UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE MEDICINA VETERINARIA

Y ZOOTECNIA

IDENTIFICACIÓN MORFOLÓGICA Y MOLECULAR DE ÁCAROS ECTOPARÁSITOS (PARASITIFORMES: MESOSTIGMATA) INFESTANDO UNA POBLACIÓN DE SERPIENTES (REPTILIA: SQUAMATA) EN CAUTIVERIO.

TESIS

PARA OBTENER EL TÍTULO DE

MÉDICO VETERINARIO ZOOTECNISTA

PRESENTA:

JORGE ALBERTO ALFONSO TOLEDO

ASESORES:

RICARDO PAREDES LEÓN EVANGELINA ROMERO CALLEJAS

Ciudad Universitaria, Cd. Mx.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. ... Porque los perros hambrientos son perros veloces...

(El País De Las Sombras Largas: H. Ruesch 1950)

El esfuerzo de este trabajo está dedicado a mis

padres que con sudor y sangre lo hicieron posible,

gracias a los dioses que me permiten verlos de pie.

Igualmente está dedicado a todas esas personas que al ver a la naturaleza se ven reflejados en ella y no sobre ella. No decaigan que hay mucho que perder.

AGRADECIMIENTO

Agradezco especialmente a mis asesores que guiaron mi ímpetu en la dirección adecuada, corrigiéndome en todo momento y soportado con paciencia todo este tiempo.

Le agradezco a la Dra. **María Berenit Mendoza** del laboratorio de microscopia electrónica y fotografía de la biodiversidad (IBUNAM) y a la M. en C. **Andrea Jiménez Marín** del laboratorio nacional de biodiversidad (IBUNAM) por brindar su ayuda y sus respectivos lugares de trabajo.

Especialmente gracias a la Biol. **Ofelia Delgado Hernández** del laboratorio de helmintología que sin su ayuda este trabajo no hubiese sido posible y yo entendería muchos de los procedimientos que se desarrollaron durante este trabajo gracias.

Al laboratorio de herpetología de la FES Iztacala, por brindarme no solo el material y el tema de tesis, si no también grandes compañeros en profesores, alumnos y locos voluntarios que llegaron a aparecer en ese lugar.

Al laboratorio de diagnóstico parasitológico de la FMVZ-UNAM, donde trabajaron y trabajan personas de excelente calidad veterinaria y grandes amigos.

A mi familia que son grandes ejemplos a seguir y un puerto seguro al cual siempre puedo volver.

III

RESUMEN1
INTRODUCCIÓN Y ANTECEDENTES
HIPÓTESIS
OBJETIVO GENERAL
OBJETIVOS PARTICULARES
MATERIALES Y MÉTODOS6
Recolecta, preservación e identificación taxonómica6
Extracción de ADN8
Técnica de PCR9
Análisis de distancias por el método Neighbor-joining12
RESULTADOS13
IDENTIFICACIÓN MORFOLÓGICA13
LISTADO TAXONÓMICO Y CLASIFICACIÓN DE LAS ESPECIES ENCONTRADAS
FAMILIA IXODORHYNCHIDAE15
FAMILIA MACRONYSSIDAE
CARACTERIZACIÓN E IDENTIFICACIÓN MOLECULAR
Extracción de ADN32
Resultados de la amplificación de ADN por PCR32
Análisis de distancia de mínima evolución33
DETERMINACIÓN DE ÁREAS DE INFESTACIÓN35
DISCUSIÓN
Determinación morfológica de ectoparásitos38
Determinación molecular de ectoparásitos41
Determinación de zonas de preferencia43
CONCLUSIONES
REFERENCIAS46
ANEXOS

CONTENIDO

Índice de cuadros

Índice de figuras

Figura 1. Hemilaelaps triangulus, hembra, vista completa del ejemplar adulto22
Figura 2. Hemilaelaps triangulus, hembra, A) vista del gnatosoma, B) vista dorsal,
C) y D) vista ventral24
Figura 3. Hemilaelaps triangulus, hembra A) Placa anal; B) Seda del fémur II25
Figura 4. Hemilaelaps triangulus, macho27
Figura 5. Hemilaelaps triangulus, deutoninfa28

Figura 6. Hemilaelaps triangulus, protoninfa	31
Figura 7. Ophionyssus natricis, hembra	33
Figura 8. Ophionyssus natricis, hembra, A) y B) Vista dorsal, C) y D) Vista	
ventral	34

Figura 9. Arbol de distancia por el método NJ para el gen COI para las especies encontradas. Los números por encima de las ramas indican los valores de soporte Figura 10. Árbol de distancia por el método NJ para el gen 28S (región D3-D5) de ectoparásitos obtenidos en este estudio y la secuencia de O. natricis de la plataforma Genbank®. Los números por encima de las ramas indican los valores de soporte de *Bootstrap* y por debajo el largo de las ramas......**39** Figura 11. Árbol de distancia por el método NJ para el gen 18S (región V4) de ectoparásitos obtenidos en este estudio y la secuencia de O. natricis de la plataforma Genbank[®]. Los números por encima de las ramas indican los valores de soporte de Bootstrap y por debajo el largo de las ramas......40 Figura 12. Hemilaelaps triangulus, A) Ectoparásitos sobre el dorso de Boa imperator, B) Sobre el dorso de Corallus caninus......41 Figura 13. Ophionyssus natricis, A) Ectoparásitos dentro de las fosetas termorreceptoras de Corallus caninus; B) Ácaros sobre el dorso del mismo

huésped......41

Índice de anexos

Anexo 1. Concentraciones de ADN y proporción 260/280 obtenidos por
espectrofotometría para las muestras de ectoparásitos de este estudio61
Anexo 2. Reacciones positivas con su respectivos oligonucleótidos indicando el
sentido de la cadena de ADN amplificado62
Anexo 3. Secuencia genéticas para los genes obtenidos en este estudio para las
especies Hemilaelaps triangulus y Ophionyssus natricis63
Anexo 4. Matrices de distancias para las secuencias de genes de ectoparásitos
obtenidas con el modelo de sustitución Tamura 3-parametros72
Anexo 5. Caracteres útiles para el diagnóstico clínico entre hembras de
Hemilaelaps triangulus y Ophionyssus natricis74

RESUMEN

ALFONSO TOLEDO JORGE ALBERTO. Identificación morfológica y molecular de ácaros ectoparásitos (Parasitiformes: Mesostigmata) infestando una población de serpientes (Reptilia: Squamata) en cautiverio (bajo la dirección de Biól, Dr. Ricardo Paredes León y MVZ Dra. Evangelina Romero Callejas).

Las colecciones herpetológicas de ejemplares vivos de México representan una parte de su patrimonio natural. Uno de los problemas más usuales y de mayor importancia para las colecciones herpetológicas vivas, es la presencia del ácaro Ophionyssus natricis (Gervais, 1844) (Parasitiformes: Mesostigmata: Macronyssidae), ectoparásito ampliamente distribuido en todo el mundo y vector de agentes etiológicos causantes de enfermedades en reptiles. El presente estudio da a conocer los hallazgos de especies de ácaros en una población de serpientes en cautiverio, en donde, utilizando métodos de caracterización morfológica y el análisis de secuencias moleculares de ADN (Ácido Desoxirribonucleico) del gen mitocondrial citocromo C oxidasa subunidad I (COI) y de los genes nucleares 28S (región D3-D5) y 18S (región variable 4, V4). Los resultados muestran que la especie de ácaro presente en la mayoría de las serpientes de la colección pertenecen a *Hemilaelaps triangulus* (Ewing, 1923) (Parasitiformes: Mesostigmata: Ixodorhynchidae), especie ectoparásita permanente y obligada de serpientes, la cual pertenecen a una de las familias de ácaros escasamente estudiada. Se describe por primera vez el macho, dos estadios ninfales y se redescribe la hembra

de *H. triangulus* Este reporte es el primero en registrar a *H. triangulus* en México y el primero en registrar un brote de acariosis causado por este ácaro en herpetarios. Además se da a conocer por vez primera, la secuencia molecular del gen COI para las especies *O. natricis* y *H. triangulus*, así como las secuencias moleculares parciales de los genes 28S y 18S de algún miembro de la familia de ácaros lxodorhynchidae.

INTRODUCCIÓN Y ANTECEDENTES

Las colecciones biológicas representan parte del patrimonio natural de un país o región, y tiene entre sus objetivos el almacenamiento, mantenimiento, identificación y preservación de estructuras orgánicas (piel, pelo, exuvias o mudas, etc.) o especímenes vivos¹. Específicamente las colecciones destinadas a preservar especies de reptiles (colecciones herpetológicas) juegan un papel fundamental para el conocimiento de la biodiversidad² y siendo México el segundo lugar en cuanto a riqueza de especies en reptiles^{3,4} toma una gran relevancia contar con un acervo que resguarde la riqueza y variabilidad genética y especifica de las comunidades. Uno de los problemas más usuales y de mayor importancia para las colecciones herpetológicas vivas, es la presencia de ácaros ectoparásitos que pueden ser vectores de agentes etiológicos causantes de enfermedades en reptiles.

Los ácaros son el grupo más diverso de arácnidos (clase Arachnida) que existen, hasta el momento se registran más de 54600 especies⁵. Como características propias presentan la fusión de su cuerpo en un solo tagma o región corporal, conocido como idiosoma y una proyección anterior de éste llamado gnatosoma, conformado por los quelíceros y pedipalpos, apéndices involucrados principalmente en funciones tróficas. En el idiosoma se presentan 3 pares de patas en las larvas y 4 pares en adultos y ninfas; dichos apéndices cuentan con 6 artejos (coxa, trocánter, fémur, genua, tibia y tarso) en la mayoría de las especies^{6,7}. Los ácaros se clasifican en dos grandes linajes: 1) Parasitiformes, que incluyen a los grupos Opilioacarida, Holothyrida, Ixodida (garrapatas) y Mesostigmata (corucos) y 2) Acariformes integrado por los Trombidiformes y Sarcoptiformes⁸. Pueden encontrarse en casi todos los ecosistemas terrestres y acuáticos del mundo,

además de presentar una amplia gama de formas y tamaños especializados en sus diferentes estrategias de supervivencia y hábitos alimenticios, siendo una de ellas el parasitismo, presente en casi todos los grupos (excepto oribatidos, un grupo de los Sarcoptiformes)⁹. La asociación de ácaros como ectoparásitos de reptiles es una interacción común, en el mundo se conocen alrededor de 73 especies de 16 géneros y cuatro familias de ácaros registradas como parásitos permanentes de serpientes¹⁰; para México se conocen 10 especies de 11 géneros y cinco familias de ácaros parasitando a serpientes en alguna etapa de su vida (cuadro 1)¹¹⁻¹³, dentro de estos registros encontramos a especies pertenecientes de la familia Macronyssidae (Parasitiformes: Mesostigmata) que incluye ácaros causantes de importantes parasitosis⁹ y a miembros de la familia Ixodorhynchidae (Parasitiformes: Mesostigmata) los cuales han sido escasamente estudiados¹². La presencia de ectoparásitos es habitual en reptiles tanto de vida libre como en cautiverio, las garrapatas y ácaros son los que comúnmente se registran en animales mantenidos en cautiverio¹⁴.

El ectoparásito más frecuente en serpientes es *Ophionyssus natricis* (Gervais 1844) (Macronyssidae) o también llamado "ácaro de las serpientes"¹⁴, conocido por que tanto la protoninfa como los adultos se alimentan de la sangre del hospedero causando cuadros de anemia, dermatitis, prurito, septicemia, disecdisis y deshidratación, además de ser vector de la hemorragia septicémica provocada por *Aeromonas hydrophilus*^{14–16}, para este ácaro se ha registrado que tiende a alimentarse de los tejidos suaves por debajo de las escamas, con preferencia en las zonas de la cabeza y cuello. También, se han registrado casos donde el humano es un hospedero accidental causando vesículas papulares en la piel^{17,18}. Para México

la presencia de este ácaro se registra desde el año de 1985^{15,19} parasitando a por lo menos 15 especies de reptiles en diversas colecciones herpetológicas¹².

Cuadro 1. Especies de ácaros y hospederos registrados en México en serpientes de vida libre y cautiverio.

Familia	Especie	Hospedador	
Argasidae	Ornithodoros turicata	Crotalus mitchelli	
		C. ruber	
	Amply amma dissimila	C. durissus	
lvadidaa	Ambiyomma dissimile	Spilotes pullatus Roc constrictor	
IXOUIDAE	A elanhese	Bogertonhis subocularis	
1	A. rotundatum	S. pullatus	
	Ixodorhynchus leptodeirae	Leptodeira maculata	
Ixodorhynchidae	I. liponyssoides	N.D*	
	Ixoboides sp.	C. triseriatus	
		C. triseriatus	
	Ophionyssus natricis	C. durissus	
		Pituophis deppei	
		B. constrictor	
Macronyssidae		C. cerastes	
		C. lepidus	
		Lampropeltis triangulum	
		C. atrox	
		C. ravus	
		Chionactis occipitalis	
	Hyponeocula imitator	Lampropeltis getula	
Trombiculidae		Coluber flagellum	
	Eutrombiculai alfredduges	Leptophis mexicanus	
	Oaxacarus geophis	Geophis anocularis	

* N. D: Especie no determinada

La co-adaptación que han desarrollado reptiles y sus ectoparásitos ha generado diversas estrategias de supervivencia para ambas partes, una de estas es la selección del lugar donde se alimenta y se lleva acabo el ciclo de vida del ectoparásito²⁰. Se ha registrado que existen áreas sobre el hospedero preferidas

por ciertos estadios de vida del ectoparásito, esta elección puede deberse a la facilidad para obtener su alimento, la forma y tamaño que puedan presentar las escamas o que sean sitios favorables para la ovoposición y fijación de los huevos del ácaro²¹. La mayoría de las observaciones de ectoparásitos en serpientes los registran asociados a las escamas de la cabeza, el contorno de los ojos y cuello¹⁰. La observación dirigida hacia estos sitios de preferencia puede ser de gran ayuda al realizar el diagnóstico de ácaros en animales de vida libre o en cautiverio.

El presente estudio incluye una aproximación molecular, que busca la caracterización de la secuencia genética del ADN mitocondrial codificante para una porción del gen del citocromo C oxidasa I (COI), que consta de aproximadamente 648 pares de bases (pb). Esta secuencia es la principal que se usa para el proyecto internacional llamado "Código de barras de la vida" (Barcode of life), que busca desarrollar un método por el cual secuencias cortas de una región estándar del genoma permita la identificación de las especies conocidas y potencialmente el descubrimiento de especies nuevas para la ciencia; y con esto facilitar y ampliar el conocimiento sobre la diversidad de especies en el planeta^{22,23}. También se realizó la caracterización para la región variable 4 (V4) del gen nuclear 18S (aprox. 480 pb) y el fragmento D3 a D5 del gen nuclear 28S (aprox. 400 pb). Estos genes son ampliamente utilizados para estudios filogenéticos moleculares de artrópodos²⁴⁻²⁶, ya que se ha demostrado la estabilidad a cambios en su estructura, presentando regiones menos variables para los análisis entre taxones a niveles de género o superiores, y que en un grupo tan diverso como son los ácaros, son utilizados frecuentemente para realizar análisis filogenéticos²⁷⁻²⁹. El uso de técnicas moleculares en medicina veterinaria de reptiles esta apenas iniciándose, enfocada

a la vigilancia de enfermedades de relevancia medica en herpetarios o en algunos casos aplicado a la clínica en centros especializados^{30,31}.

Este trabajo busca dar a conocer los hallazgos suscitados en una población de diferentes especies de serpientes mantenida en cautiverio, a la cual le afecto un brote de acariosis, así como incluir las descripciones morfológicas de los diferentes estadios del ciclo de vida de las especies de ectoparásitos que se identifiquen y su caracterización molecular con 1 gen mitocondrial y 2 genes nucleares.

HIPÓTESIS

El brote de acariosis surgido recientemente en una población de serpientes mantenida en cautiverio fue causado por *Ophionyssus natricis*, la especie de ácaro más común en herpetarios.

OBJETIVO GENERAL

Identificar taxonómicamente los ácaros obtenidos de la recolecta de serpientes mantenidas en cautiverio de los brotes acontecidos en el año 2016.

OBJETIVOS PARTICULARES

- Identificar morfológicamente las especies de ácaros encontradas en las muestras.
- Describir los estadios del desarrollo postembrionarios de los ácaros recolectados en este estudio.

- Diagnosticar molecularmente las especies de ácaros encontradas en las muestras, con base en los marcadores mitocondriales, citocromo C oxidasa subunidad 1 (CO1), región V4 del 18S y D3-D5 del 28S.
- Evaluar si existen regiones corporales en las serpientes con mayor preferencia por los ácaros, en donde se presenten infestaciones altas.

MATERIALES Y MÉTODOS

Recolecta, preservación e identificación taxonómica

La población de serpientes donde se realizó la recolecta de ectoparásitos del brote ocurrido en 2016 se mantenía en el área de cuarentena, que constaba con un total de 29 ejemplares. Esta área pertenece a la colección del Laboratorio de herpetología "Vivario", de la Facultad de Estudios Superiores Iztacala (Lab. Herp. FES-I UNAM), ubicada en: Avenida de los Barrios núm. 1, colonia Los Reyes Iztacala, Tlalnepantla, Estado de México, México.

El diagnóstico de ectoparásitos sobre las serpientes se realizó al observar los ácaros en los ejemplares de la colección, dentro de sus bebederos, en el sustrato (papel periódico) dentro de sus lugares de estancia o mediante baños de agua y jabón¹⁴, éste último utilizado por facilitar el desprendimiento de la capa cerosa de los ácaros³².Por acción mecánica los ectoparásitos eran atrapados en la superficie de guantes de látex, donde se recolectaron con hisopos no estériles impregnados con etanol al 70% deslizándolos por la superficie del guante. Los ectoparásitos atrapados fueron colocados en tubos de plástico eppendorf con etanol al 70% o al 96% y rotulados con los datos de la especie huésped, tales como el número de identificación del ejemplar y fecha de recolecta. Mediante la utilización de un

microscopio estereoscópico los ectoparásitos fueron cuantificados. Se calcularon los índices de prevalencia, densidad y abundancia según Bush *et. al.*^{33,34}.

