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INTRODUCTION

“I can’t tell you how proud I am,
I’m writing down things that I don’t understand.”

Jack White.

Let f ∈ Sk(N,ψ) be a normalized eigenform of level N , weight
k > 1, and Dirichlet character ψ : (Z/NZ)× → C× with q-expansion∑

n≥1 an(f)qn, where q = q(z) = e2πiz. Recall that the coefficient
field of f is defined as Qf := Q(an(f) : (n,N) = 1), which is a
number field. By a construction of Shimura and Deligne [26], for each
maximal ideal Λ of OQf (the ring of integers of Qf ), we can attach to
f a 2-dimensional Galois representation

ρf,Λ : GQ −→ GL2(Qf,Λ)

unramified at all rational primes p - N` (where Qf,Λ denotes the
completion of Qf at Λ and ` denotes the rational prime below Λ)
and such that for every rational prime p - N` we have

Tr(ρf,Λ(Frobp)) = ap(f) and det(ρf,Λ(Frobp)) = ψ(p)pk−1.

Let ρf,Λ be the semisimplification of the reduction of ρf,Λ modulo
Λ and ρproj

f,Λ its projectivization. We say that f is exceptional at the
prime Λ if the image of ρproj

f,Λ is neither PSL2(F`s) nor PGL2(F`s) for
all integers s > 0.

In the 70’s and 80’s Carayol, Deligne, Langlands, Momose, Ribet,
Serre and Swinnerton-Dyer proved the following result (see the intro-
duction of [80] for complete references):

Theorem 1. — If f does not have complex multiplication, then f is
exceptional at most at finitely many Λ.
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In Chapter III we give a weak generalization of this theorem to
cohomological globally generic cuspidal automorphic representations
of GSp4(AQ). More precisely, let π = π∞ ⊗ πf be a globally generic
cuspidal automorphic representation of GSp(4,AQ) of cohomological
weight (m1,m2) for which π∞ belongs to the discrete series. By
the work of Taylor [92], Laumon [70] and Weissauer [102], we can
attach to π a number field E and a family of 4-dimensional Galois
representations

ρΛ(π) : GQ −→ GSp4(Eλ)

unramified outside S ∪ {`}, where S is the set of places where π is
ramified.

In contrast to the Galois representations associated to classical mod-
ular forms by Deligne, which are irreducible [79], in the GSp4 case
there are many cuspidal automorphic representations of GSp4(AQ)
corresponding to reducible Galois representations. Examples of such
representations are the weak endoscopic lifts and the CAP represen-
tations.

Then the first step, in order to generalize Theorem 1 to GSp4(AQ),
is to ensure the irreducibility of our representations. To deal with this
problem, we will impose the hypothesis of being globally generic and
non a weak endoscopic lift. Under this hypothesis we can lift π (by
using Langlands Functoriality from GSp4 to GL4) to a RAESDC au-
tomorphic representation Π of GL4(AQ) and apply some recent results
about irreducibility of compatible systems associated to RAESDC au-
tomorphic representations due to Barnet-Lamb, Gee, Geraghty and
Taylor [8].

We will say that π is genuine if it is not a lift from a smaller subgroup
of GSp4, i.e., if π is neither a symmetric cube lift from GL2 nor an
automorphic induction of GL2. We remark that the genuine cuspidal
automorphic representations of GSp4(AQ) are the analogue of classical
modular forms without complex multiplication.

Let ρΛ(π) be the semisimplification of the reduction of ρΛ(π) modulo
Λ and ρproj

Λ (π) its projectivization. Assuming all the aforementioned
hypothesis, we prove that for Λ in a set of primes of density one, the
image of ρproj

Λ (π) is either PSp4(F`s) or PGSp4(F`s) for some integer
s > 0 (Theorem 3.4.1). Moreover, if we assume that πp is Iwahori-
spherical for all p ∈ S the previous result is true for almost all Λ and
not only for a set of density one.

The proof of this result is inspired by the work of Dieulefait [32],
where the case of genuine cuspidal automorphic representations of
GSp4(AQ) with S = ∅ and m1 = m2 was proved. The core of our
argument will consist in showing that for Λ in a set of primes of positive
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density, the image of ρproj
Λ (π) cannot be contained in any maximal

proper subgroup of PGSp4(F`s) which does not contain PSp4(F`s).
The classification of such subgroups was given by Mitchel in [72]. The
extra tools used in the proof are the Serre modularity conjecture [84]
proved by Dieulefait [34], Khare and Wintenberger [60] [61], and the
description of the image of the inertia subgroup at ` given by Urban
in [96].

At this point, a natural question is: are there classical modular
forms without exceptional primes? In [36], Dieulefait and Wiese have
constructed families of modular forms without exceptional primes by
using the notion of tamely dihedral representation, which is a slight
variation of the good-dihedral representations introduced by Khare
and Wintenberger in [60]. More precisely, they proved the following
result:

Theorem 2. — There exist modular forms {fn}n∈N of weight 2 and
trivial Dirichlet character such that, for all n and all maximal ideals
Λn of OQfn , fn is nonexceptional. Moreover, for a fixed rational prime
` and Λn|`, the size of the image of ρproj

fn,Λn
is unbounded for running n.

In Chapter II we extend this result to Hilbert modular forms over an
arbitrary totally real field F extending the notion of tamely dihedral
representation to totally real fields. Our construction closely follows
the construction of Dieulefait and Wiese which consists of adding
tamely dihedral primes to the level (corresponding to supercuspidal
representations) via a level raising theorem. In fact, by using a lemma
of Dimitrov, we are going to be able to construct Hilbert modular
newforms of arbitrary weight and not only of weight 2 as in [36].
Moreover, we will add an extra ingredient to our construction in order
to avoid the possibility that the Hilbert modular newforms considered
come from a base change. We remark that this phenomenon does not
occur in the classical case.

At the end of this chapter we will explain another method to con-
struct Hilbert modular newforms which are tamely dihedral. This
method relies strongly on an asymptotic formula of Weinstein [101]
which counts the number of cuspidal automorphic representations
π = ⊗vπv of GL2(AF ) whose local components πv have prescribed
ramification for all places v of F .

In the second part of Chapter III, as a generalization of tamely di-
hedral representation, we introduce the notion of “maximally induced
representation of S-type" for symplectic groups. By using this tool
and the classification of maximal subgroups of PGSp4(F`s), we prove
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a representation-theoretic result which gives us a set of local condi-
tions needed to construct symplectic compatible systems R = {ρΛ}Λ

such that the image of ρproj
Λ is either PGSp4(F`s) or PSp4(F`s) for all

Λ (Theorem 3.7.3). Then by making use of this result and Langlands
Functoriality from SO5 to GL4, we prove that there is an infinite fam-
ily of globally generic cuspidal automorphic representations {πn}n∈N
of GSp4(AQ), with fields of definition {En}n∈N, such that for all max-
imal ideals Λn of OEfn , ρ

proj
Λn

(πn) is either PGSp4(F`s) or PSp4(F`s),
and for a fixed rational prime `, the size of the image of ρproj

Λn
(πn), for

Λn|`, is unbounded for running n (Theorem 3.8.5).
Finally, in Chapter IV we introduce the notion of “maximally in-

duced representation of O-type", which plays a similar role of the
maximally induced representation of S-type for the orthogonal groups
of even dimension. By using the notion of maximally induced repre-
sentations of S-type (resp. O-type), we can conjecture that there exist
symplectic (resp. orthogonal) compatible systems R(Π) = {ρΛ(Π)}Λ

of Galois representations associated to RAESDC automorphic repre-
sentations Π of GLn(AQ), n even, such that the image of ρproj

Λ (Π) is ei-
ther PSpn(F`s) or PGSpn(F`s) (resp. PΩ±n (F`s), PSO±n (F`s), PO±n (F`s)
or PGO±n (F`s)) for almost all Λ, and such that for a fixed prime `,
large enough, we can make s as large as we want.

As we mentioned above, Mitchel’s classification of the maximal sub-
groups of PGSp4(F`s) is crucial in the proof of the main results of
Chapter III. In the general case, this should be replaced by a funda-
mental result of Aschbacher [6] that describes the maximal subgroups
of almost all of the finite almost simple classical groups (the only ex-
ceptions are PGSp4(F2s) and PGO+

8 (F`s)). This theorem divides these
subgroups into nine classes. The first eight of these consist roughly
of groups that preserve some kind of geometric structure, so they will
be called of geometric type. The ninth class, denoted by S, consists
of those subgroups that are not of geometric type and which, mod-
ulo the subgroup of scalar matrices, are almost simple. Recall that
a group G is almost simple if there is a non-abelian simple group S
such that S ≤ G ≤ Aut(S). In this last chapter we prove a general
representation-theoretic result which gives us a set of local conditions
needed to construct compatible systems R = {ρΛ}Λ such that the
image of ρproj

Λ is an almost simple group for almost all Λ (Theorem
4.2.2).

Contrary to the geometric case, it is very difficult to assess the gen-
eral pattern of almost simple groups that might appear as subgroups of
a simple finite classical group and that lie in the class S. Fortunately,
for the low dimensional classical groups (i.e., up to dimension 12) this
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kind of groups are completely classified in [13]. By using this clasifi-
cation and Arthur’s work on endoscopic classification of automorphic
representations for symplectic and orthogonal groups [4], we adapt
some results of [87] in order to prove our conjecture for PGSpn(F`s)
for 6 ≤ n ≤ 12 and for PGO+

12(F`s).
An interesting application of the study of the images of Galois

representations is the following: Let ρ : GQ → PGLn(F`s) be a Galois
representation. As the set {1n} is open in PGLn(F`s), we have that
the ker ρ ⊆ PGLn(F`s) is an open subgroup. In other words, there
exists a finite Galois extension K/Q such that ker ρ = GK . Therefore

Imρ ' GQ/ ker ρ ' GQ/GK ' Gal(K/Q).

This reasoning shows that, whenever we are given a Galois repre-
sentation of GQ over a finite field F`s , we obtain a realization of
Imρ ⊆ PGLn(F) as a Galois group of Q. Then an immediate con-
sequence of the results of this thesis is that the symplectic groups:
PSpn(F`s) and PGSpn(F`s), for n ≤ 12; and the orthogonal groups:
PΩ+

12(F`s), PSO+
12(F`s), PO+

12(F`s) and PGO+
12(F`s), are Galois groups

of Q for infinitely many primes ` and infinitely many integers s.
The contents of Chapter II have been accepted for publication in

Mathematische Zeitschrift as “Constructing Hilbert modular forms
without exceptional primes" (joint work with L. Dieulefait).
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CHAPTER 1

PRELIMINARIES

In this chapter we recall some ideas and results concerning automor-
phic representations and the Galois representations attached to them
which we will use throughout this text. None of the results in this
chapter are original and all can be found in the standard literature,
for example in [20], [21], [23] and [99].

1.1. The Local Langlands Correspondence for GLn

The aim of this section is to recall the Henniart’s formulation of
the Local Langlands Correspondence for GLn over p-adic local fields.
We shall assume familiarity with representations of p-adic groups as
in [78] and with Galois representations as in [90].

Let p be a prime and K a finite extension of Qp. We write IK for the
inertia subgroup of GK , FrobK ∈ GK/IK for the geometric Frobenius
and WK for the Weil group of K. Then recall that local class field
theory gives us a canonical isomorphism

(1) ArtK : K× −→ W ab
K

normalized so that geometric Frobenius elements correspond to uni-
formisers. This isomorphism can be reformulated as follows.

Let G be a locally compact totally disconnected topological group.
By a smooth representation (Π, V ) of G we mean a group homomor-
phism Π from G to the group of automorphisms GL(V ) of a C-vector
space V such that for every vector v ∈ V the stabilizer of v in G
is open. Moreover, by an admissible representation (Π, V ) of G we
mean a smooth representation (Π, V ) such that for any open com-
pact subgroup H of G the space V H of H-invariants in V is finite
dimensional. We denote by A(G) the set of equivalence classes of irre-
ducible admissible representations of G. In particular, if G = GL1(K)
it can be proved that every (Π, V ) in A(GL1(K)) is one-dimensional,
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then A(GL1(K)) is equal to the set of continuous homomorphisms
K× → C×, where we endow C× with the discrete topology.

On the other hand, let WD1(WK) denote the set of continuous
homomorphisms WK → C× = GL1(K), where we endow C× with its
usual topology. Note that a homomorphism WK → C× is continuous
if and only if its restriction to the inertia group IK is continuous. As
IK is compact and totally disconnected its image is a compact and
totally disconnected subgroup of C×, hence it will be finite. Therefore
a homomorphismWK → C× is continuous for the usual topology of C×
if and only if it is continuous with respect to the discrete topology of
C×. So we have that the isomorphism (1) is equivalent to the following
result.

Theorem 1.1.1. — There is a natural bijection between A(GL1(K))
and WD1(WK).

In this context the Local Langlands Correspondence provides a
generalization of this theorem to GLn(K). More precisely, let | · |K
be the absolute value on K which takes uniformisers to the reciprocal
of the number of elements in the residue field of OK . Recall that
a Weil-Deligne representation of WK is a pair (ρ,N), where ρ is a
representation of WK on a finite dimensional complex vector space V ,
which is trivial on an open subgroup, and N is an element of EndC(V )
such that

ρ(σ)Nρ(σ)−1 = |Art−1
K (σ)|KN

for all σ ∈ WK . The pair (ρ,N) will be called Frobenius semi-simple if
ρ is semi-simple. We will denote byWDn(WK) the set of isomorphism
classes of n-dimensional Frobenius semi-simple Weil-Deligne represen-
tations of WK over C. Moreover, recall that given a Weil-Deligne
representation (ρ,N) ∈ WDn(WK) and a fixed non-trivial aditive
character ψ : K → C×, we can define an L-factor L(s, (ρ,N)) and
an ε-factor ε(s, (ρ,N),ψ) associated to (ρ,N) as in Section 4 of [90]
(see also Section 3 of [103]). In particular, if we have two Weil-Deligne
representations (ρ1, N1) ∈ WDn1(WK) and (ρ2, N2) ∈ WDn2(WK) on
the complex vector spaces V1 and V2 respectively, we can define their
tensor product (ρ1, N1) ⊗ (ρ2, N2) as the Weil-Deligne representation
on the complex vector space V1 ⊗ V2 given by

ρ(σ)(v1 ⊗ v2) = ρ1(σ)v1 ⊗ ρ2(σ)v2 and N(v1 ⊗ v2) = N1v1 +N2v2

for all σ ∈ WK and vi ∈ Vi, i = 1, 2. So we can define L-factors and
ε-factors associated to the tensor product (ρ1, N1)⊗ (ρ2, N2).

On the other hand, given two representations Π1 ∈ A(GLn1(K))
and Π2 ∈ A(GLn2(K)) and a fixed non-trivial aditive character ψ :
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K → C×, we can also define an L-factor L(s,Π1×Π2) and an ε-factor
ε(s,Π1×Π2,ψ) associated to the pair (Π1,Π2) (see [53] and Section 2
of [99]). Then we can formulate the Local Langlands Correspondence
for GLn as follows:

Theorem 1.1.2. — For any finite extension K/Qp there exists a col-
lection of bijetions

recK : A(GLn(K)) −→WDn(WK),

indexed by the positive integer n, satisfying the following porperties:
i) If Π ∈ A(GL1(K)) then recK(Π) = Π ◦ Art−1

K .
ii) If Π1 ∈ A(GLn1(K)) and Π2 ∈ A(GLn2(K)) then

L(s,Π1 × Π2) = L(s, recK(Π1)⊗ recK(Π2))

and

ε(s,Π1 × Π2,ψ) = L(s, recK(Π1)⊗ recK(Π2),ψ).

iii) If Π ∈ A(GLn(K)) and µ ∈ A(GL1(K)) then

recK(Π⊗ (µ ◦ det)) = recK(Π)⊗ recK(µ).

iv) If Π ∈ A(GLn(K)) and Π has central character ωΠ then

recK(Π∨) = recK(Π)∨ and det(recK(Π)) = recK(ωΠ).

This collection does not depend on the choice of ψ.

This formulation was given by Henniart in [48] and it has the
advantage that there is at most one such correspondence (see [49]).

As we saw in Theorem 1.1.1, if n = 1, the Local Langlands Conjec-
ture is a consequence of local class field theory. The existence of recK
with the desired properties was established by Kutzko [67] in the two
dimensional case and by Henniart [47] in the three dimensional case.
Finally the Local Langlands Conjecture for all n has been proved by
Harris, Taylor [45], Henniart [50] and Scholze [81] independently.

Remark 1.1.3. — As the Local Langlands Correspondence estab-
lishes a bijection between representations of GLn(K) and Weil-Deligne
representations of WK it is natural that certain properties of one side
correspond to properties on the other site (see Section 4.3 of [99]). For
example, if Π is an irreducible admissible representation of GLn(K)
we have that:
– Π is unramified if and only if recK(Π) is unramified,
– Π is supercuspidal if and only if recK(Π) is irreducible, and
– Π is essentially square-integrable if and only if recK(Π) is inde-

composable.
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Sometimes it is useful to interpret a Weil-Deligne representation as
a continuous complex semi-simple representation of the Weil-Deligne
group W ′

K = WK × SL2(C). If φ : W ′
K → GLn(C) is such represen-

tation, which will be called an L-parameter for GLn, we associate a
Weil-Deligne representation (ρ,N) by the formulas

ρ(w) = φ

(
w,

(
|w|1/2K 0

0 |w|−1/2
K

))
and exp(N) = φ

(
1,

(
1 1
0 1

))
.

A result of Kostant assures that two L-parameters are isomorphic if
and only if the corresponding Weil-Deligne representations are isomor-
phic (see [66]). Then the previous theorem induces a natural collection
of bijections (which by abuse of notation we denote also by recK)

recK : A(GLn(K)) −→ ΦK(GLn)

between the set A(GLn(K)) of equivalence classes of irreducible ad-
missible representations of GLn(K) and the set ΦK(GLn) of conju-
gacy classes of L-parameters for GLn, one for each n, associating an
L-parameter φΠ := recK(Π) : W ′

K → GLn(C) to a representation Π
of GLn(F ).

1.2. Algebraic automorphic representations

In this section we shall assume familiarity with the basic theory of
automorphic representations as in [12].

Let F be a totally real field. We will denote by VF (resp. V∞, resp.
Vfin) the set of places (resp. archimedean places, resp. finite places) of
F , by Fv the completion of F at v ∈ V and by Ov the ring of integers
of Fv if v ∈ Vfin. Recall that there is a bijection between the set of
finite places of F and the set of primes of F , where by a prime of F
we mean a maximal ideal of its ring of integers OF . If p is the prime
associated to the finite place v of F , instead of Fv (resp. Ov) we also
write Fp (resp. Op). Moreover, for short we will write Frobp (resp. Ip,
resp. Wp, resp. recp) instead of FrobFp (resp. IFp , resp. WFp , resp.
recFp).

As usual, AF (resp. Afin) will denote the ring of adeles (resp. finite
adeles) of F . We will write ArtR for the unique continuous surjection
R× � Gal(C/R). From global class field theory we have that the
product of the local Artin maps gives us an isomorphism

(2) ArtF : A×F/F×(F×∞)0 −→ Gab
F ,

where (F×∞)0 denotes the connected component of the identity in F×∞
and GF denotes the absolute Galois group Gal(F/F ) of F .
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Let JF be the set of all embeddings of F into Q ⊆ C and

µ : A×F/F
× −→ C×

a continuous character. We will say that µ is algebraic (∗) if for all
τ ∈ JF there exist aτ ∈ Z such that

µ|(F×∞)0(x) =
∏
τ∈JF

(τx)aτ .

In this case, fixing a prime ` and an isomorphism ι : Q`
∼= C, we can

attach to µ a unique character

ρ`,ι(µ) : GF −→ Q×`
such that for any prime p - ` of F we have that

ρ`,ι(µ)|GFp = µp ◦ Art−1
Fp
,

where GFp denotes the absolute Galois group Gal(F p/Fp) of Fp. See
Section 4.1 of [22] for more details.

In the rest of this section we extend, at least partially, this corre-
spondence to automorphic representations of GLn(AF ). First, recall
that an automorphic (resp. cuspidal) representation Π of GLn(AF )
is an irreducible representation of the global Hecke algebra H of
GLn(AF ) which is isomorphic to a subquotient of a representation
of H in the space of automorphic (resp. cusp) forms on GLn(AF ).
Note that GLn(AF ) is the direct product of GLn(Afin) and GL∞n ,
where GLn(Af ) :=

∏′
v∈Vfin

GLn(Fv) (restricted product) and GL∞n :=∏
v∈V∞ GLn(Fv) which can be viewed canonically as the group of real

points of ResF/Q GLn. Considering this decomposition it can be proved
that each automorphic representation Π of GLn(AF ) decomposes into
a restricted tensor product of local irreducible admissible representa-
tions

Π =
′⊗
v

Πv

such that for almost all v ∈ Vfin the local representation Πv (sometimes
denoted by Πp) has a vector fixed by GLn(Ov). If Πp does not have
such vector, we will say that Π is ramified at p (see [37] or Lecture 3
of [23]).

Let n = n1 + · · · + nr be a partition of n and P = P (n1, . . . , nr)
be a standard parabolic subgroup of GLn. For each v ∈ V , let σi be

∗. These characters are precisely the Hecke character taking algebraic values,
so the name “algebraic". They were introduced by Weil in [100] under the name:
characters of type A0. Such characters occur, for example, in the theory of complex
multiplication.
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a square-integrable representation of GLni(Fv) modulo the center and
ωσi = | |si its central character over F×v for si ∈ R. Up to permutation
we can assume that s1 ≥ s2 ≥ · · · ≥ sr. Then the representation

%v = Ind
GLn(Fv)
P (Fv) (σ1 ⊗ · · · ⊗ σr ⊗ 1) = %v(σ1, . . . , σr)

has exactly one irreducible quotient which occurs with multiplicity
one. Such quotient will be called the Langlands quotient of %v. The
main result of [68] states that every irreducible representation of
GLn(Fv) is isomorphic to the Langlands quotient of a representation
%v(σ1, . . . , σr). Moreover, Langlands proved in loc. cit. that every
automorphic representation of GLn(AF ) is isomorphic to a subquotient
of

(3) % = Ind
GLn(AF )
P (AF ) (σ ⊗ 1),

where Ind denotes the unitary parabolic induction and σ denotes
a cuspidal representation of the Levi factor M(AF ) of a standard
parabolic subgroup P (n1, . . . , nr) of GLn(AF ). So we can write σ as a
tensor product σ1⊗· · ·⊗σr of cuspidal representations σi of GLni(AF ).

To extend the definition of Langlands quotient to the local compo-
nents of (3) we will use the fact that every generic irreducible represen-
tation of GLn(Fv) can be written as the full induction %v(σ1, . . . , σr)
for some square-integrable representations σ1, · · · , σr of GLni(Fv) and
that the local components of a cuspidal automorphic representation
of GLn(AF ) are generic. Going back to (3), we can note that the local
component of % at the place v can be write as

%v = Ind
GLn(Fv)
P (Fv) (σ1,v ⊗ · · · ⊗ σr,v ⊗ 1).

As the σi,v are generic, they can be write as the full induction of a
tensor product of square-integrable representations:

σi,v = Ind
GLni (Fv)

Pi(Fv) (ϑ1
i,v ⊗ · · · ⊗ ϑ

ri
i,v ⊗ 1).

