

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

PROGRAMA ÚNICO DE ESPECIALIZACIONES DE INGENIERÍA

CAMPO DE CONOCIMIENTO: INGENIERÍA CIVIL

ANÁLISIS DEL COMPORTAMIENTO DINÁMICO DE LA CORTINA DE LA PRESA EL INFIERNILLO BAJO LA INFLUENCIA DE UN SISMO EN SU COMPONENTE TRANSVERSAL

T E S I N A

QUE PARA OPTAR POR EL GRADO DE:

ESPECIALISTA EN GEOTECNIA

 $\mathsf{P} \mathsf{R} \mathsf{E} \mathsf{S} \mathsf{E} \mathsf{N} \mathsf{T} \mathsf{A}$:

ING. ULISES TLACAELEL RUFINO NOYOLA

DIRECTOR DE TESINA: M.I. REGINALDO JOSÉ HERNÁNDEZ ROMERO

CIUDAD UNIVERSITARIA, CD. MX.

SEPTIEMBRE 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Contenido

Introducción	5
Capítulo 1. Generalidades	6
1.1 Localización	6
1.2 Antecedentes	8
1.3 Hidrología	8
1.4 Geología	9
1.5 Características de la presa	10
Capítulo 2. Sismicidad de la región	14
2.1 Definición de Sismo	14
2.2 Tipos de ondas	20
2.2.1 Definición	20
2.2.2 Ondas de cuerpo	20
2.2.3 Ondas superficiales	21
2.3 Origen de los Sismos	24
2.4 Clases de Sismos	25
2.5 Escalas sísmicas	26
2.6 Magnitud e Intensidad de un temblor	28
2.7 Sismos importantes en México	28
Capítulo 3. Metodología de análisis	31
3.1 Análisis de Fourier	31
3.2 Espectros de Fourier	32
3.3 Espectros de respuesta	33
3.4 Sistema de un grado de libertad	34
3.4.1 Sistema de un grado de libertad sin amortiguamiento	34
3.4.2 Sistema de un grado de libertad amortiguado	38
3.5 Espectro de respuesta elástica	41
3.6 Espectros de repuesta inelásticos.	41
3.7 Espectros de diseño	41
3.8 Funciones de Transferencia	42
Capítulo 4. Comportamiento dinámico	44
4.1 Espectros de Fourier	48

4.2 Funciones de transferencia	53
Conclusiones	60
Bibliografía	62
Mesografía	62

Introducción

Existen fenómenos naturales que pueden ocasionar grandes daños materiales y pérdidas de vidas humanas, unos de estos fenómenos son los sismos. Nuestro país se encuentra en una zona de alta demanda sísmica, debido a esto los retos que enfrenta la ingeniería civil en el diseño y construcción de grandes obras hidráulicas es de gran importancia.

El análisis de la respuesta sísmica de estructuras como presas se basa en el registro e interpretación de las aceleraciones ocurridas durante un evento sísmico.

Conocer la respuesta dinámica de grandes construcciones como los son las presas es de gran importancia, debido a esto en las últimas décadas se han instrumentado y estudiado presas como el Infiernillo.

Los avances en el diseño de presas, los métodos de análisis, diseño y metodologías de construcción, han sido posibles por los datos aportados por la instrumentación en obras a escala real.

Las funciones de transferencia son de gran utilidad en la ingeniería sísmica ya que nos permite conocer el periodo natural de vibración de la estructura de interés y poder evaluar los efectos del sitio (amplificación o atenuación), en otras palabras es posible determinar cómo varía el movimiento sísmico de un lugar a otro.

El efecto del sitio es diferente de un lugar a otro debido a que las características del subsuelo cambian completamente de un lugar a otro.

En este trabajo para poder apreciar los efectos de atenuación o amplificación en la cortina de la presa se obtendrán los espectros de Fourier de una misma señal (componente transversal) en tres puntos distintos de la cortina (base, media cortina y corona), se realizará la razón espectral entre cada uno de estos puntos para obtener la funciones de transferencia y se interpretaran los datos obtenidos. En los intervalos donde la razón espectral sea mayor a uno, tendremos amplificaciones y si las razones espectrales son menores a uno se tratará de atenuaciones.

Capítulo 1. Generalidades

1.1 Localización

La hidroeléctrica conocida como el Infiernillo se localiza sobre el río Balsas el cual se ubica en las fronteras de los estados de Guerrero y Michoacán, 300 km al SW de la Ciudad de México y a 70 km del océano Pacífico. Las coordenadas geográficas de la presa son: 18°16′ latitud Norte y 101°54′ longitud Oeste

Figura 1. Localización de la presa el Infiernillo

http://www.paratodomexico.com/geografia-de-mexico/hidrografia-de-mexico/presas-de-mexico.html

Figura 1.1 Macrolocalización de la presa el Infiernillo https://es.wikipedia.org/wiki/Presa_Infiernillo#/media/File:Croquis_general_RBZI_2.jpg

1.2 Antecedentes

En 1960 se inició la construcción del proyecto de Infiernillo, por la CFE, para generar 920 MW. La cortina es de materiales graduados, cuenta con una altura de 150 m y taludes exteriores de 1.85:1, tomando en cuenta las bermas. El núcleo fue construido con suelo arcilloso de mediana plasticidad, colocado en capas de 15 cm de espesor con un contenido de agua 3% superior al óptimo y compactado con rodillo de pata de cabra hasta un grado de compactación del 94% respecto a la prueba Proctor Estándar.

Figura 1.2 Corte transversal de la cortina de la presa El Infiernillo.

1.3 Hidrología

La hidroeléctrica el Infiernillo que se ubica sobre el rio Balsas, posee una cuenca de 108,000 Km², la cual tiene un escurrimiento medio anual de 15,000 m³/s, el gasto máximo registrado es de 25200 m³/s y su gasto máximo probable es de 38800 m³/s. Su vaso cuenta con una capacidad de azolve de 2,250 hm³, una capacidad instalada útil de 7090 hm³ y una capacidad total de 12000 hm³.

Figura 1.3 Ubicación de la hidroeléctrica el infiernillo, sobre el rio Balsas. Fuente: Google maps

1.4 Geología

La geología del sitio de la cortina está caracterizada por conglomerados silicificados con echados de 30° al NE en ambas laderas. El sistema principal de fracturas está orientado de Norte a Sur con inclinación de 70° al N, y ocasionalmente están rellenas de acilla. La permeabilidad de la formación es poca excepto en algunos sitios en donde existe fracturamiento intenso. Un conglomerado silicificado hace referencia a una roca frágil y sensible al uso de explosivos.

Estas condiciones y el uso de maquinaria para la excavación desestabilizaron el margen izquierdo de la presa en lo que es la obra de toma y las entradas a los túneles vertedores. Este problema se solucionó con el uso de anclas con longitudes entre 18 y 25 m.

Figura 1.4 Geología del Infiernillo a lo largo del eje de la cortina

1.5 Características de la presa

NOMBRE	El Infiernillo
CORRIENTE	Río Balsas
ESTADO	Michoacán
AÑO DE	
TERMINACIÓN	1963
	Hidroeléctrica/Control
PROPÓSITO	de avenidas

Tabla 1.0 Características de la presa

CUENCA		VASO	
ÁREA	108 000 km2	CAPACIDAD DE AZOLVES	2 250 hm3
ESCURRIMIENTO MEDIO			
ANUAL	15 000 hm3	CAPACIDAD ÚTIL	7 080 hm3
GASTO MAX. REGISTRADO	25 200 m3/s	CAPACIDAD DE CONTROL	2 660 hm3
GASTO MAX. PROBABLE	38 800 m3/s	CAPACIDAD TOTAL	12 000 hm3

Tabla 1.1 Características de la presa

PRESA		VERTEDOR	
TIPO	ER	ΤΙΡΟ	v
ALTURA	149 m	CARGA MÁXIMA	22.4 m
LONGITUD DE CORONA	350 m	LONGITUD DE CRESTA	66 m
VOLUMEN	5 130 000 m3	CAPACIDAD	14 000 m3/s

Tabla 1.2 Características de la presa

Esta central hidroeléctrica posee una casa de máquinas subterránea con las siguientes dimensiones: 21 m de ancho x 128 m de largo x 6 m de altura. En su interior contiene 6 turbinas tipo Francis.

