

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA MAESTRÍA EN INGENIERÍA ELÉCTRICA - INSTRUMENTACIÓN

DISEÑO Y CARACTERIZACIÓN DE SENSORES CAPACITIVOS COPLANARIOS SOBRE SUBSTRATOS DIELÉCTRICOS PARA CARACTERIZACIÓN DE PROCESOS FÍSICO-QUÍMICOS Y BIOLÓGICOS

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: JORGE ALBERTO UC MARTIN

TUTOR PRINCIPAL Dr. ASUR GUADARRAMA SANTANA CENTRO DE CIENCIAS APLICADAS Y DESARROLLO TECNOLÓGICO

CIUDAD DE MÉXICO, DICIEMBRE 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

Presidente: Dr. García Valenzuela Augusto

Secretario: Dr. Pérez Alcázar Pablo Roberto

1er. Vocal: Dr. Guadarrama Santana Asur

2er. Vocal: Dr. Matatagui Cruz Daniel

3er. Vocal: M. en I. Martínez Gutiérrez Daniel

Lugar donde se realizó la tesis: Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México

TUTOR DE TESIS

Dr. Asur Guadarrama Santana

FIRMA

Agradecimientos

Quisiera agradecer sinceramente a todos los que de alguna u otra forma contribuyeron a la realización de este trabajo:

- A la Universidad Nacional Autónoma de México y al Centro de Ciencias Aplicadas y Desarrollo Tecnológico, por brindarme sus instalaciones para realizar este trabajo.
- Al Dr. Asur Guadarrama Santana, por su confianza y por compartirme sus conocimientos.
- A mis sinodales, Dr. Augusto García Valenzuela, Dr. Pablo Roberto Pérez Alcázar, Dr. Daniel Matatagui Cruz, M. en I. Daniel Martínez Gutiérrez, por brindarme su tiempo para la revisión de este trabajo.
- Al Grupo de Fotónica y Microondas del CCADET por el uso de la infraestructura y equipo necesario para el proceso de fabricación de los sensores, al Dr. Daniel Matatagui Cruz, M. en I. Alejandro Esparza García y al M. en I. Cristian Rodríguez Reyes por la asesoría y asistencia en los procesos de fabricación. Al Fis. Gesuri Morales Luna, por la asistencia en la preparación de las suspensiones de nanoparticulas.
- A mis todos mis compañeros de laboratorio, por compartir esta etapa y apoyarme.
- Al CONACyT por haberme brindado una beca económica durante mi estancia en la maestría. A la Dirección General de Asuntos del Personal Académico (DGAPA) de la UNAM por el financiamiento a través del proyecto PAPIME PE-110916.

Este logro se lo dedico a toda mi familia.

A mi mamá que siempre ha estado ahí sin importarle nada, por sus consejos y su deliciosa comida.

A mi papá un guerrero admirable jamás vencido en batalla, por su apoyo invaluable y que me ha inculcado ser ¡Firmes y dignos; A mi hermano por su forma muy responsable de ser y de la cual he aprendido.

A mi hermana que es como mi alma gemela y que siempre ha estado conmigo.

¡Gracias Familia!

Contenido

Lista de FigurasV
Lista de Tablas IX
Lista de AbreviaturasX
Resumen1
Descripción del trabajo
Introducción4
Referencias
Capítulo 1. Análisis 3D de los sensores capacitivos planos9
1.1. Concepto de capacitancia9
1.2. Sensores capacitivos de electrodos coplanarios (SCEC)11
1.2.1 Parámetros geométricos del sensor capacitivo de electrodos coplanarios tipo peine
1.2.2. Parámetros geométricos del sensor capacitivo de electrodos coplanarios tipo espiral
1.3. Simulación 3D de los sensores capacitivos de electrodos coplanarios (SCEC) con el
método de elemento finito (MEF)14
1.4. Análisis de las simulaciones del sensor capacitivo de electrodos coplanarios tipo espiral
1.4.1. Caracterización del recubrimiento dieléctrico
1.4.2. Sensibilidad
1.4.3. Rango Dinámico18
1.5. Análisis de las simulaciones del sensor capacitivo de electrodos coplanarios tipo peine
1.5.1. Caracterización del recubrimiento dieléctrico20
1.5.2. Sensibilidad
1.5.2. Rango Dinámico21
1.6. Conclusiones

1.7. Referencias	23
Capítulo 2. Diseño geométrico y fabricación de los Sensores Capacitivos planos	25
2.1. Herramientas utilizadas en el diseño geométrico de los electrodos	25
2.1.1. Diseño geométrico 3D del sensor tipo espiral	26
2.1.2. Diseño geométrico 3D del sensor tipo peine	27
2.1.3. Ajuste geométrico del sensor tipo espiral	28
2.2. Diseño de máscara con patrón geométrico del sensor tipo espiral	29
2.3. Diseño de máscara con patrón geométrico del sensor tipo peine	31
2.4. Impresión de las máscaras para el grabado de los sensores	31
2.5. Depósito de películas conductoras sobre sustratos de vidrio	32
2.5.1 Procedimiento del depósito de películas	32
2.6. Proceso de fotolitografía para el grabado geométrico de los sensores	33
2.7. Conclusiones	36
2.8. Referencias	37
Capítulo 3. Caracterización eléctrica	38
3.1. Configuración eléctrica de prueba para los sensores capacitivos de electrodos coplanarios	38
3.2. Condiciones de prueba y resultados obtenidos con el Medidor de impedancias L 715	.CR 40
3.2.1. Parámetros [R+Q], [C+D] obtenidos sin plano de tierra	42
3.2.2. Parámetros [R+Q], [C+D] obtenidos con plano de tierra	43
3.3. Validación de los resultados obtenidos en las simulaciones 3D con los resultado obtenidos experimentalmente	os 44
3.4. Conclusiones	46
3.5. Referencias	47
Capítulo 4. Metodología de medición para sensores de muy alta resolución	48
4.1. Sistema de monitoreo temporal capacitivo (SMTC)	48
4.1.1. Etapa de sensado y acondicionamiento electrónico	49
4.1.2. Amplificador Lock-In (ALI)	50
4.2. Método para la caracterización de un líquido solvente	53

4.2.1. Cálculo del volumen de líquido solvente empleado	54
4.2.2. Ajuste en fase y amplitud de la señal del dispositivo de compensación	55
4.2.3. Ajuste de mínimo offset con el amplificador Lock-In	56
4.2.4. Proceso de depósito de un solvente	58
4.2.5. Monitoreo de la evaporación de un solvente	59
4.3. Conclusiones	61
4.4. Referencias	62
Capítulo 5. Resultados experimentales	64
5.1. Caracterización eléctrica en V(t) e I(t) de procesos de evaporación de líquidos solventes	64
5.1.1. Ruido base obtenido con cada uno de los sensores	67
5.1.2. Relación señal a ruido (S/N) obtenida con cada uno de los sensores	68
5.1.3. Resolución obtenida con cada uno de los sensores	70
5.1.4. Tiempo de respuesta de los sensores capacitivos planos	70
5.2. Resultados en términos de capacitancia	71
5.2.1. Resultados de la caracterización eléctrica del proceso de volatilización de líquidos solventes en términos de capacitancia	71
5.2.2. Ruido base en términos de capacitancia	73
5.2.3. Resolución en términos de capacitancia	73
5.2.4. Sensibilidad en términos de capacitancia	73
5.3. Respuesta eléctrica de los sensores a incidencia de luz	76
5.3.1. Respuesta eléctrica a 385 nm de longitud de onda	77
5.3.2. Respuesta eléctrica a 473 nm de longitud de onda	78
5.4 Conclusiones.	80
5.5. Referencias	81
Capítulo 6. Aplicaciones de caracterización eléctrica con sensores capacitivos en espiral	82
6.1. Formación de micelas	82
6.2. Cálculo teórico de la masa de partículas a suspender	83
6.3. Preparación de una suspensión de partículas	85

6.4. Caracterización eléctrica de una suspensión de nano-partículas		
6.5. Resultados de la caracterización eléctrica del proceso de evaporación de suspens de partículas		
6.6. Caracterización eléctrica de un proceso biológico		
6.6.1. Procedimiento de medición de una muestra de sangre entera		
6.6.2. Resultados de la actividad eléctrica en una muestra de sangre		
6.7. Conclusiones		
6.8. Referencias		
Capítulo 7. Discusión y conclusiones		

Lista de Figuras

1.1. Placas conductoras planas con un dieléctrico entre ellas, y un diferencial de potencial
aplicado10
1.2. Distribución de las líneas de campo eléctrico en un SCEC, que nos permite evaluar un MBP depositado sobre la superficie
1 3 Parámetros geométricos del SCFC tino neine
1.4. Parámetros geométricos del SCEC tipo espiral
1.4. 1 arametros geometricos del SCEC tipo espirat
1.5 Resultado grafico de la simulación sin plano de llerra. a) visía en plana, observamos la distribución de las líneas de campo y potoncial h) Vista latenal las líneas de campo tiendon
a "dimonsure"
a aispersarse
1.6 Resultado gráfico de la simulación con plano de tierra. a) Vista en planta, observamos la
distribución de campo electrico y potencial. b) Vista lateral, el plano de tierra "confinando"
las líneas de campo electrico16
1./a Gráfica de los resultados obtenidos variando ε_r a diferentes espesores de una capa
dieléctrica en la superficie del SCEC tipo espiral17
1.7b Gráfica de los resultados obtenidos variando d a diferentes permitividades de una capa
<i>dieléctrica en la superficie del SCEC tipo espiral.</i> 17
1.8 Resultado gráfico de la simulación sin plano de tierra. a) Vista en planta, observamos la
distribución de campo eléctrico y potencial. b) Vista lateral, las líneas de campo tienden a "dispersarse"
1.9 Resultado de la simulación con plano de tierra. a) Vista en planta, observamos la
distribución de campo eléctrico v potencial. b) Vista lateral. el plano de tierra "confinando"
las líneas de campo eléctrico
1.10 a) Gráfica de los resultados obtenidos variando ε_r a diferentes espesores de una capa
dieléctrica en la superficie del SCEC tipo peine, b) Gráfica de los resultados variando d a
diferentes permitividades de una capa dieléctrica en la superficie del SCEC tipo
espiral
2 1 Vista en planta en 3D del primer electrodo del SCEC tipo espiral 27
2.1. <i>i</i> ista en planta 3D del diseño final del SCEC tipo espiral 27. Vista en planta 3D del diseño final del SCEC tipo espiral
 2.2. <i>i</i> ista en planta de un electrodo tino "neine" 2.3. Vista en planta de un electrodo tino "neine" 28.
2.4 Vista en planta del diseño 3D final del SCEC tipo "peine" 28
2.5. Vista en planta del diseño final 1D del SCE tipo espiral
2.6. Geometría 1D importada dentro del ambiente PCR 30
2.0. Geometria 1D importada dentro del ambiente 1 CD
2.1. r isiu jinui ue iu muscuru ue grubuub uei SCEC iipo espirui
2.0. <i>V</i> ista finar de las máseguas de grabado, a) Sensou tino espiral h) Sensou tino poino.
2.9. v isia ae ias mascaras ae gravaao. a) sensor iipo espirai. b) sensor iipo peine

2.10. Representación de los materiales depositados sobre el substrato de vidrio32
2.11. Sustrato de vidrio con una capa de cobre depositada
2.12. Equipo utilizado para el proceso de litografía. Podemos observar el spin-coating y la
cámara de exposición a UV33
2.13. Proceso de grabado de los sensores por fotolitografía
2.14. Sensor tipo espiral depositado sobre un sustrato de vidrio después del ataque con cloruro
<i>férrico</i>
2.15. Inspección de los electrodos del sensor tipo espiral con un microscopio
2.16. SCEC aislados eléctricamente con una película dieléctrica de óxido de silicio. a) Sensor
tipo peine. b) Sensor tipo espiral
3.1. Todos los dispositivos pasivos no ideales (resistencia, inductores y condensadores) se pueden
modelar como un componente real (resistor) en serie o en paralelo con un componente
reactivo. En nuestro caso se utilizó la configuración en paralelo
3.2. Nomenclatura de identificación. Donde la letra A corresponde al lado izquierdo y la letra B
al derecho. El subíndice "P", hace referencia al sensor tipo peine y el subíndice "E" al
sensor tipo espiral41
3.3. Conexión realizada en laboratorio para la caracterización eléctrica de los SCEC41
3.4. Vista simplificada de las capacitancias presentes con un plano de tierra. Donde Ceq
representa la capacitancia total entre los electrodos, incluye la capacitancia presente entre
el dieléctrico y la superficial. Cpt es la capacitancia que aparece con un plano de
<i>tierra</i>
4.1. Diagrama de bloques del Sistema de Monitoreo Temporal Capacitivo
4.2. Tarjeta de acondicionamiento electrónico de señal. Se observan las modificaciones
realizadas para la implementación de los SCEC. Por medio de resistencias variables se
realizan los aiustes de fase v amplitud
4.3. Diagrama esquemático básico del detector sensible a la fase. Puede considerarse como un
multiplicador más un filtro paso bajo
4 4 Determinación de la cantidad de volumen de líquido solvente a depositar sobre la superficie
del sensor tino espiral 54
45 Se observa el SMTC a) Osciloscopio b) Fuente de poder c) ALI d) Etapa de sensado y
acondicionamiento electrónico de señal. e) Solventes utilizados
46 Pantalla del osciloscopio ajuste en amplitud y fase de la señal del dispositivo de
compensación (azul) Señal de referencia (amarillo).
47 Pantalla del ALL con un aiuste fino en amplitud y fase de la señal del dispositivo de
compensación se obtiene un nivel de señal deferencial cercano a cero
4.8 Ruido hase obtenido con el sensor tipo espiral con una medición diferencial en corriente de
<i>la componente imaginaria</i>

- 4.9. El líquido solvente adopta la forma geométrica de los electrodos. a) En el sensor tipo espiral, se expande de manera radial por su superficie. b) En el sensor tipo peine, se expande de 4.10. Síntesis del proceso de evaporación de una muestra volátil. a) Una vez depositada la gota, las moléculas superficiales comienzan a "escapar". b) La gota tiende al equilibrio térmico, 5.1. Registro de los cambios de voltaje (ΔV), parte real e imaginaria, de los procesos de 5.2. Expansión de los líquidos solventes en la superficie de los SCEC. Las flechas indican la 5.3. Registro de los cambios de corriente (ΔI), parte real e imaginaria, de los procesos de 5.4. Circuito eléctrico RC en paralelo, conformado por un capacitor y una resistencia variable, que representa los cambios de capacitancia debido a una muestra depositada en la superficie 5.5. Cambios en términos de capacitancia (ΔC) producto de los procesos de evaporación de los líquidos solventes, en el sensor tipo espiral. Parte imaginaria de la corriente......72 5.6. Cambios en términos de capacitancia (ΔC) producto de los procesos de evaporación de los líquidos solventes, en el sensor tipo peine. Parte imaginaria de la corriente......72 5.7. Grafico del proceso de volatilización del alcohol isopropilico. Se definió un intervalo de tiempo de 18[s] a 31[s] (elipse). a) Sensor tipo peine. b) Sensor tipo espiral......74 5.8. a) Cambios en términos de corriente $Im(\Delta I)$ en un rango 18[s] a 32[s] del proceso de 5.9. a) Cambios en términos de corriente $Im(\Delta I)$ en un rango 18[s] a 32[s] del proceso de 5.10. Montaje experimental. Diodo laser incidiendo luz de 385 nm de longitud de onda sobre la superficie del sensor tipo espiral.....77 5.11. Registro de los cambios de voltaje $\Delta V(t)$, incidiendo luz de 385nm de longitud de onda sobre 5.12. Apuntador laser incidiendo luz de 473 nm de longitud de onda sobre la superficie del sensor 5.13. Registro de los cambios de voltaje $\Delta V(t)$, incidiendo luz de 473nm de longitud de onda en 6.1. a) Un SDS aniónico posee una estructura molecular conformada por dos partes: una cadena hidrofóbica y una parte hidrofílica que se ioniza negativamente. b) Las moléculas tienden a ocupar la superficie de la solución acuosa. c) Cuando se satura la superficie, se juntan por
- VII

debajo para formar micelas. d) Micela cubriendo una partícula de cobre, evitando la 6.2. Pesaje de masa. a) Partículas de cobre. b) SDS......85 6.4. Partículas expuestas sobre la superficie sensitiva del dispositivo sensor, una vez que el AIP se evaporo, provocando perturbaciones de campo eléctrico sobre la superficie sensitiva del 6.5. Gráficos del proceso de volatilización de las suspensiones. a) Formas de señal de las partículas suspendidas. b) Rectángulo de inspección en el rango de tiempo de 70 [s] a 200 6.6. Rectángulo de inspección de la figura 6.4b en el rango de tiempo de 70 [s] a 205 [s]. Se observa el tiempo de decaimiento de las señales y un offset debido a las partículas expuestas 6.7. *Residuo perimetral de SDS*.....90 6.8. a) Distribución de las partículas de cobre junto con SDS. b) Concentración perimetral de residuos de SDS.......90 6.9. Procedimiento de preparación de una muestra de sangre. a) Deposito de una gota de sangre sobre un cubre-objetos. b) Un segundo cubre-objetos se coloca sobre la gota. c) La gota se expande formado una película delgada......91 6.10. Muestra de sangre sobre el sensor tipo espiral. Con condiciones ambientales al momento 6.11. Grafica de la caracterización eléctrica de una muestra de sangre. a) Ruido base con un par *de cubre objetos sobre el dispositivo de referencia y dispositivo sensor. b) Cambios de* $\Delta C(t)$ 6.12. Cambios en la señal temporal debido al proceso de coagulación de la sangre en un rango 6.13. Variación $\Delta C(t)$, debido a la muestra de sangre, en un rango de 160 [s] a 800 [s]95

VIII

Lista de Tablas

1.1.	Valores de los parámetros geométricos propuestos para un electrodo tipo peine13
1.2.	Valores de los parámetros geométricos propuestos para un electrodo tipo espiral14
1.3.	Valores comparativos del sensor tipo peine y tipo espiral22
2.1.	Programas utilizados para el diseño de las geometrías propuestas26
2.2.	Parámetros de construcción de un electrodo tipo espiral26
2.3.	Parámetros de diseño para cada electrodo en 1D29
3.1.	Valores de los parámetros ingresados al puente de impedancias digital40
3.2.	Valores obtenidos de $[R+Q]$, $[C+D]$, sin un plano de tierra
3.3.	<i>Valores obtenidos de [R+Q], [C+D] con un plano de Tierra43</i>
3.4.	Valores de capacitancia obtenidos en las simulaciones 3D, comparados con los valores
	experimentales
4.1.	Valores de los parámetros ingresados al ALI
4.2.	Propiedades físicas de los líquidos solventes utilizados
4.3.	Condiciones ambientales promedio de las mediciones
4.4.	Escala de sensibilidad para el ajuste de mínima diferencia de señal
5.1.	Tiempos obtenidos del proceso de volatilización en medición de voltaje
5.2.	<i>Tiempos obtenidos del proceso de volatilización en medición de corriente</i> 67
5.3.	<i>Ruido</i> (<i>Rb</i> / \sqrt{Hz}) obtenido antes de cada medición
5.4.	Máxima relación señal a ruido obtenido en cada una de las mediciones
5.5.	Valor de resolución obtenido con cada sensor
5.6.	Valores de Tr y Td aproximados de cada sensor70
5.7.	<i>Ruido base Cb</i> / Hz , en términos de capacitancia
5.8.	<i>Resolución en términos de capacitancia</i>
5.9.	Resumen de las características intrínsecas del sistema de medición utilizando cada tipo de
	sensor
6.1.	<i>Condiciones ambientales promedio</i>
6.2.	Parámetros ingresados al lock-in para las mediciones de partículas suspendidas
6.3.	Rb/\sqrt{Hz} obtenidos antes de cada medición
6.4.	<i>Tiempo de decaimiento, Td de las señales temporales</i> $\Delta C(t)$
6.5.	Parámetros configurados al sistema para la medición del proceso de coagulación de la
	sangre

Lista de Abreviaturas

- CAD: Computer-aided design (Diseño Asistido por Computadora).
- MEF: Método de Elemento Finito.
- LCR: Inductancia (L), Capacitancia (C) y Resistencia (R).
- [R+Q]: El puente de impedancia SR715 despliega los parámetros de resistencia (R) en la pantalla del parámetro principal, y el factor de calidad (Q) en la pantalla del parámetro menor.
- [C+D]: El puente de impedancia SR715 despliega los parámetros de capacitancia (C) en la pantalla del parámetro principal, y el factor de disipación (D) en la pantalla del parámetro menor.
- SMTC: Sistema de Monitoreo Temporal Capacitivo.
- MBP: Material Bajo Prueba.
- SCEC: Sensores Capacitivos de Electrodos Coplanarios.
- PCB: Printed Circuit Board (Placa de Circuito Impreso).
- ALI: Amplificador Lock-In.
- ESAE: Etapa de Sensado y Acondicionamiento Electrónico.
- PSD: Phase Sensitive Detection (Detección sensible a la fase).
- AIP: Alcohol Isopropilico.
- SDS: Sodium Dodecyl Sulfate.
- $\Delta V(t)$: Cambios temporales de Voltaje.
- $\Delta I(t)$: *Cambios temporales de Corriente.*
- $\Delta C(t)$: Cambios temporales de Capacitancia.
- $Im(\Delta I)$: *Componente imaginaria de la corriente.*
- UV: *Ultravioleta*.

Resumen

En este trabajo de tesis se presenta una metodología para el diseño e implementación de sensores capacitivos de electrodos coplanarios sobre substratos dieléctricos (vidrio) que forman parte de un sistema de medición de bajo ruido. Este sistema está conformado por una fuente de alimentación, una etapa de acondicionamiento electrónico, una etapa de Amplificación *Lock-in* y un osciloscopio. El diseño propuesto de los sensores tiene como objetivo mejorar significativamente la sensibilidad a cambios temporales de la función dieléctrica de un proceso físico-químico o biológico en estudio.

