

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA CIVIL – HIDRÁULICA

CÁLCULO DEL FACTOR EROSIVO R, A PARTIR DE LLUVIA ACUMULADA EN 24 HORAS EN LA REPÚBLICA MEXICANA

TESIS QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN INGENIERÍA

PRESENTA: JORGE LUIS TORRES CADENA

TUTOR PRINCIPAL DR. CARLOS A. ESCALANTE SANDOVAL FACULTAD DE INGENIERÍA

COMITÉ TUTOR

DR. RODOLFO SILVA CASARÍN DRA. LILIA REYES CHÁVEZ DR. ADRIÁN PEDROZO ACUÑA DR. EDGAR GERARDO MENDOZA BALDWIN INSTITUTO DE INGENIERÍA FACULTAD DE INGENIERÍA INSTITUTO DE INGENIERÍA INSTITUTO DE INGENIERÍA

CIUDAD DE MÉXICO, MAYO 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Lista de figuras	2
Lista de tablas	4
Introducción	5
Justificación	6
Hipótesis	6
Objetivos	6
Capítulo 1 Erosión	7
1.1 Erosión hídrica	9
Capítulo2 Erosión en México	10
2.1 Fuentes de Información	12
2.2 Recopilación y análisis de la información	12
2.3 Característica de la precipitación pluvial en la República Mexicana	15
Capítulo 3 Estimación de la erosión hídrica	17
3.1 Ecuación Universal de Pérdida de Suelo (RUSLE)	18
3.2 Erosividad de la Iluvia (Factor R)	19
3.3 Erodabilidad del suelo (Factor K)	20
3.4 Factor topográfico (Factor LS)	21
3.5 Factor de cobertura vegetal (Factor C)	22
3.6 Factor de prácticas de cultivo y conservación del suelo (Factor P)	23
3.7 Calculo del factor R a partir de Iluvias máximas en 24 horas	23
Capítulo 4 Aplicación en cuencas	26
4.1 Caracterización de las tormentas	26
4.2. Predicción de la energía erosiva a partir de lluvia en 24 horas	34
4.3 Modelo de ajuste de factor erosivo a partir de lluvia en 24 horas	37
4.3 Series de tiempo del factor erosivo R	47
4.4 Análisis de tendencias en las series de precipitación y factor erosivo R	52
4.5 Cálculo de sedimentos en cuencas	54
Conclusiones	115
Bibliografía	118
Anexo 1 Ubicación geográfica del área de estudio	121
Anexo 2	122
A2.1 Prueba de independencia de eventos	122
A2.2 Función de densidad	122
A2.3 Histograma de densidades	123
A2.4 Distribuciones de probabilidad	124
Anexo 3	125
A3.1 Estaciones meteorológicas automáticas en la República Mexicana	125
A3.2 Estaciones meteorológicas automáticas en EUA	135

Lista de Figuras

Figura 2.1 Degradación de suelos en la República Mexicana

Figura 2.2 Distribución geográfica de las distintas EMAs administradas por la CONAGUA y NOAA

- Figura 2.3 Porcentajes de registros en la red operativa OCGN
- Figura 2.4 Distribución de la precipitación anual en México, 1971 2000
- Figura 2.5 Precipitación anual en base a registros de EMAS para el período 1999 2011
- Figura 3.1. Factor de erodabilidad K, en función del tamaño medio geométrico de las partículas de suelo. Unidades expresadas en el SI (Sistema internacional de unidades)
- Figura 4.1 Hietograma de precipitación ocurrido el 16 de noviembre de 2009 en la estación Tamesí
- Figura 4.2 Precipitación máxima para diferentes duraciones
- Figura 4.3 Correlograma de independencia de eventos
- Figura 4.4 Precipitación máxima para diferentes duraciones
- Figura 4.5 Relaciones de precipitación para diferentes duraciones en la estación Tamesí

Figura 4.6 Ajuste del modelo de regresión no lineal $C_{1440}^{nn} = C_{1440}^{10} + a \cdot T^b \exp\left(-\frac{c}{T}\right)\left(1 - C_{1440}^{10}\right)$

- Figura 4.7 Relación de Iluvia 1 a 24 horas en la República Mexicana. Unidades adimensionales
- Figura 4.8 Relación de Iluvia 10 a 60 minutos en la República Mexicana. Unidades adimensionales
- Figura 4.9 Relación de Iluvia 20 a 60 minutos en la República Mexicana. Unidades adimensionales
- Figura 4.10 Relación de Iluvia 30 a 60 minutos en la República Mexicana. Unidades adimensionales
- Figura 4.11 Relación de Iluvia 40 a 60 minutos en la República Mexicana. Unidades adimensionales
- Figura 4.12 Relación de Iluvia 50 a 60 minutos en la República Mexicana. Unidades adimensionales
- Figura 4.13 Gráficas de altura de precipitación versus factor erosivo R
- Figura 4.14. Histograma de densidad y Distribución Gamma2 para la marca de clase de 12.5 mm
- Figura 4.15 Gráficas de altura de precipitación versus energía erosiva mediante síntesis de tormentas por funciones de probabilidad
- Figura 4.16 Envolventes de energía erosiva mediante síntesis de tormentas por funciones de probabilidad
- Figura 4.17. Valor esperado de energía erosiva
- Figura 4.18 Ajustes matemático de las estaciones analizadas (parte1)
- Figura 4.19 Ajustes matemático de las estaciones analizadas (parte2)
- Figura 4.20 Ajustes matemático de las estaciones analizadas (parte3)
- Figura 4.21 Ajustes matemático de las estaciones analizadas (parte4)
- Figura 4.22 Ajustes matemático de las estaciones analizadas (parte5)
- Figura 4.23. Ajustes matemático de las estaciones analizadas (parteó)
- Figura 4.24. Ajustes matemático de las estaciones analizadas (parte7)
- Figura 4.25. Energía erosiva para Iluvia de 502.5 mm
- Figura 4.26 Distribución de la precipitación en la República Mexicana, a partir de las 2124 estaciones sometidas a filtros de calidad y cantidad
- Figura 4.27 Mapas de contorno de los parámetros empleados en el modelo matemático de erosión
- Figura 4.28 Ajuste matemático para las estaciones pluviométricas de la CONAGUA
- Figura 4.29 Relación parámetro A y C
- Figura 4.30 Relación parámetro B y D
- Figura 4.31 Relación parámetro C y D
- Figura 4.32 Serie de índice erosivo R, mostrado para diferentes estaciones climatológicas
- Figura 4.33 Valor esperado del potencial erosivo a nivel anual (MJ mm ha-1 h-1 y-1)
- Figura 4.34, Tendencias en las variables analizadas
- Figura 4.35. Porcentaje de casos con tendencias concurrentes
- Figura 4.36 Ubicación de estaciones hidrométricas con delimitación de cuencas correspondientes
- Figura 4.37 Diagrama de flujo para el tratamiento del terreno orientado a la construcción de MDE hidrológico
- Figura 4.38 Distribución del Factor K de la fórmula del RUSLE, en la República Mexicana
- Figura 4.39 Índice NDVI para el período 2013 2014
- Figura 4.40 Factor C, del modelo RUSLE obtenido a partir el índice NDVI
- Figura 4.41 Calculo del Factor LS a partir de variables espaciales aplicando criterio de Mitasova et al, (2001)

- Figura 4.42 Diagrama de obtención del factor LS mediante el software ArcGis10.2
- Figura 4.43 Cuenca 20017. Estaciones pluviométricas e hidrométricas en el área de estudio
- Figura 4.44 Serie precipitación anual , período 1965 2006. Estaciones influyentes en la cuenca Paso de la Reyna
- Figura 4.45 Serie de tiempo del factor erosivo R, calculada por metodología a partir de EMAs (línea color roja), y por la establecida por Cortes, 1991 (línea color verde), unidades MJ mm ha-1 y-1
- Figura 4.46 Red hídrica de la cuenca Paso de la Reyna

Figura 4.47 Factor de cubierta vegetal en la cuenca Paso de la Reina

Figura 4.48 Factor erodabilidad del suelo, Factor K, en la cuenca Paso de la Reina

Figura 4.49 Factor longitud y pendiente del terreno, Factor LS, en la cuenca Paso de la Reina

Figura 4.50 Factor KLSC en la cuenca Paso de la Reina

Figura 4.51 Distribución espacial de la precipitación anual en la cuenca Paso de la Reina

Figura 4.52 Distribución del Factor R mediante metodología EMAs, en la cuenca Paso de la Reina

Figura 4.53 Distribución del Factor R mediante metodología Cortes, 1991, en la cuenca Paso de la

Figura 4.54 Pérdida de suelo de la Formula Universal de Pérdida de Suelo obtenido mediante metodología Cortes, 1991 (ton/ha • año)

Figura 4.55 Pérdida de suelo de la Formula Universal de Pérdida de Suelo obtenido mediante metodología EMAs (ton/ha • año)

Figura 4.56 Relación precipitación anual promedio y factor R por ambas metodologías

Figura 4.57 Relación Hp •K •LS•C y aporte de sedimentos RUSLE por ambas metodologías

Figura 4.58 Relación ente área de la cuenca y factor de proporción de entrega de sedimentos Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos

Figura A1.1 Ubicación geográfica de la República Mexicana

Figura A2.1. Notación para construir un histograma con igual ancho de banda

Lista de tablas

Tabla 2.1 Redes operativas de EMAs administradas por la CONAGUA

Tabla 4.1 Registro de la precipitación pluvial ocurrida el 16 de noviembre de 2009 en la estación Tamesí Tabla 4.2 Registro de la precipitación pluvial ocurrida el 16 de noviembre de 2009 en la estación Tamesí,

omitiendo valores iguales a cero

Tabla 4.3 Coeficientes de correlación con retraso k

Tabla 4.4 Calculo de la energía erosiva para la precipitación pluvial ocurrida el 16 de noviembre de 2009 en la estación Tamesí

Tabla 4.5. Elementos básicos para la determinación de la energía erosiva característica por intervalo de clase

Tabla 4.6. Energía erosiva asociada a una altura de precipitación

Tabla 4.7 Aportación de sedimentos en la cuenca 20017 (miles m3/año)

Tabla 4.8 Calculo de error promedio cuenca 20017

Tabla 4.9 Parámetros RUSLE correspondiente a cada cuenca en estudio

Tabla 4.10 Raíz del error cuadrático medio, metodología EMAs y Cortes

Introducción

En la naturaleza existen procesos naturales de creación y degradación del medio físico, sin embargo, las acciones humanas modifican el ritmo de transformación natural ignorando los efectos a corto y largo plazo. La degradación ambiental es el conjunto de procesos, inducidos principalmente por el comportamiento de las actividades humanas, que daña o altera los recursos naturales y los ecosistemas. Los efectos potenciales son variables y pueden contribuir a incrementar la frecuencia e intensidad de los peligros naturales aunado a la vulnerabilidad de las núcleos poblacionales.

La degradación del suelo es un proceso natural o inducido por el hombre que afecta negativamente a la tierra para funcionar eficazmente dentro de un ecosistema, al aceptar, almacenar y reciclar agua, energía y nutrientes (NRCS, 2006).

El suelo definido como la parte exterior de la corteza terrestre constituido por una capa de material fragmentario no consolidado (SEMARNAT, 2006); básicamente se forma por la acción que ejerce la temperatura, el agua, el viento, los animales y las plantas sobre las rocas. La erosión y sedimentación del suelo son procesos que ocurren naturalmente, sin embargo, las actividades humanas han acelerado estos procesos mucho más allá de la velocidad de los dispuesto por la naturaleza (SUDAS, 2010). Cuando la tasa de erosión es mayor a la tasa de formación del suelo, es señal de que el manejo está originando su degradación.

Justificación

El propósito de este trabajo es presentar una opción para el cálculo del factor de erosión hídrica R, sustentado en el análisis de las lluvias acumuladas en 24 horas. El factor R se obtendrá para cada una de las tormentas máximas anuales en 24 horas, para posteriormente encontrar una relación funcional entre estos factores, lo cual permitirá estimar los valores de R en sitios que solo cuentan

con información pluviométrica. Además se incorpora el empleo del cociente C_{l}^{24} el cual marca la relación entre la lluvia en 24 horas con la lluvia en una hora para corregir la intensidad de lluvia registrada en los pluviómetros. La importancia de la investigación propuesta radica en los siguientes puntos:

- Análisis de variación de la lluvia a lo largo del año, considerando la concentración de lluvia en pocos días o lluvias distribuidas en un lapso de tiempo prolongado
- Inferencia del factor erosivo R anual, a partir de información de mayor disponibilidad, mediante el empleo de registros pluviométricos.
- Empleo de factores de duración de tormentas considerando la variabilidad de la Iluvia en el día.

Hipótesis

- Las Iluvias torrenciales (mayores a 150 mm) tienden a presentarse en una mayor cantidad de días al año.
- Los días secos (días con cero mm de lluvia) tienden a ocurrir en períodos más prolongados en un año.

Objetivos

Objetivo general

Calcular el factor erosivo R a partir de la lluvia acumulada en 24 horas.

Objetivos específicos

- Analizar la relación entre la lluvia acumulada en 24 horas con la lluvia máxima en una hora
- Modelar el factor erosivo *R* a partir de la lluvia en 24 horas.
- Analizar las zonas de mayor potencial erosivo
- Elaborar isolíneas del factor erosivo R para diferentes intensidades de precipitación

Capítulo 1 Erosión

De acuerdo a la naturaleza de los procesos se consideran tres tipos de degradación del suelo: degradación física, degradación química y degradación biológica, los cuales pueden tener interconexión en los procesos degenerativos (Sylvia et al, 2007).

Degradación química

Se incluye la pérdida de nutrientes o de fertilidad, acidificación y alcalinización, salinización y contaminación por uso indiscriminado de herbicidas, plaguicidas y fertilizantes.

La disminución de materia orgánica y declinación de la fertilidad provocan una disminución de la productividad. La acidificación o alcalinización se basa en la modificación del pH del suelo a través de procesos de movilización o incremento de compuestos ácidos o básicos. La salinización se refiere al incremento de sales en el suelo debido a métodos de riego inapropiados y/o por intrusión de agua subterránea salina

Degradación biológica

Se considera la pérdida de materia orgánica y la alteración de la flora y fauna del suelo.

Degradación física

Comprende la erosión hídrica y eólica, y el deterioro de la estructura, con fenómenos como el sellado, encostrado y la formación de pisos de arado.

La erosión hídrica se puede presentar como una disminución del espesor del suelo superficial, debido a la remoción uniforme del material del suelo por la escorrentía; una remoción irregular del material del suelo por erosión o movimiento de masas, mostrando canales y cárcavas sobre el terreno. La erosión eólica consiste en la disminución del espesor del suelo superficial, debido a la remoción uniforme del material del suelo por la acción del viento; el desplazamiento irregular del material del suelo por acción del viento, provoca una deflación y forma huecos, hondonadas y dunas.

Por el grado de deterioro del suelo, la GLASOD (Oldeman et al., 1991) enfatiza la erosión hídrica y eólica como dos tipos de degradación, además de la degradación física.

La degradación del suelo conlleva efectos perjudiciales en distintas áreas necesarias para el desarrollo sustentable de una sociedad, que se incrementan debido a un inadecuado control del proceso de erosión y arrastre de sedimentos.

La erosión provoca un descenso en el rendimiento de los cultivos en la agricultura. En aprovechamientos hidráulicos, el aumento de la carga sólida que arrastran los ríos disminuye sustancialmente la capacidad útil de los embalses, lo que conduce a una reducción en el agua destinada a riego, generación de energía eléctrica y disponibilidad de agua para consumo humano. Otro problema añadido del aumento de carga sólida de los ríos, es que se enturbien las aguas costeras de las zonas donde desembocan. Estas aguas dejan de ser útiles para la pesca, ya que los peces emigran al cambiar las condiciones de su ecosistema y también pierden el atractivo turístico que puedan tener.

La erosión hídrica es uno de los procesos de degradación más importantes que afectan la capacidad de las tierras en montaña para la producción de alimentos de consumo humano o animal, además, la presencia de plantas en las primeras capas del suelo son imprescindibles para que el agua de las precipitaciones se infiltre, por lo que el aumento en la erosión significa siempre una disminución en la recarga de acuíferos y un mayor escurrimiento superficial.

La erosión hídrica se produce por dos procesos físicos, el impacto de gotas de lluvia y el consecuente escurrimiento superficial. El impacto de las gotas de lluvia sobre la superficie del terreno produce la disgregación de las partículas del suelo cuando éste está desnudo; posteriormente, una vez que las condiciones de saturación del suelo lo permite, comienza el escurrimiento superficial y arrastra las partículas sueltas, materia orgánica y nutrientes como el nitrógeno y el fósforo, entre otros.

La erosión hídrica puede ocurrir de variadas formas y niveles de gravedad dependiendo de la intensidad de lluvia, tipo de suelo y grado de protección de la superficie.

El primer proceso de erosión hídrica comienza cuando las gotas de lluvia impactan la superficie con una energía suficiente para desplazar partículas de material sin consolidar, dando lugar al proceso denominado erosión por salpicadura (SUDAS, 2010). Enseguida se produce la remoción de capas delgadas y uniformes de suelo produciendo la erosión laminar, removiendo las partículas finas del suelo. Luego puede aparecer la erosión digital, aludiendo a surcos formados por dedos de la mano, donde el agua que escurre desde las lomas más altas puede formar canalillos de 5 a 10 cm de profundidad. Cuando la erosión en surco comienza, la tasa de erosión aumenta considerablemente debido a las altas velocidades de flujo. La forma más grave de erosión consiste en la formación de zanjas y canales profundos llamados cárcavas; estas cárcavas pueden tener varios metros de ancho y profundidad.

Debido a que la degradación de suelos por acción del agua se desarrolla en un proceso gradual, muchas veces no se reconoce que existe un problema y por ende no se le trata. El problema se agrava en situaciones donde los suelos presentan escasa protección vegetal y se ubican en zonas de intensa precipitación. Estas dos variables, intensidad de lluvia y vulnerabilidad del suelo, marcan la pauta en el análisis y estimación de la erosión potencial en un sitio, antes de que se presenten las últimas fases de la erosión.

García (2006), describe la modelización como aquellos aspectos técnicos que facilitan el conocimiento de los diferentes parámetros e interrelaciones implicados, para posteriormente tratar de reproducir el sistema en el cual se desarrollan los procesos y explicar el comportamiento global en una cuenca hidrográfica. Continúa expresando que la modelización de los procesos erosivos se basa en la obtención de algoritmos matemáticos que describen la disgregación, el transporte y la deposición de los materiales

En cuanto al tipo de modelos, García (2006) desglosa una clasificación en modelos cualitativos y cuantitativos.

Los modelos cualitativos suelen ser orientados a la expresión cartográfica en función de parámetros como el grado erosivo de la Iluvia, suelo y vegetación; los sistemas de información geográfica (SIG) resultan una valiosa herramienta para el desarrollo de estos modelos.

Los modelos cuantitativos permiten la estimación numérica de la erosión y pueden evaluarse en forma directa o indirecta. La evaluación directa se desarrolla en el terreno por la medición de sedimentos en el agua y los simuladores de lluvia en zonas de control como parcelas de erosión y/O el empleo de clavos de erosión, agujas de erosión, etc. La evaluación indirecta se asocian a modelos que son representaciones simplificadas de la realidad; se distinguen los modelos empíricos, modelos conceptuales y modelos con base física (García, 2006)

Dentro de los modelos empíricos se encuentra la Ecuación Universal de Pérdida de Suelo (Wischmeier and Smith, 1965, 1978), la cual es ampliamente utilizada para evaluar las pérdidas de suelo por erosión laminar y surcos a nivel anual. La precisión de este método depende principalmente del grado de asociación entre las variables del modelo y las condiciones reales del sitio a modelar.

1.1 Erosión hídrica

Se define como evento de erosión hídrica a aquel fenómeno de precipitación pluvial que excede 10 mm de lluvia total acumulada en un período de tiempo. Un evento de erosión hídrica es separado de otro si no existe precipitación pluvial en un lapso de 30 minutos. Se estableció el intervalo de 30 minutos debido a que la energía cinética generada por la lluvia acontecida en ese lapso de tiempo, explica en gran medida la pérdida de suelo (Wischmeier y Smith, 1958).

Existen estudios que demuestran que el impacto de las gotas es más efectivo cuando una película delgada de agua cubre la superficie del suelo y la máxima dispersión de las partículas del suelo se presenta cuando la profundidad del agua es casi la misma que el diámetro de la gota de lluvia (Palmer, 1963). Este comportamiento de la lluvia conduce a plantear la hipótesis de que en 30 minutos, el suelo ubicado en montañas recupera su estado natural y no existen las condiciones críticas para el desprendimiento de partículas, como lo explica Palmer, 1963.

Capítulo 2 Erosión en México

El área de estudio comprende la República Mexicana ubicada entre los paralelos 14°32'00" y los 32°43'00" de latitud norte y los meridianos 86°42'00" y 118°27'00" de longitud oeste. Sus límites territoriales son: al norte con los Estados Unidos de América, al sur con Guatemala y Belice, al este con el Golfo de México y al oeste con el Océano Pacífico (Ver Anexo 2)

En base al reporte de "Evaluación de la degradación del suelo causada por el hombre en la República Mexicana" (SEMARNAT et al, 2003), el 44.9% de los suelos del país estaban afectados por algún proceso de degradación, los cuales se ubican tanto en zonas de ecosistemas naturales como manejados. La degradación química ocupaba el primer lugar (34.04 millones de hectáreas, 17.8% del territorio nacional), seguida por la erosión hídrica (22.72 millones de hectáreas, 11.9%), eólica (18.12 millones de hectáreas, 9.5%) y, al final, la degradación física (10.84 millones de hectáreas, 5.7%. Los suelos sin degradación aparente se encontraban en 55.1% del país (105.2 millones de hectáreas), ver Figura 2.1.

Las causas de la degradación de los suelos en el país involucran actividades de diversa índole: 35% de la superficie nacional degradada se asocia a las actividades agrícolas y pecuarias (17.5% cada una de ellas) y 7.4% a la pérdida de la cubierta vegetal. El resto se divide entre urbanización, sobreexplotación de la vegetación y actividades industriales.

La erosión hídrica ocurre principalmente en las montañas, que cubren aproximadamente el 47% de la superficie nacional con aproximadamente 92 millones de hectáreas. Debido a que sus suelos son delgados y se encuentran en declive, cerca del 67% de la erosión hídrica que ocurre en el país se presenta en estos lugares. Los principales procesos de degradación en montaña corresponde a la erosión hídrica (14.8% con pérdida de suelo superficial y 1.9% con deformación del terreno), seguida

de la degradación química (11.9%), la erosión eólica (3.7%) y por último la degradación física (2.3%). Los principales agentes causales de la degradación en las montañas son el sobrepastoreo y la deforestación

La erosión hídrica se divide en tres tipos: deformación de terreno, efectos fuera de sitio y pérdida de suelo superficial. Este último tiene serias consecuencias en las funciones del suelo: remueve los nutrimentos y la materia orgánica, reduce la profundidad de enraizamiento de las plantas y disminuye la tasa de infiltración y retención de agua.

