

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA MAESTRÍA EN ENERGÍA – FUENTES RENOVABLES

COMPARACIÓN DEL RENDIMIENTO ENERGÉTICO DE TRES SISTEMAS FOTOVOLTAICOS INTERCONECTADOS A LA RED DE 3 KW CON DIFERENTES TECNOLOGÍAS (CIGS, CDTE Y P-SI)

TESIS

QUE PARA OPTAR POR EL GRADO DE MAESTRO EN INGENIERÍA

PRESENTA:

ING. SAMUEL ROJAS LÓPEZ ZALASAR

TUTOR:

DR. AARÓN SANCHEZ JUÁREZ Instituto de Energías Renovables

TEMIXCO, MORELOS

Junio 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Agradezco a la Universidad Nacional Autónoma de México por medio del Instituto de Energías Renovables (IER-UNAM) por la educación que me ha brindado a lo largo de mi estancia en él.

Al CONACYT por el apoyo recibido para la realización de la maestría en Ingeniería en Energía.

Se agradece el apoyo económico recibido por parte del Instituto de Energías Renovables (IER-UNAM), a través del **Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol)** dentro del Proyecto Estratégico **No 29** así como del **Fondo Institucional de Fomento Regional para el Desarrollo Científico, Tecnológico y de Innovación (FORDECYT)** por medio del cual fue posible desarrollar la investigación.

A mi asesor el Dr. Aarón Sánchez Juárez por su apoyo en su área de especialización como en el área personal.

A los miembros de mi comité tutoral:

Dr. Dalia Martínez Escobar Dr. Aarón Sánchez Juárez Dr. J. Jasón Flores Prieto M.C. José Ortega Cruz Dr. Sergio Alberto Gamboa Sánchez

Por sus comentarios y observaciones.

A Rodiberto Peña, Edgar Fernando Solares, Edson Osvaldo Ángel que colaboraron en la integración del sistema Fotovoltaico y análisis de datos bajo estudio.

Contenido

INTRODUCCIÓN	5
OBJETIVO PRINCIPAL	7
CAPÍTULO 1: LAS ENERGÍAS RENOVABLES	8
1.1 Antecedentes	8
1.2 Energías renovables y Cambio climático	9
1.2.1 Desarrollo sostenible	10
1.2.2 Efecto invernadero	11
1.3 Estado actual de las energías renovables	13
1.3.1 Panorama mundial	13
1.3.2 Panorama en México	17
1.3.2.1 Capacidad instalada	18
1.3.2.2 Proyectos en marcha	19
1.3.2.3 Inversión extranjera directa	19
CAPÍTULO 2. ENERGÍA SOLAR. DISPOSITIVOS FOTOVOLTAICOS	21
2.1 Introducción	21
2.2 Radiación solar	22
2.3 Módulos Fotovoltaicos	25
2.4 Parámetros eléctricos de un módulo fotovoltaico	28
2.5 Tecnologías fotovoltaicas para aplicaciones terrestres y oferta comercial	31
2.5.1 Tecnología de silicio	31
2.5.2 Tecnologías de película delgada	33
2.5.2.1 Módulos de Silicio amorfo	33
2.5.2.2 Módulos de Telurio de Cadmio (CdTe)	34
2.5.2.3 Módulos de Cobre-Indio-Galio-Selenio (CIGS)	35
2.6 Sistemas Fotovoltaicos	35
2.6.1 Componentes de un sistema fotovoltaico	36
2.7 Tipos de Sistemas Fotovoltaicos	37
2.7.1 Sistemas Fotovoltaicos Autónomos	38
2.7.2 Sistemas Fotovoltaicos Interconectados a la Red	39
2.7.3 Sistemas Fotovoltaicos Híbridos	40
2.8 Arreglos Fotovoltaicos	41
2.9 Dimensionamiento de uno sistema Fotovoltaico	43
2.10 Aplicaciones de los sistemas Fotovoltaicos	46
CAPÍTULO 3: PLATAFORMA SOLAR FV	49

	3.1 Descripción general de la plataforma solar fotovoltaica	49
	3.2 Tecnologías fotovoltaicas Instaladas (CIGS, Si-P y CdTe)	50
	3.2.1 Configuración de los subsistemas FV	51
	3.2.2 Características eléctricas de los subsistemas FV	52
	3.2.3 Características eléctricas a STC de las tecnologías instaladas	. 53
	3.2.4 Características eléctricas a PTC	. 55
	3.3 Rendimiento térmico	. 57
	3.4 Diagrama unifilar del SFV	. 59
	3.4 Cálculos eléctricos del Sistema Fotovoltaico	62
	3.4.1 Cálculo de protecciones	. 62
	3.4.2 Caída de tensión	63
	3.4.3 Selección de los conductores	. 63
	3.6 Diagramas unifilares de toda la Instalación FV.	. 64
	3.7 Fotografías de la instalación mecánica y eléctrica del SFV	65
С	APÍTULO 4: METODOLOGÍA Y DESARROLLO EXPERIMENTAL	. 67
	4.1 Introducción	. 67
	4.2 Descripción de equipo a utilizar	. 68
	4.2.1 Sensores utilizados	. 69
	4.2.1.1 Sensores de Voltaje y Corriente	70
С	APITULO 5. RESULTADOS	84
	5.1 Introducción	84
	5.2 Calculo de pérdidas energéticas	84
	5.2.1 Perdidas por temperatura	84
	5.3 Comparación del Rendimiento energético de las tres Tecnologías FV	84
С	APÍTULO 6. CONCLUSIONES	88
	Bibliografía	89

INTRODUCCIÓN

A nivel mundial hay una concientización cada vez mayor sobre la importancia de la energía renovable y sus rendimientos globales, las cuales son críticas no sólo para atender el cambio climático, sino para crear nuevas oportunidades económicas y proporcionar acceso a la energía a millones de personas que aún no cuentan con servicios modernos para el suministro de energía. Durante la década pasada, y particularmente en años recientes, han sido posibles avances en tecnologías de energía renovable, incrementos en la capacidad de generación a nivel mundial, así como rápidas reducciones de costos gracias al apoyo brindado por las políticas económicas, mismas que han atraído una cantidad significativa de inversiones e impulsado la baja de costos, por medio de economías de escala. En 2014 la energía renovable siguió desarrollándose, aun con el creciente consumo de energía a nivel mundial y el dramático declive en los precios del petróleo durante la segunda mitad del año como telón de fondo. También en 2014, la energía renovable se extendió significativamente en términos de capacidad instalada y energía producida; mientras que las inversiones en energía renovable en el sector energético superaron las inversiones netas para plantas de energía de combustibles fósiles. El crecimiento más rápido y el incremento más sustancial en la capacidad renovable se vieron en el sector eléctrico, las tecnologías dominantes fueron: eólica, solar fotovoltaica (FV) y energía hidráulica. Por otro lado, el desarrollo de la calefacción, el enfriamiento y el transporte basado en tecnologías renovables aún se queda atrás con respecto a la energía renovable. Los precios bajos de combustibles fósiles, los subsidios a éstos y la competencia con otras posibles inversiones (como mejoras en la eficiencia energética u otros sistemas de energía renovable), desaceleraron el potencial del sector de climatización con energía renovable. A pesar de que hay mucho potencial y puntos de entrada para la energía renovable en el sector transporte, su desarrollo se ha visto limitado; mientras que la prioridad de las políticas, los mercados y las industrias se ha centrado en los biocombustibles líquidos. El apoyo a las políticas para

energías renovables ha contribuido al crecimiento del volumen del mercado y a una competencia mundial alta. Las significativas reducciones en los costos, especialmente para la energía solar FV y la eólica, han jugado un papel en la creciente electrificación del transporte y de los aparatos de calefacción. Este hecho también ha resaltado el potencial para una mayor superposición entre los sectores en un futuro cercano. En muchos países las energías renovables son altamente competitivas con los combustibles convencionales, particularmente en el sector eléctrico. En países en desarrollo, los sistemas de generación distribuida de energía ofrecen la oportunidad sin precedentes de acelerar la transición a servicios modernos de energía y de incrementar el acceso. Aunque los costos bajos del sistema solar FV le han proporcionado a la tecnología la fuente de energía más económica para la electrificación no conectada a la red, las mayores barreras del 2014 fueron contar con el financiamiento o con el equipo necesario para el uso de este tipo de energía. Está claro que las energías renovables se han convertido en unos de los recursos principales de energía. La experiencia del 2014 demostró que la penetración y el uso de fuentes de energía tanto variables como no variables se encuentran en franco crecimiento y, por lo tanto, contribuyen a la diversificación de la mezcla de energía. A pesar de que muchas tecnologías de energía renovable han experimentado una expansión rápida, el crecimiento de la capacidad de generación, así como las mejoras en la eficiencia energética se encuentran debajo del porcentaje necesario para alcanzar las metas de la iniciativa Energía Sostenible para Todos (SE4ALL por sus siglas en inglés), las cuales consisten en duplicar el nivel de uso de energía renovable, duplicar las mejoras mundiales en eficiencia energética, y proporcionar acceso universal a la energía para el año 2030.

OBJETIVO PRINCIPAL

Estudiar, evaluar y comparar el rendimiento energético de tres tecnologías fotovoltaicas (Cobre, Indio, Galio, Selenio (CIGS), Silicio Policristalino (P-Si) y Telurio de Cadmio (CdTe)) interconectadas a la red en las mismas condiciones mecánicas, eléctricas y ambientales, para esto se implementó un sistema de monitoreo de 19 variables, ambientales y eléctricas, para obtener parámetros de voltaje, corriente y potencia de cada tecnología así como temperatura ambiente, temperatura de los módulos, velocidad del viento e Irradiancia. Dicho sistema de monitoreo estará en servicio durante 4 meses con lo cual bastará para determinar el rendimiento de cada tecnología FV, una vez analizados los datos podremos caracterizar cada tecnología ya que todos los módulos son nuevos y poder observar si presentar algún tipo de degradación en la potencia.

CAPÍTULO 1: LAS ENERGÍAS RENOVABLES

1.1 Antecedentes

Quizás el momento más decisivo para la humanidad haya sido el descubrimiento del fuego, y gracias a él, la humanidad comenzó a ser capaz de controlar y modificar muchos procesos que hasta ese momento dependían únicamente de la naturaleza. Desde entonces la energía ha sido un elemento indispensable en la satisfacción de las necesidades cotidianas de todas las formas organización social, partiendo de los usos y equipos más elementales, como la cocción de alimentos con los fogones de tres piedras, hasta los sofisticados aparatos electrónicos dedicados exclusivamente al ocio y el entretenimiento en las sociedades post-industriales.

Desde la perspectiva humana, la energía es entonces, ubicua y permanente. Ubicua, porque el hombre en tanto ente biológico y social depende de ella, ya sea corno la radiación solar indispensable para las funciones biológicas o para los ciclos agrícolas, o como la fuerza motriz del viento o del agua requerida para impulsar los antiguos molinos de granos, o los modernos equipos de generación eléctrica. Y es permanente, porque las necesidades pasadas, presentes y futuras de energía son determinadas y conducidas por tres factores principales: el crecimiento de la población, el desarrollo económico y el progreso tecnológico (Nakicenovic, Gmblery Me Donald, 1998).

Durante la mayor parte de la historia humana, el sistema energético dependió de los flujos naturales de energía y de la fuerza animal y humana para proveer los servicios requeridos en la forma de calor, luz y trabajo. La única forma de transformación conocida era de la energía química a la energía calorífica y luminosa, mediante la quema de leña o de velas. Fue a partir de la Revolución Industrial cuando el sistema energético mundial pasó por dos transiciones altamente significativas; la primera de ellas fue iniciada por una innovación tecnológica radical: la máquina de vapor alimentada por carbón. Con ella se realizó la primera conversión de recursos energéticos fósiles en trabajo, lo que implicó la posibilidad de separar geográficamente y en gran escala el origen de las fuentes energéticas respecto a su lugar de consumo final. El carbón podía ser transportado y almacenado en donde se le requiriera, dotando de recursos energéticos a casi cualquier región, lo que antes sólo era posible si existían abundantes recursos hidráulicos en el sitio (Nakicenovic, Grüblery Me Donald, 1998).

La segunda gran transición fue la creciente diversificación de las tecnologías de uso final energético y de las fuentes de abastecimiento de energía. La introducción de la electricidad fue quizás el factor más importante para que esta transición ocurriera, ya que la energía eléctrica podía ser fácilmente convertida en luz, calor o trabajo en los lugares de uso final. Una segunda innovación fue el motor de combustión interna, el cual revolucionó los patrones de transporte individual y colectivo. Sin embargo, junto con esto se dio una creciente dependencia del petróleo como el energético primario que cubriría las necesidades cada vez mayores de combustibles para generación eléctrica y para transporte.

1.2 Energías renovables y Cambio climático

Las energías renovables son las que proceden de fuentes de energía inagotables. Son energías limpias porque las emisiones de contaminantes, así como los gases de efecto invernadero asociados a su producción y consumo son insignificante en relación a las energías convencionales y no generan residuos peligrosos. Estas energías aumentan la seguridad de un país al no depender del exterior y es una fuente de crecimiento económico y empleo.

Podemos dividirlas en energías renovables gestionables o intermitentes. Las energías renovables gestionables son aquellas capaces de almacenar la energía y producir electricidad en función a la demanda. Gracias a esta capacidad, las energías como la termosolar y la geotérmica son capaces de configurar redes eléctricas estables. Gracias a la gestionabilidad, estas energías renovables no requieren centrales energéticas de reserva que, en la actualidad, son plantas infrautilizadas. Las energías renovables gestionables gestionables son, por tanto, aquellas

que sirven como base para el sistema energético y que a su vez lo hacen sostenible.

Las energías renovables intermitentes son fuentes generalmente predecibles pero discontinuas, supeditadas a la presencia de un elemento natural que no puede ser controlado por el ser humano, como el viento o la luz del sol. La intermitencia propia de estas fuentes de energía supone que las redes eléctricas deben estar preparadas para funcionar con o sin su aportación. Para ello, los sistemas energéticos cuentan con centrales energéticas gestionables de reserva que puedan generar energía cuando existe una demanda energética que estas fuentes no pueden cubrir.

Las proyecciones de la Agencia Internacional de la Energía estiman que podría generarse el 18% de la energía primaria a través de fuentes de energías renovables en el año 2035, y que el aumento de renovables en China será mayor que el de la Unión Europea, Estados Unidos y Japón juntos.

Sin embargo, a pesar de estos positivos augurios, su crecimiento no siempre es sencillo ni suficiente con respecto a la evolución de la demanda en países emergentes y en desarrollo, ni resulta fácil o ajeno a las controversias cuando se trata de sustituir la oferta en mercados maduros.

1.2.1 Desarrollo sostenible

Históricamente; el hombre ha construido diferentes instrumentos para mantener, atender y satisfacer necesidades de desarrollo y progreso económico, cultural y tecnológico. Estas necesidades son originadas en principio para lograr beneficio social. No obstante, el camino que ha elegido para tratar de alcanzar estos objetivos son: el de un desarrollo y el de un crecimiento dispar; que si bien produce satisfactores, al mismo tiempo transforma y explota al sistema natural de manera excesiva y no organizada o no sostenida.

La explotación tecnológica permite al hombre mantener el nivel y estilo de vida que desea, y el que ha seguido a la sociedad en general. Sin embargo, este proceso se ha traducido en agotamiento de recursos, destrucción de los ecosistemas naturales, pérdida de la fertilidad y deterioro de los suelos agrícolas, etcétera.

Se entiende entonces por Desarrollo Sostenible el atender y satisfacer las necesidades de desarrollo y progreso económico, cultural y tecnológico, evitando el agotamiento de recursos, destrucción de los ecosistemas naturales, pérdida de la fertilidad y deterioro de los suelos agrícolas, protegiendo así el medio ambiente nacional y mundial para el beneficio de las generaciones futuras y mejorando constantemente la calidad de vida.

La demanda de energía y de servicios conexos, con miras al desarrollo social y económico y a la mejora del bienestar y la salud de las personas, va en aumento. Todas las sociedades necesitan de servicios energéticos para cubrir las necesidades humanas básicas (por ejemplo, de alumbrado, cocina, ambientación, movilidad y comunicación) y para los procesos productivos. Desde 1850, aproximadamente, la utilización de combustibles de origen fósil (carbón, petróleo y gas) en todo el mundo ha aumentado hasta convertirse en el suministro de energía predominante, situación que ha dado lugar a un rápido aumento de las emisiones del dióxido de carbono (CO2).