Then we have, inducing by steps, that %v is the full induction of a
tensor product of the ϑi’s and it contains the corresponding Langlands
quotient with multiplicity one.

Let Π =
⊗′

v Πv be an automorphic representation of GLn(AF ).
This representation is a subquotient of a representation % = ⊗′v%v as
in (3). We will say that Π is isobaric if for every place v ∈ V the
local representation Πv is the Langlands quotient of %v. The isobaric
representations form a category stable under the tannakian operations
� (isobaric sum) and � (exterior tensor product) modulo the main
conjecture for GLn. See Section 1.1 of [20] for details.
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Unfortunately, this category is too big to codify the arithmetic infor-
mation as the algebraic characters do in dimension one. In order to de-
fine a subcategory playing the analogous role of algebraic characters we
need to recall the Local Langlands Correspondence for GLn(R). This
correspondence establishes a bijection (Langlands normalization):

recR : A(GLn(R)) −→Wn(WR),

where A(GLn(R)) denotes the set of infinitesimal equivalence classes
of irreducible admissible representations of GLn(R) and Wn(WR) de-
notes the set of continuous semi-simple representations of WR into
GLn(C). The proof of this correspondence is known for a long time
and follows from the classification of infinitesimal equivalences classes
of admissible representations of GLn(R). See the survey article of
Knapp [65] for more details about this correspondence.

Let Π =
⊗′

v Πv be an automorphic representation of GLn(AF ) and
recall that WR = C× ∪ C×j, with j2 = −1 and jzj−1 = z for z ∈ C×.
Then for each τ ∈ JF we have a semi-simple representation

ρτ : C× −→ GLn(C)

given by applying recR to the archimedean local component Πv of Π,
where v is the archimedean place induced by τ , and forgetting the
non-connected component of WR.

Definition 1.2.1. — An automoprhic representation Π =
⊗′

v Πv of
GLn(AF ) is algebraic if it is isobaric and for all τ ∈ JF and 1 ≤ i ≤ n
there exist pτ,i, qτ,i ∈ Z such that the representation ρτ has the form

ρτ = µτ,1 ⊕ · · · ⊕ µτ,n
with µτ,i(z) = |z|(n−1)/2

C zpτ,i(z)qτ,i . The tuple p = (pτ,1, . . . , pτ,n)τ∈JF
will be called the infinity type of Π. We say that Π is regular algebraic
if for each τ ∈ JF we have that pτ,i 6= pτ,j for all i 6= j.

The factor |z|(n−1)/2
C in the previous definition is fastidious but can-

not be avoided because the Langlands parametrization is "transcen-
dental" and then without this factor the representations behaves badly
with respect to the rationality properties.

On the other hand, let Π = Π∞ ⊗ Πfin be an automorphic rep-
resentation of GLn(AF ), where Πfin =

⊗
v∈Vfin

Πv denotes the finite
part of Π. Note that Πfin is an irreducible admissible representation
of GLn(Afin). As GLn(Afin) is a totally disconnected group, we can
consider its smooth representations over any subfield of C and con-
sequently we can define its field of rationality as the smallest field E
such that Πσ

fin
∼= Πfin for all σ ∈ Aut(C/E). Assuming that Π is reg-

ular algebraic it can be proved that the field of rationality of Πfin is
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a number field. Moreover, it is expected that this result is true with-
out the hypothesis of regularity (see Section 3 of [20]). In fact, it is
expected that if Π = Π∞ ⊗ Πfin is an arbitrary cuspidal automorphic
representation of GLn(AF ) and Πfin is defined over a number field E,
then Π is algebraic. This conjecture is a theorem for n = 1 [98].

On the other hand, it can be proved that if Π is an algebraic
cuspidal automorphic representation of GLn(AF ) with infinity type
p = (pτ,1, . . . , pτ,n)τ∈JF , then there exists an integer w such that

(4) pτ,i + qτ,i = w

for all τ ∈ JF and i ∈ {1, . . . , n}. So we will say that Π is pure of
weight w. Note that in this case, the tuple q = (qτ,1, . . . , qτ,n)τ∈JF is
defined up to order by (4).

Combining all these hypotheses and thanks to the work of Harris-
Lan-Taylor-Thorne [46], Scholze [82] and Varma [97], we have that
given a regular algebraic cuspidal automorphic representation Π of
GLn(AF ), a fixed prime ` and an isomorphism ι : Q`

∼= C, we can
attach to Π a continuous semi-simple representation

ρ`,ι(Π) : GF −→ GLn(Q`)

such that for any prime p - ` of F we have that

(5) WD(ρ`,ι(Π)|GFp )F-ss = ι−1 recp(Πp ⊗ | det |(1−n)/2
Fp

),

where WD denotes the Weil-Deligne representation associated to a
representation ofGFp and F-ss means the Frobenius semisimplification.
The property (5) is usually called local-global compatibility.

Before concluding this section it will be useful for us to review
the notion of algebraic cuspidal automorphic representation in the
"classical" case, i.e., when n = 2 and F = Q. In this case, at the
archimedean place we have a 2-dimensional representation ρ∞ : WR →
GL2(C) such that

ρ∞(z) = |z|1/2C (zpzq ⊕ zqzp),
with p+ q = w for all z ∈ C× ⊆ WR. Then we have 3 cases:
– If p 6= q, we are in the regular case. In this case we know that the

algebraic automorphic representation Π is associated to a classical
cusp form f of weight k = |p− q|+ 1. The rationality of Π is well
known and it is essentially a consequence of the Eichler-Shimura
isomorphism. In fact, the field of rationality is contained in the
number field generated by the Fourier coefficients of f relatively
primes with its level.

– If p = q, the representation of C× is trivial up to a power of the
half-Tate twist |z|1/2. If we extend it to an odd representation
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of WR given by w 7→ (1, sgnw), then Π is associated to a clas-
sical holomorphic cusp form of weight k = 1. In this case, the
rationality is a classical result too.

– If p = q, but we extend the representation of C× to an even
representation of WR, then Π is associated to a Maass form of
eigenvalue λ = 1/4. In this case the rationality of Π is unknown.

1.3. Compatible systems of Galois representations

Of particular interest for us will be the case when the algebraic
automorphic representations are essentially self-dual. In such case, it
can be shown that the image of the Galois representations attached
to them lies in an orthogonal or symplectic group and the local-global
compatibility is satisfied even if p|`. In this section we will review
some facts about this kind of automorphic representations and the
Galois representations associated to them.

Let F be a totally real field. By a RAESDC (regular algebraic, es-
sentially self-dual, cuspidal) automorphic representation of GLn(AF )
we mean a pair (Π, µ) consisting of a regular algebraic, cuspidal au-
tomorphic representation Π of GLn(AF ) and a continuous character
µ : A×F/F× → C× such that µv(−1) is independent of v ∈ V∞ and Π
is essentially self-dual, i.e.,

Π ∼= Π∨ ⊗ (µ ◦ det).

Let p = (pτ,1, . . . , pτ,n)τ∈JF be the infinity type of Π. After a
reordering we can assume that pτ,1 > · · · > pτ,n for each τ ∈ JF . So
we define the tuple a = (aτ,1, . . . , aτ,n)τ∈JF , which we call the weight
of Π, by the formula aτ,i = −(pτ,n+1−i + (i− 1)).

On the other hand, recall that a compatible system R = {ρΛ}Λ of
n-dimensional Galois representations of GF consists of the following
data:
i) A number field L.
ii) A finite set S of primes of F .
iii) For each prime p /∈ S of F , a monic polynomial Pp(X) ∈ OL[X].
iv) For each prime Λ of L (together with fixed embeddings L ↪→

LΛ ↪→ LΛ) a continuous Galois representation

ρΛ : GF −→ GLn(LΛ)

unramified outside S ∪ S` (where ` is the rational prime below Λ
and S` denotes the set of primes of F above `) and such that for
all p /∈ S ∪ S` the characteristic polynomial of ρΛ(Frobp) is equal
to Pp(X).
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Theorem 1.3.1. — Let (Π, µ) be a RAESDC automorphic represen-
tation of GLn(AF ) of weight a = (aτ,1, . . . , aτ,n)τ∈JF and S the finite
set of primes p of F where Π is ramified. Then there exists a num-
ber field L ⊆ C (which is finite over the field of rationality of Π) and
compatible systems of semi-simple Galois representations

ρΛ(Π) : GF −→ GLn(LΛ) and ρΛ(µ) : GF −→ L
×
Λ ,

where Λ ranges over all maximal primes of L (together with fixed
embeddings L ↪→ LΛ ↪→ LΛ) such that the following properties are
satisfied.
i) The representations ρΛ(Π) and ρΛ(µ) are unramified outside the

finite set S ∪ S`.
ii) ρΛ(Π) ∼= ρΛ(Π)∨ ⊗ χ1−n

` ρΛ(µ), where χ` denotes the `-adic cyclo-
tomic character.

iii) If p|`, then ρΛ(Π)|GFp and ρΛ(µ)|GFp are de Rham and if p /∈ S,
they are crystalline.

iv) For each τ ∈ JF and any L ↪→ LΛ over L the set of τ -Hodge-Tate
weights HTτ (ρΛ(Π)) of ρΛ(Π) is equal to

{aτ,1 + (n− 1), aτ,2 + (n− 2), . . . , aτ,n}.

v) Fix any isomorphism ι : LΛ
∼= C compatible with the inclusion

L ⊆ C with respect to the already fixed embedding L ↪→ LΛ ↪→ LΛ.
Whether p - ` or p|`, we have

ιWD(ρΛ(Π)|GFp )F−ss ∼= recp(Πp ⊗ | det |(1−n)/2
Fp

).

Proof. — This theorem follows from the analogous result for RACSDC
(regular algebraic, conjugate self-dual, cuspidal) automorphic repre-
sentations over CM fields, by using the Solvable Base Change Theorem
of Arthur-Clozel [5] and the Patching Lemma of [88]. The proof of
the existence of the representations ρΛ(Π), in the RACSDC case, can
be found in [19] and the strong form of local-global compatibility is
proved in [15] and [16].

A folklore conjecture assures that the representations ρΛ(Π) in the
previous theorem (or more generally the Galois representations as-
sociated to regular algebraic cuspidal automorphic representations Π
of GLn(AF )) are all irreducible. In the two dimensional case, the
conjecture was proved by Ribet [79] when Π comes from a classical
modular form of weight k ≥ 2 and extended to Hilbert modular forms
of arithmetic weight by Taylor in [93]. Moreover, it is known that the
conjecture is true for essentially self-dual representations of GL3(AF )
(see [10]). To the best of our knowledge, in the four dimensional case
the best result is the following theorem due to Calegari and Gee [14].
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Theorem 1.3.2. — Let F be a totally real field and (Π, µ) a RAESDC
automorphic representation of GL4(AF ). Then there is a density one
set of primes L such that if Λ lies over a prime in L, then ρΛ(Π) is
irreducible.

In the general case very little is known. However, if we impose
certain conditions on the local components of Π, we can prove irre-
ducibility in several important cases. For example, in [95] Taylor and
Yoshida proved this conjecture for all RAESDC automorphic represen-
tations of GLn(AF ) which are square-integrable at some finite place.
More results in this direction will be given in the following chapters.

We finish this section by saying a few words about the information
that give us the Theorem 1.3.1 about the compatible system R(Π) =
{ρΛ(Π)}Λ and its residual representations which we will denote by
ρΛ(Π). In the rest of this section, for simplicity, we will assume that
n is even and F = Q.

Remark 1.3.3. — Let p be a prime where Π is unramifed. Then
it can be shown that for each prime Λ - p of L we have that
Tr(ρΛ(Π)(Frobp)) belongs to the field of rationality of Π (then to
L). Therefore, if the residual representation ρΛ(Π) is absolutely ir-
reducible, then ρΛ(Π) can be defined over LΛ (See [18]).

Remark 1.3.4. — If we assume that ρΛ(Π) is irreducible, then part
ii) of Theorem 1.3.1 implies that the image of ρΛ(Π) is contained
in GSpn(OLΛ

) or in GOn(OLΛ
) (possibly after a conjugation by an

element of GLn(LΛ)).

Remark 1.3.5. — Part v) of Theorem 1.3.1 implies that, while p
and ` are different, the restriction of ρΛ(Π) to a decomposition group
Dp := GQp ⊆ GQ is independent of ` and it can be determined (up
to Frobenius semisimplification) from the local component Πp, via the
Local Langlands Correspondence.

As we will see through this thesis, the possibility of prescribing the
restriction of ρΛ(Π) to Dp for a finite number of primes p, will be one
of the essential ingredients for controlling the image of ρΛ(Π) in the
next chapters.

1.4. Langlands Functoriality for the split reductive groups

Another central part of the Langlands Program, which will also
be an important tool through this work, is the so-called Langlands
Functoriality. Through this section we give a brief survey about this
subject. So we shall assume familiarity with the basic theory of split
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reductive groups over fields as in Chapter I of [71]. In particular,
through this text, we will assume that all split reductive groups are
connected.

LetG be a split reductive group over a field and T be a maximal split
torus in G. To the couple (G, T ) we can associate a set R(G, T ) :=
{X∗(T ), R,X∗(T ), R∨} of combinatorial data, called a root datum for
G (it is easy to see that any two split maximal tori are conjugate,
then R(G, T ) depends only on G up to isomorphism). See Section 1.1
of loc. cit. for details. It can be proved that isogenies of root data
correspond to isogenies of split reductive groups and that every root
datum arises from a split reductive group. Thus the split reductive
groups over K are classified by the root data (see Section 1.6 and 1.7
of [71]). If we dualize R(G, T ) we obtain a dual datum R∨(G, T ) :=

{X∗(T ), R∨, X∗(T ), R} which determines a complex group Ĝ called
the Langlands dual of G. For example if G = SO2m+1 then Ĝ =

Sp2m(C) and if G = SO2m then Ĝ = SO2m(C) (see [62] for more
details and examples).

For a general split reductive group the presence of endoscopy makes
the formulation of the Local Langlands Correspondence more compli-
cated. More precisely, let G be a split reductive group over a local
field K of characteristic zero, A(G) the set of equivalence classes of
irreducible admissible representations of G and ΦK(G) the set of con-
jugacy classes of L-parameters φ : W ′

K → Ĝ. The Local Langlands
Correspondence predicts the existence of a surjective map

A(G) −→ ΦK(G)

with finite fibres, which give us a partition of A(G) into a disjoint
union of finite subsets Aφ(G) called L-packets. This map should pre-
serve natural invariants (γ-factors, L-factors and ε-factors) attached
to both sides. Unfortunately, on the representation theoretical side,
we only have a general theory of these invariants for generic represen-
tations of G (see [85]).

As we saw in the previous sections, the Local Langlands Corre-
spondence is known when K is a finite extension of Qp or R and
G = GLn. In fact, for K = R or C the Local Langlands Cor-
respondence was completely established by Langlands. Another ex-
ample where the Local Langlands Correspondence is known, is when
K is a local field of characteristic zero and G = GSp4 (in this case
Ĝ = GSpin5(C) ∼= GSp4(C)). This example will be studied in detail
in Section 3.2.
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Let K be a finite extension of Qp and G a split reductive group over
K. Let

ξ : Ĝ −→ ĜLn

be a complex analytic representation, where ĜLn = GLn(C). This
is an example of what Langlands calls L-homomorphism. Lang-
lands’ Principle of Functoriality predicts that associated to the L-
homomorphism ξ there should be a natural lift of admissible repre-
sentations from A(G) to A(GLn(K)). To be more precise, we start
with π ∈ A(G). Assuming the Local Langlands Correspondence for
G, we have an L-parameter φ ∈ Φ(G) associated to π. Then via the
diagram

W ′
K

Ĝ ĜLn

π 7−→ 7−→ Π

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

φ
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..............
............

φ

..................................................................................................................... ............
ξ

we obtain an L-parameter φ ∈ ΦK(GLn) and hence, by Theorem 1.1.2,
a representation Π of GLn(K). We refer to Π as the local functorial
lift of π. As part of the formalism we obtain an equality of local
L-functions

L(s, π, ξ) = L(s, ξ ◦ φ) = L(s,φ) = L(s,Π),

and similar equalities for the associated ε-factors.
Now, let F be a totally real field and G be a split reductive group

over F . As above, let ξ : Ĝ → ĜLn be an L-homomorphism. Then
there is also a global principle of functoriality which predicts that
associated to the L-homomorphism ξ there should be a natural lift of
automorphic representations of G(AF ) to automorphic representations
of GLn(AF ).

A concrete formulation of this principle can be given trough the
Local Langlands Functoriality and a local-global principle. More pre-
cisely, let π = ⊗′vπv be an automorphic representation of G(AF ). If we
assume the Local Langlands Correspondence, for each component πv
of π we have a local functorial lift Πv as a representation of GLn(Fv).
Then an automorphic representation Π = ⊗′vΠv of GLn(AF ) will be
called a functorial lift of π if there is a finite set of places S such that
Πv is the local functorial lift of πv for all v /∈ S. In particular, we will
say that the functorial lift is strong if S = ∅. Note that Π being a
functorial lift of π entails an equality of partial L-functions

LS(s, π, ξ) = LS(s,Π)
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as well as for ε-factors.
Local and global functoriality has been established in many cases

for generic representations of G. For example, when G is a split
classical group with the natural embedings (i.e., if G = SO2m+1 and
ξ : Sp2m(C) → GL2m(C)), G = SO2m and ξ : SO2m(C) → GL2m(C),
and G = Sp2n and ξ : SO2m+1 → GL2m(C)), this was established
in [24] and [25]. Moreover, when G = GSp4 and ξ : GSpin5(C) →
GL4(C), the strong version has been established (we will give more
details about this example in Section 3.3).



CHAPTER 2

HILBERT MODULAR FORMS

In this chapter we construct families of Hilbert modular newforms
without exceptional primes. This is achieved by generalizing the no-
tion of good-dihedral primes, introduced by Khare and Wintenberger
in their proof of Serre’s modularity conjecture, to totally real fields.

In this section we will assume familiarity with the basic theory of
Hilbert modular forms. See section 1 of [30] or [31] for a survey about
the subject.

2.1. Inner twists and complex multiplication

In this section we review some facts on inner twists and complex
multiplication for 2-dimensional Galois representations. Our main
reference is [1].

Let K be an `-adic field with the `-adic topology or a finite field
with the discrete topology and L/K a finite Galois extension with
Galois group Γ := Gal(L/K) endowed with the Krull topology. Let F
be a totally real field and E = {ε : GF → L×} be the set of continuous
characters from GF to L×. Note that our assumptions imply that the
image of ε lies in a finite extension of K and that Γ acts on E on the
left by composition: γε := γ ◦ ε. Then we can form the semi-direct
product G := E o Γ induced by this action. Concretely, the product
and inverse in G are defined as:

(γ1, ε1) · (γ2, ε2) := (γ1γ2, (
γ1ε2)ε1) and (γ, ε)−1 := (γ−1,γ

−1

(ε−1)).

Consequently, we have the exact sequence:

1 −→ E i−→ G π−→ Γ −→ 1

where i (resp. π) is defined as ε 7→ (1, ε) (resp. (γ, ε) 7→ γ).
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In this chapter we will consider only 2-dimensional Galois repre-
sentations ρ : GF → GL2(L), however the next results are valid for
arbitrary n-dimensional Galois representations.

Let ρ, ρ′ : GF → GL2(L) be Galois representations. We say that
ρ and ρ′ are equivalent (denoted ρ ∼ ρ′) if they are conjugate by
an element of GL2(L). We denote the set of equivalence classes by
GL2(GF , L) and note that G acts on GL2(GF , L) from the left as
follows:

(γ, ε) · [ρ] := [(γρ)⊗L ε−1],

where γ ∈ Γ, ε ∈ E and [ρ] ∈ GL2(GF , L).
Let [ρ] ∈ GL2(GF , L). Define G[ρ] to be the stabilizer group of [ρ] in

G under the G-action on GL2(GF , L). This group is called the inner
twists group of [ρ]. Explicitly, (γ, ε) ∈ G is an inner twist of [ρ] if and
only if [ρ] = [(γρ)⊗L ε−1], which is the case if and only if

[γρ] = [ρ⊗L ε].

In particular, if [ρ], [ρ′] ∈ GL2(GF , L) are absolutely irreducible and
such that Tr(ρ(g)) = Tr(ρ′(g)) for all g ∈ GF , then [ρ] = [ρ′]. There-
fore we have for all [ρ] ∈ GL2(GF , L) absolutely irreducible that

G[ρ] = {(γ, ε) ∈ G : γ(Tr(ρ(g))) = Tr(ρ(g))ε(g), ∀g ∈ GF}.

Then we can define the groups:

Γ[ρ] := π(G[ρ]) ⊆ Γ, E[ρ] := i−1(G[ρ]) = i−1(ker(π|G[ρ]
))

and
∆[ρ] := {γ ∈ Γ[ρ] : (γ, 1) ∈ G[ρ]}.

Let [ρ] ∈ GL2(GF , L) be (residually) absolutely irreducible. Let
χ : GF → K× be any character and ψ : GF → L× be a character of
finite order. Assume that det ρ = ψχ and that the field E[ρ] := L∆[ρ]

contains the square roots of the values of ψ. Then the equivalence class
[ρ] contains a representation that can be defined over the field E[ρ] and
E[ρ] is the smallest such subfield of L. Moreover, E[ρ] is generated over
K by the traces Tr(ρ(g)) for g ∈ GF . Consequently, E[ρ] is called the
field of definition of [ρ].

Now, let ρ1, ρ2 : GF → PGL2(L) be projective representations. We
call ρ1 and ρ2 equivalent (also denoted ρ1 ∼ ρ2) if they are conjugate
by the class (modulo scalars) of a matrix in GL2(L). The equivalence
classes of ρi is also denoted [ρi] and the set of such equivalence class
is denoted by PGL2(GF , L). In particular, for ρ : GF → GL2(L),
we denote by ρproj the composition of ρ with the natural projection
GL2(L)→ PGL2(L).
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For [ρ] ∈ GL2(GF , L) and ε ∈ E we have ρproj ∼ (ρ ⊗ ε)proj.
Conversely, if [ρ1], [ρ2] ∈ GL2(GF , L) are such that ρproj

1 ∼ ρproj
2 , then

there is ε ∈ E such that [ρ1] ∼ [ρ2 ⊗ ε]. Thus we have that

Γ[ρ] = {γ ∈ Γ : γρproj ∼ ρproj}.

Define the field K[ρ] = LΓ[ρ] . If ρproj factors as GF → PGL2(K̃) →
PGL2(L) for some field K ⊆ K̃ ⊆ L, then K[ρ] ⊆ K̃. Moreover, if [ρ]
is such that its restriction to the subgroup

I[ρ] :=
⋂

{ε∈E:∃(γ,ε)∈G[ρ]}

ker(ε)

is (residually) absolutely irreducible (in particular, this implies that [ρ]
has no complex multiplication), then the equivalence class of ρproj has
a member that factors through PGL2(K[ρ]) and K[ρ] is the smallest
subfield of L with this property. Consequently, K[ρ] is called the
projective field of definition of [ρ].

Remark 2.1.1. — Note that if E[ρ] contains the square roots of ψ,
then ∆[ρ] is an open normal subgroup of Γ[ρ] and hence E[ρ]/K[ρ] is a
finite extension with Galois group Γ[ρ]/∆[ρ]. In particular, if [ρ] does
not have any nontrivial inner twist and no complex multiplication,
L = E[ρ] = K[ρ].

