UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

EVALUACIÓN CITOTÓXICA Y ANTIBACTERIAL DE COMPLEJOS METÁLICOS DEL GRUPO 10 EMPLEANDO LIGANTES DERIVADOS DE PIRIDÍN-2-CARBOXALDIMINAS.

TESIS

QUE PARA OBTENER EL TÍTULO DE

QUÍMICO

PRESENTA

ERIK GUILLERMO MORALES TOLEDO

MÉXICO D.F.

2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	Profesor José Manuel Méndez Stivalet
VOCAL:	Profesor David Morales Morales
SECRETARIO:	Profesor Marcos Flores Álamo
1er. SUPLENTE:	Profesor Carmela Crisóstomo Lucas
2°. SUPLENTE:	Profesor José Roberto Pioquinto Mendoza

SITIO DONDE SE DESARROLLO EL TEMA:

Laboratorio 3, Departamento de Química Inorgánica, Instituto de Química, Universidad Nacional Autónoma de México.

ASESOR DE TEMA:

Dr. David Morales Morales.

SUPERVISOR

Dr. José Roberto Pioquinto Mendoza

SUSTENTANTE:

Erik Guillermo Morales Toledo.

Agradecimientos.

Índice General.

Índice G	General	1
Índice d	le figuras, esquemas, gráficos y ecuaciones	4
Índice d	le tablas	7
Abrevia	turas	8
Ligante	s Sintetizados	10
Comple	jos Obtenidos	11
Introduc	cción	13
Objetivo	DS	15
Hipótes	is	15
Capítulo	o 1. Antecedentes	16
1.1.	Bases de Schiff	16
1.2.	Ligantes piridínicos	17
1.3.	Ligantes α-iminopiridina	18
1.4.	Citotoxicidad y evaluación antibacterial	20
Capítulo	o 2. Experimental	23
2.1.	Síntesis de ligantes	23
2.2.	Síntesis de LF	24
2.3.	Síntesis de LCI	24
2.4.	Síntesis de LBr	25

	2.5.	Síntesis de LOH	25
	2.6.	Síntesis de complejos metálicos	26
	2.7.	Síntesis de NiLF	29
	2.8.	Síntesis de NiLCI	29
	2.9.	Síntesis de NiLBr	30
	2.10.	Síntesis de NiLOH	31
	2.11.	Síntesis de PdLF	31
	2.12.	Síntesis de PdLCI	32
	2.13	Síntesis de PdLBr	32
	2.14.	Síntesis de PdLOH	33
	2.15.	Síntesis de PtLF	33
	2.16.	Síntesis de PtLCI	34
	2.17.	Síntesis de PtLBr	34
	2.18.	Síntesis dePtLOH	35
C	apítulo	3. Caracterización	36
	3.1.	Resonancia Magnética Nuclear de ¹ H para los complejos metálicos	46
	3.2.	Resonancia Magnética Nuclear de ¹ H para los complejosd e Pd(II)	47
	3.3.	Espectrometría de Masas	49
C	apítulo	4. Difracción de Rayos-X de monocristal	50
С	apítulo	5. Pruebas Biológicas	56
	5.1.	Evaluación Citotóxica	56

2

5.1.1. Introd	ducción a la técnica	56
5.1.2. Proce	edimiento del Bioensayo de Sulforodamina B	56
5.2. Evalu	ación Antibacterial	60
5.3. Méto	do empleado para los cultivos	61
5.4. Conc	lusiones	65
Apéndice A. Re	eactivos, disolventes, cepas e instrumentación	66
Apéndice B. Dia citotoxicidad.	agrama de Bioensayo para las pruebas iniciales de	69
Apéndice C. Da	atos Cristalográficos	70
Apéndice D. Co	blección de Espectros	111
Referencias Bil	bliográficas	154

Índice de Figuras.

Figura I.1.	Estructura molecular del <i>cis</i> -platino	13
Figura 1.1.	Estructuras moleculares y electrónicas del benceno y la piridina	18
Figura 1.2.	Algunos ligantes N,N bidentados	19
Figura 1.3.	Ligantes N,N oxazolinilpiridina e Iminopiridina	19
Figura 1.4.	Complejo de Pt(II) con actividad citotóxica	20
Figura 1.5.	Complejo de Pd(II) con actividad citotóxica	21
Figura 1.6.	Complejo con actividad antifúngica de Ni(II)	22
Figura 2.1.	Estructura del compuesto LF	24
Figura 2.2.	Estructura del compuesto LCI	25
Figura 2.3.	Estructura del compuesto LBr	25
Figura 2.4.	Estructura del compuesto LOH	26
Figura 2.5.	Estructura del compuesto NiLF	29
Figura 2.6.	Estructura del compuesto NiLCI	30
Figura 2.7.	Estructura del compuesto NiLBr	30
Figura 2.8.	Estructura del compuesto NiLOH	31
Figura 2.9.	Estructura del compuesto PdLF	31
Figura 2.10	Estructura del compuesto PdLCI	32

Figura 2.11. Estructura del compuesto PdLBr	32
Figura 2.12. Estructura del compuesto PdLOH	33
Figura 2.13. Estructura del compuesto PtLF	33
Figura 2.14. Estructura del compuesto PtLCI	34
Figura 2.15. Estructura del compuesto PtLBr	35
Figura 2.16 Estructura del compuesto PtLOH	35
Figura 3.1. Comparación del desplazamiento químico (δ) entre el ligante libre del compuesto LBr y sus complejos metálicos de Pd(II) y Pt(II) en RMN ¹ H.	N 48
Figura 3.2. Comparación del desplazamiento químico (δ) entre el ligante libre del compuesto LBr y el complejo metálico de Pd(II) en RMN ¹³ C.	49
Figura 4.1. Estructura molecular de LOH	51
Figura 4.2. Arreglo por puentes de hidrógeno.	51
Figura 4.3. Interacción de tipo Hidrógeno $-\pi$.	52
Figura 4.4. Moléculas de NiLCI cristalográficamente independientes.	54
Figura 4.5. Estructura molecular de la molecula Ni(1)LCI.	54
Figura 5.1. Diagrama de ensayos de susceptibilidad.	62
Esquema 1.1 Ruta general para la obtención de Bases de Schiff.	17
Esquema 2.1. Síntesis general para los ligantes bidentados usando como reactivos 2-piridincarboxaldehído y anilinas sustituidas en la posición 4.	23

Esquema 2.2. Síntesis general para la reacción de complejación de los	
ligantes bidentados con un centro metálico de Ni(II).	26
Esquema 2.3. Síntesis general para la reacción de complejación de los ligantes bidentados con un centro metálico de Pd(II).	27
Esquema 2.4. Síntesis general para la reacción de complejación de los	
ligantes bidentados con un centro metálico de Pt(II).	27
Gráfico 5.1. Porcentajes de inhibición de los complejos metálicos de Pd(II) y Pt(II) evaluados en las distintas líneas celulares.	59
Gráfico 5.2. Diámetro de halo de inhibición de los compuestos que presentaron actividad antibacterial en Bacillus subtilis y Staphilococcus	
aureus.	63
Gráfico 5.3. Porcentaje de inhibición de los compuestos que presentaron actividad antibacterial en Bacillus subtilis y Staphilococcus aureus.	64
Ecuación 5.1. Ecuación para determinar el porcentaje de Inhibición de crecimiento en las líneas celulares.	58
Ecuación 5.2. Ecuación usada para la determinación del porcentaje (%) de Inhibición bacteriana.	62

Índice de Tablas

Tabla 3.1. Algunas propiedades de los ligantes.	37
Tabla 3.2. Algunas propiedades de los Compuestos de Coordinación sintetizados.	38
Tabla 3.3. Bandas de IR de los grupos imina y piridina en los diferentes compuestos sintetizados.	41
Tabla 3.4. Datos de RMN ¹ H, ¹³ C{ ¹ H} y ¹⁹ F{ ¹ H} para los compuestos LF, LCI, LBr, LOH, PdLF, PdLCI, PdLBr y PdLOH a temperatura ambiente en DMSO-d ₆ .	43
Tabla 4.1. Datos cristalográficos del compuesto LOH.	50
Tabla 4.2. Datos cristalográficos del compuesto NiLCI.	53
Tabla 4.3. Distancias y ángulos más representativos de complejo NiLCI.	55
Tabla 5.1. Tiempos de duplicación, concentración y órganos de origen de las líneas celulares estudiadas.	57
Tabla 5.2. Diámetros y porcentajes de inhibición de los ligantes libres y los complejos de Ni(II) en las diferentes bacterias y hongos.	60
Tabla 5.3. Concentración y diámetro de inhibición de los antibióticos control usados.	61

Abreviaturas

Acetonitrilo	MeCN
Ácido etildiaminotetraacético	EDTA
Análisis directo en tiempo real (Direct	
Analysis in Real Time)	DART
Anaranjado G	ORG
Angstrom	Å
Azul de bromofenol	BPB
Bombardeo por átomos rápidos (Fast atom Bombardment)	FAB
Coherencia heteronuclear cuántica sencilla (Heteronuclear Single Quantum Coherence)	HSQC
Correlación heteronuclear (Heteronuclear correlation)	HETCOR
Cromotrope 2R	CTR
Diclorometano	CH ₂ Cl ₂
Diferencia de deltas (Delta de Delta)	Δδ
Dimetil sulfóxido	DMSO
Dióxido de carbono	CO ₂
Espectroscopía de correlación (correlation spectroscopy)	COSY
Frecuencias vibracionales	υ
Grados Celsius	°C
Gramo	g

Hertz	Hz
Horas	Hrs
Infrarrojo	IR
Inhibición del crecimiento	IC
Metanol	MeOH
Microgramo	hð
microlitros	μL
Micromolar	μΜ
Miligramo	mg
Mililitro	mL
Milimol	mmol
Minutos	min
Partes por millón	ppm
Resonancia Magnética Nuclear	RMN
Sulforodamina B	SRB
Temperatura Ambiente	T _{amb}

1.- LF

2.- LCI

3.- LBr

4.- LOH

NiLCI

NiLBr

NiLOH

PdLBr

PdLCI

PdLOH

Complejos Obtenidos

PtLBr

PtLOH

Introducción

La química de coordinación es indudablemente el área de investigación más activa dentro de la química inorgánica. Actualmente, esta rama de la química se ha asociado con muchas otras como la química analítica, química medicinal, química industrial, metalurgia y la ciencia de materiales, entre muchas otras¹. Las primeras investigaciones sobre los complejos metálicos o coordinados, datan del siglo XIX, durante los días de Alfred Werner², premio Nobel de química en 1913³. Después de eso, la química inorgánica sería testigo de muchos y muy variados compuestos de coordinación con características estructurales únicas y diferentes aplicaciones derivados de los "Ligantes" y sus centros metálicos.²

La química de coordinación ha tenido un gran impacto en la sociedad. Por ejemplo, el *cis*-platino, un compuesto ampliamente estudiado desde que fue reportado por primera vez en 1844 por Michele Peyrone⁴ (Figura I.1). Es uno de los agentes anticáncer más exitosos conocidos a la fecha. La importancia de este compuesto radica en su capacidad para inhibir la división celular.^{5,6} Su estudio ha inspirado gran cantidad de investigaciones dirigidas hacia la aplicación de complejos metálicos y agentes quimioterapéuticos.^{7,8}

cis-platino

Figura I.1. Estructura molecular del *cis*-platino.

Hacia finales del siglo XIX, fue descubierta una de las más grandes y antiguas familias de ligantes, la bipiridina y sus derivados. Estos compuestos han sido ampliamente estudiados en química de coordinación con una gran diversidad de centros metálicos. Entre sus principales aplicaciones tenemos que son buenos auxiliares en el ensamblaje supramolecular, en compuestos luminiscentes con aplicación fotónica y optoelectrónica y en la fabricación de fármacos.³

Las α -iminopiridinas, una combinación de bipiridina y 1,4-diazabutadieno, han recibido también mucha atención. Inicialmente utilizados como ligantes neutros para catalizar reacciones de polimerización de olefinas. Actualmente se han empleado como estructura base en la síntesis de fármacos, principalmente analgésicos y antiinflamatorios, así como en la fabricación de pesticidas, fungicidas y detergentes.^{9,10}

En este proyecto se pretende realizar la síntesis y caracterización por Infrarrojo, Resonancia Magnética Nuclear, Espectrometría de Masas, Análisis Elemental y difracción de rayos-X de monocristal de complejos de Ni(II), Pd(II) y Pt(II) con ligantes bidentados derivados de piridin-2-carboxaldiminas, así como, estudiar su potencial actividad citotoxicidad y antibacterial.

Objetivos.

- Sintetizar ligantes bidentados piridín-2-carboxaldiminas derivados de distintas anilinas sustituidas en posición *para*.
- Sintetizar los correspondientes complejos de estos ligantes con Ni(II), Pd(II) y Pt(II).
- Caracterizar estos compuestos por espectroscopía de IR, Masas y RMN además del Análisis Elemental y cuando sea posible, por técnicas de difracción de Rayos X de cristal único.
- Evaluación de la actividad citotóxica y antibacterial de los complejos sintetizados.

Hipótesis.

Será posible sintetizar una serie de ligantes piridín-2-carboxaldiminas a través de reacciones de sustitución nucleofílica en condiciones suaves de laboratorio (24 hrs. a reflujo, 80°C y agitación) y sus correspondientes complejos de Ni(II), Pd(II) y Pt(II). Los compuestos sintetizados serán capaces de inhibir el crecimiento de líneas celulares cancerosas y bacteriales en ensayos *in vitro*.

Capítulo 1.

Antecedentes.

1.1 Bases de Schiff

Un gran número de bases de Schiff (o grupos azometino) han sido sintetizadas y empleadas como ligantes, principalmente en los últimos treinta años¹¹. Estos compuestos tienen un rol importante en el desarrollo de la química de coordinación, así como, en el modelado biológico, diseño de ferromagnetos, cristales líquidos, catálisis e imagenología médica¹. Las bases de Schiff son capaces de coordinar metales por medio del nitrógeno de la imina. Diversos estudios han demostrado que la presencia del par de electrones libre en el orbital hibrido sp² del átomo de nitrógeno en grupos azometino es capaz de estabilizar diferentes estados de oxidación de una gran variedad de metales y de esta forma controlar su desempeño en transformaciones catalíticas.¹¹

Las bases de Schiff son conocidas por su accesibilidad sintética, diversidad estructural y su amplia denticidad. Estas, son productos de condensación entre grupos carbonilo y aminas primarias, y fueron reportadas por primera vez por Hugo Schiff en 1864¹. Su nombre se debe a su descubridor y se describen como un doble enlace C=N, donde a su vez el nitrógeno se enlaza a un grupo arilo o alquilo.

Existen muchos métodos para la obtención de bases de Schiff, sin embargo, el más común consiste en la reacción de condensación en medio ácido de una amina primaria y un aldehído o cetona en disolventes como metanol o etanol en diferentes condiciones de reacción¹². La formación general de las bases de Schiff se muestra en el siguiente esquema:

Esquema 1.1. Ruta general para la obtención de Bases de Schiff.

La formación de la Base de Schiff se da a través de una reacción de condensación donde ocurre en un primer paso la adición nucleofílica para la formación de la carbinolamina y en un segundo paso la reacción de deshidratación para obtener el producto, donde los sustituyentes R varían según el caso.

Se puede obtener una gran variedad de bases de Schiff con el simple cambio de los sustituyentes en el aldehído o cetona, en las aminas correspondientes; y de igual manera la reacción puede ocurrir en reversa para obtenerse los reactivos iniciales. De hecho, estos compuestos presentan una rápida degradación a sus materias primas en presencia de agua.¹

1.2. Ligantes Piridínicos

La piridina es una molécula heterocíclica de estructura muy similar a la del benceno, en donde una unidad de carbono-hidrógeno del anillo bencénico es reemplazada por un átomo de nitrógeno (Figura 1.2)¹³. Ambas moléculas presentan muchas similitudes, incluyendo la deslocalización de sus electrones en los enlaces π .¹³

Figura 1.1. Estructuras moleculares y electrónicas del benceno y la piridina.

La piridina se encuentra presente en muchas sustancias naturales y en particular alcaloides¹³. Sus compuestos se han reportado como fisiológicamente activos y están presentes en sustancias como antisépticos, vitaminas, insecticidas, herbicidas, fungicidas, disolventes, inhibidores de la corrosión, drogas y agentes resistentes al agua¹³.

Una de las principales diferencias entre la piridina y el benceno es el par libre de electrones presente en el átomo de nitrógeno, y que por su localización no participa en el sistema π . Este par de electrones causa que la piridina actúe como una base de Lewis a diferencia del Benceno¹³. Por esta característica estructural, la piridina ha sido utilizada como un buen ligante para la coordinación de un sin número de metales¹³, actuando como un ligante neutro monodentado.

Se han descrito en la literatura numerosas formas de sintetizarla, y gracias a los distintos métodos también ha sido posible sustituir el anillo piridínico para proporcionarle mayores propiedades a este tipo de ligantes.

1.3. Ligantes α-Iminopiridina.

Los ligantes con dos átomos coordinantes de nitrógeno con hibridación sp^2 han encontrado una amplia aplicación en reacciones enantioselectivas catalizadas por complejos metálicos¹⁴.

