

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

EVALUACIÓN DEL DESEMPEÑO DE UN EQUIPO PORTÁTIL DE FLUORESCENCIA DE RAYOS X EN LA DETERMINACIÓN DE LA COMPOSICIÓN ELEMENTAL DE MATERIALES SÓLIDOS

TESIS

QUE PARA OBTENER EL TÍTULO DE

QUÍMICA

PRESENTA

ROMINA SOTO PÉREZ

CIUDAD UNIVERSITARIA

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	PROFESOR:	CIRO ELISEO MÁRQUEZ HERRERA
VOCAL:	PROFESOR:	RICARDO ALFARO FUENTES
SECRETARIO:	PROFESOR:	Olivia Zamora Martínez
1 ^{ER} SUPLENTE:	PROFESORA:	MINERVA MONROY BARRETO
2 ^{DO} SUPLENTE:	PROFESORA:	CLAUDIA INÉS RIVERA CÁRDENAS

SITIO DONDE SE DESARROLLÓ EL TEMA:

LABORATORIO DE CROMATOGRAFÍA, DEPARTAMENTO DE CIENCIAS AMBIENTALES Y DEL SUELO, PRIMER PISO, INSTITUTO DE GEOLOGÍA; Y LABORATORIO NACIONAL DE GEOQUÍMICA Y MINERALOGÍA, UNAM

ASESORA DEL TEMA:

DRA. OLIVIA ZAMORA MARTÍNEZ

SUPERVISORA TÉCNICA:

Q.F.B. FABIOLA VEGA GARCÍA

SUSTENTANTE:

C. ROMINA SOTO PÉREZ

Firma

Firma

Firma

Agradecimientos

Para empezar, quisiera agradecer a mi asesora la **Dra. Olivia Zamora Martínez** y mi asesora técnica **QFB. Fabiola Vega García** por su guía técnica y experimental, apoyo y motivación tanto académica como personal durante todo el proceso en la realización de esta tesis.

Como especial agradecimiento al **Q. Rufino Lozano Santa Cruz** por sus consejos y enseñanza sin igual sobre la técnica que aborda esta tesis, por su apoyo no sólo académico sino también técnico, por guiarme con material informativo, explicaciones y pláticas sobre el tema abordado, por la preparación y el análisis de las muestras por medio de FRX-WD, así como la oportunidad de trabajar con el equipo portátil de FRX.

Al personal del **Laboratorio de Cromatografía** del **Instituto de Geología** y al **Laboratorio Nacional de Geoquímica y Mineralogía** sede C.U. por su apoyo y actitud positiva al permitirme el uso de los equipos y de materiales que ahí se encuentran y que sin ellos no habría sido posible desarrollar el trabajo experimental.

Al H. Jurado, mis profesores y amigos que colaboraron de una u otra forma en la realización de este trabajo y de generar en mí la motivación para llegar hasta aquí.

Por último, el más especial agradecimiento a la **Universidad Nacional Autónoma de México** y a la **Facultad de Química**, por brindarme la formación profesional que me permitirá desarrollarme en el ámbito laboral y profesional futuro; por la *Beca para Titulación – Egresados de Alto Rendimiento (Ciclo escolar 2018-2019)*, que me fue otorgada, y por esos años inolvidables durante mi paso por la educación superior de mi alma mater tornando mi sangre azul y dorada.

> A todos: Gracias

Listado de figuras

Figura II.1. Interacciones presentes entre rayos X y materia. Donde: ρ corresponde
a la densidad del material y d al espesor de éste (Brouwer, 2013)
Figura II.2. Elementos detectables por el analizador PFRX NITON (Güiza, 2014).
Figura II.3. Gráfico ejemplo con parámetros de LOD, LOQ, intervalo de trabajo y
lineal, y sensibilidad analítica (Eurochem, 2014) 19
Figura III.1. Porta muestra para materiales en estado sólido en forma de polvo (de
izquierda a derecha: anillo, cilindro rígido, tapa de contención)
Figura III.2. Preparación de los estándares en estado sólido en polvo
Figura III.3. Estándares preparados para los análisis en el equipo PFRX
Figura III.4. Prensadora Graseby/Specac y contenedor para la obtención de
pastillas
Figura III.5. Estándares en estado sólido en forma de pastilla
Figura III.6. Muestras fundidas
Figura III.7. Equipo portátil Niton XL3t GOLDD+ de FRX
Figura III.8. Equipo convencional de FRX, marca RIGAKU, modelo Primus II 36
Figura IV.1. Gráficos de correlación entre la concentración determinada con el
equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para
Mo, Zr, Sr, Rb, Th y Pb, en modo suelo (45 s de análisis). Parte 1/3 39
Figura IV.2. Gráficos de correlación entre la concentración determinada con el
equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para
As, Zn, Cu, Ni, Fe y Mn, en modo suelo (45 s de análisis). Parte 2/3 40
Figura IV.3. Gráficos de correlación entre la concentración determinada con el
equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para
Cr, V, Ti, Ca y K, en modo suelo (45 s de análisis). Parte 3/3 41
Figura IV.4. Gráficos de correlación entre la concentración determinada con el
equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para
Zr, Sr, Rb, Pb, Zn y Cu, en modo mina (45 s de análisis). Parte 1/3 42

Figura IV.5. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para Fe, Mn, Ti, Ca, K y Ba, en modo mina (45 s de análisis). Parte 2/3 43 Figura IV.6. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para Nb, Al y Si, en modo mina (45 s de análisis). Parte 3/3 44 Figura IV.7. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de Au para Au, Ag, Figura IV.8. Gráficos comparativos PFRX vs FRX-WD para Ti (arriba) y Ca (abajo) Figura IV.9. Gráficos comparativos PFRX vs FRX-WD para Ti (arriba), Ca (en medio) y Fe (abajo) obtenidos de las muestras analizadas en forma de polvo..... 56 Figura IV.10. Gráficos comparativos PFRX vs FRX-WD para Au (arriba izquierda), Ag (arriba derecha), Cu (abajo izquierda) y Zn (abajo derecha) obtenidos con los estándares de metales preciosos......58

Listado de tablas

Tabla II.1. Clasificación de técnicas instrumentales. 4
Tabla II.2. Historia de la fluorescencia de rayos X6
Tabla III.1. Estándares de referencia en estado sólido
Tabla III.2. Elementos detectados en filtros de modo de "suelo" (Thermo Scientific,
Guía de usuario)
Tabla III.3. Elementos ligeros detectados por modo de "mina" (Thermo Scientific,
Guía de usuario)
Tabla III.4. Elementos detectados por modo de "metales preciosos"
Tabla III.5. Elementos detectados para el estudio comparativo entre equipos 35
Tabla IV.1. Muestra de coeficientes de variación porcentuales para algunos
elementos determinados

Tabla IV.2.Valores de concentración mínimo y máximo utilizados en los modos de
"suelo", "mina" y "metales preciosos"
Tabla IV.3. Pendientes, ordenadas al origen y coeficientes de correlación
determinados para los modos de análisis "suelo", "mina" y "metales preciosos" 48
Tabla IV.4. Tabla comparativa de las pendientes, ordenadas al origen y coeficientes
de correlación obtenidos con el modo "suelo" para dos formas de preparación del
estándar: pastilla y polvo50
Tabla IV.5.Tabla comparativa de las pendientes, ordenadas al origen y coeficientes
de correlación obtenidos con el modo "mina" para dos formas de preparación del
estándar: pastilla y polvo51
Tabla IV.6. Pendientes, ordenadas al origen y coeficientes de correlación -
Comparativa entre equipos de FRX en estado de perla y polvo
Tabla IV.7. Pendientes, ordenadas al origen y coeficientes de correlación para los
estándares de metales preciosos59

Listado de Ecuaciones

Ecuación III.1. Determinación del coeficiente de variación porcentual	32
Ecuación III.2. Determinación del error porcentual	33

Listado de abreviaturas

cps – Cuentas por segundo; Counts Per Second, por sus siglas en inglés.

- CV Coeficiente de Variación.
- DERP Desviación Estándar Relativa Porcentual.

EPA – Agencia de protección ambiental; Environmental Protection Agency, por sus siglas en inglés.

- FRX Fluorescencia de Rayos X.
- g Gramos.

ISO – Organización internacional de estandarización; International Organization for Standardization, por sus siglas en inglés.

LOD – Límite de detección; Limit Of Detection, por sus siglas en inglés.

LOQ – Límite de cuantificación; Limit Of Quantification, por sus siglas en inglés.

NIST – Instituto nacional de estándares y tecnología; National Institute of Standards and Technology, por sus siglas en inglés.

ppm – Partes por millón.

PFRX – Portátil de Fluorescencia de Rayos X.

SRM – Materiales de referencia estándar; Standard Reference Material, por sus siglas en inglés.

Índice

Capítulo I. Introducción	1
I.1 Objetivos	2
I.1.1 Objetivos generales	2
I.1.2 Objetivos particulares	2
Capítulo II. Marco teórico	3
II.1 Fluorescencia de rayos X	5
II.1.1 Historia	5
II.1.2 Fundamentos	7
II.1.3 Ventajas y desventajas de la técnica de FRX	10
II.1.4 Equipo portátil de fluorescencia de rayos X	11
II.2 Validación de métodos	14
II.2.1 Características y parámetros de un método validado	14
II.2.2 Validación de métodos usando estadística	21
Capítulo III. Metodología	24
III.1 Equipos, materiales y reactivos	24
III.1.1 Equipos	24
III.1.2 Reactivos y materiales	24
III.2 Preparación de estándares y muestras	
III.2.1 Estándares en estado sólido en polvo	
III.2.2 Estándares en estado de polvo comprimido (pastilla)	
III.2.3 Muestras fundidas	30
III.3 Procedimiento experimental	
III.3.1 Determinación del tiempo óptimo de trabajo	

III.3.2 Efecto de la preparación de la muestra para el análisis con el equipo portátil
III.3.3 Estudio comparativo entre el equipo portátil y el convencional
Capítulo IV. Resultados y discusión 37
IV.1 Determinación del tiempo óptimo de trabajo
IV.2 Efecto de la preparación del material (Pastilla y polvo) 49
IV.3 Estudio comparativo entre el equipo portátil y el convencional 52
Capítulo V. Conclusiones 60
Referencias61
ANEXOS

Capítulo I. Introducción

Es internacionalmente reconocido que la validación es necesaria en laboratorios analíticos. El validar un método consiste en investigar si éste logra cubrir el propósito analítico para el cual fue planeado; esto se logra obteniendo resultados analíticos con un nivel de incertidumbre aceptable.

Por su parte la Organización Internacional de Estandarización (ISO por sus siglas en inglés) define la validación como la confirmación por examinación y provisión de evidencia objetiva de que los requisitos particulares para un uso específico son satisfechos. En primer lugar, la validación es requerida para cualquier método nuevo; y éste debe ser capaz de resolver un problema analítico particular.

El propósito de todo método analítico es proveer de resultados tanto cualitativos y/o cuantitativos cumpliendo con una incertidumbre aceptable como se ha mencionado previamente (Traverniers, De Loose, & Van Bockstaele, 2004).

Con respecto a los equipos portátiles de FRX, su validación puede realizarse con base en el método 6200 SW-846 de la EPA (Environmental Protection Agency), el cual se aplica para la determinación de concentraciones elementales en suelos y sedimentos por espectroscopía de rayos X. Dicho método es considerado tanto una guía que contiene información general de cómo realizar un procedimiento analítico para llevar a cabo la validación de métodos, así como el procedimiento para llevar a cabo análisis de muestras de suelos y sedimentos (EPA, 2007).

Es importante mencionar que el equipo usado en esta metodología puede detectar hasta 40 elementos, los cuales incluyen: magnesio, aluminio y azufre; mismos que según el método 6200 son llamados "elementos ligeros" y no siempre pueden ser detectados por todos los equipos de fluorescencia de rayos X disponibles en el mercado actualmente.

I.1 Objetivos

I.1.1 Objetivos generales

 Llevar a cabo la evaluación del desempeño en la determinación y cuantificación de elementos varios mediante un equipo portátil de fluorescencia de rayos X, marca Thermo Scientific, modelo Niton XL3t GOLDD+, en muestras sólidas de diversa naturaleza.

I.1.2 Objetivos particulares

- Llevar a cabo la validación del equipo portátil de fluorescencia de rayos X, marca Thermo Scientific, modelo Niton XL3t GOLDD+, con respecto a lo establecido en la norma EPA 6200.
- Realizar un estudio comparativo del desempeño entre el equipo portátil de fluorescencia de rayos X, marca Thermo Scientific, modelo Niton XL3t GOLDD+ y un equipo de rayos X convencional, marca Rigaku, modelo Primus II con tubo de rodio de 4 KVA de potencia.

Capítulo II. Marco teórico

La química analítica es una ciencia de medición de suma importancia, basada en ideas y métodos que son útiles en diversos campos de la ciencia, industria y de la medicina. (Skoog, West, Holler, & Crouch, 2005).

Todo análisis requiere información tanto cualitativa como cuantitativa. El análisis cualitativo establece la identidad química de las especies de la muestra; mientras que el análisis cuantitativo determina la cantidad relativa de esas especies, o analitos, de forma numérica (Skoog, West, Holler, & Crouch, 2005).

Las medidas analíticas cuantitativas desempeñan una función vital en muchas áreas de investigación de la química, bioquímica, biología, geología, física y otras ciencias (Skoog, West, Holler, & Crouch, 2005).

Para llevar a cabo cualquier análisis cuantitativo se utilizan técnicas y métodos analíticos. La diferencia entre estas expresiones radica en que una técnica es un proceso científico fundamental que ha demostrado ser útil para proporcionar información acerca de la composición de las sustancias; mientras que un método es una aplicación específica de una técnica para resolver un problema analítico (Gomis, 2008).

Entre las técnicas instrumentales que existen actualmente éstas se clasifican en 3 áreas principales, las cuales se muestran en la **Tabla II.1**; incorporando otras, las cuales no se ajustan perfectamente a las 3 clasificaciones pero que son técnicas analíticas importantes.

Por su parte, la fluorescencia de rayos X se encuentra en la clasificación de técnicas espectroscópicas, puesto que entra en las técnicas de espectroscopía de fluorescencia, utilizando rayos X para llevar acabo el análisis.

Tabla II.1. Clasificación de técnicas instrumentales.

Técnicas espectroscópicas

Espectrofotometría de visible y ultravioleta

Espectroscopía de fluorescencia y fosforescencia

Espectroscopía atómica (emisión y absorción)

Espectrofotometría de infrarrojo

Espectroscopía raman

Espectroscopía de rayos X

Técnicas radioquímicas (análisis por activación)

Espectroscopía de resonancia magnética nuclear

Espectroscopía de resonancia de espín electrónico (Resonancia paramagnética)

Técnicas electroquímicas

Potenciometría (electrodos de pH y selectivos a iones)

Voltamperometría

Técnicas voltamperométricas

Técnicas de redisolución

Técnicas amperométricas

Coulombimetría

Electrogravimetría

Técnicas de conductancia

Técnicas cromatográficas

Cromatografía de gases

Técnicas de cromatografía líquida de alta resolución

Técnicas diversas

Análisis térmico

Espectrometría de masas

Técnicas cinéticas

Técnicas conjuntadas o acopladas

Cromatografía de gases-espectrometría de masas (GC-MS)

Plasma con acoplamiento inductivo- espectrometría de masas (ICP-MS)
Cromatografía de gases-espectrofotometría de infrarrojo (GC-IR)
Espectrometría de masas-espectrometría de masas (MS-MS)

 Tabla II.1. Clasificación de técnicas instrumentales.

Fuente: (Gomis, 2008).

Por su parte, existen diversos métodos analíticos de cuantificación dependiendo en la medición de alguna cantidad proporcional al analito de la muestra como, por ejemplo: masa, concentración, intensidad luminosa, carga eléctrica, etcétera. Entre estos métodos están: los métodos gravimétricos que determinan la masa del analito o de algún compuesto relacionado químicamente con él; métodos volumétricos, donde se cuantifica la concentración de una disolución que contiene reactivo suficiente para reaccionar por completo con el analito; métodos electroanalíticos que comprenden la medición de propiedades eléctricas tales como el potencial, corriente, resistencia y cantidad de carga eléctrica; y por último, los métodos espectroscópicos, los cuales se basan en la medida de la interacción de la radiación electromagnética con los átomos o moléculas del analito o en determinar la producción de tal radiación por el analito mismo (Skoog, West, Holler, & Crouch, 2005). Como se ha mencionado previamente la FRX es parte de las técnicas y métodos derivados de éstas de carácter espectroscópico y se procederá a explicarlo con mayor detalle a continuación.

II.1 Fluorescencia de rayos X

II.1.1 Historia

El desarrollo cronológico de la fluorescencia de rayos X se muestra en la **Tabla II.2** (Cabriales, 2002).

Año	Acontecimiento
1895	Wilheim Conrad Röntgen descubre los rayos X
4000	Jean Perrin mide la intensidad de los rayos X con una cámara de
1090	ionización
1000 1011	Charles Glover Barkla evidencía los bordes de absorción y las
1909-1911	series de líneas de emisión.
1013	William Lawrence y William Henry Bragg construyen el
1915	espectrómetro de rayos X de Bragg.
	Henry Moseley establece la base del análisis de rayos X
1013	espectroquímico cualitativo y cuantitativo, mostrando la relación
1010	entre la longitud de onda de las líneas espectrales y el número
	atómico.
1013	William David Coolidge introduce el tubo de rayos X de filamento
1010	caliente y alto vacío.
1022	Hadding aplica por primera vez la espectrometría de rayos X a
1922	minerales.
1028	Hans Geiger y Walter Müller desarrollan el detector de tubo lleno
1320	de gas inerte con un alto grado de confiabilidad.
1028	R. Glocker y H. Schreiber aplican por primera vez la
1920	espectroscopía de rayos X por emisión secundaria (Fluorescencia).
1040	H. Friedman y L.S. Bircks construyen el prototipo del primer
1940	espectrómetro de emisión secundaria comercial.
~1960	Se comienza a utilizar la técnica analítica de fluorescencia de rayos
~1900	X en la industria del cemento.

Tabla II 2	Historia	de la	fluorescencia	de ra	NOS X
	instoria		11401030011014		iyos A.

Fuente: (Cabriales, 2002).

Como se menciona previamente el desarrollo de espectrómetros de emisión de rayos X para realizar análisis elemental comenzó a finales de los años 50's y principios de los 60's (Cabriales, 2002).

II.1.2 Fundamentos

La espectroscopía de fluorescencia de rayos X es un método analítico tanto cualitativo como cuantitativo para determinar la composición química (elementos químicos) de todo tipo de materiales basado sobre la medición de las longitudes de onda y las intensidades de las líneas espectrales emitidas por excitación secundaria (Cabriales, 2002; Brouwer, 2013).

El rayo primario procedente de un tubo de rayos X, sincrotrón o de un material radiactivo que irradia la muestra, excitando cada elemento para emitir líneas espectrales secundarias, teniendo longitudes de onda características de cada elemento e intensidades relacionadas con su concentración (Cabriales, 2002; Brouwer, 2013).

Los elementos presentes en la muestra emitirán radiación fluorescente de rayos X con energías cuantizadas y discretas. (Brouwer, 2013).

Cuando un átomo es irradiado por partículas, tales como fotones de rayos X, pueden expulsar a un electrón de capas inferiores, colocando al átomo en un estado excitado e inestable de alta energía, dicho espacio producido entre ambos niveles energéticos recibe el nombre de vacancia inicial. Dicho átomo excitado buscará regresar a su configuración electrónica original, lo cual se logra por la transferencia de un electrón de una capa superior de mayor energía hacia la vacancia, por lo tanto, la energía debida al electrón transferido es emitida como un fotón de energía cuantizada. En un espectro de fluorescencia es visto como una línea de emisión.

Un átomo irradiado emite más de una sola energía (o línea) debido a que se pueden producir diferentes promociones en diferentes niveles y electrones de diferentes

niveles pueden ocuparlos. El conjunto de líneas emitidas es característico para cada elemento y por ello es considerada como la huella digital de un elemento (Brouwer, 2013).

II.1.2.1 Interacciones de los rayos X y la materia

Existen 3 tipos de interacciones importantes cuando los rayos X inciden sobre la materia: la fluorescencia, la dispersión de Compton y la dispersión de Rayleigh, éstas se muestran en la **Figura II.1**.

Figura II.1. Interacciones presentes entre rayos X y materia. Donde: ρ corresponde a la densidad del material y d al espesor de éste (Brouwer, 2013).

Cuando un haz de fotones de rayos X es dirigido hacia la superficie de un material, una fracción de esta energía pasará a través del material, otra será absorbida y una última será retro dispersada. Siendo la energía absorbida la que genera la radiación fluorescente. Las fracciones dispersadas pueden ocurrir con o sin pérdida de energía, la primera corresponde a la dispersión de Compton y la segunda a la dispersión de Rayleigh (Brouwer, 2013). Estos fenómenos dependen del espesor, la densidad, la composición del material y la energía de los rayos X utilizados (Brouwer, 2013).

II.1.2.1.1 Fluorescencia

La fluorescencia será mayor mientras más alta sea la absorción de la radiación para generar una mayor promoción de electrones. Sin embargo, si la cantidad de radiación aplicada es demasiado grande, muchos fotones atravesarán el átomo y pocos electrones serán excitados produciendo baja fluorescencia (Brouwer, 2013).

II.1.2.1.2 Dispersión de Compton

Este tipo de dispersión también es conocida como dispersión no coherente. Como se ha venido mencionando previamente una parte de los rayos X es reflejada por la muestra, esta dispersión tiene lugar cuando un fotón golpea a un electrón y es rebotado, el fotón por su parte pierde una parte de su energía la cual es transferida al electrón. La fracción de energía perdida dependerá del ángulo al cual el electrón fue golpeado (Brouwer, 2013).

Conforme los elementos van siendo más pesados la dispersión de Compton disminuye (Brouwer, 2013).

II.1.2.1.3 Dispersión de Rayleigh

Por su parte la dispersión de Rayleigh o dispersión coherente ocurre cuando el fotón colisiona con un electrón fuertemente enlazado. El electrón permanece en el orbital, pero empieza a oscilar a la frecuencia de la radiación incidente, por lo que el electrón emite radiación a la misma frecuencia que la radiación incidente, dando la impresión de que la radiación incidente es dispersada por el átomo (Brouwer, 2013).

Se ha observado que muestras con elementos ligeros dan origen a alta dispersión de Compton y baja dispersión de Rayleigh, mientras que en elementos pesados sólo se observa la dispersión de Rayleigh (Brouwer, 2013).

II.1.3 Ventajas y desventajas de la técnica de FRX

II.1.3.1 Ventajas

La fluorescencia de rayos X es un método muy usado debido a las siguientes características (Cabriales, 2002; Klockenkämper & Bohlen, 2015; Brouwer, 2013):

- Se trata de una técnica selectiva.
- Es una técnica no destructiva de las muestras de estudio.
- Puede analizar muestras en estado sólido, líquido y gaseoso (materiales metálicos, pastillas, polvos, cerámicos, plásticos, textiles, papel, muestras retenidas en filtros, etc.).
- Es una técnica de alta rapidez de análisis en comparación con otras.
- Realiza análisis para amplios intervalos de concentración.
- Lleva a cabo análisis multielemental simultáneo de elementos químicos con número atómico mayor al flúor.
- Se trata de una técnica sensible, precisa y exacta (detectando concentraciones hasta del orden de µg/g).
- Fácil preparación de la muestra o mínima preparación de ésta.

Este método tiene un papel importante en la producción industrial de diversos materiales, así como en el monitoreo y análisis de recursos minerales y muestras ambientales (Klockenkämper & Bohlen, 2015).

II.1.3.2 Desventajas

Como toda técnica analítica, la fluorescencia de rayos X tiene los siguientes puntos en contra (Cabriales, 2002):

- Presenta dificultad para el análisis de elementos con número atómico menor al flúor.
- Las relaciones entre intensidad y concentración pueden ser seriamente afectados por efectos de matriz.
- Los estándares empleados para el análisis cuantitativo deben tener la misma composición química que la muestra, así como ser preparados de la misma forma en la que la muestra en cuestión está preparada; por ejemplo, en forma de pastilla, polvo, líquido, etc.

II.1.4 Equipo portátil de fluorescencia de rayos X

Como componentes principales los equipos de FRX presentan: una fuente que irradia la muestra, filtros para haces de rayos X, monocromadores para dispersión de longitud de onda, un sistema de detección que mide la radiación emitida por la muestra y procesadores de señal (Brouwer, 2013; Güiza, 2014).

El equipo utilizado en el presente trabajo es un analizador PFRX NITON, el cual tiene un diseño ergonómico, ligero, menús personalizados, pantalla táctil, vida larga de la batería, amplio rango de análisis elemental (desde Mg hasta U), es resistente al polvo y a la humedad, cuenta con puerto USB, sistema bluetooth, y candado de seguridad (contraseña), lo cual es importante debido a que posee una fuente de rayos X que puede producir daños a seres vivos (Güiza, 2014).

Los elementos que puede detectar el equipo PFRX NITON son los delimitados por el recuadro rojo de la **Figura II.2** mostrada a continuación:

H Hydrogen 1					2	5	F	-									He Helium 2
Li Lithium	Be Berylliam	Ener	Key to rgy Values K,			2	Th	ermo	Scie	ntific)	0.35 B Boron 5	Carbon	0.39 Nitrogen 7	0.53 O 0xygen	0.68 F Fluorine	0.85 Ne Neon 10
1.04 1.07 Na Sodium 11	Maghesium 12		Ag Lj) >	<-RAY	ENER	GY RE	FEREN	NCE	Aluminum 13	Silicon 14	Phosphorus	23 24 Suffur 16	Chlorine	2.56 3.19 Ar Argon 18
K R Potassium	3.09 4.01 Ca Celcium 29	4.09 4.46 Sc Scendione 21 0.40 0.40	4.51 4.93 Ti Titasium 22 0.45 0.46	4.10 0.43 Vanadium 23 0.51 0.52	5.41 5.95 Cr Chromium 24 0.57 0.53	5.90 0.49 Mn Manganese 0.64 0.65	6.40 7.66 Fe Iron 26 8.70 8.72	6.93 765 Co Cobalt 27 6.73 0.79	7.46 8.26 Ni Nickel 23 0.85 0.87	6.05 8.50 Cu Copper 29 9.93 0.95	8.64 8.57 Zn Zino 30 1.01 1.13	9.25 10.26 Ga Gallium 31 1.10 1.12	8.89 10.96 Ge Germanium 32 1.19 1.21	10.54 11.73 As Arsenic 33 1.28 1.32	11.22 12.50 Se Selenium 34 1.38 1.42	Broraine 35 1.48 1.53	12.65 14.11 Kr Krypton 36 1.59 1.64
3.39 14.96 Rb Rubidium 37 89 1.75	14.16 15.83 Strontium 38 1.81 1.87	14.93 16.74 Y Yttrium 39 1.52 2.00	15.77 17.67 Zr Zirconium 40 2.04 2.12	18.61 18.62 Nb Niobium 41 2.17 2.25	17.48 19.51 Mo Molybdenum 42 2.29 2.40	18.41 20.59 TC Technetium 43 2.42 2.54	18.28 21.66 Ru Ruthenium 2.58 2.68	20.21 22.72 Rh Rhodium 45 2.70 2.83	21.18 23.82 Pd Palladium 2.84 2.99	22.16 24.54 Ag Silver 47 2.96 3.15	23.17 26.09 Cd Cadmium 48 3.13 3.32	24.21 27.27 In Indium 49 3.29 5.49	25.27 28.48 Sn Tim 50 3.44 3.68	26.05 19.72 Sb Antimony 51 3.61 3.64	Tellurium 52 3.77 4.03	28.51 32.25 Iodine 53 3.94 4.22	29.80 33.64 Xe Xenon 54 4.11 4.42
0.87 34.98 CS Cesium 55 29 4.62	32.19 36.38 Barium 56 447 4.69		95.76 E3.21 Hf Hafnium 72 7.50 9.62	57.52 85.21 Ta Tantalum 73 8.15 9.34	5931 67.23 W Tungsten 74 8.40 9.63	61.13 69.30 Re Rhenium 75 8.65 10.01	62.39 71.40 OS Osmium 76 8.91 10.35	64.89 73.55 Ir Iridium 77 8.19 10.71	56.62 75.74 Pt Platinum 78 9.44 11.07	65.75 77.97 Au Gold 79 931 11.44	10.82 80.28 Hg Mercury 80 9.99 11.82	72.56 82.55 TI Thallium 81 10.27 12.21	74.85 91.92 Pb Lead 82 10.55 12.61	37.10 87.34 Bi Bismuth 83 10.64 13.00	78.30 88.81 Po Polonium 84	81.53 92.33 At Astatine 85 11.42 13.63	83.80 94.88 Rn Radon 86 11.72 14.32
86.11 97.47 Fr Francium 87 12.03 14.77	88.47 100.1 Radium 88 12.34 15.23	57-71	33.44 37.80 La Lanthanum	34.72 39.25 Ce Cerium	36.02 40.75 Pr Prasodomiam	37.38 42.27 Nd	28.65 43.95 Pm Promethium	40.12 45.40 Samarium	41.53 47.03 Eu	42.58 48.72 Gd Gadolinium	41.47 50.39 Tb Terbium	45.50 52.17 Dy Desprosium	47.52 53.93 Ho Holmium	43.10 55.59 Er Erbiom	50.73 57.58 Tm Thulium	52.36 69.35 Yb Ytterbium	54.06 61.28 Lu Lutetiam
	÷	89-103	57 465 5.04 9989 102.8 Actinium 89	58 434 526 535 1056 Th Thorium 90	55 5.03 5.40 66.56 106.4 Protectinium 91	60 523 572 9643 111.3 U Uranium 92	61 5.43 5.96 01.1 1142 Np Neptunium 93	62 5.64 6.21 103.7 117.2 Pu Plutonium 94	63 545 646 1665 128.3 Amorieium 95	6.06 6.71 109.3 123.4 Cm Curium 96	629 698 112.1 1266 Bk Berkalium 97	66 6.50 7.25 1150 129.8 Cf Californium 98	67 6.72 7.53 118.0 133.1 Es Einsteinium 99	6.95 7.81 121.1 136.5 Fermium 100	69 7.18 8.10 125.2 141.0 Mondelevium 101	70 7.41 840 127.4 143.5 NO Nobelium 102	71 17.65 8.71 131.6 147.1 Lawrencium 103

Figura II.2. Elementos detectables por el analizador PFRX NITON (Güiza, 2014).

Este equipo al ser portátil puede ser empleado de dos maneras: in situ y por modo intrusivo. Al operar el equipo de manera in situ la ventana de prueba debe ser colocada directamente sobre la superficie de la muestra a analizar; mientras que en el modo intrusivo la muestra debe ser colectada, preparada y en ocasiones introducida en un porta muestra especial, la cual es finalmente depositada sobre la ventana del analizador portátil (EPA, 2007).

II.1.4.1 Análisis cualitativo y cuantitativo en FRX

Como se ha mencionado previamente, toda técnica y método analítico tiene por finalidad darnos información sobre el o los analitos que se están estudiando, dicha información puede ser de carácter cualitativo, cuantitativo o ambas.

En cuanto a la técnica de fluorescencia de rayos X, ésta brinda información de ambos caracteres.

Por su parte, el análisis cualitativo nos da como resultado los elementos presentes en los sólidos analizados, para esto el equipo cuenta con un analizador multicanal electrónico que mide las amplitudes de los pulsos generados por la radiación que emite la muestra al ser irradiada, es decir, se lleva a cabo por la medición de las energías de la radiación emitida por las muestras, haciendo posible determinar los elementos que están presentes; y que se traducen en líneas en el espectro de fluorescencia. Como se ha mencionado previamente, el conjunto de dichas líneas emitidas es característico para cada elemento (EPA, 2007; Brouwer, 2013).

Y para obtener un análisis cuantitativo es importante mencionar que esta técnica es considerada semicuantitativa debido a que brinda una exploración inicial de los elementos presentes en la muestra y una cantidad aproximada con una incertidumbre importante (EPA, 2007; AMQA, 2018).

Entonces para el análisis cuantitativo se lleva a cabo la medición de las intensidades de las energías emitidas haciendo posible determinar qué tanto de cada elemento está presente en la muestra (Brouwer, 2013). La EPA describe que el análisis cuantitativo que realiza el equipo se da con el número de cuentas o pulsos dados a una energía por unidad de tiempo (cps), siendo esto representativo a la concentración del elemento en cuestión.

II.1.4.2 Efectos matriz y posibles errores

Estos equipos como cualquier otro presentan respuestas indeseadas debidas a ciertos parámetros o circunstancias que pueden o no ser controlados por el experimentador.

En el caso de los espectrómetros de fluorescencia de rayos X, los efectos de matriz físicos para metodologías de fluorescencia de rayos X incluyen parámetros como: el tamaño de partícula de la muestra, su uniformidad, homogeneidad y condición de la superficie; una manera de reducir dicho error es moler y tamizar las muestras de

sólidos para tener un tamaño de partícula más uniforme y una dispersión uniforme de su composición.

El contenido de humedad, por su parte, puede afectar la precisión del análisis; este error puede ser minimizado secando las muestras en un horno de convección o "tostadora", ya que el secado por microondas se ha confirmado que aumenta la variabilidad entre datos y el análisis confirmatorio.

Otra potencial fuente de error es la distancia relativa de la muestra frente a la ventana de prueba, ya que la señal de rayos X disminuye conforme la distancia de la fuente radiactiva aumenta (EPA, 2007).

II.2 Validación de métodos

Un método de validación es básicamente el proceso para definir cierto requerimiento analítico mediante estudios de laboratorio (COFEPRIS, 2011) y confirmar que el método bajo consideración tiene la capacidad de cubrir consistentemente la aplicación para el que se le requiere (Eurochem, 2014).

Toda validación de un método evalúa la selectividad del método, los límites de detección (LOD) y de cuantificación (LOQ), la sensibilidad del método, el intervalo de trabajo, la robustez y su precisión, la cual incluye repetibilidad y reproducibilidad (Eurochem, 2014).

II.2.1 Características y parámetros de un método validado

Como se ha mencionado previamente al validar un método se busca que éste cumpla con ciertas características considerando ciertos parámetros, los cuales se mencionan y explican a continuación. Es importante igualmente definir los siguientes conceptos (COFEPRIS, 2011; EPA, 2007):

Analito: Componente específico de una muestra a medir en un análisis.

Blanco de reactivos: Reactivos usados durante el proceso analítico los cuales son analizados para garantizar que la medición no es influenciada por los materiales utilizados durante el análisis.

Blanco de muestra: Son matrices que no contienen el análito de interés. Como blanco de muestra para el análisis de muestras sólidas por medio de FRX se recomienda cuarzo u óxido de silicio "limpio" y libre de analitos en concentraciones por encima del límite de detección establecido.

Material de referencia estándar (SRM): Son estándares que contienen cantidades certificadas de uno o varios elementos, un ejemplo de esto son los SRM de NIST.

Criterios de aceptación: Parámetros bajo los cuales el resultado de una prueba será considerado aceptable.

Curva de calibración: Es la representación gráfica de la señal medida como una función de cantidad del analito.

Incertidumbre: Estimación que caracteriza el intervalo de valores, dentro de los cuales se encuentra el valor convencionalmente verdadero de la magnitud medida.

Intervalo de trabajo: Intervalo comprendido entre las concentraciones superior e inferior (incluyéndolas) y para las que se ha demostrado que el analito es cuantificado con un nivel satisfactorio de repetibilidad, recuperación y linealidad.

Intervalo lineal: Es la capacidad de un método analítico para dar resultados que son directamente proporcionales a la concentración del analito dentro de un intervalo dado.

Matriz: Muestra que contiene todos los componentes de un producto a excepción del analito.

Método normalizado: Proceso de medición robusto donde pequeñas variaciones en el procedimiento no deben producir de forma imprevista grandes variaciones en los resultados.

Método no normalizado: Método alternativo que demuestra y estima el mismo analito tal cual se mide utilizando el método normalizado.

Muestra fortificada: Porción representativa del material a evaluar, al cual se le han adicionado cantidades conocidas del analito de interés.

Parámetro de desempeño: Parámetro específico a evaluar en una validación.

Recuperación o Recobro: Cantidad del analito recuperada en la porción de muestra o muestra adicionada cuando ésta es conducida a través del método analítico completo. Se expresa en términos de porcentaje.

Respuesta analítica: Lectura obtenida al aplicar un método analítico.

Sesgo: Es la diferencia entre el valor promedio obtenido de los resultados de prueba con respecto a un valor de referencia aceptado o conocido.

II.2.1.1 Selectividad

La selectividad analítica está relacionada con qué tanto el método puede ser usado para determinar un analito particular en una mezcla o una matriz sin interferencias debidas a otros componentes; ya que dichos interferentes pueden aumentar o disminuir la respuesta de la señal dando resultados erróneos y poco confiables (Eurochem, 2014). En otras palabras, es la capacidad de un método analítico para medir solamente lo que se pretende que se mida (COFEPRIS, 2011).

La selectividad de un método es definida usualmente estudiando la capacidad de medir el analito de interés en muestras donde los interferentes han sido introducidos deliberadamente (Eurochem, 2014).

II.2.1.2 Límite de detección y límite de cuantificación

Por su parte, el límite de detección se define como la menor concentración del analito que puede ser detectada usando el método en cuestión en un buen grado de confianza y bajo las condiciones establecidas (COFEPRIS, 2011). Aquí es importante resaltar la existencia del límite de detección del instrumento y el límite de detección del método y sus diferencias.

En el primero, se basa en el análisis de una muestra, usualmente un blanco, o por la relación de señal de respuesta y ruido que presenta el instrumento; en cambio, para obtener el límite de detección del método se procede a usar una ecuación particular basándonos en los resultados obtenidos a lo largo de todo el procedimiento de medición y análisis de las muestras.

Por otro lado, el límite de cuantificación es aquel en el que se establece la mínima concentración que puede ser conocida y cuantificarse en un buen grado de confianza, con una precisión y veracidad aceptable bajo las condiciones experimentales establecidas (COFEPRIS, 2011) para darle al método una aplicación típica, que es conocer cuánto del analito de interés hay en la muestra.

Ambos, LOD y LOQ son normalmente calculados multiplicando una desviación estandar (S'₀) por un factor adecuado, es importante que esta S'₀ sea representativa de la precisión obtenida en muestras de prueba típicas. La desviación estándar muestral es usualmente obtenida bajo condiciones de repetibilidad (Eurochem, 2014).

