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RESUMEN

El presente trabajo pretende ser una introduccién al estudio de las dlgebras booleanas
generadas minimamente. Una algebra booleana estd generada minimamente si se puede
obtener como el tltimo paso en una sucesion de extensiones del algebra de dos elementos,
donde entre cualesquiera dos dlgebras consecutivas de dicha sucesién no existe un algebra
booleana intermedia propia.

La propiedad de ser minimamente generada fue presentada por primera vez por Sabine
Koppelberg, quien la obtuvo a partir de lo trabajos de S. Shelah, S. Grigorieff, J. Baum-
gartner y P. Komjath.

Consideramos que la literatura carece de introducciones al estudio de las dlgebras
booleanas generadas minimamente. Ademds, aunque Koppelberg presenté la clase de las
algebras de Boole que son generadas minimamente en [11], este articulo estd dirigido a
los especialistas del drea. Asi, esperamos contribuir con texto introductorio, en particular,
nuestro mayor aporte es presentar con detalle los primeros resultados de dicho articulo.

El primer capitulo trata sobre los preliminares necesarios para la lectura del texto,
en primer lugar exponemos los resultados bdsicos acerca de extensiones simples, filtros
e ideales en dlgebras booleanas. En esta primera parte también presentamos las clases
de las algebras libres y superatémicas, estos tipos de algebras aportan valiosos ejemplos
para el resto del material. Asimismo, incluimos un breviario sobre la dualidad de Stone:
herramienta necesaria para traducir propiedades topoldgicas de los espacios compactos de
Hausdorff cero-dimensionales en sus contrapartes booleanas y viceversa. Finalizamos el
capitulo presentando al invariante cardinal b, los teoremas que traten acerca de este cardinal
seran necesarios para la exposicién del ejemplo mas importante del capitulo 3.

La segunda parte comienza con el estudio de las extensiones simples que son minimas,
es decir, aquellas para las cuales no hay dlgebra propia entre el algebra base y la extension.
Resulta que este tipo de extensiones son determinadas por cierto ideal en la base, al comienzo

del segundo capitulo analizamos este ideal a detalle. Posteriormente se muestra la forma



i

de construir extensiones minimas por medio de la técnica de forcing del matematico P.
Koszmider. El resto del capitulo estd dedicado a presentar los resultados basicos sobre las
algebras estudiadas en esta tesis. De manera especial, nos enfocamos en el comportamiento
de esta clase bajo las operaciones usuales entre algebras booleanas (productos, imégenes
homomorfas, subalgebras, etc.)

El hilo conductor del tercer capitulo es presentar ejemplos de clases de algebras que
son generadas minimamente, asi como algebras booleanas especificas que no son generadas
minimamente (P(w)/fin). El texto concluye con una discusién sobre drboles densos en

algebras booleanas.
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CHAPTER 1: PRELIMINARIES

Most of this chapter is devoted to a presentation of the basic notions and results on

set theory and Boolean algebras.

1.1 Set Theory

For every set X and every cardinal x we will denote by [X]<" the collection of all
subsets of X that have less than x elements. Moreover, [X]" is the set of all subsets of X
that have size k.

If f is a function, the symbols f“A or f[A] shall denote the image of A under f.

In case that X and Y are sets, we will write the collection of all functions from X into

Y as XY. Moreover, if a is an ordinal, define <X := | {BX 1B < a}.

1.2 Boolean Algebras

Here we introduce some basic results about Boolean algebras. We shall often refer
to [8] and [10] for further details.

Throughout the text we adopt the definitions of Boolean algebra and subalgebra as they
appear in [8, Section 7]. However, we will use A and V to denote the binary operations -
and +. Also, we will denote by —a the complement of a.

Moreover, if E is a subset of a Boolean algebra, then \/ F is the least upper bound
of E and A F is the greatest lower bound of E, as long as they exist. Particularly, if
E = {z; : i < n} for some n € w, then the symbols A\ ,z; and \/_, z; will be used instead
of A E and \/ E, respectively.

If B is a Boolean algebra, we will denote by 15 and 0p its maximum and its minimum,

respectively. If there is no risk of confusion we will discard the subscripts. Also, BT :=

B\ {0}.



2 Preliminaries

Unless otherwise specified, all our Boolean algebras A will be non-trivial, i.e., 14 # 04.
Observe that P (X), the power set of X, is a Boolean algebra with the usual set theoretic
operations (union, intersection and complements of sets). Whenever we considerer the power

set as a Boolean algebra, it will always be with these operations.

Definition 1.1. If B is a Boolean algebra, x € B will be called an atom in B if x > 0 and
there is no b € B satisfying 0 < b < z.

A Boolean algebra B is called atomic if for every b € BT, there is z, an atom in B,
such that z < b. On the other hand, if a Boolean algebra does not have atoms it will be

named atomless.

Let us note that if z is an atom in B and b € B is such that £ b, then 0 < x —b < =,
where x — b denotes = A (—b). Therefore, z —b = = and in consequence, whenever x is
an atom in B and b € B, we conclude that either z < b or z < —b (notice that these
inequalities cannot happen simultaneously).

If B is a Boolean algebra, we shall denote the collection of all atoms of B by At(B).

In order to simplify our arguments we will adopt the following notation: given x, an

0

arbitrary element of a Boolean algebra, z° = z and 2! = —xz.

If A is a subalgebra of B, we shall write A < B. In case that A < B and A # B we

will write A < B to emphasize that A is a proper subset of B.

Definition 1.2. Given X, a subset of a Boolean algebra B, we will denote by (X)p the

Boolean algebra generated by X in B, i.e., the smallest subalgebra of B containing X.

We will omit the subscript in (X) p whenever we see no risk of confusion regarding our

Boolean algebra.
Definition 1.3. For every subset X of a Boolean algebra we define X* := {—x:x € X}.

Now we present a useful result whose proof is omitted for being a standard exercise. It

can be found as a problem in [8, Exercise 7.18].
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Proposition 1.4. Let X be a subset of the Boolean algebra B. For every b € B, it follows

that b € (X) if and only if there exist n € w and {E;:i<n} C [XUX*|<¥ such that

b=Vic, (N Ei).

Keeping the notation from the previous proposition, let us argue that if X is infinite,
then |(X)| = | X|. Certainly, X C (X) implies | X| < [(X)], and [(X)] < “[XUX*]<°J]<W)

provides us with the equality.

Definition 1.5. Let A be a subalgebra of B. For x € B, the Boolean algebra

A(z) = (AU{z})p
will be called the simple extension of A by x.

Proposition 1.6. If A is a subalgebra of B and x € B, the following statements are

equivalent for each z € B.
1. z€ A(x).
2. There exist a,b € A such that z = (a ANz)V (b—x).

3. There are a,b,c € A which are pairwise disjoint (i.e., aNb=aANc=bAc=0) and
satisfy z = (a ANx) V (b—x) Ve
Proof. (1) — (2) : Let z € A(z). We know by Proposition 1.4 that there exist n € w and
{E;:i<n} C[AU{z,—2}]~" such that z = \/,_, (A Ei).
Let us define Iy := {i <n:x € E;} and Jy := {i <n:—z € E;}. Notice that if i €

Iy N Jy, we have A\ E; = 0. By letting I :=n\ Jp and J :=n \ Iy we obtain the following;:

<= VAR - (v (AR) (v (AR)

- by} (yne) -]

Thus, z has the desired form.
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(2) = (3) : Assume a,b € A are such that z = (a Az) V (b — z). Notice that

(anz)V(b—z) = ([(and)V(a=b]Az)V([(bAa)V(b—a)]—z)
= ((anb)na]Via=b)Az]) vV ([(bAa)—2] V(b —a)—z])
= [la=b)Az]V[b—a)—z]V[(bAa)—z]V[aAb)Az]

= [(a=b)Az]VI[b—a)—z]V(aAD)

Since a — b,b — a, and a A b are pairwise disjoint, we get the desired form for z.

(3) — (1) : Let a,b,c € A with the property that a A\b = aAc =bAc =0 and
z=(aNz)V (b—2x)Vec Define Ey = {a,z}, By = {b,—z} and Ey = {c}. Then, E; €
[AU{z, —2}]=* for every i € 3 and 2z = \/,_; (A\ E;). Thus, according to Proposition 1.4,

z € (AU{x,—x}). O

Before we finish this section, let us prove that homomorphic images of simple extensions

are also simple extensions.
Proposition 1.7. If h : B — C is a Boolean homomorphism and A(a) < B, then
h[A(a)] = h[A] (h(a)).

Proof.  Firstly, if z € A(a), then x = (uAa)V (v—a) with u,v € A. So, h(x) =
(h(u) Ah(a))V (h(v) = h(a)). Therefore, h[A (a)] C h[A] (h(a)).

On the other hand, fix x € h[A](h(a)). There are u,v € h[A] such that x =
(uAh(a))V (v—nh(a)). Hence, there exist 4, € A in such a way that h(a) = u and
h (v) = v. The reverse inclusion is justified by the following equality, z = (h (@) A h(a)) V
(h(v) —h(a)) =h(uAa)V(v—a)). O

Definition 1.8. If A is a subalgebra of a Boolean algebra B and x € B, we define the set
Alz :={ye Ay <z},

where < is the partial order of B.
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Notice that A [ x is a Boolean algebra with x = 141,.

1.3 1Ideals and Filters

In this section, we introduce two important kinds of subsets of a Boolean algebra.

Definition 1.9. A subset I of a Boolean algebra A is an ideal in A if the following are

satisfied:

1. 1¢ 1.
2. 0el.
3. Ifzel,ye A, and y < z, then y € .

4. fz,ye I, thenxzVvyel.

According to [10], an ideal is a set I which satisfies (2), (3) and (4) of the previous
definition, so, when it also satisfies condition (1), I is called a proper ideal. We do not
follow this interpretation, in other words, for the rest of the text we only consider ideals in

the sense of the Definition 1.9.

Proposition 1.10. Let X be a subset of a Boolean algebra A. If for every E € [X]™* we

have that \/ E # 1, then the set
(XY = {y € A: 3B € [X]“ (y <V B)}

is an ideal in A which contains X. The set <X)f4 will be called the ideal generated by X in

A.

Proof. We have that 0 € (X)", because § € [X]<* and \/ = 0. Besides, our hypothesis
ensures that if y € (X)?, then y < 1; hence, 1 ¢ (X)?,.

Now, if x,y € (X)iA, there are Ey, By € [X]=¥ such that 2 < \/ Ep and y < \/ E1.
Thus, z Vy < (V Eo) V (V E1) =\ (Eo U Eq) and therefore, x V y belongs to (X) .

Condition (3) in Definition 1.9 is an easy consequence of the transitivity of <. O

Now we introduce the dual notion of ideal in a Boolean algebra.
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Definition 1.11. A subset F' of a Boolean algebra A is a filter in A if the following are

satisfied:
l.1€¢ Fand 0 ¢ F.
2. fxe F,ye A, and x < y, then y € F.
3. Ifx,ye F,thenx Ay € F.

Notice that if F' is a filter in A, then, for every a € F, we have that —a ¢ F.
Naturally, there is a similar result to Proposition 1.10 for filters. We omit the proof

because it uses analogous arguments.

Proposition 1.12. Let X be a subset of a Boolean algebra A. If for every E € [X]<* we

have that \ E # 0, then the set
(X),:={yeA:3IE e [X]"™“(NE <)}
is a filter in A which contains X. The set (X)Q will be called the filter generated by X in

A.

When a subset X of a Boolean algebra satisfies that for every E € [X]~* A E # 0, we
will say that X is centered or that it has the finite intersection property. So, every centered

set can be extended to a filter.

Definition 1.13. Let F be a filter in a Boolean algebra A. F' is an wltrafilter in A if, for

eacha€e A,ae For —a€ekF.

Suppose that F' is an ultrafilter in A and a Vb € F. We claim that a € FFor b € F.

Otherwise, —a, —b € F and so, — (a V b) = (—a) A (—=b) € F. A contradiction.

Lemma 1.14. Let A be a Boolean algebra and let X C A be such that (X) = A. If F is a

filter in A with the property that for everyx € X, x € F or —x € F, then F' is an ultrafilter.

Proof. By Proposition 1.4, each member of A™ is of the form \/,_,, (/\ E;) for some n € w\1

and {E; : i <n} C [X UX*]"“. Let us prove by induction over n that either \/,_, (A E;) €

For—\,..(NE;)eF.
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If n =1, then set a = A Ep. In case that Ey C F, we have that a € F. On the other
hand, suppose that there is some = € Ey such that x ¢ F. Since x € Ey, x € X or —x € X
either way, —x € F' and in consequence, —a € F' due to the inequality —z < —a.

Now, let us suppose that for every k < n, the equality b = \/,_, (A E;) implies that
be For—beF. Fixa=V\,, . (AE). Immediately, a = [V,_, (AEi)] V [(AEn)].
Whenever FN{\/,_,, (A Ei), \ En} # 0 we get a € F because F is upward-closed. However,
if FN{V,<n, (NEi), \ En} =0, by our inductive hypothesis, — [\/;,_, (A Ei)] . — (A En)] €
F and so, —a € F. O

It is proved in [8, Lemma 7.4] that ultrafilters are maximal filters, in the sense of our

following result.

Proposition 1.15. Let F be a filter in A. F is an ultrafilter in A if and only if there is

no filter in A having F as a proper subset.
We can define maximal ideal in a similar way as we just did with ultrafilters.

Definition 1.16. Let I be an ideal in Boolean algebra A. I is a maximal ideal in A if, for

eacha€ A,ael or —acl.

Proposition 1.17. Let I be an ideal in A. I is a maximal ideal in A if and only if there

is no ideal in A having I as a proper subset.

Assume that F' and [ are, respectively, a filter and an ideal in some Boolean algebra A.
It is straightforward to prove that, actually, F* is an ideal and I* is a filter (see Definition
1.3). Moreover, if F' is an ultrafilter and I is a maximal ideal, then F™* is a maximal ideal
and I* is an ultrafilter. We will refer to F* and I'* as the dual ideal of F' and the dual filter
of I, respectively.

Keeping the notation from the previous paragraph: we shall show that (I) , = I U I*.
Evidently, (I) , © I U I*. To prove the reverse inclusion it is enough to justify that I U I*
is a subalgebra of A. Let us start by noting that 0 € Il and so 1 € I*. If x,y € TUI*, we
have to show that £ A y and = V y also belong to I U I*. In case that xz,y € [ or =,y € I*,

it follows immediately. Finally, if x € [ and y € I*, we use that z Ay < x and y <z V y.
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A useful corollary of the argument given in the preceding paragraph is the following

result.

