UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Aislamiento, secuenciación y clonación de receptores a neuroquinina B (tac3ra y tac3rb) en el encéfalo de *Chirostoma humboldtianum* (Atheriniformes: Atherinopsidae)

TESIS QUE PARA OBTENER EL TÍTULO DE: BIÓLOGA PRESENTA: MAYRA BELEN VELAZQUEZ ARPERO

DIRECTOR DE TESIS: DR. RODOLFO CÁRDENAS REYGADAS

LOS REYES IZTACALA, ESTADO DE MÉXICO, 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México por permitir mi formación profesional académica, crecimiento personal y brindarme el tesoro del conocimiento. "Por mi raza hablará el espíritu".

A la Facultad de Estudios superiores Iztacala por la oportunidad de cumplir mi formación de bióloga, por albergarme durante este tiempo como si fuese un segundo hogar y por todos los momentos vividos en tus instalaciones, orgullosamente Iztacalteca.

Al Dr. Rodolfo Cárdenas Reygadas, por darme la oportunidad de incorporarme al proyecto, por sus sugerencias, el apoyo, su experiencia y sus conocimientos transmitidos a lo largo de este tiempo.

A las Maestras Mónica Chávez Maldonado y Beatriz Macedo Garzón por sus conocimientos, recomendaciones y sus valiosas aportaciones, pero sobre todo por su tiempo y consejos para la realización tanto teórica y práctica de la presente.

Al Dr. Jorge Eduardo Campos Contreras por las explicaciones, revisiones y contribuciones para el mejoramiento de este escrito.

Al Biol. Jose Luis González Barajas por el tiempo dedicado y las recomendaciones durante la revisión de este trabajo.

DEDICATORIAS

A mi madre María Guillermina y a mi padre Jorge por su amor incondicional, sus cuidados, interés, atención, apoyo, paciencia y comprensión en todo momento. Gracias por ser mis guías y transmitirme tantos conocimientos y experiencias, por educarme siempre con el ejemplo e inculcarme valores que han hecho de mí una persona de bien. Gracias por escucharme y brindarme la confianza necesaria para desarrollarme individualmente. Gracias por mostrarse fuertes y firmes para poder levantarme y/o reprenderme cuando fue necesario. Gracias por las noches de desvelo, o los días que aún exhaustos me brindaron tiempo, por trabajar arduamente para darnos bienestar a mí y a mis hermanos. Gracias por enseñarme a luchar y a trabajar por cumplir mis metas, por defender lo que creo correcto. Sé que no me alcanzarían las palabras de tanto que quiero agradecerles y no encuentro manera de retribuirles todo lo que de ustedes he obtenido. Solo me resta decirles que este logro también es suyo.

A mis hermanos Erik y Angel por el apoyo, las risas que son las que siempre evoco, por los momentos gratos y no tanto, por la motivación y sus consejos que me han ayudado a salir siempre adelante. Deseo que se desarrollen profesionalmente, cumplan sus metas y mejoren como personas.

A mi tía Guille por escucharme y darme palabras de aliento, por la tolerancia y los debates que me enseñan otro punto de vista, por el apoyo incondicional y por siempre mantenerte al pendiente de mí y cuidarme.

En memoria de mi abuelita Conchita, por todo lo que en vida me cuido y enseño, seguramente estaría orgullosa de lo que he logrado.

Los Amo.

A mis entrañables e incondicionales amigos Jessy, Gaby, Beta, Alejandra, Abril, Irasema, Karina, Vanessa, Tania, Michelle, Karla, Oli, Selene, Ramses, Pedro, Carlos, Jesús, Martin, Felipe, Álvaro por su tiempo, por todos los instantes vividos, las experiencias buenas y malas, todos los recuerdos que llevo conmigo, por las pláticas y los consejos pero sobre todo gracias por ayudarme a crecer como persona y motivarme en cada etapa de mi vida en que se encontraron presentes. Los quiero.

<u>ÍNDICE</u>

RESUMEN	5
ABSTRACT	6
INTRODUCCIÓN	7
Taquiquininas y Neuroquinina B (NKB) Receptor a Neuroquinina B Receptor a neuroquinina B y sistema NKB/NK3R en peces teleósteos	8 9 12
ANTECEDENTES	17
GENERALIDADES DE LA ESPECIE DE ESTUDIO	19
PLANTEAMIENTO DEL PROBLEMA	21
OBJETIVOS	22
OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS.	22 22
MATERIALES Y MÉTODOS	23
RESULTADOS	27
RECEPTOR A SUSTANCIA P (TACR1) RECEPTOR A NEUROQUININA BA (TAC3RA) RECEPTOR A NEUROQUININA BB (TAC3RB)	27 28 29
CONCLUSIONES	42
REFERENCIAS	43
ANEXOS	51

RESUMEN

El receptor a neuroquinina B (NK3R) es miembro de la superfamilia de receptores acoplados a proteínas G y es codificado por el gen tac3r. Recientemente se ha encontrado que en algunas especies de peces teleósteos existe una duplicación de éste mismo, dando lugar a los denominados tac3ra y tac3rb. Se ha demostrado por medio de hibridación in situ que se localizan en el Sistema Nervioso Central (SNC), específicamente en el hipotálamo, colocalizado con las neuronas que producen Kisspeptina, Neuroquinina B y Dynorfina (Kndy), que funcionan como moduladoras de la secreción de la Hormona Liberadora de Gonadotropinas (GnRH) y por lo tanto de gran relevancia en el eje reproductivo. Chirostoma humboldtianum es un pez teleósteo que pertenece a la familia Atherinopsidae, es una especie endémica presente en cuerpos de agua del altiplano mexicano, con una importancia comercial y cultural en las zonas donde se presenta. Actualmente, no se encuentra reportado en esta familia la presencia de los genes tac3ra y tac3rb, pero sí en especies filogenéticamente cercanas como Oryzias latipes por lo que se sugiere que la especie C. humboldtianum también los posea. El objetivo del presente trabajo fue aislar, secuenciar y clonar los genes del receptor a neuroquinina B en el encéfalo de C. humboldtianum. Para ello, se colectaron organismos maduros en la laguna de Zacapu, Michoacán. Se extrajo RNA del encéfalo con ello se realizó PCR. Se obtuvieron productos de diferentes pesos moleculares (400 y 600 pb) que corresponden a los dominios transmembranales 3 al 6 del receptor tac3ra y a los dominios transmembranales 3 al 7 del receptor tac3rb junto con sus asas intracelulares y extracelulares. Estas secuencias parciales tiene similitud con el receptor tac3ra de Gasterosteus aculeatus, Tetraodon nigroviridis, Oreochromis niloticus en un 83%, 80% y 79% respectivamente, y con el receptor tac3rb de Morone saxatilis, Gasterosteus aculeatus, Oryzias latipes en un 81%, 80% y 77% de cada especie. Adicionalmente, se obtuvo la secuencia parcial del receptor a SP (tac1r) que pertenece junto con el tac3r a la superfamilia de receptores acoplados a proteínas G. El aislamiento de ambos receptores a neuroquinina B en el encéfalo de C. humboldtianum concuerda con lo establecido para las especies Oreochromis niloticus y Danio rerio.

Palabras clave: *Chirostoma humboldtianum*, receptor a neuroquinina B, tac3ra, tac3rb, encéfalo.

ABSTRACT

The neurokinin B receptor (NK3R) is a member of the superfamily of G proteincoupled receptors and it is encoded by the gen tac3r. Recently, a duplication of this gene has been found in some species of teleost fish, resulting in the genes tac3ra and tac3rb. They have been seen in situ hybridization which are located in the central nervous system (CNS), specifically in the hypothalamus, colocalized with neurons that produce kisspeptin, neurokinin B and Dynorfina (kndy), which function as modulating secretion releasing Hormone (GnRH) and there fore, is of great importance in there productive axis. Chirostoma humboldtianum is a teleost fish belonging to the Atherinopsidae family. It is an endemic species present in fresh water and streams of the Mexican plateau, with a commercial and cultural importance in areas where it is present. Currently, tac3ra y tac3rb genes have been found in phylogenetically close species like Oryzias latipes and it is suggested that C. humboldtianum also holds them. The aim of this study was to isolate, sequence and clone genes of a neurokinin B receptor in the brain of C. humboldtianum. Mature organisms were collected from the laggon of Zacapu, Michoacan. RNA was extracted from the brain and PCR was performed subsequently. The obtained products have different molecular weights (400 and 600 bp) corresponding to the transmembrane domains. 3 to 6 of the receptor tac3ra and transmembrane domains 3 to 7 of receptor tac3rb along with the intracellular and extracelular loops. These partial sequences have similarity to the tac3ra with receptor of Gasterosteus aculeatus, Tetraodon nigroviridis, Oreochromis niloticus by 83%, 80% and 79% respectively, and the receiver similarity with tac3rb of Morone saxatilis, Gasterosteus aculeatus, Oryzias latipes 81%, 80% to 77% of each species. In addition, a partial sequence of SP receptor (tac1r) was optained. This receptor belongs with the tac3r superfamily of G proteincoupled re ceptors. Isolation of both neurokinin B receptors in the brain of C. humboldtianum is consistent with that reported in the Oreochromis niloticus and Danio rerio species.

Key words: *Chirostoma humboldtianum,* neurokinin B receptor, brain, tac3ra, tac3rb.

INTRODUCCIÓN

La reproducción en peces teleósteos al igual que en los mamíferos, es regulada por ritmos biológicos complejos que requieren de una coordinación fisiológica y un control hormonal por medio del eje Hipotálamo-hipófisis-gónada (HHG) (Hernández; 2006).

Respecto al control endocrino se ha considerado desde su descubrimiento que la Hormona Liberadora de Gonadotropinas (GnRH) es el factor principal de la regulación del eje reproductivo (Ogawa y Parhar, 2014).

Al ser producida la GnRH en el hipotálamo en tetrápodos, se transporta por medio del sistema portahipofisiario y en peces teleósteos, por vía directa a través de terminaciones axonales hacia la hipófisis, para cumplir su función de estimular la secreción de las gonadotropinas, es decir, la hormona luteinizante (LH) y la hormona folículo estimulante (FSH) (Gopurappilly *et al*, 2013; Macedo, 2012).

Posteriormente, las gonadotropinas se liberan hacia el torrente sanguíneo para ser transportadas a las gónadas donde, al unirse con sus respectivos receptores estimulan la secreción de esteroides sexuales y la gametogénesis (Young *et al.*, 2013).

Es por esto que se han investigado en las últimas dos décadas los procesos que participan en la síntesis, liberación y regulación de la GnRH (Topaloglu *et al.,* 2009).Fue entonces en el 2009,cuando se descubrió que el péptido dominado neuroquinina B (NKB) y su receptor (NK3R) podrían estar implicados en la cascada del eje reproductivo, al observar que sí se presentan mutaciones en cualquiera de los genes que los codifican se genera la enfermedad de hipogonadismo hipogonadotrópico en humanos (Young *et al.,* 2013, Topaloglu *et al.,* 2009).

Posteriormente, se investigó el sistema NKB/NK3R en humano (*Homo sapiens*), rata (*Rattus norvegicus*), vacas(*Bost aurus*), ratón (*Mus musculus*), oveja (*Ovis aries*) y chimpancé (*Pan troglodytes*) aislando ambos productos por PCR; y tiempo después se encontró que mantenían conservada su localización al realizar el mapeo de distribución con estudios inmunohistoquímicos en el núcleo hipotalámico arqueado donde se coexpresaba con otros péptidos (kisspeptina y dynorfina A), y su función estaba implicada en la regulación de la secreción de GnRH (Page, 2005; Navarro, 2012; Suetomi, *et al.*, 2013; Lasaga y Debeljuk, 2011; Rance *et al.*, 2010).

Taquiquininas y Neuroquinina B (NKB)

La NKB forma parte de la familia de péptidos de las Taquiquininas. En ella se encuentran también la sustancia P (SP), neuroquinina A (NKA), la hemokinina-1 (HK-1) y las denominadas endoquininas. Dicha familia tiene como característica poseer 10-11 residuos de aminoácidos y un motivo carboxilo terminal en común compuesto por "Phe-X-Gly-Leu-Met-NH2", donde la X representa un residuo hidrofóbico aromático(SP) o de cadena lateral alifática (NKA y NKB), que es crítico para la unión con el receptor y su actividad biológica (Navarro, 2013; Page 2006).

Si bien las taquiquininas se distribuyen en diferentes órganos, donde regulan funciones de vasodilatación, motilidad intestinal, actividad del músculo liso, entre otras; son los péptidos de SP, NKA y NKB los que se han localizado principalmente en las estructuras neuronales en el SNC (Patacchini *et al.,* 2004).

Todos estos péptidos son producto de genes múltiples de taquininas (tac) que probablemente son el resultado de una duplicación de genes que se produjo durante la evolución de los vertebrados. El gen tac1 produce SP y NKA, el gen tac4 produce las endoquininas y HK-1, mientras que el gen tac3 (tac2 denominado en roedores) codifica a un único producto, la NKB (Young *et al.*,2013; Rance *et al.*, 2010).

El gen tac3 en los vertebrados se divide en siete exones, del exón 2 al 6 codifican al precursor preprotaquiquinina B, que posteriormente, al realizarse escisiones proteolíticas conduce a una proneuroquinina B, que en seguida es cortada para dar lugar a la NKB. La secuencia principal de aminoácidos que le proporciona su actividad biológica es traducida por el exón 5. (Rance *et al.,* 2010; Page, 2005).

Receptor a Neuroquinina B

Para cumplir sus funciones fisiológicas la NKB debe interactuar específicamente con el receptor a neuroquinina B(NK3R). Que forma parte del subtipo de receptores a neuroquinina (NKR) donde también se encuentran los receptores NK1R y NK2R (Topaloglu *et al.*,2009).

Sin embargo, la SP y la NKA también pueden actuar como agonistas para este receptor, aunque exhiben una unión preferencial a sus respectivos receptores. El orden de rango potencial para el NK3R es de NKB> NKA> SP (Pennefather *et al.,* 2004; Navarro, 2012).