Los otros dos tipos de erosión hídrica están muy relacionados entre sí. Cuando el suelo es arrastrado por el agua debido a que no hay suficiente protección por parte de la vegetación, se llegan a formar canales y cárcavas. Estas deformaciones del terreno permiten el escurrimiento de una gran cantidad de agua y el arrastre de sedimentos que pueden llegar a presas, ríos o lagunas, entre otros cuerpos de agua, contribuyendo a su contaminación, azolvamiento e incluso a que lleguen a desbordarse e inunden zonas aledañas. A esto se le conoce como efectos fuera de sitio de la erosión hídrica.

Figura 2.1 Degradación de suelos en la República Mexicana Fuente: Garrido et al., 2010

2.1 Fuentes de información

La presente investigación se basa en dos fuentes de información que describen la precipitación pluvial en distintos intervalos de tiempo. La primera fuente de información consiste en registros de pluviómetros que operan en la República Mexicana, cuyos reportes se expresan en láminas de lluvia acontecidas en 24 horas. La segunda fuente debe proporcionar información sobre el comportamiento de la lluvia en intervalos menores a 30 minutos.

En México, las observaciones instrumentales del clima en escala diaria se encuentran disponibles en varias bases de datos, sin embargo, la mayoría de ellas aún se requiere implementar un estricto proceso de control de calidad. El Servicio Meteorológico Nacional (SMN) tiene la misión de administrar la base de datos nacional oficial del clima en México y es de carácter público.

Los datos de la red de estaciones climatológicas convencionales administrados en el sistema CLIma COMputarizado (CLICOM) son la fuente de información climática con las dos características requeridas para el estudio del proceso erosivo: un periodo de registro largo (alrededor de cuatro décadas continuas) y cobertura geográfica suficientemente densa.

Por otro lado, el monitoreo de la Iluvia en intervalos de tiempo menor a 30 minutos es de reciente implementación o de difícil acceso público. La información empleada para estas variables consiste en registros de Estaciones Meteorológicas Automáticas (EMAs) administradas por el SMN a partir del año 1999, en intervalos de tiempo de 10 minutos. Además se recurrió a los registros de la National Oceanic and Atmospheric Administration (NOAA) de las estaciones ubicadas en la frontera de los países de México y Estados Unidos de América (EUA), cuyos registros datan desde 1970 en intervalos de 15 minutos.

En la segunda parte de esta investigación se recurre a bases de datos de estaciones hidrométricas que permitan comparar el material sólido removido por lluvia a través del modelo propuesto y la cantidad de sedimentos medidos en cada punto de aforo. La red de estaciones hidrométricas en la República Mexicana es administrada por el Instituto Mexicano de Tecnología del Agua a través del Banco Nacional de Datos de Aguas Superficiales (BANDAS); la cual, cuenta con 2070 estaciones hidrométricas que registran el porcentaje de sedimentos, nivel y cantidad de agua que pasa a una determinada hora en los principales ríos de la República Mexicana

Debido a la cantidad de información, que posteriormente se describirá a detalle, se describe a continuación las características generales del equipo de cómputo empleado en el procesamiento de la información.

Procesador: Intel i7-2600, 3.4GHz, 8MB Cache RAM: 32GB DDR3 1600MHz Disco Duro: 1 Terabyte SATA II Tarjeta de video: 1GB GDDR5

2.2 Recopilación y análisis de la información

La información compilada corresponde a estaciones meteorológicas ubicadas en la República Mexicana y una porción de estaciones administradas por la NOAA ubicadas en las inmediaciones del área de interés.

Las Estaciones Meteorológicas Automáticas que operan en la República Mexicana administradas por la Comisión Nacional del Agua (CONAGUA) se agrupan en 10 redes operativas, cuyos registros datan del período 1999 – 2011, midiendo la variable precipitación en intervalos de 10 min en conjunción con otras ocho variables climatológicas. En la Tabla 2.1 se indica las redes operativas de EMAs y el número de estaciones administradas

Código de Estación	Red Operativa	Número de estaciones	Tormentas analizadas
01	Coordinación General del Servicio Meteorológico Nacional (SMN)	139	88760
02	Organismo de Cuenca Aguas del Valles de México (OCVM)	25	2948
03	Organismo de Cuenca Golfo Norte (OCGN)	21	5504
04	Organismo de Cuenca Lerma – Santiago – Pacífico (OCLSP)	65	21704
05	Organismo de Cuenca Río Bravo (OCRB)	71	19294
06	Organismo de Cuenca Frontera Sur (OCFS)	28	4889
07	Comisión Estatal del Agua de Guanajuato (CEAG)	31	15128
08	Protección Civil del Estado de Guerrero (PCEG)	39	7127
09	Secretaría de Seguridad Pública del Estado de Chiapas (SSPEC)	13	5442
	Total	432	170796

Tabla 2.1 Redes o	perativas c	de FMAs	administradas	por la	CONAGUA
	iperativas e		aanninstraaas	por ia	0011/100/1

Por otro lado, se analizaron 221 estaciones de EUA administradas por la NOAA, conteniendo registros desde el año 1970 en intervalos de 15 minutos para la variable de precipitación. En la Figura 2.2 se muestra la distribución de la red de estaciones.

En este trabajo se ejemplifica el desarrollo de cálculos para las 21 estaciones del OCGN. La administración de EMAs carece de un código de identificación por parte de CONAGUA, por tal razón, para efectos de este trabajo se propone la siguiente nomenclatura: los dos primeros dígitos corresponden a la red operativa (RO) indicada en la Tabla 5.1 y los tres restantes dígitos a la numeración ordinal.

El número de registros contenidos en cada estación varía en función de la red operativa particular. El SMN con 139 estaciones comienza a operar en el año 1999, lo cual se traduce a 683712 posibles registros en intervalos de 10 minutos para cada estación, es decir, más de 90 millones de registros para analizar cualquier estadístico en esta red operativa, considerando 52560 registros por año.

El Organismo de Cuenca Río Bravo cuenta con 71 estaciones, cuyo funcionamiento comienza a operar en junio de 1999, lo cual se traduce a 683712 posibles registros en intervalos de 10 minutos para cada estación, es decir, más de 45 millones de registros para analizar cualquier estadístico en esta red operativa. El Organismo de Cuenca Frontera Sur es de las redes operativas de reciente implementación, comenzando a operar en enero de 2011, lo que proporciona 52560 registros por estación, conduciendo a 3 millones de registros para la red operativa.

El Organismo de Cuenca Golfo norte comienza a operar en marzo de 2009 con 21 estaciones meteorológicas, conteniendo 210240 registros por cada estación, lo cual se traduce a más de 4 millones de datos a analizar para este organismo operador. En la Figura 2.3 se aprecia gráficamente la cobertura de registros temporal en las estaciones del OCGN.

Figura 2.2 Distribución geográfica de las distintas EMAs administradas por la CONAGUA y NOAA Fuente: Elaboración propia

Los registros de EUA, al comenzar en 1970, contienen un total de 1472641 datos por estación, es decir, 35040 casillas por año en intervalos de 15 minutos. Se eligieron aquellas estaciones localizadas a 200 km de la frontera con México, resultando 221 estaciones; lo cual implica analizar alrededor de 300 millones de registros solo para las estaciones de EUA.

En la Tabla A3.1 del Anexo 3 se indica las coordenadas geográficas de las 432 estaciones meteorológicas automáticas analizadas en la República Mexicana, así como las 221 estaciones consideradas en los EUA. En total se analizaron 170796 tormentas para la República Mexicana y 187

Figura 2.3 Porcentajes de registros en la red operativa OCGN Fuente: Elaboración propia

2.3 Característica de la precipitación pluvial en la República Mexicana

La precipitación normal del país en el periodo de 1971 - 2000 fue de 760 milímetros. Los valores normales, de acuerdo con la Organización Meteorológica Mundial (OMM) corresponden a los promedios calculados para un periodo uniforme y relativamente largo, el cual debe tener como mínimo 30 años de recabar información lo cual se considera como un periodo climatológico mínimo representativo. En la mayor parte del país, la precipitación ocurre entre junio y septiembre, con excepción de la península de Baja California, donde se presenta principalmente en el invierno (CONAGUA, 2011). La distribución de la precipitación anual en México para el período 1971 – 2000 se muestra en la Figura 2.4.

Figura 2.4. Distribución de la precipitación anual en México, 1971 - 2000 Fuente: CONAGUA, 2011

Las zonas de mayor precipitación, como lo muestra la Figura 2.4, se localizan en el sureste del país, mientras que el norte y noroeste la precipitación es de menos del 2% la presentada en el sureste.

Figura 2.5 Precipitación anual en base a registros de EMAS para el período 1999 – 2011 Fuente: Elaboración propia

La Figura 2.5 esquematiza la precipitación anual del país obtenida con información de EMAs. Contrastando las Figuras 5.3 y 5.4, se observa que ambos resultados coinciden en la distribución de zonas con baja y alta precipitación. Las zonas de alta precipitación se localizan en el sureste mexicano, principalmente en los estados de Chiapas y Tabasco con magnitudes de 3245 mm anuales, contrastando con los 4460 mm que marca la CONAGUA en la Figura 1.3. Las zonas de baja precipitación se ubican en el noroeste del país con magnitudes de 235 mm anuales, mientras que el registro histórico de pluviómetros establece umbrales de 50 mm.

Las diferencias en magnitud de los resultados de la Figura 2.4 por parte de CONAGUA y la Figura 2.5, no adquiere especial relevancia debido a que los registros de EMAs se orienta en el empleo de la relación existente entre la precipitación acontecida en distintas duraciones y la presentada en el total del día.

Es necesario mencionar algunos filtros realizados para la manipulación de los datos de las EMAs orientado en la descripción detallada de las magnitudes de lluvia que ocurren en diferentes intervalos de tiempo. En este trabajo se expone la distribución de la lluvia para los intervalos de 10, 20, 30, 40, 50 y 60 minutos en la República Mexicana. En los cálculos efectuados en las EMAs se verificaron magnitudes superiores a 50 mm en 10 minutos. Además, se operaron solo aquellas lluvias cuyo acumulado diario fuera superior a 10 mm, orientando el presente trabajo a la selección de tormentas diarias con potencial erosivo.

Capítulo 3 Estimación de la erosión hídrica

El primer estudio científico de los efectos de la erosión se piensa que lo hizo Wollny a fines del siglo XIX (Hudson, 1971, citado en Kirkby, 1984). En 1917, M. F. Miller comenzó un estudio en parcelas acerca del efecto de los cultivos y las rotaciones sobre el escurrimiento y la erosión; los resultados de este trabajo fueron necesariamente de tipo cualitativo. Ayres, en el año de 1936 obtuvo una noción elemental de los factores que afectaban la erosión. La importancia de las gotas de lluvia en el proceso de erosión fue considerada por Laws en 1940 en estudios sobre la precipitación pluvial natural. En 1947, Ellison publicó resultados acerca del análisis de la acción mecánica de las gotas de lluvia.

El grado de inclinación del terreno y la longitud de la pendiente fueron consideradas por Zingg en 1940. Smith evaluó los efectos de las prácticas de conservación mecánicas para cuatro combinaciones de rotación de cultivos y tratamiento de suelos en 1941. Browning y colaboradores en 1947 ampliaron el procedimiento propuesto por Smith (1941) para varias rotaciones de cultivos y para mayor parte de los suelos de lowa.

La relación de las características de precipitación pluvial con la cantidad de suelo erosionado fue introducida por Musgrave en 1947, expresado en la ecuación (1).

$$E = (0.00527) IR S^{1.35} L^{0.35} P^{1.75}_{30}$$
(3.1)

En donde: *E*, pérdida de suelo en mm por año; *I*, la erodabilidad inherente de un suelo con una pendiente del 10% y una longitud de pendiente de 22 m, en mm al año; *R*, un factor de cubierta vegetal; *S*, grado de pendiente en porcentaje; *L*, longitud de la pendiente en metros y, P_{30} como el máximo de precipitación pluvial en 30 minutos, en mm.

Smith y Whitt en 1947 y posteriormente en 1948, presentaron un método de estimar la pérdida de suelo para terrenos arcillosos de Missouri, considerando la inclinación de pendiente, longitud de pendiente, rotación de cultivos, prácticas de conservación y grupo de suelos. La ecuación presentada fue:

$$A = C S L K P \tag{3.2}$$

Dónde: A, pérdida anual promedio de suelo; C, pérdida promedio de suelo por rotación anual en las parcelas y S, L, K y P son multiplicadores para ajustar la pérdida de suelos de las parcelas C, para la inclinación de las pendientes, longitud y grupo de suelo, así como práctica de apoyo para la conservación, respectivamente.

La ecuación (3.2) es similar a la Ecuación Universal de Pérdida de Suelos, sin embargo, no considera el fenómeno de precipitación pluvial.

Van Doren y Bartelli en 1956 elaboraron un procedimiento de estimación de pérdida de suelos mediante dos tablas de factores; una incluía los efectos de tipo de suelo, inclinación de la pendiente y factores por prácticas mecánicas; y la segunda tabla incluía los efectos de erodabilidad del suelo, la erosión previa, la rotación de cultivos, manejo e intensidad y frecuencia de una precipitación pluvial de 30 minutos.

Smith y Wischmeier en 1957, Wischmeier y Smith en 1958 y Wischmeier y colaboradores en 1958 revaluaron los diversos factores que afectaban la pérdida de suelo mediante la formulación del método de predicción de pérdida de suelo de mayor uso, denominado como Ecuación Universal de Pérdida de Suelos.

3.1 Ecuación Universal de Pérdida de Suelo (RUSLE)

La Ecuación Universal de Pérdida de Suelo (USLE, por sus siglas en inglés), es un criterio empírico (Wischmeier and Smith, 1965, 1978) que cuantifica el material sólido que se pone en movimiento como producto de la erosión hídrica y se expresa como:

$$A = R K SL C P \tag{3.3}$$

Dónde: A (ton/ha) es la pérdida anual de suelo, R (N/h) es el factor que mide el potencial erosivo de la lluvia, K (ton-h/N-ha) factor que toma en cuenta el tipo de suelo, SL factor de longitud y pendiente del terreno (adimensional), C factor de cobertura vegetal (adimensional) y P factor de prácticas de cultivo y conservación de suelos (adimensional)

Otro enfoque para estimar el rendimiento de sedimento de cuencas fue adoptado por Williams (1975) quien desarrolló la Ecuación Universal Modificada de Pérdida de Suelo (MUSLE). Utiliza un factor de escurrimiento para reemplazar el factor de energía pluviosa del USLE. La diferencia con el modelo USLE, radica en el reemplazo del factor de erosividad de la lluvia R por un factor de escorrentía. La formulación desarrollada se muestra en la ecuación (4)

$$Y = 11.8 \left(Q x q_p \right)^{0.56} \cdot K \cdot L \cdot S \cdot C \cdot P \tag{3.4}$$

Dónde: Y, es el rendimiento de sedimento de la cuenca en toneladas (t); Q, es el volumen de escurrimiento por tormenta en metros cúbicos (m³); q_p , es la velocidad máxima de caudal en m³/s, y los otros factores son iguales que en el USLE. MUSLE es útil en cuencas con superficies de alrededor de 100 km, sin embargo, en sitios sin medición hidrométrica y donde no están claramente definidos los cauces no es posible aplicarla.

Por otra parte, en la década de los ochenta, es realizada una revisión del modelo USLE, dando origen a la Ecuación Universal de Pérdida de Suelo Revisada (RUSLE), la cual permite predecir las pérdidas de suelo a largo plazo para un sistema específico de manejo. En 1996 se publica la versión revisada del modelo RUSLE por medio del Departamento de Agricultura de Estados Unidos (USDA, 1996), que incluye nuevos procedimientos para estimar las variables del modelo del USLE.

3.2 Erosividad de la lluvia (Factor R)

La principal modificación del modelo RUSLE estriba en la sustentación para calcular el factor erosivo R, el cual depende de la energía cinética de las tormentas. La energía cinética debe obtenerse por cada incremento de intensidad en un lapso específico. La energía cinética expresada como el producto de la masa por la velocidad al cuadrado se relaciona con el tamaño de las gotas de lluvia y la velocidad terminal de llegada al suelo, que a su vez fueron relacionados con la intensidad de lluvia por Laws and Parsons (1943); la expresión original obtenida de la energía cinética corresponde a la ecuación (3.5).

$$e_c = 916 + 331 \log_{10} i, \qquad i \le 3 \text{in} \cdot \text{h}^{-1}$$
 (3.5)

$$e_c = 1074, \quad i > 3 \text{in} \cdot \text{h}^{-1}$$
 (3.6)

1

Dónde: e_c , es la energía cinética en ft·tonf·acre⁻¹·in⁻¹; i, intensidad en in·h⁻¹ (Wischmeier and Smith, 1958)

Las modificaciones realizadas a la expresión de la energía cinética fue realizada por Brown y Foster en 1987, expresando la energía cinética como lo indica la ecuación (7), la cual fue probada en una mayor cantidad de datos, predice de mejor forma la energía cinética para bajas intensidades y es asintótica a un valor para intensidades altas

$$e_c = 0.29 [1 - 0.72 \exp(-0.05i)] \tag{3.7}$$

Donde

i: Intensidad de lluvia en *mm·h*-1

e_c: Energía cinética expresada en *MJ*·ha⁻¹·mm⁻¹

De tal forma que la energía cinética de una tormenta se obtiene como la suma de las energías en cada incremento de altura de precipitación en un diferencial de tiempo, como se expresa en la ecuación (8). Donde k, es el incremento de tiempo para una tormenta dividida en m partes y la energía total de la tormenta se expresa en $MJ \cdot ha^{-1}$

$$E_T = \sum_{k=1}^{m} e_c(k) \cdot \Delta H p(k)$$
(3.8)

Sustituyendo la ecuación (3.7) en (3.8) resulta

$$E_T = \sum_{k=1}^{m} 0.29 [1 - 0.72 \exp(-0.05i(k))] \cdot \Delta Hp(k)$$
(3.9)

Posteriormente, añadiendo el término I_{30} , definido para una tormenta como la intensidad máxima en 30 minutos, se obtiene el factor erosivo R desglosado en la expresión (3.10)

$$R = \left\{ \sum_{k=1}^{m} 0.29 [1 - 0.72 \exp(-0.05i(k))] \cdot \Delta H p(k) \right\} \cdot I_{30}$$
(3.10)

Donde

R : Factor erosivo de Iluvia expresado en *MJ*·ha⁻¹·mm·h⁻¹

Intensidad máxima de lluvia en 30 minutos expresado en *mm·h*-1

El factor erosivo R, es calculado como la suma de los eventos erosivos en un período determinado, generalmente evaluado en un año.

Un evento erosivo se considera como aquella tormenta con precipitación pluvial mayor a 12*mm* de lluvia total acumulada, o con al menos 6*mm* de lluvia acumulada en 15 minutos. Una tormenta es separada de otra si hay menos de 12*mm* de lluvia acumulada en 6 horas, (USDA, 1996)

Un inconveniente que presenta la metodología del RUSLE es que requiere de la medición de la intensidad de tormentas en intervalos de tiempo corto, lo cual es posible a través de una red de pluviógrafos o Estaciones Meteorológicas Automáticas (EMAS). Sin embargo, el monitoreo de la lluvia en la mayoría de los países no presentan una adecuada densidad de estaciones de estas características.

Para solucionar este problema, se ha propuesto ecuaciones regionales para determinar el factor **R** a partir de la precipitación acumulada anual (Cortes, 1991), acumulada mensual (Petkovsek et al, 2004) o con relaciones empíricas de la Iluvia acumulada en un período mensual.

No obstante, el error en que se incurren estas simplificaciones es que al considerar la lluvia acumulada anual, no se considera que esta pudo concentrarse en un número menor de días con una mayor cantidad de lluvia, o por un número mayor de días y menor cantidad de lluvia, repercutiendo en la intensidad de lluvia diaria y en la energía cinética con que las gotas de lluvia impactan el suelo.

3.3 Erodabilidad del suelo (Factor K)

Es la facilidad con la cual el suelo es desprendido por el salpicamiento, durante una lluvia o por flujo superficial. Esta propiedad del suelo está relacionada al efecto integrado de la lluvia, escurrimiento e infiltración. El factor K representa el efecto de las propiedades del suelo y de las características del perfil del suelo en la pérdida de suelo. Los valores de K son asignados usando el nomograma de erodabilidad del suelo, que combina el efecto del tamaño de las partículas, %MO, código de la estructura del suelo y la clase de permeabilidad del perfil. El factor de erodabilidad del suelo se calcula con la ecuación del nomograma de Wischmeier and Smith (1978), para los casos donde la fracción de limos no exceda el 70%

$$K = \left[2.1 \cdot 10^{-4} (12 - OM) M^{1.14} + 3.25(s - 2) + 2.5(p - 3)\right] / 100$$
(3.11)

Donde:

K = Factor de erodabilidad del suelo [t./ha.MJ*ha/mm*hr]
OM = Materia orgánica [%]
S = Código de la estructura del suelo
P = Código de permeabilidad
M = Producto de las fracciones del tamaño de las partículas primarias ó (% limo + % arena muy fina)*(100 - % arcilla)

Debido a la complejidad de obtener cada uno de los factores de la expresión (3.11), se recurre a la propuesta de Romkens et al, 1986 mencionado en USDA, 1996

$$K = 7.594 \left\{ 0.0034 + 0.0405 \exp\left[-\frac{1}{2} \left(\frac{\log(Dg) + 1.659}{0.7101} \right)^2 \right] \right\}$$
(3.12)

Donde, la media geométrica del tamaño de las partículas solidas se estima con la formula de Shirazi y Boersma, 1984

$$Dg(mm) = \exp\left(0.01\sum_{i} f_i Ln(m_i)\right)$$
(3.13)

Aquí, f_i , es la fracción en porcentaje del tamaño de partícula primaria, arcilla, limo o arena, y m_i , es el tamaño de la partícula en milímetros. En la Figura 3.1 se especifican el rango de valores que puede adquirir dicho factor K

Figura 3.1. Factor de erodabilidad K, en función del tamaño medio geométrico de las partículas de suelo. Unidades expresadas en el SI (Sistema internacional de unidades) Fuente: USDA, 1996

3.4 Factor topográfico (Factor LS)

La longitud de pendiente (L), es definida como la distancia horizontal desde el origen de un flujo hasta el punto, donde:

- El gradiente de la pendiente reduce lo suficiente para que la deposición comience.
- El escurrimiento llega a ser concentrado en un canal definido.

Para su cálculo se utiliza la fórmula: USDA (U.S. Department of Agriculture), (1996),

$$L = \left(\lambda / 72.6\right)^m \tag{3.14}$$

Donde:

L = Factor de longitud de pendiente

 λ = Longitud de la pendiente [pies]

m = Exponente de la longitud de la pendiente

72.6 = Longitud de parcela unitaria RUSLE

La longitud de pendiente λ es la proyección horizontal, no la distancia paralela a la superficie del suelo.