Proposition 1.18. Let A be a Boolean algebra and I be an ideal in A. Then, I is mazximal

if and only if (I) , = A.

Observe that if A < B and F' is a filter in A, then F' is a centered subset of B, so, F
generates a filter in B. Consequently, by the Axiom of Choice, we have U, an ultrafilter
in B, such that ' C U. When this happens we will say that U extends F' or that F' is

extended by U.

1.4 Free Boolean Algebras

In this section we present the definitions of free Boolean algebra and independent
subset. However, we will omit several proofs and recommend the reader to consult [10,

Section 9.1].

Definition 1.19. If A is a Boolean algebra, then X C A is independent in A if for every
Fo, F1 € [X]=¥ such that Fo N Fy =0, (AFy) -\ Fo > 0.

Notice that whenever X is independent, it happens that 0 ¢ X because of the equality
(A{0}) — V0 = 0. A similar argument shows that 1 ¢ X. Moreover, if z € X, —z ¢ X
because A {z,—z} —\/0 = 0. Therefore, X N X* = 0.

Definition 1.20. A is a free Boolean algebra with x generators if there is X C A, an

independent subset of A, with |X| = & and such that (X), = A.

It is a remarkable fact that two free Boolean algebras with the same number of gen-
erators are isomorphic. The proof can be checked at [10, Lemma 9.2 and Proposition 9.4].
We shall denote the free Boolean algebra with x generators by Fr(x).

The following propositions are well known results about free Boolean algebras. Their

proofs can be checked at [10, Proposition 9.11] and [10, Proposition 9.16], respectively.

Proposition 1.21. If k is an infinite cardinal, then Fr(k) is atomless.
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Proposition 1.22. Let k be a reqular uncountable cardinal. If A is a free Boolean algebra
and X C A is such that | X| = K, then A has an independent subset of size k contained in

X.

Definition 1.23. If B is a Boolean algebra and A < B, we say that x € B\ A is independent

of A if for every a € A such that a Ax =0 or a — x = 0, it happens that a = 0.

A forthwith consequence of the previous definition is that whenever z is independent

of A, we have that A | z = {0} and A | (—x) = {0} (see Definition 1.8).

Lemma 1.24. Let A be a Boolean algebra. If X C A is independent and x € X, then x is
independent of (X \ {z}) 4.

Proof. Set H := X \ {z}. Since X is independent and = € X, we get x # 0. Hence, by
showing that a —z # 0 and a A = # 0, for each a € (H) \ {0}, we will prove that x ¢ (H)
and x is independent of (H).

Fix n € w and {E; :i <n} C [HUH*]"* in such a way that a = \/,_,, A Ei. The
assumption a # 0 implies that, for some k < n, A Ex > 0. Define Fy := H N Ej and
Fy :== HN (Eg)" to get a pair of finite subsets of H. Observe that if b € Fy, then —b € E},

and so, b ¢ Ey; in other words, Fy N F} = (). Therefore,

rNa 2= x/\/\Ek

o ((AF) n (AFD))
= NEu{z})-\/F#0

and, similarly, a —x > (\ Ex) — 2 = (—x) A \ Ex # 0. O

Lemma 1.25. Let A be a subalgebra of B. If x € B\ A is independent of A, then for each
y € A(x) \ A there is c € A such that AJy=A]c.

Proof. Let y € A(x). By Proposition 1.6 there are a,b,c € A, pairwise disjoint and in
such a way that y = (aAx)V (b—x) Ve, We claim that A [ y = A [ ¢. Certainly, the

inclusion A [ ¢ C A | y is fairly trivial.
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Fix z € A | y, and notice that we need to prove that w := z — ¢ = 0. Immediately,
w < (aAx)V (b—x), which implies that w A a < a A xz. Hence, wAa € A | z and so,
wAa=0. In a similar way it can be proved that w A b = 0. Additionally, w < aVb. Then,

w=wA(aVb)=(wAa)V(wAb)=0. O

For every topological space X let us denote by co(X) the collection of all subsets of X
that are simultaneously closed and open. Straightforward arguments show that co(X) <

P(X).

Proposition 1.26. If 2¥ := [] . {0,1}, where {0,1} is discrete and 2 has the product

new
topology, then co(2¥) is isomorphic to Fr(w).

Proof. For every s € <“2 define [s] := {x € 2 : s C z}. Straightforward arguments show
that B := {[s] : s € <¥2} is a base for 2. Moreover, B C co(2¥). Certainly, fix s € <¥2.
If x € 2\ [s], then s € x, in other words, there is n < |s| such that s(n) # z(n). Set
t: =z (n+1) to get x € [t]. We claim that [t] C 2¢\ [s]. Indeed, if y € [t] we have that
x| (n+1) Cyand so, y(n)#s(n); therefore, y € 2¢ \ [s].

We will argue that co(2¥) = (B)pw). Let U € co(2¥) and get B C B such that
U = |JB. Given that U is closed and 2¢ is compact, there is £ € [B]= in such a way that
U =JE. As a consequence, co(2¥) = {\/ F:Fe [’B}<“’}. Thus, we can apply Proposition
1.4 to get that B generates co(2v).

Let us consider the family € := {[{(n,0)}] : n € w}. Notice that [{(n,0)}] # [{(m,0)}]
whenever m < n < w. Hence, |€] = w.

We claim that € is independent, so take Fy, [} € [w]~* \ {0} with Fo N Fy = 0. To
verify that A\, cx [{(7,0)}\V,er [{(n,0)}] > 0, consider z := (Fy x {0})U((w \ Fo) x {1}).
mmediately, @ € (e, ({0} \ Uper, [{(0,0)}]

By showing that B C (8>?(2w), we will prove that co(2¥) is generated by a countable

independent set and we will be done. To do so, just notice that if s € <2, then [s] =

(Avesr10y {0 0M) A (Anesminy = {0, 0)1) € (E)am. O
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1.5 Stone Duality

Every Boolean algebra can can be used to produce a topological space, its Stone space.
This section will mention some useful results about Boolean algebras and their dual topo-

logical spaces.

Definition 1.27. Let A be a Boolean algebra and denote by S(A) the collection of all

ultrafilters in A. Then, for every a € A define
ay ={F €S(A):ac F}.

It can be proved that {a} : a € A} is base for some topology on S(A). Whenever there

is no risk of confusion we shall write simply a™~ instead of a,.

Definition 1.28. The Stone space of the Boolean algebra A is the topological space which

results of endowing the set S(A) with the topology which has {a™ : a € A} as a base.
Now let us recall some basic definitions of general topology.
Definition 1.29. A topological space X will be called

1. scattered if every Y € P(X) \ {0} has an isolated point in Y, i.e., there is y € Y such

that {y} is open in Y, and

2. zero-dimensional if co(X) is a base for X.

It is a well known fact that the Stone space of any Boolean algebra is compact, Hausdorff
and zero-dimensional. Another basic fact is that a Boolean algebra A has an atom as long
as S(A) has an isolated point. In a precise way, ¢ € At (A) if and only if ¢~ = {F'}, where
F={a€A:c<a} (see Lemma 1.35 below and [10, Proposition 7.18]).

Recall that <¥2 = J . "{0,1}. Moreover, for every s € <“2 and i < 2 define

new

§7i = sU{(doms,1)}.
The following results appear in [6, Exercise 3.B.4(c)].
Lemma 1.30. Let X be the Stone space of a Boolean algebra. If there is Y C X which has

no isolated points, then there exist a family {Fs : s € <“2} C co(X) in such a way that the

following conditions hold for each s € <¥2.
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1. Fy=X,
9. Fy=F, gUF,,,

3. ForgNFyny =0, and
4. |FsNY| > w.

Proof.  Proceeding by induction over the levels of <“2. Start by defining Fj := X and
notice that Y is a T3 space. It is a well known result of general topology that every T3 space
without isolated points is infinite. Therefore, [Fy NY|=|Y| > w.

Next, fix an s € <“2 and assume that we have constructed Fy. Given that [F; NY| > w,
fix x,y € F;,NY in such a way that z # y. Use that X is Hausdorff to get U € co(X)
such that z € U and y ¢ U. Define F,~, := U N Fy and F,~ := F5 \ U. Straightforward
arguments prove that properties (2) and (3) hold.

Finally, F,~; is neighborhood of z, which is a limit point of Y. Then, |F;~; NY| > w

because Y is a T} space. In a similar way it is proved that |F~qNY| > w. O

Proposition 1.31. Let X be the Stone space of a Boolean algebra. If X is non-scattered,

then 2% is a continuous image of X.

Proof. Given that X is non-scattered, there is Y C X without isolated points. Then, there
exists {Fs: s € <¥2} C co(X) satisfying all properties of Lemma 1.30.

We claim that for every z,y € 2¢, with  # vy, (Npew Foin) N (Npew Fym) = 0.
Assume that m = min{n € w: z (n) # y (n)}. Moreover, suppose that x (m) = 0. Hence,
Fyimr~o = Fame1) and Fypn1 = Fyigng1); therefore (see property (3) of Lemma 1.30),
Fytms1) N Fyim+1) = 0. To finish the proof of the claim recall that {Fy, : n € w} and
{Fyin : n € w} are decreasing families.

By the previous paragraph, for every p € X we can set f (p) to be the only member of
2¢ satisfying that p € (,,c,, Fr(p)in- This gives a function f : X — 2¥. Moreover, f is onto:
if x € 2, then {Fy}, : n € w} is a decreasing family of closed sets in a compact space and

so, there is p € Fyin; hence, f(p) = .

new
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We only need to prove that f is continuous. Given t € <2, our concern is to show that
Y] = F. If pe f~1[t]], then f (p) € [t], which is equivalent to f (p) D t. Therefore,
f(®) T |t| =t and in consequence, p € (e, Frpyin € Frpyie) = Ft- For the reverse
inclusion set p € F} and, seeking a contradiction, assume that there is m € w in such a way
that f (p) (m) # t(m) and for every n < m, f(p) (n) = t(n). Immediately, Frq)mt1) N
Fimy1) = (), however p € Fr)imy1) and p € Fy C Fyj(pq1)- This contradiction ends the

proof. O

The next notable result is known as Stone’s Representation Theorem and its proof can

be checked at [10, Theorem 7.8].
Proposition 1.32. If A is a Boolean algebra, then A is isomorphic to co(S(A)).

Duality of homomorphisms and continuous maps of Stone spaces is summarized as

follows (see [10, Theorem 8.2]).

Proposition 1.33. If A and B are Boolean algebras, then B is a homomorphic image of

A if and only if S(B) is homeomorphic to a subspace of S(A).

1.6 Superatomic Boolean Algebras

Trough the text we will use several times the notion of superatomic Boolean algebra.
This section is just a brief summary of the basic results of this class of Boolean algebras.

So let us start by mentioning the following well known result (see [8, Exercise 7.22]).
Proposition 1.34. Any two countable atomless Boolean algebras are isomorphic.

We have already seen (Proposition 1.12) that whenever X is a centered subset of a
Boolean algebra A, X generates a filter. In particular, if ¢ # 0, then {c} is a centered
subset of A and therefore {a € A : ¢ < a} is a filter in A. More can be said when ¢ € At(A),

as our following result shows.

Lemma 1.35. Assume A is a Boolean algebra, c € A and FF ={a € A:c<a}. Then, F

is an ultrafilter in A if and only if ¢ € At(A).
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Proof. Let us assume that F' is an ultrafilter in A. Fix x € A" such that < ¢ and define
G:={a€ A:x <a}. Since G is a filter containing F', we infer that G = F and so, ¢ < z.

Now, we are going to suppose that ¢ € At(A) in order to prove that F'is an ultrafilter.
Start by fixing a € A. Since ¢ is an atom, we get that either ¢ < a or ¢ < —a and thus,

ac€ For—ack. O

Definition 1.36. If A is a Boolean algebra and E C A, we define
[Ely:={acA:3S € [E]"*(a <V 9)}.

Notice that if E generates an ideal (in the sense of Proposition 1.10), then [E] , = (E)",.
If E does not generate an a ideal, there is S € [E]=“ such that \/ S = 1 and in consequence,

for every a € A, a </ S. Hence, A C [E], and so, A = [E] 4.

Proposition 1.37. If A is a Boolean algebra, then [At(A)]a = {\/ S : S € [At(A)]<¥}.

Proof. By definition, [At (A)]a 2 {VS : S € [At(A)]<“}. To prove the remaining
inclusion, fix © € [At(A)]4. Then, thereis S € [At(A)]<¥ in such a way that < \/ S. Define
G:={a€ S:aNnz+#0}. Since G € [At(A)]<¥, we only need to show that z = \/ G. We
will do this by proving two inequalities. First, for everya € G weget a—x =a—(aAz) < a
and thus, a — z = 0, i.e., a < x. On the other hand, given that for any F, finite subset of

A, we get \/ E =\/(E\ {0}), we deduce that
z=xzAN(VS)=V{zAha:aeSt=V{zNa:aeG}=zAN(\G);
which means that z < \/ G. O
For the next definition recall that all our Boolean algebras are non-trivial.

Definition 1.38. Let A be a Boolean algebra. If every homomorphic image of A is atomic,

we shall say that A is superatomic.

It can be proved (see [10, Theorem 17.5]) that a Boolean algebra is superatomic if and

only if every subalgebra of it has an atom.
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Notice that every subalgebra of a superatomic Boolean algebra is also superatomic.
Moreover, an easy recursive argument shows that every finite Boolean algebra is super-
atomic.

Superatomic Boolean algebras and their Stone spaces are related as follows (see [10,

Proposition 17.8])

Proposition 1.39. If A is a Boolean algebra, then A is superatomic if and only if S(A) is

scattered.

Now we present some relationships between superatomic Boolean algebras and inde-

pendent subsets.

Lemma 1.40. Let A be a Boolean algebra. If A is not superatomic, then A contains an

independent subset of size Ng.

Proof. Since A is not superatomic, there is B < A with At(B) = (. In order to show that
A contains an independent set of size Xy we will argue that Fr(w) is isomorphic to some
subalgebra of B or, equivalently, that S(Fr(w)) is a continuos image of S(B) (see Proposition
1.33).

The fact At(B) = ) implies that S(B) has no isolated points (see paragraph after
Definition 1.29) and so, by Proposition 1.31, 2¥ is a continuous image of S(B). Finally,
according to [10, Proposition 9.7], S(Fr(w)) is homeomorphic to the topological product 2¢.

[

Every superatomic Boolean algebra can be written as an increasing chain of special
subsets of it. The process used to get this chain is known as the Cantor-Bendizson derivation
and we will describe it below.