El NK3R forma parte de la súper familia 1 de los receptores acoplados a las proteínas G ligados a rodopsina. Este grupo de proteínas tiene un gran número de receptores de membrana que comparten la misma estructura: Siete dominios transmembranales (TM I-VII), tres asas extracelulares (EL1, EL2 y EL3), tres asas intracelulares (IL1, IL2 e IL3), un amino terminal extracelular y un carboxilo terminal citoplasmático (Figura 1) (Rance *et al.*, 2010).

El NK3R es el receptor más largo de los NKR debido a que se encuentra más extendido en el amino terminal, además su longitud total puede variar de especie en especie, por ejemplo: En mamíferos el NK3R en cobayo tiene 440 aminoácidos, mientras que en la rata cuenta con 452 aminoácidos y por el contrario el de humano 465 aminoácidos son los que lo conforman (Page, 2006).

Figura 1. Estructura proteica del receptor a neuroquinina B en humano. Se muestran los dominios transmembranales (TM), las asas extracelulares (EL) y las asas intracelulares (IL). Las regiones codificadas por los exones 1,3, y 5 se muestran en gris y las regiones codificadas por los exones 2 y 4 se muestran en blanco (Modificado de Pennefather *et al.*, 2004).

Este receptor es codificado por el gen tac3r, que se caracteriza por poseer 5 exones. Contrariamente a muchos otros miembros de esta familia de receptores este gen contiene intrones, y se ha planteado la hipótesis de que la organización de exones puede representar unidades funcionales y/o estructurales distintas y, en

este contexto, los sitios de empalme para los exones ocurren en la frontera de las secuencias que codifican los dominios transmembranales (Hu *et al.*, 2014; Suetomi *et al.*, 2013).

En mamíferos el exón 1 codifica la región 5' sin traducción y hasta el final de TM III, el exón 2 contiene IL2, TM IV y EL2, el exón 3 contiene TM V e IL3. El exón 4 codifica para TM VI, EL3 y TM VII. Y el exón 5 contiene el extremo carboxilo terminal citoplasmático y toda la región 3' sin traducción. (Figura 2) (Suetomi *et al.,* 2013; Page, 2005; Patacchini *et al.,* 2004).

Figura 2.Estructura esquemática del gen que codifica al receptor de neuroquinina B en mamífero. La región codificante 5'-3' del amino (N) terminal, los dominios transmembranales (I-VII) y un carboxilo (C) terminal, se encuentra en cinco exones (1-5) que son interrumpidos por cuatro intrones. Las flechas indican donde se localizan los oligonucleótidos diseñados.

Aunque se prevé que especies como los caimanes (*Alligator mississippiensis*) lagartos (*Anolis carolinensis*) y gallinas (*Gallus gallus*) posean el receptor NK3R en su SNC debido a la presencia de NKB en el encéfalo de estos organismos, ha sido en mamíferos (humano, mono, oveja, rata, cabra y ratón) donde se ha desarrollado un modelo de localización del NK3R con respecto a la regulación de la hormona GnRH (Guangfu *et al.*, 2014; Page *et al.*, 2009).

Estos modelos demuestran dos sitios de localización de la expresión del gen tac3r: el primero ocurre en el núcleo arqueado del hipotálamo donde se encuentran las neuronas Kndy que tienen una coexpresión de NK3R, NKB, Dinorfina A (Dyn) y Kisspeptina (Kiss). Debido a esta característica NK3R puede tener un efecto regulador autocrino sobre la liberación de Kiss que se ha identificado como un potente secretagogo de GnRH. Sin embargo, se debe modular la frecuencia de pulsos GnRH/LH-FS para ello se ha propuesto que los esteroides gonadales actúan inhibiendo a este receptor debido a su cercanía con los receptores a estrógenos alfa (ERα) y el receptor a progesterona (Figura 3) (Goodman *et al.,* 2007; Navarro *et al.,* 2009; Rance *et al.,* 2010; Guangfu *et al.,* 2014).

El segundo se encuentra en la eminencia media donde se encuentran axones que transportan GnRH para después liberarla en el sistema portahipofisiario. En esta zona se ha observado que los axones de GnRH expresan inmunorreactividad a NK3R en humano y oveja, además en neuronas GT1-7 GnRH de ratón se ha identificado mRNA de tac3r junto con la secreción de GnRH con la exposición de NKB a corto plazo. Comprobando que se encuentra relacionado con la modulación de la secreción de la hormona GnRH (Rance *et al.* 2010; Satoshi *et al.*, 2012; Young *et al.*, 2013; Duarte *et al.*, 2006).

Figura 3. Modelo de

neuronas Kndy en el núcleo arqueado de organismos maduros. Aquí NKB se une al receptor NK3R y estimula la secreción de Kiss. Posteriormente Kiss se une a su receptor GPR54 en las neuronas GnRH, estimulando su la liberación hacia la hipófisis por el sistema portahipofisiario para generar LH. Existen dos retroalimentaciones negativas que modulan todo este sistema: una por progesterona y otra por estrógeno. (Modificado de Guangfu *et al.*, 2014).

Receptor a neuroquinina B y sistema NKB/NK3R en peces teleósteos

El interés en el NK3R y su ligando en modelos de peces surgió al identificar por primera vez los genes que los codifican en el pez cebra (*Danio rerio*).Hasta el momento se encuentran publicados un total de 9 artículos respecto al tema, sin embargo solo los trabajos de Biran y colaboradores 2012 y 2014; Guangfu y colaboradores 2014; Hu y colaboradores 2014; Zhou y colaboradores del 2012 cuentan con información respecto al NK3R en peces teleósteos.

Hasta la fecha se ha logrado identificar el NK3R en el pez cebra (*Danio rerio*), Tilapia (*Oreochromis niloticus*), carpa china (*Ctenopharyngodon idella*), puffer verde (*Tetraodon nigrovidiris*), pez globo (*Takifugu rubipres*), medaka (*Oryzias latipes*) y carpa (*Cyprinus carpio*) en los cuales se observa que la organización estructural de un amino terminal, siete dominios transmembranales, asas intracelulares, extracelulares y un carboxilo terminal se conserva como en mamíferos (Biran *et al.*, 2012; Biran *et al.*, 2014; Hu *et al.*, 2014, Zhou *et al.*, 2012).

Como menciona Guangfu y colaboradores 2014 y Zhou y colaboradores 2012 en peces teleósteos se ha encontrado que existe una duplicación de genes tac3r, dando lugar a los genes tac3ra y tac3rb, con la característica de presentar una conformación conservada de 5 exones y 4 intrones presente en mamíferos; con la diferencia que, en peces se conoce que el exón 2 es el que codifica a los dominios transmembranales 3 y 4.

Aunque ambos genes codifican al mismo receptor acoplado a proteínas G, sus diferencias radican en la longitud de nucleótidos y por lo tanto la cantidad de aminoácidos traducidos, en la posición de los sitios que ayudan a su conformación estructural o a la transducción de señales (de N-glicosilación, fosforilación de la proteína cinasa C, de fosforilación de la proteína cinasa dependientes de AMPc y GMPc, de fosforilación caseína cinasa II, de fosforilación de tirosina cinasa y de N-miristoilación) y en la ubicación y la expresión que presentan en diferentes órganos (Biran *et al.,* 2012).

Entre el pez cebra y tilapia se ha observado una diferencia en la localización y la expresión relativa de los genes tac3ra o tac3rb.En pez cebra en el cerebro y la

hipófisis, existe expresión de tac3ra y tac3rb, específicamente ambos se localizaron en el telencéfalo, el *tectum* óptico e hipotálamo, pero en el cerebro posterior las mediciones de tac3rb son nulas (Biran *et al.*, 2012; Zhou *et al.*, 2012). En cambio en la tilapia la expresión de tacrb es superior en EL cerebro anterior, medio y posterior que la de tac3ra, encontrando el máximo nivel de expresión de tac3rb en el cerebro posterior y el mínimo nivel de tac3ra en la hipófisis (Biran *et al.*, 2014; Hu *et al.*, 2014).

En tilapia se registró que tac3ra y tac3rb se encuentran expresados en la *pars distalis proximalis* de la adenohipófisis además se hizo una colocalización con las células gonadotropas de tilapia, dando positiva la reacción inmunoflourescente. De la misma manera en el pez cebra se observó niveles de expresión génico del NK3R en la hipófisis donde también se obtuvieron señales de transcripción del ligando, y se observó un aumento en la secreción de LH cuando fueron incubadas con NKB. (Biran *et al.,* 2014; Zhou *et al.,* 2012). A diferencia del pez cebra, cuando se realizaron estudios de tratamientos de NKB en células de la hipófisis de carpa no se observó un cambio en la producción de LH, en cambio se obtuvo respuesta de secreción de somatolactina (SL) medida por el NK3R, lo que nos habla de una diferencia funcional del sistema NKB/NK3R en la hipófisis dependiendo de la especie (Hu *et al.,* 2014)

Por otro lado, en el pez cebra se demostró por hibridación *in situ* que las poblaciones neuronales NKB y Kiss se encuentran separadas dentro de la habénula e hipotálamo, y no en el *tuberis lateralis* que se considera como la estructura homologa del núcleo arqueado en mamíferos (Biran *et al.*, 2012; Guangfu *et al.*, 2014).

Sin embargo no se excluye la posibilidad de las interacciones funcionales de NKB y las neuronas kisspeptina para desempeñar un papel en la regulación de GnRH debido a la localización de distintos neuropeptidos: NKB, Kiss, GPR54, receptor de la leptina, la hormona concentradora de melanina, dos receptores de melanina, entre otros en la zona ventral del hipotálamo periventricular, lo que sugiere que las

14

vías de neuropéptidos no se encuentran conservadas del todo y requieren mayor investigación en modelos de peces (Zhou et al., 2012; Biran *et al.,* 2012).

Respecto a la transducción de la señal en modelos de peces es similar a la presente en mamíferos. Después de adoptar una configuración helicoidal y dejar expuesto el motivo carboxilo terminal "FXGLM" de la NKB y permitir la unión con los TM VI y VII se desencadena la señalización del receptor a través de las proteínas Go o Gq/11 (Guangfu *et al.*,2014).

Al separarse los complejos de la proteína G ocurre la activación de la denilato ciclasa, que aumentan los niveles intracelulares de adesinmonofosfato cíclico yia activación de la proteína cinasa A, pero también puede ocurrir la activación de la fosfolipasa C, que permite la formación de inositol trifosfato y de diacil glicerol provocando el aumento de la concentración de calcio (Ca²⁺) intracelularmente y la activación de la proteína cinasa C, que al igual que la proteína cinasa A, realiza eventos de fosforalización de otros complejos proteicos que permitan continuar con la vía de señalización (Figura 4) (Biran *et al.,* 2012; Biran *et al.,* 2014; Zhou *et al.,* 2012).

Se ha propuesto que ocurra con las proteínas RAS que pueden generarla activación de las proteínas cinasas activadas por mitógenos (MAPK), las cuáles son capaces de traslocarse al núcleo para regular la transcripción de GnRH o de Kiss. El mecanismo exacto del proceso mediante el cual NKB regula la liberación de GnRH en peces aún no se ha esclarecido por completo (Figura 4) (Satake *et al.,* 2003; Guangfu *et al.,* 2014).

Figura 4. Modelo propuesto de la transducción de señal del NK3R. La unión del ligando NKB con el receptor NK3R provoca el cambio conformacional en la proteína Go o Gq/11, el GDP cambia por un GTP en la subunidad α y las subunidades α , β y Υ se separan. La subunidad de la proteína Go se une a la adenilato ciclasa provocando por medio de adenosintrifosfato (ATP) la formación adesin monofosfatocíclico (AMPc), y éste activa a la proteína cinasa A(PKA) u ocurre la unión de la subunidad de la proteína Gq/11 a la fosfolipasa C (PLC) provocando la formación de inositoltrifosfato (IP3) diacilglicerol (DAG) a partir del la hidrolisis de fosfatidilinositol 4,5-bifosfato (PIP2) que permiten el aumento de Calcio (Ca²⁺) al interior de la célula a través la apertura de canales membranales o canales del retículo endoplasmático liso. El Ca²⁺ se une a la calmodulina y activa a la proteína cinasa C (PKC). PKA y PKC pueden fosforilar los llamados promotores que se propone sean proteínas RAS que activan proteínas quinasas activadas por mitogenos (MAPK) que a su vez pueden entrar al núcleo y regulan la transcripción de kisspeptina (Kiss) o la hormona liberadora de gonadotropinas (GnRH). Sin embargo es un proceso no del todo claro actualmente (?)

Antecedentes

Para comprender el sistema NKB/NK3R en los peces, se han utilizado a diferentes especies de teleósteos como modelos de estudio.

Zhou y colaboradores (2012) para vislumbrar la evolución del gen tac3 y los genes del receptor tac3r localizaron y clonaron secuencias de ADNc de longitud completa que codifican a tac3 (tac3a y tac3b) y tac3r (tac3ra1, tac3ra2, tac3rb) en el pez cebra (*D.rerio*). El análisis de las secuencias demostró que los genes tac3ra y tac3rb estaban presentes en las especies Tilapia (*O. niloticus*), carpa china (*C. idella*), puffer verde (*T. nigrovidiris*), pez globo (*T. rubipres*), medaka (*O. latipes*) todas registradas en la base de datos GeneBank. Estudios en la distribución tisular revelaron que tac3 y tac3r se expresan principalmente en las regiones del cerebro, concluyendo que los múltiples genes tac3 y tac3r identificados en los vertebrados evolucionaron a partir de eventos de duplicación de genes de la familia de las taquininas y que los sistemas tac3/tac3r también operan en teleósteos.

