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1. RESUMEN  

 

El triptófano es un aminoácido esencial que participa en múltiples eventos 

fisiológicos. El triptófano es convertido en nicotinamida adenina dinucleótido 

(NAD+) a través de la vía de la kinurenina (VK), durante esta transformación varios 

metabolitos con actividad biológica son producidos. En enfermedades 

neurodegenerativas y psiquiátricas el funcionamiento de la vía se altera y se 

producen niveles incrementados de 3-hidroxikinurenina (3-HK) y ácido quinolínico 

(QUIN). Los efectos del QUIN en el sistema nervioso central (SNC) han sido 

ampliamente estudiados mientras que el papel de la 3-HK en estos desórdenes se 

desconoce. Por un lado, la 3-HK se relaciona con el daño oxidante y la muerte 

neuronal y por otro, parece ser un antioxidante natural. En este trabajo se 

realizaron estudios in vitro e in vivo para caracterizar los efectos tóxicos y/o 

antioxidantes de la 3-HK en el estriado de roedores.  

Los resultados indican que la 3-HK modula el ambiente redox mediante la 

activación del factor nuclear eritroide-2 (Nrf2, del inglés, Nuclear Factor Erythroid 

2- related factor) y de enzimas antioxidantes, y estos eventos previenen el daño 

oxidante causado por QUIN, ácido 3-nitropropiónico (3-NP) y FeSO4.  

Al no ser comprobada la toxicidad de la 3HK, en este trabajo se incluyeron los 

estudios realizados en paralelo con el QUIN con el objetivo de proveer información 

sobre los efectos de este metabolito derivados de la 3-HK y conocer más sobre el 

papel de la VK en procesos neurodegenerativos. En esta parte, se evaluó el efecto 

del QUIN sobre la activación del Nrf2 y se investigó el posible efecto sinérgico que 

puede haber entre esta molécula excitotóxica y los ácidos orgánicos que se 

acumulan en acidemias metabólicas.    

El QUIN estimuló la activación del Nrf2 de forma transitoria como un 

mecanismo de compensación, y favoreció un patrón tóxico sinérgico con los 

ácidos orgánicos, sugiriendo que esta molécula altamente tóxica podría ser 

responsable de las acciones nocivas causadas par alteraciones de la VK. Además, 

el sinergismo del QUIN con otros metabolitos tóxicos ayuda a comprender los 

mecanismos por los cuales la neurodegeneración ocurre y, por lo tanto, ayuda a la 
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identificación de mecanismos útiles para el diseño de estrategias terapéuticas más 

efectivas. 
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2. ABSTRACT 

 

Tryptophan is an essential amino acid involved in multiple physiological events. It 

is converted to nicotinamide adenine dinucleotide (NAD+) through the kynurenine 

pathway (KP), during this transformation several metabolites with biological activity 

are produced. In neurodegenerative and psychiatric diseases, the KP function is 

altered and increased levels of 3-hydroxykynurenine (3-HK) and quinolinic acid 

(QUIN) are observed. QUIN effects in the CNS have been studied extensively 

while the role of 3-HK in these disorders is unknown. On the one hand, 3-HK is 

related to oxidative damage and neuronal death, and on the other hand, it appears 

to be a natural antioxidant. In this work, in vitro and in vivo studies were performed 

to characterize the toxic and/or antioxidant effects of 3-HK in the striatum of 

rodents. The toxicity of the molecule was impossible to prove. 

The results indicate that 3-HK modulates the redox environment by activation of 

Nuclear Factor 2- Erythroid related factor (Nrf2) and antioxidant enzymes, and 

these events prevent oxidative damage induced by QUIN, 3-nitropropionic acid (3-

NP) and FeSO4. 

Because the 3-HK toxicity was not proven, studies in parallel with QUIN were 

performed in this work in order to know more about the effects of this 3-HK 

metabolite and learn more about the role of KP in neurodegenerative processes. In 

this part, the effect of QUIN on Nrf2 activation was assessed and the possible 

synergistic effect of QUIN and organic acids, accumulate in metabolic acidemias, 

was investigated. 

QUIN transiently stimulated the activation of Nrf2 as a compensation 

mechanism, and favored a synergistic toxic pattern with organic acids, suggesting 

that this highly toxic molecule may be responsible for the harmful actions of altered 

KP. Moreover, the QUIN synergism with other toxic metabolites helps to 

understand the mechanisms by which neurodegeneration occurs. Therefore, it will 

be useful for designing more effective therapeutic strategies. 
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3. INTRODUCCIÓN  

 

Las enfermedades neurodegenerativas causan grandes desafíos 

económicos y sociales a nivel mundial. La investigación de los mecanismos 

involucrados en los procesos de daño y muerte celular observados en estos 

desordenes contribuirá al desarrollo de estrategias terapéuticas. Estos 

padecimientos comparten mecanismos tóxicos conocidos, entre ellos la 

excitotoxicidad y el estrés oxidante. La excitotoxicidad es un proceso caracterizado 

por la activación sostenida de receptores de N-metíl-D-aspartato (rNMDA). La 

sobre-activación de los rNMDA aumenta la concentración de Ca2+ intracelular y, 

posteriormente, desencadena una activación masiva de enzimas que contribuyen 

a la muerte celular. La activación enzimas pro-oxidantes altera en el balance entre 

la formación de especies reactivas de oxígeno/nitrógeno (ERO/ERN) y la defensa 

antioxidante. Como resultado se producen modificaciones celulares en lípidos, 

ácidos nucleicos y proteínas, lo que compromete la integridad celular (Halliwell, 

2006; Dasuri et al., 2013; Niranjan, 2014). Por lo anterior, el estudio de procesos 

bioquímicos relacionados con estos dos mecanismos ayudará a comprender mejor 

los procesos de muerte observados en enfermedades neurodegenerativas. Una de 

las vías metabólicas que se altera en estas condiciones es la vía de la kinurenina 

(VK). 

 

3.1. LA VÍA DE LA KINURENINA 

 

La VK es la principal ruta metabólica que transforma al triptófano en nicotinamida 

adenina dinucleótido (NAD+). Durante esta transformación, varios metabolitos con 

actividad biológica son producidos. Se han demostrado que alteraciones en el 

metabolismo de la VK y cambios en los niveles de sus metabolitos pueden 

participar en la patogénesis de varias enfermedades neurodegenerativas, 

desórdenes depresivos y esquizofrenia (Schwarcz et al., 2012; Tan et al., 2012; 

Amaral et al., 2013). 
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 Las enzimas limitantes de la VK son la indolamino-2,3-dioxigenasa 

(IDO) y la triptófano 2,3-dioxigenasa (TDO), su activación produce la formación de 

kinurenina a partir de triptófano. La vía tiene dos brazos, en uno de ellos, la 

kinurenina forma ácido kinurénico mediante una transaminación irreversible 

catalizada por la kinurenina aminotransferasa (KAT). En el otro brazo, la 

kinurenina es convertida en 3-hidroxikinurenina (3-HK) por la acción de la 

kinurenina 3-monooxigenasa (KMO). La 3-HK es transformada por la kinureninasa 

en ácido 3-hidroxiantranílico y éste es convertido en ácido quinolínico (QUIN) por 

la enzima 3-hidroxiantranilato oxigenasa (3-HAO). Finalmente, el QUIN es 

transformado a NAD+. En la Figura 1 se muestra una representación simple de la 

vía.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figura 1. Formación de la 3-hidroxikinurenina (3-HK) y del ácido quinolínico 
(QUIN) en la vía de la kinurenina (VK). Algunos metabolitos fueron omitidos. 
IDO, indoleamina-2,3-dioxigenasa; TDO, triptófano-2,3-dioxigenasa; KAT, 
kinurenina aminotransferasa; kinurenina 3-monooxigenasa (KMO); 3-HOA, 3-
hidroxiantranilato oxigenasa. 
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Algunos metabolitos de la VK con actividad biológica son: el QUIN, una 

neurotoxina y un agonista glutamatérgico (Schwarcz et al., 1984; Guidetti et al., 

2006); el ácido kinurénico, un agente neuroprotector y un antagonista 

glutamatérgico (Schwarcz et al., 1983; Yu et al., 2004); la 3-HK y el ácido 3-

hidroxiantranílico, dos moléculas con actividad redox (Goldstein et al., 2000; 

Braidy et al., 2009; Colín-González., 2013).  

 

3.2. LA 3-HIDROXIKINURENINA 

 

Los niveles de la 3-HK aumentan en pacientes con enfermedades 

neurodegenerativas y psiquiátricas. En un principio, este efecto se relacionó con la 

disfunción y muerte neuronal que se encontró en estos desórdenes. Más tarde, 

estudios in vitro demostraron que la 3-HK también podría actuar como un 

antioxidante (Colín-González., 2013). 

La dualidad de la 3-HK se debe a su naturaleza química, ya que en 

condiciones fisiológicas, la molécula se auto-oxida formando una o-aminoquinona 

(agente oxidante) y ERO (O2˙-, H2O2, ˙OH) (Eastman y Guilarte, 1990; Ishii et al., 

1992; Okuda et al., 1996; Hiraku et al., 1995; Vazquez et al., 2000). Además, la 3-

HK participa en la formación de QUIN, el cual es responsable de causar daño 

celular mediado principalmente por excitotoxicidad y estrés oxidante (Schwarcz et 

al., 1984). El efecto deletéreo de la 3-HK se observó en cultivos de neuronas de 

cerebelo, estriado, hipocampo y en líneas tumorales (Eastman y Guilarte, 1989; 

Okuda et al., 1998; Jeong et al., 2004; Smith et al., 2009). Actualmente no existen 

reportes que hayan demostrado su toxicidad in vivo (Pinelli et al., 1984; Nakagami 

et al., 1996; Guidetti y Schwarcz, 1999).  

En contraste, la 3-HK es un agente reductor que actúa como antioxidante. 

Este metabolito puede atrapar O2˙-, ˙OH, radicales peroxilo y ˙NO; 

consecuentemente, la presencia de la 3-HK previene la oxidación y la nitración de 

diversas biomoléculas (Goshima et al., 1986; Christen et al., 1990; Goda et al., 

1999; Leipnitz et al., 2007; Backhaus et al., 2008). Al respecto, los efectos 

protectores de este metabolito se han demostrado en varios modelos como 

homogenados de corteza cerebral, células de glioma C6 y en el cristalino donde 
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aumenta la capacidad antioxidante, inhibe la lipoperoxidación y disminuye las 

reacciones cruzadas entre proteínas (Luthra y Balasubramanian, 1992; Leipnitz et 

al., 2007).  

Por su parte, la acidemia glutárica tipo I es un desorden autosómico 

recesivo relacionado con el metabolismo de lisina, hidroxilisina y triptófano. 

Pacientes con esta enfermedad muestran atrofia cerebral, macrocefalia y 

degeneración estriatal (Viau et al., 2012). La adición de 3-HK en homogenados de 

corteza de rata previno la producción de radicales libres producidos por el ácido 

glutárico, el principal metabolito que se acumula en esta enfermedad (Leipnitz et 

al., 2007). Todo lo anterior sugiere que la 3-HK actúa como antioxidante en 

procesos patológicos y en neuronas aisladas genera la producción de especies 

reactivas. Por lo tanto, el efecto tóxico de la 3-HK reportado en otros trabajos bien 

podría ser mediado por su conversión en QUIN, una hipótesis que no ha sido 

demostrada. 

 

3.3. EL ÁCIDO QUINOLÍNICO 

 

En condiciones patológicas, el QUIN es responsable de causar daño celular 

mediado principalmente por excitotoxicidad y estrés oxidante (Schwarcz et al., 

1984; Santamaría et al., 2001; Stone et al., 2003). El QUIN es un agonista de los 

rNMDA que se une en las subunidades NR2A y NR2B (Schwarcz et al., 2012). La 

sobreactivación de estos receptores produce el aumento de los niveles de Ca2+ 

intracelular y la activación de numerosas enzimas (proteasas, sintasas de óxido 

nítrico, fosfolipasas, endonucleasa, etc.) que disparan una secuencia de eventos 

destructivos asociados con procesos neurodegenerativos. 

El QUIN se ha utilizado como modelo para producir excitotoxicidad y estrés 

oxidante en estudios in vitro e in vivo. Su inyección intraestriatal produce: 1) la 

acumulación de metales de transición que en presencia de oxígeno contribuyen a 

la formación de O2˙-, H2O2, y ˙OH; 2) modifica los perfiles de antioxidantes 

endógenos; 3) aumenta el estrés nitrosante mediante la producción de NO, 

ONOO-˙y 4) produce disfunción mitocondrial (Perez de la Cruz, et al., 2012).  
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 El QUIN se asocia con la patogénesis de varias enfermedades infecciosas, 

inflamatorias, neurodegenerativas, autoinmunes y psiquiátricas. Los efectos del 

QUIN en estos desórdenes dependen de su concentración y son relacionados con 

alteraciones en el citoesqueleto, la producción de estrés oxidante, daño 

excitotoxicidad, disfunción mitocondrial, inflamación, autofagia y apoptosis (Jong-

Mi et al., 2016). El QUIN también podría participar en los mecanismos de 

disfunción y muerte celular observados en las acidemias orgánicas, un grupo de 

enfermedades neurodegenerativas (Varadkar y Surtees, 2004).  

 

3.4. LAS ACIDEMIAS ORGÁNICAS 

 

Las acidemias orgánicas son desórdenes metabólicos hereditarios producidos por 

la deficiencia de enzimas que participan en el catabolismo de aminoácidos, lípidos 

y ácidos grasos. Esta deficiencia produce la acumulación de uno o más ácidos 

orgánicos (Chalmer, 1989). El cerebro de personas con una acidemia orgánica 

desarrolla neurodegeneración aguda relacionada con la acumulación de los 

siguientes metabolitos tóxicos: ácido glutárico (GA), ácido 3-hidroxiglutárico (3-

OHGA), ácido metilmalónico (AMM), ácido propiónico (AP) y ácido 3-metilglutárico 

(AMG), por mencionar a unos cuantos.  

 Las acidemias metilmalónica y propiónica son causadas por la deficiencia 

de la mutasa metilmalonil-CoA (EC 5.4.99.2) y la carboxilasa de propil-CoA (EC 

6.4.1.4), respectivamente. En la acidemia metilmalónica se acumula el AMM (1-2.5 

mmol/L) y en la acidemia propiónica el AP (5 mm/L) en sangre. Las 

manifestaciones clínicas de estos dos desordenes incluyen macrocefalia, retraso 

mental, convulsiones, vómito, encefalopatía, coma y muerte (Deodato et al., 2006; 

Hauser et al., 2011).  

La acidemia glutarica tipo I (AG I) es una AO que produce la muerte de 

neonatos, causada por la deficiencia de la enzima glutaril-CoA deshidrogenasa 

(GDD, McKusick 23167; OMIM # 231670). Los pacientes con esta enfermedad 

tienen concentraciones aumentadas de AG (500-5000 µmol/L) y 3-OHGA (40-200 

µmol/L) en fluidos biológicos y en el SNC (Kölker et al., 2004; Sauer et al., 2006). 

Los niños afectados con este desorden al nacer desarrollan atrofia cortical y entre 
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los 6 meses y 4 años de edad daño agudo en el caudado/putamen (Amir et al., 

1987; Hoffmann y Zschocke, 1999). Estudios in vitro e in vivo sugieren que la 

acumulación de ácidos orgánicos puede inducir excitotoxicidad, estrés oxidante y 

alteraciones del metabolismo (de Oliveira Marques et al., 2003; Ferreira et al., 

2007; Flott-Rahmel et al., 1997; Kölker et al., 2004; Latini et al., 2000; Rosa et al., 

2004; Sauer et al., 2006; Wajner et al., 2004). El ratón knockout para la glutaril-

CoA deshidrogenasa (gcdh, gen de la enzima responsable para la degradación de 

AG) constituye un modelo la AG I. 

Los macrófagos/monocitos de pacientes con AG I, en episodios de 

encefalopatía y necrosis estriatal, presentan un aumento en los niveles !-interferon 

que induce la activación de la IDO, la primera enzima de la VK y; 

consecuentemente, genera un aumento en la producción de kinurenina. La 

kinurenina sintetizada periféricamente puede cruzar la barrera hematoencefálica 

mediante un transportador de aminoácidos neutros. Una vez dentro del cerebro, 

puede ser catabolizada por la microglia a 3-HK y después a QUIN (Heyes et al., 

1996). El QUIN sintetizado no es removido efectivamente y concentraciones 

tóxicas se pueden acumular en la hendidura sináptica (Cao et al., 2002). 

El daño causado por AG per se no es suficiente para explicar el daño celular 

observado en los pacientes. Por lo que se sugiere la presencia de otro factor que 

amplifique o exacerbe el daño (Kölker et al., 2004; Varadkar y Surtees, 2004). El 

QUIN cumple con las características necesarias para participar en estos 

mecanismos, generando la potencia suficiente para inducir la necrosis estriatal 

observada en este desorden.  
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4. PLANTEAMIENTO DEL PROBLEMA 

 

Según el Instituto Nacional de Estadística y Geografía (INEGI) la esperanza de 

vida en México en 1930 era de 34 años, en el 2015 en este valor aumento a 76 y 

para el 2050 se prevé que sean 85 años. La población está envejeciendo, para el 

2050 una de cada cuatro personas tendrá más de 60 años. Los individuos de la 

tercera edad tienen mayor probabilidad de desarrollar enfermedades 

degenerativas, trastornos mentales y depresión, desórdenes que causarán 

grandes estragos económicos y sociales. El estudio de los mecanismos que se 

activan en condiciones patológicas ayudará a encontrar estrategias terapéuticas o 

herramientas de diagnóstico temprano, y de esta forma se aumentará la calidad de 

vida.  

 Las enfermedades neurodegenerativas comparten varios mecanismos en 

común: la excitotoxicidad, el estrés oxidante, la inflamación y las alteraciones 

metabólicas. Entre las alteraciones del metabolismo se pueden mencionar los 

cambios observados en el funcionamiento de la VK. Niveles incrementados de la 

3-HK, un metabolito que se produce en esta ruta, son relacionados con 

neurodegeneración en condiciones experimentales y clínicas. Una alternativa para 

explicar la neurotoxicidad asociada a la 3-HK puede ser a través de su metabolito 

de degradación, el QUIN, el cual es una potente neurotoxina en concentraciones 

elevadas. Actualmente no hay estudios in vivo que definan el verdadero papel de 

la 3-HK en el SNC. Por lo cual, el estudio de los efectos que producen estas dos 

moléculas en diferentes condiciones experimentales ayudará a definir el papel de 

la VK en las enfermedades neurodegenerativas.  
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5. HIPÓTESIS 

 

Si la 3-HK es un metabolito que al oxidarse produce la formación de especies 

reactivas que pueden modificar el funcionamiento celular, entonces su aplicación 

en modelos in vitro e in vivo inducirá mecanismos de neurotoxicidad que 

comprometerán la viabilidad celular.  

Si la 3-HK es precursor del QUIN, un metabolito relacionado con disfunción y 

muerte celular, entonces uno de los mecanismos que podría participar en la 

toxicidad de la 3-HK es su transformación a moléculas más tóxicas.  
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6. OBJETIVOS 

 

6.1. OBJETIVO GENERAL 

 

- Caracterizar los mecanismos de acción de la 3-HK y de su metabolito, el 

QUIN, en el estriado de roedores. 

 

6.2. OBJETIVOS PARTICULARES 

 

- Caracterizar los efectos tóxicos y/o antioxidantes de la 3-HK en ensayos in 

vitro e in vivo en estriado de roedores. 

- Evaluar los efectos de la 3-HK y del QUIN en la modulación temprana del 

factor Nrf2. 

- Describir los mecanismos mediante los cuales el QUIN magnifica los 

procesos tóxicos que se observan en desórdenes relacionados con el 

metabolismo de aminoácidos.   
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7. MATERIAL Y MÉTODOS 

 

Ver la descripción detallada en los artículos presentados en la sección de 

resultados. 



17 
 

 

 

8. DISEÑO EXPERIMENTAL 

 

8.1. LA 3-HIDROXIKINURENINA 

 

Este trabajo fue diseñado para investigar si la 3-HK es tóxica y si su presencia es 

capaz de alterar el ambiente redox en tejido estriatal. Se utilizaron condiciones in 

vitro (rebanadas estriatales incubadas con la molécula) e in vivo (administración 

intraestriatal). En los dos casos se hizo un curso temporal y una curva dosis 

respuesta con el objetivo de encontrar una concentración y un tiempo en el cual la 

presencia de la 3-HK altere el ambiente celular. Se hizo particular énfasis en 

marcadores de función mitocondrial y estrés oxidante en estudios in vitro (Figura 

2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La presencia de la 3-HK modificó el ambiente redox en las diferentes 

condiciones estudiadas. Con el objetivo de evaluar si esta reacción potenciaba o 

disminuía los efectos neurotóxicos de compuestos conocidos [QUIN (1 mM), ácido 

Figura 2. Diseño experimental utilizado para caracterizar la posible toxicidad de la 
3-hidroxikinurenina (3-HK) en estriado de roedores.  
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3-nitropropiónico (3-NP, 1 mM) y FeSO4 (50 !M)], se co-incubaron rebanadas 

estriatales con la 3-HK más cada una de las toxinas por 6 h para ejemplificar un 

ambiente excitotóxico, con disfunción energética y oxidante, respectivamente 

(Figura 3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

8.2. EL ÁCIDO QUINOLÍNICO 

 

La falta de toxicidad de la 3-HK, aunada a su capacidad de modular el ambiente 

redox mediante el Nrf2 y su posible efecto neuroprotector sugirieren que los 

efectos tóxicos reportados para la 3-HK pueden explicarse a través de la 

producción de QUIN. Por lo tanto, la realización de estudios en paralelo con este 

metabolito fue pertinente para tratar de explicar, en términos fisiopatológicos, los 

efectos de producen las alteraciones de la VK. 

Lo que primero se caracterizó fue la capacidad del QUIN para inducir daño 

oxidante en lípidos, usando rebanadas estriatales de ratones. Se estableció una 

curva concentración-respuesta. En este ensayo, la incubación de las rebanadas 

con QUIN a una concentración de 50 !M produjo los niveles más altos de 

lipoperoxidación observados, utilizando esta concentración se realizó un curso 

temporal de la inducción del Nrf2 y de enzimas antioxidantes (Figura 4).  

3-HK 
 20 y 100 "M (6 h)  

MTT Enzimas 
antioxidantes 

QUIN  3-NP  FeSO4  

.  Figura 3. Diseño experimental utilizado para caracterizar el posible efecto 
protector in vitro de la 3-hidoxikinurenina (3-HK) en presencia de moléculas 
conocidas [QUIN (1 mM), ácido 3-nitropropiónico (3-NP, 1 mM) y FeSO4 (50 
!M)]. 
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Con base a la hipótesis de que parte de la toxicidad del QUIN es ejercida vía 

estrés oxidante, se emprendió un abordaje adicional para demostrar si su patrón 

neurotóxico es sensible a un agente antioxidante de amplio espectro. El ácido 

cafeico es un compuesto fenólico que induce la expresión del Nrf2 en el núcleo. 

Se ha sugerido que esta molécula podría unirse a Keap1, una proteína que 

secuestra al Nrf2 en el citoplasma, lo que produce la disociación y la activación 

transcripcional del Nrf2 (Pang et al., 2016). Este estudio demostró el efecto 

protector del ácido cafeico en rebanadas y en animales inyectados 

intraestriatalmente con QUIN. Las rebanadas estriatales fueron incubadas en 

presencia de ácido cafeico (30-300 !M) y/o QUIN (100 !M) y se evaluó un 

marcador de estrés oxidante. En los animales, el ácido cafeico (20 mg/kg) fue 

administrado i.p. cinco días antes de la inyección del QUIN (240 nmol/!L) y siete 

días después se realizaron pruebas conductuales. (Figura 4). 

 

 

   

 

 

Adicionalmente, se determinó si el QUIN magnifica los efectos de los ácidos 

orgánicos como parte de su espectro tóxico. En este experimento se utilizaron 

sinaptosomas tratados con concentraciones subtóxicas de varios ácidos orgánicos 
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Figura 4. Diseño experimental utilizado para evaluar el efecto del ácido quinolínico 
(QUIN) en la modulación del Nrf2 y el posible efecto protector del ácido cafeico.  
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(AG, 3-OHGA, AMM, AP, AMG) en presencia y ausencia del QUIN. Los 

sinaptosomas fueron pre-incubados con agentes con mecanismos de acción 

conocidos: 1) ácido kinurénico (AK), un antagonista de los rNMDA; 2) S-alilcisteina 

(SAC), un antioxidante de amplio espectro; y 3) L-nitroarginina metilester (L-

NAME), un inhibidor de la sintasa de óxido nítrico (Figura 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finalmente, se evaluó el efecto sinérgico del AG y el QUIN en un modelo de 

AG I. Animales knockout para el gen GCDH (la enzima que degrada el AG) fueron 

inyectados intraestriatalmente con el QUIN y alimentados con una dieta alta en 

lisina para estimular la producción de AG. Este modelo constituye la mejor 

aproximación experimental para evidenciar el posible sinergismo entre el QUIN y 

los ácidos orgánicos que se acumulan en las acidemias metabólicas mediante 

marcadores de estrés oxidante, actividad metabólica y energética, y actividad 

transcripcional (Figura 5).   

Figura 5. Estrategia experimental desarrollada in vitro e in vivo para 
determinar el posible un posible efecto tóxico sinérgico del ácido quinolínico 
(QUIN) con metabolitos acumulados en acidemias metabólicas.  
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9. RESULTADOS 

 

9.1. LA 3-HK MODIFICA EL AMBIENTE REDOX ESTRIATAL DE ROEDORES 

SIN MOSTRAR TOXICIDAD  

 

La concentración y el tiempo de exposición de la 3-HK alteraron los niveles de 

lipoperoxidación en rebanadas estriatales. La 3-HK fue pro-oxidante en 

concentraciones bajas (5-20 !M) y antioxidante en concentraciones altas (100 

!M). Sin embargo, en ninguno de los dos casos la molécula alteró la función 

mitocondrial. Además, su presencia previno los efectos tóxicos del QUIN, 3-NP y 

FeSO4, por lo que se asume que su efecto estimulante sobre la peroxidación es 

más una respuesta compensatoria que estimula los sistemas antioxidantes.  

La 3-HK es un antioxidante directo e indirecto. Su efecto como antioxidante 

directo se demostró con un ensayo de FRAP (Del inglés: ferric reducing ability), 

cuyos resultados indican que la molécula tiene un alto poder antioxidante o 

reductor. Por otro lado, la 3-HK estimula al Nrf2, un factor que regula la expresión 

de enzimas antioxidantes y detoxificantes, propuesto como herramienta para 

disminuir la progresión de eventos neurodegenerativos. La activación del Nrf2 se 

comprobó con el aumento de las actividades enzimáticas de la glutatión-S-

tranferasa y la superóxido dismutasa, así como con el aumento en la expresión de 

la hemo-oxigenasa-1 y la !-glutamilcisteina ligasa. 

Al encontrar que la 3-HK en ninguna de las concentraciones probadas 

alteró la función mitocondrial ni la viabilidad celular, se decidió entonces explorar 

sus efectos in vivo. En tiempos cortos (horas), la 3-HK produjo un aumento 

moderado en los niveles de lipoperoxidación y de oxidación de proteínas. Este 

efecto, sin embargo, fue correlacionado con el aumento en las actividades de las 

enzimas glutatión reductasa y glutatión-S-transferasa, consolidando el concepto 

de la peroxidación de lípidos inducida por la 3-HK como una estrategia 

compensatoria para estimular la respuesta antioxidante. En ninguna de las 

concentraciones probadas (5-80 nmol/!L) se encontraron cambios conductuales o 

morfológicos. 
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Todo lo anterior sugiere que la 3-HK induce un estado de estrés moderado 

que induce una respuesta oxidante endógena y el resultado final puede ser inocuo 

o incluso parcialmente neuroprotector. Por lo tanto, la presencia de esta molécula 

puede disminuir el daño celular y en estas condiciones, no puede ni debe 

considerarse como un metabolito neurotóxico.   
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a b s t r a c t

3-Hydroxykynurenine (3-HK), an intermediate metabolite of the kynurenine pathway, has
been largely hypothesized as a neurotoxic molecule contributing to neurodegeneration in
several experimental and clinical conditions. Interestingly, the balance in literature points
to a dual role of this molecule in the CNS: in vitro studies describe neurotoxic and/or
antioxidant properties, whereas in vivo studies suggest a role of this metabolite as a weak
neurotoxin. This work was designed to investigate, under different experimental condi-
tions, whether or not 3-HK is toxic to cells, and if the redox activity exerted by this
molecule modulates its actions in the rat striatum. In order to evaluate these effects, 3-HK
was administered in vitro to isolated striatal slices, and in vivo to the striatum of rats.
In striatal slices, 3-HK exerted a concentration- and time-dependent effect on lipid
peroxidation, inducing both pro-oxidant actions at low (5–20) micromolar concentrations,
and antioxidant activity at a higher concentration (100 mM). Interestingly, while 3-HK was
unable to induce mitochondrial dysfunction in slices, at the same range of concentrations
it prevented the deleterious effects exerted by the neurotoxin and related metabolite
quinolinic acid (QUIN), the mitochondrial toxin 3-nitropropionic acid, and the pro-oxidant
compound iron sulfate. These protective actions were related to the stimulation of
glutathione S-transferase (GST) and superoxide dismutase (SOD) activities. In addition,
3-HK stimulated the protein content of the transcription factor and antioxidant regulator
Nrf2, and some of its related proteins. Accordingly, 3-HK, but not QUIN, exhibited reductive
properties at high concentrations. The striatal tissue of animals infused with 3-HK
exhibited moderate levels of lipid and protein oxidation at short times post-lesion (h),
but these endpoints were substantially decreased at longer times (days). These effects were
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correlated with an early increase in glutathione reductase (GR) and GST activities.
However, these changes were likely to be merely compensatory as 3-HK-infused animals
did not display behavioral (rotation) alterations or morphological changes in their injected
striata. Altogether, these findings suggest that, despite 3-HK might exert pro-oxidant
actions under certain conditions, these changes serve to evoke a redox modulatory activity
that, in turn, could decrease the risk of cell damage. In light of this evidence, 3-HK seems to
be more a redox modulatory molecule than a neurotoxic metabolite.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extensive research has demonstrated that neurodegenerative
diseases share several deleterious mechanisms including
excitotoxicity – a toxic process characterized by a sustained
stimulation of excitatory amino acid receptors – , oxidative
stress – which results of an impaired balance between the
formation of reactive oxygen species (ROS) and antioxidant
defenses – and inflammation – leading to a breakdown of the
blood-brain barrier, cell infiltration and release of chemical
mediators such as cytokines, chemokines and lipid mediators – ,
all of them ultimately leading to cell death (Halliwell, 2006;
Dasuri et al., 2013; Niranjan, 2014).

The kynurenine pathway (KP) is a metabolic route in
which the essential amino acid tryptophan is primarily
metabolized, hence producing relevant intermediates for
neuronal integrity and redox balance (Stone et al., 2007;
Massudi et al., 2012; Schwarcz et al., 2012). Recent reports
have shown that alterations of the KP metabolism and
changes in the brain levels of its metabolites may play a
key role in the pathogenesis of some neurodegenerative
diseases, depressive disorders and schizophrenia (Schwarcz
et al., 2012; Tan et al., 2012; Amaral et al., 2013). In addition,
the KP has been associated with inflammatory responses in
different neurological disorders, and this mechanism, which
may be inherent to some KP metabolites, could contribute to
the neurodegenerative pattern associated with these diseases
(Chen et al., 2010; Tan et al., 2012). Some neuroactive
metabolites are formed in the KP, including the well-known
neurotoxin and glutamate agonist quinolinic acid (QUIN)
(Schwarcz et al., 1984; Guidetti et al., 2006), the neuroprotectant
and glutamate antagonist kynurenic acid (KYNA) (Schwarcz
et al., 1983; Yu et al., 2004), and the redox active metabolites
3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid
(3-HAAO) (Goldstein et al., 2000; Braidy et al., 2009; reviewed by
Colín-González et al., 2013).

Increased levels of 3-HK have been found in early stages of
Huntington's disease (HD) patients (Schwarcz et al., 1984;
Reynolds and Pearson, 1989; Pearson et al., 1995; Guidetti and
Schwarcz, 2003), in Alzheimer’s disease (AD) – in which 3-HK is
assumed to be relevant for memory alterations (Savvateeva
et al., 2000; Duleu et al., 2010) – and in the putamen of
Parkinson's disease (PD) patients (Ogawa et al., 1992; reviewed
by Colín-González et al., 2013). Also, transgenic mice models
(R6/2 mice, YAC 128, and the chimeric HdhQ) have shown a
substantial elevation of the 3-HK content (Guidetti et al., 2000;
Guidetti et al., 2006; Sathyasaikumar et al., 2010). Moreover,

genetic models of HD using invertebrates have shown an
increased activity of kynurenine 3-monooxygenase, the
enzyme responsible for 3-HK formation (Giorgini et al., 2005;
Ramaswamy et al., 2007; Campesan et al., 2011).

Under physiological conditions, 3-HK undergoes auto-
oxidation, forming an o-aminoquinone – a stronger oxidant
agent that can be responsible for exacerbated oxidative
damage – which can be responsible for the formation of
different reactive oxygen species (O2

! ", H2O2, ·OH) (Eastman
and Guilarte, 1990; Ishii et al., 1992; Okuda et al., 1996; Hiraku
et al., 1995; Vazquez et al., 2000). As a metabolic precursor,
3-HK might also account for QUIN formation, which in turn is
responsible for cellular damage mainly mediated by excito-
toxicity and oxidative damage (Schwarcz et al., 1984).
In addition, 3-HK has also shown to be a generator of reactive
species, acting as a potential endogenous neurotoxin in
cerebellar granule, striatal and hippocampal neurons, as well
as in neuronal hybrid cell lines, human neuroblastoma
SH-SY5Y, PC-12 pheochromocytoma cells, and GT1-7
hypothalamic neurosecretory cells (Eastman and Guilarte,
1989; Okuda et al., 1998; Jeong et al., 2004; Smith et al.,
2009). However, to our knowledge, there are only three
studies using 3-HK in in vivo models in the CNS, but none of
them has characterized in a detailed manner its mechanisms
of toxicity. The intraventricular administration of 3-HK
(634.21 mg/rat) was responsible for convulsive attacks in rats
(Pinelli et al., 1984), whereas the intrastriatal injection of 3-HK
(50 nmol) induced only tissue damage around the injected
site, without any abnormal behavior in rats (Nakagami et al.,
1996). Finally, it was suggested that 3-HK potentiates QUIN
toxicity by means of a possible synergic interaction compris-
ing a combination of direct NMDA receptor activation and
free radical production (Guidetti and Schwarcz, 1999).

In contrast to these toxic features, under certain circum-
stances 3-HK is known to be a potent reductive agent that
donates electrons, sometimes acting as an antioxidant agent.
This behavior of 3-HK, which is opposite to its toxic character,
has been described in several reports, some of which discuss
a scavenging activity for this molecule, showing that 3-HK is
able to scavenge O2

·", ·OH, peroxyl radicals, and ·NO, also
acting as an endogenous natural antioxidant (Goshima et al.,
1986; Christen et al., 1990; Goda et al., 1999; Leipnitz et al.,
2007; Backhaus et al., 2008). Still, its precise role in the CNS
remains uncertain. Hence, 3-HK is an intriguing and puzzling
compound found at increased levels in pathological condi-
tions; consequently, characterizing and identifying the pre-
cise physiological and/or physiopathological roles exerted by
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this tryptophan metabolite in animal models will help to

elucidate the mechanisms involved in normal cell redox

regulation and/or cell dysfunction and death in neurodegen-

erative diseases.
Therefore, the aim of this work was to investigate the

precise role exerted by 3-HK in nerve (striatal) tissue of rats in

order to characterize, identify and infer mechanistic actions
of this metabolite, thereby contributing to our actual knowl-
edge on its actions and relevance. For this purpose, we
evaluated the redox activity induced by 3-HK, assessing
concentration– and time–response curves of oxidative
damage in rat striatal slices, as well as the possible morpho-
logical, behavioral and oxidative alterations induced by 3-HK
after its intrastriatal infusion to rats. Our results suggest that
3-HK, under different conditions, can exert both pro- and
antioxidant effects in striatal tissue of rats, but when this
agent induces oxidative stress, this effect does not yield cell
damage. Thus, 3-HK seems to act more like a redox mod-
ulator than a neurotoxin.