If A is a Boolean algebra and « is an ordinal, define I, C A recursively as follows
(recall Definition 1.36): Iy := {0};

I, if the quotient algebra A/I, is atomless

Ia—l—l =
7 [[At (A/1,)]a] otherwise
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where 7o : A — A/I, is the natural projection; and when « is limit, Io == Uz, I3

For every «, I, will be known as the ath Cantor-Bendizson subset of A. Furthermore,
an inductive argument shows that if o and 8 are ordinals with o < 3, then I, C Ig.

The proof of the following result can be found in [10, Proposition 17.8] and shows that
superatomic Boolean algebras can be characterized by the Cantor-Bendixson derivation

process.

Proposition 1.41. A Boolean algebra A is superatomic if and only if A = I, for some

ordinal a.

1.7 The Cardinal h

In this section we shall define the cardinal h and prove that it is a characteristic of the
continuum, i.e., that w; < h < ¢. In section 3.5 h will play a central role.

Given a,b € P(w), we say that a is almost contained in b (in symbols, a C* b) whenever
a\b € [w]=¥. On the other hand, the phrase a is compatible with b means that aNb € [w]*;
we will use the symbol a | b to denote that relationship. Conversely, a L b denotes that a is
incompatible with b, i.e., a N b is finite. Finally, a C* b will be used whenever a \ b € [w]<*
and b\ a € [w]”.

The proof of our following result is straightforward and so, we omit it.

Lemma 1.42. Given a,b € [w]“, a | b if and only if there is ¢ € [w]“ with ¢ C* a and

c C*b.

Consider JF C [w]”. We will say that X € [w]” is a pseudointersection of F whenever
X C* F, for every F € J.

The proof of our next result appears in [2, Proposition 6.4].

Lemma 1.43. If {T,, : n € w} C [w]* is such that T,, C* T,, whenever m < n < w, then

{T}, : n € w} has a pseudointersection.

For each x € [w]”, the phrase x¢ and z1 form a partition of x means that xy and z;

are infinite, disjoint and xg U z1 = =.
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Definition 1.44. Let D C [w]”. We say that D is open if for every d € D the collection
{z € [w]¥:x C* d} is contained in D. Moreover, D is dense if for every x € [w]* there is

d € D such that d C z. Finally, we define the distributivity number as
h:=min{|D|:VD € D (D is dense and open) & (D = 0}.

So far it is not clear why b is well defined, so let us argue that there is a family of dense
open sets with empty intersection. We will use the following notation: for each A C [w]®,
define A .= {z € [w]” : Ja € A(x C* a)}.

“ will be called almost disjoint if any two different members

An infinite subset of [w]
of if are incompatible. Also, an almost disjoint family will be called mazimal if it is not
properly contained in any other almost disjoint family.

The phrase maximal almost disjoint family will be abbreviated by MADF.

Lemma 1.45. If D is a dense open family, then there is a MADF A such that A C D.

Proof. Let us apply Zorn’s Lemma to (P, C), where P = {A C D : A is almost disjoint }.
We claim that P is non empty. Indeed, let d € D and fix f : w X w — d, a bijection. Define
A:={f[{n} xw]:n€w}. If a € A, then a C d, and thus, a € D due to D is open. So, A
is an almost disjoint family contained in D. Now, let € be a nonempty chain in P. We shall
verify that | JC € P. First, notice that | JC is an infinite subset of D. Now, fix z,y € |JC
and get Cp,Cq € € in such a way that x € Cy and y € Cj. Since € is a chain, we can
assume that x,y € C7 and so, z L y. Therefore, |JC is almost disjoint. Since [J€ is an
upper bound of €, by Zorn’s Lemma, there is A a maximal element of P.

We shall verify that A is a MADF. Let = € [w]”. Use the fact that D is dense to
obtain d € D in such a way that d C x. We claim that there exists z € A such that d | z.
Otherwise, {d} UA would be a member of P, contradicting that A is maximal in P. Hence,
x | 2, which implies that A is a MADF. Finally, the inclusion A C D comes as a result of

D being open. O

Lemma 1.46. If A is a mazimal almost disjoint family, then A is dense and open.
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Proof. Let x € A and y C* x be arbitrary and infinite. We know that there is a € A such
that £ C* a. Immediately, y C* a and we have just proved that A is open.

To check that A is dense, fix x € [w]“ \ A, and notice that A U {x} can not be almost
disjoint. So, there is a € A such that a | 2. Therefore, a Nz € A showing that A is dense.

O]

Let = be an infinite subset of w and enumerate it as {k; : i < w}, where k; < k;1 for
each i € w. Define xg := {ko; : i <w}, z1 := x\ x0, and fix A,, a MADF in such a way that
xg € Ay. We claim that = ¢ A,. Otherwise, there is a € A, such that x C* a. It should
be clear that a | z¢p and then a = zy because both belong to a MADF. Therefore, z C* x¢
and in consequence, 1 is finite; a contradiction. Thus {ﬁm T x € [w]w} is a family of dense

open sets with empty intersection. Hence, b is well defined.

Proposition 1.47. X; < h <.

Proof. We have seen previously that D := {ﬁx ‘T € [w]“’} is a family of dense open sets
with empty intersection. Thus, h < |D] < c.

Now, consider € := {E,, : n € w}, a family of dense open sets. Let us show that (€ # 0
by building a sequence {7}, : n € w} such that:

(1) for every n € w, T, € E,,, and

(2) T,, € T;;, whenever m < n.

Proceed by finite recursion. Fix Ty € Ey and suppose that we have already defined
T, € E,. Since E, 1, is dense, there is T),11 € Fp4+1 in such a way that T,,11 C T),. This
completes the recursion.

According to Lemma 1.43, there is X, a pseudointersection of {7}, : n € w}. We claim
that X € (€. Certainly, fix n € w and note that X C* T,, € E,,. Since F, is open, X € E,,.

In conclusion, N; < b. ]

Lemma 1.48. Let a < b be arbitrary and suppose that for every & < «, D¢ is dense and

open. Then, ﬂ£<a D¢ is dense and open.
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Proof. Let us start by showing that ﬂ§<a D¢ is open. Let z € ﬂ§<a D¢ and y C* x be
arbitrary and infinite. Fix n < « and notice that z € D,. Now, given that D, is open,
y € Dy. Hence, y € (¢, De.

Now let us check that (N, D¢ is dense. Fix z € [w]” and define for every { < a the
collection Dé :={y € D¢ :y Cz} . Continue by fixing a bijection f :  — w, in order to set
E¢ = {f“y ty € Dé} for every £ < a.

We claim that {F¢: & < a} is a family of dense open sets. Indeed, given { < «, if
y € Dé and z € [w]* are such that z C* f“y, then f~'[2] C* y C 2. Thus, f7'[2] € D’5
because D¢ is open. The equality f“f ~1[2] = 2 guarantees that z € E¢. On the other hand,
to verify that Dg is dense suppose that z € [w]® is arbitrary. Immediately, f~*[2] € [w]”,
and so, there is y € D¢ such that y C f~'[z]. However, f~1[2] C z and in consequence,
Yy € Dé. Therefore, f“y € E¢, and hence, E¢ is dense because f“y C 2.

Since a < b, there is y € (), E¢. Then, fty € Ne<a Dt € Newa De. Moreover,

f71[y] € z and so, we have just finished the proof. O

Consider {D, : a < b}, a family of dense open sets with empty intersection. We are
going to modify this family in order to get a decreasing sequence of dense open sets of length
h. Define for every a < b the collection Ey := () ¢<aDe. Immediately, E, C Eg whenever
B < a <b. According to Lemma 1.48, {E, : @ < b} is a family of dense open sets. Besides,

observe that () a<yEa C [)a<pDa = 0.

Proposition 1.49. b is a reqular cardinal.

Proof.  Suppose that v < b and let us argue that v # cf(h). Start by considering
{E, : a < b}, a decreasing sequence of dense open sets with empty intersection. Assume
that f :~ — b is cofinal in . Notice that (e, Ey) # 0.

Fix z € ﬂ§<7 Eg¢) and let o < b be arbitrary. Since f is cofinal, there is § < 7 such
that o < f(§). Therefore, * € Ey¢) C E,. Thus, we conclude that = € ﬂa<b E,.; the

contradiction we were looking for. O



CHAPTER 2: MINIMALLY GENERATED BOOLEAN ALGEBRAS

This chapter presents the class of minimally generated Boolean algebras. Informally
speaking, a Boolean algebra is minimally generated if one can construct it by small, indi-
visible steps. However, before we present the formal definition of a minimally generated
algebra we are going to develop in the first section of this chapter one of the tools we will

be using constantly.

2.1 The Ideal J, (2)

Given a Boolean algebra B, along with a proper subalgebra A, for every x € B\ A
there is an ideal in B which describes the relationship between x and the Boolean algebra
A. We consider this ideal now.

Keeping the notation from the previous paragraph: we claim that X := (A | z) U
(AT (—z)) (see Definition 1.8) satisfies the hypothesis of Proposition 1.10. If there is E €
[(ATz)U(A | (—2))]= in such a way that \/ E = 1, we can assume that £ = EyU E; with
Ey CAlzand By C A | (—x). We assert that Ey # () # E1. Indeed, if E = Fj, then
\V Ep = 1, but x is an upper bound of Ey, so x = 1 € A, which is a contradiction. We would
do similar deductions if £ = E;j. Now, \/ Ey < z and \/ E1 < —z imply that z —\/ Ey > 0
and © < —\/ E1. Hence, 2 — \/ Ey < (= VV E1) A (= Ey) = =V E = —1 =0, which is the

contradiction we were looking for.

Definition 2.1. Let A be a subalgebra of a Boolean algebra B. For each x € B\ A, we
define

Ja(z) = (ATa) U (AT ().

Sometimes we will write J, instead of J4(x) to simplify our notation.
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Now, let us argue that y € J, implies the existence of b € A [ x and ¢ € A | (—xz)
such that y < bV c. Indeed, if y € .J,, there exists E € [(A | ) U (A | (—x))]=* such that
y < \V E. We can assume that E = EyU Ey, where Ey C A | z and E; C A | (—xz).
Then, for every z € Ey, we get z < x and consequently, \/ Ey € A | x. By similar reasons,

VE €Al (~x).

Lemma 2.2. Let A be a subalgebra of some Boolean algebra B, a € A and x € B\ A. Then

the following statements are equivalent.
1. a € J,.
2. aNz € A.
3 a—xe€A.
4. {yeA(x):y<a} CA.

Proof. (1) — (2) : Let a € J,. There are b,c € A such that b < z,c < —z,and a < bV c.

We will be done if we prove that a A x = a A b. Actually,

a = aNbVe)=[lanz)V(a—x)]A(bVc)
= [(anz)AN(BV)]VI[(a—zx)AN(bVc)]
= [([anz)AbV[(anz)Nc]V](a—z)AbV[a—x)Ad]

= [(aANz)ADVI](a—x)ANc]=(aAb)V]a—2x)AC(
and therefore
anNz=((aANb)V](a—x)ANc]) ANz =aAb.
(2) — (3) : Given that a — (a A x) = a — z, we conclude that (3) is a consequence of

(2)-

(3) — (4) : Start by noticing that the assumption a —x € A implies a A z € A because

a—(a—x)=aAuw.
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Let y € A (z) be such that y < a. We know from Proposition 1.6 that there are b,c € A

such that y = (bAz) V (¢ — x). Since y < a, we obtain that y = y A a. In consequence,
y=[bAz)V(c—z)ANa=[anz)AND]V[(a—2x)Ac].

This finishes the implication because a A x and a — x are elements of A.

(4) — (1) : Notice that a — z and a A x are members of A because both are below a.
In particular, a —x € Az and a Az € A | (—x). To finish we only have to observe that

a< (a—z)V(aAz). O

As we noticed earlier, J, is an ideal in A, but the last lemma implies that J, is, actually,
an ideal in A (z). Indeed, the only non-trivial property of Definition 1.9 is (2). Let b € J,
and ¢ € A(x) be in such a way that ¢ < b; hence, ¢ € A and therefore ¢ is also an element

of J,.

2.2 Minimal Extensions

Now we are interested in Boolean algebras that are minimal over some of their subal-

gebras in the sense of our next definition.

Definition 2.3. Let B be a Boolean algebra and A < B. We will say that B is minimal

over A if there is no subalgebra of B lying properly between A and B.

The symbol A <,;, B is used to denote that B is minimal over A. As always, when A
is a proper subset of B, we shall write A <,, B.

Now, if A <,,, B and x € B\ A, then A < A(z) < B and so, B = A(z). In other
words, every minimal extension of a Boolean algebra turns out to be a simple extension,

but the reverse implication is false as showed by our next example.

1
Example 2.3.1. Consider X = {t + o te{0,1} & ne w} U {0} as a topological sub-

space of the real line. Let us show that if A = co(X), then there are x,y € P (X) such that
A< A(y) < A(z).
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Assume that t € {0,1}, and notice that {t+ 27" :n € w} converges to t an so, for
every a € A such that t € a, we get that |a| = w. Therefore, if we define x := {0,1} and
y := {0}, it happens that {z,y} N A= 0.

Obviously A < A(y). Moreover, we already saw that y ¢ A and in consequence,
A< A(y). Let us show that A (y) < A(x), i.e., thaty € A(x). Seta:={1+27":n € w}U
{1} € A and notice that X N (1/2,00) = a = X N[3/4,00). Now, being y = = — a, it follows
that y € A(z).

It remains to show that x ¢ A (y). Proceed by an indirect argument, i.e., suppose that
x=((bAy)V(c—y) for someb,ce A. Sincel ¢y, 1€ c—y. In particular, 1 € ¢ implies

that w = || = |e¢ — y| < |z|, which is clearly a contradiction.
Lemma 2.4. Assume that A < B and x € B\ A. If for every y € A(x) we have thaty € A
orz € A(y), then A <, A(x).

Proof. We have to confirm that if C satisfies A < C < A(z), then C = A(z), so fix
a € C\ A. Hence, a € A(x) and by our hypothesis, z € A(a). But A(a) C C, so x € C.

Therefore, A (z) C C. O

Corollary 2.5. Let A be a proper subalgebra of B. If for every x,y € B\ A we have that
y € A(x), then A <, B.

Proof.  Start by fixing x € B\ A. Notice that B O A (z). Let us show that this sets are
equal. Given y € B, if y € A, we obtain y € A(xz). When y € B\ A, our hypothesis implies
that y € A (z). Therefore, B = A (x).