 $Prevalencia \% = \frac{N \acute{u}mero \ de \ hospederos \ infectados}{N \acute{u}mero \ de \ hospederos \ examinados}$

$$Abundancia \ promedio = \frac{N \'umero \ total \ de \ parasitos \ recolectados}{N \'umero \ total \ de \ hospederos \ de \ la \ muestra}$$

$$Intensidad = \frac{N \acute{u}mero \ de \ parasitos \ recolectados \ de \ una \ poblacion}{N \acute{u}mero \ de \ hospederos \ parasitados}$$

Intervalos de intensidad = Núm maximo y minimo de parasitos en una población

Para la preparación de las muestras y su posterior identificación taxonómica se siguió el método propuesto por Krantz y Walter³⁵, que indica el aclarado del ectoparásito sumergiéndolo en lactofenol por un periodo de 24 a 48 horas a temperatura ambiente. Posteriormente, con ayuda de un microscopio estereoscópico se realizaron preparaciones semipermanentes con portaobjetos y cubreobjetos de vidrio utilizando medio Hoyer como preservador, las preparaciones fueron colocadas en un horno de secado (Boekel ®, modelo 133730) a 30°C durante al menos 72 horas hasta que secó el medio. Los ejemplares que no se conservaron en lamillas fueron preservados en etanol al 100% en frascos de vidrio, cada muestra fue rotulada con los datos del ejemplar, especie huésped, lugar y fecha de recolecta.

Para la identificación taxonómica de ectoparásitos se utilizaron las claves dicotómicas para ácaros de serpientes de Fain³⁶ y ácaros de la familia

Macronyssidae (Mesostigmata: Dermanyssoidea) de Radovsky³⁷ con ayuda de un microscopio óptico de contraste diferencial de fases (Nikon, Optiphot 2) para la observación de los ejemplares en preparaciones.

Se realizó la redescripción de los estadios conocidos y la descripción de aquellos estadios postembrionarios de los ácaros que no han sido previamente descritos con base en los ejemplares recolectados, siguiendo el formato de las descripciones realizadas por Fain³⁶ y complementadas con descripciones taxonómicas de especies nuevas y cambios nomenclaturales recientes de la superfamilia Dermanyssoidea^{38,39}. Todas las mediciones son indicadas en micrómetros (µm), la nomenclatura para la quetotaxia es tomada de los trabajos de Lindquist y Evans⁴⁰, así como la modificación posterior de Lindquist⁴¹.

Los ácaros preservados en laminillas fueron fotografiados con una cámara fotográfica de cabezal (AxioCam ® ICc 1) adaptada a un microscopio óptico de contraste de fases (Zeizz ® serie AX10 modelo LAB.A1), en el Laboratorio de Microscopia Electrónica y Fotografía de la Biodiversidad del Instituto de Biología de la UNAM (IBUNAM). Las preparaciones y ejemplares preservados en etanol al 100% quedaron a resguardo de la Colección Nacional de Ácaros (CNAC) en el IBUNAM.

Los nuevos registros y el material adicional revisado se indica en este trabajo con los siguientes datos: número de catálogo de la CNAC, la especie de ácaro, la especie del hospedador, localidad de recolecta, fecha y colector. Las abreviaturas y simbología utilizadas corresponden a: \mathfrak{P} : hembra adulta (plural $\mathfrak{P}\mathfrak{P}$); \mathfrak{F} : macho adulto (plural $\mathfrak{F}\mathfrak{F}$); DN: deutoninfa (plural DNN); PN: protoninfa (plural PNN); L: larva (plural LL).

Determinación de áreas de infestación

La determinación de las áreas de preferencia de los ectoparásitos, se realizó al observar los ácaros sobre los ejemplares de la colección. La categorización de las regiones corporales se realizó a través de la división de la longitud total de los ejemplares en las categorías de primer tercio craneal, segundo tercio medio y tercer tercio caudal.

Extracción de ADN

Para la obtención del material genético se utilizó un equipo de extracción para ADN DNeasy[®] Blood and Tissue (QIAGEN[®])⁴², utilizando la metodología modificada por Paredes-León(43). Las modificaciones consisten en la obtención de tejidos a partir de 1 a 5 ácaros que se maceran o cortan para exponer los tejidos internos. Se agregaron 150 µl de solución ATL junto con 4 µl de RNAsa (100mg/ml), mezclándolo en un vortex hasta homogenizar e incubándolo por 2 minutos a temperatura ambiente.

Se adicionaron 10 µl de proteinasa K y se dejaron incubar por 16 horas a temperatura de 56° C. Se agregó 200µl de la solución AL y se incuba a 56° C por 10 minutos. Se colocó la columna de extracción en un tubo estéril de 2 ml, y se agregaron 50 µl de solución AE y se dejó incubar por 20 minutos.

Con fines comparativos, se realizó la extracción de ADN para algunos ácaros parásitos de serpientes pertenecientes al acervo de la CNAC (**Cuadro 2**).

Cuadro 2. Datos de recolecta de las muestras de ácaros parásitos de serpientes procedentes de la Colección Nacional de Ácaros.

Especie	Número de	Especie	Origen de la muestra
	catálogo de la CNAC	huésped	(Fecha de ingreso a la CNAC)
Ophionyssus	CNAC011061	Boa imperator	UMA ubicada en Coquimatlán,
natricis			(Junio 2008)
O. natricis	CNAC011064	<i>Morelia</i> sp.	Ejemplar decomisado por parte
			de SEMARNAT". (Junio-Julio 2008)
O. natricis	CNAC011058	Agkistrodon	Herpetario del IBt UNAM**,
		bilineatus	Cuernavaca, Morelos, México.
			(2006)
O. natricis	CNAC011057	Crotalus ravus	Herpetario del IBt UNAM**,
			Cuernavaca, Morelos, México.
			(2006)
O. natricis	CNAC011067	Phyton	Ejemplar en cautiverio, Cd. De
		bivittatus.	México
			(17 de Febrero 2017)
Ixodorhynchus	CNAC011049	Leptodeira	Ejemplar de vida libre, Carretera
leptodeirae		maculata	Tepic-Aguamilpa; Nayarit,
			México.
			(Junio 2003)
Ixodorhynchus	CNAC011053	Thamnophis	Ejemplar en vida libre, Edo.
sp.		sp.	Méx, México.
			(2017)

* SEMARNAT: Secretaria del Medio Ambiente y Recursos Naturales.
** IBt UNAM: Instituto de Biotecnología, Universidad Nacional Autónoma de México.

Lo resultante de la técnica de extracción de las muestras fue colocada en un espectrofotómetro (NanoDrop 2000[®], Thermo Scientific), para la cuantificación del material genético obtenido de las muestras. También, se utilizó el intervalo de absorbancia 260/280 que indica el valor de pureza de una muestra de ADN. Las muestras que presentan un valor \geq 1.8 se consideran bajas en cantidad de partículas contaminantes (proteínas o sales disueltas), estas partículas tienen un efecto inhibitorio para la reacción en cadena de la polimerasa (PCR por sus siglas en inglés)⁴⁴.

Técnica de PCR

Para la realización de la técnica de PCR, se prepararon las soluciones de reactivos en un tubo eppendorf de 1.5 ml para cada muestra que contenía 3 μl de Buffer 5x MyTaq (Reaction Buffer, Bioline®), oligonucleótidos o iniciadores (*primers*) a 10 μM (0.25 μl) cada uno, 1 unidad de Taq polimerasa (1x100μl), 2 μl de la muestra y se llevó a un volumen final de 15 μl empleando agua destilada, esto con base a los protocolos del Laboratorio de Biología Molecular, que forma parte del Laboratorio Nacional de Biodiversidad (LaNaBio) del departamento de Zoología del IBUNAM. Los principales oligonucleótidos empleados para el gen COI son propuestos por Folmer *et al.*⁴⁵ y como alternativos se utilizaron los de Cywinska *et al.*⁴⁶ y Simon *et al.*⁴⁷. Para la región V4 del gen 18S los principales oligonucleótidos son los propuestos por Otto y Wilson²⁹, como oligonucleótido alternativo se utilizó el propuesto por Giribet *et al.*⁴⁸. Para la región D3-D5 del gen ribosomal 28S se utilizaron los oligonucleotidos propuestos por Whiting *et al.*²⁸ y Angelini *et al.*⁴⁹; los segmentos analizados en este estudio son frecuentemente utilizados para el

análisis filogenético de ácaros como también el de diversos artrópodos y otros phyla (cuadro 3).

Cuadro 3. Oligonucleótidos utilizados para la secuenciación del gen mitocondrial COI, nucleares 28S y 18S.

Gen	Nombre del	Oligonucleótidos (5' – 3')	Referencia
objetivo	Oligonucleótido		
	LCO 1490	F– GGT CAA CAA ATC ATA AAG ATA TTG	(45,46)
		G	
	CI-J-1718	F – GGA GGA TTT GGA AAT TGA TTA GTT	(47)
		CC	
COI	LepF	F- ATT CAA CCA ATC ATA AAG ATA	(46)
		TTG G	
	HCO 2198	R- TAA ACT TCA GGG TGA CCA AAA	(45,46)
		AAT CA	
286	Mite 28S a	F– GAC CCG TCT TGA AAC ACG GA	(28)
200	Mite 28SFF	R – GTT ACA CAC TCC TTA GCG GA	(49)
	Mite 18S – IF	F – ATA TTG GAG GGC AAG TCT GG	(29)
18S	18S – IR	R – TGG CAT CGT TTA TGG TTA G	(29)
	18S5R	R – CTT GGC AAA TGC TTT CGC	(48)

F = Oligonucleótido con sentido "forward"

R = Oligonucleótido con sentido "reverse"

Para la realización de la PCR, se utilizó el perfil térmico de 5 minutos (min) a 94 °C, 30 ciclos de 40 segundos (s) a 94 °C, 40 s con las temperaturas de 48, 50 o 52 °C y 45 s a 72 °C, con un paso final de 72 °C 7min⁴³ para las regiones de los genes nucleares 28S (D3-D5) y 18S (V4). Para el gen mitocondrial COI se utilizó el perfil de 5 min a 94 °C, 5 ciclos de 40 s a 94 °C, 40 s a 45°C y 1 min a 72 °C, seguido por 30 ciclos 40 s a 94°C, 45 s a 50°C y 1 min a 72°C, con un paso final de 5 min a

72 °C⁵⁰. Las reacciones fueron procesadas en termocicladores modelo Arktik[™] del LaNaBio del departamento de Zoología del IBUNAM.

Posterior al proceso de PCR, se tomaron 2 µl de muestra junto con 1 µl tinte marcador (GelRed[™]) y fueron colocados en un gel de agarosa al 1.5% para una electroforesis de 25 min de duración a 120 voltios. Para la observación de las bandas en el gel se utilizó un transiluminador MultiDoc-It[™] UVP (Analytik Jena AG).

Las muestras fueron enviadas al Laboratorio de Biología Molecular y Secuenciación Genómica de la Biodiversidad y la Salud del IBUNAM donde se realizó la purificación y secuenciación de las muestras en su sentido 5' - 3' y vice versa.

Se analizaron las secuencias de *O. natricis* disponible en la plataforma de GenBank[®] para el gen 28S (FJ911788.1) y del gen 18S (FJ911853.1). Estas secuencias son las únicas publicadas para las especies analizadas en el presente estudio y se incluyeron en la elaboración de las matrices de distancias y en el análisis de distancia de mínima evolución. La clave de identificación para estas secuencias es la abreviatura de especie más el número de acceso de la plataforma GenBank[®].

Análisis de distancia por el método Neighbor-joining (NJ)

Las secuencias obtenidas fueron editadas con el programa Geneious[©] versión 5.2⁵¹(Biomatters Ltd., Auckland, Nueva Zelanda), para posteriormente compararlas con las secuencias disponibles en GenBank[®], utilizando la "Herramienta Básica de Búsqueda de Alineación Local" (*BLAST*, por sus siglas en inglés)^{52,53}.

Las secuencias obtenidas y las que se encuentren publicadas en la plataforma electrónica GenBank[®] fueron alineadas utilizando los algoritmos de ClustalW⁵⁴ en el programa MEGA7 (versión 7)⁵⁵, usando los parámetros de serie (penalización por espacio o *gap* abierto = 15, extensión de penalización por espacio o *gap* = 6.66) y analizadas mediante la elaboración de una matriz de distancias o disimilitud genética utilizando deleción completa de los espacios en las secuencias. Posteriormente se realizó un análisis de agrupamiento mediante el método *Neighbor-joining*⁵⁶ utilizando el modelo Tamura 3-parametros⁵⁷ el cual presento los valores más bajos del criterio de información Bayesiano (*BIC*, por sus siglas en inglés)⁵⁸ y el criterio de información de Akaike (*AIC*, por sus siglas en inglés)⁵⁹. El método NJ permite establecer relaciones basadas en similitud de secuencias de genes mediante las matrices de distancia y representándolas en un árbol de distancias⁵⁶. Además, se calcularon los valores de soporte de los grupos obtenidos con el método de arranque o agrupamiento (*Bootstrapping*) con 1000 replicaciones.

RESULTADOS

Se realizó el diagnóstico a un total de 29 serpientes pertenecientes al área de cuarentena del laboratorio de herpetología de la FES- I UNAM, las especies de serpientes pertenecientes a la colección aparecen en el **cuadro 4**. Un total de 22 serpientes resultaron positivas a la presencia de ectoparásitos. Fueron recolectados un total de 314 ectoparásitos los cuales fueron preservados en laminillas, conservados en etanol o utilizados para la extracción de ADN. Se obtuvo una prevalencia del 76% de las serpientes con ectoparásitos, una abundancia de 10.8

parásitos por hospedero y una intensidad de 14.3 ácaros por hospedero infestado con un intervalo que va de 6 a 69 ectoparásitos.

Cuadro 4. Número de ejemplares totales por especie y los diagnosticados positivos a la presencia de ácaros, del área de cuarentena de la Facultad de Estudios Superiores Iztacala.

Espacia	Número de Ejemplares positiv	
Especie	ejemplares	presencia de ácaros
Boa imperator	8	7
B. constrictor	2	2
Corallus caninus	2	2
Morelia spilota	3	3
Epicrates maurus	1	1
Drymarchon melanurus	1	1
Pituophis deppei	7	5
Python regius	1	1
Lampropeltis getula	3	0
L. triangulum	1	0
Total	29	22

Identificación Morfológica

A partir de los ácaros recolectados, se elaboraron 52 laminillas microscópicas de ectoparásitos obtenidos de las serpientes. Se identificaron 2 especies: 1) *Hemilaelaps triangulus* (Ewing, 1923), diagnosticada en todos los ejemplares y 2) *Ophionyssus natricis* (Gervais, 1844), sólo en un ejemplar de *Corallus caninus* causando una coinfección junto con *H. triangulus*. A continuación se indica su clasificación⁸, así como las descripciones realizadas.

LISTADO TAXONÓMICO Y CLASIFICACIÓN DE LAS ESPECIES ENCONTRADAS

Superorden: Parasitiformes Reuter, 1909

Orden: Mesostigmata Canestrini, 1891

Suborden: Monogynaspida Camin y Gorirossi, 1955

Cohorte: Gamasina Kramer, 1881

Subcohorte: Dermanyssiae Evans y Till, 1979

Superfamilia: Dermanyssoidea Kolenati, 1859

Familia: Ixodorhynchidae Ewing, 1923

Género: Hemilaelaps (Ewing, 1923)

Especie: *Hemilaelaps triangulus* (Ewing, 1923) Familia: Macronyssidae Oudemans, 1936

Género: Ophionyssus (Gervais, 1844)

Especie: Ophionyssus natricis (Gervais, 1844)

Familia Ixodorhynchidae Ewing, 1923

Diagnosis. Ácaros de talla pequeña o mediana, en la mayoría de las especies el cuerpo es aplanado, corto y en forma de cuchilla, de forma elíptica, o más ovalado en la parte posterior del idiosoma. IDIOSOMA. *Dorsal*: con una placa grande o dos separadas (placa podosomal y opistosomal) que cubre la mayor parte del cuerpo. *Ventral*: la placa anal, habitualmente está muy desarrollada, relativamente bien esclerosada con ornamentación variada, y presentando tres sedas anales (dos paranales y una postanal), criba (*cribrum*) siempre presente. Placas metapodales reducidas. Estigmas situados lateralmente o ventro-

lateralmente a la altura de las coxas IV y se extienden hacia la parte anterior por un peritrema de longitud variable. GNATOSOMA: Pedipalpos con 5 artejos, tarso con un apotele esclerosado frecuentemente bicornuado, cuando existe. Los dientes deuteroesternales siempre presentes dispuestos en una fila longitudinal o formando peines compuestos con 5 a 20 dientes. Los mala externa o corniculos siempre largos, curvados hacia adentro y se dirigen hacia la línea media hasta el punto de que en algunas especies los extremos apicales se tocan. En algunas especies la punta de los mala externos tiene uno o dos ganchos en forma de arpón. Estas puntas en forma de arpón están ausentes en los machos. Presenta un tritosterno (tritosternum) con 2 lacinias usualmente desarrolladas y finamente sedosas. PATAS: Generalmente cortas, todos los tarsos terminan en una ventosa y uñas poco desarrolladas, simples o ligeramente gruesas. Algunas especies poseen fuertes espolones en las coxas ya sea con su ápice redondeado o bífido, o remplazado por una seda ordinaria. Los fémures de estas especies generalmente presentan sedas largas y gruesas en la parte dorsal.

Las hembras presentan una placa esternal de apariencia escamosa, o lisa poco esclerosada, o bien, en la parte anterior está fuertemente esclerosada formando una banda transversal que continua a veces entre las coxas I-II. Se presentan sedas esternales en todas las especies. Placa epiginial relativamente bien desarrollada pero poco esclerosada, generalmente en forma de lengua con un par de sedas genitales, rara vez estas sedas se encuentran por fuera de la placa epiginial. Los quelíceros son variables; las quelas o pinzas pueden estar formadas por un dedo fijo y un dedo móvil con dientes, o bien solamente el dedo móvil muy desarrollado con dientes en forma de gancho, o también, con un dedo móvil

desarrollado con dientes y un dedo fijo rudimentario. La base del dedo móvil está rodeada por una membrana articular y reforzada por una hilera de espinas muy finas (sedas o brocha artrodial).