Entre los ligantes *N*,*N* bidentados más utilizados, encontramos algunos como los que se muestran en la figura 1.2: bis(iminas), bis(piridinas), y, mereciendo una mención especial, los ligantes de tipo bis(oxazolinas).¹⁴

Figura 1.2. Algunos ligantes N, N bidentados.¹⁴

El desarrollo de este tipo de ligantes se ha producido especialmente en el campo de los ligantes *N*,*P* aunque más recientemente han aparecido en la bibliografía ligantes *N*,*N* híbridos que combinan dos agrupaciones nitrogenadas diferentes (Figura 1.4). Los más estudiados combinan un anillo de piridina con otro de oxazolina. Estos ligantes introducidos en 1987 por Brunner han recibido mucha atención en los últimos años¹⁴. Otro grupo de ligantes *N*,*N* lo constituyen los ligantes de tipo iminopiridina. La mayoría de los trabajos publicados hasta la fecha implican el uso de iminas preparadas a partir de 2-formilpiridina y aminas quirales. Sin embargo, el uso de iminopiridinas derivadas de cetonas quirales y aminopiridinas como ligantes en reacciones enantioselectivas catalizadas por complejos metálicos representan un campo fértil aún por estudiar.

Figura 1.3. Ligantes N,N oxazolinilpiridina e Iminopiridina.¹⁴

Respecto a la capacidad coordinante de estas diiminas, en su mayoría se comportan como ligantes bidentados formando anillos quelato de cinco miembros, en donde los átomos de nitrógeno de tipo piridínico e imínico se coordinan al centro metálico¹⁵.

1.4. Citotoxicidad y evaluación antibacterial

En la literatura han sido descritos diversos complejos derivados de piridín-2carboxaldiminas en donde se ha reportado que estos han presentado muy buena actividad citotóxica frente a líneas celulares principalmente hormonales (próstata y mama), en la figura 1.4 se muestra la estructura molecular de un complejo de Pt(II) derivado de piridín-2-carboxaldimina, el cual presentó buena actividad anticancerígena en líneas celulares de ovarios humanos.¹⁶

Figura 1.4. Complejo de Pt(II) con actividad citotóxica¹⁶.

Complejos de Platino derivados de ligantes α -imonipiridina presentan actividades comparables a las del *cis*-platino en diversas líneas celulares. Los sustituyentes de dichas estructuras cambian la selectividad de la molécula permitiendo a los investigadores desarrollar una amplia gama de complejos metálicos con propiedades similares para poder ser usados en estudios de inhibición del crecimiento de células cancerígenas^{58,17}.

Por otro lado, recientemente, se ha encontrado que complejos de Pd(II) con ésteres borónicos derivados de piridín-2-carboxaldiminas, han mostrado buena

actividad citototóxica en líneas celulares de colon y mama, como el descrito por Eda Rami Reddy et al.¹⁸ en la figura 1.5. Obteniendo resultados de actividad citotóxica significativos y mostrando una selectividad prometedora hacia células normales no tumorigénicas.¹⁸

Figura 1.5. Complejo de Pd(II) con actividad citotóxica.¹⁸

Además, complejos análogos de Ni(II) descritos en la literatura han mostrado tener propiedades antibacteriales y antifúngicas¹⁹ (Figura 1.6) a concentraciones menores a los 20 mg frente a *Escherichia coli*, (bacteria que puede causar disentería y envenenamiento) con notables resultados al medirse en diámetros de inhibición y compararse con antibióticos control y disolventes puros como DMSO. Además, estos estudios prueban que la formación de anillos quelatos exhiben mayor actividad antibacterial comparados con los ligantes libres.^{20,21,22,23}

Figura 1.6. Complejo con actividad antifúngica de Ni(II)¹⁹.

En esta tesis, se describe la síntesis de una serie de ligantes bidentados compuestos por una α -iminopiridina unida a un anillo bencénico *para* sustituido con un halógeno (F, Cl o Br) o un hidroxilo, así como, su complejación con metales del grupo 10. Con el fin de comparar los métodos de obtención de estos ligantes con aquellos reportados en la literatura por medio de rendimientos de reacción (%), las características de sus complejos metálicos, así como, examinar sus propiedades citotóxicas, en líneas celulares hormonales, así como, y su actividad bactericida en bacterias Gram positivas, Gram negativas y hongos.

Capítulo 2.

Experimental.

2.1. Síntesis de ligantes.

Se sintetizaron 4 ligantes Piridín-2-carboxaldimina sustituidos en la posición *para* del anillo de fenilo. Estos ligantes son producto de una reacción de adición nucleofílica entre 2-piridincarboxaldehído y la correspondiente anilina sustituida en posición *para*. La metodología empleada (Esquema 2.1) está basada en síntesis realizadas previamente en la literatura.^{15,17,24,25,26,27,28}

R= F, CI, Br, OH

Esquema 2.1. Síntesis general para los ligantes bidentados usando como reactivos 2-piridincarboxaldehído y anilinas sustituidas en la posición 4.

En un matraz bola de 100 ml se coloca 1 g de 2-piridíncarboxaldehído (equivalentes a 9.34 mmol) al cual se le agregan 10 ml de metanol y un exceso de sulfato de sodio. De manera separada se disuelven en la mínima cantidad de metanol, 9.34 mmol de la anilina correspondiente (4-fluoroanilina; 4-cloroanilina; 4-bromoanilina y 4-aminofenol). La mezcla de reacción resultante se mantiene bajo agitación magnética y se incrementa la temperatura del matraz de bola con ayuda de una canastilla de calentamiento. Se agrega la disolución alcohólica de la anilina lentamente al matraz que contiene el aldehído y se incrementa la temperatura hasta alcanzar condiciones de reflujo que se mantienen por 24 horas.

Los productos de color rojo (diferentes tonalidades dependiendo de la anilina sustituida empleada) se filtran a través de algodón empacado dentro de pipetas Pasteur hacia un frasco de vidrio donde se les permite cristalizar a temperatura ambiente por algunos días. En todos los casos los rendimientos de reaccion se encuentran por encima del 78%.

2.2. Síntesis de LF.

Se pesó 1 g de 2-piridíncarboxaldehído (equivalentes a 9.34 mmol) y se midieron 0.9 ml de 4-fluoroanilina (9.34 mmol). La reacción procedió por 24 horas y se obtuvo un líquido verde que a sequedad se torna de color rojizo. De esta muestra pueden obtenerse cristales si se disuelven aproximadamente 20 mg en una mezcla de disolventes MeOH/CH₂Cl₂ 50:50.^{29,30}

Figura 2.1. Estructura del compuesto LF.

2.3. Síntesis de LCI.

Se pesó 1 g de 2-piridíncarboxaldehído (equivalentes a 9.34 mmol) y 1.2 g de 4cloroanilina (9.34 mmol). El tiempo de reacción es de 24 horas y se obtuvo un líquido verdoso que a sequedad se torna de color rojizo al igual que el ligante anterior. De esta muestra pueden obtenerse cristales si se disuelven aproximadamente 20 mg en una mezcla de disolventes MeOH/CH₂Cl₂ 50:50. 31,32,33,34,35,36,37,38,39

Figura 2.2. Estructura del compuesto LCI.

2.4. Síntesis de LBr.

Se pesó 1 g de 2-piridíncarboxaldehído (equivalentes a 9.34 mmol) y 1.6 g de 4bromoanilina (9.34 mmol). La reacción se detuvo 24 horas después y se obtuvo nuevamente un líquido verde que a sequedad se torna de color rojizo. De esta muestra pueden obtenerse cristales si se disuelven aproximadamente 20 mg en una mezcla de disolventes MeOH/CH2Cl₂ 50:50.^{40,41,42,43,44.}

Figura 2.3. Estructura del compuesto LBr.

2.5. Síntesis de LOH.

Se pesó 1 g de 2-piridíncarboxaldehído (equivalentes a 9.34 mmol) y 1.02 g de aminofenol (9.34 mmol). La reacción se detuvo 24 horas después y se obtuvo nuevamente un líquido verde que empezó a cristalizar inmediatamente. Los cristales fueron examinados al microscopio concluyéndose que son adecuados para ser analizados por la técnica de difracción de rayos-X de cristal único.^{17,45,46,47,48,49,50,51}

Figura 2.4. Estructura del compuesto LOH.

2.6. Síntesis de los complejos metálicos.

Con cada ligante se llevaron a cabo reacciones con Ni(II), Pd(II) y Pt(II), obteniendo así un total de 12 compuestos de coordinación diferentes (**NiLF**, **NiLCI**, **NiLBr**, **NiLOH**, **PdLF**, **PdLCI**, **PdLBr**, **PdLOH**, **PtF**, **PtCI**, **PtBr** y **PtOH**), de acuerdo a los siguiente esquemas generales de reacción para los complejos de Ni(II), Pd(II) y Pt(II) respectivamente.²⁵

Esquema 2.2. Síntesis general para la reacción de complejación de los ligantes bidentados con un centro metálico de Ni(II).

Esquema 2.4. Síntesis general para la reacción de complejación de los ligantes bidentados con un centro metálico de Pt(II).

Como se puede apreciar en los esquemas 2.2 a 2.4, la reacción de complejación con Ni(II) necesita dos ligantes por cada centro metálico para poder obtener el compuesto hexacoordinado deseado, a diferencia de la complejación con Pd(II) y Pt(II) que proceden en una estequiometria 1:1. Por lo tanto, para su síntesis el ligante se pone en una relación 2:1 por cada mol de NiCl₂·6H₂O para los complejos de Ni(II) y cantidades equimolares de ligante y de la sal metálica para los complejos de Pd(II) y Pt(II).

Para la síntesis de los complejos²⁵ de Ni(II) y Pd(II), el ligante es pesado y colocado en un matraz bola y se disuelve en la mínima cantidad de CH_2Cl_2 , mientras que por separado se disuelve la cantidad de la sal metálica

correspondiente en MeCN. Se continúa con la agitación magnética y se incrementa la temperatura del matraz de bola con ayuda de una canastilla de calentamiento. Se agrega lentamente la disolución de la sal metálica al matraz bola conteniendo el ligante y se deja proceder la reacción por 24 horas a reflujo.

Para la síntesis de los complejos de Pt(II), la sal metálica se coloca en un matraz de bola, se disuelve en MeOH y se aumenta levemente la temperatura con ayuda de una canastilla de calentamiento para evitar que el Pt(II) se reduzca a Pt⁰; el ligante es disuelto por separado también en MeOH, esta disolución se agrega lentamente a la disolución de la sal metálica y se deja reaccionar a reflujo por 24 horas.

Los productos obtenidos de color rojizo para los complejos de Ni(II) y Pd(II) (diferentes tonalidades) y amarillos de Pt(II) (diferentes tonalidades), se filtran a través de algodón empacado dentro de pipetas Pasteur hacia un frasco de vidrio con tapa donde se dejan cristalizar a temperatura ambiente. Los rendimientos de estas reacciones se encuentran en todos los casos por encima del 70%.

2.7. Síntesis de NiLF.

Se pesaron 0.17 g (equivalentes a 8.42×10^{-4} mol) del ligante y 0.1 g de NiCl₂·6H₂O (equivalentes a 4.21×10^{-4} mol). Se dejaron reaccionar por 24 horas y se obtuvo una solución verde que a sequedad se torna de color naranja.

Figura 2.5. Estructura del compuesto NiLF.

2.8. Síntesis de NiLCI

Se pesaron 0.18 g (equivalentes a 8.42×10^{-4} mol) del ligante y 0.1 g de NiCl₂·6H₂O (equivalentes a 4.21×10^{-4} mol). Se detuvo la reacción 24 horas después y se obtuvo una solución verde que a sequedad se torna de color marrón.

Figura 2.6. Estructura del compuesto NiLCI.

2.9. Síntesis de NiLBr

Se pesaron 0.22 g (equivalentes a 8.42×10^{-4} mol) del ligante y 0.1 g de NiCl₂·6H₂O (equivalentes a 4.21×10^{-4} mol). Se dejaron reaccionar por 24 horas y se obtuvo una solución verde que a sequedad se torna de color marrón^{43,52},⁵³.

Figura 2.7. Estructura del compuesto NiLBr.

2.10. Síntesis de NiLOH

Se pesaron 0.16 g (equivalentes a 8.42×10^{-4} mol) del ligante y 0.1 g de NiCl₂·6H₂O (equivalentes a 4.21×10^{-4} mol). La reacción procedió por 24 horas y se obtuvo una solución verde que a sequedad se torna de color rojo⁵¹.

Figura 2.8. Estructura del compuesto NiLOH.

2.11. Síntesis de PdLF

Se pesaron 0.023 g (equivalentes a 1.15 mmol) del ligante y 0.03 g de $PdCl_2(CH_3CN)_2$ (equivalentes a 1.15 mmol). El tiempo de reacción fue de 24 horas y se obtuvo una solución verde que a sequedad se torna de color naranja.

Figura 2.9. Estructura del compuesto PdLF.

Se pesaron 0.024 g (equivalentes a 1.15 mmol) del ligante y 0.03 g de $PdCl_2(CH_3CN)_2$ (equivalentes a 1.15 mmol). Se dejaron reaccionar por 24 horas y se obtuvo una solución verde que a sequedad se torna de color mostaza.

Figura 2.10. Estructura del compuesto PdLCI.

2.13. Síntesis de PdLBr

Se pesaron 0.030 g (equivalentes a 1.15 mmol) del ligante y 0.03 g de $PdCl_2(CH_3CN)_2$ (equivalentes a 1.15 mmol). Se dejaron reaccionar por 24 horas y se obtuvo una solución vede que a sequedad se torna de color anaranjada.^{44,54,55}

Figura 2.11. Estructura del compuesto PdLBr.
Se pesaron 0.022 g (equivalentes a 1.15 mmol) del ligante y 0.03 g de $PdCl_2(CH_3CN)_2$ (equivalentes a 1.15 mmol). Después de 24 horas la reacción se detuvo, obteniéndose así una solución verde que a sequedad se torna de color amarilla⁵⁰.

Figura 2.12. Estructura del compuesto PdLOH.

2.15. Síntesis de PtLF

Se pesaron 0.0015 g (equivalentes a 0.072 mmol) del ligante y 0.03 g de K_2PtCl_4 (equivalentes a 0.072 mmol). 24 horas después se detiene la reacción y al secarla se obtiene un compuesto sólido de color amarillo.

Figura 2.13. Estructura del compuesto PtLF.

Se pesaron 0.015 g (equivalentes a 0.072 mmol) del ligante y 0.03 g de K₂PtCl₄ (equivalentes a 0.072 mmol). La reacción procede por 24 horas y al detenerla se obtiene una solución amarilla que se lleva a sequedad, consiguiendo un sólido del mismo color.

Figura 2.14. Estructura del compuesto PtLCI.

2.17. Síntesis de PtLBr.

Se pesaron 0.019 g (equivalentes a 0.072 mmol) del ligante y 0.03 g de K₂PtCl₄ (equivalentes a 0.072 mmol). Se deja reaccionar a reflujo por 24 horas y al detener la reacción se obtiene una solución amarilla que se lleva a sequedad para obtener un sólido de color mostaza.^{43,44,55}

Figura 2.15. Estructura del compuesto PtLBr.

Se pesaron 0.014 g (equivalentes a 0.072 mmol) del ligante y 0.03 g de K₂PtCl₄ (equivalentes a 0.072 mmol). El tiempo de reacción es de 24 horas y obtenemos una solución café que se debe secar para conseguir un sólido color mostaza.^{50,56}

Figura 2.16. Estructura del compuesto PtLOH.

Capítulo 3

Caracterización

Todos los compuestos mencionados en el capítulo anterior, se caracterizaron por espectroscopía de infrarrojo, espectrometría de masas con las técnicas de Análisis Directo en Tiempo Real, DART (por sus siglas en inglés "Direct Analysis in Real Time"), Bombardeo de Átomos Rápido, FAB (por sus siglas en inglés "Fast Atom Bombardment), Resonancia Magnética Nuclear de ¹H, ¹³C{¹H} y ¹⁹F{¹H}; Análisis Elemental por combustión y cuando fue posible por difracción de rayos-X de cristal único.

Estructura, Fórmula y Peso Molecular (g/mol).	Apariencia física	Solubilidad (T _{amb.})	Tiempo y Rendimie nto de la reacción.	Análisis Elementa I Calculad o (%).	Análisis Elementa I Experime ntal (%).
C ₁₂ H ₉ N ₂ F 200.22	Sólido cristalino de color rojizo	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 82%	C: 71.99 H: 4.53 N: 13.99	C: 72.00 H: 4.50 N: 13.37
C ₁₂ H ₉ N ₂ Cl 216.67	Sólido cristalino de color rojizo	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 86%	C: 66.52 H: 4.19 N: 12.93	C: 66.48 H: 4.07 N: 12.68
C ₁₂ H ₉ N ₂ Br 261.12	Sólido cristalino de color rojizo	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 81%	C: 55.20 H: 3.47 N: 10.73	C: 52.02 H: 3.39 N: 9.65
С ₁₂ Н ₉ N ₂ OH 198.23	Sólido cristalino de color rojizo	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 78%	C: 72.71 H: 5.09 N: 14.13	C: 72.52 H: 5.11 N: 14.05

 Tabla 3.1. Algunas propiedades de los ligantes.