Finally, we apply the previous proposition to get the result. O

The following proposition provides us with some equivalences for a simple extension to

be minimal over the Boolean algebra that was extended from.
Proposition 2.6. Let A< B and x € B\ A. The following are equivalent.

1. A<y Ax).
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2. J; is a mazimal ideal of A.
3. Ezactly one ultrafilter of A can be extended to more than one ultrafilter in A(x).
4. A= ({y € A:y is comparable with x}) ,.

5. There is G C A such that (G) , = A and for every y € G, y is comparable with x.

Proof. (1) — (2) : By contrapositive, suppose that J, it is not a maximal ideal in A.
Then, there is a € A such that neither @ nor —a are elements of J,. We will prove that
A<A(anz) < A(x).

Due to Proposition 2.2, a ¢ J, implies a Ax ¢ A. Then, A < A(aAz). Now we
will prove that ¢ A (a A z). Let us proceed by contradiction, if x € A (a A x), there are

b, c € A satisfying
r=bAaNx)|Vc—(anz)=]aNbAZ)|V(c—a)V(c—x).

Since c—x < —z, we get c—x = 0. Thenz = [a A (bA )]V (c — a) and hence, z—a = c—a €

A. Thus, by Proposition 2.2 we conclude that —a € J,, contradicting our assumption.

(2) — (3) : Our objective will be to prove that J is the only ultrafilter that can be
extended to two different ultrafilters in A (z).

Firstly, we assert that J* U {x} is centered. Indeed, let E € [JX U {x}]<*. As we know,
we have to show that A E' # 0. This assertion follows immediately when = ¢ E or E = {z}
(recall that x # 0).

Now, if z € E and E # {z}, then E\{z} € ([J3]~*)\{0}. Hence, y :== A\ (E \ {z}) € J;
(e, —y € Jp) and x Ay = NE. If x Ay = 0, then < —y and therefore, x € J, C A,
contradicting our assumption on z. By similar arguments one can show that J: U{— z} is
centered.

Therefore, there are Fp, Fy, ultrafilters in A (x), such that x € Fy, —z € Fj, and

Jr C Fyn EFy.
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To conclude, we have to verify that for every ultrafilter U in A, different from J,
G := (U)Q(I) is an ultrafilter in A (z). Firstly, U \ J} # () due to Proposition 1.15, so fix
a € U\ J}. Notice that a € J, and by Lemma 2.2 we get that a Az and a — z belong to A.

Now we are going to use Proposition 1.15 to prove that G is an ultrafilter. Let V' be
an ultrafilter in A (z) with G C V. If z € V, we know that there are b,c € A such that
z=((bANz)V(c—x). Thus, zAa=[bA (aAz)|]V]cA (a — z)]. We conclude that zAa € A.
On the other hand, the fact a,z € V implies that 2z Aa € V. Hence, zAa € VN A. As one
easily checks, V' N A is a filter in A containing U and so, VN A = U. Therefore, z Aa € U

and since z A a < z, we deduce that z € G. In conclusion, V C G.

(3) = (2) : Seeking a contradiction, suppose that J is not a maximal ideal in A. So,
there is a € A with J, N {a, —a} = 0.

The argument used for the implication (2) — (3) can be modified to show that for
every ¢ < 2, J U {ai} is a centered subset of A.

Let Up and U; be two ultrafilters in A such that for every ¢ < 2, J* U {ai} CU;. We
claim that for every 4, j < 2, U;U{z"} is a centered subset of A (). Observe that this claim
guarantees that there are at least two filters in A which can be extended to more than one
ultrafilter in A ().

Following our previous arguments, we only we have to check that for every z € Uj,
2z Az # 0. By contrapositive, assume that z € A satisfies z A 2 = 0. Then, —z’ > 2 and,

as a consequence, z € J,. Therefore, —z € J C U; and so, z ¢ Uj.

(2) — (4) : Considering Proposition 1.18 we get that J, generates A and therefore it
will be enough to prove that (J;) , = (E) 4, where E := {a € A : a is comparable with x}

First, let us check that £ C (J;),. Fix a € E, we have that a < z or z < a and
therefore, a € (A [ ) or —a € (A | (—x)); in both cases it follows that a € (J;) 4. Now, let
C < B such that E C C. When a € J,, we get a A x € C (see Proposition 2.2) and since

a—x < —x, we also get —(a —z) € C. Thus, a = (a Az)V (a —z) € C; hence (J,), C C.
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(4) — (5) : It is straightforward.

(5) = (1) : Denote by E the set of all members of A which are comparable with z. Since
we are assuming (5), F generates A. On the other hand, we already proved in (2) — (4)
that J, and E generate the same subalgebra of A. Therefore, by Proposition 1.18, J, is a
maximal ideal.

By Lemma 2.4, to prove (1), we only need to show that for every y € A(z), y € A or
x € A(y). According to Proposition 1.6, y = (a A xz)V (b — x) V ¢, for some a,b,c € A which
are pairwise disjoint.

If it happens that a and b are elements of J,, Lemma 2.2 gives y € A. In case that
a ¢ J, as a result of J, being maximal, —a € J,. Now, a A (y—2) = (aAy) —z =
(a Ax) — 2z = 0. This implies that y — x < —a. In a pretty similar way we can deduce that
x —y < —a. Therefore, x A y < —a. By Lemma 2.2.(4) we get that z Ay € A. Finally, if
welet d:=x Ay, thend,—de Aandz =dAy= (yA(—d))V(d—y). Thus, z € A(y) by
Proposition 1.6.

On the other hand, if b ¢ J, proceed as in previous paragraph to get (—x) Ay € A
and therefore,—x € A (y). O

Corollary 2.7. Assume that E is a subset of the Boolean algebra B. Set A = (E) and fix

x € B\ A. Then, the following statements are equivalent.
1. A<y A(x)

2. For eachec E, An{eANz,x—e} #0.

Proof. Proposition 2.6 ensures that (1) holds if and only if J, is maximal ideal in A, i.e.,
J is an ultrafilter in A. Now, this last statement is, according to Lemma 1.14, equivalent

to: for any e € E, e € J or —e € J

T

in other words, J, N {e,—e} # 0 for all e € E. The
final step in our argument is to recall Lemma 2.2 in order to obtain that J, N {e,—e} #

is equivalent to AN{z Ae,xz —e} #( foralle e E. O
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Although the next result is fairly trivial, it illustrates an application of Proposition 2.6

and it will be used several times trough the text.

Corollary 2.8. Let B be a Boolean algebra. If A < B and x € At(B)\ A, then A <, A(x).

Proof. Let G := {y € A:x <y}. Straightforward arguments show that G is a filter in
A. Moreover, the fact z € At(B) implies that for every for every a € A, x < aor z < —a
and in consequence, a € G or —a € (G. So, G is an ultrafilter in A and all its elements are
comparable with x.

Now, a routine modification to the argument used to prove Proposition 1.18 shows

that every ultrafilter in A generates A. In particular, (G)4 = A. So, by Proposition 2.6,
A<y Al(x). O

2.3 The Forcing of Koszmider

The material we present in this section follows the basic definitions and notation of the
classic textbook [13].

If we consider a Boolean algebra A in the ground model M, our main goal is to find
a generic extension M [G] such that M [G] E A <,, A(g), for some g that depends on the

generic filter G.

Definition 2.9. Assume X is a set and let A be a subalgebra of P(X). If F' is a filter in

A, define the forcing of Koszmider as the collection:

P(A,F):={(po,p1) € A2:poNp1=0 & poUp1 & F},

and for every (po,p1) . (q0,q1) € A2, (po,p1) < (qo,q1) if and only if go C po and q1 C p.

It is routine to check that whenever A is a Boolean algebra and F' C A is a filter,
(P (A, F),<) is partial order in the sense of [13, Definition 2.1, p. 52].

Through this section, X, A and F' will be like in the previous definition.

Lemma 2.10. Let G be a P (A, F)-generic filter, and define
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g:=U{po:3p € A(po,p1) € G}
Then, for every (po,p1) € G we get the inclusions pg C g C —p;.

Proof.  Let (po,p1) € G. The inclusion py C g follows by definition. To show that
g € —p1, suppose that there is € g Np;. Since = € g, there exists (go,q1) € G such
that © € gp. On the other hand, since G is a filter, there is (r9,71) € G in such a way
that (ro,71) < (po,p1),(qo,q1). Immediately, go C 79 and p; C r1, and this implies that

T € rg N ry, which is impossible. O

From now on, consider g as in the previous result. For our following result, familiarity

with the material presented in Section 2.1 is assumed.

Proposition 2.11. Let M be a countable transitive model of ZFC and F' be a non-principal
(i.e., FNAt(A) = 0) ultrafilter in A. If G is a P (A, F)-generic filter over M, then

1. g¢ A and
2. M[G] = Jy = F*, i.e., the equality J, = F* holds in M [G].
Proof. (1) : For every a € F define
Eq :=={(po,p1) €P(A, F):Vie2(anp; #0)}.

We shall show that E, is a dense subset of P (F, A). Let (po,p1) € P (A, F) be arbitrary.
Immediately, a — (po U p1) € F (recall that F is an ultrafilter). Since F' contains no atoms,
there are cg,c; € AT such that coNec; = @ and cg Uey = a — (pgUpy). From the fact
that F' is a centered family we get that ¢co ¢ F or ¢; ¢ F. Let us suppose that ¢y ¢ F
(i.e., —co € F'). We claim that ¢; € F. Otherwise, —(co Uc1) = (—c1) N (—c1) € F, which
contradicts the fact cgUcy € F.

Apply once again that F is disjoint from At(A) to get do,d; € AT in such a way that
doNdy; =0 and dy Ud; = ¢;. Proceeding as in the previous paragraph, we can assume that
do ¢ F and dy € F. By letting 7o := po U ¢p and 1 := p1 U dp we obtain ro Nr; = 0 and,
moreover, since F' is an ultrafilter, roUry ¢ F. Thus, (rp,71) is a member of P (F, A) which

extends (po,p1). Also, cg CroNa and dy C 1 Na,ie., (ro,r1) € E,.
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Employ an indirect argument to show that g ¢ A, i.e., suppose that g € A. Thus,
g € For—g e F. In case that g € F, there is (po,p1) € G N E;. By Lemma 2.10,
po € g € —p1. Nonetheless, (po,p1) € E4 implies that p1 N g # ), against the previous

result. When —¢g € F' similar arguments apply.

(2) : Since F'is an ultrafilter, we have that F* = A\ F', so we will argue that J, = A\ F.

Start by taking a € A\ F. With the aim of verifying that a N g € A, define

Dy = {(po,p1) €P(A,F) :a CpoUpr}.

We claim that D, is dense in P (A, F). Indeed, fix (pg,p1) € P(A,F). Note that the
inclusion a — p1 C a implies that a —p; ¢ F. Hence, po U (a — p1) ¢ F, and therefore,
q:= (oYU (a—p1),p1) € P(A,F). It should be clear that ¢ < (po,p1) and q € D,.

Being G a P (A, F)-generic filter over M, there is (pg, p1) € GND,. Forthwith, (po,p1) €
G implies that py C g, and we get that a N py C a N g. Additionally, the fact (pg,p1) € D,
gives aNg C (po Up1) Ng. Nonetheless, (po N g) U (p1 Ng) =po as a result of Lemma 2.10.
Therefore, aNg =aNpg € A.

Given that F' is an ultrafilter, F'* is a maximal ideal in A, but we have just proved that

F* C J,. Therefore, F* = J,. [

If H is an ultrafilter in a Boolean algebra A and M [G] is a generic extension of the
ground model M, with A € M, we claim that, in M [G], H is an ultrafilter in A. First note
that being a filter is an upper absolute property, i.e., M [G] E“H is a filter in A”. Now, H
is maximal given that for every a € A it follows that « € H N M [G] or —a € H N M [G].

We know that A (z) is minimal over A, whenever J, is a maximal ideal of A and x ¢ A
(Proposition 2.6). Therefore, as long as we have G, a P (A, F)-generic filter, the generic
extension M [G] must satisfy that A (| {po : Ip1 € A (po,p1) € G}) is a minimal extension

of A. This proves our last result of the section.

Corollary 2.12. With the notation of Proposition 2.11, M [G] = A < A(g).
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2.4 Minimally Generated Boolean Algebras

In a naive approach, a minimally generated Boolean algebra is constructed by an in-
creasing chain of subalgebras indexed by an ordinal, and in such a way that forms a sequence

of minimal extensions.

Definition 2.13. If A is a Boolean algebra and « is an ordinal, we will say that {A¢ : { < a}

is a continuous representation of A if the following statements hold.
1. If £ <n < a, then A¢ < Ay,

2. if v < avis a limit ordinal, then A, =Jz_., A, and

3. A =Uecq Ac.

Lemma 2.14. Let 6 be a limit ordinal. If A is a Boolean algebra such that ({x¢ : £ < d}) 4, =

A, then {(ajg <o), ra< 6} is a continuous representation of A.

Proof. For every a < 0 define A, := (z¢ : § < ) . We are going to prove that {A¢ : § < d}
is a continuous representation of A. Condition (1) of Definition 2.13 follows easily from the
fact that {zg: f < &} C {z: [ < n}, whenever £ < n < 0.

Assume that v < ¢ is a limit ordinal. Then, Ag C A, for each 8 < v and so U§ <y Ae C
A,. To prove the reverse inclusion fix x € A. Thus, there are n € w and {E; :i <n} C

<w

Hm’g E<i& k< QH in such a way that = = \/,_,, A\ E;. Therefore, there is a finite
set S C ¢ in such a way that | J,_,, E; C {xlg ke2 & €€ S}. By letting 8 = max S + 1,
we obtain 3 < 6 and = € Ag. Finally, a reasoning similar to the one we just exposed can

be used to show that condition (3) from Definition 2.13 holds. O

It is about time to present the central definition of the thesis.

Definition 2.15. A Boolean algebra B is minimally generated if there is an ordinal « and

a family {B¢ : £ < o} of subalgebras of B such that the following statements hold.
1. By = {0,1},

2. if £ +1 < a, then Be <, Bey1, and
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3. {B¢: £ < a} is a continuous representation of B.

The least ordinal « for which there is a family like the one described above will be
called the length of B and will be denoted by ¢ (B).

We will say that B is minimally generated over A, and shall use the symbol A <,y B,
if there is a family of subalgebras of B, { B¢ : { < o}, satisfying properties (2) and (3) from
Definition 2.15 and the equality By = A. Likewise, ¢ (B/A) denotes the least ordinal « for
which such a family exists and we call it the length of B over A.

The symbol A <,,, B will be used whenever A <,,; B and A # B.