El factor de inclinación de la pendiente (S), refleja la influencia de la gradiente de la pendiente en la erosión. El potencial de erosión se incrementa con la inclinación de la pendiente. Para pendientes con longitudes mayores a 5 m se debe usar las siguientes ecuaciones:

$S = 10.8 \cdot sen(\theta) + 0.03$	Cuando s<9%	(3.15)
$S = 16.8 \cdot sen(\theta) - 0.5$	Cua ndo s≥9%	(3.16)

Donde:

S = Factor de inclinación de pendiente

S = Inclinación de pendiente [%]

q = Angulo de pendiente [°]

Sin embargo, las expresiones de longitud y pendiente anteriores solo son aplicables a un estudio en dos dimensiones. Consecuente a ello, surge el modelo RUSLE3D, que incorpora el impacto de la convergencia del flujo, la **longitud de pendiente**, λ , fue remplazado por el área específica de captación, Ae, (Moore y Burch, 1986; Mitasova et al., 1996; Desmet y Govers, 1996). El concepto de, Ae, surge del área de contribución aguas arriba, comúnmente conocida como flujo acumulado, partido por la longitud efectiva de curva de nivel.

Moore y Burch (1986) afirmaron que la unidad de fuerza de corriente basado en el factor LS del USLE es actualmente una medida de la capacidad de transporte de sedimentos del flujo superficial; y "qué puede ser usado para trazar los efectos de la hidrología, y de aquí modelar el terreno en 3-D, sobre la erosión del suelo en paisajes naturales. Sin embargo, el término, Ae, puede caracterizar el efecto de convergencia y **divergencia del terreno sobre la erosión del suelo, a diferencia del término,** λ , en el USLE y RUSLE que sólo es aplicable a una superficie en 2D, es decir, sin considerar la convergencia y divergencia de las laderas. Mitasova et al. (1996), basándose en los estudios de Desmet y Goovers (1996), derivó una ecuación de forma continua para calcular el factor LS en un punto r = (x,y) sobre una pendiente:

$$LS(r) = (m+1) \left[\frac{A_e(r)}{22.13} \right]^m \left[\frac{sen(b(r))}{sen(5.143)} \right]^n$$
(3.17)

Donde A_e , es el área específica de captación por unidad de ancho de contorno, b es el ángulo de la pendiente en grados y, m y n son parámetros. Los valores típicos para el parámetro m contemplan un intervalo entre 0,4 a 0,6; mientras que para n son entre 1,0 a 1,4. Valores bajos de estos parámetros serían susceptibles de utilizar en zonas en que el flujo fuera de tipo laminar, con buena cobertura vegetal, y con poca probabilidad de escorrentía concentrada en regueros o surcos.

3.5 Factor de cobertura vegetal (Factor C)

El factor C es usado para reflejar el efecto de la cultivación y prácticas de manejo en las tasas de erosión. Este factor mide como el potencial de pérdida de suelo será distribuido en el tiempo durante la construcción de actividades, rotación de cultivos, y otros esquemas de manejo. El factor C está basado en el concepto de desviación standard, siendo el standard un área bajo condiciones de barbecho con cultivo limpio. El valor de C para condiciones Standard es 1.

La relación de pérdida de suelo por vegetación y manejo de residuos de cultivo se calcula en base de 5 subfactores (es decir prácticas parcelarias), como:

$$SLR = PLU \cdot CC \cdot SC \cdot SR \cdot SM \tag{3.18}$$

Donde:

SLR = Relación de pérdida de suelo debido a la vegetación, cultivos y prácticas de arado de suelo.

PLU = Subfactor de uso de suelo previo.

CC = Subfactor de cobertura de dosel.

SC = Subfactor de cobertura de la superficie.

SR = Subfactor de rugosidad de la superficie.

SM = Subfactor de humedad del suelo.

Debido a la complejidad ye incertidumbre en los parámetros implícitos en el factor de cobertura vegetal, se han propuesto otras metodologías a partir de imágenes satelitales, incorporando el índice normalizado de vegetación estandarizada (NDVI) como indicador de la calidad y cantidad de vegetación, a partir de la radiación de ciertas bandas del espectro electromagnético que la vegetación refleja

Estudios previos emplean el NDVI como factor de cubierta vegetal propuessto por Van der Knijf, Jones, y Montanarella (2000), así como factor C en la estimación de perdida de suelo de la metodología del RUSLE, mediante un reescalado de valores.

Durigon, (2004), menciona que para áreas de vegetación densa, el factor NDVI adquiere valores de +1, y el factor C de RUSLE se acerca a cero. Por lo tanto, propone calcular el factor C de RUSLE, bajo condiciones de clima tropical, mediante la expresión siguiente

$$C_r = \left(\frac{-NDVI + 1}{2}\right) \tag{3.19}$$

3.5 Factor de prácticas de cultivo y conservación del suelo (Factor P)

Es la relación de pérdida de suelo con prácticas de soporte a la pérdida correspondiente con labranza en pendiente, la cual tiene un valor de 1. Estas prácticas de control combate la erosión, puesto que modifica los patrones de flujo y el grado o dirección de superficie de escurrimiento. Para las prácticas de soporte de tierras cultivadas, generalmente incluye contorno, cultivos en faja, terraceo y drenaje subsuperficial. USLE calcula el factor P basado en porcentajes de pendiente, longitud de pendiente, rugosidad, altura **de bordes, distribución del "EI", grupo de suelos hidrológicos y el efecto de terrazas** contra la pendiente.

Las prácticas de apoyo con las que trabaja el RUSLE son: USDA (U.S. Department of Agriculture), (1996)

A. Surcos en contorno

- Camellones
- Contornos a desnivel
- Longitud de pendiente crítica, gradiente
- B. Terrazas
 - Terraceo en gradas
 - Deposición
- C. Cultivos en fajas
 - Fajas de amortiguación
 - Fajas perpendiculares a la pendiente
- D. Drenaje subsuperficial

• Drenes

- E. Medidas de conservación en tierras silvopastoriles
 - Prácticas de manejo silvopastoril.

Para efectos de calcular el potencial erosivo, se considera el factor P con valor de 1, debido a que no se preveen medidas que contrarresten los efectos de erosión y sedimentación, es decir, se maneja la situación adversa.

3.6 Calculo del factor R a partir de lluvias máximas en 24 horas

En este trabajo se propone obtener el factor erosivo de lluvia R para cada una de las tormentas máximas en 24 horas. Enseguida se expone la secuencia de actividades que contempla la metodología propuesta:

- 1. Calculo del coeficiente de relación 30 minutos a 24 horas
- 2. Calculo de factor erosivo R de la formula RUSLE
- 3. Modelo de ajuste de factor erosivo a partir de lluvia en 24 horas
- 4. Zonas potenciales erosivas
- 5. Evaluación del modelo propuesto en cuencas aforadas

Calculo del coeficiente de relación 30 minutos a 24 horas

Cada evento erosivo se compone de una serie de variables que diferencian un evento de otro. El factor erosivo R es una definición de la erosividad como resultado de la precipitación pluvial, y se define como el producto de dos características básicas: la energía cinética y la precipitación máxima en 30 minutos.

Los registros de precipitación pluvial diarios fueron analizados minuciosamente calculando la altura máxima de lluvia en intervalos de 10, 20, 30, ..., 1440 minutos con la finalidad de no obtener un evento aislado de la precipitación máxima en 30 minutos. El análisis para diferentes duraciones permite establecer la caracterización integral de la precipitación pluvial diaria y reafirman contundentemente los resultados obtenidos específicamente para la altura de precipitación máxima en 30 minutos.

Además, como información adicional se obtiene el coeficiente que indica la cantidad de precipitación en una hora respecto a la Iluvia en 24 horas, el cuál es un claro indicativo de la intensidad de la Iluvia en una región. En la República Mexicana dicho valor oscila del 30 al 70% en regiones de baja intensidad a zonas con elevada pluviosidad.

Al estudiar algún sitio en particular, es común que existan varios eventos erosivos por año, por lo que es necesario determinar el valor que caracteriza a cada una de las variables planteadas en este trabajo. El valor característico de cada variable puede obtenerse en primera instancia a través de medidas de tendencia central como la media, mediana o moda de la serie de datos.

Calculo de factor erosivo R de la formula RUSLE

Consiste en evaluar el factor erosivo R para cada una de las tormentas registradas en las EMAs. Para cada tormenta se construirá por el par ordenado de precipitación y factor erosivo R, sin embargo, se observará que para magnitudes de precipitación similares existe una dispersión de valores de erosión asociados. Por tal motivo, se propone discretizar las magnitudes de precipitación en intervalos de 5mm. Cada intervalo de clase contiene un cúmulo de tormentas con distintas duraciones y energía erosiva, por lo que a cada conglomerado de datos se le estima una función de densidad para obtener posteriormente la energía erosiva característica por intervalo de clase. Debido a que cada intervalo de clases posee distintas frecuencias, se recomienda ajustar un histograma de densidades a partir de conglomerados de 10 elementos

Modelo de ajuste de factor erosivo a partir de lluvia en 24 horas

La finalidad de este trabajo consiste en proporcionar un modelo matemático que permita determinar la energía erosiva correspondiente a una lluvia determinada. El modelo debe predecir un comportamiento natural entre estas dos variables, es decir, que la energía erosiva tienda a aumentar proporcionalmente conforme exista un aumento de lluvia de la tormenta, sin embargo, este fenómeno no siempre ocurre de esta forma debido a que la intensidad de la lluvia puede presentarse en diferentes intervalos de tiempo

Con el objeto de establecer un modelo que refleje la naturaleza creciente de la energía erosiva, se propone lo siguiente:

- 1. Trazar envolventes a los registros de energía erosiva asociado a las marcas de clase de lluvia
- 2. Ajustar un modelo de regresión no lineal a las envolventes trazadas, cuya expresión matemática que mejor resultados brindó es la siguiente:

$$R = \frac{a \cdot b + c \cdot x^d}{b + x^d}$$

Donde x es la precipitación de la tormenta evaluada

3. Obtener el valor esperado de los modelos de las envolventes

Zonas potenciales erosivas

El modelo de predicción del factor erosivo R, permite evaluar las zonas potenciales erosivas para cada atura de precipitación.

La variación espacial de este índice se contrasta con los resultados de intensidades de lluvia obtenido mediante la relación de lluvia de 1 a 24 horas con el objetivo de verificar la correspondencia proporcional entre estas variables

Evaluación del modelo propuesto en cuencas aforadas

La propuesta de esta investigación consiste en la obtención de factor erosivo R. Sin embargo, se indica el impacto que genera en el cálculo de sedimentos en cuencas y se propone un índice de entrega de sedimentos depositados al final de la cuenca

Capítulo 4 Aplicación en cuencas

4.1 Caracterización de tormentas

El procedimiento para calcular el coeficiente que relaciona la lluvia que se presenta en 30 minutos respecto a la que ocurre en 24 horas es el siguiente:

- 1. Considerar tormentas mayores a con duración D_t mayor a 1 hora y magnitud de precipitación P_t mayor a 10 milimetros, medidas en el intervalo de tiempo de 24 horas.
- 2. Determinar el intervalo de tiempo *t* de medición de cada tormenta, en minutos.
- 3. Obtener el incremento de precipitación máxima para los tiempos 1t, 2t, 3t, ..., nt. Dónde n = 1440/t
- 4. Evaluar en cada intervalo de tiempo la precipitación máxima y descartar aquellas tormentas con intensidades mayores a 50mm en 10 minutos o 300mm/h.
- 5. Se construye una nueva serie de datos con valores de incrementos de precipitación mayores a cero, con la finalidad de evaluar la aleatoriedad en los registros de precipitación, aplicando la metodología de independencia de eventos indicada en el anexo A2.1.
- 6. Descartar aquellas tormentas cuyos incrementos de precipitación no sean de naturaleza aleatoria.
- 7. Para cada instante de tiempo *t*, determinar la relación $C_{1t}=P_{1t}/P_{nt}$, $C_{2t}=P_{2t}/P_{nt}$, $C_{3t}=P_{3t}/P_{nt}$... $C_{nt}=P_{nt}/P_{nt}$
- 8. Considerando el total de tormentas, construir un registro de las relaciones C_{1t} , C_{2t} , C_{3t} ... C_{nt} para cada intervalo de tiempo indicado en el punto anterior.
- 9. Se obtienen lo estadísticos de esperanza matemática y varianza correspondientes a cada registro de las relaciones C_{1b} C_{2b} C_{3t} ... C_{nt}
- 10. A partir de la esperanza matemática para cada instante de tiempo, ajustar el modelo de regresión no lineal siguiente.

$$C_{1440}^{nn} = C_{1440}^{10} + a \cdot T^{b} \exp\left(-\frac{c}{T}\right) \left(1 - C_{1440}^{10}\right)$$

Ejemplo 1

En las siguientes líneas se describe el procedimiento para obtener la precipitación máxima en 30 minutos de un registro de precipitación pluvial diario, así como la intensidad correspondiente. En ese sentido se obtiene la relación que existe entre la lluvia que se presenta en 30 minutos respecto a la acontecida en 24 horas a través del modelo de regresión indicado en el punto 11.

Para efectos de ejemplo, se considera la estación "Tamesí" administrada por el Organismo de Cuenca Golfo Norte, con coordenadas geográficas 22.4139 N y -98.4219 O. El hietograma de la tormenta analizada corresponde a la acontecida el día 16 de noviembre de 2009, como se muestra en la Figura 4.1., con los valores de la Tabla 4.1

Figura 4.1 Hietograma de precipitación ocurrido el 16 de noviembre de 2009 en la estación Tamesí

			Turricsi					
Tiempo (min)	10	20	30	40	50	60	70	80
Precipitación (mm)	0.2	1.2	2.8	2.4	0	0	0	0.2
Tiempo (min)	90	100	110	120	130	140	150	160
Precipitación (mm)	0.4	2.4	0.4	0	0	1.2	4.2	3.8
Tiempo (min)	170	180	190	200	210	220	230	240
Precipitación (mm)	3.4	1.4	0.8	0.2	0.2	0.2	0	0
Tiempo (min)	250	260	270					
Precipitación (mm)	0	0	0.2					

Tabla 4.1 Registro de la precipitación pluvial ocurrida el 16 de noviembre de 2009 en la estación

Siguiendo el procedimiento descrito, se obtiene lo que a continuación se describe: Período de análisis: 24 horas

Punto 1

 $D_t = 270 \ minutos = 4.5 \ horas$

 $P_t = 25.6 \ mm$

Punto 2

 $\Delta t = 10 minutos$

Como $D_t > 1$ hora y $P_t > 10$ mm, entonces se acepta el criterio número de 1 de selección de tormentas.

Punto 3

Desarrollando el punto 3, en la Figura 4.2 se indica la precipitación máxima para diferentes duraciones

Figura 4.2 Precipitación máxima para diferentes duraciones

Punto 4

 $P_{10max} < 4.2mm$

En el mismo sentido, como $P_{10max} < 50mm$ se acepta el criterio número 4

Punto 5

Referente a la prueba de independencia de eventos, se construye el registro similar a la Tabla 4.1 donde se omiten los valores iguales a cero, como se muestra en la Tabla 4.2

Tabla 4.2 Registro de la precipitación pluvial ocurrida el 16 de noviembre de 2009 en la estación Tamesí, omitiendo valores iguales a cero

Tiempo (min)	10	20	30	40	50	60	70	80
Precipitación (mm)	0.2	1.2	2.8	2.4	0.2	0.4	2.4	0.4
Tiempo (min)	90	100	110	120	130	140	150	160
Precipitación (mm)	1.2	4.2	3.8	3.4	1.4	0.8	0.2	0.2
Tiempo (min)	170	180	190	200	210	220	230	240
Precipitación (mm)	0.2	0.2						

La prueba de independencia de eventos aplicada al registro de la Tabla 4.2 arroja como parámetros los indicados en la Tabla 4.3

Tabla 4.3 Coeficientes de correlación con retraso k

k	1	2	3	4	5	6
r _{kmin}	-0.5200	-0.5369	-0.5556	-0.5762	-0.5992	-0.6250
r _k	0.4749	-0.0102	-0.0530	-0.1978	-0.3989	-0.3469
r _{kmax}	0.4024	0.4119	0.4222	0.4333	0.4454	0.4584

Figura 4.3 Correlograma de independencia de eventos

Punto 6

Como el número de retrasos para este registro es un valor entero igual a seis, la serie se considera independiente debido a que no se sobrepasan los límites de confianza en el umbral de 10% de aceptación, que para este caso es igual a la unidad. Al cumplir con el criterio de independencia, se acepta el registro para los análisis siguientes.

Punto 7

Apoyándose en la Figura 4.1, para cada instante de tiempo *t*, se determina la relación $C_{1t}=P_{1t}/P_{nt}$, $C_{2t}=P_{2t}/P_{nt}$, $C_{3t}=P_{3t}/P_{nt}$... $C_{nt}=P_{nt}/P_{nt}$, obteniéndose las relaciones de la Figura 4.4

Figura 4.4 Precipitación máxima para diferentes duraciones

Punto 8

Para la estación Tamesí, existen 186 registros de tormentas analizadas, de las cuales solo 41 fueron apropiadas para continuar los análisis correspondientes, en base a los criterios descritos en los puntos 1, 2, 3, 4 y 5.

Punto 9

En la Figura 4.5, se indican las relaciones C_{nt} para los 30 registros, así como el valor esperado característico de la estación.

Figura 4.5 Relaciones de precipitación para diferentes duraciones en la estación Tamesí

Punto 10

Finalmente, al valor esperado de registro de precipitación se ajusta el modelo de regresión no lineal del punto 10, obteniéndose los siguientes parámetros y ejemplificado en la Figura 4.6

Figura 4.6 Ajuste del modelo de regresión no lineal $C_{1440}^{nn} = C_{1440}^{10} + a \cdot T^b \exp\left(-\frac{c}{T}\right) \left(1 - C_{1440}^{10}\right)$

El análisis para determinar la precipitación máxima en 30 minutos, permite evaluar detalladamente la calidad de la información a utilizar en el cálculo de la energía erosiva y descartar aquellas estaciones que infligen ruido espacial en la caracterización de la energía erosiva.

Como resultado del análisis de la precipitación para diferentes duraciones, se obtiene la distribución espacial de la relación C_{nt} para 1 hora como se aprecia en la Figura 4.7. En las Figuras 4.8 a 4.12 se aprecia la distribución espacial de las relaciones de lluvia de 10, 20, 30, 40 y 50 minutos respecto a la lluvia en 1 hora.

Figura 4.7. Relación de Iluvia 1 a 24 horas en la República Mexicana. Unidades adimensionales Fuente: Elaboración propia

Figura 4.8. Relación de Iluvia 10 a 60 minutos en la República Mexicana. Unidades adimensionales Fuente: Elaboración propia

Figura 4.9. Relación de Iluvia 20 a 60 minutos en la República Mexicana. Unidades adimensionales Fuente: Elaboración propia

Figura 4.10. Relación de Iluvia 30 a 60 minutos en la República Mexicana. Unidades adimensionales Fuente: Elaboración propia

Figura 4.11. Relación de Iluvia 40 a 60 minutos en la República Mexicana. Unidades adimensionales Fuente: Elaboración propia

Figura 4.12. Relación de Iluvia 50 a 60 minutos en la República Mexicana. Unidades adimensionales Fuente: Elaboración propia

4.2 Predicción de la energía erosiva a partir de lluvia en 24 horas

Toda tormenta posee cierta energía que depende de la intensidad de Iluvia asociada. Esta energía determina el grado erosivo de las gotas de Iluvia que la componen.

Es posible obtener un valor característico de la energía erosiva que predomina en cierta región, sin embargo, se pierde información de la naturaleza erosiva temporal de la Iluvia. Es decir, puede llegarse a desconocer la cantidad de lluvia necesaria para erosionar el suelo en un tiempo determinado.

El procedimiento para calcular el factor erosivo R de la formula RUSLE es el siguiente:

- 1. Considerar tormentas mayores a con duración D_t mayor a 1 hora y magnitud de precipitación P_t mayor a 10 milimetros, medidas en el intervalo de tiempo de 24 horas.
- 2. Determinar el intervalo de tiempo t de medición de cada tormenta, en minutos.
- 3. Obtener el incremento de precipitación máxima para los tiempos 1t, 2t, 3t, ..., nt. Dónde n = 1440/t
- 4. Evaluar en cada intervalo de tiempo la precipitación máxima y descartar aquellas tormentas con intensidades mayores a 50mm en 10 minutos o 300mm/h.
- 5. Se construye una nueva serie de datos con valores de incrementos de precipitación mayores a cero, con la finalidad de evaluar la aleatoriedad en los registros de precipitación, aplicando la metodología de independencia de eventos indicada en el anexo A2.1.
- 6. Descartar aquellas tormentas cuyos incrementos de precipitación no sean de naturaleza aleatoria.
- 7. Calcular la intensidad de precipitación para los incrementos de tiempos 1t, 2t, 3t, ..., nt. Dónde n = 1440/t. Ver Tabla 4.4, columna 5
- 8. Evaluar la energía cinética para cada incremento de tiempo mediante la expresión 3.7. Ver Tabla 4.4, columna 6

$e_c = 0.29 [1 - 0.72 \exp(-0.05i)]$

Al aplicar la expresión anterior se tendrá asociada la energía cinética ecli, eczi, eczi, ..., ecnt

9. Multiplicar la energía cinética e_c de cada incremento de tiempo por su altura de precipitación respectiva para obtener la energía total por incremento de tiempo E_{TI} , E_{T2} , E_{T3} , ..., E_{Tnt} . Lo cual, es equivalente a la expresión 3.9. Ver Tabla 4.4, columna 7

$$E_T = \sum_{k=1}^{m} 0.29 [1 - 0.72 \exp(-0.05i(k))] \cdot \Delta Hp(k)$$

- 10. Sumar los valores E_{TIt} , E_{T2t} , E_{T3t} , ..., E_{Tnt} . y almacenar el valor en S_{T1}, donde T1 es indicativo de la tormenta 1
- Multiplicar la sumatoria S_{T1} por la intensidad máxima en 30 minutos obtenida en el punto 3 y denotar el resultado como R_{T1}, donde R es el factor erosivo de lluvia asociado a la tormenta T1

Ejemplo 2

Para efectos de ejemplo, se considera la estación "Tamesí" administrada por el Organismo de Cuenca Golfo Norte, con coordenadas geográficas 22.4139 N y -98.4219 O. El hietograma de la tormenta analizada corresponde a la acontecida el día 16 de noviembre de 2009, como se muestra en la Figura 4.1., con los valores de la Tabla 4.1

Figura 4.1 Hietograma de precipitación ocurrido el 16 de noviembre de 2009 en la estación Tamesí

			Tamesi					
Tiempo (min)	10	20	30	40	50	60	70	80
Precipitación (mm)	0.2	1.2	2.8	2.4	0	0	0	0.2
Tiempo (min)	90	100	110	120	130	140	150	160
Precipitación (mm)	0.4	2.4	0.4	0	0	1.2	4.2	3.8
Tiempo (min)	170	180	190	200	210	220	230	240
Precipitación (mm)	3.4	1.4	0.8	0.2	0.2	0.2	0	0
Tiempo (min)	250	260	270					
Precipitación (mm)	0	0	0.2					

Tabla 4.1 Registro de la precipitación pluvial ocurrida el 16 de noviembre de 2009 en la estación

Tabla 4.4 Calculo de la energía erosiva para la precipitación pluvial ocurrida el 16 de noviembre de 2009 en la estación Tamesí

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Tiempo	Profundidad	Duración	Incremento de lluvia	Intensidad	Energía	
(minutos)	(milímetros)	(minutos)	(milímetros)	(mm/h)	Por milímetro	Total
00:10	0.2	00:10	0.2	1.2	0.0934	0.0187
00:20	1.4	00:10	1.2	7.2	0.1443	0.1732
00:30	4.2	00:10	2.8	16.8	0.1999	0.5596
00:40	6.6	00:10	2.4	14.4	0.1884	0.4521
00:50	6.6	00:10	0	0	0.0812	0.0000
01:00	6.6	00:10	0	0	0.0812	0.0000
01:10	6.6	00:10	0	0	0.0812	0.0000
01:20	6.8	00:10	0.2	1.2	0.0934	0.0187
01:30	7.2	00:10	0.4	2.4	0.1048	0.0419
01:40	9.6	00:10	2.4	14.4	0.1884	0.4521
01:50	10	00:10	0.4	2.4	0.1048	0.0419
02:00	10	00:10	0	0	0.0812	0.0000
02:10	10	00:10	0	0	0.0812	0.0000
02:20	11.2	00:10	1.2	7.2	0.1443	0.1732
02:30	15.4	00:10	4.2	25.2	0.2308	0.9692

02:40	19.2	00:10	3.8	22.8	0.2232	0.8482
02:50	22.6	00:10	3.4	20.4	0.2147	0.7300
03:00	24	00:10	1.4	8.4	0.1528	0.2139
03:10	24.8	00:10	0.8	4.8	0.1258	0.1006
03:20	25	00:10	0.2	1.2	0.0934	0.0187
03:30	25.2	00:10	0.2	1.2	0.0934	0.0187
03:40	25.4	00:10	0.2	1.2	0.0934	0.0187
03:50	25.4	00:10	0	0	0.0812	0.0000
04:00	25.4	00:10	0	0	0.0812	0.0000
04:10	25.4	00:10	0	0	0.0812	0.0000
04:20	25.4	00:10	0	0	0.0812	0.0000
04:30	25.6	00:10	0.2	1.2	0.0934	0.0187
Total		04:30	25.6			4.8681

130 = 22.8mm/h

R_{T1} = (22.8mm/h) * (4.8681 *MJ*·ha⁻¹·mm⁻¹)

R_{T1} = 110.9916 *MJ*·*ha*⁻¹·*mm*·*h*⁻¹

Para la estación Tamesí, existen 186 registros de tormentas analizadas, de las cuales solo 41 fueron apropiadas para continuar los análisis correspondientes. Por lo tanto, existen 30 factores erosivos de lluvia asociados a diferentes alturas de precipitación, como se observa en la Figura 4.13.