Los machos presentan una placa holoventral variable. Quelíceros: el dedo móvil es estrecho, y relativamente largo con la presencia de un espermatodáctilo; el dedo fijo es más corto o rudimentario.

Hemilaelaps triangulus (Ewing) (Figuras 1-6)

Liponyssus triangulus Ewing, 1923: 18; Turk, 1947; Fonseca, 1948: 321. Hemilaelaps triangulus Johnston, en Strandtmann y Wharton, 1958: 140; Fain, 1962: 43. Hemilaelaps americanus Ewing, 1933: 8, Fain, 1962: 43. Hemilaelaps distinctus Ewing, 1993: 8, Fain, 1962: 43.

Diagnosis:

Esta especie se distingue de otras de su mismo género por presentar solo un fuerte espolón en la coxa I, la ausencia de espolón en la coxa III, la placa dorsal es completa y no posee invaginaciones laterales y la placa esternal esta poco esclerosada³⁶.

Descripción

Hembra (n = 26) (Figura 1)

GNATOSOMA: 85-135 ancho, 150-200 desde su base a las punta de los pedipalpos y 115-145 desde la base a la punta de los mala externos, el largo de la seda 1 del hipostoma (*hyp1*) 7-10, *hyp2* 4-6, *hyp3* 4-10 y seda capitular (*c.s*) 5-10. El hipostoma es bicornual y contiene a las sedas hipostomales, la corniculos terminan en forma de arpón. Quelíceros 145-160 de largo y poseen pinzas, el dedo móvil tiene 20-40 de largo y presenta 3 dientes (**Figura 2A**), el dedo fijo tiene el mismo tamaño y posee 2 dientes, las quelas presentan una brocha artrodial con 4

a 6 sedas gruesas en la base y delgadas en la punta. Tritosterno presente con base de 15-20 y terminado en 2 lacinias libres que alcanza hasta *hyp3*. Los artejos libres de los pedipalpos miden 70-90 de longitud, y presentan un apotele bicornual.

IDIOSOMA. Oval, 530-670 de largo y 290-400 de ancho a la altura de la seda *r1*. *Dorsal*: placa completa sin invaginaciones, con poca ornamentación, 510-555 de longitud y 270-330 de ancho a la altura de la seda *r1* (**Figura 2B**). La placa posee 33 pares de sedas simples de 15-20 de largo, exceptuando *j1* 10-25, *j2* 12-30 y *Z5* 15-20. *Ventral*: la placa esternal posee tres pares de sedas esternales (*st*) las cuales miden *st1* 15-25, *st2* 20-30, *st3* 15-30 (**Figura 2C**). La placa epiginial es piriforme de 210-390 de longitud y 75-105 de ancho a la altura de la seda genital (*sg*), ésta mide 16-30 (**Figura 2D**). La placa anal 95-110 de longitud y 70-115 de ancho, con un margen lateral al perímetro de la placa, las sedas paranales miden 15-30 y la seda postanal mide 10-30 (**Figura 3A**).

PATAS. Pata I 305-360 de longitud y la pata IV 315-360, las sedas modificadas (espolones) de las coxas I y II miden 15-30 y 20-25 respectivamente. La seda más desarrollada presente en el fémur II mide 25-45. (**Figura 3B**)

En el **cuadro 5** se indican las medidas de estructuras morfológicas de los ácaros *H. triangulus* recolectados en este trabajo comparados con las reportadas por Fain³⁶ para las hembras de la especie.

Figura 1. Hemilaelaps triangulus, hembra, vista completa del ejemplar adulto

Cuadro 5. Principales mediciones morfológicas de Hemilaelaps triangulus registradas por Fain³⁶ y de ejemplares hembras

obtenidas en este estudio.

	H. triangulus		H. triangulus	
	(Ewing) ³⁶ (µm)**	(Brote 2016	, Lab. Herp. FES-	I* UNAM)
		Media (µm)	S (µm)	CV
Largo del idiosoma	597	582.4	36.58	6.28
Ancho del idiosoma	362	345.6	28.72	8.31
Largo de la placa dorsal	530	529.4	12.35	2.33
Ancho de la placa dorsal	316	311.5	13.97	4.48
Largo de la placa epiginial	218	256.5	37.19	14.50
Ancho de la placa epiginial	87	91.4	6.69	7.32
Largo de la placa anal	115	115.6	16.87	14.59
Ancho de la placa anal	117	111.4	10.22	9.17
Largo del gnatosoma	171	177.2	13.53	7.64
Ancho del gnatosoma	90	100.8	12.71	12.61
Largo del pedipalpo	86	87.2	5.13	5.88
Largo del quelícero	144	156.4	5.73	3.66
Largo del dedo móvil del quelícero	30	35.4	3.66	10.34
Largo de la pata l	343	335	15.23	4.55
Largo de la pata IV	316	338.5	10.16	3.00

* Lab. Herp. FES-I: Laboratorio de herpetología de la Facultad de Estudios Superiores Iztacala ** Sintipos recolectados por Ewing⁶⁰, registrados por Fain³⁶

S: Desviación estándar

CV: Coeficiente de variación

Figura 2. *Hemilaelaps triangulus*, hembra, A) vista del gnatosoma, B) vista dorsal,
C) y D) vista ventral. A) Dedo móvil (Dm) del quelícero; B) Placa podosomal (PD);
C) Placa esternal (PE), sedas esternales 1, 2 y 3 (*st1*, *st2* y *st3*), tritosterno (Trit),
espolones I y II (*espl* y *espll*); D) Placa epiginial (PG) y seda genital (*sg*).

Figura 3. *Hemilaelaps triangulus*, hembra A) Placa anal (PA), indicando la abertura anal (aa), sedas paranal (*spra*); postanal (*spst*); B) Seda del fémur II (*sfII*).

Macho (n = 6) (Figura 4A)

GNATOSOMA. 135-185 de largo y 65-75 de ancho desde su base a la punta del pedipalpo (**Figura 4B**), y 105-125 de la base a la punta de los corniculos. Sedas *hyp1* 5-7, *hyp2* 3 y *hyp3* 3 y *c.s.* 7-8. El hipostoma y los corniculos más delgados y alargados que en la hembra. Quelíceros con longitud de 105-160, el dedo móvil es robusto en su base y presenta un espermatodáctilo con longitud de 30-45 con un canal interno que recorre desde la base hasta la punta formando una ligera proyección tubular, presenta una brocha artrodial con 6 sedas (**Figura 4C**). El dedo fijo carece de dientes. Tritosterno de 10-15 de ancho en su base, pedipalpos de 75-80 de largo, con un apotele bicornual.

IDIOSOMA. Oval de 440-460 de largo y 220-300 de ancho. *Dorsal*: placa holodorsal con 420-450 de largo y 450 de ancho sin invaginaciones ni ornamentación. Las sedas de la placa holodorsal miden 10 de largo exceptuando *j1* con 15-20 y *j4* 10-15 de largo. *Ventral*: La placa holoventral 110-115 de ancho a la

altura de las patas II - III, y 395-415 de largo, presenta cuatro sedas esternales y una genital, que miden *st1* 15, *st2* 15-20, *st3* 10-15, *st4* 15-20 y *sg* 10-15 (Figura 4D). Las sedas paranales y postanales con 10 y 15-20 de largo respectivamente.

PATAS: Similares a las de la hembra, longitud de 285-300 para la pata I y IV de 275-300 de largo. Presentan en el fémur II una seda más desarrollada con 15-20 de longitud. Los espolones miden 10-15 en coxa I y 15 en coxa II.

Deutoninfa (n = 2) (Figura 5A)

GNATOSOMA. 80-85 de ancho, 155-165 de largo desde la base hasta la punta de los pedipalpos y 120 de la base al ápice de los mala externo. Sedas del hipostoma; *hyp1* 6, *hyp2* 5, *hyp3* 3-5 y *c.s.* 6-7. Dedo móvil 25-30 con 3 dientes y el dedo fijo con 2 dientes. Brocha artrodial con 5 sedas, quelícero 125-155 de largo. Pedipalpo mide 70 y presenta un apotele único. El tritosterno mide en su base 15-20.

IDIOSOMA, 420-490 de largo y 270-330 de ancho. *Dorso:* Placa holodorsal 410-415 de largo y 270-330 de ancho, la placa presenta 33 pares de sedas de 10 de longitud, excepto por *j1* 10-15 y *Z5* 25-35. *Ventral:* Placa esternogenital 210-220 de largo y 80-85 de ancho a la altura de las patas II y III, con cuatro pares de sedas; *st1* 10-15, *st2* 13-14, *st3* 15-20, y *st4* 7-11; *sg* mide 5-15 (**Figura 5B**). Las sedas ventrales miden 15. Placa anal 80-85 de largo y 75-85 de ancho. La seda postanal mide 10-15.

PATAS. Longitud pata I 280-290 y IV 260-275, seda más desarrollada del fémur II 15-20 (**Figura 5D**). Los espolones en las coxas I y IV miden 10-15 y 15-20 respectivamente (**Figura 5C**).

Figura 4. *Hemilaelaps triangulus*, macho, A) Idiosoma completo; B) Gnatosoma (Gn), indicando el pedipalpo (pdp) y espermatodáctilo (epd); C) Espermatodáctilo en el dedo móvil del quelícero; D) Placa holoventral (PHV), abertura genital (ag), sedas esternales 1, 2, 3 y 4 (*st1*, *st2*, *st3* y *st4*) y seda genital (*sg*).

Figura 5. *Hemilaelaps triangulus*, deutoninfa, A) Idiosoma completo, indicando la seda dorsal de mayor tamaño (Z5); B), C) y D) Vista ventral, B) Placa esternogenital (PEG), sedas esternales 1, 2 y 3 (*st1*, *st2* y *st3*), genital (*sg*), y espolón II (*espI*); C) Tritosterno, espolón I (*espI*), y espolón II; D) Vista de la seda del fémur II (*sfII*).

Protoninfas (n = 4) (Figura 6A)

GNATOSOMA. 65-70 de ancho y 115-130 de longitud de la base a la punta del pedipalpo, y 120 de la base a la punta de la cornicula. Sedas del hipostoma *hyp1* 6, *hyp2* 5, *hyp3* 3-5 y *c.s.* 6-7 de longitud. Quelíceros 100-110, el dedo móvil presenta 3 dientes y mide 25-30, el dedo fijo presenta 2 dientes, la brocha artrodial
con 3 sedas. Los pedipalpos miden 60-65 de longitud. El tritosterno mide en la base 10-15.

IDIOSOMA. Longitud de 310 y 200-220 de ancho. *Dorsal:* Placa podosomal 170-205 de largo y 210-220 de ancho, las sedas de esta placa miden 7-10 excepto *j1* con 10-15. Placa opistosomal 100-125 de longitud, las sedas de esta placa miden 7, excepto *Z5* con 25. División incompleta entre estas placas (**Figura 6C**). *Ventral:* Placa esternogenital 140-170 de largo y 110-155 de ancho a la altura de patas II y III con 3 pares de sedas esternales, las cuales miden: 10-15 cada una (**Figura 6B**). Placa anal mide 45-55 de largo, y 40-50 de ancho, sedas paranales 10 y postanal 10-15 de longitud.

PATAS. Longitud de la pata I 225-230 y pata IV 200-205, la seda más desarrollada del fémur II mide 17. Los espolones de las coxas I y II miden 10-15 y 15 respectivamente (**Figura 6D**).

Material Examinado

Material estudiado: *Hemilaelaps triangulus*. Nuevos registros: ESTADO DE MÉXICO: 5 \Im 1 PN ex *B. imperator* [ejemplar mantenido en cautiverio], Laboratorio de herpetología "Vivario", de la Facultad de Estudios Superiores Iztacala Avenida de los Barrios núm. 1, colonia los reyes Iztacala, Tlalnepantla, Junio-2016, J. A. Alfonso Toledo [CNAC011001]. 7 \Im 2, 1 \Im , 2 DNN, 1 PN ex *B. imperator*, mismos datos [CNAC011008]. 4 \Im ex *B. imperator*, mismos datos excepto 10-Agosto-2016 [CNAC011023]. 8 \Im ex *M. spilota*, mismos datos excepto 17-Agosto-2016 [CNAC011028]. 1 \Im , 1 \Im , ex *C. caninus*, mismos datos excepto 10-Noviembre-

2016 [CNAC011038]. 4 ♀♀, 3 ♂♂, ex *B. constrictor*, mismos datos excepto 29-Diciembre-2016 [CNAC011041].

Material adicional revisado: *Ixodorhynchus leptodeirae*. NAYARIT: 2 ♀♀, 1 L, ex *Leptodeira maculata*, carretera Tepic-Aguamilpa, 79 msnm, 16-17-Junio-2003, J. A. Campbell [CNAC011049]. *Ixodorhynchus* sp. ESTADO DE MÉXICO: 3 DNN, ex *Thamnophis* sp. Municipio de Apaxco, 15-Octubre-2016, J. L. Muciño [CNAC011053].

Figura 6. *Hemilaelaps triangulus*, protoninfa, A) Idiosoma completo, indicando la seda dorsal de mayor tamaño (Z5); B) y D) Vista ventral y C) vista dorsal. B) Placa esternogenital (PEG), tritosterno (Trit), sedas esternales 1, 2 y 3 (*st1*, *st2* y *st3*) y espolones I y II (*espl* y *espll*); C) Placa podosomal (PP) y placa opistosomal (PO);
D) Placa esternogenital, sedas esternales 1, 2 y 3 (*st1*, *st2* y *st3*), espolones I y II, placa anal (PA) y abertura anal (aa).

Familia Macronyssidae Oudemans, 1936

Diagnosis: Ácaros de tamaño medio a pequeño a mediano. Quelíceros con quelas, sin dientes, pero con espinas, ganchos, lóbulos o costillas hialinas. Trocánter pedipalpal con un proceso ventral acanalado, generalmente presente en las hembras y algunas veces en el macho y la protoninfa. Machos con quelíceros quelados; espermatodáctilo largo, una o dos veces la longitud del dedo móvil, tritosterno con dos lacinias, apotele del pedipalpo con dos ramas (bicornuado). Protoninfa con placa pigidial, con dos a sietes pares de sedas. Ectoparásitos de mamíferos, aves y reptiles alrededor del mundo.

Ophionyssus natricis (Gervais) (Figuras 7)

Dermanyssus natricis, Gervais, 1884: 223

Liponyssus, autores varios, en parte, no Kolenati, 1858.

Ichoronyssus, autores varios, en parte, no Kolenati, 1858

Ophionyssus, Megnin, 1884: 107; Piekarski, 1936: 615; André, 1937: 63; Cooreman, 1943: 1; Fonseca, 1948: 312; Camin, 1949:583; 1953: 1; Zemskaya, 1951: 51; Bregetova, 1956: 160; Till, 1957: 126; Womersley, 1956: 599; Strandtmann y Wharton, 1956: 97; Baker et coll., 1956: 33; Strandtmann et Wharton, 1958: 97; Evans y Till, 1966: 335; Micherdzinski, 1980: 209; Domrow, 1987: 856; Micherdzinski y Lukoschus, 1987: 421; Fain y Bannert, 2000: 41; Fain y Bannert, 2002: 361; Radovsky, 2010: 105.

Liponyssus natricis, Berlese, 1918: 55.

Liponyssus arabicus, Hirst, 1921: 365.

Liponyssus serpentium, Hirst, 1921: 773

Serpenticola, Ewing, 1923; 6 [especie tipo: (*Ichoronyssus serpentium* Hirst, 1915 =) Serpenticola easti, Ewing, 1925: 18; Camin, 1949: 587; 1953: 4.

Liponyssus monodi, Hirst, 1925: 95.

Sauronyssus, Sambon, 1928; 106 (especie tipo: *Liponyssus saurarum* Oudemans, 1901, por monotipia).

Neoliponyssus, Ewing, 1929; 187 (especie tipo: *Liponyssus gordonensis* Hirst, 1923, por designación original y monotipia).

Ophionyssus arabicus, Camin, 1949: 584.

Oudemansiella, Fonseca, 1948; 269 (especie tipo: *Liponyssus saurarum* Oudemans, 1901, por designación original).

Diagnosis: Hembras 600-800 de longitud, *Dorsal:* Placa podosomal reducida con diez u once pares de sedas, posteriormente se encuentran dos pares de placas mesonotales y una pequeña placa pigidial (**Figura 8A y 8B**). *Ventral:* Placa esternal reducida con el borde anterior difuso o poco delimitada con 2 pares de poros, 2 pares de sedas dentro de la placa *st1-st2*, mientras que *st3* y *st5* se ubican fuera de la placa. Placa epiginial alargada y delgada (**Figura 8D**). Placa anal redondeada en su borde anterior y con 3 sedas (**Figura 8C**). Los quelíceros largos y con quelas dentadas. Pedipalpos con 6 artejos, apotele bicornual y cornículos membranosos. Tritosterno con dos lacinias con margen dentado^{19,37}.

Figura 7. Ophionyssus natricis, hembra, vista completa del ejemplar.

Figura 8. *Ophionyssus natricis*, hembra, A) y B) Vista dorsal, C) y D) Vista ventral, A) Placa podosomal (PP); B) Placa pigidial (PO); C) Placa anal (PA), abertura anal (aa) y seda postanal (*spst*); D) Placa epiginial (PG) y seda genital (*sg*).

En el **cuadro 6** se muestran las mediciones para las hembras de *O. natricis* recolectadas en este estudio.

Cuadro 6. Medidas de estructuras morfológicas para los ejemplares de

Ophionyssus natricis hembras identificados en este estudio.