Biran y colaboradores (2012) para estudiar la conservación evolutiva y las funciones fisiológicas de la NKB usaron como modelo de estudio al pez cebra (*D. rerio*), en donde identificaron los genes de la taquinina B (tac3a y tac3b) y de su receptor (tac3ra y tac3rb) clonando dos formas de ADNc. Analizando estos resultados encontraron que filogenéticamente tac3 y los genes de mamífero de neuroquinina, surgen de un mismo linaje. En el análisis de presencia/ausencia en el desarrollo del pez cebra observaron que tac3a se expresaba de forma asimétrica en la habénula en embriones, mientras que en los adultos, las neuronas tac3a fueron localizados en los núcleos cerebrales específicos que se sabe que están implicados en la reproducción.

Hu y colaboradores en el 2014 emplearon como modelo de estudio a la carpa (*C. carpio*) para demostrar los efectos directos y la vía de señalización de los dos productos tac3 que fueron analizados a nivel de la pituitaria. Se obtuvieron y clonaron los genes de tac3.En las células de la pituitaria los tratamientos con NKB no afectaron la liberación de LH, pero se observó un aumento de somatolactina

alfa (SLα). Respecto a la señal de transducción se comprobó que la respuesta esta mediada por la unión a NK3R y la vía por la adenilato ciclasa/AMPc/proteína quinasa A, la fosfolipasa C/ 1,4,5-inositol trifosfato/ proteína quinasa C y (Ca²⁺)/ calmodulina dependiente de la proteína quinasa de activación II. Lo que demuestra que el sistema NKB/NK3R no juega un papel en la regulación de LH en el nivel de la hipófisis en especies de carpa.

Nuevamente, Biran y colaboradores en el 2014, estudiaron el papel de NKB en la especie *O. niloticus* (tilapia). Identificaron específicamente el sistema NKB/NK3R en la hipófisis de tilapia. Dichos autores reportan con un análisis filogenético y bioinformático que tilapia tiene 1 gen putativo tac3 y dos genes del NK3R (tac3ra y tac3rb) que se agrupan con otros tac3 y linajes de receptores de NKB. También observaron el aumento de los niveles plasmáticos de FSH y LH al inyectar intraperitonealmente tiNKB, siendo más eficaz este aumento en células de LH que poseen tac3ra y tac3rb, a un mayor grado que aquellas productoras de FSH. Con todos estos datos concluyeron que el sistema tac3r/NKB tiene como función una regulación paracrina/autocrina en la liberación de gonadotropinas en la hipófisis de pez.

Generalidades de la especie de estudio

El pez blanco Chirostoma humboldtianum se ha convertido en un modelo de distintas estudio importante para investigaciones relacionadas con la endocrinología, crecimiento y alimentación de peces. Algunas de ellas son las relacionadas con el crecimiento, mortalidad y sobrevivencia del charal (Sánchez-Merino *et al.*, 2007); el desarrollo ovárico y su relación con los niveles hormonales circulantes de 17β-estradiol y 17α-hirdroxiprogesterona durante el primer ciclo reproductivo en hembras (Blancas-Arroyo, 2007); la alimentación en el estanque JC en soyaniquilpan, estado de México (Fernández et al.,2008); la estructura y ultraestructura de sus ovocitos (Cárdenas et al., 2008); La distribución de la hormona GnRH de salmón (sGnRH) en el cerebro anterior (Chávez, 2009);el aislamiento, secuenciación y clonación de GnRH de peje (Macedo, 2012); la distribución del polipéptido activador de la adenilatociclasa de la pituitaria (PACAP) en las gónadas (González, 2010); la distribución de la isoforma de sGnRH en las gónadas (Toribio, 2010); sobre el polipéptido activador de la adenilatociclasa de la pituitaria (PACAP) (Chávez y Cárdenas, 2012); el aislamiento y secuenciación de receptores a estrógeno en encéfalo (Muñoz-Osnaya, 2016) o la secuencia completa de DNA mitocondrial (Barriga-Sosa et al., 2016).

El interés presente en las investigaciones de esta especie se relaciona a que forma parte de un género que está compuesto de un número de especies consideradas representativas y endémicas de México (Muñoz, 2011; Martínez-Palacios *et al.*, 2002). Originalmente la especie tenía una amplia distribución en el altiplano, encontrándose en el Río Lerma, Santa María y San Pedro, además de los lagos de los estados de Michoacán, Nayarit y Jalisco (Fernández *et al.*, 2008, Blancas-Arroyo, 2007; Paulo-Maya *et al.*, 2000).

C. humboldtianum, taxonómicamente pertenece a la familia Atherinidae y se ha propuesto que filogenéticamente fuera el ancestro que dio origen a las especies con mayor talla en cuanto al género (Martínez *et al.,* 2006).Se conoce que el crecimiento de esta especie es lento y alcanza su primera madurez sexual al llegar

a una talla de 11 a 13 cm y a partir de este momento se considera que los meses de madurez gonadal abarcan de marzo a septiembre presentando varios desoves durante esta temporada y no cuentan con un dimorfismo sexual para su diferenciación (Rojas y Sasso, 2005; Blancas-Arroyo,2007).

El pez blanco en México tiene una alta importancia cultural, debido a que el consumo de esta especie permitió el establecimiento de diferentes culturas en el altiplano mexicano y lagos del valle en la época prehispánica (Sánchez,1992).

Actualmente, estos peces siguen desempeñando un papel importante en el consumo y como fuente de proteínas en muchas familias de las localidades cercanas a donde se encuentran (Hernández, 2006;Barriga-Sosa *et al.,* 2016). Por lo tanto, también se han explotado como recurso natural y se les ha implementado un valor en el comercio local como producto fresco o productos derivados del mismo, algunos reportes estiman que su precio puede llegar hasta los 430 pesos por kilo lo que permite el sustento de dichas familias (Martínez-Palacios *et al.,* 2002).

Sin embargo, durante las últimas décadas, se ha mermando la amplitud de distribución y de sus poblaciones drásticamente en las regiones en que se presentaba (Blancas, 2007; Rojas y Sasso, 2005). Las poblaciones de peces blancos se han visto amenazadas debido a la modificación de su hábitat original, a la sobrepesca, a la contaminación de los cuerpos de agua y a la introducción de especies exóticas o diseminadas (Fernández *et al.*, 2008).

Otra de las desventajas que presenta dicha especie es que su domesticación y cultivo no se han logrado por el desconocimiento de sus necesidades ecológicas y biológicas respecto a su crecimiento, desarrollo y reproducción, aunado a su alto grado de hipersensibilidad a los estímulos ambientales (Blancas-Arroyo *et al.*, 2014).

Planteamiento del problema

Ha quedado de manifiesto la importancia del sistema NKB/NK3R en el eje reproductivo en los mamíferos (Topaloglu *et al.*, 2009; Lasaga y Debeljuk, 2011;Rance *et al.*, 2010) y se ha empezado a investigar si este sistema cuenta con las mismas características en modelos de estudio en peces. Actualmente, existe poco conocimiento acerca de los receptores a Neuroquinina B, como su presencia, su conformación tanto molecular como estructural, modo de acción, señales de transducción y papel evolutivo, en diferentes grupos de peces teleósteos.

Respecto a lo anterior, se destaca que no se cuentan con registros sobre la presencia ni la conformación del o los genes que codifican al receptor a neuroquinina B en la familia Atherinopsidae, por lo que conocer esta información impulsaría las investigaciones del sistema NKB/NK3R y su papel endocrinológico en el eje reproductivo.

Por último, debido a que la especie *C. humboldtianum* posee gran valor cultural, comercial y biológico es necesario contar con los conocimientos endocrinológicos de la biología reproductiva, en este caso del conocimiento del gen codificante al receptor a neuroquinina B, para permitir diseñar mecanismos biotecnológicos para el mejoramiento de la tasa de reproducción, la maduración gonadal o a la creación e incorporación de NKB en la acuacultura a futuro (Muñoz, 2011). Y así lograr la reproducción controlada y sistemática en cautiverio, además, de contribuir en el rescate, conservación y aprovechamiento de esta especie endémica de nuestro país.

OBJETIVOS

Objetivo General

Aislar, secuenciar y clonar los receptores a neuroquinina B (tac3r), en el cerebro de *Chirostoma humboldtianum*.

Objetivos específicos.

- 1) Aislamiento de los receptores a neuroquinina B en el cerebro de *C*. *humboldtianum*.
- 2) Secuenciarlos receptores a neuroquinina B en el cerebro de *C. humboldtianum*
- 3) *Clonar*los receptores a neuroquinina B en el cerebro de *C. humboldtianum*

MATERIALES Y MÉTODOS

Los organismos sexualmente maduros de la especie *C. humboldtianum* fueron colectados en la laguna de Zacapu, Michoacán (Figura 5) en los meses de abril, mayo, septiembre del 2015 y marzo del 2016 por el método de chinchorreo con ayuda de pescadores de la cooperativa local.

Figura 5. Mapa de la ubicación del área de estudio, Zacapu Michocán 19°48'58'' N, 101°47'26''W, altitud 1,887 msnm (Obtenido de Google Maps-INEGI).

Los ejemplares fueron anestesiados con MS-222 (Sigma®) y posteriormente sacrificados. Los organismos a utilizar se seleccionaron con base a su talla (11 a 13 cm de longitud) para después ser separados en lotes de hembras y machos, utilizando para ello la extracción manual de ovocitos o líquido seminal (Figura 6). Acto seguido, los encéfalos fueron extraídos y se colocaron en tubos Eppendorf 1.5 ml (previamente tratados con dietil-pirocarbonato). Las muestras fueron puestas en hielo seco para su conservación y su posterior traslado al aboratorio

de Endocrinología de peces en la Unidad de Morfofisiología y Función de la Facultad de Estudios Superiores Iztacala.

Figura 6. Organismos de *Chirostomahumboldtianum*

En el laboratorio, se realizó la extracción de ARN total de los encéfalos por medio de Trizol basada en la técnica fenol-cloroformo- isotiocianato (Chomczynski y Sacchi, 1987) y su integridad se verificó por medio de un gel de agarosa al 1%, teñido con Midori Green NipponGenetics® (Figura 7).

Figura 7. Electroforesis en gel de agarosa al 1%teñido con Midori Green para la verificación de la integridad de los RNA'stotalesaislados

Para realizar las amplificaciones por PCR se diseñaron oligonucleótidos específicos para las secuencia de tacr3 (Tabla 1) tomando como base una secuencia consenso realizada con las especies de peces filogenéticamente cercanas.

tac3ra: O. niloticus (NM_001301378), T. rubripes (NM_001280097), O. latipes (NM_001278910), D. rerio (NM_001256638), Poecilia mexicana (XM_015005556.1) y Astyanax mexicanus (XM_007235686.2) (Anexo 1).

 tac3rb: *D. rerio* (JF317293.1), *O. latipes* (NM_001278874.1), *T. nigroviridis* (BK008097.1), *T. rubripes* (NM_001280112.1), *O. niloticus* (KF471675.1), A. mexicanus (XM_007235686.2) y *P. mexicana* (XM_015005556.1) (Anexo 2).

Oligos	Secuencia 5'-3'	Posición (nucleótidos)
F2RA	AATTCCACAACTTCTTCC	296-314
R2RA	TTCACAACCTTCCTCTTA	706-724
F5RB	TYCACAACTTCTTCCCN	302-320
R6RB	TTCACCACCTTCCTYTTD	704-722

Tabla 1. Oligonucleótidos diseñados para el aislamiento de la secuencia de tacr3 y región donde se localizan.

Las amplificaciones de PCR se realizaron con dos métodos diferentes: En el primero, una vez extraído el RNA, se sintetizó el cDNA de acuerdo con la metodología del kit SuperScriptIII RT (Invitrogen®). Ya obtenido, se utilizó en reacciones de amplificación por PCR con las condiciones por Lopez-Bedillo *et al.,* 2013: precorrida 95°C 5 minutos, 40 ciclos de desnaturalización 95°C 1 minuto, con modificaciones en el alineamiento de 56.8°C por 45 segundos y la extensión 72°C 3 minutos; y por último un ciclo con una extensión final de 72°C por 7 minutos.

Para el segundo método se utilizó el kitSuperScriptIII One-Step RT-PCR SystemwithPlatinumTaq DNA polymerasa (Invitrogen®) y se siguió el protocolo descrito. En este método se ingresa el RNA total extraído junto con los componentes del kit para que se realice la síntesis del cDNA y las amplificaciones del PCR en conjunto. Por lo tanto las condiciones empleadas fueron las siguientes: síntesis de cDNA en un ciclo de 58°C por 30 minutos, una precorrida de 94°C por 2 minutos, 40 ciclos de desnaturalización a 94°C por 15 segundos, alineamiento a 53°C por 1 minuto, extensión a 68°C por minuto y medio; y un ciclo para una extensión final de 68°C por 5 minutos.

Los productos obtenidos fueron verificados por electroforesis en geles de agarosa al 1% y teñidos con Midori Green NipponGenetics® y purificados por columna a

través del MinElute Gel Extracción Kit QIAGEN® siguiendo las indicaciones de protocolo descrito. De la misma manera los productos purificados fueron verificados en un gel de agarosa al 1% y se secuenciaron en a un secuenciador automático Perkin Elmer ABI 3100.

Los tres productos obtenidos se clonaron, utilizando el protocolo del kit pGEM-Easy Vector system® (Promega), las colonias seleccionadas fueron purificadas con el protocolo del kit Wizard Plus SV Minipreps DNA PurificationSystem® (Promega) para después realizar PCRs con las condiciones que respectan a cada receptory su posterior verificación en un gel de agarosa al 1% con Midori Green® (Figura 8).

Figura 8. Electroforesis en gel de agarosa al 1% teñido con Midori Green para verificar las clonaciones de los productos tac1r, tac3ra y tac3rb.M) Marcador de peso molecular. En A) 1) Producto tac1r. 2) Plásmido del producto tac1r. En B) 3) Producto tac3ra. 4) Plásmido del producto tac3ra. En C) 5) Producto tac3rb. 6) Plásmido del producto tac3rb.

Las secuencias obtenidas se analizaron usando BLAST (versión 2.0, National Center for Biotechnology Information), se utilizó la base de datos GenBank, Bio Edit Sequence Alignment Editor (versión 7.2.5), y Geneious R9 (versión 9.1.3).