The phrase {B¢ : { < a} witnesses A <p,y B means that {B¢ : £ < o} satisfies condi-
tions (2) and (3) of Definition 2.15 and By = A. Similarly for the sentence {Bg¢ : £ < a}

witnesses that A is minimally generated.

Lemma 2.16. Let A < B. Then A <,,4 B if and only if there is an ordinal o and a family

{B¢ : £ < a} of subalgebras of B such that the following statements hold.
1. Bp=A,
2. if {+1 < a, then Be <p, Bep1, and

3. {B¢ : £ < a} is a continuous representation of B.

Proof. We will argue the sufficiency only. Assume that {C¢ : £ < v} witnesses A <y B

and recursively define f (0) = 0,

fB+1) =min{¢ <v:Cpp < Cel,

as long as the set on the right is not empty, and f (8) = sup f“3, whenever 3 is limit. This
produces a function f whose domain is an ordinal, let us say, o and satisfies the following
for each 8 < «a,

(i) Co) = Co = 4;

(ii) if B+ 1 < a, then Cfrgy <m Cr(g11);

(iii) Crp) = U£<5 Ct(¢), when § is limit, and
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(iv) Ugca Cre) = Ugey Gy = B.
Therefore, by letting Be := Cf ), for each { < a, we obtain that {B¢ : { < a} is the

required family. O

Corollary 2.17. If A <;g B and {(A/B) = a, then there is a continuous representation

of B of length « which satisfies condition (2) of Lemma 2.16.

The following proposition shows how minimally generated Boolean algebras behave
under homomorphisms.

For every homomorphism 7 define the kernel of 7 as the set ker () := 7! [{0}].

Proposition 2.18. Assume A, B, and Q are Boolean algebras. If A< B, 7: B — Q isa

surjective homomorphism, and P := w[A], then the following hold.
1. If A<, B, then P <, Q.
2. When ker (1) C A, A<, B if and only if P <., Q.
3. If A <yng B, then P <y,q Q and £(Q/P) < {(B/A).
4. When ker () C A, A <mg B if and only if P <pg Q.
5. Homomorphic images of minimally generated Boolean algebras are also minimally

generated.

Proof. (1) : By contraposition, if there is 7" such that P < T < @, a straightforward

calculation shows that A < 7! [T] < B.

(2) : Notice that we only need to prove the reverse implication. We will proceed by
a contrapositive argumentation. Assume that there is S such that A < S < B. Hence,
P < 7[S] < Q. We will show that P < 7[S] < Q.

Let y € S\ A. We claim that 7 (y) € 7w [S] \ P. Certainly, if 7 (y) € P, thereis z € A
such that 7 (z) = 7 (y); hence 7 (y — z) = 0 and in consequence, y — z € A. In a similar

way we get z —y € A. Besides, y A z € A due to the following equalities:
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2A(z—y)=z-(z-yVIz—y) -2 =21y

So, y = (y A z) V (y — z) belongs to A, which is a contradiction. Therefore, 7 (y) € 7 [S]\ P
and this implies that P < w[S].

By a similar argument 7 [S] < 7 [B] = Q.

(3) : Assume that {Bg : £ < a} witnesses that A <,,4 B. So,

Q=7 [B] =7 |Uca Ba| = Ugca [Bel

Besides, if £ +1 < a, then 7 [B¢] <, m[Beq1] by (1). In case that v < « is limit, then
7 [By] = Ug<, 7 [Bgl. Therefore, the sequence {r [B¢| : { < a} witness that P <py Q. The
inequality ¢ (Q/P) < ¢(B/A) follows immediately.

(4) : Let {Q¢ : £ < a} be asequence witnessing P <,,4 Q. Naturally, B = U(K£ 771 [Qa]

and, according to (2), whenever £ +1 < a, 71 [Q¢] <pm 71 [Qet1]-

(5) : Let A be the two element algebra and apply (3). O

Now let us analyze the behavior of the class of minimally generated Boolean algebras

under the operation of taking subalgebras.

Proposition 2.19. Assume M is a Boolean algebra, A < B < M, and D < M. If
P:=AND and Q := BN D, then the following hold.

1. If A<, B, then P <, Q.
2. Whenever A <mg B, it follows that P <,y Q and £ (Q/P) < {(B/A).
3. If A<y B and A< C < B, then A <y C.

4. Every subalgebra of a minimally generated Boolean algebra is also minimally generated.

Proof. (1) : Clearly, P < Q. If P and @ are equal there is nothing of interest to prove, so

let us assume that P < Q.
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We are going to use Corollary 2.5 to verify that P <,, Q. Fix z,y € Q\ P C B\ A
and observe that B = A (x) because A <,,, B.

The arguments presented in the proof of implication (5) — (1) of Proposition 2.6 can
be used to show that x Ay € A. Considering @ < D, we deduce that z A y € D. Hence,

x Ay € P and in consequence, y =z A (z Ay) € P(x).

(2) : Using (1), one easily verifies that if {B¢:{ < a} witnesses A <,y B, then

{DN B¢ : & < af witnesses P <ppg Q.

To prove (3) and (4) take D = C' = {0, 1}, respectively, and use (2). O

If a product [[;.; B; of Boolean algebras is minimally generated, then for every i € I,
B; is minimally generated as a result of being a homomorphic image of the product (see
Proposition 2.18). Later, we will see in Corollary 3.14 that the converse fails. Nonetheless,
a product of finitely many minimally generated Boolean algebras is minimally generated,

as the following result shows.

Proposition 2.20. Let A and B be minimally generated Boolean algebras. Then A x B is

minimally generated.

Proof. Let {A¢: € < o} and {Bg¢ : £ < 5} be sequences which witness that A and B are
minimally generated, respectively. Moreover, let us assume that whenever £ + 1 < «, we
have that A¢ <, A¢q1 and similarly for {Bg : £ < B} (see Lemma 2.16). Additionally, from
this point forward, 25 := {0p,15}.

Define the sequence {C¢ : £ < o+ 8} by Cyp = {(04,0B),(14,1p)} and

AgXQB, if0<é<a
Ce =

Ax By, it{=a+n

We claim that A x B = U€<a+5 C¢. Certainly, if (a,b) € A x B, then there is n < 3 such

that b € B, and so, (a,b) € Cq1yy. The reverse inclusion is trivial.
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We shall continue by proving the remaining properties which prove that {C¢ : { < a+ 3}
witnesses that A x B is minimally generated.

Let v < a be a limit ordinal. It follows that

ny :A’Y X2 = (U§<’YA€) X 2p :UE<’Y(A€ X 23) = U§<’YCE'

In a similar way it can be proved that for every limit ordinal v < S, U5 <oty Ce = Coqny.

Finally, we have to show that whenever { +1 < o+ 8, C¢ <;, Cey1. Let us start with
the case £ < o, i.e., we will argue that A¢ X 2p <;;, Ae1 X 2B.

Fix x € A¢1 \ Ae. We know that A¢ () = Agyq and due to Proposition 2.6.(4), if
G := {y € A¢ : y is comparable with =}, then (G) = A¢. Notice that 04 and 14 belong to
G.

Let H :={(y,1p) : y € G} and fix (y,1p) € H. Immediately, y is comparable with z,
ie,y<xzorx<y. So, (y,1) < (x,1p) or (x,1p) < (y,1p). Therefore, every element of
H is comparable with (z,1p).

We claim that H generates C¢. Indeed, let (2, k) € C¢. By Proposition 1.4 there exist
n €w and {E; : i <n} C [GUG*]* such that z = \/;,_, A\ E:.

Now, if k = 0p, for every i < n we define
F,=[(E:NG) x{1}JU[(E;NG*) x{0g}]U{(14,0B)} C HUH".

Then, V., AFi = (V;<n A Ei,08) = (2,0B).

On the other hand, if k = 1p, for every ¢ < n we set
F,:=[(E;NG) x{1g}]U[(F;NG*) x {0p}]

and F, := {(04,1p)}. Therefore, \/;.,, .1 AFi = (V;cn A Ei1B) = (2,1B).
In conclusion, C¢ <, C¢ (x,1p) due to Proposition 2.6.(5). Thus, we have to show
that C¢ (x,1p) = Ceq1. Equivalently, will verify that A¢ (x) x 2p = (A¢ x 2B) (x,1p). Let

(y,4) € A¢ (x) x 2p. There are a,b € A such that y = (a Ax) V (b — x). Then,

(y,9) = ((aA2) V(b —2),i) = (aNa, i)V (b—x,0) = [(a,i) A (2,9)] V[(b,0B) = (2,1B)].
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The remaining inclusion is proved in a similar way.

In case that £ = o+, let © € Byyq \ By. It can be proved, using arguments similar
to the ones employed above, that (A x By) (14,2) = A x (B, (x)), so it is enough to show
that Coqy <m Cagry (14,).

Recall that the set G := {y € B,, : y is comparable with x} generates B,. We shall
prove that G and G* are closed under A. Fix a,b € G. If a,b < x or a,b > x, we get that
aAb < x oraAb> x, respectively, and so, aAb € G. To verify the remaining cases suppose
that a < x < band get a A b < x.

If a,b € G, immediately —a, —b € G. In case that —a, —b < x or —a, —b > x, it follows
that (—a) V (=b) < z or (—a) V (—b) > =z, respectively; either way, a A b € G*. Finally, if
—a < x < —b, we deduce that — (a Ab) = (—a) V (—b) = —b, which shows that a A b € G*.

Define
H:={(1a,y):yeG & y>z}U{(a,y):yeG & ac A & y<uz}.

Notice that every element of H is comparable with (14,2). We claim that (H) = Cayy.
Indeed, let (a,z) € Cyyy. We know that there are n € w and {E; : i < n} C [GUG*]™ in

such a way that z =\/,__ A E;. Now,

<n

(a,2) = (@, Ve AED) = (a, Ve ANI(EiNG) U (B, N GY)]) =
(@ Vien (A (B: 0 G) A (A (E: N G))]).

Moreover, for every i < n, A (E;NG) € G and A\ (E; N G*) € G* because G and G* are
closed under A.

Then, (a,z) = (a, Vien (ui A wl)) = Vicp (@, u; ANw;) where for every i < n, u; and w;
belong to G and G*, respectively. Observe that, given these conditions, we only have to
prove that for every u € G, w € G* and a € A, we get that (a,u A w) € (H).

Let a € A, u € G and w € G*. Consider the following cases.

(i) u, —w < x. Immediately (a,u) and (1, —w) belong to H. Then, (a,u)A(0,w) € (H).

(ii) w,—w > z. It follows that (1,u),(l,—w) € H and since (a,u Aw) = (a,0) V

[(1,u) — (1, —w)], we get the result.
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(iii) u > = and —w < x. We have (0,w), (0, —u) € (H), and so we apply the following
equality (a,u A w) = [(0,w) — (0,—u)] V (a,0).
(iv) u < x and —w > 2. In this case (0,w) € (H) and (0,u) € H. To finish we use the

following equation (a,u A w) = [(0,u) A (0,w)] V (a,0). O

To complete this section we shall present a criterion in order to determine whether a
Boolean algebra is not minimally generated over some of its subalgebras. This result uses

the notion of independence introduced in Definition 1.23.

Lemma 2.21. Assume A < B. If A is atomless and there is x € B which is independent

of A, then B is not minimally generated over A.

Proof.  Seeking a contradiction, assume that A <,,; B. Then, A <., A(z) due to
A < A(x) < B and Proposition 2.19.(3).

Fix u € A(x) \ A in such a way that A <,, A(u). Hence, J, := J4 (u) is a maximal
ideal. According to Lemma 1.25, there are a,b € A in such a way that A [ a = A | w and
Alb=A]| (—u). Immediately, a Vb € J, and so, a Vb # 1. Besides, for every z € J,,
z < aVb. We can conclude that J,, C ( f V b}>f4, but this is actually an equality considering
that .J,, is maximal in A (see Proposition 2.6).

Set ¢ := — (a V b). To get the desired contradiction, we will check that ¢ is an atom of
A. In order to prove this, notice that ¢ > 0 and fix d € A such that d < ¢. Let us argue that
—d ¢ Jy. Indeed, if —d € J,, we get that —d < a Vb, and in consequence, d > ¢, which can
not happen because we are assuming that d < ¢. Therefore, d € J,, since J,, is a maximal

ideal in A. It follows that d < a V b = —c¢; enough to conclude that d = 0. O

Whenever A and B are Boolean algebras, S(A@® B) is homeomorphic to the topological
product S(A) x S(B), where A @ B is the free product of A and B (see [10, Section 11]).
Since S(A) and S(B) embed as subspaces of S(A4) x S(B), by Proposition 1.33, both, A and
B, are homomorphic images of A @ B. Therefore, if A ® B is minimally generated, then A
and B have to be minimally generated. We also mention that there are minimally generated

Boolean algebras whose free product fails to be minimally generated (see [9, Example 1]).



CHAPTER 3: POSITIVE AND NEGATIVE EXAMPLES

The present chapter has two goals: to prove that some very well-known classes of
Boolean algebras are subclasses of the class of minimally generated Boolean algebras and

to exhibit several Boolean algebras which fail to be minimally generated.

3.1 Interval Algebras

This brief section presents the interval algebras as our first example of Boolean algebras
that are minimally generated.

Consider (L, <), a linear order, and for every « € L define («—,z) :={y € L :y < z}.

Definition 3.1. A is an interval algebra if there is L, an infinite linear order, such that

A=({(2): 2 € L))y

Proposition 3.2. Fvery interval algebra is minimally generated.

Proof. Let A be an interval algebra generated by the lineal order L. Fix o = |L| and
C:={(+,z):x € L}. We get {i¢ : £ < a}, an enumeration of C' without repetitions.

Define Cg := {i¢: £ < f} and Bg := (Cp) for each f < a. We will argue that
{B¢ : £ < a} witnesses that A is minimally generated.

(i) Bo = (0) = {0, L}.

(ii) Be <m Beqa, for every £ < o since L is a linear ordering, every element of
C¢ is comparable with ¢¢. Keeping in mind Proposition 2.6, we only need to prove that
Bey1 = Bg (ig). Start by noticing that i¢ € Bey1 and in consequence, Bey1 D Bg (i¢). For

the reverse inclusion observe that C¢ C Be, so Bey1 = (Ceqr) = (CeU{ic}) C (Be U {ig}) =

B (i¢).
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(iii) {Bg : € < a} is a continuous representation of A: being A = ({i¢ : §{ < 6}) 4, this

statement is a straight consequence of Lemma 2.14. O

3.2 Superatomic Boolean Algebras

In this section we will prove that all superatomic Boolean algebras are minimally gen-
erated. Also, we are going to show some other relationships between minimal generation

and superatomicity.