O. natricis

(Brote 2016, Lab. Herp. FES-I* UNAM)

	Media (µm)	S(µm)	CV
Largo del idiosoma	790.9	86.0	10.87
Ancho del idiosoma	492.2	64.6	13.12
Largo de la placa podosomal	238.9	81.1	33.95
Ancho de la placa podosomal	201.8	115.4	57.19
Largo de la placa pigidial	43.8	11.4	26.03
Ancho de la placa pigidial	74.2	57.7	77.76
Largo de la placa epiginial	268.4	15.1	5.63
Ancho de la placa epiginial	38.8	3.2	8.25
Largo de la placa anal	108.3	11.5	10.62
Ancho de la placa anal	75.2	12.8	17.02
Largo del gnatosoma	231.9	28.5	12.29
Ancho del gnatosoma	100.2	9.6	9.58
Largo del pedipalpo	219.0	26.1	11.92
Largo del quelícero	168.7	20.0	11.86
Largo del artejo móvil del quelícero	29.3	10.6	36.18
Largo de la pata l	430.7	78.6	18.25
Largo de la pata IV	452.1	59.7	13.21

* Lab. Herp. FES-I: Laboratorio de herpetología de la Facultad de Estudios Superiores Iztacala

S: Desviación estándar

CV: Coeficiente de variación

Material Examinado

Material estudiado: *Ophionyssus natricis*. MORELOS. $2 \ Q \ Q$, ex *A. bilineatus* [ejemplar mantenido en cautiverio, procedente de Nayarit], Herpetario del Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 2006, A. Carbajal [CNAC011058]. COLIMA. $2 \ Q \ Q$, ex *B. imperator*. Parque ecológico UMA El Palapo, parcela No. 75 Z-1 P2/2, predio Las Cuevas, ejido Agua Zarca, Coquimatlán. Junio-2008, V. León [CNAC011061]. CIUDAD DE MEXICO. 2 \bigcirc , ex *Morelia* sp. ejemplar decomisado por parte de SEMARNAT [sin datos de procedencia]. Junio-Julio-2008. D. Osorio S [CNAC011064]. 1 \bigcirc , ex *Phyton bivittatus*. [ejemplar mantenido en cautiverio]. 17-Febrero-2017. J. Martínez-Molotla [CNAC011067].**Nuevos registros**: ESTADO DE MÉXICO: 14 \bigcirc , ex *C. caninus* [ejemplar mantenido en cautiverio], Laboratorio de herpetología "Vivario", de la Facultad de Estudios Superiores Iztacala Avenida de los Barrios núm. 1, colonia los Reyes Iztacala, Tlalnepantla, 10-Noviembre-2016, J. A. Alfonso Toledo [CNAC011038].

CARACTERIZACIÓN E IDENTIFICACIÓN MOLECULAR

Extracción de ADN

Las concentraciones de material genético obtenidas están en el intervalo 0.1 - 6.2 ng/µl (anexo 1).

Resultados de la amplificación de ADN por PCR

Los oligonucleótidos utilizados para la amplificación de cada muestra se encuentran en el **anexo 2**. Las secuencias obtenidas y editadas se muestran en el **anexo 3**.

Se obtuvo un éxito de amplificación de los genes de 54% de las muestras para COI y 28S y 77% para 18S **(anexo 2)**. Para las muestras OphinatrCNAC11057, OphinatrCNAC11058 y OphinatrCNAC11064 ninguna reacción resulto positiva para la amplificación de los genes seleccionados, esto puede estar relacionado con la

antigüedad de las muestras, o una inadecuada preservación de las muestras que ocasiono la degradación del ADN.

El análisis de las secuencias fue realizado con un solo sentido de la cadena de ADN (*strand*) para las secuencias de la especie *O. natricis* en el gen COI y la región V4 del gen 18S en las muestras OphinatrCNAC11038.2 y OphinatrCNAC11038.3 respectivamente, para la muestra de la especie *I. leptodeirae* (IxoleptCNAC11049) ocurre lo mismo para la región D3-D5 del gen 28S. Esto debido a que en los resultados de la secuenciación, solo un sentido de la cadena pudo ser secuenciado con suficiente calidad para ser incluido en el análisis.

Análisis de distancias de mínima evolución

Se obtuvieron las matrices de distancia por medio del algoritmo de disimilitud Tamura 3-parametros (**Anexo 4**), los resultado son representados mediante arboles de distancias para los genes COI, 28S y 18S (**figuras 9, 10 y 11**), para la identificación de las muestras se utilizaron los sinónimos del **anexo 1**.

Para el gen COI, el árbol construido (**figura 9**) se obtuvo analizando 307 posiciones, el resultado arrojó dos grupos, uno de ellos representado por las muestras de *O. natricis* mientras que el otro nos agrupa las muestras de los representantes de Ixodorhynchidae incluídos: *H. triangulus* e *I. leptodeirae*. Las distancias entre los géneros *Hemilaelaps* e *Ixodorhynchus* se calcula en 23.2%, y entre las familias Ixodorhynchidae y Macronyssidae la distancia se estima en 50% Todas las muestras utilizadas en este trabajo pertenecen a la superfamilia (Dermanyssoidea).

Las secuencias de las regiones analizadas para los genes 28S y 18S de las muestras de este estudio se muestran en las **figuras 10 y 11**. Para el gen 28S, se analizaron 562 posiciones, y se obtuvo de nuevo los dos mismos grupos, uno con las muestras de *O. natricis* incluyendo las obtenidas del brote suscitado en el herpetario de la Fes-Iztacala, las muestras de la CNAC y las obtenidas de la plataforma GenBank[®]. El segundo grupo incluye, las cuatro muestras analizadas de los integrantes de Ixodorhynchidae (*H. triangulus* e *I. leptodeirae*), para la región analizada del gen 28S la distancia entre las familias es de 2.6%. Para los ácaros integrantes de la familia Ixodorhynchidae la distancia que existe entre ellos es de 0.9% en las muestras utilizadas.

Figura 9. Árbol de distancia por el método NJ para el gen COI para las especies encontradas. Los números por encima de las ramas indican los valores de soporte de *Bootstrap* y por debajo el largo de las ramas.

0.0020

Figura 10. Árbol de distancia por el método NJ para el gen 28S (región D3-D5) de ectoparásitos obtenidos en este estudio y la secuencia de *O. natricis* de la plataforma Genbank[®]. Los números por encima de las ramas indican los valores de soporte de *Bootstrap* y por debajo el largo de las ramas.

Con respecto al análisis de las 286 pares de bases (pb) de la región V4 del gen 18S, se observan dos agrupamientos, por un lado las muestras de *O. natricis* (Macronyssidae), mientras que las muestras de las especies *H. triangulus* e *I. leptodeirae* (Ixodorhynchidae) representan otro grupo, entre ambos existe una distancia del 6.2%. Dentro del grupo que comprende la familia Ixodorhynchidae los análisis de distancia entre los géneros *Hemilaelaps* e *Ixodorhynchus* se calcula una distancia del 0.7%.

Figura 11. Árbol de distancia por el método NJ para el gen 18S (región V4) de ectoparásitos obtenidos en este estudio y la secuencia de *O. natricis* de la plataforma Genbank[®]. Los números por encima de las ramas indican los valores de soporte de *Bootstrap* y por debajo el largo de las ramas.

Determinación de áreas de infestación

Las zonas de preferencia se determinaron por la observación de los ácaros sobre las serpientes (**figura 12**). Se observó que el ectoparásito *H. triangulus* fueron más abundantes en la región dorsal del primer tercio de la serpiente, incluyendo cabeza y cuerpo.

Figura 12. Hemilaelaps triangulus, A) Ectoparásitos sobre el dorso de Boa imperator, B) Sobre el dorso de Corallus caninus.

Los ácaros de la especie *O. natricis* se observaron en la región del primer tercio de las serpientes, tanto en las escamas ventrales como en las de dorso y bajo las escamas y en estructuras como las fosetas termo-receptoras (**figura 13**).

Figura 13. *Ophionyssus natricis*, A) Ectoparásitos dentro de las fosetas termorreseptoras de Corallus caninus; B) Ácaros sobre el dorso del mismo huésped.

DISCUSIÓN

Determinación morfológica de ectoparásitos

Ophionyssus natricis es el ácaro de reptiles que posee la más amplia distribución a nivel mundial en colecciones herpetológicas y es la única especie del género que es considerada cosmopolita^{61,62}. Este ácaro posee una importancia médica por el riesgo que conlleva la infección, por su papel como vector de diferentes agentes infecciosos y por el posible riesgo hacia las personas que tienen contacto con los ejemplares infestados¹⁷. Sin embargo, en este estudio, este ácaro fue solo diagnosticado en un ejemplar de *Corallus caninus* (el 2.5% del total de la población) durante el periodo de muestreo. Algunas de las características que hacen a *O. natricis* un riesgo en colecciones herpetológicas es que posee un periodo de prepatencia muy corto (de 17 a 26 días) y una estrategia que incluye reproducción asexual por partenogénesis arrenotoquia, en donde las producción de machos ocurre por haploidia y las hembras nacen cuando ocurre la fertilización por parte de los machos. Estos atributos son factores importantes para el rápido establecimiento de colonias en las colecciones de reptiles en cautiverio^{14,62}.

Una posible explicación del hallazgo de una baja prevalencia y que todos fuesen del mismo género en *O. natricis* en la población de serpientes estudiada, es que esta especie fue introducida al área de cuarentena del laboratorio dentro del periodo de prepatencia del ácaro, por lo que una segunda generación se encontraba en estado de desarrollo cuando se realizó la recolecta y el posterior tratamiento del huésped. Otra hipótesis alternativa es la potencial competencia entre especies por los recursos que proporciona el huésped, una especie limitará el crecimiento de la otra

por la utilización de los mismos medios que pueden utilizar las poblaciones de parásitos, por lo que la coinfección pudo haber limitado el desarrollo de *O. natricis*. Esta es la idea central que propone Guégan⁶³ sobre la saturación interespecífica en infracomunidades, que explica el comportamiento que toman diferentes poblaciones parasitarias en un espacio limitado como lo es un huésped.

El hallazgo de Hemilaelaps triangulus como el principal agente causal es inusual, ya que para México los únicos registros conocidos de la presencia de la familia Ixodorhynchidae (Parasitiformes: Mesostigmata) son los trabajos aportados por Fain³⁶ para la especie Ixodorhychus leptodeirae parasitando a Leptodeira maculata (Colubridae) sin ninguna locación asociada, Fain y Yunker⁶⁴ con el reporte de I. liponyssoides en un hospedero no identificado taxonómicamente en el estado de Chihuahua, México y la mención de una supuesta nueva especie por parte de Quintero et al.^{43,65} en la Cd. México, la cual hasta la fecha sigue sin describirse. La familia Ixodorhynchidae, actualmente, está compuesta por 31 especies clasificadas en seis géneros. Son considerados ectoparásitos obligados de serpientes y han sido reportados en las familias Colubridae, Viperidae, Lamprophiidae, Natricinae, Dipsadinae y Elapidae^{10,66}. Su distribución abarca todos los continentes exceptuando a Oceanía (solo en Australia) y la Antártida. H. triangulus es conocido como un ácaro permanente de serpientes^{10,36}, sin embargo, este estudio registra la presencia de este ectoparásito sobre el hospedero y el sustrato en los que los ejemplares se desarrollaban, esto posiblemente plantear que esta especie o similares puedan abandonar al hospedero en alguna etapa de su ciclo de vida.

En cuanto a la comparación de las medidas de estructuras morfológicas obtenidas en este estudio con las reportadas para las hembras de la especie *H*.

triangulus por Fain³⁶, encontramos que son muy similares, ya que con respecto a los promedios y la desviación estándar, estas se encuentran dentro de los intervalos reportados para la especie. Además, este estudio brinda la primera descripción de los machos de la especie, así como de los estadios ninfales para la especie.

Con los resultados de este estudio se incrementa el número de huéspedes para H. triangulus, incluyendo nuevos registros para Boa constrictor, B. imperator, C. caninus, Epicrates maurus, Drymarchon melanurus, Morelia spilota, Pituophis deppei y Python regius en cautiverio. La mayoría de estas especies de serpiente presentan una distribución natural a través de Norte América, Centro América y Sudamérica, que es donde el ectoparásito ha sido reportado anteriormente sobre otros huéspedes¹⁰. Sin embargo, las especies *P. regius* y *M. spilota*, especies procedentes del continente Africano y Oceanía respectivamente⁴, se encuentran fuera de la posible área de distribución del ectoparásito, estas serpientes son usualmente comercializadas como mascotas exóticas y son especímenes frecuentes en colecciones herpetológicas. La interacción que surge del parasitó con estos huéspedes, puede estar indicando que este ácaro, dadas las condiciones puede tener un comportamiento generalista hacia cualquier especie de serpiente que sea susceptible a la infestación. Por lo que *H. triangulus* puede tener un gran potencial para la generación de infestaciones en condiciones similares a las que se dan en este estudio.

A nivel clínico las dos especies de ácaros recolectadas presentan marcadas diferencias morfológicas que ayudan al diagnóstico, el cual debe enfocarse preferentemente hacia las hembras adultas, ya que son las más abundantes en la población. Ambas se pueden detectar a simple vista en serpientes con una gran

cantidad de ectoparásitos y observándolas con un microscopio estereoscópico pueden reconocerse fácilmente sus características morfológicas diagnósticas⁶⁷. En el **Anexo 5** se incluye una comparación de los principales rasgos morfológicos, considerando diferentes estrategias e instrumentos de observación, entre las dos especies causantes de este brote infeccioso.

Determinación molecular de ectoparásitos

En el presente estudio se obtuvieron las secuencias genéticas para los genes COI, 28S y 18S para un total de 13 muestras, resultando en la amplificación de 23 secuencias (59%) con suficiente calidad para ser utilizadas como herramientas en el diagnóstico molecular de las especies de ácaros analizadas. El hecho de que se haya tenido poco más de la mitad del total de las muestras puede estar asociado a muchos factores que intervinieron en la conservación del material genético, tales como la antigüedad de las muestras, la temperatura a la que estaban preservadas, la concentración de soluciones utilizadas para su preservación, entre otros. En el campo de estudio de la acarología (y en general) estos factores son sumamente importantes ya que en ciertas ocasiones se cuenta con muy pocos ejemplares que puedan ser procesados, o es necesaria la destrucción de las muestras para su extracción^{68,69}. Se observa que el mayor éxito en la obtención de secuencias fue para las muestras recolectadas en este estudio o muestras de reciente anexión a la colección (como OphinatrCNAC11067), esto puede ser consecuencia directa, de que al momento de la recolección de muestras, estas se preservaron adecuadamente para la extracción de ADN, a diferencia de las muestras de la CNAC^{70,71}.

El método de NJ es ampliamente utilizado en los estudios del "código de barras" (Barcoding), por presentar las ventajas de ser un método rápido y de fácil utilización para señalar la divergencia entre especies a nivel de su secuencia^{72,73}. Para este trabajo la representación en grupos en el árbol de NJ para cada especie utilizando el gen COI, es otra evidencia que confirma que en el brote de ácaros estuvieron involucrados dos especies distintas, en la cual predomino la presencia de *H. triangulus*. Los esfuerzos que involucran la utilización de varias herramientas de diagnóstico, que brindan más confiabilidad a la identificación de especies, es esencial para realizar un manejo integral de infestaciones parasitarias y una temprana detección de nuevas especies que son introducidas a las poblaciones^{74,75}. Para el caso de garrapatas y ácaros, se sabe que algunas especies (e.g. O. natricis) han tenido una propagación fuera de su distribución natural y el comercio legal o ilegal de especies de reptiles ha intervenido con ello. Como resultado algunas poblaciones de estos ectoparásitos pueden adaptarse a nuevos entornos y ser causantes de brotes en animales y humanos, así como el aumento de casos de enfermedades trasmitidas por vectores, lo que nos llevaría a un importante problema epidemiológico ^{10,76}.

Los genes que codifican para las regiones nucleares 28S y 18S son usualmente utilizados para el análisis de categorías taxonómicas de géneros o superiores. Sin embargo, estudios realizados sobre garrapatas por Lv⁷³ plantea que el uso de genes nucleares puede funcionar para el análisis de géneros de ácaros. En el análisis de las muestras de *O. natricis* se observa, tal y como se esperaba que las secuencias procedentes de Genbank (FJ911788.1 y FJ911853.1, para 28S y 18S respectivamente) se agrupan con las secuencias de las muestras obtenidas en

este estudio para las misma especie. Las secuencias de *H. triangulus*, *Ixodorhynchus* sp. e *I. leptodeirae* se anidan en la misma rama, para los genes utilizados. Esto es congruente ya que pertenecen a la misma familia.

Determinación de zonas de preferencia

Existen en diferentes especies de lagartijas (Squamata, no Serpentes) estructuras especializadas llamadas "bolsillos de ácaros" (de su traducción del inglés "mite pockets"), estos se encuentra localizado en la base del cuello, zonas axilares de las patas y a los costados del cuerpo. Estas estructuras están comúnmente habitadas por ácaros ectoparásitos en estadio de larva (i. e. Trombiculidae) adultos, o ninfas. Se ha propuesto que estas estructuras se desarrollaron para limitar la parasitosis, con los ácaros para que de manera especializada solo prefieran concentrarse y desarrollarse dentro de estas estructuras, minimizando el daño comparado con un escenario en el que se alojaran en alguna otra parte del cuerpo^{20,77}. Para las serpientes no se conoce la existencia de alguna estructura similar a estos "bolsillos", y los datos sobre lugares de preferencia en las infestaciones sólo se obtienen por observación directa.

Se ha documentado que *O. natricis*, se alimenta de los tejidos suaves alrededor del ojo, debajo de las escamas de la cabeza, cuello y maseteros, además sobre estructuras especializadas como las fosetas termorreseptoras^{10,14,76}. Durante este estudio los ácaros fueron observados principalmente en las estructuras de la cabeza y gastropegios (escamas ventrales ensanchadas), el hecho de que esta especie de ácaro no haya sido encontrada en otros lugares puede haber ocurrido gracias a que la infestación no era demasiado elevada. Para los miembros de la

familia Ixodorhynchidae, solo se ha registrado que habitan debajo de las escamas de la cabeza¹⁰. Los resultados de este estudio, coinciden con dichas observaciones previas, además de avistarlos a lo largo del dorso de los animales, preferentemente en el primer tercio de su largo total.

Los métodos de diagnóstico de ectoparásitos que existen para serpientes están más enfocados a la observación directa, o son de índole cualitativos. Como es el caso para nuestro estudio, el método de baño con soluciones jabonosas puede proporcionar una gran cantidad de ectoparásitos en su recolección, pero no puede ser utilizado para cuantificar la cantidad total de ácaros que puedan estar infestando a un ejemplar, ya que algunos ectoparásitos pueden buscar refugio al internarse debajo de las escamas o en estructuras anatómicas que ofrezcan protección (*e.g.* fosetas termorreseptoras). Métodos similares son recomendables al aplicar algún tipo de tratamiento acaricida, ya que un descenso en la cantidad de ácaros que causan daños a la piel de los animales mejorara el éxito de eliminarlos de nuestra población.

