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XI

¿Qué es la geometŕıa no-conmutativa? Resolver esta pregunta no será una
tarea sencilla y una prueba de ello es que tomará la gran mayoŕıa de este texto
proveer un bosquejo de la respuesta deseada.

Podemos pensar que es una generalización de la geometŕıa diferencial usual.
Con el fin de reforzar esta idea pensemos en una variedad suave equipada con
coordenadas reales M; además, permitámonos considerar que las funciones
que actúan sobre el son de clase C∞(M), las funciones infinito-diferenciables.
En algunas ocasiones elegimos ignorar el hecho de que éstas funciones consti-
tuyen una álgebra conmutativa sobre los números reales A, sus caracteŕısticas
de álgebra se pueden ver un modo inmediato: la adición y multiplicación de
funciones está bien definida punto a punto.

La alusión a dicha álgebra no es gratuita, contiene un v́ınculo conceptural
profundo entre álgebra y geometŕıa. Consideremos por un instante que sólo
conocemos el álgebra A sin saber como la obtuvimos, toda referencia a la
variedad, es decir a la geometŕıa se ha desvanecido. Ésta situación puede
parecer desventajosa a primera instancia, sin embargo es posible reconstruir
la variedadM desde la información contenida en el álgebra. De este modo se
puede plantear una equivalencia entre ambas estructuras. Ésto es la esencia
del teorema de Gel’fand-Neimark.

La geometŕıa no-conmutativa generaliza ésta notción reemplazando el
álgebra conmutativa con una no-conmutativa, por ende, usando la verrsión
no-conmutativa del teorema de Gel’fand-Neimark, podemos encontrar una
geometŕıa no-conmutativa asociada al álgebra que estamos considerando. Es
importante mencionar que a este nivel la noción de variedad desaparece, aún
aśı, es conveniente ver esto como una ganancia, ya que permite generalizar
conceptos geométricos sin hacer referencia a una variedad.

Como apunte final a éste tema, permitámonos detallar en que sentido se
pierde este concepto: dado que cualquier álgebra C∗ conmutativa puede ser
vista como el álgebra C∗ de algunas funciones aactuando sobre un espacio de
Hausdorff localmente compacto, un álgebra C∗ no-conmutativa será consider-
ada como el álgebra de funciones continúas sobre un espacio no-conmutativo.
Esto implica que ahora podremos centrar nuestra atención sobre el álgebra de
las funciones en lugar de hacerlo sobre los espacios, y es por ello que decimos
que el concepto de variedad desaparece, pues además de ya no ser necesario, la
localidad que implica un punto puede llevar a varios problemas conceptuales.
¿Por qué queremos estudiar la geometŕıa no-conmutativa? Una respuesta
inmediata es: en mecańica cuántica usualmente encontramos álgebras no-
conmutativas estudian y describen la naturaleza microscópica del espacio-
tiempo. Permitámonos elaborar más éste punto, pensemos en el álgebra de
Heisenberg [x, p] = i~, en ésta base para dicha álgebra es posible encon-
trar una geometŕıa asociada, y tomar conceptos de ella para investigar la
dinámica cuántica de un sistema. Además, consideremos el álgebra de mo-
mento angular [Li, Lj ] = i~εijkLk, la cual bajo la interpretación usual es la
álgebra de rotaciones de la esfera S2. Desde el punto de vista de la geometŕıa
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no-conmutativa, éstos operadores deben concebirse como coordenadas que de-
finen una nueva esfera: la esfera no-conmutativa, que exhibe un nuevo conjunto
de caracteŕısticas que emergen de la no-conmutatividad. Es una esfera en la
que el radio se identifica con el operador Casimir [Mad99] L2 y por ende el
espacio se cuantiza, en el sentido de que si queremos mover en la dirección
radial, no podemos hacerlo de un modo continúo; en lugar de esto, nos vemos
obligados a hacerlo en pasos discretos definidos por `(`+ 1).

Ésta cuantización radial revela que la geometŕıa no-conmutativa puede dar
un modo natural y sencillo para cuantizar el espacio-tiempo, lo cual a su vez
es la segunda respuesta a la pregunta planteada anteriormente. No debemos
ver esto como una coincidencia afortunada, ya que hay evidencia que indica
que el espacio-tiempo no debe ser continúo en escalas pequeñas, y una forma
de implementar esto es mediante una descripción del mismo con geoemtŕıa
no-conmutativa.

Dado que estamos lidiando con un campo que se encuentra en investigación
activa, hay diferentes versiones de lo que es la geometŕıa no-conmutativa, to-
das están basas en las bases estipuladas anteriormente, pero se desarrollan a
través de conceptos y formalismos distintos.

La primera y más célebre es la aproximación funciones de Connes [Kha13,
Con95], en la cual se desarrolla un nuevo cálculo diferencial por medio de la
introducción de una tripleta espectral (A,H, D, J), donde A es una álgebra
no-conmutativa, H es un espacio de Hilbert donde la realización de A está
dada por la álgebra de operadores acotados B(A), finalmente D es el operador
el cual codificará la gran mayoŕıa de la información geométrica. Finalmente, la
isometŕıa antilineal J induce la estructura real en la tripleta, no es fundamen-
tal para el formalismo pero se introduce para teer contacto con aplicaciones
en la f́ısica.

Con esto, Connes fue capaz de definir una cálculo diferencial que gener-
aliza al usual y sirve para la geometŕıa no-conmutativa, además, le permite
construir el análogo no-conmutatico de la integral, la traza de Dixmier que
puede ser calculada usando el residuo de Wodzicki ; con éstas herramientas
Connes pudo proponer una acción geométrica o espectral, la cual bajo ciertas
condiciones, es capaz de generar el Lagrangiano del modelo estánda acoplado
a la interacción gravitacional de la teoŕıa de Einstein. Éste resultado es im-
portante en varios niveles pero nos gustaŕıa señalar uno de ellos: la materia
ahora se puede pensar como una consecuencia de la no-conmutatividad del
espacio-tiempo.

El enfoque de Majid a la geometŕıa no-conmutativa tiene mucho en común
con el de Connes, sin embargo es un camino un poco más directo. Es más es-
pećıfico ya que se considera que la no-conmutatividad del espacio-tiempo es del
tipo álgebra de Lie [xµ, xν ] = Cµνλx

λ. Para definir un cálculo diferencual es
necesario introducir uno-formas álgebra-valuadas Ω1(A), que obedecen una
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relación heredada del conmutador del álgebra de Lie [dxµ, xν ] = Dµν
λdx

λ,
donde Dµν

λ son términos constantes proporcionales a las constantes de es-
tructura con un término simétrico adicional que se elige bajo consideraciones
f́ısicas.

Además, se pide que el elemento del ĺınea g sea un elemento central del
álgebra, esto garantiza la existencia de un inverso cuya acción en un elemento
del álgebra siempre dé el mismo resultado. Esto ayuda a construir entidades
que se parecen a los tensores en éste marco de trabajo y por ende poder es-
tablecer una relación directa con la teoŕıa de Einstein.

Finalmente, haciendo uso de la teoŕıa algebraica de las conexiones desar-
rollada por Koszul [Kos86], se encuentra una fórmula para la conexión con
términos adicionales relacionados a correcciones cuánticas provenientes de la
no-conmutatividad del espacio-tiempo; en nuestro trabajo se eligió truncar
la expresión para sólo considerar términos de primer orden en el parámetro
cuántico (i.e. la longitud de Planck).

Con todas éstas consideraciones, Majid puede analizar espacios-tiempos en
particular [MR94], entre ellos el bicrossproduct model [BM14] y algunos
otros. Nuestra motivación principal emerge de aqúı, pues buscamos analizar
cualquier espacio-tiemopo del tipo álgebra de Lie. Logramos esto emulando el
procedimiento de Majid con dos consideraciones más: primero se debe comen-
zar desde un espacio-tiempo clásico cuyas simetŕıas deben ser promovidas al
álgebra del espacio-tiempo. En otras palabras, la álgebra de los vectores de
Killing para un espacio-tiempo en particular se promueve al álgebra no con-
mutativa que describe al espacio-tiempo considerada junto con la métrica.
Segundo, dado que ya tenemos un elemento de ĺınea, la condición de cen-
tralidad fija el término simétrico del conmutador entre un elemento de la
base de unno-formas y un generador del álgebra. Esto proviene del hecho de
que la ambigüedad en dicha elección debe ser eliminada por argumentos que
provengan de consideraciones f́ısicas. La diferencia en nuestro método es que
buscamos cuantizar un espacio-tiempo que posea simetŕıas en un nivel clásico.

En este texto presentamos un procedimiento general para estudiar un espacio-
tiempo del tipo álgebra de Lie usando geometŕıa no-conmmutativa. Para lo-
grar esto, empezamos con una breve revisión de geometŕıa diferencial clásica
con miras a cubrir conceptos de haces fibrados. Elegimos hacer esto porque un
paso intermedio hacia el teorema de Gel’fand-Neimark es el teorema de Serre-
swan que hace uso de varias nociones de haces fibrados, en particular, haces
vectoriales; después los relaciones con módulos proyectivos sobre álgebras.

Posteriormente introducimos nociones básicas de geometŕıa no-conmutativa,
donde presentamos aspectos clave tales como: álgebras C∗, el teorema de
Gel’fand-Neimark, una revisión de módulos, particularmente los proyectivos.
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Después explicamos como definir un cálculo diferencial en ésta geometŕıa sigu-
iendo el formalismo de Majid. Con todos éstos elementos podemos presentar
de un modo general una caracteŕıstica fundamental de nuestra investigación:
la condición de centralidad. Haciendo uso de ésta condición junto con el marco
de trabajo usual de la geometŕıa no-conmutativa nos lleva a uno de los prin-
cipales alcances de nuestra investigación.

Luego nos dedicamos a definir las bases y alcances de nuestro trabajo, cal-
culamos los análogos no-conmutativos de los tensores de Riemann y de Ricci
junto con el escalar de Ricci; todas éstas entidades se usan para construir el
análogo al tensor de Einstein, el cual adquiere correciones cuánticas de primer
orden que emergen de la no-conmutatividad. Todo esto es hecho haciendo uso
de la aproximación de Majid, donde el cálculo diferencual universal asociado
a un álgebra es usado para construir las análoǵıas mencionados anteriormente.

Para concluir, presentamos algunas aplicaiones. La primera es el bicrossprod-
uct model, la cual era una de las principales motivaciones de este trabajo.
También consideramos un álgebra de Lie bi-dimensional en el contexto de un
espacio-tiempo conformemente plano bi y cuatri-dimensional. Nuestro último
ejemplo es el modelo Friedmann-Robertson-Walker, que después de ser anal-
izado con nuestro tratamiento da origen a una anomaĺıa en el tensor de Ein-
stein, lo cual es un hallazgo relevante, ya que proviene de la no-conmutatividad
del espacio tiempo en lugar del lugar usual: la teoŕıa cuántica de la materia.
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1

Introduction

It seems proper to pose the question from the very beginning: What is non-
commutative geometry? We would like to point out the fact that finding the
answer it is indeed a bold and a stark task, and it is going to take the vast
majority of the following work to provide an sketch of such objective.

We may think of it as a generalization of ordinary differential geometry. In
order to endorse this idea, let us think of M a smooth manifold with real
coordinates; moreover, let us consider C∞(M), which is the family of smooth
real-valued functions acting upon the manifold. Sometimes we ignore the fact
that this functions constitute a commutative algebra over the real numbers A
in the following sense: we can add and multiply them.

The allusion of this algebra is not just a trivial statement, it endows a
deep link between algebra and geometry. Consider that we only know the
algebra A; we do not know how we obtained it, so every trace of the geometry
has vanished. This scenario might look perilous; however it is possible to
reconstruct the manifold M from the algebra A. Hence, this structures are
to be deemed equivalent. This is the essence of the commutative Gel’fand-
Neimark theorem.

Non-commutative geometry generalizes this notion by replacing the com-
mutative algebra with a non-commutative one; thus, by using the non-
commutative version of the Gel’fand-Neimark theorem, we are able to find
a non-commutative geometry for the algebra under consideration. It is im-
portant to mention that the notion of a manifold is lost, nevertheless, this
is a gain rather than a loss, because it allows us to generalize geometrical
concepts.

As a final remark on this subject, we will detail the sense in which it is
lost: since any commutative C∗-algebra can be understood as the C∗-algebra
of some functions over a locally compact Hausdorff space, a non-commutative
C∗-algebra will be considered as the algebra of continuous functions over some
non-commutative space. This implies that now we shall fix our attention upon
the algebras of functions rather than the spaces, and this is why the concept
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of manifold disappears.
Why do we want to study non-commutative geometry? A preemptive reply
would be: in quantum mechanics we encounter non-commutative algebras
study the microscopic nature of space-time. Let us elaborate more on the
first answer: think of the Heisenberg algebra [x, p] = i~, on this basis for th
algebra it is possible to find a geometry, and use concepts borrowed from it
to study the quantum dynamics of a system. Moreover, consider the angular
momentum algebra [Li, Lj ] = i~εijkLk, which, according to the usual inter-
pretation, is the algebra of infinitesimal rotations of the sphere S2. From the
non-commutative geometry viewpoint, these operators are conceived as co-
ordinates and they define a new sphere: the non-commutative sphere, which
exhibits a new set of features that arise from non-commutativity. It is a sphere
in which the radius is identified with the Casimir operator [Mad99] L2 and
hence the space is quantized in the sense that, if we want to move in radial
direction, we can not do it anymore in a continuous fashion; instead, we are
obliged to do it in discrete steps defined by `(`+ 1).

This radial quantization reveals that non-commutative geometry might
provide a natural and straightforward path to quantize space-time, which is
our second reply to the posed question. Nonetheless this is not just a fortunate
coincidence, but it is to be expected, as there is evidence that indicates that
space-time must not be continuous at small scales, and a form to remove this
is to consider that it is described by non-commutative geometry.

Since we are dealing with a field which is being actively researched, there
are different versions of what is non-commutative geometry, all of them based
on the grounds above stated, but developing different formalisms and con-
cepts.

The first and most renowned is Connes’ functional analytic approach [Kha13,
Con95], in which he develops a new differential calculus by introducing an
spectral triple (A,H, D, J), where A is a non-commutative algebra, H is a
Hilbert space where A is realized as an algebra of bounded operators B(A),
and D is the Dirac operator which shall encompass all of the geometrical
information. Finally, the antilinear isometry J introduces the real structure
on the triple, it is not fundamental in the formalism but it is introduced for
physical applications.

With this, Connes was able to define a differential calculus for the non-
commutative geometry, as well as to construct the non-commutative analogue
of the integral, the so-called Dixmier trace, which can be calculated by making
use of the Wodzicki residue; with these tools Connes was able to propose a
geometrical action, which, applied in an specific model, is able to yield the
Lagrangian of the Standard model coupled to the usual Einstein gravity; this
is remarkable in many layers, but we would like to highlight one: matter may
be thought as a consequence of a non-commutative space-time.
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Majid’s approach to non-commutative geometry shares many features with
Connes’ version; however it is a more straightforward path to non-commutative
geometry. This formalism is more specific, given that one considers the non-
commutativity of the space-time to be of the Lie-algebraic type [xµ, xν ] =
Cµνλx

λ. In order to define a differential calculus we need to introduce the
one-forms over the algebra Ω1(A), which follow a relation inherited from the
Lie algebra commutator [dxµ, xν ] = Dµν

λdx
λ, where Dµν

λ are some constants
that are proportional to the structure constants plus a symmetric term which
it is chosen on physical grounds.

Additionally, one demands that the line-element g is a central element of
the algebra; this guarantees the existence of an inverse and that, regardless
of how it acts on an element of the algebra it will give the same result. This
aids to build tensor-like entities on this framework and thus mimic Einstein’s
theory.

Finally, making use of the algebraic theory of connections developed by Koszul
[Kos86], a formula is found for the connection plus quantum corrections origi-
nated from non-commutativity; then it is chosen to truncate the expression so
that only terms that are of first order in the quantum parameter (i.e. Plank’s
length) are considered.

With all of these tools, Majid [MR94] is able to analyze particular space-times
such as the bicrossproduct model [BM14] and some other examples. Our main
motivation emerges from here, for we seek to study any Lie-algebraic space-
time. This is achieved by following Majid with two additional considerations:
we need to start from a classical space-time, and if it possesses symmetries,
then such symmetries must be promoted to be the non-commutative algebra.
In other words, the Killing vectors algebra for a particular space-time is taken
as the non-commutative algebra to be considered along with the metric. Sec-
ond, since we already have a line-element, then the centrality condition fixes
the symmetric term in the commutator between a one-form basis and an alge-
bra generator, this is inspired in Majid’s claim that it must come from physical
grounds, but now we are trying to introduce a way to promptly quantize any
classical space-time that has symmetries.

In this work, we present a general framework to study a quantum space-
time of the Lie-algebraic kind via non-commutative geometry. To achieve this
task, we start with a brief review of classical differential geometry aiming to-
wards the concept of fiber bundles. We do this because a middle step to the
Gel’fand-Neimark theorem is the Serre-Swan theorem which relies on various
notions of fiber bundles, in particular, vector bundles; and then it links them
to projective modules over algebras.

So, we introduce some basic notions of non-commutative geometry where we
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present key aspects of it such as: C∗-algebras, the Gel’fand-Naimark theorem,
and an overview on modules, mainly on those of projective kind for the rea-
sons afore-mentioned; then we take an overview on how to define a differential
calculus in this geometry following Majid’s formalism. With all these elements
we are ready to present in a general way a key feature of our research: that is
the centrality condition. Using it along the usual non-commutative geometry
framework is one of the main insights of this research.

After we define the outset of our framework, we compute the non-commutative
analogues of the Riemann and Ricci tensors along with the Ricci scalar, all
of these elements are put together to build an Einstein tensor that gets first
order quantum corrections from its non-commutativity. All of this is done on
Majid’s non-commutative approach where the universal differential calculus
associated to an algebra is used to build analogues of classical geometric en-
tities.

Finally, we present some applications. The first one is the bicrossproduct
model, which was one of the main motivations of this work, we consider a two
dimensional Lie algebra in two and four dimensional conformally flat space-
times. Our last example is the Friedmann-Robertson-Walker model, which,
after being analyzed through our treatment, gives origin to an anomaly, which
is a remarkable finding, since it arises from non-commutative grounds instead
of the usual way, in which it comes from a quantum theory of matter.



2

Classical differential geometry

Throughout this section most of the content may be found in [Ble05, Nak05,
CBDDB82]. We shall try to keep our exposition brief, for the main purpose of
this chapter is to provide a succinct review of the necessary concepts essential
to formulate non-commutative geometry.

2.1 Manifolds

Definition 2.1 (Topology). Consider a set M, furthermore let us regard it
as the arbitrary union of some subsets Ui (i.e., M = ∪i∈IUi for some index
set I). In addition, let

φi : Ui → Rn

to be an injective function such that φi(Ui) is an open set. We assume that
for all i, j ∈ I the mapping

φi ◦ φ−1j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

is a C∞ mapping (i.e., every partial derivative is continuous regardless its
order)- We say that a subset V ⊂M is open if φi(Ui∩V ) is open for all i ∈ I.
Then the collection of such open sets is called the topology of M relative to
{φi|i ∈ I}.

Definition 2.2 (Atlas). Assume that the topology of M is Hausdorff (i.e.,
it is always possible to find disjoint neighborhoods for different elements).
Provided that M is the finite union of the Ui subsets, then {φi|i ∈ I} is called
an atlas of M and each mapping φi is a chart.

Definition 2.3 (Differential structure). If the union of two atlantes is an
atlas again, they are deemed as equivalent. An equivalence class of atlantes is
called a differential structure over M.
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Definition 2.4 (Manifold). M with a differentiable structure is called a
C∞-manifold.

Definition 2.5 (Diffeomorphism). Let f be a smooth map between mani-
folds

f :M→N

such that for all charts in the atlas,

φi : Ui → Rn in M and ψi : Vi → Rn in N

we have that

ψj ◦ φ−1i : φi(Ui ∩ f−1(Vj))→ Rn ∈ C∞.

In other words, the smoothness of the function is independent of the atlantes
considered in both manifolds. If f has an inverse then it is called a diffeomor-
phism.

With this now we have set some terrain to study functions and their global
properties on manifolds. The vast majority of our analysis uses familiar con-
cepts from calculus, and at most generalizes them. If we want to study the
local behavior of functions then we must introduce a generalization of a direc-
tional derivative, the tangent vector ; before that it is necessary to introduce
an special kind of function, a curve.

Definition 2.6 (Curve). A curve γ through a point x ∈ M is a map γ :
(a, b)→M with a < 0 < b such that maps the origin to x (i.e., γ(0) = x).

Definition 2.7 (Tangent vector). Two curves γ1 and γ2 are said to be
equivalent if for any chart φ

d

dx
(φ ◦ γ1)

∣∣∣∣
0

=
d

dx
(φ ◦ γ1)

∣∣∣∣
0

.

An equivalence class of curves through x is called a tangent vector, which is
associated to the base point, in this case x. The vector is denoted either by
γ′(0) or

d

dt
γ(t)

∣∣∣∣
0

.

Definition 2.8 (Tangent space). The set of all tangent vectors at x is de-
noted as TxM and is referred to as the tangent space at x, and it possesses a
vector space structure.

We were able to create vectors as objects that stand on points whose direction
is given by an equivalence class of curves. In an heuristic sense, the vector joins
the point where it is standing to a point infinitesimally close in the direction
of the curve, that is why is a proper generalization for a directional derivative
on manifolds.
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Definition 2.9 (Derivative of a function). Let f ∈ C∞ and γ′(0) ∈ TxM,
then the derivative of f along the curve γ is

(f ◦ γ)′(0) =: γ′(0).

Definition 2.10 (Vector field). Let TM := ∪x∈MTxM. A vector field on
M is a function

V :M→ TM

such that Vx ∈ TxM and the function x 7→ Vx(f) is in C∞(M) we shall
denote this function as V (f). The set of all vector fields on M is denoted by
Γ (TM).

Definition 2.11 (Coordinate vector fields). Consider a chart φ : U → Rn
then its coordinated vectors fields are given by

∂i|x :=
d

dt
φ−1(φ(x) + tei)

∣∣∣∣
t=0

with ei ∈ Rn is the canonical basis. With the coordinate vector fields we can
express any vector field V locally as

V = vi∂i,

If we take another chart φ̄ : Ū → Rn then for a point in the overlap x ∈ U ∩ Ū
we have

v̄j = vi∂i(φ̄ ◦ φ−1)|φ(x). (2.1)

In this sense we can think of vector fields as an array of functions vi that lurk
on coordinated domains and transform obeying 2.1 as shown above, finally
there is a distinguished vector field related to any two we want to study, this
is the commutator and it is helpful to study symmetries of fields.

Definition 2.12 (Commutator). Consider two vector fields Y,Z ∈ Γ (TM),
then its commutator [Y,Z] defines the following vector field

[Y, Z]x(f) := Yx(Z(f))− Zx(Y (f)),

where we shall drop the subscript for the sake of simplicity. Additionally it
satisfies [Y,Z] = −[Z, Y ] and the Jacobi identity

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0

A generalization of vectors are tensors, which are entities that are valued on
both vector and dual vector spaces.
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Definition 2.13 (Tensors). Let E and F be vector spaces over the field R,
we denote the dual space of E as E∗. The space of multilinear functions (F -
valued tensors) is T p,q(E,F ) each of its members is of the form

T p,q(E,F ) 3 f : E∗ × · · ·︸︷︷︸
p

×E∗ × E × · · ·︸︷︷︸
q

×E.

If u1, . . . , up ∈ E∗ and v1, . . . , vq ∈ E then

u1 ⊗ · · · ⊗ up ⊗ v1 ⊗ · · · ⊗ vq ∈ T p,q(E,R) := T p,q(E),

if a basis is provided for both the space and the dual then we may write any
element as

f = f
i1···ip
j1···jq ei1 ⊗ · · · ⊗ eip ⊗ ω

j1 ⊗ · · · ⊗ ωjq

where f
i1···ip
j1···jq ∈ R, ei1 , . . . , eip is a basis for E and ωj1 , . . . , ωjq is a basis for

E∗

Differential forms are a core-concept needed to define calculus in manifolds,
integration relies on their use and they open the gate towards the study of
global properties through the means of the de Rham cohomology.

Definition 2.14 (One-form). Let T p,q(M) = ∪x∈MT p,q(TxM). A one-
form is a function α : M → T 0,1(M) with αx ∈ T 0,1(TxM) and for any
Y ∈ Γ (TM) there is a function α(Y ) that

α(Y )(x) = αx(Yx) ∈ C∞,

if we proceed in an analogue fashion to the vectors, we may also provide a
chart φ, then we have a coordinated dual basis dx1, . . . , dxn and are linear
functionals that act on the vector basis as dxi(∂j) = δij where δij is the Kro-
necker delta.

Definition 2.15 (Wedge product). Let us consider q one-forms, its wedge
product is a totally antisymmetric tensor product, the simplest case is

dxi ∧ dxj := dxi ⊗ dxj − dxj ⊗ dxi,

in general we shall denote it by

dxi1 ∧ · · · ∧ dxiq

Definition 2.16 (q-form). A differential form of order q is a totally anti-
symmetric tensor T 0,q(M).It may be locally expressed upon an open set U
with a chart φ as

η =
1

q!
ηi1···iqdx

iq ∧ · · · ∧ dxiq

, with ηi1···iq = η(∂i1 , · · · ∂iq ) ∈ C∞. This set is denoted as Ωq(M)
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Definition 2.17 (Exterior derivative). Let f ∈ C∞(M), X ∈ Γ (TM) and η ∈
Ωq(M). The exterior derivative dη of η is a q + 1-form such that for any
X1, . . . , Xq+1 ∈ Γ (TM) we obtain

dη(X1, . . ., Xq+1) =

q+1∑
i=1

(−)i+1Xi(η(X1, . . . , Xi−1, Xi+1, . . . , Xq+1))

+
∑
i<j<n

(−)i+jη([Xi, Xj ], X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xq+1).