Lemma 3.3. Assume B is a Boolean algebra, A < B, and I is an ideal in B with I C A.

If m: B — B/I is the natural projection, then
1. I is an ideal in A,
2. m“A=A/I, and
3. w1l [r“A] = A.

Proof. The argument for (1) is routine, so we omit it. Now, to prove (2) we only need to

show that
w(a)={z€A:alzel}

for each a € A. If x € m(a), then z € Band a Az € I C A; hence, z =a A (a A x) € A
The reverse inclusion is clear.
For (3), start by noting that A C 7~ ! [r“A]. On the other hand, z € 7! [r“A] implies

7w (z) € A/I and so, x € 7 (x) C A. O

Lemma 3.4. Let B be a superatomic Boolean algebra and A < B. Then, there isx € B\ A
such that A <, A (z).

Proof. Since B is superatomic, by Proposition 1.41 there is an ordinal + such that I, = B,
where I, is the yth Cantor-Bendixson subset of B (see the paragraphs following Proposition

1.40). Hence, I, Z A. Now, let o be the least ordinal satisfying I, € A. If o were limit,
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then U€ cale ¢ A which is a contradiction to our choice of a. Thus, @ = 3+ 1, for some

ordinal 3. In particular, Ig € A and so, I, = Ig41 # Ig. Then,

Iy = 7Y [AS(B/Ig)] 51,

where m : B — B/Ig is the corresponding quotient homomorphism.

Fix # € I, \ A. Then 7w (z) € [At(B/Ip)]p/1, and therefore, by Proposition 1.37,
7 (z) = \/ S, for some finite set S C At(B/I3). Observe that if 7=1[S] C A, then S C %A,
ie, z €7 t[r“A] = A (see Lemma 3.3.(3)); a contradiction which shows that there exists
a € 7 1[S]\ A. Hence, (a) € At(B/I3) and since a ¢ A, we get m(a) ¢ 7“A = A/l
(again, Lemma 3.3).

Since 7 (a) € At(B/Ig) \ (A/Ig), A/Ig <m (A/Ig) (7 (a)) (see Corollary 2.8). Then,
by the previous lemma, 7“A <., (7“A) (7 (a)). Moreover, (7“A) (7 (a)) = 7[A(a)] as a
result of Proposition 1.7. Now, let h := 7 | A(a); we claim that ker (h) C A. Indeed,
ker (h) = A(a) Nker(m) = A(a) NIz = Ig C A. Therefore, according to Proposition
2.18.(2), A <, A(a). O

Proposition 3.5. FEvery superatomic Boolean algebra s minimally generated.

Proof. Let A be a superatomic Boolean algebra. By recursion on « define define C,, < A as
follows: Cy = {04,14}; if A\ Cy # 0, we fix x4 € A\ C4 in such a way that Cy <, Cq (Ta)
(recall Lemma 3.4) and set Cyp41 := Cy (24); and when « is limit, C,, = Uﬁ<an.

Let ¢ be the least ordinal such that A = Cs. If 6 = S+ 1 we claim that {C¢ : { < 6 + 1}
witnesses that A is minimally generated. Indeed, notice that for every { < n <4, Ce C C,
and thus, Ug <5+1Ce = Ugg 5 Ce = C5s = A. One easily verifies the remaining properties of
Definition 2.15.

On the other hand, in case that ¢ is limit, it can be easily verified that {C¢ : £ < 0}

witnesses that A is minimally generated. O

Our next result shows that one can use minimally generated Boolean algebras to char-

acterize superatomicity.
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Proposition 3.6. If B is a Boolean algebra, then B is superatomic if and only if for every

A < B, B is minimally generated over A.

Proof. Let B be a superatomic Boolean algebra and A < B. For every ordinal a we define
A, < B as follows: Ag := A; whenever B\ A, # 0, Aqt1 := As (aq), where a, € B\ A, is
such that Ay < A (aq) (see Lemma 3.4); finally, if « is a limit ordinal, A :={Jz_,, Ap-

Clearly, for the construction described in the previous paragraph there is a least ordinal
« such that B = A,. We have the following claims:

(i) If o = B+ 1, then {A¢ : £ < a+ 1} witnesses that A <,,4 B. Indeed, just note that
B = A0 CUicnsr A and so B = g ,4q 4Ae.

(ii) In case that « is a limit ordinal, then {A¢ : £ < o} witnesses that A <,y B. By
construction, B = Ug <o A¢ and the rest of the properties are easily verified.

For the reverse implication let us proceed by a contrapositive argument, i.e., we are
going to assume that B is not superatomic and we shall prove that there is A < B in such
a way that B is not minimally generated over A.

According to Proposition 1.40, there is X, a countable independent subset of B. Fix
z € X, and recall Lemma 1.24 to conclude that x is independent of A := (X \ {z})5.
Since A is countable and generated by an independent set, A is atomless (see Lemma 1.21).

Hence, as a result of Proposition 2.21, we are done. ]

We saw in Proposition 2.6 the relationship between A (z) being a minimal extension
of A and the ideal J,. Now let us study the impact of the assumption A <4 A(x) on the

ideal J,. We begin by introducing some topological tools.

Definition 3.7. If (X,Tx) and (Y,Ty) are topological spaces, define the disjoint union
space (X @Y, Txay) as follows: X @Y := (X x {0}) U (Y x {1}) and

Txey = {(U X {O}) U (V X {1}) :UeTx & Ve “Ty}.

Lemma 3.8. If A is a subalgebra of B and x € B\ A, then A(x) is superatomic whenever

A is superatomic.
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Proof. The plan is to use Proposition 1.39. Since S(A) is scattered, S(A)®S(A) is scattered.
Hence, by showing that S(A (z)) is homeomorphic to a subspace of S(A) & S(A), we will
prove that S(A (z)) is scattered.

Let U € S(A ()) be arbitrary and for each i < 2, if 2 € U, define
h(U):={acA:ana'€U}.

Note that for each U € S(A ()) there is exactly one i < 2 with 2 € U.

We claim that h (U) € S(A). Assume 2! € U, for some i < 2. Certainly, 0Az’ =0 ¢ U
and so, 0 ¢ h(U). Since 1 Az’ = 2° € U, 1 € h(U). Now, consider a,b € h(U). Hence,
aANz',bAz' € U. Since U is a filter, (a Ab) A 2 = (a/\xi) A (b/\xi) € U, and thus,
aNb e h(U). We continue by considering a € h (U) and b € A in such a way that a < b. It
follows that bA 2! > a A2’ € U, and given that U is a filter, b € h (U). Therefore h (U) is a
filter. In order to check that U is an ultrafilter, observe that for any a € A we get a € U or
—a € U and deduce that a € h (U) or —a € h(U) as a result of x* being an element of U.

Define f : S(A(x)) — S(A) @ S(A) as follows: for every U € S(A(x)) and i < 2,
f(U) = (h(U),i) whenever 2° € U. Let us prove that f is one-to-one. Fix U,V € S(A)
such that U # V. We consider two cases. If for some i < 2 we obtain 2/ € U and ' =% € V,
immediately f (U) # f (V). When ¥ € UNV for some k < 2, let a € U\ V. Consider
ap,a1 € Ainsuch a way that a = (a9 A x)V (a1 — ). As aresult of the observation following
Definition 1.13, there is j < 2 such that a; A 27 € U. Notice that the assumption k =1 — j
implies that 0 = (aj A a:j) Az'~J € U, which is impossible. Thus, j = k and so, a; € h (U).
On the other hand, from a; A ¥ < a and @ € A (z) \ V we deduce that ax A 2F ¢ V| i.e.,
ar, ¢ h(V). Therefore, ar € h (U) \ h (V).

Let us argue that f is continuous. Fix a € A, recall Definition 1.27 and note that the

following inequalities hold for any ¢ < 2.

fla x{i}] = {UeSA):fU)ea x{i}}
= {UeS(A):(h(U),i)€a x{i}}
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= {UeS(A):h(U)€ea & 2' €U}
= {UeS(A):aeh(U) & 2" €U}
= {UeS(4A):ana’ €U}

= {UG S(A):U € (a/\:L‘i)_} = (anz')”

Now, considering that f is a continuous injection from a compact space into a a Haus-
dorff space, f is an embedding; in other words, S(A (x)) is homeomorphic to a subspace of

S(A) @ S(A). 0

Proposition 3.9. Let B be a Boolean algebra, A < B and x € B\ A. If the factor algebra

A/, is superatomic, then A <pg A ().

Proof. Assume that A/J, is superatomic and recall that J, is an ideal in A (z) (paragraph
following Lemma 2.2). Denote by 7 : A () — A (z) /J, the natural projection. We already
saw in Proposition 1.7 that A (z) /J; = 7 [A(x)] = 7 [A] (7 (z)), and by Lemma 3.3.(2) we
obtain the equality A (x) /J, = (A/J.) (7 (x)). Therefore, A (x) /J, is a simple extension
of A/J, and so, A(x) /J, is superatomic as a result of Lemma 3.8.

Given that A/J, < A(z) /Jz, A(x) /J is minimally generated over A/.J, (see Propo-
sition 3.6). Besides, ker (7) = J, C A and therefore, according to Proposition 2.18.(4),

A <y Al(z). ]

3.3 Free Boolean Algebras

Now we are going to concentrate on proving that the only free Boolean algebra with

an infinite number of generators is Fr(w).

Proposition 3.10. Fr(w) is minimally generated.

Proof. Let us start by fixing {a, : n € w}, an independent family that generates Fr(w).

Define for every n € w the Boolean algebra A, = ({a;:i <n})p,). We obtain that
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{4, :n € w} is a continuous representation of Fr(w) (see Lemma 2.14); in particular,

Fr(w) = Upew, An-

Fix n € w and notice that A, is superatomic because |4, +1| < w. Use Proposition
3.6 to deduce that A, <,y Any1. Assume that {Ag E< an} witnesses A, <y Any1 and
satisfies A? <m A¢iq whenever {4+ 1 < ap (we are using Lemma 2.16). Hence, if a,, were
infinite, 4,11 would be infinite as well. Therefore, a,, < w.

From the previous paragraph we deduce that the set I :=J, .., ({n} X a,), endowed

new
with the lexicographic order is isomorphic to the ordinal w. Let f : w — I be an isomorphism
and define for every n € w and § € an, B-1(,¢) := Ag. A routine verification confirms

that {B; : ¢ < w} witnesses that Fr(w) is minimally generated. O

For the rest of the section we will focus on showing that no uncountable free Boolean

algebra is minimally generated.

Lemma 3.11. Let {Ay : o < w1} and {B, : a < w1} be continuous representations of Fr (wq)
such that for every a < wy, As and B, are countable. Then, there exists a limit ordinal

v < wy in such a way that Ay = B,,.

Proof. For every a < wy there are fy, 31 < wy such that A, C Bg, and B, C Ag, because
both, A, and B,, are countable. Using this property we can construct two sequences
{an :n € w}and {B, : n € w} in such a way that for every n € w, w < @y, < By < apt1 < wi

and A,, € Bg, CA Notice that (U, ., Aan = Up<w BB, -

Qn1-

Define v := sup{ay, : n € w} = {B, : n € w} and note that v is limit. Hence, A, =
Ug<ry Ae and By = Je., Be. Thus, we shall conclude our proof by showing that A, =
Un<w Aan and B, = {J,,., Bg,- The proofs of this equalities are similar, so we omit the
second one.

By definition of v, ay, < «y for every n € w and therefore, A,, € A,. To prove the other

inclusion fix £ < 7. Hence, there is m € w such that o, > £. Thus, A,,, 2 A¢. O

Proposition 3.12. Fr(w;) is not minimally generated.
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Proof. Let us suppose, in order to get a contradiction, that {Bg¢ :& < o} witness that
Fr(wy) is minimally generated. Moreover, we will assume, following Corollary 2.17, that
¢ (Fr(wy)) = o and that for every { + 1 < 0, Be <, Beq1.

Assume that 0 < w;. We claim that for every { < o, |B¢| < w. Certainly, let us
proceeded by induction. Obviously, |By| < w. Now, if £ +1 < o and [B¢| < w, fix
x € Bepy \ Be. We get that Be (x) = Be and therefore, |Bgyq| = [(Be U {z})| < w. Finally,
if v < o is limit and |B¢| < w for each < v, then |B,| = ‘U§<w Bg‘ < w. As aresult of the
claim, |[Fr(w)| = ‘Ug < O'BE‘ < w; which is impossible because Fr(w;) has a subset of size
Ny. Thus, w; < 0.

Now, let us prove that w; = 0. Assume that w; < o and notice that By, € [Fr(wi)]*“*.
Hence, by Proposition 1.22, there is S € [B,,]*" such that S is independent. Since
(B¢ : € < wy) witnesses that By, is minimally generated, £ ((S)z) < € (Bw,) < wi < o (see
Proposition 2.19.(2)) and this is contradiction because (S); and Fr(w) are isomorphic.

Let {z¢: & < wi} be an independent set that generates Fr(w;) and define for each
a < wp, Ay = (11 €< a>Fr(w1)' Then, Lemma 2.14 applies and therefore {A, : @ < w;}
is a continuous representation of Fr(wj). According to Lemma 3.11, there is a limit ordinal
v < wp in such a way that A, = B . Then, by Proposition 1.21, A is atomless. Besides,
Zy41 € Fr(wi) \ A, is independent over A, (see Lemma 1.24). Following Lemma 2.21,
Fr(wy) is not minimally generated over A,; this contradicts that B, <4 Fr(w;) (again,

Proposition 2.19.(2)). O

Corollary 3.13. Fr(k) is not minimally generated whenever k > Ny.

Proof. Given that subsets of independent sets are independent, Fr(x) has an independent
set of size Rj. Hence, Fr(w;) < Fr(k) and the rest follows as consequence of our previous

result and Proposition 2.19.(3). O

Corollary 3.14. Assume that for each n < w, U, is an infinite independent subset of a

Boolean algebra A,,. Then, the product || A, is not minimally generated. In particular,

n<w

Fr(w) is minimally generated (see Proposition 3.10), but the power (Fr(w))® is not.



46 Positive and Negative Examples

Proof. It can be proved that [, A, has an independent subset of size |[],.,, Un| =

n<w

w® = ¢ > wy (check [10, Theorem 13.10]). Therefore, Fr (w1) embeds into [], _,, Ax. O

n<w * N

The Theorem of Balcar-Franék (see [10, Theorem 13.6]) provides us with more examples
of Boolean algebras that are not minimally generated. This result asserts that every infinite
complete Boolean algebra A has an independent subset of size |A|. Therefore, Proposition
3.12 along with Balcar-Franék’s theorem ensures that every complete Boolean algebra with

at least N; elements is not minimally generated.

