

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS DE LA TIERRA

ESCUELA NACIONAL DE ESTUDIOS SUPERIORES MICHOACÁN

EVOLUCIÓN DEL MAGMATISMO FÉLSICO EN EL CAMPO VOLCÁNICO MICHOACÁN-GUANAJUATO. ESTUDIO DE PETROLOGÍA EXPERIMENTAL Y GEOQUÍMICA.

TESIS

QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIAS DE LA TIERRA

PRESENTA:

Ing. MARIO EMMANUEL BOIJSEAUNEAU LÓPEZ

DIRECTOR DE TESIS:

Dr. GIOVANNI SOSA CEBALLOS

(Instito de Geofísica Unidad Michoacán)

MORELIA MICHOACÁN JULIO 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Resumen

La Sierra del Tzirate (ST) representa una porción del magmatismo intermedio-félsico que se puede encontrar en el Campo Volcánico Michoacán Guanajuato (CVMG). Las rocas que forman la ST son de origen calcoalcalino asociado al régimen de subducción que domina la Faja Volcánica Trans – Mexicana (FVTM). Debido a que el CVMG ha sido caracterizado como un campo dominantemente andesítico, la ocurrencia y origen de las rocas de la ST representan un tema de interés petrológico.

La composición de las rocas en la ST es andesítica – riolítica (~55 – 70 wt% de SiO₂), con valores isotópicos entre 7.15 – 9.43 (δO^{18}), 0.07037 – 0.07043 (87 Sr/ 86 Sr), 1.82 – 4.27 (ϵ Nd) y está formada por una paragénesis de PI + Opx + Cpx ± Amp ± Bt. En la mayoría de las muestras analizadas se pueden apreciar grupos de minerales que muestran desequilibrio textural representado por texturas de disolución y bordes de reacción como los observados en anfíboles, piroxenos y plagioclasas.

Los resultados, geoquímicos, mineralógicos y texturales sugieren que eventos de mezcla intermitente de magmas o calentamientos producto de acumulación de magma en cámaras magmáticas someras cercanas; podrían generar las texturas de desequilibrio observadas en la ST. Estos procesos adicionan energía y en ocasiones masa, lo que podría propiciar, además, la asimilación de la roca encajonante causando cambios químicos y mineralógicos que generan líquidos híbridos y cristales peritécticos. La diversidad composicional observada en los

minerales y rocas de los diferentes grupos de la ST se relacionó con el sistema estructural en donde fueron emplazados los magmas. Se determinó que la historia de deformación y los cambios en el campo de esfuerzos local podría ser en parte responsables de la generación de rocas félsicas en el CVMG.

Con la finalidad de comprender los procesos de asimilación relacionados al campo de esfuerzos, se realizaron experimentos hidrotermales a 180 Mpa, 880 - 900°C y 6 wt% H2O de una muestra de la ST con 60.9 wt% SiO₂. Dichos experimentos fueron dopados con un material asimilante de composición granodiorítica (64.4 wt% SiO2) y corridos durante ~23 horas por debajo de las condiciones de liquidus. Los experimentos muestran que la interacción entre estas dos rocas generó la reacción Melt 1 + Granodiorita = Melt 2 + Cristales Peritécticos, además de remanentes de asimilante con huellas de disolución. Esto demuestra que el entrampamiento de magmas en la corteza superior, por debajo del CVMG, puede ser un factor importante para la evolución de los magmas.

Abstract

The Sierra del Tzirate (ST) is a volcanic range comprised of intermediate-felsic rocks located within the Michoacán-Guanajuato Volcanic Field (MGVF). The magmas are andesitic to rhyolitic in composition (55-70 wt.% SiO₂), and have a mineral assemblage of plag+opx+cpx+amph+bio+Fe-Ti ox. Isotopically, they span a wide range of compositions including 7.15 – 9.43 (δO^{18}), 0.0703702 – 0.0704306 ± 0.0000033 (87 Sr/ 86 Sr) and 1.82 – 4.27 (ϵ Nd).

All samples contain at least two populations of plagioclase, amphibole, biotite and pyroxene. One population is in equilibrium with the surrounding groundmass glass. The other is characterized by disequilibrium textures, including sieved crystals and reaction rims. This population also contains megacrysts which are likely xenocrysts. Geochemical binary models, disequilibrium mineral textures, and the local stress field suggest that magma mixing and crustal assimilation are the dominant magmatic processes. I propose that mafic magmas, similar to those erupted through monogenetic vents at the MGVF, were trapped within the upper crust as a consequence of the local stress field. The stalled, primary mafic magmas assimilated the local basement creating a hybrid intermediate-felsic magmatic suite. Later, the stress field was modified to more extensional regime allowing the magmas to reach the surface. In order to further investigate assimilation processes, I performed a set of cold seal hydrothermal experiments. The magmatic starting material was a Sierra del Tzirate andesite that I doped with a granodiorite assimilant. Experiments were performed at 180 MPa, 880 - 900°C, and 6 wt% H₂O. Experiments demonstrate that

the granodiorite assimilant can be completely ingested in less than 24 hours. Such rapid assimilation demonstrates ST magmas can be modified to more felsic compositions in short timescales.

Agradecimientos

Deseo brindar un generoso agradecimiento a los técnicos: Gabriela Solís Pichardo por química en LIGIA, Gerardo Arrieta por las mediciones en espectrómetro, Irma Fabiola Mendiola López por su ayuda en la preparación de muestras, Felipe García Tenorio por la elaboración de láminas delgadas, Guillermo Cisneros Máximo por apoyo en la elaboración de mapas, Silvestre Cardona Melchor y Gabriela Reyes por su colaboración en microanálisis, Noemí Salazar Hermenegildo por los análisis de microsonda.

A los revisores de este trabajo: José Luis Macías, Arturo Gómez Tuena, Peter Schaaf, Claus Siebe y Giovanni Sosa por sus valiosos comentarios.

A Denis Ramón Avellán, Susana Osorio, Laura García, Juan Daniel Pérez, Xavier Bolós y Marcela Lira por el apoyo moral, práctico y técnico durante la elaboración de esta tesis.

A mi familia y todos aquellos que accidentalmente hicieron posible éste trabajo.

Contenido

Resumen	2
Abstract	4
Agradecimientos	6
Introducción	9
Objetivos	13
General	13
Específicos	13
Marco Tectónico y Geológico	14
Basamento	18
Terreno Guerrero	18
Sierra Madre Occidental	21
Sierra del Tzirate y complejos dacíticos en el centro del CVMG	
Metodología	
Metodología experimental	31
Resultados	34
Petrografía	34
Basamento (Mtg)	34
G1	35
G2	40
G3	43
Geoquímica	47
Basamento (Mtg)	47
G1	48
G2	50
G3	50
Química mineral	54
Basamento (Mtg)	54
G1	55
G2	55
G3	55
Isótopos de Sr, Nd y O	56

F	esultados experimentales	59	
Dis	usión	64	
C	istalización fraccionada	64	
N	ezcla de magmas	69	
A	similación cortical	73	
Comparación isotópica (δ^{18} O) entre los complejos volcánicos La Nieve y Sierra			
d	el Tzirate	79	
E	perimentos hidrotermales como un proxy de asimilación cortical	81	
Cor	clusiones	85	
Bib	ografía		
Ane	xos	108	
1	Química mineral ortopiroxenos	108	
2	Química mineral clinopiroxenos	110	
	Piroxenos bajos en calcio	111	
3	Química mineral anfíboles	117	
4	Química mineral plagioclasas	119	
5	Análisis modal de minerales	130	

Introducción

La asimilación, la mezcla de magmas y la cristalización fraccionada son procesos que colaboran en la génesis de magmas intermedios-félsicos y que modifican la composición de los fundidos a lo largo de la trayectoria desde su lugar de origen hasta que son expulsados en la superficie terrestre. Estos procesos imprimen un registro en la química de las rocas y en la textura y composición de minerales que es posible investigar con métodos analíticos como las relaciones isotópicas de ¹⁸⁷Os/¹⁸⁸Os (ej. Lassiter & Luhr, 2001; Chesley et al., 2002), ⁸⁷Sr/⁸⁶Sr (ej. Taylor, 1980; DePaolo, 1981; Verma & Nelson, 1989; Chesley et al., 2002; Schaaf et al., 2005) y ¹⁴³Nd/¹⁴⁴Nd (ej. DePaolo, 1981; Verma & Nelson, 1989; Schaaf et al., 2005), geoquímica de elementos mayores y trazas (ej. Luhr & Carmichael, 1985; Lange & Carmichael, 1990) y composición de inclusiones de vidrio en cristales (ej. Luhr, 2001; Reubi & Blundy, 2009).

La Faja Volcánica Trans-Mexicana (FVTM) tiene ejemplos de variabilidad composicional en sus rocas que podría explicarse mediante asimilación cortical (Chesley et al., 2002; Reubi & Blundy, 2008; Savov et al., 2008), mezcla de magmas (Sosa-Ceballos et al., 2012; Macías et al., 2017) y cristalización fraccionada (Lassiter & Luhr, 2001; García-Tovar & Martínez-Serrano, 2011). Uno de los ejemplos clásicos de estudio sobre cómo estos procesos intervienen en la composición final de un magma es el de la evolución de los magmas del volcán Parícutin en el Campo Volcánico Michoacán Guanajuato (CVMG). Con la aparición del Paricutín fue posible observar la evolución mineralógica y composicional a lo largo de la vida eruptiva de un volcán monogenético (Wilcox, 1954). Esta variación

en la química y paragénesis representó un ejemplo de un proceso de Asimilación y Cristalización Fraccionada (AFC, por sus siglas en inglés) (Wilcox, 1954; McBirney et al., 1987; Luhr, 2001; Erlund et al., 2010), sin embargo, esta idea en la actualidad aún es debatida (Rowe et al., 2011; Larrea et al., 2017).

El CVMG, ubicado en la porción central de la FVTM (Fig.1a), presenta una intensa actividad Plio-Cuaternaria, donde predominan los conos de escoria de composición andesítica (Hasenaka & Carmichael, 1987). No obstante, existen también otras estructuras volcánicas como maares, anillos de toba, derrames de lava y pequeños volcanes tipo escudo; además de domos (Hasenaka & Carmichael, 1985; 1987). Esta región está ampliamente afectada por sistemas de fallas ONO-ESE y OSO-ENE (Garduño-Monroy et al., 2009; Pola et al., 2015), dónde en algunos sitios los alineamientos de conos son paralelos a estos sistemas de fallas (Connor, 1987).

Los estudios realizados para comprender la distribución, dinámica eruptiva y el origen de los magmas en el CVMG han sido diversos (ej. Fries 1953; Hasenaka & Carmichael 1985, 1987; Connor 1987, 1990; Hasenaka et al. 1994; Gómez-Tuena et al. 2006; Ownby et al. 2007, 2011; Pola et al., 2015), no obstante, la asimilación cortical, calentamiento, mezcla y cristalización fraccionada en el CVMG no han sido ampliamente estudiadas en domos de composición félsica.

Con excepción de los estudios realizados en el volcán Metate (Chevrel et al., 2016) y las lavas cercanas a la ciudad de Zitácuaro (Blatter & Carmichael; 1998), no existen trabajos que investiguen procesos magmáticos mediante geoquímica y petrología experimental en la zona.

Figura 1. a) Mapa simplificado mostrando la configuración tectónica regional (modificado de Geociencias Digital: http://digitalgeosciences.unam.mx/). Las edades de las placas tectónicas en Ma y las velocidades en cm/año (DeMets and Traylen, 2000). RFZ: Zona de Fractura Rivera, OFZ: Zona de Fractura Orozco. La línea amarilla marca el límite de la TMVB. Triángulos rojos muestran la localización de los volcanes Paricutín (Pa) y Tancitaro (Ta). Las líneas negras son fallas (mesoestructuras): TZR (Rift Tepic-Zacoalco), CR (Rift Colima), ChR (Rift Chapala), P (Graben de Penjamillo), BF (Falla del Bajio), MAFS (Sistema de fallas Morelia-Acambay), TQSF (Sistema de fallas Taxco-Querétaro), ChL (Lago de Chapala), PL (Lago de Pátzcuaro). Líneas rojas marcan el límite del MGVF (abreviaciones derivadas de los nombres en inglés). Mapa modificado de Gómez-Tuena (2006), Ferrari et al. (2012), Diaz-Bravo et al. (2014) y Pérez-Orozco (2015). b) Mapa de localización de ST (modelo digital de terreno de imágenes LIDAR a resolución de 15 m), mostrando las principales localidades y caminos de acceso. El cuadro azul muestra el área de estudio. Modificado de Pérez-Orozco (2015).

Sin embargo, estudios geoquímicos de xenolitos en lavas (Corona-Chávez et al., 2006) e isotópicos (Verma & Nelson, 1989; Lassiter & Luhr, 2001; Chesley et al., 2002; Johnson et al, 2009, 2010) realizados en esta región aportan evidencia geoquímica y textural de estos procesos.

A pesar de ser poco reconocido, el CVMG presenta parcialmente una actividad intermedia-félsica predominantemente efusiva. Ejemplos de esta actividad se observan en los domos la Muela, Chapultepec, Buena Vista, Vado y Tecuena (Osorio-Ocampo, 2014); así como en la Sierra del Tzirate (ST) (Pérez-Orozco, 2015) (Fig.1b). Los domos pueden representar la culminación de eventos piroclásticos (Osorio- Ocampo, 2014) o están coronando eventos más efusivos como derrames o volcanes semi-escudo (Hasenaka & Carmichael, 1985). Debido a su distribución restringida, los alineamientos de domos no son claros. No obstante, algunas de estas estructuras se encuentran deformadas por fallas (Pérez- Orozco, 2015; Osorio-Ocampo, 2014). Aunque el régimen tectónico dominante es conocido, la forma en que el campo de esfuerzos local afecta la distribución, composición y estilo eruptivo, no ha sido estudiado en detalle y por consecuencia no se comprende en su totalidad.

Este trabajo pretende aportar conocimiento para la comprensión de la génesis y evolución magmática de las rocas félsicas del CVMG. Para ello se generaron y evaluaron datos de geoquímica, petrografía, química mineral, análisis isotópicos y experimentos hidrotermales en rocas de la ST y algunas estructuras volcánicas aledañas.

Objetivos

General

El objetivo general es investigar mediante geoquímica de elementos mayores y traza; isotopía, química mineral y petrología experimental la influencia de la asimilación cortical y mezcla de magmas en la composición química y mineral final de las rocas volcánicas que dieron origen a la ST.

Específicos

-Realizar estudios de petrografía y química mineral.

-Estudiar la geoquímica de elementos mayores-traza

-Estudiar la geoquímica de isotopos de O y Sr-Nd

-Investigar el origen de las rocas de la ST y los procesos magmáticos que las han modificado.

-Investigar procesos magmáticos y equilibrio termodinámico en rocas de la ST.

-Realizar experimentos hidrotermales para estudiar la influencia química y mineralógica que puede generar la asimilación cortical del basamento del CVMG en la generación de magmas intermedios-félsicos.

Marco Tectónico y Geológico

La ST (Fig. 1a) se ubica en la porción centro-oriental del Campo Volcánico Michoacán Guanajuato (CVMG), perteneciente a la Faja Volcánica Trans- Mexicana (FVTM), sobreyaciendo al terreno tectonoestratigráfico Guerrero (Campa & Coney, 1983). En este terreno se encuentra sumamente afectado por intrusivos félsicos como granitos, cuarzo monzonitas y cuarzo dioritas (Centeno et al., 2008).

Figura 2. Modelo digital de elevación de la Sierra del Tzirate. Las líneas rojas indican sistemas de fallas normales con orientación ENE – OSO. Con una estrella se marcan los lugares donde se han localizado xenolitos en la región (Corona-Chávez et al., 2006).

Esta sierra limita las cuencas de Pátzcuaro al SO, Zacapu al O-NO y Cuitzeo al N-NE (Fig.2). Estas depresiones se encuentran asociadas al Sistema de Fallas Morelia – Acambay (Fig. 3, SFMA) (Suter et al., 2001; Ego & Ansan, 2002; Garduño et al., 2009) relacionadas con el Rift de Chapala con orientación E-O y ENE-OSO (Allan,

1986; Rosas-Elguera et al., 1996) que limitan depresiones tectónicas como la de Cuitzeo y Zacapu. No obstante, también esta región se encuentra estructuralmente afectada por el sistema de fallas "Strike- Slip" Taxco- San Miguel de Allende (SFTSA) (Alaniz-Álvarez et al., 2002) con tendencias NNW-SSE, en consecuencia esta interacción podría ocasionar que segmentos de fallas normales activas durante el Cuaternario presenten una componente lateral desarrollando estructuras en "echelón", áreas con sistemas "pull-apart" y actividad registrada desde el Mioceno Tardío hasta el Holoceno (Reyes & Nieto Samaniego, 1990; Suter et al., 1995; García-Palomo et al., 2000; Suter et al., 2001; Ego y Asan, 2002; Szynkaruk et al., 2004; Garduño-Monroy et al., 2009).

El Vulcanismo en el CVMG está relacionado con la generación de magmas producto de la subducción de la placa de Cocos por debajo de la placa norteamericana. Este ambiente tectónico perdura desde ~13 Ma con una tasa de subducción de ~5.5 cm/años, ángulo de subducción que varía entre los 14° - 31° y con profundidades que van desde 25 hasta 100 Km (Klitgord & Mammerickx, 1982; DeMets et al., 1994; Pardo & Suárez, 1995).

Una de las hipótesis que explica la distribución del vulcanismo en la región propone que la variación en el ángulo de subducción de la placa de Cocos a través del tiempo ha generado una migración en el frente volcánico del CVMG, además de provocar cambios en las tasas de convergencia, régimen tectónico y campo de esfuerzos (Ban et al., 1992; Delgado-Granados et al., 1993, 1995, 1997). Dicho fenómeno podría ser el causante de incrementar la producción de magmas tipo intra-placa producto de la descompresión de un manto peridotítico relativamente seco en un

ambiente de subducción (Gómez-Tuena, et al., 2016) como los reportados en la región (ej. Demant & Robin, 1975; Luhr et al., 1985). Sin embargo, la génesis de magmas intermedios-félsicos como los presentes en la ST, aún es debatida. Una de las hipótesis de formación de dichas rocas es a partir de la cristalización de magmas de composición basáltica. No obstante, diversas aproximaciones experimentales y de modelado han demostrado que este proceso de generación de magmas es incapaz de formar andesitas con alto #MgO aun considerando un buen aporte de contaminación cortical (Kelemen et al., 2003; Gómez-Tuena et al., 2007; Reubi and Blundy, 2008; Straub et al., 2011). En algunos casos, como en el volcán Paricutín, se ha sugerido que la génesis de dichos magmas pudo ser producto de la cristalización fraccionada y asimilación cortical (Wilcox, 1954; Chesley et al., 2002). Aunque la hipótesis más aceptada en la generación de andesitas en la FVTM es la mezcla de magmas (Gómez-Tuena et al., 2014) existe evidencia isotópica que sugiere que magmas andesíticos pudieran ser magmas primitivos (Straub et al., 2013) o producto de una combinación entre cristalización fraccionada y fusión parcial de la corteza inferior (Ownby et al., 2011). De forma alterna, recientemente se ha propuesto que la génesis de magmas andesíticos está relacionada con la fusión de diapiros que emergen de la placa subducida y que son fundidos en la cuña del manto (Castro et al., 2010; Gómez-Tuena et al., 2016).

Figura 3.- a) Mapa geológico del área de ST mostrando la distribución de las unidades geológicas y depósitos volcánicos asociados (tomado de Pérez-Orozco et al, 2018). En líneas verdes representan las líneas de sección. Círculos blancos = muestras de roca fechadas por el método de ⁴⁰Ar/³⁹Ar (Kshirsagar et al., 2015); estrella blanca indica muestras del domo Tzirate y Cerro Azul. b) Sección A-A' de dirección NNO-SSE, mostrando los domos dacíticos del Pleistoceno temprano. c) Sección C-C' de dirección ONO-ESE presentado la relación espacial y temporal del magmatismo dacítico y basáltico-andesítico.

Basamento

La presencia de xenolitos de composición granodiorítica - granítica reportados en lavas del Paricutín (Wilcox, 1954; McBirney et al, 1987), Jorullo (Luhr & Carmaichael, 1985) y Arócutin (20 Km SO de ST, Corona-Chávez et al., 2006) nos permite suponer que el basamento por debajo de estos sitios podría estar sumamente influenciada por cuerpos intrusivos de dicha composición química (Pérez-Orozco, 2015). No obstante, el espesor cortical en esta región en función de la distancia de la trinchera pudiera superar los 40 km (Pérez-Campos et al., 2008). Las rocas que yacen por debajo de la ST son desconocidas debido a la actividad volcánica reciente asociada al CVMG y a la cobertura vegetal. No obstante, en regiones aledañas como en la localidad de Villa Madero (45 Km al SE) y Uruapan (50 km al SO) (Garduño-Monroy et al., 1999) aflora el Terreno Tectonoestratigráfico Guerrero (Campa y Coney, 1983) y la Sierra Madre Occidental (SMO) (Garduño-Monroy et al., 1999).

Terreno Guerrero

El Terreno Compuesto Guerrero (TCG) es el segundo terreno más grande de Norte América (Centeno-García et al., 2008). Este terreno tectonoestratigráfico se encuentra caracterizado por depósitos asociados al vulcanismo submarino principalmente y es subdividido a su vez en 5 sub terrenos (Terreno Teloloapan, Terreno Guanajuato, Terreno Arcelia, Terreno Tahue y Terreno Zihuatanejo, Fig. 4) que registran un complejo proceso de subducción influenciado por un movimiento de translación y rifting (Centeno-García et al., 2008). La porción del TCG que aflora

en regiones aledañas a la ST está comprendida entre el Terreno Teloloapan-Terreno Arcelia al SE y el Terreno Zihuatanejo al SO.

El Terreno Zihuatanejo es el más grande de los elementos que conforman al TCG (Fig. 4). En la base afloran grandes volúmenes de turbiditas ricas en cuarzo (areniscas y lutitas), embebidas en la matriz se encuentran bloques de lavas basálticas almohadilladas, gabros bandeados, intrusivos sub-volcánicos, pedernales y calizas del Triásico (Norense); que debido a la deformación registrada en algunas porciones de este complejo, se interpretan como un complejo de acreción asociado a un proceso de subducción que pudo iniciar desde el Triásico Superior-Jurásico Inferior (Centeno-García et al., 2008). Existen pocos afloramientos que muestren la evolución de este terreno para el Jurásico Medio y Superior, no obstante, estos depósitos registran la evolución de la actividad magmática de arco y están formadas por lavas riolíticas submarinas, rocas volcanoclásticas y granitoides emplazados en las porciones acrecionales (Fig. 5) (Centeno-García et al., 2003). Durante el Cretácico se reportan sucesiones de eventos volcánicos de arco representadas por andesitas, andesitas-basálticas y algunas riolitas interestratificadas con evaporitas y capas rojas (Grajales-Nishimura & López-Infanzón, 1984). Finalmente, esta sucesión concluye con la deformación y posterior intrusión de grandes volúmenes de granitoides que se distribuyen desde el final del Cretácico hasta el Paleógeno (Schaaf et al., 2000).

бe muestra Se 2008), Centeno-García et al., , Arcelia y Zihuatanejo. Teloloapan, Arcelia Figura 4. Mapa geológico del suroeste de México (Modificado de forma simplificada la geología de los terrenos Mixteco, Teloloapan El Terreno Arcelia está constituido por lavas basálticas almohadilladas y cuerpos ultramáficos, lutitas negras y pedernales, así como turbiditas volcánicas que se encuentran intensamente deformadas y parcialmente metamorfoseadas (Talavera-Mendoza et al., 1995). Esta secuencia también se caracteriza por depósitos marinos profundos asociados con arcos primitivos o facies oceánicas del Cretácico Inferior y por mostrar la etapa menos evolucionada del magmatismo de todas las secuencias del TCG (Talavera-Mendoza et al., 1995). Estas rocas, al parecer, cabalgan sobre secuencias del Terreno Teloloapan y a su vez son cabalgadas por el Terreno Zihuatanejo (Centeno-García et al., 2003).

El Terreno Teloloapan está formado por dos diferentes regiones. La porción oriental de esta zona se caracteriza por secuencias volcánicas y sedimentarias someras. Mientras la porción occidental se caracteriza por facies marinas y depósitos volcánicos profundos (Guerrero-Suastegui, et al 1991; Guerrero-Suastegui, 2004). La composición química de las rocas volcánicas de las dos zonas varía de basalto-andesítica a dacítica-riolítica. Estructuralmente este terreno está afectado por un complejo sistema de fallas inversas con vergencia hacia el este (Centeno-García et al., 2008).

Sierra Madre Occidental

La secuencia estratigráfica que sobreyace al Terreno Guerreo de forma discordante es la de la Sierra Madre Occidental (Garduño-Monroy et al., 1992,1999). La Sierra Madre Occidental es el resultado de diferentes episodios magmáticos y tectónicos durante el Cretácico-Cenozoico, asociados a la subducción de la placa Farallón

debajo de la placa de Norteamérica y a la apertura del Golfo de California (Aranda-Gómez et al., 2000; Ferrari et al., 2006).

La estratigrafía de la SMO consta de cinco conjuntos ígneos principales: (1) rocas plutónicas y volcánicas del Cretácico Superior-Paleoceno y (2) rocas volcánicas andesíticas y, en menor medida, dacítico-riolíticas del Eoceno, tradicionalmente agrupadas en el denominado "Complejo Volcánico Inferior" (CVI); 3) ignimbritas silícicas emplazadas en su mayoría en dos pulsos, en el Oligoceno temprano (32-28 Ma) y el Mioceno temprano (24-20 Ma), y agrupadas en el Supergrupo Volcánico Superior; 4) coladas basáltico-andesíticas transicionales extravasadas después de cada pulso ignimbrítico, correlacionadas con las "Andesita-Basálticas del Sur de la Cordillera" (SCORBA por sus siglas en inglés); 5) volcanismo post-subducción constituido por coladas de basaltos alcalinos e ignimbritas emplazados en diferentes episodios del Mioceno tardío, Plioceno y Cuaternario, y que se relacionan con la separación de Baja California del continente (Ferrari et al., 2006).

En la porción de la SMO que aflora a las cercanías (localidades Villa Madero y Uruapan) de la ST se observan intrusivos de composición granítica-granodiorítica (Fig. 4) con edades de 32 ± 1 Ma al SE (K/Ar, Damon et al., 1981; Garduño-Monroy et al., 1999) y al SO se encuentra el tronco La Huacana el cual presenta variaciones composicionales entre granito y granodiorita (Garduño-Monroy et al., 1999), con edades de K/Ar de 35 ± 1 Ma (Damon et al., 1983) y 38 ± 1 Ma (Grajales-Nishimura & López-Infanzón, 1984; Ortega-Gutiérrez et al., 2014) los cuales existen depósitos minerales asociados como el depósito cuprífero histórico de Inguarán (Barret, 1981).

Figura 5.- Mapa geológico con la distribución de las intrusiones graníticas en el sureste de México (modificado de Ortega-Gutiérrez et al., 2014). Líneas punteadas en azul indican los límites de la FVTM. PVP, batolito de Puerto Vallarta. MB, atolito Manzanillo. JB, batolito Jilotlán, OF, falla Oaxaca, LVF, falla La Venta. RVB, batolito de Río Verde. LB, batolito Loxichas. PB, batolito Pochútla, Hb, batolito Huatulco, ChF, falla Chacalapa.

Sierra del Tzirate y complejos dacíticos en el centro del CVMG.

El complejo volcánico ST forma parte de la porción central del Campo Volcánico Michoacán Guanajuato (Fig. 1a), abarca un área aproximada de 55 Km². Este complejo volcánico está caracterizado por una serie de domos andesíticos-dacíticos afectados por el fallamiento activo del Sistema de Fallas Morelia-Acambay (Pérez-Orózco et al., 2018). Dentro de estos domos destacan Cerro Azul ~2660 msnm (0.99 Ma - K/Ar, Pérez-Orozco, 2015), Cerro Tzirate 3345 msnm (0.93 Ma - K/Ar, Pérez-Orozco et al., 2018; 0.95 Ma - K/Ar, Kshirsagar et al., 2015), Cerro Cuates ~3000 msnm y Cerro Caracol ~2286 msnm (1.24 ± 0.62 Ma, Kshirsagar et al., 2015) (Fig. 3). La mayoría de los depósitos de la ST se encuentran sobre una estructura NE-SO compuesta de fallas normales que generan pequeños grabens (Fig. 2,3). Así mismo, al sur existe otra alineación de domos dacíticos con una tendencia NO-SE dónde se encuentra emplazado el domo Tzirate y Cerro Azul (Fig. 3) (Pérez-Orozco, 2015).

La actividad volcánica félsica en la ST puede dividirse en 3 etapas en función de su ubicación y posición estratigráfica durante el Pleistoceno (Pérez-Orozco, 2015). Los primeros eventos eruptivos ocurren al SE en el Pleistoceno Temprano y se encuentran intercalados espacialmente con conos y derrames de lava andesítica (Fig. 4). En el Pleistoceno Medio (Cerro El Caracol, Kshirsagar et al., 2015) el vulcanismo se instaura en la porción norte generando una serie de domos y derrames dacíticos que forman una lineación NE-SO esparciendo sus productos hacia los costados del lineamiento (Fig. 3). Finalmente, los eventos félsicos concluyen en la porción sur con la construcción del domo Cerro Azul (0.990 Ma) y Tzirate (0.93 – 0.95 Ma) (Kshirsagar et al., 2015; Pérez-Orozco, 2015). La composición química general de los productos volcánicos presentes en la zona vuelve a generar flujos de lava, conos de escoria y maars de composición andesítica que continua durante el Holoceno, como lo observado en las cercanías del Lago de Pátzcuaro (Osorio-Ocampo; 2014) (Fig. 4).

La composición félsica de las rocas del ST puede estar relacionada con cambios en el régimen de esfuerzos locales en el SFMA (Pérez-Orozco et al., 2018). Durante el Mioceno Tardío – Plioceno Temprano el comportamiento de este sistema de fallas pudo ser transtensional con una componente lateral izquierda que hacia el Plioceno

Tardío cambia a un sistema dominantemente normal (Ferrari et al., 1994; Israde-Alcántara y Garduño-Monroy, 1999). Finalmente, durante el Pleistoceno-Holoceno estas fallas presentan un comportamiento extensional con una componente lateral izquierda (Suter et al., 1995; Ego y Asan, 2002). El cambio en el régimen de esfuerzos normales a transtensionales es simultáneo con la actividad volcánica de la región, lo que podría generar que magmas en ascenso se almacenen y evolucionen a través de asimilación cortical y mezcla de magmas. Estos procesos pudieron culminar con otro cambio en el régimen de esfuerzos, dónde, en la actualidad el sistema de esfuerzos es dominantemente normal, lo que facilita el ascenso de magmas máficos posteriores a la generación de la ST (Pérez-Orozco, 2015).