El proceso de diseño y fabricación de los sensores propuestos se basa en el diseño micro-mecánico de las geometrías propuestas de electrodos en la plataforma CAD (Diseño Asistido por Computadora). Con el método de elemento finito (MEF), se realizan simulaciones en 3D de las geometrías propuestas para obtener y analizar las distribuciones de potencial y campo eléctrico. El proceso de micro-fabricación de los electrodos utiliza las técnicas de depósito (*Sputtering*) y fotolitografía sobre sustratos. Una de las características principales que se busca implementar en los sensores propuestos, es obtener un dispositivo modular, el cual tiene la ventaja de poderse intercambiar por otros sensores, de acuerdo a las necesidades requeridas, al realizar pequeñas modificaciones físicas en la etapa de acondicionamiento electrónico utilizada en trabajos anteriores, para realizar mediciones en una forma más versátil. También, se busca que los electrodos se encuentren aislados eléctricamente por una delgada capa dieléctrica para aumentar la sensibilidad a las perturbaciones del campo eléctrico presentes entre ellos.

Además, se propone una metodología de medición para caracterizar la respuesta y desempeño de los sensores utilizando volúmenes de hasta 5 [μ l] de líquidos solventes, suspensiones de nanopartículas y muestras de tejido vivo (sangre). El sistema realiza mediciones diferenciales al utilizar un sensor o dispositivo de referencia y otro de sensado y es capaz de registrar las componentes reales y complejas de las señales eléctricas, lo cual nos permite obtener una mejor caracterización eléctrica de la muestra y el proceso físico-químico en estudio. Con el sistema de bajo ruido, es posible recuperar señales eléctricas del orden de decenas de pico amperios, inmersas en ruido miles de veces mayor, para el caso de medición en corriente, y micro voltios para el caso de medición en voltaje. Además, se obtiene una alta resolución la cual es función del ruido base a la salida del sistema. Esto nos permite monitorizar señales eléctricas del proceso de evaporación de líquidos solventes con muestras menores a 10 [μ l].

Descripción del trabajo

La tesis se organiza con el siguiente contenido:

Se presentan una **Introducción** al trabajo desarrollado, donde se menciona el estado del arte de los trabajos previos con sensores capacitivos, la conformación del sistema utilizado, el alcance del trabajo realizado y algunas aplicaciones con este tipo de sensores.

El concepto de capacitancia y las bases teóricas de un condensador ordinario de placas paralelas en condiciones electrostáticas, una descripción del principio de funcionamiento de los sensores capacitivos coplanarios; así como, la descripción general de los parámetros de diseño para cada una de las geometrías de los electrodos propuestos se plasman en el **Capítulo 1**. Además, en este mismo capítulo, se muestran los resultados obtenidos de las simulaciones 3D realizadas por medio del método de elemento finito (MEF), en donde se aprecian gráficamente las distribuciones de campo eléctrico y potencial presentes en la superficie sensitiva de los dispositivos propuestos.

La descripción del procedimiento de diseño 3D de cada geometría de electrodos propuestos con el sistema CAD (Diseño Asistido por Computadora), el procedimiento de impresión de la máscara de grabado y el proceso de fotolitografía, se presentan en el **Capítulo 2**. En el **Capítulo 3** se describe la metodología propuesta para la caracterización eléctrica de los sensores propuestos por medio de un puente de impedancias digital LCR. Se presentan los valores de cada uno de los parámetros obtenidos [R+Q], [C+D] de cada tipo de sensor, con y sin conexión a plano de tierra.

El sistema de medición empleado, conexión de los sensores, parámetros configurados, y las características de cada una de las etapas que conforman este sistema de medición, se explican en el **Capítulo 4**. El ajuste de mínimo *offset*, que de esto depende el ruido o línea base del sistema de medición, las modificaciones realizadas a la tarjeta de acondicionamiento, el procedimiento de medición empleado para caracterizar la respuesta de cada sensor con líquidos solventes, y una descripción de manera resumida del proceso de volatilización de los solventes también se aborda en este capítulo.

El análisis grafico de los datos temporales obtenidos en las mediciones para cada una de las diferentes pruebas realizadas, los valores obtenidos de ruido base y las máximas relaciones señal a ruido de cada prueba, resolución y sensibilidad de cada sensor se presenta en el **Capítulo 5**. También se presentan, los resultados en términos de capacitancia de las mediciones de la componente imaginaria de la corriente Im(Δ I) y su análisis.

En el **Capítulo 6** se proponen otras posibles aplicaciones con los sensores propuestos, describiendo el procedimiento de cálculo de masas, preparación y medición de nano-partículas y formación de micelas suspendidas en un líquido solvente, mostrando los resultados obtenidos en términos de capacitancia de forma indirecta. Finalmente se presentan el procedimiento y los resultados gráficos obtenidos de una medición de tejido biológico (sangre entera).

Introducción

Los sensores capacitivos tienen una amplia gama (de aplicaciones en los sistemas de medición), así de geometrías y rangos de operación. Con ellos se detectan cambios de señales eléctricas, presentes en un tipo de muestra, lo que permite realizar caracterizaciones de su respuesta eléctrica temporal en diferentes condiciones de estudio. Son sensibles a cambios de señales eléctricas en función a los cambios en la característica de la muestra. Como ejemplo de aplicaciones podemos mencionar: sensores de gas [1], detección de bacterias [2], estudio de contenido de grasa en la caracte de cerdo [3], sensores sensibles a UV [4], medidor de pH capacitivo casero [5], etc.

En este trabajo se emplea un Sistema de Monitoreo Temporal Capacitivo (SMTC) el cual es resultado de trabajos anteriores de caracterización eléctrica de materiales [6]. El SMTC está conformado por: un sistema de bajo ruido, al que se acoplan los sensores capacitivos de electrodos coplanarios, una tarjeta de acondicionamiento electrónico y una etapa de amplificación *Lock-in* [7] para reducir al mínimo el ruido base de una señal temporal. El sistema registra las componentes real y compleja de las señales eléctricas, tanto para una medición en corriente o en voltaje. La etapa de sensado cuenta con un par de sensores capacitivos planos, uno de los cuales podemos denominar como dispositivo de "referencia" y el otro como dispositivo de "sensado".

El sistema de monitoreo, compara el nivel de señal de ambos dispositivos, que idealmente deben estar bajo las mismas condiciones eléctricas y físicas antes de realizar una medición, cuando se produce una perturbación del campo eléctrico sobre la superficie de "sensado" al colocar un material bajo prueba (MBP). Estas perturbaciones se convierten en señales eléctricas que procesa la etapa diferencial. Con ello se logra reducir la contribución de capacitancias parasitas debido a cables, conectores y componentes electrónicos presentes en el sistema, así como a condiciones ambientales no controladas.

La metodología propuesta para el diseño y fabricación de sensores capacitivos con geometrías complejas de electrodos coplanarios (SCEC), como lo serían los tipos: espiral [8][9] y peine, es posible gracias a programas CAD [10] y de simulación 3D por el método de elemento finito (MEF), aunque no es el único método.

Con el MEF es posible analizar distintas geometrías y distribuciones de arreglos de electrodos que forman un SCEC sobre un substrato dieléctrico [11][12][13]. Uno de los objetivos del uso del MEF es estudiar y analizar la distribución del campo eléctrico, la distribución del potencial eléctrico y la distribución de la carga superficial entre electrodos, para establecer las mejores

condiciones en las que se monitorizan las señales eléctricas temporales de algún tipo de material o muestra (líquidos, solidos, gases, biológicos, etc.) [14][15].

Se describen también el uso de diferentes programas de dibujo y diseño de circuitos impresos (PCB) para el diseño e impresión de las máscaras de litografía, el proceso por erosión catódica (*sputtering*) para el depósito de películas conductoras y dieléctricas sobre los substratos de vidrio y el proceso de fotolitografía con luz ultravioleta (UV) para el grabado de las geometrías de los electrodos que forman los sensores capacitivos coplanarios [16].

El diseño modular de los sensores, es una propuesta con el fin de utilizar el sistema de medición para caracterizar el funcionamiento de distintas geometrías en diferentes aplicaciones, previa adaptación de los sensores a la etapa de acondicionamiento electrónico.

Se presentan los resultados de los parámetros [R+Q], [C+D] obtenidos. La caracterización eléctrica de los sensores fue hecha con un puente de impedancias digital LCR *Meter Stanford Research* 715 [17]. Se da una breve descripción de cada una de las etapas que conforman el sistema de monitorización y de los parámetros configurados. Como un ejemplo del uso del SMTC se describe el procedimiento seguido para registrar temporalmente los procesos de evaporización de tres tipos de muestras (acetona, etanol y alcohol isopropilico) [17]. Además, se describe una posible aplicación para la detección de nano partículas y formación de micelas utilizando una suspensión a base de un líquido solvente, con el fin de detectar su concentración sobre la superfície sensitiva del sensor, como posibilidad de funcionalización de los electrodos. Se propone un procedimiento para preparar muestras de sangre entera con un volumen de hasta 5 [μ l] aproximadamente para monitorizar el proceso de coagulación *in vitro* [15]. Estas mediciones se realizaron con el fin de caracterizar eléctricamente la respuesta del sistema de medición con los sensores propuestos, en condiciones ambientales de laboratorio no controlados, con el propósito de comprobar el desempeño de los sensores.

Referencias

[1] K. Toda, Y. Komatsu, S. Oguni, S. Hashiguchi, and I. Sanemasa.(1999). "A Planar Gas Sensor Combined with Interdigitated Array Electrodes". Analytical Sciences. Volumen 15. No. 1. (pp. 87–89).

[2] M. S. Mannoor, S. Zhang, A. J. Link, and M. C. McAlpine. (2010). "Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides". Proceedings of the National Academy of Sciences. Volumen 107. No. 45. (pp. 19207–19212).

[3] S. C. Mukhopadhyay and C. P. Gooneratne. (2007). "A novel planar-type biosensor for noninvasive meat inspection". IEEE Sensors Journal. Volumen 7. No. 9. (pp. 1340–1346).

[4] Y. Chen, C. Zhu, M. Cao, and T. Wang. (2007). "Photoresponse of SnO₂ nanobelts grown in situ on interdigital electrodes". Nanotechnology. IOP Publishing. Volumen 18. No. 28. (pp. 1-5).

[5] U. H. Veeradasan Perumal, R. Haarindra Prasad. (2013). "pH Measurement using In House Fabricated Interdigitated Capacitive Transducer". RSM IEEE Regional Symposium on Micro and Nanoelectronics. Volumen 13. (pp. 33–36).

[6] A. Guadarrama Santana, A. García Valenzuela, F. Pérez Jiménez, and L. Polo Parada. (2014). "Interdigitated capacitance sensors in the mm scale with sub-femtoFarad resolution suitable for monitoring processes in liquid films". Revista Mexicana de Física. Volumen 60. (pp. 451–459).

[7] MODEL SR850 DSP Lock-in Amplifier. Stanford Research Systems. Revisión 2.0 (2009).

[8] P. Y. P Adely, U. Hashim, M. K. Md Arshad, A. R Ruslinda, C.H.Voon, R.M. Ayub, Subash C.B. Gopinath, Wei-Wen Liu, S. M. Kahar, A. R. N. Huda and H. Cheun Lee. (2017). "Fabrication and Characterization on Width of Spiral Interdigitated Electrodes Based Biosensors". 11th Asian Conference on Chemical Sensors. AIP Conf. Proc. 1808. (pp. 020039-1-020039-7).

[9] Weixuan Jing, Lujia Chen, Fan Zhou, Zhuangde Jiang, Lingling Niu, Bing Wang, Han Qi. (2013). "Fabrication and Characterization of Pt Archimedeanspiral Interdigitated Microelectrodes with Containing Trenches". IEEE International Symposium on Assembly and Manufacturing (ISAM). Volumen 13. (pp. 128-130).

[10] M. F. M. Fathil, M. K. M. Arshad, U. Hashim, A. R. Ruslinda, S. C. B. Gopinath, M. M. N.

Nuzaihan, R. M. Ayub, R. Adzhri, M. Zaki, and A. H. Azman. (2015). "Design architecture of double spiral interdigitated electrode with back gate electrode for biosensor application". International Conference on Nano-electronic Technology Devices and Materials. AIP Conf. Proc. 1733. (pp. 020070-1- 020070-5).

[11] Tianming Chen and Nicola Bowler. (2013). "Design of interdigital spiral and concentric capacitive sensor for materials evaluation". The 39th Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP Conf. Proc. 1511. (pp. 1593-1600).

[12] L. E. B. Ribeiro and F. Fruett. (2015). "Analysis of the Planar Electrode Morphology for Capacitive Chemical Sensors". The Sixth International Conference on Sensor Device Technologies and Applications. Venice, Italy. (pp. 179-182).

[13] J. P. Clarkson, P. M. Fauchet, V. Rajalingam, and K. D. Hirschman. (2007). "Solvent detection and water monitoring with a macroporous silicon field-effect sensor". IEEE Sensors Journal. Volumen 7. No. 3. (pp. 329–335).

[14] A. Guadarrama Santana, A. Acevedo Barrera, J. Uc Martín. (2016). "Caracterización del proceso de volatilización de solventes líquidos con sensores de campo eléctrico". Tercer Congreso Multidisciplinario de Ciencias Aplicadas en Latinoamérica. Proceeding. (pp. 94–100).

[15] A. Guadarrama Santana and M. Peña Martínez. (2015). "Virtual Instrumentation for biological process monitoringbased on electric field perturbations". Memorias del Congreso Nacional de Ingeniería Biomédica XXXVIII. (pp. 144-148).

[16] M. A. Farehanim, U. Hashim, N. Azizah, M. F. Fatin, and A. H. Azman. (2017). "Fabrication of Interdigitated Electrodes (IDEs) using BasicConventional Lithography for pH Measurement".
11th Asian Conference on Chemical Sensors. AIP Conf. Proc. 1808. (pp. 020029-1–020029-6).

[17] User's Manual. Model SR720. LCR Meters. Stanford Research System. Revisión 1.6 (2006).

Capítulo 1

Análisis 3D de los sensores capacitivos planos

En este capítulo se presenta brevemente el concepto de capacitancia, se describe el principio de funcionamiento de los SCEC y los parámetros principales que los conforman. Así mismo, se analizarán los resultados obtenidos por medio de la simulación electrostática con el método de elemento finito (MEF) de cada uno de los sensores propuestos.

1.1. Concepto de capacitancia

Cuando dos cuerpos conductores están separados por un dieléctrico, sin importar su geometría y tamaño, se forma un condensador [1]. Su capacitancia o capacidad, puede definirse como el almacenamiento de carga eléctrica que adquiere, y está expresado por la ecuación:

$$\boldsymbol{C} = \frac{\boldsymbol{Q}}{\boldsymbol{V}} [F] \circ \left[\frac{C}{V}\right]$$
(1.1)

Donde C es la capacitancia, Q la carga total y V la diferencia de potencial, aplicado entre los electrodos. El dispositivo más común y representativo es el condensador de placas planas paralelas, como el que se muestra en la figura 1.1.

Figura 1.1. Placas conductoras planas con un dieléctrico entre ellas, y una diferencia de potencial aplicado.

Desde el punto de vista electrostático [2], cuando se aplica una diferencia de potencial continuo V entre las placas, se presenta una acumulación de cargas libres positivas +Q en la placa superior y cargas libres negativas -Q en la placa inferior. Esto hace que se produzca una intensidad de campo eléctrico \vec{E} uniforme en el medio dieléctrico en dirección -Z. Para este caso, se consideran nulos los efectos de borde.

 \vec{E} siempre es perpendicular a las superficies conductoras. Por lo tanto, la componente normal de \vec{E} en cualquier punto de la superficie de cualquiera de los conductores está dado por:

$$\vec{E} = \hat{z} \cdot E = \frac{\rho_s}{\varepsilon} = \frac{Q}{\varepsilon A} \left[\frac{C}{F \cdot m} \right]$$
(1.2)

Donde ρ_s es la densidad de carga superficial en un punto, \hat{z} el vector unitario y ε es la permitividad del medio dieléctrico que separa los conductores. La carga Q es igual a la integral de ρ_s sobre la superficie A:

$$\boldsymbol{Q} = \int_{A} \rho_{s} dA = \int_{A} \varepsilon \hat{\boldsymbol{z}} \cdot \boldsymbol{E} dA = \int_{A} \varepsilon \boldsymbol{E} d\vec{\boldsymbol{A}} \quad [\mathbf{V} \cdot \mathbf{F}]$$
(1.3)

El diferencial de potencial aplicado entre las placas está dado por la integral de línea:

$$\boldsymbol{V} = -\int_{0}^{d} \vec{\boldsymbol{E}} \cdot \vec{dl} = -\int_{0}^{d} (-\hat{\boldsymbol{z}}E) \cdot \hat{\boldsymbol{z}} dz = Ed [V]$$
(1.4)

Sustituyendo la ecuación 1.3 y 1.4 en la ecuación 1.1 tenemos:

$$\boldsymbol{C} = \frac{\boldsymbol{Q}}{\boldsymbol{V}} = \frac{\varepsilon E A}{E d} = \varepsilon_0 \varepsilon_r \frac{A}{d} [F]$$
(1.5)

Donde ε_o es la permitividad en el vacío, ε_r es la permitividad relativa o constante dieléctrica del medio dieléctrico. Como puede observarse en la ecuación (1.5), el valor de *C* solo depende de la geometría del capacitor y de la permitividad relativa del medio dieléctrico entre placas.

1.2. Sensores capacitivos de electrodos coplanarios (SCEC)

El principio de funcionamiento de los SCEC sigue básicamente el del condensador presentado en la sección 1.1. Pero a diferencia de éste, si las placas o electrodos se abren en un plano, el campo eléctrico ya no se encontrará confinado entre las placas, si no que se expandirá desde la periferia de un electrodo al otro pasando por el medio exterior. En la figura 1.2, podemos observar la distribución de las líneas de campo eléctrico que se generan al aplicar un diferencial de potencial AC entre los electrodos.

La ventaja que presenta este tipo de sensores de electrodos coplanarios, es que se puede utilizar su superficie para depositar un material bajo prueba (MBP) o muestra y de esta manera interactuar con las líneas de campo eléctrico; en lugar de separar los electrodos por un material dieléctrico, algo que sería complicado [3][4]. Las propiedades dieléctricas del MBP, alteran la distribución de líneas de campo eléctrico presente entre los electrodos, provocando una perturbación de estas.

Figura 1.2. Distribución de las líneas de campo eléctrico en un SCEC, que nos permite evaluar un MBP depositado sobre la superficie.

Por lo tanto, en un arreglo de electrodos coplanarios, las perturbaciones del campo eléctrico son debidas a los cambios de la función dieléctrica del MBP y, por consiguiente, las variaciones en la

capacitancia son proporcionales a la componente imaginaria de la señal que pasa a través del MBP. También se puede ver en la figura 1.2, que la intensidad del campo eléctrico disminuye a lo largo del espesor del MBP. La capacitancia entre los dos electrodos también depende de su geometría, de las propiedades dieléctricas y de la geometría del MBP.

Algunos parámetros físicos de los SCEC como: el área de sensado, el número de dedos, la separación entre ellos, o geometría; pueden controlar la profundidad de penetración de las líneas de campo eléctrico sobre una muestra. Cuando no se tiene la misma separación y espesor entre electrodos, el patrón de distribución del campo eléctrico cambia.

Un incremento en el ancho del electrodo incrementa el nivel de la señal. Al reducir la separación entre los electrodos, se permite una mayor interacción con los vecinos más cercanos opuestos, a cambio de una reducción en la sensibilidad y profundidad de penetración de las líneas de campo eléctrico a una muestra. Un espesor y separación idénticos proporcionan mayor precisión en el cálculo de C. Uno de los propósitos del diseño es tener un mayor número de líneas de campo eléctrico a interactuar con un MBP [3][5][6][7].

1.2.1 Parámetros geométricos del sensor capacitivo de electrodos coplanarios tipo peine

El sensor capacitivo propuesto se muestra en la figura 1.3. La arquitectura y patrón de arreglo corresponden al tipo que más frecuentemente se cita en la literatura. Los parámetros de diseño geométrico o construcción para un electrodo en forma de "peine" para tomarse en cuenta son: el número (n), ancho (w), longitud (d) y espesor (t) del electrodo. La capacitancia total del sensor sin muestra en su superficie depende de estos parámetros y de las características del sustrato dieléctrico donde se deposita [8][9].

El área de sensado total es de 1 [cm²], donde se deposita un par de "peines" entrepuestos en una estructura similar a una "cremallera", en la que existe una separación o gap (g) entre ellos. El diseño tiene 20 electrodos o 10 pares de electrodos y, como se puede observar, estos pueden ser modelados como un arreglo de condensadores de placas paralelas.

Figura 1.3. Parámetros geométricos del SCEC tipo peine.

En la tabla 1.1 se presentan los valores de los parámetros geométricos para el diseño de este tipo de sensor.

Parámetros -	Tipo de Electrodo
	Peine
W	200 [µm]
g	200 [µm]
l	1 [cm]
t	3 [µm]
п	10
d	1 [cm]

Tabla.1.1. Valores de los parámetros geométricos propuestos para un electrodo tipo peine.

1.2.2. Parámetros geométricos del sensor capacitivo de electrodos coplanarios tipo espiral

El arreglo de electrodos del sensor capacitivo propuesto consiste en dos evolventes entre puestos 180°, con una separación (g) entre ellos. Es decir, un par de curvas planas, cuyas normales son tangentes a una circunferencia. El arreglo se muestra en la figura 1.4 y el área de sensado es aproximadamente $\pi/4$ [cm²].

Los parámetros geométricos para un electrodo tipo espiral son: el número de revoluciones (n), ancho (w), espesor (t), y el radio (r) de cada electrodo [10].

Figura. 1.4. Parámetros geométricos del SCEC tipo espiral.

En la tabla 1.2 se presentan los parámetros geométricos utilizados para el diseño de este tipo de sensor.

Parámetros	Tipo de Electrodo
	Espiral
W	200 [µm]
g	200 [µm]
t	3 [µm]
r	0.5 [cm]
п	6.25

Tabla.1.2. Valores de los parámetros geométricos propuestos para un electrodo tipo espiral.

1.3. Simulación 3D de los sensores capacitivos de electrodos coplanarios (SCEC) con el método de elemento finito (MEF)

De acuerdo a las necesidades de diseño de los sensores capacitivos y al cambio de geometría de los electrodos, fue necesario realizar simulaciones 3D para estudiar el comportamiento de los mismos. El paquete CAD utilizado fue COMSOL Multi-physics, el cual nos proporciona una potente herramienta en un entorno interactivo para resolver problemas basados en ecuaciones diferenciales parciales con el MEF, y que es ampliamente utilizado para diversas aplicaciones de física e ingeniería [11].