3.4 Dense Trees

Following the same approach as S. Koppelberg did in [11], in this section we are going
to consider trees inside Boolean algebras. In particular, we shall see that every minimally

generated Boolean algebra contains a dense tree.

Definition 3.15. Let A be a subalgebra of B. We say that A is dense in B if for each

b € BT thereis a € AT such that a < b.
Let us begin by studying under which circumstances A is dense in A ().

Definition 3.16. Assume that A is a Boolean algebra and I is an ideal in A. If there exist

a € A such that I = A [ a, then [ is a principal ideal.

Lemma 3.17. Let A <,, B andx € B\ A. If Az and A | (—x) are not principal ideals
in A and A <,, A(x), then A is dense in A(x).

Proof. Given ¢ € A (x)" there are a,b € A with ¢ = (a Az) V (b — x). Consider first the
case aNx # 0. If a € J,, then a Az € A and a A x < ¢. On the other hand, when a ¢ J,
we get —a € J, (see Proposition 2.6) and thus, z — a € A. Hence, x —a € A | z, ie.,
Al (x—a) CAlxandsothereisde Az \ A (x—a) (A [ xis not principal). Since,
d < x and d £ x —a, we deduce that d Aa # 0. Therefore, dAa € AT and dAa < zAa < c.

The second case, when b — x > 0, has a similar proof. O
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Lemma 3.18. Let A <,, B and x € B\ A. If either A [ v or A | (—z) are principal ideals
in A, then there is y € At(A(x)) \ A.

Proof. Assume that d € A is such that A | © = A | d. Define y := z — d and let us prove
that y € A(x)\ A. Clearly, y € A(z). In order to get a contradiction, let us suppose that
y € A. By Lemma 2.2, —d € J,. Therefore, there are a,b € A in such a way that a < x,
b < —x and —d < a V b (check the paragraph immediately after Definition 2.1). However,
Alxz=A]dand thus, —d < dV b. Immediately, —d < b and in consequence, d > x. On
the other hand, d € A | x. Therefore, d = z, contradicting the assumption = ¢ A. Hence,
y ¢ A

Now, apply Proposition 2.6 to deduce that J} is an ultrafilter in A. We claim that
G :={ceA:y<c} = J;. Indeed, fix c € J}, equivalently, —c € J,. Then, there are
ep,e1 € A such that eg < 7z, eg1 < —z and —c < eg V e1. Notice that ey < d. Hence,
—c < dV (—z) and this implies that ¢ > (—d) A z = y. Therefore, G is a filter in A
containing J7, i.e., they are equal as claimed.

We will show that y € At (A (z)). Let z € A(x) be such that z < y. We are going to
prove that either z = y or z = 0. Let a,b € A be such that z = (a A x)V (b — x). Considering
that z < y, we have that b — x = 0 and in consequence, z = a A x. Moreover, a A z < —d.
On the other hand, since J is an ultrafilter in A, a € G or —a € J}. In the first case,
a >z —d, and thus, 2 > x —d = y. Therefore, z = y. If —a € J, then a € J}. Proceeding
as we did in previous paragraphs, a < dV (—z). Hence, a Ax < dAz < d and so, z = 0.

Now, if A | (—z) is a principal ideal in A, let d € A be such that A | (—z) = A | d.

Define y := d — x and proceed as in the previous paragraphs. ]

Lemma 3.19. Let A < B and x € B\ A be such that A <., A(z). If D C A satisfies that
(D) 4 is dense in A and y € At(A(x)) \ A, then (D U{y}) 4 is dense in A(z).

Proof. Given that A <,, A(x), A(z) = A(y). Fix z € (A(y))" and get a,b € A such that
z=(aNy)V(b—y). Notice that either a Ay # 0 or b —y # 0. When a Ay # 0, we obtain
that 0 < a Ay < y and since y is an atom, y = a A y; thus, y is a member of (D U {y})A(x)

satisfying y < z.
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In case that b—y # 0, fix d € <D>jg in such a way that d < b. Observe that d —y < z
and d —y € (DU {y})A(x). Now note that the equality d — y = 0 implies that 0 < d <

Yy
and so, y =d € A. Hence, d —y # 0. O

Consider (T, <) a partial order. Recall that (T, <) is a tree if for each x € T, the
collection {y € T': y < x} is well-ordered by <.

Now, let us introduce the notion of a tree inside a Boolean algebra.
Definition 3.20. Let A be a Boolean algebra and T'C AT. We say that T is a tree in A if

1. for every x,y € T, we have that x <y, y < z or z Ay = 0, where < is the natural

order of A, and
2. (T, <r) is a tree, where for each z,y € T', v <rp y if and only if y < z.
If T is a tree in A and (T') 4 is dense in A, we shall say that T' is a dense tree in A.

Proposition 3.21. If B is minimally generated Boolean algebra, then there is T, a dense

tree in B, such that (T') g <mg B.

Proof. Let {B, : a < o} be a witness to the fact that B is minimally generated. Moreover
(see Lemma 2.16), assume that B, <, Ba+1 whenever a + 1 < 0.

Denote by Ej the set of all ordinals « such that a+1 < ¢ and B,, is not dense in B,1.
Also, By := 0\ Ey.

Now, for each a € Ej use Lemmas 3.17 and 3.18 to obtain z, € At(By+1) \ Ba and if
a € By, fix an arbitrary point 2, € Bat1 \ Ba. Proceeding as in the proof of Lemma 2.14
we deduce that B, = ({z¢ : £ < a}) for each o < 0.

Set T := {xq : « € Ey} and define <p as follows: a <7 b if and only if b < a, for any
a,b € T. Let us argue that (T, <r) is a tree in B.

Given o, € Ey with a < 3, we get x4, 23 € Bg41 and so, the condition xg € At(Bg41)
implies that either xg3 < 24 or o A xg = 0. On the other hand, if o € Ey and we set
S :={yeT:y<rx,} we claim that S is well-ordered by <7. Indeed, start by letting
Ey:={{€canky:xz, <wx¢} and define g : By — S by g (§) = x¢, for each § € Ey. We will



3.4 Dense Trees 49

show that ¢ is an isomorphism between (Es, €) and (S, <r). Assume §,n € E3 are such
that £ < 7. Then, as we saw before, x¢ < x; or ¢ Az, = 0, but the fact 0 <z, < z¢ A xy
implies that x, < x¢, i.e., g(§) <7 g(n). Since (Es, €) is a linear ordering, we only need
to argue that g is onto. Suppose that 8 € Ej satisfies x5 € S, i.e, 0 < 2, < 75 and notice
that if o < 3, then we would have that z, € Bgy; and x3 € At(Bg41); a contradiction to
0 < 2o < 3. Hence, 8 < o and therefore, 3 € E». In conclusion, g is an isomorphism,
which implies that <7 well-orders S.

Now that we know that (T',<r) is a tree in B, we will focus on showing that (T) is
dense in B. To do so, define, for each o < o, Co = ({w¢ : £ € aN Ep}). We claim that
C, is dense in B, whenever o < ¢. Our proof will be by transfinite induction. Clearly,
Co = By. Now assume that for some o < o we have that C, is dense in B, and a +1 < 0.
When a € Ey, Cot1 = Co (z4) and given that z, € At(Ba+1) \ Ba, Lemma 3.19 implies
that C, is dense in Cyt1. When o € E7, Cy = Cyq1 and B, is dense in Byy1; thus, Chqq
is dense in B,, as needed. Finally, assume that o < o is limit and has the property that Cg¢
is dense in B for all £ < . Hence, given = € By, there is < a with € Bg and by our
inductive hypothesis, there exists y € C’E C C7 in such a way that y < z, i.e., C, is dense
in B,.

As a consequence of the previous paragraph, C := | C, is a dense subalgebra of

a<o
Ua<o Ba = B, which together with the fact C' < (T') implies that (T') is, indeed, a dense
subalgebra of B.

Set A := (T"). To finish our proof, let us argue that A <,,, B. Start by noticing that
when By = (0, A = B an so, A <,y B, trivially. Hence, assume that E; # () and denote
by 1o and n; the order types of (Ey, €) and (Ej, €), respectively. Set n = ng + 11, and fix
f:n — EpU E; in such a way that both, f [ no:m0 — Eo and f [ (n\no) : n\ no — E1,
are isomorphisms.

For each o < 1, let D, := <{xf(§) €< oz}). Since D,, = A, we only need to show

that {D,, : @ < n} witnesses that B is minimally generated.

Given that B is generated by {z, : @ < o}, as we mentioned at the beginning of our
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proof, Lemma 2.14 guarantees that {D, : @ < n} is a continuous representation of B. Now
consider a < 7 in such a way that o + 1 < n. To prove that D, <;, Doy1 we consider two
cases.

First, when a < ng, our assumption on f [ 19 guarantees that {:cf(g) €< a} C
{we : £ < f (o)} and therefore, Do C Bj(yy. Also, the fact f (a) € Ep implies that zy(,) €
At (Bf(a)ﬂ) \Bj(a) C At (Bf(a)) \ D,, and according to Corollary 2.8, D, <, D, (xf(a)) =
Dot1.

Before we embark on the case 79 < a, let us prove that if o < v < n, then By(,) < D,.
Assume that £ < f () is arbitrary. Since o0 = EyU E1, we consider two possibilities. When
¢ € Ey, we obtain f~!(£) < no < v and thus, z¢ = Ty(s-1(¢)) € Dy. On the other hand,
from ¢ € E; we deduce that ¢ < f(y) € F1 and so, f~1(¢) < v which, once again, gives
Te =Tpp-1(¢e)) € Dy. As a consequence, {z¢ : § < f(7)} C D, and therefore, By(,y < D,.

We are ready to finish the proof of our proposition. Suppose that np < a<a+1<n
and fix £ < a. If we show that D, N {xf(a) AN pe), Tpa)y — Tpe)t # 0, then by Corollary
2.7 would give us Dy <im Do+1. To simplify notation, set y := zy) and 2z 1= z(,). There
are two cases. If f(§) < f(a), then y € Bya) <m Bfa)+1 = Bf(a) (2) and according
to Corollary 2.7 we obtain () # By N {2 Ay,z —y} € Do N{zAy,z—y}. Now, when
f(a) < f(&), the assumption 79 < a < n gives f (o) € Fj. Notice that if f(£) € Ey,
the fact that f | (n\ 7o) is an isomorphism would produce a < £. Thus, f (§) ¢ Ey, i.e.,
(&) € Ey. As a consequence, y € At (Bf(§)+1) and since z € By C By(e)+1, we get that

either y < z or y A z = 0. In other words, y A z € {y,0} C D,,. O

3.5 The Factor Algebra P(w)/ fin

The main goal of this section is to present the factor algebra P(w)/fin as a negative
example of minimal generation. Reading this section requires from the reader knowledge of
definitions and results presented in Section 1.7.

It can be verified that that fin := [w]<“ is an ideal in P(w), in the sense of Definition

1.9. From now on, P(w)/ fin will be considered as a Boolean algebra.
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For every a € P(w) define [a]g, as the equivalence class of a modulo the ideal fin.

Let us mention some immediate properties of P(w)/ fin: for every a,b, € P(w) we get
lalg, < [blg, if and only if a C* b; [a]g, > 0 as long as a is infinite, and when a is finite, it
follows that [a]g, = 0. On the other hand, given that a =* b if and only if a A b is finite, it

follows that [a]g, < [b]g, if and only if a C* b.

Proposition 3.22. P(w)/fin is an atomless Boolean algebra.

w

Proof. Let x € P(w)/fin be a positive element. Fix a € z and notice that a € [w]”.
So, we can find b, ¢ € [a]” in such a way that b N ¢ = (. Since b is infinite, [bl, > 0 and
moreover, [b];, < x because b C a. We claim that z # b. Certainly, a A b € [w]*” because

cCa\bCaAb. Therefore, 0 < [b]g, < . O

It is well known that there is at least one almost disjoint family of size ¢ (the proof
appears in [13, Theorem 1.3, Section 2.1]), and this fact can be used to show that P(w)/ fin

has size ¢. Now let us show that Fr(c) embeds as a subalgebra of P(w)/ fin.

Proposition 3.23. P(w)/fin has an independent family of size c.

Proof. As usual, R and Q will denote the sets of all real numbers and of all rational

numbers, respectively. Recall that if a,b € R, then (a,b) = {x € R: a < z < b}. Define
8:={(a,b):a,b€Q & a<b}and B:={|J&: &€ [s]"*}.

Clearly, |B| < [[8]~“| = w. Moreover, {(0,n) : n € w} C B, and thus, |B| = w.

Now, for every r € R set F,. := {B € B:r € B}. We claim that {F, : r € R} has size
¢. Indeed, let 79,71 € R be such that ro < r; and find ¢ € Q in such a way that g € (rg,r1).
Observe that ro € (qo, ¢) for some gg € Q; this guarantees that (qo, q) € Fy, \ Fy,. Therefore,
¢ < {F, :r € R}|. The other inequality is fairly trivial.

We are going to prove that {F, : r € R} satisfies the following: for every G, H € [R]<%\
{0} such that GNH = 0, we obtain that |(,c Fr \ Usep Fs| = w. In order to do that, use
the density of Q in R to get {I, : 7 € G} C 8 such that:

1. r € I, for every r € G,
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2. for every r,s € G, if r # s then I, N I, = (), and

3. HNU{IL, :r e G} = 0.

Fix t € G and assume that I; = (a,b). For every ¢ € § := (t,b) N Q define By :=
(a,q)UU{L : r € G\ {t}}. Immediately, B, € [,c F> for every g € S. Moreover, property
(3) implies that B, ¢ F, for every s € H. Hence, {B;:q€ S} C (\cq Fr \ User Fs-
Finally, if ¢,¢" € S and ¢ # ¢, then By # By; this makes certain that (..o Fr \ Use Fs
has cardinality w.

Since B is countable infinite, the sets P(w) and P(B) are isomorphic and, as a conse-
quence, there is {a, : @ € ¢} C P(w) with the property that for every G, H € [¢]~“ \ {0}
such that G N H = (), we have that ‘ﬂBeG ag\ U,en av‘ = w.

Let us prove that {[an]g, : @ € ¢} is an independent family in P(w)/fin. Fix G,H €
[c]<“\ {0} such that G N H = (. Then,

(/\560 [aﬁ]ﬁn> - (V'yeH [ay]ﬁn> = [ﬂ,@eG ag\ Uy en av] > 0.

fin

This inequality completes the proof. ]

By the previous proposition, Fr(c) embeds into P(w)/fin and the next results follows

(see Corollary 3.13 and Proposition 2.19.(3)).
Corollary 3.24. P(w)/fin is not minimally generated.

