host plant specialization governed by facultative symbiont. *Science*, *303*, 1989.

van Borm, S., Buschinger, A., Boomsma, J. J., and Billen, J. (2002). Tetraponera ant have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc. R. Soc. Lond. 269, 2023-2027. DOI: 10.1098/rspb.2002.2101

Vera-Ponce de León, A., Ormeño-Orrillo, E., Ramírez-Puebla, S. T., Rosenblueth, M., Degli Esposti, M., Martínez-Romero, J. and Martínez-Romero, E. (2017). Candidatus Dactylopiibacterium carminicum, a Nitrogen-Fixing Symbiont of Dactylopius Cochineal Insects (Hemiptera: Coccoidea: Dactylipiidae). Genome Biol. Evol., 9, 2237-2250. DOI: 10.1093/gbe/evx156.

Werren, J.H., Baldo, L. & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6, 741–751. DOI: 10.1038/nrmicro1969.

Wilson, A. C. C. and Duncan, R. P. (2015). Signatures of host/symbiont genome coevolution in insect nutritional endosymbiosis. PNAS. 112, 10255-10261. DOI: 10.1073/pnas.1423305112.

Xie, J., Butler, S., Sanchez, G. & Mateos, M. (2014). Male killing *Spiroplasma* protects Drosophila melanogaster against two parasitoid wasps. Heredity, 112, 399–408.

Zhang, Y., Li, J., Li, B., Wang, J., and Liu, C. H. (2018). *Mycobacterium tuberculosis* Mce3C promotes mycobacteria entry into macrophages through activation of β 2 integrin-mediated signaling pathway. Cellular Microbiology. 20:e12800,1-16. DOI: doi.org/10.1111/cmi.12800