2. Results

2.1. Concentration and exposure time influenced the 3-HK-
induced pro- and antioxidant effects in striatal slices

Striatal slices were incubated in the presence of increasing
concentrations of 3-HK (2–100 mM), and during different times
of exposure (1, 3 and 6 h) (Fig. 1). While at 1 h of incubation
the molecule (2–50 mM) evoked an oscillatory effect which
mostly remained close to the baseline, at 3 h all the tested
concentrations (2–50 mM) showed a consistent inhibitory
action on lipoperoxidation (45–47% below baseline from 5 to
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Fig. 1 – Time–(1–6 h) and concentration (2–100 lM)–response
effects of 3-hydroxykynurenine (3-HK) on lipid peroxidation
(percent of TBARS formed vs. control) in rat striatal slices.
Data are expressed as mean values7S.E.M. of n¼6
experiments per group. One-way ANOVA followed by post
hoc Tukey's test for multiple comparisons. Asterisks denote
statistically significant differences (nPo0.05) vs. control.
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Fig. 2 – Effects of 3-hydroxykynurenine (3-HK) and/or quinolinic acid (QUIN) on mitochondrial function (A), glutathione
S-transferase (GST) (B) and superoxide dismutase (SOD) (C) activities in rat striatal slices. All endpoints were estimated at 6 h
of incubation with two concentrations of 3-HK (20 or 100 lM) and one of QUIN (1 mM). Data are expressed as mean values7
S.E.M. of n¼6 experiments per group. One-way ANOVA followed by post hoc Tukey's test for multiple comparisons. Asterisks
denote statistically significant differences (nPo0.05 and nnnPo0.001).
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50 mM; Po0.05). In contrast, at 6 h of exposure, striatal slices
underwent a pro-oxidant effect (54% and 78% above baseline
at 5 and 20 mM, respectively; Po0.05), except for the 50 and
100 mM concentrations, which induced an antiperoxidative
effect. In fact, the 50 mM concentration resulted in levels of
lipid peroxidation below the baseline at all times tested. The
100 mM concentration of 3-HK was tested at 6 h in order to
know whether this extreme condition would be responsible
for some damage.

2.2. 3-HK reduced the toxicant-induced mitochondrial
dysfunction by stimulating the activity of antioxidant
enzymes in striatal slices

In order to know whether the dual redox actions of 3-HK
observed this far confer neurotoxic or neuroprotective prop-
erties to the molecule when challenged by other well-known
toxicants, two different concentrations of this molecule
(20 and 100 mM) were added to cultured striatal slices 30 min
before de addition of QUIN (1 mM), 3-nitropropionic acid
(3-NP; 1 mM) or iron sulfate (FeSO4; 50 mM) (Figs. 2–4). These
conditions were maintained for 6 h and simulated excitotoxic
events, mitochondrial dysfunction and oxidative stress,
respectively. In addition, the activity of two antioxidant
enzymes, glutathione S-transferase (GST) and superoxide

dismutase (SOD) were determined in order to correlate the
cell damage evidenced by the mitochondrial dysfunction
with oxidative stress evidenced by the altered enzyme
activities.

3-HK per se, at 20 and 100 mM, did not alter the levels
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltettazolium (MTT)
reduction when compared with control slices (9% and 10%
below the baseline, respectively). In contrast, QUIN reduced
by 55% the baseline mitochondrial function. Surprisingly, in
the presence of QUIN, 20 and 100 mM 3-HK increased MTT
reduction (42% and 7% below the control value, respectively)
in the slices (Fig. 2A).

Additionally, 3-HK, at 20 and 100 mM concentrations,
stimulated GST activity by 40% and 45% above the control,
respectively (Fig. 2B). QUIN increased GST activity by 57%.
Also, 20 mM 3-HK plus QUIN exerted an additive effect,
increasing the enzyme activity by 213% when compared with
control values, while 100 mM 3-HK plus QUIN had no effect
when compared with QUIN per se (63% above the control).

SOD activity was intensely stimulated by 20 mM 3-HK
(120% above the Control; Fig. 2C). In contrast, neither 100 mM
3-HK nor QUIN exerted stimulatory actions on SOD (5% below
and 3% above Control, respectively). In the presence of QUIN,
20 mM 3-HK significantly reduced SOD (33% above the baseline
levels).
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Fig. 3A shows the effect of 3-HK on 3-NP-induced mito-
chondrial dysfunction. 3-NP reduced MTT reduction by 42%
when compared with control levels. Twenty µM, but not
100 mM 3-HK, attenuated the effect of 3-NP, leading the
mitochondrial function to 25% below the baseline level (29%
above 3-NP per se).

Furthermore, 3-NP increased GST baseline activity by 85%.
The addition of 3-NP to the slices incubated with 20 mM 3-HK
substantially increased the baseline enzyme activity by 500%
(91% above 3-NP per se), whereas the 100 mM 3-HK plus 3-NP
condition exhibited an increase in GST activity of 328% above
the Control (36% above 3-NP alone; Fig. 3B).

Fig. 3C depicts the effects of 3-HK and 3-NP on SOD activity
in striatal slices. No effect of 3-NP per se on SOD activity was
found (13% below the control). The addition of 3-NP to slices
incubated with 20 mM 3-HK returned the enzyme activity to
basal levels (9% below the baseline). The combination of
100 mM 3-HK plus 3-NP had no effect on SOD activity.

In Fig. 4A, FeSO4 significantly reduced the basal mitochon-
drial function by 58%, whereas the pre-incubation of the
slices with 20 and 100 mM 3-HK preserved the MTT reduction
index by 18% and 30% below the baseline (95% and 67% above
FeSO4 per se, respectively).

Fig. 4B describes the effects of 3-HK and FeSO4 on GST
activity. FeSO4 increased the baseline enzyme activity by 92%.
Noteworthy, pretreatment of the FeSO4-treated slices with 20
and 100 mM 3-HK enhanced the GST activity by 543% and
493% above the Control, respectively (424% and 368% above
FeSO4 per se).

In Fig. 4C, neither FeSO4, nor 20 mM 3-HK plus FeSO4

treatments induced any significant change in SOD activity
when compared with baseline levels (8% and 27% above
Control, respectively). In contrast, the pre-incubation of
FeSO4-treated slices with 100 mM 3-HK reached a promi-
nent stimulation of the enzyme activity (163% when
compared with Control, and 138% when compared with
FeSO4 per se).

2.3. 3-HK stimulated nuclear factor erythroid-2-related
(Nrf2), heme-oxygenase 1 (HO-1) and gamma-glutamyl
cysteine-ligase (γ-GCL-C) expression in striatal slices

After exposed to 3-HK (20 mM) for 6 h, rat striatal slices
increased the expression of the transcription factor Nrf2
(42% above the baseline), and the antioxidant enzymes
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HO-1 and γ-GCL-C (53% and 52% above the control, respec-
tively; Fig. 5). The rationale for the use of 20 mM 3-HK (instead
of 100 mM) for the estimation of these antioxidants is based
on the fact that this concentration produced higher levels of
lipid peroxidation, but also depicted the most prominent
responses in SOD activity; therefore, it was fundamental for
us to search for possible explanations on why the pro-oxidant
concentration is unable to induce cell damage through these
endpoints.

2.4. 3-HK, but not QUIN, exhibited
a concentration–response reductive capacity

The ferric reductive ability of plasma (FRAP) constitutes an
accurate measure of the antioxidant power tested for certain
molecules (Benzie and Strain, 1996). We used this technique
to evidence any possible reductive capacity of 3-HK per se,
once we found that this metabolite exerted antioxidant
properties under some experimental circumstances.

The reductive capacity of 3-HK (2–100 mM) was compared
with that of QUIN (Fig. 6). Low concentrations of 3-HK did
not show reductive activity, whereas at 50 and 100 mM
concentrations, this metabolite exhibited an intense activity

(106% and 219% above the control, respectively; red line).
In contrast, QUIN, at the same concentrations, never dis-
played a reductive capacity, as expected (blue line). The
addition of increasing concentrations of 3-HK to 5 mM QUIN
resulted in a reductive activity similar to that exerted by 3-HK
alone (green line).

2.5. The intrastriatal infusion of 3-HK to rats increased
the pro-oxidant activity shortly after its injection, but
decreased after days

Once we found that the dual actions of 3-HK on redox activity
did not compromise mitochondrial function and cell viability
in striatal slices, we were interested in exploring the effects
of 3-HK when the metabolite is infused in the striatum
of rats.

Fig. 7A depicts the effect of 3-HK (80 nmol) on TBARS
formation in the rat striatum at different times post-lesion.
3-HK induced increased levels of lipid peroxidation at 6 and
24 h post-lesion (29% and 35% above the control), but these
effects were not statistically significant. In contrast, at 7 days
post-lesion, 3-HK decreases the baseline lipoperoxidation
(22% below the control). This dual effect was found also
when the formation of carbonyl groups was tested as a
marker of oxidative activity in the same samples (Fig. 7B).
In this case, the levels of protein oxidation were increased by
3-HK only at 6 h post-lesion (36% above the baseline), but not
at 24 h. Again, at 7 days post-lesion, there was a consistent
decrease in oxidative activity when 3-HK was infused (21%
below the baseline).

2.6. Glutathione reductase (GR) and GST activities were
stimulated by 3-HK at short times after its intrastriatal
injection

The activities of GR, glutathione peroxidase (GPx), GST and
glucose 6-phosphate dehydrogenase (G6PD) were all moni-
tored at 0.5 and 2 h after the intrastriatal infusion of 3-HK to
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rats in order to investigate whether the glutathione (GSH)
system is involved in the early oxidative activity exerted
by this metabolite, and if its possible changes are related to
3-HK-induced redox patterns.

GR and GST activities were found increased at 0.5 h (27%
and 166% above the control, respectively), suggesting an
increased use of GSH by the striatum in the presence of
3-HK (Fig. 8A and C). This observation was reinforced by
increased tendencies of GST and G6PD activities stimulated
by 3-HK (40% and 56% above the control at 2 and 0.5 h,
respectively; Fig. 8C and D).

2.7. 3-HK produced no behavioral or morphological
alterations after its striatal infusion to rats

In order to know whether the redox changes induced by 3-HK
could be responsible for striatal damage and degeneration,
coronal striatal sections or rats injected with 3-HK were
stained with H&E and observed in an optic microscope at 7,
14 and 21 days post-lesion. Fig. 9 shows representative micro-
graphs (40! ) of sham and 3-HK-treated animals at 7 and 21
days post-lesion. Fields corresponded to areas of the dorsal
striatum distant to the injection site by 100 mm. In general
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terms, the appearance of the sham and 3-HK-treated striata at
7 and 21 days post-lesion were similar, exhibiting a well-
preserved neuropil, with a majority of healthy cells (indicated
by asterisks) and only a limited number of damaged cells
(indicated by arrows). The proportion of preserved cells in
sham and 3-HK-lesioned rats were also similar. No edema or
vacuolization were seen in 3-HK-injected sections. This lack of
morphological changes was congruent with the absence of
apomorphine-challenged rotation behavior estimated in 3-HK-
lesioned animals at 6 days post-lesion when compared with
sham rats (data not shown). For comparative purposes, we
included an image of the striatum of a rat lesioned with the
neurotoxin QUIN at 7 days post-lesion (Fig. 9E), where it is
evident the damage exerted on neuropil and cells, comprising
edema and vacuolization.

3. Discussion

In this manuscript we explored the effects exerted by the
kynurenine pathway metabolite 3-HK on oxidative damage
and mitochondrial function in striatal slices, as well as on
biochemical, behavioral and morphological endpoints in the
striata of infused animals. At the beginning, our original
hypothesis was oriented to declare this metabolite as a pro-
oxidant and neurotoxic molecule, on the basis of previous
reports and upon the assumption that the series of biochem-
ical, behavioral and morphological tests developed in this
study will indicate so. However, the experimental evidence
collected in this study suggested a dual role of 3-HK either as
a pro-oxidant or an antioxidant molecule, depending on the
experimental conditions tested. Moreover, we found that

Fig. 9 – Time-course effect of the intrastriatal infusion of 3-hydroxykynurenine (3-HK) on striatal morphological changes
estimated through the hematoxylin and eosin stain. Sham at 7 (A) and 21 (C) days post-lesion are contrasted with images of
3-HK-treated animals at 7 (B) and 21 (D) days post-lesion. No morphological changes were found. In (E), for comparative
purposes, we included an image of the striatum of a QUIN-lesioned rat, where pyknosis, edema and massive cell death are
appreciated. Scale, 40! . Representative images of all groups are presented.
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even under stimulated oxidative activity, 3-HK was unable
not only to induce cell and tissue damage, but also prevented
some damage elicited by other well-known toxins.

First, we described the time- and concentration-dependent
effects of this metabolite in striatal slices (see Fig. 1). The
most revealing condition was the incubation of slices in
the presence of 3-HK for 6 h. It seems clear that it takes
some time to the molecule to activate mechanisms of
oxidative damage at relatively low concentrations (2–20 mM),
and this was inferred because at 1 h of incubation, the effect
of 3-HK remained close to baseline, whereas at 3 h of
incubation an antioxidant effect was present at all concen-
trations tested. Noteworthy, at concentrations above 20 mM
(50–100) the antioxidant effect prevailed at all times tested.
The explanation of this dual behavior of 3-HK could be
related to its redox properties and the balance between its
reductive and oxidative precursor features. In this regard, the
reductive, scavenging and antioxidant properties of this
metabolite have been described at concentrations ranging
those used by us in this study (Christen et al., 1990; Leipnitz
et al., 2007; reviewed by Colín-González et al., 2013). However,
if under certain conditions 3-HK preferentially undergoes
auto-oxidation to form highly oxidant quinones, then its
reductive properties could be surpassed by its nature as a
precursor of free radicals and quinones. Thus, its effect seems
to be a question of a delicate balance between antioxidant/
reductive and pro-oxidant species, mostly depending on the
experimental conditions employed. The concentration-
dependent reductive character of 3-HK was clearly demon-
strated by the FRAP assay (see Fig. 6).

Interestingly, 3-HK, at conditions promoting either oxida-
tive damage to lipids (20 mM) or antioxidant actions (100 mM;
see Fig. 1), was unable to induce mitochondrial dysfunction
(cell damage) in the slices. Furthermore, contrary to what we
expected, its co-incubation, at both concentrations, with
well-known toxic agents not only did not potentiate its effect,
but served to prevent the cell compromise exerted by QUIN,
3-NP and FeSO4 (see Figs. 2–4), in mechanisms likely involving
the compensatory activation of the antioxidant enzymes GST
and SOD. The fact that 3-HK was more effective against a
typical pro-oxidant model (FeSO4) emphasizes its nature as a
redox modulatory agent. Another possible contributing factor
to the apparently protective action of 3-HK against different
toxic models was suggested by our simple experiments
presented in Fig. 5. The nuclear factor related to NF-E2, also
known as Nuclear factor (erythroid-derived 2)-like 2, or
simply Nrf2, is a transcription factor responsible for regulat-
ing the expression of detoxifying phase 2 enzymes, and is
also known as the “master coordinator” of antioxidant
responses (Kensler et al., 2007). The fact that 3-HK was able
to induce an increased expression of Nrf2 accompanied by
HO-1 and GCL-C protein levels in striatal slices is indicative of
a concerted and complementary strategy to counteract the
deleterious actions of reactive oxygen/nitrogen species (ROS/
RNS). Hence, for the case of this metabolite, its reductive
capacity, together with the recruitment of Nrf2 activation as
part of its action pattern, seem to represent an integral
antioxidant and potentially protective response. Although
Nrf2 can also be activated by pro-oxidant toxins like QUIN
(Colín-González et al., 2014), for the case of 3-HK and unlike

QUIN, this effect seems to be sufficient to prevent or counter-
act cell damage. Nonetheless, the role of Nrf2 and its regula-
tion by 3-HK deserves further and more detailed investigation.

For us, it was surprising to find a lack of effect of 3-HK on
mitochondrial function. Since MTT reduction is accepted as an
index of mitochondrial function and cell viability, we expected
to find decreased levels induced by 3-HK on this endpoint. This
expectation was based on evidence demonstrating that 3-HK, at
the same concentration range employed by us is capable to
induce cell death in different neuronal cell cultures, including
cerebellar, striatal, hippocampal and cortical neurons, as well as
in a human neuroblastoma SH-SY5Y cell line (Eastman and
Guilarte, 1989; Okuda et al., 1998; Chiarugi et al., 2001; Jeong
et al., 2004; Smith et al., 2009; reviewed by Colín-González et al.,
2013). So, how to explain the toxic effects in these cultures vs.
the lack of effect of 3-HK in the striatal slices? Probably the clue
to solve this discrepancy is laying in evidence collected from
experiments in glioma C6 cells exposed to 3-HK, where this
metabolite did not produce cell death (Leipnitz et al., 2007).
Since the KP takes place in glial cells (mostly astrocytes and
microglia), and these cells naturally possess the enzymes
necessary to degrade KP metabolites (Schwarcz et al., 2012), it
seems obvious that these cells could be resistant to the actions
of 3-HK, in contrast to isolated neuronal cells in culture that do
not regularly possess these catalytic proteins. Therefore, a
possible role of glial cells to handle 3-HK should not be
discarded in this paradigm as glial cells also represent the first
line of defense of the CNS against oxidative and inflammatory
insults (Alarcón-Aguilar et al., 2014). We can then hypothesize
that more integral biological preparations, such as tissue slices
containing both neuronal and glial cells, could behave differ-
ently to primary cultures and cell lines – represented by a single
type of cells –when exposed to 3-HK. Thus, the buffering and/or
homeostatic role of glial cells might contribute to generate
differential actions of 3-HK and other metabolites in the CNS.

At this point, our observations in striatal slices suggested
that different experimental conditions rule the faith of the
actions of this metabolite; however, what about the in vivo
effects of 3-HK? Would the molecule exert toxic events per se
in the striatum if infused to animals? Only a few reports
about the toxic effects exerted by 3-HK under in vivo condi-
tions are available in the literature. One of them, published by
Nakagami et al. (1996), showed striatal degeneration at doses
ranging 1–50 nmol/ml; though, the lack of images showing the
control condition, and the fact that the image corresponding
to the 3-HK-induced lesion depicts a limited area of damage
remitted to the injection site, prompted to more detailed
studies. Shortly thereafter, another article was published by
Guidetti and Schwarcz (1999). This report established that
3-HK per se is unable to produce striatal damage, but when
co-injected with its toxic relative QUIN at subtoxic doses, it
potentiates the QUIN-induced degeneration. A possible con-
tribution of 3-HK as a metabolic precursor of QUIN to exert
tissue damage was discarded as 3-HK was unable to increase
QUIN levels. Despite these reports support a toxic role of 3-HK
under in vivo conditions, the question on whether 3-HK can
be toxic per se for the striatal tissue remains unclear.

We therefore tested the effects of this metabolite when
infused to the striatum of rats on different endpoints.
The maximum dose of 3-HK tested was 80 nmol/ml, which
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corresponded to the maximum concentration that we were
able to dissolve. At such dose, the dual actions of 3-HK were
evident once again as the levels of lipid and protein oxidation
were increased at short times (6 and 24 h) and drastically
decreased at longer times (7 days; see Fig. 7). These findings
were in agreement not only with the biphasic action of this
metabolite in striatal slices (see again Fig. 1), but also with the
early stimulation of GR and GST activities (see Fig. 8). In this
regard, the increased activity of the glutathione-related
enzymes suggest that the early use of glutathione by the
glutathione system in the striatum is being effectively used to
reduce the risk of tissue damage, which was confirmed by the
lack of behavioral alterations (data not shown), as well as the
most conclusive evidence presented in this report: the lack of
tissue damage in the striata of 3-HK-treated animals that
were infused with a high dose of the metabolite (80 nmol; see
Fig. 9). Even allowing the metabolite to act for 21 days, no
major morphological changes were seen.

Altogether, this evidence suggest that the presence of
3-HK in the striatum at concentrations as high as those we
tested here, does not represent per se a risk for neurodegen-
eration, and this might probably be due to either a limited
and transitory permanence of the metabolite in this tissue –

which in turn could be rapidly metabolized to other non-toxic
forms – , or its intense redox activity oriented to activate
antioxidant systems in an effective manner. Whatever the
explanation, this topic deserves deeper investigation, with
special regard to those conditions that could be responsible
for the induction of 3-HK toxicity, if any, and whether they
could take place under human pathological conditions.

3.1. Concluding remarks

In a recent review, we have compiled and revised evidence
that 3-HK is augmented in some neurodegenerative disorders
(reviewed by Colín-González et al., 2013). In principle, this
evidence suggests that 3-HK may be playing a role in those
neurodegenerative processes, thus accounting for neuronal
disorders, and this possible role cannot be ruled out at all.
However, considering the experimental evidence collected in
this and other studies (Leipnitz et al., 2007), it is also reason-
able to consider that the real role that 3-HK could be playing
in different physiological and pathological conditions would
be more related to a redox modulatory activity. This con-
sideration points to compensatory actions exerted by this
metabolite once inflammatory, oxidative and/or excitotoxic
events have begun in the CNS, but these compensatory
responses could not be sufficient to counteract the already-
in-progress degeneration. This general concept is strength-
ened by the observation that the oxidative damage that 3-HK
exerted in this study was insufficient to compromise cells,
and this effect was probably due to the stimulation of
antioxidant systems and the recruitment of the Nrf2 protec-
tive system. Thus, oxidative activity seems to be part of the
strategy of 3-HK to compensate possible harmful signals in
the striatum.

On the other hand, its potential role as a contributing
factor to cell damage still remains open as, under certain
circumstances, 3-HK can stimulate the formation of aggres-
sive pro-oxidant molecules and could be also stimulating the

formation of excitotoxic metabolites in KP as a precursor, but
when this toxic character is adopted by 3-HK during neuro-
degenerative processes?

Another possibility, in light of our findings, is that the
augmented levels of 3-HK in neurological disorders could be
merely reflecting an increased activity of glial cells during the
progression of neuronal cell damage. Therefore, clarifying its
precise role in human pathologies is more than complicated,
given the dual effects that this molecule is exerting. Further
and more detailed studies are needed to respond the many
questions raised by this and other reports. In the meantime,
the results obtained in this work support the concept that
3-HK is not capable to exert toxicity per se and that its
physiological role is more oriented to a redox modulatory
activity. A schematic representation of the actions exerted by
this metabolite in the CNS is presented in Fig. 10.

4. Experimental procedures

4.1. Reagents

3-HK, QUIN, 3-NP, thiobarbituric acid (TBA), 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), glucose-6-
phosphate and other reagents were obtained from Sigma/Aldrich

Fig. 10 – Schematic representation of the hypothetical
mechanisms involved in the 3-hydroxykynurenine (3-HK)
actions in the rat striatum. 3-HK would be entering cells
through neutral amino acid transporters (NAT), and once in
the cytoplasm it could follow different paths. One of them is
related with auto-oxidation and further formation of reactive
oxygen species (ROS), which might be responsible or cell
damage and degeneration (not supported by findings of this
work), or simply activating antioxidant survival
mechanisms. The other path, which is more according to
our findings, could be responsible for antioxidant defense
signaling and neuroprotection. The effects exerted by 3-HK
in this work clearly supports the activation of survival and
protective mechanisms via the stimulation of adaptive and
protective responses to counteract oxidative stress.
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Co. (St. Louis, MO, USA). All other chemicals were obtained from
other well-known commercial sources.

4.2. FRAP assay

For the FRAP assay, we followed the method described by
Benzie and Strain (1996), with modifications. We employed
this method to investigate the reductive potency of 3-HK
per se. Briefly, the FRAP reagent (A) consisted of a 10:1:1
mixture containing 300 mM acetate buffer (3.1 g of sodium
acetate plus 16 ml of acetic acid for 1 l)þ20 mM FeCl3þ10 mM
TPTZ (2,4,6-tripiridyl-s-triazine)þ40 mM HCl, was prepared at
50 1C and used throughout the experiments. The reaction
solution (C) consisted of 480 ml of deionized H2O (B) plus
500 ml of reagent A. Solution C was incubated at 37 1C for
10 min and immediately added with 20 ml of the solution
containing 3-HK at different concentrations. Samples were
re-incubated for 30 min and optical density was recorded by
triplicate at 593 nm in a Thermo Spectronic Genesys 8
Spectrometer. A standard curve was constructed using
increasing concentrations of FeSO4 (50–2000 mM).

4.3. Animals

Male Wistar rats weighing 270–310 g (60 animals total, 5–10
per group), bred-in-house strain, were used throughout the
study. Animals were housed five per cage in acrylic cages and
provided with Rodent Chow (Purina, St. Louis, MO, USA) and
water ad libitum. Animals were maintained under conditions
of constant temperature (2573 1C), humidity (50710%) and
lighting (12:12 1ight:dark cycle). All experimental manipula-
tions were performed according to the “Guidelines for the Use
of Animals in Neuroscience Research” from the Society of
Neuroscience, the local Ethical Committees, and in compli-
ance of the ARRIVE guidelines.

4.4. Isolation of striatal slices (in vitro experiments)

Striatal slices were obtained and collected according to a
procedure previously described (Colín-González et al., 2014).
Rats were decapitated and their brains were rapidly placed in
ice-cold Krebs-bicarbonate dissection buffer pH 7.4 (120 mM
NaCl, 2 mM KCl, 0.5 mM CaCl2, 26 mM NaHCO3, 10 mM MgSO4,
1.18 mM KH2PO4, 11 mM glucose and 200 mM sucrose). Cham-
ber solutions were pre-bubbled with 95% O2/5% CO2 gas
mixture, for at least 45 min before slice immersion, to ensure
O2 saturation. Striata were quickly dissected, glued down
leaning vertically against agar blocks in a small chamber,
submerged in cold oxygenated dissection buffer and sec-
tioned in 200 μm thick transverse slices using vibratome
(TS1000 Leica; Heidelberg, Germany). Cutting parameters
were 0.5 mm/s, 60 Hz and 0.8 mm amplitude. Immediately
after vibratome sectioning, the slices were transferred to a
vial of sucrose-free dissection buffer, and bubbled with 95%
O2/5% CO2 at room temperature for 30 min to recover from
slicing trauma. Then, slices were exposed to different con-
centrations of 3-HK (2–100 mM), for different times of incuba-
tion in a shaking water bath at 37 1C. Immediately after
incubated, slices were placed on ice, collected and scheduled
for measurement of different experimental parameters.

In additional experiments, some toxic agents were added to
the slices (1 mM 3-NP and QUIN, and 50 mM FeSO4) and tested
in the presence of 3-HK.

4.5. Lipid peroxidation

Lipid peroxidation was determined as the formation of
thiobarbituric acid-reactive substances (TBARS), according to
a previous report (García et al., 2008). Fifty mL aliquots of the
homogenates obtained from striatal slices were added to
100 mL of the TBA reagent (0.75 g of TBAþ15 g of trichloroa-
cetic acidþ2.54 mL of HCl) and incubated at 100 1C for 20 min.
A pink chromophore was produced in samples in direct
proportion to the amount of peroxidized products. Samples
were then kept on ice for 5 min and centrifuged at 3000g for
15 min. The optical density from the supernatants was
measured in a Thermo Spectronic Genesys 8 Spectrometer
at 532 nm. Final amounts of TBA-RS – mostly malondialde-
hyde (MDA) – were calculated by interpolation of values in a
constructed MDA standard curve, and results were calculated
as nmoles of MDA per mg protein. This method was used for
estimation of lipid peroxidation both in slices and striatal
tissue.

4.6. Functional assessment of striatal slices by MTT
reduction assay

In order to assess the viability of cells from the striatal slices,
MTT reduction was measured as a current index of the
functional status of the respiratory chain and mitochondrial
function. This endpoint was estimated in striatal slices,
according to a method previously described (Pérez-De La Cruz
et al., 2007). Briefly, the slices already exposed to different
treatments were added with 8 ml of MTT (5 mg/ml), and
re-incubated at 37 1C for 60 min. The samples were then
centrifuged at 15,300g for 15 min, and pellets were resus-
pended in 1 ml of isopropanol. During this first step of
centrifugation, the aqueous phase was discarded. A second
step of centrifugation was then performed at 1700g for 3 min.
Quantification of formazan was estimated in supernatants in
a Thermospectronic Genesys 8 spectrometer (Cole-Parmer,
Vernon Hills, Ill., USA) by measuring optical density at a 570-
nm wavelength. The results were expressed as the percen-
tage of MTT reduction with respect to control values.

4.7. Surgical lesion technique and treatment (in vivo
experiments)

Rats were anesthetized with sodium pentobarbital (50 mg/kg,
i.p.). 3-HK was dissolved in distilled water and adjusted to pH
7.4. Single unilateral injections were made with a Hamilton
syringe into the right striatum at the stereotaxic coordinates
0.5 mm anterior to bregma, 2.6 mm lateral to bregma and
4.5 mm ventral to the dura, according to the brain Atlas of 3-
HK was injected at different doses (5, 10, 20, and 80 nmol/ml).
The needle was left in place for another 2 min and then,
slowly withdrawn. Control animals were similarly injected
with isotonic saline solution. Animals were sacrificed at 0.5
and 2 h; 7, 14 and 21 days.
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4.8. Rotation behavior test

Motor alterations, assessed as rotation behavior, were eval-
uated in animals from all experimental groups, according to
previous reports (Silva-Adaya et al., 2008). Six days after 3-HK
(80 nmol) infusion, animals were administered with apomor-
phine (1 mg/kg, s.c.) and separated into individual acrylic box
cages. Five minutes later, the number of ipsilateral rotations
to the lesioned side was recorded for 1 h. Each rotation was
evaluated as a complete turn (3601). Data are expressed as the
total number of ipsilateral turns in 1 h.

4.9. Histological examination

Seven, 14 and 21 days after performing the striatal lesions,
animals from all groups were anesthetized i.p. with 0.5 mL of
sodium pentobarbital and perfused transcardially with 0.9%
saline solution containing heparin (200/1 v/v), followed by 4%
paraformaldehyde at 4 1C. Brains were removed, post-fixed in
4% p-formaldehyde for 7 days and embedded in paraffin.
Fixed tissues were serially sectioned in an 820 HistoSTAT
microtome (American Instrument Exchange, Inc., Haverhill,
MA, USA). Striatal sections (5 μm-thick) were obtained every
100 μm, covering a total distance of 300 μm (100 μm anterior
and 100 μm posterior to the needle tract). All sections were
stained with hematoxylin-eosin (H&E) to visualize cell bodies,
using an image analyzer IM100 (Leica Cambridge, UK).

4.10. Protein carbonyl content

As an index of protein oxidation, protein carbonyl content in
the striatal tissue (2 and 6 h, and 1 and 7 days post-lesion)
was determined as previously described (Chevion et al., 2000).
Assessment of carbonyls formation was done on the basis of
formation of protein hydrazone by reaction with 2,4-dinitro-
phenylhydrazine (DNPH). Supernatants were incubated with
10% streptomycin sulfate to remove nucleic acids overnight,
and centrifuged at 21,000g at 4 1C for 20 min. Then, super-
natants were treated with 10 mM DNPH (in 2.5 M HCl) for 1 h
at room temperature, and 10% TCA was added and centri-
fuged at 2500g at 4 1C for 10 min. Pellets were washed three
times with ethanol/ethyl acetate (1:1), dissolved with 6 M
guanidine hydrochloride (in phosphate buffer 20 mM, pH 7.4),
and centrifuged at 5000g at 4 1C for 3 min to remove insoluble
material. Absorbance was measured at 370 nm. Protein car-
bonyl content is expressed as nmol DNPH/mg protein, using
the molar absorption coefficient of DNPH (22,000 M!1 cm!1).
Total protein concentration was obtained by reading optical
density at 280 nm in blank tubes prepared in parallel (treated
only with 2.5 M HCl), using a standard curve of bovine
serum albumin (0.25–2 mg/ml) prepared in 6 M guanidine
hydrochloride.

4.11. Antioxidant enzymes activity assays

Striatal samples were homogenized in 500 ml of lysis buffer
pH 7.4 (containing 10 mM Tris–HCl, 15 mM NaCl, 0.25 mM
sucrose and proteases inhibitors), and centrifuged at 13,000g
for 30 min. The supernatants were used to determine
gluthatione peroxidase (GPx), glutathione reductase (GR),

gluthatione-S-transferase (GST), and glucose 6-phosphate
dehydrogenase activities (G6PD).

4.11.1. Assessment of GPx activity
Reaction mixture consisted of 50 mM potassium phosphate
(pH 7.0), 1 mM EDTA, 1 mM Sodium azide, 0.2 mM NADPH,
1 U/ml of glutathione reductase, and 1 mM GSH. One hundred
microliters of homogenates were added to 0.8 ml of mixture
and allowed to incubate for 5 min at room temperature before
initiation of the reaction by the addition of 0.1 ml 0.25 mM
H2O2 solution. Absorbance at 340 nm was recorded for 5 min,
and the activity was calculated from the slope of these lines
as moles of NADPH oxidized per min. Blank reactions with
homogenates replaced by distilled water were subtracted
from each assay. GPx activity was expressed as U/mg protein.

4.11.2. Assessment of GST Activity
In order to evaluate this enzyme activity, we employed the
method described by Habig et al. (1974), with modifications.
One hundred microliters of homogenates were added 50 mM
potassium phosphate (pH 6.5), 20 mM 50 mM GSH, and
1-chloro-2,4-dinitrobenzene (CDNB) as substrate in a total
volume 1 ml. Optical density was detected at 340 nm. The
results were expressed as nmol CDNB conjugate formed/min/mg
protein.

4.11.3. Assessment of GR Activity
The reaction mixture consisted of 100 mM potassium phos-
phate (pH 7.6), 0.5 mM EDTA, 1 mM NADPH, and 1.1 mM
GSSG. One hundred microliters of homogenates were added
to 0.9 ml of mixture. Absorbance at 340 nm was recorded for
3 min, and the activity was calculated from the slope of these
lines as moles of NADPH oxidized per min. Blank reactions
with homogenates replaced by distilled water were sub-
tracted from each assay. GR activity was expressed as U/mg
protein.

4.11.4. Assessment of G6PD Activity
The reaction mixture consisted of 50 mM Tris–HCl buffer
(pH 7.8) containing 33 mM MgCl2, 6 mM nicotinamide adenine
dinucleotide phosphate (NADP), and 100 mM G6P. One hun-
dred fifty microliters of homogenates were added to 0.85 ml
of mixture. Absorbance at 340 nm was recorded for 6 min,
and the activity was calculated from the slope of these lines
as moles of NADP per min. Blank reactions with homogenates
replaced by distilled water were subtracted from each assay.
G6PD activity was expressed as U/mg protein.

4.12. Statistical analysis

Results were expressed as mean values7S.E.M. All data were
statistically analyzed using one-way analysis of variance
(ANOVA) for repeated measures, followed by post hoc Tukey's.
All analytical procedures were performed using the scientific
statistic software GraphPad Prism 5 (GraphPad Scientific, San
Diego, CA, USA). Differences of Po0.05 were considered as
statistically significant.
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9.2. El QUIN ESTIMULA LA ACTIVACIÓN DEL NRF2 DE FORMA 

TRANSITORIA 

 

Siguiendo el razonamiento expuesto anteriormente que postula a la 3-HK como 

una molécula inductora de respuestas antioxidantes y a los reportes que indican 

que es una neurotoxina, se creó la siguiente hipótesis: El QUIN es una molécula 

que en concentraciones elevadas induce efectos tóxicos en el SNC. La 3-HK se 

transforma en QUIN, por lo que los deletéreos observados podrían ser 

consecuencia de una mayor producción de QUIN.  

 El QUIN (!M) estimuló la translocación nuclear del Nrf2 de forma transitoria 

y aumentó la expresión proteica de la hemo-oxigenasa-1. A diferencia de lo 

ocurrido con la 3-HK, estos eventos no fueron suficientemente fuertes para 

disminuir el daño oxidante. Esto sugiere que el QUIN genera ambiente que 

estimula la activación del Nrf2 en un intento para disminuir su toxicidad, sin tener 

éxito. 

