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EN CIENCIAS MATEMÁTICAS
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Introducción y Resumen

Esta tesis doctoral trata sobre Teoŕıa de Campos Cuánticos en espaciotiempo curvo, en particular sobre la
construcción de una matriz S para un campo Klein-Gordon real en un fondo Anti de Sitter (AdS). AdS es un
espaciotiempo con curvatura negativa constante y la misma topoloǵıa que el espaciotiempo de Minkowski. En
el ĺımite de curvatura muy pequeña, (una parte local de) AdS asintóticamente se torna en el espaciotiempo
de Minkowski. Esto lo llamamos el ĺımite plano. La construcción cada vez que aparece de la matriz S usa
como ingrediente crucial estados cuánticos asintóticamente libres para tiempos largos. Sin embargo, en AdS
estos estados no existen y por lo tanto la matriz S estandar no puede ser construida.

Resolvemos este problema aplicando la Formulación de Fronteras Generales (GBF) de la teoŕıa cuántica.
La GBF es un reciente marco axiomático que describe cómo reformular las teoŕıas cuánticas, a la vez general-
izando la formulación estandar y conservando sus resultados. En breve, la GBF asocia a cada hipersuperficie
Σ del espaciotiempo su propio espacio H Σ de estados cuánticos, el cual es un espacio de Hilbert. Un sub-
conjunto particular de hipersuperficies son las fronteras ∂M de regiones M del espaciotiempo. Cada una de
estas regiones tiene asociada su mapeo de amplitud (el cual depende de la teoŕıa cuántica particular consid-
erada), que asigna una amplitud a cada estado en la frontera. De estas amplitudes se derivan probabilidades
consistentes con la regla de Born.

En el contexto estandar, la región que se considera es el producto cartesiano de todo el espacio (normal-
mente dado por Rd) y un intervalo de tiempo. Esto lo llamamos una región tipo intervalo de tiempo. Su
frontera consiste de dos superficies de tiempo constante, sobre cuales viven los estados entrantes y salientes.
Lo más relevante para nosotros es la región tipo bastón, la cual consiste del producto cartesiano de todo
el tiempo (normalmente dado por Rt) y una bola sólida Bd en el espacio. La frontera del bastón es una
sola hipersuperficie conexa, la cual llamamos hipercilindro (producto de todo el tiempo y una esfera Sd−1 en
el espacio). Cada estado cuántico sobre un hipercilindro entonces encodifica a la vez part́ıculas entrantes
y salientes. Las regiones tipo bastón son importantes, porque la métrica AdS causa que los estados en su
frontera se vuelvan asintóticamente libres para radios grandes (de hecho lo mismo pasa en el espaciotiempo
de Minkowski). Esto justifica la interpretación de sus amplitudes como matriz S.

Usamos el método de cuantización holomorfa. Sus estados son funcion(al)es sobre el espacio de soluciones
clásicas de las ecuaciones de movimiento (en vez del espacio fase). Sus ingredientes más importantes son una
estructura simpléctica ω y una estructura compleja J sobre tal espacio. Juntas, las dos definen un producto
interno ω(·, J ·). La estructura simpléctica está fijada por el Lagrangiano clásico, mientras que la estructura
compleja no es fijada por la teoŕıa clásica. La estructura compleja más bien es un ingrediente cuántico, y cada
elección corresponde uno-a-uno a una elección del estado de vaćıo. Fijar la estructura compleja determina
completamente el mapeo de amplitud.

Para regiones de intervalo de tiempo, hay una elección estandar de la estructura compleja, la cual deter-
mina las amplitudes de estas regiones. Para regiones tipo bastón no hay tal elección estandar, y por lo tanto
necesitamos construirla según principios f́ısicos. Primero, queremos que nuestra J induzca amplitudes que
sean invariantes bajo las acciones de isometŕıas del espaciotiempo. Segundo, deseamos que J haga nuestras
amplitudes del bastón coincidir con las amplitudes estándares de las regiones intervalo de tiempo. Esto lo
llamamos equivalencia de amplitudes. Tercero, nos gustaŕıa que el producto interno inducido ω(·, J ·) sea
positivo definido. Sin embargo, esto no es una condición necesaria, ya que un producto indefinido también se
puede usar para una cuantización consistente (donde espacios de Krein generalizan los de Hilbert). Cuarto,
para AdS podemos usar el ĺımite plano como gúıa, requiriendo que en este ĺımite las amplitudes de AdS
reproduzcan las de Minkowski.

Para el espaciotiempo de Minkowski, una estructura compleja para regiones bastón que cumple con in-

variancia bajo isometŕıas, equivalencia de amplitudes y producto positivo definido ha sido encontrada ya hace

un tiempo. Para AdS, aqúı construimos estructuras complejas para regiones bastón según las propiedades

mencionadas arriba. Encontramos, que no existe ninguna J que cumpla todos los requisitos. Hay una estruc-

tura compleja J iso compatible con las isometŕıas de AdS que induce equivalencia de amplitud, pero induce

un producto interno indefinido. Además, su ĺımite plano solo recupera las amplitudes de Minkowski para

un subconjunto discreto de las frecuencias/enerǵıas. Una segunda estructura compleja Jpos es compatible

con las traslaciones de tiempo y las rotaciones espaciales de AdS (pero no con los boosts), también induce

equivalencia de amplitudes, y nos da un producto positivo definido. Su ĺımite plano reproduce las amplitudes

de Minkowski para todas frecuencias. Los resultados de esta tesis estan publicados en [30] y en [31].



Summary

This PhD thesis mainly treats a particular aspect of Quantum Field Theory on curved spacetime: the
construction of an S-matrix for a real Klein-Gordon field on an Anti de Sitter background (AdS). AdS is a
spacetime with constant negative curvature and the same topology as Minkowski spacetime. In the limit of
very small curvature, (a part of) AdS asymptotically turns into Minkowski spacetime. We call this the flat
limit. The standard construction of an S-matrix uses asymptotically free quantum states at large times as
a crucial ingredient. However, on AdS these states do not exist and hence the standard S-matrix cannot be
constructed.

We solve this problem by applying the General Boundary Formulation (GBF) of Quantum Theory. The
GBF is a recent axiomatic framework describing how quantum theories can be formulated, both generalizing
the standard formulation and conserving its results. In short, the GBF associates to each hypersurface Σ on
spacetime its own quantum state space H Σ, which is a Hilbert space. A particular subset of hypersurfaces
are the boundaries ∂M of spacetime regions M. Each of these regions has its associated amplitude map
(which depends on the particular quantum theory under consideration), that assigns an amplitude to each
boundary state. These amplitudes lead to probabilities consistent with Born’s rule.

In the standard context, the spacetime region under consideration is the cartesian product of all of space
(usually given by Rd) and a time-interval. We call this the time-interval region. It’s boundary consists of two
equal-time hypersurfaces, on which the IN and OUT states are living. Most relevant for us is here the solid
hypercylinder region (rod region for short), which is the cartesian product of all of time (usually Rt) and a
solid ball Bd in space. The rod’s boundary is a single connected hypersurface, which we call hypercylinder
(product of all of time and a sphere Sd−1 in space). Each quantum state on a hypercylinder thus encodes
both incoming and outgoing particles. Rod regions are important, because the Ads metric makes states on
their boundary asymptotically free for large radius (actually the same happens on Minkowski spacetime).
This justifies the interpretation of their amplitudes’ limits as an S-matrix.

We use the method of Holomorphic Quantization. Its states are wave function(al)s on spaces of solutions
of the classical equations of motion (instead of phase space). Its most important ingredients are a symplectic
structure ω and a complex structure J on such a solution space. Together they define an inner product
ω(·, J ·). The symplectic structure is fixed by the classical Lagrangian, while the complex structure is not
fixed by the classical theory. The complex structure is rather a quantum ingredient, and each choice of it
corresponds one-to-one to a choice of the vacuum state. Fixing the complex structure completely determines
the amplitude map.

For the time-interval regions, there is a distinguished standard choice for the complex structure, which
determines the amplitudes on these regions. For rod regions, there is no such standard choice, and therefore
we need to construct it according to physical principles. First, we wish our J to induce amplitudes which are
invariant under the action of spacetime isometries. Second, we want J to make our rod amplitudes agree with
the standard amplitudes of the time-interval regions. We call this requirement amplitude equivalence. Third,
we would like the induced inner product ω(·, J ·) to be positive-definite. However, this is not a necessary
condition, since an indefinite product can also be used to construct a consistent quantization (wherein Krein
spaces generalize the Hilbert spaces). And fourth, for AdS we can use the flat limit as a guideline by requiring
that in this limit the AdS amplitudes reproduce the Minkowski amplitudes.

For Minkowski spacetime, a complex structure for rod regions fulfilling isometry invariance, amplitude

equivalence and positive-definiteness has been found already some time ago. For AdS, here we construct

complex structures for rod regions according to the above properties. We find that there is no J fulfilling all

requirements. There is one complex structure J iso compatible with all AdS isometries and inducing amplitude

equivalence, but giving an indefinite inner product. Moreover, its flat limit recovers the Minkowski amplitudes

only for a discrete subset of frequencies/energies. A second complex structure Jpos is compatible with AdS

time-translations and spatial roations (but not with boosts), also inducing amplitude equivalence, and giving

a positive-definite inner product. Its flat limit recovers the Minkowski amplitudes for all frequencies. The

results of this thesis are published in [30] and [31].
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Chapter 1

Introduction: General Boundary
Formulation (GBF)

The goal of this chapter is to present the General Boundary Formulation (GBF) of Quantum Theory,
show its relevance and give some context. This introduction is divided into two sections: Section
1.1 outlines the basic ideas of the GBF and how they arise naturally by requiring locality and
operationalism. We also sketch the problem of the S-matrix for Anti de Sitter spacetimes (AdS),
and how the GBF solves this problem. This application of the GBF is the main focus of the present
thesis. After this overview, in Section 1.2 we proceed by describing the GBF in more detail. We start
with how the GBF treats spacetime. Then we introduce the GBF’s Core Axioms, which contain the
main ideas about how Quantum Theory can be formulated in a general boundary way. This concerns
mainly state spaces and amplitudes. After this, axioms for the vacuum state and the role of spacetime
symmetries are considered. We complete the picture with the probability interpretation of the GBF
amplitudes, how to include observables, and their expectation values. At the end of the section we
describe how the GBF relates to Topological Quantum Field Theories. The version of the GBF
we discuss here, is the one in which it has been developed originally and is now called Amplitude
Formalism, since the fundamental objects therein are generalized complex transition amplitudes (and
their extensions to observables). Recently, a new version of the GBF is being developed under the
name of Positive Formalism [63], [65].

Apart from the introductory chapter, this thesis is divided into two main chapters: in Chapter 2 we
treat classical field theory and how it enters the GBF. This provides many important ingredients for
the quantization we apply in Chapter 3. Throughout the whole thesis, we have chosen to accomodate
the more technical parts in the appendices in order to keep the main parts cohesive. In Section 2.1 we
introduce the two main types of spacetime regions considered throughout this work. Then in Section
2.2 we review the classical data needed later for quantization. The most important ones are spaces L
of classical solutions and symplectic structures ω on them. In order to give a more complete overview,
in this section we also introduce complex structures J on these spaces, despite these not being a
classical structure, but a quantum one. This allows us to also consider real g(·, ·) and complex {·, ·}
inner products on L, which arise from combining complex and symplectic structure. These structures
are then studied in detail in Section 2.4 for general spacetimes. In Section 2.5 we review the classical
Klein-Gordon theory on Minkowski spacetime, and in Section 2.6 for Anti de Sitter spacetime (AdS).
For both spacetimes, we study the spaces of classical Klein-Gordon solutions, and the symplectic
structures on these. We also calculate the action of isometries in the solution spaces, and further
on the symplectic structures. We find that the symplectic structures on Minkowski spacetime are
invariant under temporal and spatial translations and under spatial rotations - but not under boosts.
The symplectic structures of AdS are invariant under all isometries of this spacetime. In Section
2.6.8 we set up a correspondence between classical Klein-Gordon solutions and boundary data on
AdS, extending previous results of Warnick [73].
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Chapter 3 follows the same pattern for the Quantum Theory. First, in Section 3.1, we review
the method of Holomorphic Quantization, which fits naturally into the GBF framework. Then we
clarify the relation between the amplitudes of the standard formulation and of the GBF, and how
they give rise to S-matrices. Since the GBF produces amplitudes for various types of spacetime
regions, we discuss how to compare those amplitudes to each other. This gives rise to what we
call amplitude equivalence. Another important concept is the flat limit. Since QFT on Minkowski
spacetime is well known, we can use its results as a reference. In a sense, for large curvature radius
RAdS → ∞, AdS becomes asymptotically flat. (Other spacetimes become asymtotically flat when
other parameters tend to zero, like e.g. the mass of a Schwarzschild black hole.) In this limit, we
would like the AdS amplitudes to recover the corresponding Minkowski amplitudes. After these more
general considerations, we review Klein-Gordon theory on Minkowski spacetime in Section 3.2. This
collects the results which we later aim to recover in the flat limit. In Section 3.3 we then quantize
Klein-Gordon theory on AdS. The crucial ingredient needed here is the complex structure. Since on
AdS there is no standard complex structure, the main part of this section consists of constructing
complex structures with as many nice properties as possible. We conclude with a summary of our
results in Section 4.

1.1 An overview of the GBF

This section gives a first flavor of the General Boundary Formulation, before entering into a detailed
presentation in Section 1.2. Section 1.1.1 introduces the main ideas of the GBF and Section 1.1.2
motivates them from locality and operationalism. Section 1.1.3 then shows how the application of
the GBF resolves the S-matrix problem of Anti de Sitter spacetimes (AdS).

1.1.1 General Boundary Formulation (GBF)

The General Boundary Formulation (GBF) is a still rather young reformulation of Quantum Theory,
which generalizes it while reproducing the results of its standard formulation. We emphasize that
the GBF is not some particular quantum theory, but rather a specification how any quantum theory
should be formulated.

Why is this reformulation necessary? On the fundamental level of Physics there are two highly
successful theories: Quantum Mechanics (respectively Quantum Field Theory, QFT) and General
Relativity (GR). The theory of General Relativity describes the dynamics of spacetime, the ”stage”on
which matter lives and moves. Quantum Field Theory describes the interactions of the matter fields.
However, in their standard formulations these two theories are not compatible: the quantization of
GR fails (due to an infinite number of counterterms). That is, using the standard formulations,
it is impossible to combine GR and QFT into a unified theory which comprises the dynamics of
both spacetime and quantum matter. (This unified theory is usually called Quantum Gravity.) One
way of approaching this problem is thus to reformulate General Relativity and/or Quantum Theory,
hoping that such reformulation may render their unification possible. One example for this is Loop
Quantum Gravity (LQG), where GR is first rewritten (without changing it) using Ashtekar variables
and then quantized, resulting in a discretized structure of spacetime.

In contrast, the General Boundary Formulation reformulates Quantum Theory. One of its goals is
doing this without referring to a (fixed) spacetime metric, hoping that through this the incorporation
of GR into Quantum Theory might become possible one day. However, even without the perspective
on dynamical gravity, the GBF provides many new insights for Quantum Theory in its own right.
For example, the main topic of this thesis is (General Boundary) Quantum Field Theory on a (fixed)
curved spacetime, which is Anti de Sitter (AdS) spacetime.

In order to become familiar with the GBF, let us now sketch its main features. (We do this
thoroughly in Section 1.2.) To this end it is beneficial to briefly review the standard formulation of
Quantum Theory. There, the physical system of interest is prepared at some initial time t1 and the
preparation is encoded by a normalized initial state | η(t1)〉. After the system’s components interacts
among themselves for some time, a normalized final state | ζ(t2)〉 can then be observed at some final
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time t2 > t1. Both states live in the one and only state space H of the standard formulation, which
is a Hilbert space with inner product 〈 · | · 〉. Depending on the particular QFT under consideration,
we can then calculate complex transition amplitudes (which we denote by ρ):

ρ(η(t1), ζ(t2)) = 〈ζ(t2) |Ut2,t1 | η(t1)〉, (1.1)

wherein Ut2,t1 is the unitary time-evolution operator of the theory. This operator can be described
completely through its matrix elements, which are precisely the above transition amplitudes. The
theoretical probability P (η(t1), ζ(t2)) = |ρ(η(t1), ζ(t2))|2 of preparing | η(t1)〉 and observing | ζ(t2)〉 is
then obtained as the absolute value squared of the amplitude. This is known as the Born rule. For
many initial and final states, the corresponding theoretical probabilities are then compared to the
experimental probabilities that have actually been measured. This allows us to consider as falsified
those theories, whose predictions do not match the experimental results, and continue only with
those theories that do so.

How does the General Boundary Formulation generalize this? First, we note that the interac-
tion/evolution of the system takes place within a region in spacetime. Usually this region is the
time-interval [t1, t2] times all of space, as drawn in Figure 1.2. Let us call this type of region a
time-interval region M[t1,t2]. Second, the initial state | η(t1)〉 is prepared on the early boundary of
this spacetime region, which is the equal-time hypersurface Σ1 given by the point in time t1 times
all of space. The final state | ζ(t2)〉 is observed on the late boundary Σ2 of the region: t2 times all of
space.

(a) ... on Minkowski spacetime (b) ... on some curved spacetime

Figure 1.2: Time-interval region ...

While the standard formulation only considers time-interval regions (with equal-time hypersurfaces
as their boundaries), the GBF generalizes the standard procedure to arbitrary regions (and their
boundaries). The QFT under consideration is here applied on an arbitrary region M of spacetime.
(For the rules about what qualifies as a region, see Section 1.2.1.) Quantum states then live on
the boundary ∂M of the region. That is, each region’s boundary has its own associated boundary
state space H ∂M. As an example, (leaving aside here details of orientation) the boundary of the
time-interval region M[t1,t2] consists of two components: ∂M[t1,t2] = (Σ1, Σ2). The GBF then views
the two states η(t1) and ζ(t2) as one single boundary state ξ∂M[t1,t2] = (η(t1), ζ(t2)). The boundary
state space is thus the tensor product of two copies of the usual state space (one for the intial and
one for the final boundary component): H ∂M[t1,t2] = H ⊗H . Since generic regions do not always have
boundaries with two components, the boundary states may have an arbitrary number of components.
The bra-ket notation is thus not very useful in the GBF. Instead, amplitudes are calculated by an
amplitude map ρM : H ∂M → C. That is, each region M has its own associated amplitude map
ρM, which assigns amplitudes to its boundary states. The amplitude map ρM thus generalizes the
time-evolution operator Ut2,t1 of the standard formulation. Both depend on the quantum theory
under consideration.

As a guideline for which regions are admissible in the GBF, we require that regions must make
sense for scattering experiments to be conducted in them1. That is, they must have a boundary
allowing for sending particles in, and also allowing for detecting particles coming out. Therefore,

1We thank Olivier Sarbach (IFM-UMNSH) for asking us to clarify this point.
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what kinds of regions are admissible depends on the quantum theory under consideration and on
the background spacetime. As an example, the region of Minkowski spacetime given only by the
condition t > t1 is not admissible, since we can only send particles in through the boundary Σ1, but
we have no way of detecting any outcoming particles on this boundary. By contrast, the time-interval
region given by t > t1 while t < t2 allows for both of these actions and hence is admissible. Further,
it is desirable to have sufficiently many regions to describe physics locally (compact regions) and to
be able to glue them consitently.

Finally, the probability interpretation of the GBF allows us to relate theory with experiment. For
the time-interval region, this interpretation reproduces the Born rule. However, for general regions
it is not that simple. We review GBF probabilities in detail in Section 1.2.5. Observables and the
corresponding expectation values also fit into the GBF, for the explicit treatment see Section 1.2.6.
There, we also show how the probabilities and expectation values of the standard formulation are
recovered from the General Boundary Formulation.

As a historical note, we mention that the idea of (generalized) transition amplitudes for regions
of spacetime was conceived already in 1933 by Dirac in the famous paper [27], which later inspired
Feynman to develop his path integral formulation. Therein, Dirac presents ”generalized transforma-
tion functions” which essentially are the amplitudes of the GBF. He then formulates the gluing rule
for regions in spacetime. For a more detailed discussion of his paper see Section 2.1 in [54].

The problem of time

In [51] the GBF is motivated from a viewpoint of nonrelativistic Quantum Mechanics, which is then
extended towards Quantum Gravity. First, Schrödinger’s Cat is revisited: Inside a box (thus hidden
from our views) is a quantum system which produces some particular event with some probability,
for example a radioactive isotope that has some probability for decaying within a certain amount of
time. This quantum system is coupled to a detector for the particular event, which connects it to
a macroscopic classical system inside the box; in the original thought experiment this is any device
that kills the poor cat if a decay is detected. Therefore, the state of the macroscopic system depends
on the state of the quantum system. The familiar experiment is thus divided into a quantum domain
(the interior of the box) and a classical domain (its surroundings). Then, we cannot assume a definite
classical evolution in the quantum domain, that is, inside the box (which is considered isolated from
the classical world between preparation and observation). Repeating the experiment many times,
the goal is to measure a probability P (t) that the cat is still alive after a time t. If we consider space
and time as quantum mechanical entities, then we cannot assume any definite passage of time inside
the box. However, on the outside time remains classical. Then there are two ways of determining the
time t: using a clock either outside or inside of the box. In both cases, a problem arises. Putting the
clock outside of the box, then how can the quantum system know about the classical outside time t,
if we really cannot assume any definite evolution of time inside? Putting the clock inside, we have
no way of knowing when we shall open the box (e.g. if we are interested in the probability P (t0) for
some particular time t0). Putting the clock inside fundamentally changes the experiment and thus
corresponds to a different measurement process, because the ability to predetermine the time t is a
crucial part of the original experiment.

The way out of this dilemma is that the quantum system is actually not isolated from the classical
world, but remains in contact with the surrounding classical spacetime through its boundary. The
spacetime structure at this boundary is thus a boundary condition of the experiment, which we
must regard as an integral part of the quantum mechanical measurement process. In particular,
the spacetime structure on the boundary determines the time t on the classical clock, which can be
calculated on paths on the boundary using the spacetime metric. For this to work, the boundary
needs to be connected, that is, it must consist of only one connected component. This is called the
principle of the integrity of the observer in [51].

In traditional approaches to Quantum Gravity, time-interval regions are used as sketched in Figure
1.2 (b). However, the boundary of a time-interval regions is not connected: it rather consists of two
connected components which are spacelike hypersurfaces (e.g. Cauchy surfaces). Then, we can make
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sense of a time difference between two events on inital and final surface as follows: we need to assume
inital and final spacetime metric to be described by quasi-classical quantum states, and further that
from their peak metrics we can reconstruct the metric on the whole region. Then we can calculate
how much time passes on some path from the initial to the final event. However, then there is no
direct relation to our usual way of measuring time. This is called the problem of time. Such relation
could be established by declaring some spacetime region as classical for placing a clock there, but
then this region’s boundary would connect the initial and final hypersurface.

This motivates why the GBF favours regions whose boundary is connected. The final goal is here
to work with compact regions, since physical experiments are finite in space and time. A type of
regions which are not compact, but already have a connected boundary, are the rod regions described
in Section 2.1, which we shall use on Minkowski and Anti de Sitter spacetimes.

1.1.2 GBF from locality and operationalism

In the previous section we have seen the basic features of the General Boundary Formulation. In
order to further motivate this method, we now sketch how it is induced naturally from general
first principles as described in [64]. The two key principles considered therein are locality and
operationalism.

In classical physics locality means that forces do not mysteriously act at a distance between some
particle at one point of spacetime and another particle at some other point. Rather the forces are
exerted by fields that fill out spacetime. By the term signal we shall denote such a force originating
at one point and traveling to a second point. Locality then says that signals do not jump across
distances on spacetime, but continuously propagate at finite speed. The locality principle is also
respected in quantum theory, which describes particles and fields in a unified way. Thus, for both
classical and quantum physics, locality means that interaction between particles and/or fields is only
possible through their contiguous contact on spacetime.

One form in which locality appears is, that if we conduct an experiment in a laboratory, then its
results should not depend on what happens outside the lab (except if the experiment is specifically
designed to do so). That is, we divide the universe into two parts: one spacetime region, which is our
laboratory for the current experiment, and the rest of the universe. Since locality excludes spooky
actions at a distance, anything inside our lab/region can interact with the outside universe only by
signals passing through (parts of) the region’s boundary. While regions are topological spacetime
submanifolds with the same dimension as spacetime itself, boundaries consist of one or more space-
time hypersurfaces of codimension one. (Let us recall that any boundary is a hypersurface, but not
any hypersurface is a boundary. For example, a single equal-time hypersurface is not the boundary
of an admissible region. However, the boundary of a time-interval region consists of two equal-time
hypersurfaces, that is, of two hypersurfaces.) Locality thus directly requires a mathematical model
of physics to use regions and boundaries.

Frecuently in physics the goal is to relate what happens in one experiment to what happens in an
adjacent experiment, for example, when one experiment consists of various measurements which we
can view as smaller experiments in their own right. Now the big experiment has its associated region,
and the smaller experiments have their regions as well, which should be contained within the big
region. According to locality, the interaction between these experiments can only occure by passing
through the boundary parts shared by the corresponding smaller regions. Hence the composition of
smaller experiments to a big one corresponds to gluing together the associated smaller regions along
the shared parts of their boundaries, thereby forming a big region. This gluing is considered in detail
in Section 1.2.1 and Axiom (T5b) of Section 1.2.2.

In classical physics the observed system and the observer are thaught of as independent and not
influencing each other. However, Quantum Theory tells us that this is not the case: measurements do
affect quantum systems. Operationalism now concludes that therefore Quantum Theory should not
try to describe what quantum objects really are (that would be an ontologic approach), but rather
describe what happens when they interact, for example, what we observe in quantum experiments.
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The GBF incoporates operationalism by associating observables to each spacetime region2. This is
natural, since physical experiments are extended in space and time. When regions are glued together
to a bigger region for combining experiments, then there is also an induced gluing of the smaller
regions’ observables which results in observables of the bigger region. The GBF also includes a
probability interpretation and expectation values for these observables. However, this is beyond the
scope of this brief introduction, and therefore we get back to these points in Section 1.2.6.

In this and the previous section we have introduced the most important features of the General
Boundary Formulation and sketched how they are induced by locality and operationalism. Before
proceeding with a detailed description of the GBF in Section 1.2, we can already put to use our rough
picture of the GBF in the following section for outlining how it can solve the S-matrix problem on
Anti de Sitter spacetimes.

1.1.3 The S-matrix problem of Anti de Sitter spacetimes

As seen in Section 1.1.1, the General Boundary Formulation allows quantum states to live not
only on equal-time hypersurfaces, but on general hypersurfaces. What benefits does this bring us?
For instance, it can enable us to compute S-matrices for spacetimes where S-matrices cannot be
constructed via the standard approach. This is precisely the case on Anti de Sitter spacetimes
(AdS).

In standard QFT on Minkowski spacetime, the S-matrix is the limit t→∞ of the time-evolution
operator U[−t,+t]. The S-matrix is completely determined by its matrix elements, which are the limit
of the amplitudes (1.1):

Sη,ζ = lim
t→∞

ρ(η(−t), ζ(+t)) = lim
t→∞

〈ζ(+t) |U[−t,+t] | η(−t)〉 . (1.3)

The particle interpretation of the initial and final states, (as incoming and outgoing particles with
definite momenta) relies on states from the free theory. Hence we need initial and final state to
be asymptotically free states. That is, there is no interaction between the particles at large times
|t| → ∞. The mathematical technique for switching off the interaction at large times is multiplying
the interaction term by a bump function which is one at intermediate times, zero for large times,
and varies smoothly and sufficiently slowly in between. If we assume the particle interaction to
decrease with increasing distance, then switching the interaction off for large times is justified,
if the particles are separated by large distances before and after their interaction. We assume
that after the scattering the particles approximately move along timelike geodesics. In Minkowski
spacetime, the timelike geodesics are straight lines which assure the large separation for large times.
However, in a more general spacetime this is not necessarily so, since the shape of the geodesics
depends on the geometry of the spacetime. For example, on AdS spacetime the timelike geodesics
reconverge periodically, bringing the particles close together for possible interaction again and again.
Therefore, on AdS there are no asymptotically free states for large times, which makes the S-matrix
interpretation of amplitudes questionable. Let us have a closer look at AdS now.

The relevant geometric features of AdS are its constant negative curvature and its simple R4-
topology (the same as 4-dimensional Minkowski spacetime). AdS has a timelike boundary at spatial
infinity (not a lightlike boundary at null infinity as Minkowski). The negative curvature of AdS has
a similar effect as a potential wall: it reflects particles back into the interior of the spacetime. This
is sketched in Figure 1.4. Hence interacting particles after scattering are brought close to each other
periodically in time, and therefore they never become asymptotically free. Without asymptoticically
free states on equal-time hypersurfaces the standard S-matrix construction is not possible.

2This is done properly in the GBF version called Positive Formalism. In the Amplitude Formalism used in this
thesis, there are subtleties that prevent us from considering n-point functions with n ≥ 2 as proper expectation values.
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Figure 1.4: Conformal diagram of AdS: time extends infinitely above and below, while the radial
coordinate ρ is compact with spatial infinity at ρ = ιπ

2 . Lightrays are at 45◦. The dashed line is
the time axis at ρ = 0. The orange lines represent the timelike boundary hypercylinder. The green
lines are the timelike geodesics of free particles after an initial scattering at t0. They reconverge
periodically, making the particles interact again and again.

Fortunately there is another type of asympotically free states on AdS: since the metric becomes
divergent for large radius (approaching the timelike boundary), it induces large distances for particles
close to the boundary. Thus their interaction becomes negligible and the corresponding states are
(radially) asymptotically free [37]. These states live on equal-radius hypersurfaces which we call
hypercylinders Rt×S2: a sphere of fixed radius times all of time. Since the GBF formulates Quantum
Theory for states on general hypersurfaces, it provides us the tools for a consistent construction of
an S-matrix on AdS for these radially asymptotically free states. This is discussed in more depth in
Section 3.1. Knowing now the basic ideas of the General Boundary Formulation and having sketched
their application on AdS, we can move forward to a detailed axiomatic description of the GBF.

1.2 The GBF in detail

In the previous sections we have seen that the General Boundary Formulation considers geomet-
ric objects (spacetime regions and hypersurfaces) and associates to them algebraic objects (states,
Hilbert spaces, amplitude maps). Now we will make these notions precise: Section 1.2.1 presents
axioms for the geometric objects, which prepare for the GBF’s core axioms in Section 1.2.2. These
core axioms determine the association of algebraic objects to geometric objects (plus properties of
these association laws). The algebraic objects are Hilbert spaces of states, and maps on and between
these spaces. The geometric objects are topological manifolds, possibly but not necessarily with
additional structure (such as a spacetime metric, as suggested by the name ”geometric”).

1.2.1 Geometric data: Regions and hypersurfaces

As a preparation for the following section, the axioms of the current section determine which geo-
metric objects enter the GBF, closely following Section 2.1 in [59] and also Section 2.1 in [66]. The
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GBF formalizes the structure of spacetime in a spacetime system, which consists of regions and
hypersurfaces. First the spacetime dimension is fixed to (d+1) ∈ N+. Then the GBF takes as given
a collection of (d+1)-dimensional oriented topological manifolds (possibly with boundary), and these
manifolds we call regions. Further, there is another collection of oriented topological manifolds with-
out boundary of dimension d, and these manifolds we call hypersurfaces. (A priori, boundaries are
not required to meet differentiability conditions, although frequently they are taken to be piecewise
smooth.) All manifolds in both collections may only have finitely many connected components. (The
present condition that hypersurfaces have no boundaries is rather an intermediate step. In order to
consistently treat compact regions and their gluings, it is necessary to allow hypersurfaces to have
boundaries. These boundaries were introduced in [56] and are called corners therein.) We sometimes
use the terms admissible manifold/region/ hypersurface, in order to stress that a given manifold is
in one of those two collections. For a criterion on which regions are admissible, see Section 1.1.1.
The GBF only considers collections satisfying the following requirements.

(GD1) Orientation:
If Σ is an admissible hypersurface, then the same manifold with opposite orientation (denoted
by Σ) is admissible as well.

(GD2) Components:
Any connected component of an admissible region (hypersurface) is itself an admissible region
(hypersurface), that is, it is contained in the collection of regions (hypersurfaces).

(GD3) Unions:
Any disjoint union of finitely many admissible regions (hypersurfaces) is an admissible region
(hypersurface).

(GD4) Boundaries:
The boundary of any admissible region is an admissible hypersurface.

The easiest way to think of a spacetime system is taking regions and hypersurfaces as submanifolds
induced by a global spacetime manifold. In Section 6 of [55] this setting was introduced by the name
of global background, which we review in Section 1.2.4. However, the regions of a spacetime system
may also be viewed as independent pieces of spacetime which are not a priori embedded into any
global manifold. It can be argued that it is actually more desirable not to assume any knowledge
about spacetime outside of our laboratory or to even assume it to be some particular fixed global
background.

Later on we will also need slice regions (called empty regions in earlier works). A slice region,
denoted by Σ̂, is associated to each hypersurface Σ. Topologically it is simply the hypersurface itself,
but in the GBF we think of it as an ”infinitesimally thin” region in a suitable sense. The boundary of
a slice region is defined as the disjoint union of its hypersurface with an orientation-reversed copy of
itself: ∂Σ̂ := Σ∪Σ. Forgetting orientation, for each hypersurface Σ there is exactly one slice region
Σ̂. When needed, we refer to regions that are not slice regions as regular regions.

Figure 1.5: Hypersurface Σ and associated slice region Σ̂.

We recall that regions represent laboratories for conducting experiments. Since joining two labs
results in a new (bigger) lab, the GBF also needs prescriptions for joining two regions. This is
called gluing of regions in the GBF. In order to be most general, two different type of gluings must
be covered by the GBF’s notion of gluing. The first type (see for example Figure 1.7) is gluing
disjoint regions together, along some parts of their respective boundaries. This represents bringing
separated labs into contact. The second type (see for example Figure 1.6) is gluing some part of
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one region’s boundary to another part of the same region’s boundary. This represents changing the
shape (connectedness, topology) of one single lab. Since in the first type (the union of) the disjoint
smaller regions can be seen as one new bigger region, we can view the first type as a special case
of the second type (since the glued boundary parts now belong to the same one big region, which
is a union of small regions). Therefore, the most general way of formulating gluing is describing
the second type. Suppose thus that we are given one region MG (with G saying the region will be
glued along ΣG) with its boundary ∂MG = ΣN ∪ΣG ∪Σ′G a disjoint union of some hypersurface
ΣN (possibly a union of hypersurfaces, or empty) with some hypersurface ΣG (possibly a union of
hypersurfaces), and a copy Σ′G of ΣG with opposite orientation. Then we may obtain a new manifold

MN (with N for new) with boundary ∂MN = ΣN by gluing MG to itself along ΣG and Σ′G, wherein

gluing means identifying points of ΣG with their copy on Σ′G.

Figure 1.6: Gluing tube region along boundary components.

In Figure 1.6 we illustrate the gluing for a region consisting of one single connected component. The
region is therein a two-dimensional ”tube” whose boundary consists of three circles. Gluing along
two of these circles results in a new region MN whose boundary is the single circle ∂MN = ΣN .

Figure 1.7: Gluing time interval regions along boundary components.

Figure 1.7 illustrates a simpler example: the gluing of two adjacent time interval regions. Here the
original region MG = MG1 ∪MG2 consists of two connected components which we view as disjoint (up
to the shared boundary component). The boundary of MG consists of four connected components:
ΣG, its copy Σ

′
G, and ΣN = ΣN1 ∪ΣN2. Gluing along ΣG results in the bigger time interval region

MN whose boundary consists of the two remaining components ∂MN = ΣN . This shows why the
above gluing procedure has been formulated for a single region: it enables the GBF to treat regions
like the ”tube” which consist of a single connected component, while applying as well for the gluing
of disjoint regions (because according to Axiom (GD3) the union of these regions can be seen as a
bigger region with various components).

If the manifold resulting from a gluing is inadmissible, then the gluing is not allowed. If there
are different ways of making this identification, then we require the gluing to be unique. That is: we
require the resulting manifolds to be indistinguishable in our setting. Different ways of identifying
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the gluing hypersurfaces might result in important differences depending on the theory one wants
to model. This may be encoded through suitable additional structures on regions and hypersurfaces
(for example differentiable structure and metric). If the manifolds carry such additional structure,
then this must be taken into account in the gluing. This can make the gluing impossible or require
it to be done in specific ways.

1.2.2 Core Axioms

After considering regions and hypersurfaces in the previous section, we now treat the core of the
General Boundary Formulation. These core axioms determine the system of algebraic objects that
become associated to the geometric ones. A first version of the core axioms was formulated in Section
2 of [55] and we follow the more recent version in Section 2.2 of [59] (which is identical to the one
in Section 2.2 of [66]). In the axioms, by ⊗ we denote the tensor product of vector spaces, and use
⊗̂ for the completed one of Hilbert spaces. As before, Σ denotes the hypersurface Σ with reversed
orientation.

(T1) State spaces:
To each hypersurface Σ we associate a complex separable Hilbert space H Σ and call it the state
space of Σ. We denote its inner product by 〈 · , · 〉Σ.

(T1b) Orientation reversal and involution:
Associated to each hypersurface Σ is a conjugate linear isometric involution ιΣ : H Σ → H Σ.
Linear isometric means preserving the norm: with ηΣ := ιΣηΣ we have∣∣∣∣ ηΣ

∣∣∣∣
Σ

=
∣∣∣∣ ηΣ

∣∣∣∣
Σ

∀ ηΣ ∈ H Σ. (1.8)

It is an involution in the sense that ιΣ ◦ ιΣ is the identity on H Σ. (Frequently we view H Σ and
H Σ as identified3, and the involution simply as complex conjugation. That is: if ξΣ ∈ H Σ, then

ιΣξΣ = ξΣ.) Since the inner product is conjugate linear in the first argument and linear in the
second, and the involution ιΣ is conjugate linear while preserving norms, we have

〈ηΣ, ζΣ〉Σ = 〈ζΣ, ηΣ〉Σ ∀ ηΣ, ζΣ ∈ H Σ. (1.9)

(T2) Unions of hypersurfaces:
We recall that, according to Axiom (GD3), a union of a finite number of hypersurfaces Σk is
again a hypersurface Σ (with multiple components, k = 1, ..., n). Hence by Axiom (T1) this
hypersurface has its associated state space H Σ. Now the current axiom says: if a hypersurface Σ
decomposes into a disjoint union of hypersurfaces: Σ = Σ1 ∪ ...∪Σn, then there is an isometric
isomorphism of Hilbert spaces:

τΣ1,...,Σn; Σ : H Σ1 ⊗̂ ...⊗̂H Σn → H Σ .

(The composition of the τ-maps of two consecutive hypersurface decompositions is identical
to the τ-map of the resulting decomposition.) That is, for any states ηΣk , ζΣk ∈ H Σk with
k = 1, ..., n the inner product is compatible with hypersurface decomposition:〈
τΣ1,...,Σn;Σ(ηΣ1

⊗ ...⊗ηΣn), τΣ1,...,Σn;Σ(ζΣ1
⊗ ...⊗ζΣn)

〉
Σ

=
〈
ηΣ1
⊗ ...⊗ηΣn , ζΣ1

⊗ ...⊗ζΣn
〉

H Σ1
⊗̂...⊗̂H Σn

=
〈
ηΣ1 , ζΣ1

〉
Σ1
· ... ·

〈
ηΣn , ζΣn

〉
Σn

3Instad of identifying H
Σ

and H Σ, we could equivalently identify H
Σ

and H T∗
Σ

(the topological dual, consisting

of continuous linear maps from H
Σ

to C. Then, a natural choice for the involution ιΣ is the adjoint map, that is,
ιΣηΣ = ∗ηΣ = 〈ηΣ, · 〉Σ. However, in our calculations we always use the former identification H

Σ
= H Σ with ιΣ

given by complex conjugation, because this makes the equations simpler, see for example (3.1) which stems from [59],
or the amplitude (24) in [53].
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In order to keep equations more readable, frequently we do not explicitly write the τ-maps and
instead assume their actions as understood. In other words: since the union’s state space H Σ is
isometrically isomorphic to the tensor product of the components’ state spaces H Σ1

⊗̂ ...⊗̂H Σn ,
we view them as identified as in H Σ = H Σ1 ⊗̂ ...⊗̂H Σn , omitting the τ-map.

(T2b) The involution ι is compatible with the above hypersurface decomposition:

τΣ1,...,Σn;Σ ◦ (ιΣ1 ⊗̂ ...⊗̂ιΣn) = ιΣ ◦ τΣ1,...,Σn;Σ .

(T4) Amplitudes:
Associated with each region M is a linear amplitude map ρM. It maps a dense subspace H ◦∂M
of the region’s boundary state space H ∂M to the complex numbers (the boundary ∂M carries
the induced orientation and we call H ◦∂M the amplitude subspace of the state space H ∂M):

ρM : H ◦∂M → C.

(T3x) Slice region’s amplitude and inner product:
By definition, for any hypersurface Σ the boundary ∂Σ̂ of the associated slice region Σ̂ decom-

poses into the disjoint union ∂Σ̂ = Σ∪Σ
′
, where Σ′ denotes a second copy of Σ. Then, the

τ-image of (the tensor product of) the surfaces’ state spaces is contained in the amplitude sub-
space of the slice region’s boundary state space: τ

Σ,Σ
′
;∂Σ̂

(H Σ⊗H
Σ
′) ⊆ H ◦

∂Σ̂
. Moreover, the slice

region’s amplitude map ρΣ̂ ◦ τΣ,Σ
′
;∂Σ̂

restricts to a bilinear pairing ( · , · )Σ : H Σ×H
Σ
′ → C

such that the inner product is recovered by 〈 · , · 〉Σ = ( · , ιΣ′ · )Σ.
XXX If we do not explicitly write the τ-maps, then the relation between amplitude and inner
product writes as follows: let ηΣ ∈ H Σ and ζΣι′

Σ
∈ H Σι′

Σ
arbitrary states. Then, (ηΣ⊗ζΣι′

Σ
) ∈ H ∂Σ̂

is a state on the slice region’s boundary. Writing ζ
Σ
′ = ιΣ′ζΣ′ , the current axiom states that

ρΣ̂(ηΣ⊗ζΣ′) = (ηΣ, ζΣ′)Σ = 〈ηΣ, ζΣ′〉Σ. (1.10)

(T5a) Product rule for amplitudes:
Let M = M1 ∪M2 be the disjoint union of regions M1 and M2. (We may need to allow unions
of regions that are disjoint only up to boundaries. However, we shall still call these regions
”disjoint”.) Then the boundary of the disjoint union is the disjoint union of the boundaries:
∂M = ∂M1 ∪ ∂M2. The τ-image of the amplitude subspaces of the constituent regions is
contained in the amplitude subspace of their union: τ∂M1,∂M2; ∂M(H ◦∂M1

⊗H ◦∂M2
) ⊆ H ◦∂M. Then,

for all ψ1 ∈ H ◦∂M1
and ψ2 ∈ H ◦∂M2

the regions’ amplitudes fulfill the product rule

ρM ◦ τ∂M1,∂M2;∂M(ψ1⊗ψ2) = ρM1(ψ1) · ρM2(ψ2) . (1.11)

(T5b) Gluing rule for amplitudes:
Let MG be a region with its boundary decomposing as a disjoint union ∂MG = ΣN ∪ΣG ∪Σ′G,
where Σ′G is a copy of ΣG (see discussion of gluing around Figures 1.6 and Figure 1.7). ΣN is
allowed to be empty or be some disjoint union of hypersurfaces. Let MN denote the gluing of
MG with itself along ΣG and Σ′G, and suppose that MN is a region. Note ∂MN = ΣN . Then,
τ

ΣN ,ΣG,Σ′G; ∂MG(ψN ⊗ξG⊗ιΣGξG) ∈ H ◦∂MG for all ψN ∈ H ◦∂MN and ξG ∈ H ΣG . Moreover, for any

orthonormal basis {ξiG}i∈I of H ΣG and for all ψN ∈ H ◦∂MN the amplitudes obey the following

gluing rule (wherein c(MG,ΣG,Σ′G) ∈ C\{0} is called the gluing anomaly factor and depends
only on the geometric data):

ρMN (ψN ) · c(MG,ΣG,Σ′G) =
∑
i∈I

ρMG ◦ τΣN ,ΣG,Σ′G; ∂MG(ψN ⊗ξiG⊗ιΣGξ
i
G). (1.12)
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The relation (1.10) between amplitude and inner product is of course fulfilled in the standard for-
mulation as well. Let | η(t)〉 an ”initial” state and | ζ(t)〉 a ”final” state at the same time t. Then,
(1.1) gives us the standard amplitude ρ(η(t), ζ(t)) for observing | ζ(t)〉 ”after” preparing | η(t)〉 as in
ρ(η(t), ζ(t)) = 〈ζ(t) |Ut,t | η(t)〉, wherein U is the time evolution operator. (The complex conjugation
is the involution ι of (T1b) which is applied because of the opposite orientation of the copy of Σt.)
Since Ut,t = 1, the standard ”equal-time amplitude”reduces to the overlap ρ(η(t), ζ(t)) = 〈ζ(t) | η(t)〉.

As introduced in [59], in Axiom (T4) the amplitude map ρM needs only be defined on a dense
subspace H ◦∂M of the region M’s boundary state space H ∂M. This makes sense, because generically
the amplitude map is not continuous and thus not bounded, since a linear map between two normed
spaces is bounded if and only if it is continuous, see e.g. Theorem 1.32 in [71]. This unboundedness
is due to the GBF’s philosophy of considering states on the boundary as one state, even when the
boundary consists of several disjoint components, see below.

The gluing rule in Axiom (T5b) is formulated for gluing a single region MG. This allows for
gluing different parts of the boundary of one connected region. Moreover, it also allows for gluing
boundary parts of various disconnected regions, because we can view the union of these regions as
one new region according to Axiom (GD3), see Figures 1.6 and 1.7 with the related discussion.

Recovering the standard amplitudes

As already mentioned, the standard formulation always considers time-interval regions M[t1,t2] =
[t1, t2]×R3 in Minkowski spacetime. Let us orient all equal-time planes Σt backwards in time, and
orient all boundaries outwards. Then, ∂M[t1,t2] = Σt1 ∪Σt2 . Core Axioms (T2) and (T1b) allow us
to identify the region’s boundary state space with a tensor product: H ∂[t1,t2] = H Σt1 ⊗̂H T∗

Σt2
. (For

some Hilbert space H , the Riesz representation theorem allows us to identify its complex conjugate
H with its topological dual H T∗.) The amplitude map ρ[t1,t2] can thus be seen as a bilinear map
H Σt1 ⊗̂H T∗

Σt2
→ C, just like the inner product in bra-ket notation.

The standard formulation works with only one single state space H and dynamics is encoded by
the time-evolution operator Ut2,t1 : H → H. We can consider the three state spaces H, H Σt1 and
H Σt2 as identified through the isometries of time-translations. The amplitude map ρ[t1,t2] and the
time-evolution operator Ut2,t1 are then related through

ρ[t1,t2](ηΣt1⊗ζΣt2) =
〈
ζΣt2 , Ut2,t1ηΣt1

〉
Σt2

= 〈t2 ζ |Ut2,t1 | η〉t1 . (1.13)

In this context it is easy to show that the amplitude map is unbounded. Let {ξi}i∈N an orthornormal
basis of H Σt1 , which by unitary evolution induces an orthonormal basis {Ut2,t1ξi}i∈N H Σt2 . Then,
we can construct the following countable set of normalized boundary states:

ψn := 1√
n

n∑
i=1

ξi⊗ Ut2,t1ξi,

||ψn ||2 = 〈ψn, ψn〉 = 1
n

n∑
i,j=1

〈ξi, ξj〉 · 〈Ut2,t1ξi, Ut2,t1ξj〉 = 1
n

n∑
i,j=1

δi,j δi,j = 1.

For the amplitude of these states we get by linearity of ρ:

ρ[t1,t2](ψn) = 1√
n

n∑
i=1

ρ[t1,t2](ξi⊗ Ut2,t1ξi) = 1√
n

n∑
i=1

〈ξi |U†t2,t1Ut2,t1 | ξi〉 = 1√
n
n

= n1/2.

Thus, if the Hilbert space is infinite-dimensional, then for any given positive number, we can con-
struct a normalized boundary state ψn whose amplitude is greater than this number. That is, ρ is
unbounded. The power of 1/2 arises because the time-interval region’s boundary consists of 2 discon-
nected components, which makes the boundary Hilbert space the tensor product of the components’
Hilbert spaces. In a sense, this makes the norm of the boundary Hilbert space the norm squared of
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one components’ Hilbert space. In other words, in the bra-ket notation the normalizing factor 1√
n

appears twice and thus cancels the n from the sum, giving the amplitude the value one. By contrast,
in the ρ-notation the factor 1√

n
appears only once and thus leaves

√
n as GBF amplitude. However,

this is not a problem at all, because the GBF’s probability interpretation of the amplitudes assures
that they induce probabilities with the usual properties, see Section 1.2.5.

1.2.3 Vacuum

As for the Core Axioms, we reproduce here the version of the Vacuum Axioms given in Section 2.3
of [59]. In standard QFT on Minkowski spacetime there is only one vacuum state and it is invariant
under time-translations. In the GBF there is one vacuum state for each hypersurface. Nevertheless,
these vacuum states are related through conditions induced by the axioms.

(V1) Vacuum state
For each hypersurface Σ there is a distinguished state ψVac

Σ
∈ H Σ, called the vacuum state.

(V2) Opposite orientation and involution
The vacuum state is compatible with the isometric involution: for any hypersurface Σ the
vacuum of its opposite orientation Σ can be obtained by involuting the original vacuum:

ψVac
Σ

= ιΣ ψ
Vac
Σ .

(V3) Unions of hypersurfaces
The vacuum state is also compatible with decompositions. If a hypersurface Σ is the disjoint
union of n hypersurfaces Σ1 ∪ ...∪Σn, then the union’s vacuum state is the τ-image of the
components’ vacuum states:

ψVac
Σ = τΣ1,...,Σn;Σ(ψVac

Σ1
⊗ ...⊗ψVac

Σn ) .

(V5) Vacuum amplitude
The vacuum state of any region’s boundary has unit amplitude, i.e.: for any region M we have

ρM(ψVac
∂M ) = 1 .

The following consequences of these axioms are also discussed in [59]: a vacuum state is normalized
and conserved under unitary evolution. (In Section 5 of [55] normalization was still a separate axiom
(V4).) Unit normalization of the vacuum can be shown starting from the unit amplitude of a vacuum
for the slice region Σ̂ associated to a hypersurface Σ:

1
(V5)
= ρΣ̂

(
ψVac
∂Σ̂

) (V3)
= ρΣ̂

(
τΣ,Σ;∂Σ̂(ψVac

Σ ⊗ψVac
Σ

)
) (T3x)

=
〈
ψVac

Σ , ψVac
Σ

〉
Σ

=
∣∣∣∣ψVac

Σ

∣∣∣∣2 . (1.14)

The axioms also imply that the vacuum is conserved under evolution in the following sense: as-
sume first that we consider a region M with ∂M = Σ1 ∪Σ2 (both Σ1,2 may again be unions of
hypersurfaces). This assumption is completely natural, since ”evolution” implies that we start from
some hypersurface and evolute towards another. Next assume that evolution (e.g. in time) can be
implemented via a unitary operator UM

21 : H Σ1
→ H Σ2

. We call it quantum evolution operator,
and an explicit construction for it is given in Section 3.1.5. Unitarity means that the inner product
is conserved:

〈η1, ζ1〉Σ1
= 〈UM

21η1, UM
21ζ1〉Σ2

∀ η1, ζ1 ∈ H Σ1 . (1.15)

Moreover, let evolution be related to the amplitude map (as in standard QFT in Minkowski space-
time) for all η1 ∈ H Σ1 and ζ2 ∈ H Σ2 via

ρM ◦ τΣ1Σ2;∂M(η1⊗ιΣ2ζ2) = 〈ζ2, UM
21η1〉Σ2

. (1.16)
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Then evoluting one vacuum yields the other:

UM
21ψ

Vac
Σ1

= ψVac
Σ2

. (1.17)

This can be seen by first noting that the evoluted vacuum is normalized due to unitarity:

1 = 〈ψVac
Σ1

, ψVac
Σ1

〉Σ1
= 〈UM

21ψ
Vac
Σ1

, UM
21ψ

Vac
Σ1

〉Σ2
. (1.18)

Moreover, the inner product of the vacuum ψVac
Σ2

with the evoluted vacuum UM
21ψ

Vac
Σ1

also has value
one:

1
(V5)
= ρM ◦ τΣ1,Σ2,∂M

(
ψVac

Σ1
⊗ψVac

Σ2

) (1.16)
= 〈ψVac

Σ2
, UM

21ψ
Vac
Σ1

〉Σ2
.

Since both ψVac
Σ2

and UM
21ψ

Vac
Σ1

are normalized, ψVac
Σ2

must be equal to UM
21ψ

Vac
Σ1

. This ”conservation”
of the vacuum state under unitary evolution generalizes the invariance of the vacuum under time-
translations.

1.2.4 Symmetries

The axioms about geometrical data in Section 1.2.1 are formulated using a minimal amount of
ingredients and structures: regions are topological manifolds of fixed spacetime dimension (d+1) ∈ N+

and hypersurfaces are oriented topological manifolds of dimension d. Any additional structure (such
as e.g. a metric structure, complex structure or volume form) is usually called background.

There are two ways of relating regions and hypersurfaces to backgrounds: First, regions and
hypersurfaces can appear as submanifolds of a global spacetime manifold, which carries the back-
ground structure that is then inherited by the submanifolds. This is called a global background in
Section 6.1 of [55]. For example, standard QFT assumes a global Minkowski background. Second,
we can view regions and hypersurfaces as manifolds in their own right, each coming equipped with
its background structure. This is called local background in [55]. Then, boundaries of a region must
inherit the background of the region for consistency. Further, the gluing of regions must be done in
a way respecting the background.

For our construction of an S-matrix in Anti de Sitter spacetime we work with a global background,
determined by the AdS metric. However, for a description of QFT on general curved spacetime the
use of local metric backgrounds appears more practical. Local backgrounds represent the principle of
locality, implementing that events in a given region of spacetime should not depend on the background
of another region, as discussed in Section 1.1.2.

Minkowski and AdS spacetimes are highly symmetric, that is, they have a high number of isome-
tries. Isometries are the particular class of spacetime transformations which is characterized by
leaving the metric background invariant. In general, a spacetime transformation is a bijective map-
ping from the spacetime manifold to itself. (The transformations considered may be either general
or such that they leave background strucutres invariant, like the isometries for example.) Hence,
spacetime transformations act on regions and hypersurfaces, and it is rather natural to suppose that
these geometric transformations induce algebraic transformations on the associated state spaces and
amplitude maps.

For global and local backgrounds the classes of spacetime transformations are different. For
global backgrounds we consider global transformations of the whole spacetime, which then induce
transformations of regions and hypersurfaces. For example, in standard QFT we work only with
transformations leaving the global Minkowski background invariant. This group of isometries is
called Poincaré group. For AdS we also consider only global isometries, and the group of isometries
is SO(2,d). For local backgrounds we consider transformations of a region or hypersurface viewed as
an independent manifold with background, that is, each region or hypersurface a priori is equipped
with its own group of transformations. For QFT on general curved spacetime one would use general
spacetime transformations (diffeomorphisms instead of isometries, since generically there are none).
These diffeomorphisms then are local (transforming regions and hypersurfaces, and not the whole
spacetime globally).
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Since the transformation properties of state spaces and amplitude maps take a different form for
global and local backgrounds, [55] treats them in separate sections. Because in this work we always
use the global AdS background (and Minkowski for comparison), we only reproduce the symmetry
axioms for global backgrounds.

Symmetries: global backgrounds

Let us denote the background spacetime by B and let KB be a group of global spacetime transfor-
mations (the K stands for Killing, since frequently one deals with isometries). We require that this
group maps regions to regions, and hypersurfaces to hypersurfaces. Let e the identity of KB and
k ∈KB arbitrary. Under the action of k, we denote the image of a hypersurface Σ by k .Σ and the
image of a region M by k .M. The following global symmetry axioms are postulated in [55] (with
minor adjustments to use the τ-maps of [59]). As mentioned therein, they are supposed to cover
only the most simple situations and might require later modification.

(SG1) Induced action on state spaces
The action of KB on any hypersurface Σ induces an action on the associated state space H Σ.
That is, k ∈KB induces a linear isomorphism (which we also denote by k) between Hilbert
spaces

k : H Σ → H k.Σ

ψΣ 7→ k .ψΣ .

It has the properties of a generalized action, i.e.:

k1 . (k2 .ψΣ) = (k1k2).ψΣ ∀ k1,2 ∈KB

e.ψΣ = ψΣ ∀ψΣ ∈ H Σ .

Note that in spite of the suggestive notation this is not an action in the usual sense, because
here a group element generally maps a state from one space to a state in a different state space.
Nevertheless we use the word ”action” for simplicity.

(SG2) Compatibility with involution map
The action of KB on state spaces H Σ is compatible with the involution maps ιΣ. That is, for
any k ∈KB and any hypersurface Σ we have

ιk.Σ (k .ψΣ) = k . (ιΣψΣ) .

(SG3) Unions of hypersurfaces
The action of KB on state spaces is compatible with the decomposition of hypersurfaces into
disconnected components. Suppose Σ = Σ1 ∪ ...∪Σn is such a decomposition. The action of
k ∈KB on this union is given by k .Σ = (k .Σ1)∪ ...∪(k .Σn). For both unions we then have
the τ-maps of core axiom (T2):

τΣ1,...,Σn;Σ : H Σ1
⊗̂ ...⊗̂H Σn → H Σ

τk.Σ1,...,k.Σn; k.Σ : H k.Σ1
⊗̂ ...⊗̂H k.Σn → H k.Σ ,

and for any k ∈KB and any ψΣk
∈ H Σk with k = 1, ..., n we require

k .τΣ1,...,Σn;Σ

(
ψΣ1⊗ ...⊗ψΣn

)
= τk.Σ1,...,k.Σn; k.Σ

(
(k .ψΣ1)⊗ ...⊗(k .ψΣn)

)
,

that is: the following diagram commutes.

H Σ1
⊗̂ ...⊗̂H Σn H k.Σ1

⊗̂ ...⊗̂H k.Σn

H Σ H k.Σ

w

k

u
τΣ1,...,Σn; Σ

u
τk.Σ1,...,k.Σn; k.Σ

w

k
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(SG4) Compatibility with bilinear pairing and inner product
The action of KB on state spaces is compatible with the inner product, and (T3x) together
with (SG2) then imply compatibility with the bilinear pairing. That is, for any hypersurface
Σ, any k ∈KB and any ηΣ, ζΣ ∈ H Σ with ηΣ := ιΣηΣ ∈ H Σ we require unitarity:〈

k .ηΣ, k .ζΣ
〉
k.Σ

=
〈
ηΣ, ζΣ

〉
Σ

(SG2)⇐⇒
(T3x)

(
k .ηΣ, k .ζΣ

)
k.Σ

=
(
ηΣ, ζΣ

)
Σ
.

(SG5) Invariance of amplitudes
The action of KB on regions leaves the amplitudes invariant. That is, for any region M the
amplitude subspace H ◦∂M is preserved under the action of any k ∈KB as in

k .H ◦∂M = H ◦∂(k.M) ,

which is a short notation for (k . ψ∂M) ∈ H ◦∂(k.M) for all ψ∂M ∈ H ◦∂M. Further, for any vector

ψ∂M of the amplitude subspace H ◦∂M, and any k ∈KB we require

ρk.M (k .ψ∂M) = ρM (ψ∂M) ,

that is: the following diagram commutes.

H ◦∂M H ◦∂(k.M)

C

w

k

[
[
[]ρM

�
���
ρk.M

(SGV) Invariance of vacuum state
The vacuum state ψVac is invariant under KB, i.e., for all hypersurfaces Σ we require

k .ψVac
Σ = ψVac

k.Σ ∀ k ∈KB .

1.2.5 Probability interpretation of the GBF

In the previous sections we have introduced the axiomatic framework of the General Boundary
Formulation. Now we turn to the question of how to extract measurable probabilities from the GBF.
For the Amplitude Formalism of the GBF, this has been worked out in Section 4 of [55] and in [54],
on which this section is based.

To ease us into the GBF’s probability interpretation, we first review it in the standard formulation.
For simplicity we assume that all state spaces are finite dimensional, avoiding difficulties of the infinite
dimensional case (introduction of probability densities). We consider a time-interval of Minkowski
spacetime [t1, t2]×R3 which is bounded by two (outwards-oriented) equal-time hyperplanes Σ1,2

at times t1,2. Let | η〉Σ1
∈H Σ1

be the normalized ket-state of a quantum system at time t1 and
〈Σ2
ζ |∈H ∗

Σ2
a normalized bra-state at time t2. Usually one considers only one state space, since H Σ1

and H Σ2
are canonically identified via time-translation invariance. However, here we distinguish them

in order to prepare for the corresponding GBF expressions. The associated transition amplitude ρ
is given by

ρ(η, ζ) = 〈Σ2
ζ |Ut2,t1 | η〉Σ1

(1.19)

where Ut2,t1 : H Σ1
→ H Σ2

again is the time-evolution operator. The associated probability P

then is the modulus square of the transition amplitude: P (η, ζ) = |ρ(η, ζ)|2. The usual physical inter-
pretation of P is being the probability of finding the normalized state ζΣ2

at time t2 given that the
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normalized state ηΣ1
has been prepared at time t1. This means that P is actually a conditional prob-

ability. Such a probability usually depends on two types of data: fixed data (the condition) describing
knowledge or preparation, and open data describing outcomes of observations/measurements which
fix the answer to an open question. For two events A and B, the conditional probability P (A|B) of
finding A given B is defined as

P (A|B) :=
P (A and B )

P (B)
.

Of course, this is only well defined if P (B) 6= 0. Indeed, the conditional probability P (A|B) that A
happens given that B happens becomes meaningless if B is impossible.

.

Example PS.1: In order to empasize that the probabilities are conditional, let us write the proba-
bility (1.19) as P (ζΣ2

|ηΣ1) (read: the probability of observing ζΣ2
conditional on the preparation of

ηΣ1
):

P (ζΣ2
|ηΣ1

) =
∣∣ 〈Σ2

ζ |Ut2,t1 | η〉Σ1

∣∣2. (1.20)

A defining property of probabilities is that the cumulative probability of all exclusive possibilities is
1. Here this is implemented using the inner product which defines orthonormality and thus mutual
exclusivity. Let {ξΣ2,h

}h∈H2
be an orthonormal basis of H Σ2

, representing a complete set of mutually

exclusive measurement outcomes, then for any normalized ηΣ1 this implies

1 =
∑
h∈H2

P
(
ξΣ2,h

∣∣ηΣ1

)
=
∑
h∈H2

∣∣ 〈Σ2
ξh |Ut2,t1 | η〉Σ1

∣∣2 . (1.21)

.

Example PS.2: As an extension of example PS.1 suppose now that we know a priori that only some
specified measurement outcomes can occur. We could enforce this by selecting a specified subset of
performed measurements in order to exclude the other outcomes. A way to formalize this is to say
that the possible measurement outcomes form a closed subspace PΣ2

of H Σ2
. We suppose now that

the orthonormal basis (ONB) {ξΣ2,h
}h∈H2 of H Σ2

restricts to an ONB {ξΣ2,p
}p∈P2⊆H2 of PΣ2

.

We now consider the probability of the outcome specified by a single state ξΣ2,k
with k∈P2. The

corresponding probability is conditional both on the prepared state being ηΣ1 and knowing that the
outcome must lie in PΣ2

. We denote this conditional probability by P (ξΣ2,k
|ηΣ1 ,PΣ2

). In order

to calculate it, we divide the conditional probability P (ξΣ2,k
|ηΣ1

) by the conditional probability

P (PΣ2
|ηΣ1

) that the measurement’s outcome lies in PΣ2
given the prepared state is ηΣ1

. The latter
is simply

P
(
PΣ2

∣∣ηΣ1

)
=
∑
p∈P2

P
(
ξΣ2,p

∣∣ηΣ1

)
=
∑
p∈P2

∣∣ 〈Σ2
ξp |Ut2,t1 | η〉Σ1

∣∣2 .
0 < P

(
PΣ2

∣∣ηΣ1

)
≤ 1 ⇔ ∅ 6= PΣ2

⊆ H Σ2

We suppose that this probability is not zero, which would imply the impossibility of obtaining any
measurement outcome in PΣ2

and thus the meaninglessness of the quantity P (ξk|ηΣ1 ,PΣ2
). Then,

P
(
ξΣ2,k

∣∣ηΣ1 ,PΣ2

)
=

P
(
ξΣ2,k

∣∣ηΣ1

)
P
(
PΣ2

∣∣ηΣ1

) =

∣∣ 〈Σ2
ξk |Ut2,t1 | η〉Σ1

∣∣2∑
p∈P2

∣∣ 〈Σ2
ξp |Ut2,t1 | η〉Σ1

∣∣2 .
.

Example PS.3: We can further modify example PS.2 by considering as measurement outcome not
just a single state, but a closed subspace MΣ2

⊆ PΣ2
. We denote the corresponding conditional

probability by P (MΣ2
|ηΣ1

,PΣ2
). It is the sum of the conditional probabilities P (ξΣ2,m

|ηΣ1
,PΣ2

)
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for an orthonormal basis {ξΣ2,m
}m∈M2⊆P2

of MΣ2
(to which again we suppose the ONB of PΣ2

to

restrict):

P
(
MΣ2

∣∣ηΣ1
,PΣ2

)
=

∑
m∈M2

∣∣ 〈Σ2
ξm |Ut2,t1 | η〉Σ1

∣∣2
∑
p∈P2

∣∣ 〈Σ2
ξp |Ut2,t1 | η〉Σ1

∣∣2
0 ≤ P

(
MΣ2

∣∣ηΣ1 ,PΣ2

)
≤ 1 ⇔ MΣ2

⊆ PΣ2
⊆ H Σ2

.

.

Example PS.4: A conceptually different extension of example PS.1 is the following: we suppose
now that {ξΣ1,h}h∈H1 is an orthonormal basis of H Σ1 . Then, for some k∈H1

P
(
ξΣ1,k

∣∣ζΣ2

)
=
∣∣ 〈Σ2

ζ |Ut2,t1 | ξk〉Σ1

∣∣2
is the conditional probability of the prepared state having been ξΣ1,k given that ζΣ2

was measured.
This somewhat counterintuitive interpretation may be understood as follows. Suppose we have
prepared a large sample of measurements with random initial states ξΣ1,h. We then measure whether
the final state contains ζΣ2

or not (the latter meaning that it is orthogonal to ζΣ2
). The probability

distribution of the initial states ξΣ1,h in the subset of measurements resulting in ζΣ2
is then given by

P (ξΣ1,h|ζΣ2
).

These four examples illustrate two points. First, the modulus square of a standard transition
amplitude can be interpreted as a conditional probability in different ways. Second, the roles of
different parts of the measurement process are not fixed (with respect to which is considered the
conditional one and which the depending one). As shown by Example PS.4, the interpretation is not
restricted to ”final state conditional on initial state”.

Probabilities: Amplitude map

In the General Boundary Formulation the dependence of probabilities on preparation data and obser-
vation data is preserved. The considerations of the previous section together with the GBF context
lead us to the following probability interpretation, which was presented in [55]. The difference be-
tween standard and GBF approach is merely in direction: the standard approach usually starts with
transition probabilities for single initial and final states, and can be generalized to cover preparation
and measurement subspaces. The GBF starts with these subspaces from the outset, and the single
states then appear as special cases.

Consider a process taking place in a spacetime region M with boundary ∂M. Let H ∂M its bound-
ary state space describing the given physical system in contact with preparation and measurement
machinery. Then, both types of data are encoded through closed subspaces of H ∂M: we suppose
that a certain ”prepared” knowledge about the process amounts to the specification of the closed
preparation subspace P∂M ⊂ H ∂M. We thus assume knowing a priori that the boundary state de-
scribing the measurement process lies in that subspace. We aim to find the probability whether the
measurement’s outcome lies in a closed measurement subspace M∂M ⊆ P∂M ⊂ H ∂M. That is, we
are interested in the conditional probability P (M∂M|P∂M) of the measurement/observation process
being described by the measurement subspace M∂M given that its preparation is described by the
preparation subspace P∂M. IfM∂M has dimension one, being spanned by one normalized state ξ∂M,
we also write P (M∂M|P∂M) = P (ξ∂M|P∂M).

We let again {ξh}h∈H an orthonormal basis of H ∂M which reduces to an ONB {ξp}p∈P ⊆H of P∂M
and further to an ONB {ξm}m∈M ⊆P of M∂M. Then a first way of expressing P (M∂M|P∂M) is:

P
(
M∂M

∣∣P∂M) =

∑
m∈M

∣∣ρM(ξm)
∣∣2

.∑
p∈P

∣∣ρM(ξp)
∣∣2 . (1.22)
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It turns out that in general it is not meaningful to interpret the numerator and denominator in
(1.22) separately as probabilities. Further, again we assume that the denominator does not vanish.
However, if P∂M is such that this happens, then in (1.22) this would imply a vanishing probability for
observing anything given the preparation P∂M. Thus the conditional probability would be physically
meaningless. Moreover, because of (M∂M ⊆ P∂M) this implies that the numerator vanishes, too,
making P (M∂M|P∂M) undefined. Thus the knowledge encoded in such a P∂M does not correspond
to any physically allowed process. We now verify that P (M∂M|P∂M) has all properties of a quantum
mechanical probability.

• By construction (M∂M ⊆ P∂M) we have probabilities in the unit interval:

0 ≤ P (M∂M|P∂M) ≤ 1 .

• For two mutually exclusive observations encoded by orthogonal subspacesM∂M,1 andM∂M,2,
we have additive probabilities:

P
(
M∂M,1 ⊕M∂M,2

∣∣P∂M) = P
(
M∂M,1

∣∣P∂M)+ P
(
M∂M,2

∣∣P∂M)
which can be quickly verified by inserting definition (1.22).

• For any (allowed) preparation P∂M arbitrary (allowed) outcome has probability one, that is:
the probability for M∂M = P∂M equals unity.

1 = P
(
P∂M

∣∣P∂M) =

∑
m∈P

∣∣ρM(ξm)
∣∣2

.∑
p∈P

∣∣ρM(ξp)
∣∣2 ∀ P∂M ⊂ H ∂M

• If we have M∂M,2 implies M∂M,1 implies P∂M, that is M∂M,2 ⊆ M∂M,1 ⊆ P∂M, then the
following probability chain rule holds:

P
(
M∂M,2

∣∣P∂M) = P
(
M∂M,2

∣∣M∂M,1
)
· P
(
M∂M,1

∣∣P∂M).
Again, this can quickly be checked by inserting (1.22).

Now let us rewrite Examples PS.1-4 of the standard formulation using the GBF’s probability in-
terpretation (1.22). In the standard formulation we always consider a time-interval region whose
boundary consists of two (outwards oriented) disjoint components: ∂M = Σ1 ∪Σ2. Hence according
to Core Axiom (T2) the state space factors into the tensor product H ∂M = H Σ1

⊗H Σ2
. We recall

the notation ζΣ2
= ιΣ2ζΣ2 . .

Example PA.1 For the first example we select a normalized state ηΣ1
∈H Σ1

and write

P∂M = ”ηΣ1
⊗H Σ2

” ⊂ H ∂M

P∂M :=
{
α∂M ∈H ∂M | ∃ ζΣ2

∈H Σ2
: α∂M = ηΣ1

⊗ζΣ2

}
⊂ H ∂M

Let again {ξΣ2,h
}h∈H2 an orthonormal basis of H Σ2

and hence {ηΣ1⊗ξΣ2,h
}h∈H2 is an orthonormal

basis of P∂M. Then, the probability of observing the normalized state ζΣ2
∈H Σ2

, which corresponds
to setting

M∂M = ηΣ1
⊗ζΣ2

,

subject to the preparation of ηΣ1
∈H Σ1

calculates to

P
(
M∂M

∣∣P∂M) =

∣∣ρM(ηΣ1
⊗ ζ

Σ2
)
∣∣2∑

p∈H2

∣∣ρM(ηΣ1
⊗ ξ

Σ2,p
)
∣∣2 (1.26)

=
∣∣ρM(ηΣ1⊗ ζ

Σ2
)
∣∣2 . (1.23)
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Comparing the notation to the standard formulation as in (1.13), that is, recognizing

ρM(ηΣ1
⊗ζ

Σ2
) = 〈Σ2

ζ |Ut2,t1 | η〉Σ1

shows that we recover the standard result P (ζΣ2
|ηΣ1

) of equation (1.20), as in (1.1). .

Example PA.2 Similarly, the second example is recovered by setting

P∂M = ”ηΣ1⊗PΣ2
” ⊆ ”ηΣ1⊗H Σ2

” ⊂ H ∂M

P∂M :=
{
α∂M ∈H ∂M | ∃ζΣ2

∈PΣ2
: α∂M = ηΣ1⊗ζΣ2

}
⊂ H ∂M

M∂M := ηΣ1⊗ξΣ2,k
k∈P2

for an orthonormal basis {ηΣ1
⊗ξΣ2,p

}p∈P2
of P∂M with (∅ 6= P2 ⊆ H2). Then we get agreement of

the result for P (ξΣ2,k
|ηΣ1

,PΣ2
) in Example PS.2 with

P
(
M∂M

∣∣P∂M) =

∣∣ρM(ηΣ1
⊗ ξ

Σ2,k
)
∣∣2∑

p∈P2

∣∣ρM(ηΣ1
⊗ ξ

Σ2,p
)
∣∣2 .

.

Example PA.3 For the third example we keep P∂M and its orthonormal basis and assume that it
restricts to an ONB {ηΣ1

⊗ξΣ2,m
}m∈M2

of M∂M with (M2 ⊆ P2) and

M∂M = ”ηΣ1
⊗MΣ2

” ⊆ ”ηΣ1
⊗PΣ2

” ⊂ H ∂M

M∂M :=
{
α∂M ∈H ∂M | ∃ζΣ2

∈MΣ2
: α∂M = ηΣ1

⊗ζΣ2

}
⊂ H ∂M .

Then we recover the P (MΣ2
|ηΣ1 ,PΣ2

) of Example PS.3 via

P
(
M∂M

∣∣P∂M) =

∑
m∈M2

∣∣∣ρM(ηΣ1
⊗ ξ

Σ2,m
)

∣∣∣2
.∑

p∈P2

∣∣∣ρM(ηΣ1⊗ ξ
Σ2,p

)

∣∣∣2 .

.

Example PA.4 For the fourth example we have

P∂M = ”H Σ1
⊗ζΣ2

” ⊂ H ∂M

P∂M :=
{
α∂M ∈H ∂M | ∃ηΣ1

∈H Σ1 : α∂M = ηΣ1⊗ζΣ2

}
⊂ H ∂M

and denote by {ξΣ1,p⊗ζΣ2
}p∈P1

an orthonormal basis of P∂M. Then, the probability of ”observing”
(respectively ”having observed” since t1 < t2) ξΣ1,k

∈H Σ1
, which corresponds to setting

M∂M = ξΣ1,k⊗ζΣ2
,

subject to the ”retrospective preparation” of ζΣ2
∈H Σ2

turns out as

P
(
M∂M

∣∣P∂M) =

∣∣ρM(ξΣ1,k⊗ ζ
Σ2

)
∣∣2∑

p∈P

∣∣ρM(ξΣ1,p⊗ ζ
Σ2

)
∣∣2 (1.26)

=
∣∣ρM(ξΣ1,k⊗ ζ

Σ2
)
∣∣2 , (1.24)

which recovers the P (ξΣ1,k|ζΣ2
) of Example PS.4. The important point here of course consists in

”retrospectively preparing” the experimental setup at time t2 > t1 and ”measuring” the initial state
retrospectively. This illustrates the independence of the ”preparation vs. observation” interpretation
for certain data of the temporal sequence of the events described in the data. Thus preparation
in a generalized sense can be expressed as ”fixed (input and output) parts” of an experiment and
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observation as ”open (input and output) parts becoming fixed” by this experiment. Here input
(output) denotes anything flowing into (out of) the spacetime region in which the experiment is
conducted.

Now let us justify why the denominator in (1.23) of Example PA.1 and in (1.24) of Example PA.4
is unity. Since we are in the standard setting of the time-interval region, the amplitude map ρM
induces a linear, unitary map UM

21 which fulfills

UM
21 : H Σ1 → H Σ2 ρM (η1⊗ι2ζ2) = 〈ζ2, UM

21η1〉Σ2
. (1.25)

We call it quantum evolution map as above. In [55] this was still a separate axiom called (T4b),
while in [59] it is treated as an induced property which holds under certain conditions (essentially
that classical evolution in time is unitary). In the standard setting, these conditions are met, at least
for Minkowski spacetime. In the standard language this map is just the time-evolution operator. In
Section 3.1.5 we review an explicit construction of the map UM

21 using the method of Holomorphic
Quantization.

We now recall that in the first example PS.1 we choose ηΣ1
to be normalized and {ξΣ2,p

}p∈H2
is

an orthonormal basis of H Σ2
. This then implies for these examples that

1 =
∑
p∈P

∣∣ρM(ηΣ1
⊗ξ

Σ2,p
)
∣∣2 =

∑
p∈P

∣∣〈ξΣ2,p, UMηΣ1
〉Σ2

∣∣2 . (1.26)

Either UM maps ηΣ1
directly to one vector of the orthonormal basis {ξΣ2,p} of H Σ2

(which can
always be arranged by choosing the ONB adequately) and hence the sum is over Kronecker deltas
all vanishing but one. Or the same sum results by summing over all inner products (now each < 1)
of UMηΣ1

with the vectors {ξΣ2,p} of the ONB. By similar reasoning, the normalization factor in
Example PA.4 equals unity, too (but not the ones PA.2+3, since therein not the whole Hilbert space
H Σ2

is covered by P∂M).

Probabilities: Projectors

In the previous section the GBF probabilities are obtained from the amplitude maps via summing
over an ONB basis of the preparation subspace respectively measurement subspace. There, the
measurement subspace is required to be contained in the preparation subspace: M∂M ⊆ P∂M.
Section 3 of [54] presents an equivalent formulation using projection operators. This formulation is
then used in [60] to construct observables in the GBF context, see Section 1.2.6. We now consider the
same setting as in the previous subsection: preparation is encoded in a closed preparation subspace
P∂M ⊂ H ∂M and measurement outcome in a closed measurement subspaceM∂M ⊂ H ∂M. The second
formula for the conditional probability P (M∂M|P∂M) of the measurement being described by M∂M
given that its preparation is described by P∂M is

P
(
M∂M

∣∣P∂M) =

∣∣∣∣ ρM◦P̂P∂M◦P̂M∂M

∣∣∣∣2∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2 . (1.27)

Therein, P̂P∂M and P̂M∂M are the orthogonal projectors onto the respective subspaces and ◦ denotes
the composition of maps. Orthogonality of a projector P̂ here refers to the inner product on H ∂M,
meaning that its range R(P̂) = {P̂ψ|ψ∈H ∂M} and its null space N(P̂) = {(Id − P̂)ψ|ψ∈H ∂M} are
orthogonal subspaces of H ∂M. A projector is orthogonal (with respect to some inner product) if and
only if it is self-adjoint (for that inner product).

Hence in numerator and denominator of (1.27) we take the norm of linear maps H ∂M → C, which
thus are elements of the algebraic dual space H A∗

∂M. (The algebraic dual of a vector space consist of
all linear maps on it, whereas the topological dual space of a topological vector space consists only of
all continuous linear maps on it.) However, as discussed in Section 1.2.2, the amplitude map ρM is
generically not bounded. Thus P∂M must be ”small enough” such that ρM◦P̂P∂M becomes bounded,
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thus continuous, and hence an element not only of the algebraic dual H A∗
∂M of the state space, but

also of its topological dual H T∗
∂M ⊂ H A∗

∂M. For H T∗
∂M, the norm is defined as follows: let

β∂M ∈H T∗
∂M : H ∂M → C

be a bounded linear map. Then by the Riesz representation theorem there exists ∗β∂M ∈H ∂M such
that

β∂M(η∂M) = 〈 ∗β∂M, η∂M〉∂M ∀ η∂M ∈H ∂M

and we define

||β∂M ||H T∗
∂M

:= || ∗β∂M ||H ∂M . (1.28)

As in the previous section, in general it is not meaningful to interpret the numerator and denom-
inator in (1.27) separately as probabilities. Again, we assume the denominator to be nonzero, the
corresponding comments in the previous section apply here as well. Together thus the preparation
subspace P∂M must neither be ”too small” such that ρM◦P̂P∂M becomes zero, nor be ”too large” such
that ρM◦P̂P∂M◦P̂M∂M becomes unbounded. Physically this says that P∂M needs to be sufficiently
restrictive but not too restrictive (causing an impossibility). This condition is satisfied in standard
situations.

In the previous section the measurement subspace M∂M is restricted to be a subspace of the
preparation subspace P∂M. Here this restriction is not enforced, which represents more a formal
than a physical difference. Making M∂M a subspace of P∂M just means that when we ask the
question, then we already take into account the preparation knowledge that the answer must fall
into a certain subspace. In particular, if M∂M ⊆ P∂M, then P̂P∂M and P̂M∂M commute, and then
(1.27) can be written as [60]

P
(
M∂M

∣∣P∂M) =

〈
ρM◦P̂P∂M , ρM◦P̂M∂M

〉∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2 . (1.29)

For the calculations of the examples we mention a few technical properties. Projection operators are
idempotent. Moreover, note that for any map β∂M as above and any orthogonal projector P̂S∂M on
a subspace S∂M ⊂ H ∂M, since orthogonal projectors are hermitian, we have by the above definition:

(β∂M◦P̂S∂M)η∂M =
〈∗(β∂M◦P̂S∂M), η∂M

〉
∂M ∀ η∂M ∈H ∂M

(β∂M◦P̂S∂M)η∂M = β∂M (P̂S∂Mη∂M) =
〈 ∗β∂M , P̂S∂Mη∂M

〉
∂M =

〈
P̂S∂M

∗β∂M, η∂M
〉
∂M

⇒ ∗(β∂M◦P̂S∂M) = P̂S∂M
∗β∂M ∈H ∂M. (1.30)

In the same way one can show that for several projectors {P̂S∂M,j}j=1,...,k we have

∗(β∂M◦P̂S∂M,1 . . . P̂S∂M,k) = P̂S∂M,k . . . P̂S∂M,1
∗β∂M. (1.31)

We continue by verifying again that P (M∂M|P∂M) has the properties of a quantum mechanical
probability.

• By construction we have probabilities in the unit interval:

0 ≤ P (M∂M|P∂M) ≤ 1 .

• For two mutually exclusive observations encoded by orthogonal subspaces M∂M,1 and M∂M,2
we have additive probabilities:

P
(
M∂M,1 ⊕M∂M,2

∣∣P∂M) = P
(
M∂M,1

∣∣P∂M)+ P
(
M∂M,2

∣∣P∂M)
m

P̂M∂M,1◦P̂M∂M,2 ξ∂M = 0 = P̂M∂M,2◦P̂M∂M,1 ξ∂M ∀ ξ∂M ∈H ∂M ,
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because of

P
(
M∂M,1 ⊕M∂M,2

∣∣P∂M) =

∣∣∣∣ ρM◦P̂P∂M◦P̂M∂M,1⊕M∂M,2

∣∣∣∣2∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2
=

∣∣∣∣ ρM◦P̂P∂M◦(P̂M∂M,1+P̂M∂M,2)
∣∣∣∣2∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2

=

〈 ∗(ρM◦P̂P∂M◦(P̂M∂M,1+P̂M∂M,2)), ∗(ρM◦P̂P∂M◦(P̂M∂M,1+P̂M∂M,2))
〉∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2

= P
(
M∂M,1

∣∣P∂M)+ P
(
M∂M,2

∣∣P∂M)+ 2Re N /
∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2 ,

wherein

N =
〈 ∗(ρM◦P̂P∂M◦P̂M∂M,1), ∗(ρM◦P̂P∂M◦P̂M∂M,2)

〉
(1.30)
=

〈
P̂P∂M◦P̂M∂M,1

∗ρM, P̂P∂M◦P̂M∂M,2
∗ρM

〉
orthogonal projectors are hermitian

=
〈

P̂M∂M,2◦P̂P∂M◦P̂M∂M,1
∗ρM︸ ︷︷ ︸

= 0 if projectors commute

, ∗ρM
〉

= 0.

• Arbitrary outcome has probability one for any (allowed) preparation subspace:

1 = P
(

H ∂M
∣∣P∂M) =

∣∣∣∣ ρM◦P̂P∂M◦
IdH ∂M︷ ︸︸ ︷
P̂H ∂M

∣∣∣∣2∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2 ∀ P∂M ⊂ H ∂M

• If we have M∂M,2 implies M∂M,1 implies P∂M, that is M∂M,2 ⊆ M∂M,1 ⊆ P∂M ⊂ H ∂M, then
the following probability chain rule holds (it can be checked by inserting definition (1.27) into
the chain rule and applying the premise P̂P◦P̂M∂M,1 = P̂M∂M,1 etc.):

P
(
M∂M,2

∣∣P∂M) = P
(
M∂M,2

∣∣M∂M,1
)
· P
(
M∂M,1

∣∣P∂M) .
Now let us see again how the Examples PS.1-4 write using the projector method. This turns out
quite similar to Examples PA.1-4, the difference being that now the measurement subspaces need no
longer be contained in the preparation subspaces. .

Example PP.1 For the first example, select two normalized states ηΣ1
∈H Σ1 and ζΣ2

∈H Σ2
and set

P∂M = ” ηΣ1
⊗H Σ2

” ⊂ H ∂M

M∂M = ” H Σ1
⊗ζΣ2

” ⊂ H ∂M

P∂M :=
{
α∂M ∈H ∂M | ∃βΣ2

∈H Σ2
: α∂M = ηΣ1

⊗βΣ2

}
⊂ H ∂M

M∂M :=
{
α∂M ∈H ∂M | ∃βΣ1

∈H Σ1 : α∂M = βΣ1⊗ζΣ2

}
⊂ H ∂M

Let us now denote by {ξΣ1,j⊗ξΣ2,k
}j,k=1,...,(dim H Σ1,2

) an orthonormal basis of H ∂M with ξΣ2,k
=

ιΣ2
UMξΣ1,k, and such that ηΣ1

is one of the ξΣ1,j . Then, the probability of observing ζΣ2
∈H Σ2

subject to the preparation of ηΣ1
∈H Σ1

turns out as in (1.25):

P
(
M∂M

∣∣P∂M) =
∣∣〈ζΣ2

, UMηΣ2

〉
Σ2

∣∣2 =
∣∣ 〈

Σ2
ζ
∣∣Ut2,t1 ∣∣ η〉Σ1

∣∣2 ,
which again recovers the standard result P (ζΣ2

|ηΣ1) of equation (1.20). The calculation is done at
the end of this section. .
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Example PP.2 For the second example we set

P∂M = ” ηΣ1⊗PΣ2
” ⊆ ” ηΣ1⊗H Σ2

” ⊂ H ∂M

M∂M = ” H Σ1⊗ζΣ2
” ζ

Σ2
∈P

Σ2

P∂M :=
{
α∂M ∈H ∂M | ∃βΣ2

∈PΣ2
: α∂M = ηΣ1⊗βΣ2

}
⊂ H ∂M

M∂M :=
{
α∂M ∈H ∂M | ∃βΣ1

∈H Σ1 : α∂M = βΣ1⊗ζΣ2

}
⊂ H ∂M

.

Example PP.3 For the third example we keep P∂M and set

M∂M = ” H Σ1
⊗MΣ2

” ⊆ ” H Σ1
⊗PΣ2

” ⊂ H ∂M

M∂M :=
{
α∂M ∈H ∂M | ∃βΣ1

∈H Σ1
, ωΣ2

∈PΣ2
: α∂M = βΣ1

⊗ωΣ2

}
⊂ H ∂M .

.

Example PP.4 For the fourth example we set:

P∂M = ” H Σ1
⊗ζΣ2

” ⊂ H ∂M

M∂M = ” ηΣ1
⊗H Σ2

” ⊂ H ∂M

P∂M :=
{
α∂M ∈H Σ | ∃βΣ1

∈H Σ1 : α∂M = βΣ1⊗ζΣ2

}
⊂ H ∂M

M∂M :=
{
α∂M ∈H ∂M | ∃βΣ2

∈H Σ2
: α∂M = ηΣ1⊗βΣ2

}
⊂ H ∂M.

This reproduces the correct probabilities also for the case of retrospective measurement as the reader
may verify following the steps of the first example. In the definition of probabilities via projectors
this is not unexpected, since here with respect to example PP.1 we have only interchanged P∂M with
M∂M.

For example (PP.1) the calculation goes as follows. The two relevant projectors are:

P̂PΣ
= ηΣ1

〈ηΣ1
, · 〉Σ1

⊗IdH
Σ2

= ηΣ1
〈ηΣ1

, · 〉Σ1
⊗

dim H
Σ2∑

k=1

ξΣ2,k
〈ξΣ2,k

, · 〉Σ2
(1.32)

P̂MΣ = IdH Σ1
⊗ζΣ2

〈ζΣ2
, · 〉Σ2

=

dim H Σ1∑
k=1

ξΣ1,k〈ξΣ1,k, · 〉Σ1
⊗ζΣ2

〈ζΣ2
, · 〉Σ2

(1.33)

The probability via projectors is then:

P (MΣ|PΣ) =

∣∣∣∣ ρM ◦ P̂PΣ
◦ P̂MΣ

∣∣∣∣2
H T∗
∂M∣∣∣∣ ρM ◦ P̂PΣ

∣∣∣∣2
H T∗
∂M

=

〈
∗(ρMP̂PΣP̂MΣ), ∗(ρMP̂PΣP̂MΣ)

〉
H ∂M〈

∗(ρMP̂PΣ), ∗(ρMP̂PΣ)
〉

H ∂M

(1.34)

First let us consider the denominator of (1.34):〈
∗(ρMP̂PΣ), ∗(ρMP̂PΣ)

〉
H ∂M

=
∑
i,j

〈
∗(ρMP̂PΣ), ξiΣ1

⊗ξj
Σ2

〉
H ∂M
·
〈
ξiΣ1
⊗ξj

Σ2
, ∗(ρMP̂PΣ)

〉
H ∂M

=
∑
i,j

∣∣∣(ρMP̂PΣ

)
(ξiΣ1

⊗ξj
Σ2

)
∣∣∣2 =

∑
i,j

∣∣∣ρM(ηΣ1
〈ηΣ1

, ξiΣ1
〉Σ1
⊗ξj

Σ2

)∣∣∣2
=
∑
j

∣∣ρM(ηΣ1⊗ξ
j

Σ2

)∣∣2 = 1.
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The last equality is as in (1.26). For the numerator of (1.34) we obtain:〈
∗(ρMP̂PΣ

P̂MΣ
),∗(ρMP̂PΣ

P̂MΣ
)
〉

H ∂M
=
∑
i,j

〈
∗(ρMP̂PΣ

P̂MΣ
), ξiΣ1

⊗ξj
Σ2

〉
H ∂M
·
〈
ξiΣ1
⊗ξj

Σ2
,∗(ρMP̂PΣ

P̂MΣ
)
〉

H ∂M

=
∑
i,j

∣∣∣(ρMP̂PΣP̂MΣ

)
(ξiΣ1

⊗ξj
Σ2

)
∣∣∣2

=
∑
i,j

∣∣∣ρM(ηΣ1
〈ηΣ1

, ξiΣ1
〉Σ1
⊗ζΣ2

〈ζΣ2
, ξj

Σ2
〉Σ2

)∣∣∣2
=
∣∣ρM(ηΣ1⊗ζΣ2

)∣∣2 =
∣∣〈ζΣ2

, UMηΣ1〉Σ2

∣∣2.
1.2.6 Observables

While the previous section deals with (generalized) amplitudes, here we consider observables in the
GBF context. Operators have been mentioned first in Section 10 of [55] and then have been treated
extensively in [60] on which this section is based. In standard quantum theory, self-adjoint op-
erators (on the one and only Hilbert space of quantum states in the standard formulation) are the
mathematical object representing observables. The algebra of these operators and commutation rela-
tions therein are important structures in quantization. Correspondence principles then link classical
Poisson brackets to quantum commutators.