En la margen izquierda se encuentra la obra de toma, distribuida en tres tuberías a presión con camisa de acero y 8.90 m de diámetro, con capacidad para conducir 194 m³/s en cada tubería. La obra de excedencia se compone de tres vertedores de 13 m de diámetro, y nueve compuertas, para descargar 13,800 m³/s.

Figura 1.5 Localización de los componentes de la presa El Infiernillo

- Núcleo Impermeable
 Filtros
 Transiciones
 Enrocamiento compactado
 Enrocamiento a volteo

- (7) Roca Sana
 (8) Pantalla de concreto
- 9 Tapete de inyecciones
 - 10 Galería G 4
- (5) Enrocamiento a volteo
 (1) Perforaciones de inyección

 (6) Enrocamiento de gran tamaño
 (1) Perforaciones para drenaje

CLAVE	NOMBRE
A INPT	Infiernillo Potabilizadora
B INCM	Infiernillo Casa de Máquinas
C INMI	Infiernillo Margen Izquierda
D INMD	Infiernillo Margen Derecha
E IN18	Infiernillo Corona Centro
F IN12	Infiernillo Media Cortina
G IN08	Infiernillo Base Cortina
H IND1	Infiernillo Pozo h = 50 m
I IND2	Infiernillo Pozo h = 25 m

Figura 1.6 Localización de los componentes de la presa El Infiernillo

El sitio de la hidroeléctrica el Infiernillo ha sido muy solicitado dinámicamente por la acción de los sismos. El sismo más intenso que se ha registrado es del 19 de septiembre de 1985.

La presa el infiernillo fue una de las primeras del mundo en ser instrumentadas, esto para poder monitorear su comportamiento durante su construcción, así como durante su vida útil. La instrumentación instalada se ocupa para monitorear las deformaciones (inclinómetros, deformímetros y mojoneras). Con estos instrumentos se ha podido conocer la evolución de las deformaciones permanentes de la estructura desde 1960.

La presa el Infiernillo se encuentra en la margen continental de la placa de Norteamérica, cerca de la frontera con la placa de Cocos. La subducción de esta zona da origen a rupturas las cuales generan gran actividad sísmica a lo largo de la costa del Pacífico Sur de México, esto puede provocar sismos de magnitud mayores a 8.0.

Capítulo 2. Sismicidad de la región

2.1 Definición de Sismo

Se denomina sismo o terremoto a las sacudidas o movimientos bruscos del terreno producidos en la corteza terrestre como consecuencia de la liberación repentina de energía en el interior de la Tierra o a la tectónica de placas. Esta energía se transmite a la superficie en forma de ondas sísmicas que se propagan en todas las direcciones. El punto en que se origina el terremoto se llama foco o hipocentro; este punto se puede situar a un máximo de unos 700 km hacia el interior terrestre. El epicentro es el punto de la superficie terrestre más próximo al foco del terremoto.

Fig. 2 Características de un sismo. Crédito Imagen: http://redescolar.ilce.edu.mx

Figura 2.1 Sismicidad mundial, (1990-1999), USGS, Smith y Sanwell, 1999

Figura 2.2: Placas tectónicas que afectan a México, Fuente: Manual de mecánica de suelos y monitoreo sísmico del comportamiento de obras hidráulicas.

Figura 2.3: Sismicidad de México, Fuente: U.S. Geological Survey.

2.2 Tipos de ondas

2.2.1 Definición

Las ondas sísmicas (ondas elásticas) son la propagación de perturbaciones temporales que generan pequeños movimientos en un medio. Las ondas sísmicas pueden ser generadas por movimientos telúricos naturales, los cuales pueden causar daños en zonas donde hay asentamientos urbanos. Las ondas sísmicas pueden ser generadas también artificialmente (por explosiones).

2.2.2 Ondas de cuerpo

Las ondas de cuerpo viajan a través del interior de la Tierra. Siguen caminos curvos debido a la variada densidad y composición del interior de la Tierra. Este efecto es similar al de refracción de ondas de luz . Las ondas de cuerpo transmiten los temblores preliminares de un terremoto, pero poseen poco poder destructivo. Las ondas de cuerpo son divididas en dos grupos: ondas primarias (P) y secundarias (S).

2.2.2.1 Ondas P.

Las ondas P son ondas longitudinales o de compresión, lo cual significa que el suelo es alternadamente comprimido y dilatado en la dirección de su propagación. Estas ondas generalmente viajan a una velocidad superior que las ondas S y pueden viajar a través de cualquier tipo de material.

Fig. 2.6 Ondas P. Crédito imagen: www.funvisis.gob.ve

2.2.2.2 Ondas S.

Las ondas S son ondas transversales o de corte, lo cual significa que el suelo es desplazado perpendicularmente a la dirección de propagación, alternadamente hacia un lado y hacia el otro. Las ondas S pueden viajar únicamente a través de sólidos debido a que los líquidos no pueden soportar esfuerzos de corte. Usualmente la onda S tiene mayor amplitud que la P y se siente más fuerte que ésta.

Fig. 2.7 Ondas S. Crédito imagen: www.funvisis.gob.ve

2.2.3 Ondas superficiales

Las ondas superficiales se asemejan a las ondas de agua y viajan sobre la superficie de la Tierra. Se desplazan a menor velocidad que las ondas de cuerpo. Debido a su baja frecuencia provocan resonancia en edificios con mayor facilidad que las ondas de cuerpo y son por ende las ondas sísmicas más destructivas. Existen dos tipos de ondas superficiales: ondas Rayleigh y ondas Love.

2.2.3.1 Ondas Rayleigh.

Las ondas Rayleigh son ondas superficiales que viajan como ondulaciones similares a aquellas encontradas en la superficie del agua. La existencia de estas ondas fue predicha por John William Strutt.

Fig. 2.8 Ondas Rayleigh. Crédito imagen: www.funvisis.gob.ve

2.2.3.2 Ondas Love.

Las ondas "Love" son ondas superficiales que provocan cortes horizontales en la tierra. Fueron bautizadas por A.E.H. Love, un matemático británico que creó un modelo matemático de las ondas en 1911. Las ondas Love son levemente más lentas que las ondas de Rayleigh.

Fig. 2.9 Ondas Love. Crédito imagen: www.funvisis.gob.ve

2.10: Velocidades promedio de ondas P y S (Tarbuck y Lutgens, 2005)

Figura

Figura 2.11 Intervalo de llegada entre ondas P y S

2.3 Origen de los Sismos

La tectónica de placas y la actividad volcánica son los principales causantes de terremotos, pero existen otros factores que pueden dar origen a temblores en tierra como lo son: desprendimientos de roca en laderas de montañas, hundimientos de cavernas, variaciones bruscas de presiones, actividades humanas etc. estos se pueden considerar como microsismos

2.4 Clases de Sismos

- Volcánicos: son ocasionados por actividad volcánica. Regularmente son de baja intensidad y la percepción de estos es menor conforme nos alejamos de la fuente.
- Tectónicos: estos son originados por el reacomodo de las placas tectónicas en la litosfera. Su hipocentro regularmente se encuentra localizado a 10 o 25 km de profundidad.
- Batisismos: no es muy claro su origen ya que se originan a grandes profundidades fuera de la litosfera.

Figura 2.12: Movimientos de placas tectónicas, Fuente: Manual de mecánica de suelos y monitoreo sísmico del comportamiento de obras hidráulicas.

2.5 Escalas sísmicas

Magnitud de Escala Richter. Esta escala representa la energía que se libera durante un terremoto y se basa en el registro sismográfico.