 Se ha sugerido la modulación del Nrf2 como estrategia terapéutica en 

diversos modelos tóxicos a través del empleo de antioxidantes y/o electrófilos. En 

el siguiente estudio demostró el efecto protector del ácido cafeico, un antioxidante 

de amplio espectro, en rebanadas incubadas con QUIN y en animales inyectados 

intraestriatalmente con la misma toxina. Como se esperaba, el ácida cafeico 

previno las alteraciones conductuales causadas por la administración de QUIN, 

mientras que en rebanadas estriatales disminuyó el daño oxidante.  
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Abstract—Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is
a transcription factor involved in the orchestration of antiox-
idant responses. Although its pharmacological activation
has been largely hypothesized as a promising tool to ame-
liorate the progression of neurodegenerative events, the
actual knowledge about its modulation in neurotoxic para-
digms remains scarce. In this study, we investigated the
early profile of Nrf2 modulation in striatal slices of rodents
incubated in the presence of the toxic kynurenine pathway
metabolite, quinolinic acid (QUIN). Tissue slices from rats
and mice were obtained and used throughout the experi-
ments in order to compare inter-species responses. Nuclear
Nrf2 protein levels and oxidative damage to lipids were com-
pared. Time– and concentration–response curves of all
markers were explored. Nrf2 nuclear activation was corrob-
orated through phase 2 antioxidant protein expression.
The effects of QUIN on Nrf2 modulation and oxidative stress
were also compared between slices of wild-type (Nrf2+/+)
and Nrf2 knock-out (Nrf2!/!) mice. The possible involvement
of the N-methyl-D-aspartate receptor (NMDAr) in the Nrf2
modulation and lipid peroxidation was further explored in

mice striatal slices. In rat striatal slices, QUIN stimulated
the Nrf2 nuclear translocation. This effect was accompanied
by augmented lipid peroxidation. In the mouse striatum,
QUIN per se exerted an induction of Nrf2 factor only at 1 h
of incubation, and a concentration–response effect on lipid
peroxidation after 3 h of incubation. QUIN stimulated the
striatal content of phase 2 enzymes. Nrf2!/! mice were
slightly more responsive than Nrf2+/+ mice to the QUIN-
induced oxidative damage, and completely unresponsive
to the NMDAr antagonist MK-801 when tested against QUIN.
Findings of this study indicate that: (1) Nrf2 is modulated in
rodent striatal tissue in response to QUIN; (2) Nrf2!/! striatal
tissue was moderately more vulnerable to oxidative damage
than the Wt condition; and (3) early Nrf2 up-regulation
reflects a compensatory response to the QUIN-induced oxi-
dative stress in course as part of a general defense system,
whereas Nrf2 down-regulation might contribute to more
intense oxidative cell damage. ! 2013 IBRO. Published by
Elsevier Ltd. All rights reserved.

Key words: kynurenine pathway, oxidative stress,
antioxidant defense, excitotoxicity, Nrf2.

INTRODUCTION

Neurodegenerative processes represent the major cause
of neurological disorders in human beings (Coyle and
Puttfarcken, 1993; Santamarı́a and Jiménez, 2005).
Disorders coursing with neurodegeneration, such as
Huntington’s disease (HD), share common key
triggering factors that activate cell damage. These
factors include excitotoxicity, mitochondrial energy
depletion, oxidative stress and inflammation (Zádori
et al., 2012). Together, these components establish a
complex toxic scenario that is responsible for neuronal
cell degeneration and death. Excitotoxicity, a toxic event
defined as a persistent stimulation of membrane
receptors in neuronal cells (Olney, 1990), is
characterized by a cascade of processes comprising
increased levels of intracellular calcium in response to
a continuous opening of Ca2+ channels associated to
glutamate receptors activation after sustained exposure
to excitatory amino acids (reviewed by Essa et al.
(2013), Mehta et al. (2013)). In turn, enhanced
intracellular Ca2+ levels trigger lethal metabolic
pathways, further leading to continuous enzyme
activation, enhanced reactive oxygen and nitrogen
species (ROS/RNS) formation, mitochondrial
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dysfunction (Rami et al., 1997), and necrotic or apoptotic
cell death.

Kynurenine pathway (KP), a metabolic pathway
involved in tryptophan degradation to synthesize NAD+,
has gained increasing attention because some of its
intermediary metabolites possess neuroactive
properties, exerting either excitatory or inhibitory actions
in the CNS (reviewed by Pérez-De La Cruz et al.
(2007)). Some KP metabolites have been involved in
pathological conditions, triggering factors for
degenerative events in neurological disorders (reviewed
by Schwarcz et al. (2010, 2012)). One of these
metabolites, quinolinic acid (QUIN or 2,3-pyridine
dicarboxylic acid), is an endogenous glutamate agonist
acting on selective populations of N-methyl-D-aspartate
receptors (NMDAr) (Stone et al., 2003). QUIN has been
recognized as an experimental tool to produce
excitotoxicity and oxidative stress under in vitro and
in vivo conditions, and its toxic pattern includes
enhanced intracellular Ca2+ levels, GABA depletion,
increased ROS formation, decreased activity and
expression of antioxidant systems, oxidative stress,
increased protease activity and cell death (Rios and
Santamarı́a, 1991; Rodrı́guez-Martı́nez et al., 2000;
Braidy et al., 2009, 2010; Pérez-De La Cruz et al.,
2010). Several studies have demonstrated that QUIN
toxicity can be reduced or prevented by the use of
antioxidants, including ebselen (Rossato et al., 2002),
L-carnitine (Silva-Adaya et al., 2008), S-allylcysteine
(Pérez-Severiano et al., 2004), guanosine (Dobrachinski
et al., 2012), probucol (Colle et al., 2012), caffeic acid
(Kalonia et al., 2009), polyphenolic compounds (Braidy
et al., 2010), and the combination of non-effective
concentrations of glutamatergic modulators plus
antioxidants (Dobrachinski et al., 2012). Considering
that increased levels of this toxic metabolite have been
reported in several neurodegenerative disorders
(Schwarcz et al., 2010), its role as a pathogenic factor
in the brain is a matter under continuous investigation;
therefore, the study of the pro-oxidant effects and
mechanisms exerted by QUIN in the CNS is of major
importance for biomedical research.

The nuclear transcription factor related to NF-E2 (also
known as Nuclear factor (erythroid-derived 2)-like 2
(Nrf2)) constitutes a promising tool to counteract the
deleterious effects of oxidative stress through the up-
regulation of endogenous antioxidant genes. Nrf2 is
considered a master regulator of redox homeostasis
because it up-regulates the expression of more than
100 genes (phase 2 enzymes) involved in xenobiotic
and ROS detoxification (Itoh et al., 1999; Kensler et al.,
2007). Phase 2 enzymes share a common promoter
enhancer known as antioxidant response element (ARE)
that is regulated by Nrf2. Among many proteins
encoded by this gene are heme oxygenase-1 (HO-1),
superoxide dismutase (SOD), NAD(P)H quinone
oxidoreductase 1 (NQO-1), glutathione peroxidase
(GPx), glutathione reductase (GR), and c-glutamyl
cysteine ligase (c-GCL), just to mention a few (Itoh
et al., 1999; Johnson et al., 2002; Lee et al., 2003;
Kensler et al., 2007).

This study was designed to investigate how Nrf2, a
well-known orchestrator of antioxidant responses in
mammals, is regulated by QUIN at early times of
incubation. Its development emerges from the need to
offer more accurate information on this topic because:
(1) QUIN is a toxic metabolite with relevance for the
explanation of neurodegenerative events in neurological
disorders (Schwarcz et al., 2012); and (2) to date, there
is only limited information available on this emerging
issue. Precisely, one of the fewest reports dealing with
this issue was published by our group (Tasset et al.,
2010). In that report, we described positive actions of
the antioxidant and well-known Nrf2 inducer, tert-
butylhydroquinone (tBHQ) in this toxic model. tBHQ
exerted protective effects in different markers of
oxidative damage induced by QUIN. We also described
a depleting effect of QUIN on the Nrf2 levels in rat
striatal slices. However, this first approach was
inaccurate because we described a form of Nrf2
corresponding to 57 kDa. Recently, a report by Lau
et al. (2013) discussed evidence pointing out that the
real biologically relevant molecular weight of mammalian
Nrf2 is around 95–110 kDa, and this is due to the fact
that multiple acidic residues in Nrf2 promote its gain in
molecular weight. Derived from this observation, herein
we characterized the effect of QUIN on the striatal
levels of the !98 kDa Nrf2 form, together with some
related functional markers of oxidative stress. Therefore,
striatal slices obtained from adult male rats and mice
were challenged with this toxicant and further used
throughout the study for comparative purposes.

EXPERIMENTAL PROCEDURE

Chemicals

QUIN, MK-801, HEPES, thiobarbituric acid (TBA),
malondialdehyde (MDA), 2,3,5-triphenyltetrazolium
chloride (TTC) and other reagents were obtained from
Sigma Chemical Co. (St Louis, MO, USA). All other
chemicals were obtained from other commercial
sources. Antibodies employed along the study are
described forward (in Section ‘‘Immunoblotting’’).

Animals – rats

Adult male Wistar rats (250–300 g) were used throughout
the first part of the study. Animals (n= 25) were housed
five per cage in acrylic cages and provided with food and
water ad libitum. The housing rooms at the vivarium
(facilities of the Instituto Nacional de Neurologı́a y
Neurocirugı́a) were maintained under constant
conditions of temperature (25 ± 3 !C), humidity and
light cycles (12:12 light:dark schedule). All experimental
manipulations were performed according to the
‘‘Guidelines for the Use of Animals in Neuroscience
Research’’ from the Society of Neuroscience, the local
Ethics Committees, and in compliance with the ARRIVE
guidelines.
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Animals – mice

All animal protocols with mice followed Institutional and
European guidelines (86/609/EEC, 2003/65/EC
European Council Directives). Experimentation with
mice was also in compliance with the ARRIVE
guidelines. Mice (n= 24) were housed at room
temperature under a 12-h light–dark cycle. Food and
water were provided ad libitum. Mouse genotyping was
done according to previous reports (Itoh et al., 1997;
Tsuchihashi et al., 2006). Six-month-old male wild-type
C57BL/6 mice (n= 6 per group) and Nrf2-knockout
littermates (n= 6 per group) were kindly provided by
Dr. Antonio Cuadrado and used throughout the study.

Isolation of striatal slices and treatments

Striatal slices were collected strictly according to
procedures previously described (Rojo et al., 2008).
Rats and mice were decapitated and their brains were
rapidly dissected out. Striata were then isolated,
sectioned using a vibratome (TS1000 Leica; Heidelberg,
Germany), and kept in Krebs solution until the beginning
of the experiments. Five slices per probe (250–300 lm
thickness) were used. Depending on the experimental
design, slices were exposed to different concentrations
of QUIN (25–100 lM), MK-801 (50 lM), H2O2 (100 lM),
FeSO4 (50 lM) or Krebs solution for different times of
incubation in a shaking water bath at 37 !C. Immediately
after incubation, slices were placed on ice, collected and
scheduled for measurement of different experimental
parameters.

Nuclear fractions preparation

To estimate nuclear Nrf2, striatal slices were washed
once with cold PBS and lysed on ice with cold buffer A
(250 mM sucrose, 20 mM HEPES (pH 7.0), 0.15 mM
EDTA, 0.015 mM EGTA, 10 mM KCl, 1 mM
phenylmethylsulfonyl fluoride, 20 mM NaF, 1 mM
sodium pyrophosphate, 1 mM Na3VO4 and 1 lg/mL
leupeptin plus 1% Nonidet P-40). Homogenates were
centrifuged at 500g for 5 min. Nuclear pellets were
washed in cold buffer B (10 mM HEPES (pH 8.0),
0.1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride,
20 mM NaF, 1 mM sodium pyrophosphate, 0.1 M NaCl,
1 lg/mL leupeptin and 1 mM Na3VO4 plus 25%
glycerol). After centrifugation at 500g for 5 min, nuclei
were resuspended in RIPA buffer (50 mM Tris–HCl (pH
7.6), 150 mM NaCl, 0.5% sodium deoxycholate, 1 mM
EDTA, 1 mM phenylmethylsulfonyl fluoride, 1 lg/mL
leupeptin, 20 mM NaF, 1 mM sodium pyrophosphate,
and 1 mM Na3VO4). Proteins of both fractions were
resolved by SDS–PAGE and immunoblotted with the
indicated antibodies (Espada et al., 2010).

Immunoblotting

Striatal slices were washed once with cold PBS and lysed
on ice with lysis buffer (1% Nonidet P-40, 10% glycerol,
137 mM NaCl, 20 mM Tris–HCl (pH 7.5), 1 lg/mL
leupeptin, 1 mM phenylmethylsulfonyl fluoride, 20 mM
NaF, 1 mM sodium pyrophosphate, and 1 mM Na3VO4).

Cell lysates were pre-cleared by centrifugation and the
protein concentration was quantified by Bradford’s
method (Bradford, 1976); then, protein extracts were
resolved by SDS–PAGE using 80 lg (nuclear fraction)
of protein per lane (see below the assay for separation
of fractions), and transferred to Immobilon-P
membranes (PVDF, Millipore, Corporation, Billerica, MA,
USA). Blots were analyzed with the appropriate primary
antibodies (1:1,000): anti-Nrf2, anti-Lamin B, anti-Actin,
anti-Histone 1 and anti-GAPDH, all obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies
against antioxidant enzymes (gamma-glutamylcysteine
ligase-catalytic subunit (c-GCL-C), HO-1 and SOD)
were from Santa Cruz Biotechnology Inc. (Santa Cruz,
CA, USA). Peroxidase-conjugated secondary antibodies
(1:10,000) were used to detect the proteins of interest
by an enhanced chemiluminescence kit. Secondary
antibodies were goat anti-rabbit HRP from Zymed (San
Francisco, CA, USA) and goat anti-mouse HRP from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Lipid peroxidation

Lipid peroxidation was determined as the formation of
thiobarbituric acid-reactive substances (TBARS),
according to a previous report (Garcı́a et al., 2008). Two
hundred-lL aliquots of the homogenates obtained from
striatal slices were added to 500 lL of the TBA reagent
(0.75 g of TBA + 15 g of trichloroacetic acid + 2.54 mL
of HCl) and incubated at 100 !C for 30 min. A pink
chromophore was produced in samples in direct
proportion to the amount of peroxidized products.
Samples were then kept on ice for 5 min and centrifuged
at 3000g for 15 min. The optical density from the
supernatants was measured in a Thermo Spectronic
Genesys 8 Spectrometer at 532 nm. Final amounts of
TBARS—mostly MDA—were calculated by interpolation
of values in a constructed tetramethoxypropane standard
curve, and results were calculated as nmoles of MDA
per mg protein.

Statistical analysis

Results were expressed as mean values ± one S.E.M.
All data were statistically analyzed using a one-way
analysis of variance (ANOVA) for repeated measures,
followed by post hoc Tukey’s test. All analytical
procedures were performed using the scientific statistic
software GraphPad Prism 5 (GraphPad Scientific, San
Diego, CA, USA). Differences of P< 0.05 were
considered as statistically significant.

RESULTS

QUIN induced an early increase of nuclear Nrf2 levels
in rat striatal slices

First, we explored the modulation of the !98-kDa Nrf2
form reported by Lau et al. (2013). We wanted to
investigate whether this phenomenon is dependent on
the presence of QUIN and if it can be modulated by
tBHQ, a well-known Nrf2 modulator. For this purpose,
rat striatal slices were incubated in the presence of
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100 lM QUIN at 6 h (short-term effect) and/or 25 or
50 lM tBHQ. QUIN exerted a stimulatory effect on
nuclear Nrf2 levels, reaching significant levels compared
with control (42% of increase; Fig. 1A, B). Cytoplasmic
Nrf2 levels were slightly stimulated by QUIN (18%
above the control). In turn, tBHQ (25 lM) increased the
nuclear and cytoplasmic Nrf2 levels per se (25% and
43% above the control, respectively). Interestingly, when
co-incubated with QUIN, 25 lM tBHQ stabilized Nrf2
levels to basal values, but at the 50 lM concentration, a
significant stimulation in the nuclear levels of Nrf2 levels
was induced by the coordinated action of these two
agents (58% above the control).

QUIN increased lipid peroxidation in a concentration-
dependent manner in rat striatal slices

Since nuclear Nrf2 translocation is also known to obey pro-
oxidant stimuli, in order to further know if the changes in
nuclear levels of Nrf2 induced by QUIN were related to
markers of oxidative cell damage, we estimated the
concentration–response effect of QUIN on lipid
peroxidation (Fig. 2) in rat striatal slices at 6 h of
incubation. The toxin exerted a concentration–response
effect on lipid peroxidation, achieving a peak with the
100 lM concentration (71% of increase vs. control
values), and this effect seems to be correlated with the
increase in the levels of nuclear Nrf2 observed in
Fig. 1. The changes in lipid peroxidation induced by
QUIN in a concentration-dependent manner clearly
suggest that the pro-oxidant environment in our
experiments represent a potential triggering factor for the
transactivation of Nrf2.

QUIN enhanced lipid peroxidation in striatal slices of
wild-type (Wt) C57BL/6 mice

We then started our work with mice tissue. First, we
characterized the ability of QUIN to induce oxidative
damage to lipids in striatal slices of Wt mice that
were incubated for 3 h in the presence of the toxin
in order to establish a concentration–response effect.
QUIN induced a maximum peroxidative effect at 50 lM
(233% above the control). The toxin also enhanced
oxidative damage to lipids at 100 lM (108% above the
control). A positive control of oxidative damage (50 lM
FeSO4) was included in the experiment, but the extent
of lipid peroxidation induced by this condition was only
moderate (Fig. 3).
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Nrf2
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α-Actin 

Control    QUIN    tBHQ    tBHQ25  tBHQ50 
QUIN+   QUIN+ 
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Fig. 1. Effects of QUIN (100 lM) and tBHQ (25 and 50 lM) on nuclear and cytoplasmic Nrf2 levels in rat striatal slices. In (A), immunoblot for
nuclear Nrf2 after 6 h of incubation with QUIN and/or tBHQ. In (B), densitometric analysis of immunoblot from (A). In (B), data are expressed as
mean values ± S.E.M. of n= 3 experiments per group. One-way ANOVA followed by post hoc Tukey’s test for multiple comparisons. Asterisks
denote statistically significant differences (⁄P< 0.05 and ⁄⁄⁄P< 0.01) vs. control.

Fig. 2. Concentration–response effect of QUIN on lipid peroxidation
in rat striatal slices. Lipid peroxidation was estimated at 6 h of
incubation with increasing concentrations of QUIN (25–100 lM).
Data are expressed as mean values ± S.E.M. of n= 6 experiments
per group. One-way ANOVA followed by post hoc Tukey’s test for
comparisons against the control. Asterisks denote statistically signif-
icant differences (⁄P< 0.05) vs. control.
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QUIN augmented nuclear Nrf2 levels in an early
manner in mice striatal slices

The striatal content of Nrf2 induced at different times of
incubation of the slices in the presence of QUIN
(50 lM) is presented in Fig. 4. The time-course of Nrf2
induction by QUIN revealed a transitory and significant
stimulation of this factor at short times of incubation
(0.5–4 h), peaking at 1 h (231% above the control), and
then returning to baseline. Thus, the early and transitory
increase of Nrf2 induced by QUIN followed by its partial
fall could be interpreted as an early compensatory
attempt of cells to counteract oxidative toxicity already
in course.

QUIN induced changes in HO-1, SOD and GCL-C
protein levels in striatal slices

We further investigated whether the toxin per se could be
able to induce redox alterations characterized by
increased expression of representative phase 2
antioxidant enzymes (HO-1, SOD and GCL-C) in direct
correlation to its stimulatory role in the Nrf2 regulation
observed in Fig. 4. For this purpose, striatal slices were
incubated for 3 h in the presence of QUIN, a time that
was assumed to involve an early transactivation of Nrf2.
QUIN (50 lM) enhanced the HO-1 levels compared to
control (1.5-fold). In the case of SOD regulation, QUIN
stimulated the enzyme levels by 50% above the control.
Under the same experimental conditions, QUIN induced
an increase of GCL-C levels (28%) compared with the
control (Fig. 5).

MK-801 inhibited the lipid peroxidation induced by
QUIN in striatal slices of C57BL/6 Wt, but not in
Nrf2!/! mice

We then initiated experiments with Nrf2+/+ (Wt) and
Nrf2!/! mice, also investigating the possible contribution
of the NMDAr to the toxic action mediated by QUIN,
either in the presence or the absence of Nrf2, through

the actions of MK-801. For this purpose, striatal slices
from Wt and Nrf2!/! mice were incubated for 3 h in the
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presence of QUIN (50 lM) and/or MK-801 (50 lM), and
then lipid peroxidation was estimated as the levels of
TBARS formation (Fig. 6A, B). QUIN increased
lipoperoxidation in slices from Nrf2+/+ and Nrf2!/! mice
(25% and 32% vs. control, respectively). The positive
control (H2O2) exerted a pro-oxidant effect in the Wt and
the Nrf2!/! conditions. In turn, MK-801 per se produced
no effects on lipid peroxidation in mice striatal slices
(data not shown). However, when combined,
QUIN +MK-801 returned the levels of lipid peroxidation
induced by the toxicant alone to baseline in Wt mice
(Fig. 6A), but not in the Nrf2!/! condition (Fig. 6B). In
slices from Wt mice, QUIN also induced increased
protein levels of Nrf2 and HO, and MK-801 was unable
to attenuate this effect (Fig. 6C). Once again, MK-801
per se produced no changes in these proteins.

DISCUSSION

Studying the role of the KP metabolite and reported
neurotoxin QUIN in the transcription factor Nrf2
regulation in the brain is relevant because variations in
the levels of QUIN are known to account for the
etiological explanation of HD and other disorders;
however, evidence available on this topic remains
scarce. To date, some groups have described Nrf2
regulation patterns in HD experimental models. For
instance, Li et al. (2007) overexpressed Nrf2 in
astrocytes as an antioxidant gene therapy to counteract
the lesion produced by the mitochondrial complex II
inhibitor malonate in the striatum. In a further study,
Nrf2 target genes were up-regulated in PC12 cells

expressing mutant huntingtin, possibly as a protective/
compensatory mechanism (van Roon-Mom et al., 2008).
In parallel, these authors discovered alterations in some
genes resulting in increased oxidative stress and
damage. Shortly thereafter, Stack et al. (2010) showed
that the triterpenoids CDDO-ethyl amide and CDDO-
trifluoroethyl amide were able to improve the behavioral
phenotype and brain pathology in the transgenic
N171-82Q mouse model of HD. Both triterpenoids
up-regulated Nrf2 and induced neuroprotective genes.
In the same context, the fumaric acid ester
dimethylfumarate (DMF), a drug commonly employed as
a therapy for relapsing–remitting multiple sclerosis,
exerted neuroprotective effects via induction of Nrf2 and
detoxification pathways (Ellrichmann et al., 2011). The
effects of DMF in R6/2 and YAC128 HD transgenic mice
revealed a significant improvement in different
physiological markers (body weight, motor impairment,
striatal morphology, etc.). DMF also increased the Nrf2
immunoreactivity in neuronal subpopulations. More
recently, in STHdh (Q111/Q111) striatal cells, the mHtt
expression resulted in reduced activity of Nrf2, whereas
the activation of the Nrf2 pathway by the oxidant tBHQ
was significantly impaired (Jin et al., 2013). Altogether,
these studies provide biomedical evidence supporting
the concept that Nrf2 transactivation and phase 2
antioxidant up-regulation in the brain represent a
neuroprotective strategy with clinical relevance for HD
therapy, although the role of KP metabolites in this
regulation deserves more attention.

During the first part of this study, we demonstrated
that rat striatal slices exposed to QUIN are sensitive to

CT QUIN QUIN+MK H2O2
0

50

100

150

200
WT (Nrf2+/+)

*

%
 T

BA
R

S 
vs

. c
on

tro
l

A

C

CT QUIN QUIN+MK H2O2

0

50

100

150

200
KO (Nrf2-/-) 

*

%
 T

BA
R

S 
vs

. c
on

tro
l

B HO-1

Nrf2

GAPDH

CT      QUIN             MK   MK+QUIN

Fig. 6. Effect of the NMDAr antagonist MK-801 (50 lM) on the QUIN (50 lM)-induced lipid peroxidation in striatal slices of Wt (A) and Nrf2!/! (B)
C57BL/6 mice at 3 h of incubation. Levels of lipid peroxidation were compared against a positive control (100 lM H2O2). Lipid peroxidation is
expressed as the percent of TBARS formation vs. control. In (C), the effects of QUIN and/or MK-801 on the Nrf2 and HO-1 protein levels. Data are
expressed as mean ± S.E.M. of n= 6 experiments per group. One-way ANOVA followed by post hoc Tukey’s test for comparisons among
treatments. Asterisks denote statistically significant differences (⁄P< 0.05) vs. control.
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the toxin. In contrast to our previous report (Tasset et al.,
2010), the levels of Nrf2 were increased in response to
QUIN. We assume that this event represents a
compensatory action of the biological system to the
toxicant, but not necessarily recruiting a major
antioxidant strategy. Interestingly, also in rat striatal
slices, QUIN exerted a concentration–response effect
on an endpoint of oxidative damage, supporting our
previous appreciation that, despite Nrf2 exhibited a
tendency to increase after QUIN treatment, the pro-
oxidant environment is propitious to exert oxidative cell
damage beyond any effort to activate the endogenous
antioxidant defense. Thus, compensatory mechanisms
could involve adaptive responses of some specific cell
types to oxidative modifications in an attempt to
‘‘reorganize’’ and ‘‘redirect’’ the redox activity if a toxic
insult is present, albeit they could not be sufficient to
counteract damage already in progress. Meanwhile, the
consistent concentration-dependent response of the rat
striatal slices to QUIN demonstrates the suitability of
this preparation to explore the Keap-1/Nrf2/ARE axis
using this toxic paradigm in this species.

We also explored Nrf2-associated responses in mice
striatal slices. In this preparation, QUIN evoked a robust
peroxidative action at 50 lM concentration, with a more
moderate peroxidative action at 100 lM concentration.
This result clearly establishes differences in the
susceptibility of striatal tissue of these two different
species if considering that concentrations typically
employed by some groups (including us) for the
induction of neurotoxic events in rat striatal slices are
between 0.1 and 1 mM (Pérez-De La Cruz et al., 2010;
Colle et al., 2012). The effect of QUIN on the striatal
levels of Nrf2 in this preparation was stimulated at all
times tested and reached a peak at 60 min, pointing out
the differential responses to this toxic paradigm
depending on the explored species. Nonetheless, this
stimulation of Nrf2 by QUIN was likely to be sufficient to
induce increased levels of phase 2 enzymes, including
HO-1, SOD, and in a less extent, c-GCL-C. Noteworthy,
the magnitude of HO-1 protein levels clearly
corresponded to the extent of Nrf2 induction by QUIN.
Although Nrf2 is known to regulate the expression of
HO-1 and SOD (Tufekci et al., 2011; Zhang et al.,
2012), it is also known that HO-1 can be regulated by
other factors, including the transcriptional activators
NF-jB and AP-1, and the transcription repressors BTB
and CNC homolog 1 (Bach1), all controlling the
inducible HO-1 gene expression (Paine et al., 2010). In
turn, SOD and c-GCL-C levels induced by QUIN were
clearly more moderate, but still in line with an early and
transitory induction of Nrf2.

Regarding the experiments in striatal slices of Wt and
Nrf2!/! mice, our findings revealed interesting features of
the early oxidative pattern exerted by QUIN: while
moderate differences in the QUIN-induced lipid
peroxidation were found among Nrf2+/+ and Nrf2!/!

slices, the Nrf2!/!, but not the Nrf2+/+ slices, were
completely insensitive to MK-801, suggesting that Nrf2
regulation might also be subordinated to NMDAr.
Altogether, these findings suggest that Nrf2 could be

more relevant as a concurrent physiological redox
sensor and potentially concurrent mechanism of
resistance against oxidative damage than a
physiologically relevant first line of defense, where
NMDAr might, somehow, regulate Nrf2 expression and
function. These findings also support the concept that
most of the actions exerted by QUIN are mediated by
NMDAr (Stone et al., 2003).

The attenuation or mitigation of the deleterious actions
of QUIN and other toxic KP metabolites emerges as a
priority for basic and clinical research because this
pathway has gain attention as a potential source of
metabolites driving redox and neurochemical alterations
in the CNS when the metabolic pathway is altered
(Moroni, 1999; Chen and Guillemin, 2009; Zádori et al.,
2012). The use of antioxidants with different profiles
along several studies using QUIN as the paradigm of
choice has demonstrated that its toxic effects can be
reduced or even blocked by these agents (reviewed by
Pérez-De La Cruz et al. (2012)). While an initial
assumption on these findings has suggested that these
agents are mostly acting as direct ROS scavengers, our
actual perspective is changing to consider an additional,
promising and not excluding mechanism: transcriptional
Nrf2 regulation. Of note, one of the agents that have
been successfully tested against QUIN toxicity is S-allyl
cysteine (SAC), an antioxidant compound obtained from
the aged garlic extract (Pérez-Severiano et al., 2004).
SAC was shown to prevent the QUIN-induced oxidative
damage and neurotoxicity, suggesting that oxidative
stress is a major component of its toxic pattern.
Whether SAC or other antioxidants already tested in the
QUIN model can modulate the Nrf2 system to contribute
to neuroprotection is a question to explore in further
investigations. In addition, another well-known Nrf2
inducer, curcumin, has been recently tested against
several markers of the toxic model induced by QUIN in
the rat striatum (Carmona-Ramı́rez et al., 2013), thereby
supporting the concept that Nrf2 modulation can
constitute a key tool for the mitigation of the noxious
actions of QUIN if properly stimulated, and a tool for
consideration in the design of therapeutic strategies for
those central and peripheral disorders exhibiting
alterations in the KP metabolism.

CONCLUDING REMARKS

Evidence presented herein suggests that QUIN can exert
early redox modifications involving alterations in the Nrf2
modulation. These alterations depend on the time of
exposure, the tested concentrations, and the extent of
oxidative damage accompanying Nrf2 changes. In turn,
these modifications can recruit the up-regulation of
phase 2 enzymes, although this effect could merely
represent a compensatory response induced by QUIN
to the toxic events already in course. Two additional
relevant points of this study are: (1) The moderate
contribution of the Nrf2!/! condition to stimulate
oxidative damage, albeit the striatal slices from these
mutant animals were more sensitive to the toxic actions
of QUIN; and (2) the possible contribution of NMDAr to
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the modulation of the oxidative stress and the
Nrf2-mediated responses, as well as its active role in
the Nrf2+/+, but not in the Nrf2!/! condition. This first
approach opens up more questions than unequivocal
conclusions, but it serves as a platform to initiate more
detailed studies on the effects of QUIN on the Nrf2
transcription factor, and its potential role as a
therapeutic tool to reduce neurodegenerative events
involving oxidative damage. A schematic representation
of the mechanisms likely occurring in this study is
summarized in Fig. 7.
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Pérez-De La Cruz V, Carrillo-Mora P, Santamarı́a A (2012) Quinolinic
Acid, an endogenous molecule combining excitotoxicity, oxidative
stress and other toxic mechanisms. Int J Tryptophan Res 5:1–8.
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Abstract Study design. The protective effects of the natural antiox-
idant caffeic acid (CA) on behavioral tasks and lipid peroxidation
were tested in an excitotoxic model produced by unilateral intrastriatal
injection of quinolinic acid (QUIN), and in striatal slices incubated
in the presence of the same toxin. CA (20 mg/kg) was administered
intraperitoneally to rats every day for five days; then, rats received
QUIN (240 nmol/µL). Six days later, motor asymmetry was quantified
by the preferential use of forelimbs and the circling behavior tests.
Rat striatal slices (300µm thick) were incubated in the presence of
CA (30–300µM) and/or QUIN (100µM) to estimate oxidative stress.
Results. QUIN induced motor asymmetry in lesioned rats and increased
lipid peroxidation in striatal slices when compared to control values.
CA prevented the QUIN-induced toxic endpoints in a concentration-
dependent manner. Conclusion. Our results support the neuroprotective
role of CA in neurotoxic paradigms recruiting excitotoxic events.

Keywords motor asymmetry; antioxidant defense; excitotoxicity;
oxidative stress; corpus striatum; caffeic acid; quinolinic acid

1. Introduction
The kynurenine pathway for tryptophan degradation is
responsible for the formation of neuroactive metabolites in
the CNS [1]. The alteration in the levels of these metabolites
is involved in different neurological disorders [2]. One of
these metabolites is quinolinic acid (QUIN), a glutamate
agonist acting on NMDA receptors (NMDAr) [3]. Through
excitotoxic events, QUIN induces oxidative stress, increased
intracellular Ca2+ levels, enhanced levels of extracellular
glutamate, augmented protease activity, and stimulated
deadly cascades under different experimental conditions [4,
5]. In turn, excitotoxicity can be defined as a toxic mecha-
nism affecting neurons that are continuously stimulated via
overactivation of NMDAr and further increased intracellular
Ca2+ levels triggering deadly cascades [6].

Caffeic acid (3,4-dihydroxycinnamic acid or CA) is a
natural phenolic compound that has been shown to exert
neuroprotective actions against different neurotoxic insults,

(a) (b)

Figure 1: Schematic representation of the chemical struc-
tures of QUIN (a) and CA (b).

including ischemia and excitotoxic damage in rodents, and
these effects have been related with its antioxidant and anti-
inflammatory properties [7,8,9,10]. Although some positive
effects of CA on endpoints of behavioral (motor activity)
and redox status (reduced glutathione/oxidized glutathione)
alterations in the excitotoxic model induced by QUIN in rats
have already been reported [9], key behavioral and oxidative
stress markers denoting neuroprotection are still needed as
complementary evidence. In particular for this toxic model,
motor asymmetry and lipid peroxidation as an index of
oxidative damage in the striatum are required. Therefore,
the present study aims to evaluate the effects of CA on
QUIN-induced behavioral and biochemical alterations in
the rat brain. For comparative purposes, the effect of CA
was also tested in the 3-nitropropionic acid (3-NP) model
of striatal toxicity. The chemical structures of both CA and
QUIN are represented in Figure 1.

2. Materials and methods

2.1. Reagents
Apomorphine, CA, QUIN, 3-NP, thiobarbituric acid (TBA),
and other reagents were obtained from Sigma-Aldrich
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(St. Louis, MO, USA). Other chemicals, including buffers,
were obtained from other commercial sources.

2.2. Animals and treatments

Twenty eight bred-in-house male Wistar rats (280–320 g)
were randomly separated into four groups (seven animals
per group). Animals were placed into acrylic cages and
provided with Rodent Chow (Purina, St. Louis, MO,
USA) and water ad libitum. Constant conditions of
temperature (25 °±1 °C), humidity (50±10%), and lighting
(12:12 light-dark cycle) were maintained throughout the
experiments. All experimental procedures with animals
were strictly carried out according to the “Guidelines for
the Use of Animals in Neuroscience Research” from the
Society for Neuroscience, the local ethical committees, and
in compliance of the Animal Research: Reporting of In Vivo
Experiments (ARRIVE) guidelines.

The dose employed for CA was close to that used in a
previous report [9]. The experimental groups were injected
intraperitoneally (IP) with sterile water as vehicle or CA
(20 mg/kg) every day for five consecutive days. Shortly
after the last CA administration (30 min), the animals
were anesthetized with sodium pentobarbital (50 mg/kg,
IP) and 30 min later infused for 2 min with a single
intrastriatal injection of QUIN (240 nmol/µL). The dose
employed for QUIN has been previously reported [11]. The
striatal infusion was performed at the following stereotaxic
coordinates: 0.5 mm anterior to bregma, −2.6 mm lateral
to bregma, and 4.5 mm ventral to the dura [12]. Control
rats received sterile saline intrastriatally and sterile water
(pH 7.4) IP. Six days after the striatal lesion, animals from
all groups were subjected to behavioral tests.

2.3. Behavioral tests

2.3.1. Circling behavior test

Rotation behavior was evaluated in rats from all groups,
following a protocol previously reported by us [13]. Six
days after the intrastriatal QUIN infusion, all rats were
administered with apomorphine subcutaneously (1 mg/kg,
SC) and placed in individual acrylic cages. The number of
ipsilateral rotations (complete 360 ° turns) to the lesioned
side was recorded for 60 min in periods of 5 min. Results
are expressed as the total number of ipsilateral turns per
60 min. Largely known as a morphine decomposition
product, apomorphine is a nonselective dopamine agonist
that activates both D1 and D2 dopamine receptors.

2.3.2. Cylinder test

The cylinder test is a behavioral method providing accu-
rate information on locomotor asymmetry in rodent models.
Animals were placed into an open-top, clear plastic cylin-
der, and monitored in regard to their forelimb activity while
rearing against the wall. The use of forelimb was defined

as the preferential placement of the whole palm of a given
limb on the wall of the device, therefore indicating its use for
body support while rearing. The number of ipsilateral and
contralateral forelimb contacts was calculated and expressed
as the count in 5 min.

