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curiosidad por la ciencia. A mi familia, en especial a Laura y a Miguel (de otro
modo nunca hubiese pasado mis cursos de matemáticas en mi educación básica y no
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apoyo del proyecto PAPIIT (IG-100616), al proyecto Fronteras de la Ciencia CONA-
CyT 952, al proyecto CONACyT cb 219993, aśı como la beca CONACyT de doc-
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Resumen

En esta tesis se estudian las propiedades de transporte en redes pequeñas de fermiones
interactuantes. El sistema se modela usando los Ensembles Gaussianos Anidados
(EGE). Con este modelo las interacciones entran como un parámetro k y con la cual
hablamos de interacciones de k-cuerpos entre n-fermiones (sin esṕın) distribuidos
en l-estados de una part́ıcula. Analizamos dos tipos de ensembles: el EGE y este
mismo ensemble con una simetŕıa extra, conocida como centrosimetŕıa (csEGE).
En el contexto de transporte cuántico, la cuestión que se aborda es cuál de los dos
ensembles (EGE vs csEGE) es más eficiente, ya sea en transferencia de estados, o en
transporte coherente de fermiones en una red. Para comparar estos dos ensembles,
estudiamos primero la eficiencia del transporte de estados en un sistema cerrado.
Para ambos ensembles obtenemos las distribuciones de eficiencias. Podemos ob-
servar que la centrosimetŕıa mejora significativamente la eficiencia del transporte
cuando se compara con el EGE. También encontramos que, para obtener una buena
eficiencia, el transporte debe ser considerado entre dos estados que están relaciona-
dos por la centrosimetŕıa; para el EGE, no hay estados especiales que den una buena
eficiencia: en principio todos los estados contribuyen a la distribución de eficiencia.

El siguiente paso es abrir el sistema y estudiar las propiedades de transporte del
EGE comparado con el csEGE. El ancho de banda de la conductancia aśı como
la corriente total promediada sobre el ensemble alcanzan sus valores máximos si el
sistema está casi lleno n ∼ l− 1 y la interacción es k ∼ n/2. Para los casos k = 1 y
k = n el ancho de banda es mı́nimo. Mostramos que, una vez fijando l, para todos
los posibles parámetros (del EGE o del csEGE) el transporte se mejora significati-
vamente si se consideran los ensembles centrosimétricos (csEGE). En este caso la
transmisión muestra numerosas resonancias de transporte perfecto. Analizando la
transmisión usando la correspondiente descomposición espectral, encontramos que
la centrosimetŕıa induce fuertes correlaciones y mejora los extremos de las distribu-
ciones. Esto suprime los efectos de interferencia destructiva en el sistema y causa
resonancias en la transmisión libre de retro-dispersión (backscattering-free), lo cual
mejora el transporte global. La distribución del total de la corriente para el csEGE
tiene un pico muy grande que domina para n = l − 1, cerca de las corrientes más
grandes observadas.

En la parte final, se estudia la transición del EGE al csEGE y el rompimiento de
centrosimetŕıa. En la transición EGE a csEGE consideramos, como función del



parámetro de transición ε, cómo la corriente promedio en el ensemble es mejorada.
Se fijan los parámetros a l = 6 para el número de estados de una part́ıcula y se
consideran n = 5 part́ıculas. El transporte de todos los ensembles mejora con
interacción de k = 3 cuerpos, el mejor caso para obtener cantidades de transporte
encontrado en toda la tesis. Para el EGE con k = 1, 5 y cualquier valor de k para
el csEGE, la corriente promedio del ensemble es mucho mayor comparada con otros
valores de k. Para k = 2, 3, 4, obtenemos resultados similares para la corriente
promedio como función de ε. Cuando la perturbación (csEGE) tiene interacción
k = 1, 5, encontramos que la corriente promedio puede decrecer. Mostramos que
esto es una consecuencia de la modificación en las bandas de transmisión.

Estudiamos después el rompimiento de la centrosimetŕıa, fijando l = 6 y n = 5.
Como veremos, la centrosimetŕıa se compone de dos partes: paridad y correlaciones.
Para estudiar el rompimiento de la centrosimetŕıa, analizamos de nuevo la corriente
promedio sobre el ensemble como función del tipo de perturbación que rompe la
centrosimetŕıa. Para el rompimiento de paridad, y como función de k, la corriente
promedio sobre el ensemble disminuye hasta alcanzar el valor cero. El caso que
menos es afectado es k = 3, seguido de los casos k = 2, 4 y finalmente los peores
casos son k = 1, 5. Como manera final de romper la centrosimetŕıa, elegimos una
perturbación general por bloques. Como en el caso previo, k = 3 es el caso menos
afectado, seguido de k = 2.4 y luego por k = 1, 5. Todos los ensembles alcanzan un
valor mı́nimo en la corriente promedio, el cual es cuando la perturbación domina el
transporte.

Nuestros resultados pueden ser usados en el contexto de redes pequeñas con pe-
sos, donde los acoplamientos y las enerǵıas en sitio son aleatorias. Como veremos,
las correlaciones juegan un papel fundamental ya que aumentan la eficiencia y las
propiedades de transporte. Importantes aplicaciones de este tipo de redes se encuen-
tran en sistemas cuánticos sobre diseño como los cables cuánticos, o en complejos
fotosintéticos en bacterias o algas. Creemos que los resultados presentados en esta
tesis pueden ser interesantes en los modelos de sistemas cuánticos, ya que general-
izan el rango de las interacciones, los cuales pueden estar presentes cuando la enerǵıa
es muy grande. En el contexto biológico, nuestros resultados pueden ser últiles en
el estudio de transporte en complejos fotosintéticos, los cuales se sabe que operan
de manera eficiente aún a temperatura ambiente, donde muchos grados de libertad
están interactuando con el complejo molecular.



Abstract

In this thesis we study the transport properties in small interacting many-body
fermionic networks. To model the system, we use the Embedded Gaussian Ensembles
(EGE). With this model we can manipulate k-body interactions among n-spinless
fermions distributed over l-single particle states. We analyse two types of ensembles:
the EGE and this same ensemble with an extra symmetry, called centrosymmetry
(csEGE). In the context of quantum transport, the question we address is which of
the two ensembles (EGE vs csEGE) is more efficient, either in state transfer, or in
coherent transport of fermions over a network. To compare these two ensembles,
we study first the transport efficiency in a closed system. For both ensembles we
obtain their respective efficiency distributions over the ensemble. We notice that
centrosymmetry enhances significantly the transport efficiency when compared to
the EGE. We also find that, in order to obtain a good efficiency, transport must be
considered between two states related by centrosymmetry; for the EGE, there are
no especial states that give a good efficiency: in principle, all states contribute to
the efficiency distribution.

In the next step we open the system and study the transport properties in the EGE
versus the csEGE. The conductance bandwidth as well as the ensemble-averaged
total current attain their maximal values if the system is highly filled n ∼ l − 1
and k ∼ n/2. For the cases k = 1 and k = n the bandwidth is minimal. We
show that for all parameters the transport is enhanced significantly whenever the
centrosymmetric ensembles (csEGE) are considered. In this case the transmission
shows numerous resonances of perfect transport. Analysing the transmission by
spectral decomposition, we find that centrosymmetry induces strong correlations and
enhances the extrema of the distributions. This suppresses destructive interference
effects in the system and causes backscattering-free transmission resonances, which
enhance the overall transport. The distribution of the total current for the csEGE
has a very large dominating peak for n = l−1, close to the highest observed currents.

In the final part, we study the EGE to csEGE transition and centrosymmetry break-
ing. In the EGE to csEGE transition we consider, as a function of the transition
parameter ε, how the mean current in the ensemble is enhanced. We fix l = 6
single-particle levels and n = 5 particles. All ensembles are enhaced with k = 3,
the best case to obtain transport quantities throughout all this thesis. For the EGE
cases with k = 1 and k = 5 and any value of k in the csEGE, the mean current



in the ensemble is largely enhanced compared to other values of k. For k = 2, 3, 4,
we obtain similar results for the mean current as a function of ε. When the csEGE
perturbation is k = 1, 5, we find that the mean current can decrease. We show that
this is a consequence of the modification of the transmission bands.

Taking into account the results for finite systems (l = 6 and n = 5), we also explore
centrosymmetry breaking, fixing l = 6 and n = 5. We believe this results will
hold for other parameters like l = 8, n = 7 and l = 10, n = 9. As we shall
see, centrosymmetry is composed of two parts: parity and correlations. To study
centrosymmetry breaking, we analyse again the mean current over the ensemble
as a function of the type of centrosymmetry-breaking perturbation. For the parity
breaking, and as a function of k, the mean current over the ensemble diminishes
until it attains zero value. The least affected case is k = 3, followed by k = 2, 4
and finally the worst cases are k = 1, 5. As a final way to break centrosymmetry
we choose a general perturbation by blocks. As in the previous case, k = 3 is
the least affected case, followed by k = 2, 4 and then by k = 1, 5. All ensembles
attain a minimum value in the mean current, which is when the block perturbation
dominates the transport. This minimum value is the characteristic transport over
the perturbation by blocks.

Our results can be used in the context of small weighted networks, where the cou-
plings and the on-site energies are random. We shall see that correlations increase
the efficiency and the transport properties. Prominent applications of this type of
networks are in engineered quantum systems like quantum buses, or in photosyn-
thetic complexes of bacterias and algae. We believe that the results presented here
can be interesting in the modelling of quantum buses, because they generalize the
rank of interactions, which may be present when the excitation energy is high. In the
biological context, our results can be useful in the study of transport across photo-
synthetic complexes, which are known that operate efficiently at room temperature,
where many degrees of freedom are interacting with the molecular complex.



Chapter 1

Introduction

The advent of quantum technologies has opened new fields for studying quantum
phenomena. If we focus specially in quantum transport problems, disorder is a
property of the system that supresses transport [1]. In recent years, the interest in
transport problems present in complex systems [2] has demanded new theoretical
descriptions that use disorder as a way to overcome quantum localisation. Two
prominent examples are the study of excitonic transport in the Fenna-Matthews-
Olson (FMO) molecular complex [3] (a molecular complex which is part of the
photosynthetic process realized in green sulfur bacteria); and the engineered design
of quantum buses, which are important components in a quantum computer [4].
One important ingredient in these systems is that they are highly efficient, meaning
that an incoming state is propagated to a final state with high probability in a
finite amount of time. The other important ingredient in these two motivational
examples are the fact that both systems are finite. Throughout this thesis, we will
be interested in studying efficient transport in finite disordered systems. Our global
idea is to generalize these type of problems to study transport in inherently random
interacting systems, which may represent systems at high energies for which an
exact Hamiltonian description is no longer possible to study analytically (due to
many-body interactions). In such cases, a statistical approach is proposed and it
forms the core idea in which Random Matrix Theory is used in Physics [5–7].

1.1 On photosynthetic molecular complexes. The

case of the Fenna-Matthews-Olson complex

As mentioned above, one of the characteristics of the photosynthetic complexes [8–
29] is that all of them are finite systems. The relevant Hilbert spaces obtained
from experimental results range from 6× 6 [25, 26] , to 14× 14 [21, 24] dimensions.
In particular, the FMO complex present in Chlorobium tepidum is composed by

1
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three identical monomers (see Fig. 1.1) in which each one of them encloses seven
bacteriochlorophyll a (BChla) molecules embedded in a protein cage of dimensions

45 × 35 × 15
◦

A3 [30] (this last element provides structural stability to the BChla

molecules). The distance between two BChla molecules is typically of 11
◦
A, and

they interact via dipolar coupling [31]. Typical linear absorption spectra of the
FMO shows and absorption range in the 200−900nm. The most prominent sub-band
studied is the absorption band around 800nm [32]. Among these BChla molecules,
there exist two especial sites called antenna and sink. The number and position of
these particular sites varies from complex to complex (for example, it is considered
that the FMO has one antenna and one sink in site 1 and 3, respectively). The
function of the antenna is to capture an incoming photon, an excitation is formed
and it travels between the BChla molecules until it reaches the sink. The sink is just
an absorber where the excitation is converted later in useful energy. For the FMO
complex, there is roughly only one excitation at a time that travels through the
system. It is known by experiments that the maximal efficiency (in short, efficiency
refers to how many photons are needed to generate one charge separation [30]) is
very high in these type of systems. For the FMO complex, the experimental maximal
efficiency is ∼ 95% (see [30] and references therein).

Figure 1.1: Crystal structure of the FMO protein from Chlorobaculum Tepidum,
a model organism of green sulfur bacteria. The structure of the FMO consists
of a trimer, formed by three identical monomers (protein cages in red, green and
yellow) that each bind seven BChla molecules. One of this subunits is the main
object of study in quantum transport communities and form one of the main moti-
vations of this thesis (see main text for details). The figure was downloaded from
https://www.rcsb.org/pdb/home/home.do



CHAPTER 1. INTRODUCTION 3

A quantum model for describing the FMO complex is to map the complex into a
weighted disordered graph, in which each BChla molecule is the vertex of a graph.
As we mentioned, there are dipole-dipole interactions and they constitute weighted
edges between vertices. Finally, the especific position of the antenna(s) and sink(s)
are chosen based on experimental observations. As these molecules operate at room
temperature and they still present high efficiency rates, a sensible consideration in
the theoretical models is to include some degree of noise (or disorder), which takes
into account the overwhelming degrees of freedom that interact with the photosyn-
thetic complex. As there is roughly one excitation at a time in the FMO complex,
we can translate the graph model to a tight-binding Hamiltonian in which on-site
energies and hopping rates are given by experiments. In order to obtain quantitative
measures of transport across the FMO, the authors in [33, 34] proposed a quantum
master equation (in Lindblad form) which describes an excitation travelling across
the FMO from the antenna to the sink. The efficiency in this approach is the proba-
bility of trapping at the sink at a certain time. The noise is introduced as dephasing
operators at each site which essentially randomizes the phase of the excitation at
each site. The noise introduced in this way is a dynamical effect and it is precisely
the mechanism to overcome the suppression of transport due to coherent evolution.
As a function of the noise, the efficiency has essentially three behaviours. At low
dephasing rate, the efficiency is around 80% with a transfer time of ∼ 100ps. At
optimal dephasing rate, the efficiency becomes ∼ 100% and a transfer time of ∼ 5ps.
Finally, too much noise gives almost suppression of efficiency at times ∼ 500ps. This
use of dynamical noise to overcome localisation and to improve transport is known as
dephasing assisted transport. Further studies show that an equivalent classical sys-
tem may attain similar efficiency [35]. These works described so far treat essentially
a single excitation and they miss many-body effects.