CONCLUSIONES

En este trabajo se da a conocer los agentes etiológicos del brote de acariosis suscitado en el año 2016 en el laboratorio de herpetología de la Facultad de Estudios Superiores Iztacala.

• Se documenta el hallazgo de *Ophionyssus natricis* (Gervais, 1844) parásito comúnmente registrado para diferentes reptiles en herpetarios, para este estudio el ácaro solo fue diagnosticado en una única serpiente de la colección. También se

aporta por primera ocasión la secuencia del gen mitocondrial COI, la cual servirá de referencia como una herramienta alternativa de identificación de esta especie

• Como agente causal del brote, se identificó la especie de ácaro *Hemilaelaps triangulus*, para la cual se está documentando por primera vez su presencia en México. También se describen morfológicamente por primera ocasión la morfología que presentan los machos y dos estadios ninfales: protoninfa y deutoninfa. Además, por primera vez se obtuvieron y caracterizaron las secuencias moleculares para esta especie, así como de otros integrantes de la familia Ixodorhynchidae previamente depositados en la CNAC.

• Se amplía el número de huéspedes posibles para este parásito, con las especies Boa constrictor, B. imperator, Corallus caninus, Epicrates maurus, Drymarchon melanurus, Morelia spilota, Pituophis deppei y Python regius.

• La presencia de ectoparásitos como *O. natricis* es un riesgo para colecciones herpetológicas, ya que se conoce su papel como vector de agentes patógenos tales como protistas, bacterias y virus. Hasta la fecha no se conocen agentes patógenos asociados con la familia Ixodorhynchidae, grupo de parásitos poco conocido. Para *H. triangulus* y otros miembros de la familia Ixodorhynchidae es necesario generar el conocimiento en varias ramas de la ciencia, como son la biología y medicina veterinaria, ya que como se documenta en este estudio del brote en la FES-I, estos ácaros pueden verse favorecidos por las condiciones brindadas a las serpientes de cautiverio, y por lo tanto convertirse en un gran problema para colecciones de reptiles a nivel regional, nacional e incluso internacional.

REFERENCIAS

- 1. Luna PR, Castañon A, Raz-Guzmán A. biodiversidad en México: su conservacion y las colecciones biológicas. Ciencias. 2011;101:36–43.
- Trujillo-Trujillo E, Vargas-Triviño P, Salazar-Fajardo L. Clasificación , manejo y conservación de colecciones biológicas : una mirada a su importancia para la biodiversidad. Momentos Cienc. 2014;11(2):97–106.
- Flores-Villela O, García-Vázquez UO. Biodiversidad de reptiles en México. Rev Mex Biodivers. Elsevier; 2014;85:467–75. Disponible en: http://dx.doi.org/10.7550/rmb.43236
- Uetz P, Freed P. The Reptile Database. 2016 [citado en 2017 Mar 24].
 Disponible en: http://www.reptile-database.org/
- 5. Zhang Z-Q. Phylum Arthropoda. Zootaxa. 2013;3703(1):475–7.
- Evans GO. Principles of Acarology. Wallingford: CAB International; 1992. p. 563.
- Pérez TM, Guzmán-Cornejo C, Montiel-Parra G, Paredes-León R, Rivas G.
 Biodiversidad de ácaros en México. Rev Mex Biodivers. 2014;85:399–407.
 Disponible en: doi: 10.7550/rmb.36160
- Lindquist EE, Krantz GW, Walter DE. Classification. En: Krantz GW, Walter DE. A manual of acarology. 3° edición. EUA: Texas Tech University Press; 2009.
- Iraola V. Introducción a los ácaros (II): Hábitats e importancia para el hombre.
 Bol Soc Entomol Aragon. 2001;28:141–6.
- Fajfer M. Acari (Chelicerata) Parasites of reptiles. Acarina. 2012;20(2):108– 29.

- 11. Gutsche A, F M. *Crotalus mitchellii* (Speckled rattlesnakes) and *Crotalus ruber* (red diamond rattlesnakes), Ectoparasites. Herpetol Rev. 2011;42(2):287–8.
- Paredes-León R, García-Prieto L, Guzmán-Cornejo C, León-Règagnon V, Pérez TM. Metazoan parasites of Mexican amphibians and reptiles. Zootaxa. México: Magnolia Press; 2008;166.
- Gatica-Colima A, Macias-Rodrigez EF, Paredes-León R. Crotalus viridis viridis (prairie rattlesnakes). Ectoparasites. Herpetol Rev. 2014;45(1):143–4.
- Fitzgerald K, Vera R. Acariasis. En: Mader D. Reptile medicine and surgery.
 2^a edición. Philadelphia: Elsevier; 2006. p. 720–38.
- Rodriguez ML, Lazcano D. Primer Reporte de Acaro Ophionyssus natricis (Acarina: Macronyssidae) Para Mexico. Southwest Nat. 1992;37(4):426. Disponible en: http://www.jstor.org/stable/3671798
- Rataj AV, Lindtner-Knific R, Vlahović K, Mavri U, Dovč A. Parasites in pet reptiles. Acta Vet Scand. 2011;53(May):33. Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3118381&tool=pm centrez&rendertype=abstract
- Schultz H. Human infestation by Ophionyssus natricis snake mite. Br J Dermatol. 1975 Dec;93(6):695–7. Disponible en: http://doi.wiley.com/10.1111/j.1365-2133.1975.tb05120.x
- Amanatfard E, Youssefi MR, Barimani A. Human Dermatitis Caused by Ophionyssus natricis, a Snake Mite. Iran J Parasitol. 2014;9(4):594–6.
 Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25759743
- 19. Quintero MT, Acevedo AH, Gaitán R. Presencia del ácaro *Ophionyssus natricis* (Macronyssidae) en serpientes de un serpentario en México. Rev Vet

México. 1990;21:163–5.

- 20. Arnold EN. Mite pockets of lizards, a possible means of reducing damage by ectoparasites. Biol J Linn Soc. 1986;29(1):1–21.
- Werman SD. Population dynamics of the lizard mite, *Hirstella pyriformis* (Acari: Pterygosomatidae) on the chuckwalla, *Sauromalus obesus* (Sauria: Iguanidae). J Parasitol. 1983;69(2):381–6.
- Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270(1512):313–21.
 Disponible en:

http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2002.2218

- Barcoding B of life: I species with D. Whats is DNA barcoding?. [citado en 2017 May 31]. Disponible en: http://www.barcodeoflife.org/
- Black WC, Klompen JS, Keirans JE. Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18S nuclear rDNA gene. Mol Phylogenet Evol. 1997;7(1):129–44.
- 25. Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci U S A. 2008;105(34):12359–64. Disponible en: http://www.jstor.org/stable/25463864
- Evans N, Paulay G. DNA Barcoding Methods for Invertebrates. En: Kress WJ, Erickson DL. Methods in molecular biology. Totowa, NJ: Springer Science+Business Media; 2012. Disponible en: http://link.springer.com/10.1007/978-1-61779-591-6

- 27. Hillis D, Dixon M. Ribosomal DNA: Molecular Evolution and Phylogenetic Inference. Q Rev Biol. 1991;66(4):411–53.
- Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18s and 28s ribosomal dna sequences and morphology. Syst Biol. 1997;46(1):1–69.
- Otto JC, Wilson KJ. Assessment of the usefulness of ribosomal 18S and mitochondrial COI sequences in Prostigmata phylogeny. En: Halliday RB, Walter DE, Proctor HC, Norton RA, Collof MJ. Acarology: Proceedings of the 10th International Congress. Melbourne: CSIRO Publishing; 2001. p. 100–9.
- 30. Marschang RE. Viruses infecting reptiles. Viruses. 2011;3(11):2087–126.
- Wellehan J. Molecular infectious disease diagnostics. En: Mader DR, Divers SJ. Current therapy in reptile medicine and surgery. 3° edición. UEA: Elsevier Saunders; 2013. p. 27–31.
- Ganchev D, Nikolov A. Evaluation of Biological Activity of Plant Oils and Soaps
 , towards to Sphaerotheca Fuliginea. Bulg J Agric Sci. 2006;12:441–445.
- Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology Meets Ecology on Its Own Terms: Margolis et al. Revisited. J Parasitol. 1997;83(4):575.
 Disponible en: http://www.jstor.org/stable/3284227?origin=crossref
- 34. Bautista-Hernámdez CE, Monks S, Pulido-Flores G, Rodríguez-Ibarra A. Revisión bibliográfica de algunos términos ecológicos usados en parasitología, y su aplicación en estudios de caso. En: Pulido-Flores G, Monks S, López-Herrera M. Estudios en Biodiversidad, Volumen I. Hidalgo, Méx: Zea-Books; 2015. p. 251.
- 35. Krantz GW, Walter DE. A manual of acarology. 3°. Texas: Texas Tech

University Press; 2009. 807 p.

- Fain A. Les Acariens mesostigmatiques ectoparasites des serpents. Inst R des Sci Nat belgique. 1962;38(18):1–150.
- 37. Radovsky FJ. Revision of genera of the parasitic mite family Macronyssidae (Mesostigmata: Dernanyssoidea) at the world. USA: Indra Publishing House;
 2010. 170 p.
- Morales-Malacara JB, Guerrero R. A new species of *Parichoronyssus* (Acari: Dermanyssoidea: Macronyssidae) from bats of the genus *Phyllostomus* (Chiroptera: Phyllostomidae) in Peru and Venezuela, with keys to the species of *Parichoronyssus*. J Med Entomol. 2007;44(1):8–13. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17294915
- Dowling APG. Ixobioides truncatus (Johnston) comb. nov. (Acari: Mesostigmata: Ixodorhynchidae): a synonymy and redescription. Syst Appl Acarol. 2009;14(3):216–24.
- 40. Lindquist EE, Evans GO. Taxonomic Concepts in the Ascidae, with a Modified Setal Nomenclature for the Idiosoma of the Gamasina (Acarina: Mesostigmata). Mem Entomol Soc Canada. 1965;97(S47):5–66. Disponible en: https://www.cambridge.org/core/article/taxonomic-concepts-in-theascidae-with-a-modified-setal-nomenclature-for-the-idiosoma-of-thegamasina-acarina-mesostigmata/6BAEA7233E151F07A4E2C7B2015FAD61
- 41. Lindquist EE. Some observations on the chaetotaxy of the caudal body region of Gamasine Mites (Acari, Mesostigmata), with a modified notation for some ventrolateral body setae. Acarologia. Les Amis d'Acarologia; 1994;35(4):323–
 6. Disponible en:

http://www1.montpellier.inra.fr/CBGP/acarologia/article.php?id=2304

- 42. QIAGEN. DNeasy® blood & tissue Handbook. 2006. p. 62. Disponible en: https://www.qiagen.com/mx/resources/resourcedetail?id=6b09dfb8-6319-464d-996c-79e8c7045a50&lang=en
- Paredes-León R. Sistemática de la familia Pterygosomatidae. Universidad Nacional Autonoma de México[Tesis doctoral]; 2013.
- 44. Thermo Scientific D. NanoDrop Lite: Interpretation of Nucleic Acid 260/280Ratios. Protoc Prod Manuals. 2012;(T123):1.
- 45. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294–9.
- 46. Cywinska A, Hunter FF, Hebert PDN. Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol. 2006;20:413–24.
- 47. Simon C, Frati F, Beckenbach A, Liu H, Flook P. Evolution, Weighting, and Phylogenetic Utility of Gene Sequences. Ann Entomol Soc Am. 1994;87(6):651–701. Disponible en: http://hydrodictyon.eeb.uconn.edu/projects/cicada/resources/reprints/Simon_ ea_1994.pdf
- Giribet G, Carranza S, Baguna J, Riutort M, Ribera C. First molecular evidence for the existence of a Tardigrada plus arthropoda clade. Mol Biol Evol. 1996;13(1):76–84.
- Angelini DR, Jockusch EL. Relationships among pest flour beetles of the genus Tribolium (Tenebrionidae) inferred from multiple molecular markers.
 Mol Phylogenet Evol. 2008;46(1):127–41.

- 50. Smith MA, Fisher BL, Hebert PDN. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc Lond B Biol Sci. 2005;360(1462):1825–34. Disponible en: http://www.jstor.org/stable/30040929
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, *et al.* Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. Disponible en: http://www.sciencedirect.com/science/article/pii/S0022283605803602
- 53. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. Disponible en: http://nar.oxfordjournals.org/content/25/17/3389.full%5Cnhttp://nar.oxfordjour nals.org/lookup/doi/10.1093/nar/25.17.3389
- 54. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80.
- 55. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4.
- 56. Saitou N, Nei M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol. 1987;4(4):406–25.

- 57. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol. 1992;9(4):678–87. Disponible en: https://academic.oup.com/mbe/article/9/4/678/1254082/Estimation-of-the-number-of-nucleotide
- 58. Schwarz G. Estimating the Dimension of a Model. Ann Stat. 1978;6(2):461–4.
- 59. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–23.
- Ewing HE. The dermanyssid mites of north america. Proc U S Natl Museum.
 1923;62(2459):1–26.
- 61. Wozniak EJ, DeNardo DF. The biology, clinical significance and control of the common snake mite, *Ophionyssus natricis*, in captive reptile. J Herpetol Med Surg. 2000;10:4–10.
- Miranda RJ, Cleghorn JE, Bermúdez SE, Perotti MA. Occurrence of the mite Ophionyssus natricis (Acari: Macronyssidae) on captive snakes from Panama. Acarologia. 2017;57(2):365–8. Disponible en: http://www1.montpellier.inra.fr/CBGP/acarologia/article.php?id=4161
- Guégan J-F, Morand S, Poulin R. Are there general laws in parasite community ecology? the emergence of spatial parasitology and epidemiology.
 En: Thomas F, Renaud F, Guégan J-F. parasitism and ecosystems. EUA: Oxford University Press; 2006.
- 64. Fain A, Yunker CE. A new species of Pneumophionyssus from Argentina and new locality records of acarine parasites of reptiles in Mexico and Venezuela (Mesotigmata: Entonyssidae and Laelapidae). J Med Entomol. 1972;9(5):482–

4. Disponible en: http://www.scopus.com/scopus/inward/record.url?eid=2s2.0-0015529760&partnerID=40

- Quintero MT, Acevedo AH, Gaitán R. Una nueva Especie de Ixobioides-Ixobioides mexicanensis (Acari: Ixodorhynchidae) parasitando en serpientes de México. Oaxaca, México; 1990.
- Voss WJ. First ixodorhynchid mite from Philippine snakes. J Med Entomol. 1967;4(4):387–90.
- 67. Mariana A, Vellayan S, Halimaton I, Ho TM. Acariasis on pet Burmese python, *Python molurus bivittatus* in Malaysia. Asian Pac J Trop Med. 2011;4(3):227–
 8.
- 68. Somoza N, Torà M. Seguridad biológica en la preservación y el transporte de muestras biológicas obtenidas en el ámbito de las enfermedades respiratorias y destinadas a la investigación. Arch Bronconeumol. 2009;45(4):187–95.
- Tixier MS, Okassa M, Liguori M, Poinso A, Salerno B, Kreiter S. Voucher specimens for dna sequences of phytoseiid mites (Acari: Mesostigmata). Acarologia. 2010;50(4):487–94.
- 70. Rey I, Dorda BA, Valdecasas AG. Traditional water mite fixatives and their compatibility with later DNA studies. Exp Appl Acarol. 2004;34(1–2):59–65.
- Miller JA, Beentjes KK, Van Helsdingen P, Ijland S. Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol. Zookeys. 2013;365:245–61.
- Ball SL, Hebert PDN, Burian SK, Webb JM. Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J North Am Benthol Soc. 2005;24(3):508. Disponible en: http://www.jstor.org/stable/10.1899/04-142.1

- 73. Lv J, Wu S, Zhang Y, Zhang T, Feng C, Jia G, et al. Development of a DNA barcoding system for the Ixodida (Acari: Ixodida). Mitochondrial DNA.
 2014;25(2):142–9. Disponible en: http://www.tandfonline.com/doi/full/10.3109/19401736.2013.792052
- 74. Miller GL, Foottit RG. The taxonomy of crop pests: the aphis. En: Foottit RG, Adler PH. Insect biodiversity: science and society. EUA: Blackwell publishing; 2009.
- Foottit RG, Maw HEL, Von Dohlen CD, Hebert PDN. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol Ecol Resour. 2008 Nov;8(6):1189–201. Disponible en: http://doi.wiley.com/10.1111/j.1755-0998.2008.02297.x
- Yunker CE. Studies on the snake mite, *Ophionyssus natricis*, in nature.
 Science (80). 1956;124:979–80.
- 77. Bertrand M, Modrý D. The role of mite pocket-like structures on Agama caudospinosa (Agamidae) infested by Pterygosoma livingstonei sp. n. (Acari: Prostigmata: Pterygosomatidae). Folia Parasitol. 2004;51(1):61–6.

ANEXOS

Anexo 1. Concentraciones de ADN y proporción 260/280 obtenidos por espectrofotometría para las muestras de ectoparásitos de este estudio.

Numero de catálogo	Clave de	Concentración	Intervalo
de la CNAC IBUNAM	identificación	(ng/µl)	260/280
CNAC011057	OphinatrCNAC11057	1.2	4.26*
CNAC011058	OphinatrCNAC11058	1.4	4.00*
CNAC011061	OphinatrCNAC11061	2.5	2.06*
CNAC011064	OphinatrCNAC11064	5.1	1.20
CNAC011067	OphinatrCNAC11067	3.8	1.82
CNAC011049	IxoleptCNAC11049	2.5	3.59*
CNAC011053	IxodCNAC11053	0.5	1.21
CNAC011037	HemtriaCNAC11037.1	3.1	1.85
CNAC011037	HemtriaCNAC11037.2	6.2	1.62
CNAC011037	HemtriaCNAC11037.3	5.1	1.52
CNAC011038	OphinatrCNAC11038.1	1.4	1.04
CNAC011038	OphinatrCNAC11038.2	0.1	0.17
CNAC011038	OphinatrCNAC11038.3	0.2	0.33

* Valores considerados como lecturas erróneas por las especificaciones del equipo⁴⁴.

