

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

"DETERMINACIÓN DEL NIS (Nivel de Integridad de Seguridad) REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

TESIS

QUE PARA OBTENER EL TÍTULO DE INGENÍERO QUÍMICO

PRESENTA:
CORNEJO ESPINAL PEDRO

DIRECTOR DE TESIS: I.Q. Yasser Iván Rivas Gutiérrez

CIUDAD DE MEXICO SEPTIEMBRE DE 2016

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTONOMA DI MENICO

PRESENTE.

FACULTAD DE ESTUDIOS SUPERIORES "ZARAGOZA"

DIRECCIÓN

JEFE DE LA UNIDAD DE ADMINISTRACIÓN ESCOLAR

Comunico a usted que al alumno(a) <u>Cornejo Espinal Pedro</u> con número de cuenta <u>41001095-4</u> de la carrera <u>Ingenieria Química</u>, se le ha fijado el dia <u>23</u> del mes de <u>Septiembre</u> de <u>2016</u> a las <u>17:00 horas</u> para presentar su examen profesional, que tendrá lugar en la sala de exámenes profesionales del Campus II de esta Facultad, con el siguiente jurado:

PRESIDENTE M. EN I. PABLO EDUARDO VALERO TEJEDA

VOCAL I.Q. YASSER IVÁN RIVAS GUTIÉRREZ

SECRETARIO I.Q. DELFINO GALICIA RAMÍREZ

SUPLENTE M. EN C. CESAR SAÚL VELASCO HERNÁNDEZ

SUPLENTE M. EN I. CRESENCIANO ECHAVARRIETA ALBÍTER

El título de la tesis que se presenta es: "Determinación del NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)".

Opción de Titulación: Tesis Convencional

A T E N T A M E N T E "POR MI RAZ

A HABLARÁ EL ESPÍRITU" México, D. F. a 01 de Septiembre de 2006

DR. VICTOR MANUEL MENDOZA NUNEZR E C C I O M
DIRECTOR

U

RECIBI

OFICINA DE EXÂMENES PROFESIONALES

BPERIORES

AGRADECIMEINTOS

Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza.

Por dar la oportunidad de cursar en sus aulas llenas de conocimiento, con profesores de calidad, para la formación formando profesionistas útiles para la sociedad.

A los Ingenieros Sinodales

Por su tiempo, comentarios y sugerencias para la culminación del presente documento.

A mi director de tesis Ing. Yasser Iván Rivas Gutiérrez

Por su tiempo, apoyo, confianza y un gran aporte de conocimientos para realizar este trabajo, así como la confianza de seguir desarrollarme en el ámbito profesional

A quienes conforman la empresa Seguridad y Medio Ambiente (TEMA), compañeros y amigos

Por la oportunidad de desarrollarme en la vida laboral y que gracias a su experiencia en cada uno de los temas pude obtener conocimientos para la elaboración de este documento.

DEDICATORIAS

A mis padres

Pedro Cornejo Jaimes e Inocente Espinal Merlán

Por darme la vida, por toda una vida de sacrificios, por educarme a mis hermanos y a mí, para ser unas personas de bien, porque no hay manera de pagarles todo lo que han hecho para darme la oportunidad de finalizar mi carrera profesional. A ustedes con todo mi corazón quiero decirles que los amo y por qué con nada les pago esta única y maravillosa herencia.

Mil gracias.

A mi hermano y colega

Javier

Por ser un ejemplo de carácter, profesionalismo y ética. Porque eres parte importante de este trabajo con tu aporte y apoyo, sobra decir que cuentas conmigo para todo.

A Yasmin el amor de mi vida Mi flaquita

Porque me has hecho el hombre más feliz desde que te conocí, por tu apoyo a lo largo de prácticamente toda nuestra carrera, por esas palabras de ánimo y de confianza en los momentos difíciles, no me queda más que decirte gracias por todos estos años a tu lado mi vida TE AMO.

A mis hermanos

Marisela, Mario, Irma, Norma, Omar, Sandra, Mari, Beto

Porque de cada uno de ustedes he aprendido tantas cosas, han sido un ejemplo a seguir, no tengo palabras para agradecer su apoyo y jalones de orejas soy muy afortunado de tenerlos a lo largo de toda mi vida.

Los quiero mucho y gracias

A mis sobrinitas María Itzel

Donde sea que estés, muchas gracias, por ti aprendí a ver la vida de una manera diferente y no temer a nada, te extraño con toda mi alma

Andrea Yaretzi

Porque sigues en nuestros corazones, ya que al igual que tu hermana serias querida y amada por todos nosotros. Te quiero mucho.

Q.E.P.D.

A mis amigos

Rosaura, Amado, Paquito, Antonio, Pablo, Leonardo

Por todos los momentos de festejos, tristezas, chistes, apodos, estrés, etc. Gracias por haber estado ahí y que en esta nueva etapa les deseo el mayor de los éxitos y como siempre ha sido espero verlos siempre.

A todos mis sobrinos

Porque confió en que sus vidas estarán llenas de triunfos y ya lo están demostrando, siempre podrán contar conmigo así como sus padres me apoyaron, yo estaré con ustedes para lo que sea, los quiero a cada uno de ustedes.

ÍNDICE

Índice	de tablasde	VIII
Índice	de figuras	X
OBJET	IVO GENERAL	XI
OBJET	IVOS PARTICULARES	XIII
ALCAN	ICE	XIV
INTRO	DUCCIÓN	XV
RESUM	1EN	XVI
DEFINI	CIONES, ABREVIATURAS Y ACRÓNIMOS	XVIII
Definic	iones	XVIII
Acrónii	mos	XXI
MArco	Normativo	XXV
CAPÍTU	JLO I	1
DESCR	RIPCIÓN DE LA INSTALACIÓN	1
1.1 Des	scripción General de la Instalación	2
1.1.1 Fu	ınción del Sistema	2
1.2 Ubi	cación y Descripción Entorno	6
1.2.1 Uk	oicación	6
1.2.2 Ca	apacidad	7
1.2.3 Cd	ondiciones Climatológicas	8
CAPÍTU	JLO II	9
MARCO	O TEÓRICO	9
2.1 Cic	lo de Vida de Seguridad	10
2.2 Rie	sgo y Peligro	11
2.3 Rie	sgo e Integridad de Seguridad	11
2.4 Met	todología Empleada	13
2.5 Aná	álisis HazOp	17
2.6 Ter	minología Utilizada en el Estudio HazOp:	18
2.7 Jer	arquización de Riesgos	20
2.8 Eva	aluación de Consecuencias	24
2.9 Cor	nsecuencias de Interés	26
2.10	Estimación Cuantitativa con Daños al Humano	29
2.11	Análisis de Capas de Protección	30
2.12	Determinación de Capas Independientes de Seguridad	38

2.13 D	esarrollo de la Determinación del SIL Requerido	41
CAPÍTULO) III	43
ANALISIS	HAZOP	43
3.1 análisi	is de peligros y Operabilidad "HazOp"	44
3.2 Aplica	ción de la Metodología de Identificación de Riesgos	45
3.3 Relaci	ón y Ponderación de Escenarios Identificados	46
CAPÍTULO) IV	63
ANALISIS	DE CONSECUENCIAS	63
4.1 Tipific	ación de Escenarios	64
	os utilizados para determinar diámetro de orificio, tiempos de fuga y d atmosférica, así como la descripción de los escenarios	66
4.3 Condi	ciones ambientales y tipo de área de localización de la instalación	69
	ciones meteorológicas al momento de la fuga del material o sustancia	69
4.5 Tipos	de área de localización de la instalación	70
4.6 Diáme	tro equivalente de fuga (DEF)	70
4.7 Invent	ario de Fuga	72
4.8 Disper	sión de Nube Tóxica / Inflamable	75
4.9 Flama	zo (Flash Fire)	76
4.10 E	xplosión de nube de gas no confinada (UVCE) y confinada (VCE)	77
4.11 D	ardo de Fuego (Jet Fire)	78
4.12 P	otencia de Emisión de la Radiación Térmica	80
4.13 E	xplosión de nube de vapor	81
4.14 M	étodo Multi energía	83
4.15 C	riterios para Seleccionar el Nivel de Explosión Apropiado	83
4.16 R	esistencia no Confinada	85
4.17 F	uentes Confinados por Onda Expansiva	85
4.18 F	uerza de Confinamiento	85
4.19 R	esultados de la Evaluación de Consecuencias	88
	ecomendaciones para los Riesgos Analizados, Evaluados y ados de Acuerdo a la Matriz de Riesgos1	22
CAPÍTULO	O V1	25
ANALISIS	LOPA1	25

5.1 Criterios para determinar la necesidad de un Sistema Instrumentado de Seguridad (SIS)	.126
5.2 Selección del Nivel de Integridad de Seguridad (NIS) Objetivo	.128
5.3 Especificación de los Requerimientos de Seguridad del SIS	.129
5.4 Descripción del evento.	.131
5.5 Nivel de severidad	.132
5.6 Frecuencia objetivo (Criterio de tolerancia al Riesgo)	.137
5.7 Niveles de Protección Independientes y Probabilidad de Falla sobre Demanda	.139
CAPÍTULO VI	.152
RESULTADOS DEL ESTUDIO DE SEGURIDAD (NIS)	.152
CAPÍTULO VII	.155
CONCLUSIONES Y RECOMENDACIONES	.155
Ribliografía	159

ÍNDICE DE TABLAS

Tabla 1.2.1-1 Coordenadas de la Instalación	6
Tabla. 2.5-1 Palabras guía del análisis HazOp:	18
Tabla 2.7-1 Clasificación por categorías de frecuencias	21
Tabla 2.7-2 Clasificación por categorías de consecuencias	22
Tabla2.7-3 Índices de riesgo	24
Tabla 2.13-1 clasificación de la reducción. Índice de SIL	41
Tabla 3.2-1 Nodos Analizados para la Metodología HazOp	45
Tabla 3.3 -1. Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.	47
Tabla 3.3-2 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp	51
Tabla 3.3-3 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp	55
Tabla 3.3-4 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp	5 8
Tabla 3.3-5 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp	61
Tabla 4.1-1 Tipificación de Escenarios Identificados	65
Tabla 4.2-1 Criterios para Asignar diámetros de orificio	67
Tabla 4.2-2 Criterios para Asignar Tiempos de Fuga	68
Tabla 4.3-1 Criterios ambientales para simular los eventos de fuga	69
Tabla 4.4-1 Criterios para Simular los Eventos de Fuga	69
Tabla 4.5-1 Criterios de localización de los eventos	70
Tabla 4.6-1 Criterios para Asignar el diámetro de fuga	71
Tabla 4.6-2. Diámetros de Orificio Resultantes	72
Tabla 4.7-1 Composición de Crudo	73
Tabla 4.7-2 Composición de Gas	74
Tabla 4.7-3 Zonas de riesgo por toxicidad, inflamabilidad y explosividad	75
Tabla 4.8-1 Efectos de Emisiones Tóxicas	75
Tabla 4.9-1 Efectos presentados a diferentes niveles de radiación térmica	76
Tabla 4.9-2 Efectos del Flash Fire	77
Tabla 4.10-1 Efectos Derivados de la Sobrepresión	77
Tabla 4.18-1 Escenarios Seleccionados y Condiciones Alimentadas al Simulador	86

Tabla 4.20-1 Resultados de Consecuencias Nube Toxica, Escenario El.01	89
Tabla 4.20-2 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.01	90
Tabla 4.20-3 Resultados de Consecuencias de Nube Explosiva El.01	91
Tabla 4.20-4 Resultados de Consecuencias Nube Tóxica, Escenario El.02	94
Tabla 4.20-5 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.02	95
Tabla 4.20-6 Resultados de Consecuencias de Nube Explosiva El.02	96
Tabla 4.20-7 Resultados de Consecuencias Nube Tóxica, Escenario El.03	99
Tabla 4.20-8 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.03	100
Tabla 4.20-9 Resultados de Consecuencias de Nube Explosiva El.03	101
Tabla 4.20-10 Resultados de Consecuencias Nube Tóxica, Escenario El.04	104
Tabla 4.20-11 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.04	105
Tabla 4.20-12 Resultados de Consecuencias de Nube Explosiva El.04	
Tabla 4.20-13 Resultados de Consecuencias Nube Tóxica, Escenario El.05	
Tabla 4.20-14 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.05	110
Tabla 4.20-21 Resultados de Consecuencias Nube Tóxica, Escenario El.06	113
Tabla 4.20-21 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.06	114
Tabla 4.20-22 Resultados de Consecuencias de Nube Explosiva El.06	115
Tabla 4.20-23 Resultados de Consecuencias Nube Tóxica, Escenario El.07	118
Tabla 4.20-24 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.07	119
Tabla 4.20-25 Resultados de Consecuencias de Nube Explosiva El.07	120
Tabla 4.21-1 Recomendaciones Surgidas de la metodología HazOp	123
Tabla 5.1-1 Criterios de Riesgo Individual (STD)	127
Tabla 5.1-2 Severidad del Riesgo y frecuencia objetivo	128
Tabla 5.4-1 Descripción del evento	
Tabla 5.5-1 Probabilidad de iniciación	134
Tabla 5.5-2 Nivel de gravedad de los eventos de impacto	134
Tabla 5.5-3 Escenario identificado y nivel de consecuencia	136
Tabla 5.6-1 Escenario identificado y nivel de consecuencia	

Tabla 5.7-1 Probabilidades de Falla en Demanda Tipicas para IPL's	140
Tabla 5.7-2 E. 01 LOPA	145
Tabla 5.7-3 E. 02 LOPA	146
Tabla 5.7-4 E. 03 LOPA	147
Tabla 5.7-5 E. 04 LOPA	148
Tabla 5.7-6 E. 05 LOPA	149
Tabla 5.7-7 E. 06 LOPA	150
Tabla 5.7-8 E. 07 LOPA	151
Tabla 6-1 NIS requerido y factor de reducción de riesgo por escenario evaluado	154
para el proyecto de ampliación de la Plataforma de producción San Pedro 1 (SP	1) 154
Tabla 7-1 Recomendaciones del Estudio de seguridad SIL	157

ÍNDICE DE FIGURAS

Fig. 1.3-1 Crecimiento de los Riesgos individuales	13
Fig. 1.4-1 Ciclo de vida de seguridad del SIS	14
Fig. 1.4-2 Ciclo de vida de seguridad de SIS Fase análisis	15
Fig. 1.7-1 Matriz de Jerarquización de Riesgos	23
Fig. 1.9-1 Descripción de un escenario de Perdida de Contencion	27
Fig.1.11.5-1 Esquema de capas de proteccion	37
Figura 4.11-1 Modelo de Incendio Tipo Jet	79

OBJETIVO GENERAL

Evaluar la plataforma San Pedro 1 en materia de riesgo, realizando una evaluación cuantitativa de los eventos de pérdida de contención identificados mediante la aplicación de la metodología HAZOP identificado aquellas situaciones que se encuentren fuera del nivel de riesgo tolerable de acuerdo a los resultados de la matriz de ponderación de riesgo obtenida en el Estudio de Riesgo y en particular del HAZOP. Una vez identificados los riesgos intolerables y en la Región ALARP, establecer las capas de protección no SIS evaluando el nivel de riesgo resultante para determinar si el nivel de riesgo Tolerable es alcanzado.

En caso de que el nivel de riesgo tolerable no se alcance, será necesario Determinar el Nivel de Integridad de Seguridad (NIS, por sus siglas en ingles SIL) requerido de cada una de las Funciones Instrumentadas de Seguridad (FIS) requeridas a raíz del estudio HAZOP, para cumplir con los niveles de riesgo tolerable de la instalación.

OBJETIVOS PARTICULARES

- Analizar la ingeniería básica y de detalle de la plataforma de producción San Pedro 1 (SP1).
- Realizar la aplicación de la metodología de identificación de peligros (HAZOP) para estimar los escenarios de Riesgo No tolerables y a partir de estos identificar los escenarios a estudiar.
- ➤ En base a los resultados identificados como no tolerables con la metodología HAZOP, realizar un estudio de evaluación de consecuencias a través del software Phast 7.11 para estimar la severidad de estos escenarios.
- ➤ Identificar las Capas de protección con las que cuenta la instalación y aplicar la técnica LOPA "Análisis de las capas de protección" para determinar el FRR del evento no mitigado.
- ➤ Determinar el Nivel de Integridad de Seguridad (NIS, por sus siglas en ingles SIL) requerido de cada una de las Funciones Instrumentadas de Seguridad (FIS) para la Plataforma de Producción San Pedro 1 para cumplir con los niveles de riesgo tolerable o de aceptabilidad del riesgo de dicha instalación.

ALCANCE

El alcance de este documento abarca la determinación del requerimiento de Funciones Instrumentadas de Seguridad y la valoración del Nivel de Integridad de Seguridad (NIS) Requerido, con el objeto de determinar la necesidad de implementar un Sistema Instrumentado de Seguridad en el Sistema de Producción San Pedro 1, con lo que se podrán establecer las capas de protección necesarias para lograr minimizar la frecuencia de ocurrencia o las posibles consecuencias de eventos indeseados que pongan en riesgo la integridad física del personal, la instalación y el medio ambiente; de acuerdo a lo fundamentado en la norma IEC 61511 "Functional safety – Safety instrumented systems for the process industry sector" y en la norma ISA S-84.01-2003. Application of Safety Instrumented Systems for the Process Industries.

Para poder determinar el Nivel de Integridad de Seguridad (NIS), el alcance del presente estudio involucra las siguientes actividades:

- ➤ Evaluar las instalaciones en materia de riesgo para determinar aquellas situaciones que se encuentren fuera del nivel del riesgo tolerable de acuerdo a los resultados obtenidos en la identificación y ponderación del riesgo con la metodología denominada (HazOp) ya que esta técnica será el estudio base para las posteriores etapas en la determinación del NIS.
- Seleccionar los escenarios clasificados como riesgo no tolerable para los cuales se realizará una evaluación de consecuencias a fin de determinar las áreas potenciales de afectación por radiación térmica y onda de sobrepresión, mediante el software PHAST 7.11; este resultado será considerado para el análisis de capas de protección y definir en su caso la severidad del evento a ser estudiado.
- ➤ Identificar las capas independientes de protección considerando los cuatro parámetros que la definen (Independencia, Especificidad, Efectividad y Auditabilidad).

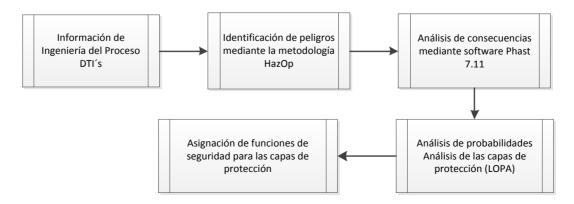
- Realizar el listado de Funciones Instrumentadas de Seguridad indicando su nivel de integridad y seguridad. Estimar las frecuencias de los eventos iniciadores considerando la referencia bibliográfica.
- > Estimar la probabilidad de falla en demanda (PFD) de las capas independientes de protección identificadas.
- > Determinar el valor del Factor de Reducción de Riesgo requerida en función de los escenarios identificados.

INTRODUCCIÓN.

En la mayoría de los procesos industriales, las capas de protección juegan un papel importante para la reducción de riesgo. En caso de ser requerido, esto se puede combinar con un sistema de protección para tratar cualquier riesgo residual identificado, tal es el caso de los Sistemas Instrumentados de Seguridad (SIS). Los SIS son muy importantes en la administración de riesgos en los procesos industriales debido a que cumplen una función primordial disminuyendo la probabilidad de los eventos de riesgo o minimizando la severidad al personal, al medio ambiente y a las instalaciones. Los riesgos se deben prevenir como un objetivo inicial desde el inicio del ciclo de vida de seguridad funcional y deben ser reducidos a un nivel tolerable aceptable.

Este documento tomó como punto de partida la filosofía de operación, ingeniería básica y de detalle de la plataforma San Pedro 1, ubicada en San Pedro Perú, con lo que se busca analizarla en materia de riesgo, tomando como referencia las normas vigentes, guías y procedimientos de PEMEX, ya que es la normativa que aplica a la mayoría de las instalaciones similares dentro de México y es donde se realiza este documento, así como normas internacionales para sistemas instrumentados de seguridad, como lo es ISA-84 y la IEC-61511.

La plataforma de producción San Pedro 1, ubicada en San Pedro Perú, cuenta actualmente con 12 pozos de producción denominados: 1X, 2D, 3CD, 4D, 5XD, 6D, 7D, 8D, 9D, 10D, 11D y 12D en operación, asimismo se realiza la separación primaria, almacenamiento, transferencia de petróleo crudo, compresión de gas natural y sistema de tratamiento de agua producida se realiza en ésta plataforma, dentro de la cual el pozo 2D se opera como pozo inyector de gas, para la estimulación de los pozos. El sistema de re-inyección de gas se efectúa con el gas comprimido proveniente de plataforma denominada SP1A. Adicionalmente el sistema incluye el envío y recepción de gas excedente de la plataforma SP1 a SP1A donde se comprime el gas a alta presión (4000 psig) para luego retornarlo a la plataforma SP1 para su disposición final mediante re-inyección en el pozo 2D.



RESUMEN

El presente trabajo se determinó el Nivel de Integridad de Seguridad "NIS" Requerido para las funciones instrumentadas de seguridad, en caso que sean requeridas para la instalación en estudio que está comprendido en VI capítulos, donde se desarrolla solo la primera fase de del ciclo de vida de seguridad y determinar si se requiere de un SIS. El documento contempla desde un estudio de análisis de peligros como también de una evaluación cuantitativa de los eventos de pérdida de contención o eventos que afecten de manera significativa a la producción, a la instalación y al ambiente, los cuales fueron identificados mediante la aplicación de la metodología (HAZOP), identificado aquellas situaciones que se encuentren fuera del nivel de riesgo tolerable de acuerdo a los resultados de la matriz de ponderación de riesgo utilizada en el presente trabajo.

Dichos eventos que presentasen consecuencias graves según el análisis cuantitativo, se tomaron como base, para el análisis de las capas de protección (LOPA), evaluando el nivel de riesgo resultante para determinar si el nivel de riesgo Tolerable es alcanzado. En caso de que el nivel de riesgo tolerable no se alcance, será necesario el llevar a cabo la asignación de Funciones Instrumentadas de Seguridad a las capas de protección y para cada Función Instrumentada de Seguridad asignar el Nivel de Integridad de Seguridad (SIL, por sus siglas en ingles), para cumplir con los niveles de riesgo tolerable de la instalación en proyecto.

El proceso para la determinación del SIL aplicando la técnica de LOPA, requiere varias fases que han sido desarrolladas en este trabajo y se muestra en la siguiente figura, donde solo comprende la primera fase del ciclo de vida de seguridad:

DEFINICIONES, ABREVIATURAS Y ACRÓNIMOS

Definiciones

Acción:

Asignación para ejecutar una tarea o series de tareas para resolver una causa identificada en la investigación de una falla.

Análisis de Riesgos:

Conjunto de técnicas que consisten en la identificación, análisis y evaluación sistemática de la probabilidad de la ocurrencia de daños asociados a los factores externos (fenómenos naturales, sociales), fallas en los sistemas de control, los sistemas mecánicos, factores humanos y fallas en los sistemas de administración; con la finalidad de controlar y/o minimizar las consecuencias a los empleados, a la población, al ambiente, a la producción y/o a las instalaciones.

Árbol de Eventos:

Modelo gráfico lógico que identifica y cuantifica las posibles salidas de un evento iniciador.

Árbol de Fallas:

Representación gráfica, lógica y organizada de las condiciones o factores que causan o contribuyen a que ocurra un evento no deseado definido.

Capa de Protección Independiente (IPL):

Una capa de protección independiente es un dispositivo, sistema o acción que es capaz de prevenir un escenario desde su ocurrencia hasta su consecuencia no deseada independientemente del evento iniciador o la acción de cualquier otra capa de protección asociada con el escenario. La efectividad e independencia de una IPL debe ser auditable.

Confiabilidad:

Habilidad de un dispositivo para desempeñar una función requerida bajo condiciones dadas para un intervalo de tiempo establecido.

Consecuencia:

Resultado real o potencial de un evento no deseado, medido por sus efectos en las personas, en el ambiente, en la producción y/o instalaciones, así como la reputación e imagen.

Escenario de riesgo:

Determinación de un evento hipotético, en el cual se considera la ocurrencia de un accidente bajo condiciones específicas, definiendo mediante la aplicación de modelos matemáticos y criterios acordes a las características de los procesos y/o materiales, las zonas potencialmente afectables.

Evento

Suceso relacionado a las acciones del ser humano, al desempeño del equipo o con sucesos externos al sistema que pueden causar interrupciones y/o problemas en el sistema. En este documento, evento es causa o contribuyente de un incidente o accidente o, es también una respuesta a la ocurrencia de un evento iniciador.

Evento Habilitador:

Un evento que hace posible otro evento.

Eventos Iniciadores:

El evento que inicializa el escenario que lleva a la consecuencia no deseada.

Falla:

Terminación de la habilidad de un dispositivo para desempeñar una función requerida.

Flash Fire:

La combustión de una mezcla aire-vapor inflamable en la cual la flama pasa a través de la mezcla a una velocidad menor que la del sonido, de tal forma que el daño por sobrepresión generada es despreciable.

Frecuencia:

Número de ocurrencias de un evento por unidad de tiempo.

Función Instrumentada de Seguridad (FIS):

Capa de protección instrumentada independiente, cuyo propósito es llevar al proceso a un estado seguro cuando se violan condiciones predeterminadas.

Hipótesis:

Lista de posibles mecanismos de falla de cada modo de falla. Al ser verificada una hipótesis, ésta se convierte en una causa.

Ingeniería de Confiabilidad:

Rama de la Ingeniería que estudia las características físicas y aleatorias del fenómeno "falla".

Inspección:

Pruebas u observaciones de un ítem para determinar su condición o estatus.

Jet fire:

Tipo de fuego proveniente de fuegos asociados a la liberación de líquido y/o gas a presión.

Lifting:

Movimiento del disco desde la posición de cierre cuando la válvula de seguridad (PSV) está relevando.

Mitigación:

El acto de afectar a una consecuencia para que sea menos severa.

Nivel de Integridad de Seguridad (NIS, SIL):

Nivel discreto para la especificación de los requerimientos de integridad de las funciones de seguridad a ser asignadas a sistemas instrumentados de seguridad. Cada nivel discreto se refiere a cierta probabilidad de que un sistema referido a seguridad realice satisfactoriamente las funciones de seguridad requeridas bajo todas las condiciones establecidas en un periodo de tiempo dado.

Probabilidad:

La probabilidad es expresada como un número adimensional entre 0 y 1. Es la expresión para la posibilidad de ocurrencia de un evento, o una secuencia de eventos durante un intervalo de tiempo, o la posibilidad de éxito o falla de un evento durante una prueba o una demanda.

Probabilidad de Falla en Demanda (PFD):

Un valor que indica la probabilidad de que una capa de protección falle para responder a una demanda.

Proceso:

Conjunto interrelacionado de recursos y actividades que transforman elementos de entrada en productos finales agregándoles valor.

Riesgo:

Combinación de la probabilidad de un evento y la consecuencia del evento.

Salvaguarda:

Un dispositivo, sistema o acción que probablemente interrumpa la cadena de eventos que siguen de un evento iniciador o que puede mitigar las consecuencias.

Nota: Una salvaguarda puede no cumplir con los requerimientos de un IPL.

Sistema Instrumentado de Seguridad (SIS Safety Instrumented Systems):

Es un sistema compuesto por sensores, procesadores lógicos y elementos finales de control que tiene el propósito de llevar al proceso a un estado seguro cuando se han violado condiciones predeterminadas. Otros términos comúnmente usados son Sistema de Paro de Emergencia SPE (ESD) y Sistema de Paro de Seguridad.

Sistemas de Seguridad:

Es todo aquel sistema que implanta las funciones de seguridad necesarias para mantener un estado seguro en el equipo bajo control.

Tasa de Fallas:

Tasa promedio a la cual un componente podría esperarse que falle.

Valoración de Riesgos:

Proceso por el cual los resultados de un análisis de riesgo son usados para tomar decisiones, ya sea mediante jerarquización relativa de estrategias de reducción de riesgos o mediante la comparación con riesgos objetivo.

Verificación:

Confirmación por medio de revisión y suministro de evidencia objetiva del cumplimiento total de los requerimientos.

<u>Acrónimos</u>

ANSI

Instituto de Estándares Nacionales Americanos (American National Standars Institute)

AIChE

American Institute of Chemical Engineers (Instituto Americano de Ingenieros Químicos)

CCPS

Center for Chemical Process Safety (Centro para la Seguridad de Procesos Químicos)

DCO

Dirección Corporativa de Operaciones

DFP

Diagrama de Flujo de Proceso

DTI

Diagrama de Tubería e Instrumentación

FIS

Función Instrumentada de Seguridad

FRR

Factor de reducción de riesgo.

IEC

International Electrotechnical Commission (Comisión Internacional Electrotécnica)

IPL

Independent Protection Layer (Capas de Protección Independientes)

ISA

Instrument Society of America (Sociedad de Instrumentación de América)

LOPA

Layer of Protection Analysis (Análisis de Capas de Protección)

MAWP

Maximum Allowable Working Pressure (Presión de Trabajo Máxima Permisible)

MAOP:

Maximum Allowable Operation Pressure (Presión de Operación Máxima Permisible)

MTTR

Tiempo medio para fallo (Mean Time to Repair).

NIS

Nivel de Integridad de Seguridad

NOM

Norma Oficial Mexicana

PFD

Probability of Failureon Demand (Probabilidad de Falla en Demanda)

PSV

Pressure Safety Valve (Válvula de Seguridad de Presión)

SCBP

Basic Process Control System (Sistema Básico de Control de Procesos)

SCO

Sistema de Confiabilidad Operacional

SIL

Safety Integrity Level

SIS

Sistema Instrumentado de Seguridad

MARCO NORMATIVO

La elaboración del presente documento para la determinación del Nivel de Integridad de Seguridad (NIS), se basó en estándares internacionales y las siguientes normas de referencia técnicas:

- ➤ IEC 61508, 2000 Functional Safety of Electric/Electronic/Programmable Electronic Safety Related Systems, International Electrotechnical Commission, 2000.
- ➤ IEC 61511-1. Functional safety Safety instrumented systems for the Process Sector, International Electrotechnical Commission, 2003.
- ➤ IEC 61511-3: Functional safety Safety instrumented systems for the process industry sector Guidance for the determination of the required safety integrity levels.
- ➤ ISA S-84.01-2003. Application of Safety Instrumented Systems for the Process Industries.
- ➤ NRF-045-PEMEX-2010, "Seguridad Funcional –Sistemas Instrumentados de Seguridad para los Procesos del Sector Industrial".

CAPÍTULO I

DESCRIPCIÓN DE LA INSTALACIÓN

1.1 Descripción General de la Instalación

1.1.1 Función del Sistema.

Pozos De Producción

La Plataforma SP1 produce mediante los pozos 1X, 3CD, 4D, 5XD, 6D, 7D, 8D, 9D, 10D, 11D y 12D, los cuales son convertidos para aumentar la producción mediante el sistema de gas lift.

Este método de producción, está asistido por la separación primaria de gas, llevada a cabo en los separadores bifásicos que se cuentan, y el aporte de un compresor que suministrará el gas natural de alta presión.

Manifold De Producción

El fluido proveniente de los pozos, gas, crudo y agua, ingresa a un múltiple de producción incluido en el patín de los separadores primarios, el cual tiene capacidad de recepción de hasta 15 pozos.

La mezcla gas / líquidos se podrá derivar mediante juego de válvulas a los separadores de pruebas o al separador de totales.

Separación Primaria

El skid de producción cuenta con tres separadores verticales bifásicos cada uno de 36" O.D. x 7' 6" Altura x 125 Psig (dos separadores de prueba y un separador de totales). En este patín se medirán los fluidos que serán enviados posteriormente al wash tank o tanque lavador.

La máxima producción diaria de los pozos será de 3353 BPSD de crudo; 1000 BPSD de agua y 5.78 MMSCFD de gas natural.

El gas húmedo obtenido de los separadores, previa separación de condensados, será conducido hacia un compresor de gas para su utilización en el sistema gas lift para los pozos de producción y servicios auxiliares.

Sistema De Compresión y Gas Lift

La Plataforma cuenta con un compresor de alta presión, de tres etapas que comprimirá el gas producido de 20 psig a 1000 psig.

Parte del gas comprimido se utilizará en la plataforma SP1 para generación eléctrica e instrumentación (0.5 MMSCFD) y como Gas Lift en los pozos de producción. (2.2 MMSCFD). Los 3.1 MMSCFD de gas restantes serán enviados al sistema de compresión en la Plataforma SP1A mediante línea submarina de 3 ½" de 1.9 Km. de longitud.

Antes de su envío, una válvula reductora de presión mantendrá la presión aguas abajo del compresor en 623 psig.

El gas será enviado a los pozos a través de un múltiple de distribución Clase 600. Las facilidades para la instalación del compresor, incluyen además la interconexión a los sistemas de gas de arranque, gas combustible, aceite al compresor, aceite al motor, aqua, venteos y drenajes.

Sistema De Recepción y Transferencia De Crudo De SP1

El crudo más agua obtenido de los separadores será descargado, con la presión de éstos (20 psig) hacia el wash tank, donde por decantación se separará del agua.

Por rebose, el crudo será conducido al tanque trapezoidal (500 Bbls. de capacidad), luego mediante dos bombas centrífugas instaladas al pie del tanque se transferirá el crudo a la Barcaza Energy (9501) a través de una tubería de 6 5/8"O.D.

El tanque trapezoidal, cuenta con un control de alto nivel y uno de bajo nivel; además de 02 visores magnéticos con transmisores de señales electrónicas.

Sistema De Venteo De Gas Excedente

El gas excedente durante periodos de mantenimiento de los compresores y el gas de las líneas de venteo de las válvulas de seguridad, será venteado en un "stack" que estará

colocado al final de una estructura, aproximadamente a unos 30 pies de la parte más alta de la plataforma.

Todas las descargas de las válvulas de alivio pasarán por un Limpiador Atmosférico de Gas Vertical, antes de ser enviados a la tubería de venteo o "stack", para la recuperación de líquidos que se pudieran generar durante Operación continua.

Sistema De Líneas Submarinas

Se cuenta con una línea submarina de 3 ½" O.D. que recorre 19 Km. desde la Plataforma SP1 hasta la Plataforma SP1-A transportando gas a mediana presión (623 psig), otra línea, de 4 ½" Ø. retornará el gas del compresor de inyección en la Plataforma SP1-A al múltiple de inyección en la Plataforma SP1 para la inyección de gas al pozo 2D.

Ambas líneas cuentan con trampas lanzadoras y receptoras de raspatubos para permitir su mantenimiento y sistemas de corte por emergencia.

Sistema De Drenaje

Los líquidos de drenaje de los separadores, scrubbers, y recipientes a presión son enviados al múltiple de producción y los drenajes, por gravedad, de los compresores, bombas y tanques se enviarán a un tanque horizontal colector de líquidos y de allí al múltiple de producción, mediante una bomba neumática. Finalmente, estos líquidos atravesarán todo el proceso productivo.

Sistema De Tratamiento De Agua Producida

El volumen de agua producida, en su totalidad, será tratada física y químicamente y alcanzados los límites de calidad exigidos será descargada al mar.

El proceso físico, de decantación y sedimentación, consiste en circular e agua inicialmente por el wash tank (750 Bbls.); luego el skim tank (500 Bbls.) y finalmente a una tina (130 Bbls.) de decantación de sólidos.

Durante este recorrido se inyectarán productos químicos como rompedores de emulsión, clarificadores, ácido sulfúrico y soda cáustica.

Un sistema de monitoreo para controlar la calidad del agua que se descargará al mar completan este proceso.

El wash tank conducirá los fluidos hacia el tanque trapezoidal, en caso halla un rebose y también una alarma audible en caso halla un alto nivel de líquido.

El skim tank dispondrá de una alarma audible, en caso halla un alto nivel de líquido en el tanque. Este tanque ha sido hidrostáticamente probado en el taller de construcción, en tierra.

Manifold y Pozo De Inyección De Gas

Se instalará un múltiple para Gas de Inyección procedente de la Plataforma SP1-A a una presión de 3,475.0 psig hacia el pozo 2D y reserva para interconexión futura a un segundo pozo.

Sistema De Gas De Inyección

Se instalará un nuevo compresor de alta presión en Plataforma SP1A, Dresser-Rand 6-HOS-2 WAUKESHA MODEL P-9390GSI, de 2 etapas y 4000 psig de presión máxima de descarga necesaria para la re-inyección de gas en el pozo 2D ubicado en Plataforma SP1.

Sistema De control y Seguridad

El Sistema de Control para las plataformas OffShore SP-1 y SP-1ª está conformado por un controlador Delta V y una RTU (Remote Terminal Unit) instalado en gabinetes Nema 4X y ubicados en cadaplataform. En la plataforma SP-1 adicionalmente cuenta con una estación de trabajo conformada por una PC y un monitor en la que se deberán configurar las pantallas para mostrar las variables de proceso de las dos estaciones además de señales de alarma y emergencia.

1.2 <u>UBICACIÓN Y DESCRIPCIÓN ENTORNO.</u>

1.2.1 Ubicación.

La Plataforma de Producción San Pedro 1 (SP1) está ubicada en aguas territoriales del Océano Pacífico, Cerca de las plataformas de Producción SP1A SP2 y SP3.

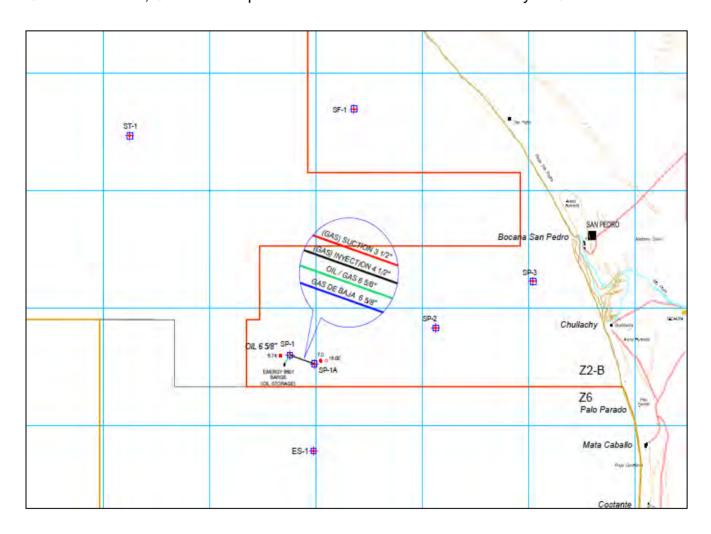


Tabla 1.2.1-1 Coordenadas de la Instalación

PLATAFORMA	COORDENADAS UTM D	E PLATAFORMA
San Pedro 1 (SP1)	N= 9,382,816.13	E= 480,0.38.27

1.2.2 Capacidad

Separación Primaria

La máxima producción diaria de los pozos será de 3353 BPSD de crudo; 1000 BPSD de agua y 5.78 MMSCFD de gas natural.

Flexibilidad

A falla de aire de instrumentos, gas combustible y energía eléctrica, la plataforma no Operará.

Factor de Servicio

El factor de servicio para la plataforma será de 1.0, la plataforma está diseñada para operar las 24 horas los 365 días del año.

Servicios Auxiliares

Aire Comprimido. Se dispondrá de un equipo de compresión de aire, para alimentar el sistema de instrumentación y bombas neumáticas de inyección de químicas. El compresor tendrá una capacidad de presión de 100 psig.

Grupos de Generación Eléctrica. Dos generadores de 100 Kw. y 80 Kw. suministrarán energía requerida para mantener en Operación todo el sistema.

Paneles Solares alimentarán con energía las luces de navegación y señalización.

Tanques de Lubricantes y Diésel para alimentar los motores de las bombas de transferencia y motor de la unidad compresora de gas natural.

Sistema De Protección Contra Incendio, utiliza el agua de mar mediante una bomba vertical sumergida; la cual descarga a 100 psig. Esta bomba vertical es eléctrica y se mantiene operativa las 24 horas, el Sistema de Contra Incendio, también dispone de extintores portátiles y extintores rodantes; los cuales se encuentran ubicados en puntos estratégicos en los diferentes niveles de la plataforma.

1.2.3 Condiciones Climatológicas

La elevación del terreno es de 0 msnm. Las condiciones del sitio fueron tomadas de datos meteorológicos promedio anual de estaciones de monitoreo de Servicio Nacional e Hidrología del Perú (SENAMHI) en Piura.

➤ Humedad Máxima: 98%

> Precipitación Promedio anual registrada: 0,5 inch/año

 Precipitación Máximo anual registrada: 20.3 inch/año (1998 estación de Talara – durante fenómeno del niño)

> Temperatura Máxima: 104 °F

> Temperatura Mínima: 45 °F

CAPÍTULO II

MARCO TEÓRICO

2.1 Ciclo de Vida de Seguridad

El ciclo de vida de seguridad, son aquellas actividades necesarias para la realización de la(s) función(es) instrumentada(s) de seguridad que se desarrollan a lo largo de un periodo de tiempo, que comienza en la fase de diseño de un proyecto y termina cuando todas las funciones instrumentadas de seguridad ya no se encuentran disponibles para su utilización.

La primera etapa del ciclo de vida de seguridad que integrará el presente trabajo, será un Análisis de peligros que nos permitirá identificar y valorar los escenarios que representan un peligro para la Instalación.

Primero se llevará a cabo una estimación de probabilidad de ocurrencia del evento, analizando las posibles causas de la pérdida del control de los peligros y se determina su frecuencia de ocurrencia, su duración y su naturaleza (cantidad, composición, características de liberación/uso, etc.).

Posteriormente se analizarán las consecuencias de perder el control de un escenario no deseado. Este análisis de consecuencias implica estimar la severidad de las consecuencias asociadas al peligro. El análisis también puede requerir la estimación de la probabilidad de que el peligro cause la(s) consecuencia(s) y por lo tanto puede involucrar el análisis de la secuencia de eventos mediante el cual el peligro puede resultar en esa consecuencia. Este análisis de consecuencias implica estimar la severidad de las consecuencias asociadas con el peligro mediante el software PHAS 7.11.

Por último, la siguiente etapa del proyecto es la determinación del NIS requerido para cada una de las funciones instrumentadas de seguridad (FIS) requeridas mediante la aplicación de la técnica LOPA.

2.2 Riesgo y Peligro

Los accidentes siempre implican alguna pérdida ya sea económica, productiva, a la instalación u personal, por eso el objetivo fundamental debe ser la prevención. Prevenir es anticiparse a los hechos antes de que éstos ocurran y tomar precauciones para evitar situaciones no deseadas. Existen métodos y estrategias adecuadas para actuar en forma eficaz y reducir los niveles de riesgo. Debemos tener presente que un accidente no es sólo producto del descuido del trabajador. Cuando una empresa lleva adelante planes de seguridad que involucran a toda la organización, es posible prevenir la ocurrencia de accidentes.

Para que exista un riesgo deben existir el peligro y la exposición a ese peligro al mismo tiempo. Por lo tanto, tenemos que:

- Un peligro existe en el caso en que un objeto (o sustancia) o situación tenga una capacidad inherente de provocar un efecto adverso.
- > El riesgo, por otro lado, es la probabilidad de que se produzcan dichos efectos: el riesgo puede ser alto o insignificante.

Los riesgos nos rodean constantemente en nuestra vida cotidiana. Del mismo modo, todos realizamos evaluaciones de riesgo constantemente, de una forma u otra, ya sea a nivel consciente o inconsciente.

2.3 Riesgo e Integridad de Seguridad

La reducción necesaria del riesgo (que se puede establecer bien en forma cualitativa o cuantitativa) es la reducción de riesgo que tiene que lograrse para satisfacer el riesgo tolerable (nivel de seguridad objetivo del proceso) para una situación específica.

El concepto de reducción de riesgo necesaria es de importancia fundamental en el desarrollo de la especificación de los requisitos de seguridad para la función instrumentada de seguridad (SIF) (en particular, la parte de los requisitos de integridad

de seguridad de la especificación de los requisitos de seguridad). La finalidad de determinar el riesgo tolerable (especificación de los requisitos de seguridad del proceso) para un evento peligroso específico es establecer lo que se juzga razonable con respecto tanto a la frecuencia del evento peligroso como a sus consecuencias específicas.

Los factores importantes para la evaluación del riesgo tolerable incluyen la percepción y visión de las personas expuestas al evento peligroso. Para llegar a lo que constituye un riesgo tolerable para una aplicación específica, se puede considerar un número de datos de entrada. Éstos pueden incluir:

- Las directrices de las autoridades reguladoras competentes
- Las discusiones y los acuerdos con las diferentes partes implicadas en la aplicación
- Las normas y directrices de la industria
- Los consejos procedentes de la industria, los expertos y los científicos
- > Los requisitos legales y reglamentarios

Se puede alcanzar la reducción de riesgo necesaria por un sistema instrumentado de seguridad (SIS) o por una combinación de estos sistemas u otras capas de protección. La reducción de riesgo necesaria es el nivel mínimo de reducción de riesgo que se tiene que lograr para cumplir el riesgo tolerable.

Es importante que se aprecie plenamente la distinción entre riesgo e integridad de seguridad. El riesgo es una medida de la frecuencia y consecuencias de un evento peligroso que se produce. Esto puede ser evaluado para diferentes situaciones (riesgo de proceso, riesgo tolerable, riesgo residual). El riesgo tolerable implica la consideración de factores sociales y políticos. La integridad de seguridad es una medida de la probabilidad de que la SIF y otras capas de protección logren las funciones de seguridad especificadas. Una vez se ha establecido el riesgo tolerable, y se ha estimado la reducción de riesgo necesaria, se pueden asignar los requisitos de integridad de seguridad para el SIS.

- Riesgo de proceso. el riesgo existente por los eventos peligrosos especificados del proceso, el sistema de control del proceso y los factores humanos asociados. No se consideran elementos protectores de seguridad designados en la determinación de este riesgo;
- ➤ Riesgo tolerable (nivel objetivo de seguridad de proceso). El riesgo aceptado en un contexto dado en base a los valores vigentes de la sociedad;
- Riesgo residual. En el contexto de esta norma el riesgo residual es el riesgo de que se produzcan eventos peligrosos después de la adición de capas de seguridad.

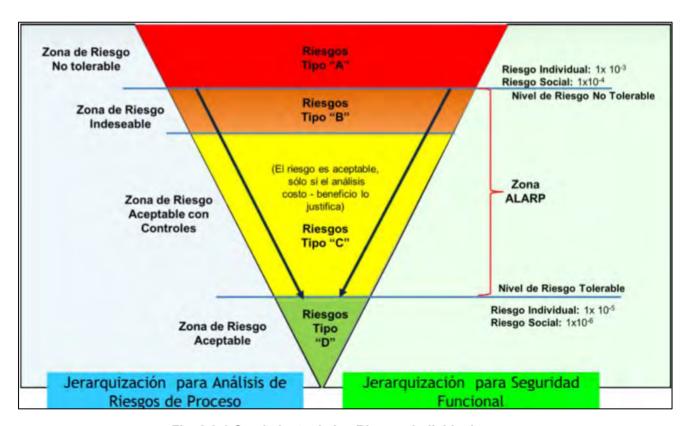


Fig. 2.3-1 Crecimiento de los Riesgos individuales

2.4 Metodología Empleada

La metodología empleada para la determinación del Nivel de integridad de seguridad, se desarrolló conforme a lo indicado en la norma de referencia IEC 61511-3: Functional safety - Safety instrumented systems for the process industry sector – Guidance for the determination of the required safety integrity levels.

En esta sección se describe la adaptación de la metodología de "Layer of Protection Analysis (LOPA)" del American Institute of Chemical Engineers (AIChE), complementada por las mejores prácticas del Center for Chemical Process Safety, Journal of Hazardous Materials y Journal of Loss Prevention in the Process Industries; así como bases de datos de tasas de fallas genéricas como OREDA, PARLOC, EXIDA etc.

Asimismo se indica, que para iniciar el ciclo de vida de seguridad se deberá partir de la identificación de peligros y eventos peligros y su valoración del nivel de riesgo, para lo cual en el presente documento para la instalación en estudio re realizará un Análisis y Evaluación del Riesgo por medio de HAZOP:, en el cual se identifican las desviaciones en las variables de proceso u Operación, así como la identificación de los sistemas de control que constituyen las protecciones de la propia instalación y con ello la determinación de las funciones instrumentadas de seguridad (FIS) requeridas en la instalación, ya que son los componentes básicos del SIS. Lo anterior forma parte del ciclo de vida de seguridad, mostrado en la siguiente figura:

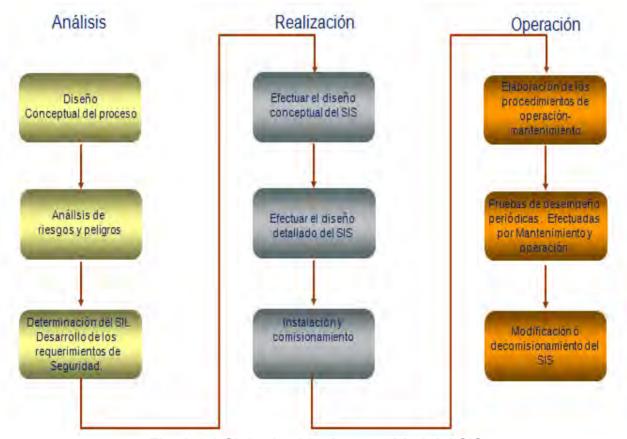


Fig. 2.4-1 Ciclo de vida de seguridad del SIS

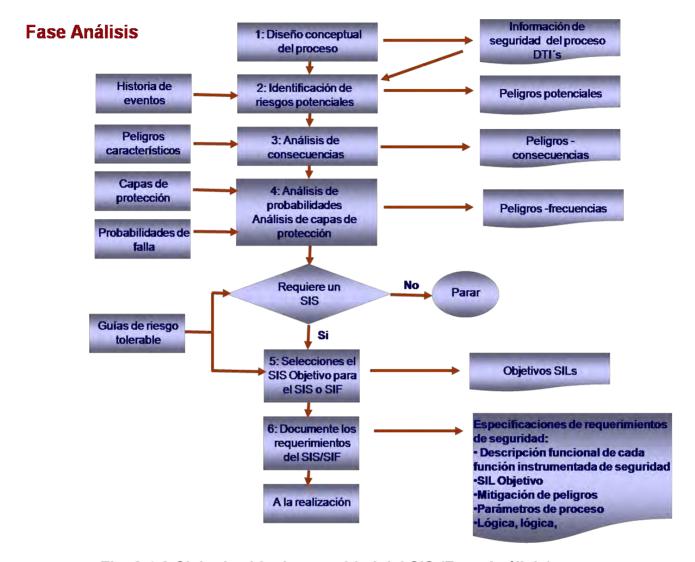


Fig. 2.4-2 Ciclo de vida de seguridad del SIS (Fase Análisis)

Nota: El cuadro que indica "Realización", refiere, a que si como parte del análisis se determinó necesario la implementación de un SIS, la siguiente etapa del ciclo de vida de seguridad es la realización del diseño conceptual del SIS.

Cabe mencionar que dentro del presente trabajo solo se abarcará hasta la etapa Determinación del SIL en caso de que la instalación en estudio requiera una Función instrumentada de Seguridad y no el diseño de esta.

Lo mostrado anteriormente define cada una de las etapas a seguir durante el ciclo de vida de seguridad de la instalación, asimismo se pude hacer notar que una de las partes primordiales para iniciar lo descrito se relaciona con el desarrollar un Análisis y Evaluación de peligros y/o Riesgo, el cual su objetivo principal es la identificación de los peligros o riesgos inherentes a la Operación, la valoración de dichos riesgos (frecuencia/consecuencia) y la decisión de la tolerabilidad o no del riesgo, en donde si los riesgos identificados son tolerables o pueden ser controlados hasta un nivel aceptable con aplicación capas de protección "NO SIS" se finaliza el proceso.

En cambio, si los riesgos identificados requieren Funciones Instrumentadas de Seguridad configuradas a un Sistema Instrumentado de Seguridad para alcanzar un nivel del riesgo tolerable, entonces es necesario definir el Nivel del Integridad de Seguridad objetivo (NIS o SIL objetivo) el cual debe cumplir dicha Funciones Instrumentada de Seguridad "FIS". Cada FIS planteada debe cumplir con la función de seguridad para la que ha sido diseñada, que no es otra que la protección frente al riesgo identificado como no tolerable.

Para todas las fases del ciclo de vida de seguridad, debe tener lugar una planificación de seguridad que defina los criterios, técnicas, medidas y procedimientos para:

- Asegurar que se cumplen los requisitos de seguridad del SIS para todos los modos relevantes del proceso; esto incluye requisitos tanto funcionales como de integridad de seguridad;
- Asegurar una instalación y recepción apropiadas del sistema instrumentado de seguridad;
- Asegurar la integridad de seguridad de las funciones instrumentadas de seguridad después de la instalación;
- Mantener la integridad de seguridad durante el funcionamiento (por ejemplo, ensayos periódicos, análisis de fallos);
- ➤ Gestionar los peligros de proceso durante las actividades de mantenimiento en el sistema instrumentado de seguridad.

Para el caso de estudio y para cumplir con el objetivo de realizar la Determinación del Nivel de Integridad de Seguridad (NIS) para el presente documento se aplicó las siguientes metodologías:

- 1. Metodología HAZOP:
- 2. Jerarquización de riesgos
- 3. Evaluación de consecuencias (cuantitativa).
- 4. Análisis de capas de protección (LOPA).

2.5 Análisis HazOp

Dentro del ciclo de vida de seguridad, la realización de un análisis PHA (Análisis de identificación de peligros de proceso) y basado en esta técnica es fundamental en el proceso de identificación de las Funciones Instrumentadas de Seguridad y definición del SIS. Ya que nos proporcionará aquellos escenarios que se encuentren en una región de alto riesgo y así poder tomar dichos escenarios para la determinación del NIS.

El Análisis HazOp: permite identificar y valorar los escenarios que representan un peligro para la Instalación. Primero se llevará a cabo una estimación de probabilidad de ocurrencia del evento, analizando las posibles causas de la pérdida del control de los peligros y se determina su frecuencia de ocurrencia, su duración y su naturaleza (cantidad, composición, características de liberación/uso, etc.).

El HAZOP: (Hazard Operability Study) es una técnica cualitativa que permite identificar postulados de accidentes que pudieran ocurrir en la instalación.

La metodología consiste en dividir la instalación en subsistemas que tengan una identidad funcional propia y en seleccionar una serie de nodos en cada subsistema donde se analizan las posibles desviaciones de las principales variables que caracterizan el proceso (presión, temperatura, caudal, etc.).

Las desviaciones son establecidas de forma sistemática recurriendo a una lista de palabras guía que califican el tipo de desviación. Ejemplos de palabras guía más utilizadas se mencionan en la siguiente Tabla:

Tabla. 2.5-1 Palabras guía del análisis HazOp:

Palabras Guía				
No/ninguna	Negación del intento de diseño			
Más	Incremento cuantitativo			
Menos	Decremento cuantitativo			
Además de	Incremento cualitativo			
Parte de	Decremento cualitativo			
Inversa	Opuesto lógico del intento			
Otro que	Sustitución completa			

Como se mencionó anteriormente, cuando las palabras guía se combinan con las variables de proceso, sugieren desviaciones o problemas potenciales.

Para cada desviación identificada se debe incluir la siguiente información:

- > La lista de las posibles causas
- ➤ La lista de las consecuencias
- La respuesta automática del sistema ante la desviación
- > El tipo de señalización (acústica/visual) que puede permitir la detección de la anomalía
- > Recomendaciones para evitar las causas o limitar las consecuencias.
- > Comentarios: cualquier tipo de anotación para completar alguno de los puntos.

La aplicación de esta metodología implica la formación de un equipo multidisciplinario (seguridad, Operación, ingeniería, mantenimiento).

2.6 <u>Terminología Utilizada en el Estudio HazOp:</u>

En la ejecución de un estudio HAZOP: se utilizan varios términos con significado especial:

Nodo: Son puntos o secciones donde el proceso cumple con una función específica de diseño. Los nodos normalmente son secciones de tubería, recipientes u otro equipo (la amplitud del nodo depende de la experiencia del equipo de trabajo y de la experticia que se tenga del proceso).

Parámetro: Es un aspecto del proceso que lo describe físicamente, químicamente o en términos que digan qué está sucediendo.

Intención: La intención define cómo se espera que el sistema opere en el nodo. La intención provee un punto de referencia para desarrollar desviaciones.

Palabra Clave: Esta es una palabra o frase utilizada para calificar o cuantificar la intención y asociada a parámetros para descubrir desviaciones.

Es la pérdida de la intención de diseño y es descubierta aplicando sistemáticamente las palabras guía a cada parámetro en cada nodo.

Ejemplos:

No + Flujo = No flujo Mas + Temperatura = Mayor Temperatura

Causas: Son las razones o situaciones por las cuales las desviaciones pueden ocurrir. Dado que no todas las desviaciones posibles son relevantes, el equipo de trabajo debe identificar aquellas desviaciones que sean significativas. Ejemplos de causas son falla de equipos, error humano, causas externas. Usualmente hay más de una causa por desviación.

Consecuencias: Son los resultados que pueden presentarse en caso de que ocurran las desviaciones (por ejemplo: una liberación de material tóxico). Note que las consecuencias de una desviación frecuentemente difieren para cada causa de la desviación.

Salvaguardas: Son los mecanismos y controles con los que cuenta la instalación para evitar o minimizar las consecuencias de cada desviación.

Recomendaciones: Son las acciones sugeridas por el equipo de trabajo HAZOP: para prevenir o aminorar las consecuencias establecidas. Note que habrá recomendaciones siempre que las salvaguardas sean insuficientes o poco confiables, así como también cuando se requiera mayor información o ejecución de estudios.

Los objetivos básicos del HazOp: Identificación de Peligros, donde se identifica las características de los materiales de la planta, proceso, equipo, procedimiento, etc., que puedan representar accidentes potenciales.

Identificación de Problemas de Operabilidad, donde se identifica los problemas potenciales Operativos, los cuales podrían ocasionar que se falle en alcanzar la productividad y metas de diseño.

A partir de la aplicación de la metodología HAZOP: se identifican las posibles desviaciones a las variables del proceso como son: más presión, menos presión, fugas en uniones bridadas, impacto externo, fuego externo, etc. Dichas desviaciones involucran fugas, que serían causa de daños potenciales a la instalación, al personal, así como al medio ambiente.

2.7 Jerarquización de Riesgos

Está técnica jerarquiza el riesgo utilizando categorías de frecuencia y de consecuencia para poder analizar los escenarios de accidentes potenciales identificados y evaluados posterior a la aplicación de una metodología de identificación de riesgos.

La técnica de jerarquización de los Riesgos en la Instalación tiene gran importancia debido a que el uso apropiado de la misma permite localizar los riesgos más importantes que se pueden presentar sobre la seguridad de las personas, el medio ambiente, al negocio y a la imagen de la empresa.

Esta es una técnica semicuantitativa simplificada de análisis de riesgos en los procesos que utiliza los escenarios de accidentes potenciales clasificados y evaluados para luego clasificarlos y jerarquizarlos.

Una vez jerarquizados dichos escenarios, aquellos que se encuentren en una región de alto riesgo o en su caso en una zona de ALARP, serán de mayor importancia para realizar un análisis de consecuencias, así como también serán base primordial del análisis LOPA en la determinación del NIS para la Plataforma de Producción San Pedro 1.

Para asignar los valores de las variables de frecuencia y consecuencia se tomaron como base las Tabla 2.7-1 y para la ponderación de la consecuencia se tomó la Tabla 2.7-2 que forma parte de la jerarquización de riesgos.

Tabla 2.7-1 Clasificación por categorías de frecuencias.

Categoría de frecuencia	Tipo	Descripción de la frecuencia de ocurrencia	
F6	Muy frecuente	Puede ocurrir una o más veces en un año.	
F5	Frecuente	Puede ocurrir una o más veces en un periodo mayor a 1 año y hasta 5 años.	
F4	Poco Frecuente	Puede ocurrir una o más veces en un periodo mayor a 5 años y hasta 10 años	
F3	Raro	Puede ocurrir una o más veces en un periodo mayor a 10 años	
F2	Muy raro	Puede ocurrir solamente una vez en la vida útil de la instalación	
F1	Extremadamente raro	Es posible que ocurra, pero que a la fecha no existe ningún registro.	

Referencia: GO-SS-TC-0002-2015, Rev. 1, Guía Operativa para Realizar Análisis de Riesgos de Procesos en los Proyectos y/o Instalaciones de PEMEX Exploración y Producción.

Tabla 2.7-2 Clasificación por categorías de consecuencias.

Tabla 2.7-2 Clasificación por categorias de consecuencias.					
Categoría	Daños al personal (DP)	Efecto en la población (EP)	Impacto ambiental (IA)	Pérdida de producción (PP) [USD]	Daños a la instalación (DI) [USD]
6 (Catastrófico)	Lesiones o daños físicos que pueden generar más de 10 fatalidades	Lesiones o daños físicos que pueden generar más de 30 fatalidades	Se presentan fugas y/o derrame con efectos fuera de los límites de la instalación. El control implica acciones mayores a 1 semana	>500′000,00 0	>500′000,00 0
5 (Mayor)	lesiones o daños físicos que pueden generar de 2 a 10 fatalidades	Lesiones o daños físicos que pueden generar de 6 a 30 fatalidades	Se presentan fuga y/o derrames con efectos fuera de los límites de la instalación. El control implica acciones de 1 día hasta 1 semana	>50′000,000 a 500′000,000	>500′000,00 0 a 50′000,000
4 (Grave)	Lesiones o daños físicos con atención médica que puedan generar incapacidad permanente o una fatalidad	Lesiones o daños físicos mayores que generan de una a 5 fatalidades. Evento que requiere de hospitalización	Se presentan Fugas y/o derrames con efectos fuera de los límites de la instalación. El control implica acciones en hasta 24 horas	>5′000,000 a 50′000,000	>5′000,000 a 50′000,000
3 (Moderado)	Lesiones o daños físicos que requieren atención médica que puede generar una incapacidad.	Ruidos, olores e impacto visual que se detectan fuera de los límites de la instalación y/o derecho de vía se requieren acciones de evacuación y existe la posibilidad de lesiones o daños físicos	Se presentan fugas y/o derrames evidentes al interior de las instalaciones. El control implica acciones que llevan hasta 1 hora.	>500,000 a 5′000,000	>500,000 a 5′000,000
2 (Menor)	Lesiones o daños físicos que requieren primeros auxilios y/o atención médica.	Ruidos, olores e impacto visual que se pueden detectar fuera de los límites de la instalación y/o derecho de vía con posibilidades de evacuación.	Fugas y/o derrames solamente perceptibles al interior de la instalación, el control es inmediato.	>50,000 a 500,000	>50,000 a 500,000
1 (Despreciable)	No se esperan lesiones o daños físicos.	No se esperan impactos, lesiones o daños físicos.	No se esperan fugas, derrames y/o emisiones por arriba de los límites establecidos.	<50,000	<50,000

Referencia: GO-SS-TC-0002-2015, Rev. 1, Guía Operativa para Realizar Análisis de Riesgos de Procesos en los Proyectos y/o Instalaciones de PEMEX Exploración y Producción.

Una vez llevada a cabo la ponderación de los escenarios, se determina el nivel de riesgo mediante la correlación de la categoría de frecuencia por la categoría de consecuencia. Con lo cual, se identifican los escenarios que poseen una mayor importancia en función del riesgo que representan.

Dónde:

DP = Categoría de consecuencia para daños al personal.

EP = Categoría de consecuencia para efectos a la población.

IA = Categoría de consecuencia para impacto ambiental.

PP = Categoría de consecuencia para pérdidas de producción.

DI = Categoría de consecuencia para daños a la instalación.

F = Categoría de Frecuencia.

En la Figura 2.7-1 se ilustra la matriz de riesgo con cuatro niveles de riesgo:

Fig. 2.7-1 Matriz de Jerarquización de Riesgos

DAÑO AL PERSONAL

	C1	C2	C3	C4	C5	C6
F6	С	В	A	A	A	A
F5	С	С	В	В	A	A
F4	D	С	С	В	В	A
F3	D	С	С	С	В	A
F2	D	D	С	С	С	В
F1	D	D	D	D	С	С

DAÑO A LA PRODUCCIÓN Y A LA INSTALACIÓN

	C1	C2	C3	C4	C5	C6
	01	O2	00	0.	00	00
F6	С	В	Α	Α	Α	Α
F5	C	C	В	В	A	A
F4	D	C	C	В	В	A
F3	D	O	C	O	В	A
F2	D	D	С	С	С	В
F1	D	D	D	D	С	С

MEDIO AMBIENTE

	C1	C2	C3	C4	C5	C6
F6	C	В	A	A	A	A
F5	C	С	В	В	A	A
F4	D	С	С	В	В	A
F3	D	С	С	С	В	A
F2	D	D	С	С	С	В
F1	D	D	D	D	С	С

EFECTO A LA POBLACIÓN

	C1	C2	C3	C4	C5	C6
F6	С	В	A	A	A	A
F5	С	С	В	В	Α	Α
F4	D	С	С	В	В	Α
F3	D	С	С	С	В	Α
F2	D	D	С	С	С	В
F1	D	D	D	D	C	С

ferencia: GO-SS-TC-0002-2015, Rev. 1, Guía Operativa para Realizar Análisis de Riesgos de Procesos en los Proyectos y/o Instalaciones de PEMEX Exploración y Producción.

En la Tabla 2.7-3 se describe cada uno de los índices de riesgo que contiene la matriz de riesgo anterior.

Tabla2.7-3 Índices de riesgo.

Tipo A	Zona de Riesgo No Tolerable
Tipo B	Zona de Riesgo Indeseable
Tipo C	Zona de Riesgo Aceptable con Controles "ALARP"
Tipo D	Zona de Riesgo Tolerable

Referencia: GO-SS-TC-0002-2015, Rev. 1, Guía Operativa para Realizar Análisis de Riesgos de Procesos en los Proyectos y/o Instalaciones de PEMEX Exploración y Producción.

2.8 Evaluación de Consecuencias

Se entiende por Análisis de consecuencias la evaluación cuantitativa de la evolución especial y temporal de las variables físicas representativas de los fenómenos peligrosos en los que intervienen sustancias peligrosas, y sus posibles efectos sobre las personas, el medio ambiente y los bienes, con el fin de estimar la naturaleza y magnitud del daño.

El análisis de consecuencias de incendio, explosión y nubes tóxicas es una metodología que forma parte del Análisis de Riesgos y que permite estimar la medida de los efectos esperados de la ocurrencia de un evento potencialmente peligroso, mediante al Análisis de Consecuencias se permiten estimar los posibles daños debido a la pérdida de control sobre sustancias peligrosas.

Los diversos tipos de accidentes graves a considerar en las instalaciones en las que haya sustancias peligrosas, pueden producir determinados fenómenos peligrosos para las personas, el medio ambiente y los bienes materiales:

- Fenómenos del tipo mecánico: ondas de presión y proyectiles
- > Fenómenos de tipo térmico: radiación térmica
- Fenómenos del tipo químico: fuga o derrames incontrolados de sustancias tóxicas o contaminantes.

Para la realización de este documento y para el apartado denominado Análisis de consecuencias, que como se menciona es la evaluación cuantitativa de los posibles efectos que pudiesen presentar un evento peligro, se realizó dicha evaluación mediante el uso de una herramienta informática llamada PHAST 7.11.

El software PHAST es una herramienta para análisis de riesgos de procesos que permite predecir las consecuencias de inflamabilidad, explosividad y toxicidad a partir de:

- Descargas atmosféricas de diseño y rutinarias.
- Descargas atmosféricas accidentales y peligrosas.
- Los modelos de descarga consideran:
- Flujos de fluidos (gaseosos o de dos fases).
- Materiales individuales o mezclas.
- Comportamiento estable o dependiente del tiempo.
- Descargas en interiores de edificios.
- Los modelos de dispersión predicen:
- > Formación de aerosoles.
- Condensación y formación de charcos.
- Nubes densas.

Modelos de inflamabilidad predicen:

- Niveles de radiación.
- Zonas de deflagración.

Niveles de sobrepresión.

Los modelos incluyen:

- > BLEVE's y bolas de fuego.
- Dardos de fuego.
- Incendio de charcos.
- > Deflagraciones.
- > Explosiones de nubes de vapor.

Los modelos tóxicos predicen:

- > Concentración en función de la distancia a favor del viento.
- Concentración en función del tiempo en cualquier punto dentro de la nube.
- Vistas superiores de la nube.

Básicamente este simulador se utiliza para estimar la magnitud de las consecuencias, revisar localización, arreglo y diseño de las instalaciones, determinar modificaciones, preparar planes de contingencia, así como cumplir con la legislación, promover la conciencia de la seguridad e iniciar un estudio cuantitativo de riesgo.

Los criterios y datos que se consideraron para la estimación de consecuencias y que fueron alimentadas al simulador, así como los resultados de las consecuencias obtenidas a partir de la simulación con el software se presentan en las siguientes secciones.

2.9 Consecuencias de Interés.

Las consecuencias son los resultados indeseables de los escenarios de accidente. Una de las primeras decisiones que una organización debe hacer al elegir para aplicar LOPA es cómo definir el punto final de las consecuencias. Hay empresas que parten en el fallo de la contención, mientras que otros estiman el impacto final en términos de lesiones o daños. El escenario más común de interés en la industria de proceso química es la pérdida de contención de materiales peligrosos o de energía.

La pérdida de contención puede ocurrir por una variedad de mecanismos tales como una pérdida de un recipiente, la rotura de una tubería, y el relevamiento de una válvula de alivio. La secuencia típica de las consecuencias de una liberación de material inflamable o tóxico se muestra en la Figura y se explica a continuación.

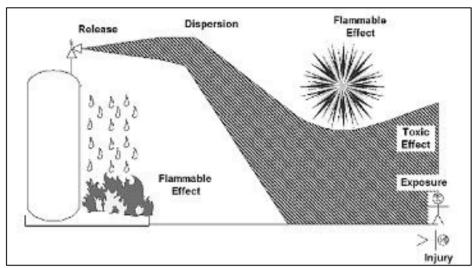


Fig. 2.9-1 Descripción de un Escenario de Perdida de Contención

El material liberado puede ser en un líquido, gas o sólido, o una combinación de estos. Si el material derramado es inflamable, la ignición puede provocar una explosión o incendio. En caso de ignición inmediata de un gas a presión o la liberación de dos fases, los incendios de chorro pueden sobrevenir. En ausencia de ignición inmediata, el material puede dispersarse para formar una nube de vapor con encendido retardado como incendios o explosiones. Los derrames de líquidos pueden quemar como incendios de charco si se encienden. Si el material derramado es tóxico, el personal de planta o el público en general puede estar expuesto a concentraciones nocivas.

La gama de puntos finales como consecuencia de una pérdida de contención incluye la liberación de los materiales peligrosos, la dispersión de los materiales peligrosos, los efectos físicos de los incendios, explosiones y emisiones tóxicas, y las pérdidas por el impacto de los efectos físicos. Todos estos extremos de una consecuencia son cuantificables por algún método de estimación.

La evaluación de las consecuencias es una parte integral de cualquier guía metodológica de evaluación de riesgos. Qué consecuencias deben ser evaluadas, y la rigurosidad con que se evalúan las consecuencias dependen de varios factores, incluyendo el riesgo asociado a los escenarios de accidente, y la metodología de evaluación de riesgos adoptados por la organización y los recursos que la organización está dispuesta a gastar para refinar la estimación.

Los diferentes tipos de evaluación de consecuencia son:

El tamaño, lesión / estimaciones de mortalidad / estimaciones de mortalidad con los ajustes detallados lesión o estimaciones de mortalidad.

Cada uno de estos métodos tiene sus ventajas y desventajas. El método utilizado para garantizar la evaluación de consecuencia dado, debe ser coherente con los criterios de la empresa tolerancia al riesgo.

Cualquier organización debe considerar cuidadosamente el nivel de detalle de análisis de consecuencias, ya que esta opción puede afectar significativamente el nivel de esfuerzo y el entrenamiento requerido. Algunas empresas optan por dejar el análisis para identificar y cuantificar el tipo y el tamaño de la liberación. Sus criterios de tolerancia al riesgo de asumir que la liberación de ciertas magnitudes tiene una cierta probabilidad de dañar el medio ambiente, la gente, o la producción/activos. En estas empresas, el criterio de tolerancia al riesgo principal se corresponde con el hecho de que la categorización consecuencia se detiene en la "liberación." Otras empresas optan por contabilizar explícitamente la probabilidad de un evento de impacto (por ejemplo, lesiones de los empleados), y por lo tanto sus categorías consecuencia. También es más explícita en el grado de daño causado. Cabe señalar que ambos enfoques pueden (y generalmente lo hace) proporcionar las decisiones de riesgo comparables.

- Método 1: Enfoque Categoría sin referencia directa a los daños humanos
- Método 2: Las estimaciones cualitativas con daños humanos

- Método 3: Las estimaciones cualitativas de daño humano con ajustes de probabilidades después de la liberación
- Método 4: Las estimaciones cuantitativas de daños humanos

2.10 Estimación Cuantitativa con Daños al Humano

Este método utiliza el impacto final a los seres humanos como consecuencia de interés, en base a la utilización de un modelo matemático de predicción de las posibles consecuencias resultantes para un determinado evento. Para cada escenario, las consecuencias humanas son estimadas directamente y formarán la base para llevar a cabo el análisis de capas de protección LOPA (alcance de esta tesis), para lo anterior es posible utilizar el conocimiento previo de modelización detallada de liberación de las emisiones similares, mediante un software de simulación.

