UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

Análisis Técnico y Simulación de la Planta Reformadora Catalítica de Naftas de la Refinería "General Lázaro Cárdenas" Minatitlán, Veracruz.

TESIS

QUE PARA OBTENER EL TÍTULO DE

INGENIERO QUÍMICO

PRESENTA

CUEVAS NOGUERÓN JOSÉ IVÁN

Ciudad Universitaria, Cd. Mx.

2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

- PRESIDENTE: ING. CELESTINO MONTIEL MALDONADO
- VOCAL: ING. MARTIN RIVERA TOLEDO
- SECRETARIO: ING. CARLOS ÁLVAREZ MACIEL
- 1er. SUPLENTE: ING. ILEANA RODRÍGUEZ CASTAÑEDA
- 2° SUPLENTE: ING. ALBERTO ROSAS ABURTO

SITIO DONDE SE DESARROLLÓ EL TEMA

LABORATORIO DE SIMULACIÓN Y OPTIMIZACIÓN DE PROCESOS. CONJUNTO "E" DE LA FACULTAD DE QUÍMICA, CUIDAD UNIVERSITARIA.

ASESOR DEL TEMA

ING. CELESTINO MONTIEL MALDONADO

SUPERVISOR TÉCNICO

ING. ILEANA RODRÍGUEZ CASTAÑEDA

SUSTENTANTE

CUEVAS NOGUERÓN JOSÉ IVÁN

ÍNDICE

1. INT	RODUCCIÓN	1
2. LA	FRACCIÓN DE NAFTA	3
2.1. 2.2. AGUA	Composición de la Nafta (Hidrocarburos) Composición de la Nafta (Compuestos orgánicos heteroatómicos, y constituyentes metálicos)	4 7
3. CA		9
3.1. 3.2.	CATALIZADORES BI-METÁLICOS	10 11
4. EFI PROCE	ECTO DE LA COMPOSICIÓN DE LA NAFTA EN EL DESARROLLO DI ESO Y LA CALIDAD DEL PRODUCTO EN LA REFORMACIÓN	EL
		12
4.1. 4 2		12
4.3.	EFECTO DE LA COMPOSICIÓN DE HIDROCARBUROS DE LA NAFTA	14
4.4.	EFECTO DEL RANGO DE PUNTO DE EBULLICIÓN EN LA NAFTA	15
4.5.	EFECTO DE LAS IMPUREZAS EN LA NAFTA	17
5. HID	RODESULFURACIÓN DE LA NAFTA	19
6. PR	OCESO DE REFORMACIÓN CATALÍTICA	22
6.2. C	ONFIGURACIÓN TÍPICA DE LAS PLANTAS REFORMADORAS	25
6.2	.1. Unidades Semi-Regenerativas	26
6.2	.2. Unidades Cíclicas	27
6.2	.3. Unidades Continuas	28
6.3.	SECCION DE REGENERACION DEL CATALIZADOR	30
0.3 6.3	.1. Sección de quemado de coque	32
6.3	.4. Sección de reducción	36
7. CIN	IÉTICA DE LAS REACCIONES DE REFORMACIÓN	42
7.1.	Sмітн (1959)	43
7.2.	KRANE ET AL. (1959)	45
7.3.	HENNINGSEN Y BUNGAARD-NIELSON (1970)	46
7.4.	PADMAVATHI - CHAUDHURI (1997)	48
7.5.	HOU ET AL. (2006,2007)	49
8. SIN	IULACIÓN DEL PROCESO	52

8.1.	CARACTERÍSTICAS DEL PROCESO	53
8.2.	COMPOSICIÓN Y CARACTERIZACIÓN DE LA ALIMENTACIÓN	57
8.3.	ZONA DE REACCIÓN	65
8.4.	ZONA DE RECONTACTO	69
8.5.	ZONA DE ESTABILIZACIÓN	71
9. AN	IÁLISIS DE RESULTADOS	73
10. (CONCLUSIONES	90
11. E	BIBLIOGRAFÍA	92

1. Introducción

Después de la Segunda Guerra Mundial, la producción de automóviles aumentó. Las demandas de combustible de estos coches nuevos con motores de alta compresión requerían gasolina de mayor calidad, superior a lo que la mayoría de las refinerías podían producir.

Aunque quemar cualquier combustible fósil contribuye a los problemas ambientales por el dióxido de carbono (CO₂) y otras emisiones de gases, estos combustibles son la principal fuente de energía para uso humano en nuestro planeta. Se han implementado varias legislaciones para proteger el medio ambiente, una de éstas es el aumento del número de octanaje en las gasolinas.

Uno de los procesos clave para esto en las industrias petroquímicas refinadoras de petróleo es la reformación catalítica, el cual es un proceso químico fundamental en la producción de gasolina, y es empleada para convertir la nafta con bajo valor de octanaje en compuestos con mayor octanaje y mayor valor económico sin cambiar su rango de punto de ebullición. Esto se consigue mediante la transformación de hidrocarburos parafínicos y nafténicos en isoparafínicos y aromáticos.¹

El reformado de nafta sobre catalizadores de platino fue desarrollado por la Universal Oil Product (UOP), cuando introdujo el proceso "*Platforming*" fue llamada así para reflejar las palabras de platino (*platinum*) y reformación (*reforming*), en el año 1947.

Hoy en día modelos computacionales son usados de forma rutinaria para modelar los varios procesos de refinación del petróleo; cada vez se recurre en mayor medida a ellos para mejorar la operación de refinerías existentes, tomar decisiones sobre su operación, comprar el crudo que mejor se adapte a sus necesidades, optimizar la planificación de la producción. Por lo que, la habilidad de modelar adecuadamente cada etapa del proceso de refinación, constituye un factor clave para optimizar el funcionamiento del conjunto global e integrado de una refinería.

¹ (Reza Rahimpour, Jarafi, & Iranshahi, 2013)

El objetivo del presente trabajo consiste en llevar a cabo el análisis y la simulación de la Unidad Reformadora Catalítica de Naftas de la Refinería "General Lázaro Cárdenas" de Minatitlán, Veracruz. En el cual se presentan dos casos con diferente composición de nafta en la alimentación. Para esto se utilizó el Simulador ASPEN-HYSYS V8.8. La planta tendrá la capacidad de procesar 30,000 barriles/día (BPSD) para obtener un reformado con un RON de 102, PVR 6 psia y 1% mol de C4 como máximo, además de alcanzar una pureza del 90 % mínimo en la corriente de gas hidrógeno y una corriente de LPG con 1% mol de C5+ como máximo.

2. La Fracción de Nafta

La fracción de Nafta del petróleo constituye típicamente el 15-30% en peso del crudo, y su rango de ebullición está dentro de los 30°C-200°C. Esta compleja mezcla contiene moléculas de hidrocarburos de 5-12 átomos de carbono, incluyendo parafinas, olefinas, naftenos y compuestos aromáticos. Existen otros componentes como el azufre, nitrógeno, oxígeno, agua, sal y algunos metales como el vanadio, níquel y sodio también están presentes.

También al producir el reformado, existen compuestos aromáticos valiosos como el benceno, tolueno y xilenos (BTX) que son materiales petroquímicos muy importantes. No obstante uno de los principales productos de la reformación catalítica es el hidrógeno, este se puede usar para diferentes procesos dentro de la refinería como la hidrodesintegración, hidrotratamiento, entre otros. También cabe mencionar que con los problemas de contaminación que sufrimos hoy en día por la crisis energética y el calentamiento global, el hidrógeno tiene el potencial de revolucionar el transporte, incluso nuestro sistema entero de energía eléctrica.

El rango completo correspondiente a la Nafta es la fracción de destilación del crudo que tiene un punto de ebullición entre 30°C y 200°C, y corresponde generalmente a entre el 15-30% del peso total de éste. La nafta se nombra según el proceso del que provenga. Ej.: nafta de vacío, nafta de hidrodesintegración catalítica, nafta de coquizadora; etc.

Si la nafta proviene de procesos como la reductora de viscosidad, la coquizadora, de la torre de vacío; etc. entonces tendrá un alto contenido de azufre, nitrógeno y metales. Cabe añadir que la cantidad de estos depende también del origen del crudo.

La Nafta proveniente de la destilación atmosférica se subdivide en 3 categorías: la Nafta ligera que es aquella que tiene un punto de ebullición desde 30°C hasta 90°C; la Nafta pesada que es aquella que tiene un punto de ebullición entre 90°C y 200°C, cabe decir que algunas veces a la fracción con un punto de ebullición entre 90°C y 150°C se le denomina Nafta media, y es esta última fracción la que preferentemente

se utiliza como materia prima para la reformación catalítica una vez que ha sido desulfurada.

2.1. Composición de la Nafta (Hidrocarburos)

Para poder manejar de manera sencilla los numerosos compuestos que conforman la nafta, se han clasificado en 4 categorías: Parafinas, Olefinas, Naftenos y Aromáticos. Cada uno de estos agrupa distintos compuestos según la descripción siguiente:

a) Parafinas (P): Cadenas rectas o ramificadas de hidrocarburos saturados. Su fórmula general es C_nH_{2n+2} . Su punto de ebullición se incrementa entre 20-25°C por cada carbono presente en la molécula. Las cadenas rectas tienen un mayor punto de ebullición que sus respectivos isómeros. A medida que aumenta el número de carbonos, aumenta su densidad.

Figura 1. Ejemplificación de algunas parafinas presentes en la Nafta.²

² (NOMENCLATURA QUIMICA, 2010)

b) Olefinas (O): Cadenas rectas o ramificadas de hidrocarburos insaturados. Su fórmula general es C_nH_{2n} . Presentan las mismas características que las parafinas en cuanto a incremento en el punto de ebullición, aumento de densidad e isomería.

Figura 2. Ejemplificación de algunas olefinas.³

 c) Naftenos (N): Hidrocarburos cíclicos saturados que poseen al menos un anillo en su estructura. Los más abundantes en la fracción del petróleo son anillos tanto de 5 como de 6 carbonos. Pueden tener una cadena de parafina unida al anillo. Comparados con las parafinas, para un mismo número de átomos de carbono dados, los naftenos poseen un punto de ebullición mayor y una mayor densidad.

Figura 3. Ejemplificación de algunos naftenos.⁴

d) Aromáticos (A): Hidrocarburos cíclicos insaturados. Su fórmula general es C_nH_{2n-6} . Los anillos de benceno pueden estar unidos a cadenas de parafinas,

4 (Petróleo, 2002)

³ (NOMENCLATURA QUIMICA, 2010)

naftenos u otros aromáticos. Para un número dado de átomos de carbono en una molécula, el punto de ebullición y la densidad de los aromáticos es mucho mayor que la de las parafinas y los naftenos. La reactividad de los enlaces insaturados de los compuestos aromáticos C₆, C₇ y C₈ o BTX (Benceno, Tolueno, Xileno) los vuelve importantes bloques de construcción para la industria petroquímica. Los aromáticos tienen un alto octanaje.

Figura 4. Ejemplificación de algunos compuestos aromáticos.⁵

Corriente	Parafinas (%peso)	Olefinas (%peso)	Naftenos (%peso)	Aromáticos (%peso)	Densidad (g/mL)	Rango de punto de ebullición (°C)
Nafta Ligera	55	-	40	5	0.664	C ₅ -90
Nafta Media	31	-	50	19	0.771	90-150
Nafta pesada	30	-	44	26	0.797	150-180
FCC	34	23	11	32	0.752	C ₅ -220
Visbreaker Ligera	64	10	25	1	0.667	C ₅ -90
Visbreaker pesada	46	30	16	8	0.750	90-150

Tabla 1. Composición de la Nafta según su proceso de origen para un mismo crudo.⁶

⁵ (Petróleo, 2002)

⁶ (Antos & Aitani, 2004)

2.2. Composición de la Nafta (Compuestos orgánicos heteroatómicos, agua y constituyentes metálicos)

a) Azufre: Es un importante constituyente del petróleo; su composición va desde prácticamente cero hasta 5% ^w/_w de total de crudo. Los compuestos de azufre presentes en el petróleo son principalmente: mercaptanos, sulfitos, sulfatos, benzotiofenos, ácido sulfúrico y óxidos de azufre. Estos compuestos envenenan el catalizador empleado en la reformación catalítica, por lo que es necesario removerlo por hidrodesulfuración (HDS).

b) Nitrógeno: Se encuentra presente en menor proporción que el azufre (<1%^w/_w) y su mayoría en la fracción pesada del petróleo. Se subdividen en 2 clasificaciones: básicos (piridina, piperidina y derivados de la indolina) y no básicos (derivados

del pirrol).

⁷ (Petróleo, 2002)

Figura 6. Principales compuestos nitrogenados presentes en la Nafta.⁸

c) Oxígeno: Éste se encuentra normalmente sólo en las fracciones pesadas del petróleo en fenoles, furanos, ácidos carboxílicos o ésteres.

Figura 7. Principales compuestos con oxígeno presentes en la Nafta.9

d) Agua: Se encuentra presente en el petróleo en pequeñas cantidades, parcialmente disuelta y como una fase acuosa separada. Las fracciones de la nafta absorben humedad, hasta cierto punto, durante su manipulación y su almacenamiento. Resulta contraproducente en la operación de reformación catalítica porque neutraliza los sitios ácidos del catalizador.

^{8 (}Petróleo, 2002)

⁹ ibid., pág 8

3. Catalizador

Muchas investigaciones han ahondado en diferentes aspectos del proceso de Reformación Catalítica, estos estudios se enfocan principalmente en tres temas:

- Invención y desarrollo de nuevos catalizadores con mejor selectividad, estabilidad y desempeño así como la menor desactivación posible.
- El estudio de la naturaleza de la reformación catalítica y proponer nuevos y mejorados modelos cinéticos y de desactivación.
- La propuesta de diferentes configuraciones de los reactores, su modo de operación y mejores condiciones de operación.

El porcentaje de estudios de estos temas desde 1949 hasta el 2013 se pueden apreciar claramente en la gráfica 1, y refleja el interés de la industria de la refinación de petróleo.

Gráfica 1. Porcentaje de los diferentes estudios de los temas antes mencionados (1949-2013).¹⁰

¹⁰ (Reza Rahimpour, Jarafi, & Iranshahi, 2013)

El catalizador empleado en el proceso de reformación catalítica es un catalizador bimetálico con una función ácida (A) y una función metálica (M), la primera favorece preferentemente a las reacciones de isomerización, y la segunda a las reacciones de des-hidrogenación. El catalizador está compuesto de platino soportado en alúmina clorada, la función ácida la aporta la alúmina y la metálica el platino. Ambas funciones actúan conjuntamente para llevar a cabo las reacciones:

Figura 8. Ejemplo de sinergia entre la función metálica (M) y la función ácida (A).

Para fines industriales se emplean mezclas como Pt-Re o Pt-Sn dependiendo del tipo de proceso que se vaya a llevar a cabo, de regeneración periódica o continua, respectivamente. Los venenos para estos catalizadores son el azufre, el nitrógeno y el agua, principalmente, mismos que inhiben su actividad. Otro problema que afecta la actividad del catalizador es la paulatina deposición de coque sobre la superficie de éste.

Por lo referido anteriormente, para poder llevar a cabo el proceso de reformación catalítica, es necesario someter la nafta a un proceso de hidrodesulfuración que elimine el azufre y nitrógeno presentes en la nafta hasta 0.5 – 1 ppm, y cuidar que durante su manejo y almacenamiento, ésta no absorba humedad del ambiente.

