

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

TITULO: Evaluación de Impacto Ambiental: Metodología Batelle Collumbus para el proyecto Etileno XXI

TESIS:

Que para obtener el título de Ingeniería Química

PRESENTA

Salazar Díaz Carolina

Directora de tesis:

Dra. Georgina Fernández Villagómez

Ciudad de México, 2017

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

A mis padres el Sr. Emiliano Salazar Pérez y la Sra. Mayra Díaz Torres, por todo el apoyo, cariño y la confianza que me brindaron para la realización y el cumplimiento de este objetivo "**Muchas gracias**".

A mi hermano Arturo Esteban Salazar Díaz por el apoyo y cariño que siempre me ha brindado y por todos aquellos momentos que a su lado he vivido.

A mi familia, por el apoyo recibido durante mi carrera y en especial por su cariño, para el cual no existen palabras que expresen lo que ha significado en el transcurso de mis estudios. Por esto y mucho más mis más profundos agradecimientos.

A la Dra. Georgina Fernández Villagómez, por asesorarme y por el apoyo otorgado para la realización de este trabajo y por compartirme parte de su conocimiento.

A todos los miembros del jurado por el tiempo que le dedicaron a la revisión de este trabajo, así como por sus valiosas aportaciones para el mejoramiento del mismo.

Al grupo de trabajo de la SEMARNAT que me permitió adquirir más conocimientos durante mi servicio y prácticas profesionales.

A mis amigos, Dulce, Yaz y Mau por todos aquellos momentos que compartimos y que vivimos dentro y fuera de la universidad, así como a mi gran compañero y amigo Javier por apoyarme y darme ánimos durante la elaboración de mi tesis.

A la Universidad Nacional Autónoma de México por haberme formado como profesional por medio de todos los profesores de la Facultad de Estudios Superiores Zaragoza. Por dejarme ser parte de esta gran Institución Académica.

A la vida por darme la oportunidad de poder cumplir este sueño que alguna vez tuve y que el día de hoy podré concluir, además por darme la oportunidad de conocer personas tan valiosas a lo largo de mi corta vida.

Índice

Capítulo 1. Introducción	1
1.1 Justificación	1
1.2 Objetivos	2
1.2.1 Objetivo General	2
1.2.2 Objetivos Particulares	2
1.3 Alcances y limitaciones	3
Capítulo 2. Marco teórico	4
2.1 Concepto de evaluación de impacto ambiental	4
2.2 Evaluación de impacto ambiental en México	
2.2.1 Antecedentes	5
2.3 Política y legislación ambiental nacional	6
Capítulo 3. Técnicas de Evaluación de Impacto Ambiental	10
3.1 Concepto	10
3.2 Sistemas de red y gráficos	11
3.3 Sistemas cartográficos	16
3.4 Métodos basados en parámetros, índices e integración de la evaluación	17
3.5 Métodos cuantitativos	19
3.6 Tabla comparativa de las diferentes técnicas de evaluación	21
Capítulo 4. Descripción del proyecto	26
4.1 Delimitación del área	26
4.1.1 Ubicación	26
4.1.2 Dimensiones del proyecto	26
4.2 Descripción del sistema ambiental	27
4.2.1 Localización de la zona de estudio	27
4.2.2 Ecología	27
4.2.3 Contaminación	33
4.2.4 Paisaje	
4.2.5 Aspectos socioeconómicos	39
Capítulo 5. Comparación metodológica	41
5.1 Metodología de evaluación de impacto ambiental por Braskem Idesa	41
5.1.1 Matriz de identificación de interacciones potenciales "Matriz tipo Leopold" .	41
5.1.2 Metodología de Bojórquez Tapia	44

5.2	Propuesta metodológica de evaluación de impacto ambiental	52
5	5.2.1 Metodología de Batelle-Collumbus	52
5	5.2.2 Bases del método	54
5	5.2.3 Procedimiento para su aplicación	55
5	5.2.4 Determinación de los valores de calidad de acuerdo a Batelle-Collumbus	56
Capít	ulo 6. Resultados comparativos	67
6.1	Resultados por la metodología de Bojórquez Tapia	67
6.2	Resultados por Batelle Collumbus	68
Capít	ulo 7. Conclusiones y recomendaciones	70
Refei	rencias	72
Anex	os	76
A.	Listado de especies de vegetación	76
В.	Listado de especies de vegetación bajo protección legal	77
C.	Listado de especies de fauna	78
D.	Listado de especies de fauna bajo protección legal	78
E.	Criterios de valoración de acuerdo a Bojórquez- Tapia	80
F.	Evaluación de impacto ambiental de acuerdo a Bojórquez-Tapia	84
G.	Evaluación de impacto ambiental de acuerdo con Batelle-Collumbus	91
Н. (Criterios de evaluación de acuerdo a Batelle- Collumbus	95

Lista de figuras

Figura 4. 1 Distribución de especies vegetales (SEMARNAT,2009)	
Figura 5.1 Clasificación de parámetros ambientales. (Ribeiro de Almeida Josimar, 2008)	54
Lista de tablas	
Tabla 3.1 Comparación de las diferentes técnicas de evaluación (Estevan Bolea, 19 Fernández Conesa Vitora, 1993; INERCO, 2007; INE, 1993; SEMARNAT, 2002;	
Guillermo Espinoza García, 2001)	22
Tabla 4.1 Áreas que abarca la propiedad (SEMARNAT, 2011)	. 26
Tabla 4.2 Cobertura vegetal del sitio de interés (SEMARNAT, 2011)	. 27
Tabla 4.3 Vegetación que será afectada por el proyecto (SEMARNAT, 2011)	. 28
(SEMARNAT, 2011)	. 29
Tabla 4.5 Especies raras y peligro de extinción (SEMARNAT, 2011)	. 30
Tabla 4.6 Distribución taxonómica de las especies de anfibio y reptiles (SEMARNAT 2011)	
Tabla 4.7 Especies en peligro de extinción (SEMARNAT, 2011)	
Tabla 4.8 Características del acuífero (SEMARNAT, 2011)	. 33
Tabla 4.9 Propiedades de los ríos cercanos al área del proyecto (Diario Oficial de la	
Federación, 2016)	. 34
Tabla 5.1 Fuentes de cambio que pudiesen generar impacto ambiental y social	
(SEMARNAT, 2011)	. 41
Tabla 5.2 Factores ambientales del SAP que pudieran verse afectados por el proyec (SEMARNAT, 2011)	
Tabla 5.3 Factores sociales del SAP que pudieran verse afectados por el proyecto	
(SEMARNAT, 2011)	
Tabla 5.4 Valores de significancia del impacto (SEMARNAT, 2011)	
Tabla 5.5 Identificación de interacciones ambientales por medio de la matriz tipo	
Leopold. (SEMARNAT, 2011)	. 48
Tabla 5.6 Identificación de interacciones potenciales sociales por medio de la matriz	<u>-</u>
tipo Leopold. (SEMARNAT, 2011)	
Tabla 5.7 Niveles de acuerdo a Batelle-Collumbus (Guillermo Espinoza, 2011) Tabla 5.8 Uso de suelo de acuerdo a Batelle-Collumbus (Gómez, 1994)	

Tabla 6.1 Resultado de la valoración cuantitativa de los impactos ambientales y sociales (SEMARNAT, 2011)	67
Tabla 6.2 Valores de unidades de importancia por Batelle-Collumbus. (Elaboración	
propia)	
Anexos	00
Tabla A.1 Especies del estrato arbustivo. (SEMARNAT, 2011)	76
Tabla A.2 Especies del estrato herbáceo. (SEMARNAT, 2011)	76
Tabla A.3 Especies de pastizales. (SEMARNAT, 2011)	76
Tabla A.4 Especies de pastizales inundables. (SEMARNAT, 2011)	77
Tabla A.5 Especies de vegetación secundaria. (SEMARNAT, 2011)	
Tabla A.6 Especies de sabana. (SEMARNAT, 2011)	77
Tabla B.1 . Especies bajo protección legal (plantas). (SEMARNAT, 2011)	77
Tabla C.1 Registros indirectos. (SEMARNAT, 2011)	78
Tabla C.2 Especies endémicas registradas en el SAP. (SEMARNAT, 2011)	78
Tabla D.1 Especies de fauna "Anfibios y reptiles" reportadas en algún estatus de protección ambiental. (SEMARNAT, 2011)	78
Tabla E.1 Identificación de criterios de valoración de los parámetros básicos y complementarios para los factores ambientales (SEMARNAT, 2011)	80
Tabla E.2 Identificación de criterios de valoración de los parámetros básicos y	
complementarios para los factores sociales (SEMARNAT, 2011)	81
Tabla E.3 Identificación de criterios de valoración de los parámetros básicos y	
complementarios para los factores paisajísticos (SEMARNAT, 2011)	82
Tabla F.1 Valores de impacto ambiental. (SEMARNAT, 2011)	84
Tabla G.1 Valores de impacto ambiental de contaminación. (Elaboración propia)	91
Tabla G.2 Valores de impacto ambiental de aspectos paisajísticos. (Elaboración	
propia)	
Tabla G.3 Valores de impacto ambiental de intereses humanos. (Elaboración propia	
Tabla G.4 Valores de impacto ambiental de ecología. (Elaboración propia)	94

Resumen

Debido al creciente desarrollo humano, México se ha visto en la necesidad de crear más infraestructura de producción, suministro de materias primas entre otras generando con ello la interacción proyecto-ambiente. Sin embargo, esto ocasiona que existan cambios en las condiciones ambientales siendo variables en cuanto a su significancia, magnitud, duración, extensión etc.

Esta situación ha generado revertir o por lo menos reducir la tasa de deterioro mediante estrategias y mecanismos diferentes, destacando la Evaluación de Impacto Ambiental (EIA), como la herramienta que predice las consecuencias de un proyecto el cual se menciona en el capítulo 2.

Uno de los propósitos principales de EIA es predecir y evaluar las modificaciones lo más realmente posible, un modelo o escenario del estado futuro del ambiente con el proyecto, por ello el reto está en aplicar una metodología que reduzca el grado de subjetividad, por el cual se presenta algunas metodologías en el capítulo 3.

El proyecto que se toma de referencia en este trabajo es un complejo petroquímico dedicado a la producción de etileno ubicándose al sur del complejo petroquímico "La Cangrejera", con la finalidad de identificar los cambios en la zona se muestra una descripción ambiental en el capítulo 4.

De acuerdo con la Ley General del Equilibrio Ecológico de Protección Ambiental (LGEPA) dicha empresa debe obtener una autorización de impacto ambiental, por tal motivo es de interés las metodologías de evaluación de impacto ambiental, con el propósito de realizar una comparación con la metodología propuesta que se muestra en el capítulo 5.

Una vez realizadas las comparaciones, se muestra en el capítulo 6 los resultados obtenidos de las dos diferentes metodologías presentadas; así como también se hace mención de los resultados obtenidos a los que se llegó en el proyecto de interés de acuerdo con los parámetros identificados.

Las técnicas que se utilizaron en el proyecto son cuantitativas y ambas cuentan con sistemas de evaluación sistemático y riguroso, significando que ambas son útiles en el proyecto de interés, entre esto y más se menciona las conclusiones y recomendaciones con respecto al proyecto en el capítulo 7.

Capítulo 1. Introducción

Ante el déficit de etileno en el país, y con el propósito de disminuir la dependencia del mercado externo, Braskem-Idesa propone construir un complejo de craqueo dentro del territorio mexicano con una capacidad de producción anual de 1000 KTA (Kilotoneladas por año) de etileno a partir de etano y de 1000 KTA de polietileno (de aquí en adelante referido al proyecto), que estará localizado en el municipio de Nanchital de Lázaro Cárdenas del Río (en lo sucesivo Nanchital). Lo que representaría el primer proyecto de esta magnitud dentro de territorio mexicano, ya que incorpora al mercado nacional una producción que equivale al 80% de la producción actual de derivados de etileno de los dos complejos existentes, aportando una importante producción de productos petroquímicos (polietileno de alta y baja densidad principalmente) para satisfacer la demanda del país. (SEMARNAT, 2011)

Por lo anteriormente expuesto, es obligatorio presentar el trámite de Manifestación de Impacto Ambiental (MIA) en su modalidad particular para las actividades de preparación del sitio y para el cambio de uso de suelo en materia de impacto ambiental, siendo de interés uno de los requisitos del trámite "Técnicas de Evaluación de Impacto Ambiental".

La presente tesis muestra el uso de una metodología cuantitativa de evaluación de impacto ambiental en el proyecto Etileno XXI que previamente ya fue autorizado por la Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) para su creación.

1.1 Justificación

En teoría, la finalidad de las Evaluaciones de Impacto Ambiental (EIA) es minimizar los impactos negativos que generan conflictos ambientales (Bojórquez-Tapia y Ongay Delhumeau 1994). El óptimo desarrollo del proceso de evaluación de impacto ambiental implica que las MIA's presenten información para resolver conflictos ambientales y tomar decisiones (Bregman y Mackenthun 1992, Wathern 1992); Sin embargo, aún las manifestaciones más recientes presentaron deficiencias en el análisis de información y no fueron de mejor calidad, esto indica que el procedimiento de evaluación de impacto ambiental en México continua presentando los problemas y deficiencias propios de las primeras etapas de implementación.¹

¹García de la Rosa Ofelia. "Análisis de los estudios de evaluación de impacto ambiental en proyectos carreteros y estudio de caso de la carretera La Venta-Colegio Militar". UNAM.2001.

Entre las deficiencias administrativas destacan la interferencia política (Weitzenfeld, H 1990. Ross, W.A. 1994), la escasa participación del público (Pisanty-Levy 1993; Tongcompou y Harvey 1994) la falta de control en la calidad de las manifestaciones (Ezcurra, 1995) y la elaboración de las MIA's como mero trámite (Bojórquez-Tapia 1989, Left 1990, Ross 1994).

Los problemas técnicos se pueden catalogar en tres rubros:

- 1) Recursos humanos
- 2) Información
- 3) Métodos aplicados

En el primero destaca la carencia de expertos y de equipos multidisciplinarios (Bojórquez-Tapia 1989,Left 1990), en el segundo, la falta de información local y actualizada, así como de investigación académica (Pisanty-Levy, J. 1993, Sánchez 1993, Ezcurra 1995) Por último, los métodos utilizados para evaluar impactos generalmente se caracterizan porque no son rigurosos, no incorporan principios ecológicos (Bojórquez-Tapia 1989, Bruns et al 1994) y no consideran los efectos acumulativos, los sinérgicos, la controversia generada entre sectores sociales y los diferentes plazos de ocurrencia de impactos (Dunker y Beanlands 1986 Contant y Wiggings 1991, Canter y Canty 1993, Wood y Bailey 1994 Gilpin 1995).

1.2 Objetivos

1.2.1 Objetivo General

Realizar una comparación de técnicas de evaluación de impacto ambiental aplicadas al proyecto Etileno XXI utilizando la legislación ambiental mexicana.

1.2.2 Objetivos Particulares

- Demostrar la importancia de las técnicas de evaluación cuantitativas sobre las cualitativas a través de un cuadro comparativo.
- Identificar los componentes ambientales que se afectarán por el proyecto Etileno XXI considerando el método Batelle Collumbus.
- Analizar la información recopilada para el proyecto Etileno XXI de diferentes fuentes gubernamentales utilizando el método Batelle Collumbus.
- Comparar los resultados obtenidos empleando el método Batelle Collumbus y el método Bojórquez-Tapia previamente autorizado por la SEMARNAT.

1.3 Alcances y limitaciones

- Se obtendrá un resultado de impacto ambiental similar al que presenta la empresa Braskem Idesa.
- Se utilizará información solicitada por la SEMARNAT sobre la evaluación de impacto ambiental del proyecto.
- Metodológicamente se basará en la investigación documental y la información proporcionada "Descripción del sistema ambiental y señalamiento de la problemática ambiental detectada" por la SEMARNAT presentada en la MIA-particular del proyecto.

Capítulo 2. Marco teórico

2.1 Concepto de evaluación de impacto ambiental

Las **evaluaciones de impacto ambiental** (EIA) son herramientas de planeación que proporcionan información objetiva acerca de las consecuencias previstas por la ejecución de proyectos de desarrollo. Dado que las EIA generalmente forman parte de un proceso para la toma de decisiones, el tema clave es que tan bien están soportadas las decisiones sobre un proyecto. (Lawrence, D.P.1993)

Las EIA tienen una clara connotación de origen humano, dado que son las actividades, proyectos y planes desarrollados por el hombre, los que inducen las alteraciones en el medio ambiente, las cuales pueden ser o bien positivas, cuando implica un mejoramiento de la calidad ambiental, o bien negativas cuando ocurra la situación contraria. (Gómez, 1994)

Las EIA admiten varias aproximaciones en su definición, las cuales son interdependientes entre sí, estas son:

- Aproximación conceptual: Se percibe la EIA como un proceso de análisis conducente a la formación de un juicio previo, lo más objetivo posible, acerca de la importancia que tienen los impactos generados por actividades desarrolladas por el hombre-proyectos y las posibilidades existentes para su prevención de ocurrencia, o reducción a niveles aceptables.
- Aproximación administrativa: Se enfoca la EIA como un procedimiento de carácter administrativo, que conduce a la aceptación, modificación o rechazo definitivo de un proyecto sometido a evaluación, con base en la incidencia que éste tenga en el medio.
- Aproximación técnica: Se entiende la EIA como un proceso analítico que busca identificar (relaciones causa-efecto), predecir (cuantificar), valorar (interpretar), prevenir y comunicar (participación pública) la evaluación de impacto ambiental de un proyecto en caso de que este sea ejecutado. De esta forma, la EIA desde la aproximación técnica, representa la herramienta fundamental para la toma de decisiones desde la esfera de la administración o soporte para la aproximación administrativa. (Gómez, 1994)

En cualquier caso en que se hagan evaluaciones de impacto, el estudio debe girar en torno a cuatro puntos:

- a) Identificación causa-efecto
- b) Predicción o cálculo de los efectos y magnitud de los indicadores del impacto.
- c) Interpretación de los efectos ambientales
- d) Prevención de los efectos ambientales

Se suele llamar de vectores ambientales al aire, al agua y al suelo porque son los portadores de los efectos, derivados de ciertas causas, hacia los últimos receptores; el hombre, el biotopo y la biocenosis.

Los **indicadores de impacto ambiental** son los elementos o parámetros que proporcionan la medida de la magnitud del impacto, al menos en su aspecto cualitativo y también si es posible, en el cuantitativo. La adopción de unos indicadores de impacto y su selección es un punto fundamental de estos trabajos de evaluación.

El aspecto central de una EIA es mostrar el significado de una alteración introducida en el ambiente por un determinado proyecto. Así, aunque pudiésemos encarar esa alteración bajo perspectivas técnicas, conceptuales o filosóficas, siempre habrá un juicio sobre la significación del mismo, además de la dificultad natural, siempre presente y con efectos estocásticos. (Espejo Ochoa, 2006)

2.2 Evaluación de impacto ambiental en México

2.2.1 Antecedentes

El deterioro paulatino pero creciente del ambiente hizo posible que en Norteamérica se iniciará el primer movimiento social a favor de la conservación y protección de la naturaleza. Por ello es necesario hacer un breve recuento de la historiografía de las áreas naturales, y la influencia que tuvieron en la conservación de los recursos naturales de México. (SEMARNAT, 2002)

La manifestación de impacto ambiental adquirida hace apenas unas dos décadas en nuestro país por parte de la administración pública federal, fue a partir de 1977, en los proyectos de infraestructura hidráulica teniendo el registro de algunos de los primeros estudios que se realizaron a continuación:

- "Aplicación preliminar del método de evaluación de impacto ambiental ocasionado por la planta nucleoeléctrica de Laguna Verde. 1976".
- "Rescate de fauna en el embalse de Chicoasén, Chiapas (Cañón de Sumidero, 1978)".

- "Estudios de impacto ambiental del distrito de riego número 93 de Tomatlán, Jalisco. 1981-1982".
- "Manifestación de los impactos ambientales derivados del proyecto Calcáreos de Quintana Roo. 1985".
- "Manifestación preliminar de impacto ambiental del proyecto Calica en Quintana Roo. 1986". (García de la Rosa, 2001)

Es así como adquirimos esta herramienta ambiental para prevenir, mitigar, restaurar los daños al medio ambiente y a los recursos naturales renovables del país que ha evolucionado con el propósito de garantizar un enfoque preventivo que ofrezca certeza pública acerca de la viabilidad ambiental de diversos proyectos de desarrollo. (Gómez García Miriam, 2008)

2.3 Política y legislación ambiental nacional

Como una primera ley en materia de protección ambiental en México se encuentra la Ley Federal para Prevenir y Controlar la Contaminación Ambiental, publicada en Marzo de 1971 durante el sexenio de Luís Echeverría; dicha ley no precisaba los alcances ni las sanciones a las que se hacían acreedores quienes la infringieran, además no se tenía el fundamento adecuado en muchos aspectos involucrados en la protección del medio ambiente, tales como la calidad del agua, partículas suspendidas en la atmosfera, residuos, entre otros, sin dejar de mencionar que no se consideró el impacto ambiental y que esta ley era de carácter correctivo y no preventivo (Puente, 2004).

El inicio formal de la EIA se registró en 1988, año en que se publicó la Ley General del Equilibrio Ecológico y la Protección al Ambiente (LGEEPA) la cual establece el informe preventivo de impacto ambiental como un recurso de uso opcional por parte del promovente de una obra o actividad, y su Reglamento en materia de Evaluación de Impacto Ambiental (REIA). Después de 8 años de desarrollo institucional, en 1996 se reforma la LGEEPA. (Luna Martínez Jesus.2006)

Estas reformas tuvieron su justificación en las deficiencias que mostró su aplicación; varias de esas deficiencias se enfrentaban durante la aplicación de la EIA. La reforma tuvo como objetivo paralelo fortalecer la aplicación de los instrumentos de la política ambiental, particularmente la EIA, todo ello orientado a lograr que esos instrumentos cumplieran con su función, que se redujeran los márgenes de discrecionalidad de la autoridad y que se ampliara la seguridad jurídica de la ciudadanía en materia ambiental. (SEMARNAT, 2002)

Cabe señalar que esta ley sirve de columna dorsal de toda la reglamentación sobre el establecimiento y mantenimiento de las reservas naturales, así como la protección de áreas y especies.

Para ello, en los casos que determine el reglamento que al efecto se expida, quienes pretendan llevar a cabo alguna de las siguientes obras requerirán previamente la autorización en materia de impacto ambiental de la Secretaría de Recursos Naturales y Medio ambiente (SEMARNAT):

- I. Obras hidráulicas, vías generales de comunicación, oleoductos, gasoductos, carboductos y poliductos.
- II. Industrias del petróleo, petroquímica, química, siderúrgica, papelera, azucarera, del cemento y eléctrica.

Entre otras, con este sustento jurídico, la EIA se caracteriza por:

- A) Establecer con claridad la obligatoriedad de la autorización previa en materia de impacto ambiental para la realización de obras y actividades que generen o puedan generar efectos significativos sobre el ambiente o los recursos naturales y que no puedan ser reguladas en forma adecuada a través de otros instrumentos.
- B) Prever la posibilidad de que la SEMARNAT, solicite la evaluación de impacto ambiental de obras y actividades que aún cuando no están expresamente señaladas en la ley, puedan causar desequilibrio ecológico. No obstante y con el objeto de no invalidar el beneficio derivado de una lista precisa, la ley incluye en esta disposición el procedimiento que debe seguir la autoridad para determinar si procede o no la presentación de una MIA.
- C) Simplificar la EIA de las obras y actividades que no son competencia de la Federación evitando la proliferación de procedimientos administrativos en los que intervienen distintas autoridades.
- D) Vincular la EIA con el ordenamiento ecológico del territorio y con la regulación de los usos del suelo prevista en la legislación sobre asentamientos humanos.
- E) Ampliar la participación pública de la evaluación de impacto ambiental.
- F) Establecer la figura de las "Manifestaciones de Impacto Ambiental (MIA)" de los Estudios de Riesgo (ER) y de los Informes Preventivos (IP), como los medios que disponen los particulares para obtener la autorización previa de la autoridad.

G) Definir la responsabilidad de los profesionistas que participan en la formulación de las MIA's.