			Tiempo	Análisis	Análisis
Estructura, Fórmula y Peso Molecular (g/mol).	Apariencia física	Solubilidad (T _{amb.})	y rendimie nto de la reacción	Element al Calculad o.	Element al Experi mental
$F_{C_{24}H_{18}N_4F_2Cl_2Ni \cdot DMSO/Cl_2CH_2} F_{C_{24}H_{18}N_4F_2Cl_2Ni \cdot DMSO/Cl_2Ni \cdot DMSO/Cl_$	Sólido de color marrón.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 85%	C: 46.79 H: 3.78 N: 8.08	C: 46.98 H: 3.49 N: 8.34
C_{1} C_{1} C_{1} $C_{24}H_{18}N_{4}CI_{4}Ni \cdot CH_{3}CN$ 526.93	Sólido de color marrón.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 88%	C: 51.38 H: 3.32 N: 10.18	C: 49.15 H: 3.57 N: 10.38
$\begin{array}{c} Br\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	Sólido de color rojo.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 86%	C: 40.76 H: 2.74 N: 7.60	C: 40.94 H: 2.64 N: 7.85
$\begin{array}{c} HO \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	Sólido de color anaranjado.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 82%	C: 45.66 H: 4.07 N: 7.89	C: 43.71 H: 4.36 N: 8.13

 Tabla 3.2. Algunas propiedades de los Compuestos de Coordinación sintetizados.

Continuación de la tabla 3.2

$CI - Pd - N$ F $C_{12}H_{9}N_{2}FCI_{2}Pd$ 377.54	Sólido de color anaranjado.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 75%	C: 37.42 H: 2.38 N: 7.83	C: 37.15 H: 2.66 N: 7.29
$ \begin{array}{c} $	Sólido de color mostaza.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 72%	C: 36.58 H: 2.30 N: 7.11	C: 36.50 H: 2.47 N: 7.49
$CI - Pd - N$ Br $C_{12}H_9N_2BrCI_2Pd$ 438.44	Sólido de color anaranjado.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 78%	C: 32.87 H: 2.07 N: 6.39	C: 32.26 H: 2.22 N: 6.14
$\begin{array}{c} & & \\$	Sólido de color amarillo.	Soluble en MeOH, EtOH, CH ₂ Cl ₂ , Acetona, Acetonitrilo, DMSO e insoluble en Hexano, Pentano y agua.	24 horas 71%	C: 35.92 H: 2.65 N: 6.70	C: 36.00 H: 3.05 N: 6.92
$CI \xrightarrow{Pt} CI \xrightarrow{F} C_{12}H_9N_2FCI_2Pt \cdot CH_3OH 466.20$	Sólido de color amarillo	Insoluble en MeOH, EtOH, parcialmente soluble en Acetona y soluble en DMSO	24 horas 84%	C: 31.34 H: 2.63 N: 5.62	C: 33.24 H: 2.76 N: 5.92

CI - Pt - N $CI - Pt - N$ CI CI CI CI CI CI CI CI	Sólido de color amarillo	Insoluble en MeOH, EtOH, parcialmente soluble en Acetona y soluble en DMSO	24 horas 86%	C: 29.60 H: 2.32 N: 6.38	C: 26.86 H: 2.32 N: 6.38
$CI - Pt - N$ Br $C_{12}H_9N_2BrCI_2Pt \cdot CH_3OH/CI_2CH_2$ 527.11	Sólido de color mostaza	Insoluble en MeOH, EtOH, parcialmente soluble en Acetona y soluble en DMSO	24 horas 84%	C: 26.11 H: 2.35 N: 4.35	C: 26.16 H: 2.44 N: 5.17
$CI \xrightarrow{Pt-N} OH$ $C_{12}H_{10}N_2OCI_2Pt \cdot 4CI_2CH_2$ 464.21	Sólido de color mostaza	Insoluble en MeOH, EtOH, parcialmente soluble en Acetona y soluble en DMSO	24 horas 70%	C: 31.05 H: 2.17 N: 6.03	C: 21.96 H: 1.98 N: 3.83

Los análisis elementales experimentales sugieren la obtención de compuestos cuya fórmula molecular coincide con los porcentajes de los elementos presentes en las muestras, en algunos casos el análisis elemental coincide con la presencia de moléculas de disolventes ocluidos en la muestra.

Compueste		Infrarrojo	
compuesto	υC=N _{Imina} (cm ⁻¹)	υC=C _{piridina} (cm ⁻¹)	υC _{Ar} -X (cm ⁻¹)
LF	1624	1582	υC_{Ar}-F 1214
LCI	1621	1583	טC_{Ar}-Cl 770
LBr	1621	1585	սC_{Ar}-Br 536
LOH	1623	1576	υ C_{Ar}-Ο 1233
NiLF	1627	1593	υ C _{Ar} -F 1196
NiLCI	1627	1592	טC_{Ar}-Cl 777
NiLBr	1625	1592	սC_{Ar}-Br 529
NiLOH	1624	1595	υC_{Ar}-Ο 1224
PdLF	1592	1581	υ C _{Ar} -F 1217
PdLCl	1611	1585	טC_{Ar}-Cl 764
PdLBr	1611	1583	սC_{Ar}-Br 525
PdLOH	1612	1592	υC_{Ar}-Ο 1234
PtLF	1596	1596	υ C _{Ar} -F 1227
PtLCl	1612	1587	טC_{Ar}-Cl 763
PtLBr	1610	1583	սC_{Ar}-Br 582
PtLOH	1596	1596	υC_{Ar}-Ο 1211

Tabla 3.3. Bandas de IR de los grupos imina y piridina en los diferentescompuestos sintetizados.

Los espectros de infrarrojo fueron obtenidos en el intervalo de v=4000-400 cm⁻¹ y permiten observar la existencia del enlace C=N de la imina al mostrar una banda de intensidad media entre v=1592-1627 cm⁻¹ para todos los compuestos sintetizados (Figuras D.1-D.16)^{17,28,46}. Se puede observar que la sustitución del anillo aromático por los distintos halógenos y el ion hidroxilo en posición para en los ligantes no representa una variación significativa, mientras que al formar los complejos metálicos la banda aumenta en frecuencia debido a la donación de electrones que hay por parte del metal hacia el enlace de la imina²⁵, el cual se ve fortalecido^{50,57}. Así mismo, podemos observar que al desplazarnos hacia abajo en la familia de los halógenos, la frecuencia de la señal dada por estos disminuye, lo cual puede deberse a su electronegatividad; que sin importar lo lejos que se encuentran del enlace imina, su participación en la molécula fortalece el enlace C=N⁵¹. excepto por el ion hidroxilo que no desplaza la banda de forma importante^{45,47}. Estas bandas concuerdan con las reportadas en la literatura.^{17,40,41,57,58}

La cuarta columna (Tabla 3.3) contiene las frecuencias a las que se observan los sustituyentes en posición para del grupo arilo. Se puede apreciar que estas bandas disminuyen la frecuencia a la que se encuentran en el espectro de la misma manera en la que se encuentran en la tabla periódica los halógenos correspondientes, debido a su electronegatividad y radio atómico, presentando los mayores valores el flúor y oxígeno y los menores el bromo. Esto se puede deber a la distancia de enlace y el traslape de orbitales.

Compuesto	Desplazamiento Químico de ¹ Η (δ en ppm)	Desplazamiento Químico de ¹³ C { ¹ H} (δ en ppm)	Desplazamiento Químico de ¹⁹ F { ¹ H} (δ en ppm)
LF	8.72 (ddd, 1H, H5, J=4.8, J=1.7, J=1.1 Hz) 8.60 (s, 1H, H6) 8.14 (ddd, 1H, H2, J=7.7, J=1.1, J=1.1 Hz) 7.95 (td, 1H, H3, J=7.7, J=1.5 Hz) 7.53 (ddd, 1H, H4, J=7.7, J=4.8, J=1.1 Hz) 7.42 (dd, 2H, H8, J=9.0, J=8.6 Hz) 7.28 (dd, 2H, H9, J= 9.0, J=5.1 Hz)	161.0 (d, C10, J= 243 Hz) 160.7 (C6) 149.7 (C5) 121.2 (C2) 146.7 (d, C7, J= 8.7 Hz) 153.9 (C1) 137.0 (C3) 125.6 (C4) 123.1 (d, C8, J=8.7 Hz) 116.0 (d, C9, J=22.6 Hz)	-116.15 (tt, 1F, F1, J=8.8, J=5.1 Hz)
LCI	8.72 (ddd, 1H, H5, J=4.8, J=1.8, J=1.1 Hz) 8.59 (s, 1H, H6) 8.15 (dt, 1H, H2, J=8, J=1.1 Hz) 7.95 (ddd, 1H, H3, J=8, J=7.5, J=1.1 Hz) 7.53 (ddd, 1H, H4, J=7.5, J=4.8, J=1.1 Hz) 7.48 (d, 2H, H8, J=8.8 Hz) 7.36 (d, 2H, H9, J=8.8 Hz)	161.5 (C6) 153.8 (C1) 149.7 (C5) 149.2 (C7) 137.0 (C3) 131.0 (C10) 129.2 (C8) 125.7 (C4) 122.9 (C9) 121.3 (C2)	
LBr	8.72 (dd, 1H, H5, J=4.7 Hz) 8.59 (s, 1H, H6) 8.15 (dd, 1H, H2, J=7.8, J=1.2 Hz) 7.95 (td, 1H, H3, J=7.8 Hz) 7.61 (d, 2H, H8, J= 8.6 Hz) 7.54 (ddd, 1H, H4, J=7.8, J= 4.7 Hz, J=1.2 Hz) 7.30 (d, 2H, H9, J=8.6 Hz)	161.5 (C6) 153.8 (C1) 149.6 (C5) 149.6 (C7) 137.0 (C3) 132.1 (C8) 125.8 (C4) 123.3 (C9) 121.3 (C2) 119.3 (C10)	

Tabla 3.4. Datos de RMN ¹H, ¹³C{¹H} y ¹⁹F{¹H} para los compuestos LF, LCI, LBr, LOH, PdLF, PdLCI, PdLBr y PdLOH a temperatura ambiente en DMSO-d₆.

	Continuación de la tabla 3.4.					
LOH	9.68 (s, 1H, OH) 8.68 (ddd, 1H, H5, J= 4.9, J= 1.7, J= 0.9 Hz) 8.60 (s, 1H, H6) 8.11 (ddd, 1H, H2, J=7.5, J=1.2, J=0.9 Hz) 7.91 (td, 1H, H3, J=7.5, J=1.7 Hz) 7.46 (ddd, 1H, H4, J=7.5, J=4.8, J=1.2 Hz) 7.30 (d, 2H, H8, J=8.8 Hz) 6.84 (d, 2H, H9, J=8.8 Hz)	157.1 (C10) 156.9 (C6) 154.6 (C1) 149.5 (C5) 141.5 (C7) 136.9 (C3) 125.1 (C4) 123.0 (C8) 120.7 (C2) 115.9 (C9)				
PdLF	9.05 (dd, 1H, H5, J=5.7, J=1.6 Hz) 8.75 (s, 1H, H6) 8.40 (td, 1H, H3, J= 7.7, J=1.6 Hz) 8.20 (dd, 1H, H2, J=7.7, J=1.6 Hz) 7.94 (ddd, 1H, H4, J=7.5, J=5.7 Hz) 7.49 (dd, 2H, H8, J=8.9 Hz) 7.31 (t, 2H, H9, J=8.9 Hz)	172.7 (C6) 161.6 (d, C1, J=245.7Hz) 155.7 (C1) 150.0 (C5) 143.2 (d, C7, J=3 Hz) 141.2 (C3) 129.5 (C2) 129.1 (C4) 126.2 (d, C8, J=9 Hz) 114.9 (d, C9, J= 23.2 Hz)	-113.19 (tt, 1F, F1, J= 9.0, J=5.0)			
PdLCl	9.05 (d, 1H, H5, J=5.6Hz) 8.76 (s, 1H, H6) 8.40 (t, 1H, H3, J= 7.7 Hz) 8.21 (d, 1H, H2, J=7.7 Hz) 7.95 (dd, 1H, H4, J=7.7, J=5.6 Hz) 7.54 (d, 2H, H8, J=8.5 Hz) 7.45 (d, 2H, H9, J= 8.5 Hz)	172.9 (C6) 155.7 (C1) 150.0 (C5) 145.6 (C7) 141.3 (C3) 132.9 (C10) 129.6 (C2) 129.1 (C4) 128.1 (C8) 125.8 (C9)				
PdLBr	9.05 (dd, 1H, H5, J= 5.6, J=1.6 Hz) 8.76 (s, 1H, H6) 8.40 (td, 1H, H3, J=7.7, J=1.6 Hz) 8.21 (dd, 1H, H2, J=7.8, J=1.6 Hz) 7.95 (ddd, 1H, H4, J=7.5, J=5.6, J=1.6 Hz) 7.67 (d, 2H, H8, J=8.7 Hz) 7.38 (d, 2H, H9, J=8.7 Hz)	173.0 (C6) 155.8 (C1) 150.1 (C5) 146.0 (C7) 141.3 (C3) 131.1 (C8) 129.6 (C2) 129.2 (C4) 126.2 (C9) 121.5 (C10)				

	Continuación de la tabla	3.4.	
PdLOH	9.96 (s, 1H, OH) 9.04 (d, 1H, H5, J=5.4 Hz) 8.62 (s, 1H, H6) 8.37 (td, 1H, H3, J=7.8, J=1.6 Hz) 8.16 (d, 1H, H2, J= 7.8 Hz) 7.9 (td, 1H, H4, J=5.7, J=2.8 Hz) 7.29 (d, 2H, H8, J=8.8 Hz) 6.79 (d, 2H, H9, J=8.8 Hz)		
PtLF	9.46 (d, 1H, H5, J=5.7 Hz, ${}^{3}J_{H5-Pt}$ =18 Hz) 9.37 (s, 1H, H6, ${}^{3}J_{H6-Pt}$ =42 Hz) 8.45 (t, 1H, H3, J=7.8 Hz) 8.25 (d, 1H, H2, J=7.7 Hz) 7.49 (t, 1H, H4, J=6.8 Hz) 7.53 (dd, 2H, H8, J=8.7, J _F = 5 Hz) 7.35 (t, 2H, H9, J= 8.7 Hz)	172.9 (C6)	-112.9 (s, 1F, F1)
PtLCI	9.46 (d, 1H, H5, J= 5.6, ³ J _{H5-Pt} =90 Hz) 9.38 (s, 1H, H6, ³ J _{H6-Pt} =42 Hz) 8.45 (t, 1H, H3, J=7.6 Hz) 8.26 (d, 1H, H2, J=7.6 Hz) 8.0 (dd, 1H, H4, J=7.6, J= 5.6 Hz) 7.58 (d, 2H, H8, J=8.7 Hz) 7.50 (d, 2H, H9, J=8.7 Hz)		
PtLBr	9.46 (d, 1H, H5, J=5.7, ³ J _{H5-Pt} =126 Hz) 9.38 (s, 1H, H6, ³ J _{H6-Pt} =42 Hz) 8.45 (t, 1H, H3, J=7.8 Hz) 8.26 (d, 1H, H2, J=7.8 Hz) 8.0 (dd, 1H, H4, J=7.8, J=5.7 Hz) 7.71 (d, 2H, H8, J=8.7 Hz) 7.43 (d, 2H, H9, J=8.7 Hz)		
PtLOH	10.06 (s, 1H, OH) 9.45 (d, 1H, H5, J=5.8, ³ J _{H5-Pt} =48 Hz) 9.23 (s, 1H, H6, ³ J _{H6-Pt} =42 Hz) 8.42 (t, 1H, H3, J=7.8 Hz) 8.20 (d, 1H, H2, J=7.8 Hz) 7.94 (dd, 1H, H4, J=7.8, J=5.8 Hz) 7.33 (d, 2H, H8, J=8.4 Hz) 6.84 (d, 2H, H9, J=8.4 Hz)		

Todas las señales presentes en los análisis de RMN fueron asignadas con base en experimentos bidimensionales (HETCOR, HSQC y COSY) y de espectros similares previamente reportados.

De manera general, los espectros de RMN de ¹H de los ligantes sintizados mostraron un patrón de tipo ABCD en los protones piridínicos. En todos estos compuestos la señal que presenta mayor desplazamiento químico fue asignada al protón adyacente al átomo de nitrógeno de la piridina y fue etiquetado como H5. Su desplazamiento químico (δ =8.62-8.72ppm) puede atribuirse a la desprotección que crea el átomo de nitrógeno. El protón imínico se observa para todos estos compuestos como una señal sencilla e intensa con desplazamiento promedio de δ =8.60 ppm y fue etiquetado como H6¹⁷. El protón piridínico adyacente a la sustitución del anillo fue etiquetado como H2 y se observa en los espectros dentro del intervalo δ =8.11-8.15ppm. El protón que fue etiquetado como H3 es el que se encuentra en la posición opuesta al átomo de nitrógeno en la piridina y se puede observar en los espectros de RMN ¹H como una señal doble de triples en un desplazamiento entre δ =7.91-7.95ppm debido al acoplamiento que hay con los demás protones piridínicos. El último protón piridínico aparece como una señal múltiple de baja intensidad entre δ =7.46-7.54ppm. etiquetado como H4. Los 4 protones que se encuentran en el anillo aromático para sustituido se observan como dos señales intensas debido la simetría que la sustitución le confiere al anillo. Por lo tanto, los dos protones más cercanos a la imina pueden etiquetarse como uno solo en H8 y los más cercanos al sustituyente halogenado o hidroxilo serán H9. La señal de H8 aparece en un desplazamiento químico de δ =7.30-7.61ppm dentro de la zona de aromáticos mientras que la señal H9 se desplaza a campo alto y se observa entre δ =6.84-7.36ppm debido a su cercanía con el halógeno sustituyente o el grupo hidroxilo que causa la desprotección de los protones debido a un efecto inductivo. La multiplicidad se debe al acoplamiento que hay entre los hidrógenos del mismo anillo.45,46,48,51

46

3.1. Resonancia Magnética Nuclear de ¹H para los complejos metálicos.

Los complejos de Pd(II) y Pt(II) fueron caracterizados por RMN de ¹H, en donde se observó un desplazamiento significativo a desplazamientos químicos mayores para los hidrógenos del anillo piridínico. Sin embargo, los hidrógenos etiquetados como H5 para los complejos de Pd(II) **PdLF–PdLOH** mostraron valores de $\Delta\delta$ en el intervalo de 0.33 a 0.36ppm, mientras que el $\Delta\delta$ observado para H6 fue de 015 a 0.17ppm; esta desprotección puede ser atribuida a la formación del anillo quelato de cinco miembros; Por otro lado, en los complejos de Pt(II) **PtLF–PtLOH** se encontraron $\Delta\delta$ de 0.63 a 0.77ppm respecto a las iminas libres⁵⁷, mientras que el $\Delta\delta$ del proton H5 se observó en el intervalo de 0.74 a 0.77 ppm. La comparación de los $\Delta\delta$ muestra que los complejos de Pt(II) presentan una mayor desprotección de los protones aromáticos con respecto a los enlaces N_{piridina}–Pt con respecto a los enlaces N_{piridina}–Pd y N_{imina}–Pd^{17,50}.