Magnitud en Escala Richter	Efectos del terremoto
Menos de 3.5	Generalmente no se siente, pero es registrado
3.5 - 5.4	A menudo se siente, pero sólo causa daños menores
5.5 - 6.0	Ocasiona daños ligeros a edificios
6.1 - 6.9	Puede ocasionar daños severos en áreas muy pobladas.
7.0 - 7.9	Terremoto mayor. Causa graves daños
8 o mayor	Gran terremoto. Destrucción total a comunidades cercanas.

Tabla 2.0. Escala de Magnitud de Richter.

Intensidad Escala de Mercalli Modificada no se basa en los registros sismográficos sino en el efecto o daño producido en las estructuras y en la sensación percibida por la gente. Para establecer la Intensidad se recurre a la revisión de registros históricos, entrevistas a la gente, noticias de los diarios públicos y personales, etc. La Intensidad puede ser diferente en los diferentes sitios reportados para un mismo terremoto (la Magnitud Richter, en cambio, es una sola) y dependerá de:

- 1. La energía del terremoto.
- 2. La distancia de la falla donde se produjo el terremoto
- 3. La forma como las ondas llegan al sitio en que se registra (oblicua, perpendicular, etc.)

4. Las características geológicas del material subyacente del sitio donde se registra la Intensidad

5. Cómo la población sintió o dejó registros del terremoto.

Los grados no son equivalentes con la escala de Richter. Se expresa en números romanos y es proporcional, de modo que una Intensidad IV es el doble de II, por ejemplo.

Grado I	Sacudida sentida por muy pocas personas en condiciones especialmente favorables.
Grado II	Sacudida sentida sólo por pocas personas en reposo, especialmente en los pisos altos de los edificios. Los objetos suspendidos pueden oscilar.
Grado III	Sacudida sentida claramente en los interiores, especialmente en los pisos altos de los edificios, muchas personas no lo asocian con un temblor. Los vehículos de motor estacionados pueden moverse ligeramente. Vibración como la originada por el paso de un carro pesado. Duración estimable
Grado IV	Sacudida sentida durante el día por muchas personas en los interiores, por pocas en el exterior. Por la noche algunas despiertan. Vibración de vajillas, vidrios de ventanas y puertas; los muros crujen. Sensación como de un carro pesado chocando contra un edificio, los vehículos de motor estacionados se balancean claramente.
Grado V	Sacudida sentida casi por todo el mundo; muchos despiertan. Algunas piezas de vajilla, vidrios de ventanas, etcétera, se rompen; pocos casos de agrietamiento de aplanados; caen objetos inestables. Se observan perturbaciones en los árboles, postes y otros objetos altos. Se detienen de relojes de péndulo.
Grado VI	Sacudida sentida por todo mundo; muchas personas atemorizadas huyen hacia afuera. Algunos muebles pesados cambian de sitio; pocos ejemplos de caída de aplanados o daño en chimeneas. Daños ligeros.
Grado VII	Advertido por todos. La gente huye al exterior. Daños sin importancia en edificios de buen diseño y construcción. Daños ligeros en estructuras ordinarias bien construidas; daños considerables en las débiles o mal planeadas; rotura de algunas chimeneas. Estimado por las personas conduciendo vehículos en movimiento.
Grado VIII	Daños ligeros en estructuras de diseño especialmente bueno; considerable en edificios ordinarios con derrumbe parcial; grande en estructuras débilmente construidas. Los muros salen de sus armaduras. Caída de chimeneas, pilas de productos en los almacenes de las fábricas, columnas, monumentos y muros. Los muebles pesados se vuelcan. Arena y lodo proyectados en pequeñas cantidades. Cambio en el nivel del agua de los pozos. Pérdida de control en las personas que guían vehículos motorizados.
Grado IX	Daño considerable en las estructuras de diseño bueno; las armaduras de las estructuras bien planeadas se desploman; grandes daños en los edificios sólidos, con derrumbe parcial. Los edificios salen de sus cimientos. El terreno se agrieta notablemente. Las tuberías subterráneas se rompen.

Grado X	Destrucción de algunas estructuras de madera bien construidas; la mayor parte de las estructuras de mampostería y armaduras se destruyen con todo y cimientos; agrietamiento considerable del terreno. Las vías del ferrocarril se tuercen. Considerables deslizamientos en las márgenes de los ríos y pendientes fuertes. Invasión del agua de los ríos sobre sus márgenes.
Grado XI	Casi ninguna estructura de mampostería queda en pie. Puentes destruidos. Anchas grietas en el terreno. Las tuberías subterráneas quedan fuera de servicio. Hundimientos y derrumbes en terreno suave. Gran torsión de vías férreas.
Grado XII	Destrucción total. Ondas visibles sobre el terreno. Perturbaciones de las cotas de nivel (ríos, lagos y mares). Objetos lanzados en el aire hacia arriba.

Tabla 2.1 Escala de Intensidad Mercalli

2.6 Magnitud e Intensidad de un temblor

La magnitud es un parámetro que indica el tamaño relativo de los temblores, y está relacionada con la cantidad de energía liberada en la fuente del temblor. Es un parámetro único que no depende de la distancia a la que se encuentre el observador.

La intensidad se relaciona con los efectos percibidos por las personas y el daño causado sobre las estructuras, depende de la percepción del observador y de su ubicación.

2.7 Sismos importantes en México

LUGAR	FECHA	DESCRIPCIÓN	MAGNITUD
Colula (Jalisco)	27 de diciembre de		
	1568.		
Jalisco	25 de agosto de 1611.	Muy grande	
Oaxaca	23 de agosto de 1696		7.5
Oaxaca	21 de diciembre de 1701	Destructivo	
Colima	16 de septiembre de 1711	Varios muertos	
Acapulco (Guerrero)	1 de septiembre de 1741	Tsunami	

Acapulco (Guerrero)	28 de mayo de 1784	Tsunami, varios	
		muertos	
Zapotlán (Jalisco)	25 de marzo de 1806	Muchos muertos	
Jalisco	22 de noviembre de 1837		7.7
Oaxaca	9 de marzo de 1845		8.0
Oaxaca	5 de mayo de 1854		8.0
Huajuapan de León (Oaxaca)	19 de julio de 1882.		
Sonora	3 de mayo de 1887	42 muertos mínimo	
Oaxaca-Guerrero	29 de enero de 1899		8.4
Jalisco	20 de enero de 1900		8.2
Jalisco	16 de mayo de 1900		7.8
Chiapas	23 de septiembre de 1902		8.2
Baja California Norte	16 de octubre de 1902		7.8
Oaxaca-Chiapas	14 de enero de 1903		8.2
Acapulco (Guerrero)	15 de abril de 1907		8.2
Golfo de Baja California	16 de octubre de 1907		7.5
Jalisco	7 de junio de 1911	45 muertos y daños en la Cd. de México.	7.9
Cd. Guzmán (Jalisco)	30 de abril de 1921		7.8
Pinotepa Nacional (Oaxaca)	17 de junio de 1928	Daños en la Cd. de México.	8.0
Puerto Escondido (Oaxaca)	9 de octubre de 1928		7.6
Colima	3 de junio de 1932		8.2
Colima	18 de junio de 1932		7.8
Orizaba (Veracruz)	26 de julio de 1937	34 muertos	7.7
Petatlán (Guerrero)	22 de febrero de 1943	75 muertos	7.5
Acapulco (Guerrero)	28 de julio de 1957	160 muertos. Daños en Cd de México (ángel de la independencia caído)	7.7
Oaxaca	23 de agosto de 1965	5 muertos	7.5
Chiapas	29 de abril de 1970		7.3
Colima	30 de enero de 1973	56 muertos	7.5
Orizaba (Veracruz)	28 de agosto de 1973	600 muertos	7.3
Oaxaca	29 de noviembre de 1978		7.6
Petatlán (Guerrero)	26 de enero de 1979		6.5