El límite de detección se estima a partir de la relación matemática:

Marco teórico

$$LOD = 3 * \frac{S'_0}{m}$$
; donde m = pendiente de la curva de calibración

En cuanto al límite de cuantificación se usa la siguiente relación matemática:

$$LOQ = 10 * \frac{s'_0}{m}$$
; donde m = pendiente de la curva de calibración

II.2.1.3 Intervalo de trabajo

Es el intervalo en el cual el método brinda resultados con una incertidumbre aceptable. El valor inferior es el límite de cuantificación; mientras que el valor superior se define considerando las concentraciones en donde se observan anomalías en la sensibilidad analítica (Eurochem, 2014).

Para evaluar el intervalo de trabajo es necesario considerar la linealidad del método y el procedimiento de calibración propuesto para el método (Eurochem, 2014).

Es importante considerar y conocer los siguientes puntos para encontrar el intervalo de trabajo (Eurochem, 2014):

- Muestras y blancos con concentración conocida.
- Las concentraciones de las muestras deben cubrir el intervalo completo de interés.
- El instrumento debe ser calibrado de acuerdo al método de calibración sugerido.

II.2.1.4 Intervalo lineal

El intervalo lineal como su nombre lo indica es aquel donde la concentración de las muestras y la respuesta obtenida por el instrumento o equipo guardan una relación lineal; dicho intervalo se encuentra comprendido dentro del intervalo de trabajo, pero no es el mismo forzosamente. Éste es importante ya que define la aptitud del

método para obtener resultados proporcionales (COFEPRIS, 2011; Eurochem, 2014).

II.2.1.5 Sensibilidad

La sensibilidad analítica es el cambio de la respuesta del equipo o instrumento que corresponde al cambio de una cantidad medida, por ejemplo, un cambio en la concentración del analito (Eurochem, 2014; COFEPRIS, 2011).

Es la pendiente del intervalo lineal y cuanto mayor es ésta, mayor la sensibilidad del método (COFEPRIS, 2011).

En la **Figura II.3** se muestra un ejemplo de una curva obtenida con un método instrumental, mostrando algunos parámetros inherentes de una validación y que han sido mencionados en los apartados anteriores.

Figura II.3. Gráfico ejemplo con parámetros de LOD, LOQ, intervalo de trabajo y lineal, y sensibilidad analítica (Eurochem, 2014).

II.2.1.6 Precisión

La precisión es la medida de que tanto, los resultados difieren entre ellos; usualmente es expresada por parámetros estadísticos que describen la dispersión de los resultados, típicamente la desviación estándar y la desviación estándar relativa (Eurochem, 2014).

II.2.1.7 Repetibilidad

Es la medición de la variabilidad en los resultados o grado de concordancia entre los resultados analíticos individuales cuando la medición es realizada por un mismo analista, usando el mismo equipo o instrumento a lo largo de un tiempo corto de experimentación; se espera que la repetibilidad sea la menor variación entre estos resultados (Eurochem, 2014; COFEPRIS, 2011).

II.2.1.8 Reproducibilidad

Por su parte la reproducibilidad, también llamada precisión intermedia es la medida de la variabilidad en resultados entre laboratorios, ya sea variando los analistas o instrumentos, usando el mismo método en diferentes días (Eurochem, 2014; COFEPRIS, 2011). Y se espera que de la mayor variación entre resultados obtenidos (Eurochem, 2014).

II.2.1.9 Robustez

La robustez es definida como la medida de que tanto el método tiene la capacidad de permanecer no afectado por pequeñas pero deliberadas variaciones en los parámetros del método (Eurochem, 2014).

II.2.2 Validación de métodos usando estadística

Los métodos estadísticos son esenciales para resumir y comparar información, sirven para hacer juicios objetivos entre diversos grupos de datos (Eurochem, 2014).

II.2.2.1 Pruebas de hipótesis con una distribución t de Student

Toda investigación científica o empresarial suele estar basada en hipótesis o conjeturas acerca de la realidad. El método científico consiste en un mecanismo para contrastar dichas hipótesis contra la realidad y concluir si la evidencia está o no de acuerdo con la hipótesis planteada (Alvarado & Obagi, 2008). Este tipo de pruebas de validación de métodos se utilizan para (Flesia, 2011):

- Contrastar el valor de un parámetro.
- Comparar dos parámetros.
- Contrastar los datos con una distribución teórica.
- Contrastar hipótesis de homogeneidad.
- Contrastar hipótesis de independencia.

En el caso estadístico las hipótesis deberán estar relacionadas con las poblaciones de los fenómenos aleatorios investigados; diferentes estadísticos obtenidos a partir de muestras aleatorias serán la evidencia necesaria para refutar o no la hipótesis (Alvarado & Obagi, 2008).

II.2.2.1.1 Procedimiento

Para llevar a cabo esta prueba es necesario plantear la hipótesis nula, denotada por H_0 y la hipótesis alternativa, denotada como H_1 , así como un estadístico de prueba

Marco teórico

con distribución t de Student y los valores críticos que delimitan la zona de rechazo (α). Se toma la muestra y se calcula el estadístico de prueba (Flesia, 2011).

La hipótesis nula es la conjetura inicial, es la suposición que se hace con base a información certificada o ya conocida, se refiere a lo que sería si no existiera evidencia experimental suficiente; es en un comienzo la opción más lógica al problema que se ha planteado. Por su parte, la hipótesis alternativa es la respuesta no esperada pero probable, aquella afirmación no tan elemental de suponer, ha de ser aquella que requiere prueba experimental como soporte para aceptarla (Alvarado & Obagi, 2008).

Hay dos tipos de errores intrínsecos en las pruebas de hipótesis, el error tipo I que es aquel en el que se incurre al rechazar H₀, dado que ésta es verdadera; a la probabilidad de cometer este error se le conoce como alfa (α). Por otro lado, se encuentra el error tipo II que es aquel en que se incurre al no rechazar H₀, siendo ésta en realidad falsa y se conoce como beta (β), estos dos errores no deben superar entre el 5 y 10 %. Así como hay dos tipos de errores, existen dos posibles aciertos conocidos como confianza de hipótesis (1- α) y potencia (1- β).

La confianza de hipótesis es la probabilidad de no rechazar H₀, dado que ésta es verdadera; por su parte la potencia es la posibilidad de rechazar H₀, dado que ésta es falsa (Alvarado & Obagi, 2008).

Resumiendo, para esta prueba es importante plantear correctamente H_0 y H_1 ; definir los valores aceptables de los errores tipo I y tipo II, de ser posible determinar a partir de éstos, el tamaño de muestra: determinar el o los valores críticos para α para por último establecer el valor de prueba del estadístico y concluyendo si dicho valor de prueba cae o no cae en las regiones de aceptación o rechazo (Alvarado & Obagi, 2008).

II.2.2.1.2 Tipos de pruebas de hipótesis

Existen 3 tipos de pruebas de hipótesis: bilateral, unilateral a la derecha y unilateral a la izquierda.

La prueba de hipótesis bilateral tiene la forma de:

$$H_0: \theta = \theta_0$$
$$H_1: \theta \neq \theta_0$$

Donde θ_0 es un valor fijo para el parámetro y en este caso no importa si el valor del parámetro es mayor o menor al establecido, solamente si es diferente.

En la prueba unilateral a la derecha se tiene la forma:

$$H_0: \theta = \theta_0$$
$$H_1: \theta > \theta_0$$

Se utiliza cuando es de interés conocer si el parámetro está por encima de lo establecido en la hipótesis nula.

Por último, la prueba unilateral a la izquierda tiene la forma:

$$H_0: \theta = \theta_0$$
$$H_1: \theta < \theta_0$$

Se utiliza cuando es de interés conocer si el parámetro está por debajo de lo establecido en la hipótesis nula (Alvarado & Obagi, 2008)

III.1 Equipos, materiales y reactivos

III.1.1 Equipos

- Equipo portátil de fluorescencia de rayos X, marca Thermo Scientific, modelo Niton XL3t GOLDD+, con tubo de rayos X (Ánodo de Au) de 50 KV de potencia.
- Espectrómetro de fluorescencia de rayos X, marca Rigaku y modelo Primus Il con un tubo de rodio de 4 KVA de potencia, y ventana de berilio de 30 µm.
- Prensadora marca Graseby/Specac, modelo T-40 Autopress, con capacidad máxima de 40 ton/cm².
- > Horno de fusión marca Claisse M4 gas fusion.
- Balanza analítica, con capacidad de 210.0 g y precisión de 1.0 mg, marca Ohaus, modelo Explorer.

III.1.2 Reactivos y materiales

Los estándares de sólidos en polvo y pastilla son los enlistados en la Tabla III.1, en donde se muestra la clave del estándar y a qué tipo de estándar corresponde, éstos se encuentran clasificados en grupos: rocas y minerales, suelos y sedimentos, y materiales varios.

Clave del estándar	Descripción
F	Rocas y Minerales
Siem 1	Granito
Siem 2	Cordierita
Siem 3	Peridotita
Siem 4	Fonolita

Tabla III.1. Estándares de referencia en estado sólido.

Clave del estándar	Descripción
Siem 5	Grauvaca
Siem 6	Gabro
Siem 7	Tonalita
Siem 8	Basalto de Melilith
Siem 9	Esquisto/Pizarra
IGLa-1	Andesita
IGLd-1	Dolomía
IGLc-1	Caliza
IGLsy1	Sienita
IGLsy2	Sienita
IGLsy4	Sienita
IGLgb3	Gabro
Suelos y sedimentos	
QS1 (GeoPT42)	Sedimento de Queensland, Australia
SDAR-1	Sedimento de río modificado
SDARH1	Sedimento metalífero
SDARM2	Sedimento rico en metales
SDARL2	Sedimento mezclado
IGLs-1	Suelo laterítico
NIST2710a	Suelo de Montana I, Estados Unidos
NIST2711a	Suelo de Montana II, Estados Unidos
NIST2709a	Suelo de San Joaquín, Estados Unidos
LOESS-1	Sedimento Loess
Varios	
SKO-1	Polvo de incinerador
EVO-1	Polvo de incinerador
Siem 10	Pizarra-Cobre
RTS-3	Residuos molidos de mineral de sulfuros
RTS-4	Residuos molidos de mineral de sulfuros
DBC-1	Arcilla

- > Estándares de Au, marca FLUXANA A.G. para FRX con claves:
 - 1) 0738-16
 - 2) 0704-16c
 - 3) 0734-16a
 - 4) 0715-16a
 - 5) 0732-16
 - 6) 0744-16
 - 7) 0720-16
- > Muestras sólidas con alto contenido de titanio.
- Porta muestras para fluorescencia de rayos x, marca Chemplex con diámetro de 2 cm.
- > Cera C de Hoechst micropolvo; para las muestras prensadas.
- Fundente (LiBO₂), marca XRF Scientific tipo 50:50 (100-700 µm); para las muestras fundidas.

En el caso de los estándares de referencia los valores de los certificados se presentan en el anexo 1.

III.2 Preparación de estándares y muestras

III.2.1 Estándares en estado sólido en polvo

Los estándares de trabajo se colocaron en porta muestras especiales para el equipo NITON (mostradas en la **Figura III.1**); para ello se utilizó una cantidad de aproximadamente 0.5 gramos del estándar, el cual fue confinado en un cilindro rígido de plástico, en donde uno de los extremos solo presenta una película transparente de polipropileno especial para análisis de rayos X, marca Premier Lab Supply TF-240-255, circulares de 63.5 mm de diámetro, siendo mostrado dicho procedimiento en el diagrama de la **Figura III.2**.

Figura III.1. Porta muestra para materiales en estado sólido en forma de polvo (de izquierda a derecha: anillo, cilindro rígido, tapa de contención).

Figura III.2. Preparación de los estándares en estado sólido en polvo.

Algunos de los estándares preparados se muestran en la **Figura III.3**, que corresponden a los mencionados en la **Tabla III.1**.

Figura III.3. Estándares preparados para los análisis en el equipo PFRX.

III.2.2 Estándares en estado de polvo comprimido (pastilla)

Este modo de preparación se emplea por su utilidad en análisis semicuantitativos, para analizar materiales de alto punto de fusión y análisis de elementos traza.

Para esto aproximadamente 15 g de cada estándar fueron colocados en un vaso de precipitados de 25 mL, los cuales se pusieron a secar en una estufa por 12 h a 105 °C, pasado este tiempo, el material se retiró de la estufa y se dejó enfriar a temperatura ambiente en un desecador.

Del material seco se pesan aproximadamente 5 g y una cantidad de cera correspondiente al 10 % del peso de muestra tomado (0.5 g en este caso), para posteriormente mezclar con una barra de vidrio limpia y vaciar en un mortero de ágata para terminar de homogeneizar, por último se vacía en un contenedor y se somete a una presión de 20 ton/cm² durante 30 segundos para generar la pastilla (ver **Figura III.4**).

Figura III.4. Prensadora Graseby/Specac y contenedor para la obtención de pastillas.

Los estándares en forma de pastilla utilizados para los análisis son los mostrados en la **Figura III.5**, a continuación.

Figura III.5. Estándares en estado sólido en forma de pastilla.

III.2.3 Muestras fundidas

Para preparar las muestras fundidas, llamadas coloquialmente "perlas" se pesaron aproximadamente 9 g de fundente (LiBO₂) y 1 g del estándar en un vaso de precipitados, se vació el contenido del vaso a un crisol de platino, para posteriormente mezclar en un vórtex y agregar 2 gotas de Lil de concentración 250 g/L.

El crisol con la mezcla resultante se colocó en el horno de fusión y se sometió a una temperatura de 1050 °C durante 10 minutos, la mezcla fundida fue posteriormente vaciada sobre una placa de platino, la cual se dejó enfriar a temperatura ambiente.

Las perlas obtenidas son mostradas en la Figura III.6.

Figura III.6. Muestras fundidas.

III.3 Procedimiento experimental

III.3.1 Determinación del tiempo óptimo de trabajo

El equipo PFRX cuenta con un conjunto de modos de trabajo, que son programas predeterminados que se seleccionan en función de la concentración elemental esperada aproximada. Cada uno de ellos determina un grupo de elementos químicos definidos a partir de tres filtros de lectura. Se trata de un equipo analítico que trabaja con un algoritmo de cálculo desarrollado por la compañía Thermo Scientific ®, el cual, mediante el uso de parámetros fundamentales (relación intensidad de pico–concentración), automáticamente indica la concentración encontrada de cada elemento medido, por lo que su empleo aparentemente no necesita de estándares de calibración.

En primera instancia el equipo portátil se monta en un stand especial recubierto en su interior con plomo (ver **Figura III.7**)

Figura III.7. Equipo portátil Niton XL3t GOLDD+ de FRX.

Para trabajar con este equipo es necesario cada vez, después de encenderlo, realizar una verificación del sistema, con la cual el equipo evalúa el estatus de la fuente de rayos X. Dicho procedimiento dura unos cuantos segundos y arroja un parámetro numérico que debe ser menor a 56.56 unidades (cps). Posteriormente,

para verificar que la zona en donde se coloca la muestra se encuentra libre de interferentes, se realiza la medición de un estándar de SiO₂ de alta pureza (> 99.9 %), utilizando el modo de suelos (el modo de trabajo más sensible), el resultado debe indicar que las concentraciones de los elementos determinados deben ser < LOD.

Una vez realizada la verificación y la medición del estándar de sílice, se procedió a encontrar el tiempo óptimo de trabajo que determina las concentraciones de los elementos con la mejor precisión y exactitud posibles. Para esto se evaluaron 3 tiempos: 30, 45 y 60 segundos, para los estándares mostrados en la **Tabla III.1** y los estándares de Au enlistados previamente; cada determinación se realizó por triplicado, empleando tres modos de trabajo: "suelos" (recomendado para elementos que se encuentran en niveles de concentración del orden de las partes por millón), modo de "mina" (para elementos en niveles de concentración del orden del orden de lorden de lorden de lorden de porcentajes) y "metales preciosos" (para elementos en niveles de concentración del orden del orden de lorden de

Para la determinación de la precisión se calculó la desviación estándar relativa porcentual o coeficiente de variación porcentual con la Ecuación III.1, tomando como criterio de aceptación que el % CV no debe superar el 20 %; con excepción del cromo que no debe superar el 30 %, este criterio de aceptación es el recomendado en el método 6200 SW-846.

Ecuación III.1. %
$$CV = \left(\frac{s_x}{\bar{x}}\right) x \ 100$$

Donde: % CV = coeficiente de variación porcentual

sx = Desviación estándar de la concentración del analito en cuestión

 $|\bar{x}|$ = Concentración media del analito en cuestión

Por su parte la exactitud fue determinada a partir del error porcentual, el cual se calcula como se encuentra mostrado en la Ecuación III.2; el método 6200

recomienda como criterio de aceptación \pm 20 % de error porcentual para decir que el análisis PFRX es exacto.

Ecuación III.2. % *Error* = $\left(\frac{\bar{x} - x_{cert.}}{x_{cert.}}\right) x \ 100$

Donde: % Error = Error porcentual

 \bar{x} = Concentración media del analito en cuestión

xcert.= Concentración reportada en certificados

En la **Tabla III.2** se muestran los elementos que el equipo determina en el modo de "suelo". En el modo de "mina" se cuantifican los mismos elementos enlistados en la **Tabla III.2** más los indicados en la **Tabla III.3**.

Tabla III.2.	Elementos	detectados	en	filtros	de	modo	de	"suelo"	(Thermo
Scientific,	Guía de usu	ario).							

Filtro "Main"	Filtro "Low"	Filtro "High"
Mo, Zr, Sr, U, Rb, Th, Pb, Se, As, Hg, Zn, W, Cu, Ni, Co, Fe, Mn	Cr, V, Ti, Sc, Ca, K, S	Ba, Cs, Te, Sb, Sn, Cd, Ag, Pd

Tabla III.3. Elementos ligeros detectados por modo de "mina" (Thermo Scientific, Guía de usuario).

Filtro "Light"

Al, P, Si, Ca, K, Cl, S, Mg

Por su parte el modo de "metales preciosos" analiza los elementos de los filtros de modo "suelo" y algunos elementos adicionales; los elementos determinados por este modo están enlistados en la **Tabla III.4**.

Elementos de m	odo de "meta	Elementos adicionales	
Filtro "Main"	Filtro "Low"	Filtro "High"	
Cu, Zn, Ni, Co,	Cr, Ti	Ag, Sn, Cd, Pd	Au, Ga, In, Rh, Ru, Nb, Pt, Ir

Tabla III.4. Elementos detectados por modo de "metales preciosos".

III.3.2 Efecto de la preparación de la muestra para el análisis con el equipo portátil

Tras la obtención del tiempo óptimo de trabajo (45 segundos, como se explicará más adelante), se procedió con la determinación de la composición elemental de los estándares mostrados en la **Tabla III.1** en dos modos de preparación de muestra: en forma de polvos montados en los porta muestras y en las pastillas siguiendo los procedimientos descritos previamente.

Cada medición se realizó por triplicado, y empleando tanto el modo de "suelo" como el modo de "mina", detectando los elementos mostrados en las **Tablas III.2 y III.3**.

III.3.3 Estudio comparativo entre el equipo portátil y el convencional

Para esta parte experimental se procedió a realizar los análisis utilizando tanto las muestras sólidas con alto contenido de titanio, como los estándares de oro. Los elementos que se estudiaron para cada grupo de muestras y estándares se muestran en la **Tabla III.5** y al igual que en los experimentos anteriores las mediciones se realizaron por triplicado con un tiempo de análisis de 45 segundos.

Elementos detectados en muestras	Elementos detectados en		
con alto contenido de Ti	estándares de Au		
Fe, Ti, Ca, K, Al, P, Si, Mg	Au, Ag, Cu, Zn, Ni		

Tabla III.5. Elementos detectados para el estudio comparativo entre equipos.

Se realizó la comparación entre los resultados de las concentraciones elementales determinadas con los equipos de trabajo; graficando en el eje de las abscisas se utilizaron los resultados de concentración medidas con el equipo Rigaku, mientras que en el eje de las ordenadas se ocuparon los valores determinados con el equipo portátil.

III.3.3.1 Análisis con el equipo PFRX Thermo Scientific modelo Niton XL3t GOLDD+

Para realizar los análisis con el equipo portátil tras colocar el equipo en el stand de pruebas y realizar el chequeo del sistema se procedió a realizar los análisis tanto en modo de "suelo" como en modo de "mina".

Se ocuparon los estándares de la **Tabla III.1**, en forma de perlas (muestras fundidas) y en forma de polvo, usando el tiempo de 45 segundos para cada filtro, es decir, para el modo de "suelo", que cuenta con 3 filtros ("main", "low" y "high") el tiempo de análisis total fue de 135 segundos; mientras que en modo de "mina", con 4 filtros ("main", "low", "high" y "light") el tiempo total de análisis fue de 180 segundos; realizando cada determinación por triplicado.

III.3.3.2 Análisis con el equipo convencional de FRX Rigaku modelo Primus II

Para el análisis en el equipo Rigaku se colocan las muestras fundidas (previamente preparadas) en los portamuestras o spots del equipo, se genera vacío y se fijan las

condiciones de posiciones angulares, colimador y condiciones de excitación de la fuente de rayos X.

El tiempo de análisis por muestra fue de 12 minutos y se utilizó una curva de calibración previamente realizada por los encargados del laboratorio. Es importante mencionar que en equipos anteriores al Rigaku era indispensable configurar las condiciones de posiciones angulares de fondo y pico, pero éste lo realiza de manera automática.

El equipo fue usado para la determinación de los siguientes elementos: Si, Ti, Al, P, Fe, Mn, Mg, Ca y K; los cuáles son los elementos que detecta el equipo PFRX de manera complementaria con los modos de "suelo" y "mina", con los filtros de elementos "main", "low", "high", y en el caso de "mina", "light".

A continuación, se muestra el equipo convencional de FRX Rigaku, donde se observa la ventana donde se colocan las muestras en los spots y el equipo de cómputo al que está sincronizado el equipo.

Figura III.8. Equipo convencional de FRX, marca RIGAKU, modelo Primus II.

Capítulo IV. Resultados y discusión

IV.1 Determinación del tiempo óptimo de trabajo

De acuerdo con el método 6200 SW-846 de la EPA, para la determinación de concentraciones de elementos presentes en suelos y sedimentos se indica que el tiempo de análisis de 30 segundos es útil para un análisis exploratorio de los elementos presentes en cada muestra, mientras que tiempos de análisis más largos presentan mejores valores de precisión y de exactitud. Con esta información se seleccionaron los tiempos de análisis de 30 segundos (valor mínimo), 45 segundos (intermedio) y 60 segundos (valor máximo).

a. Precisión

Tras realizar las determinaciones de las concentraciones por triplicado se calculó la desviación estándar porcentual para cada elemento químico, en cada uno de los estándares de trabajo, a partir de la Ecuación III.1., teniendo como criterio de aceptación un valor máximo del 20 %. En la **Tabla IV.1** se muestran los valores máximos de % CV para algunos de los elementos de trabajo.

Tabla IV.1.	Muestra de	coeficientes	de varia	ición porce	entuales para	a algunos
elementos	determinado	DS.				

Modo	Elemento	Estándar al que pertenece y	30 s	45 s	60 s
		grupo			
Suelo	Ti	Siem 6 – Rocas y Minerales	1.9	1.1	0.7
	Ca	2709a – Suelos y Sedimentos	0.9	0.4	0.3
	Zn	Siem 10 – Varios	0.8	0.6	0.5
Mina	Si	Siem 8 – Rocas y Minerales	0.7	0.5	0.4
	Sb	SDARM2 – Suelos y Sedimentos	18.2	10.8	10.2

Modo	Elemento	Estándar al que pertenece y	30 s	45 s	60 s
		grupo	% CV		
Mina	AI	RTS-3 – Varios	4.2	2.5	2.4
Metales	Au	0720-16	-	0.01	-
Preciosos	Ag	0744-16	-	0.01	-
	Cu	0704-16 c	-	0.03	-

Como se esperaba, conforme se aumenta el tiempo de análisis el % CV disminuye, esto significa que la precisión de las mediciones va en mejora conforme el tiempo de análisis aumenta. Se observa en la mayoría de los resultados que entre los tiempos de 30 y 45 segundos se da una disminución considerable del % CV y que entre los tiempos 45 y 60 segundos el valor del % CV permanece prácticamente constante. Debido a esto, se decidió utilizar como tiempo de análisis con cada uno de los filtros de trabajo 45 s, para los tres modos de trabajo del equipo PFRX (modos: "suelo", "mina" y "metales preciosos"). Los resultados obtenidos de % CV para todos los estándares de estudio y los tres tiempos de trabajo se presentan en los anexos 2 y 3, anexo 8 en el caso del modo de "metales preciosos".

b. Exactitud

Con respecto a la exactitud, con los resultados de concentración elementales obtenidos al utilizar un tiempo de análisis con cada uno de los filtros de 45 segundos (anexos 4 y 5), para los tres modos de trabajo: "suelo", "mina" y "metales preciosos", y los valores de concentración reportados en los certificados de los estándares (anexo 1), se construyeron los gráficos que correlacionan la concentración arrojada por el equipo PFRX en función de la concentración indicada en el certificado. Al obtener los valores de regresión de las curvas, se espera que los coeficientes de determinación (R²) sean lo más cercanos a la unidad, que el valor de la pendiente sea igual o muy cercano a uno y que el valor de la ordenada al origen se encuentre muy cercano a cero.

Los resultados obtenidos para el modo de "suelo" se presentan en las **Figuras IV.1**, **IV.2** y **IV.3**; para el modo de "mina" en las **Figuras IV.4**, **IV.5** y **IV.6** y para el modo de "metales preciosos" en la **Figura IV.7**.

Figura IV.1. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para Mo, Zr, Sr, Rb, Th y Pb, en modo suelo (45 s de análisis). Parte 1/3

Figura IV.2. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para As, Zn, Cu, Ni, Fe y Mn, en modo suelo (45 s de análisis). Parte 2/3

Figura IV.3. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para Cr, V, Ti, Ca y K, en modo suelo (45 s de análisis). Parte 3/3

Figura IV.4. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para Zr, Sr, Rb, Pb, Zn y Cu, en modo mina (45 s de análisis). Parte 1/3

Figura IV.5. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para Fe, Mn, Ti, Ca, K y Ba, en modo mina (45 s de análisis). Parte 2/3

Figura IV.6. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de la Tabla III.1 para Nb, Al y Si, en modo mina (45 s de análisis). Parte 3/3

Figura IV.7. Gráficos de correlación entre la concentración determinada con el equipo PFRX y la concentración certificada de los estándares de Au para Au, Ag, Cu y Zn, en modo de metales preciosos (45 s de análisis).

Como puede observarse para la mayoría de los elementos estudiados, con los tres modos de lectura se presenta una respuesta lineal de la concentración que indica el equipo portátil en función de la concentración del elemento de interés reportado en su certificado. Sin embargo, solo en los casos en donde el valor de la pendiente es muy cercano a la unidad, es posible decir que el equipo PFRX trabaja con exactitud. No obstante, si existe una respuesta lineal es posible utilizar el valor de concentración reportado por el equipo portátil y mediante el uso de la pendiente y ordenada al origen determinar el valor de concentración buscado, esto aplica únicamente para los intervalos de concentración de estudio y el modo de análisis de trabajo ("suelo", "mina" o "metales preciosos"). Cabe mencionar que para cada estándar y cada analito se calculó la diferencia porcentual entre el valor certificado

y la concentración determinada por el equipo PFRX (anexos 6, 7 y 8), para los casos en donde el valor de la pendiente es muy cercano a la unidad, el porcentaje de error es < 20 %. En la **Tabla IV.2**, se resumen los valores de concentración mínimos y máximos para cada modo de análisis y cada uno de los elementos químicos que presentaron respuesta lineal entre el valor de concentración indicado por el equipo PFRX y la concentración del certificado del estándar de trabajo, mientras que en la **Tabla IV.3**, se presentan los valores de regresión determinados para cada elemento químico analizado, para cada uno de los métodos de análisis de la pistola de FRX.

Tabla IV.2.Valores de concentración mínimo y máximo utilizados en los modo
de "suelo", "mina" y "metales preciosos".

	Modo	"suelo"	Modo	Modo "mina"		Modo "metales preciosos"		
Elemento	Mínimo (ppm)	Máximo (ppm)	Mínimo (%)	Máximo (%)	Mínimo (%)	Máximo (%)		
Мо	7.19	52.62	*	*				
Zr	46.43	604.55	0.0050	0.0760				
Sr	4.14	1541.78	0.0040	0.1577				
Rb	24.23	286.77	0.0020	0.0237				
Th	5.29	41.26	*	*				
Pb	168.98	8860.47	0.0020	0.9730				
As	5.28	1831.20	*	*				
Zn	7.90	17571.94	0.0020	1.7403	0.6727	10.2507		
Cu	13.83	4749.67	0.0020	0.5957	9.0517	48.6750		
Ni	40.25	4430.07	*	*				
Fe	9609.29	64203.29	0.8870	20.7563				
Mn	78.54	2767.28	0.0107	0.6363				
Cr	45.19	2301.06	*	*				
v	53.22	371.38	*	*				
Ti	964.30	5098.32	0.0990	2.4633				
Са	2006.77	88293.68	0.0300	49.8063				
к	260.49	69693.51	0.1503	7.7627				
Ва	*	*	0.0045	0.1157				
Nb	*	*	0.0020	0.0400				
AI	*	*	0.2840	19.0023				
Si	*	*	0.1377	40.5180				
Ag					3.0640	57.0573		
Au					33.4223	99.8933		
Pd					6.4017	12.4340		

*No se encontró respuesta lineal.

Tabla IV.3. Pendientes, ordenadas al origen y coeficientes de correlación determinados para los modos de análisis "suelo", "mina" y "metales preciosos".

5 1	M	odo "suelo	,"	Modo "mina" Mo			lodo "mina" Modo "metales preciosos"			
Elemento	м	b	R ²	m	b	R ²	m	b	R ²	
Мо	0.7929	1.8336	0.9940	*	*	*				
Zr	1.0760	-17.721	0.9953	1.3267	-0.0018	0.9934				
Sr	0.9454	-0.7105	0.9992	0.9617	0.00008	0.9979				
Rb	1.0580	-4.8748	0.9920	0.8562	-0.0005	0.9849				
Th	1.1172	-2.4997	0.9937	*	*	*				
Pb	1.0824	13.008	0.9992	1.2072	0.0055	0.9983				
As	2.9616	-35.014	0.9956	*	*	*				
Zn	1.0341	-32.711	0.9996	1.0274	0.0036	0.9987	0.9573	0.0088	0.9989	
Cu	0.8733	17.999	0.9960	1.0954	0.0041	0.9962	1.0000	-0.1361	0.9999	
Ni	0.5491	21.527	0.9978	*	*	*				
Fe	0.9099	-3205.2	0.9951	0.9812	0.1671	0.9932				
Mn	0.8831	-108.24	0.9966	1.2190	0.0384	0.9931				
Cr	1.0520	9.7073	0.9982	*	*	*				
v	0.7649	36.715	0.9854	*	*	*				
Ti	1.0904	-638.82	0.9809	1.0163	0.0072	0.9904				
Са	0.8876	-1024.5	0.9968	1.2404	-0.2826	0.9974				
к	0.9543	312.49	0.9968	1.0575	0.0793	0.9933				
Ва	*	*	*	0.8601	-0.0328	0.9913				
Nb	*	*	*	1.1974	0.0007	0.9961				
AI	*	*	*	2.8343	0.8870	0.9865				
Si	*	*	*	1.0192	-0.4606	0.9942				
Ag							0.9981	0.2207	0.9999	
Au							0.9977	-0.0096	1.0000	
Pd										

*No se encontró respuesta lineal.

Con lo anterior se concluye que dependiendo del nivel de concentración del analito y del modo de lectura de trabajo, el equipo PFRX puede determinar de buena manera distintos elementos químicos, siendo indiscutible un tiempo óptimo de lectura de 45 segundos con cada uno de los filtros de trabajo para obtener resultados precisos. Con respecto a la exactitud, ésta depende fuertemente del modo de análisis de trabajo y del nivel de concentración del analito, recordando que si la pendiente tiene un valor muy cercano a la unidad se considera un análisis exacto, mientras que, si existe una respuesta lineal entre la concentración medida por el equipo PFRX y la concentración del analito indicada en el certificado, es factible el uso de un factor de corrección que involucra los valores de regresión reportados en la **Tabla IV.3**, para los intervalos de concentración establecidos en la **Tabla IV.2**.

IV.2 Efecto de la preparación del material (Pastilla y polvo)

Con el objetivo de evaluar la influencia de la preparación de la muestra al realizar los análisis con un equipo PFRX, los resultados de las concentraciones elementales obtenidos con éste, al trabajar con estándares en forma de polvo y de pastillas, fueron comparados con los indicados en los respectivos certificados. Los resultados de concentración obtenidos al analizar las pastillas con el equipo PFRX se presentan en los anexos 9 y 10; mientras para polvo se utilizaron los resultados obtenidos, presentados previamente en los anexos 4 y 5.

De dichas comparaciones se obtuvieron las pendientes, ordenadas al origen y coeficientes de correlación en donde se encontró una respuesta lineal de la concentración obtenida con el equipo PFRX (C_{PFRX}) en función de la concentración en el certificado (C_{cert}) (con R² \ge 0.99), los cuales se presentan en las **Tablas IV.4** y **IV.5**, utilizando los modos de "suelo" y "mina" respectivamente. Para la mayoría de los elementos en ambos modos de lectura, se observa que los valores de pendiente no son iguales si se comparan los valores de regresión cuando la muestra se

encuentra como polvo o como pastilla, lo cual indica que la preparación de la muestra si influye en la cuantificación elemental para este tipo de materiales.

Tabla IV.4. Tabla comparativa de las pendientes, ordenadas al origen y coeficientes de correlación obtenidos con el modo "suelo" para dos formas de preparación del estándar: pastilla y polvo.

Flowente		Polvo		Pastilla			
Elemento	М	b	R ²	m	В	R ²	
Мо	0.7929	1.8336	0.9940	0.7595	2.6681	0.9881	
Zr	1.0760	-17.721	0.9953	0.9174	-16.636	0.9932	
Sr	0.9454	-0.7105	0.9992	0.7786	-4.2303	0.9994	
Rb	1.0580	-4.8748	0.9920	0.8036	-2.4489	0.9972	
U*							
Th	1.1172	-2.4997	0.9937	0.9035	0.7177	0.9858	
Pb	1.0824	13.008	0.9992	0.8686	-41.192	0.9998	
As	2.9616	-35.014	0.9956	1.3045	-10.821	0.9981	
Zn	1.0341	-32.711	0.9996	0.8332	-30.880	0.9993	
Cu	0.8733	17.999	0.9960	0.8333	-12.535	0.9934	
Ni	0.5491	21.527	0.9978	0.3889	15.328	0.9999	
Co*							
Fe	0.9099	-3205.2	0.9951	0.6052	-476.280	0.9904	
Mn	0.8831	-108.24	0.9966	0.6753	-88.999	0.9998	
Cr	1.0520	9.7073	0.9982	1.0928	-3.5082	0.9993	
v	0.7649	36.715	0.9854	0.9557	11.777	0.9966	
Ti	1.0904	-638.82	0.9809	0.7889	78.497	0.9977	
Sc*							
Са	0.8876	-1024.5	0.9968	0.8243	343.38	0.9930	
К	0.9543	312.49	0.9968	0.9153	1063.5	0.9980	
Ba*							
Nb*							
Al*							
P*							
Si*							
Mg*							

*No se observó respuesta lineal.

Tabla IV.5.Tabla comparativa de las pendientes, ordenadas al origen y coeficientes de correlación obtenidos con el modo "mina" para dos formas de preparación del estándar: pastilla y polvo.

Flowento		Polvo		Pastilla			
Elemento	m	b	R ²	m	b	R ²	
Mo*							
Zr	1.3267	-0.0018	0.9934	1.1044	-0.0014	0.9981	
Sr	0.9617	0.00008	0.9979	0.7697	-0.0002	0.9983	
Rb	0.8562	-0.0005	0.9849	0.6731	-0.0003	0.9979	
U*							
Th*							
Pb	1.2072	0.0055	0.9983	0.9774	0.0022	0.9995	
As							
Zn	1.0274	0.0036	0.9987	0.8519	-0.0013	0.9990	
Cu	1.0954	0.0041	0.9962	0.6856	0.002	0.9981	
Ni							
Co*							
Fe	0.9812	0.1671	0.9932	0.8145	-0.0416	0.9909	
Mn	1.219	0.0384	0.9931	0.9404	-0.0297	0.9986	
Cr							
v							
Ti	1.0163	0.0072	0.9904	0.9108	-0.0159	0.9980	
Sc*							
Са	1.2404	-0.2826	0.9974	1.0717	-0.3235	0.9981	
К	1.0575	0.0793	0.9933	0.8601	0.0615	0.9985	
Ва	0.8601	-0.0328	0.9913	0.7679	-0.0182	0.9900	
Nb	1.1974	0.0007	0.9961	1.0035	0.0002	0.9984	
AI	2.8343	0.8870	0.9865	2.2294	0.8758	0.9914	
P*							
Si	1.0192	-0.4606	0.9942	0.9762	0.5488	0.9980	
Mg*							

*No se observó respuesta lineal.

Aunque se observa que para algunos elementos el coeficiente de determinación es menor a 0.99 se observa una tendencia lineal, y dichas variaciones en la recta son debidas a interferencias de matriz y respuesta del detector.

Cuando el estándar se encuentra en forma de polvo, los valores de la pendiente de la comparación CPFRX vs Ccert, tienden a la unidad; al analizar Zr, Rb, Pb, Zn, Cr y Ti en modo de "suelo". Mientras que para el modo de "mina", solamente para Pb, Ca, Nb y Si la pendiente tiende a la unidad. Con respecto a la pastilla se observa para casi todos los elementos de estudio una disminución de su valor en el modo de "suelo" y un aumento en el modo de "mina". Con respecto a esto en el modo de "mina" se ve una mejora en el valor de la pendiente (valor de m más cercano a uno) cuando se determina Sr, Zn, Cu, Fe, Ti y K. Sin embargo, no hay que perder de vista que para los elementos reportados en las Tablas IV.4 y IV.5, existe una respuesta lineal de la concentración determinada por el Niton y la concentración reportada en el certificado de los materiales de trabajo, con la cual, al obtener los valores de regresión, si la pendiente de la curva no es igual a uno es posible realizar la corrección del resultado obtenido. Los gráficos obtenidos para cada elemento en pastillas para ambos modos de análisis se presentan en los anexos 11 y 12; y los gráficos para polvo en ambos modos son los mostrados previamente en las Figuras IV.1 a IV.6.

IV.3 Estudio comparativo entre el equipo portátil y el convencional

Ya se ha estudiado que la influencia del tiempo en el análisis influye en la repetibilidad, precisión y exactitud de las mediciones; y que el modo de preparación de una muestra influye en su exactitud, pero otro punto importante que observar en este estudio es referente a que tan reproducible es el equipo PFRX en comparación de otro equipo de fluorescencia de rayos X, el cual se ha denominado como "convencional".