Las simulaciones realizadas nos permiten visualizar el comportamiento de las propiedades eléctricas e interacción del campo eléctrico con alguna muestra de estudio. Además, nos permite mejorar el diseño de la geometría de los electrodos para obtener el máximo desempeño posible

del sensor. Uno de los objetivos de interés, se basa en visualizar la distribución de las líneas de campo eléctrico, la distribución del potencial eléctrico, la distribución superficial de carga eléctrica y el cálculo de la capacitancia. Empleando la física electrostática en el módulo AC/DC, la interfaz física resuelve la Ley de Gauss para el campo eléctrico utilizando el potencial eléctrico escalar como variable independiente.

1.4. Análisis de las simulaciones del sensor capacitivo de electrodos coplanarios tipo espiral

En la figura 1.5 podemos observar el resultado grafico de la simulación 3D del SCEC tipo espiral, sin plano de tierra, y que se encuentra encerrado en un cilindro de 10 [cm³] representando un volumen de aire como medio exterior. Las líneas de campo eléctrico bajo estas condiciones, tienden a presentar efectos de borde en los contornos exteriores, lo que nos proporcionaría una mayor sensibilidad a perturbaciones externas no deseadas. Además, presenta una distribución no uniforme de líneas de campo eléctrico. El valor de la capacitancia obtenida bajo estas condiciones fue de C = 6.014 [pF].

Figura 1.5.- Resultado grafico de la simulación sin plano de tierra. a) Vista en planta, observamos la distribución de las líneas de campo y potencial. b) Vista lateral, las líneas de campo tienden a "dispersarse".

El resultado gráfico de la simulación en 3D con un plano de tierra se muestra en la figura 1.6. En el grafico se puede observar distribuciones relativamente uniformes de las líneas de campo eléctrico y las superficies equipotenciales en toda la geometría, encerrada igualmente en un cilindro de 10 [cm³] que representa el medio exterior (aire). Una distribución de esta forma nos permitirá que al momento de depositar una muestra sobre el área de sensado, se tenga la misma contribución en cada región de la superficie. Vemos como bajo estas condiciones las líneas de

campo quedan "confinadas" dentro del volumen, y de esta manera, no se dispersan por todo el medio exterior, manteniendo los efectos de borde constantes y reduciendo las contribuciones parasitas. La intensidad de las líneas de campo eléctrico, resultan ser suficientes para interactuar con una muestra [12]. El cálculo de la capacitancia bajo estas condiciones fue de C = 6.85 [pF].

Figura 1.6.- Resultado grafico de la simulación con plano de tierra. a) Vista en planta, observamos la distribución de campo eléctrico y potencial. b) Vista lateral, el plano de tierra "confinando" las líneas de campo eléctrico.

1.4.1. Caracterización del recubrimiento dieléctrico

En la práctica, los SCEC además de un plano de tierra, se encontrarán aislados eléctricamente por una capa dieléctrica. Con el fin de observar su desempeño con las condiciones mencionadas debido a que formaran parte del sensor. Se realizaron simulaciones puntuales donde se variaron los valores de espesor (*d*) así como la permitividad relativa (ε_r) de la capa dieléctrica, con plano de tierra. El objetivo fue obtener la respuesta de la función capacitiva $C(\varepsilon_r, d)$ en un rango de 1 a 20 y de 0.1 [mm] a 3 [mm], respectivamente.

Los resultados se muestran en las gráficas de las figuras 1.7a y 1.7b. En la figura 1.7a, se puede ver una respuesta lineal de $C(\varepsilon_r, d)$, donde el valor de capacitancia para cada valor de ε_r , se incrementa de manera proporcional al variar el valor de *d*. También se observa una posible saturación para los valores mayores de ε_r y *d*, es decir, el valor de la capacitancia tiende a no presentar cambios con $d \ge 2$ [mm]. Por lo tanto, con una capa dieléctrica gruesa la respuesta de la función capacitiva del sensor espiral, no presentara cambios al momento de depositar un MBP sobre su superficie, debido a que las líneas de campo eléctrico no alcanzan a interactuar con el MBP.

Figura 1.7a.- Grafica de los resultados obtenidos variando ε_r a diferentes espesores de una capa dieléctrica en la superficie del SCEC tipo espiral.

En la figura 1.7b, vemos los cambios en capacitancia $C(d, \varepsilon_r)$ manteniendo d fija al variar ε_r . Nos permite observar de forma más clara el fenómeno descrito anteriormente. El valor de C en el punto ε_{r0} , representa la superficie del sensor tipo espiral sin capa dieléctrica y en contacto con el medio exterior. Mientras el valor de d sea lo más pequeño posible los valores de capacitancia convergen al valor de ε_{r0} , conllevando a un incremento en el rango dinámico del sensor y a una profundidad de penetración mayor de líneas de campo eléctrico en un MBP depositado en su superficie. En este caso, se estima una profundidad de penetración hasta $d \le 2$ [mm].

Figura 1.7b.- Grafica de los resultados obtenidos variando d a diferentes permitividades de una capa dieléctrica en la superficie del SCEC tipo espiral.

Los resultados obtenidos nos permiten obtener algunas características estáticas del sensor tipo espiral como la sensibilidad y el rango dinámico, a diferentes espesores y permitividades de la capa dieléctrica a depositar. El material de esta capa dieléctrica fue Oxido de Silicio (SiO₂), con un valor de constante dieléctrica de $\varepsilon_r \approx 4.1$. De esta forma, es posible elegir el espesor más conveniente para caracterizar una muestra en estudio.

Debido a la alta demanda de recursos de cómputo no fue posible caracterizar por medio del MEF, la respuesta del sensor tipo espiral a menores espesores de recubrimiento dieléctrico.

1.4.2. Sensibilidad

En nuestro caso, la sensibilidad se puede definir como la pendiente de la función lineal de la función capacitiva $C(\varepsilon_r)$, es decir, una razón de cambio de la variable dependiente en función de un cambio en la variable independiente [13]. Siendo el resultado de la figura 1.7a una función lineal, es posible calcular esta razón para el SCEC tipo espiral. Para una película de material dieléctrico con valor de ε_r =14 y un espesor d_2 = .15 [mm] (espesor de un cubreobjetos), se tomaron el rango de valores ε_r 1=13 y ε_r 2=15, con sus respectivos valores de capacitancia C₁≈18 [pF] y C₂≈20 [pF], mediante la siguiente expresión tenemos que el valor de sensibilidad para un solo sensor es:

$$S = \frac{\Delta C}{\Delta \varepsilon_r} \Big|_d = \frac{C_2 - C_1}{\varepsilon_{r2} - \varepsilon_{r1}} \Big|_{.15 \ [mm]} \approx 1 \ [pF]$$
(1.6)

1.4.3. Rango Dinámico

El rango dinámico del sensor es el rango del valor mínimo al máximo que se puede medir antes de alcanzar un punto de saturación o mínima variación [13]. En este caso, el rango dinámico se puede obtener de la figura 1.7b, para una capa dieléctrica con espesor *d* a diferentes permitividades. De igual manera nos permite determinar la profundidad de penetración de las líneas de campo eléctrico en una muestra. En este caso, para definir el rango dinámico con un valor de capacitancia a un valor fijo de ε_r = 14, en un rango de 0.1 [mm] $\leq d \leq$ 3 [mm], tenemos:

$$R_{dyn} \approx 6.2 \,[\text{pF}]$$

De acuerdo a los valores de *S* y R_{dyn} obtenidos, equivaldría a colocar 6 películas de recubrimiento dieléctrico de espesor d_2 = .15 [mm] aproximadamente para llegar a la saturación del sensor.

Se puede observar, que si seleccionamos un menor valor de permitividad ε_r =4 de material dieléctrico con el mismo espesor d_2 = .15 [mm], el valor de la sensibilidad se mantendrá. Pero el valor del rango dinámico del sensor disminuirá a $R_{dyn} \approx 1.5$ [pF]. Esto equivaldría a colocar dos películas de recubrimiento aproximadamente antes de llegar a la saturación.

En cambio, si reducimos el valor del espesor *d* del recubrimiento dieléctrico a un valor cercano a cero manteniendo $\varepsilon_r=4$, su respuesta $C(\varepsilon_r, d)$ ira reduciendo su valor en la pendiente por lo que el valor de *S* será menor. La respuesta $C(d, \varepsilon_r)$ ira convergiendo al punto con ε_{r0} , incrementándose el valor a $R_{dyn} \approx 3.5$ [pF]. De acuerdo a los datos obtenidos experimentalmente donde el recubrimiento dieléctrico del sensor fue de 0.3 [µm], se estimó que el valor de capacitancia de la película dieléctrica fue cercano a 7 [fF]. Contrastando estos valores de $R_{dyn} \approx 3.5$ [pF] y de $C\approx7$ [fF], tenemos que podemos colocar hasta 500 películas de recubrimiento dieléctrico.

1.5. Análisis de las simulaciones del sensor capacitivo de electrodos coplanarios tipo peine

Para analizar esta geometría de electrodos, se utilizó la misma metodología aplicada para el sensor en espiral. En la figura 1.8, se muestra el resultado grafico de la simulación 3D del sensor tipo peine, sin plano de tierra, bajo las mismas condiciones que en el caso del sensor tipo espiral. Podemos ver que se presenta el efecto de borde en los contornos exteriores y una distribución no uniforme de líneas de campo eléctrico. La capacitancia para este caso fue de C = 4.804 [pF].

Figura 1.8.- Resultado grafico de la simulación sin plano de tierra. a) Vista en planta, observamos la distribución de campo eléctrico y potencial. b) Vista lateral, las líneas de campo tienden a "dispersarse".

El resultado gráfico de la simulación en 3D, con plano de tierra, para este sensor tipo peine se visualiza en la figura 1.9. En el grafico se puede observar una distribución de líneas de campo eléctrico más uniforme. Se observa que, en los vértices o esquinas, se presenta una concentración de líneas de campo debido al efecto de ángulo recto o agudo. Este efecto, provocará que al momento de depositar un MBP sobre la superficie del sensor, no se obtenga la misma contribución en cada región de la superficie. La intensidad de las líneas de campo eléctrico es suficiente para interactuar con una muestra [12]. El cálculo de la capacitancia bajo estas condiciones fue de C=5.736 [pF].

Figura 1.9.- Resultado de la simulación con plano de tierra. a) Vista en planta, observamos la distribución de campo eléctrico y potencial. b) Vista lateral, el plano de tierra "confinando" las líneas de campo eléctrico.

1.5.1. Caracterización del recubrimiento dieléctrico

También se realizaron simulaciones, con una capa dieléctrica sobre la superficie del sensor, variando los valores de ε_r y d, con plano de tierra. Obteniendo la respuesta C (ε_r , d) en un rango de 1 a 20 y de 0.1 [mm] a 2 [mm], respectivamente.

El resultado se muestra en las gráficas de la figura 1.10. En la figura 1.10a observamos que el valor de la capacitancia tiende ya a no presentar cambios con $d \ge 1$ [mm]. En la figura 1.10b vemos los cambios en capacitancia al variar ε_r manteniendo d fija. De igual forma, mientras el valor de d sea lo más pequeño posible los valores de capacitancia convergen al valor de ε_{r0} , incrementando el rango dinámico del sensor. En este caso se puede estimar una profundidad de penetración hasta $d \le 1$ [mm].

Figura 1.10.- Grafica de los resultados obtenidos variando ε_r a diferentes espesores de una capa dieléctrica en la superficie del SCEC tipo peine. b) Grafica de los resultados obtenidos variando d a diferentes permitividades de una capa dieléctrica en la superficie del SCEC tipo espiral.

1.5.2. Sensibilidad

De acuerdo a los resultados de la figura 1.10a, para un espesor d_2 = .15 [mm], para un valor de ε_r =4 en el rango de ε_r 1=5, ε_r 2=3 y sus respectivos valores de capacitancia C₁≈7.2 [pF] y C₂≈8.4 [pF], obtenemos el valor de sensibilidad:

$$S = \frac{\Delta C}{\Delta \varepsilon_r} \Big|_d = \frac{C_2 - C_1}{\varepsilon_{r2} - \varepsilon_{r1}} \Big|_{.15 \ [mm]} \approx .6 \ [pF]$$
(1.7)

1.5.2. Rango Dinámico

A partir de la figura 1.10b, el valor del rango dinámico para una ε_r = 4, en un rango de 0.1[mm] $\leq d \leq 2$ [mm], obtenemos:

$$R_{dyn} \approx 2 \,[\text{pF}]$$

1.6. Conclusiones

Tipo "ESPIRAL"		Tipo "PEINE"	
C sin Plano	<i>6.014</i> [pF]	C sin Plano	4.804 [pF]
C con Plano	6.85 [pF]	C con Plano	5.736 [pF]
Sensibilidad (<i>d</i> =.15mm)	<i>l</i> [pF]	Sensibilidad (d =.15mm) 0.6 [
$R_{dyn} (\varepsilon_r = 4)$	1.5 [pF]	$R_{dyn} (\varepsilon_r = 4)$	<i>2</i> [pF]
Saturación	$d \ge 2$ [mm]	Saturación	$d \ge 1$ [mm]
Área de sensado	$\pi/4$ [cm ²]	Área de sensado	$l [\mathrm{cm}^2]$

Tabla.1.3. Valores comparativos del sensor tipo peine y tipo espiral.

De la tabla 1.3, vemos que el sensor tipo espiral presento el mayor valor de capacitancia sin y con un plano de tierra. La diferencia fue aproximadamente de 1.2 [pF] para ambos casos. Esto significa que, bajo estas condiciones, el valor de la capacitancia depende en primera instancia de las características geométricas de los electrodos que conforman el SCEC.

La sensibilidad del sensor tipo espiral resultó de un valor mayor con un área de sensado menor. La diferencia fue de 400 [fF]. Estos valores de capacitancia y de sensibilidad deberían aumentar proporcionalmente al incrementar el valor de los parámetros geométricos y el área de sensado de ambos sensores [14].

La profundidad de penetración de las líneas de campo eléctrico, para el sensor tipo espiral, resultó ser mayor, presentando un incremento de 1 [mm] con respecto al sensor tipo peine. Las líneas de campo se confinan de manera más uniforme con un plano de tierra, en el sensor tipo espiral, comparando las figuras 1.6 y 1.9.

Los valores obtenidos de sensibilidad y rango dinámico en cada sensor por medio de las gráficas 1.7 y 1.10, muestran el rango de operación de los sensores debido a un recubrimiento dieléctrico, en su zona de saturación.

El sensor tipo espiral y tipo peine, presentaron un nivel de offset de capacitancia. Aplicando una medición diferencial podemos aproximar a cero este nivel de offset, y de esta manera obtener un valor de capacitancia en función de un MBP en la superficie de los sensores. De esta forma también se aumenta el rango dinámico del instrumento de medición.

Se observó que el tipo de material y espesor de la capa dieléctrica determinan la sensibilidad y el rango dinámico de cada sensor. En nuestro caso reducir el valor de ε_r de la película dieléctrica no sería conveniente.

1.7. Referencias

[1] Santiago Burbano de Ercilla, Enrique Burbano García, Carlos Gracia Muñoz. (2006). "Física general (pp. 426-427)". Editorial Tébar, S.L.

[2] Fawwaz T. Ulaby, Umberto Ravaioli. (2015). "Fundamentals of Applied Electromagnetics (pp. 210-213)". Pearson Education. 7° edition.

[3] Amr A Nassr, Wael H Ahmed and Wael WEl-Dakhakhni. (2008). "Coplanar capacitance sensors for detecting water intrusion in composite structures". Measurement science and technology. IOP Publishing. Volumen 19. (pp. 1-7).

[4] Alexander V. Mamishev, Kishore Sundara-rajan, Fumin Yang, Yanqing Du, Markus Zahn. (2004). "Interdigital Sensors and Transducers". Proc. IEEE. Volumen 92. No. 5. (pp. 808–844).

[5] Ismail Bilican, Mustafa Tahsin Guler, Neset Gulener, Mustafa Yuksel, Sedat Agan. (2016)."Capacitive solvent sensing with interdigitated microelectrodes". Microsyst Technol. Volumen 22. (pp. 659–668).

[6] Xiaohui Hu and Wuqiang Yang. (2010). "Planar capacitive sensor - designs and applications". Sensor Review. Volumen 30. No. 1. (pp. 24–39).

[7] Tianming Chen and Nicola Bowler. (2013). "Design of interdigital spiral and concentric capacitive sensor for materials evaluation". The 39th Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP Conf. Proc. 1511. (pp. 1593-1600).

[8] M. A. Farehanim, U. Hashim, N. Azizah, M. F. Fatin, and A. H. Azman. (2017). "Fabrication of Interdigitated Electrodes (IDEs) using BasicConventional Lithography for pH Measurement".
11th Asian Conference on Chemical Sensors. AIP Conf. Proc. 1808. (pp. 020029-1–020029-6).

[9] Gabriel González, Eleazar Samuel Kolosovas Machuca, Edgar López Luna, Heber Hernández Arriaga and Francisco Javier González (2015). "Design and Fabrication of Interdigital Nanocapacitors Coated with HfO₂". Sensors. Volumen 15. (pp. 1998-2005).

[10] Qiannan Xue, Chao Bian, Jianhua Tong, Jizhou Sun, Hong Zhang, Shanhong Xia. (2012). "Determination of total phosphorus in water environment by three-dimensional double coils microelectrode chip". Conference publications. Sensors, IEEE. Taipei, Taiwan. [11] G. Narmadha, B.S. Sreeja, B. Bindu and M.C. John Wiselin (2010). "Capacitive Fringing Field Sensor Design for Moisture Measurement". Asian Journal of Science and Applied Technology. Volumen 1. No. 2. (pp.10-14).

[12] A. R. Mohd Syaifudin, S. C. Mukhopadhyay, P. L. Yu. (2012). "Modelling and fabrication of optimum structure of novel interdigital sensors for food inspection". Int. J. Numer. Model. Volumen 25. (pp. 64-81).

[13] Joseph J. Carr. (1991). "Designer's Handbook of Instrumentation and Control Circuits". Editorial Academic Press. (pp. 59).

[14] L. E. B. Ribeiro and F. Fruett. (2015). "Analysis of the Planar Electrode Morphology for Capacitive Chemical Sensors". The Sixth International Conference on Sensor Device Technologies and Applications. Venice, Italy. (pp. 179-182).

Capítulo 2

Diseño geométrico y fabricación de los Sensores Capacitivos planos

En este capítulo se describe la metodología de diseño geométrico y la micro fabricación de los SCEC sobre sustratos de vidrio de dimensiones estándar, utilizando programas de diseño CAD (Diseño Asistido por Computadora) para la obtención de las geometrías de los electrodos, exportación e impresión de las máscaras de grabado. Se describe la metodología de los procesos de erosión catódica (*sputtering*) para el depósito de películas conductoras y dieléctricas, así como fotolitografía para el grabado geométrico de los electrodos.

2.1. Herramientas utilizadas en el diseño geométrico de los electrodos

El diseño de las geometrías de los electrodos requirió del dimensionamiento de acuerdo a las tablas 1.1 y 1.2. Como se mencionó en el capítulo anterior, los arreglos de electrodos propuestos fueron tipo "peine" y tipo "espiral". Para este procedimiento en particular y el armado de las geometrías se utilizaron las herramientas de diseño CAD y PCB (placa de circuito impreso) de la tabla 2.1.

*	0
Paquete CAD	
SOLIDWORKS	
AUTOCAD	
ALTIUM DESIGNE	R

Tabla 2.1. Programas utilizados para el diseño de las geometrías propuestas.

Una manera de optimizar el diseño 3D, es modelar la geometría total por piezas individuales de acuerdo a su forma y posición dentro del ambiente CAD, es decir, se dibujó un electrodo por piezas con el fin de ensamblarlos para formar una sola geometría final. Una descripción más detallada del procedimiento se puede encontrar en [1].

2.1.1. Diseño geométrico 3D del sensor tipo espiral

Para realizar el diseño, primeramente se utilizó el paquete (*software*) *solidworks*. Fue necesario definir un cuadrado con las dimensiones de 1 [cm²] de lado para acotar la superficie donde fueron depositados los electrodos. Después se creó una circunferencia en el centro del cuadrado definido previamente, con un diámetro de 0.4 [mm], el cual sirvió como guía para crear las evolventes que conformaron el SCEC espiral.

Separación: 200 [µm]
Paso de rosca: 0.736 [mm]
Revoluciones: 6.25
Ángulo Inicial: 0°
Sentido de las agujas del reloj: On
Diámetro Circulo: 0.4 /mm/

Tabla 2.2. Parámetros de construcción de un electrodo tipo espiral.

Utilizando la herramienta *Spiral*, se seleccionó un punto tangente de la circunferencia intersectando al eje "x o y". Se seleccionó una cara del cuadrado en la cual se plasmó la primera espiral cubriendo el área de sensado. Esto delimito el borde exterior del electrodo final. En la tabla 2.2, tenemos los valores de los parámetros que hay que redefinir para la construcción de la espiral.

Con la herramienta *Extrude* se proporciona un espesor a la espiral generada. Para esto, se definió un nuevo plano coordenado guía, en el punto donde se interseca la espiral con el cuadrado delimitador de área. Se dibujo un rectángulo sobre el eje z del plano guía, en el cual uno de los vértices se posiciona en el origen, con los parámetros w y t de la tabla 1.2. La forma final de este primer electrodo se obtuvo al generar toda la trayectoria volumétrica de la espiral, figura 2.1.

Figura 2.1. Vista en planta, en 3D, del primer electrodo del SCEC tipo espiral.

Para el diseño de la geometría del segundo electrodo entre puesto, se realizó una copia del primer electrodo y se modificó el valor del ángulo inicial, estableciéndolo en 180°, para generar la contra parte. El ensamble de ambos electrodos nos proporciona la forma final del sensor, ver figura 2.2.

Figura 2.2. Vista en planta 3D del diseño final del SCEC tipo espiral.

2.1.2. Diseño geométrico 3D del sensor tipo peine

De igual manera, se realizó el diseño individual de cada electrodo en *solidworks*, para realizar el ensamble posteriormente. Con la ayuda de las herramientas de dibujo, se dimensionó cada una de las partes que conforman un electrodo de acuerdo a la tabla 1.1. Finalmente se proporcionó un espesor en la dirección z con la ayuda de ejes coordenados guía. El resultado de la construcción de un primer electrodo se puede observar en la figura 2.3.