2.4. Isolation of striatal slices

Rat brains were collected after animal decapitation and
placed in ice-cold Krebs-bicarbonate buffer pH 7.4 (120 mM
NaCl, 2 mM KCl, 0.5 mM CaCl2, 26 mM NaHCO3,
10 mM MgSO4, 1.18 mM KH2PO4, 11 mM glucose, and
200 mM sucrose). Striatal slices were dissected, glued
down against agar blocks in small chambers, submerged
in cold oxygenated dissection buffer, and sectioned in
300µm thick transverse slices using a vibratome (TS1000
Leica; Heidelberg, Germany). Thereafter, the slices were
transferred to a sucrose-free dissection buffer, and bubbled
with 95% O2/5% CO2 at room temperature for 30 min
to recover from the slicing procedure. Then, slices were
incubated for 30 min, exposed to different concentrations
of CA (30, 100 or 300µM) or vehicle for 30 min more, and
added with QUIN (100µM) for 3 h in a shaking water bath
at 37 °C. Immediately after incubation, slices were placed on
ice, collected, and scheduled for measurement of oxidative
damage to lipids. For comparative purposes, a positive
control consisting of slices incubated with the mycotoxin
3-nitropropionic acid (3-NP, 1 mM) and preincubated with
CA (100µM) was ran in parallel.

2.5. Assay of lipid peroxidation

The formation of thiobarbituric acid-reactive substances
(TBARS) as an index of lipid peroxidation was determined
in striatal slices, according to a previous report [14]. Briefly,
50µL aliquots of the homogenates were added to 100µL
of the TBA reagent (0.75 g of TBA + 15 g of trichloroacetic
acid + 2.54 mL of HCl) and incubated at 100 °C for 20 min.
The pink chromophore produced after this reaction denoted
the amount of peroxidized lipid products. Samples were kept
on ice for 5 min and centrifuged at 3,000× g for 15 min.
The optical density was measured in the supernatants in a
CYT3MV Biotek Cytation 3 Imaging Reader at 532 nm.
The amount of TBA-RS was calculated by interpolation of
values in a constructed malondialdehyde (MDA) standard
curve. Results were originally calculated as nmol of MDA
per mg protein, and finally expressed as percent of lipid
peroxidation versus control. The content of protein in
samples was determined by Bradford’s method [15].

2.6. Statistical analysis

Results were expressed as mean values ±SEM. Behav-
ioral data were analyzed by nonparametric ANOVA
(Kruskal-Wallis) followed by comparison with Mann-
Whitney’s test. Biochemical data were analyzed with
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Figure 2: Effect of CA (20 mg/kg, IP) on the behavioral alterations induced by QUIN (240 nmol/µL) in rats. Rats were
administered with CA for five consecutive days prior a single infusion of QUIN into the right striatum. Both behavioral
markers of motor asymmetry were explored six days after QUIN injection. The preferential use of forelimbs ((b) and (c))
was monitored for 5 min by placing the animals into a plastic cylinder. Immediately thereafter, rats were administered with
apomorphine (1 mg/kg, SC) and the number of ipsilateral turns was recorded every 5 min for 60 min. Each bar represents
mean values ± one SEM of seven rats per group. aP < .05 different of control, bP < .05 different of QUIN. Data analysis
was performed with a nonparametric ANOVA (Kruskal-Wallis) followed by a comparison with Mann-Whitney’s test.

a one-way analysis of variance (ANOVA) for repeated
measures, followed by post-hoc Tukey’s test. The analytical
procedures were performed using the scientific statistic
software GraphPad Prism 5 (GraphPad Scientific, San
Diego, CA, USA). Differences of P < .05 were considered
as statistically significant.

3. Results

3.1. CA prevented the QUIN-induced behavioral alterations
in rats

Figure 2 shows the behavioral results obtained from rats
subjected to the rotation behavior test (Figure 2(a)) and the
cylinder test (Figures 2(b) and 2(c)).

In Figure 2(a), the control animals—receiving apomor-
phine six days after intrastriatally infused with vehicle—
displayed no rotations, although they exhibited excitement
and hyperactivity during the evaluation time (data not
shown). The group receiving CA displayed a moderate
number of ipsilateral rotations (18±9). The QUIN-lesioned
rats displayed a considerable number of rotations in 60 min
(121±16; P < .05 vs. control) in response to apomorphine,
whereas the group pretreated with CA and further infused
with QUIN displayed a moderate number of rotations,
similar to the CA group (22±6; 82% below QUIN; P < .05
vs. QUIN).

Figures 2(b) and 2(c) depict the preferential use of fore-
limbs in the cylinder test for 5 min. Control rats showed,
more or less, and equal use of the right (7.5± 2.3 times)
versus the left forelimb (6.2±1.7 times). This tendency was
not significantly changed in animals receiving CA (6.1±1.2
for the right forelimb vs. 2.3± 0.2 for the left forelimb). In

contrast, the group receiving QUIN exhibited a remarkable
increased preference of the right forelimb (21.0±3.3 times;
180% above the control; P < .05) versus the left forelimb
(0.4±0.2; 83% below the control; P < .05). These tenden-
cies were prevented in QUIN-lesioned rats by the pretreat-
ment with CA (7.8±2.1 for the right forelimb vs. 1.7±0.3
for the left forelimb; 63% below and 325% above QUIN,
resp.; P < .05 against QUIN for both cases).

3.2. CA reduced the QUIN-induced oxidative damage to
lipids in rat striatal slices in a dose-dependent manner

Figure 3 depicts the curve-response effects (as percent
values vs. the control) of CA on QUIN-induced striatal
lipid peroxidation. QUIN per se produced a significant
increase in oxidative damage to lipids when compared to
control (49.5± 7.6% above the control; P < .05). CA per
se, administered at different concentrations (30, 100, and
300µM), reduced the levels of lipid peroxidation below
the control levels (39, 10, and 19% below the control,
resp.), although none of these changes were statistically
significant. When preadministered to QUIN-treated slices,
CA reduced the oxidative damage to lipids by 18, 40
(P < .05) and 87% (P < .05) versus QUIN, respectively, in
a concentration-dependent manner.

In the upper right panel, 3-NP per se increased the lev-
els of lipid peroxidation by 735% above the control (P <
.05). Once again, CA per se did not affect the oxidative
damage when compared to the control (19% below the con-
trol), whereas when preadministered to 3-NP-treated slices,
it reduced the 3-NP-induced lipid peroxidation by 32% (P <
.05).
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Figure 3: Curve-response effect of CA (30–300µM) on the striatal oxidative damage to lipids (TBARS formation)
induced by QUIN (100µM) in tissue slices. For comparative purposes, the effect of CA (100µM) was also tested on the
lipoperoxidative effect induced by 3-nitropropionic acid (3-NP, 1 mM) in additional groups (small graph in the right corner).
Bars represent mean values ±SEM of seven experiments per group. aP < .05 statistically different of control, bP < .05
statistically different of QUIN or 3-NP. Data analysis was performed with a one-way ANOVA followed by Tukey’s test.

4. Discussion
In this simple study, we found evidence that the natural
phenolic compound CA exerted neuroprotective properties
against the excitotoxic damage induced by QUIN in the rat
striatum. We achieved this conclusion through the positive
effects of CA observed on both behavioral and biochemical
endpoints of striatal toxicity induced by QUIN. CA was
able to significantly attenuate the QUIN-induced circling
behavior and the use of the right forelimb, thus confirming
that enough degree of neuroprotection is achieved through
this agent to prevent the motor asymmetry evoked by the
neurotoxin. In addition, it can also be assumed that the
preventive effect exerted by CA on QUIN- and 3-NP-
induced striatal lipid peroxidation—a major indicator of
oxidative damage—is due to the antioxidant properties
previously reported for this phenolic compound [7,8,9,10],
and this effect might strongly account for its neuroprotective
action in the brain.

Our results are complementary to previous findings
reported by Kalonia et al. [9], who demonstrated that CA
administered per orally (5 mg/kg and 10 mg/kg, PO) was
able to prevent alterations in locomotor activity in animals

intrastriatally lesioned with QUIN. Despite the obvious
experimental differences between Kalonia’s report and ours
(PO vs. IP administration of CA, range of dosage for CA,
and the dose of QUIN employed [300 nmol vs. 240 nmol],
all in regard to the in vivo approach), CA demonstrates
to be a protective agent that can reduce behavioral and
biochemical alterations in the toxic model evoked by QUIN.

Few reports have previously deal with the concept
that CA and QUIN are opposite in their effects. Hirai and
coworkers [16] described the effects of some natural iron
chelators and derivatives on in vitro oxygen consumption
rates and superoxide radical formation. Among the agents
tested, QUIN and CA were compared. These authors found
that QUIN repressed oxygen consumption, whereas CA
accelerated it. In turn, these opposite effects establish
relevant chemical basis to understand the mechanistic
nature of these two different molecules in regard to the
induction of superoxide formation (for the case of QUIN)
or its repression (for the case of CA). More recently,
Minakata et al. [17] tested the capacity of QUIN and
CA to modulate the formation of radicals in the reaction
mixtures of rat liver microsomes in the presence of ADP,
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Fe3+, and NADPH in order to provide information on the
protective actions of CA and the neurotoxic actions of
QUIN through a redox approach. They demonstrated that
while CA inhibited the radical formation, QUIN enhanced
their production. The conclusion achieved from these
observations is that oxidative stress is part of the toxic
pattern elicited by QUIN in the progression of several
pathological conditions, whereas antioxidant activity is
part of the protective profile of CA and other natural
polyphenols. In addition, other groups have provided direct
evidence on the in vivo protective effect of CA in other toxic
paradigms. For example, Kumar et al. [10] demonstrated
that CA is able to reduce different endpoints of oxidative
damage and mitochondrial dysfunction in a murine model of
chronic fatigue, once again emphasizing the relevance of the
antioxidant profile of CA to exert its protective actions. Like
this, other studies have provided relevant evidence that CA
can prevent different deleterious events linked to oxidative
stress and inflammation in chronic pathological conditions.

Of final consideration, phenolic acids, such as CA, may
present or combine with other acids in its natural form.
Through its combination with other acids, CA yields the
formation of another important antioxidant compound,
chlorogenic acid (CGA), and such biotransformation occurs
by esterification of CA with a cyclic alcohol-acid, quinic
acid [18]. Noteworthy, similar to CA, CGA has been
also described to exert protective actions in a number of
inflammatory and oxidative events [19]. CGA is the most
abundant polyphenol found in food and plants [18,19],
thus it can be hypothesized that the presence of both of
these agents might induce a simultaneous action, thereby
enhancing the protective effect of CA. Of course, this
speculation deserves further and more detailed investigation.

In summary, CA is a promising antioxidant tool to inves-
tigate the role of oxidative stress in toxic models of neu-
rodegenerative disorders coursing with excitotoxic events.
However, more detailed studies are needed to characterize
the precise mechanisms underlying the antioxidant and neu-
roprotective properties of this naturally occurring agent.
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9.3. EXISTE UN SINERGISMO TÓXICO ENTRE EL QUIN Y LOS 

METABOLITOS QUE SE ACUMULAN EN LAS ACIDEMIAS ORGÁNICAS  

 

¿Puede el QUIN generar sinergismos tóxicos con otras moléculas para inducir 

neurotoxicidad y favorecer así procesos patológicos que expliquen diversas 

enfermedades neurodegenerativas? La incubación de sinaptosomas (terminales 

nerviosas) con ácidos orgánicos en concentraciones subtóxicas no produjo efectos 

deletéreos; sin embargo, la co-incubación de estos metabolitos con QUIN 

disminuyó la función mitocondrial, aumentó la formación de especies reactivas y la 

lipoperoxidación. Interesantemente, para todos los casos este efecto fue 

parcialmente prevenido por el ácido kinurénico, un antagonista de los rNMDA, y 

por la L-NAME, un inhibidor de la sintasa de óxido nítrico, lo que sugiere que este 

nuevo modelo sinérgico involucra mecanismos de excitotoxicidad y de estrés 

nitrérgico. Más aún, los efectos tóxicos fueron completamente prevenidos por la 

acción antioxidante de la SAC, proporcionando un papel central al estrés oxidante 

en este modelo. En general, estos hallazgos sugieren que el daño causado un 

aumento en los niveles de ácidos orgánicos en acidemias metabólicas puede ser 

magnificado por la presencia del QUIN, un proceso que es principalmente 

mediado por estrés oxidante.     

En apoyo a estos resultados, se realizaron experimentos in vivo para confirmar 

el posible sinergismo encontrado in vitro. La administración intraestriatal de QUIN 

a animales gcdh-/- alimentados con una dieta alta en lisina produjo una disminución 

en la actividad de la creatina cinasa y del complejo IV de la cadena respiratoria, 

aumentó marcadores de estrés (lipoperoxidación, formación de nitrito/nitrato), y 

disminuyó los niveles de glutatión reducido. Todos estos cambios pueden deberse 

al efecto aditivo del QUIN con AG y 3-OHAG, y confirman el sinergismo tóxico y el 

papel central del estrés oxidante en este modelo combinado.  
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Abstract—The brain of children affected by organic
acidemias develop acute neurodegeneration linked to
accumulation of endogenous toxic metabolites like glutaric
(GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and
propionic (PA) acids. Excitotoxic and oxidative events are
involved in the toxic patterns elicited by these organic acids,
although their single actions cannot explain the extent of
brain damage observed in organic acidemias. The character-
ization of co-adjuvant factors involved in the magnification
of early toxic processes evoked by these metabolites is
essential to infer their actions in the human brain. Alter-
ations in the kynurenine pathway (KP) – a metabolic route
devoted to degrade tryptophan to form NAD+ – produce
increased levels of the excitotoxic metabolite quinolinic acid
(QUIN), which has been involved in neurodegenerative dis-
orders. Herein we investigated the effects of subtoxic con-

centrations of GA, 3-OHGA, MMA and PA, either alone or
in combination with QUIN, on early toxic endpoints in rat
brain synaptosomes. To establish specific mechanisms,
we pre-incubated synaptosomes with different protective
agents, including the endogenous N-methyl-D-aspartate
(NMDA) receptor antagonist kynurenic acid (KA), the antiox-
idant S-allylcysteine (SAC) and the nitric oxide synthase
(NOS) inhibitor nitro-L-arginine methyl ester (L-NAME). While
the incubation of synaptosomes with toxic metabolites at
subtoxic concentrations produced no effects, their
co-incubation (QUIN + GA, +3-OHGA, +MMA or +PA)
decreased the mitochondrial function and increased reac-
tive oxygen species (ROS) formation and lipid peroxidation.
For all cases, this effect was partially prevented by KA and
L-NAME, and completely avoided by SAC. These findings
suggest that early damaging events elicited by organic
acids involved in metabolic acidemias can be magnified by
toxic synergism with QUIN, and this process is mostly
mediated by oxidative stress, and in a lesser extent by
excitotoxicity and nitrosative stress. Therefore, QUIN can
be hypothesized to contribute to the pathophysiology of
brain degeneration in children with metabolic acidemias.
! 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: organic acidemias, excitotoxicity, oxidative stress,
mitochondrial dysfunction, cell damage, toxic synergism.

INTRODUCTION

The hereditary metabolic disorders known as organic
acidemias (OA) are characterized by a blockage of the
aberrant catabolism of amino acids and lipids due to a
deficient activity of specific enzymes. These alterations
are responsible for the accumulation and high urinary
excretion of potentially toxic organic acids (Bodamer
et al., 2006). Neurological symptoms and brain abnormal-
ities are seen in patients suffering from OA. Glutaric acid-
emia type I (GA I), methylmalonic acidemia
(MMAcidemia) and propionic acidemia (PAcidemia) have
a relatively high prevalence in the population, all with a
severe clinical presentation in the neonatal period.

GA I is known to be caused by a deficiency of glutaryl-
CoA dehydrogenase (GDD, McKusick 23167; OMIM #
231670) activity, resulting in the accumulation of glutaric
(GA, 500–5000 lmol/L) and 3-hydroxyglutaric (3-OHGA,
40–200 lmol/L) acids in the CNS (Kölker et al., 2004;
Sauer et al., 2006). Among its pathological features are
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a fronto-temporal cortical atrophy at birth, progressive
spongy formation, leukoencephalopathy and acute dam-
age of the caudate/putamen occurring between 6 months
and 4 years of age (Amir et al., 1987; Hoffmann and
Zschocke, 1999). Experimental evidence suggests that
accumulating organic acids induce excitotoxicity, oxida-
tive stress and energy metabolism impairment (Flott-
Rahmel et al., 1997; Latini et al., 2002; de Oliveira
Marques et al., 2003; Kölker et al., 2004; Wajner et al.,
2004; Sauer et al., 2005; Latini et al., 2005a,b; Ferreira
et al., 2007; Rosa et al., 2007), although the precise
pathogenic mechanisms occurring in GA I have not been
fully described.

In turn, MMAcidemia and PAcidemia are caused by
severe deficiencies of methylmalonyl-CoA mutase (EC
5.4.99.2) and propionyl-CoA carboxylase (EC 6.4.1.3)
activities, respectively. MMAcidemia is biochemically
characterized by accumulation of methylmalonic acid
(MMA) (1-2.5 mmol/L), whereas PAcidemia by propionic
acid (PA) (5 mmol/L) in blood. Clinical manifestations of
these two OA comprise lethargy, psychomotor
delay/mental retardation, focal and generalized
convulsions, vomiting, dehydration, hepatomegaly,
hypotonia, and encephalopathy further leading to coma
and death (Deodato et al., 2006; Hauser et al., 2011). Dis-
rupted myelination revealing progressive cortical atrophy,
as well as histopathological injury of the basal ganglia can
be observed (Brismar and Ozand, 1994; Chemelli et al.,
2000; Harting et al., 2008). For both acidemias, brain
damage has been related to the toxic actions produced
by their corresponding accumulating metabolites. This
suggestion is based on experimental evidence demon-
strating that MMA can cause brain mitochondrial energy
metabolism disruption, as well as redox status and gluta-
matergic transmission alterations (Kölker et al., 2006;
Sauer et al., 2006, 2010; Stellmer et al., 2007), whereas
PA has also been shown to exert toxic effects in the rat
brain (Wyse et al., 1998; Brusque et al., 1999; de
Mattos-Dutra et al., 2000; Fontella et al., 2000;
Pettenuzzo et al., 2002; Trindade et al., 2002; Rigo
et al., 2006; Ribas et al., 2010a,b).

Tryptophan catabolism and NAD+ synthesis occur in
cells from different tissues through the kynurenine
pathway (KP). This metabolic route is relevant for
biomedical research as neuroactive intermediary
metabolites are synthesized throughout (reviewed by
Pérez-De La Cruz et al. (2007)), some of which are
involved in pathogenic processes of neurological disor-
ders, including Huntington’s disease (HD) (reviewed by
Schwarcz et al., 2010, 2012). One of these KP metabo-
lites, quinolinic acid (QUIN or 2,3-pyridine dicarboxylic
acid) is an endogenous N-methyl-D-aspartate receptor
(NMDAr) agonist (Stone et al., 2003). QUIN induces exci-
totoxicity in animal models and cell cultures, provoking
enhanced intracellular [Ca2+], augmented levels of extra-
cellular glutamate, increased reactive oxygen species
(ROS) and reactive nitrogen species (RNS) formation,
decreased activity and expression of antioxidant systems,
oxidative stress, stimulated protease activity and cell
death (Rios and Santamarı́a, 1991; Rodrı́guez-Martı́nez
et al., 2000; Tavares et al., 2000; Braidy et al., 2009,

2010; Pérez-De La Cruz et al., 2010). Moreover, QUIN
could exert a pathogenic role in different neurodegenera-
tive disorders since increased levels of this metabolite
have been described in these pathological conditions
(Schwarcz et al., 2010).

When considered separately, the toxic profiles
characterized at the experimental level for the organic
acids accumulating in OA and for QUIN in human
neurological disorders could be not sufficient to explain
the extent of cell and tissue damage produced by them
per se, yielding the assumption that additional and
additive mechanisms could account for the toxic profiles
of these metabolites. Therefore, the aim of this work
was to investigate whether GA, 3-OHGA, MMA or PA
can exert synergic toxic effects with QUIN when tested
in rat brain synaptosomes at subtoxic concentrations,
upon the hypothesis that QUIN might eventually
contribute to neurodegenerative processes in OA.

EXPERIMENTAL PROCEDURES

Reagents

GA, MMA, PA, QUIN, HEPES, thiobarbituric acid (TBA),
kynurenic acid (KA), L-nitro-L-arginine methyl ester
(L-NAME), malondialdehyde (MDA), 3-(4,5-dimethylthia
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and
other reagents were obtained from Sigma–Aldrich
Chemical Co. (St Louis, MO, USA). Dr. Ernesto Brunet
(Universidad Autónoma de Madrid, Spain) kindly
supplied 3-OHGA. Other reagents were obtained from
other well-known commercial sources. S-allylcysteine
(SAC) was synthesized according to previous reports
(Garcı́a et al., 2008, 2014).

Animals

Male Wistar adult (250–300 g) rats were used throughout
the study. Animals (N= 40) were obtained from the
vivarium of the Universidad Nacional Autónoma de
México. All rats were housed five per cage and provided
with food and water ad libitum under constant conditions
of temperature (25 ± 3 !C), humidity and light (12:12-h
light:dark schedule). All animal manipulations were
carried out following the ‘‘Guidelines for the Use of
Animals in Neuroscience Research” from the Society of
Neuroscience, the local Ethics Committees, and in
compliance with the ARRIVE guidelines.

Isolation of brain synaptosomal P2 fractions and
treatments

Isolation of synaptosomal P2 fractions from rat brains was
carried out according to Lopachin et al. (2009), with mod-
ifications (Rangel-López et al., 2015). All brains (without
cerebellum) were surgically removed, weighted, trans-
ferred to ice-cooled PBS (pH 7.4), and homogenized in
10 volumes (g/ml) of sucrose (0.32 M). The cerebellum
was excluded because this brain region is generally not
altered in GA I, MMAcidemia and PAcidemia, whose
accumulating metabolites were tested in our work. Homo-
genates were centrifuged for 10 min at 1073!g (4 !C) and
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the supernatants were re-centrifuged for 15 min at
17,000!g (4 !C). The resulting pellets were resuspended
in 40 volumes (ml) of HEPES-buffer containing 0.1 M
NaCl, 0.001 M NaH2PO4, 0.005 M NaHCO3, 0.001 M
CaCl2, 0.006 M glucose, and 0.01 M HEPES (pH 7.4). Ali-
quots were briefly stored at "70 !C until employed for the
experiments. Total protein quantifications were estimated
using the technique reported by Bradford (1976).

Synaptosomal fractions were pre-incubated for 30 min
at 37 !C with O2 supply, and immediately thereafter co-
incubated for 30 min with GA, 3-OHGA, MMA or PA (all
at 500 lM) plus QUIN (50 lM). These concentrations
were assumed to be subtoxic as revealed by the
estimation of toxic endpoints with the different agents
added separately. Effective concentrations of other
agents (50 lM KA, an endogenous NMDAr antagonist;
100 lM SAC, a potent antioxidant; 100 lM L-NAME, a
nitric oxide synthase (NOS) inhibitor; 0.05 U/mL
catalase (CAT), an antioxidant and detoxifying enzyme;
and 500 lM creatine (CREAT), a well-known metabolic

precursor) were added as pretreatments 30 min before
the addition of toxic metabolites in order to explore
possible mechanisms involved in these models since a
pharmacological perspective. Data of 6–8 experiments
per group (three probes per condition per experiment)
were collected for each endpoint evaluated. After exposed
to the mentioned treatments, synaptosomal fractions
were assigned to the different analytical procedures
described as follows.

The assay of ROS formation

The formation of ROS was estimated according to
previous reports (Santamarı́a et al., 2001; Rangel-López
et al., 2015). After incubating in the presence of the differ-
ent treatments, the synaptosomal fractions were diluted in
nine volumes of 40 mM Tris plus HEPES buffer. Then,
samples were incubated with 5 lM 20,70-dichlorofluores
cein diacetate (DCFH-DA) for 60 min at 37 !C. Fluores-
cent signals were recorded at 488 nm of excitation and

Fig. 1. Effects of kynurenic acid (KA, 50 lM) on the quinolinic acid (QUIN, 50 lM) plus glutaric acid (GA, 500 lM)-, 3-hydroxyglutaric acid
(3-OHGA)-, methylmalonic acid (MMA)- or propionic acid (PA)-induced changes in mitochondrial function (A), reactive oxygen species (ROS)
formation (B) and lipid peroxidation (C) in rat brain synaptosomal fractions. KA was added to synaptosomes in incubation 30 min before the
simultaneous addition of QUIN and/or organic acids. The total incubation time was 60 min. All data are expressed as mean values ± S.E.M. of
n= 6–8 experiments per group. One-way ANOVA followed by post hoc Duncan’s test for comparisons among treatments. Symbols denote
statistical differences vs. control (aP< 0.05), and vs. QUIN plus each organic acid (bP< 0.05).
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525 nm of emission wavelengths in a CYT3MV Biotek
Cytation 3 Imaging Reader. Results were expressed as
micromoles of 20,70-dichlorofluorescein (DCF)/g wet
tissue.

Assay of lipid peroxidation

The formation of thiobarbituric acid-reactive substances
(TBARS) in synaptosomes was used as an index of lipid
peroxidation, according to a previous report (Garcı́a
et al., 2008). After homogenized, the synaptosomal frac-
tions (200 lL) were added with 500 lL of the TBA reagent
containing 0.75 g of TBA + 15 g of trichloroacetic acid
+ 2.54 mL of HCl. The pink chromophore indicating the
amount of peroxidized lipids was formed in samples after
incubated in a water bath at 100 !C for 30 min. To stop the
reaction, samples were kept on ice for 5 min and further
centrifuged at 3000!g for 15 min. A CYT3MV Biotek
Cytation 3 Imaging Reader was used to estimate the
optical density of the supernatants at 532 nm. A
standard curve was constructed in parallel with

tetramethoxypropane and served for interpolation and
calculation of the amounts of TBARS – mostly MDA –
formed in samples. Final results were estimated as
nanomoles of MDA per mg protein, and finally expressed
as the percent of lipid peroxidation vs. control.

The MTT reduction assay for functional assessment
of synaptosomes

The functional status of the respiratory chain and
mitochondrial function was estimated in synaptosomes
by the MTT reduction assay, according to a method
previously described (Rangel-López et al., 2015). Briefly,
the synaptosomes were added with 8 ll of MTT (5 mg/ml)
and re-incubated for 60 min at 37 !C. Samples were cen-
trifuged at 15,300!g for 15 min and the pellets resus-
pended in 1 ml of isopropanol. The aqueous phase was
discarded after the first centrifugation. The second cen-
trifugation was performed at 1700!g for 3 min. A
CYT3MV Biotek Cytation 3 Imaging Reader was used to
estimate the content of formazan at a 570 nm wavelength.

Fig. 2. Effects of S-allyl cysteine (SAC, 100 lM) on the quinolinic acid (QUIN, 50 lM) plus glutaric acid (GA, 500 lM)-, 3-hydroxyglutaric acid (3-
OHGA)-, methylmalonic acid (MMA)- or propionic acid (PA)-induced changes in mitochondrial function (A), reactive oxygen species (ROS)
formation (B) and lipid peroxidation (C) in rat brain synaptosomal fractions. SAC was added to synaptosomes in incubation 30 min before the
simultaneous addition of QUIN and/or organic acids. The total incubation time was 60 min. All data are expressed as mean values ± S.E.M. of
n= 6–8 experiments per group. One-way ANOVA followed by post hoc Duncan’s test for comparisons among treatments. Symbols denote
statistical differences vs. control (aP< 0.05), and vs. QUIN plus each organic acid (bP< 0.05).
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Results were expressed as the percent of MTT reduction
vs. control values.

Statistical analysis

Data are expressed as mean values ± S.E.M. All results
were statistically analyzed by a one-way analysis of
variance (ANOVA), followed by post hoc Duncan’s test.
Statistical significance was assigned to comparison of
treatments reaching values of P< 0.05. The statistical
procedures were performed using the scientific statistic
software GraphPad Prism 5 (GraphPad Scientific, San
Diego, CA, USA).

RESULTS

GA, 3-OHGA, MMA and PA exerted a synergism with
QUIN on different toxic endpoints

As above mentioned, in this study we used
concentrations of organic acids that could be considered
as subtoxic on the basis of previous studies and our own
experience. The 500 lM concentration of GA, 3-OHGA,

MMA and PA used herein represents the half of
their toxic concentration (1 mM) previously used in
synaptosomal fractions in a recent study (Colı́n-González
et al., 2015).

While most of the toxic metabolites tested (QUIN, GA,
3-OHGA, MMA and PA) did not produce per se significant
changes in mitochondrial function (3% below the control
for QUIN, 6% below the control for GA, 5% below the
control for 3-OHGA, 8% below the control for MMA, and
3% below the control for PA), ROS formation (2% below
the control for QUIN, 3% above the control for GA, 4%
above the control for 3-OHGA, 3% above the control for
MMA, and 1% above the control for PA) or lipid
peroxidation (2% above the control for QUIN, 10%
above the control for GA, 14% above the control for
3-OHGA, 22% above the control for MMA [P<0.05], and
20% above the control for PA [P< 0.05]) (Figs. 1–3),
the simultaneous incubation of synaptosomes with
QUIN and the organic acids produced a toxic synergism
evidenced by decreased levels of MTT reduction
(30% below the control for QUIN + GA [P< 0.05], 42%
below the control for QUIN + 3-OHGA [P< 0.05], 9%

Fig. 3. Effects of L-nitro-arginine methyl ester (L-NAME, 100 lM) on the quinolinic acid (QUIN, 50 lM) plus glutaric acid (GA, 500 lM)-,
3-hydroxyglutaric acid (3-OHGA)-, methylmalonic acid (MMA)- or propionic acid (PA)-induced changes in mitochondrial function (A), reactive
oxygen species (ROS) formation (B) and lipid peroxidation (C) in rat brain synaptosomal fractions. L-NAME was added to synaptosomes in
incubation 30 min before the simultaneous addition of QUIN and/or organic acids. The total incubation time was 60 min. All data are expressed as
mean values ± S.E.M. of n= 6–8 experiments per group. One-way ANOVA followed by post hoc Duncan’s test for comparisons among
treatments. Symbols denote statistical differences vs. control (aP< 0.05), and vs. QUIN plus each organic acid (bP< 0.05).
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below the control for QUIN +MMA [P< 0.05], and 22%
below the control for QUIN + PA [P< 0.05]), moderate
but still significant changes in ROS formation (8% above
the control for QUIN + GA [P< 0.05], 9% above the
control for QUIN + 3-OHGA [P< 0.05], 7% above
the control for QUIN +MMA [P< 0.05] and 29%
above the control for QUIN + PA [P< 0.05]), and more
prominent increases in lipid peroxidation (32% above
the control for QUIN + GA [P< 0.05], 28% above the
control for QUIN + 3-OHGA [P< 0.05], 34% above
the control for QUIN +MMA [P< 0.05], and 31%
above the control for QUIN + PA [P< 0.05]) (Figs. 1–3).

The toxic markers stimulated by the co-incubation of
synaptosomes with QUIN + organic acids were
partially sensitive to KA

The pre-conditioning of synaptosomal fractions for 30 min
with the NMDAr antagonist KA resulted in partial and
moderate but still significant prevention of mitochondrial
dysfunction induced by QUIN + GA (10% above the
toxic treatment and 20% below the control [P< 0.05]),
QUIN + 3-OHGA (6% above the toxic treatment and
36% below the control [P< 0.05]), QUIN +MMA (13%
above the toxic treatment and 3% above the control
[P< 0.05]), and QUIN + PA (7% above the toxic
treatment and 15% below the control [P< 0.05]). When
tested per se or when challenging each toxic metabolite
separately, KA had no effect on MTT reduction (Fig. 1A).

KA also moderately but significantly reduced the ROS
formation induced by QUIN + GA (8% below the toxic
treatment [P< 0.05] and 6% above the control), QUIN
+ 3-OHGA (26% below the toxic treatment and 17%
below the control [P< 0.05]), QUIN +MMA (5% below
the toxic treatment [P< 0.05] and 3% above the
control), and in a more prominent manner by QUIN
+ PA (53% below the toxic treatment and 37% below
the control [P< 0.05]) (Fig. 1B).

In regard to oxidative damage to lipids, this marker
was moderately but still significantly reduced by KA
(19% below, comparing KA + QUIN + GA vs. QUIN
+ GA [P< 0.05]; 5% below, comparing KA + QUIN
+ 3-OHGA vs. QUIN + 3-OHGA [P< 0.05]; 15%
below, comparing KA + QUIN+MMA vs. QUIN
+MMA [P< 0.05]; 14% below, comparing KA + QUIN
+ PA vs. QUIN + PA [P< 0.05]) (Fig. 1C). In addition,
KA moderately reduced the levels of lipoperoxidation
induced by the metabolic acids per se (data not shown).

The effects exerted by the combination of QUIN
+ organic acids were prevented by SAC

The antioxidant SAC, added as pretreatment to
synaptosomes, completely prevented the mitochondrial
dysfunction induced by the combination of QUIN plus all
organic acids (30% above and 5% below when
comparing SAC+ QUIN + GA vs. QUIN + GA
[P< 0.05] and Control, respectively; 23% above and 3%
below when comparing SAC+ QUIN + 3-OHGA vs.
QUIN + 3-OHGA [P< 0.05] and Control, respectively;
17% above and 2% above when comparing SAC
+ QUIN + 3-MMA vs. QUIN +MMA [P< 0.05] and

Control, respectively; 14% above and 3% below when
comparing SAC+ QUIN+ 3-PA vs. QUIN + PA
[P< 0.05] and Control, respectively) (Fig. 2A).

When SAC was tested in the ROS formation assay,
the antioxidant was able to significantly reduce the
QUIN + organic acids-induced DCFH oxidation even
below the control values (44% below and 38% below
when comparing SAC+ QUIN+ GA vs. QUIN + GA
and Control, respectively [P< 0.05]; 55% below and
47% below when comparing SAC+ QUIN + 3-OHGA
vs. QUIN + 3-OHGA and Control, respectively
[P< 0.05]; 28% below and 19% above when comparing
SAC+ QUIN + 3-MMA vs. QUIN +MMA and Control,
respectively; 72% below and 59% below when
comparing SAC+ QUIN + 3-PA vs. QUIN + PA and
Control, respectively [P< 0.05]) (Fig. 2B).

The TBARS formation induced by QUIN + organic
acids was decreased by SAC in all cases (50% below
and 39% below when comparing SAC+ QUIN + GA
vs. QUIN + GA and Control, respectively [P< 0.05];
37% below and 15% below when comparing SAC
+ QUIN + 3-OHGA vs. QUIN + 3-OHGA and Control,
respectively [P< 0.05]; 45% below and 21% below
when comparing SAC+ QUIN+ 3-MMA vs. QUIN
+MMA and Control, respectively [P< 0.05]; 21%
below and 15% above when comparing SAC+ QUIN
+ 3-PA vs. QUIN + PA and Control, respectively
[P< 0.05]) (Fig. 2C).

L-NAME exerted differential effects on the toxic
endpoints stimulated by QUIN + organic acids

The NOS inhibitor L-NAME slightly improved the QUIN
+ GA- and QUIN + PA-induced MTT reduction (14%
and 20% above, respectively [P< 0.05]). More
prominent prevention of mitochondrial dysfunction was
produced by L-NAME on QUIN + 3-OHGA (55% above
[P< 0.05]) (Fig. 3A). No effect of L-NAME was found on
QUIN +MMA. L-NAME per se had no effect on MTT
reduction. L-NAME per se did not induce any effect on
MTT reduction.

Despite that L-NAME did not prevent the levels of
ROS formation induced by none of the QUIN + organic
acids conditions (Fig. 3B), this agent was able to
significantly reduce the levels of DCFH oxidation
induced by all toxic metabolites per se (data not shown).

Regarding lipid peroxidation (Fig. 3C), L-NAME
reduced the oxidative damage induced by QUIN + GA
(13% below, [P< 0.05]), QUIN + 3-OHGA (18% below
[P< 0.05]), QUIN +MMA (21% below [P< 0.05]), and
QUIN + PA (20% below [P< 0.05]). Finally, L-NAME
per se did not induce any effect on TBARS production
(data not shown).

Neither CAT, nor CREAT, was able to prevent the
mitochondrial dysfunction induced by QUIN
+ organic acids

The antioxidant and metabolic modulators CAT and
CREAT were tested in synaptosomes challenged with
the combination of QUIN + organic acids. The only
endpoint evaluated was MTT reduction capacity. None
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of these agents prevented at all the alterations produced
by the toxic combinations (data not shown). In light of
this lack of effects, no further endpoints were tested for
these agents.(see Fig. 4).

DISCUSSION

To date, the precise mechanisms underlying
neurodegeneration in GA I remain poorly unknown,
despite the many studies available that have been
published so far investigating the pathophysiology of this
disorder.