1.2.2 Efecto invernadero

El clima de la Tierra está dirigido por un flujo de energía continuo desde el Sol. Aproximadamente un 30 % es devuelto al espacio en forma inmediata, pero la mayoría del restante 70 % pasa a través de la atmósfera para calentar la superficie terrestre. La Tierra debe enviar esta energía de vuelta al espacio en la forma de radiación infrarroja. Estando mucho más fría que el Sol, la Tierra no emite energía como luz visible. En cambio, emite radiación infrarroja o radiación térmica. Los gases de efecto invernadero en la atmósfera bloquean la radiación infrarroja y no le permiten escapar directamente desde la superficie del planeta al espacio. De esta manera, al aumentar la concentración de gases de invernadero, se incrementa la cantidad de calor atrapado en la atmósfera, dando origen al Calentamiento Global del Planeta. Las emisiones de gases de efecto invernadero (GEI) que genera la prestación de servicios energéticos han contribuido considerablemente al aumento histórico de las concentraciones de esos gases en la atmósfera. En el Cuarto Informe de Evaluación (CIE) del IPCC se concluyó que "la mayor parte del aumento observado en el promedio de las temperaturas desde mediados del siglo XX se debe muy probablemente2 al aumento observado en las concentraciones de GEI antropogénicas". Los datos recientemente obtenidos confirman que el consumo de combustibles de origen fósil representan la mayor parte de las emisiones mundiales de GEI de origen antropogénico3. Las emisiones siguen aumentando y, al término de 2010, las concentraciones de CO2 eran ya superiores a 390 ppm, un 39% por encima de los niveles preindustriales. Hay diversas opciones para disminuir las emisiones de GEI del sistema energético, sin dejar por ello de cubrir la demanda mundial de servicios energéticos. En el CIE se evaluaron algunas de estas opciones, como las relativas a la conservación y eficiencia energéticas, el reemplazo de combustibles de origen fósil, las energías renovables, la energía nuclear, o la captura y el almacenamiento del dióxido de carbono. Para evaluar completamente una cartera de opciones de mitigación habría que evaluar sus respectivos potenciales de mitigación, su contribución al desarrollo sostenible y todos los riesgos y costos concomitantes. El presente informe se centrará principalmente en el papel que podría desempeñar una amplia utilización de tecnologías de la energía renovable incorporadas a una cartera de opciones de mitigación. Además de su gran potencial para mitigar el cambio climático, las energías renovables pueden aportar otros beneficios. Si se utilizan de forma adecuada, las energías renovables pueden contribuir al desarrollo social y económico, favorecer el acceso a la energía y la seguridad del suministro de energía, y reducir sus efectos negativos sobre el medio ambiente y la salud. En la mayoría de las situaciones será necesario adoptar políticas orientadas a fomentar modificaciones al sistema energético que incrementen la proporción de la energía renovable en el conjunto de energías. La adopción de tecnologías de la energía renovable ha aumentado rápidamente en los últimos años, y las proyecciones indican que su porcentaje de utilización aumentará sustancialmente en los escenarios de mitigación más ambiciosos. Para conseguir los aumentos de inversión necesarios en materia de tecnología e infraestructura será necesario adoptar políticas adicionales.

1.3 Estado actual de las energías renovables

1.3.1 Panorama mundial

A nivel mundial hay una concientización cada vez mayor sobre la importancia de la energía renovable y la eficiencia energética, las cuales son críticas no sólo para atender el cambio climático, sino para crear nuevas oportunidades económicas y proporcionar acceso a la energía a miles de millones de personas que aún no cuentan con servicios modernos para el suministro de energía. Durante la década pasada, y particularmente en años recientes, han sido posibles avances en tecnologías de energía renovable, incrementos en la capacidad de generación a nivel mundial, así como rápidas reducciones de costos gracias al apoyo brindado por las políticas económicas, mismas que han atraído una cantidad significativa de inversiones e impulsado la baja de costos, por medio de economías de escala.

En 2014 la energía renovable siguió desarrollándose, aun con el creciente consumo de energía a nivel mundial (particularmente en los países en desarrollo), y con el declive dramático en los precios del petróleo durante la segunda mitad del año como telón de fondo. A pesar de que el uso de energía estuvo en aumento, por primera vez en cuatro décadas las emisiones mundiales asociadas con el consumo de energía se mantuvieron estables en 2014; al tiempo que la economía mundial creció. Esta estabilización se debe tanto a la continua y cada vez mayor penetración de la energía renovable, como a las mejoras en eficiencia energética. El mundo entero está cada vez más consciente de que las energías renovables (y la eficiencia energética) son críticas para atender los problemas del cambio climático, crear nuevas oportunidades económicas, y proporcionar acceso a la energía a los miles de millones de personas que aún no cuentan con servicios modernos para el suministro de electricidad. A pesar de que la discusión se encuentra limitada por el momento, las energías renovables también son un elemento importante para la adaptación al cambio climático, pues se mejoraría la resistencia de los sistemas de energía existentes y se garantizaría la entrega de servicios energéticos aún en

condiciones climáticas inestables. La energía renovable proporcionó un estimado 19,1% del consumo mundial total de energía en 2013, mientras que el crecimiento en la capacidad y generación continuaron su expansión durante el 2014. La capacidad de calentamiento creció con un paso constante, y la producción de biocombustibles para transporte aumentó por segundo año consecutivo, después de su disminución en el período 2011-2012. El crecimiento más rápido, así como el incremento más sustancial en capacidad de generación se dieron en el sector eléctrico, encabezados por las energías hidráulica, eólica y solar FV. Muchos factores que han sido responsables por este crecimiento, incluyendo el apoyo a políticas de energía renovable y la creciente competitividad de costos de las fuentes renovables. En muchos países, las energías renovables son altamente competitivas con las fuentes convencionales de energía. Al mismo tiempo, el crecimiento sigue siendo moderado debido a los subsidios disponibles para los combustibles fósiles y para la energía nuclear, particularmente en países en desarrollo. Aunque Europa permaneció como un mercado importante y un centro de innovación, la actividad continuó dirigiéndose hacia otras regiones. Una vez más en 2014, China lideró con el mayor número de capacidad de generación de energía renovable instalada, mientras que Brasil, India y Sudáfrica reportaron una gran porción de capacidad añadida en sus respectivas regiones. Asimismo, un número creciente de países en desarrollo en toda Asia, África y América Latina se convirtieron en fabricantes e instaladores importantes de tecnologías de energía renovable. De manera paralela con el crecimiento en los mercados de energía renovable, 2014 tuvo avances significativos en el desarrollo y el empleo de los sistemas de almacenamiento de energía en todos los sectores. Durante el año también se pudo percibir una mayor electrificación en el transporte y en los aparatos de calefacción, lo que resalta el potencial para una mayor superposición entre sectores en un futuro cercano.

En 2015 las energías renovables representaron aproximadamente el 58,5% de las adiciones netas en la capacidad mundial de generación de energía. Las energías hidráulica, eólica y solar FV dominaron el mercado. Hacia el final del año, las energías renovables constituyeron un estimado del 27,7% de la capacidad generadora de energía del planeta, misma que es suficiente para abastecer cerca del 22,8% de la electricidad mundial. Las fuentes variables de

energía renovable están logrando niveles altos de penetración en varios países. Como respuesta, los legisladores de algunas jurisdicciones están pidiendo a las empresas prestadoras de estos servicios que actualicen sus modelos de negocios y la infraestructura de sus redes eléctricas. Australia, Europa, Japón y América del Norte han experimentado un crecimiento significativo en el número de "pro-sumidores" residenciales, que son consumidores de electricidad que producen su propia energía. También en 2014, grandes corporaciones e instituciones de todo el mundo se comprometieron a comprar electricidad renovable, o a invertir en su propia capacidad de generación de energía renovable.

A pesar de que hay mucho potencial y puntos de entrada para la energía renovable en el sector transporte, su desarrollo se ha visto limitado; mientras que la prioridad de las políticas, los mercados y las industrias se ha centrado en los biocombustibles líquidos.

En la siguiente tabla se muestra el panorama sobre las Energías renovables en el 2015, se observar las inversiones económicas y la capacidad instalada en energías renovables.

		2014	2015
INVERSIONES			
Inversiones nuevas (anuales) en electricidad y combustibles renovables ¹	Miles de millones de dólares (USD)	273	285,9
ELECTRICIDAD			
Capacidad de electricidad renovable (total, sin incluir hidráulica)	GW	665	785
Capacidad de energía renovable (total, incluyendo energía hidráulica)	GW	1.701	1.849
Capacidad de energía hidráulica ²	GW	1.036	1.064
Capacidad de bioenergía³	GW	101	106
🖸 Generación de bioenergía (anual)	TWh	429	464
O Capacidad de energía geotérmica	GW	12,9	13,2
😳 Capacidad de energía solar FV	GW	177	227
Energía solar térmica de concentración	GW	4,3	4,8
📩 Capacidad de energía eólica	GW	370	433
CALOR			
Capacidad de calentamiento solar de agua ⁴	GWth	409	435
TRANSPORTE			
Producción de etanol (anual)	billones de litros	94,5	98,3
Producción de biodiésel (anual)	billones de litros	30,4	30,1

Tabla 1 Indicadores de Energías Renovables 2015

Tabla 2 Países líderes en Energía Renovables

	1	2	3	4	5
Inversión en electricidad y combustibles renovables (sin incluir energía hidráulica mayor a 50 MW)	China	Estados Unidos	Japón	Reino Unido	India
Inversión en electricidad y combustibles renovables por unidad de PIB ¹	Mauritania	Honduras	Uruguay	Marruecos	Jamaica
Capacidad de energía geotérmica	Turquía	Estados Unidos	México	Kenya	Alemania/Japón
Capacidad de energía hidraúlica	China	Brasil	Turquía	India	Vietnam
Capacidad solar FV	China	Japón	Estados Unidos	Reino Unido	India
Capacidad de energía solar de concentración (CSP) ²	Marruecos	South Africa	Estados Unidos	-	-
Lapacidad de energía eólica	China	Estados Unidos	Alemania	Brasil	India
Capacidad de calentamiento solar de agua	China	Turquía	Brasil	India	Estados Unidos
Producción de biodiesel	Estados Unidos	Brasil	Alemania	Argentina	Francia
Producción de etanol combustible	Estados Unidos	Brasil	China	Canadá	Tailandia

Capacidad o generación total al final de 2015

	1	2	3	4	5
ELECTRICIDAD		-			
Electricidad renovable (incl. hidráulica)	China	Estados Unidos	Brasil	Alemania	Canadá
Energía renovable (hidráulica no incl.)	China	Estados Unidos	Alemania	Japón	India
Capacidad de energía renovable per capita (sin incl. hidráulica ³ , entre los 20 líderes)	Dinamarca	Alemania	Suecia	España	Portugal
Generación de bioenergía	Estados Unidos	China	Alemania	Brasil	Japón
Capacidad de energía geotérmica	Estados Unidos	Filipinas	Indonesia	México	Nueva Zelanda
Capacidad de energía hidraúlica*	China	Brasil	Estados Unidos	Canadá	Rusia
😆 Generación de energía hidraúlica*	China	Brasil	Canadá	Estados Unidos	Rusia
Energía solar térmica de concentración (CSP)	España	Estados Unidos	India	Marruecos	Sudáfrica
Capacidad solar FV	China	Alemania	Japón	Estados Unidos	Italia
Capacidad solar FV per capita	Alemania	Italia	Bélgica	Japón	Grecia
La Capacidad de energía eólica	China	Estados Unidos	Alemania	India	España
Capacidad de energía eólica per capita	Dinamarca	Suecia	Alemania	Irlanda	España
CALOR					
Capacidad del captador solar de aguas	China	Estados Unidos	Alemania	Turquía	Brasil
Capacidad de calentamiento del captador solar de agua per capita ^s	Austria	Chipre	Israel	Barbados	Grecia
Capacidad de calor geotérmico ^e	China	Turquía	Japón	Islandia	India
Capacidad de calor geotérmico per capitaª	Islandia	Neuva Zelanda	Hungría	Turquía	Japón

(* REN21_GSN2016_KeyFindings_sp_05)

Está claro que las energías renovables se han convertido en unos de los recursos principales de energía. La experiencia del 2014 demostró que la penetración y el uso de fuentes de energía tanto variables como no variables se encuentran en franco crecimiento y, por lo tanto, contribuyen a la diversificación de la mezcla de energía. A pesar de que muchas tecnologías de energía renovable han experimentado una expansión rápida, el crecimiento de la capacidad de generación, así como las mejoras en la eficiencia energética se encuentran debajo del porcentaje necesario para alcanzar las metas de la iniciativa Energía Sostenible para Todos (SE4ALL por sus siglas en inglés), las cuales consisten en duplicar el nivel de uso de energía renovable, duplicar las mejoras mundiales en eficiencia energética, y proporcionar acceso universal a la energía para el año 2030.

1.3.2 Panorama en México

La reciente Reforma Energética, prevé y promueve el fortalecimiento de las energías renovables. Durante el primer semestre del 2015 se alcanzaron los siguientes hitos en la implementación de la Reforma del sector eléctrico, los cuales se espera tenga un impacto directo sobre el cumplimiento de las metas a 2018 y 2024:

Envío a la Comisión Federal de Mejora Regulatoria (COFEMER) del Anteproyecto de las disposiciones administrativas de carácter general sobre la Evaluación de Impacto Social en el sector energético.

Publicación de los requisitos para la adquisición de Certificados de Energías Limpias en 2018, el cual será de 5.0% en el periodo comprendido entre el 1 de enero y el 31 de diciembre. Expedición de las disposiciones administrativas de carácter general para la solicitud de permisos de generación de energía eléctrica.

Expedición de los criterios mediante los que se establecen las características específicas de la infraestructura requerida para la Interconexión de Centrales Eléctricas y Conexión de Centros de Carga.

Recepción y revisión de las solicitudes de áreas geotérmicas realizadas por la CFE a la SENER (Séptimo Transitorio de la Ley de Energía Geotérmica).

Publicación del Programa de Desarrollo del Sistema Eléctrico Nacional 2015 - 2029.

Por otro lado, el 11 de agosto de 2014 la CFE se convirtió en una Empresa Productiva del Estado, por lo que el término de Servicio Público, usado en Informes anteriores, dejó de tener vigencia.

De acuerdo con el Inventario Nacional de Energías Renovables (INER), México cuenta con abundantes recursos para la generación de electricidad con fuentes renovables. Existe un potencial probado para generar hasta 13,167 GWh/año de electricidad. Sin embargo, esta estimación se incrementa si consideramos las reservas probables y probadas.

Tabla 3 Potencial de generación eléctrico con energías renovables (GWh/año)

Recursos	Geotérmica	Mini hidráulica	Eólica	Solar	Biomasa
Posible	16,165	-	87,600	6,500,000	11,485
Probable	95,569	1,805	9,597	-	391
Probado	892	1,365	9,789	542	579

Prospectiva de Energías Renovables 2013/2027 / Inventario Nacional de Energías Renovables, SENER

1.3.2.1 Capacidad instalada

Al cierre del primer semestre de 2015 la capacidad de generación mediante energías renovables sumo 16953.2 MW, lo que represento al 25.3% de la capacidad de generación total, con lo cual las energías renovables en el país crecieron 9.6% respecto al mismo periodo del 2014.

Figura 1 Crecimiento de la capacidad instalada de energías renovables en el SEN al primer semestre del 2015 (MW). (Prospectiva de Energías Renovables 2013/2027 / Inventario Nacional de Energías Renovables, SENER)

1.3.2.2 Proyectos en marcha

En enero de 2015, la Comisión Reguladora de Energía (CRE) registro 9,520 MW en proyectos que se encuentras en etapa de construcción y por iniciar obras y l meta del gobierno federal es alcanzar una participación del 35 % en la generación total de electricidad con tecnologías limpias para el año 2024.

	ENTIDAD Federativa	HIDROELECTRICA	BIOENERGIA	GEOTERMICA	SOLAR	EÓUCA	TOTAL
1	Oaxaca	47	0			1,292	1,339
2	Coahuila		5		333	501	838
3	Sonora	37	0		755	27	818
4	Tamaulipas		0		90	603	693
5	Chihuahua	10	1		676		687
6	Baja California	28	0		45	559	632
7	Veracruz	534	Ō		1	40	575
8	Puebla	135	0		30	366	531
9	Durango	30	0		292	121	443
10	Zacatecas		0		240	180	420
11	Nuevo León		3			302	305
12	San Luis Potosí		1		90	200	291
	Otros	304	78	65	1,281	220	
	Total	1,125	88	65	3,833	4,410	9,520

Tabla 4 Capacidad autorizada en proyectos de energías renovables por entidad (mw).

1.3.2.3 Inversión extranjera directa

Cada vez más empresas transnacionales pertenecen al sector de energías renovables están prefiriendo invertir en México considerando un destino atractivo y confiable, tanto desarrolladores de proyecto como empresas proveedoras de equipos ya cuentas con presencia en el país.

Tabla 5 Proyectos de inversión extranjera directa 2010-2014*

	Eólica	Solar	Biomasa	Marina	Total
14					
España	3,831	1,710	15		5,556
Estados Unidos	3,240	435			3,675
Alemania	995	500			1,495
Portugal	280	280			560
Reino Unido		500	10		510
Bermuda		500			500
Italia	326				326
Israel				280	280
Taiwan		280			280
Francia		190			190
Total	8,672	4,395	25	280	13,372

Tabla 6 Proyección de capacidad adicional instalada 2018-2028 (MW)*

	2018	2024	2028	% Part
Eólica	7,608	10,260	11,585	59%
Geotermia	178	258	338	2%
Bioenergía	92	494	671	3%
Solar FV	543	1,941	3,121	16%
Hidráulica < 30 MW	110	352	502	3%
Hidráulica > 30 MW	1,230	3,017	3,544	18%
Total	9,761	16,322	19,761	

En 2014 la capacidad instalada de energía solar fotovoltaica en operación alcanzo los 66 MW, sin embargo, en Enero de 2015 la CRE registro 3,833 MW en proyectos que se encuentras en etapas de construcción y por iniciar obras.

Tabla 7 Drov	actos nor	a CPE no	ara la aona	ración da	anaraía colar
10010 7 FIOy	ectos por i	u Chr pi	ilu lu yelle	rucion de	energiu solui

	# de	En Construcción	Por iniciar obras	Total	% Part
-	proyectos	M	w		
Sonora	25	227	519	755	10%
Chihuahua	20	181	495	676	17%
Coahuila	12	184	149	333	9%
Durango	14	156	136	292	8%
BCS	10	117	97	214	6%
Zacatecas	8	60	180	240	6%
Jalisco	11	149	70	219	6%
Guanajuato	9	64	149	214	6%
Sinaloa	6	150	30	180	5%
Aguascalientes	6	60	120	180	5%
Tamaulipas	3	90		90	2%
SLP	3	30	60	90	2%
Otros	17	271	80	351	9%
Total	144	1,749	2,084	3,833	

(*http://mim.promexico.gob.mx/JS/MIM/PerfilDelSector/EnergiasRenovables/Sector_ER_ESP.pdf_)

CAPÍTULO 2. ENERGÍA SOLAR. DISPOSITIVOS FOTOVOLTAICOS

2.1 Introducción

El Sol es una fuente inagotable de energía debido a las reacciones nucleares. La energía irradiada por el Sol procede de la fusión de átomos de deuterio para dar átomos de helio. El astro irradia un segundo más de energía que la consumida por la humanidad en toda su historia. Una parte de esta energía llega a la Tierra en forma de radiación electromagnética. Bajo la perspectiva humana, la fuente de energía solar puede considerarse como inagotable, el Sol ha brillado en el cielo desde hace unos 4,500 millones de años, y se calcula que todavía no ha llegado ni a la mitad de su existencia. Al menos, los científicos especulan que la edad restante de esta estrella es de más de 5,000 millones de años.