RESULTADOS

Receptor a sustancia P (tacr1)

Utilizando el primer método para las amplificaciones de PCR antes descritas con los oligos F5RB-R6RB se logró obtener un producto de aproximadamente 350 pb. (Figura 9).

Analizando la secuencia obtenida de 301pb en la base de datos del GenBank se encontró para *C. humboldtianum* la parte codificante del dominio III al V del gen de tacr1 (Figura 9).

Figura 9.Electroforesis de un gel de agarosa al 1% teñido con Midori Green. M) Marcador de peso molecular 50 pares de bases (pb).1) Control negativo. 2) Producto de aproximadamente 400 pb. B: Secuencia obtenida de 301pb. De gris se localizan las zonas codificantes de los dominios transmembranales (III, VI, V), subrayado de la asa intracelular 2 y en doble subrayado el asa extracelular 2 que corresponden a la secuencia parcial del receptor de sustancia P (Tac1r).

Utilizando el segundo método con el protocolo del kit SuperScript III One-Step RT-PCR y los juegos de oligos F2RA/R2RA y F5RB/R6RB se obtuvo un bandeo inespecífico. Posteriormente, por el peso del amplicón esperado de aproximadamente 300 a 400 pb se eligieron dos bandas que se purificaron y mandaron a secuenciar (Figura 10).

Figura 10. Electroforesis geles de agarosa 1% con Midori Green. A. Muestras de RT-PCR Las bandas señaladas fueron seleccionadas para su posterior purificación. B. Bandas purificadas y secuenciadas. M) Marcador.1) Muestra con oligosF5RB-R6RB. 2) Muestras con Oligos F2RA-R2RA).

Receptor a neuroquinina Ba (tac3ra)

Con los oligos F2RA y R2RA se obtuvo una secuencia de 396 pb que codifican 132 aminoácidos y pertenece al gen reportado del receptor a Neuroquinina Ba (tac3ra) en la base de datos de NCBI (Figura 11).

1 III	TAC	TCT	ATG	GCG	GCG	ATA	GCC	ATA	GAC	AGG	TAT	ATG	GCA	ATC	ATC	45
1	Tyr	Ser	Met	Ala	Ala	Ile	Ala	Ile	Aso	Arg	Tvr	Met	Ala	Ile	Ile	15
46	CAT	CCT	CTC	AAG	CCT	CGT	CTG	TCA	GCC	CGA	GCC	ACC	ATC	GGA	GTT	90
16	His	Pro	Leu	Lvs	Pro	Arg	Leu	Ser	Ala	Arg	Ala	Thr	Ile	Gly	Val	30
91	ATA	TTA	TTC	ATC	TGG	AGC	CTC	GCA	GTT	ATT	CTG	GCC	TTC	CCC	CTT	135
31 IV	Ile	Leu	Phe	Ile	Trp	Ser	Leu	Ala	Val	Ile	Leu	Ala	Phe	Pro	Leu	45
136	TGC	TAC	TTC	TCC	ACC	ACG	CGG	ACA	CTA	CCA	GGC	AGG	ACC	TTT	TGT	180
46	Cys	Tyr	Phe	Ser	Thr	Thr	Arg	Thr	Leu	Pro	Gly	Arg	Thr	Phe	Cys	60
181	TAC	GTG	GCC	TGG	ccc	CGC	ATG	GCT	GAT	GAC	ccc	TTC	ATG	TAT	CAC	225
61	Tyr	Val	Ala	Trp	Pro	Arg	Met	Ala	Asp	Asp	Pro	Phe	Met	Tyr	His	75
226	ATC	ATA	GTA	ACA	GTC	CTG	GTG	TAT	CTG	CTG	CCG	CTG	GTG	GTG	ATG	270
76 V	Ile	Ile	Val	Thr	Val	Leu	Val	Tyr	Leu	Leu	Pro	Leu	Val	Val	Met	90
271	GCC	ATT	ACT	TAC	ACC	ATT	GTT	GGA	GTG	TCG	CTG	TGG	GGA	AGC	GAG	315
91	Ala	Ile	Thr	Tyr	Thr	Ile	Val	Gly	Val	Ser	Leu	Trp	Gly	Ser	Glu	105
316	ATC	CCT	GGA	GAC	TCA	TCT	GAC	AAC	TAT	CAT	GGA	CAG	CTC	CGT	GCT	360
106	Ile	Pro	Glv	Asp	Ser	Ser	Asp	Asn	Tyr	His	Gly	Gln	Leu	Arg	Ala	120
361	AAA	AGG	AAG	GTG	GTG	AAG	ATG	ATG	ATC	ATT	GTG	GTG	VI ³⁹	96		
121	Lys	Arg	Lys	Val	Val	Lys	Met	Met	Ile	Ile	Val	Val	1	32		

Figura 11. Secuencia en núcleotidos y aminoácidos de tac3ra para *C. humboldtianum*. Los dominios transmembranales III, VI, V y VI se encuentran en color gris, mientras que las asas intracelulares 2 y 3 se encuentran subrayadas y el asa extracelular 2 en doble subrayado.

Receptor a neuroquinina Bb (tac3rb)

Con los oligos F5RB y R6RB se secuenció un fragmento de 375 pb, que corresponden 125 aminoácidos de la secuencia de los dominios transmembranales del III al VI que componen la estructura del receptor a neuroquinina Bb (Figura 12).

1 TCT ATG GCG GCG ATT GAC TTA GAC AGG TAT ATG GCA ATC ATC CAT 45 III 1 Ser Met Ala Ala Ile Asp Leu Asp Arg Tvr Met Ala Ile Ile His 15 90 46 CCT CTC AAG CCT CGT CTG TCA GCC CAA CAC ACC ATC GGA GTT ATA Pro Leu Lvs Pro Arg Leu Ser Ala Gln His Thr Ile Gly Val Ile 16 30 TTA TTC ATC TGG AGC CTC GCA GTT ATT CTG GCC TTC CCC CTT TGC 91 135 Leu Phe Ile Trp Ser Leu Ala Val Ile Leu Ala Phe Pro Leu Cys 31 45 IV 136 180 TAC TTC TCC ACC ACG CGG ACA CTA CCG GGC AGG ACC TTT TGT TAC Tyr Phe Ser Thr Thr Arg Thr Leu Pro Gly Arg Thr Phe Cys Tyr 46 60 GTG GCC TGG CCC CGC ATG CCT GAT GAC CCC TTC ATG TAT CAT ATC 181 225 61 Val Ala Trp Pro Arg Met Pro Asp Asp Pro Phe Met Tyr His Ile 75 226 AGA GTA ACA GTC CTG GTG TAT CTG CTG CCG CTG GTG GTG ATG GCC 270 76 V Arg Val Thr Val Leu Val Tyr Leu Leu Pro Leu Val Val Met Ala 90 271 ATT ACT TAC ACC ATT GTT GGA GTG TCG CTG TGG GGA AGC GAG ATC 315 Ile Thr Tyr Thr Ile Val Gly Val Ser Leu Trp Gly Ser Glu Ile 91 105 CCT GGA GAC TCA TCT GAC AAC TAT TAT GGA CAG CTC CGT GCT AAG 316 360 106 Pro Glv Asp Ser Ser Asp Asp Tvr Tvr Glv Gln Leu Arg Ala Lvs 120 361 AGG AAG GTT GTG AAA VI375 121 Arg Lys Val Val Lys 125

Figura 12. Composición de aminoácidos y nucleótidos del receptor a neuroquinina Bb para *C. humboldtianum.* Los dominios transmembranales III, VI, V, VI se encuentran en color gris, subrayadas las asas intracelulares 2 y 3, en doble subrayado el asa extracelular 2.

DISCUSIÓN

En este trabajo se aisló por primera vez en *C. humboldtianum* el gen del receptor a sustacia P (tac1r) y los genes codificantes al receptor a neuroquinina B (tac3ra y tac3rb)

La primera secuencia encontrada mostró porcentajes de similitud con el gen tacr1 de *T. nigroviridis, T. rubripes, P. mexicana, G. aculeatus*, con las cuales está filogenéticamente relacionada (Tabla 2). El gen tac1r codifica al receptor NK1R que es considerado el receptor de la sustancia P, conservado en todos los vertebrados (Satoshi *et al.,* 2012).

Gaddy colaboradores en el 2003; Commons 2010; y López-Bedillo en el 2013 mencionan que el tac1r se encuentra distribuido ampliamente en el cerebro y puede localizarse en el telencéfalo, el diencéfalo (incluyendo el hipotálamo),el mesencéfalo y el cerebro posterior, y su activación se ha visto implicada en procesos como la transmisión sináptica, neurotoxicidad, inflamación neurogénica y en procesos tales como el dolor, estrés y ansiedad.

Especie	Porcentaje de	Longitud total	Número de acceso al
	Identidad	(pb)	GenBank
Tetraodon nigroviridis	86%	1284	BK008099.1
Takifugu rubripes	82%	1248	NM_001280107.1
Poecilia mexicana	81%	3209	XM_015010821.1
Gasterosteus aculeatus	78%	1248	KT261475.1

Tabla 2. Porcentaje de similitud de la secuencia parcial obtenida que corresponde al receptor de taquinina 1 (Sustancia P) de *Chirostoma humboldtianum* con otras especies de peces.

Este tipo de oligonucleótidos diseñados generalmente se ocupan cuando se desea conseguir un gen que no ha sido reportado en organismos filogenéticamente cercanos, al emplearlos el número de opciones en las que se puede posicionar incrementa el obtener el producto esperado, en este caso, la alineación da como

resultado a una secuencia relacionada al grupo de los receptores a taquininas (Sharrocks, 1994; Innis, y Gelfand, 1994; Dieffenbach*et al.,* 1995; Cortazar y Rincon, 2004).

La secuencia obtenida de tac1r de *C. humboldtianum* coincide con las regiones que codifican a los TM del III al VI (Figura 9). Esto concuerda con lo observado con Lopez-Bedillo (2013) quien obtuvo dos genes codificantes del receptor 1 (tac1ra y tac1rb) en el pez cebra con los motivos estructurales de siete dominios transmembranales hidrofóbicos, con tres asas extracelulares, tres asas intracelulares, un amino-terminal extracelular y un extremo carboxilo terminal citoplasmático, composición conservada en el grupo de los receptores acoplados a proteínas G (Rance, 2010) (Figura 13).

Figura 13. Similitud entre tac1r de *C. humboldtianum y D. rerio* (NP_001268728.1). De negro se encuentran las regiones similares, en un recuadro gris los TM I-VII, subrayado IL 1, 2 y 3, y en doble subrayad las IL 1,2 y 3.

Tac1r está filogenéticamente relacionado con la molécula del receptor tac3r por ello se ha descrito que existe una similitud en la organización de ambos genes y que presentan cinco exones interrumpidos por intrones. Estudios filogenéticos en mamíferos señalan que los tres receptores de taquiquinina constituyen una familia de receptores homólogos que se originaron a partir de la duplicación de un gen ancestral común (Candenas *et al.,* 2001; Page, 2005).

Se observó que la composición de nucleótidos de los productos obtenidos de tac1r y tac3rb presentaba zonas de similitud (Figura 14), en relación a los aminoácidos que codifican ambas secuencias se encontró una similitud entre los que componen los TM, IL 3 y EL 2, las diferencias se encuentran entre la longitud del EL 2 y los TM (Figura 15), estos resultados forman parte de las evidencias que podrían sustentar la misma afirmación en especies de peces debido a la similitud entre la conformación de los dominios transmembranales que los componen y entre cada asas intra o extracelular, las diferencias presentes puede desempeñan un papel importante en su localización y la señalización (Patacchini y Maggi, 2001; Lopez-Bedillo, 2013).

	1	10	20	30	40	50	60	70	80	90	100
1. tac1r							AAGA	GGGA-GGTGC	G at a tgg gt	GCTGGCCCT	GATGCT
2. Tac3rb	ATAGACA	GGTATATGG	CAATCATCCAT	FCCTCTCAAG	CCTCGTCTG	TCAGCCCAAC/	ACACCATCG <mark>G</mark>	GTTATATTAT	TIC AT C TGG AG	GC CTCGC AG T	ATTCT
		110	120	130	140	150	160	170	180	190	200
	GGCCTT	CCCGCAGTA	CTACTACTCC	ACCAC-CGAG	CAGCTGCCC	GGAC <mark>G</mark> CGTGG	TCTGCTACAT	GAGTGGCCC	GAGGACGGCG	GGACCGAC	TTCAGG.
	GGCCTT	CCC CCTT T G	СТАСТТСТСС	ACCAC <mark>G</mark> CGGA	CA-CTACCG	GGCAGGACCT	TTTGTTACGT	GCCTGGCCC-	CGCATGCCT	AT <mark>GACC</mark> C-C	TTCA
		210	220	230	240	250	260	270	280	290	300
	AAGC	TACCA GG T G	TGTGTGGCGG	C <mark>CCTG</mark> AAC T A	CTTCCTGCC	C <mark>CTG</mark> CTGGTG	ATGG <mark>GTG</mark> TGG	CCTAC CTGGA	G GT G <mark>GG</mark> TC TG	CGCTGTGGG	CC <mark>AGC</mark> C
		ΤΑΤΚΑΤΑΤΟ	AGAGTAACAG	T CCTG GTG T A	TCTGCTGCC	G <mark>CTG</mark> GTGGTG	ATGGCCA <mark>t</mark> ta	CT <mark>TAC</mark> ACCAT	T gttgg ag <mark>tg</mark>	CGCTGTGGG	ga <mark>agc</mark> g
		310	320	330	340	350	360				
	AGATCO	CCCGGGGGACT	CCTCAGACCG	CTA CCGG <mark>G</mark> A(G <mark>CAGCT</mark> GATG	GCCAAGAGGA	AGGTGGTGAA	A			
	AGATCO	CCTGGAGACT	CATCTGACAA	CTATTAT <mark>G</mark> G/	A <mark>CAGCT</mark> CCGT	GCTAAGAGGA	AGGTTGTGAA	A			

Figura 14. Similitud en la composición de nucleótidos entre los productos obtenidos tac1r y tac3rbde *C. humboldtianum* aislados con el mismo par de oligonucleotidos. El color negro marca las zonas donde se tiene una mayor similitud entre ambas secuencias.