Based on a previously proposed hypothesis (Varadkar
and Surtees, 2004), our group has recently addressed the
issue of a possible active role of the KP in the neuropathol-
ogyofGA I through the concerted action of twopathological
events comprising the in vivo knockout of GDD (Gcdh, the
key degradation enzyme forGA) followed by an intrastriatal
infusion ofQUIN inmice (Seminotti et al., 2015). These ani-
mals (Gcdh!/!) were fed a high lysine diet to stimulate GA
production. QUIN exerted an acute synergic actionwith the
stimulated Gcdh!/! condition to decrease energetic mark-
ers like creatine kinase activity and the respiratory chain
complex IV, while it increased oxidative stress endpoints
like oxidative damage to lipids, nitrite/nitrate formation
and depleted levels of reduced glutathione in striatal tissue.
Despite that this first contribution clearly establishes hard
basis to support the hypothesis that the KP (throughQUIN)
may be involved in the neuronal damage observed in GA I

and other acidemias, specific toxicmechanismsunderlying
neuronal degeneration and occurring at the level of synap-
tic structures (the nerve communication functional unit) are
still needed. Therefore, in the present study we aimed to
challenge synaptic terminals with QUIN and different toxic
organic acids (GA, 3-OHGA, MMA and PA) accumulating
in common OA, and evaluated endpoints of oxidative toxi-
city andmitochondrial dysfunction to provide more specific
information on the role of synergic actions between these
molecules as initiators of deleterious events in the brain.
The sensitivity of the markers evaluated to different phar-
macological agents acting at different mechanistic levels
was also assessed to complement the in vitro acute toxic
paradigms developed.

Our results revealed that there is an acute toxic
synergism exerted by QUIN + organic acids in all the
three toxic endpoints evaluated herein, but this effect
was differentially expressed among the organic
metabolite tested: in the case of mitochondrial
dysfunction, the order of magnitude was QUIN + 3-
OHGA> QUIN + GA = QUIN + PA > QUIN + MMA.
This result clearly suggests that the first three models
recruit in a more prominent manner mitochondrial
alterations than that produced by the combination of
QUIN +MMA. In contrast, regarding ROS formation,
the order of magnitude for this effect was as follows:
QUIN+ PA>QUIN+ 3-OHGA=QUIN+GA=QUIN
+MMA. These tendencies suggest that the toxic model
exerted by QUIN + PA is more prompt to oxidative

Fig. 4. Schematic representation of the toxic events stimulated by the synergic action of glutaric acid (GA), 3-hydroxyglutaric acid (3-OHGA),
methylmalonic acid (MMA) or propionic acid (PA) plus quinolinic acid (QUIN) in the rat brain synaptosomes, and their prevention by agents with
different protective profiles like kynurenic acid (KA, endogenous NMDAr antagonist), S-allyl cysteine (SAC, antioxidant and redox modulatory agent)
and L-nitro-arginine methyl ester (L-NAME, NOS inhibitor). All toxic metabolites per se can stimulate excitotoxic processes, reactive oxygen/nitrogen
species (ROS/RNS) formation and mitochondrial respiratory chain disruption, further leading to cell death via apoptotic/necrotic events. When
simultaneously present at subtoxic concentrations, metabolic acids and QUIN might potentiate toxic events by synergic actions, as demonstrated
herein with synaptosomal fractions. The efficacy that the different protective agents tested exerted on these models suggests that these synergic
patterns can be interrupted at different levels, thus revealing the active role of several toxic mechanisms in these models.
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damage; however, when the biological consequence of
ROS formation was estimated (oxidative damage to
lipids), the order of magnitude tells another story:
QUIN+ GA=QUIN+MMA=QUIN+ PA=QUIN+
3-OHGA. Therefore, it seems evident that, although all
models involved the active formation of precursors for
oxidative damage in a differential manner, the levels of
oxidative damage in all of them are more or less similar,
thus supporting the concept that oxidative stress is a
major component of the toxic pattern induced by these
synergic models.

We also found a moderate, but still significant
prevention of mitochondrial dysfunction induced by KA
in all the toxic models tested, which contrasted with a
potent reduction of ROS formation for all cases –
including the toxins per se – reaching values even
below the basal levels. Once again, the response
represented by ROS formation seems to be
disproportional when compared to its biological
consequence, lipid peroxidation, which for the case of
KA, was modestly but still significantly reduced in all
models. Altogether, these results clearly suggest that
there is a glutamatergic component involved in the
initiation of the toxic events produced in all the synergic
models tested, but the precise contribution of this
component remains to be characterized in further studies.

While KA was employed in these models to evidence
the degree of participation of the glutamatergic
component (as above mentioned), SAC was used as a
tool to emphasize the oxidative component involved in
these models. In contrast to KA, the effect of SAC on
the mitochondrial dysfunction induced by QUIN
+ organic acids was more intense. The order of
magnitude of protection by SAC on the toxic models
was QUIN + GA=QUIN + 3-OHGA=QUIN
+ PA>QUIN +MMA. In addition, SAC was a potent
inhibitor of ROS formation, not only in all synergic
models, but also when tested against the toxins per se,
as well as in the basal condition. The order of
magnitude of protection induced by SAC in the synergic
models was QUIN + PA>QUIN + 3-OHGA=QUIN
+ GA>QUIN +MMA. This effect was confirmed
through the action of SAC on the QUIN + organic
acids-induced lipid peroxidation, in which SAC not only
reduced this marker even below the control levels in all
synergic models, but also when tested against the
toxins per se. The order of magnitude of SAC efficacy
among the synergic models was QUIN + GA>QUIN
+MMA=QUIN+ 3-OHGA>QUIN+PA. The relevance
of these findings is laying in the evidence collected that
oxidative stress is playing a major role in the alterations
evoked by the combined actions of QUIN + all organic
acids, as evidenced by the robust inhibitory effects that
SAC exerted on all toxic endpoints, which in magnitude
were more prominent than those of KA, thus leaving the
glutamatergic component as an convergent mechanism
to the already-in-progress damage induced by oxidative
stress.

Moreover, as part of the oxidative damage in
course, another converging subordinated mechanism is
nitrosative stress. The characterization of the actions of

nitric oxide and other nitrogen species on diverse
markers of cell dysfunction and oxidative damage is
crucial for the estimation of the degree of participation
of nitrosative stress in these models. We made this
approach through the use of the NOS inhibitor L-NAME,
which produced partial prevention of mitochondrial
dysfunction in three of the four synergic models. The
order of magnitude of the preventive action of L-NAME
among the models was QUIN + 3-OHGA >QUIN
+ PA>QUIN + GA. Noteworthy, despite L-NAME
reduced the levels of ROS/RNS formation induced by all
the toxins per se even below the control levels, it was
unable to reduce this endpoint at all in the synergic
models tested. In contrast, L-NAME partially reduced
lipid peroxidation in all the synergic models. The
order of magnitude of this effect among the models
was QUIN+ 3-OHGA>QUIN+GA=QUIN+MMA=
QUIN + PA. In addition, this agent reduced the oxidative
damage to lipids when tested against all organic acids per
se. Therefore, the effects of L-NAME on these markers
and models suggest that, as expected, nitrosative stress
is also participating in the acute pattern of toxicity
elicited by the synergic condition produced by QUIN and
the organic acids, being responsible of part of the
mitochondrial dysfunction and oxidative damage to
lipids, but not in ROS formation.

QUIN-induced neurodegeneration has been shown to
involve the activation of different signaling pathways and
transcription factors. So far, the most relevant
mechanism recruited by QUIN in the CNS is
excitotoxicity, an overstimulation of glutamatergic
NMDAr mainly acting on subunits NR2A and NR2B,
thus leading to an increased Ca2+ influx through and
the consequent pathological cascade resulting in
neuronal death (Pérez-De La Cruz et al., 2012). Recent
data of our group show that QUIN stimulates the mito-
chondrial dysfunction in vivo in GDD knockout (Gcdh!/!)
mice subjected to a high Lys dietary intake, which is prob-
ably occurring because of the additive effect of QUIN, GA
and 3-OHGA (Seminotti et al., 2015). Therefore, although
the precise mechanisms by which QUIN and the meta-
bolic acids exerted a synergic action in this study remain
to be solved in further studies, in our previous work we
found support to our present findings since Gcdh!/! mice
under a high Lys dietary intake were more susceptible to
the effects of QUIN. It can be hypothesized that increased
amounts of the accumulating organic acids GA and 3-
OHGA may be participating in these effects. A clue to
solve this issue appeared recently in a report showing that
NMDAr, specifically NR2A and NR2B subunits, are highly
expressed in Gcdh!/! animals receiving a high Lys over-
load (Lagranha et al., 2014). Given that QUIN stimulates
these NMDA receptor subunits, as some of the organic
metabolites are supposed to do, it can be suggested that
the increased stimulation of these receptors by these neu-
rotoxic metabolites in a synergic action may play a crucial
role in both mutant mice and synaptosomes.

Of major consideration is the fact that the concept of
synergism is not new at all for metabolic acids.
Recently, a toxic interaction between azaspiracid
(50 nM) – a toxin found in shellfish harvested in Ireland
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– and GA (1 mM) was shown to produce a significant
inhibition of sodium channels in in vitro experiments,
while when added separately, these two compounds
had no effects on these channels (Chevallier et al.,
2015). Moreover, GA was found as a component of the
same shellfish used in the study. Furthermore, the syner-
gic action of QUIN and glutamate to induce and exert neu-
rotoxicity has been well documented through the
stimulation of glutamate release from the presynaptic ter-
minals and the inhibition of reuptake by astrocytes, both
leading to a recruited excitotoxicity (Tavares et al.,
2002). It can be then assumed that chemical or biological
interactions like those described above can potentiate the
toxic features of endogenous toxic agents, thus giving
support to our hypothesis that an interaction of QUIN
and the organic acids involved in acidurias at the biologi-
cal, chemical and/or molecular levels may contribute to
the understanding of toxic mechanisms occurring in these
and other neurological disorders coursing with neurode-
generation. In addition, our study might also have implica-
tions for cancer research and could bring an additional
dimension of translational relevance since it has been
shown that both GA metabolism (Quincozes-Santos
et al., 2010; Vissers et al., 2011) and kynurenine
metabolism (Sahm et al., 2013; Adams et al., 2014)
through events like QUIN uptake by tumor cells (Saito
et al., 1993; Müller and Schwarz, 2007), have been
demonstrated to be involved partially in tumor growth in
gliomas.

CONCLUDING REMARKS

Our present results show that the combination of QUIN
plus GA, 3-OHDA PA or MMA impairs mitochondrial
function and enhances oxidative damage in rat brain
synaptic terminals. In addition, we found that this
damage was primarily linked to ROS formation, and to a
lesser extent, to RNS formation and acute excitotoxicity.
As proposed in a previous study of our group (Seminotti
et al., 2015), our present results also support the hypoth-
esis that increased concentrations of QUIN produced
after the KP activation occurring during inflammatory
and other toxic events, could play a crucial role in the
magnification of the striatal degeneration that follows
alterations in patients affected by GA I (Varadkar and
Surtees, 2004), MMAcidemia and PAacidemia through a
synergic action with the accumulating metabolites GA,
3-OHGA, MMA or PA, which may turn the striatum more
vulnerable during pathologic episodes commonly occur-
ring in OA. Hence, the identification of new toxic mecha-
nisms recruiting the deleterious actions produced by
neurotoxins with different profiles represent an alternative
with potential application for the design of more effective
therapeutic approaches.
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Rodrigues MD, Colı́n-González AL, Leipnitz G, Santamarı́a A,
Wajner M (2015) Oxidative stress, disrupted energy metabolism
and altered signaling pathways in glutaryl-CoA dehydrogenase
knockout mice: potential implications of quinolinic acid toxicity in
the neuropathology of glutaric acidemia type I. Free Radical Biol
Med. submitted.

Stellmer F, Keyser B, Burckhardt BC, Koepsell H, Streichert T,
Glatzel M, Jabs S, Thiem J, Herdering W, Koeller DM, Goodman
SI, Lukacs Z, Ullrich K, Burckhardt G, Braulke T, Mühlhausen C
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Abstract We investigated the effects of an acute intrastriatal
QUIN administration on cellular redox and bioenergetics ho-
meostasis, as well as on important signaling pathways in the
striatum of wild-type (Gcdh+/+, WT) and knockout mice for
glutaryl-CoA dehydrogenase (Gcdh−/−) fed a high lysine (Lys,
4.7 %) chow. QUIN increased lactate release in both Gcdh+/+

andGcdh−/−mice and reduced the activities of complex IVand
creatine kinase only in the striatum ofGcdh−/−mice. QUIN also
induced lipid and protein oxidative damage and increased the
generation of reactive nitrogen species, as well as the activities
of the antioxidant enzymes glutathione peroxidase, superoxide
dismutase 2, and glutathione-S-transferase in WT and Gcdh−/−

animals. Furthermore, QUIN induced DCFH oxidation (reac-
tive oxygen species production) and reduced GSH concentra-
tions (antioxidant defenses) in Gcdh−/−. An early increase of
Akt and phospho-Erk 1/2 in the cytosol and Nrf2 in the nucleus
was also observed, as well as a decrease of cytosolic
Keap1caused by QUIN, indicating activation of the Nrf2 path-
way mediated by Akt and phospho-Erk 1/2, possibly as a com-
pensatory protective mechanism against the ongoing
QUIN-induced toxicity. Finally, QUIN increased NF-κB and

diminished IκBα expression, evidencing a pro-inflammatory
response. Our data show a disruption of energy and redox ho-
meostasis associated to inflammation induced by QUIN in the
striatum of Gcdh−/− mice submitted to a high Lys diet. There-
fore, it is presumed that QUIN may possibly contribute to the
pathophysiology of striatal degeneration in children with
glutaric aciduria type I during inflammatory processes triggered
by infections or vaccinations.

Keywords Glutaric acidemia . Quinolinic acid .

Inflammatory response . Redox homeostasis . Energy
metabolism . Signaling pathways

Introduction

Glutaric acidemia type I (GA I) is a neurometabolic recessive
disease caused by glutaryl-CoA dehydrogenase (GCDH, EC
1.3.99.7) deficiency, which participates in the catabolism of
lysine, hydroxylysine, and tryptophan. Blockage of this en-
zyme activity leads to accumulation of high amounts of
glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in tissues
and biological fluids (blood, urine, and cerebrospinal fluid) of
the affected patients [1, 2]. GA I is considered a cerebral
organic acidemia because affected individuals present pre-
dominantly neurological symptoms. At birth, macrocephaly
and frontotemporal cortical atrophy are observed. Between 3
and 36 months of age, patients suffer acute bilateral striatal
degeneration during or following encephalopathic episodes
triggered by catabolic events, such as infections, fever, or
prolonged fasting, in which the concentrations of the accumu-
lating metabolites dramatically increase reaching millimolar
concentrations [3]. Thereafter, they present dyskinesia and
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dystonia, hypotonia, seizures, muscle stiffness, and spasticity
[2, 4–6].

Inflammatory processes contribute to the appearance and
progression of various neurodegenerative disorders. Neuroin-
flammation can change various parameters of cerebral energy
metabolism and induce oxidative stress and excitotoxicity in
these diseases [7–9]. Although excessive release of inflamma-
tory cytokines by macrophages and microglia in the central
nervous system (CNS) has been associated with the pathogen-
esis of neurodegeneration, the exact role of these molecules is
not yet well established [10]. The kynurenine pathway (KP),
the most important route of tryptophan catabolism, is stimu-
lated by inflammatory cytokines resulting in the production of
metabolites capable of modulating different redox systems in
various physiological functions. In the brain, some metabo-
lites formed in this pathway, including kynurenic acid,
kynurenine, and quinolinic acid (QUIN), are important for
normal functioning [11–13]. However, when in excess, they
may play a toxic role in CNS disorders mainly associated to
excitotoxicity, such as Parkinson’s and Huntington’s diseases
and in GA I [13–15]. QUIN (2,3-pyridine-dicarboxylic acid)
is a metabolite of KP that is capable of inducing neurotoxic
effects by different mechanisms [16]. The primary mechanism
exerted by this excitotoxin in the CNS has been largely related
with overactivation of N-methyl-D-aspartate receptors
(NMDAr) and increased cytosolic Ca2+ concentrations that
may be accompanied by free radical formation and oxidative
damage, mitochondrial dysfunction, cytochrome c release,
and ATP exhaustion [17, 18].

As regards to GA I, various in vitro and in vivo studies
demonstrated that GA and 3HGA, the metabolites that most
accumulate in this disorder, induce excitotoxicity, oxidative
stress, and impairment of cellular energy metabolism in rat
brain [19–41]. Despite the great deal of work carried out with
these toxic organic acids, the pathomechanisms underlying
the acute degeneration of the striatum that occurs in the affect-
ed patients during episodes of metabolic decompensation are
not yet well established. However, it has been postulated that
QUIN, a key KP metabolite whose biosynthesis is stimulated
during these situations, may potentially contribute to striatal
GA I pathogenesis and potentially precipitate severe neuro-
logical symptoms during these crises [15]. Indeed, the symp-
tomatology of glutaric acidemic patients suddenly worsens
during or after infection or immunization. So, it is possible
that the high accumulation of organic acids (GA and 3HGA)
during crises, associated with increased concentrations of
QUIN, may play an important role in the pathophysiology of
striatal damage in GA I patients.

Therefore, in the present study, we investigated the effects of
QUIN intrastriatal administration on cellular bioenergetics and
redox homeostasis in the brain of Gcdh+/+ and Gcdh−/− mice
submitted to a high dietary lysine (Lys) chow. Central compo-
nents of mitochondrial energy production, transfer and

utilization, as well as important parameters of redox homeosta-
sis and finally signaling pathways were evaluated in the stria-
tum of 30-day-oldGcdh+/+ andGcdh−/−mice. Lactate produc-
tion, the activities of the electron transfer chain complexes and
creatine kinase (CK), as well as malondialdehyde (MDA)
levels, sulfhydryl content, 2′,7′-dihydrodichlorofluorescein
(DCFH) oxidation, nitrite and nitrate generation, reduced glu-
tathione (GSH) concentrations, and the activities of glutathione
peroxidase (GPx), glutathione reductase (GR), superoxide dis-
mutase (SOD), catalase (CAT), glucose-6-phosphate dehydro-
genase (G6PDH), and glutathione-S-transferase (GST) were
determined. We also assessed the protein content of nuclear
factor (erythroid-derived 2)-like 2 (Nrf2), Kelch-like
ECH-associated protein 1 (Keap 1), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB),
NF-kappa-B inhibitor alpha (IκBα), protein kinase B (Akt),
and Erk 1/2 (extracellular signal-regulated kinase).

Material and Methods

Chemicals

All chemicals were of analytical grade and purchased from
Sigma (St Louis, MO, USA) unless otherwise stated. Solu-
tions were prepared on the day of the experiments and the pH
was adjusted to 7.2–7.4 in the appropriate buffer for each
technique.

Animals

Gcdh+/+ and Gcdh−/− littermates, both of C129SvEv back-
ground, were generated from heterozygotes and maintained
at Unidade Experimental Animal of the Hospital de Clínicas
de Porto Alegre (Porto Alegre, Brazil). The animals were
maintained on a 12:12-h light/dark cycle (lights on 07:00–
19:00 h) in air-conditioned constant temperature (22 ± 1 °C)
colony room, with free access to water and 20% (w/w) protein
commercial chow containing 0.9 % Lys (SUPRA, Porto
Alegre, RS, Brazil). Thirty-day-old Gcdh+/+ and Gcdh−/−

mice were used in all experiments.

Ethical Statement

This study was performed in strict accordance with the Prin-
ciples of Laboratory Animal Care, National Institute of Health
of United States of America, NIH, publication no. 85-23, re-
vised in 2011, the International Guiding Principles for Bio-
medical Research Involving Animals and approved by the
Ethical Committee for the Care and Use of Laboratory Ani-
mals of the Hospital de Clínicas de Porto Alegre (n° 26967).
All efforts were made to minimize suffering, discomfort,
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stress, and the number of animals necessary to produce reli-
able scientific data.

High Dietary Lys Treatment and QUIN Striatal Infusion

Thirty-day-old Gcdh+/+ and Gcdh−/− animals were submitted
to a high dietary Lys intake (4.7 % Lys) for 48 h. This diet was
shown to provoke an increase of GA and 3HGA similar to
those found in GA I patients and lead to striatal damage in
Gcdh−/− mice [42]. Animals (six per group) were randomly
assigned to four experimental groups: groups I (Gcdh+/+-
NaCl) and III (Gcdh−/−-NaCl) received a single intrastriatal
in fus ion of 50 nmol NaCl (1 μL) disso lved in
phosphate-buffered saline (PBS, pH 7.4), whereas groups II
(Gcdh+/+-QUIN) and IV (Gcdh−/−-QUIN) received 50 nmol
QUIN (1 μL) dissolved in PBS, pH 7.4 (dose selected on the
basis of the study of Ignarro and coworkers [43].

After 48 h of Lys overload, NaCl or QUIN was injected
into the striatum of the mice previously anesthetized with
isoflurane (45 mg/kg, i.p.) and placed on a stereotaxic frame
(Stoelting Co., Wood Dale IL, USA), using the following
coordinates: 0.0 mm anterior to bregma, +2.6 mm lateral to
bregma, and −2.4 mm ventral to the dura [44]. Drugs were
injected for 3 min using a 10-μL Hamilton microsyringe. The
needle was left in place for an additional 1 min after the ad-
ministration and then slowly withdrawn. Gcdh+/+ and Gcdh−/
− mice were euthanized 24 h after QUIN infusion, and the
striatum was immediately removed for the determination of
the biochemical parameters (oxidative stress and bioenerget-
ics). After QUIN injection, the animals received a moderately
high dietary Lys (2.8 %) chow. Samples for immunoblotting
experiments were obtained from animals killed 30 min after
QUIN intrastriatal infusion and prepared as described below.

Bioenergetics Parameters

Striatum Preparation for Lactate Production

The striatum was dissected, weighed, and cut into 400 μm
slices, which were incubated in Krebs–Ringer bicarbonate
buffer, pH 7.4. Briefly, 50 mg of striatal slices was added to
small flasks (11 cm3), pre-incubated at 37 °C for 15 min in
Krebs–Ringer bicarbonate buffer, pH 7.4, followed by the
addition of 5 mM glucose. After 60 min incubation at 37 °C
in a metabolic shaker, the reaction was stopped by the ad-
dition of one volume of 0.6 N perchloric acid to the medi-
um. Striatal slices were then homogenized and the excess of
perchloric acid was precipitated as a potassium salt with the
addition of one volume of 3M potassium bicarbonate. After
centrifugation at 10,000×g for 5 min at 4 °C, lactate con-
centrations were measured in the supernatants by the lactate
peroxidase method [45]. Results were expressed as micro-
mole lactate/hour/gram tissue.

Striatal Preparation for Respiratory Chain Complex
and Creatine Kinase (CK) Activities

For the determination of the respiratory chain complex and
CK activities, the striatum was homogenized in 19 volumes
(1:20,w/v) of SETH buffer (250 mM sucrose, 2.0 mMEDTA,
10 mM Trizma base, and 50 UI mL−1 heparin), pH 7.4. Ho-
mogenates were centrifuged at 800×g for 10 min at 4 °C to
discard nuclei and cell debris. The pellet was discarded and
the supernatant, a suspension of mixed and preserved organ-
elles, including mitochondria, was separated and used to mea-
sure these parameters.

Respiratory Chain Complex I–IV Activities

The activities of the complexes of the respiratory chain were
measured in the presence of approximately 30 μg of protein.
Succinate-2,6-dichloroindophenol (DCIP)-oxidoreductase
(complex II) and succinate:cytochrome c oxidoreductase
(complex II-III) activities were determined according to Fi-
scher et al. [46]. Cytochrome c oxidase (complex IV; COX)
was assayed according to Rustin et al. [47]. The activities were
calculated as nanomole/minute.milligram protein.

Creatine Kinase (CK) Activity

CK activity was measured in total homogenates according to
Hughes [48] with slight modifications. Briefly, the reaction
mixture consisted of 50 mM Tris buffer, pH 7.5, containing
7.0 mM phosphocreatine, 7.5 mM MgSO4, and 0.5–1.0 μg
protein in a final volume of 0.1 mL. The reaction was started
by addition of 4.0 mM ADP and stopped after 10 min by
addition of 50 mM p-hydroxy-mercuribenzoic acid. The cre-
atine formed was estimated according to the colorimetric
method of Hughes. The color was developed by the addition
of 0.1 mL of 20 % α-naphtol and 0.1 mL of 20% diacetyl in a
final volume of 1.0 mL and read after 20 min at λ = 540 nm.
Results were calculated as micromole of creatine/
minute.milligram protein.

Oxidative Stress Parameters

Striatal Preparation

To measure the oxidative stress parameters (except for DCFH
oxidation), striatum was homogenized in 9 volumes (1:10, w/
v) of 20 mM sodium phosphate buffer, pH 7.4, containing
140 mM KCl and centrifuged at 750×g for 10 min at 4 °C to
discard nuclei and cell debris [49]. The pellet was discarded
and the supernatant, a suspension of mixed and preserved
organelles, including mitochondria, was separated and used
to quantify these parameters. Striatum slices were also pre-
pared (400 μm) for DCFH oxidation measurement.

Mol Neurobiol



Malondialdehyde (MDA) Levels

We evaluated lipid oxidative damage by measuring
malondialdehyde (MDA) levels through the thiobarbituric
acid-reactive substances (TBA-RS) method. TBA-RS levels
were measured according to the method described by Yagi
[50] with slight modifications. Briefly, 200 μL of 10 % tri-
chloroacetic acid and 300 μL of 0.67% TBA in 7.1 % sodium
sulfate were added to 100 μL of tissue supernatants containing
0.3 mg of protein and incubated for 2 h in a boiling water bath.
The mixture was allowed to cool on running tap water for
5 min. The resulting pink-stained complex was extracted with
400 μL of butanol. Fluorescence of the organic phase was
read at 515 and 553 nm as excitation and emission wave-
lengths, respectively. Calibration curve was performed using
1,1,3,3-tetramethoxypropane and subjected to the same treat-
ment as supernatants. TBA-RS levels were calculated as
nanomole MDA/milligram protein.

Sulfhydryl Content

Protein oxidative damage was tested by measuring the sulfhy-
dryl content, which is based on the reduction of 5,5-dithio-bis
(2-nitrobenzoic acid) (DTNB) by thiols, generating a yellow
derivative (TNB) whose absorption is measured spectropho-
tometrically at 412 nm [51]. Briefly, 30 μL of 10 mM DTNB
and 980μL of PBSwere added to 50μL of tissue supernatants
containing 0.3 mg of protein. This was followed by 30 min
incubation at room temperature in a dark room. Absorption
was measured at 412 nm. Sulfhydryl content is inversely cor-
related to oxidative damage (sulfhydryl oxidation). Results
were calculated and expressed as nanomole thiol/milligram
protein.

2′,7′-Dihydrodichlorofluorescein (DCFH) Oxidation

Reactive oxygen species production (ROS) was assessed ac-
c o r d i n g t o L e B e l e t a l . [ 5 2 ] b y u s i n g 2 ′ ,
7 ′-dihydrodichlorofluorescein diacetate (DCF-DA).
DCF-DA was prepared in 20 mM sodium phosphate buffer
pH 7.4, also containing 140 mM KCl and incubated together
with tissue slices (30 mg) during 30 min at 37 °C. DCF-DA is
enzymatically hydrolyzed by intracellular esterases to form
non-fluorescent DCFH, which is then rapidly oxidized to form
highly fluorescent 2′,7′-dichlorofluorescein (DCF) in the pres-
ence of ROS. The DCF fluorescence intensity parallels the
amount of reactive species present. Fluorescence was mea-
sured using excitation and emission wavelengths of 480 and
535 nm, respectively. A calibration curve was prepared with
DCF (0.25–10 mM). The levels of ROS were calculated as
picomole DCF formed/milligram protein.

Nitrate and Nitrite Content

Nitrate and nitrite concentrations were evaluated according to
Navarro-Gonzálvez et al. [53] with some modifications. One
hundred and fifty microliters of tissue supernatants (contain-
ing approximately 1.2 mg of protein) was deproteinized by
adding 125 μL of 75 mM ZnSO4 solution, followed by cen-
trifugation at 9000×g for 2 min at 25 °C. The supernatant
obtained was neutralized with 55 mM NaOH solution and
diluted in 5 volumes of glycine buffer solution, pH 9.7.
Copper-coated cadmium granules (600–1000mg) were added
to the supernatants to convert all nitrates into nitrite in the
biological samples. Aliquots of 200 μL were then treated with
200 μL of Griess reagent (2 % sulfanilamide in 5 % HCl and
0.1%N-1-(naphtyl)ethylenediamine in H2O) and incubated at
room temperature by 10 min. The absorbance was read at
505 nm. A calibration curve was prepared with NaNO2 at
concentrations ranging from 1 to 125 μM. The final results
were expressed as micromole nitrate and nitrite/milligram of
protein.

Antioxidant Defenses

Reduced Glutathione (GSH) Concentrations

GSH concentrations were measured according to Browne and
Armstrong [54]. A hundred and fifty microliters of
metaphosphoric acid was added to an equal volume of tissue
supernatants containing 30 μg protein and centrifuged for
10 min at 7000×g. Then 30 μL from the supernatants were
diluted with 70 μL of 100 mM sodium phosphate buffer,
pH 8.0, containing 5 mM EDTA. This preparation was incu-
bated with o-phthaldialdehyde (1 mg/mL in methanol) at
room temperature for 15 min. Fluorescence was measured
using excitation and emission wavelengths of 350 and
420 nm, respectively. Concentrations were calculated from a
calibration curve of a GSH standard (0.001–1 mM) and
expressed as nanomole GSH/milligram protein.

Enzymatic Antioxidant Enzymes

Glutathione Peroxidase (GPx) Activity

GPx activity was measured according to Wendel [55] using
tert-butyl hydroperoxide as substrate. The enzyme activity
was determined by monitoring the NADPH disappearance at
340 nm in a medium containing 100 mM potassium phos-
phate buffer/1 mM ethylenediaminetetraacetic acid, pH 7.7,
2 mM GSH, 0.1 U/mL glutathione reductase, 0.4 mM azide,
0.5 mM tert-butyl hydroperoxide, 0.1 mM NADPH, and tis-
sue supernatants (approximately 3 μg of protein). One GPx
unit (U) is defined as 1 μmol of NADPH consumed per
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minute. The specific activity was calculated and expressed as
unit/milligram protein.

Glutathione Reductase (GR) Activity

GR activity was measured according to Carlberg and
Mannervik [56] using oxidized glutathione (GSSG) and
NADPH as substrates. The enzyme activity was determined
by monitoring the NADPH disappearance at 340 nm in a
medium with 200 mM sodium phosphate buffer, pH 7.5, con-
taining 6.3 mM EDTA, 1 mM GSSG, 0.1 mM NADPH, and
tissue supernatants (approximately 0.065 mg of protein). The
results were calculated and expressed as unit/milligram
protein.

Superoxide Dismutase (SOD) Activity

Total SOD activity was assayed according to Marklund [57]
and is based on the capacity of pyrogallol to autooxidize, a
process highly dependent on superoxide, which is a substrate
for SOD. The inhibition of autoxidation of pyrogallol occurs
in the presence of SOD, whose activity can be then indirectly
assayed spectrophotometrically at 420 nm. The reaction me-
dium contained 50 mM Tris buffer/1 mM ethylenediaminetet-
raacetic acid, pH 8.2, 80 U/mL catalase, 0.38 mM pyrogallol,
and tissue supernatant (approximately 1 μg of protein).

We also determined SOD1 (cytosolic isoform) and SOD2
(mitochondrial isoform) activities in the presence or absence
of KCN (1.0 mM). SOD2 corresponds to the activity obtained
in the presence of KCN, whereas SOD1 activity was calculat-
ed by subtracting the CN-sensitive activity from total SOD
activity. Corrections were made for direct effects of CN− on
pyrogallol autoxidation [58]. Calibration curves were per-
formed with purified SOD as standard to calculate SOD ac-
tivities present in the samples. The results were expressed as
unit/milligram protein.

Catalase (CAT) Activity

CAT activity was assayed according to Aebi [59] by measur-
ing the absorbance decrease at 240 nm in a reaction medium
containing 20 mM H2O2, 0.1 % Triton X-100, 10 mM potas-
sium phosphate buffer, pH 7.0, and tissue supernatants (ap-
proximately 1 μg of protein). One unit (U) of the enzyme is
defined as 1 μmol of H2O2 consumed per minute. The specific
activity was calculated and expressed as unit/milligram
protein.

Glucose-6-Phosphate Dehydrogenase (G6PDH) Activity

G6PDH activity was measured by the method of Leong and
Clark [60] in a reactionmixture containing 100mMTris–HCl,
pH 7.5, 10 mM MgCl2, 0.5 mM NADP+, and tissue

supernatants (approximately 0.035 mg of protein). The reac-
tion was started by the addition of 1 mM glucose-6-phosphate
and was followed in a spectrophotometer at 340 nm. The
results were calculated and expressed as unit/milligram
protein.

Glutathione S-Transferase (GST) Activity

The activity of GST was measured according to Guthenberg
and Mannervik [61] with slight modifications. GST activity
was measured by the rate of formation of dinitrophenyl-S-
glutathione at 340 nm in a medium containing 50 mM potas-
sium phosphate, pH 6.5, 1 mM GSH, 1 mM 1-chloro-2,4-
dinitrobenzene (CDNB) as substrate, and tissue supernatants
(approximately 0.045 mg of protein). The results were calcu-
lated and expressed as unit/milligram protein.

Western Blot Assays

Nuclear and Cytosolic Fraction Preparation
for the Measurement of Transcription Factors and Inhibitors

Striatum was washed with cold PBS and lysed with a
pre-cooled homogenizer in 300 μL cold buffer (10 mM
HEPES, 1.5 mM MgCl2, 1 mM KCl, and 1 mM DTT)
plus 1 μg/μL protease, phosphatase inhibitor cocktail,
1 mM PMSF, and 0.5 % Nonidet P-40, and incubated
on ice for 15 min. The homogenates were centrifuged at
850×g for 10 min at 4 °C, and the supernatants (cytoplas-
mic extracts, SN1) were collected and stored at −80 °C.
The pellets were resuspended in 200 μL of cold buffer,
transferred to pre-cooled microcentrifuge tubes, and incu-
bated on ice for 15 min. Then, 0.5 % Nonidet P-40 was
added and the samples were incubated on ice for 5 min
and mixed for 10 s. The suspensions were centrifuged at
14,000×g for 30 s at 4 °C, and the supernatants were
collected in SN1. Then, the pellets were resuspended in
50 μL of complete lysis buffer (20 mM HEPES, 1.5 mM
MgCl2, 0.2 mM EDTA, 20 % glycerol, 420 mM NaCl,
and 1 mM DTT), plus 1 μg/mL protease, phosphatase
inhibitor cocktail, and 1 mM PMSF, mixed for 10 s, and
incubated on ice for 40 min (mixed for 10 s each 5 min).
Finally, the suspensions were mixed for 30 s and centri-
fuged at 14,000×g for 10 min at 4 °C. The supernatants
(nuclear extracts, SN2) were collected and stored at
−80 °C. Inmunodetection was performed using the following
primary antibodies, according to datasheet specifications:
anti-Nrf2 (1:500, Abcam® ab31163), anti-Keap1 (1:500,
Cell Signaling® D6B12), anti-NF-κB p-65 (1:500, Cell
Signaling® D14E12), and anti-IκBα (1:500, Cell Signaling®
L35A5).
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Striatal Preparation for the Measurement of Akt and Erk 1/2
Protein Levels

Striatum was homogenized in Laemmli sample buffer
(62.5 mM Tris–HCl, pH 6.8, 1 % SDS (w/v), 10 % glycerol
(v/v)) and normalized by quantifying protein content.
Inmunodetection was performed using the anti-Akt antibody
(1:1,000, R&D Systems® MAB2055) and anti-Erk 1/2 and
anti-phospho-Erk 1/2 (1:1000; Cell Signaling® p44/42
MAPK and Phospho-p44/42 MAPK), according to datasheet
specifications.

Immunoblotting

To perform immunoblot experiments, equal amounts of pro-
tein (30 μg/well) were fractionated by SDS-PAGE and
electroblotted onto nitrocellulose membranes. After verifying
protein loading and electroblotting efficiency through
Ponceau S staining, the membrane was blocked in
Tween-Tris buffered saline (TTBS: 100 mM Tris–HCl,
pH 7.5, 0.9 % NaCl, and 0.1 % Tween-20) containing 5 %
albumin. Membranes were then incubated overnight at 4 °C
with each antibody separately in TTBS, at different working
dilutions as suggested by the manufacturers, and afterwards
washed with TTBS. Anti-rabbit or anti-mouse IgG
peroxidase-linked secondary antibody (1:10,000; Santa
Cruz®, sc-2030 and sc-2031, respectively) was incubated with
the membranes for an additional 2 h, washed again, and the
immunoreactivity was detected by enhanced chemilumines-
cence. Densitometric analysis was performed with ImageJ
software. Blots were developed to be linear in the range used
for densitometry. All results were expressed as a ratio relative
to the β-actin (1:1000, Sigma-Aldrich® A1978) or lamin B1
(1:1000, Abcam® ab133741) internal control.