Petatlán (Guerrero)	28 de febrero de 1979		5.2
Petatlán (Guerrero)	14 de marzo de 1979	5 muertos	7.6
Tehuantepec (Oaxaca)	22 de junio de 1979		7.1
Huajuapan de León (Oaxaca)	24 de octubre de 1980	50 muertos	7.0
Playa Azul (Michoacán)	25 de octubre de 1981		7.3
Ometepec (Guerrero)	7 de junio de 1982		6.9
Michoacán	19 de septiembre de 1985	20 000 muertos	8.2
Michoacán	20 de septiembre de 1985		7.6
Colima	9 de octubre de 1995		8.0
Costa de Guerrero, MICH	8 de Septiembre del 2000		7.0
Costa de Colima	21 de enero del 2003		7.6
Santa Rosalía, BCS	4 de enero del 2006		6.7
18 Km al Sureste de Mexicali	4 de abril del 2010	2 muertos	7.2
29 km al SUR de OMETEPEC, GRO	2012-03-20 12:02:47		7.4
68 km al SUROESTE de CD HIDALGO, CHIS	2012-11-07 10:35:51		7.3
40 km al SUR de PETATLAN, GRO	2014-04-18		7.2

Tabla 2.2	Sismos	importantes	en México

Capítulo 3. Metodología de análisis

3.1 Análisis de Fourier.

La transformada de Fourier es una herramienta muy útil que permite reordenar los datos originales del acelerograma tomando en cuenta la frecuencia del lugar en vez del tiempo. Las transformadas de Fourier nos permiten demostrar que una función periódica con un número definido (finito) de máximos y mínimos en cualquier periodo, puede desarrollarse como un aserie trigonométrica que corresponda a dicha función (serie de Fourier).

Los desarrollos de estas series nos llevan a expresiones matemáticas (integrales), mediante las cuales es posible determinar la relación que existe entre los dominios del tiempo y la frecuencia.

La transformada de Fourier descompone una señal o la separa en una serie de senoides con diferentes frecuencias y todas estas corresponden a la suma de la original.

Podemos definir la transformada de Fourier con la siguiente expresión

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

 $F(\omega)$: Señal transformada al dominio de la frecuencia f(t): señal en el dominio del tiempo ω : frecuencia en Hz t: periodo en seg.

Los registros de aceleración obtenidos se analizan con la Transformada Discreta de Fourier, esta se estima por medio de un algoritmo conocido como Transformada Rápida de Fourier. Con este algoritmo se reduce el número de cálculos, parte la señal completa en un determinado número de subseñales más cortas. Primero se calcula la Transformada Discreta de Fourier para cada una de las subseñales, posteriormente con la Transformada Rápida de Fourier se combinan cada una de las señales para poder obtener la Transforma Discreta de Fourier de la señal completa.

3.2 Espectros de Fourier

Al graficar los resultados obtenidos de aplicar la Transformada Rápida de Fourier a una señal obtenemos un espectro de Fourier, determina la relación de frecuencia de la señal con valores de amplitud. El espectro de Fourier se puede calcular de la siguiente forma:

$$\begin{aligned} |F(\omega)| &= [R(\omega)^2 + jX(\omega)^2]^{\frac{1}{2}} \\ R(\omega) &= \int_{-\infty}^{\infty} f(t) \cos(\omega t) \, dt \\ X(\omega) &= -\int_{-\infty}^{\infty} f(t) sen(\omega t) dt \\ F(\omega): Señal transformada al dominio de la frecuencia (\omega) \\ R(\omega): Parte real \\ X(\omega): Parte imaginaria \end{aligned}$$

Antes de obtener el espectro de Fourier se debe de realizar una corrección de línea base y de filtrado al registro del acelerograma para realizar una afinación de los datos, ya que el registro sísmico puede contener alteraciones relacionadas con vibraciones ajenas al evento sísmico que se está estudiando, por ejemplo, las vibraciones producidas por el pasar de los automóviles, etc.

Figura 3: Acelerograma y espectro de Fourier

3.3 Espectros de respuesta

El espectro de respuesta es una herramienta muy importante en el campo de la dinámica estructural ya que con ellos se pueden realizar diseños sismorresistentes. En la actualidad los espectros de respuesta son la base de la mayoría de los reglamentos de diseño por sismo en el mundo.

Un espectro de respuesta es un diagrama en el que se representan gráficamente, para distintas frecuencias y amortiguamientos, los valores máximos de respuesta aceleraciones, velocidades, desplazamientos ante la acción de un evento sísmico determinado

Desde el punto de vista estructural un es espectro de respuesta es una representación gráfica o conjunto de valores que representan desplazamientos máximo, velocidades máximas o aceleraciones máximas de un conjunto de muchas estructuras bajo las mismas condiciones (amortiguamiento, sean de un grado de libertad, que estén sujetas al mismo sismo y que presenten un comportamiento elástico lineal).

También se puede ver a un espectro de respuesta como el lugar geométrico de una respuesta máxima (aceleración, velocidad o desplazamiento) de un conjunto de sistemas de un grado de libertad sometidos a un acelerograma en particular y relacionado a un amortiguamiento específico.

33

3.4 Sistema de un grado de libertad

Este sistema describe el movimiento de un cuerpo en el espacio y se tiene que referir a un sistema de referencia compuesto de tres ejes ortogonales, aunado a esto a este sistema se le tiene que restringir sus movimientos (grados de libertad) para que solo presente uno.

3.4.1 Sistema de un grado de libertad sin amortiguamiento

El análisis de un sistema de un grado de libertad es de gran importancia para los análisis en la ingeniería sísmica, ya que las estructuras se pueden reducir se puede representar como un péndulo y lo podemos analizar de esta forma.

Para iniciar el análisis de este sistema se considerará una fuerza no periódica que produzca una excitación tal como lo hace un sismo. Este impulso se le denominará $F\Delta t$, el cual producirá una velocidad inicial y´ (0). Analíticamente se puede expresar de la siguiente forma:

$$F\Delta t = my'_0$$

Principio de la cantidad de movimiento.

Donde m representa la masa del sistema.

Los desplazamientos de un sistema no amortiguado sometido a oscilaciones libre se pueden expresar de la siguiente forma:

$$y(t) = \frac{y'_0}{\omega}sen(\omega t) + y_0\cos(\omega t)$$

y(0): desplazamiento inicial debido al impulso F Δt y'_0 : velocidad inicial producida por F Δt $\omega = \sqrt{\frac{k}{m}}$: frecuencia de oscilación del sistema

k : rigidez del sistema

Para la condición de t=0, tenemos que el desplazamiento $y_0=0$; por lo tanto, las ecuaciones de impulso y de desplazamiento quedan de la siguiente forma:

$$y'_{0} = \frac{F_{0}\Delta_{t}}{m}$$
$$y(t) = \frac{F_{0}\Delta_{t}}{m\omega}sen\omega t$$

Para un instante después de aplicar el impulso la ecuación de desplazamiento se representa de la siguiente manera:

$$dy(t) = \frac{F(\tau)d\tau}{m\omega}sen\omega(t-\tau)$$

Para conocer el desplazamiento total se deben de sumar todos los desplazamientos producidos por cada impulso de 0 a t. Analíticamente esto se puede representar con la integral de dy(t), conocida como la integra de Duhamel.

$$y(t) = \frac{1}{m\omega} \int_0^t F(\tau) sen\omega(t-\tau) d\tau$$

Con esta ecuación podemos calcular el desplazamiento de un sistema de un grado de libertad sometido a una fuerza no armónica (acelerograma).