3.1. Catalizadores bi-metálicos

La primera formulación del catalizador para la reformación de la nafta, que fue introducida en 1949 por la UOP, consistía en un catalizador mono-metálico, que era platino soportado en cloruro de alúmina (Pt/Al₂O₃-Cl). Para ralentizar la deposición

de coque en el catalizador, se utilizaba una presión muy alta de hidrógeno, lo cual termodinámicamente no era favorable.

Pero con el desarrollo de catalizadores bimetálicos, permitió que este exceso de hidrógeno bajara considerablemente y aumentara la eficiencia del metal. La adición de un segundo metal al platino comenzó en el año 1968 y el metal que se le agregó fue el Renio (Re), lo cual contribuía a la reducción de la rapidez de desactivación del catalizador y un mejoramiento en las propiedades catalíticas como la absorción de hidrógeno y el aumento en el rendimiento de los compuestos aromáticos. En 1969, al adicionar Estaño (Sn) se vió que éste reducía la deposición de coque, mejoraba la selectividad de los aromáticos y la estabilidad del catalizador original. También este catalizador bimetálico se regenera fácilmente, por ello esta clase de catalizadores se usan mucho en sistemas continuos donde el catalizador se regenera continuamente.¹¹

3.2. Catalizadores tri-metálicos

En la búsqueda del mejoramiento de los catalizadores empleados en este proceso, sugirió poner un tercer metal al catalizador bi-metálico. En 1982, se le agregó originalmente Germanio (Ge) al catalizador Pt-Re/Al₂O₃-Cl; éste cambio se modificaban las propiedades tanto metálicas como ácidas del catalizador. En el caso del catalizador tri-metálico Pt-Re-Sn/Al₂O₃-Cl, con la adición de Sn se disminuía la actividad para el hidrógeno pero aumentaba la actividad de isomerización y la estabilidad. El mejor catalizador es el que tiene 0.1% de Sn.

La adición de Sn al catalizador Pt-Re también disminuye la razón de Benceno/isoheptano en el reformado, lo cual es un importante rubro en el punto de vista ambiental.

¹¹ (Reza Rahimpour, Jarafi, & Iranshahi, 2013)

4. Efecto de la composición de la nafta en el desarrollo del proceso y la calidad del producto en la reformación catalítica.

La composición de hidrocarburos, rango de ebullición e impurezas, son las variables que afectan la calidad de reformado deseada, también el tiempo de vida y el desempeño del catalizador, y para poder explicar estas relaciones, es necesario describir algunos aspectos y requerimientos del producto, como las especificaciones de la gasolina y los rangos de octanaje, así como explicar brevemente las reacciones que pasan en este proceso.

4.1. Octanaje

El octanaje mide la capacidad antidetonante de una gasolina para una mezcla combustible-aire al ser comprimida en el cilindro de un motor. Existen dos índices, el RON (Research Octane Number) y el MON (Motor Octane Number), que difieren el uno del otro en la manera en que se lleva a cabo la prueba de medición.

El RON se determina efectuando una corrida operada a una velocidad de 600 revoluciones por minuto (rpm) y a una temperatura de entrada de aire de 125°F (51.7°C), y el MON se obtiene mediante una corrida de prueba en una máquina operada a una velocidad de 900 revoluciones por minuto y con una temperatura de entrada de aire de 300°F (149°C).

Por definición, el octanaje del n-heptano es 0 y el del i-octano (2, 2, 4 - trimetilpentano) es 100. Para llevar a cabo la medición, se elabora una mezcla de n-heptano e i-octano que iguale el desempeño de la gasolina que está siendo evaluada, de modo tal que el %v/v de i-octano será el octanaje de la gasolina.

Para propósitos de comercialización y distribución de las gasolinas, los productores determinan el octanaje comercial, como el promedio de los números de octano de investigación (RON) y el octano del motor (MON), de la siguiente forma:

Número de Octano Comercial =
$$\frac{RON + MON}{2}$$

4.2. Calidad y requerimientos de la gasolina

En el Valle de México y en zonas críticas (Guadalajara y Monterrey), donde existe un alta concentración de actividad industrial en las cuales el consumo elevado de combustibles impacta en la calidad del aire, existen normas regulatorias precisas para la calidad de la gasolina, por lo que a continuación se mostrarán los índices de calidad y algunos puntos con los cuales deben cumplir las gasolinas según la normativa mexicana, a través de la NOM-086-SEMARNAT-SENER-SCFI-2005.

				ZMVM ZMG ZMM Resto D)el País
Contenido máximo de:	Unidad	Método de prueba	Premium y Magna			Premium	Magna
Aromáticos	% vol.	Tipos de hidrocarburos en productos líquidos de petróleo por absorción de indicador fluorescente (ASTM D 1319-03)	2.5	3.5	3.5	3.5	Informar
Olefinas	% vol.	Tipos de hidrocarburos en productos líquidos de petróleo por absorción de indicador fluorescente (ASTM D 1319-03)	10	12.5	12.5	15	Informar
Benceno	% vol.	Determinación de benceno y tolueno en gasolina terminada para uso en motores y aviación por cromatografía de gases (ASTM D 3606-04)	1	1	1	2	3
Oxígeno	% peso. Máximo	Determinación de MTBE, ETBE, TAME, DIPE y de Alcohol ter-amílico (ASTM D 4815-00(2005))	2.7	2.7	2.7	2.7	No aplica
втх	% vol.	Determinación de benceno y tolueno en gasolina terminada para uso en motores y aviación por cromatografía de gases (ASTM D 3606-04)			Informar		

	Gasolina Premium	Gasolina Magna
Índice de Octano*	92 (min)	87 (min)
Aromáticos (% vol.)	25	25
Olefinas (% vol.)	10	10
Benceno (% vol.)	1	1
Azufre (ppm)	30 – 80	30 – 80

Tabla 2. Especificaciones que aparecen en la NOM-086-SEMARNAT-SENER-SCFI-2005.12

Las olefinas, por su parte, tienden a polimerizar en el motor, formando resinas que se van adhiriendo a los cilindros, perjudicando su funcionamiento, razón por la cual se controla la cantidad de estos compuestos.

El benceno es un compuesto aromático cancerígeno, el cual provoca daños severos a la salud, es por ello que la normatividad es tan estricta con los límites de dicho compuesto en las gasolinas.

El azufre se oxida en el motor y forma los llamados óxidos de azufre (SOx), que reaccionan con el agua del ambiente, dando lugar a la lluvia ácida, por lo mismo es que se regula tan estrictamente la presencia de éste en los combustibles.

4.3. Efecto de la composición de hidrocarburos de la Nafta

Tabla 3. Información reducida y de interés de la calidad de la gasolina en ZMVM (*(MON+RON)/2).13

¹² (Norma Oficial Mexicana NOM-086-SEMARNAT-SCFI-2005, 2006)

¹³ (Norma Oficial Mexicana NOM-086-SEMARNAT-SCFI-2005, 2006)

El efecto de la composición de la nafta se ve reflejado en el reformado obtenido, es decir, una nafta que tenga una mayor proporción de N+A, requerirá una temperatura de reacción menor y se obtendrá un mayor rendimiento, por el contrario, si predomina P+O, entonces se requerirá una mayor temperatura de reacción, lo que conduce a un menor rendimiento.

Aunque el reformado no se ve afectado tanto con la composición de hidrocarburos en la nafta. El reformado consiste principalmente en hidrocarburos parafinados y aromáticos, existe una relación casi lineal entre el valor del RON y la concentración de aromáticos. Ver gráfica 2.

Gráfica 2. RON como función de la concentración de aromáticos a diferentes presiones.¹⁴

4.4. Efecto del rango de punto de ebullición en la Nafta

Un factor clave en la calidad del reformado obtenido es el rango de ebullición de la nafta alimentada, pues éste determinará: la distribución de los compuestos por su número de carbonos, las condiciones y eficiencia de la reacción, y el grado de desactivación del catalizador.

^{14 (}Antos & Aitani, 2004)

Es importante señalar que dependiendo el uso que se le vaya a dar al reformado, la fracción de la nafta que se empleará, por ejemplo, si se quiere producir benceno, xileno y tolueno, se empleará una nafta que tenga un rango de ebullición de 60°C – 140°C, pues preferentemente se tendrán moléculas con 6, 7 y 8 carbonos. Si se quisiera emplear para gasolina de alto octanaje, el rango de la nafta a elegir sería de 90°C hasta 160°C, pues preferentemente se tienen compuestos con 7 hasta 9 carbonos. También es importante tener en cuenta que la nafta ligera tiende a descomponerse en butano y fracciones ligeras, por otro lado, las fracciones de nafta que tengan un punto final de ebullición mayor a 180°C tenderán a formar más depósitos de carbono sobre el catalizador, por estas dos razones, el rango de ebullición que se usa comúnmente para el proceso de reformación catalítica es entre 85°C y 165°C.

Algunos ejemplos de tipos de naftas, además de las de destilación atmosférica, se dan a continuación:

 a) Nafta del Reductor de Viscosidad. Se emplea en pequeñas proporciones para el proceso de CCR debido a su alto contenido de azufre. Posee un octanaje entre 65 y 70.

b) Nafta de la Coquizadora. En características es muy similar a la nafta del reductor de viscosidad, sin embargo la cantidad de reformado que se obtiene a partir de ésta es de 4 a 5 veces mayor, es por ello que las refinerías con coquizadora añaden más de esta nafta al proceso de reformado.

c) Nafta de Hidrodesintegración catalítica (FCC). Esta nafta se obtiene del gasóleo de vacío y del residuo atmosférico tratados mediante el proceso de desintegración catalítica. Conforma el 30% - 40% del pool de gasolina y aporta el 98% del azufre presente en la gasolina; por tan alto contenido en azufre, no es viable someter esta nafta al proceso de reformación catalítica, pues el aumento en el octanaje no justifica los costos del hidrotratamiento.

Nafta de Hidrodesintegración. Esta nafta al provenir de tratar el gasóleo de vacío, es baja en azufre y rica en naftenos, lo que la convierte en una nafta ideal para el proceso de reformación catalítica.

A pesar de que no todas las naftas son apropiadas para emplearse como alimentación para la CCR, algunas pueden agregarse al "pool" de gasolinas en pequeñas proporciones. La tabla 4 muestra la composición típica del pool de gasolinas.

	%v/v	Azufre	
		%w/w del total	
Nafta de la FCC	36	98	
Reformado	34	-	
Alquiladora	12	-	
lsomerizador	5	-	
Butanos	5	-	
Nafta Primaria Ligera	3	1	
Nafta de Hidrodesintegración	2	-	
MTBE*	2	-	
Nafta de la coquizadora	1	1	

Tabla 4. Composición típica del pool de gasolinas, *MTBE= Metil Tertbutil Éter.¹⁵

4.5. Efecto de las impurezas en la Nafta

Una de las impurezas más importantes que puede contener la nafta, es el azufre. Este elemento envenena nuestro catalizador, ya que los átomos de la superficie del platino convierten estas impurezas en H₂S y con el catalizador envenenado, la temperatura crecerá y si la temperatura crece, nuestro rendimiento del reformado va

¹⁵ (Garry & Handwerk, 2001)

a disminuir, por lo tanto nos conviene tener una Nafta con la menor cantidad de azufre posible.

5. Hidrodesulfuración de la Nafta

Como se mencionó anteriormente, las impurezas también representan una variable importante en el sistema, el azufre es el principal veneno del catalizador, y durante la operación de la planta, su presencia conlleva a una menor eficiencia, por lo que para mantener el RON, se requerirá aumentar la temperatura; para evitar la rápida desactivación del catalizador, es necesario someter la nafta a un proceso de hidrodesulfuración que deje el contenido de azufre entre 0.25 y 1.00 ppm.

HIDRODESULFURACIÓN

MERCAPTANOS	$R-SH + H_2 \longrightarrow RH + H_2S$			
SULFUROS	R-S-R' + 2H₂ → RH + R'H +H₂S			
DISULFUROS	R-S-S-R' + 3H₂ → RH + R'H + 2H₂S			
SULFUROS	S + H₂ → H₂S + C₄H₅ (Isómeros)			
CÍCIICOS	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
	HIDRODESNITROGENACIÓN			
$ \underbrace{ \begin{pmatrix} N \\ N \end{pmatrix}}_{H} + 3 H_2 \longrightarrow \underbrace{ \begin{pmatrix} H_2 \\ N \\ H \end{pmatrix}}_{H} \overset{H_2}{\longrightarrow} C_5 H_{11} N H_2 \overset{H_2}{\longrightarrow} C_5 H_{12} + N H_3 $				
SATURACIÓN DE OLEFINAS				
	R=R' + H₂ → HR=R'H			

Figura 9. Principales reacciones del proceso de hidrodesulfuración

El proceso de hidrodesulfuración consiste en eliminar los compuestos azufrados haciéndolos reaccionar con hidrógeno para generar ácido sulfhídrico e hidrocarburos

más pequeños libres de azufre. El ácido sulfhídrico es posteriormente tratado como se muestra en la figura 10.

Figura 10. Diagrama del proceso general de hidrodesulfuración.¹⁶

Si hay alquenos presentes en la Nafta, el H₂S se recombina para formar nuevamente un compuesto azufrado, preferentemente metil-mercaptano.

$R=R' + H_2S + H_2 \longrightarrow H-R-SH + R'-H_2$

Si la hidrodesulfuración es llevada a cabo a altas temperaturas, se verá favorecida la recombinación de la nafta, esto se debe principalmente al craqueo térmico. Existen principalmente 2 tipos de catalizadores para este proceso: Co-Mo y Ni-Mo, ambos soportados en alúmina, el primero tiene una alta actividad para hidrodesulfurar, mientras que el segundo tiene una alta actividad para desnitrogenar y saturar olefinas; debido a que la nafta empleada para el proceso de reformación catalítica es baja en nitrógeno, se prefiere emplear el catalizador Co-Mo/Al₂O₃.

¹⁶ (Morales Romero, 2014)

En lo referente al envenenamiento, hay 2 factores que afectan el catalizador, la deposición de coque, debido a una baja presión de hidrógeno en el proceso (<3 MPa) o las altas temperaturas (>350°C); y la deposición de impurezas tales como arsénico (1000ppm provocan una reducción del 50% de la actividad del catalizador) y sodio (forma costras que provocan caídas de presión).

6. Proceso de Reformación Catalítica

El objetivo principal del proceso de la reformación catalítica de naftas es la transformación de nafta virgen con bajo índice de octano a naftas de alto índice de octano incrementando las concentraciones de aromáticos e isoparafinas. Constituye un proceso en el cual las naftas son puestas en contacto con un catalizador constituido por platino soportado en alúmina en tres o cuatro reactores en serie o paralelo a elevadas temperaturas (450-520°C) y presiones que van desde 345 a 354 kPa y con la presencia de hidrógeno (H₂/CH igual a 4-6mol/mol) con el fin de elevar el índice de octano de los hidrocarburos de la corriente de alimentación.

La carga de alimentación al proceso proviene de las unidades de destilación primaria, el cual además de contener estructuras nafténicas, cuenta con parafinas y baja concentración de compuestos aromáticos, esta nafta debe ser previamente hidrotratada para reducir la concentración de contaminantes a niveles tales que no envenenen la función hidrogenante-deshidrogenante del catalizador. La principal tendencia del proceso de reformación catalítica de naftas es la máxima participación de los hidrocarburos parafínicos en la reacción de aromatización y la mejora de la selectividad del proceso. El éxito que se alcanza resolviendo estos problemas ha llevado al aumento considerable en la producción de productos deseados (reformado, hidrocarburos aromáticos) y a un aumento adicional en el número de octano de la gasolina reformada.