Energía erosiva para la estación Tamesí

Figura 4.13. Gráficas de altura de precipitación versus factor erosivo R

4.3 Modelo de ajuste de factor erosivo a partir de lluvia en 24 horas

Debido a la variación de la energía erosiva para alturas de precipitación similares, se propone simplificar los registros de lluvia en intervalos de 5 mm; esto se realiza con la finalidad de analizar un cumulo de tormentas y asociar una energía erosiva característica por cada 5 mm de lluvia. Cada intervalo de clase contiene un cúmulo de tormentas con distintas duraciones y energía erosiva, por lo que a cada conglomerado de datos se le estima una función de densidad para obtener posteriormente la energía erosiva característica por intervalo de clase. Debido a que cada intervalo de clases posee distintas frecuencias, se recomienda ajustar un histograma de densidades a partir de conglomerados de 10 elementos. En la Tabla 4.5 se muestran los elementos básicos para determinar la energía erosiva característica de cada intervalo de clase

El procedimiento para calcular el coeficiente que relaciona la lluvia que se presenta en 30 minutos respecto a la que ocurre en 24 horas es el siguiente:

- Del registro de factor erosivo R asociado a cada altura de precipitación, calculado en el apartado *Calculo de factor erosivo R de la formula RUSLE*, agrupar los registros de precipitación en intervalos de 5mm o menor, estableciendo el umbral inferior en 10mm (Tabla 4.5, columna 1) y el umbral superior hasta la máxima precipitación registrada (Tabla 4.5, columna 2).
- 2. Calcular la marca de clase para cada escalón de precipitación evaluado (Tabla4.5, columna 3)
- 3. Contabilizar el número de eventos erosivos que se encuentran en cada intervalo de clase de precipitación (Tabla4.5, columna 4)
- 4. Obtener el valor mínimo del factor erosivo R para cada intervalo de clase de precipitación (Tabla4.5, columna 5)
- 5. Obtener el valor máximo del factor erosivo R para cada intervalo de clase de precipitación (Tabla4.5, columna 6)
- 6. Construir el histograma de densidades empleando la metodología indicada en el anexo A2.2.1 a aquellos intervalos de clase con mas de 10 eventos erosivos
- Indicar el número de barras para cada intervalo de clase de precipitación Obtener el valor mínimo del factor erosivo R para cada intervalo de clase de precipitación (Tabla4.5, columna 7)
- 8. Al histograma de densidades, ajustar una función de densidad a partir de las distribuciones de probabilidad indicadas en el anexo A2.2.2.
- 9. Obtener la esperanza matemática de la función de distribución ajustada para cada intervalo de clase.
- 10. Para los intervalos de clase con menos de 10 eventos erosivos, considerar el promedio aritmético
- 11. Obtener un nuevo registro con las esperanzas matemáticas obtenidas por distribución de probabilidad y los obtenidos como promedio aritmético.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Limite	Limite	Marca	Frecuencia	Valor	Valor	No.
Inferior	Superior	de clase	Absoluta	Mínimo	Máximo	Barras
10	15	12.5	20	5.89	89.82	5
15	20	17.5	10	0.83	110.11	3
20	25	22.5	12	32.30	223.66	3
25	30	27.5	5	89.42	388.81	0
30	35	32.5	7	4.60	444.36	0
35	40	37.5	8	123.79	657.08	0
40	45	42.5	3	226.11	650.09	0
45	50	47.5	3	160.25	733.74	0
50	55	52.5	2	454.59	1004.65	0
65	70	67.5	1	1026.49	1026.49	0
70	75	72.5	2	410.21	619.60	0
75	80	77.5	1	783.53	783.53	0
80	85	82.5	2	502.16	517.05	0
120	125	122.5	2	197.80	1247.06	0
150	155	152.5	1	1054.58	1054.58	0

Tabla 4.5. Elementos básicos para la determinación de la energía erosiva característica por intervalo de clase

La Tabla 6.1 indica que solo para 3 intervalos de clase es necesario ajustar una función de densidad, considerando al menos 10 tormentas por marca de clase

El histograma de densidades para el primer intervalo de clase se compone de 5 barras corroboradas mediante la metodología de Freedman and Diaconis, 1981

La distribución Gamma de dos parámetros analizada por máxima verosimilitud presenta un mejor ajuste al histograma de densidades, de acuerdo a la prueba de bondad de ajuste del Error Estandar de Ajuste (EEA). En la Figura 4.14 se muestra el histograma construido y el ajuste de la distribución. Con los parámetros de la distribución se obtiene la energía erosiva característica para el primer intervalo de clase

Energía erosiva (*MJ ha*-1 mm h-1)

Figura 4.14. Histograma de densidad y Distribución Gamma2 para la marca de clase de 12.5 mm

El resto de los intervalos de clase a los que no es posible ajustar un a función de probabilidad se considera como energía erosiva característica el valor esperado de su respectivo conglomerado de datos. En la Tabla 4.6 se muestra en resumen la energía erosiva asociada a cada altura de precipitación Tabla 4.6. Energía erosiva asociada a una altura de precipitación

Altura de	Energía Erosiva
Precipitación (mm)	$(MJ ha^{-1} mm h^{-1})$
12.5±2.5	32.89
17.5±2.5	49.94
22.5±2.5	124.94
27.5±2.5	255.37
32.5±2.5	191.67
37.5±2.5	419.67
42.5±2.5	406.77
47.5±2.5	447.98
52.5±2.5	729.62
67.5±2.5	1026.49
72.5±2.5	514.91
77.5±2.5	783.54
82.5±2.5	509.61
122.5±2.5	722.44
152.5±2.5	1054.59

En la Figura 4.15 se muestra la gráfica de altura de precipitación versus energía erosiva considerando el total de tormentas y considerando la síntesis hecha anteriormente

Figura 4.15. Gráficas de altura de precipitación versus energía erosiva mediante síntesis de tormentas por funciones de probabilidad

La finalidad de este trabajo consiste en proporcionar un modelo matemático que permita determinar la energía erosiva correspondiente a una lluvia determinada. El modelo debe predecir un comportamiento natural entre estas dos variables, es decir, que la energía erosiva tienda a aumentar proporcionalmente conforme exista un aumento de lluvia de la tormenta, sin embargo, este fenómeno no siempre ocurre de esta forma debido a que la intensidad de la lluvia puede presentarse en diferentes intervalos de tiempo. En la Figura 4.15 se observa que la energía erosiva aumenta conforme incrementa la magnitud de la lluvia, no obstante, a partir de los 75 mm comienza a decrecer ligeramente.

Con el objeto de establecer un modelo que refleje la naturaleza creciente de la energía erosiva, se propone lo siguiente:

- 1. Trazar envolventes a los registros de energía erosiva asociado a las marcas de clase de lluvia
- 2. Ajustar un modelo de regresión a las envolventes trazadas
- 3. Obtener el valor esperado de los modelos de las envolventes

Continuando con el ejemplo de la estación Ballesmí (03002), en la Figura 4.16 se muestran las envolventes de la energía erosiva por marca de clase

En la Figura 4.17 se muestran los ajustes a las envolventes en conjunto con el valor característico obtenido de los modelos de regresión. Además, se observa que el modelo de regresión para la envolvente superior no representa un adecuado ajuste, sin embargo, del modelo de regresión final permite obtener la energía erosiva para cualquier altura de precipitación, lo que permite contrastar resultados con estaciones vecinas y revalidar el modelo calibrado a priori

En la Figura 4.17 se aprecia claramente que la energía erosiva para 75 mm marca un quiebre en el sentido creciente de la relación erosión - precipitación. La validación de dicho valor se desarrolla a partir de un análisis regional de la zona. En la Figura 4.18 a 4.24 se muestra los modelos matemáticos finales para todas las estaciones analizadas. Los resultados del ajuste de regresión fueron verificados espacialmente. El valor de cada marca de clase para cada estación fue contrastado con los resultados espaciales y sometido a un proceso de calibración con retroalimentación hasta generar una distribución espacial gradual de la energía erosiva para cada altura de lluvia

Figura 4.18 Ajustes matemático de las estaciones analizadas (parte1)

Energia Erosiva

Figura 4.19 Ajustes matemático de las estaciones analizadas (parte2)

Figura 4.21 Ajustes matemático de las estaciones analizadas (parte4)

Figura 4.23 Ajustes matemático de las estaciones analizadas (parte6)

Figura 4.24 Ajustes matemático de las estaciones analizadas (parte7)

En la Figura 6.25., se muestra la energía erosiva para una lluvia extrapolada de 502.5 mm distribuido espacialmente en la República Mexicana. La precipitación de 502.5 mm se toma como umbral para la energía erosiva, en donde prácticamente la energía erosiva se acerca asintóticamente a un valor especifico resultado del modelo matemático aplicado.

Fuente: Elaboración propia

Análisis de estaciones climatológicas

En la República Mexicana se cuenta con 5460 estaciones climatológicas, las cuáles pueden contar con instrumentos de medición de temperatura, precipitación, viento, y presión barométrica. No obstante la calidad de los aparatos resulta un factor decisivo en la elección y depuración de información de calidad en cantidad suficiente.

Los criterios de calidad que se adoptaron en este trabajo fueron los siguientes

- Cada día de registro para cada estación fue comparado con las estaciones vecinas en un radio de 30km. Dicho sector es sometido a un análisis de estadística zonal calculándose la media, desviación estándar, mediana y moda de las estaciones adyacentes
- Los registros diarios de magnitud sospechosamente elevada que poseen un coeficiente de variación, en la zona de 30km de radio, mayor a la unidad y cuya mediana sea inferior en un 50% al evento registrado, fue retirado de la base de datos debido a incongruencias con las estaciones vecinas para un día en particular.
- Los registros mensuales menores al 25% del valor característico de la estación, fueron descartados debido a incongruencias temporales e inferidas con las estaciones vecinas
- Se aceptaron para el estudio solo aquellas estaciones con registros mayores a 20 años.
- La homogenización en el período de registro fue apoyada por la técnica de interpolación espacial IDW

Finalmente se logra un periodo de registro común de 1965 a 2006, con 2124 estaciones dispersas en toda la República Mexicana. En la Figura 4.26 se muestra la distribución de la precipitación en la República Mexicana a partir de las estaciones climatológicas, observándose congruencia con la Figura 2.4 respecto a las zonas de mayor precipitación y a la magnitud de la misma

Figura 4.26 Distribución de la precipitación en la República Mexicana, a partir de las 2124 estaciones sometidas a filtros de calidad y cantidad Fuente: Elaboración propia

Mediante la metodología propuesta es posible observar una distribución espacial gradual de la energía erosiva y además, conforme la precipitación aumenta la energía erosiva se dispersa paulatinamente

La energía erosiva para cada marca de clase planteado en las Figuras 4.23 a 4.29, permiten construir superficies interpoladas para posteriormente extraer en cualquier sitio la información necesaria. En este caso, se calculó la energía erosiva para los sitios correspondientes a las estaciones climatológicas operadas por la CONAGUA, de las cuales 3328 se encuentran en operación y 2131 suspendidas

Se construyó una serie de datos de energía erosiva contra altura de precipitación para cada una de las estaciones pluviográficas mencionadas. Posteriormente se aplicó la metodología de un modelo de regresión no lineal cuya expresión matemática es la siguiente

$$R = \frac{a \cdot b + c \cdot x^d}{b + x^d} \tag{6.1}$$

Es importante mencionar que con ayuda de la Figura 4.12, donde se indican las relaciones de lluvia de 1 a 24 horas, se corrobora que los sitios de mayor intensidad de lluvia se asocian con los sitios de mayor erosividad para las distintas alturas de precipitación. En la Figura 4.27 se muestran los parámetros del modelo de regresión no lineal expuesto anteriormente

Figura 4.27. Mapas de contorno de los parámetros empleados en el modelo matemático de erosión Fuente: Elaboración propia

En la Figura 4.27 se observa una distribución de los parámetros ligeramente caótica, por lo que debe refinarse el modelo matemático estableciendo limites en la estimación de los mismos, procurando una distribución gradual en la zona estudiada. Sin embargo, debido a que los registros de las estaciones pluviométricas se obtuvieron directamente de los resultados del análisis de erosión de

EMAs, los ajustes realizados por el modelo no lineal resultan con enorme precisión. En la figura 4.28 se muestran los ajustes de algunas estaciones pluviométricas por la expresión (6.1), en donde se establece la relación entre lluvia y energía erosiva

Fuente: Elaboración propia

Además, con el estudio realizado se observa que es posible mejorar la metodología propuesta mediante la implementación de relaciones entre los mismos parámetros, como los indicados en la Figura 4.29 – 4.31. A partir de los cuatro parámetros del modelo matemático, es posible establecer relaciones en dos grupos en función de la magnitud del parámetro A, por lo cual, el primer grupo comprende los valores entre 0.1 y 100, mientras que el segundo grupo se conforma por magnitudes mayores a 100.

La relación entre el parámetro A y C (Figura 4.29), se simplifica mediante la incorporación de expresiones de segundo grado, con estimaciones de R² aceptables de 0.73, lo que permite deducir el parámetro C a partir del parámetro A. La Figura 4.30 muestra que las relaciones entre el parámetro B y D puede establecerse mediante expresión de logaritmo natural, resultando R² de 0.78, permitiendo inferir el parámetro D a partir del parámetro B. Sin embargo, en la relación entre los parámetros C y D no es muy eficiente, induciendo a la búsqueda de otro tipo de relación matemática. Los resultados en la relación de parámetros indican que debe mejorarse su estimación mediante la implementación de límites que permitan una mejor relación entre los mismos.

4.4 Series de tiempo del factor erosivo R

La incorporación de los resultados de las EMAs analizadas, permiten construir con los registros diarios de lluvia de las estaciones climatológicas, series de tiempo de la variable Erosividad (R), tal y como se expone en la Figura 4.32, indicada en línea color rojo la obtenida mediante la metodología propuesta, y en tono verde obtenida por la metodología de Cortés, 1991.

Figura 4.32 Serie de índice erosivo R, mostrado para diferentes estaciones climatológicas (MJ mm $ha^{-1} h^{-1} y^{-1}$)

Figura 4.32 Serie de índice erosivo R, mostrado para diferentes estaciones climatológicas (MJ mm $ha^{-1} y^{-1}$), (continuación)

Figura 4.32 Serie de índice erosivo R, mostrado para diferentes estaciones climatológicas (MJ mm $ha^{-1} h^{-1} y^{-1}$), (continuación)

Figura 4.32 Serie de índice erosivo R, mostrado para diferentes estaciones climatológicas (MJ mm $ha^{-1} y^{-1}$), (continuación)

Las series anuales de la variable factor erosivo R, como las mostradas en la Figura 4.32, permiten construir la variación espacial del índice y determinar aquellas zonas donde la precipitación genera altos potenciales erosivos. La Figura 4.33 marca de color rojo y amarillo las zonas con potencial erosivo elevado debido a la precipitación, mientras de tono azul aquellas regiones de bajo potencial

a) Potencial erosivo a partir de EMAs b) Potencial erosivo a partir de Cortés Figura 4.33 Valor esperado del potencial erosivo a nivel anual (MJ mm ha-1 h-1 y-1) Fuente: Elaboración propia

La Figura 4.26 es congruente con los resultados de la Figura 4.33, denotando elevado potencial erosivo en regiones de alta pluviosidad.

4.4 Análisis de tendencias en las series de precipitación y factor erosivo R

El análisis de tendencia se realizó a distintas variables extraídas directamente de la serie de precipitación de las 2124 estaciones climatológicas analizadas, sometidas a pruebas estadísticas de tendencia empleando los test de Mann Kendall, correlación de Spearman, t-student, Fisher, Cramer y Helmer

Las variables analizadas fueron las siguientes

- Precipitación anual, PRCPTOT
- Número de días sin Iluvia, ROO
- Número de días con Iluvia entre 0.1 y 5 mm, R05
- Número de días con Iluvia entre 5 y 20 mm, R520
- Número de días con Iluvia entre 20 y 70 mm, R2070
- Número de días con Iluvia entre 70 y 150 mm, R70150
- Número de días con lluvia mayor a 150 mm, Rm150
- Número de días con lluvia mayor al percentil 25, D25p
- Número de días con Iluvia mayor al percentil 50, D50p
- Número de días con lluvia mayor al percentil 75, D75p
- Número de días con lluvia mayor al percentil 90, D90p
- Número de días con lluvia mayor al percentil 95, D95p
- Factor erosivo R por metodología EMAs, REMAs
- Factor erosivo R por metodología Cortés, 1991, RCOrtes

Adquiere especial importancia las variables R70150, Rm150, D75p, D90p, D95p; las cuales, al presentar tendencia indican posibles incidencias en el potencial erosivo anual de la serie. En la Figura 4.34 se aprecian las zonas de tendencia para las variables PRCPTOT, R70150, Rm150, D75p, D90p y D95p; las zonas en color rojo con valores cercanos a la unidad indica zonas con tendencia positiva, es decir, que el promedio de la serie anual histórica tiende a crecer; por otro lado, las zonas color azul con valores cercanos a -1, indica zonas con tendencia negativa, en otras palabras, que el promedio de la serie anual histórica tiende a disminuir.

Figura 4.34. Tendencias en las variables analizadas

Del total de 2124 estaciones analizadas, la variable R70150 presenta tendencia en el 21% de los casos; la variable Rm150 en el 6% de los casos; la variable D75p en el 47% de los casos; la variable D90p en el 53% de los casos y la variable D95p en el 53% de los casos. Estas cinco variables seleccionadas se compararon con los resultados de tendencia de las series de REMAs y RCortes, brindando los siguientes resultados, las cuales presentaron tendencia en el 54 y 48% respectivamente.

En un análisis conjunto, se establece que existe tendencia en la variable REMAs en el 72% de casos de la serie R70150, 71% de los casos de la variable Rm150, 88% de los casos de la variable D75p, 90% de los casos de la variable D90p y 90% de los casos en la variable D95p. Por otro lado, con la serie RCortés, existe tendencia similar en 63% de los casos con tendencia en la serie R70150, 64% de los casos con tendencia en la serie R70150, 75% en la variable de los casos con tendencia D90p y finalmente existe tendencia de 73% de los casos con tendencia en la variable D95p. Es decir, en más del 73% de los casos la variable REMAs puede asociarse a las tendencias de estas cinco variables, en especial importancia con las variables D90p y D95p, donde existe una asociación mayor al 90%. En la Figura 4.35 se observa gráficamente la comparación de los resultados mencionados

Los resultados se traducen en que lluvias de mayor intensidad inciden en los resultados de potencial erosivo, cuyos efectos se ven reflejados en la metodología EMAs propuesta en este trabajo

4.5 Cálculo de sedimentos en cuencas

En la República Mexicana la Gerencia de Aguas Superficiales e Ingeniería de Ríos (GASIR), en colaboración con el Instituto Mexicano de Tecnología del Agua (IMTA), administra los datos de 2070 estaciones hidrométricas.

La información que se puede encontrar de cada estación hidrométrica es:

- Valores diarios: Gasto medio diario (m3/s) día 1 a día 29-31.
- Valores mensuales: Se incluyen la hora y el día del gasto máximo y el gasto mínimo (m³/s). Además de la lectura de volumen máximo y medio de escurrimientos (miles de m³), sedimentos (miles de m³) y la lectura del día y hora de las escalas para el gasto mínimo, medio y máximo.
- Valores anuales: Menciona el mes, día y hora en que ocurre el gasto máximo y gasto mínimo (m³/s). La lectura de escala para el gasto máximo y mínimo (m), además del volumen anual de escurrimientos (miles de m³), gasto medio anual (m³/s) y volumen anual de sedimentos (miles de m³).
- Hidrograma: Incluye la fecha en que ocurre el gasto, Hora en que ocurre el gasto y Gasto instantáneo (m³/s).
- Limnigrama: Muestra la fecha de lectura, hora de lectura y lectura de escala (m).
- Sedimentos: Se incluye la fecha de lectura, hora de lectura y porcentaje de sedimento.

Las estaciones hidrométricas objeto de estudio en este trabajo, fueron aquellas que contaban con al menos 15 años de registros de sedimentos en el período 1965 - 2006. El filtro de cantidad solo permitió elegir a 164 estaciones, debido a la porosidad de los mismos y a la dificultad inherente de construir un registro en período común.