Our approach in this thesis is different to the one described in the last paragraph.
It is common knowledge that disorder suppresses transport (in the sense of An-
derson localisation). We may ask ourselves what would be a necessary condition,
under static disorder, to overcome localisation. In this direction, the notion of cen-
trosymmetry is found to be useful to obtain good transport properties. Prominent
examples are found in references [30, 36, 37]. These studies rely on random Hamil-
tonians, generated by ensembles of Random Matrices. With this type of models one
can study interacting many-body systems (see for example [38–40]) and they form
the main motivation in this thesis.

To summarize this section, molecular complexes involved in photosynthesis [41] (the
FMO being the most studied of such complexes) display high efficiency, and this
effect may be related to quantum behaviour. Therefore, transport can be analysed
using quantum tools and quantum transport models [42]. It would be desirable to
study transport in finite systems which are efficient even in the presence of disorder,
or in other words, that despite of the disorder we can still obtain good transport
properties.
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1.2 On quantum buses. Efficient quantum graphs

for the transfer of states

Quantum computers are devices that perform manipulations on data by making
use of quantum phenomena, such as the superposition principle. From the algo-
rithmic point of view, they hold the promise to overcome in reasonable finite time
the solution of certain computational problems which in classical computation are
“unsolvable” in finite time. For example, take the search of elements through a dis-
ordered database. For a database of length N , the Grover algorithm takes O(

√
N)

steps to find the desired elements, see [43]. In contrast, a classical algorithm cannot
be solved in fewer than O(N) steps.

A quantum computer is composed by quantum processors. To transfer information
between the processors, we need a device that can link processors. If the processors
are composed by interacting spin chains, a reasonable proposal is that the buses
are made up of the same quantum system. However the quantum bus cannot be
composed by many particles, because we would be wasting computational power
used in the transfer of information. The quantum bus is desired to have a finite and
small number of particles. Suppose now that processor A encodes the result of a
calculation in an input state |A〉, and that this state must be sent to a processor B.
The state must be sent along the quantum bus before it reaches B; B then receives
the output state |B〉. The idea is that |〈B|A〉|2 ∼ 1 , i.e. that the input state sent by
processor A shall be received with high probability by processor B. Moreover, this
state transfer must be achieved in a finite amount of time; the transfer of information
between processors can be considered useless if they communicate at a very slow
rate of time. The protocol described in this paragraph is the starting point of the
seminal paper by Bose [44]. Bose’s results show, fixing the interactions among the
spins, that the efficiency is ≥ 90% for around ∼ 20 spins. Incrementing the size of
the chain shows an efficiency up to 70% for chains of 80 spins.

In this quantum bus model, particles can be considered as vertices in a graph and
interactions as edges between nodes. Similarly to the molecular complexes, the prob-
lem is to transfer information from one input vertex to and output vertex. Which
graph topologies are suitable for achieving that |〈in|out〉|2 ∼ 11? Christandl et al
[45, 46] showed that taking the k-fold Cartesian product (see [47] for its definition)
of either a complete graph of dimension 2 (K2) or a path graph of dimension 3 (P3),
it can be obtained Perfect State Transfer (PST) |〈in|out〉|2 = 1 in a finite amount
of time. For example, the k-fold cartesian product of K2 is a hypercube and if we
calculate |〈in|out〉|2 in which |in〉 and |out〉 are antipodal vertices we find PST. If we
use a path-collapsing argument [48], the hypercube is mapped to a weighted one di-
mensional chain again with PST. Before describing the construction of the mapping,
recall that one way to describe a graph is via its adjacency matrix (see for example
[49]). Since an adjacency matrix over a simple graph is symmetric, we can study

1In a general graph, we are interested in the transfer probability from an input state |in〉 to an
output |out〉. In the situation described in the previous paragraph, |in〉 = |A〉 and |out〉 = |B〉.
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the dynamics over such graph by defining the Hamiltonian of the associated graph
as its adjacency matrix HA. Returning to the mapping, the idea is to construct
a one-dimensional weighted graph from a simple graph which may me represented
in Rn and that we know beforehand that possess PST. For example, applying the
2-fold Cartesian product to K2 we obtain C4, which may be seen as a square in
R2 with all the sides equal to 1; if we apply the 3-fold Cartesian product to K2 we
obtain a graph which may be seen as the cube (in R3) with all sides equal to 1.
The mapping that we will describe in the following works for any graph with the
property that the vertices can be arranged in columns, without adjacency among
vertices of the same column (as is the case in the hypercube). Further, we must
require that each vertex at column j has the same degree, with the same incom-
ing (from column j − 1 to j) and outgoing edges (from column j to j + 1). The
next step is to construct the column basis, where each column state is defined as
|col j〉 := 1√

bj

∑
k=1,bj

|vjk〉, where bj are the number of vertices at column j, and

|vjk〉 labels vertex k at column j. In this column space, one calculates the represen-
tation of the Hamiltonian HA. For the hypercube, the matrix elements for adjacent
columns are 〈col j|HA| col j + 1〉 =

√
j(NC − 1) and zero otherwise, where NC is

the number of columns. We have thus reduced the hypercube, which we know that
possess PST, to a one-dimensional weighted graph (one-dimensional chain) with
PST. This one-dimensional chain can be seen as a spin chain with nearest neigh-
bour XY interactions, the interaction being

√
j(N − j), where j is the label of the

spin (counted from left to right) and N is the number of spins. It happens that this
weighted one-dimensional graph fulfills centrosymmetry. This supports evidence
that centrosymmetry is also present in ordered systems and, most importantly, that
it is responsible of Perfect State Transfer. Perfect state transfer Hamiltonians can
be achieved experimentally in spin chains with magnetic resonance techniques and
in photonic lattices, see [51]. Another possibility to reach PST is by having n-bosons
distributed in l single-particle levels and one-body interactions [50].

The PST chain described is a closed system. To be of any use, we must consider
that every quantum system is interacting with its surroundings and the enviroment
affects the behaviour of the central system. The inclusion of noise [52, 53], is a
reasonable generalization of these type of systems. The question now is, which are
the minimum requirements that one has to ask to the system in the presence of
noise, in order to obtain almost PST? The answer of this question is our second
motivation in this thesis.
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1.3 Thesis organization

We have seen that finite quantum systems play important roles in either quantum
transport, or in state transfer problems. Our aim in this thesis is to provide a
model that in a way generalizes these type of problems. In order to do so, we will
consider ensembles of random Hamiltonians with interactions. As we shall see, with
the chosen Random Matrix model, we can consider transport problems from 1 to n
particles distributed in l-single particle levels, with the extra degree of freedom that
we can choose the interaction among the particles.

Chapter 2 is a self-contained section about the theoretical tools and methods used
in the thesis. We begin by describing the random matrix model to simulate dis-
ordered networks with interactions, namely the Embedded Gaussian Ensembles for
fermions (EGE). Next we establish how to define centrosymmetry in a model of
fermionic interacting particles. Afterwards the definition of Transport Efficiency is
put forward, as a theoretical measure of transfer rate between channels. To measure
the transport in the steady-state through the network, we use the Non-Equilibrium
Green’s function method (NEGF). The central quantity that we analyse is the av-
erage current over the ensemble, which can be calculated using Landauer’s formula.
We provide a derivation of such formula. Chapter 3 analyses the Transport efficiency
in the Embedded Ensembles, either with or without centrosymmetry. The transport
properties in the steady-state are analysed in Chapter 4. Chapter 5 is concerned
with centrosymmetry robustness. First we investigate the EGE to csEGE transi-
tion, in section 5.1.1. Then in section 5.3 we analyse two possible ways to break
centrosymmetry. Finally in Chapter 6 we summarize the conclusions and outline
future directions that remain unexplored in this thesis.



Chapter 2

Model and methods

In order to discuss a concrete disordered model, we will introduce in this section the
necessary theory in which the model is built up and from which we draw the results
(chapters 3, 4 and 5) and the Conclusions 6 of this thesis.

We begin by describing the Embedded Gaussian Ensemble (EGE) for fermions. We
continue describing what is the centrosymmetry and how to apply it to the EGEs.
Next we describe the quantity known in the literature as the efficiency [36] and with
that we measure the time dependent performance of our system for a closed system
(quantum system with unitary evolution). Then we describe the Non-Equilibrium
Green’s function method (NEGF) for which we investigate the behaviour of our
system if we open it. In this case, the system will be considered efficient if it has
high transmission probabilities.

2.1 Embedded random matrix ensembles for dis-

ordered interacting systems

We begin describing the Embedded Ensembles for fermions. There is also an analo-
gous version for bosons, but we will concentrate on systems with spinless fermions.
We will follow the review on Embedded Ensembles by Benet and Weidenmüller [54].
There is a relatively new reference [55] on Embedded Ensembles which contains also
the general theory and some other applications.

Embedded Ensembles have their roots in what is known nowadays as canonical Ran-
dom Matrix Theory (RMT for short), as introduced by Wigner in the 50’s [56, 57].
Wigner’s idea was to deal with the statistics of eigenvalues and eigenfunctions of
many-body quantum sytems. In short, if one wants to obtain the eigenergies of
the nuclei, adequate nuclear models will provide the data in the low energy region.

7
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However, it is known that the level density of such systems increase exponentially
with the excitation energy. The problem becomes so complicated to solve analyti-
cally and numerically that a theoretical exact description of the problem becomes
of no practical use. Rather, starting with Wigner, people tried to give a statistical
description of the fluctuations of the energy levels. The basic idea was to build an
ensemble of random matrices, which may describe at least statistically, eigenvalues
of different nuclei. As we shall see, such RMT fall into three categories and take into
account global symmetry properties of quantum systems. This statistical descrip-
tion was found to be appropiate because it describes individual nucleus like 166 Er
[58] (obtained from experiments). In fact, if one builds an ensemble of energy levels
from different nuclei available from experiments, one can confirm that the fluctu-
ation measures coincide with one of the canonical ensembles in RMT (specifically
with the Gaussian Orthogonal Ensemble, see the next section for its definition).
The experimental ensemble is known as the Nuclear Data Ensemble and it is one of
the first hallmarks of the importance of RMT in Physics. The importance of RMT
goes well beyond nuclear physics, and it is precisely its character of universality
that makes it so useful. Some examples where it has found application are in atoms
and molecules, quantum chaos, disordered mesoscopic systems, QCD [6], wireless
communications [59] and time series [60]. Even the distribution of primes and the
Riemann conjecture have been linked to RMT [7, 61]. Our contribution in the thesis
falls in the use of random matrices for studying quantum transport in finite systems.
Inspired by the atomic nuclei, random matrices naturally describes quantum many-
body systems. Our aim is to give a quantitative ensemble description of transport
properties of interacting fermions. Instead of dealing with particular problems, like
the FMO or the quantum buses described earlier, the aim is to study a broad en-
semble of systems which can be suitable described by RMT. Before bringing forward
definitions and details that concern us, we point out to the interested reader to some
references (some of them classical references in the field) that complement this brief
description of RMT and its use in Physics. Please refer to [5–7, 55, 58, 62] and a
couple of relatively new publications [63, 64].

2.1.1 From canonical RMT to the Embedded Gaussian En-
sembles

We shall consider ensembles of Hamiltonian matrices in which every member in the
ensemble can be represented as a stochastic matrix (i.e. the matrix elements are
random variables independent identically distributed). RMT considers ensembles
of random matrices classified by their symmetries, and in canonical RMT there are
three types [58]. It is customary to label such symmetries with the parameter β,
where this number may attain the values of 1, 2, 4. If the system is time-reversal
invariant and invariant under rotations, then β = 1; the elements of the Hamil-
tonian matrix can be chosen real symmetric and the ensemble is known as the
Gaussian Orthogonal Ensemble (GOE). If the system is not time-reversal invariant,
then β = 2 and the elements of the Hamiltonian (Hermitian) matrix are complex
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numbers, and the ensemble is called the Gaussian Unitary Ensemble. Finally, if the
system is time-reversal invariant, not invariant under rotations, and if it has half-
odd-integer total angular momentum, then β = 4, and the matrices are quaternion
real [7]. This ensemble is known as the Gaussian Symplectic Ensemble (GSE). Since
we are interested in study (time-reversal) spinless interacting fermionic systems, the
suitable symmetry to describe the ensemble is β = 1, or systems invariant under
time-reversal symmetry. It may be of interest considering the influence of transport
in the presence of magnetic fields, in which β = 2 is the right symmetry to consider,
but we will restrict ourselves only in the former case. To construct an ensemble
of such matrices (β = 1), we can choose normal distributed elements in every en-
try of the matrix, such that the matrix is symmetric. The diagonal elements have
twice the variance of the off-diagonal elements. As we shall see, RMT is a limit
attained by the EGE. In this limit, the Hamiltonian represents all possible inter-
actions between n fermions, if the system has n fermions. Does the results change
significantly if the Hamiltonian of the system considers effectively one- or two-body
particle interaction? The first steps towards the understanding of random few-body
interactions was carried out by French and Wong [65], and by Bohigas and Flores
[66]. They analysed numerically what is known as the Two-Body Random Ensemble
(TBRE). They found numerically that fluctuation measures in the spectrum (like
the nearest neighbour spacing distribution or the Σ2 statistic), are similar to those
obtained using the GOE (at least at the center of the spectrum) [67]. The major
trouble is that this model is not amenable for analytical investigations. Because of
this, Mon and French [68] introduced the Embedded Gaussian Ensembles (EGE).
If there are n-fermions in the system, with this model is possible to go beyond one-
and two-body interactions. In fact, it allows to investigate the range 1 ≤ k ≤ n, of
k-body interactions. It also allows analytical investigations, see for example [55, 69].
The range of interaction k plays an important role in this thesis, as we will describe
in chapters 3 to 5, which is a parameter that does not appear in the GOE. We will
show that there is a clear advantage (in the sense that the transport properties of
the system change) when manipulating the fermionic k-body interaction.