Además de producir gasolinas de alto octanaje en la reformación catalítica se producen LPG, pentanos y constituye la fuente principal de suministro de H₂ a plantas como alquilación, isomerización, hidrotratamiento, etc.

La reformación catalítica ha ido evolucionando. Los cambios en diseño del proceso tienen el fin de lograr algunos de los siguientes objetivos:

• Gran producción de reformado con alto índice de octano.

- Regeneración más eficiente del catalizador.
- Mayor ciclo de vida del catalizador e incremento de la estabilidad superficial.
- Bajas presiones de operación y menor recirculación de hidrógeno.

6.1. Reacciones del proceso de Reformación

Un gran número de reacciones ocurren en el proceso de Reformación catalítica y dada la cantidad de compuestos que participan en las reacciones de reformación, es muy común agrupar aquellos de característica y comportamiento semejantes, asumiendo que varios isómeros con el mismo grupo funcional reaccionan de forma similar, comúnmente todas las reacciones se clasifican en cuatro principales tipos, los cuales se mencionan a continuación.

6.1.1. Deshidrogenación de Naftenos

Los naftenos están presentes en la alimentación al proceso en forma de ciclohexanos y ciclopentanos. Ciclohexanos son deshidrogenados para dar compuestos aromáticos, mientras que los ciclopentanos son primero isomerizados para dar ciclohexanos y posteriormente deshidrogenarse para dar aromáticos.

La deshidrogenación de naftenos es quizá la reacción más importante en la reformación catalítica ya que los aromáticos producen un producto con alto índice de octano. Estas reacciones son muy endotérmicas, tienen la más alta rapidez de reacción y producen hidrógeno.

6.1.2. Isomerización de n-Parafinas

Esta reacción es importante debido a la cantidad de parafinas lineales presentes en la nafta y que son transformadas en parafinas ramificadas gracias a la acción concertada tanto de los sitios ácidos como metálicos del catalizador. Se trata de una reacción cuya rapidez no es tan alta como la de la deshidrogenación de naftenos, pero con rapidez mayor a la de la deshidrociclación y la hidrodesintegración. Estas reacciones no consumen ni producen hidrógeno.

6.1.3. Deshidro-ciclación de Parafinas

Esta reacción, que es de carácter endotérmico, ocurre, al igual que la reacción de isomerización, por la acción concertada de la función ácida y metálica, ya que involucra pasos intermedios de hidrogenación-deshidrogenación e isomerizaciones. Se trata de una reacción difícil de promover y para la cual se requieren cadenas de al menos seis átomos de carbono, las cuales son más favorablemente deshidrociclizadas a medida que sea más larga la cadena de hidrocarburos, pues existe mayor flexibilidad y probabilidad de arreglos a medida que se incrementa el número de átomos de carbono en cadenas lineales de la molécula.

6.1.4. Hidrodesintegración de n-Parafinas

En estas reacciones las cadenas de n-parafinas son convertidas en cadenas de menor tamaño, esta es la única reacción que consume hidrógeno y es exotérmica. Como esta reacción es lenta, la mayor parte del hidrodesintegración ocurre en la parte final del sistema de reacción.

Figura 11. Principales reacciones en el proceso de Reformación Catalítica.

Como se observa en la figura 11, la gran mayoría de las reacciones llevadas a cabo favorecen la formación de hidrógeno, no obstante, es importante tener en cuenta que se requiere una presión parcial de hidrógeno en el sistema tal que impida la rápida formación de coque y que a la vez favorezca la saturación de los enlaces dobles de las olefinas. No obstante, la gran cantidad de hidrógeno formado durante la reformación, es necesario alimentar una considerable cantidad al reactor para lograr alcanzar la mínima presión parcial de hidrógeno requerida para lograr las 2 condiciones antes mencionadas.

6.2. Configuración típica de las plantas Reformadoras

Debido a las diferentes naftas que pueden ser trabajadas en la planta CCR, la operación de la planta está hecha de forma tal que la regeneración del catalizador pueda realizarse de 3 formas distintas: semi-regenerativa, cíclica y continua.

6.2.1. Unidades Semi-Regenerativas

Un proceso de reformación catalítica semi-regenerativo, como el que se indica en la figura 12, generalmente tiene tres o cuatro reactores en serie con un sistema de catalizador de lecho fijo y opera continuamente (la duración del ciclo) de seis meses a un año. Debido a que el catalizador se regenera de forma simultánea, la operación con este sistema sólo es adecuado para naftas con muy bajo contenido de azufre y nitrógeno, y con una baja proporción de parafinas. Durante este período, la actividad del catalizador disminuye debido a la deposición de coque, provocando una disminución en el rendimiento de compuestos aromáticos y en la pureza del gas de hidrógeno. Para minimizar la tasa de desactivación del catalizador, las unidades semi-regenerativas operan a alta presión (15 atm a 21 atm). Para compensar el declive en la actividad del catalizador y mantener la conversión más o menos constante, las temperaturas del reactor se incrementan continuamente.

Cuando se alcanzan las temperaturas del reactor de fin de ciclo, la unidad es detenida y el catalizador se regenera in situ. Un ciclo termina cuando el catalizador de la unidad de reformado es incapaz de cumplir con sus objetivos de proceso sobre el octanaje y rendimiento reformado deseados. La regeneración del catalizador se lleva a cabo con aire como fuente de oxígeno. Un catalizador puede ser regenerado entre cinco y diez veces antes de que se retire y sea reemplazado.

El RON (Research Octane Number) obtenido por medio de esta unidad está en el rango de 85-100, dependiendo de la calidad de la carga de alimentación, gasolinas y cantidades requeridas tanto de la condición de operación para lograr un cierto ciclo de vida planeado (seis meses a un año).

Figura 12. Proceso de reformación catalítica semi-regenerativo.

6.2.2. Unidades Cíclicas

El proceso de regeneración cíclica soporta condiciones de operación más severas que el proceso semi-regenerativo, por ende naftas con un mayor contenido de parafinas. En la regeneración cíclica, aparte de los reactores de reformado catalítico, este tiene un reactor móvil adicional, como se muestra en la figura 13, que se utiliza cuando el catalizador de lecho fijo de cualquiera de los reactores regulares necesita regeneración. El reactor con el catalizador regenerado se convierte entonces en el reactor de repuesto. Esto significa por lo tanto que el proceso de reformado se mantiene en operación continua.

Operando a presión más baja (~ 15 atm) permite que el proceso de regeneración cíclica logre un mayor rendimiento en el reformado y en la producción de hidrógeno. En comparación con el tipo semi-regenerativo, en el proceso de regeneración cíclica la actividad global del catalizador varía mucho menos con el tiempo, por lo que se mantienen la conversión y la pureza de hidrógeno más o menos constante durante toda la operación. La principal desventaja de este tipo de reformado catalítico es la naturaleza compleja de la norma de conmutación del reactor, lo que requiere precauciones de seguridad elevadas. Además, para hacer posibles cambios entre los reactores, tienen que ser máximo del mismo tamaño.

Figura 13. Proceso de reformación catalítica con regeneración cíclica

6.2.3. Unidades Continuas

El proceso de regeneración continua admite las condiciones de operación más severas pues la cama de catalizador es móvil y está en continua regeneración. El catalizador viejo abandona el reactor por la parte inferior y se dirige a la unidad de regeneración, en donde el coque depositado es quemado, el azufre es desorbido con ayuda de nitrógeno y la alúmina es clorada nuevamente; posteriormente el catalizador abandona la unidad de regeneración para ser alimentado al reactor desde la parte superior. Para tener una operación adecuada, no se permite que el coque depositado sobre el catalizador sobrepase el 7% w/w.

El índice de octano del reformado en la regeneración continua se encuentra en el intervalo de 95-108. Los beneficios de este proceso son la eliminación del tiempo de inactividad para la regeneración del catalizador y producción permanente de hidrogeno a pureza constante.

Figura 14. Proceso de reformación catalítica con regeneración continua.

Existen otros procesos comerciales disponibles en el mundo, como los indicados en la tabla 5, que son dominados por los licenciadores UOP y Axens Technologies en la reformación catalítica de tipo continuo y semi-regenerativo. Entre otros licenciadores se encuentran HoudryDivision, Chevron, Engelhard, Exxon-Mobil y Amoco. Los procesos difieren en el tipo de operación, tipo de catalizador, el proceso de regeneración del catalizador y el diseño de procesos.

Licenciatario	Nombre del proceso	Instalaciones comerciales	Aplicaciones	Alimentación	Tipo de proceso
Universal Oil Products (UOP) Process Division	Platforming	+ de 700 unidades	Nafta alto Octanaje Aromático	Nafta de destilación atmosférica (Virgen) Hidrodesintegración , FCC, Termocraqueo	Semi- regenerativo, Regeneración continua
Institut Francais du Pétrole	Catalytic reforming	90 unidades	Reformado de alto octano, BTX y LPG	Nafta virgen FCC y Termocraqueo	Semi-regenerativo Regeneración continua
Chevron Reserch Co.	Rheniforming	73 unidades	Gasolina de alto octanaje Aromáticos	Nafta virgen FCC y Termocraqueo	Semi-regenerativo
Engelhard Corp	Magnaforming	150 unidades	Reformado de alto octano	Nafta virgen. Hidrodesintegración , nafta de coking	Semi-regenerativo y Semiciclo
Exxon Research and Engineering	Powerforming	1.4 millones BPSD	Stocks para el pool de gasolinas	Nafta virgen	Semi-regenerativo o Cíclico
Amoco Oil Co.	Ultraforming	150 unidades	Reformado, Aromáticos	Nafta virgen, FCC y Termocraqueo	Cíclico o Regenerativo
Houdry Division of Air Products and Chemicals, Inc.	Houdryforming	0.25 millones BPSD	Gasolina de avión, aromáticos y gasolina	Variedad de alimentaciones hasta 200 °C	Semi-regenerativo

Tabla 5. Otros procesos de Reformación.¹⁷

6.3. Sección de Regeneración del catalizador

Como se mencionó durante el proceso de reformación el catalizador sufre el fenómeno de desactivación, que se traduce en reducción de las propiedades deseadas de los productos principalmente la calidad, lo cual se refleja en el costo del mismo; por esta razón es indispensable llevar a cabo la regeneración del catalizador empleado.

¹⁷ (Ancheyta, 2011)

El objetivo de la regeneración es hacer que el catalizador retorne a un estado lo más cerca posible de la condición de catalizador fresco, lo cual quiere decir que el catalizador regenerado debe poseer las siguientes propiedades:

- La superficie específica debe ser alta.
- Los metales deberán encontrarse en estado reducido.
- Los metales deben estar altamente dispersos sobre el soporte utilizado.
- La relación de halógeno/acidez debe encontrarse en el nivel adecuado.

La regeneración del catalizador consiste de cuatro etapas. Las primeras tres etapas (quemado de coque, oxicloración y secado) ocurren en la Torre de Regeneración. La cuarta etapa (reducción) ocurre en la Zona de Reducción que se encuentra encima del área de los reactores. Existe un quinto paso que es el enfriamiento del catalizador, el cual no es parte de la regeneración pero es necesario para la mejora del proceso de regeneración. Esta etapa se lleva a cabo dentro de la Zona de Regeneración.

Figura 15. Proceso de regeneración continua del catalizador.¹⁸

¹⁸ (UOP, 2008)
6.3.1. Sección de quemado de coque

El primer paso es quemar el coque del catalizador. La combustión de coque se hace con oxígeno por reacción de combustión. La reacción produce bióxido de carbono y agua, esta reacción es exotérmica.

A continuación se muestra la reacción que se lleva a cabo:

$$Coque + O_2 \xrightarrow{\Delta H} CO_2 + H_2O$$

Esta reacción es necesaria y deseable ya que remueve el coque, pero podría dañarse fácilmente el catalizador. Esto resulta en el aumento de temperatura en el catalizador, y una alta temperatura aumenta el riesgo de generar un daño permanente en el catalizador, así que la reacción debe ser controlada. Esto se hace controlando la cantidad de oxígeno durante la combustión; mucho oxígeno genera una alta temperatura; poco oxígeno provoca que la reacción sea muy lenta. Durante la operación normal, el contenido de oxígeno se mantiene entre 0.5 y 1 % mol de oxígeno. Éste es el rango óptimo para que la quema de coque sea con la menor temperatura posible.

Figura 16. Sección de quemado de coque.¹⁹

6.3.2. Sección de oxicloración

En este segundo paso se ajusta la cantidad de cloruros, oxida y dispersa los metales (por ejemplo: platino) en el catalizador. Estas reacciones toman lugar por reacciones complejas con oxígeno y compuestos orgánicos de cloro. Estas reacciones necesitan oxígeno y cloro. Las reacciones de ajuste de cloruro se pueden resumir de la siguiente manera:

Compuestos de Cloro²⁰ +
$$O_2 \rightarrow HCl + CO_2 + H_2O$$

¹⁹ (UOP, 2008)

²⁰ Tetracloroetileno o metilcloroformo

$$HCl + O_2 \leftrightarrow Cl_2 + H_2O$$

Base - OH + HCl \leftrightarrow Base - Cl + H₂O

El cloro es necesario en el catalizador para mantener la propiedad activa de la función ácida. Pero mucho o poco cloro podría provocar un efecto indeseable en los reactores de reformación, así que la cantidad de cloruros en el catalizador deber ser controlado. Esto se hace por control de la cantidad de compuestos de cloro inyectados.

Durante la operación normal, el contenido de cloro en el catalizador oxidado se mantiene entre 1.1-1.3 % peso de cloro, dependiendo de las series del catalizador. Éste es el rango óptimo de la función ácida en el catalizador.

Las reacciones de oxidación y re-dispersión se pueden resumir de la siguiente manera:

$$Metal + O_2 \xrightarrow{Cl_2} Metal Oxidado (disperso)$$

Con el metal mejor distribuido en la superficie del catalizador, resulta una mejor función de metal en el catalizador. La condición que promueve la apropiada oxidación y re-dispersión del metal es una alta concentración de oxígeno, adecuado tiempo de residencia, temperatura correcta, y correcta concentración de cloro.

Figura 17. Sección de oxicloración.²¹

6.3.3. Sección de secado

En el tercer paso se seca el exceso de humedad del catalizador. El exceso de humedad se presenta en la etapa del quemado de coque. El secado ocurre cuando una corriente de gas seco y caliente pasa a través del catalizador, removiendo el agua de la base del catalizador:

$$Base - H_2O + Gas Seco \rightarrow Base + Gas + H_2O$$

El secado de catalizador se hace antes de que vuelva a entrar a los reactores de Reformación, eso mejora su rendimiento global. Esta etapa de secado es favorable a una alta temperatura, un tiempo adecuado de secado, y una correcta velocidad del flujo de gas seco.

²¹ (UOP, 2008)

Figura 18. Sección de secado.22

6.3.4. Sección de reducción

En este cuarto paso se convierten los metales de un estado oxidado a su forma reducida. Esto debe ser hecho después de la etapa de oxicloración para regresar los metales a un estado óptimo antes de regresarlo a los reactores de Reformación.

La reacción de reducción se lleva a cabo con hidrógeno como se muestra en la siguiente ecuación:

Metal oxidado +
$$H_2 \rightarrow$$
 Metal reducido + H_2O

Entre más reducido esté el metal, el catalizador actuará de una mejor forma en los reactores de reformación. La condición que favorece la reacción es la pureza del hidrógeno, el flujo adecuado y las buenas temperaturas en la Zona de Reducción, asegura la buena distribución del gas.