Es importante destacar que para la MIA, a partir de la reforma del 2000 a la LGEEPA, se considera sólo dos modalidades: MIA Particular y Regional, así como en el caso de su Reglamento de Impacto Ambiental (REIA), en primer lugar para hacerlo compatible jurídica y administrativamente con el texto de la ley vigente. Como resultado de lo anterior el reglamento actual se caracteriza por (SEMARNAT,2002):

- Incluir una relación detallada de las actividades y obras que requieren la autorización previa en materia de impacto ambiental, así como de aquellas que están exentas de esta obligación.
- Reducir las modalidades de la MIA, de tres tipos que se fijaban en la versión anterior (general, intermedia y específica) a dos: la modalidad particular y la regional. Continúa además la consideración del Informe Preventivo (IP) como la modalidad más simple de notificación a la autoridad.
- Promueve una participación más activa de la sociedad mediante los procedimientos de consulta pública y de reuniones públicas de información.
- Fija las medidas de seguridad que deben acatar los promoventes.
- Específica que la Procuraduría Federal de Protección al Ambiente (PROFEPA) realizará los actos de inspección y vigilancia del cumplimiento de las disposiciones.
- Incluye las sanciones que procederán en caso de violación de las disposiciones jurídicas ambientales.
- Establece procedimientos particulares para la dictaminación de las consultas o manifestaciones que hacen los particulares.
- Introduce conceptos avanzados en las metodologías de evaluación como son: La evaluación de impacto acumulativos, sinérgicos y residuales, así como la evaluación regional de varios proyectos o de uno solo, cuando éste pueda tener un impacto de gran alcance territorial.
- Se adecuan los tiempos de respuesta de la autoridad ambiental a los que establece la LGEEPA.
- Se establece la figura de seguros y garantías a los promoventes para que exista un aval que responda por ellos en caso de que no cumplan con las condiciones que disponga la autoridad para el desarrollo del proyecto. (SEMARNAT,2002)

A continuación, en la tabla 2.1 se presenta de forma general la evolución de las leyes promulgadas en México en materia ambiental. (Cabrera Cruz Bernardo Elías Rene, 2004)

Tabla 2.1 Evolución de leyes en materia ambiental (Gómez, 2008)

Ley	Año	Características
Ley federal para prevenir y controlar la contaminación ambiental	1971	No son claros los alcances y sanciones. No se fundamentan los parámetros ambientales (calidad del agua, partículas a la atmosfera, residuos, etc.) No contempla como concepto el impacto ambiental Es de carácter correctivo y no preventivo
Ley federal de protección al ambiente	1982	Por primera vez se legislan aspectos en donde puede haber contaminación, los efectos de esta y se dictan medidas para mejorar el ambiente. Incorpora la evaluación del impacto ambiental, pero sin las formas ni los procedimientos. Se establece un ordenamiento ecológico.
Ley General de Equilibrio Ecológico y Protección al Ambiente (LGEEPA)	1988	Establece el informe preventivo (IP), ordenamiento ecológico general y local, y la política ambiental. Reglamenta aspectos de la contaminación. Se clasifican los estudios de impacto ambiental en tres modalidades: general, intermedia y especifica.
Ley General de Equilibrio Ecológico y Protección al Ambiente (LGEEPA)	1996	La evaluación del impacto se modifica en el reglamento de la LGEEPA en materia de evaluación de impacto ambiental. Se sigue dictaminando en forma de IP o MIA se presenta en dos modalidades: regional o particular

En síntesis, la evolución de las leyes en materia ambiental en México busca identificar y predecir los impactos ambientales que un proyecto producirá en caso de ser aprobado por la secretaria (SEMARNAT).

Capítulo 3. Técnicas de Evaluación de Impacto Ambiental

3.1 Concepto

Existen numerosos modelos y procedimientos para la evaluación de impacto sobre el medio ambiente o sobre alguno de sus factores, algunos generales, con pretensiones de universalidad, otros específicos para situaciones o aspectos concretos; algunos cualitativos, otros operando con amplias bases de datos e instrumentos de cálculo sofisticados, de carácter estático, dinámico, etc.

Hay que destacar que la mayoría de estos métodos fueron elaborados para proyectos concretos, resultando por ello complicada su generalización, aunque resultan válidos para otros proyectos similares a los que dieron origen al método en cuestión. (Fernández Conesa Vitora, 1993)

La clasificación de los métodos más usuales responde al siguiente esquema (Estevan Bolea, 1984). ²

Sistemas de red y gráficos

- Matrices de interacciones causa-efecto (Leopold, de Cribado).
- CNYRPAB.
- Bereano.
- Sorensen.
- Guías Metodológicas del MOPU.
- Banco Mundial.

Sistemas de valoración de impactos

- Clasificación de Dickert.
- Clasificación de Estevan Bolea.

Sistemas cartográficos

- Superposición de capas de información (transparentes)
- Mc Harg.
- Tricart.
- Falque.

-

² Arroyo Pinto-Cotan Santiago. INERCO. Sevilla.2007

Métodos basados en parámetros, índices e integración de la evaluación

- Método de Holmes.
- Método de la Universidad de Georgia.
- Método de Hill-Schechter.
- Método de Fisher-Davies.

Métodos cuantitativos

- Método del Instituto de Batelle-Collumbus.
- Método de Domingo Gómez Orea.

A continuación se proporciona una breve descripción de los métodos mencionados, siendo necesario remitirse a la fuente original en caso de requerirse mayor nivel de detalle.

3.2 Sistemas de red y gráficos

Matrices de interacción causa-efecto (Leopold, de Cribado)

Métodos más utilizados, para todo tipo de proyecto.

Características

Está limitada a un listado de 100 acciones que pueden causar impacto al ambiente representadas por columnas y 88 características y condiciones ambientales representadas por filas, lo que significa un total de 8800 posibles interacciones, aunque en la práctica no todas son consideradas. (Leopold et. al; 1973)

- La matriz consta de los siguientes componentes:
 - Identificación de las acciones del proyecto que intervienen y de los componentes del medio ambiente afectado.
 - Estimación subjetiva de la magnitud del impacto, en una escala de 1 a 10, siendo el signo (+) un impacto positivo y el signo (-) un impacto negativo.
 - Evaluación subjetiva de la importancia o intensidad del impacto, en una escala de 1 a 10. Ambos valores se colocan en la casilla correspondiente, en la parte superior izquierda o inferior derecha respectivamente (Leopold et,al;1973).

Ventajas

- Estimación subjetiva de los impactos, mediante la utilización de una escala numérica.
- Comparación de alternativas.
- Determinación de interacciones.

- Identificación de las acciones del proyecto que causan impactos de menor o mayor magnitud e importancia.
- Es aplicado en forma expeditiva.
- Es de bajo costo.
- Pocos los medios para aplicarla y su utilidad en la identificación de efectos.

Desventajas

- Subjetivo.
- No considera impactos indirectos del proyecto (no permite visualizar las interacciones ni los impactos de un factor afectado sobre otros factores).

<u>CNYRPAB</u> (Departamento de Desarrollo y Planificación Regional del Estado de Nueva York).

Características

El método consiste en identificar los impactos de un proyecto, para lo cual se utilizan dos matrices:

- La primera matriz, semejante a la de Leopold, relaciona las condiciones iniciales del ambiente y el estado de los recursos naturales con las posibles acciones sobre el medio.
- Se marcan las casillas a las que corresponde un impacto directo y se califican con un número de orden.

Los impactos calificados se cruzan o interrelacionan entre ellos, mediante el empleo de una segunda matriz, para identificar los impactos secundarios o indirectos. (INE. Estudio Metodológico de las tecnologías de evaluación de impacto ambiental.1993)

- Las interrelaciones entre impactos primarios o directos y secundarios o indirectos, se clasifican en los siguientes tipos:
 - Importantes y directos.
 - o Importantes e indirectos.
 - Menos y directos.
 - o Menores e indirectos.
- Mediante estas dos matrices es posible detectar los impactos directos y los indirectos producidos por una determinada acción e inversamente, se pueden analizar también las causas que dan lugar a un impacto dado.

Ventaja

• Pretende analizar los impactos de forma sistemática pero no pueden evaluarse, simplemente se efectúa una identificación de los mismos.

Desventaja

 No se refleja una situación dinámica, puesto que no se incluye la variable tiempo.

Bereano

Características

Está basado en una forma matricial para la evaluación de los impactos asociados a las estrategias tecnológicas alternativas.

Se utilizó para evaluar el impacto ambiental de las diferentes alternativas del trazado del oleoducto de Alaska.

Trata de establecer una comparación entre alternativas tomando como base determinados parámetros, seleccionados de manera que reflejan los efectos diferenciales que las distintas alternativas producirán sobre el medio ambiente global.

Requiere de un "método de generación" para establecer dichos parámetros.

La generación de los parámetros se realiza utilizando un método de grafos, denominado "grafos de efectos".

La realización de los parámetros adecuados se efectúa del modo siguiente:

Hay varios grafos correspondientes a varios "puntos de partida". El número de puntos de partida debe ser suficiente como para que resulte exhaustiva la consideración de efectos generados, pero de modo que su número sea limitado.

- Cada grafo se establece en dos etapas, la primera comienza en el punto de partida y para cada nivel se desagregan las acciones y los posibles sucesos (acciones que componen el proyecto y sucesos como los accidentes).
- Después en la segunda etapa se desagregan los efectos producidos por estas acciones o sucesos.
- En las dos etapas se interrelacionan los dos tipos de relaciones lógicas:
 - Relaciones de degradación pura.
 - Relaciones de causa-efecto.

Una vez elegidos los parámetros, cada alternativa se valora en el conjunto de estos parámetros de forma matricial.

El procedimiento de evaluación puede continuar mediante el empleo de las siguientes técnicas.

- Cálculo de valor ponderado.
- Agregación de valor ponderado a los diferentes efectos de cada variante.

Ventajas

- Es pluridisciplinar.
- Se pueden considerar los aspectos dinámicos de los impactos.
- Se refiere principalmente a los parámetros de evaluación.
- Enfocado en la diferenciación de efectos entre variantes.
- Apropiado para proyectos singulares, de gran importancia (oleoductos, autopistas etc.).

Desventajas

- El factor tiempo no aparece explícitamente.
- Las técnicas de grafos empleadas hacen difícil el establecimiento de relaciones lógicas complejas (interacciones, retroalimentación, efectos secundarios).
- El sistema de medida de los impactos se efectúa a un nivel muy global.
- No precisa los agentes involucrados ni su localización. (INE "Estudio Metodológico de las tecnologías de evaluación de impacto ambiental", 1993)

Sorensen

Características

Identifica y analiza los impactos de los diferentes usos del espacio, con varias alternativas, sobre el medio natural.

Se utilizan varias tablas y gráficas, es decir:

- Tabla cruzada (usos-acciones).
- o Tabla cruzada (acciones-condiciones iniciales).
- Un gráfico (condiciones iniciales "Finales, acciones correctivas").

Se ha utilizado en EU para la planificación de zonas costeras.

Ventajas

- Es dinámico.
- Analiza las diferentes interacciones entre los usos, acciones y efectos.
- Muestra claramente los procesos con sus relaciones de causa-efecto.
- Puede ser tratado informáticamente.
 Desventajas
- No es posible realizar ninguna estimación cuantitativa de los impactos.

Guías metodológicas del MOPU

Características

La dirección general del medio ambiente, por medio de Ministerios de Obras Públicas y Urbanismo (actual MOPT), ha publicado una metodología específica para los casos concretos de construcción de carreteras y ferrocarriles, grandes presas, repoblaciones forestales y aeropuertos, teniendo previsto aumentar el número de las mismas dedicadas a otro tipo de actuaciones.

Estas guías metodológicas parten de una sólida base descriptiva de cada parámetro potencialmente afectable, así como de las acciones causantes de los posibles impactos,

Es decir, una descripción de la situación preoperacional a la que sigue una previsión de impactos, incluyendo criterios y metodologías de evaluación, en las que se incluyen varias alternativas que pueden ser utilizadas según convenga para el caso en cuestión. (INE "Estudio Metodológico de las tecnologías de evaluación de impacto ambiental", 1993)

Ventajas

 Se hace una evaluación cualitativa (generalmente de tipo matricial) y cuantitativa (generalmente de tipo Batelle) del impacto, a la que sigue una relación de medidas preventivas y correctoras, los posibles impactos residuales y un programa de vigilancia y control.

Desventajas

 Metodología específica para los casos concretos de construcción de carreteras y ferrocarriles, grandes presas, repoblaciones forestales y aeropuertos.

Banco Mundial

Características

El Banco Internacional de Reconstrucción y Fomento (BIRF), más conocido como Banco Mundial, ha estudiado cientos de proyectos para los que se había solicitado su financiación y se incluyó también en esos estudios la variable ambiental.

En esta metodología, los objetivos se fijan en la identificación y medición de los efectos de los proyectos sobre el medio ambiente señalando los puntos generales que sirven de base para analizar las posibles consecuencias del proyecto.

Indicando la información precisa y el tipo de experiencia necesaria que se requieren para estudiar con profundidad los aspectos ambientales de los diferentes proyectos y proporcionando una estructura para la formulación de procedimientos y pautas para el examen y la consideración sistemática de los factores ambientales. (INE "Estudio Metodológico de las tecnologías de evaluación de impacto ambiental", 1993)

3.3 Sistemas cartográficos

Superposición de capas de información

Características

Se trata de la elaboración de mapas de impacto obtenidas matricialmente.

Se realiza una superposición de los mismos en los que se señalaran con diferentes colores los impactos indeseables. (INE "Estudio Metodológico de las tecnologías de evaluación de impacto ambiental", 1993)

Mc Harg

Características

Se conoce con el nombre del padre de la planificación ecológica, mediante el establecimiento de mapas de aptitud del territorio para diversos usos.

Evalúa las posibilidades de ordenación o planificación y sus consecuencias sobre el medio. (INE "Estudio Metodológico de las tecnologías de evaluación de impacto ambiental", 1993)

Se presenta en mapas de afectación óptima del suelo a los diversos usos del mismo.

Ventajas

- Mapifica los factores (clima, geología, fisiografía, hidrología, suelos, flora, fauna, y uso actual del suelo).
- Se interpretan los datos del inventario en relación con las actividades objeto de localización.
- Valores a los procesos (permite obtener una zonificación del área total).

Tricart

Características

Recoge el conjunto de datos y conocimientos científicos para comprender la dinámica del medio natural y destacar las zonas o factores que pueden limitar determinados usos del territorio.

Los datos de entrada son: Cartografía de todos los elementos naturales (litología, relieve, cubierta vegetal, etc.).

Se identifican, localizan y analizan los diferentes procesos y sistemas en una interacción dinámica.

Ventajas

Útil para la ordenación de los recursos hídricos.

Falque

Características

Método similar al ideado por McHarg diferenciándose únicamente en una descomposición más amplia del análisis ecológico del territorio.

3.4 Métodos basados en parámetros, índices e integración de la evaluación

Método de Holmes

Características

Se basa en el hecho de que muchos de los parámetros utilizados para los estudios medioambientales no son cuantificados, con lo cual el empleo de indicadores numéricos no es válido.

La evaluación vendrá dada por un juicio subjetivo de un equipo evaluador.

Los factores ambientales se clasifican por orden de importancia.

Se comparan cualitativamente las variantes del proyecto por medio de un parámetro previamente seleccionado con lo cual se encuentra la mejor variante en función de su importancia y de su posición respecto a los factores ambientales. (INE "Estudio Metodológico de las tecnologías de evaluación de impacto ambiental", 1993)

Desventajas

• No se tienen en cuenta el carácter dinámico de los fenómenos ambientales y no se efectúa ninguna valoración cuantitativa.

Método de la Universidad de Georgia

Características

Consiste en agregar los valores de 56 componentes ambientales, marcando, así su importancia relativa.

Para cada componente se emplean dos valores, uno para la situación presente y otro para la futura.

Considera simultáneamente el presente y el futuro, así como sus soluciones alternativas.

Ventajas

- Mejor intervención pública mediante la que se determina el peso o valor de los componentes ambientales.
- Puede participar el público, en la fase de determinación del peso de los componentes o atributos del ambiente.

Desventajas

- Ponderación de los atributos subjetiva.
- Insensible a las variaciones importantes del peso de uno de los atributos.

Método de Hill-Schechter

Características

Parte de una reflexión crítica de los métodos de análisis costos-beneficio, estimando que no permiten integrar en todos los elementos y en particular los efectos intangibles. (Fernández Conesa Vicente, 1993)

Ventajas

- Presenta un índice agregado de satisfacción global de los criterios.
- Indicado para el estudio de problemas medioambientales concretos.
- Sencillez que se da en el enfoque y por la flexibilidad para adaptarse a los distintos tipos de problemas.
- Permite obtener una visión de conjunto muy estimable de las unidades e inconvenientes de cualquier alternativa socioeconómica.

Desventajas

- Supone siempre un enfoque de equilibrio parcial y en que da este método lugar solo a conclusiones validas cuando el problema que se trata de analizar tenga una repercusión despreciable en la estructura de precios reales.
- Tiende a dar subestimaciones, sobre todo, de los costos sociales. (INE "Estudio Metodológico de las tecnologías de evaluación de impacto ambiental", 1993)

Método de Fisher-Davies

Características

Con este método se pretende evaluar los impactos ambientales en el marco de un proceso integrado de planificación.

El método consta de tres etapas:

- La evaluación de la situación de referencia o preoperacional, es una medida de la degradación del ambiente, puntuando de 1 a 5 de forma subjetiva según juicio de un equipo evaluador multidisciplinar y de acuerdo con la importancia del parámetro medioambiental.
- La matriz de compatibilidad relaciona los elementos considerados importantes en la fase precedente y las acciones derivadas del proyecto. Se califica también de 1 a 5 cada casilla de interacción precedida del signo + o – según el impacto sea positivo o negativo. Esta matriz ha de hacerse para cada una de las alternativas.
- La matriz de decisión reagrupa los valores atribuidos a los elementos importantes en las diversas alternativas. A la vista de esta matriz se adaptarán las decisiones correspondientes al proyecto estudiado.

3.5 Métodos cuantitativos

Bojórquez-Tapia

Características

Metodología que se ha utilizado para gran parte de los proyectos lineales eléctricos que se han gestionado en los últimos años.

El método consiste básicamente:

- Identificación de variables (Listas de verificación)
- Definición de variables.
- Identificación de interacciones (matriz binaria).
- Definición de interacciones.
- Evaluación de impactos.
- Agrupación por clase de significancia.
- Balance de impactos.

Ventajas

- No se duplican las actividades del proyecto con respecto a los impactos.
- La información es organizada en un formato simple no se elaboran matrices complejas.

- Los enjuiciamientos sobre los impactos son rastreables, no queda sujeta a la subjetividad del evaluador.
- Es un procedimiento sistemático y objetivo en el que todos los impactos se evalúan bajo los mismos criterios.
- Existe mayor certidumbre en los resultados y se facilita la racionalidad en la toma de decisiones.
- Los datos reales, más fácilmente obtenidos para los criterios básicos, pueden ser separados de los valores más subjetivos enjuiciados para los criterios complementarios.
- Los resultados permiten al equipo multidisciplinario estimar la eficiencia de las medidas de mitigación y en consecuencia se obtienen los impactos residuales, asimismo se facilita explorar las alternativas.
- Las matrices matemáticas pueden ser una herramienta válida para la predicción de impactos.
- Los usos de índices de impacto tienen el principio precautorio de minimizar el riesgo público.
- Los criterios de significancia básicos y complementarios comprenden diferentes componentes y características de los impactos y con ello se obtiene una evaluación más objetiva.

Desventajas

 Una excepción, en cuanto a los criterios de calidad, es la existencia de normas ambientales que están clasificados como presente o ausente. cuando existe incertidumbre en la determinación del valor de un criterio se le asigna la cifra más alta. (De la Rosa García Ofelia, 2001)

Batelle Collumbus

Características

- Método diseñado para evaluar el impacto de proyectos relacionados con recursos hídricos, lineales, nucleares y otros.
- Tipo de lista de verificación con escalas de ponderación que contempla la descripción de los factores ambientales.
- Tiene cuatro niveles:
 - Categorías ambientales
 - Componentes ambientales
 - Parámetros ambientales
 - Medidas ambientales

Ventajas

- Es un método sistematizado para la comparación de alternativas, se da un valor final que fuerza la decisión.
- Presenta un sistema de alertas.

- Sirve para apreciar la degradación del medio como resultado del proyecto tanto en global como en sus distintos sectores.
- Asigna pesos mediante procedimiento informático (de tipo Delphi¹).
- Es un método con poca subjetividad.
- Se pueden comparar alternativas.
- De acuerdo a SEMARNAT (2002), este método en comparación con otros, es de mayor función utilitaria al identificar, predecir e interpretar los impactos ambientales.

Desventajas

- Presenta una lista de indicadores limitada.
- Las funciones de valor son rígidas y pueden dar una errónea sensación de objetividad.
- La agregación de impactos hace que los valores puedan quedar olvidados ante las cifras globales.
- Recomienda valores fijos para los pesos en proyectos similares.
- Al ser un método tan sistematizado y rígido, con unos pasos establecidos, y con requerimientos de información específica local, puede conducir a que se efectúen evaluaciones incompletas si no se cuenta con datos precisos o no se sigue el proceso metodológico.³
- Exige una buena base de información del ambiente afectable.

3.6 Tabla comparativa de las diferentes técnicas de evaluación

En relación con las diferentes técnicas que fueron presentadas a continuación se presenta en la tabla 3.1 la comparación de las técnicas, mencionando el método, sus características, los usos, así como resaltando sus ventajas y desventajas.

_

³ Guillermo Espinoza García, "Fundamentos de evaluación de impacto ambiental", Chile, 2001. Pág. 114).

Tabla 3.1 Comparación de las diferentes técnicas de evaluación (Estevan Bolea, 1984; Fernández Conesa Vitora, 1993; INERCO, 2007; INE, 1993; SEMARNAT, 2002; Guillermo Espinoza García, 2001)

Método	Técnica	Características	Usos	Ventajas	Desventajas
	Matriz de	- Limitada a un listado	-Identifica las	- Es de bajo costo	- Subjetivo
	interacciones	de 100 acciones.	acciones del	- Es aplicado en	- No considera
	causa-efecto.	- Representado por	proyecto que	forma expeditiva.	impactos indirectos.
		columnas y filas.	intervienen y de	- Pocos los medios	
		- Estimación	los	para aplicarla y su	
		subjetiva.	componentes	utilidad en la	
			del medio	identificación.	
			ambiente.		
	CNYRPAB	- Se utiliza dos	- Es posible	- Analiza los	- No se refleja una
	(Departamento	matrices, la primera	detectar los	impactos de	situación estática,
	de desarrollo y	es similar a la matriz	impactos	forma	puesto que no se
	planificación	Leopold.	directos y los	sistemática.	incluye la variable
	regional del	- Segunda matriz	indirectos y se		tiempo.
	Estado de	identifica los	puede analizar		
	Nueva York).	impactos secundarios	las causas que		
		o indirectos.	dan lugar a un		
			impacto.		
	Bereano	- Está basado en	- Evaluación en	- Es	- El sistema de medida
		forma matricial.	estrategias	pluridisciplinar.	de los impactos se
Sistema de		-Toma como base	tecnológicas	- Se pueden	efectúa a nivel global.
red y		determinados	alternativas.	considerar los	- El factor tiempo no
gráficos		parámetros,	- Apropiado para	aspectos	aparece
		seleccionados de	proyectos	dinámicos de los	explícitamente.
		manera que reflejan	singulares, de	impactos.	
		efectos diferentes.	gran		
		- Utiliza técnicas de	importancia		
		grafos.	(oleoductos,		
			autopistas).	- 1. / .	
	Sorensen	- Identifica y analiza	- Se ha utilizado	- Es dinámico	-No es posible realizar
		los impactos de los	en EU para la	- Analiza las	ninguna estimación
		diferentes usos del	planificación de	diferentes	cuantitativa de los
		espacio.	zonas costeras.	interacciones	impactos.
		- Se utilizan varias		entre los usos,	
		tablas y gráficas.		acciones y	
				efectos.	

Continuación...

	Guías metodológicas del MOPU	- Parte de una sola base descriptiva de cada parámetro, así como de las acciones causantes.	- Específica para construcción de carreteras y ferrocarriles, grandes presas, repoblaciones forestales y aeropuertos.	- Evaluación cualitativa (tipo matricial) -Evaluación cuantitativa (tipo Batelle).	Metodología específica para los casos concretos de construcción de carreteras y ferrocarriles, grandes presas, repoblaciones forestales y aeropuertos.
	Banco Mundial	- Los objetivos se fijan en la identificación y medición de los efectos sobre el proyecto.	- Señala los puntos generales que sirven de base para analizar las posibles consecuencias.	- Indica información precisa.	- Se requiere necesaria experiencia para estudiar con profundidad aspectos ambientales.
	Superposición de capas de información	- Elaboración de mapas, obtenidas matricialmente.			
	Mc Harg	- Evalúa posibilidades de ordenación o planificación y sus consecuencias sobre el medio.	- Se presenta en mapas de afectación óptima del suelo a los diversos usos del mismo.	- Mapifica los factores (clima, geología, fisiografíaPermite tener una zonificación del área total.	
Sistemas cartográficos	Tricart	- Destaca las zonas o factores que pueden limitar determinados usos del territorio.	- Útil en la ordenación de los recursos hídricos.	- Se identifican, localizan y analizan los diferentes procesos y sistemas en una interacción dinámica.	
	Falque	- Método similar al ideado por McHarg diferenciándose únicamente en una descomposición más amplia del análisis ecológico.	- Se presenta en mapas de afectación óptima del suelo a los diversos usos del mismo.	- Mapifica los factores (clima, geología, fisiografía. -Permite tener una zonificación del área total.	