This correspondence is rooted in nonrelativistic Quantum Mechanics, where operators represent
measurements that can be applied at any time. Further, the operational meaning of the product
of two operators is the temporal composition of the corresponding measurements. In particular,
ÂB̂ means that we first apply B̂ followed by Â. This temporal ordering is crucial, since usually
ÂB̂ 6= B̂Â, that is: reversing the sequence of measurements can change the result.

In QFT this is different, since operators are localized by a label specifying the spacetime point
of their corresponding measurement as in φ̂(t, x). Hence the only operationally meaningful way to
combine operators is their time-ordered product as in Tφ̂(t, x)φ̂(t′, x′). A key property of this product
is that it is commutative. Usually in QFT first a nonabelian algebra of field operators is constructed,
starting with equal-time commutation relations. Because the property of having equal time is not
invariant under Poincaré transformations, these commutators are then extended to field operators
with differing times. Since two measurements with spacelike separation cannot influence each other
in relativity, reversing their temporal sequence may not produce a different result. Hence we require
for spacelike separations that Â(t, x)B̂(t′, x′) = B̂(t′, x′)Â(t, x), that is: the commutator vanishes.
This condition is Poincaré invariant and ensures that the time-ordered product is independent of the
inertial frame we have chosen.

The commutative time-ordered product is usually considered to be derived from the unordered,
noncommutative product. However, only the time-ordered product has a direct operational meaning:
the amplitudes and S-matrix of QFT are defined using only the time-ordered product. And further,
the nonordered product can be recovered from the time-ordered one [57]:

[Â(t, x), B̂(t, x′)] = lim
ε→+0

T
(
Â(t+ε, x)B̂(t−ε, x′)− Â(t−ε, x)B̂(t+ε, x)

)
.

Hence in the special relativistic setting of standard QFT the time-ordered operator product can
be considered more fundamental than the unordered product. This is a hint to construct observ-
ables using the time-ordered product instead of the unordered. Further, progressing to a General
Relativity context the spacetime metric becomes a dynamical object (as e.g. in Einstein’s General
Relativity). Therefore, we do not dispose of a metric allowing us to formulate the previous condition
that commutators must vanish for spacelike separations. Hence setting up a nonabelian algebra of
observables becomes even less convincing here.

[60] presents a formulation of quantum observables which takes the above considerations into
account and naturally fits into the GBF. Here we only review the version of these axioms given
in Section 4.2 of [66]. For the implementation of these axioms in Holomorphic Quantization we
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refer to Section 3.1.7. The first axiom (O1) merely states that for each region there are observable
maps, as does Core Axiom (T4) for the amplitude map. This represents the fact that physical
measurements have finite extension in space and time, compared to theoretical measurements at
some point in spacetime. The observable maps of a region arise as modifications of its amplitude
map. This explains why these maps have very similar properties. However, which of the linear maps
H ◦∂M → C can actually be considered observables in general depends on which particular quantum
theory we consider.

The most important operation for observables is composition, which generalizes the temporal
composition in standard Quantum Theory discussed above. This is exactly analoguous to the com-
position of amplitudes for unions and gluings of regions covered by Core Axioms (T5a+b). The
corresponding observable axioms (O2a+b) are already written omitting the τ -maps of these core ax-
ioms4. By closedness under composition we mean the content of Axioms (O2a+b), that is, that the
composition of two observables on their respective regions must be an observable on the composed
region, and that the gluing of a region maps observables of the original region to observables of the
glued region.

(O1) Observable maps
To each spacetime region M is associated a real vector space OM of linear maps H ◦∂M → C on
its amplitude subspace. These maps we call observable maps, and the amplitude map is one
of them: ρM ∈O∂M.

(O2a) Product rule for observables
As in Core Axiom (T5a), let M = M1 ∪M2 be the disjoint union of regions M1 and M2. Then,
there is an injective bilinear map � : OM1×OM2 ↪→ OM such that for any O1 ∈OM1 and
O2 ∈OM2 and for all ψ1 ∈ H ◦∂M1 and ψ2 ∈ H ◦∂M2 the following product rule is satisfied:(

O1�O2

)
(ψ1⊗ψ2) = O1(ψ1) ·O2(ψ2) . (1.35)

We require the diamond product to be associative in the obvious way. It is defined such that
equation (1.11) of Core Axiom (T5a) can be rewritten as ρM = ρM1�ρM2 .

(O2b) Gluing rule for observables:
As in Core Axiom (T5b), let MG be a region with its boundary decomposing as a disjoint
union ∂MG = ΣN ∪ΣG ∪Σ′G, where Σ′G is a copy of ΣG. Let MN denote the gluing of MG

with itself along ΣG and Σ′G, and suppose that MN is a region. Note ∂MN = ΣN . Then,
associated to the gluing surface ΣG is a linear map �ΣG : OMG → OMN such that for any
orthonormal basis {ξiG}i∈I of H ΣG , for any OG ∈OMG and for all ψN ∈ H ◦∂MN the observables

obey the following gluing rule (wherein c(MG,ΣG,Σ′G) ∈ C\{0} is again the gluing anomaly
factor of Core Axiom (T5b)):

(
�ΣGOG

)
(ψN ) · c(MG,ΣG,Σ′G) =

∑
i∈I

OG(ψN ⊗ξiG⊗ιΣGξ
i
G). (1.36)

We require this gluing map of observables to commute with itself and with the diamond product
of (O2a) in the obvious way. It is defined such that equation (1.12) in Core Axiom (T5b)
rewrites as ρMN = �ΣGρMG .

For each observable O ∈OM of a region M, its expectation value can be computed. As in the standard
formulation, this expectation value depends on the preparation of the system, which is represented

4Since they are more general, we could use the Observable Axioms in order to reduce the Core Axioms. That is,
(O1) would replace (T4), (O2a) would replace (T5a), and (O2b) would replace (T5b). While possible, this would
make it somewhat more difficult to understand the Core Axioms from the outset. Further, it is useful to start by
establishing an amplitude map first, and consider the implementation of observables only after this. The reason for
this is, that there may be different ways for implementing observables. Each of these ways must give the amplitude
map in case of the trivial observable. The established amplitude map thus serves as a guideline.
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by a closed preparation subspace of the boundary state space P∂M ⊂ H ∂M, see Section 1.2.5. Then,
the expectation value of O for the preparation P∂M is defined as5

〈O〉P∂M :=

〈
ρM◦P̂P∂M , O

〉∣∣∣∣ ρM◦P̂P∂M ∣∣∣∣2 . (1.37)

This expectation value is linear in the observable. Further, the probabilities of Section 1.2.5 arise
for the special case of setting O = ρM◦P̂M∂M (whereinM∂M is the measurement subspace and P̂ are
the orthogonal projectors). Then, the expectation value (1.37) turns into the probability (1.29).

Recovering the standard observables and expectation values

In the standard formulation, observables are associated to instants of time, that is, equal-time hy-
persurfaces. We treat these hypersurfaces as ”infinitesimally thin” regions, which we call slice regions
as in Core Axiom (T3x). Let thus Σt = {t}×R3 a backward-oriented equal-time plane in Min-
kowski spacetime and Σ̂t its associated slice region. Then, by definition ∂Σ̂t = Σt ∪Σt, and thus
H ∂Σ̂t

= H Σt ⊗̂H T∗
Σt

. Let again H the single state space of the standard formulation which we iden-
tify with H Σt , and let H ◦

∂Σ̂t
the amplitude subspace of the slice region. A GBF observable map

Ot ∈OΣ̂t
: H ◦

∂Σ̂t
→ C then relates to a standard operator Ôt : H → H in a way analogous to

the relation (1.23) between the GBF amplitude map and the time-evolution operator Ut2,t1 :

ρ[t1,t2](ηΣt1⊗ζΣt2) =
〈
ζΣt2 , Ut2,t1ηΣt1

〉
Σt2

= 〈t2 ζ |Ut2,t1 | η〉t1 .

We thus require for all ηt, ζt ∈ H Σt = H that

Ot(ηt⊗ζt) =
〈
ζt, Ôtηt

〉
Σt

= 〈t ζ | Ôt | η〉t . (1.38)

If we glue together two copies of the region Σ̂t, then we obtain again the slice region Σ̂t. Then, Axiom
(O2b) induces a composition of GBF observable maps, which via (1.38) recovers the composition of
the corresponding standard operators. Let thus Σ̂1 the ”initial” copy of Σ̂t and Σ̂2 the ”final” copy
as in Figure 1.39 (for better clarity we draw the slice regions as extended in time).

Figure 1.39: Gluing slice regions (here: infinitesimal time-interval).

For convenience let ∂Σ̂1 = Σt ∪ΣG and ∂Σ̂2 = ΣG ∪Σt. The gluing is along ΣG. Using the notation
of (O2b), then MG = Σ̂1 ∪ Σ̂2 and ΣN = Σt ∪Σt. The gluing results in MN = Σ̂t with our notation
chosen such that ∂Σ̂t = Σt ∪Σt as before. We consider two observables O1 ∈OΣ̂1

and O2 ∈OΣ̂2
,

thus in the notation of (O2b) we then have OG = O1⊗O2. Further, the boundary state is here

5The interpretation of this formula as expectation value of a measurement only holds strictly, if the observable O
is a 1-point function. The same actually occurs in the standard formulation of Quantum Theory. This issue will be
treated with due care in the Positive Formalism.



i1.2 The GBF in detail 31i

ψN = (ηt, ζt). Then, with {ξj}j ∈ J an orthonormal basis of H ΣG and using (1.38), Axiom (O2b)
results in

(
�ΣGOG

)
(ψN ) · c(MG,ΣG,Σ′G) =

(
�ΣG(O1⊗O2)

)
(ηt, ζt) · c(MG,ΣG,Σ′G)

=
∑
j∈J

(O1⊗O2)(ηt, ξj , ξj , ζt) =
∑
j∈J

O1(ηt, ξj) ·O2(ξj , ζt)

=
∑
j∈J

〈ξj, O1ηt〉Σt
· 〈ζt, O2ξj〉Σt

=
∑
j∈J

〈t ξj |O1 | η〉t · 〈t ζ |O2 | ξj〉t

=
∑
j∈J

〈t η |O
†
1 | ξj〉t · 〈t ξj |O

†
2 | ζ〉t = 〈t η |O

†
1O
†
2 | ζ〉t

= 〈t ζ |O2O1 | η〉t .

Thus the gluing of Axiom (O2b) recovers the usual operator product. Having treated operators, let
us now turn to expectation values and evaluate (1.37) for the standard setting. A normalized state
ηt ∈ H Σt = H encodes the preparation of our system. As discussed in Example (PP.1) of Section
1.2.5, the GBF expresses this through the preparation subspace

P∂Σ̂t
= ”ηt⊗H Σt

” ⊂ H Σ

P∂Σ̂t
:=
{
α∂Σ̂t

∈H ∂Σ̂t
| ∃βt ∈H Σt

: αΣ = ηt⊗βt
}
⊂ H ∂Σ̂t

.

Next, Core Axiom (T3x) lets us write the amplitude ρΣ̂t
as the inner product on H Σt = H:

ρΣ̂t
(ηt⊗ζt) = 〈ζt, ηt〉Σt

= 〈t ζ | η〉t.

Thus, with P̂η the orthogonal projector in H Σt = H onto the subspace spanned by ηt, we get

(
ρΣ̂t
◦P̂P

)
(ξt⊗ζt) = 〈ζt, P̂ηξt〉Σt

= 〈t ζ | P̂η | ξ〉t .

With this we can evaluate the denominator of (1.37): let {ξj}j ∈ J an orthonormal basis of H Σt = H,
which we choose such that ξ1 = η1. Then, with δi,j denoting the Kronecker delta, we can write:

∣∣∣∣ ρΣ̂t
◦P̂P

∣∣∣∣2 =
〈
ρΣ̂t
◦P̂P , ρΣ̂t

◦P̂P
〉

H T∗
∂M

=
〈
∗(ρΣ̂t

◦P̂P), ∗(ρΣ̂t
◦P̂P)

〉
H ∂M

=
∑
i,j∈J

〈
∗(ρΣ̂t

◦P̂P), ξi⊗ξj
〉

H ∂M
·
〈
ξi⊗ξj, ∗(ρΣ̂t

◦P̂P)
〉

H ∂M

=
∑
i,j∈J

∣∣∣〈 ∗(ρΣ̂t
◦P̂P), ξi⊗ξj

〉
H ∂M

∣∣∣2 =
∑
i,j ∈ J

∣∣ρΣ̂t
◦P̂P(ξi⊗ξj)

∣∣2
=

∑
i,j ∈ J

∣∣〈ξj, P̂ηξi〉Σt

∣∣2 =
∑
i,j ∈ J

∣∣δ1,i〈ξj, ξi〉Σt

∣∣2 =
∑
i,j ∈ J

∣∣δ1,iδi,j∣∣2
= 1 .
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Next, we can write the numerator of (1.37) as〈
ρΣ̂t
◦P̂P , Ot

〉
H T∗
∂M

=
〈
∗Ot,

∗(ρΣ̂t
◦P̂P)

〉
H ∂M

=
∑
i,j∈J

〈
∗Ot, ξi⊗ξj

〉
H ∂M
·
〈
ξi⊗ξj, ∗(ρΣ̂t

◦P̂P)
〉

H ∂M

=
∑
i,j ∈ J

(
ρΣ̂t
◦P̂P

)
(ξi⊗ξj) · Ot(ξi⊗ξj)

=
∑
i,j ∈ J

〈P̂ηξi, ξj〉Σt
· 〈ξj, Ôtξi〉Σt

=
∑
i,j ∈ J

δ1,i〈ξi, ξj〉Σt
· 〈ξj, Ôtξi〉Σt

=
∑
j ∈ J

〈ηt, ξj〉Σt
· 〈ξj, Ôtηt〉Σt

= 〈ηt, Ôtηt〉Σt

= 〈t η | Ôt | η〉t ,

which recovers the standard expectation value.

1.2.7 The GBF and Topological Quantum Field Theory (TQFT)

As mentioned frequently throughout [59], [55], [56] and Oeckl’s related articles, the General Boundary
Formulation has been strongly influenced by Topological Quantum Field Theory (TQFT). Rather
than being some particular kind of Quantum Field Theory, TQFT is an area of Mathematics which
applies various QFTs as a tool to study the geometry of low-dimensional manifolds (that is, of
spacetime dimension less or equal to 4). In Algebraic Topology, TQFT lead to the discovery of new
invariants of knots and 3-manifolds. It is also applied in mathematical physics, however only to toy
models without a physical interpretation of the amplitudes. In the following we briefly sketch the
TQFT framework in order to show the similarities with the GBF.

An axiomatic framework for TQFTs is given by Atiyah in [5] as follows: A TQFT in dimension
d defined over a base ring6 R consists of the data (A,B) and axioms (1 − 3). Therein, the map Z
determines the TQFT.

(A) To each oriented, closed, smooth d-dimensional manifold Σ is associated a finitely generated
R-module7 denoted by Z(Σ).

(B) To each oriented, smooth (d+1)-dimensional manifold M with boundary ∂M is associated an
element Z(M) ∈ Z(∂M).

(1) Z is functorial w.r.t. orientation preserving diffeomorphisms of Σ and M.

(2) Z is involutory: Z(Σ) = (Z(Σ))∗, wherein Σ is Σ with reversed orientation and ∗ denotes the
dual module.

(3) Z is multiplicative.

6 We recall that in short a ring is a set equipped with addition (commutative, associative, 0-element, inverse for each
element) and multiplication (associative, 1-element, distributive w.r.t. addition) defined between its elements. Rings
neither require that each element (except zero) must have its inverse under multiplication, nor that the multiplication
be commutative. Rings which do fulfill these two extra requirements are called fields. The standard example of a ring
is the set of integer numbers, and examples of fields are the sets of real and complex numbers.

7 Further, if R is a ring, then a (left) module over the base ring R (also written as R-module) in short is an
abelian group M (whose group operation we denote by the same symbol + that we use for addition within the ring
R) which is equipped with an operation called scalar multiplication: R×M → M fulfilling the following conditions
for all r, r1,2 ∈R, m,m1,2 ∈M . Distributive: r(m1 +m2) = rm1 + rm2 and (r1 +r2)m = r1m + r2m. Group action
(compatible multiplications): r2(r1m) = (r2r1)m. Identity: 1m = m where 1 ∈R.

Vector spaces are defined by the same axioms as modules, the only difference being that the base ring R is required
to be a field. Hence for fields F the terms F -module and F -vectorspace coincide, and finitely generated coincides with
finite-dimensional.
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How do these TQFT axioms relate to those of the GBF? In the General Boundary Formulation the
base ring R is the field C and Z(Σ) is the state space H Σ. As the notation suggests, the d-manifolds
are the hypersurfaces of the GBF and the (d+1)-manifolds are the regions. A crucial difference is
that in TQFT this space is required by Axiom (A) to be of finite dimension, while the state spaces of
the GBF are infinite-dimensional [56] as needed for realistic QFT. The analogue of the distinguished
state Z(M) ∈ Z(∂M) = H ∂M in the GBF is the amplitude map ∗ρM.

The functorial Axiom (1) says that any orientation-preserving diffeomorphism k1 : Σ → Σ1

must induce an isomorphism between state spaces Z(k1) : Z(Σ) → Z(Σ1). Here, Σ1 is allowed
to be Σ itself, . For a second such diffeomorphism k2 : Σ1 → Σ2 the map Z must respect
compositions: Z(k2 ◦k1) = Z(k2)◦Z(k1). Further, any orientation-preserving diffeomorphism K1 :
M → M1 with K(∂M) = ∂M1 restricts to a k1 : ∂M → ∂M1 as above, which must fulfill
Z(k1) : Z(M) → Z(M1). In the GBF, these properties correspond to the Symmetry Axioms
(SG1) and (SG5) of Section 1.2.4.

The involution property of Axiom (2) is contained in the GBF’s Core Axiom (T1b) in Section
1.2.2: let H Σ the state space of Σ. Then we can associate to Σ the dual of this state space: H Σ = H ∗Σ.
The multiplicative Axiom (3) requires two properties, called (3a) and (3b) in [5]. The part (3a) says
that for disjoint unions Σ = Σ1 ∪Σ2 we have Z(Σ) = Z(Σ1)⊗Z(Σ2), as expressed by Core Axiom
(T2). Second, Axiom (3b) requires a gluing property for the amplitude Z(M), which the GBF
incoporates in Core Axiom (T5b). [5] contains further axioms concerning subtle points. We only
mention the non-triviality axioms

(4a) Z(∅) = R for empty d-manifolds Σ = ∅.

(4b) Z(∅) = 1 for empty (d+1)-manifolds M = ∅.

The GBF contains (4a) in the form of H∅ = C, see footnote 2 in Section 2.2 of [59]. Axiom (4b) in
the GBF would mean that the amplitude of an empty region is unity. However, the GBF considers
regions without boundary (like the empty region) as not admissible. Anyway, for regions without
boundary by (4a) we have H∅ = C, that is, the whole state space consists of multiples of the vacuum
state ψVac

∅ = 1. Hence in that case Vacuum Axiom (V5) would ensure that ρ∅ = 1.
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This chapter serves mainly as a preparation for the quantization process of the next chapter. It is
structured as follows. Since classical theories can be considered on different regions in spacetime, in
Section 2.1 we define three types of regions which are naturally relevant on Minkowski, AdS, and
many other spacetimes. Then we set up in axiomatic form, in which way the GBF expects the
classical theory to be formulated, concerning spaces of solutions and structures thereon. In Section
2.4 we give explicit expressions for these structures for three levels of generality: a real, linear field
theory (without gauge symmetries) with no metric background assumed, then we specialise to such
a theory with a simple Lagrangian (quadratic in fields and derivatives), and finally Klein-Gordon
theory on a spacetime with metric. We shall focus in particular on the symplectic structure, and
on which (sub)spaces of solutions it vanishes. A second point we emphasize are the actions of the
generators of spacetime symmetries on the spaces of solutions, and on their symplectic structures.

In Section 2.5, we review the above structures on the three regions within Minkowski spacetime
for real Klein-Gordon theory, which will serve as a guiding reference for our calculations on AdS.
We give a concise review of AdS geometry in Section 2.6.2. Next, in Section 2.6.3 we list the
bounded Klein-Gordon solutions on three types of regions on AdS: time-interval regions, and tube
and rod hypercylinder regions. We study their properties, in particular their radial behaviour. we
list solutions and the associated symplectic structure for AdS rod regions in Section 2.6.4, and for
time-interval regions in Section 2.6.5. Then we calculate the actions of the AdS isometry group on the
solution spaces of these regions in Section 2.6.6. These actions are applied in Section 2.6.7 for showing
the invariance of the symplectic structures under the isometries. We complete the classical picture by
establishing one-to-one correspondences between initial data on hypersurfaces and bounded solutions
for all three AdS regions in Section 2.6.8.

We often refer by e.g. AS[4.2.42] to formulas from the Handbook [1] of Abramowitz and Stegun,
and by e.g. DLMF[4.2.42] to its online reincarnation, the Digital Library of Mathematical Functions
[49]. Most of our results in this section (except for some results on Klein-Gordon theory in Minkowski
spacetime) are published in [30].

2.1 Types of regions

Three types of spacetime regions will be of main interest for us. We shall always orient the boundary
of a region such that its normal vector points outwards of the region.

The first type we call interval region. It arises whenever we can foliate our (d+1)-dimensional
spacetime into leaves Στ with topology Rd, with τ the foliation parameter. Let thus spacetime
be foliated as Rτ×Στ . An interval M[τ1,τ2] of such a spacetime is then given by [τ1, τ2]×Στ . In
general, τ can be any type of coordinate; it is not necessarily a time variable, despite this being the
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case which is used most frequently. If τ is a time variable1, then the region is called time-interval
region. This is the region used in the standard formulation, as pointed out various times in the
introductory chapter. The boundary ∂M[τ1,τ2] of an interval region is the disjoint union Στ1 tΣτ2 ,
and thus consists of two simply-connected components. Here, we have canonically oriented Στ to
point in negative τ -direction, and the bar denotes reversed orientation, in order to make Στ2 point
outwards. The standard example is given by a time-interval [t1, t2]×R3 of Minkowski spacetime.
Another example in Minkowski spacetime is the spatial interval in x1-direction Rt×[x1

1, x
1
2]×R2 (Rt

is the whole line of time and R2 is the (x2, x3)-plane).
The second type of region is called solid hypercylinder (or rod region for short). It arises whenever

we can foliate our (d+1)-dimensional spacetime into leaves Σt with topology Rd, with here the time t
being the foliation parameter. Let thus spacetime be Rt×Σt. We can then introduce some spherical
coordinates on Σt with some radial coordinate, say r. A rod region Mr0 of such a spacetime is
then given by Rt×[0, r0]×Sd−1 = Rt×Bd−1r0 with r0 being the radius of the rod. An example is
directly given by a rod region in Minkowski spacetime using the standard spherical coordinates for
R3. By hypercylinder Σr we denote the hypersurface Rt×Sd−1r with orientation in negative r-direction
(inwards orientation). The boundary ∂Mr0 of a rod region is then the hypercylinder Σr0 = Rt×Sd−1r0 ,
that is, with outwards orientation. We note that this boundary consists of only one simply-connected
component.

The third type of region is called pierced hypercylinder (or tube region for short). It arises in
the same foliated spacetimes as its solid variant and is a larger rod with a concentrical smaller rod
cut out of it. A tube region M[r1,r2] is thus given by Rt×[r1, r2]×Sd−1 with r1 the inner and r2 the
outer radius of the tube. An example is again given by a tube region in Minkowski spacetime. The
boundary of the tube region is the disjoint union Σr1 tΣr2 with the same orientation conventions as
above. In many calculations the tube region can be treated like the time-interval region. Therefore,
we can also choose the radial coordinate r as our foliation parameter instead of the time t. Our
leaves are then the hypercylinders Σr filling the whole tube region. These leaves do not have the
topology of Rd, and thus the tube is not an interval region. However, for many calculations this
topological difference turns out to be irrelevant.

2.2 Classical data

Before considering classical Klein-Gordon theory on Minkowski and AdS spacetimes, we review here
the axioms introduced in [59], about the form of a linear classical field theory. They are necessary
for applying the Holomorphic Quantization method in the third chapter.

(C1) Classical solutions near hypersurfaces
Associated to each hypersurface Σ is a complex separable Hilbert space LΣ with complex inner
product denoted by {·, ·}Σ. We think of LΣ as the space of real solutions which are well
defined in the neighborhood of Σ. We also define the real g-product gΣ(·, ·) := Re {·, ·}Σ and
symplectic form ωΣ(·, ·) := 1

2 Im {·, ·}Σ. The Hilbert space LΣ is complex in the sense that it
is equipped with a complex structure JΣ : LΣ → LΣ.

(C2) Orientation reversal
Associated to each hypersurface Σ there is a conjugate-linear involution LΣ → LΣ, under
which the inner product is complex conjugated. We will not write this map explicitly, but
rather think of LΣ as identified with LΣ. Then, {η, ζ}Σ = {η, ζ}Σ for all η, ζ ∈ LΣ.

(C3) Unions of hypersurfaces
Suppose the hypersurface Σ decomposes into a disjoint union of hypersurfaces Σ = Σ1 ∪ ...∪Σn.
Then, there is an isometric isomorphism of complex Hilbert spaces LΣ1

⊕ ... ⊕ LΣn → LΣ.
Again, we will not write this map explicitly but rather think of it as an identification.

1That is, a time variable in the usual sense: τ is a function on spacetime whose gradient vector is everywhere
timelike.
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(C4) Solutions on regions
Associated to each region M there is a real vector space LM, which we think of as space of real
solutions on the region M.

(C5) Restriction to boundary neighborhood
Associated to each region M there is a linear map of real vector spaces rM : LM → L∂M.
The image Lint

∂M is a real Hilbert space which is a closed subspace of L∂M. (The label int means
interior, since the solutions LM are those of L∂M which can be continuously extended to the
whole interior of M.) Furthermore Lint

∂M is Lagrangian with respect to the symplectic form ω∂M.
That is, for any µ ∈ Lint

∂M we have 0 = ω∂M(µ, λ) for all λ ∈ Lint
∂M (isotropic), plus if for some

µ ∈ L∂M we have 0 = ω∂M(µ, λ) for all λ ∈ Lint
∂M, then µ ∈ Lint

∂M (coisotropic).

(C6) Unions of regions
Let M = M1 ∪M2 the disjoint union of regions M1 and M2. Then, LM = LM1 ⊕ LM2 and
rM = (rM1 , rM2).

(C7) Gluing
As in Core Axiom (T5b), let MG be a region with its boundary decomposing as a disjoint
union ∂MG = ΣN ∪ΣG ∪Σ′G, where Σ′G is a copy of ΣG. ΣN is allowed to be empty or
be some disjoint union of hypersurfaces. Let MN denote the gluing of MG with itself along
ΣG and Σ′G, and suppose that MN is a region. Note ∂MN = ΣN , and that any solution on
MN restricts to a solution on MG, but not vice versa. Then, there is an injective linear map
r̃MG;ΣG,Σ′G

: LMN ↪→ LMG such that (we use r̃ as a shorthand)

LMN LMGy w

r̃
⇒ LΣG (2.1)

is a (difference) exact sequence, meaning that each of the two arrows on the right hand side
yields the same result. The upper one of these arrow represents the composition of the map
rMG : LMG → L∂MG with the orthogonal projection of L∂MG to LΣG , while the lower arrow
represents the composition of rMG with the projection to LΣ′G

. On the glued new region MN

the hypersurfaces ΣG and Σ′G are identified by the gluing, and hence solutions in LMN must
coincide on these surfaces. Therefore, those solutions on the original region MG which stem
from solutions on the glued region MN , must coincide on these two surfaces also when they
are not glued.

Moreover, the following diagram commutes, wherein the bottom arrow is the orthogonal pro-
jection from L∂MG = LΣN ∪ΣG ∪Σ′G onto L∂MN = LΣN .

LMN LMG

L∂MN=LΣN L∂MG

y w

r̃

u
rMN

u
rMG

u
orth.proj.

(2.2)

We note that LΣ being a Hilbert space includes that the complex inner product {·, ·}Σ is positive-
definite. Being the real part of this complex inner product, the g-product gΣ(·, ·) is a real, positive-
definite symmetric bilinear form, which makes LΣ into a real Hilbert space as well. ωΣ is a real,
antisymmetric, nondegenerate bilinear form making LΣ into a symplectic vector space. The real
and complex inner products gΣ and {·, ·}Σ are the structures that we will use in Holomorphic
Quantization. Further, under orientation reversal we have

gΣ = gΣ JΣ = −JΣ ωΣ = −ωΣ. (2.3)
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Moreover, for all η, ζ ∈ LΣ the following relations hold:

{η, ζ}Σ = gΣ(η, ζ) + 2iωΣ(η, ζ) from Axiom (C1) (2.4)

{η, ζ}Σ = {η, ζ}Σ from Axiom (C2) (2.5)

ωΣ(η, ζ) = ωΣ(JΣη, JΣζ) JΣ compatible with ωΣ (2.6)

gΣ(η, ζ) = 2ωΣ(η, JΣζ) (2.7)

⇒ gΣ(η, ζ) = gΣ(JΣη, JΣζ) JΣ compatible with gΣ (2.8)

In order to determine the complex linearity properties of the complex inner product {·, ·}Σ, we recall
that LΣ is a complex Hilbert space due the complex structure JΣ. Using the above properties, we can
quickly check that in this sense the complex inner product is conjugate-linear in the first argument,
and linear in the second:{

(x+yJΣ)η, ζ
}

Σ
= (x−iy) ·

{
η, ζ

}
Σ

∀ η, ζ ∈ LΣ{
η, (x+yJΣ)ζ

}
Σ

= (x+iy) ·
{
η, ζ

}
Σ

∀ x, y ∈ R.
(2.9)

The following special cases then show that JΣ indeed represents the multiplication with i in LΣ:{
JΣη, ζ

}
Σ

= −i ·
{
η, ζ

}
Σ

∀ η, ζ ∈ LΣ{
η, JΣζ

}
Σ

= +i ·
{
η, ζ

}
Σ

∀ x, y ∈ R.
(2.10)

Lemma 2.11 For any region M, the space L∂M of solutions near the boundary (understood as a
real Hilbert space) decomposes into the orthogonal direct sum L∂M = Lint

∂M⊕J∂MLint
∂M. This is Lemma

4.1 from [59]. It allows us to view L∂M as the complexification (Lint
∂M)C of the original Hilbert space

Lint
∂M = rMLM. In Section 2.3 we show how this decompostion looks in detail for time-interval (and

tube) regions and for rod regions, and in Section 3.1 we describe how it is applied in the method of
Holomorphic Quantization.

The symplectic structure ωΣ is directly induced by the Lagrangian of the classical theory, and hence is
a purely classical structure. By contrast, the complex structure JΣ is not fixed by the classical theory.
Rather, any choice of complex structure JΣ corresponds one-to-one to a choice of vacuum state ψVac

Σ

as proven in Section of 3 [61]. Thus, the complex structure is of quantum nature. Nevertheless we
introduce it already in this classical chapter, since it determines the structure of spaces of classical
solutions and is necessary to relate the forms ωΣ, gΣ and {·, ·}Σ.

For general hypersurfaces Σ, there is no classical criterion that distinguishes any particular choice
of complex structure JΣ. However, in [4] it is shown how the classical energy of the field determines
the quantum object JΣ, which yields a unique complex structure, but only for Cauchy hypersurfaces
Σ. For stationary spacetimes with timelike Killing vector field t this unique complex structure J is
singled out by an energy condition (together with requiring gΣ to be positive-definite). In short, this
conditions says that the classical energy

E =

ˆ

Σ

dSa tb Tab(φ)

must be reproduced by the inner product (L denotes the Lie derivative)

{φ, −JLtφ}Σ .

This inner product actually represents the inner product of the one-particle quantum state associated
to φ, wherein the operator −JLt is the Hamiltonian. Hence the energy condition demands that the
energy of the quantum state associated to φ be equal to the classical energy of φ. The quantum
energy depends on the choice of J , while the classical energy is independent of it. This fixes J . The
resulting complex structure is then

J = −Lt/
»
−L2

t , (2.12)

wherein −L2
t is a positive, hermitian operator.



i38 2. Classical TheoryX
X

XX

Units

Before studying the symplectic structure ω, the real g-product, and the complex inner product {·, ·}
in more detail, let us comment on their units. In general, throughout this thesis we use natural units
c = ~ = 1 for simplicity of notation. This enables us to treat all three structures as mapping two
classical solutions η, ζ to a complex number. However, since these structures and exponentials of
them will be used later in quantization, it is useful to know their dimensions in SI units. This will
make it clear, where Planck’s quantum ~ appears in the quantization process.

First we need to find the SI units of the scalar field. They depend on the dimension of spacetime,
which is (d+1) in our notation. We consider a Klein-Gordon field, whose Lagrangian density in SI
units writes as L(x) = 1

2

√
|g |
(
gµν(∂µφ)(∂νφ) − (mc~ )2φ2

)
. The action S(φ) =

´
dd+1xL(x) has

the same dimension as ~, that is: kg m2/s. With the spacetime metric g dimensionless and all xµ of
dimension length, the Klein-Gordon field φ then has SI units (m3−dkg/s)1/2.

The symplectic structure writes essentially as (see Section 2.4.2) ω(η, ζ) =
´

ddx (η∂xζ − ζ∂xη).
Using the SI units of the classical solutions, the symplectic structure has the SI units of an action,
that is: kg m2/s. Since the complex structure J maps solutions to solutions, it is dimensionless in
any system of units. Therefore, the real g-product g(·, ·) = ω(·, J ·) and the complex inner product
{·, ·} = g(·, ·) + 2iω(·, ·) in SI units have the dimension of an action as well.

Therefore, when using natural units we have to keep in mind that the three structures implicitly
appear with a factor of ~−1 attached. Sometimes this factor is written explicitly, e.g. in Equation
(14) of [25].

2.3 Classical solutions near boundaries

In the previous section we encountered on one hand classical solutions (which are well-defined and
bounded) on whole regions of spacetime, and on the other hand classical solutions (which are well-
defined and bounded only) near the boundaries of these regions. While it is intuitively clear that
considering solutions on regions makes sense, this is less the case for considering solutions only near
boundaries. Therefore, in this section we argue why it is both natural and relevant to include the
latter. Often, the solutions near boundaries which we consider are solutions of the free classical
theory. Therefore, we shall consider two simple examples of free solutions near boundaries.

Time-interval regions

The first example occurs for interval regions (and also for tube regions), see Section 2.1. We thus let
M[t1,t2] = [t1, t2]×Rd a time-interval region for simplicity. Its boundary consists of the two disjoint
components Σ1 and Σ2 (the bar denotes orientation reversal, since we orient boundaries to point
outwards of the enclosed region), see Figure 2.13.

Figure 2.13: Time-interval region and neighborhood of its boundary.

A free solution ξ12 near the boundary here consists of two components: ξ12 = (η1, ζ2), wherein η1 ∈ L1

is a free classical solution near Σ1, and ζ2 ∈ L2 near Σ2, These two free solutions are independent of
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each other: if we extend η1 continuously towards Σ2, then generically it will be different from ζ2, as
sketched in Figure 2.14.

Figure 2.14: Free solutions η1, ζ2 and intermediate solution χ.

This kind of boundary solutions occurs naturally, if we have an interaction term or potential term
in our classical Lagrangian, which only contributes for some intermediate times (darker orange part
of region) while it vanishes for times near t1 and t2 (pale yellow part of region). Then, we start at t1
with some initial free solution η1, which evolutes classically in time. However, due to the interaction,
at intermediate times this evolution does not yield free solutions, but other solutions χ (for example,
solutions of the classical equations of motion with some source term). Only after the interaction
vanishes again, the evolution returns a free solution ζ2. However, this final free solution generically
will be different from the initial one. That is, restricting to a neighborhood of the boundary, we
there have two different free solutions, which is precisely the situation described above. This is the
classical analogue of quantized theories, where quantum states are considered instead of classical
solutions.

Let us now consider the decomposition of Lemma 2.11 for the time-interval region. (This holds as
well for a tube region M[r1,r2] = Rt×[r1, r2]×Sd−1, we just need to interchange time t and radius r.)
J1 is the complex structure associated to Σ1 with backwards orientation (in negative t-direction). We
assume here that the complex structure is independent of the foliation parameter t. Then, since both
boundary components have opposite orientation with respect to t, we have J2 = −J1. A solution
ξ12 ∈ L∂M[t1,t2]

near the boundary consists of two components here, such that the decomposition now
writes as

ξ12 :=

Å
η1

ζ2

ã
= ξR

12 + J∂M[t1,t2]
ξI
12 =

Å
ξR
12

ξR
12

ã
+

Å
J1ξ

I
12

J2ξ
I
12

ã
=

Å
ξR
12

ξR
12

ã
+

Å
J1ξ

I
12

−J1ξ
I
12

ã
, (2.15)

wherein ξR
12, ξ

I
12
∈ Lint

∂M, whereas J∂M[t1,t2]
ξI
12

/∈ Lint
∂M. This is solved by

ξR
12 = 1

2 (η1 + ζ2) J1ξ
I
12 = 1

2 (η1 − ζ2) ξI
12 = 1

2 (−J1η1 + J1ζ2). (2.16)

Let us remark that the pair (ξR
12, ξ

R
12), with the first part seen as solution near Σ1 and the second

near Σ2, is a solution near ∂M[t1,t2] that extends continuously to the whole region M[t1,t2], since both
solutions coincide. By contrast, J∂M[t1,t2]

ξI
12 = (J1ξ

I
12, −J1ξ

I
12) cannot be extended continuously to

the whole time-interval region, because the first solution is the negative of the second. For this reason
ξR
12 is called a classically allowed solution near ∂M, while J∂M[t1,t2]

ξI
12 is called classically forbidden

in Section 4.3 of [59].

Rod regions

The second example occurs for rod regions M0 = [0, r0]×B3
r0 , whose boundary consists of one single

component Σ0. Therefore, a boundary solution ξ0 here consists of one component only, see Figure
2.17 (wherein the dark dashed line indicates that the rod region actually extends over all of time).
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Figure 2.17: Rod region and neighborhood of its boundary.

However, typically the boundary solution is a sum of two types of modes (see Section 2.5.1 and
Section 2.6.3): the first type of modes is regular in the whole ball of radius r0, while the second type
diverges at some points, for example at the origin r = 0. Then, the content of regular modes of ξ0
is a boundary solution that can be extended continuously over the whole rod region, whereas the
content of divergent modes is a boundary solution that cannot be extended in this way.

Figure 2.18: Rod region and neighborhood of its boundary.

As sketched in Figure 2.18, in analogy to the interval regions, boundary solutions like ξ0 occur
naturally, if we have an interaction or source that has some compact support inside B3

r0 (darker
orange part) and vanishes near the boundary (pale yellow part). (That is, for time-intervals we
need the interaction to have compact support in time, whereas for rod regions we need it to have
compact support in space.) Then, the solution χ on the interaction’s support is not free, whereas the
solution ξ0 near the boundary is free. On the boundary of the interaction’s support, the interacting
solution transits smoothly into the free solution (sketched below the rod region for some constant
time). However, this works only if the free solution consists of both regular and divergent modes (we
can think of the regular modes as matching the values of the solutions, and of the divergent modes
as matching the derivatives). Therefore we need to include the divergent modes when considering
solutions near the rod’s boundary.

The decomposition of Lemma 2.11 looks different for a rod region (compared to the time-interval
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region). We recall that (like for J2 above), due to the inwards oriented hypercylinder Σ0 and the
outwards oriented boundary ∂M0, we here have J∂M0

= −J0. Thus the decomposition for a solution
ξ0 near the only boundary component Σ0 of a rod region becomes

ξ0 = ξR
0 − J0ξ

I
0, (2.19)

wherein again ξR
0 , ξ

I
0
∈ Lint

∂M, whereas J0ξ
I
0
/∈ Lint

∂M. That is, ξR
0 is the classically allowed part of ξ0 that

can be extended continuously into the whole interior of M, while J0ξ
I
0 is the classically forbidden

part that cannot be extended in this way. For example, ξR
0 can be a sum of modes that are regular

on the whole region (like the Bessel modes of Klein-Gordon theory on Minkowski spacetime, see
Section 2.5.1), while J0ξ

I
0 can be a sum of modes that are not regular on all of M (like the Neumann

modes, which become singular on the Minkowski time axis where r = 0). Applying J0 then turns the
regionally well defined parts of solutions into parts that are not regionally well defined, and vice versa
(for example, interchanges Bessel modes and Neumann modes). Without using information about
the modes (which ones are regular on the rod’s interior and which are not), it is not possible here to
give an explicit construction of ξR

0 and ξI
0 (as in (2.16) for the time-interval region). However, once

the modes are known, the principle of construction arises rather naturally through interchanging
regionally regular and nonregular modes.

2.4 Structures on spaces of classical solutions

In this section we consider various structures on the space LΣ of classical solutions in a neighborhood
of a hypersurface Σ. The highest level of generality used here will be the one presented in Section
3.1 of [59], where no spacetime metric g is needed, and a real, linear field theory is considered. The
linear field theory of most interest for us is real Klein-Gordon theory (which does need a metric), and
therefore we also include the less general forms the equations take on for that particular example.
By LM we denote the space of solutions on a region M of (d+1)-dimensional spacetime, and by L∂M
the space of solutions near its boundary, which is a hypersurface. (We shall write labels like M as
subscripts or superscripts according to convenience, without changing the meaning.)

In particular we shall study the action SM, the symplectic potential θΣ, the symplectic structure
ωΣ, the complex structure JΣ, a real inner product gΣ and a complex inner product { · , · }Σ. We
shall call gΣ real g-product and denote it by an upright letter g, in order to distinguish it from
the spacetime metric g, even though the meaning should always be clear from the context. The
complexified version of the space of real solutions on M will be denoted by LC

M. Since LM is a
subspace of LC

M, naturally all relations valid for the latter hold for the first, too. We emphasize that
we are not studying a complex linear theory here, but merely consider the various structures on the
complexified space of real solutions. Further, for linear theories we can identify the solution spaces
with their tangent spaces.

As discussed above in Section 2.2, the symplectic structure ωΣ is a purely classical object, while
the complex structure JΣ relates to the quantum theory. Hence the real and complex inner products
gΣ and {·, ·}Σ induced by the complex structure must be considered quantum objects as well. We
choose to already introduce them in this classical chapter on a simple level, in order to give an
overview of all related structures together. The symplectic structure ωΣ is then considered in detail
in this classical chapter, while the complex structure JΣ and the other quantum objects are studied
in greater detail in the following quantum chapter.

2.4.1 Action S

The action is a function(al) (that is, a 0-form) on the space KM of field configurations on the region
M (which contains as a subset the space LM of classical solutions):

SM : KM → R SM : KC
M → C φ 7→ SM(φ) .
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The action is determined by the Lagrangian density form Λ, a (d+1)-form on M determined in turn
by the Lagrange density L:

Λ = Λ(ϕ, ∂ϕ, x) = L(ϕ, ∂ϕ, x) dx0 ∧ ... ∧ dxd ,

via integrating it over the spacetime region M

SM(φ) =

ˆ

x∈M

Λ(φ(x), ∂φ(x), x) =

ˆ

M

dx0
...dxd L(φ(x), ∂φ(x), x) .

For generality, we denote here by φ = (φ1, ..., φn) an n-tuple of fields, hence KM is actually the space
of n-tuples of fields on M. Volume weight factors (like

√
|g | for metric manifolds) are contained

in the Lagrange density L in our notation, and we assume the coordinate system chosen such that
dx0 ∧ ... ∧ dxd corresponds to positive orientation. The differential of the action is a 1-form on the
tangent bundle of KM:

dSM : TKM → R dSM
φ : (TKM)φ → R

dSM : TKC
M → C dSM

φ : (TKC
M)φ → C

(φ, η) 7→ dSM
φ (η) η 7→ dSM

φ (η) .

Here, η is an element of (TKM)φ, the tangent space of KM at φ. The differential of the action is
defined in the usual way as

dSM
φ (η) = η SM

(φ) =
d

dλ

∣∣∣∣
λ=0

SM
(φ+ λη) =

ˆ

M

(
ηa

δΛ

δϕa

∣∣∣∣∣
φ

+ (∂µη
a)

δΛ

δ(∂µϕa)

∣∣∣∣∣
φ

)

=

ˆ

M

(
ηa

δΛ

δϕa

∣∣∣∣∣
φ

− ηa∂µ
δΛ

δ(∂µϕa)

∣∣∣∣∣
φ

+ ∂µ

ß
ηa

δΛ

δ(∂µϕa)

∣∣∣∣∣
φ

™
︸ ︷︷ ︸

I1

)
. (2.20)

This can be transformed further because the (d+1)-form I1 is exact. We have

I1 = (∂µi
µ) dx0 ∧ ... ∧ dxd iµ = ηa

δL
δ(∂µϕa)

∣∣∣∣∣
φ

,

and can define a d−form Ĩ1 whose exterior derivative yields dĨ1 = I1:

Ĩ1 = ∂µ iµ dx0 ∧ ... ∧ dxd

=
d∑

µ=0

iµ(−1)µ dx0 ∧ ...‘dxµ... ∧ dxd ,

dĨ1 =
d∑

µ=0

(∂νi
µ)(−1)µdxν ∧ dx0 ∧ ...‘dxµ... ∧ dxd

= (∂µi
µ) dx0 ∧ ... ∧ dxd ,

wherein denotes vector insertion into (contraction with) a form, and the wide‘hat over a basic
1-form denotes its omission within the wedge product. Therefore we can employ Stoke’s theorem to
transform the integral over I1, resulting in Equation (5) of [59]:

dSM
φ (η) =

ˆ

M

ηa

{
δΛ

δϕa
− ∂µ

δΛ

δ(∂µϕa)︸ ︷︷ ︸
Euler-Lagrange derivative

}
φ

+

ˆ

∂M

∂µ ηa
δΛ

δ(∂µϕa)

∣∣∣∣∣
φ

. (2.21)



i2.4 Structures on spaces of classical solutions 43i

The differential of the action thus is a sum of two terms: the integral of the Euler-Lagrange derivative
over the interior of M (in short: bulk term), and the integral of Ĩ1 over the boundary of M (boundary
term). On LC

M the bulk terms vanishes, and the differential of the action is a pure boundary term:

dS∂Mφ (η) =

ˆ

∂M

∂µ ηa
δΛ

δ(∂µϕa)

∣∣∣∣∣
φ

(2.22)

=
d∑

µ=0

ˆ

∂M

(−1)µ dx0 ∧ ...‘dxµ... ∧ dxd ηa
δL

δ(∂µϕa)

∣∣∣∣∣
φ

= sign (∂M)

ˆ

∂M

dx0
...d̂xµ...dxd ηa

δL
δ(∂µϕa)

∣∣∣∣∣
φ

(2.23)

The sign results from the following reasoning. The orientation of dx0 ∧ ...∧ dxd is positive, hence so

is the one of (−1)µdxµ ∧ dx0 ∧ ...‘dxµ... ∧ dxd for each µ ∈ {0, ..., d}. Deleting the first 1-form from

a wedge product does not change the orientation. Hence (−1)µdx0 ∧ ...‘dxµ... ∧ dxd has the positive
orientation induced on ∂M by dx0 ∧ ... ∧ dxd. What remains to take into account is the orientation
we choose for (possibly disjoint parts of) ∂M as pointing outwards of the enclosed region M. To this
end, we define

sign (∂M) :=

®
+1 agreeing chosen and induced orientation of ∂M
−1 opposing chosen and induced orientation of ∂M

.

We thus note, that first both the action S and its differential dS refer to solutions on entire regions
of spacetime. Then, with the action’s bulk term vanishing, the differential of the action can be
calculated as an integral over the boundary of the region. For solutions φ ∈ Lint

∂M near the region’s
boundary which are induced by solutions on the region’s interior, dS as a 1-form is indeed the
differential of the 0-form S. However, for boundary solutions which are not induced by interior
solutions, this ceases to be the case, and dS for those solutions is just some 1-form which is not
exact. This difference will be important later, because it leads to Lagrangian subspaces of L∂M.

Further, the 1-form dS in its boundary form (2.23) can be defined for any oriented d-surface Σ
in spacetime, by simply using the same integral for solutions in LC

Σ. In this case, dS is not exact
(except when Σ happens to be a boundary, then it becomes exact for interior solutions as before).
For φ ∈ LC

Σ and η ∈ (T LC
Σ)φ this means

dSΣ
φ (η) =

ˆ

Σ

∂µ ηa
δΛ

δ(∂µϕa)

∣∣∣∣∣
φ

(2.24)

= sign (Σ)

ˆ

Σ

dx0
...d̂xµ...dxd ηa

δL
δ(∂µϕa)

∣∣∣∣∣
φ

, (2.25)

sign (Σ) :=

®
+1 agreeing chosen and induced orientation of Σ

−1 opposing chosen and induced orientation of Σ
. (2.26)

As a simple example, we can consider an action that is quadratic both in fields an field derivatives:

Λ(ϕ, ∂ϕ, x) = 1
2

{
cµνab (∂µϕ

a) (∂νϕ
b)−mabϕ

aϕb
}

︸ ︷︷ ︸
L

dx0 ∧ ... ∧ dxd . (2.27)

In order to get real actions for real fields, the coefficients must fulfill both cµνab = cνµba and mab = mba.
Free Klein-Gordon theory is obtained via setting cµνab = sign (g00)

√
|g |gµνδab withmab = m2

√
|g | δab,
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where x0 is the time coordinate and the sign of g00 renders the action independent of the metric’s
overall sign. We will denote the free action by S0. Then, for the Lagrangian (2.27), the action’s
differential (2.23) becomes

dS∂Mφ (η) = sign (∂M)

ˆ

∂M

dx0
...d̂xµ...dxd cµνab η

a (∂νφ
b) ∀ φ, η ∈ L∂M, (2.28)

being consistent with Equation (13) in [53]. Replacing ∂M by Σ as above, dS can again be defined
for any d-surface Σ. For a free Klein-Gordon field on a spacetime region M with block-diagonal
metric w.r.t. some coordinate τ (i.e.: gτ,α = 0 for all xα 6= τ), let Στ a d-surface of constant τ . Then,
the action’s differential becomes (no Einstein summation)

(dSΣτ
0 )φ(η) = sign (Στ )sign (g00)

ˆ

Στ

dx0
...d̂xτ ...dxd

»
|g | gττ η (∂τφ) (2.29)

= sign (g00g
ττ )

ˆ

Στ

dx0
...d̂xτ ...dxd

»
|g̃ | η (∂nφ) . (2.30)

Here, g̃ is the metric induced on Στ , ∂n = sign (Στ )
√
|gττ |∂τ = nΣτ is the normal derivative on

Στ , with nΣτ the unit normal on Στ pointing in the direction of its orientation, and

sign (Στ ) :=

®
+1 Στ oriented in positive τ direction

−1 Στ oriented in negative τ direction
. (2.31)

The Euler-Lagrange equation in (2.21) for the free Klein-Gordon field becomes the well known free
(=homogeneous) Klein-Gordon equation(

σ002 +m2
)
φ(x) = 0 . (2.32)

Here, the factor σ00 = sign g00 gives us independence of the overall sign of the spacetime metric,
which is physically irrelevant. For the Klein-Gordon theory with a source field µ(x), as in Section
3.1.2, the Lagrangian density has an additional coupling term:

Λ(ϕ, ∂ϕ, x) =
»
|g |
(

1
2σ00g

µν(∂µϕ)(∂νϕ)− 1
2 m

2ϕ2 + µϕ
)

dx0 ∧ ... ∧ dxd . (2.33)

The Euler-Lagrange equation for this Λ is the (inhomogeneous) Klein-Gordon equation with source
term µ(x): (

σ002 +m2
)
φ(x) = µ(x) . (2.34)

2.4.2 Symplectic potential θ and symplectic structure ω

We begin this section recalling some subspaces of symplectic vector spaces for later application.
Following [76], for a vector space V (real or complex, of finite or infinite dimension) with symplectic
form ω, the symplectic complement S⊥ω for any subspace S of V is defined as

S⊥ω :=
{
v ∈ V

∣∣ ω(v, s) = 0 ∀ s ∈ S
}
. (2.35)

The symplectic complement has the following properties (the last only for finite-dimensional V ):

S⊥ω2 ⊆ S⊥ω1 ∀ S1 ⊆ S2 ⊆ V (2.36)

(S⊥ω )⊥ω = S ∀ S ⊆ V (2.37)

(S1⊕S2)⊥ω = S⊥ω1 ∩S⊥ω2 ∀ S1,S2 ⊆ V (2.38)

(S1 ∩S2)⊥ω = S⊥ω1 ⊕S⊥ω2 ∀ S1,S2 ⊆ V (2.39)

dim S + dim S⊥ω = dim V ∀ S ⊆ V . (2.40)
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Therein, by (S1⊕S2) we denote the subspace of V spanned by S1 and S2. Further, a subspace S ⊆ V
is called

isotropic subspace if: S ⊆ S⊥ω ⇔ 0 = ω(s1, s2) ∀ s1, s2 ∈ S (2.41)

coisotropic subspace if: S⊥ω ⊆ S ⇔ 0 = ω(s̃1, s̃2) ∀ s̃1, s̃2 ∈ S⊥ω (2.42)

lagrangian subspace if: S⊥ω = S ⇔ S is isotropic and coisotropic (2.43)

symplectic subspace if: S⊥ω ∩ S = {0} ⇔ @ (s̃ 6= 0) ∈ S: 0 = ω(s̃, s) ∀ s ∈ S. (2.44)

(⇐ in (2.42) follows from (2.37).) Thus if S is isotropic, its symplectic complement is coisotropic,
and conversely. Because of the dimension sum, any isotropic (or cosiotropic) subspace of dimension
1
2 dimV must be Lagrangian. An arbitrary subspace needs neither be (co)isotropic nor symplectic,
therefore these categories are not exhaustive. A lemma in [76] assures that every finite-dimensional
symplectic vector space (V, ω) has even dimension and contains a Lagrangian subspace.

After these definitions of special subspaces, let us return to the symplectic potential and structure
themselves. The relation between the action’s differential and the symplectic potential on LC

Σ is:

θΣ
φ (η) = σθ dSΣ

φ (η) . (2.45)

Therein, σθ is a pure sign, which is chosen to be σθ = −1 in Equation (3) in [58] in order to
achieve agreement between holomorphic and path-integral quantization. We shall follow this choice
throughout all our calculations. The symplectic structure is the exterior derivative of the symplectic
potential:

ωΣ
φ (η, ζ) = dθΣ

φ (η, ζ) . (2.46)

We recall that (in spite of the suggesting notation) dSΣ itself is a 1-form on LC
Σ, but not the exterior

derivative of a 0-form (function) on LC
Σ, see above. In particular, only if the hypersurface Σ is a

boundary ∂M of some region M, then dSΣ is exact on Lint
∂M. Hence the 1-form θΣ is generically not

exact, except on Lint
∂M if Σ is M’s boundary. Therefore, the symplectic structure ωΣ generically is

not the second exterior derivative of a 0-form, and hence does not vanish identically. Only if Σ is
a boundary, then ωΣ is the second exterior derivative of the 0-form S for interior solutions φ ∈ Lint

∂M.
Hence ω∂M vanishes identically on Lint

∂M, that is, Lint
∂M is an isotropic subspace of L∂M. (In any case,

θΣ is always a 1-form on LΣ and thus dω = ddθ always vanishes identically.)
Let us now consider the subject of vanishing symplectic structures with regard to different types

of regions. Recalling that the time-interval is a neighborhood of an equal-time hyperplane Σt, and the
tube a neighborhood of an equal-ρ hypercylinder Σρ, each of these hypersurfaces has an associated
symplectic structure via (2.46).

Hypercylinders Σρ are the boundaries of rod regions Mρ, and hence the symplectic structure
(2.195) on an AdS hypercylinder vanishes on the space of solutions (2.191) on rod regions. The
same happens in Minkowski spacetime for the symplectic structure (2.116) with solutions (2.112) on
Minkowski rod regions.

By contrast, for regions M12 bounded by two hypersurfaces Σ1 and Σ2, the symplectic structure
is not identically zero for each hypersurface. For example, a single equal-time hypersurface is not
the boundary of a region, and hence the symplectic structures (2.209) and (2.96) do not vanish
identically for solutions on such a region (these solutions correspond by evolution to solutions in
the neighborhood of Σt). In the same way, a single hypercylinder Σρ is not the boundary of a tube
region, and hence the symplectic structures (2.195) and (2.116) do not vanish identically for solutions
on such a region (these solutions correspond by evolution to solutions in the neighborhood of Σρ).
We recall that the space LΣρ of solutions near Σρ is twice as large as the space Lrod

ρ of solutions on
the whole rod region, which explains why ωΣρ can vanish for the latter but not the former.)

What is more, since the symplectic structure on the boundary ω∂M12 = ωΣ2 − ωΣ1 is the second
differential of the action, it vanishes on LM. This implies, that on LM sthe symplectic structure
is actually independent of the hypersurface: ωΣ2

= ωΣ1
. For Minkowski and AdS spacetimes, our
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explicit expressions (2.116), (2.96), (2.195) and (2.209) show that the symplectic structures associated
to Σt and Σρ are indeed independent of their associated hypersurface: ωt(η, ζ) and ωρ(η, ζ) depend
only on the two solutions η and ζ. This holds despite neither of our regions being compact, nor our
solutions being restriced to compact support.

In order to evaluate ω we can use e.g. (A.1.16) from [76], wherein the fields are considered as
vectors from the tangent space of LΣ at φ, thus acting like a derivative on functions, giving:

ωΣ
φ (η, ζ) = dθΣ

φ (η, ζ) = 1
2 η θ

Σ
φ (ζ)− 1

2 ζ θ
Σ
φ (η)− 1

2 θ
Σ
φ ([η, ζ]) . (2.47)

The Lie bracket of vectors is defined in the usual way for elements η, ζ of the solution tangent space:
[η, ζ] = η ζ − ζ η. Combining the formula above with (2.24) reproduces equation (4) in [58]:

ωΣ
φ (η, ζ) = −1

2

ˆ

Σ

ß(
ηbζa − ηaζb

)
∂µ

δ2Λ

δ(∂µϕa)δϕb

∣∣∣∣
φ

(2.48)

+
(
ζa∂νη

b − ηa∂νζb
)
∂µ

δ2Λ

δ(∂µϕa)δ(∂νϕb)

∣∣∣∣
φ

™
.

Thus ωΣ
φ (η, ζ) is real only for real fields φ, η and ζ, and antisymmetric under exchange of their

arguments:

ωΣ
φ (η, ζ) = −ωΣ

φ (ζ, η)
∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

. (2.49)

Evaluating symplectic potential and structure for the quadratic action in example (2.27) yields the
relations

θΣ
φ (η) = −sign (Σ)

ˆ

Σ

dx0
...d̂xµ...dxd cµνab η

a
(
∂νφ

b
)
, (2.50)

ωΣ
φ (η, ζ) = − 1

2 sign (Σ)

ˆ

Σ

dx0
...d̂xµ...dxd cµνab

(
ζa∂νη

b − ηa∂νζb
)
. (2.51)

These provide another useful relation (valid for this example only):

ωΣ
φ (η, ζ) = 1

2

(
θΣ
η (ζ) − θΣ

ζ (η)
) ∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

, (2.52)

hence the symplectic structure for the case of a quadratic action is independent of the base point φ.
Integration of d-forms over oriented d-surfaces induces that reversing the orientation of such surface
Σ → Σ results in a minus factor for the integral. Hence

ωΣ
φ (η, ζ) = −ωΣ

φ (η, ζ)
∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

. (2.53)

For free Klein-Gordon theory symplectic potential and structure reproduce (7.2.6) in [76] by Wood-
house:

θΣ
φ (η) = −sign (Σ)sign (g00)

ˆ

Σ

dx0
...d̂xµ...dxd

»
|g |gµν η

(
∂νφ

)
(2.54)

ωΣ
φ (η, ζ) = − 1

2 sign (Σ)sign (g00)

ˆ

Σ

dx0
...d̂xµ...dxd

»
|g |gµν

(
ζ∂νη − η∂νζ

)
. (2.55)
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2.4.3 Isometry invariance of symplectic structures

We show now the well known fact, that if two generators of isometries leave a symplectic structure
invariant, then their Lie bracket does so as well. This will be needed in Sections 2.5.5 and 2.6.7,
wherein we study explicitly only the actions of one boost (the simplest one) and can deduce the
invariance of the remaining boosts from the fact that they arise as commutators of the simplest
boost with spatial rotations. The action of an (infinitesimal or finite) isometry k on the symplectic
structures ω fulfills (

k.ω
)
(k.η, k.ζ) = ω(η, ζ)

⇒
(
k.ω

)
(η, ζ) = ω(k−1.η, k−1.ζ) . (2.56)

Thus the action of an infinitesimal isometry (1+εK) generated by a differential operator K up to
linear order in ε is given by(

(1+εK).ω
)
(η, ζ) = ω

(
η, ζ
)
− εω

(
K.η, ζ

)
− εω

(
η,K.ζ

)
. (2.57)

Or shorter, the action of a differential operator K on the symplectic structure is(
K.ω

)
(η, ζ) = −ω

(
K.η, ζ

)
− ω

(
η,K.ζ

)
. (2.58)

That is, the symplectic structure is invariant under an infinitesimal isometry (1+εK) precisely if

0 =
(
K.ω

)
(η, ζ) = −ω

(
K.η, ζ

)
− ω

(
η,K.ζ

)
. (2.59)

Therefore, the action of the commutator of two differential operators is determined already by the
action of each of them:(

[K, L].ω
)

(η, ζ) = −ω
(
KL.η, ζ

)
− ω

(
η,KL.ζ

)
+ ω

(
LK.η, ζ

)
+ ω

(
η, LK.ζ

)
+ ω

(
K.η,L.ζ

)
− ω

(
K.η,L.ζ

)
+ ω

(
L.η,K.ζ

)
− ω

(
L.η,K.ζ

)
= −

(
L.ω

)
(K.η, ζ)−

(
L.ω

)
(η,K.ζ) +

(
K.ω

)
(L.η, ζ) +

(
K.ω

)
(η, L.ζ)

=
(
K . (L.ω)

)
(η, ζ)−

(
L. (K.ω)

)
(η, ζ) . (2.60)

If now each of the differential operators leaves ω invariant as in(
(1+εK).ω

)
(η, ζ) = ω(η, ζ) =⇒

(
K.ω

)
(η, ζ) = 0(

(1+εL).ω
)
(η, ζ) = ω(η, ζ) =⇒

(
L.ω

)
(η, ζ) = 0 ,

then (2.60) implies that so does their commutator:(
K.ω

)
= 0(

L.ω
)

= 0
=⇒

(
[K, L].ω

)
= 0. (2.61)

2.4.4 Complex structure J

A complex structure on the real vector space (TLΣ)φ is a linear operator, which acts on the vectors
like the imaginary unit i on the complex numbers, and is compatible with the symplectic structure
ω:

JΣ
φ : (TLΣ)φ → (TLΣ)φ(

JΣ
φ

)2
= −Id

ωΣ
φ (JΣ

φ η, J
Σ
φ ζ) = +ωΣ

φ (η, ζ) ∀ η, ζ ∈ (TLΣ)φ .
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Since compatibility with the symplectic structure and negative unit square are the only properties of
a complex structure, there can exist various complex structures. If JΣ

φ is a complex structure, then

−JΣ
φ is also a complex structure. For the complexified solution space LC

Σ we extend JΣ
φ linearly to

commute with the imaginary unit:

JΣ
φ (iη) = iJΣ

φ η =⇒ JΣ
φ η = JΣ

φ η ∀ η ∈ (TLC
Σ)φ .

Thus we obtain

JΣ
φ : (TLC

Σ)φ → (TLC
Σ)φ(

JΣ
φ

)2
= −Id

ωΣ
φ (JΣ

φ η, J
Σ
φ ζ) = +ωΣ

φ (η, ζ) ∀ η, ζ ∈ (TLC
Σ)φ .

2.4.5 Commutation of complex structures with isometries

For AdS and Minkowski spacetime, we will look for complex structures J on the respective spaces of
Klein-Gordon solutions whose actions on the solutions commute with the actions of the isometries
on these solutions. That is, let KAB the generator of any isometry, and let φ(x) any Klein-Gordon
solution on some region M. Then we require our complex structure to fulfill(

J (KAB .φ)
)
(x)

!
=
(
KAB . (Jφ)

)
(x) ∀φ ∈ LM . (2.62)

This is what we mean by letting the commutator vanish:[
J , KAB

]
.φ(x) = 0 . (2.63)

Of the boosts, we only need to study one boost (the simplest one). This is sufficient, since the other
boost’s generators arise as Lie brackets of the simplest boost with rotation generators. It is quickly
shown that if two operators K and L each commute with J , then their Lie bracket [K, L] commutes
with J as well:[

J , [K, L]
]

= J (KL−LK)− (KL−LK) J 0 = [J , K]

= J (KL−LK)− (KJL−LJK) 0 = [J , L]

= J (KL−LK)− J (KL−LK)

= 0 .

2.4.6 Real inner product g and complex inner product {·, ·}
As described in Section 4.1 of [59], the symplectic structure ωΣ

φ and the complex structure JΣ
φ give

rise to the real g-product and inner product through the definitions

gΣ
φ (η, ζ) := 2ωΣ

φ (η, JΣ
φ ζ) (2.64)

{η, ζ}Σ
φ := gΣ

φ (η, ζ) + 2iωΣ
φ (η, ζ) . (2.65)

Requiring the real g-product to be independent of orientation and the inner product to be complex
conjugated under orientation reversal, makes it necessary to associate a complex structure JΣ

φ to
each hypersurface and fix the relative sign to be

JΣ
φ = −JΣ

φ . (2.66)

Since the symplectic structure ω is real on TLΣ, so is the real g-product g, while on TLC
Σ both are

complex. The inner product {·, ·} by construction is complex for both TLΣ and TLC
Σ. For {·, ·} on

TLΣ the real g-product g provides the real part and the symplectic structure ω (half of) its imaginary
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part. The real g-product and inner product directly inherit their compatibility with the complex
structure from the symplectic structure:

gΣ
φ

(
η, ζ
)

= gΣ
φ

(
JΣ
φ η, J

Σ
φ ζ
) ∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

, (2.67){
η, ζ

}
Σ
φ =

{
JΣ
φ η, J

Σ
φ ζ
}

Σ
φ .

∀ φ ∈ LC
Σ

∀ η, ζ ∈ (TLC
Σ)φ

. (2.68)

Using the compatibility of ω and J together with the antisymmetry of ω shows that the real g-product
is symmetric under exchange of its arguments while the inner product is conjugate symmetric (but
only for real fields):

gΣ
φ (η, ζ) = +gΣ

φ (ζ, η)
∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

, (2.69)

{η, ζ} Σ
φ = {ζ, η} Σ

φ .
∀ φ ∈ LΣ

∀ η, ζ ∈ (TLΣ)φ
. (2.70)

Moreover, the choice (2.66) gives us

gΣ
φ (η, ζ) = +gΣ

φ (η, ζ)
∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

(2.71)

{η, ζ}Σ
φ = {ζ, η}Σ

φ
∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

. (2.72)

The following property is often useful in calculations:{
η, JΣ

φ ζ
}

Σ
φ = −

{
JΣ
φ η, ζ

}
Σ
φ = i {η, ζ}Σ

φ
∀ φ ∈ LC

Σ

∀ η, ζ ∈ (TLC
Σ)φ

. (2.73)

Polarization projectors P±

The complex structure induces two polarization projectors on the complexified tangent space:

P±Σ,φ : (TLC
Σ)φ → (TLC

Σ)φ

P±Σ,φ := 1
2

(
Id ∓ iJΣ

φ

)
(2.74)(

P±Σ,φ
)2

= P±Σ,φ (2.75)

P+
Σ,φ + P−Σ,φ = Id (2.76)

P±Σ,φ P∓Σ,φ = 0 ,

and the choice (2.66) causes

P±
Σ,φ

= P∓Σ,φ . (2.77)

The product and commutation relations with the complex structure are

JΣ
φ P±Σ,φ = ±i P±Σ,φ P±Σ,φJ

Σ
φ = ∓i P±Σ,φ =⇒

[
JΣ
φ , P±Σ,φ

]
= ±2i P±Σ,φ . (2.78)

All following relations in this section hold for LC
Σ. First, it is easy to show that the symplectic

structure of equally polarized fields vanishes by just plugging in the definitions:

ωΣ
φ

(
P±Σ,φ η, P±Σ,φ ζ

)
=0 =⇒ gΣ

φ

(
P±Σ,φ η, P±Σ,φ ζ

)
=0 =⇒

¶
P±Σ,φ η, P±Σ,φ ζ

©
Σ
φ =0 , (2.79)

which leads to sums over opposed polarizations:

ωΣ
φ

(
η, ζ

)
= ωΣ

φ

(
P+

Σ,φ η, P−Σ,φ ζ
)

+ ωΣ
φ

(
P−Σ,φ η, P+

Σ,φ ζ
)

gΣ
φ

(
η, ζ

)
= gΣ

φ

(
P+

Σ,φ η, P−Σ,φ ζ
)

+ gΣ
φ

(
P−Σ,φ η, P+

Σ,φ ζ
)
.

(2.80)
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Further, we can quickly check in the same way that

ωΣ
φ

(
P∓Σ,φ η, P±Σ,φ ζ

)
= 1

2 ω
Σ
φ

(
η, ζ

)
± i

2 ω
Σ
φ

(
JΣ
φ η, ζ

)
=⇒ gΣ

φ

(
P∓Σ,φ η, P±Σ,φ ζ

)
= ±iωΣ

φ

(
η, ζ

)
+ ωΣ

φ

(
η, JΣ

φ ζ
) (2.81)

which makes the inner product take into account only the negatively polarized part of its first
argument and the positively polarized one of the second:

0 =
¶

P+
Σ,φ η, P−Σ,φ ζ

©
Σ
φ =⇒ {η, ζ}Σ

φ =
¶

P−Σ,φ η, P+
Σ,φ ζ

©
Σ
φ . (2.82)

2.5 Minkowski Spacetime: Classical Klein-Gordon Theory

2.5.1 Radial behaviour of the Minkowski Klein-Gordon solutions

In this section we have a closer look at the behaviour of the radial solutions in Minkowski spacetime,
see e.g. Section A.1 of [22]. Separation of variables in spherical coordinates reduces the Klein-Gordon
equation to a differential equation for the radial dependence of the modes, namely the spherical Bessel
differential equation. We call its solutions ”radial solutions” and reserve the term ”solutions” for full
solutions of the Klein-Gordon equation. By m we denote the Klein-Gordon mass of the field, and by
E the energy/frequency of a mode, see for example (2.92).

For E2 > m2, the radial solutions are simply the spherical Bessel functions jl(pREr) and spherical
Neumann functions nl(pREr). (The latter are also called spherical Bessel functions of the second kind.)

Note that they are real here, since pRE :=
√
|E2−m2 | is real by its definition, and r is real, too.

Their Wronskian is positive for our arguments:(
jl

��
∂rnl

)
(pREr) =

1

pRE r
2
.

For E2 > m2, the following complex radial solutions are also used very frequently: the spherical
Hankel functions of the first and second kind

h(1)

l (pREr) = jl(pREr) + inl(pREr), h(2)

l (pREr) = jl(pREr)− inl(pREr). (2.83)

(Both are also called spherical Bessel functions of the third kind.) Note that the alternative notation
hl for h(1)

l and hl for h(2)

l may become misleading, since hl(z) = jl(z) − inl(z) is equal to hl(z) =
jl(z)− inl(z) only for real arguments z. Their Wronskian is negative-imaginary for our arguments:(

h(1)

l

��
∂rh

(2)

l

)
(pREr) =

−2i

pRE r
2
.

For E2 < m2, radial solutions are given by the modified spherical Bessel functions i−ljl(ipREr) and

the modified spherical Neumann functions il+1nl(ipREr). (The former are also called modified Bessel
functions of the first kind, and the latter modified Bessel functions of the second kind.) Note that
the factors in front are chosen such that both functions become real for imaginary arguments, and
such that their Wronskian becomes positive for our arguments:(

i−ljl
��
∂ri

l+1nl
)
(ipREr) =

1

pRE r
2
.

For E2 < m2, another pair of radial solutions is given by the modified spherical Hankel functions of
the first kind

k(1)

l (pREr) = (−1)li−ljl(ipREr) + il+1nl(ipREr)

= iljl(ipREr) + il+1nl(ipREr)
(2.84)
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and the modified spherical Hankel functions of the second kind

k(2)

l (pREr) = −i−ljl(ipREr)− (−1)l+1il+1nl(ipREr)

= −i−ljl(ipREr)− i−(l+1)nl(ipREr).
(2.85)

(Both are also called modified Bessel functions of the third kind.) Note that the factors are chosen
such that both functions become real for imaginary arguments, and such that their Wronskian
becomes positive for our arguments:(

k(1)

l

��
∂rk

(2)

l

)
(ipREr) =

2

pRE r
2
.

We can recover the modified Bessel and Neumann functions from the modified Hankel functions
through

i−ljl(ipREr) = 1
2

(
(−1)lk(1)

l (pREr)− k
(2)

l (pREr)

)
il+1nl(ipREr) = 1

2

(
k(1)

l (pREr) + (−1)lk(2)

l (pREr)

)
.

Our functions jl, nl, h
(1)

l , h(2)

l , i−ljl are the functions jl, yl, h(1)

l , h(2)

l , i(1)

l as found in DLMF [10.47].
In contrast to these, the rest of the our functions (are closely related to but) do not coincide with
functions in the DLMF. For us it is necessary to choose our functions as above, in order to avoid
Wronskians whose signs depend on l as e.g. in (−1)l.

Now let us consider the radial behaviour of the functions. On the time axis r = 0 the spherical
Bessel functions jl(pREr) and the modified spherical Bessel functions i−ljl(pREr) are regular. (In par-
ticular, those with l = 0 have value one, and those with l ≥ 1 have value zero on the time axis.) All
the other functions behave like r−(l+1) near the time axis.

According to DLMF [10.52], near spatial infinity r → ∞ the spherical Bessel functions jl(pREr),
the spherical Neumann functions nl(pREr) and the spherical Hankel functions h(1)

l (pREr) and h(2)

l (pREr)

decay essentially with 1/r. The modified spherical Bessel and Neumann functions i−ljl(ipREr) and

il+1nl(ipREr) and the modified spherical Hankel functions of the second kind k(2)

l (pREr) diverge like
(pREr)

−1 exp(pREr) for r → ∞, whereas the modified spherical Hankel functions of the first kind
k(1)

l (pREr) decay like (pREr)
−1 exp(−pREr). The behaviour of the radial functions for the generic cases

is sketched in Figure 2.86.

(a) Unmodified Bessel functions for E2 > m2 and
(a) modified Bessel functions for E2 < m2

(b) Modified Bessel and Hankel functions for E2 < m2

Figure 2.86: Typical behaviour

Therein, we have x ∈ [0, ιπ2 ) with pREr = 1
4 tanx while for simplicity we let pRE = 1. Thus x = 0

corresponds to r = 0 and x → ιπ
2 to r → ∞. For better visibility we scaled some of the functions.

On the left hand side, the continuous green line plots the spherical Bessel function −10 j1(pREr), the
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continuous red line plots the spherical Neumann function 10n1(pREr), the dashed green line plots the
modified spherical Bessel function i1j1(ipREr), and the dashed red line plots the modified spherical
Neumann function −0.01 i2+1n2(ipREr). On the right hand side, the dashed green and red lines are the
same as on the left, the dashed blue line plots the modified spherical Hankel function k(1)

0 (pREr), and
the dashed brown line plots the modified spherical Hankel function 0.001 k(2)

2 (pREr).

2.5.2 Time-interval regions: Solutions and structures

Time-interval regions M[t1,t2] = [t1, t2]×R3 are foliated by equal-time hypersurfaces Σt which we
orient all pastwards (backwards in time). Here, the spaces L[t1,t2] of solutions on the time-interval
region and LΣ1

of solutions in a neighborhood of Σ1 coincide, because any solution near Σ1 evolutes to
cover the whole region. Hence the space L∂[t1,t2] of solutions near the boundary ∂M[t1,t2] = Σ1 ∪Σ2

is twice LM. This is easiest seen as follows: let η ∈ LΣ1
a solution near Σ1 and ζ ∈ LΣ2

a solution near
Σ2. Thus the pair (η, ζ) ∈ L∂[t1,t2] is a solution near the boundary ∂M[t1,t2] = Σ1 ∪Σ2. However, ζ
is not required to be the solution obtained by evoluting η towards Σ2, rather ζ is independent of η.
That is, L∂[t1,t2] = LΣ1×LΣ2 .

Hence for time-interval regions we need to consider solutions well-defined near equal-time planes
Σt. From the preceeding section we know that the only modes well defined on the whole equal-
time plane are the spherical Bessel modes with E2 > m2. We use the notation of Section 5.3
of [59] for spherical coordinates, that is: Ω = (θ,ϕ) and d

2
Ω = sin θ dθ dϕ. The metric is

diag (+1,−1,−r2,−r2 sin2 θ). For the angular momentum numbers l and ml, the label l only serves
to distinguish ml from the mass m. The momentum space needed to assure consistency is l ∈ N0

with ml ∈ {−l, . . . ,+l}, and p > 0 such that Ep :=
√
p2+m2 > m. The reason for this is the

orthogonality relation DLMF [1.17.14] which requires only positive momenta in order to give a delta
function:

∞̂

0

dr r2 2p (2 ιπ)−1/2 jl(pr) 2p′ (2 ιπ)−1/2 jl(p′r) = δ(p−p′) p, p′ > 0 l > −3/2 (2.87)

∞̂

0

dp p2 2r (2 ιπ)−1/2 jl(pr) 2r′ (2 ιπ)−1/2 jl(pr′) = δ(r−r′) p, p′ > 0 l > −3/2 . (2.88)

Hence we encounter only propagating waves. The radial part of the spherical Bessel modes is real.
For a real solution we thus get the expansion

φ(t, r,Ω) =

∞̂

0

dp
∑
l,ml

2p (2 ιπ)−1/2 jl(pr)
{
φplml e−iEpt Y mll (Ω) + c.c.

}

=

∞̂

0

dp
∑
l,ml

{
φplmlµ

(j)

plml
(t, r,Ω) + φplml µ

(j)

plml
(t, r,Ω)

}
,

(2.89)

and for a complex solution

φ(t, r,Ω) =

∞̂

0

dp
∑
l,ml

2p (2 ιπ)−1/2 jl(pr)
{
φ+
plml

e−iEpt Y mll (Ω) + φ−plml eiEpt Y mll (Ω)

}
(2.90)

=

∞̂

0

dp
∑
l,ml

{
φ+
plml

µ(j)

plml
(t, r,Ω) + φ−plml µ

(j)

plml
(t, r,Ω)

}
. (2.91)

The condition that p > 0 is incorporated for the real case through φp=0,l,ml = 0 and in the complex
case through φ±p=0,l,ml

= 0. We use the following definition for the µ(j)-modes:

µ(j)

plml
(t, r,Ω) :=

2p√
2 ιπ

e−iEptY mll (Ω) jl(pr) Ep :=
√
p2+m2 . (2.92)
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Note that we could equivalently write the integration over positive p as an integration over E > m:

∞̂

0

dp p f (p) =

∞̂

m

dE E f (pE) .

Knowing the expansions of solutions permits us to evaluate the structures discussed in Section 2.4.
Our equal-time planes are oriented pastwards, hence sign Σt = −1. With this, (2.54) gives us the
symplectic potential

θΣt
φ

(
η
)

= +

ˆ

Σt

dr d
2
Ω r2 η (∂tφ) (2.93)

= +i

∞̂

0

dp
∑
l,ml

Ep

ß
−φ+

p,l,−ml η
+
plml

e−2itEp + φ−plml η
+
plml

(2.94)

+ φ−p,l,−ml η
−
plml

e+2itEp − φ+
plml

η−plml

™
.

The symplectic structure then results from (2.55) or (2.52):

ωt
(
η, ζ

)
= −1

2

ˆ

Σt

dr d
2
Ω r2

(
η ∂tζ − ζ ∂tη

)
(2.95)

= +i

∞̂

0

dp
∑
l,ml

Ep

ß
η−plml ζ

+
plml

− η+
plml

ζ−plml

™
. (2.96)

As for cartesian coordinates, in spherical coordinates the positive and negative frequency modes also
form Lagrangian subspaces of the complexified space of Klein-Gordon solutions in a neighborhood
of the equal-time plane Σt, see (1.2.3) in [76]. The full space of Klein-Gordon solutions on this
neighborhood is the direct sum of these subspaces. The standard complex structure for equal-time
planes is the same as for cartesian coordinates and acts in the momentum representation as(

JΣtφ
)±
plml

= −iφ±plml . (2.97)

Next, the real g-product follows from (2.64)

gt
(
η, ζ

)
=

∞̂

0

dp
∑
l,ml

2Ep

ß
η−plml ζ

+
plml

+ η+
plml

ζ−plml

™
, (2.98)

and the inner product from (2.65)

{η, ζ} Σt =

∞̂

0

dp
∑
l,ml

4Ep η
+
plml

ζ−plml . (2.99)

The momentum space representation of polarized solutions can be easily calculated using the pro-
jectors’ definitions (2.74), resulting in(

P̂+
Σt
φ
)

+
plml

= 0
(
P̂+

Σt
φ
)−
plml

= φ−plml (2.100)(
P̂−Σt φ

)
+
plml

= φ+
plml

(
P̂−Σt φ

)−
plml

= 0 .
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2.5.3 Rod and tube regions: Solutions and structures

On a rod region Mr0 = Rt×B3
r0 we can only allow solutions well defined for all r ≤ r0, in particular

on the time axis r = 0. That is, there we have the spherical Bessel modes with E2 > m2 and the
modified spherical Bessel modes with E2 < m2. We have to exclude the Neumann modes since they
diverge on the time axis r = 0. For the tube region M[r1,r2] = Rt×[r1, r2]×S2 we can allow the
Neumann modes, since the time axis is not part of tube regions. Hence on tube regions the spherical
Bessel and Neumann modes with E2 > m2 and also their modified versions with E2 < m2 are all
well defined. Counting modes, we can already see that the space Ltub

[r1,r2] of solutions on a tube region
is twice as big as the space Lrod

r0 of solutions on a rod region.
For the S-matrices we aim to construct, the relevant region is the rod region, since it covers the

whole spacetime for r → ∞. The boundaries of rod regions are the hypercylinders Σr, which
we orient all inwards (backwards in radius). Hence we need to consider also the space of solutions
LΣr of solutions in the neighborhood of a hypercylinder. We can view these neighborhoods as tube
regions and hence the spaces LΣr and Ltub

[r1,r2] coincide, that is, they consist of the spherical Bessel

and Neumann modes with E2 > m2 together with their modified versions with E2 < m2. As for
the time-interval regions, also for the rod regions the space of solutions near the boundary is twice
as large as the space of solutions in the interior: the (spherical and modified) Bessel modes can
be continued smoothly from the boundary to cover the whole interior, while the Neumann modes
cannot.

The metric is again diag (+1,−1,−r2,−r2 sin2 θ). For an equal-r hypercylinder Σr, the mo-
mentum space needed to assure consistency is E ∈ R and l ∈ N0 with ml ∈ {−l, . . . ,+l} because an
orthonormal basis on the hypercylinder is given by e−iEtY mll (Ω). Since we have to include energies

|E| < m, we encounter evanescent modes. With D = E2 −m2 and pRE :=
√
|E2 −m2 | , we define

the function ȟ (which is denoted by d in Section 5.3 of [59]) as

ȟEl(r) := ̌El(r) + i ňEl(r) (2.101)

̌El(r) =

®
jl(pREr) D ≥ 0

i−l jl(ipREr) D < 0
ňEl(r) =

®
nl(pREr) D ≥ 0

il+1 nl(ipREr) D < 0
. (2.102)

Note that both il jl(ipREr) and il+1 nl(ipREr) are always real for real pREr. We thus reproduce the
expansion given in Section 5.3 of [59] for a real solution on a tube region

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

pRE
4 ιπ

{
φElml e−iEtY mll (Ω) ȟEl(r) + c.c.

}
(2.103)

=

ˆ
dE
∑
l,ml

pRE
4 ιπ

{
φaElmle

−iEtY mll (Ω) ̌El(r) + φbElmle
−iEtY mll (Ω) ňEl(r)

}
, (2.104)

where the two momentum representations relate to each other through

φaElml = φElml + φ−E,l,−ml φElml =
1

2

(
φaElml − iφbElml

)
(2.105)

φbElml = iφElml − iφ−E,l,−ml φElml =
1

2

(
φa−E,l,−ml + iφb−E,l,−ml

)
.
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This fulfills φa,bElml = φa,b−E,l,−ml . For a complex solution on a tube region we have the expansion

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

pRE
4 ιπ

{
φ+
Elml

e−iEtY mll (Ω) ȟEl(r) + φ−Elml e+iEtY mll (Ω) ȟEl(r)
}

(2.106)

=

ˆ
dE
∑
l,ml

pRE
4 ιπ

{
φaElmle

−iEtY mll (Ω) ̌El(r) + φbElmle
−iEtY mll (Ω) ňEl(r)

}
(2.107)

=

ˆ
dE
∑
l,ml

{
φaElmlµ

(a)

Elml
(t, r,Ω) + φbElmlµ

(b)

Elml
(t, r,Ω)

}
, (2.108)

wherein we use the modes

µ(a)

Elml
(t, r,Ω) :=

pRE
4 ιπ

e−iEtY mll (Ω) ̌El(r)

µ(b)

Elml
(t, r,Ω) :=

pRE
4 ιπ

e−iEtY mll (Ω) ňEl(r) .

(2.109)

Now the momentum representations relate via

φaElml = φ+
Elml

+ φ−−E,l,−ml φ+
Elml

= 1
2 φ

a
Elml

− i
2 φ

b
Elml

(2.110)

φbElml = iφ+
Elml

− iφ−−E,l,−ml φ−−E,l,−ml = 1
2 φ

a
Elml

+ i
2 φ

b
Elml

,

which in matrix form writesÅ
φaElml
φbElml

ã
=

Å
1 1
i −i

ãÇ
φ+
Elml

φ−−E,l,−ml

å Ç
φ+
Elml

φ−−E,l,−ml

å
= 1

2

Å
1 −i
1 i

ãÅ
φaElml
φbElml

ã
, (2.111)

and turns into (2.105) by setting φ+
Elml

= φ−Elml . As for the equal-time plane, for E2 > m2 we can
transform integration over positive p into integration over E and vice versa:

∞̂

m

dE E f (E) =

∞̂

0

dp p f (+Ep) p := +
»
|E2 −m2 | = +

√
E2 −m2

−mˆ

−∞

dE E f (E) = −
∞̂

0

dp p f (−Ep) Ep := +
√
m2 + p2 .

For E2 < m2 we get in turn

m̂

0

dE E f (E) =

m̂

0

dp p f (+Ep) p := +
»
|E2 −m2 | = +

√
m2 − E2

0ˆ

−m

dE E f (E) = −
m̂

0

dp p f (−Ep) Ep := +
√
m2 − p2 .

For solutions on rod regions we only dispose of the Bessel modes and thus the expansion for complex
solution becomes

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

φaElmlµ
(a)

Elml
(t, r,Ω) . (2.112)
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Knowing the solutions’ expansions, we can again evaluate the various structures on the space of
solutions. Our hypercylinders are oriented inwards, hence sign Σr = −1. The symplectic potential
from (2.54) now takes the form

θΣr
φ

(
η
)

= −r2

ˆ

Σr

dtd
2
Ω η (∂rφ) (2.113)

= −
ˆ

dE
∑
l,ml

(rpRE)2

8 ιπ

ß
φ+
−E,l,−ml η

+
Elml

ȟEl(r) ∂r ȟEl(r) + φ−Elml η
+
Elml

ȟEl(r) ∂r ȟEl(r)

(2.114)

+ φ−−E,l,−ml η
−
Elml

ȟEl(r) ∂r ȟEl(r) + φ+
Elml

η−Elml ȟEl(r) ∂r ȟEl(r)

™
.

Then, (2.55) for the symplectic structure becomes

ωr
(
η, ζ

)
=

r2

2

ˆ

Σr

dtd
2
Ω
(
η ∂rζ − ζ ∂rη

)
(2.115)

=

ˆ
dE
∑
l,ml

pRE
16 ιπ

ß
ηaElml ζ

b
−E,l,−ml − η

b
Elml

ζa−E,l,−ml

™
(2.116)

= i

ˆ
dE
∑
l,ml

pRE
8 ιπ

ß
η−Elml ζ

+
Elml

− η+
Elml

ζ−Elml

™
. (2.117)

The positive and negative frequency modes form Lagrangian subspaces of the complexified space of
Klein-Gordon solutions in a neighborhood of the equal-r hypercylinder Σr, see (1.2.3) in [76]. The
Bessel and Neumann modes form Lagrangian subspaces both on the real and complexified version of
the solutions space. In both mode decompositions, the full space of Klein-Gordon solutions on this
neighborhood is the direct sum of the two Lagrangian subspaces. One choice for a complex structure
is given in equation (81) of [59] (we call it the positive complex structure because it induces a real
g-product which is positive-definite for real solutions):(

Jpos
Σr

φ
)±
Elml

= −iφ±Elml , (2.118)

which is equivalent to ((
Jpos

Σr
φ
)a
Elml(

Jpos
Σr

φ
)b
Elml

)
=

Å
−φbElml
+φaElml

ã
. (2.119)

With that, the real g-product becomes

gpos
Σr

(
η, ζ

)
=

ˆ
dE
∑
l,ml

pRE
8 ιπ

ß
ηaElml ζ

a
−E,l,−ml + ηbElml ζ

b
−E,l,−ml

™
(2.120)

=

ˆ
dE
∑
l,ml

pRE
4 ιπ

ß
η−Elml ζ

+
Elml

+ η+
Elml

ζ−Elml

™
, (2.121)

and the inner product results as

{η, ζ} pos
Σr

=

ˆ
dE
∑
l,ml

pRE
8 ιπ

ß
ηaElml ζ

a
−E,l,−ml + ηbElml ζ

b
−E,l,−ml + iηaElml ζ

b
−E,l,−ml − iηbElml ζ

a
−E,l,−ml

™
=

ˆ
dE
∑
l,ml

pRE
2 ιπ

η+
Elml

ζ−Elml . (2.122)
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The momentum space representation of the polarized solutions with Jpos
Σr

becomes(
P̂+

Σr
φ
)

+
Elml

= 0
(
P̂+

Σr
φ
)−
Elml

= φ−Elml (2.123)(
P̂−Σr φ

)
+
Elml

= φ+
Elml

(
P̂−Σr φ

)−
Elml

= 0 .

The results of this section agree with those of Section 5.3 in [59]. Note that in the symplectic potential
there is still a case distinction according to the sign of D = E2−m2, while in the symplectic structure
there appears no such case distinction. This happens because in the symplectic structure the radial
functions enter only via their Wronskian, which is the same for D > 0 and D < 0.

2.5.4 Isometries in Minkowski spacetime

The isometries on Minkowski spacetime are the three spatial translations in directions x1,2,3, the
time translation, the spatial rotations and the boosts. Together they form the Poincaré group. The
standard S-matrix is invariant under the action of these isometries, and therefore we want to show
the same for the GBF amplitudes (whose asymptotical limits can be regarded as S-matrices on
Minkowski spacetime). However, here we only consider boosts and spatial translations, because for
spatial rotations and time translations the actions and invariance/commutation for Minkowski are
easily found and completely analogous to Anti de Sitter, for which we give the explicit expressions
in Section 2.6.6. The spatial translations in x3-direction are generated by

T3 = ∂x3 =
∂r

∂x3
∂r +

∂ cos θ

∂x3
∂cosθ = cos θ ∂r +

(1−cos2 θ)

r
∂cosθ, (2.124)

and the boosts in the (t, x3)-plane are generated by

K03 = −t ∂x3 − x3 ∂t = −t cos θ ∂r −
t

r
(1−cos2 θ)∂cosθ − r cos θ ∂t. (2.125)

The quantization we shall use is called Holomorphic Quantization and is described in Section 3.1.
In order to have amplitudes invariant under the actions of isometries it turns out that we need two
properties to hold see Section 3.1.8. First, that the symplectic structure on a region’s boundary
be invariant under these actions, and second, that the complex structure commutes with these
actions. For the symplectic structures on equal-time planes and hypercylinders we already dispose
of the expressions (2.96) and (2.116) which use the momentum representation of the solutions. As
in e.g. (2.119) and (2.97), we also express the action of the complex structures in the momentum
representation. Hence for showing invariance/commutation, we also need the actions of the isometries
in the momentum representation. That is, the derivatives with respect to spacetime coordinates in
the above expressions for T3 and K03 need to be rewritten as operators in momentum space. For the
time-interval region we calculate these in Appendix B.2.2, and for rod and tube regions in Appendix
B.2.1.