²² (UOP, 2008)

Figura 19. Sección de reducción.23

6.4. Variables del Proceso

En el proceso de reformado catalítico existen cuatro variables principales que influyen en el rendimiento de la unidad, ya sea semi-regenerativa o de regeneración continua: presión del reactor, temperatura del reactor, velocidad espacial y relación molar hidrógeno/hidrocarburo (H₂/HC).

²³ (UOP, 2008)

6.4.1. Presión

Una reducción en la presión del reactor aumenta la producción de hidrógeno y el rendimiento de reformado, disminuye la temperatura requerida en el reactor para alcanzar una calidad constante de producto y acorta el ciclo de vida del catalizador, ya que se incrementa la velocidad de depósito del coque sobre el catalizador. Por efecto de las caídas de presión, la presión del reactor disminuye a través de las diversas etapas de reacción. La presión media de los diversos reactores se asocia generalmente como la presión del reactor. Los valores típicos de presión del reactor se encuentran entre 15 y 21 atm (procesos semi-regenerativos y de regeneración cíclica) y de 5 y 11 atm (regeneración continua). Se requieren presiones parciales de hidrógeno altas en el reactor para promover reacciones de isomerización y para reducir la deposición de coque en el catalizador.

6.4.2. Temperatura

La temperatura de reacción es la variable más importante en el reformado catalítico, ya que la calidad del producto y los rendimientos dependen en gran medida de ésta. La temperatura media ponderada del lecho (WABT) y la temperatura media ponderada de entrada (WAIT) son los dos principales parámetros para expresar la temperatura media del reactor de reformado.

Se diferencian en que la WABT representa la temperatura integrada a lo largo del lecho de catalizador, en tanto que la WAIT se calcula con la temperatura de ingreso en cada reactor.

La WABT puede calcularse fácilmente si el reactor está provisto de varios indicadores de temperatura (IT) ubicados en diferentes zonas del lecho catalítico, mediante las siguientes ecuaciones:

$$WABT_i = \frac{T_i^{in} + 2T_i^{out}}{3}$$

Donde:

WABTi: Es la temperatura media de cada lecho catalítico entre dos IT.

La WABT global se calcula como:

$$WABT = \sum_{i=1}^{N} (WABT_i)(W_{C_i})$$

Donde:

N: Es el número de lechos de catalizador

Wci: Es la fracción en peso de catalizador en cada lecho con respecto al total.

WAIT se determina de la siguiente manera:

$$WAIT = \sum_{i=1}^{N} (WAIT_i)(W_{C_i})$$

Donde:

 $WAIT_i$ – Es la temperatura de entrada en cada reactor

N: El número de reactores

 W_{C_i} : Es la fracción en peso de catalizador en cada lecho del reactor

con respecto al total.

Las unidades semi-regenerativas operan a temperaturas más altas (525 °C a 540 °C) que las de regeneración continua (450 °C a 525 °C).

Todas las rapideces de reacción se incrementan cuando se opera a altas temperaturas. La hidrodesintegración (reacción no deseable), se produce en mayor medida a temperaturas altas. Por lo que, para obtener productos de alta calidad y buenos rendimientos, es necesario controlar cuidadosamente la hidrodesintegración y las reacciones de aromatización. Las temperaturas del reactor son monitorizadas contantemente para observar el alcance de estas reacciones.

6.4.3. Velocidad espacial

Tanto la LHSV (Velocidad espacial del líquido en horas) y WHSV (velocidad espacial másica en horas) son de uso típico en unidades de reformado catalítico para expresar la velocidad espacial. La velocidad espacial y la temperatura del reactor se emplean comúnmente para ajustar el índice de octano de un producto. Cuanto mayor sea la velocidad espacial, mayor es la temperatura necesaria para obtener un producto con un determinado índice de octano. La severidad de la unidad de reformado catalítico puede aumentarse mediante el incremento de la temperatura del reactor o mediante la reducción de la velocidad espacial. Puesto que la cantidad de catalizador cargado en los reactores es constante, la reducción de la velocidad espacial durante su funcionamiento puede reducirse sólo al disminuir el caudal de alimentación.

6.4.4. Relación hidrógeno/hidrocarburo (H₂/HC)

Esta relación se expresa en base molar, es decir, moles de hidrógeno en el gas de reciclo (que es una mezcla de hidrógeno y gases ligeros) por mol de alimentación de nafta (mol/mol). Valores de 4 a 6 son típicos en unidades de reformado comerciales. Un aumento en la proporción H₂/HC provoca un aumento en la presión parcial de hidrógeno y elimina precursores de coque de los sitios activos del metal. El efecto global de esto se refleja en el incremento de la vida del catalizador. En otras palabras, la tasa de formación de coque sobre el catalizador, y por lo tanto la estabilidad del

catalizador y su vida útil es función de la relación H₂/HC y de la presión parcial del hidrógeno presente en el sistema del reactor. Sin embargo, incrementar la relación H₂/HC influye negativamente en la aromatización e incrementa el hidrodesintegración.

A continuación, en la tabla 6 se presenta un resumen de las condiciones típicas de operación de los 3 procesos de reformado.

Tipo de reformación	Catalizador	P (bar)	H₂/HC (mol/mol)	Velocidad espacial (h ⁻¹)	RON
Lecho fijo semi-	Mono- metálico	>25	>25	1-2	90-92
regenerativo	Bimetálico	12-20	4-6	2-2.5	81-98
Lecho ciclo	Bimetálico	15-20	4	2	96-98
Lecho móvil	Bimetálico	3-10	2	2-3	100-102; >104 Para aromáticos

Tabla 6. Condiciones típicas de operación de los tres procesos de reformado.²⁴

²⁴ (Garry & Handwerk, 2001)

7. Cinética de las reacciones de Reformación

Debido al gran número de compuestos encontrados en la alimentación (nafta), ya que el análisis esta por cromatografía, reportan alrededor de 250 compuestos presentes así como los productos obtenidos mediante este proceso de reformación, resulta que proponer un modelo cinético en el cual se involucre a todas las especies y tome en cuenta a la totalidad de reacciones, es una tarea extremadamente difícil.²⁵

Sin embargo, en el desarrollo de modelos cinéticos para las reacciones de reformado catalítico, uno de los enfoques de mayor éxito y con buenos resultados, es aquel donde los componentes químicos se pueden reducir a un conjunto pequeño y manejable de grupos cinéticos llamados "lumps", cada uno compuesto por especies químicas que tienen características de reacción suficientemente similares. Bajo este esquema, la cinética se define en términos de un conjunto reducido de especies químicas agrupadas que tienen un mínimo, pero sin embargo suficiente, número de vías de reacción entre ellos.

Si los lumps y las vías describen correctamente el sistema de reformado, los parámetros de rapidez de reacción serán independientes de la composición de la materia prima y no requerirá de factores adicionales de ajuste y correlación para predicciones exactas.

La aproximación del uso de pseudocomponentes es de uso generalizado en la formulación de modelos cinéticos para las reacciones de reformado catalítico, y varios de estos han sido propuestos, variando su grado de complejidad desde pocos lumps hasta sofisticados esquemas cinéticos, en los cuales la diferencia esencialmente radica en la estrategia utilizada para la formación de los pseudocomponentes.

²⁵ (Ancheyta, 2011)

Figura 20. Evolución del modelo cinético de la Reformación Catalítica.²⁶

7.1. Smith (1959)

Smith propuso el primer modelo cinético para el proceso de reformación catalítica en 1959. En este modelo, él asumió que la nafta está compuesta de tres grupos fundamentales: parafinas, naftenos, y aromáticos. Smith representó a estos tres grupos de hidrocarburos como un solo compuesto que tenía el promedio de las propiedades de la clase, y sin hacer distinción en el número de átomos de carbono entre estas clases. Además, introdujo al hidrógeno, gases ligeros (etano, propano y butano) dentro del sistema adicional a los grupos anteriores. Basado en estas

²⁶ (Ancheyta, 2011)

suposiciones, él pudo dar una cinética simple pero precisa para el proceso de reformación catalítica.

Este modelo tiene contemplada cuatro reacciones, en donde representa a cada una de las clases que conforman la nafta. Ver figura 27.

Des hidrogenación de naftenos a aromáticos

Naftenos
$$(C_nH_{2n}) \xrightarrow{k_{f_1}} \text{Aromáticos} (C_nH_{2n-6}) + 3H_2$$

Hidrogenación de naftenos a parafinas

Naftenos
$$(C_nH_{2n}) + H_2 \xrightarrow[k_{r_2}]{k_{r_2}}$$
 Parafinas (C_nH_{2n+2})

Hidrodesintegración de parafinas

Parafinas
$$(C_nH_{2n+2}) + \frac{n-3}{3}H_2 \xrightarrow{k_{f_3}} \frac{n}{15}\sum_{i=1}^5 C_iH_{2i+2}$$

Hidrodesintegración de naftenos

Naftenos
$$(C_nH_{2n}) + \frac{n}{3}H_2 \xrightarrow{k_{f_4}} \frac{n}{15} \sum_{i=1}^5 C_iH_{2i+2}$$

Donde

$$\frac{n}{15}\sum_{i=1}^{5}C_{i}H_{2i+2} = \frac{n}{15}CH_{4} + \frac{n}{15}C_{2}H_{6} + \frac{n}{15}C_{3}H_{8} + \frac{n}{15}C_{4}H_{10} + \frac{n}{15}C_{5}H_{12}$$

Figura 21. Principales reacciones en el proceso de Reformación Catalítica (Smith)²⁷.

²⁷ (Smith, 1959)

7.2. Krane et al. (1959)

Este modelo considera tres pseudocomponentes principales para la nafta: aromáticos, naftenos y parafinas. Se hace la extensión de considerar dentro de cada clase de pseudocomponente, grupos o lumps, en donde la diferencia entre cada uno de ellos es el número de carbonos que posee cada grupo, de tal manera que existen: 10 grupos para los compuestos parafínicos C1-C10; cinco grupos para los nafténicos y aromáticos C6-C10, con una red de 53 reacciones.

Las reacciones se consideran de pseudo-primer orden con respecto a cada hidrocarburo, de manera que la ecuación de rapidez para cada una de las reacciones que puede sufrir cada grupo posee la forma siguiente:

$$\frac{d N_{G_{\chi}}}{d \left(\frac{A}{SV}\right)} = -k N_{G_{\chi}}$$

- N = moles del compuesto reaccionante por mol de alimentación.
- A = actividad
- *SV* = *espacio velocidad*
- k = constante de rapidez de reacción
- G = grupo (Aromáticos, Naftenos, Parafinas)
- x = número de carbonos del grupo.

El intervalo en que se aplica el modelo se encuentra dentro de un rango de temperaturas de 880 a 960 °F. El rango de presión es de 100 a 450 psig.

7.3. Henningsen y Bungaard-Nielson (1970)

En este modelo se representa a la nafta mediante pseudocomponentes, con la diferencia que el grupo nafténico se separa en alquilciclopentanos y alquilciclohexanos. Esto se hace debido a que los alquilciclohexanos presentan

²⁸ (Krane, 1959)

mayor reactividad hacia la aromatización en comparación con los alquilciclopentanos.

Para cada tipo de pseudocomponente no se hace distinción en base al número de carbonos. El número de carbonos de cada clase para este modelo se eligió a partir de observaciones y datos reportados en la literatura determinándose que la nafta promedio correspondía a ocho carbonos, obteniéndose así los parámetros cinéticos para dicha nafta ideal.

La rapidez de reacción está dada por una cinética simple de primer orden en función de los hidrocarburos.

Las constantes de rapidez de reacción presentan la siguiente relación con la temperatura:

$$k = A \ e^{\left(\frac{-\Delta E}{RT}\right)}$$

Las cuales son utilizadas dentro de las ecuaciones de rapidez que presentan la siguiente forma:

$$\frac{d C_i}{d t} = k C_i$$

Donde C_i es la concentración del pseudocomponente i

Figura 23. Esquema de reacción propuesto por Henningsen y Bungaard-Nielson²⁹

7.4. Padmavathi - Chaudhuri (1997)

En el presente modelo cinético, la alimentación de la nafta es caracterizada por naftenos (alquilciclohexanos [ACH] y alquilciclopentanos [ACP]), parafinas (parafinas normales [NP] e isoparafinas [IP]) y aromáticos [A] en grupos con número de carbono desde C6-C9. La alimentación es combinada con una recirculación de gas que contiene gases de C1 a C5 e hidrógeno haciendo un total de 26 grupos.

La deshidrogenación de cicloparafinas es catalizada por la función metálica del catalizador y es la reacción más rápida de todas las reacciones de reformación. Esta reacción incrementa el número de octano del producto. Es una reacción endotérmica; un incremento en la masa molar de las cicloparafinas favorece la viabilidad termodinámica de la formación de aromáticos.

La isomerización de alquilciclopentanos a alquilciclohexanos es seguida por la deshidrogenación de aromáticos. La isomerización de parafinas normales a isoparafinas es una reacción muy conveniente, ya que la alimentación de la nafta consiste en un mayor porcentaje de parafinas normales, las cuales son isomerizadas a isoparafinas. Estas reacciones son moderadamente rápidas; son catalizadas por la función ácida y la velocidad de la reacción se incrementa con un aumento de temperatura y presión.

La deshidrociclización de parafinas a naftenos es relativamente lenta. La velocidad se compara con la del hidrocracking; la termodinámica de la reacción se incrementa con un número de carbono mayor; la reacción es favorecida a altas temperaturas y baja presión.

El hidrocracking es una reacción exotérmica y la velocidad de la reacción se incrementa con un aumento en la temperatura, presión y las parafinas de mayor número de carbono. El hidrocracking de naftenos es menor que el de las parafinas.

²⁹ (Henningsen & Bungaard-Nielson, 1970)

En los naftenos, los cilclopentanos son más susceptibles que los ciclohexanos. Las reacciones de cracking de naftenos, parafinas y la hidroalquilación son irreversibles; todas las demás reacciones son reversibles.

La hidroalquilación es la reacción más lenta de la reformación. La velocidad se incrementa con un número de carbono mayor. Es una reacción exotérmica que es favorecida a altas temperaturas y presiones.

Figura 24. Esquema de reacción propuesto por Padmavathi – Chaudhuri.³⁰

7.5. Hou et al. (2006,2007)

Hou tomó el trabajo de Hu et al. el cual consistía de 17 "*lumps*" y consideraba algunas reacciones como:

 Hidrodesintegración de compuestos parafínicos a parafínicos de menor número de carbonos.

³⁰ (Padmavathi & Chaudhuri, 1997)

- Ciclación de compuestos parafínicos a nafténicos de igual número de carbonos
- Hidrogenación y apertura del anillo nafténico a compuestos parafínicos de igual número de carbonos.
- Dealquilación de compuestos nafténicos a compuestos nafténicos con menor número de carbonos.
- Deshidrogenación de compuestos nafténicos a aromáticos de igual número de carbonos.
- Hidrogenación y apertura de anillo de compuestos aromáticos produciendo parafinas de igual número de carbonos.
- Dealquilación de aromáticos en aromáticos de menor número de carbonos.

Hou subdividió el grupo o "*lump*" de los aromáticos de ocho carbonos en sus cuatro compuestos isoméricos que son: PX (para-xileno), MX (meta-xileno), OX (orto-xileno) y EB (etil-benceno)

Figura 25. Esquema de reacción propuesto por Hou et al.³¹

³¹ (Ancheyta, 2011)

8. Simulación del Proceso

En esta sección, daré a conocer la metodología para poder simular nuestra planta de Reformación Catalítica.

Primeramente se emplea el simulador "ASPEN-HYSYS V8.8", para abrir un nuevo caso de estudio.