El riesgo resultante de una lesión o fatalidad se pueden comparar directamente con un riesgo de accidentes mortales criterio de tolerancia para un evento determinado, o la totalidad de los eventos asociados con un proceso o planta puede ser resumido y comparado para procesar criterios de tolerancia al riesgo.

Las ventajas de este método son:

- Simplicidad de la comprensión: Muchas personas tienden a comprender mejor resultado en términos de daño en lugar de expresar el riesgo en términos de tamaño.
- ➤ La comparación directa con las directrices de las empresas: Muchas empresas ya han establecido directrices para el riesgo de una fatalidad, lesión, o por el riesgo de unas pérdidas económicas determinadas.

Las desventajas de este método son:

Supuestos implícitos de la probabilidad de ignición para combustibles, para la probabilidad de lesión, y la probabilidad de que una persona está presente en el área puede sobreestimar o subestimar el riesgo de mortalidad.

La estimación de la gravedad consecuencias pueden variar entre diferentes analistas, a menos que se ofrezca orientación a través de la empresa.

En lo que respecta a este documento para la evaluación de consecuencias se tomó el método de aproximación cuantitativa señalada en LOPA, es decir, derivado del análisis HazOp: realizado y tomando como referencia aquellos eventos que involucran pérdidas de contención se harán una aproximación de las consecuencias para las cuales posteriormente se valorará la frecuencia objetivo del evento peligroso final.

2.11 Análisis de Capas de Protección

LOPA evalúa típicamente escenarios que fueron desarrollados en un estudio previo, un primer paso por el especialista en LOPA es revisar esos escenarios; el método más común de revisión está basado en la consecuencia, la cual es típicamente identificada durante una revisión cualitativa de peligros, tal como un estudio de HAZOP: Después, evaluar la consecuencia, incluyendo el impacto y estimando su magnitud.

El escenario más común de interés para LOPA en la industria de proceso química es la pérdida de contención de materiales peligrosos o de energía, más sin embargo como caso particular y en referencia al alcance y objetivo principal de este documento, este análisis centrará a su vez la magnitud de consecuencias no tanto a escenarios de pérdida de contención sino también a todos aquellos que derivado de lo identificado dentro del método HAZOP: implique algún impacto económico significativo hacia la producción o daños monetarios a la instalación.

2.11.1 ¿Qué es LOPA?

LOPA es un método simplificado del análisis de riesgo. El método LOPA utiliza categorías numéricas para estimar la frecuencia de un evento indeseado, la severidad de la consecuencia, y la probabilidad de fallo de las capas de protección independientes (IPL's), con ello, se puede estimar el riesgo mediante escenarios.

Al igual que muchos otros métodos de análisis de riesgos, el principal propósito de LOPA es determinar si existen suficientes capas de protección para enfrentar un escenario de accidente. Un escenario podría requerir una o más capas de protección dependiendo de la complejidad del proceso y de la severidad de la consecuencia.

El método LOPA da una base consistente para determinar si hay suficientes IPL's para controlar el riesgo de accidente en un escenario dado. Si el riesgo estimado no es aceptable, deberán añadirse IPL's. También se pueden evaluar alternativas que abarquen inherentemente un diseño más seguro. Este método no sugiere que IPL's añadir o que diseño elegir, pero ayuda a determinar alternativas para la mitigación de riesgo. El método LOPA no es completamente un análisis cuantitativo, más bien es un método simplificado para analizar la importancia de las capas de protección para un escenario de accidente bien definido.

El análisis LOPA (Layer of Protection Analysis o Análisis de las Capas de Protección) es una metodología de análisis de riesgos de carácter semicuantitativo que permite determinar y valorar el riesgo de forma intuitiva y reproducible, exponiendo qué capas de protección son susceptibles de ser mejoradas y en qué grado.

El análisis LOPA inicia con una consecuencia no deseada, por lo general, un evento que podría causar daños a la salud de las personas, al ambiente, a la instalación o el impacto económico.

LOPA tiene sus orígenes básicamente en el intento de dar una respuesta a las preguntas claves dentro de un enfoque basado en el riesgo. Las cuales son:

- ¿Qué tan seguro es o cuando es suficientemente seguro?
- > ¿Cuántas capas de protección son necesarias?
- > ¿Cuánta reducción del riesgo proporciona cada capa?

En LOPA, las capas de protección individuales propuestas o previstas son analizadas para determinar su eficacia.

Lo que se busca mediante la técnica de LOPA es:

- Clasificar la SIF para determinar el nivel de integridad de seguridad apropiado (SIL)
- Desarrollar una herramienta de detección para reducir el número de escenarios que requieren una evaluación cuantitativa de los riesgos.
- Desarrollar una herramienta que identifique el equipo "crítico para la seguridad", y sistemas para concentrar los recursos limitados.
- Desarrollar una herramienta semicuantitativa para hacer juicios basados en riesgo constante dentro de una instalación.
- ➤ Facilitar la comunicación (por ejemplo, el SIS, SIF, SIL, IPL) entre el peligro y la comunidad de análisis de riesgos y la comunidad de control de procesos (por ejemplo, los integradores, fabricantes, instrumento y los ingenieros eléctricos, personal de la planta).

2.11.2 El uso de LOPA en el Ciclo de Vida del Proceso

LOPA puede ser utilizado eficazmente en cualquier punto en el ciclo de vida de un proceso o una instalación, pero se usa con mayor frecuencia durante:

- Modificaciones a sistemas de control o de seguridad de un proceso existente o (es decir, gestión del cambio).
- Se utiliza también para examinar escenarios de riesgo.

Sin embargo, LOPA también se puede utilizar en todas las fases del ciclo de vida del proceso:

➤ LOPA se puede utilizar durante el diseño conceptual inicial del proceso a examinar, proporciona orientación para seleccionar un diseño que tiene frecuentemente un suceso iniciador, o una consecuencia menor. Idealmente, LOPA podría utilizarse para diseñar un proceso que es "Intrínsecamente seguro"

- Se puede utilizar durante el ciclo regular de los análisis de riesgos de proceso (PHAs). Además, los criterios objetivos de riesgo tienen demostrado su eficacia en la resolución de desacuerdos sobre los resultados de la PHA.
- ➤ Se puede utilizar para identificar el equipo que se desea mantener dentro de los criterios de riesgo tolerables de una organización. Dichos equipos pueden denotarse como "crítico para la seguridad" (ISA S91.01, 1995) y se somete a pruebas especificadas, la inspección y mantenimiento.
- ➤ LOPA se puede utilizar para identificar las acciones del Operador y las respuestas que son críticas para la seguridad del proceso. Esto permitirá la capacitación focalizada y para la Operación manual para reflejar la importancia de un número limitado de proceso variables, alarmas y acciones.

2.11.3 ¿Qué hace LOPA?

Provee un análisis de riesgo para reproduciblemente evaluar el riesgo de accidente en los escenarios seleccionados. Un escenario es comúnmente identificado durante una evaluación de peligro (HE), tal como la gestión de la evaluación de cambio o revisión del diseño. LOPA es aplicado después de una consecuencia inaceptable y se selecciona una causa creíble para ella. Esto provee una aproximación de orden de magnitud de riesgo de un escenario.

Una vez seleccionado un par de causa – consecuencia para su análisis, se puede utilizar LOPA para determinar que controles administrativos y de ingeniería (comúnmente llamados salvaguardas) coinciden con la definición de IPL's y después estimar tal y como está el riesgo del escenario. Los resultados pueden ser extendidos para hacer evaluaciones de riesgo y ayudar a decidir qué tanta reducción de riesgo es requerida para alcanzar un nivel tolerable de riesgo. Otros escenarios o problemas pueden ser descubiertos mientras se lleva a cabo un análisis por el método LOPA en un escenario.

Otra manera de entender LOPA, es visualizarla en relación con el análisis de riesgo cuantitativo. En este contexto, un escenario LOPA representa una trayectoria (típicamente se elige la trayectoria hacia la peor consecuencia) en un árbol de eventos.

En otros casos, se elige el par causa – consecuencia que mejor represente el nivel más alto de riesgo de varios escenarios similares al elegido. La aproximación tomada depende de la experiencia del analista con el método LOPA y con el proceso bajo consideración, aunque esto no es sencillo siempre.

En la práctica, éste método no podrá seleccionar un escenario de un árbol de eventos completamente desarrollado. En su lugar, el método LOPA típicamente inicia con escenarios identificados por un equipo de revisión de riesgos cualitativos. Como se mencionó antes, LOPA es un método que encaja entre los métodos cualitativos y cuantitativos y es aplicado cuando el analista decide que es la mejor herramienta para analizar el riesgo.

2.11.4 ¿Cómo trabaja LOPA?

Como todos los métodos analíticos, LOPA tiene reglas, como otros métodos LOPA puede ser dividido en dos pasos.

PRIMER PASO: Identificar la consecuencia para visualizar los escenarios. Ya que LOPA típicamente evalúa escenarios que han sido desarrollados en estudios previos, un primer paso a realizar por el o los analistas es visualizar estos escenarios, el método más común de visualización está basado en consecuencias. Una consecuencia es comúnmente identificada durante una revisión cualitativa de riesgos (como un análisis HAZOP). Después se evalúa la consecuencia (incluyendo el impacto de la misma) y estima su magnitud.

SEGUNDO PASO: **Seleccionar un escenario de accidente.** LOPA se aplica en un escenario a la vez. El escenario puede provenir de otros análisis (análisis cualitativos), éste escenario debe describir un par de causa – consecuencia.

TERCER PASO: Identificar el evento inicial y determinar la frecuencia de evento inicial (eventos por año). El evento inicial debe llevar a la consecuencia (dada la falla de todas las salvaguardas). La frecuencia debe tomar en cuenta los aspectos de fondo del escenario, tales como la frecuencia del modo de operación para el que el escenario es válido.

CUARTO PASO: Identificar las IPL y estimar la probabilidad de falla en demanda de cada IPL. LOPA es la abreviatura de " Análisis de capas de protección " Algunos escenarios de accidentes, sólo requieren una IPL, mientras que otros escenarios de accidentes pueden requerir varias IPL, o una IPL de muy baja probabilidad de falla para lograr un riesgo aceptable en el escenario. La parte central de éste método es reconocer las salvaguardas existentes que cumplan con los requisitos de IPL para un escenario dado.

QUINTO PASO: Estimar el riesgo del escenario mediante la combinación matemática de la consecuencia, el evento iniciador, los datos de la IPL. Se pueden incluir otros factores durante el cálculo, dependiendo de la definición de la consecuencia (impacto del evento). Los enfoques incluyen fórmulas aritméticas y métodos gráficos SEXTO PASO: Evaluar el riesgo para llegar a una decisión concerniente al escenario. Se debe tomar en cuenta cómo tomar decisiones de riesgo con LOPA. Esto incluye la comparación del riesgo de un escenario con los criterios de riesgo. Los resultados pueden ser utilizados para priorizar las actividades de gestión de riesgos, tales como la identificación de los componentes de los equipos para centrarse en un plazo de programa de integridad mecánica.

2.11.5 Beneficios de LOPA

- ➤ Este método requiere menos tiempo que los análisis de riesgo cuantitativos. El beneficio aplica particularmente para escenarios muy complejos como para utilizar análisis de riesgo cualitativos.
- Ayuda a resolver conflictos respecto a la toma de decisiones ya que provee un consistente y simplificado marco de referencia para estimar el riesgo de un escenario y provee un lenguaje común para entender y discutir el riesgo. También Provee una mejor decisión comparada con argumentos subjetivos o emocionales.
- Puede mejorar la eficiencia de la evaluación de riesgos ya que es una herramienta que puede hacerlo de manera más rápida.

- Facilita la determinación de un par causa- consecuencia de manera más precisa, por lo tanto facilita la identificación de los escenarios.
- Brinda medios de comparación de riesgo de unidad a unidad o de planta a planta.
- Brinda juicios o decisiones más defendibles debido a la rigurosa documentación y los valores específicos asignados a los aspectos frecuencia consecuencia del escenario.
- Ayuda a identificar operaciones y prácticas que se piensa son seguras de manera más detallada, de esta forma se pueden implementar salvaguardas para mitigar el riesgo a un nivel tolerable.
- > Ayuda a crear la base para una clara, y especificación funcional para IPL (ISA, 1996) y IEC 61511 (IEC, 1998; 2001).
- Ayuda a las empresas a decidir en qué salvaguardas enfocarse durante la operación, mantenimiento, y capacitación relacionada. Por instancia, muchas compañías deciden enfocarse en la inspección y mantenimiento preventivo de las IPL's identificadas durante LOPA.

Asimismo, se hace mención a que todas las instalaciones industriales tienen múltiples capas de protección para la seguridad. Cada capa de protección tiene su propio nivel de reducción de riesgos. Cada capa de seguridad debe ser independiente de los demás, lo que significa que, si hay un fallo en una capa de seguridad, otra capa no se ve afectada y aún puede realizar el objetivo de salvaguardar y restaurar el proceso a un estado seguro.

Las medidas de seguridad de prevención de riesgos en la industria de procesos se diseñan considerando la frecuencia de la explosión al riesgo por personas, la probabilidad de la presencia del evento iniciador del riesgo, y la severidad de las consecuencias.

Las medidas de seguridad de mitigación de riesgos se diseñan para controlar los eventos peligrosos iniciados, y para reducir el impacto del evento a instalaciones, el medio ambiente, y la vida humana.

En la figura siguiente se muestra las medidas de seguridad contra riesgos industriales, en niveles o capas de protección y su orden secuencial.

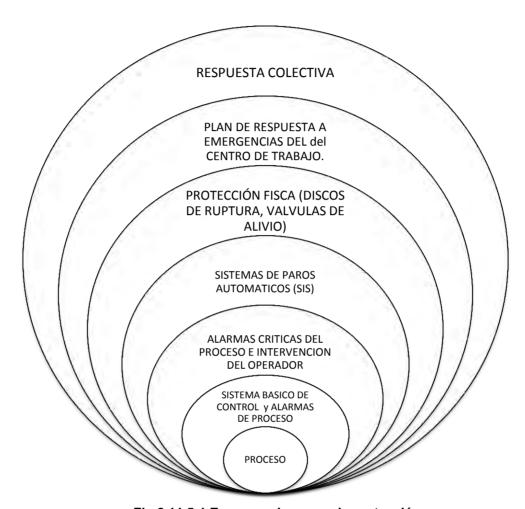


Fig.2.11.5-1 Esquema de capas de protección

2.12 <u>Determinación de Capas Independientes de Seguridad</u>

Una Capa Independiente de Protección (CIP, o IPL por sus siglas en inglés) es un dispositivo, sistema o acción que sea capaz de prevenir un escenario de consecuencia no deseada, independiente del suceso iniciador o de la acción de cualquier otra capa de protección asociados con el escenario.

La eficacia y la independencia de una CIP debe ser auditable. Por ejemplo, en la figura 1.11.5-1, en el punto A en una cadena de eventos de una CIP instalado tiene la oportunidad de actuar. Si funciona como se pretende la consecuencia no deseada se previene. Si todas las CIP en un escenario no llevan a cabo sus funciones, entonces, la consecuencia no deseada se producirá a partir del evento inicial.

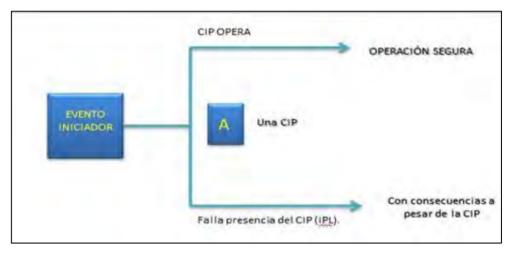


Fig.2.11.5-2 Características de los CIP

La distinción entre una CIP y una salvaguarda es importante. Una salvaguarda es cualquier dispositivo, sistema o acción que es probable que interrumpa la cadena de acontecimientos a raíz de un evento de apertura. Sin embargo, la eficacia de algunas garantías no se puede cuantificar debido a la falta de datos, la incertidumbre en cuanto a la independencia o la eficacia, u otros factores.

Todas las Capas Independientes de protección son salvaguardas, pero no todas las salvaguardas son CIP's. La eficacia de una CIP se cuantifica en términos de su probabilidad de fallo en la demanda (PFD), que se define como la probabilidad de que un

sistema (en este caso la IPL) no podrá realizar una función específica cuando es demandada. La PFD es un número adimensional entre 0 y 1. Cuanto menor sea el valor de la PFP más grande es la reducción en la frecuencia de las consecuencias para un determinado evento iniciador y la frecuencia de eventos. La "reducción de la frecuencia" alcanzada por una IPL es a veces llamada "factor de reducción del riesgo".

Cada una de las capas de seguridad debe ser independiente y se evalúa por tres características fundamentales:

- ➤ Efectiva, en la prevención de las consecuencias cuando funciona como fue diseñado.
- ➤ **Independiente**, del suceso iniciador y los componentes de cualquier otra IPL ya utilizada por el mismo escenario.
- Auditable, la eficacia se supone en términos de prevención de la consecuencia y la PFD deberá ser capaz de validarse de alguna manera (por la documentación, revisión, pruebas, etc.)

En resumen una CIP debe reunir las siguientes características:

Independencia – el desempeño de una capa de protección no es afectado por la causa iniciadora de un evento peligroso o por la falla de otras capas de protección.

Funcionalidad – la operación requerida de la capa de protección como respuesta a un evento peligroso.

Confiabilidad – la probabilidad de que una capa de protección opere según lo previsto bajo condiciones indicadas por un período específico de tiempo.

Auditabilidad – habilidad para inspeccionar información, documentos y procedimientos, que demuestre la suficiencia y la adherencia al diseño, inspecciones, mantenimiento, prueba, y prácticas de operación utilizados para alcanzar las otras cualidades base. Otras características de la CIP que se pueden mencionar son:

Integridad – relacionado a la reducción de riesgo que puede ser razonablemente esperada dado el diseño y el manejo de la capa de protección.

Acceso de Seguridad – uso de controles físicos y administrativos para reducir el potencial de cambios no intencionales o no autorizados.

Manejo del Cambio – proceso formal utilizado para revisar, documentar, y aprobar modificaciones a equipos, procedimientos, materiales, condiciones de procesamiento, etc., que no sean reemplazo de un equipo del mismo tipo, previo a la implementación.

De acuerdo con la norma IEC-61511-3, el análisis LOPA debe incluir lo siguiente:

- ➤ Identificar los eventos iniciadores de impactos indeseados, determinando el tipo de impacto (al ambiente, al personal, a las instalaciones).
- Listar las causas de cada impacto.
- Estimar las frecuencias de cada evento iniciador.
- Listar las capas de protecciones diseñadas o existentes.
- > Determinar la probabilidad de falla en demanda de cada capa de protección.
- ➤ Calcular la frecuencia de todas las rutas que se originan desde el evento iniciador, multiplicando la frecuencia del evento iniciador por cada una de las probabilidades que apliquen.
- Comparar la frecuencia final de resultados indeseados contra el criterio de riesgo tolerable. Si no se cumple con dicho criterio, entonces adicionar capas de protección

Asimismo, el estándar antes citado indica que para establecer el NIS requerido se deben considerar lo siguiente:

- La severidad de las consecuencias si el sistema de seguridad falla al operar en demanda.
- La probabilidad de que el personal sea expuesto al fuego.
- Medidas de mitigación para reducir las consecuencias del evento de riesgo.

La frecuencia con la cual el sistema de seguridad se requiere que actúe.

En la Plataforma de San Pedro 1, se determinará el Nivel de Integridad de Seguridad requerido para las Funciones Instrumentadas de Seguridad definidas de acuerdo a los escenarios y considerando las posibles consecuencias que involucren pérdidas de contención, pérdidas económicas por impacto a la producción o daño a la instalación.

2.13 <u>Desarrollo de la Determinación del SIL Requerido</u>

El Nivel de Integridad de Seguridad "SIL" es un nivel discreto, de 1 a 4, que nos indica que reducción de riesgo hemos de aplicar a una función de seguridad para alcanzar un riesgo tolerable. El propósito de seleccionar un SIL objetivo es especificar la reducción de riesgo requerida, es decir, la diferencia entre los niveles de riesgo existente y el riesgo tolerable.

Cada nivel se refiere a cierta probabilidad de que un sistema de seguridad realice satisfactoriamente las funciones de seguridad requeridas bajo todas las condiciones establecidas en un periodo determinado.

Está basado en la probabilidad de fallo en demanda (PFD) para cada particular función instrumentada (SIF). La IEC-61511 define 4 niveles. La siguiente tabla muestra la relación de los rangos de la Probabilidad de Falla en Demanda (PDF) asociada a un factor re reducción de riesgo (RRF) que corresponden a cada nivel de SIL.

Tabla 2.13-1 clasificación de la reducción. Índice de SIL

INDICE DE SIL	PFD	RRF
4	10 ⁻⁴ > 10 ⁻³	10,000 > 100,000
3	10 ⁻³ > 10 ⁻⁴	1000 > 10,000
2	10 ⁻² > 10 ⁻³	100 > 1000
1	10 ⁻¹ > 10 ⁻²	10 > 100

Una de las etapas de la Gestión del SIS establecidas por las normas IEC 61508/61511 es la Asignación del NIS (siglas en inglés "SIL") requerido para cada una de las funciones de seguridad. Dicha asignación se realizará en una de las metodologías indicadas en la

parte 3 de la IEC 61511, identificada como "Análisis de Capas de Protección" (ACP o LOPA por las siglas en inglés de: Layer of Protection Analysis), para lo cual en los siguientes apartados se describe la secuencia que se realizó para su desarrollo.

Para establecer el NIS (SIL, por sus siglas en inglés) del SIS, se debe considerar los siguientes parámetros:

- La severidad de las consecuencias si el sistema de seguridad falla al operar bajo demanda
- La probabilidad de que el personal sea expuesto al riesgo
- Medidas de mitigación para reducir las consecuencias del evento de riesgo
- La frecuencia con la cual el sistema de seguridad se requiere que actúe
- Probabilidad de ocurrencia del evento peligroso

Se debe seleccionar un NIS objetivo y especificar la reducción de riesgo objetivo, es decir, la diferencia entre los niveles de riesgo existente y tolerable, en términos de NIS.

Independientemente de la naturaleza del método a usar, el analista debe considerar la evaluación de dos componentes del riesgo (la probabilidad del evento de peligro y la severidad de la consecuencia). La asignación del NIS objetivo se debe realizar basándose en un proceso que lleve el riesgo del proceso a un nivel tolerable.

CAPÍTULO III

ANALISIS HAZOP

3.1 Análisis de Peligros y Operabilidad "HAZOP"

Como se ha mencionado con anterioridad La técnica de análisis de peligros y Operabilidad "HazOp:" se basa en el principio de que varios expertos con diferentes especialidades, pueden interactuar de una manera creativa y sistemática para identificar más problemas trabajando juntos que trabajando separados. La técnica de análisis "HazOp:" fue originalmente desarrollada por el Dr. Trevor Kletz en la década de 1970 en la compañía Imperial Chemical Industries, para evaluar la Operación de sus instalaciones industriales, posteriormente esta técnica fue adaptada de manera colegiada por el American Institute of Chemical Engineers y difundida a partir de 1992 a través de las Guías editadas por el Center for Chemical Process Safety, y es recomendada para identificar los problemas de seguridad y de Operabilidad que se pudiesen presentar en una instalación durante su Operación normal, arranque y paro, AICHE 1999.

La metodología consiste en dividir la instalación en subsistemas que tengan una identidad funcional propia y en seleccionar una serie de nodos en cada subsistema donde se analizan las posibles desviaciones de las principales variables que caracterizan el proceso (presión, temperatura, caudal, etc.).

Dentro del presente documento solo se tomaron aquellos sistemas que componen principalmente al proceso de inyección y separación de crudo; sistemas se venteo, así como gas de instrumentos o gas combustible no se tomaron en cuenta.

La identificación de los nodos analizados se podrán observar en el ANEXO A.

3.2 Aplicación de la Metodología de Identificación de Riesgos.

Para la identificación de peligros en la sección de proceso se utilizó la metodología HazOp: obteniéndose los siguientes nodos como se muestra en la siguiente tabla.

Tabla 3.2-1 Nodos Analizados para la Metodología HazOp

Nodos	Condiciones de	Alcance del Nodo	Planos
	diseño/Parámetros		
1. Línea de producción, manifold de producción y separadores de prueba y de totales MBD-201-203.	Presión Op: (psi):20- 40 Temperatura Op: (°F):60-70	Inicia cabezal de producción de 2" en pozos 5XD, 9D, 11D, manifold de producción que incluye separadores de prueba y totales MBD-201-203, línea de salida de gas de 3" y manifold de gas de 6" hasta válvula de 12" en scrubber de succión de compresor.	PE01010-F-PI-004 PE01010-F-PI-005
Scrubber de succión de compresor CAS-401	MBF-301: Presión Op:: (psi):20- 40 Temperatura Op:: (°F):60-70	Inicia en válvula de 12" en entrada a scrubber de succión del compresor MBF-301, línea de salida de gas de 8" hacia filtros MAJ-302A/B hacia succión de compresor, salida de crudo hasta válvula LV de control de nivel.	PE01010-F-PI-005
3. Compresor CAS- 401	Presión de succión/descarga del compresor (psi):20- 40/920	404 1/2	PE01010-F-PI-005 PE01010-F-PI-006
4. Almacenamiento de crudo (Tanque trapezoidal) ABJ- 601	Presión Op:: (psi):atm Temperatura Op:: (°F):atm	11/	PE01010-F-PI-007 PE01010-F-PI-004
 Línea de gas de inyección de alta presión a pozos 	Presión Op:: (psi): 3,475	Inicia en la llegada de línea de 3" desde Plataforma SP1A y línea de inyección de 3" a pozos inyectores.	PE01010-F-PI-003

Nota: Los nodos marcados a analizar se muestran en el ANEXO A

3.3 Relación y Ponderación de Escenarios Identificados.

Una vez realizada la identificación de riesgos a través de la metodología identificación HazOp: se procedió a realizar la jerarquización de riesgos se tomó como referencia el Procedimiento para Realizar Análisis de Riesgo de Procesos en PEMEX Exploración y Producción "Guías Técnicas para realizar Análisis de Riesgo de Proceso" clave 800-16400-DCO-GT-75, Rev. 1. La ponderación de las desviaciones para cada una de las afectaciones: Daño al Personal (DP), Impacto Ambiental (IA), Pérdida de producción (PP), Daño a la instalación (DI) y Daño a terceros (DTER).

Es importante señalar que la utilización de la metodología de jerarquización, es la pauta para el análisis cuantitativo a desarrollar, de igual forma como parte de este estudio será necesario el llevar a cabo la selección de los principales escenarios de riesgo, conforme a los resultados de la matriz de ponderación de riesgos tomando como base aquellos escenarios que se encuentren dentro de la zona intolerable o ALARP.

Una vez jerarquizados los riesgos y tomando como referencia lo descrito en el documento "Guías Técnicas para realizar Análisis de Riesgo de Proceso" clave 800-16400-DCO-GT-75, Rev. 1, se consideró necesario el evaluar todos aquellos escenarios con pérdida de contención, los cuales involucran un posible daño al personal o a la instalación; aun considerando que derivado de la jerarquización realizada por el grupo multidisciplinario los escenarios de riesgo identificados se encuentran en la Región de Riesgo Tolerable "C" (región verde); y que derivado de los resultados obtenidos a través de las técnicas cuantitativas poder comparar la tipificación cualitativamente y poder catalogar el riesgo en base al nivel de riesgo actual de la instalación.

Una vez realizada la identificación de riesgos, se llevó a cabo la selección de los escenarios que representan la pérdida de contención del material manejado, por lo que es posible plantear los siguientes escenarios hipotéticos de Riesgo.

Tabla 3.3 -1. Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 1. Línea de producción, manifold de producción y separadores de prueba y de totales MBD-201-203.

ID Equipos: Inicia en línea de producción de 2" en pozos 5XD,9D,11D, manifold de producción de 6" hacia separadores de prueba y totales MBD-201-203, salida de gas de 3" y manifold de gas de 6" hasta válvula de 12" en scrubber de succión de compresor.

Condiciones de Diseño/Parámetros: Presión Op: (psi):20-40

Desviación	Causas	Consecuencias	Salvaguardas		Daño erso			Impac		Ins	Daño			Pérdi oduc		F	Efect		Recomendaciones
20011001011				F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
1. Más Presión	1. Cierre de válvula manual BF-30101 en la línea de gas 12"-SP1-20004- CB20-B a la entrada del Scrubber MBF- 301	de producción, Manifold de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y	1. PCV 30110 en línea de 6-VC-SP- 30103- CB20-8 hacia el sistema de venteo	2	2	D	2	1	D	2	1	D	2	2	D	2	1	D	
		posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones.	PSV de Separadores MBD-201-203 Disco de ruptura PSE hacia sistema de venteo	_															
	Apertura de la válvula de estrangulamiento por falla mecánica a la llegada de pozos	Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones.	1. PSV de Separadores MBD-201-203 2. Disco de ruptura PSE hacia sistema de venteo	3	2	С	3	2	С	3	1	D	3	2	С	3	1	D	Implementar un PIT en bajante de producción configurado a un SDMC con alarmas por alta y baja presión
	3. Cierre de la válvula PCV-30110 en línea de 6-VC-SP-30103- CB20-8	Sin consecuencias de interés																	

Tabla 3.3 -1. Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 1. Línea de producción, manifold de producción y separadores de prueba y de totales MBD-201-203.

ID Equipos: Inicia en línea de producción de 2" en pozos 5XD,9D,11D, manifold de producción de 6" hacia separadores de prueba y totales MBD-201-203, salida de gas de 3" y manifold de gas de 6" hasta válvula de 12" en scrubber de succión de compresor.

Condiciones de Diseño/Parámetros: Presión Op: (psi):20-40

Desviación	Causas	Consecuencias	Salvaguardas)año ersoi			Impac			Daño stalao			Pérdic		F	Efect Pobla		Recomendaciones
			3	F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
2. Menos Presión	Bloqueo o restricción de la válvula de estrangulamiento por falla mecánica a la llegada de pozos.	Pérdida de producción, con posible abatimiento de pozos	1. Ninguna	3	1	D	3	1	D	3	1	D	3	2	С	3	1	D	1. Implementar un PIT en bajante de producción configurado a un SDMC con alarmas por alta y baja presión
	Bloqueo o restricción aguas arriba (Cierre de válvula manual por error humano en arreglo típico de producción)	Pérdida de producción, con posible abatimiento de pozos	1. Ninguna	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	
	3. Apertura del By- Pass de la PSV a la salida de los separadores MBF-201/203/203 por error humano	Venteo de gas a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación	Señal de alarma por baja presión de compresor	3	1	D	3	3	С	3	1	D	3	1	D	3	1	D	Implementar un PIT en separadores de prueba y totales configurado a un SDMC con
	por enor numano	succión del compresor con paro de compresor	Protecciones propias del compresor																alarmas por alta y baja presión
		 Pérdida de producción 																	
	 No Hay suministro de gas lift para la estimulación de pozos 	Pérdida de producción	1. Ninguna	3	1	D	3	1	D	3	1	D	3	1	D	3	1	D	
3. Más Temperat ura	Sin causas de interés en este nodo																		

Tabla 3.3 -1. Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 1. Línea de producción, manifold de producción y separadores de prueba y de totales MBD-201-203.

ID Equipos: Inicia en línea de producción de 2" en pozos 5XD,9D,11D, manifold de producción de 6" hacia separadores de prueba y totales MBD-201-203, salida de gas de 3" y manifold de gas de 6" hasta válvula de 12" en scrubber de succión de compresor.

Condiciones de Diseño/Parámetros: Presión Op: (psi):20-40

Desviación	Causas	Consecuencias	Salvaguardas)año erso			Impac		Ins	Daño stalao			Pérdi oduc		F	Efec Pobla		Recomendaciones
			3.1	F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
 Menos Temperat ura 	Sin causas de interés en este nodo																		
5. Más Flujo	Sin causas de interés en este nodo																		
6. No/Menos Flujo	Sin causas de interés en este nodo																		
7. Más Nivel	Cierre de válvula LV por falla del lazo de control en línea de salida de separadores MBF-201/203/203.	Aumento de nivel con posible arrastre de hidrocarburo hacia el MBF-301	1. Ninguna	3	1	D	3	1	D	3	2	С	3	2	С	3	1	D	3. Implementar un LIT en tanques MBD-201-203 configurado a un SDMC con alarmas por alto y bajo flujo
	2. Taponamiento del filtro en línea de crudo a la salida de separadores MBF- 201/203/203.	Aumento de nivel con posible arrastre de hidrocarburo hacia el MBF-301	1. Ninguna	2	1	D	2	1	D	2	2	D	2	2	D	2	1	D	4. Instalar una PDAH en filtro MAJ-201-203 en la línea de salida de separadores
	Cierre de válvula manual de 4" EF-20001 por error humano en línea de salida hacia tanque trapezoidal ABJ-601	Aumento de nivel con posible arrastre de hidrocarburo hacia el MBF-301	1. Ninguna	2	1	D	2	1	D	2	2	D	2	2	D	2	1	D	
8. Menos Nivel	Apertura de válvula LV por falla del lazo de control en línea de salida de los separadores MBF- 201/203/203.	Caída de presión en el MBF-301 con paro de compresor y pérdida de producción	1. Ninguna	3	1	D	3	1	D	3	2	С	3	2	С	3	1	D	3. Implementar un LIT en tanques MBD-201-203 configurado a un SDMC con alarmas por alto y bajo flujo

Tabla 3.3 -1. Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 1. Línea de producción, manifold de producción y separadores de prueba y de totales MBD-201-203.

ID Equipos: Inicia en línea de producción de 2" en pozos 5XD,9D,11D, manifold de producción de 6" hacia separadores de prueba y totales MBD-201-203, salida de gas de 3" y manifold de gas de 6" hasta válvula de 12" en scrubber de succión de compresor.

Condiciones de Diseño/Parámetros: Presión Op: (psi):20-40

Desviación	Causas	Consecuencias	Salvaguardas)año ersoi			Impac		Ins	Daño stalao			érdic			Efect oblac		Recomendaciones
				F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
		Arrastre de gas amargo hacia tanque trapezoidal ABJ-601 con posible formación de nube tóxica																	12. Implementar un sistema de candados para el By-Pass con rotulación legible indicando normalmente Cerrada
	2. Apertura de válvula manual de 2" por error humano en línea de drenaje del MBF-201/203/203.	Arrastre de gas amargo hacia tanque trapezoidal ABJ-601 con posible formación de nube tóxica		2	1	D	2	1	D	2	2	D	2	2	D	2	1	D	

Tabla 3.3-2 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 2. Scrubber de succión de compresor CAS-401

ID Equipos: Inicia en válvula de 12" en entrada a scrubber de succión del compresor MBF-301, línea de salida de gas de 8" hacia filtros MAJ-302A/B hacia succión de compresor, salida de crudo hasta válvula LV de control de nivel.

Condiciones de Diseño/Parámetros: MBF-301:

Desviación	Causas	Consecuencias	Salvaguardas)año erso	nal	Δ	Impac mbier	ntal	Ins	Daño stalao	ción		érdio	ción	P	Efecto oblac	ión	Recomendaciones
				F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
1. Más Presión	Cierre de válvula manual en línea de 6" a la entrada del compresor CAS-401	Sobrepresión en el MBF-301 con fuga de gas amargo y posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	1. PCV 30110 en línea de 6-VC- SP-30103- CB20-8 hacia el sistema de venteo	2	1	D	2	1	D	2	2	D	2	2	D	2	1	D	
		No hay alimentación de gas de arranque para compresor CAS-401 con paro de máquina Pérdida de producción	2. PSV-30102																
	2. Cierre de válvula PCV-30106 a la entrada del compresor CAS-401	1. Sobrepresión en el MBF-301 con fuga de gas amargo y posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	1. PCV 30110 en línea de 6-VC- SP-30103- CB20-8 hacia el sistema de venteo	2	1	D	2	1	D	2	2	D	2	2	D	2	1	D	5. Implementar un PIT en el compresor CAS- 401 configurado a un SDMC con alarmas por alta y baja presión
		No hay alimentación de gas de arranque para compresor CAS-401 con paro de máquina Pérdida de producción	2. PSV-30102																

Tabla 3.3-2 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 2. Scrubber de succión de compresor CAS-401

ID Equipos: Inicia en válvula de 12" en entrada a scrubber de succión del compresor MBF-301, línea de salida de gas de 8" hacia filtros MAJ-302A/B hacia succión de compresor, salida de crudo hasta válvula LV de control de nivel.

Condiciones de Diseño/Parámetros: MBF-301:

Desviación	Dp: (*F):60-70 Causas	Consecuencias	Salvaguardas		año ersoi			Impac		Ins	Daño			érdic			Efect		Recomendaciones
			3	F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
	Paro de compresor CAS-401 por falla mecánica	 Sobrepresión en el MBF-301 con fuga de gas y posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación. 	1. PCV 30110 en línea de 6-VC- SP-30103- CB20-8 hacia el sistema de venteo	3	1	D	3	1	D	3	1	D	3	2	С	3	1	D	7. Implementar un PIT en separador MBF- 301 configurado a un SDMC con alarmas por alta y baja presión
		No hay alimentación de gas de arranque para compresor ocasionando paro de máquina	2. PSV-30102																
2. Menos Presión	1. Cierre de válvula manual por error humano BF-30101 en la línea de gas 12"'-SP1-20004- CB20-B a la entrada del Scrubber MBF- 301	 Pérdida de producción No hay alimentación de gas de arranque para compresor CAS-401 con paro de máquina Pérdida de producción 	1. Ninguna	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	5. Implementar un PIT en el compresor CAS-401 configurado a un SDMC con alarmas por alta y baja presión
	Apertura de válvula PCV-30110 en línea de venteo	No hay alimentación de gas de arranque para compresor CAS-401 con paro de máquina Pérdida de producción	1. Ninguna	2	1	D	2	2	D	2	1	D	2	1	D	2	1	D	

Tabla 3.3-2 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 2. Scrubber de succión de compresor CAS-401

ID Equipos: Inicia en válvula de 12" en entrada a scrubber de succión del compresor MBF-301, línea de salida de gas de 8" hacia filtros MAJ-302A/B hacia succión de compresor, salida de crudo hasta válvula LV de control de nivel.

Condiciones de Diseño/Parámetros: MBF-301:

Desviación	Op: (°F):60-70 Causas	Consecuencias	Salvaguardas		año ersoi			Impac		Ins	Daño stalao			érdio	ción	P	Efect oblac		Recomendaciones
				F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
	3. Válvula PSV-30102 calzada del Scrubber MBF-301	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	1. Ninguna	3	1	D	3	1	D	3	1	D	3	1	D	3	1	D	
		Pérdida de producción																	
3. Más Tempera tura	Sin causas de interés en este nodo																		
4. Menos Tempera tura	Sin causas de interés en este nodo																		
5. Más Flujo	Sin causas de interés en este nodo																		
6. No/Meno s Flujo	Sin causas de interés en este nodo																		
7. Más Nivel	30104 por falla en lazo de control en línea de descarga de crudo del Scrubber MBF-301	Aumento de nivel con posible arrastre de crudo y daño mecánico al compresor Paro de compresor con pérdida de producción Taponamiento de filtros MAJ-302A/B	1. Ninguna	3	1	D	3	1	D	3	1	D	3	2	С	3	1	D	8. Implementar un LIT en el MBF- 301 configurado a un SDMC con alarmas por alto y bajo flujo.

Tabla 3.3-2 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 2. Scrubber de succión de compresor CAS-401

ID Equipos: Inicia en válvula de 12" en entrada a scrubber de succión del compresor MBF-301, línea de salida de gas de 8" hacia filtros MAJ-302A/B hacia succión de compresor, salida de crudo hasta válvula LV de control de nivel.

Condiciones de Diseño/Parámetros: MBF-301:

Desviación	Causas	Consecuencias	Salvaguardas)año ersoi			Impac			Daño			erdic			Efect		Recomendaciones
				F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
	Cierre de válvula manual BF-30102 de 2" en línea de descarga de crudo por error humano del Scrubber MBF-301	Aumento de nivel con posible arrastre de crudo y daño mecánico al compresor Paro de compresor con pérdida de producción	1. Ninguna	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	
8. Menos Nivel	Apertura de la válvula LV 30104 por falla en lazo de control en la línea de descarga de crudo del Scrubber MBF- 301	Baja presión a la succión de compresor con paro de máquina Pérdida de producción con pérdida económica	Shut Down de compresor por baja presión	3	1	D	3	1	D	3	1	D	3	2	С	3	1	D	8. Implementar un LIT en el MBF- 301 configurado a un SDMC con alarmas por alto y bajo flujo.
	Apertura de válvula GF-30103 del By pass en descarga de salida a drenaje del Scrubber MBF-301	1. Baja presión a la succión de compresor con paro de máquina 2. Pérdida de producción con pérdida económica	Shut Down de compresor por baja presión	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	

Tabla 3.3-3 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 3. Compresor CAS-401

Condiciones de Diseño/Parámetros: Presión de succión/descarga del compresor (psi):20-40/920

ID Equipos: Inicia en compresor de gas CAS-401, línea de descarga de 3", incluye scrubber de gas lift MBF-302, línea de salida de condensados hasta válvula de nivel LV-30204,

incluye línea de 3" hacia manifold de distribución de gas lift, línea de 2" hacia el manifold de gas lift a pozos terminando en compresor de estimulación de pozos.

Desviación	Causas	Consecuencias	Salvaguardas)año erso			Impa Ambi		lı	Daño nstalao	-	_	Pérdic oduc			Efect oblac		Recomendaciones
				F	DP	MR	F	= IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
1. Más Presión	Cierre de válvula manual de 3" BF- 30201 por error humano en la línea de salida de compresor CAS-401	Sobrepresión en línea de descarga de compresor con fuga en uniones bridadas con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	PAH por alta presión (PAH propia del equipo)	2	2	D	2	2	D	2	2	D	2	2	D	2	1	D	
		Pérdida de producción y económica por falta de suministro de gas para estimular pozos																	
	Cierre de válvula manual de 3" BF- 40005 por error humano en línea de envió de gas a Manifold de gas lift	Sobrepresión en línea de descarga de compresor con fuga en uniones bridadas con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	1. PSV-30202 en el tanque MBF- 302	2	2	D	2	2	D	2	2	D	2	2	D	2	1	D	
		Pérdida de producción y económica por falta de suministro de gas para estimular pozos	Paro de compresor por alta presión																
2. Menos Presión	Paro de compresor CAS-401 por falla mecánica	No hay envió de gas lift para estimulación de pozos, con pérdida de producción y pérdida económica	1. Ninguna	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	5. Implementar un PIT en el compresor CAS- 401 configurado a un SDMC con alarmas por alta y baja presión

Tabla 3.3-3 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 3. Compresor CAS-401

Condiciones de Diseño/Parámetros: Presión de succión/descarga del compresor (psi):20-40/920

ID Equipos: Inicia en compresor de gas CAS-401, línea de descarga de 3", incluye scrubber de gas lift MBF-302, línea de salida de condensados hasta válvula de nivel LV-30204,

incluye línea de 3" hacia manifold de distribución de gas lift, línea de 2" hacia el manifold de gas lift a pozos terminando en compresor de estimulación de pozos.

Desviación	Causas	Consecuencias	Salvaguardas)año ersoi			Impa		lı	Daño nstalao		-	Pérdic			Efecto oblac		Recomendaciones
			Jan and Jan and	F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
	2. Válvula PSV-30202 calzada del Scrubber MBF-302 cuando no se requiere	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	1. Ninguna	3	1	D	3	1	D	3	1	D	3	1	D	3	1	D	
		 No hay envió de gas lift para estimulación de pozos, con pérdida de producción y pérdida económica 																	
	3. Válvula PCV- 40201/40301 calzada del MBF- 302	Descenso de presión hacia estimulación de pozos con posible pérdida de producción y económica	1. PSV-40202	3	1	D	3	1	D	3	1	D	3	1	D	3	1	D	
		2. Sobrepresión en tanque MBL-402/403	2. PSV-40302																
 Más Temperat ura 	Sin causas de interés en este nodo																		
Menos Temperat ura	Sin causas de interés en este nodo																		
5. Más Flujo	Sin causas de interés en este nodo																		
6. No/Meno s Flujo	Sin causas de interés en este nodo																		
7. Más Nivel	Cierre de válvula de nivel LV-30204 por falla del lazo de control del MBF-302	Arrastre de condensados a compresor de pozos Pérdida de producción con pérdida económica	1. Ninguna	3	1	D	3	1	D	3	1	D	3	1	D	3	1	D	

Tabla 3.3-3 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp.

Nodo: 3. Compresor CAS-401

Condiciones de Diseño/Parámetros: Presión de succión/descarga del compresor (psi):20-40/920

ID Equipos: Inicia en compresor de gas CAS-401, línea de descarga de 3", incluye scrubber de gas lift MBF-302, línea de salida de condensados hasta válvula de nivel LV-30204,

incluye línea de 3" hacia manifold de distribución de gas lift, línea de 2" hacia el manifold de gas lift a pozos terminando en compresor de estimulación de pozos.

Desviación	Causas	Consecuencias	Salvaguardas		año ersor	al		lmpa mbie	cto		Daño nstalao	0	F	Pérdic	la		Efect		Recomendaciones
Doovidoioii	Judgus	Conocoucholac	- Janvagaaraa	F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	rtocomenadorenes
	Cierre de válvula BF-30202 de 2" en línea de descarga de condensados por error humano del MBF-302	Arrastre de condensados a compresor de pozos Pérdida de producción con pérdida económica	1. Ninguna	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	
8. Menos Nivel	Apertura de válvula de nivel LV-30204 por falla del lazo de control del MBF-302	Descenso en la producción con pérdida económica por falta de presión en el suministro de gas lift para la estimulación de pozos. Envío de gas a Manifold de producción	1. Ninguna	3	1	D	3	1	D	3	1	D	3	2	С	3	1	D	6. Implementar un LIT en el MBF- 302 configurado a un SDMC con alarmas por alto y bajo flujo.
	2. Apertura de válvula de 2" de by pass (GF-30203) por error humano del MBF-302	Descenso en la producción con pérdida económica por falta de presión en el suministro de gas lift para la estimulación de pozos. Envío de gas a Manifold de producción	1. Ninguna	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	

Tabla 3.3-4 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp

Nodo: 4. Almacenamiento de crudo (Tanque trapezoidal) ABJ-601

ID Equipos: Inicia a partir de válvulas de nivel LV en separadores de prueba y totales, línea de 3" hasta la interconexión con el cabezal línea 4"-HL-SP1-20002-CB20-B de envío de crudo-agua hacia tanque trapezoidal, tanque trapezoidal ABJ-601 y línea de salida de 8"-HL-SP1-60101-CB20-B, incluye filtros y bomba PBA-601 hasta línea de salida

Condiciones de Diseño/Parámetros: Presión Op: (psi):atm

Temperatura Op: (°F):atm

Desviación	Causas	Consecuencias	Salvaguardas	Р	Daño a erson	al	Δ	1	ntal	_	Dar nstala	ción	Pr	rodu	dida cciór		Efect Pobla	ción	Recomendaciones
				F	DP	MR	F	IA	MR	F	DI		F		MF		EP	MR	
1. Más Presión	Cierre de válvula manual de 8" por error humano EF- 60111 en línea de descarga de bomba PBA-601	Sobrepresión en línea de descarga de la bomba con posible fuga de aceite en uniones bridadas y posible formación de nube tóxica, explosión, incendio al personal medio ambiente y a las instalaciones.	1. PAHH-60102	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	
		2. Daño a la bomba PBA- 601	2. PSHL-60102																
		Incremento de nivel en el ABJ-601 (ver desviación de más nivel en este nodo)																	
	Cierre de válvula EF- 6019 por error humano a la succión de la bomba PBA- 601	Aumento de nivel en tanque, con derrame de crudo y daño al medio ambiente (ver causas de más nivel en este nodo)	1. PAL -60101	2	1	D	2	1	D	2	1	D	2	2	D	2	1	D	
		2. Daño a la bomba PBA- 601	2. PSL-60101																
	Expansión térmica por condiciones climatológicas	Posible daño mecánico del tanque ABJ-601, con derrame de crudo y daño al medio ambiente	1. PVSV-60101 2. PSE-60102	4	1	D	4	1	D	4	1	D	4	1	D	4	1	D	

Tabla 3.3-4 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp

Nodo: 4. Almacenamiento de crudo (Tanque trapezoidal) ABJ-601

ID Equipos: Inicia a partir de válvulas de nivel LV en separadores de prueba y totales, línea de 3" hasta la interconexión con el cabezal línea 4"-HL-SP1-20002-CB20-B de envío de crudo-agua hacia tanque trapezoidal, tanque trapezoidal ABJ-601 y línea de salida de 8"-HL-SP1-60101-CB20-B, incluye filtros y bomba PBA-601 hasta línea de salida

Condiciones de Diseño/Parámetros: Presión Op: (psi):atm

Temperatura Op: (°F):atm

Desviación	Causas	Consecuencias	Salvaguardas		Daño a erson			Impa Ambi		ı	Daño nstalao			Pérc odu	lida cciór		Efect Pobla		Recomendaciones
				F	DP	MR	₹ F	IA	MR	F	DI	MR	F	PF	MF	F	EP	MR	
2. Menos Presión	Taponamiento del filtro MAJ-601 de canasta de succión de bomba	Cavitación de bomba PBA-601, con derrame de crudo y daño al medio ambiente.	1. PAL -60101	4	1	D	4	1	D	4	1	D	4	1	D	4	1	D	9. Implementar un PIT en el filtro tipo canasta MAJ-601
		 aumento de nivel en tanque (Ver desviación de más nivel en este nodo) 	2. PALL- 60101																configurado a un SDMC con una PDAH.
	Apertura de válvula de presión-vacío PVSV-60101 del tanque ABJ-601	 Venteo de gas a la atmósfera y daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación 	1. Ninguna	3	2	С	3	2	С	3	2	С	3	1	D	3	1	D	 Instalar sistemas de detección de gas tóxico.
3. Más Nivel	1. Paro de bomba PBA-601	Aumento de nivel en tanque, con derrame de crudo con posible formación de nube tóxica con daño al personal, a la instalación y daño al medio ambiente	1. LAH del tanque ABJ-601	3	1	D	3	1	D	3	1	D	3	1	D	3	1	D	
	Taponamiento del filtro MAJ-601 de canasta de succión	Aumento de nivel en tanque, con derrame de crudo con posible formación de nube tóxica con daño al personal, a la instalación y daño al medio ambiente	1. LAH del tanque ABJ-601	4	1	D	4	1	D	4	1	D	4	1	D	4	1	D	9. Implementar un PIT en el filtro tipo canasta MAJ-601 configurado a un SDMC con una PDAH.

Tabla 3.3-4 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp

Nodo: 4. Almacenamiento de crudo (Tanque trapezoidal) ABJ-601

ID Equipos: Inicia a partir de válvulas de nivel LV en separadores de prueba y totales, línea de 3" hasta la interconexión con el cabezal línea 4"-HL-SP1-20002-CB20-B de envío de crudo-agua hacia tanque trapezoidal, tanque trapezoidal ABJ-601 y línea de salida de 8"-HL-SP1-60101-CB20-B, incluye filtros y bomba PBA-601 hasta línea de salida

Condiciones de Diseño/Parámetros: Presión Op: (psi):atm

Temperatura Op: (°F):atm

Desviación	Causas	Consecuencias	3		año a ersona			lmpa mbie		I	Dañ nstala			Pérdida Producción		Efectos Población			Recomendaciones	
				F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR		
	 Cierre de válvula manual de 8" por 	1. Daño a la bomba PBA- 601	LAH del tanque ABJ-601	2	1	D	2	1	D	2	1	D	2	1	D	2	1	D		
601 desc PBA	error humano EF- 60111 en línea de descarga de bomba PBA-601	Incremento de nivel en el ABJ-601, con derrame de crudo con posible formación de nube tóxica con daño al personal, a la instalación y daño al medio ambiente																		
	Cierre de válvula EF- 60109 por error humano a la succión de la bomba PBA- 601	Aumento de nivel en tanque, con derrame de crudo y daño al medio ambiente (ver causas de más nivel en este nodo)	1. LAH del tanque ABJ-601	2	1	D	2	1	D	2	1	D	2	1	D	2	1	D		
4. Menos Nivel	1. Apertura de válvula manual de drenaje EF-60101 por error humano del tanque ABJ-601 1. Posible saturación de tanques de residuos MBH-305 2. Formación de vació con daño mecánico a 2. LAL del tanque ABJ-601	1. PVSV-60101	2	2	2	1	D	2	1	D	2	1	D	2	1	D	2	1	D	
	 Cierre de válvula manual de 4" en la línea de salida de separadores MBD- 201/202/203 	1. Cavitación de bomba PBA-601	1. LAL del tanque ABJ-601	2	1	D	2	1	D	2	1	D	2	1	D	2	1	D		

Tabla 3.3-5 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp

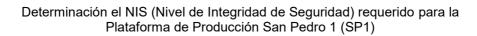
Nodo: 5. Línea de gas de inyección de alta presión a pozos

ID Equipos: Inicia en la llegada de línea de 3" desde Plataforma SP1A y línea de inyección de 3" a pozos inyectores.

Condiciones de Diseño/Parámetros: Presión Op: (psi): 3,475

Desviación	Causas	Consecuencias	Salvaguardas)año erso			Impa Ambi		ı	Daño Instalao		Péro Produ		n		fecto blac		Recomendaciones
			_	F	DP	MR	F	: IA	MR	F	: DI	MR	F PF	M	IR	F	EP	MR	
1. Más Presión	Cierre de válvula manual de 3" por error humano en línea de inyección a pozos.	Sobrepresión en línea de inyección de gas de alta presión con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente No hay inyección de gas para estimación de	1. Ninguna	2	3	С	2	3	С	2	3	С	2 2	D	2	2	2	D	11. Implementar un PIT en línea de alimentación de gas hacia pozos SPI-POZO 1SXT y SPI-POZO 10 DST configurado al SDMC con alarmas por alta y baja
		pozos con pérdida de producción y posible abatimiento de pozos																	presión.
	Bloqueo o restricción de la válvula de estrangulamiento aguas arriba del manifold de inyección de gas.	de inyección de gas de alta presión aguas arriba del manifold de inyección de gas, con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente 2. No hay inyección de gas para estimación de pozos con pérdida de	1. Ninguna	2	3	С	2	3	С	2	3	С	2 2	D	2		2	D	11. Implementar un PIT en línea de alimentación de gas hacia pozos SPI-POZO 1SXT y SPI-POZO 10 DST configurado al SDMC con alarmas por alta y baja presión.
		producción y posible abatimiento de pozos																	
2. Menos Presión	Falla de compresor en plataforma de compresión	No hay inyección de gas para estimación de pozos con pérdida de producción y posible abatimiento de pozos	1. Ninguna	3	1	D	3	1	D	3	1	D	3 1	D	3		1	D	

Tabla 3.3-5 Ponderación de los Riesgos Identificados Mediante la Metodología HazOp


Nodo: 5. Línea de gas de invección de alta presión a pozos

ID Equipos: Inicia en la llegada de línea de 3" desde Plataforma SP1A y línea de inyección de 3" a pozos inyectores.

Condiciones de Diseño/Parámetros: Presión Op: (psi): 3,475

Desviación Causas	Causas	Consecuencias	cias Salvaguardas	Daño al Personal		Impacto Ambiental			Daño Instalación			Pérdida Producción			Efectos Población			Recomendaciones	
				F	DP	MR	F	IA	MR	F	DI	MR	F	PP	MR	F	EP	MR	
3. Más Tempera tura	Sin causas de interés en este nodo																		
4. Menos Tempera tura	Sin causas de interés en este nodo																		
5. Más Flujo	Sin causas de interés en este nodo																		
6. No/Meno s Flujo	Sin causas de interés en este nodo																		
7. Más Nivel	Sin causas de interés en este nodo																		
8. Menos Nivel	Sin causas de interés en este nodo																		

Como alcance de este documento se hace mención únicamente a aquellas desviaciones de proceso identificadas y que impliquen la pérdida de contención de la materia peligrosa a manejar y que fueron identificados a través de la metodología HazOp, los cuales son susceptibles a una evaluación detallada de sus consecuencias a través del modelo de simulación Phast. 7.11., cuyos resultados podrán ser visualizados en el capítulo siguiente.

CAPÍTULO IV ANALISIS DE CONSECUENCIAS

4.1 Tipificación de Escenarios

Los criterios y datos que se consideraron para la estimación de consecuencias y que fueron alimentadas al simulador, así como los resultados de las consecuencias obtenidas a partir de la simulación con el software se presentan en las siguientes secciones, en tanto que los resultados arrojados por el programa de simulación PHAST 7.11 correspondientes para la instalación a estudiar se desarrolla en el punto 4.20 dentro del presente capitulo.

Es importante señalar que en apego a lo descrito en la bibliografía utilizada como referencia durante la elaboración de este documento: Guía técnica para realizar Análisis de Riesgo de Proceso con clave 800-16400-DCO-GT-75, del 2012, así como del documento denominado Criterios técnicos para simular escenarios de riesgo por fugas y derrames de sustancias peligrosas, en instalaciones de Petróleos Mexicanos con clave DCO-GDOESSSPA-CT-001, Rev. 1, en la tabla siguiente podrán observarse la tipificación de los escenarios que se utilizará para la clasificación de todos aquellos eventos identificados como parte de este documento:

- ▶ Peor caso.- Corresponde a la liberación accidental del mayor inventario del material o sustancia peligrosa contenida en un recipiente, línea de proceso o ducto, la cual resulta en la mayor distancia hasta alcanzar los límites de toxicidad, sobrepresión o radiación térmica, de acuerdo a los criterios para definir las zonas intermedias de salvaguarda al entorno de la instalación.
- Caso más probable.- Con base en la experiencia operativa, es el evento de liberación accidental de un material o sustancias peligrosa, que tiene la mayor probabilidad de ocurrir.
- ➤ Caso alterno.- Es el evento creíble de una liberación accidental de un material o sustancias peligrosa que es simulado, pero que no corresponde al peor caso y al caso más probable.

Como se ha mencionado anteriormente una vez llevada a cabo la selección de los escenarios derivados de la aplicación de la metodología de identificación de riesgos siendo estos aquellos que se encuentran en una zona de riesgo no tolerable y considerando aquellos escenarios donde se ve afectado el personal, en la tabla 4.1-1 se muestran los escenarios hipotéticos que serán tomados como base para el análisis detallado de sus consecuencias con el apoyo de la herramienta informática PHAST 7.11, así mismo en base a los resultados cuantitativos serán tomados en cuenta para la determinación del Nivel de Integridad de Seguridad de la Plataforma de Producción San Pedro 1.

Tabla 4.1-1 Tipificación de Escenarios Identificados.

Escenario	Referencia HAZOP:	Hipótesis de los escenarios	Tipificación del evento final						
Nodo: 1	Nodo: 1 Línea de producción, manifold de producción y separadores de prueba y de totales MBD-201-203.								
EI.01	1.1.2.1	Fuga de Hidrocarburos debido a una sobrepresión en línea de producción, manifold de producción (Separadores de prueba y separador de Totales),con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido a la apertura por falla mecánica de la válvula de estrangulamiento.	Más Probable.						
EI.02	1.1.2.3	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación derivado de la apertura del By-Pass de la PSV a la salida de los separadores MBF-201/203/203 por error humano	Más Probable.						
	Nodo: 2	Scrubber de succión de compresor CAS-401							
EI.03	2.1.1.1	Fuga de gas amargo debido a una sobrepresión en el MBF-301 con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación derivado del paro de compresor por falla mecánica CAS-401.	Más Probable						
Nodo: 3 Compresor CAS-401									

El.04	3.1.1.1	Fuga de Gas amargo en uniones bridadas debido a una sobrepresión en línea de descarga del compresor, con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido al cierre de la válvula manual BF-30201 por error humano	Más Probable					
	Nodo 4: Aln	nacenamiento de crudo (Tanque trapezoidal) ABJ-	601					
EI.05	4.3.1.1	Venteo de Gas amargo derivado de la Apertura de la válvula de presión vacío PVSV-60101 con daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación	Más Probable					
	Nodo: 5 Línea de gas de inyección de alta presión a pozos							
El.06	5.1.1.1	Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del cierre de la válvula manual de 3"	Más Probable					
EI.07	5.1.2.1	Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del Bloqueo o restricción de la válvula de estrangulamiento	Más Probable					

4.2 <u>Criterios Utilizados para Determinar Diámetro de Orificio, Tiempos de Fuga</u> y Estabilidad Atmosférica, así como la Descripción de los Escenarios.

Tal como se ha indicado con anterioridad, para el desarrollo de este documento se ha utilizado como referencia lo indicado en el documento: Criterios Técnicos para simular escenarios de riesgo por fugas y derrames de sustancias peligrosas con clave DCO-GDOESSSPA-CT-001, para determinar los diámetros de fugas se seguirá el siguiente criterio:

Tabla 4.2-1 Criterios para Asignar diámetros de orificio

Tipo de caso	Tipo de sustancias	Criterios a considerar					
	Tóxica	En forma de gas: Fuga total del Condiciones ambientales y inventario en 10 minutos (1).					
Pero caso	Inflamable explosiva	En forma líquida: Ruptura la instalación. catastrófica del recipiente o Condiciones meteorológicas ruptura de línea de proceso o ducto.(1)(2) la instalación. Condiciones meteorológicas al momento de la fuga del material o sustancia peligrosa.					
Caso alterno	Tóxicas e inflamables explosivas	Ruptura catastrófica del recipiente o ruptura de línea de proceso o ducto(2) Diámetro equivalente de fuga. Se toman en cuenta los sistemas de seguridad pasivos y activos.					
Caso más probable	Tóxicas e inflamables explosivas	Condiciones ambientales y tipo de área de localización de instalación. Condiciones meteorológicas al momento de la fuga del materi sustancia peligrosa. Diámetro equivalente de fuga. Se toman en cuenta los sistemas de seguridad pasivos y activos					

⁽¹⁾ Considerar que la fuga ocurre al nivel del piso.

Se evaluaron los efectos máximos en caso de encontrarse una fuente de ignición. Con esto se determinaron las distancias de máxima afectación al entorno, observando las repercusiones en el personal, las instalaciones y el ambiente. Para llevar a cabo la modelación de los eventos de riesgo, se tomaron las siguientes consideraciones:

- Las características fisicoquímicas dela mezcla gas-crudo.
- Inventario liberado.
- Condiciones de Operación.
- > Diámetro de fuga o escenario de falla.

⁽²⁾ El inventario que se fuga en líneas de proceso será calculado tomando como referencia los resultados del flujo de salida estimado por Phast, el cual será asociado a un tiempo máximo de 1800 seg., dando el total del inventario a fugar en un tiempo máximo de 30 minutos.

Tabla 4.2-2 Criterios para Asignar Tiempos de Fuga

Sistemas automáticos	Tiempo de control	t fuga	Fuente
Detección de fuga con sistema automático de bloqueo (totalmente automático)	•	2 minutos	
Sistema de bloqueo a control remoto y detección de fuga automático. Detección directa a cuarto de control. El Operador valida la señal y el cierre se realiza por un swith en el cuarto de control.	válvulas de bloqueo es	10 minutos	Guideline for quantitative risk assessment, Purple book, CPR 18E, 2004, pag. 4.5.
Sistema de bloqueo Operado manualmente con detección automática de fuga. El Operador valida la señal y realiza el cierre de válvulas de bloqueo de manera local y manual.	El tiempo de cierre de	30 minutos	μα y. 4.3.

En base a la tabla 4.2-1 y a lo descrito en la tabla 4.2-2 de este apartado se señala lo siguiente:

Los tiempos de cierre para los eventos de fuga (caso más probable) estarán en función a los distintos sistemas de seguridad con los que cuente la Plataforma San Pedro 1 (Si existen), así como capas de protección existente en dicha plataforma, por lo que se consideró un tiempo máximo de 30 minutos (criterio tomado de la tabla 4.2-2) siendo este tiempo asignado para el cálculo de consecuencias en base a los criterios indicados por Guideline for quantitative risk assessment, Purple book, CPR 18E, 2004, pag 4.5.

4.3 Condiciones Ambientales y Tipo de Área de Localización de la Instalación.

Tabla 4.3-1 Criterios ambientales para simular los eventos de fuga

Para:	Peor Caso	Caso más probable	Caso alterno			
Temperatura ambie	1 001 1000					
Sustancias tóxicas	Utilizar la temperatura máxima alcanzada en los últimos tres años y la humedad relativa promedio en este mismo periodo. Si ambos datos no están disponibles, utilizar como temperatura ambiente 25°C y una humedad relativa del 50%.	Utilizar la temperatura am relativa promedio, en los d ambos datos no están dis temperatura ambiente 25° relativa del 50%.	últimos tres años. Si ponibles utilizar como			
Sustancias		ambiente y humedad relati				
inflamables	últimos tres años. Si ambos datos no están disponibles, utilizar como					
explosivas						
Presión atmosférica	l					
La correspondiente	en el sitio.					

Referencia: Criterios Técnicos para Simular Escenarios de Riesgo por Fugas y Derrames de Sustancias Peligrosas, en Instalaciones de Petróleos Mexicanos DCO-GDOESSSPA-CT-001 Rev.1

4.4 <u>Condiciones Meteorológicas al Momento de la Fuga del Material o Sustancia</u> Peligrosa.

Debe elegirse una combinación de condiciones meteorológicas, de acuerdo a la velocidad y dirección del viento a la estabilidad atmosférica en el sitio (Condiciones de pasquill), de acuerdo a los siguientes criterios:

Tabla 4.4-1 Criterios para Simular los Eventos de Fuga

Para:	Peor Caso	Caso más probable	Caso alterno			
Sustancias tóxicas, inflamables y explosivas.	categoría F. Sin embargo, meteorológicos de los tres en el sitio es mayor que 1. estable que la categoría F.	I viento 1.5 m/s y una estab si se puede demostrar, cor últimos años, que la veloci 5 y que la estabilidad atmo , utilizar estos datos para la o, utilizar la dirección prome e los últimos tres años.	n base a datos dad mínima del viento sférica es menos s simulaciones.			

Referencia: Criterios Técnicos para Simular Escenarios de Riesgo por Fugas y Derrames de Sustancias Peligrosas, en Instalaciones de Petróleos Mexicanos DCO-GDOESSSPA-CT-001 Rev.1

Este documento hace referencia a las condiciones ambientales que imperan en la zona donde se ubica la plataforma San Pedro 1 (SP1) que fueron tomadas de datos meteorológicos promedio anual de estaciones de monitoreo del Servicio Nacional e Hidrología del Perú (SENAMHI) en Piura, para llevar a cabo la evaluación de consecuencias a través del software PHAST 7.11, asimismo se considera necesario el tomar como base el realizar la evaluación de consecuencias bajo las condiciones más críticas de velocidad del viento y estabilidad (1.5 m/seg./F) señaladas como condiciones más desfavorables.

4.5 Tipos de Área de Localización de la Instalación.

Este factor, en función de los obstáculos (arboles, edificios, densidad de instalaciones industriales), influye en cuanto a la probabilidad de confinamiento de nubes tóxicas o nubes inflamables – explosivas.

Tabla 4.5-1 Criterios de localización de los eventos

Costa adentro	Costa afuera
Área rural. No hay construcciones en el área inmediata y el terreno generalmente es plano y con pocos árboles.	Área marítima.
Área urbana. Implica muchos obstáculos en el área inmediata, incluidas las construcciones y los árboles.	-
Área industrial	-
Otra	-

Referencia: Criterios Técnicos para Simular Escenarios de Riesgo por Fugas y Derrames de Sustancias Peligrosas, en Instalaciones de Petróleos Mexicanos DCO-GDOESSSPA-CT-001 Rev.1

Como criterio general se considera un ambiente marino, ya que las instalaciones objeto de estudio se encuentran costa afuera.

4.6 <u>Diámetro Equivalente de Fuga (DEF)</u>

De manera general en el documento DCO-GDOESSSPA-CT-001 (Criterios Técnicos para simular escenarios de riesgo por fugas y derrames de sustancias peligrosas) en el cual indica que para el caso de analizar eventos que involucren fugas en líneas de proceso, ductos, bridas, sellos mecánicos en equipo rotatorio, sellos o empaquetaduras en válvulas de proceso, debe utilizarse el diámetro equivalente de fuga que resulte de

una estadística de fugas de los últimos cinco años, en caso contrario si no se cuenta con esta estadística, deben utilizarse los siguientes criterios mostrados en la tabla 4.6-2.

Tabla 4.6-1 Criterios para Asignar el diámetro de fuga

	Líneas de proceso ³¼" ≤ DN ≤ 2"	DEF= 1.00 veces del diámetro nominal de la línea de proceso.					
	Línea de proceso 2" < DN ≤ 4"	DEF= 0.30 veces del diámetro nominal de la línea de proceso.					
Para el	Línea de proceso o ductos de transporte: 6" ≤ DN	DEF= 0.20 veces del diámetro nominal de la línea de proceso.					
caso alterno	Bridas	Según el diámetro de la línea de proceso, aplican los criterios anteriores (1.0*(DN),0.3*(DN) y 0.2*(DN))					
	Sellos mecánicos en equipo rotatorio de proceso	Para todos los tamaños de flechas DEF= Calcular con el 100% del área anular.					
	Sellos o empaquetaduras en válvulas de proceso	Para todos los tamaños de vástagos DEF= Calcularlo con el 100% del área anular.					
		ente, será aquel que sea determinado por el grupo de Análisis y evaluación de riesgos.					
	Líneas de proceso ³¼" ≤ DN ≤ 2"	DEF= 0.20 veces del diámetro nominal de la línea de proceso.					
	Línea de proceso 2" < DN ≤ 4"	DEF= 0.6" por corrosión, perdida de material, golpe o falla en soldadura.					
Para el caso más probabl	Línea de proceso o ductos de transporte: 6" ≤ DN	DEF= 0.75" para DN de 6" a 14" DEF= 1.25" para DN de 16" a 24" DEF= 2.0" para DN mayores a 30" (por corrosión, perdida de material, golpe o falla en soldadura)					
е	Bridas	Aplican los mismos criterios de las líneas de proceso para los casos más probables.					
	Sellos mecánicos en equipo rotatorio de proceso. Empaquetaduras en válvulas de proceso	DEF= Calcularlo con el 40% del área anular que resulte.					
	multidisciplinario	ente, será aquel que sea determinado por el grupo de Análisis y evaluación de riesgos.					

Referencia: Criterios Técnicos para Simular Escenarios de Riesgo por Fugas y Derrames de Sustancias Peligrosas, en Instalaciones de Petróleos Mexicanos DCO-GDOESSSPA-CT-001 Rev.1

En referencia a la tabla anterior y tomando como justificación los criterios establecidos, en la tabla siguiente se pueden observar los diámetros de fuga asignados a las hipótesis accidentales a estudiar.

Tabla 4.6-2. Diámetros de Orificio Resultantes.

Escenario	Descripción de la Hipótesis del Escenario	Tipificación de Evento Final	Diámetro de Fuga (in)
EI.01	Fuga de Hidrocarburos debido a una Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales),con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido a la apertura por falla mecánica de la válvula de estrangulamiento.	Más Probable	0.6
El.02	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación derivado de la apertura del By-Pass de la PSV a la salida de los separadores MBF-201/203/203 por error humano	Más Probable.	0.6
EI.03	Fuga de Gas amargo debido a una Sobrepresión en el MBF-301 con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación derivado del paro de compresor por falla mecánica CAS-401.	Más Probable	0.75
EI.04	Fuga de Gas amargo en uniones bridadas debido a una sobrepresión en línea de descarga del compresor, con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido al cierre de la válvula manual BF-30201 por error humano	Más Probable	0.6
EI.05	Venteo de Gas amargo derivado de la Apertura de la válvula de presión vacío PVSV-60101 con daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación	Más Probable	0.75
EI.06	Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del cierre de la válvula manual de 3"	Más Probable	0.6
EI.07	Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del Bloqueo o restricción de la válvula de estrangulamiento	Más Probable	0.6

4.7 Inventario de Fuga.

Al tener una masa propuesta se hace una simulación con los mismos parámetros establecidos en la simulación y el mismo programa nos otorga después la masa que se liberó. Esa misma masa es la que se ocupa para hacer las simulaciones correspondientes para cada escenario. Se toma esa masa otorgada por el programa porque es en si la única cantidad que se podría escapar por una fuga o ruptura.

Los inventarios de fuga estimados, así como los diversos criterios para realizar la evaluación de consecuencia podrán ser observados en la tabla 4.19-4.

Para el caso de la evaluación de consecuencias y en consideración al crudo marino y gas natural se estima la utilización una mezcla representativa, asimismo se señala que las condiciones representativas y de Operación utilizada son las que se encontrará operando la Plataforma de Producción San Pedro 1.