Figura 2.3. Vista en planta de un electrodo tipo "peine".

El electrodo contra parte y ensamble, se generó como en el caso de la espiral. La figura 2.4 muestra el diseño final de este tipo de sensor.

Figura 2.4. Vista en planta del diseño 3D final del SCEC tipo "peine".

2.1.3. Ajuste geométrico del sensor tipo espiral

Antes de proceder al diseño de la máscara de grabado, fue necesario realizar un ajuste a la geometría del sensor en espiral, debido a su naturaleza geométrica. Ya que el diseño de geometrías complejas no es propio del paquete de diseño de circuitos impresos (PCB), que es donde se realizaron las máscaras. Este ajuste consistió en exportar a un ambiente de trabajo *Autocad*, el diseño generado en *solidworks* del sensor tipo espiral. Utilizando la herramienta *Helix*, para generar la nueva espiral en 1D, guiándonos del contorno geométrico importado [2][3].

Fue necesario modificar los parámetros de cada electrodo en 1D, para que adquiriera la forma correcta o deseada. Para esto, se seleccionó el electrodo en 1D y desplegando la ventana de propiedades, se actualizaron los valores de cada una de las propiedades de acuerdo a la tabla 2.3.

Separación: 200 [µm]
Height: 4.9
Turns: 6.25
Base Radius: 0.3
Top Radius: 4.9
Twist: CW

Tabla 2.3. Parámetros de diseño para cada electrodo en 1D.

Una vez que se modificaron ambos electrodos 1D en espiral, eliminamos los contornos importados, obteniendo la forma final del SCEC en 1D, como en la figura 2.5.

Figura 2.5. Vista en planta del diseño final 1D del SCE tipo espiral.

2.2. Diseño de máscara con patrón geométrico del sensor tipo espiral

Para el diseño de la máscara de grabado del circuito impreso (PCB) de los sensores en espiral y peine, se requirió del paquete *Altium Designer*, mencionado anteriormente. Este paquete es muy amigable con geometrías 1D y formas rectangulares.

Primeramente se definieron las unidades de medida, puesto que de esto depende en gran parte la exactitud de las dimensiones finales del sensor en la etapa de fabricación. Una vez definidas, se despliega una división y subdivisión cuadricular en la hoja de trabajo a una escala por default. Para nuestros diseños, se utilizó una división de 50 mil, que tiene un valor equivalente de 1.27 [mm], aproximadamente.

Para importar la geometría generada previamente en *autocad*, se configuraron ciertos parámetros que aseguran el proceso correcto. En la figura 2.6, podemos observar la geometría importada una vez finalizado el proceso descrito. También se observa la línea central que nos ayudara a mover toda la geometría del sensor dentro del ambiente PCB.

Figura 2.6. Geometría 1D importada dentro del ambiente PCB.

Se requirió de una geometría rectangular, con medidas idénticas a la superficie de un portaobjetos estándar para microscopio. Las medidas fueron de 7.5 [cm] x 2.5 [cm], que conforman la superficie donde se depositaron los sensores.

Se procedió a posicionar la geometría importada dentro del contorno delimitador del portaobjetos y se realizó el ruteo de las pistas que parten de cada extremo del sensor hacia el borde externo de cada lado menor del rectángulo superficial, evitando la formación de ángulos rectos. Por estas pistas se alimentaron eléctricamente los electrodos. Por último, se efectuó una copia del electrodo para posicionarlo en el lugar correspondiente. La forma final se puede apreciar en la figura 2.7.

Figura 2.7. Vista final de la máscara de grabado del SCEC tipo espiral.

2.3. Diseño de máscara con patrón geométrico del sensor tipo peine

Se definieron las dimensiones de un portaobjetos con las medidas mencionadas anteriormente. Para la creación de los electrodos tipo peine con ayuda de las herramientas de dibujo en ambiente PCB, se utilizaron los valores de dimensionamiento de la tabla 1.1. Una vez hecho esto, se definió la ruta de las pistas. La distribución final se puede ver en la figura 2.8.

Figura 2.8. Vista final de la máscara de grabado del SCEC tipo peine.

2.4. Impresión de las máscaras para el grabado de los sensores

Para realizar el grabado de los sensores propuestos, fue necesario identificar cada lado del sensor, al momento de su caracterización individual. Para esto, se agregó una leyenda con las características principales, que nos proporcionó un parámetro de identificación.

Finalmente, se configuraron las opciones requeridas para generar un archivo PDF. En la figura 2.9, tenemos la impresión final de la máscara de grabado de cada tipo de sensor. El tipo de impresión fue positiva, sobre una hoja de acetato transparente.

Figura 2.9. Vista de las máscaras de grabado. a) Sensor tipo espiral. b) Sensor tipo peine.

2.5. Depósito de películas conductoras sobre sustratos de vidrio

En este proceso de depósito, se llevó a cabo la preparación del "*wafer*" o sustrato de vidrio mediante el deposito secuencial de recubrimientos de titanio, cobre y oxido de silicio, las cuales se realizaron por medio de la técnica de erosión catódica (*sputtering*) en el laboratorio de películas delgadas del CCADET, UNAM.

2.5.1 Procedimiento del depósito de películas

Para la fabricación de los electrodos, se requirió de la deposición de tres materiales, como se mencionó anteriormente: titanio (Ti), cobre (Cu) y óxido de silicio (SiO₂). Cabe señalar que, aunque el cobre es el material activo del electrodo en cuestión, debido a su mala adherencia con el sustrato de vidrio, se depositó una capa intermedia de titanio. Se depositó una película de cobre y finalmente una película de óxido de silicio con el fin de aislar eléctricamente los electrodos, figura 2.10. El proceso de depósito de la película de óxido de silicio, se realizó después del proceso de fotolitografía.

Figura 2.10. Representación de los materiales depositados sobre el substrato de vidrio.

En la figura 2.11, se muestra el substrato de vidrio con la capa de cobre depositada por medio del proceso de erosión catódica.

Figura 2.11. Sustrato de vidrio con una capa de cobre depositada.

2.6. Proceso de fotolitografía para el grabado geométrico de los sensores

El proceso de fotolitografía se realizó con la infraestructura del Grupo de Fotónica y Microondas del CCADET UNAM, figura 2.12.

Figura 2.12. Equipo utilizado para el proceso de litografía. Podemos observar el spin-coating y la cámara de exposición a UV.

El proceso de grabado de las geometrías de los electrodos consistió en depositar una capa de material foto sensible a la luz (fotoresina, AZ 3330), con la técnica de *spin-coating* (1 min.), sobre la capa conductora de cobre. Esta fotoresina se cubrió con la máscara de grabado y se expuso a luz ultravioleta (UV) (10 seg.). Las zonas transparentes de la máscara permiten que la luz UV irradie a la fotoresina modificando sus propiedades. Luego, por medio de un proceso de revelado con una sustancia química, se deja intactas las regiones no expuestas al UV. El cobre expuesto se retiró por medio de un proceso de remoción de cobre con cloruro férrico (FeCl₃). Finalmente, los restos de material fotosensible se remueven con un baño de acetona, y se aplica la capa SiO₂, figura 2.13 [4].

Figura 2.13. Proceso de grabado de los sensores por fotolitografía.

La figura 2.14 muestra el SCEC tipo espiral después del ataque con cloruro férrico (FeCl₃), donde se puede observar y verificar a simple vista el patrón geométrico.

Figura 2.14. Sensor tipo espiral depositado sobre un sustrato de vidrio después del ataque con cloruro férrico.

Para una inspección más detallada, se observa el acabado de los electrodos con un microscopio (*Leica DME Model* 13595 y *Axio Scope A1 Carl Zeiss*) con el fin de verificar imperfecciones en el acabado final del diseño, figura 2.15. También, se utilizó un multímetro para corroborar que no exista continuidad entre las pistas (electrodos) y, de esta manera, asegurar que se encontrarán perfectamente aislados de las demás superficies conductoras del sustrato [5].

Figura 2.15. Inspección de los electrodos del sensor tipo espiral con un microscopio.

Finalmente, se realizó el depósito de una película dieléctrica de 0.3 $[\mu m]$ de óxido de silicio con el proceso de *sputtering*. Esta película cubre toda la superficie donde se encuentran los electrodos con el fin de aislarlos eléctricamente, como se muestra en la figura 2.16.

Figura 2.16. SCEC aislados eléctricamente con una película dieléctrica de óxido de silicio. a) Sensor tipo peine. b) Sensor tipo espiral.

2.7. Conclusiones

Los avances en programas CAD y la diversidad de los mismos, nos permiten desarrollar diversos patrones geométricos complejos de acuerdo a requerimientos de estudio. El procedimiento descrito para el diseño y fabricación de los SCEC propone el uso de programas de diseño que se encuentran entre los más conocidos y que ofrecen una alta precisión de medida a micro escalas, pero no son exclusivos para este fin. Pueden emplearse otros semejantes.

Para el proceso de micro fabricación sobre sustratos dieléctricos, las dimensiones propuestas de los electrodos fueron alrededor de 200 [μ m], las cuales se encuentran dentro del rango de la infraestructura y el equipo con que se cuenta en el Laboratorio de Películas Delgadas del Grupo de Fotónica y Microondas del CCADET. Hay que tener en cuenta que el procedimiento de fabricación empleado genera ciertas diferencias en las medidas finales, esto en parte al problema de expansión de tinta y porosidad en la impresión de la máscara. Si se desean realizar arreglos en dimensiones más pequeñas, se deben tomar en cuenta estos factores. En este caso, el diseño implementado presentó una diferencia de 20 [μ m].

2.8. Referencias

[1] Asur Guadarrama Santana, Alejandro Esparza García, Jorge A. Uc Martín. "Informe técnico: Diseño e implementación de sensores de campo eléctrico coplanarios sobre substratos dieléctricos". En revisión. CCADET-UNAM. Nov. 2016.

[2] U. Hashim, A.Y. P Puah, C. H. Voon, M. K. Md Arshad, Wei-Wen Liu, S. M. Kahar, A. R. N. Huda, H. Cheun Lee. (2015). "Low Cost Mask Layout Design for Fabrication of Spiral Interdigitated Electrodes in Electrochemical Biosensor Application". 2nd International Conference on Biomedical Engineering (ICoBE).

[3] M. F. M. Fathil, M. K. Md Arshad, U. Hashim, A. R. Ruslinda, Subash C.B. Gopinath, M. Nuzaihan M. N., R. M. Ayub, R. Adzhri, M. Zaki and A.H. Azman. (2015). "Design Architecture of Double Spiral Interdigitated Electrode with Back Gate Electrode for Biosensor Application" International Conference on Nano-electronic Technology Devices and Materials. Published by AIP Publishing.

[4] Weixuan Jing, Lujia Chen, Fan Zhou, Zhuangde Jiang, Lingling Niu, Bing Wang, Han Qi. (2013). "Fabrication and Characterization of Pt Archimedeanspiral Interdigitated Microelectrodes with Containing Trenches". IEEE International Symposium on Assembly and Manufacturing (ISAM). Volumen 13. (pp. 128-130).

[5] P. Y. P Adely, U. Hashim, M. K. Md Arshad, A. R Ruslinda, C.H.Voon, R.M. Ayub, Subash C.B. Gopinath, Wei-Wen Liu, S. M. Kahar, A. R. N. Huda and H. Cheun Lee. (2017). "Fabrication and Characterization on Width of Spiral Interdigitated Electrodes Based Biosensors". 11th Asian Conference on Chemical Sensors. AIP Conf. Proc. 1808. (pp. 020039-1-020039-7).

Capítulo 3

Caracterización eléctrica

Este capítulo trata sobre la caracterización eléctrica de los SCEC tipo peine y tipo espiral. Mediante un medidor de impedancias LCR *Stanford Research* SR715, el cual es un equipo de prueba utilizado para medir parámetros eléctricos de componentes eléctricos pasivos. Se obtuvieron los valores de capacitancia (*C*), resistencia (R) y factor de disipación (D), a diferentes frecuencias, de cada uno de los sensores.

3.1. Configuración eléctrica de prueba para los sensores capacitivos de electrodos coplanarios

Para realizar las mediciones, se tuvo que adoptar un modelo o configuración de representación eléctrica de acuerdo al componente y sus características. El fabricante del puente digital, proporciona una tabla donde sugiere los modelos de prueba para diferentes tipos de componentes [1]. Tomando en cuenta estas sugerencias, vemos que para valores de capacitancia <10 [pF] se recomienda utilizar una configuración en paralelo de un capacitor perfecto con una resistencia asociada, como se muestra en la figura 3.1. Esta resistencia asociada simboliza las pérdidas de potencia (disipación) del capacitor, además de las pérdidas óhmicas debidas a las conexiones [2].

Figura 3.1. Todos los dispositivos pasivos no ideales (resistencias, inductores y condensadores) se pueden modelar como un componente real (resistor) en serie o en paralelo con un componente reactivo. En nuestro caso se utilizó la configuración en paralelo.

La corriente total (I_T) que circula por el circuito se divide en dos componentes cuando ésta sale del nodo. La corriente i_R o de fuga [3], la cual está presente o circula por la resistencia y que comúnmente se denomina la componente o parte real de la impedancia total (Z_T) del circuito; y la corriente i_C , que circula por el capacitor, llamada componente o parte imaginaria de Z_T se suman para obtener el valor de la corriente total I_T que circula por el circuito:

$$I_T = i_R + ji_C \tag{3.1}$$

Para el capacitor de la figura 3.1, tenemos que su reactancia capacitiva está dada por:

$$X_c = \left| \frac{1}{\omega c} \right| \left[\Omega \right] \tag{3.2}$$

Donde $\omega = 2\pi f$, y f está dado por la frecuencia de excitación de la fuente. *C* está dado por el valor del capacitor. La resistencia asociada la podemos representar simplemente como R.

Claramente se observa en la ecuación 3.2, que el valor de X_c depende de la frecuencia de excitación. Es decir, cuando la frecuencia es baja, el valor de reactancia capacitiva aumenta lo que provocara una mayor oposición a la circulación de corriente i_c por el componente capacitivo. Al aumentar la frecuencia, el valor X_c disminuye. El valor de R varia conforme cambia el valor de X_c , lo que a su vez hace variar el valor de corriente i_R . De igual forma que en el caso de X_c , para valores pequeños de R tendremos una mayor circulación de corriente i_R , que conllevará a mayores pérdidas.

Un parámetro importante y ampliamente utilizado en la medición de impedancias, que nos permite representar una relación entre la energía almacenada en el capacitor y la energía disipada por la

resistencia en un análisis AC de un circuito RC, es el factor de disipación (D). Su valor se obtiene a partir de la ecuación (3.3). Claramente se puede observar una razón entre la componente imaginaria y la componente real de la impedancia [4]. Nos interesa que el valor de la parte real sea mucho mayor con respecto a la parte imaginaria, para que el valor de D sea cercano a cero, lo que significaría una menor circulación de corriente i_R , que se traduce en menores perdidas.

$$D = \frac{1}{\omega R_p C_p} \tag{3.3}$$

Donde R_p está dado por el valor de la resistencia y C_p por el valor de capacitancia en un circuito paralelo. Dicho de otra manera, el factor de disipación de un condensador es una medida que indica que tanto se aproxima su comportamiento al de una reactancia capacitiva pura, por lo que su valor debe ser lo más próximo a cero. El recíproco del factor de disipación es el factor de calidad (Q), y se emplea para describir inductores. Un valor alto de Q, indica un componente inductivo puro.

3.2. Condiciones de prueba y resultados obtenidos con el Medidor de impedancias LCR 715

La caracterización eléctrica de los SCEC, tanto para el tipo peine como para el tipo espiral, se realizó midiendo los valores de resistencia (R), factor de calidad (Q), capacitancia (C) y factor de disipación (D) asociados, con el fin de observar y comparar los valores de estas propiedades eléctricas. Se utilizó un puente de impedancias digital LCR *Meters* SR 715 de la marca *Stanford Research*, primero realizando mediciones sin plano de tierra y seguidamente con un plano de tierra, para ambos casos.

En la tabla 3.1, se presentan los valores de los parámetros ingresados al puente digital, para la obtención de R, C y D. Como se observa, se aplica un diferencial de potencial fijo a diferentes valores de frecuencias, que se encuentran disponibles en el puente digital. Se establece la configuración del circuito equivalente antes mencionada, y el valor desplegado es el resultado de un promedio de lecturas.

Voltaje de Excitación:	1 [V _{rms}]
Frecuencias [Hz]:	100, 120, 1k, 10k
Configuración:	Paralelo
Promedio de lecturas:	10

Tabla 3.1. Valores de los parámetros ingresados al puente de impedancias digital.

En la figura 3.2, se muestran los tipos de sensores capacitivos coplanarios a caracterizar y la nomenclatura que se utilizara solo para esta etapa de caracterización con el puente digital, esto con el fin de poder identificarlos. La nomenclatura A, hace referencia al dispositivo de "compensación" y la nomenclatura B, al dispositivo "sensor". Se presentan los resultados más significativos de un dispositivo, de cada geometría.

Figura 3.2. Nomenclatura de identificación. Donde la letra A corresponde al lado izquierdo y la letra B al derecho. El subíndice "P", hace referencia al sensor tipo peine y el subíndice "E" al sensor tipo espiral.

En la imagen de la figura 3.3, se muestra la conexión realizada en laboratorio entre uno de los sensores y el puente digital. Un alambre de calibre pequeño, se encuentra soldado al "*pad*" o pista que conecta a los electrodos permitiendo la conexión con el puente.

Figura 3.3. Conexión realizada en laboratorio para la caracterización eléctrica de los SCEC.

Fue necesario limpiar la superficie de los SCEC antes de realizar cualquier medición con el puente digital, para reducir al mínimo algún tipo de impureza que pueda producir algún tipo de perturbación en el campo eléctrico y afectar el valor de las mediciones.

3.2.1. Parámetros [R+Q], [C+D] obtenidos sin plano de tierra

Sin un plano de tierra presente, las líneas de campo eléctrico se dispersarán por la superficie del sensor en todas las direcciones posibles, como se puede observar en el resultado de las simulaciones 3D, en las figuras 1.5 y 1.8.

En la tabla 3.2, se muestran los valores obtenidos de cada uno de los parámetros eléctricos para ambos SCEC. Los resultados mostrados son del dispositivo "sensor", de acuerdo a la nomenclatura descrita en la figura 3.2 para ambos casos.

Tip	o Peine-(<i>Bp</i>)		Tipo Espiral-(Be)		
R+Q (10kHz)	R [MΩ]	Q	R+Q (10kHz)	R [MΩ]	Q
Promedio	82.1415	-34.3555	Promedio	54.9845	-29.5075
R+Q (1kHz)	R [MΩ]	Q	R+Q (1kHz)	R [MΩ]	Q
Promedio	214.9	-9.2623	Promedio	124.1	-6.9862
R+Q (120Hz)	R [MΩ]	Q	R+Q (120Hz)	R [MΩ]	Q
Promedio	323.3	-2.002	Promedio	283.15	-2.7303
R+Q (100Hz)	R [MΩ]	Q	R+Q (100Hz)	R [MΩ]	Q
Promedio	340.3	-1.7835	Promedio	327.15	-2.7131
C+D (10kHz)	C [pF]	D	C+D (10kHz)	C [pF]	D
Promedio	6.667	0.0296	Promedio	8.468	0.0336
C+D (1kHz)	C [pF]	D	C+D (1kHz)	C [pF]	D
Promedio	6.985	0.1118	Promedio	8.932	0.1417
C+D (120Hz)	C [pF]	D	C+D (120Hz)	C [pF]	D
Promedio	8.1035	0.5007	Promedio	12.65	0.3685
C+D (100Hz)	C [pF]	D	C+D (100Hz)	C [pF]	D
Promedio	8.289	0.5601	Promedio	13.19	0.3701

Tabla 3.2. Valores obtenidos de [R+Q], [C+D], sin un plano de tierra.

Como se puede observar, los valores de R, C, Q y D, van cambiando de acuerdo a la frecuencia con la cual excitemos el sensor. A una frecuencia baja, se presentan los mayores valores de los parámetros R, C y D. Un valor de C del orden de los pico faradios a esta frecuencia, produce una X_c grande, que conlleva a una menor circulación de corriente i_c por el sensor y, por lo tanto, éste tiende a presentar bajo rendimiento en el almacenamiento de carga. La mayor pérdida lo presenta el tipo peine con un menor valor de capacitancia.

Conforme vamos aumentando la frecuencia, vemos como los valores de los parámetros R, C y D, van disminuyendo. A la máxima frecuencia disponible en el equipo, tenemos que ambos sensores

se aproximan al comportamiento de un condensador ideal; esto se puede observar con el valor del factor de disipación que se encuentra cercano a cero. El valor de capacitancia en ambos sensores, siempre en el orden de los pico faradios, presenta un valor menor debido al aumento de la frecuencia de excitación, que conlleva a una disminución del valor de X_c . Esta disminución de X_c , produce una circulación de corriente i_c mayor. El valor de R de igual manera disminuye, pero mantiene un mayor valor con respecto a X_c . A esta frecuencia, las menores pérdidas las presenta el sensor tipo peine, con un menor valor en capacitancia.

3.2.2. Parámetros [R+Q], [C+D] obtenidos con plano de tierra

Al poner un plano de tierra por debajo y en la superficie del sustrato de vidrio, podemos confinar de manera más local y uniforme las líneas de campo eléctrico en el sensor, como se aprecia en los resultados de las simulaciones 3D, en las figuras 1.6 y 1.9, ya que estas fluyen hacia donde se presenta un potencial de V=0. Al confinarse local y uniformemente las líneas de campo eléctrico con el plano de tierra, otorga una reducción de la presencia a contribuciones parasitas.

En la tabla 3.3, tenemos los valores de R, C y D, obtenidos para el dispositivo "sensor", de cada uno de los sensores, de acuerdo nuevamente a la nomenclatura de la figura 3.2. El objetivo es comparar las características eléctricas de ambos sensores con y sin un plano de tierra.