3.2. Resonancia Magnética Nuclear de ¹³C{¹H} para los complejos de Pd(II).

En los ligantes piridilimínicos la asignación de los átomos de carbono se hizo con experimentos ${}^{1}H{-}{}^{13}C$ (HSQC), en donde se observó que la señal desplazada hacia frecuencias mayores corresponde al átomo de carbono C6. En estos compuestos los átomos de carbonos de los anillos de piridina se encuentran en el intervalo de δ =154.6-120.7ppm. Para el compuesto **LF** se observó que la señal del carbono 10 es la más desplazada a campo bajo como una señal doble (${}^{1}J_{C-F}$ = 243 Hz), esto se debe a que el átomo de flúor es pequeño y muy electronegativo, además de ser activo en resonancia.

En los espectros de ¹³C{¹H} de los complejos de Pd(II) se observaron las señales de los carbonos del anillo piridínico y del carbono imínico en el intervalo de δ =173.0-129.1ppm, Las señales de los carbonos imínicos (C6) fueron las más desplazadas hacia ppm mayores con respecto a los ligantes libres, en donde el valor del $\Delta\delta$ para el carbono C6 se encontró en el intervalo de 11.4 a 12.0 ppm

(Figura 3.1 y 3.2); esto es atribuido a la formación del anillo quelato de cinco miembros, cabe mencionar que el $\Delta\delta$ determinado para el C6 en los complejos **PdLF–PdLBr** se encontró dentro del intervalo para el carbono de tipo imina en complejos de Pd(II) y Pt(II) isoestructurales.⁵⁶

Figura 3.1. Comparación del desplazamiento químico entre el ligante libre del compuesto **LBr** y sus complejos metálicos de Pd(II) y Pt(II) en RMN ¹H.

Figura 3.2. Comparación del desplazamiento químico entre el ligante libre del compuesto **LBr** y el correspondiente complejo metálico de Pd(II) en RMN ¹³C.

3.3. Espectrometría de Masas.

La caracterización de los compuestos por espectrometría de masas sugiere la obtención de los ligantes libres por el método DART, ya que en ellos se puede observar que los picos obtenidos experimentalmente corresponden a las masas protonadas 1 ó 2 veces como máximo de los compuestos LF, LCI, LBr y LOH. Además, comparando los patrones isotópicos con los calculados, podemos observar que estos coinciden con precisión.

Los compuestos de Ni(II) fueron analizados por la técnica FAB⁺. En estos espectros podemos observar un pico de baja intensidad que corresponde a la masa de cada compuesto analizado (NiLF, NiLCI, NiLBr y NiLOH) al perder un cloro de su estructura (aproximadamente 35 unidades) respectivamente.

Capítulo 4

Difracción de Rayos-X de monocristal.

Del ligante LOH se obtuvieron cristales adecuados para su estudio por difracción de rayos-X de monocristal, en la tabla 5 se muestran los datos cristalográficos^{17,59}.

Tabla 4.1. Datos cristalográficos del comp	uesto LOH.
--	------------

	LOH
Fórmula	C12H10N2O
Peso molecular	198.22
Tamaño del cristal (mm)	0.510 x 0.390 x
	0.330
Sistema cristalino	Ortorrómbico
Grupo espacial	Pbca
a (Å)	13.6512
b (Å)	9.2671(4)
c (Å)	15.5822(6)
α (°)	90
β (°)	90
γ (°)	90
$V(Å^3)$	1971.26(13)
Z	8
D_{calcd} (Mg/m ³)	1.336
$\mu (mm^{-1})$	0.088
F(000)	832
Goodness of fit (GOF on F^2)	1.037
T(K)	130(2)
$\theta(\circ)$	3.707-29.389°.
Reflexiones colectadas	13005
Reflexiones únicas	2468
Corrección por absorción	Analítico
Método de solución	Directos
Reflecciones independientes (<i>R</i> int)	0.0288
$R_1, WR_2 [I > 2\sigma(I)]$	0.0397, 0.0917
R1, WR2 [todos los datos]	0.0504, 0.1000
Diferencia entre en pico máximo y el mínimo (eÅ ³)	0.246/ -0.301

El ligante **LOH** cristalizó en el sistema ortorrómbico con un grupo espacial Pbca; en la figura 4.1 se muestra la estructura molecular del ligante¹⁷.

Figura 4.1. Estructura molecular de LOH.

En la estructura molecular de **LOH** se observó que el isómero predominante en estado sólido fue *E*, cuya distancia de enlace C=N del grupo imina fue de 1.2695(15) Å y que es consistente con datos descritos en la literatura para compuestos similares, en la celda unitaria para este compuesto, se observó la formación de enlaces por puente de hidrógeno entre el grupo OH y el átomo de nitrógeno de la piridina, cuya distancia interatómica N–O es de 2.7415(13) Å y el ángulo entre dichos átomos es de 172.8°, lo cual sugiere la presencia de puentes de hidrógeno fuertes; en la figura 4.2 se muestra un arreglo por puentes de hidrógeno observado en la celda unitaria⁵⁷.

Figura 4.2. Arreglo por puentes de hidrógeno.

Además de estas interacciones se observó también la presencia de una interacción de tipo $H-\pi$ entre el hidrógeno etiquetado como H(8) y el anillo bencénico, cuya distancia de enlace es de 2.696 Å, y que es consistente con sistemas similares descritos en la literatura, (figura 4.3).

Figura 4.3. Interacción de tipo Hidrógeno $-\pi$.

Por otro lado, se obtuvieron cristales adecuados para su estudio por difracción de rayos-X de monocristal del complejo **NiLCI**, en la tabla 6, se muestran los datos cristalográficos para este complejo^{25,53}.

	NiLCI
Fómula	C ₇₄ H ₅₇ Cl ₁₂ N ₁₃ Ni ₃
Peso molecular	1729.85
Tamaño del cristal (mm)	0.530 x 0.400 x
	0.160
Sistema cristalino	Monoclinico
Grupo espacial	P 21/c
a (Å)	20.3462(9)
b (Å)	21.4440(8)
c (Å)	19.9986(11)
α (°)	90
β (°)	101.620(4)
γ (°)	90
$V(A^3)$	8546.6(7)
Z	4
D _{calcd} (Mg/m ³)	1.344
μ (mm ⁻¹)	1.076
F(000)	3520
Goodness of fit (GOF on F^2)	1.088
T(K)	130(2)
$\theta(^{\circ})$	3.508 - 29.526°
Reflexiones colectadas	51569
Reflexiones únicas	20271
Corrección por absorción	Analítico
Método de solución	Directos
Reflecciones independientes (<i>R</i> int)	0.0344
$R_1, WR_2 [l > 2\sigma(l)]$	0.0474, 0.1314
R1, WR2 [todos los datos]	0.0701, 0.1455
Diferencia entre en pico máximo y el mínimo (eÅ ³)	1.855/ -1.092

Tabla 4.2. Datos cristalográficos del compuesto NiLCI.

El complejo **NiLCI** cristalizó en un sistema ortorrómbico en un grupo espacial P21/c, en la celda unitaria se observaron tres moléculas cristalográficamente independientes (figura 4.4), la geometría local en torno al ion Ni(II) fue octaédrica distorsionada en donde los átomos de cloro se encuentran en posición *cis*. En la figura 26 se muestra la estructura molecular para dicho complejo.

Figura 4.4. Moléculas de NiLCI cristalográficamente independientes.

Figura 4.5. Estructura molecular de la molecula Ni(1)LCI.

En la tabla 4.3 se muestran las distancias y ángulos de enlace más representativos de este compuesto⁴¹.

Compuesto	NiLCI	NiLCI	NiLCI			
	Ni(1)	Ni(2)	Ni(3)			
	Distancias	s de enlace (Å)				
Ni–N _{piridínico}	2.083(2), 2.084(2)	2.076(2), 2.076(2)	2.062(2), 2.067(2)			
Ni–N _{imínico}	2.152(2), 2.144(2)	2.142(2), 2.137(2)	2.142(2), 2.168(2)			
Ni–Cl	2.3868(8), 2.3936(8)	2.3993(8), 2.3672(7)	2.3856(8), 2.3937(8)			
	Ángulos de enlace (°)					
N _{imina} –Ni–N _{piridina}	77.88(9), 78.22(9)	77.45(9), 77.61(9)	77.91(9), 78.11(9)			
N _{piridina} –Ni–N _{piridina}	169.11(9)	167.65(9)	168.54(9)			
N _{imina} –Ni–Cl	169.64(7), 171.21(7)	169.66(6), 169.65(6)	167.10(6), 167.83(6)			
CI–Ni–CI	93.80(3)	97.74(3)	98.94(3)			

 Tabla 4.3. Distancias y ángulos más representativos de complejo NiLCI.

De manera general, se puede observar que las distancias de enlace N_{imina}–Ni son estadísticamente iguales y que se encuentran en el intervalo de 2.137 a 2.168 Å, los cuales son muy similares a complejos de Ni(II) isoestructurales descritos en la literatura⁴³, mientras que las distancias de enlace N_{piridina}–Ni se encontraron en el intervalo de 2.062 a 2.084 Å y que son consistentes con complejos previamente descritos^{15,44,53,55}; mientras que los ángulos de enlace de las posiciones trans N_{piridina}–Ni–N_{piridina} se encontraron en el intervalo de 167.65 a 169.11°, lo cual confirma la distorsión de la geometría octaédrica, en donde los ángulos ideales son de 180°, por otra parte, los ángulos de mordida del anillo quelato de cinco miembros N_{imina}–Ni–N_{piridina} se encontraron en el intervalo de 77.45 a 78.22°.

Capítulo 5

Pruebas Biológicas

5.1. Evaluación citotóxica.

5.1.1. Introducción a la técnica.

Desde 1990, el Instituto Nacional de Cancér de los Estados Unidos de América (NIC) ha empleado el bioensavo colorimétrico de sulforodamina B en 60 líneas celulares subdivididas en paneles según los tejidos de donde estas fueron extraídas (leucemias, pulmón, colón, Sistema Nervioso Central, melanomas, ovario, riñón, próstata y mama). Para llegar a este bioensayo hubo un arduo trabajo científico. Inicialmente a escala piloto se compararon 21 colorantes histológicos para medir la densidad celular y la citotoxicidad del 5-fluorouracilo y cisplatino en células que se adhirieron al fondo de los micropozos de placas de 96 pozos. Se partió del principio de que los colorantes se unen electrostáticamente a macromoléculas de células precipitadas (fijadas) al sustrato plástico y variando el pH se permite la unión y disolución del complejo proteína-colorante. Para optimizar el proceso solo 7 colorantes fueron comparados, cuatro colorantes aniónicos: sulforodamina B (SRB), azul de bromo fenol (BPB) cromotrope 2R (CTR) y naranja G (ORG), los cuales tiñen proteínas aniónicas con grupos sulfónicos y sulfhídricos bajo condiciones ácidas moderadas, y el complejo se solubilizaba con disoluciones básicas

5.1.2. Procedimiento del Bioensayo de Sulforodamina B

Las líneas celulares que se utilizan en el laboratorio de pruebas biológicas del Instituto de Química, pertenecen al panel del NCI, las cuales fueron adaptadas al medio de cultivo RPMI-1640 adicionado con suero fetal bovino (10%), una mezcla de antibióticos-antimicóticos al 10% y 2mM de glutamina. A estas líneas se les caracterizó al tiempo de duplicación y con ello se estableció la densidad de inóculo que se deposita en cada uno de los micropozos, como se muestra en la tabla 5.1.

Línea	Órgano de	Tiempo	Cálulas/nozo	Concentración
celular	origen	duplicación (hrs)	0610183/p020	TCA (%)
K562	CML	19	5,000	50
HCT-15	colón	18.1	10,000	50
MCF-7	mama	25.6	5,000	50
PC-3	próstata	28.7	7,500	50
U251	SNC	25.4	7,500	50
SKLU	pulmon	25.4	7500	50

 Tabla 5.1. Tiempos de duplicación, concentración y órganos de origen de las líneas celulares estudiadas.

(TCA: ácido tricloroacético, CML: leucemia mieloblástica crónica, SNC:sistema nervios central).

Con excepción de la línea K562, las líneas restantes se adhieren a las botellas de cultivo y para cosecharlas se adiciona 1mL de 0.05% de tripsina-EDTA. Enseguida que las células se desprenden del sustrato plástico, se les adiciona de 5-10 mL de medio de cultivo para inactivar la tripsina. Las células en suspensión son depositadas en tubos cónicos y centrifugadas por 3 min., ya formado el paquete celular se le agrega medio de cultivo para resuspender éstas. De la suspensión se toma una alícuota y se agrega azul de tripano, para contar la población de células viables y ajusta la densidad del inoculo. Determinando el número de células por mL, se hacen los ajustes necesarios para depositar el inoculo en un volumen de 100µL/pozo a la densidad ya antes mencionada. Cada placa es inoculada con dos líneas celulares por triplicado y es preincubada por 24 hrs a 37°C con una atmósfera de 5% de CO₂ y 100% de humedad relativa, para favorecer la estabilidad de éstos antes de adicionar las sustancias a probar. Para un crecimiento primario (screening) de un compuesto puro se prueba la concentración más alta permitida 50 µM, y para el caso de extractos vegetales se emplea la concentración de 50 µg/mL. Todas las muestras son solubilizadas en

dimetil sulfoxido (DMSO) o agua 100 veces más concentradas que la concentración a probar. Inmediatamente después de la preparación de las muestras en solución y en el caso de realizar curvas concentración-respuesta (5 diluciones se prueban) se agregan 100µL, siendo el volumen final del pozo de 200µL. Nuevamente la microplaca es incubada por 48 hrs bajo las condiciones antes mencionadas.

Al finalizar el periodo de incubación de los compuestos con las células, éstas son precipitadas (o fijadas) in situ añadiendo 50µl de una solución de TCA frío al 50% e incubadas a 4°C por 60 minutos. Se desecha el sobrenadante y las placas son lavadas 5 veces con agua desionizada y secadas al ambiente. El teñido de las células fijadas al sustrato del pozo, es con 100µl de una solución al 0.4% de SRB e incubadas por 30 minutos a temperatura ambiente. La SRB no unida es removida por 3 lavados con ácido acético al 1% y se dejan secar al ambiente. Las placas teñidas se les agrega 100µl de un buffer de tris y se agitan por 10 minutos para favorecer la disolución del complejo; a continuación se mide la densidad óptica (DO) en un lector de microplacas (Synergy/BioteK) a una longitud de onda de 515nm .Los datos se procesan obteniendo el promedio de la DO de los 3 pozos/línea tratados con el compuesto (DOt), los 3 pozos tratados con DMSO (DOc) y 2 pozos de testigos, es decir aquellos que no tiene células pero si compuesto (DOb). El % de inhibición del crecimiento (%IC) se calcula con la siguiente expresión:

$$\% IC = \left(\frac{DO_t - DO_B}{DO_C - DO_B}\right) 100$$

Ecuación 5.1. Ecuación para determinar el porcentaje de Inhibición de crecimiento en las líneas celulares.

En el apéndice B se anexa un diagrama del bioensayo.

Para los complejos de Pd(II) y Pt(II) se evaluó la actividad citotóxica frente a diferentes líneas celulares, en donde los resultados preliminares mostraros que los complejos de Pt(II) presentaron mayor actividad citotóxica en comparación con los de Pd(II), destacándose el complejo de **PtLBr** que fue el más selectivo en la mayoría de los análisis; cabe hacer mención que este estudio se realizó a una concentración de 50 μ M, sin embargo en un segundo screening se encontró que los complejos de **PtF**, **PtCI** y **PtBr** presentaron una actividad similar en líneas celulares hormonales (Próstata y mama) a una concentración de 25 μ M^{17,18}.

5.2. Evaluación Antibacterial

Tabla 5.2. Diámetros y porcentajes de inhibición de los ligantes libres y loscomplejos de Ni(II) en las diferentes bacterias y hongos.