Now we will give a couple of lemmas similar to Proposition 3.3 of
[1], which will be very useful to prove the last result of this section.

Lemma 2.1.2. — Let K be a finite field of characteristic ` and [ρ] ∈
GL2(GF , L). Let L be a prime of F above `, IL ⊆ GF the inertia group
at L and h, t two integers. Suppose that

(ρ⊗ ψt1)|IL '
(
ψb2h ∗
0 ψb`

h

2h

)
,

where ψ2h is a fundamental character of niveau 2h, ψ1 is the mod-`
cyclotomic character and b = a0 + a1` + . . . + a2h−1`

2h−1 is such that
0 ≤ ai <

`−1
4

and a0 + ah = . . . = ah−1 + a2h−1. Then the character ε
is unramified at L for all (γ, ε) ∈ G[ρ].

Proof. — Note that the restriction to IL of the determinant of ρ is
ψa−t1 , where a = ai + ah+i (i = 0, · · · , h − 1). We know that any
exponent x of ψ2h is of the form

2h∑
j=1

a(j)`j−1,
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where {a(j) : j = 1, 2, . . . , 2h − 1} is a cyclic permutation of the
elements of S = {a0, . . . , a2h−1}. Then we have the following estimate
for x:

(6) 0 ≤ x =
2h∑
j=1

a(j)`j−1 <

2h∑
j=1

`− 1

4
`j−1 =

`2h − 1

4
.

Let (γ, ε) ∈ G[ρ]. As K is a finite field, γ acts by raising to the
`c-th power for some c. In particular γψ2h = ψ`

c

2h. This shows that
γ(ρ⊗ψt1)|IL has the same shape as (ρ⊗ψt1)|IL except that the elements
of S are permuted. Taking the determinant on both sides of γρ ∼=
ρ ⊗ ε yields that ε|IL has order dividing 2, as γ acts trivially on the
cyclotomic character. Moreover, looking at any diagonal entry we get

(7) ψx2h = ψy2h · ε|IL
for some exponents x and y.

If we assume that the order of ε|IL is 2, then we have

ε|IL = ψ
`2h−1

2
2h .

But, as the order of ψ2h is `2h−1, equation (7) implies that `2h−1
2

+y−x
is divisible by `2h − 1. Thus we get a contradiction because y and x
are smaller than `2h−1

4
by (6). Therefore ε|IL is trivial, then unramified

at L.

Lemma 2.1.3. — Let K be a finite field of characteristic ` and [ρ] ∈
GL2(GF , L). Let L be a prime of F above `, IL ⊆ GF the inertia group
at L and h, t two integers. Suppose that

(ρ⊗ ψt1)|IL '
(
ψah ∗
0 ψbh

)
,

where ψh is a fundamental character of niveau h, ψ1 is the mod-`
cyclotomic character and a, b are of the form a = a0 + a1` + . . . +
ah−1`

h−1 and b = ah + ah+1` + . . . + a2h−1`
h−1 with 0 ≤ ai <

`−1
4

and
a0 + ah = . . . = ah−1 + a2h−1. Then the character ε is unramified at L
for all (γ, ε) ∈ G[ρ].

Proof. — The proof is analogous to the proof of Lemma 2.1.2.

We will say that the representations in Lemma 2.1.2 and Lemma
2.1.3 have tame inertia weights at most k if ai ≤ k for all i.

On the other hand, we will now assume that L/K is a finite Galois
extension of number fields. Let S be a finite set of primes of F andR =
{ρΛ}Λ a compatible system of 2-dimensional Galois representations
ρΛ : GF → GL2(LΛ) unramified outside S ∪ S`.
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Let a ∈ Z and ψ : GF → L× be a continuous finite order character.
We say that the compatible system R = {ρΛ}Λ has determinant ψχa` ,
if for all primes Λ, the determinant of ρΛ is ψχa` with χ` the `-adic
cyclotomic character.

In the rest of this section we will assume that R = {ρΛ}Λ is almost
everywhere absolutely irreducible (i.e., all its members ρΛ are abso-
lutely irreducible except for finitely many primes Λ of L) and that it
has determinant ψχa` .

Note that for the number fields L/K with the discrete topology we
can define E , Γ and G in the same way as we did for `-adic or finite
fields.

For the compatible system R = {ρΛ}Λ and a prime p of F not in S,
we will denote by ap the coefficient in front of X of Pp(X). We define

GR := {(γ, ε) ∈ G : γ(ap) = ap · ε(Frobp), ∀p /∈ S},

ΓR := π(GR) ⊆ Γ, ER := i−1(GR) = i−1(ker(π|GR))

and
∆R := {γ ∈ ΓR : (γ, 1) ∈ GR}.

We say that the compatible system R has no complex multiplication
if ER = {1}. The field ER := L∆R (resp. KR := LΓR) is called the
field of definition (resp. projective field of definition) of R.

If ER contains the square roots of the values of ψ we have that ∆R
is a normal subgroup of ΓR, hence ER/KR is a Galois extension with
Galois group ΓR/∆R. In particular, γ(ER) = ER for all γ ∈ ΓR.

Proposition 2.1.4. — Let R = {ρΛ}Λ be a compatible system and
assume that ER contains the square roots of the values of ψ. Then
for each prime Λ of L such that ρΛ is residually absolutely irreducible,
the equivalence class [ρΛ] contains a representation that can be defined
over the field (ER)Λ and (ER)Λ is the smallest such field. Moreover,
ER is generated over K by the set {ap : p prime of F not in S}.

Proof. — This is just Proposition 4.3.b of [1] with n = 2.

Let R = {ρΛ}Λ be a compatible system. For each prime Λ of L
(resp. λ of K) we denote by LΛ (resp. by Kλ) the completion of
L (resp. of K) at Λ (resp. λ). If ρΛ ∈ R is residually absolutely
irreducible, it can be proved that the equivalence class of ρΛ contains
a member that is defined over LΛ. Then we can consider the Galois
extension LΛ/Kλ and define ΓΛ := Gal(LΛ/Kλ), EΛ := {ε : GF → L×Λ}
(the set of continuous characters from GF to L×Λ) and GΛ := EΛ o ΓΛ.
On the other hand, we know that for the equivalence class of ρΛ the
stabilizer group G[ρΛ] of [ρΛ] is of the form G[ρΛ] = E[ρΛ] o Γ[ρΛ].
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Proposition 2.1.5. — Let R = {ρΛ}Λ be a compatible system and
assume that L contains the square roots of the values of ψ. Then for
each prime Λ of L such that ρΛ is residually absolutely irreducible,
the projective field of definition of [ρΛ] is the completion of KR at the
prime λ below Λ, i.e., K[ρλ] = (KR)λ.

Proof. — This is Theorem 4.5 of [1].

Given a compatible system R = {ρΛ}Λ we can also talk about the
residual representations ρΛ. If M is a local field, we denote by κ(M)
its residue field. Let Λ be a prime of L and assume that ρΛ is defined
over LΛ. We consider the Galois extension κ(LΛ)/κ(Kλ) with Galois
group ΓΛ. Moreover, for the equivalence class [ρΛ] of the residual
representation ρΛ we can define G[ρΛ], E[ρΛ] and Γ[ρΛ].

Proposition 2.1.6. — Let R = {ρΛ}Λ be a compatible system and
assume that L contains the square roots of the values of ψ. Assume
that the restriction to the inertia group IL of [ρΛ], for the primes
L of F lying over the residue characteristic of Λ, is as in Lemma
2.1.2 or Lemma 2.1.3. Moreover, assume that there is an integer k
(independent of Λ) such that the representations have tame inertia
weights at most k. Then for all primes Λ of L, except possibly finitely
many, the projective field of definition of [ρΛ] is κ((Kρ•)λ).

Proof. — The proof is analogous to the proof of Theorem 4.6 of [1] if
we replace Proposition 3.3 of [1] by Lemma 2.1.2 and Lemma 2.1.3.

Remark 2.1.7. — Note that ψ has finite order is a condition needed
to ensure that all ε occurring in the inner twists are of finite order
and the condition on the square roots of the values of ψ ensure that ε
take its values in ER. Moreover, the absolute irreducibility condition
is needed to ensure that the representations are determined by the
characteristic polynomials of Frobenius and the condition on the shape
above ` is needed to exclude that the residual inner twists ramify at
`.

A guiding example the reader may have in mind is the compatible
system of Galois representationsRf = {ρf,Λ}Λ associated to a classical
modular form f =

∑
n≥1 an(f)qn ∈ Sk(N,ψ) as in the introduction.

In this case the field ERf is Qf = Q(ap(f) : (n,N) = 1) and the field
KRf is Ff = Q(ap(f)2

ψ(n)
: (n,N) = 1).
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2.2. Galois representations and Hilbert modular forms

Let F be a totally real field of degree d and recall that JF denotes the
set of all embeddings of F into Q ⊆ C. An element k =

∑
τ∈JF kττ ∈

Z[JF ] is called a weight. We always assume that the kτ have the
same parity and are all ≥ 2. We put k0 := max{kτ : τ ∈ JF} and
mτ = (k0−mτ )/2. Let n be an ideal of OF and ψ be a Hecke character
of conductor dividing n with infinity type 2 − k0. Consider a Hilbert
modular newform f ∈ Sk(n, ψ) over F . By a theorem of Shimura [86]
the Fourier coefficients ap(f) of f , where p is a prime of F , generate
a number field Ef .

By the work of Ohta, Carayol, Blasius-Rogawski, Wiles and Taylor
[91] and the Local Langlands Correspondence for GL2 (see [17]), we
can associate to f a 2-dimensional strictly compatible system of Galois
representations Rf = {ρf,ι}ι of GF . Specifically, following Khare and
Wintenberger [60] Rf consists of the following data:
i) For each prime ` and each embedding ι = ι` : Ef ↪→ Q`, a

continuous semi-simple representation

ρf,ι : GF → GL2(Q`)

unramified outside a finite set of primes of F and its restrictions
to the decomposition groups at the primes above ` are potentially
semi-stable.

ii) For each prime q of F , a Frobenius semi-simple Weil-Deligne
representation ρq with values in GL2(Ef ) such that:
(a) ρq is unramified for all q outside a finite set of primes, and
(b) for each rational prime `, for each prime q - ` and for

each ι : Ef ↪→ Q` the Frobenius semi-simple Weil-Deligne
representation associated to ρf,ι|Dq is conjugated to ρq via
the embedding ι.

iii) For each τ ∈ JF , the set of τ -Hodge-Tate weights HTτ (ρf,ι) of ρf,ι
is equal to

{mτ , k0 −mτ − 1}.
In particular, we have that the compatible system Rf = {ρf,ι}ι is

associated to f in the sense that for each prime q - n`, the character-
istic polynomial of ρf,ι(Frobq) is

X2 − ι(aq(f))X + ι(ψ(q)NF/Q(q)).

Now we introduce a description of the compatible system ρf similar
to what we saw in the previous section. Let ι : Ef ↪→ Q` be an
embedding. Denote by Eι the closure of ι(Ef ) and by Oι the closure
of ι(OEf ) in Q`. Let ($) be the maximal ideal of the local ring Oι.
Then Λ := OEf ∩ ι−1(($)) is a maximal ideal of OEf above ` and Eι
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can be identified with Ef,Λ (the completion of Ef at Λ with ring of
integers Of,Λ = (OEf )Λ). Thus we can identify ρf,ι with the Λ-adic
representation

ρf,Λ : GF → GL2(Of,Λ).

More precisely, the composition of ρf,Λ with the natural inclusion
Of,Λ ↪→ Q` equals ρf,ι. Moreover, it can be proved that ρf,Λ is totally
odd (i.e., det(ρf,Λ(cτ )) = −1 for all complex conjugations cτ , τ ∈ JF )
and unramified outside the finite set of primes dividing n`.

Remark 2.2.1. — Note that the existence of the compatible system
Rf with the desired properties follows also from Theorem 1.3.1. In-
deed given a Hilbert modular form f ∈ Sk(n, ψ) as above we can con-
struct a regular algebraic cuspidal automorphic representation Πf of
GL2(AF ) with central character ωΠf (the Artin’s character associated
to ψ) and infinity type p = (p1,τ , p2,τ )τ∈JF such that kτ = |p1,τ−p2,τ |+1
(see Section 3.C of [42] and the example in Section 1.2.3 of [20]). Fi-
nally, as any cuspidal automorphic representation of GL2(AF ) is es-
sentially self-dual, we can take Rf as the compatible system R(Πf )
associated to the RAESDC automorphic representation Πf as in The-
orem 1.3.1.

Let κ(Ef,Λ) = OEf/Λ = FΛ be the residue field of Ef,Λ. By taking
a Galois stable OEf -lattice, we define the mod ` representation

ρf,Λ : GF → GL2(FΛ),

whose semisimplification is independent of the particular choice of
a lattice. Recall that, according to the first section, ρproj

f,Λ denotes
the projective quotient of ρf,Λ, i.e., ρf,Λ composed with the natural
projection GL2(FΛ)→ PGL2(FΛ).

Theorem 2.2.2. — Let R = {ρf,Λ}λ be a compatible system asso-
ciated to a Hilbert modular newform f ∈ Sk(n, ψ) without complex
multiplication. Let KRf = Kf be the projective field of definition of
ρf,Λ, λ = Λ ∩ Kf and κ(Kf ) = OKf/λ = Fλ. Then for almost all Λ

the image ρproj
f,Λ (GF ) is either PSL2(Fλ) or PGL2(Fλ).

Proof. — By a result of Taylor [93, Proposition 1.5] ρf,Λ is absolutely
irreducible for almost all Λ. Then the result follows directly from the
work of Dimitrov [30, Proposition 3.8] and Proposition 2.1.6.

Definition 2.2.3. — We say that a prime Λ of Ef is nonexcep-
tional if ρproj

f,Λ (GF ) is non-solvable and isomophic to PSL2(F`s) or to
PGL2(F`s) for some s > 0.
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In particular, if we keep the assumptions of Theorem 2.2.2, we have
only a finite number of exceptional primes. Then according to Dick-
son (∗) classification of finite subgroups of PGL2(F`) (see Proposition
2.1 of [105]) we have for each exceptional prime that ρproj

f,Λ (GF ) is (up
to semisimplification) either an abelian group, a dihedral group, A4,
S4 or A5.

2.3. Tamely dihedral representations

In this section we extend the definition of tamely dihedral repre-
sentation of [36] to totally real fields in order to exclude complex
multiplication and inner twists.

Let E be a number field, F a totally real field and q a prime of F
with residual characteristic q. We denote by Fq2 the unique unramified
degree two extension of Fq and by Wq2 the Weil group of Fq2 .

Definition 2.3.1. — Let F be a totally real field, q a rational prime
which is completely split in the Hilbert class field of F and q a prime of
F above q. A 2-dimensional Weil-Deligne representation ρq = (ρ,N)
of Wq with values in E is called tamely dihedral of order n if N = 0
and there is a tame character

ϕ : Wq2 → E×

whose restriction to the inertia group Iq is of niveau 2 (i.e., it factors
over F×q2 and not over F×q ) and of order n > 2 such that

ρ ∼= Ind
Wq

Wq2
(ϕ).

We say that a Hilbert modular newform f is tamely dihedral of order
n at the prime q if the Weil-Deligne representation ρq associated to
the restriction to Dq of the compatible system Rf = {ρf,ι}ι is tamely
dihedral of order n.

Henceforth, when we talk about the notion of tamely dihedral at a
prime q of F , we will assume that q divides a rational prime q which
is completely split in the Hilbert class field of F .

If the compatible system Rf = {ρf,ι}ι is tamely dihedral of order n
at q, it follows from Section 4.2 of [90] that for all ι : Ef → Q` with
` 6= q, the restriction of ρf,ι to Dq is of the form

Ind
Gal(F q/Fq)

Gal(F q/Fq2 )
(ι ◦ ϕ).

∗. This classification is usually attributed to Dickson [28], but the topic was
also investigated by Moore [76] and Wiman [106].
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Let ϕΛ be the reduction of ϕ modulo Λ, which is a character of the
same order as ϕ. If ` and n are coprime, then

ρf,Λ|Dq = Ind
Gal(F q/Fq)

Gal(F q/Fq2 )
(ϕΛ),

i.e., the reduction modulo ` is of the very same form. Moreover, if
n = pr for some odd rational prime p, then NF/Q(q) ≡ −1 mod p,
since the character is of niveau 2.

The next lemma illustrates how we can avoid the "small" excep-
tional primes of Galois representations by assuming that its restriction
to Wq is a tamely dihedral for some appropriate prime ideal q (i.e.,
with certain local ramification behavior).

Lemma 2.3.2. — Let F be a totally real field and p, q, ` be distinct
odd rational primes. Let q be a prime of F above q, n be an ideal of
OF such that NF/Q(n) is relatively prime to pq, and p1, . . . , pm be the
primes with residual characteristic different from q and smaller than or
equal to the maximum of ` and the greatest prime divisor of NF/Q(n).
Let ρ : GF → GL2(Q`) be a Galois representation of conductor n such
that its restriction to Wq is tamely dihedral of order p at q. Assume
that q is completely split in F (p1, . . . , pm) (†) and that pr is unramified
in F and greater than the maximum of 5, ` and the greatest prime
divisor of NF/Q(n). Then the image of ρproj is PSL2(F`s) or PGL2(F`s)
for some s > 0.

Proof. — By definition ρ|Iq is of the form
(
ϕ 0
0 ϕq

)
, where ϕ is a

character of Iq of order a power of p|q + 1. Then as p does not divide
q − 1, ρ|Dq is irreducible and then so is ρ. As p is greater than 5 we
have that the projective image cannot be A4, S4 or A5.

Now suppose that the projective image is a dihedral group, i.e.,
ρproj ∼= IndFK(α) for some character α of Gal(F/K), where K is a
quadratic extension of F . From the ramification of ρ we know that
K ⊆ F (q, p1, . . . , pm) (because the primes above ` are contained in
{p1, . . . , pm}). As ` is different from p and q we have that

ρproj|Dq
∼= Ind

Fq

Fq2
(ϕ) ∼= Ind

Fq

KQ
(α)

for some prime Q of K above q, where ϕ is a niveau 2 character of
order pr. From this we have that, ifK were ramified at q, then ρproj(Iq)
would have even order, but it has order a power of p, so the field K
is unramified at q. Thus K ⊆ F (p1, . . . , pm) and we conclude from

†. F (p1, . . . , pm) denotes the maximal abelian polyquadratic extension which is
ramified only at the primes p1, . . . , pm. In particular, by the Hermite-Minkowski
Theorem this is a number field.
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the assumptions that q is split in K, which is a contradiction by the
irreducibility of ρf,Λ|Dq . Then according to Dickson’s classification the
image of ρproj is PSL2(F`s) or PGL2(F`s) for some s > 0.

More results of this kind will be introduced in Section 2.5. Now we
will show some results similar to those of Section 4 of [36], that we
will use later in order to exclude nontrivial inner twists.

Lemma 2.3.3. — Let K be a topological field and F be a totally real
field. Let q be a prime of F , ε : GFq → K× be a character and
ρ : GFq → GL2(K) be a representation. If the conductors of ρ and of
ρ⊗ ε both divide q, then ε or ε det(ρ) is unramified.

Proof. — By the definition of the conductor, ρ|Iq is of the form(
1 ∗
0 δ

)
, where δ = det(ρ)|Iq . Consequently, ρ ⊗ ε|Iq looks like(

ε ∗
0 εδ

)
. Again, by the definition of the conductor, either ε|Iq is

trivial or εδ|Iq is.

Lemma 2.3.4. — Let K be a topological field and F a totally real
field. Let q be a rational prime which is completely split in F , q a
prime of F above q and n > 2 an integer relatively prime to q(q − 1).
Let ε : GFq → K× and ϕ, ϕ′ : Gal(F q/Fq2) → K× be characters.
Assume that ϕ and ϕ′ are both of order n. If

Ind
Fq

Fq2
(ϕ) ∼= Ind

Fq

Fq2
(ϕ′)⊗ ε,

then ε is unramified.

Proof. — Note that the order of ε|Gal(F q/Fq2 ) divides n. If ε were
ramified, the order of ε|Iq would divide q − 1 times a power of q.
But this contradicts the fact that n is relatively prime to q(q− 1).

Lemma 2.3.5. — Let f ∈ Sk(n, ψ) be a Hilbert modular newform,
ι : Ef → Q` and Rf = {ρf,ι}ι a compatible system associated to f .
Then for all inner twists (γ, ε) ∈ GRf we have

ρf,ι ⊗ ε ∼= ρf,ι◦γ.

Proof. — We know that the traces of any Frobenius element at any
unramified prime p are equal:

Tr(ρf,ι⊗ε)(Frobp) = ι(ap(f)ε(Frobp)) = ι(γ(ap(f))) = Tr ρf,ι◦γ(Frobp),

from which the result follows.

Note that when γ is trivial we are covering the complex multiplica-
tion case.
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Theorem 2.3.6. — Let f ∈ Sk(n, ψ) be a Hilbert modular newform.
i) Let q be a prime of F such that q ‖ n and assume that ψ is

unramified at q. Then any inner twist of f is unramified at q.
ii) Let q be a prime of F such that q2 ‖ n and f is tamely dihedral at

q of odd order n > 2 such that n is relatively prime to q(q − 1).
Then any inner twist of f is unramified at q.

Proof. — i) By Lemma 2.3.5 the conductors at q of ρf,ι and ρf,ι◦γ both
divide q. Then from Lemma 2.3.3, we have that γ is unramified at q,
since the determinant of the representation is unramified at q.
ii) If ρq is tamely dihedral of order n at q, ρf,ι|Dq is of the form

Ind
Gal(F q/Fq)

Gal(F q2/Fq2
(ι ◦ ϕ), and similarly for ρf,ι◦γ. Then by Lemma 2.3.5

and Lemma 2.3.4, γ is unramified at q.

Corollary 2.3.7. — Let f ∈ Sk(n) be a Hilbert modular newform
over a totally real field F with odd class number such that for every
prime q|n,
i) q ‖ n or
ii) q2 ‖ n and f is tamely dihedral at q of order n > 2 such that

(n, q(q − 1)) = 1.
Then f does not have any nontrivial inner twists and no complex
multiplication.

Proof. — By Theorem 2.3.6 any inner twist is everywhere unramified
then these are characters of the Galois group G := Gal(H/F ) of the
Hilbert class field H of F . Moreover, as the Hecke character of f is
trivial, the field of definition Ef of f is totally real and any inner twist
nontrivial is necessarily quadratic.

On the other hand, it is well known that the character group Ĝ
of a finite abelian group G is isomorphic to the original group G.
Consequently, as the class number hF of F is odd, we have that Ĝ
does not have elements of order 2. Therefore f does not have nontrivial
inner twists. The same happens for complex multiplication.

Remark 2.3.8. — When the class number of F is even we may have
nontrivial inner twists. This follows from the fact that any finite
abelian group is a direct sum of cyclic groups. Then if hF is even, the
Galois group G of the Hilbert class field of F has at least one cyclic
group C of even order as direct summand. Thus C has a character
of order 2 which extends to a quadratic character of G by sending
g ∈ G − C to 1. Moreover, we have an upper bound for the number
of nontrivial inner twists which is 2ν2(hF )− 1, where ν2(·) is the 2-adic
valuation. Note that we could have 2ν2(hF ) − 1 nontrivial inner twists



2.4. CONSTRUCTION OF TAMELY DIHEDRAL REPRESENTATIONS 27

only when G ∼= (Z/2Z)ν2(hF )⊕Z/m1Z⊕· · ·⊕Z/mrZ for some divisors
mi of hF .