El Sol, es fuente de vida y origen de las demás formas de energía que el ser humano ha utilizado desde los albores de la historia, puede satisfacer todas nuestras necesidades si aprendemos cómo aprovechar de forma adecuada la luz que continuamente derrama sobre el planeta. Sería poco racional dejar de aprovechar, por todos los medios técnicamente posibles, esta fuente energética gratuita, limpia e inagotable, que puede liberarnos definitivamente de la dependencia de los combustibles fósiles (petróleo, carbón mineral y gas natural), ya que son recursos finitos que inexorablemente van a agotarse; de ahí su denominación de "recursos no renovables".

Por fortuna, existen también las "energías renovables", que se definen como formas de energía natural que tienen una fuente prácticamente inagotable con respecto al tiempo de vida de un ser humano en el planeta, y cuyo aprovechamiento es técnicamente viable. Dentro de estos tipos de energía se encuentran: la solar, la eólica (viento), la mini hidráulica (ríos y pequeñas caídas de agua), la biomasa (materia orgánica), la geotermia (calor de las capas internas de la Tierra) y la oceánica, principalmente. Las energías renovables ofrecen la oportunidad de obtener energía útil para diversas aplicaciones, su aprovechamiento tiene menores impactos ambientales que el de las fuentes convencionales y poseen el potencial para satisfacer todas nuestras

necesidades de energía presentes y futuras. Además, su utilización contribuye a conservar los recursos energéticos no renovables y propicia el desarrollo regional.

La energía solar es la energía radiante emitida por el Sol y recibida por la Tierra en forma de ondas electromagnéticas. El Sol emite continuamente radiación a todo el espacio y por consiguiente a la Tierra, recibiendo aproximadamente 1.7x10¹¹ MW, de tal medida que la Tierra es un gran colector de energía; Con la energía recibida en una hora aproximadamente nuestro planeta es suficiente para satisfacer la demanda anual de la población mundial.

Hay dos formas conocidas es que el humano puede aprovechar la energía solar; Una es por medio de procesos foto térmicos para el calentamiento de fluidos y genera calor de procesos y la segunda, es por medio del efecto fotoeléctrico por medio de los módulos fotovoltaicos y la unidad mínima en la que se realiza dicho efecto se le llamada celda solar, los cuales convierten la luz solar en electricidad sin usar ningún proceso intermedio. A la integración de módulos fotovoltaicos en conjunto a las cargas eléctricas (dispositivos eléctricos) se le llama Sistemas Fotovoltaicos.

Debido al alto costo de producción de las diferentes tecnologías fotovoltaicas las aplicaciones estuvieron acotadas en proyectos en proyectos donde el precio del producto no era limitante como es el caso de aplicaciones espaciales. La meta ha sido obtener un producto de alta eficiencia y económico para que pueda ser aplicado en sitios en donde se desee una generación de energía limpia.

2.2 Radiación solar

La luz solar es un conjunto de radiaciones electromagnéticas similares a las ondas de radio pero de mayor frecuencia. La mayor parte esta situadas en la parte del visible con una parte importante en el infrarrojo y una mínima en el ultravioleta del espectro electromagnético, las longitudes de ondas se encuentras en 0.2 y 0.3 micras, conocida como banda solar. Del total de la energía contenida en esas longitudes de onda, el 7% está en la región del

ultravioleta, el 46,8% en la visible y el resto en la banda del infrarrojo cercano, conforme son mostrados en la figura 2.1. La radiación emitida por cuerpos a 100 ó más, 1000 °C por ejemplo, ocurre en la región del infrarrojo, entre 0.7 y 100µm. La región de longitudes de onda superiores a 3,0 µm se conoce como banda de emisión.

La descripción de la radiación solar tiene como base su naturaleza espectral y direccional, y puede entenderse como una distribución continua y no-uniforme de varios componentes monocromáticos, que explica la variación de la intensidad de radiación en función de la longitud de onda. Su naturaleza direccional puede simplificarse admitiendo que la radiación es emitida de modo uniforme en todas las direcciones, es decir, la distribución y la superficie emisora son perfectamente difusas.

Figura 2 Espectro de radiación solar

(1© Wikimedia Creative Commons Lincence

La proporción de la radiación solar en las distintas regiones del espectro es aproximadamente:

Ultravioleta: 7%

Luz visible: 43%

Infrarrojo: 49%

El resto: 1%

Las características más importantes que presenta la radiación solar en la Tierra:

- Gran dispersión del espectro de radiación solar por lo tanto baja intensidad
- Variabilidad en el tiempo por lo cual provoca intermitencia.

Estos dos principales problemas son importante cuando se desea aprovechar la energía procedente del sol, desde el punto de vista de los sistemas que utilizan la energía solar, interesa cuantificar la cantidad de energía disponible que incide en una superficie en la Tierra y de su relación respecto a parámetros geográficos y climatológicos.

Se utilizan habitualmente dos términos, Irradiación e Irradiancia, cuyas definiciones son ligeramente diferente. Irradiación se refiere a la cantidad de energía solar recibida durante un determinado periodo de tiempo, mientras que el termino Irradiancia se refiere a la potencia instantánea recibida, en términos de unidades la Irradiancia se mide en W/m², mientras que la irradiación en Wh/m².

La irradiancia proviene del Sol que se recibe sobre una superficie perpendicular al Sol en el exterior de la atmosfera, puede considerarse como una constante e igual a 1,367 W/². Debido a los movimientos de rotación y translación de la Tierra en torno al sol y debido a los efectos de difusión de la atmosfera terrestre, la Irradiancia recibida en la atmosfera de la tierra presenta unas variaciones definidas unos casos temporales bien en (Variaciones día/noche. verano/invierno) y estocásticas en otros (presencia de nubes). Otros efectos importantes es la posición de la superficie captadora respecto de la incidencia de los rayos solares (ángulo de inclinación y orientación). La irradiación solar instantánea que incide sobre la superficie terrestre varía durante el día desde cero W/m2 a la salida del sol, un valor máximo hacia el mediodía y otra vez cero cuando el sol se pone. La irradiancia solar máxima que se produce hacia el mediodía, puede ser igual o mayor que 1 000 W/m2 cuando la componente difusa es mínima y el lugar geográfico propicio.

Tipos de Radiación

Radiación directa: llega directamente del sol sin haber sufrido cambio alguno en su dirección. Se caracteriza por proyectar una sombra definida de los objetos opacos que la interceptan.

Radiación Difusa: Parte de la radiación que atraviesa la atmósfera es reflejada por las nubes o absorbida por éstas. Esta radiación se denomina difusa, va en todas las direcciones, como consecuencia de las reflexiones y absorciones, no solo de las nubes sino de las partículas de polvo atmosférico, montañas, etc. Este tipo de radiación se caracteriza por no producir sombra alguna respecto a los objetos opacos interpuestos.

Radiación Reflejada: Es aquella reflejada por la superficie terrestre. La cantidad de radiación depende del coeficiente de reflexión de la superficie. Las superficies verticales son las que más radiación reflejada reciben.

Radiación global: Es la radiación total. Es la suma de las tres radiaciones.

2.3 Módulos Fotovoltaicos

Las células fotovoltaicas convierten la energía de la luz emitida por el Sol en energía eléctrica. Aunque el fenómeno fotoeléctrico fue descubierto en 1837, el proceso de producción de corriente en un material solido con la ayuda de la luz solar no fue entendido completamente hasta 100 años después. El rendimiento de conversión, esto es, la proporción proporciona de luz solar que la célula convierte en energía eléctrica, es fundamental en los dispositivos fotovoltaicos (FV) ya que el rendimiento hace de la energía solar FV una energía más competitiva con otras fuentes.

El efecto FV es la base del proceso mediante el cual la célula FV convierte la luz solar en electricidad. La luz solar está compuesta por fotones o dicha de otra forma, partículas energéticas. Estos fotones son de diferentes energías correspondientes a las diferentes longitudes de onda del espectro solar. Cuando los fotones inciden sobre una célula FV, pueden ser relejados, absorbidos o posar por el material y únicamente los fotones absorbidos puedan generar electricidad. Cuando un fotón es absorbido, la energía del fotón se transfiere a

un electrón de un átomo de la célula, con esta nueva energía, el electrón es capaz de escapa de su depósito normal asociada con un átomo para formar parte de una corriente en un circuito eléctrico.

Las células solares se fabrican a partir de materiales semiconductores, esto es, son materiales que actúan como aislantes a bajas temperaturas y como conductores cuando se aumenta su energía. Actualmente la mayoría de las células FV esta basadas en silicio, sin embargo se están investigando en otros tipos de materiales como el Arsénico de Galio, Cobre-Indio—Galio-Selenio (CIGS), CdTe, etc.

Cuando la luz solar incide sobre las células FV partir de los materiales semiconductores, los fotones que llegan con la luz solar son capaces de transmitir su energía a los electrones de valencia del semiconductor para que rompa el enlace que los mantiene unidos a los átomos respectivos (formación de pares electrón-huecos). Por cada enlace roto queda un electrón libre para circula dentro del sólido, la falta del electrón en el enlace roto se le llama hueco, también puede desplazarse libremente en el sólido, transfiriéndose de un átomo a otro debido al desplazamiento del resto de los electrones de los enlaces. Los huecos se comportan en muchos aspectos como partículas con carga positiva igual a la del electrón. El movimiento de los electrones y huecos en direcciones opuestas generan una corriente eléctrica en el semiconductor capaz de circular por un circuito externo y liberar en él energía cedida por los fotones al crear los pares electrón-hueco; Para separar los electrones de los huecos e impedir que restablezcan el enlace, se utiliza un campo eléctrico que hace que ambos circulan en direcciones opuestas, dando lugar a una corriente en el sentido del citado del capo eléctrico.

Figura 3 Estructura de una célula fotovoltaica

(https://www.ujaen.es/investiga/solar/07cursosolar/home main frame/03 celula/01 basico/3 celula 04)

Los primeros dispositivos FV tenían rendimiento de 1-2% mientras que actualmente el rendimientos de los módulos FV están alrededor de 10-25% en función de su tecnología, también con los años los costos de fabricación de estos dispositivos ha disminuido considerablemente con los años.

Un módulo fotovoltaico consiste en un conjunto de células FV eléctricamente conectadas unas a otras conectadas eléctricamente en serie y/o paralelo, encapsuladas, montadas en un laminado y en una estructura de aluminio. Se pueden encontrar módulos de diferentes tamaños y formas, y pueden estar hechos de diferentes materiales, sin embargo el encapsulado más utilizado es un módulo está compuesto por "vidrio+eva(etilvenilacetato)+tedlar".

Los módulos estaban diseñados principalmente para suministrar eléctricamente a determinado voltajes normalmente a 12 o 24 V para aplicaciones de baterías y la corriente producida depende del nivel de insolación. La estructura del módulo (principalmente de aluminio) protege a las células FV del medioambiente haciéndolas que sean muy fiables eléctricamente y durables (aproximadamente 20 años). Aunque con un solo módulo puede ser suficiente para muchas aplicaciones y es habitual conectar dos o más módulos para formar un generador FV. Los generadores o módulos FV producen corriente continua (DC) y pueden ser conectador en serie y/o paralelo para producir cualquier tensión o

corriente para satisfacer la potencia requerida según sea la aplicación del usuario.

Las células solares constituyen un producto intermedio de la industria fotovoltaica: proporcionan valores de tensión y corriente limitados, en comparación a los requeridos normalmente por los aparatos convencionales son extremadamente frágiles, eléctricamente no aisladas y sin un soporte mecánico. Después son ensambladas de la manera adecuada para constituir una única estructura: los módulos fotovoltaicos.

El módulo fotovoltaico es una estructura robusta y manejable sobre la que se colocan las células fotovoltaicas. Los módulos pueden tener diferentes tamaños (los más utilizados tienen superficies que van de los 0.5 m² a los 1.3 m²) y constan normalmente de 36 a 70 células conectadas eléctricamente en serie.

2.4 Parámetros eléctricos de un módulo fotovoltaico

La potencia eléctrica de un módulo FV depende de su área activa, el número de células, de su interconexión eléctrica y por supuesto de las condiciones de irradiancia y temperatura a las que el módulo se encuentra expuesto. Si un dispositivo con terminales aparece una diferencia de potencial (voltaje) debido a la exposición de la luz solar, se dice que en el dispositivo se está llevando a cabo el Efecto FV. En estas condiciones, si en las terminales del dispositivo se conecta una carga eléctrica, se producirá una corriente eléctrica capaz de realizar un trabajo en dicho elemento.

Los cuatro factores que determinan la potencia de salida de un módulo FV son:

- Rendimiento de sus células FV
- Resistencia de la carga (el punto de trabajo en la curva I-V)
- La irradiancia
- Temperatura de la célula (relacionada con la temperatura del medio ambiente)

El rendimiento de las células está definido por el proceso de fabricación de las mismas, los módulos comerciales disponibles actualmente poseen rendimientos en el rango 10-25% de conversión de la energía solar en electricidad.

Existe una competencia sana entre instituciones científicas internacionales. En los laboratorios se lograron eficiencias de más de 45%. La Lamentablemente faltan años, hasta que estos productos de mejor eficiencias sean disponibles comercialmente a precios aceptables.

Para celdas de un elemento, William Shockley y Hans Queisser determinaron que teóricamente se puede convertir un máximo de 33.7% de la energía solar en electricidad. Para lograr más, hay que usar celdas combinadas de varias capas o de concentración. Para silicio, el elemento más usado, este límite es de 29%. Para el uso común se usan paneles de silicio por su alta fiabilidad a precios razonables. Paneles de celdas monocristalínas son las más eficientes, seguidas por las policristalinas.

Mientras los mejores paneles monocristalinos superan ligeramente el 20%, la mayoría de los paneles en producción hoy captan alrededor del 16% de la energía disponible de la luz. Los paneles amorfos y otros de capa fina pocas veces superan el 10%. Para usos especiales (por ejemplo satélites y el Mars Rover) se producen módulos de arseniuro de galio (GaAs) que alcanzan una eficiencia de 30% o unir varios elementos en células fotovoltaicas multiunión, superando 45% en laboratorios (vea gráfica).

Para un módulo FV, la corriente fotogenerada es directamente proporcional a la irradiancia incidente y aumenta muy ligeramente con la temperatura. El voltaje de circuito abierto es prácticamente independiente de la irradiancia y disminuye cuando aumenta la temperatura.

Figura 4 Eficiencias en las celdas fotovoltaicas 2016.

(National Renewable Energy Laboratory, NREL)

Las principales características eléctricas de un módulo fotovoltaico son:

Potencia de Pico (Wp): potencia suministrada por el módulo en condiciones estándar STC (Radiación solar = 1,000 W/m², Temperatura = 25 °C; A.M. = 1.5). Correspondientes al par máximo I-V.

Corriente de máxima potencia (Imp): Es el valor de la corriente suministrada en el punto de máxima potencia y corresponde a un determinado de voltaje.

Tensión de máxima potencia (Vmp): Es el valor de voltaje suministrado en el punto de máxima potencia y corresponde a una determinada corriente.

Corriente de corto circuito (Isc): Es la máxima corriente que producirá el módulo bajo condiciones estándar STC correspondientes a un voltaje igual a cero.

Tensión de circuito abierto (Voc): Es el máximo voltaje del dispositivo bajo unas condiciones estándar STC correspondientes a una corriente igual a cero.

Factor de forma (FF): Es el valor correspondiente al cociente entre Pmax y el producto de lsc x Voc. Puede venir expresado en tanto por ciento o tanto por 1, siendo el valor 100% el que corresponderá a un hipotético perfil de cuadrado, no

real. Nos da una idea de la calidad del dispositivo fotovoltaico, siendo éste tanto mejor cuánto más alto sea su factor de forma [1].

$$FF = \frac{P_{max}}{V_{oc} * I_{sc}} \tag{1}$$

2.5 Tecnologías fotovoltaicas para aplicaciones terrestres y oferta comercial

El silicio es el material más conocido y utilizado para la fabricación de células con aplicaciones comerciales, siendo a la vez uno de los materiales más abundantes de tierra, 20%, en forma de minerales de SiO₂ y silicatos. Sin embargo para la producción de células solares se necesita material de elevada pureza, que hay que fabricarlo. El silicio es un elemento de muy alta resistencia a alta resistencia ataque químicos.

2.5.1 Tecnología de silicio

Módulos de Silicio monocristalino

El lingote de silicio monocristalino tiene forma cilíndrica, 13-20 cm de diámetro y 200 cm de largo, y se obtiene por el crecimiento de un cristal filiforme en rotación lenta. Después, este cilindro se corta en obleas de 200 a 250 micras de espesor y la superficie superior es tratada para obtener "microsurcos" diseñadas para minimizar las perdidas por reflexión. La principal ventaja de estas celdas es la eficiencia (18-22%), junto con una alta duración y las células fabricadas con esta tecnología se caracterizan generalmente por un color homogéneo azul oscuro.