NOTA: abriremos un caso de estudio normal, en HYSYS existe una herramienta llamada "Catalytic Reformer", pero esta herramienta sólo nos ayuda a simular el área de los reactores, el flash, y algunos tambores de recontacto, pero para nuestro trabajo, simularemos todo el proceso de la planta.

La operación de la reformación catalítica en el simulador contiene un sistema de caracterización de alimentación, sección de reacción, estabilizador y un analizador de productos. En la sección de reacción se encuentran los reactores, calentadores, compresores, separador y los tambores de recontacto. La sección de reacción está basada en un modelo cinético aproximado.

Figura 26. Esquema del proceso del simulador.³²

³² (AspenTech)

El simulador contiene una opción que se encarga del cálculo de la composición de la mezcla a reformar. Para lograr esto debemos especificar el tipo de alimentación.

En el tipo de alimentación especificaré las relaciones de varios isómeros dentro de la alimentación al reformador. Estas relaciones, junto con la destilación y el análisis de parafinas, olefinas, naftenos y aromáticos (PONA) de la carga a la reforma, se utilizarán para calcular la composición de los componentes de la reformadora.

8.1. Características del proceso

Esta planta se alimenta con 30,000 BPSD, con un RON de 102, la calidad de la pureza del hidrógeno será del 90 % mol mínimo, el gas LPG tendrá un máximo de 1 % mol en compuestos C5+ y que el reformado tenga 1 % mol de C4- y una RVP de máximo 6 psia.

La carga de alimentación de nafta (38 °C, 4 kg/cm² (g)) es calentada a la temperatura de reacción, según sea el caso, requerida por medio del intercambiador de calor. Dado que la mayoría de las reacciones en los reactores son endotérmicas, las reformadoras catalíticas son diseñadas con múltiples reactores y con calentadores entre los reactores para mantener la temperatura de reacción a las condiciones deseadas; en el caso de la simulación. La temperatura de entrada a cada uno de los reactores fue la misma. El efluente del último reactor es enfriado por medio de un intercambiador y enfriadores y luego entra al separador de productos. La mayoría del vapor flasheado, el cual contiene 80% a 90% mol de hidrógeno, circula junto con la carga de alimentación de la nafta como gas de recirculación con una relación H_2/HC de 3.4.

El exceso de hidrogeno del separador pasa nuevamente por otro enfriador, entra al tambor de recontacto el cual opera a una presión de 5.12 kg/cm². El producto del tambor vuelve a pasar por la misma etapa de enfriado y tambor de recontacto dos veces más con la diferencia que las presiones de operación son 16.52 kg/cm², 39.7

kg/cm², para el segundo y tercer tambor de recontacto. Las fases liquidas de los tambores de recontacto se mezclan, pasan por un intercambiador de calor donde se calientan a la temperatura adecuada y se envía a la desbutanizadora para obtener Gas Seco, Gas LP y el reformado. La fase vapor del tercer tambor de recontacto se envía a las unidades de hidrotratamiento. La desbutanizadora contiene 30 platos y opera con una presión de 14.76 kg/cm² en el domo y 15 kg/cm² en el fondo. El reformado posteriormente se utiliza como corriente de calentamiento en el intercambiador de calor ubicado antes de la columna desbutanizadora.

Para el diseño de esta unidad se consideraron dos casos, el Caso A y el Caso Pobre, los cuales están basados en una mezcla de cuatros corrientes diferentes como lo muestra la tabla 7.

		Ali	mentaciones	
	A	В	С	D
Descripción de la Nafta	Coker	SRN	SRN	SRN
Fuente de Crudo	100 % Maya	100 % Maya	67/33 Istmo/Maya	67/33 Istmo/Maya
Flujo, BPSD (Diseño)	7000	23000	13000	17000
ΑΡΙ	60.7	58.7	60.7	58.8
SG	0.7364	0.7438	0.7362	0.7437
PONA, LV %				
Р	75.8	64.2	67.6	64.6
ο	0	0	0	0
N	16.7	20.6	19.2	20.5
A	7.5	15.2	13.2	14.9
ASTM D-86				

		Al	imentaciones	
	A	В	С	D
Destilación (C°)				
IBP	87	82	72	80
10 %	113	99	91	97
30 %	125	111	106	110
50 %	136	124	119	122
70 %	148	141	135	140
90 %	163	167	156	160
EP	175	197	170	198

Tabla 7. Características generales de las 4 corrientes de las alimentaciones³³

Los dos casos se basan en la mezcla de las corrientes descritas en la tabla anterior para el diseño de la unidad. El caso A (Alimentación A+B) es una mezcla con flujos en las mismas proporciones descritas en la tabla anterior al igual que el caso B (Alimentación C+D). Dado que el análisis PONA de ambos casos es muy cercano y no ofrece un amplio rango para el diseño, se sustituirá el caso B por una alimentación pobre y así poder tener dos casos que comparar.

En la tabla 8 se muestran los datos resumidos y condiciones que debe cumplir la planta Reformadora de Naftas para los dos casos:

³³ (UOP, 2008)

Propiedades de la Materia Prima	Caso A	Caso Pobre
P/N/A (WT %)	63.4/20.8/15.8	71.7/11.4/16.9
IBP/50/EP (°C)	83/127/194	67/122/194
SG	0.7421	0.7332
Condiciones de	Operación	
Velocidad de Alimentación (MT/día)	3539	3497
LHSV (1/h)	1.78	1.78
H₂/HC	3.4	3.4
Presión del reactor (Kg/cm² g)	3.5	3.5
Presión del Separador (Kg/cm² g)	2.5	2.5
Tipo del catalizador	R-234	R-234
C5+ RONC	102	102
Product	os	
C5+ (LV %)	79.7	78.1
H₂ (nom m³/m³)	272	254
C5+ (WT %)	88.2	86.5
Regeneración del	Catalizador	
Velocidad Requerida (Kg/hr)	965	1451
Distribución del	Catalizador	
Reactor 1	17	17
Reactor 2	20	20
Reactor 3	25	25
Reactor 4	38	38
WAIT requerido (°C)	519	521

Tabla 8. Condiciones de Operación Requeridas.³⁴

8.2. Composición y caracterización de la Alimentación

Al momento de abrir la hoja de simulación y escoger la lista de componentes y paquete de ecuaciones, importaremos la lista de componentes de "*CatReflsom.cml*" como lo muestra la figura 27 y el paquete de ecuaciones automáticamente nos aparecerá en su respectiva pestaña, "*REFSRK*" (figura 28)

File Selection for Importing	g a Component List					23
🔾 🗢 🖟 « Gateway (C:) 🕨 Archivos de programa (x86) 🕨 AspenTech	▶ Aspen HYSYS V8.8	▶ Paks	✓ Buscal	r Paks	Q
Organizar 👻 Nueva ca	rpeta					0
🌗 Aspen Plus V8.8 🔺	Nombre	Fecha de modifica	Тіро	Tamaño		
🚺 Descargas	CatRefIsom.cm	06/03/2015 06:00 a	Archivo CML	1,205 KB		
Escritorio	HCR.cml	05/03/2015 06:00 a	Archivo CML	1,609 KB		
Sitios recientes	HCR_extended.cml	05/03/2015 06:00 a	Archivo CML	1,868 KB		
🚍 Bibliotecas	petroleumComp1.cml	09/02/2015 06:00 a	Archivo CML	171 KB		
Documentos	petroleumComp1_AspenProp.cml	05/03/2015 06:00 a	Archivo CML	277 KB		
Imágenes	petroleumComp1_extended.cml	09/02/2015 06:00 a	Archivo CML	194 KB		
🚽 Música	petroleumComp1_extended_AspenProp	05/03/2015 06:00 a	Archivo CML	942 KB		
Vídeos	RefSYS FCC Components Fahrenheit.cml	09/02/2015 06:00 a	Archivo CML	290 KB		
	RefSYS Hydrocracker Components Fahre	09/02/2015 06:00 a	Archivo CIVIL	283 KB		
輚 Grupo en el hogar	RefSVS Typical Components Fahrenheit c	09/02/2015 06:00 a	Archivo CML	282 KB		
🐍 LSyOP No 7 (LSY	UpstreamComps.cml	12/12/2014 12:03	Archivo CML	58 KB		
Fulipo Gateway (C:)						
Nomb	re:			✓ CompoAt	nent Lists (*.cml) ırir Cance	▼ !ar

Figura 27. Lista de Componentes

🕑 🔚 🤊 🚍 🔍 🚛	And in case of the local division of the loc		-			REFO	ORMADORA CATALÍT	ICA TES
File Home View Customize Resources								-
S Cut Image: Conjunct Component Lists Image: Conjunct Component Lists Image: Conjunct Component Component Lists Image: Conjunct Component	Map Components Components	Petroleum Assays	 Hypothetical: Convert Remove Dupl Hypothetical 	s Manager licates icals	Oil Manager	Convert to Refining Assay	Associate Fluid P Definitions*	ackage
Properties < Petroleum Assays	Fluid Packages ×	+						
All Items		C	a 10a	Deserves)l	C1-		(
Component Lists Component List - 1 Component List - 1 Refuid Packages Petroleum Assays Reactions Component Maps Component Maps User Properties	REFSRK	ponent List - 1	[Aspen Prope	Aspen Pro	perties (SRK)		Input Complete	

Figura 28. Paquete al cual se vinculó la lista de componentes.

Posteriormente vamos al área de simulación para insertar nuestra primera corriente que tendrá los valores de alimentación de nuestra Ingeniería de la planta de Reformación.

Componente	Alimentació	n Caso A	Alimentación	Caso Pobre
	Kmol/h	% mol	Kmol/h	% mol
H2	0	0.0000	0	0.0000
P1	0	0.0000	0	0.0000
P2	0	0.0000	0	0.0000
OL2	0	0.0000	0	0.0000
Р3	0	0.0000	0	0.0000
03	0	0.0000	0	0.0000
IP4	0	0.0000	0	0.0000
NP4	0	0.0000	0	0.0000
P4	0	0.0000	0	0.0000
04	0	0.0000	0	0.0000
IP5	0.854505182	0.0006	8.5007141	0.0063
NP5	3.31137707	0.0025	51.993234	0.0386
P5	0	0.0000	0	0.0000
05	0	0.0000	0	0.0000

Componente	Alimentació	Alimentación Caso A		Caso Pobre
	Kmol/h	% mol	Kmol/h	% mol
5N5	0.752831084	0.0006	16.930023	0.0126
22DMC4	1.546785069	0.0012	1.0734318	0.0008
23DMC4	5.525136288	0.0042	3.8338139	0.0028
MBP6	0	0.0000	0	0.0000
2MC5	37.36550159	0.0282	25.926811	0.0193
3MC5	34.03785761	0.0257	23.618209	0.0176
SBP6	0	0.0000	0	0.0000
NP6	100.6115246	0.0758	98.82891	0.0734
O6	0	0.0000	0	0.0000
5N6	23.85561817	0.0180	10.491247	0.0078
A6	17.49579791	0.0132	22.034604	0.0164
6N6	15.56769802	0.0117	9.0844024	0.0068
22DMC5	1.580675802	0.0012	2.0551516	0.0015
23DMC5	9.764220505	0.0074	12.697304	0.0094
24DMC5	3.134238897	0.0024	4.0755161	0.0030
MBP7	2.418009196	0.0018	3.1448474	0.0023
2MC6	26.87374804	0.0203	34.94571	0.0260
3MC6	32.90544134	0.0248	42.789079	0.0318
3EC5	3.263928384	0.0025	4.2440304	0.0032
SBP7	0	0.0000	0	0.0000
NP7	122.7581426	0.0925	169.68396	0.1261
07	0	0.0000	0	0.0000
DMCP	7.15550608	0.0054	4.5434166	0.0034
ECP	14.25001762	0.0107	9.04826	0.0067
5N7	0	0.0000	0	0.0000
A7	56.29766113	0.0424	69.583452	0.0517
6N7	45.80340179	0.0345	27.17776	0.0202
MBP8	54.2438768	0.0409	75.3279802	0.0560
SBP8	21.69759073	0.0164	20.5439946	0.0153
08	0	0.0000	0	0.0000
NP8	114.847971	0.0865	105.8735	0.0787
5N8	34.18747385	0.0258	19.4353606	0.0144
ETHYLBEN	10.73391252	0.0081	11.027478	0.0082
O-XYLENE	12.78001644	0.0096	13.129155	0.0098
M-XYLENE	29.50628494	0.0222	30.313029	0.0225
P-XYLENE	10.01271526	0.0075	10.286109	0.0076
A8	0	0.0000	0	0.0000
6N8	34.58097701	0.0261	16.486826	0.0123
IP9	82.04916709	0.0618	85.78641	0.0637

Componente	Alimentació	n Caso A	Alimentación	Caso Pobre
	Kmol/h	% mol	Kmol/h	% mol
NP9	73.88912206	0.0557	86.151901	0.0640
5N9	28.66316342	0.0216	14.401859	0.0107
A9	50.42825904	0.0380	54.7592695	0.0407
6N9	27.23206145	0.0205	13.439566	0.0100
IP10	44.01218384	0.0332	37.753065	0.0281
NP10	44.01218384	0.0332	37.753065	0.0281
5N10	0	0.0000	0	0.0000
A10	21.909775	0.0165	13.637415	0.0101
6N10	33.30215781	0.0251	12.537361	0.0093
IP11	0	0.0000	0	0.0000
NP11	17.59032157	0.0133	20.373055	0.0151
5N11	0	0.0000	0	0.0000
A11	6.87835503	0.0052	7.4280093	0.0055
6N11	7.296496912	0.0055	2.9374768	0.0022
P12	0	0.0000	0	0.0000
N12	0	0.0000	0	0.0000
A12	0	0.0000	0	0.0000
P13	0	0.0000	0	0.0000
N13	0	0.0000	0	0.0000
A13	0	0.0000	0	0.0000
P14	0	0.0000	0	0.0000
N14	0	0.0000	0	0.0000
A14	0	0.0000	0	0.0000
H2O	0.016310417	0.0000	0.0161122	0.0000
TOTAL	1327.0000		1345.701885	

Tabla 9. Lista de componentes y valores introducidos al simulador para los diferentes casos.

	Caso A (%mol)	Caso Pobre (%mol)
N-Parafinas	47.71	54.22
Iso–Parafinas	15.46	16.90
Olefinas	0	0
Naftenos	20.55	11.63
Aromáticos	16.28	17.27

Tabla 10. Resumen de la composición de la Nafta Alimentada.

Ya teniendo los valores de las alimentaciones, se hace una gráfica para poder observar mejor las diferencias entre alimentaciones.