2.4. Construction of tamely dihedral representations

In this section we provide a method to construct Hilbert modular
newforms which are tamely dihedral at some prime via level raising
theorems.

Let F be a totally real field and f ∈ Sk(n, ψ) be a Hilbert modular
newform over F of level n and weight k =

∑
τ∈JF kττ . Let

ρf,ιp : GF → GL2(Qp)

the p-adic Galois representation attached to f as in Section 2.2. We
say that a Galois representation ρ : GF → GL2(Qp) ismodular (of level
n and weight k) if it is isomorphic to ρf,ιp for some Hilbert modular
newform f ∈ Sk(n, ψ) and some embedding ιp : Ef ↪→ Qp.

On the other hand, we will say that a Galois representation ρ :
GF → GL2(Qp) is geometric if it is unramified outside of a finite set
of primes of F and if for each prime p above p, ρ|GFp is de Rham.

In particular, ρf,ιp is de Rham because it is semi-stable. In fact, if
p is a prime of F above a rational prime p > k0 unramified in F and
relatively prime to NF/Q(ndF ) (where dF denotes the different of F ),
ρf,ιp|GFp is crystalline with τ -Hodge-Tate weights {mτ , k0 −mτ − 1}.
Thus it satisfies the Fontaine-Laffaille condition, i.e., all its Hodge-
Tate weights fall between 0 and k0 − 1 (see Section 2 of [30]).

The main ingredient in the modern proofs of level raising theorems
is to have an appropriate modularity lifting theorem as follows.

Theorem 2.4.1. — Let F be a totally real field, p > 3 a rational
prime unramified in F and E/Qp a finite extension containing the
images of all embeddings F ↪→ E. Let ρ, ρ0 : GF → GL2(OE) be two
Galois representations such that

ρ = ρ mod P = ρ0 mod P
for the maximal ideal P of OE. Assume that ρ0 is modular and that ρ
is geometric. Assume furthermore that the following properties hold.
i) SL2(Fp) ⊆ Im(ρ).
ii) For all p above p, ρ|GFp and ρ0|GFp are crystalline.
iii) For all τ : F ↪→ E, the elements of HTτ (ρ) differ by at most p−2.
iv) For all τ : F ↪→ E, HTτ (ρ) = HTτ (ρ0) and contains two distinct

elements.
Then ρ is modular.
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Proof. — The proof is given in Section 5 of [44].

Now we are ready to state the level raising theorem that we need.
This is well known to the experts, but we sketch the proof for lack of
a reference.

Theorem 2.4.2. — Let F be a totally real field and E/Qp be a finite
extension sufficiently large. Let f ∈ Sk(n, ψ) be a Hilbert modular
newform and p > k0 + 1 be a rational prime unramified in F not
dividing NF/Q(ndF ). Moreover, we assume that SL2(Fp) ⊆ Im(ρf,ιp).
Let q be a rational prime which is completely split in the Hilbert class
field of F and q be a prime of F above q such that q - n, Nq ≡ −1
mod p and Tr(ρf,ιp(Frobq)) = 0. Then there exists a Hilbert modular
newform g ∈ Sk(nq2, ψ̃), with ψ̃ having the same conductor as ψ, such
that ρf,ιp ∼= ρg,ι′p and g is tamely dihedral of order pr for some r > 0
at q.

Sketch of Proof. — Let S be a finite set of places of F consisting of
the infinite places, the primes above p, the primes dividing n and the
prime q given above. Let ρ = ρf,ιp mod P . We want to construct a
lift ρ of ρ such that:
i) for all places of S−{q, p|p}, ρ has the same inertial types of ρf,ιp ,
ii) for all p above p, ρ|GFp is cristalline and has the same Hodge-Tate

weights that ρf,ιp and
iii) for q, ρ|Dq has supercuspidal inertial type.
Now we will rephrase the problem in terms of universal Galois defor-

mation rings. Indeed, the representation ρ that we want, corresponds
to aQp-point on an appropriate Galois deformation ring Runiv

S given by
choosing the inertial types and Fontaine-Laffaille condition as above.
See Section 3 of [43] and Section 10 of [61] for the precise definition
of Galois deformation ring of prescribed type. Thus it is enough to
check that Runiv

S has a Qp-point.
To prove this, by Proposition 2.2 of [61], it is enough to prove that

dimRuniv
S ≥ 1 and that Runiv

S is finite over OE. As the image of
ρ is non-solvable we can conclude that δ in the formula of Remark
5.2.3.a of [11] is 0, then from Theorem 5.4.1 of loc. cit. we have
that dimRuniv

S ≥ 1. On the other hand, by Section 4.22 of [44] and
Lemma 2.2 of [94] to prove that Runiv

S is finite over OE, it is enough
to show that Runiv

S′ is finite over OE, where S ′ is a base change of S
as in Section 5.4 of [44]. Then after this base change we can write
Runiv
S′ = Runiv

∅ .
Therefore the problem is reduced to showing that Runiv

∅ is finite over
OE. But this is proved in [44] (see the proof of Theorem 5.1). Then
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we have that the desired lift exists. Moreover, as this lift satisfies
all conditions of Theorem 2.4.1 we have that ρ is modular. Observe
that from conditions on the lift, i)-iii), and compatibility with the
Local Langlands Correspondence, the Hilbert modular newform g
corresponding to ρmust be of level nq2 and weight k (see also Theorem
1.5 of [55]). Moreover, condition i) on the lift implies that the Hecke
characters of f and g agree locally at any prime. To see that g is
tamely dihedral of order pr at q we can translate word by word the
proof of Corollary 2.6 of [105].

The following result shows that there is a set of primes q of F , with
positive density, to which we can apply Theorem 2.4.2.

Lemma 2.4.3. — Let p1, . . . , pm be primes of F and let p be a ra-
tional prime unramified in F such that pi - p for all i = 1, . . .m and
p ≡ 1 mod 4. Let

ρproj
p : GF −→ PGL2(Fp)

be a totally odd Galois representation with image equal to PSL2(Fps)
or PGL2(Fps) such that the image of any complex conjugation is con-
tained in PSL2(Fps). Then the set of primes q of F such that
i) Nq ≡ −1 mod p,
ii) q is completely split in F (p1, . . . , pm) and
iii) ρproj

p (Frobq) ∼ ρproj
p (c), where c is any complex conjugation,

has a positive density.

Proof. — As in [36], the proof is adapted from Lemma 8.2 of Khare
and Wintenberger [60]. LetK/F be such that Gal(F/K) = ker(ρproj

p ).
Then Gal(K/F ) is isomorphic either to PGL2(Fps) or PSL2(Fps). Let
L = K ∩ F (ζp). Note that K and F (ζp) are linearly disjoint over L,
and L/F is an extension of degree at most 2 because PSL2(Fps) is
an index 2 simple subgroup of PGL2(Fps). By assumption the image
of any complex conjugation lies in Gal(K/L) ∼= PSL2(Fps). Then for
linear disjointness, we may appeal to Chebotarev’s Density Theorem
to pick up a set of primes q of F with positive density such that
ρproj
p (Frobq) ∼ ρproj

p (c), q is split in L/F and NF/Q(q) ≡ −1 mod p.
Moreover, we can assume that q is completely split in F (p1, . . . , pm)
without losing the positive density.

The next result shows that we can add more than one tamely
dihedral prime to Hilbert modular newforms without affecting the
local behavior of the other primes.

Proposition 2.4.4. — Let f ∈ Sk(n) be a Hilbert modular newform
over a totally real field F with odd class number and trivial Hecke
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character such that no prime divisor of n divides 2 and for all l|n
either
– l‖n or
– l2‖n and f is tamely dihedral at l of order nl > 2.

Let {p1, . . . , pm} be any finite set of primes of F . Then for almost all
primes p ≡ 1 mod 4 unramified in F there is a set S of primes of F
with positive density which are completely split in F (p1, · · · , pm) such
that for all q ∈ S there is a Hilbert modular newform g ∈ Sk(nq

2)
which is tamely dihedral at q of order p and for all l2‖n, g is tamely
dihedral at l of order nl > 2.

Proof. — For p we may choose any prime p ≡ 1 mod 4 unramified
in F which is greater than NF/Q(ndF ), greater than k0 + 1, relatively
prime to all nl and such that SL2(Fp) ⊆ Im(ρf,ιp) (it can be chosen
due to Theorem 2.2.2).

As −1 is a square in F×p (because p ≡ 1 mod 4) and there are no
nontrivial inner twists (by Corollary 2.3.7) any complex conjugation
necessarily lies in PSL2. Then we can take as S the subset of primes
q of the set provided by Lemma 2.4.3 such that q is over a rational
prime q that is completely split in the Hilbert class field of F which
has positive density by Chevotarev’s Density Theorem.

For any q ∈ S, Theorem 2.4.2 provides us a Hilbert modular new-
form g ∈ Sk(nq2, ψ) tamely dihedral at q of order pr > 1 such that

(8) ρf,ιp
∼= ρg,ι′p .

In fact, from this isomorphism, it follows that r = 1 and that ψ is
trivial. The result now follows exactly as in Theorem 5.4.ii of [36] by
using the isomorphism (8).

2.5. Hilbert modular forms without exceptional primes

Keeping the same notation as in the previous section we will con-
struct families of Hilbert modular newforms without exceptional primes
and without nontrivial inner twists.

Proposition 2.5.1. — Let p, q, t, u be distinct odd rational primes
such that p and t are unramified in F and q and u are completely
split in the Hilbert class field of F . Let n be an ideal of F relatively
prime to ptqu and q, u be primes of F above q and u respectively.
Let f ∈ Sk(nq2u2) be a Hilbert modular newform of weight k ∈ Z[JF ]
without complex multiplication which is tamely dihedral of order pr > 5
at q and tamely dihedral of order ts > 5 at u. Let p1, . . . , pm be the
primes with residual characteristic different from q and u and smaller
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than or equal to the maximum of 2k0−1 and the greatest prime divisor
of NF/Q(ndF ). Assume that q is completely split in F (u, p1, . . . , pm)
and that u is completely split in F (q, p1, . . . , pm). Then f does not
have exceptional primes, i.e., for every prime Λ of Ef the image of
ρproj
f,Λ is PSL2(F`s) or PGL2(F`s) for some s > 0.

Proof. — Let Λ be any prime of Ef lying over `. As in Lemma 2.3.2
the tamely dihedral behavior implies that ρf,Λ is irreducible. Because
if ` /∈ {p, q} then ρf,Λ|Dq is irreducible and if ` ∈ {p, q} then ` /∈ {t, u}
and ρf,Λ|Du is irreducible.

Suppose that the projective image is a dihedral group, i.e., ρproj
f,Λ
∼=

IndFK(α) for some character α of Gal(F/K), where K is a quadratic
extension of F . From the ramification of ρf,Λ we know that K ⊆
F (`, q, u, p1, . . . , pm).

First, we assume that ` /∈ {p, q}, then we have that

ρproj
f,Λ |Dq

∼= Ind
Fq

Fq2
(ϕ) ∼= Ind

Fq

KQ
(α)

for some prime Q of K above q, where ϕ is a niveau 2 character of
order pr > 5. From this we have that if K were ramified at q, then
ρproj
f,Λ (Iq) would have even order, but it has order a power of p, so the

field K is unramified at q. For the primes above ` we have two cases.
If ` is greater than the maximum of 2k0 − 1 and the greatest prime
divisor of NF/Q(ndF ), we have from Lemma 3.4 of [30] (whose proof
works for any totally real field F , i.e., even for not necessarily Galois
fields) that the field K cannot ramify at the primes of F above `,
then K ⊆ F (u, p1, . . . , pm). Thus we conclude from the assumptions,
that q is split in K, which is a contradiction by the irreducibility
of ρf,Λ|Dq . On the other hand, if ` is smaller than or equal to the
maximum of 2k0 − 1 and the greatest prime divisor of NF/Q(ndF ), we
have that the primes above ` are contained in the set {p1, . . . , pm}.
Thus K ⊆ F (u, p1, . . . , pm) and we obtain a contradiction as in the
previous case.

Now if ` ∈ {p, q}, in particular ` /∈ {t, u}. Then exchanging the
roles q ↔ u, p ↔ t and r ↔ s, the same arguments again lead to
a contradiction. Therefore the image of ρproj

f,Λ cannot be a dihedral
group.

By the classification of the finite subgroups of PGL2(F`), it remains
to exclude A4, S4, A5. But the image of ρproj

f,Λ cannot be any of
these groups, since there is an element of order greater than 5 in
the projective image.

Remark 2.5.2. — In fact from Theorem 2.2.2 we can conclude in
the previous proposition that for almost all Λ the image of ρproj

f,Λ is
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PSL2(Fλ) or PGL2(Fλ). Moreover, if f has no nontrivial inner twists
the image of ρproj

f,Λ is PSL2(FΛ) or PGL2(FΛ) for almost all primes Λ of
Ef . On the other hand, for the finite set of primes not satisfying this
property the image is also big enough because it contains an element
of order p or an element of order t (see Lemma 3.1 of [105]).

Theorem 2.5.3. — There exist families of Hilbert modular newforms
{fn}n∈N of weight k and trivial central character over a totally real
field F with odd class number and without nontrivial inner twists and
without complex multiplication such that
i) for all n, all primes Λn of Efn are nonexceptional and
ii) for a fixed rational prime `, the size of the image of ρproj

fn,Λn
is

unbounded for running n.

Proof. — Let f ∈ Sk(n) of squarefree level n. Since the class number
of F is odd f does not have any nontrivial inner twist nor complex
multiplication by Corollary 2.3.7.

Let {p1, . . . , pm} be the set of primes with norm smaller than or
equal to the maximum of 2k0 − 1 and the greatest prime divisor of
NF/Q(ndF ). Let B > 0 be any bound and p be any prime greater than
B provided by Proposition 2.4.4 applied to f and the set {p1, . . . , pm},
so that we get g ∈ Sk(nq

2) which is tamely dihedral at q of order
p and which does not have any nontrivial inner twist nor complex
multiplication (by Corollary 2.3.7), for some choice of q.

Now applying Proposition 2.4.4 to g and the set of primes with norm
smaller than or equal to the maximum of 2k0−1 and the greatest prime
divisor of NF/Q(nq2dF ) we obtain a prime t > B different from p and
a Hilbert modular newform h ∈ Sk(nq2u2) which is tamely dihedral at
u of order t and which again does not have any nontrivial inner twist
nor complex multiplication (by Corollary 2.3.7) for some choice of u.
Finally, by Proposition 2.5.1, h does not have any exceptional primes.

We obtain the family {fn}n∈N by increasing the bound B step by
step, so that elements of larger and larger projective orders appear in
the images of inertia groups.

We say that a weight k ∈ Z[JF ] is non-induced, if there do not exist
a strict subfield F ′ of F and a weight k′ ∈ Z[JF ′ ] such that for each
τ ∈ JF , kτ = k′(τ |F ′ ). Note that if k is non-induced then k is not
parallel. Moreover, these two conditions are equivalent if the degree d
of F is a prime number (see Remark IV.6.3.ii of [29]). Moreover, if we
assume that F is a Galois field of odd degree this assumption excludes
the case where f comes from a base change of a strict subfield of F
(see Corollary 3.18 of [30]).
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Remark 2.5.4. — If we assume, in the previous construction, that
F is a Galois field of odd degree and f has a non-induced weight
k then the family {fn}n∈N of Hilbert modular newforms in Theorem
2.5.3 is such that each fn does not come from a base change of a strict
subfield of F since g and h have the same weight as f and thus, by
construction, g and h also do not come from a base change of a strict
subfield of F .

2.6. A construction via inertial types

In this section we will explain another method to construct Hilbert
modular newforms which are tamely dihedral. This method depends
on the main result of [101].

Let Fp be a finite extension of Qp, where F is a totally real field and
p is a rational prime of F above p. Recall that the Local Langlands
Correspondence establishes a bijection

Πp 7→ recp(Πp)

between the set A(GL2(Fp)) of isomorphism classes of complex-valued
irreducible admissible representations of GL2(Fp) and the setWD2(Wp)
of isomorphism classes of two dimensional Frobenius semi-simple Weil-
Deligne representations of Fp preserving L and ε factors. In [51] it is
shown that if Πp ∈ A(GL2(Fp)), then Πp|GL2(Op) contains an irre-
ducible finite-dimensional subspace σp := σ(Πp) of GL2(Op), called
the (local) inertia type of Πp, which characterizes the restriction of
recp(Πp) to the inertia group of GFp .

We will denote by T (Fp) the set of isomorphism classes of repre-
sentations of GL2(Op), which arise as inertial types for members of
A(GL2(Fp)). We say that σp is a supercuspidal (resp. special, resp.
principal series) type if Πp is supercuspidal (resp. special, resp. prin-
cipal series). We define the quantity

d(σp) = (−1)αqβ(γq + 1)(δq − 1),

where q is the cardinality of the residue field of Fp and the values of
α, β, γ, δ ∈ Z≥0 are determined by the type of Πp (see Section 2.1 of
[101] for details).

On the other hand, let k ≥ 2 and w be two integers of the same
parity, and Dk,w be the essentially discrete series representation of
GL2(R) with central character x 7→ x−w as in Paragraph 0.2 of [17].
We will denote by T (R) the set of all such representations Dk,w and
we simply define σ(Dk,w) = Dk,w. We also define d(Dk,w) = k − 1.

Given a cuspidal automorphic representation Π = Π∞ ⊗ Πfin of
GL2(AF ) arising from a Hilbert modular form over F of weight k =
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∑
τ∈JF kττ ∈ Z[JF ], we can associate to it, the representation

σ(Π) =
⊗
τ∈JF

σ(Πτ )
⊗
p∈Vfin

σ(Πp)

of GL2((F ⊗ R) × ÔF ). Loosely speaking, σ(Π) measures the ram-
ification of Π at the finite places and records the components of Π
at the infinite places. In particular, if Πτ

∼= Dkτ ,wτ , then wτ = wτ ′
for all τ, τ ′ ∈ JF and the integers kτ and wτ all have the same par-
ity. Moreover, we have that τ(Πp) is the trivial representation for all
primes of F not dividing the level of Π and the central character of Π
is an algebraic Hecke character of A×F whose restriction to O×p (resp.
F×τ
∼= R×) is equal to the central character of σ(Πp) for all p ∈ Vfin

(resp. of σ(Πτ ) for all τ ∈ JF ).
Accordingly, we define the set T (F ) of global inertial types to consist

of the collections σ = {σv}v∈VF satisfying the conditions:
i) For all but finitely many v, σv is the trivial representation.
ii) There exists an algebraic Hecke character of AF whose component

at each v agrees with the central character of σv.
For each σ ∈ T (F ) we define

d(σ) =
∏
v∈VF

d(σv).

The product makes sense because all but finitely many factors are 1.
Clearly, if Π is a cuspidal automorphic representation of GL2(AF )

arising from a Hilbert modular form over F , σ(Π) belongs to T (F ).
Then a natural question is: given an arbitrary global inertial type
σ ∈ T (F ), when does this type come from a Hilbert modular form?
The answer, provided by Weinstein, is as follows.

Let H(σ) be the set of cuspidal automorphic representations Π
of GL2(AF ) arising from a Hilbert modular form over F for which
σ(Π) = σ. The main result of [101] establishes that

#H(σ) = 21−(#JF )|ζF (−1)|hFd(σ) +O(2ν(σ)),

where ζF (s) is the Dedekind zeta function for F and ν(σ) is the number
of primes p where σp is nontrivial. Finally, by comparing the quantity
d(σ) with the error term 2ν(σ), we can obtain the following result.

Theorem 2.6.1. — Up to twisting by 1-dimensional characters, the
set of global inertial types σ ∈ T (F ) for which H(σ) = ∅ is finite.

Proof. — This is just Corollary 1.2 of [101] .

Let p, q, t, u be distinct odd rational primes such that p and t are
unramified in F , and q and u are completely split in the Hilbert class
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field of F . Let n be an ideal of F squarefree and relatively prime
to pqtu and q and u be primes of F above q and u respectively.
By Theorem 2.6.1 we can ensure the existence of a Hilbert modular
newform f ∈ Sk(nq2u2) with supercuspidal types in q and u for some
choice of a prime q (or equivalently of a prime u) large enough (because
in this case we have that d(σq) = q(q − 1) and d(σu) = u(u− 1)). We
note that the hypothesis of making a choice of a prime q or u large
enough can be avoided if we have large enough weights or enough
primes ramified. Thus, for an appropriate choice, f is tamely dihedral
of order pr > 5 at q and tamely dihedral of order ts > 5 at u (see the
proof of Corollary 2.6 of [105]). Then we have the following general
result.

Theorem 2.6.2. — For any totally real field F and any weight k ∈
Z[JF ] there exist families of Hilbert modular newforms {fn}n∈N over
F of weight k, trivial central character and without complex multipli-
cation such that
i) for all n, all primes Λn of Efn are nonexceptional and
ii) for a rational fixed prime `, the size of the image of ρproj

fn,Λn
is

unbounded for running n.
Moreover, if F is a Galois field of odd degree, then the elements of
{fn}n∈N do not come from a base change of a strict subfield of F for
all n.

Proof. — Let B > 0 be some bound. Let p and t be rational primes
(as above) greater than B. By choosing the prime q (or the prime
u) of F large enough (or alternatively by choosing an ideal n of F
with sufficient prime divisors) we have, from the previous discussion
about Weinstein’s result and Proposition 2.5.1, that for every weight
k ∈ Z[JF ] there exists a Hilbert modular newform f1 of weight k
without exceptional primes. Thus, by increasing the bound B, we
obtain a family {fn}n∈N such that elements of larger and larger orders
appear in the inertia images because the number of inner twists is
bounded and depends only on the class number of F (see remark
2.3.8).

Finally, if F is a Galois fields and k ∈ Z[JF ] is a non-induced weight
we have, from Corollary 3.18 of [30], that fn does not come from a
base change of a strict subfield of F for all n.





CHAPTER 3

GENERIC AUTOMORPHIC
REPRESENTATIONS OF GSp4(AQ)

In this chapter, by making use of Langlands Functoriality from GSp4

to GL4, we will show that the images of the Galois representations at-
tached to “genuine" globally generic automorphic representations of
GSp4(AQ) are “large" for a set of primes of density one. Moreover,
by using a generalization of tamely dihedral representations for sym-
plectic groups (introduced by Khare, Larsen and Savin) and generic
Langlands Functoriality from SO5 to GL4, we will construct automor-
phic representations of GSp4(AQ) such that the compatible system
attached to them has large image for all primes.

In this chapter we will assume familiarity with the basic theory of
automorphic representations for reductive groups as in [12].

3.1. Preliminaries on classical groups

Due to the notation for orthogonal and symplectic groups is not
standard, we include this section in order to fix the notation that we
will use through this and the next chapter. Our main references are
[13] and [64].

Let n be a positive integer,K a field of characteristic different from 2
and V an n-dimensionalK-vector space with a non degenerate bilinear
pairing 〈·, ·〉. We define the similitude group ∆(V ) of 〈·, ·〉 as

{g ∈ GL(V ) : 〈gv, gw〉 = m(g)〈v, w〉 with m(g) ∈ K∗,∀ v, w ∈ V }.

The character m : ∆(V ) → K∗ is called the multiplier (or similitude
factor). The isometry group of 〈·, ·〉 is the subgroup I(V ) of ∆(V ) of
elements with multiplier 1 and the special group of 〈·, ·〉 is the subgroup
S(V ) of ∆(V ) consisting of all matrices with determinant 1.