2.1.2 Formal definition of Embedded Ensembles (EGE)

We consider a set of l degenerate (fermionic) single-particle states |j〉, with j =
1, 2, . . . , l. The associated creation and annihilation operators are a†j and aj, with
j = 1, . . . , l. They obey the usual anti-commutation relations which characterize
fermions. We define the operators that create a normalized state with k < l fermions
from the vacuum state as ψ†k;α = ψ†j1,...,jk =

∏k
s=1 a

†
js

, with the convention that the
indices are ordered increasingly j1 < j2 < · · · < jk. The index α in the many-body
operators labels the specific occupation given by the js, and simplifies the notation.
The corresponding annihilation operator ψk;α is constructed analogously.
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The random k-body Hamiltonian reads

Hk =
∑
α,γ

vk;α,γψ
†
k;αψk;γ , (2.1)

which takes into account interactions between k particles and moves up to k particles
from two different fermionic states of the occupation number basis. The coefficients
vk;α,γ are randomly distributed independent Gaussian variables with zero mean and
unit variance

vk;α,γvk;α′,γ′ = δα,γ′δα′,γ + δα,α′δγ,γ′ . (2.2)

The Hamiltonian Hk acts on a Hilbert space spanned by distributing n ≥ k particles
on the l > n single-particle states. A complete set of states is given by the set
{ψ†n;α |0〉 |α ∈ P}, where P is the set of all possible configurations in which we can
arrange n fermions in l levels, α being one specific configuration. The dimension
of the Hilbert space is N =

(
l
n

)
. This defines the k-body embedded Gaussian

orthogonal ensemble of random matrices for fermions [54, 55]. Notice that Hk=2 is
reminiscent of similar hamiltonians used in condensed matter physics, for example
the Hubbard model. The interaction k = 2 involves in the sum in Eq. (2.1) terms
that do not move particles, i.e. the diagonal terms which are similar to on-site
interactions of two particles, terms that move exactly 1 particle, and terms that
move exactly 2 particles.

By construction, the case k = n is identical to the canonical ensemble of random
matrix theory [6], i.e. to the Gaussian orthogonal ensemble (GOE). For k < n,
the matrix elements of Hk may be identical to zero and display correlations. Zeros
appear whenever no k-body operator exist that links together the n-body states.
Correlations arise because matrix elements of Hk not related by symmetry may be
identical. One could argue that interactions between k ∼ n particles are averaged
out and not relevant. However, in the case k = n the Hamiltonian (2.1) is identical to
the Gaussian orthogonal ensemble (GOE) [6], which has minimum information [70].
Moreover, transport in biomolecules takes place on a sub-picosecond time-scale [71],
where correlations between many particles can be relevant. This justifies to address
all rank of interactions.

As we consider finite systems of l states occupied by n particles, one may look
for particle-hole symmetries in the system. The Hamiltonian Hk may describe n
particles as well as l − n holes; yet, in the embedded ensembles such symmetry is
of no practical use, see [72]. Briefly, applying the particle-hole transformation to
Hk, the result is a Hamiltonian that consists of the sum of ranks 0, 1, . . . , k in the
hole representation, instead of a single term of rank k. Put it differently, if one
considers n = l − 1, one may expect that k = 1 display the same behaviour as
k = n. The structure of the matrices in the ensemble in both cases is almost equal,
the only difference is that for k = 1, the diagonal elements have a broader variance
than those of k = n. This apparently minimal difference makes that the eigenlevel
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density (which will be much relevant when studying transport quantities) displays
different behaviour. For k = 1 the eigenlevel density is a Gaussian while for k = n
we obtain a semicircle (both centered at zero). As for k = n the Hk is by definition
a GOE, we observe a kind of particle-hole symmetry in this cases, i.e. results for
the parameters (k = n, n) and (l − n, k = l − n) are identical.

2.1.3 Centrosymmetry in the Embedded Gaussian
Ensembles

Centrosymmetry is an important concept that enhances the efficiency [36, 37, 50,
73, 74] (see next subsection for definitions) and also enhances transport properties
of the system [74]. A symmetric N ×N matrix A is centrosymmetric if [A, J ] = 0,
where Ji,j ≡ δi,N−j+1 is the exchange matrix [75] or, equivalently, an anti-diagonal
unit matrix. One can therefore construct a centrosymmetric matrix by imposing
that a real symmetric matrix A commutes with J . Centrosymmetry is also known
as “mirror symmetry” in the literature (e.g. [51]). This term is easy to grasp
with the following example. Consider the weighted path graph Pn with n vertices
[76]. Physically, a weighted path graph can be constructed for example using the
tight-binding model H =

∑
i ti,i+1 |i〉 〈i+ 1| + h.c., the ti,i+1 are the weights of the

edges that connect pairs of vertices. Let the weights connecting a pair of vertices be
t1, t2, . . . , tn−1. If we impose [H, J ] = 0, then our weights have to fulfill ti = tN−i+1.
This is akin of considering only the half of Pn, and then placing a mirror in front of
it. We see that the weights precisely fulfill ti = tN−i+1, where N is the total number
of vertices (see Fig. 2.1).

Figure 2.1: Weighted path graph Pn with centrosymmetry (mirror symmetry). The
black-filled circles representes each vertex and the ti the weighted edge between two
vertices. The mirror symmetry is easily introduced in Pn if we cut half of the chain,
place a mirror where we cutted (vertical black line), and then considering the other
half of the chain being the one reflected by the mirror. The consequence is that the
edges fulfill ti = tN−i+1, where N is the total number of vertices.

Imposing centrosymmetry to the k-body embedded ensembles is subtle. Considering
the way in which we constructed Hk (Eq. (2.1)) and also following [50], it can be
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introduced either at the one-particle level, which is the core for the definition of the
k- and n-particle Hilbert spaces, at the k-body level, where the actual (random)
parameters of the embedded ensembles are set, or at the n-body level, which de-
fines the dynamics. The latter cases can be implemented following the procedure
described in Ref. [75] (c.f. Lemmas 2(i) and 2(ii)), though it is not clear whether we
should choose the k-body space or the n-body space. For example, the first lemma
ammounts to construct H (random!) with the block structure as

(
A CT

C JAJ

)
, (2.3)

where A = AT and C are block-random matrices of dimension N/2×N/2, T denotes
the matrix transposition operation, the matrix C fulfills CT = JCJ , and J is an
exchange matrix of dimension N/2 × N/2. Again, from only this lemma it is not
stated if this construction is at the k− or n−particle level or at the one-particle level.
Our definition of centrosymmetry takes into account the way in which we construct
the EGE and as we shall see, it can be considered a generalization to centrosymmetry
applied to fermionic operators. As we have stated that the one-particle states are
the building blocks to construct both the k-body particle states and the n-body
particle states, we shall define centrosymmetry at the one-particle level. Note that
this approach yields a consistent treatment of more realistic situations, e.g. a system
that includes a one-body (mean-field) term and a two-body (residual) interaction,
H = Hk=1 +Hk=2.

Considering that centrosymmetry is introduced at the one-particle level, we define
it by J1 |j〉 = |l − j + 1〉 for j = 1, 2, . . . , l, whose matrix representation in the one-
body basis is precisely the exchange matrix. For two fermions, we define J2ψ

†
2;j1,j2

=

J1a
†
j1
J1a

†
j2

= −ψ†2;l−j2+1,l−j1+1. The index 1 in J1 emphasizes that the operator acts
on the one-particle system, while the index 2 in J2 emphasizes that J1 acts on
each one-particle operator. In the last equation we followed the convention that
the indices are arranged in increasing order; then, the fermionic anticommutation
relations impose a global minus sign, which can be safely ignored. This is generalized
for k particles as

Jkψ
†
k;j1,...,jk

=
k∏
s=1

J1a
†
js

= ψ†k;l−jk+1,...,l−j1+1 , (2.4)

where we have dropped any global minus sign that may appear. We note that in
general the matrix Jk, as defined by Eq. (2.4), may not be an exchange matrix.
This follows from the possible existence of more than one state that is mapped by
Jk onto itself; in this case, we shall say that Jk is a partial exchange matrix. As an
example, considering l = 4 single-particle states and k = 2-body interactions, the
k-particle space has dimension 6. In this case, J2ψ

†
2;2,3 = ψ†2;2,3 and J2ψ

†
2;1,4 = ψ†2;1,4,

ignoring the minus signs mentioned above, since under J1 we have |2〉 → |3〉 and
|1〉 → |4〉. Then, the entries in the J2 matrix elements for these basis states are 1 in
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the diagonal and J2 is a partial exchange matrix. In contrast, for the case l = 4 and
k = 1, 3 the resulting matrices J1 and J3 are exchange matrices. If the EGE posses
centrosymmetry, either partial or full, we will call it centrosymmetric Embedded
Gaussian Ensemble (csEGE).

2.1.4 Effect of centrosymmetry in the Embedded Ensemble

At this point it is instructive to see the effect of centrosymmetry for a concrete set
of parameters. This same set of parameters will be chosen to analyse transport
properties in the presence, or abscence, of centrosymmetry. By choosing this set of
parameters, the quantum systems that we analyse are comparable to some FMO and
quantum buses. As we have described earlier (see section 2.1.3), depending on the
parameters l-number of levels, n-number of particles, and k the rank of interaction,
imposing the centrosymmetry at the one particle level we may generate partial or
full centrosymmetry at the k-, or n- particle spaces.

5
4
3
2
1

0
1
2

Figure 2.2: Comparison between a non-centrosymmetric matrix (left), and cen-
trosymmetry (right). We show one realization with the parameters l = 6, n = 5 and
k = 2. The color scale shows the weight of the matrix-elements as an aid to show
the block structure when centrosymmetry is present (right), see Eq. (2.5).

In Fig. 2.2, we can observe the comparison between a member of the embedded
ensembles with (right) and without (left) centrosymmetry. The parameters chosen
are l = 6, n = 5 and k = 2. Each square in the matrices represents certain matrix
entry 〈µ|Vk |ν〉. The Hilbert space has dimension NH =

(
6
5

)
= 6 in both cases. In

the non-centrosymmetric case (left), the matrix is only symmetric, while in the right
case, the matrix is symmetric and commutes with the exchange matrix J . Notice
that the centrosymmetric matrix has the block structure as given in the formula of
Lemma 2 of reference [75], namely H can be written as

H =

(
A CT

C JAJ

)
, (2.5)

which is the same as Eq. (2.3).
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Figure 2.3: Partial centrosymmetry for a member of the ensemble with the param-
eters l = 6, n = 2 and k = 1. Notice that the non-centrosymmetric part is clearly
showed at the center of the matrix. As in Fig. 2.2, the color code aids in showing
the partial centrosymmetry of the matrix. At the center, the matrix is symmetric,
while the outer structure fulfills centrosymmetry.

When centrosymmetry is only partial, our matrices in the ensemble are similar to
the matrix depicted in Fig. 2.3. For this case the dimension is NH =

(
6
2

)
= 15.

As we saw in the example in section 2.1.3, there are more than one states that
fulfill J |µ〉 = |µ〉. These states are not centrosymmetric and they form a symmetric
subset. As a result, the matrix representation of H will have centrosymmetric and
non-centrosymmetric structure. The non-centrosymmetric structure is clearly seen
in Fig. 2.3, at the center of the matrix.

As we have seen, the application of centrosymmetry to the one particle states does
not imply that the resulting n-particle states, and therefore the EGE have full cen-
trosymmetry. It depends on the number of states single-particle states, the number
of particles and the rank of interaction. A full acount for the presence partial (or
full) centrosymmetry for l = 6 is shown in the Table 2.1.4
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n k Type of centrosymmetry Type of centrosymmetry
in k-space in n-space

1 1 F F
2 1 F P
2 2 P P
3 1 F F
3 2 P F
3 3 F F
4 1 F P
4 2 P P
4 3 F P
4 4 P P
5 1 F F
5 2 P F
5 3 F F
5 4 P F
5 5 F F

Table 2.1.3: Partial P (full F ) centrosymmetry in the embedded ensembles for
l = 6. The total number of particles is n and the rank of interaction is k. The type

of symmetry depends on both n and k.

The first column labels the total number of particles n and the second the rank
of interaction k. The third and four columns show the presence of partial or full
centrosymmetry in the k- and n-particle spaces respectively. The k-particle subspace
displays partial centrosymmetry for k = 2, 4 (and similarly for n = 2, 4); otherwise
we have full centrosymmetry. We point out that partial centrosymmetry in k-space
does not imply the same behaviour in the n-particle space.

As a final comment, we can consider the csEGE as less disordered system when com-
pared to the EGE. In the k-particle space and in the presence of full centrosymmetry,
the vk;α,β matrix of Eq. (2.1) must commute with J (see Lemma 1 of Cantoni’s pa-
per [75]). The effect of imposing centrosymmetry is that the matrix has less than(
l
k

)
(
(
l
k

)
+ 1)/2 independent matrix elements (notice that

(
l
k

)
(
(
l
k

)
+ 1)/2 is the typi-

cal number of idependent identically distributed normal variables in the EGE [38]).
This effect is also reflected in the transport efficiency, as well as the average current
over the ensemble.
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2.1.5 Eigenvalue densities for the Embedded Ensemble and
the centrosymmetric Embedded Ensemble

As we have seen, the presence of partial or full centrosymmetry strongly depends on
the choice of l, n and k. In this section we compare the eigenvalue statistics with
the absence versus the presence of centrosymmetry (regardless if it is partial or full
centrosymmetry).