Continuación...

	Método de Holmes	 - La evaluación viene dada por un juicio subjetivo. - Los factores ambientales se clasifican por orden de importancia. 		- Evaluación subjetiva.	 No son cuantificados los parámetros. No se toma en cuenta el carácter dinámico.
	Universidad de Georgia	- Agrega los valores de 56 componentes ambientales. - Para cada componente se emplean dos valores, uno para situación (presenta y futura).		- Mejor intervención pública.	 Ponderación de los atributos subjetiva. Insensible a las variaciones importantes del peso de los componentes del medio ambiente.
Métodos basados en parámetros, índices e integración de la evaluación	Hill-Schecheter	- Evalúa y sopesa los beneficios y costes.		- Indicado para problemas de impacto ambiental concretosSencillez que se da en el enfoque y flexibilidad a adaptarse.	- Tiende a dar subestimaciones de los costes sociales.
	Fisher Davies	Consta de tres etapas: -Evaluación de la situación de referencia o preoperacionalMatriz de compatibilidad -Matriz de decisión.	-Evalúa los impactos ambientales en el marco de un proceso integrado de planificación.		

Continuación...

	Bojórquez-	- Se basa con dos	- Se ha utilizado	- No se elaboran	- Incertidumbre en el
	Tapia	tipos de criterios para	en proyectos	matrices	valor de algunos
		evaluar impactos	lineales	complejas.	criterios por
		(criterios básicos y	eléctricos.	- Procedimiento	encontrarse las
		complementarios).		sistemático y	normas clasificados en
				objetivo en donde	presente o ausente.
				todos los	
				impactos se	
Cuantitativos				evalúan bajo los	
				mismos criterios.	
	Batelle	- Tipo de lista de	- Diseñado para	- Sistematizado	- Presenta una lista de
	Collumbus	verificación con	evaluar	para la	indicadores limitada.
		escalas de	proyectos con	comparación de	- Las funciones de
		ponderación.	recursos	alternativas.	valor son rígidas y
			hídricos,	- Se da un valor	pueden dar una
			lineales,	final que fuerza la	errónea sensación de
			nucleares y	decisión.	objetividad.
			otros.	- Asigna pesos.	

De acuerdo con la información presentada en la tabla 3.1 se comenta que las técnicas están clasificadas de forma general en cualitativas y cuantitativas, en el caso de las primeras corresponden a técnicas que hacen sus mediciones en términos monetarios (caso relación beneficio-costo) cuya principal limitante es la dificultad que representa el establecer la valoración económica a los distintos factores que definen la calidad del medio (aire, contaminación de aguas etc.)

Los métodos cuantitativos consisten en la aplicación de escalas valorativas para los diferentes impactos, medidos originalmente en sus respectivas unidades físicas.

En estos dos grupos, el primero permite la identificación y síntesis de los impactos (listas de chequeo, matrices, redes, diagramas, métodos cartográficos) y el segundo grupo incorpora de forma más efectiva, una evaluación que se puede explicar las bases de cálculo (Batelle, hoja de balance y matriz de realización de objetivos entre otras).

Capítulo 4. Descripción del proyecto

4.1 Delimitación del área

4.1.1 Ubicación

El sitio en el que se pretende realizar el proyecto de interés, se ubica aproximadamente a 2.5 km al sur del complejo petroquímico la Cangrejera, en el km 3290 del camino de acceso a la nueva caseta de cobro No. 16 tramo Resistol- El Chapo, en el municipio de Nanchital de Lázaro Cárdenas del Río, Veracruz, México; a 7 km, al sureste de la ciudad de Coatzacoalcos y a 3.5 km al este de la ciudad de Nanchital de Lázaro Cárdenas del Río. (SEMARNART, 2011).

4.1.2 Dimensiones del proyecto

El polígono que se utilizó para el desarrollo del proyecto, cuenta con una superficie de 191.59 ha y se ubica en las siguientes coordenadas UTM, tomando como referencia el centroide del polígono, X: 1998465.37 Y: 355171.81.

Está conformada por cinco lotes (todos dentro de un mismo predio) donde se llevó a cabo las actividades de desmonte y despalme para la conformación de terraplenes y plataformas.

Debido a que los cinco lotes integran una sola propiedad, la distribución de la superficie mencionada anteriormente se presenta a continuación en la tabla 4.1.

Tabla 4.1 Áreas que abarca la propiedad (SEMARNAT, 2011)

Área	Superficie ha
Área a desmontar y despalmar para instalaciones definitivas	117.73
(terraplenes y plataformas) de la segunda etapa del proyecto.	
Área a desmontar y despalmar para instalaciones	17.25
provisionales de la segunda etapa del proyecto	
Derecho de vía de ductos de PEMEX	26.61
Área de conservación	30
Sección 1	
Sección 2	
Sección 3	
Área total del predio	191.59

4.2 Descripción del sistema ambiental

4.2.1 Localización de la zona de estudio

Corresponde a una localización estratégica, dentro del gran polo industrial y petroquímico existente que representa el sur del estado de Veracruz, con las ventajas que esto representa relacionadas con la logística de proveeduría e infraestructura existente como se describe a continuación (SEMARNART, 2011):

- El área del proyecto se ubica a tan sólo 10 km por vía terrestre del puerto de Coatzacoalcos, lo que facilita la movilización de recursos (equipo y maquinaria) provenientes de otros países para ser utilizados dentro del proyecto.
- Está a 100 m de distancia de vías férreas, lo que representa una conexión a una vía de comunicación para transporte de carga mediante este medio, diversas materias primas estarán siendo transportadas mediante carros tanques ferroviarios.
- Cercanía a complejos petroquímicos de PEMEX, ya que estos abastecerán de la materia prima necesaria.

4.2.2 Ecología

4.2.2.1 Especies y poblaciones terrestres

Pastizales, praderas y vegetación natural

En la tabla 4.2 se presenta la superficie de vegetación que será removida por el proyecto, de acuerdo a las actividades que se van a realizar y la que será sujeta al cambio de uso de suelo.

Tabla 4.2 Cobertura vegetal del sitio de interés (SEMARNAT, 2011)

Actividades	Superficie (ha)	Porcentaje (%)
Superficie del conjunto predial con vegetación forestal	122.1783	63.77
Superficie del conjunto predial sin vegetación forestal	69.4190	36.23
Total	191.5973	100%

De la superficie total, se despalmó un total de 134.98 ha siendo la distribución de superficies, por tipo de vegetación a impactar como se presenta en la tabla 4.3.

Tabla 4.3 Vegetación que será afectada por el proyecto (SEMARNAT, 2011)

		Superficie	Porcentaje
Tipo de Veg	etación y/o uso de suelo en el sitio de interés	(ha)	(%)
	Selva mediana subperennifolia	79,9139	41,7
Forestal	Palmar	15,5786	8,13
	Área afectada de vegetación forestal	95,4925	49,83
No forestal	Pastizal inducido y cultivado	39,4895	20,61
Ä	Area total afectada por el proyecto	134,982	70,44

En el anexo A, se enlistan las especies de los tipos de vegetación que se encuentran en el área de influencia del proyecto y alrededores, así como su categoría de riesgo de acuerdo con la NOM-059-SEMARNAT.2001.

4.2.2.2 Acuáticas

Vegetación natural

Palmar: Esta unidad de vegetación está presente de manera discontinua en el sitio de interés y en muchas ocasiones está continua en los pastizales inundables y otros cuerpos de agua dentro del Sistema Ambiental Particular (SAP), ya que se trata de una comunidad vegetal favorecida por las inundaciones, así como también por los incendios forestales. Sin embargo, ecológicamente resultan muy importantes, ya que brindan nichos ecológicos muy diferentes y específicos para la flora y fauna, siendo posible encontrar especies restringidas a este tipo de vegetación.

Esta unidad se caracteriza por la dominancia en el estrato alto de una sola especie, el "Corozo" (attalea liebmannii).

En el anexo A Tabla A.1 se enlista para más información las especies que se encuentran en el estrato arbustivo y el estrato herbáceo en la tabla A.2.

Pastizales inundables: Estos pastizales son comunes en el sitio de interés y de dimensiones considerables. Su composición florística se basa en diferentes especies de gramíneas, para mayor información sobre las especies ver anexo A, tabla A.4.

Aves acuáticas

En el estado de Veracruz se encuentran 57 especies endémicas regionales (México y Norte de Centroamérica), encontrándose 57 especies exclusivas de México y cuatro subespecies endémicas (Straub, 2007).

De acuerdo con estudios de avifauna que se realizaron en el área de sitio de interés, se registró un total de 85 especies de aves, los cuales se ubican en 62 géneros representando a 15 órdenes y 30 familias. Los órdenes con mayor número de especies fueron los paseriformes (46 especies) y Accipitriformes (8 especies). (SEMARNAT, 2011)

Las especies que se registraron de forma indirecta se muestran en el anexo C, la tabla C.1.

Características fluviales

Con la información que se presentó en la manifestación de impacto ambiental del proyecto, los cuerpos de agua cercanos están relacionados a las corrientes más caudalosas que son Coatzacoalcos y el río Tonalá el cual cubre una superficie de 2600 km².

4.2.2.3 Hábitat y comunidades terrestres

Cadenas alimentarias

Con la información que se presenta durante este capítulo de las diferentes especies que se encuentran en la zona de interés se realizó la siguiente tabla, con la finalidad de utilizarse en el cálculo del índice de calidad.

Tabla 4.4 Hábitat en el municipio de Nanchital de Lázaro Cárdenas del Río (SEMARNAT, 2011)

Especie	Omnívoros	Herbívoros	Carnívoros
Aves	81		
Mamíferos	11		3
Herpetofauna	2	12	8
Reptiles	6	15	17

4.2.2.4 Uso del suelo

El área del proyecto se localiza en una zona en la que el uso de suelo es industrial de acuerdo con el Programa de desarrollo urbano de la zona conurbana Coatzacoalcos-Nanchital de Lázaro Cárdenas del Río-Ixhuatán del Sureste.

En la zona circundante al sitio de interés se encuentran diferentes instalaciones industriales tales como: Quimir (dedicada a la producción de ácido fosfórico y fosfato de sodio), Resirene (dedicada a la producción de poliestireno cristal, poliestireno impacto y resinas estirenicas) así como los complejos petroquímicos de PEMEX por mencionar. (SEMARNAT, 2011)

Especies raras y en peligro de extinción

Con la finalidad de conocer las especies raras o en peligro de extinción de las plantas que habitan en la zona de interés de acuerdo con la NOM-059-SEMARNAT-2010 se muestra en la tabla 4.5 dichas especies y las especies de fauna que se encuentran consideradas como peligro se muestran en el Anexo D, tabla D.1.

Tabla 4.5 Especies raras y peligro de extinción (SEMARNAT, 2011)

Familia	Nombre	Categoría	CITES	Tipo de	Distribución
	común	NOM		registro	
cycadophyta	"amendaui"	P ¹		campo	Endémica
	"palmilla"	A ¹		campo	
Orchidaceae	"orquídea"		Apéndice	campo	
			1 ²		
Clusiaseae	"bariz"	A ¹		bibliográfico	

Nota: NOM-059-SEMARNAT-2010: A=amenazada, P=En peligro de extinción, Pr= Sujeta a protección especial; IUCN: LC=preocupación menor, VU= vulnerable, E=en peligro de extinción. CITIES: Apéndice III (especies que no están necesariamente amenazadas de extinción pero que podrían llegar a estarlo a menos que se controle estrictamente su comercio), Apéndice II (especies incluidas a solicitud de una parte que ya reglamenta el comercio de dicha especie y necesita la cooperación de otros países para evitar la explotación insostenible o ilegal de las mismas.

4.2.2.5 Diversidad de especies

Plantas: De acuerdo con la información registrada en la SEMARNAT se estiman 101 individuos pertenecientes a 22 especies, de las cuales 19 tienen en general, una abundancia baja. Las especies determinadas se encuentran repartidas en 18 familias y 22 géneros. (Ver figura 4.1)

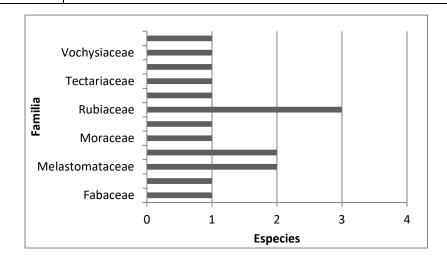
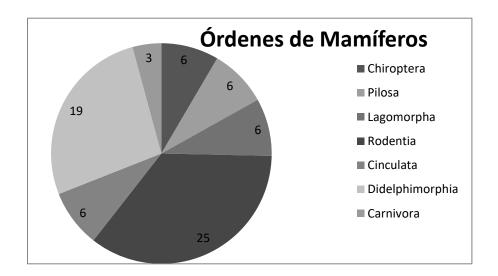


Figura 4. 1 Distribución de especies vegetales (SEMARNAT, 2011)


Aves: Se registró un total de 85 especies de aves, las cuales se ubican en 62 géneros representando a 15 órdenes y 30 familias. Los órdenes con mayor número de especies fueron los paseriformes (46 especies) y Accipitriformes (8 especies). Los registros indirectos se muestran en el anexo C tabla C.1.

Mamíferos: La región de Nanchital, Veracruz en los terrenos circundantes del área de estudio se han registrado 11 especies de mamíferos medianos y grandes (Herrera et al, 2008; Nava y Rosas, 2008).

Las especies se encuentran agrupadas en 16 órdenes, 13 familias y 15 géneros, de las cuales se destaca Dasyprocta mexicana como especie endémica.

A continuación se muestra la distribución de mamíferos en el sitio de interés en la Figura 4.2

Figura 4.2 Distribución de mamíferos en el sitio de interés (SEMARNAT, 2011)

Herpetofauna: Se obtuvo una lista con un total de 67 posibles especies de la herpetofauna del área de estudio, distribuidas en 22 especies de anfibios y 45 especies de reptiles pertenecientes a 49 géneros, 25 familias, cuatro órdenes y dos clases que representan el 18.7 % de la herpetofauna total del estado (Ver tabla 4.6)

Tabla 4.6 Distribución taxonómica de las especies de anfibio y reptiles (SEMARNAT, 2011)

Grupo taxonómico	Familia	%	Géneros	%	Especies	%
Ranas y sapos	7	28	14	29	20	30
Salamandras	1	4	1	2	2	3
Lagartijas	7	28	12	24	20	30
Serpientes	4	16	16	33	19	28
Tortugas	5	20	5	10	5	7
Cocodrilos	1	4	1	2	1	2
Total	25	100	49	0	67	100

Cadenas alimentarias

La herpetofauna del área de estudio está compuesta por 20 especies de anfibios, 12 de hábitos arborícolas (55%) y ocho especies de hábitos terrestres (36%) y dos especies que comparten hábitos terrestres- acuáticos (9%). (SEMARNAT, 2011)

Especies raras y en peligro de extinción

Las especies que se encuentran registradas en el SAP como anfibios y reptiles en peligro de extinción son las siguientes:

Tabla 4.7 Especies en peligro de extinción (SEMARNAT, 2011)

Mamíferos	Anfibios y reptiles
Serete	Ranita
	Rana
	Garrobo
	Garrobo
	Escorpión
	Tlaconete
	lagartija

4.2.3 Contaminación

4.2.3.1 Contaminación del agua

Pérdidas en las cuencas hidrográficas

Se presentan fuertes problemas de sobreexplotación local debido a la concentración de pozos, siguiendo con la tendencia de perforación de pozos, puede provocar intrusión salina. De acuerdo con los datos publicados en el DOF 2003, el acuífero presenta una recarga media anual de 172 millones de m³, una extracción natural comprometida de 9.7 millones de m³ y una extracción global para diferentes usos de 72.8 millones de m³ por lo que reporta una disponibilidad media anual de 125.5 millones de m³.

En resumen, a continuación se muestra en la tabla 4.8 las características del acuífero costero de Coatzacoalcos que es donde se encuentra más cercano la microcuenca del arroyo Gopalapa.

Tabla 4.8 Características del acuífero (SEMARNAT, 2011)

Nombre del acuífero	Costera de Coatzacoalcos
Descarga natural comprometida	970000 mm3 anual
Volumen concesionado de agua	36.94662 mm3 anual
subterránea	
Volumen de extracción consignado en	35.90000 mm3 anual
estudios técnicos	
Disponibilidad media anual de agua	125.55338 mm3 anual
subterránea	
Recarga media anual	172.20000 mm3 anual

Características de los ríos

De acuerdo con la declaratoria de clasificación del río Coatzacoalcos, sus afluentes (rio Calzadas, arroyo Gopalapa y arroyo Teapa y la laguna Pajaritos).

A continuación, se presenta la siguiente tabla 4.9 en donde se puede observar las propiedades de dichos ríos.

Tabla 4.9 Propiedades de los ríos cercanos al área del proyecto (Diario Oficial de la Federación, 2016)

Carga actual de contaminantes (mg/l)										
Parámetro	Zona									
	Día Caat		Día Calsadas	Δ ******	A ****	Laguna				
	Rio Coat	zacoalcos	Río Calzadas	Arroyo	Arroyo	Laguna				
				Gopalapa	Теара	Pajaritos				
DBO	2631	1974	881	26	819	1017				
Coliformes fecales			2	200						
Carbón inorgánico										
Nitrógeno inorgánico	617.5	211	0	30.7	391	167.8				
Fosfato inorgánico	39.2	11.4	0	3.3	23	11.8				
Pesticidas	134.6	32.7	0	5.87	191.38	7.2				
рН			6.5	5-8.5						
Solidos disueltos	2285	1023	588	18	1528	721				
sustancias toxicas				1						
Turbidez	87.4	25.9	0	0.5	340.9	1				

4.2.3.2 Contaminación atmosférica

Las emisiones al aire constituyen 84% de las emisiones y descargas totales, cerca de 70% de las emisiones al aire se refieren a SOx, mientras que casi 20% son compuestos orgánicos volátiles totales (COVT).

El 32% de los SOx se originan en las instalaciones marinas de Pemex Exploración y Producción (PEP), principalmente en los quemadores.

Cerca de 70% de las emisiones de SOx se liberaron por las instalaciones de PEMEX en el sureste del país, de las cuales 45% corresponde a instalaciones costa afuera.

El 91% de las emisiones de COVT proviene de la evaporación de hidrocarburos mientras que 9% se refiere a hidrocarburos liberados por procesos de combustión parciales. Las refinerías con 87% del total, son la principal fuente de las emisiones por evaporación registradas. (Informe, PEMEX 1999)

Se menciona en la MIA que presenta el proyecto Etileno XXI "no se dispone de un sistema de monitoreo de la calidad del aire, que pueda dar información sin embargo instituciones de investigación como el Centro de Ecodesarrollo de Veracruz, el Instituto de Ecología y la Organización para la Cooperación y el Desarrollo Económico (OECD) realizaron investigaciones sobre la problemática en la calidad del aire en la zona. Si bien no se cuenta con datos recientes las conclusiones fueron niveles bajos de partículas suspendidas, contaminación no

significativa de metales pesados, concentraciones altas de sulfatos, nitrógeno amoniacal, nitratos, calcio y potasio".

La calidad del aire se verá afectada por emisiones provenientes de maquinaria y equipo requeridos para las obras propuestas en el proyecto, las emisiones de gases de combustión incluyen básicamente óxidos de nitrógeno, monóxido de carbono, bióxido de azufre, de estos los NOx y SO₂.

4.2.4 Paisaje

Suelo

Material geológico superficial: El Sistema Ambiental Particular (SAP) se localiza en la providencia fisiográfica denominada Llanura Costera del Golfo Sur, específicamente en la subprovincia llanura Costera Inundable, las topoformas características son valles con llanuras, lomeríos y sierra. (INEGI, 2009).

De acuerdo con la carta geológica Coatzacoalcos E-15 1-4 Escala 1:250,000 (INEGI, 2003) en el SAP afloran dos unidades de tipos de rocas bien diferenciadas, las cuales corresponden a dos ambientes distintos que se aglutinan por su edad y origen. En este sentido, en el SAP se identifica una unidad con depósitos de origen fluvial del cuaternario Q y otra unidad con sedimentos del Mioceno (Tm) junto con sedimentos del Jurásico (J).

Con base en lo anterior, la zona donde se ubica el SAP se puede observar que el área está constituida por suelo aluvial cuaternario (Q AI), depósitos de mioceno y jurásico de origen costero en proceso de denudación y roca sedimentaria arsénica (Tm ar) y roca sedimentaria lutita (Te lu) así como conglomerado polimictico que presenta una composición muy diversa de fragmentos o clastos de diferentes tipos sin identificar.

Relieve y caracteres topográficos: Relieve denudativo-erosivo de colinas, lomeríos y mesas

Planicie irregular con colinas residuales: Es un área formada como resultado del modelado que se ha llevado a cabo sobre una estructura tabular de depósitos antiguos del mioceno, consistente en capas de estratificación paralela, arenosa con horizontes intercalados de margas y lutitas. El relieve tiene un arreglo irregular con una topografía que se caracteriza por la diversidad en la amplitud vertical y horizontal de la morfología, la cual se diferencia en escalones con distintos niveles y con anchura de interfluvios muy variables y numerosos. La disección fluvial es escasa y de poca profundidad, aunque localmente se presenta con mayor incisión. La red hidrográfica tiene escasa integración; no hay continuidad con los sistemas de mayor orden y muchas veces de carácter arreico.

Laderas de lomeríos altos diseccionados por barrancos profundos: Corresponden a un relieve de origen erosivo con barrancos de una fase posterior de disección, ya que presentan una disposición topográfica de mayor altura y más alejada de los niveles de base. En términos generales, comparten los mismos atributos de la morfología que los lomeríos bajos.

Los servicios de deforestación y limpieza comprenden dos aspectos principales:

- 1) Desmonte de árboles, remoción de vegetación y retiro de tocones y raíces.
- 2) Despalme que consistirá en la remoción de la capa de suelo vegetal (orgánica) a la profundidad necesaria (aproximadamente 40 cm) para llegar al nivel del terreno considerado apto para el despalme del terraplén.

Cimentaciones: A reserva de contar con la información precisa de dimensiones y cargas de las estructuras del proyecto se proporcionan a continuación algunas recomendaciones preliminares para ser tomadas en cuenta en el diseño de las cimentaciones.

Cimentaciones superficiales: Con los cortes del movimiento de tierras que se harán en las zonas de lomas y de Transición se retirarán los suelos superficiales poco competentes y se descubrirán los horizontes de roca menos alterados, siendo factible recurrir en tales casos a cimentaciones superficiales para soportar incluso a las estructuras más grandes del proyecto.

Las cimentaciones superficiales que convendrá aplicar para estructuras grandes o muy extensas serán losas continuas, desplantadas a 1 o 2 metros de profundidad. Y en el caso de estructuras secundarias, con distribución de carga más puntual o concentrada, podrá hacerse uso de zapatas aisladas o continúas desplantadas a una profundidad mínima de 1m.

Aire

Olor y visibilidad: Debido a la alteración de la calidad del aire por el incremento de partículas de polvo derivado del movimiento de materiales hacia el sitio de interés y fuera del mismo para la disposición final de los mismos y el tránsito de vehículos, dichos impactos serán temporales durante las etapas de preparación del sitio, atenuados de manera natural por la dispersión propia de la zona y los vientos dominantes de la región. (SEMARNAT,2011)

Los principales afectados por estas emisiones son los propios trabajadores de la obra vial, ya que se encuentran expuestos directamente durante toda la jornada laboral.

Los impactos se consideran de un tipo bajo a medio, adversos, mitigables, locales, temporales, no significativos y reversibles de acuerdo con la metodología de Bojórquez-Tapia.

Entre las medidas de mitigación que se propusieron para la prevención son las siguientes:

- -La implementación de un Programa de Mantenimiento de Maquinaria y Equipo.
- -La implementación de distintos frentes de trabajo para no concentrar maquinaria en un solo punto.
- -La colocación de fuentes fijas en zonas menos sensibles o alejada de los receptores potenciales.
- -Aprovechamiento de topografía y barreras naturales para aislamiento de ruido.

Presencia de olores (descomposición orgánica del material vegetal proveniente de despalme y desmonte)

Sonidos: De acuerdo al monitoreo de ruido perimetral realizado en Enero de 2011 considerando las fuentes fijas en el área y receptores potenciales, se registraron niveles de ruido que van de 52.57 dB a 58.90 dB en las poblaciones de Pollo de Oro y Lázaro Cárdenas, y de 64.34 dB a 82.5 dB en las empresas del sector petroquímico situadas en el área. (SEMARNAT, 2011)

<u>Agua</u>

Presencia del agua, Interfase Agua-Tierra, Olor y materiales flotantes.

Actualmente el río Coatzacoalcos en su cuenca baja, forma un sistema ecológico rico en recursos naturales renovables y que se encuentra en franca convivencia con el desarrollo industrial en la región. La cuenca del río Coatzacoalcos concentra los complejos petroquímicos más importantes del país.