Protein measurement

Protein content in samples was quantified for data normaliza-
tion according to Lowry et al. [62].

Statistical Analysis

Results are presented as mean ± standard deviation. Assays
were performed in triplicate and the mean was used for statis-
tical calculations. Duplicate or triplicate experiments were al-
ways carried out and the mean used for the calculations. Sta-
tistical analysis was performed with GraphPad 5.0 software.
Student’s t test (independent) was applied for simple compar-
isons between groups. Differences were considered significant
when P < 0.05. Only significant results are presented.

Results

We first observed that Gcdh+/+ and Gcdh−/− mice receiving
4.7 % dietary Lys for 48 h and injected intrastriatally with
NaCl did not have apparent motor or behavioral alterations.
In contrast, generalized convulsions were observed in all an-
imals injected with QUIN.

Intrastriatal QUIN Administration Increases Lactate
Release in the Striatum of Gcdh+/+ and Gcdh−/− Mice

We evaluated the influence of a single intrastriatal injection of
QUIN to Gcdh+/+ and Gcdh−/− mice submitted to Lys over-
load (4.7 %) for 48 h on lactate release in the striatum, in an
attempt to evaluate mitochondrial oxidative metabolism. Our
results demonstrated that QUIN provoked a significant in-
crease of lactate production in both Gcdh+/+ [t(7) = 4.941;
P < 0.01] and Gcdh−/− mice [t(6) = 3.303; P < 0.05] (Fig. 1),
indicating a disruption of oxidative metabolism.

Intrastriatal QUINAdministrationDecreases Complex IV
Activity in the Striatum of Gcdh−/− Mice

Since QUIN impaired oxidative mitochondrial respiration, we
next investigated the effects of in vivo QUIN administration
on the activities of complexes II, II-III, and IVof the respira-
tory chain in striatum of Gcdh+/+ and Gcdh−/− mice. We
found that complex IV activity was significantly reduced in
Gcdh−/− but not in Gcdh+/+ mice injected with QUIN [t(9) =
2.150; P < 0.05] (Table 1). It can be also seen in the table that
no significant differences were found in the activities of com-
plexes II and II-III in striatum of both genotypes. The data
indicate a failure of electron transfer through the respiratory
chain at the COX activity step.

Fig. 1 Lactate release in the striatum of Gcdh+/+ and Gcdh−/− mice on a
high Lys (4.7 %) diet. Lactate concentrations were measured 24 h after a
single intrastriatal injection of NaCl or QUIN (50 nmol). Results are
represented as mean ± standard deviation for five independent
experiments (animals) per group. *P < 0.05, **P < 0.01, compared to
Gcdh−/− injected with NaCl (Student’s t test for unpaired samples)
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Intrastriatal QUIN Administration Decreases CKActivity
in the Striatum of Gcdh−/− Mice

A significant reduction of CK activity in the striatum of
Gcdh−/− mice injected with QUIN and submitted to a high
Lys diet (4.7 %) was also observed as compared to
NaCl-injected Gcdh−/− mice [t(9) = 8.781; P < 0.001] (Fig. 2).

Intrastriatal QUIN Administration Induces Lipid
Peroxidation in the Striatum of Gcdh+/+ and Gcdh−/− Mice

QUIN intrastriatal infusion caused a significant increase of
MDA levels in the striatum of Gcdh+/+ [t(7) = 4.493;
P < 0.01] and Gcdh−/− mice [t(8) = 4.265; P < 0.01] as com-
pared to animals injected with NaCl (Fig. 3). Furthermore, it
can be observed that the increase of MDA concentrations was
higher in knockout animals when compared to wild-type
(WT) animals injected with QUIN [t(8) = 3.351; P < 0.05].

Intrastriatal QUIN Administration Reduces Sulfhydryl
Content in the Striatum of Gcdh+/+ and Gcdh−/− Mice

Figure 4 shows that sulfhydryl content was markedly reduced
in the striatum ofGcdh+/+ [t(6) = 3.164;P < 0.05] andGcdh−/−

[t(8) = 3.837; P < 0.01] mice after QUIN injection.

Intrastriatal QUIN Administration Increases DCFH
Oxidation in the Striatum of Gcdh−/− Mice

Next, we assessed DCFH oxidation in the striatum ofGcdh+/+

and Gcdh−/− mice injected with QUIN. We observed that
DCFH oxidation was significantly increased only in Gcdh−/
− animals [t(10) = 4.989; P < 0.001] (Fig. 5), indicating in-
creased ROS generation in the mutant mice.

Intrastriatal QUIN Administration Increases Nitrate
and Nitrite Production in the Striatum of Gcdh+/+

and Gcdh−/− Mice

We next verified that QUIN in vivo administration provoked a
significant increase of nitrate and nitrite levels in the striatum
of Gcdh+/+ [t(7) = 3.55; P < 0.01] and Gcdh−/− [t(5) = 4.071;
P < 0.01] mice as compared to animals injected with NaCl
(Fig. 6). It can be also seen in the figure that nitrate and nitrite
production was slightly higher in Gcdh−/− mice relative to
Gcdh+/+ mice.

GSH Concentrations Are Decreased in the Striatum
of Gcdh−/− Mice Fed a High Lys Diet

Figure 7 shows that GSH concentrations were significantly
lower in Gcdh−/− mice receiving Lys overload, as compared
to Gcdh+/+ mice [NaCl: t(8) = 4.262; P < 0.01; QUIN: t(8) =
2.448; P < 0.05]. In contrast, QUIN injection had no effect on
this parameter.

Table 1 Respiratory chain complex II, II-III, and IV activities in
striatum from Gcdh+/+ and Gcdh−/− mice under a high Lys (4.7%) diet
and measured 24 h after a single intrastriatal injection of NaCl or QUIN
(50 nmol)

Gcdh+/+ Gcdh+/+ Gcdh−/− Gcdh−/−

plus NaCl plus QUIN plus NaCl plus QUIN

Complex II 2.06 ± 0.51 2.10 ± 0.40 1.92 ± 0.16 2.06 ± 0.21

Complex II-III 10.1 ± 1.51 9.50 ± 0.98 9.62 ± 0.74 9.12 ± 0.76

Complex IV 45.6 ± 6.40 39.1 ± 6.39 48.6 ± 12.5 34.0 ± 9.95*

Results are represented as mean ± standard deviation for five independent
experiments (animals) per group

*P < 0.05, compared to Gcdh−/− injected with NaCl (Student’s t test for
unpaired samples). Results are expressed as nanomole per minute per
milligram protein

Fig. 2 Creatine kinase (CK) activity in the striatum of Gcdh+/+ and
Gcdh−/− mice on a high Lys (4.7 %) diet. CK activity was measured
24 h after a single intrastriatal injection of NaCl or QUIN (50 nmol).
Results are represented as mean ± standard deviation for five
independent experiments (animals) per group. ***P < 0.001, compared
to Gcdh−/− injected with NaCl; ###P < 0.001, compared to Gcdh+/+

injected with QUIN (Student’s t test for unpaired samples)

Fig. 3 Malondialdehyde (MDA) concentrations in the striatum of
Gcdh+/+ and Gcdh−/− mice on a high Lys (4.7 %) diet. MDA
concentrations were measured 24 h after a single intrastriatal injection
of NaCl or QUIN (50 nmol). Results are represented as mean ±
standard deviation for five independent experiments (animals) per
group. **P < 0.01, compared to Gcdh−/− injected with NaCl; #P < 0.05,
compared to Gcdh+/+ injected with QUIN (Student’s t test for unpaired
samples)
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Intrastriatal QUIN Administration Alters the Antioxidant
Enzyme Activities in the Striatum of Gcdh−/− Mice

As regards to the enzymatic antioxidant defenses, we observed
a reduction of GST activity in Gcdh−/− animals (Fig. 8f) [t(7) =
3.75; P < 0.01]. Moreover, QUIN injection increased GPx
(Fig. 8a) and SOD2 (Fig. 8d) activities in both Gcdh+/+ [GPx:
t(8) = 13.34; P < 0.001; SOD2: t(8) = 2.824; P < 0.05] and
Gcdh−/− mice [GPx: t(8) = 6.298; P < 0.001; SOD2: t(8) =
3.108; P < 0.05], whereas GST activity was increased in the
knockout mice [t(7) = 3.512; P < 0.01] (Fig. 8a), with no chang-
es of GR, SOD1, CAT, and G6PDH activities (Fig. 8b, c, e, g).
It is also important to emphasize that the increase of GPx activ-
ity was more pronounced in the knockout animals relative to
the WT animals [t(8) = 4.079; P < 0.01] (Fig. 8a).

Intrastriatal QUIN Administration Induces Early Nrf2,
Akt, and Erk 1/2 Expression in the Striatum of Gcdh−/−

Mice

Figure 9 depicts the effects of QUIN injection into the striatum
on Nrf2, Keap1, Akt, and Erk 1/2 protein levels of mouse
striatum 30 min after its infusion. QUIN administration

induced an increase of Nrf2 expression in both Gcdh+/+ and
Gcdh−/−mice [Gcdh+/+: t(4) = 5.519;P < 0.01;Gcdh−/−: t(4) =
3.988; P < 0.05] (Fig. 9a). QUIN also provoked a significant
decrease of the Nrf2 inhibitor protein Keap1 in Gcdh−/− mice
[t(4) = 3.127; P < 0.05] (Fig. 9b). Furthermore, QUIN-induced
increase of Nrf2 and decrease of Keap 1 were more pro-
nounced in Gcdh−/− mice [t(4) = 5.635; P < 0.05]. We also
found that QUIN injection associated with high Lys dietary
intake significantly increased Akt [t(4) = 3.518; P < 0.05]
(Fig. 9c) and phospho-Erk 1/2 [t(4) = 7.627; P < 0.01]
(Fig. 9d) expression in Gcdh−/− mice.

Intrastriatal QUIN Administration Induces Early NF-κB
Expression in the Striatum of Gcdh−/− Mice

Figure 10a shows a moderate increase of NF-κB-p65 expres-
sion in the nuclear fraction caused by QUIN in Gcdh−/− mice
fed a high Lys diet [t(4) = 3.255; P < 0.05]. QUIN injection
also augmented the content of cytosolic NF-κB-p65 inGcdh−/
− mice relatively to knockout mice injected with NaCl [t(4) =
5.694; P < 0.05] and to WT mice that received QUIN [t(4) =
3.224; P < 0.05] (Fig. 10b). Furthermore, it can be observed
that QUIN caused a strong decrease of the cytosolic IκBα

Fig. 4 Sulfhydryl content in the striatum of Gcdh+/+ and Gcdh−/− mice
on a high Lys (4.7 %) diet. Thiol oxidation was measured 24 h after a
single intrastriatal injection of NaCl or QUIN (50 nmol). Results are
represented as mean ± standard deviation for five independent
experiments (animals) per group. **P < 0.01, compared to Gcdh−/−

injected with NaCl (Student’s t test for unpaired samples)

Fig. 5 2′,7′-Dihydrodichlorofluorescein (DCFH) oxidation in the
striatum of Gcdh+/+ and Gcdh−/− mice under a high Lys (4.7 %)
diet. DCFH oxidation was measured 24 h after a single intrastriatal
injection of NaCl or QUIN (50 nmol). Results are represented as
mean ± standard deviation for five independent experiments
(animals) per group. ***P < 0.001, compared to Gcdh−/− injected
with NaCl; ###P < 0.001, compared to Gcdh+/+ injected with QUIN
(Student’s t test for unpaired samples)

Fig. 6 Nitrate and nitrite production in the striatum of Gcdh+/+ and
Gcdh−/− mice on a high Lys (4.7 %) diet. Nitrate and nitrite
concentrations were measured 24 h after a single intrastriatal injection
of NaCl or QUIN (50 nmol). Results are represented as mean ±
standard deviation for five independent experiments (animals) per
group. **P < 0.01, compared to Gcdh−/− injected with NaCl (Student’s
t test for unpaired samples)

Fig. 7 Reduced glutathione (GSH) concentrations in the striatum of
Gcdh+/+ and Gcdh−/− mice on a high Lys (4.7 %) diet. GSH
concentrations were measured 24 h after a single intrastriatal injection
of NaCl or QUIN (50 nmol). Results are represented as mean ±
standard deviation for five independent experiments (animals) per
group. #P < 0.05, ##P < 0.01, compared to Gcdh+/+ injected with QUIN
(Student’s t test for unpaired samples)
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content in both Gcdh+/+ and Gcdh−/− mice [Gcdh+/+: t(4) =
3.667; P < 0.05; Gcdh−/−: t(4) = 3.238; P < 0.05] (Fig. 10c).

Discussion

Although much work has been performed investigating the
molecular mechanisms implicated in the neuropathology of
GA I, the exact processes responsible for the acute striatal
degeneration characteristic of this disorder are still poorly
established. It is of note that destruction of the basal ganglia
follows catabolic events during encephalopathic crises that are
triggered by infections or immunizations associated with in-
flammatory processes [2, 22].

In a previous report, it was postulated that the KP pathway,
and more particularly QUIN, is activated during infections
contributing to the neuropathology of GA I [15], although to
the best of our knowledge so far no work investigated this
hypothesis. QUIN is a neurotoxin associated to neurodegen-
eration through activation of distinct signaling pathways and
transcription factors [17]. The most important mechanism for
QUIN deleterious effects towards the CNS is excitotoxicity
because this metabolite is a glutamatergic agonist of NMDA
receptors, preferentially activating the subunits NR2A and
NR2B. Through this mechanism, QUIN causes an augment
of Ca2+ influx that leads to a pathological cascade resulting in
neuronal death [17].

Considering that chronic and acute Lys overload to GA I
knockout mice give rise to increased GA and 3HGA

Fig. 8 Glutathione peroxidase
(GPx, a), glutathione reductase
(GR, b), superoxide dismutase 1
(SOD1, c), superoxide dismutase
2 (SOD2, d), catalase (CAT, e),
glucose-6-phosphate
dehydrogenase (G6PDH, f), and
glutathione-S-transferase (GST,
g) activities in the striatum of
Gcdh+/+ and Gcdh−/− mice on a
high Lys (4.7 %) diet. The
enzyme activities were measured
24 h after a single intrastriatal
injection of NaCl or QUIN
(50 nmol). Results are represented
as mean ± standard deviation for
five independent experiments
(animals) per group. *P < 0.05,
**P < 0.01, ***P < 0.001
compared to Gcdh−/− injected
with NaCl; ##P < 0.01, compared
to Gcdh+/+ injected with QUIN
(Student’s t test for unpaired
samples)
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concentrations in tissues and body fluids, as well as striatal
degeneration [63–65], in the present work we submitted
Gcdh+/+ and Gcdh−/− mice to a high Lys dietary intake for
48 h followed by a single intrastriatal injection of QUIN to
simulate an acute neuroinflammatory process. We thereafter
evaluated bioenergetics and oxidative stress parameters, as
well as the content of proteins involved in critical cellular
signaling pathways.

QUIN significantly increased lactate production in both
Gcdh+/+ and Gcdh−/− mice, implying an impairment of oxi-
dative metabolism. Elevated lactate concentrations were prob-
ably secondary to a blockage of the respiratory chain since
COX activity was decreased by this treatment in Gcdh−/−

mice. We cannot however exclude that a disturbance in the
glycolytic pathway and/or citric acid cycle functioning was
also involved in lactate production increase.

QUIN also significantly reduced CK activity in the striatum
ofGcdh−/−mice, indicating that intracellular energy transfer is
impaired in the knockout mice. This is in line with previous
data showing that the activity of CK ismarkedly diminished in
brain and skeletal muscle from Gcdh−/− mice that received
intraperitoneal Lys administration [66]. Consistent with this
observation, Zinnanti and colleagues found markedly de-
creased concentrations of phosphocreatine in the brain of
Gcdh−/− mice on a high Lys diet [63, 64]. Our findings are
also in accordance with a previous study showing that QUIN
intrastriatal injection induced a decrease of CK activity in rat
striatum [18].

Taken together, our data strongly indicate that oxidative
phosphorylation and intracellular energy transfer are compro-
mised by QUIN in vivo in the striatum of Gcdh−/− mice. We
also verified that QUIN-induced disruption of energy

Fig. 9 Immunoblot and densitometric analysis for nuclear Nrf2 (a),
cytosolic Keap1 (b), Akt (c), and phospho-Erk 1/2 (d) protein content
in the striatum of Gcdh+/+ and Gcdh−/− mice on a high Lys (4.7 %) diet.
Protein levels were measured 30min after a single intrastriatal injection of
NaCl or QUIN (50 nmol). Lamin B1 and β-actin were used as
endogenous controls. Results are represented as mean ± standard

deviation for three independent experiments (animals) per group.
*P < 0.05, **P < 0.01, compared to Gcdh−/− injected with NaCl;
#P < 0.05, ##P < 0.01, compared to Gcdh+/+ injected with QUIN
(Student’s t test for unpaired samples). Protein levels are expressed as
arbitrary units (AU)

Mol Neurobiol



metabolism was more evident in Gcdh−/− mice under a high
Lys dietary intake and this may have happened because of the
additive effects of QUIN, GA, and 3HGA [35, 66, 67]. Re-
garding to the mechanisms by which QUIN disturbs bioener-
getics, it was previously shown that activation of glutamate
receptors by QUIN leads to impairment of energy production
via free radical formation [18, 68–71]. Thus, it is conceivable
that the inhibition of CK activity observed in the present work
could be due to oxidative attack to the enzyme protein struc-
ture [72–77].

Therefore, we evaluated important redox homeostasis pa-
rameters after QUIN injection and observed that this neuro-
toxin increased MDA levels reflecting lipid peroxidation, in
bothGcdh−/− andGcdh+/+mice, although knockout mice was
more susceptible to this oxidative damage. Noteworthy, pre-
vious results showed that GCDH knockout mice submitted to
Lys overload present enhanced MDA levels that was attribut-
ed to the increased production of GA and 3HGA [63, 78]. Our

results are not surprising because QUIN was previously dem-
onstrated to induce lipid peroxidation in animal tissues [79]. It
was suggested that QUIN is able to combine with Fe2+, induc-
ing the formation of the highly reactive hydroxyl radical
through the Fenton reaction. Therefore, although we cannot
at the present establish the mechanisms by which QUIN
caused lipid peroxidation, it is feasible that this compound
could induce reactive species formation by stimulating the
Fenton reaction or secondarily via other mechanisms includ-
ing overstimulation of NMDA receptors.

QUIN instrastriatal administration also reduced sulfhydryl
content that implies increased sulfhydryl oxidation. Consider-
ing that two thirds of thiol groups are associated with protein
cysteine residues, it is assumed that QUIN induced protein
oxidative damage. We cannot however rule out the possibility
that part of these thiol groups belong to unbound cysteine or
cysteine derivative molecules, including GSH, so that de-
creased sulfhydryl content could be alternatively attributed

Fig. 10 Immunoblot and densitometric analysis for nuclear (a) and
cytosolic (b) NF-κB, and cytosolic IκBα (c) protein content in the
striatum of Gcdh+/+ and Gcdh−/− mice on a high Lys (4.7 %) diet.
Protein levels were measured 30 min after a single intrastriatal injection
of NaCl or QUIN (50 nmol). Lamin B1 and β-actin were used as

endogenous controls. Results are represented as mean ± standard
deviation for three independent experiments (animals) per group.
*P < 0.05, compared to Gcdh−/− injected with NaCl; #P < 0.05,
compared to Gcdh+/+ injected with QUIN (Student’s t test for unpaired
samples). Protein levels are expressed as arbitrary units (AU)
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to a reduction of antioxidant defenses. However, since QUIN
was not able to change GSH concentrations in both Gcdh−/−

and WT mice, the reduction of thiol groups caused by QUIN
was more likely due to protein oxidation. On the other hand,
although QUIN did not change GSH levels, it was observed
that Gcdh−/− mice had lower concentrations of this antioxi-
dant in the striatum relatively to WTanimals. Similar findings
were demonstrated previously in GA I knockout mice on an
enriched Lys chow for 60 h or after an acute Lys injection [63,
78].

We also found a reduction of GSTactivity inGcdh−/−mice.
The mechanisms by which GST activity was reduced in our
work is so far unknown; however, it is feasible that this de-
crease could be due to reactive species attack causing modifi-
cations in the enzyme protein structure as previously shown
for GST and other antioxidant enzymes [80–82]. In fact, this
was probably the case since QUIN also induced reactive ox-
ygen and nitrogen species in our model in Gcdh−/− mice. As
regards to the consequences of the decreased GST activity, it
may compromise detoxification of xenobiotics, as well as
conjugates of hydrogen peroxide and lipid peroxidation prod-
ucts with GSH, helping their excretion [83, 84]. It was also
observed that QUIN increased GPx and SOD2 activities in the
striatum of both Gcdh+/+ and Gcdh−/− animals treated with
dietary supplementation of Lys, but did not alter GR, SOD1,
CAT, and G6PDH activities. The increase of SOD2 and GPx
activities provoked by QUIN suggests that superoxide and
hydrogen peroxide are probably involved in its pro-oxidant
effects because these reactive species are scavenged by SOD
and GPx, respectively. Furthermore, the fact that GPx also
detoxifies lipid peroxides and that GST metabolizes lipid per-
oxides, 4-hydroxynonenal, and isoprostanes reinforces the
view that lipid peroxidation occurs in brain of Gcdh−/− mice,
especially during inflammation.

Our results showing lipid and protein oxidative damage as
well as reduction of GSH are likely due to QUIN-induced
reactive nitrogen species generation that could be secondary
to NMDA receptor overstimulation leading to high calcium
influx and activation of nitric oxide synthase [85]. Further-
more, since COX is markedly inhibited by nitric oxide, the
QUIN-induced decrease of this activity could be similarly due
to the production of nitric oxide, a classical COX inhibitor.
Otherwise, ROS may also contribute to the effects caused by
QUIN especially in Gcdh−/− mice, since this neurotoxin pro-
voked DCFH oxidation, a probe that is mainly oxidized by
ROS. ROS generation in striatum of Gcdh−/− mice may also
explain the higher effects detected in the knock out animals.

Considering that QUIN increased the activities of
SOD2 and GPx that may result from a compensatory
mechanism triggered by cellular signaling pathways,
we investigated the effect of this metabolite on the
Nrf2/antioxidant response element (ARE) pathway.
Nrf2 is a transcription factor behaving as a primary

sensor of oxidative stress and a master regulator of the
antioxidant system due to its ability to modulate the
expression of numerous antioxidant and detoxifying
genes [86–92]. We found that QUIN administration in-
creased nuclear Nrf2 protein levels in Gcdh+/+ and more
markedly in Gcdh−/− mice. Furthermore, the content of
cytosolic Keap1, an Nrf2-binding protein that hampers
the translocation of this transcription factor to the nu-
cleus and promotes Nrf2 ubiquitination-proteasomal deg-
radation (Gan and Johnson, 2014), was significantly de-
creased by QUIN only in Gcdh−/− mice, and this may
explain the augmented content of nuclear Nrf2.

We cannot at the present establish the mechanisms by
which QUIN induced prominent alterations of Nrf2 and
Keap1 in Gcdh−/− mice. However, since oxidative stress
was induced in Gcdh−/− mice submitted to high Lys overload
leading to increased brain concentrations of GA and 3HGA
[63, 64, 78], it may be presumed that QUIN acted synergisti-
cally with GA and 3HGA inducing these oxidative
stress-sensi t ive signaling proteins in striatum of
GCDH-deficient mice. Furthermore, Nrf2 translocation into
the nucleus where it binds to ARE to further transactivate
cytoprotective enzymes may represent an early attempt to pro-
tect cells against the ongoing oxidative damage. Our present
results are in accordance with previous findings showing that
QUIN provokes an early up-regulation of Nrf2 in rodent
striatal slices [79].

A mechanism of Nrf2 activation is disruption of the inter-
action between Keap1 and Nrf2 by oxidation of critical cys-
teine thiols in Keap1 [93–95] induced by oxidants and/or re-
active species. Thus, once QUIN is able to induce RNS and
ROS production, as well as sulfhydryl oxidation in striatum of
Gcdh−/−, we presume that QUIN activated Nrf2 translocation
by oxidation of thiol groups releasing this transcription factor
from its inhibitor. Nrf2 can be also regulated by other signal
transduction pathways, such as Akt (also called PKB) that
mediates Nrf2 phosphorylation. Our results also showed that
QUIN increased Akt protein content in the striatum of GA I
knockout mice, implying that this kinase was also involved in
Nrf2 activation. Phospho-Erk 1/2 protein levels were also
found to be augmented by QUIN treatment. Since Nrf2 can
also be regulated by this mitogen-activated protein kinase
(MAPK) favoring the release of Nrf2 from its inhibitory pro-
tein Keap1 [90, 96], our results indicate the participation of
this pathway in QUIN-induced Nrf2 activation.

QUIN also increased the protein content of NF-κB in
striatal nuclear and cytosolic fractions of Gcdh−/− and
Gcdh+/+ mice and decreased the NF-κB inhibitor IkBa in
the cytosol, implying that NF-κB was translocated into the
nucleus. This signaling pathway was previously shown to be
activated under pathological conditions associated with intra-
cellular redox state disturbances and inflammatory processes
[97, 98]. Therefore, we cannot rule out this additional
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mechanism elicited to overcome the pro-oxidant cellular sta-
tus in our animal model.

On the other hand, Akt- and Erk 1/2-mediated signaling
pathways that were stimulated by QUINmay also be involved
in the transactivation of NF-κB in Gcdh−/− mice since these
pathways are interconnected [99, 100]. As regards to Erk, this
MAPK protein induces dissociation of IκBα from NF-κB,
allowing nuclear translocation and DNA-binding of NF-κB
[101].

Taken together, we demonstrate that multiple signal-
ing pathways participate in QUIN toxic effects leading
to redox homeostasis alterations in striatum of Gcdh−/−

mice submitted to high Lys overload. It is also empha-
sized that QUIN stimulates NMDA receptors, particular-
ly the NR2A and NR2B subunits [17], that may sec-
ondarily result in RNS generation and Erk signaling
pathway activation [102, 103]. Noteworthy, a recent re-
port described that NR2A and NR2B receptor subunits
are highly expressed in Gcdh−/− animals receiving Lys
overload [104] so that these observations may signalize
a mechanism of QUIN neurotoxicity in our Gcdh−/−

mouse model of GA I.

Conclusions

The present work shows for the first time that QUIN
impairs energy and redox homeostasis in striatum of

Gcdh−/− mice submitted to Lys overload. Furthermore,
QUIN activated Nrf2 and NF-kB that may possibly rep-
resent compensatory mechanisms that take place during
oxidative stress/inflammation induced by QUIN as an
attempt to protect the striatum from these deleterious
pathological mechanisms (Fig. 11). Our findings support
the hypothesis that activation of KP that occur during
inflammatory processes, resulting in increased concen-
trations of QUIN, may play a role in the acute striatal
degeneration that follows infections in patients affected
by GA I as previously hypothesized [15]. It is also
conceivable that QUIN may act synergistically with
the accumulating organic acids GA and 3HGA, whose
concentrations dramatically increase during these crises
of metabolic decompensation, leading to destruction of
the striatum.
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10. DISCUSIÓN 

 

En este trabajo se exploraron los efectos ejercidos por la 3-HK en ensayos in vitro 

e in vivo. En un principio la hipótesis se orientaba a declarar al metabolito como 

una molécula pro-oxidante y neurotóxica. Sin embargo, los resultados colectados 

demuestran que es una molécula con actividad dual (antioxidante y pro-oxidante), 

dependiendo de las condiciones experimentales, que no debe ser considerada 

como tóxica, la cual denotó un posible perfil neuroprotector que requiere ser 

explorado con más detalle. Los efectos pro-oxidantes de la molécula evaluados no 

fueron capaces de producir daño tisular o celular alguno en ninguno de los dos 

modelos estudiados, mientras que sus efectos antioxidantes in vitro previnieron la 

falla mitocondrial y el estrés oxidante producidos por el QUIN, el 3-NP y FeSO4. La 

activación compensatoria de enzimas antioxidantes y la activación del Nrf2 

parecen ser los mecanismos mediante los cuales la 3-HK previene los efectos de 

estas toxinas en una estrategia que se enfoca a disminuir las ERO, ERN y el 

estrés oxidante general.        

Varios reportes indican que la 3-HK induce muerte celular en diferentes 

cultivos neuronales de cerebelo, estriado e hipocampo (revisado por Colín-

González et al., 2013). La ausencia de toxicidad observada en este trabajo puede 

deberse a que se utilizó un sistema más complejo compuesto de neuronas, 

astrocitos y microglia. La KMO, la enzima encargada de producir la 3-HK, se 

encuentra preferentemente en células gliales, por lo que las neuronas al estar 

aisladas y al no tener la maquinaria necesaria para degradarla podrían sufrir en su 

presencia (Guidetti et al., 1995), pero nuestros resultados sugieren que éste no es 

el caso.  

Por su otro lado, la inyección intraestriatal de la 3-HK produjo un aumento en 

los marcadores de estrés en tiempos tempranos (6 y 24 h) y estimuló las 

actividades de las enzimas glutatión reductasa y glutatión-S-tranferasa, sin 

mostrar efectos conductuales ni morfológicos en los animales tratados. De 

acuerdo con lo anterior, Guidetti y Schwarcz (1999) no encontraron diferencia 

significativa en los volúmenes de lesión de animales inyectados intraestriatalmente 
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con la 3-HK (10 nmol). Por lo tanto, se puede concluir que niveles incrementados 

de esta molécula (10 - 80 nmol) en el estriado no están relacionados con procesos 

de neurodegeneración. 

La falta de toxicidad de la 3-HK en el estriado puede deberse a su 

permanencia limitada o transitoria en el tejido. La 3-HK es metabolizada 

rápidamente y su presencia en el cerebro sano induce la activación de 

mecanismos de sobrevivencia mediante una respuesta adaptativa que parece ser 

suficiente para neutralizar la generación de los radicales formados (Guidetti y 

Schwarcz, 1999).  

Dado que la toxicidad de la 3-HK no logró ser comprobada podría asumirse 

que sus efectos deletéreos comienzan cuando es transformada en el QUIN. En 

concentraciones que exceden el rango fisiológico, este metabolito se relaciona con 

procesos patológicos tanto a nivel periférico como central (Pérez De la Cruz et al., 

2012). El estudio de esta hipótesis requiere de métodos con los que no contamos 

actualmente. Por tal razón, se consideró incluir los estudios realizados en paralelo 

con el QUIN y así proveer de más información sobre el papel de la VK en 

procesos neurodegenerativos.  

El primer punto a investigar fue el papel del Nrf2, un factor de transcripción que 

regula funciones de protección antioxidantes, en el modelo tóxico producido por el 

QUIN. El ensayo permitió establecer un patrón de regulación temprana sobre este 

factor, al favorecer su sobre-regulación en tejido neuronal como una respuesta 

adaptativa de protección ante el inminente efecto de este metabolito. Desde este 

punto de vista, el estrés oxidante es una respuesta importante que contribuye al 

patrón de daño ejercido por el QUIN, sugiriendo así que la estimulación temprana 

del Nrf2 podría ser una estrategia terapéutica para prevenir el desarrollo de 

procesos neurodegenerativos (Figura 6). 

El aumento de la cantidad proteica de la hemo-oxigenasa-1, en presencia 

del QUIN, demuestra la activación del Nrf2. Este evento, a diferencia de lo visto 

con la 3-HK, representa una acción compensatoria del sistema biológico que no es 

suficiente para evitar el daño que está en progreso. Entonces, el nivel de 

protección deseado para el modelo solo podría ser alcanzado a través de un 

estímulo externo provisto por un inductor de la activación de Nrf2 y/o un 
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antioxidante. A este respecto, y confirmando lo anterior, el ácido cafeico previno el 

daño excitotóxico inducido por QUIN en el estriado de rata. Este efecto claramente 

está relacionado con sus propiedades antioxidantes demostradas y su capacidad 

para inducir al Nrf2 (Kalonia et al., 2009; Pang et al., 2016). 

Una vez caracterizados estos mecanismos se investigó mediante que otros 

procesos el QUIN amplifica su toxicidad en el SNC. El cerebro de personas 

afectadas con acidemias orgánicas desarrolla una degeneración aguda 

relacionada con la acumulación de metabolitos tóxicos tales como AG, 3-OHGA, 

AMM, AP, AMG, entre otros; sin embargo, su acción aislada no justifica el grado 

de daño que se observa en estas patologías. Varadkar y Surtees (2004) 

propusieron que la VK tiene un papel activo en la neurodegeneración observada 

en estos desordenes. En este trabajo se obtuvo evidencia no solo in vitro, sino 

también in vivo del efecto sinérgico entre el QUIN y los ácidos orgánicos: Los 

ratones gcdh -/- cuando son alimentados con una dieta alta en lisina tienen niveles 

aumentados de las subunidades NR2A y NR2B (Lagranka et al., 2014). Estos 

animales cuando son administrados intraestriatalmente con el QUIN, el cual 

interactúa también con los rNMDA a través de las mismas subunidades, 

exhibieron efectos tóxicos más intensos en comparación con aquellos que solo 

acarrearon la mutación. Por consiguiente, la interacción del QUIN con los ácidos 

orgánicos en puede contribuir a entender el mecanismo tóxico que ocurre en estos 

y en otros desórdenes neurológicos.  

Finalmente, el descubrimiento de que la combinación de ácidos orgánicos 

con QUIN puede agravar la pérdida de células en el SNC sugiere que una 

disminución del flujo de la VK enfocada a inhibir la producción de QUIN podría ser 

utilizada como estrategia terapéutica en éste y otro tipo de enfermedades.  
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Figura 6. Representación esquemática de los mecanismos hipotéticos que participan en 
la regulación del Nrf2 por la 3-HK y el QUIN en el estriado de roedores. La 3-HK entra a 
la célula utilizando un transportador de aminoácidos neutros (TAN) y una vez en el 
citoplasma puede auto-oxidarse y formar especies reactivas. Estas moléculas inducirán 
la activación de mecanismos de sobrevivencia entre ellos la activación del Nrf2. El QUIN 
es un agonista de los rNMDA que puede estimular la formación directa de ERO. La 
activación de los rNMDA produce un aumento de los niveles de Ca2+ intracelular los 
cuales van a activas enzimas dependientes de Ca2+, entre ellas proteasa, fosfolipasas, 
ATPasas, sintasa de óxido nítrico. Estos eventos crearán una formación exacerbada de 
ERO/ERN, lo que contribuirá a un estado redox alterado activando al Nrf2 como una 
acción compensatoria.  
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11. CONCLUSIÓN 

 

Los efectos de la 3-HK en el estriado de roedores dependen de las condiciones 

experimentales empleadas. La presencia de la 3-HK en concentraciones elevadas 

en el cerebro normal podría constituir una señal de defensa para contrarrestar el 

estrés oxidante por activación de señales de sobrevivencia. Las especies reactivas 

producidas por la 3-HK activan las defensas antioxidantes, y de esta forma la 

célula es capaz de contrarrestar los efectos deletéreos de otros agentes tóxicos. 

Por lo tanto, la 3-HK podría ser una molécula que regula del ambiente redox en 

condiciones fisiológicas con acciones neuroprotectoras u homeostáticas. 

 De la misma forma que la 3-HK, el QUIN modula el ambiente redox 

mediante el factor Nrf2. La activación del factor depende del tiempo de exposición, 

de las concentraciones probadas y del daño oxidante generado. Sin embargo, esta 

modulación es solo un evento compensatorio en un intento de la célula para 

disminuir el daño que está en progreso. La protección observada con 

antioxidantes sugiere que el daño causado por el QUIN pude ser prevenido o 

disminuido.  

 El sinergismo del QUIN con otros metabolitos tóxicos y otras de sus 

acciones caracterizadas en este estudio ayudan a comprender los mecanismos 

por los cuales la neurodegeneración ocurre. En consecuencia, la identificación de 

mecanismos tóxicos producidos por neurotoxinas endógenas con diferentes 

perfiles podría ser útil para el diseño de estrategias terapéuticas más efectivas.  
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12. PERSPECTIVAS 

 

Elaborar un diseño experimental que permita identificar si las acciones protectoras 

de la 3-HK son suficientes para prevenir el daño in vivo de toxinas conocidas. 