And it complies to the following properties

d :Ωq(M)→ Ωq+1(M)

d(α ∧ β) =dα ∧ β + (−)pα ∧ dβ
d2 =d ◦ d = 0,

where α ∈ Ωp(M). All of the above expressed with respect to a chart φ : U →
Rn is

dη =
1

q!
d(ηi1...iq ) ∧ dxi1 ∧ · · · ∧ dxiq

=
1

q!
∂i(ηi1...iq )dx

i1 ∧ · · · ∧ dxiq .

Definition 2.18 (Hodge star). The Hodge star operation which we shall
denote by ∗, is a linear map that in a manifold of dimension n is defined by

∗ : Ωq(M)→ Ωn−q(M)

∗(dxµ1 ∧ · · · ∧ dxµq ) =

√
|g|

(m− r)!
ε
µ1···µq

νq+1···νndx
νq+1 ∧ · · · ∧ dxνn .

2.2 Fibre Bundles

Fibre bundles have been extensively used throughout physics, namely in gauge
theory where they provide an elegant formalism where interactions are seen
as consequences of an astonishing geometrical framework endowed at each
point of space-time. However, they also provide a good starting point if we
are ought to codify the geometry in an algebra, this is due to the fact that a
middle point before the Gel’fand-Neimark theorem is the Serre-Swan theorem,
and it establishes a link between a sections in particular kind of fibre bun-
dles, the vector bundles and a morphisms of projective module over an algebra.

Given that the Gel’fand-Neimark theorem is one of the key elements of the
non-commutative geometry program, we are going to study them from their
most abstract notion to their applications.
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Definition 2.19 (Fibre bundle). Let us denote a fibre bundle by (E,Π,X, F,G),
where

1. A topological space E, which we are going to as the total space.
2. Another topological space X, the base space.
3. A surjection Π : E → X, the projection.
4. The fibre F which is also a topological space. It may be thought to be

standing on a point of the base space. This becomes clearer if we make the
following association: Fx ' Π−1(X).

5. A group G known as the structure group.
6. A covering {Uα} of X equipped with homeomorphisms φα(x, f) such that
∀Uα ∃φα : Uα×F → Π−1(Uα) and they are well defined in the following
sense: Π ◦ φα(x, f) = x for x ∈ Uα and f ∈ F .

The main idea behind this definition is allowing the decomposition of the to-
tal space into a base whose each point possesses a fibre. Such association is
performed via a projection which needs to be properly defined, to achieve this
we introduce a covering of the base space, and additionally some functions
φα which map the union of fibres above the neighborhood Uα of some point
in the base space, to the product space Uα × F ; this is also known as a local
trivialization and it might be regarded as the untwisting of the fibre space.

As it should be expected, the definition of the fibre bundle is independent of
the the covering, i.e.: the coordinates. Nevertheless, when discussing physics
it is not rare to introduce coordinates to relate these concepts to observations.

Definition 2.20 (Transition functions). Allow us to consider two cover-
ings (Uα, φα), (Uβ , φβ) with Uα ∩ Uβ 6= ∅, then the transition functions may
be defined as follows:

tαβ :=φ−1α ◦ φβ : F → F,

fα =tαβfβ .

They must comply the following consistency conditions:

• tαα(x) = id (x ∈ Uα).
• tαβ(x) = tβα(x)−1 (x ∈ Uα ∩ Uβ).
• tαβ(x) · tβγ(x) = tαγ(x) (x ∈ Uα ∩ Uβ ∩ Uγ).

We have used the · product which we have not defined yet, but this shall be
clarified promptly in definition 2.21, which is to be stated just ahead.

These functions tell us how fibres must be glued together in the overlap of two
neighborhoods and thus allow to explore the global structure of the bundle.

Definition 2.21 (Structure group). The set of all transition functions gen-
erates the structure group G = {tαβ}; this gives us a more refined idea on the
domain and the image of this functions, which is given by:

tαβ : Uα ∩ Uβ → G.
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Remark 2.22 (Transition functions and local trivializations). The transition
functions naturally relate fibres, thus this can be extended to local trivializa-
tions in the following fashion

φα(x, f) = φβ(x, tαβf).

Example 2.23 (Trivial bundle). If we consider the case where all the transition
functions are the identity map, i.e.: {tαβ = id}; the fibre bundle is known as
a trivial bundle.

Example 2.24 (Möbius strip and cylinder). Consider the following scenario:
the circle S1 is the base space, the fibre is F = [−1, 1] and the transition
group G = Z2 = id, g where g is a twist ; we may choose as coverings U1 and
U2 such that U1 ∩ U2 = A ∪B. The transition functions in this case are

t11(x) = idS1 = t22(x), t12(x) =

{
id if x ∈ A
g if x ∈ B

.

Therefore, f2 = t21(x)f1; so if x ∈ A there is no twist at all, however for
x ∈ B we need to twist and thus we obtain the Möbius strip. If we had chosen
G = {id} then the outcome would have been the cylinder, which is the trivial
bundle S1 × [−1, 1].

It is quite evident that the possible set of transition functions for a bundle is
not unique at all, and actually this is the essence of gauge theory as we shall
appreciate immediately.

Definition 2.25 (Gauge degrees of freedom). Consider a covering {Uα}
with two sets of local trivializations φα(x) and φ̃α, thus the transition functions
for such trivializations are:

tαβ(x) = φ−1α ◦ φβ ,
t̃αβ(x) = φ̃−1α ◦ φ̃β ,

we define a map gα(x) at each point of the base space X such that

gα(x) := φ−1α ◦ φ̃α.

Furthermore, we require that this map is both an homeomorphism and an
element of the structure group G.

Remark 2.26 (Transition functions and gauge degrees of freedom). If we take
the definition given above, we reach the following result:

t̃αβ(x) = g−1α ◦ tαβ ◦ gβ(x).

In physics we usually refer to tαβ as gauge transformations and they carry
the information required to merge local charts; the gauge degrees of freedom
are always to be taken within a local chart Uα.
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Definition 2.27 (Section). Allow us to consider a fibre bundle and an
smooth map s which abides to:

s : X → E,

Π ◦ s = idX .

Evidently, s(x) ∈ Fx = Π−1(x). Let us denote the set of sections in the base
space as Γ (X,F ); if U ⊂ X then this is the set of local sections Γ (U,F ).

Definition 2.28 (Tangent bundle). A manifold X contains an additional
structure, its tangent bundle: TX which is defined as

TM :=
⋃
p∈X

TpX,

where TpX is the tangent space at p.

Example 2.29 (Vector fields). Let X be a manifold and consider its fibre set
to be the tangent bundle TX. Now if we regard a vector field V ∈ X (X) as a
map that at each point p ∈ X it assigns a vector V |p ∈ TpX, then we unveil
the use of a section; if set of all sections is denoted by Γ (X,TX) we can do a
natural identification with the set of all vector fields on the manifold X (X).

2.3 Reconstruction of bundles

So far we have accomplished the following: we started with a manifold, asso-
ciated additional structures to it and then introduced a series of mappings to
establish a relation between them.

This leads us to the following question: what is the minimal informa-
tion needed to reconstruct the fibre bundle? The answer to this is rather
simple, provided that we know the base space, the fibre, the structure group,
the set of coverings and the transition functions (X,F,G, {Uα}, tαβ) there is
enough data to find the projection, total space and the local trivialisations
(Π,E, φα), as it may be seen below.

Definition 2.30 (Union of trivialisations). Given the set of coverings
{Uα} and the fibre manifold F we introduce the union of trivialisations:

Ξ =
⋃
α

Uα × F

Definition 2.31 (Fibre equivalence). Allow us to consider (p, f) ∈ Uα×F
and (q, f ′) ∈ Uβ×F , they are said to be equivalent (p, f) ∼ (q, f ′) iff p = q and
the elements of the fiber are related by a transition function, i.e.: f ′ = tαβ(x)f .

With these tools we are set to recover a fibre bundle, thus now we are able to
study them without redundant data.
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Definition 2.32 (Fibre bundle (revisited)). The fibre bundle now is the
quotient set given by:

E = Ξ/ ∼,

its elements shall be denoted as [(p, f)].

Definition 2.33 (Projection (revisited)). Let us take the before-mentioned
element and map it in this way

Π : [(p, f)] 7→ p.

Definition 2.34 (Local trivialisation (Revisited)). We continue with the
modus operandi that we have adopted lately,

φα : (p, f) 7→ [(p, f)].

2.4 Vector bundles

There is a case of special interest for us: what if the fibre is a vector space?
This is of relevance to our purposes because, as we stressed before, it will
allow us to relate algebraic entities to geometrical ones, in particular: sections
of vector bundles to morphisms of projective modules over an algebra.

Definition 2.35 (Real fibre). Let us consider a base manifold X with
dim(X) = d and a fibre F = Rk with fibre dimension dim(F ) = k; hence
the dimension of the bundle is dim(E) = d + k. In this case the transition
functions are elements of GL(k,R)

Example 2.36 (Tangent bundle (revisited)). If we consider the tangent bundle
TX associated to a manifold X we can think of it as a vector bundle with
fibre F = Rd. Here dim(X) = d = dim(F ) and consequently dim(E) = 2d.
Furthermore consider a point u ∈ TX whose projection lies in the intersection
of at least two covers, i.e.: Π(u) = p ∈ Uα∩Uβ . Next, we introduce coordinate
coordinate systems for Uα and Uβ respectively: xa = φα(p) and ya = φβ(p).
Let us recall that in this bundle a point u gives us both a point p in the
base space and a vector V standing on said point, this vector is coordinate-
independent and we make this explicit with:

V = V a
∂

∂xa
= V̄ a

∂

∂ya
,

we can do a coordinate transformation following the usual procedure

V a =
∂xa

∂yb

∣∣∣∣
p

V̄ b := Gab (p)V̄ b,

where {Gab (p)} ∈ GL(d,R). With the sum of all of the above we can con-
clude that a tangent bundle is (E = TM,Π,X,Rd, GL(d,R)) and its sections
correspond to vector fields on X, i.e.: X = Γ (X,TX).
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Example 2.37 (The tangent bundle of a 2-sphere). In this case it is customary
to use the south (s) and north (n) pole as references for the coverings,

US := S2 − s UN := S2 − n,

in this case we define their respective coordinates as the pairs: (U, V ) and
(X,Y ), which are nothing more than the stereographic mappings of the sphere;
they are related by

U =
X

X2 + Y 2
V = − Y

X2 + Y 2
.

Following the last example, u ∈ TS2 with Π(u) = p ∈ US ∩ UN , the triviali-
sations are:

φ−1S (u) = (p, V aS ) φ−1N (u) = (p, V aN ),

we know that the transition function tSN (p) ∈ GL(2,R) and that is in fact
the jacobian, so without further ado:

tSN (p) =
∂(U, V )

∂(X,Y )
=

1

r2

(
− cos 2θ − sin 2θ
sin 2θ − cos 2θ

)
.

If we consider the vectors as elemetns of the fibre F , we see that non-trivial
elements of the structure group act on them by a rotation of an angle 2θ
followed by a rescaling.

Definition 2.38 (Line bundle). A line bundle is a vector bundle whose fibre
is one-dimensional (F = R or C), the structure group GL(1,C) = C − 0 is
Abelian.

Example 2.39 (Quantum mechanics). Let us consider 3-dimensional quantum
mechanics, in this case the base space is X = R3 with fibre F = C and the
line bundle has the form E = R3 × C. The wavefunction corresponds to a
section in this bundle.

2.4.1 Sections of vector bundles

Now it is clear that in the case of a vector bundle, a section associates a point
in the base space with itself plus a vector. Thus a section can be regarded as
vector standing on a point and therefore if we are determined to do algebra
with it, the natural path is to employ vector algebra.

Definition 2.40 (Section algebra). Let s, s′ be sections of a vector bundle;
their addition and multiplication emulate the ones from vector algebra but in
this case they are point-wise

(s+ s′)(p) = s(p) + s′(p),

(fs)(p) = f(p)s(p),

where p ∈ X and f ∈ F(X) belongs to the space of functions over the base
space.
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Remark 2.41 (Triviality). A bundle is trivial iff its principal bundle has a
global section.

2.4.2 Frames

Allow ourselves to consider an a tangent bundle TX, we know that if we
choose a chart Uα on the base space X parametrized by coordinates xµ there
shall be a natural basis {∂/∂xµ} on the fibre. If we set dim(X) = d we know
that it is always possible to choose d linearly independent vector fields over
our open covering Uα, but not necessarily this can be extended for the whole
manifold X.

Definition 2.42 (Local basis). Let us define the components for both the
natural and orthonormal basis vectors

∂

∂xµ
= (0, . . . , 0,1, 0, . . . , 0)

µ

êα = (0, . . . , 0,1, 0, . . . , 0),

α

as it will be seen later, these vectors define a local frame over Uα.

Definition 2.43 (Frame). Consider a vector bundle (F = RorC). If we
choose a chart Uα we know that the mapping Π−1(Uα) ' Uα × Rk is trivial,
and furthermore, we may choose k independent sections that are said to define
a frame over the covering Uα.

We can conceive extracting the components of a vector as the mapping

V = V αeα(p) 7→ {V α} ∈ F,

with the following trivialisation

φ−1α (V ) = (p, {V α(p)}),

which by definition is

φα(p, {0, . . . , 0,1, 0, . . . , 0}) = eα(p)

α

2.5 Principal Bundles

As we have stated several times throughout this text, there is a wide variety
of particular cases within the fibre bundle structure. For instance, we can ask
ourselves what happens if the fibre F turns out to be the structure group G,
this is defined as a principal bundle.
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Definition 2.44 (Principal Bundle). A principal bundle has a fibre iden-
tical to the structure group F = G. This is often denoted as P (X,G) and it
is called a G−budle over X. The transition function acts on the fibre on the
left as always, however now we can define a right action.

Definition 2.45 (Right action). Let φα : Uα ×G→ Π−1(Uα) be the trivi-
alization given by φ−1α (u) = (p, gα) with u ∈ Π−1(Uα), p = Π(u). With these
elements, we can say the the right action of G on Π−1(Uα) is defined by:
φ−1α (ua) = (p, gαa) or equivalently

ua = φα(p, gαa),

for any a ∈ G. Most of the time this is denoted by P ×G→ P or (u, a) 7→ ua;
it is important to note the Π(ua) = Π(u).

Remark 2.46 (Fibre construction). Let us take u1, u2 ∈ Π−1(p), there exists
a ∈ G such that u1 = u2a. Thus, if Π(u) = p we can construct the whole fibre
as Π−1(p) = {ua|a ∈ G}.

Definition 2.47 (Canonical local trivialization). Consider a section sα
over Uα; there is a preferred local trivialization φα : Uα ×G→ Π−1(Uα) and
it is defined by: for u ∈ Π−1(p), p ∈ Uα there is a unique gu ∈ G such that
u = sα(p)gu, then:

φ−1α (u) = (p, gu)

w.r.t. this trivialization, the section now can be expressed as

sα(p) = φα(p, e)

Definition 2.48 (Frame bundle). Consider the set of frames over a mani-
fold LpX, the union throughout all the points is defined as LX :=

⋃
p∈X LpX.

Remark 2.49 (Unveiling the bundle structure). Take a chart Uα with coordi-
nates xµ, then TpX has {∂/∂xµ} for basis. A frame u = {X1, . . . , Xd} at p is
expressed as

Xα = Xµ
α

∂

∂xµ

∣∣∣∣
p

1 ≤ α ≤ d,

where as it has been seen before {Xµ
α} ∈ GL(d,R), the trivialization is:

φα : Uα ×GL(d,R)→ Π−1(Uα),

φ−1α (u) = (p, (Xµ
α)),

the bundle structure becomes apparent if we consider the following points

1. Taking a frame u at p we define ΠL : LX →M by ΠL(u) = p.
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2. The action of g ∈ GL(d,R) upon the frame U = {X1, . . . , Xd} is simply
(u, a) 7→ ua, where ua now defines a new frame at p, given by Yβ = Xαa

α
β .

This also can be stated that given any two frames X and Y ∃a ∈ GL(d,R)
that can relate them. Therefore GL(d,R) acts on LX transitively.

3. Consider an overlap with two associated frames X and Y , the transition
function is:

tLαβ(p) =
∂xµ

∂yν

∣∣∣∣
p

∈ GL(d,R)

Remark 2.50 (Frame bundle from the tangent bundle). Accordingly with the
past definition and remark, providing a tangent bundle TX we can construct
the frame bundle LX which will have the same transition functions.

2.6 Connections

Here we aim to generalize the usual notion that are already familiar from the
usual Riemannian manifolds, here we will note that the connection needs a
more abstract description with geometrical meaning and the importance of
algebraic methods will start to play a role in some extent. The connection
contains a lot of physics, two of its applications that have defined major
milestones are in the context of gauge fields and Berry’s phases.

Definition 2.51 (Vertical subspace). Consider u to be an element of a
principal bundle P (X,G) and let Gp be the fibre at Π(u) = p. We shall denote
the vertical subspace as VuP and understand it as a subspace of TuP which
is tangent to the fibre Gp at u.

Remark 2.52 (TpX 6= TuP ). The tangent space TpX of a base manifold X
does not coincides with the vertical subspace TuP of a principal bundle P .

Lemma 2.53 (Construction of the vertical subspace). Consider the
group G that acts both as the transition group and a fibre and take its tangent
space at the identity, i.e., the algebra g = TeG. If A ∈ g its right action is
defined by

Rexp(tA)u := u exp(tA) := σ(t, u),

which conversely defines a curve parametrized by t that passes through u. Such
an action does not implies a translation on the base space, and therefore the
curve lurks entirely within Gp; another way of stating this is by saying that

p = Π(u) = Π(u exp(tA)).

Define a vector A# ∈ TuP by:
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A#f(u) =
d

dt
f(u exp(tA))|t=0,

which by construction is tangent to P at u and therefore A# ∈ VuP . If we
iterate this procedure at each point of P we may generate a vector field known
as the fundamental vector field.

Definition 2.54 (Fundamental vector field). Let A ∈ g = TeG, there is
a natural isomorphisms between vector spaces that defines the vector A#, and
it is given by

# : g→ VuP,

A 7→ A#.

Definition 2.55 (Horizontal subspace). The horizontal subspace which
shall be denoted by HuP is defined as the complement of VuP in TuP .

Definition 2.56 (Connection (1:The Separator)). Allow us to consider
a principal bundle P (X,G), a connection on such bundle is a unequivocal
separation of the tangent space at TuP into its vertical VuP and horizontal
subspaces HuP . It complies with the following:

• TuP = VuP ⊕HuP .
• Consequently, a vector field X becomes uniquely separated as X = XH +

XV with XH ∈ HuP XV ∈ VuP .1

• ∀ u ∈ P g ∈ G we have HugP = Rg∗HuP ; i.e.: behaves well under flow.

Definition 2.57 (Connection (2: As a one-form)). Consider a one-form
ω ∈ g⊗ T ∗P which obeys the following conditions2

• ω(A#) = A,
• R∗gω = Adg−1ω,

speaking in other terms, given X ∈ TuP ,

R∗gωug(R
∗
gX) = g−1ωu(X)g,

with this we can think of the horizontal subspace as the set that contains the
vectors that are not projected by the connection.

HuP := {X ∈ TuP |ω(X) = 0}.

Remark 2.58 (The one-form as a projection). The one-form projects TuP onto
the vertical component VuP ' g

1 Rg∗ Is the induced map Rg∗ : ThG → ThgG.
2 R∗

g stands for the pullback of the right action
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Definition 2.59 (Connection (3:Local trivializations)). A connection
assigns to each local trivialization (choice of gauge) a Lie-algebra-valued one-
form ω. In this sense we need to summon both a covering Uα and a local
section σα. The connection one-form is

Aα := σ∗αω ∈ g⊗Ω1(Uα).

Or we may think of this in the converse direction: if we have Aα (which is Lie-
algebra valued) defined on Uα we can rebuild an ω such that under a pullback
by σ∗α we get Aα.

It is necessary to address the issue of unicity of such form on P ; in that
sense we must ask ourselves what is ought to be when we consider two open
coverings Uα∩Uβ 6= ∅ and identify that uniqueness means that in such overlap
ωα = ωβ . Locally this leads to the next compatibility condition:

Definition 2.60 (Compatibility condition for the one-form). Consider
two coverings Uα, Uβ, a transitions function tαβ defined among them and a
connection one-form, the compatibility condition is stated as follows,

Aβ(p) = t−1αβ(p)Aαtαβ(p) + t−1αβ(p)dtαβ(p).

Now if the principal bundle is non-trivial, then there might not be a globally
defined section; so the pullback of σ∗ωα = Aα only exists locally.

Example 2.61 (U(1) as a fibre). Envisage P (X,U(1)), consider overlapping
charts Uα, Uβ with their respective local connections Aα,Aβ . Let the transi-
tion function that shall communicate this charts is

tαβ : Uα ∩ Uβ → U(1),

tαβ = eiΛ(p) Λ(p) ∈ R,

therefore, the local connections are related in the following fashion:

Aβ(p) = t−1αβAαtαβ + t−1αβdtαβ ,

= e−iΛ(p)Aα(p)eiΛ(p) + e−iΛ(p)deiΛ(p),

= Aα(p) + idΛ(p)

Remark 2.62 (About ω and Aα). ω is defined globally over the principal bun-
dle; there might many connection one-forms but they share the same informa-
tion about this geometric entity. Nevertheless, a local connection such as Aα
is only defined on the trivialization of the bundle and therefore they cannot
have any global information.

Proposition 2.63 (Equivalence of definitions). The definitions 2.56 and
2.57 are equivalent, to prove this we need to show that ω separates TuP into
VuP and HuP .Then it suffices to show that the horizontal subspace is carried
along under the right action, this is, emulating what we knew for the vertical
subspace:

Rg∗HuP = HugP
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Proof. Take X ∈ HuP , construct Rg∗X ∈ TugP and apply the connection
upon it

ω(Rg∗X) = R∗gω(X) = g−1 ω(X)︸ ︷︷ ︸
=0,X∈HuP

g

= 0.

Therefore Rg∗X ∈ HugP . Which can be thought as: any Y ∈ HugP may be
written as Y = Rg∗X for some X ∈ HuP .

We shall find out that definitions 2.57 and 2.59 are equivalent as well.

Proof. Let us define an algebra valued one-form as:

ωα := g−1α Π∗Aαgα + g−1α dP gα,

where gi is the canonical local trivialization given by φ−1α (u) = (p, gα) for
u = σα(p)gα. Let A# ∈ VuP,A ∈ g, i.e.: Π∗A

# = 0, hence

ωα(A#) = g−1α dP gα(A#) = g−1α (u)
dgα(u exp(tA))

dt

∣∣∣∣
t=0

= g−1α (u)gα(u)
d exp(tA)

dt

∣∣∣∣
t=0

= A.

Furthermore, consider X ∈ TuP , h ∈ G, we develop:

R∗hωα(X) = ωα(Rh∗X) = g−1αuhAα(Π∗Rh∗X)gαuh + g−1αuhdP gαuh(Rh∗X),

where we have gαuh = gαuh and ΠRh = Π, thus Π∗Rh∗X = Π∗X. Conse-
quently we have

R∗hωα(X) = h−1g−1αuAα(Π∗X)gαuh+ h−1g−1αudP gαu(X)h

= h−1ωα(X)h.

Which readily demonstrates that this local connection satisfies the axioms of
the connection one-form.

2.6.1 Horizontal lift

The definition of vertical subspace instantly leads us to think that we are ba-
sically dealing with information that after being projection shall be vanished.
The horizontal lift actually seeks to avoid this situation: we want to keep some
information after projecting.

Definition 2.64 (Horizontal lift). Consider the base curve c : [0, 1] → X
and its horizontal lift c̃ : [0, 1]→ P . they obey these requirements:

• Πc̃ = c.
• The tangent vector of c̃ is horizontal.
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2.6.2 Holonomy

In some situations we can have a closed curve in the base space c(0) = c(1)
with a non-closed horizontal lift c̃(0 6= c̃(1)), the holonomy measures this
non-closure of the lift under the action of the transition group between fibres.

Definition 2.65 (Holonomy group). Let u ∈ P, Π(u) = p ∈ X; addition-
ally consider the set of loops at p; Cp(X) = {c : [0, 1] → X|c(0) = p = c(1)},
then the holonomy group is defined as:

Φu := {g ∈ G|τc(u) = ug, c ∈ Cp(X)}

where τc : Π−1 → Π−1 is a transformation compatible with the group action,
i.e.: τc(ug) = τc(u)g

Example 2.66 (The helix). Let the base manifold be U(1) ' S1 and consider
a projection given by

Π :R→ U(1),

u 7→ ei2πu.

By construction, the connection shall assign an horizontal subspace to each u
we choose, in this case it is the following tangent space TuR. Now, the base
loop is obeys c(0) = c(1), but the lift is under the action of the holonomy
group, which in this case is Φ = Z, so the lift shall be

c̃(0) = 0 c̃(1) = e · g

2.7 Curvature

The curvature has a direct physical interpretation in the sense that its local
expression is the force tensor of the corresponding theory, e.g.: in electromag-
netism it is the Faraday tensor.

Given that the fibres have a group structure, we need to generalize the
concept of differential form so we can differentiate a Lie algebra-valued form.

Definition 2.67 (Vector-valued r-form). Consider a vector space V of
dimension k and a principal bundle P a vector valued r−form is the following
multilinear map:

φ : TP ∧ · · · ∧ TP︸ ︷︷ ︸
r−times

→ V,

which belongs to φ ∈ Ωr(P )⊗ V . If we introduce a basis for the vector space
{eα} and consider φα ∈ Ωr(P ), φ may be written as:

φ = φα ⊗ eα
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Definition 2.68 (Covariant derivative). Let X1, . . . , Xr+1 ∈ TuP , ω the
connection one-form of the bundle and φ ∈ Ωr(P )⊗V , the covariant derivative
of φ is:

Dφ(X1, . . . , Xr+1) := dp(X
H
1 , . . . , X

H
r+1)

Definition 2.69 (Curvature). The curvature two-form Ω ∈ Ω2(P ) ⊗ g is
defined as the covariant derivative of the connection one-form, thus:

Ω := Dω,

which satisfies for a ∈ G,

R∗aΩ = a−1Ωa.