Let B = {e1, . . . , en} be a basis of V . We define the matrix of the
pairing 〈·, ·〉 with respect to B as J = (bij)n×n, where bij = 〈ei, ej〉 for
all i and j. In particular, if 〈·, ·〉 is alternating, it can be shown that
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n is even and that we can choose a basis such that the matrix of 〈·, ·〉
has the standard form

J :=

(
0 S
−S 0

)
with S :=

(
0 1

. .
.

1 0

)
∈ Mn

2
.

Then we can define the symplectic similitude group of the alternating
pairing 〈·, ·〉 as GSpn(K) := ∆(V ) and the symplectic group of 〈·, ·〉 as
Spn(K) := I(V ). Note that in this case all elements of Spn(K) have
determinant one, then Spn(K) = S(V ) too.

On the other hand, if 〈·, ·〉 is a symmetric pairing, we define the
orthogonal similitude group of 〈·, ·〉 as GO(V ) := ∆(V ) and the or-
thogonal group of 〈·, ·〉 as O(V ) := I(V ), whose elements have deter-
minant ±1. Finally, we define the special orthogonal group of 〈·, ·〉 as
SO(V ) = S(V ). Since K is a field of characteristic different from 2,
it can be shown that for each symmetric pairing there exists a basis
such that its matrix is diagonal. If K is an algebraically closed field,
it can be shown that all symmetric pairings are equivalent. Then in
this case we take In the identity matrix as the matrix of the standard
symmetric form. For such form, we will write GOn(K), On(K) and
SOn(K) instead GO(V ), O(V ) and SO(V ).

Let ` be an odd prime and r be a positive integer. If K is a finite
field of order `r and n is even, there are precisely two symmetric
pairings on V (up to equivalence), corresponding to the cases when
the determinant of the matrix of the form is a square or non square of
K×. We say that a symmetric pairing 〈·, ·〉 has plus type if its matrix
is equivalent to

J+ :=

0 1

. .
.

1 0

 ∈ Mn,

otherwise it has minus type. As expected, J+ will be the matrix of our
standard symmetric pairing of plus type. For the minus type we will
use the matrix In when it is not equivalent to J+ (this occurs if and
only if n ≡ 2 mod 4 and `r ≡ 3 mod 4). Otherwise, our standard
symmetric pairing of minus type will have matrix

J− :=


ω

1
. . .

1

 ∈ Mn,

where ω is a fixed primitive element of K×. Then for our standard
symmetric pairing of plus type (resp. minus type) we will write
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GO+
n (K), O+

n (K) and SO+
n (K) (resp. GO−n (K), O−n (K) and SO−n (K))

instead GO(V ), O(V ) and SO(V ).
In contrast with the symplectic case where the projectivization

PSpn(K) of Spn(K) (with n ≥ 4 and K a finite field of odd char-
acteristic) is a simple group, in the orthogonal case this does not hap-
pen. Then we need to define the quasisimple classical group of the
symmetric form 〈·, ·〉 as Ω(V ) := I ′(V ), the derived subgroup of I(V ).
In particular, if K is a finite field of odd characteristic, we denote by
Ω+
n (K) and Ω−n (K) the quasisimple orthogonal group of plus type and

minus type respectively. In particular, if V is a vector space with a
symmetric pairing over a finite field of odd characteristic and n ≥ 8,
it can be proved that PΩ(V ) is a simple group (see Theorem 2.1.3 of
[64]).

A useful tool through the next chapters will be to know the indices
between the projectivizations of the symplectic and orthogonal groups
defined above when K is a finite field of odd characteristic. These
indices are: [PGSpn(K) : PSpn(K)] = 2, [PGO±n (K) : PO±n (K)] = 2,
[PO±n (K) : PSO±n (K)] = 2 and [PSO±n (K) : PΩ±n (K)] = a± (where
the values of a+ and a− are defined by the following conditions: a± ∈
{1, 2}, a+a− = 2, and a+ = 2 if and only if n(`r − 1)/4 is even).

3.2. Local Langlands Correspondence for GSp4

As we pointed out in Section 1.4, the presence of endoscopy makes
the Local Langlands Correspondence for GSp4 more complicated.
Contrary to the GLn case, in the GSp4 case we can only obtain a
finite-to-one surjection between the set A(GSp4(K)) of equivalence
classes of irreducible admissible representations of GSp4(K) and the
set ΦK(GSp4) of conjugacy classes of L-parameters

φ : W ′
K −→ GSpin5(C) ∼= GSp4(C).

It is expected that this surjection preserves natural invariants (L-
factors, ε-factors and γ-factors) which we can attach to both sides. Un-
fortunately, for non-generic supercuspidal representations of GSp4(K),
the general theory of these invariants has not been fully developed.
Then in order to ensure the uniqueness of the Local Langlands Cor-
respondence for GSp4(K), Gan and Takeda [41] replace the (as yet
nonexistent) theory of γ-factors by a certain Plancherel measure which
is an invariant coarser than the γ-factor, but has the advantage that
it is defined for all representations.
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More precisely, for each finite extension K/Qp the main theorem of
[41] gives a unique finite-to-one surjection

recGTK : A(GSp4(K)) −→ ΦK(GSp4)

attaching an L-parameter φπ := recGTK (π) : W ′
K → GSp4(C) to a

representation π of GSp4(K) and satisfying the following properties:
i) The central character ωπ of π corresponds to the similitude char-

acter m(φπ) of φπ under local class field theory. Here, m :
GSp4(C)→ C× is the similitude character of GSp4(C).

ii) π is an essentially discrete series representation of GSp4(K) if
and only if its L-parameter φπ does not map into a proper Levi
subgroup of GSp4(C).

iii) If π ∈ A(GSp4(K)) is a generic or non-supercuspidal representa-
tion, then for any σ ∈ A(GLr(K)) with r ≤ 2 we have:

L(s, π × σ) = L(s, φπ ⊗ φσ)

and
ε(s, π × σ, ψ) = ε(s, φπ ⊗ φσ, ψ).

iv) If π ∈ A(GSp4(K)) is non-generic supercuspidal, then for any
supercuspidal representation σ ∈ A(GLr(K)) with r ≤ 2,

µ(s, π � σ, ψ) = γ(s, φ∨π ⊗ φσ, ψ) · γ(2s, Sym2(φσ)⊗m(φπ)−1, ψ)
·γ(−s, φπ ⊗ φ∨σ , ψ) · γ(−2s, Sym2(φ∨σ)⊗m(φσ), ψ),

where µ(s, π � σ, ψ) denotes the Plancherel measure associated
to the family of induced representations Ind

GSp4(K)
P (K) (s, π � σ) on

GSpin2r+5(K) (where we have regarded π� σ as a representation
of the Levi subgroup GSp4(K)×GLr(K)).

We remark that the correspondence does not depend on the choice of
the additive character ψ.

As in the GLn case we can identify an L-parameter φ : W ′
K →

GSp4(C) with the corresponding Frobenius semi-simple Weil-Deligne
representation in the usual way, i.e., corresponding to φ is the Weil-
Deligne representation (ρφ, Nφ), where ρφ is the semi-simple part of
φ

ρφ(w) = φss(w) = φ

(
w,

(
|w|1/2K 0

0 |w|−1/2
K

))
for w ∈ WK , and the monodromy operator Nφ is given by

Nφ = log

(
φ

(
1,

(
1 1
0 1

)))
.



3.3. LANGLANDS FUNCTORIALITY FROM GSp4 TO GL4 41

For completeness, let us mention a few extra properties. In [41] it
was shown that, for each L-parameter φ, its fiber Aφ(GSp4(K)) can
be parametrized by the set of irreducible characters of the component
group

Aφ = π0(Z(Im(φ))/C×) =

{
Z/2Z
{0} .

When Aφ = Z/2Z, exactly one of the representations in Aφ(GSp4(K))
is generic and it is the one indexed by the trivial character of Aφ.
In fact, it can be proved in general that an L-packet Aφ(GSp4(K))
contains a generic representation if and only if the L-factor L(s,Ad◦φ)
is holomorphic at s = 1, where Ad denotes the adjoint representation
of GSp4(C) in the complex Lie algebra sp4.

Finally we remark that GSp4 has a unique endoscopic group which
is isomorphic to GSO2,2 with dual group

GSpin4(C) ∼= (GL2(C)×GL2(C))0 = {(g1, g2) : det g1 = det g2}.
Then there is a distinguished conjugacy class of embeddings of dual
groups

(GL2(C)×GL2(C))0 ↪→ GSp4(C)

which gives rise to a natural map

(9) ΦK(GSO2,2) −→ ΦK(GSp4),

where ΦK(GSO2,2) denotes the set of conjugacy classes of L-parameters
φ : W ′

K → GSpin4(C). We say that an L-parameter φ ∈ ΦK(GSp4) is
endoscopic if it is in the image of the map (9). More concretely, φ is
endoscopic if φ = φ1⊗φ2 with dimφi = 2 and m(φ) = detφ1 = detφ2.

3.3. Langlands Functoriality from GSp4 to GL4

Let π = π∞ ⊗ πf be a cuspidal automorphic representation of
GSp4(AQ) with cohomological weight (m1,m2), m1 ≥ m2 ≥ 0, and
central character ωπ, such that π∞ belongs to the discrete series. As
in the GLn case, by a discrete series we mean an irreducible represen-
tation whose matrix coefficients are square-integrable modulo center.

Recall that an automorphic representation π of GSp4(AQ) is globally
generic if the Whittaker functional

π 3 f 7−→
∫
N(Q)\N(AQ)

f(n)ψ−1(n)dn

is not identically zero. Here, N denotes the unipotent radical of the
standard upper-triangular Borel subgroup and ψ = ⊗vψv is a non-
trivial additive character of Q\AQ defining a character of N in the
usual way.
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Globally generic automorphic representations have played distin-
guished roles in the modern theory of automorphic forms and L-
functions due to generic automorphic forms are more accessible to
analytic methods and, at least in the GSp4 case, it can be proved that
any automorphic representation π of GSp4(AQ) (as in the first para-
graph of this section) is weakly equivalent to a globally generic auto-
morphic representation [103, Theorem 1]. Recall that two irreducible
automorphic representations are said to be weakly equivalent if they
are locally isomorphic at almost every place. Moreover, the Strong
Multiplicity-One Theorem is satisfied in this case [89, Theorem 1.5].
This result ensures that if two globally generic cuspidal automorphic
representations π1, π2 of GSp4(AQ) are weakly equivalent, then they
are isomorphic.

In addition we have the following useful result, usually known as
the generic Langlands Functoriality from GSp4 to GL4.

Theorem 3.3.1. — Let π be a globally generic cuspidal automorphic
representation of GSp4(AQ) satisfying the hypotheses in the beginning
of this section. Then we can lift π to an automorphic representation
Π of GL4(AQ) with central character ωΠ = ω2

π and such that its
archimedean L-parameter has the following restriction to C∗

z 7→ |z|−w


(z/z)

v1+v2
2

(z/z)
v1−v2

2

(z/z)−
v1−v2

2

(z/z)−
v1+v2

2

 ,

where w = m1 + m2, v1 = m1 + 2 and v2 = m2 + 1 give the Harish-
Chandra parameter of π∞. Such lifting satisfies the following proper-
ties:

i) Π ' Π∨ ⊗ ωπ,
ii) recGTFp (πp) = recp(Πp) for each rational prime p, and
iii) – Π is cuspidal and LS(s,Π,∧2⊗ ω−1

π ) has a pole at s = 1, or
– Π = σ1 � σ2 for cuspidal automorphic representations σ1 6=
σ2 of GL2(AQ) with central character ωπ.

In the later case, π is the theta lift of the cuspidal automorphic
representation σ1 ⊗ σ2 of GSO2,2(AQ).

Proof. — It has been known for some time that we can obtain a weak
lift using theta series, i.e., a lift such that recGTFp (πp) = recp(Πp) for
almost all primes p. This was first announced by Jacquet, Piatetski-
Shapiro and Shalika. But, to the best of our knowledge, they never
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wrote up a proof. However, there is an alternative proof of the exis-
tence of such lift due to Asgari and Shaidi [7] relying on the Converse
Theorem.

The strong lift ii) and the characterization of its image iii) is a
consequence of the Local Langlands Correspondence for GSp4 and it
is due to Gan and Takeda [41, Theorem 12.1].

Recall that a cuspidal automorphic representation π = ⊗vπv of
GSp4(AQ) is a weak endoscopic lift if there exist two cuspidal auto-
morphic representations σ1 = ⊗vσ1,v, σ2 = ⊗vσ2,v of GL2(AQ) with
central characters ωπ1 = ωπ2 such that

L(s, πv) = L(s, σ1,v)L(s, σ2,v)

holds for almost all places. Here, L(s, πv) denotes the local L-factor
of the degree 4 spinor L-series. It can be proved that if π is the theta
lift of the cuspidal automorphic representation σ1⊗σ2 of GSO2,2(AQ),
then it is a weak endoscopic lift (see Chapter 4 of [104]).

On the other hand, we will say that a compatible systemR = {ρΛ}Λ

of 4-dimensional Galois representations of GQ is symplectic if for every
Λ the representation ρΛ is of the formGQ → GSp4(LΛ). A consequence
of the previous theorem is the following result.

Theorem 3.3.2. — Let π be a globally generic cuspidal automorphic
representation of GSp4(AQ) with central character ωπ, which satisfies
the hypotheses in the beginning of this section. Assume that π is
not a weak endoscopic lift and denote by S the set of primes where
it is ramified. Then there exist a number field E and a symplectic
compatible system of semi-simple Galois representations

ρΛ(π) : GQ −→ GSp4(EΛ),

where Λ ranges over the finite places of E and such that the following
properties are satisfied.
i) The representation ρΛ(π) is unramified outside S ∪ {`}.
ii) ρ∨Λ(π) ∼= ρΛ(π)⊗ χ−1, where χ = ωπ ◦ χ−w` is totally odd.
iii) The representations ρΛ(π)|GQ`

are de Rham, and if ` /∈ S, they
are crystalline.

iv) The set of Hodge-Tate weights HT(ρΛ(π)) is equal to

{0,m2 + 1,m1 + 2,m1 +m2 + 3}.

v) Fix any isomorphism ι : EΛ ' C compatible with the inclusion
E ⊆ C. Whether p - ` or p|`, we have

ιWD(ρΛ(π)|Qp)F−ss ∼= recGTQp (πp ⊗ |m |−3/2
Qp ).
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Proof. — First, as we are assuming that π is not a weak endoscopic
lift, we can lift π to a RAESDC automorphic representations (Π, µ) of
GL4(AQ) by Theorem 3.3.1. Then we define the compatible system of
Galois representations R(π) = {ρΛ(π)}Λ associated to π as R(π) :=
R(Π) = {ρΛ(Π)}Λ (the compatible system of Galois representations
associated to (Π, µ) in Theorem 1.3.1). On the other hand, as all
globally generic cuspidal automorphic representations of GSp4(AQ)
have multiplicity one [58], it follows from Theorem IV of [102], that
ρΛ(π) takes values in GSp4(EΛ).

Note that from the property v) of the previous theorem follows that
the conductor of ρΛ(π) is independent of Λ. Then it can be called the
conductor of the compatible system.

If π is a weak endoscopic lift, we can also construct a compatible
system of Galois representations associated to π. As we are assuming
that it is cohomological of weight (m1,m2) and π∞ belongs to the
discrete series of GSp4(R), we have that σ∞,i will belong to the discrete
series of GL2(R) of weight ki, such that k1 > k2 ≥ 2, with k1 =
m1 + m2 + 4 and k2 = m1 − m2 + 2. Then thanks to Chevotarev’s
Density Theorem, if ρΛ(σi) are the corresponding 2-dimensional Galois
representations associated to σi by Deligne [26], we can define the
familly of Galois representations associated to π as

ρΛ(π) := ρΛ(σ1)⊕ (ρΛ(σ2)⊗Q` χ
−(m2+1)
` ).

In fact, compatible systems of Galois representations associated to
a cuspidal automorphic representations as in the first paragraph of
this section (i.e., without the hypothesis of global genericity) can be
constructed from the cohomology of a suitable Siegel threefold (see
Theorem I of [102]).

Remark 3.3.3. — In Weissauer’s work another interesting family of
automorphic representations appears, called CAP (cuspidal associated
to parabolics) automorphic representations of GSp4(AQ). The exis-
tence of CAP automorphic representations makes the theory of au-
tomorphic representations of GSp4 more delicate than the theory for
GLn where no such cuspidal automorphic representations exist [54].
For example, its local components are non-tempered at almost all lo-
cal places, then they provide us counterexamples to the generalized
Ramanujan conjecture. Moreover, as in the endoscopic case this kind
of representations give us examples of cuspidal automorphic represen-
tations such that the Galois representations associated to them are
reducible (see the introduction of [102]).
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Fortunately, under the global genericity hypothesis, it is well known
that CAP automorphic representations cannot occur (see for example
the arguments after Remark 3.3 in [73]).

3.4. Study of the images

Let ρΛ(π) : GQ → GSp4(EΛ) be a 4-dimensional symplectic Galois
representation as in Theorem 3.3.2. In this case, we can take as E the
number field generated over Q by the coefficients of the characteristic
polynomials of all ρΛ(π)(Frobp), p /∈ S. By using Lemma 3 of [27],
we can define the residual mod Λ Galois representation ρΛ(π) : GQ →
GSp4(FΛ), where FΛ = OE/Λ. We denote by ρproj

Λ (π) the composition
of ρλ(π) with the natural projection GSp4(FΛ)→ PGSp4(FΛ).

Let π be a cuspidal automorphic representation of GSp4(AQ) as in
Theorem 3.3.2, we say that π is exceptional at a prime Λ if the image
of ρproj

Λ (π) is neither PSp4(F`s) nor PGSp4(F`s) for all integers s > 0.
On the other hand, such π will be called genuine if it is neither a
symmetric cube lift from GL2 nor an automorphic induction after lift
to GL4. The rest of this section is devoted to prove the following
result.

Theorem 3.4.1. — Let π be a genuine globally generic cuspidal au-
tomorphic representation of GSp4(AQ) satisfying the hypotheses in the
beginning of the section 3.3 and assume that π is not a weak endoscopic
lift. Then π is exceptional at most at a set of primes of density zero.

As we mentioned in the introduction, the proof of this theorem
is inspired by [32], where the case of genuine cuspidal automorphic
representations of GSp4(AQ) of level 1 and parallel weight was proved.
As in Dieulefait’s paper, the proof is done by considering all possible
images of ρproj

Λ (π) given by the classification of maximal subgroups of
GSp4(F`r). Such classification was first provided by Mitchell in [72].
However, we use a more modern formulation due to Aschbacher [6]
which is as follows:

Theorem 3.4.2. — Let ` be an odd rational prime and r be positive
integer. Let G be a maximal subgroup of GSp4(F`r) which does not
contain Sp4(F`r). Then at least one of the following holds:
i) G stabilizes a totally singular or a non-singular subspace;
ii) G stabilizes a decomposition F4

`r = V1 ⊕ V2, dim(Vi) = 2;
iii) G stabilizes a structure of F`2r-vector space on F4

`r ;
iv) G is a cross characteristic group of order smaller than 5040;
v) the projectivization of G is an almost simple group isomorphic to

PGL2(F`r);
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vi) the projectivization of G is an almost simple group isomorphic to
PSp4(F`s) or PGSp4(F`s), for some integer s > 0 dividing r.

For more details and relevant definitions see Chapter 2 and Chap-
ter 4 of [13]. As we will see in the next chapter, the Aschbacher’s
classification is a much more general result. This, in fact, gives a
classification of maximal subgroups of all the finite classical groups.

Before starting with our proof we need the next result due to Urban
[96] which follows from Fontaine-Laffaille theory [40].

Proposition 3.4.3. — Let π be a cuspidal automorphic representa-
tion of GSp4(AQ) as in Theorem 3.3.2. Then for every prime ` /∈ S,
such that `− 1 > m1 +m2 + 3, we have the following possibilities for
the action of the inertia group at `:

ρΛ(π)|I` '


1 ∗ ∗ ∗
0 ψm2+1

1 ∗ ∗
0 0 ψm1+2

1 ∗
0 0 0 ψm1+m2+3

1

 ,


ψm1+m2+3

2 0 ∗ ∗
0 ψ

(m1+m2+3)`
2 ∗ ∗

0 0 ψm2+1
1 ∗

0 0 0 ψm1+2
1

 ,


1 ∗ ∗ ∗
0 ψm1+m2+3

1 ∗ ∗
0 0 ψ

(m2+1)+(m1+2)`
2 0

0 0 0 ψ
(m1+2)+(m2+1)`
2

 or


ψm1+m2+3

2 0 ∗ ∗
0 ψ

(m1+m2+3)`
2 ∗ ∗

0 0 ψ
(m2+1)+(m1+2)`
2 0

0 0 0 ψ
(m1+2)+(m2+1)`
2

 ,

where ψ2 is a fundamental character of niveau 2 and ψ1 is the mod-`
cyclotomic character.

Now we are ready to give the proof of Theorem 3.4.1 which will be
given by considering the following cases:

3.4.1. Reducible images. — First, we will deal with the reducible
cases. Instead of following Dieulefait’s proof (which depends on the
generalized Ramanujan’s conjecture and Serre’s conjecture), we use
the recent results of [8] about irreducibility of compatible systems.
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More precisely, by Theorem 1.3.2 we have that the representations
ρΛ(Π) on the compatible system attached to a RAESDC automorphic
representation Π of GL4(AQ) are absolutely irreducible for a set of
primes Λ of density one. Then by Proposition 5.3.2 of [8] we have
that the residual representations ρΛ(Π) are irreducible for a set of
primes Λ of density one. Finally, by functoriality the reducible cases
can only happen for a set of primes of density zero.

Remark 3.4.4. — In [32], Dieulefait proved that if π is of parallel
weight k and such that πp is unramified for all primes p (i.e., S = ∅),
then ρΛ(π) is in fact irreducible for all but finitely many primes Λ.

Following his method, note that if we allow ramification at a finite
set of primes S 6= ∅, we have to allow the character appearing as one-
dimensional component or as the determinant of a two dimensional
component of a reducible representation ρΛ(π) to ramify at S, which
is a problem when we try to apply Serre’s conjecture as in Section 4.3 of
[32]. However, if we assume that πp is Iwahori-spherical for all p ∈ S,
we have that ρΛ(π)|Ip acts unipotently (see Main Theorem (b) of [88]).
Then as it is pointed out in Section 2 of [33], it can be proved that
this character will not ramify at the primes in S. Thus if we assume
that the image of ρΛ(π) is reducible with two 2-dimensional irreducible
components of the same determinant for infinitely many primes, we
can apply Serre’s conjecture as in Section 4.3 of loc. cit. to conclude
that π is a weak endoscopic lift. Therefore this case cannot happen
for infinitely many primes Λ. To deal with the rest of reducible cases
we can use the Ramanujan conjecture (which is a theorem in our case
[104, Theorem 3.3]) as in Section 4.1 and 4.2 of [32].

3.4.2. Image equal to a group having a reducible index two
subgroup. — Assume that we are in the case ii) or iii) of Theorem
3.4.2. In these cases ρΛ(π) is the induction of some 2-dimensional
representation σΛ of GK (with K a quadratic extension of Q) that
is not the restriction of a 2-dimensional representation of GQ. Now
assume that for infinitely many primes Λ

ρΛ(π) ≡ IndQ
K(σΛ) mod Λ.