Denote by fw the Cech-Stone compactification of the integers. It is a well known fact
that if F' is an infinite closed set of Sw, then |F'| = 2¢ (see [6, Theorem 5.4, Chapter 3]). On
the other hand, given X, an infinite Hausdorff space, and {x, : n € w} C X, a converging
sequence to x, we can easily prove that {z,, : n € w}U{x} is compact and in consequence, it
is also a closed set of X. Therefore, fw has no infinite convergent sequences (equivalently,
it contains no copy of the linearly ordered topological space w + 1).

By definition, an Efimov space is an infinite compact Hausdorff space which contains
neither a copy of Sw nor a copy of w+1. Thus, Efimov’s Problem, which was posed originally
in [4], asks if there are Efimov spaces. This question has been answered consistently several

times (for example, Fedoréuk constructed in [5] an Efimov space using <), but it is an open
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problem to get an Efimov space in ZFC (or show that, consistently, there are no Efimov
spaces).

Now, since the natural projection 7 : P(w) — P(w)/ fin is a surjective homomorphism,
Proposition 2.18.(3) and Corollary 3.24 guarantee that P(w) is not minimally generated.
Given that the Stone space of P(w) is Sw (check [6, Theorem 5.1, Chapter 3]), we can use a
duality argument to conclude that if A is minimally generated, then S(A) contains no copy
of Sw.

By previous paragraph, to solve Efimov’s problem we only need to construct a min-
imally generated Boolean algebra such that its Stone space does not contain an infinite
convergent sequence. This was done in [3] via Koszmider’s forcing.

Previously, we have seen in Proposition 3.21 that every minimally generated Boolean
algebra possesses a dense tree. However, we shall verify that this property does not char-
acterize them. To be precise, we will prove next that P(w)/ fin has a dense tree (this result

was originally proved by Balcar, Simon and Pelant in [1]).

Lemma 3.25. If {D, : a < b} is a decreasing family of dense open sets in w such that

ﬂa<h D, =0, then there is a family {T, : « < b} satisfying the following for each o < b.
1. Ty = {w},
2. Ty is a MADF whenever a > 0,
3. if B< aand s €Ty, there ist € Tg such that s C* t,
4. Togt1 C Dqy, and

5. for each a € [w]|*, if |{s € Tha+1: a|s}| = ¢, then there exists t € Thoto such that

t Ca.

Proof. Let us start by defining Tp := {w} and T3 as an arbitrary MADF. The next step
is to fix A < b, a limit ordinal, and to assume that {75, : @ < A} satisfies conditions (1)-(5)
((4) and (5) only apply when 2a+1 < \). By Lemma 1.46, T, is dense and open, for every

a < A. Then, ﬂa<ATa is dense and open (recall Lemma 1.48). Apply Lemma 1.45 to get
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A, a MADF, in such a way that A C Na<x T,, and define Ty := A. Routine arguments
show that {T¢ : £ < A} satisfies (1), (2), (4) and (5). Now, for (3): if s € T and 5 < A are
arbitrary, then T C Ty C m and so, there is u € Ty with s C* u. According to our
inductive hypothesis, there exists ¢ € Tz such that u C* ¢ and hence, s C* £, as needed.

To complete the recursion, suppose that v < b is a successor ordinal for which the family
{T¢ : £ < 7} has been constructed according to conditions (1)-(5). We face two cases: either
v =2a+1or v = 2a+ 2, for some ordinal «. Firstly, assume that v = 2a 4+ 1 and for
every y € Th,, fix y* and y~, two infinite sets, in such a way that they form a partition of
y. Next, define T4, = {y~ : y € Toa} U{y" : y € Tha}. A straightforward argument shows
that T3, is a MADF and in consequence, there is A, a MADF, such that A C E N Dg.
We shall define Tb,11 := A. Clearly, (4) is satisfied. Now, regarding (3), let s € Too41 and
B < 2a be arbitrary. There are y € Th, and 2z € {y~,y"} with s C* 2 C* y. Thus, when
B = 2a, we set t := y to obtain ¢t € T3 and s C* . On the other hand, for 8 < 2o we
use our inductive hypothesis to get ¢ € Tz such that y C* ¢ and so, s C* ¢. In conclusion,
{T¢ : £ < v} satisfies (1)-(5).

For the case v = 2a + 2 start by setting, for every a € [w]*, the collection E, :=
{s € Toq+1 :a | s}. Also, define X := {a € [w]” : |Ey4| = ¢}. Now consider f: X — |X]| a
bijection, and ¢ : |X| — Tha+1 in such a way that for every 5 < |X|, ¢ (8) is an arbitrary
member of Er-1g) \ ¢ [B] (note that | X| < ¢). Finally, let us define ¢ := o f. In this way,
a | (a) for every a € X and v (b) # ¢ (c), whenever b,c € X are different.

Fix b € Tha+1. If b ¢ ran(1)), partition b into two infinite sets, b~ and b*. For the case
that there is a € X, with ¢ (a) = b, use that a and b are compatible to get by and by, a pair
of infinite sets, in such a way that they form a partition of @ Nb, and define b~ := by and
bt :=b1U(b\ a). Next, establish T2 as the collection {b™ : b € Tho11}U{bT : b € Thnt1}.
Let us verify condition (5): assume that a € X is arbitrary and set b := 1 (a). Thus,
b~ € Thaio and b~ C* a.

To finish our argument, let us check that condition (3) holds. To do so, fix 8 < 2a + 1

and s € Tooya. There is b € Toyy1 with s C* b. When f=2a+ 1, set t :=bto get s C* ¢
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and if 8 < 2o+ 1, apply the inductive hypothesis to get ¢ € T with b C* ¢ and therefore,

s C* t, as wanted. O

Given a tree S and an ordinal «, we will denote by S («) the ath level of S.
Proposition 3.26. There is T C [w]* in such a way that the following conditions hold.
1. (T, D*) is a tree (in the traditional sense) of height b,
2. 7(0) = {w},
3. for every a < by, T'(«) is a MADF, and

4. for each a € [w]* there ist € T such that t C a.

Proof.  Suppose that {T, : a < b} and {D, : o < b} as described in Lemma 3.25, and
define T' := {J,p To- Let us begin by proving that (T, 2*) is a partial order. Reflexivity
and transitivity of O* are straightforward, so will only show that it is antisymmetric. If
s,t € T are such that t O* s and s D* ¢, then there are §,a< b in such a way that s € Ty,
and t € Tg. We claim that o = 3. Otherwise, assume that 3 < « and apply the previous
lemma to get r € Ty satisfying » D* s. Hence, r | ¢t as a result of Lemma 1.42. Given that
r and t are compatible elements of T, an almost disjoint family, r = . We deduce that
t O* s, which contradicts the assumption t C* s. Therefore, s,t € T. Moreover, s | t and
so, s = t.

Fix t € T and a < b such that t € T,,. We shall show that S := {s €T :s D"t} is
order isomorphic to a. Let us start by proving that for each f < «, |SNT3| = 1. By
Lemma 3.25, SNT3 # (. Let s,s' € SNTp. Then, s O* ¢t and s’ D* ¢, this guarantees that
s | s'. Since Tp is almost disjoint, s = s’. For every 8 < « denote by f (8) the only member
of SN Tpg. This gives a function f : @ — S. In order to prove that f is order-preserving,
fix v < 8 < awand get r € T, in such a way that » O* f(8) D* ¢ (recall condition (3) in
Lemma 3.25). Since f(vy) € S, we get f(y) 2* t and so, f(y) = r because T, is almost

disjoint. Thus, f () 2* f(B). This argument also shows that f is one to one.
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Now, to verify that f is onto, fix s € S and obtain 8 < b in such a way that s € Tj.
We claim that § < a. Certainly, if 8 = «, then s,t € T, and in consequence, s = t. When
a < B, there exists r € T, with r D* s. Straightaway, » D* t and this implies that r = ¢.
Therefore, t D* s and s D* t which is impossible. Therefore, we have just proved that for
each a < b, T, C T («). For the reverse inclusion note that if w € T («), then, for some
B<bh,ueTy CT(F) andso, o= p.

w

Finally, let a € [w]”. In order to find ¢t € T, with ¢ C a, we need to prove that
{s € Toy41 : a | s}| = ¢, for some v < b (see Lemma 3.25). We will recursively construct a
strictly increasing sequence {a, : n € w} C h and {s,, : » € w} in such a way that, for each
n € w, s, is a subset of T, of size 2" and for each s € s,, we have that s | a and there are
s',s" € sp11 such that s D s, s D s”, and s’ # 5.

Firstly, set ap = 0 and sp = {w}. Next, assume that s, is already constructed and fix
s € s,. Since ﬂa<h D, = 0, there is n < b such that sNa ¢ D,. Fix {(s) < b satisfying
€ (s) > max {ay,n}.

We claim that for every S > £ (s), there are to,t; € Thsy; in such a way that to # 1,
to | (sNa), t1 | (sNa)and tg Uty C* s. Certainly, there is tg € Thgq1, with to | (sNa),
because Ty is a MADF. Let us assume that ?y is the only member of Thg, 1 that is
compatible with sNa. Then, sNa C* tg. On the other hand, To541 C Dg. So, use that Dg
is open to get that sNa € Dg C D,;, contradicting our choice for 7.

Now, fix ¢ € 2 and let us prove that t; C* s. Start by using that «a,, < 28 + 1, along
with Lemma 3.25, to get r € T,,, such that ¢; C* r. Since sNr 2* sNt; O (sNa) Nty
we deduce that s | r. However, s and r belong to T,,,, which is an almost disjoint family;
therefore, s = 7.

Define ay,41 := 2sup{£ (s) : s € s, } + 1. By propositions 1.47 and 1.49, a1 < h. For
each s € s, use the two previous paragraphs to obtain s',s"” € T, ., satisfying s’ # 5",
s a,s"|aand s Us” C*s. We set s,,41 as the collection {s' : s € s,}U{s" : s € s,,}. Let

us verify that whenever r and s are different elements of s,,, {r', 7"} N {s’, s} = (). Indeed,

s # r entails that s L 7, which together with the assumption 7’ U r” C* r, implies that
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s L 7" and s L r”. Given that s’ Us” C* s, this concludes the recursion.
Now we are able to get a subset of T', order isomorphic to the Cantor tree. Indeed,

define S :=J . sn and notice that there is h : <“2 — S such that the following hold.

new

(1) h is a bijection,

(2) for each n € w, h["2] = s,, and

(3) for every f €2 [ if m <n <w, then h(f [ n) C*h(f | m).

Notice that for every f € “2 and n € w, h(f [ n) € sp; thus, a | h(f [ n). Therefore,
we can apply Lemma 1.43 to get ay, a pseudointersection of {a Nh (f [ n) : n € w}. Clearly,
ay C* a.

Define vy := sup {ay, : n € w}. Since b is a regular uncountable ordinal (see propositions
1.47 and 1.49), v+ 1 < h. Moreover, use that 7 is limit to get the equality 2y = ~. Finally,
we shall prove that |{s € Thy41 : a | s}| = ¢. To verify this fact, use that 75,41 is a MADF
and get, for each f € “2, yr € Thyyq such that as | yg. Clearly, a | yr. We only need to
check that for every f,g € “2, yr # yy4, as long as f # g. To do this we need an auxiliary
result.

We claim that y; C* h(f [ n), for every n € w. If n € w, then ay C* h(f [n).
Immediately, y | b (f [ n). Use that a,, < 27+ 1 to get u € T, with y; C* u. Then, u
and h (f [ n) are compatible, and thus, u = h (f [ n) as a result of both being elements of
the MADF T, .

We are ready to finish our proof: assume that f, g € “2 satisfy f # g. Choose n € w in
such a way that f(n) # ¢g(n). Then, h(f [ (n+1)) # h(g [ (n+ 1)), which implies that
h(fT(n+1) Lh(g[(n+1)), as a result of being elements of Ty, ,. Therefore, y; # y,
because yy C* h(f | (n+1)) and yy C* h(g | (n+ 1)). O

Corollary 3.27. P(w)/fin has a dense tree.

Proof. Denote by T the tree given in Proposition 3.26 and let 7 : P(w) — P(w)/ fin be the
natural projection. Let us prove that (w [T],>) is a dense tree in P(w)/ fin.
We claim that 7 [ T : T'— 7 [T] is an isomorphism. If s, € T and 7 (s) = m (¢), then

(s\ t)U (t\ s) is finite an so, s O* ¢t and ¢ O* s. Considering (T, D*) is a tree, it follows
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that s = t. Immediately, = | T is a bijection. Now, recall that for every s,t € P(w), s C* ¢
as long as 7w (s) < 7 (t) (see the paragraph before Proposition 3.22) Therefore, (7 [T],>) is
a tree of height .

Let us continue by proving that (7 [T],>) is a tree in P(w)/ fin, i.e., we shall show that
for every s,t € T, either 7 (s) and 7 (¢) are <-comparable or 7 (t) A7 (s) = 0. Equivalently,
let us verify that for each s,t € T, either s and ¢ are C*-comparable or s 1 t. Fix s,t € T
and get o, f< b in such a way that s € T (o) and t € T (8). If a« =, then s=tors Lt
because T'(«) is a MADF. On the other hand, if o < 3, the fact that T is a tree gives us
a node r € T («) such that t C* r. Since s, € T' (), r = s or r L s and in consequence,
t C*sort L s. A similar reasoning works for the case 8 < a.

Finally, we will prove that (m [T1])g /4y, is dense in P(w)/fin. Let a € (P(w)/fin)™.
Then, there is s € [w]* such that a = 7 (s). Use Proposition 3.26 to get t € T satisfying

t C s. Notice that 7 (t) € 7 [T] and 7 (t) < a. O

Given a topological space X, a collection U of non-empty open subsets of X is called
a m-base for X if any non-empty open subset of X contains a member of U. Thus, when A
is a Boolean algebra and D is a dense subset of A, we deduce (following the notation from
Definition 1.27) that {d™ : d € D} is a m-base for S(A). Hence, our proof of Corollary 3.27
implies that the remainder of the Cech-Stone compactification of the integers, S(P(w)/fin),
has a tree w-base, ie., if T := {(7(¢))” :¢t €T}, then (J,2) is a set-theoretic tree (in
general, when A is a Boolean algebra and a,b € A it happens that a= C b~ if and only if

a<b).
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