Para un sistema de un grado de libertad amortiguado los desplazamientos se pueden expresar de la siguiente forma:

$$y(t) = \frac{1}{m\sqrt{\omega^2 - \varepsilon^2}} \int_0^t F(\tau) e^{-\varepsilon(t-\tau)} \operatorname{sen}\sqrt{\omega^2 - \varepsilon^2} (t-\tau) d\tau$$

Donde

ε: coeficiente de amortiguamineto del sistema (estructura)

Podemos obtener el espectro sísmico de desplazamientos con la representación gráfica de las amplitudes máximas relativas para cada periodo de cada uno de los péndulos o sistemas de un grado de libertad. A estos desplazamientos de les denominará Sd, de forma análoga se pueden obtener el espectro de velocidades Sv y las aceleraciones máximas absolutas Sa.

El espectro de velocidades absolutas sin amortiguamiento puede representarse de la siguiente forma:

$$S_{\nu}(\omega_i) = \left[\int_0^t \ddot{U}_0(\tau) sen\omega_i(t-\tau)d\tau\right]max$$

Si tomamos en cuenta el amortiguamiento del sistema el espectro de velocidades absolutas del sistema lo podemos expresar de la siguiente forma:

$$S_{v}(\omega_{i}, v_{i}) = \left[\int_{0}^{t} \ddot{U}_{0}(\tau)e^{-v_{i}\omega_{i}(t-\tau)}sen\omega_{i}(t-\tau)d\tau\right]max$$

Donde $v = \frac{\varepsilon}{\omega}$: factor crítico de amortiguamiento

Se pueden establecer relaciones entre Sd, Sv y Sa para osciladores de un grado de libertad con una sola masa y se expresan de la siguiente forma:

$$S_{di} = \frac{S_{vi}}{\omega_i}$$
; dado que $\omega = \frac{2\pi}{T}$, podemos reescribir la ecuación de la siguiente forma

$$S_{di} = \frac{T}{2\pi} S_{vi}$$

Por otro lado, tenemos que: $S_{ai} = \omega_i S_{vi} = \frac{2\pi}{T} S_{vi}$

De esta forma podemos ver que los espectros de repuestas máximas están relacionados entre sí y conociendo alguno de ellos podemos determinar los dos restantes.

El desplazamiento del sistema está involucrado en la fórmula de fuerza cortante en la base, la cual se expresa de la siguiente forma:

$$F_{imax} = k_i y_{imax}$$
; k representa la rigidez del sistema
 $F_{imax} = k_i \frac{T_i}{2\pi} S_{vi}$

El esfuerzo cortante en la base también se puede expresar en términos de las aceleraciones del sistema como se indica a continuación.

$$F_{imax} = m_i y^{\prime\prime} = m_i S_{ai} = m_i \frac{2\pi}{T_i} S_{\nu i}$$

La energía máxima que adquiere un sistema de un grado de libertad ante un evento sísmico la podemos expresar de la siguiente forma

$$E_{imax} = \frac{1}{2}m_i S_{vi}^2$$

Por lo tanto, se pueden expresar lo desplazamientos, velocidades y aceleraciones de la siguiente forma:

Desplazamiento:
$$y_{imax} = \frac{T_i}{2\pi}\sqrt{2E_i} = m_i S_{ai}$$

Velocidad: $y'_{imax} = \sqrt{2E_i} = m_i S_{ai}$
Aceleración: $y''_{imax} = m_i \frac{2\pi}{T} \sqrt{2E_i} = m_i S_{ai}$

Fuerza cortante en la base $F_{imax} = m_i \frac{2\pi}{T} \sqrt{2E_i} = m_i S_{ai}$

Figura 3.2: Espectros de repuesta

3.4.2 Sistema de un grado de libertad amortiguado

La inercia, la rigidez y el amortiguamiento de un cuerpo rigen la forma en que este va a vibrar. Un sistema de un grado de libertad amortiguado lo podemos representar de la siguiente forma:

Figura 3.3: Sistema de un grado de libertad amortiguado

- m (masa): es la cantidad de materia del sistema e interviene a través de la segunda ley de Newton: F(t) = m * u''(t)
- k (elasticidad): es representado por un resorte, es el encargado de regresar al sistema a su posición de equilibrio. F(t) = k * u(t)
- c (amortiguamiento): es representado por un amortiguador y es el encargado de disipar la energía del sistema. Matemáticamente lo podemos expresar como F(t) = c * u'(t)
- o u''(t): aceleración de la masa en el eje x.
- \circ u'(t): velocidad de la masa en el eje x.
- \circ u(t): desplazamiento de la masa en el eje x.

La ecuación de movimiento de un sistema de un grado de libertad amortiguado lo podemos expresar de la siguiente forma:

$$F(t) = m * u''(t) + c * u'(t) + k * u(t)$$

Vibración libre de un sistema de un grado de libertad amortiguado

La solución de la ecuación de movimiento para F(t)=0 y ξ <1, se expresa de la siguiente forma:

$$u(t) = e^{-\omega_n \zeta t} * \left(u_0 \cos \omega_a t + \frac{V_0 + u_0 \omega_n \zeta}{\omega_a} \sin \omega_a t \right)$$
$$\omega_n = frecuencia \ angular \ natural = \sqrt{\frac{k}{m}}$$

$$\label{eq:solution} \begin{split} &\omega_a = frecuencia angular amortiguada = \omega_n \sqrt{1-\zeta^2} \ &u(t): desplazamiento del sistema en vibración libre \ &\zeta: fracción del amortiguamiento crítico \ &u_0: desplazamiento inicial \ &v_0: velocidad inicial \end{split}$$

El amortiguamiento de un sistema de un grado de libertad lo podemos determinar experimentalmente a partir de un registro de vibración libre del sistema

$$\begin{split} \delta &= \ln\left(\frac{u_1}{u_2}\right): en \text{ donde u1 y u2 son amplitudes de vibración separadas un periodo T} \\ \zeta &= \frac{\delta}{\sqrt{4 * \pi^2 + \delta^2}}: \quad amortiguamiento \\ una expresión aproximada es: \quad \zeta &= \frac{\delta}{2\pi} \end{split}$$

Vibración forzada de un sistema de un grado de libertad amortiguado

Este tipo de vibración sometido a una fuerza armónica $F(t)=Fcos(\Omega)$ se puede expresar de la siguiente forma:

$$u(t) = \frac{F}{m} * \frac{1}{\sqrt{(\omega_n^2 - \Omega^2) + (2\omega_n\zeta\Omega)}} \cos(\Omega t - \theta)$$

F: amplitud de la fuerza forzadora
 Ω : frecuencia angular forzadora
 θ : ángulo de fase

Podemos definir el factor de amplificación dinámica de la siguiente forma:

$$H(\Omega) = \frac{(u_{máx})}{u_{est}};$$

donde u_{est} es el desplazamiento provocado por la fuerza ${\it F}$ que actúa estáticamente

$$u_{est} = \frac{F}{k}$$

Por lo tanto, podemos expresar el factor de amplificación dinámica de la siguiente forma:

$$H(\Omega) = \frac{1}{\sqrt{\left(1 - \left(\frac{\Omega}{\omega_n}\right)^2\right)^2 + \left(2\zeta\frac{\Omega}{\omega_n}\right)^2}} = \frac{1}{\sqrt{(1 - r^2)^2 + (2\zeta r)^2}}$$
$$\theta = \tan^{-1}\left(\frac{2\zeta\frac{\Omega}{\omega_n}}{1 - \left(\frac{\Omega}{\omega_n}\right)^2}\right) = \tan^{-1}\left(\frac{2\zeta r}{1 - r^2}\right)$$

3.5 Espectro de respuesta elástica.

En este espectro se representan las respuestas máximas del suelo para un evento sísmico en particular, pero para distintos factores de amortiguamiento. Con estos espectros podemos estudiar las características de un determinado evento sísmico y su efecto sobre distintas estructuras. En la representación de estos espectros podemos apreciar variaciones bruscas dependiendo de la magnitud del evento sísmico al que esté asociado.