Para este estudio se realizó la comparación mediante la construcción de las gráficas del valor promedio de las mediciones con el equipo portátil en función del valor

obtenido con el equipo convencional para las muestras con alto contenido de Ti (en estado de perlas y en polvo), así como para los estándares de metales preciosos.

Al obtener los valores de regresión de las curvas, se espera que los coeficientes de determinación (R²) sean lo más cercanos a la unidad, que el valor de la pendiente sea igual o muy cercano a uno y que el valor de la ordenada al origen se encuentre muy cercano a cero.

a. Muestras con altos contenidos de Ti

A continuación, se muestran las gráficas obtenidas para las muestras de titanio preparadas en forma de perlas y analizadas en modo de "mina" con el equipo PFRX y por el equipo de FRX-WD.

Figura IV.8. Gráficos comparativos PFRX vs FRX-WD para Ti (arriba) y Ca (abajo) obtenidos de las muestras analizadas en forma de perla.

Los resultados indican que las muestras de trabajo presentan contenidos en niveles de porcentaje de Ti y de Ca y no se observaron concentraciones apreciables de otros elementos (0.01% a <9%). En ambos casos los valores de la pendiente, de la ordenada al origen y el factor de determinación (R²) se encuentran cercanos a la unidad, lo que indica que los resultados arrojados por los dos elementos de trabajo son equivalentes en el intervalo de concentraciones de 9 a 60 % de Ti y 1 a 42 % de Ca.

Debido a que la preparación de la perla incluye una dilución de la muestra se decidió analizar también las muestras en forma de polvo y construir nuevamente los gráficos que relacionan las concentraciones elementales determinadas por ambos equipos. Los resultados obtenidos también indicaron una respuesta equivalente de ambas metodologías para la determinación de titanio y calcio para los intervalos de concentraciones anteriormente definidos. Sin embargo, debido a que la muestra no fue diluida durante su preparación al mezclarse con el fundente, fue posible determinar la presencia de Fe. Para este elemento también se observaron valores de regresión muy cercanos a la unidad, por lo que se demuestra que los valores de concentración de las dos metodologías para la cuantificación de Fe en el intervalo de 0.02 a 0.43 % también son equivalentes. Los resultados obtenidos se presentan en la **Figura IV.9**.

Figura IV.9. Gráficos comparativos PFRX vs FRX-WD para Ti (arriba), Ca (en medio) y Fe (abajo) obtenidos de las muestras analizadas en forma de polvo.

Los valores de regresión obtenidos para los dos modos de preparación de la muestra se presentan en la **Tabla IV.6**.

Elemento	Perla			Polvo		
	m	b	R ²	m	b	R ²
Ti	1.0594	-1.1189	0.9991	0.9427	1.3882	0.9920
Са	1.0578	0.1420	0.9990	1.0163	-0.0823	0.9967
Fe	*			1.0102	0.0034	0.9930

Tabla IV.6.	Pendientes,	ordenadas	al origen	y coefici	entes de	e correlación	ı –
Comparativ	/a entre equij	pos de FRX	en estado	de perla	y polvo.		

*No se observaron contenidos de Fe

Con respecto a los resultados obtenidos en las muestras con altos contenidos de Ti (ver **Tabla IV.6**), se puede observar que los resultados para Ti y Ca no presentan diferencias significativas al comparar los valores de las pendientes obtenidas en ambos formatos de preparación de muestra, por lo que es posible decir, que el modo de preparación no afecta los resultados de concentración reportados por el equipo PFRX para el análisis de este tipo de materiales. El total de los resultados obtenidos se presentan en los anexos 13 y 14.

b. Estándares de metales preciosos

En cuanto a los estándares de metales preciosos, las gráficas correspondientes de las comparaciones de las dos metodologías de trabajo se presentan en la **Figura IV.10**.

Figura IV.10. Gráficos comparativos PFRX vs FRX-WD para Au (arriba izquierda), Ag (arriba derecha), Cu (abajo izquierda) y Zn (abajo derecha) obtenidos con los estándares de metales preciosos.

Para los cuatro elementos de trabajo se puede observar que los valores de pendiente, ordenada al origen y de factor de correlación obtenidos se encuentran muy cercanos a la unidad, por lo que para este tipo de materiales en los intervalos de concentración de 33 a 99.99 % para Au, de 3 a 58.3 % para Ag, de 9.2 a 49.3 % para Cu y de 0.5 a 10.7 para Zn los valores de concentración determinados son equivalentes. Los valores de regresión obtenidos se presentan en la **Tabla IV.7**.

Elemento	m	b	R ²
Au	0.9948	-0.3682	0.9986
Ag	0.9776	0.4844	0.9996
Cu	0.9882	0.2495	0.9930
Zn	0.9548	0.0066	1.0000

Tabla IV.7. Pendientes, ordenadas al origen y coeficientes de correlación para los estándares de metales preciosos.

Con dicha información se confirma que la pistola de FRX es confiable para la cuantificación de Au, Ag, Cu y Zn en aleaciones de metales preciosos en los intervalos de concentración de estudio.

El total de los resultados obtenidos se presentan en el anexo 15.

Capítulo V. Conclusiones

El equipo PFRX realiza determinaciones precisas cuando se utiliza un tiempo de medición de al menos 45 segundos por cada uno de los modos que conforman los tres métodos de análisis ("suelo", "mina" y "metales preciosos").

Si bien para varios de los elementos, los valores de concentración reportados por el equipo portátil presentan una diferencia porcentual menor al 20 %, lo cual indica un grado de exactitud aceptable con base en lo establecido por la norma 6200 SW-846 de la EPA, se observó que cuando se excede este valor, pero existe una respuesta lineal de la concentración indicada por el equipo PFRX y la concentración reportada en el certificado, los valores de una regresión lineal, como lo son la pendiente y la ordenada al origen, hacen posible realizar la corrección de la concentración indicada por el equipo Niton; siempre y cuando se realice mediante una interpolación, es decir, el parámetro a corregir se encuentre dentro del intervalo de concentraciones utilizado durante la regresión lineal.

Con respecto al efecto de la preparación de los estándares de rocas, suelos y sedimentos, al comparar los resultados de los materiales en polvos y en muestras prensadas, se encontró que para los modos de "suelo" y "mina", los resultados de cuantificación para varios de los elementos de trabajo son diferentes al realizar el análisis con la pistola de FRX.

Con respecto a los análisis de las muestras con altos contenidos de Ti, no se observaron diferencias significativas entre los resultados obtenidos para la muestra fundida y el material en polvo, puesto que los valores de regresión, en especial la pendiente, no varían más de 0.1200 unidades.

De acuerdo con todo lo anterior, es muy útil y necesario, al igual que para otras técnicas analíticas, trabajar con curvas de calibración externas, cuyos estándares hayan sido preparados de igual forma o lo más parecido a las muestras de trabajo, con el objetivo de minimizar los efectos de la matriz y con ello generar resultados libres de interferencias.

Referencias

- 1. Alvarado, J. A., & Obagi, J. J. (2008). Pruebas de hipótesis Fundamentos de inferencia estadística. Colombia: Pontificia Universidad Javeriana.
- AMQA. (2018). Teoria y Aplicaciones de la Química Analítica en México 2018. XXXI Congreso Nacional de Química Analítica (pág. 574). Hidalgo, México: Universidad Autónoma del Estado de Hidalgo.
- Brouwer, P. (2013). Theory of XRF (4° edición ed.). (R. Lozano, Trad.) Holanda: PANalytical B.V..
- 4. Cabriales, J. A. (2002). *Análisis químico de materiales silicoaluminosos por fluorescencia de rayos-X.* México: Universidad Autónoma de Nuevo León.
- 5. COFEPRIS. (2011). Criterios para la validación de métodos fisicoquímicos. Comisión de Control Analítico y Ampliación de Cobertura (CCAYAC), México.
- EPA. (2007). Method 6200 Field portable X-Ray Fluorescence Spectrometry for the determination of elemental concentrations in soil and sediment. Environmental Protection Agency.
- Eurochem. (2014). The Fitness for Purpose of Analytical Methods A Laboratory Guide to Method Validation and Related Topics. Reino Unido: 2° edición.
- Flesia, G. (2011). Técnicas de validación estadística, bondad de ajuste. México: FaMAF.
- Gomis, V. G. (2008). Tema 1. Introducción a las técnicas intrumentales en el análisis industrial. Ingenieria Química. España: Universidad de Alicante. Recuperado el 30 de Julio de 2018, de

https://rua.ua.es/dspace/bitstream/10045/8245/8/T1metodos%20instrumen. pdf

- 10. Güiza, S. G. (2014). Características del analizador portátil de FRX NITON. *Thermo Fisher Scientific.*
- 11. Klockenkämper, R., & Bohlen, A. V. (2015). Fundamentals of X-ray fluorescence . En R. Klockenkämper, & A. V. Bohlen, *Total-reflection X-ray Fluorescence Analysis and Related Methods* (págs. 1-8). Estados Unidos: John Wiley & Sons .
- 12. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2005). *Fundamentos de Química Analítica* (8° ed.). Estados Unidos: Thomson.
- 13. Thermo Scientific, T. (Guía de usuario). NITON XL3t 900Analyzer with GOLDD Technology User's Guide Version 6.5.
- 14. Traverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. *Trends in Analytical Chemistry*, 23(8), 535-552. doi:10.1016/j.trac.2004.04.001
ANEXOS

Anexo 1. Certificados de estándares utilizados – Parte 1/4.

Elemento	Sie	m 1	Sie	m 2	Sie	m 3	Sie	m 4	Sie	m 5	Sie	m 6	Sie	m 7	Sie	em 8	Sie	m 9	Sier	m 10
	ppm	%																		
Мо																				
Zr	229	0.0229	186	0.0186	13	0.0013	505	0.0505	150	0.0150	51	0.0051	135	0.0135	318	0.0318	176	0.0176	131	0.0131
Sr	49	0.0049	258	0.0258	7	0.0007	923	0.0923	127	0.0127	135	0.0135	430	0.0430	1650	0.1650	86	0.0086	203	0.0203
U																				
Rb	276	0.0276	112	0.0112	1	0.0001	130	0.0130	66	0.0066	39	0.0039	82	0.0082	94	0.0094	145	0.0145	92	0.0092
Th	20	0.0020	11	0.0011	1	0.0001	30	0.0030	8	0.0008	2	0.0002	6	0.0006	20	0.0020	10	0.0010	7	0.0007
Pb	26	0.0026	24	0.0024	1	0.0001	15	0.0015	8	0.0008	7	0.0007	7	0.0007	12	0.0012	36	0.0036	2600	0.2600
Au																				
Se																				
As																				
Hg																				
Zn	32	0.0032	91	0.0091	40	0.0040	131	0.0131	50	0.0050	56	0.0056	37	0.0037	112	0.0112	152	0.0152	15800	1.5800
w																				
Cu	5	0.0005	23	0.0023	2	0.0002	7	0.0007	3	0.0003	83	0.0083	756	0.0756	81	0.0081	20	0.0020	5430	0.5430
Ni	10	0.0010	36	0.0036	0	0.2640	12	0.0012	29	0.0029	118	0.0118	10	0.0010	25	0.0025	46	0.0046	143	0.0143
Со	62	0.0062	29	0.0029	118	0.0118	8	0.0008	27	0.0027	39	0.0039	31	0.0031	36	0.0036	20	0.0020	98	0.0098
Fe	13705	1.3705	38319	3.8319	51744	5.1744	25243	2.5243	33354	3.3354	55940	5.5940	19299	1.9299	74120	7.4120	49087	4.9087	19719	1.9719
Mn	310	0.0310	542	0.0542	774	0.0774	1858	0.1858	387	0.0387	1239	0.1239	232	0.0232	2323	0.2323	697	0.0697	3330	0.3330
Cr	7	0.0007	67	0.0067	2180	0.2180	11	0.0011	52	0.0052	360	0.0360	14	0.0014	27	0.0027	46	0.0046	92	0.0092
v	14	0.0014	110	0.0110	13	0.0013	131	0.0131	213	0.0213	227	0.0227	59	0.0059	338	0.0338	171	0.0171	450	0.0450
Ti	1319	0.1319	4316	0.4316	60	0.0060	2758	0.2758	3537	0.3537	2938	0.2938	2578	0.2578	12769	1.2769	5216	0.5216	2398	0.2398
Sc																				
Ca	7018	0.7018	14966	1.4966	358	0.0358	17401	1.7401	5013	0.5013	80200	8.0200	18976	1.8976	99534	9.9534	8092	0.8092	157536	15.7536
К	43002	4.3002	22414	2.2414	415	0.0415	72306	7.2306	15524	1.5524	6724	0.6724	19924	1.9924	31380	3.1380	27810	2.7810	17350	1.7350
S																				
Ba	472	0.0472	540	0.0540	4	0.0004	752	0.0752	358	0.0358	121	0.0121	553	0.0553	1308	0.1308	630	0.0630	178	0.0178
Cs																				
Те																				
Sb																				
Sn																				
Cd																				
Ag																				
Pd																				
Bal									_		_		-						_	
Nb	18	0.0018	11	0.0011	3	0.0003	320	0.0320	7	0.0007	5	0.0005	8	0.0008	222	0.0222	12	0.0012	7	0.0007
Bi			1007										10005				17015			
AI	34122	3.4122	42851	4.2851	1058	0.1058	55547	5.5547	36767	3.6767	39147	3.9147	40205	4.0205	38089	3.8089	47612	4.7612	21425	2.1425
P																				
Si	346925	34.6925	307183	30.7183	194970	19.4970	240323	24.0323	325885	32.5885	247804	24.7804	320742	32.0742	172995	17.2995	279130	27.9130	134188	13.4188
CI																				
Mg																				

Elemento	27:	10a	27	/11a	DB	SC-1	RT	S-3	RT	S-4	IG	La-1	IG	Lc-1	IGI	Ld-1	IG	Ls-1	IGI	_sy1
	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%
Мо	19	0.0019	2	0.0002	3	0.0003					3	0.0003	0.3	0.00003	1	0.0001	3	0.0003	5	0.0005
Zr			230	0.0230	183	0.0183	66	0.0066	10	0.0010	242	0.0242			3	0.0003	579	0.0579	399	0.0399
Sr	330	0.0330	245	0.0245	134	0.0134	40	0.0040	12	0.0012	575	0.0575			167	0.0167	43	0.0043	1574	0.1574
U	25	0.0025	3	0.0003	6	0.0006					1	0.0001	0.1	0.00001	1	0.0001	5	0.0005	6	0.0006
Rb	120	0.0120	110	0.0110	194	0.0194					33	0.0033	0.2	0.00002	0.2	0.00002	75	0.0075	215	0.0215
Th	13	0.0013	14	0.0014	18	0.0018					3	0.0003					15	0.0015	38	0.0038
Pb	5532	0.5532	1162	0.1162	53	0.0053	146	0.0146	60	0.0060	10	0.0010	3	0.0003	0.5	0.00005	27	0.0027	19	0.0019
Au	1	0.0001	0.03	0.000003			235	0.0235	21	0.0021										
Se					3	0.0003	61	0.0061	100	0.0100										
As	626	0.0626	105	0.0105	9	0.0009	9	0.0009	207	0.0207										
Hg	33	0.0033	6	0.0006	1	0.0001														
Zn	6952	0.6952	350	0.0350	21	0.0021	1850	0.1850	158	0.0158	79	0.0079			1	0.0001	102	0.0102	116	0.0116
w	93	0.0093	3	0.0003	16	0.0016					2	0.0002					3	0.0003	8	0.0008
Cu	2950	0.2950	114	0.0114	21	0.0021	2820	0.2820	280	0.0280	15	0.0015	4	0.0004	3	0.0003	56	0.0056	14	0.0014
Ni	14	0.0014	21	0.0021	24	0.0024	71	0.0071	7940	0.7940	8	0.0008	23	0.0023			52	0.0052	3	0.0003
Со	10	0.0010	10	0.0010	2	0.0002	260	0.0260	186	0.0186	11	0.0011	2	0.0002	2	0.0002	46	0.0046	3	0.0003
Fe	33800	3.3800	28900	2.8900	6553	0.6553	210400	21.0400	567000	56.7000	41465	4.1465	204	0.0204	170	0.0170	90985	9.0985	28881	2.8881
Mn	10100	1.0100	638	0.0638			2000	0.2000	150	0.0150	822	0.0822	76	0.0076	39	0.0039	2198	0.2198	1443	0.1443
Cr	39	0.0039	47	0.0047	105	0.0105	75	0.0075	100	0.0100	29	0.0029			10	0.0010	215	0.0215	2	0.0002
v	77	0.0077	82	0.0082	138	0.0138					98	0.0098			8	0.0008	290	0.0290	17	0.0017
Ti	2830	0.2830	3060	0.3060	6732	0.6732	3200	0.3200	800	0.0800	6400	0.6400	130	0.0130	104	0.0104	15547	1.5547	2987	0.2987
Sc	9	0.0009	9	0.0009	17	0.0017					12	0.0012							0.4	0.00004
Ca	12500	1.2500	28800	2.8800	1404	0.1404	22000	2.2000	3270	0.3270	36843	3.6843	396757	39.6757	242977	24.2977	2892	0.2892	18206	1.8206
К	21100	2.1100	24500	2.4500	21888	2.1888	3500	0.3500	400	0.0400	18050	1.8050	73	0.0073	61	0.0061	4984	0.4984	48770	4.8770
S	2400	0.2400	420	0.0420			99800	9.9800	359000	35.9000			_							
Ва	707	0.0707	726	0.0726	476	0.0476	98	0.0098	27	0.0027			3	0.0003						
Cs	107	0.0107	6	0.0006	64	0.0064					1	0.0001	0.4	0.00004	0.1	0.00001	3	0.0003	3	0.0003
Te																				
Sb	38	0.0038	19	0.0019	3	0.0003					0.2	0.00002					1	0.0001	0.3	0.00003
Sn	22	0.0000	40	0.0040	24	0.0024		0.0000	_	0.0005	2	0.0002					6	0.0006	2	0.0002
Ca	22	0.0022	42	0.0042			9	0.0009	5	0.0005										
Ag	35	0.0035	5	0.0005					45	0.0045										
Pa									15	0.0015										
Bai					26	0.0000					10	0.0010		0.0004		0.0004	50	0.0050	202	0.0202
ND					26	0.0026					19	0.0019	1	0.0001	1	0.0001	50	0.0050	282	0.0282
BI	64400	C 4400	65200	6 5 2 0 0	04170	0.4170	47000	4 7000	2200	0.2200	45000	4 5000	C 4	0.0001	247	0.0247	62111	C 2111	57420	5 7420
AI	1000	0.4400	05300	0.5300	84178	8.41/8	47900	4.7900	3390	0.3390	45980	4.5980	64	0.0064	247	0.0247	53111	0.3111	57420	5.7420
۲ c:	1060	0.1060	304400	0.0860	312	0.0312	150000	15.0000	200	0.0200	1/34	0.1/34	45	0.0045	39	0.0039	202	0.0585	382	0.0382
<u> </u>	289/00	28.9700	304400	30.4400	243012	24.3012	129900	12.9900	9980	0.9980	283054	28.3054	489	0.0489	7896	0.7896	213612	21.3612	243312	24.3312
CI No.	0520	0.0520	40500	4.0500	24.40	0.24.40	24500	2.45.00	4700	0.4700	44076	4 4 0 7 4	2264	0.000	313	0.0313	4776	0.4776	3029	0.3029
Mg	8530	0.8530	10500	1.0500	2149	0.2149	24500	2.4500	1790	0.1790	11871	1.1871	2264	0.2264	111445	11.1445	1776	0.1776	1827	0.1827

Anexo 1. Certificados de estándares utilizados – Parte 2/4.

Flomento	IGI	.sy2	IGL	.gb3	IGI	.sy4	EV	/01	SK	01	27	09a	Q	S1	SD	AR-1	SD	ARH1	SDA	ARM2
Elemento	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%	ppm	%
Мо	7	0.0007	1	0.0001	2	0.0002	8	0.0008	19	0.0019	2	0.0002	1	0.000	13	0.0013	64	0.0064		
Zr	515	0.0515	125	0.0125	179	0.0179	447	0.0447	137	0.0137	160	0.0160	159	0.015	353	0.0353	258	0.0258	242	0.0242
Sr	965	0.0965	1428	0.1428	1369	0.1369	440	0.0440	312	0.0312	231	0.0231	113	0.011	152	0.0152	182	0.0182	146	0.0146
U	7	0.0007	1	0.0001	2	0.0002			3	0.0003	3	0.0003	3	0.000	4	0.0004	4	0.0004		
Rb	140	0.0140	23	0.0023	59	0.0059	75	0.0075	122	0.0122	96	0.0096	136	0.013	143	0.0143	152	0.0152	147	0.0147
Th	27	0.0027	2	0.0002	8	0.0008	24	0.0024	5	0.0005	11	0.0011	11	0.001	18	0.0018	18	0.0018		
Pb	13	0.0013	6	0.0006	8	0.0008	54	0.0054	8199	0.8199	19	0.0019	9	0.000	979	0.0979	3893	0.3893	821	0.0821
Au											0.3	0.00003								
Se									15	0.0015	2	0.0002								
As	4	0.0004	5	0.0005	5	0.0005	34	0.0034	56	0.0056	18	0.0018	7	0.000	36	0.0036				
Hg									41	0.0041	1	0.0001								
Zn	93	0.0093	109	0.0109	70	0.0070	87	0.0087	17033	1.7033	106	0.0106	75	0.007	932	0.0932	3684	0.3684	814	0.0814
W	33	0.0033	5	0.0005	24	0.0024	54	0.0054	12	0.0012	2	0.0002	1	0.000	10	0.0010	4450	0.4450	2.40	0.0040
Cu	7	0.0007	50	0.0050	13	0.0013	51	0.0051	993	0.0993	35	0.0035	11	0.001	302	0.0302	1159	0.1159	248	0.0248
NI	3	0.0003	16	0.0016	4	0.0004	65	0.0065	69	0.0069	88	0.0088	38	0.003	41	0.0041	230	0.0230	54	0.0054
6	2000	0.0005	53	0.0053	5	0.0006	47020	0.0022	22	0.0022	13	0.0013	16	0.001	11	0.0011	56	0.0056	10	0.0010
Fe	20085	2.0085	1216	10.0003	3/99/	3./99/	4/829	4.7829	1502	2.2580	55000	3.5000			52369	3.2369	4500	4.5000	18500	1.8500
IVIN	2 1/94	0.1794	1316	0.1316	1225	0.1225	730	0.0736	1502	0.1502	120	0.0538	71	0.007	5401	0.5401	3990	0.3990	1090	0.1090
	3	0.0003	5 461	0.0005	 	0.0002	/1	0.0071	430	0.0430	112	0.0130	/1	0.007	93	0.0093	72	0.0072	70	0.0070
V Ti	43 59/2	0.0043	22197	2 2197	40 0991	0.0046	90 4502	0.0098	40 0/72	0.0048	2420	0.0112	112	0.011	2765	0.0008	2260	0.0075	1950	0.0020
Sc.	0.5	0.0042	25107	0.0025	2	0.0002	4302	0.4302	<u>J</u> 4	0.0472	12	0.0420	14	0.001	8	0.0705	8	0.0008	1050	0.1050
Ca	16750	1 6750	91968	9 1968	31777	3 1777	17186	1 7186	158467	15 8467	18900	1 8900	14	0.001	5720	0.5720	1050	1.0500	5940	0 5940
К	45195	4 5195	8757	0.8757	25495	2 5495	13947	1 3947	59190	5 9190	20300	2 0300			30155	3 0155	3460	3 4600	41500	4 1500
S	10100		0.01	0.0707	20100	2.0.00	100	1.00 17	30400	3.0400	890	0.0890			00100	0.0100	0.00	011000	.12000	
Ba							1178	0.1178	1718	0.1718	968	0.0968	362	0.036	794	0.0794	866	0.0866	959	0.0959
Cs	2	0.0002	1	0.0001	1	0.0001	10	0.0010	11	0.0011	5	0.0005	6	0.000	5	0.0005	5	0.0005		
Те																				
Sb	0.2	0.00002							519	0.0519	8	0.0008	1	0.000	7	0.0007				
Sn	2	0.0002	2	0.0002	1	0.0001	5	0.0005	1301	0.1301			3	0.000	3	0.0003				
Cd									266	0.0266	0.4	0.00004			5	0.0005	25	0.0025		
Ag											0.4	0.00004			4	0.0004	76	0.0076		
Pd																				
Bal																				
Nb	212	0.0212	38	0.0038	66	0.0066	43	0.0043	15	0.0015			14	0.001	35	0.0035	22	0.0022	24	0.0024
Bi													0.2	0.000						
Al	52430	5.2430	42672	4.2672	51555	5.1555	54172	5.4172	24494	2.4494	75000	7.5000			31201	3.1201	3130	3.1300	33900	3.3900
P	460	0.0460	6290	0.6290	2047	0.2047	865	0.0865	6637	0.6637	620	0.0620			699	0.0699	810	0.0810	360	0.0360
Si	270355	27.0355	182724	18.2724	255799	25.5799	215776	21.5776	88368	8.8368	296600	29.6600			33633	33.6335	3060	30.6000	34260	34.2600
CI									104800	10.4800										
Mg	3269	0.3269	37992	3.7992	10162	1.0162	6453	0.6453	15620	1.5620	15100	1.5100			4865	0.4865	9240	0.9240	3350	0.3350

Anexo 1. Certificados de estándares utilizados – Parte 3/4.

Flemento	SDA	ARL2	LOE	SS-1	0738-16	0704-16c	0734-16a	0715-16a	0732-16	0744-16	0720-16
Liemento	ppm	%	ppm	%	%	%	%	%	%	%	%
Мо	4	0.0004	1	0.0001							
Zr	592	0.0592									
Sr	143	0.0143	279	0.0279							
U	3	0.0003	3	0.0003							
Rb	115	0.0115	51	0.0051							
Th	21	0.0021	8	0.0008							
Pb	140	0.0140	11	0.0011							
Au					58.58	75.08	33.41	59.10	33.46	55.68	99.99
Se											
As			7	0.0007							
Hg											
Zn	218	0.0218	34	0.0034	0.52		10.68			1.52	
w			1	0.0001							
Cu	46	0.0046	11	0.0011	21.10	9.37	48.82	25.74	9.44	9.43	
Ni	13	0.0013	43	0.0043				6.11			
Со	5	0.0005	6	0.0006							
Fe	25800	2.5800	14684	1.4684							
Mn	790	0.0790	499	0.0499							
Cr	27	0.0027	106	0.0106							
v	39	0.0039	38	0.0038							
Ti	3800	0.3800	2535	0.2535							
Sc	6	0.0006	6	0.0006							
Са	7650	0.7650	116791	11.6791							
К	34250	3.4250	10792	1.0792							
S											
Ва	814	0.0814	201	0.0201							
Cs	1	0.0001	3	0.0003							
Те											
Sb			1	0.0001							
Sn	3	0.0003									
Cd			0.1	0.00001							
Ag					19.8000	3.0500	7.0900	9.0500	57.1000	26.8000	
Pd											
Bal											
Nb	80	0.0080	9	0.0009							
Bi											
Al	30800	3.0800	16400	1.6400							
Р	390	0.0390	568	0.0568							
Si	347700	34.7700	248906	24.8906							
Cl											
Mg	2970	0.2970	17489	1.7489							

Anexo 1. Certificados de estándares utilizados – Parte 4/4.

Anexos

Flomento		Siem1			Siem2			Siem3			Siem4			Siem5	
Liemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Мо	25.1	17.9	10.0							24.4	17.7	10.4	4.3	2.5	16.3
Zr	1.2	0.5	0.9	1.4	0.9	0.9				0.6	0.1	0.7	1.9	0.5	0.3
Sr	2.4	1.8	1.8	1.2	0.8	0.1	4.8	17.0	10.0	0.5	1.1	0.5	0.6	1.2	0.5
U	15.8	9.6	30.6												20.2
Rb	1.6	0.3	0.2	1.9	0.9	0.5				1.6	1.3	1.3	1.6	0.6	1.3
Th	2.7	7.2	5.9	6.4	9.8	10.6				1.8	3.3	1.2	34.9	7.9	22.5
Au	3.4	11.0	15.3												
Se	9.1	13.2	8.0												
As	22.6	19.4	15.1										13.1	16.1	18.4
Hg															
Zn	16.9	13.5	17.5	4.4	1.0	3.0	8.6	5.0	2.2	3.9	3.1	1.3	15.2	9.0	3.6
w	4.1	20.9	1.7	7.3	2.0	7.2							7.7	5.9	5.8
Cu				15.1	12.4	13.5									
Ni							0.3	0.2	0.8						
Со	23.3	9.7	14.6				17.6	23.5	8.7						
Fe	0.3	0.4	0.5	0.4	0.2	0.4	0.1	0.2	0.4	0.9	0.4	0.5	0.4	0.4	0.1
Mn	15.8	9.5	14.3	7.2	6.1	4.0	2.0	2.0	1.5	1.7	2.1	2.4	3.3	5.4	3.1
Cr				16.0	17.6	2.2	0.9	1.4	0.5				15.9	8.7	2.7
v	2.3	12.9	12.7	5.8	23.4	22.8				5.0	1.1	8.3	0.7	2.2	1.9
Ti	0.3	2.0	0.7	0.4	1.0	1.2				1.4	1.4	0.6	1.0	0.4	1.1
Sc				0.6	12.4	24.0				5.0	5.2	13.4			
Са	1.6	0.7	0.5	0.9	0.4	0.8	37.0	6.0	8.3	0.9	0.1	0.3	0.7	0.7	1.0
К	0.4	0.2	0.1	0.9	0.4	0.5				0.3	0.2	0.6	0.9	0.5	1.0
S				16.7	13.6	1.2				7.1	1.8	1.3	23.8	19.7	23.2
Ва															

Anexo 2. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo suelo – Parte 1/6.

Anexos

Flemento		Siem6			Siem7			Siem8			Siem9			IGLa-1	
Liemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Мо				7.3	3.7	3.6	15.4	32.9	20.7				10.7	9.8	13.8
Zr	3.5	2.5	2.7	1.5	0.3	0.7	1.1	1.6	1.5	0.6	0.5	1.1	1.4	0.3	0.9
Sr	0.8	0.9	0.7	0.2	0.5	0.4	0.4	0.4	0.6	0.9	1.4	0.2	0.6	0.3	0.8
U															
Rb	2.7	1.1	2.6	1.0	1.1	0.8	2.0	0.7	2.3	1.3	0.4	1.1	3.1	2.8	4.4
Th				44.2	19.5	11.7	5.5	1.9	12.1	6.7	11.4	3.4			
Au															
Se															
As	17.3	11.3	15.9							6.6	2.9	5.0			
Hg															
Zn	1.9	16.9	6.6	12.6	5.7	8.3	2.8	4.7	2.9	4.1	3.8	1.4	10.6	6.8	2.5
w	19.9	12.5	24.5	3.0	1.9	5.5	25.6	22.8	13.3						
Cu	11.9	15.2	8.5	1.1	1.2	0.4	16.0	13.0	1.4	9.2	34.6	33.4			
Ni	0.8	7.0	17.2				16.7	7.3	15.2						
Со				10.6	26.6	26.0							18.4	5.1	12.6
Fe	0.7	0.6	0.2	0.5	0.8	0.5	0.3	0.4	0.4	0.1	0.6	0.4	0.5	0.6	0.3
Mn	5.2	1.3	2.6	0.8	19.2	5.1	1.7	2.8	1.3	2.0	1.5	5.4	3.0	3.7	2.7
Cr	0.5	3.2	3.9							2.7	2.6	12.0			
v	6.9	2.1	2.0	2.2	10.0	9.2	5.4	1.6	5.5	4.8	5.6	3.7	16.9	6.1	9.3
Ti	1.9	1.1	0.7	1.1	0.6	1.7	1.2	0.4	0.3	0.3	0.6	0.7	0.4	0.7	0.7
Sc	8.7	10.4	7.0	18.3	5.6	11.1	7.2	27.0	12.4				6.6	24.2	23.9
Са	0.4	0.3	0.3	0.6	0.3	0.3	0.1	0.1	0.2	0.6	0.7	0.4	0.7	0.5	0.7
К	0.9	0.2	1.1	0.4	0.7	0.7	0.2	0.2	0.5	0.0	0.9	0.4	0.8	0.5	0.3
S	20.5	14.8	8.6	2.7	2.9	13.2	13.2	2.3	6.2	1.3	7.2	9.6			
Ва							1.1	3.6	3.8				3.6	1.8	4.5

Anexo 2. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo suelo – Parte 2/6.

Flomento		IGLc-1			IGLd-1			IGLsy1			IGLsy2			IGLgb3			IGLsy4	
Elemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Мо	35.3	8.6	6.1				18.8	14.2	12.9	8.9	6.8	5.1	4.7	23.8	16.1	14.5	14.7	18.7
Zr							1.1	1.6	0.5	0.4	0.5	0.1	3.1	1.9	1.5	2.8	1.1	0.1
Sr	0.6	1.3	1.0	0.8	1.3	0.4	0.3	0.3	0.6	0.9	0.1	0.6	0.2	0.3	0.4	0.5	0.4	0.3
U											7.9	5.2						
Rb							1.9	1.5	1.0	3.3	1.6	1.3	6.9	6.4	3.2	3.2	4.8	0.3
Th							5.3	8.1	4.9	10.5	7.5	6.0				41.0	5.2	12.0
Au																		
Se																		
As													28.7	20.8	13.7			
Hg																		
Zn							2.2	5.3	4.7	3.4	3.0	2.8	6.5	9.7	6.7	12.8	2.8	3.8
w										15.0	12.9	10.5				17.3	12.6	9.4
Cu													9.2	14.2	15.4			
Ni													1.2	21.8	10.4	7.8	0.8	8.7
Со																		
Fe				18.5	18.4	14.7	0.5	0.6	0.2	0.9	0.5	0.2	0.5	0.4	0.7	0.8	0.4	0.3
Mn							1.0	1.2	2.0	4.3	1.0	3.1	2.3	1.3	1.7	2.7	1.2	0.6
Cr																30.4	16.7	6.5
v							12.8	11.6	14.2	16.8	11.5	16.6	6.6	8.1	2.0	14.4	13.3	5.8
Ti	0.5	5.9	21.3				1.8	0.9	0.4	0.9	1.2	1.0	0.4	0.4	0.6	1.2	0.2	0.3
Sc				27.8	21.0	10.2	25.5	20.7	13.8	22.5	13.5	8.6	14.6	13.1	11.4			
Са							0.9	0.1	0.3	1.3	0.9	0.5	1.0	0.2	0.2	0.5	0.7	0.5
К							0.2	0.4	0.5	0.3	0.2	0.2	1.4	1.0	1.2	0.7	0.2	0.7
S													18.7	14.1	9.2			
Ва							8.0	17.1	11.1	4.2	2.8	2.1	4.1	3.3	8.3	1.4	0.1	0.5

Anexo 2. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo suelo – Parte 3/6.

Flomento		QS1			SDAR-1			SDARH1			SDARM2			SDARL2	
Liemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Мо			6.8	2.9	15.4	7.1	1.0	1.7	1.6	8.2	3.5	2.2			
Zr	1.5	0.9	1.5	1.6	0.2	0.4	1.4	0.6	0.5	0.7	0.8	0.2	1.9	0.5	0.4
Sr	1.0	1.1	0.7	1.8	0.5	0.9	0.2	0.4	0.5	1.7	1.1	0.7	1.3	1.1	0.4
U				22.4	13.1	1.1	20.4	11.9	5.5	8.8	7.4	5.9	8.2	5.5	0.5
Rb	1.2	0.5	0.8	1.2	0.7	1.2	0.6	1.6	0.6	2.1	0.8	0.4	1.4	1.2	0.5
Th	7.5	8.0	4.9	15.9	4.5	3.8	18.3	10.4	29.6	4.1	11.8	8.1	10.2	6.7	4.0
Pb				1.0	0.4	0.5	0.0	0.2	0.8	1.6	1.4	0.1	1.8	0.5	1.3
Se															
As	25.3	9.5	5.5	8.0	10.0	3.2	0.3	0.4	0.4	7.8	10.0	2.6	16.5	6.6	6.4
Hg															
Zn	7.3	2.5	5.4	1.7	0.7	1.2	0.3	0.3	0.5	1.6	1.3	0.2	1.9	3.0	1.7
W															
Cu				3.8	0.5	1.5	0.7	0.8	0.8	3.8	1.8	1.1	1.2	3.5	3.5
Ni							11.6	4.1	9.8						
Fe	0.3	0.4	0.4	1.3	0.3	0.4	0.3	0.2	0.2	0.3	0.4	0.1	0.9	0.2	0.2
Mn	5.7	2.6	1.3	0.6	1.2	0.8	1.0	0.4	1.9	3.2	4.4	1.7	2.7	3.0	2.8
Cr	3.2	6.4	6.0	7.2	9.4	5.3	0.2	0.6	1.2	20.0	8.4	7.3	35.5	16.0	13.9
V	5.7	7.2	1.8	2.9	3.2	8.9	13.0	4.4	5.6	2.9	20.2	14.2	8.0	11.9	1.1
Ti	0.7	0.4	0.3	2.2	0.7	0.9	2.6	1.2	0.6	0.7	1.6	0.2	0.6	0.8	1.1
Sc	8.3	13.0	23.7												
Ca	0.5	0.2	0.3	1.5	0.3	1.2	0.4	0.4	0.1	1.0	0.7	0.7	0.5	1.0	0.6
К	0.4	0.5	0.3	0.7	0.0	0.4	0.8	0.7	0.4	0.2	0.6	0.5	0.2	0.9	0.5
S				5.2	1.1	7.4	0.6	0.7	4.8	8.5	2.6	10.7			
Sb							1.9	6.1	5.3						
Ag							3.5	17.4	6.3						

Anexo 2. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo suelo – Parte 4/6.