Una vez introducidas las alimentaciones al simulador, se tendrá que ver como la figura 29.

orksheet Attachme	ents Dynamics			Worksheet Attachme	ents Dynamics		
Worksheet	Stream Name	Feed Case A	Liquid Phase	Worksheet	Stream Name	Feed Lean Case	Liquid Phas
Conditions	Vapour / Phase Fraction	0.0000	1.0000	Conditions	Vapour / Phase Fraction	0.0000	1.000
Properties	Temperature [C]	40.00	40.00	Properties	Temperature [C]	40.00	40.0
Composition	Pressure [kg/cm2_g]	5.100	5.100	Composition	Pressure [kg/cm2_g]	5.100	5.10
Oil & Gas Feed	Molar Flow [kgmole/h]	1327	1327	Oil & Gas Feed	Molar Flow [kgmole/h]	1346	13
K Value	Mass Flow [kg/h]	1.468e+005	1.468e+005	K Value	Mass Flow [kg/h]	1.451e+005	1.451e+0
User Variables	Std Ideal Liq Vol Flow [barrel/day]	2.989e+004	2.989e+004	User Variables	Std Ideal Liq Vol Flow [barrel/day]	2.987e+004	2.987e+0
Notes	Molar Enthalpy [kJ/kgmole]	-1.964e+005	-1.964e+005	Notes Cost Parameters Normalized Yields	Molar Enthalpy [kJ/kgmole]	-1.927e+005	-1.927e+0
Cost Parameters	Molar Entropy [kJ/kgmole-C]	-729.1	-729.1		Molar Entropy [kJ/kgmole-C]	-709.6	-709
Normalized Yields	Heat Flow [kJ/h]	-2.605e+008	-2.605e+008		Heat Flow [kJ/h]	-2.593e+008	-2.593e+0
	Liq Vol Flow @Std Cond [m3/h]	196.2	196.2		Liq Vol Flow @Std Cond [m3/h]	195.8	195
	Fluid Package	REFSRK			Fluid Package	REFSRK	
	Utility Type				Utility Type		
	carly type						

Figura 29. Corrientes de alimentación de los dos casos.

Con estos datos introducidos en el simulador, podemos hacer una caracterización de las corrientes de alimentación del Caso A y el Caso Pobre por medio de las fracciones de los componentes.

Figura 30. Gráficas de caracterización por componentes de las corrientes de alimentación.

Otra forma de establecer la alimentación es caracterizándola con el método ASTM D-86 y con el análisis P/N/A. Como sólo contamos con la información del ASTM D-86, P/N/A (VL%) y la densidad específica por alimentaciones separadas, (A, B, C y D) y se sabe que la alimentación para el Caso A es la alimentación (A+B), se introducirán las dos alimentaciones, pero como en los datos que nos proporcionan faltan las temperaturas a los porcentajes de destilación de 5 % y 95 %, procedemos a caracterizar cada una de las alimentaciones para ver a cuánto equivale cada temperatura de corte.

Figura 31. Gráficas de caracterización por análisis PONA de las corrientes que conforman el caso A.

Con estas dos gráficas mostradas en la figura 31, podemos mezclar las alimentaciones A y B en el simulador para que nos dé la caracterización completa de la alimentación del Caso A.

Figura 31. Gráfica de caracterización por análisis PONA del caso A.

Como en la alimentación del Caso Pobre no se tiene la información ni las temperaturas de corte del ASTM D-86 completas, sólo se tiene la inicial, final y una intermedia y se cuenta con la densidad específica de la mezcla, se hará una caracterización usando sólo los datos que tenemos.

Figura 32. Gráfica de caracterización por análisis PONA del caso pobre.

Posteriormente en la operación unitaria "Catalytic Reformer", iremos al área de *"Reformer Environment – Feed Data – Properties",* ahí se abrirá una pestaña donde se introducirá la información de las corrientes involucradas del Caso A.

ed Data	Feeds	Feed Properties		Feed Data	Feeds	Feed Properties	
rary	Feed-A	Feed Type	Default	Library	Feed-A	Feed Type	Defaul
operties	reed-B	Distillation Type	D86	Properties	Feed-B	Distillation Type	D86
		0% Point [C]	87.00			0% Point [C]	82.0
		5% Point [C]	100.0			5% Point [C]	92.0
		10% Point [C]	113.0			10% Point [C]	99.0
		30% Point [C]	125.0			30% Point [C]	111.
		50% Point [C]	136.0			50% Point [C]	124
		70% Point [C]	148.0			70% Point [C]	141
		90% Point [C]	103.0			90% Point [C]	167
		100% Point [C]	107.0			95% Point [C]	182
	Add Delete	DNA Basis	Volume %			100% Point [C]	102.
		Paraffine [%]	75.08		Add Delete	DNA Point [C]	Volumo
	Selected Feed	Naphthenes [%]	16.70			Paraffing 1%1	64 2
	Assav	Aromatics [%]	8.22		Selected Feed	Naphthones (%)	20.6
	Bulk Properties					Assession 19/1	15.0
	GC Full GC Recommended				GC Full GC Recommended		

Figura 33. Datos de las corrientes que compone la alimentación del caso A.

8.3. Zona de Reacción

En la interfaz de nuestro simulador se seleccionará la operación unitaria de reformación catalítica y posterior crear un nuevo caso. Después se dará a escoger si queremos una Reformadora con tres o cuatro reactores según sea el caso de estudio, en este caso se trabajará con tres reactores que analizaremos posteriormente, también da la opción de incluir la sección de recontacto de la corriente de hidrógeno y la sección de la torre estabilizadora; para fines del proyecto vamos a trabajar con y sin la sección de recontacto para hacer un análisis de éste, la sección de estabilización se simulará con las demás herramientas del simulador.

En la ventana que aparece después pedirá datos acerca del catalizador como la densidad, el largo de los reactores y cantidad de catalizador en cada reactor:

Para la densidad del catalizador, hacemos un promedio de sus dos densidades.

Densidad Circulando 537 Kg/m³

Tabla 11. Densidades del catalizador.

Esto nos da un promedio de 549 Kg/m³. Para el largo de los reactores lo checamos en nuestra Ingeniería Básica y para la cantidad de catalizador en cada uno de los reactores procedemos a efectuar sencillos cálculos.

La heurística menciona que el tiempo de residencia en los reactores de reformación es de 4 a 10 días, por lo que se hará con un tiempo de residencia de 4 días, si sabemos la velocidad del catalizador a la torre de regeneración del Caso A y el Caso Pobre y además conocemos el porcentaje de distribución de catalizador en cada reactor, podemos calcular cuánto catalizador pondremos en cada reactor.

$$\left(\frac{965 \, Kg \, de \, cat.}{1 \, h}\right) * \left(\frac{24 \, h}{1 \, dia}\right) * 4 \, dias = 92,640 \, Kg \, de \, cat.$$
$$\left(\frac{1451 \, Kg \, de \, cat.}{1 \, h}\right) * \left(\frac{24 \, h}{1 \, dia}\right) * 4 \, dias = 139,296 \, Kg \, de \, cat.$$

Alimentación	Catalizador Total	Reactor 1 17%	Reactor 2 20%	Reactor 3 25%	Reactor 4 38%
Caso A	92,640 Kg	15,749 kg	18,528 Kg	23,160 Kg	35,203 Kg
Caso Pobre	139,269 Kg	23,680 Kg	27,859 Kg	34,824 Kg	52,933 Kg

Tabla 12. Alimentaciones por reactor.

Reforme	er Reactor Se	ection								
Design	Feed Data	Operation Re	sults							
Desi	ign									
Configura	ation	Catalyst Bulk D	ensity [kg/m	3] 549.0						
Catalyst Loadings		Catalyst Void Fi	raction	0.7000						
Notes	oudings									
				Bed 1	Bed 2	Bed 3	Bed 4	Total		
		Reaction Path L	ength [m]	2.30	0 2.300	2.450	2.800	ххх		
		Catalyst Weight [kg]		2.368e+00	4 2.786e+004	3.482e+004	5.293e+004	1.393e+005		
	Catalyst Distrib	ution [%]	17.0	0 20.00	25.00	38.00	100.00			
		Catalyst Volum	e [m3]	43.1	3 50.74	63.43	96.42	253.7		
		Catalyst Loaded	d Volume (m	143	8 169.1	211.4	321.4	845.8		
				•						
				OK			🔲 Ignored	EO Variables		

Figura 34. Datos del catalizador.

Después de haber completado este procedimiento, en la ventana del Reformador aparecerá la imagen de éste y sus conexiones; cuando se trabaje con la alimentación por fracciones de los componentes sólo hay vincular la corriente donde esté nuestra alimentación a la alimentación de la reformadora; si se está trabajando con la alimentación por caracterización con el ASTM D-86, se siguen los pasos explicados en la sección anterior.

Figura 35. Comparación de alimentaciones al simulador por componentes y por análisis PONA.

En la sección de reacción ponemos la información de la temperatura del reactor en cada caso, temperatura y presión del tanque flash y la relación H₂/HC que tiene el proceso.
Stabilizer Tower Results				n Stabilizer Tower Results			
Reactor Temperature Specification				Reactor Temperature Specification			
Rx 1 Inlet Temperature [C]	519.0	519.0	Copy Data	Rx 1 Inlet Temperature [C]	521.0	<empty></empty>	Copy Da
Rx 2 Inlet Temperature [C]	519.0	519.0		Rx 2 Inlet Temperature [C]	521.0	<empty></empty>	(
Rx 3 Inlet Temperature [C]	519.0	519.0		Rx 3 Inlet Temperature [C]	521.0	<empty></empty>	
Rx 4 Inlet Temperature [C]	519.0	519.0		Rx 4 Inlet Temperature [C]	521.0	<empty></empty>	
Reactor Inlet Reference Temperature [C]	519.0	519.0		Reactor Inlet Reference Temperature [C]	521.0	<empty></empty>	1
Rx 1 Temperature Bias [C]	0.0000	0.0000		Rx 1 Temperature Bias [C]	0.0000	<empty></empty>	
Rx 2 Temperature Bias [C]	0.0000	0.0000		Rx 2 Temperature Bias [C]	0.0000	<empty></empty>	
Rx 3 Temperature Bias [C]	0.0000	0.0000		Rx 3 Temperature Bias [C]	0.0000	<empty></empty>	
Rx 4 Temperature Bias [C]	0.0000	0.0000		Rx 4 Temperature Bias [C]	0.0000	<empty></empty>	
WAIT [C]	519.0	519.0		WAIT [C]	521.0	<empty></empty>	
WABT [C]	497.5	497.5		WABT [C]	503.9	<empty></empty>	
C5+ RON	104.0	104.0		C5+ RON	105.4	<empty></empty>	
C6+ RON	105.8	105.8		C6+ RON	109.4	<empty></empty>	1
Sum of Aromatics [wt%]	68.71	68.71		Sum of Aromatics [wt%]	64.88	<empty></empty>]
Hydrogen Recycle				- Hydrogen Recycle			
Recycle Compressor Flow [STD_m3/h]	1.228e+005	Recycle Gas Loca	ation Options	Recycle Compressor Flow [STD_m3/h]	1.346e+005	Recycle Gas Loc	ation Options
H2HC Ratio - Mol/Mol	3.400			H2HC Ratio - Mol/Mol	3.400		•
Product Separator				Product Separator			
Product Separator Temperature [C]	40.00			Product Separator Temperature [C]	40.00		
Product Separator Pressure [kg/cm2_g]	2.500			Product Separator Pressure [kg/cm2_g]	2.500		
former Environment	OK	Iqnored	EO Variables	Reformer Environment	OK	Ignored	EO Vi

Figura 36. Comparación de temperaturas entre los dos casos.

En la parte del catalizador, sólo se introducirá la velocidad con la que regresa el catalizador a la torre de regeneración. Pondremos el caso A y el caso Pobre respectivamente, estos valores están dentro del rango que usualmente usan las reformadoras continuas (950-1300 kg/h).

Design Reactor Sectio	n Stabilizer Tower Results		on Stabilizer Tower Results		
Reactor Section	Continuous Regeneration		Continuous Regeneration		
Feeds Reactor Control Catalyst	Catalyst Circulation Rate [kg/h]	965.0	Catalyst Circulation Rate [kg/h]	1451	
Recontactor	Rx 1 Coke on Cat [wt%]	1.06	Rx 1 Coke on Cat [wt%]	1.84	
Product Heater	Rx 2 Coke on Cat [wt%]	1.78	Rx 2 Coke on Cat [wt%]	2.74	
Solver Options	Rx 3 Coke on Cat [wt%]	3.72	Rx 3 Coke on Cat [wt%]	5.28	
Advanced	Rx 4 Coke on Cat [wt%]	6.75	Rx 4 Coke on Cat [wt%]	8.87	
Presolve Commands	Rx 1 Coke Lavdown Rate [kg/h]	10.23	Rx 1 Coke Laydown Rate [kg/h]	26.74	
Postsolve Commands	Rx 2 Coke Lavdown Rate [kg/h]	6.934	Rx 2 Coke Laydown Rate [kg/h]	13.09	
	Rx 3 Coke Lavdown Rate [kg/h]	18.71	Rx 3 Coke Laydown Rate [kg/h]	36.84	
	Rx 4 Coke Laydown Rate [kg/h]	29.25	= Rx 4 Coke Laydown Rate [kg/h]	52.03	
	Reactor 1 Percent Pinning [%]	180.35	Reactor 1 Percent Pinning [%]	182.97	
	Reactor 2 Percent Pinning [%]	129.05	Reactor 3 Dercent Pinning [%]	144.54	
	Reactor 4 Percent Pinning [%]	118.00	Reactor 4 Percent Pinning [%]	123.47	
Delete	Reformer Environment	OK	Reformer Environment	OK:	

Figura 37. Comparación de flujos del catalizador entre los dos casos.

8.4. Zona de Recontacto

La zona de recontacto incluye una serie de compresores, enfriadores y separadores. Principalmente se compone de dos zonas, una zona de baja presión y la otra de alta.

En la zona de baja presión se encuentra un compresor que descarga la corriente a una presión de 16.75 Kg/cm² g y una temperatura de 123°C, posteriormente bajar la temperatura con un enfriador de aire a 60°C para condensar el producto y así entrar a un primer separador. Después el vapor separado entrará a otro compresor que aumentará la presión hasta 40.39 Kg/cm² g y una temperatura de 126°C, igualmente la corriente se enfriará ahora hasta 40°C y se separarán las fases para así obtener nuestro vapor que será hidrógeno con una pureza mínima del 90% y la fase líquida se mezclará con la fase líquida del separador de baja presión para así entrar a la sección de estabilización.

La función de los tambores de recontacto consiste principalmente en enriquecer la fase gaseosa de ligeros y así evitar que una gran cantidad de estos se vaya a la corriente de reformado, esto traería como consecuencia una gasolina con un PVR (Pressure Vapor Reid) muy elevado, lo que no lo haría adecuado para su utilización como combustible.

El funcionamiento de esta zona del proceso, se puede simular de dos maneras, la primera es simulando equipo por equipo, tal y como está en nuestra ingeniería y la otra es usando la opción de zona de recontacto que viene en la herramienta del proceso de Reformación Catalítica.

Figura 38. Simulación de la planta poniendo los tambores de recontacto.

Para simular con la herramienta de zona de recontacto, al principio que se selecciona las características del caso de estudio hay una opción que menciona si se desea incluir la sección de recontacto; para este caso de estudio la seleccionamos.

Figura 39. Sección para incluir la parte de recontacto.

La sección a parecerá dentro de la pestaña de "*Reactor Section*" dentro de la operación de Reformación, en esta sección se introducen los datos las presiones y temperaturas de diseño recomendadas.

Reactor Section	Stabilizer Tower Results		
Reactor Section		Low Pressure	High Pressure
Feeds	Booster Compressor		
Reactor Control	Outlet Pressure [kg/cm2_g]	16.75	40.39
Catalyst Recontactor	Outlet Temperature [C]	123.0	126.7
Solver Options	Recontactor Drum		
Solver Console	Inlet Stream DP [kg/cm2 g]	0.2000	0.7000
Advanced	Product Temperature [C]	60.00	40.00
Octane Curves Presolve Commands	Murphree Efficiency	1.000	1.000
Postsoive Commands	H2 Vent		
	Fraction of H2 to Vent H2	0.0000	
	Flow of H2 to Vent H2 [STD_m3/h]	6.489e-002	
	Flow of H2 to Vent H2 [STD_m3/h]	6.489e-002	
Delete	Reformer Environment	OK	📃 Ignore

Figura 40. Sección para introducir los datos de los compresores y tambores de recontacto.