3.6 Espectros de repuesta inelásticos.

Son muy parecidos a los anteriores, pero en este caso las estructuras (de un grado de libertad) que están sometidas a un determinado evento sísmico presentan un comportamiento no lineal (entran en el rango plástico). La importancia de estos espectros radica en que la mayoría de las estructuras están diseñadas para poder presentar un comportamiento no lineal e incluso desarrollar un comportamiento dúctil.

3.7 Espectros de diseño

Debido a que cada sismo es diferente, no se debe realizar un diseño sismorresistente basándose en un espectro de respuesta, ya que este está asociado a un evento sísmico en particular. Debido a esto se deben de analizar varios eventos sísmicos y con base en estos construir un espectro al que se le llamará espectro de diseño.

Los espectros de diseño son envolventes suavizadas, es decir que o tienen variaciones bruscas y consideran el efecto de varios eventos sísmicos de una zona o región. Estos espectros generalmente se pueden obtener por medio de procedimientos estadísticos, al analizar varios sismos que ocurran en una determinada región.

Un espectro de diseño se debe ser ajustado para las distintas zonas y regiones para el cual es válido. Así mismo debe de ajustarse para cada tipo de edificación o estructura que sea diseñada, estos ajustes se hacen mediante coeficientes los cuales toman en cuenta el tipo de estructura, materiales, geometría, rigidez, ductilidad, tipo de cimentación, uso de la estructura etc.

3.8 Funciones de Transferencia

En el ámbito de la Ingeniería sísmica una función de transferencia se utiliza para evaluar los efectos del sitio debido a que establece una relación entre dos sitios mediante un cociente, obteniendo un resultado en un intervalo de frecuencias.

Cuando se conocen los espectros de Fourier de dos sitios que se quieren comparar se realiza un cociente espectral el cual da como resultado una Función de Transferencia.

Con las funciones de transferencia podemos estimar la variación del movimiento durante un evento sísmico de un sitio a otro y con esto se pueden determinar los factores de amplificación o atenuación a una respuesta sísmica según se su caso.

Figura 3.4: Cálculo de la función de transferencia.

Los suelos al tener diferentes características poseen efectos de amplificación o de atenuación según sea el caso y se le conoce a estos efectos como efectos locales.

Las ondas sísmicas viajan a través de los materiales y dependiendo de la rigidez de estos las ondas pueden ser amplificadas atenuadas. Cuando una onda pasa de un material con una determinada rigidez a uno con una menor rigidez producirá que las ondas tengan una mayor amplitud y una menor velocidad.

El amortiguamiento de los suelos se origina cuando la onda sísmica cambia de dirección o de intensidad debido a: reflexión, refracción, amplificación etc. y es independiente de la frecuencia.

Una forma de determinar el amortiguamiento interno del suelo es mediante el ángulo de fase ϕ (fuerza y la deformación en vibración forzada).

Con la ayuda del programa DEGTRA se obtendrán las funciones de transferencia. A este programa se le deben de proporcionar como archivos de entrada los registros de aceleraciones correspondientes al evento sísmico que se dese analizar. Estos son los pasos que se deben de seguir para realizar el análisis en este programa.

En el programa se tiene un menú para cada componente del registro acelerográfico (horizontal, longitudinal y vertical).

- El registro de los datos debe colocase debidamente en la ventana que le corresponda (horizontal, longitudinal o vertical).
- Se deben de realizar las correcciones de line base y filtrado.
- Se procede a calcular el espectro de Fourier para cada una de las componentes que sean de nuestro interés.
- Ya calculados los espectros de Fourier se procederá a calcular los cocientes espectrales para poder obtener la función de transferencia.
- Con la funciones de transferencia se podrá determinar los efectos del sitio ante un evento sísmico.

Capítulo 4. Comportamiento dinámico

Las obras hidráulicas estas sujetas a distintos tipos de vibraciones como: corrientes fluviales, vientos, explosiones y sismos.

El análisis de una presa usualmente se realiza considerándolo como un problema bidimensional, suponiendo que la fuerza externa ocasionada por el sismo solo actúa en una dirección, en la dirección del río. Es muy difícil que esta consideración se de en la vida real, debido a la localización de la cortina, su geometría. A parte se debe toma en cuenta que cuando ocurre un evento símico se originan movimientos en las tres componentes ortogonales, los cuales son diferentes entre sí.

Para poder conocer el comportamiento de una presa se han generado modelos que nos permiten conocer los modos de vibrar de la presa en las componentes horizontal, vertical y transversal.

Para los análisis realizados en este trabajo se contó con una base de datos que contiene sismos de 1966 al 2015. De este conjunto de datos solo se tomaron en cuenta los sismos que produjeron las mayores aceleraciones en la componente transversal y que fueron registrados por más de un acelerograma instalado en la cortina de la hidroeléctrica el Infiernillo.

Mediante el uso del programa de cómputo DEGTRA se analizaron los eventos sísmicos mencionados en la siguiente tabla y se obtuvieron las funciones de transferencia entre:

- Base media cortina
- Base corona
- Media cortina corona

La obtención de la función de transferencia nos permitirá conocer el modo de vibrar de la cortina y determinar el periodo natural de vibrar de esta.

Sismos analizados

NÚM.	NOMBRE SISMO	AC MAX V	AC MAX L	AC MAX T	LATITUD	LONGITUD	DISTA	PROF.	H EPICENTRO	MAGNITUD
261	IN089412.101	335.92	322.5	237.34	18.02	101.56	47	20	16:17:40,9	/M=6.30

261	IN129412.101	443.11	415.35	450.7	18.02	101.56	47	20	16:17:40,9	/M=6.30
261	IN189412.101	350.27	251.22	354.5	18.02	101.56	47	20	16:17:40,9	
298	IN089601.251	116.76	81.35	103.3	18.39	102.23	37	21	12:45:09.8	/Mc= 5.1
298	IN129601.251	77.04	131.1	147.8	18.43	102.21	37	26	12:45:10.0	/Mc= 5.1
298	IN189601.251	85.65	62.21	101.4	18.43	102.21	37	26	12:45:10.0	/Mc= 5.1
311	IN089607.151	28.81	24.95	31.53	17.45	101.16	122	20	21:23:38.5	/Mc= 6.0
311	IN129607.151	49.77	54.07	86.13	17.45	101.16	122	20	21:23:38.5	/Mc= 6.0
311	IN189607.151	48.81	48.33	127.2	17.45	101.16	122	20	21:23:38.5	/Mc= 6.0
319	IN089701.111	265.78	243.9	434.52	17.91	103	126	16	20:28:27.2	/Mb= 6.5
319	IN129701.111	321.5	395.7	492.4	17.91	103.04	130	16	20:28:27.2	/Mb= 6.5
319	IN189701.111	307.1	323.5	303.8	17.91	203.04	10993	16	20:28:27.2	/Mb= 6.5
339	IN089705.221	185.6	208.03	220.12	18.41	101.81	17	59	07:50:55.7	/Mb= 5.9
339	IN129705.221	194.28	265.1	295.26	18.41	101.81	17	59	07.50:55.7	/Mb= 5.9
339	IN189705.221	175.71	138.24	301.97	18.41	101.81	17	59	07:50:55.7	/Mb= 5.9
339	IK189705.221	170.69	132.1	283.35	18.41	101.81	17	59	07:50:55.8	/Mb=5.9
363	IN089804.201	30.64	26.2	31.19	18.37	101.21	75	66	22:59:17.6	/Mc=5.0
363	IN129804.201	84.69	91.87	191.39	18.37	101.21	75	66	22:59:17.6	/Mc=5.0
363	IN189804.201	106.3	109	158.73	18.37	101.21	75	66	22:59:17.6	/Mc=5.0
363	IK189804.201	104	101.7	152.19	18.37	101.21	75	66	22:59:17.6	/Mc=5.0
396	IN089906.211	169.43	289.9	334.02	17.99	101.72	37	54	17:43:05.5	/Mb= 6.0
396	IN129906.211	303.12	365.95	461.6	17.99	101.72	37	54	17:43:05.5	/Me=6.2
396	IN189906.211	356.53	246.2	393.8	17.99	101.72	37	54	17:43:05.5	/Mb= 6.0
396	IK189906.211	341.76	231.2	380.6	17.99	101.72	37	54	17:43:05.5	/Mb=6.0
428	IN089912.291	151.54	148.49	195.43	18.02	101.68	37	82	05:19:46.0	/Me=5.9
428	IN129912.291	145.3	167.65	232.3	18.02	101.68	37	82	05:19:46.0	/Me=5.9
428	IN189912.291	101.93	127.83	92.98	18.02	101.68	37	82	05:19:46.0	/Me=5.9
428	IK189912.291	103.27	118.28	90.72	18.02	101.68	37	82	05:19:46.0	/Me=5.9
438	IN080008.091	146.5	131.23	171.54	17.99	102.66	88	16	11:41:47.7	/Mb= 6.1 Ma= 6.5
438	IN120008.091	194.46	178.19	423.91	17.99	102.66	88	16	11:41:47.7	/Mb= 6.1 Ma= 6.5
438	IN180008.091	243	197.21	212.4	0	0	11678			
438	IK180008.091	234.4	186.39	203.4	17.99	102.66	88	16	11:41:47.7	/Mb= 6.1
448	IN080012.011	23.95	25.107	29.69	17.94	102.58	83	14	14:07:45.3	/Mc= 5.3 Mb= 5.3
448	IN120012.011	40.239	40.66	53.648	17.94	102.58	83	14	14:07:45.3	/Mc= 5.3 Mb= 5.3
448	IK180012.011	48.01	49.1	115.09	17.94	102.58	83	14	14:07:45.3	/Mc= 5.3 Mb= 5.3
494	IN080301.221	16.35	30.65	32.57	18.6	104.22	254	9	02:06:34	/Me=7.6 Mb=6.5 Ms=7.6