Figura 5 Módulo fotovoltaico de silicio monocristalino

Módulos de silicio Policristalino

Los cristales que constituyen este tipo de celdas se unen tomando diferentes formas y direcciones. De hecho las coloraciones que típicamente presentan los paneles de silicio policristalino son causadas por la diferente dirección de los cristales y en consecuencia presentan un comportamiento diferente con respecto a la luz. El lingote de silicio policristalino se obtiene por fusión y fundición del silicio en un molde con forma de paralelepípedo. Las obleas así obtenidos son de forma cuadrada y tienen estrías típicas de 180-300 micras de espesor. La eficiencia es menor en comparación con el silicio monocristalino (15 a 20%). De todos modos la duración es larga (comparable a la de silicio monocristalino) y el rendimiento se mantiene a lo largo del tiempo (80% de la eficiencia inicial después de 20 años). Las celdas elaboradas con dicha tecnología se pueden reconocer por el aspecto de la superficie donde los granos de cristal son muy visibles.

Figura 6 Módulo fotovoltaico policristalino

2.5.2 Tecnologías de película delgada

Aunque el silicio mono y policristalino denominan con claridad el mercado fotovoltaico, el gran aumento de ventas y fabricación hacen que el mercado fotovoltaico dependan muy fuertemente de la disponibilidad de la materia prima. Es por ello que se están desarrollando nuevos procesos tecnológicos orientados a la optimización del material base (fabricación del células cristalinas más delgadas, mejora de los procesos de corte, crecimiento de láminas de silicio de igual espesor al de la célula evitando el desperdicio de material en el proceso de corte) así como la utilización de nuevos materiales denominados películas delgadas. El nombre de lámina delgada es debido a que estas células son capas finas (5-6 micras) depositas en substratos baratos y accesibles (platicos y vidrios).

2.5.2.1 Módulos de Silicio amorfo

Con un rendimiento relativamente bajo de entre un 10 y 20 por ciento, el silicio amorfo sale peor parado que las dos tecnologías de silicio cristalino. Sin embargo, el mejor comportamiento en condiciones de luz difusa y la fabricación más económica debido al empleo de menos material son ventajas importantes de las células de capa fina producidas con silicio amorfo con respecto a las células de silicio cristalino. Para la fabricación se decanta una capa de silicio de menos de 1 µm de grosor sobre vidrio u otro material de sustrato.

Los sólidos amorfos, como el vidrio común, son materiales en los que los átomos no están situados en ningún orden especial, No forman estructuras cristalinas y contiene un gran número de defectos estructurales y de enlaces. El coeficiente de absorción del silicio amorfo es 40 veces mayor que la del silicio monocristalino, por lo tanto la capa de 1 micra puede absorber el 90 % de la energía utilizable. Este factor junto con el hecho de que se puede producir a bajas temperaturas y puede ser depositado en substratos de baja calidad influye en el bajo costo de fabricación.

Debido a sus propiedades especiales, las células de silicio amorfo suelen tener una capa ultrafina de 0.008 micras, una capa intrínseca 0.5-1 micras y una capa nv0.02 micras. Actualmente se están fabricando módulos de silicio amorfo de dos y tres uniones, e incluso combinaciones de capas de silicio amorfo con silicio cristalino. El silicio amorfo tiene una desventaja de una degradación en potencia continua en el tiempo de operación, no obstante la simplicidad de los procesos de fabricación hace que se ms barato que el de silicio cristalino.

2.5.2.2 Módulos de Telurio de Cadmio (CdTe)

El acrónimo CdTe corresponde a la combinación de teluro y cadmio que da lugar a la formación de teluriro de cadmio (CdTe). El CdTe tiene un Gap de 1.44 eV también posee un elevado coeficiente de absorción, utilizando CdS como capa ventana. Uno de los problemas es su elevada resistencia eléctrica, solventada mediante la adición de una capa de ZnTe entre el CdTe y el contacto posterior. Este material es más económico que el silicio, pero también menos eficiente. Al contener cadmio, un metal pesado, suele garantizarse la retirada de los paneles tras su desinstalación. Hoy en día, con esta tecnología se alcanza un rendimiento máximo del 16 por ciento. Según datos de los fabricantes, los módulos solares de CdTe superan en rendimiento a las células solares cristalinas en condiciones de poca luz o de temperaturas elevadas.

Figura 7 Estructura de una celda de Telurio de Cadmio (CdTe).

2.5.2.3 Módulos de Cobre-Indio-Galio-Selenio (CIGS)

Otra tecnología de capa fina es la CIGS. CIGS es el acrónimo de los elementos cobre (C), indio (I), galio (G) y selenio (S). Actualmente se alcanzan rendimientos de entre el 20 y el 23 por ciento. Esta tecnología posee un alto potencial de desarrollo ya que, con el rendimiento máximo actual alcanzado de 14,6 por ciento (superficie total de paneles solares) en la producción comercial y los costes de fabricación relativamente bajos, el nivel de precios de la electricidad generada a partir de energía solar se acerca cada vez más al nivel de precios de la producción de electricidad a partir de combustibles fósiles. Por un lado, el panel solar CIGS ofrece la ventaja de una baja carga estática gracias a sus células ligeras y, por otro, es capaz de captar la radiación solar directa e indirecta, siendo por ello también apto para su uso tanto sobre tejados planos como en invierno.

2.6 Sistemas Fotovoltaicos

Un sistema Fotovoltaico (FV) es una instalación basada en módulos fotovoltaicos para producir energía eléctrica. Está formado por varios módulos fotovoltaicos conectados en seria y/o paralelo, y a su vez cada módulo fotovoltaico está
formado por unidades básicas llamadas células fotovoltaicas. Los módulos fotovoltaicos transforman la luz generada por el Sol directamente en energía eléctrica. Unas de las principales características de los generadores fotovoltaicos que los diferencia de otras fuentes de energía renovables es que únicamente producen electricidad cuando reciben la luz del Sol y además la cantidad de energía es directamente proporcional a la irradiancia que incide sobre su superficie.

La energía solar Fotovoltaica (FV) está indicada por un amplio abanico de aplicaciones donde se necesita generar electricidad, ya sea para satisfacer las necesidades energéticas de aquellas que no disponen de la red eléctrica (sistemas fotovoltaicos autónomos) y los que generan la energía eléctrica y se inyecta a la red eléctrica (sistemas Fotovoltaicos interconectados a la red). La energía solar fotovoltaica contribuye al desarrollo de zonas rurales aisladas (electrificación rural) pero también se utiliza en apelaciones tecnológicas más complejas como el suministro energético a los repetidores de telefonía móvil.

2.6.1 Componentes de un sistema fotovoltaico

Se puede decir que un sistema fotovoltaico completo está compuesto por tres subsistemas.

- Dispositivos fotovoltaicos: Células, módulos, generadores, etc., que son los encargados de convertir la luz solar a energía eléctrica en DC.
- Acondicionador de electricidad: es el subsistema encargado de convertir la energía eléctrica en DC a AC y/o DC a DC según sea el caso.
- Cargas y consumos.

Elementos

- <u>Radiación</u>: Es la energía solar en forma de luz, es el combustible del sistema solar fotovoltaico.
- <u>Módulos FV</u>: Los módulos FV generación la electricidad DC directamente a partir de la luz solar, El número de módulos FV en un sistema viene

determinado por las necesidades de potencia y por la radicación solar disponible.

- <u>Estructuras soporte</u>: Las estructuras sirven para el soporte e instalación de módulos FV.
- <u>Regulador de Cargar</u>: Actúan como unión entra el generador Fotovoltaico, las baterías y los distribuidores de energía, es el encargado de proteger y garantizar el correcto mantenimiento de la carga de la batería, evitar sobretensiones y sobre descargas que puedan provocar un deterioro o destruirlas.
- <u>Acumuladores o baterías</u>: Almacenan la energía eléctrica producida por el generador FV para poder utilizarla en periodos en los que el generador FV está inactivo y se almacena en forma de energía electroquímica.
- <u>Inversores</u>: Encargados de convertirla corriente DC producida por el generador FV en corriente AC, necesaria para satisfacer energéticamente una demanda de electricidad o para inyectar la energía producida en AC a la red eléctrica.
- <u>Cableado/conexiones</u>: Para asegurar un efectivo funcionamiento se requiere un correcto dimensionamiento de cableado e interconexión entre los diferentes componentes del sistema.
- <u>Elementos de protección</u>: Interruptores de desconexión, diodos de boqueo, etc., Dispuestos entre diferentes elementos del sistema para proteger la descarga y derivación de elementos en caso de fallo o situaciones de sobrecarga.

2.7 Tipos de Sistemas Fotovoltaicos

Un sistema Fotovoltaico consistes en la integración de varios componentes, cada uno de ellos cumpliendo con una o más funciones específicas, a fin de que esta pueda suplir la demanda de energía eléctrica impuesta por el tipo de carga, usando como fuente la energía solar.

Se pueden realizar una clasificación de los sistemas fotovoltaicos en función de si están o no conectados a la red convencional:

- Sistemas fotovoltaicos autónomos
- Sistemas fotovoltaicos interconectados a la red eléctrica
- Sistemas Fotovoltaicos Híbridos: Combinados con otro tipo de generación de energía eléctrica

Su objetivo es satisfacer total o parcial la demanda de energía eléctrica en aquellos lugares donde no se cuenta con la red eléctrica o el acceso a la misma es difícil, empleando un sistema de acumulación de energía para hacerle frente a los periodos en los que la generación es nulo o inferior al consumo.

Estos sistemas constituyen una de las mejores alternativas para el abastecimiento de energía eléctrica en lugares aislados de la red eléctrica, esto implica que el sistema fotovoltaico debe estar dimensionado de forma que permita, durante las horas de luz solar, la alimentación de la carga y de la recarga de las baterías de respaldo.

2.7.1 Sistemas Fotovoltaicos Autónomos

Los sistemas fotovoltaicos autónomos están constituidos, principalmente, por los módulos fotovoltaicos, que constituyen el generador de energía eléctrica, las baterías para almacenar la energía y utilizarla en los momentos de ausencia de la radiación solar, y la carga eléctrica que se va a consumir mediante equipos eléctricos domésticos y/o industriales, frecuentemente se localizan en lugares aisladas donde la energía eléctrica es inaccesible por la red de potencia eléctrica.

Las baterías, el almacenamiento de la energía eléctrica, convierten a estos sistemas en una fuente fiable de energía, ya sea de día o de noche, independientemente de las condiciones climáticas. Luminarias, sensores, TV, equipos de audio, herramientas, etc., pueden ser usados con estos sistemas. De esta forma se genera energía por el día y se almacena el excedente en las baterías para su uso en la noche. El número de baterías debe estar en correspondencia con el consumo energético de la carga y el número de horas de autonomía (ausencia de radiación solar) al cual se aspira.

El empleo de las baterías tiene dos inconvenientes fundamentales: el aumento de los costos del sistema y el hecho de que sólo puede extraerse 80% de la energía almacenada. Además estos sistemas funcionan con corriente directa (DC) y existen equipos que trabajan con alterna (AC), donde es necesario un convertidor de DC/AC (Inversor), que en la actualidad transfieren la energía eléctrica directa en alterna con una eficiencia de conversión máxima de 95%.

Figura 8 Componentes de un sistema Fotovoltaico Autónomo

2.7.2 Sistemas Fotovoltaicos Interconectados a la Red

Los sistemas fotovoltaicos interconectados a la red eléctrica presenta algunas características que lo hacen atractivos en términos económicos para el usuario ya que no cuentan con acumuladores, en este caso las cargas son alimentadas utilizando la energía generada por el sistemas fotovoltaico y en caso de ser necesario se complementa utilizando la energía de la red eléctrica. Durante horas de baja demanda del usuario por lo general el sistema provee energía a la red eléctrica mientras que el periodos de alta demanda de energía y poco energía solar es la red eléctrica la que provee de energía al usuario. Un sistema de este tipo, desde el punto de vista de la continuidad del servicio, resulta más fiable que uno aislado pues en caso de avería tiene el respaldo de la red eléctrica.

Otro tipo de estos sistemas interconectados a la red son las centrales FV de generación eléctrica, con potencias nominales superiores a los 100 KWp, suelen disponer de una conexión a la red eléctrica en media y alta tensión, disponiendo de un centro de transformación.

Desafortunadamente la electricidad generada con sistemas FV todavía cuesta considerablemente más que la generada convencionalmente. Además las centrales FV producen energía únicamente durante las horas de luz solar por lo cual su potencia de salida es variable.

Figura 9 Sistema Fotovoltaico interconectado a la red

2.7.3 Sistemas Fotovoltaicos Híbridos

Los sistemas Híbridos combinan varios tipos de fuentes de generación de electricidad para cumplir con las demandas de consumo. Cuando un sistema FV incorpora a otro sistema generador de energía se le denomina sistema hibrido, es muy común que se incluyan generadores diésel, eólicos, pequeñas plantas hidroeléctricas y en general cualquier tipo de fuentes energéticas.

Una configuración común es la utilización de generadores auxiliares (diésel, gasolina o propano), Esté tipo de energía auxiliar tiene una gran ventaja ya que producen energía en AC y puede utilizarse directamente por los consumidores.

Figura 10 Esquema del sistema fotovoltaico híbrido.

(ecoener.es /solar-fotovoltaica-híbridos)

2.8 Arreglos Fotovoltaicos

Cuando la potencia demandada es alta, es necesario hacer un análisis de la configuración del sistema para alimentar esa energía. En el caso del acoplamiento directo módulo- carga, se identifica una serie de especificaciones en el cual operará la carga eléctrica, para que la carga eléctrica cumpla su perfecto funcionamiento de operación debe de haber una combinación serie y/o paralelo de módulos para satisfacer sus especificaciones.

Habiendo estimado el número de módulos necesarios para proporcionar la energía eléctrica total, es necesario estimar la energía que producirá el sistema durante todo el día, multiplicándola por la insolación (horas luz solar en todo el día) entonces la energía eléctrica que se genere será consumida por la carga acoplada. El arreglo Fotovoltaico puede tener potencias desde unos cuantos watt hasta potencias del orden de Mega watt.

Los módulos conectados en serie forman una estructura llamada panel y la estructura formada con los paneles conectados en paralelo reciben el nombre de Arreglo Fotovoltaico. Es importante aclarar que los arreglos fotovoltaicos deben de construirse usando módulos cuyas características eléctricas sean idénticas para evitar los desbalances y la posibilidad de formar puntos calientes.

Conexión de módulos en serie y paralelo

Debido a su pequeña potencia, las células se asocian en serie y en paralelo en módulos FV, que además aportan un soporte rígido y una protección contra los efectos ambientales. En los sistemas convencionales se disponen módulos con diferentes configuración en cuanto al número de células y conexión serie /paralelo. Si la potencia suministrada por un módulo FV no es suficiente para la una aplicación de terminada, se realizan asociaciones serie y paralelo de modulo para formar un generador fotovoltaico.

Cuando los módulos se configuran en serie, circula la misma corriente a través de ellos y el voltaje resultante es la suma de los voltajes de cada módulo. Y ahora, Cuando se asocian en paralelo, por el contrario, el voltaje es el miso mientras que ahora se suman las corrientes del por cada valor de la tensión, esto sucede para módulos idénticamente eléctricos.

Figura 11 Conexión serie/paralelo de módulos FV con idénticas características eléctricas para un Sistema FV.

En la configuración eléctrica de dicho arreglo, está formado por 13 nódulos en conectado en serie (formando el panel que dará el voltaje de operación de la carga o acondicionador), y 3 paneles en paralelo que generarán la corriente necesaria que consumirá la carga. Diga configuración suele simplificarse como 13Sx3P (23 módulos en serie y 3 paneles en paralelo).

Si cada módulo entrega un voltaje de V y una corriente I, a final el sistema tendrá unas características eléctricas de Voltaje V_{Total}=23V y una corriente de I_{Total}= 3I.

2.9 Dimensionamiento de uno sistema Fotovoltaico

Para poder determinar la estimación energética del SFV, tenemos que considerar que tanto nos afectan los coeficientes de temperaturas en los parámetros eléctricos de los módulos FV de acuerdo a su tecnología, para eso tenemos que entender los principales factores que afectan la eficiencia de un módulo FV.

Efecto de la intensidad luminosa

En todas las celdas solares la corriente fotogenerada I_{sc} es proporcional a la irradiancia y bajo condiciones de cortocircuito, está corriente se la llamado corriente de cortocircuito. La fig. xxx muestra el comportamiento típico de la curva Isc vs Voc para diferentes valores de irradiancia G (se usará el símbolo de G para la Irradiancia en lugar de I para no confundirla con la corriente). Como se observa dicha figura el valor de Isc disminuye gradualmente en la misma proporción que lo hace la Irradiancia (G) y también el voltaje a circuito abierto disminuye ligeramente al decrecer la irradiancia. Este mismo efecto sucede en el voltaje para el punto de Máxima potencia (Pmax).

Figura 12 Efecto de la Irradiancia sobre las características eléctricas de la celda/modulo.

Efecto de la temperatura

Las celdas solares al estar expuestas al sol se calientan como cualquier captador solar, este aumento de la temperatura afecta las características de las mismas. La figura xxx muestra el comportamiento simulado de los parámetros eléctricos de una celda solar ideal en función de la temperatura de la celda, Tc. Se observa que Isc aumenta ligeramente mientras que el Voc disminuye drásticamente. La ligera ganancia de Isc y disminución del Voc cuando la temperatura de la celda/módulo aumenta, trae como consecuencia que sus efectos se vean reflejados tanto en la potencia generada por la celda/módulo como su eficiencia.

Figura 13 Efecto de la temperatura sobre los parámetros eléctricos de la celda/módulo solar.