Flomento		IGLs-1			2709a			2710a			2711a			LOESS-1	
Elemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Мо				25.8	10.1	5.7	20.4	13.0	4.0						
Zr	1.2	0.9	0.6	0.5	0.8	0.7	1.0	1.0	1.1	1.5	0.8	0.2	0.1	0.2	0.5
Sr	1.7	2.0	1.9	0.5	0.3	0.9	1.3	0.7	0.6	0.9	0.2	0.9	1.0	0.5	0.5
U							37.4	27.2	22.7						
Rb	2.1	3.2	2.4	1.9	0.2	0.8	0.6	2.2	0.8	2.4	1.4	1.4	3.7	1.3	2.3
Th	14.3	3.3	3.5	6.3	5.4	6.5	6.1	10.4	12.5	12.6	8.7	11.4	16.2	20.5	17.1
Pb							0.6	0.3	0.3	1.8	0.3	0.6			
Se															
As	16.6	8.8	28.5	18.7	1.8	2.8	1.4	0.9	1.3	5.0	5.4	3.5	6.5	5.5	7.5
Hg							35.3	30.1	28.1						
Zn	14.8	2.4	7.3	3.7	5.9	0.9	0.5	0.1	0.5	0.8	2.9	1.3	5.8	7.1	5.3
w							19.2	13.5	7.1						
Cu	17.7	8.0	3.5				1.0	0.5	0.3	1.2	3.5	1.4			
Ni															
Fe	0.1	0.3	0.2	0.6	0.1	0.3	1.1	0.9	0.2	0.7	0.2	0.2	0.9	0.0	0.1
Mn	3.8	1.8	2.0	4.7	1.8	3.8	0.8	3.0	1.1	1.5	2.8	2.8	2.9	5.4	5.1
Cr	6.7	0.8	3.2	4.8	0.3	4.3			3.8	14.1	21.9	18.5	17.5	11.3	5.3
v	4.5	3.1	7.6	4.0	4.0	7.7	28.6	5.9	3.3	10.7	9.9	1.3	6.7	13.9	12.9
Ti	0.4	0.7	0.3	0.4	1.7	0.8	0.4	1.2	1.4	1.2	0.9	1.2	0.6	0.3	0.9
Sc	2.2	7.9	12.5	8.1	0.0	35.6				7.3	9.5	14.9	25.6	22.0	17.1
Ca	2.8	2.1	0.7	0.9	0.4	0.3	1.0	0.2	0.5	0.1	0.7	0.6	0.2	0.1	0.3
К	1.5	2.9	0.9	1.2	0.2	0.2	0.6	0.2	1.0	1.0	0.4	0.5	1.0	0.5	0.4
S							0.8	1.6	6.7	6.2	8.5	8.0			
Sb															
Ag							1.6	5.8	5.0						

Anexo 2. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo suelo – Parte 5/6.

Flomonto		Siem10			DBC-1			RTS-3			RTS-4			EVO1			SKO1	
Elemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Мо	1.5	1.4	0.9	12.7	1.1	8.8							5.6	9.3	5.5	10.7	7.5	2.1
Zr	0.8	2.1	1.3	0.2	1.4	0.6	2.6	1.5	1.6				0.5	0.1	0.7	0.8	1.8	1.4
Sr	2.1	0.9	1.1	1.1	0.2	1.1	4.0	1.7	3.6	23.5	6.8	24.7	1.6	0.4	0.2	0.9	0.8	0.6
U	6.4	0.8	2.1	10.4	5.3	13.1							1.4	11.7	8.3			
Rb	3.4	0.6	0.6	0.4	1.0	1.2	13.3	12.6	5.2	24.5	15.8	8.2	2.1	1.4	0.6	0.9	0.6	1.1
Th				7.8	6.0	1.2	7.5	7.7	6.5				8.1	4.6	3.5	8.4	10.9	4.5
Pb	0.3	0.2	0.6	9.3	2.0	1.2	21.9	5.6	8.6				13.7	12.9	2.3	1.0	0.9	0.2
Se	16.7	5.2	2.4				2.3	3.6	4.9	13.8	8.1	5.9				6.6	3.2	9.5
As	27.0	14.3	4.3	23.3	4.4	15.2	2.9	27.9	18.5	3.5	3.1	1.1	5.3	5.8	3.4	11.2	1.6	22.7
Zn	0.8	0.6	0.5	10.3	8.6	14.9	2.0	1.8	0.4				10.5	2.8	8.0	0.6	0.8	0.2
w				14.8	30.5	9.7												İ
Cu	0.5	0.3	0.9	17.3	16.3	14.7	1.7	0.9	2.4	9.8	15.8	8.0	22.6	11.5	17.3	1.4	1.3	0.1
Ni	9.3	4.9	9.5				9.0	10.8	4.7	1.8	1.0	0.5				4.2	6.8	3.9
Со	7.5	16.8	34.2										15.3	14.1	12.1			
Fe	0.5	0.3	0.6	0.2	0.1	0.7	0.7	0.4	0.2	0.4	0.7	0.5	0.2	0.1	0.3	0.5	0.4	0.3
Mn	0.7	1.8	1.8				0.9	0.6	2.5				0.3	0.5	3.0	4.7	3.6	0.1
Cr	8.3	10.5	5.5	3.9	4.1	2.1							5.6	7.6	4.4	2.3	0.3	1.0
v	4.5	3.6	1.6	0.7	6.2	3.4	7.4	25.4	11.4				7.4	5.8	7.6	11.6	23.4	5.3
Ti	2.0	1.5	1.8	0.2	0.3	0.4	3.2	2.3	1.3	11.8	4.7	3.8	2.1	0.2	0.6	0.7	0.7	0.5
Sc	25.9	28.9	16.2													8.3	7.4	2.9
Ca	0.6	0.2	0.2	1.0	2.7	1.8	0.5	1.2	0.1	8.0	3.5	1.9	0.3	1.1	0.4	0.5	0.1	0.1
К	0.5	0.6	0.2	1.3	0.2	0.5	4.0	3.6	3.8	15.8	10.3	18.2	1.5	0.9	0.8	0.1	0.1	0.4
S	4.5	3.1	1.6				1.9	1.4	0.5	0.4	0.6	1.5	2.9	8.5	3.8	1.1	1.9	0.9
Ва							18.8	18.0	8.1	1.8	5.8	2.1				3.2	0.9	0.4
Cs							29.4	22.1	10.2	6.7	11.7	3.8				6.8	15.1	9.5
Те							16.6	31.5	16.8	2.3	6.7	6.8				27.0	12.1	16.1
Sb							19.9	16.3	10.9	1.1	10.0	5.1				1.4	1.2	2.1
Sn							6.6	6.3	4.2	2.1	7.3	4.1				1.7	0.4	1.3
Cd	28.6	6.8	13.5				25.8	16.4	7.2	28.0	34.9	14.7				4.7	2.5	0.3
Ag							19.7	6.3	12.8	22.2	10.7	1.5				5.4	2.6	11.2
Pd										17.4	24.0	7.1						

Anexo 2. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo suelo – Parte 6/6.

Flomento		Siem1			Siem2			Siem3			Siem4			Siem5	
Liemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Zr				2.5	0.0	2.5				0.0	0.0	0.9	3.1	3.1	3.1
Sr				2.3	0.0	2.3				0.0	0.6	0.6	0.0	4.3	0.0
Rb	0.0	2.4	2.4							0.0	0.0	0.0	0.0	0.0	0.0
Pb															
As	21.7	21.7	0.0										0.0	21.7	0.0
Zn	0.0	0.0	24.7	6.0	6.0	5.6	24.7	24.7	0.0	4.0	3.9	0.0	13.3	0.0	13.3
w	0.8	1.0	2.6	0.0	6.9	3.9	28.3	23.6	20.0	24.7	14.3	24.1	6.7	5.1	3.3
Fe	0.3	0.5	0.1	0.4	0.2	0.2	0.5	0.3	0.4	0.2	0.2	0.4	0.5	0.2	0.2
Mn				5.2	13.9	3.6	1.6	4.1	2.5	1.5	2.4	1.1	22.4	19.5	4.6
Cr				8.4	7.9	6.7	2.1	0.7	0.6	12.4	7.9	13.9	10.2	4.7	4.9
v	12.4	13.3	31.5	6.3	9.4	3.1	20.0	12.4	16.7	4.5	4.8	2.5	6.9	3.3	6.2
Ti	0.0	1.7	2.1	1.1	1.1	0.4				0.3	2.4	1.1	1.3	0.5	1.5
Са	1.6	1.0	0.2	4.7	0.2	0.1	11.9	8.8	5.0	1.1	0.1	0.4	2.6	2.6	0.5
к	0.4	0.2	0.7	4.0	0.3	0.1				0.1	0.3	0.5	0.7	0.3	0.5
S				1.0	2.6	1.6				0.5	0.4	1.2	2.0	1.8	1.4
Ва	9.1	8.7	12.5	4.3	10.7	7.7				7.2	0.0	3.8			
Nb	17.3	15.7	17.3							0.0	0.0	1.4			
Bi	24.7	21.7	21.7							17.3	15.7	0.0			
Al	3.7	0.4	1.6	2.1	1.6	1.2	6.1	4.8	4.3	2.8	1.9	2.0	0.8	1.2	0.6
Р	19.3	47.0	33.1	12.7	18.4	3.7	15.7	16.4	10.1	9.9	13.0	5.2	4.3	6.3	1.5
Si	0.6	0.3	0.8	0.2	0.3	0.4	0.2	0.3	0.6	0.3	0.5	0.6	0.5	0.1	0.4
Cl							1.4	1.4	2.6	1.2	2.6	1.0			
Mg				26.8	11.6	7.1	0.4	0.9	0.7				9.3	5.8	2.4

Anexo 3. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo mina – Parte 1/6.

Flomonto		Siem6			Siem7			Siem8			Siem9			IGLa-1	
Liemento	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s	30 s	45 s	60 s
Zr	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	1.4	2.8	0.0	2.7	0.0	0.0	0.0
Sr	0.0	4.6	4.7	0.0	0.0	0.0	0.4	0.4	0.4	0.0	0.0	0.0	1.1	0.0	1.1
Rb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.7	24.7	24.7
Pb										17.3	0.0	0.0			
As	24.7	21.7	0.0							0.0	0.0	17.3			
Zn	10.2	0.0	10.2	24.7	0.0	21.7	14.4	4.7	4.6	5.6	0.0	0.0	7.9	0.0	0.0
w	27.0	18.4	5.6	2.7	2.4	2.8				16.5	12.4	12.4			
Fe	0.2	0.4	0.2	0.3	0.1	0.4	0.5	0.1	0.2	0.4	0.2	0.3	0.7	0.3	0.2
Mn	4.7	2.0	2.0				3.5	3.1	1.4	2.6	4.8	2.3	5.2	3.1	2.9
Cr	6.3	0.0	3.2	16.7	13.3	13.3	8.7	6.3	8.6	7.9	2.9	2.8	5.1	5.6	10.2
v	4.5	6.2	6.3	10.0	4.9	8.3	6.0	7.9	2.6	8.2	2.0	2.0	0.0	5.9	12.7
Ti	2.7	0.8	0.8	0.5	1.1	1.2	1.0	0.2	0.4	1.1	0.3	0.8	0.4	0.7	0.6
Са	2.1	0.7	0.2	0.3	0.3	0.3	0.2	0.1	0.2	0.2	1.1	0.8	0.2	0.3	0.6
к	3.6	1.8	1.4	0.4	0.3	0.7	0.9	0.2	0.5	0.7	0.2	0.7	0.8	0.7	0.5
S	3.1	2.2	1.5	1.2	0.7	0.8	1.5	1.6	2.1	1.2	0.8	0.2			
Ва				11.5	14.3	11.5	2.6	1.9	0.7	13.9	8.2	2.9	4.9	1.8	2.8
Nb							2.0	0.0	2.0	0.0	0.0	0.0	24.7	21.7	21.7
Bi															
AI	3.7	1.1	2.0	1.3	1.5	1.3	2.9	2.6	1.4	1.0	1.7	1.5	1.8	1.7	2.4
Р	7.7	20.2	12.2	8.6	2.4	2.6	1.3	0.5	0.7	14.3	5.2	6.0	3.7	2.4	1.1
Si	1.2	0.2	0.4	0.6	0.3	0.3	0.7	0.5	0.4	0.3	0.3	0.4	0.2	0.2	0.3
Cl															
Mg	3.9	4.9	21.0	28.0	35.7	5.8	6.9	12.2	6.3	14.3	10.8	21.5			

Anexo 3. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo mina – Parte 2/6.

Anexos

Flomonto		IGLc-1			IGLd-1			IGLsy1			IGLsy2			IGLgb3			IGLsy4	
Liemento	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0
Zr							1.1	0.0	0.0	0.8	0.0	0.8	3.8	3.8	0.0	2.7	0.0	2.7
Sr	1.9	1.9	0.0	0.0	0.0	0.0	0.6	0.4	0.4	0.6	0.6	0.6	0.4	0.4	0.4	0.0	0.4	0.8
Rb							0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pb																		
As													0.0	0.0	0.0			
Zn							9.1	0.0	5.1	11.1	0.0	0.0	5.1	5.1	4.9	15.7	0.0	0.0
w										22.3	20.8	24.1						
Fe							0.5	0.3	0.2	0.5	0.1	0.2	0.1	0.3	0.4	0.5	0.4	0.5
Mn							2.0	3.5	3.7	2.2	1.2	3.4	3.6	1.4	3.5	2.1	3.3	1.5
Cr	20.8	17.3	5.6	33.3	28.9	5.6	10.2	5.4	7.9	6.2	28.6	9.1	30.8	12.5	5.9	24.8	5.1	7.1
v										11.2	4.3	12.4	3.7	7.2	0.8			
Ti							1.0	1.2	2.8	0.8	0.4	1.6	0.7	0.6	0.2	0.3	0.5	0.3
Ca	0.1	0.1	0.4	0.3	0.3	0.4	0.9	0.2	0.4	0.9	0.6	0.6	0.1	0.5	0.2	0.3	1.1	0.6
к							0.5	0.4	0.5	0.4	0.4	0.1	1.4	0.8	0.5	0.6	1.0	0.5
S	13.0	10.7	4.2	5.1	2.7	4.2	8.0	8.7	5.3	8.8	5.9	6.2	0.5	1.1	0.5	4.4	16.7	3.6
Ва							1.2	1.2	1.8	2.1	0.6	1.2	5.2	4.1	2.6	0.6	0.7	0.5
Nb							1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bi							0.0	10.8	10.2	0.0	15.7	0.0						
AI	20.2	15.3	5.7	2.7	7.5	5.7	1.6	3.8	1.6	2.5	0.9	0.7	1.8	2.3	2.4	3.6	2.9	2.3
Р							11.3	7.4	11.4	13.9	12.2	16.7	0.8	1.9	1.7	1.7	4.1	3.3
Si	11.8	0.8	2.4	1.2	0.7	2.4	0.5	0.2	0.5	0.2	0.1	0.2	0.5	0.1	0.1	0.2	0.2	0.3
Cl							0.5	1.7	0.7	1.3	0.5	0.6						
Mg	11.1	30.8	4.3	6.5	30.8	4.5	43.9	7.6	26.9	25.0	20.8	6.6	3.6	8.3	18.9	33.8	25.7	15.9

Anexo 3. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo mina – Parte 3/6.

Flomento		Q\$1			SDAR-1			SDARH1			SDARM2			SDARL2	
Elemento	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0
Мо							0.0	27.7	0.0						
Zr	3.0	3.0	0.0	1.1	1.1	1.1	1.8	3.8	1.8	1.7	1.7	1.7	0.0	0.0	0.0
Sr	0.0	0.0	0.0	0.0	0.0	0.0	3.3	3.5	0.0	4.0	3.9	4.0	0.0	0.0	0.0
Rb	5.4	5.4	5.4	4.7	0.0	0.0	0.0	4.9	4.7	4.6	0.0	0.0	0.0	0.0	0.0
Pb				0.7	0.9	0.4	0.6	5.1	0.4	0.5	0.9	1.5	2.3	2.3	2.2
As	0.0	0.0	0.0	20.0	20.0	10.8	3.1	6.6	2.1	3.8	10.4	8.4	17.3	25.0	15.7
Hg															
Zn	7.5	0.0	0.0	1.8	0.5	0.5	0.4	2.7	0.3	1.0	0.6	1.1	0.0	2.3	2.3
w													12.9	0.0	15.7
Cu				1.5	0.0	2.9	0.4	6.2	1.1	3.2	0.0	1.9	25.0	13.3	13.3
Fe	0.2	0.4	0.3	0.3	0.3	0.3	0.5	0.4	0.2	0.6	0.2	0.4	0.2	0.0	0.4
Mn	6.1	2.6	5.3	2.4	1.1	0.9	2.9	1.1	1.0	7.8	4.5	1.2	4.1	3.6	2.1
Cr	0.0	10.5	13.3	15.1	3.7	6.7	6.4	42.3	4.7	11.1	13.3	18.3	19.9	28.6	24.7
v	8.2	2.8	0.0	6.9	11.5	12.4	12.5	29.5	4.2	6.9	12.5	8.7	24.7	4.7	13.3
Ti	0.8	0.3	0.9	1.7	0.7	0.5	1.4	45.2	1.1	1.0	0.6	0.5	0.4	0.9	0.5
Ca	0.6	0.4	2.1	1.0	0.8	0.9	2.4	44.6	3.6	0.3	1.1	0.7	2.1	1.1	1.5
к	0.4	0.1	1.3	0.3	0.8	0.2	1.9	39.3	1.8	0.4	0.3	0.2	0.8	0.7	0.3
S	4.6	14.1	16.4	3.9	4.6	1.7	1.0	38.6	1.4	0.7	2.3	1.0	5.2	4.9	4.9
Ва	11.1	27.2	6.7	6.3	12.0	5.6	17.5	55.1	9.2	2.1	4.9	2.6	6.3	0.0	3.5
Sb							2.3	48.7	2.4	18.2	10.8	10.2			
Cd				0.0	0.0	0.0	0.0	43.3	21.7	0.0	0.0	0.0	0.0	0.0	0.0
Ag							10.2	43.3	10.8	0.0	0.0	0.0			
Nb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	43.3	0.0	0.0	0.0	0.0	0.0	0.0	6.7
Bi															
AI	1.6	1.2	1.4	1.7	2.9	1.8	4.0	49.4	1.6	1.1	0.4	1.0	2.3	3.7	1.2
Р	14.8	4.5	8.9	13.4	23.3	11.8	2.5	38.5	8.0	6.1	3.0	0.8	8.1	12.6	15.8
Si	0.3	0.3	0.6	0.6	0.4	0.3	0.2	23.2	0.1	0.1	0.1	0.2	0.3	0.4	0.4
Mg	14.2	3.8	5.0	37.9	43.3	19.2	48.0	58.7	4.4	25.6	30.2	8.4	48.1	18.9	34.8

Anexo 3. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo mina – Parte 4/6.

Flomento		IGLs-1			2709a			2710a			2711a			LOESS-1	
Elemento	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0
Мо															
Zr	0.8	0.8	0.8	0.0	3.5	0.0	2.1	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0
Sr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	4.9	0.0	0.0	0.0	2.2	2.2	0.0
Rb	0.0	0.0	0.0	0.0	8.7	8.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pb							0.4	0.4	0.8	0.6	0.6	0.8			
As	24.7	0.0	0.0	15.7	15.7	17.3	1.0	0.7	0.4	2.7	5.2	2.7			
Hg															
Zn	5.4	10.0	5.6	6.0	6.0	0.0	1.1	0.9	0.1	2.0	1.1	0.0	0.0	21.7	21.7
w							22.4	9.4	0.0	7.4	17.7	17.3			
Cu	15.7	13.3	12.4				1.1	1.4	0.4	6.3	3.5	3.7			
Fe	0.4	0.3	0.4	0.3	0.3	0.1	0.7	0.2	0.0	0.7	0.2	0.2	0.2	0.4	0.2
Mn	1.9	1.7	0.9	11.5	8.8	7.7	2.7	1.3	0.0	5.7	4.0	1.1	3.8	6.0	7.2
Cr	2.8	4.3	3.7	5.3	2.8	5.0	11.1	13.9	0.0	5.4	0.0	5.1	4.3	4.6	4.6
v	10.6	10.6	3.4	14.7	8.3	3.5	10.7	0.0	0.0	7.9	10.0	6.5	29.8	23.6	18.2
Ti	0.4	0.7	0.7	1.5	0.6	0.7	0.2	0.3	0.0	0.4	0.3	0.8	0.6	1.5	1.8
Ca	3.0	0.8	1.1	3.0	2.0	0.6	1.6	0.2	0.0	0.3	0.6	0.5	0.1	0.5	0.3
к	3.7	1.7	2.9	1.2	1.5	0.9	0.7	0.3	0.0	0.2	0.1	0.4	1.1	1.5	0.5
S	8.3	4.1	5.6	2.0	1.3	2.0	1.5	0.3	0.0	2.4	3.5	0.5	6.6	8.9	10.6
Ва	21.7	6.0	6.9	11.1	11.8	5.6	9.9	2.2	0.0	4.2	9.8	6.9			
Sb							43.3	21.7	0.0	0.0	0.0	0.0			
Cd				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Ag							17.3	0.0	0.0						
Nb	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0			
Bi							17.3	7.5	0.0						
AI	1.4	1.5	2.4	3.4	0.3	1.4	2.8	0.9	0.0	1.5	1.7	0.9	1.8	2.2	1.4
Р	9.8	8.4	2.9	2.2	3.3	2.0	2.0	0.0	3.4	6.5	5.1	5.9	11.4	17.1	12.3
Si	0.4	0.4	0.6	0.3	0.2	0.4	0.2	0.0	0.4	0.1	0.1	0.1	0.5	0.4	0.2
Mg	20.1	6.8	22.3	7.9	7.8	18.0	24.2	0.0	11.4	21.7	7.4	23.5	12.9	7.2	5.8

Anexo 3. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo mina – Parte 5/6.

Flomento		Siem10			DBC-1			RTS-3			RTS-4			EVO1			SKO1	
Elemento	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0	30.0	45.0	60.0
Мо	0.0	0.0	0.0							0.0						0.0	0.0	0.0
Zr	0.0	4.3	4.3	0.0	0.0	2.4	0.0	0.0	0.0				1.1	1.1	1.1	4.0	3.9	3.9
Sr	3.0	0.0	3.0	4.0	0.0	0.0	0.0	0.0	0.0				1.4	1.3	0.0	0.0	0.0	0.0
Rb	0.0	0.0	0.0	0.0	0.0	0.0							0.0	0.0	0.0	0.0	0.0	0.0
Pb	0.8	0.4	0.2	0.0	7.5	7.5	4.9	8.3	7.7				0.0	10.8	10.8	0.4	0.3	0.5
As	28.9	20.8	24.7	21.7	21.7	24.7	12.4	24.7	20.0	4.9	3.6	2.8	8.7	8.7	8.7			
Zn	0.5	0.3	0.3				1.5	0.6	0.8	3.7	5.6	5.9	0.0	6.9	6.9	0.7	0.2	0.5
w				5.1	6.0	17.3												
Cu	0.7	0.3	0.9				1.6	0.2	1.2	8.4	9.6	5.4	13.3	0.0	0.0	0.5	1.7	1.5
Fe	0.5	0.2	0.4	0.3	1.0	0.5	0.0	0.2	0.1	0.2	0.3	0.4	0.3	0.2	0.4	0.4	0.9	0.5
Mn	1.0	0.8	0.6				1.4	1.0	0.7				5.0	4.1	1.6	4.6	2.6	0.4
Cr	8.1	4.0	7.1	5.2	2.8	2.8	5.0	9.7	3.8	9.9	3.7	4.2	6.5	6.5	3.3	1.2	5.4	0.0
v	2.4	2.5	1.6	3.3	8.3	3.1	6.5	8.3	18.1	2.3	13.4	12.6	0.0	8.2	2.5	6.1	14.1	5.7
Ti	2.9	4.9	1.9	0.5	0.7	0.2	1.7	0.2	1.7	10.8	12.9	7.9	1.4	1.1	0.9	0.6	2.7	0.1
Ca	1.2	2.3	0.3	0.9	1.4	2.9	1.1	1.5	0.1	2.9	5.0	2.2	0.5	0.1	1.0	0.8	4.3	0.5
к	1.3	1.7	0.8	0.4	0.6	0.2	4.7	3.4	2.6	6.5	6.2	4.8	0.7	0.9	1.1	0.2	3.1	0.2
S	0.2	1.0	0.1	0.0	3.8	3.1	0.1	0.5	0.3	0.2	0.4	0.5	1.2	0.8	1.2	0.4	2.0	0.5
Ва							27.7	5.4	4.7	20.4	20.8	12.0	2.9	2.6	5.4	1.0	1.3	2.6
Sn							3.6	2.0	3.6	20.4	15.7	35.3				0.0	0.4	1.1
Cd	17.3	15.7	0.0	0.0	0.0	0.0										2.4	0.0	0.0
Ag							24.7	0.0	0.0	24.7	0.0	24.7				17.3	15.7	15.7
Nb				0.0	0.0	0.0							0.0	0.0	0.0	0.0	0.0	0.0
Bi				24.7	24.7	0.0	0.0	7.5	7.5				0.0	21.7	0.0	12.4	15.7	9.1
AI	1.7	2.8	1.9	2.8	1.6	1.2	4.2	2.5	2.4	12.9	12.8	5.8	1.8	1.1	1.9	7.9	7.4	3.2
Р				14.6	7.7	8.7	20.9	8.7	10.4	7.9		15.2	8.4	3.2	7.5	2.0	2.7	2.2
Si	0.3	1.0	0.4	0.5	0.2	0.3	0.6	0.3	0.3	2.8	1.3	1.6	0.6	0.3	0.3	1.8	0.6	0.4
CI	8.7	11.2	0.0				4.0	7.5	3.3	4.7	0.7	3.4				0.8	1.6	0.2
Mg	10.7	10.1	7.6	51.0	13.1	20.2	24.3	17.2	11.8				40.2	29.7	30.1			

Anexo 3. Coeficientes de variación porcentual obtenidos para los materiales de trabajo para los 3 tiempos de análisis, modo mina – Parte 6/6.

Ectándor	#STD		As			Са			Th			Cr			Rb	
Estanuar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Ro	cas y Miner	ales							
Siem1	1	9.71			5837.05	7017.50	-16.82	24.23	20.00	21.17		6.50		288.37	276.00	4.48
Siem2	2				13228.74	14965.89	-11.61	10.13	11.00	-7.91	78.76	67.00	17.55	110.07	112.00	-1.72
Siem3	3				654.94	358.04	82.92		1.00		2410.86	2180.00	10.59		1.00	
Siem4	4				12772.86	17400.00	-26.59	32.83	30.00	9.43		11.40		138.19	130.00	6.30
Siem5	5	8.89			4566.98	5012.50	-8.89	6.16	8.00	-23.00	47.40	52.00	-8.85	70.90	66.00	7.42
Siem6	6	8.78			69657.41	80200.00	-13.15		2.00		366.53	360.00	1.81	36.76	39.00	-5.74
Siem7	7				15900.10	18975.89	-16.21	5.13	6.00	-14.56		14.00		80.88	82.00	-1.37
Siem8	8	4.97			88524.70	99500.00	-11.03	21.56	20.00	7.80		27.00		91.85	94.00	-2.28
Siem9	9	14.70			7230.39	8091.61	-10.64	11.06	10.00	10.57	116.60	46.00	153.48	140.44	145.00	-3.14
IGLa-1	10		1.73		32161.69	36842.66	-12.71	4.34	2.97	46.02		29.21		30.36	32.77	-7.34
IGLc-1	11		0.00		564974.85	396757.28	42.40					0.00			0.19	
IGLd-1	12		0.00		350387.04	242977.36	44.21					9.99			0.19	
IGLsy1	13		3.93		14252.88	18206.12	-21.71	41.89	38.04	10.12		1.54		217.51	215.31	1.02
IGLsy2	14		4.43		13822.54	16749.70	-17.48	31.32	27.34	14.57		2.60		139.11	140.13	-0.73
IGLgb3	15	6.37	4.52	40.93	82413.32	91968.13	-10.39		2.04			4.68		23.14	22.76	1.67
IGLsy4	16		4.63		25840.21	31777.03	-18.68	7.97	7.71	3.37	76.11	2.19	3375.34	57.33	59.08	-2.97
		1		1	1	1	Sue	los y Sedime	entos	1	1		1	1	1	
QS1	1	5.01	6.85	-26.91	51271.25			10.49	11.03	-4.93	69.95	70.53	-0.82	130.55	135.50	-3.65
SDAR-1	2	47.08	36.43	29.24	5002.05	5719.98	-12.55	22.53	17.97	25.38	125.50	92.67	35.42	149.67	142.80	4.81
SDAR H1	3	598.61			9180.89	10500.00	-12.56	25.08	17.74	41.38	221.35			159.93	152.30	5.01
SDAR M2	4	94.59	75.82	24.75	5317.93	5940.00	-10.47	20.02	14.23	40.67	57.88	70.00	-17.31	154.85	147.00	5.34
SDAR L2	5	21.83			6524.30	7650.00	-14.72	24.06	20.80	15.69	45.94	27.00	70.16	125.88	115.10	9.37
IGLs-1	6	7.45			2910.05	2892.00	0.62	10.54	15.26	-30.93	286.08	215.08	33.01	67.27	75.22	-10.57
2709a	7	11.37	17.70	-35.76	16953.27	18900.00	-10.30	9.22	11.00	-16.15	133.78	130.00	2.91	78.80	96.00	-17.91
2710a	8	1840.10	626.00	193.95	8035.40	12500.00	-35.72	114.52	13.00	780.92	27.12	39.00	-30.46	116.92	120.00	-2.57
2711a	9	161.81	105.00	54.10	22182.20	28800.00	-22.98	29.65	14.00	111.79	46.03	47.00	-2.06	121.09	110.00	10.08
LOESS-1	10	3.94	6.70	-41.27	132369.02	116791.25	13.34	7.58	8.11	-6.51	81.15	105.70	-23.22	48.77	51.20	-4.74
		1	-		1	r	1	Varios	T		r			1	r	
Siem10	1	90.65			160799.85	157500.00	2.10	32.91	7.00	370.14	93.24	92.00	1.35	88.34	92.00	-3.98
dbc-1	2	12.75	9.00	41.63	1643.25	1403.50	17.08	24.83	18.33	35.46	185.12	105.30	75.80	210.91	194.00	8.72
rts-3	3	26.63	9.10	192.64	19791.59	22000.00	-10.04	53.05				75.00		13.64		
rts-4	4	289.73	207.00	39.97	2442.85	3270.00	-25.30					100.00		7.31		
EVO1	5	34.41	33.80	1.79	16817.15	17185.70	-2.14	26.01	24.10	7.94	108.63	70.50	54.09	75.56	74.70	1.15
SKO1	6	121.68	55.70	118.46	107508.31	158466.60	-32.16	70.70	5.08	1291.67	332.39	430.00	-22.70	245.70	122.00	101.40

Anexo 4. Análisis de los estándares en forma de polvo, modo suelo – Parte 1/4.

Faténdan	#670		Pb			Zr			Zn			Со			Sr	
Estandar	#SID	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Ro	cas y Minera	les							
Siem1	1		26.00		229.21	229.00	0.09	16.89	32.00	-47.23	40.57	62.00	-34.56	46.93	49.00	-4.23
Siem2	2		24.00		185.70	186.00	-0.16	72.48	91.00	-20.35	44.78	29.00	54.40	241.14	258.00	-6.54
Siem3	3		1.00			13.00		10.38	40.00	-74.05	158.63	118.00	34.44	3.95	7.00	-43.57
Siem4	4		15.00		528.57	505.00	4.67	118.95	131.00	-9.20	45.04	8.00	462.94	901.27	923.00	-2.35
Siem5	5		8.00		142.48	150.00	-5.02	26.18	50.00	-47.64		27.00		126.22	127.00	-0.62
Siem6	6		7.00		44.60	51.00	-12.55	27.61	56.00	-50.69		39.00		125.44	135.00	-7.08
Siem7	7		7.00		134.90	135.00	-0.07	21.57	37.00	-41.69	24.11	31.00	-22.23	410.99	430.00	-4.42
Siem8	8		12.00		341.93	318.00	7.53	77.55	112.00	-30.76		36.00		1545.26	1650.00	-6.35
Siem9	9		36.00		165.77	176.00	-5.81	127.99	152.00	-15.80		20.00		79.54	86.00	-7.51
IGLa-1	10		10.24		245.30	241.93	1.39	47.47	78.75	-39.72	63.95	11.29	466.39	527.05	574.75	-8.30
IGLc-1	11		2.86									1.78		302.40	331.30	-8.72
IGLd-1	12		0.49			2.56			0.85			1.87		158.05	167.27	-5.51
IGLsy1	13		19.29		406.92	398.71	2.06	92.85	115.67	-19.73		3.19		1537.36	1573.81	-2.32
IGLsy2	14		12.82		554.84	514.76	7.79	74.24	92.84	-20.04		4.52		930.02	965.23	-3.65
IGLgb3	15		5.85		126.75	124.93	1.45	50.65	109.20	-53.62	132.23	53.30	148.08	1328.31	1428.38	-7.01
IGLsy4	16		7.71		173.98	179.19	-2.91	51.38	70.04	-26.65	62.51	6.46	867.60	1302.78	1369.21	-4.85
					-		Suel	os y Sedime	ntos							
QS1	1		9.32		155.97	159.30	-2.09	46.05	75.00	-38.60	55.41	16.00	246.28	103.83	113.00	-8.12
SDAR-1	2	1071.37	979.30	9.40	419.73	352.80	18.97	909.60	932.10	-2.41		10.71		147.43	151.50	-2.68
SDAR H1	3	4558.90	3893.00	17.11	256.48	157.90	62.43	4058.80	3684.00	10.17	54.05	55.59	-2.77	177.91	182.20	-2.35
SDAR M2	4	882.77	821.00	7.52	260.52	242.00	7.65	758.61	760.00	-0.18	31.70	12.40	155.65	142.33	146.00	-2.51
SDAR L2	5	172.32	140.10	23.00	597.59	592.00	0.94	195.74	218.00	-10.21	32.70	4.80	581.25	146.35	142.60	2.63
IGLs-1	6		26.87		599.33	578.79	3.55	39.56	102.15	-61.28		46.01		37.79	42.78	-11.67
2709a	7		18.90		125.44	160.00	-21.60	66.45	106.00	-37.31	45.63	13.40	240.49	178.00	231.00	-22.95
2710a	8	5923.43	5532.00	7.08	215.54			4355.34	6952.00	-37.35		10.00		242.95	330.00	-26.38
2711a	9	1572.19	1162.00	35.30	311.07	230.00	35.25	397.30	350.40	13.38		10.00		224.74	245.30	-8.38
LOESS-1	10		11.34		323.64			21.93	34.40	-36.25		5.95		253.29	278.50	-9.05
		1	1	T	r	1	1	Varios	-	1			T	1	1	
Siem10	1	2717.23	2600.00	4.51	97.00	131.00	-25.96	10005.05	15800.00	-36.68	51.35	98.00	-47.61	195.59	203.00	-3.65
dbc-1	2	27.67	53.50	-48.27	179.37	183.40	-2.20	18.14	21.00	-13.60		2.06		135.69	134.10	1.19
rts-3	3	84.95	146.00	-41.82	58.04	66.00	-12.07	1598.50	1850.00	-13.59		260.00		38.48	40.00	-3.80
rts-4	4		60.00			10.00			158.00			186.00		12.50	12.00	4.19
EVO1	5	22.45	54.10	-58.50	421.70	447.00	-5.66	54.35	87.20	-37.68	67.52	21.60	212.59	416.68	440.00	-5.30
SKO1	6	8706.18	8199.00	6.19	111.61	137.00	-18.54	17265.58	17033.00	1.37	53.08	22.00	141.27	296.70	312.00	-4.90

Anexo 4. Análisis de los estándares en forma de polvo, modo suelo – Parte 2/4.

Faténdar	#CTD		Fe			К			Cu			Mn			Мо	
Estandar	#SID	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Roo	as y Minera	les							
Siem1	1	9584.22	13705.26	-30.07	39947.09	43001.70	-7.10		4.90		112.65	309.73	-63.63	4.51		
Siem2	2	30591.50	38318.80	-20.17	21041.20	22414.01	-6.12	15.14	23.00	-34.17	336.84	542.03	-37.86	4.48		
Siem3	3	43099.13	51744.36	-16.71	266.86	415.07	-35.71		2.00		653.63	774.33	-15.59			
Siem4	4	19494.19	25242.86	-22.77	68829.40	72300.00	-4.80		7.20		1334.93	1858.39	-28.17	6.55		
Siem5	5	28367.70	33354.14	-14.95	15670.06	15524.00	0.94		3.00		4667.59	400.00	1066.90	4.53		
Siem6	6	46938.47	55939.85	-16.09	6764.63	6724.20	0.60	64.67	83.00	-22.09	960.79	1238.93	-22.45	3.00		
Siem7	7	13530.73	19300.00	-29.89	18619.10	19900.00	-6.44	783.24	756.00	3.60	69.86	232.00	-69.89	14.88		
Siem8	8	64163.08	74100.00	-13.41	35965.87	31400.00	14.54	60.81	81.00	-24.92	1989.11	2300.00	-13.52	4.79		
Siem9	9	41752.89	49087.22	-14.94	27756.46	27809.98	-0.19	15.18	20.00	-24.10	453.91	700.00	-35.16			
IGLa-1	10	29436.42	41464.57	-29.01	17404.83	18049.76	-3.57		15.49		631.54	822.11	-23.18	3.78	2.54	48.82
IGLc-1	11	210.96	204.39	3.21		73.05			3.52			76.04		3.48	0.28	1142.86
IGLd-1	12	179.12	170.20	5.24		60.85			2.66			38.95		2.66	0.54	392.59
IGLsy1	13	21786.01	28881.39	-24.57	46154.75	48770.32	-5.36	14.36	13.72	4.66	1077.27	1443.35	-25.36	6.77	4.76	42.23
IGLsy2	14	19191.51	26684.71	-28.08	42561.04	45195.45	-5.83		7.49		1291.36	1794.43	-28.04	5.66	6.98	-18.91
IGLgb3	15	103749.35	106662.96	-2.73	10237.87	8757.24	16.91	41.42	50.36	-17.75	1299.75	1315.90	-1.23	5.16	1.46	253.65
IGLsy4	16	29433.94	37997.28	-22.54	25084.44	25494.94	-1.61	16.98	12.82	32.45	1210.65	1225.30	-1.20	5.47	1.72	218.02
							Suel	os y Sedimer	ntos							
QS1	1	37706.15			39471.02				11.40		580.34			3.69	1.10	236.99
SDAR-1	2	26915.36	32368.89	-16.85	30030.04	30155.15	-0.41	283.16	302.00	-6.24	4667.59	5400.95	-13.58	16.08	12.60	27.59
SDAR H1	3	46988.65	45000.00	4.42	33898.66	34600.00	-2.03	1230.95	1159.00	6.21	4276.94	3990.00	7.19	57.07	64.00	-10.83
SDAR M2	4	13904.99	18500.00	-24.84	39674.77	41500.00	-4.40	215.05	236.00	-8.88	753.21	1090.00	-30.90	16.45	13.34	23.31
SDAR L2	5	19739.47	25800.00	-23.49	33140.89	34250.00	-3.24	46.94	46.40	1.17	534.09	790.00	-32.39	7.00	4.00	74.92
IGLs-1	6	96595.63	90985.47	6.17	4817.46	4984.38	-3.35	32.96	56.22	-41.38	2370.62	2198.01	7.85		3.02	
2709a	7	25904.58	35000.00	-25.99	18619.70	20300.00	-8.28	15.60	34.60	-54.91	312.34	538.00	-41.94	4.88	2.00	144.00
2710a	8	44019.49	33800.00	30.24	21324.27	21100.00	1.06	3416.70	2950.00	15.82	2037.89	10100.00	-79.82	6.56	19.00	-65.46
2711a	9	24453.12	28900.00	-15.39	24530.01	24500.00	0.12	122.63	114.00	7.57	511.38	638.00	-19.85	4.79	1.60	199.38
LOESS-1	10	10882.10	14684.21	-25.89	12706.47	10791.93	17.74		11.31		295.01	498.67	-40.84	3.50	1.40	150.24
								Varios								
Siem10	1	15674.60	19700.00	-20.43	23360.52	17400.00	34.26	4687.92	5430.00	-13.67	2763.93	3300.00	-16.24	112.77		
dbc-1	2	5844.72	6553.35	-10.81	21745.39	21887.70	-0.65	17.90	21.35	-16.14				6.19	2.51	146.48
rts-3	3	296345.54	210400.00	40.85	3690.11	3500.00	5.43	2338.82	2820.00	-17.06	2861.53	2000.00	43.08			
rts-4	4	1198132.80	567000.00	111.31	647.39	400.00	61.85	125.66	280.00	-55.12	402.74	150.00	168.49			
EVO1	5	42266.32	47828.60	-11.63	15196.27	13946.50	8.96	39.20	50.80	-22.84	620.93	735.60	-15.59	12.16	8.30	46.47
SKO1	6	18020.90	22585.70	-20.21	55538.28	59189.60	-6.17	1010.29	993.00	1.74	1309.78	1502.20	-12.81	21.90	18.70	17.13

Anexo 4. Análisis de los estándares en forma de polvo, modo suelo – Parte 3/4.