El río Coatzacoalcos y su cuenca (incluyendo los sistemas de humedales y lagunas, la selva baja perennifolia inundable, manglares, popales, playas y dunas) presentan fuertes problemas de contaminación entre Minatitlán y su desembocadura (Coatzacoalcos) debido principalmente a la actividad industrial de los complejos petroquímicos e industrias químicas en la región, así como por el tráfico de buques petroleros en el puerto de Coatzacoalcos.

De acuerdo a investigaciones sobre la calidad del agua en la zona, algunos de los conflictos ambientales del río se pueden resumir en la existencia de altas concentraciones de hidrocarburos fósiles y grandes concentraciones de metales en el área del río.

Cabe mencionar que el arroyo Teapa es utilizado como vertedero de desechos por varias industrias presentando un gran deterioro ambiental lo cual influye negativamente en el ecosistema del río Coatzacoalcos. (SEMARNAT,2011)

Área de superficie del agua

De acuerdo con el estudio específico del arroyo Gopalapa, este arroyo es intermitente y desemboca al rio Coatzacoalcos, se origina a partir de los escurrimientos de una pequeña cordillera es aproximadamente 100 metros sobre el nivel del mar (msnm).

La longitud del arroyo principal agua arriba del sitio en estudio es de 5300 m aproximadamente y aguas abajo es de 18200 m.

De acuerdo con los datos publicados en el Diario Oficial de la Federación (DOF 2003) relacionados con la disponibilidad de agua en el acuífero costera de Coatzacoalcos, Estado de Veracruz, el SAP se ubica en el Acuífero Costera de Coatzacoalcos (clave 3012).

La microcuenca del arroyo Gopalapa se ubica en el acuífero costero de Coatzacoalcos, este acuífero cubre aproximadamente una superficie de 2600 km² y se encuentra en el extremo sureste del estado de Veracruz. Limita al norte con el Golfo de México, al sur con el paralelo 17º 53', al oriente con el río Tonalá que sirve de límite con el estado de Tabasco y oeste con una línea imaginaria que coincide sensiblemente con el meridiano que pasa por cerro de San Martín.

Márgenes arboladas y geológicas

Los acuíferos someros constituidos por depósitos aluviales presentan espesores de 40 a 50 metros y funcionan como acuíferos libres, recibiendo una alimentación vertical por la infiltración del agua de lluvia, que posiblemente sea la componente más importante de la recarga total.

En la porción occidental del margen izquierdo del río Coatzacoalcos, los acuíferos están constituidos en la unidad identificada como sedimentos arenosos cubiertos en la mayor parte del área por formaciones aluviales. En estos sedimentos arcillosos, los acuíferos funcionan como confinados y semiconfinados donde el confinamiento superior está constituido por depósitos

aluviales y el confinamiento inferior está constituido por las formaciones arcillosas del terciario.

En la porción oriental del río Coatzacoalcos, donde se ubica el SAP, desde el margen derecho del río Coatzacoalcos hasta el río Tonalá la principal variación geológica es que los espesores de los sedimentos arenosos son mayores sobre todo hacia el estado de Tabasco.

4.2.5 Aspectos socioeconómicos

Valores Educacionales y Científicos

Arqueológicos: De acuerdo con la información existente del Instituto Nacional de Antropología e Historia (INAH) las zonas arqueológicas de mayor relevancia en el Estado de Veracruz se encuentran lejanas al Sitio del Proyecto. Las zonas arqueológicas más cercanas al sitio de interés son:

Tres zapotes: Aproximadamente a 120 km. Al noroeste del sitio de interés.

San Lorenzo Tenochtitlan: Aproximadamente a 53 km. Al suroeste del sitio de interés.

La Venta: Aproximadamente a 33 km, al este del sitio de interés.

Los municipios de Nanchital de Lázaro Cárdenas e Ixhuatlán del Sureste no cuentan con zonas arqueológicas registradas, sin embargo en la manifestación de impacto ambiental se realizó una solicitud formal al INAH para verificar en su base de datos la presencia o ausencia de sitios con interés arqueológicos dentro del SAP. (M.A, 2011)

Valores históricos

Arquitectura y estilos, Religiosos y culturales: Nanchital de Lázaro Cárdenas del Río cuenta con un monumento a Lázaro Cárdenas y una plaza central con una catedral, palacio municipal y quiosco central, existe además un museo fotográfico en la cabecera municipal. (M.A, 2011)

Culturas (Grupos étnicos y religiosos)

De acuerdo con la información recabada de la (SEMARNAT, 2011) se identificaron las comunidades que tienen una lengua indígena, siendo de interés la comunidad de Nanchital puesto sólo se tiene una población ya que es el lugar donde se encuentra el proyecto de interés.

Estilos de vida (Patrones culturales)

El SAP está inmerso en cuatro municipios: Coatzacoalcos, Ixhuatlán del Sureste, Moloacán y Nanchital de Lázaro Cárdenas del Río. Adicionalmente se identificaron 7 comunidades dentro del área de influencia para los cuales se realizó un estudio de línea base social.

Interacciones sociales

Las comunidades que se encuentran cercanas en el área del proyecto son: El Chapo, Ejido 5 de Mayo, Lázaro Cárdenas, Mundo Nuevo, Nahualapa, Nanchital de Lázaro Cárdenas del Río y Pollo de oro.

Donde la comunidad Pollo de oro se encuentra entre 1-2 km radio de distancia del sitio por lo que se genera un alto grado de atención por la vulnerabilidad y susceptibilidad de la comunidad. (INEGI,2005)

Capítulo 5. Comparación metodológica

5.1 Metodología de evaluación de impacto ambiental por Braskem Idesa

5.1.1 Matriz de identificación de interacciones potenciales "Matriz tipo Leopold"

Se presentó dos matrices, una para los aspectos ambientales (medio físico, biótico y paisaje) y otra para los aspectos sociales.

La matriz contempla en las columnas las actividades que pueden generar impacto y los componentes ambientales y sociales que pueden verse afectadas, para cada matriz, correlacionando los factores del proyecto (PS) y los atributos ambientales (FA) y o sociales. Esta correlación se presenta como "Matriz de identificación de interacciones potenciales" (Matriz de Leopold).

Esta organización en dos matrices representa una de las modificaciones realizadas por Braskem Idesa en la organización de la metodología de identificación de impactos (Leopold y Bojórquez-Tapia).

De acuerdo con la información ambiental y señalamiento de la problemática ambiental, identificaron las fuentes de cambio (acciones del proyecto) que pueden afectar el SAP, las cuales se muestran en la tabla 5.1 y en la tabla 5.2 los factores ambientales y en la tabla 5.3 los factores sociales.

Tabla 5.1 Fuentes de cambio que pudiesen generar impacto ambiental y social (SEMARNAT, 2011)

Etapa		Actividad							
-	PS1	Adquisición de tierras							
	PS2	Contratación y transporte de personal (administración, operativos, mano de obra, entre otros)							
	PS3	Movilización de recursos (equipo, materiales, combustibles, entre otros)							
	PS4	Rescate y reubicación de organismos (Vegetación y fauna)							
Preparación	PS5	Desmonte y despalme							
del sitio	PS6	Apertura y rehabilitación de caminos de acceso							
	PS7	Obras provisionales (Campamento administrativo y de servicios industriales, sanitarios portátiles, entre otros)							
	PS8	Excavación y cortes							
	PS9	Rellenos, compactación de plataformas y terraplenes							
	PS10	Transporte y disposición de materiales (despalme, cortes y							
		bancos de préstamo)							
	PS11	Delimitación de área ecológica para conservación							

Tabla 5.2 Factores ambientales del SAP que pudieran verse afectados por el proyecto (SEMARNAT, 2011)

Parámetro	Componente		Factor ambiental (FA)
	Aire	FA1	Calidad
		FA2	Olores
		FA3	Nivel de ruido
	Suelo	FA4	Relieve
		FA5	Calidad
_		FA6	Erosión
Abiótico		FA7	Uso actual
	Hidrología	FA8	Calidad
	superficial	FA9	Uso actual (arroyo
			Gopalapa)
		FA10	Dinámica natural
	Hidrología	FA11	Calidad
	subterránea	FA12	Uso actual
		FA13	Superficie de infiltración
	Flora	FA14	Abundancia
		FA15	Diversidad
		FA16	Distribución
		FA17	Especies endémicas
		FA18	Especies en estatus
		FA19	Especies de interés
517.1			comercial y/o cultural
Biótico	Fauna	FA20	Abundancia
		FA21	Riqueza
		FA22	Distribución
		FA23	Especies endémicas
		FA24	Especies en estatus
		FA25	Especies de interés
			económico y/o cultural
Paisajístico	Paisaje	FA26	Calidad visual
		FA27	Fragilidad visual
		FA28	Visibilidad

Tabla 5.3 Factores sociales del SAP que pudieran verse afectados por el proyecto (SEMARNAT, 2011)

Parámetro	Componente		Factor social				
	Actividades	FS1	Salud y seguridad ocupacional				
	económicas	FS2	Derechos laborales				
		FS3	Relaciones laborales				
		FS4	Acceso a oportunidades				
			laborales				
		FS5	Sector laboral formal				
		FS6	Sector laboral informal				
		FS7	Especies de interés económico				
	Aspectos	FS8	Relación con grupos				
	culturales		vulnerables (indígenas,				
			religiosos)				
		FS9	Vestigios arqueológicos y				
			áreas con valor histórico				
		FS10	Paisaje y calidad estético-				
			visual				
		FS11	Identificación con el entorno				
Social		FS12	Aceptación social (licencia				
Social			social para operar)				
		FS13	Preocupaciones, agravios,				
			molestar social				
	Procesos	FS14	Migración				
	demográficos	FS15	Interacción y relación con				
			comunidades				
	Salud humana	FS16	Incidentes de salud y				
			morbilidad comunitaria				
		FS17	Acceso a servicios públicos				
		FS18	Paz y seguridad				
		FS19	Desarrollo humano (calidad de				
			vida)				
	Dinámica	FS20	Condición y valor de suelo				
	espacial		(aptitud para actividades				
			humanas)				
		FS21	Estado de vías de				
			comunicación				
		FS22	Condiciones de trafico				
		FS23	Propiedad y uso de suelo				

5.1.2 Metodología de Bojórquez Tapia

La Metodología de evaluación de impacto ambiental que presentan en su manifestación de impacto ambiental es conocida como (Bojórquez-Tapia), la cual se basa en dos tipos de criterios para evaluar impactos. Sin embargo, se menciona en la manifestación de impacto ambiental del proyecto, algunas modificaciones para "disminuir la controversia en la evaluación ambiental de la social e incluir factores más estrictos". (SEMARNAT, 2011)

Con la finalidad de dar a conocer las modificaciones de la metodología se menciona de forma breve su procedimiento de uso:

5.1.2.1 Cálculo de índices

Índices (básico, complementario, intensidad de impacto y significancia.)

La metodología de cálculo de índices (o tablas matemáticas) consta de cuatro índices de evaluación de interacciones, cada uno con 9 posibles calificaciones en cada criterio que los conforma:

Índice Básico (IB): Conformado por la evaluación de tres criterios: Intensidad, Extensión y Duración (IED), cada uno de los tres teniendo la posibilidad de obtener una calificación máxima de 9, (9+9+9=27).

$$IB = \frac{1}{27}(I + E + D)...$$
 (ecuación 5.1)

Índice Complementario (IC): Conformado por la evaluación de tres criterios: Sinergia, Acumulación y Controversia (SAC), cada uno de los tres teniendo la posibilidad de obtener una calificación máxima de 9 (hasta 27).

$$IC = \frac{1}{27}(S + A + C)$$
 ... (ecuación 5.2)

Índice de Impacto II: Conformado por el efecto sinérgico del IB con respecto al IC, resultando en posibles incrementos en IB si IC>0.

$$II=IB^{(1-IC)}...$$
 (ecuación 5.3)

Significancia de impacto (SI): Conformado por los cambios ocasionados por la falta o existencia de medidas de mitigación (M), teniendo la posibilidad de obtener una calificación máxima de 9 (al ser un sólo criterio, llega hasta 9).

$$SI=II\left(1-\frac{1}{9}(M)\right)...$$
 (ecuación 5.4)

Adicionalmente, se condiciona que los criterios básicos (IB) no pueden tener una calificación de 0 ya que no existiría un impacto, por lo que su calificación mínima es de 1 sobre 9 (teniendo como mínimo 1 y como máximo 9). Por lo tanto los resultados de la significancia de impacto (SI) no puede ser menor a 1/9.

Debido a lo anterior, una de las modificaciones que presentan de dicha metodología fue reducir el máximo de calificación de 9 a 3, respetando la proporcionalidad.

De acuerdo con la metodología, los valores de significancia de impacto (SI) se priorizan en cuatro clases de significancia de acuerdo a su resultado:

No significativo (0-0.25)

Poco significativo (0.25-0.49)

Significativo (0.50-0.74)

Muy significativo (0.75-1)

Como se observa en la ecuación 5.1 el IB no puede ser menor a 1/9 ya que el impacto no existiría. Sin embargo, como puede observarse en los valores de SI mencionan que los impactos no significativos se encuentran en el rango de 0-0.25. Con este motivo en la metodología de evaluación de impacto ambiental reorganizan los valores de significancia de la siguiente manera:

Sin impacto (0-0.111)

Impacto no significativo (0.112-0.334)

Impacto poco significativo (0.335-0.556)

Impacto significativo (0.557-0.778)

Impacto muy significativo (0.779-1)

Finalmente, el cálculo de los índices de evaluación que utilizan ya con las modificaciones anteriormente mencionadas son:

Índice Básico (IB) $IB = \frac{1}{9}(I + E + D) \dots \text{ (ecuación 5.5)}$

Dónde:

I= intensidad del impacto

E= extensión del impacto D=duración de la acción

El origen de la escala de valoración es 0.33 o 1/9, debido a que es el valor más bajo que se puede obtener para este índice, por lo que el rango siempre será 0.33≤IB≤1.

Índice complementario (IC). Para el cálculo de este índice se utilizan tres de los parámetros complementarios mediante las siguientes ecuaciones:

Para los componentes abióticos, bióticos y sociales debido a que cada uno cuenta con 4 calificaciones posibles (0, 1, 2 y 3) como se puede ver en el anexo E, tablas E.1, E.2 siendo su máxima calificación independiente posible es de 9 para los tres factores complementarios (S.A.C):

$$IC = \frac{1}{9}(S + A + C)$$
 ... (ecuación 5.6)

Para los componentes paisajísticos, debido a que cuentan con 2 calificaciones posibles (0 y 1) como se muestra en el anexo E tabla E.3. La máxima calificación posible independiente es de 3 para los tres factores complementarios (SAC):

En donde: $IC=\frac{1}{3}(S+A+C)$... (ecuación 5.7)

S=sinergia

A=acumulación

C=controversia

En este índice el origen de la escala es de 0, debido a que es el valor más bajo posible de obtener, por lo que sus valores siempre pueden ubicarse en el rango de $0 \le IC \le 1$.

Índice de impacto: El índice de impacto está dado por la combinación de los parámetros básicos y complementarios.

Cuando existe alguno de los parámetros complementarios (sinergia, acumulación y controversia), el valor del índice básico se incrementa; El índice de impacto se calcula a través de la siguiente ecuación:

En donde: $II=IB^{(1-IC)}$... (ecuación 5.8)

IB=índice básico

IC=índice complementario

Significancia de impacto (SI): Una vez obtenidos los indicadores IB, IC e II (básico, complementario y de impacto respectivamente) se procede a calcular la significancia del impacto, tomando en consideración la existencia y en su caso, eficiencia esperada de las medidas de mitigación (M), utilizando la siguiente ecuación:

Para todos los componentes (bióticos, abióticos, paisajísticos y sociales)

En donde:
$$SI=II * \left(1 - \frac{1}{3}(M)\right) \dots$$
 (ecuación 5.9)

II=Índice de impacto

M= Existencia y eficiencia de las medidas de mitigación

Los valores de la significancia del impacto (SI) que se obtienen se clasifican de acuerdo con la siguiente escala. (Ver tabla 5.4)

Tabla 5.4 Valores de significancia del impacto (SEMARNAT, 2011)

Tipo de impacto	Nomenclatura	Rango de valor
No existe impacto	Ne	0 a 0.111
Impacto no significativo	Ns	0.112-0.334
Impacto poco significativo	Ps	0.335-0.556
Impacto significativo	S	0.557-0.778
Impacto muy significativo	MS	0.779-1

Una vez realizadas las modificaciones en la metodología se presentan mediante dos matrices de tipo Leopold la identificación de interacciones potenciales ambientales y sociales en el área del proyecto. (Tabla 5.5 y 5.6)

Tabla 5.5 Identificación de interacciones ambientales por medio de la matriz tipo Leopold. (SEMARNAT, 2011)

			Etapa	de pre	paracio	ón del s	sitio						
Componente ambiental	Numero de factor	Factor ambiental	당 Adquisición de tierras	Contratación y transporte de personal (administración, operativas, mano de obra, entre otros)	ကြovilización de recursos (equipo, materiales, combustibles entreotros)	공 Rescate y reubicación de organismos (vegetación y fauna)	S Desmonte y despalme	ය ශී Apertura y rehabilitación de caminos de acceso	၂၀ Obras provisionales (Campamento administrativo y de servicios industriales, sanitarios portátiles, entre otros.	ထို့ Excavación y cortes	ട്ട് Rellenos, compactación de plataformas y terraplenes	Transporte y disposición de materiales (despalme, cortes y bancos o de préstamo)	장 Delimitación de área ecológica para conservación y resguardo 너 (zona de conservación y cuidado)
Aire	FA1	Calidad		\times	$\overline{}$		\times	\times	\times	\times	\times	\times	
	FA2	olores											
	FA3	Nivel de ruido		\times	$\overline{}$		\times	\times	\sim	\times	\times	\searrow	
Suelo	FA4	Relieve											
	FA5	Calidad											
	FA6	Erosión				\times	\times						
	FA7	Uso actual										\times	
Hidrología	FA8	Calidad											
superficial	FA9	Uso actual			\times					\times	\times		
	FA10	Dinámica natural			\supset			\times					
Hidrología	FA11	Calidad			\supset								
subterránea	FA12	Uso actual			\supset								
	FA13	Infiltración			\supset	\times				\times			

Continuación...

Flora	FA14	Abundancia			\times			\times				\times
	FA15	Diversidad										
	FA16	Distribución		\geq	\geq	\times	\times	\times			\times	\times
	FA17	Especies endémicas		\times				\times			\times	
	FA18	Especies en estatus		\times				\times			\times	
	FA19	Especies de interés										
Fauna	FA20	Abundancia		\times	><	\times	\times	\times			\times	\times
	FA21	Diversidad		\times	><	\times	\times	\times			\times	\times
	FA22	Distribución		><	><	\geq	><	\times			\times	><
	FA23	Especies endémicas		\times				\times				
	FA24	Especies en estatus		X			X	X			X	
	FA25	Especies de interés										
Paisaje	FA26	Calidad visual			\times					\geq		
	FA27	Fragilidad visual				\geq		\times	\geq			
	FA28	Visibilidad	_	_				>				\times

Negativa
Positiva

Tabla 5.6 Identificación de interacciones potenciales sociales por medio de la matriz tipo Leopold. (SEMARNAT, 2011)

	Componente Ambiental	Número y nombre de factor social	고 정 Adquisición de tierras	ട്ട് Contratación y transporte de personal (administración, operativos, mano de obra)	ക്ക് Movilización de recursos (equipo, materiales, combustibles entre otros)	ය Rescate y reubicación (vegetación y fauna)	ය G Desmonte y despalme	റ്റ് S Apertura y rehabilitación de caminos de acceso	ਹੁ Obras provisionales (campamento administrativo y de servicios industriales, sanitarios portátiles entre otros)	® 귱 Excavación y cortes	ନ୍ଦ Rellenos, compactación de plataformas terraplenes	Transporte y disposición de materiales (despalme, cortes y bancos de préstamo)	Delimitación de área ecológica para conservación y resguardo (zona de conservación y cuidado)
	FS1	Salud y seguridad ocupacional											
	FS2	Derechos laborales				<u> </u>	2	· · · · · · · · · · · · · · · · · · ·			<u> </u>	ζ	
S	FS3	Relaciones laborales											
Actividades económicas	FS4	Acceso a oportunidad es laborales											
Actividad	FS5	Sector laboral formal (PEA)											
	FS6	Sector laboral informal											
	FS7	Especies de interés económico o cultural											

Continuación...

	FS8	Relación con grupos vulnerables	
Aspectos culturales	FS9	Vestigios arqueológicos y áreas con valor histórico	
	FS10	Calidad estético- visual del paisaje comunitario	
	FS11	Identificación con el entorno	
	FS12	Preocupación y malestar social	
	FS13	Migración	
Procesos	FS14	Relación con comunidades y partes interesadas	
ana	FS15	Incidentes de salud y morbilidad comunitaria	
Salud humana	FS16	Acceso a servicios públicos	
	FS17	Paz y seguridad	
	FS18	Desarrollo humano	

Continuación....

	FS19	Condición y valor de			
=					
<u></u>		suelo	·	<u>/</u>	
especial		Movilidad			
Dinámica es	FS20	social			
	FS21	Condiciones			
		de tráfico			
		Propiedad y			
		uso de			\times
	FS22	suelo			

Interacciones positivas y negativas
Interacciones
negativas

Identificadas las interacciones a través de las matrices se presenta de forma cuantitativa los impactos ambientales y sociales que el proyecto ocasiona conforme a los criterios de evaluación de los índices básicos y complementarios que se muestran en el anexo E tablas E.1, E.2 y E.3.

Con la finalidad de dar a conocer los resultados finales de acuerdo con los criterios de evaluación en el capítulo 7.

5.2 Propuesta metodológica de evaluación de impacto ambiental

Se considera una visión más detallada de este método por ser uno de los estudios más serios de la valoración cuantitativa que por el momento existen. (INERCO, 2007)

5.2.1 Metodología de Batelle-Collumbus

Este método fue diseñado para evaluar el impacto de proyectos relacionados con recursos hídricos, aunque también se utiliza en evaluación de proyectos lineales, nucleares y otros. El método es un tipo de lista de verificación con escalas de ponderación que contempla la descripción de los factores ambientales, la ponderación valórica de cada aspecto y la asignación de unidades de importancia. (Guillermo Espinoza, 2001)

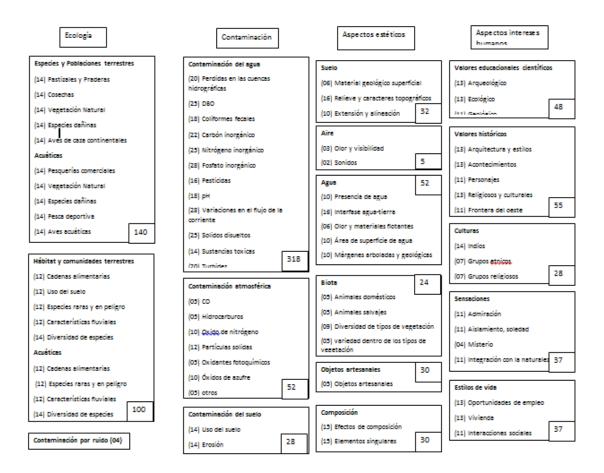
El sistema tiene cuatro niveles como se presenta en la tabla 5.7

Tabla 5.7 Niveles de acuerdo a Batelle-Collumbus (Guillermo Espinoza, 2011)

Nivel	Tipo de información	Desagregación propuesta
1	General	Categorías ambientales (4)
П	Intermedia	Componentes ambientales (18)
Ш	Especifica	Parámetros ambientales (78)
IV	Muy especifica	Medidas ambientales (1000)

Dentro de cada categoría existen componentes ambientales (en total 18) que se distribuyen de la siguiente forma:

- 1. Ecología: Especies y poblaciones, hábitat, comunidades y ecosistemas.
- 2. Contaminación ambiental: Agua, atmosfera, suelo y ruido
- 3. Aspectos estéticos: Suelo, aire, agua, biota, objetos y construcciones humanas y composición.
- 4. Intereses humanos: Educación- científica, histórica, cultura, sensaciones y estilo de vida.


Dentro de cada componente, una lista de verificación que contempla la descripción de los factores ambientales, la ponderación valórica de cada parámetro y la asignación de unidades de importancia, así como las posibles alteraciones con y sin proyecto. (Mendoza Cariño Mayra, 2010)

Los parámetros serán fácilmente medibles, estimándose por medidas o niveles, siendo los datos del medio, necesarios para obtener aquella estimación, la cual siempre que sea posible, se deducirá de mediciones reales. (Fernández Conesa Vicente –Vitora, 2006)

Es decir se trata de un formato en forma de árbol conteniendo los factores ambientales en cuatro niveles como se observa en la figura 5.1.