(http://www.energiasrenovables.com/ficheroenergias/fotos/fotovoltaica/ampliada/f/Eduardo-Collado-13-7-2015.Figura-1.jpg)

La temperatura que puede alcanzar la celda solar, cuando está en operación en un módulo (a la que se le llamará temperatura de operación), depende de la Irradiancia, temperatura ambiente, velocidad de viento y del tipo de encapsulamiento, a traves del cual se disipa el calor. Una relación empírica que establece la temperatura que alcanzara el módulo, bajo condiciones de quilibrio térmico, en función de la Irradiancia que recibe a una velocidad de viento de 1m/s:

$$C_{cell} = T_{amb} + CG \tag{2}$$

Donde C_{cell} es la temperatura de la celda, T_{amb} es la temperatura ambiente donde se instalará el SFV, G es la Irradiancia que es igual a 1000 W/m² y C es una constante empírica que depende del tipo de módulo (según fabricante), Se ha estimado un valor promedio con la siguiente expresión:

$$c = \frac{T_{NOCT} - 20^{\circ}C}{800 \ \frac{W}{m2}} \tag{3}$$

Dónde:

C= Constante de propagación T_{NOCT} = 45 °C

NOCT (Normal Operating Cell Temperature): Es la temperatura normal de la celda en operación bajo condiciones estándares con temperatura ambiente de 20°C y con una irradiancia de 800 W/m².

$$c = \frac{45^{\circ}C - 20^{\circ}C}{800 \ \frac{W}{m2}} \tag{4}$$

$$c = 0.03125 \frac{^{\circ}C m2}{W}$$
 (5)

Sin embargo si no hay viento, la conste C puede llegar a valores de hasta 0.04 °C m²/W. Así que la temperatura normal de operación de un módulo puede estar comprendida por el intervalo de 25 a 70 °C dependiendo de la velocidad de viento y magnitud de la irradiancia.

Basándose en la determinación del generación y de los consumos de energía, y en el conocimiento de los componentes que se van a utilizar, se puede calcular el tamaño necesario (dimensionamiento) del generador fotovoltaico ya sea autónomo o interconectado a la red y los más importante, la radiación solar que existe en el lugar.

Instalación: Se espera que el sistema FV estén en operación durante un determinado número de años (vida útil del módulo FV, que en la actualidad se estiman a más de 20 años): la operación sin fallos y con el mínimo mantenimiento es esencialmente para conseguir mayor rentabilidad económica y de fiabilidad.

El proceso de instalación, incluyendo el diseño del cableado, conectores, fusibles, interruptor, seccionador y montaje del generador FV, y debe de operar de modo seguro y eficiente durante los años de vida útil.

El diseño del sistema FV debe y es necesario realizar guías detalladas de la instalación (o hacer referencia explícita a guías ya elaboradas) además de seguir la normatividad aplicable a los sistemas eléctricos en baja tensión.

Después de la instalación, el suministrador debería realizar una puesta en operación del sistema, mediante una serie de medidas y verificación básicas que aseguren la correcta operación del mismo.

Normalmente la responsabilidad del suministrador de un sistemas FV no termina en el diseño e instalación del mismo, sino que debe incluir buena información al usuario final sobre cómo funciona y como opera su sistema y una información clara de la garantías y el suministros del material básico para un buen mantenimiento y reparación.

En la actualidad existe una amplia normativa (por ejemplo la IEC) aplicables a los sistemas FV (tanto autónomos como conectados a la red) y a sus componentes que el diseñador debo conocer y aplicar. Además las instalaciones fotovoltaicas deberán cumplir con la norma NOM-001-SEDE-2012.

2.10 Aplicaciones de los sistemas Fotovoltaicos

Los sistemas Fotovoltaicos autónomos son lo que utilizan baterías y aparatos de regulación y control, el almacenamiento de la energía eléctrica en baterías hace de los sistemas FV autónomos una fuente de energía eléctrica la cual podemos utilizar de día como de noche.

Aplicaciones:

- Ciudades y centros urbanos
- Uso residencial
- Telecomunicaciones
- Abastecimiento para comunidades rurales
- Satélites espaciales

Los sistemas Fotovoltaicos interconectados no almacenamos la energía en baterías sino que la energía generada la enviamos a la red eléctrica y tomamos la energía de está durante las noches.

- Aplicaciones:
- Ciudades
- Uso residencial
- Uso comercial
- Uso Industrial

Tabla 8 Ventajas y desventajas de los SFV autónomos e interconectados a la red eléctrica

SISTEMA FV	INTERCONECTADOS	AISLADOS
Costos iniciales	Económicos	Costoso por las
		baterías
Costos de	Limpieza solo de módulos	Limpieza de módulos
mantenimiento		y banco de baterías
Flexibilidad	Energía ilimitada,	Energía limita por
	Respaldo de la red	baterías
Independencia	Depende del SEN	Independiente del
		SEN

Obligaciones	Contrato de CFE	No debes de pedir
		permiso a nadie
Implementación	Menos costos y fáci	Complicada por las
	instalación	baterías

CAPÍTULO 3: PLATAFORMA SOLAR FV

3.1 Descripción general de la plataforma solar fotovoltaica

En la plataforma solar Fotovoltaica tiene la misión de realizar investigación científica y aplicada en energía, con énfasis a Sistemas Fotovoltaicos, que coadyuven al desarrollo de tecnologías energéticas sustentables; llevar a cabo estudios, asesorías y capacitación a los distintos sectores de la sociedad; formar recursos especializados, y difundir los conocimientos adquiridos para el beneficio del país.

En el mismo laboratorio de ensayo se preocupa por la calidad de la tecnología Fotovoltaica que se fabrica y comercializa en nuestro país y que fomenta el uso de productos certificados. A través de ensayos y procedimientos estandarizados internacionalmente evaluamos técnicamente el desempeño eléctrico, durabilidad y confiabilidad de los módulos fotovoltaicos así como de sus aplicaciones en sistemas energéticos para sus diferentes usos.

En la Plataforma Solar Fotovoltaica se encuentra instalado un sistema Fotovoltaico interconectado a la Red eléctrica del Instituto de Energías Renovables 5ubicado en Temixco, Morelos, México, con las siguientes coordenadas 18.839251, -99.235372 con una potencia pico de 9kWp. El sistemas fotovoltaico consta de 3 subsistemas y cada uno tiene una capacidad de 3 kWp. Cada arreglo fotovoltaico se encuentra a una inclinación aproximadamente a la latitud del lugar, está es igual a 15° y se encuentran expuestos a las mismas condiciones ambientales y el diseño eléctrico es similar en cada arreglo.

El 1 de Abril de 2016 entro en operación la planta Fotovoltaica de 9 kWp que consta de tres tecnologías (CIGS, Si-P, CdTe), desde que la planta empezó a inyectar energía a la red eléctrica se estuvo monitoreando durante los cuatro

meses que estuvo instalada la planta, se tomaron los valores de producción mensual en corriente directa y en el punto de salida del inversor hacia la red eléctrica, así como diferentes variables para determinar el comportamiento de los diferentes sistemas fotovoltaicos interconectados a la red.

Figura 14 Lugar de la instalación del Sistema Fotovoltaico Interconectado a la Red

3.2 Tecnologías fotovoltaicas Instaladas (CIGS, Si-P y CdTe)

En nuestro caso de estudio se eligió tres tecnologías previamente ya instaladas pero no conectadas, para llevar a cabo la comparación del rendimiento energético, en si diseño de instalación se buscó la manera de optimizar el espacio como se muestra en el <u>anexo..</u> dónde se muestra las características de la configuración de las instalaciones fotovoltaicas, en el mismo anexo se puede ver el recorrido del cableado cada cadena.

Tecnología	CIGS	SI-POLY	CdTe
Marca	Tsmc solar	INNOTECH	CALYXO
		SOLAR	
Modelo	TS-150C2	DB-E250	CX3 75
Pp (W)	150	250	75.0

Tabla 9 Características eléctricas de los módulos a estudio a STC.

Voc (V)	86.6	37.6	62.0
Isc (A)	2.62	8.79	1.95
Vmp (V)	65.5	31.0	46.3
Imp (A)	2.29	8.22	1.65
Eficiencia %	13.8	15.2-15.8	-
Coeficiente			
Рр	-0.30 %/°C	-0.38 %/°C	-0.25 %/°C
Voc	-0.29 %/°C	-0.32 %/°C	-0.25 %/°C
lsc	0.01 %/°C	0.077 %/°C	0.02 %/°C

3.2.1 Configuración de los subsistemas FV

El Sistema Fotovoltaico de la plataforma solar ocupa un área de 93.578 m² y está compuesto por un total de 12 kWp, como ya habíamos mencionado tiene tres tecnologías las cual estuvieron bajo estudio durante 4 meses, aparte hay otra tecnología la cual es de Silicio monocristalino con una potencia instalada de 3 kWp la cual no se estudió. Viendo el sistema fotovoltaico de frente, las tecnologías sembradas de izquierda a derecha es la de Teluro de Cadmio (CdTe), Silicio Policristalino (p-Si), Silicio monocristalino (m-Si) y Cobre-Indio-Galio-Celenio (CIGS) con un área cada una de 30.132 m², 20.036 m², 20.040 m², 23.374 m² respectivamente.

El primer subsistema del Planta Fotovoltaica es de 3 KWp con tecnologías de película delgada de material Cobre-Indio-Galio-Selenio (CIGS), está tecnología es de la marca TSMC SOLAR modelo TS-150C2, cada módulo es de 150 Wp y tiene una eficiencia de 13.8 % a condiciones STC* con un total de 20 módulos los cuales conforman el subsistemas de 3 kWp, la configuración de los módulos generadores está dada por 5 módulos en serie (cadena) por 4 cadenas en paralelo (5Sx4P), proporcionando así la energía al inversor.

El segundo subsistemas de 3 kWp, es de tecnología de Silicio policristalino (Si-P) con una potencia pico de 250 W cada módulo y con una eficiencia de 15.2-15.8 % a condiciones STC, el sistema está compuesto por un total de 12 módulos en serie, a diferencia de las otras tecnologías estos módulos proporcionan 4 veces más corriente provocando el uso de cable de mayor calibre, fusibles de mayor capacidad e incluso mayor riesgo de choque eléctrico en el mantenimiento.

El tercer subsistema de 3kWp interconectado a la red es de tecnología Teluro de Cadmio (CdTe), al igual que el primer subsistema esté también es de película delgada, pero este módulo es 100 % vidrio y sin marco de aluminio estos módulos tiene una potencia pico de 75 W y con un total de 40 módulo formamos la planta de estudio de esta tecnología. Su configuración del SFV para poder acoplarlo al inversor está basada en 8 módulos en serie por 5 cadenas en paralelo (8Sx5p).

Las tres tecnologías están conectados a tres inversores eléctricamente idénticos de la marca SMA, modelo Sonny Boy 4000-US, Potencia nominal es de 4000 Wac con una amplia ventana de operación de voltaje en AC (mínima de 183vac, nominal de 208 vac y máxima de 229vac) y una frecuencia (Hz) de 59.3 hasta 60.5 de acuerdo a la red, en las parte de DC maneja un sistemas máximo de 600 Vdc con una corriente de hasta 18 Adc con dos puntos de máxima potencia (MMTP) entre 220-480 Vdc, su protección contra intemperie es de grado IP 54 tipo 3R con una eficiencia de conversión de 96.5 %. Los tres inversores no son nuevos, ya tiene un uso aproximado de 10 años con un sistemas de 9 kWp con tecnología de silicio monocritalino divididos en 3 kWp por inversor, durante el tiempo que estuvieron nunca presentaron fallas.

3.2.2 Características eléctricas de los subsistemas FV

Los tres subsistemas fotovoltaicos (CIGS, P-Si y CdTe), tienen instalado tres inversores de mismo modelo SB4000US de la marca SMA, por lo cual era necesario configurar los subsistemas de tal modo que eléctricamente fuesen idénticos o en su defecto muy parecidos de tal manera que o puedan afectar su

eficiencia y puedan acoplarse a la ventana de operación del punto de máxima potencia del inversor para poder obtener el máximo rendimiento de los mismos.

3.2.3 Características eléctricas a STC de las tecnologías instaladas

Dado que existen varios procesos de fabricación de módulos FV y que hay muchos laboratorios que se dedican a la investigación básica y desarrollo tecnológico en dicha área, es importante tener estándares de mediciones bajo los cuales reporten las características eléctricas de los dispositivos elaborados. Las condiciones estándares de prueba son 1000 Wm2, masa de aire AM1.5 y 25 °C, uno de los principales laboratorios de certificación de parámetros eléctricos para celdas solares es el National Renewable Energy Laboratory y Sandia National Laboratory. FIRCO

Tecnología	CIGS		SI-POLY		CdTe		
Modelo	TS-150C	2	DB-E250		CX3 75		
Potencia pico	3000 W		3000 W		3000 W	3000 W	
Configuración	Serie	Paralelo	Serie	Paralelo	Serie	Paralelo	
No. de	5	4	12	1	8	5	
módulos							
Pp (W)	750	3000	3000	3000	600	3000	
Voc (V)	433	433	451.2	451.2	496	496	
lsc (A)	2.62	10.48	8.79	8.79	1.95	9.75	
Vmp (V)	327.5	327.5	372	372	370.4	370.4	
Imp (A)	2.29	9.16	8.22	8.22	1.65	8.25	

Tabla 10 Características eléctricas a STC de los subsistemas Fotovoltaicos *

Tabla 11 Características eléctricas del inversor

Marca	SMA
Modelo	SONNY BOY SB4000US
Manufactura	10/2011
Max. potencia en DC @ STC	4375 W
Max. Voltaje DC	600 V
Voltaje nominal DC	310 V
Voltaje de MPP DC	220-480 V
Max. Corriente DC	18 A
No. de MPP /fusibles por serie	1/4
Potencia nominal AC	3500 W
Max. Potencia aparente AC	3500 VA
Voltaje nominal AC	208 V
Rango de voltaje AC	183-229 V
Rango de Frecuencia	60 Hz, 59.3-60.5 Hz
Max. Corriente nominal AC	17 A
Factor de potencia Cos e	1
Fases	2
Max. Eficiencia	96.5 %
Garantia	10 años

SUNNYBOY3384-DUS122329W.pdf

3.2.4 Características eléctricas a PTC

Para poder determinar los parámetros eléctricos bajo PTC tenemos que aproximar empíricamente la temperatura máxima y mínima a la cual podrá llegar el módulo estando en operación ya que como hablamos anteriormente (2.8) un factor fundamental que afecta fuertemente el rendimiento eléctrico de un módulo FV es la temperatura entonces es necesario tener valores de temperatura ambiente registrados en el lugar de la instalación FV o cercana a la instalación para determinar la temperatura de la celda en operación, en la siguiente tabla se muestran promedios mensuales de temperatura ambiente registradas en el IER-UNAM.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Media Anual
1990	-	-	33.4	33.1	33.2	30.7	29.2	30.5	29.1	29.0	28.9	28.4	30.6
1996	27.6	31.3	30.4	32.5	32.4	28.3	28.6	27.9	29.1	28.9	28.8	27.3	29.4
2000	29.2	31.4	33.8	34.8	-	-	-	-	-	-	-	-	32.3
2001	-	-	31.5	32.5	31.7	28.1	28.6	29.3	28.2	28.7	28.0	27.8	29.4
2002	28.1	29.3	33.2	33.7	33.0	29.8	-	-	-	28.5	26.2	26.3	29.8
2003	27.1	30.2	32.0	34.2	33.4	29.0	29.7	29.2	27.9	28.0	27.9	25.8	29.5
2004	26.6	29.1	30.6	31.9	31.2	29.1	28.5	29.2	28.0	28.0	28.1	26.5	28.9
2005	26.8	29.6	31.7	31.9	33.1	32.7	28.7	28.8	28.0	28.2	28.6	28.0	29.7
2006	28.1	29.7	31.7	33.6	30.7	30.1	30.1	28.9	28.7	28.8	26.7	27.6	29.6
2007	28.3	29.5	31.8	32.9	-	-	28.5	29.3	28.5	28.1	28.3	28.2	29.3
2008	29.3	31.1	32.2	34.3	31.0	30.0	26.7	27.3	26.9	27.1	26.8	26.2	29.1
2009	31.5	29.7	-	-	30.2	29.6	28.2	28.4	30.1	29.0	-	26.1	29.2
2010	29.9	29.2	33.2	34.7	36.5	36.5	31.6	30.2	29.4	30.7	29.9	28.2	31.6
2011	30.0	32.5	34.3	35.0	36.0	33.1	30.4	30.7	29.6	29.3	30.5	29.6	31.7
2012	30.4	31.6	32.9	34.5	35.0	33.4	30.5	29.8	30.3	30.4	30.2	30.7	31.6
Media mensual	28.7	30.3	32.3	33.5	32.9	30.8	29.2	29.2	28.7	28.8	28.4	27.6	30.1

Máxima

Tabla 12 Promedio de temperatura ambiente en el IER-UNAM

Mínima

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Media Anual
1990	-	-	20.1	20.8	21.8	21.1	19.9	20.0	19.9	19.0	17.0	16.0	19.5
1996	11.8	15.8	15.5	18.5	19.8	18.4	17.9	17.7	17.5	16.8	14.0	14.5	16.5
2000	13.7	15.1	17.4	19.2	-	-	-	-	-	-	-	-	16.4
2001	-	-	16.5	18.6	16.8	15.2	14.5	17.6	17.8	15.7	13.9	14.3	16.1
2002	13.6	15.7	17.7	19.4	20.0	18.4	-	-	-	15.2	12.3	12.2	16.1
2003	13.2	14.5	15.3	18.3	18.2	16.1	14.8	17.4	18.0	17.3	16.2	11.8	15.9
2004	13.8	13.9	17.0	17.9	18.5	17.7	17.1	18.0	17.8	17.3	14.8	13.1	16.4
2005	13.0	16.2	17.2	17.9	19.8	20.8	17.1	17.9	17.8	17.7	15.1	14.5	17.1
2006	13.6	15.8	17.0	19.2	18.0	18.6	18.0	17.2	17.8	17.6	14.1	13.0	16.7
2007	15.1	15.5	17.1	19.1	-	-	16.7	17.9	16.7	16.3	14.2	14.7	16.3
2008	13.5	15.3	16.7	19.3	20.9	18.4	18.1	17.7	18.1	15.8	16.3	15.8	17.2
2009	15.3	16.5	-	-	18.8	19.0	17.1	19.5	18.1	18.8	-	13.7	17.4
2010	11.0	11.0	13.6	16.9	16.0	17.7	16.6	17.0	15.1	12.8	8.0	9.4	13.8
2011	11.5	13.3	13.8	16.8	17.5	-	16.8	16.9	13.4	11.4	10.9	10.7	13.9
2012	10.8	13.9	15.0	16.1	17.0	16.1	15.9	17.0	13.9	12.1	11.4	12.8	14.3
Media mensual	13.1	14.8	16.4	18.4	18.7	18.1	16.9	17.8	17.1	16.0	13.7	13.3	16.2

http://xml.ier.unam.mx/xml/se/cs/datos_meteo.xml

Para obtener la temperatura máxima que puede alcanzar el módulo Fotovoltaica en operación utilizamos el valor máximo de temperatura descrito en la tabla 12.