Definition 2.70 (Commutator). Let ξ = ξα ⊗ Tα ∈ Ωp(P ) ⊗ g, η =
ηα ⊗ Tα ∈ Ωq(P ) ⊗ g be g−valued forms where {Tα} is a basis for g. Their
commutator is defined as

[ξ, η] : = ξ ∧ η − (−1)pqη ∧ ξ
= [Tα, Tβ ]⊗ ξα ∧ ηβ = f γ

αβ Tγ ⊗ ξα ∧ ηβ

Theorem 2.71 (Curvature and Cartan’s structure equation). Con-
sider ω,Ω and X,Y ∈ TuP , then we have

Ω(X,Y ) = dPω(X,Y ) + [ω(X), ω(Y )].

Theorem 2.72 (Ambrose-Singer). Consider a principal bundle over a con-
nected manifold. The holonomy group of a point u0 is the same as the subal-
gebra of g spanned by

Ωu(X,Y ) X,Y ∈ HuP,

where u ∈ P has the same horizontal lift as u0.

Remark 2.73 (Physical interpretation). As the reader may recall, in a principal
bundle we may face the situation where the horizontal lift of a loop does not
closes. The holonomy is the quantity that measures such discrepancy, but so
does the curvature. That is why the Ambrose-Singer theorem shows us that
we can express the holonomy group in terms of the curvature.

Definition 2.74 (Curvature’s local form). Denote the local form of the
curvature Ω by F and consider a section σ defined on a chart U ; it is defined
as follows:

F := σ∗Ω,

Remark 2.75 (Curvature in terms of gauge potential). Written using the gauge
potential we get

F = dA+A ∧A.
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Remark 2.76 (Component expression). If we parametrize our chart with coor-
dinates, we arrive to

A = Aµdxµ

F =
1

2
Fµνdxµ ∧ dxν

Fµν = Aµ,ν −Aν,µ + [Aµ,Aν ]

Remark 2.77 (Compatibility conditions). Let Uα and Uβ be overlapping charts
with their respective field strengths Fα,Fβ , the compatibility condition is
stated as:

Fα = Adt−1
αβ
Fβ = t−1αβFβtαβ

Definition 2.78 (Bianchi identity). Let Ω be the curvature and F its local
form, the Bianchi identity is

DΩ = 0,

or, locally

dF + [A,F ] = 0.

2.8 Applications

Throughout this section we will review some basic applications, particularly
in gauge theory. but also give some notions of the connection’s role in the
Berry phase.

2.8.1 U(1) gauge theory

Since U(1) is one dimensional and Abelian, thus its structure constants vanish.
Furthermore, we shall consider this theory in a base space that resembles the
usual vacuum space-time, i.e.: 4-dimensional Minkowski, given that the base
space is contractible to a point, the bundle is trivial P = M4×U(1) and then
we need to provide a single local trivialization, consequently a single gauge
potential and strength:

A = Aµdxµ

F = dA
dF = d2A = 0,

in components this is
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Fµν = ∂νAµ − ∂µAν
∂λFµν + ∂νFλµ + ∂µFνλ = 0.

The action for the theory is

SMaxwell[A] =
1

4

∫
M4

FµνFµν .

2.8.2 Dirac magnetic monopole

Allow us to consider U(1) again but in this case the base space is to be
topologically non-trivial: X = R3 − {0} ' S2. This changes drastically the
scenario because now the bundle is not trivial and we are going to need at
least two charts, which are defined by

US = {(θ, φ)|π
2
− ε ≤ θ ≤ π} UN = {(θ, φ)|π

2
≤ θ ≤ π + ε},

we know that there is a global connection ω, given that we have provided two
charts we shall obtain two local gauge potentials

AS = σ∗Sω AN = σ∗Nω.

A monopole in the origin would be expressed by:

∇ ·B = 4πgδ3(0),

a solution is

B = g
r

r3
,

whose vector potentials may be written as

AS = −g 1 + cos θ

r sin θ
êφ AN = g

1− cos θ

r sin θ
êφ,

in terms of one-forms

AS = −ig(1 + cos θ)dφ AN = ig(1− cos θ)dφ.

The transition function is

tSN (φ) = eiϕ(φ),

the gauge potentials are related by a gauge transformation

AN = t−1NS(AS + d)tNS = AS + idϕ,

hence

dϕ =
1

i
(AN −AS) = 2gdφ,

where we want to avoid a multi-valued transition function for it must be
unique, thus

∆ϕ

2π
= 2g ∈ Z,

therefore the magnetic charge is quantized.
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2.8.3 Yang-Mills theory

Let us consider the simplest gauge group SU(2) over the Minkowski space-
time M4, similarly to what we encountered in electromagnetism, since the
base space is contractible the bundle is trivial and a single gauge potential
will provide a full description

A = Aµdxµ = AaµTadxµ,

where Ta are the generators of the algebra

[Ta, Tb] = iεabcTc,

hence, the field strength is

F = dA+A ∧A =
1

2
Fµνdxµ ∧ dxν

Fµν = ∂νAµ − ∂µAν + [Aµ,Aν ]

Faµν = ∂νAaµ − ∂µAaν + εabcAbµAcν ,

the Bianchi identity is

DF = dF + [A,F ] = 0,

and the action is

SYM [A] =
1

2

∫
M4

tr(F ∧ ∗F).

2.8.4 Instantons

Usually, when one encounters the task of calculating a functional integral, it
is necessary to find its minimum and then calculate the quantum fluctuations
around it. Additionally, said integral is only well defined in euclidean space.
The local minima are called instantons and we shall consider them in euclidean
space for an SU(2) Yang-Mills theory. The euclidean action for such a theory
is

SEYM [A] = −1

2

∫
E4

tr(F ∧ ∗F),

where the Hodge dual is w.r.t euclidean space. The equations of motion for
the theory are

DF = 0 D ∗ F = 0,

the first equation is geometrical, it could be thought as an identity while the
second is a differential equation for the field strength, which may be solved
by
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F = ±F ,

when we substitute this solution to the equations of motion into the action
we get

SEYM [A] = ∓1

2

∫
E4

tr(F ∧ F).

The field strength is given by

F = dA+A ∧A,

the field configurations that render finite actions are the only ones that shall
contribute to the functional integral, this means that at infinity we need the
field strength to vanish, this is obtained via a pure gauge

A(x)→ g−1(x)dg(x) as |x| → ∞
⇒ F → d(g−1dg) + g−1dg ∧ g−1dg

= −g−1dgg−1 ∧ dg + g−1dgg−1 ∧ dg = 0.

To study this in terms of fibre bundles, let us compactify E4 by adding the
infinity and then mapping to S4; allow ourselves to call this infinity south
pole and the origin north pole; this effectively separates E4 into two pieces,
two hemispheres

US = {x ∈ E4||x| ≤ R− ε} UN = {x ∈ E4||x| ≥ R+ ε},

the pure gauge requirement implies that a gauge potential needs to vanish,
let us choose AS = 0, then

AN = t−1NSdtNS ,

with this we identify the transition function with g and regard it as a map g :
S3 → SU(2), this is because S3 = UN ∩US is the equator; before continuing,
let us note that the natural identification between SU(2) and S3 is provided
by

t2I2 + tiσi ∈ SU(2)↔ t2 + (t4)2 = 1.

This map may be classified according to π3(SU(2)) = Z; the classification is
given by the winding number

• Constant map: class 0.

g0 : x ∈ S3 7→ e ∈ SU(2).

• Identity map: class 1.

g1 : x ∈ SU(2) 7→ x4I2 + xiσi
x2 + (x4)2

.
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• n−map: class n.

gn : x ∈ SU(2) 7→
(
x4I2 + xiσi
x2 + (x4)2

)n
.

If we recall electromagnetism, integrating the field strength, a two-form, over
the sphere yielded the magnetic charge of a monopole. It would be quite
appropriate to expect that integrating a four-form over S4 leads to a physically
meaningful quantity. The action defines a natural four-form since

SEYM [A] = ∓1

2

∫
M

tr(F ∧ F) = ∓1

2

∫
∂M

dtr(F ∧ F),

trF2 is closed on the four-sphere since it is boundless.

dtr(F ∧ F) = tr( dF︸︷︷︸
−[A,F ]

∧F + F ∧ dF︸︷︷︸
−[A,F ]

) = −tr([A,F ]F + F [A,F ]) = 0,

which means that the closed form y locally exact and ∃K such that trF2 =
dK, such form is

K = tr(AdA+
2

3
A3),

furthermore upon integration we obtain∫
S4

trF2 =

∫
UN

trF2 =

∫
UN

dK =

∫
∂UN

K =

∫
S3

K

since F = 0 in S3 and dA = F −A2 = −A2, the form becomes

K = tr(−A3 +
2

3
A3) = −1

3
A3,

consequently we have ∫
S4

trF2 = −1

3

∫
S3

A3,

thus the entity trF2 or conversely trA3 contain topological information about
the bundle, and in fact this is encoded in the winding number defined by

n :=
1

2

∫
S4

tr

(
iF2

2π

)
=

1

24π2

∫
S3

trA3.
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Non-commutative geometry

In this section we will outline how to encode geometrical data into a commu-
tative algebra, or more properly: how to think of fibre bundles as projective
modules over a commutative algebra. This leads us to an speculation; if we
choose a non-commutative algebra it will encode the information of what we
shall call a non-commutative geometry, where several notions of geometry
remain unchanged, others are generalized and some can not be used anymore.

Most of the content of this chapter was taken from [DB86, Dix82].

3.1 C∗-algebras

The C∗-algebras arise naturally in the algebraic formulation of Quantum Me-
chanics and Quantum Field Theory. In addition they are an essential tool to
prove one of the main results in this section: the Gel’fand-Neimark theorem.

Definition 3.1 (Associative linear algebra). Let A be a linear space over
a field F , we shall refer to it as an associative linear algebra if for x, y ∈ A
we have the product map · such that ∀x, y, z ∈ A, λ ∈ F we have

· : A×A → A

1.

x · (y · z) = (x · y) · z;

2.

x · (y + z) = x · y + x · z; (y + z) · x = y · x+ z · x

3.

λ(x · y) = (λx) · y = x · (λy).
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If F = C(= R) it is said that we have a complex (real) associative linear
algebra.

For the sake of simplicity we shall omit the · from now on, also, we are going to
refer to an associative linear algebra just as an algebra unless some confusion
can arise.

Definition 3.2 (Commutative algebra). An algebra is said to be commu-
tative if ∀ x, y ∈ A

xy = yx.

Definition 3.3 (Algebra with identity). If ∃ e ∈ A such that ∀x ∈ A we
have

ex = x = xe,

then it is said that the algebra possesses an identity.

Definition 3.4 (Ideal). Consider a subspace I of an algebra A, such space
is said to be a left ideal if j ∈ I, x ∈ A

jx ∈ I,

following a complementary path, the right ideal is defined as

xj ∈ I.

Furthermore, a two-sided ideal is both a left and right. A proper ideal is an
ideal that does not matches the algebra, i.e.: I 6= A. If an algebra has no
two-sided ideals besides {∅} is called a simple algebra.

Remark 3.5 (ideals on commutative algebras). If an algebra A is commutative,
then there is no distinction bewteen left, right and two-sided ideals.

Definition 3.6 (∗−algebra). An algebra over C equipped with an involution
which is the following mapping:

A → A
x 7→ x∗,

is a ∗−algebra if ∀x, y ∈ A, λ ∈ C we have

•

(x+ y)∗ = x∗ + y∗;

•

(λx)∗ = λ̄x∗;
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•

(xy)∗ = y∗x∗;

•

x∗∗ = x.

Definition 3.7 (∗−subalgebra). If we have a subalgebra B of A, then it is
a ∗−subalgebra if

x ∈ B ⇒ x∗ ∈ B.

Definition 3.8 (∗−ideal). An ideal I of an algebra A is a ∗−ideal if

x ∈ I ⇒ x∗ ∈ I.

Definition 3.9 (∗−homomorphism). Consider a mapping between ∗−algebras
A and B,

φ : A → B

φ(xy) = φ(x)φ(y)

φ(x∗) = φ(x)∗,

if the mapping is bijective then it is a ∗−isomorphism of A onto B.

Definition 3.10 (Normed algebra). An algebra A is normed if it has map-
ping || || called norm that satisfies

||xy|| ≤ ||x||||y||. (3.1)

Definition 3.11 (Banach algebra). If said normed algebra is complete, it
is a ∗−Banach algebra.

Definition 3.12 (Isometries in ∗−algebras). Let an algebra A have an
involution ∗ such that

||x∗|| = ||x||,

then the involution is isometric. Additionally, if the ∗ morphism (∗ : A → B)
complies with

||x∗|| = ||x||, (3.2)

then the algebras A,B are said to be isometrically ∗−isomorphic. (3.2) is
known as the C∗ condition.

Definition 3.13 (C∗-algebra). Let A be a ∗−Banach algebra, if it satisfies
the C∗ condtion then it is a C∗−algebra, and it follows that

||x∗x|| = ||x||2.
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Example 3.14 (Algebra of bounded linear operators B(H)). In this case, the
involution is the adjoint map, the multiplication is is the compostion of oper-
ators and the norm of O ∈ B(H) is given by

||O|| = sup{||Oξ|| : ||ξ|| ≤ 1, ξ ∈ H}.

Example 3.15 (Continuous functions on a Hausdorff space). Let C(M) be the
algebra of continuous functions on a Hausdorff space M , the product is point-
wise multiplication and the involution being the complex conjugation with
norm

||f ||∞ = sup
x∈M
|f(x)|,

which defines a commutative C∗−algebra.

Example 3.16 (M(C)). Consider the set of n×n matrices with complex argu-
ments, the product is matrix multiplication and the involution is the hermitian
conjugate, the norm is given by

||T || = supTij

Definition 3.17 (Representation). Let A be a C∗−algebra, the pair (H, π)
where H is a Hilbert space and π is a ∗−morphism is said to be a representa-
tion if π maps as follows

π : A → B(H).

Furthermore, the representation is faithful if ker(π) = {∅}. In case of being
faithful, it can be proved that this happens iff ||π(x)|| = ||x|| or that π(x) > 0
if x > 0.

Definition 3.18 (Irreducible representation). The representation is ir-
reducible if all of x ∈ B(H) which commute with all y ∈ π(A), are multiples
of the identity operator.

Definition 3.19 (Unitary equivalence). Consider a unitary operator U
and two representations (π,H) and (π′,H′), they are unitary equivalent if

π′(x) = U∗π(x)U

Definition 3.20 (∗-automorphism). Consider two ∗−algebras A1 and A2,
an invertible map σ : A1 → A2 is said to be an automorphism if for all
a, b ∈ A1

• σ(e) = e.
• σ(a)∗ = σ(a∗).
• σ(ab) = σ(a)σ(b).
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It is important to stress the fact that the ∗-automorphisms from a C∗-algebra
to itself (i.e. σ : A → A) are themselves a group, which we shall denote by
Aut(A).

Since a ∗-automorphism preserves the algebraic structure, it is natural two
grasp two algebras as the same if they are to be related by an automorphism.

Definition 3.21 (Unitary group over an algebra). Let A be a C∗-algebra
with u ∈ A such that complies with uu∗ = e = u∗u. These u form the unitary
group U(A).

These unitary elements provide a natural way to construct an special kind of
∗-automorphisms.

Definition 3.22 (Inner automorphisms). An automorphism σ ∈ Aut(A)
is said to be an inner automorphism if σ(a) = uau∗ for all a ∈ A and
u ∈ U(A), and it may be written as σ = Adu. Furthermore, the inner au-
tomorphisms Inn(A) ⊂ Aut(A) constitute a subgroup.

From the definition above it is clear that an inner automorphisms is not
uniquely determined by an element u ∈ U(A). Actually one may consider
Adu = Adu, consequently uau∗ = vav∗ for all a ∈ A and therefore v∗uau∗v =
a given that v ∈ U(A). this implies that

v∗uau∗v − a =0 (3.3)

v∗uau∗v − v∗uu∗va =0 (3.4)

v∗u(au∗v − u∗va) =0 (3.5)

v∗u[a, u∗v] =0, (3.6)

which leads us to conclude that u∗v ∈ Z(A), this allows us to set v = uz with
z ∈ Z(U(A)), this result is stated in the following lemma.

Lemma 3.23 (Link between the inner automorphism and the uni-
tary group of an algebra). As it was stated above, the inner automorphisms
comply to

Inn(A) ' U(A)/U(Z(A)). (3.7)

The definition for the other automorphisms that are not inner is immediate.

Definition 3.24 (Outer automorphism). The outer automorphisms are
elements of the following equivalence class

Out(A) ' Aut(A)/Aut(A). (3.8)
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If the algebra A under consideration is commutative, then the automorphism
group Aut(A) is the symmetry group of the topological space that naturally
arises from A. Additionally if A = C∞(M) for some manifold M then all
of the σ ∈ Aut(A) are diffeomorfisms; considering a commutative algebra
renders the group of inner transformations Inn(A) into a trivial group, which
implies that all of the automorphisms are outer Out(A) ' Aut(A) which tells
us that there is no commutative analogue of an inner automorphisms.

In the non-commutative realm Out(A) is the symmetry group of the space-
time under consideration, on the other hand given that there was no commu-
tative equivalent of the inner automorphisms, the natural identification that
can be established is to interpret them as the group of gauge transformations.

3.2 Gel’fand-Naimark theorem

3.2.1 Commutative case

The Gel’fand-Naimark theorem may be stated in an heuristic level in the
following fashion: given any commutative C∗-algebraC, there is a way to re-
construct a Hausdorff space M such that C is isometrically ∗-isomorphic to
the algebra of complex valued continuous functions C(M).

Definition 3.25 (Non-zero linear functionals). Consider A to be a com-
mutative Banach algebra (a generalisation of a C∗-algebra) and definitionne
Â as the set of non-zero multiplicative linear functionals, i.e.:

Â = {φ : A → C|φ(xy) = φ(x)φ(y), with φ(x) 6== 0,∀x},

it can be proved that φ ∈ Â is continuous and that ||φ|| ≤ 1.

Definition 3.26 (Gel’fand transform). For all x ∈ A, we definitionne a
map that shall be the abstract analogue of a Fourier transform,

x̂ : A → C
x̂(φ) = φ(x),

such operation is called the Gel’fand transform

Definition 3.27 (Gel’fand topology). A topology on Â is a Gel’fand topol-
ogy if we take the weakest topology where all functions x̂ are continuous.

Definition 3.28 (Structure space). The structure space is Â equipped with
a Gel’fand topology, there is a bijection between the maximal ideals in A and
elements of Â, because of this, the structure space is often called the maximal
ideal space of A.
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Definition 3.29 (Gel’fand representation). Consider the algebra homo-
morphism

ˆ : A → C0(A)

x 7→ x̂,

this is the Gel’fand representation and it is neither injective, surjective nor
norm-preserving. However, if we are dealing with C∗−algebras it is an isomet-
ric ∗−isomorphism of A onto C0(Â). Additionaly, we know that C0(Â) has the
|| ||∞ norm, and this holds

||x̂||∞ ≤ ||x||

which guarantees the continuity of the isomorphism.

If we have two representations denoted by ρ1 and ρ2 they are said to be
unitary equivalent if there is an u ∈ B(H) such that ρ1 = u∗ρ2u. This defines
an equivalence relation, the structure space Â is the set of these unitary
equivalence classes.

Definition 3.30 (Spectrum). Let x ∈ A, its spectrum is

σA = {λ ∈ C|x− λe is not invertible in A}

Definition 3.31 (Spectral radius). Let x be an element of a Banach alge-
bra, its spectrum is compact subset of the complex plane and this holds

|x|σ = lim
n→∞

||xn||1/n ≤ ||x|| (3.9)

where

|x|σ = sup{|λ| : λ ∈ σA(x)}

is known as the spectral radius.

Remark 3.32. the folowing result can be proven if one considers that the mul-
tiplicative linear functionals on a commutative Banach algebra are relate to
the points in the spectra associated with the elements of A.

||x̂||∞ = |x|σ ≤ ||x||

Theorem 3.33 (Gel’fand-Naimark). Let A be a commutative C∗−algebra.
Then the Gel’fand representation is an isometric ∗−isomorphism of A onto
C0(Â). In particular, (x∗)ˆ = ¯̂x for every x ∈ A.

Proof. Let us recall a central idea, we know that x → x̂ is a homorphism
that maps A onto C(Â), to prove the isometry of the involution we follow the
original argumentation by Gel’fand and Neimark.
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Consider an algebra A, for every element h of such algebra that complies
with h = h∗ the C∗−condition renders the following chain of consequences

||h2|| = ||h||2

||h2
n

|| = ||h||2
n

,

which, may be stated as

||h2
n

||1/2
n

= ||h||

which, if we fix our attention on (3.9) we arrive to the following:

||h|| = |h|σ.

In particular, we may choose h to be h = x∗x, and thus ||x∗x|| = |x∗x|σ;
since, we have the following

σ(x∗) = σ(x),

we observe that

|x∗|σ = |x|σ,

and by summoning the submultiplicavity of the normed algebra (3.1) we get
two results that prove the equality of ||x∗|| = ||x||

||x∗|| · ||x|| = ||x∗x|| = |x∗x|σ ≤ |x∗|σ|x|σ = |x|2σ ≤ ||x||2

||x|| · ||x∗|| = ||xx∗|| = |xx∗|σ ≤ |x|σ|x∗|σ = |x∗|2σ ≤ ||x∗||2,

the first implies that ||x∗|| ≤ ||x|| while the second conversely renders ||x|| ≤
||x∗||, which leads us to ||x|| = ||x∗||. Now we need to prove that if h = h∗, then
the mapping φ(h) ∈ Â is real. Consider z = h+ite, definitionne φ(h) := α+iβ
with t, α, β ∈ R, thus

φ(z) = φ(h+ ite) = φ(h) + it φ(e)︸︷︷︸
1

= α+ i(β + t),

additionally, we know that

z∗z = h2 + t2e,

so that

α2 + (β + t)2 = |φ(z)|2 ≤ ||z||2 = ||z∗z|| ≤ ||h2||+ t2

α2 + β2 + 2tβ ≤ ||h2||,

given that the last equation must hold ∀t ∈ R, we conclude that β = 0 and
then it is real. With this we are ready and set to prove that φ is a ∗−map.
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Consider a generic x ∈ A, it may be written as x = h + ik, the ”real” and
”imaginary” parts are definitionned as

<(x) :=
x+ x∗

2
=(x) :=

x− x∗

2i
,

let us stress the fact that <∗(x) = <(x), =∗(x) = =(x), x∗ = <(x)− i=(x),
we have ∀φ ∈ Â

(x∗)̂ (φ) = φ(x∗) = φ(<(x)− i=(x)) = φ(<(x) + i=(x)) = φ(x) = x̂(φ).

This promptly proves that the Gel’fand representation is a ∗−map.
Now that we have shown that the Gel’fand representation is a ∗−isomorphism

of A into C(Â); let us study the B the range of x → x̂; we know that it is a
normed subalgebra of C(Â), separates the points of Â, never vanishes (in Â)
and it is closed under complex conjugation; with this elements and the Stone-
Weierstrass theorem we conclude that B = C(Â), ahd thus B is uniformly
dense in said set and therefore the mapping x→ x̂ is onto.

3.3 Non-commutative case

Now we are ready to take all of the above into the non-commutative realm,
having an algebra A we need to reconstruct a Hilbert space H that repre-
sents such algebra as a norm-closed ∗−subalgebra. First of all, we need to
demonstrate that the involution in a general C∗−algebra is continuous and
then introduce an equivalent C∗−norm with isometric involution.

3.3.1 Continuity of the involution

Typically, one definitionnes a C∗−algebra with the C∗−norm condition,
i.e.:||x∗x|| = ||x||2 which promptly implies that ||x∗|| = ||x|| and therefore
x 7→ x∗ is continuous. However this last statement might not be obvious, in
that sense we must proceed to prove such continuity.

Proposition 3.34 (The involution of a C∗−algebra is continuous). To
prove this we need closure and continuity

Proof. Let {hn} be a convergent sequence in H(A) = {h ∈ A|h∗ = h} with
limit h+ ik where h, k ∈ H(A); given that hn − h→ ik then it converges and
also ||hn−h|| ≤ 1. We summon the spectral mapping for polynomials [? ] and
arrive to

σA([hn − h]2 − [hn − h]4) = {λ2 − λ4|λ ∈ σA(hn − h)},

furthermore, given that ||x|| = |x|σ and that σA ∈ R we have
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||[hn − h]2 − [hn − h]4|| = sup
{
λ2 − λ4|λ ∈ σA([hn − h])

}
≤ sup{λ2|λ ∈ σA([hn − h])} = ||[hn − h]2||,

taking the limit to infinity we get || − k2 − k4|| ≤ ||k2|| and therefore

sup{λ2 + λ4|λ ∈ σA(k)} ≤ sup{λ2|λ ∈ σA(k)}.

Let us choose µ such that µ2 = sup{λ2|λ ∈ σA(k)}. Hence, given that µ2 +
µ4 ≤ µ2 we conclude that µ = 0; this readily implies that ||k|| = |k|σ = 0,
consequently k = 0 which leads us to conclude that H(A) is closed. Suppose
that xn → x and x∗n → y, then xn +x∗n → x+ y and ()xn−x∗n)/i→ (x− y)/i
are explicitly hermitian expressions. Since we have proven that H(A) is closed,
we are allowed to equate and we have

x+ y = x∗ + y∗ x− y = y∗ − x∗

⇒ x = y∗,

we have shown that the graph of the ∗ mapping is closed, then by means of
the closed graph theorem we conclude that ∗(the involution) is continuous.

Now we are about to show that there is an equivalent isometric C∗-norm that
is equivalent to the original.