Figura 5.1 Clasificación de parámetros ambientales. (Ribeiro de Almeida Josimar, 2008)

5.2.2 Bases del método

El método está basado en cuatro grandes elementos a saber:

<u>Parámetros ambientales</u>: El método original contiene una lista de 78 parámetros ambientales (parámetro igual a factor), agrupados en 18 componentes y cuatro grandes categorías, que se pueden ver en la figura 5.1.

Ponderación de los parámetros y la obtención del índice ponderal: En cualquier ambiente, algunos factores ambientales son más importantes que los otros, ya sea por su productividad, su estado de conservación, etc. El índice ponderal es el mecanismo que permite reflejar esta importancia y se denominan en Unidades de Índice Ponderal (UIP). El método originalmente asigna unos pesos como se muestra en la figura 5.1, que pueden ser modificadas por el grupo de evaluadores.

Expresión de los factores ambientales en unidades conmensurables (Calidad ambiental o índice de calidad ambiental): Cada uno de los factores ambientales se expresa a través de unidades diferentes que hacen que no se puedan comparar entre ellos directamente (por ejemplo, no se pueden comparar m³/s con ppm o con Ha), por lo tanto, cada uno de los factores se deben transformar a una misma forma de expresión en iguales unidades las condiciones de calidad ambiental en que ellos se encuentran:

CAi = f(Mi)

Donde:

CAi= Calidad ambiental del factor

Mi= magnitud del factor i

En el anexo H se presentan las funciones de transformación que se utilizaron en el presente trabajo.

Expresión de los factores ambientales en unidades conmensurables ponderadas (Unidades de Importancia Ambiental, UIA): Al tener cada uno de los factores en unidades conmensurables, se puede expresar la condición existente del factor ambiental, pero considerando el peso específico que dicho factor tiene en el medio afectado. Para ello se utiliza la siguiente ecuación:

UIA:= CA: X UIP:

Donde

UIA_i=Unidades de importancia ambiental para el factor i

CA:= Calidad ambiental del factor i

UIP_i= Unidades de índice ponderal para el factor i

5.2.3 Procedimiento para su aplicación

En una matriz como la que se presenta en el anexo G tabla G.1 se van llenando las diferentes columnas de la siguiente manera:

Obtener los factores ambientales susceptibles de cambio y asignarles el UIP: Se deben seleccionar los factores que pueden ser afectados por el proyecto y calcular el índice de ponderación de cada uno de ellos. Estos factores ambientales corresponden a los que se identificaron en la caracterización del ambiente.

<u>Determinar el valor actual de cada uno de los factores seleccionados</u>: Con base en los resultados de los estudios realizados en la descripción del ambiente, se determina el valor actual de factor en análisis, en las condiciones sin proyecto.

<u>Predecir el valor que tomará cada parámetro considerando el proyecto</u>: Es una estimación de los cambios que se pueden producir sobre cada uno de los factores seleccionados por efecto del proyecto, es decir, se debe estimar cual valor tomará el factor en el estado futuro con el proyecto.

<u>Transformar los valores de los parámetros en índices de calidad ambiental</u> (<u>CA</u>): Se transforman los valores sin proyecto y con proyecto por medio de la función de transformación que se aplica a ese factor.

<u>Calcular las Unidades de Importancia Ambiental (UIA) con y sin proyecto:</u> Por último, se multiplican los valores de calidad ambiental (CA) sin proyecto y con proyecto por el respectivo UIP.

Obtener el impacto o cambio neto para cada factor ambiental: Este cambio neto corresponde a la diferencia entre las UIA con proyecto y las UIA sin proyecto. Esta diferencia representa los cambios por causa del proyecto que equivalen al valor del impacto ambiental. Este cambio neto se puede presentar en unidades absolutas o en unidades relativas o porcentajes de cambio, tomando siempre como base las condiciones ambientales iniciales, o sea las de sin proyecto. (Arboleda González Jorge, 2008)

5.2.4 Determinación de los valores de calidad de acuerdo a Batelle-Collumbus

Categoría Ecología

Especies y poblaciones terrestres

Pastizales y Praderas

De acuerdo con la información presentada en la Tabla 4.3 vegetación que será afectada por el proyecto, el valor para pastizal es el siguiente:

Pastizales = 20.61%

Por lo tanto el valor de ICA de acuerdo con la gráfica es 0.6

Vegetación Natural terrestre

$$\sum_{1}^{n} \frac{\textit{Ha de cada tipo de vegetacion*K}}{\textit{total tierra no arable}} * 100$$

N: Número de tipos de vegetación

K: Índice de productividad

De acuerdo con la tabla 4.3 y debido a falta de información para determinar los índices de productividad en cada tipo de vegetación se asumieron valores bajos con base en la clasificación de productividad de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO,1970): productividad excelente cuando su índice está en el intervalo 65-100%, buena 35-64%, media 20-34%, pobre 8-19% y extremadamente pobre 0-7%.

$$VNT = \left(\frac{79.9139 * (0.35) + 15.5786 * (0.20) + 39.4898 * (0.65)}{134.982}\right) = 0.4209 * 100$$

Por lo tanto el valor de ICA de acuerdo con la gráfica es: 0.41

Acuáticas

Vegetación natural acuática

$$\sum_{1}^{n} \frac{Superficie\ de\ cada\ clase*K}{Superficie\ acuatica\ total}*100$$

N: Número de clases (corrientes y ríos, lagos y estanques, pantanos o marismas y estuarios)

K: Índice de calidad dependiente de las características de cada clase, varía entre 0 y 1.

De acuerdo con la tabla 4.3, el proyecto cuenta con vegetación natural de tipo palmar (15.5786 ha) considerando un K de 1 y pastizales inundables (39.4895 ha) con un K de 0.8.

$$VNA = \frac{15.5786(1) + 39.4895(0.8)}{55.0681} * 100 = 85.65\%$$

Por lo tanto el ICA de acuerdo con la gráfica para VNA es 0.82

Aves acuáticas

$$\sum_{1}^{n} \frac{\log.10 \text{ Densidad de especies} * k}{\log.10 \text{ Densidad de especies}} * 100$$

N: Número total de especies

K: Modificar del hábitat de cada especie (herbívoros -0.33, omnívoros -0.67, carnívoros -1)

En la página 30 se menciona sobre las aves acuáticas que se encuentran cercanas al área del proyecto

 $\frac{Aves\ acuaticas =}{\frac{Passeriformes\ 46*(0.67) + Accipitriformes\ 8(0.67) + 20especies\ en\ proteccion(0.67) + 11migrantes(0.67)}{85}*$

100 = 67

Por lo tanto el ICA de acuerdo con la gráfica para aves acuáticas es 0.61

Hábitat y comunidades terrestres

Cadenas alimentarias

$$\frac{\sum_{1}^{n} \log 10 \ densidad \ de \ las \ especies * k}{\sum_{1}^{n} \log 10 \ densidad \ de \ las \ especies} * 100$$

N: Número total de las especies

K: Modificador del hábitat (herbívoros 0.33, omnívoros 0.67 y carnívoros 1).

De acuerdo con el capítulo 4 se mencionan el hábitat y comunidades terrestres por lo cual:

$$= \frac{81(0.67) + 11(0.67) + 3(1) + 2(0.67) + 12(0.33) + 8(1) + 6(0.67) + 15(0.33) + 17(1)}{81 + 11 + 3 + 2 + 12 + 8 + 6 + 15 + 17}$$

C.A. =67.03 %

Por lo tanto el ICA de acuerdo con la gráfica "cadenas alimentarias" es de 0.62

Uso del suelo

Estimación del parámetro: Suma ponderada de la superficie de cada tipo de uso del suelo (natural -1; forestal -0.8, agrícola -0.6, residencias -0.4, comercial -0.2, industrial -0) expresada en porcentaje de la superficie total.

$$Uso \ del \ suelo = \sum_{i=1}^{n} \frac{Superficie \ de \ tipo \ de \ suelo}{superficie \ total} * 100$$

$$Uso\ del\ suelo = \frac{30(1) + 95.4925(0.8) + 39.4895(0.6) + 26.616(0)}{191.5973} = 67.8964\%$$

Por lo tanto el valor de ICA, uso de suelo es el siguiente 0.62

• Especies raras y en peligro de extinción (Terrestres y acuáticas)

Estimación del parámetro: Valor según la siguiente escala (si confluyen dos categorías se asigna el peso menor).

Tabla 5.8 Uso de suelo de acuerdo a Batelle-Collumbus (Gómez, 1994)

Clase	Valor
Común	10
Endémica de un estado	9
Endémica de EE.UU. o de tres	7
Estados	
Rara en tres estados o tres	5
endémicas de EE.UU	
Rara en EE.UU o rara en tres Estados	3
Amenazada o tres raras en EE.UU	1
Extinguido o tres amenazadas	0

Debido a que sobrepasa el número de especies en peligro de extinción de acuerdo con la gráfica para este parámetro se tiene un valor de ICA bajo.

Diversidad de especies (acuáticas y terrestres)

Estimación del parámetro: Número de especies por mil individuos

$$Diversidad\ de\ especies = \frac{Numero\ de\ especies}{mil\ individuos}$$

D. especies =
$$\frac{97 \text{ acuaticas} + 139 \text{ terrestres}}{1000} = 0.236$$

Por lo tanto el ICA es: 0.1

Categoría Contaminación

Contaminación del agua

Perdidas en las cuencas hidrográficas

De acuerdo con datos publicados de DOF se extrae 72.8 millones de m³ para diferentes usos, del acuífero costero, mientras que el aporte es de 9.7 millones de m³.

$$\textit{Perdida de agua en cuencas hidrologicas} = \frac{\textit{Perdida por actividades humanas}}{\textit{descarga natural anual}} * 100$$

Perdida de agua =
$$\frac{72.8 \text{ Mm}^3}{9.7 \text{Mm}^3} * 100 = 750.5154 \%$$

Debido que es un valor de porcentaje muy alto sobrepasa el criterio de acuerdo a Batelle por lo tanto una aproximación que se tiene de acuerdo con Batelle es 0.23 ICA.

Demanda biológica de oxígeno

De acuerdo con el Diario Oficial de la Federación (DOF) en la tabla 4.9 se muestra un valor de DBO 26 mg/l del arroyo Gopalapa siendo el más cercano en el área del proyecto.

Por lo cual se tiene un valor de ICA de 0.097

Coliformes fecales

En la tabla 4.9 se muestra el valor de 200 MPN/100 ml de los ríos cercanos al área del proyecto, teniendo un valor de ICA de 0.4

Nitrógeno inorgánico

En la tabla 4.9 se muestra el valor de 30.7 mg/l del arroyo Gopalapa, debido a que es un valor que sale del rango de acuerdo con el criterio de Batelle se tiene un ICA de 0.

Fosfato inorgánico

En la tabla 4.9 se muestra el valor de 3.3 mg/l del arroyo Gopalapa, debido a que es un valor que sale del rango de acuerdo con el criterio de Batelle se tiene un ICA de 0.

Pesticidas

En la tabla 4.9 se muestra el valor de 5.87 mg/l del arroyo Gopalapa, presentando un valor de ICA de 0.42.

pH

En la tabla 4.9 se muestra el valor de pH encontrándose en un rango de 6.5-8.5 de los ríos cercanos al área del proyecto, debido que presenta un rango fuera del criterio de acuerdo a Batelle se tiene un valor de ICA de 0.

Temperatura

Estimación del parámetro: Diferencia de temperatura en grados centígrados respecto a la temperatura que se considera de equilibrio natural.

La temperatura media anual es de 25°C; el mes más frío es enero con 22°C, debido que presenta un rango fuera del criterio de acuerdo a Batelle se tiene un valor de ICA de 0.

Solidos disueltos

En la tabla 4.9 se muestra el valor de 18 mg/l del arroyo Gopalapa, presentando un valor de ICA de 0 de acuerdo a Batelle.

Sustancias tóxicas

En la tabla 4.9 se muestra el valor de 1 del arroyo Gopalapa, por lo que se consideró de acuerdo a Batelle como detectable, presentando un ICA de 0.2.

Turbidez

En la tabla 4.9 se muestra el valor de 0.5 del arroyo Gopalapa, por lo que se consideró de acuerdo a Batelle tiene un ICA de 0.3.

Contaminación atmosférica

Hidrocarburos

Como se menciona en el capítulo 4 debido a que no se encuentra un sistema de monitoreo en el área de interés, se recabo la información de datos no muy recientes concluyendo que el 91% de las emisiones de COVT proviene de la evaporación de hidrocarburos mientras que 9% se refiere a hidrocarburos liberados por procesos de combustión. Por lo anterior y de acuerdo con el rango para este criterio se tiene un ICA de 0.1.

Óxidos de nitrógeno

De acuerdo con el Instituto Nacional de Ecología y la Organización para la Cooperación y el Desarrollo Económico (OECD) así como el Centro de Ecodesarrollo de Veracruz se concluyó que se encuentra en altas concentraciones en Minatitlán. Por lo anterior y de acuerdo con el rango para este criterio se consideró el valor de mayor concentración, obteniéndose un ICA de 0.9.

Partículas suspendidas

De acuerdo con el Instituto Nacional de Ecología y la OECD así como el Centro de Ecodesarrollo de Veracruz se concluyó que se encuentra en bajas concentraciones, por lo tanto el valor de ICA considerando 200 mg/m3 es de 0.22.

Óxidos de azufre

Las emisiones al aire constituyen 84% de las emisiones y descargas totales, cerca de 70% de las emisiones al aire se refieren a óxidos de azufre (SOx), mientras que casi 20% son COVT. (PEMEX, 1999)

Por lo anterior y de acuerdo con el rango para este criterio se consideró el valor de 0.3 ppm, obteniéndose un ICA de 0.03.

Contaminación del suelo

Uso del suelo

Como se menciona en el capítulo 4, el uso de suelo es industrial y en la zona circundante al sitio de interés se encuentran diferentes instalaciones industriales, teniendo una densidad alta de uso.

La conformación natural del terreno es un lomerío suave, el cual se verá alterado en forma directa como resultado de las actividades corte, excavación y nivelación de tierras, considerando esto aproximadamente 128.98 ha del sitio de interés (66% del sitio) sufrirán una modificación total. (MIA-Proyecto Etileno XXI, 2011)

Por lo anterior y de acuerdo con el rango para este criterio se obtiene un ICA de 0.23

Erosión

Debido al impacto que establecieron en la MIA-Etileno XXI "aceleración de procesos erosivos en las áreas desmontadas, taludes y áreas libres de construcción" se considera una erosión de tipo moderada.

Por lo anterior y de acuerdo con el rango para este criterio se consideró moderado, obteniéndose un ICA de 0.43

Contaminación por ruido

Ruido

En el sitio de interés ya existe una fuente generadora de ruido, como se mencionó anteriormente en sus colindancias se encuentra instalaciones industriales.

La operación de maquinaria y equipo requeridos, provocara un incremento en el nivel de ruido dentro del intervalo máximo de 95 dB y puede rebasar los 100 dB.

Es por esto que se considera una intensidad fastidiosa obteniendo un valor de 0.21 ICA.

Aspectos paisajísticos

Suelo

Material geológico superficial

El SAP se localiza en la providencia fisiográfica denominada llanura Costera del Golfo Sur, específicamente en la subprovincia llanura Costera Inundable, las topoformas características son valles, valles con llanuras, lomeríos y sierra. (INEGI, 2009).

Es por esta razón que se consideró en el rango de media diversidad de materiales y colores obteniendo un ICA de 0.4.

Relieve y caracteres topográficos

El relieve que presenta el área de interés es denudativo-erosivo de colinas, lomeríos y mesas en el cual se modifica aproximadamente 128.98 ha, resultando un valor de ICA de 0.1.

Aire

Olor y visibilidad

La información que muestra la MIA-P Etileno XXI en este impacto consideran de un tipo bajo a medio, por consiguiente se tiene un valor de ICA de 0.18.

Sonidos

Como se menciona en el capítulo 4, se registraron niveles de ruido que van de 52.57 dB a 58.9 dB en la poblaciones de Pollo de Oro y Lázaro Cárdenas y de 64.34 dB a 82.5 dB en las empresas del sector petroquímico situadas en el área.

Obteniendo un valor de ICA de 0.1 considerando una frecuencia ocasional y desagradable.

<u>Agua</u>

Presencia de agua

Actualmente el rio Coatzacoalcos en su cuenca baja, forma un sistema ecológico rico en recursos naturales renovables y que se encuentra en franca convivencia con el desarrollo industrial en la región.

Considerando un flujo moderado y aspecto visual de agua moderada se obtiene un valor de ICA de 0.6.

Interface agua-tierra

De acuerdo a investigaciones sobre la calidad del agua en la zona, algunos de los conflictos ambientales del río se pueden resumir en la existencia de altas concentraciones de hidrocarburos fósiles y grandes concentraciones de metales en el área del río.

Cabe mencionar que el arroyo Teapa es utilizado como vertedero de desechos por varias industrias presentando un gran deterioro ambiental lo cual influye negativamente en el ecosistema del río Coatzacoalcos.

De acuerdo a Batelle se refiere a la extensión y aspecto de la superficie correspondiente a las variaciones del nivel de agua en los márgenes, por lo tanto se consideró severo dando un valor de ICA de 0.1

Olor y materiales flotantes

Como ya es mencionado en el criterio anterior, los ríos próximos al área de interés presentan materiales flotantes así como la percepción de olor, obteniendo un ICA de 0.

Área de superficie de agua

La microcuenca del arroyo Gopalapa se ubica en el acuífero Costero de Coatzacoalcos, este acuífero cubre aproximadamente una superficie de 2600 km² y se encuentra en el extremo sureste del estado de Veracruz. Limita al norte con el Golfo de México, al sur con el paralelo 17º 53', al oriente con el río Tonalá que sirve de límite con el estado de Tabasco y oeste con una línea imaginaria que coincide sensiblemente con el meridiano que pasa por cerro de San Martín.

Obteniendo un valor de ICA de 0.5.

Márgenes arboladas y geológicas

Los acuíferos están constituidos en la unidad identificada como sedimentos arenosos cubiertos en la mayor parte del área por formaciones aluviales, debido a esto se consideró dentro del rango de 20% arena, grava y roca con un porcentaje de 0 a 30 % arbolado obteniendo un valor de ICA de 0.3.

Aspectos sociales

Valores adicionales y científicos

Arqueológicos

De acuerdo con la información existente del Instituto Nacional de Antropología e Historia (INAH) las zonas arqueológicas de mayor relevancia en el Estado de Veracruz se encuentran lejanas al Sitio del Proyecto.

De acuerdo con Batelle se clasifico como débil, teniendo un índice de calidad de 0.6.

Valores históricos

Religiosos y culturales

Nanchital de Lázaro Cárdenas del Río cuenta con un monumento a Lázaro Cárdenas y una plaza central con una catedral, palacio municipal y quiosco central, existe además un museo fotográfico en la cabecera municipal.

Considerándose como un rango medio de acuerdo a Batelle se tiene un ICA de 0.3

Culturas (grupos étnicos, grupos religiosos)

En la tabla 4.10 se presentan las comunidades que se encuentran cerca del área del proyecto.

Debido a que en el sitio de interés solo existe una población que habla una lengua indígena se considera de acuerdo a Batelle como débil obteniendo un ICA de 0.6

Estilos de vida

• Oportunidades de empleo

Implica el porcentaje de población ocupada respecto a la población activa en el área de influencia respecto a la población activa en el área de influencia del proyecto. (Mendoza Cariño, 2010).

La actividad económica principal es el sector secundario por lo que se considera un ICA de 0.5.

Considerando un ICA de 0.5 ya que si genera empleo pero no se cuenta con el criterio para evaluar de acuerdo a Batlle.

Vivienda

Considerando un ICA de 0 ya que no genera viviendas cerca de la zona de interés, en la MIA se hace mención que solo es temporal.

Interacciones sociales

"Contempla acciones humanas que permiten la convivencia y armonía entre la comunidad, puede incluir la participación de la sociedad en los temas laboral, político y sindical" (Mendoza Cariño, 2010). Debido a esto se considera un ICA de 0 ya que se encuentra alejada de poblaciones.

Una vez obtenido los valores de calidad ambiental sin proyecto de acuerdo con Batelle, (1978), Arboleda, (2008) y Arroyo Pinto-Cotan, (2007); se debe predecir el valor actual de cada uno de los parámetros seleccionados, con base en la información obtenida del medio ambiente, es decir (se debe estimar cual valor tomará el factor en el estado futuro con proyecto), de igual forma se utilizan las funciones de transformación o "criterios" de Batelle en los valores obtenidos con proyecto.

Finalmente como las Unidades de Impacto Ambiental (UIA) son conmensurables, se pueden sumar los resultados obtenidos para encontrar el impacto por componentes o categorías o el impacto global del proyecto. Así mismo se pueden determinar los impactos críticos e inadmisibles, porque desborda un umbral específico. A estos impactos se les colocan banderas de alerta. (Arboleda González Jorge, 2008)

Capítulo 6. Resultados comparativos

6.1 Resultados por la metodología de Bojórquez Tapia

En el anexo F, tabla F.1 se presenta a detalle los valores de acuerdo con los parámetros de Bojórquez-Tapia en la categoría ambiental. Sin embargo, en forma general a continuación se muestra la tabla con la valoración cuantitativa de los impactos ambientales y sociales identificados.

Tabla 6.1 Resultado de la valoración cuantitativa de los impactos ambientales y sociales (SEMARNAT, 2011)

Modalidad del	Nomenclatura	Carácter del impacto		Total
impacto		Positivo	Negativo	
Muy	MS	9	1	10
significativo				
Significativo	S	5	30	35
Poco	Ps	1	3	4
significativo				
No significativo	Ns	0	3	3
Total		15	37	52

De acuerdo con la tabla 6.1 se menciona lo siguiente:

- Se identifico un impacto negativo muy significativo representando la modificación del relieve en el área de interés.
- Se identificaron 13 impactos negativos significativos que prevalecen en el factor ambiental (alteración de la calidad del agua, perdida de algunas especies en protección, perdida de suelo orgánico entre otros)
- En el factor social se identificaron 22 impactos negativos significativos los cuales se encuentran los componentes de procesos demográficos, actividades económicas, aspectos culturales, salud entre otros.

Cabe mencionar los impactos positivos que se obtuvieron con esta metodología fueron los siguientes:

- En el factor ambiental se identificaron 4 impactos positivos muy significativos los cuales se encuentran en la conservación de la biodiversidad de área destinada para reforestación, así como reintroducción de especies nativas.
- En el factor social se identificaron 5 impactos positivos muy significativos los cuales son: El incremento de oportunidades laborales, incremento de

desarrollo humano, incremento de beneficios económicos por negocios informales entre otros.

6.2 Resultados por Batelle Collumbus

De acuerdo con la información presentada en el anexo G tablas G1, G2, G3 y G4, se presenta de forma general la tabla 6.2 valores de unidades de importancia por Batelle-Collumbus.

Tabla 6.2 Valores de unidades de importancia por Batelle-Collumbus. (Elaboración propia)

	Ecología	Contaminación	Aspecto estético	Intereses humanos	Total
Señal de					
alerta	X	Χ	X		
UIA C.P	65.12	39.36	22.44	43.1	170.02
UIA S.P	70.02	54.02	24.84	38.3	187.18
Cambio					
neto	-4.76	-14.66	-2.4	4.8	-17.16

Se identificó 50 parámetros identificados de acuerdo con las categorías de Batelle-Collumbus susceptibles de afectarse por la preparación del sitio, obteniendo 22 impactos negativos en total de los cuales la categoría contaminación registro más de acuerdo con Batelle-Collumbus y como segunda categoría predominante es ecología ya que presenta 8 impactos negativos en sus parámetros. Cabe mencionar que, aunque en las categorías intereses humanos y paisajísticos solo presenta un impacto negativo para cada uno, no significa que se considere como benéfico, ya que debido a los valores con que se evaluaron fueron similares y por ende al calcular la unidad de importancia ambiental se obtiene predominantemente valores de 0 significando que no existe impacto agregado global.

Es importante hacer mención sobre los impactos positivos de acuerdo con Batelle-Collumbus en el cual solo la categoría de intereses humanos tuvo impacto positivo.

El impacto neto global del proyecto de acuerdo con la metodología es de -17.16 de un total de 1000 unidades que dispone el método, es decir el 1.716 % de impacto máximo negativo que va darse en la preparación del sitio representando en mayor afectación las categorías contaminación y ecología, por lo que el proyecto es de bajo impacto por el valor obtenido. Sin embargo, por ser negativo esto significa que puede disminuir la calidad ambiental cuando

el proyecto se esté llevando a cabo debido a la afectación de la zona de interés.

La metodología Batelle-Collumbus también cuenta con señales de alerta para parámetros con cambios significativos como se puede observar en la tabla 6.2 se consideró agregar señal de alerta en las categorías donde se obtuvieron valores negativos ya que se consideran como impactos críticos e inadmisibles.

Aunque se realizaron diferentes procedimientos para la identificación de impactos en el proyecto, se presenta similitud en los resultados obtenidos de mayor impacto en las categorías: Ecología y contaminación.