Figura 15. Similitud en la composición de aminoácidos entre los productos obtenidos tac1r y tac3rb de *C. humboldtianum*. De negro se encuentran las regiones similares, en un recuadro gris los dominios transmembranales (TM III-VI), subrayado asas intracelulares 2 y 3, y en doble subrayado la asa extracelular 2

La relación filogenética les otorgó una similitud estructural que también dio como resultado que el ligando pudiese interactuar con más de un receptor de la familia

de las taquininas siempre y cuando se presentarán en concentraciones suficientemente altas (Linden *et al.*, 2000; Pennefather *et al.*, 2004). Ello tiene importancia endocrinológica en los grupos de mamíferos y peces al registrarse que existe liberación de prolactina en células de la pituitaria de rata (*R. norvegicus*) y de carpa (*C. carpio*) cuando se da la unión de NKB con NK1R y NK2R, respectivamente en cada especie (Mau *et al.*, 1997; Hu *et al.*, 2014).

Sin embargo, la capacidad de NKB de unirse a los otros dos receptores de taquinina es una unión no covalente y con una menor afinidad, hasta el momento, no se ha comprobado quela unión de NKB con el receptor NK1R o NK2R participe en la regulación de GnRH como sucede cuando se une al receptor NK3R (Patak *et al.*, 2002; Hu *et al*, 2014).

Las secuencias encontradas en el pez *C. humboldtianum* (Figura 10) corresponden a las secuencias parciales de los genes codificantes del NK3R (tac3ra y tac3rb). Este resultado concuerda con los trabajos de Biran y colaboradores (2012) y Biran y colaboradores (2014) donde con resultados similares en la especie *D. rerio y O. niloticus* propusieron que en el linaje de los peces teleósteos existe un par de genes para formar este receptor, a diferencia de los mamíferos, donde se ha establecido que existe un único gen responsable de producirlo.

Se ha encontrado que entre las secuencias parciales encontradas de tac3ra y tac3rb para *C. humboldtianum* existe una alta similitud, existiendo solo una diferencia de 14 nucleótidos que al ser traducidos solo produce el cambio de 7 aminoácidos entre ambas secuencias reflejándose en una similitud de un 90% (Figuras 16 y 17A) La similitud resulta dependiente de la especie al comparar la similitud entre de las secuencias tac3ra y tac3rb de G. aculeatus, *O. latipes y D. rerio* en la zonas que codifican del dominio transmembranal 3 al 6 tiene una similitud de un 88%, 78% y 77% respectivamente, debido a que son zonas conservadas y de relevancia para la unión del ligando y procesos de señalización (Figura 17) (Biran *et al.*, 2012; Zhou *et al.*,2012; Biran *et al.*, 2014).

33

Figura 16. Similitud en la composición de aminoácidos entre los productos obtenidos tac3ra y tac3rb de *C. humboldtianum*.

Figura 17. Similitud de nucleótidos entre las secuencias de tac3ra y tac3rb de A) *C. humboldtianum, B*) G. aculeatus (KT261480, KT261481), C) *O. latipes (BK008087.1, BK008088) D) D. rerio. (JF3117293.1 JF3117292.1).* Los nucleótidos señalados indican las diferencias entre las secuencias que codifican del dominio transmembranal III al VI.

La presencia de los genes tac3ra y tac3rb en el pez blanco apoya la hipótesis de la historia evolutiva de los tacr's, que propone que un gen ancestral dio lugar a cuatro genes tacr después de dos rondas de duplicación (2R) (Zhou *et al.*, 2012). Una copia del gen duplicado de tacr se perdió antes de que los peces teleósteos y

los mamíferos se dividieran; sin embargo, en el linaje de peces teleósteos se produjo una duplicación adicional que dio lugar a dos tac3r. Con los conocimientos actuales, la historia de la evolución de los tac3r es en gran parte desconocida (Christoffels *et a*l., 2004; Zhou *et al.*, 2012).

Zhou y autores proponen agregar a esta hipótesis que existió una duplicación local de un gen ancentral tac3ra, basados en un análisis desintenia genómica y un análisis de árbol filogenético, afirmando la presencia de dos genes tac3ra (tac3ra1 y tac3ra2) donde esta duplicación se conservó a través de procesos de neofuncionalización o subfuntionalización en las especies *D. rerio, T. nigroviridis, T. rubripesta, Gasterosteus aculeatus y O. latipes.* Hasta el momento y con lo encontrado en *C. humboldtianum*, donde solo se obtuvo la secuencia parcial de un solo tac3ra con porcentajes de similitud de hasta el 84% con otras especies de peces (Tabla 3), no es posible realizar la inferencia de la presencia de uno o dos subtipos de tac3ra.

Especie	Porcentaje de	Longitud total	Número de acceso al
	Identidad	(pb)	GenBank
Morone saxatilis	84%	1924	KT361627.1
Tetraodon nigroviridis	80%	1239	BK008096.1
Danio rerio	74%	1269	NM_001256638.1

Tabla 3. Porcentaje de similitud de la secuencia obtenida con otras especies de peces teleósteos.

Respecto al receptor tac3rb se ha establecido, con los datos existentes, que no sufrió ninguna duplicación del genoma, puesto que solo se ha encontrado este gen en diferentes especies de peces teleósteos como son *D.rerio* (Biran*et al.*, 2012), *O. niloticus* (Biran *et al.*, 2014), *O. latipes, T. rubripes, T. nigroviridis* (Zhou *et al.*, 2014); incluyendo ahora a la secuencia parcial de dicho gen en especie *C. humboldtianum* (Figura 12) que tiene un porcentaje de similitud superior al 78% con las secuencias de estas especies. El mayor porcentaje de similitud es con las especies *Oreochromis niloticus, Oryzias latipes,* reportadas por Zhou y

colaboradores en 2012, y *G. aculeatus* no reportada en artículo pero si en banco de datos (Tabla 4).

Especie	Porcentaje de	Longitud total	Número de acceso al
	identidad	(pb)	GenBank
Gasterosteus aculeatus	82%	1014	KT261481.1
Oryzias latipes	80%	1119	NM_001278874.1
Oreochromis niloticus	78%	1086	NM_001301381.1

Tabla 4. Porcentaje de similitud de la secuencia obtenida para *Chirostoma humboldtianum* correspondiente al receptor a neuroquinina B con otras especies de peces.

Son escasos los artículos que hablen de forma específica como se presenta la síntesis del NK3R a través de la transcripción de estos dos genes en peces teleósteos. En las especies: pez cebra (Biran *et al.,* 2012)y tilapia (Biran *et al.,* 2014) se ha formulado una estructura de las regiones codificantes de dichos genes y los cuales se han tomado de base para analizar las secuencias encontradas (Biran *et al.,* 2012; Biran *et al.,* 2014).

La secuencia parcial encontrada en *C. humboldtianum* del gen tacr3a (Figura 11) está compuesta por 396 pb (132aa) que codifican parcialmente el TM 3 e inicios del 6. Mientras que la longitud total de este gen en tilapia (Biran *et al.*, 2014) y pez cebra (Biran *et al.*, 2012) aislado es de 1249 pb (415 aa) y 1273 pb (399 aa) respectivamente. Para la secuencia parcial del receptor tac3rb del pez blanco (Figura 12) fue de 357 pb y 120 aa que codifican el final de TM3 hasta inicios del TM 6, y se tiene registrada para tilapia 1087 pb (361 aa) y pez cebra 1323 pb (395 aa) (Biran *et al.*, 2012; Biran *et al.*, 2014).

Las diferencias en el número de bases de cada secuencia están determinadas principalmente por la diferencia en las longitudes de los aminos y carboxilos terminales, ya que el NK3R es el NKR con el carboxilo más extenso (Hu *et al.*, 2014; Suetomi *et al.*, 2013).

Si bien solo se lograron obtener secuencias parciales de los genes tac3ra y tac3rb estas contienen la base de la traducción de zonas de suma importancia para el funcionamiento del receptor, en general los TM y las EL están típicamente involucradas en el reconocimiento y la unión del ligando, en especial los dominios TM3, TM6 y TM7 donde se ha observado que existe una mayor conservación de las secuencias nucleotídicas entre mamíferos y peces (Biran *et al.,* 2014; Sekoni *et al.,* 2014).

Los TM además juegan un papel importante en el tráfico del receptor a la superficie celular, mientras que las IL 2 y 3 están involucradas en el acoplamiento del receptor con la proteína G y las beta arrestinas, que son esenciales para la transducción de la señal (Sekoni *et al.,* 2014). Todo esto, basándonos en la alta similitud de la estructura entre el NK3R de peces teleósteos y de humano (Gether *et al.,* 1993).

Encontramos que los aminoácidos que conforman el NK3R en las secuencias de *C. humboldianum* están conservados también en *D. rerio, O. niloticus, G. aculeatus, O latipes, T. rubripes y T. negroviridis.* La presencia de aminoácidos no polares (GAVLIFWMP) en mayor proporción en los dominios transmembranales permite la conformación estructural alfa-hélice, y la unión dentro de esta estructura con pocos aminoácidos polares (STCYNQ) y básicos (KRH) permite que se estabilice por interacciones electrostáticas e hidrófobas (Candenas *et al.,* 2001; Patacchini y Maggi, 2001) La traducción de Glutamina en el TM 7 del tac3rb es una característica que no presenta tac3ra (Figura 18)(Biran et al., 2012; Biran et al., 2014).

En las asas intra o extracelulares se pueden encontrar una mayor cantidad de aminoácidos polares>básicos>ácidos (DE), el acomodo de dichos aminoácidos les otorga a las asas extracelulares una estructura de cuatro filamentos β-hoja plegada mientras que los intracelulares no son estructurados (Figura 18) (Rance, 2010; Page, 2006; Patachinni *et al.*, 2004; Suetomi *et al.*, 2013).

Figura 18. Alineamiento de las secuencias A) tac3ra y B) tac3rb en aminoácidos indicando de *C. humboldtianum*, *D. rerio* (AEK96310.1 y AEK96311.1), *O. niloticus* (AIG21811.1 y AIG21812.1), *G. aculeatus* (ALF99927.1 y ALF99928.1), *O latipes* (DAA35139.1 yDAA35140.1), *T. rubripe s*(DAA35144.1 y DAA35145.1), *T. negroviridis* (DAA35148.1 y DAA35149.1) indicando su propiedad básica en azul, ácida en rojo, polar en verde y de color amarillo los no polares.

Al realizar la comparación entre secuencias de aminoácidos de tac3ra y tac3rb de *C. humboldtianum* con lo descrito por Biran y colaboradores en el 2012, obtuvimos los sitios de N-miristoilación, sitios de fosforilación de la tirosina cinasa, sitios de fosforilación de la proteína cinasa C y sitios de fosforilación de la proteína cinasa A dependiente de AMPc y GMPc en cada secuencia y se encuentran conservadas en las especies*D. rerio, O. niloticus, G. aculeatus, O latipes, T. rubripes y T. negroviridis* (Figura 19).

En ambos genes tac3r de *C. humboldtianum* se conserva la presencia de 4 de los 5 exones codificantes como se ha registrado en otras especies de peces como son *D.rerio y O. niloticus (*Biran *et al.,* 2012; Biran *et al.,* 2014*)*(Figura 19). Similar a lo que ocurre en ambas especies y el gen tac3r de mamífero, en los genes *de C. humboldtianum* el exón 2 es el que codifica al TM IV (Rance, 2010).

Figura 19. Similitud entre las secuencias tac3ra y tac3rb obtenidas de *C. humboldtianum* con *D. rerio* (AEK96310.1 y AEK96311.1), *O. niloticus* (AIG21811.1 y AIG21812.1), *G. aculeatus* (ALF99927.1 y ALF99928.1), *O. latipes* (DAA35139.1 yDAA35140.1), *T. rubripes* (DAA35144.1 y DAA35145.1), *T. negroviridis* (DAA35148.1 y DAA35149.1). La división con una línea indica los límites de exones, de recuadro se encuentra el TM IV, la flecha indica es el sitiofos forilación de la proteína cinasa C, el triangulo sitio de fosforilación de la tirosina cinasa, estrella sitios de N-miristoilación, y el rombo sitio de fosforilación de la proteína cinasa A dependiente de AMPc y GMPc

El encontrar tac3ra y tac3rb en el cerebro de organismos maduros, concuerda con los registros en pez cebra, en carpa y en tilapia, donde se observó que la

expresión de ambos genes se da principalmente en regiones del telencéfalo, hipotálamo, techo óptico, cerebro posterior, médula y por supuesto, la hipófisis (Zhou *et al.,* 2012; Biran *et al.,* 2012; Biran *et al.,* 2014; Hu *et al.,* 2014).

La expresión de los dos genes es heterogénea para cada especie, por ejemplo, entre el pez cebra(Biran *et al.*, 2012) y la tilapia (Biran *et al.*, 2014), en el primero tac3ra es mayormente expresado en hipófisis y tac3rb en cerebro posterior, mientras que en el segundo tac3ra se expresaba en mayor nivel en el techo óptico y tac3rb en el hipotálamo (Biran *et al.*, 2012; Biran *et al.*, 2014).

Si bien se ha demostrado que el receptor que codifican ambos genes tiene una relevancia como regulador crítico del desarrollo reproductivo normal, debido a que se ha encontrado evidencias sobre la activación del receptor por medio del ingreso de ligandos análogos administrados al organismo junto con marcadores y el aumento de la síntesis de LH en pez cebra o en tilapia, en el caso de la carpa y otros ciprínidos se conoce que no ocurre de esta manera sino que activa otras vías que ayudan a la liberación de serotonina y prolactina (Hu *et al.,* 2014). En ambos, teniendo un papel endocrinológico relevante (Zhou *et al.,* 2012; Biran *et al.,* 2014; Hu *et al.,* 2014; Satake y Kawada, 2006).