Anexo 2. Reacciones positivas con su respectivos oligonucleótidos indicando el sentido de la cadena de ADN amplificado.

	С	:OI	28	3S	18	3S
	F	R	F	R	F	R
OphinatrCNAC11038.1	-	-		Δ	Θ	¶
OphinatrCNAC11038.2		-	-	-	0	¶
OphinatrCNAC11038.3	†	‡	-	-	Θ	-
HemtriaCNAC11037.1	†	‡		Δ	0	¶
HemtriaCNAC11037.2	†	‡		Δ	Θ	¶
HemtriaCNAC11037.3	†	‡		Δ	Θ	¶
OphinatrCNAC11067	†	‡		Δ	0	¶
OphinatrCNAC11057	-	-	-	-	-	-
OphinatrCNAC11058	-	-	-	-	-	-
OphinatrCNAC11061	-	-		Δ	0	¶
OphinatrCNAC11064	-	-	-	-	-	-
IxoleptCNAC11049	•	‡		-	0	£
IxodCNAC11053	-	-	-	-	0	¶

- = Reacción negativa

F = Oligonucleótido con sentido "forward"

R = Oligonucleótido con sentido "reverse"

- † = Oligonucleótido LCO1490
- ‡ = Oligonucleótido HCO2198
- = Oligonucleótido CI-J-1718
- Oligonucleótido LepF
- ▲ = Oligonucleótido Mite 28Sa

 $\Delta = Oligonucleótido Mite 28SFF$

- ⊙ = Oligonucleótido 18S-F
- ¶ = Oligonucleótido 18S-1R
- **s** = Oligonucleótido 18SR5

Anexo 3. Secuencia genéticas para los genes obtenidos en este estudio para las especies *Hemilaelaps triangulus* y *Ophionyssus natricis*.

						1.				10					ι.				20								30) .							40				1			.5	0
HemtriaCNAC11037.1	1	۱ <i>۱</i>	10	3 /	4 1	r A	۱T	Т	G	Ġ	A	A	C A	A A	ίT	Т	Т	A	ť	T	T /	A A	Ť	Т	Т	T	ΓA	G	A	ΑT	Å	т	G A	Т	ċ.	A (G C	A	Å	T 1	ГΤ	T /	Å
HemtriaCNAC11037.2		•	•	• •	• •	•	• •	•	•	·	·	•	• •	•	•	•	•	•	·	•	•	•	•	·	•	•	•	•	•	• •	•	•	• •	•	÷	• •	• •	•	•	• •	•	•	•
HemtriaCNAC11037.3								1	1	t	1	2	: :			1	1	1	1	2	1		1	1	1	2	1	1	:	: :	1	1	: :	1	1	2	::	1	2	: :	1	1	:
OphinatrCNAC11049									2	2	2	2				_	_	2	2	2			_	2	2	2		2	_		2	2		_	2	2.		_	2			2	_
OphinatrCNAC11038.3			- ,								т	т		0	:.						. 1	Γ.					т	c	т	с.				A			. G	ì.		. 0	C A	с	0
OphinatrCNAC11067		• •	• •	• •		• •	• •			•	Т	Т	• •	0	:.			•	•	•	. 1	Γ.	•	•		•	. т	C	Т	с.		•		A	•	• •	. G	ì.	•	. 0	C A	С	С
										60									70								80)							90							10	00
HemtriaCNAC11037.1	0	6 (3/	. /	4 (i A	À T	c	т	ť	ŕ	Å	A (3 A	ίT	т	A	Å	ť	Å	A 1	гт	c	G	Å	G	ΓA	G	Å	ΑT	Ť	Å (5 G	т	ċ.	A /	A C	c	ť	G (5 G	Â	s
HemtriaCNAC11037.2				• •																						•						•				• •					•	•	
HemtriaCNAC11037.3		•	•	• •	• •	•	• •	•	•	÷	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	÷	:	:	÷	•	• •	•	•	• •	•	÷	• ;		•	•	• •	:	•	•
DobinatrCNAC11049									2	2	2	2					2	2	2	2	2		1	1	2	A .		1	:	: :	1	2	::	1	1	. (э. 	1	1	2	. A	1	2
OphinatrCNAC11038.2						. 1	r e	ì.						C	: A			с		т						т	с					. /	A A						A		с	т	С
OphinatrCNAC11067						. т	r 6	ì.						0	A	١.		С		т						T.	. c					. /	A A	١.		•			Α		с	т	С
										11()							1	120)							13	0						1	140							1	50
HemtriaCNAC11037.1		. 1	C 1	'n	F /	4 1	ĊΤ	A	A	Ť	Ġ	Å	то	3 A	יי ד \	c	Å	Å	A	÷	Ti	Г А	ť	Å	Å	τ,	• • c	ċ	Å	τī	G	τ.	 . A	ċ	÷	т́ с	ст	ċ	A	т́с	с. С	÷1	ŕ
HemtriaCNAC11037.2																																											
HemtriaCNAC11037.3				• •		• •	• •	•		÷	•	•	• •	•	•				÷	•	•	•		•		•	• •		•	• •	•	•	• •			• •	• •		•	• •	•	•	•
IxoleptCNAC11049		•	•	. /	4.	•	•	G	i G	A	•	• •	с.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Т	•	• •	•	• 1	г.	•	•	•	• •	•	•	• •	•	•	•
OphinatrCNAC11038.2											Ā				c			G	c		c.							т					г.									c .	
OphinatrCNAC11067											A				C			G	c		c.							т					г.									c .	
										160)							1	170)							18	0						1	190							20	00
HemtriaCNAC11037.1	1	Г 1	ċ,	4 7	E 1		Ă T	A	A	Ť	ŕ	÷	T 1	Г 1		Ť	A	Ť	A	Ġ	тс	A	ł	Å	ċ	ċ	· I ΓG	ċ	÷,	 Ат	A	A 1	τŤ	G	G	то	 G G	G	ť.	τı	r G	Ġ,	A
HemtriaCNAC11037.2											÷																																
HemtriaCNAC11037.3			• •	• •	• •	• •	• •	•	•	•	•	•	• •	•	•	•	•	•	÷	•	•	•	•	•	•	•	• •	•	•	• •	•	•	• •	•	÷	• •	• •	•	•	• •	•	•	•
IxoleptCNAC11049			•	• •	• •	•	•	•	•	ł	•	•	• •		•	•	•	•	•	•	• 1	Γ.	•	•	•	•	•	•	•	• •	•	•	• •	•	•	Α.	• •	т	•	• •	•	• 1	r
OphinatrCNAC11038.2			4								2						т				. 1	г.					: A	Ē	A			T	. A					A					
OphinatrCNAC11067		1	ί,							÷							Ť		÷		. 1	Γ.				. (A		A			т	. A					A					
										21()							2	220)							23	0						1	240							2	50
HemtriaCNAC11037.1		\ /	• 1	Ċ1	r c	۰ ا ۶ /	Ă T	T	G	G	ŕ	÷,	c (: 1	I I I T	Ť	A	Å	ť	Å	A 1	Τ	ť	ċ	Å	G (ίt	ċ	ċ	т G	iA	τ,	АТ	G	G	ċ	τŤ	Ť	ť	ċ	ċċ	ċ	G
HemtriaCNAC11037.2											÷								÷																								
HemtriaCNAC11037.3				• •		• •	• •			•	•	•	• •		•			•	•	•	•	•		•		•	• •		•			•	• •			• •			•	• •	•	•	•
IxoleptCNAC11049			•	• •	• •	•	• •	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	Т	T.	•	•	•	• •	•	•	• •	A	•	•	• •	•	•	• •	Т	•	•
OphinatrCNAC11038.2									т	A				6	: A			c		T			A	Ā	T									A			с.				т		
OphinatrCNAC11067							. c		Ť	A	÷			0	A			c	÷	Ť			A	A	Ť		c				1			A		. (с.				т		
										260)							2	270)			,				28	0						1	290							30	00
HemtriaCNAC11037.1	1	Г 1	C 1	Ċ,	A /		Á T	A	A	Ť	Å	÷,	A 4	\ (i A	Ť	Ť	÷	ť	Ġ	A (ст		ċ	÷.	A /	· т	÷	ċ	ст	÷	ċ	 A A	Ť	ť.	A 1	τŤ	Ť	ť	G 1	ΤT	A /	A
HemtriaCNAC11037.2																																											
HemtriaCNAC11037.3				• •		•	•						• •		•						•	•		•	÷	•	• •					•				• •				• •	•	•	
IxoleptCNAC11049		•	•	• •	• •	•	•	•	•	·	·	•	• •	•	•	•	•	·	·	•	G 1	Γ.	•	Т	÷	•	•	÷	•	• •	•	•	• •	•	Α	•	• •	•	•	Α.	•	• 1	ſ
OphinatrCNAC11038.2 OphinatrCNAC11038.3		 \ /	4						-	c	c	2				-	-	-	-	2			т	- T	2			-	-			3	 гт		c			c	Ţ	т /		T	
OphinatrCNAC11067	1	1	í.						1	č	č	2				1	1	÷	1	2			Ť	Ť	Ĵ,			÷	2	. A		ŀ	гт	1	č	•		č	2	τA	ί.	Ť.	
									1	31,0)							3	320)							33	0						1	340							3	50
HemtriaCNAC11037.1	1	[]	C T	i i	FT	יו רו	Ċ	T	Ť	с С	÷	÷	TI	Г (і і і т	Ť	G	Å	A	A	G /	 \ 6	 G	÷	G	ти	• \ G	G	A	 A C		G (5 т	Ť	G	A 1	 АС	A	G	÷,	ŤŤ	A 1	I T
HemtriaCNAC11037.2																									ļ																1		

A) Secuencias moleculares obtenidas para el gen COI

Anexo 3A (Continuación)

HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11067	•	A C C							А. СА СА		-	A . A . A .	c c		•			T		. A		c c		•	- T T		т - -		. A					т - -	A . A . A .		•	· · ·
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11067	c		G (A .			T T 	A	360 T - G -	ст 	· A	G · · · A A A	A 1 G A T A T A T A			3	70 - T T . C . C	· · ·		A A			A	38 5 A 	0 . G 	G /	 А G . С . С	 C T	T 1		G · . Т А А А	190 G A C C C	 	G	A • • •	- T T 		A	400 · G C · · T . T . T . T .
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11067		A 1	 		. T 	т А 		110 T C C C	ст т.			A 1		. T 	4 G · · A T T T	20 - G C 		G	G 1	- T A A C		T	43 T C	0 A · · C C	T (A	T 1 . (. (ГТ 	4 T • •	140 A /	A G) A • • T T T T	T	 C A . 1 . 1 . 1	А А Г.		450 · T A · · · · · ·
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11067		T 1	T 1		A	T T	A	160 C /	 A A 			A 1		. T	4 T G G G	70 . G A T . T . T . T .	· · · · · · · · · · · · · · · · · · ·	. T				G	48 - 	0 C		 . A A A A A	 A T	 	 ЭА СС СС СС СС СС СС	A • • •	190 T /	 . T . T		T T T	- A T T - T - T -	ГА - Т - Т	G .	500 · A G · · · A · A · A · A
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11067			 	· · · ·				510 T	 T A 		T .	T C) T		5	20 G G . A . A . A	 5 T 	. c		. G T A . A .		T	53 . 	0 A ·		ГА 	 c · · ·		A C	• • • • • •	i40 A 1	гт • •	С Т	T	- T T A (- (· · · · · · · · · · · · · · · · · · ·	A • • • • • • • • • • • • • •	550 · C T · · T · T · T · T ·
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11067		T 1				 A . A .	T	560 A (G	 		. T	5 A · ·	70 - G C 		G 	G /	Г. А.С. Т. Г.		G. A T T T	58 . A T 	0 T · ·	A (. T . T	A	. (AT 	5 T • •	;90 A	с.	· A · · · · C C C		- C T (- (۲G 		600 · T C · · · · · ·
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.2 OphinatrCNAC11038.3	G	A / 	 		. T 	T T - C	A	510 A ·	 T A 			. T (Т	. T	6 T	20 · T T - ·	гт 	. T	G /	A T	с	c	63 . . A . T . T	0 . G 	A (T T	 G G 	A	G (G	540 G /	А С • • • • • •	i A · · ·	T		 . т	A .	650 · T T · · · · · ·

Anexo 3A (Continuación)

OphinatrCNAC11067	CCCCT.TT.																																			
	660 670 680 690 700)																																		
HemtriaCNAC11037.1	TTATATCAGCATTTATTTT																																			
HemtriaCNAC11037.2																																				
HemtriaCNAC11037.3																																				
IxoleptCNAC11049																																				
OphinatrCNAC11038.2	C.TA																																			
OphinatrCNAC11038.3	C.TAGATTTTTT																																			
OphinatrCNAC11067	C.TAGA																																			
HemtriaCNAC11037.1																																				
HemtriaCNAC11037.2																																				
HemtriaCNAC11037.3																																				
IxoleptCNAC11049																																				
OphinatrCNAC11038.2	CATCTTA																																			
OphinatrCNAC11038.3																																				
OphinatrCNAC11067																																				
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	 C A C A	- - -	 G 0 G 0) 	- - - -	 C A 	10 - - - - - - - - -	G G 	i A · · ·	G 1	. T T 		A A 	20 A	Г G	Gi	. TA 		G (G	30 A (3 T 		· A T · · ·	T (3 G 	G	40 1 1 1 1 1 1 1 1 1 1			A (. G C . T . T . T	A		50 . . C 	
--	------------------------------------	-------------	--------------------	-----------------------	------------------	---	--	-----------------	--	-----	---------------------------------------	----	--	----------------	---------------------	-----	--	---------------------------------------	-------------	-------------------	-----------------------------	---------------------	----------	--	-----	-----------------	-----------------------	--	-----	---	-----	---	------------------	-----	--	---
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	G A 		G C 	. ; C	G /	 A A 	60 G	T G	i A · · · · · · · · · · · · · · · ·	A /	A T		C A	70 A	A C		· T A · · ·		T (эт • • •	80 T /	A T	. T 	· TG · ·		 3 G 	T	90 T 0 	5 T	т • • •		. 		G /	100 · A T · · · ·	,
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11048.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	 TA G. G. G. G.		G C A .	G	A '	T A	110 	G C		A (. c T 		A T	120 G	ст 		· T C · · ·		G (1 i C	30 A 1	· · ·		. G T 	A (1 C · ·	40 T <i>A</i> 		· A · · · · · · · · · · · · · · · · · ·	A (. G C 	G • • •	T)	150 · A A · · G . G . G . G .	,
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11048.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	т с		T T 	G		G A	160 	c c	G		. A A 	G.	A T	170 G(5 T 	G /	· A C			1 	80 G (. T. 	. A G 	T (1 	90 G G 		G		. A G			200 · A G · ·)
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	T G A G 					G A 	160 C ·	G G G	G	G (· · · · · · · · · · · · · · · · · · ·		A T G T 	170 G		G /	· • · · • · · • · · • · · • · ·	· · · · · · · · · · · · · · · · · · ·			80 G (30 I T (. T	· A G · · · · · · · · · · · ·			1 A · · ·	190 G A 		G		· A G · · · · · · · · · · · · ·			2000 · A G · · · · · · · · · · · · · · ·)

B) Secuencias moleculares obtenidas para el fragmento D3-D5 del gen 28S

Anexo 3B (Continuación)