Tabla 4.7-1 Composición de Crudo

l abia 4.7-1 Composicion de Crudo					
COMPUESTO	ACEITE DESHIDRATADO % MOL	Tb (°C)	РМ	DENSIDAD (°API)	
N2	0.000				
CO2	0.034				
H2S	0.364				
Metano	0.115				
Etano	0.344				
Propano	1.341				
Iso-Butano	0.818				
n-Butano	2.755				
Iso-Pentano	2.077				
n-Pentano	3.183				
Metilciclopentano	0.795				
Ciclohexano	0.699				
Metilciclohexano	1.328				
Benceno	0.348				
Tolueno	0.708				
Etil-Benceno	0.264				
p-Xileno	2.060				
Corte-01	6.528	66.45	85.30	70.18	
Corte-02	5.604	86.81	93.62	64.06	
Corte-03	7.940	118.81	108.35	55.69	
Corte-04	12.156	149.95	124.81	50.13	
Corte-05	9.473	180.63	143.21	45.43	
Corte-06	9.599	211.58	164.11	41.78	
Corte-07	7.298	244.52	189.13	38.42	
Corte-08	9.136	284.25	223.35	34.79	
Corte-09	5.886	335.16	274.14	30.67	
Corte-10	2.337	392.24	341.13	26.12	
Corte-11	3.116	430.98	393.13	23.36	
Corte-12	0.093	484.07	473.57	20.24	
Corte-15	0.619	631.47	758.56	13.90	
Agua	2.980				
TOTAL	100.000				

Tabla 4.7-2 Composición de Gas

rabia 4.7-2 Composición de Gas					
COMPUESTO	ACEITE DESHIDRATADO % MOL				
N2	0.18				
CO2	0.0280				
H2S	0.0433				
Metano	0.2321				
Etano	0.2240				
Propano	0.2532				
Iso-Butano	0.0395				
n-Butano	0.1166				
Iso-Pentano	0.0111				
n-Pentano	0.0255				
n-Hexano	0.0053				
Metilciclopentano	0.0000				
Ciclohexano	0.0000				
Benceno	0.0000				
Metilciclohexano	0.0000				
Etil-Benceno	0.0000				
p-Xileno	0.0000				
Corte-01	0.0054				
Corte-02	0.0020				
Corte-03	0.0004				
Corte-04	0.0001				
Corte-05	0.0000				
Corte-06	0.0000				
Corte-07	0.0000				
Corte-08	0.0000				
Corte-09	0.0000				
Corte-10	0.0000				
Corte-11	0.0000				
Corte-12	0.0000				
Corte-13	0.0000				
Corte-14	0.0000				
Corte-15	0.0000				
Agua	0.0116				

Para efectos de este estudio en la tabla siguiente se puede observar los principales niveles de radiación o sobrepresión que serán estimados a través del modelo matemático de simulación Phast 7.11, con el objeto de verificar los niveles de afectación hacia la instalación (estructuras, equipos etc.) que se encuentren cercanos al área del ductos y equipos dentro de las instalaciones de la Plataforma San Pedro 1(SP1) derivado de la hipótesis o escenarios identificados.

Para definir y justificar las zonas de seguridad en torno a las instalaciones objeto de estudio se utilizaron los parámetros que se indican en la NFR-018-PEMEX-2007 "Estudios de Riesgo".

Tabla 4.7-3 Zonas de riesgo por toxicidad, inflamabilidad y explosividad

Definición de zona	Toxicidad (Concentración ppm)	Inflamabilidad (Radiación Térmica)	Explosividad (Sobrepresión)
Zona de Alto Riesgo	IDLH	5 KW/m² o 1,500 BTU/Pie² h	1.0 lb/plg ² 0.070 kg/cm ²
Zona de Amortiguamiento	TLV ₈ o TLV ₁₅	1.4 KW/m² o 440 BTU/Pie²h	0.5 lb/plg ² 0.035 kg/cm ²

Referencia: Criterios Técnicos para Simular Escenarios de Riesgo por Fugas y Derrames de Sustancias Peligrosas, en Instalaciones de Petróleos Mexicanos DCO-GDOESSSPA-CT-001 Rev.1

4.8 Dispersión de Nube Tóxica / Inflamable.

Los vapores y gases emitidos por la mezcla gas-aceite, pueden generar una dispersión la cual va rebajando la concentración de la sustancia emitida, al tiempo que la extiende sobre regiones cada vez mayores del espacio. Esta dispersión dependerá de la estabilidad atmosférica. Su afectación dependerá de la toxicidad de los vapores o gases emitidos (siendo en este caso la mayor afectación al personal cercano a la fuente de emisión), y de la cantidad de gas entre los límites de inflamabilidad que puedan encontrar un punto de ignición (ver flash fire y jet Fire).

La Tabla 4.8-1 muestra el índice de mortalidad y las lesiones presentadas en un evento de dispersión de nube tóxica cuando un porcentaje de la población está expuesta a concentraciones letales (LC).

Tabla 4.8-1 Efectos de Emisiones Tóxicas

LC (%)	Índice de Mortalidad	Lesiones
1	El personal ubicado en esta zona presenta un índice de mortalidad bajo (1 %)	 Daños a la epidermis: Inflamaciones leves y reacciones alérgicas ligeras. Daño a los ojos: Conjuntivitis.
50	El personal ubicado en esta zona presenta un índice de mortalidad medio (50 %)	 Daños a la epidermis: Inflamaciones crónicas o agudas, reacciones alérgicas, neoplasia y ulceraciones diversas. Daño a los ojos: Daño permanente con resultado de ceguera.

Tabla 4.8-1 Efectos de Emisiones Tóxicas

LC (%)	Índice de Mortalidad	Lesiones
		Daño a vías respiratorias: Bloqueo físico de alvéolos (polvos insolubles) o reacción con la pared del alvéolo para producir sustancias tóxicas.
99	El personal ubicado en esta zona presenta un índice de mortalidad alto (99 %) debido a la alta concentración de sustancias tóxica.	 Lesiones irreversibles. Bloqueo físico permanente de alvéolos. Muerte en un corto tiempo.

4.9 Flamazo (FLASH FIRE)

Cuando se trata de líquidos inflamables que se vaporizan o de fugas de gases más densos que el aire, la nube de gas se diluye en el aire existente, haciendo que en determinados instantes y zonas existan mezclas de combustible y comburente en condiciones de efectuar la combustión. Si en una de estas zonas se encuentra un punto de ignición puede desprenderse la cantidad de calor necesaria para acelerar la velocidad de combustión de forma que se produzca una explosión de nube de gas no confinado UVCE denominada así por su acrónimo en inglés.

Tabla 4.9-1 Efectos presentados a diferentes niveles de radiación térmica.

Intensidad de Radiación kW/m²	Descripción
1.4	 Puede tolerarse sin sensación de incomodidad durante largos periodos (con vestimenta normal), se considera inofensivo para personas sin ninguna protección especial. En general se considera que no hay dolor – sea cual sea el tiempo de exposición - con flujos térmicos inferiores a 1.7 kW/m2 (mínimo necesario para causar dolor).
3	Zona de alerta.
5	 Zona de intervención con un tiempo máximo de exposición de 3 minutos. Máximo soportable por personas protegidas con trajes especiales y tiempo limitado. El tiempo necesario para sentir dolor (piel desnuda) es aproximadamente de 13 segundos, y con 40 segundos pueden producirse quemaduras de segundo grado. Cuando la temperatura de la piel llega hasta 55 °C aparecen ampollas.
11.7	El acero delgado, parcialmente aislado, puede perder su integridad mecánica.
12.5	 Extensión del incendio, fusión de recubrimiento de plástico en cables eléctricos. La madera puede prender después de una larga exposición.
25	El acero delgado aislado puede perder su integridad mecánica.
37.5	 Suficiente para causar daños a equipos de proceso, colapso de estructuras. 100 % de letalidad.

La tabla 4.9-2 muestra los efectos producidos a personas y objetos durante el evento denominado "Flash Fire".

Tabla 4.9-2 Efectos del Flash Fire

Personas u objetos		Descripción
Fuera de la nube	•	Como la duración del fenómeno es muy corta el daño es limitado y muy inferior.
Dentro de la nube sometidos a un contacto directo con la llama.	•	Las personas sufrirán quemaduras graves de 2° grado sobre una gran parte del cuerpo, la situación se agrava a quemaduras a 3° y 4° grado por la ignición más que probable de la ropa o vestidos La probabilidad de muerte es muy elevada. Aproximadamente morirá 14% de la población sometida a esta radiación con un 20 % como mínimo de quemaduras importantes. En el caso de que la persona porte ropa de protección que no se queme, su presencia reducirá la superficie del cuerpo expuesta (se considera en general que solo se irradia el 20 % de esta superficie que comprendería la cabeza 7 %; manos 5 % y los brazos 8 %). En el caso de personas situadas en el interior de viviendas, probablemente estarán protegidas – aunque sea parcialmente - de la llamarada, pero estarán expuestas a fuegos secundarios provocados por la misma.

4.10 Explosión de Nube de Gas no Confinada (UVCE) y Confinada (VCE)

La explosión de nube de vapor no confinada se presenta cuando la sustancia ha sido dispersada y se incendia a una distancia del lugar de descarga. La magnitud de la explosión depende del tamaño de la nube y de las propiedades químicas de la sustancia. Se pueden ocasionar ondas de sobrepresión y los efectos térmicos suelen ser menos importantes que los anteriores. Asimismo, las explosiones confinadas pueden dar lugar a deflagraciones y los efectos adversos que pueden provocar son: ondas de presión, formación de proyectiles y radiación térmica.

Tabla 4.10-1 Efectos Derivados de la Sobrepresión.

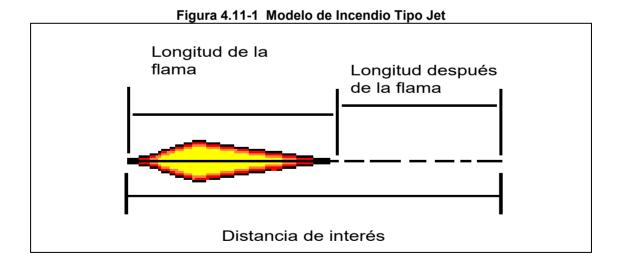
Valor umbral				Descripción
mbar	bar	kPa	psi	
34.5	0345	3.45	0.5	 Destrucción de ventanas, con daño a los marcos y bastidores. Daños menores a techos de casa. Daños estructurales menores.
50	05	5	0.725	Zona de alertaDaños estructurales de pequeña magnitud en casa.
68.9	0689	6.89	1	 Demolición parcial de casas, que quedan inhabitables. Daños estructurales menores, comparables a los daños ocasionados por una tormenta, fallas en estructuras o paredes de madera. Rompimiento de ventanas.

Tabla 4.10-1 Efectos Derivados de la Sobrepresión.

Valor umbral			<u> </u>	Descripción
mbar bar kPa psi			nei	Bosonpolon
IIIDai	Dai	RI G	μαι	 El techo de los tanques de almacenamiento sufren un colapso. Falla de paneles y mamparas de madera, aluminio, etc. Conexiones o uniones de aluminio o acero muestran fallas.
125	0.12 5	12.5	1.81	Zona de Intervención.Dislocación / colapso de paneles, paredes y techos.
500	0.5	50	7.25	 Colapso parcial de paredes y techos de casas. Destrucción de paredes de cemento de 20 a30 cm. de grosor. Destrucción del 50 % de la obra de ladrillo en edificaciones. 25% de todas las paredes muestran fallas. Las paredes hechas de bloques de concreto se colapsan. Daños menores de marcos de acero en ventanas y puertas. Daños moderados o menores. Deformación de paredes y puertas, falla de juntas. Se desprende el recubrimiento de las paredes. Daños serios al resto de los elementos de soporte. Umbral (1 %) de ruptura de tímpano.
1 000	1	100	14.50	 Desplazamiento de los tanques de almacenamiento cilíndrico. Daño a columnas de fraccionamiento. La estructura de soporte de un tanque de almacenamiento redondo se colapsa. Daños severos y desplazamiento de maquinaria pesada (3 500 kg). Falla de las conexiones de tuberías. Demolición total de edificios. Colapso total de casas habitación tipo o estilo Americano. Umbral de letalidad (1 %) de muerte por hemorragia pulmonar y efectos directos de la sobrepresión sobre el cuerpo humano.
1 750	1.75	175. 8	25.5	 Ruptura parcial de tanques de almacenamiento. Daño parcial mayor a columnas de fraccionamiento. Daños severos a maquinaria pesada (3 500 kg). Ruptura parcial de tuberías. Demolición total de edificios. 90 % de probabilidad de muerte por hemorragia pulmonar
2 000	2	200	29	 Ruptura total de tanques de almacenamiento. Pérdida total a columnas de fraccionamiento. Pérdida total de maquinaria pesada (3 500 kg). Ruptura total de tuberías. Demolición total de edificios. 99 % de probabilidad de muerte por hemorragia pulmonar
20 680	20.6 8	2 068	299.94	Límite para formación de cráter.

4.11 Dardo de Fuego (JET FIRE)

Ocurre cuando un material inflamable ha sido liberado a alta presión y se incendia a una distancia del punto de la descarga. La nube formada produce el incendio (Jet Fire) en cualquier momento, siempre y cuando esté por encima de su límite inferior de


inflamabilidad y por debajo del superior, esta zona de la nube es la que se considera para determinar los efectos de radiación térmica. Para ver los posibles efectos de este evento, ver lo descrito en radiación térmica.

. Si una descarga de gas combustible entra en ignición se produce el característico dardo de fuego que tiene la forma indicada en la figura 4.11-1.

Los efectos perniciosos de estos accidentes son fundamentalmente los siguientes:

- La radiación térmica generada por los incendios.
- Los efectos de los posibles gases tóxicos generados en la combustión.
- Las ondas de sobrepresión generadas por una explosión de nube inflamable.

El modelo utilizado, PHAST versión 7.11, permite calcular la velocidad de combustión y la radiación térmica que sufre un receptor sometido a un determinado incendio. El modelo calcula la forma y la intensidad de la flama, y se obtiene un amplio intervalo de resultados de radiación. El software considera para el dardo de fuego el modelo cónico.

4.12 POTENCIA DE EMISIÓN DE LA RADIACIÓN TÉRMICA.

Cualquier cuerpo a temperatura T emite radiación térmica que se determina mediante la ley de Stefan-Boltzmann; la potencia neta (emitida-recibida) por unidad de superficie, E, puede expresarse mediante:

$$E = \varepsilon \sigma \left(T_e^4 - T_r^4 \right)$$

Dónde:

ε: Coeficiente de emisión, adimensional.

σ: Constante de Stefan-Boltzmann, W/m2 K.

Te: Temperatura del emisor, K.

Ta: Temperatura del receptor, K.

En los incendios, la radiación térmica procede de dos fuentes: de los gases generados en la combustión (principalmente del dióxido de carbono y del vapor de agua) y del humo (producido como consecuencia de la descomposición térmica y oxidación parcial del combustible). Desafortunadamente la ecuación no es útil para determinar la potencia emisiva, dado que los parámetros ϵ y Te (en este caso Te es la temperatura de la llama) no son generalmente conocidos. En primer lugar, no parece probable que las llamas se comporten como cuerpos negros (ϵ = 1), dado que si lo fueran se obtendrían valores de E muy superiores a los experimentales.

Por otro lado, la temperatura de la llama no es uniforme en toda la superficie, de manera que puede considerarse la existencia de dos emisores: los destellos, que se producen cuando la combustión es completa, provocando un elevado nivel de radiación, y el humo que origina un efecto "pantalla" a la emisión de los destellos interiores. Por todo ello, desde el punto de vista práctico, se plantea el cálculo de la potencia emisiva como una fracción de la potencia calorífica térmica máxima desarrollada en el incendio:

La ecuación antes señala será utilizada para estimar el valor de Te (temperatura de la llama) tomando como referencia el resultado obtenido del poner emisivo resultante a través de la utilización del modelo matemático de simulación Phast, para lo cual se tomará como referencia los siguientes criterios:

Tr: temperatura del receptor, para este caso se toma como consideración la temperatura ambiente de 26.7 °C.

σ: 5.67 x 10-8

E: Poder emisivo de flama (resultado obtenido a través del modelo Phast).

ε: Coeficiente de emisión, adimensional igual a 1.

Para el caso de este estudio y tomando en consideración la necesidad de valorar la temperatura de llama (Te) en caso de un incendio de dardo, la ecuación planteada anteriormente se modifica quedando de la siguiente manera:

$$Te = \sqrt[4]{(E/_{\varepsilon\delta})} + T_R$$

Donde σ es la contante de proporcionalidad y se denomina constante de Stefan-Boltzman, que tiene un valor de 5.67 x10-8 W/ (m2 K), la ecuación antes referida se denomina Ley de Stefan-Boltzman de la radiación y se aplica exclusivamente a cuerpos negros. Es importante señalar que esta ecuación es válida sólo para la radiación térmica.

4.13 Explosión de Nube de Vapor.

El término "explosión de nube de vapor" (en inglés VCE, de "Vapour Cloud Explosión") es usado para definir la combustión de la mezcla combustible-aire formada por la fuga y dispersión de una sustancia combustible en la atmósfera, dando lugar a temperaturas muy elevadas, y generando una onda de presión.

En general, la mayoría de los combustibles tienen pesos moleculares mayores que el aire y, por consiguiente, se comportan como nubes pesadas que se mueven a ras de suelo y pueden encontrar fácilmente una fuente de ignición.

Para que tenga lugar la explosión de la nube, debe producirse la mezcla entre el combustible y el aire dentro de los límites de inflamabilidad. Si el punto de ignición está muy cerca del origen de la fuga el resultado será un incendio de chorro o de charco, según las características de la fuga.

Se considera que la máxima probabilidad de formación de una nube explosiva ocurre cuando el periodo de tiempo entre el inicio de la fuga y la ignición está comprendido entre 1 y 15 minutos, si bien se encuentran documentados accidentes en los que se estima que dicho período fue de menos de un minuto, en unos casos, y entre 16 y 30 minutos, en otros (Lees, 1996).

Por otro lado, la magnitud de la onda de sobrepresión generada depende de la velocidad de propagación de la llama (frente de reacción). Cuanto mayor sea ésta, mayor será la sobrepresión alcanzada. La velocidad de propagación de la llama depende, a su vez, de la forma en que se inicie y progrese la combustión. Según ocurra ésta, el resultado puede ser una deflagración o, en condiciones más especiales, una detonación.

Para cumplir con los objetivos de este documento se considera el llevar a cabo como parte del análisis de consecuencias la evaluación de las posibles distintas afectaciones por la explosión de nube de vapor a través del método Multi energía (TNO, 1997).

Dicho método se utiliza para la determinación de las magnitudes peligrosas de las ondas de presión procedentes de la explosión de nubes de vapor, teniendo en cuenta que, cuando éstas se inflaman, las mayores sobrepresiones se generan en regiones congestionadas o confinadas de la nube.

4.14 <u>Método Multi energía.</u>

La secuencia de aplicación del método Multi energía es la siguiente:

- Selección del nivel de la explosión de 1 (deflagración más débil) a 10 (detonación) en función de la reactividad del combustible, ubicación de la nube, cantidad y dimensiones de los obstáculos y energía de la fuente de ignición, entre otros.
- Determinación de la energía de la explosión a partir de la cantidad de sustancia combustible en la nube que se encuentra entre los límites de explosividad y de su entalpía de combustión.
- Cálculo de la "distancia escalada" (R', adimensional), que depende de la energía de la explosión y de la distancia (z, metros) a la que se desean conocer las magnitudes peligrosas de la onda de presión.
- Obtención de la sobrepresión escalada (P', adimensional) e impulso escalado (i', adimensional) a partir de las relaciones con la "distancia escalada".

4.15 Criterios para Seleccionar el Nivel de Explosión Apropiado.

La principal dificultad del procedimiento radica en la selección del nivel de explosión apropiado para cada caso, dada la diversidad de parámetros que influyen en el proceso.

La intensidad de la explosión depende de la masa y reactividad del combustible, de la congestión y/o confinamiento de la nube, de la intensidad de la fuente de ignición y de parámetros relacionados con la geometría de la zona obstruida.

Los criterios aportados por algunos autores pueden constituir una ayuda para seleccionar el nivel adecuado. El criterio más simple es el propuesto por TNO en el caso de ausencia de información sobre los factores mencionados anteriormente, consiste en seleccionar el nivel 7 cuando la explosión se produzca en una región obstruida, y el 3 en una zona sin obstáculos.

Dependiendo de la cantidad de información disponible y del grado de precisión requerido se pueden seguir otros criterios, destacando los de Kinsella (1993) y Baker (1996), recomendables cuando sólo se dispone de información cualitativa, y especialmente las de las guías GAME (1998) y GAMES (1998), que son las que se utilizan en este trabajo, en los casos que se disponga de información más amplia.

Kinsella (1993) tiene en cuenta el nivel de obstrucción de la nube, clasificándolo en alto, bajo y nulo; la existencia o no de confinamiento entre paredes paralelas y la energía de la fuente de ignición, distinguiendo entre fuerte (si es debida al venteo de una explosión en el interior de una conducción o situación análoga), y débil (si es debida a una llama, chispa o superficie caliente).

La tabla siguiente contiene los criterios que serán utilizados para el desarrollo de este documento, considerando para este análisis como el criterio más desfavorable en caso de ocurrir un escenario de pérdida de contención en la plataforma.

Tabla 4.14-1 Criterios para Seleccionar el Nivel de la Explosión más Idóneo, Según Kinsella.

O	bstrucció	'n	Confinamiento entre planos	Energía de la ignicio		Nivel de las figuras
Alta	Baja	Nula	paralelos	Débil	Alta	I.5 a I.7
Sí			Sí		Sí	7-10
Sí			No		Sí	7-10
Sí			Sí	Sí		5-7
	Sí		Sí		Sí	5-7
	Sí		No		Sí	4-6
		Sí	Sí		Sí	4-6
Sí			No	Sí		4-5
		Sí	No		Sí	4-5
	Sí		Sí	Sí		3-5
	Sí		No	Sí		2-3
		Sí	Sí	Sí		1-2
		Sí	No	Sí		1

El modelo matemático de simulación PHAST para el caso de evaluar en evento de explosión de nube de vapor a través del modelo multi energía utiliza los siguientes parámetros:

4.16 Resistencia no Confinada.

El programa puede realizar el modelado de explosión de las partes de la nube que no cubren un área de confinamiento fuerte, y marcar la casilla si desea llevar a cabo este modelo.

Si usted marca la casilla, debe establecer el grado de confinamiento de las partes libres de la nube. Los valores típicos son 1 (totalmente confinados, espacios cerrados, cuartos, por ejemplo) y 2 (confinamiento ligero, por ejemplo, cercas, muros de contención, o setos).

4.17 Fuentes Confinados por Onda Expansiva.

En PHAST se puede modelar hasta siete fuentes de explosión confinados.

Para este caso solo se consideró un espacio semi confinado. Marcando la casilla de una fuente en particular para incluir en el cálculo: source 1.

Para este caso y para cada una de las simulaciones realizadas se procedió a proporcionar la siguiente información para la fuente utilizada:

4.18 Fuerza de Confinamiento.

Es el grado de confinamiento en la zona o de la fuente. Este es un valor entre 3 (mínimo) y 10 (más alto). Los valores de 8 y 9 se utilizan normalmente para las unidades de proceso.

Aunque hay poca información disponible sobre la elección de la concentración apropiada, algunas características pueden estar relacionadas con los fenómenos de explosión, y su presencia aumentará la fuerza de confinamiento.

Tabla 4.18-1 Escenarios Seleccionados y Condiciones Alimentadas al Simulador.

Escenario	Referencia HazOp	Hipótesis del Escenario	Nombre de la Sustancias Peligrosa	Diámetro de tubería (plg)	Presión (kg/cm² man)	Tiempo de Fuga (seg)	Diámetro de Fuga (plg)	Altura de la Fuga (m)	Temperatura (°C)	Inventario involucrado (kg)
EI.01	1.1.2.1	Fuga de Hidrocarburos debido a una Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales),con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido a la apertura por falla mecánica de la válvula de estrangulamiento.	Crudo y gas	3	8.78	1800	0.6	1	70	2523.12
E1.02	1.1.2.3	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación derivado de la apertura del By-Pass de la PSV a la salida de los separadores MBF- 201/203/203 por error humano	Gas amargo	2	8.78	1800	0.6	1	70	217.00
EI.03	2.1.1.1	Fuga de Gas amargo debido a una Sobrepresión en el MBF-301 con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación derivado del paro de compresor por falla mecánica CAS-401.	Gas amargo	8	8.78	1800	0.75	1	70	3942.42
E1.04	3.1.1.1	Fuga de Gas amargo en uniones bridadas debido a una sobrepresión en línea de descarga del compresor, con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido al cierre de la válvula manual BF-30201 por error humano	Gas amargo	3	64.682	1800	0.6	1	70	1951.62
EI.05	4.3.1.1	Venteo de Gas amargo derivado de la Apertura de la válvula de presión vacío PVSV-60101 con daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación	Gas amargo	6	1.03	1800	0.75	1	38	148,740

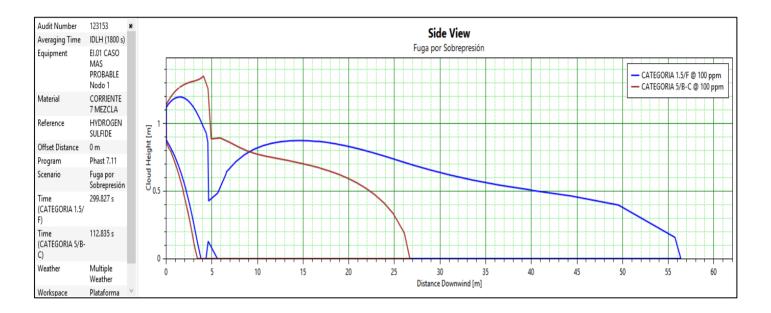
Tabla 4.18-1 Escenarios Seleccionados y Condiciones Alimentadas al Simulador.

Escenario	Referencia HazOp	Hipótesis del Escenario	Nombre de la Sustancias Peligrosa	Diámetro de tubería (plg)	Presión (kg/cm² man)	Tiempo de Fuga (seg)	Diámetro de Fuga (plg)	Altura de la Fuga (m)	Temperatura (°C)	Inventario involucrado (kg)
EI.06	5.1.1.1	Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del cierre de la válvula manual de 3"	Gas amargo	3	244.31	1800	0.6	1	70	8111.64
EI.07	5.1.2.1	Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del Bloqueo o restricción de la válvula de estrangulamiento	Gas amargo	3	244.31	1800	0.6	1	70	13,5194

4.19 Resultados de la Evaluación de Consecuencias.

Las hipótesis se plantearon en base aquellos eventos que se encuentran en una región de riesgo no aceptable y que presenten presentan un riesgo al personal.

Escenario El.01 Fuga de Hidrocarburos debido a una Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales),con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido a la apertura por falla mecánica de la válvula de estrangulamiento.


I. Datos de	I Escena	rio														
Clave: El.0	11		Nomb crudo				do (l	Mezcla	de hi	dro	carburo	os		Tip MF		Ce caso:
Elaboro: P	CE		Descr	ipció	n: Fu	ıga de	Hidro	carbur	os deb	oido	a una S	Sobr	repres	sión er	ılín	ea de
			producción, Manifold de producción (Separadores de prueba y separador de													
			Totales),con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido a la apertura por falla													
											es debic	lo a	la ap	ertura	por	falla
Objetivo:	TE	value				<u>rálvula</u>				าเด.				Dh	aet	7.11
Objetivo: Evaluar escenarios de incendio y/o explosión Ph II. Sustancias Involucradas											ası	7.11				
Nombre	140 111101	uoru	Comp	osici	ón:	% mo	olar			%				%	vol	umétrico
										ma	ásico					
			Ver	Tabl	a 4.7	-1 Com	posic	ión típ	ica de	la N	/lezcla.					
III. Condici	iones de	confi	inamiei	nto v	cara	cteríst	icas	de libe	raciór	n.						
Presión:	8.78		nperatu					ado:	Vap		Líqui	do		Lic	quic	lo arriba
Kg/cm ²					70	O°C					deba	jo d	le su	de	su	p.e.
											p.e.					
Fase de ma		Vap	oor:		Lic	uido				Vap			X			
Contenedo	ri Cili	indro				Fot	fera			т.	ıbería:		X	ido		Otro
Alto del	JI. CIII	liuro								110	iberia.		1			Juo
recipiente:	<u>'</u>			D	iáme	tro de	la tul	bería:			8.0	in	L	argo:		20
Diámetro e		nte		0.6			Ele	vació	n del p	unt	o de				1	
de orificio								ració							ı	
Dirección o	de fuga:		Vertic	al:		orizon	tal:	Hacia			olpe		Incli	nada	Α	ngulo
-	4.		.,		X	1000		abajo			ntra:				250	0.401
Tiempo es					ontro	1800	seg	IVIa	sa que	e pa	rticipa				252	3.12 kg
Pares (velo							rica).			1	1.5 m/s	200	/Tipo	F) v 5	/Tir	00 B/C)
Temperatur				labiliu	iau ai	.11103101	ica).				1.0 111/3	cy		°C	(' ' '	о Бгој
Temperatur				atmo	osféri	ca):										
Humedad a						/-							80	%		
Tipo Ce sue	elo:											An	nbient	e mari	no	
Direcciones														-		
V. Lugares		cular	interés				dista	ıncia d			de fuga	1)				
	tio 1				Sitio	2			Siti	io 3				Sitio	<u>4</u>	
VI. Estado								.,			DI EV	- ,,				47 1
Jet fire: X					endio	de	Expl	osión	ae		BLEVE	= /b(ola de	Nu	ре	tóxica: X
^	L			nub	e:		nube	;. A			fuego					

De los resultados obtenidos a través del modelo se desprenden las siguientes gráficas:

Comportamiento de fuga (dirección y altura).

De los resultados obtenidos a través del modelo se desprenden los siguientes datos:

Tabla 4.20-1 Resultados de Consecuencias Nube Tóxica, Escenario El.01

Centro de Trabajo: San Pedro	o 1										
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).											
Concentración											
Condiciones del sitio	IDLH (100 ppm)	STEL (15 ppm)									
	Distar	ncia (m)									
1.5 m/s, Estabilidad F	56.386	No Alcanzado									
5.0 m/s Estabilidad B/C	26.666	No Alcanzado									

En la tabla 4.20-1 se muestran los resultados de consecuencias de incendio de dardo de fuego (Jet Fire) para el Escenario El.01, los cuales fueron obtenidos empleando el simulador PHAST, además se consideró las condiciones de presión y temperatura a las que ocurre el evento.

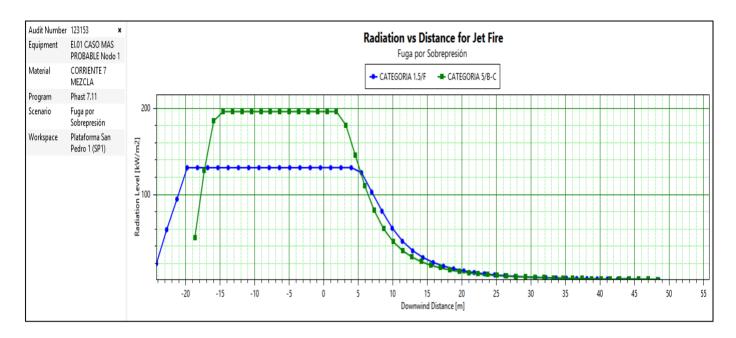
Tabla 4.20-2 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.01

Centro de Trabajo: San Pedro 1												
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).												
Radiación (kw/m²)												
Condiciones del sitio	37.5	5.0	1.4									
		Distancia (m)										
1.5 m/s, Estabilidad F	18.0033	29.4523	54.8203									
5 m/s Estabilidad B/C	15.0468	29.1075	55.0145									

Los resultados mostrados refieren al rango de radiación emitido para las dos condiciones de estabilidad y velocidad de los vientos reportados.

La zona de afectación a instalaciones está determinada por el nivel de radiación de 37.5 kw/m² a los (18.0033) metros para una estabilidad de 1.5/F y (15.0468) metros para una estabilidad de 5B-C. En este punto puede existir daño a equipos de proceso; colapso de estructuras, causando 100% de mortalidad en 1 minuto.

La zona de riesgo está determinada por el nivel de radiación de 5 kw/m² a los (29.4523) metros para una estabilidad de 1.5/F y (29.1075) metros para una estabilidad de 5B-C. En este punto para una persona (piel desnuda) el umbral de dolor se alcanza aproximadamente a los 13 segundos de exposición y con 40 segundos pueden producirse quemaduras de segundo grado, cuando la temperatura de la piel llega hasta 55°C aparecen ampollas. Cabe mencionar que es una zona de peligro solamente para personas sin protección.


La zona de amortiguamiento está determinada por un valor de radiación de 1.4 kw/m², a los (54.8203) metros para una estabilidad de 1.5/F y (55.0145) metros para una estabilidad de 5B-C.

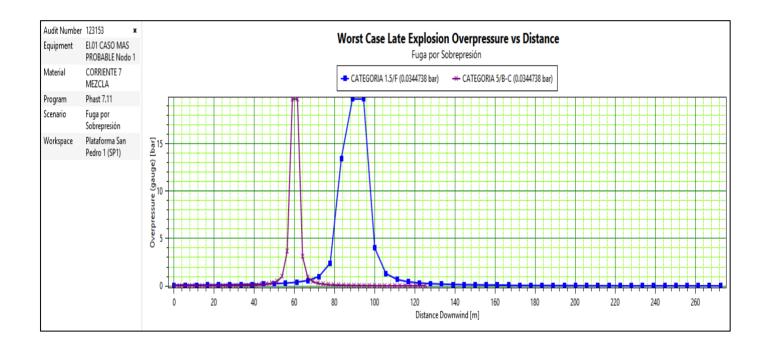
Para más detalle respecto a los resultados mostrados por el simulador Phast 7.11 ver Anexo B.

El gráfico siguiente muestra el nivel de radiación a partir de la flama por el efecto de jet fire.

Consecuencias por Nubes Explosivas

Los resultados por sobrepresión para el escenario El.01 se muestran en la tabla 4.20-3.

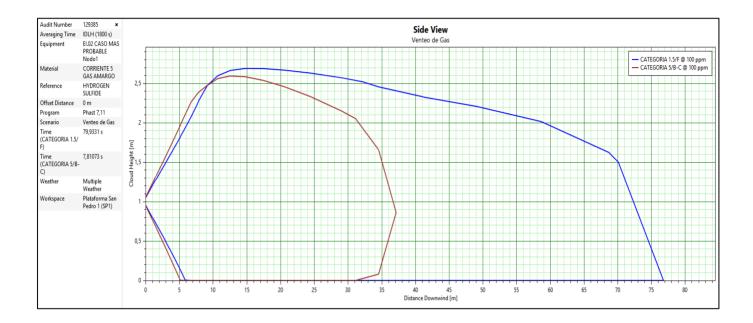
Tabla 4.20-3 Resultados de Consecuencias de Nube Explosiva El.01


Planta o área de trabajo: Plataforma San Pedro 1 (SP1).												
Distancia a		Masa flamable	Sobrepresión (bar)									
punto de ignición (m)	Condiciones del sitio	(Supplied Flamable Mass)	0.03 (radio de afectación en m)	0.06 (radio de afectación en m)	0.70 (radio de afectación en m)							
10	1.5 m/s, Estabilidad F	2.21	44.29	28.53	13.93							
20	1.5 m/s, Estabilidad F	22.23	94.07	60.04	28.50							
30	1.5 m/s, Estabilidad F	63.28	134.98	86.74	42.05							
10	5 m/s Estabilidad B- C	2.97	47.86	30.46	14.34							
20	5 m/s Estabilidad B- C	8.80	74.39	49.40	26.24							
30	5 m/s Estabilidad B- C	13.36	92.51	63.78	37.17							

^{*}La distancia mostrada para cada nivel de sobrepresión se considera a partir del punto de fuga.

La representación gráfica muestra las distancias para los puntos de ignición en el cual la masa flamable se encuentra en condiciones para producirse una explosión, para estos puntos se pueden alcanzar diferentes niveles de sobrepresión dependiendo de la masa flamable que participa en ese punto.

Escenario El.02 Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación derivado de la apertura del By-Pass de la PSV a la salida de los separadores MBF-201/203/203 por error humano.


I. Datos de	I Es	cenai	rio													
Clave: El.0	2						o de G								MP	Ce caso:
Elaboro: P	CE			Descr	ipció	n: Ve	enteo c	de gas	amar	go a la	atm	nosfera	con	posible	forma	ación de
																rtura del
				By-Pa	ss de	la P	SV a la	salida	a de Íd	s sepa	arad	ores M	BF-2	201/203	3/203	por error
				humai	าด					-						
Objetivo:		E۱	/alua	r escer	arios	de ir	ncendio	y/o e	xplosi	ón					Phas	st 7.11
II. Sustanc	ias I	nvolu	ıcrac	das												
Nombre				Comp	osici	ón:	% m	olar			%				% vc	olumétrico
				·							ma	ásico				
				V	er Ta	bla 4	.7-2 C	ompos	sición	típica [Del (Gas.				
III. Condici	ones	s de (confi	inamie	nto y	cara	cteríst	ticas d	le libe	raciór	۱.					
Presión:	8.7	70	Ten	nperatu	ıra:			Esta	ado:	Vapo	or:	Líqui				ido arriba
	Kg/d					70	O°C					debaj	o de	su	de s	u p.e.
	rty/t	JIII										p.e.				
Fase de ma	ateri	al lib	erad	o:		Va	por:		Lic	uido				Vapor	У	Х
							_							liquid	0	
Contenedo	r:	Cilin	ndro		Esfera Tubería: X									Otro		
Alto del					Diámetro de la tubería: 2 in Larg								ao.	20		
recipiente:						iaiiic	ti o ac									20
Diámetro e de orificio			te		0.6			libe	ració		unt	o de				1
Dirección o	de fu	ıga:		Vertic	al:		orizon		Hacia			olpe		Inclina	ıda	Angulo
						X			abajo			ntra:				
Tiempo est							1800	seg	Ма	sa que	e pa	rticipa				217 kg
IV. Condici								<u> </u>			1	<u> </u>				
Pares (velo					tabilid	ad at	tmosfé	rica):				1.5 m/s	eg (Гіро В/С)
Temperatur														38 °0	<u> </u>	
Temperatur	a de	l sue	lo (si	distinta	a atmo	osféri	ica):									
Humedad a		sféric	a											80 %		
Tipo Ce sue													Aml	oiente	marino)
Direcciones														-		
V. Lugares		partic	cular	interé				dista	ncia c			de fuga	1)			
Sit	io 1					Sitio	2			Siti	o 3				Sitio 4	4
VI. Estado	final	les d	e ana	álisis												
Jet fire: X	Ch	arco	de fı	uego	Ince nub	ndio e:	de	Explo nube	osión : X	de		BLEVE fuego	/bo	la de	Nub	e tóxica
Notas: 1		PC=	Peo	r caso												
		MP=	Cas	o Más F	Proba	ble										
	CA= Caso Alterno															

De los resultados obtenidos a través del modelo se desprenden las siguientes gráficas:

Comportamiento de fuga (dirección y altura).

De los resultados obtenidos a través del modelo se desprenden los siguientes datos:

Tabla 4.20-4 Resultados de Consecuencias Nube Tóxica, Escenario El.02

Centro de Trabajo: San Pedro 1	Centro de Trabajo: San Pedro 1											
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).												
Concentración												
Condiciones del sitio	IDLH (100 ppm)	STEL (15 ppm)										
	Distar	ncia (m)										
1.5 m/s, Estabilidad F	76.7531	No Alcanzado										
5.0 m/s Estabilidad B/C	33.9707	No Alcanzado										

En la tabla 4.20-4 se muestran los resultados de consecuencias de incendio de dardo de fuego (Jet Fire) para el Escenario El.02, los cuales fueron obtenidos empleando el simulador PHAST, además se consideró las condiciones de presión y temperatura a las que ocurre el evento.

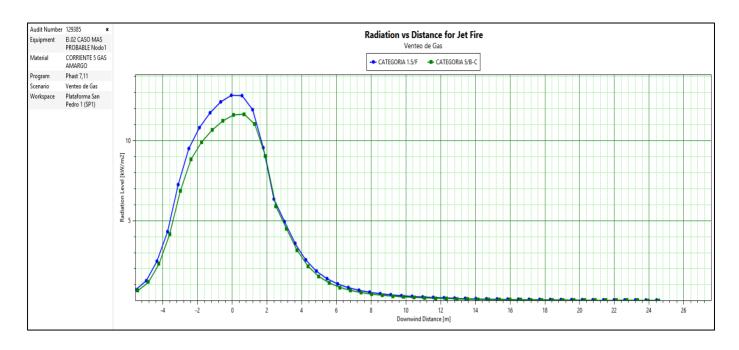
Tabla 4.20-5 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.02

Centro de Trabajo: San Pedro 1											
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).											
Radiación (kw/m²)											
Condiciones del sitio	37.5	5.0	1.4								
		Distancia (m)									
1.5 m/s, Estabilidad F	No Alcanzado	3.2669	6.2232								
5 m/s Estabilidad B/C	No Alcanzado	3.1551	5.72296								

Los resultados mostrados refieren al rango de radiación emitido para las dos condiciones de estabilidad y velocidad de los vientos reportados.

La zona de afectación a instalaciones está determinada por el nivel de radiación de 37.5 kw/m² a los (No Alcanzados) metros para una estabilidad de 1.5/F y (No Alcanzados) metros para una estabilidad de 5B-C. En este punto puede existir daño a equipos de proceso; colapso de estructuras, causando 100% de mortalidad en 1 minuto.

La zona de riesgo está determinada por el nivel de radiación de 5 kw/m² a los (3.2669) metros para una estabilidad de 1.5/F y (3.1551) metros para una estabilidad de 5B-C. En este punto para una persona (piel desnuda) el umbral de dolor se alcanza aproximadamente a los 13 segundos de exposición y con 40 segundos pueden producirse quemaduras de segundo grado, cuando la temperatura de la piel llega hasta 55°C aparecen ampollas. Cabe mencionar que es una zona de peligro solamente para personas sin protección.


La zona de amortiguamiento está determinada por un valor de radiación de 1.4 kw/m², a los (6.2232) metros para una estabilidad de 1.5/F y (5.72296) metros para una estabilidad de 5B-C.

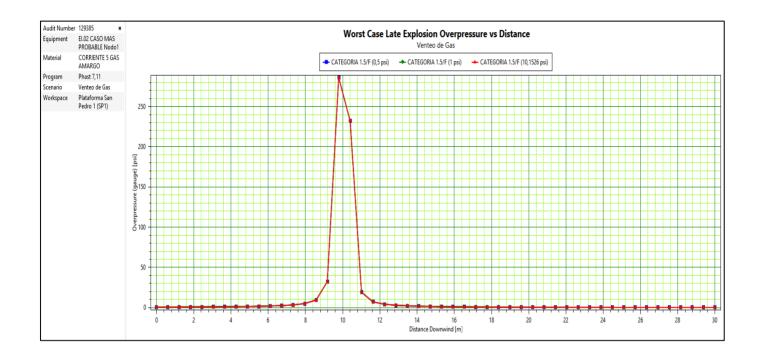
Para más detalle respecto a los resultados mostrados por el simulador Phast 7.11 ver Anexo B.

El gráfico siguiente muestra el nivel de radiación a partir de la flama por el efecto de jet fire.

Consecuencias por Nubes Explosivas

Los resultados por sobrepresión para el escenario El.02 se muestran en la tabla 4.20-6.

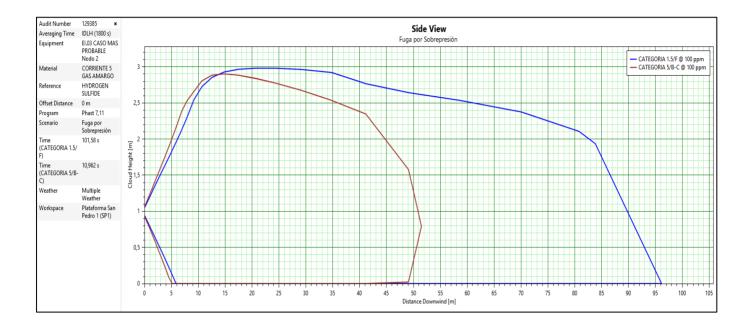
Tabla 4.20-6 Resultados de Consecuencias de Nube Explosiva El.02


	de trabajo: Platafo			O ITUBO EXPICO	
Distancia a		Masa flamable		Sobrepresión (bar	·)
punto de ignición (m)	Condiciones del sitio	(Supplied Flamable Mass)	0.03 (radio de afectación en m)	0.06 (radio de afectación en m)	0.70 (radio de afectación en m)
10	1.5 m/s, Estabilidad F	0.10	21.88	16.42	11.36
20	1.5 m/s, Estabilidad F	0.10	34.87	28.04	21.71
30	1.5 m/s, Estabilidad F	No Alcanzado	No Alcanzado	No Alcanzado	No Alcanzado
10	5 m/s Estabilidad B-C	No Alcanzado	No Alcanzado	No Alcanzado	No Alcanzado
20	5 m/s No Estabilidad B-C Alcanzado		No Alcanzado	No Alcanzado	No Alcanzado
30	5 m/s Estabilidad B-C	No Alcanzado	No Alcanzado	No Alcanzado	No Alcanzado

^{*}La distancia mostrada para cada nivel de sobrepresión se considera a partir del punto de fuga.

La representación gráfica muestra las distancias para los puntos de ignición en el cual la masa flamable se encuentra en condiciones para producirse una explosión, para estos puntos se pueden alcanzar diferentes niveles de sobrepresión dependiendo de la masa flamable que participa en ese punto.

Escenario El.03 Fuga de Gas amargo debido a una Sobrepresión en el MBF-301 con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación derivado del paro de compresor por falla mecánica CAS-401.


I. Datos de	l Esc	cenai	rio													
Clave: El.03				gas y	agua)		•				buros o			MP	Ce caso:
Elaboro: Po	CE															MBF-301
												io y exp el paro d				al personal
				mecár				การเลเล	CION	uenvad	10 GE	ei paro c	ie cc	impres	or por	ialia
Objetivo:		E۱	valua	r escer				o y/o e	xplo	sión					Pha	st 7.11
II. Sustancias Involucradas																
Nombre				Comp	osici	ón:	% m	olar			%				% v	olumétrico
												ásico				
Ver Tabla 4.7-2 Composición típica Del Gas.																
III. Condicio	ones	s de (cara	cterís									
Presión:	8.7		len	nperatu	ıra:	7/	o°C	Esta	ado:	Vap	or:	Líqui deba				iido arriba u p.e.
	Kg/c	m ²				/ (<i>J</i> C					p.e.	jo ue	; 5u	ue s	u p.e.
Fase de ma	ateria	al lib	erad	o:		Va	oor:		L	iquido		l bioi		Vapor	У	Х
														liquid		
Contenedo	r:	Cili	ndro				Es	fera			Τι	ıbería:		X		Otro
Alto del recipiente:					Di	áme	tro de	la tub		· -		8 ir	า	Lar	go:	20
Diámetro e de orificio			te		0.75			libe	raci							1
Dirección o	de fu	ıga:		Vertic	al:	H ₀	orizon		Hac abaj			olpe ontra:		Inclina	ida	Angulo
Tiempo est							600	seg	N	asa qu	е ра	rticipa			39	942.42 kg
IV. Condici											1					
Pares (velo					tabilid	ad a	tmosfé	erica):				1.5 m/s	eg (Гіро В/С)
Temperatur						٠, .								38 °C	<u> </u>	
Temperatur Humedad a				distinta	atmo	steri	ca):							80 %	,	
Tipo Ce sue		sieric	a										Δm	biente		<u> </u>
Direcciones		ninan	tes d	lel vient	o.								7 (111)	-	Harin	<u> </u>
V. Lugares						crip	ción y	/ dista	ncia	del pu	nto	de fuga	1)			
	io 1					Sitio					io 3				Sitio 4	4
VI. Estado					_					_						
Jet fire: X				uego	Ince nube		de	Explo nube		n de		BLEVE fuego	/bo	la de	Nub	e tóxica
Notas: 1				r caso) l	-1-										
				o Más f o Altern		oie										
		∪ 1 -	UdS(o Aileili	U											

De los resultados obtenidos a través del modelo se desprenden las siguientes gráficas:

Comportamiento de fuga (dirección y altura).

De los resultados obtenidos a través del modelo se desprenden los siguientes datos:

Tabla 4.20-7 Resultados de Consecuencias Nube Tóxica, Escenario El.03

Centro de Trabajo: San Pedro 1										
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).										
Concentración										
Condiciones del sitio	IDLH (100 ppm)	STEL (15 ppm)								
	Distancia (m)									
1.5 m/s, Estabilidad F	96.1245	No Alcanzado								
5.0 m/s Estabilidad B/C	48.979	No Alcanzado								

En la tabla 4.20-8 se muestran los resultados de consecuencias de incendio de dardo de fuego (Jet Fire) para el Escenario El.03, los cuales fueron obtenidos empleando el simulador PHAST, además se consideró las condiciones de presión y temperatura a las que ocurre el evento.

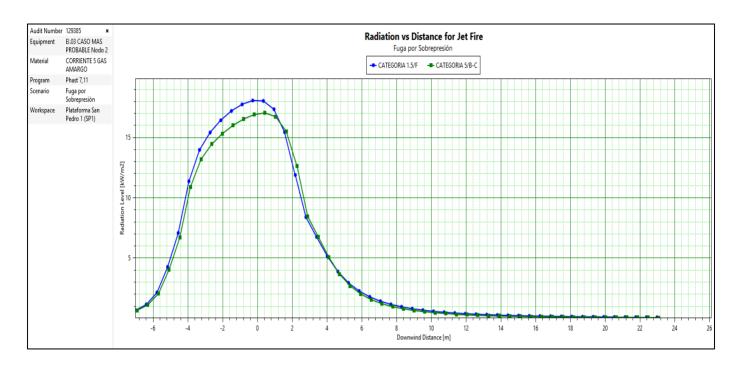
Tabla 4.20-8 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.03

Centro de Trabajo: San Pedro 1									
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).									
	Radiación (kw/m²)								
Condiciones del sitio	37.5	1.4							
	Distancia (m)								
1.5 m/s, Estabilidad F	No Alcanzado	4.5490	8.6086						
5 m/s Estabilidad B/C	No Alcanzado	4.4969	8.0917						

Los resultados mostrados refieren al rango de radiación emitido para las dos condiciones de estabilidad y velocidad de los vientos reportados.

La zona de afectación a instalaciones está determinada por el nivel de radiación de 37.5 kw/m² a los (No Alcanzados) metros para una estabilidad de 1.5/F y (No Alcanzados) metros para una estabilidad de 5B-C. En este punto puede existir daño a equipos de proceso; colapso de estructuras, causando 100% de mortalidad en 1 minuto.

La zona de riesgo está determinada por el nivel de radiación de 5 kw/m² a los (4.5490) metros para una estabilidad de 1.5/F y (4.4969) metros para una estabilidad de 5B-C. En este punto para una persona (piel desnuda) el umbral de dolor se alcanza aproximadamente a los 13 segundos de exposición y con 40 segundos pueden producirse quemaduras de segundo grado, cuando la temperatura de la piel llega hasta 55°C aparecen ampollas. Cabe mencionar que es una zona de peligro solamente para personas sin protección.


La zona de amortiguamiento está determinada por un valor de radiación de 1.4 kw/m², a los (8.6086) metros para una estabilidad de 1.5/F y (8.0917) metros para una estabilidad de 5B-C.

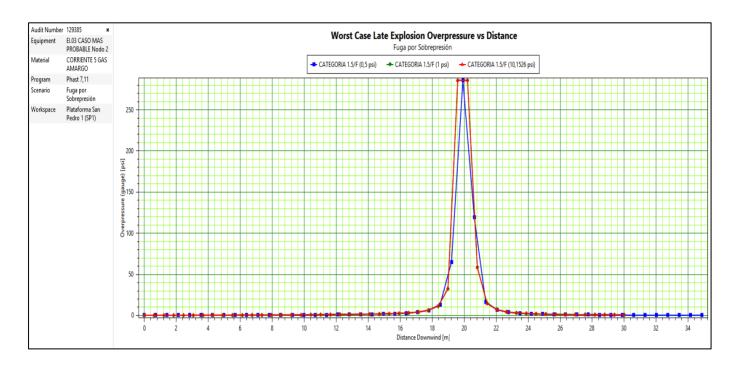
Para más detalle respecto a los resultados mostrados por el simulador Phast 7.11 ver Anexo B.

El gráfico siguiente muestra el nivel de radiación a partir de la flama por el efecto de jet fire.

Consecuencias por Nubes Explosivas

Los resultados por sobrepresión para el escenario El.03 se muestran en la tabla 4.20-9.

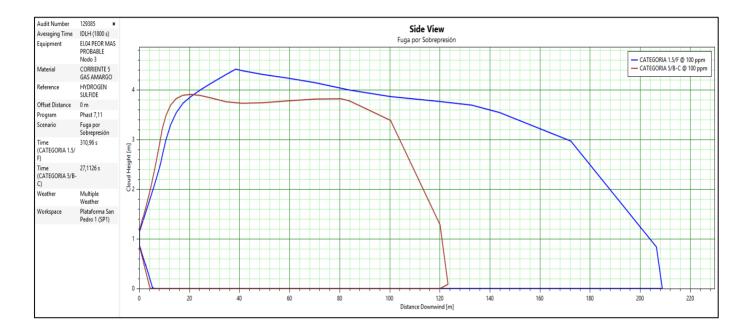
Tabla 4.20-9 Resultados de Consecuencias de Nube Explosiva El.03


Planta o área	Planta o área de trabajo: Plataforma San Pedro 1 (SP1).										
Distancia a		Masa flamable	Sobrepresión (bar)								
punto de ignición (m)	Condiciones del sitio	(Supplied Flamable Mass)	0.03 (radio de afectación en m)	0.06 (radio de afectación en m)	0.70 (radio de afectación en m)						
10	1.5 m/s, Estabilidad F	0.19	24.87	18.04	11.71						
20	1.5 m/s, Estabilidad F	0.19	34.87	28.04	21.71						
30	1.5 m/s, Estabilidad F	No Alcanzado	No Alcanzado	No Alcanzado	No Alcanzado						
10	5 m/s Estabilidad B-C	No Alcanzado	No Alcanzado	No Alcanzado	No Alcanzado						
20	5 m/s Estabilidad B-C	No Alcanzado	No Alcanzado	No Alcanzado	No Alcanzado						
30	5 m/s Estabilidad B-C	No Alcanzado	No Alcanzado	No Alcanzado No Alcanzado							

^{*}La distancia mostrada para cada nivel de sobrepresión se considera a partir del punto de fuga.

La representación gráfica muestra las distancias para los puntos de ignición en el cual la masa flamable se encuentra en condiciones para producirse una explosión, para estos puntos se pueden alcanzar diferentes niveles de sobrepresión dependiendo de la masa flamable que participa en ese punto.

Escenario El.04 Fuga de Gas amargo en uniones bridadas debido a una sobrepresión en línea de descarga del compresor, con posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido al cierre de la válvula manual BF-30201 por error humano.


I. Datos de		ario														
Clave: El.0)4		Nomb gas y			le Ga	s (Mez	cla de	hidro	ocar	buros (crudo	Ο,	Tip MP		caso:
Elaboro: P	CE		Descr	ripció	n: Fu	ga de	Gas	amargo	en ur	nion	es brida	das	debido	a ur	na	
				obrepresión en línea de descarga del compresor, con posible fo												
				nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las												
				nstalaciones debido al cierre de la válvula manual BF-30201 por error humano escenarios de incendio y/o explosión Phast 7.11												
Objetivo:				narios	de in	cendi	o y/o e	explosi	ón					Pha	ast 7	.11
	ias invoi	ucrac	Comp	· coloi	án.	% m	alar			%				0/ .	دمارية	nétrico
Nombre			Comp	OSICIO	on:	70 III	olar				ásico			70 N	/Olul	netrico
			V	er Ta	bla 4	.7-2 C	Compo	sición	típica l							
III. Condic	iones de	conf					•		•							
Presión:	64.682		nperatu				_	ado:	Vap		Líqui	do		Liq	uido	arriba
	Kg/cm ²				70) °C			-		debaj	o de	su	de	su p	.e.
											p.e.					
Fase de m	aterial lib	berad	lo:		Vap	or:	Х	Lic	luido			Vapor y liquido				
Contened	or: Cili	indro				Es	fera			Τι	ıbería:		X		Ot	ro
Alto del recipiente				Di	iáme	tro de	e la tul	bería:			3 ir	1	Lar	go:		20
Diámetro e		nte					Ele	vaciói	n del p	unt	o de					
de orificio				0.6	ın	liberación:									1	
Dirección	de fuga:		Vertic	al:		orizon	ıtal:	Hacia			olpe	ı	nclina	ıda	Ang	gulo
-	41		.,		X			abajo		contra:					054	00.1
Tiempo es					n tro	600	seg	IVIa	sa qu	e pa	rticipa			1	951.	62 kg
Pares (velo							Srico):			l I	1.5 m/s	og (7	Tipo E\	. v. 5	/Tipo	D/C)
Temperatu				labiliu	au at	IIIOSIE	ilica).				1.5 111/5	ey (i	38 °(Про	(B/C)
Temperatu				atmo	sféri	ca).							30 (
Humedad a			diotirite	a dunic	,01011	ou _j .							80 %	, 0		
Tipo Ce su												Amb	piente		าด	
Direccione		ntes d	lel vient	to:									-			
V. Lugares	s de parti	icular	interé:	s (Des	scrip	ción y	y dista	ncia c			de fuga	1)				
Sitio 1 Sitio 2								Siti	io 3				Sitio	4		
			,													
VI. Estado							_			<u> </u>	DI 51/5	. ,,				
Jet fire: X	Charco	de fu	uego	Ince nub	ndio e:	de	Expl nube	osión e: X	de		BLEVE fuego	: /bo	a de	Nu	be tó	xica:
Notas: 1			r caso													
			o Más I		ble											
	CA=	- Caso	o Altern	10												

De los resultados obtenidos a través del modelo se desprenden las siguientes gráficas:

Comportamiento de fuga (dirección y altura).

De los resultados obtenidos a través del modelo se desprenden los siguientes datos:

Tabla 4.20-10 Resultados de Consecuencias Nube Tóxica, Escenario El.04

Centro de Trabajo: San Pedro 1									
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).									
	Concentración								
Condiciones del sitio	IDLH (100 ppm)	STEL (15 ppm)							
	Distancia (m)								
1.5 m/s, Estabilidad F	208.839	No Alcanzado							
5.0 m/s Estabilidad B/C	123.223 No Alcanzado								

En la tabla 4.20-11 se muestran los resultados de consecuencias de incendio de dardo de fuego (Jet Fire) para el Escenario El.04, los cuales fueron obtenidos empleando el simulador PHAST, además se consideró las condiciones de presión y temperatura a las que ocurre el evento.

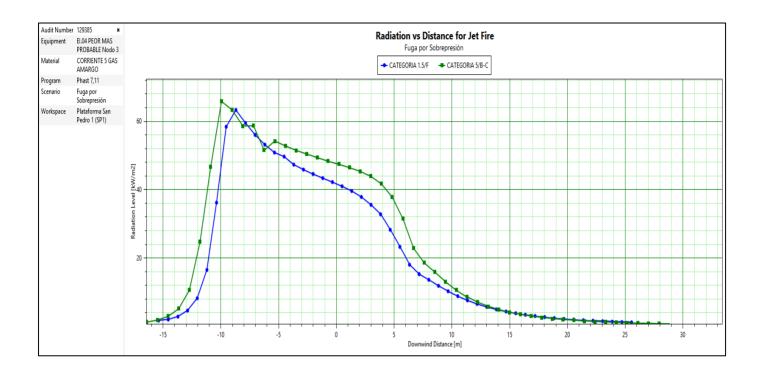
Tabla 4.20-11 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.04

Centro de Trabajo: San Pedro 1									
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).									
	Radiación (kw/m²)								
Condiciones del sitio	37.5	1.4							
	Distancia (m)								
1.5 m/s, Estabilidad F	6.3276	15.2172	28.7421						
5 m/s Estabilidad B/C	8.1220	14.9307	28.4338						

Los resultados mostrados refieren al rango de radiación emitido para las dos condiciones de estabilidad y velocidad de los vientos reportados.

La zona de afectación a instalaciones está determinada por el nivel de radiación de 37.5 kw/m² a los (6.3276) metros para una estabilidad de 1.5/F y (8.1220) metros para una estabilidad de 5B-C. En este punto puede existir daño a equipos de proceso; colapso de estructuras, causando 100% de mortalidad en 1 minuto.

La zona de riesgo está determinada por el nivel de radiación de 5 kw/m² a los (15.2172) metros para una estabilidad de 1.5/F y (14.9307) metros para una estabilidad de 5B-C. En este punto para una persona (piel desnuda) el umbral de dolor se alcanza aproximadamente a los 13 segundos de exposición y con 40 segundos pueden producirse quemaduras de segundo grado, cuando la temperatura de la piel llega hasta 55°C aparecen ampollas. Cabe mencionar que es una zona de peligro solamente para personas sin protección.


La zona de amortiguamiento está determinada por un valor de radiación de 1.4 kw/m², a los (28.7421) metros para una estabilidad de 1.5/F y (28.4338) metros para una estabilidad de 5B-C.

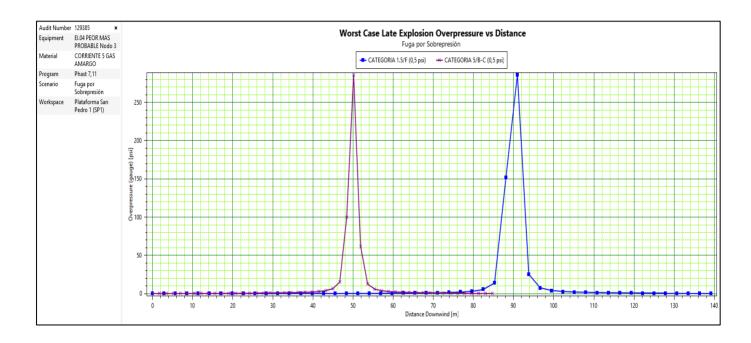
Para más detalle respecto a los resultados mostrados por el simulador Phast 7.11 ver Anexo B.

El gráfico siguiente muestra el nivel de radiación a partir de la flama por el efecto de jet fire.

Consecuencias por Nubes Explosivas

Los resultados por sobrepresión para el escenario El.04 se muestran en la tabla 4.20-12.

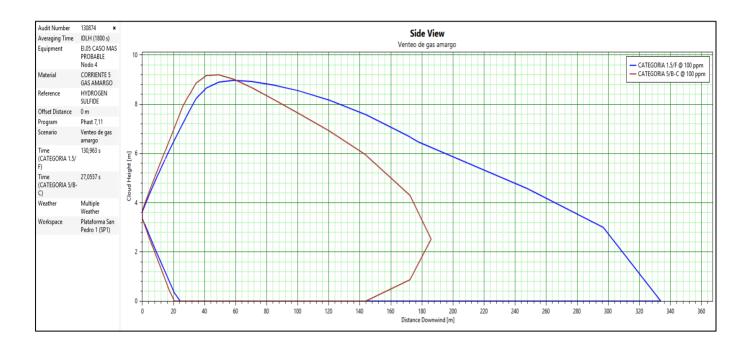
Tabla 4.20-12 Resultados de Consecuencias de Nube Explosiva El.04


Planta o área	Planta o área de trabajo: Plataforma San Pedro 1 (SP1).										
Distancia a		Masa flamable		Sobrepresión (bar)						
punto de ignición (m)	Condiciones del sitio	(Supplied Flamable Mass)	0.03 (radio de afectación en m)	0.06 (radio de afectación en m)	0.70 (radio de afectación en m)						
10	1.5 m/s, Estabilidad F	1.31	38.37	25.33	13.26						
20	1.5 m/s, Estabilidad F	4.27	62.05	42.73	24.82						
30	1.5 m/s, Estabilidad F	6.49	78.35	56.13	35.55						
10	5 m/s Estabilidad B-C	1.13	37.00	24.59	13.10						
20	5 m/s Estabilidad B-C	2.30	54.22	38.50	23.93						
30	5 m/s Estabilidad B-C	2.41	64.73	48.77	33.99						

^{*}La distancia mostrada para cada nivel de sobrepresión se considera a partir del punto de fuga.

La representación gráfica muestra las distancias para los puntos de ignición en el cual la masa flamable se encuentra en condiciones para producirse una explosión, para estos puntos se pueden alcanzar diferentes niveles de sobrepresión dependiendo de la masa flamable que participa en ese punto.

Escenario El.05 Venteo de Gas amargo derivado de la Apertura de la válvula de presión vacío PVSV-60101 con daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación


I. Datos del I	Escena	rio														
Clave: El.05			Nomb						•						MP	o C caso:
Elaboro: PC	E								amargo de							
												con	oosil	ble forr	nació	n de nube
									a la instala	ació	ón					
Objetivo:				scenarios de incendio y/o explosión										Pha	st 7.11	
II. Sustancia	cias Involucradas															
Nombre			Comp	osicio	ón:	% m	olar				%				% v	olumétrico
											mási	ico				
									ción típica			ıs.				
III. Condicio	nes de				cara	cterís	ticas	de	liberació	'n.						
Presión:	1.03	Tem	nperatu	ıra:			Es	tac	do: Vap	oor		_íqui				uido arriba
	(g/cm ²				38	3°C					C	debaj	o de	su	de s	su p.e.
											F	o.e			<u> </u>	
Fase de mat			0:		Vap	oor:	Х		Liquido					Vapor liquid		
Contenedor	: Cili	ndro				Ĕ	sfera				Tube	ería:		Χ		Otro
Alto del				Di	ámo	tro de	e la tu	ho	ría:			3 in		Lar	ao:	20
recipiente:				וט	anne	tro ut							l	Lai	yo.	20
Diámetro eq	uivaler	ite		6 i	n		Ele	eva	ación del	pu	into d	de				1
de orificio							lib	era	ación:							-
Dirección de	e fuga:		Vertic	al:	Ho X	orizor	ntal:					olpe Inclina		Inclina	ada Angulo	
Tiempo estir	mado d	e libe	eración	:		1800	0 seg		Masa qu	Je	parti	cipa				4.176 kg
IV. Condicio	nes atr	nosfé	ricas y	del e	ntro	no										
Pares (veloci	idad del	vient	o, e es	tabilida	ad at	mosfe	érica):				1.5	5 m/s	eg (Tipo B/C)
Temperatura	atmosf	érica:												38 °()	
Temperatura	del sue	lo (si	distinta	atmo	sféri	ca):										
Humedad atr	nosfério	а												80 %	, o	
Tipo Ce suelo	o:												Am	biente	marin	10
Direcciones of	dominar	ntes d	el vient	:0:										-		
V. Lugares o	de parti	cular	interé	s (Des	crip	ción	y dist	an	cia del pu	ınt	o de	fuga)			
Sitio 1 Sitio 2 Sitio								itio	3				Sitio	4		
VI. Estado fi	nales d	le aná	álisis													
Jet fire:	Charco	de fu	iego	Ince nube		de	e Explosión de nube: X				BLEVE /bola de fuego			Nube tóxica:		
Notas: 1	PC=	Peo	r caso													
	MP=	Caso	o Más F	Probab	ole											
	CA= Caso Alterno															

De los resultados obtenidos a través del modelo se desprenden las siguientes gráficas:

Comportamiento de fuga (dirección y altura).

De los resultados obtenidos a través del modelo se desprenden los siguientes datos:

Tabla 4.20-13 Resultados de Consecuencias Nube Tóxica. Escenario El.05

Table 4.20 To Receitades de Concessaciones Pares, Ecconario Ence										
Centro de Trabajo: San Pedro 1										
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).										
	Concentración									
Condiciones del sitio	IDLH (100 ppm)	STEL (15 ppm)								
	Distancia (m)									
1.5 m/s, Estabilidad F	333.731	No Alcanzado								
5.0 m/s Estabilidad B/C	156.984	No Alcanzado								

En la tabla 4.20-13 se muestran los resultados de consecuencias de incendio de dardo de fuego (Jet Fire) para el Escenario El.05, los cuales fueron obtenidos empleando el simulador PHAST, además se consideró las condiciones de presión y temperatura a las que ocurre el evento.

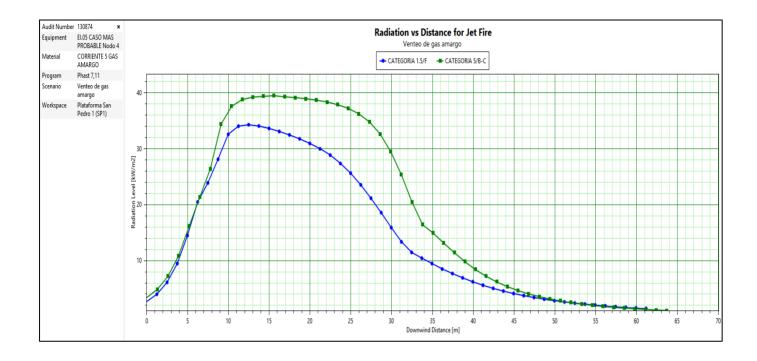
Tabla 4.20-14 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.05

Centro de Trabajo: San Pedro 1									
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).									
	Radiación (kw/m²)								
Condiciones del sitio	37.5	1.4							
	Distancia (m)								
1.5 m/s, Estabilidad F	No Alcanzado	42.4634	61.2046						
5 m/s Estabilidad B/C	24.3338	44.8491	60.0445						

Los resultados mostrados refieren al rango de radiación emitido para las dos condiciones de estabilidad y velocidad de los vientos reportados.

La zona de afectación a instalaciones está determinada por el nivel de radiación de 37.5 kw/m² a los (NA) metros para una estabilidad de 1.5/F y (24.3338) metros para una estabilidad de 5B-C. En este punto puede existir daño a equipos de proceso; colapso de estructuras, causando 100% de mortalidad en 1 minuto.

La zona de riesgo está determinada por el nivel de radiación de 5 kw/m² a los (42.4634) metros para una estabilidad de 1.5/F y (44.8491) metros para una estabilidad de 5B-C. En este punto para una persona (piel desnuda) el umbral de dolor se alcanza aproximadamente a los 13 segundos de exposición y con 40 segundos pueden producirse quemaduras de segundo grado, cuando la temperatura de la piel llega hasta 55°C aparecen ampollas. Cabe mencionar que es una zona de peligro solamente para personas sin protección.


La zona de amortiguamiento está determinada por un valor de radiación de 1.4 kw/m², a los (61.2046) metros para una estabilidad de 1.5/F y (60.0445) metros para una estabilidad de 5B-C.

Para más detalle respecto a los resultados mostrados por el simulador Phast 7.11 ver Anexo B.

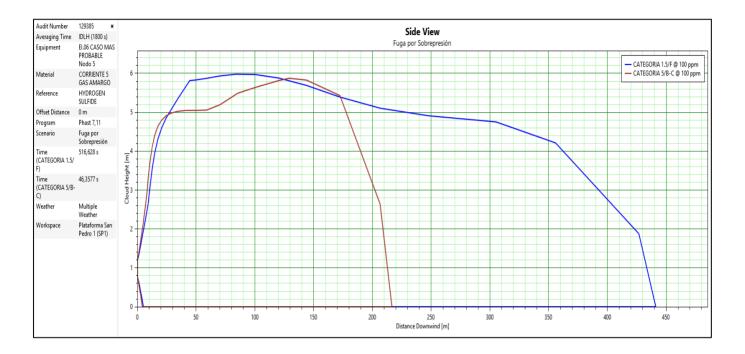
El gráfico siguiente muestra el nivel de radiación a partir de la flama por el efecto de jet fire.

Consecuencias por Nubes Explosivas

Para este escenario no se obtuvieron resultado por nube explosiva

La representación gráfica muestra las distancias para los puntos de ignición en el cual la masa flamable se encuentra en condiciones para producirse una explosión, para estos puntos se pueden alcanzar diferentes niveles de sobrepresión dependiendo de la masa flamable que participa en ese punto.

Escenario El.06 Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del cierre de la válvula manual de 3"


I. Datos de	el Escena	ario													
Clave: El.0)6		Nomb	re: Fu	uga d	de Ga	S							Tip MP	o Ce caso:
Elaboro: P	PCE	Descripción: Fuga de Gas amargo debido a una Sobrepresión en línea inyección de gas de alta presión; con formación de nube tóxica, incence explosión con daño al personal, medio ambiente y a las instalaciones deriva del cierre de la válvula manual de 3"											a, incendio,		
Objetivo:			r escer	arios	de in	cendi	o y/o e	explos	ión					Pha	ast 7.11
II. Sustanc	ias Invol	ucra			_										
Nombre			Comp	osici	on:	% m	olar			% m	ásico			% v	olumétrico
			V	er Ta	bla 4	.7-2 C	Compo	sición	típica l	Del	Gas.				
III. Condic	iones de				cara	cterís	ticas	de lib							
Presión:	244.31 Kg/cm ²		nperatu	ıra:	70	O°C	Es	tado:	Vap	or:	Líqui deba p.e.	jo de		de	uido arriba su p.e.
Fase de m	aterial lik	perad	o:						Vapor liquid						
Contened	or: Cili	indro				Es	fera			Tu	ubería:		X		Otro
Alto del recipiente:				Di	iáme	tro de		bería:			3 i	n	Lar	go:	20
Diámetro e de orificio		nte		0.6	in			Elevación del punto de liberación:					1		
Dirección	de fuga:		Vertic	al:	Ho	orizor	ıtal:	Hacia abajo			Golpe Inclina		Inclina	ida	Angulo
Tiempo es					·) seg	Ma	asa qu	е ра	ırticipa			8	111.64 kg
IV. Condic															
Pares (velo				tabilid	ad at	mosfé	érica):				1.5 m/s	seg ((Tipo B/C)
Temperatu					- 4 4	\.							38 °C	ز	
Temperatu Humedad a			นเรแกโล	aumo	sieri	ua).				-			80 %	<u>′</u>	
Tipo Ce su		Ja										Aml	biente		10
Direcciones		ntes d	lel vient	o:									-		
V. Lugares	s de parti	icular	interé	s (Des	scrip	ción	y dista	ancia	del pui	nto	de fuga	1)			
	tio 1				Sitio :					io 3				Sitio	4
			,,,												
VI. Estado Jet fire: X	Charco			Ince	ndio de Explosión de e: nube: X			BLEVE /bola de fuego			la de	Nube tóxica: X			
Notas: 1 PC= Peor caso MP= Caso Más Probable CA= Caso Alterno															

De los resultados obtenidos a través del modelo se desprenden las siguientes gráficas:

Comportamiento de fuga (dirección y altura).