In Fig. 2.4 we show the eigenvalue distribution for the Embedded Gaussian Ensemble
(EGE, blue histograms) and the centrosymmetric Embedded Gaussian Ensemble
(csEGE, bold-red histograms). The NH indicates the dimension of the corresponding
Hilbert space associated to a system with n-fermions distributed over l-single particle
states. In blue and red numbers we indicate the associated variance var(H) for the
EGE and the csEGE, respectively. There are 104 realizations in each ensemble.

Notice that for a fixed n, the eigenvalue histograms suffer a transition from a Gaus-
sian shape (k = 1) to a semicircle shape (k = n), which is to be expected for the
EGE [72]. We observe that there are no significant changes when this case is com-
pared to the csEGE. If we calculate the variance of the distribution var(E), we can
observe that for n > 1 and k = 1, the density is broader in the csEGE compared to
the EGE. This trend is supressed if we consider k > 1. In fact, both distributions
behave approximately the same for any n, k > 1. We now discuss the variances
var(E). When k 6= n, we observe that the csEGE ensemble has a larger variance
than the EGE case. When k = n, we obtain aproximately the same dispersion for
both types of ensembles. Finally, notice that when k ≈ n/2, var(E) attains its max-
imum value. This property will be important when we analyse time-independent
transport properties. The dispersion when k ≈ n/2 increases as a function of n,
reaching its maximum value when n = l − 1 (for both ensembles).
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Figure 2.4: Eigenvalue density for the whole possible particles n and interactions
k that can be distributed in l = 6 levels. Each column represents a fixed rank of
interaction k and each row a fixed number of particles n, the specific values are
shown in each subfigure. In blue we show the eigenvalue density for the EGE and in
bold-red for the csEGE. NH represents the Hibert space dimension of distributing
n-fermions in l-levels. We have indicated in blue and red numbers the variances
var(E) for the eigenvalues of the EGE and csEGE, respectively. There are 104

realizations in each ensemble. Notice that the biggest variance is when n = 5 and
k = 3.
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2.1.6 Embedded Ensembles and their graph representation

The EGE is amenable to be treated as a disordered network. In this section we
will describe, given a certain number of single-particle states l, fermions n, and in-
teraction k, how an disordered network can be built. This graphical representation
is amenable to study when we introduce the transport efficiency Sec. 2.2 or trans-
port quantities Sec. 2.3 (transmission probability or total current). As we shall
see, in both approaches we have to choose two states, the input and output state.
Among this two states we measure either Efficiency, or probability transmission,
total current, etc.

Following [72], we can assign a graph representation to the EGE and to the csEGE.
We assign to each many-particle state |µ〉 a vertex µ, and to each non-diagonal ma-
trix element 〈ν|Hk|µ〉 which is not identically to zero, a link connecting the vertices
µ and ν. Each edge connecting two vertices has a weight given by the matrix ele-
ment 〈ν|Hk|µ〉. The resulting graph for the EGE or the csEGE is a regular-weighted
graph (see for example [49]). Figure 2.5 shows the weighted graph representation
for a member of the EGE (left), and a member of the csEGE (right). Σin and Σout

indicate two generic states from which we want to measure the performance of the
graph. These two parameters will become clear in Chapter 3 and Chapter 4. Notice
that both graphs are regular and have the same number of links. The difference be-
tween the two of them is that the graph with centrosymmetry has less independent
random weights. This makes the graph on the right “more ordered”, compared to
the EGE case. This feature is again manifested in the statistical transport properties
as explained in subsequent chapters.

⌃in ⌃out

EGE

min

max

⌃in ⌃out

csEGE

Figure 2.5: Weighted graph representation of the EGE (left) and csEGE (right)
for a particular realization. Notice that both graphs are regular, but the one with
centrosymmetry on the right, has less independent random parameters than the one
on the left. Σin and Σout indicate two generic states from which we want to measure
the performance of the graph.

In this thesis we are interested in the optimization of transport properties of a system
that can be modelled by either EGE or csEGE. The graph approach allows us to
fit our problem in the cathegory of optimizations problems, such as The network
flow problem (see for example [77], chapter 3 of the internet free edition). To the
author’s knowledge, there are non algorithms treating the network flow problem
when the edges are sampled from a random distribution, which we have in the
graph representation of the EGE and csEGE. Centrosymmetry could be seen as an
easy way to optimize the Network Flow Problem. As we shall see in sections 3 and
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4, it is a desirable condition to have it in order to obtain good transport properties.

As a final comment, not all graphs are fully connected as in the Fig. 2.5. The
connectedness of the graphs in the EGE and csEGE depends on l, n and k. When
n = l − 1 (any k) the graphs are fully connected. In contrast, take for example
n = 3. The total number of possible edges in a graph is

(
N
2

)
, where N is the number

of nodes. The number of nodes is the same as the dimension of the single-particle
basis. Therefore, when l = 6 and n = 3 then N =

(
6
3

)
= 20. The total number of

edges in this case are N ∗ (N − 1)/2 = 190. When k = 1, the number of missing
edges is 100, for k = 2 is 10 and for k = 3 the number of missing edges is zero. The
interested reader can find the formulas for calculating the connectivity of the graph
of a EGE in the general case in [38]. Summarizing, the parameter k allows us to
study transport properties from poorly connected graphs (generically when k << n),
to fully connected graphs (k ∼ n). As we shall see in the upcoming sections, the
connectivity will play an important role in studying transport properties of these
networks.

2.2 Transport efficiency

Efficiency is a quantity which measures maximum of the transfer probability between
a pair of states at a certain time in a given time interval. It has been used in [36,
50, 78] to measure the performance of a disordered network, as the ones generated
by Random Matrices. It has also been used in optimally designed networks, see for
example [4, 44–46, 79]. The efficiency is the figure of merit for measuring transport
probability in our closed system.

The transport efficiency from an input state |in〉 to an output state |out〉, is quan-
tified as the maximum transition probability achieved among theses states within a
time interval [0, T ]. The transport efficiency is defined as [36]

Pin,out = max
t∈[0,T ]

|〈out|U(t)|in〉|2. (2.6)

The system is said to have perfect state transfer (PST) when Pin,out = 1 [45]. In
Eq. (2.6), U(t) is the unitary quantum evolution associated with the Hamiltonian
of the system and T is a reasonable time scale (~ = 1). At this point, we note
that in Ref. [36] the time scale T was defined individually for each random matrix
realization, essentially by the direct coupling matrix-element between the |in〉 and
|out〉 states. For the embedded ensemble that we consider, such matrix element may
be identically zero. We have thus opted for a fixed global time scale for all realizations
of the ensemble. For each realization we have to construct the efficiency matrix,
where each entry is precisely Eq. (2.6). As our Hamiltonian is real symmetric, the
associated efficiency matrix is real symmetric (this matrix is known in the literature
as the Gram matrix, see [80, 81]). For every efficiency matrix, we take its largest
matrix-entry. This member, say Pγ,θ, is called the efficiency of its corresponding
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realization. We shall analyse in Chapter 3 the averaged efficiencies and frequency
histograms using Pγ,θ.

2.3 Transport using Non-Equilibrium Green’s func-

tions method

Non-Equilibrium Green’s functions method (NEGF) is a formalism to study trans-
port properties in nanostructures [82–85], molecular electronics [42] and mesoscopic
systems [86, 87]. There is a wide variety of references about NEGF. Among the most
popular, there are the books by Datta [86–88]. For a more mathematical oriented
introduction, we refer the book by Economou [89]. For a detailed explanation using
a scattering matrix approach, see the book by Mello and Kumar [90]. As expressed
in many NEGF references (see for example [42]): “the central idea of the scattering
approach, already put forward by Rolf Landauer in the late 50’s [91], is that if one
can ignore inelastic interactions, a transport problem can always be viewed as a
scattering problem”. In the following, we will discuss the model of an open sys-
tem, and how to obtain the relevant transport equations used to analyse transport
properties in both the EGE and csEGE. We will follow closely the reference [85].

Figure 2.6: The transport problem analysed in this thesis. The central system is
described by Hk, which in turn may be represented as a disordered-weighted graph.
The enviroment is composed by the source and drain which are in equilibrium and
characterised by their corresponding Fermi distributions. They are described by the
Hamiltonians HS/D, for the source and drain respectively. The system is coupled to
the source and drain at certain nodes, described by the self-energies ΣS/D.

From now on, we will refer as the central system the system described by l-single
particle states, n-particles, and such particles interacting via the Hamiltonian Hk,
Eq. (2.1). The enviroment is comprised by what is known as the contacts, which
in turn are called source (their quantities described by a subscript S) and drain
(denoted by D). In Fig. 2.6 we depict the case we already described. The purpose
is to obtain effective transport equations on the central system, considering the
“interaction” to the enviroment represented by the contacts.
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Based on Fig. 2.6, we assume that the source and drain are in equilibrium and char-
acterized by the Fermi distributions fS/D = f(E − µS/D), with chemical potentials
µS/D. There is a difference in the chemical potentials µS/D, and therefore the system
is driven out of equilibrium. This mechanism is responsible for the current flow.

The starting point for deriving the effective transport equations is as follows. We
have already pointed out that the source and drain are in equilibrium. Without the
presence of the central system (we will add it in a further step and there we will
take into account the behaviour of the total system), the isolated contacts are de-
scribed by their corresponding Hamiltonians HS/D, and fulfill their own Schrödinger
equations

(E −HS) |ΨS〉 = 0, (2.7a)

(E −HD) |ΨD〉 = 0. (2.7b)

We rewrite these equations as

(E −HS + iν) |ΨS〉 = |PS〉 , (2.8a)

(E −HD + iν) |ΨD〉 = |PD〉 , (2.8b)

where ν is an infinitesimal positive number, and iν |ΨS/D〉 = |PS/D〉. The terms
iν |ΨS/D〉 and |PS/D〉 represent the extraction and reinjections, of energy to the con-
tacts, such that the contacts are always in equilibrium. In this last part, equilibrium
means that the contacts are so large compared to the central system, that the pres-
ence of the latter does not alter the state in the contact. This means that, despite
of the presence of the central system, the contacts are still characterised by fS/D.
Although the Schrödinger equation is mathematically unchanged from the set of
Eqs. (2.7) to the set of Eqs. (2.8), the last set of equations allows a different point
of view. In Eqs. (2.8), we consider that E is no longer an eigenvalue of the Hamil-
tonian, but an independent variable. This E gives the energy excitations |PS/D〉
from external sources. In a similar manner, |ΨS/D〉 in Eqs. (2.7) is nonzero only for
the eigenergies, in Eqs. (2.8) the |ΨS/D〉 are non-zero for any energy and represent
the response of the reservoirs to external excitations. When the central system is
connected to the contacts, the energy levels in the contact are no longer delta peaks
centered at its eigenvalues Ej, but rather there is a finite broadening which is the
contribution of the contacts induced by iν. With these assumptions, the physical
picture of transport through the central system is to investigate the transport of
particles at any energy E ∈ [µD, µS] from source to drain. Furthermore, the central
system is viewed as an open system, due to the presence of iν.
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We can study the dynamics of the full coupled system (central system + enviroment)
by writting the corresponding Schrödinger equation. In matrix form it reads

E −HS + iν −τ †S 0
−τS E −Hk −τD

0 −τ †D E −HD + iν

ΨS + ξS
φ

ΨD + ξD

 =

PS0
PD

 , (2.9)

where the τS/D describe the interactions between the central system and the contacts.
The states |ΨS/D〉 excite states |φ〉 in the central system, which in turn excite states
|ξS/D〉 in the contacts. The first and last row will lead to the expressions

|ξS〉 = GSτ
†
S |φ〉 , (2.10a)

|ξD〉 = GDτ
†
D |φ〉 , (2.10b)

where we have used Eqs. (2.8), and the fact that the states |PS/D〉 are unaffected
by the coupling. The GS/D are the Green’s functions of the contacts, given by

GS/D = (E −HS/D + iν)−1.

Using Eqs. (2.10) and the middle row of Eq. (2.9), we find

(E −Hk − ΣS − ΣD) |φ〉 = |P 〉 , (2.11)

where the self-energies ΣS/D are given by

ΣS/D = τS/DGS/Dτ
†
S/D, (2.12)

and the total excitation of the central system is

|P 〉 ≡ τS |ΨS〉+ τD |ΨD〉 . (2.13)

Finally, for |φ〉 we have

|φ〉 = G |P 〉 , (2.14)
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where G is the Green’s function of the central system

G = (E −H − ΣS − ΣD)−1. (2.15)

We have thus reduced the Schrödinger equation of the total system to a single
equation for the central system, which includes the coupling to the contact via the
self-energies ΣS/D. The self-energies are connected to the losses that the central
system suffers by the contacts. They are typically non-Hermitian matrices, which
shift the eigenvalues to the complex plane. The imaginary part of these eigenvalues
are connected to the width of the resonances when we analyse the transmission
function.

The self-energies ΣS/D are considered in the wide-band approximation, given by the
equation

ΣS/D = −iηδj,S/D, (2.16)

where η is a constant. This means that the energy scales related to the density
of states of the leads are taken as constants for the whole conduction band of the
central system. This way of modelling the contacts is used for example in [42, 85].