El registro de estos genes en la familia Atherinopsidae ocurre por primera ocasión en el organismo *C. humboldtianum*, de acuerdo a las secuencias registradas en el GenBank (NCBI) (Tabla 5).

Familia	Especies	Número de Acceso al Genbank.
Cyprinidae	Danio rerio	NM_001256638.1 JF317293.1
	Sinocyclocheilus anshuiensis	XM_016455148.1
Tetraodontidae	Tetraodon nigroviridis	BK008096.1
		BK008097.1
	Takifugu rubripes_	BK008092.1
		NM_001280112.1
Adrianichthyidae	Oryzias latipes	BK00808 NM_001278874.1

Tabla 5. Relación de secuencias registradas en el banco de datos de NCBI por ordenados por familias, especies y número de acceso.

		7.1
Cichlidae	Oreochromis niloticus	NM_001301378.1
		KF471675.1
Gasterosteidae	Gasterosteus aculeatus	KT261480.1
Nothobranchiidae	Nothobranchius furzeri	XM_015943658.1
Characidae	Astyanax mexicanus	XM_007235686.2

Dado que los peces son el conjunto de vertebrados más amplio y evolutivamente más divergente, el conocer la presencia de los genes que codifican a este receptor en el modelo *Chirostoma humboldtianum*, ayudará a comprender de mejor manera su papel evolutivo y las funciones en el que se ve involucrado.

CONCLUSIONES

Se aisló una secuencia parcial del receptor a neuroquinina Ba (tac3ra) en el encéfalo de *C. humboldtianum* de 396pb que corresponde a los dominios transmembranales III al VI, junto con las asas intracelulares 2 y 3 y la asa extracelular 2

Se aisló una secuencia parcial del receptor a neuroquinina Bb (tac3rb) el encéfalo de *C. humboldtianum* con una longitud de 375pb, que codifica al final del dominio transmembranal III hasta inicios del dominio transmembranal VI incluyendo las asas intracelulares 2 y 3 y extracelular 2.

Por primera vez; se aislaron, secuenciaron y clonaron secuencias parciales de los genes codificantes al receptor neuroquinina B (tac3ra y Tac3rb) a la familia Atherinidae y la especie *C. humboldtianum*.

Referencias

- Barriga-Sosa L., De León F., Del Río-Portilla M, The complete mitochondrial DNA of the endemics shortfin silverside, *Chirostoma humboldtianum* (Valenciennes, 1835)*Mitocondrial DNA A DNA MappSeq Anal.,* 27(2):1545-1546
- Biran, J., Palevitch, O., Ben-Dor, S., &Levavi-Sivan, B. (2012). Neurokinin Bs and neurokinin B receptors in zebrafish-potential role in controlling fish reproduction. *Proceedings Of The National Academy Of Sciences*, *109*(26), 10269-10274. http://dx.doi.org/10.1073/pnas.1119165109
- Biran, J., Golan, M., Mizrahi, N., Ogawa, S., Parhar, I., &Levavi-Sivan, B. (2014). Direct Regulation of Gonadotropin Release by Neurokinin B in Tilapia (Oreochromis niloticus). *Endocrinology*, *155*(12), 4831-4842. http://dx.doi.org/10.1210/en.2013-2114
- Blancas-Arroyo G. 2007. Desarrollo ovárico y su relación con los niveles hormonales circulantes de 17- Estradiol y 17-hidrociprogesterona durante el primer ciclo reproductivo en hembras de pez blanco *Chirostoma humboldtianum* (Valenciennes 1835). *Tesis de Doctorado*. Universidad Autónoma Metropolitana.
- Blancas-Arroyo G, Frías-Sevilla R.,Rosa-Pimentel E., Suárez-Navarro V., Castro-Gómez J. y Magaña-Morales J. (2014). Efecto de la salinidad en la sobrevivencia de peces silvestres del género Chirostoma durante el transporte y mantenimiento en laboratorio. *Hidrobiológica*, 24 (3): 223-230
- Candenas, M.L., Magraner, J., Armesto, C.P., Anselmi, E., Nieto, P.M., Martin, J.D., Advenier, C., Pinto, F.M., (2001). Changes in the expression of tachykinin receptors in the rat uterus during the course of pregnancy. *Biology of Reproduction* 65 (2), 538–543.
- Cárdenas, R., Chávez, M., González, J., Aley, P., Espinoza, J., & Jiménez García, L. (2007). Oocyte structure and ultrastructure in the Mexican silverside fish *Chirostoma humboldtianum* (Atheriniforme: Atherinopsidae). *RBT*, *56*(3). <u>http://dx.doi.org/10.15517/rbt.v56i3.5715</u>

- Chávez M. (2009) Distribución de la hormona liberadora de Gonadotropinas de salmón (sGnRH) en el cerebro anterior de *Chirostoma humboldtianum*. Tesis de maestria. Universidad Nacional Autónoma de México,
- Chávez, M., Cárdenas, R. (2012). El Polipéptido activador de la adenilatociclasa de la pituitaria (PACAP) en *Chirostoma humboldtianum* INVESTIGACIÓN ICTIOLÓGICA EN MÉXICO. TEMAS SELECTOS EN HONOR AL DR. JOSÉ LUIS CASTRO AGUIRRE. UNAM- SIMAC, cap. 1 pp 3-11. ISBN 978-607-02-3628-0.
- Chomczynski, P.ySacchi, N. (1987). Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. *Anal Biochem*. 162(1):156-9.
- 11.Commons, K. (2010) Neuronal pathways linking substance P to drug addiction and stress. *Brain Research* 1314 175–182. (doi:10.1016/ j.brainres.2009.11.014)
- Cortazar A. y S. Rincon, 2004. Métodos físico-químicos en biotecnología. Instituto de Biotecnología. UNAM. México.
- Christoffels, A., Koh, E.G., Chia, J.M., Brenner, S., Aparicio, S., Venkatesh, B., (2004). Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. *Mol. Biol. Evol.* 21, 1146–1151.
- 14. Dieffenbach C., T. Lowe, y G. Dveksler 1995. General Concepts for PCR Primer Design. *Cold Spring Harbor Laboratory Press*, New York, pp. 133– 155.
- Duarte, C., Schütz, B., & Zimmer, A. (2006). Incongruent pattern of neurokinin B expression in rat and mouse brains. *CellTissue Res*, 323(1), 43-51. <u>http://dx.doi.org/10.1007/s00441-005-0027-x</u>
- 16.Fernández E., Navarrete A., Rodríguez J. (2008). Alimentación de *Chirostoma humboldtianum* en el estanque JC en Soyaniquilpan, Estado de México. Revista *Chapingo Serie Ciencias Forestales y del Ambiente* 14(2): 129-134, 2008.

- 17.Gadd C., Murtra P., De Felipe C. y Hunt S. (2003) Neurokinin-1 receptorexpressingneurons in the amygdala modulate morphine reward andanxiety behaviors in the mouse. *Journal of Neuroscience*23 8271–8280.
- 18.Gether, U., Johansen, T.E., Schwartz, T. *Biology Chemical.*,1993, 268, 7893.
- 19. González, A. 2010. Distribución del polipéptido activador de la adenilatociclasa de la pituitaria (PACAP) en gónadas de *Chirostoma humboldtianum*. *Tesis de Licenciatura* Universidad Nacional Autónoma de México.
- 20. Gopurappilly, R., Ogawa, S., & Parhar, I. (2013). Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction. *Frontiers In Endocrinology*, *4*.

http://dx.doi.org/10.3389/fendo.2013.00024

- 21.Goodman, R., Lehman, M., Smith, J., Coolen, L., de Oliveira, C., &Jafarzadehshirazi, M. et al. (2007). Kisspeptin Neurons in the Arcuate Nucleus of the Ewe Express Both Dynorphin A and Neurokinin B.*Endocrinology*, *148*(12), 5752-5760. http://dx.doi.org/10.1210/en.2007-0961
- 22. Hernández M. (2006) La pesquería en el lago de Pátzcuaro. In: Arreguín S.F., Beléndez M.L., Gómez- Humaran M.I., Solana S.R. and Rangel D.C. (eds.), Sustentabilidad y pesca responsable en México. Evaluación y manejo. Instituto Nacional de la Pesca. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México, D. F. 391-422.
- 23.Hu, G., He, M., Ko, W., Lin, C., & Wong, A. (2014). Novel Pituitary Actions of TAC3 Gene Products in Fish Model: Receptor Specificity and Signal Transduction for Prolactin and Somatolactin α Regulation by Neurokinin B (NKB) and NKB-Related Peptide in Carp Pituitary Cells. *Endocrinology*, *155*(9), 3582-3596. <u>http://dx.doi.org/10.1210/en.2014-1105</u>
- 24. Innis, M. y D. Gelfand, 1994. Optimization of PCRs. PCR Protocols: a Guide to Methods and Applications. *CRC Press*, Londres. pp. 5–11.

- 25.Lasaga M. y Debeljuk L. (2011). Tachykinins and the hypothalamo– pituitary–gonadal axis: An update. *Peptides*, 32(9), 1972-1978. <u>http://dx.doi.org/10.1016/j.peptides.2011.07.009</u>
- 26.Linden, D.R., Chell, M.J., El-Fakahany, E.E., Seybold, V.S., (2000). NK3 receptors coupleto the activation of neuronal nitric-oxide synthase in stably transfected Chinesehamster ovary cells. *Journal of Pharmacology and Experimental Therapeutics*293, 559–568.
- 27.Lopez-Bellido, R., Barreto-Valer, K., &Rodriguez, R. (2013). Expression of tachykinin receptors (tacr1a and tacr1b) in zebrafish: influence of cocaine and opioid receptors. *Journal Of Molecular Endocrinology*, *50*(2), 115-129. http://dx.doi.org/10.1530/jme-12-0199
- 28. Macedo B., 2012. Aislamiento, secuenciación y clonación de pjGnRH en el charal (*Chirostoma humboldtíanum*). Tesis de Maestría. Universidad Nacional Autónoma de México
- Martínez C., Racotta I., Ríos-Durán M., Palacios E., Toledo-Cuevas y Ross
 L. (2006) Advances in applied research for the cultura of Mexican silversides (Chirostoma, Atherinopsidae). *Biocell.* Vol 30(1): 137-148
- 30. Martínez-Palacios C.., Ríos-Durán M, Campos- Mendoza A., Toledo-Cuevas M. y Ross L. 2002 Avances en el cultivo del pescado blanco de Pátzcuaro *Chirostoma estor estor*. En: Cruz-Suárez L., Ricque-Marie D., Tapia-Salazar M., Gaxiola-Cortés M. y Simoes N.(Eds.). Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 to 6 September. Cancún,Quintana Roo, México.
- 31.Mau, S., Witt, M., Saermark, T., Vilhardt, H., (1997). Substance P increasesintracellular Ca2+ in individual ratpituitarylactotrophs, somatotrophs, andgonadotrophs. *Molecular CellEndocrinology*. 126, 193– 201.
- 32. Mi, X., Yu, H., Jia, P., Zhang, Z., Zhang, L., & Liu, J. (2010). Two tachykininlike peptides from skin secretions of *Danio rerio*. *Journal Of PeptideScience*, *16*(2), 81-84. http://dx.doi.org/10.1002/psc.1194

- 33. Muñoz M. (2011). Biotecnología aplicada en la reproducción de peces. Informador Técnico. 75 (12):66-72
- 34. Muñoz-Osnaya, G. (2016). Aislamiento y secuenciación de receptores a estrógeno en encéfalo de *Chirostoma humboldtianum* (Atheriniformes: ATHERINOPSIDAE). Tesis de licenciatura. Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, Estado de México,México.
- 35.Navarro, V. (2012). New Insights into the Control of Pulsatile GnRH Release: The Role of Kiss1/Neurokinin B Neurons. *Frontiers In Endocrinology*, 3. http://dx.doi.org/10.3389/fendo.2012.00048
- Navarro, V. (2013). Interactions Between Kisspeptins and Neurokinin
 B. Advances. Experimental Medicine And Biology, 325-347. http://dx.doi.org/10.1007/978-1-4614-6199-9_15
- 37.Ogawa, S. y Parhar, I. (2014). Structural and Functional Divergence of Gonadotropin-Inhibitory Hormone from Jawless Fish to Mammals. *Frontiers In Endocrinology*, 5. <u>http://dx.doi.org/10.3389/fendo.2014.00177</u>
- 38.Page, N. (2005). New challenges in the study of the mammalian tachykinins. *Peptides*, *26*(8),1356-1368. http://dx.doi.org/10.1016/j.peptides.2005.03.030

 $P_{\text{Page}} = N_{\text{Page}} (2006)$ Characterization of the gene structure of the gene s

- 39.Page, N. (2006). Characterization of the gene structures, precursor processing and pharmacology of the endokinin peptides. *Vascular Pharmacology*, 45(4), 200-208. <u>http://dx.doi.org/10.1016/j.vph.2005.08.028</u>
- 40. Page, N., Morrish, D., & Weston-Bell, N. (2009). Differential mRNA splicing and precursor processing of neurokinin B in neuroendocrine tissues. *Peptides*, *30*(8),1508-1513.

http://dx.doi.org/10.1016/j.peptides.2009.04.023

41. Patacchini, R., Lecci, A., Holzer, P., &Maggi, C. (2004). Newly discovered tachykinins raise new questions about their peripheral roles and the tachykinin nomenclature. *Trends In Pharmacological Sciences*,25(1), 1-3. <u>http://dx.doi.org/10.1016/j.tips.2003.11.005</u>