Minkowski time-interval region

Using expansion (2.91)

φ(t, r,Ω) =

∞̂

0

dp
∑
l,ml

{
φ+
plml

µ(j)

plml
(t, r,Ω) + φ−plml µ

(j)

plml
(t, r,Ω)

}
, (2.126)

we find the following actions in the momentum representation:(
T3 .φ

)+
plml

= +pχ
(2)
− (l,ml)φ

+
p,l−1,ml

− pχ(2)
+ (l,ml)φ

+
p,l+1,ml

(2.127)(
T3 .φ

)−
plml

= +pχ
(2)
− (l,ml)φ

−
p,l−1,ml

− pχ(2)
+ (l,ml)φ

−
p,l+1,ml
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and (
K03 .φ

)+
plml

= +iχ
(2)
− (l,ml)

(
∂pEpφ

+
p,l−1,ml

)
− i(l)

Ep
p χ

(2)
− (l,ml)φ

+
p,l−1,ml

(2.128)

− iχ
(2)
+ (l,ml)

(
∂pEpφ

+
p,l+1,ml

)
− i(l+1)

Ep
p χ

(2)
+ (l,ml)φ

+
p,l+1,ml(

K03 .φ
)−
plml

= −iχ
(2)
− (l,ml)

(
∂pEpφ

−
p,l−1,ml

)
+ i(l)

Ep
p χ

(2)
− (l,ml)φ

−
p,l−1,ml

(2.129)

+ iχ
(2)
+ (l,ml)

(
∂pEpφ

−
p,l+1,ml

)
+ i(l+1)

Ep
p χ

(2)
+ (l,ml)φ

−
p,l+1,ml

.

Minkowski rod and tube regions

Near a hypercylinder, we expand a solution as in (2.108):

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

{
φaElmlµ

(a)

Elml
(t, r,Ω) + φbElmlµ

(b)

Elml
(t, r,Ω)

}
. (2.130)

With the χ-factors (A.17), the spatial translation T3 then acts in the momentum representation for
E2 ≷ m2 as in (B.39):

(T3 .φ)aElml = ±pRE χ
(2)
− (l,ml)φ

a
E,l−1,ml

− pRE χ
(2)
+ (l,ml)φ

a
E,l+1,ml

(2.131)

(T3 .φ)bElml = +pRE χ
(2)
− (l,ml)φ

b
E,l−1,ml

∓ pRE χ
(2)
+ (l,ml)φ

b
E,l+1,ml

.

The boost K03 for E2 ≷ m2 results in the action (B.54):

(K03 .φ)aElml = ±χ(2)
− (l,ml)

(
ipRE∂Eφ

a
E,l−1,ml

)
− χ(2)

+ (l,ml)
(
ipRE∂Eφ

a
E,l+1,ml

)
(2.132)

− i(E/pRE)(l−1)χ
(2)
− (l,ml)φ

a
E,l−1,ml

∓ i(E/pRE)(l+2)χ
(2)
+ (l,ml)φ

a
E,l+1,ml

(K03 .φ)bElml = +χ
(2)
− (l,ml)

(
ipRE∂Eφ

b
E,l−1,ml

)
∓ χ(2)

+ (l,ml)
(
ipRE∂Eφ

b
E,l+1,ml

)
(2.133)

∓ i(E/pRE)(l−1)χ
(2)
− (l,ml)φ

b
E,l−1,ml

− i(E/pRE)(l+2)χ
(2)
+ (l,ml)φ

b
E,l+1,ml

.

For both T3 and K03, the signs of the corresponding terms in the actions on a and b-modes coincide
for E2 > m2 and are opposite for E2 < m2.

2.5.5 Invariance of symplectic structures under isometries

In this section we make use of the isometries’ actions in the momentum representation in order to
verify the invariance under them of the symplectic structures on the equal-time plane and on the
hypercylinder.

Prelude: Boosts in cartesian coordinates

Showing the boost invariance of the symplectic structures ωt on the equal-time plane and ωr on the
hypercylinder is somewhat unwieldy in spherical coordinates. In order to outline the method we
use in a setting which allows for clearer equations, we here briefly treat the symplectic structure on
the equal-time plane Σt in cartesian coordinates. There, solutions are just superpositions of planes
waves, which greatly simplifies the calculations. As given in Section 5.1 of [59], the expansion of a
solution φ(t, x) near Σt writes as

φ(t, x) =

ˆ

R3

d3k

(2 ιπ)3 2Ek

(
φ+
k e−i(Et−k x) + φ−k e+i(Et−k x)

)
, (2.134)

and the symplectic structure becomes

ωt(η, ζ) = i
2

ˆ

R3

d3k

(2 ιπ)3 2Ek

(
η−k ζ

+
k − η

+
k ζ
−
k

)
. (2.135)
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We note, that both the solution’s expansion and the symplectic structure converge to finite values,
if the momentum representation φ±k vanishes for |k| → ∞. Let us now consider the action of the

boost generator K03 = −t∂3 − x3∂t, which calculates straightforwardly to

K03 . e∓i(Et−k x) := −K03e∓i(Et−k x) = ∓i
(
−tk3 + x3Ek

)
e∓i(Et−k x). (2.136)

It is straightforward to verify that the right hand side is again a solution of the homogeneous Klein-
Gordon equation (−∂2

t +∂2−m2)φ = 0. We have calculated the action (2.136) using the configuration
space representation −t∂3 − x3∂t of the boost generator K03. Since both the solution’s expansion
(2.134) and the symplectic structure (2.135) use the momentum space, we need to find a momentum
space representation of K03, which reproduces the action (2.136). An intuitive first guess would
be that the momentum representation of K03 reflects the configuration one through a form like
K03 = −E∂k3 − k3∂E . However, since E depends on k, it turns out that the form of the boost
generator actually is simpler. As can easily be verified, the action (2.136) is recovered by setting

K03 . e∓i(Et−k x) := −Ek∂k3 e∓i(Et−k x). (2.137)

That is, with respect to the plane waves the boost generator’s momentum representation writes as
K03 = Ek∂k3 . We thus have obtained

(K03 .φ)(t, x) =

ˆ

R3

d3k

(2 ιπ)3 2Ek

(
φ+
k (−K03)e−i(Et−k x) + φ−k (−K03)e+i(Et−k x)

)

=

ˆ

R3

d3k

(2 ιπ)3 2Ek

(
φ+
k (−Ek∂k3)e−i(Et−k x) + φ−k (−Ek∂k3)e+i(Et−k x)

)
. (2.138)

In order to obtain the momentum representation (K03 . φ)±k , we now need to let Ek∂k3 act to the
left. This can be done by noting that it is an antisymmetric operator with respect to the integral we
use here:

ˆ

R

dk

(2 ιπ)3 2Ek
f(k3) (−Ek∂k3) g(k3) =

ˆ

R

dk

(2 ιπ)3 2
f(k3) (−∂k3) g(k3)

= (2 ιπ)−3 1
2 fg|

+∞
−∞ +

ˆ

R

dk

(2 ιπ)3 2
g(k3) (∂k3) f(k3)

= +

ˆ

R

dk

(2 ιπ)3 2Ek
g(k3) (Ek∂k3) f(k3),

wherein we have used that f vanishes for |k3| → ∞ while g remains bounded. Therefore we can
write (2.140) as

(K03 .φ)(t, x) =

ˆ

R3

d3k

(2 ιπ)3 2Ek

((
Ek∂k3φ+

k

)
e−i(Et−k x) +

(
Ek∂k3φ−k

)
e+i(Et−k x)

)
. (2.139)

We have thus found the momentum representation of (K03 .φ):

(K03 .φ)±k = Ek∂k3φ±k . (2.140)

Now we can verify the invariance of the symplectic structure ωt. Relation (2.59) tells us that to this
end we need to show that

0 =
(
K03.ω

)
(η, ζ) = −ω

(
K03.η, ζ

)
− ω

(
η, K03.ζ

)
. (2.141)
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Starting from (2.135) and using (2.140) we obtain (in the last line we use that both η±k and ζ±k vanish

for |k| → ∞, and hence the derivative ∂k3 is an antisymmetric operator in this integral as well, and
changing its direction in the first two terms yields the final result):(
K03.ω

)
(η, ζ) = − i

2

ˆ

R3

d3k

(2 ιπ)3 2Ek

(
(K03.η)−k ζ

+
k − (K03.η)+

k ζ
−
k + η−k (K03.ζ)+

k − η
+
k (K03.ζ)−k

)

= − i
2

ˆ

R3

d3k

(2 ιπ)3 2

(
(∂k3η−k ) ζ+

k − (∂k3η+
k ) ζ−k + η−k (∂k3ζ+

k )− η+
k (∂k3ζ−k )

)
= 0.

We have thus verified the invariance of the symplectic structure ωt on equal-time hyperplanes in
Minkowski spacetime, using cartesian coordinates. The technique we use consists in rewriting the
boost generator K03 in its momentum space representation. This provides us with the momentum
representation of the solution K03 .φ. The antisymmetry of K03 in momentum space integrals then
yields the invariance of ωt. We will apply the same technique for ωt and ωr in spherical coordinates,
however, the expressions become considerably less elegant there.

Minkowski time-interval region

We start with the symplectic structure (2.96) on the equal-time plane:

ωt
(
η, ζ

)
= +i

∞̂

0

dp
∑
l,ml

Ep

ß
η−plml ζ

+
plml

− η+
plml

ζ−plml

™
. (2.142)

For an infinitesimal translation 1 + εT3 invariance means that ωt(η, ζ)
!
= ((1 + εT3).ωt) (η, ζ). Up

to linear order in ε we have ((1 + εT3).ωt) (η, ζ) = ωt(η, ζ) +ωt(−εT3.η, ζ) +ωt(η,−εT3.ζ). Hence
invariance is to require that

0
!
= ωt(T3 .η, ζ) + ωt(η, T3 .ζ). (2.143)

Showing that this actually holds is straightforward: starting with (2.142), plugging in the actions
(2.131), shifting l → l+1 in all the terms containing χ−-factors and applying relation (A.18):
χ

(2)
− (l+1,ml) = χ

(2)
+ (l,ml) yields a zero sum. Analoguously, for boosts the invariance amounts to

0
!
= ωt(K03 .η, ζ) + ωt(η,K03 .ζ)

= +i

∞̂

0

dp
∑
l,ml

ß(
K03 .η

)−
plml

Epζ
+
plml

−
(
K03 .η

)+
plml

Epζ
−
plml

+ Epη
−
plml

(
K03 .ζ

)+
plml

− Epη+
plml

(
K03 .ζ

)−
plml

™
.

That this actually holds can be checked by plugging in the actions (2.128), leading to an integral
over 16 terms. Eight of these contain no derivative and cancel already after appropriately shifting
l → l± 1. The other eight contain a derivative of the form (Epf)(∂pEpg). Reverting the derivative
to the left in four of these terms plus shifting l → l ± 1 then cancels these terms as well, giving us
zero. For reverting the derivatives, we note that we can use again the condition, that the involved
functions vanish for p = 0 and p → ∞. Then, the rule for reverting the derivatives is simply

−−−→
∂pEp → −

←−−−
∂pEp, (2.144)

that is: (Epf)(∂pEpg) → −(∂pEpf)(Epg). We have thus shown also in spherical coordinates, that
the symplectic structure on the Minkowski equal-time plane is invariant under the actions of all
Minkowski isometries.
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Minkowski rod region

We continue with the symplectic structure (2.116) on the hypercylinder:

ωr
(
η, ζ

)
=

ˆ
dE
∑
l,ml

pRE
16 ιπ

ß
ηaElml ζ

b
−E,l,−ml − η

b
Elml

ζa−E,l,−ml

™
. (2.145)

For the translation T3 invariance means again that

0
!
= ωr(T3 .η, ζ) + ωr(η, T3 .ζ). (2.146)

That this actually holds can be seen as follows: starting with (2.145), plugging in the actions (2.131)

shifting l → l+1 in the terms containing χ−-factors and applying (A.18): χ
(2)
− (l+1,ml) = χ

(2)
+ (l,ml)

yields zero. Analoguously, for boosts the invariance amounts to

0
!
= ωr(K03 .η, ζ) + ωr(η,K03 .ζ)

=

ˆ
dE
∑
l,ml

pRE
16 ιπ

ß(
K03 .η

)a
Elml

ζb−E,l,−ml −
(
K03 .η

)b
Elml

ζa−E,l,−ml

+ ηaElml
(
K03 .ζ

b
)
−E,l,−ml

− ηbElml
(
K03 .ζ

)a
−E,l,−ml

™
.

This holds as well: plugging into this the action (2.132), and letting in the terms of the second row

above act the derivatives to the left following rule (B.53):
−−−→
ip2 ∂E → −

←−−−
ip2 ∂E ∓ 2iE, we obtain

sixteen terms, which consist of eight pairs whose terms nicely cancel each other.
We have thus verified that the symplectic structure ωr on the Minkowski hypercylinders is indeed

invariant under the actions of all isometries.

2.6 Anti de Sitter Spacetime (AdS): Classical Klein-Gordon
Theory

2.6.1 Introduction

Three classic spacetimes of constant scalar curvature in Mathematical Physics are Minkowski space-
time R1,d, de Sitter dS1,d and Anti de Sitter AdS1,d (wherein d is the spatial dimension). They all
have constant (zero, positive and negative) curvature. The particular interest for field theory on
these spacetimes is due to their high degree of symmetry: each of them possesses the maximum
number of (d+1)(d+2)/2 (linear independent) Killing vector fields, that is, spacetime isometries, and
therefore they are called maximally symmetric spacetimes.

Apart from QFT on curved spacetime, current research related to AdS concerns mainly two
topics: Black Holes and String Theory. In classical General Relativity, Bizoń and Rostworowski
in [12] find evidence that pure AdS is unstable. That is, an initial AdS spacetime coupled to
a massless scalar field (with no-flux boundary condition on the timelike boundary) develops an
apparent horizon under arbitrarily small initial values of the scalar field. By contrast, Holzegel and
Smulevici in [39] find that Schwarzschild-AdS spacetimes (the black hole solutions of the Einstein
equation with negative cosmological constant in the vacuum) are asymptotically stable (that is,
small perturbations of Schwarzschild-AdS initial data evolute to black holes, with the metric on
the black hole exterior approaching a Schwarzschild-AdS spacetime for large times). Yagdjian and
Galstian in [77] investigate the limit of vanishing black hole mass in Schwarzschild-AdS spacetime
(that is: pure AdS), and find the solution of the Cauchy problem for the Klein-Gordon (KG) equation
(2−m2)φ(x) = f (x) with source term f (x). AdS has been one of the most studied spacetimes in String
Theory since the late 90’s. This was caused by the famous conjecture of Maldacena [44], about a
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correspondence between type IIB string theory on AdS5×S5 background and four-dimensional N = 4
Super Yang-Mills theory on this spacetime’s boundary ∂(AdS5×S5) = ∂AdS5 = R×S3. Further,
in [75] Witten argues that a version of this correspondence is related to the thermodynamics of AdS
black holes.

Despite AdS being such an object of interest, we found in the literature only the standard sym-
plectic structure for standard Klein-Gordon solutions (well defined and bounded on all of AdS). Its
time-independence is well known [7]. Some studies have been done of solutions that are not reg-
ular on all of space, e.g. [9]. These nonstandard solutions are well defined and bounded on (rod
respectively tube) hypercylinder regions, see Section 2.6.3. However, we have found no mention of
a symplectic structure for these nonstandard solutions in the literature. Neither have we found ad-
dressed the issues of isometry actions on the solutions, nor the isometry-invariance of the symplectic
structure(s). We close this gap by introducing a natural symplectic structure for the nonstandard
Klein-Gordon solutions, and showing the isometry invariance of both standard and new symplectic
structure. To this end we calculate the actions of isometries on the solutions, and as a byproduct
find some contiguous relations for hyperspherical harmonics and Jacobi polynomials. Moreover, we
compare our results to the corresponding cases for Klein-Gordon theory on Minkowski spacetime. We
find correspondences between the flat limit of AdS Killing vectors, field expansions and symplectic
structures and the respective Minkowski counterparts. In particular, we give the symplectic structure
for hypercylinder surfaces Σρ, which turns out to be independent of the radius ρ. The hypercylinder
regions and surfaces are of interest for the conjectured AdS/CFT correspondence, because the AdS
boundary is a hypercylinder surface, and its neighborhood is a tube region. Another byproduct is
the Wronskian for the involved hypergeometric functions.

In the following we give an overview of past results concerning Klein-Gordon theory on AdS. The
earliest publication on Quantum Theory on spacetimes with constant curvature that we found in
the literature dates back to 1935 and is by Dirac [28]. He studies scalar and electron wave equations
and Maxwell equations for deSitter dS1,3 and Anti-deSitter AdS1,3 spacetime but without giving
solutions. Next we mention an article by Fronsdal from 1965 [34]. Therein, he conjectures that ”a
physical theory in flat space is obtainable as the limit of a physical theory in a curved space”, with
limit being understood as that of zero curvature. In the spirit of this we compare (the limit of
large curvature radius, that is: zero curvature, of) our results for AdS Klein-Gordon theory with the
corresponding Minkowski results.

The earliest solution of the Klein-Gordon equation for AdS that we could spot is in the article [69]
by Limic, Niederle and Raczka from 1966. Although written with hypergeometric functions, their
solutions are what we call AdS-Jacobi modes. These modes have a discrete set of frequencies, dubbed
”magic frequencies” in [8]. In their next article [43] they also present one of the nonstandard hyperge-
ometric solutions, which we call hypergeometric Sa-modes. In [35] Fronsdal considers Klein-Gordon
theory on AdS1,3 and constructs wave functions using the Jacobi solutions found in [69]. Moreover,
he includes a beautiful section about the geometry of AdS and provides historical references. Avis,
Isham and Storey in [7] study Klein-Gordon theory on AdS1,3 as well, with another clarifying discus-
sion of AdS geometry. They introduce an ”inner product” that is actually the standard symplectic
structure for Klein-Gordon solutions on AdS. Although this symplectic structure is defined using an
equal-time surface Σt, it turns out to be time-independent. In order to set up a covariant canonical
quantization, the authors use both Jacobi and hypergeometric Sa-modes. Instead of using Cauchy
data on an equal-time surface, above (3.16) they also determine a solution on a (time-interval) region
by its field values at times t1 = 0 and t2 = ιπ. This method is applied often in the General Boundary
Formulation, see e.g. [55] and (12) in [22]. More about AdS geometry and its Penrose diagram can
be found in Sections V-VII of [68] by Podolsky and Griffiths, in the Chapter ”AdS” of Bengtsson’s
[10], in Section 2.2 of [2] by Aharony et al., and in [29].

In [13, 14] Breitenlohner and Freedman for AdS1,3 study the energy-momentum tensor and the
energy functional for a Klein-Gordon solution at fixed time t. They find that the energy is positive
only for the Jacobi solutions (which we denote by J (+)

nl (ρ) and J (−)
nl (ρ), and for the J (−)

nl (ρ) an ”improved”
version of the usual energy momentum tensor must be employed). In [46] their result is generalized
in a detailed presentation by Mezincescu and Townsend for AdS1,d of arbitrary spatial dimension
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d. We also mention the works [15] of Burgess and Lutken and [33] of Dullemond and van Beveren
about the Feynman propagator for scalar fields on AdS.

In Section 3.2 of [9] Balasubramanian, Kraus and Lawrence show how to find more types of Klein-
Gordon solutions on AdS. In particular, they distinguish solutions which depend on sin2 ρ from those
which depend on cos2 ρ (therein ρ ∈ [0, ιπ/2) is a compact version of a radial coordinate on AdS). We
make use of their idea, because the former characterizes solutions according to their behavior on
the time axis ρ ≡ 0 and the latter according to their behaviour near the timelike boundary of AdS
at ρ ≡ ιπ/2. Further, they give a list of Klein-Gordon solutions that is nearly complete (beware:
small typo in their equation (30)). This concludes our short overview of results about classical
Klein-Gordon theory on AdS.

For completeness, let us mention here also some works on quantized Klein-Gordon theory on
AdS that are closely related to the classical theory. In [37], Giddings proposes an S-matrix for
Klein-Gordon fields on AdS spacetime using canonical quantization. It is well known that in AdS
no temporally asymptotical free states exist, due to the periodic convergence of timelike geodesics.
Giddings suggests to avoid this problem by placing states on the timelike boundary of AdS. This
boundary is a hypercylinder, and its neighborhood is what we call a tube region. Giddings’ proposal
uses as classical ingredients not only the Jacobi modes, but also the hypergeometric Sa-modes, which
highlights the necessity for studying all classical solutions and not only those which are bounded on
all of space. We review Giddings’ work in Section 3.3.8 of the following Chapter about Quantized
Theories. Gary and Giddings in [36] investigate the relation between flat space S-matrix and the
AdS/CFT correspondence. In Section 3.1 therein they discuss the flat limit of AdS, where its
curvature radius RAdS tends towards infinity. We shall study the flat limit both for classical and
quantum objects.

Last but not least we mention the work of Dorn et al., who in Section 3 of [32] develop a quanti-
zation for particle dynamics for AdS1,d. They construct a Schrödinger wave function representation,
and obtain as energy eigenvalues what we call magic frequencies, a result which relates classical and
quantized theory rather nicely. Moreover, they construct a covariant quantization which is equivalent
to their Schrödinger representation.

2.6.2 Basic AdS geometry and flat limit

This section briefly summarizes the geometry of AdS, with some more details given in Appendix
C.1.1. We denote by AdS what is more precisely denoted as CAdS1,d, that is, (1+d)-dimensional
Anti-deSitter spacetime with Lorentzian signature in the universal covering version. AdS then has
the topology of R1+d and no closed timelike curves. Where not explicitly stated otherwise, we shall
only consider AdS with odd spatial dimension d ≥ 3.

We use global coordinates with the time coordinate t ∈ (−∞,+∞), a radial coordinate ρ ∈ [0, ιπ
2

),
and denote the (d−1) angular coordinates on Sd−1 collectively by Ω := (θ1, . . . ,θd−1). In contrast
to Minkowski spacetime, AdS at ρ = ιπ/2 has a timelike boundary, which we denote by ∂AdS. Its
topology is that of a hypercylinder: ∂AdS = R×Sd−1. With RAdS denoting the curvature radius of
AdS, its metric writes

ds2
AdS =

R2
AdS

cos2ρ

(
−dt2 + dρ2 + sin2ρ ds2

Sd−1

)
. (2.147)

For the precise form of coordinates and metric on the unit sphere Sd−1 see Appendix A.3. There is
also another version ρ̃ of the radial coordinate ρ, with both related through cos ρ = 1/ cosh ρ̃. This
ρ̃ ranges over [0,∞) and is the metric distance of the point (t, ρ̃,Ω) respectively (t, ρ(ρ̃),Ω) from the
time axis. For the limit of large curvature radius RAdS, we introduce the rescaled global coordinates

r := RAdS ρ r ∈ [0, ιπ
2 RAdS) (2.148)

τ := RAdS t τ ∈ (−∞,+∞) . (2.149)

Then, for large RAdS the AdS metric (2.147) approximates the Minkowski metric

ds2
AdS ≈ −dτ2 + dr2 + r2 ds2

Sd−1 = ds2
Mink . (2.150)
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Therefore the large-RAdS limit is also called flat limit. For more details about the flat limit of AdS
spacetime see Appendix C.1.1. The Laplace-Beltrami operator on AdS is given by

2AdS :=
1√
|g |

∂µ
»
|g |gµν∂ν

= R−2
AdS

ß
− cos2ρ ∂2

t + cos2ρ ∂2
ρ +

(d−1)

tan ρ
∂ρ + tan−2ρ2Sd−1

™
, (2.151)

and its flat limit is the Laplace-Beltrami on Minkowski spacetime. On AdS we have the following
Killing vector fields with latin lowercases in 1, . . . , d (see Appendix B.1.1 for the KAB notation with
A,B ∈ 0, 1, . . . , d, d+1, and see Appendix C.1.2 for the derivation of the Killing vectors):

Kd+1,0 = ∂t (2.152)

Kjk = ξj∂ξk − ξk∂ξj (2.153)

K0j = −ξj cos t sin ρ ∂t − ξj sin t cos ρ ∂ρ −
sin t

sin ρ

(
∂ξj − ξjξi ∂ξi

)
(2.154)

Kd+1,j = −ξj sin t sin ρ ∂t + ξj cos t cos ρ ∂ρ +
cos t

sin ρ

(
∂ξj − ξjξi ∂ξi

)
. (2.155)

Therein, the ξj are the constrained cartesian coordinates on the unit sphere Sd−1 with ξ2 = 1.
The Killing vectors are of three different types: only one translation Kd+1,0, plus d(d−1)/2 spatial
rotations Kjk, and (2d) boosts K0j and Kd+1,j . In total we thus have (d+1)(d+2)/2 Killing vectors
on AdS1,d, making it a maximally symmetric space(time). For comparison: in (1+d)-dimensional
Minkowski spacetime we have (d+1) translations, (d2−d)/2 rotations and d boosts, giving the same
total of (d+1)(d+2)/2 Killing vectors, which makes it a maximally symmetric spacetime as well.
The above Killing vectors are the generators of the isometry group SO (2, d) of AdS1,d, whose Lie
algebra so (2, d) writes as in (B.4):

[KAB, KCD] = −ηAC KBD + ηBC KAD − ηBDKAC + ηADKBC . (2.156)

Between the Killing vectors of AdS and Minkowski spacetime there exists a correspondence: we can
first switch to the coordinates τ = RAdSt and r = RAdSρ, and then take the flat limit RAdS → ∞.
This gives us

Kd+1,0 −→flat

lim. RAdS ∂τ (2.157)

Kjk −→flat

lim. ξj∂ξk − ξk∂ξj (2.158)

K0j −→flat

lim. − ξj r ∂τ − ξj τ ∂r −
τ

r

(
∂ξj − ξjξi ∂ξi

)
(2.159)

Kd+1,j −→flat

lim. RAdS

(
ξj ∂r +

1

r

(
∂ξj − ξjξi ∂ξi

))
. (2.160)

Comparing these to (B.7)-(B.10), the resulting AdS-Minkowski Killing vector correspondence is given
in Table 2.161.

AdS (flat limit) → X Minkowski X
X

R−1
AdSKd+1,0 → T0

R−1
AdSKd+1,j → T

j
XX
XX

Kjk → Kjk

K0j → K
0j
XX
XX

Table 2.161: Correspondence between Killing vectors on AdS and Minkowski
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The Killing vectors of Minkowski spacetime generate the Poincaré algebra (with greek lowercase
indices in 0, 1, . . . , d): the translations commute among themselves:

[Tµ, Tν ] = 0, (2.162)

and the boosts and rotations form the Lorentz algebra so (1, d) as in (B.4):

[Kαβ, Kµν ] = −ηαµKβν + ηβµKαν − ηβν Kαµ + ηαν Kβµ . (2.163)

The commutation relations between translations and the generators of the Lorentz algebra are:

[Tα,Kµν ] = ηαµTν − ηανTµ. (2.164)

The relations (2.164) and (2.163) are already contained in so (2, d) in (2.156) above, and thus are
not a result arising from the flat limit, but are rather conserved by it. By contrast, relation (2.162)
is not contained in so (2, d), and results from the flat limit by eliminating the t-dependence in
(2.155): for small t resp. large RAdS the first term is ∼ R−1

AdS, and in the second and third term
cos t = cos τ

RAdS
→ 1. This makes the flat limit of the Anti de Sitter algebra so (2, d) into the

Poincaré algebra2.

Regions of AdS

We recall three types of regions on AdS, on which different types of Klein-Gordon solutions are
allowed. The first type of region denoted by MAdS

[t1,t2] is the time-interval region and consists of a time

interval [t1, t2] times all of space. The second, denoted by MAdS
ρ0

, is the solid hypercylinder or rod
region, and consists of all of time times a solid ball Bρ0

of radius ρ0 in space. The third is denoted by
MAdS

[ρ1,ρ2] and called a pierced hypercylinder or tube region: it consists of all of time times a spherical
shell B[ρ1,ρ2] with inner radius ρ1 and outer radius ρ2 in space.

Two of these regions arise naturally as (infinitesimal or finite) neighborhoods of hypersurfaces
(submanifolds) of AdS. The time-interval region is a neighborhood of an equal-time hyperplane Σt0 ,
and the tube region is a neighborhood of an equal-radius hypercylinder Σρ0

(if the neighborhood is
chosen big enough, such that it extends inwards until the time axis ρ ≡ 0, then the tube becomes a
rod region). In particular, neighborhoods of the boundary hypercylinder ∂AdS = Σρ= ιπ/2 are tube
regions. We remark that the ”region” of all of AdS can be obtained in two ways: the first is the limit
t0 →∞ of the time-interval region MAdS

[−t0,+t0], and the second is the limit ρ0 → ιπ/2 of the rod region

MAdS
ρ0

.
Our three regions are generically not type-invariant under isometries. For example, after applying

an isometry, what previously was a rod region will not be a rod in the new coordinates, but some
deformed version of it. In particular, our three regions are only type-invariant under time translations
and spatial rotations, but not under boosts. The reason for this is that our choice of regions depends
on the coordinate system and is thus not geometric. However, this is not unusual: even the time-
interval regions of Minkowski spacetime depend on the choice of a coordinate system.

2.6.3 Klein-Gordon solutions on AdS

With m denoting the field’s mass, the action for a free, real scalar field φ(x) living in AdS is

S[φ] =

ˆ
d
d+1
x
»
|g | 1

2 [−gµν(∂µφ)(∂νφ)−m2φ2], (2.165)

and its Euler-Lagrange equation is the free Klein-Gordon equation

0 = (−2AdS +m2)φ. (2.166)

2We thank Alejandro Corichi (CCM-UNAM) for pointing us to study how the flat limit relates these algebras.
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Below we list the solutions which are well defined and bounded on the respective AdS regions. For a
review on how to find these solutions see Appendix C.2.2. On tube regions MAdS

[ρ1,ρ2] the form of some
solutions depends on whether the spatial dimension d is odd or even, and the form of other solutions
on whether the quantity ν is integer or not, with ν =

√
d2/4 +m2R2

AdS . However, the form of the
solutions on time-interval regions MAdS

[t1,t2] is always the same, ditto for the rod regions MAdS
ρ0

. Unless

stated otherwise we shall assume that d is odd and ν noninteger (see Appendix C.2.3 for the other
cases). The most general solutions of the Klein-Gordon equation on AdS are four types of modes
which we call hypergeometric a and b-modes of type S respectively C (quantities relating to the Sa

and Sb-modes carry superscripts S, e.g.: µ(S,a), while quantities relating to the C-modes carry a C,
e.g.: µ(C,a)):

µ(S,a)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Saωl(ρ) µ(C,a)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Caωl(ρ) (2.167)

µ(S,b)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Sbωl(ρ) µ(C,b)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Cbωl(ρ) .

Therein, Y mll (Ω) denote the hyperspherical harmonics, see Appendix A.4. With F (a, b; c; x) denoting
Gauss’s hypergeometric function, we use the radial functions

Saωl(ρ) = sinlρ cosm̃+ρ F (αS,a, βS,a; γS,a; sin2ρ) (2.168)

Sbωl(ρ) = −(sin ρ)2−l−dcosm̃+ρ F (αS,b, βS,b; γS,b; sin2ρ) (2.169)

Caωl(ρ) = sinlρ cosm̃+ρ F (αC,a, βC,a; γC,a; cos2ρ) (2.170)

Cbωl(ρ) = sinlρ cosm̃−ρ F (αC,b, βC,b; γC,b; cos2ρ). (2.171)

For the properties of these radial functions, see the next section. The above hypergeometric param-
eters are given by

αS,a = αC,a = 1
2 (l+‹m+−ω) αS,b = αS,a−γS,a+1 αC,b = αC,a−γC,a+1

βS,a = βC,a = 1
2 (l+‹m++ω) βS,b = βS,a−γS,a+1 βC,b = βC,a−γC,a+1 (2.172)

γS,a = l+ d
2 γC,a = 1+ν γS,b = 2− γS,a γC,b = 2− γC,a .

With m denoting the field’s mass, we further use‹m± = d
2 ± ν ν =

»
d2/4 +m2R2

AdS

m̃+>0
m̃−>0

∀ ν ≥ 0
∀ ν ∈ (0, d/2) .

The value of m2 for which ν vanishes is called Breitenlohner-Freedman mass m2
BF := −d2/(4R2

AdS).
Whenever the frequency ω is one of the discrete values that were dubbed magic frequencies in [8]:
ω±nl = 2n + l + ‹m± (nonnegative for ‹m± ≥ 0), then the Sa-modes take on a special form. The
hypergeometric function then can be written as a Jacobi polynomial, and therefore we call the two
discrete sets of modes below Jacobi modes:

µ(±)

nlml
(t, ρ,Ω) = µ(S,a)

ω±
nl
lml

(t, ρ,Ω) = e−iω±
nl
t Y mll (Ω) J (±)

nl (ρ) . (2.173)

We call µ(+)

nlml
(t, ρ,Ω) ordinary and µ(−)

nlml
(t, ρ,Ω) exceptional Jacobi modes. Moreover, we call µ(±)

nlml
(t, ρ,Ω)

the positive frequency modes, and the negative frequency modes are µ(±)

nlml
(t, ρ,Ω). The exceptional

AdS-Jacobi modes are only well defined for ν ∈ (0, 1), and for this case ‹m− > 0. By P
(a,b)
n (x) we

denote the Jacobi polynomials, by (a)n the Pochhammer symbols, and with that we write

J (±)
nl (ρ) := n!

(l+d/2)n
sinlρ cosm̃+ρ P (l+d/2−1,±ν)

n (cos 2ρ). (2.174)

We sketch how to find all these modes in Appendix C.2.2. In Appendix C.2.3 we give a complete list
of solutions including the complementary cases of even d and integer ν. The Jacobi modes usually are
the only modes used in the literature, e.g. [14], [46], [7] and [15]. The earliest mention of the Jacobi
modes that we could spot is equation (4.8) of the first article [69] by Limic, Niederle and Raczka.
The correspondence to our notation is given by Hq

p = AdS1,d for (q, p) = (2, d), with AdS coordinates
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ϕ̃1 = t and θ = ρ̃ and thus tanh θ = sin ρ while cosh θ = 1/ cos ρ. The parameters are m̃1 =−ω,
with L =−m̃± and λ =−m2R2

AdS. Then, their relation (4.5) corresponds to our magic frequencies.
The first mention of the Sa-modes we found in equation (2.5) of [43]. The correspondence to our
notation is the same as above plus Λ2 = λ − (d2/4), that is, −Λ2 = ν2. The authors of [14], [46]
and [7] mention both Sa and Sb-modes but then discard the latter, and use only the special case of
Jacobi modes of the Sa-modes. Giddings in [37] then actually makes use of all Sa-modes. The first
appearance of the Ca,b-modes we found in [9], wherein the Sb-modes are discarded once more.

Dorn et al. in Section 3 of [32] find another physical meaning of the magic frequencies. Con-
structing a Schrödinger wave function representation for particle dynamics for AdS1,d, they obtain
as energy eigenvalues precisely the magic frequencies: ω±nl = E±0 + 2n+ l with ground state energy

E±0 = m̃± = d/2 ±
√
d2/4 +m2R2

AdS . To see this, note that their N is our d, their M2 our m2,
and combine their expressions (3.13), (4.3) and ã = (N−1)/4N below (4.13).

Properties of the AdS Klein-Gordon solutions

The Sa and Sb-modes form one pair of linear independent solutions, and the Ca and Cb-modes form
another. They are related through (”on” stands for odd-noninteger):Ñ

Saωl

Sbωl

é
= M on

ωl

Ñ
Caωl

Cbωl

é
, (2.175)

see Appendix C.2.4 for the elements of the matrix M on

ωl . The hypergeometric Sa-modes (except for
the magic frequencies) and Sb-modes and the Cb-modes are evanescent modes: when approaching
the boundary ρ = ιπ

2 they grow exponentially with metric distance ρ̃ from the time axis. (This
holds for m̃− < 0, that is, positive mass square m2. For m̃− = 0 their value for large ρ̃ becomes
some finite constant, and for m̃− > 0 they decay exponentially with ρ̃). The Ca-modes are also
evanescent: they decay exponentially with ρ̃ when approaching the boundary. On the time axis
ρ ≡ 0 ≡ ρ̃ the Sa-modes are regular, like the Bessel modes on Minkowski spacetime. However,
the Ca and Cb-modes and Sb-modes are singular there: they behave like ρ̃−l−(d−2), that is, inverse
power of metric distance, like the Neumann modes on Minkowski spacetime. (For a discussion of
the question why we need to consider all classical solutions, see Section 2.3.) The Sa and Sb-modes
and the Ca and Cb-modes provide us two different parametrizations of Klein-Gordon solutions. The
Sa and Sb-modes parametrize solutions according to their behaviour near the time axis ρ ≡ 0, on
which the former are regular and the latter diverge. The Ca and Cb-modes parametrize solutions
according to their behaviour near the timelike boundary of AdS at ρ ≡ ιπ/2, on which the former are
regular and the latter diverge.

The Jacobi modes are well defined and bounded both on time axis and boundary. Thus they are
the only modes that are L2-normalizable on an equal-time surface. For later use, in Appendix C.2.5
we calculate the following normalization constant for all ν ≥ 0 (that is: all masses m2 ≥ m2

BF above
the Breitenlohner-Freedman mass):

N±nl :=

ιπ/2ˆ

0

dρ tand−1ρ
(
J (±)
nl (ρ)

)2
=

n! Γ(γS)2 Γ(n±ν+1)

2ω±nl Γ(n+γS) Γ(n±ν+γS)
. (2.176)

Radial behaviour of the AdS Klein-Gordon solutions

In this section we have a closer look at the behaviour of the radial solutions Sa,bωl (ρ) and Ca,bωl (ρ) in
(2.168), always for the case of odd spatial dimension d ≥ 3 and noninteger ν. On the time axis ρ = 0
both cos ρ and the hypergeometric functions with the sin2ρ-argument take the value 1, while sin ρ
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itself vanishes. Thus

Saωl(ρ→ 0) ≈ ρl ≈

1 l = 0

0 l ≥ 1

(2.177)

Sbωl(ρ→ 0) ≈ −(ρ)−(l+d−2) . (2.178)

That is, Saωl is regular on the time axis while Sbωl diverges there for d ≥ 3. Since according to (C.58)
Caωl and Cbωl are linear combinations of Saωl and Sbωl, the former generically diverge on the time axis.
The only exceptions occur for the magic frequencies: for ω+

nl the function Caωl becomes regular on
the time axis, while Cbωl becomes regular there for ω−nl (because for these frequencies they become
Jacobi polynomials see also Appendix C.2.4).

Near spatial infinity ρ = ιπ/2 both sin ρ and the hypergeometric functions with cos2ρ-argument
take the value 1, while cos ρ vanishes. Since cos ρ = sin( ιπ/2−ρ) we have

Caωl(ρ→ ιπ/2) ≈ cosm̃+ρ ≈ ( ιπ/2−ρ)m̃+ (2.179)

Cbωl(ρ→ ιπ/2) ≈ cosm̃−ρ ≈ ( ιπ/2−ρ)m̃− . (2.180)

That is, Caωl remains regular while approaching spatial infinity. Cbωl remains finite only for non-
negative m̃−, that is for m2 ≤ 0, else it diverges. As linear combinations of Caωl and Cbωl, gener-
ically Saωl and Sbωl diverge near spatial infinity unless m2 ≤ 0. Exceptions are the frequencies
±ω = −(l+d−2) + m̃+ + 2n with n ∈ N0, for which Sbωl remains finite, and the magic frequencies
ω+

nl, for which Saωl remains finite (because it becomes a Jacobi polynomial, see again C.2.4).
The behaviour of the radial functions for the generic cases is sketched in Figure 2.181.

Figure 2.181: Typical behaviour of the radial functions for spatial dimension d = 3 and m2 = R2
AdS =

1: J+ = −8 J (+)

3,1(ρ), Sa = 1.5Sa4,1(ρ), Sb = −0.02Sb4,3(ρ), Ca = −1.5Ca4,1(ρ), Cb = −0.01Cb4,4(ρ).

We conclude this section by taking a look at the Jacobi solutions (C.57):

J (+)

nl (ρ) := n!
(γS)n

sinlρ cosm̃+ρP (γS−1,+ν)
n (cos 2ρ) for ω = ±ω+

nl

J (−)
nl (ρ) := n!

(γS)n
sinlρ cosm̃−ρP (γS−1,−ν)

n (cos 2ρ) for ω = ±ω−nl .

At the boundary ρ→ ιπ/2 we have sin ρ→ 1, and cos 2ρ→−1. According to AS [22.3.1]

P (α,β)
n (x) = 2−n

n∑
k=0

(
n+α
k

)(
n+β
n−k
)

(x−1)n−k (x+1)k,
(
a
b

)
=

Γ(a+1)
Γ(b+1) Γ(a−b+1)

, (2.182)

and thus for x→−1 the Jacobi polynomials approach the finite value

P (α,β)
n (x→−1) → (−1)n

Γ(n+β+1)

n! Γ(β+1)
,
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because only the (k = 0)-term in the sum (2.182) survives. Hence near the boundary the Jacobi
solutions J (±)

nl (ρ) behave like cosm̃±ρ:

J (+)

nl (ρ→ ιπ/2) ≈ cosm̃+ρ
(−1)n Γ(n+ν+1)

(γS)n Γ(1+ν)
for ω = ±ω+

nl

J (−)
nl (ρ→ ιπ/2) ≈ cosm̃−ρ

(−1)n Γ(n−ν+1)

(γS)n Γ(1−ν)
for ω = ±ω−nl .

(2.183)

Since ‹m+ > 0, the ordinary Jacobi solutions J (+)

nl (ρ→ ιπ/2) remain regular at the boundary. And since
we can only make use of the exceptional Jacobi solutions J (−)

nl (ρ) for ν < 1, which with d ≥ 3 lets‹m− > 0, we see that J (−)
nl (ρ→ ιπ/2) remains regular at the boundary, too. In Figure 2.184 we plot

the radial functions Saωl(ρ) and Sbωl(ρ). We see that at the time axis ρ = 0 the former is regular and
the latter diverges. At the boundary ρ = ιπ

2 both diverge except for a discrete set of frequencies.
For Saωl(ρ), these are the magic frequencies ±ω−nl from (C.44). For Sbωl(ρ) they are the frequencies
that make (M on

ωl)22 vanish in (C.58), that is, those that make αS,b or βS,b take nonpositive integer
values.

(a) Saωl(ρ) (b) Sbωl(ρ)

Figure 2.184: 3D plots of radial S-functions for l = 0, d = 3, m = RAdS = 1, m̃+ ≈ 3.3

The same thing (but on the time axis) happens for the radial C-functions, which we plot in 2.185.
We see that at the boundary ρ = ιπ

2 the function Caωl(ρ) is regular and Cbωl(ρ) diverges. At the time
axis ρ = 0 both diverge except for a discrete set of frequencies. For Caωl(ρ), these are again the magic
frequencies ±ω−nl from (C.44), while for Cbωl(ρ) they are the frequencies that make (Mno

ωl)22 vanish in
(C.58), that is, those that make (1− αS,b) or (1− βS,b) take nonpositive integer values.
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(a) Caωl(ρ) (b) Cbωl(ρ)

Figure 2.185: 3D plots of radial C-functions for l = 0, d = 3, m = RAdS = 1, m̃+ ≈ 3.3

2.6.4 Rod and tube: Solutions and structures

For the tube region MAdS

[ρ1,ρ2] = R×[ρ1, ρ2]×Sd−1, that is: the cartesian product of all of time and
a spherical shell, we need Klein-Gordon solutions that are bounded for all of time while in space
we only need them bounded on [ρ1, ρ2]. Thus we can use all four hypergeometric modes here, with
the frequency ω being real. We expand an arbitrary complex(ified) Klein-Gordon solution (see e.g.
Section 2.3 in [58]) on the tube region as an integral over these modes, where we call the upper line
S-expansion and the lower line C-expansion:

φ(t, r,Ω) =
ˆ

dω
∑
l,ml

{
φS,aωlml µ

(S,a)

ωlml
(t, ρ,Ω) + φbωlml µ

(S,b)

ωlml
(t, ρ,Ω)

}
(2.186)

=
ˆ

dω
∑
l,ml

{
φC,aωlml

µ(C,a)

ωlml
(t, ρ,Ω) + φC,bωlml

µ(C,b)

ωlml
(t, ρ,Ω)

}
. (2.187)

If and only if φS,aωlml = φS,a−ω,l,−ml and the same for φS,bωlml (respectively for φC,aωlml
and φC,bωlml

), then the

solution φ(t, ρ,Ω) is real. Since (2.186) = (2.187), with (C.58) we have the following relation between
the S and C-momentum representations of the Klein-Gordon solutions:Ñ

φS,aωlml

φS,bωlml

é
= (Mno

ωl )
>

Ñ
φC,aωlml

φC,bωlml

é Ñ
φC,aωlml

φC,bωlml

é
= (Mon

ωl )
>

Ñ
φS,aωlml

φS,bωlml

é
. (2.188)

Therein, > denotes the transposed matrix. We can also use the modified momentum representation
(φ̃F,a
ω̃lml

, φ̃F,b
ω̃lml

), (where the label F stands for flat) in the S-expansion:

φS,aωlml = R−1
AdSφ̃

F,a
ω̃lml

p̃Rω̃
(4 ιπ)

(pRω)l

(2l+d−2)!!

φS,bωlml = R−1
AdSφ̃

F,b
ω̃lml

p̃Rω̃
(4 ιπ)

(2l+d−4)!!

(pRω)(l+1)
.

(2.189)
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Then, the flat limit of the S-expansion for d = 3 yields the Minkowski tube expansion (2.107), see
Appendix C.2.8:

φ(t, r,Ω) −→flat

lim.

ˆ
dω̃
∑
l,ml

p̃Rω̃
4 ιπ

{
φ̃F,a
ω̃lml

e−iω̃τY mll (Ω) ̌ω̃l(r) + φ̃F,b
ω̃lml

e−iω̃τY mll (Ω) ňω̃l(r)
}
. (2.190)

For the rod region MAdS
ρ0

= R×[0, ρ0]×Sd−1, that is: the cartesian product of all of time and a
solid ball, we need Klein-Gordon solutions that are bounded for all of time while in space we only
need them bounded on [0, ρ0]. Therefore, the hypergeometric Sa-modes (2.167) alone span the
space of Klein-Gordon solutions for the rod region. We expand any Klein-Gordon solution on the
rod region as an integral over these modes, which we call rod expansion (again, φ(t, ρ,Ω) is real iff

φS,aωlml = φS,a−ω,l,−ml)

φ(t, r,Ω) =
ˆ

dω
∑
l,ml

φS,aωlml µ
(S,a)

ωlml
(t, ρ,Ω) . (2.191)

Knowing the expansions of the solutions, we can evaluate structures on the spaces of solutions. As
on Minkowski spacetime, our hypercylinders Σρ are oriented inwards, hence sign Σρ = −1. We use
the rescaled coordinates of Appendix C.1.1

r := RAdS ρ r ∈ [0, ιπ
2 RAdS) (2.192)

τ := RAdS t τ ∈ (−∞,+∞)

and parameters

ω̃ := ω/RAdS ω̃ ∈ (−∞,+∞)

pRω :=
»
|ω2−m2R2

AdS | pRω, p̃
R
ω̃
∈ [0,∞) (2.193)

p̃Rω̃ :=
»
|ω̃2−m2 | pRω = RAdS p̃

R
ω̃ .

The symplectic potential from (2.54) turns out as (with d
d−1

Ω = dΩ
√
|gSd−1 | )

θ
Σρ
φ (η)= −

ˆ
dtd

d−1
Ω Rd−1

AdS tand−1ρ η(t, ρ,Ω) (∂ρ φ)(t, ρ,Ω)

=−2 ιπRd−1
AdS tand−1ρ

ˆ
dω
∑
l,ml

{
φS,aωlml η

S,a
−ω,l,−ml (Saωlml∂ρS

a
ωlml

)(ρ) + φaS,ωlml
ηS,b−ω,l,−ml (Sbωlml∂ρS

a
ωlml

)(ρ)

+ φS,bωlml η
S,a
−ω,l,−ml (Saωlml∂ρS

b
ωlml

)(ρ) + φS,bωlml η
S,b
−ω,l,−ml (Sbωlml∂ρS

b
ωlml

)(ρ)

}
=−2 ιπRd−1

AdS tand−1ρ

ˆ
dω
∑
l,ml

{
φC,aωlml

ηC,a−ω,l,−ml (Caωlml∂ρC
a
ωlml

)(ρ) + φC,aωlml
ηC,b−ω,l,−ml (Cbωlml∂ρC

a
ωlml

)(ρ)

+ φC,bωlml
ηC,a−ω,l,−ml (Caωlml∂ρC

b
ωlml

)(ρ) + φC,bωlml
ηC,b−ω,l,−ml (Cbωlml∂ρC

b
ωlml

)(ρ)

}
.

The symplectic structure (2.55) becomes

ωρ(η, ζ) =
1

2

ˆ
dtd

d−1
Ω Rd−1

AdS tand−1ρ
(
η ∂ρζ − ζ ∂ρη

)
(2.194)

= + ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηS,aωlml ζ

S,b
−ω,l,−ml − η

S,b
ωlml

ζS,a−ω,l,−ml

}
(2l+d−2) (2.195)

= + ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηC,aωlml

ζC,b−ω,l,−ml − η
C,b
ωlml

ζC,a−ω,l,−ml

}
(2ν) . (2.196)
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We can read off that the Sa and Sb-modes form Lagrangian subspaces of the space of Klein-Gordon
solutions on the AdS tube region. The Ca and Cb-modes form a different pair of Lagrangian sub-
spaces. In both cases, the full space of Klein-Gordon solutions on the tube region is the direct
sum of the Lagrangian (a)-subspace and the Lagrangian (b)-subspace. This holds for the real and
complexified version of the solution space.

This will be important in Section 2.6.8, where we consider initial/boundary data: there, one
subspace is related to the field values and the other one to the field derivatives/momenta. Moreover,
Lagrangian subspaces corresponding to field values and momenta play an important role in the
Schrödinger representation, see e.g. [61].

Recalling that the Klein-Gordon solutions on the rod region are purely Sa-modes, the symplectic
structure associated to the boundary of any rod region vanishes. And further, since the AdS-Jacobi
modes (the only allowed modes for time-interval regions) are merely special cases of the Sa-modes,
the symplectic structure returns zero for any two such modes.

Next we calculate the flat limit of the symplectic structure in two different ways shown in the
diagram below. Top left we have the symplectic structure ωAdS

ρ on an AdS hypercylinder evaluated for
two Klein-Gordon solutions η, ζ in its neighborhood. Bottom right we have the symplectic structure
ωAdS
r on a Minkowski hypercylinder evaluated for two Klein-Gordon solutions ηM, ζM on Minkowski

spacetime, which are the flat limits of the AdS solutions η, ζ.

ωAdS

ρ (η, ζ)

ωMink

r (ηM, ζM)

w

cont. flat lim.

u

´
dt u

´
dτ

w

cont. flat lim.

(2.197)

The first way is starting with (2.194), writing the solutions η and ζ as their S-expansions (2.186).
Then, for d = 3, the flat limit is taken using the flat S-representation (C.94) and the flat limits
(C.87):ˆ

dt tand−1ρ →
ˆ

dτ

RAdS

rd−1

Rd−1
AdS

ˆ
dω → RAdS

ˆ
dω̃ (2.198)

φS,aωlml → R−1
AdSφ̃

F,a
ω̃lml

p̃Rω̃
(4 ιπ)

(pRω)l

(2l+d−2)!!
φS,bωlml → R−1

AdSφ̃
F,b
ω̃lml

p̃Rω̃
(4 ιπ)

(2l+d−4)!!

(pRω)l+d−2

(pRω)l

(2l+d−2)!! S
a
ωl(ρ) → ̌ω̃l(r)

(2l+d−4)!!
(pRω)l+d−2

Sbωl(ρ) → ňω̃l(r)

Only after that we integrate over the coordinates τ and Ω. This step is represented by
´

dτ in the
diagram and results in the symplectic structure (2.116) of the Minkowski hypercylinder:

ωρ(η, ζ) −→flat

lim. −→d=3

ˆ
dω̃
∑
l,ml

p̃Rω̃
16 ιπ

{
η̃F,a
ω̃lml

ζ̃F,b
−ω̃,l,−ml − η̃

F,b
ω̃lml

ζ̃F,a
−ω̃,l,−ml

}
. (2.199)

As a consistency check, we now want to verify that going the other way in the diagram gives the
same result. That is, after writing again the solutions η and ζ as their S-expansions we now first
integrate over coordinates t and Ω, which is represented by the shorthand

´
dt in the diagram and

results in (2.195). Preparing the flat limit of this integral, from (2.198) we get

ηS,aωlmlζ
S,b
−ω,l ,−ml → η̃F,a

ω̃lml
ζ̃F,b
−ω̃,l,−ml

(p̃Rω̃)4−d R−dAdS

(4 ιπ)2 (2l+d−2)
, (2.200)

and plugging it into (2.195) reproduces (2.199) already before applying the flat limit, which thus is
trivial. Hence the above diagram indeed commutes, confirming that our flat limit of the symplectic
structure is self-consistent.

Since for the hypercylinder surfaces there is no standard complex structure, at this point we can
only consider symplectic potential and structure. In Sections 3.3.2-3.3.4 we continue from this point
on, and construct complex structures for the hypercylinder. After this, in Section 3.3.5 consider the
induced real g-products.
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2.6.5 Time-interval: Solutions and structures

For the time-interval region MAdS

[t1,t2] = [t1, t2]×[0, ιπ/2)×Sd−1, that is: time-interval times all of space,
we need Klein-Gordon solutions that are bounded on all of space. Thus we can only use Jacobi modes
here, and expand any complex Klein-Gordon solution on the time-interval region as a sum of ordinary
Jacobi modes, calling it (ordinary) Jacobi expansion:

φ(t, ρ,Ω) =
∑
nlml

{
φ+
nlml

µ(+)

nlml
(t, ρ,Ω) + φ−nlml µ

(+)

nlml
(t, ρ,Ω)

}
. (2.201)

Only for ν ∈ (0, 1) we can equivalently expand any solution using the exceptional AdS-Jacobi modes
defined in (2.173), see e.g. (3.22) in [46]. Since these behave like the ordinary ones, we do not study
them in this work. φ+

nlml
determines the positive frequency part of the Klein-Gordon solution, and

φ−nlml the negative frequency part. If and only if φ+
nlml

= φ−nlml then the solution φ(t, ρ,Ω) is real.
The ordinary Jacobi modes are propagating modes, well defined on the whole spacetime. Since the
Jacobi modes are special cases of the Sa-modes, the space of Klein-Gordon solutions on time-interval
regions is contained in the spaces of Klein-Gordon solutions on tube and rod regions as a subspace.
Again, we can use a modified momentum representation φ̃F,±

p̃lml
:

φ±nlml = φ±
ω+
nl
lml

= φ̃F,±
p̃lml

4ω̃p̃√
2 ιπ

(pRω)l

(2l+d−2)!!
(2.202)

Then, in the flat limit for d = 3 the ordinary Jacobi expansion becomes the Minkowski time-interval
expansion (2.90), see Appendix C.2.8:

φ(t, r,Ω) −→flat

lim.

∞̂

0

dp̃
∑
l,ml

2p̃ (2 ιπ)−1/2 jl(p̃r)
{
φ̃F,+
p̃lml

e−iω̃p̃τ Y mll (Ω) + φ̃F,−
p̃lml

eiω̃p̃τ Y mll (Ω)

}
. (2.203)

The expansion of the solution enables us to evaluate the structures on the space of solutions. As
on Minkowski spacetime, our equal-time hypersurfaces are oriented pastwards, hence sign Σt = −1.
Using the expansion (2.201) in ordinary Jacobi modes, the symplectic potential for the equal-time

plane is given by (with d
d−1

Ω = dΩ
√
|gSd−1 | )

θΣt
φ (η) =

ιπ/2ˆ

0

dρ

ˆ

Sd−1

d
d−1

Ω Rd−1
AdS tand−1ρ η(t, ρ,Ω) (∂t φ)(t, ρ,Ω) (2.204)

= +i
∑
nlml

ω+

nlR
d−1
AdSN+

nl

{
−φ+

nlml
η+
n,l,−mle

−2iω+
nl
t + φ−nlml η

+
nlml

(2.205)

+ φ−nlml η
−
n,l,−mle

+2iω+
nl
t − φ+

nlml
η−nlml .

}
For the expansion in exceptional Jacobi modes, we get the same expression up to replacing normal-
ization constants and magic frequencies:

N+
nl → N−nl ω+

nl → ω−nl . (2.206)

For the other structures we will simply write the expressions for both expansions in one equation
using the label ”±”, with ”+” referring to the ordinary and ”−” to the exceptional modes expansion.
Again we use the rescaled quantities of Appendix C.1.1:

r := RAdS ρ r ∈ [0, ιπ
2 RAdS)

τ := RAdS t τ ∈ (−∞,+∞) (2.207)

ω̃ := ω/RAdS ω̃p̃ =
√
p̃2 +m2 .
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The symplectic structure (2.55) becomes

ωt(η, ζ) = − 1

2

ιπ/2ˆ

0

dρ

ˆ

Sd−1

d
d−1

Ω Rd−1
AdS tand−1ρ

(
η ∂tζ − ζ ∂tη

)
(t, ρ,Ω) (2.208)

= +i
∑
nlml

ω±nlR
d−1
AdSN±nl

ß
η−nlml ζ

+
nlml

− η+
nlml

ζ−nlml

™
. (2.209)

The first line is the coordinate representation of the symplectic structure, the second the momentum
representation. From this result we can read off that the positive and negative frequency modes form
Lagrangian subspaces of the complexified space of Klein-Gordon solutions on the AdS time-interval
region, see definition (2.43). The full space of Klein-Gordon solutions on the time-interval region
is the direct sum of both subspaces. For real solutions η, ζ (thus η+

nlml
= η−nlml , ditto for ζ) the

symplectic structure gives real values.
Next we calculate the flat limit of the symplectic structure. This can be done in two ways which

are shown in the diagram below. In its top left corner we have the symplectic structure ωAdS
t on

an AdS equal-time hypersurface evaluated for two Klein-Gordon solutions η, ζ in its neighborhood.
In its bottom right corner we have the symplectic structure ωAdS

τ on a Minkowski equal-time plane
evaluated for two Klein-Gordon solutions ηM, ζM on Minkowski spacetime, which are the flat limits
of the AdS solutions η, ζ.

ωAdS

t (η, ζ)

ωMink

τ (ηM, ζM)

w

disc. flat lim.

u

´
dρ u

´
dr

w

disc. flat lim.

The first way is starting with (2.208), writing the solutions η and ζ as their Jacobi expansions (2.201).
Then, for d = 3, the flat limit is taken using results from Appendix C.2.8, and only after that we
integrate over the coordinates r and Ω using (2.87). This step is represented by the shorthand

´
dr

in the diagram. This calculation is straightforward and for d = 3 results in the symplectic structure
(2.96) of the Minkowski equal-time plane:

ωt(η, ζ) −→flat

lim. + i

∞̂

0

dp̃
∑
l,ml

ω̃p̃

{
η̃F,−
p̃lml

ζ̃F,+
p̃lml
− η̃F,+

p̃lml
ζ̃F,−
p̃lml

}
. (2.210)

As a consistency check, we now want to verify that going the other way in the diagram gives the
same result. That is, after writing again the solutions η and ζ as their Jacobi expansions we now
first integrate over coordinates ρ and Ω using (C.67). This step is represented by the shorthand

´
dρ

in the diagram and results in (2.209). Now we need to take the flat limit of this sum: using results
from Appendix C.2.8, we obtain for d = 3

ωt(η, ζ) −→flat

lim. = +i

∞̂

0

dp̃
∑
l,ml

ω±nlN
±
nl

4
ιπ

(pRω)2l+1

((2l+d−2)!!)2 ω̃p̃

ß
η̃F,−
p̃lml

ζ̃F,+
p̃lml
− η̃F,+

p̃lml
ζ̃F,−
p̃lml

™
.

In order to make this coincide with (2.210), it remains to show that the flat limit of ω±nlN
±
nl

4
ιπ (pRω)2l+1/((2l+

d−2)!!)2 is 1. This can be done as in the calculation following (C.446), using that for odd k we have

k!! = Γ( k
2

+1) 2
k+1
2 /
√
ιπ and from ω+

nl := m̃+ +2n+ l replacing n by 1
2 (ω+

nl−m̃+− l). Thus the above
diagram indeed commutes, confirming that our flat limit of the symplectic structure is self-consistent.

The calculation of the flat limit of the symplectic structure indicates that as a shorthand we can
take the flat limit of the momentum representation of the symplectic structure and related structures
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by substituting

∑
nlml

ω±nlR
d−1
AdSN±nl →

∞̂

0

dp̃
∑
l,ml

ω̃p̃ t → τ (2.211)

φ±nlml → φ̃F,±
p̃lml

ω+

nl → ω̃p̃ .

For the AdS hypercylinders we can use the same standard complex structure as for the Minkowski
hypercylinder (for both ordinary and exceptional modes):(

Jt φ
)±
nlml

= −iφ±nlml . (2.212)

Hence the real g-product is given by

gt(η, ζ) = 2ωt(η, JΣtζ)

=
∑
nlml

2ω±nlR
d−1
AdSN±nl

ß
η−nlml ζ

+
nlml

+ η+
nlml

ζ−nlml

™
, (2.213)

For d = 3, its flat limit (for the ordinary Jacobi expansion) is the real g-product on the Minkowski
equal-time plane:

gt(η, ζ) −→flat

lim. +

∞̂

0

dp̃
∑
l,ml

2ω̃p̃

{
η̃F,−
p̃lml

ζ̃F,+
p̃lml

+ η̃F,+
p̃lml

ζ̃F,−
p̃lml

}
.

For real fields η, ζ the real g-product gt(η, ζ) gives real values. Moreover, for real fields φ 6= 0 we
have gt(φ, φ) > 0, that is, the real g-product is positive-definite. The complex inner product then
becomes

{η, ζ} Σt = gt(η, ζ) + 2iωt(η, ζ)

=
∑
nlml

4ω±nlR
d−1
AdSN±nl

ß
η+
nlml

ζ−nlml

™
, (2.214)

Again, for d = 3 its flat limit (for the ordinary Jacobi expansion) is the inner product of the Minkowski
equal-time plane:

{η, ζ} Σt −→flat

lim. +

∞̂

0

dp̃
∑
l,ml

4ω̃p̃

{
η̃F,+
p̃lml

ζ̃F,−
p̃lml

}
.

2.6.6 Isometry actions on Klein-Gordon solutions

In this section we consider the action of the isometry group SO (2, d) of AdS1,d. Uppercase Latin
indices range as A = 0, 1, ..., d, (d+1), and lowercase Latin indices as k = 1, ..., d. The generators of
the Lie algebra so (2, d) are the Killing vectors KAB of Section 2.6.2: KAB =

(
XA ∂B − XB ∂A

)
.

This choice is the same as in (4.18) in [26] up to an overall sign. The (representations of) finite group
elements are denoted by g. The Lie algebra so (2, d) is determined by the same Lie bracket (B.4),
which coincides with (4.21) in [26] up to an overall sign:

[KAB, KCD] = −ηAC KBD + ηBC KAD − ηBDKAC + ηADKBC . (2.215)

For the various combinations of time translation, rotations and boosts this Lie bracket writes as

[Kd+1,0, Kjk] =0 [K0j, K0k] =η00Kkj [K0q, Kjk] =ηjqK0k−ηkqK0j (2.216)

[Kd+1,j, Kd+1,k] =ηd+1,d+1Kkj [Kd+1,0, K0k] =η00Kd+1,k [Kd+1,q, Kjk] =ηjqKd+1,k−ηkqKd+1,j

[Kd+1,k, Kd+1,0] =ηd+1,d+1K0k [K0k, Kd+1,j] =ηjkKd+1,0 [Kjk, Kpq] =ηkpKjq−ηjpKkq

+ηjqKkp−ηkqKjp.
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On solution space, we denote the (infinitesimal) action of a generator KAB respectively of a (finite)
group element k on a field φ(x) by KAB . φ respectively k . φ. Requiring the transformed field
at transformed coordinates to agree with the original field at original coordinates, we get for the
transformed field at the original coordinates:

(k .φ)(x) = φ(k−1x),
(
KAB .φ

)
(x) = (−KABφ)(x). (2.217)

Therein, KABφmeans letting the generator (Killing vector) act as differential operator on the solution
(function) φ(x). In the following sections we calculate these actions for the time translation, rotations
and boosts for Klein-Gordon solutions on the time-interval and tube regions. Our goal will always
be to transcribe the action from the coordinate representation to the momentum representation. We

thus start from a field expansion over modes µ(S,a/S,b)

ωlml
(x) of momentum (ω, l,ml) wherein φ

S,a/S,b
ωlml

are the momentum representation of the Klein-Gordon solution. (The corresponding constructions
for the (C, a)-modes and (C, b)-modes are done after the S-modes in the same way.) What we want

to find is an explicit expression for the momentum representations (k . φ)a,bωlml of the transformed

solution, such that we can directly write the transformed solution (k.φ)(x) in the original coordinates
as in:

(k .φ)(x) =
ˆ

dω
∑
l,ml

{
(k .φ)aωlml µ

(a)

ωlml
(x) + (k .φ)bωlml µ

(b)

ωlml
(x)

}
. (2.218)

Action of time translations on Klein-Gordon solutions

Infinitesimal time translations arise nicely from the finite ones, thus we only deal with the latter
here. Denoting finite time translations by k∆t : t → t + ∆t, its action on the hypergeometric
modes is(

k∆t .µ
(a)

ωlml

)
(t, ρ,Ω) = eiω∆t µ(a)

ωlml
(t, ρ,Ω)

(
k∆t .µ

(b)

ωlml

)
(t, ρ,Ω) = eiω∆t µ(b)

ωlml
(t, ρ,Ω) , (2.219)

and the action on the Jacobi modes as a special case of Sa-modes is the same:(
k∆t .µ

(+)

nlml

)
(t, ρ,Ω) = eiω+

nl
∆t µ(+)

nlml
(t, ρ,Ω)

(
k∆t .µ

(+)

nlml

)
(t, ρ,Ω) = e−iω+

nl
∆t µ(+)

nlml
(t, ρ,Ω) . (2.220)

Applying these to the tube expansion (2.186) respectively time-interval expansion (2.201), we can
read off (

k∆t .φ
)a
ωlml

= eiω∆t φaωlml
(
k∆t .φ

)b
ωlml

= eiω∆t φbωlml (2.221)(
k∆t .φ

)+
nlml

= eiω+
nl

∆t φ+
nlml

(
k∆t .φ

)−
nlml

= e−iω+
nl

∆t φ−nlml . (2.222)

Action of rotations on Klein-Gordon solutions

Let R̂(α) denote a finite rotation, with α denoting the rotation angles. We recall that rotated
spherical harmonics are a linear combination of unrotated ones, with elements of Wigner’s D-matrix
as coefficients:

Y
ml
(l,̃l)

(R̂(α)Ω)=
∑
l̃
′
,m′

l

Y
m′
l

(l,̃l
′
)
(Ω)

(
Dl

l̃,̃l
′ (α)

)
mlm

′
l

,

see Appendix A.4. For the hypergeometric modes this induces the action

µ(a,b)

ωl l̃ml
(t, ρ, R̂(α)Ω) =

∑
l̃
′
,m′

l

µ(a,b)

ωl l̃
′
m′
l

(t, ρ,Ω)

(
Dl

l̃,̃l
′ (α)

)
mlm

′
l

. (2.223)
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Since the Jacobi modes are special cases of the Sa-modes, the action is the same for them. For tube
solution we can apply (C.106) to expansion (2.186), giving:(

R̂(α)
−1 .φ

)a,b
ωl l̃ml

=
∑
l̃
′
,m′

l

φa,b
ωl l̃′m′

l

Ä
Dl
l̃′ ,̃l

(α)
ä
m′
l
ml

. (2.224)

For time-interval solutions, we apply (C.106) to expansion (2.201), yielding:(
R̂(α)

−1 .φ
)±
nl l̃ml

=
∑
l̃
′
,m′

l

φ±
nl l̃′m′

l

Ä
Dl
l̃′ ,̃l

(α)
ä
m′
l
ml

. (2.225)

Action of boosts on Klein-Gordon solutions

Here the goal is to calculate the action of the AdS boost generators Kd+1,j and K0j on the bounded
Klein-Gordon modes on time-interval and tube regions. Since this is somewhat involved, here we
only sum up the results of Appendix C.3.4 and Appendix C.3.5.

We only consider infinitesimal boosts. The effect of boosts on the AdS time axis is qualitatively
different from its Minkowski counterpart. For seeing this, consider e.g. a boost with finite rapidity λ
in the (0, j)-plane in the embedding space of AdS. The boosted coordinates are X ′0 = X0 coshλ +
Xj sinhλ and X ′j = X0 sinhλ + Xj coshλ, with the other coordinates unchanged. Thus all points
with X0 = Xj = 0 are preserved under these boosts, while other points are moved a finite distance
on the AdS-hyperboloid. This means that, in contrast to Minkowski spacetime, on AdS the boosts
do not rotate the time axis but deform it periodically (into some timelike geodesic). Therefore, small
boosts on AdS move the time axis only a small distance away from the unboosted one. In contrast,
on Minkowski spacetime even an arbitrarily small boost for sufficiently large times separates the
boosted time axis an arbitrary distance from the unboosted one.

Recall now that the Sa-modes are regular on the time axis ρ ≡ 0 while the Sb-modes diverge
there. A finite boost moves the boosted time axis off the unboosted one. Therefore the Sb-modes
of the boosted coordinates now have singularities off the unboosted time axis, and thus cannot be
well defined linear combinations of the original Sa and Sb-modes (because these are regular off the
unboosted time axis). Hence only for infinitesimal boosts there is a chance that we might find a
well defined action on Klein-Gordon solutions. For the two d-boosts Kd+1,d and K0d we recall the
expressions (2.154)

Kd+1,d = − sin t sin ρ cos θd−1 ∂t + cos t cos ρ cos θd−1 ∂ρ + sin2θd−1 cos t/(sin ρ) ∂cosθd−1 (2.226)

K0d = − cos t sin ρ cos θd−1 ∂t − sin t cos ρ cos θd−1 ∂ρ − sin2θd−1 sin t/(sin ρ) ∂cosθd−1 . (2.227)

Letting these act directly on Jacobi or hypergeometric modes results in rather complicated expres-
sions. However, in [32] Dorn et al. note below equation (3.18) that a complex linear combination
of these boosts increases the frequency ω exactly by one. Inspired by their equation (2.7) we thus
define the Z-generators of the complexified Lie algebra:

Zd := K0d+iKd+1,d (2.228)

= −eit sin ρ cos θd−1 ∂t+i eit cos ρ cos θd−1 ∂ρ+i eit sin−1ρ sin2θd−1 ∂cosθd−1

Zd := K0d−iKd+1,d

= −e−it sin ρ cos θd−1 ∂t−i e−it cos ρ cos θd−1 ∂ρ−i e−it sin−1ρ sin2θd−1 ∂cosθd−1 .

We first calculate the action of Zd and Zd on the modes, and then the action of the d-boosts Kd+1,d

and K0d. It is enough to know the actions of these two boosts, because the actions of the other
boosts can be obtained from the Lie brackets of these two boosts with some rotators: from (2.216)
we have [Kdk, K0d] = K0k and [Kdk, Kd+1,d] = Kd+1,k. We do not treat the Jacobi modes as
special case of the Sa-modes in this section, because it is more useful to give the results in terms of
n for them, as opposed to ω for the hypergeometric modes.
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In the formula below, the boosts’ actions result in a sum involving coefficients denoted by z and
z̃. The tilde merely indicates that the z̃ determine the action of Zd, while the z determine that of Zd.
The coefficients are given explicitly in (C.258), (C.259) (C.266) and (C.267). Since for tube regions
we have the ranges ω ∈ R and l ∈ N0, for notational convenience for negative values of l we set to

zero all z(S,a,b)−−
ωl , z(S,a,b)−+

ωl , z̃(S,a,b)+−
ωl , z̃(S,a,b)++

ωl and φ
S,a/S,b

ω,l,̃l,ml
. With that, the actions of the d-boosts

write(
K0d .φ

)a
ωlml

= i
2 z̃

(S,a)+−
ω−1,l+1

φa
ω−1,l+1,̃l,ml

+
i
2 z̃

(S,a)++

ω−1,l−1 φa
ω−1,l−1,̃l,ml

+
i
2 z

(S,a)−−
ω+1,l+1

φa
ω+1,l+1,̃l,ml

+
i
2 z

(S,a)−+

ω+1,l−1 φa
ω+1,l−1,̃l,ml

(2.229)(
K0d .φ

)b
ωlml

= i
2 z̃

(S,b)+−
ω−1,l+1

φb
ω−1,l+1,̃l,ml

+
i
2 z̃

(S,b)++

ω−1,l−1 φb
ω−1,l−1,̃l,ml

+
i
2 z

(S,b)−−
ω+1,l+1

φb
ω+1,l+1,̃l,ml

+
i
2 z

(S,b)−+

ω+1,l−1 φb
ω+1,l−1,̃l,ml

(
Kd+1,d .φ

)a
ωlml

=−1
2 z̃

(S,a)+−
ω−1,l+1

φa
ω−1,l+1,̃l,ml

−1
2 z̃

(S,a)++

ω−1,l−1 φa
ω−1,l−1,̃l,ml

+
1
2 z

(S,a)−−
ω+1,l+1

φa
ω+1,l+1,̃l,ml

+
1
2 z

(S,a)−+

ω+1,l−1 φa
ω+1,l−1,̃l,ml

(2.230)(
Kd+1,d .φ

)b
ωlml

=−1
2 z̃

(S,b)+−
ω−1,l+1

φb
ω−1,l+1,̃l,ml

−1
2 z̃

(S,b)++

ω−1,l−1 φb
ω−1,l−1,̃l,ml

+
1
2 z

(S,b)−−
ω+1,l+1

φb
ω+1,l+1,̃l,ml

+
1
2 z

(S,b)−+

ω+1,l−1 φb
ω+1,l−1,̃l,ml

.

The above infinitesimal actions can be derived from those of Kd+1,d and K0d on the hypergeometric
modes. Applying actions (C.270)-(C.273) to expansion (2.186) and shifting ω and l by ±1 depending
on the respective term yields the above actions.

For the time-interval regions, the coefficients z and z̃ are given explicitly in (C.212), and (C.227).
Since here we have the ranges n, l ∈ N0, now for notational convenience we set to zero all quantities
where n or l take values outside this range: all ω+

nl, z
(+)−+

nl , z(+)0−
nl , z̃(+)+−

nl , z̃(+)0+

nl and φ±
n,l,̃l,ml

are set

to zero for negative n or l. Then, the actions of the infinitesimal d-boosts write(
K0d .φ

)+
nlml

= i
2 z

(+)0−
n,l+1 φ

+
n,l+1,̃l,ml

+ i
2 z

(+)−+

n+1,l−1 φ
+
n+1,l−1,̃l,ml

+ i
2 z̃

(+)+−
n−1,l+1 φ

+
n−1,l+1,̃l,ml

+ i
2 z̃

(+)0+

n,l−1 φ
+
n,l−1,̃l,ml

(2.231)(
K0d .φ

)−
nlml

=−i
2 z

(+)0−
n,l+1 φ

−
n,l+1,̃l,ml

− i
2 z

(+)−+

n+1,l−1 φ
−
n+1,l−1,̃l,ml

− i
2 z̃

(+)+−
n−1,l+1 φ

−
n−1,l+1,̃l,ml

− i
2 z̃

(+)0+

n,l−1 φ
−
n,l−1,̃l,ml

(
Kd+1,d .φ

)+
nlml

= 1
2 z

(+)0−
n,l+1 φ

+
n,l+1,̃l,ml

+ 1
2 z

(+)−+

n+1,l−1 φ
+
n+1,l−1,̃l,ml

− 1
2 z̃

(+)+−
n−1,l+1 φ

+
n−1,l+1,̃l,ml

− 1
2 z̃

(+)0+

n,l−1 φ
+
n,l−1,̃l,ml

(2.232)(
Kd+1,d .φ

)−
nlml

= 1
2 z

(+)0−
n,l+1 φ

−
n,l+1,̃l,ml

+ 1
2 z

(+)−+

n+1,l−1 φ
−
n+1,l−1,̃l,ml

− 1
2 z̃

(+)+−
n−1,l+1 φ

−
n−1,l+1,̃l,ml

− 1
2 z̃

(+)0+

n,l−1 φ
−
n,l−1,̃l,ml

These can be derived from the action of Kd+1,d and K0d on the Jacobi modes: applying actions
(C.232)-(C.235) to expansion (2.201) and shifting n, l by ±1 depending on the respective term yields
the above actions.

2.6.7 Invariance of symplectic structures under isometries

In this section we show the invariance of the symplectic structures on the equal-time surfaces and
on the hypercylinders under time translation, rotations and boosts. We use the explicit expressions
we have worked out for the action of these isometries in the momentum representation of the Klein-
Gordon solutions in Section 2.6.6. For the boosts we have calculated explicitly only the actions of the
(infinitesimal) d-boosts on the solutions. Before checking that the d-boosts also leave the symplectic
structures invariant, we remark that this is already sufficient for assuring that actually all boosts
do so, because the remaining boosts arise as Lie brackets of the d-boosts and spatial rotations, see
Section 2.4.3.
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Invariance under time translations

We show the invariance of the symplectic structure only for finite time translations, with the invari-
ance for infinitesimal time translations then holding automatically. We denote the corresponding
element of SO (2, d) by k∆t. For both time-interval and tube regions according to (2.56) we then
have the action on the symplectic structure as(

k∆t.ω
)
(η, ζ) = ω(k−1

∆t.η, k
−1
∆t.ζ) = ω(k−∆t.η, k−∆t.ζ) .

For the time-interval region we can now plug the action (2.222) of k−∆t in the momentum represen-
tation into the symplectic structure (2.209):

(
k∆t.ωt

)
(η, ζ) = i

∑
nlml

ω±nlR
d−1
AdSN±nl

ß(
k−∆t.η

)−
nlml

(
k−∆t.ζ

)+
nlml

−
(
k−∆t.η

)+
nlml

(
k−∆t.ζ

)−
nlml

™
= i

∑
nlml

ω±nlR
d−1
AdSN±nl

ß
eiω±

nl
∆t η−nlml e−iω±

nl
∆t ζ+

nlml
− e−iω±

nl
∆t η+

nlml
eiω±

nl
∆t ζ−nlml

™
= i

∑
nlml

ω±nlR
d−1
AdSN±nl

ß
η−nlml ζ

+
nlml

− η+
nlml

ζ−nlml

™
,

and thus the time-interval region’s symplectic structure is invariant under time translations:(
k∆t.ωt

)
(η, ζ) = ωt(η, ζ) ∀ η, ζ . (2.233)

For the tube region the calculation is the same: we can plug the action (2.221) of k−∆t in the
momentum representation into the symplectic structure (2.195):

(
k∆t.ωρ

)
(η, ζ) = ιπRd−1

AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß(
k−∆t.η

)S,a
ωlml

(
k−∆t.ζ

)S,b
−ω,l,−ml

−
(
k−∆t.η

)S,b
ωlml

(
k−∆t.ζ

)S,a
−ω,l,−ml

™
= ιπRd−1

AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß
e−iω∆t ηS,aωlml eiω∆t ζS,b−ω,l,−ml − e−iω∆t ηS,bωlml eiω∆t ζS,a−ω,l,−ml

™
= ιπRd−1

AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß
ηS,aωlml ζ

S,b
−ω,l,−ml − η

S,b
ωlml

ζS,a−ω,l,−ml

™
.

Thus the tube region’s symplectic structure is invariant under time translations:(
k∆t.ωρ

)
(η, ζ) = ωρ(η, ζ) ∀ η, ζ . (2.234)

Invariance under rotations

Again we show the invariance of the symplectic structure only for finite rotations, with the invariance
for infinitesimal ones then holding automatically. We denote the corresponding element of SO (2, d)
by R̂(α). For both time-interval and tube regions according to (2.56) we then have the action on the
symplectic structure as (

R̂(α).ω
)
(η, ζ) = ω(R̂(α)

−1.η, R̂(α)
−1.ζ) .
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For the time-interval region we can plug the action (2.225) of R̂(α)−1 in the momentum representation
into the symplectic structure (2.209):

(
R̂(α).ωt

)
(η, ζ) = i

∑
nlml

ω±nlR
d−1
AdSN±nl

ß(
R̂(α)−1.η

)−
nlml

(
R̂(α)

−1.ζ
)+
nlml

−
(
R̂(α)

−1.η
)+
nlml

(
R̂(α)−1.ζ

)−
nlml

™
= i

∑
nlml

ω±nlR
d−1
AdSN±nl

∑
l̃
′
m′
l

∑
l̃”m′′

l

ß
η−
nl l̃
′
m′
l

(
Dl
l̃
′
, l̃

(α)
)
m′
l
ml

ζ+

nl l̃”m′′
l

(
Dl
l̃”, l̃

(α)
)
m′′
l
ml

− η+

nl l̃
′
m′
l

(
Dl
l̃
′
, l̃

(α)
)
m′
l
ml

ζ−
nl l̃”m′′

l

(
Dl
l̃”, l̃

(α)
)
m′′
l
ml

™
= i

∑
nlml

ω±nlR
d−1
AdSN±nl

ß
η−nlml ζ

+
nlml

− η+
nlml

ζ−nlml

™
.

For the last equality we have used the completeness relation (A.43) for Wigner’s D-matrix:∑
l̃, ml

(
Dl
l̃
′
, l̃

(α)
)
m′
l
ml

(
Dl
l̃
′′
, l̃

(α)
)
m′′
l
ml

= δl̃′, l̃′′ δm′
l
m′′
l
.

Thus the time-interval region’s symplectic structure is invariant under rotations:(
R̂(α).ωt

)
(η, ζ) = ωt(η, ζ) ∀ η, ζ . (2.235)

For the tube region the calculation is similar again: we can plug the actions (2.224) of R̂(α)−1 in the
momentum representation into the symplectic structure (2.195) and again apply the completeness
relation (A.43) for Wigner’s D-matrix:

(
R̂(α).ωρ

)
(η, ζ) = ιπRd−1

AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß(
R̂(α)

−1.η
)S,a
ωlml

(
R̂(α)

−1.ζ
)S,b
−ω,l,−ml

−
(
R̂(α)

−1.η
)S,b
ωlml

(
R̂(α)

−1.ζ
)S,a
−ω,l,−ml

™
= ιπRd−1

AdS

ˆ
dω
∑
l,ml

(2l+d−2)
∑
l̃
′
m′
l

∑
l̃”m′′

l

ß
ηS,a
ωl l̃
′
m′
l

(
Dl
l̃
′
, l̃

(α)
)
m′
l
ml

ζS,b
−ω,l,̃l′′,−m′′

l

(
Dl
l̃
′′
, l̃

(α)
)
m′′
l
ml

− ηS,b
ωl l̃
′
m′
l

(
Dl
l̃
′
, l̃

(α)
)
m′
l
ml

ζS,a
−ω,l,̃l′′,−m′′

l

(
Dl
l̃
′′
, l̃

(α)
)
m′′
l
ml

™
= ιπRd−1

AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß
ηS,aωlml ζ

S,b
−ω,l,−ml − η

S,b
ωlml

ζS,a−ω,l,−ml

™
.

Thus the tube region’s symplectic structure is invariant under rotations:(
R̂(α).ωρ

)
(η, ζ) = ωρ(η, ζ) ∀ η, ζ . (2.236)

Invariance under boosts

We show the invariance of the symplectic structure only for infinitesimal d-boosts, that is, for the
action of the so (2, d) generators K0d and Kd+1,d. Since for both types of d-boosts the calculations
are essentially the same (up to some factors of ±i), we consider in detail only the action of K0d. For
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both time-interval and tube regions according to (2.57) we then have the action on the symplectic
structure as (

(1+εK0d).ω
)
(η, ζ) = ω

(
η, ζ
)

+ ω
(
−εK0d.η, ζ

)
+ ω

(
η,−εK0d.ζ

)(
K0d.ω

)
(η, ζ) = +ω

(
−K0d.η, ζ

)
+ ω

(
η,−K0d.ζ

)
.

For the time-interval region we can plug the actions (2.231) of K0d in the momentum representation
into the symplectic structure (2.209). For simplifying the notation a little, we suppress the indices l̃
in l = (l, l̃), and only write the top angular momentum number l. This is possible because the l̃ are
the same in all expressions wherein l appears, and results in the following expression:

ωt
(
−K0d.η, ζ

)
+ ωt

(
η,−K0d.ζ

)
= i i

2

∑
nlml

ω±nlR
d−1
AdSN±nl

{
ζ+
nlml

Å
η−n,l+1,ml

z(±)0−
n,l+1 +η−n+1,l−1,ml

z(±)−+

n+1,l−1+η−n−1,l+1,ml
z̃(±)+−
n−1,l+1+η−n,l−1,ml

z̃(±)0+

n,l−1

ã
+ ζ−nlml

Å
η+
n,l+1,ml

z(±)0−
n,l+1 + η+

n+1,l−1,ml
z(±)−+

n+1,l−1 + η+
n−1,l+1,ml

z̃(±)+−
n−1,l+1 + η+

n,l−1,ml
z̃(±)0+

n,l−1

ã
− η−nlml

Å
ζ+
n,l+1,ml

z(±)0−
n,l+1 + ζ+

n+1,l−1,ml
z(±)−+

n+1,l−1 + ζ+
n−1,l+1,ml

z̃(±)+−
n−1,l+1 + ζ+

n,l−1,ml
z̃(±)0+

n,l−1

ã
− η+

nlml

Å
ζ−n,l+1,ml

z(±)0−
n,l+1 + ζ−n+1,l−1,ml

z(±)−+

n+1,l−1 + ζ−n−1,l+1,ml
z̃(±)+−
n−1,l+1 + ζ−n,l−1,ml

z̃(±)0+

n,l−1

ã}
.

Therein, the first and third line cancel each other, and the second and fourth line cancel each other,
too. Since the calculation is the same, we only consider the first and third line. Equally colored
terms cancel each other. To see this, we shift the indices such that they agree for each pair of equally
colored terms. Then, we obtain for the sum of first and third line:

−1
2 R

d−1
AdS

∑
nlml

{
η−n,l+1,ml

ζ+
nlml

ω±nlz
(±)0−
n,l+1 N

±
nl + η−n+1,l−1,ml

ζ+
nlml

ω±nlz
(±)−+

n+1,l−1N
±
nl

+η−n−1,l+1,ml
ζ+
nlml

ω±nlz̃
(±)+−
n−1,l+1N

±
nl + η−n,l−1,ml

ζ+
nlml

ω±nlz̃
(±)0+

n,l−1 N
±
nl

−η−n,l−1,ml
ζ+
nlml

ω±n,l−1z
(±)0−
nl N±n,l−1 − η−n−1,l+1,ml

ζ+
nlml

ω±n−1,l+1z
(±)−+

nl N±n−1,l+1

−η−n+1,l−1,ml
ζ+
nlml

ω±n+1,l−1z̃
(±)−+

nl N±n+1,l−1 − η
−
n,l+1,ml

ζ+
nlml

ω±n,l+1z̃
(±)0+

nl N±n,l+1

}
Using the following equalities

ω±nlN
±
nl z

(±)0−

n,l+1,l̃
= ω±n,l+1N

±
n,l+1 z̃

(±)0+

nll̃
=⇒ ω±n,l−1N

±
n,l−1 z

(±)0−

nll̃
= ω±nlN

±
nl z̃

(±)0+

n,l−1,l̃
(2.237)

ω±nlN
±
nl z

(±)−+

n+1,l−1,l̃
= ω±n+1,l−1N

±
n+1,l−1 z̃

(±)+−

nll̃
=⇒ ω±n−1,l+1N

±
n−1,l+1 z

(±)−+

nll̃
= ω±nlN

±
nl z̃

(±)+−

n−1,l+1,l̃

we get the zero that we desire for the sum of first and third line. This shows that

0 = ωt
(
−K0d.η, ζ

)
+ ωt

(
η,−K0d.ζ

)
.

Thus the time-interval region’s symplectic structure is also invariant under infinitesimal d-boosts:(
(1+εK0d).ωt

)
(η, ζ) =

(
(1+εKd+1,d).ωt

)
(η, ζ) = ωt(η, ζ) ∀ η, ζ . (2.238)

We remark that the equalities (2.237) are short but not as trivial as they look, recalling the origins
of the various ingredients: an integration constant N±nl of Jacobi polynomials, magic frequencies
ω±nl and contiguous coefficients z(±)

nl of the AdS Klein-Gordon modes for the time-interval region,
containing the raising and lowering coefficients χ± of the hyperspherical harmonics. Checking the
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equalities is a bit lengthy but straightforward, plugging in the definitions (C.44), (C.67), (C.212),
(C.213), (C.227) and (C.230) and using (A.27) gets the job done.

For the tube region the calculation is similar but with different coefficients. We can plug the ac-
tions (2.229) of K0d in the momentum representation into the symplectic structure (2.195), resulting
in the following expression (again suppressing the indices l̃):

ωρ
(
−K0d.η, ζ

)
+ ωρ

(
η,−K0d.ζ

)
= ιπRd−1

AdS

ˆ
dω
∑
l,ml

(2l+d−2)ß
ζS,b−ω,l,−ml

Å
−ηS,aω−1,l+1,ml

z̃(S,a)+−
ω−1,l+1 − η

S,a
ω−1,l−1,ml

z̃(S,a)++

ω−1,l−1 − η
S,a
ω+1,l+1,ml

z(S,a)−−
ω+1,l+1 − η

S,a
ω+1,l−1,ml

z(S,a)−+

ω+1,l−1

ã
− ζS,a−ω,l,−ml

Å
−ηS,bω−1,l+1,ml

z̃(S,b)+−
ω−1,l+1 − η

S,b
ω−1,l−1,ml

z̃(S,b)++

ω−1,l−1 − η
S,b
ω+1,l+1,ml

z(S,b)−−
ω+1,l+1 − η

S,b
ω+1,l−1,ml

z(S,b)−+

ω+1,l−1

ã
+ ηS,aωlml

Å
+ζS,b−(ω−1),l+1,−ml z̃

(S,b)+−
ω−1,l+1 + ζS,b−(ω−1),l−1,−ml z̃

(S,b)++

ω−1,l−1 + ζS,b−(ω+1),l+1,−mlz
(S,b)−−
ω+1,l+1 + ζS,b−(ω+1),l−1,−mlz

(S,b)−+

ω+1,l−1

ã
− ηS,bωlml

Å
+ζS,aω−1),l+1,−ml z̃

(S,a)+−
ω−1,l+1 + ζS,a−(ω−1),l−1,−ml z̃

(S,a)++

ω−1,l−1 + ζS,a−(ω+1),l+1,−mlz
(S,a)−−
ω+1,l+1 + ζS,a−(ω+1),l−1,−mlz

(S,a)−+

ω+1,l−1

ã™
.

Again, the first and third quarter cancel each other, as well as the second and fourth quarter, and
we only consider the calculation for the first and third quarter. To see that equally colored terms
cancel, we again shift the indices such that they agree for each pair of equally colored terms. Then,
we obtain for the sum of first and third line:

ιπRd−1
AdS

ˆ
dω
∑
l,ml

ß
− ηS,aω−1,l+1,ml

ζS,b−ω,l,−ml (2l+d−2)z̃(S,a)+−
ω−1,l+1 − η

S,a
ω−1,l−1,ml

ζS,b−ω,l,−ml (2l+d−2)z̃(S,a)++

ω−1,l−1

− ηS,aω+1,l+1,ml
ζS,b−ω,l,−ml (2l+d−2)z(S,a)−−

ω+1,l+1 − η
S,a
ω+1,l−1,ml

ζS,b−ω,l,−ml (2l+d−2)z(S,a)−+

ω+1,l−1

+ ηS,aω+1,l−1,ml
ζS,b−ω,l,−ml (2l+d−4)z̃(S,b)+−

ωl + ηS,aω+1,l+1,ml
ζS,b−ω,l,−ml (2l+d)z̃(S,b)++

ωl

+ ηS,aω−1,l−1,ml
ζS,b−ω,l,−ml (2l+d−4)z(S,b)−−

ωl + ηS,aω−1,l+1,ml
ζS,b−ω,l,−ml (2l+d)z(S,b)−+

ωl

™
,

and using the equalities

z̃(S,a)+−

ω−1,l+1,l̃
= 2l+d

2l+d−2 z
(S,b)−+

ωll̃
z̃(S,a)++

ω−1,l−1,l̃
= 2l+d−4

2l+d−2 z
(S,b)−−

ωll̃
(2.239)

z(S,a)−−

ω+1,l+1,l̃
= 2l+d

2l+d−2 z̃
(S,b)++

ωll̃
z(S,a)−+

ω+1,l−1,l̃
= 2l+d−4

2l+d−2 z̃
(S,b)+−

ωll̃

we again get zero:

0 = ωρ
(
−K0d.η, ζ

)
+ ωρ

(
η,−K0d.ζ

)
.

