

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES IZTACALA

MORFOMETRÍA GEOMETRICA DE *Excitolana* braziliensis Richardson 1912 (Isopoda, CIROLANIDAE) DEL NORTE – CENTRO DE VERACRUZ, MÉXICO.

QUE PARA OBTENER EL TÍTULO DE **BIÓLOGA**

PRESENTA:

DANIELA ESPARZA OCAÑA

DIRECTOR DE TESIS BIOL. EDGAR PELÁEZ RODRÍGUEZ

Los Reyes Iztacala, Estado de México, febrero 2017.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIA

A mis abuelos.

Delfina, Concepción,

Catalina y Jesús.

AGRADECIMIENTOS

Primero que nada quiero agradecer a mis padres Eloisa Ocaña Jasso y Fernando Esparza Venegas, ya que sin ellos yo no estaría en donde estoy, son mi mayor ejemplo y mi motor de vida, quienes me impulsan día a día a ser una mejor persona, mi guía pero sobre todo son la mano que necesito a diario para seguir.

A mi hermano Fernando Esparza por siempre darle alegría a mi vida, por alentarme y siempre apoyarme en los momentos difíciles, por nunca dejarme sola y estar cuando más lo necesito.

A mis hermanas Monica Salas, Areli Salas y Pamela Martínez por ser mi impulso, mi felicidad, mi equilibrio, por apoyarme y siempre decirme que debo ir por más, por no permitir que caiga y si lo llego hacer ayudarme a salir de ahí.

A mis apreciables amigos, a los que conozco desde hace tiempo, a los que se formaron en la carrera y los que la vida me ha regalado con el paso del tiempo. Muchas gracias Iván Contreras, Ana M. Mayen, Sandra P. García, Liliana A. Pulido, Michelle Castillo, L. Aarón Corona, Juan M. Hernández, Carlos A. García, Sandra S. Cruces, Michelle Valdés, Andrea Colis, Eduardo Segovia, Cristián I. Hernández, Xochitl Nieves, Yabín J. Castro, Eduardo Nava, J. Uriel Dimas, Nancy Santander, Ana K. López, Fernanda D. Aranda, Itzel Ríos, M. Fernanda Sánchez, M. Karen Cruz e Itzia Reyes por estar incondicionalmente ahí para mí, por estar al pendiente, por escuchar siempre las aventuras de cada práctica de campo, por apoyarnos mutuamente a seguir creciendo y no permitir que bajemos la guardia. Gracias por cada momento compartido y por permanecer, los quiero mucho.

Keith Ivanovich tengo que darte un agradecimiento muy especial por el apoyo, la confidencia, los momentos compartidos y que poco a poco me has enseñado a querer mejorar como ser humano, gracias por darme ese impulso que me faltaba para poder concluir esto tan importe para mí. Te quiero.

A mis profesores por las enseñanzas, los consejos, el tiempo, la dedicación que pusieron a cada materia que me impartieron, ya que sin ellos yo no tendría la pasión que le tengo a mi carrera.

Finalmente quiero agradecer al profesor Edgar Peláez por ser mi Director de Tesis pero también por ser un gran amigo, por no dejarme sola en ningún momento y alentarme a seguir luchando por lo que quiero.

Gracias Universidad Nacional Autónoma de México, gracias Facultad de Estudios Superiores-Iztacala.

"Por mi raza hablará el espíritu"

INDICE

Lista de figuras 1
Lista de tablas 2
Resumen
Introducción 4
Antecedentes
Justificación7
Objetivos7
General
Particulares
Material y métodos
Área de estudio
Trabajo de campo
Trabajo de laboratorio
Identificación
Morfometría geométrica
Análisis estadístico
Resultados11
Discusión

Conclusiones	
Recomendaciones	
Literatura citada	25
Anexo	30

LISTA DE FIGURAS

- Figura 1. Excirolana braziliensis. A) Vista dorsal, B) Pleopodo, C) Uropodo. (Kensley y Schotte, 1989).
- Figura 2. Excirolana braziliensis.
- Figura 3. Mapa de la ubicación de las seis playas en la región Centro-Norte de Veracruz, México.
- Figura 4. Localización de los 31 landmarks empleados en el análisis morfométrico.
- **Figura 5.** Puntuaciones de variación canónica de las hembras de las seis playas del norte centro de Veracruz, México.
- **Figura 6.** A, B, C) Pares de poblaciones ejemplificadas tomadas del grafico de ordenación y comparadas mediante análisis discriminante.
- Figura 7. Puntuaciones de variación canónica de los machos de las seis playas del norte centro de Veracruz, México.
- **Figura 8.** A, B, C) Pares de poblaciones ejemplificadas tomadas del grafico de ordenación y comparadas mediante análisis discriminante.
- Figura 9. Puntuaciones de variación canónica de las hembras y machos de las seis playas del norte centro de Veracruz, México.
- **Figura 10.** A, B, C) Pares de poblaciones ejemplificadas tomadas del grafico de ordenación y comparadas mediante análisis discriminante.
- Figura 11. Puntuaciones de variación canónica por sexos de las hembras y machos de las seis playas del norte centro de Veracruz, México.

LISTA DE TABLAS.

- **Tabla 1.** Parámetros fisicoquímicos del agua de las seis playas del norte centro de Veracruz, México.
- **Tabla 2.** Número de hembras y machos de las seis playas del norte centro de Veracruz, México.
- Tabla 3. Porcentaje de las pendientes de las seis localidades muestreadas.
- Tabla 4. Porcentaje del sustrato de cada localidad y nomenclatura de Wentworth.
- **Tabla 5.** Distancias Mahalanobis entre grupos de hembras, muestra las diferencias significativas en la forma del cuerpo. P=0.0001.
- Tabla 6. Variación entre grupos de hembras, escalados por la inversa de la variación intragrupal.
- **Tabla 7.** Distancias Mahalanobis entre grupos de machos, muestra las diferencias significativas en la forma del cuerpo. P=0.0001.
- Tabla 8. Variación entre grupos de machos, escalados por la inversa de la variación intragrupal.
- **Tabla 9.** Distancias Mahalanobis entre grupos de machos y hembras, muestra las diferencias significativas en la forma del cuerpo. P=0.0001.
- **Tabla 10.** Variación entre grupos de machos y hembras, escalados por la inversa de la variación intragrupal.

RESUMEN

Excirolana braziliensis es una especie supralitoral con desarrollo directo que se adapta a todo el gradiente morfodinámico de la playa. Cuenta con una amplia área de distribución geográfica. Es una especie de isópodo marino, pequeña y dioica, vive en la zona alta intermareal de las playas arenosas. Los machos son reconocidos por los penes pareados sobre el esternón del segmento torácico y por los estiletes en el segundo pleópodo. El análisis resolutivo de la forma a través de métodos de morfometría geométrica y el análisis genético concluyen sobre la plasticidad fenotípica de las especies. El objetivo del presente trabajo fue analizar la forma del cuerpo de seis poblaciones de *E. braziliensis* de la región centro-norte de Veracruz, México. (Playa Azul, Casitas, Lechuguillas, Chalchihuecan, El Bayo y Camaronera).

Se realizaron cuatro muestreos, en abril y julio del 2015 y en marzo y agosto del 2016, registrando también parámetros ambientales de agua y arena. Para el análisis morfométrico se obtuvieron imágenes digitales de individuos machos y hembras, procesadas con el software Tps Dig2 Versión 2.17 mediante la ubicación de landmarks. Los datos se analizaron con el software MorphoJ Versión 1.06d para determinar si existían diferencias entre los caracteres morfométricos de las 6 poblaciones y entre sexos, utilizando Análisis de Variación Canónica (CVA) y Discriminante.

Se analizaron un total de 146 individuos. Las condiciones ambientales para el agua no registran diferencias significativas a excepción de la temperatura, mientras que para el sustrato arenoso si hay diferencias.