- 42. Patacchini, R., Maggi, C., (2001). Tachykinin receptors and receptor subtypes. Archives internationales de pharmacodynamie et de thérapie Journal 329 (1), 161–184.
- 43. Patak, E., Pennefather, J.N., Fleming, A., Story, M.E., (2002). Functional characterization of tachykinin NK1 receptors in themouse uterus. *British Journal of Pharmacology* 137 (8), 1247–1254.
- 44. Pennefather, J., A.Lecci, M. Candenas, E.Patak, F. Pinto, C. Maggi. (2004). Tachykinins and tachykinin receptors: a growing family. *Life Sciences*. 74 (2004): 1445–1463.
- 45. Paulo-Maya J., Figueroa L. y Soria-Barreto M. (2000) Peces dulceacuícolas mexicanos XIX *Chirostoma humboldtianum* Atheriniformes: Atherinopsidae). ENCBIPN, *Zoología Informa*, 43: 59-74.
- 46. Pennefather, J., Lecci, A., Candenas, M., Patak, E., Pinto, F., & Maggi, C. (2004). Tachykinins and tachykinin receptors: a growing family. *LifeSciences*, *74*(12),1445-1463. http://dx.doi.org/10.1016/j.lfs.2003.09.039
- 47. Rance N., S. Krajewski, M. Smith, M. Cholanian y P. Dacks. (2010).
 Neurokinin B and the hypothalamic regulation of reproduction. *Brain Research*, *1364*, 116-128. http://dx.doi.org/10.1016/j.brainres.2010.08.059
- 48. Rojas P. y L. Sasso. (2005). El pescado Blanco. *Revista Digital Universitaria.* 6(8):1067-6079
- 49. Sánchez, P. S. 1992. Biología Reproductiva del Charal Blanco Chirostoma grandocule(STEINDACHNER, 1894 Pisces: ATHERINIDAE), del lago de Pátzcuaro, Mich. México.Tesis de Licenciatura. Universidad Michoacana de San Nicolás de Hidalgo, Michoacán México. 62 p.
- 50. Sanchez-Merino R., Díaz-Zaragoza M., Navarrete-Salgado A., García-Martínez M., Ayala-Niño F. ,Flores-Aguilar (2007) Crecimiento, mortalidad y sobrevivencia del charal *Chirostoma humboldtianum* (Atherinopsidae) En el embalse San Miguel Arco soyaniquilpan, estado de México, *Revista chapingo*, 12(2): 151-154

- 51.Satake, H., Kawada, T., (2006). Overview of the primary structure, tissuedistribution, and functions of tachykinins and their receptors. *CurrentDrug Targets*7, 963–974.
- 52. Satake, H., Kawada, T., Nomoto, K., &Minakata, H. (2003). Insight into Tachykinin-Related Peptides, Their Receptors, and Invertebrate Tachykinins: A review. *ZoologicalScience*, 20(5), 533-549. <u>http://dx.doi.org/10.2108/zsj.20.533</u>
- 53. Satoshi O., Ramadasan, P., Goschorska, M., Anantharajah, A., We Ng, K., & Parhar, I. (2012). Cloning and expression of tachykinins and their association with kisspeptins in the brains of zebrafish. *The Journal Of Comparative Neurology*, *520*(13), 2991-3012. http://dx.doi.org/10.1002/cne.23103
- 54. Sekoni D. Abreu A. Shuyun X, Titilayo M., Gianetti E., Tusset, T., Carroll J., Latronico A., Seminara S., Carroll R. y Kaiser U. (2014) TACR3 mutations disrupt NK3R function through istinct mechanisms in GnRH-deficient patients. *TheFASEB Journal*. 28(4): 1924–1937.
- 55. Sharrocks, A., (1994). The design of primers for PCR, PCR Technology: Current Innovations. *CRC Press*, London: pp. 5–11
- 56. Suetomi Y., Matsuda F., Uenoyama Y, Maeda K., Tsukamura H., y Ohkura S. (2013). Molecular Cloning and Identification of the Transcriptional Regulatory Domain of the Goat Neurokinin B Gene TAC3. *Journal Of Reproduction And Development*, *59*(5), 463-469. http://dx.doi.org/10.1262/jrd.2013-037
- 57. Topaloglu, A., Reimann, F., Guclu, M., Yalin, A., Kotan, L., &Porter, K. et al. (2009). TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. *Nature Genetics*, *41*(3), 354-358. http://dx.doi.org/10.1038/ng.306
- 58. Toribio L. 2010. Distribución de la isoforma de salmón de GnRH (sGnRH) en gónadas de *Chirostoma humboldtianum*. Tesis de Licenciatura. Universidad Nacional Autónoma de México.

- 59. Young, J., George, J., Tello, J., Francou, B., Bouligand, J., &Guiochon-Mantel, A. et al. (2013). Kisspeptin Restores Pulsatile LH Secretion in Patients with Neurokinin B Signaling Deficiencies: Physiological, Pathophysiological and Therapeutic Implications. *Neuroendocrinology*, *97*(2), 193-202. http://dx.doi.org/10.1159/000336376
- 60. Zhou, W., Li, S., Liu, Y., Qi, X., Chen, H., & Cheng, C. et al. (2012). The evolution of tachykinin/tachykinin receptor (TAC/TACR) in vertebrates and molecular identification of the TAC3/TACR3 system in zebrafish (*Danio rerio*). *Molecular And Cellular Endocrinology*, 361(1-2), 202-212. http://dx.doi.org/10.1016/j.mce.2012.04.007

Anexos

1. Diseño de oligonucleótidos de tac3ra realizado una secuencia consenso alineando las secuencias de tac3ra de Oreochromis niloticus (NM_001301378), Takifugu rubripes (NM_001280097), Oryzias latipes (NM_001278910), Danio rerio (NM_001256638), Poecilia mexicana (XM_015005556.1) y Astyanax mexicanus (XM_007235686.2). Oligonucleotidos tachados

			*	440)	*	46	50	*	48	30	*		
NM 0012566 NM 0012789 NM_0012800 NM 0013013 XM 0072356 XM 0150055	:::::::::::::::::::::::::::::::::::::::	GGCGTT GGCGTT GGCCTTT GGCCTT GGCCTT GGCCTT GGCGTT	TCGGA TCGGA TCGGA TCGGA TCGGA TCGGA	GCCTCCZ GCGTCCZ GCCTCCZ GCGTCAZ GCGTCCZ GCGTCCZ GCGTCCZ	ATGGCCG ATGGCTG ATGGCCG ATGGCCG ATGGCCG ATGGCCG	GCTTCZ GGTTCZ GGTTCZ GCTTTCZ GCTTTZ GCTTTZZ GCGTTCZ	AACACTTT AACACTCT AACACTTT AATACTTC AACACGCTTT AACACGCTTT AACACCTTt	GATCAA GATCAA CAATAAA GGTGAA GATAAA GATAAA	TTCATC TTCATC TTCATC TTTATC TTCGTG TTCGTG CTTCATC	TACGCCA TACGCCC TACGCCC TACGCCC TACGCCA TACGCCCA TACGCCC	ACACAC GCGCAC GCTCAC GCTCAC ACGCAC GTC <u>CA</u> T GCTCAC	GGAGAT GGGGAG GGGGAG GGGGAC GGAGAC CGGGGAG	: : : : : : : : : : : : : : : : : : : :	300 270 270 270 485 270
NM 0012566 NM 0012789 NM_0012800 NM 0013013 XM 0072356 XM 0150055	: : : : :	TGGTAT TGGTAC TGGTAC TGGTAC TGGTAC TGGTAC	500 TTGGAG TTGGCA TTCGGCA TTCGGAG TTCGGAG	AAGCCTZ AGGCTTZ AAGCCTZ AAGCCTZ AGGCGTZ AAGCCTZ AAGCCTZ	ACTG <mark>C</mark> AA ACTGCAA ACTGTAA ACTGCAA ACTGCAA ACTGTAA ACTGTAA	520 ATTCZ ATTCCZ ATTCCZ ATTCCZ GTTCCZ ATTCCZ	ACAACTTT ACAACTTC ACAACTTT ACAATTTC ACAACTTC AAAACTTC ACAACTTC	* TTCCCC TTCCCC TTCCCC TTCCCC TTCCCC TTCCCA	540 GTCACCT GTCACAT GTCACGT GTCACCT GTCACCT GTCACAT	CCGTGT CTGTGT CTGTGT CTGTGT CCGTGT CCGTGT CTGTGT	* TTGCAA TTGCAA TTGCAA TCGCCA TCGCAA TTGCAA	560 AGCATTT AGCATCT AGCATCT AGCATCT AGCATCT AGCATCT AGCATCT	: : : : : : : : : : : : : : : : : : : :	370 340 340 340 555 340
NM 0012566 NM 0012789 NM_0012800 NM 0013013 XM 0072356 XM 0150055	: : : : : : : : : : : : : : : : : : : :	ACTCCAT ACTCGAT ACTCCAT ACTCAAT ACTCCAT ACTCCAT	* IGACTGC IGACTGC IGACGGC IGACTGC IGACTGC IGACTGC	580 AATCGCA GATAGCA CATCGCO AATAGCO TATAGCO AATAGCO AATAGCO) AGTCGAC CGTCGAC CGTCGAC CGTCGAC CGTCGAC CGTCGAC	* AGGTAC AGATAC AGGTAC AGGTAC AGGTAC AGATAC	60 CATGGC A CATGGC A CATGGC A CATGGC A CATGGC A CATGGC A CATGGC A) 0 ATCATC ATCATC ATCATCC ATCATCC ATAATTC ATCATCC ATCATCC	* ATCCTCT ACCCTCT ATCCGCT ATCCTCT ACCCGCT ACCCACT ACCCTCT	62 CAAACCC CAACCCC CAACCCC TAACCCC CAACCCC GAACCCC GAAGCCC	20 ACGACT CCCCT CCACT CCACT CCCTCT CCCTCT	* GTCGGC GTCAGC GTCAGC GTCGGC CTCAGC GTCAGC	: : : : : : : : : : : : : : : : : : : :	440 410 410 410 625 410

			*	860	*	880	*	900	*	
NM 0012566	:	TATCAAC	TACAC <mark>T</mark> AT	T <mark>GT</mark> C <mark>GG</mark> ATT	GACCCTTTG	GGG <mark>AGG</mark> AGAGAT	TCCTGGTGA	CTC <mark>CTC</mark> AGACA	ACTAT :	711
NM 0012789	:	CATCACC	TACAC <mark>C</mark> AT	T <mark>GTGGGGT</mark> T	G <mark>AC</mark> GCTGTGC	GGG <mark>AG</mark> G <mark>T</mark> GAGAT	TCC <mark>AGG</mark> TGA	CACTTCTGATA	ACTAT :	681
NM 0012800	:	CATCACG	TACAC <mark>C</mark> AT	C <mark>GTGGG</mark> AAT	G <mark>AC</mark> GCTCTGC	GGG <mark>AG</mark> GGGAGAT	TCCTGGAGA	CTC <mark>CTC</mark> CGACA	ACTAT :	681
NM_0013013	:	CATTACT	TACAC <mark>C</mark> AT	A <mark>GTGGG</mark> GCT	GACACTGTG	GGG <mark>TGG</mark> TGAGAT	CCCTGGAGA	TTC <mark>GTC</mark> TGATA	ACTAT :	690
XM 0072356	:	GATTACC	TACAC <mark>T</mark> AT	A <mark>GTGGG</mark> GG	AAC <mark>G</mark> CTATGO	GGG <mark>AG</mark> GGGAGAT	CCCTGGAGA	CTC <mark>GTC</mark> GGATA	ATTAC :	896
XM 0150055	:	CATCACT	TACAC <mark>C</mark> AT	CGTGGGGGT	GACACTGTG	GGG <mark>TA</mark> GTGAGAT	TCCTGGAGA	CTC <mark>ATC</mark> TGACA	ATTAT :	681

	ç	920	*	940	*	960	*	980	
NM 0012566 NM 0012789 NM 0012800 NM 0013013 XM 0072356 XM 0150055	CAGGGCCA CACGGGCA CATGGACA CATGGACA CACGGTCA CATGGACA CATGGACA	AGCT CAGGO AGCT CAGGO AGCT CAGAGO AGCT CGGGO AGCT GCGTGO AGCT CAAAGO AGCT CCGGGO	CCAAGAGGA CTAAAAGGA CTAAAAGGA CTAAAAGGA CAAAGAGGA CTAAAAGGA CTAAAAGGA	\AGGT <mark>GGTGAZ \AGGTTGTGAZ \AGGTCGTGAZ \AGGTGGTTAZ \AGGTGGTGAZ \AGGT<mark>GGTAAZ</mark></mark>	AATGATGAT AATGATGAT GATGATGAT GATGATGAT GATGATGAT GATGATGAT GATGATGATC	ATTGTAGTGG ATTGTAGTGG GTTGTAGTGG GTTGTAGTGG ATCGTGGTCG ATTGTGGTGG aTtGTAGTGG	TGACCTTTG TGACCTTTG TGACGTTTG TGACGTTTG TGACCTTTG TGACCTTTG TGACCTTTG	CCTTCT CCCTCT CCCTCT CCCTCT CCCTCT CCCTCT FCCCTCT	: 781 : 751 : 751 : 760 : 966 : 751
NM 0012566 NM 0012789 NM 0012800 NM 0013013 XM 0072356 XM 0150055	GOTGGOTG GOTGGOTG GTTGGOTG GOTGGOTG GOTGGTTG GOTGGTTG	* SCCGTACCA SCCCTATCA SCCATACCA SCCGTACCA SCCGTACCA SCCGTACCA	1000 IGTGTATTT CATCTACTI CGTTTACTI CGTGTACTI ICTCTACTI CGTCTACTI	* ICCTGGTGACO ICATTGTGACO ICATCGTGACO ICATTCCAACO ICCTGATTACO ICATTGTGACO ICATTGTGACO	1020 GGATTGAACA GGCATCAACA GGCCTCAGCA GGTCTCAACA GGCCTGAACA GGCCTGAACA CGGCCTCGATA	* AGCAGCTGGC AGCAGCTCAG AGCAGCTCAG AGCAGCTGGT AACGCCTGAT AGCAGCTGAT AGCAGCTGAG	1040 TCGATCGAA CAAGTCGAA CAAGCAGAA GAAGACGAA GAAGACGAA CaaGTCGAA	* GTTCAT GTACAT GTACAT GTCCAT GTCCAT GTACAT	: 851 : 821 : 821 : 830 : 1036 : 821
NM 0012566 NM 0012789 NM 0012800	1 (TCAGCAGA CCAGCAGC CCAGCAGC) 60 ATCTATCTG TTTACCTG TGTACCTG	* ICCATCATC ICGGTGATG ICTGTGCTG	1080 GTGGCTTGCCZ GTGGCTGGCAZ GTGGCTGGCGZ	* ATGAGOTCCAC ATGAGOTCCAC ATGAGOTCCAC	1100 CATGTATAAC CATGTACAAC CATGTACAAC	* CCCATTATI CCCATCATC CCCATCATC	1120 TACTGC TACTGC TACTGC	: 921 : 891 : 891