It remains to be shown how to obtain the total current through the central system
system, known as Landauer formula. In order to do so, we will need a couple of
extra definitions. The correlation function G is defined as [42]

Gij(t, t′) ≡ 〈a†i (t′)aj(t)〉 ,

where ai and a†i are the usual fermionic annihilation and creation operators in i-th
site. We now consider the substitution rule [85]

|i〉 〈j| → 1

2π
Gij. (2.17)

The spectral function is defined as

A(E) = 2πδ(E −H) = −2 Im(G), (2.18)

where δ(x) is the Dirac delta function and G is the Green’s function of the central
system. The correlation functions of the contacts, which are assumed in equilibrium,
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are related to the spectral function (for each contact) by [87]

GS/D = AS/D(E)f(E − µS/D), (2.19)

where f(E − µS/D) is the Fermi distribution that characterizes the corresponding
contact. The functions AS/D are the spectral functions for the source and the drain,
respectively. Now we calculate the density matrix of the central system

ρ = |φ〉〈φ|
Eq.2.14

= G|P 〉〈P |G†
Eq.2.13

= GτS|ΨS〉〈ΨS|τ †SG
† +GτD|ΨD〉〈ΨD|τ †DG

†

+ GτS|ΨS〉〈ΨD|τ †DG
† +GτD|ΨD〉〈ΨS|τ †SG

†,

(2.20)

where the last two terms are zero because there is no direct coupling between the
reservoirs. By using the substitution rule for the contacts Eq. (2.19) we find

G = GτSASτ
†
SG
†f(E − µS) +GτDADτ

†
DG
†f(E − µD)

= GΓSG
†f(E − µS) +GΓDG

†f(E − µD)

= GΣinG†,

(2.21)

where in the second equality we have defined ΓS/D = τS/DAS/Dτ
†
S/D, and in the last

equality we defined the in-scattering function [87]

Σin ≡ ΓSfS + ΓDfD. (2.22)

2.3.1 Derivation of the Landauer formula

We are now in position to derive the formula of the total current through the central
system. We begin with the Liouville-von Neumann equation

dρ

dt
+

i

~
[H, ρ] = 0, (2.23)

where ρ = |φ〉〈φ|, and H = E−G−1−Σ is the effective Hamiltonian for the central
system (Σ = ΣS + ΣD). In the steady state, the first term of Eq. (2.23) vanishes.
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If the system is not closed, then the commutator is proportional to the operator
current through the central system

Î =
ie

~
[H,G], (2.24)

where we have used the substitution rule Eq. (2.17) (from now on we set e = 1).
By using Eq. (2.21) in this last expression and H = E −G−1 − Σ, we find

[H,GΣinG
†] = (E −G−1 − Σ)GΣinG† −GΣinG†(E − (G−1)† − Σ†)

= GΣin +GΣinG†Σ− ΣinG† − ΣGΣinG†

= GΣin − ΣinG† +GnΣ† − ΣGn.

(2.25)

At this point we introduce the definition of the broadening matrix [87]

Γ ≡ i(Σ− Σ†), (2.26)

and with Eq. (2.18); A(E) = 2πδ(E − H) = i(G − G†), taking the trace of Eq.
(2.25), and using the cyclic property of the trace, we obtain

Tr[H,GΣinG
†] = Tr(GΣin − ΣinG† +GnΣ† − ΣGn)

= Tr(ΣinA− ΓGn).
(2.27)

In this last step we have taken the trace of the current operator because we are
looking for the total current through the central system, therefore the current takes
the form

I(E) ≡ Tr(ΣinA− ΓGn), (2.28)

where we have set ~ = 1. This current must be zero, as it is stated by the continuity
equation (2.23). The effective current through the central system could be obtained
by analysing the total current through either the source, or the drain. The total
current in the source is

IS(E) = Tr(Σin
S A− ΓSG

n). (2.29)
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As this is the current that is present through the central system, from now on we
will simply call it the total current.

We rewrite the spectral function as

A = i(G−G†) = G(ΓS + ΓD)G†,

where we have used that: i((G−1)† −G−1) = ΓS + ΓD. Using the second equality of
Eq. (2.21) and this last expression for A, we can rewrite Eq. (2.29) to obtain

IS =

∫ µD

µS

dE Tr(ΓSGΓDG
†), (2.30)

where we have integrated over the accesible range of energies that are determined
by the chemical potentials µS/D for source and drain respectively (µS < µD). This
last equation is known as the Landauer formula [91]. Equation (2.30) is valid for
temperature equal to zero, where the Fermi functions for the source and drain are
determined by Heaviside functions, which are 1 up to the Fermi energy E = µS/D, for
source and drain respectively, and zero elsewhere. In section 4 we will use formula
(2.30) in the infinite bias limit (µS −µD)→∞. The Landauer formula (2.30) could
be rewritten as

I =

∫
T (E)dE,

where T (E) is the transmission function

T (E) = Tr(ΓSGΓDG
†), (2.31)

which is the probability of tunneling energy through the central system. The total
current is taken as the analogous of the transport efficiency Pµ,ν (Eq. (2.6)), when
the system is open and one wants to study transport in the steady-state.



Chapter 3

Closed systems: Best efficiency

In this chapter, we analyse the transport efficiency (or efficiency, for short) of net-
works generated by the embedded ensembles, with and without centrosymmetry.
We recall that the transport efficiency is defined by Eq. (2.6)

Pin,out = max
t∈[0,T ]

|〈out|U(t)|in〉|2. (2.6)

Inspired by the transport in photosynthetic complexes (which is known to take place
in sub-picosecond timescales [71]), we ask the question on what is the transport
efficiency in either the EGE or the csEGE at short time scales. In order to find
which ensembles have the best efficiency, we analyse Eq. (2.6) by exhaustion, i.e.
we fix the number of levels and then we sweep all the possible values that n and
k may attain. For concreteness we analyse the case l = 6, varying the number
of particles (fermions) from 1 to 5, and the rank of interaction from 1 to n. We
consider the time interval (with ~ = 1) t ∈ [0, 15]. As the quantity 〈µ|U(t)|ν〉 can
have periodicities in the time interval chosen, we choose our efficiency as the first
maximum at t = t1 of the quantity 〈µ|U(t1)|ν〉. We will focus in the best efficiencies
in the ensemble. For each realization, we calculate its efficiency matrix with entries
Pµ,ν . Since Hk is symmetric, this matrix fulfills Pµ,ν = Pν,µ. From the relevant
N × (N − 1)/2 efficiencies, we select the largest efficiency. We do this for every
member of the ensemble. We consider 104-realizations in each ensemble (EGE or
csEGE). The results are shown in Fig. 3.1. In this plot the abcissa corresponds to
the efficiency P and the ordinate to the frequency of occurrence of certain efficiency
N (P). The red (blue) histograms correspond to the csEGE (EGE). The red (blue)
numbers correspond to the mean of the csEGE (EGE) plus/minus the standard
deviation of the efficiency. Inspired by the FMO complex [3], the black straight
line at 95% corresponds to the statistical benchmark, and is the same as the one
reported in the literature [92], [30] and references therein. The criteria to decide if
the ensemble in question is efficient is the following. If the efficiency distribution is
in average around the benchmark of 95%, we will consider the ensemble as efficient.

27
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Figure 3.1: Efficiency distribution for the EGE and csEGE. The figure arrangement is the same as in
Fig. 2.4. The x axis labels the efficiency P and the y-axis the frequency that an efficiency has been
obtained. The red histogram corresponds to csEGE and the blue histogram to EGE. In red (blue)
numbers we plot the mean (± the standard deviation) efficiency over the ensemble. The dashed
black line is the statistical benchmark, set at 95%. Notice that csEGE improves the efficiency rates
in general, when compared to the EGE. The best cases are obtained when n = l−1 = 5 and k ∼ n/2.
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The distributions in Fig. 3.1 reveal that for any (n, k) the csEGE is always closer to
efficiency 1 than the EGE. Furthermore, the mean value of the distributions for the
EGE (blue) and the csEGE (red) supports the fact that the csEGE is more efficient
than the EGE. For all cases of averaged quantities of the EGE ensemble, we cannot
reach the benchmark of 95%. The EGE distributions are spread at most 8% around
their mean value (the spreading quantified by the standard deviation). If we fix n,
both distributions (EGE and csEGE) display a transition as a function of k. For
n = 1, 2, 3, 4 we find that the best efficiency corresponds to k = 1. As we tune the
interaction k, the distributions tend to shift to the left (see how the mean efficiency
changes as a function of k). For these values of n, looking at any row, the lowest
efficiencies are found when k = n. Recall that by definition (see section 2.1.2), when
k = n the ensemble corresponds to either the GOE or the csGOE. This means that
when k = n, for every member of the ensemble, its corresponding matrix elements
are uncorrelated random variables. Compared to the cases with k < n, which have
better efficiency, k = n has too many independent parameters. This means that
if we want better transport efficiencies, there must be correlations in the matrix
elements of either EGE or csEGE (which in turn means that the k must be k < n).
For n = 1, 2, 3, 4 and k = 1, the spreading of these distributions is bigger, when
compared to other values of k. The case k = 1 for n = 2, 3, 4 essentially means two
types of correlations in the matrix elements of every ensemble EGE or csEGE. We
will focus in the case n = 2, but the same arguments apply to n = 3, 4 and the
csEGE with n = 2, 3, 4. The first type of correlation is that many matrix elements
will be identically zero, for n = 2 we have 45 such elements. The second relies on the
allowed independent random variables that one may have in the ensemble. When
n = 2, the dimension of the Hilbert space is Nn=2 = 15. This means that we can
have at most 15× 16/2 = 120 independent random variables (because the matrices
are real symmetric). From these we know that there are only 120−45 = 75-elements
different from zero. As the k = 1-body space has dimension Nk =

(
l
k

)
=
(
6
1

)
= 6, we

can have at most 21 independent random elements. These 21-independent random
variables from the k-particle space determine the 75-matrix elements in the n-body
space. Therefore, these 75-matrix elements are not independent from each other
and they are correlated via the independent elements in the k = 1-particle space.
The message is that these correlations are important in obtaining better transport
efficiency. Any efficiency distribution with n = 1, 2, 3, 4, and k 6= n, is better than
the case when k = n.

We will now discuss the case n = 5. Compared to other values of n 6= 5, the distri-
butions and the average efficiency is better for n = 5. For n = 5 the distributions
suffer a transition as a function of k (as in the case of other values of n), but while
in the previous case, incrementing k was detrimental, here is beneficial up to k = 3.
For k = 4 we find essentially the same values as for k = 2 and k = 1 is esentially the
same as k = 5. The best efficiency distribution in all the parameter configuration
is for k = 3, although the csEGE is better than the EGE. The csEGE has mean
efficiency of 95%, and standard deviation of 4%. For the csEGE only, the efficiency
distributions are optimal for k = 2, 3, 4, because all of them are around the 95%
benchmark, and the standard deviation is at most of 5% in each one of them.
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The reader may notice the symmetries in this figure for different values of n and
k. The first symmetry that we explain concerns the definition of the EGOE (or
csEGOE) when k = n, and the dimension of the Hilbert spaces for different values
of n. Remember that by definition, when k = n, the ensembles are either GOE or
csGOE. Recall also that the Hilbert space dimension for n-particles is Nn =

(
6
n

)
.

By virtue of the binomial coefficient, N1 = N5 and N2 = N4. Therefore we have
esentially two dimensionally equivalent GOE (csGOE) ensembles for n = 1, 5- and
n = 2, 4-particles. It is expected that the efficiency distribution is thus the same
for these two pairs of parameters. When n = 5, we may notice that for EGE or
csEGE, the distributions are the same for k = 1, 5 and k = 2, 4. For k = 1, 5,
one difference between two matrices either in EGE or csEGE, one with k = 1
and the other with k = 5, is that the diagonal elements for k = 1 are sums of
independent independent variables, while for k = 5 the diagonal elements are just
independent random variables. For k = 2, 4, the k-body spaces have the same
dimension, therefore the number of independent random variables is the same. This
raises similarities in the matrix elements between k = 2, 4, although in general there
is no particle-hole symmetry in these ensembles [72].

The next natural question is to ask which states are involved in the efficiencies
obtained in Fig. 3.1. We will focus in the case n = 5, because this is the case in
which we found the largest efficiencies compared to other values of n. Figure 3.2
shows the frequency histograms of the pair of states that give the best efficiency.
The total number of states for either case, EGE or csEGE, is 104 (the number of
realizations in each ensemble). In the x− y plane we have the combination of states
|µ〉 and |ν〉 for which we obtained Pµ,ν . Each column represents k = 1, 3 or k = 5.
The top row corresponds to the EGE and the bottom row to the csEGE case. In the
top row we can see that any combination of states |µ〉, |ν〉 can give a contribution
to Pµ,ν . We further see that this does not depend on k, for all cases we obtain a
similar frequency distribution. For the csEGE case (bottom row), we observe that
only certain pair of states (again independent of k) contribute to the best efficiency,
namely they can be either |1〉 and |6〉, |2〉 and |5〉, or |3〉 and |4〉. In other words,
the only states that contribute to the best efficiency are those that are related by
centrosymmetry in the n-particle space.
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Figure 3.2: Frequency of states that participate in the best efficiency of Fig. 3.1.
From left to right, k = 1, 3, 5. Top row: EGE model without centrosymmetry.
Bottom row: EGE model with centrosymmetry. Notice that in the EGE case,
any combination of states may participate in obtaining the efficiency P . For the
csEGE case, almost all efficiencies are obtained between the states that preserve
centrosymmetry. The states related between each other are |1〉 and |6〉, |2〉 and |5〉,
|3〉 and |4〉.

I 

, 
.' 



Chapter 4

Efficient open systems: Transport
properties

As in the previous chapter, we analyse a fermionic spinless system with n-fermions
distributed over l single-particle states. The basis in which we represent either a
EGE or a csEGE is the occupation number basis (see Section 2.1.6). The crucial
quantity for measuring efficiency in the open system using NEGF is the total current
through the system (see Eq. (2.30))

I =

∫ ∞
−∞

T (E)dE, (4.1)

where T (E) = Tr(ΓSGΓDG
†) = |2G(E)in,out|2 is the transmission probability be-

tween the ingoing and outgoing states (Eq. (2.31)). Here, G(E) = (E −Hk −ΣS −
ΣD)−1 is the Green’s function of the central system at the energy E (Eq. (2.15)).
Recall that by Eq. (2.26), ΓS/D = i(ΣS/D − Σ†S/D) = 2 Im(ΣS/D). The position of

the input contact is fixed to be |1〉 = |1, 1, . . . , 1, 0, 0, . . . , 0〉, where all the fermions
are shifted to the left. As the outgoing state we take |N〉 = |0, 0, . . . , 0, 1, 1, . . . , 1〉,
where all fermions are shifted to the right. These states are clearly related to each
other by parity if Hk is centrosymmetric; see Fig. 4.1 for a schematic view of the
scattering process

In the following analysis, the contacts are characterised by the self-energy matrix
with elements

Σ(1 or 6)r,s = −iηδr,(1 or 6)δr,s, (4.2)

where η is the strength of the coupling which for now we set to η = 1.