Se concluye en el análisis CVA que si existen diferencias significativas para las distancias Mahalanobis (p < 0.0001) en la forma del cuerpo entre machos y hembras dependiendo de las características ambientales de las playas en las que habitan, ya que los machos suelen ser más oblongos y las hembras son de forma ovoide, en la región cefálica las hembras presentan una mayor distancia interocular con respecto a cada playa.

INTRODUCCIÓN

Las playas arenosas son ambientes rigurosos y dinámicos que actúan como zonas de transición entre la tierra y el mar albergando macrofauna intermareal bien adaptada a esas condiciones (McLachlan et al. 1995). La zona mesolitoral de las playas arenosas constituye el hábitat de gran diversidad de organismos, conformando ensamblajes complejos de macroinvertebrados (Borzone, Souza y Soares, 1996); en ellos, los crustáceos, moluscos y gusanos poliquetos habitualmente son los grupos dominantes (Defeo et al., 2009). Los crustáceos más representativos incluyen especies de Peracarida (Isopoda y Amphipoda) y Decapoda (Caridea y Anomura) (Ocaña et al., 2012). Excirolana braziliensis es un isópodo marino, invertebrado intennareal de mayor densidad en muchas playas arenosas de América Tropical (Glynn et al. 1975). Esta especie habita en una amplia variedad de substratos arenosos, incluyendo substratos de cuarzo, calcáreos e ígneos, cuyos intervalos del tamaño del grano del sedimento varían de 20 a 431 micras (Brusca e Iverson 1985). Su relación con la morfodinámica no es clara, ya que existen resultados opuestos a nivel de macroescala. Cuenta con una amplia área de distribución geográfica en América y Chile. Se ha encontrado en el Océano Pacífico, desde el Golfo de California hasta México (Dexter, 1976) a la isla de Chiloé en el sur de Chile (Jaramillo, et al., 2000). En el Océano Atlántico se ha informado desde el Golfo de México (Dexter, 1976) a Uruguay (Defeo, et al., 1997). Sin embargo, a pesar de su amplia distribución, esta especie posee una limitada capacidad de dispersión debido a que carece de etapa larval, las hembras tienen una progenie de 4-17 crías que se incorporan al hábitat parental como "mancas" (Lessios y Weinberg, 1994). Esta especie vive enterrada en la arena durante la marea baja, y emerge a la columna de agua durante la marea alta, en este periodo se observa una zonificación de los organismos por edades ya que los adultos son confinados a los niveles más altas de la marea, mientras que los juveniles son más comunes en lo más bajo de la playa (Glynn, et al., 1975).

*Excirolana braziliensis m*ide alrededor de 7,5 mm de longitud. Dorso con numerosos cromatóforos, bien distinguidos, puntiagudos y dendríticos. Presentan una larga antena que alcanza por lo menos el IV pereonito. Artículos del palpo maxilipedal con largas setas plumosas. Pleotelson con 10-30 setas plumosas marginales, pero no presenta espinas marginales. Exópodo uropodal mucho más largo que el endópodo (Brusca e Iverson 1985). Cuenta con desarrollo directo que se adapta a todo el gradiente morfodinámico (Cardoso y Defeo, 2004).

Figura 1. Excirolana braziliensis. A) Vista dorsal, B) Pleopodo, C) Uropodo. (Kensley y Schotte, 1989).

Figura 2. Excirolana braziliensis.

ANTECEDENTES

Weinberg y Starczak en 1988 y 1989 realizaron estudios morfométricos de genética multivariados de *E. braziliensis* los cuales revelaron la existencia de tres morfos, dos de ellos cercanamente relacionados y encontrados en lados opuestos de Centro América, denominados como morfo C y C^{\cdot}. El tercero, se encuentra predominante en el este del Pacífico, pero sobre todo es las costas del sur de Brasil denominado como morfo P.

Fonseca y colaboradores en el 2000 en su trabajo sobre el crecimiento, mortalidad y reproducción de *E. braziliensis* reportaron no haber encontrado una estratificación vertical en el patrón de zonificación.

Cardoso y Defeo en el 2003 encontraron con fuertes variaciones latitudinales en características reproductivas de las poblaciones de *E. braziliensis* de los océanos Pacífico y Atlántico. A pesar de que los autores atribuyeron las variaciones a la plasticidad fenotípica, la divergencia fenotípica también podría ser una consecuencia de la diferenciación genética entre las poblaciones locales.

Cardoso y Defeo en el 2004 concluyeron que *E. braziliensis* tiene una alta plasticidad fenotípica para adaptar su dinámica poblacional a los gradientes latitudinales de su rango de distribución.

Defeo y colaboradores en 1997 mostraron ausencia de preferencia por tamaño de sedimento; sin embargo, en simpatría con *E. armata*, que tiene preferencia por sedimento fino, la última desplaza a la primera hacia sedimentos más gruesos y niveles de playas más altos. Como Aguada presentó la mayor abundancia de *E.* armata en relación al sedimento más fino, *E. braziliensis* podría ser desplazada hacia los niveles superiores (limitado) y probablemente al sector contiguo (Arachania) donde la abundancia de *E. armata* es más baja y el ancho de playa es mayor, disminuyendo potenciales efectos competitivos por espacio y/o alimento.

JUSTIFICACIÓN

El presente trabajo, cuyo tema es Morfometría geométrica de *Excirolana braziliensis* Richardson 1912 (ISOPODA, CIROLANIDAE) del centro – norte de Veracruz, México tiene como finalidad analizar poblaciones de diferentes playas debido a que se ha observado que las poblaciones presentan caracteres anatómicos distintos por lo que se considera relevante para efecto de mi trabajo evaluar las poblaciones con los softwares MorphoJ y Tps Dig, y con ello pretendo aportar la información que aún no se reporta sobre la anatomía y diferencias de los organismos.

OBJETIVOS

GENERAL

Determinar la morfometría geométrica de *E. braziliensis* en seis playas del Norte – Centro de Veracruz; Azul, Casitas, Lechuguillas, Chalchihuecan, El Bayo, Camaronera.

PARTICULARES

- Describir las condiciones físicas y químicas del agua y la textura del sustrato de las seis playas.
- Describir las diferencias de morfometría geométrica entre las seis poblaciones de E. braziliensis.
- Describir las diferencias de morfometría geométrica entre machos y hembras con respecto a la localidad.

MATERIAL Y MÉTODOS

UBICACIÓN DEL ÁREA DE ESTUDIO

Figura 3. Mapa de la ubicación de las seis playas en la región Centro-Norte de Veracruz, México.

Las áreas de estudio se localizan en la costa del Golfo de México, Playa Azul, Cazones (20°41'33.61" N latitud - 97°13'08.56" O longitud); Casitas (20°15'31.84" N latitud – 96°48'00.11" O longitud); Lechuguillas (20°00'19.32" N latitud – 96°34'34.49" O longitud); Chalchihuecan (19°20'13.20" N latitud – 96°18'16.26" O longitud); El Bayo (19°00'36.24" N latitud – 95°57'59.15" O longitud) y Camaronera (18°51'30.86" N latitud – 95°54'04.51").

Trabajo de campo

Los ejemplares de *E. braziliensis* se colectaron en los meses de abril y julio del 2015, marzo y agosto del 2016. Los isópodos se capturaron utilizando un nucleador, realizando cinco transectos en la zona supralitoral de las playas durante la marea baja. Los organismos capturados se fijaron con alcohol al 70% y fueron almacenados en viales debidamente etiquetados. La pendiente se calculó por el método de Emery (1961) para cada playa. Se tomaron muestras de sedimento para analizar el tamaño de partícula.

Pruebas fisicoquímicas del agua. Se realizaron pruebas fisicoquímicas al agua en cada una de las playas, las prueban fueron: temperatura, conductividad, TDS, Salinidad.