8.5. Zona de Estabilización

Esta zona de estabilización consta de una torre de destilación con condensador parcial, que servirá para separar los hidrocarburos menores de cinco carbonos de la mezcla, de esta forma logramos obtener un reformado que contenga máximo 1% mol de C4- y el gas LPG tendrá un máximo de 1 % mol en compuestos C5+.

En la sección de la torre tenemos que ingresar los datos de presiones y temperaturas de domo y fondo, flujos de salida y reflujo.

En la siguiente imagen se muestra la interfaz del programa y los valores introducidos para esta torre de destilación.

Design Paramet	ers Side Ops Rating Worksheet Pe	rformance Flowsheet Reactions Dynami	Condenser
Design ionnections Aonitor pecs pecs Summary ubcooling lotes	Condenser Energy Stream Q1 Inlet Streams Stream Inlet Stage Net liquid 20_Main TS << Stream >>	Sub-Howsheet lag COLI	Curverser Curverser Curverser Total Partial Full Reflux Delta P 187 Overhead Outlets 178 vtional Side Draws Stream Type Draw Stage Content Stream Q2 Bottoms Liquid Outlet Content Stage
	Stage Numbering Top Down Bottom Up Edit Trays		
Delete	Column Facilitation		

Figura 41. Sección para introducir los datos de la torre desbutanizadora.

Para corroborar que la torre esté funcionando de una manera adecuada, se realizan unas gráficas de temperatura y presión en cada plato de la torre de destilación y así poder observar su comportamiento.

Figura 42. Graficas de presión y temperatura contra el número de platos.

9. Análisis de Resultados

En esta sección se compararán algunos casos que se realizaron combinando las diferentes maneras de realizar la simulación en las diferentes zonas, para poder observar qué diferencia hay y cuál se aproxima más a los datos de planta.

El primer caso que se presenta, son los resultados de nuestro reformado con las diferentes maneras de introducir la alimentación del caso A.

Figura 43. Composición de reformado con alimentación por componentes

Figura 44. Composición del reformado con alimentación por caracterización ASTM D-86

Como podemos observar en las figuras 43 y 44, los resultados de la corriente de reformado, con la sección de recontacto incluida como mencionamos anteriormente, contienen los datos de alimentación introducidos componente por componente y con los datos de la caracterización por el método ASTM D-86.

En estas dos gráficas vemos que el simulador arroja mejores resultados con la introducción de los datos uno por uno, aunque con la caracterización al igual nos proporciona datos coherentes con respecto al libro de diseño, pero no tan ajustados como la alimentación por componentes.

Como podemos observar en la figura 45 y la tabla 13, la corriente de LPG se ajusta bien a los datos de diseño, a excepción de los componentes más ligeros que el propano, como habíamos mencionado anteriormente, los datos fueron introducidos uno por uno en la alimentación.

Figura 45. Gráfico de composición de la corriente de LPG con alimentación por componentes.

% de componente en la corriente LPG			
Componente	Planta (Diseño)	Componente	error
H2	0.30%	0.71%	137.40%
P1	0.46%	0.11%	75.94%
P2	10.53%	7.10%	32.57%
Р3	39.90%	40.24%	0.86%
IP4	19.45%	18.55%	4.64%
NP4	28.51%	31.87%	11.81%
IP5	0.86%	0.86%	0.17%

Tabla 13. Error en el porcentaje de cada componente de la corriente LPG (componentes)

En la figura 46 y en la tabla 14, se aprecia que el porcentaje de error es más grande que en la corriente de LPG con la alimentación por componentes.

Figura 46. Gráfico de composición de la corriente de LPG con alimentación por caracterización.

% de componente en la corriente LPG			
Componente	Planta (Diseño)	Caracterización	error
H2	0.30%	0.82%	171.89%
P1	0.46%	0.07%	84.53%
P2	10.53%	5.46%	48.09%
P3	39.90%	31.88%	20.11%
IP4	19.45%	20.47%	5.24%
NP4	28.51%	40.40%	41.71%
IP5	0.86%	0.41%	51.91%

Tabla 14. Error en el porcentaje de cada componente de la corriente LPG (caracterización)

En las figuras 47 y 48 se muestra la comparación de la pureza del hidrógeno producido.

Figura 47. Gráfico de composición de la corriente de hidrógeno con alimentación por caracterización.

Figura 48. Gráfico de composición de la corriente de hidrógeno con alimentación por componentes.

En la figura 47 la corriente de hidrógeno tiene una pureza del 93.55 % teniendo un error del 3.80 % con la especificación de diseño y en la figura 48 la corriente de hidrógeno alcanza una pureza del 96.48 %, teniendo un error de 7.04 %.

Podemos deducir que para introducir los datos de alimentación es recomendable hacerlo mediante componentes, aunque si no se cuentan con estos datos, introducir la alimentación por medio de caracterización del crudo ASTM D-86, puede ser una buena aproximación.

Otra comparación que se hizo, fue en no usar el área de recontacto del simulador, como se mencionó anteriormente y simular la planta como está en nuestra base de diseño.

En las figuras 49, 50 y 51, se pueden apreciar los datos de las corrientes de los principales productos simulando tal cual como lo indica la base de diseño.

Figura 49. Gráfico de composición de la corriente de reformado sin zona de recontacto del simulador.

Figura 50. Gráfico de composición de la corriente de hidrógeno sin zona de recontacto del simulador.

Figura 51. Gráfico de composición de la corriente de LPG sin zona de recontacto del simulador.

Comparando los datos de la figura 43, 45 y 48, que son datos de las tres principales corrientes (reformado, hidrógeno y LPG) que se simularon con la alimentación por

componentes y con la zona de recontacto integrada del simulador, contra, los datos de las figuras 49, 50 y 51 que estos datos se obtuvieron simulando con la alimentación por componentes y sin la zona de recontacto que viene integrada al simulador, estas últimas tienen un porcentaje de error más alto que las primeras.

Para tratar de disminuir este error, el simulador nos permite cambiar los factores de calibración del proceso de reformación, para esto procedemos a ingresar en el proceso de reformación y nos vamos a la pestaña de *"Design"* en la parte de *"Tuning Factors"*. En esta sección se puede modificar de forma indirecta la selectividad hacia una o más reacciones, ya que se puede disminuir o aumentar la rapidez de reacción al cambiar estos factores. Estos valores se pueden interpretar como la multiplicidad de la rapidez de reacción.

En las figuras 52, 53 y 54 se muestran gráficas con la comparación de nuestros productos, con la alimentación por componente, el recontacto introducido de forma manual y el cambio de los factores de calibración.

Figura 52. Gráfico de composición de la corriente de reformado con factores de calibración.

Figura 53. Gráfico de composición de la corriente de hidrógeno con factores de calibración.

Figura 54. Gráfico de composición de la corriente de LPG con factores de calibración.

A continuación, en la tabla 15 se muestran los factores de calibración que se cambiaron para los dos casos principales de estudio, Caso A y Caso Pobre en la simulación completa.

Factores de calibración				
	Caso A	Caso Pobre		
Isomerization Tuning Factors				
EthylBenzene Isomerization Factor	0.50	1.70		
MetaXylene Isomerization Factor	0.10	2.50		
OrthoXylene Isomerization Factor	0.75	2.70		
IC4 Isomerization	-46.66	-46.66		
IC5 Isomerization	-59.16	-50.00		
Olefin Distribution Factor				
Ethylene Isomerization Factor	-2.03	-2.50		
Propylene Isomerization Factor	-1.78	-2.00		
Butylene Isomerization Factor	-1.34	-2.00		
Pentene Isomerization Factor	13.27	5.00		
Hexene Isomerization Factor	2.34	2.34		
Heptene Isomerization Factor	0.21	0.21		
Octene Isomerization Factor	-2.79	-2.79		
Equilibrium Constant	Tuning Factors			
C5 Cyclization	1.00	0.10		
C6 Multi-branch isomerization	100.00	150.00		
C7 Multi-branch isomerization	100.00	100.00		

Factores de calibración			
	Caso A	Caso Pobre	
Equilibrium Constant	Equilibrium Constant Tuning Factors		
C8 Multi-branch isomerization	100.00	100.00	
C6 Single-branch isomerization	100.00	100.00	
C7 Single-branch isomerization	250.00	250.00	
C8 Single-branch isomerization	100.00	100.00	
Light Ends Tuning Factors			
C1	1.30	0.47	
C2	2.37	1.50	
C3	7.20	2.00	
C4	12.70	23.00	
Kinetic Pathways Tuning Factors			
Dehydrogenation	0.90	0.95	
Hydrocracking	0.79	0.79	
Multi-branch isomerization	1.00	1.00	
Single-branch isomerization	1.10	0.50	
Ring closure	0.50	0.50	
Ring expansion	0.95	0.95	

Factores de calibración			
	Caso A	Caso Pobre	
Dehydrogenation Tuning Factors			
C7 Naphthenics	0.80	1.50	
C8 Naphthenics	0.41	0.50	
Factores de calibración			
	Caso A	Caso Pobre	
Ring Closure Tuning Factors			
C5	0.00	0.00	
C6	1.20	30.00	
C7	1.20	0.30	
C8	1.00	1.00	
C9	0.57	0.52	
C10	0.40	0.12	
Cracking Tuning	g Factors		
C5	0.01	20.00	
C6	0.01	1.20	
C7	2.50	0.10	
C8	2.00	0.65	
С9	0.20	2.00	

Factores de calibración				
	Caso A	Caso Pobre		
Cracking Tuning	Cracking Tuning Factors			
C10	0.20	1.50		
C11	0.47	2.50		
Paraffin Isomerization	Paraffin Isomerization Tunings Factors			
C6 Multi-branch isomerization	1.00	0.09		
C7 Multi-branch isomerization	1.00	0.11		
C6 Single-branch isomerization	0.10	0.10		
C7 Single-branch isomerization	0.50	0.01		
Ring Expansion Tuning Factors				
C6	3.87	9.00		
C7	1.40	8.50		
C8	3.00	3.00		
General Coke A	Activities			
General Coke Activity for All Reactors	39.00	50.00		
Reactor 2 Coke Activity	0.66	0.66		
Reactor 3 Coke Activity	1.00	1.00		
Reactor 4 Coke Activity	1.55	2.60		

Tabla 15. Factores de calibración empleados en la simulación

En esta sección de los factores de calibración, también se cambiaron los factores de deposición de coque, ya que como mencionábamos anteriormente no debe de pasar del 7 % como se ve en la figura 55.

Catalyst Circulation Rate [kg/h]	1451
Rx 1 Coke on Cat [wt%]	1.48
Rx 2 Coke on Cat [wt%]	2.20
Rx 3 Coke on Cat [wt%]	4.24
Rx 4 Coke on Cat [wt%]	6.87
Rx 1 Coke Laydown Rate [kg/h]	21.45
Rx 2 Coke Laydown Rate [kg/h]	10.52
Rx 3 Coke Laydown Rate [kg/h]	29.60
Rx 4 Coke Laydown Rate [kg/h]	38.08

Reactor 1 Percent Pinning [%]	183.16
Reactor 2 Percent Pinning [%]	165.20
Reactor 3 Percent Pinning [%]	144.68
Reactor 4 Percent Pinning [%]	123.58

Catalyst Circulation Rate [kg/h]	965.0
Rx 1 Coke on Cat [wt%]	1.06
Rx 2 Coke on Cat [wt%]	1.78
Rx 3 Coke on Cat [wt%]	3.72
Rx 4 Coke on Cat [wt%]	6.75
Rx 1 Coke Laydown Rate [kg/h]	10.23
Rx 2 Coke Laydown Rate [kg/h]	6.934
Rx 3 Coke Laydown Rate [kg/h]	18.71
Rx 4 Coke Laydown Rate [kg/h]	29.25
Reactor 1 Percent Pinning [%]	180.35
Reactor 2 Percent Pinning [%]	159.03
Reactor 3 Percent Pinning [%]	138.16

Reactor 4 Percent Pinning [%]

Figura 55. Deposición de coque en ambos casos de estudio.

Para poder hacer un comparativo con los resultados obtenidos y los resultados de la base de diseño, procedemos a extraer la información del simulador, como se muestran en las figuras 56, 57, 58 y 59.

118.00

Design Reactor Se	ection Stabilizer Tower Results						
Results	WAIT [C]	519.0					
Summary Feed Blend	Yields/RON		Recycle H2				
Product Yields Product Properties Reactors	C5+ Yield, wt [%]	88.25	Recycle H2 Rate [STD_m3/h]	1.228e+005			
	C5+ Yield, vol [%]	80.82	Recycle H2 Purity	0.8706			
Heaters	C5+ RON	104.0	H2/HC Ratio	3.400			
Recontactor	C6+ Yield, wt [%]	85.80	Livelan ener Vield				
Product Streams	C6+ Yield, vol [%]	77.96	Hydrogen field				
	C6+ RON	105.8	H2 Yield, Wt [%]	3.27			
	Reformate Production [barrel/day	2.569e+004	Net H2 Rate, MMSCFD	50.85			
	Reformate RON	104.1	H2 Production, SCM/CUM	305.7			
	Aromatics Yields	Wt	Vol				
	Benzene	4 36	3.68				
	Toluene	11.93	10.24				
	Ethyl-Benzene	3.31	2.84				
	Para-xylene	2.62	2.26				
	Ortho-xylene	4.57	3.86				
	Meta-xylene	7.47	6.43				
	Total Xylenes	14.65	12.56				
	Total Aromatics	68.71	59.12				

Figura 56. Resultados del Caso A con área de re contacto integrada y alimentación por componentes.

Results	WAIT [C]	521.0				
Summary						
Feed Blend	Yields/RON		Recycle H2			
Product Yields	C5+ Yield, wt [%]	83.80	Recycle H2 Rate [STD]	m3/h1	1.348e+005	
Product Properties Reactors	C5+ Yield, vol [%]	76.33	Recycle H2 Purity	Recycle H2 Purity		
Heaters	C5+ RON	106.5	106.5 H2/HC Ratio			
Recontactor	C6+ Yield, wt [%]	76.90				
Product Streams	C6+ Yield, vol [%]	68.42	Hydrogen Yield			
	C6+ RON	109.5	H2 Yield, Wt [%]		3.02	
	Reformate Production [barrel/day	2.530e+004	Net H2 Rate, MMSCFD		48.50	
			H2 Production SCM/C	IM	292.3	
	Reformate RON	106.3	The Fridadedion, Servive	OIVI		
	Reformate RON	106.3	H2 Purity, mole fraction	n	0.8959	
	Aromatics Yields	106.3 Wt [%]	Vol [%]	n	0.8959	
	Aromatics Yields Benzene	106.3 Wt [%] 4.59	Vol [%] 3.84	n	0.8959	
	Aromatics Yields Benzene Toluene	106.3 Wt [%] 4.59 14.45	Vol [%] 3.84 12.28	n	0.8959	
	Aromatics Yields Benzene Toluene Ethyl-Benzene	106.3 Wt [%] 4.59 14.45 2.93	Vol [%] 3.84 12.28 2.49	n	0.8959	
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene	106.3 Wt [%] 14.59 14.45 2.93 2.30	Vol [%] 3.84 12.28 2.49 1.97	n	0.8959	
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene	106.3 Wt [%] 14.45 2.93 2.30 4.03	Vol [%] 3.84 12.28 2.49 1.97 3.37	n	0.8959	
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene Meta-xylene	106.3 Wt [%] 14.45 2.93 2.30 4.03 6.54	Vol [%] 3.84 12.28 2.49 1.97 3.37 5.58	n	0.8959	
	Reformatic RON Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene Meta-xylene Total Xylenes	106.3 Wt [%] 14.45 2.93 2.30 4.03 6.54 12.87	Vol [%] 3.84 12.28 2.49 1.97 3.37 5.58 10.92	n	0.8959	

Figura 57. Resultados del Caso Pobre con área de re contacto integrada y alimentación por componentes.