Al igual que ambas metodologías mencionan impacto positivo en la categoría de intereses sociales.

Capítulo 7. Conclusiones y recomendaciones

Conclusiones

Inicialmente se demostró la importancia de las técnicas de evaluación cuantitativas sobre las cualitativas a través de un cuadro comparativo encontrándose que las técnicas cualitativas en su mayoría son subjetivas y son las más comunes en realizar, pero presentan mayor complejidad para proyectos grandes. Sin embargo, las técnicas cuantitativas emplean una evaluación sistemática que pueden ser de tipo índice significando un estudio más detallado y aplicable para proyectos grandes, así como también da una mayor certeza del impacto que puede generar algún proyecto.

Posteriormente se Identificaron los componentes ambientales que se afectarán por el proyecto Etileno XXI considerando la metodología Batelle-Collumbus concluyendo que de acuerdo a SEMARNAT (2002) es de mayor función en comparación con otras metodologías aunado a lo que se presentó como ventajas en este estudio.

Así mismo se analizó la información recopilada para el proyecto Etileno XXI de diferentes fuentes gubernamentales utilizando la metodología Batelle Collumbus hallándose que hay ausencia de datos en la categoría contaminación de acuerdo al método en el área de interés, por lo cual esto representó que no se utilizará todos los parámetros de acuerdo a la metodología.

Por otro lado se compararon los resultados obtenidos empleando la metodología de Batelle-Collumbus y la metodología de Bojórquez-Tapia previamente autorizado por la SEMARNAT y se observó que ambas metodologias identificaron el mayor rango de impactos en las categorías contaminación y ecología, mientras que en las categorías de intereses humanos y paisajísticos existe una variación debido a falta de información específica que se requiere en la metodología de Batelle-Collumbus por lo que mayoritariamente se obtiene valores de cero en esas categorías significando que no existe impacto, aunque si existe un impacto positivo en la categoría de intereses humanos, mientras la metodología Bojórquez-Tapia presenta impactos significativos negativos en esas categorías así como un impacto positivo en el factor social. Cabe destacar debido a la ubicación del sitio de interés, pues se encuentra alrededor de otras industrias esto representa un beneficio para el proyecto.

Finalmente se realizó una comparación de técnicas de evaluación de impacto ambiental aplicadas al proyecto Etileno XXI utilizando la legislación ambiental mexicana por lo que se puede mencionar que ambas utilizan una metodología cuantitativa ubicándose de acuerdo con (SEMARNAT,2002) en las categorías de mayor rango de puntuación. Cabe mencionar que no existe una universalidad en las metodologías para la evaluación del impacto ambiental por lo cual se pueden modificar de acuerdo al estudio que se quiera evaluar.

Recomendaciones

Las limitaciones que se presentó al realizar la metodología de Batelle-Collumbus es que se efectúa una evaluación incompleta por falta de datos precisos, así como una lista de parámetros muy específica.

Debido a que existen diferentes metodologías que se pueden aplicar en la evaluación de impacto ambiental en un proyecto, es necesario seleccionar de acuerdo con las condiciones que se cuentan, así como también es necesario adaptar la metodología al proyecto.

Reforzar la identificación de los impactos ambientales, utilizando matrices de predicción. Así como la utilización de técnicas aplicando modelos con la finalidad de definir las repercusiones que tendrá el proyecto o la actividad a realizar sobre el ambiente descrito y sobre sus elementos más significativos.

De acuerdo con la SEMARNAT (2002), cada impacto deberá ser valorado sobre una base lógica, mesurable y fácilmente identificable, posteriormente el análisis debe llegar a una sinergia que permita identificar, valorar y medir el efecto acumulativo del total de los impactos identificados. Así como se deben incluir las siguientes fases:

- Identificación de efectos del proyecto o la acción
- Inventario ambiental (que recogerá los datos del entorno)
- Predicción o cálculo de la magnitud de los efectos
- Interpretación de los resultados obtenidos
- Evaluación integrada, en lo posible
- Comunicación de los resultados al ejecutivo y a la opinión publica (en esta fase son muy útiles las ayudas audiovisuales: dispositivos, mapas, diagramas de flujo, carteles, películas).

Referencias

- Arboleda G., J. A. (2008). Manual para la evaluación de impacto ambiental de proyectos, obras o actividades. Colombia.
- Arroyo Pinto-Cotan , S. (2007). Valoración de impactos ambientales. Sevilla, España.
- Bojórquez-Tapia. (1989). Methodology for prediction of ecological impacts under real conditions in Mexico. *Environmental Management*, 13-545-551.
- Bojórquez-Tapia, & Ongay Delhumeau. (1994). Multivariant approach for suitability assessment and environmental. *Conflict resolution journal of environmental management*, 41-187-198.
- Bolea, E. (1984). Las evaluaciones de impacto ambiental. España, Madrid: CIFCA.
- Bregman, Mackenthun, & Wathern. (1992). Environmental impact statements. 279.
- Bruns, D., Stanley, C., Cope, R., & Moor, K. (1994). An ecosystem approach to ecological characterization in the NEPA process in Hildebrand. *The NEPA experience Lewis*, 103-124.
- Cabrera Cruz, B. E. (2004). Propuesta de una guía metodológica para la realización de estudios de evaluación de impacto ambiental (EIA) en México. México.
- Canter y Canty. (1993). Impact significance determination-basic considerations and a sequenced approach environmental impact assessment review. 275-297.
- Conesa , V., & Fernández Vitora. (1993). *Guía metódologica para la evaluacion de impacto ambiental.* Madrid, España.
- Contant, C., & Wiggings, L. (1991). Defining and analyzing cumulative environmental impacts. *Environmental Impact Assessment review*, 11-309.
- Diario Oficial de la Federación. (Mayo de 2016). Obtenido de Diario Oficial de la Federación: www.dof.gob.mx

- Dunker, & Beanlands. (1986). The significance of environmental impacts and exploration of the concept. *Environmental Management*, 1-10.
- Espejo Ochoa, B. (2006). Comparación teórica de los diferentes métodos de evaluación de impacto ambiental. México: UNAM.
- Espinoza Garcia, G. (2001). Fundamentos de evaluación de impacto ambiental. Chile.
- Ezcurra. (1995). Las evaluaciones de impacto ambiental . *Gaceta ecológica México*, 182.
- García de la Rosa, O. (2001). Analisis de los estudios de evaluacion de impacto ambiental en proyectos carreteros y estudio de caso de la carretera la venta-colegio militar. México: UNAM.
- Gilpin, A. (1995). Environmental impact assessment (EIA). *Cambridge University press*, 182.
- Gómez García, M. (2008). Necesidad de realizar la verificación en la evaluación de la manifestación de impacto ambiental en las concesiones que otorga la SEMARNAT en el caso especifico de: servicios mexicanos naúticos S.A. de C.V. muelle playa del Carmen. México: UNAM.
- Gómez Orea, D. (1994). Evaluación de impacto ambiental. Madrid: Agrícola Española S.A.
- INAH. (2012). *Instituto Nacional de Antropología*. Obtenido de Instituto Nacional de Antropología: http://www.inah.gob.mx
- INE. (1993). Estudio metódologico de las tecnologías de evaluación de impacto ambiental. En INE.
- INEGI. (Febrero de 2003). Carta hidrologica de aguas superficiales escala 1:250 000 Coatzacoalcos E151-4. Obtenido de http://www.inegi.org.mx
- Lawrence, D. (1993). Quantitative versus qualitative evaluation: a false dichotomy environmental impact assessment review. 13,3-11.
- Left. (1990). Medio ambiente y desarrollo en México. PNUMA, 1-74.
- León Pelaéz, J. (2006). Evaluación de impacto ambiental de proyectos de desarrollo. *Departamento de ciencias forestales*.
- Leopold, L. (1973). A procedure for evaluating environmental impact . *United States Department of the interior*.

- Mart Alfredo. (Febrero de 2011). *México desconocido*. Obtenido de http://www.mexicodesconocido.com.mx
- Mendoza Cariño, M. (2010). Evaluación de impacto ambiental por el metodo Batelle-Collumbus del tunel de desfogue de la laguna de Meztitlán. Estado de México.
- PEMEX. (1999). PEMEX. Obtenido de http://www.pemex.org.mx
- Pisanty- Levy. (1993). Mexico's environmental assessment experience. Environmental impact assessment review, 267-272.
- Ribeiro de Almeida, J. (2008). *Análisis y evaluaciones de impactos ambientales*. Rio de Janeiro, Brasil.
- Ross, & W.A. (1994). Environmental impact assessment in the Philippines progress, problems and directions for the future environmental impact assessment review. 217-232.
- Sánchez L. E. . (1993). Environmental impact assessment in France . Environmental impact assessment review, 255-265.
- SEMARNAT. (2001). *NOM-059-SEMARNAT-2001*. Obtenido de http://www.biblioteca.semarnat.gob.mx
- SEMARNAT. (2002). *Guía de Evaluación de impacto ambiental*. Obtenido de www.semarnat.gob.mx
- SEMARNAT. (2010). *NOM-059-SEMARNAT-2010*. Obtenido de http://www.biblioteca.semarnat.gob.mx
- SEMARNAT. (2011). Evaluación de impacto ambiental. Obtenido de http://www.semarnat.gob.mx
- Tecnología, T. d. (2013). *Temas de Ciencia y Tecnología*, 37-42. Obtenido de www.UTM.mx
- Tongcompou, C., & Harvey, N. (1994). Implications of recent EIA changes in Thailand Environmental Impact Assessment Review. 14:217-294.
- Witzenfeld, H. (1990). Manual básico de evaluación del impacto en el medio ambiente y la salud de proyectos de desarrollo. *ECO/OMS*.
- Wood, & Bailey. (1994). Predominance and independence in environmental impact assessment. The western Australia model. *Environmental impact assessment review*, 14:37-59.

Anexos

A. Listado de especies de vegetación

Tabla A.1 Especies del estrato arbustivo. (SEMARNAT, 2011)

Nombre común	Nombre científico
Cordoncillo	Piper spp
Tepejilotillo	Chamaedorea concolor
Junco negro	Desmoncus orthacanthos
Guano	Sabal mexicana
Pambotano	Calliandra houstoniana
Labios de novia	Cephaelis tomentosa
Amendaui	Ceratozamia miqueliana

Tabla A.2 Especies del estrato herbáceo. (SEMARNAT, 2011)

Nombre común	Nombre científico
Berenjenita	Solanum americanum
Tuzpatli	Dorstenia contrajerva
Hierva del gusano	Acalypha arvensis
Sandia silvestre	Melothria pendula
Cundeamor	Momordica charantia
Ahuapatli	Pluchea odorata
Hoja de piedra	Calathea macrochlamys
Platanillo	Heliconia bourgaeana
Caña agria	Costus scaber
Cardo	Bromelia karatas
Mataliste	Commelina erecta
Mafafa	Xanthosoma robustum

Tabla A.3 Especies de pastizales. (SEMARNAT, 2011)

Nombre común	Nombre científico
Grama de caballo	Eleusine indica
Pan caliente	Eragrostis hypnoides
Tuxpata	Cyperus odoratus
Zacate de agua	Eleocharis elegans

Tabla A.4 Especies de pastizales inundables. (SEMARNAT, 2011)

Nombre común	Nombre científico
Grama de caballo	Eleusine indica
Pan caliente	Eragrostis hypnoides
Tuxpata	Cyperus odoratus
Zacate de agua	Eleocharis elegans

Tabla A.5 Especies de vegetación secundaria. (SEMARNAT, 2011)

Nombre común	Nombre científico
Jonote	Heliocarpus appendiculatus
Chancarro	Cecropia obtusifolia
Pasto kikuyo	Pennisetum clandestinum
Quiebramuelas	Asclepias curassavica
Achiotillo	Vismia camparaguey
Majahuilla	Helicteres
Patastillo	Luehea speciosa

Tabla A.6 Especies de sabana. (SEMARNAT, 2011)

Especies nombre común	Nombre científico
Nanche	Byrsonima
Tlachicon	Curatella americana
Guayaba	Psidium guajava
Uvero	Coccoloba barbadensis
Encino	Quercus oleoides

B. Listado de especies de vegetación bajo protección legal

Tabla B.1. Especies bajo protección legal (plantas). (SEMARNAT, 2011)

Familia	Nombre	Categoría	CITES	Tipo de	Distribución
	común	NOM		registro	
Cycadophyta	Amendaui	P ¹		campo	Endémica
Orchidaceae	Orquidea		Apéndice II	Campo	
	Palmilla	A ¹		campo	
Clusiaceae	Bariz	A ¹			bibiog

Nota: NOM-059-SEMARNAT-2010: A=amenazada, P=En peligro de extinción, Pr= Sujeta a protección especial; IUCN: LC=preocupación menor, VU= vulnerable, E=en peligro de extinción. CITIES: Apendice III (especies que no están necesariamente amenazadas de extinción pero que podrían llegar a estarlo a menos que se controle estrictamente su comercio), Apéndice II (especies incluidas a solicitud de una parte que ya reglamenta el comercio de dicha especie y necesita la cooperación de otros países para evitar la explotación insostenible o ilegal de las mismas.

C. Listado de especies de fauna

Tabla C.1 Registros indirectos. (SEMARNAT, 2011)

Paloma perdiz rojiza	Geotrygon montana
El perico mexicano	Aratinga holochlora
El loro cabeza amarilla	Amazona oratrix
El tecolote vermiculado	Megascops guatemalae
El tecolote bajeño	Glaucidium brasilianum
El tucan pico canoa	Ramphastos sulfuratus
El carpintero pico plata	Campephilus guatemalensis
Chocotacabras menor	Chordeleis acutipennis

Tabla C.2 Especies endémicas registradas en el SAP. (SEMARNAT, 2011)

Mamíferos	Anfibios y reptiles	
Serete	Ranita	
	Rana	
	Garrobo	
	Garrobo	
	Escorpión	
	Tlaconete	
	lagartija	

D. Listado de especies de fauna bajo protección legal

Tabla D.1 Especies de fauna "Anfibios y reptiles" reportadas en algún estatus de protección ambiental. (SEMARNAT, 2011)

Especie	Nombre común	NOM	CITES	IUCN
Agalychnis callidryas	Ranja de ojos rojos	Pr		
Gastrophryne usta	Rana	Pr	II	LC
Lithobates berlandieri	Rana	Pr		LC
Bolitoglossa mexicana	Salamandra	Pr		LC
Bolitoglosa rufescens	Salamandra	Pr		LC
Corytophanes hernandezi	Turipache	Pr		

Sphaerodactylus	Cuija	Pr		
glaucus Iguana iguana	Iguana			LC
Sceloporus teapensis	Tlaconete			LC
Günter				1.0
Scincella gemmingeri	Lagartija			LC
Aspidoscelis deppii	Lagartija			LC
wiegmann				
Boa constrictor	Mazacuate	Pr	II	
Coluber mentovarius	Chirrionera	Α		
Coniophanes imperialis	Culebra			LC
Imantodes cenchoa	Platanera	Pr		
Imantodes	Platanera	Pr		
gemmistratus				
Lampropeltis triangulum	Gota coral	Α		
Leptodeira annulata	Platanera	Pr		
Leptophis mexicanus	Bejuquillo	Α		
dumeril				
Nerodia rhombifer	Culebra			
Ninia diademata	Coralillo			LC
Micrurus diastema	Coralillo	Pr		LC
Crotalus simus linnaeus	Cascabel	Pr		LC
Rhinoclemmys areolata	Mojina	Α		NT
Trachemys scripta	Tortuga pinta	Pr		NT
Chelydra rossignonii	Tortuga	Pr		VU
	lagarto			
Claudius angustatus	taíman	Р		NT
Crocodylus moreletii	cocodrilo	Pr		EN

E. Criterios de valoración de acuerdo a Bojórquez-Tapia

Tabla E.1 Identificación de criterios de valoración de los parámetros básicos y complementarios para los factores ambientales (SEMARNAT, 2011)

Índices y definición	Escala 0	Escala 1	Escala 2	Escala 3
Intensidad (I):	Nula: No hay efecto	Mínima: Si el efecto	Moderada: Si el	Alta: Si el efecto
Definida por la	cuantificable	no rebasa el 10% del	efecto se encuentra	rebasa el 50% del
proporción de		total de los recursos	entre 10 y 50 % del	total de los recursos
superficie del recurso		existentes o cuando	total de los recursos	o si es mayor del 90%
afectado respecto al		el efecto es menor al	existentes o si los	del límite establecido
total de superficie		30% del límite	valores de afectación	en la norma.
considerada o al		permisible de la	se ubican entre 31 y	
límite permisible de		norma aplicable	90% de la norma.	
la afectación				
Extensión E: Definida	Nula: No hay efecto	Puntual: Si el efecto	Local: Si el efecto	Regional: Si el efecto
por la ubicación y		ocurre dentro de	ocurre dentro del	rebasa el área de
amplitud respecto al		sitios puntuales	límite del área de	estudio
eje del derecho de		dentro del área	estudio.	
vía				
Duración (D):	Nula: El efecto	Corta: Cuando el	Mediana: Cuando el	Larga: Cuando el
Extensión en el	desaparece	efecto dura menos	efecto dura entre 1	efecto dura más de
tiempo de la acción	prácticamente de	de 1 mes	mes y 1.5 años	1.5 años
Cinaraia (C).	manera instantánea Nula: Cuando no se	Ligara, Cuanda al	Moderada: cuando el	Fuerte: Cuando el
Sinergia (S):		Ligera: Cuando el efecto producido por		
Definidas por el	presentan interacciones entre	la suma de las	efecto producido por la suma de las	efecto producido por la suma de las
grado de interacción		interacciones	interacciones	interacciones
entre impactos.	impactos	(efectos simples) es	(efectos simples) no	(efectos simples)
		' '	rebasan el doble de	duplica o rebasa las
		ligeramente superior a las mismas.	las mismas	mismas.
Acumulación (A):	Nula: Cuando no se	Poca: Cuando se	Media: Cuando se	Alta: Cuando se
Definidas por el nivel	presentan efectos	presentan efectos	presentan efectos	presentan efectos
de acumulación	aditivos entre	aditivos entre dos	aditivos entre tres	aditivos entre cuatro
entre impactos.	impactos	acciones sobre el	acciones sobre el	o más acciones sobre
paccos.		mismo componente	mismo componente.	el mismo
		ambiental.	oro componente.	componente.
	l	ambientan	l .	componente.

Controversia (C): Definida por la existencia de normatividad ambiental aplicable y la percepción del recurso por la sociedad.	No existe: cuando el impacto no está regulado por la normatividad y la sociedad NO manifiesta preocupación	Mínima: Cuando el impacto NO está regulado por la normatividad, pero existe precaución social por la acción.	Moderada: Cuando el impacto SI está regulado por normatividad y la sociedad manifiesta preocupación por la acción.	Alta: Cuando el impacto SI está regulado por normatividad y la sociedad local y regional manifiesta preocupación por la acción.
Mitigación (M): Definida por la existencia y efectividad de medidas de mitigación	Nula: Cuando no hay medidas de mitigación	Baja: Si la medida de mitigación aminora la afectación en un menos de un 24%	Media: Si la medida de mitigación aminora las afectaciones entre 24 y 74%	Alta: Si la medida de mitigación aminora la afectación en un 75% o más.

Tabla E.2 Identificación de criterios de valoración de los parámetros básicos y complementarios para los factores sociales (SEMARNAT, 2011)

Índices y definición	Escala 0	Escala 1	Escala 2	Escala 3
Intensidad (I): Definida	Nula: La calidad	Reducida: La	Relativa: La	Sustancial: La calidad
por el cambio en la	del componente	calidad del	calidad del	del componente cambia
calidad del componente (mejora o reducción del mismo)	no cambia	componente cambia relativamente poco a comparación de su estado original.	componente cambia moderadamente a comparación de su estado original.	sustancialmente en comparación con su estado original.
Extensión (E): Definida por el alcance espacial del cambio en la calidad del componente	Nula: No hay efecto	Puntual: Cuando el cambio del componente se refleja en las localidades y municipios en donde se ejecuta el proyecto.	Local: Cuando el cambio del componente se refleja en las localidades y municipios en donde se ejecuta el proyecto.	Regional: Cuando el cambio del componento se refleja en otras localidades y municipios diferentes a aquellas en donde se realiza el proyecto.
Duración (D): Extensión en el tiempo de la acción	Nula: El efecto desaparece prácticamente de manera instantánea	Corta: Cuando el cambio del componente se manifiesta sólo durante actividades de construcción del proyecto.	Mediana: Cuando el cambio se manifiesta hasta la entrada en operación o 1 año después de determinar las actividades de construcción.	Larga: El cambio del componente se manifiesta en más de un año después de la entrada en operación del proyecto.

Sinergia (S): Definidas por el grado de interacción entre impactos	Nula: Cuando no se presentan interacciones entre impactos.	Ligera: Cuando el efecto producido por la suma de las interacciones (efectos simples) es ligeramente superior a las mismas.	Moderada: Cuando el efecto producido por la suma de las interacciones (efectos simples) no rebasan el doble de las mismas.	Fuerte: Cuando el efecto producido por la suma de las interacciones (efectos simples) duplica o rebasa las mismas.
Acumulación (A): Definidas por el nivel de acumulación entre impactos	Nula: Cuando no se presentan efectos aditivos entre impactos.	Poca: Cuando se presentan efectos aditivos entre dos acciones sobre el mismo componente ambiental	Media: Cuando se presentan efectos aditivos entre tres acciones sobre el mismo componente.	Alta: Cuando se presentan efectos aditivos entre cuatro o más acciones sobre el mismo componente.

Tabla E.3 Identificación de criterios de valoración de los parámetros básicos y complementarios para los factores paisajísticos (SEMARNAT, 2011)

Índices y definición	Escala 0	Escala 1	Escala 2	Escala 3
Intensidad (I): Definida por la calidad intrínseca el paisaje y la capacidad de absorción visual	Nula: No hay efecto cuantificable	Mínimo: Cuando la afectación se ubica sobre un paisaje de calidad baja y alta capacidad de absorción visual	Moderado: Cuando la afectación se ubica sobre un paisaje de calidad baja a media y con capacidad de absorción visual media a alta.	Alta: Cuando la afectación se ubica sobre un paisaje de calidad alta y media a baja capacidad de absorción visual
Extensión (E): Definida por la distancia potencial a la que es visible el efecto.	Nula: No hay efecto	Puntual: Cuando el efecto es visible hasta 500 m de distancia	Local: Cuando el efecto es visible entre 500 y 1000 m de distancia	Regional: Cuando el efecto es visible a más de 1000 m de distancia
Duración (D): Extensión en el tiempo de la acción	Nula: El efecto desaparece prácticamente de manera instantánea	Corta: Cuando el efecto dura menos de 1 mes	Mediana: Cuando el efecto dura entre 1 mes y 1.5 años	Larga: Cuando el efecto es permanente

Sinergia (S): Definido por la existencia o ausencia de interacciones entre impactos.	No existe: Cuando no se presentan interacciones entre impactos al paisaje.			
Acumulación (A): Definidas por la existencia o ausencia de efecto aditivos entre impactos.	No existe: Cuando no se presentan efectos acumulativos sobre el paisaje.			
Controversia (C): Definida por la existencia o ausencia potencial de observadores o sitios de observación	No existe: Cuando no hay observadores potenciales ni puntos de observación en un radio de 500 m			
Mitigación (M): Definida por la existencia o ausencia de medidas de mitigación.	Nula: No hay medidas de mitigación	Existe: Si hay medida de mitigación, pero el cambio al paisaje es notable aún.	Existe: Si hay medida de mitigación y los cambios al paisaje son moderados.	Existe: Si hay medida de mitigación y los cambios al paisaje son imperceptibles.