Proposition 3.35. Consider A to be a C∗−algebra, then the following norm

||x||o = ||x∗x||1/2

is and equivalent C∗−norm on A such that ||x∗||o = ||x||o and therefore if h
is hermitian we have ||h||o = ||h||.

Proof. Given the closure and the continuity we know that ∃M ≥ 1 such that
||x∗|| ≤M ||x|| ∀x ∈ A, thus

M−1/2||x|| ≤ ||x∗||1/2||x||1/2 = ||x||o ≤M1/2||x||,

which implies that || ||o and || || are equivalent, and moreover, the o norm is
homogeneous and submultiplicative; let us prove the triangle inequality

||x+ y||2o = ||(x+ y)∗(x+ y)|| ≤ ||x∗x||+ ||y+y||+ ||x∗y + y∗x||,

then we only need to show that ||x∗y + y∗x|| ≤ 2||x||o||y||o; we can show this
if we begin with the following statement which is valid for any positive integer
n

||(x∗y)2
n−1

+ (y+x)2
n−1

||2 (3.10)

= ||(x∗y)2
n

+ (y∗x)2
n

+ (x∗y)2
n−1

(y∗x)2
n−1

+ (y∗x)2
n−1

(x∗y)2
n−1

|| (3.11)

≤ ||(x∗y)2
n

+ (y∗x)2
n

||+ 2(||x∗x|| · ||y∗y||)2
n−1

. (3.12)
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We know that for every ε > 0, ∃n ∈ Z such that

||(x∗y)2
n

|| ≤ (|x∗y|2σ + ε)2
n−1

||(y∗x)2
n

|| ≤ (|y∗x)|2σ + ε)2
n−1

,

the following can be proven

σ(xy) ∪ {0} = σ(yx) ∪ {0},

from this, it follows that

||(x∗y)2
n

|| ≤ (|x∗y|σ|y∗x|σ + ε)2
n−1

≤ (||x∗y|| · ||y∗x||+ ε)2
n−1

≤ (||x∗x|| · ||y∗y||+ ε)2
n−1

and ||(y∗x)2
n

|| ≤ (||x∗x|| · ||y∗y||+ ε)2
n−1

,

so that

||(x∗y)2
n

+ (y∗x)2
n

|| ≤ 2(||x∗x|| · ||y∗y||+ ε)2
n−1

, (3.13)

taking (3.13) into a recursion with (3.12) arrive to

||(x∗y)2
k−1

+ (y∗x)2
k−1

||2 ≤ 4(||x∗x|| · ||y∗y||+ ε)2
k−1

,

this expression is valid for any finite k, in particular we may set it to be k = 2
and obtain

||x∗y + y∗x||2 ≤ 4(||x∗x|| · ||y∗y||+ ε).

Hence ||x∗y+y∗x|| ≤ 2||x||o||y||o which implies that || ||o is a C∗-algebra equiv-
alent norm on A. Additionally we have that for all hermitian h ∈ A, ||h||o =
||h∗h||1/2 = ||h||, concluding that ||x∗||o = ||x||o for all x ∈ A.

3.3.2 The Gel’fand-Naimark-Segal construction

We aim to represent an algebra A as a norm-closed ∗−subalgebra of bounded
linear operatores on a Hilbert space, this is achieved by means of the GNS
construction.

Definition 3.36 (Positive linear functional (State)). Let φ be a linear
functional such that

φ(x∗x) ≥ 0 ∀x ∈ A
(x|y) := p(y∗x) x, y ∈ A

This inner product is linear in x, conjugate-linear in y and as it would be
expected:
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(x|x) ≥ 0 (x|y) = (y|x) |(x|y)|2 ≤ (x|x)(y|y),

in particular if we set y = e and adopt the φ notation we obtain

|φ(x)|2 ≤ φ(x∗x) φ(x∗) = φ(x),

where we have used that φ(e) = 1. This inner product might be degenerate,
i.e.: (x|x) = 0 for x 6= 0.

These states form a set S(A) that happens to be a convex space, this can be
seen from the fact that for any φα, φβ ∈ S(A) we can construct a convex hull
and such will be in the set of states, i.e.: λφα + (1− λ)φβ ∈ S(A).

Definition 3.37 (Pure states). Let S(A) be the set of states of an algebra
A, an state ψ is said to be pure if ψ ∈ ∂S(A).

Proposition 3.38. Now, consider we have an state φ and definitionne the
following set

Nφ := {x ∈ A|φ(x∗x) = 0},

then this set must be an ideal of A.

Proof. Consider x, y ∈ A, then

φ(x∗y∗yx) ≤ ||y||2φ(x∗x) = 0.

This ideal induces a pre-Hilbert space given by the equivalence class A/Nφ
with the following inner product

A/Nφ ×A/Nφ → C
(x+Nφ|y +Nφ) 7→ φ(y∗x),

the completion of this equivalence class is the space we shall be dealing with
in the representation.

Definition 3.39 (Representation in the Hilbert space of bounded op-
erators). Suppose you are given an element a ∈ A, we can associate an
operator π(a) ∈ B(H) such that

π(a)(b+Nφ) =: ab+Nφ,

furthermore, it has the following properties

π(a+ b) = π(a) + π(b) π(λa) = λπ(a) π(ab) = π(a)π(b)

(π(a)(x+Nφ)|y +Nφ) = (x+Nφ|π(a)(y +Nφ)),

it can be shown that ||π(a)|| ≤ ||a|| and therefore π(a) ∈ B(A/Nφ). Addition-
ally, there is a unique extension of π(a) into πφ(a) ∈ B(Hφ) that obeys
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πφ(a1a2) =πφ(a1)πφ(a2)

πφ(a∗) =(πφ(a))∗,

which is a ∗-morphism, or a representation for the algebra

πφ :A → B(Hφ)

a 7→ πφ(a).

Definition 3.40 (Cyclic vector). The state φ is called a vector state, this
implies that ∀a ∈ A ∃ ξφ ∈ Hφ such that

(ξφ|πφ(a)ξφ) = φ(a),

the vector is defined as

ξφ =e +Nφ.

The cyclic vector generates the Hilbert space in the sense that the set
{πφ(a)ξφ|a ∈ A} is dense A/Nφ.

Theorem 3.41 (Gel’Fand-Neimark). Let A be a C∗-algebra. Then A is
isometrically ∗-isomorphic to a norm-closed ∗-subalgebra of B(H) for some
H.

Proof. First of all we need to show that the representation is bounded, which
is easily demonstrated if we consider an arbitrary element b + Nφ ∈ A/Nφ
and calculates its norm

||π(a)(b+Nφ)||2 = φ(b∗a∗ab) ≤ ||a||2φ(b∗b) = ||a||2||b+Nφ||, (3.14)

since this was done for an arbitrary element we conclude that

||π(a)|| ≤ ||a|| (3.15)

3.4 Modules

Definition 3.42 (Module). Let A be an algebra over C; moreover consider
a vector space E over C, it is said to be a tight module if it carries a right
representation of A.

E × A 3 (η, a) 7→ηa ∈ E
η(ab) = (ηa)b

η(a+ b) = ηa+ ηb

(η + ξ)a = ηa+ ξa,

for all a, b ∈ A η, ξ ∈ E.
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Definition 3.43 (Opposite algebra). Let A be an algebra, its opposite Ao
possess elements ao with a natural bijection towards a ∈ A; multiplication is
given by

aobo = (ba)o.

If we embed the module structure within the opposition a new structure arises

Definition 3.44 (Enveloping algebra). If we consider a right (left) module
Er (El) over an algebra A it may be turned into a left (right) module of Ao by
this following means:

aoη = ηa (aη = ηao),

for η belonging to either of both modules and a ∈ A. With this, we have the
necessary elements to definitionne the enveloping algebra as

Ae = A⊗C Ao.

With this, we may regard any A-bimodule E structure as a right (left) Ae-
module by setting

η(a⊗ bo) = bηa ((a⊗ bo)η = aηb).

We may also analyse the role of the center of the algebra Z(A) of the algebra;
it is possible to definitionne modules by considering the center as a commuta-
tive algebra. In this sense if we have an A-module it is possible to produce an
analogous structure over the center Z(A) while the converse may not always
hold. Additionally, we should stress the fact that regardless of the commuta-
tivity of the center Z(A) a right or left module structure over it should be
considered to be distinct.

Definition 3.45 (Generating family). Consider Λ to be any directed set,
then its generating family (eλ)λ∈Λ for the right module E renders any η ∈ E
as ∑

λ∈Λ

eλaλ

which is not unique and aλ ∈ A; moreover, only a finite amount of terms in
such sum may differ from zero.

A module is said to be free if it admits a basis. If a module is finitely
generated is labeled as a finite type module.

Example 3.46 (Complex module). Allow ourselves to consider the following
module: CN ⊗C A =: AN , whose elements η can be written as

η =

N∑
j=1

ejaj ,

and may be thought as an N -dimensional vector basis with entires in A as
long ej is the canonical basis of CN . This module is both free and finite.
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The module basis is deeply connected with the triviality of a bundle. For
instance, consider the algebra of smooth functions over the sphere C∞(S2)
and the Lie- algebra of smooth vector fields over it X (S2). In general it is
not possible to solve the constraints among the basis elements to get a free
basis, in this example this situation happens in the following way: we know
that X (S2) is finite module over C∞(S2), we may provide the three-element
basis

{Yi =

3∑
j,k=1

εijkxk∂k|
3∑
i=1

(xi)
2 = 1},

please note that the basis is not free since we have a constraint

3∑
i=1

xiYi = 0,

this tells us something we already knew, there are not two globally defini-
tionned vector fields over the sphere that may serve as a basis for it. In other
words, this tells us that the tangent bundle TS2 over S2 is non-trivial.

3.4.1 Projective Modules

Definition 3.47 (Projective module). Let us definitionne a projective
right A-module as an entity that complies to any of the following

1. The lifting property; given surjective homomorphism ρ :M→N of right
A-modules, any homomorphism λ : E → N may be lifted to another ho-
momorphism λ̃ : E →M, and the following holds

ρ ◦ λ̃ = λ

id :M←→M
λ̃ ↑ ↓ ρ

λ : E −→ N
↓
0

2. Every surjective module morphism ρ : M → E splits, in the sense that
there shall always be a module morphism s : E →M such that ρ◦s = idE .

3. The module E may be regarded as a part of direct sum of a free module,
i.e.: if there exists a free module F and a module E ′ we have

F = E ⊕ E ′

Definition 3.48 (Lift of a projective module). Consider a projective
module of finite type E with surjection ρ : AN → E, then a lift is a map-
ping λ̃ : E → AN
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ρ ◦ λ̃ = idE

id :AN ←→ AN

λ̃ ↑ ↓ ρ
λ : E −→ E

↓
0

Definition 3.49 (Idempotent decomposition). With this, we are able to
construct an idempotent endomorphism p ∈ EndAA

N 'MN (A) rendered by

p = λ̃ ◦ p,

this allows us to decompose any free module as the following direct sum of
submodules

AN = pAN ⊕ (1− p)AN ,

which promptly states that ρ and λ̃ are inverse isomorphism, moreover they
map E isomorphically to pAN .

The module E is projective iff there exists an idempotent p ∈ MN (A) such
that E = pAN ; in this sense any element of the module may be thought as
the N -dimensional vectors ξ with entries in A which are invariant under p,
such that pξ = ξ.

Lemma 3.50 (Isomorphism between modules). Consider M to be an
compact manifold of finite dimension. Then The C∞(M)-module E is iso-
morphic to a module Γ (E,M) of smooth sections of a bundle E → M iff it
is finite projective.

3.5 Differential calculus

Derivations are the non-commutative generalisations of vectors, which in the
commutative case are differential operators that shall act upon functions de-
fined throughout the manifold.

Definition 3.51 (Derivation). A derivation X is an operator X : A → A
where A is a C∗-algebra

X (ab) = X (a)b+ aX (b), (3.16)

it forms a vector space Der(A) and it also forms a Lie algebra, where the Lie
bracket is defined

[X ,Y](a) = X (Y(a))− Y(X (a)), (3.17)

the involution acts as X ∗(a) = (X (a∗))∗. A derivation is said to be hermitian
if X ∗ = X .
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In the case where we consider A = C∞(M) for some manifoldM the deriva-
tions become the sections of the tangent bundle.

Definition 3.52 (Inner derivation). Let a, b ∈ A, we define the following
operator

ada(b) := [a, b], (3.18)

which is a derivation that from this point on we shall call inner derivations
Int(A) which is a vectorial subspace of Der(A).

Definition 3.53 (Outer derivations). we define this derivations in direct
analogy to the definitions of the outer automorphisms

Ext(A) ' Der(A)/Int(A) (3.19)

Lemma 3.54 (Involution on inner derivations). The involution acts on
inner derivation as

ad∗a = ad−a∗ . (3.20)

Proof.

ad∗a(b) =(ada(b∗))∗ = [a, b∗]∗ = (ab∗ − b∗a)∗ = ba∗ − a∗b = −[a∗, b] = [−a∗, b]
(3.21)

=ad−a∗(b) (3.22)

Therefore a real inner derivation is provided by antihermitian elements of the
algebra.

Proposition 3.55 (The inner derivations are an ideal). Int(A) consitute
an ideal in Der(A); given X ∈ Der(A) and ada ∈ Int(A) then, under the
natural product that the Lie bracket provides we have

[X , ada] ∈ Int(A) (3.23)

Proof. Take any b ∈ A

[X , ada](b) =X (ada(b))− ada(X (b)) = X ([a, b])− [aX , (b)] (3.24)

=[a,X (b)] + [X (a), b]− [a,X (b)] = [X (a), b] (3.25)

=adX (a)(b), (3.26)

and therefore [X , ada] = adX (a) which of course belongs to Int(A), in partic-
ular if we choose X = ada then we have

[ada, adb] = adada(b) = ad[a,b] (3.27)
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3.6 Connections

Definition 3.56 (Connection). A connection is a mapping between the
derivations of an algebra ∇X : Der(A) → Der(A) that is Z(A)-linear in
X ∈ Der(A), i.e.:

∇zX (Y) = z∇X (Y) with z ∈ Z(A), (3.28)

where Y ∈ Der(A). Moreover it obeys the Leibniz rule

∇X (zY) = X (z)Y + z∇X (Y), (3.29)

a final remark: a connection is said to be real if (∇XY)∗ = ∇X∗Y∗.

Lemma 3.57 (Connection on Int(A)). The connection ∇ada is Z(A)-
linear.

Proof.

∇ada(zY) = ada(z)Y︸ ︷︷ ︸
=0

+z∇ada(Y) = z∇ada(Y). (3.30)

Definition 3.58 (Connection on Ω1
Der(A)). Let a, b ∈ A and ω ∈ Ω1

Der(A),
then the connection over the algebra-valued one-forms satisfies the Leibniz rule

∇Ω
1
Der(A)
X (aωb) = X (a)ωb+ a

(
∇Ω

1
Der(A)
X ω

)
b+ aωX (b). (3.31)

Proposition 3.59 (Link between connections). Given a connection ∇Ω1
Der(A)

on Ω1
Der(A) there exists a correspondent connection ∇Der(A) on Der(A) and

they are related in the following fashion

ω
(
∇Der
X Y

)
+
(
∇Ω

1
Der(A)
X ω

)
(Y) = X (ω(Y)) (3.32)

Proof. For the sake of simplicity consider we are given ∇Ω1
Der(A), this means

that we need to prove that ∇Der is a connection. Clearly ∇Der
X is Z(A)-linear

in X for it must obey the Leibniz rule. Now, for ω ∈ Ω1
Der(A), X ,Y ∈

Der(A), z ∈ Z(A) we arrive to the following result

ω(∇Der
X zY) = X (ω(zY))− (∇Ω

1
Der(A)
X ω)(zY),

since =ω also is Z(A)-linear, we have

ω(∇Der
X zY) = X (z)(ω(Y)) + zX (ω(Y))− z(∇Ω

1
Der(A)
X ω)(Y)

= X (z)(ω(Y)) + zω(∇Der
X Y)

= ω(X (z)Y + z∇Der
X Y).

Therefore ∇Der is a connection; the converse statement for ∇Ω1
Der(A) is proven

in a analogous fashion.



Part III

Curvature for a Lie algebraic space-time
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Curvature for a Lie-algebraic space-time

In 1994 Majid and Brueggs calculated the curvature for a metric that is a
central element of the Kappa-Minkowski space-time by using the generalized
braiding formalism [MR94]. In this text we generalize their program giving
explicit formulas to calculate the Riemann tensor and the Riemann scalar for
a non-commutative space-time of general Lie-algebraic type. The quest for a
full-fledged theory of quantum gravity has been a defying and extensive one.
It is considered to be the most intricate question posed since the formal es-
tablishment of modern theoretical physics [Ros30, Dir67]. Since the nature of
this theory has been eluding us for more than 80 years, different approaches
have been tried. Among them there is a particular interesting approach: non-
commutative geometry.

Besides being a generalization of the commutative framework, non-commutative
geometry is a novel approach that arises from a deep and meaningful concep-
tual juxtaposition amidst general relativity and quantum mechanics. Ventur-
ing into smaller scales brings us to the point where our description of space-
time as a continuum is neither physically nor mathematically well-defined, it
just stops making any sense at all. This is readily exposed in the geometrical
measurement problem [DFR95]. The argument tells us that imposing a con-
tinuum space-time is not possible at microscopic scales, dor this it takes into
consideration the uncertainty principle and the Schwarzschild radius which
in turn implies that the measurement of a space-time point with arbitrary
precision is not possible since the energy involved in this process would spawn
a black hole. Hence space-time around the Planck length does not have a con-
tinuous structure.

In other words, from a physical viewpoint, the introduction of a non-commutative
structure, so-called quantized space-time is strongly justified. We would like
to point out that the geometric problem and its solution are ontologically
equivalent to solving the motion of the electron in the atom by using a quan-
tized version of the phase space. When we deal we Quantum Mechanics we
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promote the observables (namely the position and the momentum) to opera-
tors on a Hilbert space. An equivalent path is to deform the product of the
algebra of functions on phase space, [Lan14]. However, in the approach to a
non-commutative space-time we take the path of choosing a non-commutative
algebra to obtain a generalized geometry.

In particular, we restrict our research to the case of a non-commutative space-
time of Lie algebraic type. This means that the classical coordinates are to be
considered generators of an algebra A whose commutator is of the form

[xµ, xν ] = Cµνλx
λ.

We chose this case because there is evidence given in [BM14] where quantum
corrections up to first order (of Planck length) lead to meaningful physical re-
sults. Moreover, the real interest in studying simple models as the Lie-algebraic
type, is that of calculating corresponding non-commutative geometric entities
that are associated with Einstein field equations.

Our main motivation is to obtain a general formula for the quantum-corrected
connection for any Lie-algebra. This is achieved by enforcing a requirement
that arises in all the before-mentioned examples: the line element has to be
a central element of the algebra. Up to date, central bi-modules (see [Lan14,
Chapter 6-9], [MP96], [MT88] and references therein) play a fundamental
role in formulating geometric quantities in the non-commutative geometry
approach. Moreover, the centrality of the metric tensor is closely related to
keeping some of its tensorial features in the classical sense, and also allows
us to invert it without any ambiguity, see [BM14]. Having an expression for
the connection in a non-commutative Lie-algebraic space-time we are able to
construct geometrical quantities of interest, mainly: the Riemann, Ricci and
Einstein tensors. They are defined in an analogue fashion to their classical
counterparts and allow us to give some physical predictions of our space-time
up to first order in Planck’s length.

Having established the geometrical sector we proceed to explore the dynamics
of matter in a non-commutative space-time. The interest w.r.t. matter comes
from the argument that the non-commutative geometry may give origin to
matter [CC96].

Our framework can be synthesized in the following procedure: first of all we
need to choose a non-commutative algebra for our space-time, for now we shall
restrict ourselves to work with a Lie algebra type. In principle any algebra
stands on equal footing, however there is strong evidence that it must respect
the symmetries of the classical space-time we are quantizing, by doing this the
calculations are simplified greatly. After this we define a differential calculus
where an arbitrary quantity arises, this is due to the fact that a symmetric
factor may be added if we consider the sum of two commutators; however,
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we deal with this ambiguity by the end of our procedure. The third step is to
demand that our line element to be in the center of the algebra.

The centrality condition along with the symmetries play a prominent role
through our work, in this sense our procedure is analogous to some classi-
cal techniques where the metric is chosen a priori and then they analyze the
physical properties of the energy-momentum tensor, but in our formalism it
also takes care of the ambiguities that arose when the differential calculus was
defined.

The next step is to follow the algebraic formulation of connections made
by Koszul [Kos86] where we take advantage of the generalized braiding to
obtain quantum correction for the connection. This renders one of our main
results, which is a formula for the quantum-corrected Christoffel symbols up
to first order for any algebra, its associated differential calculus and any met-
ric; nevertheless the only way to make it operational is to fix the symmetric
quantities as it was stated before. From this point we follow the definitions
that are analogues of their counterparts in classical Riemannian geometry; we
obtain the Riemann, Ricci and Einstein tensors, with quantum corrections up
to first order.

4.1 Differential calculus

Definition 4.1 (Space-time). Consider a Lie-algebraic space-time, i.e. the
coordinates are generators of a non-commutative, associative and unital alge-
bra that fulfill the following commutation relations

[xµ, xν ] = Cµνλx
λ. (4.1)

This definition serves as a starting point for defining differential calculus, but
it needs to be complemented with the notion of a universal differential algebra.

Definition 4.2 (Universal differential algebra). Consider an associative
algebra A with unit over C, we define the universal differential algebra of
forms (c.f. [Lan14, Chapter 7, Section 1] and [Con95, Chapter 3, Section 1])
which is denoted by Ω(A) =

⊕
pΩ

p(A) as:

For p = 0 it is the algebra itself, i.e. Ω0(A) = A. The space Ω1(A) of one-
forms is generated, as a left A-module by a C-linear operator d : A → Ω1(A),
called the universal differential, which satisfies the relations,

d2 = 0, d(ab) = (da)b+ adb, ∀a, b ∈ A. (4.2)

If Ω1(A) is a left (right) A-module we can induce a right (left) A-module
structure via the universal differential given in Equation (4.2), which makes
Ω1(A) a bimodule. With this notion we are ready to build the Ωp(A)-space as
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Ωp(A) = Ω1(A) · · ·Ω1(A)︸ ︷︷ ︸ .
An immediate consequence of our definition is that the differential algebra of
forms is graded.

Proposition 4.3 (Deformation of the differential structure). Let the
non-commutative, associative and unital algebra A be defined by the Relations
(4.1). Then, the application of the universal differential (4.2) on the algebra
has the following solution,

[dxµ, xν ] =

(
1

2
Cµνλ + Sµνλ

)
dxλ =: Dµν

λdx
λ, (4.3)

where the constant tensor components Sµνλ are symmetric in µ, ν.

Proof. We act with the universal differential on the commutator, the left hand
side renders commutators each of them contain a one-form basis and a gen-
erator, the right hand side is just the structure constants of the Lie-algebra
contracted with a one form-basis,

d[xµ, xν ] = [dxµ, xν ] + [xµ, dxν ]

=

(
1

2
Cµνλ + Sµνλ

)
dxλ −

(
1

2
Cνµλ + Sνµλ

)
dxλ

= Cµνλdx
λ.

4.2 Centrality condition

In the introduction we stated and explained that in addition to the differen-
tial calculus, the centrality (w.r.t. the algebra) of the metric is an important
requirement. In this section the implications of the centrality requirement are
investigated. We begin by defining the line element as a tensor product of two
one-forms.

Definition 4.4 (Line element). Let the metric g be defined as a two-form,
i.e. g ∈ Ω2(A). The expression for the metric in terms of the basis, that is a
tensor product of two one forms, is given by

g = gµνdx
µ ⊗A dxν ,

where we assume symmetry for the metric components gµν = gνµ. For the rest
of this text we omit the subscript on the tensor product.

Proposition 4.5 (Centrality condition). Let the two-form g ∈ Ω2(A) be
the line element. Then, the requirement of centrality for the metric tensor,
i.e. g ∈ Z(A), has the following solution,

[xλ, gµν ] = Dαλ
µgαν +Dαλ

νgαµ (4.4)
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Proof. Demanding centrality means that [xλ, g] = 0, thus

0
!
= [xλ, g] = [xλ, gµνdx

µ ⊗A dxν ]

= [xλ, gµν ]dxµ ⊗A dxν + gµν [xλ, dxµ ⊗A dxν ]

= [xλ, gµν ]dxµ ⊗A dxν −Dµλ
αgµνdx

α ⊗A dxν −Dνλ
αgµνdx

µ ⊗A dxα

where in the last lines we used the Leibnitz rule and the solution of the com-
mutator relation between the algebra and the differentials given in Equation
(4.3).

Remark 4.6. If we choose the metric and the algebra (choose structure con-
stants), then the symmetric term can be automatically found. Although it
is also possible to choose the structure constants and the symmetric term in
order to find the metric, this is a rather unusual path. This is due to the
fact that we intend to respect the classical space-time and its symmetries by
implementing those symmetries into the algebra.

4.3 Quantum connection

In this section we introduce the concept of the connection for non-commutative
algebras and use it to obtain first order corrections to the covariant derivative,
Christoffel symbols and the curvature quantities. In the end of this section we
write down, as well, the Einstein tensor plus the quantum corrections that we
obtain by using the concept of the bi-modular map.

As for the concept of the connection which has to be understood as the gen-
eralization of the Koszul formula [Kos86], see [MT88] and [MP96].

Definition 4.7 (Connection). The connection ∇ is a linear map that acts
on one-forms in the following fashion

∇ : Ω1 → Ω1 ⊗A Ω1

∇(aω) = da⊗A ω + a∇(ω)

∇(ωa) = (∇ω)a+ σ(ω ⊗A da)

where a ∈ A and ω ∈ E, the module and the symbol σ is a bi-modular map
known as generalized braiding.

Next, in order to induce quantum corrections, i.e. corrections in orders of
magnitude of the structure constants we use the definition of the covariant
derivatives and the bi-modular map.