Para calcular la temperatura máxima de operación utilizamos la siguiente Expresión:

$$C_{cellmax} = T_{amb\ max} + CG$$

(6)

< **-**>

$$C_{cell} = 36.5 \,^{\circ}C + 0.03125 \,\frac{^{\circ}C \, m2}{W} * \,1000 \frac{W}{m^2}$$
(7)

$$C_{cellmax} = 67.75 \,^{\circ}C$$

Para determinar la temperatura mínima de la celda en operación no sé utiliza la expresión utilizada anteriormente ya que a esa hora apenas está empezando a incidir la radiación sobre el SFV por lo cual la temperatura mínima de la celda es igual a la temperatura ambiente en la mañana y es necesario obtener este valor para ver cuál puede ser valor más alto en el voltaje de Circuito abierto de máxima potencia para que con estos valores podamos dimensionar las protecciones y no dañar el acondicionador de energía (inversor).

$$C_{cellmin} = T_{amb\ min} \tag{9}$$

$$C_{cellmax} = 8 \,^{\circ}C \tag{10}$$

3.3 Rendimiento térmico

Se calcula el gradiente de la celda fotovoltaica para que posteriormente hacer correcciones a los valores de potencia y voltaje.

$$\Delta T = T_{cell} - T_{SCT} \tag{11}$$

Donde:

 Δ_T = Gradiente de temperatura T_C = Temperatura de la celda T_{STC} = Temperatura de la celda a STC*

Gradiente para la temperatura máxima:

$$\Delta T = T_{cellmax} - T_{SCT} \tag{12}$$

$$\Delta T = 42.75 \,^{\circ}C$$
 (23)

Gradiente para la temperatura mínima:

$$\Delta T = T_{cellmin} - T_{STC} \tag{14}$$

$$\Delta T = 17 \ ^{\circ}C \tag{15}$$

Se calcula el porcentaje de pérdida de potencia por efecto de la temperatura multiplicando el coeficiente de temperatura del módulo tomado de la ficha técnica por la diferencia de la temperatura.

$$\% p_{perdidas} = \frac{dP}{dT} \Delta T \tag{16}$$

Donde:

%P pérdidas = porcentaje de pérdida de potencia del módulo

dP / dT = Coeficiente de pérdida de potencia por temperatura.(Dato de la ficha técnica)

ΔT= Diferencia de temperatura

Se calcula el rendimiento térmico para saber el porcentaje de pérdida de potencia cuando el módulo fotovoltaico está en operación con la siguiente expresión:

$$R_t = 100\% - \% p_{perdidas} \tag{17}$$

Donde:

R_T = El rendimiento térmico del módulo.

%P pérdidas = pérdida de potencia del módulo

En el trabajo se utilizó un SFV el cual está formado por 3 tecnologías FV por lo cual el Rendimiento Térmico es diferente, en la siguiente Tabla se muestran los diferentes rendimientos de acuerdo a su tecnologías.

Tabla 13 Parámetros eléctricos corregidos por temperatura.

(**4 -**)

Tecnología	CIGS	Si-p	CdTe
Fotovoltaica			
Temperatura	69.98 °C	65.86 °C	67.79 °C
Max.			
Temperatura	8 °C	8 °C	8 °C
mín. promedio			
Rendimiento Térmico	86.506 %	84.473 %	89.303 %
Factor de corrección			
por temperatura Voc			
T. Max	75.304 V	32.684 V	55.368 V
T. Min	90.869 V	39.645 V	64.635 V
Factor de corrección			
por temperatura Isc			
T. Max	2.632 A	9.067 A	1.967 A
T. Min	2.616 A	8.905 A	1.943 A

Una vez hecho todos estos calculo presentados ya se puede obtener los parámetros eléctricos corregidos por PTC, los parámetros corregidos se pueden consultar en los diagramas bifilares que se entran en la sección de planos.

3.4 Diagrama unifilar del SFV

El diagrama unifilar del Sistema fotovoltaico consta de 3 subsistemas y por cada tecnología de SFV se ha instalado un inversor SMA SB4000, cada subsistema

cuenta con sus protección y los tres inversores están interconectados entre ellos por lo cual la salidas de los tres inversores están configurados en Delta (Delta 208:120WYE)* y como resultado da un sistemas trifásico de 220 Vac y esta energía es directamente inyectada al tablero de distribución eléctrica del Horno Solar y la energía que no se utilice es inyecta a la red eléctrica del IER-UNAM.

Figura 15 Diagrama unifilar de los tres sistemas fotovoltaicos.

Para llevar a cabo la configuración de los tres inversores se seleccionó la configuración 208 Delta: 120 WYE ya que es una configuración en la cual pueden trabajar los tres inversores y esto se hizo porque el tablero que se utilizó para la interconectar a la Red eléctrica es trifásico a 208V, en la siguiente figura se muestra la configuración física de los tres inversores.

Figura 16 Configuraciónes posibles entre tres inversores de la marca SMA SONNY BOY SB4000US.

Figura 17 Conexión de los 3 inversores en Configuración 208 Delta: 120 WYE

3.4 Cálculos eléctricos del Sistema Fotovoltaico

A la hora de diseñar correctamente una instalación fotovoltaica interconectada a la red se ha de garantizar la seguridad de las personas, tanto usuarios como operadores de la red eléctrica y por otro lado que el normal funcionamiento del sistema fotovoltaico no afecte a la operación ni la integridad de otros equipos.

3.4.1 Cálculo de protecciones

La instalación de DC dispone de elementos de protección contra sobre corriente, por los cual pudiesen presentar defectos en los conductores ya sea por calentamiento o por cortocircuitos y el poder de corte de los interruptores automáticos estará dimensionado de acuerdo con la intensidad de cortocircuito que puede presentarse en la instalación. La corriente de diseño I_F que será transportará a través del conductor se calcula por medio de la Ecuación:

$$I_F = 1.56 X I_{sc}$$
(18)

Donde:

IF=Corriente máxima de la cadena

Isc=Corriente de cortocircuito

1.56= factor de seguridad en DC

3.4.2 Caída de tensión

Se debe cumplir que la caída de tensión no debe ser mayor al 1.5% del voltaje nominal del SFV por lo cual se calcula la caída de voltaje en DC con la siguiente expresión:

$$e\% = \frac{2LImRw}{1000} \tag{19}$$

Donde:

e%= Caída de tensión en DC

L= Longitud [m]

Im= Corriente máxima potencia [A]

Rw= Resistencia de conductor [Ω/Km]

3.4.3 Selección de los conductores

Para poder seleccionar los conductores que usaremos en todo el sistema fotovoltaico de la plataforma debemos calcular diferentes parámetros tales como

caídas de tensión ya que no todas las cadenas de los arreglos son de las mismas longitudes.

Tecnolo	ogía	Longitud	Porcentaje de	Corriente	Marca** y	Calibre y	Ampacid
у		(m)	Caída de	(A)	Tipo de	temp.	ad y max
cadena			tensión Voc*		cable	Operacio	voltaje
			(%)			n	
	1	5.9	0.078	2.362	ÖLFLEX	4 mm2	30 A
	2	8.8	0.117	2.362	® SOLAR		600-1000
CIGS	3	8.8	0.117	2.362	XLS-R	-40°C a	Vac
	4	6.2	0.082	2.362	-	+100°C	
Si-p	1	14.25	0.5	8.82	THHW-		900-1500
	1	18.25	0.176	1.967	LS CE-		Vdc
	2	11.9	0.114	1.967	RoHS		
CdTe	3	8.4	0.081	1.967	-		
	4	8.4	0.081	1.967	-		
	5	8.85	0.085	1.967			

Tabla 14 Se muestra las distancias de cada cadena y si caída de tensión de acuerdo a su configuración y la selección del cable.

*El Voc de la tecnología de CIGS, Si-p y Cdte es 433 Voc, 451.20 Voc, 496 Voc respectivamente.

**https://products.lappgroup.com/online-catalogue/power-and-control-cables/special applications/photovoltaic/oelflex-solar-xls-r.html

En la norma NOM-001-SEDE-2012 en la tabla 310-15(b)(16) nos habla sobre la ampacidad de los conductores y el cable que seleccionamos cumple con los requisitos del SFV.

3.6 Diagramas unifilares de toda la Instalación FV.

En el siguiente anexo xxx se muestran los diagramas unifilares de manera más clara, en ellos se muestras las cajas de combinación, cableado, inversores, configuración y el acoplamiento de los tres SFV en un diagrama unifilar 3.7 Fotografías de la instalación mecánica y eléctrica del SFV

Figura 18 Instalación mecánica de la Plataforma SFV

Figura 19 Instalación completa de la Plataforma SFV

Figura 20 Ubicación de cajas de combinación, Sistema de monitoreo e inversores

Figura 21 Sistema de monitoreo del SFV

Figura 22 Monitoreo de la tecnología CdTe

Figura 23 Plataforma solar FV en operación

CAPÍTULO 4: METODOLOGÍA Y DESARROLLO EXPERIMENTAL

4.1 Introducción

Para poder conocer el comportamiento del desempeño energético de los tres sistemas fotovoltaicos es imprescindible conocer parámetros específicos tales como los eléctricos y ambientales con el objetivo de reunir información durante cuatro meses para conocer su comportamiento energético y ver cómo afectan esas condiciones. Para esto se instrumentó un sistema de monitoreo, se utilizaron un sistema que transforma una variable física de interés en un formato que puede ser visto y guardado conocido como medición.

Para instrumentar un fenómeno es necesario realizar una seria de pasos:

- * Identificar el fenómeno a medir
- * Determinar la variable física que representa el fenómeno

* Identificar el sensor que puede medir esa variable física a una señal de salida adecuada para ser transmitida por medio de una señal eléctrica para ser almacenada.

Este es el esquema básico de medición y da como resultado un sistema que pueda ser observado por el usuario en tiempo real y con ello poder hacer una base de datos para trabajos futuros.

Figura 24. Diagrama esquemático del monitoreo del SFV.

4.2 Descripción de equipo a utilizar

Una caracterización experimental desde el punto de vista del rendimiento energético implica una gran selección de parámetros a medir, en esa metodología para caracterizar los tres sistemas fotovoltaicos con diferente tecnología se debe seleccionar cuales son los parámetros que nos ayudan a obtener su rendimiento así cuales son lo que afectan al mismo, entre los primeros parámetros a censar con el voltaje de circuito abierto así como el de máxima potencia, (Voc e Vmp), la corriente de corto circuito y la de máxima potencia, (Isc y Imp), una vez conociendo estos valores podemos obtener la potencia del inversor. Entre los parámetros que influyen en la caracterización eléctrica de los sistemas FVs están la temperatura ambiente (Tamb), la temperatura que alcanza los sistemas FVs bajo condiciones de operación (Tcel), velocidad de viento que incide sobre los sistemas FVs y la irradiancia en su plano horizaontal (Irr).

Para el Sistema de Monitoreo (SM), se implantó un sistema adquisidor de datos que se hizo desde cero, para el SM utilizamos un adquisidor de datos Campbell Scientific modelo CR-1000 con un multiplexor de 32 entradas para la lectura de las 19 variables físicas distribuidas en todo el SFV. Las 19 variables que se utilizaron están derivadas de la siguiente manera:

- 3 Sensores de temperatura tipo K para cada una de las 3 tecnologías
- 1 Sensor de temperatura tipo T para la temperatura ambiente
- 1 Sensor de Irradiancia tipo celda de referencia de silicio monocristalino
- 1 sensor de velocidad de viento marca Young 3002
- 3 Transductores de voltaje DC marcar CR Magnetics CR5311
- 10 Transductores de corriente DC marca CR Magnetics CR521,
 - 5 Transductores para la tecnología FV de CdTe
 - o 1 Transductores para la tecnología FV de Si-P
 - o 4 Transductores para la tecnología FV de CIGS

Para la alimentación del CR-1000 de instalo una batería de 12 V con una capacidad de 24 Ah, para la alimentación de los sensores se usó una fuente de 24 Vcd y para la transmisión de datos ocupamos un router de 5 puertos con la IP estática con la IP 10.10.80.35.

Para poder establecer la comunicación entre el adquisidor de datos hacia la computadora donde se almaceno los datos obtenidos, se cableo una micro red LAN ya que el CR-1000 cuenta con el protocolo de comunicación con el puerto RJ45. Una vez que ya hubo comunicación entre el adquisidor de datos y la computadora, se creó una interfaz por medio del programa de LabView, dicha interfaz consiste en leer las 19 variables del adquisidor de datos y reproducir los valores de manera gráfica en tiempo real y después de reproducirlos los guarda en un archivo .cvs cada segundo durante 4 meses.

4.2.1 Sensores utilizados

El sistema de monitores se implementó solamente para la parte de corriente directa ósea toda la parte de generación del sistema fotovoltaico y para el lado

de acondicionamiento eléctrico de DC a AC se utilizaron los datos que proporcionaron los tres inversores.

4.2.1.1 Sensores de Voltaje y Corriente

La tensión en DC

Invertidumbre 1%

No siempre las señales finales de los sensores son adecuadas para la entrada del adquisidor de datos (CR-1000), es esté el caso, los sensores que se utilizaron para la instrumentación de los valores de Corriente y Voltaje de las cadenas de las diferentes tecnologías no son aptos para el adquisidor pues estos sensores tiene una respuesta de 0 a 10 Vdc y el adquisidor solo puede leer una respuesta de 0 a 5000 mV.

Para este caso usamos un divisor de voltaje con consiste en dos o más resistencias conectadas en serie a través de la fuente primeria del voltaje, con esto se puede obtener un voltaje de salida equivalente a una fracción del de la salida, el voltaje en la fuente debe ser mayor que los voltajes que desea.

Figura 19. Divisor de voltaje elemental

El voltaje de

4.2.1.2 Temperatura

El cambio de la temperatura de los módulos afecta directamente la potencia de salida, al aumento de temperatura de un módulo reduce el voltaje y aumenta ligeramente la corriente y esto afecta el factor de forma (FF). Actualmente existen diferentes tecnologías FV que no sufre su potencia por el aumento de temperatura tal es el caso de los módulos de película delgada. Cada fabricante de módulos FV tiene la obligación de proporcionarlos los coeficientes de temperatura de cada módulo y estos
coeficientes se obtienen a partir de condiciones STC y estos coeficientes nos muestran cómo afecta el aumento de temperatura por cada °C.

Los sensores de temperatura que se utilizaron para el monitoreo de la temperatura de las tecnologías FV fueron de tipo termopolar tipo K y se ubicaron en la parte inferior de un panel de cada uno de los SFVs, los tres termopares se ubicaron en la parte central de cada sistema, estas tres señales se llevarón por la canalización del cableado de su respectiva canalización hasta el punto del sistema adquisidor de datos.

Fig. xxx sensor de temperatura tipo K de la marca Omega que se utilizó en el estudio. Fuente. Omega.com

Margen de error +-1.1 °C

Temperatura ambiente +- 0.5 °C

4.2.1.3 Sensor de Irradiancia

Este sensor se utiliza para medir la energía radiada incidente, y por lo general se fija en el marco de los módulos solares. Comparando la potencia de irradiación con la del inversor, se logra obtener un vistazo general del funcionamiento de la instalación fotovoltaica y de su energía generada, La irradiancia se usa para el análisis del SFV, y se debe medir en el plano del arreglo FV con una precisión no mayor a 5%. Los dispositivo para medir la irradiancia deben de ser dispositivos calibrados o dar trazabilidad en dispositivo a usar con un dispositivo previamente calibrado y estos dispositivos puedes ser celdas de referencias, módulos, Licor.

Tabla xxx. Datos técnicos de nuestra celda de referencia

Datos Técnicos									
Sensor	Sensor de silicio monocristalino								
Tensión de medición	aprox. 70 mV a 1,000 W/m² (valor de calibración exacto impreso en el sensor)								
Presición	±5%								
Temperatura ambiente admisible	-40°C a +85°C; -40 F a 185 F								
Diseño	Resistente al clima, montado sobre								
	perfil de aluminio en forma de Z								
Dimensiones (largo x ancho x alto)	110 x 40 x 40 mm								
Cable	Conductor de cobre de 3 m;								
	extremos libres, casquillos,								
	resiste a radiación UV								
Longitud máxima del cable	30 m								
(distancia entre Sensor									
Card/Box y sensor)									

4.2.1.4 Velocidad de viento

Fig.

4.2.2 Calibración de los sensores

Hacer en internet

4.3 Adquisidor de datos Datalogger CR1000

El CR1000 se ha convertido casi en el estándar industrial de muchas aplicaciones de adquisición de datos y en redes de estaciones de medida. Su alta fiabilidad y bajo consumo hacen que sea muy usado en campo, a menudo en condiciones duras de trabajo y en aplicaciones como meteorología, hidrología, geotecnia, monitorización de estructuras. También es utilizado en red junto con sistemas de control industrial o como equipo de test y ensayos.

El datalogger ofrece una extensa funcionalidad en medida y control, es compatible con una amplia gama de sistemas de comunicaciones, periféricos de expansión y software.