F. Evaluación de impacto ambiental de acuerdo a Bojórquez-Tapia

Tabla F.1 Valores de impacto ambiental. (SEMARNAT, 2011)

Compo nente ambien tal	Facto r ambi ental	Intera cción (Facto r ambie ntal + Fuent e de cambi o)	Impact o genera do	1	Ε	D	S	A	C	M	В	- C		Signific ancia del impact o	Tipo de impa cto	Mode rado
Aire	Calida d	FA1+P S2 FA1+P S3 FA1+P S5 FA1+P S6 FA1+P S7 FA1+P S8 FA1+P S9 FA1+P S10	Alterac ión de la calidad del aire por el increm ento de partícu las de polvo	1	1	2	1	1	3	1	0	1	1	0,465	nega tivo	Ps
	Calida d	FA1+P S2 FA1+P S3 FA1+P S5 FA1+P S6 FA1+P S7 FA1+P S8 FA1+P S9 FA1+P S10	Alterac ión de la calidad del aire por increm ento de gases de combu stión	1	1	2	0	1	3	1	0	0	1	0,425	nega tivo	Ps

	Calidad (olores)	FA2+PS10	Presencia de olores (descomposición orgánica del material vegetal proveniente de despalme y desmonte)	1	2	2	1	1	1	1	1	0	1	0,451	negativo	Ps
	Ruido	FA3+PS2 FA3+PS3 FA3+PS5 FA3+PS6 FA3+PS7 FA3+PS8 FA3+PS9 FA3+PS10	Alteración del nivel sonoro	1	2	2	1	1	3	1	1	1	1	0,513	negativo	Ps
Suelo	Relieve	FA4+PS6 FA4+PS7 FA4+PS8 FA4+PS9 FA4+PS10	Modificación del relieve	3	1	3	1	1	1	0	1	0	1	0,846	negativo	Ms
		FA4+PS6 FA4+PS7 FA4+PS8 FA4+PS9 FA4+PS10	Perdida de suelo orgánico	3	1	3	1	1	1	1	1	0	1	0,564	negativo	S

	Calidad	FA5+PS7 FA5+PS8 FA5+PS9 FA5+PS10	Contaminación de suelo (derrames de combustible, grasas y aceites; disposición inadecuada de residuos sólidos urbanos y peligrosos, tanto liquido como solidos)	1	1	2	0	2	з	1	0	1	1	0,465	negativo	Ps
	Erosión	FA6+PS5 FA6+PS8 FA6+PS9	Aceleración de procesos erosivos en áreas desmontadas, taludes y áreas libres de construcción.	0	2	3	1	3	3	1	1	1	1	0,586	negativo	S
		FA6+PS4	Revegetación de áreas libres de construcción y taludes	0	1	3	1	თ	2	0	0	1	1	0,763	positivo	S
	Uso actual	FA7+PS1 FA7+PS8 FA7+PS10	Modificación del uso actual del suelo	3	1	3	2	2	3	2	1	1	1	0,315	negativo	Ns
Hidrología superficial	Calidad	FA8+PS5 FA8+PS7 FA8+PS10	Alteración de la calidad de agua superficial	0	1	3	3	3	3	1	0	1	1	0,667	negativo	S

Hidrolo gía superfi cial	Calida d	FA8+PS 3 FA8+PS 5 FA8+PS 7 FA8+PS 10	Alteración de la calidad de agua superficial	0	1	3	3	3	3	1	0	1	1	0,6 67	negati vo	S
	Uso actual	FA9+PS 7 FA9+PS 9	Alteración de régimen del caudal (arroyos alternativ os para suministro de agua)	1	1	2	0	1	1	1	0	0	1	0,3 56	negati vo	P S
	Dinámi ca natura l	FA10+P S3 FA10+Ps 5 FA10+P S6 FA10+P S7 FA10+P S8 FA10+P S9 FA10+P S10	Modificaci ón del patrón de escurrimie nto	1	2	2	2	3	3	1	1	1	1	0,6 25	negati vo	S
		FA10+P S3 FA10+Ps 5 FA10+P S6 FA10+P S7 FA10+P S8 FA10+P S9 FA10+P S10	Reducción de la superficie de infiltració n	3	1	3	1	1	1	1	1	0	1	0,5 64	negati vo	S

Hidrolo gía subterr ánea	Calidad	FA11+PS3 FA11+PS5 FA11+PS6 FA11+PS7 FA11+PS8 FA11+PS9 FA11+PS10	Alteraci ón de la calidad del agua subterr ánea	0	1	3	2	2	З	1	0	1	1	0,5 57	negat ivo	S
	Dinámic a natural de flujo subterr áneo	FA13+PS3 FA13+PS5 FA13+PS6 FA13+PS7 FA13+PS8 FA13+PS9 FA13+PS10	Posible abatimi ento del manto freático	0	1	3	1	1	1	1	0	0	1	0,3 88	negat ivo	Ps
Flora	Abunda ncia diversid ad y distribu ción	FA14,F15,F1 6+PS3 FA14,F15,F1 6+PS5 FA14,F15,F1 6+PS6 FA14,F15,F1 6+PS7 FA14,F15,F1 6+PS10	Perdida de cobertu ra vegetal	3	1	3	1	3	n	1	1	1	1	0,6	negat ivo	S
	Abunda ncia, diversid ad y distribu ción	FA14,F15,F1 6+PS3 FA14,F15,F1 6+PS6 FA14,F15,F1 6+PS7 FA14,F15,F1 6+PS10	Perdida y reducci ón de hábitat	3	1	3	1	3	з	1	1	1	1	0,6	negat ivo	S

	Abunda ncia, diversid ad y distribu ción	FA14+PS4 FA15+PS4 FA16+PS4 FA17+PS4 FA18+PS4 FA19+PS4	Reintrodu cción de especies nativas en áreas para reforestac ión	3	1	3	2	2	3	0	1	1	1	0,9 46	positi vo	M s
	Abunda ncia, diversid ad y distribu ción	FA14+PS11 FA15+PS11 FA16+PS11 FA17+PS11 FA18+PS11 FA19+PS11	Conservac ión de biodiversi dad en área destinada para conservac ión	3	2	Э	2	2	ത	0	1	1	1	0,9 74	positi vo	M s
	Especie s endémi cas y en estatus	FA17,FA18+P S3 FA17,FA18+P S5 FA17,FA18+P S6 FA17,FA18+P S7 FA17,FA18+P S10	Perdida de individuos de especies en alguna categoría de protecció n y endémica	3	2	ω	1	1	w	1	1	1	1	0,6	negat ivo	S
Fau na	Abunda ncia, diversid ad y distribu ción	FA20,F21,F2 2+PS3 FA20,F21,F2 2+PS5 FA20,F21,F2 2+PS6 FA20,F21,F2 2+PS7 FA20,F21,F2 2+PS10	Perdida y o reducción de hábitat	3	1	3	1	3	3	1	1	1	1	0,6	negat ivo	S

Abunda ncia diversid ad y distribuc ión	FA20,F21,F22 +PS3 FA20,F21,F22 +PS5 FA20,F21,F22 +PS6 FA20,F21,F22 +PS7 FA20,F21,F22	Pérdida de biodiversid ad	3	1	3	1	3	3	1	1	1	1	0,6	negati vo	S
Abunda	+PS10 FA20+PS4	Reintroduc	3	1	3	2	2	3	0	1	1	1	0,9	positi	М
ncia ,	FA21+PS4	ción de											46	vo	S
diversid ad y	FA22+PS4	individuos													
distribuc	FA23+PS4														
ión	FA24+PS4														
	FA25+PS4														
Abunda	FA20+PS11	Conservaci	3	2	3	2	2	3	0	1	1	1	0,9	positi	М
ncia	FA21+PS11	ón de											74	VO	S
diversid ad y	FA22+PS11	biodiversid ad													
distribuc	FA23+PS11	au													
ión	FA24+PS11														
	FA25+PS11														
Especies endémic as y en estatus	FA23,FA24+PS 3 FA23,FA24+PS 5 FA23,FA24+PS 6 FA23,FA24+PS 7 FA23,FA24+PS 10	Perdida de individuos de especies en alguna categoría de protección y endémicas	3	2	3	1	a	a	1	1	1	1	0,6 49	negati vo	S

G. Evaluación de impacto ambiental de acuerdo con Batelle-Collumbus

Tabla G.1 Valores de impacto ambiental de contaminación. (Elaboración propia)

Categoría	UIP	Parár	metro	Calida	d ambiental	Unida	portancia ambiental	
contaminación		SP	СР	SP	СР	SP	СР	Valor neto
			,	Agua	l			
Perdidas en las	20	750,5154	700	0,23	0,2	4,6	4	-0,6
cuencas								
hidrográficas								
DBO	25	26 mg/l	29 mg/l	0,42	0,41	10,5	10,25	-0,25
Coliformes fecales	18	200 MPN/ml	300 MPN/ml	0,4	0,38	7,2	6,84	-0,36
Nitrógeno inorgánico	25	30.7 mg/l	35 mg/l	0	0	0	0	0
Fosfato inorgánico	28	3.3 mg/l	5 mg/l	0	0	0	0	0
Pesticidas	16	5.87 mg/l	6 mg/l	0,42	0,39	6,72	6,24	-0,48
рН	18	6,5	6,5	0	0	0	0	0
Temperatura	28	25°C	25°C	0	0	0	0	0
Solidos disueltos totales	25	18	20	0	0	0	0	0
Sustancias toxicas	14	Detectable	Detectable	0,2	0	2,8	0	-2,8
Turbidez	20	50 Jackson	80 Jackson	0,3	0,19	6	3,8	-2,2
			Contaminac	ión atm	osférica			
Monóxido de	5	20 ppm	25 ppm	0,5	0,25	2,5	1,25	-1,25
carbono								
Hidrocarburos	5	0.3 ppm	0.3 ppm	0,1	0,1	0,5	0,5	0
Óxidos de nitrógeno	10	0,1	0,5	0,2	0,18	2	1,8	-0,2
Partículas solidas	12	200 mg/m3	250 mg/m3	0,22	0,19	2,64	2,28	-0,36
Óxidos de azufre	10	0.3 ppm	0.5 ppm	0,03	0	0,3	0	-0,3
Otros	5	1	1	0,5	0,5	2,5	2,5	0
			Contamina	ación de	l suelo	I .	<u> </u>	
Uso del suelo	14	66%	66%	0,25	0,25	3,5	3,5	0
Erosión	14	Moderada	extensiva	0,43	0	6,02	0	-6,02
			Contamina	ción po	r ruido	I .	<u> </u>	
Ruido	4	95 dB	98 dB	0,21	0,1	0,84	0,4	-0,44
Total						54,02	39,36	-15,26

Tabla G.2 Valores de impacto ambiental de aspectos paisajísticos. (Elaboración propia)

Categoría	UIP	Pa	arámetro	Calidad a	mbiental	Unidades	de impor	tancia ambiental
aspectos		SP	СР	SP	СР	SP	СР	Valor neto
paisajísticos								
	ı		Sue	1	T	T	T	
Material	6	media	media	0,4	0,4	2,4	2,4	0
geológico								
superficial	4.6	1 1	1 1	0.4	0.4	4.6	4.6	•
Relieve y	16	denudativo-	denudativo-erosivo	0,1	0,1	1,6	1,6	0
caracteres topográficos		erosivo de colinas,	de colinas, lomerios					
topogranicos		lomerios y	y mesas					
		mesas						
Extensión y	10	2 veces la	2 veces la	0,21	0,21	2,1	2,1	0
alineación		profundidad	profundidad					
	I		Ai	re	I		l.	
Olor y	3	bajo a medio	bajo a medio	0,18	0,18	0,54	0,54	0
visibilidad		-						
Sonidos	2	frecuencia	frecuencia ocasional	0,1	0,1	0,2	0,2	0
		ocasional y						
		desagradable						
	ı		Ag	ua	T	T		
Presencia	10	moderado	moderado	0,6	0,6	6	6	0
de agua								
Interfase	16	severo	severo	0,1	0,1	1,6	1,6	0
agua-tierra					_		_	
Olor y	6	moderado	abundan	0,4	0	2,4	0	-2,4
materiales								
flotantes	10	. 1000	. 1000	0.5	0.5		-	
Área de	10	>1000	>1000	0,5	0,5	5	5	0
superficie de agua								
Márgenes	10	20%	20%	0,3	0,3	3	3	0
arbolados	10	20%	20%	0,3	0,3	3	3	U
Total						24,84	22,44	-2,4
				j	l	,• .	,	-,·

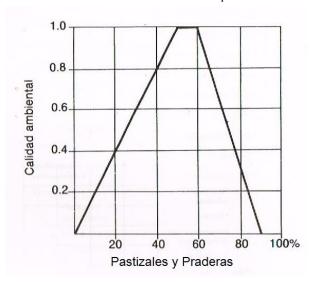
Tabla G.3 Valores de impacto ambiental de intereses humanos. (Elaboración propia)

Categoría	UIP	Parár	netro	Calidad	ambiental	Unida	nidades de importancia amb					
intereses humanos		SP	СР	SP	СР	SP	СР	Valor neto				
Valores adicionales y científicos												
Arqueológico	13	débil	débil	0,6	0,6	7,8	7,8	0				
	Valores históricos											
Religiosos y culturales	11	débil a medio	débil a medio	0,7	0,7	7,7	7,7	0				
Culturas												
Grupos étnicos	7	débil	débil	0,6	0,6	4,2	4,2	0				
Grupos religiosos	7	Alto a medio	débil a medio	0,8	0,7	5,6	4,9	-0,7				
			Estilo	os de vida	1							
Oportunidad de empleo	13			0,5	0,5	6,5	6,5	0				
Vivienda	13			0,5	0,5	6,5	6,5	0				
Interacciones sociales	11			0	0,5	0	5,5	5,5				
Totales						38,3	43,1	4,8				

Tabla G.4 Valores de impacto ambiental de ecología. (Elaboración propia)

Categoría	UIP	Parár	metro	Calidad a	mbiental	Unidades de importancia ambiental			
ecología	0	SP	СР	SP	СР	SP	CP CP	Valor neto	
		31	Especies y poblaci] 31	Ci	valor neto	
Pastizales	14	20,61%	20%	0,6	0,4	8,4	5,6	-2,8	
Cosechas	14	20,0270		3,5	5, .	3 , 1		0	
Vegetación	14	42,09%	40%	0,41	0,4	5,74	5,6	-0,14	
natural	1	42,0370	4070	0,41	0,4	3,74	3,0	0,14	
Especies	14								
dañinas									
Aves de caza	14								
continentales									
		l	Acuát	icas				l	
Pesquerías	14								
comerciales									
Vegetación	14	85,65%	80%	0,82	0,8	11,48	11,2	-0,28	
natural		·							
Especies	14								
dañinas									
Pesca	14								
deportiva									
Aves acuáticas	14	67%	60%	0,61	0,6	8,54	8,4	-0,14	
	•		Hábitat y comunic	lades terre	estres				
Cadenas	12	67,03%	65%	0,62	0,61	7,44	7,32	-0,12	
alimentarias									
Uso del suelo	12	67,89%	68%	0,62	0,64	7,44	7,68	0,24	
Especies raras	12	tres amenazadas	tres amenazadas	0	0	0	0	0	
y en peligro									
Diversidad de	14	0,24%	0,20%	0,01	0	0,14	0	-0,14	
especies	- '	3,2 1,70	0,2070	0,01		0,1.		0,1.	
•	u.		Hábitat y comunic	dades acua	áticas				
Cadenas	12	67,03%	65%	0,62	0,61	7,44	7,32	-0,12	
alimentarias									
Especies raras	12	tres amenazadas	tres amenazadas	0	0	0	0	0	
y en peligro									
Características	12	100%	100%	1	1	12	12	0	
fluviales									
Diversidad de	14	0,24%	0,20%	0,1	0	1,4	0	-1,4	
especies									
Totales						70,02	65,12	-4,9	

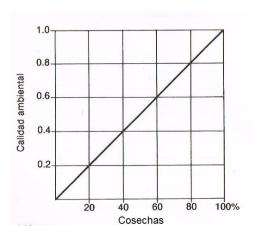
H. Criterios de evaluación de acuerdo a Batelle-Collumbus


Las gráficas adjuntas reflejan, con pequeñas adaptaciones, las funciones que utiliza Batelle para la obtención de los índices de calidad.

Parámetro

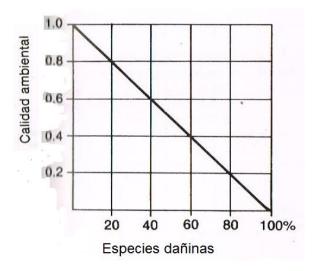
Pastizales y Praderas

Estimación del parámetro: Porcentaje de carga pastante en peso por año, sobre el total que podría soportar toda la producción


$$Pastizales \ y \ Praderas = \frac{\% \ de \ carga \ pastante \ en \ peso \ por \ año}{total \ de \ producciòn}$$

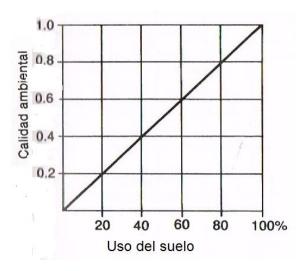
Cosechas

Estimación del parámetro: Suma de la superficie de cada tipo de cultivo ponderada por un índice representativo de la productividad y expresada en porcentaje de la superficie total cultivada.


 $\textit{Cosechas} = \textstyle\sum_{i=1}^{n} \textit{Indice representativo de la productividad}$

Especies dañinas:

Estimación del parámetro: Sumatoria del peso de las categorías presentes (malas hierbas -0.25; vegetales enfermos -0.25, animales enfermos -0.2 5 y plagas de especies animales -0.25), multiplicado por un coeficiente de distribución (amplia -1; intermedia -0.67, restringida -0.33, ausente -0) y por 100


Especies da \tilde{n} inas = $\sum_{i=1}^{n} (Peso \ de \ categorias * C.D.) * 100$

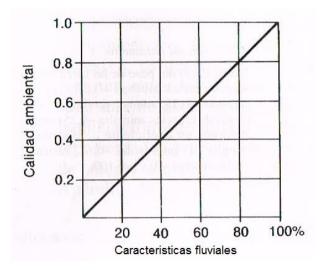
Uso del suelo

Estimación del parámetro: Suma ponderada de la superficie de cada tipo de uso del suelo (natural -1; forestal -0.8, agrícola -0.6, residencias -0.4, comercial -0.2, industrial -0) expresada en porcentaje de la superficie total.

Uso del suelo =
$$\sum_{i=1}^{n} \frac{\text{Superficie de tipo de suelo}}{\text{superficie total}} * 100$$

Diversidad de especies

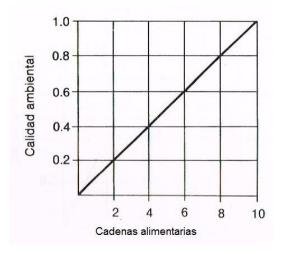
Estimación del parámetro: Número de especies por mil individuos


Diversidad de especies = $\frac{Numero de especies}{mil individuos}$

Características fluviales

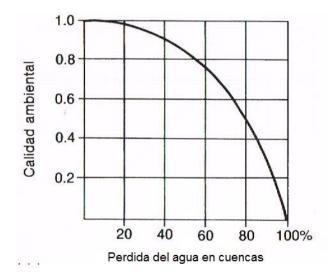
Estimación del parámetro: Suma del área de cada tramo ponderada por un índice de calidad, dependiente del tipo de corriente y expresada en porcentajes de la superficie total.

 $Caracteristicas\ fluviales = \sum Area\ de\ cada\ tramo\ *ICA$



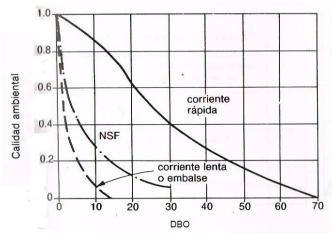
Cadenas alimentarias:

Estimación del parámetro: $\frac{\sum_{1}^{n} \log 10 \ densidad \ de \ la \ especie *K}{\sum_{1}^{n} \log 10 \ densidad \ de \ la \ especie} * 100$

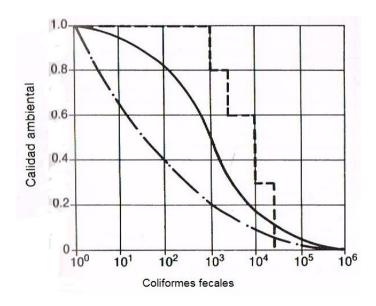

N: Número total de especies

K: Herbívoros 0.33; omnívoros 0.67 y carnívoros 1

Perdida de agua en las cuencas hidrológicas

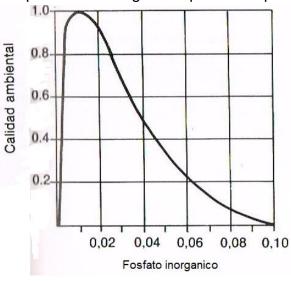

Estimación del parámetro: Perdidas debidas a las actividades humanas/descarga natural anual.

Demanda biológica de oxigeno


Estimación del parámetro: Variable según carácter del medio acuático; mg/L. curva propuesta por el NSF.

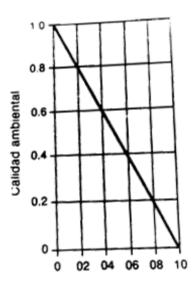
Coliformes fecales

Estimación del parámetro: Unidades convencionales de MPN/100 ml


Curvas propuestas por otros organismos

Fosfato inorgánico

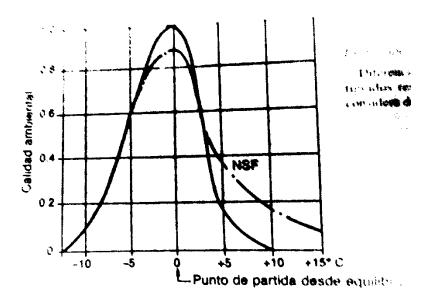
Estimación del parámetro: Miligramos por litro expresado en P

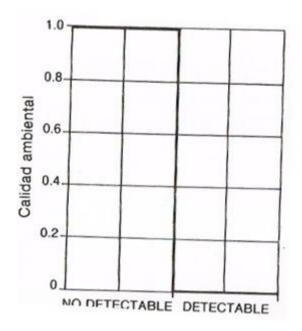


Pesticidas en el agua

Estimación del parámetro: Relación: Concentración máxima/ concentración permisible.

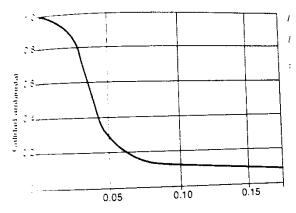
Si hay n pesticidas

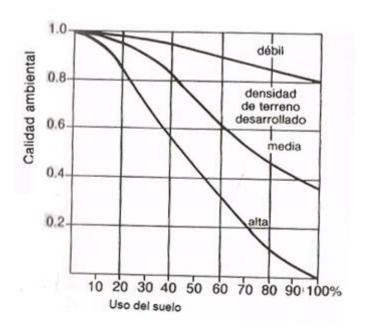

Calidad ambiental= $\sum_{i=1}^{n} \frac{Cal.Amb}{n} * 0.9^{n}$


Temperatura

Estimación del parámetro: Diferencia de temperatura en grados centígrados respecto a la temperatura que se considera de equilibrio natural.

Sustancias toxicas (excepto pesticidas)

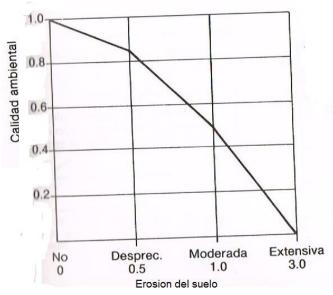

Estimación del parámetro: Capaz de ser o no detectado por los métodos de análisis


Óxidos de nitrógeno

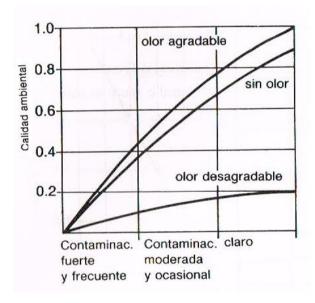
Estimación del parámetro: Promedio anual en partes por millón

Uso del suelo (Contaminación)

Estimación del parámetro: Porcentaje de suelo desarrollado según distintos tipos de densidad.

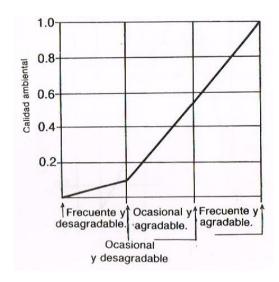


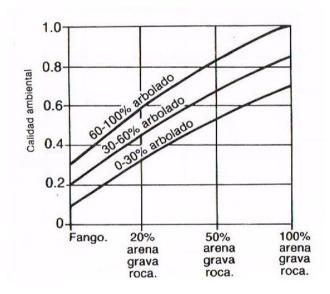
Erosión del suelo


Estimación del parámetro: Sedimentos aportados en acrespie/milla cuadrada/

año

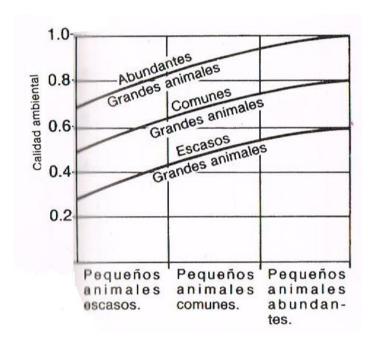
Olor y visibilidad

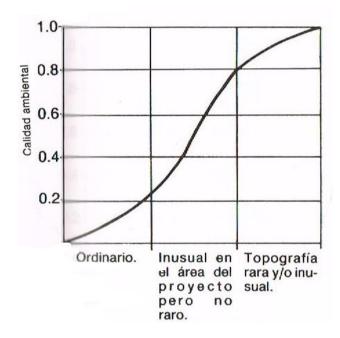

Estimación del parámetro: Combinación de olores y contaminación del aire


Sonidos

Estimación del parámetro: Frecuencia y agrabilidad de los sonidos

Márgenes arbolados y geológicos

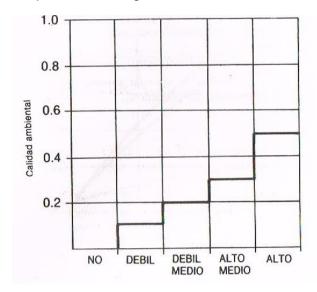

Estimación del parámetro: Porcentaje del material geológico y de la cubierta arbolada de las márgenes entre 200 y 500 pies desde la orilla del agua.