Proposition 4.8 (Generalised braiding). The bi-modular map σ is ob-
tained by using the expressions for the left and right covariant derivatives,
shown in the Introduction, from where it follows that
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σ(ω ⊗A da) = ∇(ωa)− (∇ω)a = ∇([ω, a])− [(∇ω), a]−∇(aω)− a∇(ω)

= da⊗A ω + [a, (∇ω)] +∇([ω, a]) (4.5)

Also, using the definition in [BM14] for the covariant derivative.

Definition 4.9 (Covariant derivative). The covariant derivative up to first
order in the structure constants is given by

∇(dxµ) =
1

2
(I + σ) ◦ ∇0(dxµ), (4.6)

where the zero order (in the structure constants) of the covariant derivative
has been denoted by ∇0.

By using Equation (4.6) we calculate the explicit outcome of the covariant
derivative for our algebra (4.1).

Theorem 4.10. [General formula] The covariant derivative (see Equation
(4.6)) for the most general Lie-algebraic type of non-commutative space-time,
up to first-order in the structure constants, is given in terms of the zero-order
connection as follows,

∇(dxµ) =−
(
Γµρσ +

1

2
(Γµαβ(Dλβ

ρΓ
α
λσ +Dλβ

σΓ
α
ρλ −D

αβ
λΓ

λ
ρσ)

+ Γµαβ [xβ , Γαρσ]

)
dxρ ⊗ dxσ (4.7)

where here Γ denotes the connection of zero-order (in the structure constants).

Proof. See appendix.

Remark 4.11. In the rest of the paper we refer to Equation (4.7) as the general
formula.

This is the formula for the covariant derivative of the most general Lie-
algebraic type of a non-commutative space-time. If one sets the deformation
constants, i.e. the structure constants, equal to zero one obtains the classical
case. For the quantum terms being unequal to zero there is one term remain-
ing, the last term, that depends on the specific form of the connection Γ that
depends on the algebra. However, in the following we give specific expressions
for the term in regards to special cases. In this spirit we highlight a result
that we obtained in the proof of the former proposition.

Proposition 4.12. The commutator of the generators of the algebra xµ ∈ A
and the covariant derivative of the differential of the algebra ∇(dxν) ∈ Ω2(A)
is given by

[xµ,∇(dxν)] =(Dλµ
ρΓ

ν
λσ +Dλµ

σΓ
ν
ρλ − [xµ, Γ νρσ])dxρ ⊗ dxσ, (4.8)
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and it holds to all orders in the structure constants. Therefore if [xµ,∇(dxν)] =
0 we have

[xµ, Γ νρσ] = Dλµ
ρΓ

ν
λσ +Dλµ

σΓ
ν
ρλ. (4.9)

Moreover, let the connection be a central element, i.e. ∇0(dxν) ∈ Z(A), then
the general formula reduces to

∇(dxµ) =−
(
Γµρσ −

1

2
Dαβ

λΓ
µ
αβΓ

λ
ρσ

)
dxρ ⊗ dxσ

Proof. The calculation is straight-forward and uses the specific form of the
covariant derivative and the solution of the Commutator (4.3)

[xµ,∇(dxν)] = −[xµ, Γ νρσdx
ρ ⊗ dxσ]

= −[xµ, Γ νρσ]dxρ ⊗ dxσ − Γ νρσ[xµ, dxρ ⊗ dxσ]

= (Dλµ
ρΓ

ν
λσ +Dλµ

σΓ
ν
ρλ − [xµ, Γ νρσ])dxρ ⊗ dxσ,

where in the commutator we omitted terms that are of order one since the
commutator would generate a higher order in the structure constants. The
second part follows immediately from the former proposition.

Next, we give the definition of the Riemann tensor in the context of non-
commutative geometry. It is given as a combination of the exterior derivative
d, the wedge product ∧, which maps the tensor product of two elements of
the algebra of forms to the skew-symmetric product, and finally the covariant
derivative.

Definition 4.13 (Riemann tensor). Let ωµ ∈ Ω1(A) and ∇ be the connec-
tion, then the Riemann tensor is given as

R(ωµ) :=(d⊗ I− (∧ ⊗ I) ◦ (I⊗∇))∇(ωµ). (4.10)

By using the former definition and the explicit formula for the covariant
derivative for a general Lie-algebraic non-commutative space-time we calcu-
late the Riemann tensor explicitly. Note that this formula, as well, holds in
general.

Proposition 4.14. [Curvature on a coordinated basis] If consider Equation
(4.10) acting on the coordinated basis up to first order in the structure con-
stants, it becomes the following expression

R̃µβαλ = Γ̃µλβα − Γ̃
µ
αβλ + Γ̃µασΓ̃

σ
λβ − Γ̃

µ
λσΓ̃

σ
αβ + Γµρσ(Σρσ

λβα −Σ
ρσ
αβλ), (4.11)

where we introduced the new symbols Γ̃ , d qΓ and Σ; the first is a decompo-
sition of the Christoffel symbol into its purely classical and purely quantum
parts. The second is this symbol differentiated and expanded into a one-form
basis while the third is the commutator of it with the one-form coordinated
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basis. It should be noted that since our calculation is up to first order, taking
the classical Christoffel symbol suffices.

Γ̃µρσ = Γµρσ + qΓ
µ
ρσ, dΓµρσ =: Γµρσλdx

λ

d qΓ
µ
ρσ =: qΓ

µ
ρσλdx

λ, Σσµ
ρσλdx

λ := [dxσ, Γµρσ]. (4.12)

In terms of the classical Riemann tensor plus corrections from the quantum
part of the Christoffel symbol, the new Riemann tensor reads,

R̃µσαρ = Rµσαρ + qΓ
µ
ρσα − qΓ

µ
ασρ + Γµαλ qΓ

λ
ρσ + qΓ

µ
αλΓ

λ
ρσ − Γ

µ
ρλ qΓ

λ
ασ − qΓ

µ
ρλΓ

λ
ασ

+ Γµλβ(Σλβ
ρσα −Σλβ

ασρ).

Proof. The action of the curvature upon the coordinated basis of one-forms is
given in terms of its defining Equation (4.10)

R(dxµ) :=(d⊗ I− (∧ ⊗ I) ◦ (I⊗∇))∇(dxµ),

by inserting the equation ∇(dxµ) = −Γ̃µρσdxρ ⊗ dxσ into the Riemann tensor
one has

=− (d⊗ I− (∧ ⊗ I) ◦ (I⊗∇))(Γ̃µρσdx
ρ ⊗ dxσ)

=− d(Γ̃µρσdx
ρ)⊗ dxσ + (Γ̃µρσdx

ρ ∧∇(dxσ))

=− d(Γ̃µρσ) ∧ dxρ ⊗ dxσ − Γ̃µρσdxρ ∧ Γ̃σαβdxα ⊗ dxβ .

Since we want a 3-form, we have to take all elements of the algebra to the left,
c.f. [Lan14, Chapter 7, Eq. (7.12)]. In order to do this we need to commute
a Christoffel symbol with an element of the basis of one-forms. Given that
our calculation is up to first order, we only consider the classical part of the
Christoffel symbol multiplying the commutator

'− dΓ̃µρσ ∧ dxρ ⊗ dxσ − Γ̃µρσΓ̃σαβdxρ ∧ dxα ⊗ dxβ − Γµρσ[dxρ, Γσαβ ] ∧ dxα ⊗ dxβ ,

rearranging indices and using the definition of the commutator of a 1-form
with a classical Christoffel symbol given in the third expression of Equations
(4.12) we get

R(dxµ) =− (Γ̃µαβλ + Γ̃µλσΓ̃
σ
αβ + ΓµρσΣ

ρσ
αβλ)dxλ ∧ dxα ⊗ dxβ

=− (Γ̃µαβλ + Γ̃µλσΓ̃
σ
αβ + ΓµρσΣ

ρσ
αβλ − Γ̃

µ
λβα − Γ̃

µ
ασΓ̃

σ
λβ

− ΓµρσΣ
ρσ
λβα)dxλ ⊗ dxα ⊗ dxβ .

Therefore, the components of the Riemann tensor are

R̃µβαλ = Γ̃µλβα − Γ̃
µ
αβλ + Γ̃µασΓ̃

σ
λβ − Γ̃

µ
λσΓ̃

σ
αβ + Γµρσ(Σρσ

λβα −Σ
ρσ
αβλ).

Writing down the quantum corrected Christoffel symbol as its classical plus
quantum parts we arrive to our result

R̃µσαρ = Rµσαρ + qΓ
µ
ρσα − qΓ

µ
ασρ + Γµαλ qΓ

λ
ρσ + qΓ

µ
αλΓ

λ
ρσ − Γ

µ
ρλ qΓ

λ
ασ − qΓ

µ
ρλΓ

λ
ασ

+ Γµλβ(Σλβ
ρσα −Σλβ

ασρ).
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In order to calculate the Einstein-tensor we need the non-commutative analogs
of the Ricci tensor and scalar. In order to avoid certain ambiguities encoun-
tered by the original authors, [BM14], we define these quantities as one does
in usual geometry. The motivation therein is two-fold. The first reason is, as
already pointed out, to avoid certain ambiguities. The second reason comes
from the core of the deformation quantization argument. Namely, up to zero
order in the deformation parameters, which in our case are represented by
the structure constants, the observables or quantities at hand are the clas-
sical ones. Hence, since we consider the obtained Christoffel symbols as the
classical ones plus quantum corrections, the Ricci tensor and scalar that are
obtained classically by the trace have to be in the quantum case up to first
order obtainable in the same manner. Moreover, the metric itself has no de-
formation parameter explicitly. Hence, the (left) inverse metric should obey
the same property. Therefore, we give in the following the definition of the
Ricci tensor and scalar.

Definition 4.15 (Left-inverse of the metric). Let gµν be the components
of the left inverse metric

Definition 4.16 (Ricci tensor and scalar). The Ricci tensor is the trace
of the Riemann tensor over the first and third indices and the Ricci scalar is
the trace over the two indices of the Ricci tensor, i.e.

R̃βλ := R̃µβµλ, R̃ := gµνR̃µν .

Next, we give the explicit formulas for the Ricci tensor and scalar by using
the general formula for the covariant derivative and in particular by using the
result of the Riemann-tensor (see Proposition 4.14).

Proposition 4.17. [Ricci tensor and Ricci scalar] By using the explicit re-
sult of the Riemann-tensor (see Proposition 4.14) and the former definition
the Ricci tensor is given in terms of the Christoffel symbols Γ, qΓ and Γ̃ as
follows,

R̃βλ = Γ̃µλβµ − Γ̃
µ
µβλ + Γ̃µµσΓ̃

σ
λβ − Γ̃

µ
λσΓ̃

σ
µβ + Γµρσ(Σρσ

λβµ −Σ
ρσ
µβλ).

If we decide to write down once more the quantum corrected Riemann symbol
as a classical part plus a purely quantum one, we obtain

R̃σρ = Rσρ + qΓ
µ
ρσµ − qΓ

µ
µσρ + Γµµλ qΓ

λ
ρσ + qΓ

µ
µλΓ

λ
ρσ − Γ

µ
ρλ qΓ

λ
µσ − qΓ

µ
ρλΓ

λ
µσ

+ Γµλβ(Σλβ
ρσµ −Σλβ

µσρ) (4.13)

tracing once again leads us to the Ricci scalar that reads

R̃ = R+ gρσ
(
qΓ

µ
ρσµ − qΓ

µ
µσρ + Γµµλ qΓ

λ
ρσ + qΓ

µ
µλΓ

λ
ρσ − Γ

µ
ρλ qΓ

λ
µσ − qΓ

µ
ρλΓ

λ
µσ

+Γµλβ(Σλβ
ρσµ −Σλβ

µσρ)
)
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By using the former results of the Ricci tensor and scalar we finally turn our
attention to the observable that is of real physical importance, i.e. the Einstein
tensor. Hence, in the following we give the explicit expression for the Einstein
tensor for a general Lie-algebraic space-time.

Theorem 4.18 (Einstein tensor in a coordinated bass). The Einstein
tensor is defined analogously to the classical by taking the classical and quan-
tum parts of the Ricci tensor and scalar (see former Proposition), i.e.

G̃σρ := R̃σρ −
1

2
R̃gσρ.

Hence, the explicit Einstein tensor reads

G̃σρ =Gσρ + qΓ
µ
ρσµ − qΓ

µ
µσρ + Γµµλ qΓ

λ
ρσ + qΓ

µ
µλΓ

λ
ρσ − Γ

µ
ρλ qΓ

λ
µσ − qΓ

µ
ρλΓ

λ
µσ

+ Γµλβ(Σλβ
ρσµ −Σλβ

µσρ)−
1

2
gαβ

(
qΓ

µ
αβµ − qΓ

µ
µβα + Γµµλ qΓ

λ
αβ + qΓ

µ
µλΓ

λ
αβ

−Γµαλ qΓ
λ
µβ − qΓ

µ
αλΓ

λ
µβ + Γµλβ(Σλτ

αβµ −Σλτ
µβα)

)
gσρ. (4.14)

Proof. It is immediate from Proposition 4.17.

Here it is important to observe that this definition for the non-commutative
Einstein tensor arises from analogy. It is not a consequence of a non-commutative
equivalent of the Ricci identities nor is a consequence of the variation of an
action. Is a proposal that in the classical limit matches with Einstein’s theory,
in the next session we are going to explore its validity and usefulness in several
physical scenarios.
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Physical examples

In this section we study some examples. The Bicrossproduct model allows us
to check the validity of our formula since it can be compared with Majid’s
calculation. Then we study a two-dimensional conformal space-time, which
later is generalized to four dimensions in order to have results that can be
interpreted in the usual sense of gravity. Finally we show an application in a
cosmological context, mainly in the FRW model.

5.1 Bicrossproduct model

First, since we proved that we generalized the results in BM14, a nice consis-
tency check is to see if the general formula reproduces the results that were
obtained by the original authors. The algebra of the so called Bicrossproduct
model is defined in the following.

Definition 5.1 (Bicrossproduct model algebra). The Lie algebra for the
bicrossproduct model os space-time is

[x, t] = λx [x, dt] = λdx [t, dt] = λdt.

Which readily implies that

D00
0 = −λ D01

1 = −λ,

Definition 5.2 (Classical Christoffel symbols in the bicrossproduct
model). The classical Christoffel symbols in this case are given by

0Γ
0
µν =

(
−2bt 1+2bt2

x
1+2bt2

x −2t 1+bt
2

x2

)
0Γ

1
µν =

(
−2bx 2bt

2bt −2b t
2

x

)
,

Next, we introduce the following central quantity
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v = xdt− tdx,

this enables us to write the classical connections as

∇0(dx) =
2b

x
v ⊗ v ∇0(v) = − 2

x
v ⊗ dx,

which are not expressed in a coordinated basis. we want to observe

∇0(v) = ∇0(xdt− tdx) =dx⊗ dt− dt⊗ dx+ x∇0(dt)− t∇0(dx)

Lemma 5.3 (Classical connection on dt). The classical connection acting
on dt is

∇0(dt) =
1

x2
(−v ⊗ dx+ 2btv ⊗ v − dx⊗ v)

Proof.

∇0(dt) =
1

x
(∇0(v) + t∇0(dx)− dx⊗ dt+ dt⊗ dx)

=
1

x
(− 2

x
v ⊗ dx+

2bt

x
v ⊗ v − dx⊗ dt+ dt⊗ dx)

=
1

x2
(−2v ⊗ dx+ 2btv ⊗ v − dx⊗ (v + tdx) + (v + tdx)⊗ dx)

=
1

x2
(−v ⊗ dx+ 2btv ⊗ v − dx⊗ v − dx⊗ tdx+ tdx⊗ dx)

=
1

x2
(−v ⊗ dx+ 2btv ⊗ v − dx⊗ v)

It is of our interest to calculate

[t,∇0(dt)] [x,∇0(dt)] [t,∇0(dx)] [x,∇0(dx)],

Proposition 5.4. [Commutators between coordinates and classical connec-
tions] The commutators between all the coordinates and the classical connec-
tions are

[t,∇0(dt)] =
2λ

x2
(
2btx2dt⊗ dt− x(1 + 2bt2)(dt⊗ dx+ dx⊗ dt) + 2t(1 + bt2)dx⊗ dx

)
=2λ∇0(dt)

[x,∇0(dt)] =
2bλ

x
v ⊗ v = λ∇0(dx)

[t,∇0(dx)] =
2bλ

x
v ⊗ v = λ∇0(dx)

[x,∇0(dx)] =0

The result clearly matches the general formula.
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5.2 2-dimensional Lie algebra

Consider the most general Lie algebra in 2-dimensions

[x, t] = αx+ βt, α, β ∈ C/R

Lemma 5.5 (The Λ, Λ̃ quantities). Let us define

Λ =: α+ βx−1t Λ̃ =: β + αt−1x,

then the following equalities hold for every k ∈ N

(x− β)kΛ = Λxk, (t− α)kΛ̃ = Λ̃tk (5.1)

Proof. First we have to calculate the following commutators

[Λ, x] = βx−1[t, x] = −βΛ, [Λ̃, t] = αt−1[x, t] = αΛ̃,

and now we proof by induction for the first equality, the procedure for the
second is analogous. The case k = 1 renders

(x− β)Λ = Λ(x− β) + [x,Λ] = Λ(x− β) + βΛ = Λx,

we suppose for k = n and analyse when k = n+ 1

(x− β)n+1Λ = (x− β)Λxn = Λ(x− β)xn + [x,Λ]xn = Λxn+1 − βΛxn + βΛxn = Λxn+1

Lemma 5.6 (Commutator of the coordinates and their integer pow-
ers). The commutators between the generators of the algebra and any integer
power of them has a closed form and it is

[t, xn] =
x

β
((x− β)n − xn)Λ [x, tn] = − t

α
((t− α)n − tn) Λ̃.

Proof. Please note that

[x, t] = xΛ = tΛ̃

Consider the commutator and expand it

[t, xn] =txn − xnt = txn − xn−1tx− xnΛ = txn − xn−2tx2 − xn−1Λx− xnΛ
=txn − xn−2tx2 − xn−1(x− β)Λ− xnΛ
=txn − xn−3tx3 − xn−2Λx2 − xn−1(x− β)Λ− xnΛ
=txn − xn−3tx3 − xn−2(x− β)2Λ− xn−1(x− β)Λ− xnΛ

...

=− x(x− β)n−1Λ− x2(x− β)n−1Λ − · · · − xn−2(x− β)2Λ− xn−1(x− β)Λ

=−

(
n∑
k=1

xk(x− β)n−k

)
Λ = −(x− β)n

(
n∑
k=1

xk(x− β)−k

)
Λ

=− (x− β)n

(
n∑
k=0

xk(x− β)−k − 1

)
Λ.
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Now we make use of the closed form of the geometric series

[t, xn] =− (x− β)n
(

[1− xn+1(x− β)−(n+1)][1− x(x− β)−1]−1 − 1
)
Λ

=− (x− β)n
(

[1− xn+1(x− β)−(n+1)]− [1− x(x− β)−1]
)

[1− x(x− β)−1]−1Λ,

note that

1− x(x− β)−1 = (x− β − x)(x− β)−1 = −β(x− β)−1,

consequently we obtain

[t, xn] =β−1(x− β)n
(
−xn+1(x− β)−(n+1) + x(x− β)−1

)
(x− β)Λ

=
x

β
(x− β)n

(
−xn(x− β)−n + 1

)
Λ

=
x

β
((x− β)n − xn)Λ

The procedure for the second commutator is the same.

5.3 2-dimensional conformally flat space-time

Let us consider the following non-commutative metric over a two-dimensional
Lie algebraic space-time

gµν = ea0tea1xηµν

Lemma 5.7 (Commutator between the algebra and the exponen-
tials). We claim that

[t, ea1x] =− 2

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)

[x, ea0t] =
2

α
ea0(t−α/2) sinh

(a0α
2

)
(αx+ βt).

Proof. Consider the power series expansion for the exponential

eA =

∞∑
k=0

Ak

k!
,

then we need to investigate the non-trivial commutators of both generators of
the algebra with powers of it

[t, ea1x] =
x

β

∞∑
k=1

(a1)k

k!

(
(x− β)k − xk

)
Λ =

x

β

(
ea1(x−β) − 1− (ea1x − 1)

)
Λ

=
x

β
ea1x

(
e−a1β − 1

)
Λ = −2

x

β
ea1(x−β/2) sinh

(
a1β

2

)
Λ

=− 2

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)
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the other commutator is immediate to find.

Proposition 5.8 (Differential structure from centrality condition).
The centrality condition imposes some constraints that lead to

D00
0 = 0, D00

1 = −β, D01
0 = −β, D10

0 = 0

D01
1 = 0, D10

1 = α, D11
0 = α, D11

1 = 0.

Also, in order to hold consistency we have

a0 =
n

α̃
π a1 =

m

β̃
π m, n ∈ Z,

where α = iα̃, β = iβ̃.

Proof. See appendix.

Proposition 5.9 (Classical Christoffel symbols). The classical Christof-
fel symbols are

0Γ
λ
µν =

ηλκ

2
(ηµκaν + ηνκaµ − ηµνaκ) =

1

2
(δλµaν + δλν aµ − ηµνaλ),

written in matrix form, this is

0Γ
0
µν =

1

2

(
a0 a1
a1 a0

)
, 0Γ

1
µν =

1

2

(
a1 a0
a0 a1

)
,

Proof. Let us take the exterior derivative of the metric

dgµν =ηµνd(ea0tea1x) = ηµν(a0e
a0tdtea1x + a1e

a0tea1xdx)

=ηµνe
a0tea1x(a0dt+ a1dx) + ηµνa0[dt, ea1x],

to calculate the commutator we note that due to the consistency conditions of
proposition 5.8 we have

[t, ea1x] = 0, [x, ea0t] = 0,

if we differentiate the first commutator we get

[dt, ea1x] =− [t, d(ea1x)] = −a1[t, ea1xdx] = −a1 [t, ea1x]︸ ︷︷ ︸
=0

dx− a1ea1x [t, dx]︸ ︷︷ ︸
−αdx

=a1αe
a1xdx,

which we substitute in the exterior derivative of the metric

dgµν =ηµνe
a0tea1x(a0dt+ a1dx) + ηµνa0a1αe

a1xdx,

disregarding the quantum terms and defining hµνλdx
λ := dgµν we have
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hµνλ = ηµνaλe
a0tea1x.

The classical Christoffel symbols are defined as

0Γ
λ
µν =

gλκ

2
(hµκν + hνκµ − hµνκ) ,

in the present case we have

0Γ
λ
µν =

ηλκ

2
(ηµκaν + ηνκaµ − ηµνaκ) ,

Or in matrix form

0Γ
0
µν =

1

2

(
a0 a1
a1 a0

)
, 0Γ

1
µν =

1

2

(
a1 a0
a0 a1

)
Proposition 5.10. [Quantum Christoffel symbols for the conformally flat
space-time] The quantum-corrected Christoffel symbols are

Γ̃ 0
ρσ =

1

2

(
a0 a1
a1 a0

)
+
αa0a1

4

a1a0 1

1
a0
a1

− (a1)2

8

(
α β

β 2β
a0
a1
− α

)
− (a0)2

8

(
−α+ 2β

a1
a0

β

β α

)

Γ̃ 1
ρσ =

1

2

(
a1 a0
a0 a1

)
+

(a1)2

8

(
β α

α 2α
a0
a1
− β

)
+

(a0)2

8

(
2α
a1
a0
− β α

α β

)
− βa0a1

4

a1a0 1

1
a0
a1

 .

Proposition 5.11 (Riemann tensor). The Riemann tensor for the con-
formally flat metric is identically zero. Which means that up to O(D2) the
space-time is flat and is a vacuum solution.

Proof. Consider the formula for the Riemann tensor

Rµβαλ = Γ̃µασΓ̃
σ
λβ − Γ̃

µ
λσΓ̃

σ
αβ ,

where we have dropped three terms due to the fact that the Christoffel symbols
are constant, consider µ, β fixed, we only have one component

Rµβ01 = Γ̃µ00Γ̃
0
1β − Γ̃

µ
10Γ̃

0
0β + Γ̃µ01Γ̃

1
1β − Γ̃

µ
11Γ̃

1
0β ,

which renders four cases, the first is

R0
001 =Γ̃ 0

00Γ̃
0
10 − Γ̃ 0

10Γ̃
0
00 + Γ̃ 0

01Γ̃
1
10 − Γ̃ 0

11Γ̃
1
00 = [Γ̃ 0

00, Γ̃
0
10]︸ ︷︷ ︸

=0

+Γ̃ 0
01Γ̃

1
10 − Γ̃ 0

11Γ̃
1
00

=Γ̃ 0
01Γ̃

1
10 − Γ̃ 0

11Γ̃
1
00

=
1

4

(
a1 + α

a0a1
2
− β (a0)2 + (a1)2

4

)(
a0 − β

a0a1
2

+ α
(a0)2 + (a1)2

4

)
− 1

4

(
a0 + α

(a0)2 + (a1)2

4
− β a0a1

2

)(
a1 − β

(a1)2 + (a0)2

4
+ α

a0a1
2

)
=0,
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The second is

R0
101 =Γ̃ 0

00Γ̃
0
11 − Γ̃ 0

10Γ̃
0
01 + Γ̃ 0

01Γ̃
1
11 − Γ̃ 0

11Γ̃
1
01

=
1

4

(
a0 + α

(a0)2 + (a1)2

4
− β a0a1

2

)2

− 1

4

(
a1 + α

a0a1
2
− β (a0)2 + (a1)2

4

)2

+
1

4

(
a1 + α

a0a1
2
− β (a0)2 + (a1)2

4

)2

− 1

4

(
a0 + α

(a0)2 + (a1)2

4
− β a0a1

2

)2

=0

The third

R1
001 =Γ̃ 1

00Γ̃
0
10 − Γ̃ 1

10Γ̃
0
00 + Γ̃ 1

01Γ̃
1
10 − Γ̃ 1

11Γ̃
1
00

=
1

4

(
a1 − β

(a1)2 + (a0)2

4
+ α

a0a1
2

)2

− 1

4

(
a0 + α

(a0)2 + (a1)2

4
− β a0a1

2

)2

+
1

4

(
a0 + α

(a0)2 + (a1)2

4
− β a0a1

2

)2

− 1

4

(
a1 + α

a0a1
2
− β (a0)2 + (a1)2

4

)2

=0.