Тіро	o Peine-(Bp)		Tipo Espiral-(Be))
R+Q (10kHz)	R [MΩ]	Q	R+Q (10kHz)	R [MΩ]	Q
Promedio	121.215	-34.3345	Promedio	73.4005	-28.6985
R+Q (1kHz)	R [MΩ]	Q	R+Q (1kHz)	R [MΩ]	Q
Promedio	254.85	-7.3513	Promedio	142.5	-5.8915
R+Q (120Hz)	R [MΩ]	Q	R+Q (120Hz)	R [MΩ]	Q
Promedio	358.3	-1.5466	Promedio	323.2	-2.5458
R+Q (100Hz)	R [MΩ]	Q	R+Q (100Hz)	R [MΩ]	Q
Promedio	OVER	RANGE	Promedio	387.5	-2.5366
C+D (10kHz)	C [pF]	D	C+D (10kHz)	C [pF]	D
Promedio	4.4625	0.03105	Promedio	6.1873	0.0349
C+D (1kHz)	C [pF]	D	C+D (1kHz)	C [pF]	D
Promedio	4.556	0.1376	Promedio	6.547	0.1702
C+D (120Hz)	C [pF]	D	C+D (120Hz)	C [pF]	D
Promedio	5.686	0.644	Promedio	10.09	0.3986
C+D (100Hz)	C [pF]	D	C+D (100Hz)	C [pF]	D
Promedio	OVER	RANGE	Promedio	10.59	0.3861

Tabla 3.3. Valores obtenidos de [R+Q], [C+D] con un plano de Tierra.

Se puede observar que el comportamiento de los valores de cada parámetro eléctrico es proporcional a los obtenidos sin plano de tierra, variando la frecuencia de excitación del sensor, en ambos casos. También se aprecia que los valores de C están en el orden de los pico faradios y que fueron mayores sin plano de tierra, lo que conlleva a un X_c de mayor valor, presentando también una disminución en la capacidad de carga, en ambos sensores. Esto se visualiza comparando los valores de D. Los valores de R presentaron un aumento con respecto al valor sin plano de tierra.

3.3. Validación de los resultados obtenidos en las simulaciones **3D** con los resultados obtenidos experimentalmente

Los valores de capacitancia obtenidos en la simulación 3D y los obtenidos experimentalmente, para ambos tipos de sensores, se pueden observar en la tabla 3.4. Las condiciones ambientales promedio fueron, 23°C y 45% HR. Los resultados numéricos se contrastan con los resultados experimentales obtenidos con una frecuencia de 10 [kHz].

Sin un Plar	Sin un Plano de Tierra		lano de Tierra
<u>S. Numérica</u>	<u>Experimental</u>	ntal <u>S. Numérica</u> <u>Experimer</u>	
Tipo "Espiral"		Tipo "Espiral"	
<i>6.014</i> [pF]	<i>8.468</i> [pF]	6.85 [pF] 6.187 [pF]	
Tipo "Peine"		Tipo "Peine"	
4.804 [pF]	6.667 [pF]	5.736 [pF] 4.462 [pF]	

 Tabla 3.4. Valores de capacitancia obtenidos en las simulaciones 3D, comparados con los valores experimentales.

Observando los resultados sin un plano de tierra, tenemos que en los experimentales se obtuvo un valor mayor de capacitancia. Existe un error relativo de aproximadamente 38%, con respecto al valor obtenido en las simulaciones, en ambos casos. Con un plano de tierra, vemos que el error disminuye, donde el sensor tipo "peine" presenta el mayor error con 22% aproximadamente. Estas diferencias se deben entre otras, a las capacitancias que se presentan en los "*pads*" de contacto que no se incluyeron en la simulación, así como la forma final del espesor del recubrimiento dieléctrico que aísla eléctricamente a los electrodos.

También se ve, que se presentó un aumento en el valor de la capacitancia obtenida con las simulaciones cuando se cuenta con un plano de tierra, en ambos tipos de sensores. Este aumento es aproximadamente de 1 [pF]. Para los resultados experimentales, se presentó una disminución

en el valor de la capacitancia con un plano de tierra de aproximadamente 1.7 [pF] en ambos sensores.

Los electrodos en forma evolvente presentan una morfología geométrica que permite un mejor aprovechamiento de su área. Este electrodo "espiral" se adapta principalmente para mediciones de cambios en impedancia de líquidos bajo análisis [5].

Figura 3.4. Vista simplificada de las capacitancias presentes con un plano de tierra. Donde C_{eq} representa la capacitancia total entre los electrodos, incluyendo la capacitancia presente entre el dieléctrico y la capacitancia superficial. C_{pt} es la capacitancia que aparece con un plano de tierra.

3.4. Conclusiones

Los valores de capacitancia obtenidos experimentalmente permiten validar los resultados obtenidos de las simulaciones, en condiciones electrostáticas, con el fin de caracterizar la respuesta de electrodos con diferentes geometrías. Los resultados de la tabla 3.4 muestran que el sensor tipo espiral es el que obtuvo un mayor valor de capacitancia con respecto al sensor tipo peine. Aun comparando el valor de capacitancia a diferentes frecuencias, el sensor tipo espiral siempre obtuvo el mayor valor de C.

También podemos ver que los valores experimentales disminuyeron con un plano de tierra, sin embargo, con los valores de la simulación numérica sucedió lo contrario. Esto se debe a que con el puente de impedancias digital se aplica una señal AC presentándose una capacitancia entre los electrodos sensor y el plano de tierra, lo que provoca que se pierda cierta carga en estos acoplamientos parásitos. Se estima que la corriente que fluye a través de estos acoplamientos es de unos pocos femto Amperios [6]. Por otro lado, en los resultados numéricos no están presentes estas pérdidas de acoplamientos parásitos, por lo tanto, los valores de capacitancia se suman al valor final de C, figura 3.4. Aun así, se comprueba que los resultados obtenidos con las simulaciones numéricas ofrecen una buena aproximación.

3.5. Referencias

[1] User's Manual. Model SR720. LCR Meters. Stanford Research System. Revisión 1.6 (2006).

[2] Boby George, Joyanta Kumar Roy, V. Jagadeesh Kumar. (2017). "Advanced Interfacing Techniques for Sensors (pp. 84)". Editorial: Springer International Publishing AG.

[3] Robbins, Allan H. (2007). "Análisis de circuitos: teoría y práctica (pp. 325)". Editorial: Cengage Learning.

[4] Tildon H. Glisson, Jr. (2011). "Introduction to Circuit Analysis and Design (pp. 454)". Editorial: Springer Science.

[5] L. E. B. Ribeiro and F. Fruett. (2015). "Analysis of the Planar Electrode Morphology for Capacitive Chemical Sensors". The Sixth International Conference on Sensor Device Technologies and Applications. Venice, Italy. (pp. 179-182).

[6] Kishore Sundara-Rajan, Alexander V. Mamishev, Markus Zahn. (2006). "Fringing Electric and Magnetic Field Sensors". Encyclopedia of Sensors. Volumen 10. (pp. 1–12).

Capítulo 4

Metodología de medición para sensores de muy alta resolución

En este capítulo se describe la metodología de preparación y medición propuesta para caracterizar la respuesta de los sensores capacitivos de electrodos coplanarios (SCEC). El procedimiento consistió en depositar sobre su superficie sensitiva, tres diferentes líquidos solventes como material bajo prueba. Se presentan, algunas de las propiedades de los líquidos solventes utilizados y de manera breve se interpreta por medio de mediciones eléctricas el proceso de evaporación. Se mencionan las etapas que conforman el sistema de monitoreo temporal capacitivo (SMTC) empleado para observar la respuesta eléctrica de cada sensor. El sistema desarrollado es resultado de trabajos previos [1].

4.1. Sistema de monitoreo temporal capacitivo (SMTC)

El SMTC está conformado por una fuente de poder, un osciloscopio, y un amplificador *Lock-In* (ALI) SR 850 de la marca *Stanford Research*. El sistema de medición de bajo ruido está acoplado con una etapa de acondicionamiento electrónico, donde se encuentran los dispositivos de sensado capacitivo. En el diagrama de bloques de la figura 4.1, observamos el SMTC.

Figura 4.1. Diagrama de bloques del Sistema de Monitoreo Temporal Capacitivo.

Como se observa en el diagrama de la figura 4.1, el ALI, genera una señal senoidal de referencia $V_r(\omega t) = \operatorname{sen}(\omega t)$ a una frecuencia $f_r = 10$ [kHz] y amplitud de 1 [V_{rms}] [2]. La señal $V_r(\omega t)$ alimenta a un par de sensores capacitivos con las mismas dimensiones geométricas. Un sensor se utiliza para compensar capacitancias parásitas denominado "dispositivo de compensación", y el otro sensor, denominado "dispositivo de sensado", detecta las perturbaciones de campo eléctrico producidas por cambios en la función dieléctrica del proceso físico-químico en estudio. La señal de salida de cada sensor se direcciona a una etapa diferencial para obtener una señal resultante $\Delta V(\omega t)$ o $\Delta I(\omega t)$. Esta señal diferencial entra al ALI para disminuir al máximo señales indeseables alrededor de la frecuencia central f_r y a un ancho de banda muy estrecho.

4.1.1. Etapa de sensado y acondicionamiento electrónico

La etapa de sensado diferencial se diseñó de forma modular con los dispositivos capacitivos coplanarios, con el fin de adatarlos e implementarlos a la etapa de acondicionamiento electrónico desarrollada en trabajos previos [1]. El diseño modular de los dispositivos de sensado permite intercambiar diferentes geometrías de sensores coplanarios utilizando la misma etapa de acondicionamiento electrónico, figura 4.2. Esto ayuda a realizar mediciones de una forma más versátil de acuerdo al tipo de muestra en estudio.

Figura 4.2. Tarjeta de acondicionamiento electrónico de señal. Se observan las modificaciones realizadas para la implementación de los SCEC. Por medio de resistencias variables se realizan los ajustes de fase y amplitud.

La descripción de manera puntual y detallada del funcionamiento electrónico de la tarjeta de acondicionamiento de señal se puede consultar en [3]. De manera breve se describe el funcionamiento, de acuerdo a la figura 4.2:

Ambos sensores encontrándose bajo las mismas condiciones ambientales, son alimentados por una señal alterna $V_r(\omega t)$. Al dispositivo de compensación le antecede una etapa de ajuste de fase y amplitud. Dicha etapa permite realizar una compensación para que ambos sensores obtengan la misma señal de salida (idealmente). La compensación de fase (φ), puede retrasar la señal de referencia, con el fin de tener la misma fase que el voltaje de excitación, en el dispositivo de compensación, lo que permite reducir los cambios de fase debido a capacitancias parasitas. El ajuste en amplitud permite aplicar una ganancia *G*, para tener la misma tensión en ambos dispositivos. A la salida del dispositivo de compensación, se obtiene una salida $GV_r(\omega t^+ \varphi)$. La salida del dispositivo sensor es V(ω t). Ambas salidas son direccionadas a una etapa diferencial, con el fin de obtener una mínima diferencia entre estas.

La salida de la etapa diferencial pasa por una etapa de amplificación en caso de requerirse, para finalmente entrar al ALI.

4.1.2. Amplificador Lock-In (ALI)

La salida de la etapa de sensado y acondicionamiento electrónico (ESAE) se acopla a una etapa diferencial para obtener una señal $\Delta V(\omega t)$ o $\Delta I(\omega t)$, e indirectamente $\Delta C(\omega t)$, como se muestra en la figura 4.1.

El Amplificador *Lock-in* se utiliza para detectar y medir señales de AC muy pequeñas, realizando mediciones precisas incluso cuando la señal de interés esta oculta por fuentes de ruido miles de veces más grandes. Utiliza una técnica conocida como detección sensible a la fase (PSD), [4]. Figura 4.3.

Figura 4.3. Diagrama esquemático básico del detector sensible a la fase. Puede considerarse como un multiplicador más un filtro paso bajo.

La salida de la etapa diferencial de la tarjeta de acondicionamiento de señal $\Delta V(\omega t)$ o $\Delta I(\omega t)$, entra al ALI. El ALI está formado por una etapa de desplazamiento de fase, una etapa de detección sensible a la fase más un filtro paso bajo. La salida de la etapa diferencial debido a una muestra sobre el dispositivo de sensado, para el caso de una medición en voltaje, tenemos:

$$\Delta V(\omega t) = V_M Sen(\omega_M t + \theta_M) + n \tag{4.1}$$

Donde V_M es la amplitud y θ la fase de la señal. *n* es el ruido presente en la señal. La señal de referencia V_r(ω t), alimenta también a un desplazador de fase para generar dos ondas:

$$r(\omega t) = VrSen(\omega_r t + \theta_r) \tag{4.2}$$

$$r'(\omega t) = VrCos(\omega_r t + \theta_r) \tag{4.3}$$

Un circuito multiplicador realiza el producto de las señales, y aplicando las identidades trigonométricas correspondientes tenemos a la salida:

$$= \left(\frac{1}{2}\right) V_r V_M Cos[(\omega_r - \omega_M)t + \theta_r - \theta_M] - Cos[(2\omega t) + \theta_r + \theta_M] + nSen(\omega_r + \theta_r)$$
(4.4)
$$= \left(\frac{1}{2}\right) V_r V_M Sen[(\omega_r - \omega_M)t + \theta_r - \theta_M] - Sen[(2\omega t) + \theta_r + \theta_M] + nCos(\omega_r + \theta_r)$$
(4.5)

Como podemos observar en las ecuaciones 4.4 y 4.5, la salida del multiplicador tiene una componente de AC con una diferencia de frecuencias y otra componente con una suma de frecuencias. Cuando $\omega_r = \omega_M$, esta primera componente pasa a ser de DC. Al pasar por el filtro pasa bajas en función de un ancho de banda estrecho, solo esta componente de DC permanecerá. Por lo tanto, las salidas del ALI serán:

$$X = s(\omega t) = \left(\frac{1}{2}\right) V_r V_M Cos(\theta_M - \theta_r) \qquad Y = s'(\omega t) = \left(\frac{1}{2}\right) V_r V_M Sen(\theta_M - \theta_r) \tag{4.6}$$

Donde "X" y "Y" representan la componente real e imaginaria de la señal del experimento.

A continuación, se describen los parámetros a configurar en el ALI [5],

* *Reference Phase*: Este parámetro selecciona la fase a la cual se encontrará nuestra señal de referencia.

* *Reference Source*: Selecciona la fuente de referencia para el *lock-in*. Cuando la referencia es interna, el ALI toma el oscilador interno como referencia. En este modo, la salida senoidal es la excitación para la medición.

* *Reference Frequency*: Selecciona la frecuencia de la señal de referencia y solo se puede usar cuando utilizamos la fuente de referencia interna.

* Sine Output: Regula la amplitud de la señal de salida.

* *Source*: La fuente de entrada selecciona la configuración de la señal de entrada frontal. La entrada puede ser voltaje (A) o la diferencia entre dos entradas (A-B), y corriente (I).

* *Line Notches*: Los filtros *Notch (Both)* de línea, atenúan las frecuencias de línea (50 o 60 Hz) y dos veces la frecuencia de línea (100 o 120 Hz).

* *Sensitivity*: Selecciona la escala de sensibilidad de entrada, que se utilizara para las mediciones. Tiene un rango de 2 $[nV_{rms}]$ a 1 $[V_{rms}]$ o 2 $[fA_{rms}]$ a 1 $[\mu A_{rms}]$.

.1.

* *Time Constant/Band Width*: Esta opción establece el valor de la constante de tiempo. Asociado a la constante de tiempo, está el ancho de banda de ruido equivalente (ENBW) del filtro paso bajo. Este ancho de banda de medición, determina la cantidad de ruido a la salida. Depende de la constante de tiempo y de la pendiente del filtro.

* *Filter dB/oct*: Selecciona la pendiente del filtro paso bajas (número de polos).

* *Sample Rate*: La frecuencia de muestreo establece la frecuencia con la que se guardan los datos en el *búffer* de almacenamiento. El tiempo de almacenamiento de cada punto es, 1 / (frecuencia de muestreo).

* *Scan Length*: Es el tiempo de adquisición de datos en segundos. El tiempo máximo depende de la frecuencia de muestreo.

Se realizaron mediciones experimentales con líquidos volátiles para caracterizar la respuesta eléctrica del SMTC. La etapa ALI se configuro con los parámetros de la tabla 4.1.

Ref. Phase:	0 [°]	Source:	Ι
Ref. Sourse:	Internal	Grounding:	Ground
Ref. Frecuency:	10 [kHz]	Sine Output:	1 [Vrms]
Line Notches:	Both	Dynamic Reserve:	Min
Time Constant/Band Width:	100 [ms] 1.2 [Hz]	Filter dB/Oct:	12
Sample Rate	64 [Hz]	Scan Length:	200 [s]

Tabla 4.1. Valores de los parámetros ingresados al ALI.

Con los parámetros de la frecuencia de muestreo y el tiempo de sensado, se configuro el *buffer* para almacenar 12,801 datos. Es decir, 1 dato cada 15 [ms] aproximadamente.

4.2. Método para la caracterización de un líquido solvente

Se realizaron diferentes pruebas para observar y caracterizar la respuesta de los SCEC, depositando sobre su superficie sensitiva, tres solventes diferentes como material bajo prueba (MBP). Estos solventes son pertenecientes a los compuestos orgánicos volátiles (VOCs), y fueron: alcohol isopropilico (AIP), etanol y acetona.

4.2.1. Cálculo del volumen de líquido solvente empleado

Antes de efectuar las mediciones se determinaron los volúmenes de los líquidos solventes a depositar sobre la superficie de los sensores. El volumen utilizado de cada solvente fue: 3 [μ l] de AIP (C₃H₈O), 3 [μ l] etanol (C₂H₆O) y 5 [μ l] de acetona (C₃H₆O). Para definir la superficie que cubrió el volumen de la gota depositada, se dibujaron sobre unos portaobjetos las formas geométricas del área sensitiva para cada sensor, y se utilizaron diferentes volúmenes de solvente, como se muestra en la figura 4.4. De esta manera se estimó la cantidad de micro litros que abarcaba la mayor área sensitiva y que no provocara una expansión fuera de esta. Debido al tiempo de volatilización muy corto de la acetona, fue necesario utilizar un volumen mayor.

Figura 4.4. Determinación de la cantidad de volumen de líquido solvente a depositar sobre la superficie del sensor tipo espiral.

En la tabla 4.2, se muestran algunas de las propiedades físicas de los solventes empleados en las mediciones [6]:

Solvente	Constante Dieléctrica a 20°C	Momento Dipolar	Presión de Vapor a 20°C
IPA	18.62	1.66	33.0 [<i>mmHg</i>]
Etanol	25.7	1.69	59 [mmHg]
Acetona	21	2.88	185 [<i>mmHg</i>]

Tabla 4.2. Propiedades físicas de los líquidos solventes utilizados.

La duración del tiempo de evaporación de los líquidos solventes, depende principalmente de la temperatura, humedad relativa y de la presión de vapor de cada uno con respecto al del ambiente. Mientras mayor sea su presión de vapor, el tiempo de volatilización será menor.

Todas las mediciones experimentales se realizaron en laboratorio, en condiciones ambientales no controladas, lo cual nos permitió observar el desempeño del SCEC en un entorno real de aplicación. En la tabla 4.3 se presenta el promedio de las condiciones ambientales registradas:

Temperatura:	23°C
Humedad Relativa:	25%
Presión Atm:	775 [mBar]

Tabla 4.3. Condiciones ambientales promedio de las mediciones

Se utilizaron estos solventes líquidos porque son los que comúnmente se encuentran disponibles en laboratorio, y por sus tiempos cortos de volatilización con respecto al del agua [7]. Se redujo los factores de riesgo de seguridad, aplicando protocolos como el uso de guantes, cubre bocas, y al empleo de volúmenes pequeños.

4.2.2. Ajuste en fase y amplitud de la señal del dispositivo de compensación

Con las mediciones experimentales fue posible registrar el cambio temporal de la señal cuando se producen perturbaciones en el campo eléctrico sobre la superficie del dispositivo sensor debido al proceso de evaporación del líquido solvente. Con los resultados obtenidos en las mediciones, se estimó la respuesta eléctrica, la relación señal a ruido, resolución y sensibilidad para el sensor tipo peine y tipo espiral. En la figura 4.5, se observa el sistema de monitoreo temporal capacitivo (SMTC) en el laboratorio.

Figura 4.5. Se observa el SMTC. a) Osciloscopio. b) Fuente de poder. c) ALI. d) Etapa de sensado y acondicionamiento electrónico de señal. e) Solventes utilizados.

El procedimiento de medición consistió, primeramente, en acoplar uno de los SCEC a la tarjeta de acondicionamiento y realizar todas las conexiones pertinentes entre SMTC. Se utilizó una fuente bipolar de ± 5 Vcd para alimentar la tarjeta de acondicionamiento electrónico. Su salida se conecta al ALI configurado con los parámetros de la tabla 4.1. Se dejó operando el sistema por un tiempo, para su estabilización. Con la ayuda del osciloscopio, se verifico el desfase de la señal de dispositivo de compensación con respecto a la señal de referencia [1]. Se realizó un ajuste en

amplitud y fase, para igualar al máximo las señales de salida del dispositivo de sensado y de compensación, figura 4.6.

Figura 4.6. Pantalla del osciloscopio, ajuste en amplitud y fase de la señal del dispositivo de compensación (azul). Señal de referencia (amarillo).

4.2.3. Ajuste de mínimo offset con el amplificador Lock-In

Este nivel de referencia se monitoriza con ayuda del ALI en su pantalla. Se observó la escala del nivel de la señal diferencial y se pudo a realizar un ajuste más fino, con el fin, de igualar al máximo la fase y amplitud de la señal del dispositivo de compensación. Con esto se buscó que el nivel de la señal en el *lock-in* se reduzca, hasta que el ajuste nos permita obtener una diferencia de señal u *offset* lo más próximo a cero. Este ajuste permitió obtener un valor de la señal diferencial mínimo de referencia, el cual está limitado por el ruido base del SMTC, figura 4.7.

Figura 4.7. Pantalla del ALI, con un ajuste fino en amplitud y fase de la señal del dispositivo de compensación, se obtiene un nivel de señal deferencial cercano a cero.