Trabajo de laboratorio

Identificación. (ANEXO 1) Los organismos fueron identificados a nivel de especie con la guía de crustáceos isópodos marinos del Caribe propuestas por Kensley y Schotte (1989).

Pruebas fisicoquímicas de suelo. Se tomó muestra de suelo en el campo y se llevó al laboratorio para realizarle análisis granulométricos (Wentworth, 1922).

Morfometría geométrica. Se utilizaron fotografías digitales por cada individuo, tomadas con una cámara NIKON modelo D-3200 y la ayuda de un tripie. Éstas fueron procesadas con el software Tps Dig2 Versión 2.17 mediante la ubicación de 31 landmarks.

Figura 4. Localización de los 31 landmarks empleados en el análisis morfométrico.

Análisis estadístico (Procrustes). Los datos fueron analizados utilizando el software MorphoJ Versión 1.06d con el cual se realizó un análisis tipo Procrustes para observar la separación de los caracteres morfométricos dentro y entre las poblaciones.

Análisis estadístico. Para comprobar si existen diferencias significativas entre las poblaciones se llevó a cabo un Análisis de Variación Canónica (CVA) para observar las diferencias entre las poblaciones y por sexo. Además se hizo la validación estadística de los resultados mediante un Análisis Discriminante Multivariado (ADM) entre pares de poblaciones y por sexos.

RESULTADOS

Los parámetros fisicoquímicos del agua nos muestran que la temperatura tiene un rango de 19.5°C en Playa Azul, Cazones con la temperatura más fría y la más cálida se encuentra en Playa Chalchihuecan con 30.6°C. La conductividad indica que la Playa Azul, Cazones con 31.0 (ms) tiende a transmitir una corriente eléctrica menor a diferencia de las otras playas y que Playa Lechuguillas presenta la mayor conductividad con 47.3 (ms), estas medidas están muy relacionadas con los sólidos totales disueltos (TDS). Finalmente la salinidad tiene un rango de 26.3 (ppt) en Casitas y el más alto en Lechuguillas de 29.2 (ppt) (Tabla 1).

Pruebas Fisicoquímicas del Agua					
	Temperatura (°C)	Conductividad (ms)	TDS (ppt)	Salinidad (ppt)	
Azul, Cazones	19.5	31.0	20.2	26.0	
Casitas	27.2	43.1	21.5	26.5	
Lechuguillas	26.1	47.3	23.7	29.4	
Chalchihuecan	30.6	43.2	21.6	28.3	
Bayo	28.3	42.8	20.5	26.1	
Camaronera	26.0	42.6	20.3	25.2	

Tabla 1. Parámetros fisicoquímicos del agua de las seis playas del norte – centro de Veracruz, México.

En la Tabla 2 podemos observar el número de machos y hembras de las diferentes playas muestreadas, con un total de 146 individuos; 86 hembras y 60 machos. La playa con mayor abundancia fue Chalchihuecan con un total de 31 individuos de los cuales 15 son machos y 16 hembras. Y la playa con menor abundancia fue Camaronera con un total de 18 individuos; con 07 machos y 11 hembras.

Total de organismos					
Playas	Hembras	Machos	Total		
Azul, Cazones	13	11	24		
Casitas	14	10	24		
Lechuguillas	15	11	26		
Chalchihuecan	<mark>16</mark>	<mark>15</mark>	<mark>31</mark>		
Bayo	17	06	23		
Camaronera	<mark>11</mark>	07	<mark>18</mark>		
Total	86	60	146		
Total %	58.9	41.09	100		

Tabla 2. Número de hembras y machos de las seis playas del norte - centro de Veracruz, México.

Las playas Lechuguillas y Chalchihuecan registraron pendientes débilmente inclinadas a diferencia de las playas El Bayo y Camaronera con pendientes casi planas (Tabla 3).

Localidades	Pendiente (%)
Azul, Cazones	8.6
Casitas	9.8
Lechuguillas	12.6
Chalchihuecan	10.9
El Bayo	6.6
Camaronera	7.4

Tabla 3. Porcentaje de las pendientes de las seis localidades muestreadas.

Con la prueba granulométrica se llevó a cabo la medición del sedimento de las seis playas muestreadas, lo que nos indica que en cada una de ellas el tamaño que abunda es el de **arena fina/arenas** teniendo más del 30% de éste en su composición. (Tabla 4).

N° de malla	Localidad	% de Sustrato	Clase de tamaño Wentworth
80	Azul, Cazones	34.57	Arena fina/arenas
80	Casitas	33.84	Arena fina/arenas
80	Lechuguillas	36.16	Arena fina/arenas
80	Chalchihuecan	34.34	Arena fina/arenas
80	El Bayo	35.02	Arena fina/arenas
80	Camaronera	36.82	Arena fina/arenas

Tabla 4. Porcentaje del sustrato de cada localidad y nomenclatura de Wentworth.

Los análisis canónicos de varianza realizados y validados mediante un adecuado porcentaje de acumulación de varianza (ver tabla 6, 8 y 10), demuestran que existen diferencias significativas p < 0.001 (ver tablas 5, 7 y 9) en la morfometría de hembras, machos y hembras-machos para las seis localidades. En las figuras 5, 7 y 9 se puede observar las relaciones entre los *landmarks* por localidad, donde las elipses de confianza prueban la existencia de diferencias en la forma de los organismos, se pueden distinguir seis grupos distintos en cuanto a su morfometría geométrica. La variación entre los individuos de una localidad y otra se encuentran representados por la dispersión de los puntos, donde cada marca representa a un individuo de la población y cada elipse contiene un centroide; las distancias de los centroides corresponden con la Distancia Mahalanobis propia de la comparación

entre los grupos (elipses). Para poder entender adecuadamente las diferencias encontradas, en el ANEXO 2, 3 y 4, se muestran las tablas en donde se encuentran los coeficientes de variación de cada *landmark* en tres ejes, los valores más altos corresponden al par de *landmarks* que aportan mayor variabilidad, es decir, mayor diferencia en la morfometría del cuerpo entre las localidades.

Figura 5. Análisis de variación canónica de las hembras de las seis playas del norte – centro de Veracruz, México.

PLAYAS	Azul	Casitas	Lechuguillas	Chalchihuecan	El Bayo
Casitas	8.3555				
Lechuguillas	11.7065	7.9609			
Chalchihuecan	10.0755	6.3313	7.2554		
El Bayo	8.5485	8.0795	10.2887	6.9098	
Camaronera	14.6058	10.9222	8.9969	9.8535	12.7458

Tabla 5. Distancias Mahalanobis entre grupos de hembras, muestra las diferencias significativas en la forma del cuerpo. P=0.0001.

	Valores propios	Varianza %	Acumulativo %
1	19.73869249	49.668	49.668
2	7.70688129	19.393	69.061
3	5.71079718	14.37	83.431
4	4.1511379	10.445	93.877
5	2.43345759	6.123	100

Tabla 6. Variación entre grupos de hembras, escalados por la inversa de la variación intragrupal.

Las diferencias observadas en el análisis de variación canónica anterior son comprobadas mediante la aplicación del Análisis Discriminante Multivariado a tres pares de poblaciones elegidas bajo un criterio de separación de distancia de ordenación, es decir se eligieron un par de poblaciones lejanas, otro medio y un par cercano. El resultado de este análisis (ver figuras 6, 8 y 10), demuestran diferencias significativas entre aquellos pares de poblaciones (p < 0.0001).

Figura 6. Pares de poblaciones ejemplificadas tomadas del grafico de ordenación y comparadas mediante análisis discriminante.

Figura 7. Puntuaciones de variación canónica de los machos de las seis playas del norte – centro de Veracruz, México.