494	IN120301.221	33.97	49.84	70.98	18.6	104.22	254	9	02:06:34	/Me=7.6 Mb=6.5 Ms=7.6
494	IK180301.221	76.51	52.85	123.5	18.6	104.22	254	9	02:06:34	/Me=7.6 Mb=6.5 Ms=7.6
501	IN080303.271	59.395	68.97	52.69	18.01	101.78	32	25	07:44:23	/Mc=4.8 Mb=4.8
501	IN120303.271	83.346	77.756	142.94	18.01	101.78	32	25	07:44:23	/Mc=4.8 Mb=4.8
501	IK180303.271	42.52	59.97	34.53	18.01	101.78	32	25	07:44:23	/Mc=4.8 Mb=4.8
615	IN080608.111	64.186	55.55	56.52	18.32	101.27	68	51	14:30:41	/Mc=5.9
615	IN120608.111	114.78	92.44	162.3	18.32	101.27	68	51	14:30:41	/Mc=5.9
615	IK180608.111	80.77	101.7	127.4	18.32	101.27	68	51	14:30:41	/Mc=5.9
657	IN080711.261	53.49	37.84	41.93	18.5	101.31	68	53	21:56:16	/Mc=5.6
657	IN120711.261	59.69	67	77.57	18.5	101.31	68	53	21:56:16	/Mc=5.6
657	IK180711.261	61.2	64.28	94.35	18.5	101.31	68	53	21:56:16	/Mc=5.6
716	IN080904.111	30.7	61.39	43.54	17.64	102.44	92	20	04:22:12	/Mc=4.8
716	IN120904.111	48.85	86.82	121.78	17.64	102.44	92	20	04:22:12	/Mc=4.8
716	IK180904.111	67.88	87.23	76.93	17.64	102.44	92	20	04:22:12	/Mc=4.8
786	IN081106.021	45.71	38.92	45.3	18.47	101.51	47	24	16:29:46	/Mc=5.1
786	IN121106.021	59.83	81.92	161.44	18.47	101.51	47	24	16:29:46	/Mc=5.1
786	IK181106.021	40.87	70.71	38.11	18.47	101.51	47	24	16:29:46	/Mc=5.1
797	IN121109.282	143.6	205.7	155.53	18.13	101.69	28	8	23:17:42	/Mc=4.9
797	IK181109.282	126.8	119.79	153.97	18.13	101.69	28	8	23:17:42	/Mc=4.9
833	IN081205.011	44.15	36.53	59.9	18.2	101.01	97	51	16:37:59	/Mc=5.6
833	IN121205.011	59.94	68.31	115.19	18.2	101.01	97	51	16:37:59	/Mc=5.6
833	IK181205.011	76.66	53.08	87.75	18.2	101.01	97	51	16:37:59	/Mc=5.6
890	IN081304.221	61.16	115.8	88.56	17.87	102.19	55	10	01:16:34	/Mc=5.8
890	IN121304.221	116.47	151.33	225.2	17.87	102.19	55	10	01:16:34	/Mc=5.8
890	IK181304.221	77.22	146.2	148.4	17.87	102.19	55	10	01:16:34	/Mc=5.8
893	IN121304.241	5.28	4.55	6.33	17.67	102.2	75	10	14:55:06	/Mc=4.2
893	IK181304.241	94.59	95.82	94.3	18.49	100.65	137	47	17:48:19	/Mc=3.9
937	IN081404.181	109.4	125.5	118.1	17.18	101.19	144	10	14:27:23	/M=7.2
937	IN121404.181	2	2.47	3.09	17.17	101.18	146	16	14:23:33	/Mc=4.0
937	IK181404.181	2.34	1.97	1.84	17.17	101.18	146	16	14:23:37	/Mc=4.0
938	IN081404.182	3.31	4.14	2.76	17.33	101.3	124	20	15:54:56	/Mc=4.8
938	IN121404.182	127.8	252.9	259.3	17.18	101.19	144	10	14:27:23	/M=7.2
938	IK181404.182	195.3	201.8	336.7	17.18	101.19	144	10	14:27:23	/M=7.2
1032	IN081509.301	101.9	125.74	79.15	17.83	101.52	64	30	17:25:55	/MC=5.5
1032	IN121509.301	161.8	172.6	168.4	17.83	101.52	64	30	17:25:55	/MC=5.5
1032	IK181509.301	85.57	80.85	75.68	17.83	101.52	64	30	17:25:55	/MC=5.5

Tabla 4: Sismos analizados

La mayoría de los sismos registrados en la Hidroeléctrica el Infiernillo provienen de las costas del Pacífico, ya que esta es una zona de gran intensidad sísmica.

El evento de mayor magnitud registrado en la Presa fuel el correspondiente al 19 de septiembre de 1985, desafortunadamente algunos de los acelerogramas instalados en la cortina de la presa no estaban funcionando en ese momento.

Figura 4: Cálculo del espectro de Fourier con el software DEGTRA para el evento sísmico del 19 de septiembre de 1985 registrado en la margen derecha.

Figura 4: Cálculo del espectro de Fourier con el software DEGTRA para el evento sísmico del 19 de septiembre de 1985 registrado a media cortina.

Figura 4.1: Acelerograma del sismo ocurrido el 19 de septiembre de 1895 registrado a media cortina.

4.1 Espectros de Fourier

En el sismo 261 (10 de diciembre de 1994) la amplitud máxima se presenta en la corona con un valor de 269 cm/s. Esta amplitud está relacionada a una frecuencia de 1.28 Hz.

El sismo 298 (25 de enero de 1996) presenta una amplitud máxima de 43.7 cm/s relacionada a una frecuencia de 2.51 Hz.

El sismo 311 (15 de julio de 1996) la amplitud máxima se tiene en la corona con 128 cm/s, relacionada con una frecuencia de 1.5 Hz.

La amplitud máxima en el sismo 319 (11 de enero de 1997) se presenta en la corona 314 cm7s asociada a una frecuencia de 1.36 Hz.