Figura 4.36 Ubicación de estaciones hidrométricas con delimitación de cuencas correspondientes Fuente: Elaboración propia

La delimitación de cuencas requiere de información documental que permita conocer el sitio exacto en referencia a pueblos o sitios de interés popular cercanos. Tal información es asequible en las fichas técnicas contenidas en el Banco Nacional de Datos de Aguas Superficiales (BANDAS).

Además, como recurso digital para la correcta delimitación de la superficie de cada cuenca se recurrió a modelos digitales de elevación (MDE) con resolución de 15 y 30 metros, disponibles en el portal de internet del Instituto Nacional de Estadística y Geografía (INEGI)

Cada superficie de cuenca fue tratada con el correspondiente análisis de pixeles a través de acciones orientadas brindar el correcto drenaje hidrológico del terreno. La Figura 4.37 resume el procesamiento del terreno en cada sector de cuenca.

Enseguida se ejemplifica el proceso de cálculo realizado para cada cuenca de estación hidrométrica, comenzando desde el tratado del MDE, hasta la determinación de potencial erosivo y aportación de sedimentos y su contraste con los datos registrados en los aforos de sedimentos.

Figura 4.37 Diagrama de flujo para el tratamiento del terreno orientado a la construcción de MDE hidrológico Fuente: ESRI , (2011)

Calculo de factor de erodabilidad (Factor K)

El cálculo del Factor K depende de las condiciones físicas y químicas del suelo. Recordando la expresión (3.11), se observa que es necesario conocer los porcentajes de arcilla, arena y limo, así como el grado de infiltración hidráulica y la permeabilidad del mismo.

Para realizar este análisis se recurrió a los estudios de Edafología elaborados por el Instituto Nacional de Estadística y Geografía (INEGI), mediante el análisis de puntos de verificación que muestran evidencia física que certifican las unidades edafológicas de la República Mexicana

$$K = 7.594 \left\{ 0.0034 + 0.0405 \cdot \exp\left[-\frac{1}{2} \left(\frac{\log(Dg) + 1.659}{0.7101} \right)^2 \right] \right\}$$
(3.12)

Donde, la media geométrica del tamaño de las partículas solidas se estima con la formula de Shirazi y Boersma, 1984

$$Dg(mm) = \exp\left(0.01\sum_{i} f_{i} \cdot Ln(m_{i})\right)$$
(3.13)

En la Figura 6.40 – 6.43 se muestran los parámetros de la expresión (3.11) y finalmente el valor que adquiere el factor K en distintos puntos de la República Mexicana se muestra en la Figura 4.38.

Figura 4.38 Distribución del Factor K de la fórmula del RUSLE, en la República Mexicana Fuente: Elaboración propia

Calculo del factor de cobertura vegetal (C)

El factor de cobertura vegetal es inferido a partir del índice de vegetación NDVI, el cual se adquirió a través de la Comisión Nacional Forestal (CONAFOR), debido a su marcada experiencia en el manejo de imágenes satelitales desde el año 2003. Entre las principales características en su elaboración, la CONAFOR menciona lo siguiente

- Se basa en imágenes satelitales de observación de la tierra, particularmente las tomadas por el sensor MODIS (Moderate Resolution Imaging Spectroradiometer), datos medidos en campo en el Inventario Nacional Forestal y de Suelos (INFyS) y cartografía temática de apoyo.
- Se usa el Índice Normalizado Diferencial de la Vegetación (NDVI) que es un algoritmo aprobado por la comunidad científica.
- El indicador se genera a nivel nacional, es comparable anualmente y cumple con los estándares establecidos por el gobierno.
- El producto está diseñado a una escala que permite atender decisiones a nivel estratégico en la política nacional.

El NDVI es una relación muy sensible a los cambios en la reflectancia captada por los sensores. Existen limitaciones en el uso de esta tecnología según las siguientes consideraciones:

- Consideraciones anisotropía de iluminación
- Consideraciones por efecto atmosférico.
- Presencia de nubes y sombras de nubes
- Ruido por la reflectancia del suelo de la vegetación
- Efecto del tratamiento de los datos o saturación del NDVI
- Aspectos fenológicos de la vegetación
- Manejo agrícola
- Cambios en el nivel de los cuerpos de agua

En la Figura 4.39, se muestra el mapa de NDVI, promediado para los años recientes de 2013 y 2014, el cual se obtuvo a través del servicio del Instituto Nacional de Transparencia, Acceso a la Información y Protección de Datos Personales, por medio de la plataforma INFOMEX, mediante la solicitud con número de folio 1616100023314, de fecha 26 de agosto de 2014

Fuente. CONAFOR, 2014

Mediante la expresión (3.16) se calculó el factor C del modelo RUSLE, en donde los valores cercanos a la unidad, denotan condiciones de poca vegetación o en condiciones de escasa calidad vegetal, y valores cercanos a cero, indican condiciones de vegetación densa. La Figura 4.40, muestra el resultado del cálculo

Figura 4.40 Factor C, del modelo RUSLE obtenido a partir el índice NDVI Fuente: Elaboración propia

Calculo del factor de longitud y pendiente (LS)

El factor LS, en referencia a la expresión (3.15), recurre a dos variables conocidas en el ambiente de **sistemas de información geográfica como "pendiente del terreno" y "acumulación de flujo". La** variable de acumulación de flujo, caracteriza los efectos de convergencia y divergencia del terreno sobre la erosión del suelo, informando en cada pixel el área de contribución aguas arriba. El ángulo de la pendiente en grados, permite conocer con mayor incremento en el desprendimiento y transporte de sedimentos. En la Figura 4.42 se muestran as variables espaciales de flujo acumulado y pendiente del terreno, así como el resultado de operar la expresión (3.15), para la cuenca delimitada para la estación hidrométrica 10033. En la Figura 4.41 se indica el diagrama ModelBuilder en el programa ArcGis10.2, para la obtención del factor LS por cada cuenca

Figura 4.42. Diagrama de obtención del factor LS mediante el software ArcGis10.2 Fuente: Elaboración propia

Figura 4.41 Calculo del Factor LS a partir de variables espaciales aplicando criterio de Mitasova et al, (2001) Fuente: Elaboración propia

Estación hidrométrica 20017

La estación 20017, conocida como "PASO DE LA REYNA", ubicada en Latitud (G,M,S): 160, 16", 30' Longitud (G,M,S): 970, 36", 30', Se encuentra situada en el estado de Oaxaca, municipio de Jamiltepec, unos 3 Km al Norte del poblado denominado Paso del La Reina

La preparación del modelo hidrológico digital se realizó con el software ArcGis 10.2, empleando MDE con resolución de 30 y 15 metros. El MDE de 30 metros se emplea para una primera aproximación de los límites de la cuenca, y al concluir se refinan los resultados con el MDE de 15 metros.

El modelo hidrológico del terreno de la cuenca comienza rellenando sumideros por pixel, calculando la dirección de escurrimientos de cada celda y determinando la acumulación de flujo. Con los límites de la cuenca plenamente establecidos, se procede a calcular los polígonos de Thiessen para las estaciones climatológicas con el objeto de conocer el área de influencia de cada estación pluviométrica en la cuenca estudiada (Figura 4.43)

Figura 4.43 Cuenca 20017. Estaciones pluviométricas e hidrométricas en el área de estudio Fuente: Elaboración propia

En la Figura 4.44 se muestra la serie de tiempo de precipitación anual para las estaciones influyentes en la cuenca Paso de la Reyna, en el período 1965 – 2006

Figura 4.44. Serie precipitación anual, período 1965 – 2006. Estaciones influyentes en la cuenca Paso de la Reyna

Figura 4.44 Serie precipitación anual, período 1965 – 2006. Estaciones influyentes en la cuenca Paso de la Reyna (continuación)

Figura 4.44 Serie precipitación anual, período 1965 – 2006. Estaciones influyentes en la cuenca Paso de la Reyna (continuación)

En la Figura 4.45, se muestra la serie del factor erosivo R, calculada por la metodología planteada en este trabajo (serie color rojo) y en contraparte la metodología establecida por Cortes, 1991 (serie color verde)

Figura 4.45 Serie de tiempo del factor erosivo R, calculada por metodología a partir de EMAs (línea color roja), y por la establecida por Cortes, 1991 (línea color verde), unidades MJ mm ha-1 y-1

Figura 4.45 Serie de tiempo del factor erosivo R, calculada por metodología a partir de EMAs (línea color roja), y por la establecida por Cortes, 1991 (línea color verde), unidades MJ mm ha⁻¹ y⁻¹ (continuación)

Figura 4.45 Serie de tiempo del factor erosivo R, calculada por metodología a partir de EMAs (línea color roja), y por la establecida por Cortes, 1991 (línea color verde), unidades MJ mm ha⁻¹ y⁻¹ (continuación)

La red hídrica de la Cuenca Paso de la Reyna se expone en la Figura 4.46, presentando las características morfométricas descritas a continuación. Cuenta con 17861km² de área de drenaje, valor obtenido con el software ArcGis, 944km de perímetro; elevación media de 1734 m.s.n.m; orden de corriente igual a doce y longitud del cauce principal de 390 km con pendiente de 0.83%

Figura 4.46 Red hídrica de la cuenca Paso de la Reyna

El factor de cobertura vegetal oscila los valores de 0.09 a 0.31, donde los valores altos, es decir con menor cubierta vegetal, se localizan en la zona noreste de la cuenca, zona de color azul en la escala de colores planteada (Figura 4.47)

Figura 4.47 Factor de cubierta vegetal en la cuenca Paso de la Reina

El factor de erodabilidad de suelo, factor K, presenta valores desde 0.0006 hasta 0.04 t/ha.MJ*ha/mm*hr. Es decir, zonas con valores elevados son propensas al desprendimiento de partículas, como lo muestra la Figura 4.48, en donde las zonas de tono rojo, ubicadas en la región noroeste y centro el suelo presentan considerable valor de erodabilidad

Figura 4.48 Factor erodabilidad del suelo, Factor K, en la cuenca Paso de la Reina

El factor de pendiente y longitud del terreno indica que las mayores pendientes se encuentran en zonas cercanas al cauce de ríos, con valores de 0 hasta 34500 expresado en unidades adimensionales y mostrado su distribución espacial en la Figura 4.49

Figura 4.49 Factor longitud y pendiente del terreno, Factor LS, en la cuenca Paso de la Reina

El producto de los factores de terreno, es decir, los factores K, LS y C, proporcionan resultados relativos a la vulnerabilidad propia del suelo. En la Figura 4.50 se expone las zonas de vulnerabilidad en función de características propias del suelo, en donde, el parámetro LS es el factor que condiciona la distribución espacial del producto de los factores KLSC oscilando el rango de valores desde O hasta 125 t/ha.MJ*ha/mm*hr.

Figura 4.50 Factor KLSC en la cuenca Paso de la Reina

Por otro lado, el factor R, motivo de discusión en este trabajo, calculado mediante metodología a partir de EMAs y metodología Cortes,1991, brinda excelentes correlaciones con la distribución espacial de la lluvia anual de cualquier región en la República Mexicana. En la Figura 4.51 se muestra la distribución espacial promedio de la precipitación anual en la cuenca Paso de la Reina para el período 1965 - 2006, mientras en la Figura 4.52 la distribución espacial del factor R promedio obtenido mediante la metodología EMAs para el período 1965 - 2006 y en la Figura 4.53 el factor R promedio obtenido mediante la metodología Cortes, 1991 en el período 1965 - 2006

Se observa claramente en las Figuras 4.51 a 4.53, que la distribución del Factor R por medio de la metodología EMAs, se asemeja en mayor proporción a la distribución espacial de la Iluvia en la zona estudiada.

Figura 4.51 Distribución espacial de la precipitación anual en la cuenca Paso de la Reina

Figura 4.52 Distribución del Factor R mediante metodología EMAs, en la cuenca Paso de la Reina

Figura 4.53 Distribución del Factor R mediante metodología Cortes, 1991, en la cuenca Paso de la Reina

Finalmente el producto de los factores RKLSC, proporcionan información conjunta de zonas vulnerables tanto por condiciones propias del suelo y distribución espacial de la intensidad de la Iluvia. En la Figura 4.54 se muestran las zonas vulnerables a la erosión obtenida mediante la metodología Cortes, 1991, en donde, zonas cercanas a los ríos ubicados en la zona oeste y centro indica que son las zonas de mayor vulnerabilidad y deben establecerse políticas de mantenimiento y control del proceso erosivo para evitar el desprendimiento acelerado de partículas de suelo

Tanto la metodología propuesta como la metodología Cortés, 1991, coincide en la detección de aquellas zonas de vulnerabilidad erosiva. La diferencia estriba en la magnitud o velocidad del proceso erosivo. La metodología EMAs brinda resultados de hasta 180000 ton/ha • año de aportación de sedimentos en determinadas zonas, con una aportación promedio en la cuenca de 254 ton/ha • año;

en contraparte, la metodología Cortés, 1991, arroja resultados en algunas zonas de hasta 87000 ton/ha • año, con aportación promedio de la cuenca de 157 ton/ha • año. En la Figura 4.54 se expone el resultado final del desarrollo de la formula Universal de Pérdida de Suelo obtenido mediante la metodología Cortés, 1991 y en la Figura 4.55 obtenido mediante la metodología EMAs.

Figura 4.54 Pérdida de suelo de la Formula Universal de Pérdida de Suelo obtenido mediante metodología Cortes, 1991 (ton/ha • año)

Figura 4.55 Pérdida de suelo de la Formula Universal de Pérdida de Suelo obtenido mediante metodología EMAs (ton/ha • año)

La elección del método que mejor representa el aporte de sedimentos se realiza a través de la raíz cuadrada del promedio de las diferencias cuadras entre los resultados del modelo RUSLE desarrollado y los datos medidos en las estaciones hidrométricas disponibles. Sin embargo, en este punto se anexan dos consideraciones. En primer lugar, para transformar las unidades de ton/año a miles de metros cúbicos por año, se considera que el suelo tiene un peso específico de 1.6 ton/m³. En segundo lugar, el aporte de sedimentos al final de la cuenca se obtiene mediante algoritmos de iteración que calcula la proporción entre los resultados de la RUSLE y los sedimentos reales medidos en las estaciones de aforo.

En la Tabla 4.7, expresada en ton/año, se indica el aporte de sedimentos por la metodología EMAs y Cortes, 1991, antes de aplicar el correspondiente factor de proporción respecto a los sedimentos medidos en la estación 20017

Estación	Método EMAs	Método Cortés
LStacion	(miles m³/año)	(miles m³/año)
1965	342593.68	205690.37
1966	380964.06	227055.61
1967	398764.20	217745.95
1968	301614.79	201692.27
1969	384025.48	244645.88
1970	355941.39	223487.56
1971	326214.63	206003.69
1972	395743.23	203131.28
1973	392783.77	222946.19
1974	483356.81	232876.59
1975	398037.99	238696.48
1976	337804.16	220753.80
1977	389889.78	217774.81
1978	347842.28	213481.82
1979	415183.82	215116.04
1980	399352.33	208501.75
1981	588574.54	263659.53
1982	278530.58	182321.51
1983	374166.34	200303.84
1984	407232.43	214145.88
1985	347301.11	206102.00
1986	286454.56	188326.03
1987	299732.46	187169.85
1988	294118.03	204410.75
1989	312184.91	195923.65
1990	256478.40	184935.02
1991	306915.02	201486.30
1992	362876.91	211010.84
1993	313778.68	201814.43
1994	186810.99	159064.79
1995	410555.55	233547.63
1996	236669.85	202542.96
1997	320773.73	198137.42
1998	221809.58	170010.42
1999	171251.39	165143.56
2000	276796.10	183939.69
2001	220918.99	148007.12
2002	258714.21	150293.01
2003	278407.68	161875.25
2004	281437.39	159693.05
2005	249456.18	153064.39
2006	249040.42	160450.41

Tabla 4.7 Aportación de sedimentos en la cuenca 20017 (miles m3/año)

Las metodologías se contrastan por medio de las diferencias al cuadrado. La Tabla 4.8 ejemplifica dicho cálculo incorporando el factor de proporción entre los resultados de la expresión de la RUSLE y los sedimentos medidos en la estación 20017, resultando de mejor ajuste la metodología planteada. El factor de proporción correspondiente a la metodología EMAs resultó ser de 0.0250, mientras que para la metodología Cortés, 1991 fue de 0.0431

Fataalán	Método EMAs	Método Cortés	Aforo	(Cortes-	(EMA-
Estacion	(miles m3/año)	(miles m3/año)	(miles m3/año)	aforo)^2	aforo)^2
1965	8565.52	8858.99	5363	12221962	10256136.3
1966	9524.86	9779.18	5225.49	20736126	18484546.1
1967	9969.89	9378.22	4270.49	26088914	32483212.4
1968	7540.97	8686.80	2076.28	43698921	29862801.6
1969	9601.40	10536.79	17170.08	44000553	57284958.7
1970	8899.24	9625.51	8251.4	1888175	419695.82
1971	8156.01	8872.49	6401.43	6106122	3078556.23
1972	9894.36	8748.77	6371.93	5649385	12407542.3
1973	9820.37	9602.19	7808.85	3216077	4046219.91
1974	12084.88	10029.89	11583.19	2412739	251690.027
1975	9951.74	10280.55	12443.31	4677528	6207931.87
1976	8445.77	9507.77	6284.57	10389002	4670797.33
1977	9748.02	9379.46			
1978	8696.75	9194.57	3808.9	29005401	23891033.9
1979	10380.42	9264.95	27338.81	326664352	287587073
1980	9984.60	8980.08	8949.3	947	1071843.89
1981	14715.53	11355.70	23256.62	141631948	72950240.9
1982	6963.82	7852.51	2679.94	26755437	18351593.7
1983	9354.90	8627.00	5992.7	6939519	11304384.6
1984	10181.62	9223.17	9814.89	350136	134488.632
1985	8683.22	8876.72	6850.76	4104518	3357892.52
			REMC	5985.56	5468.56

Tabla 4.8 Calculo de error promedio cuenca 20017

Los parámetros promedio del modelo RUSLE se encuentran expuestos en la Tabla 4.9 para cada cuenca en estudio, a partir de los cuales, es posible conocer la aportación promedio de sedimentos en la cuenca a partir del factor R calculado mediante la metodología EMAs.

A partir de la Tabla 6.8 se pueden realizar dos comparaciones. La primera comparación consiste en relacionar el factor R de la RUSLE por la metodología EMAs y Cortés, 1991, respecto a la precipitación promedio anual de las 164 cuencas analizadas, tal y como lo muestra la Figura 4.56

En la figura 4.60, es claro que la metodología EMAs presenta mejor coeficiente de correlación empleando una expresión de regresión de menor grado que la empleada por la metodología Cortes, 1991.

Cuenca	R	LS	K	С	Cuenca	R	LS	K	С
C10033	5085.15	17.02	0.02	0.20	C18350	6331.81	19.33	0.02	0.18
C10036	5181.19	18.50	0.02	0.19	C18371	5429.33	18.98	0.02	0.19
C10037	3906.55	19.27	0.02	0.20	C18403	5937.57	9.58	0.03	0.22
C10040	3887.65	17.89	0.02	0.20	C18437	5013 52	11.00	0.02	0.21
C10065	3301.47	17.22	0.02	0.20	C18438	6063.36	14.26	0.02	0.20
C10070	4379.86	14.93	0.02	0.20	C19003	6633.16	12.43	0.02	0.20
C10083	3163 30	8 10	0.02	0.20	C19005	8115.45	15.02	0.00	0.14
C10113	3983.05	16 75	0.02	0.19	C19008	7299.01	7 77	0.02	0.11
C1024	1211 10	11.60	0.02	0.17	C19009	5919.90	14.62	0.02	0.13
C1024	968 71	7 15	0.01	0.23	C19014	6434.99	12 72	0.02	0.15
C11012	2972 71	12.46	0.03	0.21	C19016	7216.20	13.66	0.03	0.10
C11012	4608.86	17.81	0.03	0.23	C19022	6749 59	13.00	0.03	0.17
C11016	4382.45	16.08	0.03	0.18	C20016	7349.84	13.90	0.02	0.10
C11027	16/12/10	6.04	0.03	0.10	C20010	3650.16	15.70	0.02	0.10
C11027	7005.73	7.70	0.03	0.23	C20017	7680.14	0.00	0.02	0.17
c12223	7075.75	1.70	0.02	0.19	C20018	9616 62	9.09 Q 10	0.02	0.10
C12233	2332.40	5.04	0.03	0.24	C20017	3846.52	15.63	0.02	0.17
C12270	2270.00	5.04	0.03	0.19	C20021	2112.35	0.57	0.02	0.10
c12247	2001.07	6 10	0.03	0.21	C20025	2112.33	9.J4 0.70	0.02	0.22
C12347	2004.00	5.54	0.02	0.20	C20020	2007.39	12.70	0.02	0.22
C12374	2400.00	0.04	0.02	0.23	C20045	2900.49	12.49	0.02	0.17
C12377	2700.20	5 70	0.03	0.20	C22000	2147.20	14.00	0.02	0.22
C12423	2770.74	0.70	0.03	0.24	C22015	6704 42	11.00	0.02	0.20
C12420	2755.04	9.34	0.03	0.24	C22010	6200.61	11.99	0.02	0.17
C12400	1011 OF	1.11	0.02	0.24	C22017	0200.01	11.14	0.02	0.20
C12407	1911.00	6.90	0.03	0.24	C22016	7075.00	12.40	0.02	0.10
012400	2049.92	0.20	0.03	0.20	C22020	1910.0Z	0.22	0.01	0.17
C12490	2200.02	14.72	0.03	0.25	C22020	2701.05	9.33 16.00	0.02	0.20
C12504	2290.93	4.93	0.02	0.25	C22037	2701.95	10.00	0.02	0.21
C12500	2042.57	12.07	0.03	0.24	C23007	12255.04	12.07	0.03	0.12
C12514	2903.57	17.20	0.03	0.24	C23014	13300.94	0.00	0.02	0.14
c12520	2700.02	7.542	0.02	0.22	C24020	2203.43	6.02	0.03	0.25
C12521	2799.92	5.28	0.02	0.25	C24087	3261.56	0.93	0.02	0.20
C125240	2000.71	1.20	0.02	0.25	C24000	12/1 01	6.54	0.03	0.21
C125546	7475.25	4.01	0.03	0.25	C24150	1705 00	6.76	0.02	0.27
C12550	1704 67	5 77	0.03	0.19	C24101	1047.80	7.00	0.02	0.27
C12500	1174.07	5.21	0.03	0.23	C24271	2061.27	1.00	0.02	0.20
C12574	4171.80	5.01	0.02	0.23	C25009	2766.00	4.30	0.03	0.20
C12570	2442.20	5.10	0.02	0.24	C25010	1566.60	10.90	0.03	0.10
C12009	5442.59 6600.70	12.00	0.03	0.24	C25027	2025.04	14.04	0.03	0.17
C14008	5706.00	10.65	0.03	0.10	C25030	4500.42	0 55	0.02	0.20
C15001	6702.14	10.05	0.02	0.15	C25039	4009.40	10.00	0.02	0.15
C15002	2070 20	10.21	0.03	0.14	C25040	4040.00	12.30	0.03	0.10
C16022	2660.24	10.17	0.02	0.19	C25042	2226.22	12.75	0.03	0.10
C16025	2009.34	11 50	0.03	0.20	C25002	2261 61	14.70	0.02	0.10
C10030	5140.70 6085.10	11.00	0.03	0.20	C26020	1660.00	10.00	0.02	0.10
C10232	5202.10	12.70	0.02	0.20	C26020	1000.72	4.07	0.03	0.20
C10230	5510 01	14.47	0.02	0.21	C26054	1009.00	1.20	0.03	0.22
C10243	6561.61	10.07	0.02	0.21	C26000	1001 51	Q 04	0.02	0.20
C10277	2071.01	10.00	0.02	0.17	C26070	1704.01	0.00	0.03	0.22
C10311	5022 75	21.04	0.02	0.20	C26071	2242.00 1200.00	13.32	0.03	0.22
C18340	4595 36	21.37 8 20	0.02	0.19	C26170	2356.72	4.04	0.03	0.20