PLAYAS	Azul	Casitas	Lechuguillas	Chalchihuecan	El Bayo
Casitas	10.4366				
Lechuguillas	19.6923	14.4909			
Chalchihuecan	14.2931	18.5081	23.3818		
El Bayo	18.2564	18.4317	21.5932	21.6958	
Camaronera	21.6249	15.6714	11.7719	28.3193	26.968

Tabla 7. Distancias Mahalanobis entre grupos de machos, muestra las diferencias significativas en laforma del cuerpo. P=0.0001.

	Valores propios	Varianza %	Acumulativo %
1	100.756	59.199	59.199
2	33.182	19.496	78.696
3	25.713	15.108	93.803
4	5.694	3.347	97.15
5	4.85	2.85	100

Tabla 8. Variación entre grupos de machos, escalados por la inversa de la variación intragrupal.

	Playas	FUNCIÓN DISCRIMINANTE	
	Casitas-Chalchihuecan	Distancia Procustes	0.02696949
		Distancia Mahalanobis	4.7048
		T-cuadrada	132.8103
		Valores de P para la prueba de permutación	
		(1000 permutaciones):	
Castlas - Chilling		Distancia Procrustes	<.0001
Chalchikuecan		I-cuadrada	<.0001
	Lechuguillas-Camaronera	Distancia Procustes	0.02448251
	1.5.	Distancia Mahalanobis	2.6177
		T-cuadrada	29.3135
		Valores de P para la prueba de permutación	
		(1000 permutaciones):	
		Distancia Procrustes	0.0430
Lechuguillas - Camaronera		T-cuadrada	0.1860
	Azul-El Bayo	Distancia Procustes	0.05368038
		Distancia Mahalanobis	3.2616
S ALL ALL A		T-cuadrada	41.3015
		Valores de P para la prueba de permutación	
		(1000 permutaciones):	
		Distancia Procrustes	0.0010
Azul - Bayo		T-cuadrada	0.0320

Figura 8. Pares de poblaciones ejemplificadas tomadas del grafico de ordenación y comparadas mediante análisis discriminante.

Figura 9. Puntuaciones de variación canónica de las hembras y machos de las seis playas del norte – centro de Veracruz, México.

PLAYAS	Azul	Casitas	Lechuguillas	Chalchihuecan	El Bayo
Casitas	3.8984				
Lechuguillas	4.99	5.5125			
Chalchihuecan	4.6059	4.9618	4.9683		
El Bayo	5.1376	5.6268	6.0388	3.818	
Camaronera	5.6696	5.6882	5.0883	6.3666	6.9028

Tabla 9. Distancias Mahalanobis entre grupos de machos y hembras, muestra las diferenciassignificativas en la forma del cuerpo. P=0.0001.

	Valores propios	Varianza %	Acumulativo %
1	4.56833368	38.485	38.485
2	3.0027991	25.297	63.782
3	1.87026844	15.756	79.538
4	1.34331471	11.317	90.854
5	1.08565871	9.146	100

 Tabla 10. Variación entre grupos de machos y hembras, escalados por la inversa de la variación intragrupal.

	Playas	FUNCIÓN DISCRIMINANTE	
	Azul-Camaronera	Distancia Procustes	0.05152982
		Distancia Mahalanobis	6.8466
		T-cuadrada	466.4697
		Valores de P para la prueba de permutación	
		(1000 permutaciones):	
		Distancia Procrustes:	<.0001
AZAL - CAMAFONEFA		I-cuadrada	<.0001
	Chalchihuecan-El Bayo	Distancia Procustes	0.01125007
		Distancia Mahalanobis	13.5318
		T-cuadrada	2417.7206
		Valores de P para la prueba de permutación	
		(1000 permutaciones):	
		Distancia Procrustes:	0.4260
Chalchihnecan - Bayo		T-cuadrada	0.0240
	Casitas-Lechuguillas	Distancia Procustes	0.05531875
		Distancia Mahalanobis	8.0661
S.		T-cuadrada	811.9793
		Valores de P para la prueba de permutación	
		(1000 permutaciones):	
		Distancia Procrustes	<.0001
Casilas - Lechnguillas		T-cuadrada	<.0001

Figura 10. A, B, C) Pares de poblaciones ejemplificadas tomadas del grafico de ordenación y comparadas mediante análisis discriminante.

En la figura 11 podemos observar los *landmarks* analizados estadísticamente por medio del CVA que da como resultado los gráficos de Lollipop con cuadricula de transformación. En la comparación de los individuos según el sexo, el análisis CVA arrojó que la diferencia entre éstos, está definida muy claramente ya que las hembras tienden a ser más ovoides y los machos resultan ser oblongos.

Figura 11. Puntuaciones de variación canónica por sexos de las hembras y machos de las seis playas del norte – centro de Veracruz, México.

discusión

En el presente trabajo se colectaron 146 organismos de los cuales todos fueron identificados como *Excirolana braziliensis* (de acuerdo a la claves de Schotte y apegados estrictamente a la descripción de especie), de acuerdo con Glynn *et al.* 1975, *E. braziliensis* y *E. mayana* tienden mucho a confundirse, sin embargo, se diferencian morfológicamente por el tamaño del pleon y el armamento del margen posterior del pleotelson. El pleon en *E. mayana* presenta el endópodo uropodal ligeramente más corto que el exópodo, el pleotelson tiene una longitud de 2/3 del ancho, mientras que en *E. braziliensis* el pleotelson es 1/2 del ancho. En *E. mayana* el margen posterior del pleotelson espinas y setas, y carece de la depresión transversa típica de la mayoría de las especies del genero *Excirolana*. Se utilizaron machos y hembras de talla adulta para realizar los análisis, no se encontraron hembras ovígeras ya que los muestreos se realizaron en los meses de marzo-abril y julio-agosto y la reproducción de estos organismos empiezan en el mes de Noviembre, cuando las hembras con oostegites aparecen por primera vez debido a la "muda ovigiosa" (Johnson *et al.*, 2001).

Se analizaron seis playas arenosas en el Estado de Veracruz, México en donde se colectaron a los organismos específicamente al bajar la marea, lo que demuestra un patrón de zonación bien marcado para la especie. Este registro coincide con el de De Mahieu y Gamba 1980, quienes reportaron a *E. braziliensis* para la zona supralitoral de un litoral arenoso. El crustáceo presenta ornamentaciones oscuras en el dorso, lo que le permite confundirse en la arena con tonos grises olivo principalmente, en la que fue encontrada con mayor frecuencia. La arena fina, al ser más uniforme, permite a los isópodos del género *Excirolana* se puedan mover con mayor facilidad, ya que sus apéndices son pequeños (Méndez et al., 1985).

La densidad de la macrofauna intermareal sufre importantes variaciones espaciales a lo largo de las playas de arena. La morfodinámica de la zona intermareal constituye dentro del contexto de la «ecología de playas de arena», el factor clave explicativo de la distribución y densidad de la macrofauna intermareal (McLachlan 1989; McLachlan et al., 1993, Jaramillo et al., 1993). La morfodinámica está asociada a una serie de variables físicas altamente correlacionadas: tipo de sedimento, pendiente de la playa, tipo de oleaje y clima de marea. La heterogeneidad espacial es un fenómeno muy común en la naturaleza (Watt, 1947; Roughgarden, 1977; Kotliar y Wiens, 1990; Levin, 1992). De hecho, la mayor parte de las especies se distribuyen en el espacio según

un patrón agregado (Hulbert, 1990; Levin, 1992). Las agregaciones espaciales de organismos, pueden tener diferentes causas, que van desde fenómenos conductuales (Gendron, 1977), reclutamiento (Navarrete y Castilla, 1990; Raimondi, 1990), competencia (Fleeger y Gee, 1986), disponibilidad de alimento (Palmer *et al.*, 1996), perturbación (Thistle, 1981; Pickett y White, 1985; Sousa, 1985) y factores físicos (Jakson y Caldwell, 1993; Chapman y Underwood, 1994). No obstante, estudios recientes han revelado el alto potencial de las especies de peracáridos litorales para ser dispersados pasivamente sobre sustratos flotantes. De hecho muchas especies presentan un extenso rango de distribución geográfica, remarcando dicho potencial de dispersión. Son importantes convertidores de biomasa (viva o muerta) debido a su alimentación, a su tamaño intermedio y a su elevada abundancia (Thiel & Hinojosa, 2009). Cardoso y Defeo en el 2004 concluyeron que *E. braziliensis* tiene una alta plasticidad fenotípica para adaptar su dinámica poblacional a los gradientes latitudinales de su rango de distribución.