Thus also the tube region’s symplectic structure is invariant under infinitesimal d-boosts:(
K0d.ωρ

)
(η, ζ) =

(
Kd+1,d.ωρ

)
(η, ζ) = ωρ(η, ζ) ∀ η, ζ . (2.240)

Again the equalities (2.239) look short but are not so trivial. Checking them is again somewhat
lengthy but straightforward, plugging in the definitions (C.258), (C.259), (C.266) and (C.267) and
using again (A.27) is sufficient.

2.6.8 AdS Klein-Gordon solutions from initial/boundary data

In this section we develop evidence for one-to-one correspondences between initial/boundary data
and solutions on the interior of our three types of AdS regions. For a complete analysis of this
situation it would be necessary to specify the (equivalence) classes of solutions forming the solution
spaces. Since we do not do this at this point, our calculations remain of formal nature, although we
can derive explicit formulas.
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AdS time-interval region

On time-interval regions any bounded free Klein-Gordon solution φ(t, ρ,Ω) is a linear combination of
Jacobi modes, because the spatial parts of these modes form an orthogonal system on equal-time
hypersurfaces. Independently of the boundary conditions one chooses at spatial infinity, φ(t, ρ,Ω)

it is completely determined by its momentum representation (φ+
nlml

, φ−nlml). Therefore solutions
on a time-interval region are determined by boundary data on an equal-time hypersurface Σt0 .
This boundary hypersurface can be located at the (early or late) boundary of the time-interval, or
anywhere between them inside the region. The necessary data are then the field configuration and
the field derivative on this hypersurface. We recall that the Jacobi modes are regular everywhere,
including the time axis ρ = 0 and spatial infinity ρ = ιπ

2 . The momentum representation of a
solution φ(t, ρ,Ω) can be calculated from the initial data on Σt0 by formally inverting the Jacobi
expansion (2.201):

φ+
nlml

=

ˆ
dt

ˆ
d
d−1

Ω tand−1ρ Y mll (Ω) J (+)

nl (ρ)

(
f̂ (t0)φ+ d̂(t0) ∂tφ

)
(t0, ρ,Ω)

φ−nlml =

ˆ
dt

ˆ
d
d−1

Ω tand−1ρ Y mll (Ω) J (+)

nl (ρ)

(
f̂ (t0)φ+ d̂(t0) ∂tφ

)
(t0, ρ,Ω) ,

(2.241)

with the operators f̂ (t0) and d̂(t0) having Y mll (Ω) J (±)
nl (ρ) as eigenfunctions with eigenvalues

fnlml (t0) = eiω+
nl
t0 1

2

(
Rd−1

AdSN±nl
)−1/2

dnlml (t0) = eiω+
nl
t0 i

2ω±
nl

(
Rd−1

AdSN±nl
)−1/2

.
(2.242)

Because Y mll (Ω) J (±)
nl (ρ) form a complete system on Σt0 , this pair of formulas provides a one-to-one

correspondence between initial data (ϕ(ρ,Ω), ϕ̇(ρ,Ω)) on Σt0 and bounded solutions φ(t, ρ,Ω) on the
interior of the time-interval. (The dot in ϕ̇ is just a label, meaning that ϕ represents the field values
of φ and ϕ̇ the values of the derivative ∂tφ.)

AdS tube region: well-behaved cases

Solutions on a tube region are also determined by boundary data on a hypersurface: the hypercylinder
Σρ0 . Again, this boundary hypersurface can be located at the (inner or outer) boundary of the tube,
or anywhere between them inside the region. Only when we consider initial/boundary data on the
boundary ρ0 = ιπ

2 of AdS, then we need to proceed more carefully. In any case, since the tube
Klein-Gordon solutions (like the time-interval solutions) are determined by two functions φS,aωlml and
φS,bωlml , the necessary data again consists of two pieces: the field configuration and the field derivative
on an boundary hypersurface.

We recall that the bounded solutions for the tube regions are the hypergeometric Sa and Sb-
modes which are regular everywhere, except for the time axis ρ = 0 where the Sb-modes diverge,
and for spatial infinity ρ = ιπ

2 where both Sa and Sb-modes diverge, see Section 2.6.3. The latter
divergence occurs only for ‹m− < 0, that is, for masses (m2 > 0) ⇔ (ν > d/2). For ‹m− ≥ 0, that
is, (m2 ≤ 0) ⇔ (ν ≤ d/2) the field (and its derivative) remain regular at ρ = ιπ

2 . Therefore,
except for the case of both the boundary hypersurface being located at spatial infinity ρ = ιπ

2 and
the mass square being positive m2 > 0, we have a similar formula as for the time-interval region that
determines the momentum representation of a free Klein-Gordon solution φ(t, ρ,Ω) from its initial
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values and derivatives on Σρ0
. This formal inversion of the S-expansion is given by

φS,aωlml =

ˆ

Σρ0

dtd
d−1

Ω eiωt Y mll (Ω)
tand−1ρ

2 ιπ (2l̂+d−2)

(
+(∂ρS

b
ω̂l̂

)(ρ0)φ(t, ρ0,Ω)−Sb
ω̂l̂

(ρ0) (∂ρφ)(t, ρ0,Ω)

)

φS,bωlml =

ˆ

Σρ0

dtd
d−1

Ω eiωt Y mll (Ω)
tand−1ρ

2 ιπ (2l̂+d−2)

(
−(∂ρS

a
ω̂l̂

)(ρ0)φ(t, ρ0,Ω)+Sa
ω̂l̂

(ρ0) (∂ρφ)(t, ρ0,Ω)

)
.

(2.243)

An equivalent formula for the expansion in C-modes is

φC,aωlml
=

ˆ

Σρ0

dtd
d−1

Ω eiωt Y mll (Ω)
tand−1ρ

2 ιπ (2ν)

(
+(∂ρC

b
ω̂l̂

)(ρ0)φ(t, ρ0,Ω)−Cb
ω̂l̂

(ρ0) (∂ρφ)(t, ρ0,Ω)

)

φC,bωlml
=

ˆ

Σρ0

dtd
d−1

Ω eiωt Y mll (Ω)
tand−1ρ

2 ιπ (2ν)

(
−(∂ρC

a
ω̂l̂

)(ρ0)φ(t, ρ0,Ω)+Ca
ω̂l̂

(ρ0) (∂ρφ)(t, ρ0,Ω)

)
.

(2.244)

The operators ω̂ and l̂ have the eigenfunctions e−iωt Y mll (Ω) with eigenvalues ω and l. Again, since

e−iωt Y mll (Ω) form a complete system on Σρ0 , each pair of formulas provides a one-to-one correspon-

dence between initial data (ϕ(t,Ω), ϕ̇(t,Ω)) on Σρ0 and bounded solutions φ(t, ρ,Ω) on the interior of
the tube. (The dot in ϕ̇ is again a label, now indicating that ϕ represents the field values of φ and
ϕ̇ the values of the derivative ∂ρφ on Σρ0

.)

AdS tube region: degeneracy problem

For the boundary hypersurface at spatial infinity ρ = ιπ
2 with the mass square being positive m2 > 0,

we can try a version of the formula above, but since both Saωl(ρ) and Sbωl(ρ) diverge for ρ = ιπ
2 the ”raw”

boundary data will now be divergent, too. Knowing from Section 2.6.3 that both radial functions
diverge like cosm̃−ρ (and their derivatives like cosm̃−−1ρ), we could try to use the rescaled boundary
data ϕ∂(t,Ω) = cos−m̃−ρ φ(t, ρ,Ω)|ρ= ιπ/2 and ϕ̇∂(t,Ω) = cos1−m̃−ρ (∂ρφ(t, ρ,Ω))|ρ= ιπ/2. However, there
is a degeneracy problem: according to (2.175) the S and C-modes are not linear independent:Ñ

Caωl

Cbωl

é
=

Ñ
(Mno

11)ωl (Mno
12)ωl

(Mno
21)ωl (Mno

22)ωl

é Ñ
Saωl

Sbωl

é
. (2.245)

Recalling that Caωl is the solution behaving like cosm̃+ρ near the boundary ρ = ιπ/2, and thus vanishing
there, the following two Klein-Gordon solutions have the same (with or without rescaling as above)
boundary field values and derivatives:

φ(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml e−iωt Y mll (Ω)Saωl(ρ) + φS,bωlml e−iωt Y mll (Ω)Sbωl(ρ)

}

φ′(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φ′S,aωlml e−iωt Y mll (Ω)Saωl(ρ) + φ′S,bωlml e−iωt Y mll (Ω)Sbωl(ρ)

}
wherein

φ′S,aωlml = φS,aωlml + φ0
ωlml

(Mno

11)ωl

φ′S,bωlml = φS,bωlml + φ0
ωlml

(Mno

12)ωl .
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Therein, φ0
ωlml

is arbitrary. Thus φ′ is φ plus some Ca-modes determined by φ0
ωlml

. Then, both φ

and φ′ are different on the interior of AdS, but have the same boundary field values and derivatives
(with or without rescaling as above). Thus we run into a problem here: this boundary data cannot
distinguish between φ and φ′.

If we use the C-expansion instead of the S-expansion, the problem is even more obvious. Both
rescaled boundary data ϕ∂(t,Ω) = cos−m̃−ρ φ(t, ρ,Ω)|ρ= ιπ/2 and ϕ̇∂(t,Ω) = cos1−m̃−ρ (∂ρφ(t, ρ,Ω))|ρ= ιπ/2

now only depend on one half of the momentum representation, namely on φC,bωlml
. This boundary

data is completely blind to the Ca-mode content of any Klein-Gordon solution, since these modes
vanish on the boundary whereas the Cb-modes diverge. While the rescaling cures the divergence, it
makes the vanishing even faster.

Since this combination of boundary field value and derivative works neither in S nor C-expansion,
we conclude that it is not suitable for our purposes. This problem is solved in the following.

AdS tube region: higher twisted derivatives

In [73], Claude Warnick investigates boundary conditions for (asymptotically) AdS spacetimes. How-
ever, as noted below equations (3.4) and (4.6) therein, his method only works for a rather narrow
range of mass: ν ∈ (0, 1) that is, m2R2

AdS
∈ (−d2/4, −d2/4+1). He introduces what he calls a twisted

derivative ∂αr , with α a mass-dependent parameter, that is defined in the following way:

∂αr f (r) := r−α ∂r (rα f (r)) .

In our coordinates this writes as

∂αcos ρ f (cos ρ) := (cos ρ)−α ∂cos ρ (cosαρ f (cos ρ)) .

Motivated by his work, in this section we construct a method that works for all mass values. To this
end we define a higher order twisted derivative ∂(ν)

ρ by

∂(ν)

ρ f (cos ρ) := (cos ρ)1+2bνc−2ν ∂cos ρ

Å
1

cos ρ
∂cos ρ

ãbνc{
(cos ρ)−m̃−f (cos ρ)

}
. (2.246)

Therein, we denote by bνc (read: floor) the largest integer number that is smaller than ν. That is,
for all ν ∈ R their floors fulfill:

bνc ∈ Z bνc ≤ ν bνc+ 1 > ν .

Thus our twisted derivative is of order bνc+1, that is, we employ a derivative, whose order depends
on the value of the mass parameter m2. In order to write its action on the radial functions Caωl(ρ)

and Cbωl(ρ), we perform a Taylor expansion of them near the boundary where ρ → ιπ/2 and thus
cos ρ→ 0. To this end we need the definition (C.25) of the hypergeometric function, and the Taylor
expansion of sinlρ around ρ = ιπ/2, which for ρ ∈ [0, ιπ/2] is given by

sinlρ = (1−cos2ρ)l/2 =
∞∑
j=0

(−1)j

j!
(cos ρ)2j (l/2+1−j)j .

(We recall the definitions (C.26) and (C.29) for the usual (·)· and double ((·))· Pochhammer symbols.)
For even l this sum only has (l/2 + 1) terms, while for odd l it has infinitely many terms. With these
ingredients we find for the Taylor expansion of Caωl and Cbωl near the boundary:

Caωl(ρ) =
∞∑
a=0

(cos ρ)m̃++2a d+
a

Cbωl(ρ) =
∞∑
a=0

(cos ρ)m̃−+2a d−a ,

(2.247)
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wherein the coefficients are given by the finite sums

d+
a =

a∑
b=0

(−1)b

b!
(l/2+1−b)b

(α+)a−b (β+)a−b
(γC

+)a−b (a−b)!

d−a =
a∑
b=0

(−1)b

b!
(l/2+1−b)b

(α−)a−b (β−)a−b
(γC
−)a−b (a−b)!

.

(2.248)

Letting the twisted derivative act on the Taylor expanions of Caωl and Cbωl results in

∂(ν)

ρ Caωl(ρ) =
∞∑
a=0

(cos ρ)2a d+
a ((2ν+2a−2 bνc))bνc+1 (2.249)

∂(ν)

ρ Cbωl(ρ) =
∞∑
a=0

(cos ρ)−2ν+2a d−a ((2a−2 bνc))bνc+1 (2.250)

=
∞∑

a=bνc+1

(cos ρ)−2ν+2a d−a ((2a−2 bνc))bνc+1 . (2.251)

The first terms in (2.250) vanish, because for low values of a the double Pochhammer symbol contains
a zero factor. This is caused by the factor (1/ cos ρ) in the centre of the twisted derivative. Studying
the limit ρ→ ιπ/2, in (2.249) only the (a = 0)-term survives, and thus the limit is finite:[

∂(ν)

ρ Caωl
]
ρ→ ιπ/2

= ((2ν−2 bνc))bνc+1 ∀ ν /∈ Z . (2.252)

If ν ∈ Z, then this limit vanishes, because the double Pochhammer symbol then contains a zero factor.
The coefficient d+

0 does not appear explicitly in this limit because d+
0 = 1. By contrast,in (2.251)

we always have a ≥ bνc+1 and thus a > ν. Hence the factor of (cos ρ) always appears with positive
power. Therefore each summand vanishes in the limit ρ→ ιπ/2 and we get[

∂(ν)

ρ Cbωl
]
ρ→ ιπ/2

= 0 . (2.253)

To give an example, let the mass m2 such that ν ∈ (2, 3). Then our twisted derivative writes

∂(ν)

ρ f (cos ρ) = (cos ρ)5−2ν ∂cos ρ

Å
1

cos ρ
∂cos ρ

ã2{
(cos ρ)−m̃−f (cos ρ)

}
,

and the limits of the radial functions are[
∂(ν)

ρ Caωl
]
ρ→ ιπ/2

= ((2ν−4))3 = (2ν−4) (2ν−2) (2ν)[
∂(ν)

ρ Cbωl
]
ρ→ ιπ/2

= 0 .

We can now use this in order to find a relation between a Klein-Gordon solution and its boundary
behaviour. First, we define ϕ∂− as usual as rescaled boundary field value, and ϕ∂+

(ν) as the boundary
value of the twisted derivative of the field:

ϕ∂−(t, ρ,Ω) :=
[
cos−m̃−ρ φ(t, ρ,Ω)

]
ρ→ ιπ/2

(2.254)

ϕ∂+
(ν) (t, ρ,Ω) :=

[
∂(ν)

ρ φ(t, ρ,Ω)
]
ρ→ ιπ/2

. (2.255)

Plugging into this the C-expansion (2.187) of the solution

φ(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φC,aωlml

µ(C,a)

ωlml
(t, ρ,Ω) + φC,bωlml

µ(C,b)

ωlml
(t, ρ,Ω)

}
,
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and using (2.252), we can formally reverse this relation:

φC,aωlml
=

ˆ
dtd

d−1
Ω

eiωt Y mll (Ω)

((2ν−2 bνc))bνc+1
ϕ∂+

(ν) (t,Ω)/(2 ιπ) (2.256)

φC,bωlml
=

ˆ
dtd

d−1
Ω eiωt Y mll (Ω)ϕ∂−(t,Ω)/(2 ιπ) . (2.257)

We thus recover the full momentum representation as a function of the (rescaled and therefore finite)
boundary data.

AdS rod region

Free Klein-Gordon solutions on a rod region are also determined by boundary data on a hypercylinder.
Again, this boundary hypersurface can be located at the (one and only outer) boundary of the rod
region, or anywhere in its interior. And again, when we consider boundary data on this outer
boundary, and it is located at spatial infinity ρ = ιπ

2 , then we need to be more subtle.
We recall that the bounded solutions for the rod regions are only the hypergeometric Sa-modes

which are regular everywhere, except for spatial infinity ρ = ιπ
2 where they diverge, see Section

2.6.3. Thus the rod region’s free Klein-Gordon solutions are determined by only one function φS,aωlml
on momentum space, and therefore the necessary boundary data is now only (either) the field con-
figuration (or equivalently the field derivative) on a hypercylinder. The field can be expanded as in
(2.191):

φ(t, r,Ω) =

ˆ
dω
∑
l,ml

φS,aωlml e−iωt Y mll (Ω)Saωl(ρ) (2.258)

=

ˆ
dω
∑
l,ml

e−iωtY mll (Ω)φS,aωlml

[
(Mon

11 )ωlC
a
ωl(ρ)+(Mon

12 )ωlC
b
ωl(ρ)

]
. (2.259)

If the boundary hypersurface Σρ0
is not at the boundary: ρ0 < ιπ

2 , we can formally invert the
definition

ϕρ0 (t,Ω) := φ(t, ρ0,Ω) =

ˆ
dω
∑
l,ml

φS,aωlml e−iωt Y mll (Ω)Saωl(ρ0) , (2.260)

=⇒ φS,aωlml =

ˆ
dtd

d−1
Ω

1

(2 ιπ)Saωl(ρ0)
eiωt Y mll (Ω) ϕρ0 (t,Ω) . (2.261)

The zeros of Saωl(ρ0) do not pose a problem, because the set of (ω, l) causing them is of zero measure in
momentum space. Singularities caused by the zeros of Saωl(ρ0) are canceled by their second appearance
when we expand the initial data in terms of Sa-modes as in (2.260). If the initial data is placed on
the boundary ρ0 = ιπ/2, then only the Cbωl-part of Saωl survives, as in (2.259), and we can rescale as
follows:

ϕ∂ρ0
(t,Ω) := cos−m̃−ρ φ(t, ρ→ ιπ/2,Ω) =

ˆ
dω
∑
l,ml

e−iωtY mll (Ω)φS,aωlml(M
on
12 )ωl . (2.262)

Thus finite boundary data ϕ∂(t,Ω) is given by the rescaled boundary field value. This can formally
be inverted to

φS,aωlml =

ˆ
dtd

d−1
Ω

1

(2 ιπ) (Mon
12 )ωl

eiωt Y mll (Ω) ϕ∂ρ0
(t,Ω) . (2.263)

This formula recovers the momentum representation of a free Klein-Gordon solution on the rod
region as a function of the (rescaled and theirefore finite) boundary field value.
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In this chapter we quantize the classical theory. Section 3.1 reviews the method of Holomorphic
Quantization (HQ) which we shall use. Therein, we also recall the construction of the usual S-
matrix in QFT, and how the GBF generalizes it. Then, we consider three general properties of
the amplitudes, and how these can be realized in Holomorphic Quantization. The first property
is invariance of the amplitudes under the actions of spacetime isometries, which induces the same
invariance for the S-matrix. In HQ, this is ensured if the real g-product is invariant under the
isometries’ actions. This in turn is induced by the invariance of the symplectic structure (treated
already in the previous chapter), together with the complex structure commuting with these actions
(which we study in this chapter). The second property is called amplitude equivalence, meaning that
on a spacetime we want the amplitudes of different regions to coincide. In HQ, for this to happen
we need the real g-products on the boundaries of the regions to agree. The third property is the flat
limit: we wish our AdS amplitudes to reproduce the Minkowski amplitudes in the flat limit. Again,
in HQ this is ensured if the real g-product of AdS reproduces the g of Minkowski spacetime in this
limit. As a reference for this limit, in Section 3.2 we review the Holomorphic Quantization of the
real Klein-Gordon field on Minkowski spacetime.

In Section 3.3 we then proceed to AdS. We start with the usual AdS time-interval regions in
Section 3.3.1. Due to the standard complex structure on equal-time hypersurfaces, this provides us
with a reference for the amplitude equivalence. The remaining sections are dedicated mainly to AdS
rod regions. In Section 3.3.2 we start with the most general form of the complex structure, and then
simplify it by imposing invariance under spacetime isometries. This results in several possible forms
of the complex structure. We further restrict these forms in Section 3.3.3 by requiring amplitude
equivalence. This leaves us with two candidates for the complex structure, which we explore in
Section 3.3.4. The properties of the real g-products induced by these candidates are studied in
Section 3.3.5. Finally, we calculate the flat limits of these real g-products in Section 3.3.6. We find
that one candidate’s flat limit reproduces the Minkowski rod’s amplitude only for a discrete subset
of frequencies. The second candidate can be modified to do so for all frequencies.

We then relate our complex structures to previous results. In Section 3.3.7 we show that Colosi’s
form of the complex structure is equivalent to ours. After this, in Section 3.3.8 we survey the
similarities and differences of our amplitudes with those of Giddings. We summarize our results and
comment on them in the closing Chapter 4.

3.1 GBF and Quantum Field Theoryxx

3.1.1 States in Holomorphic Quantization

In the early days of the GBF, only the Schrödinger Representation was used, see for example [22].
In Appendix A therein, the alternative Polynomial Representation is described. Also the Holomor-
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phic Representation is mentioned there already, which we shall review now. We sum up here the
Holomorphic Quantization (HQ) presented in Section 4 of [59] and Section 3 of [61]. HQ arises as a
particular kind of Geometric Quantization, see e.g. Section 2 of [61] and Section 9.2 of [76]. As usual
we let Σ a hypersurface on spacetime. We recall the real and complex inner products gΣ(·, ·) and
{·, ·}Σ on the space LΣ of solutions which are well defined in a neighborhood of Σ, see Section 2.2.

The state space H Σ of Holomorphic Quantization1 is the complex Hilbert space H2(LΣ, νΣ) of
holomorphic square-integrable functions on LΣ with respect to the measure νΣ given by (32) in [61]:

dνΣ(ξ) = dµΣ(ξ) exp
(
− 1

2gΣ(ξ, ξ)
)
.

Therein, µΣ is a (fictitious) Lebesgue measure on LΣ normalized to

1
!
=

ˆ

ξ∈LΣ

dµΣ(ξ) exp
(
− 1

2gΣ(ξ, ξ)
)
.

Hence νΣ is a probability measure:

1 =

ˆ

ξ∈LΣ

dνΣ(ξ).

The inner product of the quantum state space H Σ is then

〈ψ′, ψ〉Σ =

ˆ

ξ∈LΣ

dνΣ(ξ) ψ′(ξ)ψ(ξ).

A function f on the infinite-dimensional space LΣ is holomorphic, if for all λ, α ∈ LΣ and c ∈ C we
can write f(λ+cα) = f(λ) + cdfλ(α) + o(|α|). It is antiholomorphic, if instead we have cdfλ(α) on
the right hand side.

Of particular importance are the coherent states, which generate a dense subspace H coh
Σ ⊂ H Σ.

Normalized coherent states in the Holomorphic Quantization map solutions near hypersurfaces Σ to
complex numbers as given by:

Kξ
Σ(φ) := N ξ

Σ exp
(

1
2 {ξ, φ}Σ

)
N ξ

Σ := exp
(
− 1

4 {ξ, ξ}Σ
)

= exp
(
− 1

4gΣ(ξ, ξ)
)
. (3.1)

ξ(x) is a solution near Σ which we call the characterizing solution of the coherent state. Here we
shall always assume that N ξ

Σ
∈ R, since ξ ∈ LΣ is a real solution. In order to relate the Holomorphic

Representation to the more established Schrödinger one, in [61] a one-to-one correspondence is proven
between the spaces of coherent states H coh

Σ in the Holomorphic Representation and H̃ coh
Σ in the

Schrödinger Representation. This is achieved by explicitly constructing an isometric isomorphism
(Proposition (3.1) therein) B : H̃ coh

Σ → H coh
Σ . The normalized coherent states have a number of

useful properties, of which we only mention the reproducing property

〈Kξ
Σ, ψΣ〉Σ = ψΣ(ξ) · N ξ

Σ ∀ ξ ∈ LΣ

〈ψΣ, K
ξ
Σ〉Σ = ψΣ(ξ) · N ξ

Σ ∀ ψΣ ∈ H Σ,
(3.2)

and the completeness relation

〈
ψΣ, ψ

′
Σ

〉
Σ

=

ˆ

LΣ

dνΣ(ξ)
〈
ψΣ, K

ξ
Σ

〉
Σ

〈
Kξ

Σ, ψ
′
Σ

〉
Σ
/(N ξ

Σ)2 ∀ ψΣ, ψ
′
Σ
∈ H Σ. (3.3)

1 As discussed in Section 3.3 of [59], the states of HQ are actually functions not on LΣ, but rather on the space

L̂Σ. This space can be understood as an extended space of solutions in a neighborhood of Σ, including distributions.
L̂Σ is the algebraic dual of the topological dual of LΣ. However, since the values of a state ψ on LΣ completely fix ψ
on L̂Σ, we shall continue to use the simplified notation of [61] and write just LΣ.
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Next we consider one-particle states, which we shall denote by p (for particle) as in Section 4.2 of
[60]. Since they are continuous, complex-linear maps LΣ → C, they form the topological dual of
LΣ. Hence, by the Riesz Representation Theorem each such map is represented by its associated
element ξ ∈ LΣ through the inner product: pξΣ ∼ {ξ, ·}Σ. Complex linearity here implies

pξΣ(JΣφ) = i pξΣ(φ) ∀ ξ, φ ∈ LΣ, (3.4)

because JΣ is linear and J2
Σ = −1Σ. Since the complex inner product {·, ·}Σ is conjugate linear in

the first and complex linear in the second argument in the sense of (2.9), it is straightforward to verify
that (3.4) is indeed fulfilled, see also Equation (2.10). For a one-particle state on a hypersurface Σ
in the Holomorphic Representation we thus write its wave function(al) as

pξΣ : LΣ → C pξΣ ∈ H Σ

pξΣ(φ) = 1√
2
{ξ, φ}Σ ξ, φ ∈ LΣ. (3.5)

An n-particle state is represented by a linear combination of products of n wave functions of this
type. The creation operator aξ†Σ : H Σ → H Σ for a particle of type ξ then acts on a wave function
by multiplication:(

aξ†Σ ψΣ

)
(φ) = pξΣ(φ) · ψΣ(φ) ξ, φ ∈ LΣ, ψΣ, a

ξ†
Σ ψΣ ∈ H Σ. (3.6)

The corresponding annihilation operator is the adjoint of the creator. Using the reproducing property
(3.2) of the normalized coherent states, the action aξΣ : H Σ → H Σ of the annnihilator writes as(

aξΣψΣ

)
(φ) =

〈
Kφ

Σ, a
ξ
ΣψΣ

〉
Σ
/N φ

Σ =
〈
aξ†Σ K

φ
Σ, ψΣ

〉
Σ
/N φ

Σ ξ, φ ∈ LΣ, ψΣ, a
ξ
ΣψΣ ∈ H Σ. (3.7)

Therefore, the annihilator’s action on a coherent state turns out to be essentially by multiplication:(
aξΣK

λ
Σ

)
(φ) =

〈
aξ†Σ K

φ
Σ, K

λ
Σ

〉
Σ

=
〈
pξΣ ·K

φ
Σ, K

λ
Σ

〉
Σ

ξ, λ, φ ∈ LΣ

= 1√
2
{λ, ξ}Σ ·K

λ
Σ(φ)

=⇒ aξΣK
λ
Σ = pξΣ(λ) ·Kλ

Σ . (3.8)

The action of the creators allows us to write the coherent states as an exponential of a creator acting
on the vacuum state ψvac

Σ ≡ 1:

Kξ
Σ(φ) = N ξ

Σ exp
(

1
2 {ξ, φ}Σ

)
= N ξ

Σ exp
(

1√
2
aξ†Σ
)
ψvac

Σ (φ). (3.9)

3.1.2 Standard amplitudes and S-Matrix

In this section we summarize the construction of the standard S-matrix. That is, for a moment
we put aside the terminology of the GBF (that is, regions, boundaries and hypersurfaces) and the
Holomorphic Quantization, and consider techniques frequently used in textbooks. Standard QFT
uses only one single state space H which is the Fock space over the space of free 1-particle states.
The states in H are thought of as describing the system on all of space at some time t, that is, on
an equal-time hypersurface Σt. The details of this interpretation vary somewhat according to which
of the following three pictures is used.

In the Schrödinger picture (labeled by S), the states |ψS(t)〉 are labeled by the time t, whereas
operators ÔS acting on the states are independent of time. In the Heisenberg picture, (labeled by
H) it is just the other way round: the states |ψH〉 are independent of time while the operators
ÔH(t) depend on time. For some reference time, which for simplicity we set to to zero here, the
states and operators coincide: |ψH〉 = |ψS(0)〉 and ÔH(0) = ÔS. Further, |ψS(t)〉 = Ut,0|ψH〉
and ÔH(t) = U†t,0ÔS Ut,0, wherein the unitary time-evolution operator Ut,0 from time 0 to time t is
constructed from the full interacting Hamiltonian.
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In the Dirac picture (also called interaction picture, and thus labeled by I), both states and
operators are time-dependent. Here, the time-evolution of the states is determined by the interaction
part of the Hamiltonian, while the evolution of the operators is determined by the free part of the
Hamiltonian. (Hence for a free theory the Dirac picture coincides with the Heisenberg picture.)
However, all three pictures have in common that there is only one state space in which the states
live and the operators act.

The S-matrix S : H → H is a unitary operator on the state space. More precisely, it is the limit
of large times t → ∞ of the time-evolution operator U I

t,−t constructed from the interaction part of
the Hamiltonian. The S-matrix is the main tool for making predictions in perturbative QFT. Using
the interaction picture (Dirac picture), its matrix elements are obtained as large-time limit

Sη,ζ ∼ lim
t→∞

〈t ζ|U
I
t,−t |η〉−t, (3.10)

see for example [41, 45, 67]. Usually it is assumed that the interaction is such that | η〉−t and 〈t ζ |
are free states for t > t0 for some fixed time t0. When taking the limit t → ∞, the states remain
asymptotically free while the interaction can now be ”switched on” on all of spacetime.

There is an alternative way to describe this. Physical interactions are not switched on and off
by time, but often decrease with the distance between interacting particles. Consider for example
particles which scatter in some region V and then separate. When their separation becomes large,
the state can be considered free and the particles are moving along timelike geodesics. For later
times the state remains free iff spacetime geometry is such that the separation remains large. In
Minkowski spacetime this is assured because the causal geodesics are just straight lines. However,
in curved spacetime this cannot be taken for granted. In particular, on AdS the timelike geodesics
emanating from a point reconverge periodically (see Figure 1.4), which brings the scattering particles
close together again and again. Hence the state does not become asymptotically free for large times,
and the interpretation of the asymptotic amplitudes as an S-matrix is not justified. This is one
reason for generalizing the construction of S-matrices in the following sections.

Let us recall explicitly how the S-matrix is obtained using sources, the Feynman propagator and
coherent states as summarized in Section 2 of [31]. We use notation suggesting a real scalar field.
Here, we work in the standard setting described above: states live in the one and only state space H
and live on equal-time hyperplanes Σt in the sense that they describe the system at time t on all of
space. In this setting, the spaces Lt of classical solutions in a neighborhood of Σt each coincide with
the space L of global classical solutions. We can identify here the phase space of the free field theory
with the space L of global solutions. Each solution ξ ∈ L has an associated normalized coherent state
Kξ in the Hilbert space H of the free theory. It arises from the vacuum state ψvac by exponentiating
the corresponding creator a†ξ as in (3.9):

Kξ ∼ exp
Ä

1√
2
a†ξ

ä
ψvac. (3.11)

To the free action we can add a source term Dµ given by

Dµ(φ) =

ˆ
dx µ(x)φ(x). (3.12)

Let Kη1 an initial coherent state at time t1, and Kζ2 a final one at t2. Then, the transition amplitude
for the theory with source between these states is given by (see Equation (52) in [22], which compares

directly to Equation (9-86) in Itzykson’s & Zuber’s QFT book [41], wherein the special solution ξ̂(x)

is called the classical asymptotic field):

〈
Kζ2 ,Uµt2,t1K

η1
〉

H =
〈
Kζ2 ,Kη1

〉
H exp

Å
i

ˆ
dxµ(x) ξ̂(x)

ã
exp

Å
i
2

ˆ
dx

ˆ
dy µ(x)GF (x, y)µ(y)

ã
. (3.13)

Uµt2,t1 is again the unitary time evolution operator (for a theory with source µ), and GF is the

Feynman propagator. 〈Kζ2 ,Kη1〉H is the transition amplitude of the free theory (without source). ξ̂
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is the element of the complexified phase space LC which using the definitions in (2.16) writes as (see
Equation (39) in [22] and the end of Section 5.1 in [59]):

ξ̂ = 1
2 (η1+ζ2)− i

2 (−Jη1+Jζ2) = P−η1 + P+ζ2 (3.14)

= ξR − iξI.

J : L → L is here the standard complex structure (2.97) on equal-time planes, which multiplies
positive energy solutions with −i and negative energy solutions with +i, and P± are the polarization
projectors (2.74). In other words, ξ̂ coincides with η1 in its negative energy component and with ζ2
in its positive energy component.

Since the coherent states are parametrized in terms of global solutions (interaction picture), the
transition amplitude (3.13) remains independent of t1 and t2, as long as the source is contained
completely in the interval [t1, t2]. This makes taking the limit t1 → −∞ with t2 → +∞ trivial.
Next we consider an interaction that contributes to the action through a potential term:

DV (φ) =

ˆ
dxV (φ(x)). (3.15)

The corresponding S-matrix2 UV is then formally written using functional derivatives as:

〈
Kζ2 , UVt2,t1K

η1
〉

= exp

Å
i

ˆ
dxV

(
−i δ

δµ(x)

)ã 〈
Kζ2 , Uµt2,t1K

η1
〉 ∣∣∣

µ=0
. (3.16)

After this review in standard notation, we can rewrite the expressions in the notation of the GBF
introduced throughout Section 1.2. Instead of representing transition amplitudes through evolution
operators Ut2,t1 : H → H and inner products 〈 · , · 〉H , we write them directly as the amplitude
maps ρ : H 1⊗H 2 → C of Core Axiom (T4), which fulfill:

ρ(ψ1⊗ψ2) = 〈ψ2, Ut2,t1ψ1〉H . (3.17)

Here, H 1 is the state space of initial states at time t1, and H 2 of final states at t2. We shall write here
ρ, ρµ and ρV for the amplitude maps of the free theory, the theory with source µ, and the theory
with interaction potential V , respectively. The state space H = H 1 is the Fock space over L, where
L is equipped with the Hilbert space structure of the 1-particle space. H 2 is the Fock space over L,
which denotes L with reversed complex structure and complex conjugated inner product, compare
to Classical Axiom (C2). (If we think of L and L as identified, then we can view all state spaces as
identified: H = H 1 = H 2.) Correspondingly, the tensor product state space

H ∂ := H 1⊗H 2 (3.18)

is the Fock space over the complex Hilbert space

L∂ := L⊕ L. (3.19)

What is more, the product of a coherent state in H 1 and a coherent state in H 2 is a coherent state
in H ∂ . It is parametrized by an element ξ12 = (η1, ζ2) in L∂ and generated by an operator of the
form (3.11) on H ∂ . We write

Kξ12 = K(η1,ζ2) = Kη1⊗Kζ2 . (3.20)

With this notation, formula (3.13) for the amplitude with source takes the form

ρµ(Kξ12) = ρ(Kξ12) exp

Å
i

ˆ
dxµ(x) ξ̂(x)

ã
exp

Å
i
2

ˆ
dx

ˆ
dy µ(x)GF (x, y)µ(y)

ã
. (3.21)

2Strictly speaking, the S-matrix arises as the limit t1 → −∞ with t2 → +∞ of this expression. However, for
the reason commented above, this is trivial.
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Similarly, the S-matrix formula (3.16) rewrites as

ρV (ψ) = exp

Å
i

ˆ
dxV

(
−i δ

δµ(x)

)ã
ρµ(ψ)

∣∣∣
µ=0

. (3.22)

This shows how the amplitudes for theories with source µ or interaction potential V can be obtained
from the free amplitude. While considering only time-interval regions, we thus have rewritten the
standard expressions for amplitudes in the GBF’s notation. In the following section we shall extend
this to more general regions, and later in this chapter we construct the free amplitudes for time-
interval and rod regions on Minkowski and AdS spacetime.

3.1.3 GBF amplitudes in Holomorphic Quantization

As the notation suggests, the formulas (3.21) and (3.22) apply much beyond the context given in
the previous section. Underlying this are the GBF’s generalized notions of amplitude, observable
and S-matrix [50, 55]. In particular, amplitudes can be associated to general spacetime regions
whose dimension is d+1, see Section 1.2.2, and not only to the time-interval regions [t1, t2] × Rd

(resp. [−∞,+∞]×Rd) that we considered throughout the previous section. In the special case of a
region [t1, t2]×Rd, the boundary decomposes into two connected components, one at t1 and one at t2.
The boundary state space correspondingly decomposes into a tensor product of two Hilbert spaces
H 1⊗H 2. The GBF’s amplitude map is then a conventional transition amplitude and corresponds to
an operator. In general, however, a single Hilbert (or Krein3) space accommodates both incoming
and outgoing particles [52].

It turns out that formula (3.21) provides the amplitude for a free bosonic field theory with a
source µ in an arbitrary region M in an arbitrary spacetime, given that its ingredients are defined
[58, 66]. We proceed to explain this, starting with a free classical field theory on an unspecified
spacetime, recalling briefly the notation of Section 2.2. The second variation of the action yields
the symplectic structure ωΣ : LΣ × LΣ → R, which we assume to be non-degenerate. This makes
LΣ into a symplectic vector space: the phase space on Σ. We denote by LM the real vector space
of solutions of the equations of motion in M. Remarkably, the subspace Lint

∂M := rM(LM) ⊆ L∂M is
generically a Lagrangian subspace. That is, the symplectic form ω∂M vanishes on Lint

∂M, and Lint
∂M is a

maximal subspace with this property, see (2.43).
To quantize the theory we need a compatible complex structure JΣ on LΣ for each hypersur-

face Σ. That is, JΣ must satisfy J2
Σ = −1Σ and be compatible with the symplectic structure:

ωΣ(JΣφ1, JΣφ2) = ωΣ(φ1, φ2). Then, as introduced in Section 2.2,

gΣ(φ1, φ2) := 2ωΣ(φ1, JΣφ2) and {φ1, φ2}Σ := gΣ(φ1, φ2) + 2iωΣ(φ1, φ2) (3.23)

define a real and a complex inner product on LΣ, respectively. In standard quantization the complex
structure is such that gΣ, and hence also {·, ·}Σ, is positive-definite. However, a quantization where

3For completeness, we include the definition of a Krein space (with the usual notation adapted to fit our notation).
Let L a complex vector space with an indefinite inner product {·, ·}. (In our context we assume that it arises from ω
and J as in (3.23), although in the general theory of Krein spaces this is not necessary.) Its positive definite subspace is

defined by L++ :=
{
λ ∈ L

∣∣ {λ, λ} > 0
}

and its negative definite subspace by L−− :=
{
λ ∈ L

∣∣ {λ, λ} < 0
}

. Then,

L is called Krein space, if there exists a decomposition L = L+⊕L− (called fundamental decomposition), which
respects the complex structure J on L (that is: JL± = L±) and has L+ ⊆ L++ ∪{0} and L− ⊆ L−− ∪{0}. Further,
let Q± the linear projectors onto L± (that is: Q± = 1 on L± whereas Q± = 0 on L∓), which commute with J . Then,
Q := Q+ −Q− is called the metric operator or fundamental symmetry of L. For Krein spaces, it fulfills Q2 = 1 and
thusQ3 = Q. The metric operator induces the positive definite inner product {·, ·}Q := {·, Q·} = {·, Q+·}−{·, Q−·}
on L, which is called Hilbert inner product.

If ω(Q+·, Q−·) = ω(·, ·), then also ω(Q ·, Q ·) = ω(·, ·), that is: the metric operator Q is compatible with the
symplectic structure. Then, JQ := QJ is a new complex structure on L with (JQ)2 = −1 (because J and Q
commute and Q2 = 1 and J2 = −1) and also ω(JQ·, JQ·) = ω(·, ·). This new complex structure induces a positive
definite real g-product gQ(·, ·) := ω(·, JQ·) = g(·, Q ·), which relates to {·, ·}Q as in (3.23).

However, if the original complex structure J commutes with the action of some spacetime isometry K on L∂M, then
the new complex structure JQ does not necessarily inherit this commutation property! Since J commutes with both
Q and K, we have [JQ,K] ≡ [QJ,K] = J [Q,K]. Hence JQ commutes with K, if and only if Q commutes with K.
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these structures are indefinite is perfectly consistent [62]. With the complex inner product (and
upon completion), LΣ is a complex Hilbert space (or Krein space in the indefinite case). This is the
”one-particle” space. The state space is the bosonic Fock space over LΣ. (In the indefinite case, the
Fock space is also indefinite and a Krein space.)

Given a spacetime region M, the fact that Lint
∂M ⊆ L∂M is Lagrangian has an important conse-

quence: L∂M decomposes as a direct sum L∂M = Lint
∂M ⊕ J∂MLint

∂M over R (for any fixed J∂M), see
Lemma (2.11). For ξ ∈ L∂M this writes as the decomposition (which is unique for any fixed J∂M)

ξ = ξR + J∂Mξ
I (3.24)

with ξR, ξI ∈ Lint
∂M. We recall that each such boundary solution ξ ∈ L∂M has an associated element,

generalizing (3.14),

ξ̂ := ξR − iξI (3.25)

in the complexified subspace of interior solutions (Lint
∂M)C ⊆ LC

∂M. For example, for a time-interval
region with the notation of (2.16), this element writes as (the end of Section 5.1 in [59]):

ξ̂12 = ξR
12 − iξI

12. (3.26)

For a rod region, with the notation of (2.19), this element writes as (see Section 5.3 in [59]):

ξ̂0 := ξR
0 − iξI

0. (3.27)

Remarkably, using these ingredients, the amplitude map for the region M can be expressed in closed
form. Given ξ ∈ L∂M, the amplitude of the associated (normalized) coherent state Kξ ∈ H ∂M is
calculated in Section 4.3 of [59], resulting in

ρM(Kξ) = N ξ
∂M exp

Ä
1
4g∂M(ξ̂, ξ̂)

ä
= exp

(
− 1

2g∂M(ξI, ξI)− i
2g∂M(ξR, ξI)

)
. (3.28)

However, the constructions that are necessary to make the path integration rigorous, are rather deep
(see the entire Section 3 in [59]). Therefore, here we only motivate the result, and postpone the
explicit calculation of (3.28) to Section 3.1.4. The amplitude for any boundary state ψ∂M is defined
as the path integral

ρM(ψ∂M) =

ˆ

Lint
∂M

dν(φ) ψ∂M(φ). (3.29)

We recall that LM is the space of classical solutions on the interior of M, and L∂M is the space
of solutions in a neighborhood of ∂M. The map rM of Classical Axiom (C5) allows us to see the
interior solutions as a subset of boundary solutions: rMLM =: Lint

∂M ⊂ L∂M. The measure dν(φ) is
a probability measure like the one above, but on Lint

∂M. Further, ψ∂M is assumed to be integrable:
ψ∂M ∈ L1(Lint

∂M, ν).
The coherent states are integrable in this sense, and for them the integral (3.29) yields precisely

(3.28). Hence Core Axiom (T4) is fulfilled and its amplitude subspace is here H coh
∂M . Also Core Axiom

(T5a) about the amplitude for disjoint unions is met, because the measure for a disjoint region is
the product measure. Further, in Theorem (4.5) of [59] it is proven that also Core Axiom (T5b)
about gluing holds, provided that the gluing data satisfy an integrability condition. Proposition (4.3)
therein proves that Core Axiom (T3x) about slice regions holds as well.

For time-interval regions, we can plug relations (2.16) into the amplitude formula (3.28) and

obtain the amplitude for a coherent boundary state K
(η1,ζ2)
∂M[t1,t2]

= Kη1

Σ1
⊗Kζ2

Σ2
:

ρ[t1,t2]

(
Kη1

Σ1
⊗Kζ2

Σ2

)
= exp

(
− 1

2g∂M[t1,t2]
(ξI

12, ξ
I
12)− i

2g∂M[t1,t2]
(ξR

12, ξ
I
12)
)

= exp
(
−gΣ1

(ξI
12, ξ

I
12)− igΣ1

(ξR
12, ξ

I
12)
)

(3.30)

= exp
(
− 1

4gΣ1
(η1, η1)− 1

4gΣ1
(ζ2, ζ2) + 1

2gΣ1
(η1, ζ2)

)
. (3.31)
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For rod regions, without using information about the modes (which ones are regular on the rod’s
interior and which are not), it is not possible to give an explicit construction of ξR

0 and ξI
0 (as in (2.16)

for the time-interval region), and we can only write (3.28) adapted to the rod region’s notation:

ρr0
(
Kξ0

Σ0

)
= exp

Å
− 1

2gr0(ξI
0, ξ

I
0)− i

2gr0(ξR
0 , ξ

I
0)

ã
. (3.32)

Even though we consider a free theory where everything is supposed to be simple, the result (3.28)
is still striking: It applies irrespective of the shape of the spacetime region M and without even
specifying what kind of spacetime we are actually in. Of course, restrictions on both are hidden in
the assumptions we have made on the various ingredients, in particular the complex structure. We
are still very far from a general understanding of these restrictions in terms of spacetime structure
and field theory.

If we add to the action a linear functional D on field configurations KM in M, i.e., D : KM → R
linear, then the equations of motion in M are modified. Introducing a source term µ via (3.12) is a
special case of this. There is a special solution βD of these modified equations with the property that
its restriction to the boundary lies in J∂MLint

∂M ⊆ L∂M. The amplitude for the thus modified theory
can be shown to take the following form for coherent states [58, 66],

ρDM(Kξ) = ρM(Kξ) exp
(

iD(ξ̂)
)

exp
(

i
2D(βD)− 1

2g∂M(βD, βD)
)
. (3.33)

For the special case (3.12), the expression (3.33) turns into the expression (3.21) with the three
factors on the right hand side in exact correspondence. For the third factor, this can be seen [66]
through the relation between complex structure and Feynman propagator [42].

We return to the setting of Section 3.1.2 to see how it fits into the framework just presented.
The vector space L∂ may be viewed as the space of solutions of the classical equations of motion in
a neighborhood of the boundary of the spacetime region [t1, t2] × Rd (or [−∞,∞] × Rd). Because
of the Cauchy property, such a solution is equivalent to a pair (η1, ζ2) of two (generically distinct)
global solutions. Hence, L∂ = L1⊕L2 with each summand equivalent to L. The space L1 inherits the
complex structure J of L, while L2 has the opposite complex structure, due to its opposite orientation
as a boundary component of the region. Combining the two yields the complex structure

J∂ : L∂ → L∂

J∂(η1, ζ2) = (Jη1,−Jζ2),
(3.34)

see also Section 2.3. The space of solutions inside the region is again equivalent to the space L of
global solutions. Thus, given ξ ∈ L∂ , the global solution ξ̂ = ξR − iξI is an element of LC . As is
straightforward to verify now, it is precisely given by formula (3.14).

Given a quantum field theory and a spacetime region M, the availability of a compatible notion
of source amplitude in M via formula (3.33) or (3.21) depends crucially on the availability of a
suitable complex structure on ∂M. This is a given for standard QFTs and spacelike hypersurfaces
in Minkowski spacetime. There, invariance under Poincaré transformations determines a complex
structure essentially uniquely. For some relevant results for time-like hypersurfaces (not necessarily
explicitly using the language of a complex structure), see [52, 53, 59, 24].

3.1.4 Calculation of the amplitude for coherent states

In this section we show the explicit calculation of the amplitude (3.28) for coherent states, following
the proof of Proposition 4.2 in [59]. Our goal is thus to obtain Equation (44) of [59], that is:

ρM(Kξ)= N ξ
∂M exp

Ä
1
4g∂M(ξ̂, ξ̂)

ä
= N ξ

∂M exp
(

1
4g∂M(ξR, ξR)− 1

4g∂M(ξI, ξI)− i
2g∂M(ξR, ξI)

)
, (3.35)

with the general amplitude (3.29) as point of departure:

ρM(ψ∂M) =

ˆ

Lint
∂M

dν(φ) ψ∂M(φ).
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First, for φ ∈ Lint
∂M, coherent states act on it as follows:

Kξ
∂M(φ) = N ξ

∂M exp
(

1
2

{
ξR+J∂Mξ

I, φ
}
∂M

)
= N ξ

∂M exp
(

1
2

{
ξR, φ

}
∂M −

i
2

{
ξI, φ

}
∂M

)
= N ξ

∂M exp
(

1
2g∂M(ξR, φ)− i

2g∂M(ξI, φ)
)
.

Therein, we use that Lint
∂M is a Lagrangian subspace, and thus the symplectic structure ω∂M vanishes

on it. The coherent state is thus an almost translation invariant function on Lint
∂M. According to

Definition (3.9) in [59], a function f : L → C on a separable Hilbert space L with complex inner
product {·, ·} is called almost translation invariant, if there exists a closed subspace C ⊆ L of finite
codimension n, such that f (φ+χ) = f (φ) for all φ ∈ L and all χ ∈ C. Let us denote the subspace
of L∂M which is spanned by ξR and ξI as Cξ∂M. This subspace has dimension n = 2 if ξR,I are
linear independent, which we shall assume here. (If they are linear dependent, then n = 1 and the
calculation simplifies, while the final result remains the same.) Then, the coherent state is translation
invariant with respect to the orthogonal complement of Cξ∂M in L∂M, which has codimension n = 2.
This can be quickly seen as follows: let χ any element of this orthogonal complement, that is,
g∂M(χ, ξR,I) = 0. Then,

Kξ
∂M(φ+χ)=N ξ

∂M exp
(

1
2g∂M(ξR, φ+χ)− i

2g∂M(ξI, φ+χ)
)

=N ξ
∂M exp

(
1
2g∂M(ξR, φ)− i

2g∂M(ξI, φ)
)

=Kξ
∂M(φ).

This allow us to apply Proposition (3.10) of [59], which essentially states that for almost translation
invariant f as above, we have

ˆ

L

dν(φ) f (φ) =

ˆ

Rn

dνQ(x) f̃ (z),

if the auxiliary function f̃ ∈ L1(Rn, νQ) is integrable. Therein, we use a basis {ξi}i=1,...,n of the above
orthogonal complement, and with that we define according to Equation (12) and Proposition (3.10)
in [59]:

f̃ : Rn → C Qij := 1
2gL(ξi, ξj)

f̃ (x) := f

Å n∑
i=1

xiξi

ã
dνQ(x) := dµ(x)

»
det Q
ιπn exp

(
−xTQx

)
(The factor of 1

2 in the definition of Q stems from comparing with Equation (22) in [59].) Q is thus a
real, positive definite, symmetric matrix. Proposition (3.10) thus enables us to evaluate the infinite-
dimensional integral of almost translation invariant functions f : L → C via a finite-dimensional
integral of the auxiliary function f̃ : Rn → C.

In our case, n = 2 with ξ1 = ξR and ξ2 = ξI. Further, we have Qij = g∂M(ξi, ξj) ∈ R. That
is, here Q is indeed a real, symmetric, positive definite (2,2)-matrix as stated above. The auxiliary
version of the coherent states then writes as

K̃ξ
∂M(x1, x2) := Kξ

∂M(x1ξ
R+x2ξ

I) = N ξ
∂M exp

(
1
2

{
ξR+J∂Mξ

I, x1ξ
R+x2ξ

I
}
∂M

)
= N ξ

∂M exp
(
x1Q11 − ix1Q21 + x2Q12 − ix2Q22

)
.

With these preparations, we can now calculate the holomorphic amplitude of the coherent states:

ρM(Kξ
∂M) =

ˆ

Lint
∂M

dν(φ) Kξ
∂M(φ) =

ˆ

R2

dνQ(x1, x2) K̃ξ
∂M(x1, x2) (3.36)

= N ξ
∂M

»
det Q
ιπ2

ˆ

R2

d
2
x exp

(
− 1

2x
TAx+BTx

)
, (3.37)
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wherein A = 2Q and B = ( 1
2Q11− i

2Q21,
1
2Q12− i

2Q22). For the above Gaussian integral with linear
term we can use that

ˆ

Rn

d
2
x exp

(
− 1

2x
TAx+BTx

)
=

√
(2 ιπ)n

det A exp
(

1
2B

TA−1B
)
. (3.38)

This formula holds for real, symmetric, positive definite A and complex B, as can be verified by
completing the squares − 1

2x
TAx + BTx = − 1

2 (A1/2x − A−1/2B)T(A1/2x − A−1/2B) + 1
2B

TA−1B

and making a change of variables y := A1/2x such that dnx = dny (det A)−1/2. The resulting
integral has y added with an imaginary term in the exponential. The imaginary part of this integral
vanishes because it is an odd function, and (3.38) is the real part, which arises from integral 3.896.4
in [38]:

∞̂

0

dx cos(bx) e−βx
2

= 1
2

»
ιπ
β e−b

2/(4β).

Evaluating (3.37) with (3.38) yields the desired result (3.35):

ρM(Kξ
∂M) = N ξ

∂M exp
(

1
2 Q11 − 1

2 Q22 − iQ12

)
. (3.39)

3.1.5 Unitarity and evolution

A nice feature of Holomorphic Quantization is that it includes evolution and unitarity in a rather
natural way, as shown in Section 4.5 of [59]. For evolution to make sense, we need an ”initial”
hypersurface Σ1 (not necessarily Cauchy) and a ”final” Σ2. Initial here only means that we consider
evolution starting on Σ1 and ending up on Σ2. Evolution is thus taken in a generalized sense here,
and not necessarily in time, see the examples below. We thus consider regions M for which Σ1

and Σ2 form part of the boundary ∂M, and with a one-to-one correspondence between the spaces
of classical solutions LΣ1

and LΣ2
. (Hence we only consider regions with at least two boundary

components, which excludes regions with a connected boundary, as for example the rod region.)
The easiest example is Σ1 and Σ2 being equal-time hypersurfaces or Cauchy surfaces. This is the
case in the standard setting of a time-interval region in Minkowski spacetime. However, the GBF
also considers more general evolution. For example, in Section III of [53] evolution is considered
between two hypersurfaces in Minkowski spacetime, on which the spatial coordinate x1 is constant,
respectively. And Section V therein treats evolution between two Minkowski hypercylinders, each of
constant radius.

Let thus M be a region such that its boundary decomposes as a disjoint union ∂M = Σ1 ∪Σ2.
Then, we have the linear maps

r1 : LM → LΣ1 r1 = P̂Σ1 ◦ rM,
r2 : LM → LΣ2

r2 = P̂Σ2
◦ rM,

wherein P̂Σ1
: L∂M → LΣ1

is the projector onto the subspace LΣ1
(whose action is just cutting

away the component in LΣ2
). We assume here that r1,2 are homeomorphisms, and define the classical

evolution map

T M
21 : LΣ1

→ LΣ2
T M

21 := r2 ◦ r−1
1 . (3.40)

Let now η, ζ ∈ LM, and

η1 := r1η η2 := r2η = T M
21 η1,

ζ1 := r1ζ ζ2 := r2ζ = T M
21 ζ1.
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Then, η∂M := (η1, η2) ∈ Lint
∂M and ζ∂M := (ζ1, ζ2) ∈ Lint

∂M. According to Classical Axiom (C5), Lint
∂M is

Lagrangian, thus we have

0 = ω∂M (η∂M, ζ∂M) = ωΣ1 (η1, ζ1)− ωΣ2 (η2, ζ2) ,

and thus the classical evolution map preserves the symplectic structure:

ωΣ2

(
T M

21 η1, T M
21 ζ1

)
= ωΣ1

(η1, ζ1) . (3.41)

If and only if moreover the classical evolution commutes with the complex structure as in

JΣ2 ◦ T M
21 = T M

21 ◦ JΣ1 , (3.42)

then we get

gΣ2

(
T M

21 η1, T M
21 ζ1

)
= ωΣ2

(
T M

21 η1, JΣ2
T M

21 ζ1
)

= ωΣ2

(
T M

21 η1, T M
21 JΣ1

ζ1
)

= ωΣ1
(η1, JΣ1

ζ1)

= gΣ1
(η1, ζ1) . (3.43)

This implies that also {
T M

21 η1, T M
21 ζ1

}
Σ2

=
{
η1, ζ1

}
Σ1
, (3.44)

that is, the classical evolution map T M
21 is unitary. Proposition (4.6) in [59] then constructs a linear

quantum evolution map UM
21 : H Σ1

→ H Σ2(
UM

21ψ1

)
(φ2) = ρM

(
ψ1⊗K

φ2

Σ2

)
/N φ2

Σ2
∀ ψ1 ∈ H Σ1 , ∀ φ2 ∈ LΣ2 . (3.45)

As proven below, this quantum evolution map relates the amplitude and the inner product through

ρM
(
ψ1⊗ιΣ2

ψ2

)
=
〈
ψ2, UM

21ψ1

〉
Σ2

∀ ψ1 ∈ H Σ1
, ∀ ψ2 ∈ H Σ2

. (3.46)

Moreover, if the classical evolution is unitary, then the quantum evolution is unitary, and they relate
through (

UM
21ψ1

)
(φ2) = ψ1(T M

12φ2) ∀ ψ1 ∈ H Σ1 , ∀ φ2 ∈ LΣ2 . (3.47)

At first sight, this might be taken to suggest that quantum evolution were determined by classical
evolution. However, there are differences already for the free case. Classically, we can have any
solution φ2 near Σ2, and then the solution near Σ1 must be its preimage T M

12φ2. On the quantum

level, the amplitude for coherent states K
T M

12φ2

Σ1
⊗Kφ2

Σ2
determined by such solutions is unity, see (3.30)

with ξI ≡ 0. By contrast, coherent states whose solutions are not related through classical evolution

Kη1

Σ1
⊗Kζ2

Σ2
have a nonvanishing amplitude, albeit exponentially damped by the classically forbidden

term ξI. We can view this as tunneling.
In particular, for coherent states the quantum evolution becomes

UM
21K

ξ1
Σ1

= K
T M

21ξ1
Σ2

∀ ξ1 ∈ LΣ1
. (3.48)

Relation (3.46) is proven as follows:

〈
ψ2, UM

21ψ1

〉
Σ2

=

ˆ

LΣ2

dνΣ2(φ2) ψ2(φ2) ρM
(
ψ1⊗K

φ2

Σ2

)
/N φ2

Σ2
=

ˆ

LΣ2

dνΣ2(φ2) ψ2(φ2)

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ)Kφ2

Σ2
(ξ)/N φ2

Σ2

=

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ)

ˆ

LΣ2

dνΣ2(φ2) ψ2(φ2)Kξ
Σ2

(φ2)/N ξ
Σ2

=

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ)
〈
ψ2, K

ξ
Σ2

〉
Σ2
/N ξ

Σ2

=

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ)ψ2(ξ) = ρM
(
ψ1⊗ιΣ2ψ2

)
.
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In order to prove (3.47) for unitary classical evolution, note that here we can identify the real vector
spaces of classical solutions Lint

∂M and LΣ1
, such that the measures coincide νint

∂M
= νΣ1

. Using ξ1,2 to
indicate the solutions near Σ1,2 induced by ξ ∈ Lint

∂M, we then get

(
UM

21ψ1

)
(φ2)=ρM

(
ψ1⊗K

φ2

Σ2

)
/N φ2

Σ2
=

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ1)Kφ2

Σ2
(ξ2)/N φ2

Σ2

=

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ1) exp
(

1
2

{
φ2, ξ2

}
Σ2

)
exp
(

1
4

{
φ2, φ2

}
Σ2

)

=

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ1) exp
(

1
2

{
T M

21φ2, T M
21 ξ2

}
Σ1

)
exp
(

1
4

{
T M

21φ2, T M
21φ2

}
Σ1

)

=

ˆ

Lint
∂M

dνint
∂M

(ξ) ψ1(ξ1) K
T M

21φ2

Σ1
(ξ1)/N T

M
21φ2

Σ1
=

ˆ

Lint
∂M

dνΣ1
(ξ) ψ1(ξ1) K

T M
21φ2

Σ1
(ξ1)/N T

M
21φ2

Σ1

=
〈
K
T M

21φ2

Σ1
, ψ1

〉
Σ1

/N T
M
21φ2

Σ1

= ψ1(T M
21φ2).

Finally, (3.48) proves by(
UM

21K
ξ1
Σ1

)
(φ2) = Kξ1

Σ1
(T M

21φ2) = exp
(

1
2

{
ξ1, T M

21φ2

}
Σ1

)
exp
(
− 1

4 {ξ1, ξ1}Σ1

)
= exp

(
1
2

{
T M

21 ξ1, φ2

}
Σ1

)
exp
(
− 1

4

{
T M

21 ξ1, T M
21 ξ1

}
Σ2

)
= K

T M
21ξ1

Σ2
(φ2).

Now suppose that we consider a spacetime with a system Σλ of connected hypersurfaces, such that
for any pair (Σλ1

,Σλ2
) the solution spaces L1 and L2 are related through a linear homeomorphism

T21 : L1 → L2 as above. The Classical Axioms (C1)-(C7) ensure the uniqueness of this map.
The most important example for such a situation are Cauchy hypersurfaces in a globally hyperbolic
spacetime. For defining a complete quantization it is now sufficient to fix a complex structure JΣ0

on some hypersurface Σ0 (compatible with the symplectic structure ωΣ0). Then, transporting JΣ0

with the classical evolution maps as in

JΣλ = T M
λ0 ◦ JΣ0

◦ T M
0λ (3.49)

defines a complex structure JΣλ for each Σλ, which is compatible with condition (3.42). Further, the
symplectic structures ωΣλ are compatible with classical evolution as well, as discussed above. Hence
the real and complex inner products are compatible, too, making the classical evolution maps T21

unitary. In turn, this makes the quantum evolution maps UM
21 unitary for any two hypersurfaces Σ1,2.

This agrees with previous results obtained in [23], wherein the Schrödinger-Feynman quantization is
used.

3.1.6 Vacuum

The simplest choice of a vacuum state ψVac
Σ for any hypersurface Σ is setting ψVac

Σ (φ) ≡ 1 for all
φ ∈ LΣ. That is, ψVac

Σ is the coherent state K0
Σ with characterizing solution 0 ∈ LΣ. This choice

complies with all the Vacuum Axioms (V1)-(V5) of Section 1.2.3.
However, in the case of a global background (see Section 1.2.4), a different construction is possible.

By global background we mean that all regions and hypersurfaces are submanifolds (of codimension
0 respectively 1) of some fixed manifold B. Then, any global classical solution (well defined on all of
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B) restricts to a solution on any region and near any hypersurface. The normalized coherent states
with these characterising solutions then form a vacuum, which meets all Vacuum Axioms. In Section
4.6 of [59] this is made precise through the following three properties. Although they are inspired
by having a global background, this is actually not necessary. A set {φΣ} which assigns a φΣ ∈ LΣ

to any hypersurface is called a global solution iff it satisfies the following conditions.

(1) For any hypersurface Σ in B, we have φΣ = φΣ.

(2) If a hypersurface Σ = Σ1 ∪ . . .∪Σn decomposes into a disjoint union of hypersurfaces, then its
assigned solution has n components: φΣ = (φΣ1

, . . . , φΣn).

(3) For any region M in B, its boundary’s assigned solution is an interior solution: φ∂M ∈ Lint
∂M.

Proposition (4.8) in [59] then associates a family of vacuum states {ψVac
Σ } to any global solution {φΣ},

by choosing as the vacuum on any hypersurface Σ the normalized coherent state whose characterizing
solution is the global solution φΣ assigned to Σ. That is: ψVac

Σ = KφΣ

Σ . (Hence the simple choice
ψVac

Σ ≡ 1 is the special case where the vacuum is induced by the trivial global solution φΣ ≡ 0
for all Σ.) Then, Vacuum Axiom (V2) ψVac

Σ
= ψVac

Σ is fulfilled due to (1) when using Classical
Axiom (C2): {η, ζ}Σ = {η, ζ}Σ with the coherent states’ definition (3.1). Vacuum Axiom (V3)
about decomposition can be seen to hold using (2) with Classical Axiom (C3) and Core Axiom
(T2). Finally, Vacuum Axiom (V5) on the unit amplitude of the vacuum holds because of (3), when
evaluating the amplitude formula (3.28). Since φ∂M ∈ Lint

∂M, we have φI
∂M ≡ 0, and hence the vacuum

amplitude becomes unity:

ρM
(
Kφ∂M
∂M
)

= exp
(
− 1

2g∂M
(
φI
∂M, φ

I
∂M
)
− i

2g∂M
(
φR
∂M, φ

I
∂M
))

= 1.

3.1.7 Observables

Although in this thesis we will not work with observables in QFT on AdS, at least we want to provide
a simple example for observables fulfilling the Observable Axioms of Section 1.2.6. Unfortunately,
for the Holomorphic Quantization there is no such simple example, because it views observables
as functions on phase space (represented as the space of solutions). By contrast, the method of
Schrödinger-Feynman Quantization (SFQ) views observables as functions on configuration space.
This simplifies the situation for gluing regions. Let us denote by KM the space of field configurations
on the region M (not just field configurations of classical solutions, but all possible field configura-
tions). Let further M1 and M2 two adjacent regions, which we can glue to yield a new region M.
Then for the configuration spaces we simply have KM = KM1×KM2 . That is, the observables on the
two regions ”decouple”, meaning that each two classical observables on M1 and M2 induce a classical
observable on M and vice versa. In contrast, for the solution spaces we have LM ⊆ LM1

×LM2
. Here,

each two classical observables on M1 and M2 induce a classical observable on M but not vice versa.
Therefore, we sketch here the Weyl observables of Section 4.5 in [66] in Schrödinger-Feynman

Quantization. As for Holomorphic Quantization, we consider linear field theory here. We represent
a linear, classical, real observable DM on a spacetime region M as a functional

DM : KM → R.

A simple example for this is a linear interaction with some source field µ:

Dµ
M(φ) =

ˆ

M

dx µ(x)φ(x).

For any DM, its associated classical Weyl observable is

WM : KM → C WM := exp (iDM). (3.50)



i3.1 GBF and Quantum Field Theoryxx 101i

(We shall always use FM : KM → C for general classical observables, DM for such that are
both linear and real, and WM for the Weyl observables exp (iDM). However, we shall write the label
M only when there is enough space to do so.) We consider the class of observables which consists
in complex linear combinations of Weyl observables (these form an algebra). For later use, for an

observable FM and any interior solution ξ ∈ Lint
∂M, we define the associated translated observable F ξM

through

F ξM : KM → C F ξM(φ) := FM(φ+ξ). (3.51)

We note that for a linear observable DM the translated observable Dξ
M generically is not linear any

more due to Dξ
M(φ) = DM(ξ) +DM(φ). By contrast, the Weyl observable associated to Dξ

M (which

is just the translated Weyl observable W ξ
M of DM) is again in the algebra of Weyl observables due to

W ξ
M(φ) = eiD(ξ)︸ ︷︷ ︸

∈C

WM(φ).

We now quantize Weyl observables using SFQ, and start with the path integral for the SF amplitude

ρM(ψ∂M) =

ˆ

KM

dµ(φ) eiSM(φ)ψ∂M(φ|∂M).

Therein, SM(φ) is the classical action, and µ(φ) is a (fictitious) translation-invariant measure on KM.
For a classical observable FM : KM → C, a natural modification of this amplitude is

ρFM(ψ∂M) :=

ˆ

KM

dµ(φ) eiSM(φ)ψ∂M(φ|∂M)FM(φ). (3.52)

This is the Schrödinger-Feynman quantization of FM in Section 4.1 of [60] and Section 4.5 of [66].
As in Holomorphic Quantization, this integral can be evaluated for coherent states4: For observables
FM which are complex linear combinations of Weyl observables, Proposition (4.4) in [66] proves the
Coherent Factorization Property (CFP):

ρFM(Kξ
∂M) = ρM(Kξ

∂M) · ρF
ξ̂

M (K0
∂M) ∀ ξ ∈ L∂M. (3.53)

Therein, ξ̂ := ξR − iξI as in (3.25), with ξ = ξR + J∂Mξ
I wherein ξR, ξI ∈ Lint

∂M. The coherent state
K0
∂M is the simplest choice of a vacuum on ∂M, as discussed in Section 3.1.6. Next, we cite two

results, which are necessary in order to show that the Schrödinger-Feynman Quantization of Weyl
observables fulfills the Observable Axioms of Section 1.2.6. First, for Weyl observables the Coherent
Factorization Property (3.53) becomes more explicit, as proven in Proposition (4.3) of [66]:

ρWM (Kξ
∂M) = ρM(Kξ

∂M) · ρWM (K0
∂M) ·W (ξ̂) ∀ ξ ∈ L∂M, (3.54)

with further

ρWM (K0
∂M) = exp

(
i
2DM(ηD)− 1

2g∂M(ηD, ηD)
)

(3.55)

wherein the special boundary solution ηD ∈ J∂MLint
∂M is uniquely determined. Note that ηD ∈ J∂MLint

∂M
implies that ηD /∈ Lint

∂M, saying that it is a boundary solution, never an interior solution.
Now let us see how these results relate to the Observable Axioms. (O1) becomes satisfied by

taking as observable maps the complex linear combinations of Weyl observables. Then, (O2a) can
be seen to hold by setting

ρW1

M1
�ρW2

M2
:= ρW1⊗W2

M . (3.56)

4In the usual way of writing the Schrödinger representation, coherent states are characterized not by solutions near
a hypersurface Σ, but by field configurations on Σ. However, this representation can be formulated in a way, which
allows characterization by solutions, because the formulation is sensitive only to the solutions’ configuration on Σ.
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(O2a) is then met: using (3.54) from Proposition (4.3) and Core Axiom (T5a), we get(
ρW1

M1
�ρW2

M2

)
(Kξ1

∂M1
⊗Kξ2

∂M2
) = ρW1⊗W2

M (Kξ1
∂M1
⊗Kξ2

∂M2
)

= ρM(Kξ1
∂M1
⊗Kξ2

∂M2
) · ρW1⊗W2

M (K0
∂M) ·

(
W1⊗W2

)
(ξ̂1, ξ̂2)

= ρM1(Kξ1
∂M1

)·ρM2(Kξ2
∂M2

)·W1(ξ̂1)·W2(ξ̂2) ·

· exp
(

i
2D1(ηD1

)− 1
2g∂M1

(ηD1
, ηD1

) + i
2D2(ηD2

)− 1
2g∂M2

(ηD2
, ηD2

)
)

= ρW1

M1
(Kξ1

∂M1
) · ρW2

M2
(Kξ2

∂M2
).

For Axiom (O2b), we summarize Proposition (4.2) in [66]. It treats the gluing of observables in the
setting of Core Axiom (T5b): MG is a region with its boundary decomposing as a disjoint union
∂MG = ΣN ∪ΣG ∪Σ′G, where Σ′G is a copy of ΣG. Then, MN denotes the region resulting from

gluing MG with itself along ΣG and Σ′G, with ∂MN = ΣN .
We note, that KMN ⊆ KMG , since the possible configurations on the glued region MN are just

those configurations of the original region MG, which coincide on the gluing hypersurfaces ΣG and
Σ′G. Therefore, any observable FG on MG induces an observable FN on MN through

FN (φN ) := FG(φN ) ∀ φN ∈KMN .

Therein, on the right hand side φN is viewed as a configuration on MG which coincides on ΣG and
Σ′G. We now consider the two linear observables

DG : KMG → R DN : KMN → R,

wherein DN is induced by DG. The associated Weyl observables are

WG = exp (iDG) WN = exp (iDN ).

We now rewrite (1.36) as in Section 4.4 of [59] and Proposition (4.2) of [66]. That is, instead of
summing over an orthonormal basis {ξiG} of H ΣG , we write an integral over coherent states as in
the completeness relation (3.3). Further, since the coherent states generate a dense subset, we only
consider the axiom for these. In Proposition (4.2) the following rewritten version of (O2b) is proven
(generalizing Theorem (4.5) of [59]):(

�ΣGρ
WG

MG
)
(Kφ

ΣN
) · c(MG,ΣG,Σ′G) ≡ ρWN

MN (Kφ
ΣN

) · c(MG,ΣG,Σ′G)

=

ˆ

LΣG

dνΣG(ξ) ρWG

MG (Kφ
ΣN
⊗Kξ

ΣG
⊗ιΣGK

ξ
ΣG

)/(N ξ
ΣG

)2. (3.57)

We have thus sketched how (the algebra of complex linear combinations of) Weyl observables realizes
the Observable Axioms of the GBF. Weyl observables are simple enough for allowing us to obtain an
explicit formula for their quantization. However, they also generate a much larger class of observables
via functional differentiation as described in detail in Section 4.9 of [66]. This is justified by the
linearity of holomorphic quantization, which lets it commute with the functional derivative. The
relation

D = −i ∂
∂λ exp (iλD)|λ=0,

for F := exp (iλD) gives us

ρDM = −i ∂
∂λ ρ

F
M|λ=0.

This can be evaluated using (3.54) from Proposition (4.7). In Section 4.9 of [66], corresponding
formulas are derived for products of polynomials of linear observables with Weyl observables. As a
beautiful detail, let us mention here only that if on a time-interval region on Minkowski spacetime we
take as observable the two-point-function D1D2 which results as the product of D1(φ) := φ(x1) with
D2(φ) := φ(x2), then the corresponding observable map recovers precisely the Feynman propagator
−iGF (x1, x2).
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3.1.8 Isometries and complex structure

As recalled in Section 3.1.2, a key ingredient in the quantization of a classical field theory is the
complex structure J , see e.g. [4]. It has to be compatible with the symplectic structure encoding
classical dynamics: ω(η, ζ)

!
=ω(Jη, Jζ), yielding the inner product (2.4) on the space L of classical

solutions, which in turn determines the Fock space of states.
To make spacetime symmetries of the classical theory also symmetries of the quantum theory, the

complex structure should be invariant under these. In Section 1.2.4 we discuss the action of spacetime
transformations k on regions, hypersurfaces and the associated objects in Quantum Theory. For
Minkowski and AdS the relevant transformations are their respective spacetime isometries. Axiom
(SG5) requires the amplitude of a region to remain invariant under their actions. For the amplitudes
(3.28) of Holomorphic Quantization this can be achieved as follows. The holomorphic amplitudes
are determined by the real g-product and by the decomposition (3.24). The former is determined
by the symplectic structure ω∂M and the complex structure J∂M, and the latter only by the complex
structure. Hence invariance of the holomorphic amplitudes is assured by invariance of g∂M, which in
turn depends on two conditions:

(1) that the symplectic structure is k-invariant: ωk.∂M(k .η, k .ζ) = ω∂M(η, ζ), and

(2) that the complex structure commutes with k: Jk.∂M (k .φ) = k . (J∂M φ).

With these conditions holding, we get a k-invariant g∂M:

gk.∂M(k .η, k .ζ) = ωk.∂M
(
k .η, Jk.∂M(k .ζ)

)
= ωk.∂M

(
k .η, k . (J∂Mζ)

)
= ω∂M(η, J∂Mζ)

= g∂M(η, ζ) .

Hence we will need to verify whether these two conditions are fulfilled. In the previous chapter,
Condition (1) is studied for Minkowski spacetime in Section 2.5.5, and for AdS in Section 2.6.7.
The present chapter deals with condition (2). In Minkowski spacetime with its isometry group of
Poincaré transformations, the complex structure Jt in (3.74) on an equal-time hypersurface Σt fulfills
this requirement, and is essentially uniquely determined by it. For spacelike hypersurfaces in more
general curved spacetimes the situation is more complicated [4].

In the standard approach, the space Lt (of classical solutions well defined near Σt) where the com-
plex structure lives, is thought of as a space of global solutions. Since isometries map global solutions
to global solutions, it is then clear how isometries act and what isometry invariance of the complex
structure means. In contrast, in the GBF the complex structure is seen as intrinsically associated to
the hypersurface and to solutions in its neighborhood. However, not all isometries ”preserve neigh-
borhoods”, that is, map solutions in a neighborhood of some hypersurface Σ to solutions that again
are well defined on that neighborhood. Thus, in the GBF there is a straightforward action only for
isometries that map the hypersurface to itself. If we restrict to infinitesimal isometries, however, the
fact that solutions are defined not only on the hypersurface itself, but on a neighborhood, is enough
to make their actions well defined. (In this way the isometry invariance of symplectic structures on
hypersurfaces on AdS was understood in [30].)

The complex structure Jr in (3.77) for Klein-Gordon theory on the hypercylinder in Minkowski
spacetime has this same essential uniqueness property, as exhibited implicitly in [53] and explicitly
in [59] for propagating solutions. This gives additional motivation for pursuing the same isometry
invariance criterion for selecting reasonable complex structures on AdS spacetime. For the AdS
time-interval region, this is done in Section 3.3.1, and for the AdS rod region in Section 3.3.2.

3.1.9 Generalized S-Matrices for Minkowski and AdS spacetimes

We are interested here in the particular case of spacetime regions extended to infinity to cover all
of spacetime. In this case the interacting theory can be described perturbatively through formula
(3.22). As recalled above, the usual S-matrix in Minkowski space is obtained by taking a time-interval
region [t1, t2] and sending the boundaries to infinity, t1 → −∞ and t2 → +∞. However, this is not
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the only possibility for covering all of spacetime. A particularly compelling setup is the rod region
Mr = Rt×Bdr. Physically, we are considering an experiment that is spatially confined, but may
run continuously. We are injecting and detecting particles from a distance r from the center, but at
any time. The asymptotic idealization is achieved by letting r go to infinity, moving out from the
interaction region, where it is well justified to consider particles as free. One might even argue, that
actually this setup is more physically compelling than the usual asymptotics in time. It was shown
in [22] for Klein-Gordon theory on Minkowski spacetime, that the resulting asymptotic amplitude is
in fact precisely equivalent to the usual S-matrix.

Physically, the equivalence is based on a correspondence between asymptotic classical solutions. In
the standard S-matrix setting, these solutions are pairs of global solutions, one at early times and one
at late times. We have already identified this space of solutions as L∂T = L1⊕L2, (but note the slight
change of notation). In the hypercylinder setting, let Lr the space of solutions in a neighborhood
of the hypercylinder Σr. Then, the asymptotic solutions live in the space L∂R, arising as the limit
of Lr, when r goes to infinity. In this case there is a subtlety. In addition to the usual propagating
solutions, Lr contains evanescent solutions (that is, solutions showing exponential behavior in space,
and thus well-defined in a neighborhood of the hypercylinder with finite radius r, while diverging
for r → ∞). The evanescent solutions are absent, however, in L∂R. Taking this into account,
there is a one-to-one correspondence between the elements of L∂R and those of L∂T . More precisely,
there is an equivalence between L∂R and L∂T as symplectic vector spaces. For this equivalence to
survive quantization, we need to choose corresponding complex structures on L∂R and L∂T . Then
L∂R and L∂T are equivalent as complex Hilbert (or Krein) spaces. Consequently, the state spaces of
the quantum theory, i.e., the Fock spaces over L∂R and L∂T will also be equivalent as complex Hilbert
(or Krein) spaces. What is more, as a consequence of the classical correspondence, the amplitudes
will be the same, without and with sources. For later use, we refer to this equivalence as amplitude
equivalence. For examples of amplitude equivalence in curved space times, see [17, 18, 19, 24].

The availability of different asymptotic regimes in a given spacetime becomes particularly in-
teresting when they are inequivalent. This is the case for AdS spacetime. As is well known, the
conventional S-matrix approach fails due to the lack of temporally asymptotically free states. From
the present perspective this manifests itself as follows. The space Lt of admissible solutions in a
neighborhood of the equal-time hypersurface at time t is rather small and admits only discrete en-
ergy levels. There is a larger continuum of solutions, but these do not decay sufficiently fast at
spatial infinity to be normalizable. The negative curvature of AdS makes the solutions behave akin
to being in a box potential: only those solutions that vanish at radial infinity (the ”wall of the box”)
are normalizable.

On the other hand, it was shown in [30] that a hypercylinder geometry leads to a very different
picture. The space of admissible solutions Lρ in a neighborhood of the hypercylinder of radius ρ
contains a full continuum of solutions. This suggests to build the physical S-matrix in AdS on the
asymptotic hypercylinder geometry rather than the conventional asymptotic time-interval geometry
[20]. The requisite classical theory was developed in Chapter 2. The main ingredient for quantization
is the complex structure, which is the main focus of the present chapter whose results are published
in [31].

3.1.10 Minkowski limit and amplitude equivalence

Overview

Since QFT in Minkowski spacetime is much better understood than in curved spacetime, we shall
make use of the fact that Minkowski spacetime arises from AdS in a flat limit, in the sense of Section
2.6.2. Concretely, we shall require that the flat limit of the AdS amplitudes reproduces the respective
Minkowski amplitudes. From (3.28) and (3.33) it is easy to see that this holds, if for Klein-Gordon
solutions η, ζ on AdS the flat limit of the real product gAdS(η, ζ) is the same as the Minkowski real
product gMink(η̃, ζ̃) of the solutions’ flat limits η̃, ζ̃. In turn, this holds if the limit of the AdS complex
structure is the Minkowski complex structure for the relevant class of hypersurfaces, as sketched in
diagrams (3.85) and (3.103). This turns out to make sense for both equal-time hypersurfaces and
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hypercylinders, yielding a limit both on rod regions and on time-interval regions, which we work out
in Sections 3.3.1 and 3.3.6 respectively.

As mentioned in Section 3.1.9, the standard asymptotic time-interval geometry and the asymp-
totic rod geometry lead to equivalent amplitudes in Minkowski spacetime [21, 22]. On the other
hand, the corresponding geometries are inequivalent in AdS. In particular, the relevant asymptotic
solution spaces are rather different. The space LAdS

ρ of solutions on the boundary hypercylinder of a
rod region is continuous, while the space LAdS

t1 ⊕LAdS

t2 of solutions on the boundary of a time-interval
is much smaller and discrete. In particular, there can be no amplitude equivalence. However, it turns
out that there is a suitable embedding of the discrete space LAdS

t1 ⊕LAdS

t2 into the continuous one LAdS

ρ .
This allows for a weak form of amplitude equivalence, which we work out in Section 3.3.3. What
is more, this weak amplitude equivalence can in the flat limit be brought into congruence with the
(strong) amplitude equivalence in Minkowski spacetime. The ensuing relations between amplitudes
(and thus complex structures) are illustrated in Figure 3.1.

Figure 3.1: Amplitude relations for time-interval and rod regions on AdS and Minkowski spacetime.

Amplitude equivalence

We proceed to explain in more detail how amplitude equivalence relates complex structures. Suppose
we have two spacetime regions M, N to describe the same physics in the interior of both. (This is
illustrated for the example of M being a time-interval and N a rod region in Figure 3.2.)

Figure 3.2: Time-interval and rod regions with source µ.
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In general terms, an amplitude equivalence is then a map A : H ∂M → H ∂N which is defined on
some subspace of H ∂M and fulfills ρN(Aψ∂M) = ρM(ψ∂M) for all states ψ∂M in this subspace. The
properties of amplitude equivalence maps (domain, bijectivity, isomorphism, linearity) depend on the
theory under consideration, the shape of the regions and the geometry of spacetime. For example,
we expect linearity properties to depend on the number of boundary components of the regions.

Comparing solutions outside the regions (or asymptotically) should yield an equivalence E be-
tween the boundary solution spaces L∂M and L∂N, for which we write E : L∂M → L∂N. For
”outside” solutions η, ζ, the symplectic structures on the boundaries should be the same under this
equivalence:

ω∂M(η, ζ) = ω∂N
(
E(η), E(ζ)

)
. (3.58)

While this equality follows straightforwardly from Lagrangian field theory for compact regions, the
case of non-compact regions is less trivial. The free holomorphic amplitude (from which the inter-
action amplitudes can be obtained) is determined by the real inner product g. To obtain equality of
the real g-products on ∂M and ∂N under the equivalence, that is:

g∂M(η, ζ) = g∂N
(
E(η), E(ζ)

)
, (3.59)

we require in addition for all outside solutions η, ζ ∈ L∂M

g∂M(η, ζ) = ω∂M(η, J∂Mζ)
(3.58)

= ω∂N
(
E(η), E(J∂Mζ)

)
!
=ω∂N

(
E(η), J∂NE(ζ)

)
= g∂N

(
E(η), E(ζ)

)
.

(3.60)

This means that the complex structures on L∂M and L∂N need to be related by the same map between
L∂M and L∂N that establishes the equivalence. That is, for all outside solutions ζ ∈ L∂M we need

E(J∂Mζ)
!
= J∂NE(ζ). (3.61)

A trouble with this setting is that the decompositions (3.62) of the spaces L∂M and L∂N depend
themselves on the choices of complex structures. This is so because L∂M and L∂N are supposed to be
Hilbert (or Krein) spaces with their inner products. Thus, the complex structure itself determines
to some extent what is the nature of the elements in L∂M and L∂N. Usually, these are some kind of
L2 spaces, i.e., the elements are equivalence classes of square integrable functions.

On the other hand, the spaces LM and LN of free solutions in the interior of M and of N, should
coincide by assumption5: LM = LN. Hence, here we do not need to write explicitly an equivalence
map E, since here E is the identity map. Moreover, these must give rise to Lagrangian subspaces of
L∂M and L∂N, see Classical Axiom (C5). We also recall the following decomposition from Section 2.2

L∂M = (rMLM)⊕ J∂M (rMLM), (3.62)

and the corresponding one for N. We thus see, that it is sufficient to require the equality (3.60) for
interior solutions, that is, elements of LM = LN:

ω∂M(η, J∂Mζ) = ω∂N(η, J∂Nζ) ∀ η, ζ ∈ LM = LN. (3.63)

5The simplest example for this is real Klein-Gordon theory with mass parameter m on Minkowski spacetime, with
M a time-interval region and N a rod region. The solutions on the interior of the time-interval are plane waves
with energy E2 > m2. Their spatial part can be rewritten as spherical Bessel function times spherical harmonics,
conserving the energy E2 > m2. The inner solutions of the rod region are precisely these ”Bessel modes” (while the
”Neumann” modes are only bounded near the rod’s boundary but nut on the whole interior). However, there are
additional inner solutions on the interior of the rod region called ”modified Bessel modes” with E2 < m2 (again, the
”modified Neumann modes” are not bounded on the whole interior). In order to describe the same physics in both
regions and have LM = LN, we need to exclude the modified Bessel modes.
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For the example of Figure 3.2 this is precisely condition (3.73). Then, with ηR,I, ζR,I ∈ LM = LN
interior solutions, we let

η∂M = ηR + J∂Mη
I

η∂N = E(η∂M) = E(ηR + J∂Mη
I) = E(ηR) + E(J∂Mη

I) = ηR + J∂NE(ηI)

= ηR + J∂Nη
I

ζ∂M = ζR + J∂Mζ
I

ζ∂N = E(ζ∂M)

= ζR + J∂Nζ
I,

(3.64)

with thus η∂M, ζ∂M ∈ L∂M and η∂N, ζ∂N ∈ L∂N solutions near the respective boundaries. We then get
the following real g-products for the boundary solutions:

g∂M(η∂M, ζ∂M) = ω∂M(η∂M, J∂Mζ∂M)

= ω∂M(ηR+J∂Mη
I, J∂Mζ

R−ζI)

= ω∂M(ηR, J∂Mζ
R)− ω∂M(ηR, ζI)︸ ︷︷ ︸

0

+ω∂M(ηI, ζR)︸ ︷︷ ︸
0

−ω∂M(J∂Mη
I, ζI)

= ω∂M(ηR, J∂Mζ
R) + ω∂M(ηI, J∂Mζ

I)

(3.63)
= ω∂N(ηR, J∂Nζ

R) + ω∂N(ηI, J∂Nζ
I)

= ω∂N(η∂N, J∂Nζ∂N)

= g∂N(η∂N, ζ∂N).

That is, requirement (3.59) is satisfied for arbitrary boundary solutions η∂M, ζ∂M:

g∂M(η∂M, ζ∂M) = g∂N
(
E(η∂M), E(ζ∂M)

)
. (3.65)

Suppose in particular that the complex structure on L∂M is given, and we wish to construct an
equivalent one on L∂N. Once we have chosen a complement of rN(LN) in L∂N, this equivalent complex
structure on L∂N is completely determined by equation (3.60) respectively (3.61) on LM = LN.

Amplitude equivalence for tube and rod regions

As a first example for amplitude equivalence, let us consider tube and rod regions. Since these
regions appear naturally in the same situations, we now ask: For which states do the amplitudes
of these regions coincide? We recall that the calculations for tube regions are identical to those of
time-interval regions if we replace the foliation parameter t by the radius r. In the following we
study situations where the complex structure Jr and the symplectic structure ωr(·, ·) associated to
a hypercylinder Σr are actually independent of the radius. Nevertheless we keep the label r in order
to remind us that they refer to hypercylinders. Let us consider a tube region M[r1,r2] with boundary

hypercylinders Σ1 tΣ2. For two solutions η1 near Σ1 and ζ2 near Σ2, the amplitude of the associated

coherent boundary state Kη1

Σ1
⊗Kζ2

Σ2
is then given by (3.31):

ρ[r1,r2]

(
Kη1

Σ1
⊗Kζ2

Σ2

)
= exp

Å
−gr(ξ

I
12, ξ

I
12)− igr(ξ

R
12, ξ

I
12)

ã
. (3.66)

The question is now: Which boundary state Kξ0
Σ0

of a rod region Mr0 gives rise to the same amplitude?
to this end we compare the above tube amplitude (3.66) to the rod amplitude (3.32):

ρr0
(
Kξ0

Σ0

)
= exp

Å
− 1

2gr(ξ
I
0, ξ

I
0)− i

2gr(ξ
R
0 , ξ

I
0)

ã
(3.67)

!
= ρ[r1,r2]

(
Kη1

Σ1
⊗Kζ2

Σ2

)
= exp

Å
−gr(ξ

I
12, ξ

I
12)− igr(ξ

R
12, ξ

I
12)

ã
.
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The amplitudes coincide precisely if both real and imaginary parts of the exponent agree for tube
and rod amplitude. Since all ξ involved are real, this means that we need

1
2gr(ξ

I
0, ξ

I
0)

!
= gr(ξ

I
12, ξ

I
12) 1

2gr(ξ
R
0 , ξ

I
0)

!
= gr(ξ

R
12, ξ

I
12).

Therefore, for any given (η1, ζ2) respectively (ξR
12, ξ

I
12) such that gr(ξ

I
12, ξ

I
12) 6= 0 there is an infinite

number of (ξR
0 , ξ

I
0) that makes the amplitudes coincide. We can construct them by starting from two

arbitrary solutions (ξ̃R
0 , ξ̃

I
0) fulfilling two requirements. First, they must be well defined on the whole

rod region. Second, we need gr(ξ̃
I
0, ξ̃

I
0) 6= 0 and gr(ξ̃

R
0 , ξ̃

I
0) 6= 0. Then, rescaling the two solutions

ξI
0 = ξ̃I

0

√
gr(ξ

I
12, ξ

I
12)

1
2 gr(ξ̃

I
0, ξ̃

I
0)

ξR
0 = ξ̃R

0

gr(ξ
R
12, ξ

I
12)

1
2 gr(ξ̃

R
0 , ξ

I
0)
. (3.68)

(mind the tildes) makes the amplitudes coincide, as can be checked by plugging the above (ξR
0 , ξ

I
0)

into the first line of the condition (3.67). (Here we assume a positive-definite gr. If this is not the
case, then care must be taken with signs.) This infinite number of solutions (ξR

0 , ξ
I
0) does not tell us

anything physical in particular.
However, there is a more natural correspondence. In the case that the solutions (η1, ζ2) are such

that the induced (ξR
12, ξ

I
12) are well defined on the whole rod region, we can make rod and tube

amplitudes coincide by simply setting

ξI
0 = 1√

2
(−Jrη1 + Jrζ2) ξR

0 = 1√
2

(η1 + ζ2) (3.69)

=
√

2 ξI
12 =

√
2 ξR

12.