The fourth and last one is

R1
101 =Γ̃ 1

00Γ̃
0
11 − Γ̃ 1

10Γ̃
0
01 + Γ̃ 1

01Γ̃
1
11 − Γ̃ 1

11Γ̃
1
01 = Γ̃ 1

00Γ̃
0
11 − Γ̃ 1

10Γ̃
0
01 + [Γ̃ 1

01, Γ̃
1
11]︸ ︷︷ ︸

=0

=
1

4

(
a1 − β

(a1)2 + (a0)2

4
+ α

a0a1
2

)(
a0 + α

(a0)2 + (a1)2

4
− β a0a1

2

)
− 1

4

(
a0 + α

(a0)2 + (a1)2

4
− β a0a1

2

)(
a1 − β

(a1)2 + (a0)2

4
+ α

a0a1
2

)
=0.

This result was expected of course.

5.4 4-dimensional conformally flat space-time

Now let us take a look for the 4-dimensional case keeping the non-commutativity
just between time and one spatial coordinate and with the following metric

gµν = ea0tea1xeaîx
î

ηµν ,

where î = 23 labels the commutative coordinates.

Proposition 5.12 (Deformation of the differential structure for the
n-dimensional case). The centrality condition implies
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Dµν
ν = 0 ( for fixed ν) D00

i = −βδ1i = D0i
0 D01

ĵ
= −D0ĵ

1 := γĵ

D0î
ĵ

= −D0ĵ

î
:= φij D10

1 = α = D11
0 D1î

1 = −D11
î

= ξî

D1î
ĵ

= −D1ĵ

î
= −Dîĵ

1 =: χij Dîˆ̀
1 = −Dî1

ˆ̀ =: ζ îˆ̀ Dîˆ̀

ĵ
= −Dîĵ

ˆ̀ =: ωîˆ̀̂j .

However from now on we choose to make zero most of them, so the only
non-vanishing quantities are

D00
i = −βδ1i = D0i

0 D10
1 = α = D11

0.

Proof. See appendix.

Proposition 5.13 (Classical Christoffel symbols for the n-dimensional
case). For the n-dimensional case the Christoffel symbols are

0Γ
0
µν =

1

2


a0 a1 a2 a3 · · ·
a1 a0 0 0 · · ·
a2 0 a0 0 · · ·
a3 0 0 a0 · · ·
...

...
...

...
. . .

 , 0Γ
1
µν =

1

2


a1 a0 0 0 · · ·
a0 a1 a2 a3 · · ·
0 a2 −a1 0 · · ·
0 a3 0 −a1 · · ·
...

...
...

...
. . .



0Γ
2
µν =

1

2


a2 0 a0 0 · · ·
0 −a2 a1 0 · · ·
a0 a1 a2 a3 · · ·
0 0 a3 −a2 · · ·
...

...
...

...
. . .

 , 0Γ
3
µν =

1

2


a3 0 0 a0 · · ·
0 −a3 0 a1 · · ·
0 0 −a3 a2 · · ·
a0 a1 a2 a3 · · ·
...

...
...

...
. . .

 .

Proof. It is immediate to check using

0Γ
λ
µν =

1

2
(δλµaν + δλν aµ − ηλκηµνaκ)

Remark 5.14 (Christoffel symbol for commutative generators). We want to
draw attention on a fact contained in the last proposition

0Γ
î
0ν = aîδ0ν + a0δîν 0Γ

î
1ν = −aîδ1ν + a1δîν 0Γ

î
01 = 0 = 0Γ

î
10

Proposition 5.15 (Quantum Christoffel symbols for the 4-dimensional
case). The quantum-corrected Christoffel symbols are

Γ̃ 0
ρσ =

1

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0

− (a0)2

8


2β a1a0 − α β 0 0

β α 0 0
0 0 α 0
0 0 0 α

− (a1)2

8


α β 0 0
β 2β a0a1 − α 0 0

0 0 −α 0
0 0 0 −α



− (a2)2

8


0 β 0 0

β 2α βa0−αa1
a2

0

0 βa0−αa1
a2

0 0

0 0 0 0

− (a3)2

8


0 β 0 0

β 2α 0 βa0−αa1
a3

0 0 0 0

0 βa0−αa1
a3

0 0

+
αa0a1

4


a1
a0

1 0 0

1 a0
a1

0 0

0 0 0 0
0 0 0 0

 ,
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Γ̃ 1
ρσ =

1

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1

+
(a0)2

8


2αa1a0 − β α 0 0

α β 0 0
0 0 β 0
0 0 0 β

+
(a1)2

8


β α 0 0
α 2αa0a1 − β 0 0

0 0 −β 0
0 0 0 −β



− (a2)2

8


2β α βa0−αa1

a2
0

α 0 0 0
βa0−αa1

a2
0 0 0

0 0 0 0

− (a3)2

8


2β α 0 βa0−αa1

a3
α 0 0 0
0 0 0 0

βa0−αa1
a3

0 0 0

− βa0a1
4


a1
a0

1 0 0

1 a0
a1

0 0

0 0 0 0
0 0 0 0

 ,

Γ̃ 2
ρσ =

1

2


a2 0 a0 0
0 −a2 a1 0
a0 a1 a2 a3
0 0 a3 −a2

− βa1a2
8


1 0 a0

a2
− α

β
a1
a2

0

0 1− 2αβ
a0
a1

0 0
a0
a2
− α

β
a1
a2

0 1 0

0 0 0 1



− αa0a2
8


1− 2βα

a1
a0

0 0 0

0 1 β
α
a0
a2
− a1

a2
0

0 β
α
a0
a2
− a1

a2
−1 0

0 0 0 −1

 ,

Γ̃ 3
ρσ =

1

2


a3 0 0 a0
0 −a3 0 a1
0 0 −a3 a2
a0 a1 a2 a3

− βa1a3
8


1 0 0 a0

a3
− α

β
a1
a3

0 1− 2αβ
a0
a1

0 0

0 0 1 0
a0
a3
− α

β
a1
a3

0 0 1



− αa0a3
8


1− 2βα

a1
a0

0 0 0

0 1 0 β
α
a0
a3
− a1

a3
0 0 −1 0

0 β
α
a0
a3
− a1

a3
0 −1


Proof. As in the last case, we consider the general formula

Γ̃µρσ = 0Γ
µ
ρσ +

1

2
0Γ

µ
αβ(Dλβ

ρ 0Γ
α
λσ +Dλβ

σ 0Γ
α
ρλ −D

αβ
λ 0Γ

λ
ρσ).

And highlight once more that the last term is not present because in our case
due to the fact [xα, 0Γ

β
ρσ] = 0. Allow us to study the general case
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Γ̃µρσ = 0Γ
µ
ρσ +

0Γ
µ
00

2
(Dλ0

ρ 0Γ
0
λσ +Dλ0

σ 0Γ
0
λρ −D00

1︸︷︷︸
=−β

0Γ
1
ρσ) +

0Γ
µ
01

2
(Dλ1

ρ 0Γ
0
λσ +Dλ1

σ 0Γ
0
ρλ −D01

0︸︷︷︸
=−β

0Γ
0
ρσ)

+
0Γ

µ

0î

2
(Dλî

ρ 0︸ ︷︷ ︸
=0

Γ 0
λσ +Dλî

σ︸︷︷︸
=0

0Γ
0
ρλ −D0î

k︸︷︷︸
=0

0Γ
k
ρσ) +

0Γ
µ
10

2
(Dλ0

ρ 0Γ
1
λσ +Dλ0

σ 0Γ
1
ρλ −D10

1︸︷︷︸
=α

0Γ
1
ρσ)

+
0Γ

µ

î0

2
(Dλ0

ρ 0Γ
î
λσ +Dλ0

σ 0Γ
î
ρλ −Dî0

k︸︷︷︸
=0

0Γ
k
ρσ) +

0Γ
µ
11

2
(Dλ1

ρ 0Γ
1
λσ +Dλ1

σ 0Γ
1
ρλ −D11

0︸︷︷︸
=α

0Γ
0
ρσ)

+
0Γ

µ

1î

2
(Dλî

ρ︸︷︷︸
=0

0Γ
1
λσ +Dλî

σ︸︷︷︸
=0

0Γ
1
ρλ −D1î

λ︸︷︷︸
=0

0Γ
λ
ρσ) +

0Γ
µ

î1

2
(Dλ1

ρ 0Γ
î
λσ +Dλ1

σ 0Γ
î
ρλ −Dî1

λ︸︷︷︸
=0

0Γ
λ
ρσ)

+
0Γ

µ

îĵ

2
(Dλĵ

ρ︸︷︷︸
=0

0Γ
α
λσ +Dλĵ

σ︸︷︷︸
=0

0Γ
α
ρλ −D

îĵ
λ︸︷︷︸

=0

0Γ
λ
ρσ),

which ends up in

Γ̃µρσ = 0Γ
µ
ρσ +

0Γ
µ
00

2
(Dλ0

ρ 0Γ
0
λσ +Dλ0

σ 0Γ
0
λρ + β 0Γ

1
ρσ) +

0Γ
µ
01

2
(Dλ1

ρ 0Γ
0
λσ +Dλ1

σ 0Γ
0
ρλ + β 0Γ

0
ρσ)

+
0Γ

µ
10

2
(Dλ0

ρ 0Γ
1
λσ +Dλ0

σ 0Γ
1
ρλ − α 0Γ

1
ρσ) +

0Γ
µ

î0

2
(Dλ0

ρ 0Γ
î
λσ +Dλ0

σ 0Γ
î
ρλ)

+
0Γ

µ
11

2
(Dλ1

ρ 0Γ
1
λσ +Dλ1

σ 0Γ
1
ρλ − α 0Γ

0
ρσ) +

0Γ
µ

î1

2
(Dλ1

ρ 0Γ
î
λσ +Dλ1

σ 0Γ
î
ρλ),

before proceeding we shall write down the form of the Dλµ
ρ matrices with µ

fixed

Dλ0
ρ =


0 0 0 0
−β α 0 0
0 0 0 0
0 0 0 0

 , Dλ1
ρ =


−β α 0 0
0 0 0 0
0 0 0 0
0 0 0 0


as in the last case we shall study each term of the sum. The first one being
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Dλ0
ρ 0Γ

0
λσ +Dλ0

σ 0Γ
0
λρ + β 0Γ

1
ρσ

=
1

2


0 0 0 0

αa1 − βa0 αa0 − βa1 −βa2 −βa3
0 0 0 0
0 0 0 0

+
1

2


0 αa1 − βa0 0 0
0 αa0 − βa1 0 0
0 −βa2 0 0
0 −βa3 0 0

+
β

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=
1

2


0 αa1 − βa0 0 0

αa1 − βa0 2αa0 − 2βa1 −βa2 −βa3
0 −βa2 0 0
0 −βa3 0 0

+
β

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=
a1
2


β α 0 0
α 2αa0a1 − β 0 0

0 0 −β 0
0 0 0 −β

 ,

while the second renders

Dλ1
ρ 0Γ

0
λσ +Dλ1

σ 0Γ
0
ρλ + β 0Γ

0
ρσ

=
1

2


αa1 − βa0 αa0 − βa1 −βa2 −βa3

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


αa1 − βa0 0 0 0
αa0 − βa1 0 0 0
−βa2 0 0 0
−βa3 0 0 0

+
β

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=
1

2


2αa1 − 2βa0 αa0 − βa1 −βa2 −βa3
αa0 − βa1 0 0 0
−βa2 0 0 0
−βa3 0 0 0

+
β

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=
a0
2


2αa1a0 − β α 0 0

α β 0 0
0 0 β 0
0 0 0 β

 .

The third is quite similar
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Dλ0
ρ 0Γ

1
λσ +Dλ0

σ 0Γ
1
ρλ − α 0Γ

1
ρσ

=
1

2


0 0 0 0

αa0 − βa1 αa1 − βa0 αa2 αa3
0 0 0 0
0 0 0 0

+
1

2


0 αa0 − βa1 0 0
0 αa1 − βa0 0 0
0 αa2 0 0
0 αa3 0 0

− α

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=
1

2


0 αa0 − βa1 0 0

αa0 − βa1 2αa1 − 2βa0 αa2 αa3
0 αa2 0 0
0 αa3 0 0

− α

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=− a1
2


α β 0 0
β 2β a0a1 − α 0 0

0 0 −α 0
0 0 0 −α

 ,

the fourth is simpler, but it splits in two cases

Dλ0
ρ 0Γ

2
λσ +Dλ0

σ 0Γ
2
ρλ =

1

2


0 0 0 0
−βa2 −αa2 αa1 − βa0 0

0 0 0 0
0 0 0 0

+
1

2


0 −βa2 0 0
0 −αa2 0 0
0 αa1 − βa0 0 0
0 0 0 0



=− a2
2


0 β 0 0

β 2α βa0−αa1
a2

0

0 βa0−αa1
a2

0 0

0 0 0 0



Dλ0
ρ 0Γ

3
λσ +Dλ0

σ 0Γ
3
ρλ =

1

2


0 0 0 0
−βa3 −αa3 0 αa1 − βa0

0 0 0 0
0 0 0 0

+
1

2


0 −βa3 0 0
0 −αa3 0 0
0 0 0 0
0 αa1 − βa0 0 0



=− a3
2


0 β 0 0

β 2α 0 βa0−αa1
a3

0 0 0 0

0 βa0−αa1
a3

0 0

 .

For the fifth we proceed as usual
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Dλ1
ρ 0Γ

1
λσ +Dλ1

σ 0Γ
1
ρλ − α 0Γ

0
ρσ

=
1

2


αa0 − βa1 αa1 − βa0 αa2 αa3

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


αa0 − βa1 0 0 0
αa1 − βa0 0 0 0

αa2 0 0 0
αa3 0 0 0

− α

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=
1

2


2αa0 − 2βa1 αa1 − βa0 αa2 αa3
αa1 − βa0 0 0 0

αa2 0 0 0
αa3 0 0 0

− α

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=− a0
2


2β a1a0 − α β 0 0

β α 0 0
0 0 α 0
0 0 0 α

 .

The sixth and last also contains two possibilities

Dλ1
ρ 0Γ

2
λσ +Dλ1

σ 0Γ
2
ρλ =

1

2


−βa2 −αa2 αa1 − βa0 0

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


−βa2 0 0 0
−αa2 0 0 0

αa1 − βa0 0 0 0
0 0 0 0



=− a2
2


2β α βa0−αa1

a2
0

α 0 0 0
βa0−αa1

a2
0 0 0

0 0 0 0



Dλ1
ρ 0Γ

3
λσ +Dλ1

σ 0Γ
3
ρλ =

1

2


−βa3 −αa3 0 αa1 − βa0

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


−βa3 0 0 0
−αa3 0 0 0

0 0 0 0
αa1 − βa0 0 0 0



=− a3
2


2β α 0 βa0−αa1

a3
α 0 0 0
0 0 0 0

βa0−αa1
a3

0 0 0

 .

Now we may , for µ = 0 we have
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Γ̃ 0
ρσ =

1

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0

+
a0a1

8


2αa1a0 2α 0 0

2α 2αa0a1 0 0

0 0 0 0
0 0 0 0

− (a1)2

8


α β 0 0
β 2β a0a1 − α 0 0

0 0 −α 0
0 0 0 −α



− (a2)2

8


0 β 0 0

β 2α βa0−αa1
a2

0

0 βa0−αa1
a2

0 0

0 0 0 0

− (a3)2

8


0 β 0 0

β 2α 0 βa0−αa1
a3

0 0 0 0

0 βa0−αa1
a3

0 0



− (a0)2

8


2β a1a0 − α β 0 0

β α 0 0
0 0 α 0
0 0 0 α

 .

For µ = 1 we have

Γ̃ 1
ρσ =

1

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1

+
(a1)2

8


β α 0 0
α 2αa0a1 − β 0 0

0 0 −β 0
0 0 0 −β

+
(a0)2

8


2αa1a0 − β α 0 0

α β 0 0
0 0 β 0
0 0 0 β



− a0a1
8


2β a1a0 2β 0 0

2β 2β a0a1 0 0

0 0 0 0
0 0 0 0

− (a2)2

8


2β α βa0−αa1

a2
0

α 0 0 0
βa0−αa1

a2
0 0 0

0 0 0 0



− (a3)2

8


2β α 0 βa0−αa1

a3
α 0 0 0
0 0 0 0

βa0−αa1
a3

0 0 0

 .

For µ = 2 we obtain

Γ̃ 2
ρσ =

1

2


a2 0 a0 0
0 −a2 a1 0
a0 a1 a2 a3
0 0 a3 −a2

+
a1a2

8


−β 0 −βa0−αa1a2

0

0 2αa0a1 − β 0 0

−βa0−αa1a2
0 −β 0

0 0 0 −β



+
a0a2

8


2β a1a0 − α 0 0 0

0 −α −βa0−αa1a2
0

0 −βa0−αa1a2
α 0

0 0 0 α


And finally, for µ = 3 we reach
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Γ̃ 3
ρσ =

1

2


a3 0 0 a0
0 −a3 0 a1
0 0 −a3 a2
a0 a1 a2 a3

+
a1a3

8


−β 0 0 −βa0−αa1a3
0 2αa0a1 − β 0 0

0 0 −β 0

−βa0−αa1a3
0 0 −β



+
a0a3

8


2β a1a0 − α 0 0 0

0 −α 0 −βa0−αa1a3
0 0 α 0

0 −βa0−αa1a3
0 α

 .

It is evident that any calculation involving these Christoffel symbols is very
difficult, that is why we consider the homogeneous case

Proposition 5.16 (Homogeneous case). Let a0 = a1 =: a, α = β =: Θ
and (a2)2 + (a3)2 =: b2, then the 4-dimensional Christoffel symbols become

Γ̃ 0
ρσ =

1

2


a a a2 a3
a a 0 0
a2 0 a 0
a3 0 0 a

− θ b28


0 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0



=
1

2


a a− θ b

2

4 a2 a3
a− θ b

2

4 a− θ b
2

2 0 0
a2 0 a 0
a3 0 0 a



Γ̃ 1
ρσ =

1

2


a a 0 0
a a a2 a3
0 a2 −a 0
0 a3 0 −a

− θ b28


2 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



=
1

2


a− θ b

2

2 a− θ b
2

4 0 0

a− θ b
2

4 a a2 a3
0 a2 −a 0
0 a3 0 −a



Γ̃ 2
ρσ = 0Γ

2
ρσ =

1

2


a2 0 a 0
0 −a2 a 0
a a a2 a3
0 0 a3 −a2



Γ̃ 3
ρσ = 0Γ

3
ρσ =

1

2


a3 0 0 a
0 −a3 0 a
0 0 −a3 a2
a a a2 a3

 .

Proof. First let us see what happens when a0 = a1 =: a
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Γ̃ 0
ρσ =

1

2


a a a2 a3
a a 0 0
a2 0 a 0
a3 0 0 a

− a2

8


2β − α β 0 0
β α 0 0
0 0 α 0
0 0 0 α

− a2

8


α β 0 0
β 2β − α 0 0
0 0 −α 0
0 0 0 −α



− (a2)2

8


0 β 0 0

β 2α aβ−αa2 0

0 aβ−αa2 0 0

0 0 0 0

− (a3)2

8


0 β 0 0

β 2α 0 aβ−αa3
0 0 0 0

0 aβ−αa3 0 0

+
αa2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



=
1

2


a a a2 a3
a a 0 0
a2 0 a 0
a3 0 0 a

+ (α− β)
a2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

− (a2)2

8


0 β 0 0

β 2α aβ−αa2 0

0 aβ−αa2 0 0

0 0 0 0



− (a3)2

8


0 β 0 0

β 2α 0 aβ−αa3
0 0 0 0

0 aβ−αa3 0 0



Γ̃ 1
ρσ =

1

2


a a 0 0
a a a2 a3
0 a2 −a 0
0 a3 0 −a

+
a2

8


2α− β α 0 0
α β 0 0
0 0 β 0
0 0 0 β

+
a2

8


β α 0 0
α 2α− β 0 0
0 0 −β 0
0 0 0 −β



− (a2)2

8


2β α aβ−αa2 0

α 0 0 0

aβ−αa2 0 0 0

0 0 0 0

− (a3)2

8


2β α 0 aβ−αa3
α 0 0 0
0 0 0 0

aβ−αa3 0 0 0

− βa2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



=
1

2


a a 0 0
a a a2 a3
0 a2 −a 0
0 a3 0 −a

+ (α− β)
a2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

− (a2)2

8


2β α aβ−αa2 0

α 0 0 0

aβ−αa2 0 0 0

0 0 0 0



− (a3)2

8


2β α 0 aβ−αa3
α 0 0 0
0 0 0 0

aβ−αa3 0 0 0
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Γ̃ 2
ρσ =

1

2


a2 0 a 0
0 −a2 a 0
a a a2 a3
0 0 a3 −a2

− βaa2
8


1 0 a

a2
− α

β
a
a2

0

0 1− 2αβ 0 0
a
a2
− α

β
a
a2

0 1 0

0 0 0 1



− αaa2
8


1− 2βα 0 0 0

0 1 β
α
a
a2
− a

a2
0

0 β
α
a
a2
− a

a2
−1 0

0 0 0 −1

 ,

Γ̃ 3
ρσ =

1

2


a3 0 0 a
0 −a3 0 a
0 0 −a3 a2
a a a2 a3

− βaa3
8


1 0 0 a

a3
− α

β
a
a3

0 1− 2αβ 0 0

0 0 1 0
a
a3
− α

β
a
a3

0 0 1



− αaa3
8


1− 2βα 0 0 0

0 1 0 β
α
a
a3
− a

a3
0 0 −1 0

0 β
α
a
a3
− a

a3
0 −1

 .

Now we shall set α = β =: θ

Γ̃ 0
ρσ =

1

2


a a a2 a3
a a 0 0
a2 0 a 0
a3 0 0 a

− θ (a2)2 + (a3)2

8


0 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0



Γ̃ 1
ρσ =

1

2


a a 0 0
a a a2 a3
0 a2 −a 0
0 a3 0 −a

− θ (a2)2 + (a3)2

8


2 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



Γ̃ 2
ρσ =

1

2


a2 0 a 0
0 −a2 a 0
a a a2 a3
0 0 a3 −a2

− aθa28


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

− aθa28

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

Γ̃ 3
ρσ =

1

2


a3 0 0 a
0 −a3 0 a
0 0 −a3 a2
a a a2 a3

− aθa38


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

− aθa38

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Proposition 5.17 (Ricci tensor for the 4-dimensional case). The Ricci
tensor is
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R̃µν =
n2π2

θ̃2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 .

With θ = iθ̃.

Proof. Recalling the first order expansion for the Ricci tensor we use it in our
case, where the first terms are missing due to the fact that the Christoffel
symbols are constant

R̃σρ =Rσρ + Γµµλ qΓ
λ
ρσ + qΓ

µ
µλΓ

λ
ρσ − Γ

µ
ρλ qΓ

λ
µσ − qΓ

µ
ρλΓ

λ
µσ.

For the classical Ricci we have

Rσρ = 0Γ
µ
µλ 0Γ

λ
ρσ − 0Γ

µ
ρλ 0Γ

λ
µσ

=
1

4

(
δµµaλ + δµλaµ − η

µκηµλaκ
) (
δλρaσ + δλσaρ − ηλτηρσaτ

)
− 1

4

(
δµρ aλ + δµλaρ − η

µκηρλaκ
) (
δλµaσ + δλσaµ − ηλτηµσaτ

)
=

1

4

(
ηλτηρσaλaτ − 4aρaσ

)
=

1

4

(
ηρσ(−a2 + a2 + b2)− 4aρaσ

)
=

1

4

(
ηρσb

2 − 4aρaσ
)
.

Which means that the classical Ricci scalar is zero, as can be seen below

R = gσρRσρ =
1

4
e−aîx

î

e−axe−atησρ
(
ηρσb

2 − 4aρaσ
)

=
1

4
e−aîx

î

e−axe−at
(
4b2 − 4(−a2 + a2 + b2)

)
= 0

Since we don’t have quantum corrections for Christoffel symbols with upstairs
index µ = 2, 3 we have

R̃σρ =Rσρ + 0Γ
µ
µ0 qΓ

0
ρσ + 0Γ

µ
µ1 qΓ

1
ρσ + qΓ

0
01 0Γ

1
ρσ + qΓ

1
10 0Γ

0
ρσ − 0Γ

0
ρ0 qΓ

0
0σ − 0Γ

1
ρ0 qΓ

0
1σ

− 0Γ
0
ρ1 qΓ

1
0σ − 0Γ

1
ρ1 qΓ

1
1σ − qΓ

0
ρ0 0Γ

0
0σ − qΓ

0
ρ1 0Γ

1
0σ − qΓ

1
ρ0 0Γ

0
1σ − qΓ

1
ρ1 0Γ

1
1σ

=
1

4

(
ηρσb

2 − 4aρaσ
)

+ 2a
(
qΓ

0
ρσ + qΓ

1
ρσ

)
− θ b

2

16

(
(δ0ρ + δ1ρ)aσ + (δ0σ + δ1σ)aρ

)
+ θ

b2

16

((
δ0ρa+ aρ + ηρ0a

)
δσ1 +

(
δ0σa+ aσ + ησ0a

)
δρ1
)
− a

2

((
δ1ρ − ηρ0

)
qΓ

0
1σ +

(
δ1σ − ησ0

)
qΓ

0
ρ1

)
− a

2

((
δ0ρ + ηρ1

)
qΓ

1
0σ +

(
δ0σ + ησ1

)
qΓ

1
0ρ

)
+ θ

b2

16

((
δ1ρa+ aρ − ηρ1a

)
δ0σ +

(
δ1σa+ aσ − ησ1a

)
δρ0
)
.