En las playas, la interacción entre el clima de oleaje, tipo de sedimento y el régimen de mareas, produce un rango de tipo morfodinámico continuo desde playas micromareales reflectivas (angostas e inclinadas) hasta playas macromareales disipativas (amplias y planas bajo condiciones de mareas amplias), con variaciones intermedias entre estos extremos (Short, 1996). Las playas arenosas en estado reflectivo ocurren donde las olas son pequeñas, usualmente en promedio menor a 0.5 m de altura. Son de arena gruesa y pendientes empinadas (5-10°), delineadas, hacia el mar, por largas ondulaciones (que dibuja el agua en la arena), llamadas cuspilitos o, en su lugar, hacia tierra, en planos secos llamados bermas (Finkl, 2004). De las seis playas muestreadas, tres de ellas (Casitas, Lechuguillas y Chalchihuecan) presentan una pendiente empinada (5-7°), mientras que las otras tres (Camaronera, El Bayo y Azul, Cazones) presentan una pendiente casi plana (4° aproximadamente). En este sentido, Brusca e Iverson (1985) encontraron que E. braziliensis se localiza en playas arenosas durante la marea alta, media y baja, predominantemente en arenas con una composición del tamaño del grano del sedimento de 50% (20-40 µm) y 50% (40-130 µm). Según el estudio granulométrico realizado en el presente trabajo las playas tienen una composición granulométrica de <50% (arena mediana/arena) y >50% (arena fina/arena) que varía de (100-177 μ m), lo que corrobora lo establecido sobre la preferencia de E. braziliensis en habitar playas de arena fina.

Se cree que dependiendo la pendiente y los parámetros fisicoquímicos hay un mayor número de organismos, puede ser porque el oleaje es más fuerte, o porque las playas Casitas, Lechuguillas y Chalchihuecan son más concurridas por turistas y esto ocasiona que exista materia orgánica excedente la cual puede provocar atraer a los organismos más fácil a la superficie de la playa, a diferencia de las otras tres playas; Camaronera, El Bayo y Azul, Cazones son playas que se utilizan más para la pesquería o son playas que no están ubicadas en zonas turísticas y la materia orgánica es menor.

Las nuevas técnicas de la morfometría geométrica, basada en landmarks, son más efectivas para obtener información sobre la morfometría de un organismo, debido a que no plantean ninguna restricción en la dirección y localización de los cambios morfológicos. De igual manera, los análisis estadísticos multivariados son una herramienta poderosa para probar y visualizar gráficamente las diferencias morfológicas (Loy et al., 1993; Rohlf et al., 1993). Es posible cuantificar las diferencias morfológicas mediante un CVA para poder distinguir diferencias morfológicas entre múltiples grupos de organismos, por sexo y clases de talla (Bravi, et al. 2013). El análisis CVA que se aplicó muestra que existen diferencias en la morfometría geométrica entre hembras y machos, como se puede observar en la figura 11, las hembras de todas las localidades resultan ser más grandes que los machos, sus cuerpos tienden a ser ovoides a diferencia de los machos que son oblongos, se puede inferir este resultado a que las hembras son las encargadas de las futuras crías y ya que los organismos se colectaron mayormente en los meses de julio y agosto podemos decir que se estaban preparando para poder reproducirse y contar con energía para poder producir los gametos. Las Distancias Mahalanobis, utilizadas en el ADM, hicieron posible visualizar precisamente las similitudes y las diferencias morfológicas; en las hembras, machos y hembras-machos podemos observar los pares de localidades que se analizaron para entender mejor en cuales localidades hay mayor variabilidad. En las hembras se observa que utilizando el Análisis Discriminante Multivariado a tres pares de poblaciones elegidas bajo un criterio de separación de distancia de ordenación, es decir se eligieron un par de poblaciones lejanas, otro medio y un par cercano (figura 6), demuestran diferencias significativas entre los pares de poblaciones (p < 0.0001). A diferencia de los machos que solo en el caso del par Casitas-Chalchihuecan se encuentras diferencias significativas, va que en los otros dos pares el p > 0.0001 (figura 8). Finalmente en los pares de machos-hembras solo se encuentran diferencias significativas en los pares de Azul-Camaronera y Casitas-Lechuguillas p < 0.0001 (figura 10).

Las diferencias observadas en el análisis de variación canónica anterior son comprobadas mediante la aplicación del resultado de este análisis (ver figuras 6, 8 y 10).

Santamaria, *et al.* (2013) mencionan que un isópodo del Archipielago tiene una forma ovoide y sus ojos parecen estar separados por una distancia similar o mayor que el ancho total del ojo, esto lo relacionamos con los resultados arrojados en este trabajo, ya que los machos de *E. braziliensis* presentan características similares en la forma del cuerpo, estos tienen el cuerpo más oblongo, su área interocular es menor al igual que el primer segmento del tórax, la línea que se encuentra en el telson es más corta y se localiza más lejos del pleotelson, al igual que *Ligia kanaiensis*, que tiene una forma estrecha de cuerpo oblongo-ovoide (Edmondson, 1931). A diferencia de las hembras que presentan una mayor área interocular, el ancho de primer segmento es más extenso y finalmente los huecos anteriores que se encuentran unidos por una línea se localizan más cerca del último segmento del pleotelson.

El estudio de la morfometría geométrica permite abordar claves biológicas del mosaico de formas, como su transformación o variación y la resultante de su interacción, que es la covariación con el medio físico. De tal manera, que si existe una fuerte relación entre la morfología y la ecología es posible predecir que la explotación de los recursos naturales se basa en la forma del cuerpo. El análisis de la morfometría geométrica, por sexo y clases de talla, reveló una variedad de cambios en la forma corporal, que pueden ser explicados en términos de alimentación debido a que, comúnmente, las adaptaciones morfológicas de los organismos se asocian a las características del nicho (Oliveira *et al.* 2010). Los cambios en la dieta de poblaciones estructuradas por tamaños se asocian con cambios morfológicos o etológicos durante la ontogenia, que permite a los miembros de una especie compartir el hábitat al dividir eficazmente a los individuos en gremios alimenticios, basados en su tamaño (Wilson, 1975; Lind y Welsh, 1994; Sainte-Mary y Chabot, 2002).

CONCLUSIONES

La proporción de sexos en la población es mayor en las hembras con un 58.9% contra un 41.09% de los machos. Se atribuye mayor abundancia de la especie en las localidades con mayor pendiente, mayor temperatura y mayor afluencia turística.

El análisis canónico muestran que hay diferencias significativas en la morfometría geométrica del cuerpo de *E. braziliensis* tanto en machos como en hembras entre las seis localidades. De manera detallada el análisis discriminante indica diferencias en la morfometría geométrica del cuerpo de *E. braziliensis* en porciones especificas del cuerpo comparadas por pares de poblaciones.

Los análisis canónicos muestran que hay diferencias significativas en la forma entre machos y hembras, posiblemente depende de las características físicas y químicas de las playas en las que habitan, ya que los machos suelen ser oblongos y las hembras ovoides. En la región cefálica las hembras presentan una mayor área interocular, el ancho de primer segmento es más extenso y finalmente los huecos anteriores que se encuentran unidos por una línea se localizan más cerca del último segmento del pleotelson.