Due to bilinearity of gr and ωr, the relations (3.69) make the amplitudes of tube and rod regions
coincide also for complex η1 and ζ2. The factors of

√
2 appear because gr is bilinear, and the

number of boundary components of the tube region is 2 times that of the rod region. The solution

ξ0 characterizing the state Kξ0
Σ0

near Σ0 induced by these ξI,R
0 is thus simply

ξ0 = ξR
0 − JrξI

0 =
√

2 ζ2. (3.70)

It appears that the solution η1 is lost somehow. However, the condition that the induced (ξR
12, ξ

I
12)

are well defined on the whole rod region induces a relation between η1 and ζ2. That is, η1 and ζ2
are not independent here, and thus η1 appears in (3.70) implicitly. As an example for this, let us
consider Klein-Gordon theory on Minkowski spacetime. Expansion (2.108) for a complex solution
on a tube region gives us

η1(t, r,Ω) =

ˆ
dE
∑
l,ml

{
η1,a
Elml

µ(a)

Elml
(t, r,Ω) + η1,b

Elml
µ(b)

Elml
(t, r,Ω)

}

ζ2(t, r,Ω) =

ˆ
dE
∑
l,ml

{
ζ2,a
Elml

µ(a)

Elml
(t, r,Ω) + ζ2,b

Elml
µ(b)

Elml
(t, r,Ω)

}
.

We recall that the a-modes are regular on the time-axis r = 0 while the b-modes diverge there. The
condition that (ξR

12, ξ
I
12) be regular on rod regions thus means that they may not contain b-modes.

From (2.16) we have

ξR
12 = 1

2 (η1 + ζ2) ξI
12 = 1

2 (−Jrη1 + Jrζ2).

The condition that ξR
12 = 1

2 (η1+ζ2) may not contain b-modes implies that ζ2,b
Elml

= −η1,b
Elml

. Using as

an example the complex structure (2.119), that is: (Jrφ)aElml = −φbElml while (Jrφ)bElml = +φaElml ,
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we get

−(Jrη1)(t, r,Ω) =

ˆ
dE
∑
l,ml

{
+η1,b

Elml
µ(a)

Elml
(t, r,Ω)− η1,a

Elml
µ(b)

Elml
(t, r,Ω)

}

(Jrζ2)(t, r,Ω) =

ˆ
dE
∑
l,ml

{
−ζ2,b

Elml
µ(a)

Elml
(t, r,Ω) + ζ2,a

Elml
µ(b)

Elml
(t, r,Ω)

}
.

Hence the condition that ξI
12 = 1

2 (−Jrη1 + Jrζ2) may not contain b-modes implies that ζ2,a
Elml

=

+η1,a
Elml

. This example illustrates that the condition of having (ξR
12, ξ

I
12) regular on rod regions makes

ζ2 determined completely by η1. The thereby induced relation between η1 and ζ2 depends on the
chosen complex structure Jr.

We have thus seen a first example of amplitude equvalence. Since the hypersurfaces that bound
tube and rod regions are of the same type (hypercylinders), the same complex structure Jr is involved
in tube and rod amplitudes. Hence the equivalence essentially consists in an unsurprising factor
of
√

2 , which relates the characterising solutions of the coherent states on the tube’s and rod’s
boundaries.

Amplitude equivalence for time-interval and rod regions

Next let us consider rod and time-interval regions. Since time-interval regions include the origin
r = 0, solutions that are well defined on time-interval regions are naturally well defined on rod
regions as well. Here we consider global solutions only, that is, solutions that are well defined for
all times and on all of space. Therefore, if η1 respectively ζ2 are global solutions near Σ1 at t = t1
respectively Σ2 at t = t2, then the induced solutions (2.16)

ξR
12 = 1

2 (η1 + ζ2) ξI
12 = 1

2 (−Jtη1 + Jtζ2).

are global as well, and hence they are well defined on rod regions. In the previous subsection we saw
that for tube regions this is an additional requirement which implies a relation between η1 and ζ2,
but for time-interval regions it is fulfilled naturally. For simplicity we assume again that symplectic
structures and complex structures are independent of time respectively radius, and use the labels t
and r merely in order to indicate to which type of hypersurface they refer. We thus call two complex
structures Jt and Jr amplitude-equivalent, if they make the following amplitudes coincide for all
global solutions η1 and ζ2:

ρ[t1,t2]

(
Kη1

Σ1
⊗Kζ2

Σ2

)
= exp

(
−gt(ξ

I
12, ξ

I
12)− igt(ξ

R
12, ξ

I
12)
)

!
= ρr0

(
Kξ0

Σ0

)
= exp

(
− 1

2gr(ξ
I
12, ξ

I
12)− i

2gr(ξ
R
12, ξ

I
12)
)
,

(3.71)

wherein now we have (mind where we use Jt and where Jr!)

ξ0 = ξR
12 − JrξI

12. (3.72)

Comparing (3.71) to (3.65), we here have g∂M = 2gt due to ∂M = Σ1 ∪Σ2 and gΣ1 = gΣ2, while
g∂N = gr since the rod’s boundary is one single hypersurface Σ0. And comparing (3.72) to (3.64),
we have here (η1, ζ2) = ξ∂M while ξ0 = ξ∂N, with ξ∂N = E(ξ∂M) as discussed above.

Equation (3.72) is a natural way to relate complex structures on equal-time hypersurfaces to
those on hypercylinders. Relation (3.72) means that the solution ξ0 (well-defined near the rod’s
boundary) and the solution (η1, ζ2) (well-defined near the time-interval’s boundary) share the same
global solution ξR

12 as part which is well-defined on the whole region respectively. Further, they also
share the same global solution ξI

12 which induces the respective parts which are not well-defined on
the whole region, but only near the boundaries. For the time-interval this part is induced by Jt, for
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the rod by Jr. The negative sign before Jr is due again to the opposite orientations of Σr and the
rod’s boundary.

Plugging (3.72) into (3.71), we can read off the following: amplitude-equivalence of complex
structures for global solutions is actually the same as inducing the same real g-product for all global
solutions up to a factor of 1

2 . This factor again results from the circumstance that the time-interval
has 2 times the number of boundary components of the rod. Ergo, Jt and Jr are amplitude-equivalent
for global solutions, precisely if for all global solutions η, ζ they induce

gt(η, ζ) = 1
2 gr(η, ζ). (3.73)

This is just requirement (3.63) written for time-interval and rod regions. Counting boundary com-
ponents, imposing this equality from the outset would be another natural way to relate complex
structures on equal-time surfaces and hypercylinders. Here we have motivated it further by showing
that it makes time-interval amplitudes coincide with rod amplitudes.

3.2 Minkowski Spacetime: HQ of Klein-Gordon fieldxx

3.2.1 Time-interval regions

For time-interval regions we already dispose of all necessary ingredients to apply Holomorphic Quan-
tization to the classical theory. This has been carried out earlier in Section 5.1 of [59] using cartesian
coordinates and plane wave modes. In order to establish an equivalence of amplitudes between time-
intervals and rod regions, it is more useful to work in spherical coordinates for both types of regions.
Classical solutions near an equal-time plane Σt can be written as the mode expansion (2.90)

φ(t, r,Ω) =

∞̂

0

dp
∑
l,ml

2p (2 ιπ)−1/2 jl(pr)
{
φ+
plml

e−iEpt Y mll (Ω) + φ−plml eiEpt Y mll (Ω)

}
.

The symplectic structure induced by the Lagrange density for these solutions is given by (2.96)

ωt = +i

∞̂

0

dp
∑
l,ml

Ep

ß
η−plml ζ

+
plml

− η+
plml

ζ−plml

™
.

Showing that this symplectic structure is invariant under the actions of time-translations and spatial
rotations can be done in the way as for the AdS hypercylinders in Section 2.6.7. In Section 2.5.5 we
show that ωt is also invariant under spatial translations and boosts. For the complex structure on
the space LMink

t of solutions near Σt there is the standard choice (2.97)(
JΣtφ

)±
plml

= −iφ±plml . (3.74)

In Appendix B.3.2 we show that it commutes with spatial translations and boosts. Again, commuta-
tion with time-translations and spatial rotations can be shown easily as for the AdS case in Appendix
C.4. From symplectic and complex structure we can build real and complex inner products as in
(2.98) and (2.99):

gt
(
η, ζ

)
= 2ωt

(
η, Jtζ

)
=

∞̂

0

dp
∑
l,ml

2Ep

ß
η−plml ζ

+
plml

+ η+
plml

ζ−plml

™
(3.75)

{η, ζ}t = gt
(
η, ζ

)
+ 2iωt

(
η, ζ

)
=

∞̂

0

dp
∑
l,ml

4Ep η
+
plml

ζ−plml . (3.76)
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These are the structures that determine the free amplitude (3.28) for coherent holomorphic states
(3.1). For time-intervals this amplitude formula becomes (3.30):

ρ[t1,t2](K
η1

Σ1
⊗Kζ2

Σ2
) = exp

(
−gt1(ξI

12, ξ
I
12)− igt1(ξR

12, ξ
I
12)
)

= exp
(
− 1

4gt1(η1, η1)− 1
4gt1(ζ2, ζ2) + 1

2

{
η1, ζ2

}
t1

)
.

3.2.2 Rod regions

For rod regions we also dispose of the necessary ingredients for Holomorphic Quantization. Classical
solutions near a hypercylinder Σr can be written as the mode expansion (2.107)

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

pRE
4 ιπ

{
φaElmle

−iEtY mll (Ω) ̌El(r) + φbElmle
−iEtY mll (Ω) ňEl(r)

}
.

The symplectic structure induced by the Lagrange density for these solutions is given by (2.116):

ωr
(
η, ζ

)
=

ˆ
dE
∑
l,ml

pRE
16 ιπ

ß
ηaElml ζ

b
−E,l,−ml − η

b
Elml

ζa−E,l,−ml

™
.

Showing that this symplectic structure is invariant under the actions of time-translations and spatial
rotations can be done in the way as for the AdS hypercylinders in Section 2.6.7. In Section 2.5.5 we
show that ωr is also invariant under spatial translations and boosts.

For the complex structure on the space LMink
r of solutions near Σr there is no standard choice.

In Section 5.3 of [59] a complex structure is introduced, which we denote by Jpos
r since it induces a

positive-definite real inner product gpos
r (·, ·). It acts as calculated in (B.71) for all energies E ∈ R:

(Jpos
r φ)aElml = +φbElml (Jpos

r φ)bElml = −φaElml . (3.77)

In Appendix B.3.1 we discuss that Jpos
r commutes with time-translations and spatial rotations, but

not with spatial translations and with boosts. We also construct a slightly different complex structure
J iso
r in (B.90) which commutes with all isometries of Minkowski spacetime:(

J iso
r φ

)a
Elml

= − φbElml
(
J iso
r φ

)b
Elml

= + φaElml E2 > m2 (3.78)(
J iso
r φ

)a
Elml

= −(−1)l φbElml
(
J iso
r φ

)b
Elml

= +(−1)l φaElml E2 < m2 .

The properties of these two complex structures are summarized in Table 3.79. The induced real
product giso

r is positive-definite for modes with E2 > m2. When E2 < m2, then giso
r is positive-

definite for modes with even l and negative-definite for odd l.

Minkowski J iso
r Jpos

r

commute with time-translations X X

commute with spatial translations X -

commute with spatial rotations X X

commute with boosts X -

strong amplitude equivalence X X

induced real inner product grXX
indefinite positive-definite

Table 3.79: Properties of complex structures for Minkowski hypercylinder
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In Appendix B.4 we find that both Jpos
r and J iso

r induce the amplitude equivalence between time-
intervals and rod regions which we introduced in Section 3.1.10. That is, the real products induced
by the two complex structures both fulfill (3.73) for global classical solutions η, ζ:

gt(η, ζ) = 1
2 gpos

r (η, ζ) gt(η, ζ) = 1
2 giso

r (η, ζ) . (3.80)

This is natural, since global solutions consist of modes with E2 > m2, and for these energies the
complex structures coincide. (By strong equivalence we emphasize that this equivalence holds for
all these frequencies. By contrast, on AdS only a weak equivalence holds, that is, it is valid only
for a discrete subset of energies.) From symplectic and complex structure we build again the inner
products (2.120) and (B.91):

gpos
r

(
η, ζ

)
= 2ωr(η, J

pos
r ζ) =

ˆ
dE
∑
l,ml

pRE
8 ιπ

ß
ηaElml ζ

a
−E,l,−ml + ηbElml ζ

b
−E,l,−ml

™
giso
r (η, ζ) = 2ωr(η, J

iso
r ζ) =

ˆ
dE
∑
l,ml

pRE
8 ιπ

(±1)l
ß
ηaElmlζ

a
−E,l,−ml + ηbElmlζ

b
−E,l,−ml

™
.

(Therein, in ±1 the upper sign holds for E2 > m2 and the lower sign for E2 < m2.) These are the
structures that determine the free amplitude (3.32) for coherent holomorphic states (3.1):

ρr0
(
Kξ0

Σ0

)
= exp

Å
− 1

2gr0(ξI
0, ξ

I
0)− i

2gr0(ξR
0 , ξ

I
0)

ã
.

3.3 Anti de Sitter Spacetime: HQ of Klein-Gordon fieldxx

For time-interval regions on AdS, the amplitudes ρt are determined by the real inner product gt
via (3.28). The boundary of this region are equal-time hypersurfaces, and gt is determined by the
complex structure Jt associated to these hypersurfaces. Here, there is a long-known standard choice
for Jt and therefore in Section 3.3.1 we only need to check that it commutes with the isometries and
has the correct flat limit.

For the rod region, the amplitudes ρρ are determined by the real inner product gρ by (3.28) as
well. The boundary of this region is a hypercylinder, and gρ is determined by the complex structure
Jρ associated to this hypersurface. Since here there is no standard choice, we need to construct it.
With this goal, in Section 3.3.2 we implement the requirements of Sections 3.1.8 and 3.1.10 in the
following sequence. First, we impose commutation of Jρ with the isometries’ actions, because this
already fixes the form of Jρ to a great degree. Using this preliminary form we implement a weak
version of amplitude equivalence, because this completely fixes the action of Jρ on the Jacobi modes
(the modes with magic frequencies ω+

nl). Then, we present two choices how to extend the action of
Jρ to all real frequencies ω (that is, two ways of completely fixing Jρ) and study their properties.

3.3.1 Time-interval regions

For time-interval regions we already dispose of all necessary ingredients to apply Holomorphic Quan-
tization to the classical theory, because there is a standard choice for the complex structure Jt.
Classical solutions near an equal-time plane Σt can be written as the Jacobi expansion (2.201)

φ(t, ρ,Ω) =
∑
nlml

{
φ+
nlml

µ(+)

nlml
(t, ρ,Ω) + φ−nlml µ

(+)

nlml
(t, ρ,Ω)

}
.

The symplectic structure induced by the Lagrange density for these solutions is given by (2.209)

ωt(η, ζ) = +i
∑
nlml

ω±nlR
d−1
AdSN±nl

ß
η−nlml ζ

+
nlml

− η+
nlml

ζ−nlml

™
.
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In Section 2.6.7 we show that this symplectic structure is invariant under the actions of all Ads
isometries (time-translation, spatial rotations, and boosts). For the complex structure on the space
LAdS
t of solutions near Σt there is the standard choice (2.212)(

Jt φ
)±
nlml

= −iφ±nlml . (3.81)

In Appendix C.4.1 we verify that it commutes with the action of all AdS isometries. From symplectic
and complex structure we can build real and complex inner products as in (2.213) and (2.214):

gt(η, ζ) =
∑
nlml

2ω±nlR
d−1
AdSN±nl

ß
η−nlml ζ

+
nlml

+ η+
nlml

ζ−nlml

™
(3.82)

{η, ζ}t =
∑
nlml

4ω±nlR
d−1
AdSN±nl

ß
η+
nlml

ζ−nlml

™
. (3.83)

These are the structures that determine the free amplitude (3.28) for coherent holomorphic states
(3.1). For time-intervals this amplitude formula becomes (3.30):

ρ[t1,t2](K
η1

Σ1
⊗Kζ2

Σ2
) = exp

(
−gt1(ξI

12, ξ
I
12)− igt1(ξR

12, ξ
I
12)
)

= exp
(
− 1

4gt1(η1, η1)− 1
4gt1(ζ2, ζ2) + 1

2

{
η1, ζ2

}
t1

)
.

The real g-product of the Ads equal-time surface is positive-definite for all real solutions φ ∈ LAdS
t

(that is, for all Jacobi modes): Let φ such a solution and hence φ−nlml = φ+
nlml

. Then (3.82) returns

gt(φ, φ) =
∑
nlml

4ω+

nlR
d−1
AdSN+

nl

∣∣∣φ+
nlml

∣∣∣2, (3.84)

which is positive (since N+
nl is always positive). The same happens for the real g-product on a

Minkowski equal-time plane: it is positive for all modes well-defined on all of space.
The complex structure Jt and its induced real g-product relate to their Minkowski counterparts

via the flat limit. In (2.197) we show that the flat limit of the AdS symplectic structure ωt yields
the Minkowski ωt. In Appendix C.7.1 we discuss that the complex structure Jt and the process of
taking the flat limit commute as in the diagram below.

φAdS JAdS
t φAdS

φMink JMink
t φMink

w

JAdS
t

u
flat lim.

u
flat lim.

w

JMink
t

(3.85)

We then proceed with calculating the flat limit of the induced gt and find that it yields the Minkowski
gt.

3.3.2 Rod regions: isometry invariance

For rod regions we also dispose of the necessary ingredients for Holomorphic Quantization. Classical
solutions near a hypercylinder Σρ can be written as the mode expansion (2.186)

φ(t, r,Ω) =
ˆ

dω
∑
l,ml

{
φS,aωlml µ

(S,a)

ωlml
(t, ρ,Ω) + φbωlml µ

(S,b)

ωlml
(t, ρ,Ω)

}
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The symplectic structure induced by the Lagrange density for these solutions is given by (2.195):

ωρ(η, ζ) = ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηS,aωlml ζ

S,b
−ω,l,−ml − η

S,b
ωlml

ζS,a−ω,l,−ml

}
(2l+d−2) .

In Section 2.6.7 we show that ωρ is invariant under the actions of all AdS isometries (time-translations,
spatial rotations, and boosts.) For the complex structure on the space LAdS

ρ of solutions near Σρ
there is no standard choice. Our goal is to construct this complex structure such that it realizes
various properties. As a minimal requirement, any complex structure Jρ must fulfill three properties,
which we call essential properties: it must be linear and map real solutions to real solutions, its
square must be minus unity J2

ρ = −1, and it must be compatible with the symplectic structure:
ωρ(Jρη, Jρζ) = ωρ(η, ζ). In addition to these essentials, we aim to construct Jρ such that it also
commutes with all isometries of AdS, induces a positive-definite real g-product and behaves well in
the flat limit.

We start in Appendix C.4.2 from the most general expression (C.321) of a linear operator that acts
in the momentum representation of solutions. We start by requiring this general form to commute
with time-translations and spatial rotations, because this quickly simplifies the general form, resulting
in (C.330): (

Jρφ
)S,a
ωlml

= jS,aaωl φS,aωlml + jS,abωl φS,bωlml(
Jρφ

)S,b
ωlml

= jS,baωl φS,aωlml + jS,bbωl φS,bωlml .

Therein, the four j-factors are complex functions of frequency ω and angular momentum l and
determine the complex structure completely. Next we implement the essential properties mentioned
above, which results in (C.358):(

Jρφ
)S,a
ωlml

= jS,aaωl φS,aωlml + jS,abωl φS,bωlml(
Jρφ

)S,b
ωlml

= jS,baωl φS,aωlml − j
S,aa
ωl φS,bωlml (3.86)(

jS,aaωl

)2
= −jS,abωl jS,baωl − 1 ≥ 0

jS,ab−ω,l = jS,abωl jS,ba−ω,l = jS,baωl . (3.87)

We call this the nondiagonal form, since it holds for nonvanishing jS,ab and jS,ba, see Appendix
C.4.4. The essential properties imply that the three j-factors are now real and symmetric w.r.t. the
frequency: j··−ω,l = j··+ω,l. Further, the real g-product induced by Jρ becomes positive-definite for all
modes with frequencies and angular momenta for which

jS,abωl < 0 jS,baωl > 0 . (3.88)

We then consider the boosts and find that Jρ commutes with them if the two conditions (C.370) are
met:

jS,abω−1,l+1
!
= −jS,abωl

(m̃++ω−l−d) (m̃+−ω+l)

(2l+d) (2l+d−2)

jS,abω+1,l+1
!
= −jS,abωl

(m̃+−ω−l−d) (m̃++ω+l)

(2l+d) (2l+d−2)
.

(3.89)

Similar conditions hold for jS,ba, which can be obtained from the above by setting jS,ba = 1/jS,ab.
There exists various solutions to these conditions, for example those listed in (C.372). Jρ is deter-
mined by choosing one solution of the respective conditions for jS,ab and one for jS,ba, and then
(jS,aaωl )2 = −jS,abωl jS,baωl − 1.
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For completeness we include that for vanishing jS,ab or jS,ba, we find the following form of the
complex structure in (C.351):

Re jS,abωl = 0 ⇐⇒ Re jS,baωl = 0 (3.90)

=⇒ jS,aaωl = jS,bbωl = ±i with jS,aa−ω,l = jS,aaω,l = −jS,aaω,l ,

=⇒ jS,abωl = jS,baωl = 0.

We call it the diagonal form. It does not work for ω = 0. Let us mention already that it fulfills
the essential properties plus commutation with time-translation and spatial roations, but not with
boosts (see Appendix C.4.6). It induces a real g-product that vanishes for the modes with all the
frequencies for which this complex structure is chosen (see Appendix C.6). Further, choosing it
for the magic frequencies would not induce amplitude equivalence. For these reasons, we shall not
consider the diagonal form as a candidate for a complex structure in its own right. However, it is
useful as an ”emergency” choice in the case that for some discrete frequencies one of the elements
jS,ab or jS,ba of the nondiagonal form becomes zero.

3.3.3 Amplitude equivalence for AdS

In order to determine which of these various solutions we should choose, in Appendix C.5 we require
Jρ to induce amplitude equivalence between time-intervals and rod regions as discussed in Section
3.1.10. Amplitude equivalence only involves global solutions, which for AdS are the Jacobi modes
(that is, hypergeometric Sa-modes where the frequency is magic ω = ω+

nl). Therefore this requirement
can only fix our choice of Jρ for the magic frequencies. Thus for AdS the amplitude equivalence only
holds for a discrete subset of the frequency range ω ∈ R allowed for modes on rod regions (respectively
on a neighborhood of its boundary). For this reason we call it a weak equivalence. In (C.397) we
find that this weak equivalence holds precisely if

jS,ba
ω+
nl
l

= jS,ba−ω+
nl
l

= 1
ιπ Γ(γS)Γ(γS−1)

Γ(1−αS,b) Γ(βS,b)

Γ(1−αS,a) Γ(βS,a)
. (3.91)

The parameters α, β and γS are calculated from ω and l, see (C.376). In order to build a jS,ba which
fulfills this condition, we now single out two candidate solutions of the boost conditions, which we
call the α-version and β-version (C.402):

jS,ba,αωl = 1
ιπ Γ(γS,a) Γ(γS,a−1)

Γ(αS,b)

Γ(αS,a)

Γ(1−βS,a)

Γ(1−βS,b)

jS,ba,βωl = 1
ιπ Γ(γS,a) Γ(γS,a−1)

Γ(βS,b)

Γ(βS,a)

Γ(1−αS,a)

Γ(1−αS,b)
.

(3.92)

Since switching the sign of ω corresponds to interchanging α and β-parameters, we have have the
following relation, which will be important for realizing frequency symmetry jS,ba−ω,l = jS,ba+ω,l

jS,ba,αω,l = jS,ba,β−ω,l .

Now the only possibility for jS,baωl to fulfill (3.91) is to choose the β-version for positive magic fre-
quencies ω = +ω+

nl and the α-version for the negative ones ω = −ω+

nl as in (C.404)

jS,ba
ω+
nl
,l

= jS,ba,β
ω+
nl
,l

jS,ba−ω+
nl
,l

= jS,ba,α−ω+
nl
,l
. (3.93)

We have thus fixed jS,baωl for the magic frequencies. Before extending this to the remaining frequencies

and fixing also jS,aaωl and jS,abωl , we remark that already the existence of our choice (3.93) is quite
nontrivial, because the factors related therein have rather different origins. The factor appearing in
amplitude equivalence condition (3.91) stems from integrating a global solution over an equal-time
hyperplane Σt, while the factors in the boost conditions (3.89) stem from boost compatibility of the
complex structure Jρ for more general solutions near a hypercylinder Σρ.
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3.3.4 Rod regions: candidates for Jρ

Two-branched version Jtwo
ρ

In Appendix C.5.1 we construct a first version of a complex structure Jρ that we call two-branches
choice, because for the negative-frequency branch we choose the α-version and for the positive-
frequency branch the β-version. More over we choose an anti-diagonal matrix, that is, jS,aa,two

ωl ≡ 0.
In (C.407) we define this complex structure as

Jρ,two
ωl =

(
0 −1/jS,ba,two

ωl

jS,ba,two
ωl 0

)
jS,ba,two
ωl =

jS,ba,βωl ω > 0

jS,ba,αωl ω < 0
. (3.94)

However, the gluing together of the two different versions at ω = 0 causes the loss of commutation
with the boosts’ actions as we show in (C.412) (commutation with time-translations and spatial
rotations remains preserved).

For the positive frequencies at which the β-version becomes zero or singular, and for the negative
frequencies at which the α-version becomes zero or singular, we have to choose the diagonal form
(3.90).

Interlaced version J iso
ρ

Therefore in Appendix C.5.2 we construct a second version J iso
ρ which does commute with the boosts’

actions and thus with all AdS isometries. The commutation with boosts holds only for values of m̃+

and ν that are neither integer nor half-integer. We extend the choice (3.93) from its discrete set of
frequencies ω = ±ω+

nl to all ω ∈ R for fixed l, for simplicity l = 0. The values for the other l are
then determined completely by the boost conditions (3.89). This version is constructed by choosing
frequency intervals for fixed l, on which we choose either the α or the β-version. This exploits the
fact that the boost conditions (3.89) only relate the values of jS,baωl for frequency differences that are
even integers (since we have to apply the conditions twice to get back the original l). Therefore we
also call this version the interlaced version.

Before fixing these intervals, we recall that the extension must fulfill three properties: first,
include the magic frequencies as in (3.93) in order to ensure amplitude equivalence. Second, be

frequency-symmetric: jS,ba,isoωl = jS,ba,iso−ω,l in order to fulfill the essential properties and maintain
commutation with time-translations and spatial rotations. Third, the pattern of interlaced intervals
where we choose the α and β-versions must be translation-invariant for steps of 2 in ω-direction and
l-direction. This is necessary in order to comply with the boost conditions (3.89), which relate jS,baωl

to jS,baω±2,l and jS,baω,l±2. Therefore, choosing the α-version for some frequency ω induces choosing the
α-version for all frequencies ω ± 2z with z ∈ Z (ditto for the β-version). The last two conditions
imply that the interlaced intervals of the α and β-version alternate, and have the same length. Due
to the step length of 2, this length can be set to values of 1, 1

2 , 1
4 , 1

6 , 1
8 , 1

10 , . . .. For simplicity, we
choose this length to be 1, see Figure 3.95 (a). Therein, we have ω on the horizontal axis and l on the
vertical. Intervals on which we choose the α-version appear in orange (light gray in monochrome),
and intervals with the β-version are dark green (darker gray).

(a) Case α (b) Case β

Figure 3.95: Interlaced complex structure J iso
ρ : intervals in (ω, l)-space with α and β-version.
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The first condition of amplitude equivalence determines which of these intervals are associated to
the α respectively β-version. For l = 0, we associate the interval ( bm̃+c, dm̃+e ] to the β-version.
We use the standard notation of bxc for the floor function (largest integer ≤ x), and dxe for ceiling
(smallest integer ≥ x). This choice already determines all other intervals: for l = 0 they alternate
between α and β-version, and for higher l they are induced by the boost conditions. Thus the α and
β-version alternate both horizontally (ω-direction) and vertically (l-direction), see Figure 3.95 (a).
In the (ω, l)-plane let us denote by Iβ the set of intervals associated to the β-version as described
above, and by Iα the set of intervals associated to the α-version. Then, our interlaced choice J iso

ρ

writes as

jS,ba,isoωl =

jS,ba,αωl (ω, l) ∈ Iα

jS,ba,βωl (ω, l) ∈ Iβ

, (3.96)

wherein jS,ba,αωl and jS,ba,βωl are those of (3.92). This implies that two different patterns are possible
for our choice: for ”Case α”: m̃+ ∈ (d+2n, d+2n+1) with n ∈ N0 we have the unit interval ω ∈ (0, 1) for
l = 0 associated to the α-version, see Figure 3.95 (a), while for ”Case β”: m̃+ ∈ (d+2n+1, d+ 2n+2)
we have it associated to the β-version. see Figure 3.95 (b). The label of the case thus refers to
which version occupies the unit interval ω ∈ (0, 1) for l = 0. (We recall that d is odd, and that we
only consider values of m̃+ that are neither integer nor half-integer.) In both figures, the position
of ω = +m̃+ is marked by a black disk, and that of ω = −m̃+ by a black circle. For d = 3 with
RAdS = 1, the example in Figure 3.95 (a) arises from Klein-Gordon mass m = 1 giving m̃+ ≈ 3.3,
the example (b) from m = 2.5 giving m̃+ ≈ 4.4. In any case, our complex structure is constructed
such that for l = 0 the black disk of ω = +m̃+ allways sits on a green (dark gray) interval of the
β-version, and hence the circle of ω = −m̃+ on an orange (light gray) interval of the α-version.

Again, for the frequencies at which the α resp. β-version becomes zero or singular on the respective
intervals, we have to choose the diagonal form (3.90).

We thus have fixed completely the element jS,baωl of our complex structure J iso
ρ through interlacing

intervals on which we choose the α respectively β-version. While not very elegant, this is physically
motivated: it makes our complex structure fulfill the essential properties, commute with all isometry
actions, and induce amplitude equivalence between time-interval and rod amplitudes. As for the
two-branched version, we choose an anti-diagonal matrix for the interlaced version: jS,aa,isoωl ≡ 0.

3.3.5 Rod regions: induced real gρ

In Appendix C.6 we study the real g-products induced by our complex structures J two
ρ and J iso

ρ . Via

(2.195), any anti-diagonal choice (that is: setting jS,aaωl ≡ 0) induces the real g-product

gρ(η, ζ) = 2ωρ(η, Jρζ)

= 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηaωlml (Jρζ)b−ω,l,−ml − η

b
ωlml

(Jρζ)a−ω,l,−ml

}
(2l+d−2)

= 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηaωlml ζ

a
−ω,l,−ml j

S,ba
ωl + ηbωlml ζ

b
−ω,l,−ml/j

S,ba
ωl

}
(2l+d−2). (3.97)

For real solutions φ we have φa−ω,l,−ml = φaωlml and φb−ω,l,−ml = φbωlml and thus obtain

gρ(φ, φ) = 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{∣∣∣φaωlml ∣∣∣2jS,baωl +
∣∣∣φbωlml ∣∣∣2/jS,baωl

}
(2l+d−2). (3.98)

We can read off that the real g-product is positive for modes with ω and such that jS,baωl is positive.

The β-version jS,ba,βωl is positive for all ω ≥ (m̃++l) while the α-version is positive for all ω ≤ −(m̃++l).
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For all other frequencies, both versions alternate between intervals with positive and negative sign.
(See for example Figure 3.99.) Therefore, the interlaced version jS,ba,isoωl alternates its sign quite
frequently. However, it is positive for all magic frequencies ±ω+

nl. For the two-branched version

jS,ba,two
ωl the situation is simpler: due to its definition, jS,ba,two

ωl is positive for all frequencies with
|ω| ≥ (m̃++l), while it alternates its sign for the remaining frequencies. In (C.436) we give explicit

formulas that tell us where jS,ba,two
ωl and jS,ba,isoωl are positive and where negative.

Let us compare this to the real g-product of a Minkowski hypercylinder. There we also have
two complex structures: Jpos

r and J iso
r . Both induce positive real g-products for the propagating

modes (which there are those with |ω| > m). Moreover, gpos
r is positive for the evanescent modes

as well, while giso
r alternates sign for evanescent modes (|ω| < m). On AdS, both the interlaced and

two-branched version have similar properties: for the propagating modes (which here are those with
magic frequencies ±ω+

nl) the real g-products become positive, while for the evanescent modes (all
other frequencies) their sign alternates.

Figure 3.99: Typical plot of the α-version jS,ba,αωl (orange continuous curves): here d = 3, m = 1,

RAdS = 1, l = 2, giving us m̃+ ≈ 3.3. The vertical orange lines are the poles of jS,ba,αω,2 . The
background color indicates the sign: the α-version is positive where the orange background is above
the ω-axis, and negative where the orange background lies below it.

3.3.6 Flat limits

In Appendix C.7.3 we study the flat limits of J iso
ρ and the induced giso

ρ . We find that the interlaced

complex structure commutes with the process of taking the flat limit, and that the flat limit of giso
ρ

is the Minkowski giso
r . However, this holds only for a discrete subset of frequencies on the AdS side

(the magic frequencies and some heuristically chosen frequencies). As for the time-interval regions,
these frequencies become dense in the flat limit.

Since this is not very satisfactory, in Appendix C.7.4 we study the flat limit of the two-branched
version J two

ρ (3.94). This leads us to modifying the two-branched version for low frequencies, resulting
in a positive-definite version (C.473):

Jρ,pos
ωl =

(
0 −1/jS,ba,pos

ωl

jS,ba,two
ωl 0

)
jS,ba,pos
ωl =


jS,ba,βωl ω ≤ −ωsplit

l

jS,ba,αωl ω ≥ +ωsplit
l

jS,ba,obv
ωl else

, (3.100)
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wherein the splitting frequency ωsplit
l = m̃+ + l defines which frequencies are ”high” and which are

”low”. The ”obvious” version (C.471)

jS,ba,obv
ωl = 1

ιπ Γ(γS) Γ(γS−1)

(
1
2p

R
ω

)−2l−1

(3.101)

=(2l+d−2)!! (2l+d−4)!! 23−d
(
pRω

)−2l−1

(3.102)

is the simplest version which is positive and whose flat limit recovers the Minkowski Jpos
r (hence also

the induced gpos
ρ of the AdS hypercylinder recovers the Minkowski gpos

r ) as in Diagram (3.85).

φAdS Jρφ
AdS

φMink Jpos
r φMink

w

Jρ

u
cont. flat lim.

u
cont. flat lim.

w

Jpos
r

(3.103)

In Figures 3.104 and 3.105 we plot our different versions of jS,baωl . The positive jS,ba,pos
ωl (thick,

continuous orange curve) is discontinuous at ω = ±ωsplit
l . At ω = 0 it is continuous (albeit not

differentiable). At ω = ±m̃+ it diverges as commented in Appendix C.7.4. (Thus for l = 0 we have

ωsplit
l = m̃+ and hence the divergence and discontinuity coincide.) For large |ω|, we see that jS,ba,two

ωl

and jS,ba,pos
ωl coincide and are positive, while for small |ω| only jS,ba,pos

ωl is positive and jS,ba,two
ωl

alternates sign. Further, jS,ba,isoωl coincides with jS,ba,two
ωl only on half of the integer ω-intervals. This

is so, because their respective associations of jS,ba,αωl and jS,ba,βωl coincide for half of these intervals
while they are opposite for the other half. We also see that all versions are frequency symmetric:
jS,baωl = jS,ba−ω,l.

Figure 3.104: Typical plots of jS,ba,isoωl (thin continuous curve, dark blue), jS,ba,two
ωl (dashed curve,

dark green) and jS,ba,pos
ωl (thick continuous curve, orange). Here d = 3, m = 3, RAdS = 1, l = 0,

giving us m̃+ ≈ 4.9 and thus ωsplit
l = m̃++l ≈ 4.9. The light gray background shading merely serves

to distinguish the integer intervals on the ω-axis.
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Figure 3.105: The same plot as Figure 3.104, but now for l = 1 and thus ωsplit
l = m̃++l ≈ 5.9.

The properties of our two complex structures are summarized in Table 3.106. The induced real
product gpos

ρ is positive-definite for all modes. By contrast, giso
ρ is indefinite (see Appendix C.6 for

details) but at least it is positive-definite for modes with magic frequencies.

AdS J iso
ρ Jpos

ρ

commute with time-translations X X

commute with spatial rotations X X

commute with boosts X -

weak amplitude equivalence X X

induced real inner product gρ indefinite positive-definite

flat limit J iso
ρ Jpos

ρ
only for a discrete
subset of frequencies

for all real
frequencies

Table 3.106: Properties of complex structures for AdS hypercylinder

Both Jpos
ρ and J iso

ρ induce (a weak version of) the amplitude equivalence between time-intervals and
rod regions which we introduced in Section 3.1.10. That is, the real products induced by the two
complex structures both fulfill (3.73) for global classical solutions η, ζ:

gt(η, ζ) = 1
2 gpos

ρ (η, ζ) gt(η, ζ) = 1
2 giso

ρ (η, ζ) . (3.107)

This is natural, since global solutions consist of modes with magic frequencies, and for these the
complex structures coincide. (By weak equivalence we emphasize that this equivalence holds only
for the discrete magic frequencies. By contrast, on Minkowski spacetime a strong equivalence holds,
that is, it is valid for the continuous range of frequencies E2 > m2.) Combining (3.97) with (3.100)
yields the positive real g-product which is induced by Jpos

ρ :

gpos
ρ (η, ζ) = 2 ιπRd−1

AdS

ˆ
dω
∑
l,ml

{
ηaωlml ζ

a
−ω,l,−ml j

S,ba,pos
ωl + ηbωlml ζ

b
−ω,l,−ml/j

S,ba,pos
ωl

}
(2l+d−2).

(3.108)
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This product determines the free amplitude (3.32) for coherent holomorphic states (3.1):

ρρ0

(
Kξ0

Σ0

)
= exp

Å
− 1

2gρ0
(ξI

0, ξ
I
0)− i

2gρ0
(ξR

0 , ξ
I
0)

ã
.

3.3.7 Relation with Colosi’s complex structures

In order to connect our nondiagonal form (3.86) of the complex structure to previous work, we now
show that it coincides with Colosi’s form of the complex structure. In [16] Colosi derived the form
of the vacuum operator AΣ, which determines the vacuum wave function(al) of a hypersurface Σ
in the Schrödinger representation of the quantum states (see also Section IV.B in [19]). This result
is obtained in two different ways: first via Feynman path integral quantization, and then through
canonical quantization. It is assumed, that spacetime can be foliated with the foliation parameter
denoted by τ , and that the spacetime metric is block-diagonal w.r.t. τ , that is: gτ,µ = 0 for all µ 6= τ .
Further, it is asssumed that the Klein-Gordon equation can be solved via separation of variables,
resulting in two different classes of modes (like spherical Bessel and Neumann modes for Minkowski

spacetime). For short, we call these a-modes and b-modes and denote them by µ
(a,b)
ωlml

.

The vacuum operator is determined by two complex functions ca,bωlml on momentum space, obey-

ing ca,b−ω,l,−ml = ca,bωlml and Im
(
caωlmlc

b
ωlml

)
6= 0. Since vacuum states and complex structures on a

hypersurface are in one-to-one correspondences [61], fixing the vacuum through any choice of ca,bωlml
correpsonds to fixing the complex structure. It turns out, that Colosi’s vacuum operator AΣ tran-
scribes into the following complex structure, which we thus call Colosi’s form:Ñ(

Jrφ
)a
ωlml(

Jrφ
)b
ωlml

é
=

1

Im
(
caωlmlc

b
ωlml

) (+Re (caωlmlc
b
ωlml

) −
∣∣caωlml ∣∣2

+
∣∣cbωlml ∣∣2 −Re (caωlmlc

b
ωlml

)

)(
φaωlml
φbωlml

)
. (3.109)

The relation between j-factors and c-factors can be obtained by first writing:

ca = raeiϕa cb = rbe
iϕb Im

(
cacb

)
6= 0 ⇐⇒ (ϕb−ϕa) 6= ±n ιπ ∀ n ∈ N0. (3.110)

Comparing to (3.109), we can read off that

jaa =
cos(ϕb−ϕa)

sin(ϕb−ϕa)
jab = − ra/rb

sin(ϕb−ϕa)
jba = +

rb/ra
sin(ϕb−ϕa)

. (3.111)

That is, the j-form is determined by the two real functions jab and jba, while Colosi’s form is
determined by the two real functions Qr := (ra/rb) and ∆ϕ := (ϕb−ϕa). The equivalence between
both forms is provided by

Qr :=
ra
rb

=

 
−jab
jba

∆ϕ := (ϕb−ϕa) = arcsin

 
1

−jab jba
. (3.112)

Further, note that we can combine the modes µ
(a,b)
ωlml

of the real radial functions (2.167) to complex
modes

µ
(+)
ωlml

:= caω,lmlµ
(a)
ωlml

+ cbωlmlµ
(b)
ωlml

µ
(−)
ωlml

:= µ
(+)
ωlml

, (3.113)

and expand classical solutions in these modes with φ±ωlml the corresponding momentum representa-

tion. We call this the frequency representation. Then, Colosi’s form (3.109) induces the usual simple
form (2.212), (2.118) of the complex structure:(

Jr φ
)±
ωlml

= −iφ±ωlml . (3.114)
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Now let us check whether Colosi’s form fulfills the conditions that lead to the j-form (3.86) for
AdS hypercylinders. (3.109) is clearly a nondiagonal form fulfilling J2 = −1. In order for the j-
form to be equivalent to Colosi’s form, jab and jba need to have opposite sign. (3.109) also fulfills
(jaa)2 = −jabjba − 1 ≥ 0. Since the jS,··-factors depend only on ω and l (due to essential properties
and commutation with time translations and spatial rotations), the same must be required for the
ca,b-factors. Then, ca,b−ω,l = ca,bωl , and only frequency symmetry remains to be checked. This can be
done using (3.111) or (3.109). In both ways, we quickly see that the complex conjugation caused
by ω → −ω induces an overall minus sign for the complex structure, thus breaking frequency
symmetry. Resolving this issue will be part of future work.

3.3.8 Giddings’ radial S-matrix for AdS

For comparison, let us summarize Giddings’ construction of a radial S-matrix for AdS in [37]. Since
Giddings’ and our approach rely on Klein-Gordon modes (although he uses only Sa-modes, while we
include Sb-modes as well), one should expect that the results of both approaches relate rather well.
In (38) therein he defined his boundary S-matrix S∂ as (we write f+ for Giddings’ f and f− for his
f ′)

S∂ [f+
1 , ..., f

+
m, f

−
1 , ..., f

−
n ] :=

〈
0
∣∣∣T n∏

j=1

α̂out
f−
j

m∏
i=1

(α̂in
f+
i

)†
∣∣∣ 0〉 =

〈
out

f−1 , ..., f
−
n

∣∣ f+
1 , ..., f

+
m

〉
in
. (3.115)

Therein, | 0 〉 is the vacuum state on the boundary, and T is the time-ordering operator. The f±

functions define wave packets as given below. The labels ± indicate that f+ is purely positive
frequency, while f− is purely negative frequency. In order to have the time-ordering well-defined,
above it is required that all wave packets defined by the f± are non-overlapping in time, and further
that the support of all f−j lies in the future of all f+

i . If the f± do not fulfill these conditions, then
the above definition can be taken without the time-ordering, but more care must be exercised with
the interpretation.

An annihilator α̂in
f+ has a positive-frequency function f+, and with some renormaliation factor Z+

it is defined as below. A creator (α̂out
f− )† has a negative-frequency function f−, and with renormalizer

Z− it is defined in Giddings’ (34) as

α̂in
f+ := α̂f+ /Z+ (α̂out

f− )† := α̂f− /Z
−. (3.116)

In Giddings’ (24), asymptotic creation and annihilation operators for states on the boundary are
defined as the following limit, wherein Φ̂ is the full interacting field:

α̂f := lim
ρ→ ιπ/2

ˆ

Σρ

dΣµ
(
φf

��
∂µΦ̂

)
. (3.117)

Since no mention is made of modes that diverge on the time-axis, the notation in (8) of [37] suggests
that therein φωlml (t, ρ, ω) is our µ(a)

ωlml
(t, ρ, ω), that is: the extension of Giddings’ global modes (our

Jacobi modes) φn,l,ml from magic frequencies ω+

nl to arbitrary frequency ω. Thus the solution φf
consists only of hypergeometric Sa-modes:

φf (t, ρ,Ω) =

ˆ
dω
∑
l,ml

fωlml µ
(a)

ωlml
(t, ρ,Ω), (3.118)

which makes Giddings’ f correspond to our φS,a. However, Giddings’ construction can be extended
to comprise also Sb-modes, and then the mixing of Sa and Sb-modes must be taken care of. This
is precisely what our complex structure Jρ achieves. The operator α̂f acts on states as given in
Giddings’ (28): 〈

0
∣∣ α̂f ∣∣∆, n, l,ml

〉
∼ fω+

nl
,l,ml

(3.119)〈
∆, n, l,ml

∣∣ α̂f ∣∣ 0〉 ∼ f−ω+
nl
,l,−ml , (3.120)
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wherein |∆, n, l,ml〉 is a one-particle state with frequency ω+

nl and angular quantum numbers (l,ml).
These kets form a representation of the AdS isometry group SO(2, d), with ∆ the representation’s
weight. For a free field we have ∆ = m̃+. Giddings observed for (3.119), that α̂f annihilates a
one-particle boundary-state |∆, n, l,ml〉 if fωlml is nonzero at ω = +ω+

nl. In (3.120), α̂f creates the
one-particle boundary-state |∆, n, l,ml〉 if fωlml is nonzero at ω = −ω+

nl. In addition to particle
states, in (36) Giddings also defines in and out states of wave packets whose profile is determined by
f -functions:∣∣∣ f+

1 , ..., f
+
m

〉
in

:=
m∏
i=1

(α̂in
f+
i

)†
∣∣∣ 0〉 ∣∣∣ f−1 , ..., f−n 〉

out
:=

n∏
j=1

(α̂out
f−
j

)†
∣∣∣ 0〉. (3.121)

For evaluating definition (3.115) of the boundary S-matrix, Giddings derived an LSZ-formula in (42)
of [37]:

S∂ [f+
1 , ..., f

+
m, f

−
1 , ..., f

−
n ] =

Å n∏
j=1

ˆ
dV −j

φf−
j

(x−j )

Z−j

ãÅ m∏
i=1

ˆ
dV +

i

φf+
i

(x+
i )

Z+
i

ã〈
0
∣∣∣T n∏

q=1

Φ̂(x−q )
m∏
p=1

Φ̂(x+
p )
∣∣∣ 0〉

T
.

(3.122)

Therein, the multiple volume integrals
´

dV ± are over all of AdS, T is again the time-ordering
operator, and the subscript T indicates that the vacuum expectation value is calculated with the
Truncated Green’s function. The superscripts ± for the volume elements dV and related coordinates
x are merely meant to mark which coordinate refers to which integration. In order to relate our
S-matrix to Giddings’, let us evaluate (3.122) for a simple case. Thus we consider only one incoming
packet shaped by f+, and one outgoing packet shaped by f−. We consider only the free theory, and
set the renormalizers Z± = 1. Then,

S∂ [f+, f−] =

ˆ
dV − φf−(x−)

ˆ
dV + φf+(x+)

〈
0
∣∣TΦ̂(x−)Φ̂(x+)

∣∣ 0〉
T
. (3.123)

We can replace 〈0 |TΦ̂(x−)Φ̂(x+) | 0〉T by the Feynman propagator GF(x+, x−). For simplicity we
consider only solutions φf composed of (ordinary) Jacobi modes (2.173),

µ(+)

nlml
(t, ρ,Ω) = µ(S,a)

ω+
nl
lml

(t, ρ,Ω) = e−iω+
nl
t Y mll (Ω) J (+)

nl (ρ) . (3.124)

We recall that despite using only Jacobi modes we are considering solutions near a hypercylinder,
and that Jacobi modes are just Sa-modes with magic frequencies ω+

nl. Therefore we can expand the
fields using the hypergeometric expansion (2.186), keeping in mind that the solutions here are only
Sa-modes with purely positive (respectively negative) frequencies:

φf+ (t, ρ,Ω) =
∑
nlml

f+
nlml

µ(S,a)

ω+
nl
,l,ml

(t, ρ,Ω) φf− (t, ρ,Ω) =
∑
nlml

f−nlml µ
(S,a)

−ω+
nl
,l,ml

(t, ρ,Ω) (3.125)

Thus, Giddings f+
nlml

is our φS,a
ω+
nl
lml

, and Giddings f−nlml is our φS,a−ω+
nl
,l,ml

. For the Feynman propa-

gator we can try Equation (80), from [19], which for AdS becomes

GF(x, x′) = i
2

∑
n,l,ml

Y mll (Ω)Y mll (Ω′) J (+)

nl (ρ) J (+)

nl (ρ
′)

ω+

nl (R
d−1
AdSN+

nl)
2

(
θ(t−t′) e−iω+

nl
(t−t′) + θ(t′−t) e−iω+

nl
(t′−t)

)
. (3.126)

Then, (2x−m2)GF(x, x′) = −δ(d+1)(x−x′)/
√
|g(x)| . Since the support of the f−-packet is to the

future of the f+-packet, in GF(x+, x−) we only keep the term θ(t−−t+) e−iω+
nl

(t−−t+) and drop the

term θ(t+−t−) e−iω+
nl

(t+−t−). (However, the result actually does not depend on this.) Inserting now
into (3.123) the expansions (3.125) and the Feynman propagator (3.126), we can first integrate over
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the angles Ω+ and Ω−, then over the times t+ and t−. This gives the following Kronecker deltas: δl,l+ ,
δl,l− , δml,−m+

l
, δml,m−l

, δn,n+ and δn,n− . Integrating then over ρ+ with metric factor Rd−1 tand−1 ρ+

and ditto for ρ− cancels the denominator (Rd−1
AdSN+

nl)
2. Thus, we obtain

S∂ [f+, f−] ∼ i
∑
n,l,ml

f+
nlml

f−n,l,−ml /ω
+

nl = i
∑
n,l,ml

φS,a
ω+
nl
lml

φS,a−ω+
nl
,l,−ml

/ω+

nl. (3.127)

We did not take much care with the renormalizers Z±, hence we do not consider the quotient 1/ω+

nl,
and focus only on the factor φS,a

ω+
nl
lml

φS,a−ω+
nl
,l,−ml

. This factor appears in our S-matrix as well (multiplied

by the factor jS,baωl of the complex structure). The result (3.127) coming from Giddings’ approach
relates to our results as follows. Giddings considers states consisting of several wave packets, each
shaped by its individual momentum function f±ωlml . We do not consider these packets individually,
rather we view them combined as a ”multiple-packet” shaped by a single momentum function φaωlml
(which is just the sum over all f±ωlml). Further, Giddings considers multiple-particle states, while
we consider coherent states. In Giddings’ canonical approach coherent states can be written as an
exponential of creators acting on the vacuum, instead of pure creators as in (3.121). Hence for
coherent states we would obtain an S-matrix element like

Scoh
∂ [f+, f−] ∼ exp

(
i
∑
n,l,ml

f+
nlml

f−n,l,−ml /ω
+

nl

)
= exp

(
i
∑
n,l,ml

φS,a
ω+
nl
lml

φS,a−ω+
nl
,l,−ml

/ω+

nl

)
. (3.128)

This resembles our S-matrix rather well. Therefore we conclude that Giddings’ canonical approach
and the GBF approach with Holomorphic Quantization are indeed compatible. However, for mak-
ing this more precise one would need to know more accurately the details of Giddings’ setup and
perform a more careful analysis than the one sketched here. Like our approach, Giddings’ is also
applicable for interacting field theories via perturbation techniques. The GBF approach provides a
rigorous framework, and facilitates to implement invariance of the S-matrix under isometry-actions.
In comparison, Giddings did not discuss the SO(2, d)-invariance of his boundary S-matrix S∂ , rather
the abstract states |∆, n, l,ml〉 which he uses were taken to be a representation of SO(2, d) from the
outset. However, the effects of time-ordering and the truncated Green’s function on the SO(2, d)-
invariance of S∂ were not elaborated on. Further, the notation of [37] suggests that (for both free and
interacting theory) only the Sa-modes were taken into account, while our construction also includes
the Sb-modes.

3.3.9 Restricting to one single scattering

The problem of how to construct wave functions resp. wave packets that scatter only once inside of
AdS is rather nontrivial6, see for example the detailed discussion in [36], and also [8]. (The problem
is not due to using rod regions, which works perfectly well in Minkowski spacetime. Rather it is
caused by the particular geometry of AdS with its reconverging timelike geodesics.) Therein, two
ways of resolving this problem are brought forth. The first way is considering not a global AdS
spacetime, but instead a finite AdS bubble which is somehow immersed in a spacetime which admits
(temporally) asymptotically free states (for example Minkowski spacetime). However, this is rather
a change of the setting than a solution to the original problem.

The second way is constructing a quantum-mechanical wave function ψ(x) for point particles
scattering on AdS, and requiring it to have compact support on the boundary hypercylinder Σ0 of
some rod region of radius ρ0. This support encodes where particles enter and leave the region. This
boundary data is written as a function f (t,Ω). The wave function is then constructed using the
Feynman propagator GF:

ψf (t, ρ,Ω) =

ˆ

Σ0

dt′ d
d−1

Ω′ f (t′,Ω′) GF((t, ρ,Ω),(t′, ρ0,Ω
′)).

6We thank Axel Weber (IFM-UMSNH) for indicating us to discuss this issue.
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(In case the boundary is located at infinity ρ0 = ιπ
2 , a rescaled version of the Feynman propagator

is used, called bulk-to-boundary propagator.) However, the wave packets induced by the compactly
supported boundary data are found to be not sharply peaked (power law tails in both momentum
and position space).

Using Holomorphic Quantization (HQ), we propose the following approach to this problem. Con-
sidering a rod region of finite radius ρ0, we control where and when particles enter and leave the
region through the quantum state on the boundary Σρ0

. That is, we need states that encode particles
which enter and leave the rod region each at most once. (In other words: we want that particles
having left the rod region not to return into it and scatter again.) This should be achieved by using
holomorphic states, whose characterizing solution λ has compact support on the boundary. This
support specifies where and when the particles and enter and leave. (We recall that λ needs to be
well defined and bounded only near the boundary Σr0

, but not on the whole rod region.)
Given such compact boundary data for the values of λ and its momentum ∂ρλ, the solution λ is

determined uniquely through (2.243) as discussed in Section 2.6.8. This is based on the fact that
the temporal and angular parts of our modes e−iωtY mll (Ω) form an orthonormal basis for boundary

data on hypercylinders Σρ0
= Rt×Sdρ0

. In turn, this is due to including all frequencies ω ∈ R and
not only frequencies above some mass threshold.

We can use coherent states Kλ
Σρ0

whose amplitudes are given for general spacetimes and regions
in Eqation (47) of [59]. For AdS, we have calculated their amplitudes in (3.108). The expectation
value of a coherent state should be its characterizing solution λ and thus have compact support on
the rod’s boundary, corresponding to only one scattering.

We can also use multi-particle states, as given by Equation (17) in [62], which are symmetrized
products of the 1-particle states (3.5). Their amplitudes are given in Equation (84) of [62], and are
consistent with those of the coherent states as discussed in Section 12 therein.

In how far this approach actually realizes a single scattering, needs careful study and interpreta-
tion. In particular, in order to calculate GBF expectation values, subspaces of the state space need
to be specified, which correspond to preparation and to observation. At present, it is not clear to
the author, how these subspaces are to be chosen for some given boundary solution λ.
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Summary and outlookX
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The focus of this thesis is applying the General Boundary Formulation (GBF) of Quantum Theory to
real Klein-Gordon QFT in Anti de Sitter spacetime (AdS). The goal is constructing an S-matrix for
this theory, which is problematic using standard techniques due to the lack of the usual asymptotically
free states on AdS.

The GBF is a rather recent formulation of Quantum Theory, which generalizes the standard
formulation, while including it and reproducing its results. (That is, the GBF is not some particular
quantum theory, but an axiomatic framework about how any quantum theory should be formulated.)
By standard formulation we mean that quantum states ”live on” (decribe the system on) equal-
time or Cauchy hypersurfaces (in the Schrödinger picture), and amplitudes are calculated with the
inner product of the theory’s state space, which is a Hilbert space. The GBF generalizes this by
associating a state space H Σ to each hypersurface Σ of codimension one in spacetime. A priori, these
hypersurfaces can be spacelike, timelike, lightlike, or mixed. Amplitudes are calculated for states
living on the boundary ∂M of spacetime regions M, which have codimension zero. That is, each
region M has an associated amplitude map ρM : H ∂M → C (which depends on the theory under
consideration). The regions and their boundaries can be compact or noncompact. These are the
basic ideas of the GBF. In addition, there are several sets of axioms concerning unions and gluings
of regions, the vacuum state, spacetime transformations, a probability interpretation consistent with
Born’s rule, and observables with their expectation values. We describe these details of the GBF in
Chapter 1.

After that introductory chapter, we study classical and quantized Klein-Gordon theory on three
types of regions in AdS: time-interval regions, and two types of hypercylinder regions called rod
and tube. Time-interval regions [t1, t2]×[0, ιπ2 )ρ×Sd−1 are neighborhoods of equal-time surfaces Σt.
This type of regions is always used in the standard formulation of Quantum Theory. Tube re-
gions Rt×[ρ1, ρ2]×Sd−1 are neighborhoods of equal-radius hypercylinders Σρ = Rt×Sdρ. Rod regions
Rt×[0, ρ]×Sd−1 are the whole region (including the time axis) enclosed by Σρ. In Chapter 2 we
review the classical theory, and in Chapter 3 we consider the quantized theory for these regions. The
quantization which we use is called Holomorphic Quantization (HQ), and is based on parametrizing
states by classical solutions (instead of e.g. field configurations on some hypersurface as in the Schrö-
dinger representation). Therefore, spaces of classical solutions and structures on them are crucial
ingredients for this quantization, and we study them in Chapter 2.

While on AdS we can formulate the standard S-matrix with the usual states (which describe
the system at some time t), these states are restricted to a set of modes with discrete frequencies
only (called magic frequencies). A generalized notion of S-matrix in the spirit of the GBF is more
promising. There, asymptotic states live on the timelike hypercylinder boundary Σρ= ιπ/2 at spatial
infinity [20]. This hypercylinder is the boundary of the rod region of ”all of AdS”. In contrast to the
usual states, the states on hypercylinders allow for a continuous set of modes including all frequencies
ω ∈ R. As usual in field theory, in the quantization of the Klein-Gordon field there is an ambiguity,



i4. Summary and outlookX
X

XX
127i

which can be conveniently parametrized in terms of a complex structure Jρ. In standard quantization
in Minkowski spacetime, this ambiguity is fixed by requiring the inner product to be positive-definite
and to be invariant under isometries. The main focus of the present work thus becomes finding this
complex structure for AdS, and in particular for (asymptotic) fields on a hypercylinder geometry,
induced by the boundary of AdS. Given this complex structure, the quantization is completely
determined and the generalized S-matrix can be computed, see Section 3.1.9.

Classical theory

In the classical part, whose results are published in [30], we first give a complete list of classical
Klein-Gordon solutions on AdS spacetimes. These solutions are well known already up to two
exceptional cases that we present to make the list complete. The AdS Jacobi modes are solutions
which are well defined and bounded on time-interval regions. These modes only exist for discrete real
energies/frequencies, and are available for use in the standard S-matrix. For tube regions, there are
the hypergeometric modes of types Sa, Sb and Ca, Cb (not all independent), while on rod regions
the hypergeometric Sa-modes are the only well defined and bounded solutions. These modes exist
for all real frequencies, and can be used for the radial S-matrix. The so-called magic frequencies are
a discrete subset, for which Sa and Ca-modes coincide and turn into the Jacobi modes. (This occurs
because for certain parameters the hypergeometric function turns into a Jacobi polynomial.)

For large curvature radius RAdS → ∞ the curvature of AdS tends to zero and (a part of) AdS
asymptotically becomes Minkowski spacetime. This is called flat limit or Minkowski limit. Between
AdS and Minkowski spacetime, this limit relates the spacetime metric, its Laplace-Beltrami operator
and Killing vectors. Between (the flat limit of the) Killing vectors of AdS and Minkowski spacetime
we find a correspondence which among others relates Minkowski translations to a class of AdS boosts.
For the AdS solutions, we find that the flat limit of the Sa-modes are the (spherical) Bessel modes
on Minkowski spacetime, while the Sb-modes turn into the (spherical) Neumann modes.

We also find the actions of the Killing vector fields of AdS (that is, the generators of its isometry
group’s Lie algebra so (2, d)) on the modes. For time translations this action is merely a phase
factor. For rotations it is a sum over modes of same top angular momentum number l with elements
of Wigner’s D-matrix as coefficients. For infinitesimal d-boosts the action is a sum over contiguous
modes with certain coefficients that we calculate explicitly. As a byproduct we find some contiguous
relations for hyperspherical harmonics and Jacobi polynomials.

Next, for equal-time surfaces Σt and equal-radius hypercylinder Σρ we give the symplectic struc-
tures determined naturally by the Lagrange density of the theory. The well known symplectic
structure for time-interval regions is defined using an equal-time surface Σt, but turns out to be
actually t-independent. Our new symplectic structure for tube regions is defined using an equal-
radius hypercylinder Σρ, and turns out to be ρ-independent. These independencies are not trivial,
since usually they only hold for boundaries of compact regions (which our time-interval, rod and
tube regions are not), respectively compactly supported solutions, (which our time-interval, rod and
tube solutions are not). The symplectic structure for solutions on rod regions vanishes identically,
since the Sa-modes form a Lagrangian subspace. Again, for regions with a connected boundary
this usually holds only if the region is compact respectively for compactly supported solutions. As
a byproduct we find the Wronskian for the hypergeometric functions involved. Then we proceed
checking the invariance of the symplectic structures under the actions of the so (2, d)-generators. It
turns out, that both symplectic structures are invariant under all AdS isometries, that is, under time
translation, spatial rotations and boosts.

We conclude the classical part finding one-to-one correspondences between initial data and clas-
sical solutions on the regions. For time-interval regions, this initial data consists of the values of the
field and its derivative on an equal-time surface Σt, despite AdS not being globally hyperbolic. For
tube regions, the initial data can be given on an equal-radius hypercylinder Σρ that is inside of AdS.
Then it consists again of field and derivative. If the hypercylinder is the boundary Σρ= ιπ/2 of AdS,
then we need to rescale: the initial data consists now of rescaled field values together with a rescaled
”twisted” derivative of the field. For rod regions, a one-to-one correspondence can be established
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with the field values as sufficient initial data on a hypercylinder. For the boundary hypercylinder we
need to rescale again.

Quantized theory

In Chapter 3 we proceed to quantizing the classical theory, using the method of Holomorphic Quan-
tization (HQ). The results of this chapter are published in [31]. A crucial structure in HQ is the
real inner product g(·, ·) ∼ ω(·, J ·). Since the symplectic structure ω is determined completely by
the classical Lagrangian of the theory, it is the complex structure J alone which determines the
quantization. We consider these structures on different spaces of classical solutions: solutions in a
neighborhood of an equal-time hypersurface Σt, and solutions near hypercylinders Σρ.

For an equal-time hypersurface in AdS there is a standard complex structure Jt, given in (3.81)
of Section 3.3.1. It is fixed by positive-definiteness and isometry invariance. This is analogous to
standard quantization in Minkowski spacetime, but with the crucial difference that in AdS this works
only for a subset of field modes with discrete frequencies, the magic frequencies. Consequently the
standard S-matrix on AdS is restricted to these discrete modes.

For the AdS hypercylinder geometry (used for the generalized continuum-mode S-matrix) we find
that there is no complex structure which is both isometry invariant and leads to a positive-definite
inner product for the whole continuum of modes. However, there are complex structures Jρ that
partially satisfy these properties. Moreover, there are additional desirable properties for the complex
structure that we take into account, see Section 3.1.10: One is an equivalence of Jρ for the subset of
modes with magic frequencies to the standard complex structure Jt on AdS equal-time hypersurfaces.
We call this weak amplitude equivalence. The other is the recovery of known complex structures on
Minkowski spacetime in the limit that AdS becomes flat and the solutions of the Klein-Gordon
equation become solutions on Minkowski spacetime. We call this the flat limit for brevity.

We show that there is a class of complex structures on the AdS hypercylinder that is invariant
under all isometries of AdS, see Section 3.3.2. Further imposing weak amplitude equivalence mo-
tivates an interlaced construction of a complex structure J iso

ρ given in (C.423) of Section 3.3.4. It
retains full isometry invariance and satisfies the weak amplitude equivalence as well. A disadvantage
is that it leads to an indefinite inner product on the space of modes and thus also on the space of
quantum states. The space of quantum states is thus a Krein space rather than a Hilbert space.
However, this does not spoil the probability interpretation of quantum theory, see [62].

If instead we do not insist on full isometry invariance, but only on invariance with respect to
isometries of the AdS hypercylinder (time-translations and spatial rotations), we obtain a complex
structure Jpos

ρ given in (3.100) of Section 3.3.6, that yields a positive-definite inner product. What
is more, in the flat limit Jpos

ρ reproduces a complex structure Jpos
r on the Minkowski hypercylinder

[59] which is equivalent there to the standard quantization for propagating modes. Table 3.106 in
Section 3.3.6 shows a summary of the properties of these complex structures. This is to be compared
to complex structures in Minkowski spacetime, see Table 3.79 in Section 3.2.2.

We have identified the key requirements and desirable properties for complex structures on the
AdS hypercylinder, surveyed the space of complex structures that satisfy much of these require-
ments, and identified candidates that are particularly interesting. This clearly shows that the GBF
philosophy makes sense in the context of the S-matrix on AdS spacetimes, because it provides a
consistent construction method. What remains to understand, from a physical perspective, is the
differences between these candidates and their respective induced scattering theories. In this di-
rection we only point out here the intimate relationship between complex structures and Feynman
propagators [42, 66]. Much remains to be done in order to reach a satisfactory understanding of
quantum field theory in AdS spacetime.

Motivated by the construction of a radial S-matrix working fine on AdS (and Minkowski space-
time), our next field of interest will be black hole spacetimes, starting with Schwarzschild as the
simplest case. The radial setup is rather natural here: the spacetime is spherically symmetric, and
even static like AdS and Minkowski. Since Schwarzschild becomes asymptotically flat for large ra-
dius, the states become asymptotically free there. Moreover, we should be able to use some flat
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limit here, too, since for vanishing black hole mass M → 0 the Schwarzschild spacetime becomes
Minkowski. However, a priori we cannot be sure here to find a form of amplitude equivalence between
radial and temporal amplitudes, due to the singularity at the time-axis r = 0. This will depend on
the radial behaviour of the modes, which so far is not known sufficiently.
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A.1 General notationxx

We frequently refer to information provided by the DLMF (Digital Library of Mathematical Func-
tions) [49], and denote equations in this source as in DLMF [15.10.1]. Equations etc. from the
Handbook by Abramowitz and Stegun [1] are denoted as in AS [13.8.7].

Our metric’s signature for Lorentzian spacetimes is (+,−, . . . ,−).

A.2 Orthogonal polynomials and Dirac deltaxx

In this short section we give a general relation between the Dirac delta ”function” and orthogonal
polynomials. Let {pn}n∈ N a system of polynomials pn : [a, b] ⊂ R → C with n the degree of the
polynomial. Let hn denote some constants and w(x) some weight function positive on (a, b). Then a
scalar product for the functions on [a, b] is defined by

〈f , g〉w,a,b :=

bˆ

a

dx w(x) f (x) g(x) .

If the following condition is fulfilled, then the system is called orthogonal on the intervall [a, b], see
e.g. DLMF [18.2.1+5].

〈pn, pm〉w,a,b :=

bˆ

a

dx w(x) pn(x) pm(x) = hn δnm ∀ n,m ∈ N (A.1)

δnm is the Kronecker delta symbol. Integration over the continuous variable of orthogonal polynomials
thus gives a delta for the discrete label. We now assume that the pn form a complete basis for the
functions on [a, b]. Further, we can write

w(x) pn(x) =
∑
m∈N

w(x) pm(x) δnm (A.2)

(A.1)
=

∑
m∈N

bˆ

a

dy w(x) pm(x) w(y) pn(y) pm(y)h−1
m (A.3)

=

bˆ

a

dy w(y) pn(y)
∑
m∈N

w(x) pm(x) pm(y)h−1
m︸ ︷︷ ︸

=:D(x, y)

(A.4)
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This equality holds for all pn with n ∈ N and all x ∈ (a, b), and hence D(x, y) must be the Dirac delta
δ(x−y). This is just a slight generalization of equation 6.3.11 of [47]. Summing over the discret label
of orthogonal polynomials thus gives a delta for the continuous variable:∑

m∈N
w(x) pm(x) pm(y)h−1

m = δ(x−y) ∀ x, y ∈ (a, b) . (A.5)

As an example, we apply this to the Jacobi polynomials P
(α,β)
n . There the limits are a = −1 and

b = +1, the weight function is w(x) = (1−x)α(1+x)β for α, β > −1, and

hn =
2α+β+1

2n+α+β+1

Γ(n+α+1) Γ(n+β+1)

n! Γ(n+α+β+1)
, (A.6)

see DLMF [18.3.1] and [18.2.1+5]. The only exceptional case where this is not well defined is n = 0
with α+β = −1, where the Jacobi polynomial is identical to 1, and integration over the pure weight
function results in

hex
0 = Γ(α+1) Γ(β+1) = Γ(α+1) Γ(−α) = − ιπ/ sin(α ιπ) ,

which is well defined due to −1 < α < 0. For x ∈ (−1,+1) we thus get

∞∑
n=0

(1−x)α(1+x)β

hn
P (α,β)
n (x) P (α,β)

n (y) = δ(x−y) . (A.7)

Substituting x = cos 2ρ with ρ ∈ (0, ιπ
2 ) this transforms into

∞∑
n=0

(sin2ρ)α(cos2ρ)β

2−α−β hn
P (α,β)
n (cos 2ρ) P (α,β)

n (cos 2ρ′) = δ(cos 2ρ− cos 2ρ′) =
δ(ρ−ρ′)
2 sin 2ρ

. (A.8)

A.3 Spherexx

On the unit sphere Sd−1 the metric tensor is denoted by gSd−1 . It is diagonal in standard (hy-
per)spherical coordinates given below, with ξ = (ξ1, ..., ξd) denoting the cartesian coordinates of Rd

into which Sd−1 is embedded. We use (d−1) angles θi with i ∈ {1, ..., (d−1)}. These we often denote
collectively by Ω = (θd−1, ..., θ1). On the two-sphere, traditionally θ2 is just denoted by θ, and θ1

by ϕ. We denote angles by upright thetas θ and varphis ϕ in order to distinguish them from the
symplectic potential θ and field configurations ϕ. We shall choose our coordinates such that the
d-dimensional case for d = 3 reproduces the standard spherical coordinates on R3, and thus for d = 2
the standard polar coordinates on the real plane R2.

ξ1 = cos θ1

d−1∏
j=2

sin θj θ1 ≡ ϕ ∈ [0, 2 ιπ)

ξ2 = sin θ1

d−1∏
j=2

sin θj θi ∈ [0, ιπ] ∀ i ∈ {2, ..., (d−1)} (A.9)

ξk = cos θk−1

d−1∏
j=k

sin θj ∀ k ∈ {3, ..., d}

Note that from ξ2 = 1 follows (Einstein sum convention)

ξk dξk = 0 .
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In these coordinates the diagonal elements of gSd−1 give the squared length element

ds2
Sd−1 = dθ2

d−1 + sin2θd−1

Å
dθ2

d−2 + sin2θd−2

(
. . .
(
dθ2

2 + sin2θ2 dθ2
1

)
. . .
)ã

=
d−1∑
k=1

dθ2
k

d−1∏
j=k+1

sin2θj

⇒
»
|gS | = (sin θd−1)d−2 (sin θd−2)d−3

... (sin θ3)2 (sin θ2)1

=
d−1∏
j=2

(sin θj)
j−1 .

Defining |gS | := |det (gSd−1)µν |, we denote the volume element on Sd−1 by d
d−1

Ω = dΩ
√
|gS | , where

dΩ abbreviates dθ1 . . . dθd−1.

A.4 Hyperspherical harmonicsxx

A.4.1 Basics

The hyperspherical harmonics Y mll (Ω) are the eigenfunctions of the Laplacian on a (hyper)sphere

Sd−1 embedded in Rd with d ≥ 3. The eigenvalues depend only on the parameter l:

2Sd−1Y mll (Ω) = −l(l+d−2)Y mll (Ω) .

The l represents the multiindex (ld−1, ..., l2). We often write simply l for ld−1. The ml carries its
subindex in order to distinguish it from the mass m. The indices take the following integer values:

l ≡ ld−1 ∈ {0, 1, 2 , ...}
li ∈ {0, 1, 2, ..., li+1} ∀ i ∈ {2, ..., (d−2)}
ml ∈ {−l2,−l2+1, ..., l2−1, l2} .

(A.10)

The number lj measures the angular momentum on the sphere Sj. Thus we could as well denote
ml by l1 and absorb it into the multiindex. But since the complex conjugated of a hyperspherical
harmonic is easily expressed using ml separately:

Y mll (Ω) = Y −mll (Ω) , (A.11)

we shall keep it as it is. The angle coordinatising S1 is special compared to the other angles: it
is the only angle ranging over [0, 2 ιπ) and being periodic, while the other range over [0, ιπ] and are
not periodic. Also the angular momentum on S1 is special: it is oriented (signed), while the other
angular momenta lj are unsigned.

A.4.2 On the two-sphere

The spherical harmonics on the two-sphere belong to the most popular of the special functions and
thus are very well known. With Ω = (θ,ϕ) they write as

Y mll (Ω) = Nml
l eimlϕ Pmll (cos θ) . (A.12)

The Pmll are the associated Legendre polynomials (associated Legendre functions of the first kind
with integer parameters). Since we wish to obtain an orthonormal system:

ˆ

S2

d
2
Ω Y

m′l
l′ (Ω) Y mll (Ω) = δll′ δmlm′l , (A.13)
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(wherein the δ denote Kronecker deltas) we have to choose the standard normalisation

Nml
l =

 
2l+1

4 ιπ

(l−ml)!

(l+ml)!
. (A.14)

This can be seen from AS [8.14.11+13]

1ˆ

−1

dx Pmll (x) Pmll′ (x) = δll′
2

2l+1

(l+ml)!

(l−ml)!

and

2 ιπˆ

0

dϕ eiϕ(ml−m′l) = (2 ιπ)δmlm′l .

Later we will need to decompose spherical harmonics Y mll and their derivative into a sum of spherical
harmonics with the same ml and l± 1. As for the hypergeometric functions we shall call Y mll±1

contiguous spherical harmonics of Y mll . Now using AS [8.5.3+4]

xPmll (x) =
l+ml

2l+1
Pmll−1 (x) +

l+1−ml

2l+1
Pmll+1 (x)

(1−x)2 d

dx
Pmll (x) = (l+ml)P

ml
l−1 (x)− l x Pmll (x)

=
(l+ml)(l + 1)

2l+1
Pmll−1 (x)− l(l+1−ml)

2l+1
Pmll+1 (x)

we find the following relations for contiguous spherical harmonics (which are probably well known,
although we did not find them in the literature):

cos θY mll (Ω) = χ
(2)
− (l,ml)Y

ml
l−1 (Ω) + χ

(2)
+ (l,ml)Y

ml
l+1 (Ω) (A.15)

(1−cos2θ)
d

d cos θ
Y mll (Ω) = δ

(2)
− (l,ml)Y

ml
l−1 (Ω) + δ

(2)
+ (l,ml)Y

ml
l+1 (Ω) (A.16)

with the raising and lowering coefficients

χ
(2)
− (l,ml) =

 
l2−m2

l

(2l−1)(2l+1)
δ

(2)
− (l,ml) = (l+1) χ

(2)
− (l,ml) (A.17)

χ
(2)
+ (l,ml) =

 
(l+1)2−m2

l

(2l+1)(2l+3)
δ

(2)
+ (l,ml) = −l χ(2)

+ (l,ml) .

Note that these coefficients behave very well in the following sense. First, for l = 0 automatically

ml = 0 and thus the lowering coefficients vanish in this case: χ
(2)
− (0, 0) = δ

(2)
− (0, 0) = 0, and

therefore spherical harmonics with negative l do not appear. Second, the lowering coefficients also

vanish whenever ml has its extremal values ml = ±l, that is, χ
(2)
− (l,±l) = δ

(2)
− (l,±l) = 0, such that

there appear no spherical harmonics Y ±ll−1 where (the absolute value of) ml is larger than l. Third,
they are invariant under the sign change ml → −ml. Raising and lowering coefficients are related
through

χ
(2)
− (l+1,ml) = χ

(2)
+ (l,ml) . (A.18)
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A.4.3 On higher-dimensional spheres

Although met a little less frequently in the literature, the spherical harmonics on the (d−1)-sphere
are also well known (e.g. in chemical physics). From formula (3.101) in Avery’s book [6] and formula
(21) in [3] by Aquilanti et al. we can read off the product structure following below.

Therein, the spherical harmonics (d−1)Y mll on the (d−1)-sphere are related to those (d−2)Y ml
l̃

on

the (d−2)-sphere. In order to keep track of dimensions, in this section we shall therefore use a
notation with an additional label: Ωd−1 = (θd−1, ..., θ2, θ1≡ϕ) and thus Ωd−2 = (θd−2, ..., θ2, θ1≡ϕ).
Moreover l = (ld−1, ..., l2) and l̃ = (ld−2, ..., l2), that is, l with the first entry cut off. Since we need
them more often, we shall abbreviate as follows: l := ld−1 and l̃ := ld−2. For d = 3 the latter is to
be understood as l̃ := ml. Then,

(d−1)Y mll (Ωd−1) = N (d−1)
l,ld−2

(sin θd−1)ld−2 C
(ld−2+d/2−1)
l−ld−2 (cos θd−1)

(d−2)Y ml
l̃

(Ωd−2) , (A.19)

wherein the C
(ld−2+d/2−1)
l−ld−2 denote the Gegenbauer (ultraspherical) polynomials, and the hyperspher-

ical harmonics on the (d−2)-sphere are assumed to be orthonormal already. Since we also wish to
obtain an orthonormal system on the (d−1)-sphere:

ˆ

Sd−1

d
d−1

Ω Y
m′l
l′ (Ω) Y mll (Ω) = δll′ δmlm′l , (A.20)

(wherein the δ denote Kronecker deltas) we have to fix the relative normalisation constants to

N (d−1)
l,ld−2

= 2ld−2+d/2−2 Γ(ld−2 + d/2− 1)

 
(l−ld−2)! (2l+d−2)

ιπ (l+ld−2 + d−3)
(d−1) ≥ 3 . (A.21)

Up to notation (factorial versus Γ-function), our normalisation agrees with the one given by Aquilanti
et al. (but apparently not with Avery’s). Our normalisation can be derived using AS [22.2.3]

1ˆ

−1

dx (1−x2)α−1/2 C(α)
n (x) C

(α)
n′ (x) = δnn′ 21−2α ιπ Γ(2α+n)

n! (n+α) (Γ(α))2
0 6= α > −1/2 .

Since in our case α = ld−2 + d/2 − 1 and d ≥ 4, we can apply this formula. Starting from the
well known spherical harmonics on S2 and using the recursion (A.19) we can now derive an explicit
formula for the spherical harmonics on Sd−1:

Y mll (Ω) = N (d−1)
l

(
d−1∏
k=3

(sin θk)lk−1C
(lk−1+(k−1)/2)
lk−lk−1 (cos θk)

)
Pmll2

(cos θ2) eimlθ1 . (A.22)

The full normalisation constant is given by a product of relative normalization constants starting at
Nml
l2

(with ml≡ l1):

N (d−1)
l =

d−1∏
k=2

N (k)
lk,lk−1

N (2)
l2,l1

= Nml
l2

. (A.23)

Now we want to work out the analogs of the contiguous relations (A.15) and (A.16) for the higher-
dimensional cases. To this end, in AS[22.7.3] or the first line of table DLMF [18.9.1] we can find

xC(α)
n (x) =

2α+n−1

2(α+n)
C

(α)
n−1(x) +

n+1

2(α+n)
C

(α)
n+1(x) .
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Further, we have AS [22.8.2]:

(1−x)2 d

dx
C(α)
n (x) = (2α+n−1)C

(α)
n−1(x)− nxC(α)

n (x)

=
(2α+n) (2α+n−1)

2(α+n)
C

(α)
n−1(x)− n (n+1)

2(α+n)
C

(α)
n+1(x) .

Using these, we find the following relations for contiguous hyperspherical harmonics

cos θd−1 Y
ml
l (Ω) = χ

(d−1)
− (l, ld−2)Y ml

(l−1,l̃)
(Ω) + χ

(d−1)
+ (l, ld−2)Y ml

(l+1,l̃)
(Ω) (A.24)

(1−cos2θd−1)
d

d cos θd−1
Y mll (Ω) = δ

(d−1)
− (l, ld−2)Y ml

(l−1,l̃)
(Ω) + δ

(d−1)
+ (l, ld−2)Y ml

(l+1,l̃)
(Ω) (A.25)

with the raising and lowering coefficients

χ
(d−1)
− (l, ld−2) =

 
(l−ld−2) (l+ld−2+d−3)

(2l+d−4) (2l+d−2)
δ

(d−1)
− (l, ld−2) = (l+d−2) χ

(d−1)
− (l, ld−2) (A.26)

χ
(d−1)
+ (l, ld−2) =

 
(l−ld−2+1) (l+ld−2+d−2)

(2l+d−2) (2l+d)
δ

(d−1)
+ (l, ld−2) = −l χ(d−1)

+ (l, ld−2) .

Note first that for d = 3 these coefficients reproduce exactly those for the two-sphere (with l1≡ml).
They also exhibit the same well-behavedness. Again for l = 0 automatically ld−2 = 0 and thus

the lowering coefficients vanish in this case: χ
(d−1)
− (0, 0) = δ

(d−1)
− (0, 0) = 0, that is, hyperspherical

harmonics with negative l do not appear. Further, again the lowering coefficients vanish if and only

if |ld−2| has its top value ld−2 = l, that is, χ
(d−1)
− (l, l) = δ

(d−1)
− (l, l) = 0, such that there appear no

hyperspherical harmonics Y ml(l−1,l,ld−3...,l2) where ld−2 is bigger than ld−1. (Recall that ld−2 is always

nonnegative except for d = 3 which we considered above.) The raising coefficients never vanish. A
relation connecting raising and lowering coefficients which sometimes comes in handy is

χ
(d−1)
− (l+1, ld−2) = χ

(d−1)
+ (l, ld−2) . (A.27)

From (A.2) with w(x) →
√
|gSd−1 | we then get a generalization of DLMF [1.17.25]:

∑
l,ml

Y mll (Ω) Y mll (Ω′) =
δ

(d−1)
(Ω−Ω′)√
|gSd−1 |

, (A.28)

wherein δ
(d−1)

(Ω−Ω′) := δ(θ1−θ′1) · . . . · δ(θd−1−θ′d−1).

A.4.4 Transformation under rotations: basics

An arbitrary spatial rotation on Rd is determined by n = d(d−1)/2 Euler angles α = (α1, ..., αn)
plus a choice of n axes1 {e i}i=1,...,n around which to rotate. That is, any rotation can be obtained
by first rotating by an angle α1 around axis e1, then rotating by an angle α2 around axis e2, and so
on until rotating by αn around en. As an example, in R3 we have n = 3, and a frequent choice of
axes is ZYZ (that is: e1 is the x3-axis, e2 is the x2-axis, and e3 is again the x3-axis). The group of
these rotations is the special orthogonal group SO(d).

In cartesian coordinates the rotation acts as a (d, d)-matrix (R̂(α)) on the coordinate vector:
xa → x′a = (R̂(α))ba x

a. The rotation matrix (R̂(α)) is the product of the matrices (R̂i(αi)) with

1The ”axes” for rotations in higher dimensions are actually hyperplanes of codimension 2, since all coordinates but
two are held constant. For rotations in three dimensions this reduces to the usual axes which are lines of dimension
1. For simplicity, we shall use term ”axes” also for higher dimensions.
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i = n, (n−1), ..., 1, which each perform the rotation by an angle αi around axis e i. In our example,
the matrix (R̂1(α1)) is the well-known matrix of a rotation by α1 around the x3-axis:

(R̂1(α1)) =

Ö
cosα1 sinα1 0

− sinα1 cosα1 0

0 0 1

è
.

The action of a rotation on spherical coordinates Ω → Ω′ = R̂Ω cannot be expressed so nicely in
matrix form, nevertheless it can be obtained in the following way: transform the spherical coordinates
into cartesian ones, rotate the cartesian coordinates as described above, and transform them back
into spherical coordinates.

A.4.5 Transformation under rotations: two-sphere

The action on hyperspherical harmonics is given by Wigner’s D-matrix. In Chapter 15 of [74] it is
originally defined for R3 using one-particle states | l ml〉 with definite angular momentum quantum
numbers l and ml as

(Dl
(α))m′

l
ml := 〈lm′l | R̂(α) | lml〉 .

(Dl(α)) is a (2l+1, 2l+1)-matrix. The one-particle states are orthonormal and fulfill a completeness
relation: 〈

l ml

∣∣ l′m′l〉 = δll′ δmlm′l (A.29)

1 =
∑
l,ml

| l ml〉 〈 l ml | . (A.30)

For our purposes the concrete form of Wigner’s D-matrix is not important. Let us write it down
anyway for the above example for the sake of completeness. There, Wigner’s D-matrix is given by
[74]

(Dl
(α))m′

l
ml = e−im′lα1 (d l(α2))m′

l
ml e−imlα3 , (A.31)

with Wigner’s small d-matrix given by

(d l(α2))m′
l
ml =

»
(l+m′l)! (l−m′l)! (l+ml)! (l−ml)!

min(l+ml,l−m′l)∑
s=max(0,ml−m′l)

(−1)s+m
′
l−ml (sin(α2/2))2s+m′l−ml (cos(α2/2))2l−2s−m′l+ml

s! (s+m′l−ml)! (l−m′l−s)! (l+ml−s)!
.

Note that the limits of the sum are precisely such that all factorials in it have a nonnegative argument.
Let us denote a one-particle state with definite angular position Ω by |Ω〉. The completeness relation
is given by

1 =

ˆ

S2

d
2
Ω |Ω〉 〈Ω | .

The (angular part of the) wavefunction in coordinate representation of our one-particle state | lml〉
is given by the spherical harmonics:

〈Ω | lml〉 = Y mll (Ω) .
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This allows us to write Wigner’s D-matrix as

(Dl
(α))m′

l
ml = 〈lm′l | R̂(α) | lml〉

=

ˆ
d

2
Ω

ˆ
d

2
Ω′ 〈lm′l |Ω〉〈Ω | R̂(α) |Ω′〉〈Ω′ | lml〉

=

ˆ
d

2
Ω

ˆ
d

2
Ω′ Y

m′
l

l (Ω) 〈Ω | R̂(α) Ω′〉Y mll (Ω′)

=

ˆ
d

2
Ω′ Y

m′
l

l (R̂(α)Ω′) Y mll (Ω′)

=
〈
Y
m′l
l ◦ R̂(α), Y mll

〉
S2
.

The last line denotes the inner product of two functions on S2, and in between we have used

〈Ω |Ω′〉 =
δ

(2)

(Ω,Ω′)
√
gS2

.

When considering the transformation of spherical harmonics under rotations, the crucial point is
that the total spatial angular momentum l on S2 is conserved under rotations around the center of

this sphere. Therefore Y
m′l
l (R̂(α)Ω) can be expanded as a sum over Y mll (Ω), that is, over spherical

harmonics with the same spatial angular momentum l see also Chapter 15 in [74]. In other words:

the inner product of a rotated Y mll (R̂(α)Ω) and an unrotated spherical harmonic Y
m′l
l′ (Ω) vanishes

except for l′ = l. Thus we can write the rotated spherical harmonics as a linear combination of
unrotated ones, with the coefficients provided by elements of Wigner’s D-matrix:

Y
m′l
l (R̂(α)Ω) =

ˆ
d

2
Ω′ Y

m′l
l (R̂(α)Ω′)

δ
(2)

(Ω′,Ω)
√
gS2

=

ˆ
d

2
Ω′

∑
m′′, l′′

Y
m′′l
l′′ (Ω) Y

m′′
l

l′′ (Ω′) Y
m′l
l (R̂(α)Ω′)

=
∑
m′′
l
, l′′

Y
m′′l
l′′ (Ω)

〈
Y
m′′l
l′′ , Y

m′l
l ◦ R̂(α)

〉
=
∑
ml

Y mll (Ω)

〈
Y mll , Y

m′l
l ◦ R̂(α)

〉
=
∑
ml

Y mll (Ω) (Dl(α))m′
l
ml .

By complex conjugation we obtain from this relation

Y
m′
l

l (R̂(α)Ω) =
∑
ml

Y mll (Ω) (Dl
(α))m′

l
ml

= Y
−m′l
l (R̂(α)Ω) =

∑
ml

Y mll (Ω) (Dl
(α))m′

l
,−ml .
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Since for rotations R̂(α) ∈ SO(3) we have (R̂(α))−1 = (R̂(α))> = (R̂(α))†, we can also write

(Dl
(α))m′

l
ml = 〈lm′l | R̂(α) | lml〉

=

ˆ
d

2
Ω

ˆ
d

2
Ω′ 〈lm′l |Ω〉〈Ω | R̂(α) |Ω′〉〈Ω′ | lml〉

=

ˆ
d

2
Ω

ˆ
d

2
Ω′ Y

m′
l

l (Ω)
〈
(R̂(α))−1Ω

∣∣Ω′〉 Y mll (Ω′)

=

ˆ
d

2
Ω Y

m′
l

l (Ω) Y mll ((R̂(α))−1Ω)

=
〈
Y
m′l
l , Y mll ◦ (R̂(α))−1

〉
S2
,

and (mind the position of the prime!)

Y
m′l
l ((R̂(α))−1Ω) =

∑
ml

Y mll (Ω)

〈
Y mll , Y

m′l
l ◦ (R̂(α))−1

〉
=
∑
ml

Y mll (Ω) (Dl
(α))mlm′l .

By complex conjugation we obtain from this relation

Y
m′
l

l (R̂(α)Ω) =
∑
ml

Y mll (Ω) (Dl(α))mlm′l

= Y
−m′l
l (R̂(α)Ω) =

∑
ml

Y mll (Ω) (Dl(α))−ml,m′l .

What will be most important for us is the following completeness relation fulfilled by Wigner’s
D-matrix: ∑

ml

(Dl
(α))m′

l
ml (Dl(α))m′′

l
ml =

∑
ml

〈
l m′l

∣∣ R̂(α)
∣∣ l ml

〉 〈
l ml

∣∣ (R̂(α))†
∣∣ l m′′l 〉

=
〈
l m′l

∣∣
������
R̂(α)(R̂(α))−1

∣∣ l m′′l 〉 = δm′
l
m′′
l

=

ˆ
d

2
Ω
〈
l m′l

∣∣Ω〉 〈Ω ∣∣ l m′′l 〉
=

ˆ
d

2
Ω Y

m′
l

l (Ω) Y
m′′l
l (Ω)

= δm′
l
m′′
l
. (A.32)

A.4.6 Transformation under rotations: (d−1)-sphere

Except for the concrete values (A.31) which are not relevant for our calculations, the generalization
of Wigner’s D-matrix for rotations in Rd is straightforward:(

Dl
l̃
′
,̃l

(α)

)
m′
l
ml

:=
〈
l l̃
′
m′l

∣∣∣ R̂(α)

∣∣∣ l l̃ ml

〉
, (A.33)

wherein | l l̃ ml〉 is a one-particle state with angular momentum quantum numbers l, l̃ and ml.
(Dl

l̃
′
,̃l

(α)) is a (2l′d−2 +1, 2ld−2 +1)-matrix, i.e., generically not square. The one-particle states are

orthonormal and fulfill a completeness relation:〈
l l̃ ml

∣∣∣ l′ l̃′m′l〉 = δll′ δl̃ l̃′ δmlm′l (A.34)

1 =
∑
l, l̃,ml

∣∣∣ l l̃ ml

〉 〈
l l̃ ml

∣∣∣ . (A.35)
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The coordinate completeness relation becomes

1 =

ˆ

Sd−1

d
d−1

Ω |Ω〉 〈Ω | .