Otra concentración de rocas félsicas en el CVMG se localiza al sur de la ST (35 km SE) en los complejos volcánicos La Nieve-El Burro, (Fig. 2). Esta región se caracteriza por tener periodos efusivos félsicos que generan domos y derrames de composición dacítica-andesítica intercaladas con eventos de magmatismo andesítico-basáltico que generan domos, derrames y conos de escoria (Cardona-Melchor, 2015; Ruíz-Anduquia, 2017). Dónde destacan los domos La Nieve (3420 msnm 0.08 Ma, ⁴⁰Ar/³⁹Ar, Cardona-Melchor, 2015), El Burro (3280 msnm, 0.7 Ma, K/Ar, Cardona-Melchor, 2015) y la Taza (3300 msnm 0.36 Ma, Ar/Ar, Cardona-Melchor; 2015). La composición química de estás rocas es de andesitas basálticas, andesitas y dacitas con paragénesis minerales de plagioclasa > piroxeno > olivino ± anfíbol± biotita. Además de estos minerales, se encuentran xenocristales de cuarzo, denotados por bordes redondeados y reabsorbidos, así como fenocristales

de anfíbol con bordes de reacción y texturas de desequilibrio (Ruíz – Anduquia, 2017). Esta región presenta el mismo patrón estructural que en la región de la ST, es decir, se pueden distinguir lineamientos de estructuras volcánicas y fallas con las orientaciones de los sistemas SFMA y SFTSA (Cardona-Melchor, 2015; Ruíz-Anduquia, 2017).

La ocurrencia de episodios de magmatismo félsico en el CVMG es contemporánea con la actividad más máfica de la zona como ha sido descrito en la parte este de Michoacán (Demant, 1978), en el Complejo Volcánico Zitácuaro (Capra, 1997) y en la región de Tancítaro-Nueva Italia (Ownby et al., 2011).

Metodología

Para los estudios petrográficos y geoquímicos (de roca total y minerales) fueron seleccionadas 12 muestras de la ST y una muestra de intrusivo del basamento local. Para las muestras del Tzirate se realizaron 3 grupos en función de las tendencias estructurales y estratigrafía descrita por Pérez-Orozco et al., (2018). El primer grupo (G1) muestra una tendencia estructural NNO-SSE y corresponden con las muestras del Cerro Tzirate, El segundo grupo (G2) presenta una tendencia estructural NE-SW y el tercer grupo (G3) pertenece a depósitos fuera de las dos alineaciones antes mencionadas (Fig. 6).

Se usaron Modelos Digitales de Elevación (MDE) LIDAR con resolución de 15 m y el software ArcGIS 9.0 para visualizar la distribución espacial de los centros volcánicos, corroborar trazas de fallas y fracturas reportadas en la ST y para calcular el área aproximada de la ST (~55 Km²). El espesor neto de los productos que forman la ST no fue posible de determinar debido a que la cobertura vegetal y la sobreimposición de eventos volcánicos posteriores ocultan la base de la mayoría de los depósitos, además de colapsos posteriores del domo Tzirate complican el cálculo de un espesor aproximado. Por tal motivo especular sobre él volumen de material producido en estos eventos volcánicos puede ser aberrante.

Con la finalidad de realizar estudios petrográficos y de química mineral fueron preparadas secciones pulidas. Se analizaron los elementos mayores en plagioclasa, clinopiroxeno, ortopiroxeno, anfíbol y vidrio (ver anexo) usando una microsonda JEOL JXA- 8230 ubicada en el Laboratorio de Microanálisis del CEMIE-Geo, Unidad

Michoacán del Instituto de Geofísica, UNAM. Las condiciones analíticas fueron 15 eV de voltaje y 10 nA de corriente en el haz de electrones. Para el análisis de plagioclasas, y piroxenos se utilizó un haz enfocado, para el análisis de anfíboles y vidrio se empleó un haz desenfocado a 10 µm para evitar la pérdida de Na y agua por migración (Devine et al., 1995). La incertidumbre analítica (16) en las mediciones fue determinada con análisis de estándares secundarios donde la variación en las mediciones fue ±1 para %SiO₂, TiO₂, K₂O y Al₂O₃, mientras que para Fe₂O₃, Na₂O, MgO fue ±2%. Los resultados de química mineral fueron empleados para cálculos de presión y temperatura con base en el método descrito por Ridolfi & Puerini (2010). Se realizaron cálculos para la conversión de análisis químicos en formulas estructurales en piroxenos, feldespatos (K y Na-Ca) y anfíboles (Jeffery & Hutchison, 1981).

Para los análisis geoquímicos e isotópicos se seleccionaron, trituraron y pulverizaron las muestras hasta un tamaño de polvo fino (>4 phi). La concentración de elementos mayores y traza fue determinada por espectrometría de masas con plasma inductivamente acoplado (ICP- MS) y espectrometría de masas por fusión con plasma inductivamente acoplado (ICP-ES) en Activation Laboratories, Ancaster, Canadá. Se realizaron análisis isotópicos de Sr-Nd en el Laboratorio Universitario de Geoquímica Isotópica (LUGIS), Instituto de Geofísica, UNAM. Se empleó entre 100 y 200 mg de cada muestra. Posteriormente se realizó una digestión y disolución en ácidos (HF, HCIO₄ y HCI).

Figura 6.- Mapa topográfico con la ubicación de las muestras analizadas en este estudio. Elipse verde = G1, tendencia estructural NO-SE; elipse roja = G2, tendencia estructural NE-SO; elipse azul = G3, sin patrón estructural definido

La obtención del concentrado de Sr y Nd fue realizada mediante columnas de intercambio iónico usando columnas rellenas de resina DOWEX, polvo de Teflón y de cubiertas con hidro-di-etilhexil-fosfáto (HDEHP) respectivamente. La composición isotópica fue determinada en un espectrómetro de masas con fuente iónica térmica Thermo Scientific, TRITON PLUS. Nueve muestras fueron analizadas para conocer las relaciones isotópicas Sr- Nd. Se determinaron 60-70 relaciones isotópicas por muestra.

Los estudios isotópicos de ¹⁸O/¹⁶O de doce muestras de roca fueron realizados en el Center for Stable Isotope Mass Spectrometry, de la Jackson School of Geosciences, University of Texas at Austin, EUA. Las relaciones isotópicas fueron determinadas con base en el método de fluorización con BrF5 (Taylor y Epstein 1962) y un espectrómetro de gases Thermo MAT 253. El error analítico fue determinado comparando las relaciones isotópicas medidas en los estándares Laussanne (Cuarzo ¹⁸O/¹⁶O = 17.92 ± 0.042), UWG (Granate ¹⁸O/¹⁶O = 5.634 ± 0.19) y San Carlos (Olivino ¹⁸O/¹⁶O = 4.848 ± 0.08). La muestra del basamento no se analizó por este método isotópico debido a la sospecha de alteración (hidrotermal/superficial). Con la finalidad de comparar los parámetros de δ^{18} O en ST se realizaron análisis isotópicos en rocas y minerales (cuarzos) de los depósitos asociados con el magmatismo intermedio-félsico en la región de La Nieve.

Metodología experimental

Se realizaron 3 experimentos hidrotermales con la finalidad de observar los efectos de la asimilación cortical en las rocas de la ST. Los materiales experimentales fueron: asimilante (granodiorita) con ~64% SiO₂ con una paragénesis mineral de Pl>Kfs>Opx>Cpx (fig. 11 a, b) y composición química de An₄₁ – ₄₆, Or₆₂ – ₉₂, En₄₉ – ₅₃ y Wo₂₉ – ₄₅ respectivamente. La muestra que se dopó con asimilante es una andesita (CVTZ-1 ~60 wt. % SiO2) de la ST.

A pesar de la complejidad del basamento en el cual sobreyace la ST, se eligió una muestra de un intrusivo perteneciente al granito de Uruapan reportado por McBirney et al. (1987) colectado al sur de la ciudad de Uruapan en la localidad de Matanguarán (E-102.08°, N 19.34°). Se eligió esta muestra debido a que las regiones aledañas a la ST, donde aflora el basamento, se encuentran intensamente afectadas por una serie de cuerpos intrusivos de composición granítica-granodiorítica (Garduño-Monroy et al., 1999), con diversos periodos de actividad desde el inicio y formación del TCG (Ortega-Gutiérrez et al., 2008) hasta el final de la SMO (Ortega-Gutiérrez et al., 2014). La presencia de xenolitos de composición granítica en el volcán Jorullo, Paricutín y en la región de Arócutín ha puesto en discusión el carácter granítico-granodiorítico del basamento de una buena porción del CVMG considerando la compleja aleatoriedad del muestreo de la corteza que pudieran representar (Wilcox, 1954; Luhr y Carmichael, 1985; McBirney et al., 1987; Corona-Chávez et al., 2006).

La muestra que se eligió de la ST para la experimentación es de composición andesítica y no representa la muestra más máfica de la suite debido a que el CVMG

es abundante en andesitas con un amplio rango composicional (independientemente de su contexto de local de génesis). Es posible asumir que los magmas que originaron a la ST no forzosamente provienen de la evolución de rocas máficas (ej. basaltos), en su lugar, los magmas pudieron llegar a la corteza superior con composición andesítica para evolucionar a dacitas mediante asimilación, calentamiento o mezcla de magmas.

Con la finalidad de tener un control mineralógico en los experimentos, la muestra natural del material volcánico fue llevada al liquidus (980°C – 700 MPa) de modo experimental para borrar la presencia de cristales naturales. Este experimento generó un vidrio sin cristales, con ~60% SiO₂. (Tabla 3, ET-1). Cabe aclarar que casi todos los magmas tienen cierto grado de cristalización, excepto algunos magmas peralcalinos (Mahood et al., 1985), lo cual contrasta con el material que se utilizó como asimilante (con cristales de hasta 1 mm de tamaño), por lo tanto, el haber realizado los experimentos de esta manera nos facilita observar la interacción química entre dos productos, uno que no presenta grado de cristalización alguno y otro que está totalmente cristalizado.

La estrategia experimental realizada toma en cuenta que un magma en condiciones iniciales de liquidus (puro vidrio) se va a enfriar, en un determinado tiempo, al contacto con una roca fría (cuyo liquidus es menor al de la roca que está totalmente fundida, es decir, el vidrio). Los experimentos fueron diseñados para correr a temperaturas debajo del liquidus de la roca inicial, por lo tanto el resultado de esta interacción será puramente un proceso de cristalización. Esta cristalización está forzada a interactuar con la roca que se está forzando a fundirse (el asimilante).

Los procesos experimentales no se realizan para reproducir la naturaleza, se diseñan para intentar explicarnos una variable en concreto, en este caso, representan un cambio composicional a partir de otras variables que podemos controlar en el laboratorio (presión, temperatura y fugacidad de oxígeno). De tal forma, el resultado es independiente de la ruta que se tome. En general, los experimentos de asimilación han sido elaborados de esta manera por largo tiempo aunque existe diversas metodologías para realizarlos (Edderman et al., 2012).

Los experimentos hidrotermales se realizaron en dos diseños experimentales; en Piston Cylinder y en hornos tipo Renne Cold Seal. Las cargas experimentales fueron de entre 0.446 g (para el experimento inicial) y 0.035 g (para los experimentos de asimilación) de polvo fino (~2 Phi). De la muestra del basamento local se usó una masa de 0.005 g y de la muestra CVTZ-01, 0.030 g. Los experimentos del Piston Cylinder (experimentos iniciales) fueron saturados en Agua (~6 %H₂O), corrido en capsulas de Ag70Pd30 de (2 mm de diámetro) y llevado a temperatura y presión por encima del liquidus de la muestra, para generar un vidrio puro (sin evidencia de cristales, Et-1, Tabla 3). De los experimentos iniciales se obtuvo una alícuota de 0.035 g y se dopó en una cápsula de Ag70Pd30 con proporciones de intrusivo (0.05 g) (granodioríta) como proxy del basamento. Con esta cápsula se realizaron experimentos de cristalización (~23 horas) a temperaturas y presiones por debajo del liquidus de CVTZ-1 (H₂O_{melt} = 8 wt %, P = 180 MPa, T = 880° y 900°C). Los experimentos fueron analizados en la microsonda electrónica en búsqueda de fases peritécticas y composición de vidrios y minerales experimentales.

Resultados

Petrografía

De las muestras colectadas en campo fueron realizadas 13 láminas delgadas para análisis petrográficos, conteos de puntos y análisis mineral. A continuación se muestran los resultados petrográficos.

Basamento (Mtg)

La muestra seleccionada como proxy del basamento corresponde con una granodiorita (clasificación IUGS) compuesta de 49 % de plagioclasa, 27 % de feldespato potásico, 23% cuarzo (recalculado a partir de porcentaje modal de minerales en la muestra), con ortopiroxeno, clinopiroxeno y óxidos de Fe-Ti como minerales accesorios, tiene una textura inequigranular con cristales anhedrales de tamaños que en promedio superan las 200 µm. Los feldespatos presentan una moderada alteración a minerales arcillosos, también se observan maclas polisintéticas, exsoluciones en los planos de crucero, simplectitas de minerales ferromagnesianos y en ocasiones núcleos en parches (Fig. 7).

Figura 7. Características petrográficas del intrusivo que representa al basamento cristalino (Mtg). Fotomicrografía tomada con luz polarizada. La barra inferior derecha muestra la escala y representa 200 μm. An=composición molar de anortita, Kfs= composición molar de feldespato potásico, En= composición molar de Enstatita.

G1

Ese grupo se localiza en la porción central y sureste de ST (Fig. 4,6). Este grupo está formado por domos con una orientación NO-SE, dónde las estructuras principales son el domo Tzirate (CVTZ-1, CVTZ-2, CVTZ-3) y Cerro Azul (CVTZ-4).

Figura 8. Características petrográficas de las rocas volcánicas de G1. Fotomicrografía tomada con luz polarizada. La barra inferior derecha muestra la escala y representa 200 μm. An=composición molar de anortita, Kfs= composición molar de feldespato potásico, En= composición molar de Enstatita. Barra inferior derecha representa la escala (200 μm).
CVTZ-1

La muestra (Fig. 8) presenta una textura afanítica, compuesta de una matriz de vidrio (50% modal), hipocristalina, traquítica y deshidratada (sin texturas perlíticas). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (44.2% modal, 8% fenocristales >200 μ m, 2% microfenocristales 10 – 200 μ m y microlitos <10 μ m 90 %) y piroxeno (5.3% modal, Opx 75%, Cpx 25%). Por tamaños y texturas se identifican tres grupos de plagioclasas; fenocristales >200 mµ, microfenocristales 10 – 200 mµ y microlitos <10 mµ. Los fenocristales son anhedrales, con texturas de desequilibrio por ejemplo bordes redondeados o en bahías. Los microfenocristales presentan formas subhedrales y sin texturas de desequilibrio, los microlitos presentan formas euhedrales tabulares.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas anhedrales y subhedrales. En esta muestra se observan algunos glomeropórfidos de plagioclasa + oxídos de Fe – Ti.

CVTZ-2

Esta muestra presenta una textura afanítica, compuesta de una matriz de vidrio (63.5% modal), hipocristalina, pilotaxítica y deshidratada (sin texturas perlíticas) (Fig. 8). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (26.2% modal, 15% fenocristales, 25% microfenocristales y microlitos 60 %), piroxeno (8.4% modal, Opx 85%, Cpx 15%). Por tamaños y texturas se identifican tres grupos de plagioclasas; fenocristales, microfenocristales y microlitos. Los fenocristales son anhedrales, con texturas tamiz, bordes redondeados o en

bahías, núcleos en parches y simplectíticos, además de que se observan exsoluciones de feldespato en planos de crucero. Los microfenocristales presentan formas subhedrales y sin texturas de desequilibrio, los microlitos presentan formas euhedrales tabulares.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas anhedrales y subhedrales, algunos con bordes de reacción a plagioclasa + óxidos de Fe – Ti. En esta muestra se observan algunos glomeropórfidos de plagioclasa + óxidos de Fe – Ti.

CVTZ-3

La muestra presenta una textura afanítica, compuesta de una matriz de vidrio (59.1% modal, ver anexos), hipocristalina, pilotaxítica y deshidratada (sin texturas perlíticas) (Fig. 8). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (26.9% modal, 25% fenocristales y 75% microfenocristales) y piroxeno (14% modal, Opx 92%, Cpx 8%). Por tamaños se identifican dos grupos de plagioclasas y fenocristales. Los fenocristales son subhedrales y en ocasiones con núcleos en parches. Los microfenocristales presentan formas subhedrales y euhedrales, sin texturas de desequilibrio.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas euhedrales y subhedrales, algunos con bordes de reacción (10 – 50 μ m) a plagioclasa + óxidos de Fe – Ti. En esta muestra se observan algunos glomeropórfidos de plagioclasa + óxidos de Fe – Ti con núcleo de relictos de ortopiroxeno.

CVTZ-4

Esta muestra presenta una textura afanítica, compuesta de una matriz de vidrio (70% modal), hipocristalina, traquítica y deshidratada (sin texturas perlíticas) (Fig. 8). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (14.6% modal, 12% fenocristales, 8% microfenocristales y microlitos 80 %), piroxeno (12.9% modal, Opx 35%, Cpx 65%) y anfíbol (8.5% modal). Por tamaños y texturas se identifican tres grupos de plagioclasas; fenocristales, microfenocristales y microlitos. Los fenocristales son subhedrales – euhedrales. Los microfenocristales presentan formas subhedrales y euhedrales sin texturas de desequilibrio, los microlitos presentan formas euhedrales tabulares. Se observan algunos glomeropórfidos de microfenocristales de plagioclasa.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas anhedrales y subhedrales, con bordes de reacción a óxidos de Fe-Ti (1 – 5 μ m). La muestra contiene fenocristales y microfenocristales de anfíbol con bordes de reacción desarrollados.

CVTZ-5

Esta muestra presenta una textura afanítica, compuesta de una matriz de vidrio (56.7% modal), hipocristalina, traquítica y deshidratada (sin texturas perlíticas) (Fig. 8). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (14.6% modal, 8% fenocristales, 25% microfenocristales y microlitos 80%), piroxeno (12.9% modal, Opx 75%, Cpx 25%) y olivino (8.1% modal). Por tamaños y texturas se identifican tres grupos de plagioclasas; fenocristales, microfenocristales y

microlitos. Los fenocristales son anhedrales, con texturas tamiz, bordes redondeados y núcleos en parches. Los microfenocristales presentan formas subhedrales y en algunas ocasiones núcleos en parche. Los microlitos presentan formas euhedrales tabulares.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas anhedrales y subhedrales. Esta muestra presenta glomeropórfidos de fenocristales de ortopiroxeno y plagioclasa. Los olivinos y piroxenos presentan bordes iddingsíticos. Existen cristales de piroxeno que presentan composición química de wollastonita (Fig. 15).

CVTZ-6

Esta muestra presenta una textura afanítica, compuesta de una matriz de vidrio (71.6% modal), hipocristalina, pilotaxítica y deshidratada (sin texturas perlíticas) (Fig. 8). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (16.1% modal, 15% fenocristales y 85% microfenocristales), piroxeno (8.4% modal, Opx 75%, Cpx 25%) y anfíbol (4% modal). Por tamaños y texturas se identifican dos grupos de plagioclasas; fenocristales y microfenocristales. Los fenocristales son euhedrales, subhedrales y anhedrales; con texturas tamiz, zoneada, bordes redondeados o en bahías, núcleos en parches y simplectíticos. Los microfenocristales presentan formas subhedrales y sin texturas de desequilibrio, los microlitos presentan formas euhedrales tabulares.

La muestra contiene dos poblaciones de ortopiroxeno, clinopiroxeno y anfíbol. Fenocristales y microfenocristales; con formas anhedrales y subhedrales.

G2

Ese grupo se localiza en la porción central y norte de ST (Fig. 4,6). Este grupo está formado por domos con una orientación NE-SW, dónde las estructuras principales son el domo Cerro Cuates (CVTZ-7) y Cerro El Caracol (CVTZ-9).

CVTZ-7

Figura 9. Características petrográficas de las rocas volcánicas de G2. Fotomicrografía tomada con luz polarizada. CVTZ-7, muestra fragmento de plagioclasa con marcas de exolusión. CVTZ-8, muestra fenocristal de plagioclasa con textura tamiz y bordes reabsorbidos. CVTZ-9, muestra plagioclasa con núcleo en parche y textura tamiz. La barra inferior derecha muestra la escala y representa 200 µm. An=composición molar de anortita, Kfs= composición molar de feldespato potásico, En= composición molar de Enstatita.

CVTZ-7

La muestra presenta una textura afanítica, compuesta de una matriz de vidrio (71.3% modal, ver anexos), hipocristalina, pilotaxítica y deshidratada (sin texturas perlíticas) (Fig. 9). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (18.8% modal, 25% fenocristales y 75% microfenocristales) y piroxeno (10% modal, Opx 35%, Cpx 65%). Por tamaños se identifican dos grupos de plagioclasas; fenocristales y microfenocristales. Los fenocristales son subhedrales, en ocasiones con núcleos en parches, simplectíticos y con presencia de ex solución. Los microfenocristales presentan formas subhedrales y euhedrales, sin texturas de desequilibrio.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas euhedrales y subhedrales, los fenocristales tienen bordes de reacción (<10 µm) a óxidos, mientras que los microfenocristales no presentan texturas de desequilibrio. En esta muestra se observan algunos glomeropórfidos de plagioclasa + clinopiroxeno.

CVTZ-8

La muestra presenta una textura afanítica, compuesta de una matriz de vidrio (73.5% modal, ver anexos), hipocristalina, pilotaxítica y deshidratada (sin texturas perlíticas) (Fig. 9). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (18.8% modal, 45% fenocristales y 55% microfenocristales) y piroxeno (8.2% modal, Opx 85%, Cpx 15%). Por tamaños se identifican dos grupos de plagioclasas; fenocristales y microfenocristales. Los fenocristales son

anhedrales, en ocasiones con bordes reabsorbidos, en bahías, textura tamiz, núcleos en parches, simplectíticos y con presencia de exsolución. Los microfenocristales presentan formas subhedrales y euhedrales, sin texturas de desequilibrio.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas euhedrales y subhedrales, los fenocristales tienen bordes de reacción (<10 μ m) a óxidos, mientras que los microfenocristales ocasionalmente presentan textura tamiz. En esta muestra se observan algunos glomeropórfidos de plagioclasa + óxidos de Fe – Ti.

CVTZ-9

La muestra presenta una textura afanítica, compuesta de una matriz de vidrio (78.3% modal, ver anexos), hipocristalina, pilotaxítica y deshidratada (sin texturas perlíticas) (Fig. 9). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (14% modal, 45% fenocristales y 55% microfenocristales) y piroxeno (7% modal, Opx 85%, Cpx 15%). Por tamaños se identifican dos grupos de plagioclasas; fenocristales y microfenocristales. Los fenocristales son anhedrales, en ocasiones con textura tamiz, zoneamientos, núcleos en parches y con presencia de exsolución. Los microfenocristales presentan formas subhedrales y euhedrales, sin texturas de desequilibrio. La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas euhedrales y subhedrales, los fenocristales tienen bordes de reacción (<10 μ m) a óxidos. En esta muestra se observan algunos glomeropórfidos de plagioclasa + ortopiroxeno.

G3

Ese grupo se localiza al oeste de ST (Fig. 4,6). Este grupo está constituido por domos con una orientación NE-SW, dónde la estructura principal es el domo Cerro Tarícuaro (CVTZ – 10).

Figura 10. Características petrográficas de las rocas volcánicas de G3. Fotomicrografía tomada con luz polarizada. La barra inferior derecha muestra la escala y representa 200 µm. CVTZ-10, muestra fenocristal de plagioclasa con bordes redondeados y textura tamiz. CVTZ-11, muestra relicto de fenocristal de plagioclasa. CVTZ – 11, muestra cristales de ortopiroxeno en una matriz microlítica. An=composición molar de anortita, Kfs= composición molar de feldespato potásico, En= composición molar de Enstatita.

CVTZ-10

Esta muestra presenta una textura afanítica, compuesta de una matriz de vidrio (75.3% modal), hipocristalina, traquítica y deshidratada (sin texturas perlíticas) (Fig. 10). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (12.2% modal, 6% fenocristales, 4% microfenocristales y microlitos 90 %), piroxeno (7.5% modal, Opx 35%, Cpx 65%) y anfíbol (5.1% modal). Por tamaños y texturas se identifican tres grupos de plagioclasas; fenocristales, microfenocristales y microlitos. Los fenocristales son subhedrales – anhedrales, con textura tamiz, bordes redondeados, núcleos en parche y simplectíticos. Los microfenocristales presentan formas subhedrales y anhedrales con bordes redondeados y reabsorbidos, los microlitos presentan formas euhedrales tabulares. Se observan algunos glomeropórfidos de microfenocristales de plagioclasa.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas anhedrales y subhedrales, con bordes de reacción a óxidos de Fe-Ti $(1 - 5 \mu m)$ y núcleos simplectíticos. La muestra contiene fenocristales y microfenocristales de anfíbol con bordes de reacción desarrollados $(5 - 20 \mu m)$.

CVTZ-11

Esta muestra presenta una textura afanítica, compuesta de una matriz de vidrio (71.8% modal), hipocristalina, traquítica y deshidratada (sin texturas perlíticas) (Fig. 10). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (15.6% modal, 10% fenocristales, 15% microfenocristales y microlitos 75%),

piroxeno (7.5% modal) y olivino (5.4% modal). Por tamaños y texturas se identifican tres grupos de plagioclasas; fenocristales, microfenocristales y microlitos. Los fenocristales son subhedrales – anhedrales, con textura tamiz, bordes redondeados, núcleos en parche y simplectíticos. Los microfenocristales presentan formas subhedrales y anhedrales con bordes redondeados y reabsorbidos, los microlitos presentan formas euhedrales tabulares. Se observan algunos glomeropórfidos de microfenocristales de plagioclasa + ortopiroxeno.

La muestra contiene dos poblaciones de clinopiroxeno, fenocristales y microfenocristales; con formas anhedrales y subhedrales, con bordes redondeados. La muestra contiene microfenocristales de olivino.

CVTZ-12

Esta muestra presenta una textura afanítica, compuesta de una matriz de vidrio (51.2% modal), hipocristalina, traquítica y deshidratada (sin texturas perlíticas) (Fig. 10). La paragénesis mineral observada en las secciones delgadas es de plagioclasa (36.6% modal, 5% fenocristales, 35% microfenocristales y microlitos 60%), piroxeno (12.1% modal, Opx 75%, Cpx 25%). Por tamaños y texturas se identifican tres grupos de plagioclasas; fenocristales, microfenocristales y microlitos. Los fenocristales son subhedrales. Los microfenocristales presentan formas subhedrales y euhedrales sin evidencia de desequilibrio. Se observan algunos glomeropórfidos de microfenocristales de plagioclasa + ortopiroxeno.

La muestra contiene dos poblaciones de ortopiroxeno y clinopiroxeno, fenocristales y microfenocristales; con formas anhedrales y subhedrales, con bordes redondeados.

Geoquímica

Las muestras seleccionadas fueron preparadas para análisis químicos e isotópicos. A continuación, se muestran los resultados obtenidos.

Basamento (Mtg)

Químicamente esta roca presenta composición granodiorítica (LeBas et al., 1986, Fig. 11) de afinidad calcoalcalina (Irvine & Baragar, 1971). La concentración de elementos mayores en roca total es de 64.3 wt% SiO₂, 14.9 wt% Al₂O₃, 6.2 wt% Fe₂O₃, 0.11 wt% MnO, 2.3 MgO wt%, 4.8 wt% CaO, 3.2 wt% Na₂O, 3.2 wt% K₂O, 0.7 wt% TiO₂ y 0.1 wt% P₂O₅ (Fig.12, 13). La concentración de álcalis totales (Na₂O + K₂O) es de 6.4 wt%.

Figura 11. a) Diagrana de Alcalis totales (Na2O+K2O wt %) vs sílice (*SiO2 wt %) (LeBas et al. 1986) y b) diagrama AFM (Irvine & Baragar, 1971) de las rocas de ST analizadas.

El comportamiento de los REE (Sun & McDonough, 1989) con respecto a la condrita presenta un enriquecimiento en las LREE que decrece hacia las HREE, donde se observa una anomalía negativa para el Eu (Fig. 14). El patrón multielemental observado con respecto al manto primitivo (Sun & McDonough, 1989) corresponde con el de una roca calcoalcalina con anomalías negativas de Ba, Nb (Fig. 14).

Figura 12. Diagramas Harker de SiO₂ vs elementos mayores en la ST. La concentración está expresada en wt% (ver símbolos en figura 11).

G1

La concentración química de elementos mayores en roca total de este grupo (Tabla 1) es entre 55 - 63 wt% SiO₂, 16 - 17 wt% Al₂O₃, 5.1 - 8.6 wt% Fe₂O₃, 0.09 - 0.11 wt% MnO, 1.9 - 4 wt% MgO, 5.5 - 7 wt% CaO, 3.4 - 3.8 Na₂O wt%, 1.2 - 2.7 wt% K₂O, 0.5 - 1.4 TiO₂ wt% y 0.14 - 0.25 wt% P₂O₅ (Fig. 12). El contenido de álcalis totales (Na₂O + K₂O) es de 5 - 6.3 wt%. La concentración de elementos traza (Fig.13) no muestran patrones de enriquecimiento/empobrecimiento con excepción

del Ba. Este grupo de rocas varía entre basalto-andesitas y dacitas (Fig. 11) de afinidad calcoalcalina (Irvine & Baragar, 1971).

Figura 13. Diagramas Harker de SiO₂ vs elementos traza en la ST. La concentración de SiO₂ está expresada en wt% y la de elementos traza en ppm. (Ver símbolos en figura 11).

En relación a los diagramas multielementales (Sun & McDonough, 1989) se observa un ligero enriquecimiento en LREE y HREE con respecto a la condrita, mientras que el grupo de los LILE presenta un decremento con el incremento en radio iónico. Respecto al manto primitivo (Sun & McDonough, 1989) se observa un patrón asociado a rocas calcoalcalinas con anomalías negativas de Nb, Ba, P y Ti, mientras que para Rb, U, K y Pb se observan anomalías positivas (Fig.14).