A prioriK and σΛ depend on the prime Λ, but by using the description
of the image of inertia at ` given in Proposition 3.4.3, we have that K
is unramified at ` (for ` sufficiently large) and by Dirichlet principle we
can assume without loss of generality that K is independent of Λ (see
the arguments in Section 3 of [35]). Since this induced representation
is irreducible (because the reducible case has been covered before), we
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have that
Tr(ρΛ(π)(Frobp)) ≡ 0 mod Λ

for every p /∈ S ∪ {`} inert in K. As this holds for infinitely many
primes Λ, we obtain

ρΛ(π) = ρΛ(π)⊗ η
for all Λ, where η is the quadratic character of K/Q. Then since
ρΛ(π) = ρΛ(Π) for some RAESDC automorphic representation Π of
GL4(AQ), by strong multiplicity one for GL4 (see [54]), we have that

Π = Π⊗ η.
By applying Theorem 4.2 (p. 202) of [5] we deduce that Π is an
automorphic induction from the quadratic field K/Q. Hence π is
not genuine. Therefore these cases of our classification of maximal
subgroups of GSp4(F`r) can only happen for finitely many primes Λ.

3.4.3. Image equal to the stabilizer of a twisted cubic. —
Now we will deal with the case v) of Theorem 3.4.2. In this case all
matrices are of the form (see [52], page 233)

Sym3

(
a c
b d

)
=


a3 a2c ac2 c3

3a2b a2d+ 2abc bc2 + 2acd 3c2d
3ab2 b2c+ 2abd ad2 + 2bcd 3cd2

b3 b2d bd2 d3

 ,

then
(10) ρΛ(π) ≡ Sym3(σΛ) mod Λ,

where σΛ is a 2-dimensional Galois representation. Assume that for
infinitely many primes Λ the congruence (10) is satisfied. If we suppose
that ` /∈ S and ` − 1 > m1 + m2 + 3 (comparing the structure
of Sym3(σΛ) with the four possibilities for the image of the inertia
subgroup at ` given in Proposition 3.4.3), we have that this case can
only happen if the weight of π is of the form (2m2,m2). In this case
we have that the residual mod Λ representation σΛ, when restricted
to the inertia group at `, is as follows:(

1 ∗
0 ψm2+1

1

)
or

(
ψm2+1

2 0

0 ψ
(m2+1)`
2

)
.

Then by Serre’s conjecture [84] (which is now a theorem, cf. [60], [61]
and [34]), for every prime Λ that falls in this case, there is a classical
cuspidal Hecke eigenform fΛ of weight m2 + 2 and level N such that

ρΛ(π) ≡ Sym3(σfΛ,Λ) mod Λ,

whereN divides the conductor of the compatible system attached to π.
Then we have finitely many possibilities for the modular form fΛ and,



3.5. MAXIMALLY INDUCED REPRESENTATIONS 49

by the Dirichlet principle, we can assume that fΛ = f is independent
of Λ. Thus we have that

ρΛ(π) ≡ Sym3(σf,Λ) mod Λ

for infinitely many primes Λ. Therefore ρΛ(π) = Sym3(σf,Λ) for all
Λ. Then by the Strong Multiplicity-One Theorem π must be the
symmetric cube of some cusp form and π is not genuine. Hence we
can have as image the stabilizer of a twisted cubic at most for finitely
many primes Λ.

3.4.4. The rest of exceptional images. — Finally, we will deal
with the case iv) of Theorem 3.4.2. In this case, comparing the
exceptional groups G ⊆ GSp4(Fλ) (its order and structure, see Table
8.12 and Table 8.13 of [13]) with the fact that the image of ρproj

Λ (π)

contains the image of ρproj
Λ (π)|I` (assuming ` /∈ S and ` − 1 > m1 +

m2 + 3) described in Proposition 3.4.3, we concluded that this case
can only happen for finitely many primes Λ.

Conclusion. — Having gone through all cases in Theorem 3.4.2 (ex-
cept vi)) we conclude that if π is genuine satisfying the hypotheses
in the beginning of Section 3.3, we have at most a set of primes Λ of
density zero where π is exceptional.

3.5. Maximally induced representations (symplectic case)

It was observed by Khare and Wintenberger [60] (see also [59])
that the existence of exceptional primes in a compatible system can
be avoided by imposing certain local conditions on the Galois repre-
sentations. More precisely, let n be an even integer and p, q ≥ n be
distinct primes such that the order of q mod p is n. Denote by Qqn

the unique unramified extension of Qq of degree n and recall that

Q×qn ' µqn−1 × U1 × qZ,

where µqn−1 is the group of (qn − 1)-th roots of unity and U1 is the
group of 1-units. Let ` be a prime distinct from p and q. We will say
that a character

χq : Q×qn −→ Q×`
is of S-type if it satisfies the following conditions:
i) χq has order 2p,
ii) χq(q) = −1, and
iii) χq|µqn−1×U1 has order p.
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Note that a character as above is tame. Recall that a character of
Q×qn is tame if it is trivial on U1. By local class field theory we can
regard χq as a character (which by abuse of notation we call also χq)
of GQqn or of WQqn . In [59] it is proved that the representation

ρq = Ind
GQq
GQqn

(χq) : GQ −→ GLn(Q`)

is irreducible and symplectic, in the sense that it can be conjugated
to take values in Spn(Q`).

Let α : GQq → Q×` be an unramified character and χq (resp. α) be
the composite of χq (resp. α) and the projection Z` � F`. Note that
the image of the reduction of ρq in GLn(F`) is

ρq = Ind
GQq
GQqn

(χq)

which is an irreducible representation and the representation ρq⊗α is
irreducible too.

Definition 3.5.1. — Let p, q, ` be primes and χq, α be characters,
all as above. We say that a Galois representation

ρ : GQ −→ GSpn(Q`)

is maximally induced of S-type at q of order p if the restriction of ρ to
a decomposition group at q is equivalent to Ind

GQq
GQqn

(χq)⊗ α.

On the other hand, recall that a Galois representation ρ : GQ →
GLn(F`) is regular (in the sense of [2]) if there exist an integer s
between 1 and n, and for each i = 1, . . . , s a set Ai = {ai,1, . . . , ai,ri} of
natural numbers 0 ≤ ai,j ≤ `−1 of cardinality ri, with r1 +· · ·+rs = n
(i.e., all the ai,j are distinct), such that if we denote by Bi the matrix

Bi ∼


ψbiri 0

ψbi`ri
. . .

0 ψbi`
ri−1

ri


with ψri a fixed choice of a fundamental character of niveau ri and
bi = ai,1 + ai,2`+ · · ·+ ai,ri`

ri−1, then

ρ|I` ∼

 B1 ∗
. . .

0 Bs

 .

The elements of A := A1∪· · ·∪As are called tame inertia weights of ρ.
We say that ρ has tame inertia weights at most k if A ⊆ {0, 1, . . . , k}.
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Under the assumption of regularity and boundedness of tame inertia
weights, we have the following useful result, which was proved in
Section 3 of [2].

Lemma 3.5.2. — Let n, k ∈ N, with n even, and ρ : GQ → GLn(F`)
be a Galois representation which is regular with tame inertia weights
at most k. Assume that ` > kn! + 1. Then all n!-th powers of the
characters on the diagonal of ρ|I` are distinct.

Let K/Q be a finite extension of degree d and ρ0 : GK → GLn(F`)
be a Galois representation. Let V0 be the F`-vector space underlying
ρ0. The induced representation Ind

GQ
GK

ρ0 of ρ0 from GK to GQ is the
F`-vector space HomGK (GQ, V0), which is by definition the set

{φ : GQ → W : φ(στ) = ρ0(τ−1)φ(σ) for all τ ∈ H and σ ∈ GQ},

where σ ∈ GQ acts on φ ∈ HomGK (GQ, V0) by σ · φ(·) = φ(σ−1 · ).
Let {γ1, . . . , γd} be a full set of representatives in GQ of the left-
cosets in GQ/GK . The map φ 7→ ⊕di=1φ(γi) gives an isomorphism
between HomGK (GQ, V0) and the direct sum

⊕d
i=1 Vi (where each Vi is

isomorphic to V0). Via this identification the action of GQ on
⊕d

i=1 Vi
is given by

(Ind
GQ
GK

ρ0)(σ)(
d
⊕
i=1

vi) =
d
⊕
i=1

ρ0(γ−1
i σγσ(i))(vσ(i)),

where σ−1γi ∈ γσ(i)GK . Indeed,

d
⊕
i=1

φ(γi)
σ7→

d
⊕
i=1

φ(σ−1γi) =
d
⊕
i=1

ρ0(γ−1
i σγσ(i))(φ(γσ(i))).

By using the previous lemma we can prove the following result about
the ramification of induced representations.

Lemma 3.5.3. — Let n,m, k ∈ N, a ∈ Z and ` > kn! + 1 be
a rational prime. Let K/Q be a finite extension of degree d such
that dm = n, ρ0 : GK → GLm(F`) a Galois representation and
ρ = Ind

GQ
GK

ρ0. If ψa1 ⊗ ρ is regular with tame inertia weights at most
k, then K/Q does not ramify at `.

Proof. — The proof of this result is given in [2, Proposition 3.4].

For the rest of this chapter we will restrict ourselves to case n = 4.
The general case will be studied in the next chapter.
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3.6. Large image for almost all primes

Let N be a positive integer. Note that if we choose a prime p ≡ 1
mod 4 greater than max{N, 7}, then Chevotarev’s Density Theorem
allows us to choose a prime q > 5 (from a set of positive density)
which is completely split in Q(i,

√
p1, . . . ,

√
pm) (where p1, . . . , pm are

the prime divisors of N) and such that q2 ≡ −1 mod p.
The next result illustrates how we can use the notion of maximally

induced representation in order to prove a result similar to Theorem
3.4.1.

Theorem 3.6.1. — Let N , p, and q as above. Let k be a positive
integer and ` 6= p, q be a prime such that ` > 24k + 1 and ` - N . Let

ρ : GQ → GSp4(Q`)

be a Galois representation which ramifies only at the primes dividing
Nq` and such that a twist of ρ by some power of the mod-` cyclotomic
character is regular with tame inertia weights at most k. If ρ is
maximally induced of S-type at q of order p, then the image of ρproj is
PSp4(F`s) or PGSp4(F`s) for some integer s > 0.

Proof. — We will closely follow the proof of Theorem 1.5 of [2]. As
in the previous section we will proceed by cases.

3.6.1. Reducible cases. — Since ρ is maximally induced at q and
` 6= p, ρ|Dq is absolutely irreducible. Hence ρ is absolutely irreducible
and the reducible cases in the classification of maximal subgroups of
GSp4(F`r) cannot happen.

3.6.2. Induced cases. — Now suppose that the image of ρ corre-
sponds to an irreducible subgroup inside some of the maximal sub-
groups in cases ii) or iii) of Theorem 3.4.2. As this case is very sim-
ilar to Lemma 3.7 of [2], we will omit some details. In these cases
there exist a quadratic extension K ⊆ Q(i,

√
`,
√
q,
√
p1, . . . ,

√
pm)

(where p1, . . . , pm are the prime divisors of N) with Galois group
H = Gal(Q/K) ≤ GQ and a representation σ : H → GL2(F`) such
that

ρ ∼= Ind
GQ
H (σ).

Applying Mackey’s formula to Res
GQ
GQq

(
Ind

GQ
H (σ)

)
(which is irre-

ducible because we know that Res
GQ
GQq

(
Ind

GQ
H (σ)

)
= Ind

GQq
GQ

q4
(χq)⊗α),

we have that

Ind
GQq
GQq∩H

(
ResHGQq∩H(σ)

)
= Ind

GQq
GQ

q4
(χq)⊗ α.
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Then from Proposition 3.5 of [2], it follows that GQq4 ≤ GQq ∩ H =

Gal(Qq/Kq), where q is a prime of K above q. Thus

Qq ⊆ Kq ⊆ Qq4 ⊆ Qq

and hence K cannot ramify at q since Qq4 is an unramified extension
of Qq. Moreover, note that

4 = dim(ρ) = dim
(

Ind
GQ
H (σ)

)
= (GQ : H) dim(σ)

and

4 = dim
(

Ind
GQq
GQq∩H

(
ResHGQq∩H(σ)

))
= (GQq : GQq ∩H) dim(σ),

hence [Kq : Qq] = (GQq : GQq ∩H) = (GQ : H) = [K : Q]. Therefore
q is inert in K/Q.

On the other hand, by Lemma 3.5.3, as ρ is regular with tame
inertia weights at most k and ` is greater than 24k + 1, we have that
K cannot ramify at `. Then K ⊆ Q(i,

√
p1, . . . ,

√
pm) and therefore,

by assumption, q is split in K. Thus we have a contradiction.

3.6.3. Symmetric cube case. — In order to deal with the case v)
of Theorem 3.4.2 we will use the well-known Dickson’s classification of
maximal subgroups of PGL2(F`r) which states that they can be either
a group of upper triangular matrices, a dihedral group D2n (for some
integer n not divisible by `), PSL2(F`s), PGL2(F`s) (for some integer
s dividing r), A4, S4 or A5.

Let Gq be the projective image of Ind
GQq
GQ

q4
(χq). If Gq is contained

in a group of upper triangular matrices, it is contained in fact in the
subset of diagonal matrices because ` and 2p are coprime. But we
know that Gq is non-abelian, then it cannot be contained in a group
of upper triangular matrices. Moreover, Gq cannot be contained in
A4, S4 or A5 because we have chosen p > 7.

Now assume that Gq is contained in a dihedral group. As any
subgroup of a dihedral group is either cyclic or dihedral and as Gq

is non-abelian, we can assume that it is in fact a dihedral group of
order 4p. This implies that Gq contains an element of order 2p, but
we know that the elements of Gq have order at most p, then Gq cannot
be contained in a dihedral group.

Hence Gq should be PSL2(F`s) or PGL2(F`s) for some integer s > 0.
We know that the stabilizer of a twisted cubic can only occur when
` ≥ 5 in which case PSL2(F`s) is an index 2 simple subgroup of
PGL2(F`s). But Gq contains a normal subgroup (of order p) of index
greater than 2. Therefore the case v) in the classification of maximal
subgroups of GSp4(F`r) cannot occur.
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3.6.4. The rest of exceptional cases. — Finally, the order of the
groups in case iv) of Theorem 3.4.2 are 520, 1440, 1920, 3840 and
5040. Then all these groups can be discarded by using the fact that
the image of ρproj contains an element of order p > 7.

3.7. Large image for all primes

The goal of this section is to prove a representation-theoretic result
which gives us the local conditions needed to construct compatible
systems without exceptional primes. Roughly speaking, the idea is
to construct compatible systems which are maximally induced at two
primes simultaneously. In order to do this we start explaining how to
choose such primes.

Lemma 3.7.1. — Let k,N ∈ N such that 281 - N , and M be an
integer greater than N and 24k+ 1. Let p′ = 281 and p ≡ 1 mod 4 be
a prime different from p′ and greater than max{M, 7}. Then we can
choose two primes q and q′ different from p and p′ such that:
i) q and q′ are greater than M .
ii) q′ is a quadratic residue modulo q.
iii) q2 ≡ −1 mod p and q′2 ≡ −1 mod p′.
iv) q is completely split in Q(i,

√
p1, . . . ,

√
pm), where p1, . . . , pm are

the primes smaller than or equal to M .
v) q′ is completely split in Q(i,

√
p′1, . . . ,

√
p′m′), where p

′
1, . . . , p

′
m′ are

the primes different from p′ and smaller than or equal to M .

Proof. — The result follows from Chevotarev’s Density Theorem be-
cause Q(ζp), Q(ζp′), Q(

√
q) and Q(i,

√
p′1, . . . ,

√
p′m′) are all linearly

disjoint over Q.

The proof of the main result in this section, as in the previous
results, relies on the classification of maximal subgroups of GSp4(F`r).
Then we need to know such classification in even characteristic too.
In this case PSp4(F2r) = PGSp4(F2r) and the maximal subgroups of
Sp4(F2r), r > 1, are as follows (∗):
i) the stabilizer of a totally singular or a non-singular subspace;
ii) the stabilizer of a decomposition F4

2r = V1 ⊕ V2, dim(Vi) = 2;
iii) the stabilizer of a structure of F22r -vector space on F4

2r ;
iv) S5, A6 or an extension of C2

3 by D8;
v) SO+

4 (F2r), SO−4 (F2r);

∗. The topic was firstly investigated by Flesner [38] and [39]. See Section 7.2
and Table 8.14 of [13] for a complete classification.
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vi) the Suzuki group Sz(F2r), when r is odd;
vii) Sp4(F2s) for some integer s > 0 dividing r.

Remark 3.7.2. — As we choose p > 7 and the order of PSp4(F2) is
23 · 32 · 5, it is not necessary to consider the classification of maximal
subgroups of PSp4(F2) which is substantially different (see Table 8.15
of [13]).

Theorem 3.7.3. — Let k, N , M , p, p′, q and q′ as in Lemma 3.7.1.
Consider a compatible system of Galois representations ρ` : GQ →
GSp4(Q`) such that, for every prime `, ρ` ramifies only at the primes
dividing Nqq′`. Assume that for every ` > k + 2, ` - Nqq′, a twist of
ρ` by some power of the mod-` cyclotomic character is regular with
tame inertia weights at most k. If ρ` is maximally induced of S-type
at q of order p and maximally induced of S-type at q′ of order p′, then
the image of ρproj

` is PSp4(F`s) or PGSp4(F`s) for all primes `.

Proof. — Mixing Theorem 3.4.2 and characteristic 2 classification of
maximal subgroups of Sp4(F2r) we have the following cases.

3.7.1. Reducible cases. — As we saw in the proof of Theorem
3.6.1 the maximally induced behavior implies that ρ` is absolutely
irreducible. Indeed, if ` /∈ {p, q}, then ρ`|Dq is absolutely irreducible
and if ` ∈ {p, q}, then ρ`|Dq′ is absolutely irreducible. Hence the
reducible cases of both classifications cannot occur.

3.7.2. Induced cases. — Now suppose that the image of ρ` cor-
responds to an irreducible subgroup inside some of the subgroups in
cases ii) and iii) of Theorem 3.4.2 or in the cases ii) and iii) of char-
acteristic 2 classification. In these cases there exist a proper open
subgroup H ⊆ GQ of index 2 and a representation σ` : H → GL2(F`)
such that

ρ`
∼= Ind

GQ
H σ`.

Let K be the quadratic field such that H = Gal(Q/K). Note that,
as ρ`(Iq) (resp. ρ`(Iq′)) has order p (resp. p′) and Gal(K/Q) has order
2, we have that K/Q is unramified at q and q′.

Now if ` /∈ {p, q, q′} is greater than M , we have that q is completely
split in Q(i,

√
r1, . . . ,

√
re) (where r1, . . . , re are the prime divisors of

N), q2 ≡ −1 mod p, ` > 24k + 1 and ` - Nq′, then we can apply the
same arguments as in subsection 3.6.2. Similarly, if ` /∈ {p′, q, q′} we
can also apply the arguments of Theorem 3.6.1. Thus we can assume
that ` ∈ {q, q′, p1, . . . , pm}, where p1, . . . pm are the primes smaller
than or equal to the bound M .
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Let ` ∈ {q′, p1, . . . , pm}. We know, from the ramification of ρ`
and from the fact that K is unramified at q, that K is contained
in Q(i,

√
q′,
√
p1, . . . ,

√
pm). Then by the choice of q, it is split in K

which implies that ρ`|Dq would be reducible, which is a contradiction.
Finally, by the quadratic reciprocity law, we have

(
q
q′

)
= 1, then

exchanging the roles q ↔ q′ and p↔ p′ we deal with the case ` = q.

3.7.3. Orthogonal cases. — Note that SO+
4 (F2r) (resp. SO−4 (F2r))

contains a normal subgroup Γ of index 2 which is isomorphic to
PSL2(F2r) ⊗ PSL2(F2r) (resp. PSL2(F22r)). Assume that the image
of Ind

GQq
GQ

q4
χq is contained in SO+

4 (F2r) or SO−4 (F2r). Let K be the
quadratic extension of Q corresponding to Γ which is contained in
Q(i,
√
q,
√
q′,
√
p1, . . . ,

√
pm). Since Ind

GQq
GQ

q4
χq restricted to Iq is of or-

der p > 2, it follows that K is unramified at q. Then K is contained
in Q(i,

√
q′,
√
p1, . . . ,

√
pm), which implies that q is split in K and the

image of Ind
GQq
GQ

q4
χq is therefore contained in Γ.

If Γ ∼= PSL2(F22r), we obtain by using the Dickson’s classification of
maximal subgroups of PSL2(F2r) that the image of Ind

GQq
GQ

q4
χq cannot

be contained in Γ. Indeed, the image of Ind
GQq
GQ

q4
χq cannot be contained

in a dihedral group D2n because in characteristic 2 we know that
n = (2r ± 1). Moreover, in such characteristic the groups A4, S4 and
A5 cannot occur.

The case of groups of upper triangular matrices can be excluded by
observing that such groups are isomorphic to the semidirect product
of an elementary abelian 2-group and a cyclic group of order 2r − 1

and that the image of Ind
GQq
GQ

q4
χq contains an element of order 4.

Therefore the image of Ind
GQq
GQ

q4
χq should be PSL2(F2s) for some

integer s. As we have chosen p > 6 (then s > 1), we have that
PSL2(F2s) is a simple group. But the image of Ind

GQq
GQ

q4
χq contains

a proper normal subgroup of order p, then the image of Ind
GQq
GQ

q4
χq

cannot be contained in SO−4 (F2r).
Finally, if Γ ∼= PSL2(F2r)⊗ PSL2(F2r), we have (from the fact that

Ind
GQq
GQ

q4
χq is tensor-indecomposable, see p. 546 of [59]) that the image

of Ind
GQq
GQ

q4
χq cannot be contained in SO+

4 (F2r) too. Then the case v)
of the characteristic 2 classification cannot occur.
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3.7.4. Suzuki groups case. — In order to deal with case vi) of the
characteristic 2 classification we have to prove the following result.

Lemma 3.7.4. — The order of any Susuki group is not divisible by
281.

Proof. — Let r be a positive integer and Sz(F2r) be a Suzuki group.
We know that the order of Sz(F2r) is equal to 22r(22r + 1)(2r − 1) and
that the Suzuki group only exists if r is odd. Suppose that 281 divides
the order of Sz(F2r), in particular 281 divides (22r + 1)(2r − 1). If 281
divides (2r − 1), then 2r ≡ 1 mod 281. But the order of 2 modulo
281 is 70, then we have a contradiction because r is odd. Then we can
assume that 281 divides (22r + 1), in particular we have that 22r ≡ −1
mod 281 and 24r ≡ 1 mod 281. From this we have that 70 divides 4r
and therefore that 70 divides 2r. Thus 22r ≡ 1 mod 281 which is a
contradiction too (it contradicts the previous line).

By the choice of p′ and the previous lemma we have that the Suzuki
groups cannot occur.

3.7.5. Stabilizer of a twisted cubic case. — The case v) of
Theorem 3.4.2 was dealt for all ` /∈ {2, p, q} in the proof of Theorem
3.6.1. Moreover, exchanging the roles q ↔ q′ and p↔ p′ we deal with
the case ` ∈ {p, q}. Finally, we know that the stabilizer of a twisted
cubic does not appear in the classification of maximal subgroups if
` < 5.