The (angular part of the) wavefunction in coordinate representation of our one-particle state | l l̃ ml〉
is again given by the (hyper)spherical harmonics:

〈Ω | l l̃ ml〉 = Y ml
(l,̃l)

(Ω) .

This allows us to write Wigner’s D-matrix as(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

=

ˆ
d
d−1

Ω′ Y
m′
l

(l,̃l
′
)
(R̂(α)Ω′) Y ml

(l,̃l)
(Ω′)

=
〈
Y
m′l
(l,̃l
′
)
◦ R̂(α), Y ml

(l,̃l)

〉
Sd−1

. (A.36)

The upper line induces (
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

=
(
Dl
l̃
′
,̃l

(α)

)
−m′

l
,−ml

. (A.37)

The last line in (A.36) denotes the inner product of two functions on Sd−1, and in between we have
used

〈Ω |Ω′〉 =
δ

(d−1)
(Ω,Ω′)

√
gSd−1

.

Again the crucial point is that the total spatial angular momentum l on Sd−1 is conserved under
SO(d) rotations around the center of this sphere. Thus again we can write the rotated spherical
harmonics as a linear combination of unrotated ones, with the coefficients provided by elements of
Wigner’s D-matrix:

Y
m′l
(l,̃l
′
)
(R̂(α)Ω) =

∑
l̃, ml

Y ml
(l,̃l)

(Ω)

〈
Y ml

(l,̃l)
, Y

m′l
(l,̃l
′
)
◦ R̂(α)

〉
=
∑
l̃, ml

Y ml
(l,̃l)

(Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

. (A.38)

By complex conjugation we obtain from this relation

Y
m′
l

(l,̃l
′
)
(R̂(α)Ω) =

∑
l̃, ml

Y ml
(l,̃l)

(Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

= Y
−m′l
l (R̂(α)Ω) =

∑
l̃, ml

Y ml
(l,̃l)

(Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
,−ml

.

(A.39)

Since also for SO(d)-rotations we have (R̂(α))−1 = (R̂(α))> = (R̂(α))†, we can also write(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

=

ˆ
d
d−1

Ω Y
m′
l

(l,̃l
′
)
(Ω) Y ml

(l,̃l)
((R̂(α))−1Ω)

=
〈
Y
m′l
(l,̃l
′
)
, Y ml

(l,̃l)
◦ (R̂(α))−1

〉
Sd−1

, (A.40)
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and (mind the position of the prime!)

Y
m′l
(l,̃l
′
)
((R̂(α))−1Ω) =

∑
l̃, ml

Y ml
(l,̃l)

(Ω)

〈
Y ml

(l,̃l)
, Y

m′l
(l,̃l
′
)
◦ (R̂(α))−1

〉
=
∑
l̃, ml

Y ml
(l,̃l)

(Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

. (A.41)

By complex conjugation we obtain from this relation

Y
m′
l

(l,̃l
′
)
(R̂(α)−1Ω) =

∑
l̃, ml

Y ml
(l,̃l)

(Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

= Y
−m′l
(l,̃l
′
)

(R̂(α)−1Ω) =
∑
l̃, ml

Y ml
(l,̃l)

(Ω)

(
Dl
l̃,̃l
′ (α)

)
−ml,m′l

.

(A.42)

What will be most important for us is the following completeness relation fulfilled by Wigner’s
D-matrix: ∑

l̃, ml

(Dl
l̃
′
, l̃

(α))m′
l
ml (Dl

l̃
′′
, l̃

(α))m′′
l
ml = δl̃′, l̃′′ δm′

l
m′′
l
. (A.43)

It can be obtained again via∑
l̃, ml

(Dl
l̃
′
, l̃

(α))m′
l
ml (Dl

l̃
′′
, l̃

(α))m′′
l
ml =

∑
l̃,ml

〈
l l̃
′
m′l

∣∣∣ R̂(α)

∣∣∣ l l̃ ml

〉 〈
l l̃ ml

∣∣∣ (R̂(α))†
∣∣∣ l l̃′′m′′l 〉

=
〈
l l̃
′
m′l

∣∣∣������
R̂(α)(R̂(α))−1

∣∣∣ l l̃′′m′′l 〉 = δl̃′, l̃′′ δm′
l
m′′
l

=

ˆ
d
d−1

Ω
〈
l l̃
′
m′l

∣∣∣Ω〉 〈Ω
∣∣∣ l l̃′′m′′l 〉

=

ˆ
d
d−1

Ω Y
m′
l

l,̃l
′ (Ω) Y

m′′l
l,̃l
′′ (Ω)

= δl̃′, l̃′′ δm′
l
m′′
l
.
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Appendix B

Minkowski spacetimeX
X

XX

B.1 Minkowski basicsxx

B.1.1 Prelude: Killing vector fields on R(p,q)

In this section we list the Killing vector fields on R(p,q), with diagonal metric η and cartesian co-
ordinates XA, where the index A = 1, ..., (p+q). These are well known, see e.g. example (7.10)
about Minkowski spacetime in [48]. Nevertheless, we shall give some details here for the sake of
completeness. The reason for doing this is that we need the Killing vectors for Minkowski spacetime
which is R(1,3). Moreover, some Killing vectors on R(2,d) leave a radial coordinate R :=

√
η(X,X)

invariant (it is well defined only where η(X,X) ≥ 0). Therefore, these are also Killing vectors on
AdS1,d, which can be seen as a submanifold of R(2,d) with R = const.

In this section we shall not use Einstein’s sum convention of summing over repeated indices, but
write summations explicitly. Latin uppercase indices range as in A = 1, . . . , p, (p+1), . . . , (p+q).
Since the embedding space metric η is constant, we already have the (p+q) Killing vector fields
corresponding to translations: TA = ∂A with A = 1, . . . , (p+q). These do not leave R invariant,
however, and thus are of lesser interest for us.

Further, we can define the following linear combinations of translations, denoting them by K for
Killing:

KA
B (X) := XA ∂B − ηBBηAAXB ∂A

KAB(X) := XA ∂B −XB ∂A = ηAAK
A
B .

(B.1)

(We define both versions, since a priori it is not clear which one will be more useful later.) Because
the embedding space metric is diagonal we have XA =

∑
Q ηAQX

Q = ηAAX
A = ±XA, depending

on the sign of ηAA. Note that the A and B attached to the Killing vectors K here are mere labels,
not coordinate indices. The components of these vector fields are given by

(KA
B )Q(X) = XA δQB − ηBBη

AAXB δQA

(KAB)Q(X) = XA δ
Q
B −XB δ

Q
A .

(B.2)

wherein δQA has the same value as the Kronecker delta δQA. For A = B both Killing vector fields
vanish: KA

B ≡ 0 ≡ KAB . Since therefore A 6= B, we have [(p+q)2 − (p+q)]/2 = (p+q)(p+q−1)/2
Killing vector fields KA

B (respectively KAB).
While KAB = −KBA is always antisymmetric, KA

B is antisymmetric for ηAA = ηBB (rotations
in embedding space) but symmetric for ηAA = −ηBB (boosts in embedding space). Moreover, we
can make the usual identification of R(p,q) with its tangent space, and define the vector field X at a
point X to be the vector from the origin to the point X. Then the Killing vector fields at point X
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is (pseudo)orthogonal to the vector field X at point X:

0 = η(KA
B , X) = η(KAB , X) .

Next let us check that our Killing vectors indeed fulfill the Killing equation (see e.g. (7.121) in [48])

0
!
= (∇M KA

B )N + (∇N KA
B )M

0
!
= (∇M KAB)N + (∇N KAB)M .

(B.3)

Since the metric η is constant, all Christoffel symbols vanish and the covariant derivatives reduce to
partial ones:

0
!
= ηNN (∂M KA

B )N + ηMM (∂ KA
B )M

0
!
= ηNN (∂M KAB)N + ηMM (∂N KAB)M .

We can plug in the respective components according to (B.2), and then evaluate for several different
cases (remember that always A 6= B, else the Killing vectors vanish trivially): (1) A = M and
B = N , (2) A = M and B 6= N ⇒ B 6= M , (3) B = N and A 6= M ⇒ A 6= N , (4) A = N
and B = M , (5) A = N and B 6= M ⇒ B 6= N , (6) B = M and A 6= N ⇒ A 6= M , (7)
M 6= A 6= N and M 6= B 6= N . Using ∂M XA = δAM and ∂M XA = ηAA δ

A
M , for all cases we obtain

zero, confirming that KA
B and KAB are indeed Killing vectors.

Calculating the Lie bracket [KAB, KCD] (using again ∂M XA = ηAA δ
A
M ), we can verify that the

Killing vectors KAB form a representation of the Lie algebra so (p, q):

[KAB, KCD] = −ηAC KBD + ηBC KAD − ηBDKAC + ηADKBC . (B.4)

(This is the same algebra as (4.21) in [26] up to an overall sign.) We note that both sides actually
give zero for many combinations of labels. For A = B or C = D one Killing vector itself vanishes,
giving zero. For A = C with B = D the Killing vectors coincide, giving zero. Ditto for A = D with
B = C. For no label agreeing with another label (A 6= B,C,D with B 6= C,D with C 6= D) both
sides give zero. That is, we only get a nonvanishing contribution whenever one of the left labels
coincides with one of the right labels with all other labels differing from each other (for example
A = C 6= B,D with B 6= D). Then, only one term on the right hand side survives and coincides
with the left hand side.

An m-dimensional manifold admitting m(m+1)/2 Killing vector fields is called maximally sym-
metric space, see Section 7.7.1 in [48]. Since embedding space R(p,q) of dimension m = (p+q) has
(p+q) translations TA and (p+q)(p+q−1)/2 Killing vectors KAB , it has in total (p+q)(p+q+1)/2
Killing vectors and is thus maximally symmetric.

B.1.2 Killing vectors for Minkowski spacetime R(1,3)

Now we apply the result of the previous section to find the Killing vectors of Minkowski spacetime in
spherical coordinates. Later we will let them act on Klein-Gordon solutions, and see what kind of ac-
tion results and how it transcribes from the position representation to the momentum representation
of the solutions. In this section lowercase Greek letters range over µ = 0, 1, 2, 3 and lowercase Latin
letters range over k = 1, 2, 3. On Minkowski spacetime we use the metric η = diag (−,+,+,+),
and have the usual cartesian x = (x0, x) with x = (x1, x2, x3) and spherical coordinates (t, r,Ω)
with Ω = (θ,ϕ) related through

x0 = −x0 = t

x1 = +x1 = r ξ1(Ω) ξ1(Ω) = sin θ cosϕ

x2 = +x2 = r ξ2(Ω) ξ2(Ω) = sin θ sinϕ (B.5)

x3 = +x3 = r ξ3(Ω) ξ3(Ω) = cos θ ,
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and

r =
√
x2 ∂xj r = ξj

ξk =
xk√
x2

∂xj ξk =
δjk − ξjξk

r
. (B.6)

Therein, δjk is the Kronecker delta. We thus have as Killing vectors 4 translations Tµ, 3 rotations
Kjk and 3 boosts K0k. The translations are given by

T0(x) = ∂x0 = ∂t (B.7)

Tk(x) = ∂xk = ξk ∂r +
1

r

(
∂ξk − ξkξi ∂ξi

)
. (B.8)

The rotations are given by

Kjk(x) = xj ∂xk − xk ∂xj
= ξj ∂ξk − ξk ∂ξj , (B.9)

and the boosts by

K0k(x) = x0 ∂xk − xk ∂x0

= −rξk ∂t − tξk ∂r −
t

r

(
∂ξk − ξkξi ∂ξi

)
. (B.10)

The translations commute among themselves:

[Tµ, Tν ] = 0, (B.11)

and the boosts and rotations form the Lorentz algebra so (1, 3) as in (B.4):

[Kαβ, Kµν ] = −ηαµKβν + ηβµKαν − ηβν Kαµ + ηαν Kβµ . (B.12)

The commutation relations between translations and the generators of the Lorentz algebra are:

[Tα,Kµν ] = ηαµTν − ηανTµ. (B.13)

Hence, the translations Tµ together with the rotations Kjk and boosts K0j generate the Poincaré
algebra.

Actions of rotations and boosts on coordinates

Next we calculate the action of the rotators Kjk on the angular coordinates (θ,ϕ). Using

ξ1(Ω) = sin θ cosϕ
∂θ

∂ξ1
=

cosϕ

cos θ

∂ϕ

∂ξ1
= − sinϕ

sin θ

ξ2(Ω) = sin θ sinϕ
∂θ

∂ξ2
=

sinϕ

cos θ

∂ϕ

∂ξ2
= +

cosϕ

sin θ
(B.14)

ξ3(Ω) = cos θ
∂θ

∂ξ3
=
−1

sin θ

∂ϕ

∂ξ3
= 0 ,

we find

K12 = ξ1 ∂ξ2 − ξ2 ∂ξ1 = ∂ϕ (B.15)

K23 = ξ2 ∂ξ3 − ξ3 ∂ξ2 = −2 sinϕ ∂θ −
cosϕ

tan θ
∂ϕ (B.16)

K31 = ξ3 ∂ξ1 − ξ1 ∂ξ3 = +2 cosϕ ∂θ −
sinϕ

tan θ
∂ϕ . (B.17)
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Thus K12 generates rotations in ϕ-direction. Evaluating K23 in the (x2, x3)-plane for (x2 > 0) ⇔
(ϕ = ιπ/2) and for (x2 < 0) ⇔ (ϕ = − ιπ/2), we see that for the former case K23 = −2∂θ while for
the latter K23 = +2∂θ. That is, K23 rotates the x2-axis towards the x3-axis. In a similar way we
can see that K31 rotates the x3-axis towards the x1-axis.

In order to illustrate the action of the boosts K0j , we consider that within our inertial system I
with coordinates (t, x) there is another inertial system I ′ with coordinates (t′, x ′), which is moving
with a 3-velocity v within I. Without restriction of generality, we let the xµ-axes of I be parallel to
the respective xµ′-axes of I ′, and we let I ′ move in x3-direction with speed v � 1, in order to have
an infinitesimal boost. Fixing the origins to coincide at t = t′ = 0, we always have x1′ = x1 and
x2′ = x2, and moreover

t′ = γ(v) (t− vx3) x3′ = γ(v) (x3 − vt) ,

wherein γ(v) = (1−v2)−1/2. For v = ε � 1 we have in leading order γ(ε) ≈ 1 + v2/2. Up to linear
order we thus get

t′ = t− εx3 x3′ = x3 − εt .

Now this is just the infinitesimal action of K03, and thus an infinitesimal boost 1 + εK0j gives us
the coordinates in a system that moves with speed ε in xj-direction:

(1 + εK03)

à
t

x1

x2

x3

í
= (1 − εt∂3 − εx3∂t)

à
t

x1

x2

x3

í
=

à
t− εx3

x1

x2

x3 − εt

í
.

In summary, our conventions lead to a natural and convenient action of the rotators Kjk and boosts
K0j . This was achieved by working with the KAB Killing vectors (and not the KA

B ), choosing the
metric’s overall sign to give η = diag (−,+,+,+), and hence setting x0 = −x0 = −t (and not x0 = t).

B.1.3 Penrose diagram of Minkowski spacetime

In this section we briefly sum up how to find the Penrose diagram for Minkowski spacetime, and
then examine the behaviour of the Killing vectors on its conformal boundary. The former is well
known, see e.g. Section 3.1 in [11] Departing from spherical coordinates (t, r,Ω), we first define the
new coordinates

v± := t± r v± ∈ (−∞,+∞)

t = 1
2 (v+ + v−) t ∈ (−∞,+∞)

r = 1
2 (v+ − v−) r ∈ [0,+∞) .

Since r ≥ 0 the v±-coordinates have the restriction

v+ ≥ v− .

The metric is given by

ds2 = −dt2 + dr2 + r2 dΩ2
2 , (B.18)

with dΩ2
2 the area element on S2. Next we define ”compactified” versions of these coordinates:

ṽ± := arctan v± v± := tan ṽ± ṽ± ∈ (− ιπ

2
,+

ιπ

2
) . (B.19)

Since v+ ≥ v− and the arctangent is monotonically increasing, we have in addition

ṽ+ ≥ ṽ− .
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Finally, we can define ”compactified” time and radial coordinates as

t̃ := 1
2 (ṽ+ + ṽ−) t̃ ∈ (− ιπ

2
,+

ιπ

2
)

r̃ := 1
2 (ṽ+ − ṽ−) r̃ ∈ [0,+

ιπ

2
)

ṽ± = t̃± r̃ .

We have r̃ ≥ 0 because of ṽ+ ≥ ṽ−. Further, since ṽ± ∈ (− ιπ
2
,+ ιπ

2
) we have (t̃ ± r̃) ∈ (− ιπ

2
,+ ιπ

2
), that

is, in particular

t̃ ≤ ιπ

2
− r̃ t̃ ≥ r̃ − ιπ

2
.

After applying a conformal transformation

ds̃2 := cos2ṽ+ cos2ṽ− ds2 , (B.20)

we get the conformally rescaled metric

ds̃2 = −dt̃2 + dr̃2 + sin2r̃ cos2r̃ dΩ2
2 . (B.21)

We can now draw Minkowski spacetime in a conformal diagram called Penrose diagram, see Figure
B.22.

Figure B.22: Penrose diagram of Minkowski spacetime: (t̃, r̃) and ṽ±-coordinates.

The t̃-coordinate is on the vertical axis and r̃ on the horizontal one. The ṽ±-coordinates are on the
diagonal axes. Minkowski spacetime is the shaded triangular region where we have r̃ ∈ [0, ιπ/2) and
t̃ ∈ (− ιπ/2,+ ιπ/2) with t̃ ≤ ιπ

2
− r̃ and t̃ ≥ r̃ − ιπ

2
, or equivalently ṽ± ∈ (− ιπ/2,+ ιπ/2) with ṽ+ ≥ ṽ−.

The point i− is called past timelike infinity, i+ is future timelike infinity, and i0 is spacelike infinity.
Every point in the diagram corresponds to a two-sphere in Minkowski space, except for the points

on the time axis r = r̃ = 0 and i−, i+ and i0. For these exceptions the prefactor sin2r̃ cos2r̃ of
the spherical part of the metric ds̃2 vanishes, and thus their corresponding two-spheres degenerate
to points.
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The conformal boundary of Minkowski spacetime consists of the ”lines” (whose points correspond
to two-spheres) I− (past null infinity) where ṽ− = − ιπ/2 and I+ (future null infinity) where ṽ+ =
+ ιπ/2, plus the points i−, i+ and i0. The conformal boundary is not part of Minkowski spacetime.

The direct relation between original and compactified coordinates is given by

t̃ =
1

2

(
arctan(t+r) + arctan(t−r)

)
t =

1

2

(
tan(t̃+r̃) + tan(t̃−r̃)

)
r̃ =

1

2

(
arctan(t+r)− arctan(t−r)

)
r =

1

2

(
tan(t̃+r̃)− tan(t̃−r̃)

)
.

This permits us to draw the lines of constant t and r in the Penrose diagram.

Figure B.23: Penrose diagram of Minkowski spacetime: lines of constant t and r coordinates.

Analyzing the Killing vectors in the Penrose diagram is done most easily with the ṽ±-coordinates,
while for drawing them we need the (t̃, r̃)-coordinates. Since the rotations only move points on a
two-sphere, and thus leave (t, r), (ṽ−, ṽ+) and (t̃, r̃) invariant, we shall only deal with translations
and boosts here. Using

ṽ± = arctan(t± r) t =
1

2

(
tan ṽ+ + tan ṽ−

)
r =

1

2

(
tan ṽ+ − tan ṽ−

)
,

and thus

∂t = tan−2ṽ+ ∂ṽ+
+ tan−2ṽ− ∂ṽ− =

1

2

(
cos2(t̃+r̃) + cos2(t̃−r̃)

)
∂t̃ +

1

2

(
cos2(t̃+r̃)− cos2(t̃−r̃)

)
∂r̃

∂r = tan−2ṽ+ ∂ṽ+
− tan−2ṽ− ∂ṽ− =

1

2

(
cos2(t̃+r̃)− cos2(t̃−r̃)

)
∂t̃ +

1

2

(
cos2(t̃+r̃) + cos2(t̃−r̃)

)
∂r̃ ,
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we can write the translations as

T0(ṽ−, ṽ+, ξ) = tan−2ṽ+ ∂ṽ+
+ tan−2ṽ− ∂ṽ− (B.24)

=
1

2

(
cos2(t̃+r̃) + cos2(t̃−r̃)

)
∂t̃ +

1

2

(
cos2(t̃+r̃)− cos2(t̃−r̃)

)
∂r̃ (B.25)

Tj(ṽ−, ṽ+, ξ) =
ξj

tan2ṽ+
∂ṽ+
− ξj

tan2ṽ−
∂ṽ− +

2

tan ṽ+ − tan ṽ−︸ ︷︷ ︸
1/r

(
∂ξj − ξjξi ∂ξi

)
(B.26)

= ξj
1

2

(
cos2(t̃+r̃)− cos2(t̃−r̃)

)
∂t̃ +

1

2

(
cos2(t̃+r̃) + cos2(t̃−r̃)

)
∂r̃

+
2

tan(t̃+r̃)− tan(t̃−r̃)
(
∂ξj − ξjξi∂ξi

)
, (B.27)

and the boosts as

K0j(ṽ−, ṽ+, ξ) = − ξj
tan ṽ+

∂ṽ+
+

ξj
tan ṽ−

∂ṽ− −
tan ṽ+ + tan ṽ−
tan ṽ+ − tan ṽ−︸ ︷︷ ︸

t/r

(
∂ξj − ξjξi ∂ξi

)
.

= − ξj
2

cos(2t̃) sin(2r̃) ∂t̃ −
ξj
2

sin(2t̃) cos(2r̃) ∂r̃

− tan(t̃+r̃) + tan(t̃−r̃)
tan(t̃+r̃)− tan(t̃−r̃)

(
∂ξj − ξjξi∂ξi

)
.

This is sketched in the following Figure B.28, wherein the compactified (t, x1)-plane of Minkowski
space is drawn.

(a) Time translation T0 (b) xj-Translation Tj (c) xj-Boost K0j

Figure B.28: Penrose diagram of Minkowski spacetime: Translation and Boost Killing vectors.

Now we can study the behaviour of the Killing vectors on the conformal boundary of Minkowski
space. The rotations Kjk simply move points on the boundary on their respective two-sphere. On
I−, where ṽ− = − ιπ/2, we have

T0(− ιπ/2, ṽ+, ξ) = tan−2ṽ+ ∂ṽ+

Tj(− ιπ/2, ṽ+, ξ) =
ξj

tan2ṽ+
∂ṽ+

K0j(− ιπ/2, ṽ+, ξ) = − ξj
tan ṽ+

∂ṽ+
+
(
∂ξj − ξjξi ∂ξi

)
,
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while on I+, where ṽ+ = + ιπ/2, we have

T0(ṽ−,+ ιπ/2, ξ) = tan−2ṽ− ∂ṽ−

Tj(ṽ−,+ ιπ/2, ξ) = − ξj
tan2ṽ−

∂ṽ−

K0j(ṽ−,+ ιπ/2, ξ) = +
ξj

tan ṽ−
∂ṽ− −

(
∂ξj − ξjξi ∂ξi

)
.

This means, that time translations move points along the boundary: on I− towards i0 and on I+

towards i+. Since on I± we have t = ±∞, this is not a movement in future direction. It is a result
of the limiting process when approaching null infinity. Any finite translation starting at t = ±∞
remains at t = ±∞. On the interior of Minkoswki spacetime the time translation is always future
directed.

Spatial translations Tj = ∂xj increase the radius r on the interior. On I− they move points along
the boundary towards i0, and on I−, too. As before, this is not a movement increasing the radius
but a result of the limiting process when approaching null infinity. Any finite translation starting at
r = +∞ remains at r = +∞.

The boosts behave basically like the spatial translations, their ξ-components are of lesser interest

here. Note that when approaching any of i±, i0, the translations vanish, and only the ξ-part of the
boosts survives.

At timelike infinity i± we have (ṽ−, ṽ+) = (± ιπ/2,± ιπ, 2), which corresponds to t = ±∞ with
r not being well defined. Here, T0 seems to vanish in (ṽ−, ṽ+) coordinates in (B.24), but using the
original expression T0(i±) = ∂t reveals this an artifact of the coordinate transformation. The boosts
and spatial translations are not well defined here.

At spatial infinity i0 we have (ṽ−, ṽ+) = (− ιπ/2,+ ιπ, 2), and r = +∞, but the time t is not well
defined here. Thus T0 and the boosts are not well defined either. The spatial translations in (ṽ−, ṽ+)
coordinates seem to vanish as well in (B.26), but using the original expression (B.8) reveals that this
too is an artifact of the coordinate transformation: Tj(i0) = ξj ∂r.

Hence we can see that the Minkowski Killing vector fields map the conformal boundary to itself.

B.2 Minkowski isometry actions on solution spacesxx

B.2.1 Minkowski rod region

In this section we compute the action of the isometries: first on the modes, and then on a general so-
lution written as a mode expansion. From (B.8) we know the form of the generator T3 of translations
in x3-direction. However, as in the derivation of (C.172) for AdS, we shall use here the following
form derived directly from x3 = r cos θ:

T3 = ∂x3 =
∂r

∂x3
∂r +

∂ cos θ

∂x3
∂cosθ

= cosθ ∂r +
(1−cos2 θ)

r
∂cosθ. (B.29)

For the boost generator K03 we use a similar form as for T3:

K03 = x0 ∂x3 − x3 ∂x0 = −t ∂x3 − x3 ∂t

= −t cos θ ∂r −
t

r
(1−cos2 θ)∂cosθ − r cos θ ∂t. (B.30)
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In the calculation we shall need the recurrence relations DLMF [10.51.1+2] for spherical Bessel and
Neumann functions:

∂zjl(z) =
l

2l+1
jl−1(z)− l+1

2l+1
jl+1(z) ∂znl(z) =

l

2l+1
nl−1(z)− l+1

2l+1
nl+1(z) (B.31)

1

z
jl(z) =

1

2l+1
jl−1(z) +

1

2l+1
jl+1(z)

1

z
nl(z) =

1

2l+1
nl−1(z) +

1

2l+1
nl+1(z) (B.32)

∂zjl(z) = +jl−1(z)− l+1

z
jl(z) ∂znl(z) = +nl−1(z)− l+1

z
nl(z) (B.33)

∂zjl(z) = −jl+1(z) +
l

z
jl(z) ∂znl(z) = −nl+1(z) +

l

z
nl(z). (B.34)

We also recall the recurrence relations (A.15)

cos θY mll (Ω) = χ
(2)
− (l,ml)Y

ml
l−1 (Ω) + χ

(2)
+ (l,ml)Y

ml
l+1 (Ω)

(1−cos2θ)
d

d cos θ
Y mll (Ω) = (l+1)χ

(2)
− (l,ml)Y

ml
l−1 (Ω)− lχ(2)

+ (l,ml)Y
ml
l+1 (Ω).

Further, for pRE :=
√
|E2 −m2 | , which sometimes we abbreviate by p, we will need the derivative

∂Ep
R
E = ±E/pRE E2 ≷ m2. (B.35)

We recall the Minkowski mode definitions (2.109)

µ(a)

Elml
(t, r,Ω) :=

pRE
4 ιπ

e−iEtY mll (Ω) ̌El(r)

µ(b)

Elml
(t, r,Ω) :=

pRE
4 ιπ

e−iEtY mll (Ω) ňEl(r),

(B.36)

wherein

̌El(r) =

jl(pREr) E2 > m2

i−l jl(ipREr) E2 < m2
ňEl(r) =

nl(pREr) E2 > m2

il+1 nl(ipREr) E2 < m2
. (B.37)

First, we let the translation generator act on the modes:(
T3 .µ

(a)

Elml

)
(t, r,Ω) = −T3 µ

(a)

Elml
(t, r,Ω). (B.38)

On the left is the action . of the generator T3 as an operator in solution space, while on the right T3

acts as a differential operator. Using the above ingredients, it is straightforward to let T3 as given
by (B.29) act on the modes. It turns out that the terms containing Y mll−1 (Ω) ̌E,l+1(r) add up to zero,
ditto for Y mll+1 (Ω) ̌E,l−1(r), ditto for Y mll±1 (Ω) ňE,l∓1(r). Grouping the remaining terms, we find that
the action of T3 on the modes in solution space can be written rather nicely as (with the χ-factors
(A.17))

T3 .µ
(a)

Elml
= −pRE χ

(2)
− (l,ml)µ

(a)

E,l−1,ml
± pRE χ

(2)
+ (l,ml)µ

(a)

E,l+1,ml
E2 ≷ m2 (B.39)

T3 .µ
(b)

Elml
= ∓pRE χ

(2)
− (l,ml)µ

(b)

E,l−1,ml
+ pRE χ

(2)
+ (l,ml)µ

(b)

E,l+1,ml
E2 ≷ m2.

The next step is to transform the action of T3 on the Klein-Gordon modes into an action within the
momentum representation. Letting T3 act as above on a solution expanded as in (2.108):

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

{
φaElmlµ

(a)

Elml
(t, r,Ω) + φbElmlµ

(b)

Elml
(t, r,Ω)

}
, (B.40)

after shifting l → l ± 1 yields the actions of T3 in the momentum representation for E2 ≷ m2:

(T3 .φ)aElml = ±pRE χ
(2)
− (l,ml)φ

a
E,l−1,ml

− pRE χ
(2)
+ (l,ml)φ

a
E,l+1,ml

(B.41)

(T3 .φ)bElml = +pRE χ
(2)
− (l,ml)φ

b
E,l−1,ml

∓ pRE χ
(2)
+ (l,ml)φ

b
E,l+1,ml

.
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Second, we let the boost generatorK03 act on the modes. As for T3, the terms containing Y mll±1 (Ω) ̌E,l∓1(r)

and Y mll±1 (Ω) ňE,l∓1(r) add up to zero respectively, and we obtain for E2 ≷ m2:

K03 .µ
(a)

Elml
(t, r,Ω) = −K03 µ

(a)

Elml
(t, r,Ω)

= +tpREχ
(2)
− (l,ml)µ

(a)

E,l−1,ml
(t, r,Ω)∓ tpREχ

(2)
+ (l,ml)µ

(a)

E,l+1,ml
(t, r,Ω)

− irE
pRE
4 ιπ

e−iEťEl(r)
(
χ

(2)
− (l,ml)Y

ml
l−1 (Ω) + χ

(2)
+ (l,ml)Y

ml
l+1 (Ω)

)
(B.42)

K03 .µ
(b)

Elml
(t, r,Ω) = −K03 µ

(a)

Elml
(t, r,Ω)

= ±tpREχ
(2)
− (l,ml)µ

(b)

E,l−1,ml
(t, r,Ω)− tpREχ

(2)
+ (l,ml)µ

(b)

E,l+1,ml
(t, r,Ω)

− irE
pRE
4 ιπ

e−iEtňEl(r)
(
χ

(2)
− (l,ml)Y

ml
l−1 (Ω) + χ

(2)
+ (l,ml)Y

ml
l+1 (Ω)

)
(B.43)

Since the right hand sides of (B.42) and (B.43) are not easily recognizable as Klein-Gordon solutions,
we shall check explicitly that they are such. The only ingredients that we need to this end are the
last two lines of (B.31) in the form

jl−1(z) =
l+1

z
jl(z) + ∂zjl(z) nl−1(z) =

l+1

z
nl(z) + ∂znl(z)

jl+1(z) =
l

z
jl(z)− ∂zjl(z) nl+1(z) =

l

z
nl(z)− ∂znl(z),

plus the fact that the modes µa,b are homogeneous Klein-Gordon solutions. With these and the
Laplace-Beltrami 2 = −∂2

t + ∂2
r + 2

r∂r + r−22S2 , we find that for E2 ≷ m2

((
2−m2

)
K03 µ

(a)

Elml

)
(t, r,Ω) = −iE(pRE)2 r

pRE
4 ιπ

e−iEt
(
χ

(2)
− (l,ml)Y

ml
l−1 (Ω) + χ

(2)
+ (l,ml)Y

ml
l+1 (Ω)

)
·

·
Å
∂2
pr +

2

pREr
∂pr ± 1− l(l+1)

(pREr)
2

ã
̌E,l(r)((

2−m2
)
K03 µ

(b)

Elml

)
(t, r,Ω) = −iE(pRE)2 r

pRE
4 ιπ

e−iEt
(
χ

(2)
− (l,ml)Y

ml
l−1 (Ω) + χ

(2)
+ (l,ml)Y

ml
l+1 (Ω)

)
·

·
Å
∂2
pr +

2

pREr
∂pr ± 1− l(l+1)

(pREr)
2

ã
ňE,l(r).

For both E2 > m2 (with z = pREr) and E2 < m2 (with z = ipREr) the terms involving spherical Bessel
functions (respectively spherical Neumann functions) thus turn into the spherical Bessel differential
equation, and therefore these terms add up to zero. That is, letting act K03 on the µa,b-modes indeed
yields Klein-Gordon solutions. The spherical Bessel DEQ can be found in DLMF [10.51.2] to be:

0 =
(
∂2
z +

2

z
∂z + 1− l(l+1)

z2

)
f (z).

As done for cartesian coordinates in Section 2.5.5, we now want to find the momentum space rep-
resentation of the boost generator (B.30). That is, we want to find an operator consisting only of
energy and angular momenta which reproduces the actions (B.42) and (B.43). As a first step in this
direction we note that

pRE∂E ̌E,l(r) = ±Er ̌E,l−1(r)∓ (l+1)(E/pRE) ̌E,l(r) (B.44)

= −Er ̌E,l+1(r)± (l)(E/pRE) ̌E,l(r) (B.45)

pRE∂EňE,l(r) = +Er ňE,l−1(r)∓ (l+1)(E/pRE) ňE,l(r) (B.46)

= ∓Er ňE,l+1(r)± (l)(E/pRE) ňE,l(r). (B.47)

Next we introduce the shifting operators L±, which we define to increase/decrease the angular mo-
mentum l by one: L± fl := fl±1. We note that L± and ∂E commute when acting on e−iEtY mll (Ω)̌E,l(r)

and e−iEtY mll (Ω)ňE,l(r). We also recall that the lowering coefficient χ
(2)
− (l,ml) vanishes for l = 0 and
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also for |ml| = l. Moreover, χ
(2)
− (l+1,ml) = χ

(2)
+ (l,ml). When for short we write only χ

(2)
± , then the

argument is understood to be always (l,ml). As well, p is understood to be pRE . Combining L+

with (B.44) respectively (B.46), and L− with (B.45) respectively (B.47), it is somewhat lengthy but
straightforward to check that

−
[
(χ

(2)
− L−∓χ(2)

+ L+)(−ipRE∂E)± i(l−1)Ep χ
(2)
− L− + i(l+2)Ep χ

(2)
+ L+

]
e−iEtY mll (Ω)̌E,l(r) (B.48)

= −K03 e−iEtY mll (Ω)̌E,l(r)

−
[
±(χ

(2)
− L−−χ(2)

+ L+)(−ipRE∂E) + i(l−1)Ep χ
(2)
− L− ± i(l+2)Ep χ

(2)
+ L+

]
e−iEtY mll (Ω)ňE,l(r) (B.49)

= −K03 e−iEtY mll (Ω)ňE,l(r).

That is, setting for the action on e−iEtY mll (Ω)̌E,l(r)

K03 =
[
(χ

(2)
− L−∓χ(2)

+ L+)(−ipRE∂E)± i(l−1)Ep χ
(2)
− L− + i(l+2)Ep χ

(2)
+ L+

]
(B.50)

and for the action on e−iEtY mll (Ω)ňE,l(r)

K03 =
[
±(χ

(2)
− L−−χ(2)

+ L+)(−ipRE∂E) + i(l−1)Ep χ
(2)
− L− ± i(l+2)Ep χ

(2)
+ L+

]
(B.51)

reproduces the actions (B.42) and (B.43) of K03 in its configuration representation. That is, (B.50)
and (B.51) are the momentum representation of K03. Compared to the form (2.137) on the equal-
time plane in cartesian coordinates, K03 = Ek∂k3 , we note that the above are considerably less
simple. Moreover, they have different signs for the two classes of modes (Bessel and Neumann
modes), while in cartesian coordinates K03 = Ek∂k3 holds for both classes of modes (positive and
negative frequencies).

The next step is to transform the action of K03 on the Klein-Gordon modes into an action within
the momentum representation. Letting K03 act as above on a solution expanded as in (2.108):

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

{
φaElmlµ

(a)

Elml
(t, r,Ω) + φbElmlµ

(b)

Elml
(t, r,Ω)

}
, (B.52)

we obtain a somewhat long expression. In half of the terms of it, the derivative operator ∂E acts
to the right on the functions e−iEtY mll (Ω)̌E,l(r) and e−iEtY mll (Ω)ňE,l(r). As for Ek∂k3 in cartesian
coordinates, we now need to find its adjoint operator (with respect to the integral we use here) which
acts to the left. Using partial integration and sufficient decay properties of the involved functions,
in (2.140) for Ek∂k3 , we find the adjoint −Ek∂k3 . We note that the complete derivative operator
appearing above is ip2 ∂E due to the factor p/(4 ιπ) in the mode definitions. For sufficiently decaying
f (E) and bounded g(E), we then find

ˆ

R

dE p2 f (∂Eg) = p2fg|+∞−∞ −
ˆ

R

dE (∂E p
2f) g = −

ˆ

R

dE p2 (∂Ef) g −
ˆ

R

dE (∂Ep
2) fg

= −
ˆ

R

dE p2 (∂Ef) g ∓
ˆ

R

dE 2E fg.

That is, the adjoint of ip2 ∂E contains one derivative to the left and one multiplicative term. This
writes as the following replacement rule:

−−−→
ip2 ∂E → −

←−−−
ip2 ∂E ∓ 2iE. (B.53)

Applying this rule after letting K03 act on expansion (2.108) as in (B.50) and (B.51), shifting again
l → l± 1 and cleaning up, we obtain the following actions of K03 in the momentum representation
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of the solutions:

(K03 .φ)aElml = ±χ(2)
− (l,ml)

(
ipRE∂Eφ

a
E,l−1,ml

)
− χ(2)

+ (l,ml)
(
ipRE∂Eφ

a
E,l+1,ml

)
(B.54)

− i(E/pRE)(l−1)χ
(2)
− (l,ml)φ

a
E,l−1,ml

∓ i(E/pRE)(l+2)χ
(2)
+ (l,ml)φ

a
E,l+1,ml

(K03 .φ)bElml = +χ
(2)
− (l,ml)

(
ipRE∂Eφ

b
E,l−1,ml

)
∓ χ(2)

+ (l,ml)
(
ipRE∂Eφ

b
E,l+1,ml

)
(B.55)

∓ i(E/pRE)(l−1)χ
(2)
− (l,ml)φ

b
E,l−1,ml

− i(E/pRE)(l+2)χ
(2)
+ (l,ml)φ

b
E,l+1,ml

.

B.2.2 Minkowski time-interval region

Here we use essentially the same modes as near the hypercylinder, except for that now the modes
are parametrized by the momentum p instead of the energy E. With always p > 0 and E > m we
define the µ(j)-modes as in (2.92):

µ(j)

plml
(t, r,Ω) :=

2p√
2 ιπ

e−iEptY mll (Ω) jl(pr) Ep :=
√
p2+m2

=
8 ιπ
√

2 ιπ
µ(a)

Eplml
(t, r,Ω).

(B.56)

From the results of the hypercylinder, we can read off the actions for the µ(j)-modes:

T3 .µ
(j)

plml
= −pχ(2)

− (l,ml)µ
(j)

p,l−1,ml
+ pχ

(2)
+ (l,ml)µ

(j)

p,l+1,ml
(B.57)

T3 .µ
(j)

plml
= −pχ(2)

− (l,ml)µ
(j)

p,l−1,ml
+ pχ

(2)
+ (l,ml)µ

(j)

p,l+1,ml
.

Using expansion (2.91)

φ(t, r,Ω) =

∞̂

0

dp
∑
l,ml

{
φ+
plml

µ(j)

plml
(t, r,Ω) + φ−plml µ

(j)

plml
(t, r,Ω)

}
, (B.58)

we thus find the following actions in the momentum representation:(
T3 .φ

)+
plml

= +pχ
(2)
− (l,ml)φ

+
p,l−1,ml

− pχ(2)
+ (l,ml)φ

+
p,l+1,ml

(B.59)(
T3 .φ

)−
plml

= +pχ
(2)
− (l,ml)φ

−
p,l−1,ml

− pχ(2)
+ (l,ml)φ

−
p,l+1,ml

.

For the boost generator K03 we recall (B.48), which here writes as

−
[
(χ

(2)
− L−−χ(2)

+ L+)(−ip∂Ep) + i(l−1)
Ep
p χ

(2)
− L− + i(l+2)

Ep
p χ

(2)
+ L+

]
e−iEptY mll (Ω)jl(pr) (B.60)

= −K03 e−iEptY mll (Ω)jl(pr).

With p∂Ep = Ep∂p this becomes

−
[
(χ

(2)
− L−−χ(2)

+ L+)(−iEp∂p) + i(l−1)
Ep
p χ

(2)
− L− + i(l+2)

Ep
p χ

(2)
+ L+

]
e−iEptY mll (Ω)jl(pr) (B.61)

= −K03 e−iEptY mll (Ω)jl(pr),

which induces the following action on the conjugate functions:

−
[
(χ

(2)
− L−−χ(2)

+ L+)(+iEp∂p)− i(l−1)
Ep
p χ

(2)
− L− − i(l+2)

Ep
p χ

(2)
+ L+

]
e+iEptY mll (Ω)jl(pr) (B.62)

= −K03 e+iEptY mll (Ω)jl(pr).

We can apply this action to expansion (2.91), and then in half of the terms we have the derivative

operator pEp∂p acting to the right on the functions e−iEptY mll (Ω)jl(pr) and e+iEptY mll (Ω)jl(pr). As
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before, we want it to act to the left. We can use the condition that φ±plml vanishes for p = 0 and for
p → ∞. The first option to this is replacing

−−−−→
pEp∂p → −

←−−−−
pEp∂p − (Ep + p

Ep
).

However, for later application in the symplectic structure it turns out that the following replacement
is of advantage:

−−−−→
pEp∂p → −

←−−−−−−
pEp∂pEp − Ep. (B.63)

(That is: f pEp ∂pg → −g p ∂pEf − E fg.) Applying it, we find the following actions of the boost
K03 on the momentum representation of the solutions:(

K03 .φ
)+
plml

= +iχ
(2)
− (l,ml)

(
∂pEpφ

+
p,l−1,ml

)
− i(l)

Ep
p χ

(2)
− (l,ml)φ

+
p,l−1,ml

(B.64)

− iχ
(2)
+ (l,ml)

(
∂pEpφ

+
p,l+1,ml

)
− i(l+1)

Ep
p χ

(2)
+ (l,ml)φ

+
p,l+1,ml(

K03 .φ
)−
plml

= −iχ
(2)
− (l,ml)

(
∂pEpφ

−
p,l−1,ml

)
+ i(l)

Ep
p χ

(2)
− (l,ml)φ

−
p,l−1,ml

(B.65)

+ iχ
(2)
+ (l,ml)

(
∂pEpφ

−
p,l+1,ml

)
+ i(l+1)

Ep
p χ

(2)
+ (l,ml)φ

−
p,l+1,ml

.

B.3 Commutation of complex structure and isometriesxx

B.3.1 Minkowski rod region

Having found the isometries’ actions, we can study how to make them commute with the complex
structure Jr on the hypercylinder. As for AdS, we can make the most general ansatz for a linear Jr,
and then impose commutation with the actions of time translation and spatial rotations. Then, we
impose the essential properties of the complex structure and obtain (C.358)(

Jrφ
)a
Elml

= jaaEl φ
a
Elml

+ jabEl φ
b
Elml(

Jrφ
)b
Elml

= jbaEl φ
a
Elml

− jaaEl φbElml (B.66)(
jaaEl
)2

= −jabEl jbaEl − 1 ≥ 0.

For a moment we leave aside the issue of positive-definiteness of the induced real g-product. First,
the action (B.41) of the spatial translation T3 induces the following actions for E2 ≷ m2:(

Jr(T3 .φ)
)a
Elml

= jaaEl(T3 .φ)aElml + jabEl(T3 .φ)bElml

= jaaEl

(
±pRE χ

(2)
− (l,ml)φ

a
E,l−1,ml

− pRE χ
(2)
+ (l,ml)φ

a
E,l+1,ml

)
+ jabEl

(
pRE χ

(2)
− (l,ml)φ

b
E,l−1,ml

∓ pRE χ
(2)
+ (l,ml)φ

b
E,l+1,ml

)
(
T3 . (Jrφ)

)a
Elml

= ±pRE χ
(2)
− (l,ml) (Jrφ)aE,l−1,ml

− pRE χ
(2)
+ (l,ml) (Jrφ)aE,l+1,ml

= ±pRE χ
(2)
− (l,ml)

(
jaaE,l−1 φ

a
E,l−1,ml

+ jabE,l−1 φ
b
E,l−1,ml

)
− pRE χ

(2)
+ (l,ml)

(
jaaE,l+1 φ

a
E,l+1,ml

+ jabE,l+1 φ
b
E,l+1,ml

)
.

Comparing for both actions first the factors in front of φaE,l−1,ml
, then those in front of φaE,l+1,ml

and
so on, we can read off that both actions coincide precisely if

jaaE,l+1 = jaaE,l ∀ E ∈ R

whereas

jabE,l+1 = ±jabE,l E2 ≷ m2.
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Doing the same for the actions of
(
Jr(T3 .φ)

)b
Elml

and
(
T3 . (Jrφ)

)b
Elml

yields in addition

jbaE,l+1 = ±jbaE,l E2 ≷ m2.

(We note that these three relations are consistently linked through (jaaE,l±1)2 = −jabE,l±1 j
ba
E,l±1 − 1 =

−(±)2jabEl j
ba
El− 1 = (jaaEl)

2.) This means that for all energies jaaEl must be independent of l, such that
we can write it as jaaE from now on. jabE,l and jbaE,l are also l-independent, but only for E2 > m2. For

E2 < m2 they are only l-independent up to sign:

jabE,l+1 = −jabE,l jbaE,l+1 = −jbaE,l E2 < m2. (B.67)

Thus for E2 > m2 we write now jabEl = jabE , and for E2 < m2 we write now jabEl = (−1)ljabE , ditto for
jba. We now put to use these results considering the action (B.54) of K03. For E2 > m2 we get:(

Jr (K03 .φ)
)a
Elml

= jaaE (K03 .φ)
a
Elml

+ jabE (K03 .φ)
b
Elml

= +jaaE

{
+iχ

(2)
− (l,ml) p

R
E(∂Eφ

a
E,l−1,ml

)− iχ
(2)
− (l,ml)

E

pRE
(l−1)φaE,l−1,ml

− iχ
(2)
+ (l,ml) p

R
E(∂Eφ

a
E,l+1,ml

)− iχ
(2)
+ (l,ml)

E

pRE
(l+2)φaE,l+1,ml

}
+ jabE

{
+iχ

(2)
− (l,ml) p

R
E(∂Eφ

b
E,l−1,ml

)− iχ
(2)
− (l,ml)

E

pRE
(l−1)φbE,l−1,ml

− iχ
(2)
+ (l,ml) p

R
E(∂Eφ

b
E,l+1,ml

)− iχ
(2)
+ (l,ml)

E

pRE
(l+2)φbE,l+1,ml

}
.

Reversing the order of the operators yields:(
K03 . (Jrφ)

)a
Elml

= +iχ
(2)
− (l,ml) p

R
E∂E

(
jaaE φaE,l−1,ml

+ jabE φ
b
E,l−1,ml

)
− iχ

(2)
− (l,ml)

E

pRE
(l−1)

(
jaaE φaE,l−1,ml

+ jabE φ
b
E,l−1,ml

)
− iχ

(2)
+ (l,ml) p

R
E∂E

(
jaaE φaE,l+1,ml

+ jabE φ
b
E,l+1,ml

)
− iχ

(2)
+ (l,ml)

E

pRE
(l+2)

(
jaaE φaE,l+1,ml

+ jabE φ
b
E,l+1,ml

)
.

Comparing again the respective factors, we now find that for E2 > m2 both actions coincide iff

∂Ej
aa
E = 0 ∂Ej

ab
E = 0.

Doing the same for the actions of
(
Jr (K03 .φ)

)b
Elml

and
(
K03 . (Jrφ)

)b
Elml

yields

∂Ej
ba
E = 0.

Despite the additonal signs of (−1)l, we obtain the same conditions for E2 < m2. These conditions
mean that neither of the j-factors depends on E. Thus the fact that the action of K03 involves
derivatives ∂E turns out rather useful for our purposes, since it severely restricts the possible forms
of the complex structure. Together with the previous results this says that all j-factors are constants
(up to sign). For E2 < m2, we denote these constant factors by a tilde as in ̃aa. Thus we have
found the following form for the complex structure for E2 > m2:(

Jrφ
)a
Elml

= jaa> φaElml + jab> φbElml(
Jrφ

)b
Elml

= jba> φaElml − j
aa
> φbElml (B.68)

0 ≤
(
jaa>
)2

= −jab> jba> − 1,
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while for E2 < m2 the complex structure with jab<,l = (−1)l̃ab< and jba<,l = (−1)l̃ba< is given by(
Jrφ

)a
Elml

= jaa< φaElml + jab<,l φ
b
Elml(

Jrφ
)b
Elml

= jba<,l φ
a
Elml

− jaa< φbElml (B.69)

0 ≤
(
jaa<
)2

= −̃ab< ̃ba< − 1.

Let us compare this form of Jr to the form given in [59]. Therein, the frequency momentum ex-
pansion (2.112) for solutions is used. The frequency momentum representation and our momentum
representation (2.107) are related through (2.111)

φaElml = φ+
Elml

+ φ−−E,l,−ml φ+
Elml

= 1
2 φ

a
Elml

− i
2 φ

b
Elml

φbElml = iφ+
Elml

− iφ−−E,l,−ml φ−−E,l,−ml = 1
2 φ

a
Elml

+ i
2 φ

b
Elml

.

The choice (81) in [59] for the action of the complex structure in the frequency momentum repre-
sentation

(Jpos
r φ)±Elml = iφ±Elml (B.70)

induces a positive-definite real g-product, and induces the following action in our momentum repre-
sentation for all energies E:

(Jpos
r φ)aElml = (Jpos

r φ)+
Elml

+ (Jpos
r φ)−−E,l,−ml = iφ+

Elml
− iφ−−E,l,−ml = +φbElml

(Jpos
r φ)bElml = i(Jpos

r φ)+
Elml

− i (Jpos
r φ)−−E,l,−ml = −φ+

Elml
− φ−−E,l,−ml = −φaElml .

(B.71)

This corresponds to jaaEl = 0 with jabEl = 1 and jbaEl =−1 in (B.66). As we have seen above, this choice
for the complex structure is compatible with the isometry actions only for the modes with E2 > m2,
while for the modes with E2 < m2 this choice does not let the complex structure commute with the
actions of the translation T3 and the boost K03. The complex structure most similar to this choice
while commuting with all isometry actions is given by jaa> = jaa< = 0 with jab> = −1 and ̃ab< = ∓1
while jba> = 1 and ̃ba< = ±1 in (B.68). We are free to choose whether the constant ̃ab< is either 1 or
−1, and ̃ba< then is the opposite. We call the resulting complex structure J iso

r :(
J iso
r φ

)a
Elml

= −φbElml
(
J iso
r φ

)b
Elml

= +φaElml E2 > m2 (B.72)(
J iso
r φ

)a
Elml

= ∓(−1)l φbElml
(
J iso
r φ

)b
Elml

= ±(−1)l φaElml E2 < m2

In order to transcribe this into the frequency representation, we write(
(J iso
r φ)+

Elml

(J iso
r φ)−−E,l,−ml

)
= 1

2

(
1 −i

1 i

)(
(Jrφ)aElml
(Jrφ)bElml

)

= 1
2

(
1 −i

1 i

)(
jaa jab

jba −jaa

)(
φaElml
φbElml

)

= 1
2

(
1 −i

1 i

)(
jaa jab

jba −jaa

)(
1 1

i −i

)(
φ+
Elml

φ−−E,l,−ml

)

=

(
i
2 (jab−jba) jaa− i

2 (jab+jba)

jaa+ i
2 (jab+jba) − i

2 (jab−jba)

)(
φ+
Elml

φ−−E,l,−ml

)
.

It is easy to check that the square of the matrix in the final line is −1 (using the condition
(
jaa
)2

=
−jab jba − 1). Instead of (B.70) we thus obtain:

(J iso
r φ)+

Elml
= iφ+

Elml
(J iso
r φ)−Elml = iφ−Elml E2 > m2 (B.73)

(J iso
r φ)+

Elml
= ±(−1)l iφ+

Elml
(J iso
r φ)−Elml = ±(−1)l iφ−Elml E2 < m2.
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B.3.2 Minkowski time-interval region

Now let us check that the complex structure (2.97) commutes with the action (B.59) of T3 and the
action (B.64) of K03: (

Jt φ
)±
p,l,ml

= −iφ±plml . (B.74)

First, we can quickly convince us that Jt commutes with T3:(
Jt
(
T3 .φ

))+

plml
= −i

(
+pχ

(2)
− (l,ml)φ

+
p,l−1,ml

− pχ(2)
+ (l,ml)φ

+jp,l+1,ml

)
=
(
T3 .

(
Jtφ
))+

plml
= +pχ

(2)
− (l,ml) (−i)φ+

p,l−1,ml
− pχ(2)

+ (l,ml) (−i)φ+jp,l+1,ml

and (
Jt
(
T3 .φ

))−
plml

= i
(

+pχ
(2)
− (l,ml)φ

−
p,l−1,ml

− pχ(2)
+ (l,ml)φ−jp,l+1,ml

)
=
(
T3 .

(
Jtφ
))−
plml

= +pχ
(2)
− (l,ml) iφ−p,l−1,ml

− pχ(2)
+ (l,ml) iφ−jp,l+1,ml .

The same happens with K03:(
Jt
(
K03 .φ

))+

plml
=
(
K03 .

(
Jtφ
))+

plml
= −i

(
K03 .φ

)+
plml(

Jt
(
K03 .φ

))−
plml

=
(
K03 .

(
Jtφ
))−
plml

= i
(
K03 .φ

)−
plml

.

That is, the standard complex structure commutes nicely with the actions of all isometries.

B.4 Making amplitudes coincide for rod and time-intervalxx

So far we have fixed the complex structure Jt associated to equal-time planes Σt to be the standard

one:
(
Jtφ
)±
plml

= −iφ±plml , while for the complex structure J iso
r on hypercylinders Σr we have found

conditions (B.68) for E2 > m2, wherein all j-factors are constants:(
J iso
r φ

)a
Elml

= jaa> φaElml + jab> φbElml(
J iso
r φ

)b
Elml

= jba> φaElml − j
aa
> φbElml (B.75)

0 ≤
(
jaa>
)2

= −jab> jba> − 1,

and conditions (B.69) for E2 < m2:(
J iso
r φ

)a
Elml

= jaa< φaElml + (−1)l ̃ab< φbElml(
J iso
r φ

)b
Elml

= (−1)l ̃ba< φaElml − jaa< φbElml (B.76)

0 ≤
(
jaa<
)2

= −̃ab< ̃ba< − 1.

These conditions make J iso
r commute with all Minkowski isometries. Then in (B.72) we found that

the J iso
r most similar to the choice Jpos

r of (81) in [59] is given by

jaa> = 0 jab> = −1 jba> = +1 (B.77)

jaa< = 0 ̃ab< = ∓1 ̃ba< = ±1.
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(The signs of ̃ab< and ̃ba< are not fixed yet.) That is, the complex structure acts as(
J iso
r φ

)a
Elml

= −φbElml
(
J iso
r φ

)b
Elml

= +φaElml E2 > m2 (B.78)(
J iso
r φ

)a
Elml

= ∓(−1)l φbElml
(
J iso
r φ

)b
Elml

= ±(−1)l φaElml E2 < m2

We now want to justify this choice further by showing that it makes the two complex structures
Jt and J iso

r amplitude-equivalent as in (3.71). That is, Jt and J iso
r make the following amplitudes

coincide for all global solutions η1 and ζ2:

ρ[t1,t2]

(
Kη1

Σ1
⊗Kζ2

Σ2

)
= exp

Å
−gt(ξ

I
12, ξ

I
12)− igt(ξ

R
12, ξ

I
12)

ã
!
= ρr0

(
Kξ0

Σ0

)
= exp

Å
− 1

2gr(ξ
I
12, ξ

I
12)− i

2gr(ξ
R
12, ξ

I
12)

ã
,

(B.79)

wherein

ξR
12 = 1

2 (η1 + ζ2) ξI
12 = 1

2 (−Jtη1 + Jtζ2). ξ0 = ξR
12 − J iso

r ξI
12. (B.80)

As discussed above (3.73), Jt and J iso
r are amplitude-equivalent for global solutions, precisely if for

all global solutions η1, ζ2 they induce

gt(η1, ζ2) = 1
2 giso

r (η1, ζ2). (B.81)

We now check whether our J iso
r fulfills this requirement. To this end we first compare expansions

of global solutions near equal-time hypersurfaces and hypercylinders. We can expand any global
solution ξ as done for solutions near equal-time hypersurfaces in (2.91)

ξ(t, r,Ω) =

∞̂

0

dp
∑
l,ml

{
ξ+
plml

µ(j)

plml
(t, r,Ω) + ξ−plml µ

(j)

plml
(t, r,Ω)

}
(B.82)

wherein the µ(j)-modes are defined as

µ(j)

plml
(t, r,Ω) :=

2p√
2 ιπ

e−iEptY mll (Ω) jl(pr) Ep :=
√
E2−m2 . (B.83)

As usual for solutions near equal-time hypersurfaces, here we have only modes with p > 0, that
is: Ep > m. We can expand ξ also using the more general expansion (2.108) for solutions near
hypercylinders

ξ(t, r,Ω) =

ˆ
dE
∑
l,ml

{
ξaElmlµ

(a)

Elml
(t, r,Ω) + ξbElmlµ

(b)

Elml
(t, r,Ω)

}
(B.84)

with

µ(a)

Elml
(t, r,Ω) :=

pRE
4 ιπ

e−iEtY mll (Ω) ̌El(r) ∀ E ∈ R

µ(b)

Elml
(t, r,Ω) :=

pRE
4 ιπ

e−iEtY mll (Ω) ňEl(r). ∀ E ∈ R

µ(a)

Elml
(t, r,Ω) =

√
2 ιπ
8 ιπ µ(j)

pElml
(t, r,Ω) ∀ E > m

µ(a)

Elml
(t, r,Ω) =

√
2 ιπ
8 ιπ µ(j)

pE ,l,−ml (t, r,Ω) ∀ E < −m.

However, then in order for ξ to be a global solution it must have ξbElml ≡ 0, and further for all

E2 < m2 it must have ξaElml = 0. Then, both expansions are equivalent, and we can transcribe the



i158 B. Minkowski spacetimeX
X

XX

momentum representations into each other:

ξaElml = +ξ+
pElml

E
pE

8 ιπ√
2 ιπ

E > m

ξaElml = −ξ−pE ,l,−ml
E
pE

8 ιπ√
2 ιπ

E < m

ξa−E,l,−ml = +ξ−pElml
E
pE

8 ιπ√
2 ιπ

E > m.

(B.85)

We recall that the real g-product gt for the equal-time hypersurface is given by (2.98) to be

gt
(
η, ζ

)
=

∞̂

0

dp
∑
l,ml

2Ep

ß
η−plml ζ

+
plml

+ η+
plml

ζ−plml

™
. (B.86)

We proceed by reproducing this result from the real g-product giso
r of the hypercylinder which is

given by (2.64):

giso
r (η, ζ) := 2ωr(η, J

iso
r ζ).

Plugging the complex structure (B.75) into the symplectic form (2.116) for global solutions η, ζ
results in

1
2 giso

r

(
η, ζ

)
:= ωr(η, J

iso
r ζ)

=

ˆ

E2>m2

dE
∑
l,ml

pE
16 ιπ

ß
ηaElml (J iso

r ζ)b−E,l,−ml − η
b
Elml

(J iso
r ζ)a−E,l,−ml

™
=

ˆ

E2>m2

dE
∑
l,ml

pE
16 ιπ

ß
ηaElml

[
jba> ζ

a
−E,l,−ml − j

aa
> ζb−E,l,−ml︸ ︷︷ ︸

0

]
− ηbElml︸ ︷︷ ︸

0

[
jaa> ζa−E,l,−ml + jab> ζ

b
−E,l,−ml

]™
=

ˆ

E2>m2

dE
∑
l,ml

pE
16 ιπ

ηaElml j
ba
> ζa−E,l,−ml

=

ˆ

E>m

dE
∑
l,ml

pE
16 ιπ

jba>

ß
ηaElmlζ

a
−E,l,−ml + ηa−E,l,−mlζ

a
Elml

™
.

Plugging transcriptions (B.85) into this expression we obtain

1
2 giso

r

(
η, ζ

)
=

ˆ

E>m

dE
∑
l,ml

jba>
pE E

2 (8 ιπ)2

p2
E 16 ιπ

√
2 ιπ 2

ß
η+
pElml

ζ−pElml + η−pElml ζ
+
pElml

™
=

ˆ

E>m

dE
∑
l,ml

jba>
E2

pE
2

ß
η+
pElml

ζ−pElml + η−pElml ζ
+
pElml

™
=

∞̂

0

dp
∑
l,ml

jba> 2Ep

ß
η+
plml

ζ−plml + η−plml ζ
+
plml

™
.

We can now read off directly that this agress with

gt
(
η, ζ

)
=

∞̂

0

dp
∑
l,ml

2Ep

ß
η−plml ζ

+
plml

+ η+
plml

ζ−plml

™
(B.87)

precisely if

jba> = 1. (B.88)
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This coincides with our above choice (B.77). However, we see that requiring amplitude equivalence
between Jt and J iso

r fixes only the coefficient jba> while leaving jab> , jaa> and all j . .< undetermined,
because we can only consider a-modes with energy E2 > m2 here. We can fix jaa≷ = 0 by requiring

that J iso
r maps a-modes to b-modes and vice versa. This is the most natural implementation of the

property that J iso
r maps solutions well defined on the whole interior of the rod region to solutions

that are well defined only near the boundary hypercylinder (and vice versa). With jaa≷ = 0 we

have jab≷ = −1/jba≷ . The only remaining ambiguity is thus the overall sign of ̃ba< . We choose to fix

̃ba< = jba> , such that we get a positive-definite real g-product giso
r for all modes with E2 > m2 and also

for all modes with E2 < m2 which have even l. The real g-product then becomes negative-definite
only for modes with E2 < m2 which have odd l. Our final choice is thus:

jaa> = 0 jab> = −1 jba> = +1 (B.89)

jaa< = 0 ̃ab< = −1 ̃ba< = +1.

that is (
J iso
r φ

)a
Elml

= − φbElml
(
J iso
r φ

)b
Elml

= + φaElml E2 > m2 (B.90)(
J iso
r φ

)a
Elml

= −(−1)l φbElml
(
J iso
r φ

)b
Elml

= +(−1)l φaElml E2 < m2

For two solutions η, ζ near a Minkowski hypercylinder, this makes the real g-product into (wherein
again in ±1 the upper sign holds for E2 > m2 and the lower sign for E2 < m2)

giso
r (η, ζ) := 2ωr(η, J

iso
r ζ)

= 2

ˆ
dE
∑
l,ml

pRE
16 ιπ

ß
ηaElml (J iso

r ζ)b−E,l,−ml − η
b
Elml

(J iso
r ζ)a−E,l,−ml

™
=

ˆ
dE
∑
l,ml

pRE
8 ιπ

ß
ηaElml (±1)lζa−E,l,−ml −−η

b
Elml

(±1)lζb−E,l,−ml

™
=

ˆ
dE
∑
l,ml

pRE
8 ιπ

(±1)l
ß
ηaElmlζ

a
−E,l,−ml + ηbElmlζ

b
−E,l,−ml

™
. (B.91)

Finally, we observe that Jpos
r induces the same amplitude equivalence, since only modes with E2 > m2

matter and Jpos
r coincides with J iso

r for these energies.
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Appendix C

Anti de Sitter spacetimeX
X

XX

C.1 AdS basics

We use global coordinates with the time coordinate t ∈ (−∞,+∞), a radial coordinate ρ̃ ∈ [0,+∞)
or its compactified version ρ ∈ [0, ιπ

2
), and denote the (d−1) angular coordinates on Sd−1 collectively

by Ω := (θ1, . . . ,θd−1). (The finite range of the ρ does not mean that AdS is spatially compact.
It roughly corresponds to introducing spherical coordinates (r, θ,ϕ) on Minkowski spacetime and
rescaling r by r̃ = arctan r ∈ [0, ιπ

2 ).) The radial coordinates are related to each other by

sinh ρ̃ = tan ρ cosh ρ̃ =
1

cos ρ
tanh ρ̃ = sin ρ (C.1)

With dρ = dρ̃/cosh ρ̃ and RAdS denoting the curvature radius of AdS, the metric writes

ds2
AdS =

R2
AdS

cos2ρ

(
−dt2 + dρ2 + sin2ρ ds2

Sd−1

)
(C.2)

= R2
AdS

(
− cosh2ρ̃ dt2 + dρ̃ 2 + sinh2ρ̃ ds2

Sd−1

)
. (C.3)

For the precise form of coordinates and metric on the unit sphere Sd−1 see Appendix A.3. From the
second line we can read off that ρ̃ is the metric distance of the point (t, ρ̃,Ω) respectively (t, ρ(ρ̃),Ω)
from the time axis.

With ∂ρ = cosh ρ̃ ∂ρ̃ the Laplace-Beltrami operator is given by

2AdS :=
1√
|g |

∂µ
»
|g |gµν∂ν

= R−2
AdS

ß
− cos2ρ ∂2

t + cos2ρ tan1−dρ ∂ρ tand−1ρ ∂ρ + tan−2ρ2Sd−1

™
(C.4)

= R−2
AdS

ß
− cos2ρ ∂2

t + cos2ρ ∂2
ρ +

(d−1)

tan ρ
∂ρ + tan−2ρ2Sd−1

™
(C.5)

= R−2
AdS

ß
− cosh−2ρ̃ ∂2

t + cosh−2ρ̃ ∂2
ρ̃ + (d−1) coth ρ̃ ∂ρ̃ + tanh ρ̃ ∂ρ̃ + sinh−2ρ̃ 2Sd−1

™
. (C.6)

Although this point of view a priori is not necessary, it is sometimes useful to regard AdS1,d as
embedded in R2,d, that is, Rd+2 with metric of signature (2, d): η = diag (−,+, ...,+,−). The
(covariant) cartesian coordinates in this embedding space are usually denoted by X = (X0, X ,Xd+1)
with X = (X1, ..., Xd). The embedding space metric is thus

ds2
(2,d) = −dX2

0 + dX 2 − dX2
d+1 . (C.7)
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We can now introduce (see p.17 in [72]) so-called orispherical coordinates (R, t, ρ,Ω) and hyperbolical
coordinates (R, t, ρ̃,Ω) on the part of embedding space on which R2 = −X2 = (X0)2 + (Xd+1)2 −
X 2 > 0:

X0 = −R sin t cos−1ρ = −R sin t cosh ρ̃ (C.8)

Xd+1 = +R cos t cos−1ρ = +R cos t cosh ρ̃ (C.9)

Xk = +R ξk(Ω) tan ρ = +R ξk(Ω) sinh ρ̃ (C.10)

The ξk(Ω) are the standard cartesian coordinates on the unit sphere given by (A.9) in Appendix
A.3. The hyperboloid obtained by fixing some R = RAdS then is AdS with curvature radius RAdS

and time coordinate t ∈ [0, 2 ιπ). This version of AdS is called hyperboloidal AdS and contains closed
timelike curves. The version of AdS which we use is the universal covering space of this hyperboloid
and obtained by ”unwrapping” it. That is, by extending the range of time to t ∈ (−∞,+∞) and
unidentifying the points in embedding space obtained by t → t+ 2 ιπ. The AdS metric (C.2) is then
induced by the embedding space metric (C.7).

C.1.1 The flat limit RAdS →∞
In this section we consider the limit of large curvature radius RAdS. We introduce the new global
coordinates

r := RAdS ρ r ∈ [0, ιπ
2 RAdS) (C.11)

τ := RAdS t τ ∈ (−∞,+∞).

The AdS metric now writes as given in [36]

ds2
AdS =

R2
AdS

cos2ρ

(
−dt2 + dρ2 + sin2ρ ds2

Sd−1

)
=
(

cos
r

RAdS

)−2
ï
−dτ2 + dr2 +R2

AdS

(
sin

r

RAdS

)2
ds2

Sd−1

ò
,

and for ρ = r/RAdS�1 it approximates Minkowski spacetime:

ds2
AdS ≈ −dτ2 + dr2 + r2 ds2

Sd−1 = ds2
Mink . (C.12)

Therefore the large-RAdS limit is also called flat limit. This means, that with increasing curvature
radius the AdS region where ρ�1 corresponds to an increasing part of Minkowski spacetime, covering
all of it in the flat limit RAdS → ∞. If we wish to consider some fixed value of r, then for some
sufficiently large RAdS we have r�RAdS and the flat approximation holds. Hence in the flat limit
RAdS → ∞ it holds for all r.

This can also be seen in the following way1. Let us start by considering AdS with some fixed
curvature radius RAdS = R1, for example let R1 = 1. The AdS-metric then writes

ds2
R1

=
R2

1

cos2ρ

(
−dt2 + dρ2 + sin2ρ ds2

Sd−1

)
.

If we consider a neighborhood U of some point, for example the origin, which is ”small enough”, then
we can neglect the curvature, and we can regard this small neighborhood as flat. For simplicity, let
U a (finite) rod hypercylinder: U = [t1, t2]×[0, ρ0]×Sd−1 with ρ0 � 1. Considering next AdS with
curvature radius RAdS = R2 > R1, we have

ds2
R2

=
R2

2

cos2ρ

(
−dt2 + dρ2 + sin2ρ ds2

Sd−1

)
=

R2
2

R2
1

ds2
R1
.

1We thank José Antonio Zapata (CCM-UNAM) for pointing us to this isometry.
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That is, AdS spacetimes with different curvature radii are isometric to each other up to a constant
conformal factor R2

1/R
2
2. On AdS with R2 our neighborhood U has the same internal coordiantes

U = [t1, t2]×[0, ρ0]×Sd−1, but due to R2 > R1 it is now bigger. That is, our approximately flat U has
grown. In the flat limit R2 → ∞ our approximately flat neighborhood U becomes infinitely large,
and thus we can accomodate all of Minkowski spacetime within it. This is sketched in figure C.1.1

Figure C.13: Flat limit of AdS spacetime: RAdS → ∞.

In the flat limit the AdS Laplace-Beltrami approximates its Minkowski version:

2AdS = R−2
AdS

ß
− cos2ρ ∂2

t + cos2ρ ∂2
ρ +

(d−1)

tan ρ
∂ρ + tan−2ρ2Sd−1

™
(C.14)

≈ −∂2
τ + ∂2

r +
(d−1)

r
∂r + r−2 2Sd−1 = 2Mink . ∀ r�RAdS (C.15)

Thus the AdS Klein-Gordon equation with mass parameter m2 in the flat limit approximates the
Minkowski Klein-Gordon equation with the same m2. Hence we define the flat limit, or large-RAdS

limit, by letting RAdS grow larger and larger while keeping fixed the coordinates τ = tRAdS and
r = ρRAdS and the parameters m2, ω̃ and p̃ω̃. We denote the flat limit of an expression by the
symbol

−→flat

lim. .

C.1.2 Killing vector fields on AdS1,d

We can now write the embedding space Killing vector fields

KAB(X) := XA ∂B −XB ∂A (C.16)

in orispherical coordinates (R, t, ρ, ξ(Ω)). We use Einstein’s sum convention of summing over indices
that appear twice. Latin uppercase indices have the range like A = 0, . . . , (d+1), while Latin lowercase
indices range like k = 1, . . . , d. Using

R =
(
X2

0 +X2
d−1−X 2

)1/2

t = arctan
−X0

Xd+1

ρ = arctan

 
X 2

X2
0 +X2

d−1−X 2
ξk =

Xk

(X )1/2
,
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and thus

∂R

∂X0
= +

sin t

cos ρ

∂t

∂X0
= R−1 cos t cos ρ

∂ρ

∂X0
= −R−1 sin t sin ρ

∂R

∂Xd+1
= − cos t

cos ρ

∂t

∂Xd+1
= R−1 sin t cos ρ

∂ρ

∂Xd+1
= +R−1 cos t sin ρ (C.17)

∂R

∂Xj
= −ξj tan ρ

∂ξk
∂Xj

=
δjk−ξjξk
R tan ρ

∂ρ

∂Xj
= R−1 ξj ,

wherein δjk is the Kronecker delta, we find for the Killing vectors

Kd+1,0 = Xd+1 ∂0 −X0 ∂d+1

= ∂t (C.18)

Kjk = Xj ∂k −Xk ∂j

= ξj∂ξk − ξk∂ξj (C.19)

K0j = X0 ∂j −Xj ∂0

= −ξj cos t sin ρ ∂t − ξj sin t cos ρ ∂ρ −
sin t

sin ρ

(
∂ξj − ξjξi ∂ξi

)
(C.20)

Kd+1,j = Xd+1 ∂j +Xj ∂d+1

= −ξj sin t sin ρ ∂t + ξj cos t cos ρ ∂ρ +
cos t

sin ρ

(
∂ξj − ξjξi ∂ξi

)
. (C.21)

Note that none of these Killing vectors has a ∂R component, and that they therefore leave the R-
coordinate invariant. Since AdS1,d is nothing but a submanifold of R(2,d) with fixed R = RAdS and
induced metric, the (d+1)(d+2)/2 embedding space Killing vectors KAB are Killing vectors on
AdS1,d as well, thereby making it a maximally symmetric space(time). On AdS we thus have the
following types of Killing vectors: only one translation Kd+1,0, d(d−1)/2 spatial rotations Kjk, and
(2d) boosts K0j and Kd+1,j .

The AdS-Killing vectors for the boosts are sketched in the following Figure C.22. The time
translation Kd+1,0 = ∂t is constant and the rotations only move points on their (d−1)-sphere, hence
both are less interesting for drawing.

(a) Kd+1,j-Boost (b) K0j-Boost

Figure C.22: Penrose diagram of Minkowski spacetime: Boost Killing vectors.
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Recalling from Section C.1.1 that the flat limit of AdS is related to the region near the origin
(t = 0, ρ = 0), the correspondence of Table 2.161 is nicely visible in Figure C.22. Comparing
Subfigure C.22(a) to Subfigure B.28(b), we see that near the origin the former looks like the latter,
that is, the AdS Kd+1,j-boosts look like Minkowski xj-translations. Comparing Subfigure C.22(b)
near the origin to Subfigure B.28(c), we see that AdS K0j-boosts look like Minkowski xj-boosts.

C.2 Classical Klein-Gordon solutions on AdS

C.2.1 Ingredients for the radial solutions on AdS

We will use the three special functions ψ, ψ̃ and F . ψ is the Digamma function defined in DLMF
[5.5.2] as the relative change of the Gamma function and ψ̃ is a customized shorthand for our
purposes:

ψ(x) :=
Γ′(x)

Γ(x)
, ∀ x ∈ C \ (−N0), (C.23)

ψ̃k(a, b, c) := ψ(a) + ψ(b)− ψ(c)− ψ(k+1) . (C.24)

ψ̃ is invariant under exchange of a and b. F is Gauss’ hypergeometric series/function defined in
DLMF [15.2.1] as

F (a, b; c; x) ≡ 2F1(a, b; c; x) :=
∞∑
k=0

(a)k (b)k
(c)k k!

xk . (C.25)

Note that it is invariant under exchange of a and b as well. The Pochhammer symbols are defined as

(a)k := a · (a+1) · . . . · (a+k−1) =
Γ(a+k)

Γ(a)
, (C.26)

wherein the second equality only holds where the Gamma function is well defined. Usually a ∈ C
and k ∈ N0. However, the definition via the Euler Gammas holds for all k ∈ C, as long as neither a
nor a+k become nonpositive integers.

Generically F (a, b; c; x) does not exist if c ∈ Z≤(0). However, if also a ∈ Z≤(0) and c ≤ a, then it
can be interpreted in the sense DLMF [15.2.5] to be DLMF [15.2.4]

F (a, b; c; x) =
−a∑
k=0

(a)k (b)k
(c)k k!

xk =
−a∑
k=0

(−1)k
Ç
−a
k

å
(b)k
(c)k

xk . (C.27)

which is just the usual definition of the hypergeometric series, except that it terminates after finitely
many terms because (a)k becomes zero for all k ≥ −a+ 1.

We also need what we call the double Pochhammer symbol: for all a ∈ C and n ∈ N0 we define it
to be

((a))n := a (a+2) (a+4) · ... · (a+2n−2) . (C.28)

The special cases are ((a))0 := 1 and ((a))1 = a. Although we did not find this notation in the
literature, its definition is quite natural and probably has been used before.

In order to relate the double to the original Pochhammer symbol, we recall that the definition of
the latter is (a)n := a · (a+1) · (a+2) · ... · (a+n−1). We thus have the relation ((2a))n = 2n (a)n .
(There is a similar relation between factorial and double factorial (2n)!! = 2n n!, which is not much
surprising since for natural subindex values the Pochhammer symbol is just a truncated factorial:
(a)n = (a+n− 1)!/(a− 1)!.) Since we can also write the Pochhammer symbol as the quotient
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(a)n = Γ(a+n)/Γ(a) of Euler Gamma functions, we can write the double Pochhammer symbol in
this way as well. This actually extends its definition from natural to complex subindex values:

((a))z := 2z
Γ(a

2
+z)

Γ(a
2

)

∀ a∈C
∀ z ∈C . (C.29)

For z ∈ N0 this reduces to the relation (C.28). Care has to still be taken of values for a and z that
let the Euler Gamma become ill defined, that is, values for which either a

2 or a
2 + z or both take

nonpositive integer values.

C.2.2 From Klein-Gordon to hypergeometric DEQ on AdS

The action for a free, real scalar field φ(x) living in AdS is

S[φ] =

ˆ
d
d+1
x
»
|g | 1

2

[
−gµν(∂µφ)(∂νφ)−m2φ2

]
︸ ︷︷ ︸

L

(C.30)

whose Euler-Lagrange equation

0 = ∂µ
∂L

∂(∂µφ)
− ∂L

∂φ

is the free Klein-Gordon equation

0 = (−2AdS +m2)φ . (C.31)

In order to solve it we follow Mezincescu and Townsend in [46], and Breitenlohner and Freedman in
[13], [14]. The separation ansatz φ(t, ρ,Ω) = T (t) f (ρ)Y (Ω) leads directly to the complex product

φ(t, ρ,Ω) = e−iωt Y mll (Ω) f (ρ) . (C.32)

Y mll denotes the hyperspherical harmonics, see Appendix A.4. The realness of the field is assured
by expanding it over the complex modes and their complex conjugates. ω is the frequency of the
solution and a priori allowed to be complex, although later it turns out that only real frequencies
are needed. For the time-interval regions a complete ONS on an equal-time hypersurface is given
by a discrete set of modes, with each mode a product of hyperspherical harmonic and a Jacobi
polynomial. The Klein-Gordon equation then implies for each such mode one associated frequency
ω. These frequencies are discrete and real. The hypercylinder regions contain temporal infinity, thus
for these regions ω must be real, too, or the field will diverge for large times.

The remaining radial differential equation to be obeyed by the function f (ρ) then is

0 =
(
ω2 cos2ρ− l(l+d−2)

tan2ρ
−m2R2

AdS

)
f (ρ) +

d−1

tan ρ
∂ρf (ρ) + cos2ρ ∂2

ρf (ρ) .

We shall call the solutions f of this equation simply radial solutions, and the solutions φ of (C.31)
Klein-Gordon solutions. As shown by Balasubramanian et al. in [9], we can make two ansätze for
f (ρ), which we shall call the sine respectively cosine ansatz:

f (ρ) → S(ρ) = sinl̃ρ cosm̃ρ S̃(sin2ρ) (C.33)

f (ρ) → C(ρ) = sinl̃ρ cosm̃ρ ‹C(cos2ρ) . (C.34)

We denote l̃ and ‹m like that simply because l̃ will depend on l and ‹m on m. In [9] l̃ is denoted as 2b
and ‹m as 2h. In [13] ‹m is denoted as µ and in [46] as λ.
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If we impose the following two conditions

0
!
= ‹m2 − ‹md−m2R2

AdS 0
!
= l̃2 + l̃(d−2)− l(l+d−2) (C.35)‹m± =

d

2
± ν l̃+ = l (C.36)

ν :=

…
d2

4
+m2R2

AdS l̃− = −(l+d−2) ,

then plugging the sine or cosine ansatz into the radial equation yields the hypergeometric differential
equation DLMF[15.10.1] (wherein the primes denote derivation with respect to sin2ρ respectively
cos2ρ)

0 = sin2ρ
(
1−sin2ρ

)
S̃′′(sin2ρ) +

[
γS − sin2ρ (α+ β + 1)

]
S̃′(sin2ρ) − αβ S̃(sin2ρ) , (C.37)

0 = cos2ρ
(
1−cos2ρ

) ‹C ′′(cos2ρ) +
[
γC − cos2ρ (α+ β + 1)

] ‹C ′(cos2ρ) − αβ ‹C(cos2ρ) . (C.38)

The parameters therein depend on l̃,‹m and ω:

α = (l̃ + ‹m− ω)/2

β = (l̃ + ‹m+ ω)/2

γS = l̃ + d/2

γC = ‹m− d/2 + 1 .

(C.39)

We remark that the conditions imposed on ‹m and l̃ are not motivated from physical principles here,
and hence must be seen as forming part of the ansatz. However, they will be justified a posteriori
by the fact that with these conditions holding, we get systems of solutions that are complete on the
time-interval regions respectively on rod and tube regions. Moreover Breitenlohner and Freedman
show after equation (11) of [13] that the ‹m-condition leads to a positive energy. The mass squared
value where ν vanishes is called Breitenlohner-Freedman mass:

m2
BF =

−d2

4R2
AdS

. (C.40)

C.2.3 Sets of radial solutions for AdS

In this section we will give an overview of the Klein-Gordon solutions obtained via the two ansätze.
We use the following notation for the parameters:

α± = (l + ‹m± − ω)/2

β± = (l + ‹m± + ω)/2

γS = l + d/2

γC

± = ‹m± − d/2 + 1 = ±ν + 1 .

(C.41)

We shall set l̃ = l̃+ = l and ‹m = ‹m+. This is without loss of generality because the other possible
choices yield the same solutions. Note however, that although having fixed this choice, in some radial
solutions we encounter linear combinations of the parameters α+,β+,γS, γC

+ and ‹m+ adding up to
α−,β−,γS, γC

− and ‹m−. The appearances of the plus and minus versions of these parameters do not
depend on our choice, but are an intrinsic property of the respective solutions.

In order to give a complete list of solutions we will rely heavily on DLMF §15.10.(i). We will use
several special functions given in Appendix C.2.1. Each of the hypergeometric equations (C.37) and
(C.38) has two linear independent solutions which we shall denote by 1S̃ωl and 2S̃ωl, respectively 1C̃ωl
and 2C̃ωl. Via the sine ansatz (C.33) respectively cosine ansatz (C.34) this provides us the solutions
of the radial part of the Klein-Gordon equation, 1Sωl and 2Sωl, respectively 1Cωl and 2Cωl.
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The form of the solutions of (C.37) depends on wether γS is integer or not, and of (C.38) on wether
γC is integer or not. γS is integer precisely if the spatial dimension d is even, and noninteger if not.
γC is integer precisely if ν is integer, else noninteger. Where necessary we equip our solutions with
labels distinguishing between these cases. Table C.42 shows of which radial solutions we dispose
in which case. The S-solutions and the C-solutions generically are not linear independent, their
relations are examined in Appendix C.2.4. Since the parameters α,β,γS and γC depend on ω and l,
each radial solution is labeled by these parameters.

d odd d even

ν noninteger
1Sωl

1Cωl
2Sodd

ωl
2Cnon

ωl

1Sωl
1Cωl

2Seve

ωl
2Cnon

ωl

ν integer
1Sωl

1Cωl
2Sodd

ωl
2C int

ωl

1Sωl
1Cωl

2Seve

ωl
2C int

ωl

Table C.42: Cases of radial solutions

Further below we list the radial solutions appearing in Table C.42. We also give the corresponding
DLMF equations, remarking that the solutions appearing there need to be multiplied by the factor
sinlρ cosm̃±ρ stemming from the sine and cosine ansatzes C.33. The following parameter relations
have been used to give the solutions the form we consider most useful.

2− γC

± = γC

∓ 1− γC

± = γC

∓ − 1

α± + β± − γS + 1 = γC

± (C.43)

α± − γC

± + 1 = α∓ β± − γC

± + 1 = β∓

1− α∓ = γC

± − α± 1− β∓ = γC

± − β± .

We shall see later that for certain discrete frequency sets the solutions show special behaviour. The
magic frequencies are defined as

ω±nl := 2n+ l + m̃± = 2n+ γS ± ν ∀ l ∈ N0
∀ n ∈ N0

(C.44)

and the submagic frequencies as

σS
nl := 2n+ l + m̃± = 2n+ γS + γC

+ − 1 ∀ l ∈ N0

∀ n ∈ {−(γS−1), . . . ,−1} (C.45)

σC
nl := 2n+ l + m̃± = 2n+ γS + γC

+ − 1 ∀ l ∈ N0

∀ n ∈ {−(γC−1), . . . ,−1} . (C.46)

The magic frequencies ω+

nl are allways positive, while the sign of ω−nl depends on n, l, ν and d.
However, we will see later that only for ν < 1 we can make use of the ω−nl, and for this case they are

positive, too. The sign of σ
S/C
nl depends on n, l, ν and d. The following solutions come from DLMF

[15.10.2] for odd d and noninteger ν (which is the only case we shall study in detail in this work):

1Sωl(ρ) = sinlρ cosm̃+ρ F (α+, β+; γS; sin2ρ) (C.47)
2Sodd

ωl (ρ) = −(sin ρ)2−l−d cosm̃+ρ F (α+−γS+1, β+−γS+1; 2−γS; sin2ρ) (C.48)
1Cωl(ρ) = sinlρ cosm̃+ρ F (α+, β+; γC

+; cos2ρ) (C.49)
2Cnon

ωl (ρ) = sinlρ cosm̃−ρ F (α−, β−; γC
−; cos2ρ) . (C.50)

Moreover, DLMF 15.10.(a+b) tell us that the solutions 1Sωl(ρ) and 1Cωl(ρ) also hold for the other
three cases where d is even and/or ν is integer. The functions 2Seve and 2C int are different however,
and need to be defined via case-by-case distinction. We indicate the corresponding case by bestowing
yet another label (bottom left) to the solutions. Case 1 corresponds to DLMF [15.10.8], case 2 to
15.10(i)(a) with interpretation (C.27), and case 3 to DLMF [15.10.9]. The case of DLMF [15.10.10],
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where both α+ and β+ are nonpositive, cannot occur for our situation since independently of positive
or negative ω, either α+ or β+ is positive. For being precise, ior denotes ”inclusive or”and xor denotes
”exclusive or” below.

2Seve

ωl :=



2
1S

eve

ωl neither α+ nor β+ /∈ Z≤(γS−1)

2
2S

eve

ωl ior
α+ = −n ∈ {1, . . . , γC−1} ⇔ ω = +σS

nl

β+ = −n′ ∈ {1, . . . , γC−1} ⇔ ω = −σS
n′l

2
3S

eve

ωl xor
(α+ = −n ∈ Z≤(0) ⇒ β+ /∈ Z≤(γS−1)) ⇔ ω = +ω+

nl

(β+ = −n ∈ Z≤(0) ⇒ α+ /∈ Z≤(γS−1)) ⇔ ω = −ω+

nl

(C.51)

2C int

ωl :=



2
1C

int

ωl neither α+ nor β+ /∈ Z≤(γC
+−1)

2
2C

int

ωl ior
α+ = −n ∈ {1, . . . , γC−1} ⇔ ω = +σC

nl

β+ = −n′ ∈ {1, . . . , γC−1} ⇔ ω = −σS
n′l

2
3C

int

ωl xor
(α+ = −n ∈ Z≤(0) ⇒ β+ /∈ Z≤(γC

+−1)) ⇔ ω = +ω+

nl

(β+ = −n ∈ Z≤(0) ⇒ α+ /∈ Z≤(γC
+−1)) ⇔ ω = −ω+

nl

(C.52)

2

1S
eve

ωl (ρ) = sinlρ cosm̃+ρ

{
ln(sin2ρ)F (α+, β+; γS; sin2ρ) (C.53)

−
γS−1∑
k=1

(k−1)! (1−γS)k
(1−α+)k (1−β+)k

(sin2ρ)−k

+
∞∑
k=0

(α+)k (β+)k
(γS)k k!

(sin2ρ)k ψ̃k(α++k, β++k, γS+k)

}
2
2S

eve

ωl (ρ) = 2Sodd

ωl (ρ)

2

3S
eve

ωl (ρ) = sinlρ cosm̃+ρ

{
ln(sin2ρ)F (α+, β+; γS; sin2ρ) (C.54)

−
γS−1∑
k=1

(k−1)! (1−γS)k
(1−α+)k (1−β+)k

(sin2ρ)−k

+
n∑
k=0

(α+)k (β+)k
(γS)k k!

(sin2ρ)k ψ̃k(1+n−k, n+l+m̃++k, γS+k)

+ (−1)n n!
∞∑

k=n+1

(k−n−1)! (n+l+‹m+)k
(γS)k k!

(sin2ρ)k

}

2

1C
int

ωl (ρ) = sinlρ cosm̃+ρ

{
ln(cos2ρ)F (α+, β+; γC

+; cos2ρ) (C.55)

−
γC

+−1∑
k=1

(k−1)! (1−γC
+)k

(1−α+)k (1−β+)k
(cos2ρ)−k

+
∞∑
k=0

(α+)k (β+)k
(γC

+)k k!
(cos2ρ)k ψ̃k(α++k, β++k, γC

++k)

}
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2
2C

int

ωl (ρ) = 2Cnon

ωl (ρ)

2

3C
int

ωl (ρ) = sinlρ cosm̃+ρ

{
ln(cos2ρ)F (α+, β+; γC

+; cos2ρ) (C.56)

−
γC

+−1∑
k=1

(k−1)! (1−γC
+)k

(1−α+)k (1−β+)k
(cos2ρ)−k

+
n∑
k=0

(α+)k (β+)k
(γC

+)k k!
(cos2ρ)k ψ̃k(1+n−k, n+l+m̃++k, γC

++k)

+ (−1)n n!
∞∑

k=n+1

(k−n−1)! (n+l+‹m+)k
(γC

+)k k!
(cos2ρ)k

}
The exceptional radial solutions 2

2S
eve, 2

3S
eve and 2

2C
int, 2

3C
int can be presented here thanks to the ex-

tended DLMF section on the hypergeometric DEQ, we have not found them in the existing literature
on AdS. The other solutions agree (up to small typos) with those in e.g. [46] and [9].

Finally, for the magic frequencies |ω| = ω±nl the solutions 1Sωl(ρ) form a discrete set of special
solutions which we denote by J (±)

nl (ρ) (see also Appendix C.2.4):

J (+)

nl (ρ) := n!
(γS)n

sinlρ cosm̃+ρP (γS−1,+ν)
n (cos 2ρ) for ω = ±ω+

nl

J (−)
nl (ρ) := n!

(γS)n
sinlρ cosm̃−ρP (γS−1,−ν)

n (cos 2ρ) for ω = ±ω−nl .
(C.57)

P
(·,·)
n are Jacobi polynomials. These are the only radial solutions leading to normalizable fields on

time-interval regions M[t1,t2], see Appendix C.2.5. They are always of this form, independently of
wether d is even or odd and wether ν is integer or not.