Figura 14. Diagramas de distribución de elementos traza normalizados contra la condrita (a) y el manto primitivo (b) Sun & McDonough (1989) de ST y el basamento.

G2

La concentración química de elementos mayores en roca total de este grupo (Tabla 1) es entre 62 - 63.4 wt% SiO₂, 16.5 - 17.7 wt% Al₂O₃, 5.3 - 5.5 wt% Fe₂O₃, 0.083 - 0.87 wt% MnO, 2.2 - 2.5 wt% MgO, 5.2 - 5.4 wt% CaO, 3.3 - 3.8 Na₂O wt%, 1.9 - 2.6 wt% K₂O, 0.66 - 0.72 TiO₂ wt% y 0.17 - 0.2 wt% P₂O₅ (Fig. 12). El contenido de álcalis totales (Na₂O + K₂O) es de 5.8 - 6 wt% Este grupo químicamente pertenece a las dacitas de afinidad calcoalcalina (Irvine & Baragar, 1971). La distribución de REE en estas rocas está caracterizado por un enriquecimiento en LREE respecto de las HREE, la ausencia de anomalías de Eu y un comportamiento lineal sub-horizontal en los HREE. Además se observan anomalías positivas de Ba, U, K, Pb, Sr y Nd respecto al manto primitivo y negativas de Nb, Ba, P y Ti, lo que denota un afinidad calcoalcalina (Fig. 14).

G3

La concentración de elementos mayores en roca total de este grupo (Tabla 1) es entre 58 – 70 wt% SiO₂, 14.8 – 17.7 wt% Al₂O₃, 3.4 - 7.1 wt% Fe₂O₃, 0.068 - 0.1wt% MnO, 1.5 - 3.7 wt% MgO, 3 - 6.8 wt% CaO, 3.5 - 3.6 Na₂O wt%, 1.6 - 3.1wt% K₂O, 0.36 - 0.81 TiO₂ wt% y 0.09 - 0.23 wt% P₂O₅ (Fig.12). El contenido de

álcalis totales (Na₂O + K₂O) es de 5.1 - 6.7 wt% lo que clasifica a los derrames como andesíticos, mientras que los productos de los domos son dacitas y riolitas (Fig. 11) de afinidad calcoalcalina (Irvine & Baragar, 1971).

El comportamiento de las REE presenta un enriquecimiento en La, Ce, Pr y Nd, mientras que para Er, Tm, Yb y Lu el comportamiento casi lineal para todo el grupo (Fig. 14). Sin embargo, a pesar de existir un enriquecimiento en U, K, Pb, Sr y Nd estos valores se incrementan con respecto al aumento en sílice en las muestras, además de que los productos andesíticos presentan anomalías más marcadas de Ti y P, con un ligero decremento en las concentraciones de Eu, en comparación de los miembros más silícicos.

Tabla 1	. Concentración	i de elementos mayo	ores (wt %) y traz	a (ppm) de	los productos	volcánicos de ST.	Opx=piroxeno,	Cpx=clinopiroxeno,	PI=plagioclasa,	Amp=
anfibol,	OI=olivino.									

Muestra	CVTZ-1	CVTZ-2	CVTZ-3	CVTZ-4	CVTZ-5	CVTZ-6	CVTZ-7	CVTZ-8	CVTZ-9	CVTZ-10	CVTZ- 11	CVTZ-12	Mta
Tendenci		-		-			-					-	5
а	NO-SE	NO-SE	NO-SE	NO-SE	NO-SE	NO-SE	NE-SW	NE-SW	NE-SW	N.D.	N.D.	N.D.	N.D.
Longitud	-101.518	-101.512	-101.508	-101.487	-101.490	-101.477	-101.510	-101.489	-101.489	-101.490	101.488	-101.488	-102.076
Latitud	19.720	19.727	19.718	19.701	19.688	19.680	19.765	19.813	19.837	19.776	19.749	19.744	19.336
Paragé-	PI+Opx+	PI+Opx+	PI+Opx+	PI+Opx+Cpx+	PI+OI+Cp	PI+Opx+Cpx+	PI+Opx+	PI+Opx+	PI+Opx+	PI+Opx+Cpx+	PI+OI+	PI+Opx+	PI+Or+Opx+
nesis	Срх	Срх	Срх	Amp	x+Bt	Amp	Срх	Срх	Срх	Amp	Срх	Срх	Срх
SiO2	60.870	62.950	62.090	62.420	53.600	61.310	61.800	62.630	62.680	68.410	57.940	64.750	64.340
AI2O3	17.400	17.150	17.230	16.830	17.610	17.730	17.730	16.960	16.530	14.780	17.760	16.030	14.890
Fe2O(T)	5.940	5.340	5.640	5.150	8.590	5.710	5.550	5.330	5.460	3.380	7.180	4.580	6.250
MnO	0.092	0.087	0.093	0.087	0.111	0.090	0.087	0.083	0.084	0.068	0.109	0.069	0.113
MgO	3.430	2.060	2.500	1.980	4.030	2.200	2.520	2.250	2.300	1.150	3.750	1.800	2.330
CaO	5.940	5.080	5.650	4.770	6.930	5.560	5.280	5.420	5.310	3.080	6.880	4.350	4.770
Na2O	3.490	3.840	3.620	3.530	3.840	3.390	3.820	3.370	3.560	3.610	3.520	3.680	3.230
K2O	2.000	1.920	2.090	2.760	1.200	2.360	1.990	2.630	2.370	3.120	1.660	2.630	3.170
TiO2	0.634	0.540	0.558	0.591	1.410	0.656	0.724	0.685	0.667	0.365	0.814	0.553	0.698
P2O5	0.140	0.140	0.140	0.160	0.250	0.170	0.190	0.170	0.200	0.090	0.230	0.180	0.120
LOI	1.020	0.750	0.570	1.450	0.710	1.230	0.520	1.070	1.050	1.850	0.620	0.230	0.490
Total	100.900	99.860	100.200	99.720	98.290	100.400	100.200	100.600	100.200	99.910	100.500	98.850	100.400
#MgO	53.36	43.32	46.75	43.23	48.17	43.29	47.35	45.54	45.49	40.26	50.85	43.77	39.92
Sc	14	11	11	10	17	12	11	11	11	10	6	16	18
V	126	101	112	94	178	115	110	106	107	84	55	152	117
Ni	45	13	17	16	38	15	16	13	14	13	11	30	20
Cu	26	19	16	13	26	9	12	11	11	16	4	28	80
Zn	66	67	65	62	69	67	68	66	67	62	49	78	80
Ga	19	20	19	20	19	21	20	19	20	18	17	19	16
Ge	1.4	1.4	1.4	1.6	1.5	1.4	1.6	1.4	1.3	1.4	1.4	1.6	1.5
Rb	39	37	34	68	25	45	29	49	47	70	70	25	138
Sr	501	662	701	427	630	547	715	703	673	401	350	643	190
Y	12.6	13.9	11.7	14.9	24.7	13.7	13.9	13.6	12.9	10.4	17.8	14.5	28.8
Zr	116	98	93	162	107	117	136	120	125	154	101	126	278
Nb	4.1	4	3.8	12	6.2	4.8	5.9	5.3	5.6	5.6	5.6	5.1	6.4
Ва	640	560	538	830	438	666	716	668	693	878	679	497	547
La	19	20	17	27	23	20	25	25	22	26	21	17	22.4
Ce	33	30.7	29.3	41	33	35.2	42.9	39.6	40.1	43.9	37.5	34.3	47.6

Pr	4.12	4.35	3.8	5.48	6.04	4.47	5.87	5.56	5.1	5.36	4.36	4.44	5.81
Nd	15.6	16.7	14.1	20.7	25.6	17.7	21.9	21.1	19.4	19.6	14.8	18.2	22.6
Sm	2.91	3.08	2.94	3.93	5.37	3.4	4.12	3.89	3.7	3.51	2.64	3.78	4.96
Eu	0.9	0.96	0.83	0.94	1.77	0.92	1.14	1.04	1.04	0.9	0.62	1.1	0.912
Gd	2.68	2.46	2.22	3.18	4.88	2.7	3.34	3.03	2.83	2.93	2	3.08	4.98
Tb	0.4	0.38	0.35	0.46	0.76	0.42	0.45	0.44	0.43	0.45	0.3	0.45	0.79
Dy	2.35	2.11	2.05	2.52	4.33	2.38	2.52	2.44	2.41	2.52	1.74	2.65	4.9
Ho	0.5	0.4	0.4	0.5	0.8	0.5	0.5	0.5	0.5	0.5	0.4	0.5	0.99
Er	1.25	1.32	1.16	1.34	2.3	1.34	1.43	1.36	1.36	1.46	1.07	1.46	2.99
Tm	0.185	0.19	0.168	0.205	0.316	0.204	0.216	0.197	0.201	0.227	0.177	0.211	0.44
Yb	1.3	1.3	1.2	1.5	2	1.3	1.4	1.4	1.3	1.5	1.1	1.4	2.95
Lu	0.19	0.2	0.18	0.22	0.31	0.19	0.18	0.2	0.19	0.2	0.16	0.2	0.403
Hf	2.6	2.3	2.2	3.3	2.5	2.6	2.9	2.7	3	3.3	2.6	2.7	6
Та	0.36	0.41	0.38	0.45	0.51	0.78	0.61	0.53	0.53	0.57	0.71	0.4	0.6
TI	0.18	0.12	0.17	0.23	0.09	0.17	0.13	0.28	0.25	0.29	0.39	0.08	0.47
Pb	5	3	4	7	3	5	5	7	6	10	9	3	17
Th	2.49	2.86	2.65	4.53	1.56	3.45	3.82	3.45	3.66	4.4	5.57	1.99	10.1
U	0.8	1.1	0.9	1.4	0.6	1.1	1.2	1.2	1.3	1.5	2.1	0.6	3.13

Química mineral

A continuación, se presentan los análisis representativos de las diferentes fases mineralógicas de la ST y el intrusivo, obtenidos por medio de microsonda electrónica. Los resultados fueron normalizados para obtener la proporción en cationes y su fórmula mineral (ver anexo 1).

Figura 15. Diagramas ternarios composicionales de las diversas familias de orto (a) y clinopiroxenos (b) analizados. Diagramas de concentración de SiO₂ vs #MgO de ortopiroxenos (a) y clinopiroxenos (b) de ST.

Basamento (Mtg)

La composición química de las plagioclasas es de An_{26-46} y feldespatos de Kfs₆₅₋₉₂. Los ortopiroxenos (Fig. 15) tienen una composición de En_{50-52} , Fs₄₅₋₄₈ y #MgO = 51 - 53, mientras que los clinopiroxenos (Fig. 15) tienen #MgO = 39 - 64 y composición En_{28-37} , Fs₁₉₋₄₃ y Wo₃₉₋₆₄.

G1

La composición de los feldespatos sódico-cálcicos en este grupo va de An_{12 – 96}. Composicionalmente los ortopiroxenos son enstatíticos (Fig. 15) (#MgO = 59-78, En₅₈₋₇₆). Los clinopiroxenos son clinoenstatita, pigeonita, augita y bajos en calcio (#MgO = 53 – 82, Wo_{6 – 42}, Fs_{23 – 45}, En_{40 – 63}) (Fig. 15). Los fenocristales y microfenocristales de anfíbol exhiben una composición pargasítica-tschermacktítica (Leake, 1997) #MgO = 45 – 72, Si formula = 6.1 - 7.3, Al_{iv} = 1.286 - 1.817. Los anfíboles de formas euedrales-subedrales, sin evidencia de desequilibrio presentan una temperatura de equilibrio termoquímico de 950 ± 30 °C (Ridolfi et al., 2010).

G2

Las plagioclasas presentes en este grupo tienen composiciones que varían de An₃₉ - $_{60}$. Composicionalmente los ortopiroxenos son enstatiticos (En $_{63-72}$) con #MgO = 66 - 74 (fig. 7a) y los clinopiroxenos son augitas, pigeonitas, clinoenstatitas y piroxenos bajos en calcio (En₄₂₋₅₂) con #MgO = 60 - 82 (Fig. 15).

G3

La composición de los feldespatos en este grupo de rocas es de An₃₉ – ₆₂, ortopiroxenos de composición enstatítica (En₆₄ – ₇₈) y #MgO = 58 – 75, clinopiroxenos de composición augítica y bajos en calcio (En₄₅ – ₅₆) y #MgO = 60 – 80, micas con #MgO = 44 – 68, K/Al₂O₃ = 0.20 – 0.39.

Isótopos de Sr, Nd y O

Se analizaron 5 muestras de G1, 3 de G2, 3 de G3 y 10 muestras del Complejo Volcánico La Nieve para Isótopos de oxígeno (Fig.16). Debido a un ligero grado de alteración superficial, que puede modificar de forma drástica la relación isotópica, la muestra del basamento no pudo ser analizada por este método. Para los isótopos de Sr-Nd se eligió a CVTZ-5 debido a que representa al miembro más máfico de la suite, CVTZ-1 que es la miembro de la cual se realizaron los experimentos, CVTZ-2 que representa al miembro de la estructura principal del Tzirate y al proxy del basamento (Mtg-1), además de las muestras CVTZ-4, CVTZ-9, CVTZ-10, CVTZ-11 (Tabla 2).

Los valores isotópicos son para G1: 87 Sr/ 86 Sr = 0.70370 – 0.70405, ϵ Nd = 2.34 – 4.27 ± 0.33 1 σ , δ^{18} O = 7.23 – 8.81 ± 0.2. G2 tiene δ^{18} O = 8.24 – 8.60 ± 0.2. G3 tiene 87 Sr/ 86 Sr = 0.70431, ϵ Nd = 1.82, δ^{18} O = 8.24 – 8.60. Mientras que Mtg presenta valores de 87 Sr/ 86 Sr = 0.70523, ϵ Nd = 2.18. En general podemos observar que G1 presenta miembros con un contenido similar de SiO₂ con valores de δ^{18} O diferentes, mientras que G3 muestra un incremento posiblemente lineal entre el contenido en sílice y δ^{18} O, y G2 presenta valores relativos similares para todos sus miembros.

Tabla 2. Relaciones isotópicas de Sr-Nd- δO^{18} de las muestras selecionadas. Los análisis isotópicos de Sr y Nd se realizaron con un espectrómetro de masas con fuente iónica térmica marca THERMO SCIENTIFIC MODELO TRITON PLUS en el Laboratorio Universitario de Geoquímica Isotópica (LUGIS), Instituto de Geofísica, UNAM. El TRITON cuenta con 9 colectores Faraday. Todas las mediciones se hicieron de manera estática. Las muestras de Sr y Nd se cargaron como cloruros y se midieron como iones metálicos. En cada corrida se analizaron 60 relaciones isotópicas para Sr y 70 para Nd. El software integrado arroja outliers dependiendo de la estabilidad de la señal. Los valores (1sd = ±1s abs) se refieren a los errores durante la medición, en los últimos dos dígitos. Todas las relaciones isotópicas de Sr y Nd se corrigieron por fraccionamiento de masas vía normalización a 86Sr/88Sr = 0.1194 y 146Nd/144Nd = 0.7219, respectivamente. Valores del LUGIS para el estándar NBS 987 (Sr): 87Sr/86Sr = 0.710252 ± 13 (±1sabs, n = 74); para el estándar La Jolla (Nd): 143Nd/144Nd = 0.511847 ± 3 (±1sabs, n = 21). Los blancos analíticos obtenidos en el tiempo de los análisis de las muestras de este trabajo resultaron: 0.20 ng Sr y 1.18 ng Nd (blancos de procedimiento total). Más detalles analíticos del procesamiento de muestras en el LUGIS están reportados en http://www.geofisica.unam.mx/laboratorios/universitarios/lugis/index.html

Sample	Grupo	Litología	δO ¹⁸	⁸⁷ Sr/ ⁸⁶ Sr	1 sd*	143Nd/144Nd	1 sd*	εNd	1σ
CVTZ-1	G1	Andesita	N.D.	0.703702	32	0.512787	14	2.91	0.27
CVTZ-2	G1	Andesita	7.23	0.704055	33	0.512758	17	2.34	0.33
CVTZ-4	G1	Andesita	8.81	0.704388	31	0.512708	20	1.37	0.39
CVTZ-5	G1	Basalto-Andesita	7.39	0.703928	31	0.512857	12	4.27	0.23
CVTZ-9	G2	Andesita	8.60	0.703778	24	0.512777	19	2.71	0.37
CVTZ-10	G2	Riolita	9.43	0.704306	33	0.512731	16	1.82	0.31
CVTZ-11	G3	Andesita	7.15	0.704055	33	0.512766	16	2.50	0.31
Mtg-1	N.D.	Granodiorita	N.D.	0.705298	30	0.512750	14	2.18	0.270
CVN-3	N.D.	Andesita	7.55	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-1	N.D.	Andesita	7.5	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-6	N.D.	Andesita	8.01	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-7	N.D.	Andesita	8.07	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-8	N.D.	Andesita	7.5	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-9a	N.D.	Andesita	7.6	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-9b	N.D.	Andesita	7.3	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-13	N.D.	Andesita	7.7	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-1-qz	N.D.	Cuarzo	10.43	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
CVN-11a-qz	N.D.	Cuarzo	10.37	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

sd=

desviación

estándar

*en los últimos dos

dígitos

.

Figura 16. a) Diagrama de SiO₂ vs δ^{18} O, b) diagrama de #MgO vs δ^{18} O, c) diagrama de SiO₂ vs δ^{18} O, d) 87 Sr/ 86 Sr vs 143 Nd/ 144 Nd, campos composicionales de MORB= Mid ocean ridge basalts, AOC= Altered oceanic crust, sedimentos y FVTM tomados de (Gómez-Tuena et al., 2016).

Resultados experimentales

Los resultados obtenidos en los ETA-1 y ETA-2 presentan a continuación. Como se mencionó anteriormente se realizaron a partir del experimento inicial ET-1(Tabla 3). Los experimentos muestran que la asimilación fue efectiva a las condiciones experimentales de 180 MPa y 880°C (ETA-01) (Fig. 17) debido a que no subsistieron fragmentos sanos de Mtg, mientras que en las condiciones experimentales de ETA-02 (Fig. 18) aún existen relictos de granodiorita (Mtg) con pequeñas porciones inalteradas. La composición de ETA – 1 es 62.2 – 65.97 wt% SiO₂, mientras que la composición de ETA – 2 es de 59.39 – 65.54 wt% SiO₂ (Tabla 3) (Fig. 17,18). En ambos experimentos, se aprecia la presencia de cristales esqueletales, euedrales y subedrales de piroxeno (En₇₆ –₈₁), plagioclasa (An₅₆ – 71) y óxidos de hierro-titanio, coexistiendo con relictos de Mtg que se presentan con canales de

disolución, bordes absorbidos y redondeados, así como textura esponjosa.

Tabla 3 Composición química de vidrio y minerales obtenidos de los productos experimentales. La composición se muestra en wt % de cada elemento. %An y %En muestra la fracción molar en porcentaje de anortita (An) y enstatita (En) de los minerales analizados. Zonas A, B y C mostradas en figura 17 y 18.

Zona	Muestra	Тіро	TiO2	K2O	FeO	CaO	Na2O	SiO2	Al2O3	MgO	MnO	%An/%En
N.D	ET-1	Vidrio	0.42	1.38	2.57	8.02	4.31	59.51	21.89	0.59	0.05	N.D
А	ETA-01-v	Vidrio	0.43	3.31	3.11	3.25	3.34	69.46	16.36	0.69	0.05	N.D.
А	ETA-01-v	Vidrio	0.39	3.21	3.06	3.40	3.52	69.21	16.42	0.79	0.00	N.D.
А	ETA-01-v	Vidrio	0.38	3.39	2.90	3.35	3.74	69.47	16.05	0.70	0.01	N.D.
В	ETA-01-v	Vidrio	0.39	3.39	2.85	3.38	3.04	69.95	16.29	0.61	0.10	N.D.
В	ETA-01-v	Vidrio	0.51	3.65	3.29	2.69	3.70	68.29	16.93	0.91	0.04	N.D.
В	ETA-01-v	Vidrio	0.41	3.13	3.16	3.26	3.28	69.50	16.55	0.61	0.11	N.D.
В	ETA-01-v	Vidrio	0.43	3.54	1.66	2.79	3.52	70.42	17.25	0.37	0.02	N.D.
С	ETA-01-v	Vidrio	0.36	3.58	2.32	2.87	3.50	69.56	17.04	0.67	0.11	N.D.
С	ETA-01-v	Vidrio	0.45	3.50	2.33	2.91	3.15	69.45	17.31	0.83	0.07	N.D.
С	ETA-01-v	Vidrio	0.36	3.46	2.69	2.78	3.21	69.53	17.26	0.68	0.04	N.D.
С	ETA-01-v	Vidrio	0.39	3.42	2.78	2.94	3.21	69.60	16.81	0.79	0.07	N.D.
С	ETA-01-v	Vidrio	0.44	3.39	2.49	2.96	3.78	69.42	16.80	0.71	0.00	N.D.
С	ETA-01-v	Vidrio	0.38	3.48	2.91	3.14	3.36	69.15	16.78	0.81	0.00	N.D.
А	ETA-02-v	Vidrio	0.13	4.78	2.27	1.88	3.50	72.11	14.74	0.54	0.05	N.D.

Zona	Muestra	Тіро	TiO2	K2O	FeO	CaO	Na2O	SiO2	Al2O3	MgO	MnO	%An/%En
А	ETA-02-v	Vidrio	0.16	4.79	2.33	2.33	3.69	70.04	15.98	0.59	0.07	N.D.
А	ETA-02-v	Vidrio	0.37	4.73	2.68	2.80	3.66	67.73	17.20	0.74	0.10	N.D.
В	ETA-02-v	Vidrio	0.06	4.18	2.35	2.66	3.85	70.11	16.10	0.62	0.07	N.D.
В	ETA-02-v	Vidrio	0.33	3.87	3.12	3.22	3.37	68.56	16.64	0.82	0.08	N.D.
В	ETA-02-v	Vidrio	0.48	3.24	3.49	3.81	3.83	67.14	17.04	0.88	0.08	N.D.
С	ETA-02-V	Vidrio	0.44	3.61	3.33	3.75	3.77	66.87	17.28	0.83	0.10	N.D.
С	ETA-02-V	Vidrio	0.48	3.30	3.14	3.68	3.77	67.61	17.19	0.75	0.07	N.D.
С	ETA-02-V	Vidrio	0.53	2.82	3.22	3.68	0.72	70.49	17.73	0.78	0.03	N.D.
С	ETA-02-V	Vidrio	0.42	3.60	2.75	3.91	4.48	66.30	17.89	0.57	0.08	N.D.
С	ETA-02-V	Vidrio	0.46	2.65	1.83	5.97	4.39	63.73	20.64	0.31	0.02	N.D.
А	ETA-01-p -1	Plagioclasa	0.02	0.18	0.70	14.30	3.45	50.64	30.57	0.14	0.00	69
А	ETA-01-p -2	Plagioclasa	0.04	0.18	0.73	14.08	3.83	50.87	30.19	0.08	0.00	66
А	ETA-01-p -3	Plagioclasa	0.05	0.21	0.64	13.62	4.11	51.20	30.02	0.14	0.02	64
А	ETA-01-p -4	Plagioclasa	0.04	0.18	0.68	14.66	3.24	50.74	30.33	0.13	0.00	71
В	ETA-01-p -5	Plagioclasa	0.04	0.20	0.73	13.89	3.74	50.94	30.34	0.09	0.04	66
В	ETA-01-p -6	Plagioclasa	0.04	0.19	0.70	13.89	3.92	51.21	29.98	0.07	0.00	65
В	ETA-01-p -7	Plagioclasa	0.02	0.18	0.85	13.56	3.87	51.52	29.93	0.08	0.00	65
В	ETA-01-p -8	Plagioclasa	0.04	0.14	0.51	14.59	3.58	49.94	31.01	0.13	0.05	69
С	ETA-01-p -9	Plagioclasa	0.04	0.14	0.56	13.83	3.12	51.11	31.10	0.09	0.00	70
С	ETA-01-p -10	Plagioclasa	0.04	0.25	0.60	12.69	3.79	52.68	29.77	0.15	0.03	64
С	ETA-01-p -11	Plagioclasa	0.07	0.32	0.98	11.46	4.20	54.53	28.24	0.13	0.08	59
С	ETA-01-p -12	Plagioclasa	0.05	1.19	1.02	9.43	3.90	58.18	26.00	0.23	0.00	53
С	ETA-01-p -13	Plagioclasa	0.05	0.24	0.24	10.47	4.92	55.75	28.32	0.02	0.00	53
С	ETA-01-p -14	Plagioclasa	0.00	0.44	0.76	10.45	4.32	56.39	27.55	0.07	0.02	56
А	ETA-02-p - 7	Plagioclasa	0.06	0.35	0.32	7.15	7.12	59.40	25.60	0.00	0.00	35
А	ETA-02-p - 6	Plagioclasa	0.01	0.18	0.29	8.97	6.61	57.17	26.71	0.03	0.03	42
В	ETA-02-p - 5	Plagioclasa	0.02	0.21	0.66	13.61	3.55	51.68	30.17	0.10	0.00	67
В	ETA-02-p - 4	Plagioclasa	0.05	0.14	0.58	14.34	3.42	50.37	31.01	0.08	0.01	69
С	ETA-02-p - 3	Plagioclasa	0.20	1.11	1.35	10.35	3.83	57.23	25.52	0.41	0.00	56
С	ETA-02-p - 2	Plagioclasa	0.04	0.25	0.83	12.46	4.26	53.19	28.85	0.11	0.00	61
С	ETA-02-p - 1	Plagioclasa	0.00	0.24	0.31	11.29	4.95	54.60	28.56	0.00	0.04	55
А	ETA-01-px	Piroxeno	0.25	0.01	13.36	1.93	0.08	54.45	1.20	28.32	0.39	76
А	ETA-01-px	Piroxeno	0.24	0.00	12.69	2.03	0.04	54.19	2.07	28.42	0.32	77
В	ETA-01-px	Piroxeno	0.19	0.00	12.06	1.65	0.02	53.95	2.88	28.99	0.26	78
В	ETA-01-px	Piroxeno	0.19	0.04	11.63	1.98	0.00	54.78	2.12	28.98	0.28	78
С	ETA-01-px	Piroxeno	0.13	0.02	11.00	1.48	0.00	55.44	0.99	30.78	0.18	81
С	ETA-01-px	Piroxeno	0.39	0.05	11.65	2.09	0.22	53.71	4.19	27.32	0.38	77
С	ETA-01-px	Piroxeno	0.23	0.01	11.52	2.04	0.09	53.84	3.06	28.97	0.24	79
С	ETA-01-px	Piroxeno	0.23	0.03	11.86	2.10	0.00	53.61	3.02	28.83	0.32	78
А	ETA-02-Px	Piroxeno	0.16	0.01	10.54	1.92	0.00	54.64	3.16	29.82	0.26	80
А	ETA-02-Px	Piroxeno	0.27	0.04	11.46	1.92	0.04	53.66	3.40	28.43	0.27	78

Zona	Muestra	Тіро	TiO2	К2О	FeO	CaO	Na2O	SiO2	Al2O3	MgO	MnO	%An/%En
В	ETA-02-Px	Piroxeno	0.20	0.00	11.83	1.88	0.00	53.92	2.90	29.14	0.25	78
В	ETA-02-Px	Piroxeno	0.14	0.00	11.11	1.52	0.00	55.27	1.49	30.12	0.35	80
С	ETA-02-px	Piroxeno	0.04	0.00	9.63	25.19	0.22	51.99	0.15	12.63	0.15	35

Figura 17. Fotomicrografía SEM donde se muestra detalle de las texturas producidas en los experimentos hidrotermales. ETA-01 muestra la distribución relativa de los fragmentos experimentales a 880°C. La zonificación (A, B, C) representan la distancia desde la base del experimento dónde el asimilante se colocó. La Zona C presenta relictos de tamaños milimétricos de asimilante coexistiendo con cristales peritécticos (CP) de PI+Px, los fragmentos de asimilante se reducen en tamaño (b) hacia Zona B y A mostrando un incremento en CP de PI+Px como lo observado en a). Los diagramas muestran la composición química de SiO₂ vs Na₂O+K₂O para el vidrio en las diferentes zonas del experimento; #MgO vs SiO₂ muestra la composición de los CP y de relictos de Px en las diferentes porciones del experimento; SiO₂ vs %An muestra la composición de las plagioclasas medidas en el experimento en sus diferentes partes.

Figura 18, Fotomicrografía SEM donde se muestra detalle de las texturas producidas en los experimentos hidrotermales a 900°C. ETA-02 muestra la distribución relativa de los fragmentos experimentales. La Zona C presenta relictos fragmentos de asimilante mostrando marcas de disolución (a) sin presencia de CP, los fragmentos de asimilante se reducen en tamaño hacia Zona B y A mostrando un incremento en CP de PI+Px (b). Los diagramas muestran la composición química de SiO₂ vs Na₂O+K₂O para el vidrio en las diferentes zonas del experimento; #MgO vs SiO2 muestra la composición de los CP y de relictos de Px en las diferentes porciones del experimento; SiO2 vs %An muestra la composición de las plagioclasas medidas en el experimento en sus diferentes partes.

Discusión

La ST está formada por rocas de composición andesítica, dacítica y riolítica (Fig.11) que son el producto de diferentes episodios magmáticos (Pérez-Orozco, 2017). Los diagramas de elementos mayores, traza y multielementales (Fig. 12, 13, 14) sugieren que el origen del magmatismo que generó esta suite de rocas presenta una afinidad calcoalcalina (Fig.11), la cual se relaciona con la subducción que caracteriza la FVTM (Gómez-Tuena et al., 2016). Sin embargo, asumir que la variabilidad geoquímica que caracteriza a las rocas de la ST es sólo el producto de los diferentes grados de fusión parcial y de las heterogeneidades del manto, no resuelve las evidencias texturales, geoquímicas e isotópicas observadas en las rocas que sugieren procesos de asimilación y mezcla de magmas que se presentan y discuten a continuación. Estos procesos de mezcla y asimilación añaden masa a la última etapa de almacenamiento del magma (Eichelberger, 1975; Sparks et al., 1977; DePaolo 1981; Nakamura 1995; Schaaf et al., 2005; Reubi & Blundy, 2008; Sosa-Ceballos et al., 2012) y por lo tanto enmascaran las firmas geoquímicas prístinas. A continuación, se discuten los procesos magmáticos registrados en las rocas de la ST.