Results	WAIT [C]	519.0			
Summary					
Feed Blend Product Yields	Yields/RON		Recycle H2		
	C5+ Yield, wt [%]	Recycle H2 R	ate [STD_m3/h]	1.270e+005	
Reactors	C5+ Yield, vol [%]	80.08	Recycle H2 P	0.8414	
Heaters	C5+ RON	107.6	H2/HC Ratio	3.400	
Product Streams	C6+ Yield, wt [%]	83.07			
	C6+ Yield, vol [%]	75.72	Hydrogen Yie	ld	
	C6+ RON	110.0	H2 Yield, Wt	[%]	3.02
	Reformate Production [barrel/day	2.202e+004	Net H2 Rate,	MMSCFD	52.40
	D (110.1	H2 Productio	314.9	
	Aromatics Yields	110.1	H2 Purity, mo	ble fraction	0.8414
	Aromatics Yields	Wt	H2 Purity, mo	ole fraction	0.8414
	Aromatics Yields	Wt [%]	H2 Purity, mo Vol [%]	ole fraction	0.8414
	Aromatics Yields Benzene Tubene	Wt [%]	Vol [%] 1.36	ole fraction	0.8414
	Aromatics Yields Benzene Toluene Ethul Researce	Wt [%] 1.60 12.62	Vol [%] 1.36 10.82	ole fraction	0.8414
	Aromatics Yields Benzene Toluene Ethyl-Benzene Data	Wt [%] 1.60 12.62 3.07	Vol [%] 1.36 10.82 2.63	ole fraction	0.8414
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-widene	Wt [%] 1.60 12.62 3.07 3.41	Vol [%] 1.36 10.82 2.63 2.95 3.68	ole fraction	0.8414
	Aromatics Yields Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene Meta-xylene	Wt [%] 1.60 12.62 3.07 3.41 4.35 7.24	Vol [%] 1.36 10.82 2.63 2.95 3.68 6.23	ole fraction	0.8414
	Aromatics Yields Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene Meta-xylene Total Xylenes	Wt [%] 1.60 12.62 3.07 3.41 4.35 7.24 15.01	Vol [%] 1.36 10.82 2.63 2.95 3.68 6.23 12.86	ole fraction	0.8414
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene Meta-xylene Total Xylenes Total Aromatics	Wt [%] 1.60 12.62 3.07 3.41 4.35 7.24 15.01 66.78	H2 Purity, mo Vol [%] 1.36 10.82 2.63 2.95 3.68 6.23 12.86 57.45	ole fraction	0.8414

Figura 58. Resultados del Caso A sin área de re contacto integrada y alimentación por componentes.

Results	WAIT [C]	510.0			
Summary					
Feed Blend	Yields/RON		Recycle H2		
Product Yields	C5+ Yield. wt [%]	73.68	Recycle H2 Rate ISTD n	n3/hl 1.540e+005	
Reactors	C5+ Yield, vol [%]	65.91	Recycle H2 Purity 0.7		
Heaters	C5+ RON	103.9	H2/HC Ratio	3.400	
Product Streams	C6+ Yield, wt [%]	72.84			
	C6+ Yield, vol [%]	65.07	Hydrogen Yield		
	C6+ RON	105.2	H2 Yield, Wt [%]	2.50	
	Reformate Production [barrel/day	1.942e+004	Net H2 Rate, MMSCFD	51.40	
	D C I DON	H2 Production SCM/CI	IM 3097		
		105.1	H2 Purity, mole fraction	n 0.7029	
	Aromatics Yields	105.1	H2 Purity, mole fraction	0.7029	
	Aromatics Yields	105.1 Wt [%]	Vol	0.7029	
	Aromatics Yields	105.1 Wt [%] 6.18	Vol [%] 5.17	0.7029	
	Aromatics Yields Benzene Toluene	105.1 Wt [%] 6.18 15.58	Vol [%] 5.17 13.23	0.7029	
	Aromatics Yields Benzene Toluene Ethyl-Benzene	105.1 Wt [%] 6.18 15.58 3.40	Vol [%] 5.17 13.23 2.89	0.7029	
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene	105.1 Wt [%] 6.18 15.58 3.40 2.66	Vol [%] 5.17 13.23 2.89 2.27	0.7029	
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene	105.1 Wt [%] 6.18 15.58 3.40 2.66 5.11	Vol [%] 5.17 13.23 2.89 2.27 4.28	0.7029	
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene Meta-xylene	Wt [%] 6.18 15.58 3.40 2.66 5.11 7.79	Vol [%] 5.17 13.23 2.89 2.27 4.28 6.64	0.7029	
	Aromatics Yields Benzene Toluene Ethyl-Benzene Para-xylene Ortho-xylene Meta-xylene Total Xylenes	Wt [%] 6.18 15.58 3.40 2.66 5.11 7.79 15.56	Vol [%] 5.17 13.23 2.89 2.27 4.28 6.64 13.19	0.7029	

Figura 59. Resultados del Caso Pobre sin área de re contacto integrada y alimentación por componentes.

A continuación en la tabla 16 se muestran las especificaciones principales de nuestras corrientes de salida. Para comparar con los datos de la base de diseño, se usaron los resultados de la simulación con la zona de recontacto incluida y con la simulación completa de la zona de recontacto y los factores de calibración.

"C" (con rec.) "S" (sin rec. Y FC)	Caso A					Caso Pobre					
		Simu	ulación	% Error			Simu	Simulación			
	Real	С	/ S			Real	Real C / S		% Error		
RONC	102	104	110	1.96	7.8	102	106	105	3.92	2.94	
C5+ (% vol.)	80	80.20	80.08	0.25	0.1	78	76.33	65.91	2.14	15.5	
C5+ (% wt.)	88	88.25	86.74	0.25	1.43	87	83.80	73.68	3.61	15.3	
H₂ pureza (%)	90	93.55	84.14	3.94	6.51	88	89.59	70.29	1.8	20.1	
% mol reformado(C4-)	<1	9.6E-7	0.0001	-	-	<1	0.017	3.7E-7	-	-	
% mol LPG (C5+)	<1	0.009	0.004	-	-	<1	0.0001	0.011	-	-	
Aromáticos en Reformado (% vol.)	60	59.12	57.45	1.46	4.25	60	55.21	50.41	7.9	15.9	
Producción de Reformado (Barril/día)	30,000	25694	22022	14.3	26.5	30,000	25299	19426	15.6	35.2	

Tabla 16. Tabla de resultados de los diferentes casos de estudio.

En la tabla 16 podemos observar a primera instancia que los valores de error son menores en el caso de la simulación con zona de recontacto integrada del simulador, el octanaje en los dos casos de estudio llega al deseado e incluso se pasa un poco, en todos los casos, las especificaciones se encuentran dentro de un rango del 10 % de error contra el valor esperado. En el caso de la simulación completa y cambiando nuestros factores de calibración, los resultados son aceptables. La pureza del hidrógeno en el caso A y el caso pobre no cumple con la especificación de diseño,

ya que con los parámetros de la torre des butanizadora y el arreglo de los factores de calibración en la cinética de la reformadora, está separando más compuestos ligeros hacia la corriente de vapor de la torre estabilizadora y por ende al momento de condensar y separar esta corriente, la pureza del hidrógenos se ve afectada.

Los valores de % mol reformado (C4-) y % mol LPG (C5+), se cumplen para todos los casos, ya que todos tienen una concentración menor al 1 % de estos compuestos en las diferentes corrientes.

Para el caso del % aromáticos en la simulación con zona de recontacto integrada, el valor está un poco por debajo del esperado, y en la simulación completa también están dentro del rango permitido que es de 45 % a 60 %, ambos casos dentro de los límites establecidos. El porcentaje de aromáticos en el reformado es uno de los puntos que se debe de cuidar, ya que estos producen compuestos cancerígenos, pero también no podemos tener menos de lo indicado, ya que estos compuestos son los que en su mayoría aportan al número de octanaje en el reformado.

10. Conclusiones

Se simuló con éxito la planta Reformadora de Naftas CCR de la Refinería "General Lázaro Cárdenas" en el simulador HYSYS V8.8, se puede concluir que la simulación de esta planta es consistente con el libro de diseño, ya que satisface las condiciones de operación y las especificaciones dadas por el libro de diseño.

Nuestra mejor opción para poder simular la panta resultó ser la simulación que tiene la zona de recontacto integrada, ya que los resultados finales dieron más acercados a los resultados de la planta.

También nos pudimos dar cuenta que las variables de proceso como son la temperatura, la presión, la velocidad espacial y la relación de HC/H₂ son cruciales para que los resultados sean los esperados ya que las cuatro variables están relacionadas entre sí.

De igual manera con el trabajo anterior, se puede concluir que es preferible tener una nafta pesada, es decir, con compuestos con mayor número de carbonos ya que con el diseño con la que se hizo la simulación cumple mejor las especificaciones dadas, aunque tengamos que controlar más la deposición del coque en los catalizadores, sin embargo ya que con el tiempo la calidad del petróleo que se extrae en México va decayendo, probablemente en algún momento se tendrá el caso de trabajar como se simuló en el caso pobre. Si esto llegase a suceder podemos tener la seguridad que nuestra planta tiene la capacidad para trabajar con esta clase de nafta.

El trabajo presentado es un claro ejemplo de la utilización del simulador ASPEN HYSYS V8.8 como una herramienta para el análisis de diferentes procesos, permite realizar cálculos con mayor rapidez y simular condiciones de proceso (presiones, temperaturas, concentraciones etc.) que en la vida real y para un proceso de esta magnitud representarían costos inmensos. Muchos pasajes de este trabajo pueden ser utilizados como guía para el uso de ASPEN HYSYS.

Resulta muy importante seguir realizando estudios acerca de la forma del aprovechamiento del petróleo en cualquiera de sus modalidades ya que este hidrocarburo se ha vuelto desde hace ya muchos años la fuente de energía principal para el ser humano, y como parte integral de un proyecto de refinado que incluya el reformado catalítico se puede analizar este trabajo que contiene los principios básicos de la modelación de dicho proceso y se puede verificar en una simulación por computadora la forma en que intervienen las variables directamente sobre la formación de productos.

11. Bibliografía

- Acosta Padilla, E. (julio de 2012). Trabajo previo a la obtención del título de tecnólogo en petróleo. Evaluación y Descripción de las condiciones operacionales para procesar la gasolina de tipo aromático insaturado que se obtiene mediante el proceso de reformado catalítico continuo (CCR) en la Refinería estatal de Esmeraldas. Quito: Universidad Tecnológica Equinoccial.
- Alias Marín, A. (2009). Tesis para obtener el título de Ingeniero Químico. Análisis y Simulación de la nueva Unidad Reformadora de Naftas CCR de la Refíneria de Minatitlán, Ver. Uiversidad Nacional Autónoma de México.
- 3. Ancheyta, J. (2011). *Modeling and Simulation of Catalytic Reactors for Petroleum Refining.* New Jersey: John Wiley & Sons, Inc.
- 4. Antos, G. J., & Aitani, A. M. (2004). *Catalytic Naphtha Reforming* (Segunda ed.). New York, EEUU: Marcel Dekker.
- Askari, A., Karimi, H., Ghanbari, M., & Reza Rahimpour, M. (2012). Simulation an Modeling of Catalytic Reforming Process. *Petroleum & Coal*, 62, 76-84.
- 6. AspenTech. (s.f.). . Aspen Plus Reformer V7.3 User's Guide.
- 7. Garry, J. H., & Handwerk, G. E. (2001). *Petroleum Refining Technology and Economics.* New York: Marcel Dekker.
- 8. Henningsen, J., & Bungaard-Nielson, M. (Nov de 1970). Catalytic Reforming. *British Chemical Engineering, 16*, 1433-1436.
- Iranshahi, D., Karimi, M., Amiri, S., Jafari, M., Rafiei, R., & Reza Rahimpour, M. (2014). Modeling of naphtha reforming unit applying detailed description

of kinetic in continous catalytic regeneration process. *Chemical Engineering Research and Design, 92*, 1704-1727.

- Juárez Uribe, A. (2015). Tesis para obtener el título de Ingeniería Química. Análisis y simulación de la unidad Reformadora de Naftas (CCR) de la Refinería de Tula, Hidalgo. Universidad Nacional Autónoma de México.
- 11. Krane, H. (1959). Proceeding of the 5th World Petroleum Congress.
- Montesdeoca Espín, D. E. (Febrero de 2013). Trabajo de fin de Máster. Simulación de la unidad de Reformado Catalítico de la Refinería Esmeraldas. Universidad Politécnica de Madrid.
- Morales Romero, O. (2014). Tesis para obtener el título de Ingeniería Química. Análisis y Simulación de la nueva planta CCR de la Refinería Ing. Antonio M. Amor, Salamanca. Universidad Nacional Autónoma de México.
- NOMENCLATURA QUIMICA. (20 de Septiembre de 2010). Recuperado el 2016, de http://heavymetaleslaluz.blogspot.mx/
- Norma Oficial Mexicana NOM-086-SEMARNAT-SCFI-2005. (30 de Enero de 2006). Especificaciones de los combustibles fósiles para la protección ambiental. Distrito Federal, México.
- Padmavathi, G., & Chaudhuri, J. (October de 1997). Modelling and Simulation of comercial Catalytic Naphtha Reformers. *Canadian Journal of Chemical Engeeniering Science*, 75, 759-773.
- 17. Petróleo, I. M. (2002). *Petróleo*. Obtenido de http://www.imp.mx/petroleo/?imp=comp
- Refinación, P. (s.f.). Gasolinas. Obtenido de http://www.ref.pemex.com/octanaje/nstrprd3.html
- Refinación, P. (s.f.). Octanaje. Obtenido de http://www.ref.pemex.com/octanaje/26gas.htm

- 20. Refinación, P. (s.f.). *Octanaje*. Obtenido de http://www.ref.pemex.com/octanaje/que.htm
- 21. Reza Rahimpour, M., Jarafi, M., & Iranshahi, D. (2013). Progress in catalytic naphtha reforming process: A review. *Applied Energy*(109), 79-93.
- Rosario, F. R. (s.f.). Cátedra de Procesos Industriales. *Reforma Catalítica*. Universidad Tecnológica Nacional,.
- 23. Sa'idi, M., Mostoufi, N., & Sotudeh-Gharebagh, R. (2011). Modeling and simulation of Continuous Catalytic Regeneration (CCR). *2*(1), 115-124.
- 24. Smith, R. (1959). Kinetic analysis of naphtha refroming with platinum catalyst. *Chem. Eng. Progr.*, *55*, 76-80.
- 25. Turaga, U., & Ramanathan, R. (2003). Catalytic Naphtha Reforming its Importance in the Modern Refinery. *Journal of Scientific & Industrial Research*, 62, 963-978.
- 26. UOP. (2008). Manual de Operación. *Regeneración Continua del catalizador de la Unidad Reformadora de Naftas*.
- 27. *what-when-how*. (s.f.). Recuperado el Septiembre de 2015, de http://whatwhen-how.com/petroleum-refining/fundamentals-of-catalytic-reforming/