We have discussed above why only real frequencies ω can be used. Since we also restrict to
masses for which m2 ≥ m2

BF, all parameters entering the hypergeometric functions (respectively
Jacobi polynomials) are real, and therefore all radial solutions given here are real.

C.2.4 Linear (in)dependence of radial solutions in AdS

The solutions for the case of odd d and noninteger ν are related by the following matrix equation,
which can be obtained without too much effort using AS[15.3.3+6]. The label ”on” stands for odd-
noninteger, and ”no” for noninteger-odd. Note that the matrices M on

ωl and Mno

ωl can be obtained from
each other by mutually replacing γS with γC

+.(
1Sωl
2Sodd

ωl

)
= M on

ωl

(
1Cωl
2Cnon

ωl

) (
1Cωl
2Cnon

ωl

)
= Mno

ωl

(
1Sωl
2Sodd

ωl

)
(C.58)

(M on

ωl)11 = +
Γ(γS) Γ(1−γC

+)

Γ(γS−α+) Γ(γS−β+)
(Mno

ωl)11 = +
Γ(γC

+) Γ(1−γS)

Γ(γC
+−α+) Γ(γC

+−β+)

= +
Γ(γS) Γ(1−γC

+)

Γ(1−αS,b) Γ(1−βS,b)
= +

Γ(γC
+) Γ(1−γS)

Γ(βS,b) Γ(αS,b)

(M on

ωl)12 = +
Γ(γS) Γ(γC

+−1)

Γ(α+) Γ(β+)
(Mno

ωl)12 = −
Γ(γC

+) Γ(γS−1)

Γ(α+) Γ(β+)

(M on

ωl)21 = −
Γ(2−γS) Γ(1−γC

+)

Γ(1−α+) Γ(1−β+)
(Mno

ωl)21 = +
Γ(2−γC

+) Γ(1−γS)

Γ(1−α+) Γ(1−β+)

(M on

ωl)22 = −
Γ(2−γS) Γ(γC

+−1)

Γ(γC
+−α+) Γ(γC

+−β+)
(Mno

ωl)22 = −
Γ(2−γC

+) Γ(γS−1)

Γ(γS−α+) Γ(γS−β+)

= −
Γ(2−γS) Γ(γC

+−1)

Γ(βS,b) Γ(αS,b)
= −

Γ(2−γC
+) Γ(γS−1)

Γ(1−αS,b) Γ(1−βS,b)
.
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Plugging in the definitions of the hypergeometric parameters this becomes

(M on

ωl)11 =+
Γ(l+ d

2
) Γ(−ν)

Γ(− 1
2
(m̃+−ω−l−d)) Γ(− 1

2
(m̃++ω−l−d))

(Mno

ωl)11 =+
Γ(1+ν) Γ(1−l− d

2
)

Γ( 1
2
(m̃++ω−l−d+2))Γ( 1

2
(m̃+−ω−l−d+2))

(M on

ωl)12 =+
Γ(l+ d

2
) Γ(ν)

Γ( 1
2
(m̃++ω+l)) Γ( 1

2
(m̃+−ω+l))

(Mno

ωl)12 =− Γ(1+ν) Γ(l+ d
2
−1)

Γ( 1
2
(m̃++ω+l)) Γ( 1

2
(m̃+−ω+l))

(M on

ωl)21 =− Γ(2−l− d
2

) Γ(−ν)

Γ(− 1
2
(m̃+−ω+l−2)) Γ(− 1

2
(m̃++ω+l−2))

(Mno

ωl)21 =+
Γ(1−ν) Γ(1−l− d

2
)

Γ(− 1
2
(m̃+−ω+l−2)) Γ(− 1

2
(m̃++ω+l−2))

(M on

ωl)22 =− Γ(2−l− d
2

) Γ(ν)

Γ( 1
2
(m̃++ω−l−d+2))Γ( 1

2
(m̃+−ω−l−d+2))

(Mno

ωl)22 =− Γ(1−ν) Γ(l+ d
2
−1)

Γ(− 1
2
(m̃+−ω−l−d)) Γ(− 1

2
(m̃++ω−l−d))

.

The two matrices Mno

ωl and M on

ωl must be the inverse of each other, which we verify at the end of
this section. Further, we there calculate the determinants of the matrices, giving the following result
(which again confirms that both matrices are inverse to each other, since their determinants multiply
to unity):

det M on

ωl =
(2l+d−2)

2ν
det Mno

ωl =
2ν

(2l+d−2)
. (C.59)

In Figure C.60 we plot the original functions (e.g. 1Sωl) and their decomposition into the other two
functions (e.g. (Mon

ωl )11
1Cωl+(Mon

ωl )12
2Cnon

ωl ) in order to check that we calculated all matrix elements
correctly.

(a) radial S-solutions (b) radial C-solutions

Figure C.60: Linear dependence of the radial solutions.

Herein, the horizontal axis is the ρ-axis going from 0 to ιπ/2, and the vertical axis shows the value of
the radial solutions. For both plots we set d = 3 while m = 1.5 and RAdS = 1, and moreover ω = 10
while l = 3. The plots illustrate that the left and right hand sides of the four linear dependencies
of (C.58) agree. This indicates that our matrix elements of Mon

ωl and Mno
ωl indeed are correct. We

found the same agreement for all sets of parameter values that we tested.
In C.60(a) we plot the equations in the left column of (C.58). The continuous yellow line is 1S10,3(ρ)

and the dotdashed red line is the corresponding decomposition (Mon
10,3)11

1C10,3(ρ)+(Mon
10,3)12

2Cnon
10,3(ρ)

(both zoomed by a factor of 1000). The continuous orange line is 2Sodd
10,3(ρ) and the dotdashed blue

line is (Mon
10,3)21

1C10,3(ρ) + (Mon
10,3)22

2Cnon
10,3(ρ) (both zoomed by a factor of −0.2).

In C.60(b) we plot the equations on the right column of (C.58). The continuous yellow line is
1C10,3(ρ) and the dotdashed red line is the corresponding decomposition (again zoomed by a factor of
1000) (Mno

10,3)11
1S10,3(ρ)+(Mno

10,3)12
2Sodd

10,3(ρ). The continuous orange line is 2Sodd
10,3(ρ) and the dotdashed

blue line is (Mno
10,3)21

1S10,3(ρ) + (Mno
10,3)22

2Sodd
10,3(ρ) (both multiplied by −1 for visibility).

Next we have a look at exceptional cases of these dependencies. As stated in [9], 1S is proportional
to 1C whenever M on

12 and Mno
12 vanish, i.e., whenever α+ or β+ are nonpositive integers. This happens

precisely if the frequency is one of the ”magic” frequencies ±ω+

nl from (C.44).
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1S is proportional to 2Cnon whenever M on
11 and Mno

22 vanish, i.e., whenever (γS−α+) or (γS−β+)
are nonpositive integers. This happens iff the frequency is one of the ”magic” frequencies ±ω−nl from
(C.44). In these cases the functions are related through:

1Sωl = (−1)n
(γC

+)n
(γS)n

1Cωl = n!
(γS)n

sinlρ cosm̃+ρP (γS−1,+ν)
n (cos 2ρ) ⇔ ω = ±ω+

nl

1Sωl = (−1)n
(γC
−)n

(γS)n
1Cωl = n!

(γS)n
sinlρ cosm̃−ρP (γS−1,−ν)

n (cos 2ρ) ⇔ ω = ±ω−nl ν < 1

(C.61)

In both cases 1S becomes regular at the boundary ρ = ιπ
2 . The Jacobi polynomials P

(·,·)
n arise from

the hypergeometric function if the frequency is magic via DLMF [15.9.1]:

n!
(a+1)n

P (a,b)
n (1−2x) = F (−n, a+b+n+1; a+1; x) a, b > −1 . (C.62)

2Sodd is proportional to 1C whenever Mno
11 and M on

22 vanish, i.e., whenever (γC
+−α+) or (γC

+−β+)
are nonpositive integers. This happens exactly if the frequency is one of the frequencies ±ω =
−(l+d−2) + m̃+ + 2n with n ∈ N0.

As promised above, we now show that the matrices are indeed inverses of each other, and calculate
their determinant. Writing shorter λ := d/2+l−1, they write as follows:

(M on

ωl)11 = +
Γ(λ+1) Γ(−ν)

Γ((1+λ−ν+ω)/2) Γ((1+λ−ν−ω)/2)
(Mno

ωl)11 = +
Γ(1+ν) Γ(−λ)

Γ((1−λ+ν+ω)/2) Γ((1−λ+ν−ω)/2)

(M on

ωl)12 = +
Γ(λ+1) Γ(ν)

Γ((1+λ+ν+ω)/2) Γ((1+λ+ν−ω)/2)
(Mno

ωl)12 = − Γ(1+ν) Γ(λ)

Γ((1+λ+ν+ω)/2) Γ((1+λ+ν−ω)/2)

(M on

ωl)21 = − Γ(1−λ) Γ(−ν)

Γ((1−λ−ν+ω)/2) Γ((1−λ−ν−ω)/2)
(Mno

ωl)21 = +
Γ(1−ν) Γ(−λ)

Γ((1−λ−ν+ω)/2) Γ((1−λ−ν−ω)/2)

(M on

ωl)22 = − Γ(1−λ) Γ(ν)

Γ((1−λ+ν+ω)/2) Γ((1−λ+ν−ω)/2)
(Mno

ωl)22 = − Γ(1−ν) Γ(λ)

Γ((1+λ−ν+ω)/2) Γ((1+λ−ν−ω)/2)
.

What we want to show is thus

M on

ωlM
no

ωl =

(
1 0

0 1

)
det M on

ωl =
λ

ν
(C.63)

Mno

ωlM
on

ωl =

(
1 0

0 1

)
det Mno

ωl =
ν

λ
.

Plugging the matrix elements into the matrix multiplication, we can see that the zeros in the unity
matrix are obtained quickly using only the recursion relation AS[6.1.15]=DLMF[5.5.3]

z Γ(z) = Γ(1+z) . (C.64)

Further, generously applying the reflection property AS[6.1.17]=DLMF[5.5.3] of Euler’s Gamma
function

Γ(z) Γ(1−z) =
ιπ

sin( ιπz)
, (C.65)

(plus sin(x + ιπ/2) = cosx) we find that obtaining the ones in the unity matrix of the matrix
multiplication and obtaining the values of the determinant corresponds to showing the validity of

sin( ιπλ) sin( ιπν) = cos([λ−ν+ω] ιπ/2) cos([λ−ν−ω] ιπ/2) − cos([λ+ν+ω] ιπ/2) cos([λ−ν−ω] ιπ/2) .

This can be achieved using first AS[4.3.42] (eliminating the ω-terms) and then AS[4.3.41]:

cos(z1+z2) cos(z1−z2) = cos2z1 − sin2z2

cos2z2 − cos2z1 = sin(z2+z1) sin(z2−z1) .

This completes the demonstration of (C.63).
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C.2.5 Normalizability on equal-time hypersurface in AdS

At a later stage we will need to integrate solutions over equal-time hypersurfaces Σt. The radial part
of this integral for a radial solution χ(ρ) writes

ιπ/2ˆ

0

dρ tand−1ρ χ2
(ρ) .

We need solutions giving us a regular integrand on the whole Σt. This happens exactly if the
frequency is magic, because only then the solution inherits the regularity of 1S at the origin plus the
regularity of 1C (and 2Cnon for small ν) at ρ = ιπ

2 . Using (A.1) and (A.6) we get (with ν < 1 for the
minus case)

ιπ/2ˆ

0

dρ tand−1ρ
(

sinlρ cosm̃±ρ P (γS−1,±ν)
n (cos 2ρ)

)2
=

Γ(n+γS) Γ(n±ν+1)

2ω±nl n! Γ(n±ν+γS)
, (C.66)

and can thus define the following normalization constant:

N±nl :=

ιπ/2ˆ

0

dρ tand−1ρ
(
J (±)
nl (ρ)

)2
=

n! Γ(γS)2 Γ(n±ν+1)

2ω±nl Γ(n+γS) Γ(n± ν+γS)
. (C.67)

For the J (+)

nl this holds for all ν ≥ 0, that is: all masses m2 ≥ m2
BF above the Breitenlohner-Freedman

mass, while for the J (−)
nl it holds only for ν ∈ [0, 1), that is, for the negative values m2 ∈ [m2

BF, (4−
d2)/(4R2

AdS) ). Hence for the respective allowed values of ν we have positive ω±nl and the exceptional
case (described in Section A.2) of −1 = a+b = γS−1±ν cannot occur.

Finally, we note that the integrals with n 6= n′ vanish:

0 =

ιπ/2ˆ

0

dρ tand−1ρ J (±)
nl (ρ) J (±)

n′l(ρ) , (C.68)

due to the orthogonality of the Jacobi polynomials, see AS[22.1.1+2] and AS[22.2.1].

C.2.6 Wronskians for radial solutions on AdS

In this section we calculate the Wronskians 1Sωl(ρ)
��
∂ρ

2Sodd

ωl (ρ) and 1Cωl(ρ)
��
∂ρ

2Cnon

ωl (ρ) of the radial
solutions, which are needed for the symplectic structure. Starting with the former, for greater clarity
we allow us to simplify our notation a bit for the moment: α+ → α, β+ → β, γS → γ and
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sin2 ρ → x. The calculation proceeds as follows:

tand−1ρ
(

1Sωl(ρ)
��
∂ρ

2Sodd

ωl (ρ)
)

= −2(1−x)α+β−γ+1
(
F (α, β; γ; x)F (α−γ+1, β−γ+1; 2−γ; x) (1−γ)

+ F (α, β; γ; x)F (α−γ+2, β−γ+2; 3−γ; x)x
(α−γ+1)(β−γ+1)

(2−γ)

− F (α+1, β+1; γ+1; x)F (α−γ+1, β−γ+1; 2−γ; x)x
αβ

γ

)
= −2(1−x)α+β−γ+1

(
F (α, β; γ; x)F (α−γ+2, β−γ+1; 2−γ; x) (1+α−γ)

− F (α+1, β; γ; x)F (α−γ+1, β−γ+1; 2−γ; x) a
)

= −2F (α, β; γ; x)F (−α, 1−β; 2−γ; x) (1+α−γ)

+ 2F (α+1, β; γ; x)F (1−α, 1−β; 2−γ; x) (1−x) a

= 2F (α, β; γ; x)F (−α,−β;−γ; x) (x−1)

− F (α+1, 1+β; 2+γ; x)F (1−α, 1−β; 2−γ; x)x2 αβ(α−γ)(β−γ)

γ2 (1+γ)

= 2(γ−1) . (C.69)

Since here γ = γS = l+d/2, we obtain the result

1Sωl(ρ)
��
∂ρ

2Sodd

ωl (ρ) = 2(γS−1) tan1−dρ = (2l+d−2) tan1−dρ . (C.70)

Thus the S-Wronskian times the metric factor tand−1ρ is actually independent of ρ (and of ω),
and moreover has positive sign for all l. In the calculation we make use of the following three
hypergeometric contiguous relations, on whose origin we comment further below.

F (α+1, β; γ; x) (1−x) γ2(1+γ) = F (α, β; γ; x) γ(1+γ)[γ+x(β−γ)]

− F (α+1, β+1; γ+2; x)x2 β(α−γ)(β−γ) (C.71)

F (α, β+1; γ+2; x) γ(1+γ−α) = F (α, β; γ; x) γ(1+γ)− F (α+1, β+1; γ+2; x)α[γ+x(β−γ)] (C.72)

F (α+1, β+1; γ+1; x)xβ = −F (α, β; γ; x) γ + F (α+1, β; γ; x) γ . (C.73)

The first equality in the Wronskian calculation (C.70) comes directly from plugging in the radial
functions and cleaning up a bit. The second then is achieved by using the third contiguous relation
for both F (α−γ+2, β−γ+2; 3−γ; x) and F (α+1, β+1; γ+1; x). The third follows by using AS[15.3.3]
= DLMF[15.8.1]:

F (α, β; γ; x) = (1−x)γ−α−βF (γ−α, γ−β; γ; x)

for both F (α−γ+2, β−γ+1; 2−γ; x) and F (α−γ+1, β−γ+1; 2−γ; x). The fourth results from using the
second contiguous relation for F (−α, 1−β; 2−γ; x) and the first contiguous relation for F (α+1, β; γ; x).
The last then can finally be read off from DLMF[15.16.4]:

1 = F (α, β; γ; x)F (−α,−β;−γ; x) + F (1+α, 1+β; 2+γ; x)F (1−α, 1−β; 2−γ; x)x2 αβ(α−γ)(β−γ)

c2 (1−c2)
.

The three hypergeometric contiguous relations above were found using the Mathematica code file
provided by A. Ibrahim and M. Rakha in [40], see also [70] by the same authors and A. Rathie.
While greatly benefiting from their work we should remark the following: the code in [40] is more
general then the theorems presented therein: it computes the coefficients ci for the more general
contiguous relation (3.4) in [70], making it a potentially powerful and practical tool.

However, it seems to us that in the proof of the essential Lemma 2 in [70], the transition from
(2.5) to (2.6) looks clean at first while actually not well justified. In addition, in the given form the
code does use the definitions of Section 2 until (2.3), but then seems to implement not the formulas
(3.7) and (3.3) which are used in the proof of Theorem 3, but other formulas which we where unable
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to indentify. That said, their code works well for some sets of parameter shifts (which is why we
tried to fully understand the magic at work therein). Checking the three relations above (and others
generated by the code) with Mathematica’s FullSimplify command (and where possible with the
Handbook of Abramowitz and Stegun) results in complete agreement. They can also be checked by
writing the hypergeometric function as a power series in x and comparing the coefficients for each
power of x on left and right hand sides, using AS [15.1.1]:

F (α, β; γ; x) =
∞∑
n=0

(α)n (β)n
(γ)n

xn

n!
. (C.74)

However, for other sets of parameter shifts the code fails to work, e.g., some of the sets needed in
Appendices C.3.4 and C.3.5. This can be guessed quickly from overly complex coefficients returned
by the code for these cases, and is further confirmed by the code’s own numerical test of the results
delivered by its algorithm. The results for these cases (which we obtained by hand) can be verified
again through Mathematica’s FullSimplify command and power series expansion, but disagree with
the results given by the code. We therefore recommend treating the results of this code with due
care, and hope that it can be improved such that it may work for all sets of parameter shifts.

The Wronskian for the radial C-solutionsWC
ωl(ρ) := 1Cωl(ρ)

��
∂ρ

2Cnon

ωl (ρ) can be calculated in exactly
the same way. To see this, we use the simplified notation α+ → α, β+ → β, γC

+ → γ and
cos2 ρ → y. Then, using parameter relations (C.43), we can write the radial C-solutions in a similar
form as the S-solutions

1Cωl(ρ) = sinlρ cosm̃+ρ F (α, β; γ; cos2ρ)

2Cnon

ωl (ρ) = sinlρ cosm̃−ρ F (α−γ+1, β−γ+1; 2−γ; cos2ρ) .
(C.75)

Plugging this form of the C-solutions into the Wronskian, we obtain the first line of the S-calculation,
and thus can directly jump to its last line:

tand−1ρ
(

1Cωl(ρ)
��
∂ρ

2Cnon

ωl (ρ)
)

= −2(1−y)α+β−γ+1
(
F (α, β; γ; y)F (α−γ+1, β−γ+1; 2−γ; y) (1−γ)

+ F (α, β; γ; y)F (α−γ+2, β−γ+2; 3−γ; y) y
(α−γ+1)(β−γ+1)

(2−γ)

− F (α+1, β+1; γ+1; y)F (α−γ+1, β−γ+1; 2−γ; y) y
αβ

γ

)
= 2(γ−1) .

Since here γ = γC+ = 1+ν, we obtain the result

1Cωl(ρ)
��
∂ρ

2Cnon

ωl (ρ) = 2(γC+−1) tan1−dρ = 2ν tan1−dρ . (C.76)

In Figure C.77 we plot the Wronskians (multiplied by tand−1 ρ) in order to illustrate that our results
are correct.

Figure C.77: Wronskians 1Sωl(ρ)
��
∂ρ

2Sodd

ωl (ρ) and 1Cωl(ρ)
��
∂ρ

2Cnon

ωl (ρ).
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Herein, the horizontal axis is the ρ-axis going from 0 to ιπ/2, and the vertical axis shows the value
of the Wronskians. Again we set d = 3 while m = 1.5 and RAdS = 1, giving us (2ν) =

√
18 ≈ 4.24,

and moreover we set ω = 10 while l = 3. The continuous yellow line is the numerical evaluation of
1S10,3(ρ)

��
∂ρ

2Sodd
10,3(ρ) and the dotdashed red line is the value of (2l+d−2). The continuous orange line

is the numerical evaluation of 1C10,3(ρ)
��
∂ρ

2Cnon
10,3(ρ) and the dotdashed blue line is the value of (2ν).

The plot illustrates that our results (2l+d−2) and (2ν) agree perfectly with the numerical evaluation
of the Wronskians. We found the same agreement for all sets of parameter values that we tested.

The two Wronskians 1Sωl(ρ)
��
∂ρ

2Sodd

ωl (ρ) and 1Cωl(ρ)
��
∂ρ

2Cnon

ωl (ρ) are related in the following way. In
the definition of the C-Wronskian we can write the C-solutions as linear combinations of the S-
solutions using the matrix Mno

ωl of (C.58). The analogue can be done for the S-Wronskian with the
matrix Mon

ωl . It is then straightforward to check that(
1Cωl(ρ)

��
∂ρ

2Cnon

ωl (ρ)
)

=
(

1Sωl(ρ)
��
∂ρ

2Sodd

ωl (ρ)
)

det Mno
ωl(

1Sωl(ρ)
��
∂ρ

2Sodd

ωl (ρ)
)

=
(

1Cωl(ρ)
��
∂ρ

2Cnon

ωl (ρ)
)

det Mon
ωl ,

(C.78)

which via inserting (C.70) and (C.76) implies that

det Mno
ωl =

(
1Cωl(ρ)

��
∂ρ

2Cnon

ωl (ρ)
)(

1Sωl(ρ)
��
∂ρ2Sodd

ωl (ρ)
) =

2ν

2l+d−2

det Mon
ωl =

(
1Sωl(ρ)

��
∂ρ

2Sodd

ωl (ρ)
)(

1Cωl(ρ)
��
∂ρ2Cnon

ωl (ρ)
) =

2l+d−2

2ν
.

(C.79)

This agrees exactly with (C.59).

C.2.7 Flat limits of the radial functions

In this section we compare the flat limit of the Sa and Sb-modes with the Klein-Gordon solutions in
(3+1)-dimensional Minkowski spacetime given in Section 5.3 of [59]. We do not use Einstein’s sum
convention in this section. We recall the notation of (C.11) for new global coordinates

r := RAdS ρ r ∈ [0, ιπ
2 RAdS) (C.80)

τ := RAdS t τ ∈ (−∞,+∞)

and introduce new parameters for frequency and momentum

ω̃ := ω/RAdS ω̃ ∈ (−∞,+∞)

pω :=
»
ω2−m̃2

+ |pω| ∈ [0,∞) (C.81)

pRω :=
»∣∣ω2−m̃2

+

∣∣ pRω ∈ [0,∞)

p̃ω̃ =
√
ω̃2−m2 |p̃ω̃| ∈ [0,∞)

p̃Rω̃ =
»
|ω̃2−m2 | p̃Rω̃ ∈ [0,∞).

The following case distinctions thus arise:

pω =

 pRω ω2 > m̃2
+

i pRω ω2 < m̃2
+

p̃ω̃ =

 p̃Rω̃ ω̃2 > m2

i p̃Rω̃ ω̃2 < m2
. (C.82)

For RAdS →∞ we have the limits

pω/RAdS −→flat

lim. p̃ω̃ pRω/RAdS −→flat

lim. p̃Rω̃. (C.83)
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The temporal part e−iωt = e−iω̃τ and the angular part Y mll (Ω) of the solutions remain unchanged,
and we only need to consider the radial part. To this end, in the radial solutions we first replace ρ
by r/RAdS, and then taking the flat limit RAdS → ∞ we replace‹m±, ±ν → ±mRAdS sin r

RAdS
→ r

RAdS
cosm̃+ r

RAdS
→ 1 .

The last replacement is justified by the fact that for arbitrary r a Taylor development in R−1
AdS yields

cosm̃+ r
RAdS

= 1−
∞∑
k=1

ck(m, r)R−kAdS .

Using (C.27) we can write for d = 3

Saωl(ρ) ≈
(

r

RAdS

)l ∞∑
k=0

Γ(α++k) Γ(β++k)

Γ(α+) Γ(β+)

Γ(γS)

Γ(γS+k)

(r/RAdS)2k

k!

Sbωl(ρ) ≈ −
(

r

RAdS

)2−d−l ∞∑
k=0

Γ(α+−γS+1+k) Γ(β+−γS+1+k)

Γ(α+−γS+1) Γ(β+−γS+1)

Γ(2−γS)

Γ(2−γS+k)

(r/RAdS)2k

k!

We have

Γ(γS)

Γ(γS+k)
= 2k

(2l+1)!!

(2l+2k+1)!!

Γ(2−γS)

Γ(2−γS+k)
= 2k/

k∏
j=1

(2j−2l−1) .

With each k, l being small compared to RAdS in the flat limit, we get (note that all expressions are
real numbers)

Γ(α++k) Γ(β++k)

Γ(α+) Γ(β+)
−→flat

lim. (−1)k 2−2kR2k
AdS

(
ω̃2−m2

)k
= (−1)k 2−2kR2k

AdS

(p̃Rω̃)2k ω̃2 ≥ m2

(ip̃Rω̃)2k ω̃2 < m2

Γ(α+−γS+1+k) Γ(β+−γS+1+k)

Γ(α+−γS+1) Γ(β+−γS+1)
−→flat

lim. (−1)k 2−2kR2k
AdS

(
ω̃2−m2

)k
= (−1)k 2−2kR2k

AdS

(p̃Rω̃)2k ω̃2 ≥ m2

(ip̃Rω̃)2k ω̃2 < m2
.

Now we can put these parts together and compare with the power series DLMF [10.53.1,2] of the
spherical Bessel and Neumann functions (with the usual convention (−1)!! = 1)

jl(z) = zl
∞∑
k=0

(−1)k 2−k z2k

k! (2l+2k+1)!!
(C.84)

nl(z) =
−1

zl+1

l∑
k=0

(2l−2k−1)!!

k! 2k
z2k − (−1)l

zl+1

∞∑
k=l+1

(−1)k 2−k

k! (2k−2l−1)!!
z2k (C.85)

= − (2l−1)!!

zl+1

∞∑
k=0

(−1)k z2k

2k k!

k∏
j=1

(2j−2l−1)−1 . (C.86)

This shows that for d = 3 we have the flat limits

(pRω)l

(2l+d−2)!! S
a
ωl(ρ) −→flat

lim. ̌ω̃l(r)
(2l+d−4)!!
(pRω)l+d−2

Sbωl(ρ) −→flat

lim. ňω̃l(r) . (C.87)

Since J (±)
nl (ρ) is a special case of Saωl we find the following flat limit for d = 3

(pRω)l

(2l+d−2)!! J
(+)

nl (ρ) −→flat

lim. jl(p̃ω̃r) . (C.88)
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C.2.8 Flat limits of the field expansions

In order to compare the field expansions with the corresponding ones in Minkowski spacetime, we
need to switch to the AdS (τ, r,Ω) coordinates and parameter ω̃, which correspond to the Minkowski
coordinates (t, r,Ω) and energy E, see Section C.1.1. We shall label momentum representations
referring to the ”tilded” parameters like ω̃ by a tilde as in φ̃ω̃. For brevity we only consider real
fields, with the complex case being completely analoguous. From the two field expansions (with f
only abbreviating symbolically the true dependencies)

φ(t, ρ,Ω) =

ˆ
dω
∑
l,ml

{
φωlml f (t, ρ,Ω, ω, l,ml) + c.c.

}

= φ(τ/RAdS, r/RAdS,Ω) =

ˆ
dω̃
∑
l,ml

{
φ̃ω̃lml f (τ/RAdS, r/RAdS,Ω, ω̃RAdS, l,ml) + c.c.

}
we can deduce

φ̃ω̃lml = RAdSφωlml = RAdSφω̃RAdS,l,ml . (C.89)

This is consistent with the reconstruction formula for the momentum representation on an equal-time
plane

φωlml =

ˆ
dρd

d−1
Ω f ′(t, ρ,Ω, ω, l,ml)

φ̃ω̃,l,m =

ˆ
drd

d−1
Ω f ′(τ/RAdS, r/RAdS,Ω, ω̃RAdS, l,ml)

respectively equal-radius hypercylinder

φωlml =

ˆ
dtd

d−1
Ω f ′′(t, ρ,Ω, ω, l,ml)

φ̃ω̃,l,m =

ˆ
dτ d

d−1
Ω f ′′(τ/RAdS, r/RAdS,Ω, ω̃RAdS, l,ml) .

First we study the flat limit of our field expansion (2.201) on the equal-time hypersurface. The func-
tions J (−)

nl (ρ) are allowed for negative masses only, which we do not consider for the Klein-Gordon field
on Minkowski spacetime. Hence we shall only deal with the case of m̃ = m̃+ and the corresponding
functions J (+)

nl (ρ). We can write the summation over n as a sum over ω+

nl (with l fixed), which in the

flat limit becomes an integral over ω̃ (abbreviating R = RAdS, and with ω̃p̃ =
√
p̃2+m2 ):

∞∑
n=0

f(ω+

nl) = 1
2 ∆ω

∆ω=2∑
ω=ω+

0l

f(ω) = R
2

∆ω

R

∆ω/R=2/R∑
ω/R=ω+

0l
/R

f(Rω/R) = R
2 ∆ω̃

∆ω̃=2/R∑
ω̃=ω+

0l
/R

f(Rω̃)

−→flat

lim.

R
2

∞̂

m

dω̃ f(Rω̃) = R
2

∞̂

0

dp̃
p̃

ω̃p̃
f(Rω̃p̃) . (C.90)

Therein we proceed as in the limiting process from a sum towards the Riemann integral: ∆ω+

nl times
f(ω+

nl) is the area of the rectangle, whose width ∆ω+

nl becomes infinitesimal in the limit of large
RAdS. We can rescale the momentum representation

φ±nlml = φ±
ω+
nl
lml

= φF,±
nlml

4ω̃+
nl√

2 ιπ

(pRnl)
l

(2l+d−2)!!
(C.91)

φF,±
nlml

= R−1
AdS φ̃

F,±
p̃lml

with here p̃ short for p̃nl, (C.92)
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wherein we call φF,±
nlml

the flat Jacobi representation. Plugging the flat Jacobi representation into the

Jacobi expansion (2.201), we get what we call the flat Jacobi expansion. Using (C.88), for d = 3 it
is then straightforward to check that the flat limit of the flat expansion becomes the expansion of a
solution near a Minkowski equal-time plane:

φ(t, r,Ω) −→flat

lim.

∞̂

0

dp̃
∑
l,ml

2p̃ (2 ιπ)−1/2 jl(p̃r)
{
φ̃F,+
p̃lml

e−iω̃p̃τ Y mll (Ω) + φ̃F,−
p̃lml

eiω̃p̃τ Y mll (Ω)

}
. (C.93)

For the tube region, with definitions (2.102) and rescaling the momentum representation

φS,aωlml = φF,a
ω̃lml

p̃Rω̃
(4 ιπ)

(pRω)l

(2l+d−2)!!
= R−1

AdSφ̃
F,a
ω̃lml

p̃Rω̃
(4 ιπ)

(pRω)l

(2l+d−2)!!

φS,bωlml = φF,b
ω̃lml

p̃Rω̃
(4 ιπ)

(2l+d−4)!!

(pRω)l+d−2
= R−1

AdSφ̃
F,b
ω̃lml

p̃Rω̃
(4 ιπ)

(2l+d−4)!!

(pRω)l+d−2
.

(C.94)

We call φ
F,a/b
ω̃lml

the flat S-representation. Plugging it into the S-expansion (2.186), we obtain what we

call the flat S-expansion. With (C.87) we get the following flat limit for d = 3 of the flat S-expansion:

φ(t, r,Ω) −→flat

lim.

ˆ
dω̃
∑
l,ml

p̃Rω̃
4 ιπ

{
φ̃F,a
ω̃lml

e−iω̃τY mll (Ω) ̌ω̃l(r) + φ̃F,b
ω̃lml

e−iω̃τY mll (Ω) ňω̃l(r)
}
. (C.95)

The discrete (respectively continuous) flat limit above fixes how we map solutions on AdS to solutions
on Minkowski spacetime for neigborhoods of equal-time hypersurfaces (respectively hypercylinders).

As a consistency check, let us verify that the following diagram commutes for global Klein-Gordon
solutions on AdS. Therein, we start at the top left corner with a global solution φ(t, ρ,Ω) written as
a solution in a neighborhood of an AdS hypercylinder. It is characterized by its S-representation

φ
S,a/b
ωlml

.

φ
S,a/b
ωlml

φ̃
a/b
ω̃lml

φ±nlml φ̃±p̃lml

w

cont. flat lim.

u
δnω

u
δnω̃

w

disc. flat lim.

Since the solution is global we have φS,bωlml ≡ 0 together with

φS,aωlml =
∞∑
n=0

Å
δ(ω−ω+

nl)φ
+
nlml

+ δ(ω+ω+

nl)φ
−
n,l,−ml

ã
. (C.96)

From this general solution we can obtain a solution well-defined near an AdS equal-time hypersurface,
that is: a global solution, by integrating over ω, resulting in the Jacobi expansion (2.201). In the
diagram this process is represented by the shorthand δnω, and the global AdS solution is characterized
by its Jacobi representation φ±nlml . As shown above, we can then take a discrete flat limit of this
global AdS solution which results in a solution well-defined near a Minkowski equal-time plane,
represented in the diagram by φ̃±p̃lml . The consistency check consists in taking first the continuous

flat limit, turning δ(ω−ω+

nl) into δ(ω̃−ω̃+
nl)/R, then integrating over ω̃ (represented by δnω̃ in the

diagram) and converting the sum over n into an integral over p̃ as in (C.90). Unsurprisingly, this
first-right-then-down way yields the same result as the first-down-then-right way. We have thus
verified that for global AdS solutions the discrete and continuous flat limit are mutually consistent.
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C.3 Action of isometries on solution space

In this section we consider the action of (a representation of) elements of the isometry group SO (2, d)
of AdS1,d on points of AdS1,d. We can do this for finite and infinitesimal transformations. We do
not use Einstein’s sum convention in this section, but write summations explicitly. Again we use
uppercase Latin indices to range as in A = 0, 1, ..., d, (d+1), and lowercase Latin indices to range as
in k = 1, ..., d. SO (2, d) is a Lie group, and we coordinatize its representation by the coordinates
λAB . (We think of AB as one index, not two.) The generators KAB of the Lie algebra so (2, d) are
the Killing vectors KAB of Section C.1.2:

KAB =
(
XA ∂B −XB ∂A

)
. (C.97)

This choice is the same as in (4.18) in [26] up to a factor of ±i. The (representation of a) group
element g(λ) (that is continuously connected to the identity) with coordinates λAB can then be
written as

g(λ) = exp
(∑
AB

λABKAB

)
. (C.98)

An infinitesimal action in direction of KAB arises through λAB = ε � 1 with λCD = 0 for all
C 6= A and D 6= B. It is represented by the Taylor series of (C.99) up to linear order, that is

g(λAB=ε) = 1 + εKAB . (C.99)

Because of our choice (C.97), the transformations have very natural meanings: g(λd+1,0 = ε) is an
infinitesimal time translation t → t + ε, and g(λjk = ε) is an infinitesimal rotation of angle ε in
the (ξj , ξk)-plane, see also the end of Section B.1.2. The generators can be derived from the finite
transformations by

KAB =
∂

∂λAB

∣∣∣∣
λ=0

g(λ) . (C.100)

The Lie algebra so (2, d) is determined by the Lie bracket (B.4), which coincides with (4.21) in [26]
up to an overall sign:

[KAB, KCD] = −ηAC KBD + ηBC KAD − ηBDKAC + ηADKBC . (C.101)

Note that the algebra writes like that independently of the overall sign of the metric. For the various
combinations of time translation, rotations and boosts this Lie bracket writes as

[Kd+1,0, Kjk] =0 [K0j, K0k] =η00Kkj [K0q, Kjk] =ηjqK0k−ηkqK0j (C.102)

[Kd+1,j, Kd+1,k] =ηd+1,d+1Kkj [Kd+1,0, K0k] =η00Kd+1,k [Kd+1,q, Kjk] =ηjqKd+1,k−ηkqKd+1,j

[Kd+1,k, Kd+1,0] =ηd+1,d+1K0k [K0k, Kd+1,j] =ηjkKd+1,0 [Kjk, Kpq] =ηkpKjq−ηjpKkq

+ηjqKkp−ηkqKjp.

It is a bit lengthy but straightforward to verify these relations both in the cartesian X-coordinates
of embedding space R(2,d) and in the orispherical AdS1,d-coordinates (t, ρ, ξ(Ω)). The infinitesimal
action of a generator on the coordinates is simply

(g(λAB = ε)x)µ = xµ + ε(KAB)µ . (C.103)

A finite action generically has a more involved expression. The inverse transformation is given by
the negative of the generator:

(g(λAB = ε)
−1 x)µ = xµ − ε(KAB)µ . (C.104)
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We denote the (infinitesimal) action of a generator KAB respectively group element g(λ) on a field
φ(x) by

(1 + εKAB).φ g(λ).φ .

Requiring the transformed field at transformed coordinates to agree with the original field at original
coordinates as in(

(1+εKAB).φ
)

((1+εKAB)x)
!
= φ(x) (g(λ).φ)(g(λ)x)

!
= φ(x) , (C.105)

we get for the transformed field at the original coordinates:(
(1+εKAB).φ

)
(x) = φ((1−εKAB)x) (g(λ).φ)(x) = φ(g(λ)−1x) . (C.106)

This is the usual definition for the action of SO (d, 2)-elements on functions, see e.g. relation (2)
on page 40 in Vilenkin and Klimyk’s [72]. In the following sections we calculate these actions for
the time translation, rotations and boosts for Klein-Gordon solutions on the time-interval and tube
regions. Our goal will always be to transcribe the action from the coordinate representation to
the momentum representation. That is, we start from a field expansion over modes µ(S,a,b)

ωlml
(x) of

momentum (ω, l,ml) like

(g(λ).φ)(x) = φ(g(λ)−1x) =

ˆ
dω
∑
l,ml

{
φS,aωlml µ

(S,a)

ωlml
(g(λ)−1x) + φS,bωlml µ

(S,b)

ωlml
(g(λ)−1x)

}
, (C.107)

wherein φS,aωlml and φS,aωlml are the momentum representation of the Klein-Gordon solution. What

we want to find is an explicit expression for the momentum representations (g(λ) . φ)S,a,bωlml
of the

transformed field, such that we can directly write the transformed field in the original coordinates:

(g(λ).φ)(x) =

ˆ
dω
∑
l,ml

{
(g(λ).φ)S,aωlml µ

(S,a)

ωlml
(x) + (g(λ).φ)S,bωlml µ

(S,b)

ωlml
(x)

}
. (C.108)

One motivation for this is that we want to plug the momentum representations of the transformed
fields into (the momentum representation of) the symplectic form, in order to show that it remains
invariant under the action of isometries.

C.3.1 Time translations’ action on AdS solutions

AdS time-interval region

The action of the infinitesimal time translation Kd+1,0 = ∂t on the Jacobi modes

µ(+)

nlml
(t, ρ,Ω) = e−iω+

nl
t Y mll (Ω) J (+)

nl (ρ)

µ(−)
nlml

(t, ρ,Ω) = e−iω−
nl
t Y mll (Ω) J (−)

nl (ρ)

(C.109)

according to (C.106) is simply(
Kd+1,0 .µ

(±)

nlml

)
(t, ρ,Ω) = +iω±nl µ

(±)

nlml
(t, ρ,Ω)(

Kd+1,0 .µ
(±)

nlml

)
(t, ρ,Ω) = −iω±nl µ

(±)

nlml
(t, ρ,Ω) .

(C.110)

Applying this to expansion (2.201) we obtain(
Kd+1,0 .φ

)
(t, ρ,Ω) =

∑
nlml

{
φ+
nlml

(iω±nl)µ
(±)

nlml
(t, ρ,Ω) + φ−nlml (−iω±nl)µ

(±)

nlml
(t, ρ,Ω)

}
, (C.111)
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from which we can directly read off the corresponding actions for infinitesimal time translations in
the momentum representation: (

Kd+1,0 .φ
)+

nlml
= (+iω±nl) φ

+
nlml

(C.112)(
iKd+1,0).φ

)−
nlml

= (−iω±nl) φ
−
nlml

. (C.113)

It is also straightforward to calculate the action of a finite time translation, denoting it by k∆t :
t → t+ ∆t: (

k∆t .µ
(±)

nlml

)
(t, ρ,Ω) = eiω±

nl
∆t µ(±)

nlml
(t, ρ,Ω)(

k∆t .µ
(±)

nlml

)
(t, ρ,Ω) = e−iω±

nl
∆t µ(±)

nlml
(t, ρ,Ω) .

(C.114)

Applying this to expansion (2.201) we obtain(
k∆t .φ

)
(t, ρ,Ω) =

∑
nlml

{
φ+
nlml

eiω±
nl

∆t µ(±)

nlml
(t, ρ,Ω) + φ−nlml e−iω±

nl
∆t µ(±)

nlml
(t, ρ,Ω)

}
, (C.115)

from which we can directly read off the corresponding actions for finite time translations in the
momentum representation:(

k∆t .φ
)+
nlml

= eiω±
nl

∆t φ+
nlml

(
k∆t .φ

)−
nlml

= e−iω±
nl

∆t φ−nlml . (C.116)

Comparing the respective formulas for infinitesimal and finite time translation, we see that the former
arises nicely from the latter for ∆t = ε� 1. We can use the momentum representation to write the
transformed field using the original coordinates as(

k∆t .φ
)
(t, ρ,Ω) =

∑
nlml

{(
k∆t .φ

)+
nlml

µ(±)

nlml
(t, ρ,Ω) +

(
k∆t .φ

)−
nlml

µ(±)

nlml
(t, ρ,Ω)

}
. (C.117)

AdS tube region

The action of the time translation K0,d+1 = ∂t on the hypergeometric Sa and Sb-modes

µ(S,a)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Saωl(ρ)

µ(S,b)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Sbωl(ρ)

(C.118)

is basically the same as for the time-interval region. Since the infinitesimal action arises from the finite
one through ∆t = ε� 1, we only give the finite action here. Denoting it again by k∆t : t → t+∆t,
the action is given by(

k∆t .µ
(S,a)

ωlml

)
(t, ρ,Ω) = eiω∆t µ(S,a)

ωlml
(t, ρ,Ω)

(
k∆t .µ

(S,a)

−ω,l,−ml

)
(t, ρ,Ω) = e−iω∆t µ(S,a)

−ω,l,−ml (t, ρ,Ω)(
k∆t .µ

(S,b)

ωlml

)
(t, ρ,Ω) = eiω∆t µ(S,b)

ωlml
(t, ρ,Ω)

(
k∆t .µ

(S,b)

−ω,l,−ml

)
(t, ρ,Ω) = e−iω∆t µ(S,b)

−ω,l,−ml (t, ρ,Ω) .

Applying this to expansion (2.186) we obtain

(
k∆t .φ

)
(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml eiω∆t µ(S,a)

ωlml
(t, ρ,Ω) + φS,bωlml eiω∆t µ(S,b)

ωlml
(t, ρ,Ω)

}
, (C.119)

from which we can read off the corresponding actions for finite time translations in the momentum
representation:(

k∆t .φ
)S,a
ωlml

= eiω∆t φS,aωlml
(
k∆t .φ

)S,a
−ω,l,−ml

= e−iω∆t φS,a−ω,l,−ml (C.120)(
k∆t .φ

)S,b
ωlml

= eiω∆t φS,bωlml
(
k∆t .φ

)S,b
−ω,l,−ml

= e−iω∆t φS,b−ω,l,−ml .
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The action of the time translation K0,d+1 = ∂t on the hypergeometric C-modes

µ(C,a)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Caωl(ρ)

µ(C,b)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω) Cbωl(ρ)

(C.121)

is completely analoguous to the action on the S-modes:(
k∆t .µ

(C,a)

ωlml

)
(t, ρ,Ω) = eiω∆t µ(C,a)

ωlml
(t, ρ,Ω)

(
k∆t .µ

(C,a)

−ω,l,−ml

)
(t, ρ,Ω) = e−iω∆t µ(C,a)

−ω,l,−ml (t, ρ,Ω)(
k∆t .µ

(C,b)

ωlml

)
(t, ρ,Ω) = eiω∆t µ(C,b)

ωlml
(t, ρ,Ω)

(
k∆t .µ

(C,b)

−ω,l,−ml

)
(t, ρ,Ω) = e−iω∆t µ(C,b)

−ω,l,−ml (t, ρ,Ω) .

Thus the actions for finite time translations in the momentum representation write:

(
k∆t .φ

)C,a
ωlml

= eiω∆t φC,aωlml

(
k∆t .φ

)C,a
−ω,l,−ml

= e−iω∆t φC,a−ω,l,−ml (C.122)(
k∆t .φ

)C,b
ωlml

= eiω∆t φC,bωlml

(
k∆t .φ

)C,b
−ω,l,−ml

= e−iω∆t φC,b−ω,l,−ml .

We can use the momentum representation to write the transformed field using the original coordinates
as

(
k∆t .φ

)
(t, r,Ω) =

ˆ
dω
∑
l,ml

{(
k∆t .φ

)S,a
ωlml

µ(S,a)

ωlml
(t, ρ,Ω) +

(
k∆t .φ

)S,b
ωlml

µ(S,b)

ωlml
(t, ρ,Ω)

}

=

ˆ
dω
∑
l,ml

{(
k∆t .φ

)C,a
ωlml

µ(C,a)

ωlml
(t, ρ,Ω) +

(
k∆t .φ

)C,b
ωlml

µ(C,b)

ωlml
(t, ρ,Ω)

}
.

C.3.2 Rotations’ action on AdS solutions

Rotations: AdS time-interval region

In this section we consider the action of finite rotations on Klein-Gordon solutions on time-interval
regions. Although in principle there is no problem in working out the explicit expressions for the
rotation generators Kjk (departing from (A.9), and then deriving expressions like (B.14) and below)
and letting the rotators act on the hyperspherical harmonics (A.22) (making use of relations like
(A.24)), this would become quite involved. Therefore we shall be content with the finite rotations.

For these we need Wigner’s D-matrix, which is introduced in Appendix A.4. Using the notation
of that appendix, let R̂(α) denote our finite rotation, with α denoting the rotation angles. Starting
again with expansion (2.201)

φ(t, ρ,Ω) =
∑
nlml

{
φ+
nlml

µ(±)

nlml
(t, ρ,Ω) + φ−nlml µ

(±)

nlml
(t, ρ,Ω)

}
, (C.123)

according to (C.106) we get directly

(R̂(α)
−1 .φ)(t, ρ,Ω) = φ(t, ρ, R̂(α) Ω) =

∑
nlml

{
φ+
nlml

µ(±)

nlml
(t, ρ, R̂(α)Ω) + φ−nlml µ

(±)

nlml
(t, ρ, R̂(α)Ω)

}
(R̂(α).φ)(t, ρ,Ω) = φ(t, ρ, R̂(α)−1 Ω) =

∑
nlml

{
φ+
nlml

µ(±)

nlml
(t, ρ, R̂(α)−1Ω) + φ−nlml µ

(±)

nlml
(t, ρ, R̂(α)−1Ω)

}
,
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From (A.39) and (A.40) respectively (A.41) and (A.42)

Y ml
(l,̃l)

(R̂(α)Ω) =
∑
l̃
′
,m′

l

Y
m′l
(l,̃l
′
)
(Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.124)

Y ml
(l,̃l)

(R̂(α)Ω) =
∑
l̃
′
,m′

l

Y
m′
l

(l,̃l
′
)
(Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.125)

Y ml
(l,̃l)

(R̂(α)−1Ω) =
∑
l̃
′
,m′

l

Y
m′l
(l,̃l
′
)
(Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.126)

Y ml
(l,̃l)

(R̂(α)−1Ω) =
∑
l̃
′
,m′

l

Y
m′
l

(l,̃l
′
)
(Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

, (C.127)

we can easily deduce

µ(±)

nl l̃ml
(t, ρ, R̂(α)Ω) =

∑
l̃
′
,m′

l

µ(±)

n l̃l
′
m′
l

(t, ρ,Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.128)

µ(±)

nl l̃ml
(t, ρ, R̂(α)Ω) =

∑
l̃
′
,m′

l

µ(±)

n l̃l
′
m′
l

(t, ρ,Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.129)

µ(±)

nl l̃ml
(t, ρ, R̂(α)−1Ω) =

∑
l̃
′
,m′

l

µ(±)

n l̃l
′
m′
l

(t, ρ,Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.130)

µ(±)

nl l̃ml
(t, ρ, R̂(α)−1Ω) =

∑
l̃
′
,m′

l

µ(±)

n l̃l
′
m′
l

(t, ρ,Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

. (C.131)

This implies that the action of a finite rotation in the momentum representation is given by (mind
the position of the primes!)(

R̂(α)
−1 .φ

)+
nl l̃ml

=
∑
l̃
′
,m′

l

φ+

nl l̃
′
m′
l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml(

R̂(α)−1 .φ
)−
nl l̃ml

=
∑
l̃
′
,m′

l

φ−
nl l̃
′
m′
l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.132)

(
R̂(α).φ

)+
nl l̃ml

=
∑
l̃
′
,m′

l

φ+

nl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l(

R̂(α).φ
)−
nl l̃ml

=
∑
l̃
′
,m′

l

φ−
nl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

, (C.133)

so that we can now write

(R̂(α)
−1 .φ)(t, ρ,Ω) =

∑
nlml

{(
R̂(α)

−1 .φ
)+
nlml

µ(±)

nlml
(t, ρ,Ω) +

(
R̂(α)−1 .φ

)−
nlml

µ(±)

nlml
(t, ρ,Ω)

}
(R̂(α).φ)(t, ρ,Ω) =

∑
nlml

{(
R̂(α).φ

)+
nlml

µ(±)

nlml
(t, ρ,Ω) +

(
R̂(α).φ

)−
nlml

µ(±)

nlml
(t, ρ,Ω)

}
. (C.134)

Rotations: AdS tube region

Next we consider the action of finite rotations on Klein-Gordon solutions on tube regions. This is
completely analoguous to the previous section. Again we need Wigner’s D-matrix from Appendix
A.4 and let R̂(α) denote our finite rotation. Starting with expansion (2.186)
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φ(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml µ

(S,a)

ωlml
(t, ρ,Ω) + φS,bωlml µ

(S,b)

ωlml
(t, ρ,Ω)

}
, (C.135)

we obtain according to (C.106)

(R̂(α)
−1 .φ)(t, ρ,Ω) = φ(t, ρ, R̂(α)Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml µ

(S,a)

ωlml
(t, ρ, R̂(α)Ω) + φS,bωlml µ

(S,b)

ωlml
(t, ρ, R̂(α)Ω)

}

(R̂(α).φ)(t, ρ,Ω) = φ(t, ρ, R̂(α)−1Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml µ

(S,a)

ωlml
(t, ρ, R̂(α)−1Ω) + φS,bωlml µ

(S,a)

ωlml
(t, ρ, R̂(α)−1Ω)

}
.

From (A.38) respectively (A.41)

Y ml
(l,̃l)

(R̂(α)Ω) =
∑
l̃
′
,m′

l

Y
m′l
(l,̃l
′
)
(Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

. (C.136)

Y ml
(l,̃l)

(R̂(α)−1Ω) =
∑
l̃
′
,m′

l

Y
m′l
(l,̃l
′
)
(Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.137)

we deduce

µ(S,a)

ωl l̃ml
(t, ρ, R̂(α)Ω) =

∑
l̃
′
,m′

l

µ(S,a)

ωl l̃
′
m′
l

(t, ρ,Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.138)

µ(S,b)

ωl l̃ml
(t, ρ, R̂(α)Ω) =

∑
l̃
′
,m′

l

µ(S,b)

ωl l̃
′
m′
l

(t, ρ,Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.139)

µ(S,a)

ωl l̃ml
(t, ρ, R̂(α)−1Ω) =

∑
l̃
′
,m′

l

µ(S,a)

ωl l̃
′
m′
l

(t, ρ,Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.140)

µ(S,b)

ωl l̃ml
(t, ρ, R̂(α)−1Ω) =

∑
l̃
′
,m′

l

µ(S,b)

ωl l̃
′
m′
l

(t, ρ,Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

. (C.141)

And

µ(S,a)

ωl l̃ml
(t, ρ,Ω) = µ(S,a)

−ω,l,̃l,−ml
(t, ρ,Ω)

µ(S,b)

ωl l̃ml
(t, ρ,Ω) = µ(S,b)

−ω,l,̃l,−ml
(t, ρ,Ω)

(C.142)

leads to

µ(S,a)

−ω,l,̃l,−ml
(t, ρ, R̂(α)Ω) =

∑
l̃
′
,m′

l

µ(S,a)

−ω,l,̃l′,−m′
l

(t, ρ,Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.143)

µ(S,b)

−ω,l,̃l,−ml
(t, ρ, R̂(α)Ω) =

∑
l̃
′
,m′

l

µ(S,b)

−ω,l,̃l′,−m′
l

(t, ρ,Ω)

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.144)

µ(S,a)

−ω,l,̃l,−ml
(t, ρ, R̂(α)−1Ω) =

∑
l̃
′
,m′

l

µ(S,a)

−ω,l,̃l′,−m′
l

(t, ρ,Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.145)

µ(S,b)

−ω,l,̃l,−ml
(t, ρ, R̂(α)−1Ω) =

∑
l̃
′
,m′

l

µ(S,b)

−ω,l,̃l′,−m′
l

(t, ρ,Ω)

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

. (C.146)
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This implies that the action of the finite rotation in the momentum representation is given by (mind
the position of the primes!)(

R̂(α)
−1 .φ

)S,a
ωl l̃ml

=
∑
l̃
′
,m′

l

φS,a
ωl l̃
′
m′
l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.147)

(
R̂(α)

−1 .φ
)S,b
ωl l̃ml

=
∑
l̃
′
,m′

l

φS,b
ωl l̃
′
m′
l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.148)

(
R̂(α)

−1 .φ
)S,a
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φS,a
−ω,l,̃l′,−m′

l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.149)

(
R̂(α)

−1 .φ
)S,b
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φS,b
−ω,l,̃l′,−m′

l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.150)

(
R̂(α).φ

)S,a
ωl l̃ml

=
∑
l̃
′
,m′

l

φS,a
ωl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.151)

(
R̂(α).φ

)S,b
ωl l̃ml

=
∑
l̃
′
,m′

l

φS,b
ωl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.152)

(
R̂(α).φ

)S,a
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φS,a
−ω,l,̃l′,−m′

l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.153)

(
R̂(α).φ

)S,b
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φS,b
−ω,l,̃l′,−m′

l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

, (C.154)

The action on the C-modes is completely analoguous:(
R̂(α)

−1 .φ
)C,a
ωl l̃ml

=
∑
l̃
′
,m′

l

φC,a
ωl l̃
′
m′
l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.155)

(
R̂(α)

−1 .φ
)C,b
ωl l̃ml

=
∑
l̃
′
,m′

l

φC,b
ωl l̃
′
m′
l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.156)

(
R̂(α)

−1 .φ
)C,a
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φC,a
−ω,l,̃l′,−m′

l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.157)

(
R̂(α)

−1 .φ
)C,b
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φC,b
−ω,l,̃l′,−m′

l

(
Dl
l̃
′
,̃l

(α)

)
m′
l
ml

(C.158)

(
R̂(α).φ

)C,a
ωl l̃ml

=
∑
l̃
′
,m′

l

φC,a
ωl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.159)

(
R̂(α).φ

)C,b
ωl l̃ml

=
∑
l̃
′
,m′

l

φC,b
ωl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.160)

(
R̂(α).φ

)C,a
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φC,a
−ω,l,̃l′,−m′

l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(C.161)

(
R̂(α).φ

)C,b
−ω,l,̃l,−ml

=
∑
l̃
′
,m′

l

φC,b
−ω,l,̃l′,−m′

l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

. (C.162)
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Thus we can now write the rotated solution in the unrotated coordinates as

(R̂(α)
−1 .φ)(t, ρ,Ω)

=

ˆ
dω
∑
l,ml

{
(R̂(α)

−1 .φ)S,aωlml µ
(S,a)

ωlml
(t, ρ,Ω) + (R̂(α)

−1 .φ)S,bωlml µ
(S,b)

ωlml
(t, ρ,Ω)

}
(C.163)

=

ˆ
dω
∑
l,ml

{
(R̂(α)

−1 .φ)S,a−ω,l,−ml µ
(S,a)

−ω,l,−ml (t, ρ,Ω) + (R̂(α)
−1 .φ)S,b−ω,l,−ml µ

(S,b)

−ω,l,−ml (t, ρ,Ω)

}
(C.164)

=

ˆ
dω
∑
l,ml

{
(R̂(α)

−1 .φ)C,aωlml
µ(C,a)

ωlml
(t, ρ,Ω) + (R̂(α)

−1 .φ)C,bωlml
µ(C,b)

ωlml
(t, ρ,Ω)

}
(C.165)

=

ˆ
dω
∑
l,ml

{
(R̂(α)

−1 .φ)C,a−ω,l,−ml µ
(C,a)

−ω,l,−ml (t, ρ,Ω) + (R̂(α)
−1 .φ)C,b−ω,l,−ml µ

(C,b)

−ω,l,−ml (t, ρ,Ω)

}
(C.166)

(R̂(α).φ)(t, ρ,Ω)

=

ˆ
dω
∑
l,ml

{
(R̂(α).φ)S,aωlml µ

(S,a)

ωlml
(t, ρ,Ω) + (R̂(α).φ)S,bωlml µ

(S,b)

ωlml
(t, ρ,Ω)

}
(C.167)

=

ˆ
dω
∑
l,ml

{
(R̂(α).φ)S,a−ω,l,−ml µ

(S,a)

−ω,l,−ml (t, ρ,Ω) + (R̂(α).φ)S,b−ω,l,−ml µ
(S,b)

−ω,l,−ml (t, ρ,Ω)

}
(C.168)

=

ˆ
dω
∑
l,ml

{
(R̂(α).φ)C,aωlml

µ(C,a)

ωlml
(t, ρ,Ω) + (R̂(α).φ)C,bωlml

µ(C,b)

ωlml
(t, ρ,Ω)

}
(C.169)

=

ˆ
dω
∑
l,ml

{
(R̂(α).φ)C,a−ω,l,−ml µ

(C,a)

−ω,l,−ml (t, ρ,Ω) + (R̂(α).φ)C,b−ω,l,−ml µ
(C,b)

−ω,l,−ml (t, ρ,Ω)

}
. (C.170)

C.3.3 Boosts’ action on AdS solutions

In this section the goal is to calculate the action of the AdS boost generators Kd+1,j and K0j on (the
momentum representation of) Klein-Gordon solutions on time-interval and tube regions.

We only consider the infinitesimal version of the boosts,because our efforts to obtain explicit
expressions for the finite ones were in vain. To this end we calculated the effect of a finite boost on
the cartesian embedding space coordinates X(t, ρ,Ω) = (X0, X ,Xd+1)(t, ρ,Ω), which gave us the new
cartesian coordinates X ′(X) as a function of the original orispherical coordinates (t, ρ,Ω). However,
trying to further untangle the equality X ′(t′, ρ′,Ω′) = X ′(X(t, ρ,Ω)) into explicit expressions t′ =
t′(t, ρ,Ω), ρ′=ρ′(t, ρ,Ω) and Ω′=Ω′(t, ρ,Ω) was not successful.

The expressions (C.20) and (C.21) for the boosts tend to become rather complicated when con-
verting the ξk(Ω) into trigonometric functions of the θ-angles of the orispherical coordinates. We are
rescued by the fact that for the two d-boosts Kd+1,d and K0d this can be done without too much
effort. Instead of converting ∂ξd − ξdξi ∂ξi , we derive the explicit expressions for these boosts from
their original definition in cartesian embedding space coordinates:

Kd+1,d = Xd+1∂d −Xd∂d+1 K0d = X0∂d −Xd∂0 . (C.171)

Using

X0 = −R sin t cos−1ρ Xd+1 = R cos t cos−1ρ Xd = R cos θd−1 tan ρ ,

and thus

cos θd−1 =
Xd√
X 2

∂ cos θd−1

∂Xd
=

sin2θd−1

R tan ρ
,
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together with (C.17) we find that

Kd+1,d = − sin t sin ρ cos θd−1 ∂t + cos t cos ρ cos θd−1 ∂ρ +
cos t

sin ρ
sin2θd−1 ∂cosθd−1 (C.172)

K0d = − cos t sin ρ cos θd−1 ∂t − sin t cos ρ cos θd−1 ∂ρ −
sin t

sin ρ
sin2θd−1 ∂cosθd−1 . (C.173)

But letting these d-boosts act directly on Jacobi or hypergeometric modes still results in too many
terms for us to make sense of. However, in [32] Dorn et al. note below equation (3.18) that a complex
linear combination of these boosts increases the frequency ω by one. Inspired by their equation (2.7)
we therefore define the Z-vectors

Zd := K0d + iKd+1,d

= −eit sin ρ cos θd−1 ∂t + i eit cos ρ cos θd−1 ∂ρ + i eit sin−1ρ sin2θd−1 ∂cosθd−1 (C.174)

Zd := K0d − iKd+1,d

= −e−it sin ρ cos θd−1 ∂t − i e−it cos ρ cos θd−1 ∂ρ − i e−it sin−1ρ sin2θd−1 ∂cosθd−1 . (C.175)

The reverse of this is

K0d =
1

2

(
Zd + Zd

)
Kd+1,d =

1

2i

(
Zd − Zd

)
. (C.176)

The strategy is now the following: first calculate the action of Zd and Zd on the modes, which
can be done with somewhat large but finite effort. Second, to calculate the action of the d-boosts
Kd+1,d and K0d on the modes using (C.176). In Section 2.6.7 we then show that it is enough to
know the action of these two boosts on the symplectic structure, because the action of the other
boosts can be obtained from the Lie bracket/commutator of these two boosts with some rotators:
the Lie brackets (C.102) give us (no summation over repeated indices) K0,j−1 = ηjj[K0,j, Kj,j−1] and
Kd+1,j−1 = ηjj[Kd+1,j, Kj,j−1].

Boosts: AdS time-interval region

In Appendix C.3.4 we work out the actions of Zd and Zd, and then those of Kd+1,d and K0d on the
Jacobi modes. Applying actions (C.232) -(C.235) to expansion (2.201)

φ(t, ρ,Ω) =
∑
nlml

{
φ+
nlml

µ(±)

nlml
(t, ρ,Ω) + φ−nlml µ

(±)

nlml
(t, ρ,Ω)

}
, (C.177)

and shifting n and l by ±1 depending on the respective term, we can work out the corresponding
actions in the momentum representation in the same way as for time translation and rotations. Since
for time-interval regions we have the ranges n, l ∈ N0, for notational convenience we set to zero all
quantities where n or l take values outside this range:

0 = ω±n,−1 = ω±−1,l (C.178)

0 = z(±)−+

n,−1,l̃
= z(±)−+

−1,l,l̃
= z(±)0−

n,−1,l̃
= z(±)0−

−1,l,l̃

0 = z̃(±)+−

n,−1,l̃
= z̃(±)+−

−1,l,l̃
= z̃(±)0+

n,−1,l̃
= z̃(±)0+

−1,l,l̃
(C.179)

0 = φ+

n,−1,̃l,ml
=φ+
−1,l,ml

=φ−
n,−1,̃l,ml

=φ−−1,l,ml
.

Then the actions for infinitesimal d-boosts in the momentum representation write(
K0d .φ

)+
nlml

= i
2 z

(+)0−
n,l+1,l̃

φ+
n,l+1,̃l,ml

+ i
2 z

(+)−+

n+1,l−1,l̃
φ+
n+1,l−1,̃l,ml

+ i
2 z̃

(+)+−
n−1,l+1,l̃

φ+
n−1,l+1,̃l,ml

+ i
2 z̃

(+)0+

n,l−1,l̃
φ+
n,l−1,̃l,ml

(C.180)(
K0d .φ

)−
nlml

=−i
2 z

(+)0−
n,l+1,l̃

φ−
n,l+1,̃l,ml

− i
2 z

(+)−+

n+1,l−1,l̃
φ−
n+1,l−1,̃l,ml

− i
2 z̃

(+)+−
n−1,l+1,l̃

φ−
n−1,l+1,̃l,ml

− i
2 z̃

(+)0+

n,l−1,l̃
φ−
n,l−1,̃l,ml

(C.181)
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Kd+1,d .φ

)+
nlml

= 1
2 z

(+)0−
n,l+1,l̃

φ+
n,l+1,̃l,ml

+ 1
2 z

(+)−+

n+1,l−1,l̃
φ+
n+1,l−1,̃l,ml

− 1
2 z̃

(+)+−
n−1,l+1,l̃

φ+
n−1,l+1,̃l,ml

− 1
2 z̃

(+)0+

n,l−1,l̃
φ+
n,l−1,̃l,ml

(C.182)(
Kd+1,d .φ

)−
nlml

= 1
2 z

(+)0−
n,l+1,l̃

φ−
n,l+1,̃l,ml

+ 1
2 z

(+)−+

n+1,l−1,l̃
φ−
n+1,l−1,̃l,ml

− 1
2 z̃

(+)+−
n−1,l+1,l̃

φ−
n−1,l+1,̃l,ml

− 1
2 z̃

(+)0+

n,l−1,l̃
φ−
n,l−1,̃l,ml

(C.183)

Boosts: AdS tube region

In Appendix C.3.5 we work out the actions of Zd and Zd, and then those of Kd+1,d and K0d on the
hypergeometric S-modes. Applying actions (C.270)- (C.273) to expansion (2.186)

φ(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml µ

(S,a)

ωlml
(t, ρ,Ω) + φS,bωlml µ

(S,b)

ωlml
(t, ρ,Ω)

}
(C.184)

and shifting ω and l by ±1 depending on the respective term, we can work out the corresponding
actions in the momentum representation. Since for tube regions we have the ranges ω ∈ R and l ∈ N0,
for notational convenience for negative values of l we set to zero all quantities with values outside
this range:

0 = φS,a
ω,−1,̃l,ml

= φS,b
ω,−1,̃l,ml

(C.185)

0 = z(S,a)−−

ω,−1,l̃
= z(S,a)−+

ω,−1,l̃
= z(S,b)−−

ω,−1,l̃
= z(S,b)−+

ω,−1,l̃

0 = z̃(S,a)+−

ω,−1,l̃
= z̃(S,a)++

ω,−1,l̃
= z̃(S,b)+−

ω,−1,l̃
= z̃(S,b)++

ω,−1,l̃
. (C.186)

Then the actions for the infinitesimal d-boosts in the momentum representation write(
K0d .φ

)S,a
ωlml

= i
2 z̃

(S,a)+−
ω−1,l+1,l̃

φS,a
ω−1,l+1,̃l,ml

+ i
2 z̃

(S,a)++

ω−1,l−1,l̃ φ
S,a
ω−1,l−1,̃l,ml

+ i
2z

(S,a)−−
ω+1,l+1,l̃

φS,a
ω+1,l+1,̃l,ml

+ i
2z

(S,a)−+

ω+1,l−1,l̃ φ
S,a
ω+1,l−1,̃l,ml

(C.187)(
K0d .φ

)S,b
ωlml

= i
2 z̃

(S,b)+−
ω−1,l+1,l̃

φS,b
ω−1,l+1,̃l,ml

+ i
2 z̃

(S,b)++

ω−1,l−1,l̃ φ
S,b
ω−1,l−1,̃l,ml

+ i
2z

(S,b)−−
ω+1,l+1,l̃

φS,b
ω+1,l+1,̃l,ml

+ i
2z

(S,b)−+

ω+1,l−1,l̃ φ
S,b
ω+1,l−1,̃l,ml(

Kd+1,d .φ
)S,a
ωlml

=−1
2 z̃

(S,a)+−
ω−1,l+1,l̃

φS,a
ω−1,l+1,̃l,ml

− 1
2 z̃

(S,a)++

ω−1,l−1,l̃ φ
S,a
ω−1,l−1,̃l,ml

+ 1
2z

(S,a)−−
ω+1,l+1,l̃

φS,a
ω+1,l+1,̃l,ml

+ 1
2z

(S,a)−+

ω+1,l−1,l̃ φ
S,a
ω+1,l−1,̃l,ml

(C.188)(
Kd+1,d .φ

)S,b
ωlml

=−1
2 z̃

(S,b)+−
ω−1,l+1,l̃

φS,b
ω−1,l+1,̃l,ml

− 1
2 z̃

(S,b)++

ω−1,l−1,l̃ φ
S,b
ω−1,l−1,̃l,ml

+ 1
2z

(S,b)−−
ω+1,l+1,l̃

φS,b
ω+1,l+1,̃l,ml

+ 1
2z

(S,b)−+

ω+1,l−1,l̃ φ
S,b
ω+1,l−1,̃l,ml

.

Using now (C.274)

µ(S,a,b)

−ω,l,−ml = µ(S,a,b)

ωlml
,

we can equivalently write expansion (2.186) substituting ω → −ω and ml → −ml as

φ(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φS,a−ω,l,−ml µ

(S,a)

−ω,l,−ml (t, ρ,Ω) + φS,b−ω,l,−ml µ
(S,b)

−ω,l,−ml (t, ρ,Ω)

}
. (C.189)

With (C.275)

Kd+1,d .µ
(S,a,b)

−ω,l,−ml = Kd+1,d .µ
(S,a,b)

ω,l,ml
= Kd+1,d .µ

(S,a,b)

ω,l,ml

K0d .µ
(S,a,b)

−ω,l,−ml = K0d .µ
(S,a,b)

ω,l,ml
= K0d .µ

(S,a,b)

ω,l,ml
.

(C.190)

we then find these equivalent actions for the infinitesimal d-boosts in the momentum representation(
K0d .φ

)S,a
−ω,l,−ml

=− i
2 z̃

(S,a)+−
ω−1,l+1,l̃

φS,a
−(ω−1),l+1,̃l,−ml

− i
2 z̃

(S,a)++

ω−1,l−1,l̃
φS,a
−(ω−1),l−1,̃l,−ml

− i
2 z

(S,a)−−
ω+1,l+1,l̃

φS,a
−(ω+1),l+1,̃l,−ml

− i
2 z

(S,a)−+

ω+1,l−1,l̃
φS,a
−(ω+1),l−1,̃l,−ml

(C.191)(
K0d .φ

)S,b
−ω,l,−ml

=− i
2 z̃

(S,b)+−
ω−1,l+1,l̃

φS,b
−(ω−1),l+1,̃l,−ml

− i
2 z̃

(S,b)++

ω−1,l−1,l̃
φS,b
−(ω−1),l−1,̃l,−ml

− i
2 z

(S,b)−−
ω+1,l+1,l̃

φS,b
−(ω+1),l+1,̃l,−ml

− i
2 z

(S,b)−+

ω+1,l−1,l̃
φS,b
−(ω+1),l−1,̃l,−ml
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(
Kd+1,d .φ

)S,a
−ω,l,−ml

=−1
2 z̃

(S,a)+−
ω−1,l+1,l̃

φS,a
−(ω−1),l+1,̃l,−ml

−1
2 z̃

(S,a)++

ω−1,l−1,l̃
φS,a
−(ω−1),l−1,̃l,−ml

+
1
2 z

(S,a)−−
ω+1,l+1,l̃

φS,a
−(ω+1),l+1,̃l,−ml

+
1
2 z

(S,a)−+

ω+1,l−1,l̃
φS,a
−(ω+1),l−1,̃l,−ml

(C.192)(
Kd+1,d .φ

)S,b
−ω,l,−ml

=−1
2 z̃

(S,b)+−
ω−1,l+1,l̃

φS,b
−(ω−1),l+1,̃l,−ml

−1
2 z̃

(S,b)++

ω−1,l−1,l̃
φS,b
−(ω−1),l−1,̃l,−ml

+
1
2 z

(S,b)−−
ω+1,l+1,l̃

φS,b
−(ω+1),l+1,̃l,−ml

+
1
2 z

(S,b)−+

ω+1,l−1,l̃
φS,b
−(ω+1),l−1,̃l,−ml

.

For the C-modes, by the same procedure using the results of Appendix C.3.6, we obtain the actions(
K0d .φ

)C,a
ωlml

= i
2 z̃

(C,a)+−
ω−1,l+1,l̃

φC,a
ω−1,l+1,̃l,ml

+ i
2 z̃

(C,a)++

ω−1,l−1,l̃ φ
C,a
ω−1,l−1,̃l,ml

+ i
2z

(C,a)−−
ω+1,l+1,l̃

φC,a
ω+1,l+1,̃l,ml

+ i
2z

(C,a)−+

ω+1,l−1,l̃ φ
C,a
ω+1,l−1,̃l,ml

(C.193)(
K0d .φ

)C,b
ωlml

= i
2 z̃

(C,b)+−
ω−1,l+1,l̃

φC,b
ω−1,l+1,̃l,ml

+ i
2 z̃

(C,b)++

ω−1,l−1,l̃ φ
C,b
ω−1,l−1,̃l,ml

+ i
2z

(C,b)−−
ω+1,l+1,l̃

φC,b
ω+1,l+1,̃l,ml

+ i
2z

(C,b)−+

ω+1,l−1,l̃ φ
C,b
ω+1,l−1,̃l,ml

(
Kd+1,d .φ

)C,a
ωlml

=−1
2 z̃

(C,a)+−
ω−1,l+1,l̃

φC,a
ω−1,l+1,̃l,ml

− 1
2 z̃

(C,a)++

ω−1,l−1,l̃ φ
C,a
ω−1,l−1,̃l,ml

+ 1
2z

(C,a)−−
ω+1,l+1,l̃

φC,a
ω+1,l+1,̃l,ml

+ 1
2z

(C,a)−+

ω+1,l−1,l̃ φ
C,a
ω+1,l−1,̃l,ml

(C.194)(
Kd+1,d .φ

)C,b
ωlml

=−1
2 z̃

(C,b)+−
ω−1,l+1,l̃

φC,b
ω−1,l+1,̃l,ml

− 1
2 z̃

(C,b)++

ω−1,l−1,l̃ φ
C,b
ω−1,l−1,̃l,ml

+ 1
2z

(C,b)−−
ω+1,l+1,l̃

φC,b
ω+1,l+1,̃l,ml

+ 1
2z

(C,b)−+

ω+1,l−1,l̃ φ
C,b
ω+1,l−1,̃l,ml

.

Using

µ(C,a,b)

−ω,l,−ml = µ(C,a,b)

ωlml
,

we then find these equivalent actions for the infinitesimal d-boosts in the momentum representation(
K0d .φ

)C,a
−ω,l,−ml

=− i
2 z̃

(C,a)+−
ω−1,l+1,l̃

φC,a
−(ω−1),l+1,̃l,−ml

− i
2 z̃

(C,a)++

ω−1,l−1,l̃
φC,a
−(ω−1),l−1,̃l,−ml

− i
2 z

(C,a)−−
ω+1,l+1,l̃

φC,a
−(ω+1),l+1,̃l,−ml

− i
2 z

(C,a)−+

ω+1,l−1,l̃
φC,a
−(ω+1),l−1,̃l,−ml

(C.195)(
K0d .φ

)C,b
−ω,l,−ml

=− i
2 z̃

(C,b)+−
ω−1,l+1,l̃

φC,b
−(ω−1),l+1,̃l,−ml

− i
2 z̃

(C,b)++

ω−1,l−1,l̃
φC,b
−(ω−1),l−1,̃l,−ml

− i
2 z

(C,b)−−
ω+1,l+1,l̃

φC,b
−(ω+1),l+1,̃l,−ml

− i
2 z

(C,b)−+

ω+1,l−1,l̃
φC,b
−(ω+1),l−1,̃l,−ml(

Kd+1,d .φ
)C,a
−ω,l,−ml

=−1
2 z̃

(C,a)+−
ω−1,l+1,l̃

φC,a
−(ω−1),l+1,̃l,−ml

−1
2 z̃

(C,a)++

ω−1,l−1,l̃
φC,a
−(ω−1),l−1,̃l,−ml

+
1
2 z

(C,a)−−
ω+1,l+1,l̃

φC,a
−(ω+1),l+1,̃l,−ml

+
1
2 z

(C,a)−+

ω+1,l−1,l̃
φC,a
−(ω+1),l−1,̃l,−ml

(C.196)(
Kd+1,d .φ

)C,b
−ω,l,−ml

=−1
2 z̃

(C,b)+−
ω−1,l+1,l̃

φC,b
−(ω−1),l+1,̃l,−ml

−1
2 z̃

(C,b)++

ω−1,l−1,l̃
φC,b
−(ω−1),l−1,̃l,−ml

+
1
2 z

(C,b)−−
ω+1,l+1,l̃

φC,b
−(ω+1),l+1,̃l,−ml

+
1
2 z

(C,b)−+

ω+1,l−1,l̃
φC,b
−(ω+1),l−1,̃l,−ml

.

C.3.4 Jacobi recurrence relations for AdS

In this section we derive the ingredients necessary for calculating the action of Zd and Zd on the
AdS-KG solutions of Jacobi type. We recall the notation l = (l ≡ ld−1, l̃ ) with l̃ = (ld−2, ..., l2).

Action of Zd on the AdS-Jacobi modes

The first thing we note after applying Zd to the Klein-Gordon mode µ(+)

nlml
(t, ρ,Ω) according to (C.106)

and (2.228), is that there only appear terms with (magic) frequency ω+

nl+1. Since ω+

nl = 2n+l+‹m+,
we have only two possibilities to realize an increase by 1 through adjusting n and l:

ω+

nl + 1 = ω+

n+1,l−1 = ω+

n,l+1 .

This hints to try and find out wether we can decompose Zd . µ
(+)

nlml
as some linear combination of

µ(+)

n+1,l−1,̃l,ml
and µ(+)

n,l+1,̃l,ml
. For the hyperspherical harmonics we already dispose of the necessary

relations, see Section A.4. The remaing task is thus to decompose the Jacobi polynomials P
(α,β)
n (x).

In our case we have α = γS−1 = l+d/2−1, while β = ν and x = cos 2ρ. Thus l → l±1 induces

α → α±1, and β and x remain unaffected. The Jacobi polynomials appear directly as P
(α,β)
n (x)

and as derivative given by DLMF [18.9.15]:

d

dx
P (α,β)
n (x) = 1

2 (n+α+β+1)P
(α+1,β+1)
n−1 (x) . (C.197)
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(By definition, P
(α,β)
n (x) ≡ 0 for all negative n.) We thus need to find the coefficients for the relations

P (α,β)
n (x) = aP

(α−1,β)
n+1 (x) + b P (α+1,β)

n (x) (C.198)

P
(α+1,β+1)
n−1 (x) = c P

(α−1,β)
n+1 (x) + dP (α+1,β)

n (x) . (C.199)

Instead of trying to puzzle together the various recurrence relations for Jacobi polynomials given in
AS [22.7] and DLMF [18.9], we shall apply the following procedure: first write the Jacobi polynomials
as hypergeometric functions using AS [22.5.42]:

P (α,β)
n (x) =

(
n+α
n

)
F (−n, n+α+β+1; α+1; 1−x

2
) . (C.200)

We do this for all Jacobi polynomials in (C.198) and (C.199). Second, we use the program of Rakha
et al. (see Appendix C.2.6) to determine the coefficients for the corresponding relations between
hypergeometric functions. Third, we convert these relations back to Jacobi polynomials using again
(C.200). We start writing (C.198) using hypergeometric functions:

P (α,β)
n (x) =

(
n+α
n

)
F (−n, n+α+β+1; α+1; 1−x

2
) =

(
n+α
n

)
F (A+1, B; C+1; y) (C.201)

P
(α−1,β)
n+1 (x) =

(
n+α
n+1

)
F (−n−1, n+α+β+1; α; 1−x

2
) =

(
n+α
n+1

)
F (A, B; C; y) (C.202)

P (α+1,β)
n (x) =

(
n+α+1
n

)
F (−n, n+α+β+2; α+2; 1−x

2
) =

(
n+α+1
n

)
F (A+1, B+1; C+2; y) (C.203)

(The placeholders A,B,C, y will be used only to write the relations in a shorter way, their relation to
α, β, n, x may be different in each calculation!) The program by Rakha et al. gives us the contiguous
relation for the hypergeometric functions on the right hand side:

0 = C(1+C)F (A+1, B; C+1; y) + (−C)(C+1)F (A, B; C; y) + y B(A−C)F (A+1, B+1; C+2; y) .
(C.204)

It can be checked with Mathematica’s FullSimplify command. Using it, in equation (C.201) we can
replace F (A+1, B; C+1; y) by a linear combination of F (A, B; C; y) and F (A+1, B+1; C+2; y). Then
converting the hypergeometric functions back to Jacobi polynomials we obtain the simple recurrence
relation

P (α,β)
n (x) =

n+1

α
P

(α−1,β)
n+1 (x) +

1−x
2

n+α+β+1

α
P (α+1,β)
n (x) . (C.205)

It can be verified with Mathematica’s FullSimplify command. Next we write (C.199) using hyperge-
ometric functions:

P
(α+1,β+1)
n−1 (x) =

(
n+α
n−1

)
F (−n+1, n+α+β+2; α+2; 1−x

2
) =

(
n+α
n−1

)
F (A+2, B+1; C+2; y) (C.206)

P
(α−1,β)
n+1 (x) =

(
n+α
n+1

)
F (−n−1, n+α+β+1; α; 1−x

2
) =

(
n+α
n+1

)
F (A, B; C; y) (C.207)

P (α+1,β)
n (x) =

(
n+α+1
n

)
F (−n, n+α+β+2; α+2; 1−x

2
) =

(
n+α+1
n

)
F (A+1, B+1; C+2; y) (C.208)

The program by Rakha et al. fails to return correct coefficients relating the three hypergeometric
functions on the right hand side. However, using (C.72) with AS [15.2.10]

0 = (C−A)F (A−1, B; C; y) + (2A−C + y[B−A])F (A, B; C; y) +A (y−1)F (A+1, B; C; y)

(C.209)

with the shifts A → A+1, while B → B+1 and C → C+2 we obtain the contiguous relation

0 = (y−1)C(A+1)F (A+2, B+1; C+2; y) + C(C+1)F (A, B; C; y)

+
(
C[A−C] + y B[C−A]

)
F (A+1, B+1; C+2; y) . (C.210)

It can be checked with FullSimplify. Using it, in (C.206) we can replace F (A+2, B+1; C+2; y) by a
linear combination of F (A, B; C; y) and F (A+1, B+1; C+2; y). Then converting the hypergeometric
functions back to Jacobi polynomials we obtain the recurrence relation

P
(α+1,β+1)
n−1 (x) =

−2

x+1

n+1

α
P

(α−1,β)
n+1 (x) +

2/α

x+1

(
α+ (x−1)(n+α+β+1)/2

)
P (α+1,β)
n (x) . (C.211)
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It can be verified with Mathematica’s FullSimplify command, too. We remark that α = γS−1 =
l+d/2−1 and thus α ≥ 1/2. Thus α−1 ≥ −1/2 and the Jacobi polynomials are well-defined for these
α because they are bigger than −1. Since β = ν ≥ 0 the same holds for this parameter. Now we can
let Zd act on the Klein-Gordon mode µ(+)

nlml
(t, ρ,Ω), and put to use relations (C.205), (C.211), (A.19)

and (A.25). Cleaning up the large expressions resulting from this, we see that the terms containing

Y mll+1 P
(α−1,β)
n sum up to zero, and the same happens for those containing Y mll−1 P

(α+1,β)
n . Therefore, we

only encounter terms containing either Y mll−1 P
(α−1,β)
n+1 (as needed for µ(+)

n+1,l−1,̃l,ml
) or Y mll+1 P

(α+1,β)
n (as

needed for µ(+)

n,l+1,̃l,ml
). This means that our hopes become fulfilled and we can indeed decompose

Zd .µ
(+)

nlml
as a linear combination of µ(+)

n+1,l−1,̃l,ml
and µ(+)

n,l+1,̃l,ml
(recall the abbreviation l̃ := ld−2):

Zd .µ
(+)

n,l,̃l,ml
= +iz̃(+)+−

nll̃
µ(+)

n+1,l−1,̃l,ml
+ iz̃(+)0+

nll̃
µ(+)

n,l+1,̃l,ml

z̃(+)+−

nll̃
= +(2l+d−2)χ

(d−1)
− (l, l̃) (C.212)

z̃(+)0+

nll̃
= −2(n+l+‹m+)

(n+l+ d
2 )

(l+ d
2 )

χ
(d−1)
+ (l, l̃) .

Since χ
(d−1)
− (l, l̃) vanishes for l = 0, so does z̃(+)+−

nll̃
, and we don’t need to worry about defining modes

with negative l. Negative n cannot appear in this formula. Letting Zd act on the ”vacuum mode”
µ(+)

0,0,0 thus creates a mode with l = 1:

Zd .µ
(+)

0,0,0 = −2i‹m+d
−1/2µ(+)

0,1,0̃,0

(because χ
(d−1)
+ (0, 0) = d−1/2). When considering the modes µ(−)

n,l,̃l,ml
, we realize that the whole

calculation is exactly the same here, up to changing ν → −ν and thus m̃+ → m̃− and ω+

nl → ω−nl.
Hence

Zd .µ
(−)

n,l,̃l,ml
= +iz̃(−)+−

nll̃
µ(−)

n+1,l−1,̃l,ml
+ iz̃(−)0+

nll̃
µ(−)

n,l+1,̃l,ml

z̃(−)+−

nll̃
= +(2l+d−2)χ

(d−1)
− (l, l̃) (C.213)

z̃(−)0+

nll̃
= −2(n+l+‹m−)

(n+l+ d
2 )

(l+ d
2 )

χ
(d−1)
+ (l, l̃) .

Letting Zd act on the ”vacuum mode” µ(−)
0,0,0 again creates a mode with l = 1:

Zd .µ
(−)
0,0,0 = −2i‹m−d−1/2µ(−)

0,1,0̃,0

Action of Zd on the AdS-Jacobi modes

This calculation is completely analoguous to the previous, we give the details here for the readers
eager enough to reproduce our results. After applying Zd to the Klein-Gordon mode µ(+)

nl now there
only appear terms with (magic) frequency ω+

nl−1. We have only two possibilities to realize a decrease
by 1 through adjusting n and l:

ω+

nl − 1 = ω+

n−1,l+1 = ω+

n,l−1 .

This hints to decompose Zd .µ
(+)

nl as some linear combination of µ(+)

n−1,l+1 and µ(+)

n,l−1. Again, for the
hyperspherical harmonics we already dispose of the necessary relations. The remaing task is once

more to decompose the Jacobi polynomials P
(α,β)
n (x) and their derivatives. This time we need to

find the coefficients for the relations

P (α,β)
n (x) = aP (α−1,β)

n (x) + b P
(α+1,β)
n−1 (x) (C.214)

P
(α+1,β+1)
n−1 (x) = c P (α−1,β)

n (x) + dP
(α+1,β)
n−1 (x) . (C.215)
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Writing (C.214) using hypergeometric functions:

P (α,β)
n (x) =

(
n+α
n

)
F (−n, n+α+β+1; α+1; 1−x

2
) =

(
n+α
n

)
F (A, B+1; C+1; y) (C.216)

P (α−1,β)
n (x) =

(
n+α−1
n

)
F (−n, n+α+β; α; 1−x

2
) =

(
n+α−1
n

)
F (A, B; C; y) (C.217)

P
(α+1,β)
n−1 (x) =

(
n+α
n−1

)
F (−n+1, n+α+β+1; α+2; 1−x

2
) =

(
n+α
n−1

)
F (A+1, B+1; C+2; y) (C.218)

The program by Rakha et al. gives us the contiguous relation for the hypergeometric functions on
the right hand side:

0 = C(1+C)F (A, B+1; C+1; y) + (−C)(C+1)F (A, B; C; y) + y A(B−C)F (A+1, B+1; C+2; y) .
(C.219)

This is not too surprising: the hypergeometric functions on the right hand sides of (C.201) and below
are related to those in (C.216) and below by interchanging A with B. Therefore also (C.204) and
(C.219) are related by interchanging A with B.

Using (C.219), in (C.216) we can replace F (A, B+1; C+1; y) by a linear combination of F (A, B; C; y)

and F (A+1, B+1; C+2; y). Then converting the hypergeometric functions back to Jacobi polynomials
we obtain the simple recurrence relation

P (α,β)
n (x) =

n+α

α
P (α−1,β)
n (x) +

1−x
2

n+β

α
P

(α+1,β)
n−1 (x) . (C.220)

It can be verified with Mathematica’s FullSimplify command. Note that in the case n = 0 it reduces

to 1 = 1, because of P
(α,β)
−1 ≡ 0 and P

(α,β)
0 ≡ 1. Next we write (C.215) using hypergeometric

functions:

P
(α+1,β+1)
n−1 (x) =

(
n+α
n−1

)
F (−n+1, n+α+β+2; α+2; 1−x

2
) =

(
n+α
n−1

)
F (A+1, B+2; C+2; y) (C.221)

P (α−1,β)
n (x) =

(
n+α−1
n

)
F (−n, n+α+β; α; 1−x

2
) =

(
n+α−1
n

)
F (A, B; C; y) (C.222)

P
(α+1,β)
n−1 (x) =

(
n+α
n−1

)
F (−n+1, n+α+β+1; α+2; 1−x

2
) =

(
n+α
n−1

)
F (A+1, B+1; C+2; y) (C.223)

The program by Rakha et al. fails to return correct coefficients relating the three hypergeometric
functions on the right hand side. However, using (C.72) with AS [15.2.18]

0 = (C−A−B)F (A, B; C; y) + (A−C)F (A−1, B; C; y) +B (1−y)F (A, B+1; C; y) (C.224)

with the shifts A → A+1, while B → B+1 and C → C+2 we obtain the contiguous relation

0 = (y−1)C(B+1)F (A+1, B+2; C+2; x) + C(1+C)F (A, B; C; x)

+
(
C[B−C] + y A[C−B]

)
F (A+1, B+1; C+2; x) . (C.225)

Again, equations (C.206) and below relate to (C.221) and below by interchanging A and B. Thus also
(C.210) and (C.225) relate in this way. Using (C.225), in (C.221) we can replace F (A+1, B+2; C+2; y)

by a linear combination of F (A, B; C; y) and F (A+1, B+1; C+2; y). Then converting the hypergeo-
metric functions back to Jacobi polynomials we obtain the recurrence relation

P
(α+1,β+1)
n−1 (x) =

2/α

x+1

n(n+α)

(n+α+β+1)
P (α−1,β)
n (x) +

2/α

x+1

(n+β) + (1−x)n(n+β)/2

α(n+α+β+1)
P

(α+1,β)
n−1 (x) . (C.226)

It can be verified with Mathematica’s FullSimplify command, too. The Jacobi polynomials are well-
defined again since α, β > −1. Now letting act Zd act on µ(+)

nlml
(t, ρ,Ω), and using (C.220), (C.226),

(A.19) and (A.25), we see that again the terms containing Y mll+1 P
(α−1,β)
n sum up to zero, and the same

happens for those containing Y mll−1 P
(α+1,β)
n . This means that again we can decompose Zd.µ

(+)

nlml
as a

linear combination of µ(+)

n−1,l+1,̃l,ml
and µ(+)

n,l−1,̃l,ml
:

Zd .µ
(+)

n,l,̃l,ml
= +iz(+)0−

nll̃
µ(+)

n,l−1,̃l,ml
+ iz(+)−+

nll̃
µ(+)

n−1,l+1,̃l,ml

z(+)0−

nll̃
= −(2l+d−2)χ

(d−1)
− (l, l̃) = −z̃(+)+−

nll̃
(C.227)

z(+)−+

nll̃
= +2n

(n+ν)

(l+ d
2 )

χ
(d−1)
+ (l, l̃) .
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Since χ
(d−1)
− (l, l̃) vanishes for l = 0, so does z(+)0−

nll̃
, and we don’t need to worry about defining modes

with negative l. And z(+)−+

nll̃
vanishes for n = 0 so that we don’t need to worry about defining modes

with negative n either. Combining these two properties we see that the ”vacuum mode” µ(+)

0,0,0 with

magic frequency ω+

00 = ‹m+ is annihilated by the action of Zd:(
Zd .µ

(+)

0,0,0

)
(t, ρ,Ω) = 0 .