3.7.6. The rest of exceptional cases. — The cases iv) of Theo-
rem 3.4.2 and iv) of the characteristic 2 classification cannot happen
because we have chosen p and p′ greater than 7.

3.8. Constructing automorphic representations

In this section we will construct a cuspidal automorphic representa-
tion Π of GL4(AQ) such that its associated compatible system satisfies
the conditions of Theorem 3.7.3. In particular, these compatible sys-
tem will have "large" image for all primes.

In order to construct such automorphic representation we will start
by constructing a globally generic cuspidal automorphic representation
τ of SO5(AQ). Let SO5 be the split special orthogonal group defined
over Q and fix two finite and disjoint sets of places D = {∞, q, q′} and
S = {t}, where q and q′ are chosen as in Lemma 3.7.1 with k > 12
and and t = N .
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First, we will to specify what we want at the local places q, q′ and
∞. For such purpose we need the following result of Jiang and Soudry
(see Theorem 6.4 of [56] and Theorem 2.1 of [57]).

Theorem 3.8.1. — Let q be a rational prime. There exist a bijection
between irreducible generic discrete series representations of SO5(Qq)
and irreducible generic representations of GL4(Qq) with L-parameter
of the form

∑
σi with σi irreducible symplectic representations which

are pairwise non-isomorphic.

Let ρq (resp. ρq′) be a representation induced from a character
χq : Qqn → Q×` (resp. χq′ : Qq′n → Q×` ) of S-type, as in Section 3.5.
From Theorem 3.8.1 we have that there is a generic supercuspidal rep-
resentation τq of SO5(Qq) (resp. τq′ of SO5(Qq′)) which corresponds to
a supercuspidal representations Πq of GL4(Qq) (resp. Πq′ of GL4(Qq′))
such that recq(Πq) 'WD(ρq) (resp. recq′(Πq′) 'WD(ρq′)).

On the other hand, at the infinite place we need a generic integrable
discrete series representations of SO5(R). First, note that SO5(R) has
discrete series representations because the rank of G0 (the identity
component of SO5(R)) is equal to the rank of K0

∼= SO3× SO2 (a
maximal compact subgroup of G0). The L-parameter

φ∞ : WR −→ Sp4(C)

defining an L-packet Adisc
φ∞ (SO5(R)) of discrete series representation

of SO5 is a direct sum of 2-dimensional symplectic representations σ1

and σ2 such that the restriction of σi to C× (i = 1, 2) is of the form

(z/z)
1−2κi

2 ⊕ (z/z)−
1−2κi

2 ,

for some non-zero integers κ1 and κ2 such that κ1 6= ±κ2. The in-
finitesimal character of all representations in the L-packetAdisc

φ∞ (SO5(R))
is κ = (κ1, κ2) and it can be proved that there is a unique generic dis-
crete series representation τ∞ of SO5 with infinitesimal character κ
(see Section 5.1 of [59]). Finally, in order to make τ∞ a local com-
ponent of a global automorphic representation τ of SO5(AQ), we need
that its matrix coefficients are integrable which occur if we assume
κ2 ≥ 2 and κ1 − κ2 > 4 by Proposition 5.1 of loc. cit.

Applying Theorem 4.5 of [59], with D, S, τq, τq′ and τ∞ as above,
we have the following result.

Theorem 3.8.2. — There exists a generic cuspidal automorphic rep-
resentation τ = ⊗′vτv of SO5(AQ) unramified outside {t, q, q′} and with
our desired local components τq, τq′ and τ∞ at q, q′ and∞ respectively.
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Finally, by Langlands Functoriality from SO5 to GL4 [25, Theorem
7.1], which in fact is fuctorial at all places [57, Theorem E], we can lift
τ to a cuspidal automorphic representation Π of GL4(AQ) unramified
outside {t, q, q′} and such that:
i) Π ' Π∨,
ii) recq(Πq) 'WD(ρq),
iii) recq′(Πq′) 'WD(ρq′), and
iv) Π∞ has a regular symplectic parameter φ∞ as above.
Note that the couple (Π, µtriv), where µtriv denotes the trivial charac-

ter of A×Q/Q×, is a RAESDC automorphic representation of GLn(AQ).
Then we can attach to (Π, µtriv) a compatible systemR(Π) = {ρΛ(Π)}Λ

of n-dimensional Galois representations as in Theorem 1.3.1. In par-
ticular, by local global compatibility, the Frobenius semisimplifica-
tion of ρΛ(Π)|GQp

is isomorphic to recp(Πp) ⊗ | |(1−n)/2 for all primes
p 6= `. Then by self-duality and Chebotarev’s Density Theorem, we
have that ρ∨Λ(Π) ' ρΛ(Π)| |n−1 and then ρΛ(Π) acts by either orthogo-
nal or symplectic similitudes on Qn

` with similitude factor | |n−1. More-
over, observe that as ρq (resp. ρq′) is irreducible, then WD(ρq) (resp.
WD(ρq′)) and WD(ρΛ(Π)|GQq

) (resp. WD(ρΛ(Π)|GQq′
)) are already

Frobenius semi-simple. Thus WD(ρΛ(Π)|GQq
) ' WD(ρq) ⊗ | |(1−n)/2

(resp. WD(ρΛ(Π)|GQq′
) ' WD(ρq′) ⊗ | |(1−n)/2), which implies that

ρΛ(Π)|GQq
' ρq ⊗ | |(1−n)/2 (resp. ρΛ(Π)|GQq′

' ρq′ ⊗ | |(1−n)/2). There-
fore, as ρq (resp. ρq′) is irreducible and symplectic, it follows that
ρΛ(Π) is irreducible and symplectic for all Λ. Hence the image of
ρΛ(Π) is contained in GSp4(Z`) possibly after conjugation.

On the other hand, by part iii) of Theorem 1.3.1, this compatible
system is Hodge-Tate regular with constant Hodge-Tate weights and
for every ` /∈ {t, q, q′} and Λ|` the representation ρΛ(Π) is crystalline.
Let a ∈ Z be the smallest Hodge-Tate weight, k the maximum of 12 (†)

and the biggest difference between any two Hodge-Tate numbers and
` /∈ {t, q, q′} be a prime such that ` > k + 2. By Fontaine-Lafaille
theory, the representation ψa1 ⊗ ρΛ(Π) (Λ dividing `) is regular with
tame inertia weights at most k and the tame inertia weights of this
representation are bounded by k.

Now applying Theorem 3.7.3 to the symplectic compatible system
R(Π), asocciated to (Π, µtriv) as above, we have the following result.

†. The condition k > 12 implies that κ2 ≥ 2 and κ1 > κ2 + 4, so this condition
in k is in order to assure that Π∞ is a local lift of an integrable discrete series
representation τ∞ of SO3,2.
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Theorem 3.8.3. — There are compatible systems R = {ρΛ}Λ such
that the image of ρproj

Λ is PSp4(F`s) or PGSp4(F`s) for all Λ.

Remark 3.8.4. — Note that in particular there is an infinite family
of RAESDC automorphic representations {Πn}n∈N of GL4(AQ) such
that, for a fixed prime `, the size of the image of ρproj

Λn
(Πn) for Λn|`

is unbounded for running n (because we can choose p as large as we
please by increasing the boundM , so that elements of larger and larger
orders appear in the inertia images).

Finally, as LS(s,Π,∧2) has a simple pole at s = 1 [25, Theorem
7.1], by Theorem 9.1 of [63] there exists a globally generic cuspidal
automorphic representation π of GSp4(AQ) with trivial central char-
acter, such that Π is the functorial lift of π in the sense of Theorem
3.3.1. Therefore we have the following result.

Theorem 3.8.5. — There are infinitely many globally generic cus-
pidal automorphic representations of GSp4(AQ) without exceptional
primes.

Another method to construct automorphic representations with pre-
scribed local conditions (which we will explore in the next chapter) is
by assuming the Arthur’s work on endoscopic classification of auto-
morphic representation for orthogonal groups [4] and adapting some
results of [87].

We remark that this method is used by Arias-de-Reyna, Dieulefait,
Shin and Wiese [3] in order to construct 2n-dimensional symplectic
compatible systems R = {ρΛ}Λ such that the image of ρΛ contains
a subgroup conjugated to Sp2n(F`) for a density one set of primes.
The limitation on the set of primes in loc. cit. is due to the authors
need to assume the existence of a transvection in order to control the
different possibilities for the images of the Galois representations in
the compatible system. However, in dimension 4 we eliminate this
problem by using the complete classification of maximal subgroups of
PGSp4(F`r).



CHAPTER 4

RAESDC AUTOMORPHIC
REPRESENTATIONS OF GLn(AQ)

In this chapter we prove a representation-theoretic result which gives
us a set of sufficient conditions to ensure that the projective image,
of the residual Galois representations of a totally odd polarizable
compatible system, is an almost simple group for almost every prime.
Moreover, we show that for some low dimensional cases the image is
in fact an orthogonal or symplectic group for almost all primes.

4.1. Maximally induced representations (orthogonal case)

Let n be an even integer and p, q > n be distinct odd primes such
that the order of q mod p is n. As in the previous chapter we denote
by Qqn the unique unramified extension of Qq of degree n and recall
that Q×qn ' µqn−1 × U1 × qZ. We will say that a character

χq : Q×qn −→ Q×`
is of O-type if satisfies the following conditions:
i) χq has order p,
ii) χq(q) = 1, and
iii) χq|µqn−1×U1 has order p.
Note that the characters of O-type are also tame. By local class field

theory we can regard χq as a character (which by abuse of notation
we call also χq) of GQqn or of WQqn . Then we can define the Galois
representation

ρq := Ind
GQq
GQqn

(χq) : GQq −→ GLn(Q`).

Similarly to characters of S-type, it can be proved that ρq is irre-
ducible and orthogonal.

Lemma 4.1.1. — Let χq be a character of O-type. Then the repre-
sentation ρq is irreducible and orthogonal, in the sense that it can be
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conjugated to take values in SOn(Q`). Moreover, if α : GQq → Q×`
is an unramified character, then the residual representation ρq ⊗ α is
also irreducible.

Proof. — As the order of χq restricted to the inertia group at q is
p and the order of q mod p is n, the characters χq, χqq, . . . , χq

n−1

q are
all distinct. Then ρq is irreducible. Moreover, since χq is tame and
χq|Q×

qn/2
is trivial, Theorem 1 of [77] proves that ρq is orthogonal.

Let χq (resp. α) be the composite of χq (resp. α) with the projection
Z` � F`. Note that the image of the reduction of ρq in GLn(F`)
is Ind

GQq
GQqn

(χq), which is an irreducible representation. Since α is
unramified, the order of the restriction of χq ⊗ (α|Qqn ) to the inertia
group at q is p. Then as the order of q mod p is n, the n characters
(χq⊗(α|Qqn )), (χq⊗(α|Qqn ))q, . . . , (χq⊗(α|Qqn ))q

n−1 are different which
implies the irreducibility of ρq ⊗ α = Ind

GQq
GQ

q2
(χq ⊗ α|GQqn

).

Definition 4.1.2. — Let p, q, ` be primes and χq, α be characters all
as above. We say that a Galois representation

ρ : GQ −→ GOn(Q`),

is maximally induced of O-type at q of order p if the restriction of ρ
to a decomposition group at q is equivalent to Ind

GQq
GQqn

(χq)⊗ α.

Now we will give some basic results about ρq and its image modulo
`. Such results will be very useful in what follows.

First, note that if χq is a character of S-type (resp. O-type),
then Γq := Im(ρq) is homomorphic to a non-abelian extension of
Z/nZ by Z/2pZ (resp. by Z/pZ) such that Z/nZ acts faithfully on
Z/pZ ⊆ Z/2pZ. Then we have the following result.

Lemma 4.1.3. — Let ` be a prime different from p and q. Then
every irreducible representation of Γq over F` has dimension 1 or
dimension at least n.

Proof. — The proof is adapted from Lemma 2.1 of [59] where the case
χq of S-type is dealt. Then we can assume that χq is of O-type. In
this case we have the following exact sequence

0 −→ Z/pZ −→ Γq −→ Z/nZ −→ 0

with Z/nZ acting on Z/pZ faithfully. Note that the restriction of any
such representation to Z/pZ is a direct sum of characters because ` is
different from p. If every character is trivial, then the original repre-
sentation factors through Z/nZ which is abelian, so 1-dimensional.
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Otherwise, a non-trivial character χ of Z/pZ appears. Then every
character obtained by composing χ with an automorphism of Z/pZ
coming from the action of Z/nZ likewise appears. As there are n such
characters, the original representation must have degree at least n.

Lemma 4.1.4. — Let ` be a prime different from p and q. Then
every faithful n-dimensional representation of Γq over F` is tensor-
indecomposable.

Proof. — Assume that there exists a faithful n-dimensional represen-
tation of Γq tensor-decomposable. Then it can be written as a tensor
product ρ1 ⊗ . . . ⊗ ρh of irreducible representations of Γq over F` of
dimension greater than 1 but smaller than n. So by Lemma 4.1.3 we
obtain a contradiction.

A new kind of groups will appear as possible images of Galois
representations associated to RAESDC automorphic representations
of dimension greater than 4. These groups will be defined as the
stabilizer of certain tensor products. Then in order to study these
groups we need to introduce a new type of induction with respect to
the tensor product.

More precisely, let K/Q be a finite extension of degree d and
{γ1, . . . , γd} be a full set of representatives in GQ of the left-cosets
in GQ/GK . Let ρ0 : GK → GLm(F`) be a Galois representation and
V0 be the F`-vector space underlying ρ0. The action of GQ on the
tensor product

⊗d
i=1 Vi (where each Vi is isomorphic to V0), given by

(⊗-Ind
GQ
GK

ρ0)(σ)(
d
⊗
i=1

vi) =
d
⊗
i=1

ρ0(γ−1
i σγσ(i))(vσ(i)),

defines a representation

⊗-Ind
GQ
GK

ρ0 : GQ −→ GL(
d⊗
i=1

Vi)

called the tensor induced representation of ρ0 from GK to GQ. Note
that for all σ ∈ GQ the map γi 7→ γσ(i) is a permutation of {1, . . . d}
which is trivial if and olny if σ ∈ GK̃ , where K̃ denotes the Galois
closure of K/Q. Then for each σ ∈ GK̃ we have that

(⊗-Ind
GQ
GK

ρ0)(σ) =
d
⊗
i=1

ρ0(γ−1
i σγi).

As for classical induction (Lemma 3.5.3), we have the following
result about the ramification of tensor induced representations.
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Lemma 4.1.5. — Let n,m, k ∈ N, a ∈ Z and ` > kn! + 1 be a
prime. Let K/Q be a finite extension of degree d such that md = n,
ρ0 : GK → GLm(F`) a Galois representation and ρ = ⊗-Ind

GQ
GK

ρ0. If
χa` ⊗ ρ is regular with tame inertia weights at most k, then K/Q does
not ramify at `.

Proof. — Let V0 be the F`-vector space underlying ρ0. For all γ ∈ GQ
we define

γρ0 : Gγ(K) −→ GL(V0)

by γρ0(σ) = ρ0(γσγ−1). Let Λ be a fixed prime of K̃ above `, IΛ ⊆ GK̃

be the inertia group at the prime Λ and I`,w ⊆ I` be the wild inertia
group at `. Let σ ∈ I` and τ ∈ IΛ. Since I`/I`,w is cyclic, we have
that the commutator σ−1τστ−1 belongs to I`,w, and since IΛ ⊆ I` is
normal, we have that σ−1τσ ∈ IΛ ⊆ GK̃ ⊆ Gγ(K). Then applying γρ0,
we can conclude that

γρ0(σ−1τσ)γρ0(τ−1) = γρ0(σ−1τστ−1) ∈ γρ0(I`,w).

Therefore γρ0(σ−1τσ) and γρ0(τ) have exactly the same eigenvalues.
If we assume that K/Q ramifies at `, we can pick σ ∈ I` \GK̃ , and

as K̃ =
∏

γ∈GQ
γ(K), there exists some γ ∈ GQ such that σ /∈ Gγ(K).

This implies that ρ(σγ)(V0) ∩ ρ(γ)(V0) = 0. Let {γ1, . . . , γd} be a full
set of left-coset representatives of GK in GQ with γ1 = γ and γ2 = σγ.
As τ ∈ IΛ ⊆ GK̃ , we have that

ρ(τ) =
d
⊗
i=1

γiρ0(τ),

where one factor is γρ0(τ) and another factor is σγρ0(τ) = γρ0(σ−1τσ).
Let µ1, . . . , µm be the eigenvalues of γρ0(τ) and µ′1, . . . , µ′m be those of
γρ0(σ−1τσ). Then the eigenvalues of γρ0(τ) ⊗ γρ0(σ−1τσ) are {µiµ′j :
i, j = 1, . . . ,m}. On the other hand, by Lemma 3.5.2 we have that
the n!-powers of the characters on the diagonal of χa` ⊗ ρ|I` are all
different, which implies that the characters on the diagonal of ρ|IΛ
are all different. Thus γρ0(τ) and γρ0(σ−1τσ) cannot have the same
eigenvalues for all τ ∈ IΛ. Then we have a contradiction.

4.2. Study of the images I (geometric cases)

Let ` be a prime and ι : Q`
∼= C be a fixed isomorphism. By

a polarized Galois representation of GQ we will mean a pair (ρ, ϑ),
where

ρ : GQ −→ GLn(Q`) and ϑ : GQ −→ Q×`
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are continuous homomorphisms such that there is ε ∈ {±1} and a non
degenerated pairing 〈·, ·〉 on Qn

` satisfying:

〈x, y〉 = ε〈x, y〉 and 〈ρ(σ)x, ρ(cσc)y〉 = ϑ(σ)〈x, y〉

for a complex conjugation c and for all x, y ∈ Qn

` and all σ ∈ GQ.
Equivalently, (ρ, ϑ) is polarized if and only if either ϑ(c) = −ε and ρ
factors through GSpn(Q`) with multiplier ϑ or ϑ(c) = ε and ρ factors
through GOn(Q`) with multiplier ϑ. Finally, we say that (ρ, ϑ) is
totally odd if ε = 1.

We will say that a compatible system R = {ρ`}` of Galois repre-
sentations ρ` : GQ → GLn(Q`) is totally odd polarizable if there is a
compatible system Θ = {ϑ`}` of characters ϑ` : GQ → Q` such that
(ρ`, ϑ`) is a totally odd polarized Galois representation for all `. In
particular, the compatible system R(Π) = {ρΛ(Π)}Λ associated to a
RAESDC automorphic representation (Π, µ) of GLn(AQ) as in Theo-
rem 1.3.1 is totally odd polarizable with ϑ` = χ1−n

` ρΛ(µ).
The main goal of this section is to show that, for a totally odd

polarizable compatible system R = {ρ`}` of Galois representations
which are maximally induced at q of order p, for an appropriate couple
of primes (p, q), the image of ρproj

` is equal to an almost simple group
(i.e., a group H such that S E H 6 Aut(S) for some non-abelian
simple group S) for almost all ` . Then in order to state our main
result we start giving a basic lemma which explains what we mean by
an appropriate couple of primes.

Lemma 4.2.1. — Let k, n,N ∈ N with n even and M be an integer
greater than 17, n, N , kn! + 1, and all primes dividing 2

∏m
i=1(22i− 1)

if n = 2m for some m ∈ N. Let L0 be the compositum of all number
fields of degree smaller that or equal to n! which are ramified at most
at the primes smaller than or equal to M . Then we can choose two
different primes p and q such that:
i) p ≡ 1 mod n,
ii) p and q are greater than M ,
iii) q is completely split in L0, and
iv) qn/2 ≡ −1 mod p.

Proof. — First, choose a prime p greater than M and such that p ≡ 1
mod n. Then Chevotarev’s Density Theorem allows us to choose a
prime q > M (from a set of positive density) which is completely split
in L0 and such that qn/2 ≡ −1 mod p.

The main result of this chapter is the following:
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Theorem 4.2.2. — Let k, n, N , M , p, q and L0 as in Lemma 4.2.1.
Let R = {ρ`}` be a totally odd polarizable compatible system of Galois
representations ρ` : GQ → GLn(Q`) such that for every prime `,
ρ` ramifies only at the primes dividing Nq`. Assume that for every
` > kn! + 1 a twist of ρ` by some power of the cyclotomic character is
regular with tame inertia weights at most k and that for all ` 6= p, q,
ρ` is maximally induced of S- or O-type at q of order p. Then for all
odd primes ` different from p and q, the image of ρproj

` is an almost
simple group.

As the Galois representations ρ` in the previous theorem are totally
odd polarized we can ensure that the image of ρ` lies in an orthogonal
or symplectic group. Then the first step in the proof of this theorem is
to identify the maximal subgroups of GSpn(F`r) and GO±n (F`r). Such
subgroups were classified by Aschbacher in [6] as follows (see also [13]
and [64]).

Theorem 4.2.3. — Let ` be a prime and n, r ∈ N with n even. Let
G be a maximal subgroup of GSpn(F`r) or GO±n (F`r) which does not
contain Spn(F`r) or Ω±(F`r) respectively. If n ≥ 6 in the symplectic
case or n ≥ 10 in the orthogonal case, then at least one of the following
holds:
i) G stabilizes a totally singular or a non-singular subspace;
ii) G stabilizes a decomposition V = ⊕ti=1Vi, dim(Vi) = n/t;
iii) G stabilizes an extension field of F`s of prime index dividing n;
iv) G stabilizes a tensor product decomposition V = V1 ⊗ V2;
v) G stabilizes a decomposition V = ⊗ti=1Vi, dim(Vi) = a, n = at;
vi) G normalizes an extraspecial or a symplectic type group; or
vii) the projectivization of G is an almost simple group.

Remark 4.2.4. — In the orthogonal case we assume n ≥ 10 because:
Ω±2 (F`r) ∼= Z(`r∓1)/(2,`r−1), Ω+

4 (F`r) ∼= SL2(F`r) ◦ SL2(F`r), Ω−4 (F`r) ∼=
PSL2(F`2r), Ω+

6 (F`r) ∼= SL4(F`r)/〈I4〉, Ω−6 (F`r) ∼= SU4(F`r)/〈I4〉 and
Aut(PΩ+

8 (F`r)) 6= PΓΩ+
8 (F`r), where ΓO+

8 (F`r) denotes the group of all
semi-isometries of F8

`r with the standard symmetric pairing of positive
type. Then the Aschbacher classification does not apply in these
cases. In the symplectic case we assume n ≥ 6 because the cases
PGSp2(F`r) = PGL2(F`r) and PGSp4(F`r) have been studied in the
previous chapters.

Now we are ready to give the proof of Theorem 4.2.2, which will be
given by showing that G` := Im(ρ`) is not contained in any subgroup
of geometric type (i.e., cases i)-vi) in Theorem 4.2.3).
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4.2.1. Reducible cases. — Let V be the space underlying ρ`. Sup-
pose that G` corresponds to case i) of Theorem 4.2.3, then G` stabi-
lizes a proper non-zero totally singular or a non-degenerated subspace
of V . Therefore G` does not act irreducibly on V . But, according
to Lemma 4.1.1, if ` 6= p, q, G` acts irreducibly on V . Hence, if we
assume ` different from p and q, the reducible case cannot happen.