Let us calculate all the components
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R̃00 =− 1

4

(
b2 + 4a2

)
− aθ b

2

8

R̃01 =− a2 − aθ b
2

8

R̃02 =− aa2 − a2θ
b2

16

R̃03 =− aa3 − a3θ
b2

16

R̃11 =
1

4

(
b2 − 4a2

)
− aθ b

2

8

R̃12 =− aa2
R̃13 =− aa3
R̃22 =− (a2)2

R̃23 =− a2a3
R̃33 =− (a3)2.

In matrix notation this is

R̃µν =


− 1

4

(
b2 + 4a2

)
− aθ b

2

8 −a2 − aθ b
2

8 −aa2 − a2θ b
2

16 −aa3 − a3θ
b2

16

−a2 − aθ b
2

8
1
4

(
b2 − 4a2

)
− aθ b

2

8 −aa2 −aa3
−aa2 − a2θ b

2

16 −aa2 −(a2)2 −a2a3
−aa3 − a3θ b

2

16 −aa3 −a2a3 −(a3)2


If we require this tensor to be Hermitian, then it must be invariant under flip-
ping of the tensor factors and complex conjugation of each coefficient, which
leads us to the condition

aθb2 = aθ∗b2 ⇒ aθb2 = 0. (5.2)

The discretization constraints are aθ = nπ for some n ∈ Z, this along the
hermiticity leads to either b2 = 0 or n = 0, we discard the second option since
that is the commutative case or flat space and is of no interest to us. Since
b2 = (a2)2 + (a3)2 where a2, a3 ∈ R we conclude that to fulfill this condition
both a2 and a3 have to be zero.

R̃µν =
n2π2

θ̃2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


Where θ = iθ̃. This tensor is purely quantum mechanical and it is not a
vacuum solution since that would imply that n = 0.

Proposition 5.18 (Ricci Scalar). The Ricci scalar is

R̃ = 0
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Proof. By direct calculation, we find

R̃ =gµνRµν = e−axe−at(−R00 +R11) =
n2π2

2θ̃2
e−axe−at(−1 + 1) = 0

Proposition 5.19 (Einstein tensor). The Einstein tensor is

Proof. By definition, the Einstein tensor is

G̃µν =R̃µν −
1

2
R̃gµν =

n2π2

θ̃2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (5.3)

Proposition 5.20 (Stress-energy tensor). The stress-energy tensor is

Tµν =
n2π

8θ̃2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 .

Which makes a contribution to energy, momentum and pressure; we note that
it is traceless, which might indicate that it describes a field invariant under
conformal transformations.

5.5 FRW space-time

In this section we consider flat FRW space-time along the following algebra

[xi, xj ] = γεijkxk r2 =: xixi.

The metric is given by

g = −dt⊗ dt+ gijdx
i ⊗ dxj , gij = a2(t)hij , hij :=

(
δij +K

xixj + xjxi

2(1−Kr2)

)
Proposition 5.21 (Centrality condition). The centrality condition fixes
the deformation of the differential structure as follows

D00
ν = 0, D0i

j = 0, Dk0
0 = 0, Dkj

0 = 0, Dk`
i = −γεk`i .

Proof. The centrality condition for time is

0 = [t, g00] = −2D00
0 ⇒ D00

0 = 0 (5.4)

0 = [t, g0i] = D0j
0gji −D00

i ⇒ D0j
0 = 0 and D00

i = 0 (5.5)

0 = [t, gij ] = D0`
ig`j +D0`

jg`i = D0`
ia

2(t)

(
δ`j +K

x`xj + xjx`

2(1−Kr2)

)
(5.6)

+D0`
ja

2(t)

(
δ`i +K

x`xi + xix`

2(1−Kr2)

)
(5.7)

⇒ D0j
i +D0i

j = 0⇒ 0 = D0`
i

(
x`xj + xjx`

)
+D0`

j

(
x`xi + xix`

)
⇒ D0`

i = 0

(5.8)
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Now let us consider an spatial generator with k = 1, 2, 3,

0 = [xk, g00] = −2Dk0
0 ⇒ Dk0

0 = 0

0 = [xk, g0i] = −Dk0
i +Dkj

0gij ⇒ Dk0
i = 0 and Dkj

0 = 0

[xk, gij ] = Dk`
ia

2(t)

(
δ`j +K

x`xj + xjx`

2(1−Kr2)

)
+Dk`

ja
2(t)

(
δ`i +K

x`xi + xix`

2(1−Kr2)

)
,

but on the other hand, we have

[xk, gij ] =

[
xk, a2(t)

(
δij +K

xixj + xjxi

2(1−Kr2)

)]
=

a2(t)K

2(1−Kr2)

[
xk, xixj + xjxi

]
=γ

a2(t)K

1−Kr2
(εkj`xi + εki`xj)x`.

Equating both expressions we get

γ
K

1−Kr2
(εkj`xi + εki`xj)x` = Dk`

i

(
δ`j +K

x`xj + xjx`

2(1−Kr2)

)
+Dk`

j

(
δ`i +K

x`xi + xix`

2(1−Kr2)

)
,

we search for a solution demanding

Dk`
iδ`j +Dk`

jδ`i = 0⇒ Dkj
i +Dki

j = 0,

which takes us to

γ(εkj`xi + εki`xj)x` = x`
(
Dk`

ix
j +Dk`

jx
i
)

γ

2
x`(εkj`xi + εki`xj) +

γ

2
(εkj`xi + εki`xj)x` +O(γ2)

=
x`

2

(
Dk`

ix
j +Dk`

jx
i
)

+
(
Dk`

ix
j +Dk`

jx
i
) x`

2

⇒Dk`
i = −γεk`i

Definition 5.22 (Classical Christoffel symbols for the FRW space-
time). The classical Christoffel symbols for the FRW metric are

0Γ
0
ij = aȧhij , 0Γ

i
0j =

ȧ

a
δij , 0Γ

i
j` = Khjlx

i

Proposition 5.23 (Quantum Christoffel symbols). The components of
the connection quantum-corrected up to first order are identical to the classical
ones

Proof. Consider the formula for the quantum correction

Γ̃µρσ = 0Γ
µ
ρσ +

0Γ
µ
αβ

2
((Dλβ

ρ 0Γ
α
λσ +Dλβ

σ 0Γ
α
ρλ −D

αβ
λ 0Γ

λ
ρσ)− [xβ , 0Γ

α
ρσ]),

We observe that



82 5 Physical examples

[xβ , 0Γ
α
00] = 0, [xβ , 0Γ

α
0j ] = 0.

And proceed to calculate

⇒ Γ̃µ00 =0

⇒ Γ̃µ0i = 0Γ
µ
0i −

0Γ
µ
kj

2

ȧ

a

(
γεkji − γε

kj
i

)
= 0Γ

µ
0i

Γ̃µij = 0Γ
µ
ij +

0Γ
µ
mk

2
K
(
γ
(
ε`kih`jx

m + ε`kjhi`x
m − εmk` hijx`

)
+ [xk, hijx

m]
)

= 0Γ
µ
ij +

0Γ
µ
mk

2
K

(
γ

(
ε`ki

(
��δ`j +K

x`xj + xjx`

2(1−Kr2)

)
xm

+ε`kj

(
��δ`i +K

x`xi + xix`

2(1−Kr2)

)
xm − εmk` hijx`

)
+ hij [x

k, xm] + [xk, hij ]x
m

)
= 0Γ

µ
ij +

0Γ
µ
mk

2
K

(
γ

(
ε`ki

(
K
x`xj + xjx`

2(1−Kr2)

)
xm + ε`kj

(
K
x`xi + xix`

2(1−Kr2)

)
xm

−εmk` hijx`
)

+ γhijε
km
` x

` + γ
K

1−Kr2
(εkj`xi + εki`xj)x`xm

)
= 0Γ

µ
ij +

0Γ
µ
mk

2
K

(
γK

2(1−Kr2)

(
ε`ki(x

`xj + xjx`) + ε`kj(x
`xi + xix`)

)
xm

+2γhijε
km
` x

` +
γK

1−Kr2
(εkj`xi + εki`xj)x`xm

)
= 0Γ

µ
ij + γK 0Γ

µ
mk

(
hij�

�εkm` x
` +

K

2(1−Kr2)

(
(εkj`xi + εki`xj)x`

+x`(εkj`xi + εki`xj)
)
xm +O(γ2)

)
.

We dropped a term due to the contraction of symmetric quantity with an
antisymmetric one. We arrive to

Γ̃µij = 0Γ
µ
ij +

γK2

2(1−Kr2)
0Γ

µ
mk

(
(εkj`xi + εki`xj)x` + x`(εkj`xi + εki`xj)

)
xm

⇒ Γ̃ 0
ij = 0Γ

0
ij

⇒ Γ̃nij = 0Γ
n
ij +

γK3

2(1−Kr2)
hmkx

n
(
(εkj`xi + εki`xj)x` + x`(εkj`xi + εki`xj)

)
xm

= 0Γ
n
ij +

γK3

2(1−Kr2)
hmkx

mxn
(
(εkj`xi + εki`xj)x` + x`(εkj`xi + εki`xj)

)
+O(γ2),

we draw our attention to

hmkx
m =

(
δmk +K

xmxk + xkxm

2(1−Kr2)

)
xm =

(
1 +K

r2

1−Kr2

)
xk =

(
1 +K

r2

1−Kr2

)
xk

=
xk

1−Kr2
,
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putting this into previous calculation yields

Γ̃nij = 0Γ
n
ij +

γK3

2(1−Kr2)2
xkxn

(
(εkj`xi + εki`xj)x` + x`(εkj`xi + εki`xj)

)︸ ︷︷ ︸
O(γ)

= 0Γ
n
ij

Where we have exploited the fact that for any antisymmetric quantity Fij we
reach

Fijx
ixj =

1

2
(Fij + Fij)x

ixj =
Fij
2
xixj − Fji

2
xixj =

Fij
2

[xi, xj ],

Definition 5.24 (Classical Ricci tensor). The classical Ricci tensor for
an FRW space-time is

R00 = 3
ä

a
, R0k = 0, Rmn = −(2K + 2ȧ2 + aä)hmn

Proposition 5.25 (Quantum corrected Ricci tensor). The Ricci tensor
is given by

R̃00 = R00, R̃0n = R0n, R̃mn = Rmn +
γKεinmx

i

(1−Kr2)

(
ȧ2 +

K2r2

1−Kr2

)
(5.9)

Proof. The definition Ricci tensor is

R̃βλ = Rβλ + 0Γ
µ
ρσ(Σρσ

λβµ −Σ
ρσ
µβλ),

since 0Γ = qΓ . We analyse the last term for β = 0, λ = 0

0Γ
µ
iσ(Σiσ

00µ︸ ︷︷ ︸
=0

−Σiσ
µ00) = − 0Γ

µ
ij Σ

ij
k00︸ ︷︷ ︸

=0

= 0,

therefore

R̃00 = R00.

for β = n, λ = 0

0Γ
µ
ij(Σ

ij
0nµ −Σ

ij
µn0) = 0,

while for β = 0, λ = n we have the same result, thus

R̃0i = R̃i0 = R0i.

finally, for for β = n, λ = m
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0Γ
0
iσ(Σiσ

mn0 −Σiσ
0nm) + 0Γ

`
iσ(Σiσ

mn` −Σiσ
`nm)

we study several cases, first

[dxi, 0Γ
0
mn] =aȧ[dxi, hmn] =

Kaȧ

2(1−Kr2)
[dxi, xmxn + xnxm]

=
−γKaȧ

2(1−Kr2)

(
εimp dx

pxn + εinpx
mdxp + εinpdx

pxm + εimp x
ndxp

)
=
−γKaȧ
1−Kr2

(
εinpx

m + εimp x
n
)
dxp +O(γ2)

⇒ Σi0
mnp =− γKaȧ

1−Kr2
(
εinpx

m + εimp x
n
)
,

now

[dxi, 0Γ
j
mn] =K[dxi, hmn]xj +Khmn[dxi, xj ]

=− γK2

1−Kr2
(
εinpx

m + εimp x
n
)
xjdxp −Kγhmnεijpdxp

Σij
mnp =− γK2

1−Kr2
(
εinpx

m + εimp x
n
)
xj −Kγhmnεijp.

From these two last quantities we conclude that Σiσ
mn0 = 0. Finally we find

[dxi, 0Γ
j
0n] = 0⇒ Σij

0nµ = 0

Therefore

0Γ
0
iσ (Σiσ

mn0 −Σiσ
0nm)︸ ︷︷ ︸

=0

+ 0Γ
`
iσ(Σiσ

mn` −Σiσ
`nm) = 0Γ

`
iσ(Σiσ

mn` −Σiσ
`nm)

= 0Γ
`
i0(Σi0

mn` −Σi0
`nm) + 0Γ

`
ij(Σ

ij
mn` −Σ

ij
`nm)

=− γKȧ2

1−Kr2
δ`i(���

εin`x
m − εinmx` + 2�

��
εim` x

n)

− γK2hijx
`

(
K

1−Kr2
(
εin`x

m − εinmx` + 2εim` x
n
)
xj + hmn��ε

ij
` − h`n��εijm

)
where we have dropped the last two terms due to the fact that they will render a
commutator along with hij and thus are second order contributions, we arrive
to
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0Γ
0
iσ(Σiσ

mn0 −Σiσ
0nm) + 0Γ

`
iσ(Σiσ

mn` −Σiσ
`nm)

=
γKȧ2

1−Kr2
εinmx

i − γx`K
3hijx

j

1−Kr2
(
εin`x

m − εinmx` + 2εim` x
n
)

+O(γ2)

=
γKȧ2

1−Kr2
εinmx

i − γ K3x`xi

(1−Kr2)2
(
εin`x

m − εinmx` + 2εim` x
n
)

=
γKȧ2

1−Kr2
εinmx

i +
γK3r2

(1−Kr2)2
εinmx

i +O(γ2)

=
γKεinmx

i

(1−Kr2)

(
ȧ2 +

K2r2

1−Kr2

)
.

Therefore, the spatial Ricci tensor is

R̃mn = Rmn +
γKεinmx

i

(1−Kr2)

(
ȧ2 +

K2r2

1−Kr2

)
Proposition 5.26 (Inverse metric). The inverse metric is

g00 = −1, g0i = 0, gij =
hij

a2(t)
, hij := δjk − K

2

(
xjxk + xkxj

)
(5.10)

Proof. The only thing we need to check is the spatial part

hijh
jk =hij

(
δjk − K

2

(
xjxk + xkxj

))
= hik −K

xixk + xkxi

2(1− kr2)
(5.11)

=δik +K
xixk + xkxi

2(1− kr2)
−Kxixk + xkxi

2(1− kr2)
= δik (5.12)

Proposition 5.27 (Ricci scalar). The Ricci scalar is

R̃ = R =− 6

a2
(K + ȧ2 + aä)

Proof. Taking the Ricci tensor we obtain the scalar

R̃ =gµνR̃µν = −R00 +
1

a2(t)
hjkR̃jk

=− 3
ä

a
+

hjk

a2(t)

(
−(2K + 2ȧ2 + aä)hjk +

γKεikjx
i

(1−Kr2)

(
ȧ2 +

K2r2

1−Kr2

))

=− 3
ä

a
+

1

a2(t)

(
−3(2K + 2ȧ2 + aä)

)
+O(γ2)

=− 6

a2
(K + ȧ2 + aä) = R.

Proposition 5.28 (Einstein tensor). The Einstein tensor is
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G̃00 =− 3

a2
(K + ȧ2)

G̃0i =0

G̃ij =(K + ȧ2 + 2aä)hij −
γKεijkxk

1−Kr2

(
ȧ2 +

K2r2

1−Kr2

)
Proof. We use the definition of the Einstein tensor

G̃µν =R̃µν −
1

2
R̃gµν = R̃µν −

1

2
Rgµν

G̃00 =R̃00 +
1

2
R = 3

ä

a
− 3

a2
(K + ȧ2 + aä) = − 3

a2
(K + ȧ2)

G̃0i =0

G̃ij =R̃ij −
a2

2
Rhij

=− (2K + 2ȧ2 + aä)hij +
γKεkjix

k

(1−Kr2)

(
ȧ2 +

K2r2

1−Kr2

)
+ 3(K + ȧ2 + aä)hij

=(K + ȧ2 + 2aä)hij −
γKεijkxk

1−Kr2

(
ȧ2 +

K2r2

1−Kr2

)
Definition 5.29 (Energy-Stress tensor). We define the energy stress ten-
sor as

Tµν =:
Gµν
8π

Proposition 5.30 (Energy-Stress tensor for non-commutative FRW).
The energy-stress tensor for the FRW space-time is the same as in the classical
case plus an additional term that is an anomaly.

Proof. We write explicitly the components

G00 =− 3

a2
(K + ȧ2) =: 8πρ(t)

Gij =(K + ȧ2 + 2aä)hij −
γKεijkxk

1−Kr2

(
ȧ2 +

K2r2

1−Kr2

)
=: 8πa2(t)p(t)hij + 8π ATij

Where ATij = −ATji, thus we conclude that a Lorentz anomaly arises;
this anomaly occurs when general covariance is broken in the quantum the-
ory [Ber96, BZ, AGG85, Mat85]. Furthermore this tells us that the Fried-
mann equations are still valid plus an additional term. If K = 1, we choose
r = sin(χ) and the anomalous term becomes

− γεijkxk

1− sin2(χ)

(
ȧ2 +

sin2(χ)

1− sin2(χ)

)
= −γεijkxk sec2(χ)

(
ȧ2 + tan2(χ)

)
,

(5.13)
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which is never zero. Alternatively we may choose K = −1 and r = sinh(χ),
which renders

γεijkxk

1 + sinh2(χ)

(
ȧ2 +

sinh2(χ)

1 + sinh2(χ)

)
= γεijkxk sech2(χ)

(
ȧ2 + tanh2(χ)

)
,

(5.14)

this expression vanishes for both χ = ±∞.





6

Conclusions and Outlook

The main purpose of our endeavor was to generalize Majid’s formalism to any
space-time of the lie-algebraic type. Since it relies extensively on the universal
differential calculus that is chosen along with the centrality condition on the
line element, we used the latter in addition with some symmetry considerations
to fix our differential structure.

This differs from the usual procedure, and in our opinion it offers a consis-
tent method that renders the differential calculus instead of choosing it. From
this we could generalize the Koszul formula for any Lie-algebra associated
to a microscopic space-time, expanded up to first order in Planck’s length,
that it is to be deemed as a deformation parameter that encodes the non-
commutativity features of our depiction.

The quantum-corrected connection is algebra-valued, this gives origin to sev-
eral paths towards building geometrical entities. However we choose the sim-
plest one that will allow us to recover a classical limit: perform an ontological
and mathematical analogy of each concept we want to generalize into the
non-commutative realm just by considering it to be algebra-valued; this is to
be taken as a definition that will always make contact with the classical limit.
Research upon clear and meaningful physical scenarios should shed some light
upon whether it is correct or not.

In this sense, we are claiming that most of the relevant data of our non-
commutative space-time has to be in the connection. Clearly this disregards
some aspects such as topological considerations or global properties. The study
of this features is an active research subject, and most of this efforts are being
driven through K-theory. However, the connection is not able to encode global
properties, and this should always be considered through our work; this was
to be expected of course given that non-commutative geometry is a general-
ization of a local description. It may be argued that it is non-local, this can de
readily seen from the commutators of coordinates. Although this is true, that
does not implies that the resulting theory is going to have global properties
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of the space.

The examples afore-mentioned serve several purposes. Although the confor-
mal cases do not take into account the symmetries of the classical space-time,
they contain a rather interesting result: discretization of the conformal fac-
tors of the exponential function within the metric (see Eq. ??), which could
be interpreted as the introduction of a minimal length that depends on the
structure constants of the algebra, among other interpretations. However we
regard this case as a toy model because it is not sensitive to the symmetries
of the classical space-time.

To fulfill the symmetry requirements of our program we present the FRW
space-time along an SO(3) algebra for our space-time, since this algebra pre-
serves the rotational symmetry inherent to the model; furthermore its Casimir,
r is thoroughly used in all the calculations. One of the main results is the
appearance of an anomaly, namely of the Lorentz kind (c.f. [Ber96, p. 508-
509]) which is related to the antisymmetry of the stress-energy tensor in the
quantum treatment of general relativity. Such anomaly usually occurs in the
context of calculating the expectation value for a given stress-energy tensor,
via the path integral using a Liouville-measure; in other words, it is a phe-
nomena related to the quantum behavior of matter.

However, in Eq. (5.9) it can be seen that this anomaly comes from the non-
commutative effects, i.e. from the quantum behavior of geometry, which is a
new result. In this case it is mandatory that we get rid of the anomaly, which
demands that K = 0 as it is proven in both (5.13) and (5.14) by exploring
K = ±. This matches well-known experimental results for the geometry of
the observable universe [Per99].

The emergence of the anomaly is crucial. without a doubt is a quantum
feature, however its origin is not clear. It may arise due to our definitions
regarding curvature, where we basically mimic the classical entities but con-
sidering that they are now algebra valued. From Eq. (4.11) it can be seen
that although the connection contains no quantum corrections, the Riemann
tensor will still carry quantum contributions that come directly from the uni-
versal differential calculus we are considering.

This might be related to an idea posed by Connes and Chamseddine in [CC12]
where they use non-commutative geometry also in the context of an FRW
space-time and the calculate the spectral action associated to the Dirac op-
erator. They recover the usual Einstein-Hilbert action plus some other terms:
a constant a0 that is linked to dark energy, a2 the Einstein-Hilbert term and
additional contributions a2n with n > 1 that account for non-commutative
effects. It is yet to be seen if we can produce such terms from the Riemann
and Ricci tensors we get in our FRW space-time treatment.
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This is what happens in our FRW space-time, where the anomaly comes
purely from the differential calculus in our non-commutative algebra. This
clearly matches the usual result in the classical limit, however it may be ar-
gued that another definition could be used for the curvature and Einstein
tensors.

For the moment we are dealing with other classical space-times with well
established symmetries, since applying our framework is an straightforward
procedure, a remarkable example among our research is the Schwarszchild
space-time. Also, we are working on the non-commutative sphere, where the
representations are known and we can make a direct comparison between our
method and calculating the expectation value from the metric and then doing
geometry with Kac’s quantum differential calculus [KC15].

However, if we want to proceed in the same philosophical track of General
Relativity, we need to define an action functional. Connes has achieved this,
however in our framework it is quite challenging to calculate the Dirac op-
erator spectra, which is essential to write down Connes’ spectral action for
gravity. We could also stop at a middle point proposing an alternative action,
however most of the evidence points to the fact that instead of using inte-
gration we would need to use the Dixmier trace, which relies extensively on
representation theory, which, for our differential forms is yet to be explored.
Or, if we do not want to build an action principle an proceed just by geometric
means, then we should find the non-commutative generalizations of Bianchi
identities, and find out if they imply the existence of a divergence-less entity;
this entity would be deemed as the non-commutative Einstein tensor that we
should use as one side of the quantum Einstein equations.

Furthermore, another interesting branch of research lies within direct exploita-
tion of Koszul’s formula to obtain higher-order corrections, and in some cases
an exact result. This would provide the full quantum theory of geometry and
thus a fundamental step towards quantum gravity.





A

Appendix

All the lengthy proofs are enclosed within this section.

Proof of Proposition 4.10

Proof. The Koszul formula for the connection involves the classical connection
and a generalized braiding acting upon it

∇(dxµ) =
1

2
0∇(dxµ) +

1

2
σ( 0∇(dxµ)) = −1

2
Γµρσdx

ρ ⊗ dxσ − 1

2
σ(Γµρσdx

ρ ⊗ dxσ),

for the sake of simplicity we are going to focus on the second term, which is
precisely the generalized braiding 4.5

σ(Γµρσdx
ρ ⊗ dxσ) =dxσΓµρσ ⊗ dxρ + [xσ, 0∇(Γµρσdx

ρ)] + 0∇[Γµρσdx
ρ, xσ],

now we make use of the third expression in Equations (4.12) to pull Γµρσ
through dxσ

=Γµρσdx
σ ⊗ dxρ +Σσµ

ρσλdx
λ ⊗ dxρ + [xσ, d(Γµρσ)⊗ dxρ − ΓµρσΓ

ρ
αβdx

α ⊗ dxβ ]

+ 0∇(ΓµρσD
ρσ
λdx

λ + [Γµρσ, x
σ]dxρ)

=(Γµσρ +Σλµ
σλρ)dx

ρ ⊗ dxσ + [xσ, d(Γµρσ)⊗ dxρ]− [xσ, ΓµρσΓ
ρ
αβdx

α ⊗ dxβ ]

+Dρσ
λ(d(Γµρσ)⊗ dxλ − ΓµρσΓλαβdxα ⊗ dxβ) + d([Γµρσ, x

σ])⊗ dxρ

− [Γµρσ, x
σ]Γ ραβdx

α ⊗ dxβ ,

where the last four terms come from applying the covariant derivative keeping
in mind the Leibniz rule and the difference between operating it on a zero-form
and a one-form. Our calculation of the generalized braiding becomes
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=(Γµσρ +Σλµ
σλρ)dx

ρ ⊗ dxσ − d(Γµρσ)Dρσ
λdx

λ + [xσ, d(Γµρσ)]⊗ dxρ

−[xσ, Γµρσ]Γ ραβdx
α ⊗ dxβ − Γµρσ[xσ, Γ ραβdx

α ⊗ dxβ ]

+Dρσ
λ(d(Γµρσ)⊗ dxλ − ΓµρσΓλαβdxα ⊗ dxβ) + [d(Γµρσ), xσ]⊗ dxρ

+ [Γµρσ, dx
σ]⊗ dxρ︸ ︷︷ ︸

=−Σσµρσλdxλ

−[Γµρσ, x
σ]Γ ραβdx

α ⊗ dxβ ,

after canceling out some terms we get the following expression

=(Γµσρ − Γ
µ
αβ [xβ , Γαρσdx

ρ ⊗ dxσ]−Dαβ
λΓ

µ
αβΓ

λ
ρσdx

ρ ⊗ dxσ

the remaining commutator renders two terms, one of which results in [xβ , dxρ⊗
dxσ] = −(Dρβ

λdx
λ ⊗ dxσ +Dσβ

λdx
ρ ⊗ dxλ), if we rearrange indices in such a

way the two form basis is a common factor for the whole expression we arrive
to the final result for the generalized braiding

σ(Γµρσdx
ρ ⊗ dxσ) =

(
Γµσρ + Γµαβ(Dλβ

ρΓ
α
λσ +Dλβ

σΓ
α
ρλ −D

αβ
λΓ

λ
ρσ)

−Γµαβ [xβ , Γαρσ]
)
dxρ ⊗ dxσ.