Faténdan	#670		v			Ti			Ni			U			Sc	
Estandar	#SID	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Ro	cas y Minera	ales							
Siem1	1	24.40	14.00	74.31	1017.87	1318.90	-22.82		10.00		8.76			19.10		
Siem2	2	96.21	110.00	-12.53	3998.86	4316.40	-7.36		36.00		6.70			37.56		
Siem3	3	21.06	13.00	62.00	68.79	59.95	14.74	1324.54	2640.00	-49.83						
Siem4	4	121.35	131.00	-7.37	2190.79	2757.70	-20.56		12.00		11.13			33.62		
Siem5	5	106.21	213.00	-50.13	3379.75	3500.00	-3.44		29.00							
Siem6	6	190.35	227.00	-16.15	2511.97	2900.00	-13.38	34.49	118.00	-70.77				189.98		
Siem7	7	68.61	59.00	16.29	2087.27	2600.00	-19.72		10.00					43.59		
Siem8	8	325.21	338.00	-3.79	8717.24	12800.00	-31.90	60.10	25.00	140.41				198.10		
Siem9	9	180.20	171.00	5.38	5099.56	5215.64	-2.23		46.00		17.22			30.40		
IGLa-1	10	116.42	97.97	18.84	5189.22	6400.44	-18.92	23.89	8.38	185.02		0.99		108.99	12.19	794.07
IGLc-1	11				239.66	130.39	83.80		23.11			0.11				
IGLd-1	12		8.11		166.42	103.65	60.55		0.00			1.16		255.42		
IGLsy1	13	65.55	16.88	288.35	2186.42	2987.25	-26.81		3.00		14.01	6.18	126.70	37.48	0.39	9510.26
IGLsy2	14	103.05	42.65	141.61	4461.65	5842.06	-23.63		3.17		13.30	6.97	90.77	40.44	0.46	8691.30
IGLgb3	15	400.77	461.21	-13.11	19213.61	23186.72	-17.14	42.66	15.80	170.00		0.59		190.10	24.83	665.62
IGLsy4	16	93.52	48.44	93.05	7928.11	9881.01	-19.76	63.51	3.63	1649.59		2.09		65.83	1.71	3749.42
							Sue	los y Sedime	entos							
QS1	1	90.22	112.00	-19.45	4037.84				38.40		6.40	2.62	144.27	104.16	14.24	631.46
SDAR-1	2	85.36	68.27	25.04	3215.28	3764.86	-14.60		40.80		6.95	4.28	62.50	22.77	8.20	177.68
SDAR H1	3	68.48	73.15	-6.38	2899.39	3360.00	-13.71	106.68	230.00	-53.62	8.48	4.07	108.46	38.02	8.20	363.66
SDAR M2	4	41.12	28.00	46.85	1533.55	1850.00	-17.11		48.75					27.72		
SDAR L2	5	58.07	39.00	48.91	3105.92	3800.00	-18.27		12.60		6.73	3.00	124.33	20.83	5.50	278.73
IGLs-1	6	408.33	290.37	40.62	16170.94	15546.82	4.01		52.09		10.05	4.74	112.10			
2709a	7	114.19	112.00	1.96	3217.84	3420.00	-5.91		88.00		5.04	3.00	68.00	50.19	12.00	318.25
2710a	8	95.33	76.60	24.46	2987.86	2830.00	5.58		14.30		17.31	25.00	-30.75	31.17	8.70	258.28
2711a	9	98.66	81.60	20.90	2892.15	3060.00	-5.49		20.60		11.31	2.60	334.87	48.53	9.00	439.22
LOESS-1	10	37.35	37.56	-0.56	2136.63	2534.68	-15.70		42.71			2.70		101.00	5.93	1603.12
								Varios						-	-	
Siem10	1	377.84	450.00	-16.04	1932.66	2400.00	-19.47	64.25	143.00	-55.07	24.14			266.18		
dbc-1	2	211.48	137.50	53.81	7370.44	6731.78	9.49		24.00		26.20	6.18	323.67	12.09	17.30	-30.12
rts-3	3	103.46			2742.81	3200.00	-14.29	174.00	71.00	145.08				63.92		
rts-4	4	45.29			716.89	800.00	-10.39	4531.22	7940.00	-42.93				38.04		
EVO1	5	128.95	97.50	32.25	4943.70	4502.20	9.81		64.50		7.53			45.27		
SKO1	6	55.34	48.10	15.05	4960.29	9472.10	-47.63	118.61	68.70	72.65		2.84		224.85	4.24	5203.07

Anexo 4. Análisis de los estándares en forma de polvo, modo suelo – Parte 4/4.

Fatándar	#CTD		V			Mn			Са			Nb			Pb	
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Ro	ocas y Miner	ales							
Siem1	1	0.0053	0.0014	280.9524		0.0310		0.8410	0.7018	19.8432	0.0037	0.0018	103.7037	0.0020	0.0026	-23.0769
Siem2	2	0.0170	0.0110	54.5455	0.0257	0.0500	-48.6667	1.6497	1.5000	9.9778	0.0020	0.0011	81.8182	0.0020	0.0024	-16.6667
Siem3	3	0.0053	0.0013	310.2564	0.0620	0.0800	-22.5000	0.0883	0.0400	120.8333		0.0003			0.0001	
Siem4	4	0.0207	0.0131	57.7608	0.1760	0.1900	-7.3684	1.8750	1.7400	7.7586	0.0407	0.0320	27.0833		0.0015	
Siem5	5	0.0167	0.0213	-21.7527	0.0110	0.0400	-72.5000	0.6583	0.5000	31.6667	0.0020	0.0007	185.7143		0.0008	
Siem6	6	0.0310	0.0227	36.5639	0.1070	0.1200	-10.8333	8.5383	8.0200	6.4630		0.0005			0.0007	
Siem7	7	0.0107	0.0059	80.7910		0.0200		2.1180	1.9000	11.4737		0.0008			0.0007	
Siem8	8	0.0543	0.0338	60.7495	0.2173	0.2300	-5.5072	11.0417	9.9500	10.9715	0.0290	0.0222	30.6306		0.0012	
Siem9	9	0.0260	0.0171	52.0468	0.0420	0.0700	-40.0000	0.9530	0.8100	17.6543	0.0020	0.0012	66.6667	0.0030	0.0036	-16.6667
IGLa-1	10	0.0170	0.0098	73.5225	0.0680	0.0822	-17.2856	4.0597	3.6843	10.1893	0.0027	0.0019	40.6470		0.0010	
IGLc-1	11					0.0076		49.7760	39.6757	25.4571		0.0001			0.0003	
IGLd-1	12	0.0063	0.0008	680.6401		0.0039		29.0963	24.2977	19.7492		0.0001			0.0000	
IGLsy1	13	0.0093	0.0017	452.9226	0.1343	0.1443	-6.9296	1.9857	1.8206	9.0659	0.0333	0.0282	18.3838		0.0019	
IGLsy2	14	0.0117	0.0043	173.5444	0.1687	0.1794	-6.0056	1.8970	1.6750	13.2558	0.0250	0.0212	17.6692		0.0013	
IGLgb3	15	0.0727	0.0461	57.5566	0.1240	0.1316	-5.7677	9.7530	9.1968	6.0476	0.0050	0.0038	33.3333		0.0006	
IGLsy4	16	0.0187	0.0048	285.3346	0.1397	0.1225	13.9857	3.3203	3.1777	4.4885	0.0083	0.0066	26.4926		0.0008	
							Sue	los y Sedim	entos							
QS1	1	0.0240	0.0112	114.2857	0.0610			6.6410			0.0020	0.0014	38.2170		0.0009	
SDAR-1	2	0.0167	0.0068	144.1287	0.6240	0.5401	15.5352	0.7007	0.5720	22.4946	0.0050	0.0035	44.0922	0.1357	0.0979	38.5343
SDAR H1	3	0.0187	0.0073	155.1834	0.4750	0.3990	19.0476	1.2877	1.0500	22.6349	0.0030	0.0022	37.2998	0.5193	0.3893	33.4018
SDAR M2	4	0.0083	0.0025	231.3453	0.0957	0.1090	-12.2324	0.7830	0.5940	31.8182	0.0040	0.0026	52.6718	0.1137	0.0808	40.6766
SDAR L2	5	0.0127	0.0039	224.7863	0.0590	0.0790	-25.3165	0.9663	0.7650	26.3181	0.0080	0.0080	-0.2494	0.0250	0.0140	78.4440
IGLs-1	6	0.0447	0.0290	53.8267	0.2343	0.2198	6.6114	0.3680	0.2892	27.2477	0.0060	0.0050	20.0720		0.0027	
2709a	7	0.0180	0.0112	60.7143	0.0253	0.0538	-52.9120	2.0470	1.8900	8.3069					0.0019	
2710a	8	0.0147	0.0077	91.4708	0.2167	1.0100	-78.5479	1.0070	1.2500	-19.4400	0.0020			0.6807	0.5532	23.0417
2711a	9	0.0160	0.0082	96.0784	0.0527	0.0638	-17.4504	3.0573	2.8800	6.1574	0.0030			0.1987	0.1162	70.9696
LOESS-1	10	0.0070	0.0038	86.3685	0.0243	0.0499	-51.2034	14.8643	11.6791	27.2727	0.0020	0.0009	132.2880		0.0011	
								Varios			•					
Siem10	1	0.0627	0.0450	39.2593	0.3303	0.3300	0.1010	17.2520	15.7500	9.5365	0.0020	0.0007	185.7143	0.3273	0.2600	25.8974
dbc-1	2	0.0347	0.0138	152.1212				0.2640	0.1404	88.1012	0.0040	0.0026	55.0388	0.0070	0.0054	30.8411
rts-3	3	0.0243			0.2050	0.2000	2.5000	2.5793	2.2000	17.2424				0.0117	0.0146	-20.0913
rts-4	4	0.0207			0.0150	0.0150	0.0000	0.4730	0.3270	44.6483					0.0060	
EVO1	5	0.0193	0.0098	98.2906	0.0610	0.0736	-17.0745	1.9843	1.7186	15.4642	0.0060	0.0043	39.5349	0.0060	0.0054	10.9057
SKO1	6	0.0110	0.0048	128.6902	0.1380	0.1502	-8.1347	15.7747	15.8467	-0.4543	0.0020	0.0015	34.2282	0.9727	0.8199	18.6324

Anexo 5. Análisis de los estándares en forma de polvo, modo mina – Parte 1/4.

Fatándar	#CTD		К			Cu			Si			Ti			Zn	
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							R	ocas y Mine	rales							
Siem1	1	4.6527	4.3002	8.1973		0.0005		37.3770	34.6925	7.7379	0.1330	0.1319	0.8417	0.0020	0.0032	-37.5000
Siem2	2	2.2367	2.2400	-0.1488		0.0023		31.8733	30.7200	3.7543	0.4640	0.4300	7.9070	0.0097	0.0091	6.2271
Siem3	3	0.0260	0.0400	-35.0000		0.0002		17.6050	19.5000	-9.7179	0.0060	0.0060	0.0835	0.0030	0.0040	-25.0000
Siem4	4	7.7597	7.2300	7.3260		0.0007		25.1907	24.0300	4.8301	0.2880	0.2800	2.8571	0.0143	0.0131	9.4148
Siem5	5	1.8977	1.5500	22.4301		0.0003		35.3720	32.5900	8.5364	0.4047	0.3500	15.6190	0.0043	0.0050	-13.3333
Siem6	6	0.7340	0.6700	9.5522	0.0097	0.0083	16.4659	25.7553	24.7800	3.9360	0.3213	0.2900	10.8046	0.0057	0.0056	1.1905
Siem7	7	2.1217	1.9900	6.6164	0.1157	0.0756	52.9982	34.7927	32.0700	8.4898	0.2440	0.2600	-6.1538	0.0027	0.0037	-27.9279
Siem8	8	3.5753	3.1400	13.8641	0.0077	0.0081	-5.3498	18.3037	17.3000	5.8015	1.1793	1.2800	-7.8646	0.0110	0.0112	-1.7857
Siem9	9	3.0303	2.7800	9.0048	0.0023	0.0020	16.6667	29.1810	27.9100	4.5539	0.5743	0.5200	10.4487	0.0183	0.0152	20.6140
IGLa-1	10	1.8677	1.8050	3.4732		0.0015		30.8110	28.3054	8.8521	0.6067	0.6400	-5.2148	0.0070	0.0079	-11.1111
IGLc-1	11		0.0073			0.0004		0.7403	0.0489	1415.2321	0.0375	0.0130	187.5963			
IGLd-1	12		0.0061			0.0003		1.6100	0.7896	103.8993		0.0104			0.0001	
IGLsy1	13	5.1930	4.8770	6.4787		0.0014		26.7550	24.3312	9.9618	0.2637	0.2987	-11.7359	0.0110	0.0116	-4.9019
IGLsy2	14	4.7457	4.5195	5.0032		0.0007		29.3227	27.0355	8.4600	0.5347	0.5842	-8.4798	0.0087	0.0093	-6.6494
IGLgb3	15	1.0687	0.8757	22.0324	0.0047	0.0050	-7.3339	19.6767	18.2724	7.6851	2.4420	2.3187	5.3189	0.0110	0.0109	0.7326
IGLsy4	16	2.6743	2.5495	4.8966		0.0013		25.4207	25.5799	-0.6227	0.9803	0.9881	-0.7861	0.0073	0.0070	4.7021
							Su	elos y Sedin	entos							
QS1	1	3.9877				0.0011		25.7410			0.5250			0.0077	0.0075	2.2222
SDAR-1	2	3.3917	3.0155	12.4739	0.0387	0.0302	28.0353	35.4230	33.6335	5.3206	0.3873	0.3765	2.8813	0.1150	0.0932	23.3773
SDAR H1	3	3.8797	3.4600	12.1291	0.1537	0.1159	32.5856	32.6630	30.6000	6.7418	0.3740	0.3360	11.3095	0.4423	0.3684	20.0688
SDAR M2	4	4.6690	4.1500	12.5060	0.0297	0.0236	25.7062	38.4470	34.2600	12.2212	0.2013	0.1850	8.8288	0.0953	0.0760	25.4386
SDAR L2	5	3.9127	3.4250	14.2384	0.0037	0.0051	-27.7931	39.9813	34.7700	14.9880	0.4043	0.3800	6.4035	0.0250	0.0218	14.6789
IGLs-1	6	0.5243	0.4984	5.1953	0.0047	0.0056	-16.9928	21.6607	21.3612	1.4019	1.5933	1.5547	2.4861	0.0103	0.0102	1.1584
2709a	7	1.8983	2.0300	-6.4860		0.0035		26.7163	29.6600	-9.9247	0.3587	0.3420	4.8733	0.0097	0.0106	-8.8050
2710a	8	2.3257	2.1100	10.2212	0.4110	0.2950	39.3220	30.6113	28.9700	5.6656	0.3370	0.2830	19.0813	0.4620	0.6952	-33.5443
2711a	9	2.8350	2.4500	15.7143	0.0167	0.0114	46.1988	33.0103	30.4400	8.4439	0.3597	0.3060	17.5381	0.0500	0.0350	42.6941
LOESS-1	10	1.1963	1.0792	10.8544		0.0011		24.8373	24.8906	-0.2139	0.2683	0.2535	5.8646	0.0027	0.0034	-22.4806
								Varios								
Siem10	1	2.0033	1.7400	15.1341	0.5830	0.5430	7.3665	15.0473	13.4200	12.1262	0.2437	0.2400	1.5278	1.0957	1.5800	-30.6540
dbc-1	2	2.9463	2.1888	34.6114	0.0020	0.0021	-6.3232	31.3700	24.3012	29.0882	1.0147	0.6732	50.7279	0.0020	0.0021	-4.7619
rts-3	3	0.4473	0.3500	27.8095	0.2980	0.2820	5.6738	14.5120	15.9900	-9.2433	0.3233	0.3200	1.0417	0.1960	0.1850	5.9459
rts-4	4	0.1907	0.0400	376.6667	0.0337	0.0280	20.2381	2.0273	0.9980	103.1396	0.1033	0.0800	29.1667	0.0193	0.0158	22.3629
EVO1	5	1.5573	1.3947	11.6648	0.0043	0.0051	-14.6982	21.5080	21.5776	-0.3226	0.5273	0.4502	17.1279	0.0087	0.0087	-0.6116
SKO1	6	5.9607	5.9190	0.7046	0.1140	0.0993	14.8036	6.8137	8.8368	-22.8941	0.8333	0.9472	-12.0223	1.7383	1.7033	2.0568

Anexo 5. Análisis de los estándares en forma de polvo, modo mina – Parte 2/4.

Fatándar	#CTD		Р			Sr			Ва			Rb			Fe	
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Ro	cas y Miner	ales							
Siem1	1	0.1690			0.0050	0.0049	2.0408	0.0073	0.0472	-84.4633	0.0240	0.0276	-13.0435	1.3960	1.3705	1.8587
Siem2	2	0.1803			0.0250	0.0258	-3.1008	0.0137	0.0540	-74.6914	0.0090	0.0112	-19.6429	3.9663	3.8300	3.5596
Siem3	3	0.0713				0.0007			0.0004			0.0001		5.0227	5.1700	-2.8498
Siem4	4	0.5707			0.0920	0.0923	-0.3250	0.0250	0.0752	-66.7553	0.0110	0.0130	-15.3846	2.6083	2.5200	3.5053
Siem5	5	0.1687			0.0130	0.0127	2.3622	0.0060	0.0358	-83.2402	0.0060	0.0066	-9.0909	3.7730	3.3400	12.9641
Siem6	6	0.0640			0.0130	0.0135	-3.7037		0.0121		0.0030	0.0039	-23.0769	5.5993	5.5900	0.1670
Siem7	7	0.1467			0.0430	0.0430	0.0000	0.0150	0.0553	-72.8752	0.0070	0.0082	-14.6341	1.9343	1.9300	0.2245
Siem8	8	0.7717			0.1540	0.1650	-6.6667	0.0820	0.1308	-37.3089	0.0070	0.0094	-25.5319	7.0843	7.4100	-4.3950
Siem9	9	0.1700			0.0080	0.0086	-6.9767	0.0207	0.0630	-67.1958	0.0120	0.0145	-17.2414	5.1400	4.9100	4.6843
IGLa-1	10	0.3233	0.1734	86.5052	0.0550	0.0575	-4.3062	0.0567			0.0030	0.0033	-8.4529	3.8563	4.1465	-6.9969
IGLc-1	11		0.0045		0.0310				0.0003					0.0213	0.0204	4.3755
IGLd-1	12		0.0039		0.0160	0.0167	-4.3486							0.0167	0.0170	-2.0743
IGLsy1	13	0.8103	0.0382	2021.0568	0.1577	0.1574	0.1815	0.0833			0.0180	0.0215	-16.3996	2.8820	2.8881	-0.2126
IGLsy2	14	0.7767	0.0460	1589.1247	0.0960	0.0965	-0.5418	0.0947			0.0113	0.0140	-19.1227	2.5840	2.6685	-3.1655
IGLgb3	15	1.0247	0.6290	62.9044	0.1323	0.1428	-7.3543	0.0393			0.0020	0.0023	-12.1265	10.2250	10.6663	-4.1373
IGLsy4	16	0.3610	0.2047	76.3703	0.1327	0.1369	-3.1071	0.6440			0.0050	0.0059	-15.3690	3.7223	3.7997	-2.0369
				_			Sue	los y Sedime	entos							
QS1	1	0.1453			0.0107	0.0113	-5.6047	0.0087	0.0362	-76.0655	0.0107	0.0136	-21.2792	4.7247		
SDAR-1	2	1.2533	0.0699	1694.0860	0.0150	0.0152	-0.9901	0.0220	0.0794	-72.3027	0.0120	0.0143	-15.9664	3.3957	3.2369	4.9052
SDAR H1	3	0.2850	0.0810	251.8519	0.0170	0.0182	-6.6959	0.0180	0.0866	-79.2124	0.0120	0.0152	-21.2081	4.9423	4.5000	9.8296
SDAR M2	4	0.2607	0.0360	624.0741	0.0150	0.0146	2.7397	0.0263	0.0959	-72.5408	0.0130	0.0149	-12.8686	1.9433	1.8500	5.0450
SDAR L2	5	1.6763	0.0390	4198.2906	0.0150	0.0143	5.1893	0.0170	0.0814	-79.1155	0.0100	0.0115	-13.1190	2.6910	2.5800	4.3023
IGLs-1	6	0.4573	0.0585	681.3224	0.0040	0.0043	-6.4984	0.0093			0.0050	0.0075	-33.5283	9.6290	9.0985	5.8301
2709a	7	0.1783	0.0620	187.6344	0.0190	0.0231	-17.7489	0.0173	0.0968	-82.0937	0.0070	0.0096	-27.0833	3.5277	3.5000	0.7905
2710a	8	0.2750	0.1060	159.4340	0.0233	0.0330	-29.2929	0.0267	0.0707	-62.2819	0.0090	0.0120	-25.0000	4.4910	3.3800	32.8698
2711a	9	0.2703	0.0860	214.3411	0.0230	0.0245	-6.2373	0.0147	0.0726	-79.7980	0.0100	0.0110	-9.0909	3.1887	2.8900	10.3345
LOESS-1	10	0.0610	0.0568	7.4690	0.0263	0.0279	-5.4458		0.0201		0.0040	0.0051	-21.8750	1.5437	1.4684	5.1243
							•	Varios								
Siem10	1				0.0197	0.0203	-3.1199		0.0178		0.0073	0.0092	-20.2899	1.8240	1.9700	-7.4112
dbc-1	2	0.1820	0.0312	483.8077	0.0147	0.0134	9.3711	0.0045	0.0476	-90.5482	0.0180	0.0194	-7.2165	0.9057	0.6553	38.1990
rts-3	3	0.1027	0.0500	105.3333	0.0040	0.0040	0.0000	0.0103	0.0098	5.4422				20.4990	21.0400	-2.5713
rts-4	4	0.0340	0.0200	70.0000		0.0012		0.0273	0.0027	912.3457				47.9623	56.7000	-15.4103
EVO1	5	0.5543	0.0865	540.7737	0.0430	0.0440	-2.2727	0.0360	0.1178	-69.4397	0.0060	0.0075	-19.6787	5.2017	4.7829	8.7564
SKO1	6	0.6423	0.6637	-3.2135	0.0283	0.0312	-9.1880	0.1140	0.1718	-33.6438	0.0180	0.0122	47.5410	1.9347	2.2586	-14.3411

Anexo 5. Análisis de los estándares en forma de polvo, modo mina – Parte 3/4.

Ectándor	#CTD		Cr			Zr			Mg			As			Al	
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							F	Rocas y Mine	erales							
Siem1	1	0.0040	0.0007	515.3846	0.0293	0.0049	498.6395	1.1215			0.0030			8.3077	3.4122	143.4712
Siem2	2	0.0150	0.0067	123.8806	0.0237	0.0258	-8.2687	3.2113						10.9207	4.2851	154.8545
Siem3	3	0.1683	0.2180	-22.7829		0.0007		60.7987						1.9523	0.1058	1745.2372
Siem4	4	0.0067	0.0011	484.7953	0.0660	0.0923	-28.4940	1.9780						13.3673	5.5547	140.6488
Siem5	5	0.0137	0.0052	162.8205	0.0187	0.0127	46.9816	4.0697			0.0030			11.7803	3.6767	220.4063
Siem6	6	0.0477	0.0360	32.4074	0.0060	0.0135	-55.5556	14.3293			0.0027			13.5190	3.9147	245.3354
Siem7	7	0.0050	0.0014	257.1429	0.0170	0.0430	-60.4651	2.5680						10.7217	4.0205	166.6717
Siem8	8	0.0153	0.0027	467.9012	0.0417	0.1650	-74.7475	6.9070						12.1143	3.8089	218.0499
Siem9	9	0.0213	0.0046	363.7681	0.0210	0.0086	144.1860	4.4740			0.0030			14.1303	4.7612	196.7824
IGLa-1	10	0.0103	0.0029	253.7601	0.0310	0.0575	-46.0635	2.0593	1.1871	73.4740		0.0002		13.1283	4.5980	185.5207
IGLc-1	11	0.0110						2.8405	0.2264	1154.4662				0.5553	0.0064	8546.9567
IGLd-1	12	0.0047	0.0010	367.2741		0.0167		25.1817	11.1445	125.9558				0.8010	0.0247	3142.5775
IGLsy1	13	0.0083	0.0002	5311.2554	0.0507	0.1574	-67.8064	1.0280	0.1827	462.5723				14.7447	5.7420	156.7847
IGLsy2	14	0.0080	0.0003	2976.9231	0.0707	0.0965	-26.7877	1.3067	0.3269	299.7545				13.7420	5.2430	162.1032
IGLgb3	15	0.0160	0.0005	3318.8034	0.0153	0.1428	-89.2652	13.1323	3.7992	245.6589	0.0020	0.0005	342.4779	16.5143	4.2672	287.0042
IGLsy4	16	0.0110	0.0002	4922.8311	0.0210	0.1369	-84.6627	2.4087	1.0162	137.0307		0.0005		12.1520	5.1555	135.7081
							Su	ielos y Sedin	nentos							
QS1	1	0.0177	0.0071	150.4844	0.0193	0.0113	71.0914	5.5363			0.0020	0.0007	191.9708	11.9013		
SDAR-1	2	0.0157	0.0093	69.0587	0.0523	0.0152	245.4345	1.7510	0.4865	259.9166	0.0053	0.0036	46.3995	9.4970	3.1201	204.3808
SDAR H1	3	0.0333			0.0310	0.0182	70.1427	3.7890	0.9240	310.0649	0.0827			10.5110	3.1300	235.8147
SDAR M2	4	0.0083	0.0070	19.0476	0.0330	0.0146	126.0274	1.5263	0.3350	355.6219	0.0147	0.0076	93.4406	9.8393	3.3900	190.2458
SDAR L2	5	0.0063	0.0027	134.5679	0.0753	0.0143	428.2842	1.3260	0.2970	346.4646	0.0033	0.0017	97.0055	9.5113	3.0800	208.8095
IGLs-1	6	0.0410	0.0215	90.6267	0.0743	0.0043	1637.5721	1.3993	0.1776	687.7529	0.0020			18.7903	6.3111	197.7343
2709a	7	0.0193	0.0130	48.7179	0.0160	0.0231	-30.7359	3.3780	1.5100	123.7086	0.0030	0.0018	69.4915	8.2510	7.5000	10.0133
2710a	8	0.0097	0.0039	147.8632	0.0280	0.0330	-15.1515	2.6883	0.8530	215.1622	0.2677	0.0626	327.5825	9.3043	6.4400	44.4772
2711a	9	0.0120	0.0047	155.3191	0.0407	0.0245	65.7834	4.0527	1.0500	285.9683	0.0227	0.0105	115.8730	10.6190	6.5300	62.6187
LOESS-1	10	0.0123	0.0106	16.6824	0.0403	0.0279	44.8235	4.1570	1.7489	137.6894		0.0007		5.6973	1.6400	247.4067
								Varios								
Siem10	1	0.0137	0.0092	48.5507	0.0133	0.0203	-34.3186	8.7533			0.0085			7.9353	2.1425	270.3722
dbc-1	2	0.0207	0.0105	96.2646	0.0230	0.0134	71.5138	1.4407	0.2149	570.4641	0.0030	0.0009	233.3333	27.3890	8.4178	225.3685
rts-3	3	0.0337	0.0075	348.8889	0.0080	0.0040	100.0000	8.2883	2.4500	238.2993	0.0057	0.0009	522.7106	8.9163	4.7900	86.1447
rts-4	4	0.0570	0.0100	470.0000		0.0012		6.7880	0.6453	951.9301	0.0430	0.0207	107.7295	2.2700	0.3390	569.6165
EVO1	5	0.0177	0.0071	150.5910	0.0540	0.0440	22.7273	1.5923	0.6453	146.7624	0.0070	0.0034	107.1006	12.4563	5.4172	129.9421
SKO1	6	0.0490	0.0430	13.9535	0.0147	0.0312	-52.9915	4.8910	1.5620	213.1302		0.0056		5.5100	2.4494	124.9567

Anexo 5. Análisis de los estándares en forma de polvo, modo mina – Parte 4/4.

		S	iem1			S	iem2			S	iem3			S	iem4	
Elemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Mo																
Zr	232.2	0.5	229.0	-1.4	181.9	0.9	186.0	2.2	< LOD	n.a.	13.0	n.a.	527.5	0.1	505.0	-4.4
Sr	46.4	1.8	49.0	5.3	243.0	0.8	258.0	5.8	4.1	17.0	7.0	40.9	886.7	1.1	923.0	3.9
U																
Rb	286.8	0.3	276.0	-3.9	111.0	0.9	112.0	0.9	< LOD	n.a.	1.0	n.a.	135.6	1.3	130.0	-4.3
Th	22.5	7.2	20.0	-12.4	8.9	9.8	11.0	19.4	< LOD	n.a.	1.0	n.a.	32.0	3.3	30.0	-6.7
Pb					< LOD	n.a.	24.0	n.a.	< LOD	n.a.	1.0	n.a.	< LOD	n.a.	15.0	n.a.
Au																
Se																
As						-								-		
Hg																
Zn	18.7	13.5	32.0	41.4	72.5	1.0	91.0	20.3					113.2	3.1	131.0	13.6
w																
Cu	< LOD	n.a.	4.9	n. a.	13.8	12.4	23.0	39.9	< LOD	n.a.	2.0	n.a.	< LOD	n.a.	7.2	n.a.
Ni	< LOD	n.a.	10.0	n.a.	< LOD	n.a.	36.0	n.a.	1328.8	0.2	2640.0	49.7	< LOD	n.a.	12.0	n.a.
Co																
Fe	9609.3	0.4	13705.3	29.9	30715.8	0.2	38300.0	19.8	43329.4	0.2	51700.0	16.2	19187.3	0.4	25200.0	23.9
Mn	114.8	9.5	309.7	62.9	334.7	6.1	500.0	33.1	623.6	2.0	800.0	22.0	1324.3	2.1	1900.0	30.3
Cr	< LOD	n.a.	6.5	n. a.	64.7	17.6	67.0	3.4	2301.1	1.4	2180.0	-5.6	< LOD	n.a.	11.4	n.a
v	22.4	12.9	14.0	-60.0	92.9	23.4	110.0	15.5	< LOD	n.a.	13.0	n.a.	126.8	1.1	131.0	3.2
Ti	964.3	2.0	1318.9	26.9	3956.0	1.0	4300.0	8.0	< LOD	n.a.	100.0	n.a.	2169.8	1.4	2800.0	22.5
Sc																
Ca	5263.9	0.7	7017.5	25.0	12719.3	0.4	15000.0	15.2	52.3	6.0	400.0	86.9	12465.1	0.1	17400.0	28.4
К	39788.3	0.2	43001.7	7.5	20844.7	0.4	22400.0	6.9	< LOD	n.a.	400.0	n.a.	69693.5	0.2	72300.0	3.6
S						-								-		
Ва	< LOD	n.a.	472.0	n. a.	< LOD	n.a.	540.0	n.a.	< LOD	n.a.	4.0	n.a.	< LOD	n.a.	752.0	n.a.
Cs																
Те																
Sb																
Sn																
Cd																
Ag																
Pd																
Nb	< LOD	n.a.	18.0	n. a.	< LOD	n.a.	11.0	n.a.	< LOD	n.a.	3.0	n.a.	< LOD	n.a.	320.0	n.a.
Bi																
Al																
Р														-		
Si	< LOD	n.a.	346925.1	n. a.	< LOD	n.a.	307200.0	n.a.	< LOD	n.a.	195000.0	n.a.	< LOD	n.a.	240300.0	n.a.
Cl																
Mg																

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 1/8.

El		S	iem5			S	iem6			S	iem7			S	iem8	
Elemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Мо																
Zr	143.7	0.5	150.0	4.2	46.4	2.5	51.0	9.0	136.6	0.3	135.0	-1.2	336.2	1.6	318.0	-5.7
Sr	127.2	1.2	127.0	-0.1	124.1	0.9	135.0	8.1	409.6	0.5	430.0	4.7	1541.8	0.4	1650.0	6.6
U																
Rb	71.2	0.6	66.0	-7.9	36.5	1.1	39.0	6.5	81.9	1.1	82.0	0.1	87.5	0.7	94.0	6.9
Th	6.2	7.9	8.0	22.1	< LOD	n.a.	2.0	n.a.	5.3	19.5	6.0	11.8	20.2	1.9	20.0	-1.2
Pb	< LOD	n.a.	8.0	n.a.	< LOD	n.a.	7.0	n.a.	< LOD	n.a.	7.0	n.a.	< LOD	n.a.	12.0	n.a.
Au																
Se																
As																
Hg																
Zn	23.8	9.0	50.0	52.5	25.6	16.9	56.0	54.3	20.6	5.7	37.0	44.3	77.3	4.7	112.0	30.9
W																
Cu	<lod< th=""><th>n.a.</th><th>3.0</th><th>n.a.</th><th>61.4</th><th>15.2</th><th>83.0</th><th>26.0</th><th>799.0</th><th>1.2</th><th>756.0</th><th>-5.7</th><th>66.2</th><th>13.0</th><th>81.0</th><th>18.2</th></lod<>	n.a.	3.0	n.a.	61.4	15.2	83.0	26.0	799.0	1.2	756.0	-5.7	66.2	13.0	81.0	18.2
Ni	< LOD	n.a.	29.0	n.a.	40.3	7.0	118.0	65.9	< LOD	n.a.	10.0	n.a.	55.5	7.3	25.0	-122.1
Со																
Fe	28317.2	0.4	33400.0	15.2	47164.0	0.6	55900.0	15.6	13406.4	0.8	19300.0	30.5	64203.3	0.4	74100.0	13.4
Mn	203.5	5.4	400.0	49.1	959.4	1.3	1200.0	20.0	78.5	19.2	200.0	60.7	1977.4	2.8	2300.0	14.0
Cr	50.5	8.7	52.0	2.8	370.1	3.2	360.0	-2.8	< LOD	n.a.	14.0	n.a.	< LOD	n.a.	27.0	n.a.
V	113.8	2.2	213.0	46.6	184.2	2.1	227.0	18.9	70.1	10.0	59.0	-18.9	300.3	1.6	338.0	11.2
Ti	3347.9	0.4	3500.0	4.3	2562.7	1.1	2900.0	11.6	2057.3	0.6	2600.0	20.9	8657.1	0.4	12800.0	32.4
Sc																
Ca	4136.4	0.7	5000.0	17.3	69419.4	0.4	80200.0	13.4	15506.6	0.6	19000.0	18.4	88293.7	0.1	99500.0	11.3
К	15561.5	0.5	15500.0	-0.4	6428.1	0.9	6700.0	4.1	18547.4	0.4	19900.0	6.8	36094.5	0.2	31400.0	-15.0
S																
Ba	< LOD	n.a.	358.0	n.a.	< LOD	n.a.	121.0	n.a.	< LOD	n.a.	553.0	n.a.	342.7	3.6	1308.0	73.8
Cs												-				
le																
SD																
Sn																
Ag																
Pa Nh	<100	n 2	7.0	n 2	<100	n 2	5.0	n 2	<100	n 2	8.0	n 7	<100	n 2	222.0	n 2
Ri III	CLOD	n.a.	7.0	II.d.	<100	II.d.	5.0	II.d.	<10D	II.d.	8.0	II.d.	< LOD	II.d.	222.0	II.d.
AI D																
r Si	<100	n 2	325900.0	na	<100	na	2/17800.0	na	<100	na	320700.0	n 2	<100	na	173000.0	na
	<lod< th=""><th>11.a.</th><th>323500.0</th><th>11.a.</th><th>< LOD</th><th>11.a.</th><th>247000.0</th><th>11.a.</th><th>< LOD</th><th>11.a.</th><th>320700.0</th><th>11.a.</th><th><10D</th><th>n.a.</th><th>173000.0</th><th>11.a.</th></lod<>	11.a.	323500.0	11.a.	< LOD	11.a.	247000.0	11.a.	< LOD	11.a.	320700.0	11.a.	<10D	n.a.	173000.0	11.a.
U Ma																
iVig																

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 2/8.