OphinatrFJ911788.1		• •	• •	• •	• •	• •	• •	÷	• •		• •	• •	• •	• •	•		• •	• •	•	• •		• •		•	• •	•	• •	• •	•
					31	D				32	20					33()					34	0						350
HemtriaCNAC11037.1	ŤĊ	ст.	TC	с с		с. ст	ŤŤ		 	 гс <i>и</i>	1 ·	 5 Δ	. I т д	60	Δ.	· I A G	c G	т		 Ат	÷	τŤ	÷	• •	бт	÷	г.	• 1	
HemtriaCNAC11037.2																					÷		÷			Ľ			ĩ
HemtriaCNAC11037.3	- 11	11	22	22	2.2	2.2		2					2.2				2.2				2	2.2	2	2					
IxoleptCNAC11049	- 11			11				1					2.2								1	2.2	2			2			
OphinatrCNAC11038.1				11				1													÷		÷						
OphinatrCNAC11061																													
OphinatrCNAC11067																													
OphinatrFJ911788.1																													
					36	0				37	70					38(0					39	0						400
		• •	1+	• •	+ 1	• •	• •	· 1	• •	• •	I÷	• •	• I	•	• •	• 1	• •	•	· 1	• •	•	• 1	÷	•	• •	Ι	• •	÷	• T
HemtriaCNAC11037.1	СС	GΤ	A A	AG	CG	A A	TG	ìΑ	T T /	A G A	4 G (GΤ	ст	T G	G G	GG	CG	i T A	A T	A T	A	G C	С	T (C A	A (C C	T /	Υ
HemtriaCNAC11037.2		• •	• •	• •	• •	• •	• •		• •	• • •	• •	• •	• •	• •	•	• •	• •	• •	•	• •	1	• •	•	•	• •	•	• •	• •	•
HemtriaCNAC11037.3		• •	• •	• •	• •	• •	• •		• •	• • •	• •	• •	: •	• •	•	• •	• •	• •	•	• •	1	• •	•	•	• •	•	• •	• •	•
IxoleptCNAC11049		• •	• •	• •	• •	• •	• •		• •	• • •	• •		Α.	• •	•	• •	• •	• •	•	• •	1	• •	•	•	• •	•	• •	• •	•
OphinatrCNAC11038.1		• •	• •	• •	• •	• •	• •	1	• •	• • •	• •	. L	• •	• •	•	• •	• •	• •	•	• •	1	• •	1	•	• •	•	• •	•	
OphinatrCNAC11061		• •	• •	• •	• •	• •	• •		• •	• • •	•••	. L	• •	• •	•	• •	• •	• •	•	• •	1	• •	1	•	• •	•	• •	• •	
OphinatrCNAC11067		• •	• •	• •	• •	• •	• •		•••	•••	•••	. L	• •	• •	•	• •	• •	• •	•	• •	1	• •	•	•	• •	•	• •	• •	•
Opminut(F)911788.1		• •	• •		• •	• •	• •	1	• •	• • •	• •	. c	• •		•	• •			•	• •	1	• •	1		• •		• •	•	
						_					_												_						
			τ.		41	·		. 1		42	1.		. 1			430	·		. 1			. 1	ι.			ī			450 .
HemtriaCNAC11037.1	ТС	тс	ÅА	A C	тŤ	тт	AA	ίŤ	GG	G T (іт (GΑ	ĠТ	G T	Т	ст	тт	CI	гċ.	A A	Т	тĠ	А	A	G A	Å	G	C 1	Ġ
HemtriaCNAC11037.2																													
HemtriaCNAC11037.3																													
IxoleptCNAC11049																													
OphinatrCNAC11038.1															•	т.								. /	Α.				
OphinatrCNAC11061											• •				•	т.			•					. /	Α.	•		• •	•
OphinatrCNAC11067		• •	• •	• •	• •	• •	• •		• •	• • •	• •	• •	• •	• •	•	т.	• •	• •	•	• •		• •	•	• /	Α.	•	• •	• •	•
- I' I FIGIII									• •	• • •	• •	• •	• •	• •	•	т.	• •	• •	•	• •				. /	Α.	•		• •	•
OphinatrFJ911788.1				• •																									
OphinatrFJ911788.1	• •	• •		•••																									
Ophinatri-J911788.1	•••				46	0		. 1		47	70		. 1			48)		. 1			49	0						500
Ophinatrij911788.1 HemtriaCNAC11037.1	 	· · ·	. .	· · ·	46 • G T	о 	 G (I T		47 3 T (70 . 3.G (5 C	. C A	 T 1	 	48(. T T) 	Т А	.	 G C		49 . G A	0 A	c i	 	 6 (c 1	500 . . G
Ophinatri-J911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2	 ст	 A A	. A T	 A A	46 . G T) G T	GC	I T	 ТА	47 3 T (70 . 3 G (5 C	. C A	і. ТТ	Ť	48(. T T) GG	T A		 G C	A	49 . G A	0	c i	 Т G	 G (C G	C 1	500 . . G
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3	 ст	 A A 	· A T · ·	 A A 	46 • G T • •) GT	GC	і т	 TA 	47 G T (70 . GG(3 C	. C A 	. т т т 	T	48(• T T • •) GG 	іт А 	· . A	 G C	A	49 . G A 	0	c 1	 Т G 	 G (c 1	500
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049	 ст 	 A A 	. A T 	 A A 	46 • G T • •	G T	G C	- - T -	 TA 	47 G T (70 . 3 G (3 C	· C A · ·	тт • •	T	48(• T T • •) GG · ·	т А 	 	G C		49 . G A 	0 . A	c 1	 TG 	 G (G 	c 1	500
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11037.3 OphinatrCNAC11038.1	 ст 	 A A 	. A T 	A A 	46 • G T • •	G T A .	G C	- 	 T A (47 G T (70 . 3 G (3 C	· C A · ·	тт 		48(• T T • •	G G 	т А 	· · ·	G C	A	49 . G A 	0		 Т G 	 G (G 	c 1	500 G
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061	 ст 	A A 	. A T 	 A A 	46 · G T · · · ·	G T • • • • • • • • • •	G C	- 	 T A (47 G T (70 . G G (G C	· C A · ·	тт 		48(· T T · · · ·	G G 	т А 	· · · ·	G C	A	49 . G A 	0	C 1	TG	 G (G 		500 G
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067	 ст 	A A 	. A T 	A A 	46 · G T · · · ·	G T • • • • • • • • • • • • • • • •	G C	- 	T A (47 G T (70 . 3 G (G C	· c A · · ·	T T 		48(- T T 	G G 	т А 		G C		49 • G A • •	0	с 1 	TG	 G (G G 	c 1	500 G
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrFJ911788.1	ст 	· · · · · · · · · · · · · · · · · · ·	. A T 	A A 	46/ • G T • •	GT A A A	G C		T A (47 G T (70 . 3 G (G C	· C A · · ·	T T 		48(· T T · · · · · ·) G G 			G C		49 • G A • • •	0 . A 	с 1	TG	 G (G 	 	500 G
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrFJ911788.1	ст ст 	· · · · · · · · · · · · · · · · · · ·	. A T 	A A 	460 · G T · · · · ·	G T • • • • • • • • • • • • • • • • • • •	G C	· · · · · · · · · · · · · · · · · · ·	T A (4) 3 T (70 . 3 G (· C A · · ·	T T 		48(· T T · · · · · ·	G G 	i T A 		G C	A	49 • G A • • •	0 . A 	с 1	T G	 G (G G		500
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11068.1 OphinatrCNAC11061 OphinatrFJ911788.1	ст 	A A 	. AT 	A A 	460 · G T · · · · · · · · · · · ·	G T A . A . A . A .	G C	· · · · · · · ·	T A (4) 3 T (70 . 3 G (G C	· C A · · ·	T T 		48(· T T · · · · · · · · · · · ·	G G 	i T A 		G C		49 · G A · · · · · · · · · ·	0 . A 	с т	 	 G (500 G · ·
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.1	 CT 	· · · · · · · · · · · · · · · · · · ·	. AT 	 A A 	460 · G T · · · · · · · · · · · · · ·	G T A A A	G C 	· · · · · · · · · · · · · · · · · · ·	TA 	4) G T (70 3 G (20	 	· C A · · · · ·	T T 		48(· T T · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		G C		49 · G A · · · · · · · · · · ·	0 · A · · · · · · · · · · · · · · · · ·	С 1	 		· · · · · · · · · · · · · · · · · · ·		500 G
Ophinatri-J911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2	C T T G	 A A G G	. A T 		46/ · G T · · · · · · · · · · · · · · ·	G T A . A . A . A . C A	G C 		T A (41 3 T (70 3 G (20 1 . A G	G C 	· C A · · · · · · · ·	T T 	· · · · · · · · · · · · · · · · · · ·	48(· T T · · · · · · · · · · · · · ·	G G 	ат А 		G C		49 GA 	0 · A · · · · · · · · · 0 · A	C 1	 	 G (500 G G 550 G
Ophinatri-J911788.1 HemtriaCNAC11037.2 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11038.1 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2	 CT TG	A A G G	. AT 	 A A G A	460 · G T · · · · · · · · · · · · · · ·	G T A . A . A . C A	G C 			47 3 T (70 3 G (20 1 	G C 	· c A · · · · · · ·	T T 	Т .	48(· T T · · · · · · · · · · · · · ·	G G 	i T A 		G C	A	49 · G A · · · · · · · · · · · · G T · ·	0 · A · · · · · · · · · · · · · · · · ·	C 1	 	 G (500 G
Ophinatri-J911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11038.1 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049	CT TG	A A A	 A T 		460 · G T · · · · · · · · · · · · · · ·	G T G T A . A . A . C A 	G C		G T	4) G T (70 3 G (20 1 . 		· C A · · · · · · · · · · ·	T T 		48(· T T · · · · · · · · · · · · · ·	G G G G G G G G G G G G G G G G G G G	а н н н н н н н н н н н н н н н н н н н		G C		49 · G A · · · · · · · · · · · · G T · ·	0 · A · · · · · · 0 · A · · ·			 G (500 G
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11049 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11038.1	 CT TG 	A A A	- AT AT 		460 · G T · · · · · · · · · · · · · · ·	G T A . A . A . A . C A 	G C		G T	4) G T (70 3 G (20 1 		· c A · · · · · · · · · · · ·	T T 		48(· T T · · · · · · · · · · · · · ·) GG 	· · · · · · · · · · · · · · · · · · ·		G C		49 GA 54 GT 	0 · A · · · · · · 0 · A · · · ·		TG			C 1	500 G · · · · · · · · · · · · ·
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11038.1 OphinatrCNAC11038.1 OphinatrCNAC11061	ст ст т G	A A A	 A T 	A A A	460 · G T · · · · · · · · · · · · · · ·	G T A	G C 			4) 3 T (70 3 G (20 1 		· c A · · · · · · · · ·			48(- T T 	C T	· · · · · · · · · · · · · · · · · · ·		G C	A	49 GA 54 GT .G .G	0 · A · · · · · · · · · · · · · · · · ·			 G (C 1	500 G · · · · · · · · · · · · ·
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11049 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11061	 c T T G 	A A 	I	 A A 	46(· G T · · · · · · · · · · · · · · ·	G T A A A A A 	G C 		T A (47 6 T (70 3 G (20 1 G 		· · · · · · ·	A G		48(- T T 	G G G 			G C	A	49 GA 	0 · A · · · · · · · · · · · · · · · · ·	A 1		 G (C 1	5500 G · · · · · · · · · · · · ·
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11049 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	 C T T G 	A A G G 	I		466 · G T · · · · · · · · · · · · · · ·	G T G T A . A . A . A . A . A . A . A .	G C 		G T	43 G T (52 T G A	70 3 G (20 1 20 		· C A · · · · · · · · · · · · · · ·	A G		48(- T T 	G G G 			G C	· · · · · · · · · · · · · · · · · · ·	49 GA 	0 · A · · · · · · · · · · · · · · · · ·	A 1					5500 G 5500 G G
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	 C T T G 	A A 	. A T 	A A G A 	466 · G T · · · · · · · · · · · · · · · · ·	G T A . A . A . A . A . A . A	G C 		G T	47 G T (52	70 3 G 0 20 	G C G C 	· C A ·	A G		48(- T T 	G G G 			G C 	A	49 GA 	0 · A · · · · · · · · · · · · · · · · ·		T G				500 G - - - - - - - - - - - - -
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	 C T T G 	A A A	I	 A A 	466 · G T · · · · · · · · · · · · · · ·	G T G T A . A . A . A . C A 	G C 		T A (47 G T (S	70 3 G U 20 4 G 	G C G C 	· c A · · · · · · · · · · ·	A G		48(· T T · · · · · · · · · · · · · ·	G G G 			G C	· · · · · · · · · · · · · · · · · · ·	49 G A 	0 · A · · · · · · · · · · · · · · · · ·		TG				500 G
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11038.1 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1	 CT TG 		I · · · · · · · · · · · · · · · · · · ·	 A A 	466 · G T · · · · · · · · · · · · · · ·	G T A . A . A . A . 	G C			477 57 57 57 57	70 3 G U 3 G U 4 G 4 G 4 G 4 G 70 1 70 1 70 1 70		· C A · · · · · · · · · · · · · · · · · · ·	T T 		48(· T T · · · · · · · · · · · · · ·						49 · G A · · · · · · · · · · · · · · ·	0 · A · · · · · · · · · · · · · · · · ·	. C 1				. C 1 	500
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2	 C T T G 	A A G G 	 AT 	A A A	466 · G T · · · · · · · · · · · · · · ·	G T A . A . A . A . A . A . A	G C		G T	477 57 57 57 57 57 57	70 3 G (20 1 20 	G C	· C A · · · · · ·	A G A		48(· T T · · · · · · · · · · · · · ·	G G G G G G G G G G G G G G G G G G G	A A A A A A A A A A A A A A A A A A A		G C 	A	49 GA 	0 · A · · · · · · · · · · · · · · · · ·	A 1				C 1	500
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11037.3 OphinatrCNAC11061 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2	 C T T G A G	A A	 AT 	A A A	4460 · G T · · · · · · · · · · · · · · ·	G T A	G C		G T	477 57 57 57 57 57 57	70 3 G (20 1 20 20 		· C A · · · · · ·	A G A		48(· T T · · · · · · · · · · · · · ·	G G 			G C	A	49 GA · · · · · · · · · · · · · · ·	0 · A · · · · · 0 · A · · · · · 0 · G · .					C 1	5500 G S 5500 G S S S S S S S S S S S S S
OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11049 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911788.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 ixoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11061 OphinatrFJ911788.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.2	 C T T G A G	A A A	 AT 		466 · G T · · · · · · · · · · · · · · ·	G T 	G C 			47 G T (57 T G / 57 T A (70 3 G 0 20 1 	G C	· C A · · · · · ·	A G A		48(· T T · · · · · · · · · · · · · ·	G G 				A	49 GA · · · · · · · · · · · · · · ·	0 · A · · · · · · · · · · · · · · · · ·					C 1	5500 G - - - - - - - - - - - - -

Anexo 3B (Continuación)

OphinatrCNAC11061		
OphinatrCNAC11067		
OphinatrFJ911788.1		
	610	
HemtriaCNAC11037.1	AAGTCGGAATCCG	
HemtriaCNAC11037.2	CTA	
HemtriaCNAC11037 3	CTA	

HemtriaCNAC11037.3												•	•	С	I.	А	
IxoleptCNAC11049	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
OphinatrCNAC11038.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
OphinatrCNAC11061														С	T	Α	
OphinatrCNAC11067														С	Т	Α	
OphinatrFJ911788.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911853.1	10 	20 30 A T C T G A T C G C C T T C 	40 50 G A A C C T C T A A C T T T C G T T
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911853.1	60 C T T G A T C A A T G A A A A C A T 	70 80 -	90 100 TTCGCAGTAGTTCGTCTT
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11051 OphinatrCNAC11067 OphinatrFJ911853.1	110 G C T G T G G T C T A A G A A T T T	120 130 C A C C T C T C T C T C A C A A	140 150 C A A T A C G A A T G C C C C C A A
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911853.1	160 CAGTTCCTTTCAATCATT	170 180 . T C A T C G T T C C A A A A	190 200 C C A A C A A A T A G A A C A A C A
HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1	210 A C A T A T T C C A T C A T T C C A	220 230 .	240 250 • • • • • • • • • • • A G T A A C A C A C A C T T G C T T T A

C) Secuencias moleculares obtenidas para la región V4 del gen 18S

Anexo 3C (Continuación)