32
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Figure 4.1: Schematic view of the scattering process. The input state | in〉 (i.e. the
position where the source is attached to the system) suffers a scattering process S
which depends on the random Hamiltonian Hk. The transmission probability (and
total current) is measured at the output state | out〉, which is the position of the
drain attached to the central system. The input state is the quantum many-body
state |1, 1, . . . , 1, 0, . . . , 0〉 (i.e. the state where all fermions are shifted to the left),
while the output state is |0, 0, . . . , 0, 1, . . . , 1〉 (all fermions are shifted to the right).
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Before analysing the average quantities over the EGE or the csEGE, we present the
typical behaviour for a single realization in each of these ensembles. For l = 6, n = 5
and k = 3, the energy resolved transmission T (E) for two typical members of the
ensemble is shown in Fig. 4.2.
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Figure 4.2: Transmission T (E) as a function of the energy E for two typical members
of each random matrix ensemble. The parameters are l = 6, n = 5, k = 3. In both
cases resonances can be observed which are approximately at the eigenenergies of
the central Hamiltonian. If the Hamiltonian is centrosymmetric (red/thick curve),
we observe numerous resonances of perfect transport (T = 1). The transmission
increases significantly compared to a Hamiltonian without this symmetry property
(blue/thin curve). The blue and red numbers give the current for the EGE and the
csEGE (Eq. (2.30)).

In both cases the transmission shows resonances which are located approximately
at the eigenenergies of the Hamiltonian Hk. Many resonances of perfect transport
(T = 1) can be observed if the Hamiltonian is centrosymmetric; see the red curve
in Fig. 4.2. Our objective is not restricted to attain transmission T (E) = 1 at
especific energy, but rather on improving the transport in the whole conduction
band. We shall see that in general the transport properties are improved by imposing
centrosymmetry. It is important to observe further features when comparing EGE
versus csEGE. Note that in the csEGE case, the resonances are ∼ 1, while for the
EGE case the resonances are < 1. Note also that the peaks of such resonances are
in general broader in the csEGE in comparison to those of the EGE case. Below we
will see that even if we have broad peaks for the EGE, the contribution to the total
current is not relevant because of the height associated to such peaks, which they
are well below one. On the other hand, we will see that a csEGE have broad peaks,
and also height ∼ 1. This means that broader peaks will contribute to more area
below the transmission curve, which in turn implies more current (see Eq. (4.1)).
This behaviour is also present when we analyse average currents over the ensemble
for either of the two ensembles. Unless stated otherwise, for each concrete set of
parameters, we have calculated an ensemble of 104 realizations with and without
centrosymmetry being imposed.
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4.1 Ensemble averaged transmission and current

distributions

We have already seen in Fig. 4.2 that centrosymmetry enhances significantly the
coherent transmission T (E) through the system. The ensemble averaged transmis-
sion 〈T (E)〉 is displayed in Fig. 4.3, where all combinations of n and k are shown.
We observe that in the case of centrosymmetric embedded Gaussian random matrix
ensembles (csEGE) the average transmission is for all energies larger than for the
non-centrosymmetric Gaussian ensembles (EGE), i.e. 〈TcsEGE(E)〉 > 〈TEGE(E)〉. In
both cases the spectral span of the transmission, i.e., the width of the conduction
band, is maximal for k ∼ n/2 and increases with n. That is, the system is conduc-
tive for a wider range of energies. The ensemble averaged transmission is peaked
around the center of the conduction band at E = 0.

Figure 4.3: Ensemble averaged transmission 〈T (E)〉 as a function of the energy E for
a system with l = 6 single-particle states. Each column has fixed value of k, for k =
1, 2, . . . , n, while each row corresponds to a fixed value of n, for n = 1, 2, . . . , l − 1.
The ensemble consists of 104 realizations. The results corresponding to the EGEs are
displayed by the blue/thin curves, while the red/thick curves illustrate the csEGEs
results. The blue and red numbers give the mean averaged transmission for the EGE
and csEGE respectively. Imposing centrosymmetry increases considerably the ensemble
averaged transmission for all energies.
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In particular, for fixed n (along a row in Fig. 4.3) maximal values of the transmission
are attained at k = 1 and k = n for the EGEs as well as for the csEGEs. The shape
of the maxima differs in the two cases; for k = 1 the maximum is strongly peaked,
whereas for k = n it is broader and rounded. This behavior can be observed also
for larger systems, see the Appendix, though the values for k = 1 are slightly larger
than for k = n. All these cases (l = 6, 8, 10) are of interest because transport is
typically more efficient in a narrow energy band around E = 0. This effect is most
pronounced for the extrema at k = n = 1 and k = n = 5.

Figure 4.4: Frequency histogram of the current for 104 realizations for the EGE (blue)
and the csEGE (red). The arrangement of the figures is the same as in Fig. 4.3. The
average current 〈I〉 is indicated by blue and red vertical lines and their values are indi-
cated in the insets. The current is maximal if the system is almost filled n = l − 1 and
the rank of interaction between the particles is k ∼ n/2.

In Fig. 4.4 we present the frequency histograms N (I) of the current, calculated
by means of the Eq. (4.1). We observe that the average current 〈I〉, whose val-
ues are included in the insets and are illustrated by the vertical lines, is enhanced
significantly when centrosymmetry is imposed. This trend is independent from the
actual value of the parameters (n, k). Moreover, the average current is maximal if
the system is almost filled, i.e. n = l − 1, and the rank of interaction is k ∼ n/2.
These statements also apply to the mode (i.e. the position of the maximum) of the
current distributions. Note that for larger systems (see the Appendix) the average
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current is maximal for n close, but not identical, to l−1. These results for stationary
transport are fully consistent with our previous results (see [50] and Fig. 3.1), where
the dynamic propagation of states was addressed. The effects of centrosymmetry
are thus present in time-dependent quantities [36, 37, 50] and also in stationary
transport properties. We have shown that analysing the efficiency P and the mean
curret 〈I〉 display similar features for the EGE compared to the csEGE. We can state
that the transport is robust when we analyse time-dependent and time-independent
quantities. Centrosymmetry enhances the transport either in the time (efficiency),
or in transport in steady-state, and therefore could be used in every random system
which meets the criteria of the csEGE. Returning to section 2.1.6 and to the related
problems of engineering quantum systems [45, 51], the network flow problem in a
disordered Hamiltonian system1 can be enhanced by just imposing centrosymmetry.
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Figure 4.5: Top row: Histogram of the transmission evaluated at the real part of
the complex eigenenergies of H ′k, where the resonances are approximately located.
The histogram confirms our observation from Fig. 4.2 that centrosymmetry gener-
ates many resonances of optimal transmission T (Re (εj)) = 1. Bottom row: The
histogram of the transmission at random energies confirms this property and fur-
thermore, shows the general trend that centrosymmetry enhances the transmission
for all energies, see Fig. 4.3. Note that the vertical axes are in logarithmic scale.

Similar to what we observed in Fig. 3.1, for k = n, Hk is a member of the GOE, we
observe the same symmetry in these cases, i.e. results for the parameters (n, k = n)
and (l−n, k = l−n) are identical. This can be seen clearly in the ensemble averaged

1By a Hamiltonian system we mean a weighted graph whose weighted connectivity matrix is
real symmetric.
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transmission as well as in the frequency histogram of the total current, see Figs. 4.3
and 4.4 as well as in the Appendix. Further symmetries can be observed only in the
distribution of the total current (Fig. 4.4), where we observe numerically that the
cases (n, k = 1) and (l − n, k = 1) are identical.

As illustrated in Fig. 4.2, we observe that centrosymmetry yields many resonance
peaks with perfect transmission, i.e. T = 1; for EGE we may find some perfect
transmission resonances, but it is not the typical case. Denoting by εj the eigenvalues
of H ′k (where H ′k = Hk + ΣS + ΣD), these resonances are located at energies E ≈
Re (εj). This motivates us to study in Fig. 4.5 the statistics of the transmission at
these energies Re (εj) (top row), and compare them with the transmission at random
energies (bottom row) for the EGE and the csEGE in the case n = l − 1 and all
possible values of k. These histograms confirm our observation about Fig. 4.2 that
centrosymmetry generates many resonances with perfect transmission. Note that
perfect transmission is also observed when the transmission is evaluated at random
values of the energy (within the conductance band); yet, the relative frequency is
higher by about two orders of magnitude for the csEGE. We also note that there
is a weak dependence on k, such that k ∼ n/2 dominates for larger values of the
transmission. These results show the general trend that centrosymmetry enhances
the transmission for all energies, see Fig. 4.3, which implies a higher total current.

In Fig. 4.6 we show the distribution of 2Gin,out(Re (εj)) in the complex plane for
n = l − 1 and all values of k. This quantity is of interest since its modulus squared
gives the transmission through the system at E = Re (εj), i.e. T (E) = |2Gin,out|2.
As the transmission is bounded to values equal or less than 1, the data points are
distributed inside the unit circle. Strong correlations between the real and imaginary
part are observed for both EGE and csEGE. For the EGE (left column), the data
points are clustered around the origin, which corresponds to transmission resonances
with low conductance. In contrast, in the case of csEGE (right column), the data
points display an accumulation on the boundary of the unit circle, around the poles,
corresponding to resonances of optimal transmission. We can also see that this
accumulation is larger for k ∼ n/2.
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Figure 4.6: Distribution of 2Gin,out(Re (εj)) in the complex plane for 2000 realiza-
tions. Strong correlations between the real and imaginary part are observed in
both cases. In the case of EGE (left column), data points are concentrated around
the origin, which corresponds to transmission resonances of low conductance. For
the csEGE (right column), the data points are accumulated on the poles, which
corresponds to perfect transmission.
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4.2 Statistics of the spectral decomposition of the

transmission

In order to have more insight of the effects induced by centrosymmetry on transport,
we use the spectral decomposition of the Green’s function. Then, the transmission
is expressed as

T (E) = |2Gin,out(E)|2 =

∣∣∣∣∣
N∑
j=1

Υj

E − εj

∣∣∣∣∣
2

, (4.3)

where
Υj ≡ 2φj,in φj,out. (4.4)

Here, the φj,in or φj,out are the in/out components of the jth eigenfunction of the
effective Hamiltonian H ′k. Note that H ′k is non-Hermitian but it has the property
H ′k
† = H ′k

∗. In this case the eigenstates can be chosen in such a way that they
fulfill the orthogonality relation 〈φi|φj〉 = δij and the completeness relation 1 =∑

j |φj〉 〈φj|, which have been used in Eq. (4.3).

In the following, we will focus on the case n = l − 1 = 5, which corresponds to the
optimal case in terms of transport; see Figs. 4.3 and 4.4. Our results hold also for
other n.

The real part of the complex eigenvalues εj determine the position of the transmis-
sion resonances; their distributions in terms of k, are shown in Fig. 2.4, last row.
We observe that centrosymmetry has only weak effects; it increases marginally the
spectral span. The differences between the two cases are decreasing when k in-
creases. In both cases the spectral span is maximal for k ∼ n/2. These observations
explain that the width of the conduction band is maximal for k ∼ n/2 and that it
is marginally wider for the centrosymmetric case.

In turn, Im (εj) is related to the width of the transmission peaks, see Fig. 4.2.
The distributions of Im (εj) are presented in Fig. 4.7. As shown, their structure is
essentially independent of k. Comparing the EGE and csEGE cases we find that
centrosymmetry amplifies the occurrence of the extrema: the number of eigenvalues
with Im (εj) = 0 and Im (εj) = −η = −1 is larger when centrosymmetry is present.
The former value corresponds to resonances of vanishing width, while the latter
is related to broad resonances. Then, the histograms for the EGE show that the
number of broad resonances vanishes linearly as Im (εj)→ −η, while for the csEGE
this limit attains a constant value.
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Figure 4.7: Distributions of Im (εj) for n = l − 1 = 5. The histograms are inde-
pendent of the rank of interaction k, displaying a dependence on the presence or
absence of centrosymmetry. Centrosymmetry enhances the number of eigenvalues
with an imaginary part close to its minimum zero and its maximum −η = −1.
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Figure 4.8: The histograms of |Υj| have similar properties as the histograms of
−Im (εj) in Fig. 4.7.

The corresponding distributions Υj, see Eq. (4.4), is shown in Fig. 4.8. It displays
similar properties as the distributions of Im (εj). That is, csEGE shows a larger
frequency of events displaying zero and the maximal values of |Υj| than the EGE,
and the distributions are essentially independent from k. This motivates us to
investigate the correlations between |Υj| and Im (εj).
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Figure 4.9: Distribution of |Υj| versus −Im (εj) for ensemble of 2000 realizations.
Centrosymmetry imposes strong correlations. While in the case of arbitrary EGE
the data points are located mainly in a triangle |Υj| . −Im (εj), in the case of
csEGE the data points are pinned on the line |Υj| ∼ −Im (εj ) or above it.

In Fig. 4.9, we plot |Υj| versus Im (εj) illustrating strong correlations among these
quantities. While in the EGE case the data points are scattered in the triangular
region |Υj| . −Im (εj), in the case of the csEGE the data appear on the line
|Υj| ∼ −Im (εj) or above it.
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Figure 4.10: Histograms of the quotient τj ≡ |Υj/Im (εj)|. For EGE this quotient
is distributed mainly between 0 and 1 with maxima at these points. In contrast,
for csEGE the distribution of τj is pinned to 1 without any value less than 1. This
indicates the increase of resonances of perfect transmission due to centrosymmetry,
see Fig. 4.5.

The histograms of the ratio τj ≡ |Υj/Im (εj)| in Fig. 4.10 show these strong cor-
relations from another perspective. In view of Eq. (4.3), the quantity τj yields an
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estimate of the transmission by taking into account the main resonance only and
neglecting all interference effects, i.e. the other terms of the sum. For the EGE the
distribution is mainly located between 0 and 1, with peaks at these values, domi-
nated especially by the k ∼ n/2 case. In turn, for the csEGE the values of τj are
peaked strongly at 1 with a decaying tail beyond 1 but without any τj smaller than 1.
Note also the difference in the vertical scales. The τj may attain values larger than
1 because the phases are neglected, which cause the transmission to be equal or less
than 1. These two histograms close our statistical analysis to understand how cen-
trosymmetry enhances transport. They confirm that centrosymmetry induces strong
correlations which generate numerous transmission resonances of perfect transport
(T = 1), see Fig. 4.5.