RECOMENDACIONES

Se recomienda hacer muestreos en todos los meses del año. Muestrear machos, hembras y hembras ovígeras para poder ver las diferencias de éstas con las hembras que no lo están y finalmente se recomienda hacer un estudio morfométrico de las estructuras diacríticas de la especie.

LITERATURA CITADA

B

- Borzone, C. A., Souza, J. R. B. y Soares, A. G. 1996. Morphodynamic influence on the structure ofinter and subtidal macrofaunal communities of subtropical sandy beaches. Revista Chilena de Historia Natural, 69, 565–577.
- Bravi, R., Ruffin, M. y Scalici, M. 2013. Morphological variation in riverine cyprinids: a geometric morphometric contribution. Italian Journal of Zoology. 80(4):536-546.
- Brusca, R. C. e Iverson, E. W. 1985. A guide to the marine isopod Crustacea of Pacific Costa Rica. Rev Biol Trop (Supl. 1):1-77.

С

- Cardoso, R. S. y Defeo, O. 2003. Geographical patterns in reproductive biology of the Pan-American sandy beach isopod Excirolana braziliensis. Marine Biology 143: 573-581.
- Cardoso, R. S. y Defeo, O. 2004. Biogeographic patterns in life history traits of the Panamerican Sandy beach isopod Excirolana braziliensis. Estuar Coast Shelf Sci 61:559-568.
- Chapman, M.G. y A.J. Underwood. 1994. Dispersal of the intertidal snail, Nodilittorina pyramidalis, in response to the topography complexity of the substratum. J. Exp. Mar. Biol. Ecol., 179: 145-169.

D

De Mahieu, G. C. y Gamba, A. L. 1980. Zonación litoral de algunas comunidades de sustrato arenoso del área de Golfo Triste, Venezuela. Simposia Universidad Simón Bolívar, Caracas, Venezuela. Ed. Equinoccio: 77-114.

Defeo, O. A; Brazeiro, A. de A. and Riestra, G. 1997. Is sandy beach macrofauna only physically controlled. Role of substrate and competition in isopods. Estuarine, Coastal and Shelf Science 45: 453-462.

- Defeo, O., McLachlan, A., Schoeman, D. S., Schlacher, T. A., Dugan y J., Jones, A. 2009. Threats to sandy beach ecosystems: a review. Estuarine, Coastal and Shelf Science, 81, 1–12.
- Dexter, D. 1976. Natural history of the Pan-American sand beach isopod Excirolana braziliensis (Crus- tacea: Malacostraca). Journal of Zoology (London) 183:103-109

E

Edmondson, C. H. 1931. New crustaceans from Kauai, Oahu, and Maui. Occas Pap Bernice P Bishop. Museon 9: 3-18.

F

- Finkl, C. W., 2004. Coastal classification: Systematic approaches to the development of a proposed omprehensive scheme. Journal of Coastal Research, 20(1), in press.
- Fleeger, J.W. y J.M. Gee. 1986. Does interference competition determine the vertical distribution of meiobenthic copepods? J. Exp. Mar. Biol. Ecol., 95: 173-181.
- Fonseca, D.B., Veloso, V.G. & Cardoso, R.S., 2000. Growth, mortality and reproduction of Excirolana braziliensis Ricardson, 1912 (Isopoda: Cirolanidae) on the Prainha Beach, Rio de Janeiro, Brazil. Crustaceana, 73, 535-545.

G

- Gendron, R.P. 1977. Habitat selection and migratoty behaviour of the intertidal gastropod Littorina littorea (L.). J. Animal Ecol., 46: 79-92.
- Glynn, P. W. Dexter, D. M. y Bowman, T. E. 1975. *Excirolana braziliensis*, a Pan-American sand beach isopod: taxonomic status, zonation and distribution. J. Zool. London 175: 509-521.

H

Hulbert, S.H. 1990. Spatial distribution of the montane unicorn. Oikos, 58: 257-271.

J

- Jakson, R.B. y M.M. Caldwell. 1993. Geostatistical patterns of soil heterogeneity around individal perennial plants. J. Ecol., 81: 683-693.
- Jaramillo, E., y S. Fuentealba. 1993. Down-shore zonation of two cirolanid isopods during two spring - neap tidal cycles in a sandy beach of south central Chile. Rev. Chil. Hist. Nat., 66: 439-454.
- Jaramillo, E. C. y Contreras, H. 2000. Sandy beach macroinfauna from the coast of Ancud, Isla de Chiloe, southern Chile. Revista Chilena de Historia Natural 73: 771-786.
- Johnson, W. S., Stevens, M. y Watling, L. 2001 Reproduction and development of marine peracaridans. Adv Mar Biol 39:105-260.

K

- Kensley, B. F. and Schotte, M. 1989. Guide to de marine isopod crustaceans of the Caribbean. Smithsonian Institution Press. Washington, D. C. and London. 293 p.
- Kotliar, N.B. y J.A. Wiens. 1990. Multiple scale of pathiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos, 59: 253-260.

L

- Lessios, H. y Jr. Weinberg. 1994. Genetic and morphological divergence among morphotypes
- of the isopod Excirolana on the two sides of the Isthmus of Panama. Evolution 48: 530-548.
- Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology, 73(6): 1943-1967.
- Lind, A. J. y Welsh Jr., H. H. 1994. Ontogenetic changes in foraging behavior and habitat use the Oregon garter snake, *Thamnophis atratus hydrophilus*. Animal Behaviour. 48: 1261-1273
- Loy, A. Corti, M. y Marcus, L. F. 1993. Landmark data: size and shape analysis in systematic. A case study on Old World Talpidae (Mammalia, Insectivora). In LF Marcus, E. Bello, A García-Valdecasas, eds. Contributions to morphometrics. Madrid: Museo Nacional de Ciencias Naturales. P 213-240.
- Loy, A., Cataudella, S. y Corti M. 1996. Shape changes during the growth of the sea blass. Advances in morphometrics. New York: Plenum Press. Pp. 309-405.

Μ

- McLachlan, A. 1983. Sandy beach ecology: a review. Sandy beach as ecosystem. McLachlan A. y T. Erasmus, Junk. The Hague, 321-380.
- McLachlan, A. 1989. Behaviour adaptation of sandy beach organims: an ecological perspective. Beheviour adaptation to intertidal life. Chelazzi, G. y M. Vannini, Plenum Publishing Corporation, 449-475.
- McLachlan, A., Jaramillo, E., Defeo, O., Dugan, J., de Ruyck, A., Coetzee, P. 1995. Adaptations of bivalves to different beach types. J Exp Mar Biol Ecol 187: 147-160
- Méndez, U. M. N., Solís-Weiss, V. y Carranza-Edwards, A. 1985. La importancia de la granulometría en la distribución de organismos bentónicos. Estudio de playas del estado de Veracruz, México. Anales del Centro de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. 13(3): 45-56.

N

Navarrete, S.A.y J.C. Castilla. 1990. Barnacle walls as mediators of intertidal mussel recruitment: effects of patch size on the utilization of space. Mar. Ecol. Prog. Ser., 68: 113-119.

0

- Ocaña, F., Apín, Y., Cala, Y., Vega, A., Fernández, A. y Córdova, E. 2012. Distribución espacial de los macroinvertebrados de playas arenosas de Cuba oriental. Revista de Investigaciones Marinas, 32, 428–439.
- Oliveira, E.F., Goulart, E., Breda, L., Minte-Vera, C. V., De Souza, P. L. R. y Rizzanto, V. M. 2010.Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial an phylogenetic structures. Neotropical. 8(3):569-586

P

- Palmer, M.A.; P. Arensburger; A.P. Martin y D.W. Denman. 1996. Disturbance and patchspecific response: the interactive effects of woody debris and floods on lotic invertebrates. Oecologia, 105: 247-257.
- Pickettt, S.T.A. y P.S. White. 1985. Patch dynamics: a synthesis. The ecology of natural disturbance and patch dynamics. Pickettt, S.T.A. y P.S. White, Academic Press Inc, New York, 371-385.