La tabla 4.4, muestra las escalas de sensibilidad en el ALI, para realizar los ajustes de mínima diferencia de señal, de cada uno de los sensores.
	Tipo <i>Espiral</i>	Tipo Peine	
	Parte Real		
Voltaje	100 [µV]	100 [µV]	
Corriente	50 [pA]	100 [pA]	
	Parte In	maginaria	
Voltaje	100 [µV]	100 [µV]	
Corriente	50 [pA]	100 [pA]	

Tabla 4.4. Escala de sensibilidad para el ajuste de mínima diferencia de señal.

Después de efectuar los ajustes de mínima señal y antes de proceder a realizar alguna medición, se comprobó el estado de nivel del ruido base rms del SMTC. El registro del ruido base rms se realiza sin ningún MBP sobre la superficie de los sensores, es decir, expuestos solamente al medio exterior. Para el registro de los niveles de ruido base rms, se modificó el valor de *Scan Length* a 100 [s], los demás parámetros se mantuvieron igual. Después del registro, el *lock-in* nos permite obtener las estadísticas de la medición eléctrica obtenida, donde la desviación estándar σ (raíz de la media de las desviaciones al cuadrado) de la medición, nos proporciona el valor de ruido base rms (*Rb_{rms-ALI}*) del sistema de medición empleando los SCEC. Este Rb_{rms-ALI}, es el ruido rms de entrada en un ancho de banda de 1.2 [Hz] (100 ms, 12 dB/oct).

A manera de ejemplo, en la figura 4.8 se puede ver la gráfica de ruido base (R_b/\sqrt{Hz}) de entrada obtenido con el sensor tipo espiral, con un valor de 8.03 [pA/ \sqrt{Hz}].

Figura 4.8. Ruido base obtenido con el sensor tipo espiral, con una medición diferencial en corriente de la componente imaginaria.

4.2.4. Proceso de depósito de un solvente

Después de haber realizado todos los ajustes anteriores, se realizaron las mediciones experimentales correspondientes con los líquidos solventes. Las mediciones consistieron en registrar cambios de voltaje y corriente, tanto de la componente real e imaginaria, cuando se producen perturbaciones de campo eléctrico en la superficie de los sensores provocando cambios de impedancia, durante el proceso de volatilización de las muestras empleadas.

Al inicio de cada medición, se dejó un lapso de 15 [s] aproximadamente con el fin de registrar el nivel de ruido base presente en los sensores y que este será el nivel referencia de la medición. Esta señal debe retornar a este mismo nivel cuando el proceso de evaporación haya finalizado. Pasado los 15 [s], se depositó una gota de solvente con los volúmenes antes definidos, sobre la superficie del dispositivo sensor, utilizando una micro pipeta de precisión. El proceso de monitorización finaliza cuando se ha evaporado por completo el solvente y transcurren los 200 [s].

Se pudo observar que cuando se depositó la gota sobre la superficie de los sensores, el líquido solvente adoptaba la configuración geométrica de los electrodos, es decir, el líquido se expandía cubriendo la separación que existe entre los electrodos. En la figura 4.9 se puede observar la forma final que adoptó el solvente cuando se expandió sobre la superficie de los sensores. En el sensor tipo peine, la gota no alcanzaba a cubrir las esquinas exteriores de la superficie. En cambio, en el sensor tipo espiral la gota abarco casi la totalidad de la superficie. Esta es una de las razones por la que la geometría en espiral es más conveniente para el sensado de líquidos [8].

Figura 4.9. El líquido solvente adopta la forma geométrica de los electrodos. a) En el sensor tipo espiral, se expande de manera radial por su superficie. b) En el sensor tipo peine, se expande de manera rectangular por su superficie.

Uno de los aspectos importantes que se debe considerar, es la forma y lugar donde se deposita la muestra de solvente sobre la superficie. Debe ser depositado en el mismo lugar, procurando siempre conseguir el mismo ángulo de inclinación entre la micro pipeta y la superficie del sensor, para que se expanda de la misma forma, de lo contrario la respuesta del sensor puede verse afectado debido a su sensibilidad sobre la superficie. En nuestro caso, se hizo todo lo posible para depositar la gota siempre en el centro de cada sensor. Depositarlo en otro punto provocó que se expandiera fuera del área de sensado.

Al finalizar cualquier medición con solventes u otro líquido, debe limpiarse la superficie de los SCEC con un disolvente que se evapore fácilmente sin dejar residuos, esto debido a las impurezas que adquiere debido al proceso de volatilización y al medio exterior [9].

4.2.5. Monitoreo de la evaporación de un solvente

Cuando se coloca la muestra del líquido solvente sobre la superficie del SCEC, esta se expande hasta cubrir un máximo de superficie del área sensitiva. Debido a que se trata de un proceso endotérmico, la muestra liquida recibe energía en forma de calor del medio ambiente, y que incluye la superficie del dispositivo en contacto con la muestra líquida. Las moléculas de la capa más externa de la muestra, son las primeras que se desprenden hacia el medio ambiente debido a su mayor energía cinética correspondiente al incremento de su energía interna al recibir más calor.

Figura 4.10. Síntesis del proceso de evaporación de una muestra volátil. a) La gota una vez depositada, las moléculas superficiales empiezan a "escapar". b) La gota tiende al equilibrio térmico, hasta disiparse por completo.

Conforme transcurre el tiempo, la sustancia intenta alcanzar el equilibrio térmico y se repite el proceso reflejándose en una disminución de temperatura en la superficie del sensor y en su volumen hasta que se evapora por completo [10]. La superficie del SCEC alcanza finalmente el equilibrio térmico. De hecho, el proceso está ocurriendo, estando el solvente en la micro pipeta, figura 4.10.

4.3. Conclusiones

El método de medición diferencial desarrollado en trabajos previos, nos permitió reducir al máximo la contribución de elementos parásitos y de esta manera, obtener una señal eléctrica temporal debido al cambio de la función dieléctrica de la muestra liquida sobre la superficie del dispositivo sensor. El SMTC nos permitió reducir el ruido presente a niveles muy bajos.

La metodología descrita permite observar y caracterizar la respuesta de los sensores de una manera fácil y sin muchos contratiempos con la ayuda de líquidos solventes. Los ajustes de señal y parámetros de escala propuestos, nos permitieron obtener un gran rendimiento de los mismos, aunque los parámetros podrían variar de acuerdo a las condiciones ambientales. Hace falta realizar ciertos ajustes al sistema, como reducir la electrónica y cables, para reducir aún más el ruido presente.

El nuevo diseño de sensores modular propuesto nos permitirá utilizar el mismo SMTC, con otras geometrías de sensores coplanarios más adecuada para una muestra en particular. Además, nos proporciona una posibilidad de explorar, estudiar y utilizar a futuro otros tipos de geometrías. Por ejemplo, se observó como la forma geométrica que conforman los electrodos del sensor tipo espiral, da lugar a una mejor aplicación para líquidos, abriendo una posible aplicación para la detección de partículas suspendidas en diferentes líquidos de una manera sencilla. Además, si la superficie de los SCEC se funcionaliza con una capa selectiva para la detección de alguna molécula, su sensibilidad puede aumentar [11].

4.4. Referencias

[1] Javier Ibarra Olvera. (2016). "Caracterización de un sistema de medición capacitivo para procesos físico-químicos y biológicos". (Tesis de Licenciatura). Facultad de Ingeniería. Universidad Nacional Autónoma de México.

[2] A. Guadarrama-Santana, A. García-Valenzuela, F. Pérez-Jiménez and L. Polo-Parada. (2014). "Interdigitated capacitance sensors in the mm scale with sub-femtoFarad resolution suitable for monitoring processes in liquid films". Revista Mexicana de Física. Volumen 60. (pp. 451–459).

[3] Miguel Ángel Peña Martínez. (2016). "Desarrollo e implementación de un sistema de medición capacitivo portátil de bajo ruido basado en instrumentación virtual para aplicaciones en caracterización eléctrica de procesos físico-químicos en materiales". (Tesis de Maestría). Universidad Nacional Autónoma de México.

[4] D P Blair and P H Sydenham. (1975). "Phase sensitive detection as a means to recover signals buried in noise". J. Phys. E: Sci. Instrum. Volumen 8. (pp. 621-627).

[5] MODEL SR850 DSP Lock-in Amplifier. Stanford Research Systems. Revisión 2.0 (2009).

[6] E. W. Flick. (1998). "Industrial Solvents Handook". 5th ed. Noyes Data Corporation.

[7] Jeffrey P. Clarkson, Philippe M. Fauchet, Vimalan Rajalingam, and Karl D. Hirschman. (2007) "Solvent Detection and Water Monitoring With a Macroporous Silicon Field-Effect Sensor". IEEE Sensors Journal, Volumen 7. No. 3.

[8] L. E. Bento Ribeiro, F. Fruett. (2015). "Analysis of the Planar Electrode Morphology for Capacitive Chemical Sensors". The Sixth International Conference on Sensor Device Technologies and Applications. Venice, Italy. (pp. 179-182).

[9] Alexander V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, y M. Zahn. (2004). "Interdigital sensors and transducers". Proc. IEEE. Volumen 92. No. 5. (pp. 808–844).

[10] A. Guadarrama Santana, A. Acevedo Barrera, J. Uc Martín. (2016). "Caracterización del proceso de volatilización de solventes líquidos con sensores de campo eléctrico". Tercer Congreso Multidisciplinario de Ciencias Aplicadas en Latinoamérica. Proceeding. (pp. 94–100).

[11] Ismail Bilican, Mustafa Tahsin Guler, Neset Gulener, Mustafa Yuksel, Sedat Agan. (2016). "Capacitive solvent sensing with interdigitated microelectrodes". Microsyst Technol. Volumen 22. (pp. 659–668).

Capítulo 5

Resultados experimentales

En este capítulo se presentan los resultados obtenidos de la respuesta eléctrica temporal de cada uno de los Sensores Capacitivos de Electrodos Coplanarios (SCEC), tipo espiral y tipo peine, debido al proceso de volatilización de líquidos solventes sobre su superficie. Los resultados comprenden mediciones diferenciales de señales eléctricas de corriente $\Delta I(t)$ y voltaje $\Delta V(t)$, con sus respectivas componentes real e imaginaria. A partir de estos resultados, se determinan las características intrínsecas del sistema con cada sensor.

5.1. Caracterización eléctrica en V(t) e I(t) de procesos de evaporación de líquidos solventes

Se registraron los cambios en la señal eléctrica, debido a las perturbaciones del campo eléctrico en la superficie de los SCEC al volatilizarse una muestra liquida de solvente. De esta forma fue posible monitorizar el proceso y tiempo de evaporación de cada solvente utilizado y caracterizar la respuesta del sistema con cada tipo de SCEC.

En la figura 5.1, podemos observar las gráficas con las señales diferenciales temporales obtenidas con cada tipo de sensor, utilizando diferentes líquidos solventes, midiendo cambios de voltaje $\Delta V(t)$, de sus componentes real y compleja. Los volúmenes utilizados fueron: 3 [µl] de Alcohol isopropilico (AIP)/Etanol (ETA) y 5 [µl] de Acetona (ACE). Donde las gráficas ACE_{REAL},

ETA_{REAL} y AIP_{REAL} representan la medición de la componente real de la señal eléctrica. ACE_{IMG}, ETA_{IMG} y AIP_{IMG} representan la componente imaginaria de la señal eléctrica.

Figura 5.1. Registro de los cambios de voltaje (ΔV), parte real e imaginaria, de los procesos de evaporación con diferentes solventes.

De las señales temporales obtenidas en la figura 5.1, podemos describir cuatro momentos del proceso de evaporación:

 1; se registró el nivel de ruido base presente en el sistema de medición, durante un tiempo de 15 [s] aproximadamente. Este fue nuestro nivel de referencia, ya que, al finalizar el proceso de volatilización del líquido solvente, la señal debe retornar a este mismo nivel.

2; pasado el tiempo de registro del ruido base, se depositó una gota de solvente con un volumen de 3 [μl], el cual provoco un cambio de amplitud en la señal.

• 3; una vez depositada la gota de solvente, esta se expandió hasta cubrir un máximo del área sensitiva. Pasado un tiempo, empieza a disminuir notablemente de volumen debido al proceso de volatilización. Esto se representa por la parte que denominamos "meseta" de la señal eléctrica.

• 4; cuando el líquido solvente se ha volatilizado por completo, la señal regresa al nivel del ruido base registrado al principio de la medición, manteniéndose en este nivel, hasta transcurrir 200 [s].

Por medio de estas mediciones eléctricas, se obtuvieron los tiempos de duración de cada proceso de evaporación de los diferentes solventes, una vez depositados sobre la superficie de los SCEC. En la tabla 5.1 se muestran los tiempos aproximados del proceso de evaporación de cada uno de los solventes, para cada tipo de sensor utilizado.

Solvente	Tipo Espiral	Tipo Peine
AIP	107 [s]	80 [s]
ETA	85 [s]	50 [s]
ACE	28 [s]	20 [s]

Tabla 5.1. Tiempos obtenidos del proceso de volatilización en medición de voltaje.

El AIP es el que presento un mayor tiempo de evaporación, le sigue el etanol y por último la acetona con el menor tiempo de duración. Este orden obtenido de mayor a menor tiempo en la evaporación, se reafirma con los datos de la tabla 4.2.

Se presentó una diferencia en los tiempos de volatilización entre cada tipo de sensor utilizando un mismo solvente, donde el sensor tipo espiral presento los mayores tiempos. De acuerdo a lo observado, la forma de expansión del líquido solvente sobre la superficie depende de la distribución geométrica de los electrodos de cada sensor. Debido a que el solvente se expande de forma radial sobre la superficie sensitiva del sensor tipo espiral a medida que va cubriendo la separación entre los electrodos, este presenta un mayor tiempo de expansión. En cambio, con el sensor tipo peine, al expandirse de manera rectangular en dos direcciones, presenta un menor tiempo de expansión. Figura 5.2.

Figura 5.2. Expansión de los líquidos solventes en la superficie de los SCEC. Las flechas indican la dirección de expansión. a) Sensor tipo espiral. b) Sensor tipo peine.

En la figura 5.3, se muestran las gráficas con las señales diferenciales temporales obtenidas de cada tipo de sensor, utilizando los diferentes líquidos solventes, en medición de cambios de corriente $\Delta I(t)$, tanto de las componentes real y compleja de la señal.

Figura 5.3. Registro de los cambios de corriente (ΔI), parte real e imaginaria, de los procesos de evaporación.

En estas graficas de la figura 5.3, también se presentan los diferentes momentos mencionados en las gráficas de mediciones de voltaje $\Delta V(t)$. Los tiempos de duración del proceso volátil de cada uno de los solventes en mediciones de corriente $\Delta I(t)$ se muestran en la tabla 5.2.

Solvente	Tipo Espiral	Tipo Peine
AIP	110 [s]	82 [s]
ETA	87 [s]	48 [s]
ACE	32 [s]	22 [s]

Tabla 5.2. Tiempos obtenidos del proceso de volatilización en medición de corriente.

Nuevamente se presentó el mismo orden, con respecto al tiempo de volatilización de cada solvente, donde el menor tiempo lo presentó la acetona. Comparando los tiempos de la tabla 5.1 y 5.2, se observa que para el sensor tipo espiral, los tiempos resultaron prácticamente iguales. De igual forma sucedió para el sensor tipo peine.

5.1.1. Ruido base obtenido con cada uno de los sensores

Como se explicó en la sección 4.2.3, el nivel de ruido base rms del sistema utilizando el sensor tipo peine y tipo espiral, se obtuvo antes de cada medición de los diferentes líquidos solventes, para las mediciones de $\Delta I(t)$ y $\Delta V(t)$. Para calcular el ruido inmerso en el ancho de banda (BW) establecido en el filtro P.B. (1.2 [Hz]) del *lock-in*, tenemos:

$$Rb_{/\sqrt{Hz}} = \frac{Rb_{rms-ALI}}{\sqrt{BW}}$$
(5.1)

Donde Rb_{rms-ALI} es el valor de ruido calculado por el *lock-in*. Los resultados se pueden observar en la tabla 5.3. En la tabla 4.5 se encuentra el promedio de las condiciones ambientales registradas durante las mediciones.

		Tipo Peine	Tipo Espiral
Medición	Solvente	Rb / \sqrt{Hz}	Rb / \sqrt{Hz}
V_{real}	AIP	3.59	4.41
$[\mu V/\sqrt{Hz}]$	ETA	3.64	8.17
	ACE	3.43	7.79
V_{img}	AIP	1.26	2.70
$[\mu V/\sqrt{Hz}]$	ETA	1.27	4.37
	ACE	1.25	1.00
Ireal	AIP	5.20	9.11
[pA/√Hz]	ETA	7.29	8.22
	ACE	9.27	8.76
I img	AIP	2.84	8.79
[pA/\JHz]	ETA	3.56	8.98
	ACE	4.99	8.39

Tabla 5.3. Ruido ($Rb_{\wedge Hz}$) obtenido antes de cada medición.

Los valores obtenidos de ruido base de la tabla 5.3, permiten caracterizar un nivel de ruido en el sistema empleando cada tipo de sensor, el cual debe considerarse para realizar mediciones experimentales. Aunque los valores de ruido base, podrían verse afectados en menor grado por factores externos, como las condiciones atmosféricas y el ruido electromagnética presente en el laboratorio.

5.1.2. Relación señal a ruido (S/N) obtenida con cada uno de los sensores

La *S/N* (Signal-to-Noise Ratio), es la razón entre la amplitud maxima de una señal electrica y el nivel de ruido presente. Es decir, se compara el nivel de una señal deseada con respecto al ruido presente en el sistema. Por lo tanto, mientras mayor sea el valor de la relación S/N, el ruido será menos significativo.

De las figuras 5.1 y 5.3, se obtuvo la maxima relación señal a ruido (S/N_{MAX}), con la siguiente expresión:

$$S/N_{MAX} = \frac{S_{max}}{Rb_{rms-ALI}}$$
(5.2)

Donde S_{max} es la amplitud maxima de la señal electrica y $Rb_{rms-ALI}$ es el ruido_{rms} total dependiendo del tipo de medicion que se este realizando, en voltaje [V] o corriente [A], calculado por el *lock-in*, como se menciono en la sección 4.2.3.

Es posible expresar de valor S/N_{MAX} en dB, utilizando la siguiente expresión [1]:

$$S/N_{MAXdB} = 20\log\left(\frac{S_{max}}{Rb_{rms-ALI}}\right)$$
(5.3)

En la tabla 5.4 tenemos los resultados obtenidos para cada una de las pruebas con los diferentes solventes, donde se presenta con el valor equivalente en dB.

		Tipo Peine		Tipo	Espiral
	Solvente	S/N_{MAX}		S/1	V _{MAX}
ión 1	AIP	6,941	76.8 [dB]	79,744	98 [dB]
dic. V _{rea}	ETA	10,124	80.1 [dB]	47,814	93.5 [dB]
Me	ACE	10,887	80.7 [dB]	49,765	93.9 [dB]
ión	AIP	16,900	84.5 [dB]	52,249	94.3 [dB]
dic. V _{img}	ETA	16,400	84.2 [dB]	20,766	86.3 [dB]
Me	ACE	15,500	83.8 [dB]	98,202	99.8 [dB]
ión	AIP	16,950	84.5 [dB]	3,110	69.8 [dB]
dic. I _{rea}	ETA	10,890	80.7 [dB]	4,605	73.2 [dB]
Me	ACE	8,092	78.1 [dB]	2,685	68.5 [dB]
ión	AIP	351,586	110.9 [dB]	8,624	78.7 [dB]
tdic I _{img}	ETA	252,500	108 [dB]	7,572	77.5 [dB]
Me	ACE	196,081	105.8 [dB]	10,297	80.2 [dB]

Tabla 5.4. Máxima relación señal a ruido obtenido en cada una de las mediciones.

Como se puede observar en la columna de los valores en dB de la tabla 5.4, por cada incremento en 20 [dB], la amplitud de la señal crecio por un factor de diez veces. Debido a una alta sensibilidad a perturbaciones de campo electrico sobre la superficie de los sensores, fue posible obtener niveles considerables de amplitud maxima en las señales electricas y tambien, a que el SMTC es capaz de reducir el ruido a niveles muy bajos.

5.1.3. Resolución obtenida con cada uno de los sensores

La resolución representa los incrementos más pequeños de una señal, que pueden ser detectados con el sistema de medición [2]. La resolución obtenida con cada uno de los sensores se puede observar en la tabla 5.5. En este caso, se seleccionó el mayor valor de $Rb_{rms-ALI}$ obtenido con el *lock-in*, de las mediciones de corriente y de voltaje de cada tipo de sensor, y establecer una resolución de 4 veces este valor. Res= 4*Rb_{rms-ALI}.

Medición	Tipo Peine	Tipo Espiral
Voltaje	20.0 [µV]	38.0 [µV]
Corriente	<i>40.6</i> [pA]	40.0 [pA]

Tabla 5.5. Valor de resolución obtenido con cada sensor.

Como se observa, los valores de resolución obtenidos, están limitados por cuatro veces el ruido presente en el sistema de medición con cada uno de los sensores.

5.1.4. Tiempo de respuesta de los sensores capacitivos planos

En este caso, cuando ocurre un cambio de impedancia sobre la superficie de los SCEC al depositar una gota de líquido solvente, no se produce un cambio instantáneo en el nivel de señal eléctrica. Es decir, se producirá un cambio en la señal durante un período de tiempo, llamado tiempo de respuesta y que denominaremos T_r y un tiempo de decaimiento o de regreso al nivel de ruido base que denominaremos T_d [3].

En la tabla 5.6, se presentan los tiempos aproximados de respuesta de la señal eléctrica obtenidos con cada tipo de sensor cuando se deposita una gota de AIP sobre la superficie, y el tiempo de decaimiento de la señal cuando el AIP se ha volatilizado por completo.

Tipo "Peine"	Tipo "Espiral"
$T_r = 1.8 [s]$	$T_r = 1.3 [s]$
$T_d = 2.5 [s]$	$T_{d} = 3.5 [s]$

Tabla 5.6. Valores de $T_r y T_d$ aproximados de cada sensor.

El criterio para obtener T_r fue seleccionar la gráfica del AIP_{REAL} de la figura 5.3 al momento del depósito de la gota de AIP hasta la estabilización de la señal. Para la selección de T_d , fue del momento en que empieza a decaer la señal hasta que llega al nivel de ruido base.