Animales salvajes

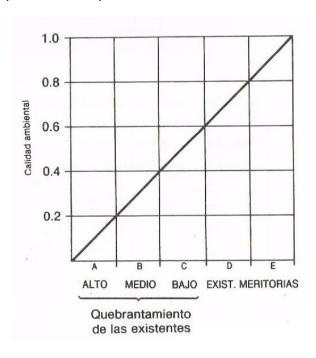
Estimación del parámetro: Posibilidad de apreciar animales silvestres grandes y/o pequeños

Elementos singulares:

Estimación del parámetro: Rareza dentro y fuera del área


Efecto de conjunto (composición)

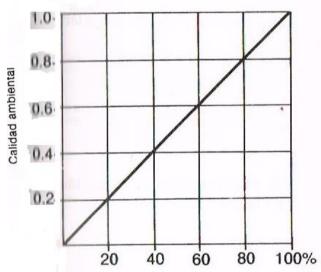
Estimación del parámetro: Sensación subjetiva sobre el observador


Valores históricos

Estimación del parámetro: Significancia del valor

Culturas

Estimación del parámetro: Apreciación del interés

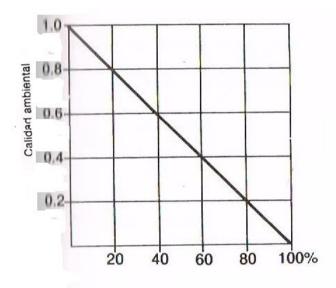


Vegetación natural acuática

Estimación del parámetro: $\sum_{1}^{n} \frac{Superficie\ de\ cada\ clase*K}{Superficie\ acuatica\ total}*100$

N: Número de clases (corrientes y ríos, lagos y estanques, pantanos o marismas y estuarios)

K: Índice de calidad dependiente de las características de cada clase, varía entre 0 y 1.

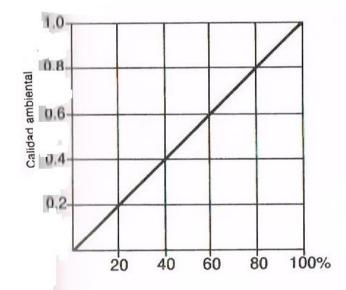

Especies acuáticas dañinas

Estimación del parámetro: $\sum_{1}^{n} peso de las clases * k * 100$

N= Número de clases

Peso de las clases: malas hierbas 0.25; plantas causantes de enfermedades 0.25; animales causantes o portadores de enfermedades 0.25 y plagas animales 0.25)

K=índice de distribución (amplia 1, intermedia 0.67, restringida 0.33, ausente 0)

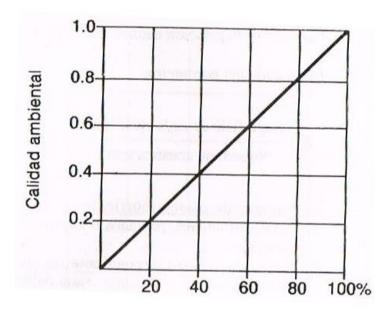

Pesca deportiva

Estimación del parámetro: $\sum_{1}^{n} \frac{superficie\ de\ cada\ clase*k}{superficie\ total\ del\ agua}*100$

N: Número de clases

K: índice de calidad de cada clase, que son los mismos que para el parámetro

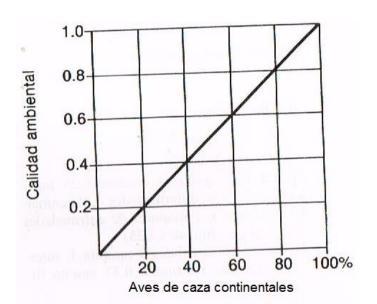
<vegetación acuática>



Vegetación natural terrestre

Estimación del parámetro: $\sum_{1}^{n} \frac{\text{Ha de cada tipo de vegetacion}*K}{\text{total tierra no arable}} * 100$

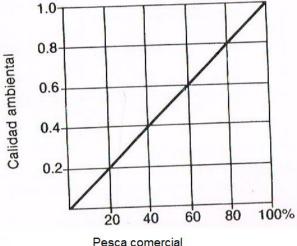
N: Número de tipos de vegetación


K: índice de productividad

Aves de caza continentales:

Estimación del parámetro: $\frac{\textit{Area habitada*K}}{\textit{maxima area del habitat}} * 100$

K: índice derivado de la cantidad recolectada (1: máxima posible, 0.75,0.5,0.25 y 0: ninguna caza)

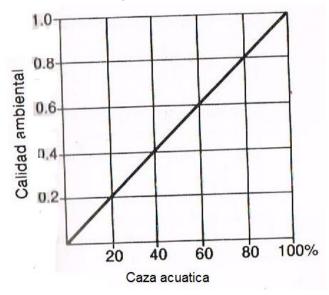


Pesca comercial

Estimación del parámetro: $\frac{Area\ habitada*K}{Maxima\ area\ del\ habitat}*100$

K: Peso derivado del valor de las capturas (1.000 \$, 0.67: 100\$, 0.33: 10\$ y 0:

1\$).

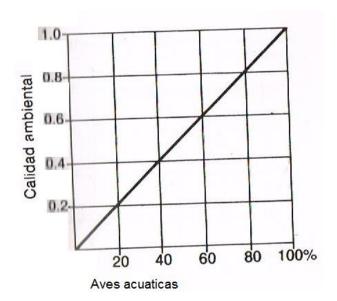

Pesca comercial

Caza acuática

Estimación del parámetro: $\sum_{1}^{n} \frac{Superficie\ de\ habitats\ humedos*k}{total\ zona\ humeda}*100$

N: Número de hábitats

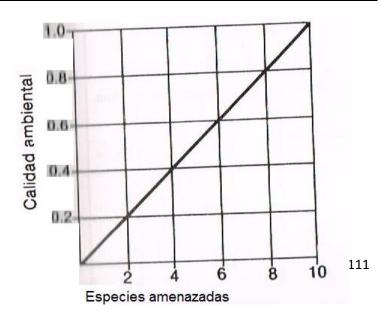
K: calidad del hábitat (varia de 0 a 1 para los hábitats acuáticos señalados en el parámetro <vegetación acuática>).



Aves acuáticas

Estimación del parámetro: $\sum_{1}^{n} \frac{log.10\ Densidad\ de\ especies*k}{log.10\ Densidad\ de\ especies}*100$

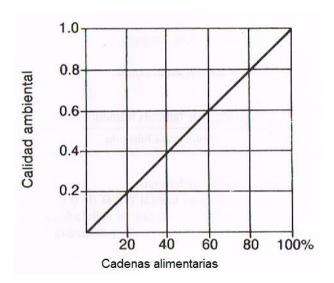
N: Número total de especies


K: modificar del hábitat de cada especie (herviboros - 0.33, omnívoros -0.67, carnívoros -1)

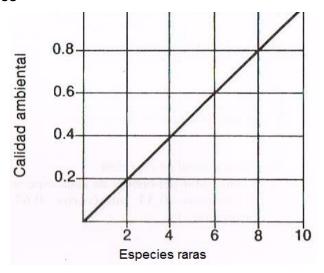
Especies amenazadas

Estimación del parámetro: Valor según la siguiente escala (si confluyen dos categorías se asigna el peso menor).

Clase	Valor
Común	10
Endémica de un estado	9
Endémica de EE.UU. o de tres	7
Estados	
Rara en tres estados o tres	5
endémicas de EE.UU	
Rara en EE.UU o rara en tres Estados	3
Amenazada o tres raras en EE.UU	1
Extinguido o tres amenazadas	0

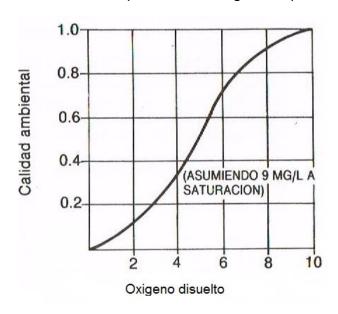


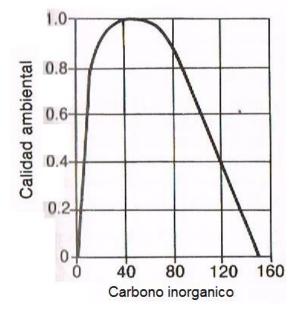
Cadenas alimentarias (acuáticas)


Estimación del parámetro: $\frac{\sum_{1}^{n} \log 10 \ densidad \ de \ las \ especies*k}{\sum_{1}^{n} \log 10 \ densidad \ de \ las \ especies}*100$

N: Número total de las especies

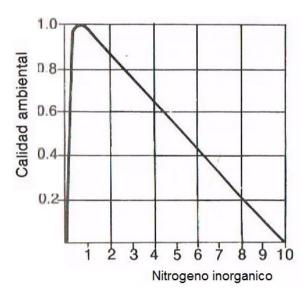
K: Modificador del hábitat (herbívoros 0.33,omnívoros 0.67 y carnívoros 1)

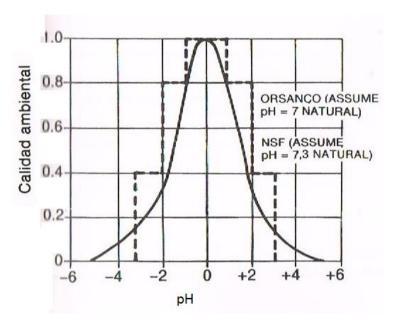

Especies raras o amenazadas (acuáticas): Estimación del parámetro: ídem terrestres


Oxígeno disuelto

Estimación del parámetro: Miligramos por litro de agua

Carbono inorgánico

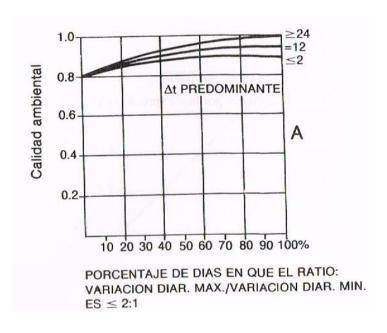

Estimación del parámetro: Miligramos por litro expresado en C.


Nitrógeno inorgánico

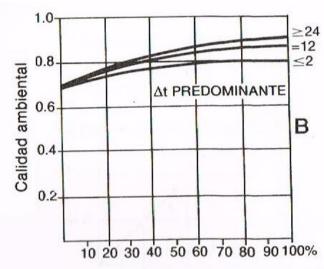
Estimación del parámetro: Miligramos por litro expresado en N.

рΗ

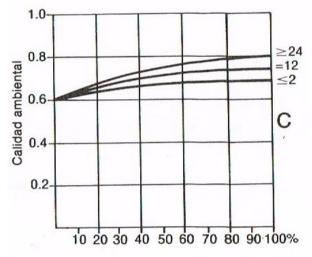
Estimación del parámetro: Diferencia de pH respecto al que se considera de equilibrio

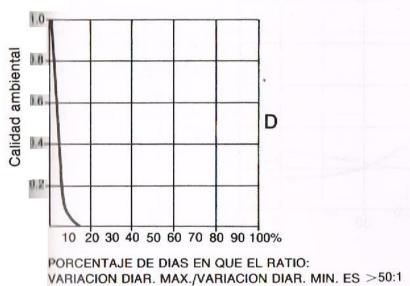


Variaciones del flujo de la corriente

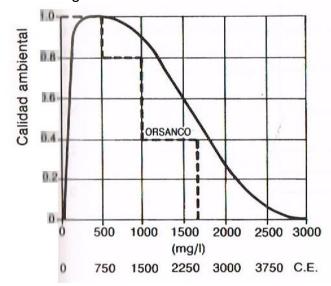

Estimación del parámetro: Curvas A, B,C y D diferentes según el periodo de tiempo predominante en el que cambia el flujo de un máximo a un mínimo o viceversa

Se utilizan cuatro gráficos, estructurándose la función según tres factores esenciales.

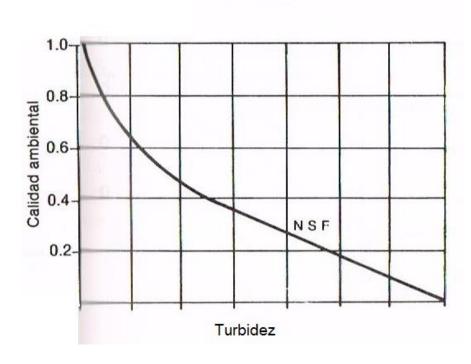

- a) La magnitud del cambio del flujo expresada en la relación máximo diario/ mínimo diario; se utiliza el grafico A, cuando esta relación es <= 2:1; el B cuando esta entre 2:1-10:1, el C cuando esta entre 10:1 – 50:1 y el D cuando es >50:1
- b) El número de días por año expresado en % de 365 en que ocurren los ratios citados.
- c) Periodos de tiempo predominante en el que cambia el flujo de un máximo a un mínimo o viceversa.



PORCENTAJE DE DIAS EN QUE EL RATIO: VARIACION DIAR. MAX./VARIACION DIAR. MIN. ES ≤

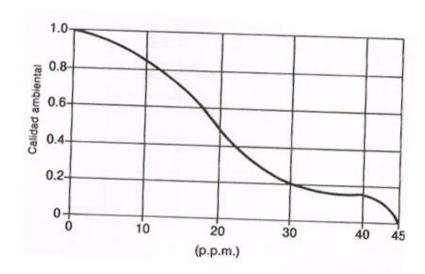

PORCENTAJE DE DIAS EN QUE EL RATIO: VARIACION DIAR. MAX./VARIACION DIAR. MIN. ES ≤

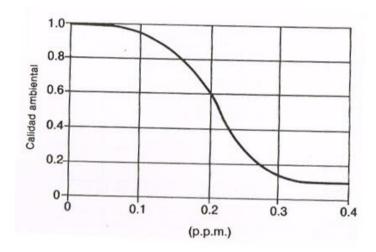
Solidos disueltos totales


Estimación del parámetro: Miligramos disueltos por litro o conductividad eléctrica (C.E.)

-----curva de otro organismo: ORSANCO

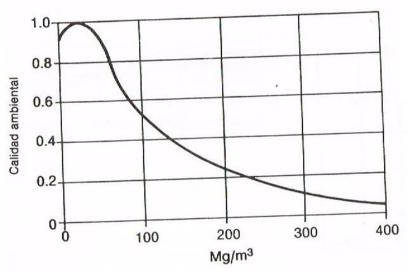
Turbidez

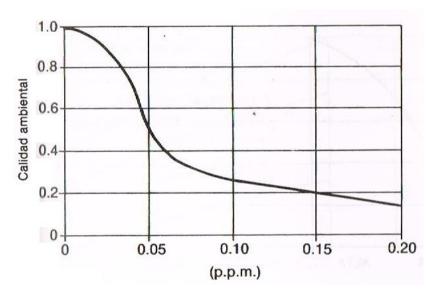

Estimación del parámetro: Unidades Jackson de turbidez


Monóxido de carbono

Estimación del parámetro: Partes por millón

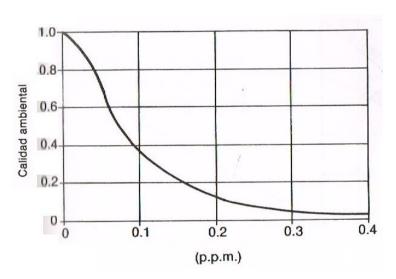
Hidrocarburos

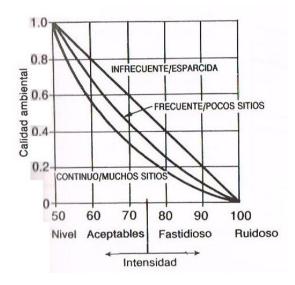

Estimación del parámetro: Media en tres horas en partes por millón


Partículas solidas

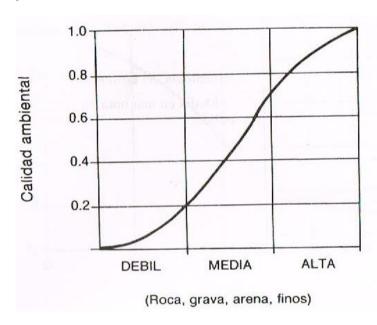
Estimación del parámetro: Media en 24 horas en mg/m³

Oxidantes fotoquímicos

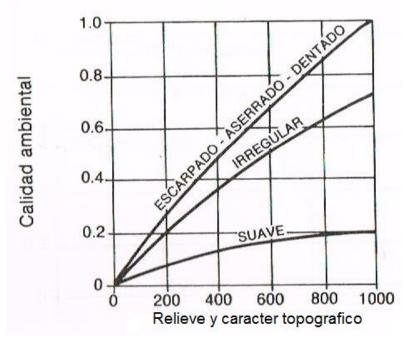

Estimación del parámetro: Media en una hora en partes por millón


Óxidos de azufre

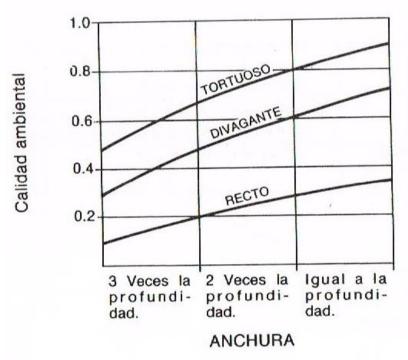
Estimación del parámetro: Media en 24 horas en partes por millón de partículas significativas


Ruido

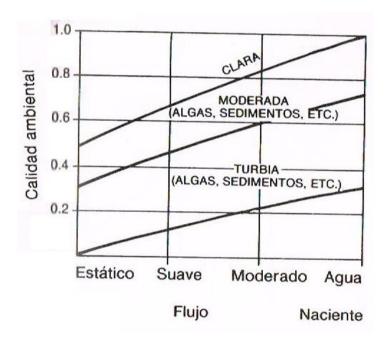
Estimación del parámetro: Intensidad de ruido en decibelios combinada con la frecuencia del ruido y su distribución en el espacio.


Material geológico de superficie

Estimación del parámetro: Estimación cualitativa de la diversidad de materiales y colores.

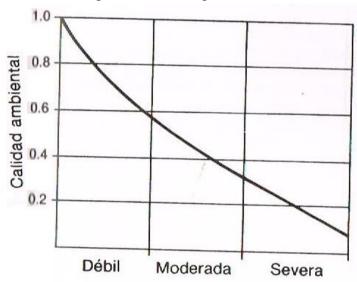

Relieve y carácter topográfico

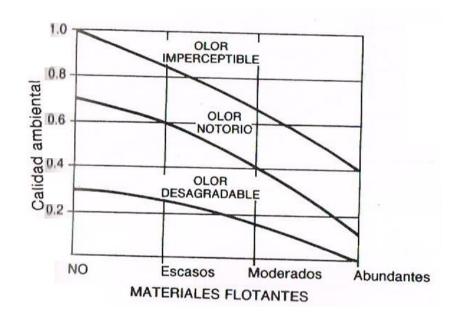
Estimación del parámetro: Diferencia del relieve en pies según los diferentes tipos.


Extensión y alineaciones (cañones y valles de los ríos)

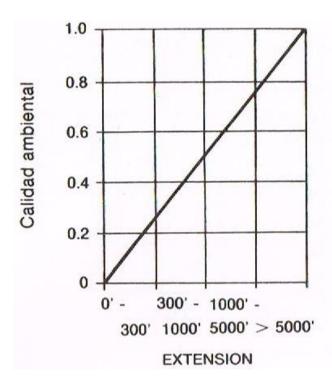
Estimación del parámetro: Anchura en relación con la profundidad y forma del valle.

Presencia de agua:

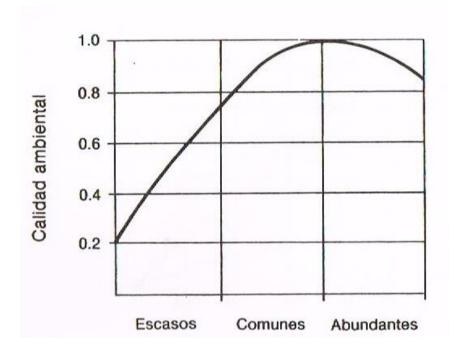

Estimación del parámetro: Características del flujo y aspecto visual del agua


Interface agua-tierra

Estimación del parámetro: Extensión y aspecto de la superficie correspondiente a las variaciones del nivel de agua en las márgenes

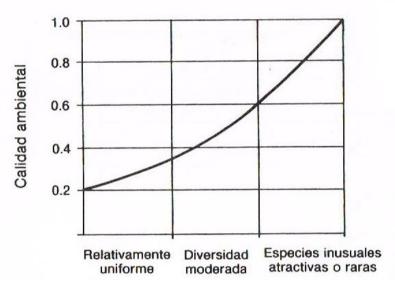

Olor y materiales flotantes

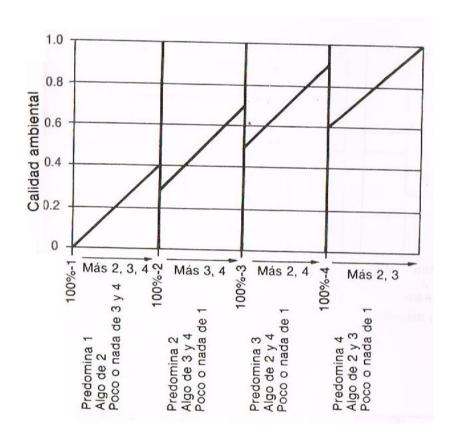
Estimación del parámetro: Cantidad estimativa de materiales flotantes y percepción del olor.


Extensión de la superficie de agua

Estimación del parámetro: Acerca de la superficie del agua

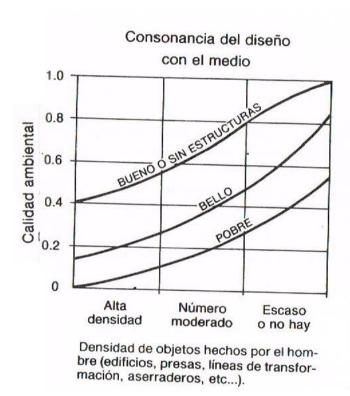
Animales domésticos

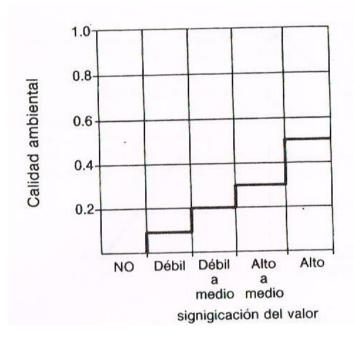

Estimación del parámetro: Cantidad de animales domésticos observables


Variedad dentro de los tipos de vegetación

Estimación del parámetro: Variedad cualitativamente estimada

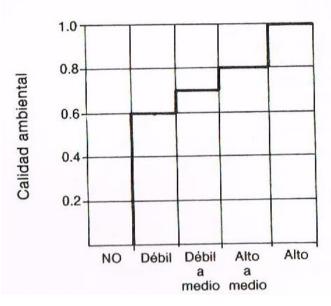
Diversidad de tipos de vegetación

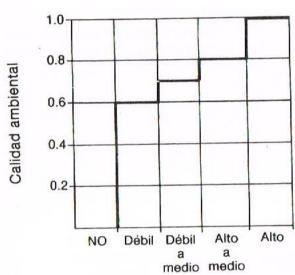

Estimación del parámetro: Porcentaje del tipo de vegetación predominante utilizando distintos tramos del grafico según el tipo de vegetación predominante



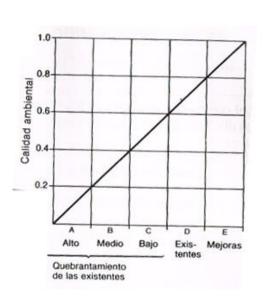
Objetos hechos por el hombre

Estimación del parámetro: Densidad de objetos hechos por el hombre y calidad del diseño en términos de consonancia con el medio.


Valores educacionales y científicos internos: Estimación del parámetro: estimación subjetiva de la significación, dentro del área, del valor según la apreciación de la población.

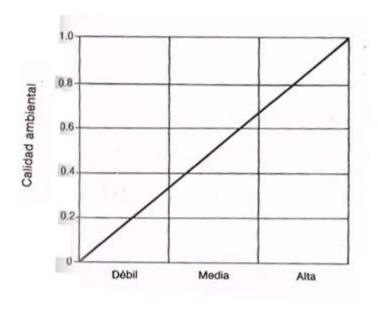

Valores educacionales científicos externos

Estimación del parámetro: Idem anterior pero fuera del área afectada


Valores históricos externos

Estimación del parámetro: ídem anteriores

Culturas


Estimación del parámetro: subjetiva

Sensaciones

Estimación del parámetro: estimación subjetiva de la sensación