De los resultados obtenidos a través del modelo se desprenden los siguientes datos:

Tabla 4.20-21 Resultados de Consecuencias Nube Tóxica. Escenario El.06

Centro de Trabajo: San Pedro 1										
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).										
Concentración										
Condiciones del sitio	IDLH (100 ppm)	STEL (15 ppm)								
	Distancia (m)									
1.5 m/s, Estabilidad F	441.113	No Alcanzado								
5.0 m/s Estabilidad B/C	216.547	No Alcanzado								

En la tabla 4.20-21 se muestran los resultados de consecuencias de incendio de dardo de fuego (Jet Fire) para el Escenario El.06, los cuales fueron obtenidos empleando el simulador PHAST, además se consideró las condiciones de presión y temperatura a las que ocurre el evento.

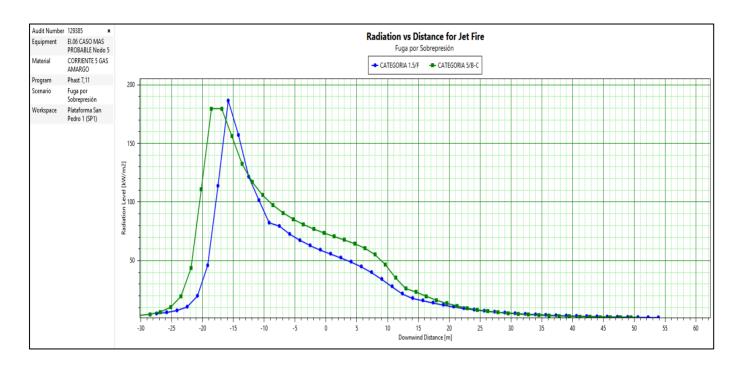
Tabla 4.20-21 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.06

Centro de Trabajo: San Pedro 1							
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).							
	Radiación (kw/m²)						
Condiciones del sitio	37.5	1.4					
	Distancia (m)						
1.5 m/s, Estabilidad F	13.8351	33.8417	63.3897				
5 m/s Estabilidad B/C	16.5706	33.8168	63.1447				

Los resultados mostrados refieren al rango de radiación emitido para las dos condiciones de estabilidad y velocidad de los vientos reportados.

La zona de afectación a instalaciones está determinada por el nivel de radiación de 37.5 kw/m² a los (13.8351) metros para una estabilidad de 1.5/F y (16.5706) metros para una estabilidad de 5B-C. En este punto puede existir daño a equipos de proceso; colapso de estructuras, causando 100% de mortalidad en 1 minuto.

La zona de riesgo está determinada por el nivel de radiación de 5 kw/m² a los (33.8417) metros para una estabilidad de 1.5/F y (33.8168) metros para una estabilidad de 5B-C. En este punto para una persona (piel desnuda) el umbral de dolor se alcanza aproximadamente a los 13 segundos de exposición y con 40 segundos pueden producirse quemaduras de segundo grado, cuando la temperatura de la piel llega hasta 55°C aparecen ampollas. Cabe mencionar que es una zona de peligro solamente para personas sin protección.


La zona de amortiguamiento está determinada por un valor de radiación de 1.4 kw/m², a los (63.3897) metros para una estabilidad de 1.5/F y (63.1447) metros para una estabilidad de 5B-C.

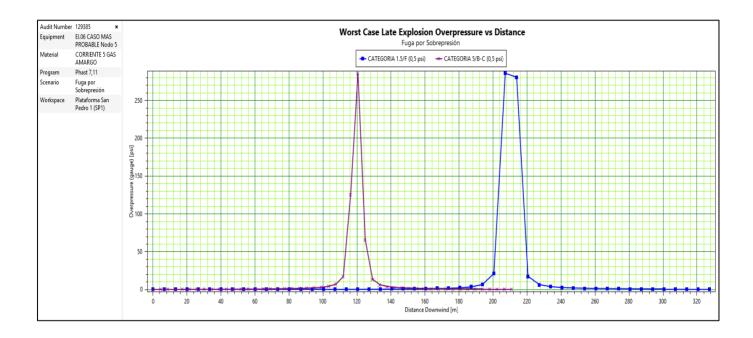
Para más detalle respecto a los resultados mostrados por el simulador Phast 7.11 ver Anexo B.

El gráfico siguiente muestra el nivel de radiación a partir de la flama por el efecto de jet fire.

Consecuencias por Nubes Explosivas

Los resultados por sobrepresión para el escenario El.04 se muestran en la tabla 4.20-12.

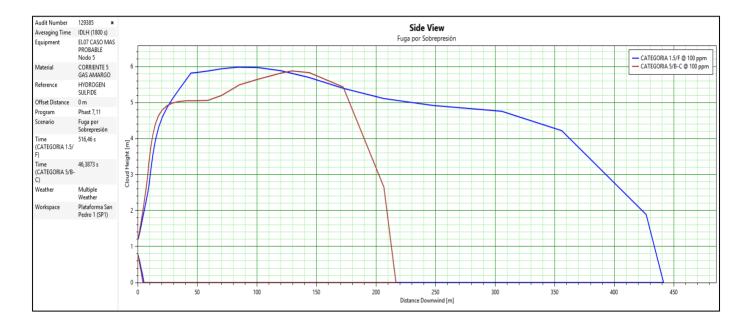
Tabla 4.20-22 Resultados de Consecuencias de Nube Explosiva El.06


Planta o área de trabajo: Plataforma San Pedro 1 (SP1) .									
Distancia a		Masa flamable	Sobrepresión (bar)						
punto de ignición (m)	Condiciones del sitio	(Supplied Flamable Mass)	0.03 (radio de afectación en m)	0.06 (radio de afectación en m)	0.70 (radio de afectación en m)				
10	1.5 m/s, Estabilidad F	1.86	41.89	27.24	13.66				
20	1.5 m/s, Estabilidad F	10.93	77.53	51.09	26.60				
30	1.5 m/s, Estabilidad F	24.03	104.81	70.43	38.58				
10	5 m/s Estabilidad B-C	2.32	44.30	28.54	13.94				
20	5 m/s Estabilidad B-C	9.50	74.90	49.68	26.30				
30	5 m/s Estabilidad B-C	17.56	97.37	66.42	37.73				

^{*}La distancia mostrada para cada nivel de sobrepresión se considera a partir del punto de fuga.

La representación gráfica muestra las distancias para los puntos de ignición en el cual la masa flamable se encuentra en condiciones para producirse una explosión, para estos puntos se pueden alcanzar diferentes niveles de sobrepresión dependiendo de la masa flamable que participa en ese punto.

Escenario El.07 Fuga de Gas amargo debido a una Sobrepresión en línea de inyección de gas de alta presión; con formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del Bloqueo o restricción de la válvula de estrangulamiento


I. Datos del Escenario																	
Clave: El.0	7									Tipo Ce caso: MP							
Elaboro: P	CE			Descripción: Fuga de Gas amargo debido a una Sobrepresión en línea de							n línea de						
																, incendio,	
															acione	es derivado	
											est	rangula	mien	to			
Objetivo:				r escer	arios	de ir	cendic	y/o ex	plosi	ón					Phas	st 7.11	
II. Sustanc	ias Ir	nvolu	crac														
Nombre				Comp	osici	ón:	% m	olar			%			% vc	lumétrico		
											ma	násico					
		_						ompos		•		Gas.					
III. Condici	ones					cara	cteríst						_				
Presión:	244.	31	Ten	nperatu	ıra:			Esta	ido:	Vapo	or:	Líqui				ido arriba	
	Kg/c					70	O°C				debajo de s			su	su de su p.e.		
Fase de ma			اء ء س			\/			Lia	!	1	p.e.					
rase de ma	ateria	ai iibe	rau	0:		va	oor:	Χ	Liq	uido		Vapor					
Contenedo	· ·	Ciline	dro				E c	fora			т.	ıboría:		liquid X	U	Otro	
Alto del	".	Cililia	uio					Esfera			11	Tubería: X		^		Olio	
recipiente:						iámetro de la tubería:						Lar	rgo: 20				
Diámetro e de orificio	quiv	alente	е		0.6	in			aciór aciór		ounto de 3.5					3.5	
	Dirección de fuga:			Vertical: H						G	Golpe Inc		nclina	nda	Angulo		
Direction	10 Iu	gu.		Vertical.			X				contra:		•			Aliguio	
Tiempo estimado de lib			libe						sa que	ie participa				81	11.64 kg		
IV. Condici						entro		Jug	1114		, p u				<u> </u>	<u></u>	
Pares (velocidad del viento, e estabilidad atmosférica): 1.5 m/seg (Tipo F) y						v 5 (T	ipo B/C)										
Temperatur											38 °C						
Temperatura del suelo (si distinta atmosférica):																	
Humedad atmosférica									80 %								
Tipo Ce suelo:							Ambiente marino										
Direcciones dominantes del viento:																	
V. Lugares de particular interés (Descripción y distancia del punto de fuga)																	
Sitio 1			Sitio 2				Sitio 3			Sitio 4			1				
VI. Estado finales de análisis																	
Jet fire: Charco de fu			uego Incendio de			de	Explosión de				BLEVE	/bol	a de	Nub	e tóxica: X		
X					nub	e:		nube:	Х			fuego					
Notas: 1				r caso													
				o Más I		ble											
	(CA= C	Caso	o Altern	0												

De los resultados obtenidos a través del modelo se desprenden las siguientes gráficas:

Comportamiento de fuga (dirección y altura).

De los resultados obtenidos a través del modelo se desprenden los siguientes datos:

Tabla 4.20-23 Resultados de Consecuencias Nube Tóxica, Escenario El.07

Centro de Trabajo: San Pedro 1								
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).								
	Concentración							
Condiciones del sitio	IDLH (100 ppm)	STEL (15 ppm)						
	Distancia (m)							
1.5 m/s, Estabilidad F	441.113	No Alcanzado						
5.0 m/s Estabilidad B/C	216.547	No Alcanzado						

En la tabla 4.20-24 se muestran los resultados de consecuencias de incendio de dardo de fuego (Jet Fire) para el Escenario El.06, los cuales fueron obtenidos empleando el simulador PHAST, además se consideró las condiciones de presión y temperatura a las que ocurre el evento.

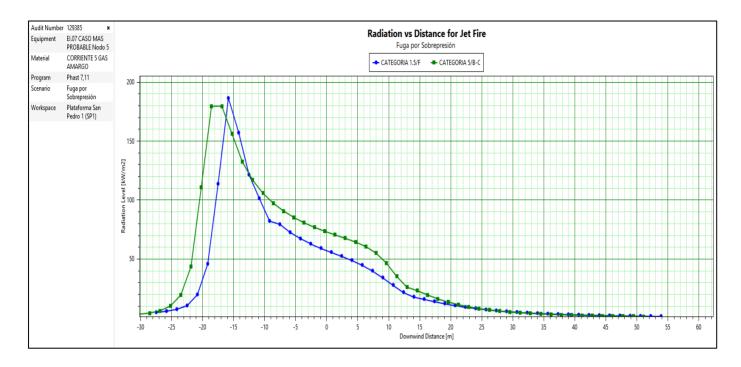
Tabla 4.20-24 Resultados de Consecuencias de Incendio de Dardo de Fuego, Escenario El.07

Centro de Trabajo: San Pedro 1			
Planta o área de trabajo: Plataforma San Pedro 1 (SP1).			
	Radiación (kw/m²)		
Condiciones del sitio	37.5	5.0	1.4
		Distancia (m)	
1.5 m/s, Estabilidad F	13.8351	33.8417	63.3897
5 m/s Estabilidad B/C	16.5706	33.8168	63.1447

Los resultados mostrados refieren al rango de radiación emitido para las dos condiciones de estabilidad y velocidad de los vientos reportados.

La zona de afectación a instalaciones está determinada por el nivel de radiación de 37.5 kw/m² a los (13.8351) metros para una estabilidad de 1.5/F y (16.5706) metros para una estabilidad de 5B-C. En este punto puede existir daño a equipos de proceso; colapso de estructuras, causando 100% de mortalidad en 1 minuto.

La zona de riesgo está determinada por el nivel de radiación de 5 kw/m² a los (33.8417) metros para una estabilidad de 1.5/F y (33.8168) metros para una estabilidad de 5B-C. En este punto para una persona (piel desnuda) el umbral de dolor se alcanza aproximadamente a los 13 segundos de exposición y con 40 segundos pueden producirse quemaduras de segundo grado, cuando la temperatura de la piel llega hasta 55°C aparecen ampollas. Cabe mencionar que es una zona de peligro solamente para personas sin protección.


La zona de amortiguamiento está determinada por un valor de radiación de 1.4 kw/m², a los (63.3897) metros para una estabilidad de 1.5/F y (63.1447) metros para una estabilidad de 5B-C.

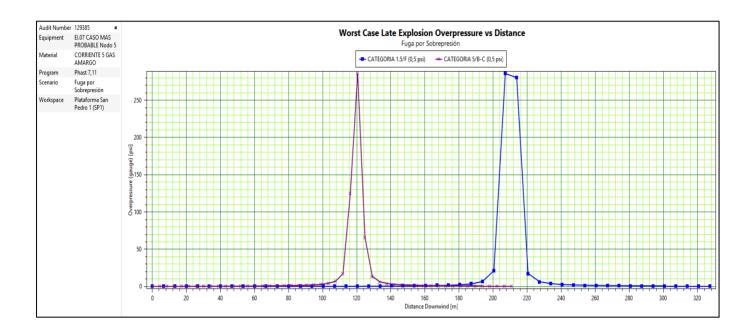
Para más detalle respecto a los resultados mostrados por el simulador Phast 7.11 ver Anexo B.

El gráfico siguiente muestra el nivel de radiación a partir de la flama por el efecto de jet fire.

Consecuencias por Nubes Explosivas

Los resultados por sobrepresión para el escenario EI.07 se muestran en la tabla 4.20-25.

Tabla 4.20-25 Resultados de Consecuencias de Nube Explosiva El.07


Planta o área	Planta o área de trabajo: Plataforma San Pedro 1 (SP1).				
Distancia a		Masa flamable	Sobrepresión (bar)		
punto de ignición (m)	Condiciones del sitio	(Supplied Flamable Mass)	0.03 (radio de afectación en m)	0.06 (radio de afectación en m)	0.70 (radio de afectación en m)
10	1.5 m/s, Estabilidad F	1.86	41.89	27.24	13.66
20	1.5 m/s, Estabilidad F	10.93	77.53	51.09	26.60
30	1.5 m/s, Estabilidad F	24.03	104.81	70.43	38.58
10	5 m/s Estabilidad B-C	2.32	44.30	28.54	13.94
20	5 m/s Estabilidad B-C	9.50	74.90	49.68	26.30
30	5 m/s Estabilidad B-C	17.56	97.37	66.42	37.73

^{*}La distancia mostrada para cada nivel de sobrepresión se considera a partir del punto de fuga.

La representación gráfica muestra las distancias para los puntos de ignición en el cual la masa flamable se encuentra en condiciones para producirse una explosión, para estos puntos se pueden alcanzar diferentes niveles de sobrepresión dependiendo de la masa flamable que participa en ese punto.

4.20 Recomendaciones para los Riesgos Analizados, Evaluados Y Jerarquizados de Acuerdo a la Matriz de Riesgos.

El diseño de una instalación nunca puede ser absolutamente seguro, completamente a prueba de errores humanos. La complejidad de las operaciones a llevar a cabo, la variedad de condiciones de trabajo, la adaptación a las condiciones de las materias primas y es siempre posible acontecimiento de un fallo no previsto son factores que hacen de la correcta operación un factor tan importante como el diseño inicial.

No se puede asegurar que una instalación bien diseñada con la mejor tecnología existente no pueda sufrir un accidente grave debido a un fallo de comunicación, a una operación de arranque o paro realizada de manera incorrecta, a un control insuficiente sobre las modificaciones o procedimientos de mantenimientos inadecuados, etc.

Para controlar los procesos se recurre cada vez más a complejos sistemas automáticos de control, el manejo de estos requiere operarios calificados y entrenados. Los programas de formación y adiestramiento y las simulaciones dinámicas del funcionamiento son cada vez más elementos vitales para lograr un alto grado de seguridad.

Asimismo, como resultado de la evaluación de consecuencias desarrollado en conformidad con las recomendaciones surgidas durante el desarrollo de la metodología de identificación de riesgos HazOp, se deberá contemplar la aplicación de las siguientes recomendaciones:

Tabla 4.21-1 Recomendaciones Surgidas de la metodología HazOp.

Recomendaciones	Lugar(es) utilizado(s)
Implementar un PIT en bajante de producción configurado a un SDMC con alarmas por alta y baja presión	Causas: 1.1.2, 1.2.1
2. Implementar un PIT en separadores de prueba y totales configurado a un SDMC con alarmas por alta y baja presión	Causas: 1.2.3
 Implementar un LIT en tanques MBD-201-203 configurado a un SDMC con alarmas por alto y bajo flujo 	Causas: 1.7.1, 1.8.1
 Instalar una PDAH en filtro MAJ-201-203 en la línea de salida de separadores 	Causas: 1.7.2
5. Implementar un PIT en el compresor CAS-401 configurado a un SDMC con alarmas por alta y baja presión	Causas: 2.1.2, 2.2.1, 3.2.1
6. Implementar un LIT en el MBF-302 configurado a un SDMC con alarmas por alto y bajo flujo.	
7 Implementar un PIT en separador MBF-301 configurado a un SDMC con alarmas por alta y baja presión	Causas: 2.1.3
8. Implementar un LIT en el MBF-301 configurado a un SDMC con alarmas por alto y bajo flujo.	Causas: 2.7.1, 2.8.1
Implementar un PIT en el filtro tipo canasta MAJ-601 configurado a un SDMC con una PDAH.	Causas: 4.2.1, 4.3.2
10.Instalar sistemas de detección de gas tóxico	Causas: 4.2.2
11.Implementar un PIT en línea de alimentación de gas hacia pozos SPI-POZO 1SXT y SPI-POZO 10 DST configurado al SDMC con alarmas por alta y baja presión.	Causas: 5.1.1, 5.1.2
12 Implementar un sistema de candados para el By-Pass con rotulación legible indicando normalmente Cerrada	Causas: 1.2.3

El presente documento tomó como referencia los lineamientos que se muestran dentro de las "Guías Técnicas para Realizar Análisis de Riesgos de Procesos" Clave: 800-16400-DCO-GT-75 Rev. 1 de fecha 03/08/2012, Criterios Técnicos para Simular Escenarios de Riesgo por Fugas y Derrames de Sustancias Peligrosas, en Instalaciones de Petróleos Mexicanos clave DCO-GDOESSSPA-CT-001, Rev.1, 2011, el COMERI 144 rev.2 y la NRF-018-PEMEX-2014.

Considerando las filosofías de operación, sistemas de seguridad, diagramas de tubería e instrumentación (DTI's) y planos de localización general (PLG's) de la Plataforma de producción San Pedro 1 (SP1), se analizó y se realizó el análisis de riesgo, identificación y cuantificación de los riesgos mayores, así como de la evaluación de la magnitud de los riesgos, considerando además el entorno donde se encuentra la instalación.

Una vez estimados los 7 escenarios seleccionados mediante el programa de simulación Phast 7.11, se puede observar que casi todos los escenarios presentaron afectación, en donde como evento final se presenta un incendio tipo dardo de fuego (Jet Fire), alcanzando una radiación de 37.5 kw/m2, lo que indica que en caso de presentarse estos eventos, habrá daño a equipo de proceso, colapso de estructuras y mortalidad en radios de afectación de 8.60 hasta los 18.00 metros, dependiendo del origen de la fuga y del tipo de escenario que se presente, lo cual se puede observar en la siguiente tabla.

De igual manera analizando los resultados obtenidos por el programa de simulación Phast, se aprecia que en caso de presentarse cualquiera de estos eventos, se tendrán afectaciones a equipos de proceso, derivado de un nivel de sobrepresión de 0.7 bar .

Por otro lado se informa que la representación gráfica de las consecuencias a través de los diagramas pétalos, mismos que pueden observarse en el Anexo C, se consideraron en referencia a las vientos reinantes en la zona lo que esquematiza la posible trayectoria de la nube inflamable para cada uno de los eventos analizados y sus posibles afectaciones en bares para las instalaciones tomando como referencia tanto las condiciones ambientales más adversos.

Finalmente para mejorar las condiciones de seguridad de la instalación y mantener el nivel de riesgo en las condiciones tolerables obtenidas, se deberá implementar las recomendaciones emitidas en la metodología HazOp lo cual coadyuvará a mantener el nivel de riesgo de la instalación en los niveles de Riesgo Tolerable identificados y no pasar al nivel inmediato superior, que sería un riesgo indeseable Tipo B.

Como se ha mencionado en el desarrollo de este documento, dichos resultados son de suma importancia, ya que como se describe anteriormente, en caso de presentarse dichos eventos, los efectos sobre el personal, instalación y medio ambiente, son de alto impacto, por esta razón se han tomado para la determinación del SIL de la plataforma de producción San Pedro 1 (SP1) y así determinar si existe la necesidad de implementar más funciones instrumentadas de seguridad para mantener el riesgo dentro de parámetros tolerables para la operación de dicha instalación.

<u>CAPÍTULO V</u> <u>ANALISIS LOPA</u>

Un paso previo a la asignación del NIS (Nivel de Integridad de Seguridad) es llevar a cabo la identificación de todos los escenarios objeto de estudio, incluyendo:

- ➤ Identificación de FIS (Función Instrumentada de Seguridad) y sus correspondientes escenarios a partir de Matriz Causa-Efecto o descripción de enclavamientos, realizados a partir de la Ingeniería Básica o de Detalle.
- ➤ Identificación de escenarios adicionales identificados en el Análisis de Riesgos (HAZOP), para los cuales se requiere una SIF.
- ➤ Identificación SIF a partir del riesgo residual obtenido durante la evaluación de las consecuencias del Análisis de Riesgos.

Un Sistema Instrumentado de Seguridad (SIS) es un nuevo término usado en los estándares para designar un Sistema de Paro de Emergencia (ESD), Sistema de Enclavamientos, etc. Se define como un Sistema Instrumentado usado para implementar una o más funciones instrumentadas de Seguridad (FIS) y se compone de una o más combinaciones de sensores, lógica y elementos finales" como se muestra a continuación.

Conexiones entre Conexiones sensores y E/E/PE Comunicaciones, de salida (tarietas. Programas... aisladores) E/E/PE device Reles. **Elementos** Sensores y PLC's finales: válvulas, transmisores hombas actuadores.

Figura 5-1 Componentes de una Función Instrumentada de Seguridad

5.1 <u>Criterios para Determinar la Necesidad de un Sistema Instrumentado de Seguridad (SIS).</u>

Para la determinación del NIS y con base a Criterios de Riesgo establecidos a nivel Internacional, tomando en consideración la magnitud y consecuencias de accidentes presentados en el área de la Industria Petrolera a nivel mundial, las compañías Reguladoras de Riesgo aceptadas a nivel Internacional, han establecido valores de

frecuencias de exposición al Riesgo Individual para fatalidades los criterios Intolerable, Tolerable y ampliamente aceptable.

La frecuencia de Riesgo Individual (frecuencia a la cual se puede esperar que un individuo reciba un nivel sostenido de daño, derivado de la existencia de peligros determinados) expresada en términos de eventos por año es la siguiente:

Tabla 5.1-1 Criterios de Riesgo Individual (STD)

Riesgo individual para	Riesgo individual para fatalidades	
fatalidades	Trabajadores	Terceros
Intolerable	>10 ⁻³	>10 ⁻⁴
Tolerable	10 ⁻³ a 10 ⁻⁵	<10 ⁻⁴
Ampliamente aceptable	<10-5	

En la tabla 5.1-1, se observa, que se considera como Riesgo Individual tolerable para un trabajador, una probabilidad por año de 0.001 a 0.00001 (frecuencia por año de 10-3 a 10-5) de estar expuesto a un riesgo que lo lleve a la muerte.

Con el fin de establecer el nivel requerido de integridad del sistema de seguridad se deben considerar los siguientes parámetros:

- a. La severidad de las consecuencias si el sistema de seguridad falla al operar en demanda.
- b. La probabilidad de que el personal sea expuesto al riesgo.
- c. Medidas de mitigación para reducir las consecuencias del evento de riesgo.
- d. La frecuencia con la cual el sistema de seguridad se requiere que actúe.

El proceso de asignación del (NIS) objetivo debe realizarse empleando el método de Frecuencias objetivo. Dicho procedimiento se basa en la selección de la frecuencia objetivo en función de la severidad de las consecuencias obtenidas del análisis de riesgo cuantitativo mediante el uso de la tabla 5.1-2

:

Tabla 5.1-2 Severidad del Riesgo y frecuencia objetivo

Severidad del Riesgo	CONSECUENCIA	FRECUENCIA OBJETIVO POR AÑO
MENOR	Impacto inicialmente limitado a un área local del evento con un potencial para una consecuencia más amplia si no se toman acciones correctivas. Por Ej. Fugas dentro barreras de contención, derrames controlables en un día etc.	1.0 x 10 ⁻³
SERIO	Es aquella consecuencia que podría causar cualquier lesión o fatalidad seria en el sitio o fuera de él o bien daño a la propiedad de entre \$ 1 MM en sitio y de \$5 MM fuera de él. Fuga fuera de los límites sin daños adversos	1.0 x 10 ⁻⁴
CATASTROFICO	Es aquella consecuencia que podría causar fatalidades en el sitio o fuera de él o bien daño a la propiedad de 5 veces mayor que el daño serio. Contaminación mayor al entorno ambiental.	1.0 x 10 ⁻⁶

Los valores de frecuencia objetivo mostrados en la tabla 5.1-2 son fundamentales para el cálculo de SIL de los escenarios de Riesgo mediante el método de frecuencia objetivo.

5.2 <u>Selección del Nivel de Integridad de Seguridad (NIS) Objetivo.</u>

El propósito de seleccionar un (NIS) objetivo es especificar la reducción de riesgo requerida, es decir, la diferencia entre los niveles de riesgo existente y tolerable, en términos de (NIS).

El nivel de integridad de seguridad (NIS) debe ser determinado para cada función de seguridad y no debe determinarse de manera global para un proceso o instalación.

El cálculo del SIL de manera individual para cada escenario o FIS, permite el analizar y determinar de manera particular, los periodos óptimos de mantenimiento e inspección requeridos para cada uno de los equipos involucrados en los lazos de las funciones Instrumentadas de Seguridad. Estas Frecuencias de inspección y mantenimiento deberán tener un estricto seguimiento dentro de los programas de mantenimiento e inspección de los Sistemas Instrumentados de Seguridad del Centro de Trabajo. El proceso de asignación del SIL objetivo debe realizarse empleando el método de frecuencias objetivo empleando la siguiente ecuación:

 $obf_{PDF\ prom: rac{F\ objetivo}{F\ Evento}}$

Dónde:

PDF prom= Probabilidad objetivo de falla en demanda promedio

F Objetivo: Frecuencia objetivo

F evento= Frecuencia del evento no mitigado.

La probabilidad de Falla en demanda objetivo promedio de la FIS en estudio, es definida a partir de dividir la frecuencia objetivo a alcanzar, entre la frecuencia del evento no mitigado, la cual a su vez es previamente determinada en el estudio cuantitativo de riesgo mediante el método de árbol de fallas y árbol de eventos

El factor de Reducción de Riesgo (RRF) es igual al inverso de la PFD objetivo promedio calculada, y es valor es el que deberá cumplir la configuración de lazo de control propuesto para la Función Instrumentada de Seguridad.

5.3 Especificación de los Requerimientos de Seguridad del SIS

Una vez determinado que se requiere de un Sistema Instrumentado de Seguridad y establecido un SIL para cada función de Seguridad, el grupo de trabajo especifica todos los requerimientos del SIS/SIF necesarios que deberá cumplir este Sistema, Con esta información se elabora el documento titulado "Especificación de Requerimientos de Seguridad del SIS (SRS)" el cual ya no forma el alcance de este documento.

Una vez llevado a cabo el análisis de capas de protección (LOPA) se seleccionaron los eventos de fuga y/o pérdida de contención que debido a que sus potenciales consecuencias, representan un riesgo al personal presente en la instalación y derivado de la identificación de las capas de protección para los distintos escenarios se integra una lista de funciones de instrumentación de seguridad, la cual nos muestra los niveles de SIL requerido (Meta) a fin de reducir el riesgo de cada escenario, dichas funciones deberán cumplir un Nivel de Integridad de Seguridad de aceptable.

Para el desarrollo y cálculo del Nivel de Integridad de Seguridad requerido (NIS o SIL "siglas en Inglés) para la Plataforma de producción San Pedro 1 (SP1), como se mencionó en el apartado anteriormente, el Marco Normativo del presente documento, son principalmente las normas IEC 61508,IEC 61511,IEC 61511-3 e ISA 84.00.01-2004.

Como se ha descrito anteriormente en el desarrollo de este documento el análisis LOPA requiere la integración de información correspondiente a 2 puntos principales dentro del ciclo de vida de seguridad (análisis e identificación de riesgos y evaluación de consecuencias) para lo cual en el presente apartado se muestra su desarrollo.

Asimismo y con el objeto de dar cumplimiento a los fundamentos de la metodología de Análisis capas de protección a continuación se muestran los puntos que se desarrollaron para el presente estudio:

- Descripción del evento.
- > Nivel de Severidad o impacto.
- > Frecuencia objetivo.
- Causa inicial.
- > Frecuencia del evento por año.
- Niveles de protección (IPL's).
- Protecciones físicas.
- Protección Pasiva.
- Número de IPL's (Niveles de Protección Independientes).
- Frecuencia del evento mitigado sin FIS
- Factor de Reducción del Riesgo.
- NIS Requerido.

Dado que el LOPA típicamente evalúa escenarios que fueron desarrollados en un estudio previo de peligros y Operabilidad (HAZOP) o What if?, un primer paso consiste en revisar estos escenarios, dicha revisión se basa en las consecuencias de los escenarios; los escenarios candidatos de análisis son aquellos cuyo nivel de riesgo cae dentro de las

categorías de riesgo intolerable y riesgo indeseable o bien aquellos escenarios de pérdida de contención. Normalmente dichas consecuencias son no deseadas y su resultado son accidentes, asimismo se señala que la evaluación de los escenarios en este estudio se basó en referencia a aquellos catalogados como pérdidas económicas (a la producción o a la instalación por daños) o escenarios de pérdida de contención, para este último caso se consideró necesario el desarrollar las consecuencias de forma cuantitativa tomando como base que derivado de la valoración cualitativa desarrollada pudieran encontrarse por debajo del riesgo real de la instalación.

Los escenarios considerados para la determinación del NIS, son los relacionados con sistemas principales de proceso que representen riesgos latentes durante la operación de la Plataforma de Producción San Pedro 1. En la Tabla siguiente se enumeran los equipos para el análisis de los niveles de protección (LOPA).

5.4 <u>Descripción del Evento.</u>

El desarrollo de escenarios de riesgo es el paso mediante el cual se determinan una serie de eventos o sucesos, incluyendo los eventos iniciadores propios de la instalación y fallas de capas de protección independientes (IPL´s), mismos que llevarán a una consecuencia no deseada.

Los escenarios de riesgo identificados se muestran en la Tabla 5.1-1, son los equipos y/o sistemas más críticos por su magnitud de riesgo, los cuales representan un mayor impacto en la seguridad de la instalación, ya sea por su alto nivel de frecuencia de ocurrencia o por las consecuencias del evento, para los cuales se identifica el principal evento iniciador.

Tabla 5.4-1 Descripción del evento

Escenario	Evento iniciador	Consecuencias
EI.01	Apertura de la válvula de estrangulamiento por falla mecánica a la llegada de pozos.	1. Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones.
EI.02	apertura del By-Pass de la PSV a la salida de los separadores MBF- 201/203/203 por error humano	1. Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación.
EI.03	Paro de compresor CAS-401 por falla mecánica.	1. sobrepresión en el MBF-301 con fuga de gas y posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.
EI.04	Cierre de válvula manual de 3" BF-30201 por error humano en la línea de salida de compresor CAS-401	1. Sobrepresión en línea de descarga de compresor con fuga en uniones bridadas con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación
EI.05	Apertura de válvula de presión-vacío PVSV-60101 del tanque ABJ-601.	1. Venteo de Gas amargo con daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación.
EI.06	Cierre de válvula manual de 3" por error humano en línea de inyección a pozos.	1. Sobrepresión en línea de inyección de gas de alta presión con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente.
EI.07	Bloqueo o restricción de la válvula de estrangulamiento aguas arriba del manifold de inyección de gas.	1. Sobrepresión en línea de inyección de gas de alta presión aguas arriba del manifold de inyección de gas, con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente

5.5 Nivel de Severidad.

Las consecuencias son los resultados indeseables de los escenarios de un determinado accidente. Una de las primeras decisiones que las compañías deben de determinar a la hora de elegir a los implementos LOPA es definir el punto final de las consecuencias.

Para el caso de este estudio se tomó como consideración el realizar las estimaciones cuantitativas con afectación al personal, este método es semejante a las estimaciones cualitativas, pero utiliza un análisis detallado para determinar los efectos de evento y sus efectos sobre los individuos y equipos.

Este método implica el uso de modelos matemáticos (modelo computarizado típicamente complejos) para simular la liberación en sí, la dispersión posterior, y el efecto tóxico, explosión o daños térmicos, las ventajas de este método corresponden a un mayor grado de certidumbre respecto las consecuencias previstas y su comparación directa con las directrices corporativas

Para los escenarios mostrados en la tabla anterior se llevó a cabo un análisis de consecuencias considerando los eventos de fuga sin incendio, fuga con incendio, fuga con explosión y el considerado más grave fuga de gas ácido, con el objeto de poder estimar la severidad de las consecuencias del evento final con la utilización del software matemático Phast versión 7.11

Tomando como referencia las características propias de la instalación así como factores tales como: sustancia manejada, condiciones de operación, fue necesario realizar un análisis del área de afectación (evaluación de consecuencias) para los diferentes tipos de escenarios probables y en base a los resultados obtenidos se realizó una comparación de lo descrito cualitativamente durante el análisis HAZOP y los resultados de la evaluación de consecuencias realizado a través del Phast, siendo en estos casos valorado, si existía la necesidad de incrementar lo jerarquizado originalmente o ubicarlos en la jerarquización inicial efectuada, lo anterior tomando en consideración que el factor principal para categorizar un evento de riesgo era las afectaciones o daño al personal.

Para determinar la matriz de severidad de los eventos y a fin de establecer la frecuencia objetivo respecto a la criticidad de los mismos se ha utilizado en este estudio como referencia a lo indicado por la IEC-61511-3 en la que se establecen los siguientes criterios para el nivel de severidad:

Tabla 5.5-1 Probabilidad de iniciación.

Nivel de severidad del evento.	Cualitativo.	Cuantitativo.
Baja (C3 catastrófico)	Un fallo o serie de fallos con una probabilidad muy baja de que se produzcan dentro del tiempo esperado de vida de la planta.	F<10 ⁻⁴ /año (*)
Media (C2 serio)	Un fallo o una serie de fallos con una probabilidad baja de que se produzcan dentro del tiempo de vida esperado de la panta	10 ⁻² <f<10<sup>-2/año</f<10<sup>
Alta (C1 menor)	Un fallo que cabe razonablemente esperar que se produzca dentro de un tiempo esperado de vida de la planta.	10 ⁻² <f año<="" td=""></f>

Tabla 5.5-2 Nivel de gravedad de los eventos de impacto.

Nivel de Severidad	Consecuencia	Consecuencia	Probabilidad de evento mitigado	Base
Menor (M)	Impacto inicialmente limitado al área local del evento con potencial de consecuencias más amplias si no se toman acciones correctoras.	suspensión laboral Pérdidas de producción	1x 10-2 a 1x10-3	Criterios de riesgo descritos en el lineamiento para la determinación del nivel de riesgo tolerable en las instalaciones de proceso.
Grave (S)	El evento de impacto podría causar graves heridas o la muerte en el emplazamiento o fuera del emplazamiento.	Heridas o daños físicos que pueden resultar en hasta 3 fatalidades Pérdidas de producción 0.5 mil – 5 MM (USD) Daños a la instalación 15 MM – 50 MM (USD)	1x 10-3 a 1x10-5	Criterios de riesgo descritos en el lineamiento para la determinación del nivel de riesgo tolerable en las instalaciones de proceso.
Muy grave (E)	Un evento de impacto que es al menos cinco veces más grave que un evento grave.	Heridas o daños físicos que pueden resultar de 4 a 15 fatalidades Pérdidas de producción > 50 MM (USD) Daños a la instalación > 50 MM (USD)	1x 10-5 a 1x10-6	Criterios de riesgo descritos en el lineamiento para la determinación del nivel de riesgo tolerable en las instalaciones de proceso.

En la Tabla 5.5-1 y 5.5-2 se presentan los niveles de severidad de eventos de impactos y la frecuencia objetivo por año, los datos se obtuvieron de la IEC-61511-3 o la homologación realizada en base en las "Guías técnicas para realizar Análisis de Riegos de Proceso" clave 800-16400-DCO-GT-75 Rev. 2 de petróleos Mexicanos, paro lo cual se realiza la asignación de la severidad de las consecuencias conforme a los valores

ponderados durante la etapa de realización del Análisis HazOP realizado para este documento para la "Plataforma de Producción San Pedro 1 (SP1)".

Catastrófico (muy grave): Se clasificarán aquellos escenarios que derivado de la severidad de las consecuencias (catastróficas) se espera que ocurran de manera remota, es decir se espera que estos eventos sean esencialmente imposibles durante la vida de la instalación aun cuando su ocurrencia sea de niveles graves con una o más fatalidades o lesionados graves con daños irreversibles. Con el objeto de establecer un valor más conservador este documento enfocará estos escenarios con frecuencia objetivo de 10-6.

Serio (grave): Se clasificarán aquellos escenarios que derivado de la severidad de las consecuencias (grave) se espera que ocurran de manera esporádica, es decir estos eventos sean concebibles y solo se requiera de hospitalización e incapacidad parcial o total temporal con efectos moderados a la salud. De igual manera para este tipo de eventos se deberá considerar un valor entre 10-2 y 10-3 y con el objeto de establecer un valor más conservador este documento enfocará estos escenarios con frecuencia objetivo de 10-4.

Moderado (menor): Se clasificarán aquellos escenarios que derivado de la severidad de las consecuencias (menor o moderado) se espera que ocurran al menos una vez en la vida de las instalaciones y sus consecuencias sean únicamente primeros auxilios sin lesiones graves. Con el objeto de establecer un valor más conservador este documento enfocará estos escenarios con frecuencia objetivo de 10-3.

Como se mencionó en el capítulo IV (Análisis de consecuencias), una vez desarrollado la evaluación de consecuencias, los resultados por incendio y explosión descritos en los diagramas de pétalos así como los resultados arrojados por el software Phast 7.1, lo antes señalado se realizó en función de los posibles daños que pueda presentarse al personal tal y como lo señala el Layer of protection analysis (LOPA) Aiche, CCPS en su página 36 de Estimación cuantitativa de consecuencias y severidad.

Se puede observar que una vez identificando el evento y partiendo de los eventos iniciadores se puede mostrar el nivel de consecuencia asignado durante la jerarquización cualitativa (HAZOP) y en comparación, la columna 6 de esta misma tabla se indica la afirmación de dicha jerarquización una vez comparando las consecuencias conforme a lo establecido por el software Phast 7.11.

Tabla 5.5-3 Escenario identificado y nivel de consecuencia

Tabla 3.3-3 Escenario identificado y filver de consecuencia					
Escenario	Evento iniciador	Descripción de Consecuencias	Nivel de Consecuencia asignada en Hazop	Nivel de Consecuencia modificada	Nivel de Impacto del evento
EI.01	Apertura de la válvula de estrangulamiento por falla mecánica a la llegada de pozos.	Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones.	C Riesgo Aceptable con Controles	Catastrófico	Muy Grave
EI.02	Apertura del By- Pass de la PSV a la salida de los separadores MBF- 201/203/203 por error humano	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación.	C Riesgo Aceptable con Controles	Catastrófico	Muy Grave
EI.03	Paro de compresor CAS-401 por falla mecánica.	Sobrepresión en el MBF-301 con fuga de gas y posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	C Riesgo Aceptable con Controles	Catastrófico	Muy Grave
EI.04	Cierre de válvula manual de 3" BF- 30201 por error humano en la línea de salida de compresor CAS- 401	Sobrepresión en línea de descarga de compresor con fuga en uniones bridadas con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación	C Riesgo Aceptable con Controles	Catastrófico	Muy Grave
EI.05	Apertura de válvula de presión-vacío PVSV-60101 del tanque ABJ-601.	Venteo de Gas amargo con daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación.	C Riesgo Aceptable con Controles	Menor	Modera do
EI.06	Cierre de válvula manual de 3" por error humano en línea de inyección a pozos.	Sobrepresión en línea de inyección de gas de alta presión con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente.	C Riesgo Aceptable con Controles	Catastrófico	Muy Grave
EI.07	Bloqueo o restricción de la válvula de estrangulamiento aguas arriba del manifold de inyección de gas.	Sobrepresión en línea de inyección de gas de alta presión aguas arriba del manifold de inyección de gas, con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente	C Riesgo Aceptable con Controles	Catastrófico	Muy Grave

El criterio utilizado para la definición del nivel de impacto para cada uno de los eventos se fundamenta en los resultados obtenidos de la Evaluación de consecuencias para cada uno de ellos, en el caso de aquellos escenarios en los cuales como se determinó el daño a los equipos/instalaciones y/o producción la valoración del nivel de impacto señalada fue de manera cualitativa.

5.6 Frecuencia Objetivo (Criterio de Tolerancia al Riesgo)

En los análisis LOPA cada uno de los escenarios tiene un solo evento iniciador y su frecuencia se expresa normalmente en eventos por año. Existen tres tipos de eventos iniciadores: Eventos externos, Fallas de equipos, Fallas humanas.

El proceso de asignación del NIS objetivo debe realizarse empleando el método de frecuencias objetivo o frecuencia meta. Este procedimiento se basa en la selección de la frecuencia objetivo o frecuencia meta en función de la severidad de las consecuencias obtenidas del análisis de riesgo cuantitativo.

En función de la severidad de las consecuencias en el desarrollo del HAZOP y una vez realizada la comparación tomando como referencia la evaluación de consecuencias a través del modelo matemático de simulación Phast, se han seleccionado mediante lo descrito anteriormente, las frecuencias objetivo para cada uno de los escenarios identificados en la tabla 5.3-1.

Tabla 5.6-1 Escenario identificado y nivel de consecuencia

Escenario	Evento iniciador	Descripción de Consecuencias	Nivel de Impacto del evento	Frecuencia Objetivo
EI.01	Apertura de la válvula de estrangulamiento por falla mecánica a la llegada de pozos.	Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones.	Muy Grave	1 x 10 ⁻⁶

Tabla 5.6-1 Escenario identificado y nivel de consecuencia

Escenario	Evento iniciador	Descripción de Consecuencias	Nivel de Impacto del evento	Frecuencia Objetivo
EI.02	apertura del By-Pass de la PSV a la salida de los separadores MBF-201/203/203 por error humano	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación.	Muy Grave	1 x 10 ⁻⁶
EI.03	Paro de compresor CAS-401 por falla mecánica.	Sobrepresión en el MBF-301 con fuga de gas y posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	Muy Grave	1 x 10 ⁻⁶
EI.04	Cierre de válvula manual de 3" BF- 30201 por error humano en la línea de salida de compresor CAS-401	Sobrepresión en línea de descarga de compresor con fuga en uniones bridadas con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación	Muy Grave	1 x 10 ⁻⁶
EI.05	Apertura de válvula de presión-vacío PVSV-60101 del tanque ABJ-601.	Venteo de Gas amargo con daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación.	Tolerable	1 x 10 ⁻³
EI.06	Cierre de válvula manual de 3" por error humano en línea de inyección a pozos.	Sobrepresión en línea de inyección de gas de alta presión con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente.	Muy Grave	1 x 10 ⁻⁶
EI.07	Bloqueo o restricción de la válvula de estrangulamiento aguas arriba del manifold de inyección de gas.	Sobrepresión en línea de inyección de gas de alta presión aguas arriba del manifold de inyección de gas, con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente	Muy Grave	1 x 10 ⁻⁶

5.6.1 Causa Inicial (Evento iniciador).

Para cada evento de impacto, se enlistarán todas las causas iniciales. Nótese que una causa del HAZOP podría ser enlistada en varias desviaciones del HAZOP. Es importante reunir todas las causas y realizar los cálculos restantes para cada causa de inicio por cada evento de impacto.

Como se ha visto anteriormente de acuerdo al análisis HAZOP realizado para la instalación en estudio de este documento, se determinaron las causas para cada uno de los escenarios de riesgo que se analizarán en la aplicación de la metodología LOPA.

5.6.2 Frecuencia del evento por año

Para obtener el valor de la frecuencia del evento iniciador, se tomaron aquellos escenarios resultantes de la jerarquización de riesgos que presentan afectaciones importantes dentro del estudio de consecuencias, siendo así, se analizaron las causas iniciadoras y sus capas independientes de protección (si existen), una vez identificadas se tomaron los valores de frecuencias de falla en demanda típicas conforme a la bibliografía utilizada como lo fueron (datos de fiabilidad de componentes o de las causas, OREDA 2002, Offshore Reliability Data, 4th Edition, SINTEF, Bases de datos de EXIDA, etc). Para determinación la frecuencia de falla del evento iniciador en el caso que aplique se tomó como referencia la tasa de fallos obtenidos en 10-6 hr.

5.7 Niveles de Protección Independientes y Probabilidad de Falla Sobre Demanda.

Un Nivel de Protección Independiente (IPL) o Capa de Protección Independiente (CPI) es un dispositivo, sistema o acción que tiene la capacidad de prevenir que un escenario avance hasta tener una consecuencia no deseada, independiente del evento iniciante o de la acción de alguna otra capa de protección asociada con el escenario.

La diferencia entre un IPL y una salvaguarda es importante. Una salvaguarda es cualquier dispositivo, sistema o acción que probablemente interrumpirá la cadena de eventos que suceden después de un evento iniciante. Sin embargo, la efectividad de algunas salvaguardas no puede ser cuantificada debido a la carencia de información o datos, incertidumbre en cuanto a su independencia o efectividad o algunos otros factores.

La efectividad de una IPL es cuantificada en términos de su Probabilidad de Falla en Demanda (PFD), y se define como la probabilidad de que un sistema (en este caso la CIP) pueda fallar en desempeñar su función específica bajo condiciones de demanda. La PFD es un número adimensional entre 0 y 1, ya que es una probabilidad. Mientras más pequeño sea el valor de la PFD, mayor será la reducción de la frecuencia de ocurrencia de la consecuencia, para una frecuencia de un evento iniciante dado. La "reducción en la

frecuencia" que se logra con el IPL es algunas veces conocida con el término de "factor de reducción de riesgo".

Los IPLs (Niveles de Protección Independientes), y sus PFD (Probabilidad de Falla en Demanda), se escriben en la sección Capas Independientes de Protección de la hoja de trabajo LOPA. Para el Análisis de los Niveles de Protección Independientes con que cuenta la instalación, se realizó una revisión de los Diagramas de Tubería e Instrumentación de la Plataforma San Pedro 1 (SP1), así como la descripción lógica operacional.

Se enlistarán los Niveles de Protección Independientes que puedan prevenir la causa de inicio desde el alcance del impacto del evento. Los Niveles de Protección Independientes podrían ser diferentes para diferentes causas de inicio.

Se determinará qué niveles de protección son independientes.

Se asignará un valor de PFD (Probabilidad de Falla en Demanda) a cada capa de protección independiente (IPL), en la Tabla 5.4-1 se muestran valores típicos utilizados.

Tabla 5.7-1 Probabilidades de Falla en Demanda Típicas para IPL's.

IPL	Probabilidad de Falla en Demanda PFD
Falla de lazo de control (BPCS).	1 x 10 ⁻¹
Falla de válvula de alivio.	1 x 10 ⁻²
Disco de ruptura	1 x 10 ⁻²
Error humano (entrenado, sin estrés).	1x 10 ⁻¹

Referencia: Layer of protection Analysis: A New PHA Tool After HAZOP, Before Fault Tree Analysis.

Reglas para los IPL's (Niveles de Protección Independientes)

Para ser considerado un IPL, un dispositivo, sistema o acción debe ser:

- Efectivo en prevenir la consecuencia asignada a su función.
- Independiente de otros niveles de protección. Esto es, no debe haber fallas que puedan desactivar dos o más niveles de protección.

Auditado para demostrar que satisface los requerimientos de mitigación del riesgo de un LOPA IPL.

La reducción de frecuencia para un IPL (Nivel de Protección Independiente), es de dos órdenes de magnitud, ejemplo 10-2 PFD (Probabilidad de Falla en Demanda), es decir, la disponibilidad es de 99%.

Si se cree que un IPL (Nivel de Protección Independiente) es más fiable (valor más bajo para una PFD Probabilidad de Falla en Demanda), se debe utilizar un método cuantitativo para confirmar la PFD; por ejemplo, si se desea improvisar la no disponibilidad de una reducción de riesgo lógica en el BPCS (Sistema Básico de Control de Proceso), por una suma adicional de sensores o elementos finales, el evento de impacto deberá ser revisado por un método cuantitativo, a pesar del árbol de falla.

- ➤ El IPL (Nivel de Protección Independiente) es diseñado específicamente para prevenir o mitigar las consecuencias de un potencial evento de riesgo.
- > El IPL (Nivel de Protección Independiente) debe ser confiable.
- ➤ El IPL (Nivel de Protección Independiente) será diseñado, pero el sistema será auditado y aprobado.
- Si el evento inicial es causado por una falla en el sistema básico de control de proceso BPCS, éste no se contará como un IPL (Nivel de Protección Independiente).
- Las alarmas asociadas que son consideradas en el BPCS no son independientes del BPCS, si éste es considerado como un IPL (Nivel de Protección Independiente), entonces las alarmas no podrán considerarse como un IPL.
- Un lazo de control (lazo PID) en el BPCS el cual en acción normal debería compensar un evento inicial, puede ser considerado como un IPL (Nivel de Protección Independiente).

BPCS o SDMC (Basic Process Control System).

El Sistema de Control Básico de Proceso, incluyendo controles manuales, es el primer nivel de protección durante la condición de operación normal. El BCPS está diseñado para controlar el proceso en una región de operación segura. La condición de operación normal de un lazo de control del BCPS puede ser considerada como un IPL.

La falla del BCPS puede ser un evento iniciante. Cuando se considere el BCPS como una IPL, el analista debe evaluar la efectividad del control de proceso y sistemas de seguridad, como el error humano que puede disminuir el desempeño del BCPS.

El BCPS debe prever tres diferentes tipos de funciones de seguridad que pueden ser IPL:

- Acción continua de control, el cual mantiene el proceso en un estado normal de operación, previniendo la progresión de un escenario anormal seguida de la iniciación de un evento.
- Controles lógicos o alarmas las cuales identifican parámetros del proceso que se encuentran fuera de lo normal esperando que llegue esta información al operador quien tomará medidas correctivas de acuerdo al entrenamiento y procedimientos operativos de emergencia.
- ➤ Controladores lógicos y trasmisores los cuales son instalados para tomar acciones automáticas en el proceso en lugar de intentar retornar al proceso a su operación normal. Esta acción puede resultar en un apagado situando al proceso en un estado seguro.

EL BCPS es un IPL relativamente débil, debido a que usualmente tiene:

- Poca redundancia en los componentes.
- Limitada capacidad de prueba integrada.
- Seguridad limitada de encontrarse con los cambios autorizados para la programación lógica interna.

Alarmas y Acción Humana (Alarmas y procedimientos).

Estos sistemas son considerados como el segundo nivel de protección durante la condición de operación normal y deben ser activados por el BCPS. La acción del operador, originada por las alarmas o por observación, puede ser considerada como un IPL. Los procedimientos de la compañía y la capacitación pueden mejorar el desempeño de los humanos en el sistema, pero los procedimientos por sí mismos no son un IPL.

Protección mecánica "Protección física" (Válvulas de relevo).

En descargas dirigidas a la atmósfera se puede tener eventos adicionales de riesgo como pueden ser formación de nubes tóxicas, inflamables y/o explosivas.

Las válvulas de relevo de presión se consideran IPL durante una condición anormal de la operación del proceso, cuando su descarga se encuentra dirigida de manera segura a la atmósfera o un sistema de mitigación seguro, minimizando así los efectos por sobrepresión en un equipo o circuito de tuberías.

Las PSV instaladas en los equipos sujetos a presión se acreditan como IPL ya que actúan por sobrepresión, por lo tanto a descarga bloqueada tendrán la capacidad de aliviar la alta presión en el sistema.

Frecuencia del evento no mitigado sin FIS.

Se calculará la frecuencia del evento no mitigado multiplicando la Frecuencia del evento iniciador por las PFD's de los IPL's, e incluir el valor numérico en la fila de la tabla de LOPA. La Frecuencia de eventos intermedios es comparada con la Frecuencia objetivo del evento. Para el cálculo de la frecuencia del evento no mitigado, se considerarán únicamente los datos de las IPL's acreditadas, de las tablas del análisis LOPA.

Si la Frecuencia de mitigación de los eventos es menor que la Frecuencia de mitigación de eventos objetivos, los criterios de riesgo ejecutivos en conjunto con los IPL's (Niveles de Protección Independientes), podrían no ser requeridos. Sin embargo, las reducciones de riesgos adicionales deberán ser deseados.

Si la Frecuencia de mitigación de eventos es mayor que la Frecuencia de mitigación de los eventos objetivos, entonces podría ser necesario una reducción de riesgo adicional. Se deberá buscar la reducción del riesgo, aplicando inherentemente conceptos de seguridad así como aplicación adicional de niveles de protección. La tabla del LOPA deberá ser actualizada con los cambios realizados en su diseño.

Criterios de riesgo.

El riesgo total para los eventos de impacto, deberá ser comparado con los criterios de riesgo.

Si el riesgo total no concuerda con los criterios, entonces se deberá buscar reducir el riesgo, primero aplicando conceptos inherentes de seguridad, y aplicando niveles adicionales de protección. Con los cambios de diseño se requerirá de la actualización de la tabla LOPA.

Si el riesgo total es substancialmente menor que los criterios establecidos, entonces no se requiere de una reducción adicional de riesgo.

El objetivo es asegurar que el riesgo total de la instalación reúna los criterios de riesgo. Se deberá considerar que los empleados y la comunidad podrían tener riesgos en cualquier otra parte de la unidad. Este riesgo adicional debería estar cotejado con el criterio de riesgo.

En el desarrollo de las tablas LOPA para la instalación "Plataforma de producción San Pedro 1 SP1" bajo las siguientes consideraciones:

- > Pérdidas económicas por paro de planta.
- Pérdidas económicas por daño a la instalación o
- Pérdidas de contención con incendio.
- Pérdida de contención con explosión.

Tabla 5.7-2 E. 01 LOPA

Personal Ambiente Producción Indicator Población Tercos Tercos Población Tercos	No. Escenario	E.01	Parámetro de proceso:	Más presión	Nodo Hazop Referencia:	1.2	2.1	Frecuencia Identificada:	3
Puga por sobrepresión Puga por sobrepresión Puga por sobrepresión Perolation Perolation Rev. 0 Probabilidad de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y posible formación de nube toxica, incentió, espiciador con dafro al personal, medio al personal and al perso	Equipo:	MBD-201	1/202/203		Ambiente	Producción	Instalación	Población	Terceros
Datos Consecuencia Consecuencia Descripción (Categoria Criterio de Tolerancia at Riesgo (categoria de frecuencia) Contento de Tolerancia at Riesgo (categoria de frecuencia) Evento iniciador (Frecuencia tapica) Evento Activación o Condición: Probabilidad de ignición Probabilidad de ignición Probabilidad de ignición Probabilidad de ignición Probabilidad de muerte fatal Otros N/A Probabilidad de muerte fatal Otros N/A SBCP N/A N/A N/A SBCP N/A N/A N/A N/A Alarmas y Acción Humana PiT en bajante de producción configurado a un SDMC con alarma por atta presión, de esta manera formanos la PDF de dicha IPL Orded 2002 Offshore Reliability Data 4th Edition. pag. 553 N/A Protección mecánicas Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Nose requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario.								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Descripción en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y posible formación de nube tóxica, incendio, explosino con daño al personal, medio ambiente y a las instalaciones Criterio de Tolerancia al Riesgo (categoría de frecuencia)	Fuga por sobrepresión PEO1010-F-PI-004 Rev. 0						Rev. 0		
Consecuencia Sobrepresión en linea de producción, Manifold de producción (Separadores de producción de producción (Separadores de producción de producción (Separadores de producción de producción de producción de producción (Separadores de producción de producción de producción de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones Criterio de Tolerancia al Riesgo (categoría de frecuencia) Muy grave Tolerable 1.00E-08 1.00E-08 1.00E-03 Evento iniciador (Frecuencia típica) Apertura de la válvula de estrangulamiento por falla mecánica a la llegada de pocos Oreda 2002 Offshore Reliability Data 4th Edition. All modes, pag. 599 N/A	Da	tos			Descripción			Probabilidad	
Descripcion/Categoria formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones 1.00E-06 1.00E-06 1.00E-03 1.00E-06 1.00E-03	Consec	cuencia	Sobrepresión	en línea de pro	ducción, Manifo	old de producción	(Separadores		7ano.
Riesgo (categoria de fercuencia) Fevento iniciador (Frecuencia tipica) Evento iniciador (Frecuencia tipica) Evento iniciador (Frecuencia tipica) Evento Activación o Condición: Modificadores condicionales (si aplica) Probabilidad de ignición Probabilidad de personal en el área afectada Probabilidad de muerte fatal Otros Capas Independientes de protección Diseño N/A SBCP N/A Sed ac réddito a la recomendación No. 1 del análisis HazOp de Implementar un PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Oroda 2002 Offshore Reliability Data 4th Edition. pag. 553 N/A Protección mecánicas Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección Notas	Descripció	n/Categoría		nube tóxica, in	cendio, explosio	ón con daño al pe			
Evento iniciador (Frecuencia típica) Evento/Activación o Condición: Probabilidad de Ignición Modificadores condicionales (si aplica) Frecuencia de Consecuencia No Mitigada Capas Independientes de protección Diseño N/A Alarmas y Acción Humans Se da crédito a la recomendación No. 1 del análisis HazOp de Implementar un PIT en bajante de producción configurado a un SDMC con alarma por alta pressión, de esta manera tomanos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 543 Salvaguardas No IPL's Por consecuencia de de vento no mitigado sin FIS (ocasiones/año) Nose requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección Nose requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección Notas	Riesgo (ca	tegoría de							
Evento inticator (Frecuencia tipica) Evento/Activación o Condición: Modificadores condicionales (si aplica) Probabilidad de ignición Probabilidad de personal en el área afectada N/A Otros Probabilidad de personal en el área afectada N/A Otros Frecuencia de Consecuencia No Mitigada Capas Independientes de protección Diseño N/A SBCP N/A Alarmas y Acción Humana PIT en bajante de producción configurado a un SDMC con alarma por alta profesión de esta manera tomanos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553 N/A Protección mecánicas Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del avento no mitigado sin FIS (ocasiones/año) Probabilidad de rigidado sin FIS (ocasiones/año) No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección de tolerancia al riesgo Notas	frecue	encia)	Aportura do la	válvula do ostr		or falla macánica	a la llogada do		1.00E-03
Evento/Activación o Condición: Modificadores condicionales (si aplica) Probabilidad de ignición Probabilidad de personal en el área afectada N/A N/A N/A N/A Frecuencia de Consecuencia No Mitigada Capas Independientes de protección Diseño N/A SBCP N/A N/A SBCP N/A Alarmas y Acción Humana PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Orda 2002 Offshore Reliability Data 4th Edition. pag. 553 SIF N/A Protección mecánicas PSV en separadores MBD-201/202/203 (Se considera la PDf de las 3 PSV) Orda 2002 Offshore Reliability Data 4th Edition. pag. 641 Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Factor de reducción del riesgo Notas Notas Notas			·		pozos		· ·		3.15E-03
Modificadores condicionales (si aplica) Modificadores condicionales (si aplica) Probabilidad de personal en el área afectada N.V.A N./A N./A N./A N./A N./A N./A N./A N.							- / I U	N/A	
Modificadores condicionales (si aplica) Probabilidad de personal en el área afectada Probabilidad de muerte fatal Otros N/A N/A N/A N/A N/A N/A Frecuencia de Consecuencia No Mitigada Capas Independientes de protección Diseño N/A SBCP N/A SBCP N/A Se da crédito a la recomendación No. 1 del análisis HazOp de Implementar un PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553 N/A Protección mecánicas Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para cumplir con los criterios de tolerancia al riesgo Notas	Cond	icion.	Probabilidad de	e ignición				N/A	
Condicionales (si aplica) Tros Tro	Modifia	adavaa			l área afectada			N/A	
Frecuencia de Consecuencia No Mitigada 3.15E-03 Capas Independientes de protección Diseño N/A N/A N/A SBCP N/A N/A N/A Alarmas y Acción Humana PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553 SIF N/A N/A N/A Protección mecánicas PSV en separadores MBD-201/202/203 (Se considera la PDf de las 3 PSV) Oreda 2002 Offshore Reliability Data 4th Edition. pag. 641 Salvaguardas No IPL's PDF total de todas las IPL's 5.29E-05 Frecuencia del evento no mitigado sin FIS (ocasiones/año) 1.67E-07 Probabilidad de falla en la demanda promedio 6.00E+00 Factor de reducción del riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario.			Probabilidad de	muerte fatal					
Capas Independientes de protección Diseño N/A N/A N/A		(ap,	Otros					N/A	
Diseño N/A N/A N/A SBCP N/A N/A N/A Alarmas y Acción Humana Se da crédito a la recomendación No. 1 del análisis HazOp de Implementar un PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553 SIF N/A N/A N/A Protección mecánicas PSV en separadores MBD-201/202/203 (Se considera la PDf de las 3 PSV) Oreda 2002 Offshore Reliability Data 4th Edition. pag. 641 Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario.	Frecuencia de	e Consecuenc		3.15E-03					
SBCP N/A Alarmas y Acción Humana Se da crédito a la recomendación No. 1 del análisis HazOp de Implementar un PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553 N/A Protección mecánicas PSV en separadores MBD-201/202/203 (Se considera la PDf de las 3 PSV) Oreda 2002 Offshore Reliability Data 4th Edition. pag. 641 Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mittigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección del tolerancia al riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección del tolerancia al riesgo	Capas Indepe	ndientes de p							
Se da crédito a la recomendación No. 1 del análisis HazOp de Implementar un PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553 SIF N/A Protección mecánicas PSV en separadores MBD-201/202/203 (Se considera la PDf de las 3 PSV) Oreda 2002 Offshore Reliability Data 4th Edition. pag. 641 Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario. Notas	Dis	eño			N/A			N/A	
Alarmas y Acción Humana PIT en bajante de producción configurado a un SDMC con alarma por alta presión, de esta manera tomamos la PDF de dicha IPL Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553 N/A Protección mecánicas PSV en separadores MBD-201/202/203 (Se considera la PDf de las 3 PSV) Oreda 2002 Offshore Reliability Data 4th Edition. pag. 641 Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Factor de reducción del riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para cumplir con los criterios de tolerancia al riesgo Notas	SB	СР			N/A			N/A	
Protección mecánicas PSV en separadores MBD-201/202/203 (Se considera la PDf de las 3 PSV) Oreda 2002 Offshore Reliability Data 4th Edition. pag. 641 Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario. Notas	Alarmas y Ac	ción Humana	PIT en bajan pre	te de producció sión, de esta m	on configurado a nanera tomamos	un SDMC con a la PDF de dicha	larma por alta ı IPL		
Salvaguardas No IPL's PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo Acciones requeridas para cumplir con los criterios de tolerancia al riesgo Notas Oreda 2002 Offshore Reliability Data 4th Edition. pag. 641 1.14E-03 1.67E-05 5.29E-05 1.67E-07 6.00E+00 1.67E-01 No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario.	s	IF			N/A			N/A	
PDF total de todas las IPL's Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo Acciones requeridas para cumplir con los criterios de tolerancia al riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario. Notas	Protección	mecánicas						1.14E-03	
Frecuencia del evento no mitigado sin FIS (ocasiones/año) Probabilidad de falla en la demanda promedio Factor de reducción del riesgo 1.67E-07 Acciones requeridas para cumplir con los criterios de tolerancia al riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario.	Salvaguard	as No IPL's							
Probabilidad de falla en la demanda promedio Factor de reducción del riesgo 1.67E-01 Acciones requeridas para cumplir con los criterios de tolerancia al riesgo Notas Notas	PDF total de t	odas las IPL's						5.29E-05	
Acciones requeridas para cumplir con los criterios de tolerancia al riesgo Notas 1.67E-01 1.67E-01 No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario.	Frecuencia de	el evento no m	itigado sin FIS	(ocasiones/a	ño)				1.67E-07
Acciones requeridas para cumplir con los criterios de tolerancia al riesgo No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario. Notas	Probabilidad (de falla en la c	demanda prom	edio					6.00E+00
cumplir con los criterios de tolerancia al riesgo Notas No se requiere una Función instrumentada de Segundad adicional a las capas independentes de protección identificadas para este escenario.	Factor de reducción del riesgo								1.67E-01
	cumplir con	los criterios	No se req	uiere una Func		apas independient	tes de protección		
FIS N/A SIL Requerido No SIL	No	tas							
	F	ıs		N/A			SIL Re	querido	No SIL

Tabla 5.7-3 E. 02 LOPA

No. Escenario	E.02	Parámetro de proceso:	Más presión	Nodo Hazop Referencia:	1.2	2.3	Frecuencia Identificada:	3
Equipo:	MBD-20 ²	1/202/203	Personal Ambiente Producción Instalación 1 3 1 1				Población	Terceros
Descripción del Escenario DTI							Interlock A	Analizado
Fug	a de gas por A	pertura de By-F	Pass	PE	D1010-F-PI-004 F	Rev. 0	N/	A
Da	tos			Descripció	n		Probabilidad	Frecuencia /año.
	cuencia	Venteo de gas		a con posible fo ersonal y a la in	rmación de nube	tóxica con daño		
•	n/Categoría Folerancia al		ai pe		Statacion			4.005.00
Riesgo (ca	ntegoría de			Muy grave Tolerable				1.00E-06 1.00E-03
Evento i	niciador cia típica)		201/2	la PSV a la sal 03/203 por erro	ida de los separa or humano cy Estimation, T			1.00E-02
`	. ,				nitiating Events,			
	tivación o ición:							
		Probabilidad de					N/A	
Modific	adores	Probabilidad de		l área afectada			N/A N/A	
condicional	es (si aplica)	Probabilidad de Otros	e muerte iatai				N/A N/A	
							14/71	
Frecuencia d	e Consecuen	cia No Mitigada	1					1.00E-02
Capas Indepe	endientes de _l	orotección						
Diseño		Se da crédito a la recomendación No. 12 del análisis HazOp de Implementar un sistema de candados para el By-Pass con rotulación legible indicando normalmente Cerrada Ref. Pag.14.45, Human failures,Tabla 14-A-2. Operator error estimates Kletz, Red book, CPR 12E, Methods for determining and processing probabilities					1.00E-02	
SB	СР			N/A			N/A	
Alarmas y Ac	ción Humana	PIT en separa	dores de pruel p	oa y totales con or alta y baja pi	nálisis HazOp de figurado a un SDI esión ta 4th Edition. ¡	MC con alarmas	4.64E-02	
s	IF			N/A				
Protección	mecánicas			N/A			N/A	
FS (proteccion del pa	ón intrínseca quete)			N/A			N/A	
Salvaguard	as No IPL's				N/A			
PDF total de	todas las IPL'	s					4.64E-04	
Frecuencia d	el evento no r	mitigado sin FIS	S (ocasiones/a	año)				4.64E-06
Probabilidad de falla en la demanda promedio								2.16E-01
Factor de reducción del riesgo								4.64E+00
cumplir con	ιueridas para los criterios ia al riesgo							
No	tas							
F	IS		N/A			SIL Re	querido	NO SIL

Tabla 5.7-4 E. 03 LOPA

No. Escenario	E.3	Parámetro de proceso:	Más Presión.	Nodo Hazop Referencia:		1.3	Frecuencia Identificada:	3
Equipo:	MBF	F-301 Personal		Ambiente 1	Producción 2	Instalación 1	Población 1	Terceros
	Descripción del Escenario				DTI		Interlock A	Analizado
	Fuga por s	sobrepresión			PEO1010-F-PI-0	05	N/	A
Da	itos			Descripció	n		Probabilidad	Frecuencia /año.
Conse	cuencia				as y posible form			
	n/Categoría	tóxica, ince	ndio y explosió	n con daño al p instalación	ersonal medio ar	nbiente y a la		
	Tolerancia al ategoría de			Muy grave				1.00E-06
	encia)			Tolerable				1.00E-03
	iniciador cia típica)	Oreda			por falla mecánic ata 4th Edition.			2.05E-01
	ctivación o lición:							
		Probabilidad o	de ignición	17			N/A	
	cadores onales (si		de personal en de muerte fatal	el área afectad	<u>a</u>		N/A N/A	
	ica)	Otros	ao maorto iatai				N/A	
Frecuencia	de Consecuei	 ncia No Mitigad	la					2.05E-01
Capas Indep	pendientes de	protección						
Dis	Diseño						N/A	
SB	ВСР	un PIT en sep	Se da crédito a la recomendación No. 7 del análisis HazOp de Implementar un PIT en separador MBF-301 configurado a un SDMC con alarmas por alta y baja presión Oreda 2002 Offshore Reliability Data 4th Edition. pag. 553					
	y Acción nana			N/A			N/A	
s	iF			N/A			N/A	
Protección	mecánicas	Oreda		e Reliability Da	SP-30103-CB20- ata 4th Edition.	1.58E-03		
		Oreda	2002 Offshor	PSV-30102 e Reliability Da	ջ ita 4th Edition. լ	1.00E-01		
	otección del paquete)			N/A			N/A	
Salvaguard	las No IPL's				N/A			
PDF total de	e todas las IPL	_'s					7.32E-06	
Frecuencia	del evento no	mitigado sin F	IS (ocasiones	/año)				1.50E-06
Probabilida	d de falla en la			6.67E-01				
Factor de reducción del riesgo								1.50E+00
para cump criterios de	requeridas olir con los e tolerancia esgo	No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de prot identificadas para este escenario.						
No	otas							
F	IS		N/A			SIL Re	NO SIL	

Tabla 5.7-5 E. 04 LOPA

No. Escenario	E.4	Parámetro de proceso:	Más Presión.	Nodo Hazop Referencia:		1.1	Frecuencia Identificada:	2	
Equipo:	CAS	-401	Personal 2	Ambiente	Producción 2	Instalación 2	Población	Terceros	
	Descrinción	del Escenario		2	DTI		Interlock A	nalizado	
	•	obrepresión			PEO1010-F-PI-0	05	N/		
Da	tos			Descripción	n		Probabilidad	Frecuencia /año.	
Consec	cuencia				mpresor con fug				
	n/Categoría				óxica, incendio y nte y a la instalac				
Riesgo (ca	Folerancia al ategoría de			Muy grave				1.00E-06	
	encia)	Cierr	e de válvula m	Tolerable	30201 por error h	umano		1.00E-03	
	iniciador cia típica)	Layer of F	rotection Ana	alysis (5.3 Frec	uency Estimatio to Initiating Eve	n, Table 5.1		1.00E-02	
	tivación o ición:						N/A		
		Probabilidad (-1 (5 1			N/A		
	adores onales (si		de personal en de muerte fatal	el área afectad	а		N/A N/A		
	ica)	Otros	de muerte latai				N/A		
•							·		
Frecuencia	de Consecuer	ncia No Mitigad	la					1.00E-02	
Capas Indep	pendientes de	protección							
Dis	eño			N/A			N/A		
	СР			N/A			N/A		
	y Acción nana			N/A			N/A		
s	IF			N/A			N/A		
	mecánicas				compresor CAS- ta 4th Edition.		4.64E-02		
	tección lel paquete)			N/A			N/A		
Salvaguard	las No IPL's				N/A				
PDF total de	todas las IPL	.'s					4.64E-02		
Frecuencia	del evento no	mitigado sin F	IS (ocasiones	s/año)				4.64E-04	
Probabilidad	d de falla en la	demanda pro	omedio					2.16E-03	
	ducción del ri	iesgo						4.64E+02	
para cump criterios de	requeridas olir con los e tolerancia esgo	Se requiere una Función Instrumentada de Seguridad con un SIL 2 con acción de paro del compresor a través de un PIT configurado al SIS o ESD.							
No	tas								
F	IS		N/A			SIL Re	querido	SIL 2	

Tabla 5.7-6 E. 05 LOPA

No. Escenario	E.5	Parámetro de proceso:	Más presión	Nodo Hazop Referencia:		2.2	Frecuencia Identificada:	3	
Equipo:	ABJ	-601	Personal 2	Ambiente 2	Producción 2	Instalación 1	Población 1	Terceros 1	
	Descripción o	del Escenario			DTI	<u> </u>	Interlock A	Analizado	
	Fuga por so	obrepresión		ı	PEO1010-F-PI-00)7	N/.	A	
Dat	os			Descripción	1		Probabilidad	Frecuencia /año.	
Consec Descripción		Venteo de g	gas a la atmósf nube tóxica cor	era y daño a ta n daño al persor	nque con posible nal y a la instalaci	formación de ón			
Criterio de T Riesgo (ca				Muy grave				1.00E-06	
frecue				Tolerable				1.00E-03	
Evento in (Frecuenc					vacío PVSV-601 ta 4th Edition. ¡			6.90E-02	
Evento/Act Condi									
		Probabilidad o					N/A		
Modifica			de personal en de muerte fatal	el área afectad	a		N/A N/A		
condicionale	s (si aplica)	Otros	de muerte latai				N/A		
Frecuencia d	e Consecuenc	 cia No Mitigada	a					6.90E-02	
Capas Indepe	endientes de p								
Dise	eño			N/A			N/A		
SBC	CP			N/A			N/A		
Alarmas y Hum				N/A			N/A		
SI	F			N/A			N/A		
Protección				N/A			N/A		
FS (protecció del pad				N/A			N/A		
Salvaguarda	as No IPL's				N/A				
PDF total de t	todas las IPL'	s					6.90E-02		
Frecuencia d	el evento no r	mitigado sin Fl	S (ocasiones/	año)				4.76E-03	
Probabilidad	de falla en la	demanda proi	nedio					2.10E-01	
Factor de red	ucción del rie	esgo						4.76E+00	
Acciones r para cump criterios de t ries	lir con los olerancia al	No se requiere una Función Instrumentada de Seguridad adicional a las capas independientes de protección identificadas para este escenario.							
Not	as								
FI	S		N/A			SIL Re	querido	No SIL	

Tabla 5.7-7 E. 06 LOPA

No. Escenario	E.6	Parámetro de proceso:	Más Presión	Nodo Hazop Referencia:	5.	1.1	Frecuencia Identificada:	2
Equipo:		ección de gas	Personal	Ambiente	Producción	Instalación	Población 2	Terceros
11.1.	de alta presión 3 Descripción del Escenario				3 2 3 PDF			nalizado
	Fuga por sobrepresión						N/A	
Da	itos			Descripció			Probabilidad	Frecuencia /año.
Conse	cuencia				de alta presión co			
•	n/Categoría Tolerancia al	de gas y po	personal, daño	o a instalación y	a, incendio o explo al medio ambien	te		
	ategoría de			Muy grave				1.00E-06
frecu	encia)			Tolerable				1.00E-03
(Frecuen	iniciador cia típica)	Layer of F	Alvula manual or Protection Anacuency Value		1.00E-02			
	ctivación o lición:							
Modifi	cadores	Probabilidad of		el área afectad	2		N/A N/A	
	cadores onales (si		de muerte fatal		a ————————————————————————————————————		N/A N/A	
	ica)	Otros					N/A	
Erocuoncia	do Consocuo	 ncia No Mitigad	la					1.00E-02
	pendientes de							1.00L-02
Dis	eño			N/A			N/A	
SE	ВСР			N/A			N/A	
	y Acción nana	un PIT en líne POZO 1	ea de alimenta l0 DST configu	ción de gas hac urado al SDMC d	el análisis HazOp ia pozos SPI-POz con alarma por alt ta 4th Edition. p	ZO 1SXT y SPI- ta presión	4.64E-02	
S	iF.			N/A			N/A	
	mecánicas			N/A			N/A	
	otección del paquete)			N/A			N/A	
Salvaguard	las No IPL's				N/A			
PDF total de	e todas las IPI	_'s					4.64E-02	
Frecuencia	del evento no	mitigado sin F	IS (ocasiones	s/año)				4.64E-04
Probabilida	d de falla en la	a demanda pro	medio					2.16E-03
	Factor de reducción del riesgo							4.64E+02
para cump criterios de	requeridas olir con los e tolerancia esgo	Se requiere una Función Instrumentada de Seguridad con un SIL 2 con acción de cierre de válvula de corte través de un PIT configurado al SIS. (Línea de llegada de gas de alta presión)						
No	otas							
F	IS		N/A			SIL Re	querido	SIL 2

Tabla 5.7-8 E. 07 LOPA

No. Escenario	Parámetro de proceso:	Más presión	Nodo Hazop Referencia:	5.	1.2	Frecuencia Identificada:	2	
	ección de gas	Personal	Ambiente	Producción	Instalación	Población	Terceros	
de alta	presión del Escenario	3	3	2 PDF	3	2 Interlock A	nalizado	
·	sobrepresión			E-6555		N/A		
Datos			Descripción			Probabilidad	Frecuencia /año.	
Consecuencia	Sobrepresiór			de alta presión a	guas arriba del			
Descripción/Categoría		fuga de gas		on de gas, ción de nube tóxic talación y al medi				
Criterio de Tolerancia al Riesgo (categoría de frecuencia)			Muy grave Tolerable				1.00E-06 1.00E-03	
Evento iniciador	Plo	gues e restrica		a de estrangulam	ionto		1.00L-03	
(Frecuencia típica)				n Edition. All mo			3.15E-03	
Evento/Activación o Condición:								
2011.11010.11	Probabilidad o					N/A		
Modificadores			el área afectad	a		N/A		
condicionales (si aplica)	Otros	de muerte fatal				N/A N/A		
αριίοα)	Olios		IN/A					
Frecuencia de Consecue	ncia No Mitigad	la					3.15E-03	
Capas Independientes de	protección							
Diseño			N/A			N/A		
SBCP			N/A			N/A		
Alarmas y Acción Humana	Implementar i	un PIT en línea	a de alimentació ST configurado	. 11 del análisis F n de gas hacia po al SDMC con ala ffshore Reliabili 553	ozos SPI-POZO rma por alta	4.64E-02		
SIF			N/A			N/A		
Protección mecánicas			N/A			N/A		
FS (protección intrínseca del paquete)			N/A			N/A		
Salvaguardas No IPL's				N/A				
PDF total de todas las IPI	L's					4.64E-02		
Frecuencia del evento no	mitigado sin F	IS (ocasiones	s/año)				1.46E-04	
	Probabilidad de falla en la demanda promedio							
Factor de reducción del r			1.46E+02					
Acciones requeridas para cumplir con los criterios de tolerancia al riesgo	Se requiere una Función Instrumentada de Seguridad con un SIL 2 con acción de cierre de válvula de corte a través de un PIT configurado al SIS. (Línea de llegada de gas de alta presión)							
Notas								
FIS		N/A			SIL Re	querido	2	

CAPÍTULO VI

RESULTADOS DEL ESTUDIO DE SEGURIDAD (NIS)

Por otro lado se puede decir que el objetivo primordial para la determinación del Nivel de Integridad de Seguridad para la Plataforma de producción San Pedro 1 (SP1), es aumentar la seguridad en el proceso, aunado a un adecuado desempeño en la operación, el cual se encuentra directamente dirigido a la seguridad de las personas, del medio ambiente y de las instalaciones.