El		S	iem9			S	iem10			2	2710a			2	2711a	
Elemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Мо									7.4	13.0	19.0	61.1				
Zr	166.3	0.5	176.0	-5.5	104.4	2.1	131.0	20.3								
Sr	78.9	1.4	86.0	-8.2	195.7	0.9	203.0	3.6	239.4	0.7	330.0	27.5	223.6	0.2	245.3	8.8
U									14.8	27.2	25.0	40.8				
Rb	142.9	0.4	145.0	-1.4	87.9	0.6	92.0	4.5	117.9	2.2	120.0	1.8	122.7	1.4	110.0	-11.6
Th	11.9	11.4	10.0	18.8					103.8	10.4	13.0	-698.7				
Pb	<lod< th=""><th>n.a.</th><th>36.0</th><th>n.a.</th><th>2721.2</th><th>0.2</th><th>2600.0</th><th>-4.7</th><th>5965.3</th><th>0.3</th><th>5532.0</th><th>-7.8</th><th>1569.5</th><th>0.3</th><th>1162.0</th><th>-35.1</th></lod<>	n.a.	36.0	n.a.	2721.2	0.2	2600.0	-4.7	5965.3	0.3	5532.0	-7.8	1569.5	0.3	1162.0	-35.1
Au									< LOD	n.a.	0.6	n.a.				
Se													< LOD	n.a.	1.5	n.a.
As																
Hg									29.6	30.1	32.6	9.3				
Zn	129.7	3.8	152.0	-14.7	10120.5	0.6	15800.0	35.9	4379.6	0.1	6952.0	37.0	399.8	2.9	350.4	-14.1
w									139.5	13.5	93.0	-50.0	< LOD	n.a.	3.0	n.a.
Cu	17.4	34.6	20.0	-13.2	4749.7	0.3	5430.0	12.5	3449.0	0.5	2950.0	-16.9	120.9	3.5	114.0	-6.1
Ni	<lod< th=""><th>n.a.</th><th>46.0</th><th>n.a.</th><th>63.9</th><th>4.9</th><th>143.0</th><th>55.3</th><th>< LOD</th><th>n.a.</th><th>14.3</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>20.6</th><th>n.a.</th></lod<>	n.a.	46.0	n.a.	63.9	4.9	143.0	55.3	< LOD	n.a.	14.3	n.a.	< LOD	n.a.	20.6	n.a.
Со																
Fe	41856.6	0.6	49087.2	-14.7	15746.7	0.3	19700.0	20.1	43910.9	0.9	33800.0	-29.9	24401.7	0.2	28900.0	15.6
Mn	473.9	1.5	696.9	-32.0	2767.3	1.8	3300.0	16.1	2104.5	3.0	10100.0	79.2	503.7	2.8	638.0	21.0
Cr					84.6	10.5	92.0	8.0	< LOD	n.a.	39.0	n.a.	45.2	21.9	47.0	3.8
v	182.0	5.6	171.0	6.4	371.4	3.6	450.0	17.5	99.7	5.9	76.6	-30.2	94.4	9.9	81.6	-15.7
Ti	5098.3	0.6	5215.6	-2.2	1887.9	1.5	2400.0	21.3	2921.5	1.2	2830.0	-3.2	2834.3	0.9	3060.0	7.4
Sc																
Ca	6934.2	0.6	8091.6	-14.3	162302.4	0.2	157500.0	-3.0	7597.3	0.2	12500.0	39.2	21894.4	0.7	28800.0	24.0
к	28011.6	0.0	27810.0	0.7	23524.1	0.6	17400.0	-35.2	21249.2	0.2	21100.0	-0.7	24606.7	0.4	24500.0	-0.4
S																
Ва	<lod< th=""><th>n.a.</th><th>630.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>178.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>707.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>726.0</th><th>n.a.</th></lod<>	n.a.	630.0	n.a.	< LOD	n.a.	178.0	n.a.	< LOD	n.a.	707.0	n.a.	< LOD	n.a.	726.0	n.a.
Cs									< LOD	n.a.	107.0	n.a.	< LOD	n.a.	6.1	n.a.
Те																
Sb									< LOD	n.a.	38.4	n.a.	< LOD	n.a.	19.4	n.a.
Sn																
Cd									< LOD	n.a.	21.8	n.a.	< LOD	n.a.	41.7	n.a.
Ag									22.3	1.6	35.3	36.9	< LOD	n.a.	4.6	n.a.
Pd																
Nb	<lod< th=""><th>n.a.</th><th>12.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>7.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	12.0	n.a.	< LOD	n.a.	7.0	n.a.								
Bi																
Al	<lod< th=""><th>n.a.</th><th>47611.8</th><th>n.a.</th><th></th><th></th><th></th><th></th><th>< LOD</th><th>n.a.</th><th>64400.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>65300.0</th><th>n.a.</th></lod<>	n.a.	47611.8	n.a.					< LOD	n.a.	64400.0	n.a.	< LOD	n.a.	65300.0	n.a.
Р									< LOD	n.a.	1060.0	n.a.	< LOD	n.a.	860.0	n.a.
Si	<lod< th=""><th>n.a.</th><th>279129.8</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>134200.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>289700.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>304400.0</th><th>n.a.</th></lod<>	n.a.	279129.8	n.a.	< LOD	n.a.	134200.0	n.a.	< LOD	n.a.	289700.0	n.a.	< LOD	n.a.	304400.0	n.a.
Cl																
Mg									< LOD	n.a.	8530.0	n.a.	<lod< th=""><th>n.a.</th><th>10500.0</th><th>n.a.</th></lod<>	n.a.	10500.0	n.a.

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 3/8.

El		0	DBC-1			F	RTS-3			RT	S-4			ŀ	GLa-1	
Elemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Мо																
Zr	182.2	1.4	183.4	0.6	60.4	1.5	66.0	8.4	<lod< th=""><th>n.a.</th><th>10.0</th><th>n.a.</th><th>247.4</th><th>0.3</th><th>241.9</th><th>-2.3</th></lod<>	n.a.	10.0	n.a.	247.4	0.3	241.9	-2.3
Sr	136.1	0.2	134.1	-1.5	39.4	1.7	40.0	1.6	11.0	6.8	12.0	7.9	527.7	0.3	574.8	8.2
U													< LOD	n.a.	1.0	n.a.
Rb	214.6	1.0	194.0	-10.6									31.1	2.8	32.8	5.1
Th	24.3	6.0	18.3	-32.8									< LOD	n.a.	3.0	n.a.
Pb	29.5	2.0	53.5	44.8	80.9	5.6	146.0	44.6	<lod< th=""><th>n.a.</th><th>60.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>10.2</th><th>n.a.</th></lod<>	n.a.	60.0	n.a.	< LOD	n.a.	10.2	n.a.
Au					<lod< th=""><th>n.a.</th><th>0.2</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	0.2	n.a.								
Se	<lod< th=""><th>n.a.</th><th>3.0</th><th>n.a.</th><th>54.8</th><th>3.6</th><th>61.0</th><th>10.2</th><th>47.3</th><th>8.1</th><th>100.0</th><th>52.7</th><th></th><th></th><th></th><th></th></lod<>	n.a.	3.0	n.a.	54.8	3.6	61.0	10.2	47.3	8.1	100.0	52.7				
As	12.4	4.4	9.0	-37.4					278.3	3.1	207.0	-34.4	< LOD	n.a.	1.7	n.a.
Hg	<lod< th=""><th>n.a.</th><th>0.7</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	0.7	n.a.												
Zn	17.5	8.6	21.0	16.7	1616.5	1.8	1850.0	12.6	<lod< th=""><th>n.a.</th><th>158.0</th><th>n.a.</th><th>50.4</th><th>6.8</th><th>78.8</th><th>36.0</th></lod<>	n.a.	158.0	n.a.	50.4	6.8	78.8	36.0
w													< LOD	n.a.	2.2	n.a.
Cu	20.4	16.3	21.4	4.5	2358.5	0.9	2820.0	16.4	155.2	15.8	280.0	44.6	< LOD	n.a.	15.5	n.a.
Ni	<lod< th=""><th>n.a.</th><th>24.0</th><th>n.a.</th><th>122.1</th><th>10.8</th><th>71.0</th><th>-71.9</th><th>4430.1</th><th>1.0</th><th>7940.0</th><th>44.2</th><th>< LOD</th><th>n.a.</th><th>8.4</th><th>n.a.</th></lod<>	n.a.	24.0	n.a.	122.1	10.8	71.0	-71.9	4430.1	1.0	7940.0	44.2	< LOD	n.a.	8.4	n.a.
Co																
Fe					299839.8	0.4	210400.0	-42.5	1197721.5	0.7	567000.0	-111.2				
Mn					2879.9	0.6	2000.0	-44.0	480.8	0.0	150.0	-220.5				
Cr	186.0	4.1	105.3	-76.6	<lod< th=""><th>n.a.</th><th>75.0</th><th>n.a.</th><th><lod< th=""><th>n.a.</th><th>100.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>29.2</th><th>n.a.</th></lod<></th></lod<>	n.a.	75.0	n.a.	<lod< th=""><th>n.a.</th><th>100.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>29.2</th><th>n.a.</th></lod<>	n.a.	100.0	n.a.	< LOD	n.a.	29.2	n.a.
v	205.9	6.2	137.5	-49.7									106.6	6.1	98.0	-8.8
Ti					2677.8	2.3	3200.0	16.3	706.0	4.7	800.0	11.7				
Sc													100.1	24.2	12.2	-720.8
Ca					19878.7	1.2	22000.0	9.6	2006.8	3.5	3270.0	38.6				
К					3459.3	3.6	3500.0	1.2	260.5	10.3	400.0	34.9				
S					57783.5	1.4	28100.0	-105.6	164570.6	0.6	4300.0	-3727.2				
Ва	<lod< th=""><th>n.a.</th><th>476.1</th><th>n.a.</th><th>235.6</th><th>18.0</th><th>98.0</th><th>-140.4</th><th>730.1</th><th>5.8</th><th>27.0</th><th>-2604.0</th><th>455.8</th><th>1.8</th><th>981.0</th><th>53.5</th></lod<>	n.a.	476.1	n.a.	235.6	18.0	98.0	-140.4	730.1	5.8	27.0	-2604.0	455.8	1.8	981.0	53.5
Cs	<lod< th=""><th>n.a.</th><th>64.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>< LOD</th><th>n.a.</th><th>0.7</th><th>n.a.</th></lod<>	n.a.	64.0	n.a.									< LOD	n.a.	0.7	n.a.
Те																
Sb	< LOD	n.a.	2.8	n.a.									< LOD	n.a.	0.2	n.a.
Sn	<lod< th=""><th>n.a.</th><th>24.4</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>< LOD</th><th>n.a.</th><th>1.8</th><th>n.a.</th></lod<>	n.a.	24.4	n.a.									< LOD	n.a.	1.8	n.a.
Cd					19.0	16.4	9.1	-108.6	36.1	34.9	5.0	-621.0				
Ag					26.1	6.3	8.0	-226.5	48.0	10.7	2.0	-2301.8				
Pd																
Nb	< LOD	n.a.	25.8	n.a.									< LOD	n.a.	19.0	n.a.
Bi	< LOD	n.a.	2.0	n.a.	< LOD	n.a.	100.0	n.a.	< LOD	n.a.	3.3	n.a.				
Al					< LOD	n.a.	47900.0	n.a.	< LOD	n.a.	3390.0	n.a.				
Р					< LOD	n.a.	500.0	n.a.	< LOD	n.a.	200.0	n.a.				
Si					< LOD	n.a.	159900.0	n.a.	<lod< th=""><th>n.a.</th><th>9980.0</th><th>n.a.</th><th></th><th></th><th></th><th></th></lod<>	n.a.	9980.0	n.a.				
Cl																
Mg					<lod< th=""><th>n.a.</th><th>24500.0</th><th>n.a.</th><th><lod< th=""><th>n.a.</th><th>1790.0</th><th>n.a.</th><th></th><th></th><th></th><th></th></lod<></th></lod<>	n.a.	24500.0	n.a.	<lod< th=""><th>n.a.</th><th>1790.0</th><th>n.a.</th><th></th><th></th><th></th><th></th></lod<>	n.a.	1790.0	n.a.				

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 4/8.

El		ŀ	GLc-1			10	GLd-1			I	GLs-1			10	GLsy1	
Elemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Мо					<lod< th=""><th>n.a.</th><th>0.5</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>3.0</th><th>n.a.</th><th>6.9</th><th>14.2</th><th>4.8</th><th>-45.6</th></lod<>	n.a.	0.5	n.a.	< LOD	n.a.	3.0	n.a.	6.9	14.2	4.8	-45.6
Zr					<lod< th=""><th>n.a.</th><th>2.6</th><th>n.a.</th><th>604.6</th><th>0.9</th><th>578.8</th><th>-4.5</th><th>408.9</th><th>1.6</th><th>398.7</th><th>-2.5</th></lod<>	n.a.	2.6	n.a.	604.6	0.9	578.8	-4.5	408.9	1.6	398.7	-2.5
Sr					156.3	1.3	167.3	-6.6	37.7	2.0	42.8	11.8	1524.0	0.3	1573.8	3.2
U	< LOD	n.a.	0.1	n.a.	<lod< th=""><th>n.a.</th><th>1.2</th><th>n.a.</th><th>9.2</th><th>30.7</th><th>4.7</th><th>-95.0</th><th></th><th></th><th></th><th></th></lod<>	n.a.	1.2	n.a.	9.2	30.7	4.7	-95.0				
Rb	< LOD	n.a.	0.2	n.a.	<lod< th=""><th>n.a.</th><th>0.2</th><th>n.a.</th><th>67.5</th><th>3.2</th><th>75.2</th><th>10.3</th><th>221.0</th><th>1.5</th><th>215.3</th><th>-2.6</th></lod<>	n.a.	0.2	n.a.	67.5	3.2	75.2	10.3	221.0	1.5	215.3	-2.6
Th									12.7	3.3	15.3	16.6	41.3	8.1	38.0	-8.5
Pb	< LOD	n.a.	2.9	n.a.	<lod< th=""><th>n.a.</th><th>0.5</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>26.9</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>19.3</th><th>n.a.</th></lod<>	n.a.	0.5	n.a.	< LOD	n.a.	26.9	n.a.	< LOD	n.a.	19.3	n.a.
Au																
Se																
As									10.0	8.8	5.9	-69.6	< LOD	n.a.	3.9	n.a.
Hg																
Zn					<lod< th=""><th>n.a.</th><th>0.9</th><th>n.a.</th><th>42.3</th><th>2.4</th><th>102.2</th><th>58.6</th><th>85.3</th><th>5.3</th><th>115.7</th><th>26.2</th></lod<>	n.a.	0.9	n.a.	42.3	2.4	102.2	58.6	85.3	5.3	115.7	26.2
w									< LOD	n.a.	2.6	n.a.	28.4	17.3	7.7	-271.2
Cu	< LOD	n.a.	3.5	n.a.	<lod< th=""><th>n.a.</th><th>2.7</th><th>n.a.</th><th>35.0</th><th>8.0</th><th>56.2</th><th>37.7</th><th>< LOD</th><th>n.a.</th><th>13.7</th><th>n.a.</th></lod<>	n.a.	2.7	n.a.	35.0	8.0	56.2	37.7	< LOD	n.a.	13.7	n.a.
Ni	< LOD	n.a.	23.1	n.a.									< LOD	n.a.	3.0	n.a.
Со																
Fe	< LOD	n.a.	204.4	n.a.	37.2	34.9	170.2	-78.2								
Mn	< LOD	n.a.	76.0	n.a.	<lod< th=""><th>n.a.</th><th>38.9</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	38.9	n.a.								
Cr					<lod< th=""><th>n.a.</th><th>10.0</th><th>n.a.</th><th>305.0</th><th>0.8</th><th>215.1</th><th>-41.8</th><th>< LOD</th><th>n.a.</th><th>1.5</th><th>n.a.</th></lod<>	n.a.	10.0	n.a.	305.0	0.8	215.1	-41.8	< LOD	n.a.	1.5	n.a.
v					<lod< th=""><th>n.a.</th><th>8.1</th><th>n.a.</th><th>376.0</th><th>3.1</th><th>290.4</th><th>-29.5</th><th>54.7</th><th>11.6</th><th>16.9</th><th>-224.1</th></lod<>	n.a.	8.1	n.a.	376.0	3.1	290.4	-29.5	54.7	11.6	16.9	-224.1
Ti	215.2	5.9	130.4	65.0	<lod< th=""><th>n.a.</th><th>103.7</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	103.7	n.a.								
Sc									28.2	7.9	26.1	-8.0	38.1	20.7	0.4	-9662.8
Са	571538.9	0.0	396757.3	44.1	353290.7	0.1	242977.4	45.4								
к	< LOD	n.a.	73.1	n.a.	<lod< th=""><th>n.a.</th><th>60.8</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	60.8	n.a.								
S																
Ва	< LOD	n.a.	3.3	n.a.					< LOD	n.a.	386.8	n.a.	73.7	17.1	2179.7	96.6
Cs	< LOD	n.a.	0.4	n.a.	<lod< th=""><th>n.a.</th><th>0.1</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>3.2</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>3.3</th><th>n.a.</th></lod<>	n.a.	0.1	n.a.	< LOD	n.a.	3.2	n.a.	< LOD	n.a.	3.3	n.a.
Те																
Sb									< LOD	n.a.	0.9	n.a.	< LOD	n.a.	0.3	n.a.
Sn									< LOD	n.a.	5.6	n.a.	< LOD	n.a.	2.0	n.a.
Cd													< LOD	n.a.	0.3	n.a.
Ag																
Pd																
Nb	< LOD	n.a.	0.5	n.a.	<lod< th=""><th>n.a.</th><th>0.5</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>50.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>281.6</th><th>n.a.</th></lod<>	n.a.	0.5	n.a.	< LOD	n.a.	50.0	n.a.	< LOD	n.a.	281.6	n.a.
Bi																
Al	< LOD	n.a.	64.2	n.a.	<lod< th=""><th>n.a.</th><th>247.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	247.0	n.a.								
Р	< LOD	n.a.	44.8	n.a.	<lod< th=""><th>n.a.</th><th>38.7</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	38.7	n.a.								
Si	< LOD	n.a.	488.6	n.a.	<lod< th=""><th>n.a.</th><th>7896.1</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	7896.1	n.a.								
Cl					<lod< th=""><th>n.a.</th><th>312.5</th><th>n.a.</th><th></th><th></th><th></th><th></th><th><lod< th=""><th>n.a.</th><th>3029.3</th><th>n.a.</th></lod<></th></lod<>	n.a.	312.5	n.a.					<lod< th=""><th>n.a.</th><th>3029.3</th><th>n.a.</th></lod<>	n.a.	3029.3	n.a.
Mg	< LOD	n.a.	2264.3	n.a.	<lod< th=""><th>n.a.</th><th>111445.1</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	111445.1	n.a.								

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 5/8.

Flowerto	I	GLsy2				10	GLgb3			ŀ	GLsy4			I	EVO1	
Elemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Мо	7.2	6.8	7.0	-3.0					4.1	14.7	1.7	-136.6	9.1	9.3	8.3	10.1
Zr	559.9	0.5	514.8	-8.8	129.9	1.9	124.9	-4.0	177.7	1.1	179.2	0.9	426.4	0.1	447.0	-4.6
Sr	923.4	0.1	965.2	4.3	1321.5	0.3	1428.4	7.5	1291.0	0.4	1369.2	5.7	419.1	0.4	440.0	-4.8
U	9.8	7.9	7.0	-40.5	< LOD	n.a.	0.6	n.a.	< LOD	n.a.	2.1	n.a.				
Rb	140.9	1.6	140.1	-0.6	24.2	6.4	22.8	-6.5	57.5	4.8	59.1	2.7	74.5	1.4	74.7	-0.3
Th	29.7	7.5	27.3	-8.6	< LOD	n.a.	2.0	n.a.	9.7	5.2	7.7	-26.0	26.9	4.6	24.1	11.5
Pb	<lod< th=""><th>n.a.</th><th>12.8</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>5.9</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>7.7</th><th>n.a.</th><th>18.4</th><th>12.9</th><th>54.1</th><th>-65.9</th></lod<>	n.a.	12.8	n.a.	< LOD	n.a.	5.9	n.a.	< LOD	n.a.	7.7	n.a.	18.4	12.9	54.1	-65.9
Au																
Se																
As	< LOD	n.a.	4.4	n.a.	5.3	20.8	4.5	-16.7	< LOD	n.a.	4.6	n.a.	37.6	5.8	33.8	11.2
Hg																
Zn	72.2	3.0	92.8	22.2	47.6	9.7	109.2	56.4	50.7	2.8	70.0	27.6	51.1	2.8	87.2	-41.4
w	42.8	12.9	32.7	-31.0					45.9	12.6	24.4	-88.3				
Cu	<lod< th=""><th>n.a.</th><th>7.5</th><th>n.a.</th><th>43.6</th><th>14.2</th><th>50.4</th><th>13.4</th><th>< LOD</th><th>n.a.</th><th>12.8</th><th>n.a.</th><th>38.1</th><th>11.5</th><th>50.8</th><th>-25.1</th></lod<>	n.a.	7.5	n.a.	43.6	14.2	50.4	13.4	< LOD	n.a.	12.8	n.a.	38.1	11.5	50.8	-25.1
Ni	< LOD	n.a.	3.2	n.a.	49.7	21.8	15.8	-214.7	70.1	0.8	3.6	-1832.2	< LOD	n.a.	64.5	n.a.
Co																
Fe													42215.7	0.1	47828.6	-11.7
Mn													618.6	0.5	735.6	-15.9
Cr	<lod< th=""><th>n.a.</th><th>2.6</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>4.7</th><th>n.a.</th><th>90.9</th><th>16.7</th><th>2.2</th><th>-4052.4</th><th>114.7</th><th>7.6</th><th>70.5</th><th>62.7</th></lod<>	n.a.	2.6	n.a.	< LOD	n.a.	4.7	n.a.	90.9	16.7	2.2	-4052.4	114.7	7.6	70.5	62.7
v	87.4	11.5	42.7	-104.9	414.6	8.1	461.2	10.1					148.3	5.8	97.5	52.1
Ti													4980.3	0.2	4502.2	10.6
Sc	34.1	13.5	0.5	-7316.7	183.8	13.1	24.8	-640.1	< LOD	n.a.	1.7	n.a.				
Ca													16300.5	1.1	17185.7	-5.2
К													15097.0	0.9	13946.5	8.2
S																
Ва	303.6	2.8	2405.6	87.4	350.2	3.3	583.8	40.0	5161.6	0.1	12534.1	58.8	< LOD	n.a.	1178.0	n.a.
Cs	< LOD	n.a.	2.1	n.a.	< LOD	n.a.	1.1	n.a.	< LOD	n.a.	1.1	n.a.	< LOD	n.a.	9.6	n.a.
Те																
Sb	<lod< th=""><th>n.a.</th><th>0.2</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	0.2	n.a.												
Sn	< LOD	n.a.	1.9	n.a.	< LOD	n.a.	1.7	n.a.	< LOD	n.a.	1.1	n.a.	< LOD	n.a.	5.5	n.a.
Cd																
Ag																
Pd																
Nb	<lod< th=""><th>n.a.</th><th>212.5</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>37.5</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>65.9</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>43.0</th><th>n.a.</th></lod<>	n.a.	212.5	n.a.	< LOD	n.a.	37.5	n.a.	< LOD	n.a.	65.9	n.a.	< LOD	n.a.	43.0	n.a.
Bi																
Al													< LOD	n.a.	54171.6	n.a.
Р													< LOD	n.a.	865.1	n.a.
Si													< LOD	n.a.	215776.2	n.a.
Cl																
Mg													< LOD	n.a.	6452.9	n.a.

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 6/8.

Flowerto		5	SKO1			2	2709a				Q\$1			S	DAR-1	
Liemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Мо	21.4	7.5	18.7	-14.2	2.6	10.1	2.0	-31.7	< LOD	n.a.	1.1	n.a.	11.3	15.4	12.6	10.3
Zr	113.8	1.8	137.0	16.9	125.7	0.8	160.0	21.4	156.6	0.9	159.3	1.7	425.6	0.2	352.8	-20.6
Sr	298.1	0.8	312.0	4.5	180.8	0.3	231.0	21.7	105.0	1.1	113.0	7.1	147.1	0.5	151.5	2.9
U					10.0	0.0	3.0	-231.7								
Rb	248.7	0.6	122.0	-103.9	77.9	0.2	96.0	18.8	129.0	0.5	135.5	4.8	146.9	0.7	142.8	-2.9
Th					8.4	5.4	11.0	23.6	10.2	8.0	11.0	7.3	31.2	4.5	18.0	-73.8
Pb	8860.5	0.9	8199.0	-8.1	<lod< th=""><th>n.a.</th><th>18.9</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>9.3</th><th>n.a.</th><th>1068.2</th><th>0.4</th><th>979.3</th><th>-9.1</th></lod<>	n.a.	18.9	n.a.	< LOD	n.a.	9.3	n.a.	1068.2	0.4	979.3	-9.1
Au					<lod< th=""><th>n.a.</th><th>0.3</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	0.3	n.a.								
Se																
As	128.2	1.6	55.7	-130.2	13.8	1.8	17.7	22.3	5.7	9.5	6.9	17.5	49.3	10.0	36.4	-35.4
Hg	43.3	23.2	40.9	-6.0	<lod< th=""><th>n.a.</th><th>1.4</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	1.4	n.a.								
Zn	17571.9	0.8	17033.0	-3.2	67.6	5.9	106.0	36.2	46.6	2.5	75.0	37.9	917.2	0.7	932.1	1.6
w					<lod< th=""><th>n.a.</th><th>2.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>1.3</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>10.3</th><th>n.a.</th></lod<>	n.a.	2.0	n.a.	< LOD	n.a.	1.3	n.a.	< LOD	n.a.	10.3	n.a.
Cu	1028.2	1.3	993.0	-3.5					< LOD	n.a.	11.4	n.a.	281.0	0.5	302.0	7.0
Ni	118.8	6.8	68.7	-73.0	<lod< th=""><th>n.a.</th><th>88.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>38.4</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>40.8</th><th>n.a.</th></lod<>	n.a.	88.0	n.a.	< LOD	n.a.	38.4	n.a.	< LOD	n.a.	40.8	n.a.
Co																
Fe					26525.8	0.1	35000.0	24.2								
Mn					328.0	1.8	538.0	39.0								
Cr	341.0	0.3	430.0	20.7	130.0	0.3	130.0	0.0	72.8	6.4	70.5	-3.3	122.7	9.4	92.7	-32.4
V	53.2	23.4	48.1	-10.7	131.0	4.0	112.0	-16.9	138.2	7.2	112.0	-23.4	99.3	3.2	68.3	-45.4
Ti					3268.4	1.7	3420.0	4.4								
Sc					55.8	0.0	12.0	-364.8					< LOD	n.a.	8.2	n.a.
Ca					16874.4	0.4	18900.0	10.7								
К					18588.9	0.2	20300.0	8.4								
S					<lod< th=""><th>n.a.</th><th>890.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	890.0	n.a.								
Ва	1164.4	0.9	1718.0	32.2	<lod< th=""><th>n.a.</th><th>968.0</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>362.1</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>794.3</th><th>n.a.</th></lod<>	n.a.	968.0	n.a.	< LOD	n.a.	362.1	n.a.	< LOD	n.a.	794.3	n.a.
Cs					< LOD	n.a.	5.3	n.a.	< LOD	n.a.	6.2	n.a.	< LOD	n.a.	4.8	n.a.
Те																
Sb	417.3	1.2	519.0	19.6	<lod< th=""><th>n.a.</th><th>7.9</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>0.8</th><th>n.a.</th><th>< LOD</th><th>n.a.</th><th>6.7</th><th>n.a.</th></lod<>	n.a.	7.9	n.a.	< LOD	n.a.	0.8	n.a.	< LOD	n.a.	6.7	n.a.
Sn	1123.0	0.4	1301.0	13.7					< LOD	n.a.	2.5	n.a.	< LOD	n.a.	2.9	n.a.
Cd	276.6	2.5	266.0	-4.0	< LOD	n.a.	0.4	n.a.					< LOD	n.a.	5.3	n.a.
Ag					<lod< th=""><th>n.a.</th><th>0.4</th><th>n.a.</th><th></th><th></th><th></th><th></th><th>< LOD</th><th>n.a.</th><th>3.6</th><th>n.a.</th></lod<>	n.a.	0.4	n.a.					< LOD	n.a.	3.6	n.a.
Pd																
Nb	< LOD	n.a.	14.9	n.a.					< LOD	n.a.	14.5	n.a.	< LOD	n.a.	34.7	n.a.
Bi									< LOD	n.a.	0.2	n.a.	< LOD	n.a.	1.8	n.a.
Al					<lod< th=""><th>n.a.</th><th>75000.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	75000.0	n.a.								
Р					<lod< th=""><th>n.a.</th><th>620.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	620.0	n.a.								
Si					<lod< th=""><th>n.a.</th><th>296600.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	296600.0	n.a.								
Cl																
Mg					<lod< th=""><th>n.a.</th><th>15100.0</th><th>n.a.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>	n.a.	15100.0	n.a.								

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 7/8.

Flowente		SI	DARH1			SE	ARM2			SI	DARL2			LC	DESS-1	
Elemento	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error	Promedio	% CV	Certificado	% error
Мо	52.6	1.7	64.0	17.8	12.3	3.5	13.3	7.5								
Zr	248.6	0.6	157.9	-57.5	262.6	0.8	259.0	-1.4	597.4	0.5	592.0	0.9				
Sr	174.1	0.4	182.2	4.5	140.6	1.1	143.9	2.3	146.4	1.1	142.6	2.7	255.6	0.5	278.5	8.2
U													< LOD	n.a.	2.7	n.a.
Rb	154.2	1.6	152.3	-1.2	151.7	0.8	149.2	-1.6	124.8	1.2	115.1	8.4	48.7	1.3	51.2	4.9
Th									22.9	6.7	20.8	10.0	6.9	20.5	8.1	15.5
Pb	4410.6	0.2	3893.0	-13.3	874.1	1.4	808.0	-8.2	169.0	0.5	140.1	20.6	< LOD	n.a.	11.3	n.a.
Au																
Se																
As					101.8	10.0	75.8	-34.3					< LOD	n.a.	6.7	n.a.
Hg																
Zn	3950.3	0.3	3684.0	-7.2	745.2	1.3	760.0	1.9	193.8	3.0	218.0	-11.1	22.9	7.1	34.4	33.4
w					< LOD	n.a.	3.5	n.a.					< LOD	n.a.	1.5	n.a.
Cu	1209.9	0.8	1159.0	-4.4	217.9	1.8	236.0	7.7	43.1	3.5	46.4	-7.0	< LOD	n.a.	11.3	n.a.
Ni	116.6	4.1	230.0	49.3	< LOD	n.a.	48.8	n.a.	< LOD	n.a.	12.6	n.a.	< LOD	n.a.	42.7	n.a.
Co																
Fe									19708.2	0.2	25800.0	-23.6				
Mn									516.4	3.0	790.0	-34.6				
Cr					59.5	8.4	49.6	-20.0					77.9	11.3	105.7	26.3
v	95.4	4.4	73.2	-30.4					62.0	11.9	39.0	59.1	38.4	13.9	37.6	-2.1
Ti									3119.4	0.8	3800.0	-17.9				
Sc									< LOD	n.a.	5.5	n.a.	99.7	22.0	5.9	-1582.1
Ca									6235.6	1.0	7650.0	-18.5				
К									32953.3	0.9	34250.0	-3.8				
S																
Ва	< LOD	n.a.	865.9	n.a.	< LOD	n.a.	990.0	n.a.	< LOD	n.a.	814.0	n.a.	< LOD	n.a.	201.0	n.a.
Cs	< LOD	n.a.	4.8	n.a.	< LOD	n.a.	1.8	n.a.	< LOD	n.a.	1.1	n.a.	< LOD	n.a.	2.7	n.a.
Те																
Sb					< LOD	n.a.	106.6	n.a.					< LOD	n.a.	0.6	n.a.
Sn					< LOD	n.a.	2.4	n.a.	< LOD	n.a.	3.1	n.a.				
Cd	< LOD	n.a.	25.2	n.a.	< LOD	n.a.	5.1	n.a.								
Ag	21.9	17.4	75.9	71.1												
Pd																
Nb	< LOD	n.a.	21.9	n.a.	< LOD	n.a.	26.2	n.a.	< LOD	n.a.	80.2	n.a.	< LOD	n.a.	8.6	n.a.
Bi	< LOD	n.a.	5.1	n.a.	< LOD	n.a.	1.1	n.a.					< LOD	n.a.	0.1	n.a.
Al									<lod< th=""><th>n.a.</th><th>30800.0</th><th>n.a.</th><th></th><th></th><th></th><th></th></lod<>	n.a.	30800.0	n.a.				
Р									< LOD	n.a.	390.0	n.a.				
Si									<lod< th=""><th>n.a.</th><th>347700.0</th><th>n.a.</th><th></th><th></th><th></th><th></th></lod<>	n.a.	347700.0	n.a.				
Cl																
Mg									< LOD	n.a.	2970.0	n.a.				

Anexo 6. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo suelo – Parte 8/8.

Flowento		S	iem1			S	iem2			S	iem3			S	iem4	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr	0.0300	0.0	0.0229	31.0	0.0240	0.0	0.0186	29.0	< LOD	n.a	0.0013	n.a	0.0650	0.0	0.0505	28.7
Sr	0.0050	0.0	0.0049	2.0	0.0250	0.0	0.0258	-3.1	< LOD	n.a	0.0007	n.a	0.0917	0.6	0.0923	-0.7
U																
Rb	0.0237	2.4	0.0276	-14.3	0.0090	0.0	0.0112	-19.6	<lod< th=""><th>n.a</th><th>0.0001</th><th>n.a</th><th>0.0110</th><th>0.0</th><th>0.0130</th><th>-15.4</th></lod<>	n.a	0.0001	n.a	0.0110	0.0	0.0130	-15.4
Th																
Pb	0.0020	0.0	0.0026	-23.1	0.0020	0.0	0.0024	-16.7	< LOD	n.a	0.0001	n.a	< LOD	n.a	0.0015	n.a
Au																
Se																
As																
Hg																
Zn	0.0020	0.0	0.0032	-37.5	0.0097	6.0	0.0091	6.2	0.0023	24.7	0.0040	-41.7	0.0147	3.9	0.0131	12.0
W																
Cu	< LOD	n.a.	0.0005	n.a.	< LOD	n.a	0.0023	n.a	< LOD	n.a	0.0002	n.a	< LOD	n.a	0.00072	n.a
NI	.100		0.0000		.100		0.0000		0.0150	27.7	0.0110	27.4			0.0000	
<u> </u>	< LOD	n.a.	0.0062	n.a.	< LOD	n.a	0.0029	n.a	0.0150	37.7	0.0118	27.1	< LOD	n.a	0.0008	n.a
Fe	1.3837	0.5	1.3705	1.0	3.9850	0.2	3.8319	4.0	5.0583	0.3	5.1744	-2.2	2.58/3	0.2	2.5243	2.5
	< LOD	II.d.	0.0510	II.d.	0.0275	15.9	0.0542	-49.0	0.0007	4.1	0.0774	-21.7	0.1780	2.4	0.1000	-4.2
v																
V Ti	0 1253	17	0 1210	-5.0	0.4663	11	0.4316	8.0	<10D	na	0.0060	na	0.2880	2.4	0 2758	11
50	0.1255	1.7	0.1313	-5.0	0.4005	1.1	0.4310	0.0	<lod< th=""><th>11.a</th><th>0.0000</th><th>11.a</th><th>0.2000</th><th>2.4</th><th>0.2750</th><th>4.4</th></lod<>	11.a	0.0000	11.a	0.2000	2.4	0.2750	4.4
<u> </u>	0 7737	10	0 7018	10.2	1 6590	0.2	1 4966	10.9	0.0300	8.8	0.0358	-16.2	1 8273	01	1 7401	5.0
К	4,7117	0.2	4.3002	9.6	2.3157	0.3	2.2414	3.3	<100	n.a	0.0415	n.a	7.7627	0.3	7,2306	7.4
S																
Ba	0.0067	8.7	0.0472	-85.9	0.0143	10.7	0.0540	-73.5	< LOD	n.a	0.0004	n.a	0.0250	0.0	0.0752	-66.8
Cs																
Те																
Sb																
Sn																
Cd																
Ag																
Pd																
Nb	0.0037	15.7	0.0018	103.7	0.0020	0.0	0.0011	81.8	< LOD	n.a	0.0003	n.a	0.0400	0.0	0.0320	25.0
Bi																
Al	8.2263	0.4	3.4122	141.1	11.2080	1.6	4.2851	161.6					13.8297	1.9	5.5547	149.0
Р																
Si	38.3693	0.3	34.6925	10.6	32.6190	0.3	30.7183	6.2	17.8620	0.3	19.4970	-8.4	25.4010	0.5	24.0323	5.7
Cl																
Mg																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 1/8.

		S	iem5			S	iem6			S	iem7			S	iem8	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr	0.0183	3.1	0.0150	22.2	0.0050	0.0	0.0051	-2.0	0.0170	0.0	0.0135	25.9	0.0410	0.0	0.0318	28.9
Sr	0.0133	4.3	0.0127	5.0	0.0127	4.6	0.0135	-6.2	0.0430	0.0	0.0430	0.0	0.1537	0.4	0.1650	-6.9
U																
Rb	0.0060	0.0	0.0066	-9.1	0.0030	0.0	0.0039	-23.1	0.0070	0.0	0.0082	-14.6	0.0070	0.0	0.0094	-25.5
Th																
Pb	< LOD	n.a	0.0008	n.a	< LOD	n.a	0.0007	n.a	<lod< th=""><th>n.a</th><th>0.0007</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0012</th><th>n.a</th></lod<>	n.a	0.0007	n.a	< LOD	n.a	0.0012	n.a
Au						-										
Se						-										
As						-										
Hg																
Zn	0.0040	0.0	0.0050	-20.0	0.0050	0.0	0.0056	-10.7	0.0020	0.0	0.0037	-45.9	0.0123	4.7	0.0112	10.1
w																
Cu	< LOD	n.a	0.0003	n.a	0.0093	6.2	0.0083	12.4	0.1153	0.5	0.0756	52.6	0.0067	17.3	0.0081	-17.7
Ni		-				-										
Co	< LOD	n.a	0.0027	n.a	< LOD	n.a	0.0039	n.a	<lod< th=""><th>n.a</th><th>0.0031</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0036</th><th>n.a</th></lod<>	n.a	0.0031	n.a	< LOD	n.a	0.0036	n.a
Fe	3.7987	0.2	3.3354	13.9	5.6180	0.4	5.5940	0.4	1.9060	0.1	1.9299	-1.2	7.0667	0.1	7.4120	-4.7
Mn	0.0107	19.5	0.0387	-72.4	0.1033	2.0	0.1239	-16.6	<lod< th=""><th>n.a</th><th>0.0232</th><th>n.a</th><th>0.2173</th><th>3.1</th><th>0.2323</th><th>-6.4</th></lod<>	n.a	0.0232	n.a	0.2173	3.1	0.2323	-6.4
Cr		-				-										
V		-				-										
Ti	0.4053	0.5	0.3537	14.6	0.3353	0.8	0.2938	14.2	0.2430	1.1	0.2578	-5.7	1.2083	0.2	1.2769	-5.4
Sc																
Са	0.5903	2.6	0.5013	17.8	8.6970	0.7	8.0200	8.4	2.0927	0.3	1.8976	10.3	11.2927	0.1	9.9534	13.5
К	1.8613	0.3	1.5524	19.9	0.7187	1.8	0.6724	6.9	2.1010	0.3	1.9924	5.5	3.5890	0.2	3.1380	14.4
S																
Ва	0.0045	15.7	0.0358	-87.4	< LOD	n.a	0.0121	n.a	0.0140	14.3	0.0553	-74.7	0.0823	1.9	0.1308	-37.1
Cs																
Те		-				-										
Sb																
Sn																
Cd																
Ag																
Pd																
Nb	< LOD	n.a	0.0007	185.7	< LOD	n.a	0.0005	n.a	< LOD	n.a	0.0008	n.a	0.0290	0.0	0.0222	30.6
Bi			0.0705		10 200-				10			107.0	10.100-			
AI	11.8350	1.2	3.6767	221.9	13.7637	1.1	3.9147	251.6	10.7590	1.5	4.0205	167.6	12.4037	2.6	3.8089	225.6
Р																
Si	35.7437	0.1	32.5885	9.7	26.0383	0.2	24.7804	5.1	35.6900	0.3	32.0742	11.3	18.4873	0.5	17.2995	6.9
CI																
Mg																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 2/8.