OphinatrCNAC11038.2					• • •	• • •	• •									•	• •	• •	• •		• •		• •	•	• •	• •	•
OphinatrCNAC11038.3																											•
OphinatrCNAC11061																											•
OphinatrCNAC11067																											
OphinatrFJ911853.1																											
					260					270					280					2	90						300
			Ŀ.		·Ϊ			· ·		Ĩ.		• 1			Ĩ			Ŀ.		*	ĩ۰			1			٠ĩ
HemtriaCNAC11037.1	AGO	: A (СТ	стμ	A A 1	ТТ	AA	A T C	A A	AG	ΤG	ΑT	ΑT	ТΤ	G A	T /	A A	ĊТ	СТ	Т	GΤ	Α	AG	i C	сс	AA	A C
HemtriaCNAC11037.2																											
HemtriaCNAC11037.3																											
IxodCNAC11053																											
IxoleptCNAC11049																											
OphinatrCNAC11038.1																				. /	Α.				. A		
OphinatrCNAC11038.2																				. /	Α.				. A		
OphinatrCNAC11038.3																					Α.				. A		
OphinatrCNAC11061																					Α.				. A		
OphinatrCNAC11067																					Α.				. A		
OphinatrEl911853.1																					Δ.	÷					
0,000																						1					
			ι.		310 .			ı		320		. 1			330			ι.		3	40 I.			. 1			350 . I
HemtriaCNAC11037.1	AAC	т	A A	GTO	Ġ	G C A	AA			GT	C A	тċ	ТА	TA	τī	т	GC	ĠĊ	тс	A	ĠĊ	A	AA	l c	GG	те	GG
HemtriaCNAC11037.2																											
HemtriaCNAC11037.3																						÷					
IxodCNAC11053																					Δ.	÷					
IxolentCNAC11049			• •																		Δ	1					
OnhingtrCNAC110391	61	Ġ	• •	•••		• • •	• •	• • •	• •	•••	÷	• •	• •	• •	• •		• •	• •	ċ		ΔТ	· .	• •	•	•••	• •	•
OphinatrCNAC11038.2	61	G	•••	•••		• • •	• •	• • •		•••	÷.	• •	• •	• •	• •		• •	• •	č		ΔΤ	÷.	• •	•	•••	• •	•
OphinatrCNAC11038.2	61	G	• •	• • •		• • •		• • •		• •	÷	• •		• •			• •	• •	č .		ΔT	÷.	• •		• •		
OphinatrCNAC11058.5	. 0 1	6	• •			• • •	• •			• •	÷	• •	• •	• •			• •	• •	ξ.	• •	а і л т	÷.	• •		• •	• •	
		u										• •	• •						υ.	•••	A 1						
OphinatrCNAC11067		6									т								c		ΛТ						
OphinatrCNAC11067	. G 1	G	•••	•••	•••	• • •	• •	• • •	• •	• •	Τ.	• •	• •	• •	• •	•	• •	• •	с.	•	A T	·	• •	•	• •	• •	•
OphinatrCNAC11061 OphinatrCNAC11067 OphinatrFJ911853.1	. G T . G T	G		•••			•••		: :	::	Т. Т.	: :	: :	::	: :	•		•••	с. с.	• •	A T A T	•		:		•••	:
OphinatrCNAC11001 OphinatrFJ911853.1	. G T . G T	G		•••							Т. Т.	•••			•••	•			с. с.	• •	A T A T	•		:			
OphinatrCNAC11067 OphinatrFJ911853.1	. G T . G T	G		•••	360		•••			 370	т. т.		•••	•••	380	•		· · ·	с. с.		A T A T 90	•	•••		•••	•••	400
OphinatrCNAC11067 OphinatrFJ911853.1 HemtriaCNAC11037.1	. G T . G T . G T	G	 . T A		360 . .		 	 	 	370	т. т.	 	 	 	380 A (• • •	 	 	с. с.	 	АТ АТ 90 .	· ·	· · ·		 	· · ·	400 .
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2	. G T . G T . G T	G	. . T A	 	360 . G A (с с с с	 	 	 	370 ·	т. т. сс	 	 G G	 с а	380 A C		 	 	с. с. АА	3 	АТ АТ 90 . СТ		 c G		 G C	 T 1	400 • r T
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2	. G T . G T . C C C	G	. T A	 	360 • • A (с с	 	 	 	370 · A G	т. т. сс	· · ·	 G G	с А	380 A C		 	 тс	с. с.	3 A	AT AT 90 . CT		 		 G C	 T 1	400 • • T
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 kxodCNAC11053	. G 1 . G 1 . C C C	G	. T A 	с G (360 • 5 A (с с 	 	Г Т с	 	370 · A G · ·	т. т. сс	· · · • · · • · ·	 G G	с А 	380 A C	• • •	 		с. с.	3 	AT AT 90 . CT		 		 G C	 	400 • • T
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxodCNAC11049	. G T	G	. T A . G	C G (360 • 3 A (с с 	 	TTO	 	370 . A G 	т. т. сс	· · · · · · · · · · · · · · · · · · ·	 G G	с А 	380 A C		 	і тс	C . C . A A 	3 	A T A T 90 . C T 	· · · ·	 		 G C 	 	400 • • T
OphinatrCNAC11001 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038 1	. G T . G T . C C C	G G A	. T A . G . G	с G (360 • 5 A (сс сс	 	TTO	 	370 · A G · · · ·	T. T. CC.	· · · · · · · · · · · · · · · · · · ·	 G G 	с А 	380 A C) T	 	 	C . C . A A 	3 	A T A T 90 . C T 	· · · · · · · · · · · · · · · · · · ·	 	· ì A · ·	 G C 	 	400 • F T
OphinatrCNAC11001 OphinatrCNAC11067 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2	. G T . G T . C C C T	G G G G	. TA . G . G	с G (360 • 5 A (с с 	 		 	370 . A G 	T. T. CC.	· · · · · · · · · · · · · · ·	 G G 	C A	380 A C))))	· · ·	 	C	3 	A T A T 90 . C T 	· · · · · · · · · · · · · · · · · · ·	 		G C	 	400 • T T
OphinatrCNAC11001 OphinatrCNAC11067 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3	. G T . G T . C C C T 	G G A	. TA .G .G	с с с с	360 • • A (· · · · · · · · · · · · · · · · · · ·		 	370 A G . A 	T. T. CC 	· · · · · · · · · · · · · · · · · ·	G G	C A	380 A C	3 T 1	· · ·	 	C	3 	A T 90 1 . C T 	· · · · · · · · · · · · · · · · · · ·	 C G	- - 	G C	 	400 • • T
OphinatrCNAC11001 OphinatrCNAC11067 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3	. G T . G T . G T 	G G G G G G	 TA 	C G (360 • • 3 A (C G	 			370 . A G . A . A . A . A	T. T. CCC .T. .T.	 AA G. G.	 G G 	C A	380 A C	6 T 1	· · · · · ·	I T C 	C	3 	A T A T 90 C T 	· · · · · · · · · · · · · · · · · · ·	 C G	· · A · · · · · · · · · · · · · · · · · · ·	G C	T 1	400 • • T
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11061 OphinatrCNAC11067	. G T . G T . G T 	G G G G G G G G	I	C G (360 • 5 A (C G	· · · · · · · · · · · · · · · · · · ·			370 . A G . A . A . A . A	T. T. CC .T. .T. .T.	· · · · · ·	G G G	C A	380 A C) T	· · ·	 	C	3 	A T 90 1 · · C T · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C G		G C	· · · · · · · · · · · ·	400 • F T
OphinatrCNAC11001 OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11067 OphinatrCNAC11067 OphinatrCNAC11067	. G T . G T . G T 	G G G G G G G G G	 	C G (360 • 5 A (C G	A 1) T A	370 . A G . A . A . A . A . A . A	T. T. CC .T. .T. .T.	· · · · · · · · · · · · · · · · · · ·	G G G	C A	380 A C	i T 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	C . C . A A 	3 	A T 90 1. C T 	· · · · · · · · · · · · · · · · · · ·	C G		G C 	 	400 • • T
OphinatrCNAC11001 OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11067 OphinatrFJ911853.1	. G T . G T . G T 	G G G G G G G G G G	I	C G (360 • • A (C G	A 1		· · · · · · · · · · · · · · · · · · ·	370 A G . A . A . A . A . A . A . A	T. T. CCC .T. .T. .T. .T.	 AA G. G. G. G. G.	G G G	C A	380 A C	i T 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C	3	A T 90 1 · C T · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 		G C 	T T 	400 • F T
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11061 OphinatrFJ911853.1	. G T . G T . G T . C C C 	G G G G G G G G G G	 T A . G . G . G . G . G . G	C G (360 - 3 A (A 1		· · · · · · · · · · · · · · · · · · ·	370 A G . A . A . A . A . A . A . A	T. T. CC 	· · · A A · · · G · · G · G · G · G ·	 G G 	C A	380 A C	i Ti	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	C	3	A T 90 1 · C T · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 C G		G C	T T T	400 • T T
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11061 OphinatrFJ911853.1	. G T . G T 	G G G G G G G G G G	I TA 	C G C	360 • 3 A (• • • • • • • • • • • •	C G	· · · · · · · · · · · · · · · · · · ·		3 T A 	370 . A G . A . A . A . A . A . A	T. T. CCC .T. .T. .T. .T.	· · · · · ·	G G 	C A	380 A C) T 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	C	3 A A	A T 90 1 · C C T · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C G		G C 	T 1 	400 · T · · · · · · · · · · · · ·
OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11037.3 DphinatrFJ911853.1	. G T . G T 	G G G G G G G G G	I TA G.G.G. G.G. G.G. I G.G. I G.G. I G.G. I G.G. I G.G. I G.G. I G.G. I G.G. I G.G. I G.G. I G.G. G.G. I G.G.G. G.G.G. G.G.G. G.G. G.G. G.G.G.G. G.G. G.G.G. G.G.G.G. G.G.G.G	C G (360 • • A (• • • • • • • • •		A 1		A T 6	370 370 370 	T. T. CC .T. T. T.	· · · · · · · · · · · · · · · · · · ·		C A	380 A C) T 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	C	3 	A T 90 1 · C C T ·	· · · · · · · · · · · · · · · · · · ·			G C		400 · T T · · · · · · · · · · · · · ·
OphinatrCNAC11007 OphinatrCNAC11067 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11037.1 HemtriaCNAC11037.1 HemtriaCNAC11037.1	. G T . G T 	G G G G G G G G G G G	 	C G C	360 . 		A 1			370 . A G . A . A . A . A . A . A . A	T. T. CCC .T. T. T. T.	· · · · · · · · · · · · · · · · · · ·	G G G	C A	380 A C 	i Ti	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C	3 	A T 90 1 · C C T · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			G C	 	400 • T T • • • • • • • • • • • • • •
OphinatrCNAC11007 OphinatrCNAC11067 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11037 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11038.3 OphinatrCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.2	. G 1 . G 1 . C C C 	G G G G G G G G G G G G	 	C G C	360 . 		A 1 		· · · · · · · · · · · · · · · · · · ·	370 . A G . A . A . A . A . A . A . A	T. T. CCC 	· · · · · · · · · · · · · · · · · · ·	G G G G G G G G G G G G G G G G G G G	C A	380 A C · · · · · · · · · · · · · · · · · · ·	i T 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C	3 	A T 90 1. C T 	· · · · · · · · · · · · · · · · · · ·			G C	T 1 	400 1 T T 400 1 1 400 1 1 400 1 1 450 1 3 C 1
OphinatrCNAC11001 OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11038.1 OphinatrCNAC11038.1 OphinatrCNAC11038.3 OphinatrCNAC11037.3 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3	. G 1 . G 1 . C C C 	G G G G G G G G G G G G G G G	I	C G C	360 . 				· · · · · · · · · · · · · · · · · · ·	370 A G A G . A . A . A . A . A . A . A	T. T. CCC .T. T. T. T. T.	· · · · · · · · · · · · · · · · · · ·	G G G	C A	380 A C 	5 T 1	· · · · · · · · · · · · · · · · · · ·	I	C	3 	A T 90 1. C T 	· · · · · · · · · · · · · · · · · · ·			G C	T 1 	400 · T T · · · · · · · · · · · · · ·
OphinatrCNAC11001 OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11038.1 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11037.3 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxodCNAC11053	. G 1 . G 1 . C C C 	G G G G G G G G G G G G G	I	C G C	360 · · · · · ·				· · · · · · · · · · · · · · · · · · ·	370 A G A G . A . A . A . A . A . A . A	T. T. C.C. T. T. T. T. T. T. T. T. T. T. T. T. T.	· · · · · · · · · · · · · · · · · · ·	G G G G G G G G G G G G G G G G G G G	C A	380 A C 	5 T 1	· · · · · · · · · · · · · · · · · · ·	I	C	3 (A) - - - - - - - - - - - - - - - - - - -	A T 90 1 · C T · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			G C C C C C C C C C C C C C C C C C C C	T 1 	400 1 T T 450 450 1 3 C 1 450 1 1 1 1 1 1 1 1 1 1 1 1 1
OphinatrCNAC11007 OphinatrCNAC11067 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11038.1 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11037.3 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11049	. G 1 . G 1 . C C C T 	G G G G G G G G G G G G G G	I	C G (360 • • 3 A (• • • • • • • •					370 A G . A . A . A . A . A . A . A . A . A	T. T. C.C. T. T. T. T. T. T. T. T. T. T. T. T. T.	· · · · · · · · · · · · · · · · · · ·	G G 	C A A A T	380 A C) T 1	· · · · · · · · · · · · · · · · · · ·	I	C	3 	A T 90 1 · C C T · · · · · · · · · 40 1 · · A T · ·	· · · · · · · · · · · · · · · · · · ·	C G 		G C C	T 1 	400 - 1 - 7
OphinatrCNAC11001 OphinatrCNAC11007 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11037.2 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.1	. G 1 . G 1 . C C C T 	G G G G G G G G G G G G G G G G G G G	I	C G C /	360 3 A (3 A (410 410 A A (370 A G . A . A . A . A . A . A . A . A . A	T. T. CCC 	· · · · · · · · · · · · · · · · · · ·	G G 	C A 	380 A C 	; T] ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C	3 	A T 90 1 · · · · · · · · · · · · 40 1 · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C G 		G C 	T 1 	400 - 1 - 7
OphinatrCNAC11037 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11038.3 OphinatrCNAC11037.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.4 OphinatrCNAC11038.2 OphinatrCNAC11038.2	. G 1 . G 1 . C C C T 	G G G G G G G G G G G G G G G G G G G	I.A.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.	C G C	360 3 A (3 A (410 410 A A (A A (370 370 A G A G A G A G A A A A A A A A	T. T. CCC 	· · · · · · · · · · · · · · · · · · ·		C A 	380 A C) T 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C	3 	A T 90 1 · · · · · · · · · · · · · · · 40 ·	· · · · · · · · · · · · · · · · · · ·	C G 		G C 	T 1 	4000 1 T 4500 4500 1 3 C - - - - - - - - - - - - -
OphinatrCNAC110371 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11038.3 OphinatrCNAC11037.4 HemtriaCNAC11037.5 IxodCNAC11037.4 HemtriaCNAC11037.5 IxodCNAC11037.5 IxodCNAC11037.5 IxodCNAC11037.5 IxoleptCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11038.3 OphinatrCNAC11038.3 OphinatrCNAC11038.3 OphinatrCNAC11038.3	. G 1 . G 1 . C C C 	G G G G G G G G G G G G G G G G G G G	I.A.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.	C G C	360 · · A (· · · · · · ·					370 A G A G A G A G A G A A A A A A	T. T. CCC. .T. T. T. T. T. T.	· · · · · · · · · · · · · · · · · · ·		C A 	380 A C) T 1	· · · · · · · · · · · · · · · · · · ·	I	C		A T 90 1 · · · C T · · · · · · · · · 40 1 · · A T · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C G		G C 	G G G	4000 1 T 4000 1 T 4000 1 1 4000 1 1 4000 1 1 4500 1 4500 1 1 1 1 1 1 1 1 1 1 1 1 1
OphinatrCNAC110371 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11037 IxodCNAC11037 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11038.3 OphinatrCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11037.3 IxodCNAC11035 IxoleptCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11038.4	. G T . G T 	G G G G G G G G G G G G G G G G G G G	I.A.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.	C G C	360 • •					370 1 A G . A . A . A . A . A . A . A	T. T. CCC. .T. T. T. T. T.	· · · · · · · · · · · · · · · · · · ·		C A C A C A C A C A C A C A C A C A C A	380 A C 	5 G /	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C		A T 90 · C T · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			G C 	T 1 	400 • 1 T T 450 • 1 • • • • • • • • • • • • • •
OphinatrCNAC110371 OphinatrFJ911853.1 HemtriaCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11037 IxoleptCNAC11049 OphinatrCNAC11038.1 OphinatrCNAC11038.2 OphinatrCNAC11038.3 OphinatrCNAC11037.4 HemtriaCNAC11037.5 IxodeptCNAC11037.1 HemtriaCNAC11037.2 HemtriaCNAC11037.3 IxodCNAC11053 IxoleptCNAC11049 OphinatrFJ911853.1	. G T . G T 	G G G G G G G G G G G G G G G G G G G	I.A.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.	C G C	360 - 					370 370 370 370 370 370 370 370	T. T. CCC T. T. T. T. T. T. T. T. T.	· · · · · · · · · · · · · · · · · · ·		C A	380 A C) T	· · · · · · · · · · · · · · · · · · ·	I	C		A T 90 1 · C T · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			G C	G G G	400 - 1 T T -

Anexo 3C (Continuación)

									4	16	0								4	170)								- 4	180
		•														•	•	•	•		•		•			•	•	•		
HemtriaCNAC11037.1	Т	G	С	Т	G	G	С	Α	С	С	Α	G	А	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HemtriaCNAC11037.2														С	Т	T	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HemtriaCNAC11037.3														С	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IxodCNAC11053														С	Т	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IxoleptCNAC11049														С	Т	Т	G	С	С	С	Т	С	С	A	A	Т	A	G	Т	Т
OphinatrCNAC11038.1														-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OphinatrCNAC11038.2														С	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OphinatrCNAC11038.3														С	Т	Т	G	-	-	-	-	-	-	-	-	-	-	-	-	-
OphinatrCNAC11061														С	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OphinatrCNAC11067														С	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OphinatrFJ911853.1		•												С	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Anexo 4. Matrices de distancias para las secuencias de genes de ectoparásitos

obtenidas con el modelo de sustitución Tamura 3-parametros.

A) Matriz de distancia para las secuencias obtenidas del gen COI.

	1	2	3	4	5	6
1.HemtriaCNAC11037.1						
2.HemtriaCNAC11037.2	0.000					
3.HemtriaCNAC11037.3	0.000	0.000				
4.IxoleptCNAC11049	0.232	0.232	0.232			
5.OphinatrCNAC11038.2	0.500	0.500	0.500	0.519		
6.OphinatrCNAC11038.3	0.500	0.500	0.500	0.519	0.000	
7.OphinatrCNAC11067	0.500	0.500	0.500	0.519	0.000	0.000

B) Matriz de distancia para las secuencias obtenidas del fragmento D3-D5 del gen 28S.

	1	2	3	4	5	6	7
1.HemtriaCNAC11037.1							
2.HemtriaCNAC11037.2	0.000						
3.HemtriaCNAC11037.3	0.000	0.000					
4.IxoleptCNAC11049	0.009	0.009	0.009				
5.OphinatrCNAC11038.1	0.026	0.026	0.026	0.032			
6.OphinatrCNAC11061	0.026	0.026	0.026	0.032	0.000		
7.OphinatrCNAC11067	0.026	0.026	0.026	0.032	0.000	0.000	
8.OphinatrFJ911788.1	0.026	0.026	0.026	0.032	0.000	0.000	0.000

Anexo 4 (continuación) C) Matriz de distancias para las secuencias obtenidas de la región V4 del gen 18S.

	1	2	3	4	5	6	7	8	9	10
1.HemtriaCNAC11037.1										
2.HemtriaCNAC11037.2	0.000									
3.HemtriaCNAC11037.3	0.000	0.000								
4.IxodCNAC11053	0.011	0.011	0.011							
5.IxoleptCNAC11049	0.007	0.007	0.007	0.004						
6.OphinatrCNAC11038.1	0.062	0.062	0.062	0.057	0.053					
7.OphinatrCNAC11038.2	0.062	0.062	0.062	0.057	0.053	0.000				
8.OphinatrCNAC11038.3	0.062	0.062	0.062	0.057	0.053	0.000	0.000			
9.OphinatrCNAC11061	0.062	0.062	0.062	0.057	0.053	0.000	0.000	0.000		
10.OphinatrCNAC11067	0.062	0.062	0.062	0.057	0.053	0.000	0.000	0.000	0.000	
11.OphinatrFJ911853.1	0.062	0.062	0.062	0.057	0.053	0.000	0.000	0.000	0.000	0.000

	Especie de	e ectoparásito
Características	O. natricis	H. triangulus
	Características observables	a simple vista
Color del	Usualmente de color negro,	De cuerpo transparente con
cuerpo del	rojo-obscuro o rojo-marrón.	tonalidades amarillas,
ácaro		anaranjadas, o con algún patrón
(idiosoma)		más obscuro.
Alteración	Por el grosor y volumen, el	El acaro al resguardarse y
producida en	ácaro puede "levantar" las	alimentarse debajo de la escama
la escama del	escamas corporales al	no causa ninguna alteración
huésped	colocarse debajo para	visible.
	alimentarse.	
Característica	as de los ácaros observables a	a microscopio estereoscópico
Tamaño	Longitud de 600 a 800 µm.	Longitud de 530 a 670 µm.
Número de	Cuatro: Una placa podonotal,	Una sola placa dorsal sin la
placas	dos pares de placas	presencia de invaginaciones o
dorsales	mesotonales y la placa	escotaduras.
	pigidial.	
Número y tipo	Una o más sedas simples	Una seda modificada, gruesa y
de sedas en		corta
las coxas I y II		
Tipo de sedas	Simples	Una seda claramente más
en el fémur ll		alargada y gruesa que el resto
Características	de los ácaros observables en	microscopio óptico posterior a
	aclararlo con lactof	fenol*
Número de	Dos pares de sedas	Tres pares de sedas esternales
sedas de la	esternales	
placa esternal		

Anexo 5. Caracteres útiles para el diagnóstico clínico entre hembras de *Hemilaelaps triangulus* y *Ophionyssus natricis*.

Anexo 5 (Continuación)

Morfología de	Alargada y estrecha, con un	Piriforme, con un par de sedas
la placa	par de sedas genitales fuera	genitales dentro o fuera de la
epiginial y sus	de la placa	placa
sedas		
asociadas		
Pinzas de los	Sin dientes	Con tres dientes en el dedo
quelíceros		móvil y dos en el dedo fijo.

*Procedimiento recomendado