Para alcanzar este objetivo, fue necesaria la identificación de los eventos peligrosos, tomando como referencia lo obtenido de la aplicación de la metodología de identificación de riesgos HAZOP, mismos que en el presente estudio se asociaron a la vez a un determinado equipo, línea, servicio o instrumento, con la finalidad de que la causas identificadas para un determinado evento sean las propiciantes para la activación de un evento peligroso.

Para el análisis de capas de protección (LOPA) se seleccionaron aquellos eventos que debido a su magnitud de consecuencias representan un riesgo al personal presente en la instalación o un riesgo en cuanto a pérdidas económicas en la producción, relacionados con eventos catastróficos o serios, de los cuales se obtuvo como principal resultado la necesidad de implementar Funciones Instrumentadas de Seguridad asociadas a un Sistema Instrumentado de Seguridad para prevenir o mitigar los eventos identificados, ya que el nivel de riesgo obtenido con las salvaguardas existentes se encuentra por encima de valor del nivel de riesgo tolerable.

El resultado del Análisis LOPA y con ello la determinación del NIS requerido para la Plataforma de producción San Pedro 1 (SP1), se muestran en capitulo anterior, además de los valores de frecuencia del factor de reducción de riesgo obtenido para cada uno de los escenarios identificados y evaluados mediante el análisis LOPA.

Tabla 6-1 NIS requerido y factor de reducción de riesgo por escenario evaluado para el proyecto de ampliación de la Plataforma de producción San Pedro 1 (SP1)

para el proyecto de ampliación de la Plataforma de producción San Pedro 1 (S								
Escenario	Causas Evento iniciador	Evento Final	FRR	PFD Objetivo	NIS Requerido			
EI.01	Apertura de la válvula de estrangulamiento por falla mecánica a la llegada de pozos.	Sobrepresión en línea de producción, Manifold de producción (Separadores de prueba y separador de Totales), con fuga de hidrocarburos y posible formación de nube tóxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones.	1.67E-01	5.29E-05	N0			
EI.02	Apertura del By-Pass de la PSV a la salida de los separadores MBF-201/203/203 por error humano	Venteo de gas amargo a la atmosfera con posible formación de nube tóxica con daño al personal y a la instalación.	4.64E+00	4.64E-04	N0			
EI.03	Paro de compresor CAS-401 por falla mecánica.	Sobrepresión en el MBF-301 con fuga de gas y posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación.	1.50E+00	7.32E-06	N0			
EI.04	Cierre de válvula manual de 3" BF- 30201 por error humano en la línea de salida de compresor CAS-401	Sobrepresión en línea de descarga de compresor con fuga en uniones bridadas con posible formación de nube tóxica, incendio y explosión con daño al personal medio ambiente y a la instalación	4.64E+02	4.64E-02	2			
EI.05	Apertura de válvula de presión-vacío PVSV-60101 del tanque ABJ-601.	Venteo de gas a la atmósfera y daño a tanque con posible formación de nube tóxica con daño al personal y a la instalación.	4.76E+00	6.90E-02	N0			
EI.06	Cierre de válvula manual de 3" por error humano en línea de inyección a pozos.	Sobrepresión en línea de inyección de gas de alta presión con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente.	4.64E+02	4.64E-02	2			
EI.07	Bloqueo o restricción de la válvula de estrangulamiento aguas arriba del manifold de inyección de gas.	Sobrepresión en línea de inyección de gas de alta presión aguas arriba del manifold de inyección de gas, con posible fuga de gas y posible formación de nube tóxica, incendio o explosión, daño al personal, daño a instalación y al medio ambiente	1.46E+02	4.64E-02	2			

CAPÍTULO VII

CONCLUSIONES Y RECOMENDACIONES

En el presente documento se desarrolla la primera etapa del ciclo de vida de seguridad para la <u>Determinación del NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1</u>), ubicada en Perú, donde, se define el NIS como el proceso de seleccionar la reducción de riesgo adecuada necesaria para el Sistema Instrumentado de Seguridad, con el fin de lograr un nivel aceptable de riesgo. Utilizando normas y procedimientos de referencia de instalaciones similares en materia de riesgo de PEMEX, para la realización de las metodologías de identificación de peligros, así como la evaluación cuantitativa de las consecuencias, ya que en base a la magnitud de dichas consecuencias, se tomaron como base estos escenarios y así lograr determinar si es necesario implementar una Función instrumentada de seguridad adicional para permitir reducir el riesgo a una zona aceptable.

Para esto se desarrolló la técnica denominada LOPA (Layer of Protection Analysis) para la Plataforma de Producción San Pedro 1 (SP1). En base a normas internacionales como la IEC-61511 en sus tres apartados.

Para llevar a cabo el análisis de capas de protección (LOPA) se seleccionaron los eventos de fuga y/o pérdida de contención que debido a que sus potenciales consecuencias, representan un riesgo al personal presente en la instalación y derivado de la identificación de las capas de protección del proyecto Plataforma de producción San Pedro 1, se determinó la necesidad de implementar Funciones Instrumentadas de Seguridad (FIS) para 3 escenarios (ver tabla 6-1), adicionales a las capas de protección existentes a fin de reducir el riesgo en la instalación.

Con los resultados obtenidos en este estudio se concluye que con las capas de protección no SIS con las que contará la Plataforma de producción San Pedro 1 no son suficientes desde el punto de vista de riesgo, por lo que será necesario implementar un Sistema Instrumentado de Seguridad con funciones instrumentadas de seguridad adicionales con el fin de llevar a la instalación a niveles tolerables de riesgo, así mismo, será necesario contemplar las siguientes recomendaciones:

- Cumplir con los programas de pruebas, inspección y mantenimiento de las capas de protección independientes activas, a fin de mantener la integridad de las capas de protección y evitar que el riesgo se incremente y se mueva a la zona de riesgo indeseable.
- ➤ Los escenarios listados en las hojas de trabajo del análisis de peligro y operabilidad deben ser contemplados en el Plan de Respuesta a Emergencias (PRE) de la Plataforma.
- > Documentar, actualizar y difundir debidamente los procedimientos operativos de:
- > Arranque.
- Paro.
- Operación Normal.
- Flexibilidades Operativas.
- Contingencias.
- Plan de Respuesta a Emergencias.
- Cumplir con el programa de capacitación al personal de contra incendio.
- Llevar a cabo el programa anual de simulacros operacionales y de emergencia, dentro de la instalación, de acuerdo a los escenarios de riesgo identificados en el análisis.

De igual manera se muestran las recomendaciones del estudio de seguridad SIL de las Funciones Instrumentadas de Seguridad resultantes y su modo de actuación:

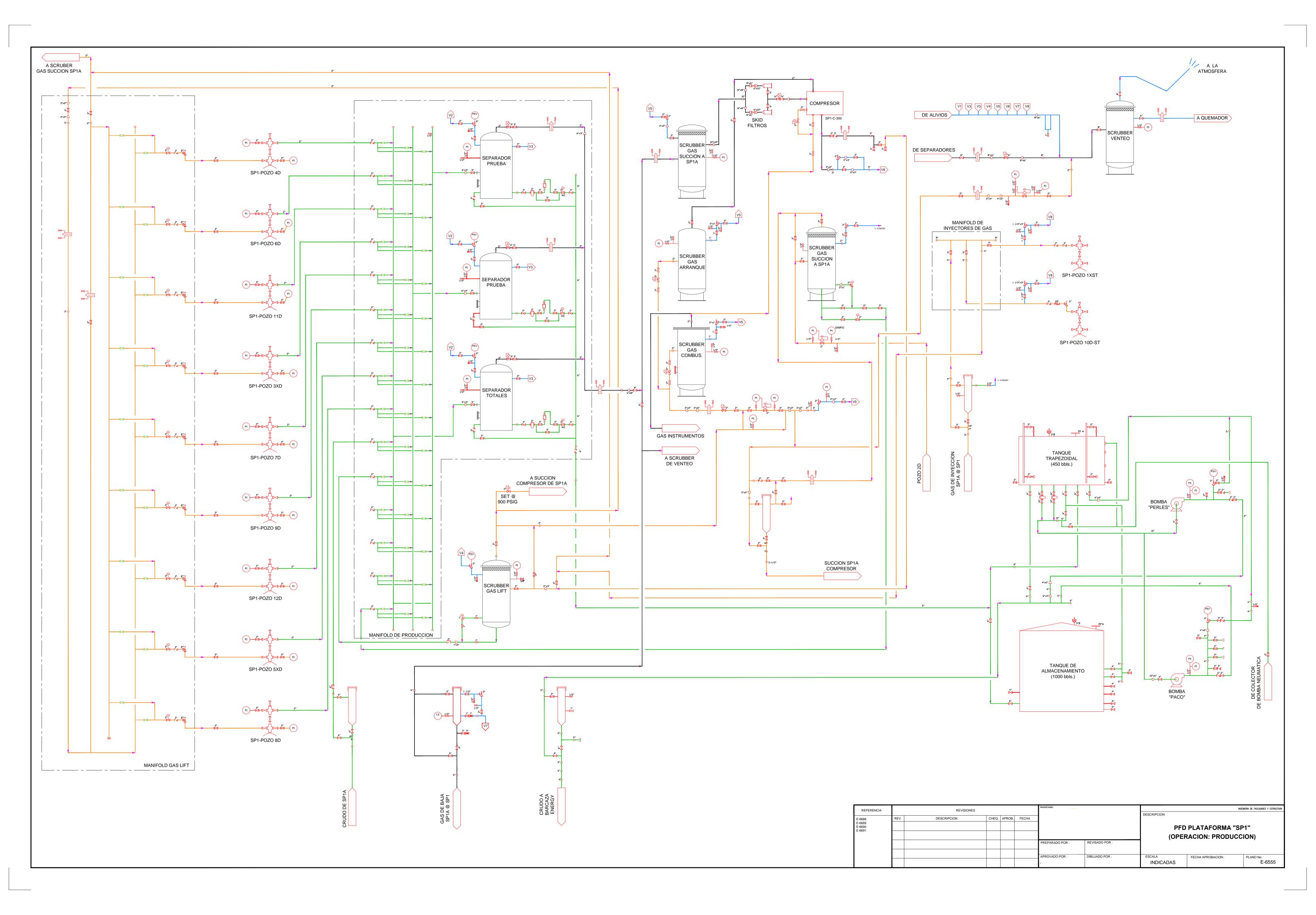
Tabla 7-1 Recomendaciones del Estudio de seguridad SIL

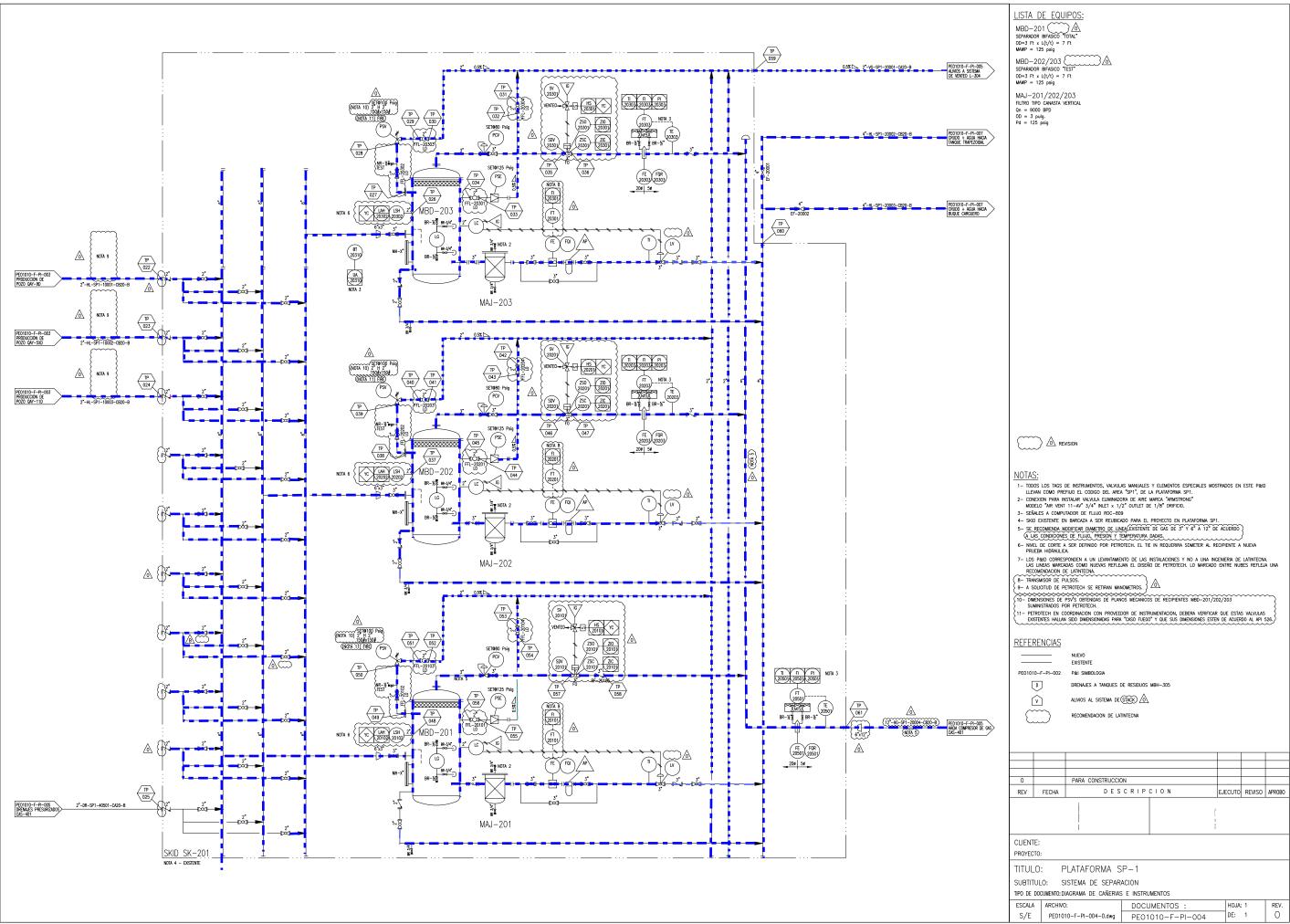
Escenario	Causas Evento iniciador	Función Instrumentada propuesta		SIL
EI.04	Cierre de válvula manual de 3" BF-30201 por error humano en la línea de salida de compresor CAS-401	Se requiere una Función Instrumentada de Seguridad con un SIL 2 con acción de paro del compresor a través de un PIT configurado al SIS o ESD.	4.64E+02	2
EI.06	Cierre de válvula manual de 3" por error humano en línea de inyección a pozos.	Se requiere una Función Instrumentada de Seguridad con un SIL 2 con acción de cierre de válvula de corte a través de un PIT configurado al SIS. (Línea de llegada de gas de alta presión)	4.64E+02	2
EI.07	Bloqueo o restricción de la válvula de estrangulamiento aguas arriba del manifold de inyección de gas.	Se requiere una Función Instrumentada de Seguridad con un SIL 2 con acción de cierre de válvula de corte a través de un PIT configurado al SIS. (Línea de llegada de gas de alta presión)	1.46E+02	2

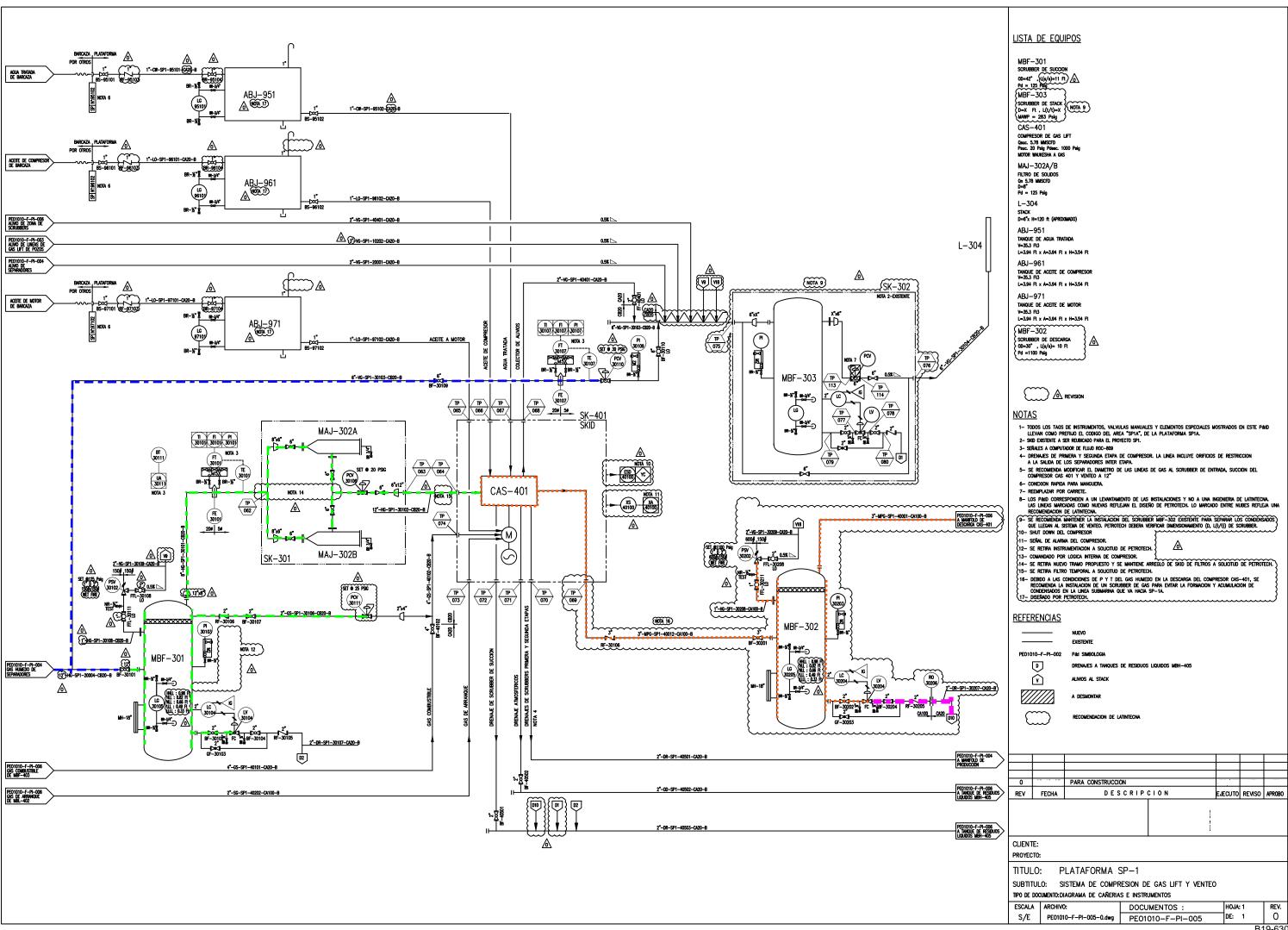
Bibliografía

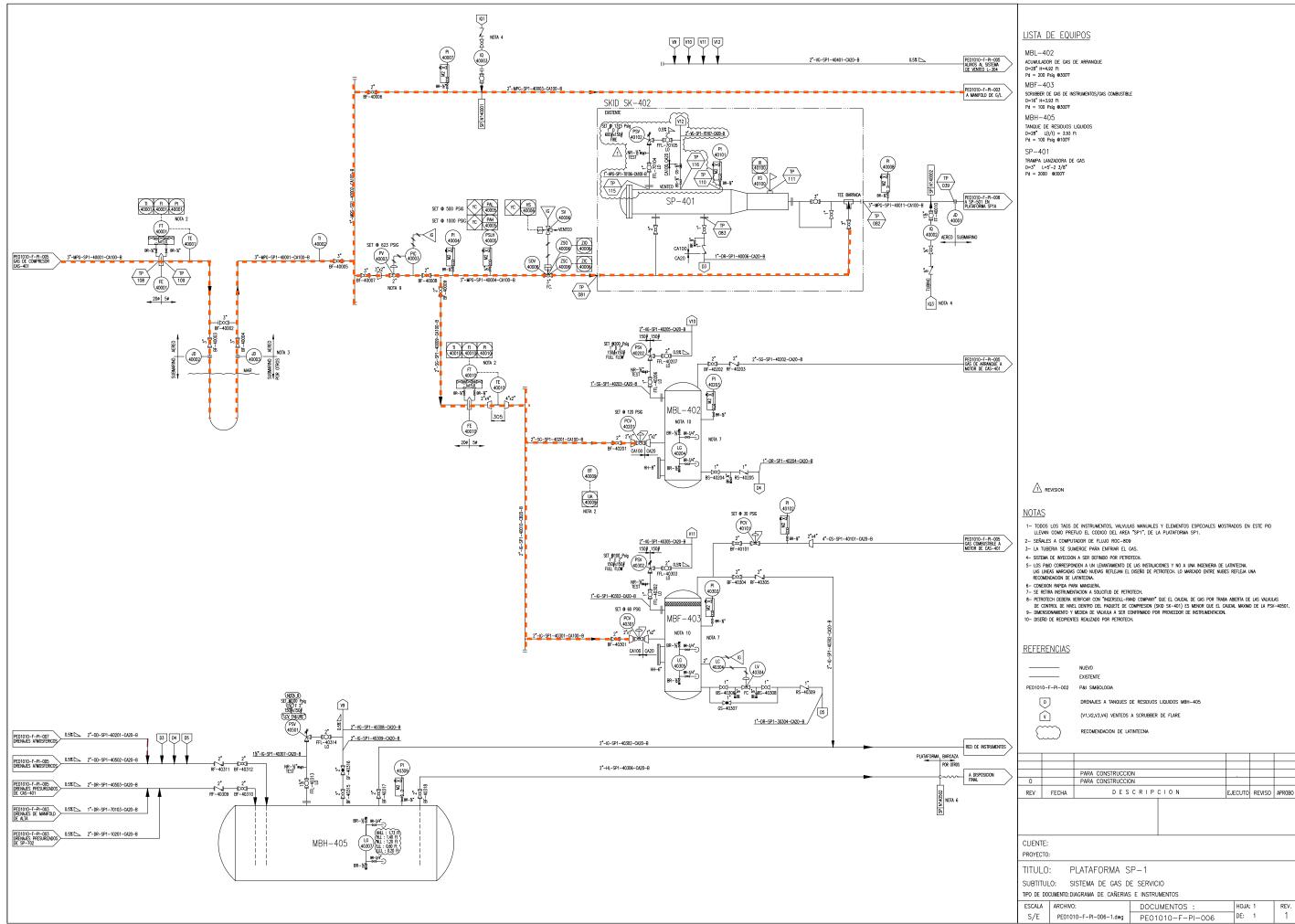
- 1. Miller, M.J. "Reliability of Fire Protection", Chemical Engineering Progress, 70 (4):62 (April 1974).
- 2. Williams, Jeremy C., "Incorporating Human Performance Vari|ability in Process Safety Assessment", (Publication source unknown).
- 3. Fink, D.G., "Standard Handbook for Electrical Engineers", 10th Ed., p. 26-13 (1968)
- 4. J.M. Santamaría, P.A. Braña Aísa "Análisis y Reducción de Riesgos en la IndustriaQuímica", Fundación Mapfre.
- 5. Enrique González Ferradás, Francisco José Ruiz Boada, Agustín Miñana Aznar, Joaquín Navarro Gómez, José Ruiz Gimeno, Jesús Martínez Alonso. "Zonas de Planificación para Accidentes Graves de Tipo Térmico" Departamento de Ingeniería Química Universidad de Murcia.
- 6. "OREDA" Offshore Reliability Data, 4ht. Edition, 2002, Ed. SINTEF.
- 7. Manual de Seguridad Industrial en Plantas Químicas y Petroleras, Tomo 1, J.M. Storch de Gracia.
- 8. Process sensor, Control and safety equipment, OREDA-2002.
- 9. Guía Técnica, Métodos Cuantitativos para el análisis de riesgos, Protección Civil España, 1994.
- 10. COMERI 144, Rev. 2., Lineamiento para realizar Análisis de Riesgo de Proceso, Análisis de Riesgo de Ductos y Análisis de Riesgos de Seguridad Física en instalaciones de Petróleos Mexicanos y organismos Subsidiarios.
- 11. Guías Técnicas para Realizar Análisis de Riesgo de proceso de Petróleos Mexicanos. Clave 800-16400-DCO-GT-75 Rev.2.
- Criterios Técnicos para Simular Escenarios de Riesgo por Fugas y Derrames de Sustancias Peligrosas, en Instalaciones de Petróleos Mexicanos. Clave DCO-GDOESSSPA-CT-001, Rev. 1, 2011.
- 13. Guía Operativa para Realizar Análisis de Riesgo de Procesos en los Proyectos y/o instalaciones de PEMEX Exploración y producción, Clave GO-SS-TC-0002-2015, Rev. 1Seguridad Funcional-Sistemas Instrumentados de Seguridad – para los Procesos del Sector Industrial, Clave NRF-045-PEMEX-2010.

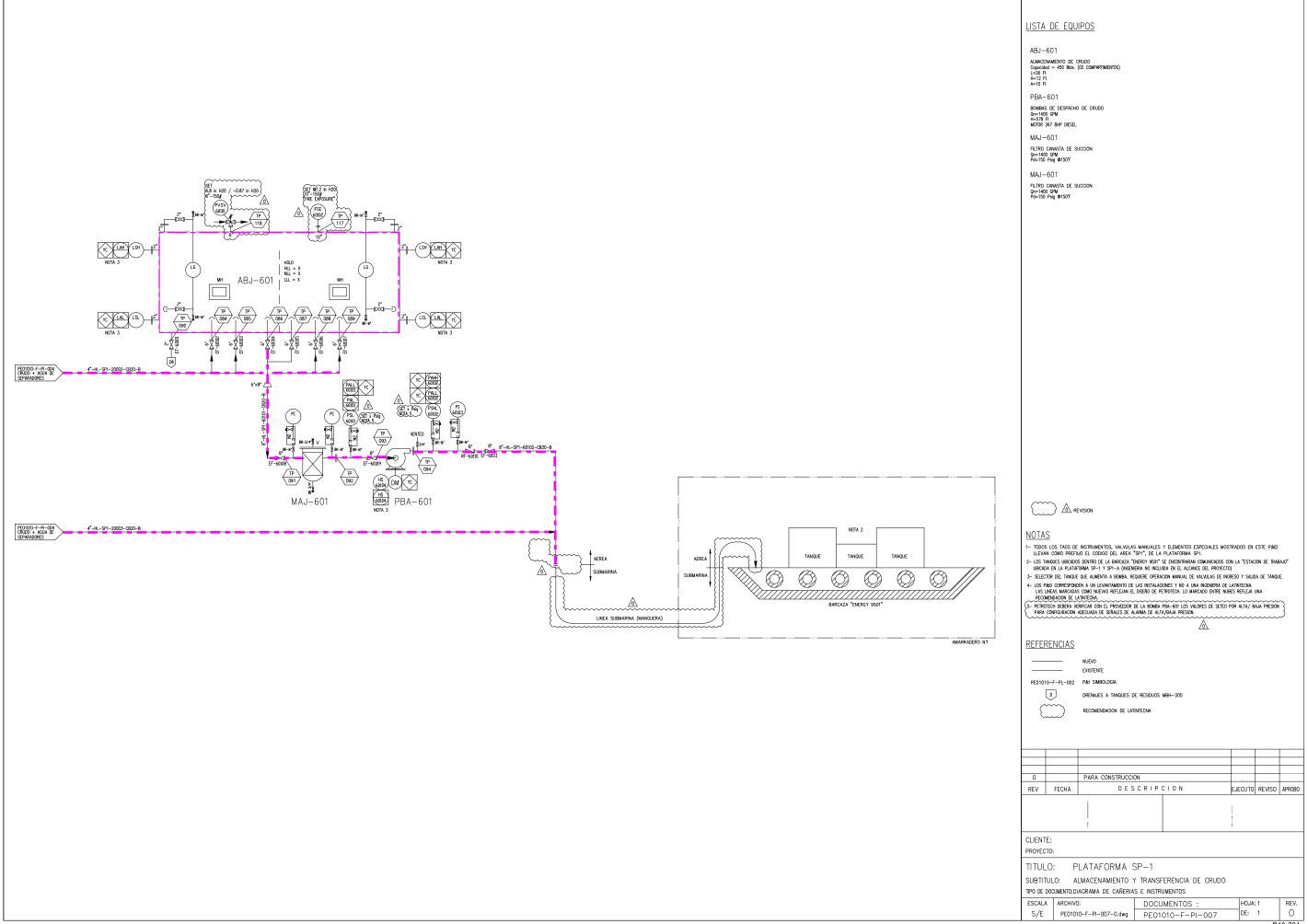
- IEC 61508, 2000 Functional Safety of Electric/Electronic/Programmable Electronic Safety Related Systems, International Electrotechnical Commission, 2000.
- 15. IEC 61511-1. Functional safety Safety instrumented systems for the Process Sector, International Electrotechnical Commission, 2003.
- IEC 61511-3: Functional safety Safety instrumented systems for the process industry sector – Guidance for the determination of the required safety integrity levels.
- 17. Safety Instrumented Systems: Desing, Analysis and Justification, 2nd Edition, Paul Gruhn, P.E. and Harry L. Cheddie, P.E., Ed. ISA, 2006
- Análisis de Capas de Protección (LOPA) y Selección del SIL (Ingeniería de Seguridad I), SMART SAFETY AND CONTROL PROVIDER EXIDA-MEXICO, 2008
- ANSI/ISA-S84.01-1996. "Application of Safety Instrumented System for the Process Industries". ISA-The Instrumentation, System and Automation Society. 2002.
- 20. ANSI/ISA-TR84.02-2003. "Safety Instrumented Functions (SIF) –Safety Integrity Level (SIL). Evaluation Techniques Part 3: Determining the SIL of a SIF via Fault Tree Analysis". ISA-The Instrumentation, System and Automation Society. 2002.
- 21. GOBLE, William M. "Control Systems Safety Evaluation and Reliability" .Segunda Edición. ISA-The Instrumentation, Systems, and Automation Society.
- 22. MARZAL, Ed. SHARPF, Eric. "Safety Integrity Level Selection", ISA-The Instrumentation, Systems, and Automation Society.
- 23. DVSA IR-P-02: "Nivel de Integridad (SIL) de un Sistema Instrumentado de Seguridad (SIS)". Manual de Ingeniería de Riesgos. 2002.






ANEXOS




Anexo A Nodos Marcados para Metodología HazOp

Anexo B Resultados del Análisis de consecuencias Mediante el Software PHAST 7.11

Escenario 1

Unique Audit Number:

Phast 7,11

Study Folder: Plataforma San Pedro 1 (SP1)

Plataforma San Pedro 1 (SP1)

San Pedro 1 (SP1)

San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLIEI.01.-Fuga de Hidrocarburos debido a una Sobrepresión en

línea de producción, Manifold de producción (Separadores de prueba y separador de Totales), con posible formación de nube toxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido a la apertura por falla mecánica de la válvula de estrangulamiento

Base Case

CASE Name:

Data

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

User-Defined Data

Scenario

Direction

Outdoor release direction Horizontal impingement

Hole

Orifice diameter 15,24 mm Use specified discharge coefficient? No

Release location

[Tank head 0 mElevation 1 m

Material

Material

[Material characteristics Toxic and flammable] HYDROGEN SULFIDE] [Material to track

Phase

[Phase to be released Liquid]

Discharge parameters

Droplet breakup mechanism

[Droplet break-up mechanism - instantaneous Use flashing correlation] [Droplet break-up mechanism - continuous Do not force correlation]

Model settings

Closest to initial conditions] [Atmospheric expansion method [Is flashing allowed to the orifice? No flashing in the orifice]

Dispersion

Averaging time for reports

ERPG [1 hr] No STEL [15 mins] Yes

Dispersion scope

Unique Audit Number:

126.810

Study Fo

IANI NEI	UKI	1201010	
older:	Plataforma San Pedro 1 (SP1)	Phast 7,11	

Concentration of interest	100	ppm
Averaging time for concentration of interest	IDLH	
Specify user-defined averaging time	Yes	
User defined averaging time	1800	s
Distances of interest		
[Distances of interest(1)	10	m]
[Distances of interest(2)	20	m]
[Distances of interest(3)	30	m]
Bund, building and terrain: Default terrain Dispersing surface		
[Surface over which the dispersion occurs	Land]	
[Surface roughness length	User-defined]	
[User-defined length	183,156	mm]
Bund, building and terrain: No bund		
Bund properties [Bund height	0	m]
[Bund area (internal)		m2]
[Bund failure modeling	Bund cannot fail]	-
Surface for pools [Type of surface for pools	Deep open water]	
Bund, building and terrain Building definition [Specify a release building	No]	
[Building wake effect	None]	
[Building wake effect	None	
Toxic parameters		
Exposure time data [Set averaging time equal to exposure time	Use a fixed averaging time]	
Indoor toxic calculations [Specify the downwind building type	Unselected]	
Toxic contours [Number of toxic levels	4]	
[Dose levels(1)	130000]	
[Dose levels(2)	1,3E+06]	
[Dose levels(3)	1,3E+07]	
[Dose levels(4)	1,3E+08]	
[Probit levels(1)	2]	
[Probit levels(2)	3]	
[Probit levels(3)	4]	
[Probit levels(4)	10]	
[Lethality levels(1)		fraction

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

[Lethality levels(2)0,01 fraction][Lethality levels(3)0,1 fraction][Lethality levels(4)0,99 fraction]

Explosion parameters

Explosion method (Consequence calculations only)

[Explosion method Multi-Energy: Uniform confined]

Ignition

[Supply late ignition location No ignition location]

Vapour liquid method

[Use of explosion mass modification factor Early and late explosions]
[Explosion mass modification factor 3]

Fireball

Calculation method

[Fireball model Recommended]

Parameters

[Mass modification factor 3]

Radiation levels

[Number of input radiation levels 3]
[Intensity levels(1) 1,4 kW/m2]
[Intensity levels(2) 5 kW/m2]

[Intensity levels(3) 37,5 kW/m2]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Jet fire

Cone model data

[Horizontal options Use standard method]
[Correlation Recommended]

Jet fire method

[Jet fire method Cone model]

Parameters

[Rate modification factor 3]

Radiation levels

[Number of input radiation levels 3]

 [Intensity levels(1)
 1,4 kW/m2]

 [Intensity levels(2)
 5 kW/m2]

 [Intensity levels(3)
 37,5 kW/m2]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Surface emissive power

[Calculation method for surface emissive power Calculate SEP]

Pool fire

Parameters

[Radiative fraction for general fires 0,4 fraction]

Radiation levels

[Number of input radiation levels 3]

[Intensity levels(1) 1,4 kW/m2] [Intensity levels(2) 5 kW/m2] [Intensity levels(3) 37,5 kW/m2]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 1.5/F

Wind Speed: 1,50 m/s Wind Speed at Height (Calculated) 0,46 m/s Pasquill Stability: F

USER-DEFINED QUANTITIES

MaterialCORRIENTE 7 MEZCLAScenarioLeakInventory2.523,12 kgFixed Durationn/a s

Stagnation data (data at upstream end for long pipe):

Pressure
 Temperature
 Fluid State
 Non-saturated liquid

CALCULATED QUANTITIES

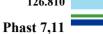
Mass Flow of Air (Vent from Vapor Space only) n/a

Mass Flowrate4,20528kg/sRelease Duration599,99s

Orifice or pipe exit data (before atmospheric expansion):

 - Pressure
 14,70 psi

 - Temperature
 69,70 degC


Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

- Vena Contracta Velocity (exit velocity for pipe releases)	48,97	m/s
- Discharge Coefficient	0,60	
Final data (after atmospheric expansion):		
- Temperature	32,27	degC
- Liquid Mass Fraction	0,84	Č
- Droplet Diameter	3,444E+002	
- Expanded Radius	0,04	
- Velocity	48,97	m/s
DISCHARGE DATA for Weather: Weather folder\CATEGOR	RIA 5/B-C	
Wind Speed:	5,00	m/s
Wind Speed at Height (Calculated)	3,76	m/s
Pasquill Stability:	B/C	
USER-DEFINED QUANTITIES		
Material CO	RRIENTE 7 MEZCLA	
Scenario	Leak	
Inventory	2.523,12	kg
Fixed Duration	n/a	s
Stagnation data (data at upstream end for long pipe):		
- Pressure	139,57	psi
- Temperature	70,00	degC
- Fluid State	Non-saturated liquid	
CALCULATED QUANTITIES		
Mass Flow of Air (Vent from Vapor Space only)	n/a	
Mass Flowrate	4,20528	kg/s
Release Duration	599,99	C
Orifice or pipe exit data (before atmospheric expansion):		
- Pressure	14,70	psi
- Temperature	69,70	degC
- Vena Contracta Velocity (exit velocity for pipe releases)	48,97	m/s
- Discharge Coefficient	0,60	
Final data (after atmospheric expansion):		
- Temperature	32,27	degC
- Liquid Mass Fraction	0,84	fraction
- Droplet Diameter	3,444E+002	um
- Expanded Radius	0,04	m
- Velocity	48,97	m/s

Consequence Results

Pool Vaporization Results

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

		CATEGORIA	1.5CPATEGORIA 5/B-C
Release Segment	1		
Release Duration	S	599,989	599,989
Liquid Rainout	fraction	0,494977	0,423184
Release Segment 1 Cloud Segment 1			
Cloud Segment Duration	S	120,451	97,5156
Pool Vaporization Rate	kg/s	0,893422	1,00324
Total Vapor Flowrate	kg/s	3,01718	3,42892
Release Segment 1 Cloud Segment 2			
Cloud Segment Duration	S	479,549	502,484
Pool Vaporization Rate	kg/s	2,01354	1,74542
Total Vapor Flowrate	kg/s	4,13731	4,17109
Maximum Pool Radius	m	7,99131	5,44706

Distance to Concentration Results

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

> The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Concentration(ppm)	Averaging Time			Distance (m)
			CATEGORIA 1	.5CPATEGORIA 5/B-C
User Conc (100)	1800	S	56,386	26,6665
UFL (80495)	18,75	S	19,7135	9,83566
LFL (12163,8)	18,75	S	77,8834	43,2652
LFL Frac (6081,88)	18,75	S	99,9586	64,2281
STEL (15)	900	S	No Hazard	No Hazard
IDLH (100)	1800	S	56,386	26,6665
				TT 1 1
Concentration(ppm)	Averaging Time			Heights (m) for above distances
Concentration(ppm)	Averaging Time		CATEGORIA 1	Heights (m) for above distances .5CATEGORIA 5/B-C
Concentration(ppm) User Conc (100)	Averaging Time 1800	s	CATEGORIA 1	., , ,
 ,	., .,	s s		.5CATEGORIA 5/B-C
User Conc (100)	1800		0	.5CATEGORIA 5/B-C
User Conc (100) UFL (80495)	1800 18,75	S	0 0	.5ØATEGORIA 5/B-C 0 0,114757
User Conc (100) UFL (80495) LFL (12163,8)	1800 18,75 18,75	s s	0 0 0	.57ATEGORIA 5/B-C 0 0,114757 0
User Conc (100) UFL (80495) LFL (12163,8) LFL Frac (6081,88)	1800 18,75 18,75 18,75	s s s	0 0 0	.5/ZATEGORIA 5/B-C 0 0,114757 0

Concentration At Distance Results

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

	Distance		Conc.(ppm) at F	lammable Avg. Time of 18,75 s	
		CATEGORIA 1.5% ATEGORIA 5/B-C			
	10	m	463,93	298,267	
	20	m	299,018	151,119	
	30	m	247,706	83,278	
	Distance		Heights (m) for	above concentrations	
				. 5 ∕⁄ATEGORIA 5/B-C	
	10	m	0	0,104718	
	20	m	0	0	
	30	m	0	0	
	Distance		Conc.(ppm) at T	oxic Avg. Time of 600 s	
				.5⊄ATEGORIA 5/B-C	
	10	m	463,93	289,369	
	20	m	299,018	151,119	
	30	m	247,706	83,278	
		•••	2.7,700	55,276	
	Distance		Heights (m) for	above concentrations	
	Bistance			.5/ATEGORIA 5/B-C	
	10	m	0	0	
	20	m	0	0	
	30	m	0	0	
	30	III	O .	·	
	Distance		Conc (nnm) at I	User-defined Avg. Time of 1800 s	
	Distance			.5CATEGORIA 5/B-C	
	10	m	463,93	289,369	
	20	m	299,018	151,119	
	30	m	247,706	83,278	
	30	III	217,700	03,270	
	Distance		Heights (m) for	above concentrations	
	Distance			.5CATEGORIA 5/B-C	
	10	m	0	0	
	20	m	0	0	
	30	m	0	0	
	30	111	V	O .	
	Distance		Conc (nnm) at I	DLH Avg.Time of 1800 s	
	Distance			.5CATEGORIA 5/B-C	
	10	m	463,93	289,369	
	20	m	299,018	151,119	
	30	m	247,706	83,278	
	30	111	247,700	63,276	
	Distance		Heights (m) for above concentrations		
	Distance			.5TATEGORIA 5/B-C	
	10	m	0	0	
	20	m m	0	0	
	20	m	U	U	

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast	7 11	
1 mast	/ 411	

30	m	0	0
Distance		,	STEL Avg.Time of 900 s 1.52ATEGORIA 5/B-C
10	m	463,93	289,369
20	m	299,018	151,119
30	m	247,706	83,278
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0
Distance		Conc.(ppm) at	Core Avg.Time of 18,75 s
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	463,93	289,369
20	m	299,018	151,119
30	m	247,706	83,278
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0

Jet Fire Hazard

San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión Path:

Jet fire method used: Cone model - Recommended

CATEGORIA 1.52ATEGORIA 5/B-C

Jet Fire Status Truncated Truncated Flame Direction Horizontal Horizontal

Radiation Effects: Jet Fire Ellipse

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

This table gives the distances to the specified radiation levels

for each jet fire listed in the above hazard table

			Distance (m)	
			CATEGORI	A 1.5CPATEGORIA 5/B-C
Radiation Level	1,4	kW/m2	54,8203	55,0145
Radiation Level	5	kW/m2	29,4523	29,1075
Radiation Level	37,5	kW/m2	18,0033	15,0468

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Radiation Effects: Jet Fire Distance

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

Radiation Level (kW/m2)

CATEGORIA 1.57ATEGORIA 5/B-C

Distance Of Interest 10 m Engulfed Engulfed
Distance Of Interest 20 m Engulfed Engulfed
Distance Of Interest 30 m 119,862 35,4904

Early Pool Fire Hazard

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

CATEGORIA 1.57ATEGORIA 5/B-C

Early Pool Fire Status Hazard Hazard

Radiation Effects: Early Pool Fire Ellipse

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

Distance (m)

CATEGORIA 1.52ATEGORIA 5/B-C Radiation Level kW/m2 46,8642 1,4 48,6341 Radiation Level 5 kW/m2 30,1893 31,896 Radiation Level kW/m2 37.5 10.2942 12,1189

Radiation Effects: Early Pool Fire Distance

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

Radiation Level (kW/m2)

 CATEGORIA 1.57/ATEGORIA 5/B-C

 Distance Of Interest
 10
 m
 39,3634
 50,1064

 Distance Of Interest
 20
 m
 12,7748
 18,9185

 Distance Of Interest
 30
 m
 5,08317
 6,11015

Late Pool Fire Hazard

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

CATEGORIA 1.5CATEGORIA 5/B-C

Late Pool Fire Status Hazard Hazard

Radiation Effects: Late Pool Fire Ellipse

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

Distance (m)
CATEGORIA 1.57ATEGORIA 5/B-C

 Radiation Level
 1,4
 kW/m2
 191,156
 138,878

 Radiation Level
 5
 kW/m2
 112,226
 88,4202

 Radiation Level
 37,5
 kW/m2
 37,3786
 36,2598

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Radiation Effects: Late Pool Fire Distance

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

Radiation Level (kW/m2)

			CATEGORIA 1	.5℃ATEGORIA 5/B-C
Distance Of Interest	10	m	Engulfed	Engulfed
Distance Of Interest	20	m	83,9488	73,5208
Distance Of Interest	30	m	49,4459	46,4445

Flash Fire Envelope

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

All flammable results are reported at the cloud centreline height

Distance (m) CATEGORIA 1.5% ATEGORIA 5/B-C Furthest Extent 6081,88 99,9586 64,2281 ppm Furthest Extent 12163,8 43,2652 77,8834 ppm Heights (m) for above distances CATEGORIA 1.5% ATEGORIA 5/B-C Furthest Extent 6081,88 0 0 ppm Furthest Extent 0 0 12163,8 ppm

Study Folder: Plataforma San Pedro 1 (SP1)

Explosion Effects: Late Ignition

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

> Explosion Model Used: Multi-Energy: Uniform confined Explosion Location Criterion: Cloud front (LFL fraction)

All distances are measured from the Source

All flammable results are reported at the cloud centreline height

			Maximum D	Distance (m) at Overpressure Level
			CATEGORI	A 1.57ATEGORIA 5/B-C
Overpressure	0,5	psi	272,34	125,353
Overpressure	1	psi	188,554	95,3227
Overpressure	10,1526	psi	110,923	67,4991
			Supplementa	ary Data at 0,5 psi
			CATEGORI	A 1.57ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	331,632	15,2687
Used Flammable N	⁄lass	kg	331,632	15,2687
Overpressure Radi	us	m	182,34	65,3526
Distance to:				
- Ignition Source		m	90	60
- Cloud Front/Cent	re	m	90	60
- Explosion Centre		m	90	60
			Supplementa	ary Data at 1 psi
			CATEGORI	A 1.50ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	331,632	15,2687
Used Flammable N	⁄lass	kg	331,632	15,2687
Overpressure Radi	us	m	98,5536	35,3227
Distance to:				
- Ignition Source		m	90	60
- Cloud Front/Cent	re	m	90	60
- Explosion Centre		m	90	60
			Supplementa	ary Data at 10,1526 psi
			CATEGORI	A 1.5CPATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	331,632	15,2687
Used Flammable N	A ass	kg	331,632	15,2687
Overpressure Radi	us	m	20,9233	7,49915
Distance to:				
- Ignition Source		m	90	60
- Cloud Front/Cent	re	m	90	60
- Explosion Centre		m	90	60
			Overpressur	es (psi gauge) at Distances
			CATEGORI	A 1.5CPATEGORIA 5/B-C
Input Distances	10	m	0	0
Input Distances	20	m	0	0
Input Distances	30	m	0	0
				ary Data at 10 m
				A 1.57ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	2,2056	2,96942

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Used Flammable Mass	kg	2,2056	2,96942
		Supplementary CATEGORIA	Data at 20 m
Supplied Flammable Mass	kg	22,2332	8,80133
Used Flammable Mass	kg	22,2332	8,80133
		Supplementary	Data at 30 m
		CATEGORIA	1.5CPATEGORIA 5/B-C
Supplied Flammable Mass	kg	63,2813	13,3587
Used Flammable Mass	kg	63,2813	13,3587

Weather Conditions

Path: San Pedro 1 (SP1)\EI.01 CASO MAS PROBABLE Nodo 1\Fuga por Sobrepresión

		CATEGOI	RIA 1.5⊘TATEGORI	A 5/B-C
Wind Speed	m/s	1,5	5	
Pasquill Stability		F	B/C	
Atmospheric Temperature	degC	38	38	
Surface Temperature	degC	38	38	
Relative Humidity	fraction	0,98	0,98	

Escenario 2

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

Plataforma San Pedro 1 (SP1)

San Pedro 1 (SP1)

San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLIEI. 02 Venteo de gas amargo a la atmosfera con posible

formación de nube tóxica con daño al personal y a la instalación derivado de la apertura del By-Pass de la PSV a la salida de los separadores MBF-201/203/203 por error

Base Case

CASE Name: Data

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

User-Defined Data

Scenario

Direction

Outdoor release direction Horizontal impingement

Hole

Orifice diameter 15,24 mm Use specified discharge coefficient? No

Release location

Elevation 1 m

Material

Material

[Material characteristics Toxic and flammable] HYDROGEN SULFIDE] [Material to track

Phase

[Phase to be released Vapour]

Discharge parameters

Droplet breakup mechanism

[Droplet break-up mechanism - instantaneous Use flashing correlation] [Droplet break-up mechanism - continuous Do not force correlation]

Model settings

Closest to initial conditions] [Atmospheric expansion method [Is flashing allowed to the orifice? No flashing in the orifice]

Dispersion

Averaging time for reports

ERPG [1 hr] No STEL [15 mins] Yes

Dispersion scope

100 ppm Concentration of interest **IDLH** Averaging time for concentration of interest

Date: 1 of 11 Time: 12/04/2016 15:57:24

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

Specify user-defined averaging time Yes User defined averaging time 1800 s Distances of interest Distances of interest(1) 10 m 20 m Distances of interest(2) Distances of interest(3) 30 m Bund, building and terrain: Default terrain Dispersing surface [Surface over which the dispersion occurs Land] [Surface roughness length User-defined] [User-defined length 183,156 mm] Bund, building and terrain: No bund **Bund properties** [Bund height 0 m[Bund area (internal) 0 m2[Bund failure modeling Bund cannot fail] Surface for pools Deep open water] [Type of surface for pools Bund, building and terrain **Building definition** [Specify a release building No] [Building wake effect None] **Toxic parameters** Exposure time data [Set averaging time equal to exposure time Use a fixed averaging time] **Indoor toxic calculations** [Specify the downwind building type Unselected] **Toxic contours** [Number of toxic levels 4] [Dose levels(1) 130000] 1,3E+06] [Dose levels(2) [Dose levels(3) 1,3E+07] 1,3E+08] [Dose levels(4) [Probit levels(1) 2] 3] [Probit levels(2) [Probit levels(3) 4] [Probit levels(4) 10] 0,001 fraction] [Lethality levels(1) [Lethality levels(2) 0,01 fraction] [Lethality levels(3) 0,1 fraction]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

[Lethality levels(4) 0,99 fraction]

Explosion parameters

Explosion method (Consequence calculations only)

[Explosion method Multi-Energy: Uniform confined]

Ignition

[Supply late ignition location No ignition location]

Vapour liquid method

[Use of explosion mass modification factor Early and late explosions]
[Explosion mass modification factor 3]

Fireball

Calculation method

[Fireball model Recommended]

Parameters

[Mass modification factor 3]

Radiation levels

[Number of input radiation levels 3]

 [Intensity levels(1)
 1,4 kW/m2]

 [Intensity levels(2)
 5 kW/m2]

 [Intensity levels(3)
 37,5 kW/m2]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Jet fire

Cone model data

[Horizontal options Use standard method]
[Correlation Recommended]

Jet fire method

[Jet fire method Cone model]

Parameters

[Rate modification factor 3]

Radiation levels

[Number of input radiation levels 3]

 [Intensity levels(1)
 1,4 kW/m2]

 [Intensity levels(2)
 5 kW/m2]

 [Intensity levels(3)
 37,5 kW/m2]

Result types to calculate

[Calculate probit No]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

[Calculate dose	No]
[Calculate lethality	No]

Surface emissive power

[Calculation method for surface emissive power Calculate SEP]

Pool fire

Parameters

[Radiative fraction for general fires 0,4 fraction]

Radiation levels

[Number of input radiation levels	3]
-----------------------------------	----

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 1.5/F

Wind Speed: 1,50 m/s Wind Speed at Height (Calculated) 0,46 m/s Pasquill Stability: F

USER-DEFINED QUANTITIES

MaterialCORRIENTE 5 GAS AMARGOScenarioLeakInventory217,00 kgFixed Durationn/a s

Stagnation data (data at upstream end for long pipe):

Pressure
 Temperature
 Fluid State
 139,57 psi
 70,00 degC
 Pressurized gas

CALCULATED QUANTITIES

Mass Flow of Air (Vent from Vapor Space only)n/aMass Flowrate0,361505kg/sRelease Duration600,00sOrifice or pipe exit data (before atmospheric expansion):- Pressure80,65psi- Temperature44,89degC

- Tremperature 44,89 degC
- Vena Contracta Velocity (exit velocity for pipe releases) 277,19 m/s
- Discharge Coefficient 0,87

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

Final data (after atmospheric expansion):
---	----

- Temperature	-7,09	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,01	m
- Velocity	477,53	m/s

Weather folder\CATEGORIA 5/B-C **DISCHARGE DATA for Weather:**

Wind Speed:	5,00 m/s	;
Wind Speed at Height (Calculated)	3,76 m/s	s
Pasquill Stability:	B/C	

USER-DEFINED QUANTITIES

Material	CORRIENTE 5 GAS AMARGO
Scenario	Leak
Inventory	217,00 kg
Fixed Duration	n/a s

Stagnation data (data at upstream end for long pipe):

- Pressure	139,57 psi
- Temperature	70,00 degC
- Fluid State	Pressurized gas

CALCULATED QUANTITIES		
Mass Flow of Air (Vent from Vapor Space only)	n/a	
Mass Flowrate 0,	,361505	kg/s
Release Duration	600,00	S
Orifice or pipe exit data (before atmospheric expansion):		
- Pressure	80,65	psi
- Temperature	44,89	degC
- Vena Contracta Velocity (exit velocity for pipe releases)	277,19	m/s
- Discharge Coefficient	0,87	
Final data (after atmospheric expansion):		
- Temperature	-7,09	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,01	m
- Velocity	477,53	m/s

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Consequence Results

Distance to Concentration Results

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

> The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Concentration(ppm)	Averaging Time			Distance (m)
			CATEGORIA	1.5 % ATEGORIA 5/B-C
User Conc (100)	1800	S	76,7531	33,9707
UFL (140101)	18,75	S	1,48399	1,3741
LFL (27581,8)	18,75	S	6,68195	4,83244
LFL Frac (13790,9)	18,75	S	14,065	7,08816
STEL (15)	900	S	No Hazard	No Hazard
IDLH (100)	1800	S	76,7531	33,9707
Concentration(ppm)	Averaging Time			Heights (m) for above distances
Concentration(ppm)	Averaging Time		CATEGORIA	Heights (m) for above distances 1.57ATEGORIA 5/B-C
Concentration(ppm) User Conc (100)	Averaging Time 1800	s	CATEGORIA	., ,
,		s s		1.5CATEGORIA 5/B-C
User Conc (100)	1800		0	1.57ATEGORIA 5/B-C 0
User Conc (100) UFL (140101)	1800 18,75	S	0 1,00678	1.XATEGORIA 5/B-C 0 0,99953
User Conc (100) UFL (140101) LFL (27581,8)	1800 18,75 18,75	s s	0 1,00678 0,982127	1.52ATEGORIA 5/B-C 0 0,99953 1,07151
User Conc (100) UFL (140101) LFL (27581,8) LFL Frac (13790,9)	1800 18,75 18,75 18,75	S S S	0 1,00678 0,982127 0,937016	1.52ATEGORIA 5/B-C 0 0,99953 1,07151 1,1316

Plataforma San Pedro 1 (SP1)

Concentration At Distance Results

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Distance		Conc.(ppm) a	Conc.(ppm) at Flammable Avg. Time of 18,75 s		
		CATEGORIA	CATEGORIA 1.57ATEGORIA 5/B-C		
10	m	659,645	342,139		
20	m	395,384	199,002		
30	m	301,323	141,355		
Distance			for above concentrations		
			A 1.57ATEGORIA 5/B-C		
10	m	0,884439	0,958724		
20	m	0,610271	0,917983		
30	m	0,125025	0,883263		
Distance		Conc.(ppm) a	at Toxic Avg.Time of 600 s		
			A 1.57/ATEGORIA 5/B-C		
10	m	428,245	210,495		
20	m	363,107	153,773		
30	m	300,866	116,937		
30	III	300,000	110,757		
Distance		Heights (m) f	for above concentrations		
			A 1.5 % ATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		
30	m	0	0		
D: .		G ()	. I 1.6. 1.4. E		
Distance			at User-defined Avg. Time of 1800 s		
4.0			A 1.57ATEGORIA 5/B-C		
10	m	428,245	210,495		
20	m	363,107	153,773		
30	m	300,866	116,937		
Distance		Heights (m) f	for above concentrations		
		CATEGORIA	A 1.5CATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		
30	m	0	0		
D: 4		G ()	(IDI II A T' C1000		
Distance			at IDLH Avg. Time of 1800 s		
10			A 1.57ATEGORIA 5/B-C		
10	m	428,245	210,495		
20	m	363,107	153,773		
30	m	300,866	116,937		
Distance		Heights (m) f	for above concentrations		
		CATEGORIA	A 1.5CATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

30	m	0	0	
Distance		Conc.(ppm) at STEL Avg.Time of 900 s CATEGORIA 1. WATEGORIA 5/B-C		
10	m	428,245	210,495	
20	m	363,107	153,773	
30	m	300,866	116,937	
Distance		Heights (m) for above concentrations CATEGORIA 1. XIA TEGORIA 5/B-C		
10	m	0	0	
20	m	0	0	
30	m	0	0	
Distance		Conc.(ppm) at Core Avg. Time of 18,75 s		
		CATEGORIA 1.57/ATEGORIA 5/B-C		
10	m	428,245	210,495	
20	m	363,107	153,773	
30	m	300,866	116,937	
Distance		Heights (m) for above concentrations		
		CATEGORIA	CATEGORIA 1.5% ATEGORIA 5/B-C	
10	m	0	0	
20	m	0	0	
30	m	0	0	

Jet Fire Hazard

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

Jet fire method used: Cone model - Recommended

CATEGORIA 1.52ATEGORIA 5/B-C

Jet Fire StatusHazardHazardFlame DirectionHorizontalHorizontal

Radiation Effects: Jet Fire Ellipse

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

This table gives the distances to the specified radiation levels

for each jet fire listed in the above hazard table

Distance (m)

			CATEGORIA 1.57ATEGORIA 5/B-C		
Radiation Level	1,4	kW/m2	6,2232	5,72296	
Radiation Level	5	kW/m2	3,26691	3,15519	
Radiation Level	37,5	kW/m2	Not Reached	Not Reached	

Furthest Extent

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Radiation Effects: Jet Fire Distance

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

Radiation Level (kW/m2)

CATEGORIA 1.5% ATEGORIA 5/B-C

 Distance Of Interest
 10
 m
 2,28322
 1,91639

 Distance Of Interest
 20
 m
 0,116592
 0,0850881

 Distance Of Interest
 30
 m
 0,0331854
 0,0237268

Flash Fire Envelope

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

27581,8

All flammable results are reported at the cloud centreline height

Distance (m)

CATEGORIA 1.5/ATEGORIA 5/B-C Furthest Extent 13790,9 ppm 14,065 7,08816

6,68195

Heights (m) for above distances CATEGORIA 1.5/PATEGORIA 5/B-C

4,83244

Furthest Extent 13790,9 ppm 0,937016 1,1316 Furthest Extent 27581,8 ppm 0,982127 1,07151

ppm

Explosion Effects: Late Ignition

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

> Explosion Model Used: Multi-Energy: Uniform confined Explosion Location Criterion: Cloud front (LFL fraction)

All distances are measured from the Source

All flammable results are reported at the cloud centreline height

			Maximum Distance (m) at Overpressure Level CATEGORIA 1.37ATEGORIA 5/B-C
Overpressure	0,5	ngi	21,8781
	0,3	psi	·
Overpressure		psi	16,4201
Overpressure	10,1526	psi	11,363
			Supplementary Data at 0,5 psi
			CATEGORIA 1.57ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	0,096206
Used Flammable N	⁄Iass	kg	0,096206
Overpressure Radi	us	m	11,8781
Distance to:			
- Ignition Source		m	10
- Cloud Front/Cent	tre	m	10
- Explosion Centre	:	m	10
			Supplementary Data at 1 psi
			CATEGORIA 1.57ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	0,096206
Used Flammable N		kg	0,096206
Overpressure Radi	us	m	6,42007
Distance to:			-1
- Ignition Source		m	10
- Cloud Front/Cent	tre	m	10
- Explosion Centre	;	m	10
			Supplementary Data at 10,1526 psi
			CATEGORIA 1.527ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	0,096206
Used Flammable N	Mass	kg	0,096206
Overpressure Radi	us	m	1,363
Distance to:			
- Ignition Source		m	10
- Cloud Front/Cent	tre	m	10
- Explosion Centre	:	m	10
			Overpressures (psi gauge) at Distances
			CATEGORIA 1.57ATEGORIA 5/B-C
Input Distances	10	m	0
Input Distances	20	m	0
Input Distances	30	m	0
			Supplementary Data at 10 m
			CATEGORIA 1.57ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	0,096206

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Used Flammable Mass	kg	0,096206
		Supplementary Data at 20 m CATEGORIA 1.57ATEGORIA 5/B-C
Supplied Florenchle Maga	1.0	
Supplied Flammable Mass	kg	0,096206
Used Flammable Mass	kg	0,096206
		Supplementary Data at 30 m
		CATEGORIA 1.52ATEGORIA 5/B-C
Supplied Flammable Mass	kg	0,096206
Used Flammable Mass	kg	0,096206

Weather Conditions

Path: San Pedro 1 (SP1)\EI.02 CASO MAS PROBABLE Nodo1\Venteo de Gas

		CATEGORIA	1.52ATEGORIA 5/B-C
Wind Speed	m/s	1,5	5
Pasquill Stability		F	B/C
Atmospheric Temperature	degC	38	38
Surface Temperature	degC	38	38
Relative Humidity	fraction	0,98	0,98

Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)

Escenario 3

Unique Audit Number:

Study Folder: Plataforma San Pedro 1 (SP1)

126.810 Phast 7,11

Plataforma San Pedro 1 (SP1)

San Pedro 1 (SP1)

San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLIEI.03.-Fuga o Pérdida de contención de gas amargo por falla

de material de uniónes bridadas en línea de gas amargo 8"-P-131-C-D02T1 a la salida del separador FA-100, con formación de nube tóxica, que al encontrar una fuente de ignición se produce incendio y/o explosión con daño al personal, al medio ambiente y a las instalaciones.