4.2.2. Imprimitive and field extension cases. — If G` corre-
sponds to an irreducible subgroup in cases ii) and iii) of Theorem
4.2.3, then there exists a normal subgroup H` of index at most n! of
G` such that

1 −→ H` −→ G` −→ St −→ 1

with 1 < t ≤ n and H` reducible (not necessarily over F`r).
Let L be the Galois extension of Q corresponding to H` and Γq the

image of ρq. Note that as ρ`(Iq) has order p and (p, n!) = 1, L/Q
is unramified at q. Then from the ramification of ρ` we have that L
is unramified outside {`, p1, . . . , pw}, where p1, . . . , pw are the primes
smaller than or equal to the boundM . If ` > kn!+1 and different from
p and q, it follows from Lemma 3.5.3 that L is unramified at ` and if
` ≤ kn! + 1, then ` ∈ {p1, . . . , pw}. Then in both cases L is contained
in L0. This implies that q is completely split in L and therefore Γq is
contained in H` for all prime ` different from p and q, and according
to Lemma 4.1.1 and Section 3.5, M` should be absolutely irreducible.
Then we have a contradiction.

4.2.3. Tensor product cases. — Now assume that G` corresponds
to a subgroup in the case iv) of Theorem 4.2.3, then the representation
ρ` can be written as a tensor product ρ1 ⊗ ρ2 of two representations
ρ1 and ρ2 with dim(ρi) < n for i = 1, 2. Then as G` contains Γq for
all primes ` different from p and q, we have that the restriction of ρ`
to Dq arises from the tensor product of two representations over F` of
dimension greater than 1 and smaller than n. But, by Lemma 4.1.4,
we have that this restriction is tensor-indecomposable. Then we have
a contradiction.

4.2.4. Tensor induced cases. — Similarly to Subsection 4.2.2, if
G` corresponds to an irreducible subgroup in case v) of Theorem 4.2.3,
then there exists a normal subgroup T` of index at most n! of G` such
that

1 −→ T` −→ G` −→ St −→ 1

with 1 < t ≤ n and T` tensor-decomposable.
Let L be the Galois extension of Q corresponding to T`. From the

ramification of ρ` we have that L is unramified outside {`, q, p1, . . . , pw},
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where p1, . . . , pw are the primes smaller than or equal to the bound
M . Note that due to ρ`(Iq) has order p and (p, n!) = 1, then L/Q is
unramified at q. Moreover, if ` > kn!+1 and different from p and q, it
follows from Lemma 4.1.5 that L is unramified at `, and if ` ≤ kn!+1,
then ` ∈ {p1, . . . , pw}. Then L is contained in L0 which implies that
q is completely split in L and therefore Γq is contained in T` for all
primes ` different from p and q. So Lemma 4.1.4 implies that T` is
tensor-indescomposable which is a contradiction.

4.2.5. Extraspecial cases. — Recall that a 2-group R is called
extraspecial if its center Z(R) is cyclic of order 2 and the quotient
R/Z(R) is a non-trivial elementary abelian 2-group. For any integer
m > 0 there are two types of extraspecial groups of order 21+2m.
We write 21+2m

+ for the extraspecial group of order 21+2m which is
isomorphic to a central product of m copies of D8 and we write 21+2m

−
for the extraspecial group of the same order but that is isomorphic to
a central product of m− 1 copies of D8 and one of Q8.

Now suppose that G` corresponds to case vi) of Theorem 4.2.3.
First, observe that according to Table 3.5.D of [64] there are no
subgroups of GO−n (F`r) belonging to this case, then we can assume
that G` is either a subgroup of GO+

n (F`r) or a subgroup of GSpn(F`r).
Moreover, according to Table 4.6.B of loc. cit., G` lies in this case only
if n = 2m, r = 1, ` ≥ 3 and G` = NGO+

n (F`r )(R) or G` = NGSpn(F`r )(R),
where R is an absolutely irreducible 2-group of type 21+2m

− or of type
21+2m

+ . From (4.6.1) of [64] we have that the projective image PG` of
G`, in PGO+

n (F`r) or in PGSpn(F`r), is isomorphic to CAut(R)(Z(R)).
Then from Table 4.6.A of loc. cit. we have that PG` = 22m.O+

2m(F2)

(of order 2m
2+m+1(2m − 1)

∏m−1
i=1 (22i − 1)) or PG` = 22m.O−2m(F2) (of

order 2m
2+m+1(2m+1)

∏m−1
i=1 (22i−1)). Then case vi) of Theorem 4.2.3

cannot happen because we have chosen p not dividing 2
∏m

i=1(22i− 1).

Conclusion. — Having gone through the cases i)− vi) of Aschbacher
classification we have only two possibilities for G`: either G` lies in
case vii) in which case PG` is almost simple or PG` contains PSpn(F`r)
(resp. PΩ±n (F`r)) and is contained in PGSpn(F`r) ≤ Aut(PSpn(F`r))
(resp. PGO±n (F`r) ≤ Aut(PΩ±n (F`r))). Since we assume that n ≥ 6 in
the symplectic case and n ≥ 10 in the orthogonal case, we have from
Theorem 2.1.3 of [64] that PSpn(F`r) and PΩ±n (F`r) are non-abelian
simple groups. Then PG` is also almost simple. So we can conclude
that for all odd primes ` different from p and q, the image of ρproj

` as
in Theorem 3.6.1 is an almost simple group.
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4.3. Existence of compatible systems

Te goal of this section is to prove the existence of totally odd po-
larized compatible system of representations satisfying Theorem 4.2.2
via automorphic representations. We closely follow the arguments in
[3].

We start with an existence theorem of automorphic representations
for split classical groups over Q, which as the Weinstein result on
Section 2.6, is based on the principle that the local components of
automorphic representations at a fixed prime are equidistributed in
the unitary dual of a reductive group according to an appropriate
measure. More precisely:

Theorem 4.3.1. — Let G be a split classical group over Q and such
that G(R) has discrete series. Let S be a finite set of rational primes
and Ûp be a prescribable subset (∗) for each p ∈ S. Then there exist
cuspidal automorphic representations π of G(AQ) such that
i) πp ∈ Ûp for all p ∈ S,
ii) π is unramified at all finite places away from S, and
iii) π∞ is a discrete series whose infinitesimal character is sufficiently

regular.

Proof. — This result is the analogue of Theorem 5.8 of [87] except
that here we are not assuming that the center of G is trivial. However,
in this case we can fix a central character and apply the trace formula
with fixed central character as in Section 3 of [9] to deduce the exact
analogue of Theorem 4.11 and Corolary 4.12 of [87]. Then our theorem
can be deduced in the same way as in [87, Theorem 5.8].

On the other hand, Arthur has recently classified local and global
automorphic representations of symplectic and special orthogonal
groups via twisted endoscopy relative to general linear groups [4]. For
our purpose it suffices to consider the split special orthogonal groups:
– SO2m+1 with the natural embedding ξ : Sp2m(C) → GL2m(C),
m ∈ N, and

– SO2m with the natural embedding ξ′ : SO2m(C) → GL2m(C),
m ∈ N even (†).

Recall that if v is a finite (resp. archimedean) place, W ′
Qv = WQv ×

SL2(C) (resp. W ′
Qv = WQv) denotes de Weil-Deligne group of Qv. We

will say that an L-parameter φv : W ′
Fv
→ GL2m(C) is of symplectic

type (resp. orthogonal type) if it preserves a suitable alternating (resp.

∗. For the definiton of prescribable subset we refer to Section 3.1 of [3].
†. This restriction is because SO2m(R) has no discrete series if m is odd.
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symmetric) form on the 2m-dimensional space, or equivalently, if φv
factors through ξ (resp, ξ′) possibly after conjugation by an element
of GL2m(C).

For each local L-parameter φv : W ′
Qv → Sp2m(C) (resp. φ′v : W ′

Qv →
SO2m(C)), Arthur associates an L-packet Aφv(SO2m+1(Qv)) (resp.
Aφ′v(SO2m(Qv))) consisting of finitely many irreducible representations
of SO2m+1(Qv) (resp. SO2m(Qv)). Moreover, each irreducible repre-
sentation belongs to the L-packet for a unique parameter up to equiv-
alence. If φv (resp. φ′v) has finite centralizer group in Sp2m(C) (resp.
SO2m(C)) so that it is a discrete parameter, then Aφv(SO2m+1(Qv))
(resp. Aφ′v(SO2m(Qv)) consists only of discrete series. Let π (resp.
π′) be a discrete automorphic representation of SO2m+1(AQ) (resp.
SO2m(AQ)). Arthur shows the existence of a self-dual isobaric auto-
morphic representation Π of GL2m(AQ) which is a functorial lift of
π (resp. π′) along the embedding ξ : Sp2m(C) → GL2m(C) (resp.
ξ′ : SO2m(C)→ GL2m(C)). In the generic case in the sense of Arthur
(i.e., when the SL2-factor in the global A-parameter for π (resp. π′)
has trivial image) this means that for the unique φv (resp. φ′v) such
that πv ∈ Aφv(SO2m+1(Qv)) (resp. π′v ∈ Aφv(SO2m(Qv))), we have
that recQv(Πv) ' ξ ◦ φv (resp. recQv(Πv) ' ξ′ ◦ φ′v) for all places v of
Q.

Let ρq (resp. ρ′q) be a representation induced from a character
of S-type (resp. O-type) as in Section 3.5 (resp. Section 4.1), and
WD(ρq) (resp. WD(ρ′q)) the associated Weil-Deligne representation
which gives rise to a local L-parameter φq (resp. φ′q) for GL2m(Qq).
Since ρq (resp. ρ′q) is irreducible and symplectic (resp. orthogonal)
the parameter φq (resp. φ′q) factors through Sp2m(C) ⊆ GL2m(C)
(resp. SO2m(C) ⊆ GL2m(C)), possibly after conjugation, and defines
a discrete L-parameter of SO2m+1(Qq) (resp. SO2m(Qq)). Then the
L-packet Aφq(SO2m+1(Qq)) (resp. Aφ′q(SO2m(Qq))) consists of finitely
many discrete series of SO2m+1(Qq) (resp. SO2m(Qq)).

Remark 4.3.2. — In Section 3.8 is used the fact that the L-packet
Aφq(SO2m+1(Qq)) contains a generic supercuspidal representation. Here
it suffices to have the weaker fact that Aφq(SO2m+1(Qq)) contains a
discrete series. However, we remark that the proof of Arthur’s results
are still conditional on the stabilization of the twisted trace formula
and a few expected technical results in harmonic analysis. However,
recently Moeglin andWaldspurger have been announced that the proof
of Arthur’s results are now unconditional (see [74] and [75]).

Theorem 4.3.3. — There exist self-dual cuspidal automorphic rep-
resentations Π of GLn(AQ) with trivial central character such that
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i) Π is unramified outside q,
ii) recq(Πq) 'WD(ρq) (resp. recq(Πq) 'WD(ρ′q)), and
iii) Π∞ is of symplectic (resp. orthogonal) type and regular algebraic.

Proof. — The proof of this theorem is analogous to the proof of The-
orem 3.4 of [3], i.e., by applying Theorem 4.3.1 with S = {q} and
Ûq = Aφ′q(SO2m+1(Qq)) (resp. Ûq = Aφ′q(SO2m(Qq))).

Corollary 4.3.4. — There exist compatible systems as in Theorem
4.2.2.

Proof. — Let Π be an automorphic representation as in Theorem
4.3.3 and µtriv the trivial character of A×Q/Q×. Then (Π, µtriv) is a
RAESDC automorphic representation of GLn(AQ) and the compatible
system R(Π) = {ρΛ(Π)}Λ associated to (Π, µtriv) as in Theorem 1.3.1
is totally odd polarizable for the compatible system of characters
C = {χ1−n

` ρΛ(µtriv) = χ1−n
` }Λ.

Note that R(Π) is Hodge-Tate regular and for every ` 6= q, ρΛ(Π)
is crystalline. Let a ∈ Z be the smallest Hodge-Tate weight and let k
be the biggest difference between any two Hodge-Tate numbers. By
Fontaine-Laffaille theory, we have that for every prime ` such that
` > k+2 ≥ kn!+1 and ` 6= q, the representation χa` ⊗ρΛ(π) is regular
and the tame inertia weights of this representation are bounded by k.

Finally, taking p and q as in Lemma 4.2.1 with N = 1 and by part
ii) of Theorem 4.3.3, we have that ρΛ(Π) is maximally induced of S-
or O-type at q of order p for all Λ not above p or q.

Remark 4.3.5. — As in Section 3.8, from the self-duality of Π and
Chevotarev’s Density Theorem, we have that ρ∨Λ(Π) = ρΛ(Π)| |n−1 and
then ρΛ(Π) acts by either orthogonal or symplectic similitudes on Q×`
with similitude factor | |n−1. Although it is possible for an irreducible
representation to act by both orthogonal and symplectic similitudes,
this is not possible if the factor of similitude are the same. As ρq (resp.
ρ′q) is an irreducible symplectic (resp. orthogonal) representation and
ρΛ(Π)|GQq

' ρq ⊗ | |(1−n)/2 (resp. ρΛ(Π)|GQq
' ρ′q ⊗ | |(1−n)/2), it

follows that ρΛ(Π) is irreducible and symplectic (resp. orthogonal)
with similitude factor | |n−1. Therefore the image of ρΛ(Π) may be
conjugate in GSpn(Q`) (resp. GOn(Q`)) to a subgroup of GSpn(Z`)
(resp. GOn(Z`)).
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4.4. Study of the images II (almost simple groups)

In this section we will give a refinement of Theorem 4.2.2 for some
low dimensional groups. More precisely, we will prove the following
result.

Theorem 4.4.1. — Let R = {ρ`}` be a totally odd polarizable com-
patible system of Galois representations ρ` : GQ → GLn(Q`) as in
Theorem 4.2.2. Then for almost all primes ` we have that:
i) If ρ` is contained in GSpn(Q`) and 6 ≤ n ≤ 12, then the image of
ρproj
` is equal to PSpn(F`s) or PGSpn(F`s) for some s ∈ N.

ii) If ρ` is contained in GO12(Q`), then the image of ρproj
` is equal to

PΩ+
12(F`s), PSO+

12(F`s), PO+
12(F`s) or PGO+

12(F`s) for some s ∈ N.

In order to prove this theorem we need a more precise description
of the almost simple groups in the Aschbacher’s classification.

Definition 4.4.2. — Let G be a subgroup of GSpn(F`r) (resp. of
GO±n (F`r)) and G∞ =

⋂
i≥0 G

(i), where G(i) denotes the i-th derived
subgroup of G. We say that G is of class S if and only if all of the
following holds:
i) PG is almost simple,
ii) G∞ acts absolutely irreducible, and
iii) G does not contain Spn(F`r) (resp. Ω±n (F`r)).

Remark 4.4.3. — Note that this definition is slightly weaker that
the classical definition (see Definition 2.1.3 of [13] and Section 1.2 of
[64]). However, as we assume ` odd, according to Table 4.8.A of [64],
both definitions are equivalent.

Lemma 4.4.4. — Let G be a subgroup of GSpn(F`r) (resp. GO±n (F`r))
such that it does not lie in cases i)-vi) of Theorem 4.2.3, then one of
the following holds:
i) G is of class S, or
ii) PG is conjugate to PSpn(F`s) or PGSpn(F`s) (resp. to PΩ±n (F`s),

PSO±n (F`s), PO±n (F`s) or PGO±(F`s)) for some integer s > 0
dividing r.

Proof. — If G contains Spn(F`r) or Ω±n (F`r), then G lies in ii) (see the
conclusion at the end of Section 4.2). If G does not contain Spn(F`r)
or Ω±n (F`r), by the main result of [64], it lies in one of the classes C5

or S (in the notation of loc. cit). If G lies in class C5 then G lies in
case ii) by definition. Otherwise, from the previous remark we have
that G is of class S.
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Then to prove Theorem 4.4.1 we just need to show that the image
of ρ` is not of class S. According to Chapter 4 and 5 of [13], at least in
dimension smaller than or equal to 12, the groups of class S are divided
in two classes as follows. We say that a group G of class S lies in the
class of defining characteristic, denoted by S2, if G∞ is isomorphic to
a group of Lie type in characteristic `, and G lies in the class of cross
characteristic, denoted by S1, otherwise. For a fixed dimension the
set of orders of the cross characteristic groups is bounded above. In
contrast, the groups in defining characteristic have unbounded order.

Now we are ready to give the proof of Theorem 4.4.1, which will be
given by considering the following two cases:

4.4.1. Symplectic case. — Throughout this section we will assume
that ` ≥ 7. Suppose that G` corresponds to a group lying in S1. Then
according to Propositions 6.3.17, 6.3.19, 6.3.21 and 6.3.23 of [13], PG`

must be an extension of degree at most 2 of one of the following groups
(see [64] and [13] for the notation):
– PSL2(F7) (of order 24 · 3 · 7), PSL2(F7).2,
– PSL2(F11) (of order 23 · 3 · 5 · 11), PSL2(F11).2,
– PSL2(F13) (of order 23 · 3 · 7 · 13), PSL2(F13).2,
– PSL2(F17) (of order 24 · 32 · 17),
– PSL2(F25) (of order 24 · 3 · 52 · 13),
– PSp4(F5) (of order 27 · 32 · 54 · 13)
– PSU3(F3) (of order 25 · 33 · 7), PSU3(F3).2,
– PSU5(F2) (or order 211 · 35 · 5 · 11), PSU5(F2).2,
– G2(F4) (of order 213 · 33 · 52 · 7 · 13), G2(F4).2,
– J2 (of order 28 · 33 · 52 · 7),
– A5, S5, A6 or A6.22.

But, as we have chosen p > 17, we have that these groups cannot
occur as image of ρproj

` .
On the other hand, let G be an algebraic group over Z admitting

an absolutely irreducible symplectic representation of dimension n.
Then we can consider the corresponding map σ : G → GSpn,Z and
the subgroup σ(G(F`r)) of GSpn(F`r). There is a general philosophy
which states that for ` sufficiently large all the maximal subgroups in
class S2 should arise from this construction for suitable G and σ (see
Section 1 of [69] and [83]).

For example, if G = SL2 and n is an even positive integer greater
than 2, this group admits an absolutely irreducible symplectic repre-
sentation of dimension n, given by the (n− 1)-th symmetric power of
SL2. Then it gives rise to an embedding SL2 ↪→ Spn. This represen-
tation extends to a representation GL2 → GSpn and the F`r -points
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of the image of this representation gives rise to an element of S2 (see
Proposition 5.3.6.i of [13]). In fact, according to Tables 8.29, 8.49,
8.65 and 8.81 of loc. cit., this is the only kind of subgroups lying in
the class of defining characteristic if 6 ≤ n ≤ 12.

In order to deal with this case we will use the well-known Dickson’s
classification of maximal subgroups of PGL2(F`r) which states that
they can be either isomorphic to a group of upper triangular matrices,
a dihedral group D2d (for some integer d not divisible by `), PSL2(F`s),
PGL2(F`s) (for some integer s dividing r), A4, S4 or A5.

Let Gq be the projective image of Ind
GQq
GQqn

(χq) which is contained
in PG`. If Gq is contained in a group of upper triangular matrices, it
is contained in fact in the subset of diagonal matrices because ` and
2p are coprime. But we know that Gq is non-abelian, then it cannot
be contained in a group of upper triangular matrices. Moreover, Gq

cannot be contained in A4, S4 or A5 because we have chosen p greater
than 7.

Now assume that Gq is contained in a dihedral group. As any
subgroup of a dihedral group is either cyclic or dihedral and as Gq is
non-abelian, we can assume that it is in fact a dihedral group of order
np. This implies that Gq contains an element of ordermp (withm ∈ N
such that n = 2m), but we know that the elements of Gq have order at
most p. Then Gq cannot be contained in a dihedral group. Therefore
Gq should be isomorphic to PSL2(F`s) or PGL2(F`s) for some integer
s > 0. As we are assuming ` ≥ 7, PSL2(F`s) is an index 2 simple
subgroup of PGL2(F`s). But Gq contains a normal subgroup of order
p, thus of index greater than 2 (because we are assuming n > 6).
Therefore we have shown that the image of ρ` cannot be a group of
class S2. Then the first part of Theorem 4.4.1 is proved.

4.4.2. Orthogonal case. — According to Remark 4.2.4 and the
construction in Section 4.3, the first case where we can apply our
results to orthogonal groups is when n is equal to 12. In this case, as
n ≡ 0 mod 4, it follows from Section 3.1 that the image PG` of ρproj

`

lies in PGO+(F`r).
From Table 8.83 of [13] we have that S2 is empty. Then by Propo-

sition 6.3.23 of loc. cit. we have that the candidates to be PG` are
extensions of degree 2a (with a at most 3) of one of the following
groups (see [64] and [13] for the notation):
– PSL2(F11) (of order 22 · 3 · 5 · 11),
– PSL2(F13) (of order 22 · 3 · 7 · 13),
– PSL3(F3) (of order 24 · 33 · 13), PSL3(F3).2,
– M12 (of order 26 · 33 · 5 · 11), M12.2 or A13.
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Then from the choice of p, we can conclude that these groups cannot
occur as image of ρproj

` . Therefore the second part of Theorem 4.4.1 is
proved.

Conclusion. — We remark that there exist compatible systems satis-
fying the conditions of Theorem 4.4.1 by Corolary 4.3.4. Then from
the results proved through this thesis, in particular Theorem 2.5.3,
3.8.3 and 4.4.1, we have the following result.

Corollary 4.4.5. — The symplectic groups:

PSpn(F`s) and PGSpn(F`s),
for n ≤ 12, and the orthogonal groups:

PΩ+
12(F`s), PSO+

12(F`s), PO+
12(F`s) and PGO+

12(F`s),
are Galois groups of Q for infinitely many primes ` and infinitely many
integers s > 0.

To the best of our knowledge, these orthogonal groups are not
previously known to be Galois over Q, except for s = 1 which was
studied in [107]. The symplectic case was previously studied in [1],
[2], [3], [36] and [59].
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group of an algebraic number field. Proc. Int. Symp. on algebraic
number theory, Tokyo-Nikko, 1-7 (1955).

[101] J. Weinstein. – Hilbert modular forms with prescribed ramifi-
cation. Int. Math. Res. Not. IMRN no. 8, 1388-1420 (2009).

[102] R. Weissauer. – Four dimensional Galois representations. In:
Formes automporphes II. Le cas du groupe GSp(4). Astérisque
302, 67-150 (2005).

[103] R. Weissauer. – Existence of Whittaker models related to four
dimensional symplectic Galois representations. In Modular Forms
on Schiermonnikoog. Cambridge. Univ. Press. 67-149 (2008).

[104] R. Weissauer. – Endoscopy for GSp(4) and the cohomol-
ogy of Siegel modular threefolds. Lecture Notes in Mathematics.
Springer-Verlag, Berlin, (2009).

[105] G. Wiese. – On projective linear groups over finite fields as
Galois groups over the rational numbers. In Modular Forms on
Schiermonnikoog, Cambridge University Press, 343-350 (2008).

[106] A. Wiman. – Bestimmung aller Untergruppen einer doppelt
unendlichen Reihe von einfachen Gruppen. Stockh. Akad. Bihang
25, 1-47 (1899).

[107] D. Zywina. – The inverse Galois problem for orthogonal groups.
ArXiv:1409.1151 (2014).


	Portada 
	Contents
	Introduction   
	Chapter 1. Preliminaries               
	Chapter 2. Hilbert Modular Forms
	Chapter 3. Generic Automorphic Representations of GSp4(Aa)   
	Chapter 4. Raesdc Automorphic Representations of GLn(Aq)  
	Bibliography