R

- Raimondi, P.T. 1990. Patterns, mechanisms, consequences of variability in settlement and recruitment of intertidal barnacles. Ecol. Monogr., 60: 283-309.
- Rohlf, F. J., Loy, A. y Corti, M. 1996. Morphometric analysis of Old World Talpidae (Mammalia, Insectivora) using partial-warp scores. Systematic Biology. 45: 344-362.
- Roughgarden, J.D. 1977. Patchiness in the spatial distribution of a population caused by stochastic fluctuations in resources. Oikos, 29: 52-59.

S

- Sainte-Marie, B. y Chabot, D. 2002. Ontogenetic shifts in natural diet during benthic stages of American lobster (*Homarus americanus*), off the Magdalen Islands. Fish. Bull. 100: 106-116.
- Santamaria, C. A., Mateos, M., Taiti, S., DeWitt, T. J. y Hurtado, L. A. 2013. A Complex Evolutionary History in a Remote Archipelago: Phylogeography and Morphometrics of

the Hawaiian Endemic *Ligia* Isopods. Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America. Vol 8. Pp. 14.

- Short, A. D. 1996. The role of wave height, period, slope, tide range and embaymentisation in beach classifications: A review. Revista Chilena de Historia Natural, 69:589-604.
- Sousa, W.P. 1985. Disturbance and patch dynamics on rocky intertidal shores. The ecology of natural disturbance and patch dynamics. Pickettt, S.T.A. y P.S. White, Academic Press Inc, New York, 101-124.

Г

- Thiel M. & Hinojosa, I. 2009. Peracarida Anfípodos, Isópodos, Tanaiddáceos & Cumáceos. Fauna Marina Bentónica. 68p.
- Thistle, D. 1981. Natural physical disturbance and communities of marine soft bottoms. Mar. Ecol. Prog. Ser., 6: 223-228.

W

Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol., 36: 1-22.

- Weinberg, J. R. y V. R. Starczak. 1988. Morpho- logical differences and low dispersal between local populations of the tropical beach isopod, Exciro- lana braziliensis. Bulletin of Marine Science 42: 296-309.
- Weinberg, J. R. y V. R. Starczak. 1989. Morphological divergence of eastern Pacific and Caribbean isopods: effects of a land bar- rier and the Panama Canal. Marine Biology 103: 143-152.
- Wilson, D. S. 1975. The adequacy of body size as a niche difference. The *American Naturalist*. 109: 769-784.

ANEXO

ANEXO 1. Clave para la especie Excirolana braziliensis Richardson, 1912.

Excirolana braziliensis Richardson, 1912.

Descripción: Mide alrededor de 7,5 mm de longitud; aunque algunos ejemplares pueden medir 2-5 mm. Dorso con numerosos cromatóforos, bien distinguidos, puntiagudos y dendríticos. Presentan una larga antena que alcanza por lo menos el IV pereonito. Artículos del palpo maxilipedal con largas setas plumosas. Pleotelson con 10-30 setas plumosas marginales, pero no presenta espinas marginales. Exópodo uropodal mucho más largo que el endópodo (Brusca e Iverson, 1985).

N° de malla	Localidad	% de Sustrato	Clase de tamaño Wentworth
20	Azul, Cazones	0.81	Arena gruesa/arenas
35		2.68	Arena gruesa/arenas
50		8.32	Arena mediana/arena
60		25.4	Arena mediana/arena
80		34.57	Arena fina/arenas
100		13.15	Arena fina/arenas
120		12.28	Arena fina/arenas
Recuperador		3.6	
Total		100.81	
20	<u>Casitas</u>	0.3	Arena gruesa/arenas
35		0.76	Arena gruesa/arenas
50		7.8	Arena mediana/arena
60		11.98	Arena mediana/arena
80		33.84	Arena fina/arenas
100		32.21	Arena fina/arenas
120		10.7	Arena fina/arenas
Recuperador		2.75	
Total		100.34	
20	<u>Lechuguillas</u>	0	Arena gruesa/arenas
35		0.58	Arena gruesa/arenas
50		17.49	Arena mediana/arena
60		19.73	Arena mediana/arena
80		36.16	Arena fina/arenas
100		18.42	Arena fina/arenas
120		5.12	Arena fina/arenas
Recuperador		2.5	
Total		100	
20	<u>Chalchihuecan</u>	0.13	Arena gruesa/arenas
35		4.17	Arena gruesa/arenas
50		15.46	Arena mediana/arena
60		12.84	Arena mediana/arena
80		34.34	Arena fina/arenas
100		25.66	Arena fina/arenas
120		5.64	Arena fina/arenas
Recuperador		1.8	
Total		100.04	

ANEXO 2. Porcentaje del sustrato de cada localidad y nomenclatura de Wentworth.

20	<u>El Bayo</u>	0.5	Arena gruesa/arenas
35		0.16	Arena gruesa/arenas
50		18.22	Arena mediana/arena
60		20.8	Arena mediana/arena
80		35.02	Arena fina/arenas
100		17.69	Arena fina/arenas
120		5.24	Arena fina/arenas
Recuperador		2.61	
Total		100.24	
20	<u>Camaronera</u>	0.35	Arena gruesa/arenas
35		5.6	Arena gruesa/arenas
50		14.88	Arena mediana/arena
(0			
60		11.29	Arena mediana/arena
80 80		11.29 36.82	Arena mediana/arena Arena fina/arenas
80 80 100		11.29 36.82 23.09	Arena mediana/arena Arena fina/arenas Arena fina/arenas
80 80 100 120		11.29 36.82 23.09 6.2	Arena mediana/arena Arena fina/arenas Arena fina/arenas Arena fina/arenas
80 80 100 120 Recuperador		11.29 36.82 23.09 6.2 2.1	Arena mediana/arena Arena fina/arenas Arena fina/arenas Arena fina/arenas

	CV1	CV2	CV3
x1	70.3413	187.6763	-47.9688
y1	-68.214	-18.6755	67.4322
x2	-1.6513	177.0696	-41.6063
y2	-45.449	121.8987	-28.7207
x3	126.5411	-241.4877	174.1883
y3	142.0607	13.0398	46.2462
x4	-58.3326	-418.1453	-34.6216
y4	-160.1623	219.039	117.6424
x5	145.0367	314.3686	2.3819
y5	-379.2989	-773.7302	-68.6977
x6	116.6941	-101.579	100.5489
y6	620.8724	555.3708	<mark>429.2036</mark>
x7	-70.749	78.7458	-114.3508
y7	-28.4047	-482.1654	-580.7759
x8	25.6184	-301.1172	-70.5923
y8	346.2969	289.425	137.2758
x9	40.8897	-41.5166	173.2796
y9	-329.8445	225.3337	110.2217
x10	49.9385	46.5847	-70.1884
y10	-375.7564	-367.2695	-132.852
x11	-193.0272	-87.3889	80.7624
y11	840.2467	41.8847	<mark>411.5291</mark>
x12	323.4182	-19.7006	-34.2601
y12	79.0308	510.9688	366.2385
x13	157.7593	296.6411	-235.2678
y13	-385.9545	-344.5312	-379.8744
x14	-109.9404	-268.0761	26.1258
y14	-190.6424	-392.3487	-51.3466
x15	-292.8475	-94.3947	-147.1493
y15	381.3716	57.84	-173.4267
x16	68.2728	443.1312	247.8463
y16	-129.2286	159.7429	-7.5874

ANEXO 2.	Coeficientes	canónicos	de	variación	de	cada	landmark	de las	hembras	por
localidad.										