Tabla 4.9 Parámetros RUSLE correspondiente a cada cuenca en estudio

Cuenca	R	LS	K	С	Cuenca	R	LS	K	С
C26183	2467.63	4.57	0.03	0.25	C28015	9229.31	9.45	0.03	0.14
C26193	1866.32	7.43	0.03	0.24	C28016	2326.95	16.98	0.02	0.21
C26195	2127.82	6.80	0.03	0.25	C28018	9403.12	10.51	0.03	0.13
C26218	2092.67	16.65	0.02	0.19	C28030	6631.93	9.69	0.02	0.15
C26224	3011.87	10.08	0.03	0.21	C28040	7034.76	8.78	0.02	0.19
C26241	10235.88	6.62	0.04	0.13	C28069	7636.91	7.85	0.02	0.18
C26248	7145.04	13.42	0.03	0.13	C28082	1342.18	14.20	0.03	0.22
C26249	3961.76	10.31	0.02	0.18	C28108	6178.22	8.34	0.02	0.17
C26255	3055.79	11.24	0.03	0.21	C28125	6869.98	13.02	0.02	0.16
C26263	5923.53	7.60	0.03	0.17	C28154	8105.38	15.46	0.03	0.11
C26267	5460.13	9.10	0.03	0.15	C28158	7445.11	15.07	0.02	0.12
C26268	2013.61	10.46	0.03	0.22	C29006	9837.56	12.95	0.03	0.12
C26270	1661.06	10.03	0.03	0.24	C30015	7915.42	13.71	0.03	0.18
C26272	2843.02	10.34	0.03	0.21	C30016	11288.21	10.89	0.03	0.11
C26274	2371.18	4.71	0.03	0.25	C30019	9751.72	7.56	0.03	0.13
C26277	7230.07	13.63	0.03	0.13	C30062	8094.94	13.21	0.03	0.17
C26280	5734.03	8.95	0.02	0.16	C30071	7771.95	11.77	0.02	0.14
C26286	8097.19	6.57	0.04	0.14	C30072	5808.56	6.95	0.02	0.20
C26289	6308.33	19.17	0.03	0.13	C30089	8315.13	13.51	0.03	0.18
C26293	3099.98	15.52	0.03	0.20	C30091	10418.98	10.48	0.03	0.16
C26387	3026.27	11.94	0.03	0.21	C30093	8003.98	13.51	0.03	0.11
C26388	3958.61	12.18	0.02	0.14	C30094	12876.06	14.34	0.03	0.13
C26416	4052.01	8.50	0.03	0.19	C34004	1495.60	7.44	0.02	0.25
C26417	2181.84	7.69	0.03	0.23	C34008	1422.06	5.61	0.02	0.27
C27001	7072.23	11.68	0.03	0.15	C36071	1698.32	11.60	0.03	0.23
C27006	8562.76	12.61	0.03	0.13	C8007	2346.30	8.94	0.02	0.25
C28001	9203.67	11.58	0.03	0.13	C8018	1856.84	4.51	0.02	0.27
C28003	6690.04	13.78	0.02	0.17	C9011	2027.64	8.45	0.02	0.24
C28013	6983.43	17.82	0.03	0.13	C9067	4128.62	19.06	0.02	0.21
C28014	4040.95	15.09	0.02	0.19	C9089	3191.51	5.66	0.02	0.26

Tabla 4.9 Parámetros RUSLE correspondiente a cada cuenca en estudio (continuación)

a) Relación Precipitación anual, R_EMAs

b) Relación Precipitación anual, R_Cortes

La segunda comparación consiste en relacionar el aporte de sedimentos promedio de la RUSLE por la metodología EMAs y Cortés, 1991, respecto a la precipitación promedio anual de las 164 cuencas analizadas multiplicada por los factores K, LS y C correspondiente, tal y como lo muestra la Figura 4.57.

Figura 4.57 Relación Hp •K •LS•C y aporte de sedimentos RUSLE por ambas metodologías

Nuevamente, la metodología EMAs es superior en base al coeficiente de correlación respecto a la metodología Cortés, 1991; aunado a que la metodología planteada se realiza el ajuste con una expresión lineal a diferencia de la expresión cuadrática de la metodología Cortes, 1991

En la Tabla 4.10, se muestra el error medio cuadrático (EMC), obtenido para las series de aportación de sedimentos de cada cuenca, obtenidos mediante la metodología propuesta, y la planteada años anteriores por Cortes , 1991

Cuenca	EMAs	Cortes	Cuenca	EMAs	Cortes		EMAs	Cortes
C10033	96.11	96.88	C18350	278 19	285.87	C26183	4 02	4 00
C10036	1667.26	1673 55	C18371	381.24	381 33	C26193	18 74	19.45
C10037	7129.09	6953 51	C18403	23.44	24 51	C26195	7 17	7 21
C10040	1730.76	1759.39	C18437	417.53	328.84	C26218	35.17	37.06
C10065	2022.62	2156.45	C18438	178.03	181 70	C26224	496.60	592.33
C10070	1048 77	1061.43	C19003	100.44	100.55	C26241	5 56	7.26
C10083	149.83	152.07	C19005	408.91	413.66	C26248	504.26	591.25
C10113	350 33	345.73	C19008	29.60	84.96	C26249	119 53	121.97
C1024	5.86	5.36	C19009	80.25	80.45	C26255	1723.93	2121.25
C1026	8.66	7 91	C19014	44.89	45.80	C26263	28.93	31.24
C11012	1045.04	1073.39	C19016	114 80	113 58	C26267	51.88	57.68
C11014	1285.40	1323.11	C19022	70.71	71.25	C26268	355.32	340.43
C11016	764.30	771.06	C20016	1610.60	1575.04	C26270	261.52	270.50
C11027	14.33	14.95	C20017	5468.56	5985.56	C26272	920.13	939.44
C11035	23.23	23.26	C20018	263.11	238.23	C26274	5.75	5.73
c12233	88.24	114.52	C20019	123.64	131.38	C26277	343.17	365.55
C12278	13.49	14.51	C20021	2589.73	2843.23	C26280	284.04	291.34
C12310	56.99	58.31	C20023	509.63	497.86	C26286	88.24	106.11
c12347	27.97	30.75	C20026	159.35	169.89	C26289	239.83	239.49
C12374	33.47	31.82	C20045	42.89	43.86	C26293	893.74	902.43
C12377	9.61	7.43	C22008	755.78	745.30	C26387	1423.78	1751.22
C12423	1080.23	1033.63	C22015	29.02	29.64	C26388	32.99	33.14
C12428	895.97	860.31	C22016	13.64	14.47	C26416	214.18	219.07
C12485	156.78	135.55	C22017	11.73	12.81	C26417	11.47	12.55
C12487	241.94	222.91	C22018	27.25	26.96	C27001	171.83	183.18
C12488	254.93	231.41	C22026	6.77	6.47	C27006	292.05	283.50
c12496	3875.72	3697.01	C22028	5.09	4.86	C28001	635.87	611.22
C12504	256.92	243.24	C22037	1194.03	1225.93	C28003	1046.56	1055.32
C12506	81.21	80.97	C23007	458.85	473.26	C28013	486.40	508.76
C12514	2182.89	2037.98	C23014	52.22	49.25	C28014	8301.50	8342.15
C12520	3051.22	3048.81	C24026	36.84	37.31	C28015	1010.07	1053.19
c12521	145.27	135.63	C24087	53.07	54.61	C28016	2861.06	3026.87
C12532	183.04	181.76	C24088	975.29	1001.60	C28018	297.71	320.33

Tabla 4.10 Raíz del error cuadrático medio, metodología EMAs y Cortes

Cuenca	EMAs	Cortes	Cuenca	EMAs	Cortes	Cuenca	EMAs	Cortes
C125348	2.22	2.13	C24150	102.59	110.71	C28030	54.04	60.19
C12556	23.06	22.35	C24181	919.62	942.40	C28040	81.68	83.06
C12568	10.58	10.56	C24291	786.31	802.22	C28069	800.08	785.91
C12574	20.85	20.82	C25009	1085.30	1103.06	C28082	36.08	37.30
C12578	5.02	4.79	C25010	79.27	80.60	C28108	46.62	49.81
C12589	20.81	18.80	C25027	103.96	104.87	C28125	140.79	143.35
C14008	248.41	260.58	C25030	73.75	73.93	C28154	117.87	120.05
C15001	2569.58	2612.26	C25O39	4.84	4.84	C28158	80.99	79.06
C15002	160.10	158.60	C25040	28.88	28.72	C29006	907.19	846.44
C16022	2952.94	2906.54	C25042	226.50	228.48	C30015	1246.29	1220.07
C16033	391.49	397.87	C25062	84.49	81.42	C30016	1223.22	1221.31
C16036	898.31	920.94	C25091	32.09	29.85	C30019	2639.86	3014.49
C18232	553.51	560.20	C26020	15.67	14.83	C30062	1505.85	1535.91
C18236	83.41	79.28	C26034	35.04	39.89	C30071	108.48	107.44
C18243	219.91	218.07	C26053	3.25	2.95	C30072	238.47	231.03
C18277	207.39	219.48	C26070	68.46	72.59	C30089	6422.60	6020.65
C18311	2237.78	2293.71	C26071	4.49	4.50	C30091	104.27	101.65
C18329	207.57	215.83	C26118	42.46	44.49	C30093	692.45	682.27
C18340	105.02	115.49	C26149	42.73	42.38	C30094	100.94	104.96

A partir de los resultados obtenidos se concluye que en 101 de 164 cuencas, la metodología propuesta resulto con menor error medio cuadrático que la metodología de Cortes, 1991. Es decir, resulta ser efectiva la metodología propuesta en el 62% de las cuencas estudiadas

Además, en las figuras siguientes, se muestra como la metodología propuesta, responde a las variaciones anuales en aportación de sedimentos por cuencas, mientras que la metodología de Cortes, en varios casos solo llega a determinar el valor esperado de dicha variable sin brindar información acerca de los ciclos en la serie de tiempo obtenida a partir de las series de precipitación

Otras de las bondades del método propuesto, consiste en que permite obtener la energía erosiva en diferentes escalas de tiempo, desde nivel diario hasta nivel anual, siendo congruente los resultados entre las distintas escalas

En la Figura 4.58, se grafica la relación entre el factor de aportación de sedimentos calculado y el área correspondiente a la cuenca de estudio. Debido a la incertidumbre en el aforo de sedimentos, se recomienda emplear la expresión siguiente para calcular la relación de entrega de sedimentos en la cuenca:

 $SDR = -0.009198 \ln(x) + 0.108487$ Donde *x*, es el área de la cuenca en km²

Figura 4.58 Relación ente área de la cuenca y factor de proporción de entrega de sedimentos

En las Figura 4.59 se muestran las zonas de vulnerabilidad erosiva calculada por la metodología propuesta para cada cuenca en estudio, expresadas en unidades de miles de metros cúbicos promedio.

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Figura 4.59 Zonas de vulnerabilidad erosiva por cuenca, expresado en miles de metros cúbicos (continuación)

Conclusiones

Se han analizado 439 estaciones meteorológicas Automáticas, de las cuales, 139 pertenecen al Servicio Meteorológico Nacional, 34 al Organismo de Cuenca Valle de México, 21 estaciones del Organismo de Cuenca Golfo Norte, 69 al Organismo de Cuenca Lerma Santiago Pacifico, el Organismo de Cuenca Rio Bravo con 71, el Organismo de Cuenca Frontera Sur con 28, 29 estaciones de la Comisión Estatal del Agua de Guanajuato, 34 estaciones de Protección Civil del Estado de Guerrero y 13 estaciones de la Secretaria de Seguridad Pública del Estado de Chiapas obteniendo características de intensidad de Iluvia a través de relaciones de Iluvia de 10, 20, 30, 40, 50, 60 minutos respecto a 1 hora; duración de los eventos erosivos, altura de precipitación y energía erosiva característica en cada sitio.

Las características anteriormente mencionadas se han evaluado a través del análisis de frecuencias mediante la construcción de histogramas de densidades y distribuciones de probabilidad, lo cual conduce a establecer valores característicos asociados a una distribución de probabilidad en particular.

Dependiendo de la zona en estudio, existen distribuciones que dominan el modelaje de las variables analizadas. Las variables de duración de la tormenta y magnitud de la precipitación presentaron mejor ajuste con la distribución LogNormal de tres parámetros por la técnica de máxima verosimilitud. La distribución LogNormal de dos parámetros por la técnica de momentos caracteriza la distribución de energía erosiva y precipitación: Las variables de relación de lluvia de 30, 40 y 50 minutos respecto a la lluvia de 1 hora, así como la relación de lluvia de 1 a 24 horas es modelada por la distribución Beta. Finalmente, las relaciones de lluvia de 10 y 20 minutos respecto a la lluvia de 1 hora mostraron un mejor ajuste con la distribución Gumbel por momentos-L.

En el análisis de la energía erosiva para determinada altura de precipitación, predominó el ajuste de la distribución GVE, seguida por la distribución Normal y LogNormal de dos parámetros. Sin embargo, se hace énfasis en la importancia del criterio de bondad de ajuste para seleccionar el histograma de densidades que represente la función de densidad correcta de los datos.

La energía erosiva de la lluvia presenta fluctuaciones que depende principalmente de la intensidad de la tormenta. La propuesta de un modelo no lineal logra apegarse a la serie de datos siguiendo la metodología propuesta; sin embargo, se logra una mejora mediante la inspección regional, obteniéndose una distribución homogénea de la energía erosiva para alturas de lluvia de 12.5 a 502.5 mm.

A partir del modelo matemático establecido, se logra encontrar relaciones entre los parámetros determinados, por lo que la expresión matemática propuesta de 4 parámetros, es posible reducir a tan solo 2 parámetros, lo que puede simplificar el proceso de cálculo significativamente

La síntesis de lluvias planteada en este trabajo implica una serie de cálculos que deben realizarse metódicamente y que deben verificarse finalmente mediante una relación congruente entre todas las características evaluadas. Con la investigación realizada se ha comprobado que existen para zonas de mayor precipitación un mayor potencial erosivo R.

El modelo empleado en las EMAs permite calcular la energía erosiva a partir de registros de lluvias diarias, para lo cual se analizaron 5460 estaciones pluviométricas. Es de suma importancia establecer un criterio para seleccionar aquellas estaciones pluviométricas que contengan información suficiente y de calidad. La depuración de estaciones solo permitió emplear 2124 estaciones

El modelo propuesto de calcular la energía erosiva R, a partir de la lluvia en 24 horas ha sido desarrollado en las estaciones pluviométricas filtradas, con lo cual se obtiene la siguiente información:

- Series de tiempo para el período 1965 2006 de energía erosiva del parámetro R de RUSLE
- Comportamiento espacial anual y mensual del parámetro R, en la República Mexicana

Existe mejor correlación entre el factor R, calculado a partir de EMAs, en función con la precipitación anual en una zona en específica. En consecuencia, el desarrollo de la formula RUSLE completa puede inferirse anualmente con el empleo de la precipitación anual.

Los resultados de análisis de tendencia se traducen en que lluvias de mayor intensidad inciden en los resultados de potencial erosivo, cuyos efectos se ven reflejados en la metodología EMAs propuesta en este trabajo

El cálculo del resto de los parámetros de la fórmula de RUSLE, comenzando con el factor de erodabilidad, se desarrolla bajo técnicas de información geográfica con la finalidad de tornar eficiente el proceso de cálculo. El factor de cobertura vegetal es el que resulta de mayor incertidumbre debido a la diversidad de parámetros necesarios para su cálculo, por lo que se optó calcularlo a través del índice de NDVI; por otro lado, el factor LS señalado en la metodología RUSLE, no brinda las condiciones para ser aplicado en modelos de cuenca, por lo que se recurre a las modificaciones planteadas por la metodología de RUSLE3d, mediante sistemas de información geográfica.

Respecto a estaciones hidrométricas se depuraron 164 estaciones, correspondientes a las estaciones con más de 15 años de registro en el período 1965 - 2006, a las cuales se delimitó su cuenca correspondiente, y en conjunción con las estaciones pluviométricas se establece los polígonos de Thiessen, y en consecuencia asignar valores ponderados de cada uno de los parámetros del modelo RUSLE. Sin embargo, existe ganancia de información cuando el modelo se realiza mediante interpolación espacial de datos, empleando técnicas como distancia inversa cuadrada o kriging bayesiano

Finalmente se obtienen resultados de aportación de sedimentos por cuencas, contrastando los resultados de la metodología propuesta y la metodología tradicional planteada por Cortes, (1991) en la República Mexicana, tomando de referente los volúmenes de sedimentos medidos en las estaciones hidrométricas estudiadas.

La metodología propuesta, responde a variaciones anuales en aportación de sedimentos por cuencas, es decir, ciclos en las series de tiempo deducidas de las estaciones pluviométricas. Mientras que la metodología de Cortes, en varios casos llega a determinar poca oscilación para toda la serie, contrario a la variación periódica presente en la serie de precipitación

El método propuesto, permite obtener la energía erosiva en diferentes escalas de tiempo, desde nivel diario hasta nivel anual, siendo congruente los resultados entre las distintas escalas de tiempo. Lo cual permite estudios posteriores relacionados con el análisis de tendencias en series de tiempo de las variables de potencial erosivo R y aporte de sedimentos en cuencas; permitiendo la planeación a corto y mediano plazo relacionado con la cuantificación del material desprendido en la superficie terrestre a consecuencia del impacto de lluvia. Además, aporta información en la construcción de sedimentogramas, ya que con la metodología planteada se conoce el volumen de material diario desprendido en cuencas.

Finalmente, los resultados del factor R a partir de precipitación en 24 horas, demuestran que se obtiene ganancia de información en comparación a un análisis anual, tanto en la construcción de series históricas de erosión como en la cuantificación de material sólido aforado en las cuencas y en la determinación de zonas específicas de mayor vulnerabilidad erosiva

Bibliografía

CONAGUA, (2011), Estadística del Agua en México, edición 2011

- CORTES, T. H., (1991), Caracterización de la erosividad de la Iluvia en México utilizando métodos multivariados. Tesis de maestría en Ciencias. Colegio de Postgraduados, Montecillo, México
- CONAFOR, 2014, Comisión Nacional Forestal, Título: Monitoreo Anual de la cobertura Forestal 2013-2014. Edición: Primera Edición. Forma de Presentación de Datos Geoespaciales: Mapa vectorial e imagen raster.
- ESRI, 2011, Environmental Systems Research Institute, Arc Hydro Geoprocessing Tools Tutorial, Version 2.0
- FREEDMAN, David; Diaconis, P. (1981). On the histogram as a density estimator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57 (4): 453–476.
- GARCÍA, J. 2006. Los modelos de erosión. In Hidrología de superficie y conservación de suelos. Material de clase 2006, (en línea). España. Consultado 18 oct. 2011. Disponible en http://ocw.upm.es/ingenieria-agroforestal/ hidrología-de-superficies-yconservacion-de-suelos/material-de-clase/
- GARRIDO A., Cotler-Ávalos (2010): Degradación de suelos en las cuencas hidrográficas de México. 104-107 pp. En: Cotler-Ávalos (Coord). Las cuencas hidrográficas de México: diagnóstico y priorización, Instituto Nacional de Ecología-Fundación Gonzalo Río Arrionte I. A. P., México, 232 p.

KIRKBY, M. J., R. P. Morgan, (1984), Erosión de suelos, Editorial Limusa, México, D. F.

- LAWS, O. J., and D. A., Parsons, (1943), The relation of raindrop size to intensity. Trans. AGU 24:452-460.
- MIÑARRO, Antonio, 1998, Estimación no paramétrica de la función de densidad, Barcelona, pp. 86
- MITASOVA, H., BROWN, W.M., JOHNSTON, D. y MITAS, L. (1996). GIS Tools for Erosion/Deposition Modeling and Multidimensional Visualization. PART II: Unit Stream Power-Based Erosion/Deposition Modeling and Enahced Dynamic Visualization. Report for USA CERL. University of Illinois, Urbana-Champaign, IL, pp. 38.
- MITASOVA H., MITAS L., BROWN W. M. y JOHNSTON D.M. (1999). Terrain Modelling and Soil Erosion Simulations for Fort Hood y Fort Polk Test Areas. US Army Construction Engineering Research Laboratories.
- MITASOVA H., BROWN W. M. y JOHNSTON D.M. (2001). Terrain Modelling and Soil Erosion Simulation-Final Report. US Army Engineering Research and development Center (ERCD)
- NRCS, (2006), United States Department of Agriculture Natural Resources Conservation Service, Human Induced Land Degradation is Preventable. Through Understanding and Remediation of the Underlying Causes.
- OLDEMAN, L.R., Hakkeling, R.T.A. and Sombroek, W.G., (1991), World Map of the Status of Human-induced Soil Degradation (GLASOD). 3 map sheets and explanatory note. UNEP, Nairobi, and ISRIC, Wageningen, the Netherlands

OMM, 2011, Guía de prácticas meteorológicas, sexta edición, Volumen II, Gestión de recursos hídricos y aplicación de prácticas hidrológicas

- PALMER, R. S. (1963), The influence of a thin water laye ron water drop impact forces. Int. Assoc.Scient. Hydrol., Pub. 65, 141 – 148
- PETKOVSEK, G., M. Mikos, (2004), Estimating the R factor of daily rainfall data in the sub – Mediterranean climate of southwest Slovenia. Hydrological Sciences – Journal, 49(5), 869 – 877.
- RUDEMO, M., (1982), Empirical Choice of Histograms and Kernel Density Estimators, Scandinavian Journal of Statistics 9, 65-78

SAGARPA, (2005),

http://www.sagarpa.gob.mx/desarrolloRural/Publicaciones/Paginas/CursoTallerD esarrolloCapacidadesSueloAguaVegetacion.aspx?Cursor=10

SCOTTT, D. W., (1979), On optimal and Data-Based Histograms, Biometrika 66, 605-610

- SCOTT, D. W. and Terrel, G. R., (1987), Biased and Unbiased Cross Validation in Density Estimation, J. Amer. Statist. Asssoc. 82, 1131-146
- SCOTT, D.W. (1992). Multivariate Density Estimation. John Wiley and Sons, New York

SEMARNAT, 2006, El medio ambiente en México 2005: En resumen, Suelos.