-		S	iem9			Si	em10			2	710a			2	711a	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr	0.0210	0.0	0.0176	19.3	0.0133	4.3	0.0131	1.8					0.0400	0.0	0.0230	73.9
Sr	0.0080	0.0	0.0086	-7.0	0.0190	0.0	0.0203	-6.4	0.0237	2.4	0.0330	-28.3	0.0230	0.0	0.0245	-6.2
U																
Rb	0.0120	0.0	0.0145	-17.2	0.0070	0.0	0.0092	-23.9	0.0090	0.0	0.0120	-25.0	0.0100	0.0	0.0110	-9.1
Th																
Pb	0.0030	0.0	0.0036	-16.7	0.3233	0.4	0.2600	24.4	0.6810	0.4	0.5532	23.1	0.1987	0.6	0.1162	71.0
Au																
Se																
As																
Hg																
Zn	0.0180	0.0	0.0152	18.4	1.1000	0.3	1.5800	-30.4	0.4653	0.9	0.6952	-33.1	0.0503	1.1	0.0350	43.6
W	.100		0.0000		0.5057	0.2	0 5 4 2 0	0.7	0.44.67	1.4	0.2050	44.2	0.0167	25	0.0114	46.2
Cu	< LOD	n.a	0.0020	n.a	0.5957	0.3	0.5430	9.7	0.4167	1.4	0.2950	41.2	0.0167	3.5	0.0114	46.2
	<100	n 2	0.0020	n 2	<100	n 2	0.0008	22	<100	n 2	0.0010	22	<100	22	0.0010	n 2
- C0 - E0	< LOD 5 1220	0.2	4 0020	11.a	1 9170	0.2	1 0710	7.0	4 5200	0.2	2 2000	24.0	2 1022	0.2	2 8000	10.1
Mn	0.0433	1.2	0.0607	-37.8	0.3420	0.2	0.3330	27.5	0.2213	1.2	1 0100	-78.1	0.0500	4.0	0.0638	-21.6
Cr	0.0433	4.0	0.0037	-37.0	0.3420	0.8	0.3330	2.7	0.2215	1.5	1.0100	-70.1	0.0500	4.0	0.0038	-21.0
V																
Ti	0.5860	0.3	0.5216	12.4	0.2800	4.9	0.2398	16.8	0.3323	0.3	0.2830	17.4	0.3507	0.3	0.3060	14.6
Sc																
Ca	0.9077	1.1	0.8092	12.2	17.8867	2.3	15.7536	13.5	0.9960	0.2	1.2500	-20.3	2.9660	0.6	2.8800	3.0
К	3.0427	0.2	2.7810	9.4	2.0113	1.7	1.7350	15.9	2.3543	0.3	2.1100	11.6	2.8203	0.1	2.4500	15.1
S																
Ва	0.0210	8.2	0.0630	-66.7	< LOD	n.a	0.0178	n.a	0.0267	2.2	0.0707	-62.3	0.0157	9.8	0.0726	-78.4
Cs																
Те																
Sb																
Sn																
Cd																
Ag																
Pa	0.0020	0.0	0.0010	<i>CC</i> 7	0.0020	0.0	0.0007	105.7								
ND D:	0.0020	0.0	0.0012	00.7	0.0020	0.0	0.0007	185.7								
	15 0760	17	4 7612	216.6	7 9532	2.8	2 1425	271.2	9 4722	0.0	6.4400	47.1	10 6357	17	6 5300	62.9
P	13.0700	1.7	4.7012	210.0	1.5555	2.0	2.1423	271.2	5.4725	0.5	0.7400	47.1	10.0337	1.7	0.3300	02.5
Si	30.0910	0.3	27.9130	7.8	15.0047	1.0	13.4188	11.8	31.3623	0.2	28.9700	8.3	33.5170	0.1	30,4400	10.1
CI												2.0				
Mg																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 3/8.

- ·		D	BC-1			R	TS-3			R	TS-4			IC	GLa-1	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr	0.0240	0.0	0.0183	30.9	0.0080	0.0	0.0066	21.2	<lod< th=""><th>n.a</th><th>0.0010</th><th>n.a</th><th>0.0310</th><th>0.0</th><th>0.0242</th><th>28.1</th></lod<>	n.a	0.0010	n.a	0.0310	0.0	0.0242	28.1
Sr	0.0140	0.0	0.0134	4.4	0.0040	0.0	0.0040	0.0	<lod< th=""><th>n.a</th><th>0.0012</th><th>n.a</th><th>0.0550</th><th>0.0</th><th>0.0575</th><th>-4.3</th></lod<>	n.a	0.0012	n.a	0.0550	0.0	0.0575	-4.3
U																
Rb	0.0180	0.0	0.0194	-7.2									0.0023	24.7	0.0033	-28.8
Th																
Pb	0.0077	7.5	0.0053	43.4	0.0120	8.3	0.0146	-17.8	<lod< th=""><th>n.a</th><th>0.0060</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0010</th><th>n.a</th></lod<>	n.a	0.0060	n.a	< LOD	n.a	0.0010	n.a
Au																
Se																
As																
Hg																
Zn	<lod< th=""><th>n.a</th><th>0.0021</th><th>n.a</th><th>0.2003</th><th>0.6</th><th>0.1850</th><th>8.3</th><th>0.0180</th><th>5.6</th><th>0.0158</th><th>13.9</th><th>0.0070</th><th>0.0</th><th>0.0079</th><th>-11.1</th></lod<>	n.a	0.0021	n.a	0.2003	0.6	0.1850	8.3	0.0180	5.6	0.0158	13.9	0.0070	0.0	0.0079	-11.1
W																
Cu	0.0020	0.0	0.0021	-6.3	0.3043	0.2	0.2820	7.9	0.0360	9.6	0.0280	28.6	< LOD	n.a	0.0015	n.a
Ni																
Со	<lod< th=""><th>n.a</th><th>0.0002</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0260</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0186</th><th>n.a</th><th>0.0143</th><th>28.2</th><th>0.0011</th><th>1169.4</th></lod<>	n.a	0.0002	n.a	< LOD	n.a	0.0260	n.a	< LOD	n.a	0.0186	n.a	0.0143	28.2	0.0011	1169.4
Fe	0.8870	1.0	0.6553	35.4	20.7563	0.2	21.0400	-1.3	47.9163	0.3	56.7000	-15.5	3.8343	0.3	4.1465	-7.5
Mn					0.2030	1.0	0.2000	1.5	< LOD	n.a	0.0150	n.a	0.0663	3.1	0.0822	-19.3
Cr																
V										10.0						
Tì	1.001/	0.7	0.6/32	48.8	0.3267	0.2	0.3200	2.1	0.0990	12.9	0.0800	23.8	0.5963	0.7	0.6400	-6.8
SC	0.4007		0.4404	20.0	0.5607	4.5	2 2000	46.5	0.4067	5.0	0.0070	24.4	2.0057		2 60 42	7.6
Ca	0.1837	1.4	0.1404	30.9	2.5627	1.5	2.2000	16.5	0.4067	5.0	0.3270	24.4	3.9657	0.3	3.6843	7.6
ĸ	2.9630	0.6	2.1888	35.4	0.4270	3.4	0.3500	22.0	0.1503	6. Z	0.0400	275.8	1.8570	0.7	1.8050	2.9
Ba	<100	n 2	0.0476	n 2	0.0107	F /	0.0008	00	0 0227	20.0	0.0027	720 5				
Da	< LOD	11.a	0.0470	11.a	0.0107	5.4	0.0098	0.0	0.0227	20.8	0.0027	739.3				
To																
Sh																
Sn																
Cd																
Ag																
Pd																
Nb	0.0040	0.0	0.0026	55.0									0.0027	21.7	0.0019	40.7
Bi																
Al	27.6693	1.6	8.4178	228.7	7.6820	2.5	4.7900	60.4	1.5480	12.8	0.3390	356.6	13.1337	1.7	4.5980	185.6
Р																
Si	31.6473	0.2	24.3012	30.2	13.1400	0.3	15.9900	-17.8	1.3500	1.3	0.9980	35.3	30.9783	0.2	28.3054	9.4
Cl																
Mg																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 4/8.
- ·		10	GLC-1			IC	GLd-1			IC	GLs-1			10	GLsy1	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr					< LOD	n.a	0.0003	n.a	0.0747	0.8	0.0579	29.0	0.0510	0.0	0.0399	27.9
Sr					0.0160	0.0	0.0167	-4.3	0.004	0.0	0.0043	-6.5	0.1577	0.4	0.1574	0.2
U																
Rb	<lod< th=""><th>n.a</th><th>0.0000</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0000</th><th>n.a</th><th>0.005</th><th>0.0</th><th>0.0075</th><th>-33.5</th><th>0.0180</th><th>0.0</th><th>0.0215</th><th>-16.4</th></lod<>	n.a	0.0000	n.a	< LOD	n.a	0.0000	n.a	0.005	0.0	0.0075	-33.5	0.0180	0.0	0.0215	-16.4
Th																
Pb	<lod< th=""><th>n.a</th><th>0.0003</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0000</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0027</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0019</th><th>n.a</th></lod<>	n.a	0.0003	n.a	< LOD	n.a	0.0000	n.a	< LOD	n.a	0.0027	n.a	< LOD	n.a	0.0019	n.a
Au																
Se																
As																
Hg																
Zn			-		< LOD	n.a	0.0001	n.a	0.0100	10.0	0.0102	-2.1	0.0110	0.0	0.0116	-4.9
W																
Cu	<lod< th=""><th>n.a</th><th>0.0004</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0003</th><th>n.a</th><th>0.0043</th><th>13.3</th><th>0.0056</th><th>-22.9</th><th>< LOD</th><th>n.a</th><th>0.0014</th><th>n.a</th></lod<>	n.a	0.0004	n.a	< LOD	n.a	0.0003	n.a	0.0043	13.3	0.0056	-22.9	< LOD	n.a	0.0014	n.a
Ni																<u> </u>
Со	< LOD	n.a	0.0002	n.a	< LOD	n.a	0.0002	n.a	0.0165	4.3	0.0046	258.6	< LOD	n.a	0.0003	n.a
Fe	< LOD	n.a	0.0204	n.a	< LOD	n.a	0.0170	n.a	9.6990	0.3	9.0985	6.6	2.8853	0.3	2.8881	-0.1
Mn	< LOD	n.a	0.0076	n.a	< LOD	n.a	0.0039	n.a	0.2370	1.7	0.2198	7.8	0.1283	3.5	0.1443	-11.1
Cr																l
V																
11	< LOD	n.a	0.0130	n.a	< LOD	n.a	0.0104	n.a	1.6043	0.7	1.5547	3.2	0.2647	1.2	0.2987	-11.4
SC	40,0000		20.6757	25.5	20.0200	0.0	24 2077	22.2	0.0000		0.0000	44.0	4.0040		4.0200	7.0
Ca	49.8063	0.1	39.6/5/	25.5	29.9300	0.3	24.2977	23.2	0.3220	0.8	0.2892	11.3	1.9640	0.2	1.8206	7.9
ĸ	< LOD	n.a	0.0073	n.a	< LOD	n.a	0.0061	n.a	0.5010	1.7	0.4984	0.5	5.2460	0.4	4.8770	7.0
Ba	<100	n 2	0.0002	22												
Da	< LOD	11.a	0.0005	11.a												
Te																
Sh																
Sn																
Cd																
Ag																
Pd																
Nb	< LOD	n.a	0.0001	n.a	< LOD	n.a	0.0001	n.a	0.0060	0.0	0.0050	20.1	0.0330	0.0	0.0282	17.2
Bi																
Al	<lod< th=""><th>n.a</th><th>0.0064</th><th>n.a</th><th>0.2840</th><th>7.5</th><th>0.0247</th><th>1049.7</th><th>19.0023</th><th>1.5</th><th>6.3111</th><th>201.1</th><th>14.8767</th><th>3.8</th><th>5.7420</th><th>159.1</th></lod<>	n.a	0.0064	n.a	0.2840	7.5	0.0247	1049.7	19.0023	1.5	6.3111	201.1	14.8767	3.8	5.7420	159.1
Р																
Si	0.1377	0.8	0.0489	181.8	0.8970	0.7	0.7896	13.6	21.5920	0.4	21.3612	1.1	26.8117	0.2	24.3312	10.2
Cl																
Mg																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 5/8.

Flowerto		10	GLsy2			10	iLgb3			10	GLsy4			E	V01	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr	0.0700	0.0	0.0515	36.0	0.0153	3.8	0.0125	22.7	0.0210	0.0	0.0179	17.2	0.0537	1.1	0.0447	20.1
Sr	0.0957	0.6	0.0965	-0.9	0.1327	0.4	0.1428	-7.1	0.1323	0.4	0.1369	-3.4	0.0433	1.3	0.0440	-1.5
U																
Rb	0.0110	0.0	0.0140	-21.5	0.0020	0.0	0.0023	-12.1	0.0050	0.0	0.0059	-15.4	0.0060	0.0	0.0075	-19.7
Th																
Pb	< LOD	n.a	0.0013	n.a	< LOD	n.a	0.0006	n.a	<lod< th=""><th>n.a</th><th>0.0008</th><th>n.a</th><th>0.0053</th><th>10.8</th><th>0.0054</th><th>-1.4</th></lod<>	n.a	0.0008	n.a	0.0053	10.8	0.0054	-1.4
Au																
Se																
As																
Hg																
Zn	0.0090	0.0	0.0093	-3.1	0.0113	5.1	0.0109	3.8	0.0070	0.0	0.0070	-0.1	0.0083	6.9	0.0087	-4.4
W																
Cu	< LOD	n.a	0.0007	n.a	0.0047	12.4	0.0050	-7.3	<lod< th=""><th>n.a</th><th>0.0013</th><th>n.a</th><th>0.0030</th><th>0.0</th><th>0.0051</th><th>-40.9</th></lod<>	n.a	0.0013	n.a	0.0030	0.0	0.0051	-40.9
Ni																
Co	< LOD	n.a	0.0005	n.a	0.0223	15.7	0.0053	319.0	< LOD	n.a	0.0006	n.a	< LOD	n.a	0.0022	n.a
Fe	2.5680	0.1	2.6685	-3.8	10.2543	0.3	10.6663	-3.9	3.7117	0.4	3.7997	-2.3	5.1600	0.2	4.7829	7.9
Mn	0.1687	1.2	0.1794	-6.0	0.1230	1.4	0.1316	-6.5	0.1373	3.3	0.1225	12.1	0.0640	4.1	0.0736	-13.0
Cr																
V																
Ti	0.5367	0.4	0.5842	-8.1	2.4633	0.6	2.3187	6.2	0.9733	0.5	0.9881	-1.5	0.5267	1.1	0.4502	17.0
Sc													4.0000			
Са	1.8543	0.6	1.6/50	10.7	9.8053	0.5	9.1968	6.6	3.3627	1.1	3.1///	5.8	1.9623	0.1	1./186	14.2
ĸ	4.7420	0.4	4.5195	4.9	1.0560	0.8	0.8/5/	20.6	2.7597	1.0	2.5495	8.2	1.5340	0.9	1.3947	10.0
5													0.0290	2.0	0 1170	67.7
Ба													0.0380	2.0	0.1178	-67.7
To CS																
Sh																
Sn																
Cd																
Δσ																
Pd																
Nb	0.0250	0.0	0.0212	17.7	0.0050	0.0	0.0038	33.3	0.0080	0.0	0.0066	21.4	0.0060	0.0	0.0043	39.5
Bi																
Al	13.8770	0.9	5.2430	164.7	16.7737	2.3	4.2672	293.1	14.3017	2.9	5.1555	177.4	13.1763	1.1	5.4172	143.2
Р																
Si	29.6083	0.1	27.0355	9.5	19.5550	0.1	18.2724	7.0	27.7673	0.2	25.5799	8.6	22.0200	0.3	21.5776	2.1
Cl																
Mg																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 6/8.

		5	KO1			2	.709a				QS1			SI	DAR-1	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr	0.0147	3.9	0.0137	7.1	0.0163	3.5	0.0160	2.1	0.0193	3.0	0.0159	21.4	0.0543	1.1	0.0353	54.0
Sr	0.0280	0.0	0.0312	-10.3	0.0190	0.0	0.0231	-17.7	0.0110	0.0	0.0113	-2.7	0.0150	0.0	0.0152	-1.0
U																
Rb	0.0180	0.0	0.0122	47.5	0.0067	8.7	0.0096	-30.6	0.0107	5.4	0.0136	-21.3	0.0120	0.0	0.0143	-16.0
Th																
Pb	0.9730	0.3	0.8199	18.7	< LOD	n.a	0.0019	n.a	< LOD	n.a	0.0009	n.a	0.1353	0.9	0.0979	38.2
Au																
Se																
As																
Hg																
Zn	1.7403	0.2	1.7033	2.2	0.0097	6.0	0.0106	-8.8	0.0070	0.0	0.0075	-6.7	0.1147	0.5	0.0932	23.0
W														-		
Cu	0.1150	1.7	0.0993	15.8	< LOD	n.a	0.0035	n.a	< LOD	n.a	0.0011	n.a	0.0380	0.0	0.0302	25.8
Ni																
Co	< LOD	n.a	0.0022	n.a	< LOD	n.a	0.0013	n.a	< LOD	n.a	0.0016	n.a	< LOD	n.a	0.0011	n.a
Fe	1.9263	0.9	2.2586	-14.7	3.5477	0.3	3.5000						3.4043	0.3	3.2369	5.2
Mn	0.1357	2.6	0.1502	-9.7	0.0287	8.8	0.0538						0.6363	1.1	0.5401	17.8
Cr																
V																
n	0.8390	2.7	0.9472	-11.4	0.3517	0.6	0.3420	2.8					0.3900	0.7	0.3765	3.6
Sc	45 5000	4.2	45.0467	2.2	2 0217	2.0	4 0000	7.5					0.6522	0.0	0.5700	11.0
Ca	15.5030	4.3	15.8467	-2.2	2.0317	2.0	1.8900	7.5					0.6523	0.8	0.5720	14.0
ĸ	5.9303	3.1	5.9190	0.2	1.9133	1.5	2.0300	-5.7					3.4210	0.8	3.0155	13.4
Bo	0 1157	12	0 1719	22.7	0.0170	11 0	0.0068	07 A	0.0077	27.2	0.0262	70 0	0.0220	12.0	0.0704	72.2
Da	0.1157	1.5	0.1718	-32.7	0.0170	11.0	0.0908	-02.4	0.0077	27.2	0.0302	-76.6	0.0220	12.0	0.0794	-72.5
То																
Sh																
Sn																
Cd																
Ag																
Pd																
Nb	0.0020	0.0	0.0015	34.2					0.0020	0.0	0.0014	38.2	0.0050	0.0	0.0035	44.1
Bi																
Al	5.6787	7.4	2.4494	131.8	8.5620	0.3	7.5000	14.2					9.8007	2.9	3.1201	214.1
Р																
Si	6.5207	0.6	8.8368	-26.2	27.2927	0.3	29.6600	-8.0					36.2363	0.4	33.6335	7.7
Cl																
Mg																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 7/8.

5 1		SD	ARH1			SD	ARM2			S	DARL2			LC	ESS-1	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Мо																
Zr	0.0303	3.8	0.0258	17.6	0.0337	1.7	0.0242	39.1	0.0760	0.0	0.0592	28.4				
Sr	0.0167	3.5	0.0182	-8.5	0.0147	3.9	0.0146	0.5	0.0150	0.0	0.0143	5.2	0.0263	2.2	0.0279	-5.4
U																
Rb	0.0117	4.9	0.0152	-23.4	0.0130	0.0	0.0147	-11.6	0.0100	0.0	0.0115	-13.1	0.0040	0.0	0.0051	-21.8
Th																
Pb	0.5050	5.1	0.3893	29.7	0.1140	0.9	0.0821	38.9	0.0247	2.3	0.0140	76.1	< LOD	n.a	0.0011	n.a
Au																
Se																
As																
Hg																
Zn	0.4357	2.7	0.3684	18.3	0.0957	0.6	0.0814	17.5	0.0247	2.3	0.0218	13.1	0.0027	21.7	0.0034	-22.6
W																
Cu	0.1487	6.2	0.1159	28.3	0.0300	0.0	0.0248	21.0	0.0043	13.3	0.0046	-6.6	< LOD	n.a	0.0011	n.a
Ni																
Co	< LOD	n.a	0.0056	n.a	<lod< th=""><th>n.a</th><th>0.0010</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0005</th><th>n.a</th><th>< LOD</th><th>n.a</th><th>0.0006</th><th>n.a</th></lod<>	n.a	0.0010	n.a	< LOD	n.a	0.0005	n.a	< LOD	n.a	0.0006	n.a
Fe	4.9297	0.4	4.5000	9.5	1.9557	0.2	1.8500	5.7	2.7157	0.0	2.5800	5.3	1.5197	0.4	1.4684	3.5
Mn	0.4650	1.1	0.3990	16.5	0.0960	4.5	0.1090	-11.9	0.0577	3.6	0.0790	-27.0	0.0253	6.0	0.0499	-49.2
Cr																
V																
Ti	0.5020	45.2	0.3360	49.4	0.1973	0.6	0.1850	6.7	0.4060	0.9	0.3800	6.8	0.3130	1.5	0.2535	23.5
Sc	1.0000											10.0				
Са	1.6620	44.6	1.0500	58.3	0.7360	1.1	0.5940	23.9	0.9120	1.1	0.7650	19.2	15.3110	0.5	11.6/91	31.1
K	5.0963	39.3	3.4600	47.3	4./16/	0.3	4.1500	13.7	3.9377	0.7	3.4250	15.0	1.1487	1.5	1.0792	6.4
5	0.0000	55.4	0.0000	74.6	0.0000		0.0050	75.7	0.0170		0.004.4	70.4			0.0204	
ва	0.0220	55.1	0.0866	-74.6	0.0233	4.9	0.0959	-75.7	0.0170	0.0	0.0814	-79.1	< LOD	n.a	0.0201	n.a
re sh																
Sn																
Cd																
Δσ																
Pd																
Nh	0.0040	43.3	0.0022	83.1	0.0040	0.0	0.0024	66.7	0.0080	0.0	0.0080	-0.2	<100	na	0.0009	na
Bi	0.0040	+5.5	0.0022	05.1	0.00-0	0.0	0.0024	00.7	0.0000	0.0	0.0000	0.2		11.0	0.0005	11.0
Al	14,5740	49.4	3,1300	365.6	9,8347	0.4	3,3900	190.1	9.6230	3.7	3.0800	212.4	5,7343	2.2	1.6400	249.7
P	11.57 10	10.4	0.1000	303.3	5.0547	0.7	5.5500	150.1	5.0255	5.7	5.0000	212.7	5.7545	L.L	1.0100	2-13.7
Si	38,4960	23.2	30,6000	25.8	39.0700	0.1	34,2600	14.0	40.5180	0.4	34,7700	16.5	24,3243	0.5	24,8906	-2.3
CI	30		50.0000	20.0	33.07.00	0.1	5.12000	25	1010100	0.7	5	20.0	1.02.0	0.0	1.0500	2.5
Mg																
9																

Anexo 7. Error porcentual elemental para cada estándar de trabajo en forma de polvo, modo mina – Parte 8/8.

Elomonto		07	738-16			07	04-16c			07	34-16 a			07	15-16a	
Elemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Au	58.16	0.01	58.58	-0.7	74.91	0.03	75.08	-0.2	33.53	0.03	33.41	0.4	58.85	0.04	59.1	-0.4
Ag	20.08	0.10	19.80	1.4	3.06	0.06	3.05	0.5	7.23	0.05	7.09	2.0	9.29	0.17	9.05	2.6
Cu	20.82	0.06	21.10	-1.3	9.43	0.04	9.37	0.6	48.68	0.05	48.82	-0.3	25.72	0.08	25.74	-0.1
Zn	0.67	1.08	0.52	29.4					10.25	0.13	10.68	-4.0				
Pd					12.43	0.12	12.50	-0.5								
Ni													5.83	0.17	6.11	-4.7

Anexo 8. Error porcentual elemental para cada estándar de trabajo, modo metales preciosos – Parte 1/2.

Anexo 8. Error porcentual elemental para cada estándar de trabajo, modo metales preciosos – Parte 2/2.

Flomonto		07	32-16			07	44-16			07	20-16	
Liemento	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error	Promedio	% CV	Certificado	% Error
Au	33.42	0.04	33.46	-0.1	55.49	0.02	55.68	-0.3	99.89	0.01	99.99	-0.1
Ag	57.06	0.01	57.10	-0.1	27.26	0.01	26.80	1.7				
Cu	9.05	0.14	9.44	-4.1	9.38	0.01	9.43	-0.5				
Zn					1.28	0.20	1.52	-15.8				
Pd					6.40	0.12	6.57	-2.6				
Ni												

Fattén dan	#CTD		Са			К			Pb			Zn			Cr	
Estandar	#SID	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							R	ocas y Mine	rales							
Siem1	1	5910.15	7017.50	-15.78	40001.96	43001.70	-6.98		26.00		18.84	32.00	-41.13		6.50	
Siem2	2	12511.43	14965.89	-16.40	21674.42	22414.01	-3.30		24.00		55.22	91.00	-39.32	51.84	67.00	-22.62
Siem3	3	588.94	358.04	64.49	587.28	415.07	41.49		1.00		9.79	40.00	-75.53	2382.60	2180.00	9.29
Siem4	4	12321.48	17400.00	-29.19	67576.36	72300.00	-6.53		15.00		97.37	131.00	-25.67		11.40	
Siem5	5	4565.63	5012.50	-8.92	16027.28	15524.00	3.24		8.00		39.23	50.00	-21.54	44.63	52.00	-14.17
Siem6	6	66764.61	80200.00	-16.75	6910.46	6724.20	2.77		7.00		22.96	56.00	-59.00	349.22	360.00	-3.00
Siem7	7	16183.83	18975.89	-14.71	19157.72	19900.00	-3.73		7.00		15.62	37.00	-57.79		14.00	
Siem8	8	87248.48	99500.00	-12.31	34768.10	31400.00	10.73		12.00		72.84	112.00	-34.97		27.00	
Siem9	9	6942.84	8091.61	-14.20	27771.37	27809.98	-0.14		36.00		97.44	152.00	-35.90	105.75	46.00	129.90
IGLa-1	10	30911.10	36842.66	-16.10	16874.59	18049.76	-6.51		10.24		39.35	78.75	-50.04		29.21	
IGLc-1	11	549155.52	396757.28	38.41		73.05			2.86		9.58					
IGLd-1	12	330100.50	242977.36	35.86		60.85			0.49			0.85			9.99	
IGLsy1	13	13356.14	18206.12	-26.64	45543.32	48770.32	-6.62		19.29		70.04	115.67	-39.45		1.54	
IGLsy2	14	12891.49	16749.70	-23.03	41550.11	45195.45	-8.07		12.82		58.75	92.84	-36.72		2.60	
IGLgb3	15	79967.51	91968.13	-13.05	9705.17	8757.24	10.82		5.85		42.45	109.20	-61.13		4.68	
IGLsy4	16	25252.91	31777.03	-20.53	24036.71	25494.94	-5.72		7.71		40.53	70.04	-42.14	45.67	2.19	1985.24
							Su	elos y Sedin	nentos							
QS1	1	50178.94			38570.65				9.32		46.70	75.00	-37.74	46.26	70.53	-34.42
SDAR-1	2	4836.33	5719.98	-15.45	29211.75	30155.15	-3.13	782.94	979.30	-20.05	707.87	932.10	-24.06	140.61	92.67	51.74
SDAR H1	3	9087.08	10500.00	-13.46	34148.08	34600.00	-1.31	2558.04	3893.00	-34.29	2244.18	3684.00	-39.08	360.13		
SDAR M2	4	5195.55	5940.00	-12.53	38601.62	41500.00	-6.98	702.98	821.00	-14.38	590.61	760.00	-22.29	56.21	70.00	-19.70
SDAR L2	5	6220.44	7650.00	-18.69	32378.74	34250.00	-5.46	129.49	140.10	-7.58	145.38	218.00	-33.31	31.61	27.00	17.06
IGLs-1	6	2769.91	2892.00	-4.22	4702.06	4984.38	-5.66		26.87		33.18	102.15	-67.52	251.76	215.08	17.05
2709a	7	17837.01	18900.00	-5.62	19474.40	20300.00	-4.07		18.90		51.79	106.00	-51.14	139.87	130.00	7.59
2710a	8	7688.45	12500.00	-38.49	20857.07	21100.00	-1.15	1985.14	5532.00	-64.12	1767.98	6952.00	-74.57		39.00	
2711a	9	21486.01	28800.00	-25.40	24142.97	24500.00	-1.46	930.29	1162.00	-19.94	240.43	350.40	-31.39		47.00	
LOESS-1	10	126452.65	116791.25	8.27	12852.58	10791.93	19.09		11.34		18.66	34.40	-45.75	57.65	105.70	-45.46
								Varios						•		
Siem10	1	156096.36	157500.00	-0.89	22796.22	17400.00	31.01	1402.04	2600.00	-46.08	5427.19	15800.00	-65.65	51.55	92.00	-43.97
dbc-1	2	1539.62	1403.50	9.70	21091.01	21887.70	-3.64	10.56	53.50	-80.26	11.69	21.00	-44.35	127.14	105.30	20.74
rts-3	3	19439.66	22000.00	-11.64	3514.50	3500.00	0.41	59.75	146.00	-59.07	1176.13	1850.00	-36.43	48.91	75.00	-34.79
rts-4	4	1941.96	3270.00	-40.61	441.84	400.00	10.46		60.00			158.00			100.00	
EVO1	5	16609.65	17185.70	-3.35	14847.01	13946.50	6.46		54.10		34.20	87.20	-60.78	94.08	70.50	33.45
SKO1	6	102450.37	158466.60	-35.35	54672.16	59189.60	-7.63	7085.86	8199.00	-13.58	14192.12	17033.00	-16.68	313.62	430.00	-27.06

Anexo 9. Análisis de estándares en forma de pastilla, modo suelo – Parte 1/4.

Fatándar	#CTD		Sr			Mn			Rb			Ti			V	
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							R	locas y Mine	rales							
Siem1	1	36.38	49.00	-25.76	102.13	309.73	-67.03	214.61	276.00	-22.24	1106.26	1318.90	-16.12	21.63	14.00	54.52
Siem2	2	189.99	258.00	-26.36	293.40	542.03	-45.87	85.59	112.00	-23.58	4093.85	4316.40	-5.16	101.23	110.00	-7.98
Siem3	3	3.59	7.00	-48.67	508.18	774.33	-34.37		1.00		88.04	59.95	46.86		13.00	
Siem4	4	695.10	923.00	-24.69	1032.78	1858.39	-44.43	102.73	130.00	-20.98	2167.62	2757.70	-21.40	109.75	131.00	-16.22
Siem5	5	94.93	127.00	-25.25	155.32	400.00	-61.17	51.73	66.00	-21.62	3461.28	3500.00	-1.11	103.74	213.00	-51.30
Siem6	6	96.54	135.00	-28.49	772.85	1238.93	-37.62	28.11	39.00	-27.93	2436.90	2900.00	-15.97	180.21	227.00	-20.61
Siem7	7	319.07	430.00	-25.80	66.51	232.00	-71.33	61.55	82.00	-24.94	2195.31	2600.00	-15.56	68.66	59.00	16.37
Siem8	8	1231.73	1650.00	-25.35	1548.58	2300.00	-32.67	70.54	94.00	-24.96	8341.95	12800.00	-34.83	304.99	338.00	-9.77
Siem9	9	63.04	86.00	-26.70	393.68	700.00	-43.76	113.51	145.00	-21.72	5158.18	5215.64	-1.10	166.07	171.00	-2.88
IGLa-1	10	436.66	574.75	-24.03	491.47	822.11	-40.22	26.10	32.77	-20.36	5092.96	6400.44	-20.43	113.28	97.97	15.62
IGLc-1	11	246.39	331.30	-25.63	63.09	76.04	-17.03		0.19		173.87	130.39	33.34			
IGLd-1	12	124.48	167.27	-25.59		38.95			0.19		63.70	103.65	-38.55		8.11	
IGLsy1	13	1239.00	1573.81	-21.27	846.96	1443.35	-41.32	174.94	215.31	-18.75	2167.25	2987.25	-27.45	41.73	16.88	147.22
IGLsy2	14	755.88	965.23	-21.69	1012.22	1794.43	-43.59	111.05	140.13	-20.75	4077.54	5842.06	-30.20	87.18	42.65	104.40
IGLgb3	15	1090.52	1428.38	-23.65	1069.62	1315.90	-18.72	19.20	22.76	-15.63	18616.91	23186.72	-19.71	451.64	461.21	-2.07
IGLsy4	16	1073.16	1369.21	-21.62	976.97	1225.30	-20.27	47.08	59.08	-20.31	7812.53	9881.01	-20.93	148.94	48.44	207.46
							Su	elos y Sedin	nentos							
QS1	1	78.26	113.00	-30.75	461.42			96.62	135.50	-28.69	4127.04			125.46	112.00	12.02
SDAR-1	2	116.86	151.50	-22.87	3554.78	5400.95	-34.18	113.45	142.80	-20.55	3243.76	3764.86	-13.84	90.31	68.27	32.28
SDAR H1	3	102.22	182.20	-43.90	2249.08	3990.00	-43.63	91.01	152.30	-40.24	2878.85	3360.00	-14.32	91.74	73.15	25.41
SDAR M2	4	117.57	146.00	-19.47	589.53	1090.00	-45.91	125.21	147.00	-14.83	1433.03	1850.00	-22.54	34.42	28.00	22.94
SDAR L2	5	122.15	142.60	-14.34	414.64	790.00	-47.51	101.97	115.10	-11.41	3067.36	3800.00	-19.28	49.97	39.00	28.13
IGLs-1	6	31.13	42.78	-27.22	1921.92	2198.01	-12.56	55.19	75.22	-26.63	15524.54	15546.82	-0.14	350.68	290.37	20.77
2709a	7	144.57	231.00	-37.42	259.49	538.00	-51.77	63.38	96.00	-33.98	3407.30	3420.00	-0.37	129.69	112.00	15.79
2710a	8	73.54	330.00	-77.72	765.89	10100.00	-92.42	37.28	120.00	-68.93	2950.41	2830.00	4.25	79.03	76.60	3.17
2711a	9	137.50	245.30	-43.95	282.35	638.00	-55.74	75.22	110.00	-31.62	2790.91	3060.00	-8.79	89.83	81.60	10.09
LOESS-1	10	206.74	278.50	-25.77	244.63	498.67	-50.94	38.48	51.20	-24.84	1918.06	2534.68	-24.33	38.70	37.56	3.04
						•		Varios								
Siem10	1	95.44	203.00	-52.99	1413.15	3300.00	-57.18	43.73	92.00	-52.47	1795.05	2400.00	-25.21	358.49	450.00	-20.34
dbc-1	2	107.28	134.10	-20.00				158.58	194.00	-18.26	7077.81	6731.78	5.14	193.27	137.50	40.56
rts-3	3	28.59	40.00	-28.52	2241.06	2000.00	12.05	8.58			2808.14	3200.00	-12.25	105.70		
rts-4	4	7.35	12.00	-38.72	312.10	150.00	108.06				662.78	800.00	-17.15			
EVO1	5	285.31	440.00	-35.16	435.89	735.60	-40.74	52.01	74.70	-30.37	4891.09	4502.20	8.64	146.08	97.50	49.82
SKO1	6	243.34	312.00	-22.01	1060.98	1502.20	-29.37	204.14	122.00	67.33	4749.25	9472.10	-49.86	61.29	48.10	27.42

Anexo 9. Análisis de estándares en forma de pastilla, modo suelo – Parte 2/4.

Fatándar	#CTD		Zr			As			Th			Co			Fe	
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							1	Rocas y Min	erales							
Siem1	1	185.37	229.00	-19.05	6.66			19.37	20.00	-3.13	40.49	62.00	-34.69	7382.31	13705.26	-46.14
Siem2	2	153.80	186.00	-17.31				7.72	11.00	-29.79		29.00		23489.48	38318.80	-38.70
Siem3	3		13.00						1.00		79.28	118.00	-32.81	35568.65	51744.36	-31.26
Siem4	4	424.90	505.00	-15.86				26.22	30.00	-12.61		8.00		14368.28	25242.86	-43.08
Siem5	5	113.36	150.00	-24.43	5.11			4.60	8.00	-42.46	29.28	27.00	8.44	19907.02	33354.14	-40.32
Siem6	6	30.33	51.00	-40.54					2.00		65.31	39.00	67.46	36175.06	55939.85	-35.33
Siem7	7	109.50	135.00	-18.89				5.27	6.00	-12.17	27.01	31.00	-12.89	10310.53	19300.00	-46.58
Siem8	8	272.23	318.00	-14.39				14.83	20.00	-25.85	63.22	36.00	75.61	49977.99	74100.00	-32.55
Siem9	9	141.74	176.00	-19.47	9.21			9.37	10.00	-6.27		20.00		32349.06	49087.22	-34.10
IGLa-1	10	204.40	241.93	-15.51		1.73			2.97			11.29		24217.16	41464.57	-41.60
IGLc-1	11							3.11				1.78		223.91	204.39	9.55
IGLd-1	12		2.56									1.87		149.41	170.20	-12.21
IGLsy1	13	352.69	398.71	-11.54		3.93		34.60	38.04	-9.03		3.19		16770.12	28881.39	-41.93
IGLsy2	14	453.17	514.76	-11.96		4.43		25.56	27.34	-6.51		4.52		14673.73	26684.71	-45.01
IGLgb3	15	103.46	124.93	-17.19	4.49	4.52	-0.66		2.04		103.35	53.30	93.90	1069.62	106662.96	-99.00
IGLsy4	16	144.12	179.19	-19.57		4.63		7.91	7.71	2.59		6.46		23970.06	37997.28	-36.92
				•	1		Si	uelos y Sediı	mentos		1		•			
QS1	1	118.68	159.30	-25.50	3.96	6.85	-42.19	8.36	11.03	-24.21	36.75	16.00	129.69	27459.59		
SDAR-1	2	279.93	352.80	-20.65	33.57	36.43	-7.86	24.13	17.97	34.30		10.71		20170.03	32368.89	-37.69
SDAR H1	3	141.69	157.90	-10.26	293.35			37.91	17.74	113.68		55.59		25306.80	45000.00	-43.76
SDAR M2	4	234.88	242.00	-2.94	65.28	75.82	-13.90	14.92	14.23	4.83	29.42	12.40	137.26	10855.42	18500.00	-41.32
SDAR L2	5	541.55	592.00	-8.52	11.73			20.63	20.80	-0.83	30.35	4.80	532.36	14916.26	25800.00	-42.19
IGLs-1	6	527.64	578.79	-8.84	9.26			11.68	15.26	-23.46		46.01		77197.92	90985.47	-15.15
2709a	7	98.69	160.00	-38.32	9.75	17.70	-44.90	6.23	11.00	-43.39	32.99	13.40	146.16	19601.17	35000.00	-44.00
2710a	8	58.02			808.90	626.00	29.22	24.14	13.00	85.72		10.00		17783.31	33800.00	-47.39
2711a	9	188.80	230.00	-17.91	85.97	105.00	-18.12	18.51	14.00	32.19		10.00		14396.07	28900.00	-50.19
LOESS-1	10	267.66				6.70		6.36	8.11	-21.63		5.95		7901.51	14684.21	-46.19
				•	1			Varios	-		1		•			
Siem10	1	44.98	131.00	-65.66	82.72			10.25	7.00	46.43		98.00		8538.46	19700.00	-56.66
dbc-1	2	161.74	183.40	-11.81	5.02	9.00	-44.22	18.89	18.33	3.04		2.06		3476.27	6553.35	-46.95
rts-3	3	45.27	66.00	-31.41	17.00	9.10	86.81	45.87				260.00		220935.51	210400.00	5.01
rts-4	4		10.00		176.49	207.00	-14.74					186.00		765242.77	567000.00	34.96
EVO1	5	292.93	447.00	-34.47	23.28	33.80	-31.12	16.18	24.10	-32.85	45.26	21.60	109.54	29210.06	47828.60	-38.93
SKO1	6	82.41	137.00	-39.85	118.00	55.70	111.85	104.60	5.08	1959.12	37.27	22.00	69.39	14032.39	22585.70	-37.87

Anexo 9. Análisis de estándares en forma de pastilla, modo suelo – Parte 3/4.