Cristalización fraccionada

La cristalización fraccionada es el proceso en el que la composición de un magma es modificada a través de la precipitación de fases minerales (Bowen, 1937) y ha sido investigada a través de patrones composicionales químicos coherentes en

variogramas (ej. Cox, 2013). La influencia de la cristalización fraccionada en líquidos basálticos es un proceso de diferenciación que puede presentarse en niveles corticales profundos. Sin embargo, las características geoquímicas adquiridas durante el fraccionamiento pueden estar sobreimpuestas por múltiples eventos posteriores. Por ejemplo, durante el ascenso, descompresión y almacenamiento somero de los magmas, las características geoquímicas o texturales generadas en los procesos de cristalización fraccionada pueden ser eliminadas. Esta sobreimpresión de eventos limita totalmente la posibilidad de explicar la evolución de las rocas solamente mediante fraccionamiento de cristales, debido a que texturalmente, las rocas cuya evolución se puede explicar mediante este proceso tienden a ser afíricas, debido a que los magmas que las generan son el residuo de la cristalización de fases o producto de una "liquid line of descent" (Bowen, 1937; Cox, 2013) y deben contar con una edad relativa determinada mediante estudios estratigráficos o isotópicos que registren dicha evolución. Es decir, la cristalización fraccionada implica una evolución química producto de la cristalización y sedimentación magmática de minerales, lo cual genera un enriquecimiento en sílice y álcalis en un periodo determinado de tiempo.

Las evidencias estratigráficas (Fig.3), químicas y texturales sugieren que las rocas de la ST no adquirieron su composición final por procesos de cristalización fraccionada. Temporalmente, las rocas más evolucionadas no son las rocas más jóvenes (Pérez-Orozco, 2015), es decir, no existe una relación directa entre la evolución química de magmas parentales máficos y la distribución temporal del

vulcanismo. También podemos observar que las rocas, independientemente de su composición, presentan diversos grupos de minerales.

Figura 19. Diagrama de anomalía de Nb*-Ta* (después de Niu et al., 1999). Nb*= [Nb/Th] muestra / [Nb/Th] manto primitivo Ta*= [Ta/U] Muestra / [Ta/U] manto primitivo

Los minerales observados en G1, G2 y G3 muestran composiciones, tamaños y texturas diversas entre sí, esto difiere con la idea de que sean productos afíricos asociados a magmas residuales (Cox, 2013). Pero, son pocos los eventos volcánicos a nivel mundial que muestren una génesis por cristalización fraccionada con una total ausencia de minerales.

La presencia de minerales en magmas generados a partir de cristalización fraccionada puede explicarse de diversas formas, sin embargo, existe una relación entre el magma que las genera y la composición química final de estas fases. Es decir, debería ser posible de observar en estas rocas un decremento progresivo en el contenido de anortita del núcleo al borde de las plagioclasas (lo que explicaría un

cambio progresivo en sus condiciones termodinámicas asociado a este proceso) u observar composiciones químicas similares en los bordes de todas las poblaciones minerales observadas. Esto último comprobaría las condiciones aue termodinámicas finales de todas las fases cristalinas son similares, no obstante, no ocurre (Figs. 8-10). Adicionalmente, los valores de Ta* y Nb* presentan alta variabilidad (Fig. 19). Esta distribución sugiere que los productos de la Sierra del Tzirate pudieran no compartir el mismo origen, ya que, de hacerlo, los valores en las muestras estarían restringidos a un mismo campo, dónde las muestras que comparten el mismo origen conservan las mismas relaciones elementales originales (Niu & Batiza, 1997; Niu & O'Hara, 2009; Shao et al., 2015). En consecuencia, la variabilidad química observada pudiera argumentar que la influencia de la cristalización fraccionada en estas muestras es restringida. No obstante, procesos magmáticos como mezcla de magmas o asimilación de productos corticales también pueden explicar este comportamiento observado.

La ausencia de anomalías marcadas de Eu, Ti y P en los diagramas multielementales (Fig. 14), sugieren la ausencia de fraccionamiento de plagioclasa, óxidos de hierro-titanio, anfíbol y apatito (Green & Watson, 1982; Briqueu et al., 1984; McCuaig et al., 1994; Thirlwall et al., 1994). También es difícil notar un patrón de enriquecimiento en REE en las muestras más evolucionadas respecto de las rocas más máficas (Fig.14), lo que podría indicar que las variaciones composicionales en estos elementos no fueran consecuencia de la cristalización de fases minerales (Fig. 20).

Figura 20. Diagrama de SiO2 vs Yb y La. La concentración de SiO2 se expresa en wt. % y La-Yb en ppm. (Ver simbología en Fig. 11).

A pesar de que nuestro muestro no abarcar todos los eventos magmáticos de ST, se puede observar que los diagramas Harker presentan patrones con enriquecimiento en K₂O y empobrecimiento en CaO, Al₂O3, TiO₂, P₂O₃, MgO y Fe₂O₃ en función del SiO₂ (Fig.13). Sin embargo, este comportamiento, no tiene relación directa con los procesos de cristalización fraccionada, debido a que estos cambios químicos no presentan un patrón temporal de acuerdo a la evolución magmática y los patrones son lineales; lo cual indica mezclas binarias en lugar de procesos de cristalización. El fraccionamiento de una fase generaría patrones curvos con cambios de pendiente muy marcados en sus componentes mayores (Cox, 2013), por ejemplo, en Al₂O₃ en la plagioclasa, TiO₂ en ilmenita o P₂O₅ en apatito, no obstante, estos patrones no se observan (Fig. 12).

Los rasgos texturales observados en la mayoría de las rocas también sugieren que la cristalización fraccionada tiene una influencia muy limitada en la composición final de las rocas y que la mezcla y asimilación son los procesos dominantes. La pág. 68 presencia de diversas poblaciones de microfenocristales y fenocristales con texturas zoneadas, en parches, tamiz en los núcleos y con bordes de reacción indica desequilibrio termodinámico por adición de masa o variaciones de variables intrínsecas (temperatura, presión y fugacidad de oxígeno). Dichas variaciones son opuestas a las condiciones de equilibrio, generalmente isobáricas y de enfriamiento espontáneo, que requiere la cristalización fraccionada (Bowen, 1937; Cox, 2013).

Mezcla de magmas

La mezcla binaria de dos magmas con orígenes diferentes, los cuales pueden tener composiciones contrastantes o no, producen un híbrido que hereda características propias de los magmas parentales (Eichelberger, 1975; Sparks et al., 1977; Tsuchiyama & Takahashi, 1983; Tsuchiyama, 1985; Singer et al., 1995; Murphy et al., 1998; Izbekov et al., 2002; Landi et al., 2004; Browne et al., 2006). El contraste de temperatura, densidad, composición y contenido volátil de los magmas en una mezcla genera episodios de desequilibrio en función de la frecuencia y el intercambio de temperatura con la que la mezcla ocurre (Eichelberger, 1975; Sparks et al., 1977; Browne, et al., 2006;). Es importante considerar que, como todo sistema natural, el proceso de mezcla tiende al equilibrio termodinámico, sin embargo, el registro de la mezcla puede quedar grabado en las texturas y en la composición de los minerales (Singer et al., 1995; Murphy et al., 1998; Izbekov et al., 2002; Landi et al., 2004).

Las texturas y composiciones de plagioclasas, piroxenos y anfíboles pueden registrar cambios en las condiciones de presión y/o temperatura del sistema magmático en el que se desarrollan (Streck, 2008). Estos cambios pueden ocurrir debido a cristalización fraccionada; o debido a factores externos como la mezcla de magmas (Eichelberger, 1975; Sparks et al., 1977; Tsuchiyama & Takahashi, 1983; Tsuchiyama, 1985; Singer et al., 1995; Murphy et al., 1998; Izbekov et al., 2002; Landi et al., 2004; Browne et al., 2006), asimilación cortical (Taylor, 1980; DePaolo, 1981) o recalentamiento del sistema magmático (Murphy et al., 2000; Couch, et al., 2001; Blundy et al., 2006; Sosa-Ceballos et al., 2014). Las diversas poblaciones de minerales de la ST muestran que estos cambios han ocurrido en sus magmas (ej. fenocristales con núcleos en parche; bordes redondeados, de reacción, en bahías o reabsorbidos).

Otra evidencia que sugiere mezcla de magmas en las rocas de la ST es la presencia de diferentes grupos composicionales y texturales de plagioclasas y clinopiroxenos. La mayoría de las rocas que tienen clinopiroxenos, estos son de tipo clinoenstatita; con bordes composicionales que varían de $En_{56} - _{79}$ para G1, $En_{43} - _{78}$ para G2 y $En_{59} - _{78}$ para G3 (Fig. 15, anexo 1). En la mayoría de las muestras de los grupos (G1, G2 y G3) presentan, además, pigeonita o augita, con bordes composicionales que varían de $En_{10} - _{71}$ y $Wo_{08} - _{67}$ para G1, de $En_{42} - _{64}$ y $Wo_{07} - _{44}$ para G2 y de $En_{43} - _{56}$ y $Wo_{19} - _{43}$ para G3. Esta variabilidad puede ser explicada como el resultado de la mezcla de poblaciones minerales que crecieron en diferentes condiciones termodinámicas y que coexisten en un mismo depósito producto de la mezcla entre los magmas (Streck, 2008) o la aparición de nuevas fases minerales

como resultado de las nuevas condiciones fisicoquímicas (Izbekov et al., 2002; Streck, 2008). Aunque esta última opción genera sólo microfenocristales peritécticos homogéneos, nunca fenocristales zoneados.

Los grupos de plagioclasas analizadas, presentan bordes de diferente composición química. Por ejemplo, en la muestra CVTZ – 6 de G1, la composición de los bordes de las plagioclasas es de $An_{12} - 96$, para minerales de CVTZ – 7 perteneciente a G2 es de $An_{35} - 63$ y CVTZ – 12 del grupo G3 con bordes con composiciones que van de $An_{38} - 94$. Además, texturalmente todas las muestras presentan fenocristales con bordes de reacción en las fases finales de cristalización (Fig. 8, 9, 10); lo cual indica que su origen no es el mismo, ya que la composición molar de anortita es un reflejo de la temperatura, la presión y el contenido de agua en la que el mineral está en equilibrio con el magma (Singer et al., 1995; Lange et at., 2009), mientras que los bordes de reacción sugieren desequilibrio en etapas finales de crecimiento.

Las muestras de G1, G2 y G3 presentan además fenocristales de feldespatos (Na-Ca) con múltiples etapas de crecimiento. Esta evidencia implica que estos cristales tuvieron diversos periodos de equilibrio - desequilibrio (Hibbard, 1981; Murphy et al., 2000; Izbekov et al., 2002; Browne et al., 2006; Streck, 2008). En etapas intermedias o finales de crecimiento de los feldespatos también hay evidencia de desequilibrio, evidenciado por textura tamiz (Fig. 7, 8,9). Los minerales que las contienen sugieren que tuvieron una etapa de disolución como producto del calentamiento, mezcla de magmas (Stewart & Pearce, 2004) o de la descompresión del sistema magmático deshidratado (Nelson & Montana, 1992), no obstante, la disolución de los
feldespatos producto de una descompresión del sistema ocurre en condiciones subsaturadas en agua. La disolución de cristales en magmas máficos recientemente se ha relacionado a flujos de CO₂, sin embargo, no hay evidencia actual que relacione el mismo fenómeno en magmas intermedios y félsicos. Debido a la naturaleza hidratada de los magmas calcoalcalinos, la textura tamiz presente en los feldespatos podría evidenciar que las rocas del Tzirate sufrieron procesos de mezcla en lugar de descompresión bajo condiciones sub-saturadas de agua.

La mayoría de las evidencias mencionadas previamente se relacionan con procesos de mezcla de magmas, sin embargo, también es posible asociarlas a procesos de asimilación cortical, debido a que este proceso adiciona masa de forma similar a la mezcla, lo cual puede generar cambios termodinámicos y químicos en el sistema magmático (DePaolo, 1981). Es cierto que el modelo de DePaolo (1981) considera al calor latente de cristalización como el factor energético que hace posible la asimilación. Sin embargo, tal vez esta consideración limita considerablemente el resultado que de este modelo se obtiene (además de la libre elección de las fases que se fraccionan y los coeficientes de distribución que se elijan para estas). Es decir, el modelo no toma en cuenta el calor añadido por la mezcla de magmas o por el calentamiento del reservorio, siendo el registro de estos procesos algo muy común en las rocas volcánicas. El calor añadido por estos procesos puede superar al calor liberado por cristalización, incluso borrando la historia de cristalización en los magmas y disolviendo una cantidad de roca encajonante que todavía no es cuantificable y que no hay modelo actual que tome en cuenta.

Asimilación cortical

De igual forma que con la mezcla de magmas, la asimilación de productos corticales, como los que podrían yacer en el basamento local de la Sierra del Tzirate (Fig. 4,5), puede dar origen a cambios químicos y mineralógicos en función de la cantidad y tiempo en que interacciona el magma con el material incorporado de la roca encajonante (Taylor, 1980; DePaolo, 1981). Es decir, podría explicar desde otra perspectiva la evidencia textural y química presente en los diversos grupos minerales. No obstante, cuando existe conjunción en estos procesos, es difícil distinguir las diferencias entre los rasgos químicos, mineralógicos y texturales entre procesos de mezcla y asimilación cortical. El cambio en la geoquímica de elementos mayores y traza de la ST puede explicarse con procesos de asimilación cortical debido a que la adición de material nuevo puede cambiar la composición química final de los magmas y minerales (Singer et al., 1995), e incluso generar variaciones en el enriquecimiento en tierras raras ligeras y pesadas como se muestra en algunos de los miembros máficos (Fig. 14).

Por ejemplo, la muestra CVTZ – 5, que químicamente se clasifica como andesita, presenta valores elevados de tierras raras pesadas (HREE) en comparación de la mayoría de las muestras de la zona estudiada, sin embargo, el enriquecimiento de tierras raras ligeras (LREE) y elementos móviles e incompatibles es equiparable al de las rocas más evolucionadas, dónde el aporte de LREE y elementos móviles se pudo incrementar como resultado de la incorporación de materiales evolucionados y compatibles con estos elementos.

Figura 21. Imagen de electrones retro-dispersados de CVTZ-12 mostrando las composiciones molares de An en plagioclasas.

Análisis composicionales realizados en fenocristales de feldespatos desde el borde al núcleo indican que los núcleos tienen composiciones diferentes a los bordes, de An₇₈ a An₃₈ (Fig. 21), además de que estos minerales en general presentan bordes de reacción. Aparentemente este zoneamiento normal representaría simplemente cristalización; sin embargo, como se explicó anteriormente, la cristalización fraccionada no es evidente en estas rocas. De manera alterna, este cambio composicional en contenido de %An puede ser explicado como producto de diversas etapas de enfriamiento del reservorio magmático (Murphy et al., 2000; Blundy et al., 2006; Streck, 2008; Sosa-Ceballos et al., 2014), mezcla con magmas más félsicos (Hibbard, 1981; Tsuchiyama & Takahashi, 1983; Tsuchiyama, 1985; Landi et al., 2004; Streck, 2008), convección en un reservorio magmático (Couch et al., 2001) o asimilación cortical (Taylor, 1980; Andrews et al., 2008). Además de variaciones composicionales, los minerales analizados también tienen texturas de desequilibrio como bordes de reacción en anfíboles, piroxenos y plagioclasas que pudieran estar relacionados con los procesos antes mencionados.

La presencia de bordes de reacción en algunos grupos de plagioclasas, piroxenos y anfíboles se puede explicar mediante dos escenarios: 1) que los grupos minerales con bordes de reacción no se encuentran en equilibrio dentro del sistema magmático, por lo tanto son xenocristales (Tsuchiyama & Takahashi, 1983; Tsuchiyama, 1985 Landi et al., 2004) y 2) que sólo algunas porciones del reservorio hayan sido afectadas por etapas de calentamiento (Andrews et al., 2008; Sosa-Ceballos et al., 2014) lo que ocasionalmente generaría una desestabilización de las fases cristalinas.

En todas las rocas del Tzirate se encuentran poblaciones con signos de desequilibrio mezcladas con cristales con bordes euhedrales sugiriendo que uno de los dos procesos arriba mencionados ocurrió (calentamiento o mezcla de magmas). De esta forma la asimilación puede explicar el hecho de tener diferentes poblaciones composicionales de minerales como feldespatos, clino y ortpiroxenos, los cuales comparten rasgos texturales y composicionales con la muestra del basamento (Fig. 7, 15). La presencia de wollastonita en la muestra CVTZ – 5 podría aportar evidencia para sustentar esta idea debido a que la wollastonita es un mineral asociado a procesos hidrotermales y de metamorfismo de contacto a temperaturas y presiones de 400°C y 1 kbar (Kristmannsdottir, 1981) contrastantes a las que está sometido un sistema magmático (Valley & O'Neil, 1982). Por lo que la presencia de este

mineral y fenocristales de plagioclasa con marcas de exsolución (de feldespato) pudieran ser evidencias de la asimilación cortical posiblemente hidrotermalmente alterado o metasomatizado, que se incorpora y cambia la composición final de los magmas.

Solo algunas rocas de ST contienen anfíbol (Tabla 1). En general, la composición de estos minerales en G1, G2 y G3 es pargasítica-tschermacktítica (Leake, 1997), con presiones y temperaturas de formación de entre 326 – 401 MPa y 882 – 932 °C para CVTZ - 4, 321 - 446 MPa y 813 - 969 °C para CVTZ - 6 y 127 - 411 MPa con 820 – 954 °C para CVTZ – 10 (Ridolfi et al; 2010). A pesar de que está bien documentado que la presión determinada con el geobarómetro de Ridolfi y Puerini (2010) puede ser un artificio termodinámico (Klaver et al., 2017), la temperatura obtenida mediante el algoritmo puede ser un reflejo de la temperatura de cristalización de estos minerales. De esta manera las temperaturas obtenidas para los anfíboles de la ST sugieren diferentes orígenes, pero no es posible distinguir si su origen es por mezcla de magmas o por asimilación de cristales de rocas corticales. No obstante, el desequilibrio mineral es evidente en todas las poblaciones de anfíbol observadas, por lo que estos minerales pudieran ser xenocristales. Los bordes de reacción, en muestras en dónde todavía persisten fragmentos cristalinos, tienen tamaños superiores a 10 µm y están formados de feldespato, ortopiroxeno, clinopiroxeno, óxidos de hierro - titanio y vidrio con tamaños inferiores a 1 µm. La presencia y el tamaño de los bordes de reacción, pueden relacionarse con procesos de descompresión del sistema (Browne & Gardner; 2006) o con procesos de calentamiento (De Angelis et al., 2015) el cual

puede desestabilizar a los anfíboles generando cambios mineralógicos y texturales. Sin embargo, los procesos de descompresión generan una paragénesis mineral restringida a ortopiroxeno, plagioclasa y una pequeña cantidad de óxidos de hierro – titanio (Browne & Gardner; 2006). En ambos casos el grosor del borde de reacción está en función del tiempo en que el mineral se estabiliza en las nuevas condiciones de presión, temperatura y composición.

La variación composicional en los magmas como resultado de la adición de material, mezcla o asimilación, puede ser estudiada a través de métodos isotópicos (Taylor, 1980; DePaolo, 1981). La asimilación de productos corticales evolucionados puede generar que las relaciones isotópicas de δ^{18} O (Fig. 16) se incrementen, ya que los productos con afinidad cortical más evolucionados tienden a tener valores más elevados de δ^{18} O (Taylor, 1968), que aquéllos que presentan valores más bajos o con afinidad mantélica. Este fenómeno es debido a que durante el fraccionamiento isotópico, el isótopo ligero de oxígeno, tiende a enriquecerse en los fundidos, ocasionado por la mayor movilidad del isótopo ligero en comparación con el isótopo pesado (Taylor, H. P., 1968; 1980; O'neil et al., 1969; Thiemens & Heidenreich, 1983). De tal forma, que diferentes tasas de asimilación cortical de materiales graníticos - granodioríticos como los presentes en el basamento de la Sierra del Tzirate (Corona et al., 2006) generarán diferentes incrementos en el parámetro δ^{18} O. Esto sería consistente si encontramos valores elevados de SiO₂ y de δ^{18} O, no obstante, se observa que para un mismo valor de SiO₂ existen diversos valores de δ^{18} O. Es probable que esta variación pueda ser ocasionada por la asimilación cortical. Las rocas donde la asimilación es más efectiva, muestran un incremento en el valor de δ^{18} O y las rocas que son poco afectadas por la asimilación cortical presentan valores menores. Taylor (1968) sugiere que rocas de composición andesítica y dacítica presentan valores de δ^{18} O entre 7 y 7.7, mientras que las rocas más ácidas superan estos valores. G1, G2 y G3 muestran que para valores similares SiO₂ (62 – 63 wt%) existen valores de δ^{18} O entre 7.23 y 9.43 (Fig. 16), lo cual es congruente con la idea antes planteada. Sin embargo, los efectos que genera la asimilación en la composición final de los magmas son difíciles de cuantificar, debido a que la asimilación requiere una cantidad determinada de tiempo que hasta el momento no ha sido reportada y estudiada en detalle. Los isótopos de Sr-Nd (Fig. 16) no presentan un patrón de comportamiento que pudiera reafirmar las evidencias observadas en los análisis isotópicos de δ^{18} O, no obstante, se puede observar que en valores similares de ϵ Nd y ⁸⁷Sr/⁸⁶Sr existe un incremento de δ^{18} O (Fig. 22 a, b). Esto podría indicar que las rocas pudieran estar relacionadas en su génesis, sin embargo, la variación positiva en los valores de δ^{18} O pudieran indicar contaminación cortical.

Figura 22. a) Diagrama de δ^{18} O vs ϵ Nd, a) Diagrama de δ^{18} O vs 87 Sr/ 86 Sr (ver simbología en Figura 11). pág. 78

Comparación isotópica (δ¹⁸O) entre los complejos volcánicos La Nieve y Sierra del Tzirate

La Sierra de la Nieve se encuentra a 30 km al sureste de ST se encuentra constituida por conos de escoria, productos fisurales y domos con actividad reportada desde el Plioceno que perdura hasta el Holoceno (Cardona-Melchor, 2015). Una de las características importantes en esta localidad, es la presencia de xenocristales de cuarzo denotados por bordes redondeados y reabsorbidos, así como fenocristales de anfíbol con bordes de reacción y texturas de desequilibrio (Ruíz – Anduquia, 2017). Las rocas de la ST no contienen xenocristales de cuarzo. Es posible observar que las rocas de LN presentan valores de δ^{18} O más reducidos en comparación con ST (Fig.16), no obstante la presencia de cuarzos con un elevado valor de δ^{18} O en LN sugiere la adición de material evolucionado o xenocristales. La diferencia entre estas dos regiones podría estar relacionada con el tiempo de residencia de los magmas en la corteza superior el cual a su vez podrían obedecer a cambios en el régimen de esfuerzos locales.

La ST está alojada en fallas con orientación NNE-SSO y NW-SE con un régimen de esfuerzos dominante lateral izquierdo con componente normal que cambia en diferentes episodios hacía un sistema normal con componente lateral izquierda (Pérez-Orozco, 2015). En contraste, en LN el estilo estructural dominante es normal con dirección E-O a ENE-OSO correspondiente al Sistema de Fallas Morelia Acambay (SFMA), aunque en esta región sigue existiendo una componente lateral (Garduño-Monroy et al., 2009). Los magmas de la ST, a diferencia de LN y otros

complejos volcánicos del CVMG, pudieron tener etapas prolongadas de entrampamiento, relacionado a un estilo de deformación transtensivo con componente lateral izquierda dominante, debido a que este sistema dificulta el ascenso de fundidos. El tiempo y la interacción con el basamento promovieran la asimilación. Después cuando el régimen de esfuerzos cambia a un sistema dónde la componente normal domina y por consecuencia el ascenso de los magmas se facilita, los magmas ascienden a la superficie como magmas más evolucionados. Es decir, en LN como los magmas no fueron entrampados el tiempo suficiente, la interacción con el basamento no permitió incorporar fragmentos de la roca encajonante como xenolitos, no obstante, esta interacción permitió la incorporación de cuarzos. No obstante, los magmas que asimilan productos del basamento durante periodos de tiempo mayores podrían borrar de su textura minerales que se generan a bajas presiones y temperaturas como los cuarzos.

Como se ha mencionado con anterioridad, las diferencias texturales, químicas y mineralógicas generados por procesos de calentamiento, mezcla y asimilación no son fáciles de distinguir. En consecuencia, con la finalidad de tener mayor claridad sobre los procesos que afectan la evolución magmática de la ST se realizaron experimentos hidrotermales para investigar los productos resultantes de la asimilación y compararlos con las muestras naturales.

Experimentos hidrotermales como un proxy de asimilación cortical

Se realizaron experimentos hidrotermales con la intención de observar las variaciones mineralógicas y composicionales durante un proceso de asimilación cortical o adición de masa a un fundido. Texturalmente se puede apreciar en los experimentos que la asimilación fue efectiva borrando casi por completo el material asimilado, no obstante, en los experimentos realizados la asimilación fue menos efectiva para ETA-02, a pesar de haber corrido a mayor T (>20°C). Ligeras variaciones en masa, cantidad de agua, tamaño de grano del asimilante y tiempo de duración del proceso experimental pudieron ocasionar que la asimilación fuera más efectiva en ETA-1. En ambos casos existen remanentes de granodiorita con canales de disolución y textura esponjosa (Fig. 23) o con huellas de fusión parcial (Fig. 17, 18). La composición química de los vidrios generados en los experimentos, presentan variaciones desde la porción más cercana al material asimilado (zona C, Fig. 17,18) (~66 wt% SiO₂ ETA-01, ~65 wt% SiO₂ - ETA – 02) y la porción más distal del mismo (zona A Fig., 17, 18) (~62 %SiO₂ ETA – 01, ~59% SiO₂ ETA – 02), incluso teniendo concentraciones de SiO2 mayores (zona B, Fig., 17, zona A, B, C, fig. 18) a las medidas en la roca sin asimilar ~70 %SiO₂ (Zona A,B y C de ETA-2, Zona A ETA-1), en donde la presencia de cristales con texturas y composiciones diferentes a las mostradas por el material asimilante, es más abundante. Estas nuevas fases minerales pudieran ser cristales peritécticos (CP).

De igual forma que la interacción con el asimilante generó un vidrio híbrido, el intercambio iónico entre los dos materiales generó nuevas fases cristalinas y dejó relictos de fases prexistentes en el asimilante. Las nuevas fases minerales se agrupan en cúmulos de cristales peritécticos (CP) como producto de la siguiente reacción:

Melt 1 + Granodiorita = Melt 2 + CP

Los CP son cristales de piroxeno $En_{76 - 81}$ y plagioclasa $An_{56 - 71}$, en algunas porciones formando canales de cúmulos esqueletales (Fig. 23b). Los relictos de fases prexistentes presentan bordes sub-redondeados, huellas de disolución y tamaños superiores a 150 µm (Fig. 23a).

Figura 23. Fotomicrografía SEM de fragmentos experimentales mostrando los efectos de la asimilación en los fragmentos ocupados como proxy del basamento. a) Muestra fragmento con huellas de disolución. b) Muestra relictos + CP

Las texturas de desequilibrio observadas en las muestras naturales de G1, G2 y G3, tales como bordes redondeados, texturas de disolución y relictos de minerales donde cúmulos de CP remplazan al mineral original (Fig. 23 b), también son evidentes en los experimentos hidrotermales (Fig.17, 18, b, c). Sin embargo, la disolución total de fenocristales y bordes de reacción en anfíboles observados en ST no pueden ser explicados por este proceso.

Otra de las propiedades físicas que es imposible escalar en el proceso experimental es la proporción volumétrica entre el magma y el material asimilado. Esta es la variable más importante, ya que, en el sistema natural, el tamaño, geometría, presión y temperatura de la cámara magmática van a subordinar la taza de asimilación de la roca encajonante, y en consecuencia la composición final de un magma. No obstante, los experimentos intentan simular la relación química y termodinámica de las porciones del magma donde la asimilación es efectiva, con la finalidad de observar la interacción físico-química y medir propiedades intensivas. Estos experimentos además demuestran que se requieren 23 horas de interacción entre un magma y su roca encajonante para generar líquidos y cristales de composición diferente y que la temperatura a la que puede ascender un magma de composición intermedia (~ 880 – 900 °C) es suficiente para asimilar rocas como las que podrían yacer en el basamento local en la ST.

En este trabajo se hizo un balance de masas donde se calcula el volumen de magma y el volumen del reservorio (en consecuencia, el volumen expuesto de asimilante) para cuantificar la contribución de la asimilación para generar dacitas-riolitas. Sin embargo, porciones de un melt (líquido + cristales) andesítico puede evolucionar a líquidos dacíticos (y cristales) en periodos cortos. Dependiendo del tiempo de interacción, un melt podría ser eruptado a la superficie como una roca más félsica, homogénea, o como un cuerpo magmático formado por diferentes dominios composicionales. Esto se debe investigar a fondo con múltiples análisis de un solo evento volcánico y no como típicamente se realiza, que es analizando una muestra por evento eruptivo.

Conclusiones

Este trabajo presenta resultados geoquímicos, isotópicos, de química mineral y experimentos hidrotermales a presiones y temperaturas relevantes en la generación de magmas andesíticos (H₂Omelt = 8 wt %, P = 180 MPa, T = 880° y 900°C) que pudieron dar origen a los magmas que originaron las rocas de la ST. Las evidencias geoquímicas sugieren que el origen del magmatismo que generó a ST presenta una afinidad calcoalcalina, la cual se relaciona con la subducción que caracteriza la FVTM.

La evidencia experimental en conjunto con las demás observaciones composicionales y texturales pueden explicar el origen de la suite de rocas de la siguiente forma: El basamento de la ST presenta las condiciones estructurales donde zonas de debilidad cortical someras, asociadas al campo de esfuerzos cambiante en la región (Pérez-Orozco, 2015) controlan la dinámica magmática permitiendo que los magmas se entrampen, mezclen y recalienten en reservorios durante los diversos pulsos magmáticos producto de la subducción en la FVTM. Los eventos de mezcla intermitente o calentamientos podrían generar las texturas de disolución y bordes de reacción como los observados en anfíboles, piroxenos y plagioclasas. Estos procesos adicionan energía y en ocasiones masa, lo que podría propiciar además, la asimilación de la roca encajonante ocasionando cambios químicos y mineralógicos que pudieran dar origen a CP. De esta forma, la diversidad composicional observada en los minerales y rocas de los diferentes grupos de la ST es un reflejo de la diversidad de procesos magmáticos asociados a la complejidad

y cambios en el campo de esfuerzo local. En contraste, lo observado en LN pudiera ser un reflejo de tiempos cortos de residencia en la corteza superior donde el régimen estructural y el campo de esfuerzos pudieran permitir el ascenso de magmas con mayor facilidad mitigando los efectos de la asimilación, calentamiento y mezcla de magmas. La poca interacción entre los magmas y el basamento promovería que los cristales del basamento sean añadidos en el magma como xenocristales (inclusive aquellos de baja temperatura como el cuarzo) lo que en términos generales genera productos con composición química más félsica. Finalmente, la evolución de otros complejos volcánicos que presentan actividad félsica en la porción central del CVMG, como LN, pudieran estar relacionadas con estos cambios en los sistemas de esfuerzos locales y a su vez con el entrampamiento y evolución de sus productos.