4.3 Current as a function of the coupling to the

contacts

So far we have only considered that the coupling to the contacts is η = 1 (see Eq.
(4.2)). Here, we address the effect in the transport properties if we change it. We
focus on the case that the ensembles attains the best mean current 〈I〉, and therefore
we set l = 6 and n = 5.

Figure 4.11 shows the mean current 〈I〉 as a function of the coupling parameter
η. The left column indicates the case of the EGE and the right column for the
csEGE. The scale in η of the top row is linear while in the bottom row the scale is
logarithmic. The color code for the different values of k are in the figure caption. On
all of the plots we can see that when η = 1, the mean current attains approximately
the same value independent of the value of k. For all the four plots we can see
that k = 1, 5 and k = 2, 4 display similar behaviour, and only for larger values of
η they are slightly different. The case when k = 3 is the best to attain the largest
current, either EGE or csEGE. On the other hand, the csEGE is always better than
the EGE, regardless of the value of η. For the EGE case, we can improve 〈I〉 by
∼ 50%, and for the csEGE the current is improved by around 200%. We have thus
found an interesting property not exploited before in the literature or experiments.
A possibility to improve the transport properties in a disordered network is by
tunning the coupling to the contacts (here represented by η).
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Figure 4.11: Mean current 〈I〉 as a function of the coupling parameter η. On the
left column the EGE ensemble and on the right column the csEGE ensemble. The
parameters are l = 6 and n = 5. Each color represents a different csEGE matrix:
red, k = 1; black, k = 2; green, k = 3; blue, k = 4; pink, k = 5. There are 104

realizations in each ensemble. Notice that the upper row is a linear scale in η while
the bottom row is a logarithmic scale.



Chapter 5

Centrosymmetry breaking and
robustness

In this chapter we want to explore the effects of centrosymmetry breaking. Be-
cause of the different ways in which we can alter the centrosymmetric structure, we
have divided this chapter into two sections. The first section describes how cen-
trosymmetry can improve the transport from the EGE. In the second section, we
will investigate how centrosymmetry can be broken and up to which point exists
robustness (optimal transport properties) of this extra symmetry.

5.1 EGE to csEGE transition

As we saw in Chapters 3 and 4, the transport properties are esentially the same
if we study the efficiency or the current through the ensemble. Therefore we will
focus in the study of current for the EGE or the csEGE. In the first part we will
introduce a Hamiltonian that takes into account the transition from EGE to csEGE
as a function of a parameter ε and latter we analyse the transport properties as a
function of ε.

The first thing to take into account is that the current depends on the distribution of
energies over the ensemble, as it is given in Eq. (2.31). Our model to study EGE to
csEGE current (or any other transition between embedded ensembles with or with-
out centrosymmetry) must take into account the spectral span of those ensembles.
A standard way to write such transition is

H = f(ε)Hk + g(ε)H̃k′ , (5.1)

where Hk and H̃k′ are matrices of the embedded ensembles with and without cen-

45
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trosymmetry. The rank of interactions k and k′ is taken from the interval 1, 2, . . . , n.
We have fixed the same l and n for both ensembles in order to have the same Hilbert
space dimension in the n-particle space. f and g are functions of ε, which is a free
parameter, and its job is to take us from system the Hk to system the H̃k′ . There
are many ways to write these pair of functions, see for example [40], which is typical
for studying systems with mean-field plus two-body interactions. In a similar spirit,
we define such functions to be

f(ε) =
√

1− ε,
g(ε) =

√
ε.

(5.2)

Therefore our model to study transitions between EGE and csEGE reads

H =
√

1− εHk +
√
εH̃k′ . (5.3)

A few remarks for choosing this form in f and g come in place. The first one is that,
when ε = 0, we recover Hk (a similar situation happens for H̃k′ when ε = 1).
The next remark is the presence of the square roots. Suppose for the moment that
both are EGE’s and k = k′, and they are independent members of the ensemble.
As we are dealing with ensembles of random matrices, the energy scale of H can
be chosen via its spectral span, which is defined by var(H) = Tr(H2)/N , with N
the Hilbert space dimension and Tr denotes the trace operation. In other words,
the average energy density ρ(E) (for the GOE) is given by the equation ρ(E) =

1
2Nπσ2

√
4Nσ2 − E2 for |E| ≤ 2

√
Nσ2, where σ is the standard deviation chosen for

the (Gaussian!) matrix elements in H [7]1. For σ = 1, as is our case, the average
level density is precisely a semicircle and it is exactly this what we obtain when we
fix k = n. Using the spectral span, we find

var(H) = (1− ε)× var(Hk) + ε× var(H̃k) + 2

√
(1− ε)ε
N

× Tr(Hk × H̃k)

= (1− ε)× var(Hk) + ε× var(H̃k),

(5.4)

where in the first equality we have used the fact that Hk and H̃k are uncorrelated

members of the EGE2, and therefore Tr(Hk × H̃k) = 0. As we are in the case where
k = k′, var(Hk) = var(H̃k) and therefore var(H) = var(Hk). In other words, with
this choice of the functions f and g we do not change the spectral span and therefore
we do not modify the conduction band with the addition of the perturbation.

1 Remember that the GOE has twice the variance in its diagonal elements.
2Note that for the csEGE we obtain a similar calculation.
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5.1.1 Analysis of the results

Following section 5.1, we analyse the EGE to csEGE transition. To do so, we model
this transition with Eq. (5.3)

H =
√

1− εHk +
√
εH̃k′ . (5.3)
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Figure 5.1: EGE to csEGE transition. The mean current 〈I〉 is plotted as a function
of the transition parameter ε. From left to right, each plot represents a fixed k for
the EGE. The colors label different ways to go from a fixed EGE k to a csEGE. Red
is for the transition to csEGE with k′ = 1; black for the csEGE with k′ = 2; green
for the csEGE with k′ = 3; blue for the csEGE with k′ = 4; and pink for the csEGE
with k′ = 5. The best case for the transition is k′ = 3 (as expected). For k′ = 2, 3, 4
the transition improves the total mean current. For EGE with k′ = 2, 3, 4 and
transition k′ = 1, 5 there is a decay in 〈I〉, and for high values of ε this is surpassed.

Figure 5.1 explores this transition. The mean current 〈I〉 of the Hamiltonian H in
Eq. (5.3) is plotted as a function of the parameter ε. We have fixed l = 6, n = 5
and we have considered 104 realizations. From left to right, each plot represents
a fixed k in the EGE ensemble (first term of Eq. (5.3)). The possible values are
again k = 1, 2, 3, 4, 5, one for each plot. The colors represent the different ways in
which we can do the transition from a fixed k in the EGE to a csEGE. In red we
have the transition to csEGE with k′ = 1, in black to csEGE with k′ = 2, in green
to csEGE with k′ = 3, in blue to csEGE with k′ = 4, and in pink to csEGE with
k′ = 5. As it is to be expected, when ε = 0 or 1 we recover the mean values for
the current given in the Fig. 4.4, for the EGE or the csEGE respectively. For any
value of k in the EGE, the best transition scenario corresponds to a perturbation
of a csEGE with k′ = 3. The cases k′ = 1, 5 and k′ = 2, 4 behave similarly (either
with EGE or with csEGE), which is a feature already observed in Chapter 4. It is
clear from the plots that a perturbation of a EGE with a csEGE and k′ = 2, 3, 4
always yields better current. If we want to double the initial current we essentially
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need that ε = 0.5, when the EGE has k = 1, 5. While for EGE with k = 1, 5 the
increase of the current is very rapid, for the EGE with k = 2, 3, 4 the increase is
slower. What we are seeing in these cases is the effect of the centrosymmetry: for
low values of ε the centrosymmetry does not dominate the transition, and it slowly
starts to take over in the 〈I〉, until finally reaches its final value when ε = 1. The
situation is a little bit different when the perturbation is k′ = 1, 5. When EGE has
k = 1, 5, this perturbation slowly increases the current, but when EGE has values
k = 2, 3, 4 the behaviour is completely different. In the latter case, it is clearly seen
that the perturbation diminishes 〈I〉 as a function of ε. This trend is followed until
ε ∼ 0.9, and then 〈I〉 slowly increments to its final value of ∼ 3.3. The reason is that
the spectral span of the perturbation (and therefore the mean current) is smaller
compared to the EGE with k = 2, 3, 4. Therefore we have a steady decrease in the
mean current until we reach a minimum of ∼ 2.6. As it is to be expected, the case
with k = 3 for EGE is the least affected.

To end this section, we point out that we can do the same analysis but reading
the plots in Fig. 5.1 backwards. That is, these plots contain the information of
centrosymmetry breaking when the perturbation is an arbitrary EGE. In the next
section, we analyse the centrosymmetry breaking but by some specific perturbations.
We shall look at parity breaking and block off-diagonal perturbations.

5.2 Centrosymmetry breaking

In section 2.1.3 we saw how to construct centrosymmetric ensembles from embedded
ensembles. We found that, depending on the parameters (l, n, k), the centrosymme-
try can be full or partial. A quick look at Table 2.1.4 reveals the possible ways in
which the combination of the parameters (l, n, k) may give rise to either partial, or
full centrosymmetry, when l = 6. In this section we are interested in cases where
there is full centrosymmetry in the n-particle space. Specially in the case n = 5,
we can always find full centrosymmetry. The question addressed is how centrosym-
metry breaking affects the transport properties of the central system Hk. In the
following, we discuss different ways to break full centrosymmetry. From now on, we
will use the term centrosymmetry to refer to full centrosymmetry (without refering
to partial centrosymmetry). We will discuss only the case where the Hilbert space
dimension N is of even dimension.

We recall the main definitions of centrosymmetry already addressed in Sec. 2.1.4.
A centrosymmetric matrix is a matrix, say H, that commutes with the exchange
matrix J . The exchange matrix is the matrix with entries Ji,j = δi,N+1−j, where δi,j
is the Kroenecker delta and N is the Hilbert space (even) of n particles distributed
over l single-particle states. It can be shown that H has the block structure [75]
(for odd dimension N , this block representation is a little bit different; we will deal
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only with N even)

H =

(
A CT

C JAJ

)
, (5.5)

where A and J are of dimension N/2 × N/2 and A = AT , CT = JCJ , where we
have denoted the matrix transpose operation with the superscript T . The matrix
H can be written in block diagonal form via the transformation [75]

H ′ = KHKT =

(
A− JC 0

0 A+ JC

)
, (5.6)

where

K =
1√
2

(
1 −J
1 J

)
, (5.7)

and 1, J are the identity matrix and the exchange matrix respectively, both of
dimension (N/2×N/2). Equation (5.6) shows that H ′ is composed of two correlated
blocks. The eigenvectors of H ′ fulfill one of the following identities

Jv = v,

Jw = −w,
(5.8)

which are called symmetric and skew-symmetric, correspondingly. There are N/2
symmetric and N/2 skew-symmetric eigenvectors. The last set of equations tell us
that the eigenfunctions obey parity, in the sense of the exchange matrix J . Equation
(5.6) can be therefore be interpreted as H ′ having parity and correlations in sectors
of different symmetry, i.e. in sectors of even and odd subspaces (generated by its
eigenvectors). The next natural question is how to break the parity and the block
structure of H, i.e. the centrosymmetry breaking. The motivation for doing this is
to quantify how much the transport properties of csEGE are robust against breaking
the parity and correlations which are induced by centrosymmetry. We will explore
two possible options, and we will describe them in what follows.

The first way to break the structure of the centrosymmetry is to break the block
form of Eq. (5.6). Effectively this would be parity breaking. In the block diagonal
basis, our system with perturbation takes the form

H ′perturbed = α

(
A− JC 0

0 A+ JC

)
+ β

(
0 B
B 0

)
, (5.9)
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where B is a matrix of dimension (N/2)× (N/2) and will be a member of the GOE.
The real parameters α and β will be determine in the following. In the original
basis, this last equation takes the form

Hperturbed = α

(
A CT

C JAJ

)
+ β

(
B 0
0 −JBJ

)
= αHk + βH(B), (5.10)

where α and β are normalization constants which we choose to be α =
√

1− ε and
β =
√
ε.

Based on the previous B-perturbation, the second natural way to break the symme-
try is to alter the block structure of Eq. (5.6) (forget for the moment the normal-
ization constants). Instead of Eq. (5.9), our perturbation this time is

H̃perturbed =

(
A− JC 0

0 A+ JC

)
+

(
D1 0
0 D2

)
, (5.11)

where the Di matrices can be chosen each one independently from a GOE. Upon
making the inverse transformation to the occupation number basis we find

H̃perturbed =

(
A+D1 +D2 CT + (D2 −D1)J

C + J(D2 −D1) J(A+D1 +D2)J

)
. (5.12)

Taking a closer look of this equation, we find that in this expression, the perturbation
formula does not alter the centrosymmetric structure. The reason is that, in the
block-diagonal basis, the perturbation

(
D1 0
0 D2

)
, (5.13)

is centrosymmetric. This is the starting point of the analysis of [36].

The final way that we choose to break the centrosymmetry is to add, directly in the
occupation number basis, the perturbation

H̃perturbed = α

(
A CT

C JAJ

)
+ β

(
0 D
DT 0

)
= αHk + βH(D), (5.14)

where now D is a real matrix with Gaussian normal variables in each entry. Again
we choose similarly the normalization constants to be α =

√
1− ε and

β =
√
ε.
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5.3 Centrosymmetry breaking in efficient csEGE

networks

In the following we investigate centrosymmetry breaking in ensembles with full cen-
trosymmetry. The best option for obtaining the optimal current is when n = l − 1,
we have set in the following l = 6 and n = 5; which we call now efficient EGE
networks.