Base Case

CASE Name: Data

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

User-Defined Data

Scenario

Direction

Outdoor release direction Horizontal impingement

Hole

19,05 mm Orifice diameter Use specified discharge coefficient? No

Release location

Elevation 1 m

Material

Material

[Material characteristics Toxic and flammable] [Material to track HYDROGEN SULFIDE]

Phase

[Phase to be released Vapour]

Discharge parameters

Droplet breakup mechanism

[Droplet break-up mechanism - instantaneous Use flashing correlation] [Droplet break-up mechanism - continuous Do not force correlation]

Model settings

[Atmospheric expansion method Closest to initial conditions] [Is flashing allowed to the orifice? No flashing in the orifice]

Dispersion

Averaging time for reports

ERPG [1 hr] No STEL [15 mins] Yes

Dispersion scope

Concentration of interest 100 ppm

Unique Audit Number:

126.810

Study Folder:	Plataforma San Pedro 1 (SP1)	Phast 7,11
---------------	------------------------------	------------

Averaging time for concentration of interest	IDLH	
Specify user-defined averaging time	Yes	
User defined averaging time	1800	S
Distances of interest		
[Distances of interest(1)	10	m]
[Distances of interest(2)	20	m]
[Distances of interest(3)	30	m]
Bund, building and terrain: Default terrain Dispersing surface		
[Surface over which the dispersion occurs	Land]	
[Surface roughness length	User-defined]	
[User-defined length	183,156	mml
[Oser-defined length	105,150	mmj
Bund, building and terrain: No bund Bund properties		1
[Bund height		m]
[Bund area (internal)		m2]
[Bund failure modeling	Bund cannot fail]	
Surface for pools		
[Type of surface for pools	Deep open water]	
Bund, building and terrain Building definition		
[Specify a release building	No]	
[Building wake effect	None]	
Toxic parameters Exposure time data		
[Set averaging time equal to exposure time	Use a fixed averaging time]	
Indoor toxic calculations [Specify the downwind building type	Unselected]	
Toxic contours		
[Number of toxic levels	4]	
[Dose levels(1)	130000]	
[Dose levels(2)	1,3E+06]	
[Dose levels(3)		
- ' '	1,3E+07]	
[Dose levels(4)	1,3E+08]	
[Dose levels(4) [Probit levels(1)	1,3E+08] 2]	
[Dose levels(4) [Probit levels(1) [Probit levels(2)	1,3E+08] 2] 3]	
[Dose levels(4) [Probit levels(1) [Probit levels(2) [Probit levels(3)	1,3E+08] 2] 3] 4]	
[Dose levels(4) [Probit levels(1) [Probit levels(2) [Probit levels(3) [Probit levels(4)	1,3E+08] 2] 3] 4]	
[Dose levels(4) [Probit levels(1) [Probit levels(2) [Probit levels(3)	1,3E+08] 2] 3] 4] 10] 0,001	fraction]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

[Lethality levels(3) 0,1 fraction] [Lethality levels(4) 0,99 fraction] **Explosion parameters Explosion method (Consequence calculations only)** [Explosion method Multi-Energy: Uniform confined] Ignition No ignition location] [Supply late ignition location Vapour liquid method [Use of explosion mass modification factor Early and late explosions] [Explosion mass modification factor Calculation method [Fireball model Recommended] **Parameters** [Mass modification factor 3] **Radiation levels** [Number of input radiation levels 3] [Intensity levels(1) 1,4 kW/m2] 5 kW/m21 [Intensity levels(2) [Intensity levels(3) 37,5 kW/m2] Result types to calculate [Calculate probit No] [Calculate dose No] [Calculate lethality No]

Jet fire

Fireball

Cone model data

[Horizontal options Use standard method] [Correlation Recommended]

Jet fire method

[Jet fire method Cone model]

Parameters

[Rate modification factor 3]

Radiation levels

[Number of input radiation levels 3]

[Intensity levels(1) 1,4 kW/m2] [Intensity levels(2) 5 kW/m2] 37,5 kW/m2] [Intensity levels(3)

Result types to calculate

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

[Calculate probit	No]
[Calculate dose	No]
[Calculate lethality	No]

Surface emissive power

[Calculation method for surface emissive power Calculate SEP]

Pool fire

Parameters

[Radiative fraction for general fires 0,4 fraction]

Radiation levels

[Number of input radiation levels 3]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 1.5/F

Wind Speed: 1,50 m/s Wind Speed at Height (Calculated) 0,46 m/s Pasquill Stability: F

USER-DEFINED QUANTITIES

MaterialCORRIENTE 5 GAS AMARGOScenarioLeakInventory3.942,42 kgFixed Durationn/a s

Stagnation data (data at upstream end for long pipe):

Pressure
 Temperature
 Fluid State
 139,57 psi
 70,00 degC
 Pressurized gas

CALCULATED QUANTITIES

 $\begin{array}{ccc} \text{Mass Flow of Air (Vent from Vapor Space only)} & \text{n/a} \\ \\ \text{Mass Flowrate} & 0,564853 & \text{kg/s} \\ \text{Release Duration} & 600,00 & \text{s} \\ \end{array}$

Orifice or pipe exit data (before atmospheric expansion):

- Pressure 80,65 psi
- Temperature 44,89 degC
- Vena Contracta Velocity (exit velocity for pipe releases) 277,19 m/s

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

- Discharge Coefficient

Phast 7,11

0,87

C	*,**	
Final data (after atmospheric expansion):		
- Temperature	-7,09	degC
- Liquid Mass Fraction	00,0	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,01	m
- Velocity	477,53	m/s
DISCHARGE DATA for Weather:	Weather folder\CATEGORIA 5/B-C	
Wind Speed:	5,00	m/s
Wind Speed at Height (Calculated)	3,76	m/s
Pasquill Stability:	B/C	
USER-DEFINED QUANTITIES		
Material	CORRIENTE 5 GAS AMARGO	
Scenario	Leak	
Inventory	3.942,42	kg
Fixed Duration	n/a	S
Stagnation data (data at upstream end for long pipe	e):	
- Pressure	139,57	psi
- Temperature		degC
- Fluid State	Pressurized gas	
CALCULATED QUANTITIES		
Mass Flow of Air (Vent from Vapor Space only)	n/a	
Mass Flowrate	0,564853	kg/s
Release Duration	600,00	_
Orifice or pipe exit data (before atmospheric expa	ansion):	
- Pressure	80,65	psi
- Temperature	44,89	degC
- Vena Contracta Velocity (exit velocity for p	pipe releases) 277,19	m/s
- Discharge Coefficient	0,87	
Final data (after atmospheric expansion):		
- Temperature	-7,09	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,01	m
- Velocity	477,53	m/s

Unique Audit Number:

126.810

Phast 7,11

Plataforma San Pedro 1 (SP1)

Consequence Results

Distance to Concentration Results

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m $\,$

All flammable results are reported at the cloud centreline height

Concentration(ppm)	Averaging Time			Distance (m)
			CATEGORIA	1.5 % ATEGORIA 5/B-C
User Conc (100)	1800	S	96,1245	48,979
UFL (140101)	18,75	S	1,84925	1,69563
LFL (27581,8)	18,75	S	8,37439	5,81843
LFL Frac (13790,9)	18,75	S	20,1009	9,59332
STEL (15)	900	S	No Hazard	No Hazard
IDLH (100)	1800	S	96,1245	48,979
Concentration(ppm)	Averaging Time			Heights (m) for above distances
Concentration(ppm)	Averaging Time		CATEGORIA	Heights (m) for above distances 1.5/ATEGORIA 5/B-C
Concentration(ppm) User Conc (100)	Averaging Time 1800	s	CATEGORIA	., ,
,	., .,	s s		1.5@ATEGORIA 5/B-C
User Conc (100)	1800		0	1.57ATEGORIA 5/B-C 0
User Conc (100) UFL (140101)	1800 18,75	S	0 1,02096	1.5 C ATEGORIA 5/B-C 0 0,999287
User Conc (100) UFL (140101) LFL (27581,8)	1800 18,75 18,75	s s	0 1,02096 1,10162	1.52ATEGORIA 5/B-C 0 0,999287 1,00028
User Conc (100) UFL (140101) LFL (27581,8) LFL Frac (13790,9)	1800 18,75 18,75 18,75	s s s	0 1,02096 1,10162 0,764609	1.52ATEGORIA 5/B-C 0 0,999287 1,00028 1,12583

Study Folder:

Plataforma San Pedro 1 (SP1)

Concentration At Distance Results

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Distance		Conc.(ppm) a	Conc.(ppm) at Flammable Avg. Time of 18,75 s		
		CATEGORIA	A 1.57/ATEGORIA 5/B-C		
10	m	858,926	488,764		
20	m	508,815	290,739		
30	m	384,966	210,17		
Distance		Heights (m)	for above concentrations		
		CATEGORIA	A 1.577ATEGORIA 5/B-C		
10	m	0,902883	0,958069		
20	m	0,673581	0,911805		
30	m	0,257076	0,86986		
Distance		Conc.(ppm) a	at Toxic Avg. Time of 600 s		
		CATEGORIA	A 1.5CATEGORIA 5/B-C		
10	m	542,568	300,356		
20	m	461,155	223,673		
30	m	382,305	172,847		
Distance			for above concentrations		
		CATEGORIA	A 1.577ATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		
30	m	0	0		
		a ()			
Distance			Conc.(ppm) at User-defined Avg. Time of 1800 s		
			A 1.57ATEGORIA 5/B-C		
10	m	542,568	300,356		
20	m	461,155	223,673		
30	m	382,305	172,847		
Distance		Haights (m)	for above concentrations		
Distance			A 1.52ATEGORIA 5/B-C		
10	m	0	0		
20		0	0		
30	m m	0	0		
30	m	U	O		
Distance		Conc.(ppm)	at IDLH Avg. Time of 1800 s		
			A 1.57ATEGORIA 5/B-C		
10	m	542,568	300,356		
20	m	461,155	223,673		
30	m	382,305	172,847		
		,	-,-,-,-		
Distance		Heights (m)	Heights (m) for above concentrations		
			A 1.5 % ATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

30	m	0	0
Distance		,	STEL Avg. Time of 900 s 1.52ATEGORIA 5/B-C
10	m	542,568	300,356
20	m	461,155	223,673
30	m	382,305	172,847
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0
Distance		Conc.(ppm) at	Core Avg. Time of 18,75 s
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	542,568	300,356
20	m	461,155	223,673
30	m	382,305	172,847
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0

Jet Fire Hazard

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

Jet fire method used: Cone model - Recommended

CATEGORIA 1.52ATEGORIA 5/B-C

Jet Fire StatusHazardHazardFlame DirectionHorizontalHorizontal

Radiation Effects: Jet Fire Ellipse

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

This table gives the distances to the specified radiation levels

for each jet fire listed in the above hazard table

Distance (m)

			CATEGORIA	1.57ATEGORIA 5/B-C
Radiation Level	1,4	kW/m2	8,60865	8,09174
Radiation Level	5	kW/m2	4,54908	4,49691
Radiation Level	37,5	kW/m2	Not Reached	Not Reached

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Radiation Effects: Jet Fire Distance

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

Radiation Level (kW/m2)

THE GORIA 5/B-C

			CATEGORIA I	X / A LEGORIA 5/B-0
Distance Of Interest	10	m	7,88787	7,94054
Distance Of Interest	20	m	0,31238	0,242616
Distance Of Interest	30	m	0,0795805	0,0593786

Flash Fire Envelope

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

All flammable results are reported at the cloud centreline height

				Distance (m)	
			CATEGORIA 1.5% ATEGORIA 5/B-C		
Furthest Extent	13790,9	ppm	20,1009	9,59332	
Furthest Extent	27581,8	ppm	8,37439	5,81843	
				Heights (m) for above distances	
			CATEGORIA	A 1.5CTATEGORIA 5/B-C	
Furthest Extent	13790,9	ppm	0,764609	1,12583	
Furthest Extent	27581,8	ppm	1,10162	1,00028	

Explosion Effects: Late Ignition

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

Explosion Model Used : Multi-Energy: Uniform confined Explosion Location Criterion: Cloud front (LFL fraction)

All distances are measured from the Source

All flammable results are reported at the cloud centreline height

			Maximum Distance (m) at Overpressure Level CATEGORIA 1.5/ATEGORIA 5/B-C
Overpressure	0,5	psi	34,8682
Overpressure	1	psi	28,0362
Overpressure	10,1526	psi	21,7061
Overpressure	10,1320	p01	21,7001
			Supplementary Data at 0,5 psi
			CATEGORIA 1.5% ATEGORIA 5/B-C
Supplied Flammal	ole Mass	kg	0,188684
Used Flammable I	Mass	kg	0,188684
Overpressure Rad	ius	m	14,8682
Distance to:			
- Ignition Source		m	20
- Cloud Front/Cen	tre	m	20
- Explosion Centro	e	m	20
			Supplementary Data at 1 psi
			CATEGORIA 1.57/ATEGORIA 5/B-C
Supplied Flammal	ole Mass	kg	0,188684
Used Flammable I	Mass	kg	0,188684
Overpressure Radius		m	8,0362
Distance to:			
- Ignition Source		m	20
- Cloud Front/Cen		m	20
- Explosion Centro	e	m	20
			Supplementary Data at 10,1526 psi
			CATEGORIA 1.57ATEGORIA 5/B-C
Supplied Flammal	ale Mass	kg	0,188684
Used Flammable 1		kg	0,188684
Overpressure Radius		m	1,70611
Distance to:	ius	111	1,70011
- Ignition Source		m	20
- Cloud Front/Cen	tre	m	20
- Explosion Centro		m	20
- Explosion Centro	5	111	20
			Overpressures (psi gauge) at Distances
			CATEGORIA 1.5% ATEGORIA 5/B-C
Input Distances	10	m	0
Input Distances	20	m	0
Input Distances	30	m	0
			Supplementary Data at 10 m
			CATEGORIA 1.57/ATEGORIA 5/B-C
Supplied Flammal	ole Mass	kg	0,188684

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Used Flammable Mass	kg	0,188684
		Supplementary Data at 20 m
		CATEGORIA 1.52ATEGORIA 5/B-C
Supplied Flammable Mass	kg	0,188684
Used Flammable Mass	kg	0,188684
		Supplementary Data at 30 m
		CATEGORIA 1.52ATEGORIA 5/B-C
Supplied Flammable Mass	kg	0,188684
Used Flammable Mass	kg	0,188684

Weather Conditions

Path: San Pedro 1 (SP1)\EI.03 CASO MAS PROBABLE Nodo 2\Fuga por Sobrepresión

	CATEGORIA 1.5CATEGORIA 5/B-C		
m/s	1,5	5	
	F	B/C	
degC	38	38	
degC	38	38	
fraction	0,98	0,98	
	degC degC	m/s 1,5 F degC 38 degC 38	m/s 1,5 5 F B/C degC 38 38 degC 38 38

Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)

Escenario 4

Unique Audit Number:

Study Folder: Plataforma San Pedro 1 (SP1)

126.810 Phast 7,11

Plataforma San Pedro 1 (SP1)

San Pedro 1 (SP1)

San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLIEI.04.-Fuga de Gas amargo en uniones bridadas debido a una

sobrepresión en línea de descarga del compresor, con posible formación de nube toxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones debido al cierre de la válvula manual BF-30201 por error humano

Base Case

CASE Name:

Data

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

User-Defined Data

Scenario

Direction

Outdoor release direction Horizontal impingement

Hole

Orifice diameter 15,24 mm Use specified discharge coefficient? No

Release location

Elevation 1 m

Material

Material

[Material characteristics Toxic and flammable] HYDROGEN SULFIDE] [Material to track

Phase

[Phase to be released Vapour]

Discharge parameters

Droplet breakup mechanism

[Droplet break-up mechanism - instantaneous Use flashing correlation] [Droplet break-up mechanism - continuous Do not force correlation]

Model settings

Closest to initial conditions] [Atmospheric expansion method [Is flashing allowed to the orifice? No flashing in the orifice]

Dispersion

Averaging time for reports

ERPG [1 hr] No STEL [15 mins] Yes

Dispersion scope

Concentration of interest 100 ppm **IDLH** Averaging time for concentration of interest

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Specify user-defined averaging time	Yes	
User defined averaging time	1800	S
Distances of interest		
[Distances of interest(1)	10	m]
[Distances of interest(2)	20	m]
[Distances of interest(3)	30	m]
Bund, building and terrain: Default terrain		
Dispersing surface [Surface over which the dispersion occurs	Land]	
[Surface roughness length	User-defined]	
[User-defined length	183,156	mm]
Bund, building and terrain: No bund		
Bund properties		
[Bund height		m]
[Bund area (internal)		m2]
[Bund failure modeling	Bund cannot fail]	
Surface for pools [Type of surface for pools	Deep open water]	
Bund, building and terrain Building definition		
[Specify a release building	No]	
[Building wake effect	None]	
Toxic parameters		
Exposure time data [Set averaging time equal to exposure time	Use a fixed averaging time]	
Indoor toxic calculations		
[Specify the downwind building type	Unselected]	
Toxic contours		
[Number of toxic levels	4]	
[Dose levels(1)	130000]	
[Dose levels(2)	1,3E+06]	
[Dose levels(3)	1,3E+07]	
[Dose levels(4)	1,3E+08]	
[Probit levels(1)	2]	
[Probit levels(2)	3]	
[Probit levels(3)	4]	
[Probit levels(4)	10]	· · · -
[Lethality levels(1)	0,001	fraction]
[Lethality levels(2)	0,01	fraction]
[Lethality levels(3)	0,1	fraction]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

No]

[Lethality levels(4) 0,99 fraction] **Explosion parameters Explosion method (Consequence calculations only)** [Explosion method Multi-Energy: Uniform confined] Ignition [Supply late ignition location No ignition location] Vapour liquid method [Use of explosion mass modification factor Early and late explosions] [Explosion mass modification factor 3] Fireball Calculation method [Fireball model Recommended] **Parameters** [Mass modification factor 3] **Radiation levels** [Number of input radiation levels 3] 1,4 kW/m2] [Intensity levels(1) [Intensity levels(2) 5 kW/m2] [Intensity levels(3) 37,5 kW/m2] Result types to calculate [Calculate probit No] [Calculate dose No] [Calculate lethality No] Jet fire Cone model data [Horizontal options Use standard method] [Correlation Recommended] Jet fire method Cone model] [Jet fire method **Parameters** [Rate modification factor 3] **Radiation levels** [Number of input radiation levels 31 1,4 kW/m2] [Intensity levels(1) [Intensity levels(2) 5 kW/m2] [Intensity levels(3) 37,5 kW/m2]

Result types to calculate [Calculate probit

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

[Calculate dose	No]
[Calculate lethality	No]

Surface emissive power

[Calculation method for surface emissive power Calculate SEP]

Pool fire

Parameters

0,4 fraction] [Radiative fraction for general fires

Radiation levels

[Number of input radiation levels]
[Intensity levels(1) 1	4 kW/m2]
[Intensity levels(2)	5 kW/m2]
[Intensity levels(3) 37	5 kW/m2]

Result types to calculate

[Calculate probit	No]
[Calculate dose	No]
[Calculate lethality	No]

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

Weather folder\CATEGORIA 1.5/F **DISCHARGE DATA for Weather:**

Wind Speed: 1,50 m/s Wind Speed at Height (Calculated) 0,46 m/s F Pasquill Stability:

USER-DEFINED QUANTITIES

CORRIENTE 5 GAS AMARGO Material Scenario Leak Inventory 1.951,62 kg Fixed Duration n/a s

Stagnation data (data at upstream end for long pipe):

- Pressure 934,53 psi - Temperature 70,00 degC - Fluid State Pressurized gas

CALCULATED QUANTITIES

Mass Flow of Air (Vent from Vapor Space only)	n/a	
Mass Flowrate	3,25279	kg/s
Release Duration	599,98	S
Orifice or pipe exit data (before atmospheric expansion):		
- Pressure	563,32	psi
- Temperature	36,48	degC
- Vena Contracta Velocity (exit velocity for pipe releases)	200,69	m/s
- Discharge Coefficient	0,89	

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

		expansion):

- Temperature	-69,20	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,03	m
- Velocity	388,84	m/s

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 5/B-C

Wind Speed:	5,00 m/s	;
Wind Speed at Height (Calculated)	3,76 m/s	s
Pasquill Stability:	B/C	

USER-DEFINED QUANTITIES

Material	CORRIENTE 5 GAS AMARGO
Scenario	Leak
Inventory	1.951,62 kg
Fixed Duration	n/a s

Stagnation data (data at upstream end for long pipe):

- Pressure	934,53 psi
- Temperature	70,00 degC
- Fluid State	Pressurized gas

CALCULATED QUANTITIES

CALCULATED QUANTITIES		
Mass Flow of Air (Vent from Vapor Space only)	n/a	
Mass Flowrate	3,25279	kg/s
Release Duration	599,98	S
Orifice or pipe exit data (before atmospheric expansion):		
- Pressure	563,32	psi
- Temperature	36,48	degC
- Vena Contracta Velocity (exit velocity for pipe releases)	200,69	m/s
- Discharge Coefficient	0,89	
Final data (after atmospheric expansion):		
- Temperature	-69,20	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,03	m
- Velocity	388,84	m/s

Unique Audit Number:

126.810

Phast 7,11

Consequence Results

Distance to Concentration Results

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Concentration(ppm)	Averaging Time			Distance (m)
			CATEGORIA	1.5 % ATEGORIA 5/B-C
User Conc (100)	1800	S	208,839	123,223
UFL (140101)	18,75	S	4,93678	4,24536
LFL (27581,8)	18,75	S	32,6541	22,7636
LFL Frac (13790,9)	18,75	S	90,8183	56,2308
STEL (15)	900	S	No Hazard	No Hazard
IDLH (100)	1800	S	208,839	123,223
Concentration(ppm)	Averaging Time			Heights (m) for above distances
Concentration(ppm)	Averaging Time		CATEGORIA	Heights (m) for above distances 1.5/ATEGORIA 5/B-C
Concentration(ppm) User Conc (100)	Averaging Time 1800	S	CATEGORIA	**
,	., .,	s s		1.5CATEGORIA 5/B-C
User Conc (100)	1800		0	1.5 ZI ATEGORIA 5/B-C 0
User Conc (100) UFL (140101)	1800 18,75	S	0 1,03757	1.5 C ATEGORIA 5/B-C 0 1,04907
User Conc (100) UFL (140101) LFL (27581,8)	1800 18,75 18,75	s s	0 1,03757 0,570279	1.52ATEGORIA 5/B-C 0 1,04907 1,03389
User Conc (100) UFL (140101) LFL (27581,8) LFL Frac (13790,9)	1800 18,75 18,75 18,75	s s s	0 1,03757 0,570279	1.52ATEGORIA 5/B-C 0 1,04907 1,03389 0,755599

Concentration At Distance Results

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Distance			Conc.(ppm) at Flammable Avg.Time of 18,75 s CATEGORIA 1.52/ATEGORIA 5/B-C		
10	m	2522,64	1846,68		
20	m	1453,52	1104,94		
30	m	1076,96	842,004		
Distance			for above concentrations		
			A 1.5CATEGORIA 5/B-C		
10	m	0,918808	0,944963		
20	m	0,743832	0,869419		
30	m	0,412834	0,787983		
Distance		Conc.(ppm)	at Toxic Avg. Time of 600 s		
		CATEGORI	A 1.5©ATEGORIA 5/B-C		
10	m	1454,72	1133,1		
20	m	1309,52	873,274		
30	m	1058,91	706,253		
Distance		Heights (m)	for above concentrations		
		CATEGORI	A 1.5CATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		
30	m	0	0		
Distance		Cono (num)	at User-defined Avg.Time of 1800 s		
Distance			A 1.5CATEGORIA 5/B-C		
			1133,1		
		1 4 5 4 7 7	11331		
10	m	1454,72			
20	m	1309,52	873,274		
20	m	1309,52 1058,91	873,274		
20 30	m	1309,52 1058,91 Heights (m)	873,274 706,253		
20 30	m	1309,52 1058,91 Heights (m)	873,274 706,253 for above concentrations		
20 30 Distance	m m	1309,52 1058,91 Heights (m) CATEGORI	873,274 706,253 for above concentrations A 1.5\(\mathcal{L}\)ATEGORIA 5/B-C		
20 30 Distance	m m	1309,52 1058,91 Heights (m) CATEGORI 0	873,274 706,253 for above concentrations A 1.57ATEGORIA 5/B-C 0		
20 30 Distance 10 20 30	m m m	1309,52 1058,91 Heights (m): CATEGORI. 0 0	873,274 706,253 for above concentrations A 1.5/ATEGORIA 5/B-C 0 0 0		
20 30 Distance 10 20	m m m	1309,52 1058,91 Heights (m) CATEGORI 0 0 0	873,274 706,253 for above concentrations A 1.5ZATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s		
20 30 Distance 10 20 30 Distance	m m m m	1309,52 1058,91 Heights (m) CATEGORI 0 0 COnc.(ppm) CATEGORI	873,274 706,253 for above concentrations A 1.5/ATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.5/ATEGORIA 5/B-C		
20 30 Distance 10 20 30 Distance	m m m m	1309,52 1058,91 Heights (m) CATEGORI 0 0 Conc.(ppm) : CATEGORI 1454,72	873,274 706,253 for above concentrations A 1.5CATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.5CATEGORIA 5/B-C 1133,1		
20 30 Distance 10 20 30 Distance 10 20	m m m m	1309,52 1058,91 Heights (m): CATEGORI. 0 0 Conc.(ppm): CATEGORI. 1454,72 1309,52	873,274 706,253 for above concentrations A 1.57ATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.57ATEGORIA 5/B-C 1133,1 873,274		
20 30 Distance 10 20 30 Distance	m m m m	1309,52 1058,91 Heights (m) CATEGORI 0 0 Conc.(ppm) : CATEGORI 1454,72	873,274 706,253 for above concentrations A 1.5CATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.5CATEGORIA 5/B-C 1133,1		
20 30 Distance 10 20 30 Distance 10 20	m m m m	1309,52 1058,91 Heights (m): CATEGORI. 0 0 Conc.(ppm): CATEGORI. 1454,72 1309,52 1058,91	873,274 706,253 for above concentrations A 1.57ATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.57ATEGORIA 5/B-C 1133,1 873,274		
20 30 Distance 10 20 30 Distance 10 20 30	m m m m	1309,52 1058,91 Heights (m) CATEGORI 0 0 CONC.(ppm) CATEGORI 1454,72 1309,52 1058,91 Heights (m)	873,274 706,253 for above concentrations A 1.5/ATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.5/ATEGORIA 5/B-C 1133,1 873,274 706,253		
20 30 Distance 10 20 30 Distance 10 20 30	m m m m	1309,52 1058,91 Heights (m) CATEGORI 0 0 CONC.(ppm) CATEGORI 1454,72 1309,52 1058,91 Heights (m)	873,274 706,253 for above concentrations A 1.5/ATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.5/ATEGORIA 5/B-C 1133,1 873,274 706,253 for above concentrations		
20 30 Distance 10 20 30 Distance 10 20 30 Distance	m m m m	1309,52 1058,91 Heights (m) CATEGORI 0 0 Conc.(ppm) CATEGORI 1454,72 1309,52 1058,91 Heights (m) CATEGORI	873,274 706,253 for above concentrations A 1.XATEGORIA 5/B-C 0 0 0 at IDLH Avg.Time of 1800 s A 1.XATEGORIA 5/B-C 1133,1 873,274 706,253 for above concentrations A 1.XATEGORIA 5/B-C		

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

30	m	0	0
Distance		,	STEL Avg.Time of 900 s 1.57ATEGORIA 5/B-C
10	m	1454,72	1133,1
20	m	1309,52	873,274
30	m	1058,91	706,253
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0
Distance		,	Core Avg. Time of 18,75 s
		CATEGORIA	1.50ATEGORIA 5/B-C
10	m	1454,72	1133,1
20	m	1309,52	873,274
30	m	1058,91	706,253
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0

Jet Fire Hazard

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

Jet fire method used: Cone model - Recommended

CATEGORIA 1.52ATEGORIA 5/B-C

Jet Fire StatusHazardHazardFlame DirectionHorizontalHorizontal

Radiation Effects: Jet Fire Ellipse

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

This table gives the distances to the specified radiation levels

for each jet fire listed in the above hazard table

Distance (m)

			CATEGORI	A 1.5CPATEGORIA 5/	В-С
Radiation Level	1,4	kW/m2	28,7421	28,4338	
Radiation Level	5	kW/m2	15,2172	14,9307	
Radiation Level	37,5	kW/m2	6,32764	8,12203	

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Radiation Effects: Jet Fire Distance

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

Radiation	Level	(kV	V/	(m2	
-----------	-------	-----	----	-----	--

				Radiation Level (KW/I
			CATEGORIA 1	1.5CPATEGORIA 5/B-C
Distance Of Interest	10	m	50,9197	56,2634
Distance Of Interest	20	m	28,6019	42,6089
Distance Of Interest	30	m	4,45363	5,35174

Flash Fire Envelope

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

All flammable results are reported at the cloud centreline height

			CATEGORI	A 1.5CATEGORIA 5/B-C
Furthest Extent	13790,9	ppm	90,8183	56,2308
Furthest Extent	27581,8	ppm	32,6541	22,7636
				Heights (m) for above distances
			CATEGORI	A 1.57ATEGORIA 5/B-C
Furthest Extent	13790 9	nnm	0	0.755599

Furthest Extent 13790,9 ppm 0 0,755599 Furthest Extent 27581,8 ppm 0,570279 1,03389

Plataforma San Pedro 1 (SP1)

Explosion Effects: Late Ignition

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

Explosion Model Used : Multi-Energy: Uniform confined Explosion Location Criterion: Cloud front (LFL fraction)

All distances are measured from the Source

All flammable results are reported at the cloud centreline height

			Maximum D	Distance (m) at Overpressure Level
			CATEGORI	A 1.57ATEGORIA 5/B-C
Overpressure	0,5	psi	139,19	84,7337
Overpressure	1	psi	116,587	68,7734
Overpressure	10,1526	psi	95,6445	53,9857
			Supplementa	ary Data at 0,5 psi
			CATEGORI	A 1.57ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	6,83267	2,40553
Used Flammable N	Mass	kg	6,83267	2,40553
Overpressure Radi	us	m	49,1901	34,7337
Distance to:				
- Ignition Source		m	90	50
- Cloud Front/Cent	tre	m	90	50
- Explosion Centre	;	m	90	50
			Supplementa	ary Data at 1 psi
			CATEGORI	A 1.50ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	6,83267	2,40553
Used Flammable N	Mass	kg	6,83267	2,40553
Overpressure Radi	us	m	26,587	18,7734
Distance to:				
- Ignition Source		m	90	50
- Cloud Front/Cent	tre	m	90	50
- Explosion Centre	;	m	90	50
			Supplementa	ary Data at 10,1526 psi
			CATEGORI	A 1.5CPATEGORIA 5/B-C
Supplied Flammab	ole Mass	kg	6,83267	2,40553
Used Flammable N	Aass	kg	6,83267	2,40553
Overpressure Radi	us	m	5,64452	3,98566
Distance to:				
- Ignition Source		m	90	50
- Cloud Front/Cent	tre	m	90	50
- Explosion Centre	;	m	90	50
				es (psi gauge) at Distances
			CATEGORI	A 1.5CPATEGORIA 5/B-C
Input Distances	10	m	0	0
Input Distances	20	m	0	0
Input Distances	30	m	0	0
				ary Data at 10 m
				A 1.57ATEGORIA 5/B-C
Supplied Flammab	ole Mass	kg	1,31058	1,13025

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Used Flammable Mass	kg	1,31058	1,13025
		Supplementary	Data at 20 m
		CATEGORIA 1	1.5CATEGORIA 5/B-C
Supplied Flammable Mass	kg	4,26684	2,30123
Used Flammable Mass	kg	4,26684	2,30123
		Supplementary	Data at 30 m
		CATEGORIA 1	1.50ATEGORIA 5/B-C
Supplied Flammable Mass	kg	6,48733	2,40553
Used Flammable Mass	kg	6,48733	2,40553

Weather Conditions

Path: San Pedro 1 (SP1)\EI.04 PEOR MAS PROBABLE Nodo 3\Fuga por Sobrepresión

		CATEGOI	RIA 1.507ATEGORIA	A 5/B-C
Wind Speed	m/s	1,5	5	
Pasquill Stability		F	B/C	
Atmospheric Temperature	degC	38	38	
Surface Temperature	degC	38	38	
Relative Humidity	fraction	0,98	0,98	

Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)

Escenario 5

Unique Audit Number:

130.874

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Plataforma San Pedro 1 (SP1)

LÉ

San Pedro 1 (SP1)

San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLI

Base Case

CASE Name:

Data

Path:

San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

User-Defined Data

Scenario

Direction

[Outdoor release direction

Horizontal]

Hole

Orifice diameter

152,4 mm

Use specified discharge coefficient?

Release location

Elevation

3,5 m

Material

Material

[Material characteristics [Material to track Toxic and flammable]

HYDROGEN SULFIDE]

Phase

[Phase to be released

Vapour]

Discharge parameters

Droplet breakup mechanism

[Droplet break-up mechanism - instantaneous [Droplet break-up mechanism - continuous Use flashing correlation]
Do not force correlation]

Model settings

[Atmospheric expansion method [Is flashing allowed to the orifice?

Closest to initial conditions]
No flashing in the orifice]

Dispersion

Averaging time for reports

ERPG [1 hr] No STEL [15 mins] Yes

Dispersion scope

Concentration of interest 100 ppm
Averaging time for concentration of interest IDLH
Specify user-defined averaging time No

Unique Audit Number:

130.874 **Phast 7,11 Study Folder:** Plataforma San Pedro 1 (SP1)

Bund, building and terrain: Default terrain

Dispersing surface

[Surface over which the dispersion occurs Land] [Surface roughness length User-defined] 183,156 mm] [User-defined length

Bund, building and terrain: No bund

Bund properties

[Bund height 0 m1[Bund area (internal) 0 m2[Bund failure modeling Bund cannot fail]

Surface for pools

[Type of surface for pools Deep open water]

Bund, building and terrain

Building definition

[Specify a release building Nol [Building wake effect None]

Toxic parameters

Exposure time data

[Set averaging time equal to exposure time Use a fixed averaging time]

Indoor toxic calculations

[Specify the downwind building type Unselected]

Toxic contours

[Number of toxic levels 4] [Dose levels(1) 130000] [Dose levels(2) 1,3E+06] [Dose levels(3) 1,3E+07] [Dose levels(4) 1,3E+08] [Probit levels(1) 2] [Probit levels(2) 3] [Probit levels(3) 4] [Probit levels(4) 10]

[Lethality levels(1) 0,001 fraction] [Lethality levels(2) 0,01 fraction] [Lethality levels(3) 0,1 fraction] 0,99 fraction] [Lethality levels(4)

Explosion parameters

Explosion method (Consequence calculations only)

[Explosion method Multi-Energy: Uniform confined]

Ignition

No ignition location] [Supply late ignition location

Unique Audit Number:

130.874

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

Vapour liquid method

[Use of explosion mass modification factor Early and late explosions]
[Explosion mass modification factor 3]

Fireball

Calculation method

[Fireball model Recommended]

Parameters

[Mass modification factor 3]

Radiation levels

[Number of input radiation levels 3]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Jet fire

Cone model data

[Horizontal options Use standard method]
[Correlation Recommended]

Jet fire method

[Jet fire method Cone model]

Parameters

[Rate modification factor 3]

Radiation levels

[Number of input radiation levels 3]

 [Intensity levels(1)
 1,4 kW/m2]

 [Intensity levels(2)
 5 kW/m2]

 [Intensity levels(3)
 37,5 kW/m2]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Surface emissive power

[Calculation method for surface emissive power Calculate SEP]

Pool fire

Parameters

Unique Audit Number:

130.874

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

[Radiative fraction for general fires	0,4	fraction]
Radiation levels		
[Number of input radiation levels	3]	
[Intensity levels(1)	4	kW/m2]
[Intensity levels(2)	12,5	kW/m2]
[Intensity levels(3)	37,5	kW/m2]
Result types to calculate [Calculate probit	Nol	
	,	
[Calculate dose	No]	
[Calculate lethality	No]	

Path: San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 1.5/F

Wind Speed:1,50 m/sWind Speed at Height (Calculated)0,88 m/sPasquill Stability:F

USER-DEFINED QUANTITIES

MaterialCORRIENTE 5 GAS AMARGOScenarioLeakInventory4.176,64 kgFixed Durationn/a s

Stagnation data (data at upstream end for long pipe):

Pressure
 Temperature
 Fluid State
 Pressurized gas

CALCULATED QUANTITIES

 $\begin{array}{ccc} \text{Mass Flow of Air (Vent from Vapor Space only)} & & n/a \\ \\ \text{Mass Flowrate} & 6,96107 & kg/s \\ \text{Release Duration} & 600,00 & s \\ \end{array}$

Orifice or pipe exit data (before atmospheric expansion):

- Pressure 16,71 psi
- Temperature 14,55 degC
- Vena Contracta Velocity (exit velocity for pipe releases) 270,90 m/s
- Discharge Coefficient 0,77

Final data (after atmospheric expansion):

 - Temperature
 9,28 degC

 - Liquid Mass Fraction
 0,00 fraction

 - Droplet Diameter
 0E+000 um

 - Expanded Radius
 0,07 m

 - Velocity
 299,11 m/s

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 5/B-C

Unique Audit Number:

130.874

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

Wind Speed:5,00 m/sWind Speed at Height (Calculated)4,39 m/sPasquill Stability:B/C

USER-DEFINED QUANTITIES

Material CORRIENTE 5 GAS AMARGO
Scenario Leak
Inventory 4.176,64 kg
Fixed Duration n/a s

Stagnation data (data at upstream end for long pipe):

- Pressure 29,20 psi
- Temperature 38,00 degC

- Fluid State Pressurized gas

CALCULATED QUANTITIES

Mass Flow of Air (Vent from Vapor Space only)n/aMass Flowrate6,96107kg/sRelease Duration600,00sOrifice or pipe exit data (before atmospheric expansion):- Pressure16,71psi

Final data (after atmospheric expansion):

 - Temperature
 9,28 degC

 - Liquid Mass Fraction
 0,00 fraction

 - Droplet Diameter
 0E+000 um

 - Expanded Radius
 0,07 m

 - Velocity
 299,11 m/s

Study Folder: Plataforma San Pedro 1 (SP1)

Consequence Results

Distance to Concentration Results

Path: San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

> The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m

All flammable results are reported at the cloud centreline height

Concentration(ppm)	Averaging Time			Distance (m)
			CATEGORIA 1	.57ATEGORIA 5/B-C
User Conc (100)	1800	S	333,731	156,984
UFL (140101)	18,75	S	4,19026	4,05312
LFL (27581,8)	18,75	S	21,0366	17,1251
LFL Frac (13790,9)	18,75	S	41,2322	26,8334
STEL (15)	900	S	No Hazard	No Hazard
IDLH (100)	1800	S	333,731	156,984
Concentration(ppm)	Averaging Time			Heights (m) for above distances
Concentration(ppm)	Averaging Time		CATEGORIA 1	Heights (m) for above distances **CATEGORIA 5/B-C
Concentration(ppm) User Conc (100)	Averaging Time 1800	S	CATEGORIA 1	**
· · · /	., .,	s s		.5ZATEGORIA 5/B-C
User Conc (100)	1800		0	.5CATEGORIA 5/B-C
User Conc (100) UFL (140101)	1800 18,75	S	0 3,49923	.XATEGORIA 5/B-C 0 3,49933
User Conc (100) UFL (140101) LFL (27581,8)	1800 18,75 18,75	s s	0 3,49923 3,77256	. TATEGORIA 5/B-C 0 3,49933 3,53368
User Conc (100) UFL (140101) LFL (27581,8) LFL Frac (13790,9)	1800 18,75 18,75 18,75	s s s	0 3,49923 3,77256 3,33028	.XATEGORIA 5/B-C 0 3,49933 3,53368 3,78701

Jet Fire Hazard

Path: San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

Jet fire method used: Cone model - Recommended

CATEGORIA 1.50ATEGORIA 5/B-C

Jet Fire Status Hazard Hazard Flame Direction Horizontal Horizontal

Radiation Effects: Jet Fire Ellipse

Path: San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

This table gives the distances to the specified radiation levels

for each jet fire listed in the above hazard table

Distance (m)

			CATEGORIA	1.5CATEGORIA 5/	В-
Radiation Level	1,4	kW/m2	61,2046	60,0445	
Radiation Level	5	kW/m2	42,4634	44,8491	
Radiation Level	37,5	kW/m2	Not Reached	24,3338	

Unique Audit Number:

Study Folder: Plataforma San Pedro 1 (SP1)

Flash Fire Envelope

Path: San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

All flammable results are reported at the cloud centreline height

				Distance (m)
			CATEGORI	A 1.57/ATEGORIA 5/B-C
Furthest Extent	13790,9	ppm	41,2322	26,8334
Furthest Extent	27581,8	ppm	21,0366	17,1251
				Heights (m) for above distances
			CATEGORI	A 1.5CATEGORIA 5/B-C
Furthest Extent	13790,9	ppm	3,33028	3,78701
Furthest Extent	27581,8	ppm	3,77256	3,53368

Study Folder: Plataforma San Pedro 1 (SP1)

Explosion Effects: Late Ignition

Path: San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

Explosion Model Used : Multi-Energy: Uniform confined Explosion Location Criterion: Cloud front (LFL fraction)

All distances are measured from the Source

All flammable results are reported at the cloud centreline height

			Maximum Distance (m) at Overpressure Level	
			CATEGORIA 1.52ATEGORIA 5/B-C	
Overpressure	0,5	psi	No Hazard	No Hazard
Overpressure	1	psi	No Hazard	No Hazard
Overpressure	10,1526	psi	No Hazard	No Hazard
			Supplementar	y Data at 0,5 psi
			CATEGORIA	1.527ATEGORIA 5/B-C
Supplied Flammable Mass		kg	No Hazard	No Hazard
Used Flammable I	Mass	kg	No Hazard	No Hazard
Overpressure Rad	ius	m	0	0
Distance to:				
- Ignition Source		m	No Hazard	No Hazard
- Cloud Front/Cen	tre	m	No Hazard	No Hazard
- Explosion Centre	e	m	0	0
			Supplementar	y Data at 1 psi
			CATEGORIA	1.57/ATEGORIA 5/B-C
Supplied Flammal	ole Mass	kg	No Hazard	No Hazard
Used Flammable I	Mass	kg	No Hazard	No Hazard
Overpressure Rad	ius	m	0	0
Distance to:				
- Ignition Source		m	No Hazard	No Hazard
- Cloud Front/Cen	tre	m	No Hazard	No Hazard
- Explosion Centro	e	m	0	0
			Supplementar	y Data at 10,1526 psi
			CATEGORIA	1.527ATEGORIA 5/B-C
Supplied Flammal	ole Mass	kg	No Hazard	No Hazard
Used Flammable I	Mass	kg	No Hazard	No Hazard
Overpressure Rad	ius	m	0	0
Distance to:				
- Ignition Source		m	No Hazard	No Hazard
- Cloud Front/Cen	tre	m	No Hazard	No Hazard
- Explosion Centre	e	m	0	0

Unique Audit Number:

130.874

Phast 7,11

Study Folder: Plataforma San Pedro 1 (SP1)

Weather Conditions

Path: San Pedro 1 (SP1)\EI.05 CASO MAS PROBABLE Nodo 4\Venteo de gas amargo

		CATEGO	RIA 1.57/ATEGORIA 5/B-C
Wind Speed	m/s	1,5	5
Pasquill Stability		F	B/C
Atmospheric Temperature	degC	38	38
Surface Temperature	degC	38	38
Relative Humidity	fraction	0,98	0,98

Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)

Escenario 6

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7

Phast 7,11

Plataforma San Pedro 1 (SP1)

San Pedro 1 (SP1)

San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLIEI.06.-Fuga de Gas amargo debido a una Sobrepresión en

línea de inyección de gas de alta presión; con formación de nube toxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del cierre de la válvula manual de 3"

Base Case

CASE Name:

Data

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

User-Defined Data

Scenario

Direction

Outdoor release direction Horizontal impingement

Hole

Orifice diameter 15,24 mm
Use specified discharge coefficient? No

Release location

Elevation 1 m

Material

Material

[Material characteristics Toxic and flammable]
[Material to track HYDROGEN SULFIDE]

Phase

[Phase to be released Vapour]

Discharge parameters

Droplet breakup mechanism

[Droplet break-up mechanism - instantaneous Use flashing correlation]
[Droplet break-up mechanism - continuous Do not force correlation]

Model settings

[Atmospheric expansion method Closest to initial conditions]
[Is flashing allowed to the orifice? No flashing in the orifice]

Dispersion

Averaging time for reports

ERPG [1 hr] No STEL [15 mins] Yes

Dispersion scope

Concentration of interest 100 ppm
Averaging time for concentration of interest IDLH

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Specify user-defined averaging time	Yes	
User defined averaging time	1800	S
Distances of interest		
[Distances of interest(1)	10	m]
[Distances of interest(2)	20	m]
[Distances of interest(3)	30	m]
Bund, building and terrain: Default terrain Dispersing surface		
[Surface over which the dispersion occurs	Land]	
[Surface roughness length	User-defined]	
[User-defined length	183,156	mm]
Bund, building and terrain: No bund Bund properties		
[Bund height	0	m]
[Bund area (internal)	0	m2]
[Bund failure modeling	Bund cannot fail]	
Surface for pools [Type of surface for pools	Deep open water]	
Bund, building and terrain Building definition		
[Specify a release building [Building wake effect	No] None]	
Toxic parameters Exposure time data		
[Set averaging time equal to exposure time U	Jse a fixed averaging time]	
Indoor toxic calculations [Specify the downwind building type	Unselected]	
Toxic contours		
[Number of toxic levels	4]	
[Dose levels(1)	130000]	
[Dose levels(2)	1,3E+06]	
[Dose levels(3)	1,3E+07]	
[Dose levels(4)	1,3E+08]	
[Probit levels(1)	2]	
[Probit levels(2)	3]	
[Probit levels(3)	4]	
[Probit levels(4)	10]	C
[Lethality levels(1)		fraction]
[Lethality levels(2)	•	fraction]
[Lethality levels(3)	0,1	fraction]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

[Lethality levels(4) 0,99 fraction]

Explosion parameters

Explosion method (Consequence calculations only)

[Explosion method Multi-Energy: Uniform confined]

Ignition

[Supply late ignition location No ignition location]

Vapour liquid method

[Use of explosion mass modification factor Early and late explosions]
[Explosion mass modification factor 3]

Fireball

Calculation method

[Fireball model Recommended]

Parameters

[Mass modification factor 3]

Radiation levels

[Number of input radiation levels 3]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Jet fire

Cone model data

[Horizontal options Use standard method]
[Correlation Recommended]

Jet fire method

[Jet fire method Cone model]

Parameters

[Rate modification factor 3]

Radiation levels

[Number of input radiation levels 3]

 [Intensity levels(1)
 1,4 kW/m2]

 [Intensity levels(2)
 5 kW/m2]

 [Intensity levels(3)
 37,5 kW/m2]

Result types to calculate

[Calculate probit No]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

[Calculate dose No]
[Calculate lethality No]

Surface emissive power

[Calculation method for surface emissive power Calculate SEP]

Pool fire

Parameters

[Radiative fraction for general fires 0,4 fraction]

Radiation levels

[Number of input radiation levels 3]

 [Intensity levels(1)
 1,4 kW/m2]

 [Intensity levels(2)
 5 kW/m2]

 [Intensity levels(3)
 37,5 kW/m2]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 1.5/F

Wind Speed: 1,50 m/s Wind Speed at Height (Calculated) 0,46 m/s Pasquill Stability: F

USER-DEFINED QUANTITIES

MaterialCORRIENTE 5 GAS AMARGOScenarioLeakInventory8.111,64 kgFixed Durationn/a s

Stagnation data (data at upstream end for long pipe):

Pressure
 Temperature
 Fluid State
 3.489,51 psi
 70,00 degC
 Pressurized gas

CALCULATED QUANTITIES

Mass Flow of Air (Vent from Vapor Space only) n/a

Mass Flowrate 13,5194 kg/s Release Duration 600,00 s

Orifice or pipe exit data (before atmospheric expansion):

- Pressure 789,67 psi
- Temperature 35,29 degC
- Vena Contracta Velocity (exit velocity for pipe releases) 320,69 m/s
- Discharge Coefficient 0,75

Unique Audit Number:

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Final data (after	atmosp	heric	expansion):

- Temperature	-154,85	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,05	m
- Velocity	375,02	m/s

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 5/B-C

Wind Speed: $5,00\,$ m/s Wind Speed at Height (Calculated) $3,76\,$ m/s Pasquill Stability: B/C

USER-DEFINED QUANTITIES

Stagnation data (data at upstream end for long pipe):

- Pressure 3.489,51 psi
- Temperature 70,00 degC
- Fluid State Pressurized gas

CALCULATED QUANTITIES

Mass Flow of Air (Vent from Vapor Space only)	n/a	
Mass Flowrate	13,5194	kg/s
Release Duration	600,00	S
Orifice or pipe exit data (before atmospheric expansion):		
- Pressure	789,67	psi
- Temperature	35,29	degC
- Vena Contracta Velocity (exit velocity for pipe releases)	320,69	m/s
- Discharge Coefficient	0,75	
Final data (after atmospheric expansion):		
- Temperature	-154,85	degC
- Liquid Mass Fraction	0,00	fraction

- Temperature	-134,63	ucge
- Liquid Mass Fraction	0,00	fractio
- Droplet Diameter	0E+000	um
- Expanded Radius	0,05	m
- Velocity	375,02	m/s

Study Folder:

Unique Audit Number:

Plataforma San Pedro 1 (SP1)

Consequence Results

Distance to Concentration Results

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Concentration(ppm)	Averaging Time			Distance (m)
			CATEGORIA	1.50ATEGORIA 5/B-C
User Conc (100)	1800	S	441,113	216,547
UFL (140101)	18,75	S	11,0354	8,99224
LFL (27581,8)	18,75	S	87,5112	77,0749
LFL Frac (13790,9)	18,75	S	214,531	129,388
STEL (15)	900	S	No Hazard	No Hazard
IDLH (100)	1800	S	441,113	216,547
Concentration(ppm)	Averaging Time			Heights (m) for above distances
Concentration(ppm)	Averaging Time		CATEGORIA	Heights (m) for above distances 1.57ATEGORIA 5/B-C
Concentration(ppm) User Conc (100)	Averaging Time 1800	S	CATEGORIA	** * *
,	., .,	s s		1.5CATEGORIA 5/B-C
User Conc (100)	1800		0	1.57ATEGORIA 5/B-C 0
User Conc (100) UFL (140101)	1800 18,75	S	0 1,11618	1.5 CI ATEGORIA 5/B-C 0 0,983179
User Conc (100) UFL (140101) LFL (27581,8)	1800 18,75 18,75	s s	0 1,11618 0	1.5 CI ATEGORIA 5/B-C 0 0,983179 0,519094
User Conc (100) UFL (140101) LFL (27581,8) LFL Frac (13790,9)	1800 18,75 18,75 18,75	s s s	0 1,11618 0	1.52ATEGORIA 5/B-C 0 0,983179 0,519094 0

Plataforma San Pedro 1 (SP1)

Concentration At Distance Results

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Distance		Conc.(ppm) a	Conc.(ppm) at Flammable Avg.Time of 18,75 s		
		CATEGORIA	A 1.5CATEGORIA 5/B-C		
10	m	5632,05	4708,88		
20	m	3175,11	2747,94		
30	m	2321,62	2052,98		
Distance		Heights (m) f	for above concentrations		
		CATEGORIA	A 1.5CATEGORIA 5/B-C		
10	m	0,927812	0,940193		
20	m	0,803808	0,861955		
30	m	0,57774	0,765296		
Distance		C ()	4 T A Time		
Distance			at Toxic Avg. Time of 600 s		
10			A 1.50ATEGORIA 5/B-C		
10	m	2849,46	2693,25		
20	m	2855,6	2243,63		
30	m	2250,25	1800,49		
Distance		Heights (m) f	for above concentrations		
			A 1.5CATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		
30	m	0	0		
Distance		Conc.(ppm) a	at User-defined Avg. Time of 1800 s		
		CATEGORIA	A 1.5CTATEGORIA 5/B-C		
10	m	2849,46	2693,25		
20	m	2855,6	2243,63		
30	m	2250,25	1800,49		
D: .		TT : 1 () (S 1		
Distance			for above concentrations		
4.0			A 1.5CIATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		
30	m	0	0		
Distance		Conc.(ppm) a	at IDLH Avg. Time of 1800 s		
		CATEGORIA	A 1.5ØATEGORIA 5/B-C		
10	m	2849,46	2693,25		
20	m	2855,6	2243,63		
30	m	2250,25	1800,49		
		•	,		
Distance		Heights (m) f	for above concentrations		
		CATEGORIA	A 1.57ATEGORIA 5/B-C		
10	m	0	0		
20	m	0	0		

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

30	m	0	0
Distance			STEL Avg.Time of 900 s 1.57ATEGORIA 5/B-C
10	m	2849,46	2693,25
20	m	2855,6	2243,63
30	m	2250,25	1800,49
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0
Distance		,	Core Avg. Time of 18,75 s
			1.5CATEGORIA 5/B-C
10	m	2849,46	2693,25
20	m	2855,6	2243,63
30	m	2250,25	1800,49
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0

Jet Fire Hazard

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

Jet fire method used: Cone model - Recommended

CATEGORIA 1.52ATEGORIA 5/B-C

Jet Fire StatusTruncatedTruncatedFlame DirectionHorizontalHorizontal

Radiation Effects: Jet Fire Ellipse

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

This table gives the distances to the specified radiation levels

for each jet fire listed in the above hazard table

Distance (m)

			Distance (III)
		CATEGORI	A 1.527ATEGORIA 5/B-C
1,4	kW/m2	63,3897	63,1447
5	kW/m2	33,8417	33,8168
37,5	kW/m2	13,8351	16,5706
	5	5 kW/m2	1,4 kW/m2 63,3897 5 kW/m2 33,8417

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Radiation Effects: Jet Fire Distance

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

Radiation Level (kW/m2)

				Radiation Level (KW/I
			CATEGORIA 1	.5CPATEGORIA 5/B-C
Distance Of Interest	10	m	116,252	116,25
Distance Of Interest	20	m	79,0053	105,246
Distance Of Interest	30	m	52,2437	73,3797

Flash Fire Envelope

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

All flammable results are reported at the cloud centreline height

Distance (m) CATEGORIA 1.5% ATEGORIA 5/B-C Furthest Extent 13790,9 214,531 129,388 ppm Furthest Extent 27581,8 77,0749 87,5112 ppm Heights (m) for above distances CATEGORIA 1.5% ATEGORIA 5/B-C Furthest Extent 13790,9 0 ppm Furthest Extent 0 0,519094 27581,8 ppm

Plataforma San Pedro 1 (SP1)

Explosion Effects: Late Ignition

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

Explosion Model Used : Multi-Energy: Uniform confined Explosion Location Criterion: Cloud front (LFL fraction)

All distances are measured from the Source

All flammable results are reported at the cloud centreline height

			Maximum D	vistance (m) at Overpressure Level
				A 1.5©ATEGORIA 5/B-C
Overpressure	0,5	psi	327,375	210,841
Overpressure	1	psi	273,441	169,099
Overpressure	10,1526	psi	223,469	130,424
			Supplementa	ary Data at 0,5 psi
			CATEGORI	A 1.57ATEGORIA 5/B-C
Supplied Flammable	e Mass	kg	92,8296	43,0324
Used Flammable Ma	ass	kg	92,8296	43,0324
Overpressure Radius	S	m	117,375	90,8405
Distance to:				
- Ignition Source		m	210	120
- Cloud Front/Centre	e	m	210	120
- Explosion Centre		m	210	120
			Supplementa	ary Data at 1 psi
			CATEGORI	A 1.527ATEGORIA 5/B-C
Supplied Flammable	e Mass	kg	92,8296	43,0324
Used Flammable Ma	ass	kg	92,8296	43,0324
Overpressure Radius	S	m	63,4407	49,0988
Distance to:				
- Ignition Source		m	210	120
- Cloud Front/Centre	e	m	210	120
- Explosion Centre		m	210	120
			Supplementa	ary Data at 10,1526 psi
			CATEGORI	A 1.57ATEGORIA 5/B-C
Supplied Flammable	e Mass	kg	92,8296	43,0324
Used Flammable Ma	ass	kg	92,8296	43,0324
Overpressure Radius	S	m	13,4687	10,4239
Distance to:				
- Ignition Source		m	210	120
- Cloud Front/Centre	e	m	210	120
- Explosion Centre		m	210	120
				es (psi gauge) at Distances
				A 1.5CATEGORIA 5/B-C
Input Distances	10	m	0	0
Input Distances	20	m	0	0
Input Distances	30	m	0	0
			G 1	D / / 10
				nry Data at 10 m
0111.11	Mana	1 .		A 1.5CATEGORIA 5/B-C
Supplied Flammable	e iviass	kg	1,86161	2,31706

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Used Flammable Mass	kg	1,86161	2,31706
		Supplementary CATEGORIA	Data at 20 m
Supplied Flammable Mass	kg	10,9283	9,50142
Used Flammable Mass	kg	10,9283	9,50142
		Supplementary	Data at 30 m
		CATEGORIA	1.5CPATEGORIA 5/B-C
Supplied Flammable Mass	kg	24,0338	17,5567
Used Flammable Mass	kg	24,0338	17,5567

Weather Conditions

Path: San Pedro 1 (SP1)\EI.06 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

		CATEGOI	RIA 1.5⊘TATEGORI	A 5/B-C
Wind Speed	m/s	1,5	5	
Pasquill Stability		F	B/C	
Atmospheric Temperature	degC	38	38	
Surface Temperature	degC	38	38	
Relative Humidity	fraction	0,98	0,98	

Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)

Escenario 7

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Plataforma San Pedro 1 (SP1)

San Pedro 1 (SP1)

San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLIEI.07 Fuga de Gas amargo debido a una Sobrepresión en

línea de inyección de gas de alta presión; con formación de nube toxica, incendio, explosión con daño al personal, medio ambiente y a las instalaciones derivado del Bloqueo o restricción de la válvula de estrangulamiento

Base Case

CASE Name:

Data

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

User-Defined Data

Scenario

Direction

Outdoor release direction Horizontal impingement

Hole

Orifice diameter 15,24 mm
Use specified discharge coefficient? No

Release location

Elevation 1 m

Material

Material

[Material characteristics Toxic and flammable]
[Material to track HYDROGEN SULFIDE]

Phase

[Phase to be released Vapour]

Discharge parameters

Droplet breakup mechanism

[Droplet break-up mechanism - instantaneous Use flashing correlation]
[Droplet break-up mechanism - continuous Do not force correlation]

Model settings

[Atmospheric expansion method Closest to initial conditions]
[Is flashing allowed to the orifice? No flashing in the orifice]

Dispersion

Averaging time for reports

ERPG [1 hr] No STEL [15 mins] Yes

Dispersion scope

Concentration of interest 100 ppm
Averaging time for concentration of interest IDLH

Date: 12/04/2016 1 of 11 Time: 16:08:52

Unique Audit Number:

126.810

Study Fo

MARY REPORT	Omque Audit Number.	120.010
Folder: Plataforma San Pedro 1	(SP1)	Phast 7,11

Specify user-defined averaging time	Yes	
User defined averaging time	1800	S
Distances of interest		
Distances of interest(1)	10	m
Distances of interest(2)	20	m
Distances of interest(3)	30	m
Bund, building and terrain: Default terrain Dispersing surface		
[Surface over which the dispersion occurs	Land]	
[Surface roughness length	User-defined]	
[User-defined length	183,156	mm]
Bund, building and terrain: No bund Bund properties		
[Bund height		m]
[Bund area (internal)		m2]
[Bund failure modeling	Bund cannot fail]	
Surface for pools [Type of surface for pools	Deep open water]	
Bund, building and terrain Building definition		
[Specify a release building	No]	
[Building wake effect	None]	
Toxic parameters		
Exposure time data		
[Set averaging time equal to exposure time	Use a fixed averaging time]	
Indoor toxic calculations		
[Specify the downwind building type	Unselected]	
Toxic contours		
[Number of toxic levels	4]	
[Dose levels(1)	130000]	
[Dose levels(2)	1,3E+06]	
[Dose levels(3)	1,3E+07]	
[Dose levels(4)	1,3E+08]	
[Probit levels(1)	2]	
[Probit levels(2)	3]	
[Probit levels(3)	4]	
[Probit levels(4)	10]	
[Lethality levels(1)		fraction
[Lethality levels(2)		fraction
[Lethality levels(3)	0,1	fraction

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) Phast 7,11

[Lethality levels(4) 0,99 fraction]

Explosion parameters

Explosion method (Consequence calculations only)

[Explosion method Multi-Energy: Uniform confined]

Ignition

[Supply late ignition location No ignition location]

Vapour liquid method

[Use of explosion mass modification factor Early and late explosions]
[Explosion mass modification factor 3]

Fireball

Calculation method

[Fireball model Recommended]

Parameters

[Mass modification factor 3]

Radiation levels

[Number of input radiation levels 3]

[Intensity levels(1) 4 kW/m2]
[Intensity levels(2) 12,5 kW/m2]
[Intensity levels(3) 37,5 kW/m2]

Result types to calculate

[Calculate probitNo][Calculate doseNo][Calculate lethalityNo]

Jet fire

Cone model data

[Horizontal options Use standard method]
[Correlation Recommended]

Jet fire method

[Jet fire method Cone model]

Parameters

[Rate modification factor 3]

Radiation levels

[Number of input radiation levels 3]

 [Intensity levels(1)
 1,4 kW/m2]

 [Intensity levels(2)
 5 kW/m2]

 [Intensity levels(3)
 37,5 kW/m2]

Result types to calculate

[Calculate probit No]

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1) **Phast 7,11**

[Calculate dose	No]
[Calculate lethality	No]

Surface emissive power

[Calculation method for surface emissive power Calculate SEP]

Pool fire

Parameters

[Radiative fraction for general fires 0,4 fraction]

Radiation levels

[Number of input radiation levels	3]
[Intensity levels(1)	4 kW/m2]
[Intensity levels(2)	12,5 kW/m2]
[Intensity levels(3)	37,5 kW/m2]

Result types to calculate

[Calculate probit No] [Calculate dose No] [Calculate lethality No]

San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión Path:

Weather folder\CATEGORIA 1.5/F **DISCHARGE DATA for Weather:**

Wind Speed: 1,50 m/s Wind Speed at Height (Calculated) 0,46 m/s Pasquill Stability: F

USER-DEFINED QUANTITIES

CORRIENTE 5 GAS AMARGO Material Scenario Leak Inventory 8.111,64 kg Fixed Duration n/a s

Stagnation data (data at upstream end for long pipe):

3.489,51 psi - Pressure - Temperature 70,00 degC - Fluid State Pressurized gas

CALCULATED QUANTITIES

Mass Flow of Air (Vent from Vapor Space only) n/a Mass Flowrate 13,5194 kg/s Release Duration 600,00 s Orifice or pipe exit data (before atmospheric expansion): - Pressure 789,67 psi - Temperature 35,29 degC - Vena Contracta Velocity (exit velocity for pipe releases) 320,69 m/s - Discharge Coefficient 0,75

Unique Audit Number:

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Final da	ata (after	atmospheric	expansion)):
	(attitospiiorio	Unpullation of	۰.

- Temperature	-154,85	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,05	m
- Velocity	375,02	m/s

DISCHARGE DATA for Weather: Weather folder\CATEGORIA 5/B-C

Wind Speed:5,00 m/sWind Speed at Height (Calculated)3,76 m/sPasquill Stability:B/C

USER-DEFINED QUANTITIES

Stagnation data (data at upstream end for long pipe):

Pressure
 Temperature
 Fluid State
 3.489,51 psi
 70,00 degC
 Pressurized gas

CALCULATED QUANTITIES

CALCULATED QUANTITIES		
Mass Flow of Air (Vent from Vapor Space only)	n/a	
Mass Flowrate	13,5194	kg/s
Release Duration	600,00	S
Orifice or pipe exit data (before atmospheric expansion):		
- Pressure	789,67	psi
- Temperature	35,29	degC
- Vena Contracta Velocity (exit velocity for pipe releases)	320,69	m/s
- Discharge Coefficient	0,75	
Final data (after atmospheric expansion):		
- Temperature	-154,85	degC
- Liquid Mass Fraction	0,00	fraction
- Droplet Diameter	0E+000	um
- Expanded Radius	0,05	m
- Velocity	375,02	m/s

Unique Audit Number:

126.810

Phast 7,11

Plataforma San Pedro 1 (SP1)

Consequence Results

Distance to Concentration Results

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Concentration(ppm)	Averaging Time			Distance (m)
			CATEGORIA 1	.5CPATEGORIA 5/B-C
User Conc (100)	1800	S	441,231	216,628
UFL (140101)	18,75	S	11,0354	8,99224
LFL (27581,8)	18,75	S	87,5033	77,0714
LFL Frac (13790,9)	18,75	S	214,326	129,386
STEL (15)	900	S	No Hazard	No Hazard
IDLH (100)	1800	S	441,231	216,628
Concentration(ppm)	Averaging Time			Heights (m) for above distances
Concentration(ppm)	Averaging Time		CATEGORIA 1	Heights (m) for above distances . CA TEGORIA 5/B-C
Concentration(ppm) User Conc (100)	Averaging Time 1800	s	CATEGORIA 1	., , ,
· · · /	., .,	s s		.5ZIATEGORIA 5/B-C
User Conc (100)	1800		0	.5CATEGORIA 5/B-C
User Conc (100) UFL (140101)	1800 18,75	S	0 1,11618	.5\(\mathcal{Z}\)ATEGORIA 5/B-C 0 0,98318
User Conc (100) UFL (140101) LFL (27581,8)	1800 18,75 18,75	s s	0 1,11618 0	. X /ATEGORIA 5/B-C 0 0,98318 0,519244
User Conc (100) UFL (140101) LFL (27581,8) LFL Frac (13790,9)	1800 18,75 18,75 18,75	S S S	0 1,11618 0 0	.57ATEGORIA 5/B-C 0 0,98318 0,519244 0

Plataforma San Pedro 1 (SP1)

Concentration At Distance Results

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

The height for user defined concentrations is the user defined height 0 m All toxic results are reported at the toxic effect height 0 m All flammable results are reported at the cloud centreline height

Distance			Conc.(ppm) at Flammable Avg.Time of 18,75 s CATEGORIA 1.5/ATEGORIA 5/B-C	
10				
10	m	5632,05	4708,88	
20	m	3175,11	2747,94	
30	m	2320,89	2052,98	
Distance			for above concentrations	
		CATEGORI	A 1.52ATEGORIA 5/B-C	
10	m	0,927812	0,940193	
20	m	0,803807	0,861955	
30	m	0,579674	0,765296	
Distance		Conc.(ppm)	at Toxic Avg.Time of 600 s	
		CATEGORI	A 1.57ATEGORIA 5/B-C	
10	m	2849,46	2693,25	
20	m	2855,6	2243,63	
30	m	2249,37	1800,49	
Distance		Heights (m)	for above concentrations	
		CATEGORI	A 1.52ATEGORIA 5/B-C	
10	m	0	0	
20	m	0	0	
30	m	0	0	
Distance		Conc.(ppm)	at User-defined Avg.Time of 1800 s	
		CATEGORI	A 1.57ATEGORIA 5/B-C	
10	m	2849,46	2693,25	
20	m	2855,6	2243,63	
30	m	2249,37	1800,49	
Distance		Heights (m)	for above concentrations	
		CATEGORI	A 1.57ATEGORIA 5/B-C	
10	m	0	0	
20	m	0	0	
30	m	0	0	
Distance		Conc.(ppm)	at IDLH Avg.Time of 1800 s	
		CATECODI	A 1.5CATEGORIA 5/B-C	
10		CATEGORI	A 1.3CATEGORIA 5/D-C	
10	m	2849,46	2693,25	
20	m m			
		2849,46	2693,25	
20	m	2849,46 2855,6 2249,37 Heights (m)	2693,25 2243,63 1800,49 for above concentrations	
20 30	m	2849,46 2855,6 2249,37 Heights (m)	2693,25 2243,63 1800,49	
20 30	m	2849,46 2855,6 2249,37 Heights (m)	2693,25 2243,63 1800,49 for above concentrations	

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

30	m	0	0
Distance		,	STEL Avg. Time of 900 s
10	m	2849,46	2693,25
20	m	2855,6	2243,63
30	m	2249,37	1800,49
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.50ATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0
Distance		Conc.(ppm) at	Core Avg.Time of 18,75 s
		CATEGORIA	1.5CATEGORIA 5/B-C
10	m	2849,46	2693,25
20	m	2855,6	2243,63
30	m	2249,37	1800,49
Distance		Heights (m) fo	or above concentrations
		CATEGORIA	1.50ATEGORIA 5/B-C
10	m	0	0
20	m	0	0
30	m	0	0

Jet Fire Hazard

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

Jet fire method used: Cone model - Recommended

CATEGORIA 1.52ATEGORIA 5/B-C

Jet Fire StatusTruncatedTruncatedFlame DirectionHorizontalHorizontal

Radiation Effects: Jet Fire Ellipse

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

This table gives the distances to the specified radiation levels

for each jet fire listed in the above hazard table

Distance (m)

			CATEGORI	A 1.5CPATEGORIA 5/B-C
Radiation Level	1,4	kW/m2	63,3897	63,1447
Radiation Level	5	kW/m2	33,8417	33,8168
Radiation Level	37,5	kW/m2	13,8351	16,5706

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

Radiation Effects: Jet Fire Distance

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

Radiation	Level	(kV	V /:	m2)	
-----------	-------	-----	-------------	-----	--

			CATEGORIA	L.WATEGORIA:
Distance Of Interest	10	m	116,252	116,25
Distance Of Interest	20	m	79,0052	105,246
Distance Of Interest	30	m	52,2437	73,3796

Flash Fire Envelope

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

All flammable results are reported at the cloud centreline height

Distance (m)
CATEGORIA 1 TATEGORIA 5/B-C.

			CHIEGORIA 1:32 HEGORIA 5/B C		
Furthest Extent	13790,9	ppm	214,326	129,386	
Furthest Extent	27581,8	ppm	87,5033	77,0714	
				Heights (m) for above distances	
			CATEGORI	A 1 40 TA TEGORIA 5/R-C	

 Furthest Extent
 13790,9
 ppm
 0
 0

 Furthest Extent
 27581,8
 ppm
 0
 0,519244

Plataforma San Pedro 1 (SP1)

Explosion Effects: Late Ignition

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

Explosion Model Used : Multi-Energy: Uniform confined Explosion Location Criterion: Cloud front (LFL fraction)

All distances are measured from the Source

All flammable results are reported at the cloud centreline height

			Maximum D	Distance (m) at Overpressure Level
			CATEGORI	A 1.50ATEGORIA 5/B-C
Overpressure	0,5	psi	327,378	210,839
Overpressure	1	psi	273,442	169,098
Overpressure	10,1526	psi	223,469	130,424
			Supplementa	ary Data at 0,5 psi
			CATEGORI	A 1.50ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	92,8361	43,0296
Used Flammable N	Aass	kg	92,8361	43,0296
Overpressure Radi	us	m	117,378	90,8386
Distance to:				
- Ignition Source		m	210	120
- Cloud Front/Cent	re	m	210	120
- Explosion Centre		m	210	120
			Supplementa	ary Data at 1 psi
			CATEGORI	A 1.50ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	92,8361	43,0296
Used Flammable N	Aass	kg	92,8361	43,0296
Overpressure Radi	us	m	63,4422	49,0977
Distance to:				
- Ignition Source		m	210	120
- Cloud Front/Cent	re	m	210	120
- Explosion Centre		m	210	120
			Supplementa	ary Data at 10,1526 psi
			CATEGORI	A 1.5CATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	92,8361	43,0296
Used Flammable N	A ass	kg	92,8361	43,0296
Overpressure Radi	us	m	13,469	10,4236
Distance to:				
- Ignition Source		m	210	120
- Cloud Front/Cent	re	m	210	120
- Explosion Centre		m	210	120
			Overpressur	es (psi gauge) at Distances
			CATEGORI	A 1.5CATEGORIA 5/B-C
Input Distances	10	m	0	0
Input Distances	20	m	0	0
Input Distances	30	m	0	0
				ary Data at 10 m
				A 1.57ATEGORIA 5/B-C
Supplied Flammab	le Mass	kg	1,86161	2,31707

Unique Audit Number:

126.810

Study Folder: Plataforma San Pedro 1 (SP1)

Phast 7,11

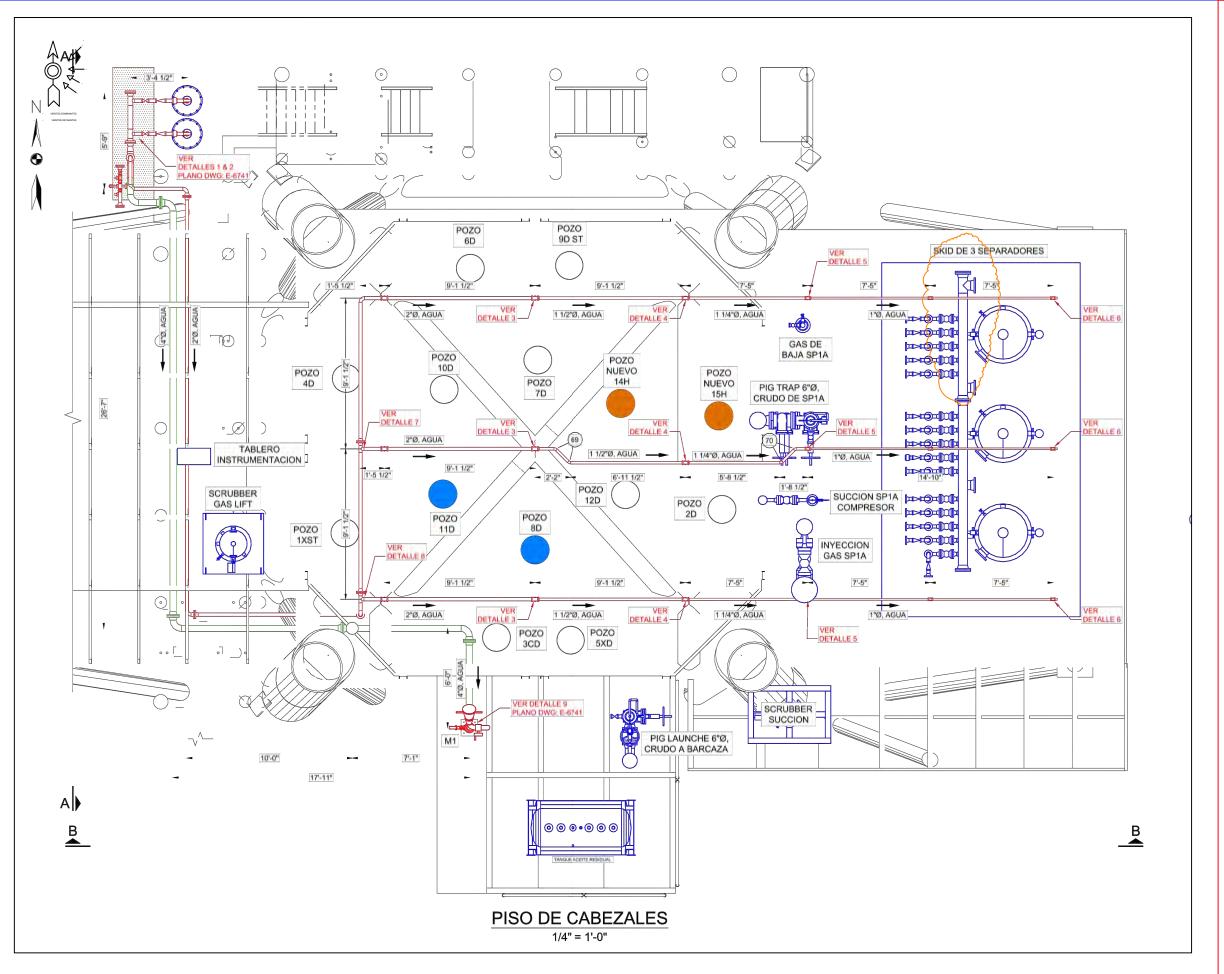
Used Flammable Mass	kg	1,86161	2,31707
		Supplementary CATEGORIA	Data at 20 m
Supplied Flammable Mass	kg	10,9284	9,50143
Used Flammable Mass	kg	10,9284	9,50143
		Supplementary	Data at 30 m
		CATEGORIA	1.52ATEGORIA 5/B-C
Supplied Flammable Mass	kg	24,0323	17,5567
Used Flammable Mass	kg	24,0323	17,5567

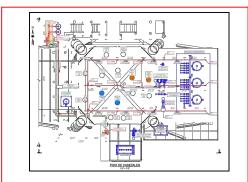
Weather Conditions

Path: San Pedro 1 (SP1)\EI.07 CASO MAS PROBABLE Nodo 5\Fuga por Sobrepresión

		CATEGOI	RIA 1.507ATEGORIA	A 5/B-C
Wind Speed	m/s	1,5	5	
Pasquill Stability		F	B/C	
Atmospheric Temperature	degC	38	38	
Surface Temperature	degC	38	38	
Relative Humidity	fraction	0,98	0,98	

Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)


Anexo C Diagramas de Pétalos.



Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)

Escenario 1

CROQUIS DE LOCALIZACIÓN

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

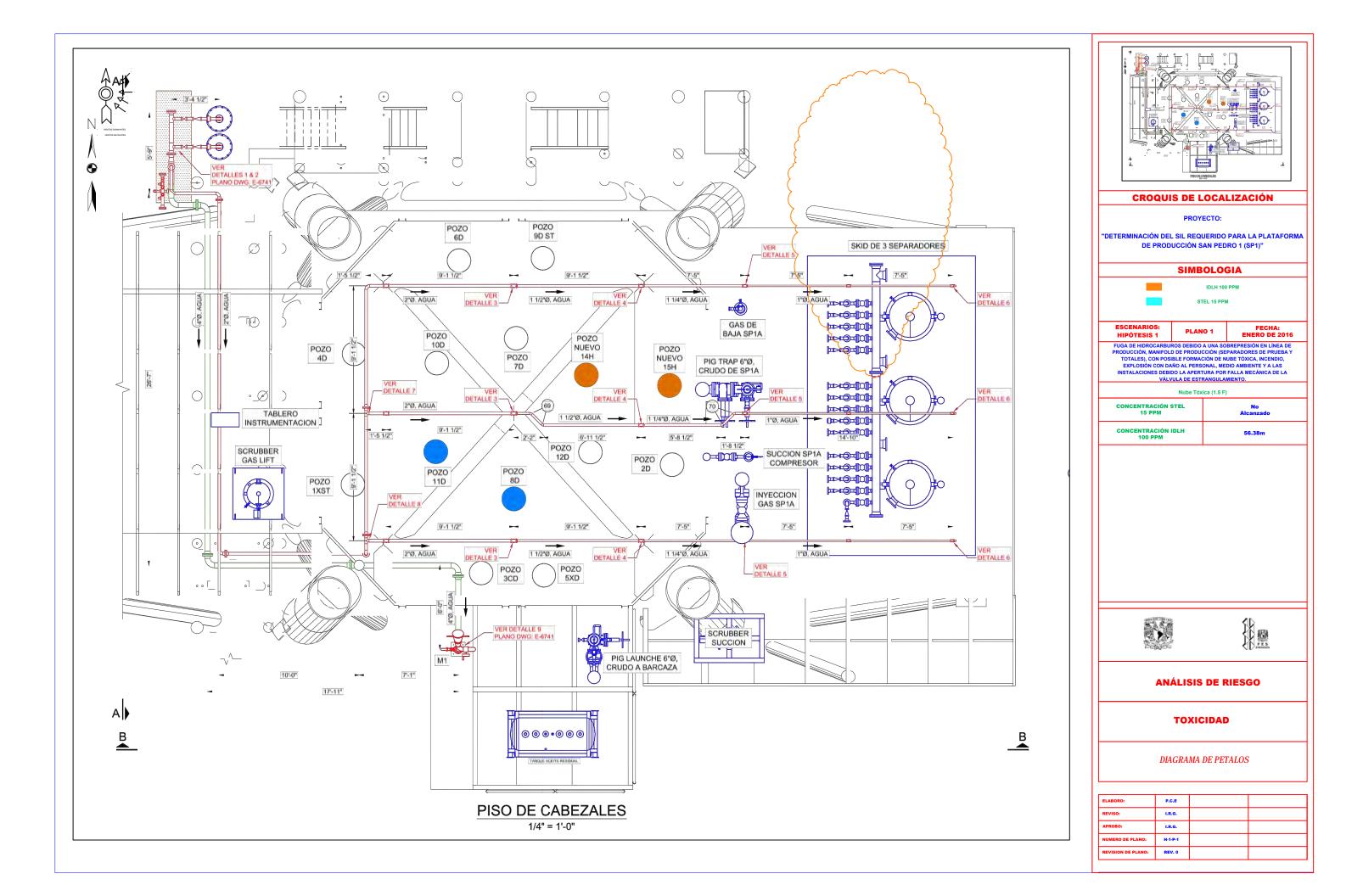
IDLH 100 PPM

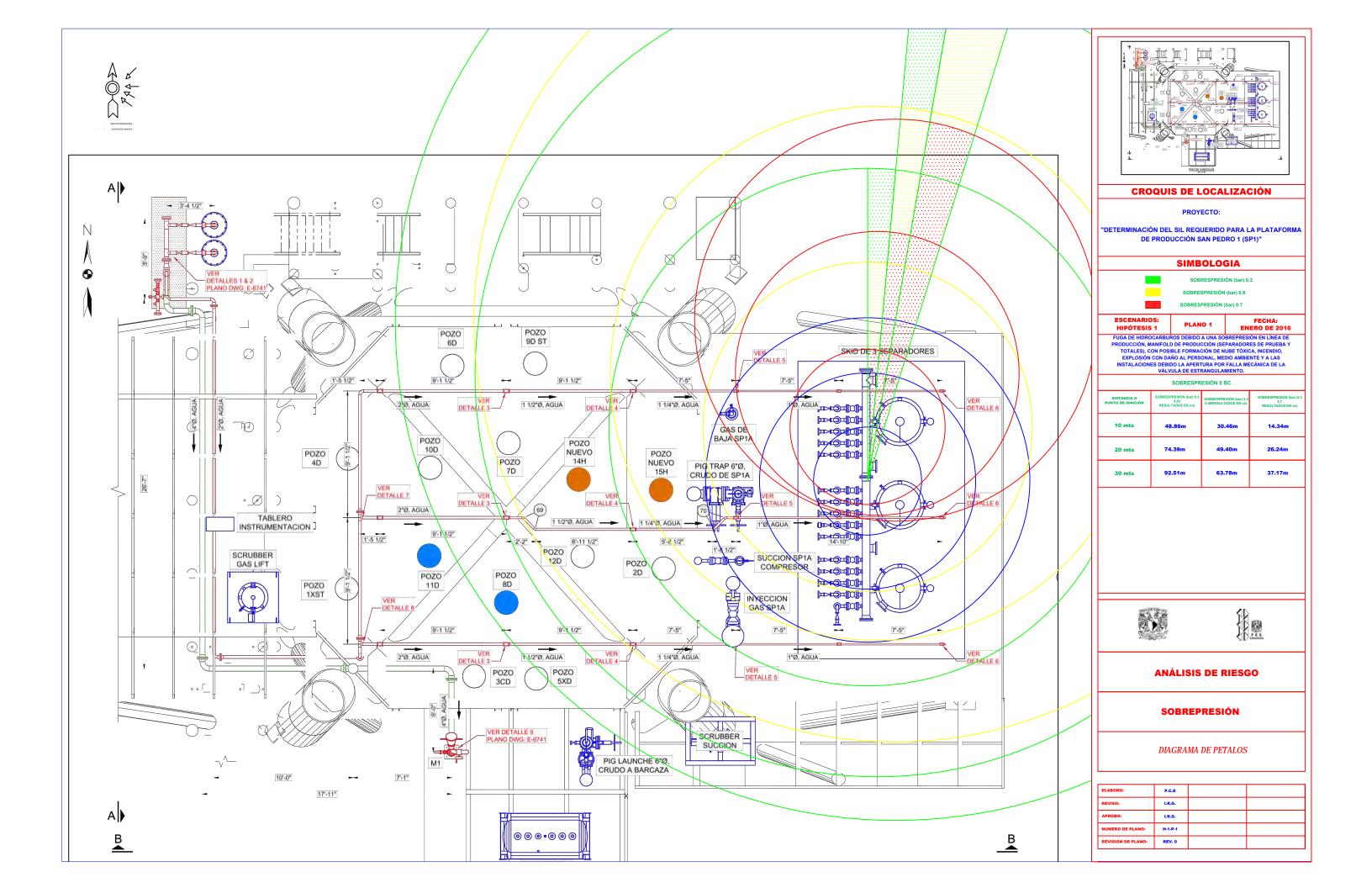
ESCENARIOS:
HIPÓTESIS 1

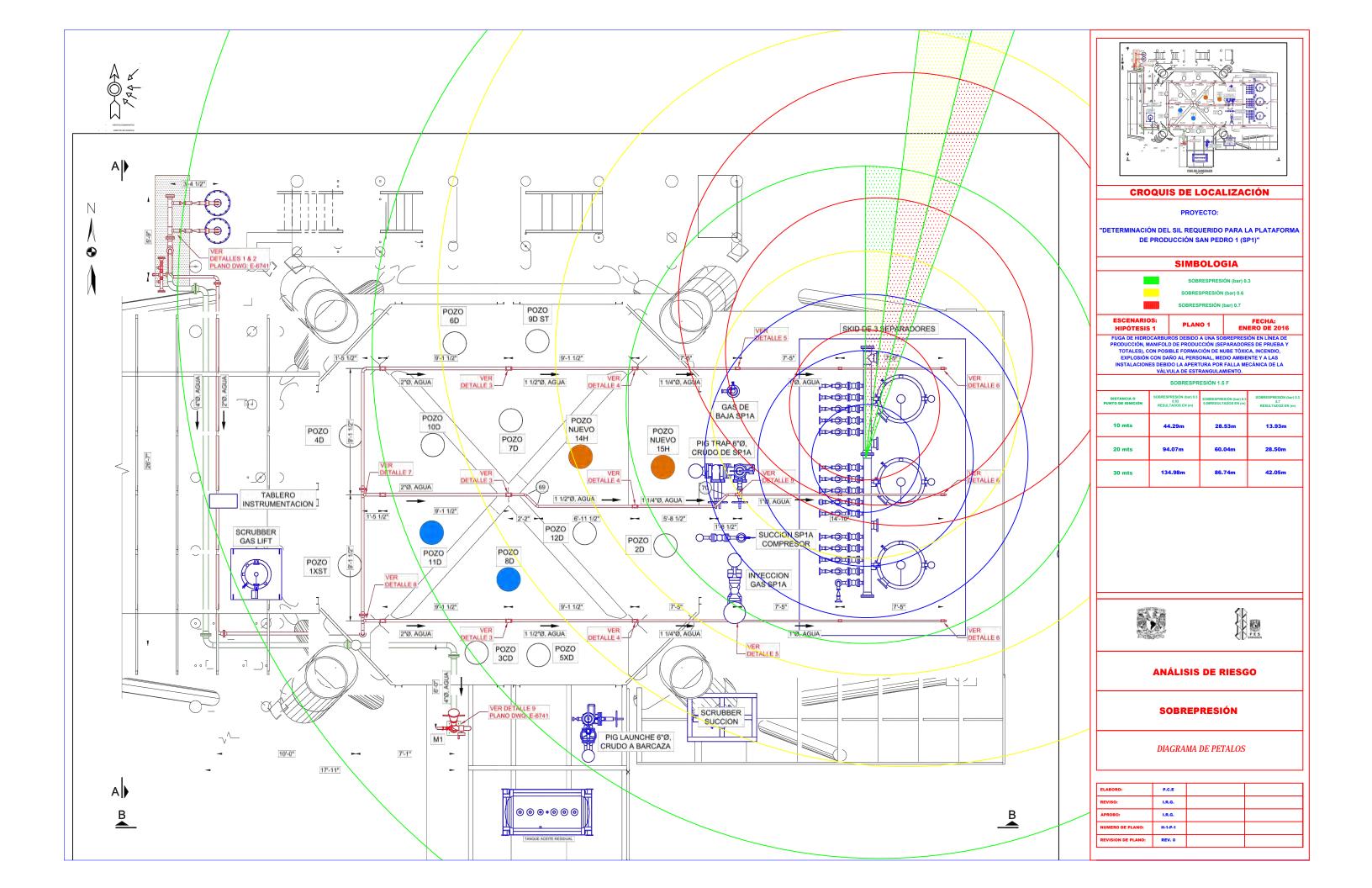
FUGA DE HIDROCARBUROS DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE
PRODUCCIÓN, MANIFOLD DE PRODUCCIÓN (SEPARADORES DE PRUEBA Y
TOTALES), CON POSIBLE FORMACIÓN DE NUBE TÓXICA, INCENDIO,
EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS
INSTALACIONES DEBIDO LA APERTURA POR FALLA MECÁNICA DE LA
VÁLVULA DE ESTRANGULAMIENTO.

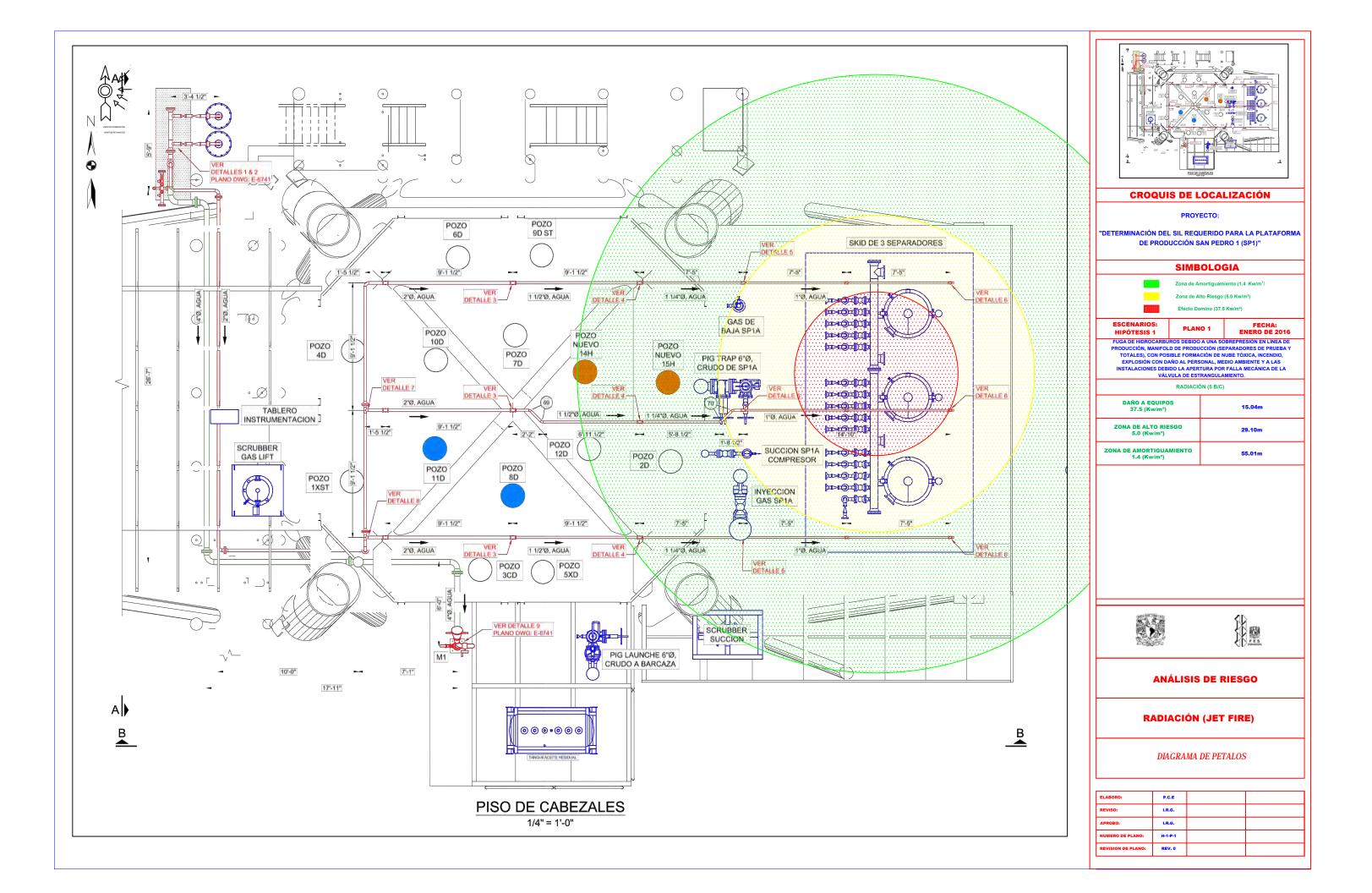
Nube Tóxica (5 B/0

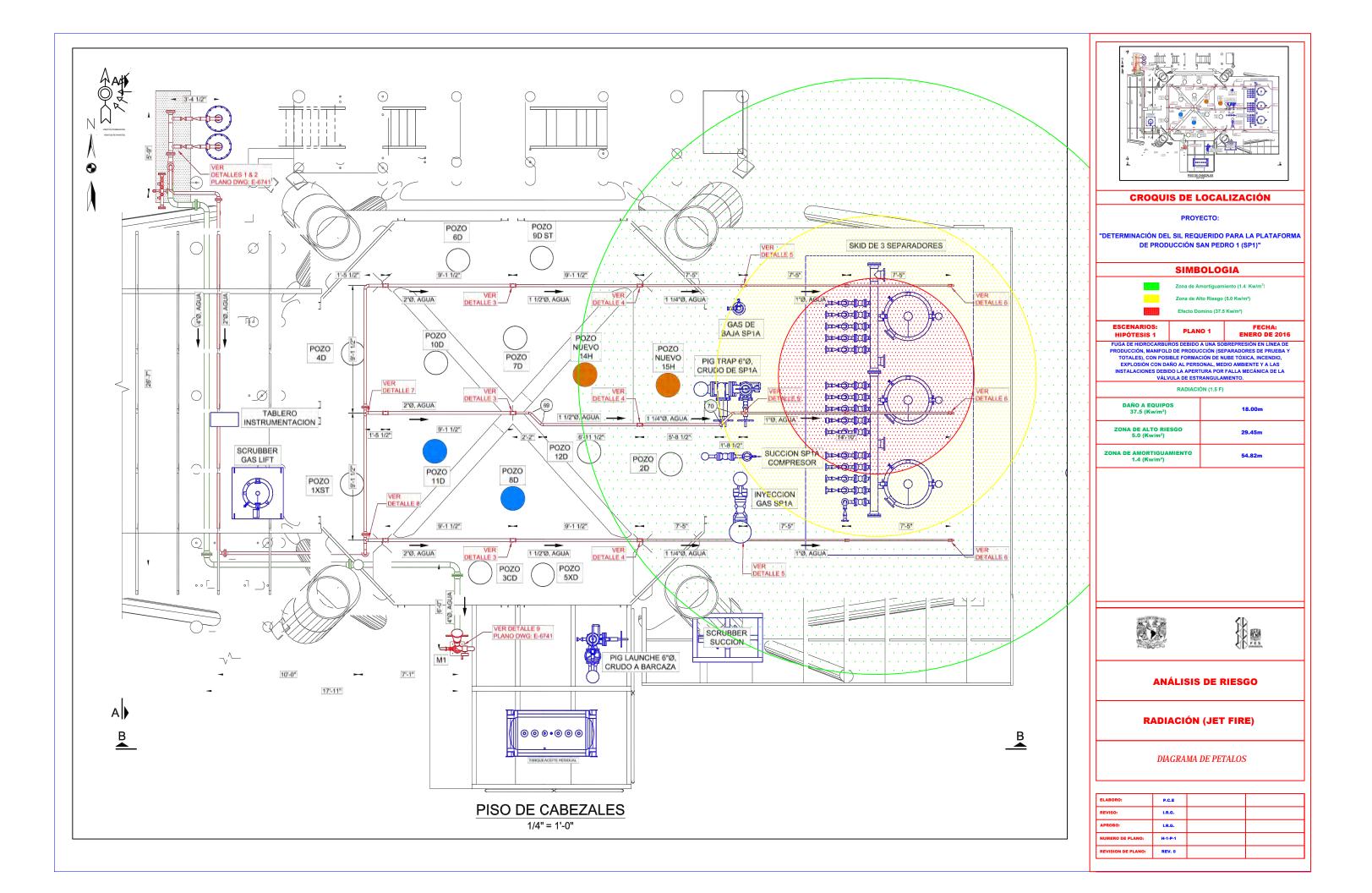
CONCENTRACIÓN STEL 15 PPM	No Alcanzado
CONCENTRACIÓN IDLH 100 PPM	20.66m

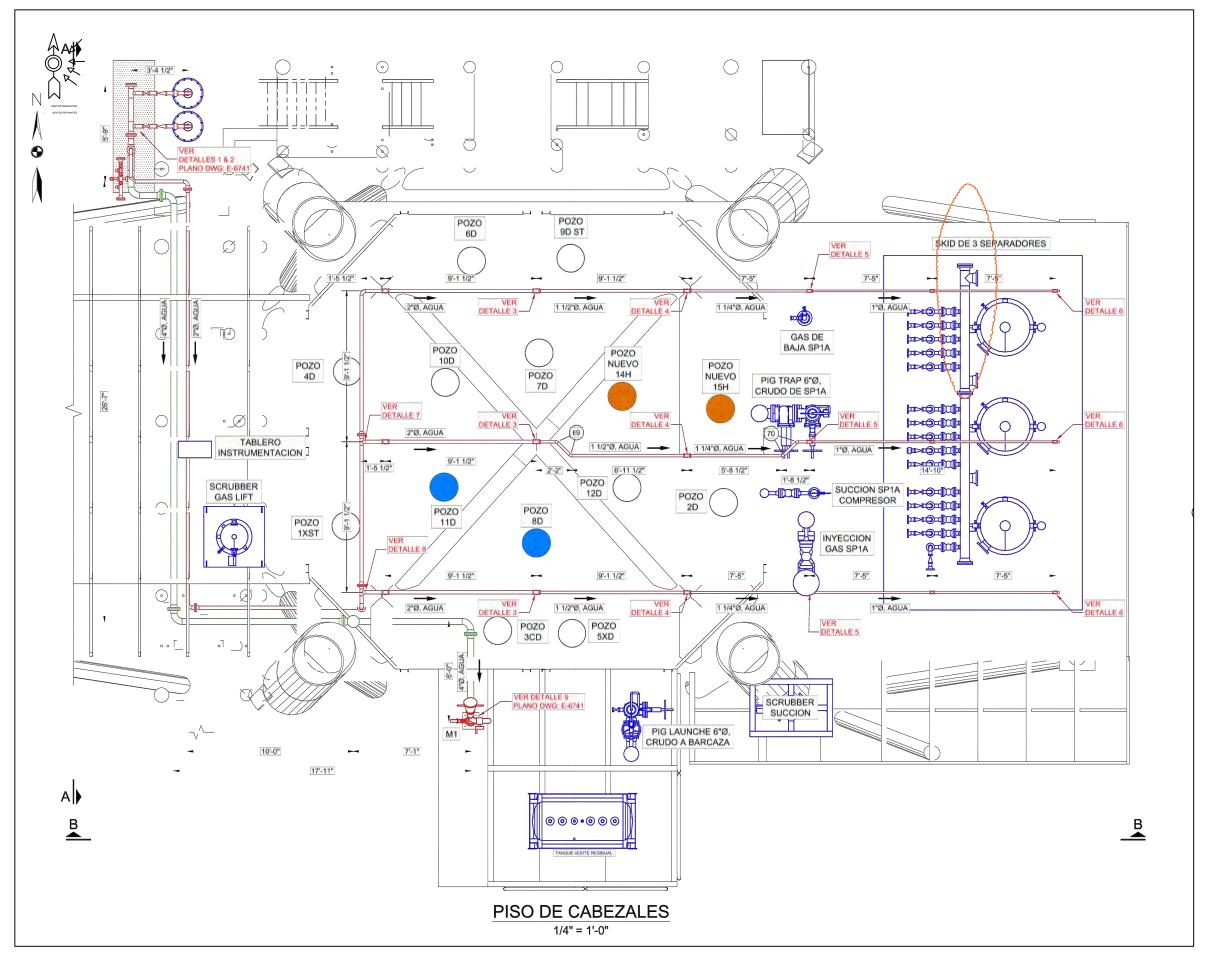


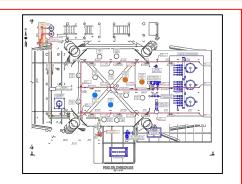

ANÁLISIS DE RIESGO


TOXICIDAD


DIAGRAMA DE PETALOS


ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	





Determinación el NIS (Nivel de Integridad de Seguridad) requerido para la Plataforma de Producción San Pedro 1 (SP1)

Escenario 2

CROQUIS DE LOCALIZACIÓN

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

HIPÓTESIS 2

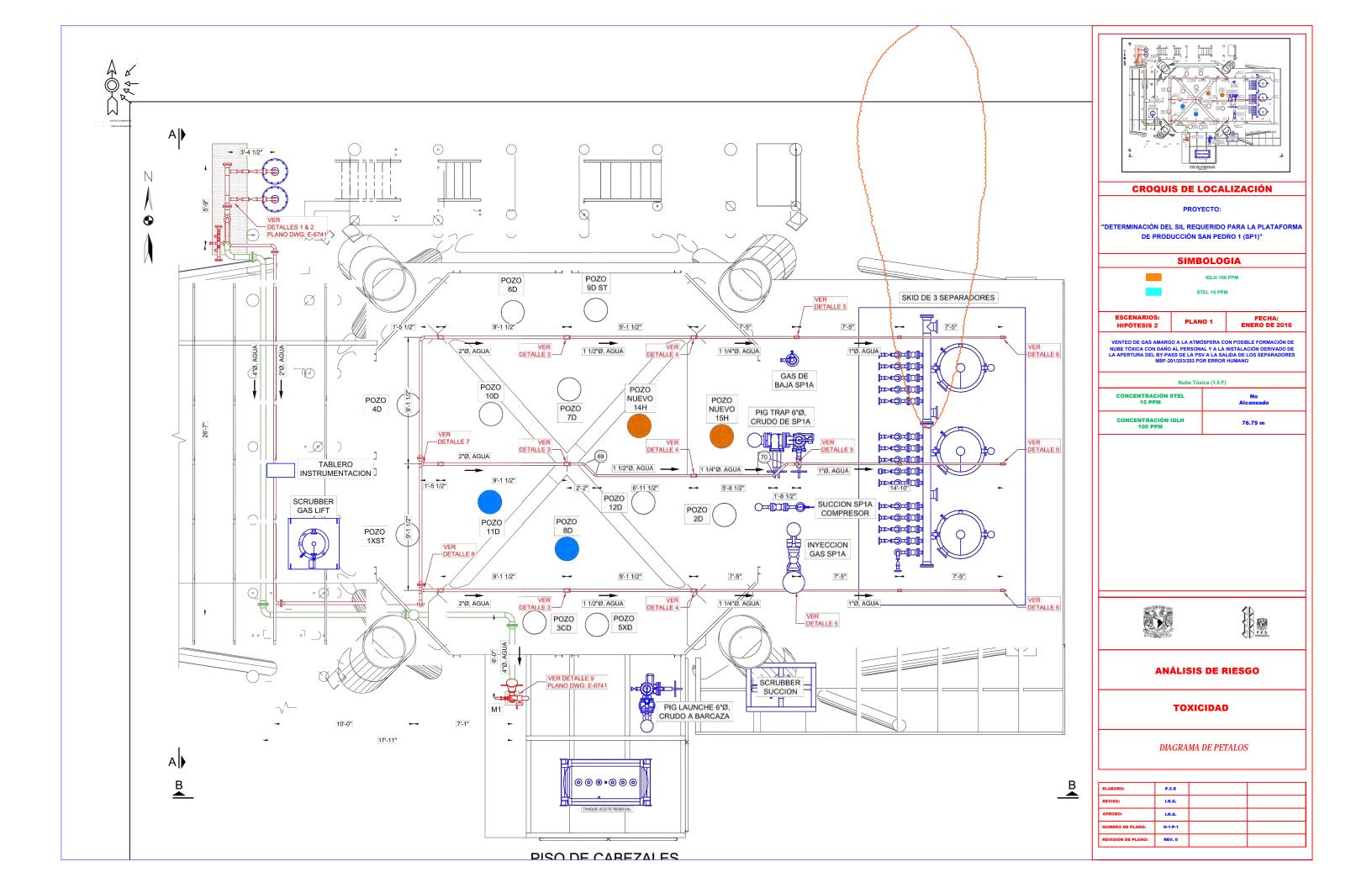
IDLH 100 PPM

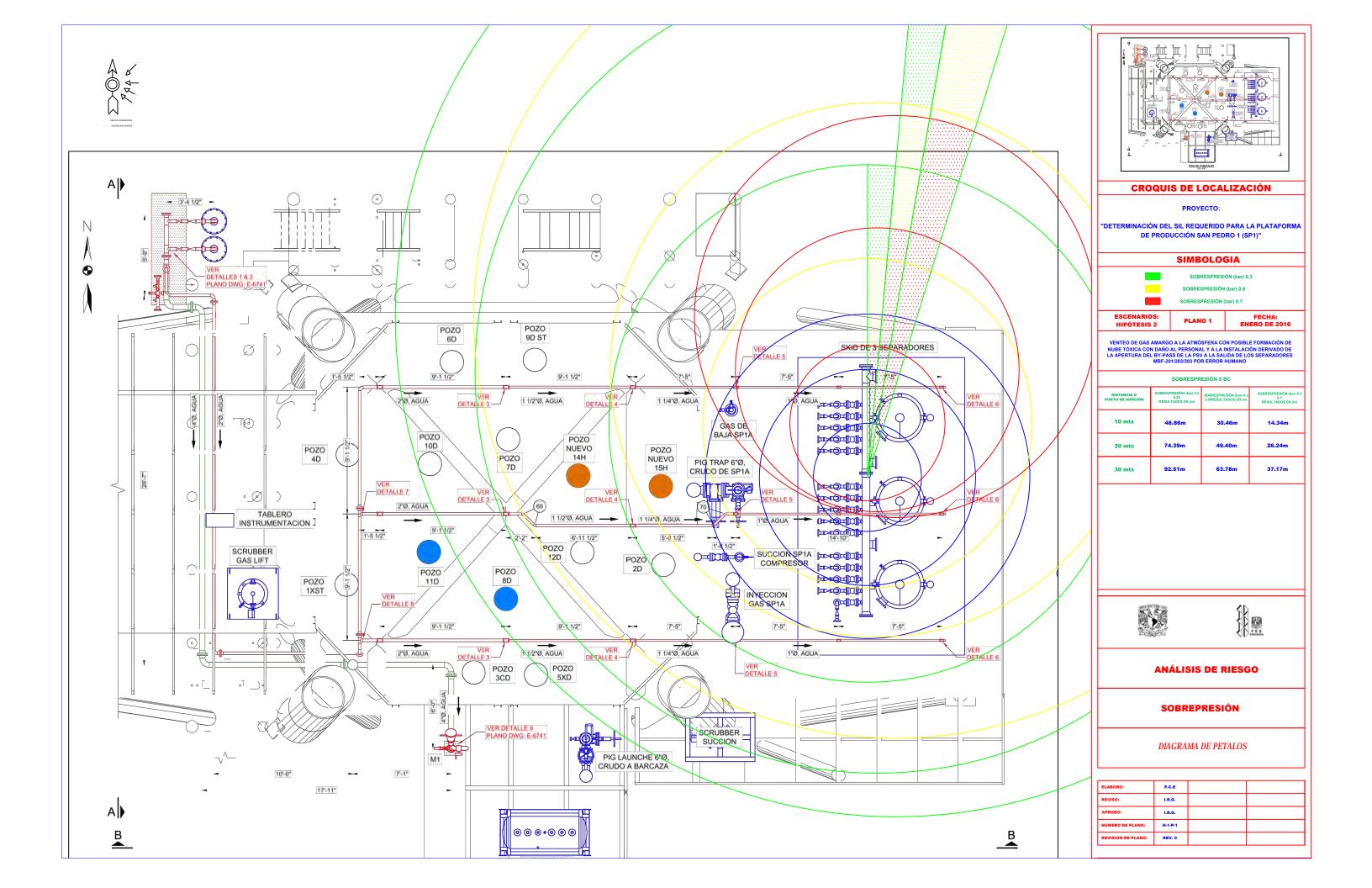
STEL 15 PPM

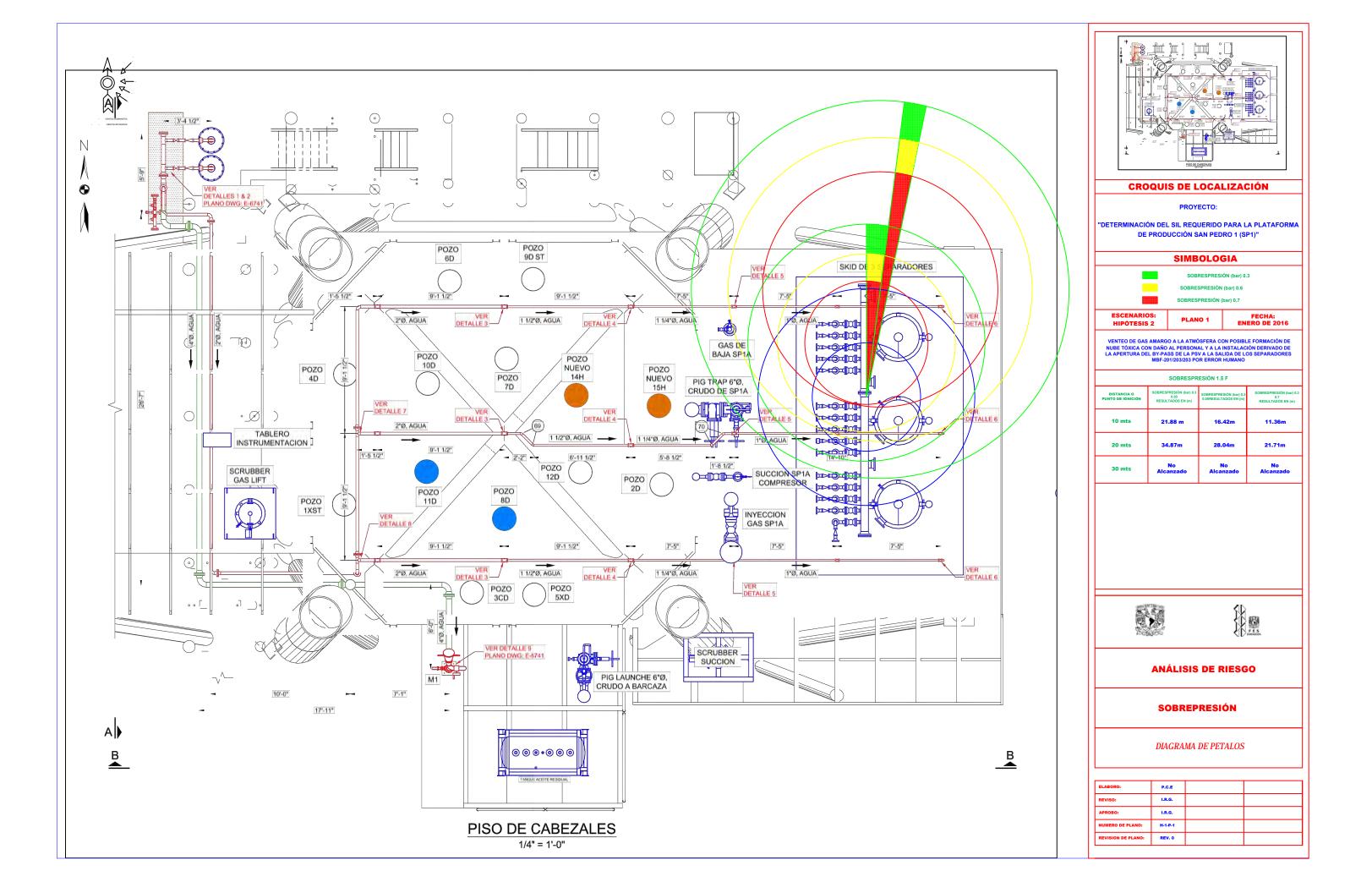
FECHA: ENERO DE 2016 NUBE TÓXICA CON DAÑO AL PERSONAL Y A LA INSTALACIÓN DERIVADO DE LA APERTURA DEL BY-PASS DE LA PSV A LA SALIDA DE LOS SEPARADORES

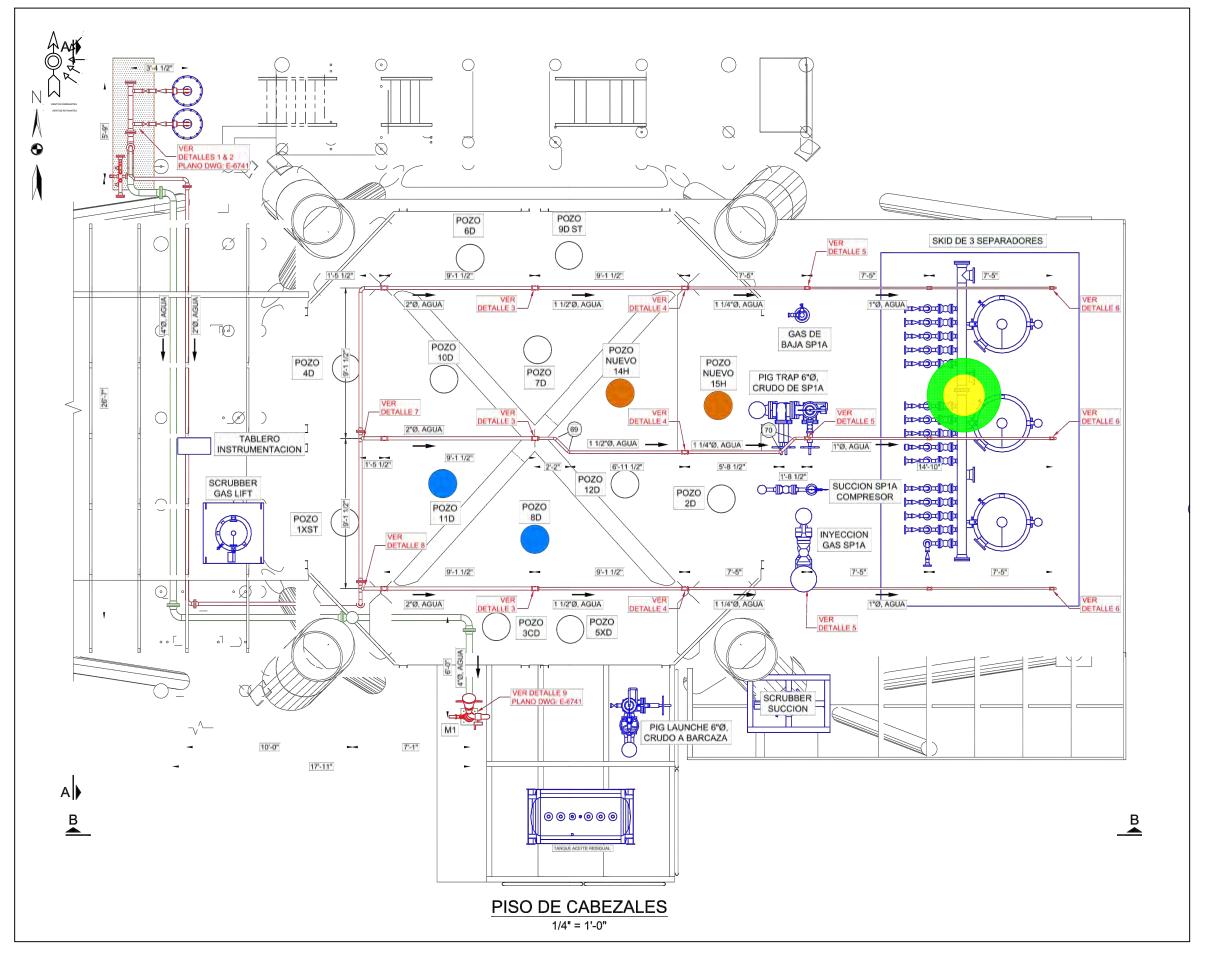
Nube Tóxica (5 B/C)

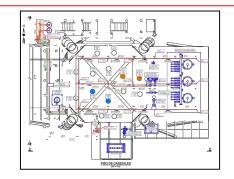
CONCENTRACIÓN STEL 15 PPM	No Alcanzado
CONCENTRACIÓN IDLH 100 PPM	33.97 m




ANÁLISIS DE RIESGO


TOXICIDAD


DIAGRAMA DE PETALOS


ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

ona de Amortiguamiento (1.4 Kw/

ESCENARIOS: HIPÓTESIS 2

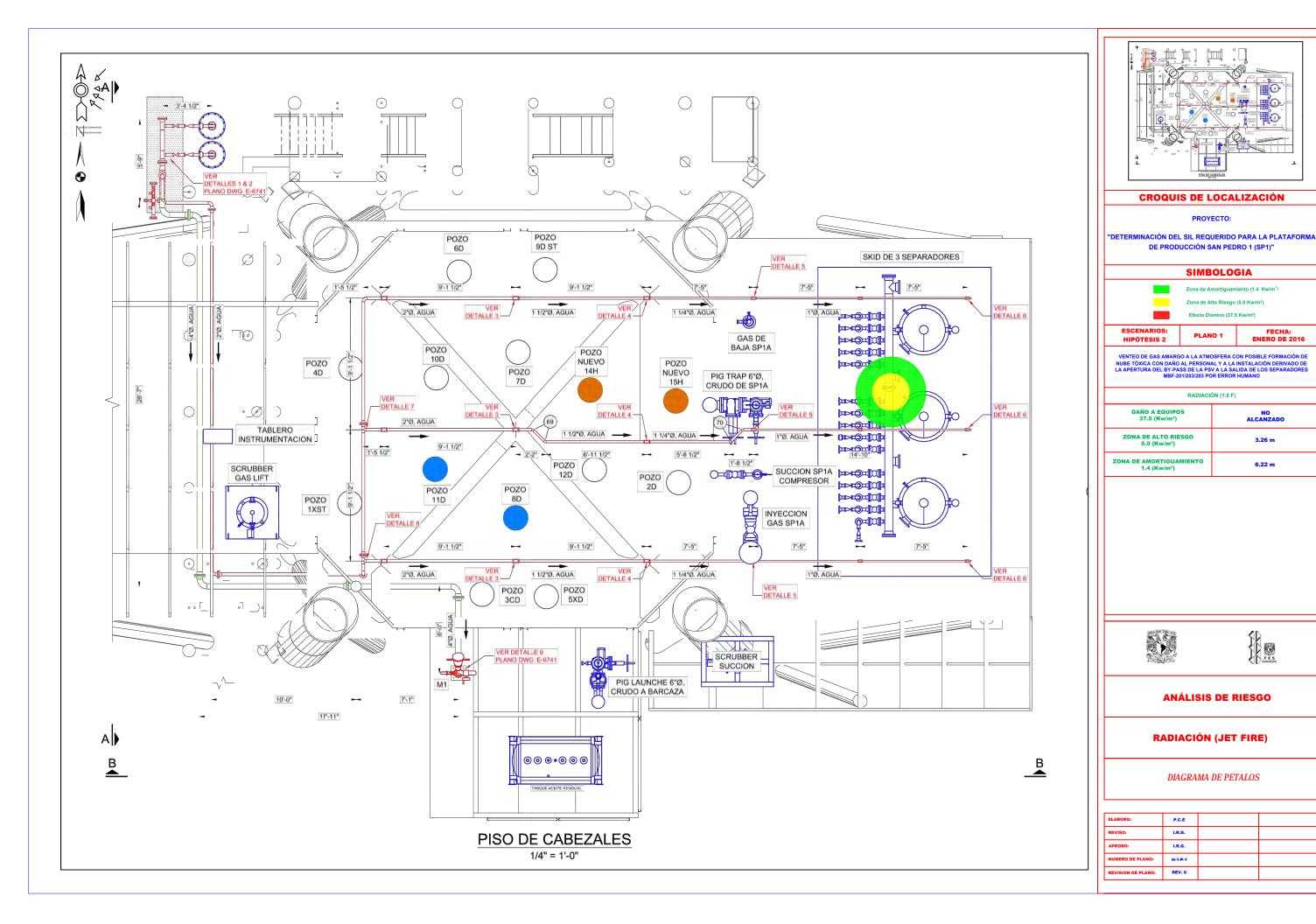
PLANO 1

FECHA: ENERO DE 2016

VENTEO DE GAS AMARGO A LA ATMOSFERA CON POSIBLE FORMACIÓN DE NUBE TÓXICA CON DAÑO AL PERSONAL Y A LA INSTALACIÓN DERIVADO DE LA APERTURA DEL BY-PASS DE LA PSV A LA SALIDA DE LOS SEPARADORES MBF-201/203/203 POR ERROR HUMANO

RADIACIÓN (5 B/C)

DAÑO A EQUIPOS 37.5 (Kw/m²)	NO Alcanzado
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	3.15 m
ZONA DE AMORTIGUAMIENTO 1.4 (Kw/m²)	5.72 m



ANÁLISIS DE RIESGO

RADIACIÓN (JET FIRE)

ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

SIMBOLOGIA

RADIACIÓN (1.5 F)

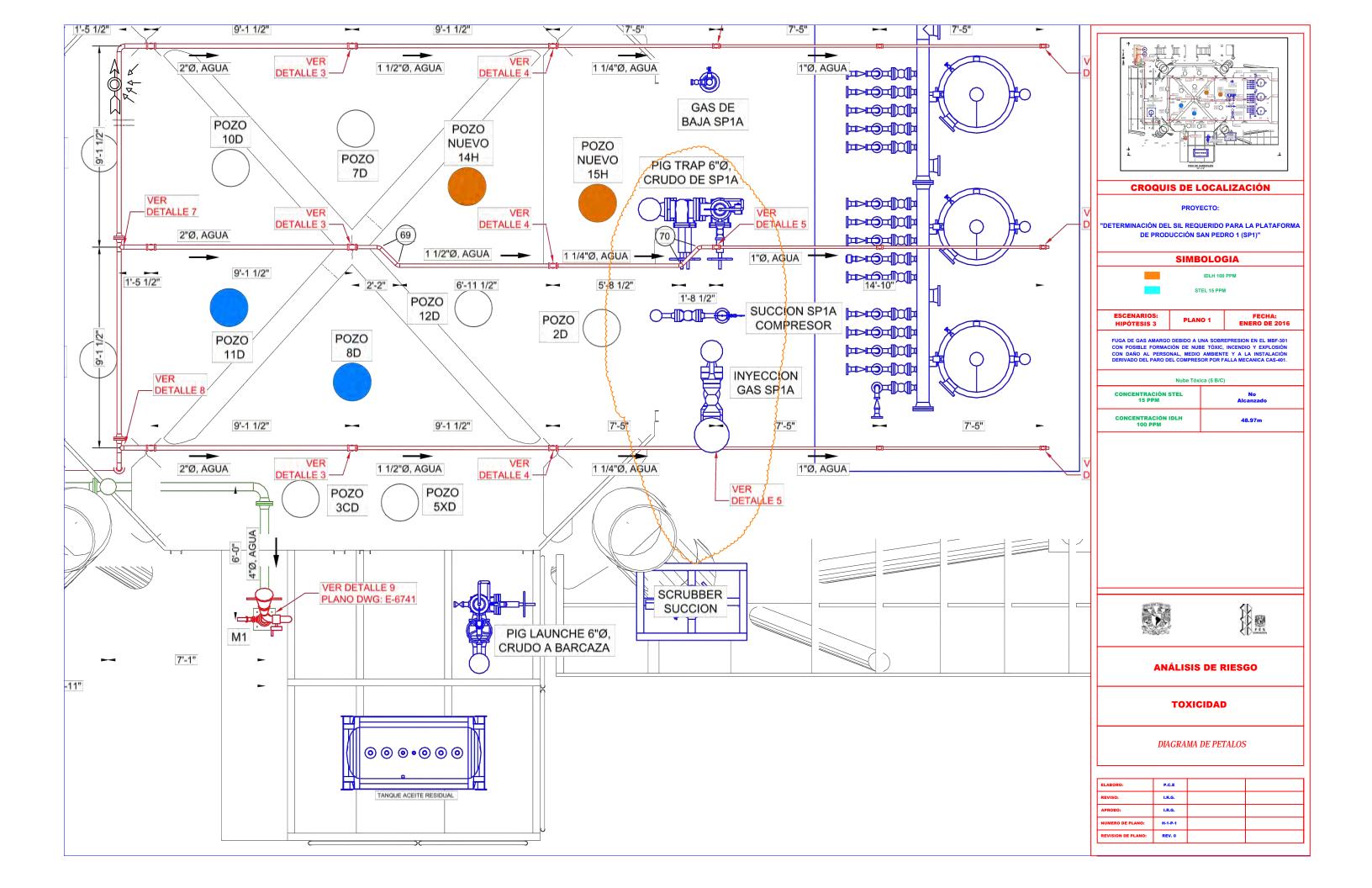
3.26 m

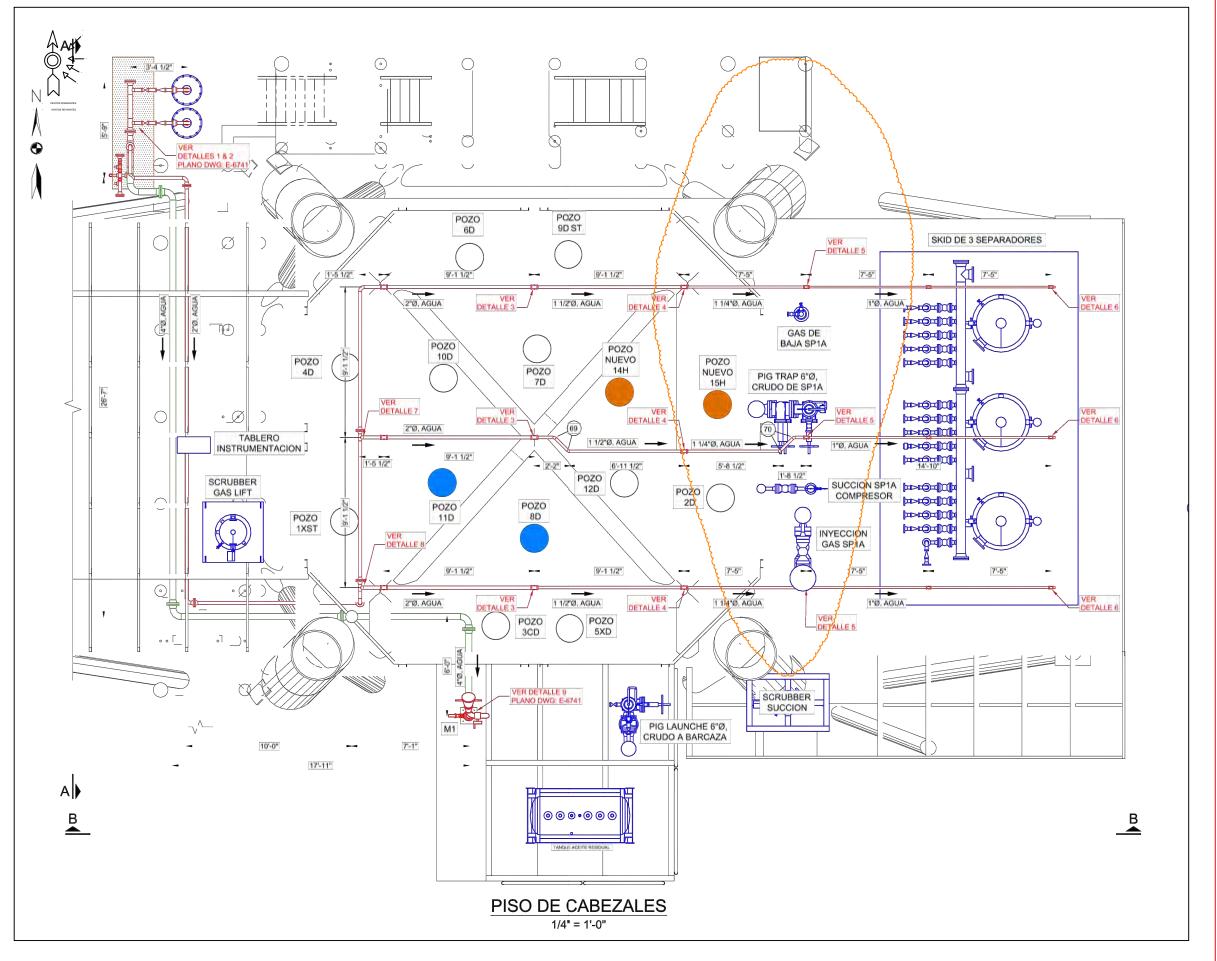
6.22 m

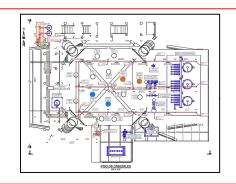
ANÁLISIS DE RIESGO

DIAGRAMA DE PETALOS

P.C.E I.R.G.


I.R.G.


REV. 0


Zona de Alto Riesgo (5.0 Kw/m²)

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

IDLH 100 PPM

STEL 15 PPM

ESCENARIOS:

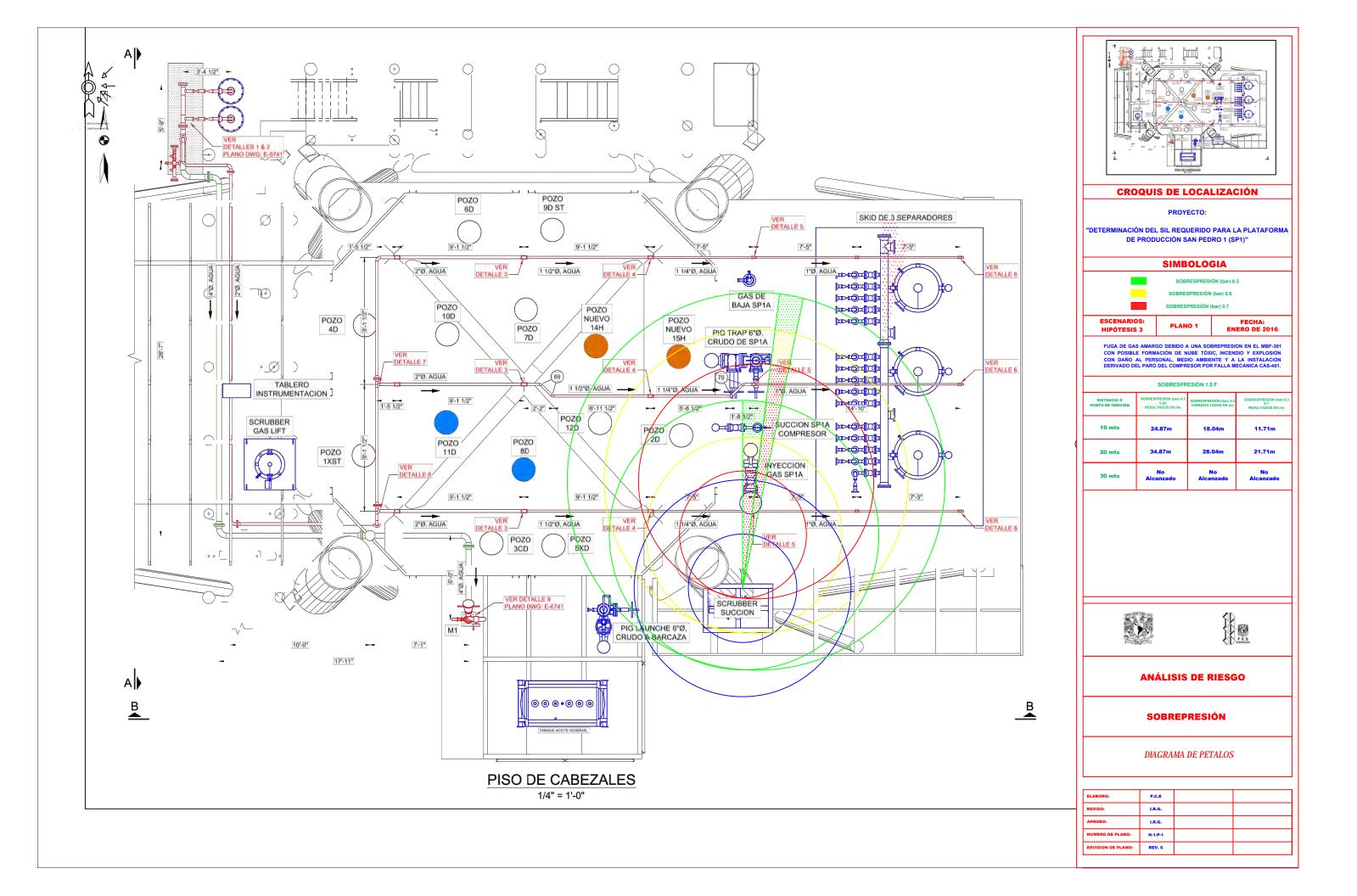
PLANO

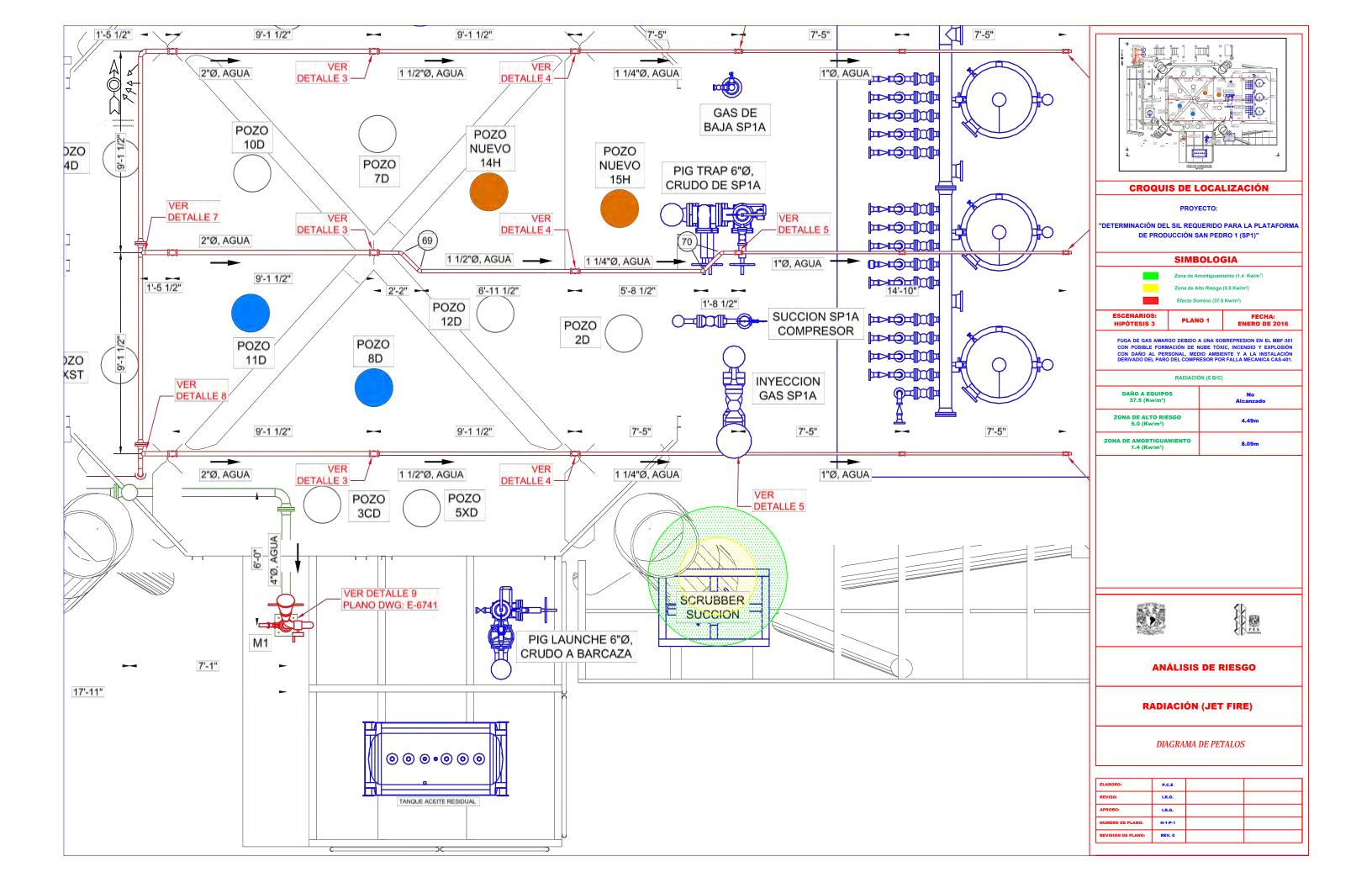
FECHA: ENERO DE 2016

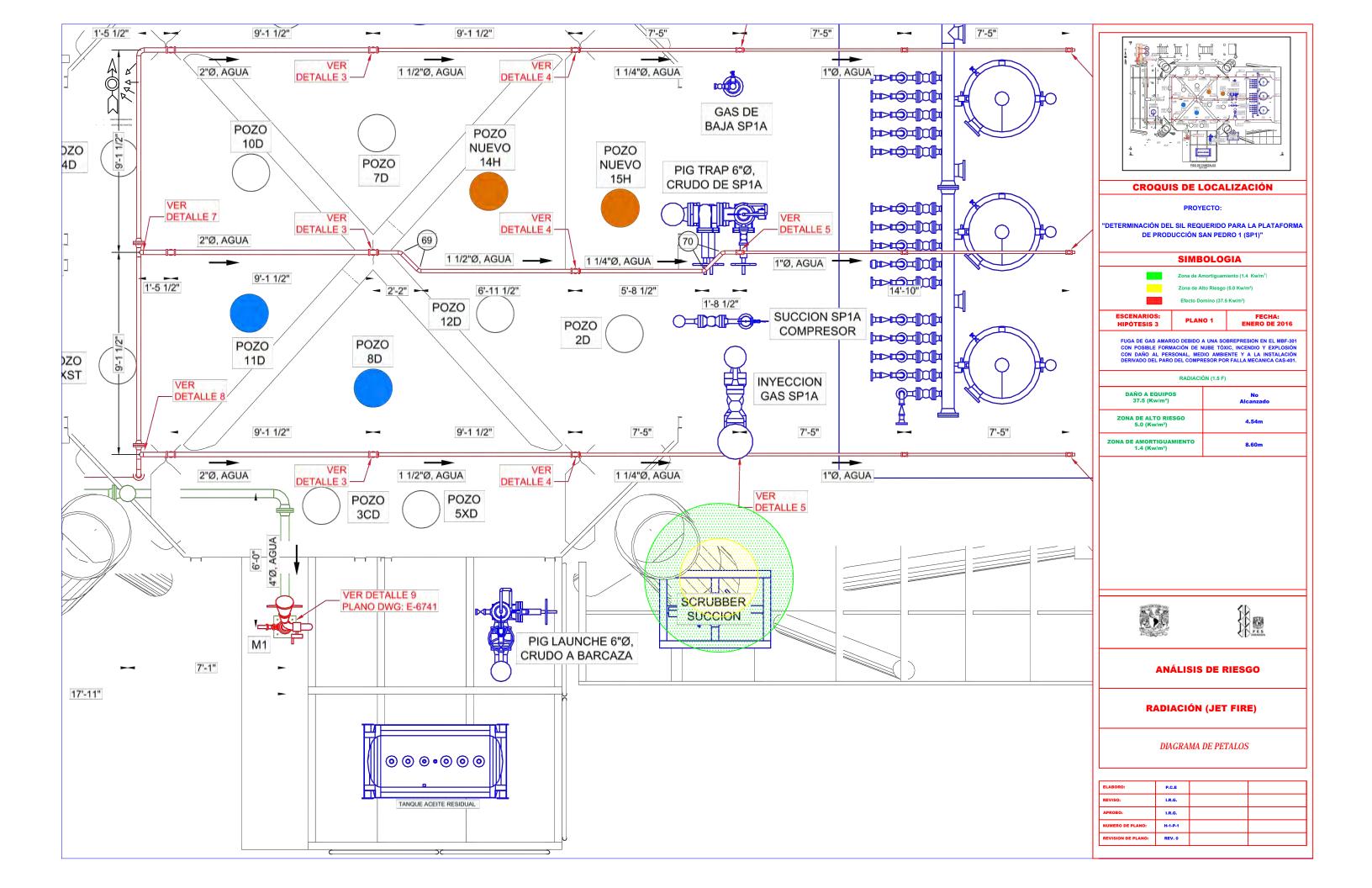
FUGA DE GAS AMARGO DEBIDO A UNA SOBREPRESION EN EL MBF-301 CON POSIBLE FORMACIÓN DE NUBE TÓXIC, INCENDIO Y EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LA INSTALACIÓN DERIVADO DEL PARO DEL COMPRESOR POR FALLA MECANICA CAS-401.

Nube Tóxica (1.5 F)

CONCENTRACIÓN STEL 15 PPM	No Alcanzado
CONCENTRACIÓN IDLH 100 PPM	96.12m

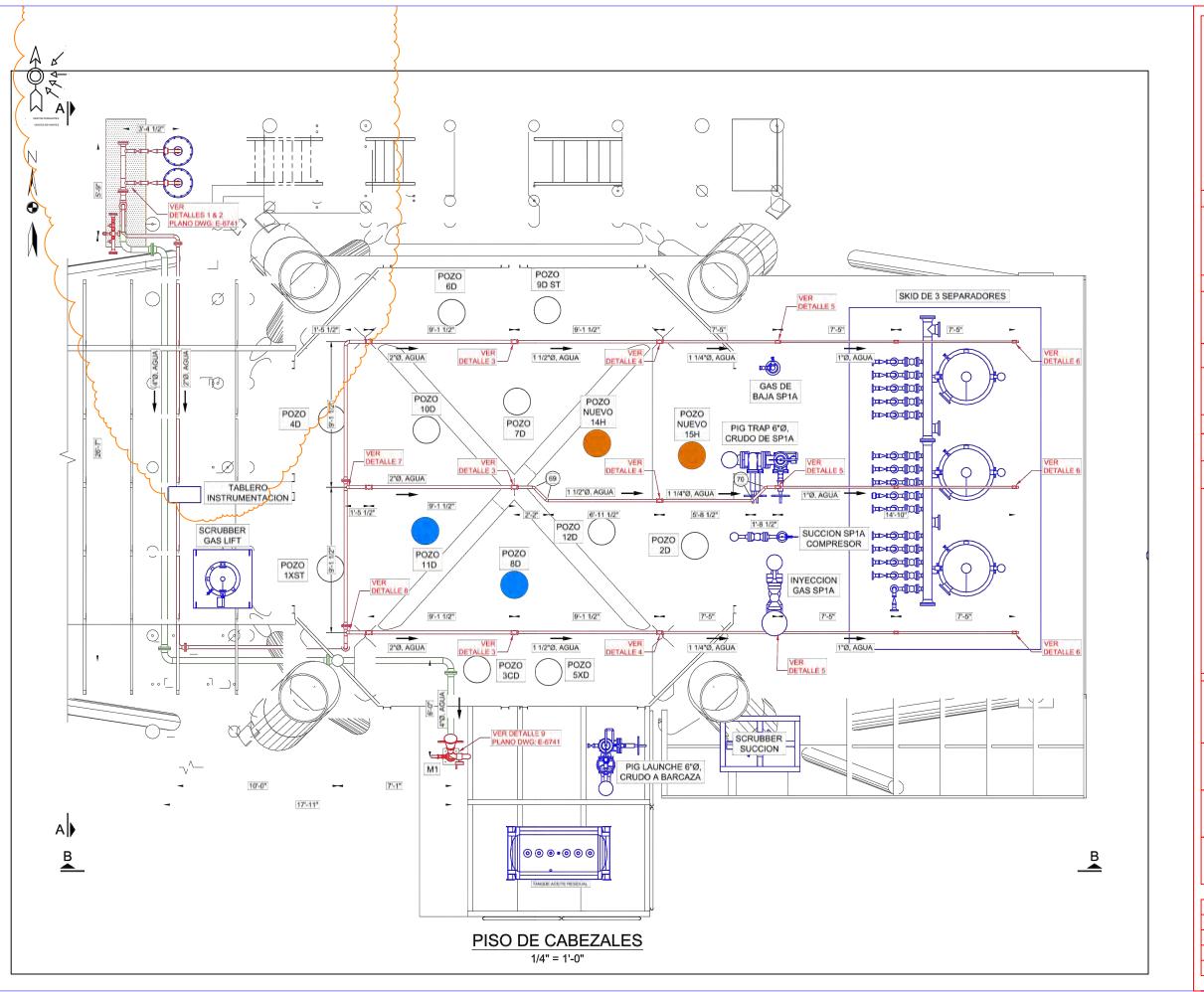


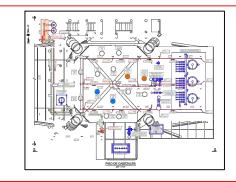



ANÁLISIS DE RIESGO

TOXICIDAD

ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	





PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA
DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

IDLH 100 PPM STEL 15 PPM

ESCENARIOS:

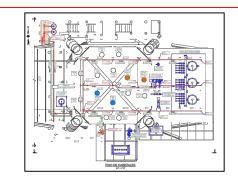
PLANO 1

FECHA: ENERO DE 2016

FUGA DE GAS AMARGO EN UNIONES BRIDADAS DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE DESCARGA DEL COMPRESOR, CON POSIBLE FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES DEBIDO AL CIERRE DE LA VÁLVULA MANUAL BF-30201 POR ERROR HUMANO.

Nube Tóxica (1.5 F)

CONCENTRACIÓN STEL 15 PPM	No Alcanzado
CONCENTRACIÓN IDLH 100 PPM	123.22m



ANÁLISIS DE RIESGO

TOXICIDAD

ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

IDLH 100 PPM

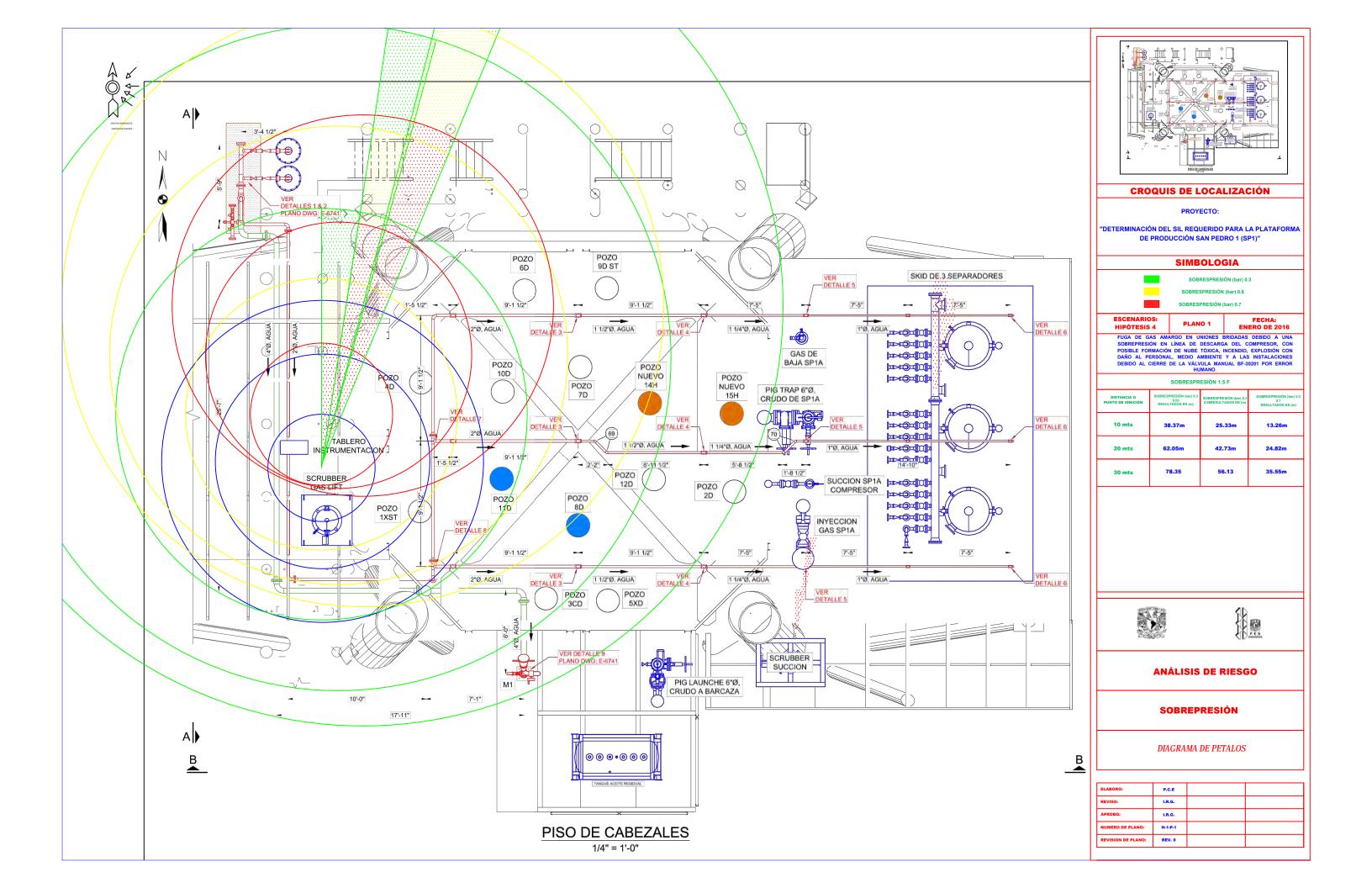
STEL 15 PPM

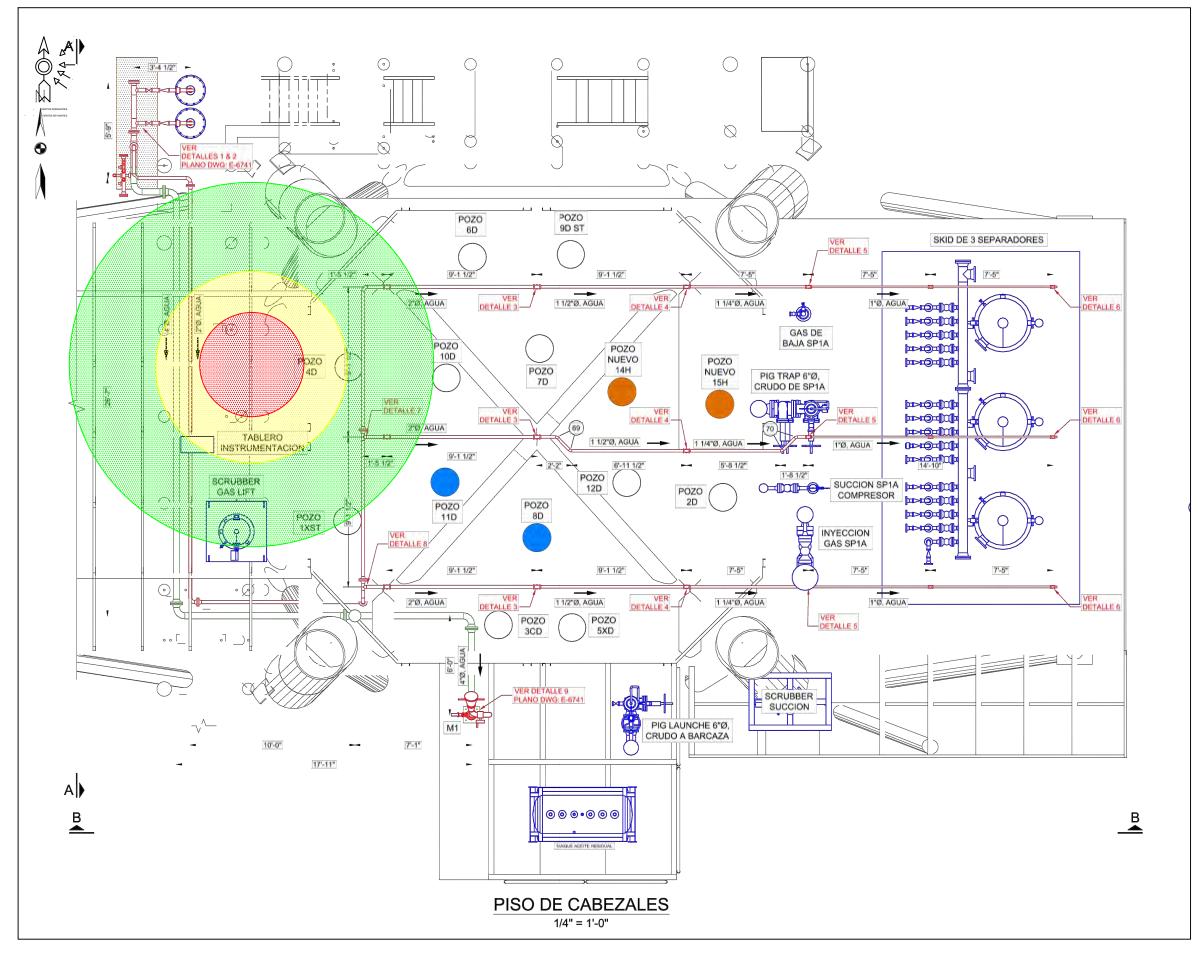
ESCENARIOS: HIPÓTESIS 4 FECHA: ENERO DE 2016

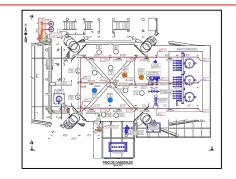
FUGA DE GAS AMARGO EN UNIONES BRIDADAS DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE DESCARGA DEL COMPRESOR, CON POSIBLE FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES DEBIDO AL CIERRE DE LA VÁLVULA MANUAL BF-30201 POR ERROR HUMANO.