y17	14.6521	318.6728	-251.9412
x18	-365.7304	-19.5591	58.0776
y18	193.5294	-280.6748	361.6473
x19	-65.0977	50.1267	-85.0961
y19	-342.8088	-82.5665	-109.0586
x20	-124.7545	-146.108	145.3793
y20	377.1709	342.5175	249.3577
x21	48.2811	41.7512	-32.1692
y21	-497.4679	-459.6455	-280.9927
x22	19.4354	24.2431	151.418
y22	296.7559	-14.1348	9.0054
x23	24.155	22.54	0.4016
y23	175.8228	-18.5222	175.2759
x24	-86.8432	54.2709	-186.9867
y24	<mark>-530.8533</mark>	342.2591	-27.405
x25	66.8182	179.7181	141.4052
y25	224.8542	-10.9741	-247.5215
x26	-110.3564	-28.2666	29.0465
y26	212.7071	-463.05	379.5396
x27	2.2261	-149.3969	112.7726
y27	-698.5408	75.9097	-593.3528
x28	-180.482	-278.3378	-122.382
y28	93.9609	-173.2285	287.5063
x29	28.7027	532.7944	38.5351
y29	<mark>654.5488</mark>	325.3112	62.0622
x30	74.3475	168.8766	-209.5104
y30	-470.9144	-36.1671	-60.6469
x31	-169.7237	-202.6828	86.2315
y31	-20.3409	318.4702	-215.984

x17 441.0596 -220.781 -136.2508

	CV1	CV2	CV3	x17	-162.1972	-891.9507	-1025.5045
x1	-1363.9645	1812.5647	1151.9435	y17	-322.7003	-1.1449	-237.388
y1	-90.9693	-167.0306	-72.2042	x18	61.9323	459.0851	402.9069
x2	167.1275	-92.2472	-401.0551	y18	-447.3071	364.3488	371.486
y2	799.6939	-737.3233	149.604	x19	1909.0828	-739.3766	466.7574
x3	1118.0643	-1356.8171	-663.3323	y19	-1679.2861	86.8404	-147.0125
y3	-373.3596	248.6324	59.9212	x20	-359.1893	1380.2757	328.2017
x4	-616.9781	1293.2039	240.7792	y20	2486.7269	-2350.3157	393.7189
y4	-233.7709	16.3385	-516.7317	x21	554.0601	-1386.9449	-565.4152
x5	1012.2959	-1565.1498	-279.7777	y21	-64.1227	2045.4005	452.4071
y5	-1276.0561	336.4458	72.3447	x22	653.018	837.6359	677.7475
x6	-687.0313	187.8186	-323.6802	y22	-236.0703	622.5943	-732.3321
y6	211.2478	275.5008	1018.5231	x23	-664.0323	132.6326	-300.7309
x7	501.8533	588.7802	-304.0948	y23	609.5362	408.4702	1019.2093
y7	821.4143	-484.331	384.2254	x24	-83.2859	-586.3348	-384.1486
x8	-2045.213	606.7857	280.2151	y24	808.836	-2032.3159	-526.1937
y8	903.8056	527.6553	-254.2331	x25	1427.4305	-392.2603	50.047
x9	40.4252	631.622	431.461	y25	-760.8138	568.5728	228.6323
y9	-1074.6814	-495.8122	43.1268	x26	-199.3812	-966.3429	79.3771
x10	255.6008	-127.8912	-174.5891	y26	-2795.4195	250.3363	-804.1645
y10	1294.7542	759.4525	639.09	x27	1031.1467	113.1632	187.8057
x11	-139.4854	129.6311	-158.2989	y27	2521.2567	-1020.0643	-256.8051
y11	-1383.8258	-307.2027	-903.3423	x28	-690.8782	505.5106	396.8625
x12	2 506.9863	441.3623	230.8656	y28	1196.9766	-233.511	-1259.7028
y12	2 2419.6483	-444.1665	100.2947	x29	131.0493	-758.0993	-409.7219
x13	3 -852.564	316.9825	282.8607	y29	-2102.5511	1913.857	<mark>1600.6103</mark>
y13	-2376.1143	1323.6999	531.6522	x30	630.1899	-306.0693	385.8248
x14	-203.1958	-249.7331	-431.7476	y30	949.6035	-537.1229	-328.7932
y14	798.1517	-139.2612	-991.9477	x31	-881.0227	187.2351	-377.2241
x15	5 21.9346	- <mark>2553.25</mark> 12	-808.2697	y31	302.6427	-154.4286	227.9059
y15	-603.5339	-71.0725	224.121				
x16	- 1073.7787	2348.1792	1013.9348				
y16	-303.7122	-573.0424	-486.022				

ANEXO 3. Coeficientes canónicos de variación de cada landmark de los machos por localidad.

	CV1	CV2	CV3
x1	31.2606	67.0385	-2.4845
y1	-12.4223	-22.2526	-22.9031
x2	-81.4668	8.1382	52.0188
y2	-49.5028	2.7456	17.0563
x3	72.4364	-141.8376	-61.6754
y3	62.2586	-62.0505	-2.8297
x4	51.4831	96.2454	-128.9156
y4	-9.6901	90.9238	-95.9992
x5	-16.3489	-61.7162	176.1229
y5	150.1953	30.7808	29.3912
x6	73.1444	-36.7155	-132.7734
уб	-58.2386	-51.7679	-15.7807
x 7	-24.6647	-53.7345	29.0926
y7	-75.5365	-99.4161	21.3707
x8	173.602	83.2318	34.6633
y8	-1.0062	-74.3193	106.0755
x9	-49.3878	-14.8954	-105.0984
y9	4.1633	195.4982	-82.8798
x10	-1.216	70.4271	120.916
y10	-28.9679	90.0649	-19.1974
x11	22.8011	-117.4095	-73.0951
y11	182.2308	-281.5256	-127.0474
x12	5.9713	107.0542	67.4045
y12	-79.4324	-176.1144	52.483
x13	-64.1773	-85.5566	73.5443
y13	50.1106	-78.479	-270.4612
x14	31.0189	251.4198	32.7049
y14	-21.9489	<mark>256.871</mark>	373.0357
x15	48.5901	35.9448	34.506
y15	-11.4218	157.2679	-10.9249
x16	-49.487	44.256	-69.3466
y16	131.7242	-14.4409	-14.0891

x17	38.0018	-132.8856	-82.9271
y17	-15.0167	-166.4192	87.4542
x18	6.3355	-70.8282	-13.3074
y18	-69.7183	112.2063	-100.76
x19	-119.7173	14.4736	42.2462
y19	-28.3285	219.7152	9.3117
x20	57.3164	-47.8322	-91.2766
y20	-13.7892	-121.0181	5.2531
x21	-22.5835	-80.2327	<mark>213.1756</mark>
y21	41.4609	-39.8562	63.8915
x22	-7.3725	17.9898	<mark>-179.0126</mark>
y22	-73.9497	60.172	-117.4853
x23	5.171	-7.0184	0.5718
y23	101.1049	-170.8335	-93.9954
x24	16.6627	20.6199	55.6225
y24	-164.2514	-77.4249	93.1385
x25	-61.3863	-7.1876	-66.1901
y25	169.0198	248.2535	156.2658
x26	-6.2773	29.4535	63.0135
y26	142.4487	-228.0967	-173.3812
x27	20.7248	-4.6975	-74.787
y27	<mark>-277.4458</mark>	<mark>337.5411</mark>	-7.105
x28	-9.4673	92.0821	-83.918
y28	154.7209	-342.0657	-22.5742
x29	-81.7244	-109.2843	206.1379
y29	23.7224	92.7765	136.74
x30	-10.8328	25.0481	66.1137
y30	-35.32	54.1133	-112.2656
x31	-48.4103	8.409	-103.0468
y31	<mark>-187.1734</mark>	57.1503	138.2119

ANEXO 4. Coeficientes canónicos de variación de cada *landmark* de las hembras y machos por localidad.