 

Investigar mediante marcadores bioquímicos, de falla energética, conductuales y 

morfológicos si el uso de inhibidores de la VK (con especial atención en moléculas 

que eviten la producción de QUIN) puede conferir protección en ratones knockout 

para la glutaríl-CoA deshidrogenasa alimentados con una dieta alta de lisina.  
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A B S T R A C T

Kynurenine pathway is gaining attention due to the many metabolic processes in which it has been
involved. The tryptophan conversion into several other metabolites through this pathway provides
neuronal and redox modulators useful for maintenance of major functions in the brain. However, when
physiopathological conditions prevail – i.e. oxidative stress, excitotoxicity, and inflammation –
preferential formation and accumulation of toxic metabolites could trigger factors for degeneration in
neurological disorders. 3-Hydroxykynurenine has been largely described as one of these toxic
metabolites capable of inducing oxidative damage and cell death; consequently, this metabolite has
been hypothesized to play a pivotal role in different neurological and psychiatric disorders. Supporting
evidence has shown altered 3-hydroxykynurenine levels in samples of patients from several disorders. In
contrast, some experimental studies have provided evidence of antioxidant and scavenging properties
inherent to this molecule. In this review, we explored most of literature favoring one or the other
concept, in order to provide an accurate vision on the real participation of this tryptophan metabolite in
both experimental paradigms and human brain pathologies. Through this collected evidence, we provide
an integrative hypothesis on how 3-hydroxykynurenine is exerting its dual actions in the Central
Nervous System and what will be the course of investigations in this field for the next years.
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1. Oxidative stress in neurodegenerative disorders

Neurodegeneration is the result of pathological processes
producing severe and specific patterns of brain cell damage in a
concerted manner (Coyle and Puttfarcken, 1993; Santamaria and
Jimenez, 2005). Neurodegenerative events constitute a major
cause for the development of neurological disorders. Human
diseases coursing with neurodegeneration involve excitotoxicity
as a triggering event for deadly cascades (Halliwell, 2006; Brouillet
et al., 1999; Cowan and Raymond, 2006). In turn, excitotoxicity is
currently defined as a toxic process characterized by a sustained
stimulation of excitatory amino acids receptors (Schwarcz et al.,
1978; Nicholls et al., 2007), mainly involving N-methyl-D-
aspartate receptors (NMDAR). Different toxic events derived from
excitotoxicity have been characterized in experimental models,
including upregulation of detrimental signaling pathways, dis-
rupted Ca2+ homeostasis, and recruitment of reactive oxygen/
nitrogen species (ROS/RNS), with further oxidative/nitrosative
stress (Santamaria and Jimenez, 2005; Halliwell, 2006; Nicholls
et al., 2007; Beal, 2004; Lin and Beal, 2006; Sas et al., 2007),
ultimately leading to cell death (see below).

Although oxidative damage to proteins, DNA and lipids has been
characterized in different experimental models (reviewed by
Halliwell, 2006; Jimenez-Del-Rio and Velez-Pardo, 2012) and in
post mortem brain tissue of patients with neurodegenerative
diseases (reviewed by Ischiropoulos and Beckman, 2003), it still
remains difficult to determine whether oxidative stress is a primary
causal event or merely a secondary end-stage epiphenomenon.

Actually, it is recognized that oxidative stress is one of the most
important mechanisms involved in deadly events observed in
neuronal cells in different neurodegenerative disorders. It is also
accepted that the brain is particularly sensitive to oxidative stress
as 20% of the total oxygen consumed by the body is employed by
this organ, which constitutes only 2% of the total body weight. This
feature makes the brain the major generator of ROS/RNS when
compared with other organs. Moreover, the brain is rich in
numerous conditions favoring ROS/RNS production, including: (1)
high content of unsaturated lipids, (2) chemical reactions involving
dopamine oxidation, (3) high concentrations of iron in various
regions, and (4) lower activity of antioxidant systems as compared
with other organs (including kidney and liver) (Halliwell, 2006).

Oxidative stress in the CNS recruits the following events:
interrupted mitochondrial functions in neuronal cells induced by
toxins, together with a failure to supply O2 or substrates for energy
production that will generate an impairment of ATP production and
a rapid brain damage due to oxidative and excitotoxic components.
The decrease in ATP synthesis disrupts Na+/K+-ATPase and Ca2+/H+-
ATPase pumps and reverses the Na+/Ca2+-transporter. Upon these
conditions, cells are unable to maintain membrane potential and
then, voltage-gated Ca2+ channels are activated, leading to
depolarization of cellular membranes. Once depolarized, mem-
branes are more vulnerable to the action of excitatory amino acids –
mostly glutamate – even at normal concentrations. Glutamate then
activates NMDAR, a-amino-3-hydroxy-5-methylisoxazole-4-pro-
pionic acid (AMPA) receptors, and metabotropic glutamate

receptors, thereby increasing intracellular Ca2+ and Na+ levels. In
turn, voltage-gated Ca2+ channels, together with reverse operation
of the Na+/Ca2+ exchanger, are responsible for the increased levels of
intracellular Ca2+. Once in the cytoplasmic domain at high
concentrations, Ca2+ activates a variety of Ca2+-dependent enzymes,
including protein kinase C, phospholipase A2, phospholipase C,
proteases, endonucleases, and a variety of pro-oxidant enzymes that
trigger protein phosphorylation, proteolysis, mitochondrial damage,
and oxidative stress (Hardingham and Bading, 2001).

In cells from different tissues, the predominant ROS/RNS
produced are superoxide anion (O2

!–), hydrogen peroxide (H2O2),
hydroxyl radical (!OH), nitric oxide (!NO), peroxynitrite anion
(ONOO–) and nitrogen dioxide (!NO2). Under ‘‘normal’’ physiological
conditions, natural defense against ROS/RNS is provided by
endogenous antioxidant molecules such as glutathione (GSH),
ascorbic acid, a-tocopherol, and a number of antioxidant enzymes,
including superoxide dismutase (SOD), glutathione peroxidase
(GPx), and catalase (CAT). SOD converts O2

!– into H2O2, whereas
GPx and CAT convert H2O2 into H2O. However, an imbalance in the
formation and clearance of ROS/RNS leads to oxidative stress and
subsequent changes affecting the cell dynamics (Halliwell, 2006).
Main sources of ROS/RNS are: (a) mitochondrial respiratory chain
that generates O2

!– (Schon and Area-Gomez, 2012); (b) xanthine
oxidase that produces O2

!– when it catalyzes oxidation of
hypoxhantine to uric acid (Fatokun et al., 2007); (c) cyclooxygenase
2 that produces O2

!– during oxidative metabolism of arachidonic
acid (Teismann, 2012); (d) NADPH oxidase that produces O2

!–

during NADPH oxidation (Maldonado et al., 2010); and (e) Ca2+-
dependent nitric oxide synthase (NOS) that, under normal condi-
tions, produces !NO, which in turn can react with O2

!– to generate
the strong oxidant ONOO– (Aguilera et al., 2007). Tetrahydrobiop-
terin (BH4) is an important regulator of NOS function because it is
required to maintain enzymatic coupling. Loss or oxidation of BH4 to
7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling,
resulting in the production of O2

!– rather than !NO (Crabtree and
Channon, 2011). ROS/RNS produce cellular damage through lipid
peroxidation, membrane injury, nucleic acid alteration and enzyme
inactivation. These species also modify cellular signaling and gene
regulation, contributing to breakdown of the blood-brain barrier,
and allowing the infiltration of neutrophils and other cells that
activate multiple neuroinflammatory cascades (Mollica et al., 2012).
Ultimately, oxidative stress induces cell damage, leading to neuronal
death by apoptosis or necrosis (Loh et al., 2006).

2. The Kynurenine pathway (KP)

2.1. Overview

Kynurenine pathway (KP) is the most prominent metabolic
pathway for degradation of tryptophan into a series of metabolites
with relevance for the modulation of different redox functions in
different physiological systems. It has been largely assumed that
the main goal of KP is to endorse the formation of coenzyme NAD+,
which is relevant for the modulation of major physiological
processes (Massudi et al., 2012). In particular, in the CNS, some
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metabolites formed toward this pathway are relevant for the
functioning of nerve tissue, as they exhibit neuromodulatory
properties. Recently, KP has also gain attention due to two
additional characteristics: (1) it metabolizes more than 90% of the
peripheral tryptophan in mammals, and (2) many of its
metabolites could play a causative role in disorders of the CNS
(recently reviewed by Schwarcz et al., 2012). KP is known to be
mostly active in glial cells, and the concentration range of its
metabolites varies from nanomolar to low micromolar concentra-
tions. Key limiting enzymes in KP are indoleamine 2,3-dioxygenase
(IDO) and tryptophan 2,3-dioxygenase (TDO), and pivotal metab-
olite for triggering KP is kynurenine (KYN) (reviewed by Schwarcz
et al., 2012).

In regard to tryptophan metabolism and 3-hydroxykynurenine
(3-HK), it is well-known that KP activation yields the formation of
KYN from tryptophan with the enzymatic participation of IDO or
TDO and formamidase. On one hand, KYN can form kynurenic acid
(KYNA) in a side terminal arm of the pathway through an
irreversible transamination catalyzed by kynurenine aminotrans-
ferases (KATs). On the other hand, KYN is converted into 3-HK
through the catalytic intervention of kynurenine 3-monooxygen-
ase (KMO), which similarly to 3-hydroxyanthranilic acid (3-
HANA), is more related to some functions on redox modulatory
activity than to neuronal activity (recently reviewed by Schwarcz

et al., 2012). 3-HK is then converted into 3-HANA by kynureninase.
Picolinic acid formation corresponds to another side arm of KP and
involves the participation of 2-amino-3-carboxymuconic-6-semi-
aldehyde decarboxylase to convert 3-HK into this metabolite. The
neuroactive metabolite quinolinic acid (QUIN) is also formed from
3-HK with the enzymatic participation of 3-hydroxyanthranilate
oxygenase (3-HAO). Finally, transiently formed QUIN yields the
formation of NAD+ in a step involving the enzyme quinolinate
phosphorobosyltransferase. A simplified representation of KP is
presented in Fig. 1, giving relevance to 3-HK formation.

Despite KP is responsible for the formation of a number of
neuroactive and redox active metabolites, in this review we will
focus our attention on 3-HK, one of the most relevant metabolites for
redox modulatory activity in the tryptophan metabolism. Therefore,
neuroactive metabolites will be just briefly mentioned as follows.

2.2. KP neuroactive metabolites

KYNA was the first characterized kynurenine derived from
tryptophan. KYNA, an endogenous competitive antagonist of
ionotropic glutamate receptors, acts at micromolar concentrations
and is synthesized as a terminal metabolite of the short arm of KP
after KYN is irreversibly transaminated by KATs (Yu et al., 2004). In
NMDAR, this metabolite binds to the glycine co-agonist site,

Fig. 1. Simplified schematic representation of the tryptophan metabolism pathway known as the kynurenine pathway (KP). Scheme shows 3-hydroxykynurenine (3-HK)
formation and location within KP. Some intermediate metabolites were omitted. Abbreviations: IDO, indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; KATs,
kynurenine aminotransferases.
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blocking the receptor. It has also been reported that KYNA to
inhibit a7 nicotinic acetylcholine receptors (a7nAChR) at central
level (reviewed by Schwarcz et al., 2012). In addition, recent
evidence supports a role for KYNA as an antioxidant agent and free
radical scavenger (Lugo-Huitrón et al., 2011).

QUIN is another KP metabolite exerting activity at central level.
QUIN is synthesized from 3-HANA through the activation of 3-HAO
(Stachowski and Schwarcz, 2012). The primary mechanism of
action reported for this metabolite is through direct activation of
NMDAR, preferentially those receptors expressing the NR2B
subunits (reviewed by Schwarcz et al., 2012). QUIN may also
exert its effects through the stimulation of oxidative stress (Rios
and Santamaria, 1991).

As aforementioned, several studies have reveal that other
metabolites of KP – including kynurenine, 3-HK, 3-HANA and
anthranilic acid – seem to lack of direct effects on neuronal activity
(Stone, 1993). For the purposes of this review, these metabolites
will not occupy our attention.

2.3. KP in neurodegenerative diseases

The concept that KP metabolites could be involved in
neurodegenerative disorders came in first place from studies
describing the toxic effects of QUIN in animals, resembling the
pathological characteristics of Huntington’s disease (HD)
(Schwarcz et al., 1983). Later on, evidence on the protective and
antagonistic actions exerted by KYNA served to hypothesize that
changes in the QUIN:KYNA ratio might be responsible for
excitotoxic brain damage (Schwarcz et al., 1984). Increased levels
of QUIN in post mortem brains of HD patients at the initial stages of
the disease helped to establish a role for this metabolite in
neurodegeneration (Guidetti et al., 2004). In further support for
this concept, reduced KYNA levels were seen in HD, suggesting that
the QUIN:KYNA ratio could be relevant for this disorder.

Further evidence for a role of KP in neurodegenerative disorders
emerged from studies demonstrating decreased levels of KYN and
KYNA in the basal ganglia of patients with Parkinson’s disease (PD)
(Ogawa et al., 1992). In addition, QUIN seems to be increased in
those glial cells surrounding amyloid plaques and neurofibrillary
tangles in Alzheimer’s disease (AD) (Guillemin et al., 2005).
Abnormal KP metabolism is also present in animal models of
hypoglycaemia, ischemia, perinatal hypoxia and traumatic spinal
cord injury (reviewed by Schwarcz et al., 2012), supporting a role of
this metabolic pathway as a physiological and physiopathological
modulator in the CNS. Altogether, this evidence supports an active
role of an altered KP metabolism in different pathological
conditions in the CNS; however, more detailed studies are needed
to demonstrate this hypothesis.

3. 3-Hydroxykynurenine (3-HK)

3-HK is an intriguing and puzzling compound found at
increased levels in pathological conditions; thus, characterizing
and identifying the basic and clinical relevance of this tryptophan
metabolite in brain disorders may help to elucidate toxic
mechanisms involved in cell dysfunction and death. A summary
of the chemical properties of 3-HK is presented in Table 1.

3.1. Sources for 3-HK in the brain

Brain levels of 3-HK can be enriched by two manners: either
from systemic origin, or through local production. Interesting
circumstances create contrasting scenarios for both of these
conditions. For instance, it seems that under normal conditions, the
most important contributor to enhance the extracellular striatal 3-
HK levels (50 nM) comes from the circulating kynurenine (KYN)
when this precursor is systemically administered to rats (Notar-
angelo et al., 2012). However, it must be taken into consideration
that 3-HK detection specifically corresponded to extracellular
levels, which do not reflects the total content of this metabolite,
therefore allowing no major inferences on this phenomenon. In
contrast, in another study carried out by Bellac et al. (2006), these
authors compared the plasma, cortical and hippocampal levels of
3-HK in animals subjected to Pneumococcal meningitis, and found
that this metabolite was significantly increased locally under
pathological conditions in both brain regions, and this increase was
accompanied by an augmented mRNA and activity of kynurenine
3-hydroxylase, supporting the concept that glial cells responsive to
infectious/inflammatory processes could be responsible for these
effects. This topic points out to important differences in 3-HK
sources when either normal or pathological conditions prevail.
Although it is likely that local formation of 3-HK is more prominent
in toxic conditions, these differences deserve further confirmation.

3.2. 3-HK chemical properties

3-HK is a hydrophilic yellow compound commonly found in
lens of primates (man and baboon), sciuridae, sheep, and in some
fish (Van Heyningen, 1971; Bando et al., 1981; Truscott et al., 1992;
Truscott and Wood, 1994). In primates, it is present as 3-hydroxy-
L-kynurenine O-b-D-glucoside (3-HKG) in a micro molar range, it
decreases linearly with age over the period from birth to the age of
30–40, and subsequently it remains at a constant level (Bando
et al., 1981; Wood and Truscott, 1994). 3-HK has also been found in
squirrel and insect eyes as xanthomatin (3-HK dimer), N-acetyl
and sulphate derivatives, and glucoside conjugates (Van Heynin-
gen, 1971; Han et al., 2007). 3-HK and its glucoside interact with
lysyl residues of lens proteins and may function as a shortwave
ultraviolet light filter absorbing maximally at approximately
365 nm (Goldstein et al., 2000). A summarized list of the basal
levels of 3-HK in different tissues and fluids of different species is
depicted in Table 2.

In a neutral pH solution, in presence of oxygen, 3-HK easily
oxidizes (autooxidation). The oxidation of 3-HK forms an o-
semiaminoquinone which reacts with oxygen to yield an o-
aminoquinone and a large production of O2

!– and H2O2; conse-
quently, there is !OH formation via Fenton reaction (Vazquez et al.,
2000; Eastman and Guilarte, 1990; Okuda et al., 1996; Ishii et al.,
1992; Hiraku et al., 1995) (Fig. 2). Trace metals, such as Cu2+ and Fe
3+, strongly catalyze the oxidation of 3-HK (Goldstein et al., 2000).
Moreover, iron chelators like potassium ferricyanide, hematin, and
haemoglobin are effective oxidizing agents of 3-HK. The heme
enzyme horseradish peroxidase, in the presence of H2O2, acts in the
same manner, suggesting that !OH may be involved in its oxidation
(Ishii et al., 1992). A change in the UV–vis spectrum of the
autoxidized solutions indicates that some autoxidation products of
3-HK, which are formed initially, may be susceptible to further
oxidation (Stutchbury and Truscott, 1993).

The characterization of the major autooxidation products of 3-
HK under physiological conditions shows that 3-HK dimerizes to
hydroxyxanthommatin and xanthommatin, which in turn gener-
ate at least four different compounds – including the p-quinone
4,6-dihydroxyquinolinequinonecarboxylic acid – and at least two
minor species that were unable to be identified (Vazquez et al.,

Table 1
Chemical properties of 3-HK.

Average molecular weight 224.213
Predicted water solubility 3.33 mg/mL [Predicted by ALOGPS]
log P "2.09 [Predicted by ALOGPS]
log S "1.771
H-bond donor 4
H-bond acceptor 6
Molar extinction coefficient 3650 M"1 cm"1 at 368 nm (Bando et al., 1981)
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2000; Ishii et al., 1992) (Fig. 2). Moreover, 3-HK oxidation is
effectively inhibited by the inclusion of thiols such as glutathione,
cysteine and ascorbate.

3-HK is also a reducing agent that participates in redox
reactions by donating electrons; thus, it can be an antioxidant and
restore the oxidative balance in the cellular environment (Christen
et al., 1990; Luthra and Balasubramanian, 1992; Goshima et al.,
1986). However, under oxidative conditions, 3-HK can bind to
protein amino groups to further yield cross-linked polypeptide
chains (Aquilina et al., 1999). Furthermore, during the oxidation of
3-HK: (1) ROS (O2

!–, H2O2,
!OH) are produced which promote

modification of proteins, oxidation of lipids, DNA strand breaks and
modification of nucleic acids, modulation of gene expression
through activation of redox-sensitive transcription factors, and
modulation of inflammatory responses through signal transduc-
tion, to name a few events (Goldstein et al., 2000; Ishii et al., 1992;
Hiraku et al., 1995); (2) transition metal ions (Cu2+, Fe3+) are
reduced, turning themselves into pro-oxidants (Cu+, Fe2+), to
further participate in the formation of more radicals toward a
Fenton reaction-like mechanism (Goldstein et al., 2000); (3) the

quinone-imine formed is highly reactive, favoring further oxida-
tive reactions; and (4) reactivity of oxidized 3-HK toward amino
acid functional groups is similar to DOPA, catecholamines,
catechol, and other aminophenols (Foye, 1979; Lévay et al.,
1997; Bindoli et al., 1992).

3.3. Effects of 3-HK in biological systems: anti-oxidative activity vs.
oxidative damage

ROS production and their scavenging are both processes with
particular relevance to maintain the cellular homeostasis; thereby,
small molecules such as certain vitamins and metabolites show
this double behavior. Among these, 3-HK may be physiologically
and pathologically relevant. 3-HK may function as a modulator of
synaptic neurotransmission in the prenatal brain. During the last
week of gestation, 3-HK levels are remarkably high, to further
decrease dramatically around the time of birth. In adulthood, 3-HK
concentrations gradually change, exhibiting alterations during the
occurrence of pathological conditions; these effects appear to be
determined by the timing and mature of the pathogenic challenge

Table 2
Levels of 3-HK in different tissues.

Tissues and fluids Concentrations References

Iris/ciliary body (bovine) 0.07 mg/g Malina and Martin (1995)
Retina (bovine) 0.19 mg/g Malina and Martin (1995)
Transparent lenses (bovine) 1.14 mg/g Malina and Martin (1995)
Urine (human) 2.2 (1.0–3.4) mmol/mmol creatinine http://www.hmdb.ca/metabolites/HMDB11631
Serum (human) 0.001–0.4 mM Pearson and Reynolds (1992), Heyes et al. (1994), Chiarugi et al. (1996),

Hervé et al. (1996)
Human lens 70,000 mM (3-HKG) Luthra and Balasubramanian (1992)
Basal brain extracellular levels (rat) <0.002 mM Notarangelo et al. (2012)
Whole brain (rat) 0.000008 mM Gál and Sherman (1978, 1980)

Fig. 2. 3-HK is oxidized at lower potentials. The oxidation of 3-HK under physiological conditions, generates several compounds such as the unstable xanthommatin formed by the
oxidative dimerization of 3-HK in the presence of H2O2. This compound is degraded into other products: p-quinone (not shown), 4,6-dihydroxyquinolinequinonecarboxylic acid
(not shown) and hydroxyxanthommatin. Superoxide anion and hydrogen peroxide are also formed rapidly upon oxidation of 3-HK.
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(Ceresoli-Borroni and Schwarcz, 2000). However, 3-HK could play
a dual role at higher levels, showing a beneficial role in the initial
stages of development and shifting to a detrimental phase under
prolonged exposure. The molecular mechanisms underlying these
activities remain to be determined.

Another role suggested for 3-HK is related with its preventive
properties on oxidative damage through scavenging activity.
Goshima et al. (1986) demonstrated that 3-HK (1 mg) is able to
scavenge O2

!– in Malpighian tubules of blowfly (Aldrichia graham). In
addition, this metabolite (1–100 mM) scavenged !OH, exhibiting
scavenging capacity similar to 500 mM melatonine, a classical !OH
scavenger. Furthermore, 3-HK significantly decreased the peroxyl
radicals induced by the thermolysis of 2,20-azo-bis-(2-aminopro-
pane)-derived peroxyl radicals in a higher degree than trolox, a well-
known peroxyl scavenger, as well as ascorbate (Christen et al., 1990;
Leipnitz et al., 2007; Goda et al., 1999). Interestingly, compelling
evidence has shown that 3-HK can easily undergo reactions with
!NO and may be classified as a potent !NO scavenger. Intensely
colored yellow products are rapidly formed from 3-HK in presence of
two different donors of !NO: nitrite at pH 5, and NO+SbF6

" at pH 2.0.
Nitrosation of 3-HK leads, presumably via a nitrosamine intermedi-
ate, to a diazonium ion, which forms an oxadiazole, tautomerizing to
a yellow o-quinone diazide and other additional substances of
different color, depending on the !NO source (Backhaus et al., 2008).
Hence, 3-HK is able to scavenge ROS such as O2

!–, !HO, and peroxyl
radical and !NO; consequently, 3-HK can prevent lipid oxidation and
protein oxidation and nitration.

Leipnitz et al. (2007) showed that 3-HK inhibits spontaneous
lipid peroxidation in supernatants from cerebral cortex of rats. 3-
HK (1 h, 100 mM) reduced the thiobarbituric acid-reactive sub-
stances (TBARS) formation in the absence and presence of Fe3+ and
Fe2+, which in turn stimulate 3-HK auto-oxidation and !OH
formation, respectively. The same authors also demonstrated that
3-HK (1 h, 100 mM) increased up to 400% the total antioxidant
reactivity of C6 glioma cells, and these values gradually decreased
as incubation time advanced. Treatment with 3-HK in these cells
also decreased the basal TBARS when incubated for 1 and 6 h, but
not at longer incubation times (Leipnitz et al., 2007). Additionally,
it has been demonstrated that 3-HK (3 mM) inhibits the oxidative
covalent cross-linking of crystallins, using riboflavin, a compound
known to produce a variety of oxyradicals when used as a photo-
crosslinking agent of proteins (Luthra and Balasubramanian,
1992).

3-HK avoided the increased free radical production induced by
glutaric acid in supernatants from cerebral cortex of rats, the major
metabolite accumulating in glutaric acidemia type 1, an autosomal
recessive disorder of lysine, hydroxylisine, and tryptophan metabo-
lism. Patients with this disorder exhibit brain atrophy, macro-

cephaly, and acute dystonia secondary to striatal degeneration (Viau
et al., 2012). 3-HK fully prevented and attenuated the increased
levels of TBARS and 20,70-dihydrodichlorofluorescein oxidation
produced by glutaric acid (1 mM) administration (Leipnitz et al.,
2007) respectively.

Altogether, the aforementioned evidence serves to suggest that
3-HK could act as an endogenous natural antioxidant in a variety of
diseases. However, in other studies, 3-HK has also shown to be a
powerful generator of reactive species and a potential endogenous
neurotoxin. A large body of literature has characterized its in vitro
neurotoxicity (Table 3). Nonetheless, as the same table shows,
most of the concentrations tested correspond to supraphysiolo-
gical (pharmacologic) concentrations.

Data collected and described in Table 2 clearly show that
concentrations used in most of in vitro studies are far higher than
those described as normal brain concentrations (#0.08–0.3 mM,
cited by Okuda et al., 1996), reaching considerably higher
concentrations upon diverse pathological conditions (0.3–
1.2 mM), including Huntington’s disease, AIDS/dementia and
hepatic encephalopathy. The issue of pharmacological vs. normal
brain functions of 3-HK raises a relevant consideration. Funda-
mentally, use of high concentrations of this molecule to evoke cell
toxicity suggest that most of these studies could be describing
pharmacological (non-physiological) effects, thereby strengthen-
ing the concept that, under normal conditions, 3-HK could be more
a modulatory metabolite mostly responsible for maintaining
cellular redox homeostasis than a prooxidant, a feature that could
be shared with other KP metabolites. Despite this key consider-
ation, it is pertinent to describe neurotoxic actions exerted by 3-
HK, since dual effects for this metabolite still remain in literature.

In primary cultured striatal neurons, 3-HK (10 mM) induced cell
death with apoptotic features. 3-HK-induced apoptosis involved
generation of ROS that were suppressed by antioxidants (catalase,
allopurinol, a-tocopherol, trolox, N-acetylcysteine, ascorbic acid
and 3,3,5,5-tetramethyl-1-pyrroline-1-oxide, xanthine oxidase
inhibitor, and deferoxamine, a chelating agent). Furthermore, it
was demonstrated that 3-HK toxicity in these cells depends on
both its cellular uptake via transporters for large neutral amino
acids in a sodium-dependent process, and the intracellular
increase of ROS (Okuda et al., 1996, 1998).

Cerebellar granule neurons are likely to be more resistant to 3-
HK-induced cell death than striatal cells, requiring much higher
concentrations of the toxin (250 mM) to provoke the same degree of
toxicity. The co-application of catalase caused a significant reduction
in its neurotoxic effect, whereas SOD, allopurinol and the neutral
amino acid transporter blockade failed to provide protection;
likewise, 3-HK did not induce caspase-3 activation but produced p38
MAPK activation (Smith et al., 2009; Wei et al., 2000). Similar to

Table 3
Concentrations of 3-HK tested in in vitro studies.

Cells 3-HK tested concentration Periods % Cellular death Reference

Cerebellar granule neurons 10 mM–1 mM 1–9 h 20–80% Smith et al. (2009)
250–500 mM 7 days 50–90% Jeong et al. (2004)

Striatal neurons 1– 10 mM 24–48 h 50–65% Jeong et al. (2004)
50 mM 48 h 75%

Neuronal hybrid cell line 200 mM 24 h 80% Eastman and Guilarte (1989)
Hippocampal neurons 10 mM 48 h 50% Okuda et al. (1998)

Cortical neurons 10 mM 48–72 h – Chiarugi et al. (2001a,b)
100 mM 24 h

Human neuroblastoma SH-SY5Y 240 mM 24 h 40% Jeong et al. (2004)
PC-12 pheochromocytoma cells 500–600 mM 24 h 53–23% Jeong et al. (2004)
GT1-7 hypothalamic neurosecretory cells 400 mM 24 h 38% Jeong et al. (2004)
C6 glioma 100 mM 1–48 h 0%a Leipnitz et al. (2007)

a C6 cell morphology did not change in the presence of 3-HK at all incubation times.
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cerebellar granule cells, immortalized cells, PC-12 pheochromocy-
toma cells and GT1-7 hypothalamic neurosecretory cells required
pharmacological concentrations of 3-HK to show apoptotic features,
whereas 3-HK-induced toxicity was unaffected by the neutral amino
acid transporter. Of note, dantrolene, an inhibitor of calcium release
from the endoplasmic reticulum, protected these cells. The
protection exerted by dantrolene was associated with a marked
increase in the protein levels of a prominent anti-apoptotic gene
product, Bcl-2, suggesting that other mechanisms are likely involved
in 3-HK toxicity (Wei et al., 2000). Neuronal hybrid cell line and
human neuroblastoma SH-SY5Y cells treated with 3-HK showed an
increase in ROS concentration, alteration in the catalase activity and
enhanced apoptotic features (Eastman and Guilarte, 1990, 1989;
Jeong et al., 2004).

Noteworthy, treatment of human astrocytes with 3-HK at
concentrations below 100 nM significantly augmented intracellular
NAD+ levels compared to non-treated cells. However, higher doses
(>100 nM) decreased intracellular NAD+ levels and increased
extracellular LDH activity (Brandy et al., 2009). NAD+ is an important
co-factor of many enzymes and, as a molecule, is involved in several
metabolic processes. For instance, NAD+ is a substrate for mono- and
poly-ADP-ribosylation of proteins, and a precursor for calcium
mobilizing agents that regulates the functions of NAD+-dependent
enzymes such as the protein deacetylase SIRT1, which in turn
modulates target gene transcription through the modification of
chromatin-associated proteins (Zhang et al., 2009; Berger et al.,
2004) Hence, changes in 3-HK concentrations may indirectly alter:
(i) DNA repair mechanisms, (ii) intracellular free Ca2+ levels, and (iii)
general patterns of gene expression.

On the other hand, it has been reported that sodium-dependent 3-
HK uptake in slices from separate brain regions was in the following
order: cortex > striatum = hippocampus > cerebellum (Eastman
et al., 1992). In a similar manner, sodium-dependent KYN uptake
activity reported by Speciale and Schwarcz (1990) was as follows:
cortex > striatum > hippocampus > cerebellum, suggesting that 3-
HK toxicity may be dependent on cellular uptake (Okuda et al., 1998).

Remarkably, there are only a few studies with 3-HK in in vivo
models in the CNS; neither of them have characterized in a detailed
manner its mechanisms of toxicity. For instance, intraventricular
administration of 3-HK (634.21 mg/rat) caused convulsive attacks
in rats (Pinelli et al., 1984). Moreover, the intrastriatal injection of
3-HK (50 nmol) induced only tissue damage around the injected
site, without abnormal behavior in rats (Nakagami et al., 1996).
Later on, it was suggested that 3-HK could potentiate QUIN toxicity
through a possible synergic interaction with a combination of
direct NMDA receptor activation and free radical production.
Guidetti and Schwarcz (1999) evaluated this effect in the rat brain
in vivo using an intrastriatal co-injection of 5 nmol 3-HK plus
15 nmol QUIN, doses which, when injected separately, caused no
or minimal neurodegeneration. Co-injection of 3-HK and QUIN
caused substantial increases in the lesion volumes and altered
rotation behavior. However, these authors were unable to find de
novo production of QUIN, suggesting that potentiation of QUIN
toxicity by 3-HK was not due to the in vivo conversion of 3-HK to
QUIN (Guidetti and Schwarcz, 1999). The authors proposed then
that the failure of 3-HK to cause cellular damage is the result of the
radical scavenging capacity of the normal brain, which may be
sufficient to neutralize 3-HK-induced free radical generation and
to prevent cell death (Schwarcz et al., 2010). Nonetheless, it is also
pertinent to consider that the experimental design employed in
this work did not assume possible chemical interactions between
these two molecules, a process that could ultimately modify the
reactive identity of each agent. Therefore, optimal conditions to
test these agents should imply a separate administration. In the
meantime, these findings might indicate that the mild effects
exerted by 3-HK upon in vivo conditions could recruit free radicals

generated from the autoxidation process, with no deleterious
consequences to nerve tissue, as it can be assumed that defense
systems are capable to counteract 3-HK toxic signals.

3.4. Other effects linked to 3-HK

Neurodegenerative diseases such as AD, PD, and HD, are likely
to share common cellular and molecular deleterious mechanisms,
including protein aggregation and mitochondrial dysfunction
(Ross and Poirier, 2004; Coyle and Puttfarcken, 1993; Santamaria
and Jimenez, 2005). Several reports suggest that high concentra-
tions of 3-HK might promote these events.

As previously mentioned, IDO catalyzes the transformation of
tryptophan into N-formylkynurenine; the hydrolysis of N-formylk-
ynurenine produces KYN, which is hydroxylated and glycosylated,
yielding 3-HK and 3-HKG (Snytnikova et al., 2008). At physiological
conditions, 3-HK and 3-HKG undergo spontaneous deamination,
and the resulting deaminated kynurenines-carboxyketoalkenes are
highly reactive species susceptible to nucleophilic attack via Michael
addition, forming an unstable adduct with amino acid residues such
as cysteine, histidine, and lysine (Garner et al., 1999, 2000) (Fig. 3).

In the presence of oxygen, 3-HK attaches to several sites on the
crystallins, especially in cysteine residues (gS crystallin and bB1
crystallin) (Aquilina and Truscott, 2002). 3-HK binding is accompa-
nied by crystalline aggregation, and its inclusion with GSH results in
a delayed onset of crystalline modification (Stutchbury and Truscott,
1993; Garner et al., 2000; Aquilina and Truscott, 2002). Another
protein target for 3-HK is bovine serum albumin (Goldstein et al.,
2000). 3-HK also interacts with zinc/thiolate coordination environ-
ments such as metallothionein (Giles et al., 2003).

The formation of cysteine adduct with 3-HK was confirmed
using a preparation of bovine calf lens protein at pH 7.2, whereas
His and Lys residues only became modified when the incubation
was performed at pH 9.5, conditions under which the polypeptides
are likely to be unfolded (Korlimbinis and Truscott, 2006). On the
contrary, Staniszewska and Nagaraj (2005) showed that lysine
adducts can be generated in human lens proteins treated with 3-
HK using a monoclonal antibody.

Appropriate GSH levels are crucial for minimizing polypeptide
modification by 3-HK. GSH acts as an oxidant scavenger; thus, GSH
possesses the ability to prevent covalent modification of proteins
(Aquilina et al., 1997). Binding of 3-HK to crystallins in the lens
may be a dynamic process, with binding and release, both taking
place. If there is sufficient GSH, the reactive deamination product
would most likely react with GSH. In contrast, if there is a decrease
in GSH levels, the deaminated 3-HK may oxidize and bind
irreversibly to proteins (Korlimbinis and Truscott, 2006).

The deposition of proteins also takes place when proteins and
lipids are exposed to sugars, forming advanced glycation-end
products (AGEs). Sugars, ascorbate, and dicarbonyl compounds
react with amino groups of lysine and arginine residues of proteins
through the formation of ketoamine adducts; these adducts
further produce ROS. Several proteins implicated in neurodegen-
erative diseases, such as amyloid b, tau, a-synuclein, and prions
are glycated and the extent of glycation is correlated with the
pathologies seen in patients, contributing to the development of
neurodegenerative diseases. Nagaraj et al. (2010) demonstrated
that 3-HK may exert a stimulatory effect on pentoside synthesis
from ascorbate and ribose, two AGEs that have been detected in the
human lens, suggesting that 3-HK may modulate AGE formation.
Therefore, 3-HK could play a pivotal role in protein damage due to
the following considerations: (1) this molecule is highly suscepti-
ble to oxidize and produce formation of extremely toxic reactive
species (o-aminoquinone and ROS) (Okuda et al., 1996; Eastman
and Guilarte, 1990; Vazquez et al., 2000; Aquilina et al., 1997,
1999; Aquilina and Truscott, 2002); (2) the formation of these
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species could decrease the concentration of GSH and other
antioxidants (Berry and Truscott, 2001); (3) protein radicalization,
adduct formation, cross-linking and fragmentation occur when 3-
HK concentrations increase because this metabolite can react with
polypeptides at neutral pH via modification of amino acid residues
(Stutchbury and Truscott, 1993; Goldstein et al., 2000); (4) the
interaction of 3-HK with proteins may affect the cellular redox
status, causing the release of metal ions (Giles et al., 2003; Aquilina
et al., 1999; Backhaus et al., 2008; Viau et al., 2012); and (5) it is also
possible that the o-aminophenol moiety of 3-HK may act as a site for
chelation of redox-active metals such as Fe2+ or Cu+, metals that
could contribute to !OH-induced damage to protein (Goldstein et al.,
2000). Altogether, this evidence suggests that these processes could
modify the enzymatic activity of several proteins, as occurs with the
creatinine kinase activity, which is inhibited by 3-HK in a time- and
dose-dependent manner. This inhibition was prevented, but not
reversed, by incubation with reduced glutathione, dithiothreitol,
ascorbic acid and trolox. Nevertheless, under nitrogen atmosphere,
the enzyme was not inhibited by 3-HK, indicating that the inhibition
was caused by products of autoxidation of 3-HK, and not by 3-HK
itself (Cornelio et al., 2006). Thus, protein modification exerted by 3-
HK could be carried out by multiple mechanisms, including a direct
interaction of 3-HK with proteins, together with further reactions of
the 3-HK autoxidation-derived reactive species with a variety of
macromolecules.