4.3.1 Sistema de adquisición de datos (DAS)

Para determinar la estabilidad de los sistemas FVs se debe realizar un seguimiento de los valores de los parámetros eléctricos en un corto tiempo durante un cierto tiempo (en nuestro caso será de 4 meses) y con esto tener una mayor resolución de la precisión de los datos. Lo anterior no puede hacerme manualmente, lo que implica, como se ha dicho, tener un sistema de adquisidor de datos (DAS por si siglas en inglés) cuya velocidad de adquisición sea tan grande como para evitar las fluctuaciones en los parámetros medidos debido a los cambios instantáneos en la irradiancia por ejemplo.

En consecuencia si se desea realizar un estudio del comportamiento de los parámetros eléctricos antes mencionados de los SFVs y de estabilidad se deberá contar con un sistema de adquisidor de datos, con este sistemas se deberá identificar plenamente los valores de los parámetros medidos y la variación de los mismos en un corto tiempo ya con ello se podrá discretizar a que se debe los posibles cambios en los parámetros eléctricos y por lo tanto la energía generada por cada tecnología fotovoltaica. En la fig. xxx se muestra el diagrama esquemático de un sistema de adquisición de datos.

llustración

2Figxxx.

Diagrama esquemático del sistema de monitoreo (SM)

Para instalar los transductores de voltaje y corriente primero se tuvo que identificar el lugar de la instalación, la alimentación de los mismo así como entradas y salidas de las señales; La fuente de alimentación de los transductores y el adquisidor de datos se encuentra en otra caja y en el mismo lugar por lo que también se tuve que diseñar las trayectorias de todo el cableado, en la imagen X se puede observar una de las cajas de combinación con todas las entradas y salidas de los sensores, en la caja se puede observar la configuración eléctrica del SFV de CdTe, tenemos un total de 6 transductores por lo cual nos dan 6 salidas para el adquisidor de datos, aparte tenemos que alimentar cada uno de los transductores con 24 Vdc y por ultimó se diseñó la trayectoria de la caja de combinación al Inversor.

Imagen x. Caja de combinación y de sensores del SFV de tecnología CdTe

La programación que se usa en este DAS permite medir parámetros de interés ya mencionados en el apartado **4.2**, de esta manera y seleccionando los transductores en magnitud de las variables a medir, se diseñó y construyó el un DAS con el datalogger ya mencionado, este datalogger trae consigo un software para su programación y se llama Loggernet, con esta herramienta se puede configurar el CR-1000 dependiendo de la necesidad, desde solo termopares hasta variables escalables de 0-5 Vdc siendo este la magnitud a medir sea el sensor que sea.

Una vez terminado de implementar el DAS para el monitoreo de los 19 variables de los diferentes SFVs, se creó una interface gráfica por medio del programa LabView para poder observar los datos del sistema de monitoreo en tiempo real y así mismo es la misma interface quien guarda los datos

cada segundo de las 19 variables en un archivo "cvs". En la Fig XX se muestra la interface gráfica del DAS en tiempo real. La imagen (a) se ve claramente que la tecnología de P-Si no está inyectando energía a la red y la imagen (b) se ve que los tres sistemas FVs están operando con normalidad.

(a)

(b)

CIGS Cadena 1 Cadena 2 100- 112500 A 12504 A 80-	Poli 100- Cadena 1 80-	CdTe Cadena 1 Cadena 2 11302.64 80-	×
Cadena 3 Cadena 4 400 1.3416 A 1.3866 A 200 0.0	52740 A) 60- 40- 20- 0-	Cadena 3 60- 1.1556 A 40- Cadena 4 Cadena 5 1.1364 A 1.1460 A 0-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
100 200 300 400 500 0 1 600 327.2400 V		48.6500°C	0- 31,0000 °C Velocidad de viento 0,0000 m/s
[1782.9999 W	1725.8638 W	1799.7281 W	Stop

Fig. xx (a) Interface gráfica del DAS en tiempo real

4.4 Procedimiento de medición y análisis de datos

En el DAS proporciona datos de las variables antes mencionadas anteriormente cada segundo, los datos obtenidos en la instalación FV se han clasificado por días, semanas y por los 4 meses teniendo en cuanta que en el sistema se producen errores de medición, adquisición y en la toma de datos se llevó a cabo un filtrado de datos incorrectos.

En la Imagen xx se muestra el archivo con extensión .csv donde se alcance la información del DAS, el sistema monitorea y guarda datos cada segundo con un total de 19 variables por segundo, en la misma imagen se muestra los errores de medición las cual se filtran.

Ilustración 3 Archivo donde se almacena la información del DAS

Con este filtrado de datos se pretende obtener una base de datos lo más real y fiable posible de la instalación y sobre la que se trabajara para realizar el estudio. Una vez realizado el filtrado se procede a realizar el análisis y estudio de los datos de la instalación fotovoltaica de baja concentración.

Con un total de 109 días rescatados después del filtrado tenemos como resultado una pérdida de 10.65 % días del total de días monitoreados que serían 122 días dando esto un total de datos recabados de 178,934,400.

Al hacer un previo análisis del primes mes se detectó que en estos datos teníamos una gran cantidad de datos "basura" por así decirlos ya que eres mediciones de lo que ocurría en toda la noche y todos estos datos no nos sirven, por lo que se propuso como primer paso excluir toda esa información, se excluyó la información de las 21:00 a 6:00, con esté filtrado reducimos un 37.5% de datos quedando con un total de 111,834,000.

Una vez que ya que filtramos todos nuestros datos la siguiente acción fue ver que software usaremos para el análisis de los datos, en nuestro caso se seleccionó el programa OriginLab v.90, trabajando ya con OriginLab observamos que no podía analizar tantos datos a la vez, para solucionar este

problema se seleccionó la medición por cada 5 minutos y con esa última acción fue con la que se analizaron los 109 días con un total de 596,448 datos.

En la siguiente imagen se puede ver el tratamiento de datos ya una vez filtrados, promediados.

	them the calls			about develop	in indian	Trial Co			-	- 20-	_		_					-	-								
He Edit	View Plot Colur	nn Work	sheet An	alysis statist	ics image	TD015 FC	ermat vee	dow Het	p					-					_								-
Taxa Mintana	-A(7)	B(V)	0(71	D(V)	E(A)	E(P)	Deve	HEVI	-Hys	3(7)	P(0).	-1.(7)	MPC:	CTRF	007	P(H	217)	3(1)	21(9)	1(*)	1000	- 1664	ALL I	A(T)	1071	JAITY	
Units		10 John	0.040	10,040	in Color	TOTAL	- Code	1. Sand	A CTORE	1.2004	0,000	in the second second		To Courts	Serie.	1.000	- Toda	-2004		1 Cour	1 Cover						
Connanta	Time																										
14842	2010-06-18 10.05-00	1218	1 20662	1,58758	1 2268	4.851	122 8757	4.01405	540,8424	1.0048	0.99254	1.00000	0.9990	1.01097	0.00397	318,6530	1000 10048	1872 81247	1089.30007	40 22341	39.95497	38.36747	20 35487	874 14872	D TRZAT	0 13+07	
14042	2016-06-18 10 10:00	1.0623	1.04078	1 72108	1.07470	4 00677	310.5877	+ 1100 A	228.05	100019	1 02214	1.00201	1.00108	1 04010	8 1876	317 0077	IEET ACUTE	1003.17340	1001.71904	44.87127 A4.97591	43 84313	42 2268	42,00002	5/0 380/0	0.00124	17.453050	
14045	2016-05-18 10 20 00	1 40425	1 20250	1.57298	1 43068	5 55522	318 0207	8 29015	331 76625	1 18032	1 15882	115101	1 1345	1 15430	8.72833	315.04415	1780 12704	1784 50458	1804 40301	47.05555	48.84736	44 24883	45.84735	655 1303	8 29274	3.14621	
140.46	2016-06-18 10:25:00	1.51775	1.50572	1 48598	1.04968	8.06991	316.9244	5.08401	329 2208	1.23688	1.22248	1.23781	1.22008	1 23929	6.13849	512-878	1820.01036	1871 18392	1824.03466	49.14023	48,1974	46 568	48.1974	709 44908	0.6931	0 16693	
14847	2016-0618-10.30-90	1 54884	1 59592	1 52023	1 09507	0 19310	218 1448	1 33525	227 0138	127307	1 20005	1,27421	1,25500	1.27912	0.34937	310 1102	1987 87201	1907 91207	1966.71374	\$1.29227	48 90493	49,7402	40.02403	728.97485	9.78127	0.15899	
14545	2018-06-16 10 23:00	1.07368	1 88248	1.84501	1 71445	8 83557	316.4504	6.29771	324.9024	1.36319	1 24205	1.35441	1.34507	1.00488	0.73709	309 4310	2111 87872	2041.53186	2100.04181	53.0077	51 85183	50 12173	E1 63163	784.00119	0.88263	3 17016	
14040	2016.05.72 (0.45.00	1.02108	0.24792	1.29972	0 state	1.4165	305 7557	1.17167	328 374	0.763	0.76567	D TRTTA	8.76821	D TROAM	3.80216	309 1142	1041 50212	1104 30541	1178 66678	80 82803	45 38027	47.4045	48 10027	413 24672	0 84487	0 10040	
14681	2016-06-16 10 80 20	0.90200	0 \$7825	0.97438	1 01847	3.85170	510.00149	107088	383.23118	0.00581	0.84438	0.65099	0.04256	0.85177	+ 25584	312.45358	1228 8510	358 99555	1330 46498	47.53319	45 34054	45 66932	45 34054	470 68408	B 84363	0.02976	
14652	2016-05-18 10 55-00	13 182 496	0.82182	0 890.3	0.95828	1.0801	211404	0.01189	400 616	0.01958	0.80984	0.82310	0.60939	0.850.58	4 09256	310.4096	110231499	4.75417	1271.81989	40.84807	40.40805	46.3244	40.40850	484.97883	0.38067	2870148-4	
14853	2018-06-10 11 00-00	0.82804	0 82379	0.80374	0.83316	3 28775	305.5408	201212	403.0084	0.72136	0,71302	072549	0.71568	0.73936	3 81322	315.6378	1058 39413	4,69067	1138 24588	44.05455	44.0324	44,0876	44.0324	4017458	0 27053	4.07566E-4	
14054	2010-00-16 11 05:00	1 40420	1.00424	1,84215	1 10346	0.04230	317.272	4.01213	411.192	1 10001	1.10782	1.19506	1.1DETE	1 18774	0.89030	314 3524	1050 10223	4 90928	1854 58711	40 01047	40.7804	48.24197	45.7854	070 83107	0.4068	4.157748-4	
14000	2010.06.18 11 18:00	1 33087	1.30811	1.32404	1 87297	6.53651	310 8272	0.9318	381 1792	1 10478	1.08903	1 1061	1 0690	1 08749	8 4781	308-52	25+23 0361	291 46425	1053 08005	62.82613	64 30807	48 78373	04 30507	611.6297	0.3731	0.02429	
14687	2018-08-18 11 20-03	1.21542	1 19773	1.18884	1.23187	4 \$3366	337 24284	001218	402 0520#	1 00007	0 50017	1 10222	0 08/21	100101	4 17849	110 42868	1024,24500	4,97288	1860 87722	20 11037	10 100	47.07829	10.0003	100 22942	0 62629	4 1910578-4	
14558	2016-08-18 11.28-68	1 78517	1 76498	1 74543	1.81306	F 10872	518.7808	3.012	405 5618	1.44108	1.42475	1.44172	1.42488	1.84728	7.16035	309 818	2244 7848	4.8718A	2225 30993	53 (08877	54.85517	48.4275	54.85817	817-47272	0.95.99	4.055826-4	
14659	2010-06-16 11 30:50	1.8332*	1-81697	1 79527	1.80000	7 31141	215 128	0.0722+	402 1788	1 49420	1,47781	1,49412	1.47682	1 49915	7 44138	307 7968	2923 89470	28 67318	2290 11330	00 92403	67.37233	00 03043	07.37233	840.2254	0 ##163	0.00221	
14860	2016-06-16 11 38-00	1 88123	1.66106	104443	1.91474	7 90228	315 8318	2.012	350.0482	1 53033	1.51215	1.5002	1,6124	1 53302	1 82029	304.6072	2332.46344	4,79374	2322.4486	58.3474	91 03UST	23.497	91 03037	854.50597	0.42943	1355455-4	
14001	2016-06-18 11-46-00	1.020/0	1 21202	1 49794	1.01218	5.04245	105 5285	8 87107	307 #38	1 20050	1 10023	1.10014	1.175021	1.18724	8.983	200 00007	1000.12715	20 79791	1210 200100	57.008/0	10.02420	63 31163	50 22425	#27 halas	1 10887	0.00224	
14063	2018-08-18 11 50-04	1 90558	1.93353	1 92291	195471	7 30507	314,2312	0.03103	400 822	1 80892	1.58144	1.85929	1 9788	1 99793	7 99864	304 2108	2482 17184	12.42254	2419 84097	67.74817	49.70473	84.00817	60.7987.8	943-20381	0.64113	0.00104	
14084	2016-0018-1155-00	1.05703	1.03658	1.93273	2,05316	7.829932	110.2458	0.012	397, 9992	1 80102	1.58242	1 20043	1.080.02	1 00000 1	7.00014	301 7868	2429.57884	4 72879	2401 98296	59.65473	\$3 A5887	88.23875	65.43687	305.39191	1 02033	2 973896-4	
14065	2016-08-18 12:00:02	1.83285	1.67592	1 88553	1 83819	7.57724	311,2196	0.05014	398 33141	1.87363	1 58051	1 57482	1.63376	1.57803	7 84658	501 87772	2354 34387	18 33248	2387 73915	80.75104	23.80485	58.85181	384D5 55	850.58871	1 32108	11 212 76 1	
14000	2010/08/18 12:05:00	1 67188	1.00040	1/05325	171014	0.09771	3128144	0.01248	390.04	1 39910	1,38594	1.40184	1 38703	1 40020	0.96	300-3048	2096 96319	4 92748	2130 78302	85-14807	61.58075	09.24327	01 69073	790 9181	0.98207	4 10023E-4	
14007	2016-06-16 12:10:20	1 10014	3,85457	1 0407	0.9872	5.78807	3027048	1.41734	374,8738	114641	0.05452	0.00048	1.174	1.10004	4.21216	299.00717	1710 50000	117 68436	1292 30242	50 65973	00.422	10.1242	81.425	455 35874	1.10407	0.01481	
14009	2010-05-18-12-20-00	1 98651	1 9532	1,95832	2 02799	7 93662	10 00 300	0.012	404.01833	1.61907	1.6008	1,61692	1.00027	10110	8.04165	307 0298	2000 19145	4 64827	2468.70216	10.00732	88.82214	03 0+144	65 62214	913 22664	0.00736	+ 040185-+	
14870	2018-08-18 12:28-00	1.97444	1 04810	1 94758	2.01548	r ##342	211 6832	0.08347	391,6238	1.81048	1 50273	1.61308	1 110308	1.00304	8.02078	302 3124	2488.00126	25.7054	2424 80728	10 15383	82.8	88.7781	62.8	901.8081	0.14137	0.00248	
14671	2016-06-16 12:30:03	1 98302	1 95705	1.95705	2.0245	7.82181	308 1104	2.012	398.2892	1 03678	1.01438	1.83186	1 60851	1.6237	8 11433	301 108	2440.77118	A.74347	2443 17803	01.5683	85.35483	87 68498	65.38493	810.43377	0.7122	1962896-4	
14872	2018-05-18 12 35 08	2 00414	1 06151	1 24268	203067	7,8951	102 2005	0.06348	254 1552	1 84685	1.62458	1.64403	1.0151	1 04419	0 17940	300 768	2465 37995	29.45000	2465 \$2566	67.111	64.40343	50 0842	64 40543	323 02158	1 1224	8.00248	
14072	2010-08-16 12:40:00	0.00025	1.0000714	1 08603	2 06332	8.30220	107 5254	8 78775	393 42400	1.00213	1,000/3	1 01002	1.00100	1 68233	0.40143	108.01408	2002 011/9	247 (3333	2452 18555	P4 31754	87 7014	01.03542	87.2014	950 57009	0.01076	0.034258-4	
14875	2018-08-18 12:50:50	2 11833	2.09158	2.00699	2.15822	8.4529	314 36282	0.32102	389.44545	1.71584	1.69612	1.71487	1.00145	177,508	0.53117	287 11768	2576 49501	87 27831	2534 45631	85-05463	87.58745	0180879	07.50748	307.69936	0.05832	1.00911	
14076	2010-06-18-12-55-00	1.0187	T-00411	1.00217	103380	4.00663	194 6726	10.01210	379.8024	0.07982	0.46978	0 88324	0.87028	0.88348	4.38000	286 9008	1211.07203	4.01728	1005 40251	01.49347	65 30107	00 1700	03 20107	484,20411	9.42097	3 847738-4	
14077	2018-08-18 12:00-00	0.00338	0 78424	0.19534	0.00084	11995	299.65091	0.85887	377.18108	2.88424	0.00097	0 69400	0.05983	0.65278	2.38395	304 77414	363,26061	218,2890.1	1032 18187	81 72172	31 41242	31.07468	21.41242	387.85528	1.2497	0.01794	
14678	2016-06-16 13 05:00	2.16073	2.12588	2 12279	2.1956	8 59498	319 5328	0.01301	410 2944	1.73154	1 70959	1 73002	170813	172588	8.00314	307.3472	2757.48434	5 34095	2843 84583	83.22243	54.69707	60 76827	54.59707	976 21887	0 91387	4.450796-4	
14888	2018-08-10 13 18-20	1.39768	0.17941	1.38588	1 43128	8 55615	308.018	1.63243	378.1278	1.16107	1 13614	1 18300	115641	1.1447	4.720188	100.110	1724 51947	010 41000	1776 (13251	50 00241	81 7884	49 6214	51 7684	813 65377	0.000110	0.04303	
14681	2016-00-16 13 20 00	1.95545	1.93534	1,95475	1,99014	7 #3587	317 22908	801212	404 5055	1 59555	1.57812	1.59787	1 57525	1 (1963)	7 94612	305 19745	2455 50148	4.30219	2424 87282	54.52403	57 17879	51 99548	67 17879	896 81713	1.01067	1005105-4	
14682	2010-08-10 13 20:09	0.85601	0.84428	0.04488	0.87055	3-41878	303 6812	0.01225	389 1028	0.73497	0.71883	0.73843	0.7172	0.74015	3.84652	308.3724	1043 42368	4 76805	1131.00847	83.5096	5511800	81,87473	65 11803	412 39624	0 8801	3.574358-4	
14065	2010-08-18 13:50:00	1 42263	1.51611	1,64029	1 66271	6 18206	017 84456	1.25342	384.05275	1.32951	1.52943	1.5447	1.35547	1.32499	8.6721	208.03806	1965 3186	410 92836	2060 95834	61.05819	62,76966	49.25859	12.76956	718.20847	1.26198	0.03424	
14184	2010-00-16 13 35 00	1 194537	1.6739	1 97301	2 07898	7 18 425	AVX 0554	0.012	400.0524	102200	1 00267	1 8107	1.02/172	1.01597	8.011791	124 0544	2472 08178	4 87231	2410 82238	67 78533	81 48717	54 0 5 10 10 10 10 10 10 10 10 10 10 10 10 10	81 4444	MY 41281	1 121 12	# 10020E-4	
14010	2010-00-18 13:40:00	1.97183	1.04008	190962	101483	T #8697	909 428	1.3000	382 578	1.6972	1.67783	1.8972	1.07600	1.58907	7.03024	204.772	2440 67116	410.7268	2410 74803	60.18115	63 35933	60.27893	03 39933	899 49584	0 11710	0.03423	
14887	2016-06-18 13:50:00	1.18842	1.94302	1.54638	2.01084	7.88857	1010 00221	001013	798 21582	1 50209	1.55258	1.58244	1.55000	1.57402	7 881	105.47887	2431 73688	4.80738	2386.02378	61.01027	54 10050	87 68340	64 30857	900,18394	0.01274	4.008138-4	
14683	2010-08-18 13 55 00	2.02029	1 99120	1.998.32	208444	8.0623	308 0895	0.01397	394 6168	100036	1.0271	1.86822	1 03458	1.65138	8.23614	299.0144	2468 90788	6 61162	2402.49724	03.0222	08,1382	59.23973	00.1352	926.27451	0 72990	4,592916-4	
14065	2010-06-18 14:00:00	2.09777	3108718	2 05842	3 13877	8 37113	104 400	0.04472	393.0224	1.68392	1 617918	1 69301	1 80638	1.00079	0.01047	298.0248	2000 84475	18 91091	2107 87665	BA B176	87.84333	01 21400	17 54333	840 8570	1 03093	0.00141	
14031	2016-06-18 18 10 03	1 56577	1.54245	1 05472	1.86534	0.0.0032	200 200	2 12414	383 2808	1 31277	129534	1 21204	1 29000	1 3097	0.02074	200 237 C	1000 anna	46 12787	1906 4540	64 78487	87.23427	61 20955	87 33127	728.80254	0.7924	0.00374	
14682	2016-08-18 14 15-50	1.76216	1 72307	1 72517	1 77877	8 2/718	304 1636	0.01237	294 2608	1.406/97	138127	1.40783	1 36471	1 40250	8.69138	3019288	2142 09751	4 117524	2114 97229	#1 07333	82 14887	88.18097	62 14887	782 38881	0 5338	4 04326-4	
14093	2010-05-18 14:20 00	1 93632	1.90894	1,51428	1.9762	7.73444	310.2884	0.010	395,1076	1.58895	1.86688	1.58552	1.60202	1.58087	7.88042	300.6084	2399 00000	4.74129	2368 42803	01.704	54 75027	69.1782	04 76027	887,72071	0.09907	1.60108E-4	
14034	2018-05-18 14 28-00	1 98219	1 8292	1,93265	1 00241	1 80236	315 2312	0.02440	393.6228	1.00972	+ 59825	1 80906	1 55447	1 00450	T 99626	788-4798	2420 23253	29 659+2	2386.58399	62.0028	60 59953	29 8287	86 55663	200 10010	1.305	0.00247	
14836	2018-08-18 14 30 20	1 33930	1.91547	1 82583	1 58377	7 70230	310 48855	0.012	105-82243	1.09765	1.07007	1 59977	1.87311	1 5899	7.9937	209.00148	2408 51821	4 74987	2370.93823	01.54851	84 48828	50 051/5	04 40920	190 0349	1 20410	3.850228-4	
14997	1016-06-18 16 30 00	1 208070	1 88107	1.64901	192010	1 44440	207 61828	0.012	194 04947	1.0/1008	1 62104	1 64963	1.102648	1 64223	1.49010	205 36462	2222 83049	4 72884	2503 88204	10109-001	89.40	10 40710	20.40	244 Million	1 14965	3.84078.4	
14010	2016-08-18 14 45 00	+ 00266	1.87408	1.88211	194029	7 59663	108 1812	0.07505	391.4032	1.00304	+ BAT21	1 56201	1,60633	1 12344	1.76728	299.014	2526 60541	28 91763	2312 24758	83 79947	00.67787	60.08075	68 \$7767	871 01824	0.22403	0.00224	
140.59	2016-06-18 14 10 00	1.80612	1.07089	167583	1 83628	7.58341	304 7392	0.013	392 1232	1.0042	1.00188	1 2001	1.62765	1 04440	7.71114	294 0928	2311 00574	4 70768	2298 55522	63 67281	00.3018	_ 20 4144	07.1011	300 81274	1 662	1 923236-4	
14700	2010-06-18 14 55:00	1 38909	7.86368	1 87121	1.52899	7.66376	305 1936	0.012	252 6866	1.54954	1,62038	1 54324	1 02118	1.68722	7 88254	256.988	2315 23548	4,71103	2293.06964	63.74373	88.91007	82.47685	65 arear	864.06666	1 04053	3.92568E-4	
Ach	att /																	11.4									