Bibliografía

Allan, J. F. (1986). Geology of the northern Colima and Zacoalco grabens, southwest Mexico: Late Cenozoic rifting in the Mexican volcanic belt. Geological Society of America Bulletin, 97(4), 473-485.

Alaniz-Álvarez, S. A., Nieto-Samaniego, A. F., Orozco-Esquivel, M. T., Vassallo, L. F., & Xu, S. (2002). El sistema de fallas Taxco-San Miguel de Allende: implicaciones en la deformación post-eocénica del centro de México. *Boletín de la Sociedad Geológica Mexicana*, *55*(1), 12-29.

Andrews, B. J., Gardner, J. E., & Housh, T. B. (2008). Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts. *Journal of Volcanology and Geothermal Research*, *175*(4), 415-426.

Aranda-Gómez, J. J., Henry, C. D., & Luhr, J. F. (2000). Evolución tectonomagmática post-paleocénica de la Sierra Madre Occidental y de la porción meridional de la provincia tectónica de Cuencas y Sierras. *México: Boletín de la Sociedad Geológica Mexicana*, *53*(1), 59-71.

Ban, M., Hasenaka, T., Delgado-Granados, H., & Takaoka, N. (1992). K-Ar ages of lavas from shield volcanoes in the Michoacán-Guanajuato volcanic field, Mexico. *Geofisica Internacional*, *31*(4), 467-473. BAS, M. L., Maitre, R. L., Streckeisen, A., Zanettin, B., & IUGS Subcommission on the Systematics of Igneous Rocks. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. *Journal of petrology*, *27*(3), 745-750.

Barrett, E. M. (1981). The King's Copper Mine: Inguarán in New Spain. *The Americas*, *38*(1), 1-29.

Best, M. G. (2013). Igneous and metamorphic petrology. John Wiley & Sons.

Blatter, D. L., & Carmichael, I. S. (1998). Plagioclase-free andesites from Zitacuaro (Michoacan), Mexico: petrology and experimental constraints. *Contributions to Mineralogy and Petrology*, *132*(2), 121-138.

Blundy, J., Cashman, K., & Humphreys, M. (2006). Magma heating by decompression-driven crystallization beneath andesite volcanoes. *Nature*, *443*(7107), 76.

Bowen, N. L. (1937). Recent high-temperature research on silicates and its significance in igneous geology. *American Journal of Science*, (193), 1-21.

Browne, B. L., & Gardner, J. E. (2006). The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims. *Earth and Planetary Science Letters*, *246*(3), 161-176.

Browne, B. L., Eichelberger, J. C., Patino, L. C., Vogel, T. A., Uto, K., & Hoshizumi, H. (2006). Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. *Journal of Volcanology and Geothermal Research*, *154*(1), 103-116. Briqueu, L., Bougault, H., & Joron, J. L. (1984). Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. *Earth and Planetary Science Letters*, *68*(2), 297-308.

Campa, M. F., & Coney, P. J. (1983). Tectono-stratigraphic terranes and mineral resource distributions in Mexico. *Canadian Journal of Earth Sciences*, *20*(6), 1040-1051.

Capra, L., Macías, J. L., & Gardu o, V. H. (1997). The Zitácuaro Volcanic Complex, Michoacán, Mexico: magmatic and eruptive history of a resurgent caldera. *GEOFISICA INTERNACIONAL-MEXICO-*, *36*, 161-180.

Cardona-Melchor, S. (2015). Estudio vulcanológico del Complejo Volcánico El Águila y los domos La Taza-La Nieve-El Burro, centro-norte de Michoacán. *Universidad Michoacana de San Nicolas de Hidalgo.* Tesis de Maestría.

Castro, A., Gerya, T., García-Casco, A., Fernández, C., Díaz-Alvarado, J., Moreno-Ventas, I., & Löw, I. (2010). Melting relations of MORB–sediment mélanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. *Journal of Petrology*, *51*(6), 1267-1295.

Centeno-Garcla, E., Corona-Chávez, P., Talavera-Mendoza, O., Iriondo, A., Alcayde, M., & Gómez-Caballero, A. (2003, April). Geologic and tectonic evolution of the western Guerrero terrane—A transect from Puerto Vallarta to Zihuatanejo, Mexico. In *Geologic transects across Cordilleran Mexico, guidebook for the field trips of the 99th Geological Society of America Cordilleran section annual meeting, Puerto Vallarta, Jalisco, Mexico* (pp. 4-7). Centeno-García, E., Guerrero-Suastegui, M., Talavera-Mendoza, O., (2008). The Guerrero composite terrane of western Mexico: Collision and subsequent rifting in a supra-subduction zone. *SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA*, *436*, 279.

Chesley, J., Ruiz, J., Righter, K., Ferrari, L., & Gomez-Tuena, A. (2002). Source contamination versus assimilation: an example from the Trans-Mexican Volcanic Arc. *Earth and Planetary Science Letters*, *195*(3), 211-221.

Chevrel, M. O., Guilbaud, M. N., & Siebe, C. (2016). The~ AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology. *Bulletin of Volcanology*, *78*(4), 32.

Connor, C. B. (1987). Structure of the Michoacán-Guanajuato volcanic field, Mexico. *Journal of Volcanology and Geothermal Research*, *33*(1-3), 191-200.

Connor, C. B. (1987). Structure of the Michoacán-Guanajuato volcanic field, Mexico. *Journal of Volcanology and Geothermal Research*, 33(1-3), 191-200.

Connor, C. B. (1990). Cinder cone clustering in the TransMexican Volcanic Belt: implications for structural and petrologic models. *Journal of Geophysical Research: Solid Earth*, 95(B12), 19395-19405.

Corona-Chávez, P., Reyes-Salas, M., Garduño-Monroy, V. H., Israde-Alcántara, I., Cruz, L. S., Morton-Bermea, O., & Hernández-Álvarez, E. (2006). Asimilación de xenolitos graníticos en el Campo Volcánico Michoacán-Guanajuato: el caso de Arócutin Michoacán, México. *Revista mexicana de ciencias geológicas*, *23*(2), 233-245.

Couch, S., Sparks, R. S. J., & Carroll, M. R. (2001). Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. *Nature*, *411*(6841), 1037-1039.

Cox, K. G. (Ed.). (2013). *The interpretation of igneous rocks*. Springer Science & Business Media.

Damon, P. E., Shafiqullah, M., & Clark, K. F. (1981). Evolución de los arcos magmáticos en México y su relación con la metalogénesis. *Revista Mexicana de Ciencias Geológicas*, *5*(2), 223-238.

Damon, P. E., Shafiqullah, M., & Clark, K. F. (1983). Geochronology of the porphyry copper deposits and related mineralization of Mexico. *Canadian Journal of Earth Sciences*, *20*(6), 1052-1071.

De Angelis, S. H., Larsen, J., Coombs, M., Dunn, A., & Hayden, L. (2015). Amphibole reaction rims as a record of pre-eruptive magmatic heating: an experimental approach. *Earth and Planetary Science Letters*, *426*, 235-245.

Demant, A., & Robin, C. (1975). Las fases del vulcanismo en México: una síntesis en relación con la evolución geodinámica desde el Cretácico. *Revista mexicana de ciencias geológicas*, (1), 4. Demant, A. (1978). Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación. *Revista mexicana de ciencias geológicas*, *2*(2), 172-187.

DeMets, C., & Traylen, S. (2000). Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle. *Tectonophysics*, *318*(1-4), 119-159.

DePaolo, D. J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. *Earth and Planetary Science Letters*, *53*(2), 189-202.

Devine, J. D., Gardner, J. E., Brack, H. P., Laynet, G. D., & Rutherford, M. J. (1995). Comparison of microanalytical methods for estimating H20 contents of silicic volcanic glasses. *American Mineralogist*, *80*(3-4), 319-328.

Díaz-Bravo, B. A., Gómez-Tuena, A., Ortega-Obregón, C., & Pérez-Arvizu, O. (2014). The origin of intraplate magmatism in the western Trans-Mexican Volcanic Belt. Geosphere, 10(2), 340-373.

Ego, F., & Ansan, V. (2002). Why is the central Trans-Mexican volcanic belt (102– 99 W) in transtensive deformation?. *Tectonophysics*, *359*(1-2), 189-208.

Eichelberger, J. C. (1975). Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes. *Geological Society of America Bulletin*, 86(10), 1381-1391. Erdmann, S., Scaillet, B., & Kellett, D. A. (2012). Textures of peritectic crystals as guides to reactive minerals in magmatic systems: new insights from melting experiments. *Journal of Petrology*, *53*(11), 2231-2258.

Erlund, E. J., Cashman, K. V., Wallace, P. J., Pioli, L., Rosi, M., Johnson, E., & Granados, H. D. (2010). Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record. *Journal of Volcanology and Geothermal Research*, *197*(1), 167-187.

Ferrari, L., Pasquare, G., Venegas, S., Castillo, D., & Romero, F. (1994). Regional tectonics of western Mexico and its implications for the northern boundary of the Jalisco block. *Geofísica Internacional*, *33*(1), 139-151.

Ferrari, L., Valencia-Moreno, M., & Bryan, S. (2006). Magmatismo y tectónica en la Sierra Madre Occidental y su relación con la evolución de la margen occidental de Norteamérica. *Boletín de la Sociedad Geológica Mexicana*, *57*(3), 343-378.

Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. *Tectonophysics*, *522*, 122-149.

Fries, C. (1953). Volumes and weights of pyroclastic material, lava, and water erupted by Paricutin volcano, Michoacan, Mexico. Eos, Transactions American Geophysical Union, 34(4), 603-616.

Garcia-Palomo, A., Macias, J. L., & Garduño, V. H. (2000). Miocene to Recent structural evolution of the Nevado de Toluca volcano region, central Mexico. *Tectonophysics*, *318*(1-4), 281-302.

García-Tovar, G. P., & Martínez-Serrano, R. G. (2011). Geología y geoquímica de las lavas pleistocénicas del estratovolcán Telapón, Sierra Nevada, México. *Revista mexicana de ciencias geológicas*, *28*(2), 301-322.

Garduño-Monroy, V. H., Corona-Chavez, P., Israde-Alcantara, I., Mennella, L., Arreygue, E., Bigioggero, B., & Chiesa, S. (1999). Carta Geológica de Michoacán. *Morelia, Michoacán, Universidad Michoacana de San Nicolás de Hidalgo*.

Garduño-Monroy, V. H., Chávez-Hernández, J., Aguirre-González, J., Vázquez-Rosas, R., Mijares Arellano, H., Israde-Alcántara, I., & Pérez López, R. (2009). Zonificación de los periodos naturales de oscilación superficial en la ciudad de Pátzcuaro, Mich., México, con base en microtremores y estudios de paleosismología. *Revista Mexicana de Ciencias Geológicas*, 26(3), 623-637.

Gómez-Tuena, A., Orozco-Esquivel, M. T., & Ferrari, L. (2006). Petrogénesis ígnea de la faja volcánica transmexicana. *Boletín de la Sociedad geológica Mexicana*, *57*(3), 227-283.

Gómez-Tuena, A., Orozco-Esquivel, M. T., & Ferrari, L. (2007). Igneous petrogenesis of the Trans-Mexican volcanic belt. *Geological Society of America Special Papers*, *422*, 129-181.

Gómez-Tuena, A., Straub, S. M., & Zellmer, G. F. (2014). An introduction to orogenic andesites and crustal growth. *Geological Society, London, Special Publications*, 385(1), 1-13.

Gómez-Tuena, A., Mori, L., & Straub, S. M. (2016). Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth-Science Reviews.

Grajales, M., & López, M. (1984). Estudio petrogenético de las rocas ígneas y metamorficas en el Prospecto Tomatlan-Guerrero-Jalisco: Instituto Mexicano del Petróleo. *Subdirección de Tecnología y Exploración, Proyecto C-1160: Mexico, DF*.

Granados, H. D. (1993). Late Cenozoic tectonics offshore western Mexico and its relation to the structure and volcanic activity in the western Trans-Mexican volcanic belt. *Geofísica Internacional*, *32*(4).

Granados, H. D., Urrutia-Fucugauchi, J., Hasenaka, T., & Ban, M. (1995). Southwestward volcanic migration in the western Trans-Mexican Volcanic Belt during the last 2 Ma. *Geofísica Internacional*, *34*(3), 341-352.

Granados, H. D. (1997). The glaciers of Popocatépetl volcano (Mexico): changes and causes. *Quaternary International*, *43*, 53-60.

Green, T. H., & Watson, E. B. (1982). Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to 'orogenic'rock series. *Contributions to Mineralogy and Petrology*, *79*(1), 96-105.

Guerrero-Suastegui, M. (2004). *Depositional and tectonic history of the Guerrero Terrane, Sierra Madre de Sur, with emphasis on sedimentary successions of the Teloloapan area, southwestern Mexico* (Doctoral dissertation, Memorial University of Newfoundland).

Guerrero-Suastegui, M., Ramírez-Espinosa, J., Talavera-Mendoza, O., & Campa-Uranga, M. F. (1991). El desarrollo carbonatado del Cretácico Inferior asociado al arco de Teloloapan, Noroccidente del Estado de Guerrero. In *Convención sobre la Evolucion Geológica Mexicana, 1er Congreso Mexicano de Mineralogía: Pachuca, México, Memorias* (pp. 67-70).

Hasenaka, T. (1994). Size, distribution, and magma output rate for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. *Journal of Volcanology and Geothermal Research*, *63*(1-2), 13-31.

Hasenaka, T., & Carmichael, I. S. (1985). The cinder cones of Michoacán— Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. *Journal of Volcanology and Geothermal Research*, *25*(1-2), 105-124.

Hasenaka, T., & Carmichael, I. S. E. (1987). The cinder cones of Michoacan-Guanajuato, central Mexico: petrology and chemistry. *Journal of Petrology*, *28*(2), 241-269.

Hibbard, M. J. (1981). The magma mixing origin of mantled feldspars. *Contributions to Mineralogy and Petrology*, *76*(2), 158-170.

Irvine, T. N. J., & Baragar, W. R. A. F. (1971). A guide to the chemical classification of the common volcanic rocks. *Canadian journal of earth sciences*, *8*(5), 523-548.

Israde-Alcantara, I., & Garduño-Monroy, V. H. (1999). Lacustrine record in a volcanic intra-arc setting: the evolution of the Late Neogene Cuitzeo basin system (central-western Mexico, Michoacan). *Palaeogeography, Palaeoclimatology, Palaeoecology*, *151*(1-3), 209-227.

Izbekov, P. E., Eichelberger, J. C., Patino, L. C., Vogel, T. A., & Ivanov, B. V. (2002). Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment. *Geology*, *30*(9), 799-802.

Jeffery, P. G., & Hutchison, D. (1981). *Chemical methods of rock analysis* (No. 3rd Edition). Pergamon Press Ltd..

Johnson, E. R., Wallace, P. J., Delgado Granados, H., Manea, V. C., Kent, A. J., Bindeman, I. N., & Donegan, C. S. (2009). Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. *Journal of Petrology*, *50*(9), 1729-1764.

Johnson, E. R., Wallace, P. J., Cashman, K. V., & Granados, H. D. (2010). Degassing of volatiles (H2O, CO2, S, CI) during ascent, crystallization, and eruption at mafic monogenetic volcanoes in central Mexico. *Journal of Volcanology and Geothermal Research*, *197*(1-4), 225-238. Kelemen, P. B., Hanghøj, K., & Greene, A. R. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. *Treatise on geochemistry*, *3*, 659.

Klitgord, K. D., & Mammerickx, J. (1982). Northern East Pacific Rise: magnetic anomaly and bathymetric framework. *Journal of Geophysical Research: Solid Earth*, 87(B8), 6725-6750.

Kristmannsdottir, H. (1981). Wollastonite from hydrothermally altered basaltic rocks in Iceland. *Mineral. Mag*, *44*, 95-99.

Kshirsagar, P., Siebe, C., Guilbaud, M. N., Salinas, S., & Layer, P. W. (2015). Late Pleistocene Alberca de Guadalupe maar volcano (Zacapu basin, Michoacan): stratigraphy, tectonic setting, and paleo-hydrogeological environment. *Journal of Volcanology and Geothermal Research*, *304*, 214-236.

Lange, R. A., & Carmichael, i. S. (1990). Hydrous basaltic andesites associated with minette and related lavas in western Mexico. *Journal of Petrology*, *31*(6), 1225-1259.

Lange, R. A., Frey, H. M., & Hector, J. (2009). A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. *American Mineralogist*, *94*(4), 494-506.

Landi, P., Métrich, N., Bertagnini, A., & Rosi, M. (2004). Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). *Contributions to Mineralogy and Petrology*, *147*(2), 213-227.

Larrea, P., Salinas, S., Widom, E., Siebe, C., & Abbitt, R. J. (2017). Compositional and volumetric development of a monogenetic lava flow field: The historical case of

Paricutin (Michoacán, Mexico). *Journal of Volcanology and Geothermal Research*, *348*, 36-48.

Lassiter, J. C., & Luhr, J. F. (2001). Osmium abundance and isotope variations in mafic Mexican volcanic rocks: evidence for crustal contamination and constraints on the geochemical behavior of osmium during partial melting and fractional crystallization. *Geochemistry, Geophysics, Geosystems*, *2*(3).

Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., ... & Linthout, K. (1997). Report. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. *Mineralogical magazine*, *61*(2), 295-321.

Luhr, J. F., & E Carmichael, I. S. (1985). Contemporaneous eruptions of calc-alkaline and alkaline magmas along the volcanic front of the Mexican Volcanic Belt. *Geofísica Internacional*, *24*(1).

Luhr, J. F., & Carmichael, I. S. (1985). Jorullo Volcano, Michoacán, Mexico (1759– 1774): the earliest stages of fractionation in calc-alkaline magmas. *Contributions to Mineralogy and Petrology*, *90*(2-3), 142-161.

Luhr, J. F. (2001). Glass inclusions and melt volatile contents at Paricutin Volcano, Mexico. *Contributions to Mineralogy and Petrology*, *142*(3), 261-283.

Macías, J. L., Sosa-Ceballos, G., Arce, J. L., Gardner, J. E., Saucedo, R., & Valdez-Moreno, G. (2017). Storage conditions and magma processes triggering the 1818CE Plinian eruption of Volcán de Colima. *Journal of Volcanology and Geothermal Research*.

Mahood, G. A., Gilbert, C. M., & Carmichael, I. S. E. (1985). Peralkaline and metaluminous mixed-liquid ignimbrites of the Guadalajara region, Mexico. *Journal of volcanology and geothermal research*, *25*(3-4), 259-271.

Mammerickx, J., & Klitgord, K. D. (1982). Northern East Pacific Rise: Evolution from 25 my BP to the present. *Journal of Geophysical Research: Solid Earth*, 87(B8), 6751-6759.

McBirney, A. R., Taylor, H. P., & Armstrong, R. L. (1987). Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. *Contributions to Mineralogy and Petrology*, 95(1), 4-20.

McCuaig, T. C., Kerrich, R., & Xie, Q. (1994). Phosphorus and high field strength element anomalies in Archean high-magnesian magmas as possible indicators of source mineralogy and depth. *Earth and Planetary Science Letters*, *124*(1-4), 221-239.

Mendoza, O. T., & Suastegui, M., (2000). Mélanges in southern Mexico: geochemistry and metamorphism of Las Ollas complex (Guerrero terrane). *Canadian Journal of Earth Sciences*, *37*(9), 1309-1320.

Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R., Lejeune, A. M., Brewer, T. S., & Young, S. (1998). The role of magma mixing in triggering the current eruption

at the Soufriere Hills volcano, Montserrat, West Indies. *Geophysical Research Letters*, 25(18), 3433-3436.

Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R., & Brewer, T. S. (2000). Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. *Journal of petrology*, *41*(1), 21-42.

Nakamura, M. (1995). Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. *Geology*, *23*(9), 807-810.

Nelson, S.T. & Montana, A. (1992). Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. *American Mineralogist*, 77, 1242-1249.

Niu, Y., & Batiza, R. (1997). Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. *Earth and Planetary Science Letters*, *148*(3), 471-483.

Niu, Y., Collerson, K. D., Batiza, R., Wendt, J. I., & Regelous, M. (1999). Theorigin of E-type MORB at ridges far from mantle plumes: TheEast Pacific Rise at 11 20y N. *Journal of Geophys Research*, *104*, 7067-7087.

Niu, Y., & O'Hara, M. J. (2009). MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: new perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. *Lithos*, *112*(1), 1-17.

O'Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. *The Journal of Chemical Physics*, *51*(12), 5547-5558.

Osorio-Ocampo, L. S. (2014). Evolución espacio temporal del vulcanismo alrededor del lago de Patzcuaro. *Universidad Michoacana de San Nicolas de Hidalgo.* Tesis de Maestría.

Ortega-Gutiérrez, F., Elías-Herrera, M., & Dávalos-Elizondo, M. G. (2008). On the nature and role of the lower crust in the volcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region, southern and central Mexico. *Revista Mexicana de Ciencias Geológicas*, *25*(2).

Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D. J., Solari, L., Luna-González, L., & Schaaf, P. (2014). A review of batholiths and other plutonic intrusions of Mexico. *Gondwana Research*, *26*(3-4), 834-868.

Ownby, S., Granados, H. D., Lange, R. A., & Hall, C. M. (2007). Volcán Tancítaro, Michoacán, Mexico, 40 Ar/39 Ar constraints on its history of sector collapse. Journal of Volcanology and Geothermal Research, 161(1), 1-14.

Ownby, S. E., Lange, R. A., Hall, C. M., & Delgado-Granados, H. (2011). Origin of andesite in the deep crust and eruption rates in the Tancítaro–Nueva Italia region of the central Mexican arc. Geological Society of America Bulletin, 123(1-2), 274-294.

Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., ... & Gurnis, M. (2008). Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. *Geophysical Research Letters*, *35*(18).

Pérez-Orozco, J. D. (2015). Origen y evolución del magmatismo félsico en el Campo Volcánico Michoacán Guanajuato. *Universidad Michoacana de San Nicolas de Hidalgo*. Tesis de Maestría.

Pérez-Orozco, J. D., Sosa-Ceballos, G., Garduño-Monroy, V. H., & Avellán, D. R. (2018). Felsic-intermediate magmatism and brittle deformation in Sierra del Tzirate (Michoacán-Guanajuato Volcanic Field). *Journal of South American Earth Sciences*.

Pola, A., Macías, J. L., Osorio-Ocampo, S., Sosa-Ceballos, G., Garduño-Monroy, V.
H., & Martínez-Martínez, J. (2015). El Estribo Volcanic Complex: evolution from a shield volcano to a cinder cone, Pátzcuaro Lake, Michoacán, México. *Journal of Volcanology and Geothermal Research*, *303*, 130-145.

Reubi, O., & Blundy, J. (2008). Assimilation of plutonic roots, formation of high-K 'exotic'melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. *Journal of Petrology*, *49*(12), 2221-2243.

Reubi, O., & Blundy, J. (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. *Nature*, *461*(7268), 1269.

Reyes, J. M., & Samaniego, Á. F. N. (1990). Efectos geológicos de la tectónica reciente en la parte central de México. *Revista mexicana de ciencias geológicas*, 9(1), 33-50.

Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric

formulations and application to subduction-related volcanoes. *Contributions to Mineralogy and Petrology*, *160*(1), 45-66.

Rosas-Elguera, J., Ferrari, L., Garduño-Monroy, V. H., & Urrutia-Fucugauchi, J. (1996). Continental boundaries of the Jalisco block and their influence in the Pliocene-Quaternary kinematics of western Mexico. *Geology*, *24*(10), 921-924.

Rowe, M. C., Peate, D. W., & Ukstins Peate, I. (2011, December). New Insights on the Evolution of Magmas at Paricutin Volcano, Mexico. In *AGU Fall Meeting Abstracts*.

Ruíz-Anduquia M. C. (2017). Evolución geológica de la parte sur del Complejo Volcánico La Nieve, centro-norte estado de Michoacán, México. Universidad de Caldas. Tesis de licenciatura.

Savov, I. P., Luhr, J. F., & Navarro-Ochoa, C. (2008). Petrology and geochemistry of lava and ash erupted from Volcán Colima, Mexico, during 1998–2005. *Journal of Volcanology and Geothermal Research*, *174*(4), 241-256.

Schaaf, P., Böhnel, H., & Pérez-Venzor, J. A. (2000). Pre-Miocene palaeogeography of the Los Cabos block, Baja California sur: Geochronological and palaeomagnetic constraints. *Tectonophysics*, *318*(1), 53-69.

Schaaf, P., Stimac, J. I. M., Siebe, C., & Macías, J. L. (2005). Geochemical evidence for mantle origin and crustal processes in volcanic rocks from PopocatépetI and surrounding monogenetic volcanoes, central Mexico. *Journal of Petrology*, *46*(6), 1243-1282.

Shao, F., Niu, Y., Regelous, M., & Zhu, D. C. (2015). Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia. *Lithos*, *216*, 196-210.

Singer, B. S., Dungan, M. A., & Layne, G. D. (1995). Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers. *American Mineralogist*, *80*(7-8), 776-798.

Sosa-Ceballos, G., Gardner, J. E., Siebe, C., & Macías, J. L. (2012). A calderaforming eruption~ 14,100 14 Cyr BP at Popocatépetl volcano, México: Insights from eruption dynamics and magma mixing. *Journal of Volcanology and Geothermal Research*, *213*, 27-40.

Sosa-Ceballos, G., Gardner, J. E., & Lassiter, J. C. (2014). Intermittent mixing processes occurring before Plinian eruptions of Popocatepetl volcano, Mexico: insights from textural–compositional variations in plagioclase and Sr–Nd–Pb isotopes. *Contributions to Mineralogy and Petrology*, *167*(2), 966.

Sparks, S. R., Sigurdsson, H., & Wilson, L. (1977). Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267(5609), 315-318.

Stewart, M. L., & Pearce, T. H. (2004). Sieve-textured plagioclase in dacitic magma: Interference imaging results. American Mineralogist, 89(2-3), 348-351.

Streck, M. J. (2008). Mineral textures and zoning as evidence for open system processes. Reviews in Mineralogy and Geochemistry, 69(1), 595-622.

Suter, M., Quintero-Legorreta, O., López-Martinez, M., Aguirre-Díaz, G., & Farrar, E. (1995). The Acambay graben: Active intraarc extension in the Trans-Mexican volcanic belt, Mexico. *Tectonics*, *14*(6), 1245-1262.

Suter, M., Martínez, M. L., Legorreta, O. Q., & Martínez, M. C. (2001). Quaternary intra-arc extension in the central Trans-Mexican volcanic belt. *Geological Society of America Bulletin*, *113*(6), 693-703.

Szynkaruk, E., Graduño-Monroy, V. H., & Bocco, G. (2004). Active fault systems and tectono-topographic configuration of the central Trans-Mexican Volcanic Belt. *Geomorphology*, *61*(1-2), 111-126.

Talavera-Mendoza, O., Ramírez-Espinosa, J., & Guerrero-Suástegui, M. (1995). Petrology and geochemistry of the Teloloapan subterrane: a Lower Cretaceous evolved intra-oceanic island-arc. *Geofísica Internacional*, *34*(1), 3-22.

Taylor Jr, H. P., & Epstein, S. (1962). Relationship between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks: part 1: principles and experimental results. *Geological Society of America Bulletin*, 73(4), 461-480.

Taylor, H. P. (1968). The oxygen isotope geochemistry of igneous rocks. *Contributions to mineralogy and Petrology*, *19*(1), 1-71.

Taylor, H. P. (1980). The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. *Earth and Planetary Science Letters*, *47*(2), 243-254.

Thiemens, M. H., & Heidenreich, J. E. (1983). The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. *Science*, *219*(4588), 1073-1075.

Thirlwall, M. F., Smith, T. E., Graham, A. M., Theodorou, N., Hollings, P., Davidson, J. P., & Arculus, R. J. (1994). High field strength element anomalies in arc lavas: source or process?. *Journal of Petrology*, *35*(3), 819-838.

Tsuchiyama, A. (1985). Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. *Contributions to Mineralogy and Petrology*, *89*(1), 1-16.

Tsuchiyama, A., & Takahashi, E. (1983). Melting kinetics of a plagioclase feldspar. *Contributions to Mineralogy and Petrology*, *84*(4), 345-354.

Valley, J. W., & O'Neil, J. R. (1982). Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite. *Nature*, *300*(5892), 497-500.

Verma, S. P., & Nelson, S. A. (1989). Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the Northwestern Mexican Volcanic Belt. *Journal of Geophysical Research: Solid Earth*, *94*(B4), 4531-4544.