5.3.1 Parity breaking

As we have discussed in section 5.2, centrosymmetry is esentially parity and correla-
tions between sectors separated by parity. One option to break the centrosymmetry
is breaking the parity, and we end up with Eq. (5.10)

Hperturbed =
√

1− εHk +
√
εH(B) (5.10)

Here, ε is the perturbation strength and can take the values from zero (only the
centrosymmetric matrix) to 1 (only the presence of the perturbation). By choosing
ε in this way, we can investigate the whole transition from centrosymmetry to parity
breaking.

Figure 5.2 shows the parity breaking scenario displaying the mean current 〈I〉 as
a function of ε. The color code is in the figure caption. For any value of k, the
perturbation diminishes significantly the mean current (up to ε ∼ 0.2). Then the
decay is much slower and finally, from ε = 0.8 the decay in the mean current is
again significantly until it becomes zero. The reason that at the end we have zero
current lies in the block structure of H(B) (at ε = 1). In other words, if we consider
the graph structure of H(B), essentially we have two disconnected graphs in the
occupation number basis. One of the contacts is in one isolated graph and the
other contact is in the other isolated graph. There is no chance for energy flow and
therefore the current is suppressed. For k = 1, 5 the effect of parity breaking is
rather strong. One reason is that, in the absence of H(B), these are the two cases
with smaller 〈I〉. The situation is improved for other values of k, and in fact the
bevahiour is not too different. The case which is less affected by the perturbation
is k = 3, which is in agreement with previous results of transmission efficiency and
〈I〉. Following this similar trend, k = 2, 4 behave similarly, as well as k = 1, 5.
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Figure 5.2: Parity breaking applied to centrosymmetry (see Eq. (5.10)) as a func-
tion of ε (perturbation strength) and 〈I〉 (mean current over the ensemble). The
centrosymmetric part is chosen for the parameters l = 6 and n = 5. Each color
represents a different csEGE matrix: black, k = 1; red, k = 2; green, k = 3; blue,
k = 4; magenta, k = 5. There are 104 realizations in each ensemble. Notice that
at first the perturbation affects significantly the centrosymmetric structure (up to
0.2), then the decay becomes more or less linear up to 0.8, and finally the decay is
again significant up to current suppression, when ε = 1.

5.3.2 Block perturbation in occupation number space

The second way to break the centrosymmetry is written in Eq. (5.14)

H̃perturbed =
√

1− εHk +
√
εH(D) (5.14)

Figure 5.3 shows the effect of symmetry breaking by applying the off-diagonal block
perturbation with the matrices D. The color code is the same as in the previous
figure. In this situation, for all k, the mean current 〈I〉 suffers a steady decrease,
until it reaches its final value, which is when the perturbation H̃perturbed dominates.
The quantity 〈I〉 is less affected when k = 3. When k = 2, 4 both curves follow a
similar behaviour and 〈I〉 attain intermediate values. For k = 1, 5 the mean current
decays less abruptly than in the previous cases. We can see that for all values of
k, the perturbation affects the mean current. For k = 2, 3, 4, the mean current
diminishes ∼ 50%, and for k = 1, 5 it only diminishes ∼ 33%. This gives us the
insight that for k = 1, 5, the system is more robust in the presence of H(D).
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Figure 5.3: Centrosymmetry breaking (see Eq. (5.14)) as a function of ε (pertur-
bation strength) and 〈I〉 (mean current over the ensemble). The centrosymmetric
part is chosen for the parameters l = 6 and n = 5. Each color represents a different
csEGE matrix: black, k = 1; red, k = 2; green, k = 3; blue, k = 4; magenta, k = 5.
There are 104 realizations of each ensemble. In this case (any k), the mean current
〈I〉 is diminished in every case until it reaches a minimum.



Chapter 6

Conclusions and outlook

In this thesis we have analysed transport properties in small disordered networks.
The networks were generated considering a physical system composed by fermions,
distributed over l-single particle states. The interactions are random and are given
by the Embedded Gaussian Ensemble (EGE). The randomness in the interactions
are responsible for the disorder. The aim was to compare transport properties
of both closed and open systems, and also in short time scales of time and in the
steady-state. We have found that transport benefits when we impose the centrosym-
metry on the Embedded Ensembles. This gives further evidence to determine that
disordered networks as we constructed them, display transport properties that are
robust to different time scales, and also are robust despite the interaction with exter-
nal systems. Before describing the specific conclusions for the different parts of the
thesis, we recall that random matrix models (as those studied here) describe generic
quantum systems classified by their global symmetries. Inspired by the nuclei, the
usual requierement for applying RMT to realistic situations is to have a complex
many-body interacting quantum system. While it would be possible to solve such
problems for the low energies part of the spectrum, usually it is almost impossible
to describe them for high excitation energies. One then replaces the complicated
interaction Hamiltonian by an ensemble of systems that in average describe the
behaviour of the system. The whole work in this thesis is in describing this ensem-
ble approach, and certainly opens the possibility to use the knowledge aquired for a
more realistic application. In our specific case, random matrices generically describe
disordered systems that may be found in nature, like the FMO complex or quantum
buses under noise influence. Certainly, random matrices and localization theory are
closely related (e.g. see [6, 93]) and in a way they culminate with the work done
by Efetov [94]. Our approach here is different from localization theory, in the sense
that, having a model for studying disorder we pose the following question: what
are the minimum requirements in which, despite of disorder, we can still obtain
good transport properties? We believe that our results answer greatly this enquiry.
The improvement relies in the imposition of an extra symmetry (centrosymmetry!),
which is needed to overcome localisation.
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In the following we describe the specific conclusions for each of the chapters in the
thesis. First we studied the distribution of quantum efficiencies in disordered net-
works with many-body interactions, whose structure is modeled by the embedded
Gaussian ensemble. In particular, we studied the role played by centrosymmetry,
which is defined at the one-particle space, and then extended to the k- and n-particle
spaces. We have shown that (full) centrosymmetry enhances the efficiencies dramat-
ically, being a requirement to have non-zero probability for Perfect State Transfer
(PST) [45, 46]; the lack of centrosymmetry yields comparatively poor efficiencies.
We note that centrosymmetry is introduced at the one-particle level, and then ex-
tended to the k- and n-body space. The rank of the interaction which displays the
highest probability that the best efficiency P is above the benchmark value
corresponds to k ∼ n/2 (for n = l − 1). The pairs of states that yield the best
efficiencies appear uniformly among those states linked by centrosymmetry. Previ-
ous results have shown that random perturbations on networks with PST destroy or
affect significantly this property; for details see [52, 95] and also [51] and references
therein. Our results show that, despite of the random character of the k-body inter-
actions that we have considered, certain n-body networks display good efficiencies
and may attain near perfect state transfer with non-zero probability. Our results
could be exploited as new design principles of networks with good efficiency, which is
preserved under certain many-body random perturbations. For instance, considering
the implementation of efficient quantum wires, it may be interesting to consider the
case of filling factors that are smaller but close to one, where many-body interactions
yield very good efficiencies. Finally, the results open the possibility to understand
the good efficiency properties experimentally observed in exciton transport in bio-
logical systems, such as the Fenna-Matthews-Olson (FMO) complex [3, 96, 97]. One
possible starting point would be to study the efficiency transport of the FMO com-
plex. Its Hamiltonian is in the literature (see for example [31]). A quick inspection
of the Hamiltonian reveals that the errors ±∆ in its matrix elements are relevant
(and also the diagonal elements contain more degree of error than the off-diagonal
ones) and could be taken into account into a stochastic model. To do so, one would
have to use this Hamiltonian and the errors could be modeled using constant proba-
bility distribution between ±∆. We can construct then a stochastic ensemble based
on real data. The next step would be to measure transport efficiency and current
distributions. This leads us to the second part of our conclusions when we analysed
the open system by using the NEGF method.

In the second part of the thesis we have analysed the stationary transport properties
of fermions through small disordered interacting networks, again modeled by em-
bedded Gaussian ensembles of random matrices. We have addressed the influence of
centrosymmetry and have shown that the transport is enhanced significantly if cen-
trosymmetry is present. This applies for the transmission T (E), which is a function
of the energy of the excitation, as well as for the averaged total current I through
the system (see Figs. 4.3 and 4.4, respectively). We have shown that centrosym-
metry induces many transmission resonances of perfect transport (T = 1), which
enhances the transport in the overall conduction band (see Figs. 4.2 and 4.5). We
have also seen that, independently of whether the system is centrosymmetric or not,
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the width of the conduction band is maximal for k ∼ n/2 and increases with n until
the system is almost filled. In contrast, for k = 1 and k = n the conduction band
width is minimal. In the best case, which appears when the system is almost filled
n = l − 1 and the rank of interaction is k ∼ n/2, centrosymmetry enhances the
averaged total current by 75% and its mode increases by a factor of 2. For larger
systems (see the Appendix), the best cases appear for values of n close to but less
than l − 1; the improvement of the transport by centrosymmetry is even stronger.
Moreover, we observe that the distribution of the total current for the csEGE has
a very large dominating peak for n = l − 1, close to the highest observed currents.
Our results are therefore in perfect agreement with the analysis of transmission ef-
ficiency. Using the spectral decomposition of the Greens function, we have shown
that centrosymmetry enhances the extrema (see Figs. 4.7 and 4.8). The number of
resonances with minimal (0) and maximal (1) width (proportional to Im(εj)) and
weight (proportional to |Υj|) increases. Centrosymmetry also induces strong cor-
relations between the width and the weight of the resonances (see Figs. 4.9 and
4.5). This suppresses destructive interference effects in the system and thus causes
backscattering-free transmission resonances, which enhance the overall transport.
We interpret these results as a manifestation that centrosymmetry is an important
property for the design of quantum networks with efficient transport characteristics.
So far we have not taken into account the presence of decoherence, which will be
inevitably present in biomolecules at room temperature, and to some extent, also in
quantum devices. Therefore an open question is to consider how to introduce the
dephasing effect in our model.

We next analysed the centrosymmetry robustness against perturbations in Chapter
5. To begin with, we analysed in section 5.1.1 the EGE to csEGE transition. When
we use as a perturbation a csEGE with k′ = 2, 3, 4, we can always improve the mean
current 〈I〉. The degree of this improvement also depends if the system with ε = 0
(perturbation parameter) is an EGE with k = 1, 5 or with k = 2, 3, 4. The primary
reason is the spectral span which implies a bigger conduction band for k′ = 2, 3, 4,
while for k′ = 1, 5 the conduction band is smaller. The only drawback in perturbing
with a csEGE is when k′ = 1, 5. In these cases, the spectral span plays a detrimental
role in the mean current. We found a steady decrease until we reach a minimum,
and only for high values of ε we can find a small increase in the mean current. If
we read the results starting from ε = 1, we can also study centrosymmetry breaking
by a general EGE with a fixed k. In this case, the perturbation decreases very fast
the mean current. The correlations in the csEGE are very sensitive to a general
perturbation chosen from the EGE. In the subsequent section we investigated two
ways to break the centrosymmetry. Centrosymmetry could be seen as parity and
correlation between elements of distinct parity sectors. We proceeded in the first
part of section 5.3 to investigate the parity breaking. We could observe three regimes
as a function of the strength parameter for the perturbation. The first regime is a
fast decay in the mean current 〈I〉. Afterwards there is an approximate linear decay
regime for almost all values of the strength transition. Finally the mean current
decays faster to zero. In this case the current is suppresed because there are no
edges connecting the two (isolated) graphs of our network. Despite the fact that
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with k = 3 we obtained the biggest mean current without perturbation, in this case
the best escenario is when the interaction is set to k = 3. We then analysed the
centrosymmetry breaking by a block anti-diagonal perturbation. In this case, k = 3
remains as the best case to obtain the largest mean current, for all values of the
perturbation. We highlight that this is to be expected, since the total Hamiltonian
was chosen to have the same spectral span as Hk=3. As in the previous case, there
is a decrease of the mean current, more intense for k = 2, 3, 4, and less for k = 1, 5.

We finish this section by adding a final comment on centrosymmetry. Our analy-
sis has compared when centrosymmetry is present versus when it is abscent. We
have found that centrosymmetry is a desirable property to have in a disordered sys-
tem. Centrosymmetry is also present in Perfect State Transfer [45, 46] and efficient
transport in the GOE [36]. In all these three cases, it seems that it is necessary to
demand centrosymmetry as a design principle. However, it is known that molecu-
lar complexes also fulfill this property, and therefore centrosymmetry is an inherent
property of certain biosystems (see for example [98]). Therefore, our results are
not only candidates for application in engineered quantum systems, but also are
applicable to systems that actually exist in nature.
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Appendix A

Bigger systems

A.1 Systems with l = 8 and l = 10 single-particle

states

In this appendix we show, equivalently to Figs. 4.3 and 4.4, the ensemble-averaged
transmission and the frequency histogram of the total current for systems consisting
of l = 8 (Figs. A.1, A.3, respectively) and l = 10 (Figs. 14 and 15, respectively)
single-particle states. Note that, although we have added only up to four single-
particle states to the system studied in the main text, the dimension of the Hilbert
space

(
l
n

)
is up to 10 times larger. Note also that the spectral span, the width of the

conduction band, and hence the total current increase with l (see [72]). We observe
qualitatively the same properties as for the smaller system with l = 6, except that
maximal values of the total current are observed also for fillings close to but less than
l − 1. The mode of the distribution of the total current for the csEGE is strongly
peaked for n = l − 1, close to the highest observed currents. The statistics of the
spectral decomposition is the same as for the system discussed in the main text.
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Appendix B

Publications

The thesis is based mainly in the following list of publications done by the author
and contributors.

• Adrian Ortega, Manan Vyas and Luis Benet. Quantum efficiencies in finite
disordered networks connected by many-body interactions. Annalen der Physik,
Vol. 527, Issue 9-10, October 2015, Pages 748-756.

• Adrian Ortega, Thomas Stegmann and Luis Benet. Efficient quantum trans-
port in disordered interacting many-body networks. Physical Review E, Vol.
94, Issue 4, October 2016, Pages 042102.
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