			ΤŪ	60	*	T080	*	TT00	-	* 1120		
NM 00	12566	:	TCAGCAGA	TCTATCT	GTCCATC	A <mark>TGTGGCT</mark> T	GCCCATGAGC	TCCACCATGT	ATAACCCCA	T <mark>AT</mark> TACTGC	:	921
NM 00	12789	:	CCAGCAGG	TTTACCT	GTCGGTG	A <mark>TGTGGCT</mark> G	GC <mark>A</mark> ATGAGC	TCCACCATGT	ACAACCCCA	I <mark>C</mark> ATCTACTGC	:	891
NM 00	12800	:	CCAGCAGG	T <mark>G</mark> TACCT	GTCTGTG	C <mark>TGTGGCT</mark> G	GC <mark>G</mark> ATGAGC	TCCACCATGT	ACAACCCCA	I <mark>C</mark> ATCTACTGC	:	891
NM_00	13013	:	CCAGCAG	TTTACCI	GT <mark>CGA</mark> TC	A <mark>TGTGGCT</mark> T	'GC <mark>A</mark> ATGAGT	TCCACCATGT	ACAACCCTA	I <mark>C</mark> ATCTACTGC	:	900
XM 00	72356	:	CCAGCAGG	TCTACT	CGCGGTC	A <mark>TGTGGCT</mark> C	GC <mark>C</mark> ATGAGC	TCCACCATGT	ACAACCCCA	I <mark>C</mark> ATCTACTGC	:	1106
XM 01	50055	:	CCAGCAGG	TTTACCI	GTC <mark>AGT</mark> G	C <mark>TGTGGCT</mark> G	GCC <mark>AT</mark> GAGC	TCCACCATGT	ATAATCCTG	T <mark>ATCTACTGC</mark>	:	891
_			CCAGCAGg	TTTAcCI	gtCGGTC	ATGTGGCTG	GCCATGAGC	TCCACCATGT	ACAAcCCCa	FCATCTACTGC		
				*	1140	*	1160	*	1180) *		
NM 00	12566	:	TGCCTAAA	CAGCCGG	GTTTCG <mark>CG</mark>	С <mark>Т</mark> GGCTTCA	ACGTGTTT	T <mark>C</mark> CG <mark>C</mark> TGGTG	CCCTTTTGT	GCAAGTCTCTG	:	991
NM 00	12789	:	TGCCTCAA	CAGCAGG	GT TTCG <mark>AG</mark>	C <mark>a</mark> ggcttca	AGCGGGCGT	T <mark>C</mark> CG <mark>C</mark> TGGTG	CCCGTTCAT	CAAGGTGTCAA	:	961
_												

NM	0012800	:	TGCCTCAACAGCAGGTTTCCAGCGGGCTTCAAGCGTGCGT	:	961
NM	0013013	:	TGCCTCAACAGCAGGTTTCGAGCAGGCTTCAAGCAAGCATTTCGTTGGTGCCCTTTCATTAAGGTGTCCA	:	970
XМ	0072356	:	TGCCTCAACAGCAGGTA	:	1123
XМ	0150055	:	TGCCTCAACAGCAGGTTTCGAACCGGCTTCAAGAGGGCATTTCGCTGGTGCCCCCTTCATCAAGGCATCCA	:	961
			${\tt TGCCTcAACAGCaGGTttcgAGcAggcttcaaGCGGgCGttCcgCtggtgCccGttCAtCAaGgTGtcCA}$		

2. Diseño de oligonucleótidos de tac3rb obteniendo una secuencia consenso alineando las secuencias de tac3r de Danio rerio (JF317293.1), Oryzias latipes (NM_001278874.1), Tetraodon nigroviridis(BK008097.1), Takifugu rubripes (NM_001280112.1), Oreochromis niloticus (KF471675.1), Astyanax mexicanus (XM_007235686.2) y Poecilia mexicana (XM_015005556.1). Los oligonucleótidos se encuentran tachados

AT

TGGAG

CATG<mark>G</mark>GA<mark>GT</mark>

XM 0150055 : AAAGGTCAC

57

479

CC

ΤG

ΤΤ

TGGC

GT

TGGC

		*	720	*	740	*	760	*	
KF471675.1 NM_0012788 JF317293.1 BK008097.1 NM_0012801 XM_0072356 XM_0150055	CTICTCCA CTICTCCA CTICTCCA CTICTCCA ITICTCCA CTICTCCA ITICTCCA CTICTCCA	ACCATCCG ACCACCGG ACCACCGG ACCACCCG ACCACCCG ACCATCAG ACCACTCG ACCACCCG	AACTCTGC CACATTAC AACCATGC AGTGATGC AGTTCTGC AAAATTAC AGCTCAAC aACTCtGC	CCCAAAGGAC CCAGCCGGAC CTCGCAGAAC CCCGCAGGAC ACCGCAGGAC CCAAGAGGAC CCCACAGAAC	CGTCTGCTAC CTTCTGCTAT CATTTGCTAC CCTCTGCTAC CATCTGCTAC TCTGTGCTAC CATCTGCTAT CATCTGCTAC	GTGGCCTGGCC GTGGCATGGCC GTGGCCTGGCC GTGGCCTGGCC	CCGCATGGC CCGGATGGC AAGACCGGC CCGCATGTC CCGCATGTC CAGATCCAG TCGCATGGA CCGCAGGGC	IGAAGAC : AGACGAC : IGAGGAT : CGACGAC : IGACGAC : CGAGGAC : AGATGAC : IGACGAC	531 549 549 516 540 764 549
KF471675.1 NM_0012788 JF317293.1 BK008097.1 NM_0012801 XM_0072356 XM_0150055	ICCTTCA CCCTTTA ICATTCA CCGTTCA CCGTTCA ICCTTCA CCCTTTA CCCTTCA	780 GTAICAC GTAICAC GTAICAC GTAICAC GTACAT GTACAT GTAICAT	* ATCATAGI ATCATAGI ATCATAGI ATCATAGI ATCATAGI ATCATAGI ATCATAGI	800 TACAGTTCTG GACGGTGCTG GACGGTACTG GACAATACTG GACTGCACTG GACTGTGCTA GACAGTACTG	* GTCTATGTGT GTCTACATGC GTCTACATGC GTTTACGTGT GTGTACATGC CTGTACATGC GTGTACGTGC gTCTACGTGC	820 TGCCCTTAGTG TGCCCTTAGCA TGCCCCTAGTG TGCCCTTACTG TGCCCCTGGTG TGCCCCTGGTG TGCCCCTTGGTG	* GTGATGGGCZ GTGATGGGCZ GTCATGGCCZ GTGATGGCCZ GTGATGGGGZ GTGATGGGCZ GTGATGGGCZ	840 ATCACCT : ATCACAT : ATCACCT : GTCACCT : ATCACTT : ATCACTT : ATCACTT : ATCACTT :	601 619 586 610 834 619
* KF471675.1 NM_0012788 JF317293.1 BK008097.1 NM_0012801 XM_0072356 XM_0150055	860 ATACCAT ACACCGT ACACTAT ACACCAT ACACCAT ACACTAT ACACCAT	IGTGGGGG IGTTGGGG AGTCGGGCT IGTGGGCT CGTGGGCC AGTGGGGG CGTGGGGGG	* TGACACTA TGTCGCTG TTACACTI TTACCCTG TGACCCTG TAACGCTA TGACACTG	880 TGGGGAAGGTG TGGGGAAGCA TGGGGAAGGAG TGGGGAAGGG TGGGGAAGGG TGGGGTAGTG	* AGATCCCTGG AGATTCCTGG AGATCCCCGG GGATCCCCGG AGATCCCTGG AGATCCCTGG	900 AGATTCATCTG AGACTCATCTG AGACTCGTCGG AGACTCAGCCG AGACTCAGCCG AGACTCGTCGG	* ATAACTACA AAAACTATCA ACAATTATGA ACAACTATCA ACAACTATCA ATAATTACCA	AAGGACA : ITGGACA : ITGGACA : ACGGCCA : ACGGGCA : ACGGTCA : ATGGACA :	671 689 656 680 904 689

AAAGGCCACTATAGGAGTCATCGTCTgtATcTGGAGccTGGCTGTggTTcTGGCTTTcCCTCTGTTA

940

*

920

*

* 960

58

980

KF471675.1 NM_0012788 JF317293.1 BK008097.1 NM_0012801 XM_0072356 XM_0150055	••••••	CCTACAGGCCAAAAGGAAGGTGGTGAAGATGATGATGATGATTATTGTAGTGGTTACCTTCGCCCTCTGCTGGCTG	741 759 759 726 750 974 759
KF471675.1 NM_0012788 JF317293.1 BK008097.1 NM_0012801 XM_0072356 XM_0150055	•••••••••••••••••••••••••••••••••••••••	* 1000 * 1020 * 1020 * 1040 * 1040 * CCGTATCATGTCTACTTCATCGCGACGGGTCTCAACAAGCGTCTGAGCAAGTGGAAGTACATCCAGCAGG CCCTACCACGTCTACTTCATTGTGACCGGCATCAACAAGCGTCTGAGCAAGTGGAAGTACATCCAGCAGG CCGTATCACATCTATTTCATCGTAACAGGCCTGAACAAACGCCTGAACAAGTGGAAGTCCATCCA	 811 829 829 796 820 1044 829
KF471675.1 NM_0012788 JF317293.1 BK008097.1 NM_0012801 XM_0072356 XM_0150055	•••••••••••••••••••••••••••••••••••••••	1060*1080*1100*1120TTTACCTGTCCGTCTCTGGCTTGCAATGAGCTCCACCATGTACAATCCCATCATCTACTGCTGCCTCAAITTTACCTGTCGGTCATCTGGCTGGCAATGAGCTCCACCATGTACAACCCCATCATCTACTGCTGCCTCGAATGTACCTGTCGGTCCTGTGGCTGGCAATGAGCTCCACCATGTACAACCCCATCATCTACTGCTGCCTCGAAIGTACCTGTCGGTCCTGGCTGGCAATGAGCTCCACCATGTACAACCCCATCATCTACTGCTGCCTCAAIGTACCTGTCGGTCCTGGCTGGCGATGAGCTCCACCATGTACAACCCCATCATCTACTGCTGCCTCAAIGTACCTGTCGCGGCGTCTGGCTGGCGATGAGCTCCACCATGTACAACCCCATCATCTACTGCTGCCTCAAICTACCTCGCGGTCATCTGGCTCGCCATGAGCTCCACCATGTACAACCCCATCATCTACTGCTGCCTCAAITTTACCTGTCAGTGCTCGCCATGAGCTCCACCATGTATATCTACTGCTGCCTCAAAITTTACCTGTCAGTGCTGGCTGGCCATGAGCTCCACCATGTACAACCCCATCATCTACTGCTGCCTCAAITTTACCTGTCAGTGCTGGCTGGCCAATGAGCTCCACCATGTACAACCCCCATCATCTACTGCTGCCTCAAITTTACCTGTCAGTGCTGGCTGGCCAATGAGCTCCACCATGTACAACCCCCATCATCTACTGCTGCCTCAA	 881 899 899 866 890 1114 899

_

			*	1140	*	1160	*	1180	*	
KF471675.1	:	TAGCAGGT	r t cg <mark>ag</mark> c	. <mark>T</mark> GG <mark>T</mark> TTCAAG	CAGGTTTTCC	CGCTGGTGC	CCTTTTGTCCG	G <mark>GTG</mark> TC <mark>G</mark> AGC	TACGAT :	951
NM 0012788	:	CAGCAGAT	r t cg <mark>gg</mark> c	: <mark>G</mark> GG <mark>C</mark> TTCAAG	CAGGTTTTCC	CGCTGCTGT	CCCTGCGTGCG	G <mark>GGG</mark> T <mark>TG</mark> AGC	TACGAT :	969
JF <u>3</u> 17293.1	:	TG <mark>GCAG</mark> AT	F T CG <mark>CG</mark> C	: <mark>G</mark> GG <mark>C</mark> TTCAAG	CGGGCCTTCA	AG <mark>G</mark> TG <mark>G</mark> TG <mark>T</mark>	CCCTTCATTCA	G GTGTCC AGC	TA <mark>T</mark> GA <mark>C :</mark>	969

59

BK0	08097.1	:	CG <mark>GCAG</mark> GTTCCGAGCCGGATTCAAGCGGGTTTTCTGCTGGTGCCCGTTTGTCAGGATGTCAAGCTACGAT	:	936
NM	0012801	:	TG <mark>GCAG</mark> GTTCCGGGCCGGGTTCAAGCGGGTGTTTGCTGGTGCCCGTTTGTCAGGATGTCAAGCTATGAC	:	960
XМ	0072356	:	CA <mark>GCAG</mark> GTAA	:	1124
XМ	0150055	:	CAGCAGGTTTCGAACCGGCTTCAAGAGGGCATTTCGCTGGTGCCCCTTCATCAAGGCATCCAGCTACGAC	:	969
			CAGCAGGTtTcgAGcCggCttcaagCGggTTttCCgCtgGtgCccCtTTGtCAGgGTGtCAagctacgaT		