Wilcox, R. E. (1954). *Petrology of Paricutín volcano Mexico* (No. 965). US Government Printing Office.
Anexos

1. Química mineral ortopiroxenos

Muestra	TiO2	К2О	FeO	CaO	Na2O	SiO2	Al2O3	MgO	Total
CVTZ-6-1	2.573	0.375	11.904	10.986	1.645	43.394	12.008	14.645	97.53
CVTZ-6-2	2.593	0.389	12.147	10.941	1.734	43.462	12.172	14.853	98.291
CVTZ-6-3	2.646	0.378	11.923	10.861	1.906	43.624	12.335	15.112	98.785
CVTZ-6-4	2.654	0.382	12.644	11.091	1.78	43.366	12.397	14.676	98.99
CVTZ-6-5	2.546	0.395	13.6	10.472	1.817	43.466	11.847	14.406	98.549
CVTZ-6-6	2.528	0.38	12.786	11.13	1.853	43.308	11.748	14.447	98.18
CVTZ-6-7	2.647	0.356	12.325	10.942	1.792	43.495	12.559	15.139	99.255
CVTZ-6-8	2.721	0.384	12.301	10.963	1.869	43.472	12.643	15.133	99.486
CVTZ-6-9	2.716	0.412	12.323	11.122	1.883	43.072	12.482	14.536	98.546
CVTZ-6-10	2.735	0.437	11.723	10.097	1.921	43.113	12.337	14.666	97.029
CVTZ-6-11	2.637	0.415	12.516	11.044	1.791	43.381	11.646	14.463	97.893
CVTZ-6-12	2.68	0.433	12.259	11.249	2.017	43.516	12.464	14.964	99.582
CVTZ-6-13	2.784	0.43	12.173	11.012	1.891	43.442	12.382	14.741	98.855
CVTZ-6-14	2.661	0.405	11.537	10.886	2.002	43.668	12.079	15.11	98.348
CVTZ-6-15	2.603	0.479	11.342	11.267	1.304	43.399	12.912	14.912	98.218
CVTZ-6-16	2.66	0.482	13.122	11.193	1.484	42.466	12.674	13.494	97.575
CVTZ-6-18	2.383	0.445	11.519	10.674	1.58	44.277	12.461	14.238	97.577
CVTZ-6-19	2.533	0.427	10.978	11.194	1.502	43.476	12.701	14.709	97.52
CVTZ-6-20	2.684	0.419	13.551	10.898	1.522	42.04	13.018	13.758	97.89
CVTZ-4-4	2.901	0.599	14.224	10.85	1.883	43.063	11.962	13.181	98.663
CVTZ-4-5	3.295	0.599	17.537	9.572	1.598	41.919	12.186	11.908	98.614
CVTZ-4-7	1.638	0.467	18.952	9.26	1.638	43.096	11.873	11.432	98.356
CVTZ-4-13	2.728	0.645	16.771	10.8	1.758	42.512	12.396	11.868	99.478
CVTZ-4-17	2.893	0.665	15.06	10.794	1.624	43.107	12.129	12.264	98.536
CVTZ-4-18	3.039	0.635	14.389	10.974	1.598	43.394	11.842	13.229	99.1
CVTZ-4-19	3.276	0.693	13.831	11.132	1.812	43.63	11.785	13.526	99.685
CVTZ-4-20	2.523	0.559	16.614	10.216	1.792	42.665	12.569	12.411	99.349
CVTZ-10-1	2.725	0.376	14.096	10.716	1.773	43.3	11.478	13.981	98.445
CVTZ-10-2	2.014	0.453	12.438	10.957	1.356	46.34	9.284	14.767	97.609
CVTZ-10-3	2.485	0.493	12.685	11.328	1.824	43.632	11.618	14.7	98.765
CVTZ-10-4	2.212	0.453	9.869	10.724	1.848	44.045	12.85	15.799	97.8
CVTZ-10-5	2.311	0.482	10.414	11.181	1.851	43.84	12.561	15.637	98.277
CVTZ-10-6	2.187	0.472	11.851	10.858	1.804	43.298	12.602	14.76	97.832
CVTZ-10-7	2.144	0.474	12.461	11.096	1.889	43.556	12.732	14.394	98.746
CVTZ-10-8	2.192	0.49	12.732	10.836	1.766	44.584	10.755	14.313	97.668
CVTZ-10-9	2.241	0.466	11.038	10.8	1.981	44.242	12.554	15.814	99.136
CVTZ-10-10	2.405	0.466	11.919	10.857	1.923	45.069	11.087	15.241	98.967
CVTZ-10-11	2.377	0.464	12.559	11.001	1.979	43.564	12.093	14.827	98.864
CVTZ-10-14	3.191	2.73	14.735	7.75	1.839	41.963	13.097	13.717	99.022
CVTZ-10-15	3.062	2.807	14.3	7.613	1.668	41.209	12.854	13.656	97.169
CVTZ-10-16	2.501	0.544	13.48	10.367	1.907	44.993	9.795	14.392	97.979
CVTZ-10-17	2.102	0.45	14.136	11.115	1.738	46.162	9.108	14.826	99.637
CVTZ-10-19	2.744	0.459	13.93	10.799	1.721	44.962	10.246	14.359	99.22
CVTZ-10-20	2.672	0.54	11.037	10.908	2.092	43.1	12.288	14.539	97.176

CVTZ-10-21	2.249	0.509	12.674	11.069	1.812	45.413	10.282	14.812	98.82
CVTZ-10-22	2.488	0.592	12.542	10.824	2.092	43.395	12.357	14.58	98.87
CVTZ-10-23	2.449	0.562	11.145	11.049	1.998	43.46	12.749	14.809	98.221
CVTZ-10-24	2.089	0.457	12.559	10.784	2.108	43.517	12.323	14.78	98.617
CVTZ-10-25	2.318	0.476	12.265	11.085	1.811	44.304	11.045	14.344	97.648
CVTZ-10-26	1.707	0.409	13.679	10.289	1.284	47.494	7.822	14.754	97.438
CVTZ-10-27	2.198	0.413	12.767	10.955	1.747	44.337	11.237	15.038	98.692
CVTZ-10-28	2.335	0.454	12.475	11.346	1.714	44.184	11.027	14.595	98.13
CVTZ-10-29	2.387	0.471	12.567	11.212	1.702	43.6	11.804	14.655	98.398
CVTZ-10-30	2.313	0.487	13.032	11.212	1.844	43.598	11.563	14.35	98.399
CVTZ-10-31	2.37	0.468	12.6	11.069	1.703	44.402	11.074	14.839	98.525
CVTZ-10-32	2.305	0.496	12.153	10.932	1.699	44.483	10.662	14.91	97.64
CVTZ-10-33	2.064	0.448	10.558	10.904	1.834	43.315	12.634	16.059	97.816

Muestra	TiO2	К2О	FeO	CaO	Na2O	SiO2	Al2O3	MgO	Total
CVTZ-11-76	0.81	0.06	13.93	16.21	0.20	51.89	1.71	15.62	100.43
CVTZ-11-77	0.81	0.09	12.93	16.06	0.36	52.27	2.33	14.86	99.70
CVTZ-11-78	0.72	0.09	15.31	15.18	0.26	52.52	1.45	15.29	100.82
CVTZ-11-80	0.69	0.07	14.81	15.10	0.37	52.33	1.54	16.33	101.25
CVTZ-11-82	0.94	0.07	14.93	15.88	0.26	51.82	1.96	15.34	101.18
CVTZ-11-87	0.63	0.03	13.40	15.67	0.28	52.96	1.31	16.66	100.95
CVTZ-12-85	0.34	0.00	7.94	20.63	0.30	52.94	2.45	16.50	101.09
CVTZ-12-86	0.50	0.01	7.83	21.39	0.25	52.09	2.75	15.79	100.60
CVTZ-12-87	0.26	0.01	8.42	19.62	0.22	53.59	1.72	17.35	101.19
CVTZ-2-3	0.41	0.01	8.82	20.79	0.23	52.80	1.67	15.80	100.53
CVTZ-2-4	0.34	0.01	9.57	19.87	0.16	53.29	1.29	16.46	100.98
CVTZ-2-5	0.64	0.02	9.40	20.57	0.28	51.99	2.61	15.04	100.55
CVTZ-5-10	1.55	0.11	13.80	15.29	0.41	51.58	2.70	15.09	100.51
CVTZ-5-19	1.52	0.25	13.57	15.63	0.43	51.68	2.44	14.74	100.25
CVTZ-5-25	1.42	0.19	12.98	15.38	0.33	52.18	2.52	16.18	101.17
CVTZ-5-8	1.48	0.02	11.30	17.79	0.30	51.30	2.26	15.30	99.76
CVTZ-6-42	1.42	0.02	7.03	20.67	0.30	51.30	4.21	16.04	101.00
CVTZ-6-45	1.10	0.01	7.00	20.66	0.23	52.62	3.26	16.46	101.33
CVTZ-6-47	0.44	0.05	10.90	18.54	0.26	53.27	1.79	15.85	101.09
CVTZ-6-50	0.63	0.04	9.04	19.09	0.14	52.08	3.31	15.83	100.17
CVTZ-6-51	0.95	0.02	11.05	18.80	0.27	51.48	2.72	15.94	101.22
CVTZ-7-27	0.34	0.01	8.32	21.36	0.20	53.33	1.41	15.98	100.95
CVTZ-7-28	0.42	0.00	9.02	21.36	0.37	52.74	2.16	15.08	101.15
CVTZ-7-29	0.42	0.00	9.21	21.25	0.32	52.44	2.09	15.47	101.19
CVTZ-7-30	0.46	0.03	8.96	20.53	0.33	53.06	1.99	15.42	100.79
CVTZ-7-32	0.45	0.02	9.55	20.96	0.39	52.26	1.99	15.49	101.11
CVTZ-7-33	0.32	0.04	8.62	20.98	0.29	53.15	1.40	15.87	100.66
CVTZ-7-34	0.51	0.00	9.05	21.23	0.28	52.93	1.94	15.31	101.24
CVTZ-7-35	0.60	0.03	9.27	20.48	0.29	52.05	2.51	14.95	100.18
CVTZ-7-36	0.38	0.02	8.71	21.36	0.27	53.09	1.75	15.72	101.29
CVTZ-7-37	0.55	0.01	9.31	21.04	0.36	52.22	2.37	15.06	100.92
CVTZ-7-38	0.38	0.01	8.56	21.15	0.40	52.95	1.71	15.37	100.52
CVTZ-7-39	0.42	0.01	9.22	21.27	0.28	52.55	2.05	15.46	101.25
CVTZ-8-30	0.48	0.06	8.16	19.66	0.29	54.26	2.69	15.78	101.37
CVTZ-8-31	0.37	0.06	8.46	21.29	0.34	52.43	1.94	14.98	99.87
CVTZ-8-33	0.36	0.01	9.42	20.18	0.35	52.78	1.54	14.97	99.60
CVTZ-8-37	0.36	0.01	8.03	21.21	0.34	52.75	1.86	15.34	99.90
CVTZ-8-39	0.35	0.02	8.01	21.66	0.29	52.34	1.63	15.34	99.64
CVTZ-8-40	0.53	0.04	8.70	20.96	0.32	52.33	2.32	14.73	99.92
CVTZ-8-41	0.69	0.02	9.19	21.03	0.41	51.32	2.70	14.58	99.94

2. Química mineral clinopiroxenos

pág. 110

0.55	0.11	9.02	20.56	0.42	53.08	2.50	15.02	101.24
0.56	0.56	8.67	18.94	0.58	54.55	3.36	13.43	100.65
0.39	0.08	8.06	21.44	0.36	53.39	1.66	15.62	100.98
0.29	0.02	7.21	18.38	0.24	53.83	2.06	18.99	101.00
0.48	0.03	8.57	20.66	0.42	52.10	2.62	14.77	99.64
0.75	0.06	11.25	17.22	0.33	51.63	2.89	15.51	99.62
0.65	0.25	11.75	16.30	0.46	53.30	2.98	15.59	101.28
0.42	0.07	8.75	20.88	0.31	53.18	1.79	15.37	100.76
0.98	0.09	10.53	16.79	1.10	52.56	5.37	13.79	101.21
0.64	0.02	14.69	15.35	0.26	51.47	0.63	16.01	99.06
0.66	0.04	13.31	17.27	0.27	51.75	0.82	14.97	99.10
0.31	0.00	10.10	19.76	0.20	52.53	0.78	16.04	99.72
0.24	0.01	9.75	20.17	0.16	53.85	0.50	16.36	101.05
0.04	0.01	12.34	22.30	0.14	53.62	0.19	12.36	101.00
0.03	0.00	11.05	22.30	0.16	54.21	0.23	12.81	100.79
0.15	0.00	13.00	20.87	0.23	53.09	0.58	12.92	100.82
0.15	0.00	12.02	21.65	0.17	53.55	0.40	13.09	101.03
	0.55 0.56 0.39 0.29 0.48 0.75 0.65 0.42 0.98 0.64 0.66 0.31 0.24 0.04 0.04 0.03 0.15 0.15	0.55 0.11 0.56 0.56 0.39 0.08 0.29 0.02 0.48 0.03 0.75 0.06 0.65 0.25 0.42 0.07 0.98 0.09 0.64 0.02 0.66 0.04 0.31 0.00 0.24 0.01 0.03 0.00 0.15 0.00	0.550.119.020.560.568.670.390.088.060.290.027.210.480.038.570.750.0611.250.650.2511.750.420.078.750.980.0910.530.640.0214.690.660.0413.310.310.0010.100.240.019.750.040.0112.340.030.0011.050.150.0013.00	0.550.119.0220.560.560.568.6718.940.390.088.0621.440.290.027.2118.380.480.038.5720.660.750.0611.2517.220.650.2511.7516.300.420.078.7520.880.980.0910.5316.790.640.0214.6915.350.660.0413.3117.270.310.0010.1019.760.240.019.7520.170.030.0011.0522.300.150.0013.0020.870.150.0012.0221.65	0.550.119.0220.560.420.560.568.6718.940.580.390.088.0621.440.360.290.027.2118.380.240.480.038.5720.660.420.750.0611.2517.220.330.650.2511.7516.300.460.420.078.7520.880.310.980.0910.5316.791.100.640.0214.6915.350.260.660.0413.3117.270.270.310.0010.1019.760.200.240.019.7520.170.160.030.0011.0522.300.140.030.0013.0020.870.230.150.0012.0221.650.17	0.550.119.0220.560.4253.080.560.568.6718.940.5854.550.390.088.0621.440.3653.390.290.027.2118.380.2453.830.480.038.5720.660.4252.100.750.0611.2517.220.3351.630.650.2511.7516.300.4653.300.420.078.7520.880.3153.180.980.0910.5316.791.1052.560.640.0214.6915.350.2651.470.660.0413.3117.270.2751.750.310.0010.1019.760.2052.530.240.019.7520.170.1653.850.040.0112.3422.300.1453.620.030.0011.0522.300.1654.210.150.0012.0221.650.1753.55	0.550.119.0220.560.4253.082.500.560.568.6718.940.5854.553.360.390.088.0621.440.3653.391.660.290.027.2118.380.2453.832.060.480.038.5720.660.4252.102.620.750.0611.2517.220.3351.632.890.650.2511.7516.300.4653.302.980.420.078.7520.880.3153.181.790.980.0910.5316.791.1052.565.370.640.0214.6915.350.2651.470.630.660.0413.3117.270.2751.750.820.310.0010.1019.760.2052.530.780.240.019.7520.170.1653.850.500.040.0112.3422.300.1453.620.190.030.0011.0522.300.1654.210.230.150.0013.0020.870.2353.090.580.150.0012.0221.650.1753.550.40	0.550.119.0220.560.4253.082.5015.020.560.568.6718.940.5854.553.3613.430.390.088.0621.440.3653.391.6615.620.290.027.2118.380.2453.832.0618.990.480.038.5720.660.4252.102.6214.770.750.0611.2517.220.3351.632.8915.510.650.2511.7516.300.4653.302.9815.590.420.078.7520.880.3153.181.7915.370.980.0910.5316.791.1052.565.3713.790.640.0214.6915.350.2651.470.6316.010.660.0413.3117.270.2751.750.8214.970.310.0010.1019.760.2052.530.7816.360.040.0112.3422.300.1453.620.1912.360.030.0011.0522.300.1654.210.2312.810.150.0013.0020.870.2353.090.5812.920.150.0012.0221.650.1753.550.4013.09

Piroxenos bajos en calcio

Muestra	TiO2	K2O	FeO	CaO	Na2O	SiO2	Al2O3	MgO	Total
CVTZ-10-10	0.15	0.00	19.82	0.70	0.03	53.69	1.43	24.97	100.80
CVTZ-10-11	0.14	0.04	20.86	0.71	0.02	53.90	1.15	24.58	101.39
CVTZ-10-12	0.15	0.01	21.05	0.64	0.00	54.12	1.09	23.48	100.54
CVTZ-10-13	0.21	0.04	18.62	0.91	0.09	53.30	1.57	25.19	99.95
CVTZ-10-15	0.23	0.04	20.81	0.65	0.01	52.72	2.36	23.78	100.59
CVTZ-10-16	0.29	0.00	18.59	1.03	0.02	53.52	2.09	24.45	99.99
CVTZ-10-17	0.16	0.10	19.08	0.81	0.10	54.27	2.19	23.52	100.23
CVTZ-10-18	0.19	0.03	19.51	0.69	0.03	53.71	1.74	24.59	100.49
CVTZ-10-19	0.37	0.02	18.66	0.96	0.04	52.47	3.27	25.04	100.84
CVTZ-10-5	0.18	0.01	20.00	0.75	0.01	54.22	1.32	24.80	101.28
CVTZ-10-6	0.15	0.01	22.47	0.65	0.00	53.63	1.05	23.29	101.26
CVTZ-11-10	0.34	0.03	18.95	3.82	0.06	53.06	1.10	22.43	99.79
CVTZ-11-11	0.37	0.05	21.11	3.08	0.09	49.50	1.95	24.28	100.43
CVTZ-11-12	0.31	0.04	13.87	1.84	0.11	53.75	1.52	27.69	99.12
CVTZ-11-15	0.36	0.09	20.27	2.14	0.18	53.99	1.49	22.78	101.29
CVTZ-11-16	0.39	0.20	15.53	1.77	0.14	54.06	2.63	25.40	100.12
CVTZ-11-17	0.28	0.04	18.55	1.75	0.07	53.33	2.63	24.65	101.29
CVTZ-11-18	0.36	0.02	16.64	2.00	0.07	54.45	1.10	26.20	100.84
CVTZ-11-26	0.25	0.02	13.93	1.42	0.06	54.91	1.02	28.12	99.73
CVTZ-11-39	0.25	0.05	14.37	1.54	0.06	54.52	2.13	27.44	100.36
CVTZ-11-43	0.32	0.11	16.86	3.35	0.08	53.81	2.25	24.33	101.11
CVTZ-11-48	0.29	0.17	18.52	1.28	0.14	53.76	1.08	23.91	99.14
CVTZ-11-52	0.38	0.01	17.36	2.15	0.05	52.96	1.57	26.29	100.75
CVTZ-11-55	0.41	0.02	17.02	1.93	0.03	54.04	1.70	26.16	101.30
CVTZ-11-56	0.37	0.01	16.58	2.00	0.06	54.09	1.18	26.31	100.60
CVTZ-11-58	0.39	0.03	16.29	2.29	0.04	54.17	1.69	25.42	100.31
CVTZ-11-59	0.36	0.01	16.16	1.79	0.03	54.44	1.07	27.11	100.96

CV/T7 11 62	0 20	0.02	19.06	1 95	0.07	52 95	1 5 2	25 /0	101 24
CV12-11-62	0.58	0.02	18.00	1.85	0.07	55.65	1.55	25.49	101.24
CV12-11-04	0.52	0.30	22.51	2.17	0.18	55.15	1.39	20.62	100.83
CV1Z-11-7	0.35	0.03	14.03	1.88	0.03	54.57	1.95	28.20	101.04
CV1Z-11-70	0.45	0.00	18.72	2.07	0.04	53.59	1.32	24.71	100.88
CV1Z-11-72	0.36	0.00	16.46	1.91	0.03	53.54	1.50	27.07	100.93
CV1Z-11-79	0.73	0.05	15.08	13.22	0.18	52.36	1.69	17.11	100.41
CV1Z-11-9	0.25	0.01	12.78	1.59	0.02	54.47	3.13	29.11	101.35
CV1Z-12-12	0.18	0.02	17.58	1.31	0.00	53.//	2.17	26.11	101.14
CV1Z-12-13	0.27	0.00	16.44	1.30	0.01	53.99	2.53	26.76	101.29
CVTZ-12-15	0.37	0.00	14.53	1.60	0.01	53.41	3.59	27.27	100.79
CVTZ-12-16	0.29	0.01	20.42	2.06	0.01	53.83	1.24	23.33	101.17
CVTZ-12-17	0.30	0.18	18.47	1.54	0.09	54.71	1.94	23.99	101.20
CVTZ-12-18	0.32	0.00	20.86	2.14	0.03	52.41	1.35	23.22	100.33
CVTZ-12-2	0.32	0.05	19.70	1.48	0.05	53.11	1.70	23.58	99.99
CVTZ-12-27	0.28	0.03	19.19	1.58	0.02	53.80	1.51	24.24	100.65
CVTZ-12-28	0.28	0.00	19.12	1.64	0.02	53.71	1.61	24.83	101.21
CVTZ-12-29	0.50	0.23	17.95	1.50	0.22	55.47	2.20	22.61	100.69
CVTZ-12-30	0.27	0.05	20.00	1.70	0.00	53.64	1.39	23.39	100.45
CVTZ-12-31	0.30	0.07	20.55	1.95	0.06	53.55	1.20	23.31	100.98
CVTZ-12-32	0.34	0.00	17.91	1.72	0.12	53.95	1.72	25.50	101.26
CVTZ-12-33	0.33	0.02	21.48	3.12	0.05	52.56	1.29	22.31	101.16
CVTZ-12-34	0.33	0.01	19.39	1.87	0.00	53.63	1.30	24.66	101.19
CVTZ-12-35	0.34	0.01	19.60	1.64	0.06	53.40	1.54	24.67	101.25
CVTZ-12-36	0.30	0.03	20.00	1.99	0.25	53.44	2.42	22.63	101.07
CVTZ-12-38	0.29	0.00	19.17	1.65	0.02	53.61	1.34	24.19	100.27
CVTZ-12-39	0.30	0.00	19.41	2.26	0.01	52.97	1.17	24.17	100.29
CVTZ-12-40	0.62	0.43	18.94	2.38	0.27	53.59	2.49	21.22	99.93
CVTZ-12-41	0.38	0.02	20.20	2.17	0.02	52.71	1.52	23.07	100.09
CVTZ-12-42	0.35	0.00	20.14	2.07	0.00	52.94	1.18	23.57	100.24
CVTZ-12-43	0.16	0.00	14.00	1.29	0.07	55.22	2.17	28.36	101.27
CVTZ-12-45	0.32	0.00	19.50	1.61	0.01	53.77	2.06	24.06	101.33
CVTZ-12-47	0.19	0.01	14.90	1.17	0.02	54.34	2.13	28.40	101.15
CVTZ-12-48	0.25	0.00	16.33	1.33	0.06	54.05	2.03	27.06	101.10
CVTZ-12-49	0.18	0.01	13.93	1.39	0.04	55.41	1.39	29.00	101.34
CVTZ-12-51	0.24	0.03	18.23	1.59	0.00	54.38	1.19	25.68	101.34
CVTZ-12-54	0.31	0.03	19.21	1.92	0.03	52.50	1.64	23.68	99.33
CVTZ-12-55	0.26	0.01	20.70	1.60	0.00	53.38	1.14	23.14	100.23
CVTZ-12-58	0.22	0.06	19.79	2.01	0.32	53.53	2.06	22.96	100.94
CVTZ-12-59	0.33	0.24	16.63	2.07	0.69	55.85	3.97	20.83	100.62
CVTZ-12-60	0.28	0.02	21.02	3.08	0.10	52.00	1.32	22.46	100.28
CVTZ-12-61	0.34	0.01	21.75	2.59	0.07	51.77	1.32	22.33	100.18
CVTZ-12-62	0.31	0.02	20.35	1.78	0.02	52.53	1.41	23.54	99.97
CVTZ-12-63	0.32	0.24	17.77	1.57	0.22	54.99	2.31	23.37	100.78
CVT7-12-65	0.31	0.04	19.99	1.69	0.03	53.02	1.74	23.49	100.31
CVT7-12-66	0.30	0.57	19.85	1.94	0.22	54.01	2.08	21.69	100.66
CVT7-12-67	0.29	0.04	19 46	1 73	0.07	53 39	1 77	24.13	100.87
CVT7-12-68	0.25	0.01	19.00	1 51	0.01	53.69	1 38	25.09	100.96
CVT7-12-69	0.25	0.02	20.23	2.31	0.01	52.65	1 34	23.05	100.50
CVT7-12-70	0.33	0.02	19 57	1 51	0.01	53 36	1 22	23.50	100.00
CVT7-12-71	0.24	0.00	17 9/	1.51	0.00	53.50 5 <u>4</u> 11	1 09	27.00	100.70
CVT7-12-72	0.23	0.01	17 95	1 7/	0.54	55 10	4 55	20.74	101 21
CVT7-12-72	0.20	0.41	19.22	2.74	0.50	54.28	دد. ب ۲.55 ۲.15	20.75	101.31
UVIL IL /J	0.0+	0.09	±J.2J	2.24	0.01	57.20	J.1J	21.07	TOT.01

0 (77 40 74	0.04	0.00	40.67	4 7 4	0.00	52.02	4.40	24.62	400.40
CV1Z-12-74	0.24	0.02	18.67	1./4	0.02	53.93	1.18	24.62	100.42
CVTZ-12-75	0.36	0.01	19.54	2.01	0.05	53.51	1.32	24.21	101.00
CVTZ-12-76	0.28	0.01	19.30	1.63	0.00	53.32	1.28	24.36	100.18
CVTZ-12-77	0.36	0.02	20.12	2.09	0.04	53.11	1.24	23.46	100.43
CVTZ-12-79	0.14	0.00	14.67	1.13	0.02	54.76	2.17	28.17	101.06
CVTZ-12-80	0.43	0.21	16.11	1.33	0.19	57.20	2.40	23.33	101.21
CVTZ-12-81	0.14	0.02	13.90	1.19	0.02	54.62	1.62	29.08	100.57
CVTZ-12-82	0.16	0.01	14.39	1.31	0.04	54.36	2.00	28.35	100.62
CVTZ-12-9	0.25	0.00	18.44	1.80	0.03	53.30	1.27	24.32	99.41
CVTZ-4-1	0.15	0.00	14.29	1.41	0.01	55.16	1.56	28.31	100.88
CVTZ-4-16	0.24	0.10	18.54	1.21	0.08	52.72	3.33	24.58	100.78
CVTZ-4-2	0.29	0.29	19.06	1.94	0.07	54.24	2.56	22.77	101.22
CVTZ-4-3	0.26	0.02	18.08	1.29	0.02	53.28	2.43	25.20	100.57
CVTZ-4-4	0.33	0.11	24.28	1.22	0.06	51.57	2.68	20.53	100.78
CVTZ-4-8	1.02	0.62	24.11	1.25	0.05	53.62	2.38	18.33	101.37
CVTZ-5-11	0.82	1.56	14.66	3.63	1.23	60.83	4.85	13.34	100.91
CVTZ-5-12	1.54	0.06	14.54	14.70	0.30	51.63	2.51	15.91	101.20
CVTZ-5-13	0.70	0.14	17.63	7.62	0.37	53.21	2.03	18.22	99.91
CVTZ-5-14	0.09	1.20	24.68	1.54	1.76	45.49	7.14	18.60	100.49
CVTZ-5-15	1.04	0.05	15.32	13.22	0.20	52.21	1.94	16.50	100.48
CVTZ-5-16	0.08	0.11	30.60	1.63	1.40	40.13	6.43	19.69	100.08
CVTZ-5-17	1.18	0.13	12.84	14.99	0.93	52.22	4.10	13.85	100.22
CVTZ-5-21	1.13	0.21	12.40	14.62	0.58	53.18	3.08	14.92	100.12
CVTZ-5-23	1.87	0.21	11.16	14.09	1.64	52.77	7.11	12.17	101.01
CVTZ-5-3	1.25	0.27	13.26	13.69	0.42	53.14	2.57	15.66	100.25
CVTZ-5-4	1.49	0.74	17.25	5.43	0.70	54.47	3.08	16.92	100.07
CVTZ-5-5	0.99	0.37	14.47	6.16	0.95	54.46	3.84	19.12	100.36
CVTZ-5-9	1.03	0.26	10.30	14.51	1.58	53.58	6.66	12.57	100.48
CVTZ-6-14	0.34	0.03	20.45	1.63	0.02	53.47	1.42	23.56	100.91
CVTZ-6-15	0.15	0.01	14.21	1.84	0.02	55.29	1.19	28.43	101.14
CVTZ-6-16	0.20	0.01	17.92	0.91	0.07	53.38	2.20	25.81	100.48
CVTZ-6-17	0.30	0.03	16.59	1.20	0.05	53.92	3.38	25.14	100.60
CVTZ-6-19	0.21	0.02	19.28	1.09	0.02	52.52	2.65	24.22	100.01
CVT7-6-20	0.14	0.02	14.38	1.38	0.01	55.55	1.63	28.23	101.33
CVT7-6-27	0.32	0.10	19.96	1.05	0.04	52.57	3.31	23.18	100.53
CVT7-6-28	0.25	0.00	15.24	1.32	0.01	53.67	2.90	27.83	101.21
CVT7-6-3	0.24	0.10	16.84	1.08	0.05	53 44	4 47	23.84	100.07
CVTZ-6-32	0.18	0.02	15 19	1 45	0.02	54 84	1.63	27.69	101.01
CVTZ-6-33	0.15	0.01	15.25	1 47	0.03	54 72	1.65	27.05	101.01
CVTZ-6-5	0.15	0.01	17 44	1 41	0.00	54 74	1.05	26 51	101.34
CVTZ-6-7	0.15	0.01	18.40	1.41	0.00	53/3	2 10	26.02	101.34
CVTZ-6-8	0.20	0.02	17.05	1.05	0.05	53 56	2.10	20.02	99.22
CVTZ 0 0	0.17	0.04	18 36	1.05	0.04	52.00	1.26	24.54	100 63
CVTZ-7-1	0.25	0.01	16.50	1.05	0.05	52.54	2.10	25.75	100.03
CVTZ-7-10	0.29	0.02	10.05	1.04	0.05	55.15	1 42	20.10	101.19
CVTZ-7-11	0.24	0.01	17.06	1.11	0.01	54.07	1.42	25.54	101.07
CV1Z-7-1Z	0.13	0.00	10.01	1.54	0.02	54.27	1.23	25.78	101.78
CV1Z-7-13	0.23	0.01	10 56	1.24	0.04	55.02	1.07	25.50	100.30
CV1Z-7-15	0.24	0.03	10.50	1.79	0.03	52.90	1.45	20.39 DE 40	100.37
CV1Z-7-10	0.19	0.01	10.70	1.41	0.03	53.50	1.12	25.42	101.00
CV1Z-7-17	0.17	0.02	10.02	1.55	0.03	53./8	1.48	25.08 25.05	100.00
CV1Z-7-19	0.25	0.01	10.75	1.10	0.02	53.83	1.24	25.05	100.86
UV12-7-2	0.25	0.01	19.00	1.41	0.01	53.28	1.26	25.70	99.97