- SEMARNAT y Colegio de Postgraduados, (2003), Evaluación de la degradación de los suelos causada por el hombre en la República Mexicana, escala 1:250000, Memoria Nacional 2001 2002, México.
- SHIMAZAKI, H.; Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural Computation 19 (6): 1503–1527
- SUDAS (STATEWIDE URBAN DESIGN AND SPECIFICATIONS, USA). (2010). The erosion and sedimentation process. In Iowa Statewide Urban Design Standards Manual. 2010. Iowa, United States. Consultado 18 oct. 2011. Disponible en http://www.iowasudas.org/design.cfm#toc
- SYLVIA N. Crespí, Pérez-Martinez, M. J. Cuesta , J. A. Cabrera, (2007), Procesos de degradación de suelos, CIEMAT.
- USDA (U.S. Department of Agriculture), (1996), Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Renard, K.G., G.R. Foster, G.A. Wessies, D.K. McCool, and D.C. Yoder, coordinators. U.S. Department of Agriculture, Agricultural Handbook No. 703.
- WILLIAMS, I.R. (1975). Sediment yield prediction with universal equation using runoff energy factor. United States Department of Agriculture, Agricultural Research Service S-40, pp. 244-252
- WISCHMEIER, W.H. y Smith, D.D. (1978). Predicting Rainfall Erosion Losses. Agriculture Handbook No. 537. United States Department of Agriculture. Science and Education Administration.
- WISCHMEIER, W.H. y Smith, D.D. (1965). Predicting Rainfall Erosion Losses from cropland east of the rocky mountains. Agriculture Handbook No. 282. United States Department of Agriculture. Science and Education Administration.
- WISCHMEIER, W.H. y Smith, D.D. (1958). Rainfall energy and its relationship to soil loss. Transactions, American Geophysical Union, Vol 39, No. 2, pp 285 – 291

Anexo 1

Ubicación geográfica del área de estudio

Figura A1.1 Ubicación geográfica de la República Mexicana Fuente: Elaboración propia

Anexo 2

A2.1 Prueba de Independencia de eventos

Para que se pueda llevar a cabo el análisis de frecuencias se requiere que la muestra Q_i de la serie *j* para $i = 1, 2, 3, ..., n_i$ este compuesta por variables aleatorias. Para probarlo se aplica la prueba de independencia de Anderson (Salas et al, 1988), la cual hace uso del coeficiente de autocorrelación serial r_k^j para diferentes tiempos d retraso k. Si se analiza un solo registro, entonces i=1

La expresión para obtener el coeficiente de autocorrelación serial de retraso k es:

$$r_{k}^{j} = \frac{\sum_{i=1}^{n_{j}-k} (Q_{i}^{j} - \overline{Q}^{j}) (Q_{i+k}^{j} - \overline{Q}^{j})}{\sum_{i=1}^{n_{j}} (Q_{i}^{j} - \overline{Q}^{j})^{2}};$$
(A2.1)
para $r_{0}^{j} = 1$ y $k = 1, 2, ..., \frac{n_{j}}{3}$
 $Q_{i}^{j} = \sum_{i=1}^{n_{j}} \frac{Q_{i}^{j}}{2}$
(A2.2)

Donde:

$$Q_{i}^{j} = \sum_{i=1}^{n_{j}} \frac{Q_{i}^{j}}{n_{j}}$$
(A2.2)

Además, los límites al 95% de confianza para r_k^j se puede obtener como

$$r_k^j (95\%) = \frac{-1 \pm 1.96\sqrt{n_j - k - 1}}{n_j - k}$$
(A2.3)

La gráfica de los valores estimados para r_k^j (ordenadas) contra los tiempos de etraso k (abscisas), junto con sus correspondientes límites de confianza, se llama correlograma de la muestra.

Si solo si, el 10% de los valores r_k sobrepasan los límites de confianza se dice que la serie Q_i^j es independiente y por lo tanto es una variable que sigue las leyes de la probabilidad

A2.2. Función de densidad

El comportamiento de una variable aleatoria se describe por su ley de probabilidad, y se especifica mediante la función de densidad o de distribución de probabilidad acumulada.

Una variable aleatoria es aquella que no se puede predecir con certeza al realizar un experimento y es una función de valores reales definidos en un conjunto. Las variables aleatorias pueden ser discretas o continuas. Una variable aleatoria se dice discreta si solamente puede asumir un número contable de valores. Una variable aleatoria continua es aquella que puede formar un número infinito no contable de valores

En general, una función de densidad de probabilidad se define siempre y cuando
$$f(x) \ge 0$$
 (2.4)

$$\int_{-\infty}^{\infty} f(x) dx = 1$$
(A2.5)

La construcción de una función de densidad de probabilidad depende esencialmente de las frecuencias relativas de observaciones asociadas a un intervalo de clase. Por tal razón, es necesario recurrir a los conceptos de histogramas

A2.3 Histograma de Densidades

La diferencia entre un histograma de frecuencia y un histograma de densidades es que este último es normalizado para que el área de las barras sume la unidad. El histograma es construido directamente de la muestra de datos y de la elección de barras.

Sea $B_k = [t_k, t_k + 1)$ la notación de la k-ésima barra. Se plantea $h = t_{k+1} - t_k$ para todas las barras. Entonces se dice que el histograma tiene un ancho de banda fijo h. Un histograma de frecuencia es construido usando celdas de altura 1 y ancho h. Un histograma de densidades se construye con celdas de altura 1/nh, de tal forma que cada celda tenga un área igual a 1/n. Sea v_k la notación para el número de datos de la muestra que caen en la barra B_k . Entonces el histograma está definido como (Figura A2.1):

Figura A2.1. Notación para construir un histograma con igual ancho de banda Fuente: Scott, 1992

La complejidad en la construcción de un histograma recae en la elección del ancho de banda h. Existen varios métodos para la determinación de esta variable, algunos presuponen una distribución de densidad y otros métodos optimizan el ancho de banda h con el objetivo de producir una secuencia consistente de barras y minimizar alguna función objetivo de error cuadrático medio.

Los métodos empleados en la selección de ancho de banda h , son los siguientes: Scott, 1979

$$\hat{h} = 3.5 \hat{o} n^{-\frac{1}{3}} \tag{A2.7}$$

Freedman and Diaconis, 1981

$$\hat{h} = 2(IQ)n^{-\frac{1}{3}}$$
(A2.8)

Validación cruzada sesgada (Biased Cross-Validation), Scott and Terrel, 1987

$$BCV(h) = \frac{5}{6nh} + \frac{1}{12n^2h} \sum_{k} (v_{k+1} - v_k)^2$$
(A2.9)

Validación cruzada insesgada (Unbiased Cross-validation), Rudemo, 1982

$$UCV(h) = \frac{2}{(n-1)h} - \frac{n+1}{n^2(n-1)h} \sum_{k} v_k^2$$
(A2.10)

Optimización de ancho de banda de histograma, Shimazaki and Shinomoto, 2007 2k 1 N 1 N

$$C(h) = \frac{2k - v}{h^2}; \quad k = \frac{1}{N} \sum_{i=1}^{N} k_i; \quad v = \frac{1}{N} \sum_{i=1}^{N} (k_i - k)^2$$
(A2.11)

No se ha podido verificar la jerarquía de algún método sobre otro, sin embargo, la elección del ancho de banda se sustenta en el método que proporcione distribución de barras consistentes y una menor cantidad de marcas de clase vacías.

A2.4 Distribuciones de probabilidad

Posteriormente se aplicaron distribuciones de probabilidad a cada histograma elaborado, para lo cual puede consultarse las definiciones matemáticas publicadas Técnicas Estadísticas en Hidrología, Escalante y Reyes 2005. Las distribuciones de probabilidad empleadas son: Distribución Normal (DN), Distribución LogNormal de dos parámetros (DLN2), Distribución LogNormal de tres parámetros (DLN3), Distribución Gamma de dos parámetros (DG2), Distribución Gamma de tres parámetros (DG3), Distribución LogPearson de tres parámetros (DP3), Distribución Gumbel (DG) y Distribución General de Valores Extremos (DGVE). Para mayores referencias puede consultarse en la publicación de la OMM (Organización Meteorológica Mundial) titulada Statistical Distributions for Flood Frequency Analysis (OMM, 2011).

El ajuste entre las diferentes distribuciones de probabilidad se compara con el menor Error Estándar de Ajuste (EEA) calculado con la expresión [3.3].

$$EEA = \left[\sum_{i=1}^{n} \frac{\left(\hat{X}_{i}^{j} - X_{i}^{j}\right)^{2}}{n - mp}\right]^{\frac{1}{2}}$$
(A2.12)

Donde *n* es el tamaño de la muestra; \hat{X}_i^j son los eventos estimados por determinada distribución de probabilidad; X_i^j son los eventos registrados ordenados de mayor a menor que se le asigna un

período de retorno $T = \frac{n+1}{m}$ y $P = 1 - \frac{1}{T}$, mp es el número de parámetros de la distribución de probabilidad.

Además de la elección de una distribución, el método de estimación de parámetros que se usa con la distribución puede tener un efecto en los resultados. Tradicionalmente, el método de momentos ordinarios (MO) ha sido muy usado en hidrología a pesar que se ha reconocido es ineficiente estadísticamente, en comparación con el método de máxima verosimilitud (MV). El método de momentos de probabilidad pesada (MPP) en muchos casos conviene aplicarlo debido a que se ha encontrado, según Hosking, 1985, que tiene propiedades estadísticamente comparables con el MV en cuanto se refiere al tamaño de las muestras que se utilizan en hidrología. El método basado en las estadísticas de momentos - L constituye una mejora considerable con respecto a los métodos convencionales de máxima verosimilitud o de momentos (OMM, 1994).

Anexo 3

A3.1 Estaciones Meteorológicas Automáticas en la República Mexicana

Estaciones Meteorológicas Automa	áticas en la	República	Mexicana
Estación	Latitud	Longitud	Tormentas
ARRIAGA	17.1783	-92.9096	312
Cintalapa	16.8083	-91.1083	303
Comitán	16.8969	-92.0918	345
ElVergel	16.7242	-92.6377	447
Hamburgo	16.2356	-92.1355	545
LaPaz	16.1669	-93.0764	507
LindaVista	16.6714	-93.7415	445
Motozintla	16.2425	-93.9062	304
Ocosingo	15.6469	-92.9746	453
RepMexicana	15.3447	-92.4794	344
SanCistobal	15.1753	-92.3263	359
SanJavier	15.0317	-92.1043	514
Santo Domingo	15.3567	-92.2462	564
Proteccion Civil Chilpancingo	17.5300	-99.4900	119
Valle del rio	16.9617	-99.9314	189
San Isidro	16.9050	-99.9428	257
Zihuatanejo	17.6481	-101.5778	140
Vallecito Zaragoza	17.9222	-101.3172	119
La union	17.9378	-101.8244	175
Cayaquitos	17.3008	-101.0503	155
Petatlan	17.5464	-101.2808	261
Tixtla	17.5572	-99.4011	210
La Horqueta	16.7558	-99.5747	200
Copala	16.5906	-98.9133	195
Las Vigas	16.7575	-99.2336	143
Ometepec	16.6925	-98.4261	191
Cuajinicuilapa	16.4650	-98.3978	224
Atoyac	17.2097	-100.4400	334
Tecpan	17.2000	-100.6200	153
Chilapa	17.6072	-99.1808	210
Tecoanapa	16.9908	-99.3722	169
Metlatonoc	17.2436	-98.4069	263
Xalpatlahuac	17.4708	-98.6061	202
Atlamajalcingo	17.3117	-98.6050	253
Quechultenango	17.4086	-99.2464	30
ТІара	17.5708	-98.5514	189
Aeropista Santa Cruz	17.7692	-98.5761	172
Huamuxtitlan	17.8089	-98.5656	183
Chichihualco	17.6614	-99.6731	180
Соуиса	18.3378	-100.7142	131
Zirandaro	18.4792	-100.9769	131

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
Arcelia	18.3278	-100.2858	82
Crucero Lucerito	17.4061	-98.8433	268
Pto. de Gallo	17.4800	-100.1764	225
Fresnos Pto. Rico	17.6633	-100.6558	371
Iguala	18.3414	-99.5031	98
Huitzuco	18.2989	-99.3364	184
Copalillo	18.0600	-99.0000	168
Тахсо	18.5481	-99.6028	203
Cutzamala	18.6200	-100.5900	91
Coatomatitlan	17.4786	-99.3242	99
Cocula	18.2611	-99.6514	160
AguaAzul	17.2489	-92.1142	186
Bochil	16.9972	-92.9058	146
Bombana	16.9525	-93.0264	168
DosPatrias	17.6117	-92.7994	265
Elburrero	16.7878	-92.8286	201
FincaAgrovia	15.1247	-92.3003	239
FincaChayabe	16.3831	-91.7103	212
FincaCuxtepeques	15.7278	-92.9653	168
Guacamayas	16.2564	-90.8575	180
Huimangillo	17.8511	-93.3964	148
Huixtla	15.1469	-92.4714	181
IgnacioLopezRayon	14.6261	-92.1847	157
Jonuta	18.0908	-92.1378	239
LaEncrucijada	15.5742	-93.1922	171
LaEscalera	16.5172	-92.9833	103
Lacantun	16.1494	-90.9017	202
LasFlores	16.6925	-93.5633	168
Motozintla	15.3333	-92.2675	135
SanFranciscoll	15.8728	-92.9514	148
SanJerónimo	15.0400	-92.1361	218
SanPedro	17.7717	-91.1497	211
SanchezMagallanes	18.2956	-93.8644	96
Tonala	16.0842	-93.7439	150
TresBrazos	18.3847	-92.6072	198
VilladeChapila	16.5781	-92.7156	156
VillaFlores	16.2539	-93.2481	119
Yaxchilan	16.8575	-90.9836	128
Zapaluta	16.1164	-92.0506	196
LAS ADJUNTAS	21.9658	-98.5575	230
BALLESMI	21.7472	-98.9594	275
BOCA TOMA CHAIREL	22.2383	-97.8761	255
EL OLIVO	21.8322	-98.5039	261
LA ENCANTADA	23.3856	-99.0781	256

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
LA SERVILLETA	22.8528	-99.1206	324
CD. MADERO	22.2839	-97.8442	253
MAGISCATZIN	22.7969	-99.7136	240
PRESA RAMIRO CABALLERO	22.6386	-98.6864	241
PRESA EMILIO P. GIL	22.9536	-98.8122	241
PANUCO	22.0600	-98.1767	235
PASO DE PIEDRAS	21.7372	-98.1558	269
REQUETEMU	21.4222	-98.8897	324
RIO FRIO	22.8431	-99.0261	231
SABINAS	23.0311	-98.0931	259
SAN GABRIEL	23.0853	-98.7878	181
SAN VICENTE	21.6800	-98.6117	265
TAMESI	22.4139	-98.4219	186
TAMUIN	22.0008	-98.7619	227
TEMAMATLA	21.2278	-98.7561	372
TIERRA BLANCA	21.2431	-98.8622	379
AcequiaMadre	31.7589	-106.5083	355
Anzalduas	26.1314	-98.3364	383
As-06	25.6342	-100.3433	108
Babisas	28.5589	-105.4228	159
BocadelRio	27.4467	-106.2194	233
CdCuauhtemoc	28.3967	-106.8392	237
CdMier	26.4500	-99.1519	641
CILANorte	31.7569	-106.4447	516
Colina	27.5764	-105.3822	126
Colombia	27.6992	-99.7469	625
CU-03	25.7325	-100.3083	93
CuatroCienegas	26.9903	-102.0378	140
Delicias	28.1700	-105.5000	308
DiazOrdaz	26.2389	-98.5656	461
ElMorillo	26.1525	-98.3842	464
ElMulato	29.4797	-104.2583	270
ElPuente	26.7908	-99.4219	579
ElVergelChih	26.4733	-106.3903	434
Enramadas	25.4972	-99.5272	147
EZ-07	25.5922	-100.2450	128
FE-04	25.6828	-100.2719	97
FortQuitman	31.0872	-105.6089	370
HGranero	28.9947	-105.2778	168
JimenesChihSMN	27.1108	-104.9064	155
Jimenez	29.0500	-100.6639	284
JimenezChih	27.1411	-104.9144	161
LaFragua	28.8231	-100.8333	544
LasBurras	28.5133	-105.4308	225

Estaciones Meteorológicas Automa	áticas en la	República I	Mexicana
Estación	Latitud	Longitud	Tormentas
LosAldama	26.0236	-99.1958	188
MA2TP	25.8858	-97.5186	443
MI-02	25.7358	-100.3836	75
M.Ocampo	26.0547	-99.5369	173
Monterrey	25.6869	-100.2742	435
MorelosMuzquiz	28.0131	-101.7114	102
NLRioBravo	27.4356	-99.5264	35
NuevaRosita	27.9200	-101.3300	280
NuevoLaredo	27.4356	-99.5264	699
NuevoProgreso	26.0611	-97.9503	613
OB-05	25.7011	-100.5419	87
OjinagasSMN	29.5342	-104.4686	160
PC-08	25.6597	-100.3331	96
PCerro Prieto	24.9381	-99.3853	38
PCUNL	25.7331	-99.3208	493
Peguis	29.5019	-104.7425	301
PElCuchillo	25.7181	-99.2558	35
PresaFalcon	26.5617	-99.1678	366
P.Fco.I.Madero	28.1606	-105.6197	358
PGranero	28.9847	-105.2808	123
PiedrasNegras	28.7128	-100.5058	396
PLaAmistad	29.4500	-101.0592	477
PLaBoca	25.4294	-100.1289	52
P.LaBoquilla	27.5447	-105.4128	487
PMarteRGomez	26.1933	-98.9281	109
P.PicodelAguila	26.5450	-105.2506	142
P.SanGabriel	26.4369	-105.5617	199
Puertecito	26.2844	-98.7456	557
PVenustianoCarranza	27.5125	-100.6125	76
RadioSondeo	25.8569	-100.2400	148
Rancheria	26.3500	-98.9081	558
RLaAmistad	29.4253	-101.0411	362
SanAntonio	26.4331	-105.3311	307
SanJuanTM	26.3111	-98.8383	220
SantaCatarinaNL	25.6708	-100.4694	91
SantaCecilia	28.3994	-101.2131	285
SM-01	25.8200	-100.3514	69
TopoChico	25.7381	-100.3158	217
ValleHermoso	25.6658	-97.8264	176
VCarranza	27.5194	-100.9500	170
VillaAhumada	30.6156	-106.5050	116
Villalba	27.9875	-105.7731	258
VillaOcampo	26.4406	-105.5025	311
Acaponeta	22.4667	-105.3853	401

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
Acapulco	16.7633	-99.7489	801
Acayucan	17.9767	-94.9008	460
Aeropuerto	19.4403	-99.0761	511
Agustín Melgar	25.2633	-104.0661	371
Álamos	27.0217	-108.9378	571
Altamira	22.3875	-97.9256	944
Alvarado	18.7150	-95.6325	1244
Angamacutiro	20.1253	-101.7225	1098
Apatzingan	19.0828	-102.3717	464
Atlacomulco	19.7917	-99.8697	1271
Atoyac	17.2094	-100.4400	195
Bahía de Kino	29.0133	-111.1369	195
Bahía de los Ángeles	28.9700	-113.5608	153
Basaseachi	28.1992	-108.2089	1261
Cabo San Lucas	22.8811	-109.9264	170
Caborca	30.7719	-112.4353	81
Calakmul	18.3650	-89.8925	996
Calvillo	21.8494	-102.7122	462
Campeche	19.8361	-90.5072	1185
Cancun	21.0294	-86.8522	1039
Cataviña	29.7272	-114.7192	140
Celestún	20.8581	-90.3831	743
CEMCAS	19.4797	-98.9736	678
Cerro Catedral	19.5419	-99.5192	2112
Chapala	20.2903	-103.2017	1041
Chetumal	18.5006	-88.3278	1110
Chinatú	26.2294	-106.7706	1151
Chinipas	27.3897	-108.5364	954
Citlaltepec	21.3344	-97.8786	561
Ciudad Alemán	18.1892	-96.0975	1428
Ciudad Altamirano	18.3506	-100.6583	566
Ciudad Constitución	25.0097	-111.6633	239
Ciudad Cuauhtémoc	28.3967	-106.8392	285
Ciudad del Carmen	18.6481	-91.8225	861
Ciudad Delicias	28.1975	-105.4669	377
Ciudad Fernández	21.9361	-100.0217	262
Ciudad Mante	22.7444	-98.9831	472
Ciudad Valles	21.9797	-99.0308	641
Córdoba	18.8900	-96.9231	399
Cozumel	20.4769	-86.9069	690
CPGM	19.1425	-96.1131	867
Cuatro Ciénegas	26.9903	-102.0378	116
Dzilam	21.3906	-88.9042	310
Ecoguardas	19.2714	-99.2039	522

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
El Fuerte	26.4114	-108.6175	138
El Vergel	26.4733	-106.3903	453
Escárcega	18.6078	-90.7586	716
Escuela Nacional de Ciencias Biológicas 1	19.4536	-99.1711	1397
Escuela Nacional de Ciencias Biológicas 2	19.4986	-99.1453	437
Escuintla	15.2975	-92.6761	855
Guachochi	26.8133	-107.0731	1287
Gustavo Díaz Ordaz	27.6428	-113.4575	194
Huamantla	19.3861	-97.9664	1308
Huauchinango	20.0989	-98.1528	554
Huejutla	21.1547	-98.3686	1283
Huichapan	20.3886	-99.6639	487
Huimilpan	20.3900	-100.2833	1178
Iguala	18.3603	-99.5242	514
IMTA	18.8822	-99.1569	1205
Ixtlán del Río	21.0386	-104.2847	469
Izúcar de Matamoros	18.6167	-98.4519	861
Jalapa	19.5297	-96.9244	1902
Jaumave	23.4075	-99.3753	229
Jiménez	27.1108	-104.9069	318
Jocotepec	20.2831	-103.4164	663
José María Morelos	19.7522	-88.7036	283
La Flor	22.6861	-103.6025	170
La Florida	22.6861	-103.6025	326
La Rumorosa	32.2722	-116.2056	365
La Unión	17.8969	-88.8786	106
Las Vegas	24.1858	-105.4661	912
Los Colomos	20.7067	-103.3928	934
Maguarichi	27.8583	-107.9944	768
Matamoros	25.8858	-97.5186	704
Matehuala	23.6400	-100.6575	564
Matías Romero	16.8828	-95.0364	1046
Mérida	20.9469	-89.6522	1084
Mexicalli	32.6661	-115.4531	128
Miahuatlán	16.3442	-96.5797	105
Monclova	18.0569	-90.8208	568
Morelos Múzquiz	28.0131	-101.7114	103
Nevado de Toluca	19.1258	-99.7708	1901
Nicolás Bravo	18.4553	-88.9239	444
Nochixtlán	17.4367	-97.2492	474
Nogales	31.2978	-110.9139	262
Nueva Rosita	27.9214	-101.2067	377
Obispo	24.2511	-107.1881	156
Ojinaga	29.5342	-104.4756	138