E. Market			Cu			Ni			Мо			U			Sc	
Estandar	#SID	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
								Rocas y Mine	erales							
Siem1	1		4.90			10.00					11.99			22.28		
Siem2	2	12.24	23.00	-46.78		36.00								40.81		
Siem3	3		2.00		1065.98	2640.00	-59.62									
Siem4	4		7.20			12.00		3.39			7.64			35.67		
Siem5	5		3.00			29.00								20.18		
Siem6	6	56.37	83.00	-32.08	66.36	118.00	-43.76							217.23		
Siem7	7	599.22	756.00	-20.74		10.00		9.02			5.23			44.99		
Siem8	8	48.46	81.00	-40.17	73.85	25.00	195.41							177.81		
Siem9	9	18.70	20.00	-6.48	18.25	46.00	-60.33				6.43			31.73		
IGLa-1	10		15.49			8.38			2.54			0.99		71.64	12.19	487.69
IGLc-1	11		3.52		21.95	23.11	-5.03		0.28			0.11				
IGLd-1	12		2.66						0.54			1.16		236.56		
IGLsy1	13	15.95	13.72	16.25		3.00		5.38	4.76	12.96		6.18		36.08	0.39	9151.28
IGLsy2	14		7.49			3.17		8.43	6.98	20.77	10.62	6.97	52.42	28.66	0.46	6129.35
IGLgb3	15	67.95	50.36	34.93	67.95	15.80	330.06	3.61	1.46	147.26	19.20	0.59	3154.80	202.29	24.83	714.71
IGLsy4	16		12.82		83.09	3.63	2188.98		1.72			2.09		59.29	1.71	3367.06
							Su	ielos y Sedin	nentos							
QS1	1		11.40		24.98	38.40	-34.96		1.10		9.99	2.62	281.30	153.24	14.24	976.10
SDAR-1	2	204.29	302.00	-32.35	33.41	40.80	-18.13	7.81	12.60	-37.99	12.77	4.28	198.50	21.14	8.20	157.80
SDAR H1	3	668.25	1159.00	-42.34	58.38	230.00	-74.62	27.37	64.00	-57.24	7.31	4.07	79.70	37.46	8.20	356.79
SDAR M2	4	166.18	236.00	-29.58		48.75		13.16	13.34	-1.32	6.34			19.85		
SDAR L2	5	31.36	46.40	-32.41		12.60		7.36	4.00	84.08		3.00		25.52	5.50	364.00
IGLs-1	6	33.95	56.22	-39.61	34.93	52.09	-32.94	5.48	3.02	81.57	5.55	4.74	17.09	2769.91		
2709a	7		34.60			88.00			2.00		6.15	3.00	104.83	46.74	12.00	289.47
2710a	8	1367.08	2950.00	-53.66		14.30			19.00			25.00		29.99	8.70	244.71
2711a	9	61.66	114.00	-45.92		20.60			1.60		6.19	2.60	137.88	60.75	9.00	575.00
LOESS-1	10		11.31			42.71		2.76	1.40	97.14		2.70			5.93	
	T	1		1		T	1	Varios	1	T		1	1	1	1	
Siem10	1	2627.34	5430.00	-51.61		143.00		43.49			8.04			197.77		
dbc-1	2		21.35			24.00			2.51		21.88	6.18	253.82		17.30	<u> </u>
rts-3	3	1746.69	2820.00	-38.06	197.86	71.00	178.68							69.34		
rts-4	4	92.81	280.00	-66.85	3095.68	7940.00	-61.01									
EVO1	5	18.35	50.80	-63.88		64.50			8.30	<u> </u>	7.81			44.06		<u> </u>
SKO1	6	844.41	993.00	-14.96	89.29	68.70	29.97	16.60	18.70	-11.23		2.84		262.39	4.24	6088.44

Anexo 9. Análisis de estándares en forma de pastilla, modo suelo – Parte 4/4.

Ectándor	#STD		Mg			Р			v			Zr			Са	
Estanuar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Ro	cas y Miner	ales							
Siem1	1	0.6975			0.0867			0.0030	0.0014	114.2857	0.0243	0.0229	6.2591	0.6473	0.7018	-7.7544
Siem2	2	2.9083			0.1733			0.0153	0.0110	39.3939	0.0190	0.0186	2.1505	1.3523	1.5000	-9.8444
Siem3	3	61.3053			0.0467			0.0040	0.0013	207.6923		0.0013		0.0720	0.0400	80.0000
Siem4	4	0.6925			0.5937			0.0163	0.0131	24.6819	0.0540	0.0505	6.9307	1.4633	1.7400	-15.9004
Siem5	5	3.8420			0.1627			0.0123	0.0213	-42.0970	0.0150	0.0150	0.0000	0.5000	0.5000	0.0000
Siem7	7	2.6027			0.1927			0.0083	0.0059	41.2429	0.0140	0.0135	3.7037	1.7493	1.9000	-7.9298
Siem8	8	7.2867			0.7953			0.0460	0.0338	36.0947	0.0337	0.0318	5.8700	9.9250	9.9500	-0.2513
Siem9	9	4.7007			0.1770			0.0227	0.0171	32.5536	0.0180	0.0176	2.2727	0.7797	0.8100	-3.7449
IGLa-1	10	2.4850	1.1871	109.3313	0.3570	0.1734	105.9248	0.0157	0.0098	59.9129	0.0260	0.0242	7.4691	3.5587	3.6843	-3.4091
IGLc-1	11	2.7195	0.2264	1101.0283		0.0045								42.9553	39.6757	8.2660
IGLd-1	12	21.4363	11.1445	92.3488		0.0039			0.0008			0.0003		25.3790	24.2977	4.4501
IGLsy1	13	1.0357	0.1827	466.7679	0.1397	0.0382	265.5791	0.0067	0.0017	294.9447	0.0437	0.0399	9.5199	1.5630	1.8206	-14.1497
IGLsy2	14	1.2370	0.3269	278.4411	0.9710	0.0460	2011.7683	0.0123	0.0043	189.1755	0.0560	0.0515	8.7886	1.5143	1.6750	-9.5904
IGLgb3	15	13.0463	3.7992	243.3953	0.9780	0.6290	55.4852	0.0673	0.0461	45.9928	0.0130	0.0125	4.0583	8.9167	9.1968	-3.0461
IGLsy4	16	3.5040	1.0162	244.8197	0.3687	0.2047	80.1160	0.0183	0.0048	278.4536	0.0180	0.0179	0.4520	2.9460	3.1777	-7.2915
							Sue	los y Sedime	entos							
QS1	1	6.0440			0.1337			0.0170	0.0112	51.7857	0.0150	0.0159	-5.8380	5.2483		
SDAR-1	2	2.2297	0.4865	358.3062	0.2297	0.0699	228.7567	0.0123	0.0068	80.6552	0.0353	0.0353	0.1512	0.5503	0.5720	-3.7875
SDAR H1	3	3.0713	0.9240	232.3954	0.2023	0.0810	149.7942	0.0113	0.0073	54.9328	0.0210	0.0258	-18.5731	0.8687	1.0500	-17.2698
SDAR M2	4	1.3710	0.3350	309.2537	0.1960	0.0360	444.4444	0.0070	0.0025	178.3300	0.0307	0.0259	18.4041	0.6060	0.5940	2.0202
SDAR L2	5	1.4083	0.2970	374.1863	1.2877	0.0390	3201.7094	0.0093	0.0039	139.3162	0.0690	0.0592	16.5541	0.7533	0.7650	-1.5251
IGLs-1	6	0.9233	0.1776	419.7893	0.4207	0.0585	618.6800	0.0413	0.0290	42.3471	0.0627	0.0579	8.2719	0.3080	0.2892	6.5008
2709a	7	4.3050	1.5100	185.0993	0.1700	0.0620	174.1935	0.0137	0.0112	22.0238	0.0120	0.0160	-25.0000	1.7080	1.8900	-9.6296
2710a	8	1.8927	0.8530	121.8835	0.1843	0.1060	73.8994	0.0090	0.0077	17.4935	0.0100			0.5517	1.2500	-55.8667
2711a	9	3.0897	1.0500	194.2540	0.2017	0.0860	134.4961	0.0093	0.0082	14.3791	0.0240	0.0230	4.3478	2.0427	2.8800	-29.0741
LOESS-1	10	4.4653	1.7489	155.3193	0.0487	0.0568	-14.2597	0.0050	0.0038	33.1203	0.0323			12.0530	11.6791	3.2012
				Π	T			Varios	Γ	1				I		
Siem10	1	6.3847			0.0270			0.0397	0.0450	-11.8519	0.0063	0.0131	-51.6539	12.5977	15.7500	-20.0148
dbc-1	2	0.8810	0.2149	310.0038	0.1443	0.0312	362.9830	0.0220	0.0138	60.0000	0.0210	0.0183	14.5038	0.1583	0.1404	12.8132
rts-3	3	8.2593	2.4500	237.1156	0.1103	0.0500	120.6667	0.0173			0.0060	0.0066	-9.0909	2.2687	2.2000	3.1212
rts-4	4		0.6453			0.0200		0.0220				0.0010		0.3907	0.3270	19.4699
EVO1	5	1.6627	0.6453	157.6619	0.2060	0.0865	138.1228	0.0150	0.0098	53.8462	0.0390	0.0447	-12.7517	1.5607	1.7186	-9.1881
SKO1	6	4.3247	1.5620	176.8726	0.6743	0.6637	1.6083	0.0100	0.0048	107.9002	0.0120	0.0137	-12.4088	13.8027	15.8467	-12.8986

Anexo 10. Análisis de estándares en forma de pastilla, modo mina – Parte 1/4.

Fatándar	#670		Nb			Pb			Si			Mn			Ti	
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							I	Rocas y Min	erales							
Siem1	1	0.0030	0.0018	66.6667	0.0020	0.0026	-23.0769	35.2257	34.6925	1.5368		0.0310		0.0977	0.1319	-25.9483
Siem2	2	0.0020	0.0011	81.8182		0.0024		28.7597	30.7200	-6.3813	0.0220	0.0500	-56.0000	0.3907	0.4300	-9.1473
Siem3	3		0.0003			0.0001		16.4637	19.5000	-15.5709	0.0487	0.0800	-39.1667		0.0060	
Siem4	4	0.0330	0.0320	3.1250		0.0015		23.4897	24.0300	-2.2486	0.1347	0.1900	-29.1228	0.2277	0.2800	-18.6905
Siem5	5		0.0007			0.0008		30.1403	32.5900	-7.5166	0.0070	0.0400	-82.5000	0.3117	0.3500	-10.9524
Siem6	6		0.0005			0.0007		24.1527	24.7800	-2.5316	0.0907	0.1200	-24.4444	0.2693	0.2900	-7.1264
Siem7	7		0.0008			0.0007		31.2340	32.0700	-2.6068		0.0200		0.2067	0.2600	-20.5128
Siem8	8	0.0230	0.0222	3.6036		0.0012		17.8290	17.3000	3.0578	0.1767	0.2300	-23.1884	0.9767	1.2800	-23.6979
Siem9	9	0.0020	0.0012	66.6667	0.0027	0.0036	-25.9259	27.5957	27.9100	-1.1262	0.0353	0.0700	-49.5238	0.4790	0.5200	-7.8846
IGLa-1	10	0.0020	0.0019	5.4852		0.0010		29.1840	28.3054	3.1040	0.0503	0.0822	-38.7751	0.5273	0.6400	-17.6098
IGLc-1	11		0.0001			0.0003		0.5440	0.0489	1013.3988		0.0076		0.0603	0.0130	362.7105
IGLd-1	12		0.0001			0.0000		1.1750	0.7896	48.8085		0.0039		0.0190	0.0104	83.3031
IGLsy1	13	0.0280	0.0282	-0.5576		0.0019		24.2117	24.3312	-0.4912	0.1037	0.1443	-28.1764	0.2190	0.2987	-26.6883
IGLsy2	14	0.0210	0.0212	-1.1579		0.0013		26.4203	27.0355	-2.2753	0.1343	0.1794	-25.1388	0.4267	0.5842	-26.9664
IGLgb3	15	0.0040	0.0038	6.6667		0.0006		18.9507	18.2724	3.7119	0.1047	0.1316	-20.4598	2.1300	2.3187	-8.1371
IGLsy4	16	0.0070	0.0066	6.2538		0.0008		25.8003	25.5799	0.8616	0.1117	0.1225	-8.8658	0.8107	0.9881	-17.9571
		r	r	T	T		Su	uelos y Sedir	nentos	-		1		ī.	1	
QS1	1		0.0014			0.0009		24.6770			0.0453			0.4147		
SDAR-1	2	0.0040	0.0035	15.2738	0.1010	0.0979	3.1349	33.1720	33.6335	-1.3722	0.4817	0.5401	-10.8182	0.3123	0.3765	-17.0398
SDAR H1	3		0.0022		0.3270	0.3893	-16.0031	27.1083	30.6000	-11.4107	0.2983	0.3990	-25.2297	0.2467	0.3360	-26.5873
SDAR M2	4	0.0030	0.0026	14.5038	0.0913	0.0808	13.0363	36.5363	34.2600	6.6443	0.0693	0.1090	-36.3914	0.1570	0.1850	-15.1351
SDAR L2	5	0.0077	0.0080	-4.4057	0.0197	0.0140	40.3759	37.7353	34.7700	8.5284	0.0430	0.0790	-45.5696	0.3060	0.3800	-19.4737
IGLs-1	6	0.0050	0.0050	0.0600		0.0027		20.0770	21.3612	-6.0119	0.1973	0.2198	-10.2220	1.3470	1.5547	-13.3585
2709a	7					0.0019		26.7683	29.6600	-9.7494	0.0190	0.0538	-64.6840	0.2843	0.3420	-16.8616
2710a	8				0.2707	0.5532	-51.0725	20.9833	28.9700	-27.5687	0.0973	1.0100	-90.3630	0.1773	0.2830	-37.3380
2711a	9				0.1207	0.1162	3.8439	26.5687	30.4400	-12.7179	0.0207	0.0638	-67.6071	0.2397	0.3060	-21.6776
LOESS-1	10					0.0011		22.5147	24.8906	-9.5454	0.0160	0.0499	-67.9146	0.2097	0.2535	-17.2809
				1	1	1		Varios						1		
Siem10	1		0.0007		0.1890	0.2600	-27.3077	12.0337	13.4200	-10.3304	0.2020	0.3300	-38.7879	0.1830	0.2400	-23.7500
dbc-1	2	0.0030	0.0026	16.2791	0.0050	0.0054	-6.5421	24.0710	24.3012	-0.9473				0.6123	0.6732	-9.0384
rts-3	3			ļ	0.0087	0.0146	-40.6393	13.4850	15.9900	-15.6660	0.1727	0.2000	-13.6667	0.2820	0.3200	-11.8750
rts-4	4					0.0060		1.6190	0.9980	62.2244	0.0145	0.0150	-3.3333	0.0873	0.0800	9.1667
EVO1	5	0.0040	0.0043	-6.9767	0.0037	0.0054	-32.2243	20.3210	21.5776	-5.8237	0.0400	0.0736	-45.6226	0.3950	0.4502	-12.2651
SKO1	6	0.0020	0.0015	34.2282	0.8017	0.8199	-2.2238	6.8750	8.8368	-22.2001	0.1157	0.1502	-23.0018	0.7127	0.9472	-24.7615

Anexo 10. Análisis de estándares en forma de pastilla, modo mina – Parte 2/4.

Fatándar	#CTD		К			Cr			Zn			Sr				
Estandar	#SID	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error
							Ro	ocas y Miner	ales							
Siem1	1	3.7087	4.3002	-13.7553		0.0007		0.0020	0.0032	-37.5000	0.0040	0.0049	-18.3673	0.0150	0.0472	-68.2203
Siem2	2	1.9573	2.2400	-12.6190	0.0113	0.0067	69.1542	0.0080	0.0091	-12.0879	0.0200	0.0258	-22.4806	0.0230	0.0540	-57.4074
Siem3	3	0.0220	0.0400	-45.0000	0.1610	0.2180	-26.1468	0.0023	0.0040	-41.6667		0.0007			0.0004	
Siem4	4	6.2410	7.2300	-13.6791	0.0070	0.0011	514.0351	0.0130	0.0131	-0.7634	0.0727	0.0923	-21.2712	0.0363	0.0752	-51.6844
Siem5	5	1.4513	1.5500	-6.3656	0.0093	0.0052	79.4872	0.0030	0.0050	-40.0000	0.0100	0.0127	-21.2598	0.0123	0.0358	-65.5493
Siem6	6	0.6527	0.6700	-2.5871	0.0400	0.0360	11.1111	0.0040	0.0056	-28.5714	0.0100	0.0135	-25.9259	0.0070	0.0121	-42.1488
Siem7	7	1.7317	1.9900	-12.9816	0.0030	0.0014	114.2857	0.0023	0.0037	-36.9369	0.0340	0.0430	-20.9302	0.0207	0.0553	-62.6281
Siem8	8	3.0990	3.1400	-1.3057	0.0113	0.0027	319.7531	0.0107	0.0112	-4.7619	0.1257	0.1650	-23.8384	0.0890	0.1308	-31.9572
Siem9	9	2.5020	2.7800	-10.0000	0.0167	0.0046	262.3188	0.0137	0.0152	-10.0877	0.0060	0.0086	-30.2326	0.0270	0.0630	-57.1429
IGLa-1	10	1.6123	1.8050	-10.6728	0.0087	0.0029	196.7020	0.0053	0.0079	-32.2751	0.0457	0.0575	-20.5452	0.0460		
IGLc-1	11		0.0073		0.0097						0.0250				0.0003	
IGLd-1	12		0.0061		0.0043	0.0010	333.8974		0.0001		0.0130	0.0167	-22.2832			
IGLsy1	13	4.2810	4.8770	-12.2212	0.0070	0.0002	4445.4545	0.0100	0.0116	-13.5472	0.1283	0.1574	-18.4569	0.1133		
IGLsy2	14	3.9480	4.5195	-12.6461	0.0060	0.0003	2207.6923	0.0070	0.0093	-24.6015	0.0787	0.0965	-18.4996	0.1233		
IGLgb3	15	0.9153	0.8757	4.5231	0.0133	0.0005	2749.0028	0.0093	0.0109	-14.5299	0.1100	0.1428	-22.9897	0.0483		
IGLsy4	16	2.3260	2.5495	-8.7662	0.0090	0.0002	4009.5890	0.0063	0.0070	-9.5755	0.1107	0.1369	-19.1748	0.7260		
		•	·		•		Sue	los y Sedim	entos							
QS1	1	3.2083			0.0143	0.0071	103.2232	0.0073	0.0075	-2.2222	0.0080	0.0113	-29.2035	0.0120	0.0362	-66.8600
SDAR-1	2	2.6957	3.0155	-10.6068	0.0153	0.0093	65.4617	0.0860	0.0932	-7.7352	0.0120	0.0152	-20.7921	0.0437	0.0794	-45.0250
SDAR H1	3	2.6830	3.4600	-22.4566	0.0257			0.2720	0.3684	-26.1672	0.0107	0.0182	-41.4563	0.0123	0.0866	-85.7566
SDAR M2	4	3.7630	4.1500	-9.3253	0.0087	0.0070	23.8095	0.0733	0.0760	-3.5088	0.0120	0.0146	-17.8082	0.0343	0.0959	-64.1988
SDAR L2	5	3.1217	3.4250	-8.8564	0.0067	0.0027	146.9136	0.0187	0.0218	-14.3731	0.0127	0.0143	-11.1734	0.0293	0.0814	-63.9640
IGLs-1	6	0.4397	0.4984	-11.7911	0.0313	0.0215	45.6822	0.0080	0.0102	-21.6838	0.0030	0.0043	-29.8738	0.0203		
2709a	7	1.5567	2.0300	-23.3169	0.0147	0.0130	12.8205	0.0073	0.0106	-30.8176	0.0150	0.0231	-35.0649	0.0177	0.0968	-81.7493
2710a	8	1.2843	2.1100	-39.1311	0.0080	0.0039	105.1282	0.2200	0.6952	-68.3544	0.0080	0.0330	-75.7576		0.0707	
2711a	9	1.8793	2.4500	-23.2925	0.0073	0.0047	56.0284	0.0303	0.0350	-13.4323	0.0140	0.0245	-42.9270	0.0073	0.0726	-89.8990
LOESS-1	10	0.9890	1.0792	-8.3575	0.0113	0.0106	7.2217	0.0020	0.0034	-41.8605	0.0210	0.0279	-24.5961	0.0070	0.0201	-65.1689
		1			1			Varios	T			Γ	1	1	[
Siem10	1	1.4713	1.7400	-15.4406	0.0090	0.0092	-2.1739	0.6853	1.5800	-56.6245	0.0110	0.0203	-45.8128		0.0178	
dbc-1	2	1.8477	2.1888	-15.5842	0.0123	0.0105	17.1257		0.0021		0.0110	0.0134	-17.9717	0.0130	0.0476	-72.6948
rts-3	3	0.3710	0.3500	6.0000	0.0307	0.0075	308.8889	0.1490	0.1850	-19.4595	0.0030	0.0040	-25.0000	0.0213	0.0098	117.6871
rts-4	4	0.1510	0.0400	277.5000	0.0510	0.0100	410.0000	0.0127	0.0158	-19.8312		0.0012		0.0513	0.0027	1801.2346
EVO1	5	1.2010	1.3947	-13.8852	0.0133	0.0071	89.1253	0.0053	0.0087	-38.8379	0.0310	0.0440	-29.5455	0.0263	0.1178	-77.6457
SKO1	6	5.4493	5.9190	-7.9343	0.0397	0.0430	-7.7519	1.4583	1.7033	-14.3819	0.0230	0.0312	-26.2821	0.1107	0.1718	-35.5840

Anexo 10. Análisis de estándares en forma de pastilla, modo mina – Parte 3/4.

Estándor	#STD		Cu			Rb			Fe			As			Al Promedio Certificado			
Estandar	#310	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error	Promedio	Certificado	%Error		
							R	ocas y Mine	rales									
Siem1	1		0.0005		0.0180	0.0276	-34.7826	1.0550	1.3705	-23.0223	0.0020			8.5147	3.4122	149.5377		
Siem2	2		0.0023		0.0070	0.0112	-37.5000	3.2057	3.8300	-16.3011				10.0167	4.2851	133.7580		
Siem3	3		0.0002			0.0001		4.3860	5.1700	-15.1644				1.7047	0.1058	1511.1564		
Siem4	4		0.0007		0.0087	0.0130	-33.3333	2.0117	2.5200	-20.1720				12.4933	5.5547	124.9144		
Siem5	5		0.0003		0.0040	0.0066	-39.3939	2.7977	3.3400	-16.2375	0.0020			9.8390	3.6767	167.6051		
Siem6	6	0.0070	0.0083	-15.6627	0.0020	0.0039	-48.7179	4.5567	5.5900	-18.4854	0.0020			12.8257	3.9147	227.6246		
Siem7	7	0.0900	0.0756	19.0476	0.0050	0.0082	-39.0244	1.5333	1.9300	-20.5527				9.9960	4.0205	148.6228		
Siem8	8	0.0060	0.0081	-25.9259	0.0060	0.0094	-36.1702	5.8270	7.4100	-21.3630				11.7097	3.8089	207.4258		
Siem9	9	0.0020	0.0020	0.0000	0.0090	0.0145	-37.9310	4.1480	4.9100	-15.5193	0.0027			13.5897	4.7612	185.4267		
IGLa-1	10		0.0015		0.0020	0.0033	-38.9686	3.2383	4.1465	-21.9012		0.0002		12.3910	4.5980	169.4849		
IGLc-1	11		0.0004					0.0203	0.0204	-0.5171		0.0000		0.4307	0.0064	6605.8032		
IGLd-1	12		0.0003					0.0157	0.0170	-7.9498		0.0000		0.5210	0.0247	2009.0922		
IGLsy1	13		0.0014		0.0143	0.0215	-33.4293	2.2880	2.8881	-20.7794		0.0000		12.9387	5.7420	125.3324		
IGLsy2	14		0.0007		0.0090	0.0140	-35.7739	2.0590	2.6685	-22.8397		0.0004		11.8393	5.2430	125.8134		
IGLgb3	15	0.0033	0.0050	-33.8099		0.0023		8.7900	10.6663	-17.5909		0.0005		16.0203	4.2672	275.4276		
IGLsy4	16		0.0013		0.0040	0.0059	-32.2952	3.1700	3.7997	-16.5730		0.0005		13.3607	5.1555	159.1522		
						-	Su	elos y Sedin	nentos									
QS1	1		0.0011		0.0080	0.0136	-40.9594	3.6420			0.0020	0.0007	191.9708	11.3523				
SDAR-1	2	0.0297	0.0302	-1.7660	0.0090	0.0143	-36.9748	2.6860	3.2369	-17.0191	0.0040	0.0036	9.7996	8.8320	3.1201	183.0674		
SDAR H1	3	0.0930	0.1159	-19.7584	0.0080	0.0152	-47.4721	3.2163	4.5000	-28.5259	0.0403			8.0593	3.1300	157.4867		
SDAR M2	4	0.0220	0.0236	-6.7797	0.0100	0.0149	-32.9759	1.5723	1.8500	-15.0090	0.0093	0.0076	23.0986	9.0553	3.3900	167.1190		
SDAR L2	5	0.0023	0.0051	-54.0502	0.0080	0.0115	-30.4952	2.1057	2.5800	-18.3850	0.0020	0.0017	18.2033	8.8307	3.0800	186.7100		
IGLs-1	6	0.0035	0.0056	-37.7446	0.0040	0.0075	-46.8227	8.1353	9.0985	-10.5865	0.0020			16.4833	6.3111	161.1797		
2709a	7		0.0035		0.0050	0.0096	-47.9167	2.7320	3.5000	-21.9429	0.0027	0.0018	50.6591	9.3043	7.5000	24.0578		
2710a	8	0.1977	0.2950	-32.9944	0.0030	0.0120	-75.0000	2.3873	3.3800	-29.3688	0.1393	0.0626	122.5772	5.2500	6.4400	-18.4783		
2711a	9	0.0073	0.0114	-35.6725	0.0060	0.0110	-45.4545	2.0117	2.8900	-30.3922	0.0113	0.0105	7.9365	7.5213	6.5300	15.1812		
LOESS-1	10		0.0011		0.0030	0.0051	-41.4063	1.1647	1.4684	-20.6858		0.0007		4.3553	1.6400	165.5755		
		r			r	ī.		Varios	r	T	F	r		î.				
Siem10	1	0.3750	0.5430	-30.9392	0.0040	0.0092	-56.5217	1.1777	1.9700	-40.2200	0.0093			5.4097	2.1425	152.4897		
dbc-1	2		0.0021		0.0140	0.0194	-27.8351	0.5453	0.6553	-16.7856		0.0009		19.2243	8.4178	128.3761		
rts-3	3	0.2403	0.2820	-14.7754				17.2020	21.0400	-18.2414	0.0040	0.0009	339.5604	8.2790	4.7900	72.8392		
rts-4	4	0.0220	0.0280	-21.4286				38.1003	56.7000	-32.8036	0.0300	0.0207	44.9275	1.4317	0.3390	322.3206		
EVO1	5	0.0020	0.0051	-60.6299	0.0040	0.0075	-46.4525	3.9183	4.7829	-18.0755	0.0050	0.0034	47.9290	11.7380	5.4172	116.6818		
SKO1	6	0.0967	0.0993	-2.6519	0.0150	0.0122	22.9508	1.6037	2.2586	-28.9964		0.0056		6.1073	2.4494	149.3440		

Anexo 10. Análisis de estándares en forma de pastilla, modo mina – Parte 4/4.

Anexo 11. Gráficas de concentración Niton vs valor Certificado para los estándares preparados en pastilla, modo suelo – Parte 1/3.

Anexo 11. Gráficas de concentración Niton vs valor Certificado para los estándares preparados en pastilla, modo suelo – Parte 2/3.

Anexo 11. Gráficas de concentración Niton vs valor Certificado para los estándares preparados en pastilla, modo suelo – Parte 3/3.

Anexo 12. Gráficas de concentración Niton vs valor Certificado para los estándares preparados en pastilla, modo mina – Parte 1/3.

Anexo 12. Gráficas de concentración Niton vs valor Certificado para los estándares preparados en pastilla, modo mina – Parte 2/3.

0.00

0.00

10.00

20.00

Concentración certificado (%)

30.00

40.00

Maria	%	Са	0/ 5	%	Ti	0/ 5
iviuestra	FRX-WD	Niton	% Error	FRX-WD	Niton	% Error
1				59.5653	58.4880	-1.8
2				58.9210	57.6280	-2.2
3				60.3684	57.0560	-5.5
4	14.2451	13.6520	-4.2	12.2564	12.8080	4.5
5				26.7908	26.0560	-2.7
6				31.7215	30.7480	-3.1
7	3.2025	3.0000	-6.3	38.8326	37.2680	-4.0
8	13.2595	12.5440	-5.4	18.1346	18.0920	-0.2
9	26.3897	25.0400	-5.1	17.1170	17.5920	2.8
10	5.8068	5.5120	-5.1	46.2433	44.9640	-2.8
11	11.4542	10.6400	-7.1	39.9797	39.1240	-2.1
12	8.7413	8.2720	-5.4	15.1733	15.0720	-0.7
13	14.4352	13.6760	-5.3	15.3124	15.4120	0.7
14	39.4920	37.0080	-6.3	9.1974	10.0240	9.0
15				56.7568	54.3240	-4.3
16	9.5239	7.8840	-17.2	41.1352	39.2120	-4.7
17	13.3589	12.3640	-7.4	16.1898	16.1360	-0.3
18	8.7220	8.0720	-7.5	22.3431	21.6640	-3.0
19	55.4051	52.4880	-5.3			
20	21.3390	19.6960	-7.7	17.0768	17.3000	1.3
21	19.7617	18.1560	-8.1	22.9089	22.6880	-1.0
22	5.7861	5.5880	-3.4	42.7073	41.0960	-3.8
23	27.8426	26.2160	-5.8	12.9462	13.4960	4.2
24	9.7468	9.2040	-5.6			
25	22.9056	21.8120	-4.8	5.3574	6.0400	12.7
26	19.5544	17.8400	-8.8	27.2241	27.0360	-0.7
27	33.0841	32.0520	-3.1	9.0763	9.9480	9.6
28	20.6565	18.4360	-10.7	34.5767	34.3200	-0.7
29	42.1456	39.4440	-6.4	11.9693	12.8600	7.4
30	1.4622	1.5720	7.5	54.5039	52.1800	-4.3
31	9.9920	9.2120	-7.8	27.7779	26.9760	-2.9
32	4.0265	3.8760	-3.7	29.9457	28.7200	-4.1

Anexo 13. Análisis de muestras de recubrimientos en forma de perlas, modo mina – Parte 1/1.

#1.4	%	Fe	9/ Било и	%	Са	9/ Бинои	%	Ti	9/ Бинон
#iviuestra	FRX-WD	PFRX	% Error	FRX-WD	PFRX	% Error	FRX-WD	PFRX	% Error
1							59.5653	58.0270	2.6
2									
3							60.3684	56.3460	6.7
4	0.2679	0.2583	3.6	14.2451	13.8783	2.6	12.2564	13.1323	-7.1
5	0.1567	0.1433	8.5				26.7908	27.8380	-3.9
6	0.1546	0.1467	5.1				31.7215	29.7977	6.1
7				3.2025	3.4420	-7.5	38.8326	40.7660	-5.0
8	0.2707	0.2817	-4.1	13.2595	13.1267	1.0	18.1346	18.0077	0.7
9	0.1294	0.1473	-13.9	26.3897	27.2713	-3.3	17.1170	17.8860	-4.5
10				5.8068	5.3533	7.8			14.8
11				11.4542	11.3203	1.2	39.9797	38.7803	3.0
12	0.0455	0.0383	15.7	8.7413	8.1417	6.9	15.1733	15.1007	0.5
13	0.0378	0.0437	-15.6	14.4352	14.4280	0.0	15.3124	15.9103	-3.9
14				39.4920	41.3510	-4.7	9.1974	10.9373	-18.9
15									
16				9.5239	9.6840	-1.7	41.1352	40.4513	1.7
17	0.2812	0.3013	-7.2	13.3589	13.8503	-3.7	16.1898	17.4613	-7.9
18	0.0231	0.0260	-12.6	8.7220	8.7437	-0.2	22.3431	21.9853	1.6
19		0.0070		55.4051	56.0027	-1.1			
20	0.1301	0.1367	-5.1	21.3390	20.7383	2.8	17.0768	16.7600	1.9
21				19.7617	19.7883	-0.1	22.9089	22.1217	3.4
22	0.0560	0.0510	8.9	5.7861	5.6057	3.1			
23	0.1560	0.1653	-6.0	27.8426	28.4700	-2.3	12.9462	13.4230	-3.7
24	0.0993	0.1117	-12.4	9.7468	11.0143	-13.0			
25	0.0937	0.1120	-19.5	22.9056	24.7317	-8.0			
26				19.5544	19.2597	1.5	27.2241	25.9437	4.7
27				33.0841	33.9927	-2.7	9.0763	9.8247	-8.2
28				20.6565	22.1890	-7.4	34.5767	37.3447	-8.0
29				42.1456	40.6243	3.6	11.9693	12.3610	-3.3
30				1.4622	1.3340	8.8			
31	0.0734	0.0843	-14.8	9.9920	9.5677	4.2	27.7779	26.4820	4.7
32	0.4337	0.4407	-1.6	4.0265	3.8360	4.7	29.9457	28.8637	3.6

Anexo 14. Análisis de muestras de recubrimientos en forma de polvo, modo mina – Parte 1/1.

Estándar			A	u					A	Ŋg					(Cu								
	C _{certificado}	PRIM	PRIMUS II		ON	C _{certificado} PRIMUS II NITON		0/ 5	C _{certificado}	PRIMUS II		NITON		0/ 5										
	(%)	x (%)	% CV	x (%)	% CV	<u>% E</u> ITOI	(%)	x (%)	% CV	x (%)	% CV	% Error	(%)	x (%)	% CV	x (%)	% CV	<u>% E</u> ITOI						
0738-16	58.58	58.54	0.05	58.16	0.01	-0.65	19.80	19.72	0.48	20.08	0.10	1.84	21.10	20.42	0.01	20.82	0.06	1.95						
0704-16c	75.08	75.09	0.03	74.91	0.03	-0.23	3.05	3.07	0.14	3.06	0.06	-0.14	9.37	9.20	0.10	9.43	0.04	2.42						
0734-16a	33.41	33.30	0.08	33.53	0.03	0.70	7.09	6.98	0.47	7.23	0.05	3.61	48.82	49.32	0.13	48.68	0.05	-1.31						
0715-16a	59.1	59.43	0.06	58.85	0.04	-0.98	9.05	9.09	0.27	9.29	0.17	2.14	25.74	25.24	0.11	25.72	0.08	1.89						
0732-16	33.46	35.64	0.55	33.42	0.04	-6.23	57.10	58.22	0.29	57.06	0.01	-2.00	9.44	9.42	0.09	9.05	0.14	-3.90						
0744-16	55.68	55.59	0.05	55.49	0.02	-0.19	26.80	26.78	0.38	27.26	0.01	1.80	9.43	9.42	0.02	9.38	0.01	-0.41						
0720-16	99.99	101.41	0.03	99.89	0.01	-1.50	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.						

Anexo 15. Análisis de estándares de metales preciosos en forma de láminas, modo mina – Parte 1/2.

Anexo 15. Análisis de estándares de metales preciosos en forma de láminas, modo mina – Parte 2/2.

Estándar			Zı	า					P	d					ſ	Ni		
	C _{certificado}	PRIMUS II		NIT	ON	0/ 5	C _{certificado}	PRIM	IUS II	NIT	ON	0/ F	C _{certificado}	PRIM	IUS II	NIT	ON	0/ F
	(%)	\overline{x} (%) %	% CV	x (%)	% CV	% Error (%)	x (%)	% CV	x (%)	% CV	% Error	(%)	x (%)	% CV	x (%)	% CV	% Error	
0738-16	0.52	0.69	0.17	0.67	1.08	-2.75	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.
0704-16c	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.	12.50	12.45	0.25	12.43	0.12	-0.16	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.
0734-16a	10.68	10.73	0.12	10.25	0.13	-4.45	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.
0715-16a	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.	6.11	6.11	0.08	5.83	0.17	-4.58
0744-16	1.52	1.34	0.17	1.28	0.20	-4.48	6.57	6.29	0.87	6.40	0.12	1.78	n.r.	n.a.	n.a.	n.a.	n.a.	n.a.

n.r. no reportado en el certificado.

n.a. no aplica.