Parámetro a medirse	Compuesto (10 mg/mL)	LF	LCI	LBr	LOH	NiLF	NiLCI	NiLBr	NiLOH
	Escherichia coli	0	0	0	0	0	0	0	0
	Klebsiella pneumoniae	0	0	0	0	0	0	0	0
Diámetro	Bacillus subtillis	0	0	0	1.50	0	0	1.00	1.40
de halo de inhibición (cm)	Staphilococcus aureus	0	0	0	1.10	0	0	0.30	1.00
	Saccharomyces cerevisiae	0	0	0	0	0	0	0	0
	Candida albicans	0	0	0	0	0	0	0	0
	Escherichia coli	0	0	0	0	0	0	0	0
Porcentaje de inhibición (%)	Klebsiella pneumoniae	0	0	0	0	0	0	0	0
	Bacillus subtillis	0	0	0	75.00%	0	0	47.62%	66.63%
	Staphilococcus aureus	0	0	0	55.00%	0	0	45.00%	45.45%
	Saccharomyces cerevisiae	0	0	0	0	0	0	0	0
	Candida albicans	0	0	0	0	0	0	0	0

Bacteria	Escherichia coli	Klebsiella pneumoniae	Bacillus subtilis	Staphilococc us aureus	Saccharomy ces cerevisiae	Candida albicans
Antibióticos control	Ampicilina	Cloranfenicol	Ampicilina	Cloranfenicol	Fluconazol	Fluconazol
Concentración	1.0 mg/mL	0.5 mg/mL	1.0 mg/mL	0.5 mg/mL	10 mg/mL	1.0 mg/mL
Diámetro de Inhibición (cm)	1.30	-	2.00	1.90	1.80	2.50

 Tabla 5.3. Concentración y diámetro de inhibición de los antibióticos control usados.

Los complejos sintetizados fueron escaneados en agares diferentes por el método de difusión para evaluar su actividad antibacterial y antifúngica en bacterias Gram negativas: Escherichia coli y Klebsiella pneumoniae; Gram Positivas: Bacillus subtilis y Staphilococcus aureus y Hongos: Saccharomyces cerevisiae y Candida albicans, considerados como patógenos para los humanos⁶⁰.

5.3. Método empleado para los cultivos.

En 5 mL de medio líquido se inoculó una colonia del microorganismo y se dejó crecer a 37 °C ó 30 °C (37= E. coli, K. pneumoniae, S. aureus, 30=los hongos y B. subtilis) toda la noche con agitación constante. 24 hrs. después se llevó a cabo una siembra masiva con hisopos estériles en una caja Petri y se colocaron los discos previamente impregnados con las disoluciones como se observa en la Figura 5.1. Cada cultivo sólido se incubó por 18-20 h a la temperatura de crecimiento óptimo de cada microorganismo. La manipulación de reactivos se llevó a cabo a cabo en zona estéril en campana de flujo laminar ESCO®.

Figura 5.1. Diagrama de ensayos de susceptibilidad.

Una hora después se midió el halo de inhibición y se calculó el porcentaje de inhibición a partir de ecuación 2.

$$\% I = \frac{A-B}{C-D} x \ 100$$

Ecuación 5.2. Ecuación usada para la determinación del % de Inhibición bacteriana.

En donde, A y B son la longitud del diámetro del halo de inhibición de la muestra y su disolvente, mientras que C y D son la longitud del diámetro del halo de inhibición del antibiótico control y su disolvente.

Gráfico 5.2. Diámetro de halo de inhibición de los compuestos que presentaron actividad antibacterial en Bacillus subtilis y Staphilococcus aureus.

Los compuestos LOH, NiLBr y NiLOH fueron los únicos que presentaron una severa actividad antibacterial considerada como específica de bacterias Gram positivas (Bacillus subtilis y Staphilococcus aureus), sin embargo, este estudio se encuentra en etapa inicial y los resultados de las pruebas de inhibición antibacterial son similares a los descritos en la literatura.

Los resultados pueden ser presentados en porcentajes de inhibición al compararse con los antibióticos control como se muestra en el gráfico 5.3:

Gráfico 5.3. Porcentaje de inhibición de los compuestos que presentaron actividad antibacterial en Bacillus subtilis y Staphilococcus aureus.

Conclusiones

- Se lograron sintetizar 12 complejos de Ni(II), Pd(II) y Pt(II) en donde se confirmó que los ligantes mostraron un comportamiento *N*,*N* –bidentado formando anillos quelato de cinco miembros.
- Con base en el estudio por RMN de ¹H se confirmó que los complejos de Pt(II) mostraron un desplazamiento a desplazamientos químicos mayores con respecto a los de Pd(II), esto puede atribuirse a un mayor efecto de desprotección por parte del centro metálico.
- Se confirmó que los ligantes retienen la coordinación en disolución hacia Pt(II) debido a la presencia de señales satélites con el núcleo de ¹⁹⁵Pt para los hidrógenos H5 y H6.
- Se corroboró que los complejos de platino presentan mayor actividad citotóxica frente a líneas celulares cancerígenas de mayor incidencia en México en comparación con los complejos de paladio, lo cual los hace buenos candidatos para posteriores experimentos a nivel fármaco.
- Los complejos de níquel mostraron tener buena actividad antibacterial frente a bacterias Gram positivas como Staphilococcus Aureus y Bacilus Subtillis.

Apéndice A

Reactivos, disolventes e Instrumentación.

Los reactivos como la piridín-2-carboxaldehído, el sulfato de sodio, la 4-fluoroanilina, 4cloroanilina, 4-bromoanilina y el 4-aminofenol fueron obtenidos de Aldrich Chem Co. y usados sin recibir un tratamiento previo a la parte experimental.

Las sales metálicas como el NiCl₂ y el K_2 PtCl₄ provienen también de Aldrich-Chem. Sin embargo, el [PdCl₂(CH₃CN)₂] se sintetizó en el laboratorio a partir de PdCl₂ y acetonitrilo a reflujo y calentamiento suave por 3 horas.

Todos los disolventes empleados son de grado reactivo, (metanol, etanol, acetona, hexano, pentano, acetonitrilo, diclorometano y el DMSO de cristalización) y fueron adquiridos de Aldrich Chem. Se emplearon sin purificación previa, con excepción del DMSO-d₆ utilizado en análisis espectroscópicos el cual es deuterado y grado analítico proveniente de Sigma-Aldrich.

El análisis elemental se determinó en un equipoPerkin Elmer PE2400 empleando cistina PE como estándar. Temperatura del reactor de combustión: 975°C, Temperatura del reactor de reducción: 501°C.

Los espectros de RMN fueron adquiridos empleando un espectrómetro Bruker Advance 300 MHz, utilizando como disolvente DMSO-d₆.

Los experimentos de difracción de Rayos-X se realizaron en un equipo Bruker SMART APEX equipado con detector bidimensional CCD y con dispositivo de baja temperatura.

La espectroscopía infrarrojo se llevó a cabo en un equipo BRUKER TENSOR 27 utilizando la técnica de pastilla en KBr.

El análisis por espectrometría de masas fue efectuado en un equipo Mstation JMS-700 bajo la técnica DART, mientras que las muestras analizadas por FAB⁺ se llevaron a cabo en un Espectrómetro de masas marca Thermo-Electron modelo: DFS (Double Focus Sector), Analizador Másico: Doble Sector (Magnético y eléctrico, geometría inversa).

FAB: Bombardeo con iones de Cesio. Temperatura de la cámara: menor a 50°C. detección de iones positivos.

Los antibióticos control para los estudios antibacteriales se adquirieron de Sigma Chemical Co. (St Louis, MO, EUA). Los componentes de los medios de cultivo se compraron a ForMedium®.

La composición de los medios de cultivo sólidos y líquidos utilizados en este trabajo se enlistan en la siguiente tabla:

Tabla A.1. Composición de los medios de cultivo utilizados para el crecimiento de microorganismos.

MEDIO DE CULTIVO	COMPONENTES
Müeller-Hinton	En 1 L de agua destilada se disolvieron 2 g de sólidos de infusión de ternera. 17.5 g de caseína hidrolisada y 1.5 g de almidón.
Baclena	
YEP(D)	En 1 L de agua destilada se disolvieron 10 g de extracto de
Hongos	levadura, 20 g de peptona, y 20 g de glucosa.

Para el correspondiente medio de cultivo sólido se adicionó 1.5% de agar a la composición antes mencionada.

Se llevaron a cabo ensayos de susceptibilidad microbiana en cepas bacterianas y de levadura. Para tener un ensayo más representativo se hicieron los ensayos en dos cepas de cada grupo, así como en dos cepas de hongos con relevancia biotecnológica y en la salud. En la Tabla A.1 se enlistan los microorganismos utilizados en este trabajo,

donación hecha por el QFB Alejandro Camacho Cruz responsable del cepario de la Facultad de Química, UNAM.

Tipo de microorganismo	Nombre	Colección americana de tipos de cultivo	
	Escherichia coli	ATCC 25922	
Bacteria Gram-negativa	Klebsiella pneumoniae	Capa aislada en la Facultad de Química	
-	Bacillus subtilis	ATCC 6633	
Bacteria Gram-positiva	Staphilococcus aureus	ATCC 6538	
	Saccharomyces cerevisiae	ATCC 9763	
Hongo	Candida albicans	ATCC 90028	

 Tabla A.2.
 Microorganismos utilizados en pruebas de susceptibilidad
Apéndice B.

Diagrama de Bioensayo para las pruebas iniciales de citotoxicidad.

Apéndice C.

Datos cristalográficos.

Datos Cristalográficos del compuesto LOH

 Table 1. Crystal data and structure refinement for LOH.

Identification code	shelx	
Empirical formula	C12 H10 N2 O	
Formula weight	198.22	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 13.6512(5) Å	a= 90°.
	b = 9.2671(4) Å	b= 90°.
	c = 15.5822(6) Å	g = 90°.
Volume	1971.26(13) Å ³	
Z	8	
Density (calculated)	1.336 Mg/m ³	
Absorption coefficient	0.088 mm ⁻¹	
F(000)	832	
Crystal size	0.510 x 0.390 x 0.330 mr	_n 3
Theta range for data collection	3.707 to 29.389°.	

Index ranges	-17<=h<=17, -12<=k<=11, -21<=l<=19
Reflections collected	13005
Independent reflections	2468 [R(int) = 0.0288]
Completeness to theta = 25.242°	99.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2468 / 0 / 137
Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0397, wR2 = 0.0917
R indices (all data)	R1 = 0.0504, wR2 = 0.1000
Extinction coefficient	n/a
Largest diff. peak and hole	0.246 and -0.301 e.Å ⁻³

	x	У	Z	U(eq)	
C(1)	6766(1)	4628(1)	6585(1)	17(1)	
C(2)	6355(1)	5559(1)	7190(1)	19(1)	
C(3)	5865(1)	5016(1)	7897(1)	18(1)	
C(4)	5787(1)	3528(1)	8021(1)	18(1)	
C(5)	4612(1)	3474(1)	9109(1)	19(1)	
C(6)	4161(1)	2811(1)	9872(1)	17(1)	
C(7)	2796(1)	2627(1)	10727(1)	20(1)	
C(8)	3217(1)	1539(1)	11212(1)	23(1)	
C(9)	4161(1)	1101(1)	11019(1)	23(1)	
C(10)	4642(1)	1747(1)	10338(1)	21(1)	
C(11)	6218(1)	2607(1)	7425(1)	19(1)	
C(12)	6691(1)	3140(1)	6705(1)	18(1)	
N(1)	5349(1)	2890(1)	8753(1)	19(1)	
N(2)	3253(1)	3267(1)	10069(1)	18(1)	
O(1)	7231(1)	5222(1)	5902(1)	22(1)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x10³) for et-loh. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.3571(14)
C(1)-C(2)	1.3952(16)
C(1)-C(12)	1.3954(17)
C(2)-C(3)	1.3835(16)
C(2)-H(2)	0.9500
C(3)-C(4)	1.3967(17)
C(3)-H(3)	0.9500
C(4)-C(11)	1.3923(16)
C(4)-N(1)	1.4161(14)
C(5)-N(1)	1.2695(15)
C(5)-C(6)	1.4735(16)
C(5)-H(5)	0.9500
C(6)-N(2)	1.3449(15)
C(6)-C(10)	1.3899(17)
C(7)-N(2)	1.3383(15)
C(7)-C(8)	1.3851(17)
C(7)-H(7)	0.9500
C(8)-C(9)	1.3838(17)
C(8)-H(8)	0.9500
C(9)-C(10)	1.3847(17)
C(9)-H(9)	0.9500

 Table 3.
 Bond lengths [Å] and angles [°] for LOH.

C(10)-H(10)	0.9500
C(11)-C(12)	1.3862(16)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
O(1)-H(1)	0.8400
O(1)-C(1)-C(2)	117.89(11)
O(1)-C(1)-C(12)	122.65(10)
C(2)-C(1)-C(12)	119.45(11)
C(3)-C(2)-C(1)	120.50(11)
C(3)-C(2)-H(2)	119.7
C(1)-C(2)-H(2)	119.7
C(2)-C(3)-C(4)	120.42(11)
C(2)-C(3)-H(3)	119.8
C(4)-C(3)-H(3)	119.8
C(11)-C(4)-C(3)	118.70(11)
C(11)-C(4)-N(1)	117.37(10)
C(3)-C(4)-N(1)	123.79(11)
N(1)-C(5)-C(6)	120.39(11)
N(1)-C(5)-H(5)	119.8
C(6)-C(5)-H(5)	119.8
N(2)-C(6)-C(10)	122.63(10)
N(2)-C(6)-C(5)	116.01(10)

C(10)-C(6)-C(5)	121.33(10)
N(2)-C(7)-C(8)	123.19(11)
N(2)-C(7)-H(7)	118.4
C(8)-C(7)-H(7)	118.4
C(9)-C(8)-C(7)	118.77(11)
C(9)-C(8)-H(8)	120.6
C(7)-C(8)-H(8)	120.6
C(8)-C(9)-C(10)	118.77(11)
C(8)-C(9)-H(9)	120.6
C(10)-C(9)-H(9)	120.6
C(9)-C(10)-C(6)	118.88(11)
C(9)-C(10)-H(10)	120.6
C(6)-C(10)-H(10)	120.6
C(12)-C(11)-C(4)	121.30(11)
C(12)-C(11)-H(11)	119.4
C(4)-C(11)-H(11)	119.4
C(11)-C(12)-C(1)	119.59(11)
C(11)-C(12)-H(12)	120.2
C(1)-C(12)-H(12)	120.2
C(5)-N(1)-C(4)	120.52(10)
C(7)-N(2)-C(6)	117.71(10)
C(1)-O(1)-H(1)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for et-loh. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	U11	22ں	U33	U23	U13	U12	
C(1)	16(1)	20(1)	16(1)	1(1)	-1(1)	0(1)	
C(2)	19(1)	16(1)	21(1)	0(1)	0(1)	0(1)	
C(3)	16(1)	20(1)	19(1)	-3(1)	0(1)	2(1)	
C(4)	15(1)	22(1)	16(1)	2(1)	-1(1)	0(1)	
C(5)	18(1)	22(1)	18(1)	2(1)	-1(1)	-1(1)	
C(6)	18(1)	19(1)	16(1)	-2(1)	-1(1)	-2(1)	
C(7)	18(1)	24(1)	20(1)	-1(1)	2(1)	-1(1)	
C(8)	24(1)	26(1)	19(1)	3(1)	3(1)	-3(1)	
C(9)	25(1)	23(1)	21(1)	4(1)	-2(1)	3(1)	
C(10)	18(1)	24(1)	21(1)	1(1)	1(1)	2(1)	
C(11)	19(1)	16(1)	20(1)	1(1)	-1(1)	0(1)	
C(12)	18(1)	19(1)	18(1)	-2(1)	0(1)	2(1)	
N(1)	19(1)	22(1)	17(1)	1(1)	0(1)	-2(1)	
N(2)	18(1)	20(1)	17(1)	-1(1)	0(1)	0(1)	
O(1)	28(1)	19(1)	20(1)	1(1)	8(1)	1(1)	

 Table 5.
 Torsion angles [°] for LOH.

O(1)-C(1)-C(2)-C(3)	179.51(10)
C(12)-C(1)-C(2)-C(3)	-1.03(17)
C(1)-C(2)-C(3)-C(4)	1.00(17)
C(2)-C(3)-C(4)-C(11)	0.47(17)
C(2)-C(3)-C(4)-N(1)	176.10(10)
N(1)-C(5)-C(6)-N(2)	-163.08(11)
N(1)-C(5)-C(6)-C(10)	15.02(17)
N(2)-C(7)-C(8)-C(9)	1.00(19)
C(7)-C(8)-C(9)-C(10)	-1.28(18)
C(8)-C(9)-C(10)-C(6)	0.00(18)
N(2)-C(6)-C(10)-C(9)	1.72(18)
C(5)-C(6)-C(10)-C(9)	-176.25(11)
C(3)-C(4)-C(11)-C(12)	-1.94(17)
N(1)-C(4)-C(11)-C(12)	-177.85(10)
C(4)-C(11)-C(12)-C(1)	1.92(17)
O(1)-C(1)-C(12)-C(11)	179.02(10)
C(2)-C(1)-C(12)-C(11)	-0.42(17)
C(6)-C(5)-N(1)-C(4)	-179.72(10)
C(11)-C(4)-N(1)-C(5)	-148.78(11)
C(3)-C(4)-N(1)-C(5)	35.54(17)
C(8)-C(7)-N(2)-C(6)	0.63(18)
C(10)-C(6)-N(2)-C(7)	-2.01(17)

Symmetry transformations used to generate equivalent atoms:

Table 6. Hydrogen bonds for et-loh [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
C(7)-H(7)N(1)#1	0.95	2.64	3.4715(15)	145.8	
C(12)-H(12)O(1)#2	0.95	2.45	3.3223(15)	152.0	
O(1)-H(1)N(2)#3	0.84	1.91	2.7415(13)	172.8	

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+1/2,-z+2 #2 -x+3/2,y-1/2,z #3 x+1/2,y,-z+3/2

Datos Cristalográficos del compuesto NiLCI

 Table 1. Crystal data and structure refinement for NiLCI.