CVTZ-7-21	0.22	0.00	18.14	1.20	0.05	53.58	1.57	25.60	100.36
CVTZ-7-23	0.23	0.01	18.38	0.98	0.04	54.20	1.06	26.05	100.94
CVTZ-7-24	0.18	0.03	18.49	1.46	0.05	53.96	1.34	25.31	100.82
CVTZ-7-25	0.22	0.04	18.67	1.16	0.02	54.12	1.55	25.48	101.27
CVTZ-7-26	0.22	0.00	19.02	1.29	0.00	53.32	1.25	25.39	100.48
CVTZ-7-3	0.23	0.04	19.63	1.13	0.04	53.63	1.52	24.42	100.62
CVTZ-7-5	0.21	0.00	17.95	1.23	0.01	53.36	1.22	25.79	99.77
CVTZ-7-6	0.22	0.02	18.26	1.19	0.00	53.71	1.58	26.29	101.27
CVTZ-7-7	0.23	0.00	18.01	1.34	0.03	53.91	1.21	25.39	100.11
CVTZ-7-8	0.23	1.04	12.51	1.94	1.67	59.56	7.94	15.11	100.00
CVTZ-7-9	0.21	0.04	17.71	1.46	0.01	53.44	1.19	25.00	99.06
CVT7-8-11	0.26	0.10	16.80	1.42	0.08	54.02	2.09	25.34	100.11
CVT7-8-12	0.25	0.08	16.15	1.54	0.12	54.41	1.73	25.39	99.65
CVT7-8-13	0.41	0.49	18 47	1 60	0.19	54 73	3.04	21 57	100 51
CVTZ-8-17	0.34	0.15	19.83	1 37	0.22	53 30	2 02	22.37	99 99
CVTZ-8-18	0.34	0.13	15.84	1.57	0.22	53.07	3.02	25.70	99.61
CVTZ-8-19	0.20	0.05	18 7/	1.57	0.05	53.07	1 75	23.75	100.22
CVTZ 8 15	0.25	0.00	19.00	1.17	0.05	55 35	2 35	24.55	100.22
CVTZ 8 2	0.33	0.04	18.00	1.70	0.50	52.55	2.55	20.05	100.00
CVTZ-8-20	0.24	0.00	10.24	1.20	0.08	52.25	1.62	24.47	100 52
CVTZ-8-21	0.24	0.04	17.25	1.29	0.04	53.54	2.60	24.35	100.52
CV1Z-8-25	0.35	0.03	10.20	1.29	0.55	52.05	1 50	24.33	00.20
CVTZ-0-23	0.31	0.07	10.35	0.02	0.04	53.17	1.55	25.70	100 41
CVTZ-0-27	0.50	0.08	10.51 10 /E	1.20	0.07	52.95	2.55	25.25	100.41
CVTZ-0-5	0.27	0.02	10.45	1.20	0.05	55.40	14.10	24.70	100.10
CVTZ-0-50	0.27	0.59	20.27	4.20	2.52	54.00	14.19	12.10	100.01
CV1Z-8-4	0.41	0.11	20.37	1.43	0.13	52.02	1.74	23.02	99.22 100 FC
CV1Z-8-6	0.48	0.71	18.35	1.38	0.21	55.18	2.71	21.50	100.56
CV1Z-8-9	0.29	0.02	19.53	1.28	0.03	52.80	1.82	24.09	99.86
CV1Z-9-1	0.24	0.73	18.08	1.62	0.58	56.54	2.99	19.71	100.48
CV1Z-9-10	0.35	0.06	17.95	1.73	0.39	54.19	2.89	23.22	100.78
CV1Z-9-11	0.48	0.90	18.56	1.44	0.35	55.98	2.70	19.89	100.30
CV1Z-9-12	0.42	1.23	16.74	1.55	0.65	57.15	4.23	17.82	99.78
CV1Z-9-2	0.20	0.00	12.89	1.29	0.09	54.78	2.10	29.71	101.06
CV1Z-9-21	0.23	0.15	14.99	2.99	1.49	54.13	7.50	19.12	100.59
CV1Z-9-3	0.38	0.76	18.54	1.56	0.24	55.47	2./1	20.17	99.84
CV1Z-9-6	0.30	0.09	17.63	6.01	0.12	53.73	1.28	21.40	100.56
CV1Z-9-9	0.33	0.66	15.76	1.63	0.37	56.17	2.87	22.42	100.21
Mtg-7	0.26	0.13	23.96	12.35	0.20	50.55	3.35	8.71	99.49
CVTZ-11-20	0.24	0.01	15.85	1.25	0.01	54.71	0.75	28.15	100.96
CVTZ-11-24	0.22	0.00	13.97	1.40	0.00	54.69	0.86	28.73	99.88
CVTZ-11-30	0.18	0.03	16.91	1.39	0.02	55.10	0.34	27.09	101.05
CVTZ-11-31	0.20	0.02	14.26	1.37	0.00	54.56	0.84	29.04	100.29
CVTZ-11-32	0.21	0.04	16.03	1.39	0.11	54.25	0.73	26.84	99.60
CVTZ-11-33	0.21	0.02	18.01	1.39	0.02	54.28	0.43	25.68	100.03
CVTZ-11-34	0.18	0.02	17.05	1.49	0.05	55.11	0.27	25.96	100.12
CVTZ-11-37	0.23	0.00	15.37	1.26	0.01	53.92	0.92	27.51	99.22
CVTZ-11-40	0.14	0.02	14.16	1.36	0.03	55.53	0.40	28.49	100.13
CVTZ-11-41	0.24	0.02	14.05	1.49	0.02	55.00	0.83	28.30	99.95
CVTZ-11-44	0.19	0.01	15.47	1.45	0.01	54.90	0.57	28.07	100.66
CVTZ-11-47	0.23	0.02	16.23	1.40	0.01	54.23	0.97	26.93	100.02
CVTZ-11-50	0.25	0.03	15.51	1.39	0.06	54.04	0.93	28.03	100.21
CVTZ-12-13	0.17	0.01	17.09	1.49	0.03	54.34	0.87	26.51	100.51

CVTZ-12-18	0.20	0.01	19.74	1.46	0.00	54.04	0.59	24.80	100.84
CVTZ-12-9	0.17	0.00	20.78	1.49	0.02	53.85	0.62	24.44	101.38
CVTZ-2-2	0.16	0.01	17.73	1.42	0.05	55.10	0.59	26.18	101.24
CVTZ-2-23	0.13	0.00	17.01	1.38	0.00	54.82	0.65	26.53	100.52
CVTZ-2-27	0.17	0.01	19.15	1.03	0.03	54.49	0.81	25.40	101.09
CVTZ-2-30	0.18	0.03	21.94	1.36	0.05	51.70	0.78	21.25	97.29
CVTZ-2-35	0.20	0.02	19.05	1.18	0.05	53.95	0.82	25.67	100.94
CVTZ-2-4	0.17	0.03	18.39	1.39	0.01	53.68	0.65	25.25	99.56
CVTZ-2-41	0.22	0.01	20.04	1.10	0.00	53.54	0.75	24.54	100.19
CVTZ-2-42	0.11	0.01	18.27	1.20	0.01	54.65	0.32	25.89	100.46
CVTZ-2-49	0.24	0.01	19.87	1.10	0.03	54.13	0.72	25.28	101.38
CVTZ-2-51	0.13	0.02	21.10	0.89	0.06	53.62	0.44	24.33	100.58
CVTZ-2-54	0.15	0.02	20.10	0.88	0.00	54.14	0.49	24.67	100.45
CVTZ-2-55	0.23	0.02	18.36	1.23	0.04	53.68	0.84	25.81	100.20
CVTZ-2-56	0.26	0.00	17.67	1.26	0.05	53.81	0.93	26.32	100.30
CVTZ-2-57	0.22	0.00	18.43	1.02	0.03	53.59	0.73	25.71	99.73
CVTZ-2-58	0.13	0.01	19.35	0.91	0.02	54.27	0.53	25.64	100.86
CVTZ-2-59	0.17	0.01	19.75	1.22	0.00	53.83	0.60	25.14	100.71
CVTZ-2-60	0.23	0.01	20.16	0.97	0.03	54.15	0.68	25.11	101.34
CVT7-2-61	0.10	0.02	16.32	1.07	0.05	53.89	0.27	26.26	97.96
CVT7-2-62	0.15	0.03	19.10	1.05	0.10	52.49	0.75	24.25	97.92
CVT7-2-64	0.19	0.01	19.14	0.89	0.04	53.21	0.39	25.36	99.21
CVT7-2-67	0.08	0.00	19.41	0.60	0.01	53.75	0.19	24.95	98.98
CVTZ-2-69	0.00	0.00	19.11	0.69	0.00	53.98	0.25	24.75	99 31
CVTZ-2-70	0.22	0.03	19.61	0.94	0.06	53.66	0.23	24.78	99.21
CVTZ-2-71	0.22	0.03	21 25	0.99	0.04	52.60	0.11	23 31	98.87
CVTZ-2-72	0.20	0.00	21.25	1.03	0.02	52.05	0.31	23.51	98 54
CVTZ-2-9	0.13	0.02	18 49	1.05	0.02	54 72	0.55	25.10	101 07
CVTZ-3-3	0.13	0.02	14 91	1.42	0.02	55.95	0.00	23.07	100.56
CVTZ-6-2	0.12	0.00	14.01	1.00	0.01	54.94	0.42	28.15	90.50
CVTZ-6-5	0.11	0.01	18.60	1.55	0.00	54.87	0.54	25.05	101 14
CVTZ-6-6	0.13	0.01	21 /7	1.13	0.00	54.36	0.33	22.75	100.46
CVTZ-7-11	0.17	0.02	18 72	0.97	0.02	5/ 31	0.42	22.05	101.40
CVTZ 7 11	0.17	0.02	18.05	1 30	0.00	54.20	0.00	25.05	101.10
CVTZ 7 15	0.17	0.00	18 55	1.00	0.04	54.42	0.05	25.55	101.33
CVTZ 7 10	0.12	0.00	18.07	1.04	0.01	54.87	0.70	25.27	101.10
CVTZ-7-13	0.18	0.00	17.01	1.22	0.04	54.07	0.71	25.50	101.04
CVTZ-7-21	0.24	0.05	18 50	1.27	0.01	54.07	0.57	25.50	100.00
CVTZ-7-22	0.19	0.00	10.33	1.01	0.03	54.70	0.71	20.10	101.33
CVTZ-7-24	0.16	0.01	17.64	1.30	0.03	54.02	0.80	20.19	00.27
CVTZ-7-25	0.10	0.02	10/15	1.09	0.00	54.52	0.70	25.20	100.97
CVTZ-7-20	0.15	0.00	10.45	1.33	0.05	54.40	0.07	23.70	100.07
CVTZ-7-27	0.10	0.01	19.60	1.57	0.01	55.95 EA 12	0.00	24.95	100.95
CVTZ-7-50	0.19	0.00	10.49	1.55	0.02	54.12	0.05	25.00	100.01
CV1Z-7-33	0.25	0.02	21.75	1.13	0.04	54.75 53.26	0.92	20.04	100.94
CV1Z-7-6	0.23	0.04	21.35	1.06	0.04	52.30	0.88	23.19	99.14 100.24
$CVIZ-7-\delta$	0.20	0.00	10.20	1.40	0.01	54.5Z	0.87	25.90	100.34
CV1Z-7-9	0.19	0.00	17.20	1.30	0.02	54.03	0.91	25.05	100.36
CV1Z-8-29	0.13	0.01	1050	0.90	0.03	54.99	0.08	20.05	100.21
CVIZ-0-31	0.17	0.02	10.59	1.32	0.03	54.44	0.74	23.39	101.70
CVIZ-0-33	0.24	0.01	19./3	1.1/	0.03	54.U/	0.92	24.88 24.07	100.72
CVIZ-0-33	0.20	0.02	10.43	1.39	0.01	54.91 E4 20	0.80	24.97	101.73
UV12-3-14	0.10	0.01	20.22	1.13	0.00	34.29	0.72	24./Ö	101.37

CVTZ-9-25	0.16	0.02	18.20	1.35	0.04	54.58	0.71	26.15	101.20
CVTZ-9-38	0.14	0.03	16.76	1.32	0.05	55.05	0.68	26.18	100.19
CVTZ-9-41	0.17	0.01	17.61	1.47	0.03	54.56	0.70	25.68	100.23
CVTZ-9-44	0.19	0.01	18.42	1.22	0.05	54.12	0.72	25.61	100.32
CVTZ-9-45	0.19	0.01	18.82	1.18	0.04	54.81	0.66	25.27	100.97
Mtg-10	0.15	0.01	30.07	1.07	0.00	52.05	0.30	17.60	101.27
Mtg-11	0.18	0.01	29.93	0.99	0.04	52.37	0.34	17.54	101.40
Mtg-15	0.24	0.01	28.53	1.39	0.00	52.34	0.41	17.81	100.73
Mtg-16	0.25	0.00	28.91	1.30	0.00	52.41	0.39	17.88	101.15
Mtg-17	0.14	0.03	29.30	0.97	0.02	52.29	0.26	17.53	100.54
Mtg-19	0.27	0.01	28.96	1.20	0.02	52.22	0.42	17.51	100.61
Mtg-20	0.17	0.00	29.36	1.12	0.03	51.80	0.34	17.54	100.37
Mtg-4	0.29	0.01	29.25	1.29	0.03	52.19	0.46	17.86	101.37
Mtg-5	0.29	0.00	28.14	1.31	0.02	52.20	0.51	18.74	101.22
Mtg-8	0.24	0.00	29.10	1.32	0.00	51.94	0.50	18.11	101.20
CVTZ-10-2	0.12	0.02	19.36	1.05	0.05	54.59	0.59	24.91	100.68
CVTZ-10-2	0.12	0.02	19.36	1.05	0.05	54.59	0.59	24.91	100.68

3. Química mineral anfíboles

Muestra	TiO2	К2О	FeO	CaO	Na2O	SiO2	Al2O3	MgO	Total
CVTZ-6-1	2.573	0.375	11.904	10.986	1.645	43.394	12.008	14.645	97.53
CVTZ-6-2	2.593	0.389	12.147	10.941	1.734	43.462	12.172	14.853	98.291
CVTZ-6-3	2.646	0.378	11.923	10.861	1.906	43.624	12.335	15.112	98.785
CVTZ-6-4	2.654	0.382	12.644	11.091	1.78	43.366	12.397	14.676	98.99
CVTZ-6-5	2.546	0.395	13.6	10.472	1.817	43.466	11.847	14.406	98.549
CVTZ-6-6	2.528	0.38	12.786	11.13	1.853	43.308	11.748	14.447	98.18
CVTZ-6-7	2.647	0.356	12.325	10.942	1.792	43.495	12.559	15.139	99.255
CVTZ-6-8	2.721	0.384	12.301	10.963	1.869	43.472	12.643	15.133	99.486
CVTZ-6-9	2.716	0.412	12.323	11.122	1.883	43.072	12.482	14.536	98.546
CVTZ-6-10	2.735	0.437	11.723	10.097	1.921	43.113	12.337	14.666	97.029
CVTZ-6-11	2.637	0.415	12.516	11.044	1.791	43.381	11.646	14.463	97.893
CVTZ-6-12	2.68	0.433	12.259	11.249	2.017	43.516	12.464	14.964	99.582
CVTZ-6-13	2.784	0.43	12.173	11.012	1.891	43.442	12.382	14.741	98.855
CVTZ-6-14	2.661	0.405	11.537	10.886	2.002	43.668	12.079	15.11	98.348
CVTZ-6-15	2.603	0.479	11.342	11.267	1.304	43.399	12.912	14.912	98.218
CVTZ-6-16	2.66	0.482	13.122	11.193	1.484	42.466	12.674	13.494	97.575
CVTZ-6-18	2.383	0.445	11.519	10.674	1.58	44.277	12.461	14.238	97.577
CVTZ-6-19	2.533	0.427	10.978	11.194	1.502	43.476	12.701	14.709	97.52
CVTZ-6-20	2.684	0.419	13.551	10.898	1.522	42.04	13.018	13.758	97.89
CVTZ-4-4	2.901	0.599	14.224	10.85	1.883	43.063	11.962	13.181	98.663
CVTZ-4-5	3.295	0.599	17.537	9.572	1.598	41.919	12.186	11.908	98.614
CVTZ-4-6	3.088	0.275	20.963	9.104	1.09	43.605	11.668	10.033	99.826
CVTZ-4-7	1.638	0.467	18.952	9.26	1.638	43.096	11.873	11.432	98.356
CVTZ-4-10	2.523	0.621	17.953	10.23	1.779	42.384	12.556	11.352	99.398
CVTZ-4-11	1.431	0.454	13.501	10.153	2.112	46.858	13.765	11.449	99.723
CVTZ-4-13	2.728	0.645	16.771	10.8	1.758	42.512	12.396	11.868	99.478
CVTZ-4-15	1.529	0.542	19.295	8.41	2.052	44.477	12.566	11.049	99.92
CVTZ-4-17	2.893	0.665	15.06	10.794	1.624	43.107	12.129	12.264	98.536
CVTZ-4-18	3.039	0.635	14.389	10.974	1.598	43.394	11.842	13.229	99.1
CVTZ-4-19	3.276	0.693	13.831	11.132	1.812	43.63	11.785	13.526	99.685
CVTZ-4-20	2.523	0.559	16.614	10.216	1.792	42.665	12.569	12.411	99.349
CVTZ-10-1	2.725	0.376	14.096	10.716	1.773	43.3	11.478	13.981	98.445
CVTZ-10-2	2.014	0.453	12.438	10.957	1.356	46.34	9.284	14.767	97.609
CVTZ-10-3	2.485	0.493	12.685	11.328	1.824	43.632	11.618	14.7	98.765
CVTZ-10-4	2.212	0.453	9.869	10.724	1.848	44.045	12.85	15.799	97.8
CVTZ-10-5	2.311	0.482	10.414	11.181	1.851	43.84	12.561	15.637	98.277
CVTZ-10-6	2.187	0.472	11.851	10.858	1.804	43.298	12.602	14.76	97.832
CVTZ-10-7	2.144	0.474	12.461	11.096	1.889	43.556	12.732	14.394	98.746
CVTZ-10-8	2.192	0.49	12.732	10.836	1.766	44.584	10.755	14.313	97.668

CVTZ-10-9	2.241	0.466	11.038	10.8	1.981	44.242	12.554	15.814	99.136
CVTZ-10-10	2.405	0.466	11.919	10.857	1.923	45.069	11.087	15.241	98.967
CVTZ-10-11	2.377	0.464	12.559	11.001	1.979	43.564	12.093	14.827	98.864
CVTZ-10-12	1.96	0.467	14.035	10.829	1.834	46.397	9.506	14.827	99.855
CVTZ-10-13	1.996	0.487	13.886	10.545	1.901	42.482	9.948	12.975	94.22
CVTZ-10-14	3.191	2.73	14.735	7.75	1.839	41.963	13.097	13.717	99.022
CVTZ-10-15	3.062	2.807	14.3	7.613	1.668	41.209	12.854	13.656	97.169
CVTZ-10-16	2.501	0.544	13.48	10.367	1.907	44.993	9.795	14.392	97.979
CVTZ-10-17	2.102	0.45	14.136	11.115	1.738	46.162	9.108	14.826	99.637
CVTZ-10-19	2.744	0.459	13.93	10.799	1.721	44.962	10.246	14.359	99.22
CVTZ-10-20	2.672	0.54	11.037	10.908	2.092	43.1	12.288	14.539	97.176
CVTZ-10-21	2.249	0.509	12.674	11.069	1.812	45.413	10.282	14.812	98.82
CVTZ-10-22	2.488	0.592	12.542	10.824	2.092	43.395	12.357	14.58	98.87
CVTZ-10-23	2.449	0.562	11.145	11.049	1.998	43.46	12.749	14.809	98.221
CVTZ-10-24	2.089	0.457	12.559	10.784	2.108	43.517	12.323	14.78	98.617
CVTZ-10-25	2.318	0.476	12.265	11.085	1.811	44.304	11.045	14.344	97.648
CVTZ-10-26	1.707	0.409	13.679	10.289	1.284	47.494	7.822	14.754	97.438
CVTZ-10-27	2.198	0.413	12.767	10.955	1.747	44.337	11.237	15.038	98.692
CVTZ-10-28	2.335	0.454	12.475	11.346	1.714	44.184	11.027	14.595	98.13
CVTZ-10-29	2.387	0.471	12.567	11.212	1.702	43.6	11.804	14.655	98.398
CVTZ-10-30	2.313	0.487	13.032	11.212	1.844	43.598	11.563	14.35	98.399
CVTZ-10-31	2.37	0.468	12.6	11.069	1.703	44.402	11.074	14.839	98.525
CVTZ-10-32	2.305	0.496	12.153	10.932	1.699	44.483	10.662	14.91	97.64
CVTZ-10-33	2.064	0.448	10.558	10.904	1.834	43.315	12.634	16.059	97.816

4. Química mineral plagioclasas

Muestra	K2O	%	CaO	%	SiO2	%	Na20) %	Al2	03 %	Tota	al	An%	
Mtg-1		0.171		8.878		56.247		6.677		26.905		98.878		42
Mtg-2		0.169		9.332		55.804		6.806		27.505		99.616		43
Mtg-3		0.153		9.514		55.375		6.338		27.531		98.911		45
Mtg-4		0.205		8.207		57.199		7.394		26.502		99.507		38
Mtg-5		0.209		8.121		56.699		7.221		25.953		98.203		38
Mtg-6		0.199		8.252		58.011		7.067		26.16		99.689		39
Mtg-7		0.246		7.54		58.109		7.685		25.943		99.523		35
Mtg-8		0.231		7.704		58.347		7.74		25.855		99.877		35
Mtg-9		0.238		9.394		55.591		6.089		27.432		98.744		45
Mtg-10		0.23		9.716		55.488		6.442		27.875		99.751		45
Mtg-11		0.227		9.563		55.523		6.326		27.755		99.394		45
Mtg-12		0.225		9.752		55.714		6.253		27.712		99.656		46
Mtg-13		0.207		8.631		56.797		6.982		26.641		99.258		40
Mtg-14		0.2		8.166		57.267		7.467		26.395		99.495		37
Mtg-15		0.222		8.648		56.992		6.382		26.482		98.726		42
Mtg-16		0.212		8.013		57.872		7.072		26.12		99.289		38
Mtg-17		0.249		9.01		56.181		6.642		26.936		99.018		42
Mtg-18		0.252		8.825		56.136		6.652		27.052		98.917		42
Mtg-19		0.238		8.882		56.378		6.848		26.99		99.336		41
Mtg-20		0.261		8.96		56.576		6.756		27.019		99.572		42
Mtg-21		1.611		5.572		59.805		7.498		23.769		98.255		26
Mtg-22		0.396		6.234		60.273		7.641		24.677		99.221		30
Mtg-23		0.421		6.593		59.213		8.262		24.689		99.178		30
Mtg-24		0.422		6.512		59.21		7.899		24.583		98.626		31
Mtg-25		0.149		9.551		55.575		6.165		27.887		99.327		46
Mtg-26		0.229		9.624		55.709		6.346		27.492		99.4		45
Mtg-27		0.184		9.491		55.537		6.443		27.642		99.297		44
Mtg-28		0.177		9.581		55.716		6.304		27.595		99.373		45
Mtg-29		0.285		6.001		60.01		7.656		24.348		98.3		30
Mtg-30		0.283		5.977		59.991		8.649		24.509		99.409		27
Mtg-31		0.26		6.057		60.082		8.783		24.489		99.671		27
Mtg-32		0.291		5.921		60.162		8.653		24.428		99.455		27
G1-Plg-1		0.125		14.268		50.084		3.54		31.497		99.514		69
G1-Plg-2		0.131		14.027		50.45		3.644		31.201		99.453		68
G1-Plg-3		0.089		14.837		49.575		3.027		32.068		99.596		73
G1-Plg-4		0.117		14.39		49.607		3.047		31.907		99.068		72
G1-Plg-5		0.357		10.413		55.419		5.888		27.956		100.033		48
G1-Plg-6		0.384		10.146		55.508		5.726		27.485		99.249		48
G1-Plg-7		0.304		10.685		54.732		5.515		28.235		99.471		51

G1-Plg-8	0.326	10.26	55.357	5.846	27.95	99.739	48
G1-Plg-9	0.349	9.98	55.446	5.76	27.664	99.199	48
G1-Plg-10	0.348	9.937	55.748	5.947	27.527	99.507	47
G1-Plg-11	0.35	10.164	55.475	5.61	27.785	99.384	49
G1-Plg-12	0.348	10.664	55.086	5.559	27.69	99.347	50
G1-Plg-13	0.436	9.298	56.756	6.386	26.945	99.821	44
G1-Plg-14	0.407	9.293	56.315	6.413	26.731	99.159	43
G1-Plg-15	0.418	9.317	56.632	6.278	26.972	99.617	44
G1-Plg-16	0.395	9.832	55.871	5.799	27.564	99.461	47
G1-Plg-17	0.627	9.669	55.676	5.678	26.507	98.157	47
G1-Plg-18	0.147	14.434	50.007	3.202	30.953	98.743	71
G1-Plg-19	0.166	13.267	51.293	4.018	30.45	99.194	64
G1-Plg-20	0.14	13.927	50.745	3.517	30.68	99.009	68
G1-Plg-21	0.278	11.051	54.107	5.059	28.6	99.095	54
G1-Plg-22	0.283	10.926	54.659	5.266	28.627	99.761	53
G1-Plg-23	0.265	11.09	54.123	5.417	28.57	99.465	52
G1-Plg-24	0.222	11.231	54.349	5.051	28.824	99.677	54
G1-Plg-25	0.352	9.945	55.693	6.007	27.572	99.569	47
G1-Plg-26	0.376	9.552	56.047	5.889	27.317	99.181	46
G1-Plg-27	0.352	9.255	56.249	6.457	26.594	98.907	43
G1-Plg-28	0.381	9.236	56.494	6.295	26.786	99.192	44
G1-Plg-29	0.367	9.805	55.694	5.971	27.673	99.51	47
G1-Plg-30	0.298	11.153	53.715	5.252	28.59	99.008	53
G1-Plg-31	0.257	11.708	53.088	4.889	29.042	98.984	56
G1-Plg-32	0.318	10.58	54.79	5.575	27.963	99.226	50
G1-Plg-33	0.231	10.794	53.769	5.24	27.923	97.957	53
G1-Plg-34	0.209	11.099	54.186	5.36	28.09	98.944	53
G1-Plg-35	0.22	11.108	53.798	5.426	28.073	98.625	52
G1-Plg-36	0.231	11.094	54.748	5.527	28.276	99.876	52
G1-Plg-37	0.374	9.428	56.413	6.238	26.951	99.404	45
G1-Plg-38	0.324	10.28	55.034	5.905	27.747	99.29	48
G1-Plg-39	0.391	8.964	56.97	6.472	26.722	99.519	42
G1-Plg-40	0.333	10.577	55.33	5.772	27.81	99.822	49
G1-Plg-41	0.361	10.113	55.418	5.976	27.492	99.36	47
G1-Plg-42	0.334	10.158	55.377	5.623	27.494	98.986	49
G1-Plg-43	0.352	10.293	55.122	5.964	27.36	99.091	48
G1-Plg-44	0.371	9.823	55.502	6.138	27.378	99.212	46
G1-Plg-45	0.177	12.871	51.956	4.391	29.702	99.097	61
G1-Plg-46	0.164	12.162	52.121	4.475	29.769	98.691	59
G1-Plg-47	0.146	12.309	52.269	4.489	29.749	98.962	60
G1-Plg-48	0.229	11.464	52.914	5.056	28.69	98.353	55
G1-Plg-49	0.262	11.308	53.079	4.875	28.844	98.368	55

G1-Plg-50	0.268	11.323	53.742	5.188	28.737	99.258	54
G1-Plg-51	0.21	12.554	52.314	4.597	29.635	99.31	59
G1-Plg-52	0.197	12.862	52.076	4.572	29.973	99.68	60
G1-Plg-53	0.251	11.181	52.871	5.156	28.4	97.859	54
G1-Plg-54	0.26	11.247	53.279	5.278	28.463	98.527	53
G1-Plg-55	0.264	11.284	53.995	5.291	28.612	99.446	53
G1-Plg-56	0.227	11.97	52.605	4.951	29.324	99.077	56
G1-Plg-57	0.314	10.928	53.92	5.315	28.328	98.805	52
G1-Plg-58	0.259	11.549	52.507	4.882	28.909	98.106	56
G1-Plg-59	0.229	12.025	52.653	4.883	29.352	99.142	57
G1-Plg-60	0.275	11.56	53.125	4.886	29.02	98.866	56
G1-Plg-61	0.275	11.398	52.841	4.715	29.073	98.302	56
G1-Plg-62	0.232	12.081	52.355	4.375	29.524	98.567	60
G1-Plg-63	0.236	11.998	52.337	4.378	29.597	98.546	59
G1-Plg-64	0.256	11.565	52.964	4.568	28.864	98.217	57
G1-Plg-65	0.294	11.385	53.21	4.714	28.649	98.252	56
G1-Plg-66	0.299	11.503	53.441	5.022	28.712	98.977	55
G1-Plg-67	0.287	11.81	53.003	4.962	28.916	98.978	56
G1-Plg-68	0.276	11.779	53.046	4.759	29.067	98.927	57
G1-Plg-69	0.181	12.154	52.907	4.846	29.033	99.121	57
G1-Plg-70	0.219	11.249	53.554	5.356	28.578	98.956	53
G1-Plg-71	0.206	11.68	52.874	4.979	29.153	98.892	56
G1-Plg-72	0.212	11.749	52.565	4.923	28.892	98.341	56
G1-Plg-73	0.268	11.578	52.857	5.331	29.128	99.162	54
G1-Plg-74	0.277	11.457	53.13	5.099	28.823	98.786	55
G1-Plg-75	0.309	11.217	53.666	5.183	28.751	99.126	54
G1-Plg-76	0.296	11.094	53.913	5.154	28.614	99.071	53
G1-Plg-77	0.214	10.094	55.031	5.92	27.445	98.704	48
G1-Plg-78	0.264	9.867	55.348	6.082	27.651	99.212	47
G1-Plg-79	0.252	9.808	55.752	6.289	27.738	99.839	46
G1-Plg-80	0.251	10.07	55.145	6.016	27.695	99.177	47
G1-Plg-81	0.546	8.319	57.128	6.064	26.347	98.404	42
G1-Plg-82	0.542	8.009	57.427	6.875	26.25	99.103	38
G1-Plg-83	0.572	8.147	57.569	6.854	26.347	99.489	38
G1-Plg-84	0.552	8.062	57.402	6.884	26.117	99.017	38
G1-Plg-85	0.205	12.359	51.906	4.542	29.573	98.585	59
G1-Plg-86	0.254	11.984	52.836	4.867	29.165	99.106	57
G1-Plg-87	0.256	11.995	53.395	4.58	29.108	99.334	58
G1-Plg-88	0.266	11.535	53.598	5.026	29.094	99.519	55
G1-Plg-89	0.245	10.349	55.198	5.6	27.917	99.309	50
G1-Plg-90	0.333	8.824	56.685	6.581	27.053	99.476	42
G1-Plg-91	0.271	9.81	55.563	6.021	27.543	99.208	47