Therefore, the quantum-corrected connection is

=− 1

2
Γµρσdx

ρ ⊗ dxσ − 1

2
(Γµσρ + Γµαβ(Dλβ

ρΓ
α
λσ +Dλβ

σΓ
α
ρλ −D

αβ
λΓ

λ
ρσ)

− Γµαβ [xβ , Γαρσ])dxρ ⊗ dxσ

∇(dxµ) =− 1

2
(Γµρσ + Γµσρ)dx

ρ ⊗ dxσ − 1

2
(Γµαβ(Dλβ

ρΓ
α
λσ +Dλβ

σΓ
α
ρλ −D

αβ
λΓ

λ
ρσ)

− Γµαβ [xβ , Γαρσ])dxρ ⊗ dxσ,

Proof of Lemma ??

Proof. Please note that

[x, t] = xΛ = tΛ̃

We consider the commutator and expand it, our goal is to commute n times
so we can cancel the txn term, the first step gives

[t, xn] =txn − xnt
=txn − xn−1tx− xnΛ,

while the second yields the following,

=txn − xn−2tx2 − xn−1Λx− xnΛ
=txn − xn−2tx2 − xn−1(x− β)Λ− xnΛ,
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a pattern emerges when we analyze the third step, which leads us to

=txn − xn−3tx3 − xn−2Λx2 − xn−1(x− β)Λ− xnΛ
=txn − xn−3tx3 − xn−2(x− β)2Λ− xn−1(x− β)Λ− xnΛ

...

=− x(x− β)n−1Λ− x2(x− β)n−1Λ − · · · − xn−2(x− β)2Λ− xn−1(x− β)Λ,

summarizing the line above leads us to

=−

(
n∑
k=1

xk(x− β)n−k

)
Λ = −(x− β)n

(
n∑
k=1

xk(x− β)−k

)
Λ

=− (x− β)n

(
n∑
k=0

xk(x− β)−k − 1

)
Λ.

Now we make use of the closed form of the geometric series and factorize to
the right a term

[t, xn] =− (x− β)n
(

[1− xn+1(x− β)−(n+1)][1− x(x− β)−1]−1 − 1
)
Λ

=− (x− β)n
(

[1− xn+1(x− β)−(n+1)]− [1− x(x− β)−1]
)

[1− x(x− β)−1]−1Λ,

note that the term we isolated is

1− x(x− β)−1 = (x− β − x)(x− β)−1 = −β(x− β)−1,

consequently we obtain

[t, xn] =β−1(x− β)n
(
−xn+1(x− β)−(n+1) + x(x− β)−1

)
(x− β)Λ

=
x

β
(x− β)n

(
−xn(x− β)−n + 1

)
Λ

=
x

β
((x− β)n − xn)Λ

The procedure for the second commutator is the same.

Proof of Proposition 5.8

Proof. The centrality conditions, given in Equation (4.4) for the generators
of the algebra are given by the following equations

ηµν [t, ea1x] =ea1x(D0κ
µηκν +D0κ

νηκµ)

ηµν [x, ea0t] =ea0t(D1κ
µηκν +D1κ

νηκµ)

it is more easy to perform the calculations in matrix form, which is
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ea1x
(
−2D00

0 D01
0 −D00

1

D01
0 −D00

1 2D01
1

)
= − 2

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)

(
−1 0
0 1

)
(A.1)

ea0t
(
−2D10

0 D11
0 −D10

1

D11
0 −D10

1 2D11
1

)
=

2

α
ea0(t−α/2) sinh

(a0α
2

)
(αx+ βt)

(
−1 0
0 1

)
. (A.2)

For the fist commutator A.1, we take into account that D00
0 = D01

1 we equal
both to their r.h.s, which promptly yields the following relation

D01
1 = D00

0 =− 1

β
e−a1β/2 sinh

(
a1β

2

)
(αx+ βt),

for D00
0 we know that C00

0, thus

S00
0 =− 1

β
e−a1β/2 sinh

(
a1β

2

)
(αx+ βt),

while for D01
1 the structure constant in it is C01

1/2 = −α/2, we pass it to the
r.h.s

S01
1 =

α

2
− 1

β
e−a1β/2 sinh

(
a1β

2

)
(αx+ βt),

proceeding analogously for A.2 we get similar results

D10
0 = D11

1 =
1

α
e−a0α/2 sinh

(a0α
2

)
(αx+ βt)

S11
1 =

1

α
e−a0α/2 sinh

(a0α
2

)
(αx+ βt)

S10
0 =− β

2
+

1

α
e−a0α/2 sinh

(a0α
2

)
(αx+ βt).

So far we have only considered the diagonal terms for both expressions, from
the non-diagonal part we realize that D01

0 = D00
1 and D11

0 = D10
1. Given

that both C00
1 = 0 and C11

0 we get

D01
0 = D00

1 ⇒ −
β

2
+ S01

0 = S00
1 ⇒ S00

1 = −β +
1

α
e−a0α/2 sinh

(a0α
2

)
(αx+ βt)

D11
0 = D10

1 ⇒ S11
0 =

α

2
+ S10

1 ⇒ S11
0 = α− 1

β
e−a1β/2 sinh

(
a1β

2

)
(αx+ βt).

We need the S to be constant so it will satisfy the Jacobi identities cite the
stability stuff, this is easily fulfilled if we note that α, β ∈ C/R so we can write
them as α = iα̃, β = iβ̃; due to this, the hyperbolic sine turns out to be a
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sine given the known relation sinh(ix) = i sin(x). Then it is evident that the
following holds for n,m ∈ Z

a0 =
n

α̃
π a1 =

m

β̃
π.

Therefore, the symmetric part of the deformation of the differential structure
is

S00
0 = 0, S00

1 = −β, S10
0 = −β

2
, S01

1 =
α

2
, S11

0 = α, S11
1 = 0.

Which leads us to

D00
0 = 0, D00

1 = −β, D01
0 = −β, D10

0 = 0,

D01
1 = 0, D10

1 = α, D11
0 = α, D11

1 = 0.

Proof of Proposition 5.12

Proof. The centrality condition splits into three cases, the first with the tem-
poral generator, the second with the spatial generator and the third with the
commutative generators

ηµν [t, ea1x] =ea1x(D0κ
µηκν +D0κ

νηκµ)

ηµν [x, ea0t] =ea0t(D1κ
µηκν +D1κ

νηκµ)

0 =Dîκ
µηκν +Dîκ

νηκµ

The first two equations in matrix notation are

ea1x


−2D00

0 D01
0 −D00

1 D
02
0 −D00

2 D
03
0 −D00

3

D01
0 −D00

1 2D01
1 D02

1 +D01
2 D

03
1 +D01

3

D02
0 −D00

2 D
01
2 +D02

1 2D02
2 D03

2 +D02
3

D03
0 −D00

3 D
03
1 +D01

3 D
03
2 +D02

3 2D03
3



=− 2

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

ea0t


−2D10

0 D11
0 −D10

1 D
12
0 −D10

2 D
13
0 −D10

3

D11
0 −D10

1 2D11
1 D12

1 +D11
2 D

13
1 +D11

3

D12
0 −D10

2 D
12
1 +D11

2 2D12
2 D12

3 +D13
2

D13
0 −D10

3 D
13
1 +D11

3 D
12
3 +D13

2 2D13
3



=
2

α
ea0(t−α/2) sinh

(a0α
2

)
(αx+ βt)


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
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which generalizes the two-dimensional case in the following fashion, for the
diagonal we have

D00
0 = D01

1 = D02
2 = D03

3 = − 1

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)

⇒ S00
0 = − 1

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)

⇒ S01
1 =

α

2
− 1

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)

⇒ S02
2 = − 1

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)

⇒ S03
3 = − 1

β
ea1(x−β/2) sinh

(
a1β

2

)
(αx+ βt)

as in the last case, we require S to be a constant, we get the same conditions
for a0 and a1 and end up with

D00
0 = D01

1 = D02
2 = · · · = 0

⇒S00
0 = 0 S01

1 =
α

2
S0î

î
= 0 (for fixed î)

⇒D00
0 = 0 D01

1 = 0 D0î
î

= 0 (for fixed î)

⇒D10
1 = α = D11

0.

For the second centrality condition we have

D10
0 = D11

1 = D12
2 = D13

3 = 0

⇒S10
0 = −β

2
S11

1 = 0 S1î
î

= 0 (for fixed î)

⇒D10
0 = 0 D11

1 = 0 D1î
î

= 0 (for fixed î)

⇒D01
0 = −β = D00

1,

and for the third

0 =Dîµ
µ ⇒ 0 = S îµµ(for fixed µ)

For the off-diagonal terms we have for the first matrix in the mixed part

D0i
0 = D00

i ⇒
1

2
C0i

0 + S0i
0 = S00

i ⇒ −βδ1i = S00
i ⇒ D00

i = −βδ1i = D0i
0,

for the purely spatial part

0 = D0i
j +D0j

i ⇒ D0i
1 = −D01

i and D0i
ĵ

= −D0ĵ
i.
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which gives us four cases

D01
1 = −D01

1 = 0 D01
ĵ

= −D0ĵ
1 := γĵ

and

D01
ĵ

= −D0ĵ
1 = γĵ D0î

ĵ
= −D0ĵ

î
:= φĵ

î

while for the second

D1i
0 = D10

i ⇒ S11
0 = α and D1î

0 = D10
î

=: γî,

and its spatial part

0 = D1i
j +D1j

i ⇒ D11
j = −D1j

1 and D1î
j = −D1j

î
,

analogously to the last case, four sub-cases arise

D11
1 = −D11

1 = 0 D11
ĵ

= −D1ĵ
1 =: ξĵ

and

D1î
1 = −D11

î
= ξî D1î

ĵ
= −D1ĵ

î
= χij

for the third we have the following cases for the off-diagonal terms

0 =Dîj
0 −Dî0

j ⇒ Dî0
1 = Dî1

0 =: ηî and Dî0
ĵ

= Dîĵ
0 =: θîĵ

also for the purely spatial part we have for ` 6= j

Proof of the first part of Proposition ??

Proof. As in the last case, we consider the general formula

Γ̃µρσ = 0Γ
µ
ρσ +

1

2
0Γ

µ
αβ(Dλβ

ρ 0Γ
α
λσ +Dλβ

σ 0Γ
α
ρλ −D

αβ
λ 0Γ

λ
ρσ).

And highlight once more that the last term is not present because in our case
due to the fact [xα, 0Γ

β
ρσ] = 0. Allow us to study the general case
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Γ̃µρσ = 0Γ
µ
ρσ +

0Γ
µ
00

2
(Dλ0

ρ 0Γ
0
λσ +Dλ0

σ 0Γ
0
λρ −D00

1︸︷︷︸
=−β

0Γ
1
ρσ) +

0Γ
µ
01

2
(Dλ1

ρ 0Γ
0
λσ +Dλ1

σ 0Γ
0
ρλ −D01

0︸︷︷︸
=−β

0Γ
0
ρσ)

+
0Γ

µ

0î

2
(Dλî

ρ 0︸ ︷︷ ︸
=0

Γ 0
λσ +Dλî

σ︸︷︷︸
=0

0Γ
0
ρλ −D0î

k︸︷︷︸
=0

0Γ
k
ρσ) +

0Γ
µ
10

2
(Dλ0

ρ 0Γ
1
λσ +Dλ0

σ 0Γ
1
ρλ −D10

1︸︷︷︸
=α

0Γ
1
ρσ)

+
0Γ

µ

î0

2
(Dλ0

ρ 0Γ
î
λσ +Dλ0

σ 0Γ
î
ρλ −Dî0

k︸︷︷︸
=0

0Γ
k
ρσ) +

0Γ
µ
11

2
(Dλ1

ρ 0Γ
1
λσ +Dλ1

σ 0Γ
1
ρλ −D11

0︸︷︷︸
=α

0Γ
0
ρσ)

+
0Γ

µ

1î

2
(Dλî

ρ︸︷︷︸
=0

0Γ
1
λσ +Dλî

σ︸︷︷︸
=0

0Γ
1
ρλ −D1î

λ︸︷︷︸
=0

0Γ
λ
ρσ) +

0Γ
µ

î1

2
(Dλ1

ρ 0Γ
î
λσ +Dλ1

σ 0Γ
î
ρλ −Dî1

λ︸︷︷︸
=0

0Γ
λ
ρσ)

+
0Γ

µ

îĵ

2
(Dλĵ

ρ︸︷︷︸
=0

0Γ
α
λσ +Dλĵ

σ︸︷︷︸
=0

0Γ
α
ρλ −D

îĵ
λ︸︷︷︸

=0

0Γ
λ
ρσ),

which ends up in

Γ̃µρσ = 0Γ
µ
ρσ +

0Γ
µ
00

2
(Dλ0

ρ 0Γ
0
λσ +Dλ0

σ 0Γ
0
λρ + β 0Γ

1
ρσ) +

0Γ
µ
01

2
(Dλ1

ρ 0Γ
0
λσ +Dλ1

σ 0Γ
0
ρλ + β 0Γ

0
ρσ)

+
0Γ

µ
10

2
(Dλ0

ρ 0Γ
1
λσ +Dλ0

σ 0Γ
1
ρλ − α 0Γ

1
ρσ) +

0Γ
µ

î0

2
(Dλ0

ρ 0Γ
î
λσ +Dλ0

σ 0Γ
î
ρλ)

+
0Γ

µ
11

2
(Dλ1

ρ 0Γ
1
λσ +Dλ1

σ 0Γ
1
ρλ − α 0Γ

0
ρσ) +

0Γ
µ

î1

2
(Dλ1

ρ 0Γ
î
λσ +Dλ1

σ 0Γ
î
ρλ),

before proceeding we shall write down the form of the Dλµ
ρ matrices with µ

fixed

Dλ0
ρ =


0 0 0 0
−β α 0 0
0 0 0 0
0 0 0 0

 , Dλ1
ρ =


−β α 0 0
0 0 0 0
0 0 0 0
0 0 0 0


as in the last case we shall study each term of the sum. The first one being
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Dλ0
ρ 0Γ

0
λσ +Dλ0

σ 0Γ
0
λρ + β 0Γ

1
ρσ

=
1

2


0 0 0 0

αa1 − βa0 αa0 − βa1 −βa2 −βa3
0 0 0 0
0 0 0 0

+
1

2


0 αa1 − βa0 0 0
0 αa0 − βa1 0 0
0 −βa2 0 0
0 −βa3 0 0

+
β

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=
1

2


0 αa1 − βa0 0 0

αa1 − βa0 2αa0 − 2βa1 −βa2 −βa3
0 −βa2 0 0
0 −βa3 0 0

+
β

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=
a1
2


β α 0 0
α 2αa0a1 − β 0 0

0 0 −β 0
0 0 0 −β

 ,

while the second renders

Dλ1
ρ 0Γ

0
λσ +Dλ1

σ 0Γ
0
ρλ + β 0Γ

0
ρσ

=
1

2


αa1 − βa0 αa0 − βa1 −βa2 −βa3

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


αa1 − βa0 0 0 0
αa0 − βa1 0 0 0
−βa2 0 0 0
−βa3 0 0 0

+
β

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=
1

2


2αa1 − 2βa0 αa0 − βa1 −βa2 −βa3
αa0 − βa1 0 0 0
−βa2 0 0 0
−βa3 0 0 0

+
β

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=
a0
2


2αa1a0 − β α 0 0

α β 0 0
0 0 β 0
0 0 0 β

 .

The third is quite similar
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Dλ0
ρ 0Γ

1
λσ +Dλ0

σ 0Γ
1
ρλ − α 0Γ

1
ρσ

=
1

2


0 0 0 0

αa0 − βa1 αa1 − βa0 αa2 αa3
0 0 0 0
0 0 0 0

+
1

2


0 αa0 − βa1 0 0
0 αa1 − βa0 0 0
0 αa2 0 0
0 αa3 0 0

− α

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=
1

2


0 αa0 − βa1 0 0

αa0 − βa1 2αa1 − 2βa0 αa2 αa3
0 αa2 0 0
0 αa3 0 0

− α

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1



=− a1
2


α β 0 0
β 2β a0a1 − α 0 0

0 0 −α 0
0 0 0 −α

 ,

the fourth is simpler, but it splits in two cases

Dλ0
ρ 0Γ

2
λσ +Dλ0

σ 0Γ
2
ρλ =

1

2


0 0 0 0
−βa2 −αa2 αa1 − βa0 0

0 0 0 0
0 0 0 0

+
1

2


0 −βa2 0 0
0 −αa2 0 0
0 αa1 − βa0 0 0
0 0 0 0



=− a2
2


0 β 0 0

β 2α βa0−αa1
a2

0

0 βa0−αa1
a2

0 0

0 0 0 0



Dλ0
ρ 0Γ

3
λσ +Dλ0

σ 0Γ
3
ρλ =

1

2


0 0 0 0
−βa3 −αa3 0 αa1 − βa0

0 0 0 0
0 0 0 0

+
1

2


0 −βa3 0 0
0 −αa3 0 0
0 0 0 0
0 αa1 − βa0 0 0



=− a3
2


0 β 0 0

β 2α 0 βa0−αa1
a3

0 0 0 0

0 βa0−αa1
a3

0 0

 .

For the fifth we proceed as usual
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Dλ1
ρ 0Γ

1
λσ +Dλ1

σ 0Γ
1
ρλ − α 0Γ

0
ρσ

=
1

2


αa0 − βa1 αa1 − βa0 αa2 αa3

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


αa0 − βa1 0 0 0
αa1 − βa0 0 0 0

αa2 0 0 0
αa3 0 0 0

− α

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=
1

2


2αa0 − 2βa1 αa1 − βa0 αa2 αa3
αa1 − βa0 0 0 0

αa2 0 0 0
αa3 0 0 0

− α

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0



=− a0
2


2β a1a0 − α β 0 0

β α 0 0
0 0 α 0
0 0 0 α

 .

The sixth and last also contains two possibilities

Dλ1
ρ 0Γ

2
λσ +Dλ1

σ 0Γ
2
ρλ =

1

2


−βa2 −αa2 αa1 − βa0 0

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


−βa2 0 0 0
−αa2 0 0 0

αa1 − βa0 0 0 0
0 0 0 0



=− a2
2


2β α βa0−αa1

a2
0

α 0 0 0
βa0−αa1

a2
0 0 0

0 0 0 0



Dλ1
ρ 0Γ

3
λσ +Dλ1

σ 0Γ
3
ρλ =

1

2


−βa3 −αa3 0 αa1 − βa0

0 0 0 0
0 0 0 0
0 0 0 0

+
1

2


−βa3 0 0 0
−αa3 0 0 0

0 0 0 0
αa1 − βa0 0 0 0



=− a3
2


2β α 0 βa0−αa1

a3
α 0 0 0
0 0 0 0

βa0−αa1
a3

0 0 0

 .

Now we may , for µ = 0 we have
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Γ̃ 0
ρσ =

1

2


a0 a1 a2 a3
a1 a0 0 0
a2 0 a0 0
a3 0 0 a0

+
a0a1

8


2αa1a0 2α 0 0

2α 2αa0a1 0 0

0 0 0 0
0 0 0 0

− (a1)2

8


α β 0 0
β 2β a0a1 − α 0 0

0 0 −α 0
0 0 0 −α



− (a2)2

8


0 β 0 0

β 2α βa0−αa1
a2

0

0 βa0−αa1
a2

0 0

0 0 0 0

− (a3)2

8


0 β 0 0

β 2α 0 βa0−αa1
a3

0 0 0 0

0 βa0−αa1
a3

0 0



− (a0)2

8


2β a1a0 − α β 0 0

β α 0 0
0 0 α 0
0 0 0 α

 .

For µ = 1 we have

Γ̃ 1
ρσ =

1

2


a1 a0 0 0
a0 a1 a2 a3
0 a2 −a1 0
0 a3 0 −a1

+
(a1)2

8


β α 0 0
α 2αa0a1 − β 0 0

0 0 −β 0
0 0 0 −β

+
(a0)2

8


2αa1a0 − β α 0 0

α β 0 0
0 0 β 0
0 0 0 β



− a0a1
8


2β a1a0 2β 0 0

2β 2β a0a1 0 0

0 0 0 0
0 0 0 0

− (a2)2

8


2β α βa0−αa1

a2
0

α 0 0 0
βa0−αa1

a2
0 0 0

0 0 0 0



− (a3)2

8


2β α 0 βa0−αa1

a3
α 0 0 0
0 0 0 0

βa0−αa1
a3

0 0 0

 .

For µ = 2 we obtain

Γ̃ 2
ρσ =

1

2


a2 0 a0 0
0 −a2 a1 0
a0 a1 a2 a3
0 0 a3 −a2

+
a1a2

8


−β 0 −βa0−αa1a2

0

0 2αa0a1 − β 0 0

−βa0−αa1a2
0 −β 0

0 0 0 −β



+
a0a2

8


2β a1a0 − α 0 0 0

0 −α −βa0−αa1a2
0

0 −βa0−αa1a2
α 0

0 0 0 α


And finally, for µ = 3 we reach
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Γ̃ 3
ρσ =

1

2


a3 0 0 a0
0 −a3 0 a1
0 0 −a3 a2
a0 a1 a2 a3

+
a1a3

8


−β 0 0 −βa0−αa1a3
0 2αa0a1 − β 0 0

0 0 −β 0

−βa0−αa1a3
0 0 −β



+
a0a3

8


2β a1a0 − α 0 0 0

0 −α 0 −βa0−αa1a3
0 0 α 0

0 −βa0−αa1a3
0 α

 .

Next, we investigate the special case a0 = a1 =: a

Γ̃ 0
ρσ =

1

2


a a a2 a3
a a 0 0
a2 0 a 0
a3 0 0 a

− a2

8


2β − α β 0 0
β α 0 0
0 0 α 0
0 0 0 α

− a2

8


α β 0 0
β 2β − α 0 0
0 0 −α 0
0 0 0 −α



− (a2)2

8


0 β 0 0

β 2α aβ−αa2 0

0 aβ−αa2 0 0

0 0 0 0

− (a3)2

8


0 β 0 0

β 2α 0 aβ−αa3
0 0 0 0

0 aβ−αa3 0 0

+
αa2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



=
1

2


a a a2 a3
a a 0 0
a2 0 a 0
a3 0 0 a

+ (α− β)
a2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

− (a2)2

8


0 β 0 0

β 2α aβ−αa2 0

0 aβ−αa2 0 0

0 0 0 0



− (a3)2

8


0 β 0 0

β 2α 0 aβ−αa3
0 0 0 0

0 aβ−αa3 0 0
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Γ̃ 1
ρσ =

1

2


a a 0 0
a a a2 a3
0 a2 −a 0
0 a3 0 −a

+
a2

8


2α− β α 0 0
α β 0 0
0 0 β 0
0 0 0 β

+
a2

8


β α 0 0
α 2α− β 0 0
0 0 −β 0
0 0 0 −β



− (a2)2

8


2β α aβ−αa2 0

α 0 0 0

aβ−αa2 0 0 0

0 0 0 0

− (a3)2

8


2β α 0 aβ−αa3
α 0 0 0
0 0 0 0

aβ−αa3 0 0 0

− βa2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



=
1

2


a a 0 0
a a a2 a3
0 a2 −a 0
0 a3 0 −a

+ (α− β)
a2

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

− (a2)2

8


2β α aβ−αa2 0

α 0 0 0

aβ−αa2 0 0 0

0 0 0 0



− (a3)2

8


2β α 0 aβ−αa3
α 0 0 0
0 0 0 0

aβ−αa3 0 0 0



Γ̃ 2
ρσ =

1

2


a2 0 a 0
0 −a2 a 0
a a a2 a3
0 0 a3 −a2

− βaa2
8


1 0 a

a2
− α

β
a
a2

0

0 1− 2αβ 0 0
a
a2
− α

β
a
a2

0 1 0

0 0 0 1



− αaa2
8


1− 2βα 0 0 0

0 1 β
α
a
a2
− a

a2
0

0 β
α
a
a2
− a

a2
−1 0

0 0 0 −1

 ,

Γ̃ 3
ρσ =

1

2


a3 0 0 a
0 −a3 0 a
0 0 −a3 a2
a a a2 a3

− βaa3
8


1 0 0 a

a3
− α

β
a
a3

0 1− 2αβ 0 0

0 0 1 0
a
a3
− α

β
a
a3

0 0 1



− αaa3
8


1− 2βα 0 0 0

0 1 0 β
α
a
a3
− a

a3
0 0 −1 0

0 β
α
a
a3
− a

a3
0 −1

 .

Now we shall set α = β =: θ

Γ̃ 0
ρσ =

1

2


a a a2 a3
a a 0 0
a2 0 a 0
a3 0 0 a

− θ (a2)2 + (a3)2

8


0 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0
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Γ̃ 1
ρσ =

1

2


a a 0 0
a a a2 a3
0 a2 −a 0
0 a3 0 −a

− θ (a2)2 + (a3)2

8


2 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



Γ̃ 2
ρσ =

1

2


a2 0 a 0
0 −a2 a 0
a a a2 a3
0 0 a3 −a2

− aθa28


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

− aθa28

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

Γ̃ 3
ρσ =

1

2


a3 0 0 a
0 −a3 0 a
0 0 −a3 a2
a a a2 a3

− aθa38


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

− aθa38

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
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