Identification code	shelx	
Empirical formula	C74 H57 Cl12 N13 Ni3	
Formula weight	1729.85	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 20.3462(9) Å	□= 90°.
	b = 21.4440(8) Å	□= 101.620(4)°.
	c = 19.9986(11) Å	□ = 90°.
Volume	8546.6(7) Å ³	
Z	4	
Density (calculated)	1.344 Mg/m ³	
Absorption coefficient	1.076 mm ⁻¹	
F(000)	3520	
Crystal size	0.530 x 0.400 x 0.160 mn	_n 3
Theta range for data collection	3.508 to 29.526°.	
Index ranges	-26<=h<=27, -27<=k<=28	8, -27<= <=25
Reflections collected	51569	
Independent reflections	20271 [R(int) = 0.0344]	

Completeness to theta = 25.242°	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	20271 / 0 / 920
Goodness-of-fit on F ²	1.088
Final R indices [I>2sigma(I)]	R1 = 0.0474, wR2 = 0.1314
R indices (all data)	R1 = 0.0701, wR2 = 0.1455
Extinction coefficient	n/a
Largest diff. peak and hole	1.855 and -1.092 e.Å ⁻³

Table 2. Atomic coordinates ($x10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for et20-130k. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	х	У	Z	U(eq)	
C(10)	4333(2)	6604(2)	5984(2)	39(1)	
C(11)	4460(2)	6007(2)	5811(2)	41(1)	
C(12)	4776(2)	5599(2)	6317(2)	34(1)	
C(16)	7012(2)	6568(2)	6837(2)	32(1)	
C(18)	6848(1)	5459(1)	7125(1)	25(1)	
C(23)	6939(2)	3385(2)	7813(2)	36(1)	

C(88)	6723(2)	6092(2)	4976(2)	46(1)
C(108)	6319(2)	5600(2)	5199(2)	43(1)
CI(2)	7212(1)	5445(1)	9090(1)	31(1)
CI(3)	3909(1)	7110(1)	5356(1)	61(1)
CI(4)	6800(1)	2366(1)	7000(1)	65(1)
N(2)	5263(1)	5401(1)	7529(1)	23(1)
N(3)	6494(1)	6278(1)	7770(1)	26(1)
N(4)	6639(1)	5069(1)	7523(1)	22(1)
N(13)	6020(2)	5214(2)	5377(2)	62(1)
Ni(1)	6180(1)	5517(1)	8271(1)	24(1)
C(1)	6053(2)	4348(1)	9134(2)	30(1)
C(2)	5778(2)	3786(2)	9279(2)	35(1)
C(3)	5210(2)	3563(2)	8838(2)	36(1)
C(4)	4938(2)	3914(1)	8268(2)	31(1)
C(5)	5249(1)	4471(1)	8162(2)	26(1)
C(6)	4976(1)	4877(1)	7583(1)	26(1)
C(7)	4963(1)	5809(1)	6989(2)	27(1)
C(8)	4856(2)	6423(1)	7150(2)	32(1)
C(9)	4526(2)	6826(2)	6646(2)	39(1)
C(13)	6437(2)	6885(1)	7911(2)	34(1)
C(14)	6658(2)	7351(2)	7526(2)	39(1)
C(15)	6944(2)	7193(2)	6986(2)	37(1)
C(17)	6782(1)	6127(1)	7240(2)	26(1)

C(19)	6685(1)	4419(1)	7388(2)	26(1)
C(20)	6491(2)	4189(1)	6731(2)	31(1)
C(21)	6527(2)	3554(2)	6610(2)	38(1)
C(22)	6753(2)	3167(2)	7158(2)	39(1)
C(24)	6910(1)	4019(2)	7930(2)	30(1)
CI(1)	5648(1)	6150(1)	8989(1)	32(1)
N(1)	5804(1)	4687(1)	8587(1)	25(1)
C(25)	8803(1)	6884(1)	7273(2)	31(1)
C(26)	8594(1)	7358(1)	7661(2)	36(1)
C(27)	8330(2)	7207(2)	8227(2)	40(1)
C(28)	8269(2)	6586(2)	8380(2)	36(1)
C(29)	8486(1)	6136(1)	7975(2)	26(1)
C(30)	8433(1)	5471(1)	8099(2)	26(1)
C(31)	8636(1)	4435(1)	7828(1)	23(1)
C(32)	8860(2)	4202(1)	8479(2)	35(1)
C(33)	8896(2)	3561(2)	8582(2)	41(1)
C(34)	8716(2)	3166(1)	8034(2)	34(1)
C(35)	8475(1)	3394(1)	7387(2)	29(1)
C(36)	8434(1)	4031(1)	7280(1)	25(1)
C(37)	9363(1)	4374(1)	6146(2)	27(1)
C(38)	9696(2)	3840(2)	6021(2)	35(1)
C(39)	10241(2)	3636(1)	6498(2)	36(1)
C(40)	10447(1)	3980(1)	7092(2)	32(1)

C(41)	10089(1)	4518(1)	7178(2)	25(1)
C(42)	10290(1)	4934(1)	7767(2)	25(1)
C(43)	10167(1)	5892(1)	8302(2)	25(1)
C(44)	10262(1)	6507(1)	8130(2)	28(1)
C(45)	10373(2)	6963(2)	8630(2)	35(1)
C(46)	10375(2)	6795(2)	9295(2)	43(1)
C(47)	10296(2)	6182(2)	9479(2)	46(1)
C(48)	10196(2)	5724(2)	8981(2)	35(1)
CI(5)	9743(1)	6153(1)	6308(1)	30(1)
CI(6)	8126(1)	5428(1)	6122(1)	27(1)
CI(7)	8811(1)	2366(1)	8166(1)	56(1)
CI(8)	10444(1)	7375(1)	9923(1)	72(1)
N(5)	8755(1)	6287(1)	7431(1)	25(1)
N(6)	8641(1)	5091(1)	7698(1)	22(1)
N(7)	9553(1)	4714(1)	6710(1)	23(1)
N(8)	9992(1)	5456(1)	7758(1)	22(1)
Ni(2)	9120(1)	5534(1)	6963(1)	21(1)
C(49)	1860(1)	4094(1)	5982(2)	29(1)
C(50)	1374(1)	4131(2)	5387(2)	32(1)
C(51)	916(2)	4613(2)	5318(2)	33(1)
C(52)	931(1)	5035(2)	5850(2)	30(1)
C(53)	1428(1)	4956(1)	6438(1)	23(1)
C(54)	1459(1)	5344(1)	7043(1)	24(1)

C(55)	1955(1)	5554(1)	8195(1)	24(1)
C(56)	2041(1)	5217(1)	8803(2)	29(1)
C(57)	2133(2)	5522(2)	9424(2)	34(1)
C(58)	2146(2)	6168(2)	9424(2)	35(1)
C(59)	2071(2)	6510(2)	8833(2)	37(1)
C(60)	1971(1)	6200(1)	8211(2)	29(1)
C(61)	3508(1)	4478(1)	8799(2)	28(1)
C(62)	3982(1)	4695(2)	9353(2)	31(1)
C(63)	4271(1)	5269(2)	9306(2)	33(1)
C(64)	4092(1)	5610(1)	8712(2)	28(1)
C(65)	3620(1)	5367(1)	8185(1)	22(1)
C(66)	3421(1)	5689(1)	7528(1)	24(1)
C(67)	2805(1)	5738(1)	6413(1)	24(1)
C(68)	2562(2)	6343(1)	6395(2)	31(1)
C(69)	2329(2)	6635(2)	5775(2)	37(1)
C(70)	2351(2)	6313(2)	5182(2)	32(1)
C(71)	2587(2)	5709(2)	5187(2)	31(1)
C(72)	2807(1)	5416(1)	5806(2)	28(1)
CI(9)	3431(1)	3975(1)	6908(1)	28(1)
CI(10)	2178(1)	3730(1)	7944(1)	30(1)
CI(11)	2281(1)	6556(1)	10207(1)	60(1)
CI(12)	2077(1)	6687(1)	4398(1)	45(1)
N(9)	1887(1)	4499(1)	6496(1)	24(1)

N(10)	1895(1)	5207(1)	7580(1)	22(1)
N(11)	3328(1)	4804(1)	8224(1)	23(1)
N(12)	3024(1)	5417(1)	7040(1)	21(1)
Ni(3)	2626(1)	4557(1)	7367(1)	21(1)

 Table 3. Bond lengths [Å] and angles [°] for NiLCI.

C(10)-C(11)	1.365(5)
C(10)-C(9)	1.387(5)
C(10)-Cl(3)	1.750(3)
C(11)-C(12)	1.393(5)
C(11)-H(11)	0.9500
C(12)-C(7)	1.396(4)
C(12)-H(12)	0.9500
C(16)-C(17)	1.382(4)
C(16)-C(15)	1.386(4)
C(16)-H(16)	0.9500
C(18)-N(4)	1.284(4)
C(18)-C(17)	1.462(4)
C(18)-H(18)	0.9500
C(23)-C(22)	1.369(5)
C(23)-C(24)	1.384(4)
C(23)-H(23)	0.9500

C(88)-C(108)	1.462(6)
C(88)-H(88A)	0.9800
C(88)-H(88B)	0.9800
C(88)-H(88C)	0.9800
C(108)-N(13)	1.126(5)
Cl(2)-Ni(1)	2.3936(8)
Cl(4)-C(22)	1.753(3)
N(2)-C(6)	1.281(4)
N(2)-C(7)	1.427(4)
N(2)-Ni(1)	2.152(2)
N(3)-C(13)	1.341(4)
N(3)-C(17)	1.351(4)
N(3)-Ni(1)	2.083(2)
N(4)-C(19)	1.427(3)
N(4)-Ni(1)	2.144(2)
Ni(1)-N(1)	2.084(2)
Ni(1)-Cl(1)	2.3868(8)
C(1)-N(1)	1.326(4)
C(1)-C(2)	1.384(4)
C(1)-H(1)	0.9500
C(2)-C(3)	1.390(5)
C(2)-H(2)	0.9500
C(3)-C(4)	1.385(4)

C(3)-H(3)	0.9500
C(4)-C(5)	1.387(4)
C(4)-H(4)	0.9500
C(5)-N(1)	1.353(4)
C(5)-C(6)	1.465(4)
C(6)-H(6)	0.9500
C(7)-C(8)	1.384(4)
C(8)-C(9)	1.392(4)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(13)-C(14)	1.389(5)
C(13)-H(13)	0.9500
C(14)-C(15)	1.368(5)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
C(19)-C(24)	1.385(4)
C(19)-C(20)	1.385(4)
C(20)-C(21)	1.388(4)
C(20)-H(20)	0.9500
C(21)-C(22)	1.378(5)
C(21)-H(21)	0.9500
C(24)-H(24)	0.9500
C(25)-N(5)	1.327(4)

C(25)-C(26)	1.398(4)
C(25)-H(25)	0.9500
C(26)-C(27)	1.383(5)
C(26)-H(26)	0.9500
C(27)-C(28)	1.379(5)
C(27)-H(27)	0.9500
C(28)-C(29)	1.387(4)
C(28)-H(28)	0.9500
C(29)-N(5)	1.352(4)
C(29)-C(30)	1.456(4)
C(30)-N(6)	1.274(4)
C(30)-H(30)	0.9500
C(31)-C(32)	1.383(4)
C(31)-C(36)	1.393(4)
C(31)-N(6)	1.430(3)
C(32)-C(33)	1.390(4)
C(32)-H(32)	0.9500
C(33)-C(34)	1.376(4)
C(33)-H(33)	0.9500
C(34)-C(35)	1.378(4)
C(34)-CI(7)	1.741(3)
C(35)-C(36)	1.381(4)
C(35)-H(35)	0.9500

C(36)-H(36)	0.9500
C(37)-N(7)	1.331(4)
C(37)-C(38)	1.379(4)
C(37)-H(37)	0.9500
C(38)-C(39)	1.379(5)
C(38)-H(38)	0.9500
C(39)-C(40)	1.389(5)
C(39)-H(39)	0.9500
C(40)-C(41)	1.393(4)
C(40)-H(40)	0.9500
C(41)-N(7)	1.354(4)
C(41)-C(42)	1.468(4)
C(42)-N(8)	1.271(3)
C(42)-H(42)	0.9500
C(43)-C(44)	1.386(4)
C(43)-C(48)	1.394(4)
C(43)-N(8)	1.425(4)
C(44)-C(45)	1.384(4)
C(44)-H(44)	0.9500
C(45)-C(46)	1.378(5)
C(45)-H(45)	0.9500
C(46)-C(47)	1.382(5)
C(46)-Cl(8)	1.753(3)

C(47)-C(48)	1.384(5)
C(47)-H(47)	0.9500
C(48)-H(48)	0.9500
CI(5)-Ni(2)	2.3993(8)
CI(6)-Ni(2)	2.3672(7)
N(5)-Ni(2)	2.076(2)
N(6)-Ni(2)	2.142(2)
N(7)-Ni(2)	2.076(2)
N(8)-Ni(2)	2.137(2)
C(49)-N(9)	1.339(4)
C(49)-C(50)	1.389(4)
C(49)-H(49)	0.9500
C(50)-C(51)	1.379(5)
C(50)-H(50)	0.9500
C(51)-C(52)	1.392(4)
C(51)-H(51)	0.9500
C(52)-C(53)	1.397(4)
C(52)-H(52)	0.9500
C(53)-N(9)	1.343(4)
C(53)-C(54)	1.460(4)
C(54)-N(10)	1.282(3)
C(54)-H(54)	0.9500
C(55)-C(60)	1.386(4)

C(55)-C(56)	1.395(4)
C(55)-N(10)	1.421(4)
C(56)-C(57)	1.382(4)
C(56)-H(56)	0.9500
C(57)-C(58)	1.386(4)
C(57)-H(57)	0.9500
C(58)-C(59)	1.372(5)
C(58)-Cl(11)	1.747(3)
C(59)-C(60)	1.390(4)
C(59)-H(59)	0.9500
C(60)-H(60)	0.9500
C(61)-N(11)	1.334(4)
C(61)-C(62)	1.394(4)
C(61)-H(61)	0.9500
C(62)-C(63)	1.376(5)
C(62)-H(62)	0.9500
C(63)-C(64)	1.379(4)
C(63)-H(63)	0.9500
C(64)-C(65)	1.378(4)
C(64)-H(64)	0.9500
C(65)-N(11)	1.353(4)
C(65)-C(66)	1.467(4)
C(66)-N(12)	1.276(3)

C(66)-H(66)	0.9500
C(67)-C(68)	1.387(4)
C(67)-C(72)	1.398(4)
C(67)-N(12)	1.421(3)
C(68)-C(69)	1.385(4)
C(68)-H(68)	0.9500
C(69)-C(70)	1.380(4)
C(69)-H(69)	0.9500
C(70)-C(71)	1.381(4)
C(70)-Cl(12)	1.750(3)
C(71)-C(72)	1.380(4)
C(71)-H(71)	0.9500
C(72)-H(72)	0.9500
CI(9)-Ni(3)	2.3856(8)
Cl(10)-Ni(3)	2.3937(8)
N(9)-Ni(3)	2.062(2)
N(10)-Ni(3)	2.142(2)
N(11)-Ni(3)	2.067(2)
N(12)-Ni(3)	2.168(2)
C(11)-C(10)-C(9)	122.2(3)
C(11)-C(10)-Cl(3)	119.3(3)

C(9)-C(10)-Cl(3) 118.4(3)

C(10)-C(11)-C(12) 119.2(3) C(10)-C(11)-H(11) 120.4 C(12)-C(11)-H(11) 120.4 C(7)-C(12)-C(11) 119.6(3) C(7)-C(12)-H(12) 120.2 120.2 C(11)-C(12)-H(12) C(17)-C(16)-C(15) 118.3(3) C(17)-C(16)-H(16) 120.8 120.8 C(15)-C(16)-H(16) 119.2(3) N(4)-C(18)-C(17) N(4)-C(18)-H(18) 120.4 C(17)-C(18)-H(18) 120.4 C(22)-C(23)-C(24) 119.0(3) 120.5 C(22)-C(23)-H(23) C(24)-C(23)-H(23) 120.5 C(108)-C(88)-H(88A) 109.5 109.5 C(108)-C(88)-H(88B) H(88A)-C(88)-H(88B) 109.5 C(108)-C(88)-H(88C) 109.5 H(88A)-C(88)-H(88C) 109.5 H(88B)-C(88)-H(88C) 109.5 N(13)-C(108)-C(88) 178.4(4) C(6)-N(2)-C(7) 118.0(2)