5.2. Resultados en términos de capacitancia

Es posible utilizar una expresión que nos proporcione una aproximación en términos de capacitancia $\Delta C(t)$ de forma indirecta, en función de la variación de la componente compleja de la corriente Im(ΔI) registrada por el sistema de medición. Para esto, se utilizó la ecuación 5.4 producto de un análisis de admitancias del circuito equivalente de la figura 5.4 de una muestra, desarrollado en [4]:

Figura 5.4. Circuito eléctrico RC en paralelo, conformado por un capacitor y una resistencia variable, que representa los cambios de capacitancia debido a una muestra depositada en la superficie de los SCEC.

$$\Delta C = \frac{Im(\Delta I)_{Lock-in}}{\omega V_{ac}} = \frac{Im(\Delta I)_{Lock-in}}{2\pi f V_{ac}}$$
(5.4)

Dónde:

Im(ΔI)_{Lock-in} es la componente compleja de la corriente obtenida con el *lock-in*, *f* es la frecuencia de excitación y V_{ac} es el voltaje aplicado entre los electrodos del sensor.

5.2.1. Resultados de la caracterización eléctrica del proceso de volatilización de líquidos solventes en términos de capacitancia

A partir de los cambios de la componente compleja de la corriente $Im(\Delta I)$ obtenidos con el sensor tipo espiral en la figura 5.5, se obtuvieron los respectivos cambios en forma indirecta de capacitancia $\Delta C(t)$. Las gráficas resultantes se pueden apreciar en la figura 5.4. En estas graficas se puede ver la amplitud de las señales obtenidas con cada uno de los líquidos solventes en términos de capacitancia.

Figura 5.5. Cambios en términos de capacitancia (ΔC) producto de los procesos de evaporación de los líquidos solventes, en el sensor tipo espiral. Parte imaginaria de la corriente.

En la figura 5.6, observamos el proceso de volatilización de los líquidos solventes empleados en términos de capacitancia para el sensor tipo peine.

Figura 5.6. Cambios en términos de capacitancia (ΔC) producto de los procesos de evaporación de los líquidos solventes, en el sensor tipo peine. Parte imaginaria de la corriente.

5.2.2. Ruido base en términos de capacitancia

Tomando los valores de ruido base ($Rb_{rms-ALI}$) de las mediciones de la componente compleja de la corriente Im(ΔI), obtenidos con el *lock-in*, los sustituimos en la ecuación 5.4 para obtener el valor de ruido base en términos de capacitancia C_{rms}. Luego este valor C_{rms} se sustituyó en la ecuación 5.5, para obtener el ruido inmerso en el ancho de banda establecido en el filtro P.B del *lock-in* en términos de capacitancia:

$$Cb_{/\sqrt{Hz}} = \frac{C_{rms}}{\sqrt{BW}}$$
(5.5)

Donde C_{rms} es el ruido base rms obtenido en términos de capacitancia. Los valores Cb/ \sqrt{Hz} se pueden observar en la tabla 5.7.

		Tipo Peine	Tipo Espiral
	AIP	0.045 [fF/√Hz]	0.139 [fF/√Hz]
Cb_{NHz}	Etanol	0.056 [fF/√Hz]	0.142 [fF/√Hz]
	Acetona	0.079 [fF/√Hz]	0.133 [fF/√Hz]

Tabla 5.7. Ruido base Cb/_{√Hz}, en términos de capacitancia.

Como se observa, el sistema de medición nos permite reducir el nivel de ruido presente hasta ordenes de magnitud de decimas de femtoFarad (10^{-15} F).

5.2.3. Resolución en términos de capacitancia

Los valores de resolución obtenidos en términos de corriente de la tabla 5.5, se sustituyen en la ecuación 5.4, para obtener la resolución del sistema de medición en términos de capacitancia. Los resultados se muestran en la tabla 5.8, para ambos tipos de sensores.

Tabla 5.8. Resolución en términos de capacitancia

	Tipo Peine	Tipo Espiral
Resolución	0.646 <i>[fF]</i>	0.636 <i>[fF]</i>

5.2.4. Sensibilidad en términos de capacitancia

La sensibilidad de un sensor, se define como la pendiente de la curva característica de salida producto del cambio de una variable dependiente del sensor en respuesta a un cambio en una variable independiente del mismo. Podemos determinar un valor de sensibilidad en términos de las variaciones de la componente compleja de la corriente Im(Δ I), con respecto a las variaciones en el valor de capacitancia Δ **C**(t) para ambos SCEC.

En la figura 5.7, se observa el grafico correspondiente al proceso de evaporación del AIP en medición de corriente de la parte imaginaria con ambos tipos de sensores. A manera de ejemplo se definió un rango de tiempo de 18 [s] a 32 [s], para calcular la sensibilidad S (Δ C, Im[Δ I_{ALI}]).

Figura 5.7. *Grafico del proceso de volatilización del alcohol isopropilico. Se definió un intervalo de tiempo de 18[s] a 31[s] (elipse). a) Sensor tipo peine. b) Sensor tipo espiral.*

5.2.4.1. Calculo de sensibilidad para el sensor tipo espiral

En la figura 5.8a, se puede observar los cambios de corriente compleja en un rango de 18[s] a 32 [s], de la señal obtenida debido al proceso de evaporación del alcohol isopropilico en la superficie del sensor tipo espiral. En la figura 5.8b se observa los cambios de corriente Im(Δ I) en función de los cambios en capacitancia Δ **C**(t) obtenidos de la figura 5.4, en el mismo intervalo de tiempo de 18[s] a 32[s].

Figura 5.8. *a*) *Cambios en términos de corriente* $Im(\Delta I)$ *en el intervalo de* 18[s] *a* 32[s] *del proceso de evaporación con el sensor tipo espiral, b*) *Grafico de* $Im\Delta I(\Delta C)$.

De acuerdo a la figura 5.8b, la sensibilidad en un rango de 19[s] a 30[s] de tiempo del proceso de evaporación del AIP se puede calcular obteniendo la pendiente de la recta con la siguiente expresión:

$$S = \frac{Im(\Delta I)}{\Delta C(t)} = \frac{(81 - 75) [nA]}{(1.29 - 1.196 [pF])} = 63.82 \frac{[nA]}{[pF]}$$
(5.6)

Donde el valor de la variable dependiente $Im(\Delta I)$ es la diferencia de corriente del valor máximo y el valor mínimo de la recta. El valor de la variable independiente ΔC es la diferencia de capacitancia del valor máximo y el valor mínimo de la recta.

5.2.4.2. Calculo de sensibilidad para el sensor tipo peine

En la figura 5.9a, se observa los cambios de corriente compleja en un rango de 18 [s] a 31 [s] del proceso de evaporación del alcohol isopropilico en la superficie del sensor tipo peine. En la figura 5.9b se observa los cambios de corriente Im(Δ I) en función de los cambios en capacitancia Δ **C**(t) obtenidos de la figura 5.5 en el intervalo de tiempo de 18 [s] a 32 [s].

Figura 5.9. *a)* Cambios en términos de corriente $Im(\Delta I)$ en el intervalo de 18[s] a 32[s] del proceso de evaporación en el sensor tipo peine. *b*) Grafico de $Im\Delta I(\Delta C)$.

De acuerdo a la figura 5.9b, utilizando la ecuación 5.7 obtenemos la sensibilidad en el rango de 19 [s] a 30 [s] de tiempo:

$$S = \frac{Im(\Delta I)}{\Delta C(t)} = \frac{(880 - 772) [nA]}{(14 - 12.29) [pF]} = 63.15 \frac{[nA]}{[pF]}$$
(5.7)

Dichos valores de sensibilidad obtenidos de ambos sensores, representan la variación de la corriente Im(Δ I) en un rango de tiempo con respecto a la variación de la capacitancia Δ C(t) debido a las perturbaciones del campo eléctrico sobre la superficie sensitiva de cada tipo de sensor.

5.3. Respuesta eléctrica de los sensores a incidencia de luz

Se realizaron pruebas de incidencia de luz a diferentes longitudes de onda, sobre la superfice del sensor tipo espiral y tipo peine, utilizando un led y un apuntador laser. Se observo que a diferentes longitudes de onda se producia un cambio en la señal electrica. Estas pruebas no representan una caracterización óptica de los SCEC, ya que para esto, se requiere realizar un estudio más a fondo y específico. Queda fuera del objetivo de este trabajo, sin embargo, nos ofrece un posible campo de aplicación para caracterizar ópticamente superficies de sensores coplanarios.

5.3.1. Respuesta eléctrica a 385 nm de longitud de onda

El tipo de medición realizada incidiendo luz sobre la superfice del sensor tipo espiral y tipo peine, fue de cambios de voltaje, debido a que con medición de corriente la respuesta era casi nula. En la figura 5.10, podemos observar el montaje experimental implementado. Consta de un arreglo óptico con un led justo encima de la superficie de los SCEC. Se colocó un lente de microscopio entre el sensor y el led, esto con el fin de ajustar el diámetro del spot de luz, para que cubriera el área total sensitiva de cada sensor. La distancia entre los sensores y la fuente de emisión de luz fue de 18 [cm].

Figura 5.10. Montaje experimental. Diodo laser incidiendo luz de 385 nm de longitud de onda sobre la superficie del sensor tipo espiral.

De igual forma que en las mediciones anteriores, se dejó un tiempo de 50 [s] para observar el nivel de ruido base del sistema de medición antes de activar el led. En la figura 5.11, se muestra los cambios temporales $\Delta V(t)$ obtenidos al momento de activar el led laser. El tiempo de incidencia vario de acuerdo al tipo de sensor. Para el sensor tipo peine, el tiempo de incidencia fue de 100 [s] aproximadamente. Para el sensor tipo espiral este tiempo vario de 50 [s] a 150 [s]. Pasado el tiempo de incidencia, se apaga la fuente de luz, y se observa el decaimiento de la señal por un tiempo, que tiende al nivel de ruido base registrado al principio de la medición.

Figura 5.11. Registro de los cambios de voltaje $\Delta V(t)$, incidiendo luz de 385nm de longitud de onda sobre la superficie de los SCEC. a) Sensor tipo espiral. b) Sensor tipo peine.

El nivel de ruido base obtenido con el sensor tipo peine fue de 6.61 $[\mu V/\sqrt{Hz}]$ para la parte real y de 2.03 $[\mu V/\sqrt{Hz}]$ para la parte imaginaria. Para el sensor tipo espiral el nivel de ruido base fue de 2.15 $[\mu V/\sqrt{Hz}]$ para la parte real y de 1.87 $[\mu V/\sqrt{Hz}]$ para la parte imaginaria. El sensor tipo espiral, presento mayor sensibilidad a un menor tiempo de exposición de luz en la parte imaginaria de la señal. Se puede observar una posible saturación en la parte real de la señal obtenida con ambos tipos de sensores.

5.3.2. Respuesta eléctrica a 473 nm de longitud de onda

Para realizar estas mediciones se utilizo un apuntador laser de 473 [nm] de longitud de onda. La distancia entre los sensores y el apuntador fue de 17 [cm], como se observa en la figura 5.12. En este caso no se utilizó la lente de microscopio, debido a una incidencia puntual del spot de luz.

Figura 5.12. Apuntador laser incidiendo luz de 473 nm de longitud de onda sobre la superficie del sensor tipo peine.

En la figura 5.13, podemos observar los cambios producidos al momento de incidir la luz sobre la superficie de ambos sensores. El tiempo de incidencia fue variable. Para el caso del sensor tipo peine el tiempo de incidencia vario de 100 [s] a 140 [s] aproximadamente. Para el sensor tipo espiral, el tiempo vario de 50 [s] a 100[s] aproximadamente. Se registró el nivel de ruido base, en los primeros 50 [s] de cada medición.

Figura 5.13. Registro de los cambios de voltaje $\Delta V(t)$, incidiendo luz de 473nm de longitud de onda en la superficie de los SCEC.

El nivel de ruido base obtenido con el sensor tipo peine fue de 5.47 $[\mu V/\sqrt{Hz}]$ para la parte real y de 2.79 $[\mu V/\sqrt{Hz}]$ para la parte imaginaria. Para el sensor tipo espiral el nivel de ruido base fue de 2.01 $[\mu V/\sqrt{Hz}]$ para la parte real y de 1.92 $[\mu V/\sqrt{Hz}]$ para la parte imaginaria. El sensor tipo espiral, presento mayor sensibilidad a un menor tiempo de exposición de luz a esta longitud de onda en la parte real de la señal. Se puede observar una posible saturación en la parte real e imaginaria de la señal obtenida con el sensor tipo peine y una posible saturación en la parte imaginaria de la señal obtenida con el sensor tipo espiral.

5.4 Conclusiones

Con el SMTC es posible caracterizar y registrar eléctricamente el proceso de evaporación de líquidos solventes, determinar su tiempo de evaporación y la amplitud máxima de la señal que produce. Esto nos permite caracterizar la cantidad y el tipo de líquido depositado en la superficie sensitiva de los SCEC. Debido a su forma geométrica el sensor tipo espiral es el que mejor se adaptó a estas mediciones de líquidos solventes. Esto se puede observar en la figura 5.4, donde las señales del sensor tipo espiral resultaron "menos ruidosas" con respecto a las señales del sensor tipo peine de la figura 5.5, lo que permite detectar alguna perturbación durante el proceso de volatilización.

Los resultados obtenidos de las diferentes mediciones con ambos sensores, nos muestran que es posible detectar cambios del orden de los cientos de atto-faradios [aF]. Estos resultados nos proporcionan una base para que la técnica de medición pueda ser aplicada en procesos biológicos.

En térm	En términos de CAPACITANCIA				
Resolución	Resolución <u>Tipo Peine</u> <u>Tipo Espiral</u>				
С	0.646 [fF]	0.636 [fF]			
En térm	En términos de CAPACITANCIA				
Sensibilidad	Sensibilidad <u>Tipo Peine</u> <u>Tipo Espira</u>				
AIP	62.92 [nA/pF]	62.09 [nA/pF]			
En términos de CAPACITANCIA					
Ruido	<u>Tipo Peine</u>	<u>Tipo Espiral</u>			
AIP	0.045[fF/√Hz]	0.139[fF/√Hz]			

 Tabla 5.9. Resumen de las características intrínsecas del sistema de medición utilizando cada tipo de sensor

En la tabla 5.9 podemos ver en resumen de los valores de las principales características intrínsecas del sistema con cada uno de los sensores. Donde el sensor tipo peine presento un ligero incremento en el valor de sensibilidad en un rango de 19 [s] a 30 [s]. Con el sensor tipo espiral se obtuvo una mejor respuesta de resolución.

Las gráficas 5.8 y 5.9 muestran que los SCEC presentan cierta sensibilidad a perturbaciones de luz en el rango del espectro UV. Esta respuesta óptica debe estudiarse más a fondo para comprender las señales eléctricas registradas.

5.5. Referencias

[1] Miguel Ángel Peña Martínez. (2016). "Desarrollo e implementación de un sistema de medición capacitivo portátil de bajo ruido basado en instrumentación virtual para aplicaciones en caracterización eléctrica de procesos físico-químicos en materiales". (Tesis de Maestría). Universidad Nacional Autónoma de México.

[2] Jacob Fraden. (2010). "Handbook of Modern Sensors. Physics, Designs, and Applications". Fourth Edition. Editorial: Springer. New York.

[3] Pagina web de National Instruments: <u>http://www.ni.com/white-paper/14860/en/</u>. Consultado en agosto 2017.

[4] Javier Ibarra Olvera. (2016). "Caracterización de un sistema de medición capacitivo para procesos físico-químicos y biológicos". (Tesis de Licenciatura). Facultad de Ingeniería. Universidad Nacional Autónoma de México.

Capítulo 6

Aplicaciones de caracterización eléctrica con sensores capacitivos en espiral

En este capítulo se describe una aplicación para identificar suspensiones de nano-partículas y micelas formadas con el surfactante *Sodium Dodecyl Sulfate* (SDS), utilizando el dispositivo sensor tipo espiral. Se realizaron mediciones diferenciales de capacitancia en función de la componente imaginaria de la corriente Im(Δ I). Se presenta el cálculo teórico de la masa de las partículas de cobre y del surfactante SDS suspendidas. También, se presenta el procedimiento de medición y resultados con una muestra de tejido biológico (sangre entera) utilizando el mismo sensor.

6.1. Formación de micelas

Este tensoactivo o surfactante, es una sustancia de tipo aniónico que presenta actividad superficial, es decir, reduce la superficie del líquido en el que se encuentra disuelto. Presenta afinidad por el agua, debido a la atracción electrostática hacia los dipolos permanentes del agua. El AIP es un líquido solvente polar debido al enlace O-H que presenta por lo que la parte hidrofílica del tensoactivo es atraída por los dipolos permanentes del solvente [1].

Su estructura molecular está conformada por dos partes que difieren en sus relaciones de solubilidad: una cadena hidrofóbica, repelente al agua y una parte hidrofílica, soluble en agua [2].

En el agua, las moléculas de SDS se ionizan y la parte hidrofílica queda cargada negativamente [3]. Figura 6.1a.

Cuando se suspenden en soluciones liquidas, el SDS forma estructuras esféricas llamadas *micelas*. Una micela es una estructura formada por un conjunto de moléculas. Estas micelas se forman debido a que las moléculas tienden a ocupar la superficie del líquido que se encuentra en contacto con el aire, orientándose las partes hidrofóbicas hacia el exterior, figura 6.1b. Cuando la superficie del líquido presenta una saturación de moléculas, estas tienden a juntarse por debajo de la superficie dando lugar a la formación de micelas, donde las partes hidrofílicas quedan expuestas a la solución liquida [4], figura 6.1c. Cuando el SDS se encuentra suspendido junto con partículas, en nuestro caso cobre de 500 [nm], las moléculas del surfactante forman la micela alrededor de las partículas de cobre, evitando la aglomeración de estas partículas, figura 6.1d.

Figura 6.1. a) Un SDS aniónico posee una estructura molecular conformada por dos partes: una cadena hidrofóbica y una parte hidrofílica que se ioniza negativamente. b) Las moléculas tienden a ocupar la superficie de la solución acuosa. c) Cuando se satura la superficie, se juntan por debajo para formar micelas. d) Micela cubriendo una partícula de cobre, evitando la aglomeración de estas partículas de cobre.

El tamaño de una micela de SDS de la figura 6.1c, no se sabe con precisión, pero se estima que su radio es aproximadamente de 1.6 a 2.1 nm [5].

6.2. Cálculo teórico de la masa de partículas a suspender

El cálculo de la fracción de volumen de partículas a suspender, está dado por la siguiente formula general [6]:

$$f = \frac{V_m}{V_T} \tag{6.1}$$

Donde V_m es el volumen de las partículas y V_T es el volumen total o final de las partículas suspendidas en una solución. Por lo tanto, V_T está dado por:

$$V_T = V_l + V_m \tag{6.2}$$

Donde V_l es el volumen del líquido solvente puro a utilizar. Se trató en nuestro caso de alcohol isopropilico (AIP). El valor de V_l fue de 25 [ml]. Este volumen fue determinado experimentalmente en [6]. Sustituyendo la ecuación (6.2) en (6.1) podemos obtener V_m :

$$V_m = \frac{fV_l}{1-f} \tag{6.3}$$

Ahora, tenemos que V_m está relacionado con la densidad másica, que es una propiedad física de las partículas y que expresa la relación entre la cantidad de masa y el volumen de una sustancia:

$$\rho_m = \frac{M_m}{V_m} \tag{6.4}$$

Donde ρ_m es la densidad másica y M_m es la masa de las partículas. Claramente se aprecia que despejando M_m podemos calcular la masa de partículas a suspender en 25 [ml] de AIP. Primero se calculó la masa de SDS. Partiendo de una fracción de volumen f de SDS determinado experimentalmente en [6], con un valor de 0.208%, y utilizando la ecuación 6.3, obtenemos:

$$V_{SDS} = \frac{fV_l}{1-f} = \frac{(2.08 \times 10^{-3})(25ml)}{1 - (2.08 \times 10^{-3})} = 0.0521 \ [ml]$$

El SDS utilizado, tiene un valor de densidad másica de 1.01 [g/cm³]. Sustituyendo en la ecuación 6.4, obtenemos la masa de SDS a utilizar:

$$M_m = (1.01g/ml)(0.0521ml) = 0.0526[g]$$

Seguidamente se calculó la masa de las partículas de cobre a suspender. Con un valor de fracción de volumen f de 4.84% y un valor de densidad másica de 8960 [Kg/m³], sustituyendo en la ecuación 6.3 y 6.4, obtenemos:

$$V_{Cu} = \frac{(0.0484 \times 10^{-3})(25ml)}{1 - (0.0484 \times 10^{-3})} = 1.2715 \ [ml]$$

 $M_{CU} = (0.00896g/ml)(1.2715ml) = 0.0113 \approx 0.0114 [g]$

6.3. Preparación de una suspensión de partículas

Una vez obtenido los cálculos del valor de masa de partículas y SDS, se pesaron las masas. Utilizando dos frascos de "boca" ancha se prepararon dos tipos de suspensión. Un primer frasco, se colocó sobre una balanza de precisión (marca *AccuLab*, modelo AL-64). Con el ajuste de ZERO, se descompensa el peso del frasco para solo obtener la masa de las partículas en polvo. Se depositó SDS y luego las partículas de cobre hasta obtener los respectivos valores de masa calculados. En un segundo frasco, se depositó solamente SDS al valor de masa calculado. Figura 6.2.

Figura 6.2. Pesaje de masa. a) Partículas de cobre. b) SDS.

Utilizando una probeta graduada, se fue vertiendo AIP hasta alcanzar un volumen de 25 [ml]. Este volumen de AIP, se depositó en cada uno de los frascos. Se agito para mezclar y luego se llevó a un baño ultrasónico (marca *Branson* modelo 200), que genera pulsos continuos por 5 minutos. Se expuso 15 minutos. En la figura se muestran las dos suspensiones preparadas.

Figura 6.3. a) Suspensión de partículas de cobre junto con SDS. b) Suspensión de SDS.

La cantidad de micro litros que se depositaron sobre la superficie del sensor tipo espiral, se determinó conforme al procedimiento de la sección 4.2.1. El volumen utilizado fue de 3 [μ l] para la suspensión de nano-partículas de cobre junto con SDS. Para la suspensión solo con SDS se utilizaron 2 [μ l].