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
Oxkutzcab	20.2911	-89.3944	351
Pachuca	20.1086	-98.7069	972
Palenque	17.5258	-91.9903	943
Paraíso	18.4231	-93.1556	762
Parque Izta - Popo	19.0956	-98.6403	617
Petacalco	17.9844	-102.1231	508
Pimentel	19.3450	-99.1875	576
Pinotepa Nacional	16.3497	-98.0525	880
Presa Abelardo Rodriguez	32.4472	-116.9083	379
Presa Allende	20.8483	-100.8258	917
Presa Cangrejera, La	18.1058	-94.3314	1329
Presa Cuchillo	25.7331	-99.3208	732
Presa Emilio López Zamora	31.8914	-116.6033	399
Presa Mandín	19.5244	-99.2681	1343
Puerto Ángel	15.6711	-96.4972	562
Río Lagartos	21.5714	-88.1603	683
Río Tomatlán	19.9983	-105.1333	915
San Fernando	24.8428	-98.1575	562
San Juan de Guadalupe	24.6314	-102.7744	162
San Juan	25.4856	-107.8433	140
San Juanico	26.2575	-112.4786	119
San Luis Río Colorado	32.4239	-114.7978	52
San Quintín	30.5317	-115.9372	265
Santa Cecilia	28.3994	-101.2131	446
Santa Rosalía	27.3381	-112.2739	124
Servicio Meteorológico Nacional	19.4036	-99.1969	1271
Sian Ka'an	20.1278	-87.4656	1079
Sonoyta	31.8653	-112.9964	82
Soto La Marina	23.7642	-98.2078	401
Tantaquin	20.0303	-89.0472	743
Tepoztlan	18.9508	-99.0789	703
Teziutlan	19.8878	-97.3906	451
Tezontle	19.3847	-99.0994	1276
Tizapan	20.1694	-103.0439	968
ТІара	17.5494	-98.5631	406
Tres Marías	19.0506	-99.2486	146
Tuxpan	20.9600	-97.4169	1039
Universidad Tecnológica de Tecamachalco	18.8664	-97.7217	928
Urique	27.2156	-107.9169	913
Uruapan	19.3808	-102.0289	792
Venustiano Carranza	27.5194	-100.6167	147
Villa Ahumada	30.6156	-106.5050	213
Villa Ocampo	26.4406	-105.5022	282
Villagran	24.4706	-99.4886	277

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
Yécora	28.3667	-108.9167	760
Yohaltum	19.0136	-90.3108	405
Zacatecas	22.7467	-102.5061	839
Zacualtipan	20.6644	-98.6817	465
Zihuatanejo	17.6450	-101.5547	333
Zimapan	20.7400	-99.3906	339
Acolman	19.6347	-98.9117	94
Actopan	20.2806	-98.9725	169
Amecameca	19.1319	-98.7861	129
Arcos del Sitio	19.7664	-99.3433	104
Chapingo	19.4942	-98.8886	98
El Guarda	19.1547	-99.0789	97
Irolo	19.7600	-98.5906	148
Ixmiguilpan	20.4961	-99.1811	148
Ixtapaluca	19.3311	-98.8778	101
La Agraria	19.2742	-99.1581	73
Laguna de Tecocomulco	19.8725	-98.4042	90
Tula de Las Rosas	20.0567	-99.3483	266
Manuel Ávila Camacho	19.3203	-98.7556	120
Mixguiahuala	20.2294	-99.2153	146
Otumba	19.6881	-98.7575	43
Presa Rojo Gómez	20.3594	-99.3186	143
Presa Guadalupe	19.6336	-99.2508	119
San Miguel Atlamajac	19.7489	-98.9319	77
Sanctorum	19.4903	-98.4717	241
Taxhimay	19.8372	-99.3839	241
Tepeatloxtoc	19.5692	-98.8247	39
Tequixquiac	19.9042	-99.2917	77
Tezontepec	19.8783	-98.8200	84
Tezoncualpa	19.9658	-98.2747	47
Laguna de Zumpango	19.8078	-99.1308	54
3 GUERRAS	20.5161	-100.7756	265
ACUEDUCTO CHAPALA	20.3164	-103.1450	350
ADJUNTAS	20.5936	-100.4908	379
ALVARO OBREGON	21.1931	-100.9778	278
ALZATE	19.4664	-99.7039	578
AMAZCALA	20.7042	-100.2675	284
AMEXHE	20.5561	-100.5814	216
ARANDAS	20.7214	-101.3728	238
ARISTEO MERCADO	19.9256	-101.6697	373
ATLACOMULCO	19.7883	-99.8697	582
COINTZIO	19.6283	-101.2597	407
CORRALES	20.2117	-101.8628	217
EL ARENAL	20.6933	-100.4558	79

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
EL BARRIAL	21.9222	-101.8383	262
EL BATAN	20.5039	-100.4119	284
EL CUBO	20.2803	-100.8997	339
EL TULE	20.7167	-102.4333	252
garabatos	20.5936	-102.6956	421
GUANAJUATO	21.0144	-101.2661	143
HACIENDA LA Y	19.4000	-99.5997	506
ISLA ALACRANES	20.2511	-103.1700	319
JESUSD MARIA	21.3542	-101.2125	174
JOSE FABELA	19.8278	-99.7903	516
LA PALMA	21.1467	-102.7533	355
LA PIEDAD	21.3536	-102.0039	381
LA POLVORA	20.4833	-102.2333	299
LA PURISIMA	20.8689	-101.2919	305
LAGO CUITZEO	19.9000	-101.0675	370
LAGO PATZCUARO	19.5436	-100.6164	447
LAGUNA DEL FRESNO	19.8358	-100.4011	398
LAS ADJUNTAS	20.6750	-101.8442	267
LAS PALMAS			355
LOMO DE TORO	20.3000	-101.0167	293
MALPAIS	19.8342	-100.8781	143
MARKAZUZA	20.3000	-101.6000	381
MELCHOR OCAMPO	20.1278	-101.7214	300
MEZQUITITLAN	20.0436	-100.0731	392
PERICOS	20.5219	-101.1111	272
PEÑUELITAS	21.1050	-100.5781	214
POSTA	21.9722	-102.3622	247
PRESA DE GONZALO	19.9592	-102.6014	295
PRESA EL PALOTE	21.1731	-101.6967	513
PRESA EL VOLANTIN	20.0667	-103.0833	373
PRESA IGNACIO RAMIREZ	19.4625	-99.7758	448
PRESA JARIPO	20.3031	-102.4314	339
PRESA LA COFRADIA	20.0656	-101.5850	304
PRESA LA NORIA	20.1875	-102.1019	239
PRESA TRES MEZQUITES	20.2778	-101.6189	304
PRESA UREPETIRO	19.9614	-102.1369	198
RIO ZULA	20.3953	-102.7308	166
SALAMANCA	20.5656	-101.1994	286
SALVATIERRA	20.2164	-100.8856	325
SAN ANTONIO GUARACHA	19.9631	-102.5792	265
SAN CRISTOBAL	20.3333	-102.2833	284
SANTA CATARINA	20.7864	-101.4531	359
SANTA MARIA DEL LLANO	19.6367	-99.7111	608
SOLIS	20.0414	-100.7075	383

Estaciones Meteorológicas Automáticas en la República Mexicana			
Estación	Latitud	Longitud	Tormentas
TEMASCALES	20.0600	-100.1486	395
TEMAZCALCINGO	19.9044	-100.0167	583
TEPETITLAN	19.6614	-99.9611	231
TEPUXTEPEC	20.0019	-100.2289	384
TERCER MUNDO	19.7650	-101.2981	415
TUXCUECA	20.1578	-103.1836	376
YURECUARO	20.3392	-102.2492	365
YURIRIA	20.2683	-101.0192	385
Acambaro	20.0650	-100.7567	634
AgroEduca	21.0275	-101.6514	550
Los Aguilares	20.5961	-101.0669	512
Apaseo			538
Cebaj	20.5883	-100.8261	468
Comonfort	20.7233	-100.7892	549
El Copal	20.7611	-101.3442	543
Cueramaro	20.6167	-101.7000	533
DoloresHgo	21.2111	-100.7942	444
La Estancia	20.9542	-101.7647	518
El Fuerte	20.6239	-101.2078	550
Fundacion	20.5472	-100.8047	493
La mina	21.0606	-100.6422	470
El Barrial	21.0483	-101.8383	231
CueramCEAG			147
MDoblado	20.8944	-101.8889	496
Noria Nueva	20.5208	-101.4350	582
Penjamo	20.4067	-101.6478	544
PuroAgüita	20.0783	-100.4936	654
Romita	20.8503	-101.6514	663
Salvatie	20.2389	-100.9281	492
San Francisco	21.8097	-101.4772	191
SnJose	21.0675	-100.4539	468
SnLuis	21.2814	-100.6083	477
Santa Ana	20.3858	-101.9217	457
Tarimoro	20.2836	-100.7900	497
Valle	20.4372	-101.3539	545
Victoria de Cortazar	20.3000	-101.0783	451
Fracc. Vergel de Guadalupe	21.3819	-101.1592	201
VillaDiego	20.4147	-101.1219	578
Yuriria	20.2300	-101.2628	652

Estaciones Meteorológicas Automáticas en EUA			
Estación	Latitud	Longitud	Tormentas
AJO	32.3697	-112.8600	791
ALAMO DAM	34.2281	-113.5777	316
ASH FORK 3	35.1989	-112.4886	1661
BAR T BAR RCH	34.0333	-111.3666	91
BISBEE	31.4333	-109.9166	405
BISBEE 2	31.4269	-109.8950	194
BISBEE 1WNW	31.4475	-109.9288	673
BLACK RIVER PUMPS	33.4783	-109.7516	1874
CASA GRANDE NM	32.9947	-111.5366	777
CHEVELON RS	34.5400	-110.9152	1626
CIBECUE	34.0375	-110.4875	1133
CLIFTON 17 NE	33.2833	-109.2000	105
COCHISE 4 SSE	32.0589	-109.8908	1248
CROWN KING	34.2097	-112.3452	1314
DOUGLAS	31.3450	-109.5394	950
DUNCAN	32.7481	-109.1213	1158
FLORENCE JUNCTION	33.2833	-111.3666	329
KARTCHNER CAVERNS	31.8353	-110.3552	12
KINGMAN #2	35.2000	-114.0166	595
MAYER	34.4000	-112.2500	723
MAYER #2	34.3936	-112.2227	897
MONTEZUMA CASTLE NM	34.6106	-111.8380	1296
NOGALES	31.3500	-110.9166	547
NOGALES 6 N	31.4553	-110.9680	953
ORACLE STATE PARK	32.6100	-110.7316	0
ORACLE 2 SE	32.6025	-110.7344	1452
PAINTED ROCK DAM	33.0772	-113.0316	263
PARKER CREEK MNTC YRD	33.7833	-110.9666	201
PAYSON	34.2325	-111.3447	1683
SANTA RITA EXP RANGE	31.7625	-110.8463	1439
SEDONA	34.8956	-111.7644	1574
SIERRA ANCHA	33.7986	-110.9713	1544
SUNFLOWER 3 NNW	33.9119	-111.4855	918
SUPERIOR	33.3003	-111.0972	201
SUPERIOR 2 ENE	33.3050	-111.0672	1061
TEMPE SRP	33.4461	-111.9511	5
TRUXTON CANYON	35.3881	-113.6594	1011
VAIL	32.0456	-110.7141	1097
WALNUT CREEK	34.9281	-112.8097	1208
WHITERIVER 1 SW	33.8214	-109.9838	1931
WORKMAN CREEK 1	33.8167	-110.9166	773
BEAUMONT	33.9292	-116.9750	1060
BIG BEAR LAKE DAM	34.2414	-116.9744	928

A3.2 Estaciones meteorológicas automáticas en EUA

Estaciones Meteorológicas Automáticas en EUA			
Estación	Latitud	Longitud	Tormentas
BLYTHE 7 W	33.6167	-114.7166	99
BLYTHE ASOS	33.6186	-114.7141	13
CAMP ANGELUS	34.1492	-116.9802	1289
CARBON CANYON GILMAN	33.9231	-117.7777	196
CARBON CANYON WORKMAN	33.9581	-117.7791	287
CRAWFORD RCH	32.8833	-116.2833	0
CRESTLINE	34.2392	-117.2988	983
CUYAMACA	32.9897	-116.5872	1268
EL CAPITAN DAM	32.8839	-116.8163	646
EL CENTRO 2 SSW	32.7669	-115.5616	170
ELSINORE	33.6692	-117.3319	855
ESCONDIDO #2	33.1211	-117.0883	554
ETIWANDA	34.1317	-117.5238	289
FALLBROOK	33.3500	-117.2500	574
FULLERTON DAM	33.8964	-117.8880	220
HAYFIELD PUMPING PLT	33.7044	-115.6288	322
HENSHAW DAM	33.2372	-116.7613	623
HURKEY CREEK PARK	33.6756	-116.6794	1438
IDYLLWILD FIRE DEPT	33.7572	-116.7066	1369
IRON MTN	34.1472	-115.1219	333
LAGUNA BEACH #2	33.5567	-117.8005	823
LAKE WOHLFORD	33.1667	-117.0000	593
LOWER OTAY RSVR	32.6167	-116.9333	555
LYTLE CK FTHILL BLVD	34.0950	-117.3347	204
LYTLE CREEK RS	34.2383	-117.4708	677
MILL CREEK INTAKE	34.0914	-116.9363	916
MORENA DAM	32.6817	-116.5208	1146
NEEDLES	34.8300	-114.5936	373
OAK GROVE RS	33.3861	-116.7916	873
OCEANSIDE PUMPING PLT	33.2103	-117.3536	764
ORANGE CO RSVR	33.9378	-117.8850	269
PALOMAR MTN OBSVTRY	33.3781	-116.8400	1097
PARKER RSVR	34.2903	-114.1708	380
PRADO DAM	33.8903	-117.6452	206
RUNNING SPRINGS 1 E	34.2067	-117.0863	1083
SAN JACINTO RS	33.7869	-116.9583	987
SAN JUAN GRD STN	33.5922	-117.5125	808
SANTA ANA RIVER PH 3	34.1017	-117.1061	227
SANTIAGO DAM	33.7869	-117.7216	297
SANTIAGO PEAK	33.7108	-117.5361	753
SILVERADO RS	33.7425	-117.6600	283
TEMECULA	33.4972	-117.1508	849
THERMAL FS #39	33.6358	-116.1638	158
TRABUCO CANYON	33.6583	-117.5894	966

Estaciones Meteorológicas Automáticas en EUA					
Estación	Latitud	Longitud	Tormentas		
WARNER SPRINGS	33.2833	-116.6333	174		
ANIMAS 3 ESE	31.9378	-108.7686	1173		
CLOVERDALE 4 WNW	31.4333	-108.9833	11		
ALAMOGORDO	32.9181	-105.9550	833		
ARTESIA 6S	32.7547	-104.3836	1280		
AUGUSTINE 2E	34.0750	-107.6211	1358		
BEAVERHEAD R/S	33.4286	-108.1000	1680		
BONITO DAM	33.4486	-105.6847	2473		
CABALLO DAM	32.8967	-107.3091	1037		
CAPITAN	33.5311	-105.5947	1765		
CAPROCK	33.3433	-103.6783	128		
CARLSBAD	32.3478	-104.2225	1097		
CARRIZOZO 1SW	33.6308	-105.8963	1440		
CIRCLE F RCH	33.9000	-105.0000	594		
COLUMBUS	31.8297	-107.6388	1027		
CROSSROADS	33.5167	-103.3333	679		
CROSSROADS 2	33.5133	-103.3402	380		
DEMING	32.2531	-107.7530	1045		
DEMING FAA AP	32.2500	-107.7000	156		
DURAN	34.4692	-105.3975	1444		
FARNSWORTH RCH	33.9000	-105.0000	71		
FLORIDA	32.4333	-107.4833	648		
FT BAYARD	32.7939	-108.1513	1383		
HILLSBORO	32.9203	-107.5655	1587		
HOBBS 13W	32.7125	-103.3538	357		
HONDO 1SE	33.3803	-105.2544	1472		
HOPE	32.8111	-104.7336	1211		
JORNADA EXP RANGE	32.6169	-106.7411	1315		
MALJAMAR	32.8567	-103.7625	1175		
MIMBRES RS	32.9325	-108.0141	1810		
OROGRANDE	32.3789	-106.0925	922		
PEARL	32.6500	-103.3833	743		
PIETOWN 19NE	34.4931	-107.8883	1258		
PROGRESSO	34.4208	-105.8913	1566		
QUEMADO	34.3447	-108.4922	377		
QUEMADO LAKE	34.1333	-108.5166	478		
QUEMADO LAKE ESTATES	34.1467	-108.5086	136		
RAMON 8 SW	34.1508	-105.0044	989		
RIENHARDT RCH	33.7528	-107.2094	928		
ROSWELL CLIMAT	33.3800	-104.5419	29		
ROSWELL IND AP	33.3075	-104.5083	544		
ROSWELL 2 S	33.3075	-104.5280	174		
RUIDOSO	33.3678	-105.6611	1731		
RUIDOSO 2	33.3500	-105.6666	425		

Estaciones Meteorológicas Automáticas en EUA					
Estación	Latitud	Longitud	Tormentas		
SACRAMENTO #2	32.7906	-105.5605	2025		
SANTA TERESA AP	31.8728	-106.6980	252		
SOCORRO	34.0828	-106.8830	1101		
STATE UNIV	32.2822	-106.7597	1062		
TWO RIVERS RSVR	33.2833	-104.6166	347		
WASTE ISOLTN PILOT PLT	32.3778	-103.7986	781		
WHITE SANDS NATL MON	32.7822	-106.1758	915		
ALPINE	30.3764	-103.6600	1210		
ALPINE 7NW	30.3703	-103.7808	179		
ANDREWS	32.3483	-102.5516	1277		
ANDREWS 2	32.3122	-102.5605	2		
BIG LAKE LCRA 140	31.2000	-101.4666	599		
BIG LAKE 2	31.2000	-101.4625	653		
CRANE	31.4072	-102.3577	909		
FT STOCKTON 35 SSW	30.3833	-103.0333	357		
IMPERIAL	31.2667	-102.7000	538		
KERMIT	31.8408	-103.0888	230		
LANGTRY	29.8097	-101.5602	1269		
MARFA 3W	30.3125	-104.0722	1369		
MT LOCKE	30.7053	-104.0233	1448		
OZONA 2	30.7094	-101.2041	53		
OZONA	30.7169	-101.2061	163		
OZONA 8 WSW	30.6819	-101.3375	1161		
PANTHER JUNCTION	29.3272	-103.2061	1356		
PECOS 8W	31.3783	-103.6330	1025		
PLAINS	33.1869	-102.8280	1518		
RANKIN	31.2286	-101.9461	801		
RED BLUFF DAM	31.8950	-103.9183	547		
SANDERSON	30.1386	-102.3919	50		
SANDERSON 5 NNW	30.2156	-102.4163	803		
SHEFFIELD	30.6886	-101.8272	1096		
SIERRA BLANCA 2 E	31.1831	-105.3541	874		
VALENTINE	30.5908	-104.4913	1284		
WINK	31.7667	-103.1500	722		
BANKERSMITH	30.1400	-98.8189	1697		
BEEVILLE 5 NE	28.4575	-97.7061	1973		
BENAVIDES	27.6000	-98.4167	276		
BENAVIDES 2	27.5969	-98.4161	1041		
BIG SPRING FLD STN	32.2683	-101.4858	1472		
BRACKETTVILLE 22 N	29.6100	-100.4519	612		
BRADY	31.1444	-99.3492	1793		
CANYON DAM	29.8706	-98.1967	1362		
CANYON DAM #1	29.8617	-98.2919	856		
CANYON DAM 2	29.8333	-98.3500	221		

Estaciones Meteorológicas Automáticas en EUA					
Estación	Latitud	Longitud	Tormentas		
CANYON DAM #3	29.9464	-98.3969	784		
CANYON DAM #4	29.9111	-98.3714	1244		
CANYON DAM 5	29.9167	-98.3500	140		
CANYON DAM #6	29.9469	-98.3011	1260		
CANYON DAM #7	29.9167	-98.2167	443		
CARTA VALLEY	29.7908	-100.6741	841		
CATARINA	28.3392	-99.6328	819		
CHARLOTTE 5 NNW	28.9275	-98.7494	330		
CHOKE CANYON DAM	28.4675	-98.2525	545		
COLORADO CITY	32.3978	-100.8594	582		
COMFORT 2	29.9614	-98.8947	696		
COTULLA LA SALLE CO AP	28.4567	-99.2183	1092		
DEL RIO AP	29.3783	-100.9269	315		
DEL RIO 2 NW	29.4217	-100.9119	415		
DONNA	26.1728	-98.0786	31		
EAGLE PASS 3N	28.7569	-100.4791	1363		
EDEN 2	31.2167	-99.8500	728		
ELDORADO 1 N	30.8833	-100.6000	974		
ELDORADO 12N	31.0369	-100.5911	632		
FISCHERS STORE	29.9756	-98.2647	630		
FT MCKAVETT 7 N	30.9303	-100.1125	1742		
FREDERICKSBURG	30.2392	-98.9089	185		
HINDES	28.7167	-98.8000	944		
HUNT 10 W	30.0628	-99.5050	1621		
JUNCTION 4SSW	30.4453	-99.8044	1622		
LA PRYOR	28.9836	-99.8678	1276		
LAKE COLORADO CITY	32.3333	-100.9166	283		
LAZY H RCH	32.4669	-101.0683	14		
LEAKEY	29.7392	-99.7611	1641		
LONDON 3N	30.7131	-99.5681	1654		
LORAINE	32.4167	-100.7166	171		
MATHIS 4 SSW	28.0369	-97.8725	608		
PRAIRIE MTN	30.5767	-98.8767	1811		
RANDOLPH AFB	29.5439	-98.2736	1923		
ROCKSPRINGS 1S	30.0039	-100.2063	1424		
SAN ANGELO WFO	31.3706	-100.4941	353		
SAN ANTONIO 8NNE	29.5253	-98.4539	643		
SARITA 7 E	27.2169	-97.6956	1406		
SPRING BRANCH 3 SSW	29.8333	-98.4333	112		
SPRING BRANCH 2SE	29.8656	-98.3819	956		
STERLING CITY	31.8347	-100.9827	877		
TARPLEY	29.6675	-99.2883	1910		
WATER VALLEY	31.6725	-100.7283	1496		
WESLACO	26.1781	-97.9708	1230		

Estaciones Meteorológicas Automáticas en EUA					
Estación	Latitud	Longitud	Tormentas		
WIMBERLEY 1 NW	30.0017	-98.1047	1124		
ZAPATA 1 S	26.8706	-99.2536	1100		