G1-Plg-92	0.285	9.784	55.265	6.258	27.564	99.156	46
G1-Plg-93	0.234	9.545	56.007	6.362	27.179	99.327	45
G1-Plg-94	0.235	9.497	56.328	5.745	27.555	99.36	47
G1-Plg-95	0.246	10.213	55.303	5.968	27.354	99.084	48
G1-Plg-96	0.242	9.31	56.605	6.401	27.075	99.633	44
G1-Plg-97	0.193	11.868	52.91	5.04	29.454	99.465	56
G1-Plg-98	0.171	11.766	53.622	5.109	29.209	99.877	55
G1-Plg-99	0.172	11.937	53.184	5.062	29.459	99.814	56
G1-Plg-100	0.183	11.692	52.848	5.04	29.076	98.839	56
G1-Plg-101	0.224	11.739	52.474	4.858	28.628	97.923	56
G1-Plg-102	0.251	11.487	52.528	5.122	28.87	98.258	55
G1-Plg-103	0.245	11.958	52.485	4.909	28.82	98.417	57
G1-Plg-104	0.236	11.874	53.053	4.741	29.235	99.139	57
G1-Plg-105	0.244	9.819	55.207	5.952	27.591	98.813	47
G1-Plg-106	0.228	9.853	55.775	6.08	27.752	99.688	47
G1-Plg-107	0.233	10.032	55.846	5.943	27.358	99.412	48
G1-Plg-108	0.215	10.133	55.577	6.102	27.759	99.786	47
G1-Plg-109	0.308	10.897	54.616	5.434	28.199	99.454	52
G1-Plg-110	0.334	10.927	54.476	5.36	28.309	99.406	52
G1-Plg-111	0.316	11.144	53.628	5.353	28.623	99.064	53
G1-Plg-112	0.263	11.44	53.756	5.109	28.957	99.525	54
G1-Plg-113	0.225	10.632	54.732	5.625	27.916	99.13	50
G1-Plg-114	0.214	10.669	53.946	5.377	28.443	98.649	52
G1-Plg-115	0.222	11.047	54.187	5.555	28.504	99.515	52
G1-Plg-116	0.201	11.185	53.112	5.424	28.595	98.517	53
G1-Plg-117	0.22	11.887	53.389	4.724	29.359	99.579	57
G1-Plg-118	0.231	12.26	52.743	4.776	29.276	99.286	58
G1-Plg-119	0.277	10.451	54.236	5.584	28.122	98.67	50
G1-Plg-120	0.282	10.588	54.091	5.567	28.164	98.692	50
G1-Plg-121	0.419	10.183	55.157	5.624	27.68	99.063	49
G1-Plg-122	0.456	9.2	56.109	6.152	26.687	98.604	44
G1-Plg-123	0.441	9.596	55.601	6.512	27.163	99.313	44
G1-Plg-124	0.444	10.132	55.505	5.911	27.599	99.591	47
G1-Plg-125	0.49	8.85	56.711	6.742	26.491	99.284	41
G1-Plg-126	0.459	8.76	56.487	6.286	26.798	98.79	42
G1-Plg-127	0.43	9.677	56.067	6.416	26.575	99.165	44
G1-Plg-128	0.524	8.784	56.98	6.597	26.23	99.115	41
G1-Plg-129	0.265	9.843	55.434	6.087	27.647	99.276	46
G1-Plg-130	0.231	10.156	54.974	6.158	27.625	99.144	47
G1-Plg-131	0.249	10.356	55.134	5.723	27.801	99.263	49
G1-Plg-132	0.192	11.348	53.449	5.161	28.807	98.957	54
G1-Plg-137	0.164	12.81	51.46	4.275	30.161	98.87	61

G1-Plg-138	0.152	12.828	51.766	4.308	30.222	99.276	62
G1-Plg-139	0.163	13.023	51.416	4.432	30.312	99.346	49
G1-Plg-140	0.134	12.834	51.352	4.237	30.097	98.654	52
G1-Plg-141	0.384	10.055	54.665	5.424	27.888	98.416	44
G1-Plg-143	0.465	9.432	55.894	6.241	26.963	98.995	63
G1-Plg-144	0.435	9.45	55.305	4.991	26.901	97.082	63
G1-Plg-145	0.176	12.846	51.148	4.112	30.39	98.672	63
G1-Plg-146	0.171	12.951	51.113	4.039	30.401	98.675	63
G1-Plg-147	0.167	12.913	51.475	4.051	30.137	98.743	52
G1-Plg-148	0.183	13.046	51.532	4.191	30.452	99.404	54
G1-Plg-149	0.33	10.856	53.927	5.429	28.268	98.81	52
G1-Plg-150	0.302	11.183	53.874	5.1	28.877	99.336	52
G1-Plg-151	0.287	10.951	54.079	5.399	28.485	99.201	59
G1-Plg-152	0.349	11.088	54.15	5.38	28.386	99.353	60
G1-Plg-153	0.192	12.451	51.826	4.642	29.788	98.899	60
G1-Plg-154	0.209	12.539	52.039	4.47	29.587	98.844	61
G1-Plg-155	0.226	12.607	52.28	4.484	30.187	99.784	46
G1-Plg-156	0.217	12.552	51.933	4.247	29.875	98.824	48
G1-Plg-157	0.418	9.801	55.634	6.169	27.34	99.362	49
G1-Plg-158	0.394	10.358	55.121	5.862	27.74	99.475	47
G1-Plg-159	0.348	10.546	54.346	5.724	28.157	99.121	48
G1-Plg-160	0.37	9.833	55.014	5.78	27.687	98.684	49
G1-Plg-161	0.39	9.945	54.72	5.787	27.81	98.652	49
G1-Plg-162	0.396	10.046	54.205	5.468	27.929	98.044	50
G1-Plg-163	0.393	10.125	54.497	5.596	27.792	98.403	14
G1-Plg-164	0.375	10.344	53.938	5.417	28.057	98.131	12
G1-Plg-166	2.243	2.052	66.949	6.747	19.93	97.921	22
G1-Plg-169	0.235	11.673	52.866	4.924	29.532	99.23	58
G1-Plg-170	0.25	12.129	53.656	4.864	29.502	100.401	58
G1-Plg-171	0.227	12.097	52.624	4.685	29.354	98.987	52
G1-Plg-172	0.22	12.035	52.334	4.742	29.503	98.834	52
G1-Plg-173	0.345	11.138	54.15	5.448	28.491	99.572	53
G1-Plg-174	0.314	10.921	54.37	5.422	28.764	99.791	52
G1-Plg-175	0.316	11.129	53.872	5.333	28.867	99.517	39
G1-Plg-176	0.328	10.711	53.597	5.264	28.596	98.496	39
G1-Plg-177	0.526	8.329	57.372	6.956	26.442	99.625	40
G1-Plg-178	0.53	8.04	56.889	6.576	25.344	97.379	42
G1-Plg-179	0.526	8.402	56.509	6.636	26.236	98.309	96
G1-Plg-180	0.63	7.957	58.165	5.691	25.43	97.873	96
G3-Plg-1	0.302	11.043	54.207	5.488	28.518	99.558	94
G3-Plg-2	0.307	10.853	54.149	5.476	28.415	99.2	77
G3-Plg-3	0.315	10.735	54.257	5.534	28.219	99.06	52

G3-Plg-4	0.281	11.061	54.277	5.372	28.237	99.228	51
G3-Plg-5	0.318	11.291	53.145	5.276	28.597	98.627	51
G3-Plg-6	0.308	11.212	53.848	5.089	28.478	98.935	52
G3-Plg-7	0.308	11.385	53.819	5.199	28.504	99.215	53
G3-Plg-8	0.324	11.006	53.998	5.272	28.394	98.994	54
G3-Plg-9	0.321	10.165	55.296	5.825	27.233	98.84	54
G3-Plg-10	0.301	10.354	54.539	5.865	27.37	98.429	53
G3-Plg-11	0.342	9.827	55.825	5.978	27.405	99.377	48
G3-Plg-12	0.359	10.077	55.47	5.627	27.207	98.74	49
G3-Plg-13	0.395	9.907	54.954	5.417	27.183	97.856	47
G3-Plg-14	0.439	10.007	54.493	5.462	27.819	98.22	49
G3-Plg-15	0.406	10.06	54.759	5.221	27.599	98.045	49
G3-Plg-16	0.436	9.988	55.486	6.246	27.594	99.75	49
G3-Plg-17	0.401	9.936	54.368	5.983	27.432	98.12	50
G3-Plg-18	0.406	10.032	54.636	5.88	27.715	98.669	46
G3-Plg-19	0.356	10.289	53.675	5.954	27.823	98.097	47
G3-Plg-20	0.396	10.091	53.482	5.813	27.622	97.404	47
G3-Plg-21	0.372	10.707	53.459	5.506	28.048	98.092	48
G3-Plg-22	0.367	10.857	53.177	5.443	28.516	98.36	48
G3-Plg-23	0.344	11.078	53.652	5.263	28.162	98.499	51
G3-Plg-24	0.35	11.096	53.755	5.42	28.159	98.78	51
G3-Plg-25	0.401	9.102	56.204	6.902	27.221	99.83	53
G3-Plg-26	0.362	9.634	56.179	6.235	27.594	100.004	52
G3-Plg-27	0.335	9.48	55.825	6.073	27.52	99.233	41
G3-Plg-28	0.405	9.282	56.442	6.191	26.982	99.302	45
G3-Plg-29	0.378	9.368	55.311	6.056	27.242	98.355	45
G3-Plg-30	0.392	9.423	55.674	6.073	27.049	98.611	44
G3-Plg-31	0.368	9.461	55.184	6.265	27.489	98.767	45
G3-Plg-32	0.371	9.382	55.635	6.356	27.324	99.068	45
G3-Plg-33	0.366	8.643	57.27	6.954	26.585	99.818	45
G3-Plg-34	0.355	8.613	57.278	7.289	26.698	100.233	44
G3-Plg-35	0.37	8.507	57.38	6.923	26.713	99.893	40
G3-Plg-36	0.348	8.463	57.696	7	26.63	100.137	39
G3-Plg-37	0.232	11.086	53.995	5.357	28.705	99.375	40
G3-Plg-38	0.215	11.292	53.209	5.112	28.992	98.82	39
G3-Plg-39	0.207	11.416	53.711	5.003	29.103	99.44	53
G3-Plg-40	0.227	11.14	54.03	5.256	29.074	99.727	54
G3-Plg-41	0.248	10.667	54.496	5.736	28.447	99.594	55
G3-Plg-42	0.262	10.633	54.556	5.716	28.352	99.519	53
G3-Plg-43	0.284	10.528	54.223	5.753	27.922	98.71	50
G3-Plg-44	0.263	10.688	54.458	5.774	28.383	99.566	50
G3-Plg-45	0.265	11.129	53.756	5.221	28.329	98.7	49

G3-Plg-46	0.242	10.909	53.63	5.514	28.7	98.995	50
G3-Plg-47	0.275	11.028	53.881	5.249	28.251	98.684	53
G3-Plg-48	0.282	11.311	53.934	5.316	28.542	99.385	52
G3-Plg-50	0.294	11.328	52.435	5.121	28.393	97.571	53
G3-Plg-51	0.311	11.48	53.552	4.986	28.54	98.869	55
G3-Plg-52	0.311	11.537	53.438	5.051	28.735	99.072	54
G3-Plg-53	0.393	10.196	55.351	5.789	27.531	99.26	55
G3-Plg-54	0.414	10.21	55.097	5.872	27.517	99.11	55
G3-Plg-55	0.384	10.487	54.998	5.729	27.772	99.37	48
G3-Plg-56	0.356	10.403	55.333	5.677	27.845	99.614	48
G3-Plg-57	0.25	12.102	52.806	4.818	29.044	99.02	49
G3-Plg-58	0.265	11.905	53.094	4.784	28.853	98.901	49
G3-Plg-59	0.271	11.804	53.286	4.965	28.744	99.07	57
G3-Plg-60	0.278	11.897	53.482	5.02	28.793	99.47	57
G3-Plg-61	0.3	11.365	53.986	5.324	28.758	99.733	56
G3-Plg-62	0.316	11.445	54.012	5.236	28.349	99.358	56
G3-Plg-63	0.305	11.306	54.313	5.221	28.499	99.644	53
G3-Plg-64	0.317	11.223	53.888	5.18	28.468	99.076	54
G3-Plg-65	0.406	9.909	54.96	6.217	27.004	98.496	54
G3-Plg-66	0.438	9.873	55.723	6.087	27.732	99.853	54
G3-Plg-67	0.422	9.534	55.957	5.939	27.059	98.911	46
G3-Plg-68	0.415	9.706	55.795	5.922	27.329	99.167	46
G3-Plg-69	0.34	10.398	54.308	5.622	27.974	98.642	46
G3-Plg-70	0.365	10.657	54.174	5.641	28	98.837	46
G3-Plg-71	0.312	11.231	53.859	5.086	28.261	98.749	50
G3-Plg-72	0.316	11.272	53.186	5.329	28.25	98.353	50
G3-Plg-73	0.325	11.428	53.485	5.17	28.075	98.483	54
G3-Plg-74	0.319	11.073	54.091	5.456	28.06	98.999	53
G3-Plg-75	0.343	11.444	53.673	5.082	28.609	99.151	54
G3-Plg-76	0.323	11.196	54.161	5.156	28.169	99.005	52
G3-Plg-77	0.308	11.525	53.728	5.064	28.278	98.903	54
G3-Plg-78	0.324	11.326	53.772	5.063	28.317	98.802	54
G3-Plg-79	0.32	11.472	53.593	5.124	28.853	99.362	55
G3-Plg-80	0.292	11.23	53.875	5.194	28.419	99.01	54
G3-Plg-81	0.23	12.322	52.257	4.336	29.318	98.463	54
G3-Plg-82	0.241	12.276	52.866	4.687	29.179	99.249	54
G3-Plg-83	0.239	12.438	52.583	4.653	29.421	99.334	60
G3-Plg-84	0.234	12.772	52.312	4.552	29.562	99.432	58
G3-Plg-85	0.26	12.44	52.249	4.454	29.297	98.7	59
G3-Plg-86	0.233	12.16	52.751	4.504	29.506	99.154	60
G3-Plg-87	0.257	12.148	52.79	4.684	29.175	99.054	60
G3-Plg-88	0.252	12.216	53.101	4.691	28.987	99.247	59

G3-Plg-89	0.241	12.123	53.086	4.774	29.084	99.308	58
G3-Plg-90	0.232	12.049	52.908	4.448	29.293	98.93	58
G3-Plg-91	0.3	11.526	53.223	4.973	28.248	98.27	58
G3-Plg-92	0.296	11.503	53.003	5.053	28.646	98.501	59
G3-Plg-93	0.448	9.609	55.912	6.195	26.919	99.083	55
G3-Plg-94	0.417	9.801	56.032	6.268	26.995	99.513	55
G3-Plg-95	0.356	10.463	54.923	5.543	27.855	99.14	45
G3-Plg-96	0.365	10.635	54.598	5.484	28.315	99.397	45
G3-Plg-97	0.264	12.319	51.587	4.702	29.261	98.133	50
G3-Plg-98	0.258	12.075	51.999	4.911	29.302	98.545	51
G3-Plg-99	0.267	11.962	51.954	4.928	29.144	98.255	58
G3-Plg-100	0.293	11.567	52.627	5.222	28.591	98.3	57
G3-Plg-101	0.209	12.687	51.908	4.261	29.788	98.853	56
G3-Plg-102	0.201	12.817	51.915	4.183	29.722	98.838	54
G3-Plg-103	0.219	12.648	52.455	4.4	29.671	99.393	61
G3-Plg-104	0.191	12.54	51.829	4.278	29.664	98.502	62
G3-Plg-105	0.352	10.63	54.895	5.23	27.87	98.977	61
G3-Plg-106	0.353	10.43	54.716	5.613	27.81	98.922	61
G3-Plg-107	0.363	10.787	54.804	5.543	27.535	99.032	52
G3-Plg-108	0.345	10.932	54.43	5.552	27.941	99.2	50
G3-Plg-109	0.329	11.404	53.645	5.181	28.179	98.738	51
G3-Plg-110	0.325	11.185	53.554	5.207	28.37	98.641	51
G3-Plg-111	0.317	11.127	53.974	5.461	28.182	99.061	54
G3-Plg-112	0.339	10.806	54.061	5.404	28.059	98.669	53
G3-Plg-113	0.215	12.759	51.207	4.588	29.521	98.29	52
G3-Plg-114	0.22	12.643	51.426	4.512	29.373	98.174	51
G3-Plg-115	0.202	12.852	51.183	4.571	29.398	98.206	60
G3-Plg-116	0.197	12.911	51.571	4.546	29.494	98.719	60
G3-Plg-117	0.316	11.021	53.782	5.513	28.034	98.666	60
G3-Plg-118	0.335	11.022	53.805	5.409	27.89	98.461	60
G3-Plg-119	0.282	11.296	53.506	5.075	28.422	98.581	52
G3-Plg-120	0.307	11.511	53.234	5.201	28.641	98.894	52
G3-Plg-121	0.416	9.759	55.997	6.202	26.889	99.263	54
G3-Plg-122	0.408	9.954	55.701	6.366	27.231	99.66	54
G3-Plg-123	0.391	9.816	55.908	6.167	26.791	99.073	45
G3-Plg-124	0.392	9.486	56.748	6.335	26.572	99.533	45
G3-Plg-125	0.3	11.628	53.375	5.129	28.492	98.924	46
G3-Plg-126	0.294	11.406	53.822	5.262	28.789	99.573	44
G3-Plg-127	0.303	11.432	53.453	5.092	28.459	98.739	55
G3-Plg-128	0.33	11.328	53.939	5.251	28.345	99.193	54
G3-Plg-129	0.28	11.791	53.431	4.998	28.522	99.022	54
G3-Plg-130	0.281	11.359	53.894	5.198	28.529	99.261	53

G3-Plg-131	0.288	11.453	54.561	5.351	28.596	100.249	56
G3-Plg-132	0.259	11.654	53.674	5.055	28.483	99.125	54
G3-Plg-133	0.39	9.791	56.434	6.092	26.636	99.343	53
G3-Plg-134	0.846	8.151	57.47	6.644	25.3	98.411	55
G3-Plg-135	0.388	10.036	55.958	6.174	26.932	99.488	46
G3-Plg-136	0.415	9.589	55.66	6.163	27.04	98.867	38
G3-Plg-137	0.334	10.391	54.738	5.376	27.462	98.301	46
G3-Plg-138	0.318	10.591	54.715	5.433	27.67	98.727	45
G3-Plg-139	0.334	10.396	54.814	5.746	27.568	98.858	51
G3-Plg-140	0.339	10.242	55.397	5.816	27.574	99.368	51
G3-Plg-141	0.302	10.677	54.969	5.438	27.907	99.293	49
G3-Plg-142	0.297	10.971	54.579	5.535	27.8	99.182	48
G3-Plg-143	0.331	10.659	54.513	5.541	27.556	98.6	51
G3-Plg-144	0.309	10.722	54.093	5.504	27.68	98.308	51
G3-Plg-145	0.272	11.607	53.522	5.284	28.353	99.038	51
G3-Plg-146	0.284	11.529	53.562	5.156	28.798	99.329	51
G3-Plg-147	0.334	11.012	54.175	5.285	28.01	98.816	54
G3-Plg-148	0.306	11.461	53.223	5.081	28.492	98.563	54
G3-Plg-149	0.312	11.736	52.439	4.88	28.694	98.061	53
G3-Plg-150	0.291	11.731	52.765	5.058	28.701	98.546	55
G3-Plg-151	0.342	11.181	53.388	5.422	28.392	98.725	56
G3-Plg-152	0.347	11.21	53.844	5.275	28.328	99.004	55
G3-Plg-153	0.351	10.747	53.94	5.592	27.747	98.377	52
G3-Plg-154	0.323	10.734	53.977	5.573	27.708	98.315	53
G3-Plg-155	0.344	10.915	54.132	5.326	27.896	98.613	50
G3-Plg-156	0.341	10.685	54.698	5.639	28.34	99.703	51
G3-Plg-157	0.25	11.787	53.073	4.816	28.795	98.721	52
G3-Plg-158	0.267	11.765	53.417	4.915	29.099	99.463	50
G3-Plg-159	0.289	11.74	53.159	4.987	29.025	99.2	57
G3-Plg-160	0.254	11.61	52.859	4.892	29.236	98.851	56
G2-Plg-1	0.153	12.824	52.039	4.267	30.385	99.668	56
G2-Plg-2	0.151	12.994	51.934	4.248	30.04	99.367	56
G2-Plg-3	0.143	12.759	51.916	4.178	30.314	99.31	62
G2-Plg-4	0.139	12.868	52.009	4.311	30.182	99.509	62
G2-Plg-5	0.237	11.897	52.927	4.963	28.711	98.735	62
G2-Plg-6	0.253	11.308	53.881	5.215	28.541	99.198	62
G2-Plg-7	0.229	11.169	53.745	5.347	28.772	99.262	56
G2-Plg-8	0.238	11.458	53.422	5.199	28.806	99.123	54
G2-Plg-9	0.406	10.897	55.319	5.309	28.13	100.061	53
G2-Plg-10	0.219	12.047	52.901	4.731	29.27	99.168	54
G2-Plg-11	0.374	10.923	54.886	5.269	28.049	99.501	52
G2-Plg-12	0.47	10.536	55.806	5.358	27.727	99.897	58

G2-Plg-13	0.167	12.267	52.03	4.654	29.707	98.825	52
G2-Plg-14	0.144	12.924	51.517	4.399	30.188	99.172	51
G2-Plg-15	0.307	11.16	54.336	4.915	28.561	99.279	59
G2-Plg-16	0.406	10.374	55.201	5.264	27.538	98.783	61
G2-Plg-17	0.693	8.866	57.386	5.893	26.098	98.936	55
G2-Plg-18	1.535	6.837	61.028	5.655	22.507	97.562	51
G2-Plg-19	1.674	6.602	61.281	5.553	22.094	97.204	44
G2-Plg-20	0.849	8.343	58.059	5.907	25.419	98.577	36
G2-Plg-21	0.193	11.739	53.335	4.761	29.297	99.325	35
G2-Plg-22	0.181	12.004	53.109	4.777	29.087	99.158	42
G2-Plg-23	0.211	11.857	52.876	4.961	29.184	99.089	57
G2-Plg-24	0.196	11.935	52.738	4.756	29.656	99.281	58
G2-Plg-25	0.263	11.293	51.886	4.84	29.1	97.382	56
G2-Plg-27	0.214	11.445	52.663	4.79	28.591	97.703	55
G2-Plg-28	0.212	11.383	53.037	4.996	29.053	98.681	56
G2-Plg-29	0.188	11.483	53.073	4.941	28.848	98.533	56
G2-Plg-30	0.267	10.985	53.833	5.285	28.298	98.668	55
G2-Plg-31	0.227	11.153	53.602	5.38	28.579	98.941	56
G2-Plg-32	0.231	11.211	52.993	5.025	28.807	98.267	53
G2-Plg-33	0.134	12.121	52.244	4.609	29.93	99.038	53
G2-Plg-34	0.137	12.476	52.07	4.567	30.211	99.461	54
G2-Plg-35	0.125	12.398	52.33	4.5	29.711	99.064	59
G2-Plg-36	0.135	12.88	51.85	4.489	30.241	99.595	60
G2-Plg-37	0.099	12.875	51.583	4.412	29.869	98.838	60
G2-Plg-38	0.1	13.061	51.141	4.218	30.134	98.654	61
G2-Plg-39	0.096	13.089	50.635	4.214	30.146	98.18	61
G2-Plg-40	0.112	12.974	51.254	4.398	30.485	99.223	63
G2-Plg-41	0.19	11.672	53.1	5.044	28.783	98.789	63
G2-Plg-42	0.189	11.949	52.776	4.896	29.404	99.214	62
G2-Plg-43	0.176	12.104	52.838	4.834	29.331	99.283	56
G2-Plg-44	0.15	12.115	52.431	4.829	29.151	98.676	57
G2-Plg-45	0.184	11.855	52.688	4.761	29.185	98.673	57
G2-Plg-46	0.175	12.139	52.49	4.8	29.415	99.019	58
G2-Plg-47	0.21	12.045	52.607	4.834	29.46	99.156	57
G2-Plg-48	0.195	11.981	52.862	4.994	29.696	99.728	58
G2-Plg-49	0.147	11.789	52.665	5.028	29.105	98.734	57
G2-Plg-50	0.133	11.935	52.397	4.898	29.482	98.845	56
G2-Plg-51	0.137	12.119	52.74	4.862	29.425	99.283	56
G2-Plg-52	0.144	12.073	52.778	5.021	29.268	99.284	57
G2-Plg-53	0.126	12.692	51.573	4.55	30.086	99.027	57
G2-Plg-54	0.159	12.578	51.842	4.466	29.937	98.982	57
G2-Plg-55	0.121	12.556	52.025	4.537	29.972	99.211	60

G2-Plg-56	0.141	12.799	51.748	4.488	30.064	99.24	60
G2-Plg-57	0.193	11.412	53.674	5.35	28.994	99.623	60
G2-Plg-58	0.207	11.239	54.016	5.407	28.648	99.517	61
G2-Plg-59	0.206	11.165	53.272	5.301	28.803	98.747	54
G2-Plg-60	0.209	11.239	53.435	5.254	28.894	99.031	53
G2-Plg-61	0.487	10.377	54.562	5.34	27.063	97.829	53
G2-Plg-62	0.388	10.58	54.527	5.496	27.447	98.438	54
G2-Plg-63	0.835	8.711	57.402	5.602	25.149	97.699	50
G2-Plg-64	0.943	8.672	57.793	5.346	24.884	97.638	50
G2-Plg-65	0.194	11.775	53.06	5.039	28.783	98.851	44
G2-Plg-66	0.151	11.934	53.43	4.909	29.471	99.895	45
G2-Plg-67	0.153	11.675	52.945	4.91	28.923	98.606	56
G2-Plg-68	0.185	11.395	53.01	4.9	29.246	98.736	57
G2-Plg-69	0.358	10.558	54.539	5.593	27.84	98.888	56
G2-Plg-70	0.36	10.62	54.179	5.656	27.831	98.646	56
G2-Plg-71	0.358	10.599	54.172	5.648	27.931	98.708	50
G2-Plg-72	0.354	10.538	53.816	5.501	27.918	98.127	50
G2-Plg-73	0.208	11.577	52.655	5.232	29.406	99.078	50
G2-Plg-74	0.249	11.532	52.405	5.075	28.877	98.138	50
G2-Plg-75	0.219	11.565	52.729	5.067	28.855	98.435	54
G2-Plg-76	0.265	11.581	53.222	5.251	29.285	99.604	55
G2-Plg-77	0.249	11.255	53.107	5.267	28.598	98.476	55
G2-Plg-78	0.257	11.032	53.705	5.349	28.503	98.846	54
G2-Plg-79	0.259	10.947	53.576	5.492	28.398	98.672	53
G2-Plg-80	0.241	11.291	53.458	5.289	28.589	98.868	52
G2-Plg-81	0.208	11.911	51.857	4.717	29.255	97.948	52
G2-Plg-82	0.22	12.106	52.329	4.63	29.108	98.393	53
G2-Plg-83	0.212	11.855	52.182	4.554	29.592	98.395	58
G2-Plg-84	0.211	12.146	52.626	4.599	29.518	99.1	58
G2-Plg-85	0.207	12.271	51.971	4.496	29.456	98.401	58
G2-Plg-86	0.213	12.313	51.809	4.497	29.798	98.63	59
G2-Plg-87	0.22	12.292	52.206	4.659	29.599	98.976	59
G2-Plg-88	0.206	12.187	51.753	4.415	29.689	98.25	59
G2-Plg-89	0.212	11.679	51.598	4.83	28.822	97.141	59
G2-Plg-90	0.205	11.857	51.25	4.673	29.044	97.029	60
G2-Plg-91	0.189	12.054	51.94	4.493	29.397	98.073	56
G2-Plg-92	0.225	11.785	52.611	4.878	29.02	98.519	58
G2-Plg-93	0.454	9.993	55.142	5.812	27.52	98.921	59
G2-Plg-94	0.392	10.385	54.467	5.66	28.06	98.964	56
G2-Plg-95	0.456	10.054	54.961	5.803	27.649	98.923	47
G2-Plg-96	0.687	9.251	56.148	5.959	26.835	98.88	49
G2-Plg-97	0.438	10.045	54.421	5.767	27.464	98.135	48

G2-Plg-98	0.456	9.717	55.08	5.808	27.34	98.401	44
G2-Plg-99	0.467	9.874	54.96	5.945	27.406	98.652	48
G2-Plg-100	0.451	10.273	54.505	5.824	27.706	98.759	47

5. Análisis modal de minerales

		CVTZ-											
Muestra	Mtg	1	2	3	4	5	6	7	8	9	10	11	12
Matriz	0	568	743	615	734	603	769	885	798	802	834	906	536
Piroxeno	192	59	96	146	148	158	89	124	89	79	83	95	127
Plagioclasa	720	496	298	280	167	216	173	233	199	143	135	197	383
Feldespato	400	0	0	0	0	0	0	0	0	0	0	0	0
Cuarzo	344	0	0	0	0	0	0	0	0	0	0	0	0
Olivino	0	0	0	0	0	86	0	0	0	0	0	68	0
Anfibol	0 165	0	0	0	98	0	43	0	0	0	56	0	0
Total	6	1123	1137	1041	1147	1063	1074	1242	1086	1024	1108	1266	1046
Matriz (%)	0.0 11.	50.6	65.3	59.1	64.0	56.7	71.6	71.3	73.5	78.3	75.3	71.6	51.2
Piroxeno (%) Plagioclasa	6 43.	5.3	8.4	14.0	12.9	14.9	8.3	10.0	8.2	7.7	7.5	7.5	12.1
(%) Feldespato	5 24	44.2	26.2	26.9	14.6	20.3	16.1	18.8	18.3	14.0	12.2	15.6	36.6
(%)	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cuarzo (%)	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Olivino (%)	0.0	0.0	0.0	0.0	0.0	8.1	0.0	0.0	0.0	0.0	0.0	5.4	0.0
Anfibol (%)	0.0	0.0	0.0	0.0	8.5	0.0	4.0	0.0	0.0	0.0	5.1	0.0	0.0

Figura 24. Diagrama de SiO2 vs Cristalinidad en la ST.