La amplitud máxima registrada en el sismo 339 (22 de mayo 1997) es de 358 cm/s en la corona y está asociada a una frecuencia de 1.4 Hz.

En el sismo 363 (20 de abril de 1998) tiene un amplitud máxima de 100 cm/s en la corona relacionada a una frecuencia de 2.05 Hz.

La máxima amplitud registrada en el sismo 396 (21 de junio de 1999) fu en la corona con un valor de 408 cm/s asociada a una frecuencia de 1.7 Hz.

Para el sismo 428 (29 de diciembre de 1999) la amplitud máxima registrada fue en la corona (60 cm/s), aunque a mitad de la cortina también se registraron amplitudes similares, pero para diferentes frecuencias.

En el sismo 438 (9 de agosto del 2000) la amplitud máxima también fue registrada en la corona con un valor de 152 cm/s asociado a una frecuencia de 1.5 Hz.

Como se puede apreciar en las gráficas presentadas anteriormente, las máximas amplitudes se registraron en la corona y estas amplitudes están asociadas a frecuencias que oscilan entre 1.5 Hz y 2.5 Hz. También se puede apreciar que las frecuencias bajas afectan en gran medida a la corona de la cortina, mientras que la base y la mitad de la cortina es afectada por frecuencias mayores.

A simple vista se puede notar que existen amplificaciones en las amplitudes al pasar de la base a la mitad de la cortina y de la base a la corona.

Esto se podrá analizar de una mejor forma con la obtención de las funciones de transferencia.

4.2 Funciones de transferencia

Para obtener las funciones de transferencia se usaron los espectros de Fourier previamente analizados para cada evento sísmico.

En la gráfica del sismo 261 (10 de diciembre de 1994) podemos observar que la mayor amplificación se dio de la base a la corona, esta amplificación fue de 29.4 para una frecuencia de 1.45 Hz.

En el sismo 298 (25 de enero de 1996) la amplificación máxima se da de la base a la corona con un factor de 25.1 para una frecuencia de 1.57 Hz.

En el sismo 311 (15 de julio de 1996) nuevamente la máxima amplificación se da de la base a la corona con un factor de 30.8 para una frecuencia de 1.64 Hz.

El sismo 319 (11 de enero de 1997) presenta un factor de amplificación de 21 asociado a una frecuencia de 1.35 Hz. Esto se da en la función de transferencia de la base a la corona.

En el sismo 339 (22 de mayo 1997) la amplificación máxima se da de la mitad de la cortina a la corona con un factor de 22 asociado a una frecuencia de 1.5 Hz.

Para el sismo 363 (20 de abril de 1998) podemos observar que la mayor amplificación se da de la base a la corona con un factor de 64 relacionado una frecuencia de 1.46 Hz.

En el sismo 396 (21 de junio de 1999) la mayor amplificación se da de la base a la corona con un factor de 28.2 asociado a una frecuencia de 1.40 Hz.

El sismo 428 (29 de diciembre de 1999) presenta una amplificación mayor de la base a la corona con un factor de 27.8 relacionado con una frecuencia de 1.51 Hz.

La función de transferencia del sino 438 (9 de agosto del 2000) tiene un factor de amplificación máximo de 36, este se presenta de la base a la corona y está asociado a una frecuencia de 1.58 Hz.

Como se puede observar en las gráficas anteriores los menores factores de amplificación se dan de la base a la mitad de la cortina y los mayores factores de amplificación se dan de la base a la corona.

Al observar las funciones de transferencia de la base a la mitad de la cortina nos damos cuenta de las mayores amplificaciones están relacionadas a frecuencias entre 5.3 Hz y 6.3 Hz.

Las funciones de transferencia de la base a la corona presentan los mayores factores de amplificación. El factor de amplificación más grande es de 64 y corresponde al sismo 363 (20 de abril de 1998).

Podemos apreciar que los factores de amplificación mayores de la base a la corona están asociados a frecuencias entre 1.46 y 1.56 Hz.

Los factores de amplificación de media cortina a la corona presentan valores entre 12.5 y 22, estos factores están relacionados a frecuencias entre 1.39 y 2 Hz.

Dado que conocemos las frecuencias a las que están asociados los mayores factores de amplificación de la base a la corona podemos determinar el periodo natural de vibrar de la cortina.

Conclusiones

Al observar las amplitudes obtenidas con los espectros de Fourier nos podemos dar cuenta de que las mayores amplitudes para cada evento sísmico están asociadas a diferentes frecuencias, varían en la base, a media cortina y en la corona.

Sobre todo se observa que la corona y en la mitad de la cortina las mayores afectaciones en la amplitud se desarrollan en frecuencias entre 1.5 y 2 Hz. Mientras que en la base la mayores amplitudes se desarrollan en frecuencias un poco más altas que oscilan entre 5 y 8 Hz.

Al analizar las funciones de transferencia nos podemos dar cuenta de que la cortina tiene diferentes modos de vibrar. Ya que de la base a media cortina se tiene un periodo natural de vibrar diferente al que se tiende la mitad de la cortina a la corona. Esto se debe a que la rigidez de la base a la mitad de la cortina es diferente a la rigidez de media cortina a la corona.

Las funciones de transferencia nos indican que existe amplificaciones al pasar de la base a media cortina y también existen amplificaciones al pasar de media cortina a la corona, esto se explica haciendo la suposición de que la base de la cortina es más rígida que la mitad de la cortina y esta a su vez es más rígida que la corona, ya que cuando las ondas sísmicas viajan de un cuerpo rígido a uno con menor rigidez existen amplificaciones.

Las diferencias en las rigideces de la cortina se pueden deber a la geometría de ésta y a los anchos de los materiales que la conforman. El ancho de los materiales en la base de la cortina es mayor que en la corona. Debido a esto la parte superior de la cortina es más flexible que la base.

Podemos observar que aguas arriba de la cortina y aguas abajo de ella existen bermas en los niveles 106 y 120 respectivamente. El volumen de material de la base de la cortina a estas bermas es significativamente mayor al volumen representado por el resto de la cortina. Esto también influye en que la cortina tenga un periodo de vibrar de la base a la mitad de la cortina y otro completamente diferente de la media cortina a la corona.

Otro factor importante que propicia la existencia de distintos modos de vibrar en la cortina es la geometría del cauce a lo largo del eje de la cortina. Se puede ver claramente como en la parte inferior correspondiente a la base de la cortina se tiene un área reducida, esta sección se va ampliando cuando nos desplazamos hacia la mitad de la cortina y se amplía aún más cuando estamos en la corona. Debido a las laderas la base de la cortina está más confinada que la mitad de la cortina y esta a su vez esta menos confinada que la corona.

Bibliografía.

- CFE, 1895 "Comportamiento de Presas Construidas en México", Contribución al XV Congreso Internacional de Grandes Presas, Vol. 2, Lousanne Suiza.
- CFE 1980 "Comportamiento de las Presas El Infiernillo y La Villita incluido el sismo de marzo 14, 1979" Presas Construidas en México.
- •
- Steven L. Kramer, "Geotechnical Earthquake Engineering", Prentice Hall.
- Romo, Magaña, Hernandez (1992), Análisis de la respuesta sísmica de las presas el Infiernillo y La Villita. Raul J. Marsal, Sociedad Mexicana de Mecánica de Suelos, A.C., México.

Mesografía

http://aplicaciones.iingen.unam.mx/AcelerogramasRSM/Inicio.aspx

http://www2.ssn.unam.mx:8080/sismos-fuertes/

http://www.ssn.unam.mx/

http://proyectos2.iingen.unam.mx/Proyectos_2005_2006/01/1.1.9.pdf

http://digaohm.semar.gob.mx/cuestionarios/cnarioInfiernillo.pdf

http://smig.org.mx/admArticulos/eventos/1_Reunion_Cancun/2.../A5BAGM_1.doc

https://www.smig.org.mx/archivos/revista-trimestral-smig/revista-geotecnia-smig-numero-239.pdf