In addition, 3-HK can modify mitochondrial function and trigger
DNA damage. Mitochondria have several important functions in the
cell. Mitochondrial dysfunction causes abatement in ATP produc-
tion, oxidative damage, excitotoxicity, and the induction of
apoptosis, all of which are involved in the pathogenesis of numerous
disorders (Lin and Beal, 2006; Beal, 2004). Lee et al. (2004) showed
that 3-HK causes neuronal cell death by inducing mitochondrial
dysfunction. 3-HK induced the collapse of mitochondrial membrane

potential and cytochrome c release. Interestingly, inhibition of the
Extracellular Signal-Regulated Kinase (ERK) dramatically increased
mitochondrial malfunction and enhanced caspase activity under
conditions of cellular stress. 3-HK ("2.5 mM) also affected the
respiratory parameters of heart mitochondria in a dose-dependent
manner. This metabolite significantly decreased respiratory control
index and the ADP:oxygen ratio of glutamate/malate respiring rat
heart mitochondria. However, the high concentrations of 3-HK used
in this work are difficult to achieve under physiological conditions
(Baran et al., 2003). Finally, DNA damage by 3-HK has also been
studied. 3-HK induced DNA double-strand breaks in cultured human
cells. Hiraku et al. (1995) suggested that this damage is mediated by
an increase in the production of H2O2 and the presence of Mn2+ or
Cu2+. Therefore, high concentrations of 3-HK observed in pathologi-
cal events could be related to protein, mitochondria and DNA
modifications.

Of consideration, Krause et al. (2011) have recently described
anti-inflammatory and neuroprotective effects for 3-HK and 3-
hydroxyanthranilic acid (3-HAA), and these effects involved the
suppression of cytokine-induced neuronal death and associate
antioxidant responses in primary human fetal central nervous
system cultures treated with cytokines (IL-1 with or without
interferon-g) or with Toll-like receptor ligands mimicking the
proinflammatory environment of the CNS. These findings raise the
controversy on the real role exerted by 3-HK and related
metabolites in the brain, as described in the following section.

3.5. Effects of 3-HK-related compounds

3.5.1. Xanthurenic acid
Interestingly, 3-HK metabolism proffers complementary con-

cepts to the effects already reported for this metabolite in the CNS.
Xanthurenic acid (XA), another metabolite of KP, is formed after

Fig. 3. Deamination of 3-HK and its covalent attachment to amino acid residues. Under physiological conditions, the carbonyl group acidifies the adjacent H atom, resulting in
the elimination of ammonia from the b-carbon and bound rearrangement to form an a,b-unsaturated carbonyl. The b-carbon atom is highly susceptible to non-
stereoselective nucleophilic attack, resulting in the formation of an enolate intermediate that becomes protonated to form the 3-HK-protein adduct.
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transamination of 3-HK (Fig. 1). Since 3-HK autooxidation is
assumed to be involved in oxidative damage, XA formation is
believed to be part of a detoxification process (Gobaille et al., 2008)
as it prevents 3-HK accumulation. In turn, XA synthesis from 3-HK
seems to involve the same kynurenine transmaninase isoenzymes
that catalyze the transamination of KYN to KYNA (Urenjak and
Obrenovitch, 2000). Besides of its sedative actions at high
concentrations (Heyliger et al., 1998), XA has been demonstrated
to be present in different brain regions at concentrations about
1 mM; therefore, this molecule has been proposed to exert
physiological actions in the brain (Gobaille et al., 2008). Moreover,
XA can penetrate de blood-brain barrier and its distribution in the
brain is heterogeneous, being particularly accumulated in the
frontal cortex. Indeed, some physiological actions exerted by XA
have been attributed to its potential role as a neurotransmitter-like
molecule (Gobaille et al., 2008), an issue that still deserves
investigation. In the meantime, being the major catabolic product
of 3-HK, XA requires special attention. While some reports
describing antioxidant properties for this metabolite might serve
to confirm its formation in the brain as a major detoxification route
for 3-HK production (Murakami et al., 2001; López-Burillo et al.,
2003), only a few of them describe pro-oxidant actions (Murakami
et al., 2006); hence, whether the role of this molecule on the effects
of 3-HK is oriented to detoxify or to exert synergic toxic actions
through its redox modulatory actions is a question needing
experimental approaches to be elucidated, and so, no scenario
should be ruled out so far for the actions of XA and 3-HK.

3.5.2. Anthranilic acid:3-hydroxyanthranilic acid ratio
An alternative arm of the KP converts KYN into anthranilic acid

(AA). The enzyme responsible for this alternative metabolic step is
kynureninase. In turn, AA is responsible for 3-HAA formation,
without involving 3-HK in the process (Fig. 1). This part of KP
metabolism is relevant when trying to understand those physio-
logical and physiopathological processes linked to 3-HK (Darling-
ton et al., 2010). In fact, since 3-HAA can be formed either directly
from 3-HK or from AA, only part of the toxic actions of 3-HAA could
be related with 3-HK. Moreover, 3-HAA yields the formation of a
more toxic metabolite, QUIN. It has been demonstrated that QUIN
levels are increased after 3-HAA is topically administered into the
rat striatum (Notarangelo et al., 2012; reviewed by Schwarcz et al.,
2010). This effect was assessed by biochemical and microscopic
assays; thereby, enhanced levels of 3-HAA – and probably 3-HK too

– would lead to the formation of a potent excitotoxic/pro-oxidant
KP metabolite (QUIN) that might contribute to a more complex
toxic pattern in the brain.

Noteworthy, the chemical structures of 3-HAA and 3-HK are
quite similar, as they have hydroxyl and amino groups in ortho
positions to each other, both are good electron donors and their
oxidation lead to the formation of a highly reactive quinoneimine.
Nonetheless, 3-HAA, similar to 3-HK and other KP redox
metabolites, carries out the same duality, since on one hand it
has been shown to induce ROS-mediated cell damage in different
cell cultures (Goldstein et al., 2000; Brandy et al., 2009), and on the
other hand, this metabolite is responsible for antioxidant
responses by diminishing TBARS in cerebral cortex supernatants
(Leipnitz et al., 2007), scavenging peroxyl radicals, and protecting
b-phycoerythrin from these species (Christen et al., 1990).
Furthermore, 3-HAA might exert a relevant role during inflamma-
tory conditions since it has shown to suppress the activation of the
proinflammatory transcription factor NFkB while inhibiting nitric
oxide synthase (reviewed by Darlington et al., 2010). Altogether,
this contrasting evidence encourages the study of 3-HAA and the 3-
HAA:AA ratio since these two elements could be relevant to
understand the actions of 3-HK at central level.

3.6. 3-HK in brain disorders

3-HK is known to be a neuroactive metabolite that may produce
damage by overproduction of reactive species, direct protein
interaction and mitochondrial dysfunction, although its extracel-
lular levels, determined by in vivo microdialysis in the rat brain, are
below 2 nM (Notarangelo et al., 2012). Nevertheless, in a number of
different pathological conditions – possibly as a consequence of
enzyme induction –, the amounts of 3-HK in the CNS are increased
in astrocytes, macrophages, microglia and other cells of the
immune system. Thus, this tryptophan metabolite may play an
important role in neurodegenerative diseases, psychiatric dis-
orders, and seizures (Chiarugi et al., 2001a,b), as shown in Table 4.

Excitotoxic mechanisms are believed to play a central role in
the pathogenesis of a broad spectrum of neurological diseases.
Ceresoli et al. (1997) showed that both the developing and adult
brains respond to an acute excitotoxic insult by shifting brain KP
metabolism, and provided evidence that an excitotoxic brain lesion
in rats of 7 days of age causes a preferential increase in KYNA
formation, while an increase in 3-HK levels was more pronounced

Table 4
3-HK levels (mean ! se.mean) in normal and pathological conditions.

Pathological conditions; Disorder/experimental
model

Mean 3-HK levels
(controls)

Mean 3-HK levels
(pathological conditions)

References

PD
CFS 6.1 ! 2.8 nM 1.1 ! 0.1 nM Tohgi et al. (1993a,b)

HD Pearson and Reynolds (1992)
Temporal cortex 0.29 ! 0.22 nmol/g 0.49 ! 0.21 nmol/g
Frontal cortex 0.15 ! 0.12 nmol/g 0.41 ! 0.27 nmol/g
Putamen 0.08 ! 0.01 nmol/g 0.29 ! 0.21 nmol/g

Infant pneumococcal meningitis model in rats
Cortex 42 ! 15 nM 590 ! 237 nM Bellac et al. (2006)

Experimental encephalomyelitis in rats Chiarugi et al. (2001a,b)
Spinal cord 0.14 ! 0.03 nmol/g 1.2 ! 0.2 nmol/g
Forebrain 0.12 ! 0.02 nmol/g 0.2 ! 0.02 nmol/g

Infantile spasms
CSF 0.57–85 nM 1.56–3.26 nM Yamamoto (1991), Yamamoto et al. (1994)

Rats with experimental allergic encephalomyelitis
Spinal cord 0.14 nM 1.21 nM Chiarugi et al. (2001a,b)
Forebrain 0.12 nM 0.20 nM
Blood 0.08 nM 0.11 nM
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in adult animals, demonstrating that age-dependent changes in
cerebral KP metabolism occur in response to an excitotoxic insult
(Ceresoli et al., 1997). In another work, the basal levels of 3-HK in
rat brains were unchanged after receiving intrastriatal injections of
NMDA a week earlier, while tryptophan, kynurenine and QUIN
showed increased levels. Animals receiving intrastriatal injections
of NMDA (8 mg/2 ml) plus systemic administration of kynurenine
(100 mg/kg, i.p.) reached a peak in 3-HK of approximately 50 nM
2 h following kynurenine injection (100 mg/kg, i.p.). Notably, 3-HK
levels decreased 7 h later. These authors suggested that 3-HK
enters the brain from the circulation and once there, it is rapidly
sequestered and degraded into QUIN (Notarangelo et al., 2012).

Inflammation processes contribute to the progression and
manifestation of a broad spectrum of disorders in the CNS.
Excessive release of IFN-g has been associated with the
pathogenesis of chronic inflammatory and autoimmune diseases
(Mühl and Pfeilschifter, 2003). IFN-g induces the expression of IDO
and so, it enhances the production of kynurenines from trypto-
phan, including 3-HK. The induction of IDO by IFN-g triggers an
increase in intracellular ROS, cytosolic cytochrome c and caspase-3
activity, along with a decrease in protein-free thiol content and
apoptotic cell death. IDO (1-methyl-DL-tryptophan) and kynur-
enine 3-hydroxylase inhibitors (Ro61-8048) effectively inhibited
IFN-g-mediated apoptosis (Mailankot and Nagaraj, 2010). These
data suggest that increased levels of 3-HK could play a role in
diseases related to excitotoxic and inflammatory processes such as
HD, AD, PD, convulsive and depressive disorders, to name a few.

3.6.1. Huntington’s disease
HD is a fatal inherited neurodegenerative disorder character-

ized by abnormal motor movements, personality changes and
dementia. Cellular toxicity, which initially affects the striatum –
and progressively the cortex –, has been attributed to a
polyglutamine expansion in the huntingtin protein. Oxidative
stress, protein oxidation, and consecutively, aberrant inactivation/
or degradation of proteins, can aggravate molecular damage
(Sorolla et al., 2012). New studies carried out in HD brains, genetic
model organisms, and mouse models suggest that this disease may
in fact be causally related to early abnormalities in KP (Schwarcz
et al., 2010). In support to this concept, it has been demonstrated
that neurolopathological features in HD can be reproduced in
experimental animals by an intrastriatal injection of QUIN. Further
evidence indicates that expression of a mutant huntingtin
fragment induces transcription of KP in yeast, which is abrogated
by impairing the activity of the histone deacetylase Rpd3. Histone
deacetylase-dependent regulation of the KP was also observed in a
mouse model of HD, in which the treatment with a neuroprotective
histone deacetylase inhibitor, suberoylanilide hydroxamic acid,
blocked KP activation in microglia expressing a mutant huntingtin
fragment in vitro and in vivo, thereby suggesting that this pathway
plays a critical downstream role in mediating mutant huntingtin
toxicity (Giorgini et al., 2008).

Previous reports have indicated abnormalities in the concen-
tration of tryptophan metabolites in the HD brain, including an
increase in 3-HK levels (Schwarcz et al., 1984; Reynolds and
Pearson, 1989; Pearson et al., 1995; Pearson and Reynolds, 1992;
Guidetti and Schwarcz, 2003). Concentrations of 3-HK were
determined in brain tissues taken from post mortem brains from
patients with HD in the early stages (Guidetti and Schwarcz, 2003;
Schwarcz et al., 2012). 3-HK was significantly increased in frontal
and temporal cortex and putamen of these patients (Pearson and
Reynolds, 1992), while others at very advanced stages, and in a
state of severe disability, showed lower levels (Stoy et al., 2005).

Several models have been developed in order to elucidate the
toxic mechanisms leading to neuronal damage, their possible
interactions in HD, and potential therapies. Among these, genetic

models using invertebrates, such as fruit flies and yeast, as well as
genetic mice, have been the most commonly used (Ramaswamy
et al., 2007). Using lower model organisms, it has been
demonstrated that the toxic effects of mutant huntingtin could
be related to an increase in KP metabolites. In a transgenic
Drosophila melanogaster model of HD, genetic or pharmacological
KMO inhibition ameliorated neurodegeneration. Importantly, this
effect was reduced by feeding flies with 3-HK (Campesan et al.,
2011). In a similar manner, 3-HK levels increased around 2.2-fold
in yeast cells that expressed a mutant hutingtin. The genetic
deletion and pharmacologic inhibition of KMO in these cells
suppressed the toxicity caused by a mutant huntingtin fragment,
suggesting that 3-HK levels could play a role in the observed toxic
effects. In addition, pharmacologic inhibition of KMO reduced ROS
levels (Giorgini et al., 2005); thereby, the polyQ toxicity mecha-
nisms in Drosophila melanogaster, yeasts and HD patients might
involve upregulation of KP to form 3-HK, and consequently,
overproduction of ROS.

Transgenic models have also been used to determine the 3-HK
role in HD. The brain levels of this compound are increased in several
mouse models. R6/2 mice are the most commonly used transgenic
murine model of HD; these animals possess a 1.9 kB fragment
derived from the 50 end of the human huntingtin gene inserted into
the mouse genome, and they express approximately 144 CAG
repeats. R6/2 mice received an intrastriatal injection of tryptophan
in order to evaluate the production of 3-HK in vivo. No effect of
genotype was observed between 4 and 12 weeks of age. In contrast,
intrastriatally applied kynurenine resulted in an increased neo-
synthesis of 3-HK, but no in other KP metabolites. Subsequent ex vivo
studies in striatal, cortical and cerebellar tissue revealed substantial
increases in the activity KMO and significant reductions in the
activity of the 3-HK degradative enzyme, kynureninase, in HD mice,
this changes starting at 4 weeks of age. Decreased kynureninase
activity was most evident in the cortex and preceded the increase in
KMO activity. The activities of other KP enzymes showed no
consistent brain abnormalities in the mutant mice. These findings
suggest that impairment in KP metabolic enzymes jointly account
for the abnormally high brain levels of 3-HK in the R6/2 model of HD,
and are related to symptoms developed in these animals (Sathya-
saikumar et al., 2010; Guidetti et al., 2006).

YAC 128 and the chimeric HdhQ lines (HdhQ92 and HdhQ111)
are models that express the entire human huntingting gene and
contain a mutated exon 1 with 111 or 92 CAG repeats, respectively.
These models, together with heterozygous transgenic mice
containing 89 CAG repeats, have also shown a substantial elevation
of 3-HK content in both the striatum and cortex (Guidetti et al.,
2000). No changes were seen in 13-month-old shortstop mutant
mice for HTT (Guidetti et al., 2006).

Altogether, this information supports the concept that cerebral KP
is affected in the HD brain, showing differences between early and
late stages of the disease. Increased 3-HK levels might contribute to
cell damage in early phases of illness. Perhaps, in response to
mitochondrial impairment and/or a plethora of other abnormalities,
dysfunctional cells then create a pro-inflammatory environment,
leading to the activation of surrounding microglia. This, in turn,
would lead to an up-regulation of microglial KP metabolism,
enhanced release of 3-HK and QUIN, and, finally, the demise of
already weakened neurons by a combination of excessive ROS
production and NMDA receptor activation (Schwarcz et al., 2010).

3.6.2. Alzheimer’s disease
AD is a complex neurodegenerative disease characterized by

hippocampal neuronal loss and severe dementia in later stages,
resulting in a gradual and irreversible loss of memory and
cognitive functions. The severity of AD depends on the dysfunction
of two molecules: Amyloid protein precursor and Tau protein.
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Protein aggregation results in senile plaque formation and
neurofibrillary degeneration, which together trigger a cascade of
toxic events, including oxidative stress, glutamate-induced exci-
totoxicity and inflammation.

Through its neuroactive products – especially QUIN –, KP is
considered to be involved in the neuropathogenesis of AD.
However, in regard to 3-HK, different results have been found.
Using circulating antibodies directed against tryptophan deriva-
tives conjugated to proteins in serum samples from AD patients, it
was demonstrated that the overproduction of 3-HK is associated
with hyperactivation of IDO-1 (Duleu et al., 2010). In support to
this concept, in another assay with post mortem hippocampal
sections of AD patients using immunocytochemical methods,
elevated 3-HK levels were demonstrated. Western blot analysis
showed 3-HK to be slightly elevated, although statistical signifi-
cance was not reached (Bonda et al., 2010). Similar to this, in post
mortem brains of AD patients, 3-HK was slightly increased in
temporal cortex, although once again, this was not significantly
changed from matched controls (Pearson and Reynolds, 1992). In
the cerebrospinal fluid and plasma from patients with Alzheimer-
type dementia, 3-HK levels decreased 81% when compared with
controls, with no marked increases in 3-HK levels in plasma
concentrations (Bonda et al., 2010; Tohgi et al., 1992).

Although there is no experimental evidence demonstrating an
increase of 3-HK levels in AD phenotype, the elevated expression
and activity of IDO-1 and the presence of increased levels of QUIN
indicate that there is an increase in 3-HK production that is rapidly
catabolized. Moreover, in Drosophila mutants it was also observed
that cytotoxicity of 3-HK is relevant to produce memory
alterations similar to AD (Savvateeva et al., 2000), whereas
chronic administration of a KMO inhibitor in a transgenic mouse
model of AD prevented spatial memory deficits, anxiety-related
behavior, and synaptic loss (Zwilling et al., 2012), suggesting that
increased levels of 3-HK may participate in the cellular damage
observed in AD. Therefore, it is likely that amyloid-b activates
microglial and astrocytic cells in the brain following accumulation
and aggregation; consequently, it also may induce enhanced
levels of the toxic intermediates of KP, whereby reducing the
formation of toxic KP metabolites may emerge as a new
therapeutic strategy against AD.

3.6.3. Parkinson’s disease
PD is a disabling neurodegenerative disease which involves

several interacting toxic mechanisms: mitochondrial dysfunc-
tion, oxidative stress and cell energy insufficiency (Beal, 2004).
Alterations in KP have been demonstrated in this disorder. Serum
and cerebral spinal fluid samples of PD patients have shown
increased levels in the KYN:tryptophan ratio in comparison with
controls. Furthermore, KATI and KATII activities in serum of PD
patients are reduced (Szabó et al., 2011). The cerebrospinal fluid
of parkinsonian patients shows a reduction in 3-HK concentra-
tions (Tohgi et al., 1993a,b). In contrast, 3-HK levels were
increased in putamen of PD brains of patients without L-DOPA
therapy, as well as in the frontal cortex, putamen, and substantia
nigra of patients treated with L-DOPA (Ogawa et al., 1992).
Therefore, it can be assumed that a shift in the tryptophan
metabolism towards 3-HK and QUIN, and consequently, a fall in
KYNA concentrations, are related to the alterations observed in
PD.

3.6.4. Microbial chronic infections
3-HK levels are elevated in viral and microbial infections such

as VIH and Pneumococcal meningitis. VIH-associated dementia is a
frequent consequence of HIV infection and relates to neuronal
damage. IDO activity is increased in post mortem brain tissues
(frontal cortex) from AIDS patients; as a result, 3-HK concentra-

tions were increased (over three-fold) (Sardar and Reynolds, 1995;
Sardar et al., 1995; Heyes et al., 1989). Thus, elevated 3-HK levels
may contribute to the neuronal deficits underlying HIV-associated
dementia.

On the other hand, Pneumococcal meningitis is characterized
by an intense inflammatory host reaction that contributes to the
development of cortical necrosis and hippocampal apoptosis.
Inflammatory conditions in the brain are known to induce
tryptophan degradation along KP, resulting in accumulation of
neurotoxic metabolites. In the late phase of acute Pneumococcal
meningitis, it was found a transcriptional upregulation of
kynurenine-3-hydroxylase and a 3-HK accumulation in cortex
(590 nM) and hippocampus (313 nM), while in plasma (115 nM),
no increases were observed. In line with this concept, enhanced 3-
HK levels were associated with KMO upregulation (Bellac et al.,
2006). Therefore, under inflammatory conditions, it is likely that
KP could be metabolically oriented to form 3-HK at central level,
instead of other metabolites.

3.6.5. Cerebral ischemia
Cerebrovascular disease is the second cause of death and the

most frequent cause of non-traumatic disability in adults
worldwide, according to the World Health Organization. Nowa-
days, there is no effective treatment to reverse the morphological
and behavioral alterations induced by stroke. Moreover, inflam-
matory cytokines and protease secretion by microglia, leukocytes
and resident cells of the neurovascular unit, are pivotal factors for
cerebral injury, which in turn might induce upregulation of the KP,
as that found in animal models of focal cerebral ischemia and
patients with this disorder (Saito et al., 1993); however, the role of
3-HK in acute ischemic stroke remains uncertain.

Carpenedo et al. (2002) used mNBA and Ro 61-8048, two
different KMO inhibitors, in organotypic hippocampal slice
cultures exposed to 30 min of oxygen and glucose deprivation.
3-HK and QUIN neo-synthesis decreased, hence facilitating
kynurenine metabolism towards KYNA formation, and reducing
tissue damage. The addition of 3-HK and QUIN to oxygen and
glucose-deprived hippocampal slices prevented the neuroprotec-
tive activity of these KMO inhibitors. However, 3-HK administra-
tion (300 mM) was non-toxic since it did not exacerbated oxygen
and glucose deprivation-induced damage. Thus, the reduced tissue
damage observed under these conditions may be the consequence
of KYNA overproduction.

3.6.6. Convulsive disorders
Seizures are characterized by sudden and unusually unpro-

voked attacks as a result of abnormal brain electric activity. Not all
seizures imply epilepsy; they can be the consequence of hepatic
encephalopathy and Vitamin B6 deficiency. KP metabolites have
been hypothetically linked to the occurrence of seizure phenome-
na because 3-HK and QUIN administration into the lateral ventricle
caused convulsive attacks in rats (Pinelli et al., 1984; Yokoi et al.,
1998).

Cortical 3-HK concentrations were substantially increased in
post mortem brain tissues of patients with hepatic encephalopathy.
On the other hand, accumulation of 3-HK was observed in urine
and plasma of rats and mice with induced vitamin B6 deficiency
(Kimoto et al., 1991; Pearson and Reynolds, 1991; Bender et al.,
1990). Moreover, increased concentrations of this metabolite were
found in different brain regions of vitamin B6 deficient neonatal
rats: cerebellum, striatum, frontal cortex, and pons/medulla at 14
and 18 days of age (Guilarte and Wagner, 1987a,b). The elevation of
brain 3-HK levels is likely occurring simultaneously with the onset
of neurological signs, suggesting that the accumulation of this
metabolite in the brain may be a putative endogenous convulsant
in hepatic encephalopathy and vitamin B6 deficiency.
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Another cause of seizures is cerebral infection. Intracerebral
injection of hamster neurotropic measles virus to weanling Balb/C
mice leads to encephalitis, which is characterized by seizures,
selective neurodegeneration, and, after approximately 7 days,
death. To provide a better understanding of the underlying
molecular pathology, the brain content of KP metabolites was
evaluated. 3-HK and QUIN levels increased in CA1 and CA3 areas,
and these changes preceded the onset of electroencephalographic
seizures; thus, excess formation of 3-HK and QUIN caused seizures
and eventually neurodegeneration, whereby a decrease in the 3-
HK:QUIN ratio might be of benefit in preventing or arresting
seizure-induced neuronal damage (Lehrmann et al., 2008).

Infantile spasms are a form of age-dependent intractable
epilepsy in childhood and are often associated with mental
retardation. Cerebrospinal fluid from patients with symptomatic
infantile spasms showed increased 3-HK levels (Yamamoto, 1991;
Yamamoto et al., 1994). Moreover, infants and children with high
fevers can also produce febrile seizures. Yamamoto et al. (1994)
found an imbalance in the tryptophan metabolites during
convulsions in this disorder. These findings suggest that seizures
in hepatic encephalopathy, vitamin B6 deficiency, cerebral
infection, infantile spasms, and febrile seizures could be attribut-
able to an altered 3-HK production. Additionally, 3-HK could act as
a competitive inhibitor at benzodiazepine receptor in GABA
receptor complex; thus, the putative endogenous convulsant
activity of 3-HK may be exerted by modulation of the GABA/BDZ
receptor complex (Guilarte et al., 1988). Therefore, 3-HK might
contribute to the pathogenesis of convulsive disorders.

3.6.7. Depression
Depressed patients show peripheral changes of circulating

levels of proinflammatory cytokines and altered neurotransmis-
sion, resulting in a KP up-regulation. This phenomenon has been
reported in patients suffering from various types of depressive
disorders, including major depression, bipolar disorders, major/
minor depressive states related to immunotherapeutic treatments,
pre- and post-partum depression, and cardiovascular disease-
related depression. Indeed, this phenomenon is positively corre-
lated with the intensity of depressive symptoms (Zunszain et al.,
2011; Leonard and Myint, 2006; Miura et al., 2008).

Several attempts have been assayed to determine the role of
tryptophan metabolites in brain abnormalities taking place in
depression. Firstly, the Unpredictable Chronic Mild Stress model is
an informative paradigm to study depression in animals. Laugeray
et al. (2010) demonstrated that 3-HK levels are increased
preferentially at the subcortical level (amygdala/striatum) in this
model, whereas it is decreased at a cortical level (cingulate cortex).
Interestingly, no KP changes were observed in hippocampus
(Laugeray et al., 2010). Secondly, fractalkine receptor (CX(3)CR1)-
deficient mice following lipopolysaccharide (LPS) challenge
showed prolonged depressive-like behavior associated with
exaggerated microglial activation and induction of the tryptophan
degrading enzyme IDO. In these animals, the levels of 3-HK were
increased in the brain 72 h after LPS injection. The depressive-like
behavior evidenced in CX(3)CR1(!/!) mice 72 h after LPS injection
was abrogated by inhibition of IDO, suggesting that IDO activation
and subsequent generation of neuroactive kynurenine metabolites
may exert a pivotal role in the development of depression (Corona
et al., 2012). Thirdly, physiological stressors are consistently
associated to depression; thus, a mild electrical shock adminis-
tered to feet of laboratory animals can be used as a model. In these
conditions, 3-HK is increased in plasma and several cerebral
regions (cerebellum, medulla, hypothalamus, striatum, midbrain,
hippocampus and cortex) (Pawlak et al., 2000). Finally, it is
possible that antidepressants may change the KYNA:3-HK ratio. In
primary astroglial cultures, fluoxetine, citalopram, amitriptyline

and imipramine (1–10 mM) increased the de novo production of
KYNA and diminished 3-HK synthesis. At 24 and 48 h the
expression of KAT1 and KAT2 was enhanced, whereas KMO was
diminished by all these drugs. These findings indicate that tricyclic
antidepressants could correct the behavioral depression through
the re-establishment of the beneficial ratio KYNA:3-HK (Kocki
et al., 2012).

3.6.8. Multiple sclerosis
Experimental allergic encephalomyelitis in rats represents an

autoimmune inflammatory disorder of the CNS characterized by
demyelination, paralysis and histopathology similar to multiple
sclerosis. 3-HK levels in the spinal cord of these animals increased
10-fold over control. IDO and KMO largely increased in the spinal
cord, with not changes in the forebrain, but a decrease in the spleen
(Chiarugi et al., 2001a,b).

4. Concluding remarks

Increased levels of 3-HK in a variety of neurological disorders
would initially suggest an active role of this KP metabolite in the
development and progression of degenerative events; however,
we cannot discard that its enhanced levels could also correspond
to a mere increase in metabolic activation of KP as an
epiphenomenon related with inflammatory processes or other
toxic mechanisms. Thus, despite a large body of evidence points
out to a neurotoxic/pro-oxidative profile for this molecule,
antioxidant properties are not discarded at all. Indeed, it is likely
that the very nature of the effects evoked by 3-HK will depend on
several circumstances and/or experimental conditions. While in
some specific paradigms 3-HK acts as a pro-oxidant throughout
direct or indirect reactions – when high doses or concentrations
are tested –, under other conditions this metabolite has been
shown to scavenge free radicals and prevent oxidative damage.
This dual evidence leads us to consider that there are more than
one possible scenario for the actions of this agent: (1) If the
signals recruited by 3-HK are noxious enough to trigger toxic
cascades, if its concentrations are in a supraphysiopathological
rank, or if the redox conditions for the formation of toxic
derivatives (i.e., toxic quinones or other KP metabolites) prevail
in the environment, then cells and tissues will suffer from injury
and degeneration via oxidative stress and inflammation; in
contrast, if 3-HK exerts moderate oxidative stress, then cells will
be able to sense and counteract the deleterious effects of ROS/
RNS by activating antioxidant systems, and so, they will be able
to initiate concerted antioxidant and anti-inflammatory
responses, thereby leading to survival signals. In this point,
and in consideration to the collected and discussed evidence, we
propose the following hypothesis: objectively, as a transitory
metabolite of the KP, 3-HK seems to be a molecule which, under
physiological conditions represents a candidate to be claimed as
a redox modulatory agent, and its actions in this regard –
whether scavenging ROS or even inducing moderate oxidative
stress by toxic derivatives – would be accounting for a sensed
response of the brain tissue to counteract any further major
attack, expressed as chronic or intense acute damage. In favor of
this concept, basic experimental evidence for a toxic role of this
molecule considers so far the use of extremely high concentra-
tions of 3-HK, whereas clinical evidence on the increased levels
of this metabolite in different pathologies could be reflecting
secondary and late scenarios of the real causal components of
these disorders. Evidently, this is only a speculative statement
aimed at objectively direct the efforts of different groups
interested in this topic for further experimental considerations.
So, to be fair, we suggest a series of possible experiments to be
carried out in order to discard or accept neurotoxic or
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neuroprotective actions of 3-HK in the brain. To our concept, in
an ideal experimental scenario, comparisons between in vivo an
in vitro effects of 3-HK should be explored using different
solvents, concentrations, and volumes of infusion to animals, as
well as routes of administration. In addition to these controlled
conditions, metabolically handling and modifying KP function to
generate a more ‘‘natural’’ manner to induce 3-HK accumulation
would represent a more reliable model to explore its actions.
Either through pharmacological agents oriented to selectively
block KATs and kynureninases, and the unequivocal determina-
tion of 3-HK levels, or by mean of selective mutations in cells and
animals on these key enzymes, our knowledge on the role of 3-
HK in the brain will be enhanced. Moreover, specific and more
detailed determination of the roles exerted by the 3-HK
derivatives (toxic quinones and the metabolites 3-HAA and
QUIN) under different experimental conditions, require more
attention. In the meantime, the dual actions of 3-HK in the CNS
resemble the dual behavior of KP. A schematic representation  of
the mechanisms by which 3-HK may exert its effects in the brain
is summarized in Fig. 4.

Further considerations must be taken in regard to the possible
involvement of signaling pathways and their role in the integral
pattern of toxicity evoked by this metabolite, in order to
elucidate in a more detailed manner all those mechanisms
involved in the effects of 3-HK. Of further consideration is the

proven interaction of 3-HK with proteins and other biological
molecules. Particularly, the cost of these interactions is high as it
comprises protein cross-linking, as well as depletion of thiol
pools, mostly GSH. Furthermore, a possible role of 3-HK as a
neurotransmitter-like molecule, as it has been suggested for XA,
should be explored in a near future. One question emerges at this
specific point: is 3-HK directly responsible for damage in the
CNS, or are its derivatives, such as o-aminoquinone, the inducers
of cell demise? Trying to answer this question through the
reviewed evidence is difficult. One clue could be related with the
valuable report of Guidetti and Schwarcz (1999) in which 3-HK
was tested under in vivo conditions. Once again, when adminis-
tered alone, this metabolite was unable to extend the lesion area
of the striatum. Because authors declared that 3-HK did not yield
QUIN synthesis, then the metabolite itself is assumed to be
unable of inducing toxicity. The question now is whether
oxidative damage, as mild as it can be, could recruit survival
responses. In this regard, it is also known that some antioxidants
and electrophilic compounds act through the induction of
integrative antioxidant responses, comprising the activation
of signaling pathways, such as the Nrf2/Keap1/Are axis, a master
modulator of antioxidant responses (Lee and Johnson, 2004).
Either as a Michael acceptor or as an electrophilic compound, 3-
HK could recruit this resource. In addition, since one of the most
important components of neurodegenerative events involves

Fig. 4. Schematic representation of the mechanisms underlying 3-HK formation and its effects in the brain. Tryptophan (TRP), kynurenine (KYN), and 3-HK can directly cross
the blood-brain barrier to reach glial cells, where they will be inserted into KP. Under physiological conditions, KP is activated to form the metabolic precursor NAD+; however,
under inflammatory, oxidative or neurotoxic attack, there is an increased activation of indoleamine dioxygenase (IDO), tryptophan dioxygenase (TDO) and kynurenine
monooxygenase (KMO), yielding a preferential formation of putative toxic metabolites, including 3-HK and quinolinic acid (QUIN). Whether 3-HK is then toxic, is the topic
discussed in this review. Both metabolites can be released to the extracellular cleft to reach near targets. Particularly, 3-HK can cross neuronal cell membranes through the
Neutral Amino Acid Transporter (NAT), and once inside, it can follow two routes: (1) if this molecule displays scavenging/antioxidant properties, then it would be able to
counteract the deleterious actions of preformed ROS/RNS either through a direct scavenging effect or by means of triggering integral antioxidant responses evoked by
transcription signaling pathways, such as the Nrf2/Keap1/ARE axis, a master modulator of antioxidant responses in the brain. (2) If 3-HK undergoes autooxidation, then it
would yield the formation of highly reactive molecules, such as o-aminoquinone, which in turn could be the real responsible for exacerbated oxidative damage, activation of
deadly cascades, and massive cell death. An alternative explanation for the toxic pattern exerted by this molecule comprises the formation of other toxic metabolites from 3-
HK metabolism. Being a direct precursor of 3-hydroxyanthranilic acid, 3-HK might eventually account for QUIN formation. The latter is responsible not only for excitotoxicity,
but also for oxidative stress. Therefore, in a scenario where both 3-HK and QUIN could be present, neurodegeneration is expected to be potentiated. For further consideration
in this figure, Guillemin et al. (2007) have demonstrate that primary cultured neurons and SK-N-SH cells can directly produce enhanced levels of 3-HK and other KP
metabolites in response to pro-inflammatory stimuli.
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inflammatory processes, the precise role of 3-HK in the
induction/modulation of the NFkB pro-inflammatory signaling
needs detailed characterization. This is particularly relevant as a
cross-talk between these two pathways cannot be ruled out in
physiological and physiopathological events in the brain. These
key considerations shall be explored in a near future in order to
provide 3-HK with its real position in the KP modulatory actions
on the CNS: a redox sensitive modulator or a toxic intermediate
metabolite.
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