6.4. Caracterización eléctrica de una suspensión de nano-partículas

El principio básico de sensado se basó en detectar perturbaciones de campo eléctrico sobre la superficie sensitiva del sensor tipo espiral, por medio de cambios de la componente compleja $Im(\Delta I)$ de la corriente debido al proceso de evaporación del solvente y cuando las partículas y micelas quedan expuestas sobre la superficie sensitiva del sensor una vez que el AIP se evapora por completo, figura 6.4.

Figura 6.4. Partículas expuestas sobre la superficie sensitiva del dispositivo sensor, una vez que el AIP se evaporo, provocando perturbaciones de campo eléctrico sobre la superficie sensitiva del sensor.

Las gotas de suspensión se depositaron directamente sobre la superficie sensitiva del sensor tipo espiral, por medio de una micropipeta de precisión. La metodología de medición de $Im(\Delta I)$ propuesta, se describe en los siguientes pasos:

• Medición de AIP Puro; se depositó una gota de 2 $[\mu I]$ de AIP puro sobre la superficie sensitiva del sensor espiral, para registra la señal Im(ΔI) debido a su proceso de evaporación, la cual se utilizó como Referencia.

Medición Suspensión de nano-partículas de Cobre junto con SDS; se depositó una gota de
 3 [µl] de la suspensión de partículas de cobre junto con SDS, sobre la superficie sensitiva del sensor. Una vez que se evaporo el AIP, las partículas quedaron expuestas sobre la superficie sensitiva del sensor.

 Medición Suspensión de SDS; se depositó una gota de 2 [µl] de la suspensión solo con SDS en el área sensitiva del sensor.

En la tabla 6.1, se muestran las condiciones ambientales promedio registradas durante las mediciones en él laboratorio.

	-
Temperatura:	26°C
Humedad relativa:	38%
Presión Atm:	774 [<i>mBar</i>]

Tabla 6.1. Condiciones ambientales promedio.

Los parámetros de configuración del ALI para realizar las mediciones se muestran en la tabla 6.2.

Ref. Phase:	0 [°]	Source:	Ι
Ref. Sourse:	Internal	Grounding:	Ground
Ref. Frecuency:	10 [kHz]	Sine Output:	1 [Vrms]
Line Notches:	Both	Dynamic Reserve:	Min
Time Constant/Band	100 [ms]	Filter dB/Oct	12
Width:	1.2 [Hz]	I'nter ub/oet.	12
Sample Rate	64 [Hz]	Scan Length:	200

Tabla 6.2. Parámetros ingresados al lock-in para las mediciones de partículas suspendidas.

Se registraron cambios de corriente de la componente imaginaria Im(Δ I). Luego, utilizando la ecuación 5.4, se obtuvieron los respectivos valores en términos de capacitancia Δ **C**(t) de forma indirecta.

6.5. Resultados de la caracterización eléctrica del proceso de evaporación de suspensión de partículas

Se utilizo el procedimiento de medición propuesto para caracterizar eléctricamente las suspensiones con base de AIP_{PURO}. En la tabla 6.3 se muestran los valores de ruido base (Rb/ \sqrt{Hz}) obtenidos con el sistema de medición utilizando el sensor tipo espiral, antes de realizar cada una de las mediciones, de acuerdo a la sección 4.2. En dónde: AIP_{PURO} es la medición de 2 [µl] de alcohol isopropílico puro; MED_{Cu+SDS} es la medición de 3 [µl] de la suspensión de partículas de cobre junto con el SDS; MED_{SDS} es la medición de 2 [µl] de la suspensión de SDS.

 $\begin{array}{|c|c|c|c|c|} \hline AIP_{PURO} & 0.137 \, [fF/\sqrt{Hz}] \\ \hline MED_{Cu+SDS} & 0.128 \, [fF/\sqrt{Hz}] \\ \hline MED_{SDS} & 0.125 \, [fF/\sqrt{Hz}] \\ \hline \end{array}$

Tabla 6.3. *Rb*_{\(\/Hz}) *obtenidos antes de cada medición*.

En la figura 6.5 se muestran las gráficas de los cambios temporales de capacitancia $\Delta C(t)$ debido al depósito de una gota de AIP puro, una gota de la suspensión de cobre junto con SDS y una gota de la suspensión de SDS, sobre la superficie del sensor tipo espiral. Estos valores de $\Delta C(t)$ se obtuvieron de forma indirecta utilizando la ecuación 5.4. Se observa al principio de la medición, un tiempo de registro del nivel de ruido base del sistema. Seguidamente se observa un cambio de amplitud en las señales, debido al depósito de las gotas de la solución. Las señales MED_{Cu+SDS} y MED_{SDS}, tienden a regresar al nivel de la señal de AIP_{PURO}, hasta completar un tiempo de 200 [s].

Figura 6.5. *Gráficos del proceso de volatilización de las suspensiones. a) Formas de señal de las partículas suspendidas. b) Rectángulo de inspección en el rango de tiempo de 70 [s] a 200 [s]*

Como se muestra en la figura 6.4a en el rango de tiempo de 20 [s] a 80 [s], las gráficas presentaron formas de señal $\Delta C(t)$ diferentes. La gráfica AIP_{PURO} presento una curva suave. La grafica MED_{Cu+SDS} presento una sección cóncava durante 40 [s] aproximadamente. La grafica MED_{SDS}, en la parte final de este rango de tiempo, presento una sección cóncava por un tiempo, de 10 [s] aproximadamente. Estos resultados nos muestran que es posible identificar y caracterizar eléctricamente procesos de evaporación de diferentes tipos de suspensiones, de acuerdo a la forma de la señal $\Delta C(t)$ utilizando el sensor tipo espiral.

En la figura 6.6 se muestra un aumento del rectángulo de inspección de la figura 6.4b en el rango de tiempo de 70 [s] a 210 [s].

Figura 6.6. Rectángulo de inspección de la figura 6.4b en el intervalo de tiempo de 70 [s] a 205 [s]. Se observa el tiempo de decaimiento de las señales y un offset debido a las partículas expuestas sobre la superficie del sensor.

Las mediciones MED_{Cu+SDS} y MED_{SDS} de la figura 6.6, presentaron un nivel de *offset* C_{Cu+SDS} y C_{SDS} con respecto al nivel de la señal de AIP puro, la cual se utilizó como referencia. El valor de C_{SDS} fue de 2 [fF] y de C_{Cu+SDS} fue de 12 [fF] aproximadamente. Esto nos indica que es posible detectar y caracterizar la presencia de partículas del orden de los nanómetros, debido a cambios en la función dieléctrica sobre la superficie del sensor tipo espiral. Estos niveles de offset C_{Cu+SDS} y C_{SDS} son posibles de determinar debido a la alta resolución que presenta el sistema de medición utilizando el sensor tipo espiral, tabla 5.9.

Las gráficas de la figura 6.6, también nos permiten caracterizar el tiempo de decaimiento T_d de la señal $\Delta C(t)$. Este T_d se presenta debido a la fuerza de cohesión que se existe entre las moléculas de la suspensión, al final del proceso de evaporación del AIP.

En el rango de 30 [fF] hasta la estabilización de la señal, la medición MED_{SDS} presento el mayor tiempo de decaimiento. En la tabla 6.4 se puede observar los tiempos aproximados de decaimiento T_d. Los valores determinan el tiempo de evaporación del solvente.

AIP _{PURO}	2 [<i>s</i>]
MED _{Cu+SDS}	30 [<i>s</i>]
MED _{SDS}	45 [<i>s</i>]

Tabla 6.4. Tiempo de decaimiento, T_d de las señales temporales $\Delta C(t)$.

En la figura 6.7 se observa una concentración perimetral de residuos del surfactante al final de cada medición.

Figura 6.7. Residuo perimetral de SDS.

Para observar la distribución de las partículas expuestas sobre la superficie sensitiva del sensor tipo espiral, se observó con un microscopio *Leica DME Model* 13595, el área sensitiva del dispositivo sensor al final de cada medición. Figura 6.8.

Figura 6.8. a) Distribución de las partículas de cobre junto con SDS. b) Concentración perimetral de residuos de SDS.

En resumen, se efectuó la monitorización y caracterización eléctrica del proceso de evaporación de suspensiones con una base de líquido solvente utilizando nano-partículas y de micelas que se forman cuando un surfactante (SDS) se encuentra en una solución líquida. Las partículas y el SDS se mezclaron con alcohol isopropilico (AIP). El SDS utilizado fue de la marca *Sigma*, y el tamaño de las partículas de cobre fue de 500 [nm] de diámetro. En general, las partículas y micelas quedaron depositadas sobre la superficie sensitiva del sensor tipo espiral, una vez que el AIP se evaporo por completo.

6.6. Caracterización eléctrica de un proceso biológico

Se realizó la caracterización eléctrica de una gota de sangre entera, con el fin de detectar cambios de su función dieléctrica temporal [7]. Se realizaron mediciones de la componente compleja de la corriente Im(Δ I) para obtener de forma indirecta por medio de la ecuación 5.4 los cambios de capacitancia Δ **C**(t).

6.6.1. Procedimiento de medición de una muestra de sangre entera

La preparación de la muestra de sangre se realizó con dos cubre-objetos de vidrio en forma circular. Es decir, se depositó una gota de sangre sobre un primer cubre objetos. Seguidamente se colocó un segundo cubre objetos sobre la gota de sangre. La gota se extiende formando una película delgada, figura 6.9. La muestra de sangre se obtuvo al momento de la medición.

Figura 6.9. Procedimiento de preparación de una muestra de sangre. a) Deposito de una gota de sangre sobre un cubre-objetos. b) Un segundo cubre-objetos se coloca sobre la gota. c) La gota se expande formado una película delgada.

Podemos mencionar cuatro etapas en el procedimiento de medición, las cuales se describen a continuación:

Primero, se colocó un par de cubreobjetos sobre el dispositivo de referencia y sobre el dispositivo sensor. Se realizo el ajuste de mínimo *offset* de la señal de acuerdo a la sección 4.2. Al principio de la medición se dejó un tiempo inicial de 10 [s] para medir el nivel de ruido base con los cubre objetos depositados sobre el sensor.

Segundo, se retiró el par de cubreobjetos que se encuentran sobre el dispositivo sensor.
 Esto provocó un cambio en la amplitud de la señal diferencial temporal. Después de unos segundos, se volvió a colocar este par de cubre objetos sobre el dispositivo sensor. Esto provocó que la señal regresara al nivel de ruido base.

 Tercero, se volvió a retirar el par de cubreobjetos del dispositivo sensor, seguidamente se depositó una gota de sangre entre ambos cubre objetos. Posicionamos la muestra de sangre sobre el dispositivo sensor, para registrar las perturbaciones de campo eléctrico debido al proceso de coagulación de la sangre.

En la tabla 6.5 podemos observar los parámetros configurados en el ALI, para realizar la medición de $Im(\Delta I)$ debidos al proceso biológico temporal de la sangre.

6			
Ref. Phase:	0 [°]	Source:	Ι
Ref. Sourse:	Internal	Grounding:	Ground
Ref. Frecuency:	10 [kHz]	Sine Output:	1 [Vrms]
Line Notches:	Both	Dynamic Reserve:	Min
Time Constant/Band Width:	100 [ms] 1.2 [Hz]	Filter dB/Oct:	12
Sample Rate	8 [Hz]	Scan Length:	1200

 Tabla 6.5. Parámetros configurados al sistema para la medición del proceso de coagulación de la sangre.

En la figura 6.10, podemos observar la muestra de sangre colocada sobre el sensor tipo espiral al final de la medición y las condiciones ambientales al momento de la medición.

Figura 6.10. Muestra de sangre sobre el sensor tipo espiral. Con condiciones ambientales al momento de la medición.

6.6.2. Resultados de la actividad eléctrica en una muestra de sangre

La grafica resultante $\Delta C(t)$ se muestra en la figura 6.11, en dónde se representan los eventos de registro de ruido base, preparación y colocación de substratos de vidrio, sin y con muestra de sangre, y monitorización temporal de 20 minutos. La grafica se analizó por separado despreciando los rangos de tiempo de preparación y colocación de los cubre objetos sin muestra de sangre. El nivel del ruido base obtenido antes de realizar la medición fue de 92.62 [aF/ \sqrt{Hz}]

Figura 6.11. Grafica de la actividad eléctrica en una muestra de sangre. a) Ruido base con un par de cubre objetos sobre el dispositivo de referencia y dispositivo sensor. b) Cambios de $\Delta C(t)$ debido a la actividad eléctrica en una muestra de sangre.

La figura 6.12 se muestran los cambios en la señal temporal $\Delta C(t)$ en un período de 160 [s] a 1200 [s]. Esta grafica representa el cambio temporal de la señal debido al ruido presente en la sangre entera contenida entre los substratos de vidrio.

Se observa una amplitud máxima de 26 [fF] aproximadamente. Utilizando la ecuación 5.2 obtenemos una relación señal a ruido S/R_{MAX} de 280. También se puede apreciar que se presentan algunas variaciones mayores a las décimas de los femtoFarad [fF] antes del término del tiempo de monitorización.

Figura 6.12. Cambios en la señal temporal debido a la actividad eléctrica en la sangre en el intervalo de 160[s] a 1200[s].

Por último, para realizar un análisis más detallado, se define un período de 160 [s] a 800 [s] donde se puede apreciar variaciones debido a la muestra de sangre ΔCs . Estas variaciones se encuentran en el rango de 1 [fF], las cuales son apreciables en la figura 6.13.

Figura 6.13. Variación $\Delta C(t)$, debido a la muestra de sangre, en el intervalo de 160 [s] a 800 [s].

Este análisis podría aplicarse al estudio de padecimientos en sangre realizando comparaciones de su función dieléctrica temporal con sangre sana como referencia o analizando sus componentes por separado.

6.7. Conclusiones

El sensor tipo espiral, es el que mejor se adapta para la detección de variaciones de señal eléctrica, al depositar una muestra liquida sobre su superficie. Debido a su forma geometría y a un mejor confinamiento del campo eléctrico en su superficie sensitiva.

Es posible identificar suspensiones de micelas con suspensiones de nanopartículas de acuerdo a la forma de la respuesta en $\Delta C(t)$, tiempo de evaporación del solvente base y valor de *offset* en función a las partículas depositadas en la superficie del sensor cuando el solvente se evapora totalmente.

El nivel de *offset* C_{Cu+SDS} y C_{SDS} debido a partículas y micelas expuestas en el rango de tiempo de 70 [s] a 210 [s] de la figura 6.5 y las variaciones $\Delta C(t)$ propias del proceso biológico en el período de tiempo de 160 [s] a 800 [s] de la figura 6.12, se pueden detectar gracias al valor de resolución que presenta el sistema de medición utilizando el sensor tipo espiral. De acuerdo a la tabla 5.9.

Todas las mediciones realizadas, muestran que es posible detectar variaciones muy pequeñas de señales eléctricas, gracias al nivel de ruido base obtenido de 0.137 [fF/ \sqrt{Hz}] en las mediciones experimentales y por consecuencia a la resolución del sistema obtenida con el sensor tipo espiral, Res= 0.636 [fF].

Una posible aplicación de este tipo de sensor, podría ser la comparación de dos o más muestras en estudio o la bio funcionalización de los electrodos para la detección de algún proceso biológico a nivel celular o multicelular como en un tejido biológico.

6.8. Referencias

[1] Theodore L. Brown, H. Eugene LeMay, Jr., Bruce E. Bursten, Julia R. Burdge. (2004). "Química". Editorial: Pearson Educación México. Novena edición.

[2] Georgina Garza Ramos Martínez. "Proteínas atrapadas en micelas". Página web: http://www.revista.unam.mx/vol.16/num1/art04/. Consultado octubre 2017.

[3] Pagina web de la facultad de química UNAM: http://depa.fquim.unam.mx/fina/presenta/tensoactivos.pdf. Consultado octubre 2017.

[4] A. Miriam Novelo-Torres, Jesús Gracia-Fadrique. (2005). "Concentración micelar crítica mediante la ecuación de adsorción de Gibbs". Facultad de Química. UNAM. (pp. 63-67).

[5] Beckman Coulter, Inc. (2013). "Determine Hydrodynamic Size of Surfactant Micelles with DelsaMax CORE Particle Characterization". Application Note.

[6] Gesuri Morales Luna. (2015). "Reflectividad de coloides turbios: Teoría-experimento". (Tesis de Maestría). Instituto de Física". Universidad Nacional Autónoma de México.

[7] A. Guadarrama Santana and M. Peña Martínez. (2015). "Virtual Instrumentation for biological process monitoringbased on electric field perturbations". Memorias del Congreso Nacional de Ingeniería Biomédica XXXVIII. (pp. 144-148).

Capítulo 7

Discusión y conclusiones

En este trabajo se desarrolló una metodología para el diseño, implementación, caracterización y aplicación de sensores capacitivos de electrodos coplanarios, tipo espiral y tipo peine, depositados sobre un sustrato dieléctrico. Esta metodología de diseño de sensores sobre sustratos dieléctricos nos permitió mejorar la sensibilidad a cambios temporales de la función dieléctrica de un material bajo prueba. El diseño modular propuesto permitió realizar mediciones de una forma más versátil al poder intercambiar los sensores de acuerdo al tipo de estudio y caracterización, utilizando la misma etapa de acondicionamiento, además de permitir estudiar otras posibles geometrías.

El diseño basado en simulaciones 3D realizadas con el método de elemento finito (MEF), figura 1.6 y 1.9, muestran que la geometría en espiral de los electrodos que conforman el sensor presenta una distribución de líneas de campo eléctrico más uniforme con un plano de tierra que el sensor tipo peine, es decir, presento un mejor confinamiento de líneas de campo sobre su superficie. Este confinamiento nos permite que al momento de evaluar un material bajo prueba se obtengan cambios temporales uniformes de señal eléctrica. Puesto que la geometría de electrodos en espiral no presenta el efecto de ángulo recto, presente en el sensor tipo peine.

En las figuras $C(\varepsilon_r, d)$ obtenidas con el MEF, muestran que la capacitancia tiene una respuesta lineal en función de la permitividad relativa para diferentes espesores de recubrimiento dieléctrico. Para un espesor de recubrimiento dieléctrico de .15 [mm], el sensor tipo espiral presentó el mejor valor de sensibilidad, 1 [pF]. Las figuras $C(d, \varepsilon_r)$ muestran que es conveniente utilizar espesores de recubrimiento dieléctrico pequeños. En nuestro caso el espesor fue alrededor de 300 [nm] para ambos sensores. Bajo esta condición, el sensor tipo espiral presenta una mayor profundidad de penetración de líneas de campo eléctrico, cuando se deposita un material bajo prueba sobre su superficie, debido al confinamiento uniforme de líneas de campo que presenta. El sensor tipo peine presentó un mayor rango dinámico a para una ε_r = 4 con un valor de 2 [fF], a diferencia del sensor tipo espiral que fue de 1.5 [fF].

Los valores de capacitancia obtenidos experimentalmente a una frecuencia de 10 [kHz], nos permiten validar los resultados obtenidos de las simulaciones en condiciones electrostáticas. Esto nos proporciona un método para poder evaluar la respuesta de diferentes geometrías de electrodos desde el diseño.

La caracterización de la respuesta eléctrica de cada uno de los sensores, se realizó empleando la metodología de medición propuesta. Con el diseño modular de los sensores fue posible utilizar el mismo sistema de medición de bajo ruido desarrollado en trabajos previos. Esto nos permitió determinar las características eléctricas intrínsecas de cada sensor, al registrar señales eléctricas temporales producidas por perturbaciones de campo eléctrico en la superficie de los sensores, en función del proceso de evaporación de líquidos solventes de hasta 3 [µl]. Las gráficas obtenidas, nos indican que con el sistema de monitoreo temporal capacitivo es posible identificar el tipo de solvente que se evalúa. De las mediciones experimentales en términos de capacitancia, el sensor tipo peine obtuvo un nivel promedio de ruido base de 0.061 [fF/ \sqrt{Hz}], un valor de resolución de 0.646 [fF] y un valor de sensibilidad de 63.15 [nA/pF]. El sensor tipo espiral, obtuvo un nivel de ruido base promedio de 0.138 [fF/ \sqrt{Hz}], un valor de resolución de 0.636 [fF] y un valor de sensibilidad de 63.82 [nA/pF].

El sensor tipo espiral presentó mejor desempeño en las mediciones con líquidos solventes, puesto que estos se expandían radialmente hasta cubrir por completo toda su área sensitiva. La respuesta eléctrica del sensor tipo espiral resulto en formas de curvas suaves.

Fue posible identificar, detectar y caracterizar de acuerdo a la forma de la respuesta eléctrica $\Delta C(t)$, tiempos de evaporación y a los niveles de offset (*Offset* ≥ 1 [fF]) obtenidos, suspensiones de micelas y suspensiones de nano partículas, utilizando el sensor tipo espiral. Gracias a la alta resolución y a un nivel bajo de ruido base obtenido con este sensor tipo espiral empleando el sistema de medición de bajo ruido. Por lo que se comprueba su viabilidad para una posible bio funcionalización y aplicarlo a la detección selectiva de material biológico y de actividad eléctrica de procesos biológicos.

A pesar de los resultados obtenidos, el sistema de medición temporal capacitivo presenta ciertos aspectos aun por mejorar. Uno de estos aspectos más importantes es reducir el nivel de ruido obtenido, al menos en un orden de magnitud, y de esta forma aumentar el rango dinámico y resolución de los sensores. Esto se debe lograr si se reduce la electrónica y cables, cambiar conectores o la implementación de una jaula de Faraday para aislar electromagnéticamente la etapa de sensado y acondicionamiento electrónico. Esto permitirá reducir el área sensitiva del sensor, y poder implementar una etapa multi-sensado utilizando muestras más pequeñas.

Otro aspecto a trabajar, es en mejorar el proceso de micro-fabricación para obtener una superficie sensitiva más plana con el fin de no utilizar sustratos de vidrio los cuales provocan una disminución de la sensibilidad en las mediciones.

El objetivo fue estudiar las características y la respuesta eléctrica de cada tipo de sensor coplanario propuesto, empleado un sistema de medición de bajo ruido y una metodología propuesta. En resumen, de acuerdo a los resultados obtenidos de cada sensor, a las diferencias no significativas en las características eléctricas intrínsecas entre ellos antes mencionadas, a un mejor confinamiento de las líneas de campo y a su geometría de electrodos, el sensor tipo espiral es el que se propone como dispositivo de sensado, para futuras aplicaciones de detección, identificación y monitorización de muestras biológicas.