C(6)-N(2)-Ni(1)	112.94(19)
C(7)-N(2)-Ni(1)	129.02(17)
C(13)-N(3)-C(17)	117.9(3)
C(13)-N(3)-Ni(1)	127.7(2)
C(17)-N(3)-Ni(1)	114.46(19)
C(18)-N(4)-C(19)	118.4(2)
C(18)-N(4)-Ni(1)	112.77(19)
C(19)-N(4)-Ni(1)	128.62(18)
N(1)-Ni(1)-N(3)	169.11(9)
N(1)-Ni(1)-N(4)	93.86(9)
N(3)-Ni(1)-N(4)	78.22(9)
N(1)-Ni(1)-N(2)	77.88(9)
N(3)-Ni(1)-N(2)	93.79(9)
N(4)-Ni(1)-N(2)	84.60(8)
N(1)-Ni(1)-Cl(1)	93.70(7)
N(3)-Ni(1)-Cl(1)	93.68(7)
N(4)-Ni(1)-Cl(1)	171.21(7)
N(2)-Ni(1)-Cl(1)	92.62(6)
N(1)-Ni(1)-Cl(2)	93.58(7)
N(3)-Ni(1)-Cl(2)	93.90(7)
N(4)-Ni(1)-Cl(2)	90.19(6)
N(2)-Ni(1)-Cl(2)	169.64(7)
Cl(1)-Ni(1)-Cl(2)	93.80(3)

N(1)-C(1)-C(2)	123.1(3)
N(1)-C(1)-H(1)	118.4
C(2)-C(1)-H(1)	118.4
C(1)-C(2)-C(3)	119.2(3)
C(1)-C(2)-H(2)	120.4
C(3)-C(2)-H(2)	120.4
C(4)-C(3)-C(2)	118.6(3)
C(4)-C(3)-H(3)	120.7
C(2)-C(3)-H(3)	120.7
C(3)-C(4)-C(5)	118.3(3)
C(3)-C(4)-H(4)	120.8
C(5)-C(4)-H(4)	120.8
N(1)-C(5)-C(4)	123.2(3)
N(1)-C(5)-C(6)	115.3(2)
C(4)-C(5)-C(6)	121.4(3)
N(2)-C(6)-C(5)	118.8(2)
N(2)-C(6)-H(6)	120.6
C(5)-C(6)-H(6)	120.6
C(8)-C(7)-C(12)	120.3(3)
C(8)-C(7)-N(2)	118.1(3)
C(12)-C(7)-N(2)	121.6(3)
C(7)-C(8)-C(9)	120.0(3)
C(7)-C(8)-H(8)	120.0

C(9)-C(8)-H(8)	120.0
C(10)-C(9)-C(8)	118.7(3)
C(10)-C(9)-H(9)	120.7
C(8)-C(9)-H(9)	120.7
N(3)-C(13)-C(14)	122.0(3)
N(3)-C(13)-H(13)	119.0
C(14)-C(13)-H(13)	119.0
C(15)-C(14)-C(13)	119.7(3)
C(15)-C(14)-H(14)	120.2
C(13)-C(14)-H(14)	120.2
C(14)-C(15)-C(16)	119.1(3)
C(14)-C(15)-H(15)	120.4
C(16)-C(15)-H(15)	120.4
N(3)-C(17)-C(16)	123.1(3)
N(3)-C(17)-C(18)	115.2(3)
C(16)-C(17)-C(18)	121.7(3)
C(24)-C(19)-C(20)	120.5(3)
C(24)-C(19)-N(4)	118.8(3)
C(20)-C(19)-N(4)	120.7(3)
C(21)-C(20)-C(19)	120.0(3)
C(21)-C(20)-H(20)	120.0
C(19)-C(20)-H(20)	120.0
C(22)-C(21)-C(20)	118.3(3)

C(22)-C(21)-H(21) 120.9 C(20)-C(21)-H(21) 120.9 C(23)-C(22)-C(21) 122.6(3) C(23)-C(22)-Cl(4) 119.5(3) C(21)-C(22)-Cl(4) 117.9(3) C(19)-C(24)-C(23) 119.7(3) 120.2 C(19)-C(24)-H(24) C(23)-C(24)-H(24) 120.2 C(1)-N(1)-C(5)117.5(2) C(1)-N(1)-Ni(1)127.98(19) C(5)-N(1)-Ni(1) 114.44(19) 121.6(3) N(5)-C(25)-C(26) N(5)-C(25)-H(25) 119.2 119.2 C(26)-C(25)-H(25) C(27)-C(26)-C(25) 119.7(3) 120.2 C(27)-C(26)-H(26) 120.2 C(25)-C(26)-H(26) C(28)-C(27)-C(26) 118.4(3) C(28)-C(27)-H(27) 120.8 C(26)-C(27)-H(27) 120.8 C(27)-C(28)-C(29) 119.2(3) C(27)-C(28)-H(28) 120.4 120.4 C(29)-C(28)-H(28)

N(5)-C(29)-C(28)	122.1(3)
N(5)-C(29)-C(30)	115.3(2)
C(28)-C(29)-C(30)	122.6(3)
N(6)-C(30)-C(29)	118.3(3)
N(6)-C(30)-H(30)	120.8
C(29)-C(30)-H(30)	120.8
C(32)-C(31)-C(36)	120.3(3)
C(32)-C(31)-N(6)	120.9(2)
C(36)-C(31)-N(6)	118.8(2)
C(33)-C(32)-C(31)	119.7(3)
C(33)-C(32)-H(32)	120.2
C(31)-C(32)-H(32)	120.2
C(34)-C(33)-C(32)	119.5(3)
C(34)-C(33)-H(33)	120.2
C(32)-C(33)-H(33)	120.2
C(33)-C(34)-C(35)	121.1(3)
C(33)-C(34)-Cl(7)	118.8(2)
C(35)-C(34)-Cl(7)	120.0(2)
C(34)-C(35)-C(36)	119.7(3)
C(34)-C(35)-H(35)	120.2
C(36)-C(35)-H(35)	120.2
C(35)-C(36)-C(31)	119.7(3)
C(35)-C(36)-H(36)	120.2

C(31)-C(36)-H(36)	120.2
N(7)-C(37)-C(38)	122.6(3)
N(7)-C(37)-H(37)	118.7
C(38)-C(37)-H(37)	118.7
C(39)-C(38)-C(37)	119.5(3)
C(39)-C(38)-H(38)	120.2
C(37)-C(38)-H(38)	120.2
C(38)-C(39)-C(40)	119.0(3)
C(38)-C(39)-H(39)	120.5
C(40)-C(39)-H(39)	120.5
C(41)-C(40)-C(39)	118.0(3)
C(41)-C(40)-H(40)	121.0
C(39)-C(40)-H(40)	121.0
N(7)-C(41)-C(40)	122.6(3)
N(7)-C(41)-C(42)	115.0(2)
C(40)-C(41)-C(42)	122.3(3)
N(8)-C(42)-C(41)	118.0(2)
N(8)-C(42)-H(42)	121.0
C(41)-C(42)-H(42)	121.0
C(44)-C(43)-C(48)	120.5(3)
C(44)-C(43)-N(8)	117.4(3)
C(48)-C(43)-N(8)	121.9(3)
C(43)-C(44)-C(45)	120.2(3)

119.9 C(43)-C(44)-H(44) C(45)-C(44)-H(44) 119.9 C(46)-C(45)-C(44) 118.7(3) C(46)-C(45)-H(45) 120.6 C(44)-C(45)-H(45) 120.6 C(45)-C(46)-C(47) 121.9(3) C(45)-C(46)-Cl(8) 119.3(3) C(47)-C(46)-Cl(8) 118.8(3) C(48)-C(47)-C(46) 119.4(3) C(48)-C(47)-H(47) 120.3 C(46)-C(47)-H(47) 120.3 C(47)-C(48)-C(43) 119.2(3) C(47)-C(48)-H(48) 120.4 120.4 C(43)-C(48)-H(48) C(25)-N(5)-C(29) 118.9(3) C(25)-N(5)-Ni(2) 126.3(2) C(29)-N(5)-Ni(2) 114.59(18) C(30)-N(6)-C(31) 120.0(2) C(30)-N(6)-Ni(2) 113.73(19) C(31)-N(6)-Ni(2) 125.54(17) C(37)-N(7)-C(41) 118.2(2) C(37)-N(7)-Ni(2) 127.24(19) C(41)-N(7)-Ni(2) 114.57(18)

C(42)-N(8)-C(43)	121.5(2)
C(42)-N(8)-Ni(2)	113.70(19)
C(43)-N(8)-Ni(2)	123.98(17)
N(7)-Ni(2)-N(5)	167.65(9)
N(7)-Ni(2)-N(8)	77.61(9)
N(5)-Ni(2)-N(8)	92.56(9)
N(7)-Ni(2)-N(6)	93.77(9)
N(5)-Ni(2)-N(6)	77.45(9)
N(8)-Ni(2)-N(6)	83.10(8)
N(7)-Ni(2)-Cl(6)	95.08(7)
N(5)-Ni(2)-Cl(6)	93.64(6)
N(8)-Ni(2)-Cl(6)	169.66(6)
N(6)-Ni(2)-Cl(6)	90.17(6)
N(7)-Ni(2)-Cl(5)	92.17(6)
N(5)-Ni(2)-Cl(5)	95.32(7)
N(8)-Ni(2)-Cl(5)	89.92(6)
N(6)-Ni(2)-Cl(5)	169.65(6)
Cl(6)-Ni(2)-Cl(5)	97.74(3)
N(9)-C(49)-C(50)	122.1(3)
N(9)-C(49)-H(49)	119.0
C(50)-C(49)-H(49)	119.0
C(51)-C(50)-C(49)	118.7(3)
C(51)-C(50)-H(50)	120.6

C(49)-C(50)-H(50)	120.6
C(50)-C(51)-C(52)	119.9(3)
C(50)-C(51)-H(51)	120.0
C(52)-C(51)-H(51)	120.0
C(51)-C(52)-C(53)	117.8(3)
C(51)-C(52)-H(52)	121.1
C(53)-C(52)-H(52)	121.1
N(9)-C(53)-C(52)	122.2(3)
N(9)-C(53)-C(54)	115.5(2)
C(52)-C(53)-C(54)	122.2(3)
N(10)-C(54)-C(53)	118.1(2)
N(10)-C(54)-H(54)	120.9
C(53)-C(54)-H(54)	120.9
C(60)-C(55)-C(56)	120.0(3)
C(60)-C(55)-N(10)	122.7(3)
C(56)-C(55)-N(10)	117.2(2)
C(57)-C(56)-C(55)	120.6(3)
C(57)-C(56)-H(56)	119.7
C(55)-C(56)-H(56)	119.7
C(56)-C(57)-C(58)	118.1(3)
C(56)-C(57)-H(57)	120.9
C(58)-C(57)-H(57)	120.9
C(59)-C(58)-C(57)	122.4(3)

C(59)-C(58)-Cl(11)	119.2(3)
C(57)-C(58)-Cl(11)	118.4(2)
C(58)-C(59)-C(60)	119.0(3)
C(58)-C(59)-H(59)	120.5
C(60)-C(59)-H(59)	120.5
C(55)-C(60)-C(59)	119.9(3)
C(55)-C(60)-H(60)	120.1
C(59)-C(60)-H(60)	120.1
N(11)-C(61)-C(62)	122.3(3)
N(11)-C(61)-H(61)	118.8
C(62)-C(61)-H(61)	118.8
C(63)-C(62)-C(61)	118.8(3)
C(63)-C(62)-H(62)	120.6
C(61)-C(62)-H(62)	120.6
C(62)-C(63)-C(64)	119.4(3)
C(62)-C(63)-H(63)	120.3
C(64)-C(63)-H(63)	120.3
C(65)-C(64)-C(63)	118.7(3)
C(65)-C(64)-H(64)	120.6
C(63)-C(64)-H(64)	120.6
N(11)-C(65)-C(64)	122.6(3)
N(11)-C(65)-C(66)	115.3(2)
C(64)-C(65)-C(66)	122.1(3)

N(12)-C(66)-C(65)	119.2(2)
N(12)-C(66)-H(66)	120.4
C(65)-C(66)-H(66)	120.4
C(68)-C(67)-C(72)	120.2(3)
C(68)-C(67)-N(12)	121.5(3)
C(72)-C(67)-N(12)	118.2(2)
C(67)-C(68)-C(69)	120.1(3)
C(67)-C(68)-H(68)	120.0
C(69)-C(68)-H(68)	120.0
C(70)-C(69)-C(68)	118.6(3)
C(70)-C(69)-H(69)	120.7
C(68)-C(69)-H(69)	120.7
C(71)-C(70)-C(69)	122.3(3)
C(71)-C(70)-Cl(12)	118.9(2)
C(69)-C(70)-Cl(12)	118.8(2)
C(70)-C(71)-C(72)	118.9(3)
C(70)-C(71)-H(71)	120.5
C(72)-C(71)-H(71)	120.5
C(71)-C(72)-C(67)	119.7(3)
C(71)-C(72)-H(72)	120.1
C(67)-C(72)-H(72)	120.1
C(49)-N(9)-C(53)	119.2(2)
C(49)-N(9)-Ni(3)	126.7(2)
C(53)-N(9)-Ni(3)	113.89(18)
--------------------	------------
C(54)-N(10)-C(55)	122.0(2)
C(54)-N(10)-Ni(3)	111.93(19)
C(55)-N(10)-Ni(3)	124.77(16)
C(61)-N(11)-C(65)	118.1(2)
C(61)-N(11)-Ni(3)	127.11(19)
C(65)-N(11)-Ni(3)	114.74(18)
C(66)-N(12)-C(67)	119.4(2)
C(66)-N(12)-Ni(3)	112.05(19)
C(67)-N(12)-Ni(3)	127.51(17)
N(9)-Ni(3)-N(11)	168.54(9)
N(9)-Ni(3)-N(10)	77.91(9)
N(11)-Ni(3)-N(10)	93.44(8)
N(9)-Ni(3)-N(12)	92.82(9)
N(11)-Ni(3)-N(12)	78.11(9)
N(10)-Ni(3)-N(12)	79.79(8)
N(9)-Ni(3)-Cl(9)	94.76(7)
N(11)-Ni(3)-Cl(9)	92.27(6)
N(10)-Ni(3)-Cl(9)	167.10(6)
N(12)-Ni(3)-Cl(9)	90.10(6)
N(9)-Ni(3)-Cl(10)	94.51(7)
N(11)-Ni(3)-Cl(10)	93.32(7)
N(10)-Ni(3)-Cl(10)	92.27(6)

N(12)-Ni(3)-Cl(10)	167.83(6)
Cl(9)-Ni(3)-Cl(10)	98.94(3)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³)for et20-130k. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U11	U22	U33	U23	U13	U12	
							C(
10)	43(2)	29(2)	40(2)	10(2)	0(1)	-6(1)	
C(11)	51(2)	39(2)	31(2)	3(2)	2(1)	-10(2)	
C(12)	36(2)	30(2)	36(2)	-1(1)	8(1)	-5(1)	
C(16)	36(2)	30(2)	30(2)	1(1)	6(1)	-7(1)	
C(18)	25(1)	26(2)	23(1)	-4(1)	6(1)	-3(1)	
C(23)	50(2)	26(2)	34(2)	6(1)	16(1)	7(1)	
C(88)	49(2)	46(2)	39(2)	3(2)	-1(2)	10(2)	
C(108)	47(2)	46(2)	34(2)	-2(2)	5(2)	14(2)	
CI(2)	30(1)	36(1)	28(1)	-1(1)	4(1)	-6(1)	
Cl(3)	76(1)	42(1)	55(1)	22(1)	-11(1)	-7(1)	
Cl(4)	117(1)	21(1)	60(1)	-2(1)	25(1)	7(1)	
N(2)	22(1)	23(1)	27(1)	-2(1)	8(1)	-1(1)	
N(3)	23(1)	22(1)	34(1)	-4(1)	7(1)	-2(1)	
N(4)	22(1)	21(1)	23(1)	-2(1)	3(1)	-2(1)	
N(13)	68(2)	63(2)	55(2)	3(2)	12(2)	3(2)	

Ni(1)	25(1)	21(1)	25(1)	-3(1)	7(1)	-3(1)
C(1)	37(2)	28(2)	25(2)	-3(1)	7(1)	-1(1)
C(2)	44(2)	30(2)	31(2)	5(1)	10(1)	2(1)
C(3)	41(2)	24(2)	44(2)	1(1)	14(1)	-2(1)
C(4)	31(2)	23(2)	40(2)	-4(1)	11(1)	-3(1)
C(5)	26(1)	23(1)	30(2)	-3(1)	11(1)	-2(1)
C(6)	25(1)	25(1)	26(2)	-2(1)	5(1)	-2(1)
C(7)	23(1)	25(2)	34(2)	2(1)	6(1)	-4(1)
C(8)	36(2)	24(2)	36(2)	-2(1)	9(1)	-3(1)
C(9)	45(2)	24(2)	47(2)	6(1)	11(2)	-2(1)
C(13)	33(2)	24(2)	47(2)	-7(1)	11(1)	-3(1)
C(14)	40(2)	18(2)	60(2)	-2(2)	10(2)	-6(1)
C(15)	38(2)	27(2)	46(2)	7(1)	7(1)	-7(1)
C(17)	21(1)	24(1)	33(2)	-2(1)	2(1)	-4(1)
C(19)	28(1)	21(1)	31(2)	-1(1)	11(1)	1(1)
C(20)	42(2)	25(2)	26(2)	1(1)	5(1)	-2(1)
C(21)	59(2)	25(2)	30(2)	-6(1)	9(1)	-5(1)
C(22)	58(2)	19(2)	43(2)	-1(1)	19(2)	2(1)
C(24)	33(2)	30(2)	28(2)	2(1)	10(1)	5(1)
CI(1)	32(1)	32(1)	34(1)	-11(1)	11(1)	-5(1)
N(1)	26(1)	22(1)	28(1)	-3(1)	8(1)	-2(1)
C(25)	29(1)	21(1)	41(2)	6(1)	0(1)	2(1)
C(26)	32(2)	18(1)	53(2)	-4(1)	-2(1)	6(1)