Nube Tóxica (1.5 F)

CONCENTRACIÓN STEL 15 PPM	No Alcanzado
CONCENTRACIÓN IDLH 100 PPM	208.839m






ANÁLISIS DE RIESGO

TOXICIDAD

ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

Zona de Zona de

Zona de Amortiguamiento (1.4 Kw/ Zona de Alto Riesgo (5.0 Kw/m²)

> FECHA: ENERO DE 2016

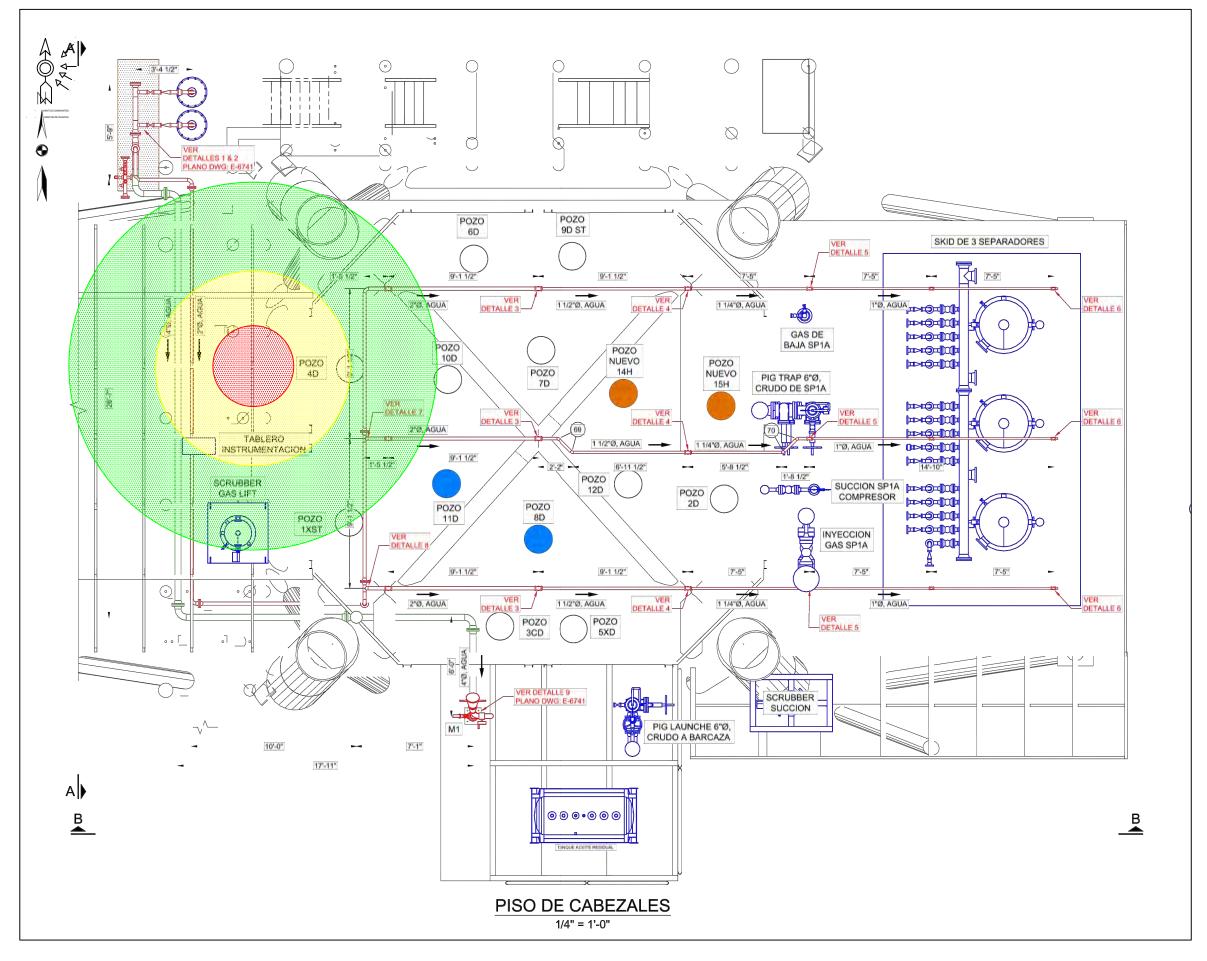
Zona do Anto Hidogo (dio Hi

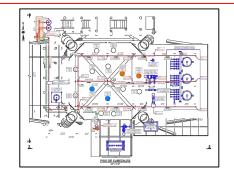
ESCENARIOS: HIPÓTESIS 4 PLANO 1

FUGA DE GAS AMARGO EN UNIONES BRIDADAS DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE DESCARGA DEL COMPRESOR, CON POSIBLE FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES DEBIDO AL CIERRE DE LA VÁLVULA MANUAL BF-30201 POR ERROR HUMANO.

RADIACIÓN (5 B/C)

DAÑO A EQUIPOS 37.5 (Kw/m²)	8.12m
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	14.93m
ZONA DE AMORTIGUAMIENTO 1.4 (Kw/m²)	28.43m





ANÁLISIS DE RIESGO

RADIACIÓN (JET FIRE)

ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

2

Zona de Amortiguamiento (1.4 Kw/m²)
Zona de Alto Riesgo (5.0 Kw/m²)

Et al. Danie (OT Elforto 2

ESCENARIOS: HIPÓTESIS 4

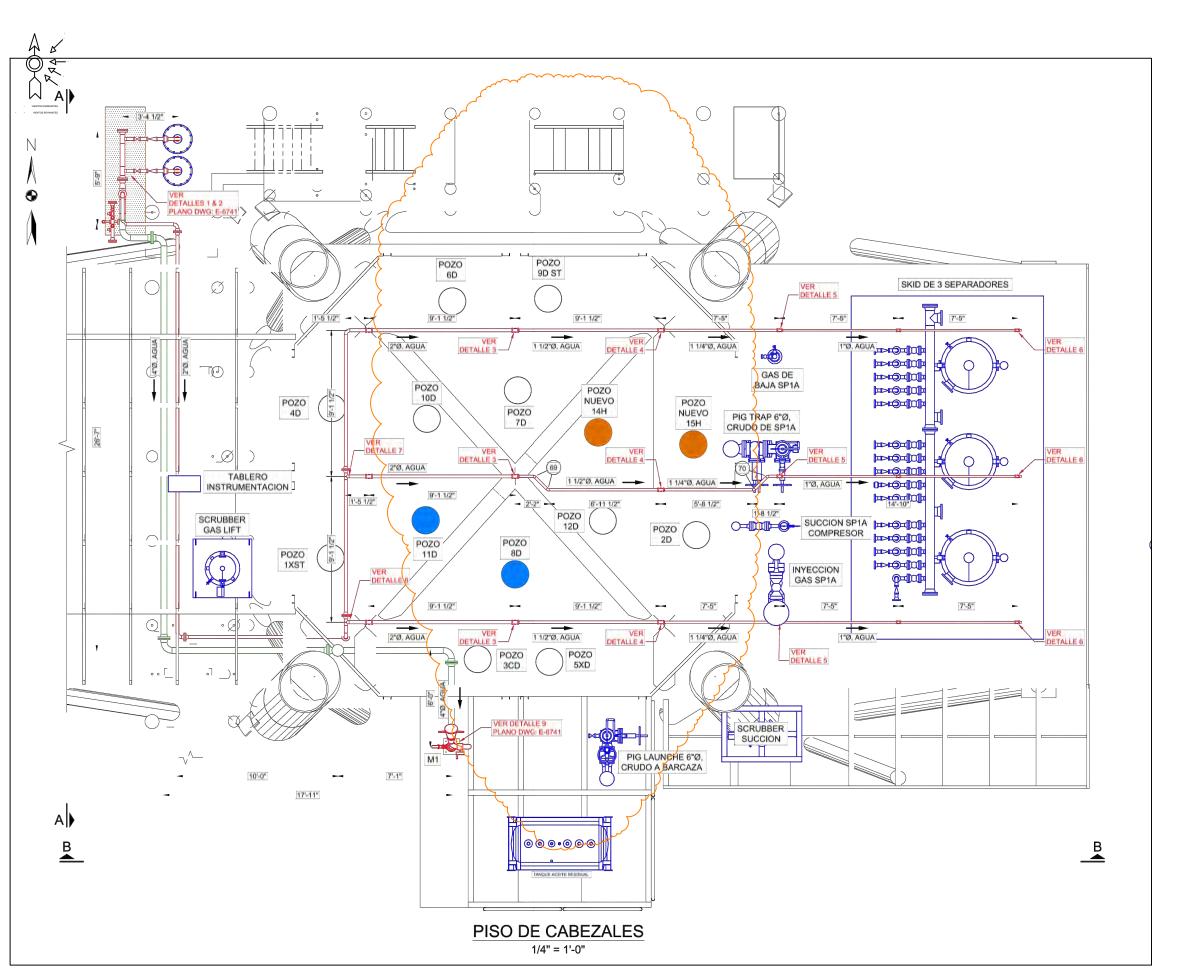
PLANO 1

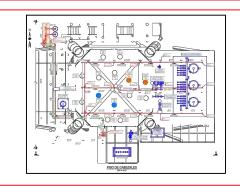
FECHA: ENERO DE 2016

FUGA DE GAS AMARGO EN UNIONES BRIDADAS DEBIDO A UNA
SOBREPRESIÓN EN LÍNEA DE DESCARGA DEL COMPRESOR, CON
POSIBLE FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON
DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES
DEBIDO AL CIERRE DE LA VÁLVULA MANUAL BF-30201 POR ERROR
HUMANO.

RADIACIÓN (1.5 F)

DAÑO A EQUIPOS 37.5 (Kw/m²)	6.32m
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	15.21m
ZONA DE AMORTIGUAMIENTO 1.4 (Kw/m²)	28.74m


ANÁLISIS DE RIESGO


RADIACIÓN (JET FIRE)

ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

IDLH 100 PPM

STEL 15 PPM

ESCENARIOS: HIPÓTESIS 5

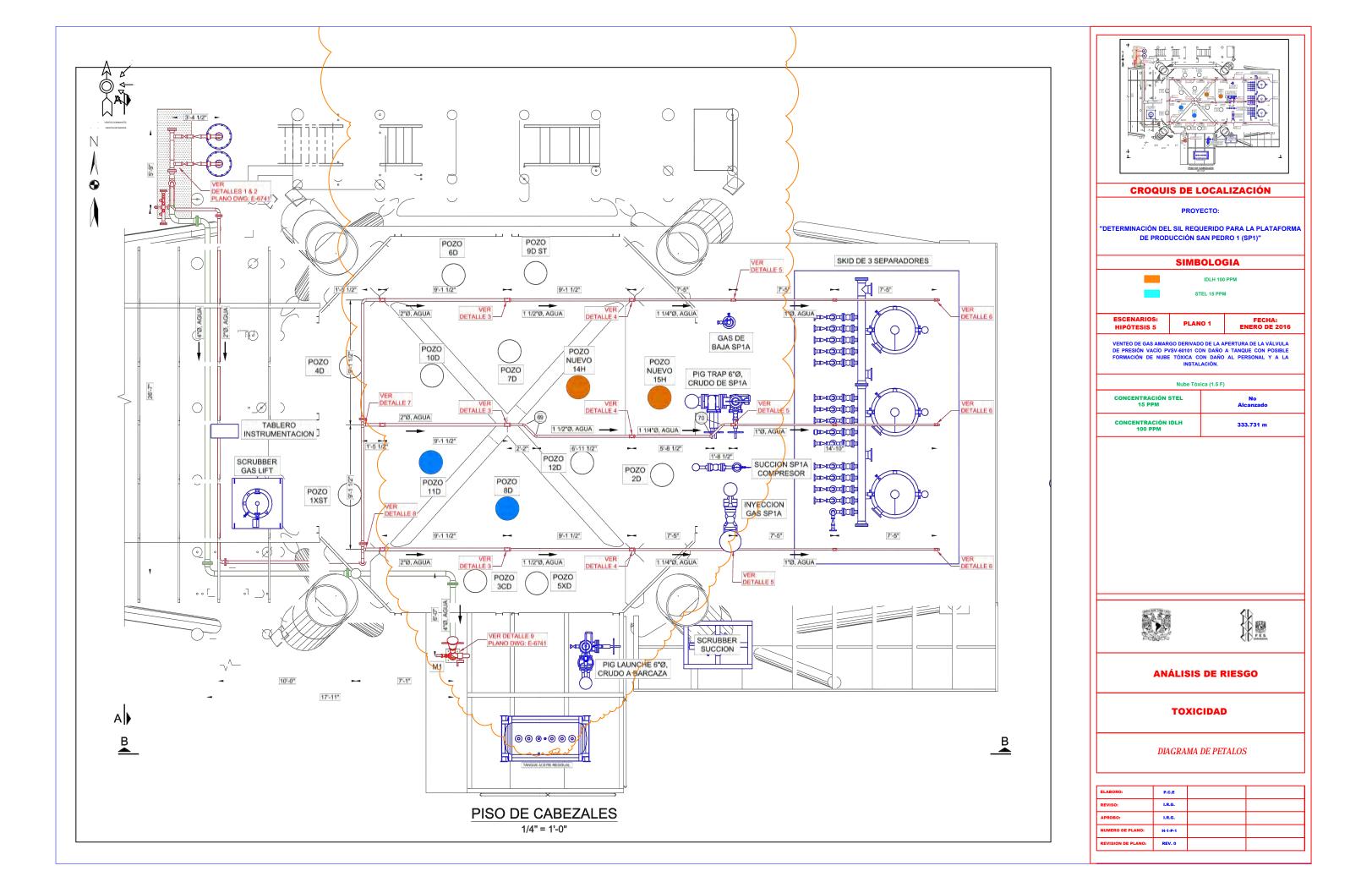
PLANO 1

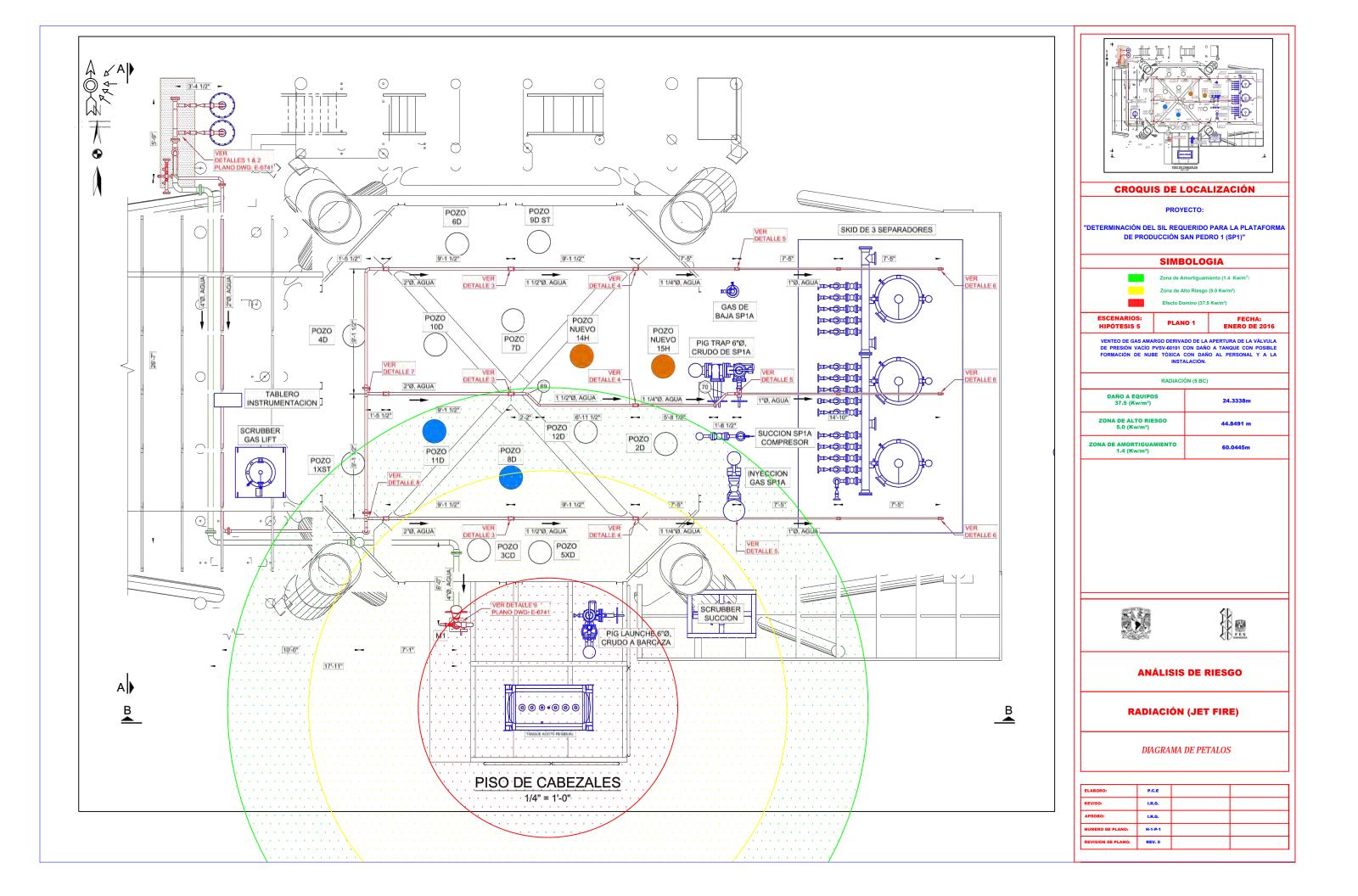
FECHA: ENERO DE 2016

VENTEO DE GAS AMARGO DERIVADO DE LA APERTURA DE LA VÁLVULA DE PRESIÓN VACÍO PYSV-60101 CON DAÑO A TANQUE CON POSIBLE FORMACIÓN DE NUBE TÓXICA CON DAÑO AL PERSONAL Y A LA INSTALACION.

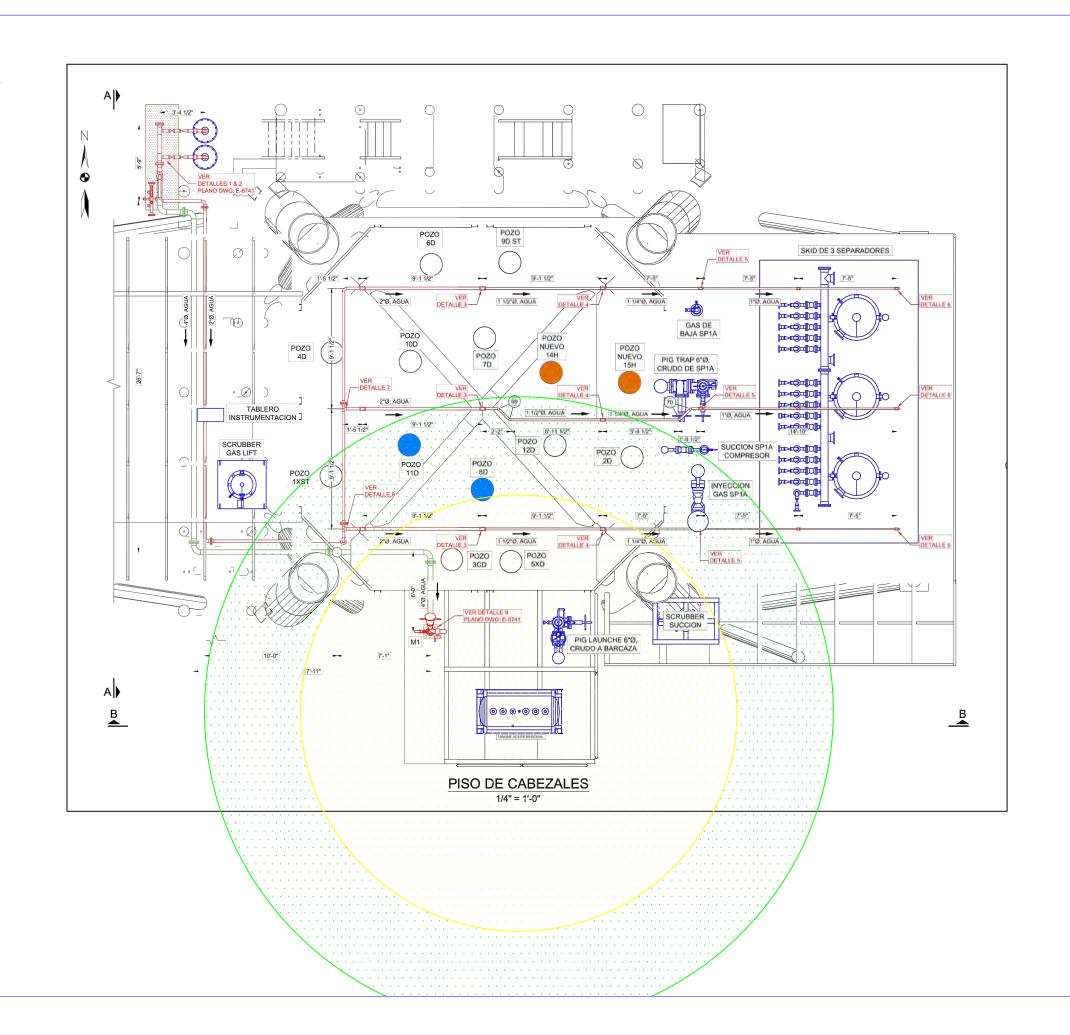
Nube Tóxica (1.5 F)

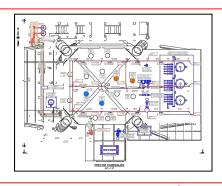
CONCENTRACIÓN STEL 15 PPM	No Alcanzado
CONCENTRACIÓN IDLH 100 PPM	156.984 m





ANÁLISIS DE RIESGO


TOXICIDAD


ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

ona de Amortiguamiento (1.4 Kw/

Zona de Alto Riesgo (5.0 Kw/m²)

Efecto Domino (37.5 Kw/m²)

ESCENARIOS: HIPÓTESIS 5

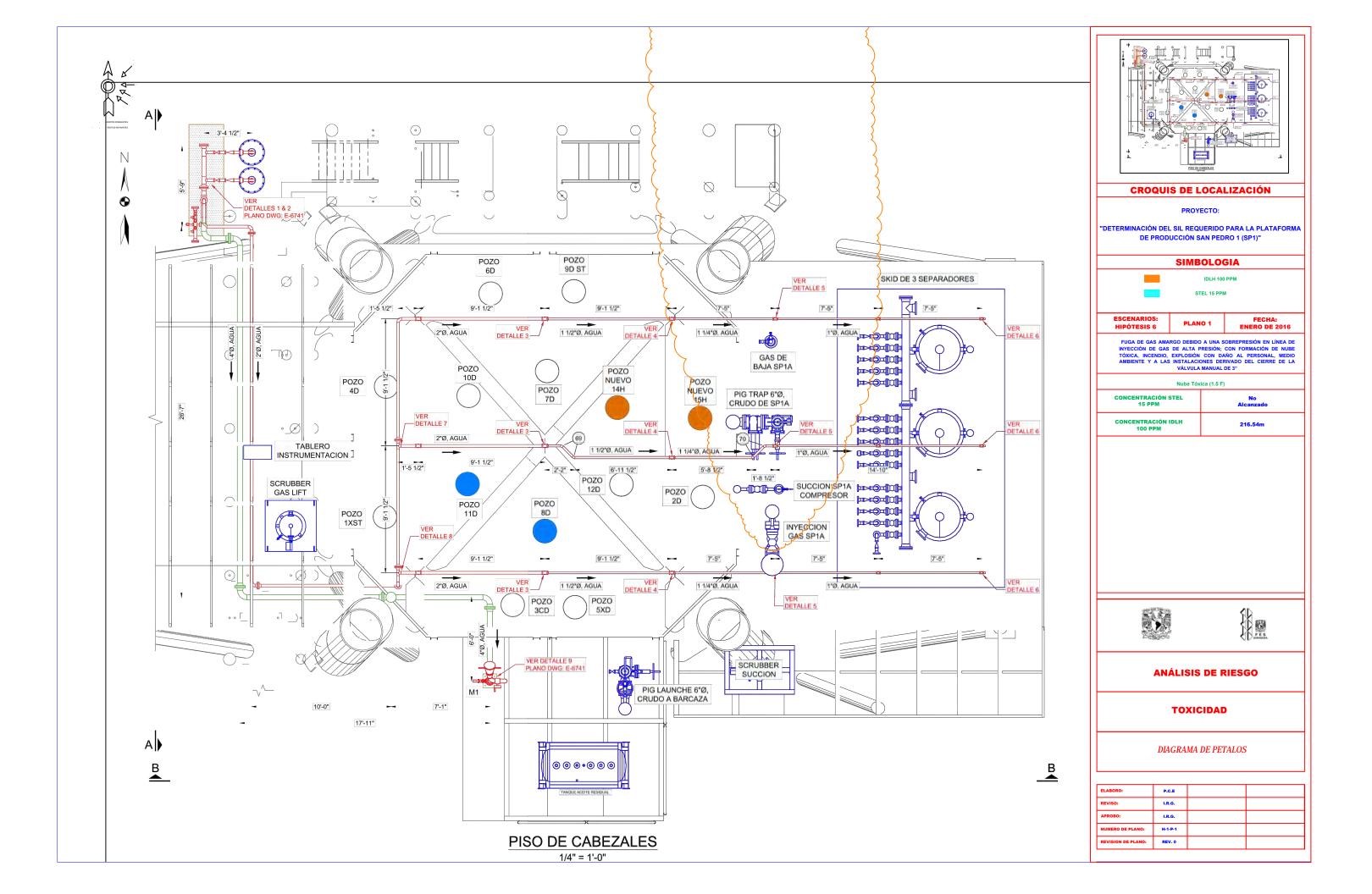
PLANO 1

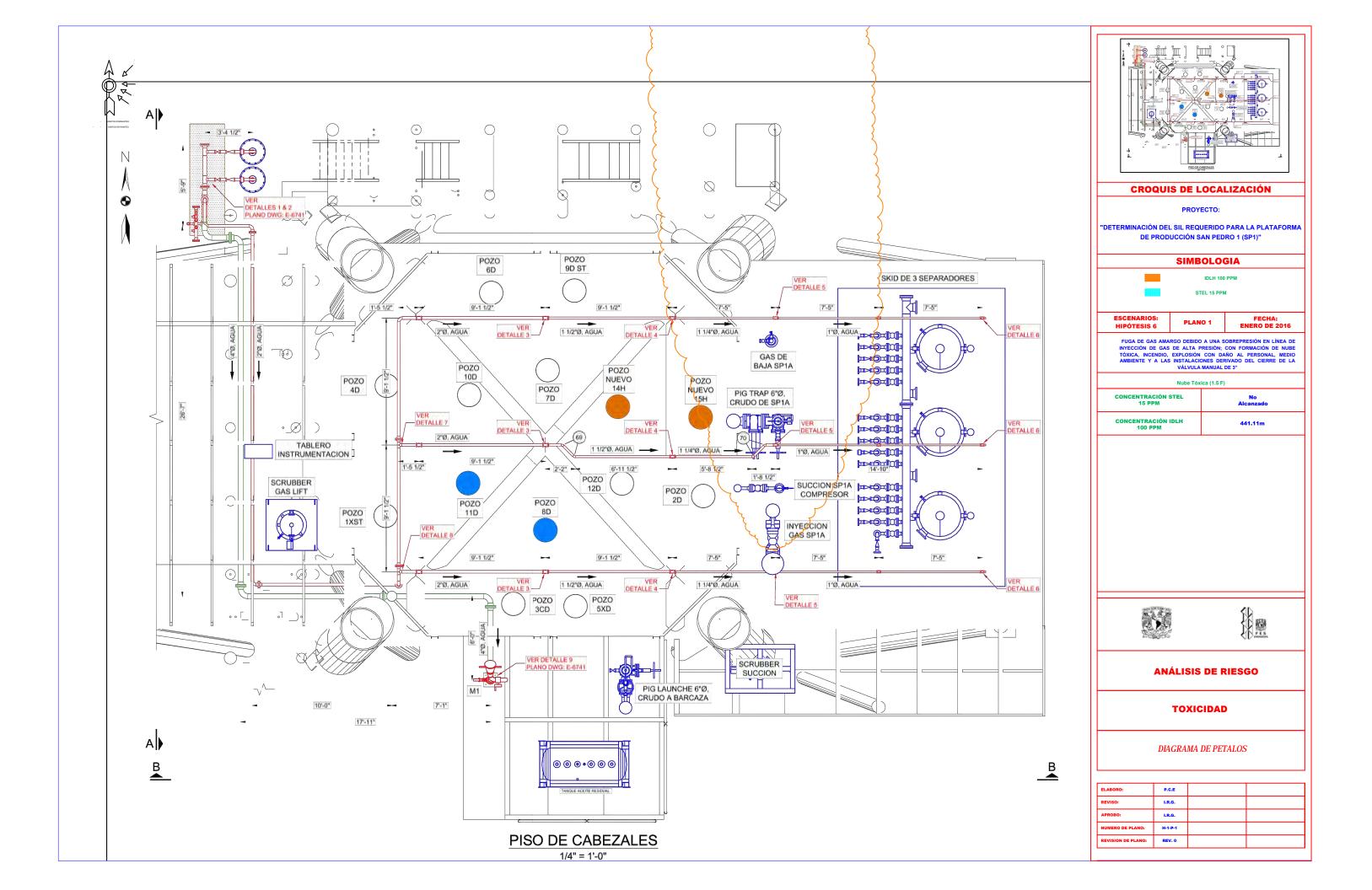
FECHA:

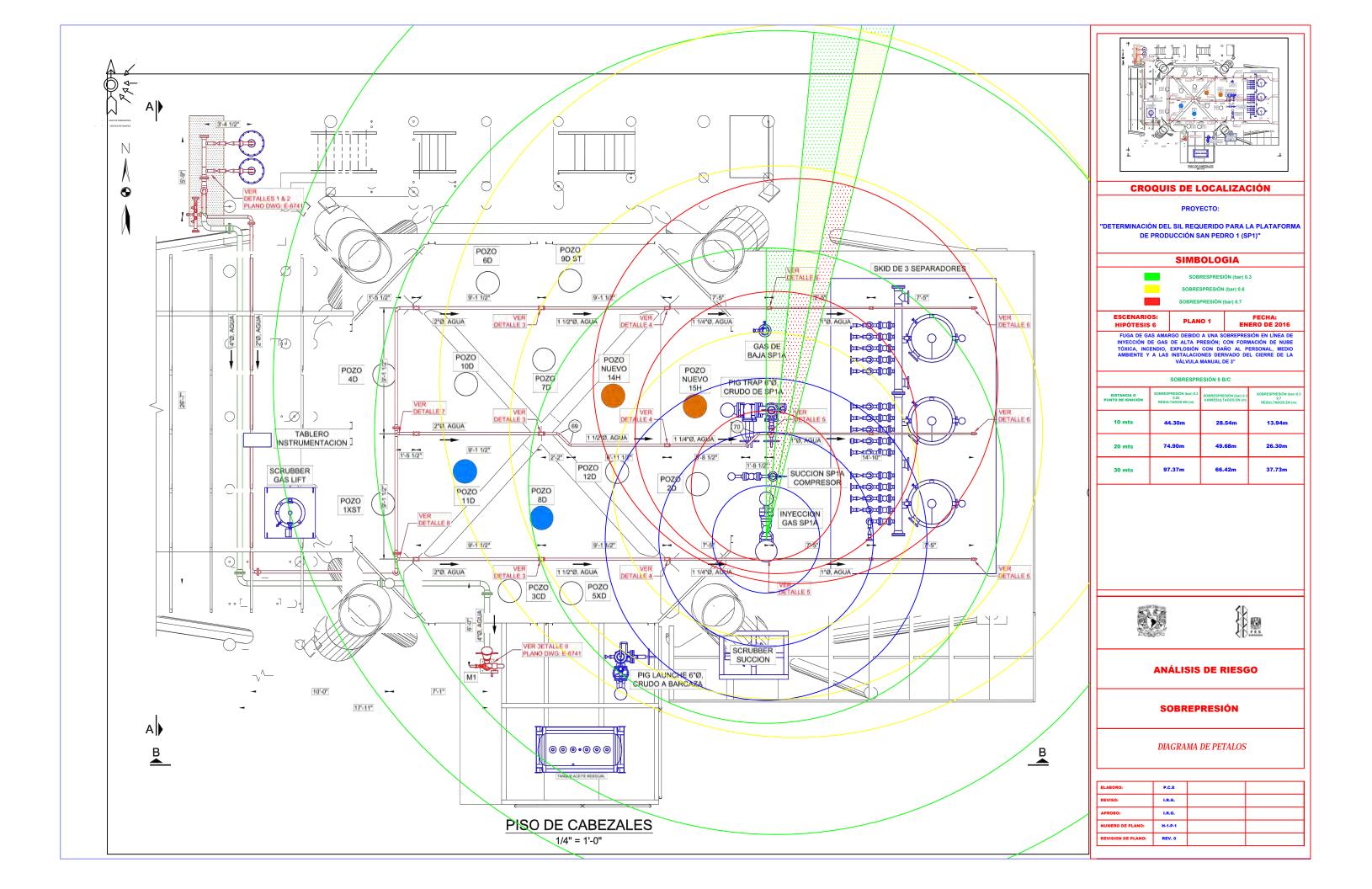
VENTEO DE GAS AMARGO DERIVADO DE LA APERTURA DE LA VÁLVULA DE PRESIÓN VACÍO PVSV-60101 CON DAÑO A TANQUE CON POSIBLE FORMACIÓN DE NUBE TÓXICA CON DAÑO AL PERSONAL Y A LA INSTALACIÓN.

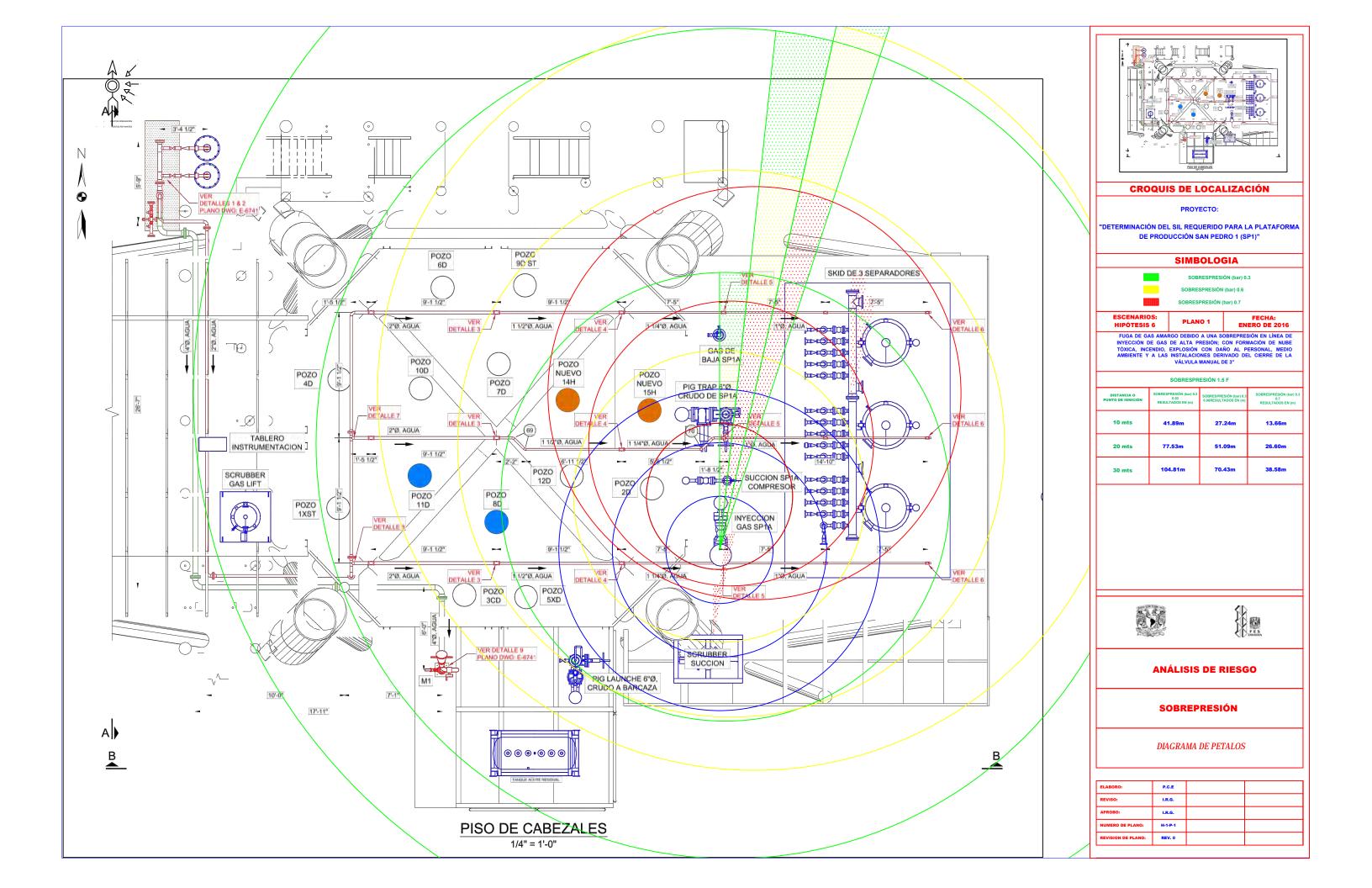
RADIACIÓN (1.5 F)

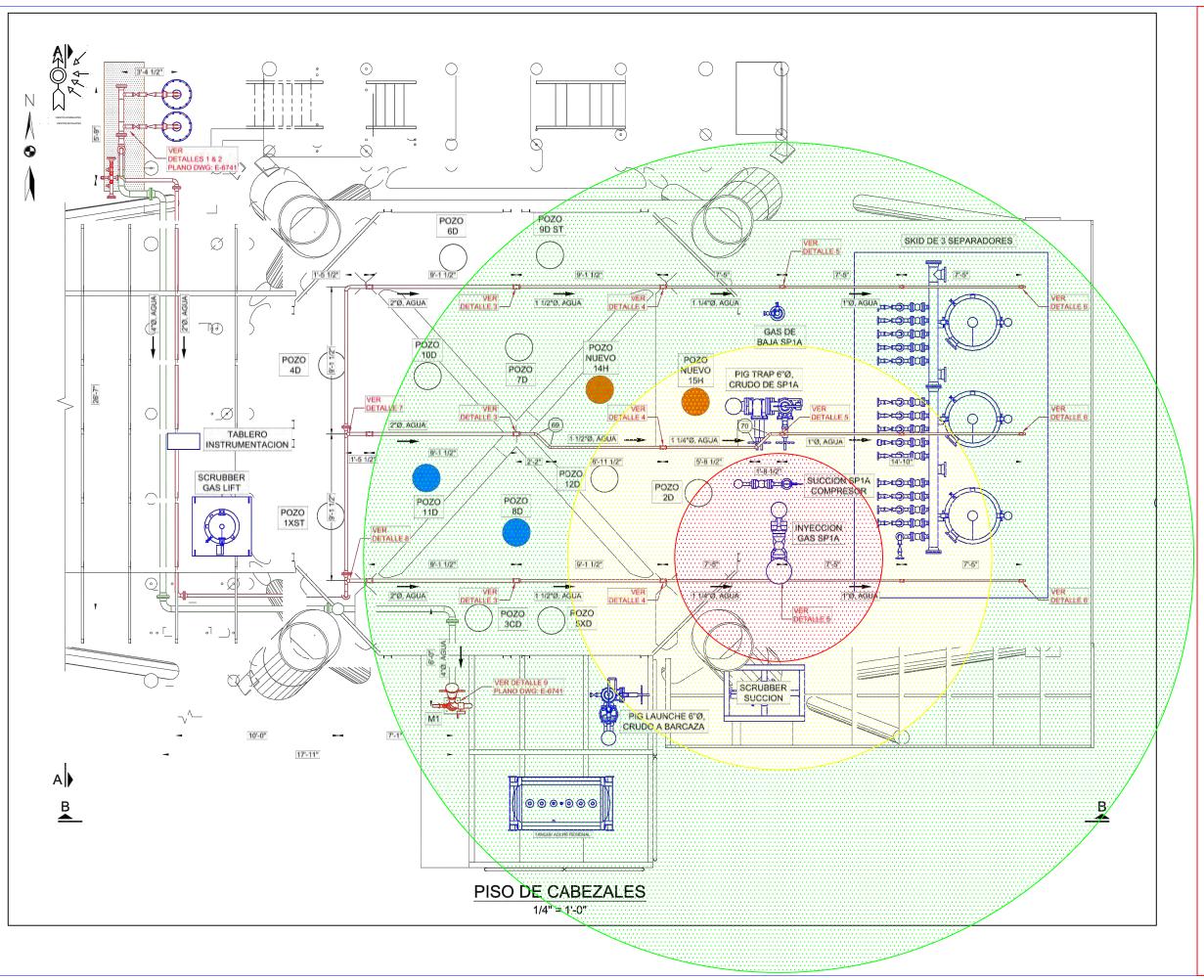
DAÑO A EQUIPOS 37.5 (Kw/m²)	No Alcanzado m
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	42.4634 m
ZONA DE AMORTIGUAMIENTO 1.4 (Kw/m²)	61.2046m

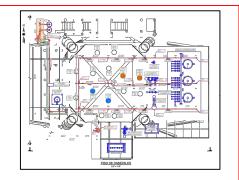

ANÁLISIS DE RIESGO


RADIACIÓN (JET FIRE)


ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	







PROYECTO:

DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

Zona de Alto Riesgo (5.0 Kw/m²)

HIPÓTESIS 6

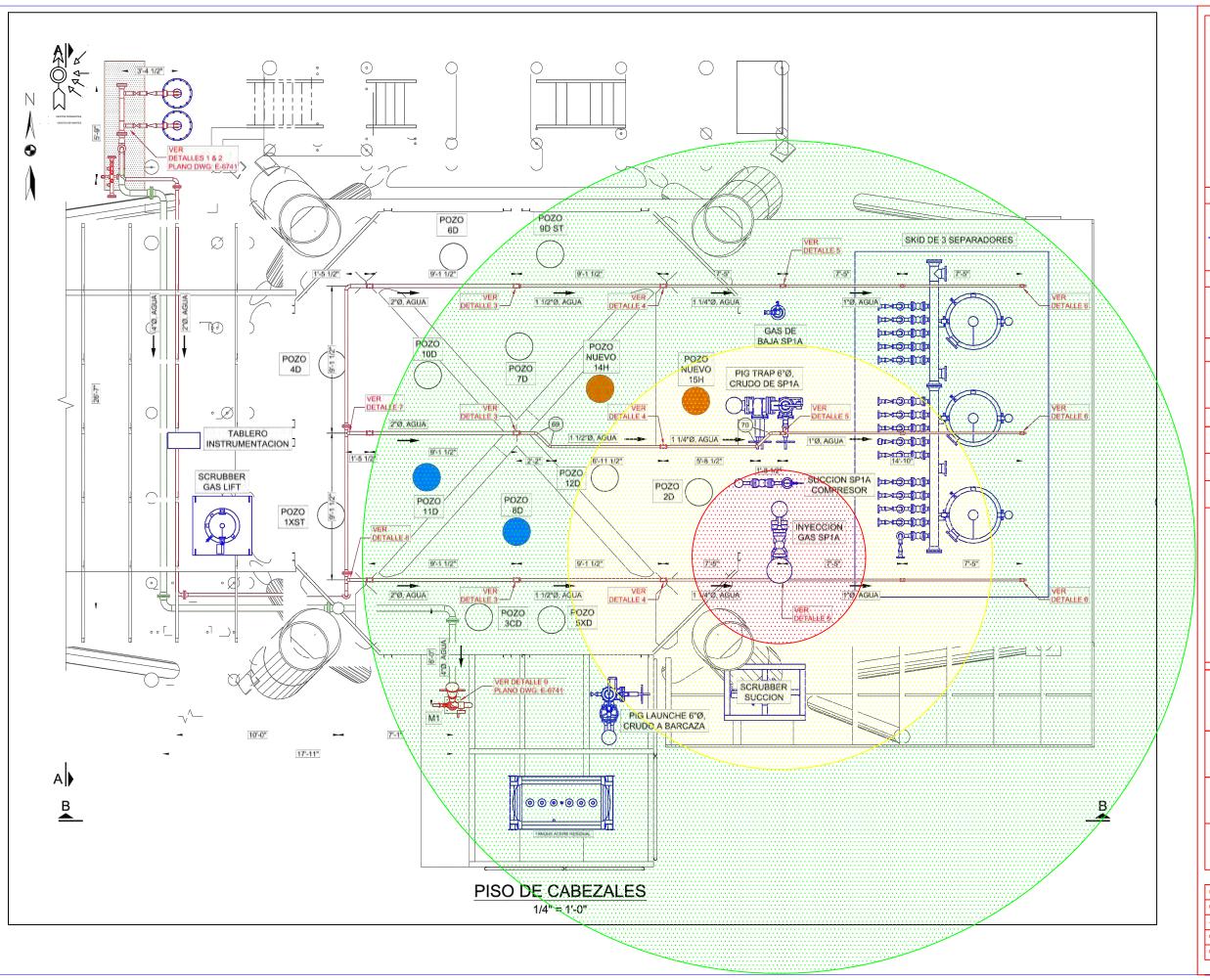
PLANO 1

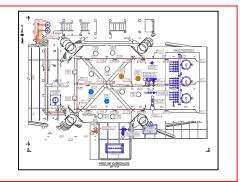
FECHA: ENERO DE 2016

FUGA DE GAS AMARGO DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE INYECCIÓN DE GAS DE ALTA PRESIÓN; CON FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES DERIVADO DEL CIERRE DE LA VÁLVULA MANUAL DE 3"

RADIACIÓN (1.5 F)

DAÑO A EQUIPOS 37.5 (Kw/m²)	16.57m
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	33.81m
ZONA DE AMORTIGUAMIENTO 1.4 (Kw/m²)	66.14m





ANÁLISIS DE RIESGO

RADIACIÓN (JET FIRE)

ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

na de Amortiguamiento (1.4 Kw/m

Zona de Alto Riesgo (5.0 Kw/m

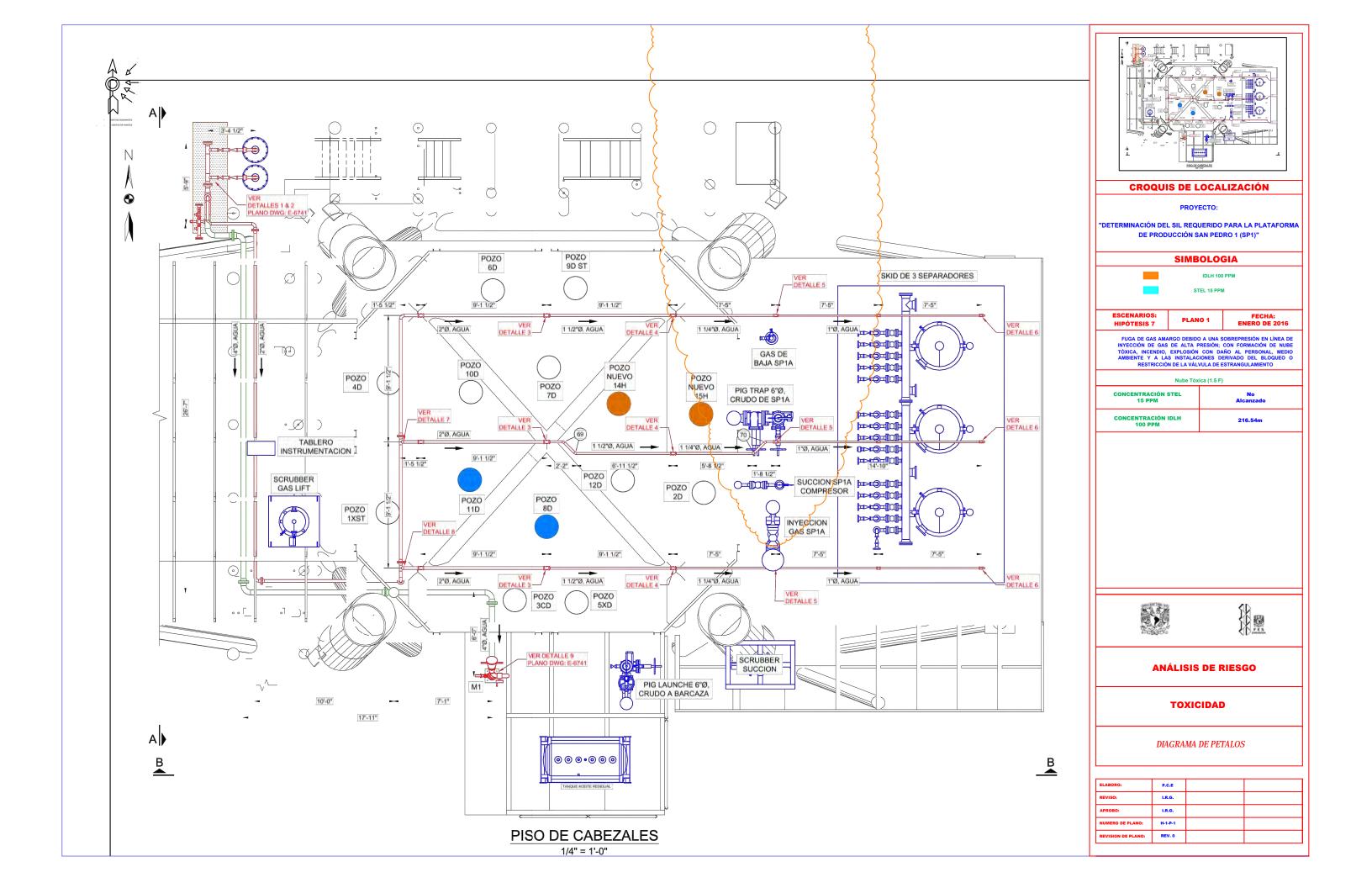
ESCENARIOS: HIPÓTESIS 6 PLANO 1

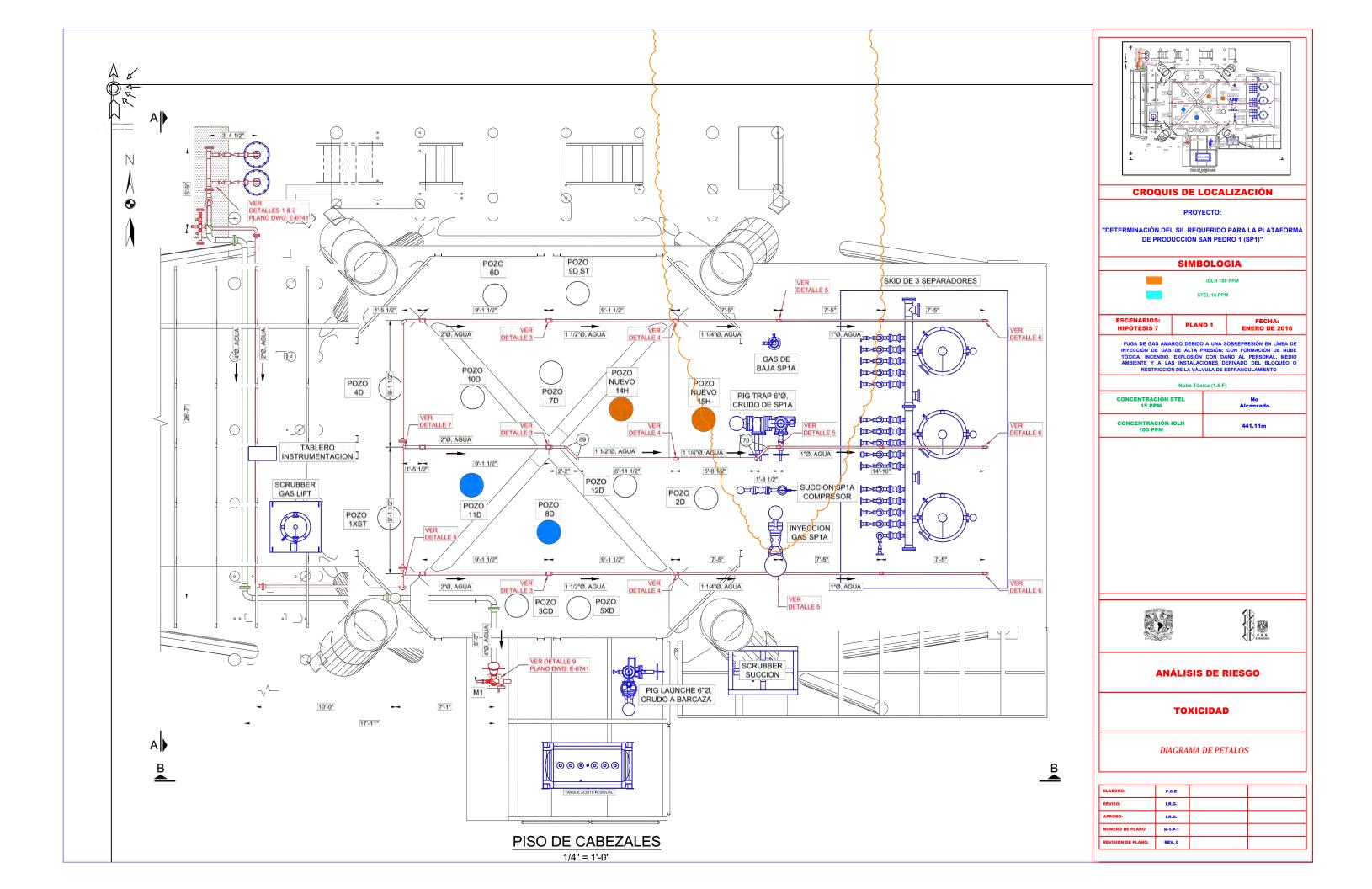
FECHA: NERO DE 2016

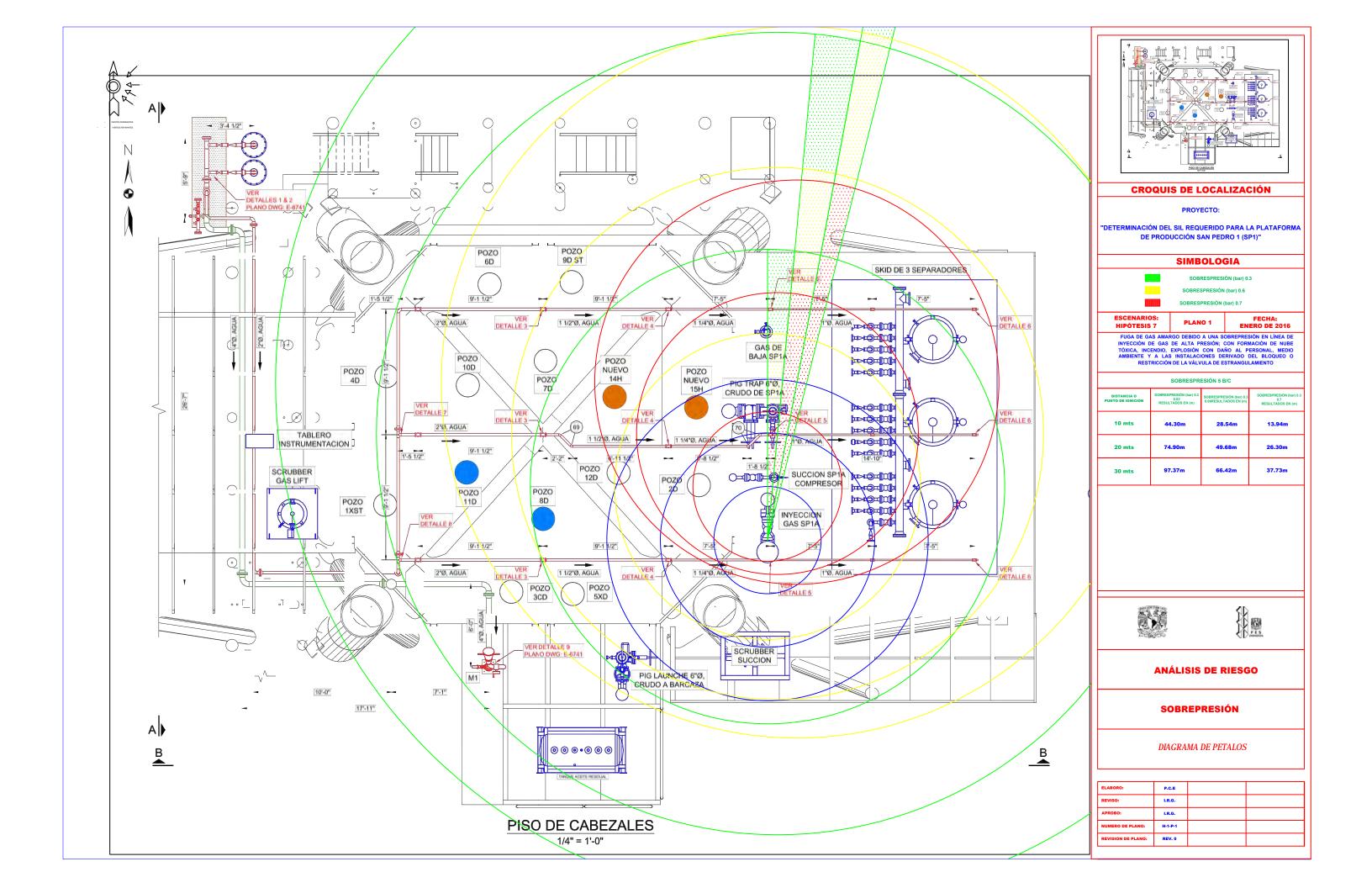
FUGA DE GAS AMARGO DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE INYECCIÓN DE GAS DE ALTA PRESIÓN; CON FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES DERIVADO DEL CIERRE DE LA VÁLVULA MANUAL DE 3"

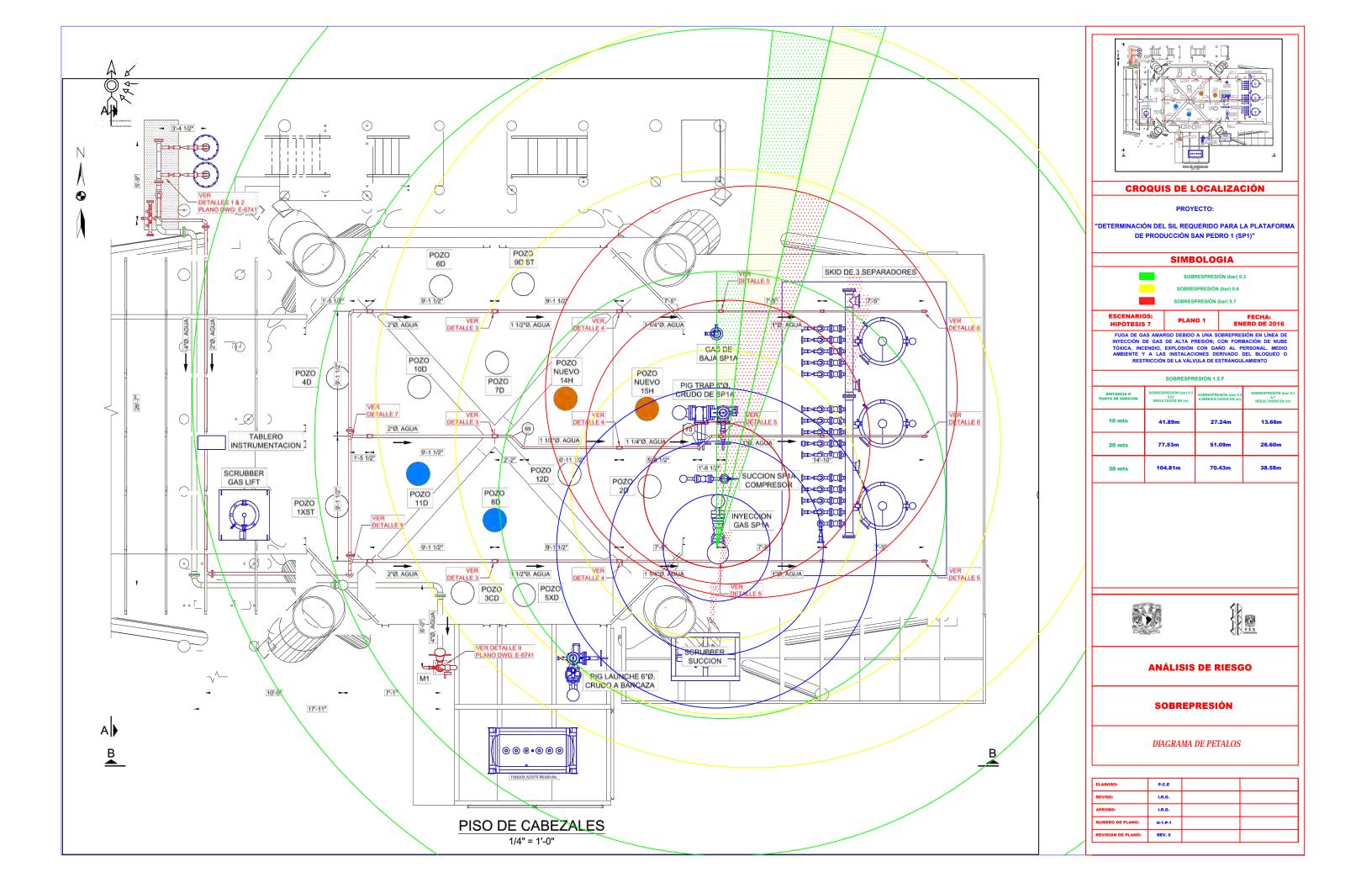
RADIACIÓN (1.5 F)

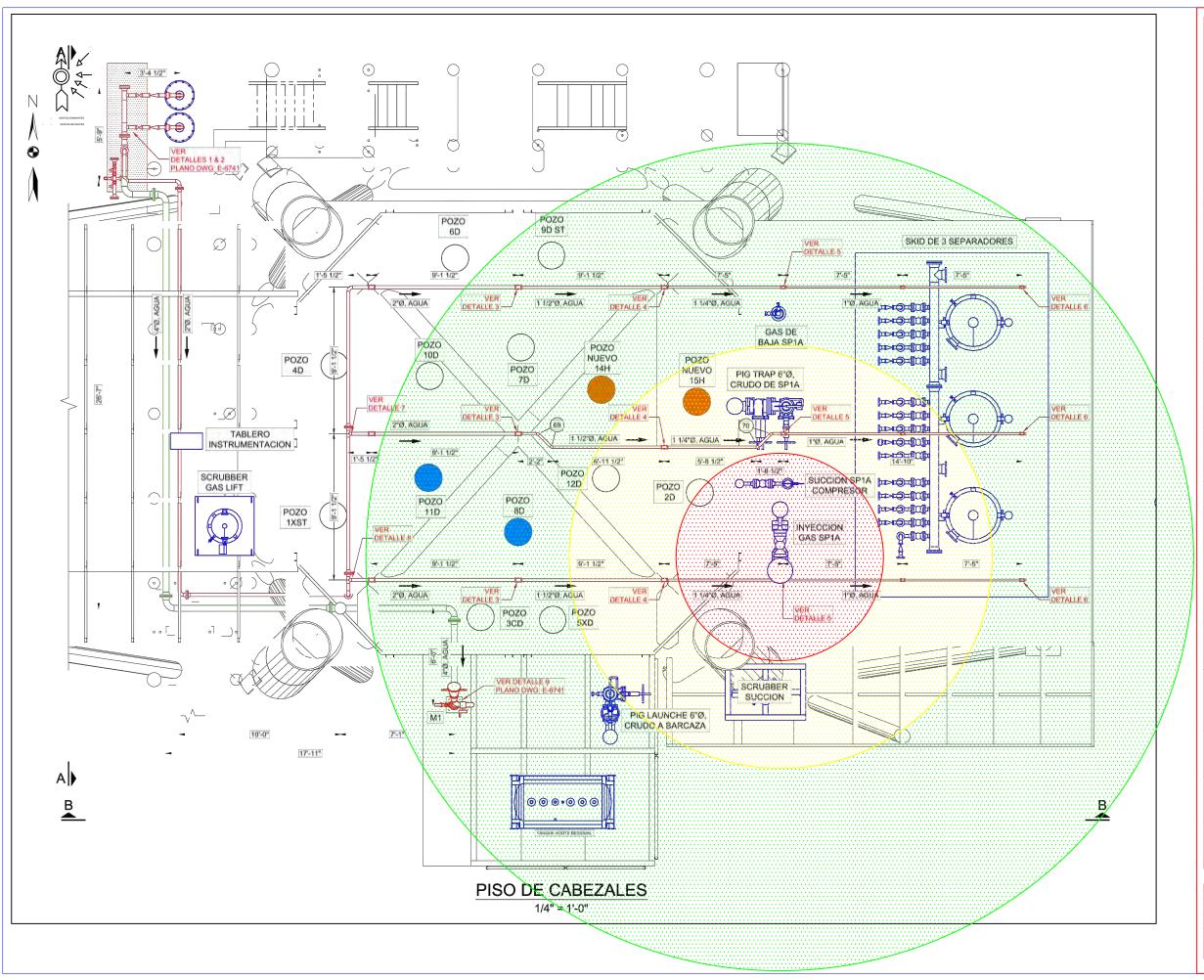
DAÑO A EQUIPOS 37.5 (Kw/m²)	13.83m
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	33.84m
ZONA DE AMORTIGUAMIENTO 1.4 (Kw/m²)	66.38m

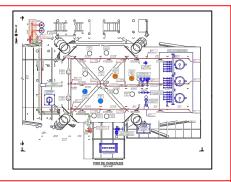

ANÁLISIS DE RIESGO


RADIACIÓN (JET FIRE)


ELABORO:	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	







PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

na de Amortiguamiento (1.4 Kw/m²

Zona de Alto Riesgo (5.0 Kw/m²)

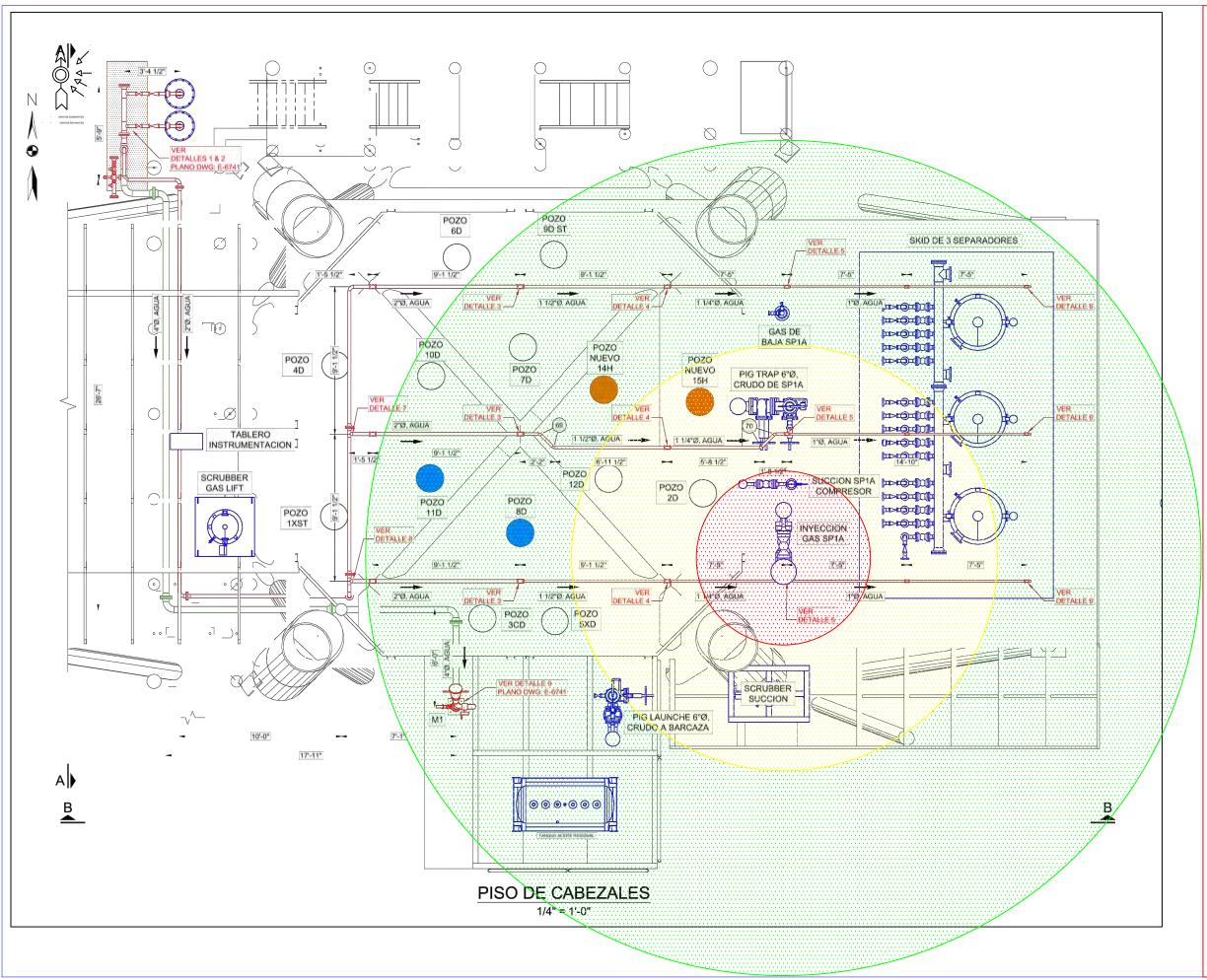
ESCENARIOS:

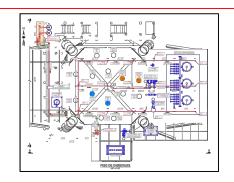
PLANO 1

FUGA DE GAS AMARGO DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE INVECCIÓN DE GAS DE ALTA PRESIÓN; CON FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES DERIVADO DEL BLOQUEO O RESTRICCIÓN DE LA VÁLVULA DE ESTRANGULAMIENTO

RADIACIÓN (1.5 F)

DAÑO A EQUIPOS 37.5 (Kw/m²)	16.57m
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	33.81m
ZONA DE AMORTIGUAMIENTO 1.4 (Kw/m²)	66.14m





ANÁLISIS DE RIESGO

RADIACIÓN (JET FIRE)

ELABORO:	P.C.E	
ELABORO.	P.U.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	

PROYECTO:

"DETERMINACIÓN DEL SIL REQUERIDO PARA LA PLATAFORMA DE PRODUCCIÓN SAN PEDRO 1 (SP1)"

SIMBOLOGIA

Zona de Alto Riesgo (5.0 Kw/m²)

HIPÓTESIS 7

FUGA DE GAS AMARGO DEBIDO A UNA SOBREPRESIÓN EN LÍNEA DE INYECCIÓN DE GAS DE ALTA PRESIÓN; CON FORMACIÓN DE NUBE TÓXICA, INCENDIO, EXPLOSIÓN CON DAÑO AL PERSONAL, MEDIO AMBIENTE Y A LAS INSTALACIONES DERIVADO DEL BLOQUEO O RESTRICCIÓN DE LA VÁLVULA DE ESTRANGULAMIENTO

RADIACIÓN (1.5 F)

DAÑO A EQUIPOS 37.5 (Kw/m²)	13.83m
ZONA DE ALTO RIESGO 5.0 (Kw/m²)	33.84m
ZONA DE AMORTIGUAMIENTO	66.38m

ANÁLISIS DE RIESGO

RADIACIÓN (JET FIRE)

ELABORO:	P.C.E	
ELABORO.	P.C.E	
REVISO:	I.R.G.	
APROBO:	I.R.G.	
NUMERO DE PLANO:	H-1-P-1	
NUMERO DE PLANO:	H-1-P-1	
REVISION DE PLANO:	REV. 0	
REVISION DE PLANU:	KEV. U	