Ilustración 4 Tratamiendo de datos en OriginLab

En el tratamiento de datos se llevó a cabo un análisis de los días que podían ser candidatos con los que posteriormente se realizaría el estudio, éstos días se escogieron de la siguiente manera, debían ser días completamente claros y repartidos a lo largo de todo el periodo del que se disponían datos, es decir desde Abril a Julio, en estos días se haría una distinción entre los días con mucho viento y los días sin viento, además sólo se eligieron días en los que el filtrado de datos no modificó demasiado los datos originales. Con la elección de los días más claro dependen únicamente obtener las mejores campanas de irradiancia. Las formas de las campanas en las curvas de irradiancia varían en función de la época del año y de la nubosidad que presente el día, en la siguiente imagen se muestra un día totalmente nublado y un día totalmente soleado.

Ilustración 5 Comportamiento de la Irradiancia en un día nublado y un día soleado

Otro de los factor que se tomó en cuenta fue la parte eléctrica, durante el monitoreo de los SFV se presentaron fallas eléctricas en la Red del Instituto de Energías Renovables y una de las características de los inversores que se instalaron con las diferentes tecnologías FV es que cuando un inversor nota la usencia del voltaje de la Red es desconectarse de la misma para no provocar daños en la red eléctrica, en la siguiente imagen se muestra el comportamiento de la energía inyectada por el inversor a la red en un día con fallas. Todas estas mediciones también se excluyen.

Ilustración 6 Comportamiento eléctrico del SFV en la ausencia de voltaje en la red eléctrica en el inversor

Para realizar el estudio final partimos de un par de días representativos de cada mes, estos son días claros, no hayan interrupciones en la red eléctrica, que no haya discrepancia de datos por medio de DAS, etc.

Los días que se seleccionaron el estudio son los siguientes: 19, 21, 29 de Abril, 1, 3, 13 de Mayo, 7, 9, 19 de Junio y 7, 9, 10 de Julio.

4.5 Rendimiento energético del cada SFV con tecnología CIGS, P-Si Y CdTe

La evaluación del rendimiento energético de los SFV conectados a la red, requiere 4 elementos, referidos a un año o mensuales, los cuales indican la eficiencia de la instalación en condiciones reales de trabajo, las cuales también sirven para estimar la energía producida por el SFV interconectado a la red y/o para evaluar el rendimiento del SFV.

Los parámetros para medir el rendimiento son:

Productividad de referencia o Reference Yield, YR

$$Y_R = \frac{G_a(\beta)}{G_{STC}}$$

Definido como la irradianción solar incidente en el plano del generador fotovoltaico, $G_a(\beta)$, expresado en kWh/m², respecto de la radiación nominal G_{SCT} de 1 kW/m².

Productividad del generador fotovoltaico o Array Yield, YA

$$Y_A = \frac{E_{DC}}{P_{STC}}$$

Definida como la energía útil producida por el sistema fotovoltaico, E_{DC}, respecto de la potencia nominal instalada, P_{STC}, expresa en unidades de kWH/kWp.

Porductividad final o final Yield, YF

$$Y_F = \frac{E_{AC}}{P_{STC}}$$

Definida como la energía producidad por el sistema fotovoltaico en un cierto lapso de tiempo ósea, la energía que es inyectada a la red, E_{AC}, por unidad de potencia Instalada, experesa en Kwh/kWp.

La norma IEC 61724 es un estadar europeo donde se describen las recomendaciones generales para el análisis del comportamiento eléctrico de los sistemas fotovoltaicos, tanto conectados a la red como autónomos.

El Rendimiento Global del sistema, PR, de define como un factor de rendimiento anual que considera las perdidas energéticas que tiene el sistema y compara la energía que el sistema fotovoltaico inyecta a la red, E_{AC}, con respecto a la energía máxima que esta podría entregar a la red, que es igual a la energía técnica máxima generada, E_{técmáxgen}. La energía técnica máxima que el sistema podría generar se calcula contemplando los factores de pérdida que de ninguna manera se podrían evitar tales como la temperatura, mala irradiancia, por lo que el rendimiento global del sistema da posibiliada a la optimización de la instalación.

$$PR = \frac{E_{AC}}{E_{t\acute{e}cm\acute{a}xgen}}$$

CAPITULO 5. RESULTADOS

5.1 Introducción

Para poder conocer el comportamiento del rendimiento de diferentes tecnologías FV es necesario compararlas y que mejor que en las mismas condiciones, es necesario cuantificar datos sobre los principales fenómenos que alterar su rendimiento tales como la temperatura, viento, irradiancia y parámetros eléctricos y para eso como ya se habló en el capítulo 4 y se utilizó un sistema de adquisidor de datos que nosotros mismo elaboramos.

5.2 Calculo de pérdidas energéticas

5.2.1 Perdidas por temperatura

Los módulos cuando operan en intemperie rara vez trabajan en condiciones estándares de prueba (STC: 1000 W/m2, 25°C y AM1.5). La temperatura promedio de los módulos medida en la parte posterior de los módulos es mayor a 35°C. A estas altas temperaturas, la banda de energía disminuye resultando en una disminución del voltaje de circuito abierto (*Vca*), y los fotones con mayor longitud de onda pueden ser absorbidos. El tiempo de vida de los portadores también puede incrementar, dando como resultando un incremento en la corriente fotogenerada y a su vez un aumento en la corriente de corto circuito (*ICC*). La disminución en el *Vca* es mayor que el incremento en *Icc* por lo cual la potencia máxima de salida (*Pm*), el factor de forma (*FF*)y la eficiencia (η)del módulo se ven afectados (C. Radue, 2010).

5.3 Comparación del Rendimiento energético de las tres Tecnologías FV

Los resultados presentados son en forma de promedios diarios y promedios mensuales, lo que implica una dispersión con respecto del promedio del total de los datos. Estos fueron obtenidos a partir de datos medidos cada 5 minutos por dos sistemas de monitoreo, uno que mide variables ambientales y uno propio del inversor que mide las variables eléctricas del sistema. Las incertidumbres de los resultados se presentan en forma de incertidumbre estándar combinada.

En la Tabla X, se presentan los resultados principales del análisis del rendimiento desde el 11 de enero de 2016 hasta el 14 de diciembre de 2016. La energía total inyectada a la red es de 39,452.03 kWh/año. La eficiencia del SFV bajo condiciones reales de operación es de 10.7 %. En la tabla podemos observar que la energía generada e inyectada a la red del mes de agosto es cero, esto debido a que durante ese tiempo, el sistema se desconectó de la red debido a problemas presentados en el punto de interconexión. Dicha cuestión, afecta los resultados presentados, aunque se considera de gran importancia considerarla en el cálculo del rendimiento, porque es finalmente el objetivo del trabajo, evaluar en tiempo real al sistema e identificar sus fallas.

Si en el análisis se excluye el periodo de tiempo en que el SFV se encontró desconectado la eficiencia del SFV se incrementa a 11.74 %.

Durante los 120 días de monitoreo en las 3 diferentes tecnologías se pueden exponer los resultados en las siguientes tablas en la cuales se puede observar los diferentes comportamientos de acuerdo a la tecnología bajo estudio, en la graficas 1, se muestras las potencias máximas obtenidos en 3 días mayor soleados con una irradianca de 1054 W/m², sus temperaturas alcanzadas y velocidad del viento.

Tabla 3. Se muestras los principales resultados del rendimiento emergentico de 3 días escogidos al azar con mayor irradiancia, se puede ver la potencia instantánea, eficiencia del inversor y temperatura máxima de los módulos registrada [8].

	05/05/2016	05/05/2016	05/05/2016	EFICIENCIA	POTENCIA	TEMPERATURA
	Rs 5.135 h	Rs=5.167	Rs= 6.205	INVERSOR%	TOTAL AC	PROMEDIA
		h				MAX.MODULO
	Energía		Energía		Energía	
	generada	Energía	generada		generada	
		generada				
CIGS	13.93 kWh	13.97 kWh	17.38 kWh	92.56	41.90 kWh	69.98 °C
Si-p	13.65 kWh	13.81 kWh	17.04 kWh	91.22	40.59 kWh	65.86 °C
_						

CdTe	15.14 kWh	15.59 kWh	19.08 kWh	91.27	45.45 kWh	67.79 °C

Grafica 1. Comportamiento de la potencia de las tres tecnologías

Grafica 2. Energía total generada durante los 4 meses de la planta bajo estudio.

Tabla 4. Producción de energía generada de la planta Fotovoltaica interconectada a la red durante los meses bajo estudio

2016	Tecnolog	jía_CIGS	Tecnolog	ía_POLY	Tecnología_CdTe			
	kWh DC	kWh AC	kWh DC	kWh AC	kWh DC	kWh AC		
Abril	453.368	419.637	449.382	409.9261	471.250	430.11		
Mayo	476.419	440.973	472.232	430.77	495.212	451.98		
Junio	461.053	426.75	456.998	416.874	479.248	437.41		
Julio	445.684	412.525	441.765	402.978	463.263	422.82		
Total	1836.524	1699.885	1820.377	1660.548	1908.973	1742.32		

CAPÍTULO 6. CONCLUSIONES

Durante los 4 meses que se estudió la tres diferentes tecnologías instaladas en las mismas condiciones en las instalaciones del IER- UNAM, se puede concluir que las que mejor rendimiento energético tiene bajo diferentes circunstancias tales como la irradicancia, temperatura ambiente y temperatura del módulo, velocidad del viento y el mismo inversor da como resultado que la tecnología de película delgada de material Teluro de Cadmio (CdTe) la cual tiene un rendimiento mayor a las tecnologías de CIGS y Silicio policri

stalino del 5.48 % y 6.54 % respectivamente, con una producción total de 1836.524 kWh para el sistemas de tecnología CIGS, 1820.377 kWh para la de Silicio Policristalino y 1908.973 kWh para CdTe.

Como resultado del desarrollo de dicho trabajo, se puede argumentar diferentes situaciones que se observaron durante el análisis de las tecnologías. Durante los meses más calientes del año, abril y Mayo, se registraron temperaturas mayores a 70 °C y gracias a esas elevadas temperaturas en los módulos se vio muy claramente que el efecto de la temperatura golpea más fuertemente a la tecnología de silicio obteniendo rendimientos térmicos (Rt) de 0.81, pero conforme transcurría el día y la irradiancia descendía, la que eficiencia de los módulos de película delgada eran fuertemente afectados mientras que el eficiencia de los módulos de silicio se mantenían constantes e incluso aumentan conforme disminuía su temperatura, entonces cuando en el día se tenía una irrandiancia menor a 700 W/m² las tres tecnologías tenían un rendimiento similar.

Siempre es necesario tener un sistema de monitoreo en los sistemas fotovoltaicos interconectados a la red eléctrica de pequeños, medianos y grandes potencias, la presencia de un sistemas de monitores ayuda a tener datos del comportamiento de diferentes tecnologías de acuerdo al lugar donde sean instaladas ya que también ayuda a detectar el mal funcionamiento de algún sistema y una vez obteniendo datos de su comportamiento del SFV podrán ser de interés para investigaciones futuras.

Bibliografía

[1] Comparison of Photovoltaic Module Performance Measurements A. Hunter Fanney, Mark W. Davis, Brian P. Dougherty, David L. King, William E. Boyson and Jay A. Kratochvil

[2] Sánchez Ju´arez A., Ortega Cruz J., Mart´ınez Escobar D., S´anchez P´erez M., Sistemas Fotovoltaicos Iluminación y Bombeo, ANES, (2009).

[3] Sánchez Juárez et al, sistemas fotovoltaicos interconectados a la red, Temixco, Morelos, (2010).

[4] http://xml.ier.unam.mx/xml/se/cs/meteo1.xml

[5] TS_CIGS_series_C2_Datasheet_EU-EN_01-2015.pdf

[6] DesingBlack_poly_240-250-260_01-2015_En.pdf

[7] Calyxo_datenblatt_es_86.pdf

[8] rendimiento global de sistemas fotovoltaicos conectados a la red eléctrica, Luis Vilariño García, Javier Vilariño García, Cristina Arenas Rayo, Germán Núñez Rodríguez e Higinio F. Menéndez Milanés