C(27)	39(2)	28(2)	52(2)	-11(2)	8(2)	7(1)
C(28)	38(2)	33(2)	40(2)	-6(1)	12(1)	2(1)
C(29)	22(1)	23(1)	30(2)	-3(1)	1(1)	3(1)
C(30)	26(1)	24(2)	28(2)	1(1)	7(1)	1(1)
C(31)	24(1)	19(1)	25(1)	-1(1)	5(1)	-2(1)
C(32)	55(2)	24(2)	22(2)	-2(1)	-3(1)	-6(1)
C(33)	69(2)	27(2)	22(2)	4(1)	-3(1)	-3(2)
C(34)	47(2)	21(2)	31(2)	4(1)	5(1)	-4(1)
C(35)	37(2)	23(2)	25(2)	-4(1)	6(1)	-8(1)
C(36)	26(1)	24(1)	23(1)	2(1)	4(1)	-3(1)
C(37)	31(1)	23(1)	27(2)	0(1)	8(1)	-3(1)
C(38)	37(2)	27(2)	43(2)	-9(1)	14(1)	-5(1)
C(39)	33(2)	20(2)	56(2)	-4(1)	15(1)	2(1)
C(40)	26(1)	24(2)	47(2)	4(1)	7(1)	3(1)
C(41)	23(1)	18(1)	34(2)	5(1)	8(1)	-1(1)
C(42)	19(1)	23(1)	32(2)	5(1)	2(1)	1(1)
C(43)	20(1)	27(2)	28(2)	2(1)	1(1)	1(1)
C(44)	25(1)	28(2)	29(2)	3(1)	2(1)	2(1)
C(45)	40(2)	23(2)	37(2)	3(1)	-3(1)	4(1)
C(46)	66(2)	27(2)	28(2)	-4(1)	-7(2)	5(2)
C(47)	73(2)	32(2)	26(2)	2(1)	-6(2)	6(2)
C(48)	45(2)	26(2)	30(2)	3(1)	-2(1)	2(1)
CI(5)	35(1)	26(1)	28(1)	1(1)	7(1)	-6(1)

Cl(6)	24(1)	29(1)	24(1)	0(1)	0(1)	1(1)
CI(7)	107(1)	19(1)	36(1)	2(1)	2(1)	-6(1)
CI(8)	149(1)	28(1)	30(1)	-2(1)	-1(1)	8(1)
N(5)	21(1)	22(1)	30(1)	1(1)	0(1)	3(1)
N(6)	20(1)	19(1)	25(1)	-1(1)	1(1)	0(1)
N(7)	22(1)	20(1)	28(1)	1(1)	9(1)	0(1)
N(8)	19(1)	21(1)	26(1)	1(1)	4(1)	-2(1)
Ni(2)	21(1)	17(1)	23(1)	1(1)	3(1)	1(1)
C(49)	28(1)	27(2)	31(2)	-3(1)	5(1)	-6(1)
C(50)	29(2)	41(2)	24(2)	-6(1)	4(1)	-13(1)
C(51)	31(2)	43(2)	22(2)	1(1)	-2(1)	-8(1)
C(52)	23(1)	35(2)	29(2)	10(1)	0(1)	-3(1)
C(53)	20(1)	27(1)	23(1)	4(1)	2(1)	-5(1)
C(54)	21(1)	24(1)	26(2)	7(1)	4(1)	2(1)
C(55)	21(1)	26(1)	24(2)	0(1)	4(1)	1(1)
C(56)	33(2)	25(2)	28(2)	2(1)	6(1)	2(1)
C(57)	45(2)	34(2)	24(2)	2(1)	6(1)	7(1)
C(58)	46(2)	34(2)	26(2)	-6(1)	7(1)	10(1)
C(59)	48(2)	23(2)	40(2)	-4(1)	9(1)	3(1)
C(60)	36(2)	24(2)	28(2)	3(1)	8(1)	5(1)
C(61)	26(1)	29(2)	28(2)	4(1)	2(1)	1(1)
C(62)	24(1)	44(2)	24(2)	4(1)	1(1)	4(1)
C(63)	25(1)	49(2)	23(2)	-11(1)	0(1)	-5(1)

C(64)	22(1)	32(2)	28(2)	-10(1)	2(1)	-5(1)
C(65)	19(1)	24(1)	24(1)	-4(1)	5(1)	-1(1)
C(66)	26(1)	19(1)	26(2)	-3(1)	6(1)	-4(1)
C(67)	26(1)	22(1)	23(1)	2(1)	5(1)	-3(1)
C(68)	44(2)	24(2)	25(2)	-1(1)	7(1)	0(1)
C(69)	54(2)	23(2)	33(2)	3(1)	7(1)	5(1)
C(70)	40(2)	29(2)	25(2)	5(1)	5(1)	-5(1)
C(71)	40(2)	31(2)	21(2)	-3(1)	5(1)	-8(1)
C(72)	36(2)	20(1)	28(2)	-2(1)	5(1)	-2(1)
CI(9)	28(1)	23(1)	32(1)	0(1)	2(1)	3(1)
CI(10)	31(1)	20(1)	35(1)	3(1)	-2(1)	-6(1)
CI(11)	96(1)	50(1)	31(1)	-14(1)	7(1)	15(1)
CI(12)	69(1)	38(1)	25(1)	8(1)	-1(1)	-4(1)
N(9)	23(1)	24(1)	22(1)	1(1)	-2(1)	-4(1)
N(10)	21(1)	20(1)	23(1)	1(1)	2(1)	-1(1)
N(11)	20(1)	26(1)	23(1)	0(1)	2(1)	0(1)
N(12)	23(1)	17(1)	25(1)	-1(1)	5(1)	2(1)
Ni(3)	21(1)	18(1)	22(1)	0(1)	-2(1)	-1(1)

Apéndice D.

Figura D.3. Espectro de IR del ligante LBr.

Figura D.4. Espectro de IR del ligante LOH.

Figura D.6. Espectro de IR del Compuesto NiLCI.

Figura D.8. Espectro de IR del Compuesto NiLOH.

Figura D.10. Espectro de IR del Compuesto PdLCI.

Figura D.12. Espectro de IR del Compuesto PdLOH.

Figura D.13. Espectro de IR del Compuesto PtLF.

Figura D.14. Espectro de IR del Compuesto PtLCI.

Figura D.16. Espectro de IR del Compuesto PtLOH.

Figura D.17. Espectro de RMN ¹H del ligante LF.

Figura D.18. Espectro de RMN ¹³C del ligante LF.

Figura D.21. Espectro de RMN ¹⁹F del ligante LF.

Figura D.22. Espectro de RMN ¹H del ligante **LCI**.

Figura D.23. Espectro de RMN ¹³C del ligante LCI.

Figura D.27. Espectro de RMN ¹³C del ligante **LBr**.

Figura D.29. Espectro Bidimensional HSQC del ligante LBr.

Figura D.34. Espectro de RMN ¹H del ligante PdLF

Figura D.35. Espectro de RMN ¹³C del ligante PdLF.

Figura D.38. Espectro de RMN ¹⁹F del ligante PdLF.

Figura D.39. Espectro de RMN ¹H del ligante PdLCI.

Figura D.40. Espectro de RMN ¹³C del ligante PdLCI.

Figura D.43. Espectro de RMN ¹H del ligante PdLBr.

Figura D.44. Espectro de RMN ¹³C del ligante PdLBr.

Figura D.47. Espectro de RMN ¹H del ligante PdLOH.

Figura D.48. Espectro de RMN ¹H del ligante PtLF.

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm ό -10 -20 -30 -90 -40 -50 -60 -70 -80

Figura D.49. Espectro de RMN ¹⁹F del ligante PtLF.

Figura D.50. Espectro de RMN ¹H del ligante PtLCI.

Figura D.51. Espectro de RMN ¹H del ligante PtLBr.

Figura D.52. Espectro de RMN ¹H del ligante PtLOH.

Referencias Bibliográficas

¹Varghese, D. Simple and encapsulated transition metal complexes of Schiff bases derived from Quinoxaline-2-carboxaldehyde and diamines: biological and catalytic activity studies. Agosto (**2011**).

² Sreesha Sasi. Transition metal complexes of Schiff bases with azide and thiocyanate as collgands: spectral and structural investigations. Octubre (**2008**).

³ Chiang L. Elucidating the electronic structure of transition metal complexes featuring redox active ligands. (**2009**).

⁴ Peyrone, M., Ann. Chem. Pharm., 51, (**1844**), 1-29.

⁵ Rosenberg, B., In Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, Lippert, B., *Ed. Wiley-VCH: Weinheim*, Germany, (**1999**); 3-27.

⁶ Rosenberg, B.; Vancamp, L., *Cancer Res. 30,* (**1970**), 1799.

⁷ Guo, Z. J.; Sadler, P. J., *Adv. Inorg. Chem.* 49, (**2000**), 183-306.

⁸ Hambley, T. W., *Coord. Chem. Rev.* 166, (**1997**), 181-223.

⁹ Reardon, D.; Conan, F.; Gambarotta, S.; Yap, G.; Wang, Q. Y., *J. Am. Chem. Soc. 121*, (**1999**), 9318-9325.

¹⁰ Gibson, V. C.; Spitzmesser, S. K., Chem. Rev. 103, (**2003**), 283-315.

¹¹ Varsha G. Studies on simple and encapsulated transition metal complexes of Schiff bases derived from diaminonaphthalene. Mayo (**2011**).

¹² Carey, F. A. Química Orgánica, 3^a Edición, México. Ed. McGraw-Hill, (**1999**).

¹³ Luqueño Reyes, A. Estudio del comportamiento coordinante de la 2,2'-dipiridil-*N*-etilimina hacia metales del grupo 10. Noviembre (**2006**).

¹⁴ Hernández Olmos, V. Diseño de ligandos quirales con estructura de imino- y aminopiridina. aplicación a la reacción de Henry enantioselectiva. (**2010**).

¹⁵ Pioquinto Mendoza, J. R. Síntesis y caracterización de complejos metálicos del grupo 10 conteniendo ligantes piridínicos. Diciembre (**2012**).

¹⁶. Scales, S. J; Zhang ,H.; Chapman, P. A.; McRory, C. P.; Derrah , E. J.; Vogels, C. M.; Saleh, M. T.; Decken , A.; Westcott, S. A. *Polyhedron.* 23, (2004) 2169–2176.

¹⁷ García- Friaza, G.; Fernández-Botello, A.; Pérez, J.M.; Prieto M.J. y Moreno V. *J. Inorg. Biochem. 100*, (**2006**), 1368–1377 ¹⁸ Reddy, E. R.; Trivedi, R.; Sarma, A. V. S.; Sridhar, B.; Anantaraju, H. S.; Sriram, D.; Yogeeswari, P. and Nagesh N. *Dalton Trans.*, *44*,(**2015)**, 17600.

¹⁹ Patel , R.N.; Singh , A.; Sondhiya , V. P.; Singh , Y.; Shukla , K.K.; Patel, D.K. & Pandey R. *J. Coord. Chem.* 65, (**2012**), 795–812.

²⁰ M.T.H. Tarafder, K.B. Chew, K.A. Crouse, A.M. Ali, B.M. Yamin and H.K. Fun. *Polyhedron, 21,* (**2002**), 2683.

²¹ M. Kalanithi, M. Rajarajan, P. Tharmaraja. *J. Coord. Chem.* 64, (**2011**), 842.

²² Shankarwar, S.G.; T.K. Chandhekar. *J. Coord. Chem.*, 63, (**2010**), 4153.

²³ D. Arish, M.S. Nair. J. Coord. Chem., 63, (2010), 1619.

²⁴ Mitra, K.; Biswas, S.; Chat Aust. J. Chem. 63, (2010), 75–82. Dhyay, S.
K.;Adhikary B. and Robert, C. Transition Met. Chem. 30, (2005): 185–190.

²⁵ Harding, P.; Harding, D.J.; Soponrat, N.; Tinpun, K.; Samuadnuan, S. and AdamsC, H. *Aust. J. Chem.* 63, (**2010**), 75–82.

²⁶ Dehghanpour, S. y Mahmoudi A. *Main Group Chem.* 6, (2007) 121-130.

²⁷ Dehghanpour, S. and Aleesha R. *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42,* (**2012**):1132–1138.

²⁸ Dehghanpour, S.; Khalaj, M.; Mahmoudi, A. *Polyhedron 28,* (**2009**) 1205–1210

²⁹ Lalrempuia, R.; Kollipara, M. R., Carroll P. J. Polyhedron 22, (2003) 605-609

³⁰ Mishra, D.; Naskar, S.; Adhikary, B.; Butcher, R. J.; Chattopadhyay, S. K. *Polyhedron 24,* (**2005**) 201–208

³¹ Dey, B. K.; Dutta , J.; Drew, M. G.B.; Bhattacharya, S. *J. Organomet. Chem. 750,* (**2014**) 176-184.

³². Jovanovic´, B.Z.; Misčic´-Vukovic´, M.; Marinkovic´, A.D.; Vajs, V. *J. Mol. Struct. 642*, (**2002**) 113–118

³³ Song, J.; Shen, Q.; Xu, F. and Lu X. *Tetrahedron* 63, (2007) 5148–5153,

³⁴ Govindaswamy, P.; Mozharivskyj, Y. A.; Kollipara M. R. *Polyhedron 23,* (**2004**) 1567–1572

³⁵ Singh, K. S. Carroll, P. J.; Kollipara, M R. *Polyhedron 24,* (**2005**) 391–396

³⁶ Govindaswamy, P.; Mozharivskyj, Y. A.; Kollipara, M. R. *Polyhedron 24,* (**2005**) 1710–1716

³⁷ Seth, D. K.; Bhattacharya, S. *Polyhedron 30,* (**2011**) 2438–2443

³⁸ Bhattacharyya, S.; Banerjee, S.; Dirghangi, B. K.; Menon, M. and Chakravorty, A. *J. Chem. Soc., Dalton Trans.* (**1999**), 155–159

³⁹ Mitra, K.; Biswas, S.; Kumar Chattopadhyay, S.; Robert Lucas, C.; Adhikary, B. *J Chem. Crystallogr. 37,* (**2007**) 567–571

⁴⁰ Bharate, B.G.; Jadhav, A.N.; Chavan, S.S. Polyhedron 33 (**2012**) 179–184.

⁴¹ Gao, Y.; Zhang, Y.; Qiu, C. and Zhao, J. *Appl. Organometal. Chem. 25*, (**2011**), 54–60

⁴² Tagata, T.; Nishida, M. Adv. Synth. Catal. 346,(2004), 1655 –1660.

⁴³ Mahmoudi, A.; Dehghanpour, S.; Khalaj, M. and Pakravan, S. *Acta Cryst. E65,* (**2009**), m889

⁴⁴ Khalaj, M.; Dehghanpour, S.; Mahmoudi, A. and Seyedidarzam, S. *Acta Cryst. E65,* (**2009**), m890

⁴⁵ Dridi, S.; Mechria, A.; Msaddek, M. J. Organomet. Chem. 772-773 (**2014**) 217-221

⁴⁶ Zhang, Q.; Su, H.; Luo, J.; Wei, Y. *Tetrahedron 69,* (**2013**) 447-454

⁴⁷ Jursic, B. S.; Douelle, F.; Bowdy, K. and Stevens, E. D. *Tetrahedron Lett. 43*, (**2002**) 5361–5365

⁴⁸ Di Serio, M.; Carotenuto, G.; Cucciolito, M. E.; Lega, M.; Ruffo, F.; Tesser, R.; Trifuoggi, M. *J. Mol. Catal. A: Chem. 353– 354,* (**2012**) 106– 110

⁴⁹ Cloete, J. y Mapolie, S. F. J. Mol. Catal. A: Chem. 243, (2006) 221–225

⁵⁰ Reinhardt, S. and Heinze, K. Anorg. Allg. Chem. 632, (2006), 1465-1470

⁵¹ Ahamad, T. and Alshehri, S. *M. Polym Int* 61, (2012); 1640–1647

⁵² Mahmoudi, A.; Hajikazemi, M.; Khalaj, M. y Dehghanpour, S. *Acta Cryst. E64*, (**2008**), m1019

⁵³ Harding, P.; Harding, D. J.; Soponrat, N. and Adams, H. *Acta Cryst. E66,* (**2010**), m1138–m1139

⁵⁴ Khalaji, A. D.; Bahramian, B.; Jafari, K.; Fejfarova´, K. y Dus`ek, M. *Acta Cryst. E68,* (**2012**), m1001–m1002

⁵⁵ Khalaj, M.; Dehghanpour, S. and Mahmoudi, A. *Acta Cryst. E64,* (**2008**), m1018 ⁵⁶ Liu, W. and Heinze, K. *Dalton Trans. 3*9, (**2010**), 9554–9564

⁵⁷ Dehghanpour, S.; Mahmoudi A. y Rostami S. *Polyhedron 29,* (**2010**), 2190-2195.

⁵⁸ Miles, A.; Patterson, A.E.; Vogels, C.M.; Decken, A.; Waller, J.C.; Morin, P. Jr.; Westcott, S. A. *Polyhedron* (2015).

⁵⁹ Dehghanpour, S. y Mahmoudi A. *Acta Cryst. E68,* (**2012**), m1113.

⁶⁰ Prasad, A. V. G. S.; Venkateswara, P.R. *International Journal for Pharmaceutical Research Scholars (IJPRS).* 2 (**2013**) 2277-7873.