The action of Zd and Zd on the complex-conjugated modes can be found by noting that

Zd .µ
(+)

n,l,ml
= Zd .µ

(+)

n,l,ml

Zd .µ
(+)

n,l,ml
= Zd .µ

(+)

n,l,ml
,

(C.228)

and thus results in

Zd .µ
(+)

n,l,̃l,ml
= −iz(+)0−

nll̃
µ(+)

n,l−1,̃l,ml
− iz(+)−+

nll̃
µ(+)

n−1,l+1,̃l,ml
(C.229)

Zd .µ
(+)

n,l,̃l,ml
= −iz̃(+)+−

nll̃
µ(+)

n+1,l−1,̃l,ml
− iz̃(+)0+

nll̃
µ(+)

n,l+1,̃l,ml
.

Thus the ”vacuum mode” µ(+)

0,0,0 with magic frequency ω+

00 = ‹m+ is annihilated by the action of Zd:(
Zd .µ

(+)

0,0,0

)
(t, ρ,Ω) = 0 .

Considering the modes µ(−)

n,l,̃l,ml
, the whole calculation is the same again up to ν → −ν and thus

m̃+ → m̃− and ω+

nl → ω−nl. Hence

Zd .µ
(−)

n,l,̃l,ml
= +iz(−)0−

nll̃
µ(−)

n,l−1,̃l,ml
+ iz(−)−+

nll̃
µ(−)

n−1,l+1,̃l,ml

z(−)0−

nll̃
= −(2l+d−2)χ

(d−1)
− (l, l̃) = −z̃(−)+−

nll̃
(C.230)

z(−)−+

nll̃
= +2n

(n−ν)

(l+ d
2 )

χ
(d−1)
+ (l, l̃)

and

Zd .µ
(−)

n,l,̃l,ml
= −iz(−)0−

nll̃
µ(−)

n,l−1,̃l,ml
− iz(−)−+

nll̃
µ(−)

n−1,l+1,̃l,ml
(C.231)

Zd .µ
(−)

n,l,̃l,ml
= −iz̃(−)+−

nll̃
µ(−)

n+1,l−1,̃l,ml
− iz̃(−)0+

nll̃
µ(−)

n,l+1,̃l,ml
.

Here the ”vacuum modes” with magic frequency ω−00 = ‹m− are annihilated:(
Zd .µ

(−)
0,0,0

)
(t, ρ,Ω) = 0(

Zd .µ
(−)
0,0,0

)
(t, ρ,Ω) = 0 .

Action of K0,d and Kd+1,d on the AdS-Jacobi modes

With equations (2.228)

K0d = 1
2

(
Zd+Zd

)
Kd+1,d = 1

2i

(
iZd−Zd)

)
.
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it is now easy to wite down the action of K0,d and Kd+1,d on the Jacobi modes:

K0d .µ
(±)

n,l,̃l,ml
= +

i

2
z̃(±)+−

nll̃
µ(±)

n+1,l−1,̃l,ml
+

i

2
z̃(±)0+

nll̃
µ(±)

n,l+1,̃l,ml

+
i

2
z(±)0−

nll̃
µ(±)

n,l−1,̃l,ml
+

i

2
z(±)−+

nll̃
µ(±)

n−1,l+1,̃l,ml
(C.232)

Kd+1,d .µ
(±)

n,l,̃l,ml
= −1

2
z̃(±)+−

nll̃
µ(±)

n+1,l−1,̃l,ml
− 1

2
z̃(±)0+

nll̃
µ(±)

n,l+1,̃l,ml

+
1

2
z(±)0−

nll̃
µ(±)

n,l−1,̃l,ml
+

1

2
z(±)−+

nll̃
µ(±)

n−1,l+1,̃l,ml
(C.233)

K0d .µ
(+)

n,l,̃l,ml
= − i

2
z̃(±)+−

nll̃
µ(±)

n+1,l−1,̃l,ml
− i

2
z̃(±)0+

nll̃
µ(±)

n,l+1,̃l,ml

− i

2
z(±)0−

nll̃
µ(±)

n,l−1,̃l,ml
− i

2
z(±)−+

nll̃
µ(±)

n−1,l+1,̃l,ml
(C.234)

Kd+1,d .µ
(+)

n,l,̃l,ml
= −1

2
z̃(±)+−

nll̃
µ(±)

n+1,l−1,̃l,ml
− 1

2
z̃(±)0+

nll̃
µ(±)

n,l+1,̃l,ml

+
1

2
z(±)0−

nll̃
µ(±)

n,l−1,̃l,ml
+

1

2
z(±)−+

nll̃
µ(±)

n−1,l+1,̃l,ml
. (C.235)

C.3.5 Hypergeometric recurrence relations for AdS: S-modes

In this section we derive the ingredients necessary for calculating the action of Zd and Zd on the
hypergeometric AdS S-modes. The course of the calculations is quite similar to the one for the
Jacobi solutions. We recall the notation l = (l ≡ ld−1, l̃ ) with l̃ = (ld−2, ..., l2). The modes are given
by

µ(S,a)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω)Saωl(ρ) (C.236)

µ(S,b)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω)Sbωl(ρ) (C.237)

with the real radial functions

Saωl(ρ) = sinlρ cosm̃+ρF (αS,a, βS,a; γS,a; sin2ρ) (C.238)

Sbωl(ρ) = −(sin ρ)2−l−d cosm̃+ρF (αS,b, βS,b; γS,b; sin2ρ) . (C.239)

The parameters of the hypergeometric functions are

αS,a = 1
2 (l+‹m+−ω) αS,b = αS,a − γS,a + 1

βS,a = 1
2 (l+‹m++ω) βS,b = βS,a − γS,a + 1 (C.240)

γS,a = l + d
2 γS,b = 2− γS,a .

We recall that

µ(S,a)

ωlml
= µ(S,a)

−ω,l,−ml µ(S,b)

ωlml
= µ(S,b)

−ω,l,−ml .

Action of Zd on the hypergeometric AdS S-modes

After applying Zd to the Klein-Gordon modes µ(S,a)

ωlml
and µ(S,b)

ωlml
according to (C.106) and (2.228),

we note that there only appear terms with frequency ω + 1. Fueled by the success with the Jacobi
solutions, we will try again to find a decomposition of Zd . µ

(S,a)

ωlml
as some linear combination of

µ(S,a)

ω+1,l−1,̃l,ml
and µ(S,a)

ω+1,l+1,̃l,ml
(and the same for the Sb-modes) and hope that the Sa and Sb-modes do

not mix. For the hyperspherical harmonics we already dispose of the necessary relations, see Section
A.4. The remaing task is thus to decompose the hypergeometric functions F (αS,a, βS,a; γS,a; sin2ρ).
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Changing ω and l induces the following changes of the hypergeometric parameters:

ω → ω+1

l→ l−1
=⇒

αS,a → αS,a−1

βS,a → βS,a−0

γS,a → γS,a−1

αS,b → αS,b−0

βS,b → βS,b+1

γS,b → γS,b+1

(C.241)

ω → ω+1

l→ l+1
=⇒

αS,a → αS,a−0

βS,a → βS,a+1

γS,a → γS,a+1

αS,b → αS,b−1

βS,b → βS,b−0

γS,b → γS,b−1

. (C.242)

Thus l → l+1 affects (αS,a, βS,a, γS,a) like l → l−1 affects (αS,b, βS,b, γS,b) and vice versa. The
hypergeometric functions appear directly as F (A, B; C; x) and as derivative given by AS [15.2.1] =
DLMF [15.5.1]:

d

dx
F (A, B; C; x) =

AB

C
F (A+1, B+1; C+1; x) . (C.243)

We thus need to find the coefficients for the relations

F (A, B; C; x) = aF (A−1, B; C−1; x) + b F (A, B+1; C+1; x) (C.244)

F (A+1, B+1; C+1; x) = c F (A−1, B; C−1; x) + dF (A, B+1; C+1; x) . (C.245)

Again we would like to use the program of Rakha et al. (see Appendix C.2.6) to determine these
coefficients. Alas it doesn’t work for these shifts of hypergeometric parameters, so we have to derive
them by hand. For (C.244) we first shift A → A+1 and C → C+1 resulting in

F (A+1, B; C+1; x) = aF (A, B; C; x) + b F (A+1, B+1; C+2; x) . (C.246)

Now we recall that (C.71) gives us a relation

e F (A+1, B; C; x) = f F (A, B; C; x) + gF (A+1, B+1; C+2; x) . (C.247)

Thus, if we can find a relation

hF (A+1, B; C; x) = i F (A, B; C; x) + jF (A+1, B; C+1; x) , (C.248)

then replacing F (A+1, B; C; x) in (C.247) with the right hand side of (C.248) gives us the coefficients
for (C.246), and reversing the shifts A → A−1 and C → C−1 we obtain the coefficients for
(C.244). The good news is that relation (C.248) indeed can be found: shifting A → A−1 it turns
into

hF (A, B; C; x) = i F (A−1, B; C; x) + jF (A, B; C+1; x) . (C.249)

This relation is provided by AS [15.2.20]:

(1−x)C F (A, B; C; x) = C F (A−1, B; C; x) + x (B−C)F (A, B; C+1; x) , (C.250)

and shifting back A → A+1 gives us the coefficients for (C.249). By carrying out in detail the
sketched path of calculation we obtain for (C.244):

F (A, B; C; x) = F (A−1, B; C−1; x) + x
B

C

C−A
C−1

F (A, B+1; C+1; x) . (C.251)

This contiguous relation can be verified with Mathematica’s FullSimplify command. For (C.245) we
also shift A → A+1 and C → C+1 resulting in

F (A+2, B+1; C+2; x) = c F (A, B; C; x) + dF (A+1, B+1; C+2; x) . (C.252)
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(The placeholders e, f, ... are now different from those of the previous calculations.) Now we recall
that (C.72) gives us a relation

e F (A, B+1; C+2; x) = f F (A, B; C; x) + gF (A+1, B+1; C+2; x) . (C.253)

Thus, if we can find a relation

hF (A, B+1; C+2; x) = i F (A+2, B+1; C+2; x) + jF (A+1, B+1; C+2; x) , (C.254)

then replacing F (A, B+1; C+2; x) in (C.253) with the right hand side of (C.254) gives us the coeffi-
cients for (C.252), and reversing the shifts A → A−1 and C → C−1 we obtain the coefficients
for (C.245). Again relation (C.254) indeed can be found: shifting A → A−1 while B → B−1 and
C → C−2 it turns into

hF (A−1, B; C; x) = i F (A+1, B; C; x) + jF (A, B; C+1; x) . (C.255)

This relation is provided by AS [15.2.10]:

(A−C)F (A−1, B; C; x) = (2A−C + x[B−A])F (A, B; C; x) + (x−1)AF (A+1, B; C; x) , (C.256)

and shifting back A → A+1 while B → B+1 and C → C+2 gives us the coefficients for (C.255).
Now carrying out in detail the sketched path of calculation we obtain for (C.245):

F (A+1, B+1; C+1; x) = C/A
1−x F (A−1, B; C−1; x) + (C−1)(A−C)+xB(C−A)

(1−x)A(C−1) F (A, B+1; C+1; x) . (C.257)

This contiguous relation can be verified with Mathematica’s FullSimplify command. Now we can
let Zd act on the Klein-Gordon modes µ(S,a,b)

ωlml
(t, ρ,Ω), and put to use relations (C.251), (C.257),

(A.19) and (A.25). Cleaning up the large expressions resulting from this, we see that the terms
containing both Y mll−1 and the hypergeometric function obtained from ω → ω+1

l→ l+1 through (C.242) sum
up to zero. The same happens for those containing both Y mll+1 and the hypergeometric function

obtained from ω → ω+1
l→ l−1 through (C.241). This means that we can indeed decompose Zd .µ

(S,a,b)

ωlml
as a

linear combination of µ(S,a,b)

ω+1,l−1,̃l,ml
and µ(S,a,b)

ω+1,l+1,̃l,ml
. For the Sa-modes this results in

Zd .µ
(S,a)

ω,l,̃l,ml
= +iz̃(S,a)+−

ωll̃
µ(S,a)

ω+1,l−1,̃l,ml
+ iz̃(S,a)++

ωll̃
µ(S,a)

ω+1,l+1,̃l,ml
(C.258)

z̃(S,a)+−

ωll̃
= +2(γS−1)χ

(d−1)
− (l, l̃)

= (2l+d−2)χ
(d−1)
− (l, l̃)

z̃(S,a)++

ωll̃
= +2(αS,a−γS,a)

2βS,a

2γS,a
χ

(d−1)
+ (l, l̃) ,

= (m̃+−ω−l−d)
(m̃++ω+l)

(2l+d)
χ

(d−1)
+ (l, l̃) ,

and for the Sb-modes the result is

Zd .µ
(S,b)

ω,l,̃l,ml
= +iz̃(S,b)+−

ωll̃
µ(S,b)

ω+1,l−1,̃l,ml
+ iz̃(S,b)++

ωll̃
µ(S,b)

ω+1,l+1,̃l,ml
(C.259)

z̃(S,b)+−

ωll̃
= +2(αS,b−γS,b) 2βS,b

2γS,b
χ

(d−1)
− (l, l̃)

= −(m̃+−ω+l−2)
(m̃++ω−l−d+2)

(2l+d−4)
χ

(d−1)
− (l, l̃)

z̃(S,b)++

ωll̃
= −2(γS−1)χ

(d−1)
+ (l, l̃)

= −(2l+d−2)χ
(d−1)
+ (l, l̃) .
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Since χ
(d−1)
− (l, l̃) vanishes for l =

∣∣l̃∣∣, so do z̃(S,a)+− and z̃(S,b)+− for this case. First, we thus don’t need to
worry about defining modes with negative l: for l = 0 there appears no (l−1)-term at all. Second,
neither can there appear modes with

∣∣l̃∣∣ > l. Except for
∣∣l̃∣∣ = l, the factors z̃(S,a)+−

ωll̃
and z̃(S,b)++

ωll̃
are

always finite. z̃(S,a)++

ωll̃
vanishes if either βS,a = 0 or (γS,a−αS,a) = 0, which happen for the magic

frequencies

−ω+

0l = −(l + ‹m+) and − ω−0l = −(l + ‹m−) .

Thus all Sa-modes µ(S,a)

ωlml
with (magic) frequencies ω = −ω±0l while l =

∣∣l̃∣∣ are annihilated by the

action of Zd. z̃
(S,b)+−

ωll̃
vanishes only for l =

∣∣l̃∣∣, and also if either βS,b = 0 or (αS,b−γS,b) = 0, which
happen for

ω = (l−2) + ‹m+ and ω = (l−2) + ‹m− .
Since z̃(S,b)++ never vanishes, there are no b-modes that are annihilated by the action of Zd.

Action of Zd on the hypergeometric AdS S-modes

This calculation is completely analog to the previous one. After applying Zd to the Klein-Gordon
modes µ(S,a,b)

ωlml
there only appear terms with frequency ω−1. Thus we look for a decomposition of

Zd . µ
(S,a)

ωlml
as some linear combination of µ(S,a)

ω−1,l−1,̃l,ml
and µ(S,a)

ω−1,l+1,̃l,ml
plus the original mode (and

the same for the Sb-modes). Already disposing of the necessary hyperspherical relations, it remains
to decompose the hypergeometric functions F (αS,a, βS,a; γS,a; sin2ρ). Changing ω and l induces the
following changes of the hypergeometric parameters:

ω → ω−1

l→ l−1
=⇒

αS,a → αS,a−0

βS,a → βS,a−1

γS,a → γS,a−1

αS,b → αS,b+1

βS,b → βS,b−0

γS,b → γS,b+1

(C.260)

ω → ω−1

l→ l+1
=⇒

αS,a → αS,a+1

βS,a → βS,a−0

γS,a → γS,a+1

αS,b → αS,b−0

βS,b → βS,b−1

γS,b → γS,b−1

. (C.261)

Thus (C.260) relates to (C.241) by interchanging αS,a ↔ βS,a and αS,b ↔ βS,b. The same relates
(C.261) to (C.242). The hypergeometric functions appear directly and as derivative, and thus we
need to find the coefficients for the relations

F (A, B; C; x) = aF (A, B−1; C−1; x) + b F (A+1, B; C+1; x) (C.262)

F (A+1, B+1; C+1; x) = c F (A, B−1; C−1; x) + dF (A+1, B; C+1; x) . (C.263)

Since these relations are obtained via A↔ B from (C.262) and (C.263), we can directly obtain them
via A↔ B in (C.251) and (C.257):

F (A, B; C; x) = F (A, B−1; C−1; x) + x A
C
C−B
C−1 F (A+1, B; C+1; x) (C.264)

F (A+1, B+1; C+1; x) = C/B
1−x F (A, B−1; C−1; x) + (C−1)(B−C)+xA(C−B)

(1−x)B(C−1) F (A+1, B; C+1; x) . (C.265)

These contiguous relations can be verified with Mathematica’s FullSimplify command. Now we can
let Zd act on the Klein-Gordon modes µ(S,a,b)

ωlml
(t, ρ,Ω), and put to use relations (C.264), (C.265), (A.19)

and (A.25). Then, the terms containing both Y mll−1 and the hypergeometric function obtained from
ω → ω−1
l→ l+1 through (C.261) sum up to zero. The same happens for those containing both Y mll+1 and the

hypergeometric function obtained from ω → ω−1
l→ l−1 through (C.260). Thus we can decompose Zd.µ

(S,a,b)

ωlml
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as a linear combination of µ(S,a,b)

ω−1,l−1,̃l,ml
and µ(S,a,b)

ω−1,l+1,̃l,ml
. For the Sa-modes this results in

Zd .µ
(S,a)

ω,l,̃l,ml
= +iz(S,a)−−

ωll̃
µ(S,a)

ω−1,l−1,̃l,ml
+ iz(S,a)−+

ωll̃
µ(S,a)

ω−1,l+1,̃l,ml
(C.266)

z(S,a)−−

ωll̃
= −2(γS−1)χ

(d−1)
− (l, l̃)

= −(2l+d−2)χ
(d−1)
− (l, l̃)

z(S,a)−+

ωll̃
= +2(γS,a−βS,a)

2αS,a

2γS,a
χ

(d−1)
+ (l, l̃) .

= −(m̃++ω−l−d)
(m̃+−ω+l)

(2l+d)
χ

(d−1)
+ (l, l̃) .

And for the Sb-modes the result is

Zd .µ
(S,b)

ω,l,̃l,ml
= +iz(S,b)−−

ωll̃
µ(S,b)

ω−1,l−1,̃l,ml
+ iz(S,b)−+

ωll̃
µ(S,b)

ω−1,l+1,̃l,ml
(C.267)

z(S,b)−−

ωll̃
= +2(γS,b−βS,b) 2αS,b

2γS,b
χ

(d−1)
− (l, l̃)

= (m̃++ω+l−2)
(m̃+−ω−l−d+2)

(2l+d−4)
χ

(d−1)
− (l, l̃)

z(S,b)−+

ωll̃
= +2(γS−1)χ

(d−1)
+ (l, l̃) .

= (2l+d−2)χ
(d−1)
+ (l, l̃) .

Comparing the values of the z-factors, we can read off the following relations for all d ≥ 3:

z̃(S,a)+−

ωll̃
= −z(S,a)−−

−ω,l,l̃ z̃(S,a)++

ωll̃
= −z(S,a)−+

−ω,l,l̃ (C.268)

z̃(S,b)+−

ωll̃
= −z(S,b)−−

−ω,l,l̃ z̃(S,b)++

ωll̃
= −z(S,b)−+

−ω,l,l̃ .

For d = 3 we have l̃ := ml, and since all χ
(2)
± (l,ml) are invariant under ml →−ml, for d = 3 in

addition to the above we have:

z̃(S,a)+−

ωll̃
= −z(S,a)−−

−ω,l,−̃l z̃(S,a)++

ωll̃
= −z(S,a)−+

−ω,l,−̃l (C.269)

z̃(S,b)+−

ωll̃
= −z(S,b)−−

−ω,l,−̃l z̃(S,b)++

ωll̃
= −z(S,b)−+

−ω,l,−̃l .

Since χ
(d−1)
− (l, l̃) vanishes only for l =

∣∣l̃∣∣, so does z̃+−
ωll̃

, and again we don’t need to worry about

defining modes with negative l or with l <
∣∣l̃∣∣. While z(S,a)−−

ωll̃
and z(S,b)−+

ωll̃
are always finite except for

l =
∣∣l̃∣∣. The factor z(S,a)−+

ωll̃
vanishes if either αS,a = 0 or (γS,a−βS,a) = 0, which happen for the magic

frequencies

ω+

0l = l + ‹m+ and ω−0l = l + ‹m− .
Thus all Sa-modes µ(S,a)

ωlml
with (magic) frequencies ω = ω±0l while l =

∣∣l̃∣∣ are annihilated by the action

of Zd. z
(S,b)−−

ωll̃
vanishes only if l =

∣∣l̃∣∣, and also if either αS,b = 0 or (γS,b−βS,b) = 0, which happen
for the frequencies

ω = −(l−2)− ‹m+ and ω = −(l−2)− ‹m− .
Since z(S,b)−+ never vanishes, again there are no b-modes that are annihilated by the action of Zd.

Action of K0,d and Kd+1,d on the hypergeometric AdS S-modes

With equations (2.228)

K0d = 1
2

(
Zd+Zd

)
Kd+1,d = 1

2i

(
Zd−Zd

)
.
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it is now easy to write down the action of K0,d and Kd+1,d on the hypergeometric S-modes:

K0d .µ
(S,a)

ω,l,̃l,ml
= +

i

2
z̃(S,a)+−

ωll̃
µ(S,a)

ω+1,l−1,̃l,ml
+

i

2
z̃(S,a)++

ωll̃
µ(S,a)

ω+1,l+1,̃l,ml

+
i

2
z(S,a)−−

ωll̃
µ(S,a)

ω−1,l−1,̃l,ml
+

i

2
z(S,a)−+

ωll̃
µ(S,a)

ω−1,l+1,̃l,ml
(C.270)

Kd+1,d .µ
(S,a)

ω,l,̃l,ml
− 1

2
z̃(S,a)+−

ωll̃
µ(S,a)

ω+1,l−1,̃l,ml
− 1

2
z̃(S,a)++

ωll̃
µ(S,a)

ω+1,l+1,̃l,ml

+
1

2
z(S,a)−−

ωll̃
µ(S,a)

ω−1,l−1,̃l,ml
+

1

2
z(S,a)−+

ωll̃
µ(S,a)

ω−1,l+1,̃l,ml
(C.271)

K0d .µ
(S,b)

ω,l,̃l,ml
= +

i

2
z̃(S,b)+−

ωll̃
µ(S,b)

ω+1,l−1,̃l,ml
+

i

2
z̃(S,b)++

ωll̃
µ(S,b)

ω+1,l+1,̃l,ml

+
i

2
z(S,b)−−

ωll̃
µ(S,b)

ω−1,l−1,̃l,ml
+

i

2
z(S,b)−+

ωll̃
µ(S,b)

ω−1,l+1,̃l,ml
(C.272)

Kd+1,d .µ
(S,b)

ω,l,̃l,ml
= − 1

2
z̃(S,b)+−

ωll̃
µ(S,b)

ω+1,l−1,̃l,ml
− 1

2
z̃(S,b)++

ωll̃
µ(S,b)

ω+1,l+1,̃l,ml

+
1

2
z(S,b)−−

ωll̃
µ(S,b)

ω−1,l−1,̃l,ml
+

1

2
z(S,b)−+

ωll̃
µ(S,b)

ω−1,l+1,̃l,ml
. (C.273)

Since for the S-modes we have the relation

µ(S,a,b)

−ω,l,−ml = µ(S,a,b)

ωlml
, (C.274)

and both Kd+1,d and K0d are real, we can write

Kd+1,d .µ
(S,a,b)

−ω,l,−ml = Kd+1,d .µ
(S,a,b)

ω,l,ml
= Kd+1,d .µ

(S,a,b)

ω,l,ml

K0d .µ
(S,a,b)

−ω,l,−ml = K0d .µ
(S,a,b)

ω,l,ml
= K0d .µ

(S,a,b)

ω,l,ml
.

(C.275)

This is a quicker way of obtaining these actions compared to evaluating all coefficients manually with
−ω instead of ω and −ml instead of ml, and then using relations (C.268). The results are the same
anyway. As a last remark, for d = 3 the raising and lowering coefficients are invariant under sign
change of ml, and for d ≥ 4 they are independent of ml, and l̃ := ld−2 is always nonnegative. Thus
all z, z̃ are invariant under the sign change ml → −ml.

C.3.6 Hypergeometric recurrence relations for AdS: C-modes

In this section we derive the ingredients necessary for calculating the action of Zd and Zd on the
hypergeometric C-modes. They are given by

µ(C,a)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω)Caωl(ρ) (C.276)

µ(C,b)

ωlml
(t, ρ,Ω) = e−iωt Y mll (Ω)Cbωl(ρ) (C.277)

with the real radial functions

Caωl(ρ) = sinlρ cosm̃+ρF (αC,a, βC,a; γC,a; cos2ρ) (C.278)

Cbωl(ρ) = sinlρ cosm̃−ρF (αC,b, βC,b; γC,b; cos2ρ) . (C.279)

The parameters of the hypergeometric functions are

αC,a = 1
2 (‹m+−ω+l) αC,b = αC,a−γC,a+1 = 1

2 (‹m−−ω+l) = − 1
2 (m̃++ω−l−d)

βC,a = 1
2 (‹m++ω+l) βC,b = βC,a−γC,a+1 = 1

2 (‹m−+ω+l) = − 1
2 (m̃+−ω−l−d) (C.280)

γC,a = 1+ν γC,b = 2− γC,a = 1−ν ,

and thus we have the relations

γC,a−αC,a = 1
2 (m̃++ω−l−d+2) γC,b−αC,b = 1

2 (m̃−+ω−l−d+2) = − 1
2 (m̃+−ω+l−2)

γC,a−βC,a = 1
2 (m̃+−ω−l−d+2) γC,b−βC,b = 1

2 (m̃−−ω−l−d+2) = − 1
2 (m̃++ω+l−2)

γC,a−αC,a−βC,a = − 1
2 (2l+d−2) γC,b−αC,b−βC,b = − 1

2 (2l + d− 2) = γC,a−αC,a−βC,a.
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We also recall that

µ(C,a)

ωlml
= µ(C,a)

−ω,l,−ml µ(C,b)

ωlml
= µ(C,b)

−ω,l,−ml .

Action of Zd on the hypergeometric AdS C-modes

After applying Zd to the Klein-Gordon modes µ(C,a)

ωlml
and µ(C,b)

ωlml
according to (C.106) and (2.228), we

note that (as for the S-modes) there only appear terms with frequency ω + 1. Thus we try again
to find a decomposition of Zd . µ

(C,a)

ωlml
as some linear combination of µ(C,a)

ω+1,l−1,̃l,ml
and µ(C,a)

ω+1,l+1,̃l,ml

(and the same for the Cb-modes). To this end we need to decompose the hypergeometric function
F (αC,a, βC,a; γC,a; sin2ρ) and its derivative. Changing ω and l induces the following changes of the
hypergeometric parameters:

ω → ω+1

l→ l−1
=⇒

αC,a → αC,a−1

βC,a → βC,a−0

γC,a → γC,a

αC,b → αC,b−1

βC,b → βC,b−0

γC,b → γC,b

(C.281)

ω → ω+1

l→ l+1
=⇒

αC,a → αC,a−0

βC,a → βC,a+1

γC,a → γC,a

αC,b → αC,b−0

βC,b → βC,b+1

γC,b → γC,b

. (C.282)

Thus the hypergeometric parameters with superscripts a and b are affected in the same way, and
moreover here the γC remain completely unchanged, which simplifies the following calculations a lot.
The hypergeometric functions again appear directly as F (A, B; C; x) and as derivative:

d

dx
F (A, B; C; x) =

AB

C
F (A+1, B+1; C+1; x) . (C.283)

We thus need to find the coefficients for the relations

F (A, B; C; x) = aF (A−1, B; C; x) + b F (A, B+1; C; x) (C.284)

F (A+1, B+1; C+1; x) = c F (A−1, B; C; x) + dF (A, B+1; C; x) . (C.285)

For (C.284) we can read them off directly from DLMF [15.5.3], and plugging this result into DLMF
[15.5.20] we find the coefficients for (C.285):

F (A, B; C; x) =
C−A

C−A−B
F (A−1, B; C; x) +

B (x−1)

C−A−B
F (A, B+1; C; x) . (C.286)

F (A+1, B+1; C+1; x) =
C

xA

A−C
C−A−B

F (A−1, B; C; x) +
C

xA

C−A−xB
C−A−B

F (A, B+1; C; x) . (C.287)

These contiguous relation can be verified with Mathematica’s FullSimplify command. Now we can let
Zd act on the Klein-Gordon modes µ(C,a,b)

ωlml
(t, ρ,Ω), and put to use relations (C.286), (C.287), (A.19)

and (A.25). Again, the terms containing both Y mll−1 and the hypergeometric function obtained from
ω → ω+1
l→ l+1 through (C.242) sum up to zero. The same happens for those containing both Y mll+1 and

the hypergeometric function obtained from ω → ω+1
l→ l−1 through (C.241). Thus again we can decompose

Zd .µ
(C,a,b)

ωlml
as a linear combination of µ(C,a,b)

ω+1,l−1,̃l,ml
and µ(C,a,b)

ω+1,l+1,̃l,ml
. For the Ca-modes this results in

Zd .µ
(C,a)

ωlml
= iz̃(C,a)+−

ωll̃
µ(C,a)

ω+1,l−1,̃l,ml
+ iz̃(C,a)++

ωll̃
µ(C,a)

ω+1,l+1,̃l,ml
(C.288)

z̃(C,a)+−

ωll̃
= −2(γC,a−αC,a)χ

(d−1)
− (l, l̃)

= −(m̃++ω−l−d+2)χ
(d−1)
− (l, l̃)

z̃(C,a)++

ωll̃
= −2βC,a χ

(d−1)
+ (l, l̃)

= −(m̃++ω+l)χ
(d−1)
+ (l, l̃).
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and for the Cb-modes the result is

Zd .µ
(C,b)

ωlml
= iz̃(C,b)+−

ωll̃
µ(C,b)

ω+1,l−1,̃l,ml
+ iz̃(C,b)++

ωll̃
µ(C,b)

ω+1,l+1,̃l,ml
(C.289)

z̃(C,b)+−

ωll̃
= −2(γC,b−αC,b)χ(d−1)

− (l, l̃)

= +(m̃+−ω+l−2)χ
(d−1)
− (l, l̃)

= −(m̃−+ω−l−d+2)χ
(d−1)
− (l, l̃)

z̃(C,b)++

ωll̃
= −2βC,b χ

(d−1)
+ (l, l̃)

= +(m̃+− ω − l−d)χ
(d−1)
+ (l, l̃)

= −(‹m−+ω+l)χ
(d−1)
+ (l, l̃).

As for the S-modes, no modes with negative l or l <
∣∣l̃∣∣ can appear. z̃(C,a)+−

ωll̃
is always finite, except

for l =
∣∣l̃∣∣ and also for ω =−m̃+ + (l+d−2), then it vanishes. The factor z̃(C,a)++

ωll̃
vanishes for the

magic frequencies ω =−ω+

0l := −m̃+ − l, for all other frequencies it is finite. Thus all Ca-modes

µ(C,a)

ωlml
with (magic) frequencies ω = −ω+

0l while l =
∣∣l̃∣∣ are annihilated by the action of Zd.

z̃(C,b)+−

ωll̃
vanishes for l =

∣∣l̃∣∣ and also for ω =−m̃− + (l+d−2), for all other cases it is finite. The

factor z̃(C,b)++

ωll̃
vanishes for the magic frequencies ω =−ω−0l := −m̃− − l, for all other frequencies it is

finite. Thus all Cb-modes µ(C,b)

ωlml
with (magic) frequencies ω = −ω−0l while l =

∣∣l̃∣∣ are annihilated by

the action of Zd.

Action of Zd on the hypergeometric AdS C-modes

This calculation is completely analog to the previous one. After applying Zd to the Klein-Gordon
modes µ(C,a,b)

ωlml
there only appear terms with frequency ω−1. Thus we look for a decomposition of

Zd.µ
(C,a)

ωlml
as some linear combination of µ(C,a)

ω−1,l−1,̃l,ml
and µ(C,a)

ω−1,l+1,̃l,ml
plus the original mode (and the

same for the Cb-modes).
Already disposing of the necessary hyperspherical relations, it remains to decompose the hyper-

geometric functions F (αC,a, βC,a; γC,a; sin2ρ). Changing ω and l induces the following changes of the
hypergeometric parameters:

ω → ω−1

l→ l−1
=⇒

αC,a → αC,a−0

βC,a → βC,a−1

γC,a → γC,a

αC,b → αC,b−0

βC,b → βC,b−1

γC,b → γC,b

(C.290)

ω → ω−1

l→ l+1
=⇒

αC,a → αC,a+1

βC,a → βC,a−0

γC,a → γC,a

αC,b → αC,b+1

βC,b → βC,b−0

γC,b → γC,b

. (C.291)

Thus the hypergeometric parameters with superscripts a and b are affected in the same way. The
hypergeometric functions appear directly and as derivative, and thus we need to find the coefficients
for the relations

F (A, B; C; x) = aF (A, B−1; C; x) + b F (A+1, B; C; x) (C.292)

F (A+1, B+1; C+1; x) = c F (A, B−1; C; x) + dF (A+1, B; C; x) . (C.293)

Since these relations are obtained via A↔ B from (C.262) and (C.263), we can directly obtain them
via A↔ B in (C.251) and (C.257):

F (A, B; C; x) =
C−B

C−A−B
F (A, B−1; C; x) +

A (x−1)

C−A−B
F (A+1, B; C; x) . (C.294)

F (A+1, B+1; C+1; x) =
C

xB

B−C
C−A−B

F (A, B−1; C; x) +
C

xB

C−B−xA
C−A−B

F (A+1, B; C; x) . (C.295)
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These contiguous relations can be verified with Mathematica’s FullSimplify command. Now we can
let Zd act on the Klein-Gordon modes µ(C,a,b)

ωlml
(t, ρ,Ω), and put to use relations (C.264), (C.265), (A.19)

and (A.25). Then, the terms containing both Y mll−1 and the hypergeometric function obtained from
ω → ω−1
l→ l+1 through (C.261) sum up to zero. The same happens for those containing both Y mll+1 and the

hypergeometric function obtained from ω → ω−1
l→ l−1 through (C.260). Thus we can decompose Zd.µ

(C,a,b)

ωlml

as a linear combination of µ(C,a,b)

ω−1,l−1,̃l,ml
and µ(C,a,b)

ω−1,l+1,̃l,ml
. For the Ca-modes this results in

Zd .µ
(C,a)

ωlml
= iz(C,a)−−

ωll̃
µ(C,a)

ω−1,l−1,̃l,ml
+ iz(C,a)−+

ωll̃
µ(C,a)

ω−1,l+1,̃l,ml
(C.296)

z(C,a)−−

ωll̃
= 2(γC,a−βC,a)χ

(d−1)
− (l, l̃)

= +(m̃+−ω−l−d+2)χ
(d−1)
− (l, l̃)

z(C,a)−+

ωll̃
= 2αC,a χ

(d−1)
+ (l, l̃)

= +(m̃+−ω+l)χ
(d−1)
+ (l, l̃).

And for the Cb-modes the result is

Zd .µ
(C,b)

ωlml
= iz(C,b)−−

ωll̃
µ(C,b)

ω−1,l−1,̃l,ml
+ iz(C,b)−+

ωll̃
µ(C,b)

ω−1,l+1,̃l,ml
(C.297)

z(C,b)−−

ωll̃
= 2(γC,b−βC,b)χ(d−1)

− (l, l̃)

= −(m̃++ω+l−2)χ
(d−1)
− (l, l̃)

= +(m̃−−ω−l−d+2)χ
(d−1)
− (l, l̃)

z(C,b)−+

ωll̃
= 2αC,b χ

(d−1)
+ (l, l̃)

= −(m̃++ω−l−d)χ
(d−1)
+ (l, l̃)

= +(‹m−−ω+l)χ
(d−1)
+ (l, l̃).

Comparing the values of the z-factors, we can read off the same relations for all d ≥ 3 that we found
for the z-factors of the S-modes:

z̃(C,a)+−

ωll̃
= −z(C,a)−−

−ω,l,l̃ z̃(C,a)++

ωll̃
= −z(C,a)−+

−ω,l,l̃ (C.298)

z̃(C,b)+−

ωll̃
= −z(C,b)−−

−ω,l,l̃ z̃(C,b)++

ωll̃
= −z(C,b)−+

−ω,l,l̃ .

For d = 3 we have l̃ := ml, and since all χ
(2)
± (l,ml) are invariant under ml →−ml, for d = 3 in

addition to the above we have:

z̃(C,a)+−

ωll̃
= −z(C,a)−−

−ω,l,−̃l z̃(C,a)++

ωll̃
= −z(C,a)−+

−ω,l,−̃l (C.299)

z̃(C,b)+−

ωll̃
= −z(C,b)−−

−ω,l,−̃l z̃(C,b)++

ωll̃
= −z(C,b)−+

−ω,l,−̃l .

Again, no modes with negative l or l <
∣∣l̃∣∣ can appear. z(C,a)−−

ωll̃
is always finite except for l =

∣∣l̃∣∣ and

also for ω = m̃+ − (l+d−2), where it vanishes. The factor z(C,a)−+

ωll̃
vanishes for the magic frequencies

ω = ω+

0l := m̃+ + l, for all other cases it remains finite. Thus all Ca-modes µ(C,a)

ωlml
with (magic)

frequencies ω = ω+

0l while l =
∣∣l̃∣∣ are annihilated by the action of Zd.

z(C,b)−−

ωll̃
vanishes for l =

∣∣l̃∣∣ and also for ω = −m̃− − (l+d−2), for all other cases it is finite. z(C,b)−+

ωll̃
vanishes for the magic frequencies ω = ω−0l := m̃− − l, for all other cases it remains finite. Thus all

Cb-modes µ(C,a)

ωlml
with (magic) frequencies ω = ω−0l while l =

∣∣l̃∣∣ are annihilated by the action of Zd.

Action of K0,d and Kd+1,d on the hypergeometric AdS C-modes

With equations (2.228)

K0d = 1
2

(
Zd+Zd

)
Kd+1,d = 1

2i

(
Zd−Zd

)
.
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it is now easy to write down the action of K0,d and Kd+1,d on the hypergeometric C-modes:

K0d .µ
(C,a)

ω,l,̃l,ml
= +

i

2
z̃(C,a)+−

ωll̃
µ(C,a)

ω+1,l−1,̃l,ml
+

i

2
z̃(C,a)++

ωll̃
µ(C,a)

ω+1,l+1,̃l,ml

+
i

2
z(C,a)−−

ωll̃
µ(C,a)

ω−1,l−1,̃l,ml
+

i

2
z(C,a)−+

ωll̃
µ(C,a)

ω−1,l+1,̃l,ml
(C.300)

Kd+1,d .µ
(C,a)

ω,l,̃l,ml
= − 1

2
z̃(C,a)+−

ωll̃
µ(C,a)

ω+1,l−1,̃l,ml
− 1

2
z̃(C,a)++

ωll̃
µ(C,a)

ω+1,l+1,̃l,ml

+
1

2
z(C,a)−−

ωll̃
µ(C,a)

ω−1,l−1,̃l,ml
+

1

2
z(C,a)−+

ωll̃
µ(C,a)

ω−1,l+1,̃l,ml
(C.301)

K0d .µ
(C,b)

ω,l,̃l,ml
= +

i

2
z̃(C,b)+−

ωll̃
µ(C,b)

ω+1,l−1,̃l,ml
+

i

2
z̃(C,b)++

ωll̃
µ(C,b)

ω+1,l+1,̃l,ml

+
i

2
z(C,b)−−

ωll̃
µ(C,b)

ω−1,l−1,̃l,ml
+

i

2
z(C,b)−+

ωll̃
µ(C,b)

ω−1,l+1,̃l,ml
(C.302)

Kd+1,d .µ
(C,b)

ω,l,̃l,ml
= − 1

2
z̃(C,b)+−

ωll̃
µ(C,b)

ω+1,l−1,̃l,ml
− 1

2
z̃(C,b)++

ωll̃
µ(C,b)

ω+1,l+1,̃l,ml

+
1

2
z(C,b)−−

ωll̃
µ(C,b)

ω−1,l−1,̃l,ml
+

1

2
z(C,b)−+

ωll̃
µ(C,b)

ω−1,l+1,̃l,ml
. (C.303)

Since for the C-modes we also have

µ(C,a,b)

−ω,l,−ml = µ(C,a,b)

ωlml
, (C.304)

and both Kd+1,d and K0d are real, again we can write

Kd+1,d .µ
(C,a,b)

−ω,l,−ml = Kd+1,d .µ
(C,a,b)

ω,l,ml
= Kd+1,d .µ

(C,a,b)

ω,l,ml

K0d .µ
(C,a,b)

−ω,l,−ml = K0d .µ
(C,a,b)

ω,l,ml
= K0d .µ

(C,a,b)

ω,l,ml
.

(C.305)

C.3.7 Consistency checks of AdS recurrence relations

Action of Zd and Zd on hypergeometric modes and Jacobi modes

In Section C.3.4 we calculate the actions of Zd and Zd on the AdS Jacobi modes. We find that
these actions map a Jacobi mode to a linear combination of two other Jacobi modes. We recall
that the ordinary Jacobi modes arise as special cases of the Ca-modes when the frequency is magic:
|ω| = ω+

nl := 2n+m̃+ + l. The exceptional Jacobi modes arise as special cases of the Cb-modes when
ν < 1 and the frequency is magic: |ω| = ω−nl := 2n+ m̃− + l. Both arise also from the Sa-modes if
|ω| = ω±nl. We now check whether our results for S and C-modes reproduce this behaviour, that is,
if the actions on magic modes (modes with magic frequencies) yield a linear combination of magic
modes.

To see this, the special form of the zS,C-factors is actually not relevant. The only important
fact is that the actions map a mode with momenta (ω, l, l̃,ml) to a linear combination of contiguous
modes with ω′ = ω ± 1 and l′ = l ± 1. It is easy to verify that if ω is a magic frequency ±ω±nl,
then ω′ = ω ± 1 is again a magic frequency for both l′ = l + 1 and l′ = l − 1, with n′ ∈ {n, n ± 1}.
Thus the actions of the boosts Zd and Zd on the hypergeometric modes respect the Jacobi modes as
a subset of the hypergeometric modes.

Action of Zd and Zd on AdS S-modes and C-modes

In this subsection we calculate the action of Zd and Zd on the C-modes that is induced by their
actions (C.258), (C.259), (C.266) and (C.267) on the S-modes via the linear dependence (C.58) of
the S and C-modes. For clarity again we often suppress the indices l̃ and ml, since they remain
unchanged in all expressions. Using linear dependence (C.58) and actions (C.258) and (C.259), we
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can first write the action of Zd on µ(C,a)

ωlml
as

Zd .µ
(C,a)

ωl = (Mno
11 )ωl

(
iz̃(S,a)+−
ωl µ(S,a)

ω+1,l−1 + iz̃(S,a)++

ωl µ(S,a)

ω+1,l+1

)
+ (Mno

12 )ωl

(
iz̃(S,b)+−
ωl µ(S,b)

ω+1,l−1 + iz̃(S,b)++

ωl µ(S,b)

ω+1,l+1

)
= (Mno

11 )ω+1,l−1 µ
(S,a)

ω+1,l−1

Å
(Mno

11 )ωl
(Mno

11 )ω+1,l−1
iz̃(S,a)+−
ωl

ã
+ (Mno

12 )ω+1,l−1 µ
(S,b)

ω+1,l−1

Å
(Mno

12 )ωl
(Mno

12 )ω+1,l−1
iz̃(S,b)+−
ωl

ã
+(Mno

11 )ω+1,l+1 µ
(S,a)

ω+1,l+1

Å
(Mno

11 )ωl
(Mno

11 )ω+1,l+1
iz̃(S,a)++

ωl

ã
+(Mno

12 )ω+1,l+1 µ
(S,b)

ω+1,l+1

Å
(Mno

12 )ωl
(Mno

12 )ω+1,l+1
iz̃(S,b)++

ωl

ã
Plugging in the respective definitions, it is rather straightforward to calculate

(Mno
11 )ωl

(Mno
11 )ω+1,l−1

z̃(S,a)+−
ωl =

(Mno
12 )ωl

(Mno
12 )ω+1,l−1

z̃(S,b)+−
ωl = −(m̃++ω−l−d+2)χ

(d−1)
− (l) =: z̃(C,a)+−

ωl

(Mno
11 )ωl

(Mno
11 )ω+1,l+1

z̃(S,a)++

ωl =
(Mno

12 )ωl
(Mno

12 )ω+1,l+1
z̃(S,b)++

ωl = − (m̃++ ω + l) χ
(d−1)
+ (l) =: z̃(C,a)++

ωl .

Therefore we can write this action as

Zd .µ
(C,a)

ωlml
= iz̃(C,a)+−

ωll̃
µ(C,a)

ω+1,l−1,̃l,ml
+ iz̃(C,a)++

ωll̃
µ(C,a)

ω+1,l+1,̃l,ml
(C.306)

z̃(C,a)+−

ωll̃
= −(m̃++ω−l−d+2)χ

(d−1)
− (l, l̃)

= −2(γC,a−αC,a)χ
(d−1)
− (l, l̃)

z̃(C,a)++

ωll̃
= −(m̃++ω+l)χ

(d−1)
+ (l, l̃)

= −2βC,a χ
(d−1)
+ (l, l̃).

This agrees exactly with (C.288). Now we repeat this calculation also for the other three actions.
The second induced action is

Zd .µ
(C,b)

ωl = (Mno
21 )ωl

(
iz̃(S,a)+−
ωl µ(S,a)

ω+1,l−1 + iz̃(S,a)++

ωl µ(S,a)

ω+1,l+1

)
+ (Mno

22 )ωl

(
iz̃(S,b)+−
ωl µ(S,b)

ω+1,l−1 + iz̃(S,b)++

ωl µ(S,b)

ω+1,l+1

)
= (Mno

21 )ω+1,l−1 µ
(S,a)

ω+1,l−1

Å
(Mno

21 )ωl
(Mno

21 )ω+1,l−1
iz̃(S,a)+−
ωl

ã
+ (Mno

22 )ω+1,l−1 µ
(S,b)

ω+1,l−1

Å
(Mno

22 )ωl
(Mno

22 )ω+1,l−1
iz̃(S,b)+−
ωl

ã
+(Mno

21 )ω+1,l+1 µ
(S,a)

ω+1,l+1

Å
(Mno

21 )ωl
(Mno

21 )ω+1,l+1
iz̃(S,a)++

ωl

ã
+(Mno

22 )ω+1,l+1 µ
(S,b)

ω+1,l+1

Å
(Mno

22 )ωl
(Mno

22 )ω+1,l+1
iz̃(S,b)++

ωl

ã
Plugging in the definitions we find

(Mno
21 )ωl

(Mno
21 )ω+1,l−1

z̃(S,a)+−
ωl =

(Mno
22 )ωl

(Mno
22 )ω+1,l−1

z̃(S,b)+−
ωl = +(m̃+−ω+l−2)χ

(d−1)
− (l) =: z̃(C,b)+−

ωl

(Mno
21 )ωl

(Mno
21 )ω+1,l+1

z̃(S,a)++

ωl =
(Mno

22 )ωl
(Mno

22 )ω+1,l+1
z̃(S,b)++

ωl = +(m̃+−ω−l−d)χ
(d−1)
+ (l) =: z̃(C,b)++

ωl ,

and thus obtain

Zd .µ
(C,b)

ωlml
= iz̃(C,b)+−

ωll̃
µ(C,b)

ω+1,l−1,̃l,ml
+ iz̃(C,b)++

ωll̃
µ(C,b)

ω+1,l+1,̃l,ml
(C.307)

z̃(C,b)+−

ωll̃
= +(m̃+−ω+l−2)χ

(d−1)
− (l, l̃)

= −2(γC,b−αC,b)χ(d−1)
− (l, l̃)

z̃(C,b)++

ωll̃
= +(m̃+− ω − l−d)χ

(d−1)
+ (l, l̃)

= −2βC,b χ
(d−1)
+ (l, l̃).
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This reproduces (C.289). The third induced action is

Zd .µ
(C,a)

ωl = (Mno
11 )ωl

(
iz(S,a)−−
ωl µ(S,a)

ω−1,l−1 + iz(S,a)−+

ωl µ(S,a)

ω−1,l+1

)
+ (Mno

12 )ωl

(
iz(S,b)−−
ωl µ(S,b)

ω−1,l−1 + iz(S,b)−+

ωl µ(S,b)

ω−1,l+1

)
= (Mno

11 )ω−1,l−1 µ
(S,a)

ω−1,l−1

Å
(Mno

11 )ωl
(Mno

11 )ω−1,l−1
iz(S,a)−−
ωl

ã
+ (Mno

12 )ω−1,l−1 µ
(S,b)

ω−1,l−1

Å
(Mno

12 )ωl
(Mno

12 )ω−1,l−1
iz(S,b)−−
ωl

ã
+(Mno

11 )ω−1,l+1 µ
(S,a)

ω−1,l+1

Å
(Mno

11 )ωl
(Mno

11 )ω−1,l+1
iz(S,a)−+

ωl

ã
+(Mno

12 )ω−1,l+1 µ
(S,b)

ω−1,l+1

Å
(Mno

12 )ωl
(Mno

12 )ω−1,l+1
iz(S,b)−+

ωl

ã
Plugging in the definitions we find

(Mno
11 )ωl

(Mno
11 )ω−1,l−1

z(S,a)−−
ωl =

(Mno
12 )ωl

(Mno
12 )ω−1,l−1

z(S,b)−−
ωl = +(m̃+−ω−l−d+2)χ

(d−1)
− (l) =: z(C,a)−−

ωl

(Mno
11 )ωl

(Mno
11 )ω−1,l+1

z(S,a)−+

ωl =
(Mno

12 )ωl
(Mno

12 )ω−1,l+1
z(S,b)−+

ωl = + (m̃+− ω + l) χ
(d−1)
+ (l) =: z(C,a)−+

ωl ,

and thus obtain

Zd .µ
(C,a)

ωlml
= iz(C,a)−−

ωll̃
µ(C,a)

ω−1,l−1,̃l,ml
+ iz(C,a)−+

ωll̃
µ(C,a)

ω−1,l+1,̃l,ml
(C.308)

z(C,a)−−

ωll̃
= +(m̃+−ω−l−d+2)χ

(d−1)
− (l, l̃)

= 2(γC,a−βC,a)χ
(d−1)
− (l, l̃)

z(C,a)−+

ωll̃
= +(m̃+−ω+l)χ

(d−1)
+ (l, l̃)

= 2αC,a χ
(d−1)
+ (l, l̃).

This confirms (C.296). Finally, the fourth induced action is

Zd .µ
(C,b)

ωl = (Mno
21 )ωl

(
iz(S,a)−−
ωl µ(S,a)

ω−1,l−1 + iz(S,a)−+

ωl µ(S,a)

ω−1,l+1

)
+ (Mno

22 )ωl

(
iz(S,b)−−
ωl µ(S,b)

ω−1,l−1 + iz(S,b)−+

ωl µ(S,b)

ω−1,l+1

)
= (Mno

21 )ω−1,l−1 µ
(S,a)

ω−1,l−1

Å
(Mno

21 )ωl
(Mno

21 )ω−1,l−1
iz(S,a)−−
ωl

ã
+ (Mno

22 )ω−1,l−1 µ
(S,b)

ω−1,l−1

Å
(Mno

22 )ωl
(Mno

22 )ω−1,l−1
iz(S,b)−−
ωl

ã
+(Mno

21 )ω−1,l+1 µ
(S,a)

ω−1,l+1

Å
(Mno

21 )ωl
(Mno

21 )ω−1,l+1
iz(S,a)−+

ωl

ã
+(Mno

22 )ω−1,l+1 µ
(S,b)

ω−1,l+1

Å
(Mno

22 )ωl
(Mno

22 )ω−1,l+1
iz(S,b)−+

ωl

ã
Plugging in the definitions we find

(Mno
21 )ωl

(Mno
21 )ω−1,l−1

z(S,a)−−
ωl =

(Mno
22 )ωl

(Mno
22 )ω−1,l−1

z(S,b)−−
ωl = −(m̃++ω+l−2)χ

(d−1)
− (l) =: z(C,b)−−

ωl

(Mno
21 )ωl

(Mno
21 )ω−1,l+1

z(S,a)−+

ωl =
(Mno

22 )ωl
(Mno

22 )ω−1,l+1
z(S,b)−+

ωl = −(m̃++ω−l−d)χ
(d−1)
+ (l) =: z(C,b)−+

ωl ,

and thus obtain

Zd .µ
(C,b)

ωlml
= iz(C,b)−−

ωll̃
µ(C,b)

ω−1,l−1,̃l,ml
+ iz(C,b)−+

ωll̃
µ(C,b)

ω−1,l+1,̃l,ml
(C.309)

z(C,b)−−

ωll̃
= −(m̃++ω+l−2)χ

(d−1)
− (l, l̃)

= 2(γC,b−βC,b)χ(d−1)
− (l, l̃)

z(C,b)−+

ωll̃
= −(m̃++ω−l−d)χ

(d−1)
+ (l, l̃)

= 2αC,b χ
(d−1)
+ (l, l̃).

This coincides with (C.297). Thus all the boost actions on the C-modes that we calculated in the
previous section are consistent with the boost actions on the S-modes.
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C.4 Commutation of complex structures and isometries

In this section we are looking for complex structures J on spaces of Klein-Gordon solutions on AdS,
whose actions on the solutions commute with the actions of the isometries as discussed in Section
2.4.5. That is, let KAB the generator of any isometry on AdS, and let φ(t, ρ,Ω) any Klein-Gordon
solution on some region M of AdS. Then we require our complex structure to fulfill(

J (KAB .φ)
)
(t, ρ,Ω)

!
=
(
KAB . (Jφ)

)
(t, ρ,Ω) ∀φ ∈ LM . (C.310)

Of the boosts, we shall only consider the infinitesimal d-boosts. This is sufficient, since the other
boost’s generators arise as Lie brackets of the d-boosts with rotation generators (and if two operators
K and L each commute with J , then their Lie bracket [K, L] again commutes with J).

C.4.1 AdS time-interval regions

Since for time-interval regions we only use the frequency representation, our complex structure is
simply (the same as for Minkowski time-interval regions):(

JΣt φ
)±
nlml

= −iφ±nlml , (C.311)

which applied to the Jacobi expansion (2.201)

φ(t, ρ,Ω) =
∑
nlml

{
φ+
nlml

µ
(±)
nlml

(t, ρ,Ω) + φ−nlml µ
(±)
nlml

(t, ρ,Ω)

}
(C.312)

gives us the action

(JΣtφ)(t, ρ,Ω) =
∑
nlml

{
−iφ+

nlml
µ

(±)
nlml

(t, ρ,Ω) + iφ−nlml µ
(±)
nlml

(t, ρ,Ω)

}
. (C.313)

Next we check wether this choice makes JΣt commute with the isometries, which for time translations
and rotations turns out to be rather easy.

AdS time-interval region: time translations

For the (finite) time translation denoted by k∆t we obtain from (C.115)(
JΣt

(
k∆t .φ

))
(t, ρ,Ω)=

∑
nlml

{
−i
(
φ+
nlml

eiω±
nl

∆t
)
µ

(±)
nlml

(t, ρ,Ω)+i
(
φ−nlml e−iω±

nl
∆t
)
µ

(±)
nlml

(t, ρ,Ω)

}
(
k∆t . (JΣtφ)

)
(t, ρ,Ω)=

∑
nlml

{(
−iφ+

nlml

)
eiω±

nl
∆t µ

(±)
nlml

(t, ρ,Ω) +
(

iφ−nlml

)
e−iω±

nl
∆t µ

(±)
nlml

(t, ρ,Ω)

}
,

and thus

JΣt

(
k∆t .φ

)
= k∆t .

(
JΣtφ

)
. (C.314)

AdS time-interval region: rotations

For the rotations, from (C.134) with (C.133) we have

(R̂(α).φ)(t, ρ,Ω) =
∑
nlml

{( ∑
l̃
′
,m′

l

φ+

nl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

)
µ

(±)
nlml

(t, ρ,Ω)

+

( ∑
l̃
′
,m′

l

φ−
nl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

)
µ

(±)
nlml

(t, ρ,Ω)

}
.

(C.315)



iC.4 Commutation of complex structures and isometries 207i

From this expansion we can derive(
JΣt

(
R̂(α).φ

))
(t, ρ,Ω) =

∑
nlml

{
−i

( ∑
l̃
′
,m′

l

φ+

nl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

)
µ

(±)
nlml

(t, ρ,Ω)

+i

( ∑
l̃
′
,m′

l

φ−
nl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

)
µ

(±)
nlml

(t, ρ,Ω)

}
(
R̂(α).

(
JΣtφ

))
(t, ρ,Ω) =

∑
nlml

{( ∑
l̃
′
,m′

l

(
−iφ+

nl l̃
′
m′
l

) (
Dl
l̃,̃l
′ (α)

)
mlm′l

)
µ

(±)
nlml

(t, ρ,Ω)

+

( ∑
l̃
′
,m′

l

(
iφ−
nl l̃
′
m′
l

)(
Dl
l̃,̃l
′ (α)

)
mlm′l

)
µ

(±)
nlml

(t, ρ,Ω)

}
,

and thus

JΣt

(
R̂(α).φ

)
= R̂(α).

(
JΣtφ

)
. (C.316)

AdS time-interval region: boosts

For the boosts the resulting expressions are a bit more lengthy, and therefore we will not consider
the whole expansion here, but write down only the action on the momentum representation. From
(C.180)(

K0d .φ
)+
nlml

= i
2z

(+)0−
n,l+1,l̃

φ+
n,l+1,̃l,ml

+ i
2z

(+)−+

n+1,l−1,l̃ φ
+
n+1,l−1,̃l,ml

+ i
2 z̃

(+)+−
n−1,l+1,l̃

φ+
n−1,l+1,̃l,ml

+ i
2 z̃

(+)0+

n,l−1,l̃ φ
+
n,l−1,̃l,ml

we can derive(
J
(
K0d .φ

))+

nlml
= −i

(
i
2z

(+)0−
n,l+1,l̃

φ+
n,l+1,̃l,ml

+ i
2z

(+)−+

n+1,l−1,l̃ φ
+
n+1,l−1,̃l,ml

+ i
2 z̃

(+)+−
n−1,l+1,l̃

φ+
n−1,l+1,̃l,ml

+ i
2 z̃

(+)0+

n,l−1,l̃ φ
+
n,l−1,̃l,ml

)
(
K0d .

(
J φ
))+

nlml
= i

2z
(+)0−
n,l+1,l̃

(
−iφ+

n,l+1,̃l,ml

)
+ i

2z
(+)−+

n+1,l−1,l̃

(
−iφ+

n+1,l−1,̃l,ml

)
+ i

2 z̃
(+)+−
n−1,l+1,l̃

(
−iφ+

n−1,l+1,̃l,ml

)
+ i

2 z̃
(+)0+

n,l−1,l̃

(
−iφ+

n,l−1,̃l,ml

)
The corresponding similar relations for the action on φ−nlml respectively for the actions of Kd+1,d can
easily be checked in the same way. This means that we have

JΣt(K0d .φ) = K0d . (JΣtφ) (C.317)

JΣt(Kd+1,d .φ) = Kd+1,d . (JΣtφ) . (C.318)

We have thus shown that our choice for the complex structure commutes with the actions of all AdS
isometries on the (real or complexified) space of bounded Klein-Gordon solutions on a time-interval
region.

C.4.2 AdS rod regions

Here we start with the most general form of the complex structure, and then impose several conditions
on it, which make its form more concrete. We shall work using the S-expansion (2.186):

φ(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml µ

(S,a)
ωlml

(t, ρ,Ω) + φS,bωlml µ
(S,b)
ωlml

(t, ρ,Ω).
}

(C.319)

Since all solutions on a tube region can be expanded in this way, and we want our complex structure
Jρ to map solutions to solutions, we can expand Jρφ in the same way:(

Jρφ
)
(t, r,Ω) =

ˆ
dω
∑
l,ml

{(
Jρφ

)S,a
ωlml

µ
(S,a)
ωlml

(t, ρ,Ω) +
(
Jρφ

)S,b
ωlml

µ
(S,b)
ωlml

(t, ρ,Ω).
}

(C.320)
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Since Jρ is linear, the most general form of Jρ is

(
Jρφ

)S,a
ωlml

=

ˆ
dω′

∑
l′,m′

l

ß
jS,aa

(
ω l ml
ω′l ′m′

l

)
φS,aω′l′m′

l
+ jS,ab

(
ω l ml
ω′l ′m′

l

)
φS,bω′l′m′

l

+ ̃S,aa
(
ω l ml
ω′l ′m′

l

)
φS,aω′l′m′

l
+ ̃S,ab

(
ω l ml
ω′l ′m′

l

)
φS,bω′l′m′

l

™
(
Jρφ

)S,b
ωlml

=

ˆ
dω′

∑
l′,m′

l

ß
jS,ba

(
ω l ml
ω′l ′m′

l

)
φS,aω′l′m′

l
+ jS,bb

(
ω l ml
ω′l ′m′

l

)
φS,bω′l′m′

l

+ ̃S,ba
(
ω l ml
ω′l ′m′

l

)
φS,aω′l′m′

l
+ ̃S,bb

(
ω l ml
ω′l ′m′

l

)
φS,bω′l′m′

l

™
.

(C.321)

Here, the integral kernels jS,aa et cetera are complex functions on two sets of momenta, and com-
pletely determine the complex structure. At this point we require the action of Jρ to be linear only
with respect to real linear combinations of real solutions, for which (C.321) is the most general form.
First, we can impose the usual essential properties of a complex structure:

0. Jρ must map real solutions to real solutions.

1. J2
ρ

!
= −1 when acting on real solutions.

2. Compatibility with the symplectic structure: ω(Jρη, Jρζ)
!
= ω(η, ζ) for all real solutions η, ζ.

These yield several integral conditions that the kernels jS,aa et cetera must fulfill. However, it is more
effective to first require the complex structure Jρ to commute with the actions of time translation
and rotations, and to impose the essential properties only after doing this. As last step, we then
require Jρ to also commute with the boost’s actions.

C.4.3 Jρ: commutation with time-translations and spatial rotations

We begin by considering the action (C.120) of time translations:(
k∆t .φ

)S,a
ωlml

= eiω∆t φS,aωlml
(
k∆t .φ

)S,b
ωlml

= eiω∆t φS,bωlml . (C.322)

This implies

(
Jρ(k∆t .φ)

)S,a
ωlml

=

ˆ
dω′

∑
l′,m′

l

ß
jS,aa

(
ω l ml
ω′l ′m′

l

)
eiω′∆t φS,aω′l′m′

l
+ jS,ab

(
ω l ml
ω′l ′m′

l

)
eiω′∆t φS,bω′l′m′

l

+ ̃S,aa
(
ω l ml
ω′l ′m′

l

)
e−iω′∆t φS,aω′l′m′

l
+ ̃S,ab

(
ω l ml
ω′l ′m′

l

)
e−iω′∆t φS,bω′l′m′

l

™
!
=
(
k∆t . (Jρφ)

)S,a
ωlml

= eiω∆t

ˆ
dω′

∑
l′,m′

l

ß
jS,aa

(
ω l ml
ω′l ′m′

l

)
φS,aω′l′m′

l
+ jS,ab

(
ω l ml
ω′l ′m′

l

)
φS,bω′l′m′

l

+ ̃S,aa
(
ω l ml
ω′l ′m′

l

)
φS,aω′l′m′

l
+ ̃S,ab

(
ω l ml
ω′l ′m′

l

)
φS,bω′l′m′

l

™
.

We want the upper and lower line to coincide for all solutions φ, which implies (with δ denoting
Dirac deltas)

jS,aa
(
ω l ml
ω′l ′m′

l

)
= δ(ω−ω′) jS,aaω

(
l ml
l ′m′

l

)
jS,ab

(
ω l ml
ω′l ′m′

l

)
= δ(ω−ω′) jS,abω

(
l ml
l ′m′

l

)
(C.323)

̃S,aa
(
ω l ml
ω′l ′m′

l

)
= δ(ω+ω′) ̃S,aaω

(
l ml
l ′m′

l

)
̃S,ab

(
ω l ml
ω′l ′m′

l

)
= δ(ω+ω′) ̃S,abω

(
l ml
l ′m′

l

)
.



iC.4 Commutation of complex structures and isometries 209i

In the same way (
Jρ(k∆t .φ)

)S,b
ωlml

!
=
(
k∆t . (Jρφ)

)S,b
ωlml

implies

jS,ba
(
ω l ml
ω′l ′m′

l

)
= δ(ω−ω′) jS,baω

(
l ml
l ′m′

l

)
jS,bb

(
ω l ml
ω′l ′m′

l

)
= δ(ω−ω′) jS,bbω

(
l ml
l ′m′

l

)
(C.324)

̃S,ba
(
ω l ml
ω′l ′m′

l

)
= δ(ω+ω′) ̃S,baω

(
l ml
l ′m′

l

)
̃S,bb

(
ω l ml
ω′l ′m′

l

)
= δ(ω+ω′) ̃S,bbω

(
l ml
l ′m′

l

)
.

Thus the actions (C.321) become a bit simpler:

(
Jρφ

)S,a
ωlml

=
∑
l′,m′

l

ß
jS,aaω

(
l ml
l ′m′

l

)
φS,aωl′m′

l
+ jS,abω

(
l ml
l ′m′

l

)
φS,bωl′m′

l

+ ̃S,aaω

(
l ml
l ′m′

l

)
φS,a−ω,l′m′

l
+ ̃S,abω

(
l ml
l ′m′

l

)
φS,b−ω,l′m′

l

™
(
Jρφ

)S,b
ωlml

=
∑
l′,m′

l

ß
jS,baω

(
l ml
l ′m′

l

)
φS,aωl′m′

l
+ jS,bbω

(
l ml
l ′m′

l

)
φS,bωl′m′

l

+ ̃S,baω

(
l ml
l ′m′

l

)
φS,a−ω,l′m′

l
+ ̃S,bbω

(
l ml
l ′m′

l

)
φS,b−ω,l′m′

l

™
.

(C.325)

Next we do the same for the action (C.151) of rotations:

(
R̂(α).φ

)S,a
ωl l̃ml

=
∑
l̃
′
,m′

l

φS,a
ωl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

(
R̂(α).φ

)S,b
ωl l̃ml

=
∑
l̃
′
,m′

l

φS,b
ωl l̃
′
m′
l

(
Dl
l̃,̃l
′ (α)

)
mlm′l

.

We thus find(
Jρ(R̂(α).φ)

)S,a
ωlml

=
∑
l′,m′

l

∑
l̃
′′
,m′′

l

ß
jS,aaω

(
l ml
l ′m′

l

)
φS,a
ωl′ l̃

′′
m′′
l

(
Dl′

l̃
′
,̃l
′′ (α)

)
m′
l
m′′
l

+jS,abω

(
l ml
l ′m′

l

)
φS,b
ωl′ l̃

′′
m′′
l

(
Dl′

l̃
′
,̃l
′′ (α)

)
m′
l
m′′
l

+̃S,aaω

(
l ml
l ′m′

l

)
φS,a
−ω,l′ l̃′′m′′

l

(
Dl′

l̃
′
,̃l
′′ (α)

)
m′
l
m′′
l

+̃S,abω

(
l ml
l ′m′

l

)
φS,b
−ω,l′ l̃′′m′′

l

(
Dl′

l̃
′
,̃l
′′ (α)

)
m′
l
m′′
l

™
!
=
(
R̂(α). (Jρφ)

)S,a
ωlml

=
∑
l′,m′

l

∑
l̃
′′
,m′′

l

ß
jS,aaω

(
l l̃
′′
m′′l

l′ l̃
′
m′
l

)
φS,a
ωl′ l̃

′
m′
l

(
Dl
l̃,̃l
′′ (α)

)
mlm′′l

+jS,abω

(
l l̃
′′
m′′l

l′ l̃
′
m′
l

)
φS,b
ωl′ l̃

′
m′
l

(
Dl
l̃,̃l
′′ (α)

)
mlm′′l

+̃S,aaω

(
l l̃
′′
m′′l

l′ l̃
′
m′
l

)
φS,a
−ω,l′ l̃′m′

l

(
Dl
l̃,̃l
′′ (α)

)
mlm′′l

+̃S,abω

(
l l̃
′′
m′′l

l′ l̃
′
m′
l

)
φS,b
−ω,l′ l̃′m′

l

(
Dl
l̃,̃l
′′ (α)

)
mlm′′l

™
.

We want the upper and lower equality to coincide for all solutions φ, which implies (with δ denoting
Kronecker deltas and using (A.37))

jS,aaω

(
l ml
l ′m′

l

)
= jS,aaωl δ(d−2)

l ,l ′ δmlm′l jS,abω

(
l ml
l ′m′

l

)
= jS,abωl δ(d−2)

l ,l ′ δmlm′l (C.326)

̃S,aaω

(
l ml
l ′m′

l

)
= ̃S,aaωl δ(d−2)

l ,l ′ δml,−m′l ̃S,abω

(
l ml
l ′m′

l

)
= ̃S,abωl δ(d−2)

l ,l ′ δml,−m′l

In the same way we can show that also

jS,baω

(
l ml
l ′m′

l

)
= jS,baωl δ(d−2)

l ,l ′ δmlm′l jS,bbω

(
l ml
l ′m′

l

)
= jS,bbωl δ(d−2)

l ,l ′ δmlm′l (C.327)

̃S,baω

(
l ml
l ′m′

l

)
= ̃S,baωl δ(d−2)

l ,l ′ δml,−m′l ̃S,bbω

(
l ml
l ′m′

l

)
= ̃S,bbωl δ(d−2)

l ,l ′ δml,−m′l
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Therefore we can now write the action (C.325) of our complex structure in a much simpler way:(
Jρφ

)S,a
ωlml

= jS,aaωl φS,aωlml + ̃S,aaωl φS,a−ω,l,−ml + jS,abωl φS,bωlml + ̃S,abωl φS,b−ω,l,−ml(
Jρφ

)S,b
ωlml

= jS,baωl φS,aωlml + ̃S,baωl φS,a−ω,l,−ml + jS,bbωl φS,bωlml + ̃S,bbωl φS,b−ω,l,−ml .
(C.328)

For real solutions φ this can also be written as(
Jρφ

)S,a
ωlml

=
(
jS,aaωl + ̃S,aaωl

)
φS,aωlml +

(
jS,abωl + ̃S,abωl

)
φS,bωlml(

Jρφ
)S,b
ωlml

=
(
jS,baωl + ̃S,baωl

)
φS,aωlml +

(
jS,bbωl + ̃S,bbωl

)
φS,bωlml .

(C.329)

We can now redefine
(
jS,aaωl + ̃S,aaωl

)
→ jS,aaωl and ditto for the other jS , and obtain(

Jρφ
)S,a
ωlml

= jS,aaωl φS,aωlml + jS,abωl φS,bωlml(
Jρφ

)S,b
ωlml

= jS,baωl φS,aωlml + jS,bbωl φS,bωlml .
(C.330)

For real solutions the actions (C.330) and (C.328) are completely indentical while for complex so-
lutions they are not. Because we are imposing all properties of the complex structure only for real
solutions, we can choose between both actions at will. Since action (C.330) has the advantage of
being linear also with respect to complex linear combinations of complex solutions, we shall choose
this one. We could actually have imposed it right from the start, we can see now that our less
restrictive ansatz (C.321) does not yield any advantage.

C.4.4 Jρ: essential properties

We recall that real solutions φ are those with φS,a−ω,l ,−ml = φS,aωlml while φS,b−ω,l ,−ml = φS,bωlml in the

S-expansion (2.186):

φ(t, r,Ω) =

ˆ
dω
∑
l,ml

{
φS,aωlml µ

(S,a)
ωlml

(t, ρ,Ω) + φS,bωlml µ
(S,b)
ωlml

(t, ρ,Ω).
}

(C.331)

Applying the action of Jρ from (C.330) to this expansion, we can read off that the condition that Jρ
must turn real solutions into real solutions becomes

jS,aa−ω,l
!
= jS,aaωl jS,ab−ω,l

!
= jS,abωl (C.332)

jS,ba−ω,l
!
= jS,baωl jS,bb−ω,l

!
= jS,bbωl .

We note that this forces all j-factors to be real for ω = 0. Applying the complex structure (C.330)
twice to the expansion (C.331), it is straightforward to check that the property J2

ρ = −1 amounts
to the conditions

−1
!
= jS,aaωl jS,aaωl + jS,abωl jS,baωl (C.333)

−1
!
= jS,bbωl jS,bbωl + jS,abωl jS,baωl (C.334)

0
!
= jS,abωl

(
jS,aaωl + jS,bbωl

)
(C.335)

0
!
= jS,baωl

(
jS,aaωl + jS,bbωl

)
. (C.336)

Requiring compatibility ωρ(Jρη, Jρζ) = ωρ(η, ζ) with the symplectic structure (2.195)

ωρ(η, ζ) = ιπRd−1
AdS

ˆ
dω
∑
l,ml

(2l+d−2)
{
ηS,aωlml ζ

S,b
−ω,l,−ml − η

S,b
ωlml

ζS,a−ω,l,−ml

}
(C.337)
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implies the conditions

+1
!
= jS,aaωl jS,bbωl − jS,baωl jS,abωl , (C.338)

0
!
= jS,aaωl jS,baωl − jS,aaωl jS,baωl , (C.339)

0
!
= jS,bbωl jS,abωl − jS,bbωl jS,abωl . (C.340)

The last two equalities simply say that the products jS,aaωl jS,baωl and jS,bbωl jS,abωl must be real. Another
property that we would like our complex structure to induce, is that the real g-product gρ(η, ζ) :=
ωρ(η, Jρζ) becomes real for real solutions. Using the following property of real solutions η, ζ (resulting
from reversing the integration and summation direction)

ˆ
dω
∑
l,ml

ηS,aωlml ζ
S,b
−ω,l,−ml j

S,ba
−ω,l,−ml =

ˆ
dω
∑
l,ml

ηS,aωlml ζ
S,b
ωlml

jS,baωl (C.341)

=

ˆ
dω
∑
l,ml

(
1
2 η

S,a
ωlml

ζS,bωlml
jS,baωl + 1

2 ηS,aωlml ζ
S,b
ωlml

jS,baωl

)
it can be quickly read off that the ”real-to-real”property C.332 already assures that the real g-product
g(η, ζ) is real for real solutions η, ζ, hence this condition induces no new equalities. This is expected,
since the symplectic structure ωρ is real for real solutions, and hence ωρ(η, Jρζ) must be real because
we already implemented that for real ζ we have Jρζ real as well.

Thus we have the following conditions:

(C.339) =⇒ jS,aaωl jS,baωl
!
= Real (C.342)

(C.340) =⇒ jS,bbωl jS,abωl
!
= Real (C.343)

(C.333) =⇒
(
jS,aaωl

)2
+ jS,abωl jS,baωl

!
= −1 (C.344)

(C.334) =⇒
(
jS,bbωl

)2
+ jS,abωl jS,baωl

!
= −1 (C.345)

(C.338) =⇒ jS,aaωl jS,bbωl − jS,baωl jS,abωl
!
= +1 (C.346)

(C.335) =⇒ jS,abωl

(
jS,aaωl + jS,bbωl

)
!
= 0 (C.347)

(C.336) =⇒ jS,baωl

(
jS,aaωl + jS,bbωl

) !
= 0. (C.348)

One restrictive relation following from these is

(C.344)− (C.345) =⇒ (jS,bbωl )2 !
= (jS,aaωl )2 =⇒ jS,bbωl

!
= ±jS,aaωl . (C.349)

Inserting this into (C.346) implies that also

jS,abωl jS,baωl
!
= Real. (C.350)

We collect the different solutions of these conditions through case distinctions. One way to do this,
is to distinguish first between Re jS,abωl = 0 and Re jS,abωl 6= 0.

For the first case Re jS,abωl = 0, that is, for jS,abωl purely imaginary, the conditions (C.350), (C.343)
and (C.342) imply that the other three j-factors must be imaginary as well. To evaluate this further,

we distinguish now also the two different cases of (C.349). The minus-case jS,bbωl = −jS,aaωl together
with all j-factors being imaginary leads to a contradiction between (C.344) and (C.346). Hence here
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we can only choose the plus-case jS,bbωl = +jS,aaωl . Then, with all j-factors being imaginary, taking

the difference of (C.344) and (C.346) yields (jS,aaωl )2 = −1, and hence jS,aaωl = ±i. With (C.347) and

(C.348) this implies that jS,abωl = jS,baωl = 0. Thus, our first case is:

Re jS,abωl = 0 ⇐⇒ Re jS,baωl = 0 (C.351)

=⇒ jS,aaωl = jS,bbωl = ±i with jS,aa−ω,l = jS,aaω,l = −jS,aaω,l ,

=⇒ jS,abωl = jS,baωl = 0.

We shall call it diagonal case because of the last line, and note that it is similar to the complex
structure (C.311) on equal-time surfaces (but the symplectic structure on equal-time surfaces has
a different form than the one we use on hypercylinders). We also note, that due to the second
line this complex structure does not work at ω = 0. Since so far we have only used the essentail
properties of the complex structure plus commutation with time-translations and spatial rotations,
this diagonal complex structure will occur not only for AdS, but rather for every spacetime that has
time-translations and spatial rotations as isometries (for example Minkowski and Schwarzschild).

For the second case RejS,abωl 6= 0, we note that (C.347) and (C.348) immediately imply the minus-

case jS,bbωl = −jS,aaωl of (C.349), leaving us with only three undetermined j-factors. Next, we find
that all j-factors must be real now. Suppressing for a moment the labels (ω, l), this can be shown
by writing each j-factor as j = jR + ijI and going through the conditions. However, it is a bit faster
to use polar coordinates: we write jS,ab = rab eiϕab , etc., with ϕab ∈ (− ιπ,+ ιπ]. Then, in order for
getting real products in the conditions (C.342), (C.343) and (C.350), the differences of each two
angles must be integer multiples of ιπ, e.g.: ϕaa − ϕba = n ιπ with n ∈ Z. This means, that while
all three remaining j-factors are complex numbers, they are real multiples of each other. That is,
we can write jS,aaωl = u jS,abωl with u ∈ R, and jS,baωl = v jS,abωl with v < 0 due to (C.346). Then,

(C.344) implies that (jS,abωl )2 ∈ R. Thus jS,abωl is either purely imaginary, or real. Since we consider

the case Re jS,abωl 6= 0, it cannot be purely imaginary, and therefore must be real, making the other
j-factors real as well. Now conditions (C.344) and (C.346) coincide, and we cannot further simplify
the j-factors for this case. Thus, our second case is:

Re jS,abωl 6= 0 ⇐⇒ Re jS,baωl 6= 0 (C.352)

=⇒ jS,bbωl = −jS,aaωl with all jS, · ·ωl
∈ R,

=⇒ (jS,aaωl )2 = −1− jS,abωl jS,baωl with jS,ab−ω,l = jS,abω,l , and jS,ba−ω,l = jS,baω,l .

We shall call it nondiagonal case, which in the special case of jS,aaωl = 0 becomes antidiagonal.
However, a priori nothing forces the diagonal element jS,aa to vanish. Further, we need jS,ab and
jS,ba to have opposite sign: this is necessary to make jS,aa real. As opposed to the diagonal case,
here no problem arises at ω = 0.

It remains to study which further conditions are imposed on Jρ by requiring a positive-definite
gρ, and/or requiring it to commute with the actions of the boosts.

C.4.5 Jρ: positive-definite induced gρ

For real solutions η, ζ we would like the real g-product gρ(η, ζ) to be positive-definite. However, we
note that in [?] it is shown that this is only a practical property, not a necessary one, because a
consistent quantization can be set up for an indefinite gρ as well.

First, we consider the real g-product induced by the diagonal case (C.351). In particular, we

choose jS,aaω,l = +i for ω > 0 while jS,aaω,l = −i for ω < 0. As remarked above, the point ω = 0 cannot
be included in this case. Using C.337 we obtain

gρ(η, ζ) = i ιπRd−1
AdS

∞̂

0

dω
∑
l,ml

(2l+d−2)

ß
−ηS,aωlmlζ

S,b
−ω,l,−ml+η

S,a
−ω,l,−mlζ

S,b
ωlml

+ηS,bωlmlζ
S,a
−ω,l,−ml−η

S,b
−ω,l,−mlζ

S,a
ωlml

™
.
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For real η, ζ this becomes

gρ(η, ζ) = i ιπRd−1
AdS

∞̂

0

dω
∑
l,ml

(2l+d−2)

ß
−ηS,aωlmlζ

S,b
ωlml

+ηS,aωlmlζ
S,b
ωlml

+ηS,bωlmlζ
S,a
ωlml
−ηS,bωlmlζ

S,a
ωlml

™
= 2 ιπRd−1

AdS

∞̂

0

dω
∑
l,ml

(2l+d−2) Im
(
ηS,aωlmlζ

S,b
ωlml

+ ηS,bωlmlζ
S,a
ωlml

)
,

and thus for real φ

gρ(φ, φ) = 2 ιπRd−1
AdS

∞̂

0

dω
∑
l,ml

(2l+d−2) Im
(

2Re (φS,aωlmlφ
S,b
ωlml

)
)

= 0.

Hence the diagonal case induces a real g-product which gives zero norm to all real solutions. (This

is actually independent of the choice jS,aaω,l = +i for ω > 0 while jS,aaω,l = −i for ω < 0.) We want to
avoid this, and therefore we shall prefer the nondiagonal case whenever possible.

Let us consider now the real g-product induced by the nondiagonal case. Using C.337 we obtain:

gρ(η, ζ) = ιπRd−1
AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß
ηS,aωlml

(
jS,baωl ζS,a−ω,l,−ml − j

S,aa
ωl ζS,b−ω,l,−ml

)
− ηS,bωlml

(
jS,aaωl ζS,a−ω,l,−ml + jS,abωl ζS,b−ω,l,−ml

)™
.

For real η, ζ this becomes

gρ(η, ζ) = ιπRd−1
AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß
ηS,aωlml

(
jS,baωl ζS,aωlml

− jS,aaωl ζS,bωlml

)
− ηS,bωlml

(
jS,aaωl ζS,aωlml

+ jS,abωl ζS,bωlml

)™
,

and thus for real φ we get

gρ(φ, φ)= ιπRd−1
AdS

ˆ
dω
∑
l,ml

(2l+d−2)

ß
jS,baωl

∣∣φS,aωlml ∣∣2−jS,abωl

∣∣φS,bωlml ∣∣2−2jS,aaωl Re
(
φS,aωlmlφ

S,b
ωlml

)™
.

(C.353)

By considering solutions φ with either φS,a or φS,b vanishing, this tells us that for a positive-definite
real g-product we need

Re
(
jS,baωl

)
> 0 Re

(
jS,abωl

)
< 0. (C.354)

In matrix notation (C.353) writes as a symmetric quadratic form:

gρ(φ, φ)= ιπRd−1
AdS

ˆ
dω
∑
l,ml

(2l+d−2)
Ä
φS,aωlml , φS,bωlml

ä(+jS,baωl −jS,aaωl

−jS,aaωl −jS,abωl

)(
φS,aωlml
φS,bωlml

)
. (C.355)

Sylvester’s criterion tells us, that this form is positive-definite, if jS,baωl and the below determinant
are both positive: ∣∣∣∣∣+jS,baωl −jS,aaωl

−jS,aaωl −jS,abωl

∣∣∣∣∣ = −jS,baωl jS,abωl − (jS,aaωl )2 > 0. (C.356)
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The nondiagonal case (C.352) already includes that this determinant has value one. Hence for the
nondiagonal case a positive-definite gρ is ensured by

jS,abωl < 0 with jS,baωl > 0. (C.357)

For the nondiagonal case we thus have established the following complex structure, wherein the last
line is only required for a positive-definite gρ:(

Jρφ
)S,a
ωlml

= jS,aaωl φS,aωlml + jS,abωl φS,bωlml(
Jρφ

)S,b
ωlml

= jS,baωl φS,aωlml − j
S,aa
ωl φS,bωlml (C.358)(

jS,aaωl

)2
= −jS,abωl jS,baωl − 1 ≥ 0

jS,ab−ω,l = jS,abωl jS,ba−ω,l = jS,baωl

jS,abωl < 0 jS,baωl > 0.

We remark that another reason for desiring a positive-definite gρ is that it prevents jS,abωl and jS,baωl

from becoming zero, and thereby avoids the occurrence of the diagonal case for any frequency ω.

C.4.6 Jρ: commutation with boosts

Next we check what restrictions the commutation condition induces for the jS-factors. In Section
C.3.3 we work out the action of the boost generators, resulting in:(
K0d .φ

)S,a
ωlml

= i
2 z̃

(S,a)+−
ω−1,l+1,l̃

φS,a
ω−1,l+1,̃l,ml

+ i
2 z̃

(S,a)++

ω−1,l−1,l̃ φ
S,a
ω−1,l−1,̃l,ml

+ i
2z

(S,a)−−
ω+1,l+1,l̃

φS,a
ω+1,l+1,̃l,ml

+ i
2z

(S,a)−+

ω+1,l−1,l̃ φ
S,a
ω+1,l−1,̃l,ml(

K0d .φ
)S,b
ωlml

= i
2 z̃

(S,b)+−
ω−1,l+1,l̃

φS,b
ω−1,l+1,̃l,ml

+ i
2 z̃

(S,b)++

ω−1,l−1,l̃ φ
S,b
ω−1,l−1,̃l,ml

+ i
2z

(S,b)−−
ω+1,l+1,l̃

φS,b
ω+1,l+1,̃l,ml

+ i
2z

(S,b)−+

ω+1,l−1,l̃ φ
S,b
ω+1,l−1,̃l,ml

(
Kd+1,d .φ

)S,a
ωlml

=−1
2 z̃

(S,a)+−
ω−1,l+1,l̃

φS,a
ω−1,l+1,̃l,ml

− 1
2 z̃

(S,a)++

ω−1,l−1,l̃ φ
S,a
ω−1,l−1,̃l,ml

+ 1
2z

(S,a)−−
ω+1,l+1,l̃

φS,a
ω+1,l+1,̃l,ml

+ 1
2z

(S,a)−+

ω+1,l−1,l̃ φ
S,a
ω+1,l−1,̃l,ml(

Kd+1,d .φ
)S,b
ωlml

=−1
2 z̃

(S,b)+−
ω−1,l+1,l̃

φS,b
ω−1,l+1,̃l,ml

− 1
2 z̃

(S,b)++

ω−1,l−1,l̃ φ
S,b
ω−1,l−1,̃l,ml

+ 1
2z

(S,b)−−
ω+1,l+1,l̃

φS,b
ω+1,l+1,̃l,ml

+ 1
2z

(S,b)−+

ω+1,l−1,l̃ φ
S,b
ω+1,l−1,̃l,ml

.

First, we consider the diagonal case (C.351) of the complx structure Jρ:

jS,aaωl = jS,bbωl = ±i with jS,aa−ω,l = −jS,aaω,l ,

jS,abωl = jS,baωl = 0.

For simplicity we choose jS,aaωl = ±i for all ω ≷ 0. We also recall that the diagonal case does
not work at ω = 0 due to frequency symmetry jS,aa−ω,l = −jS,aaω,l . In order to verify whether the
diagonal case commutes with the boosts’ actions, let us compare the actions of (Jρ(K0d .φ))S,aωlml
and (K0d . (Jρφ))S,aωlml . For clearer notation, we assume here that ω > 0.(
Jρ
(
K0d .φ

))S,a
ωlml

=+i
(
K0d .φ

)S,a
ωlml

=+i

ß
+

i

2
z̃(S,a)+−

ω−1,l+1,l̃
φS,a
ω−1,l+1,̃l,ml

+
i

2
z̃(S,a)++

ω−1,l−1,l̃
φS,a
ω−1,l−1,̃l,ml

(C.359)

+
i

2
z(S,a)−−

ω+1,l+1,l̃
φS,a
ω+1,l+1,̃l,ml

+
i

2
z(S,a)−+

ω+1,l−1,l̃
φS,a
ω+1,l−1,̃l,ml

™
(
K0d .

(
Jρφ

))S,a
ωlml

=+
i

2
jS,aaω−1,l+1z̃

(S,a)+−

ω−1,l+1,l̃
φS,a
ω−1,l+1,̃l,ml

+
i

2
jS,aaω−1,l−1z̃

(S,a)++

ω−1,l−1,l̃
φS,a
ω−1,l−1,̃l,ml

(C.360)

+
i

2
jS,aaω+1,l+1z

(S,a)−−

ω+1,l+1,l̃
φS,a
ω+1,l+1,̃l,ml

+
i

2
jS,aaω+1,l−1z

(S,a)−+

ω+1,l−1,l̃
φS,a
ω+1,l−1,̃l,ml

We can read off, that for ω > 1 in (C.360) all the factors jS,aaω±1,l±1 are simply +i, making (C.359)
agree with (C.360). However, for ω < 1 the factors jS,aaω−1,l∓1 become −i, making (C.359) disagree
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with (C.360). For the infinitesimal boosts considered here, this disagreement only occurs for |ω| < 1.
However, if we proceed to consider finite boosts, then there appear not only frequency shifts of ±1,
but of ±2, ±3, and so on. Thus, for finite boosts the disagreement extends to the whole frequency
range. (This does not depend on our simple choice of assigning ±i to frequencies ω ≷ 0. We also
note that by the same reasoning a particular nondiagonal complex structure in Section C.5.1 fails to
commute with the boosts.) Hence, we find that the diagonal complex structure does not commute
with the AdS boosts.

Second, we consider the nondiagonal case: from the Jρ-action (C.358) we derive the combinations
of complex structure and boost actions that we give below. We begin with the pair of actions(

Jρ
(
K0d .φ

))S,a
ωlml

= jS,aaωl

ß
+

i

2
z̃(S,a)+−

ω−1,l+1,l̃
φS,a
ω−1,l+1,̃l,ml

+
i

2
z̃(S,a)++

ω−1,l−1,l̃
φS,a
ω−1,l−1,̃l,ml

+
i

2
z(S,a)−−

ω+1,l+1,l̃
φS,a
ω+1,l+1,̃l,ml

+
i

2
z(S,a)−+

ω+1,l−1,l̃
φS,a
ω+1,l−1,̃l,ml

™
+ jS,abωl

ß
+

i

2
z̃(S,b)+−

ω−1,l+1,l̃
φS,b
ω−1,l+1,̃l,ml

+
i

2
z̃(S,b)++

ω−1,l−1,l̃
φS,b
ω−1,l−1,̃l,ml

+
i

2
z(S,b)−−

ω+1,l+1,l̃
φS,b
ω+1,l+1,̃l,ml

+
i

2
z(S,b)−+

ω+1,l−1,l̃
φS,b
ω+1,l−1,̃l,ml

™
(C.361)

(
K0d .

(
Jρφ

))S,a
ωlml

=
i

2
jS,aaω−1,l+1z̃

(S,a)+−

ω−1,l+1,l̃
φS,a
ω−1,l+1,̃l,ml

+
i

2
jS,aaω−1,l−1z̃

(S,a)++

ω−1,l−1,l̃
φS,a
ω−1,l−1,̃l,ml

+
i

2
jS,aaω+1,l+1z

(S,a)−−

ω+1,l+1,l̃
φS,a
ω+1,l+1,̃l,ml

+
i

2
jS,aaω+1,l−1z

(S,a)−+

ω+1,l−1,l̃
φS,a
ω+1,l−1,̃l,ml

+
i

2
jS,abω−1,l+1z̃

(S,a)+−

ω−1,l+1,l̃
φS,b
ω−1,l+1,̃l,ml

+
i

2
jS,abω−1,l−1z̃

(S,a)++

ω−1,l−1,l̃
φS,b
ω−1,l−1,̃l,ml

+
i

2
jS,abω+1,l+1z

(S,a)−−

ω+1,l+1,l̃
φS,b
ω+1,l+1,̃l,ml

+
i

2
jS,abω+1,l−1z

(S,a)−+

ω+1,l−1,l̃
φS,b
ω+1,l−1,̃l,ml

(C.362)

We can read off that Jρ and K0d commute, that is: both equations coincide, if we can fix the
jS-factors such that the following equalities become fulfilled (by comparing the factors in front of
φS,a
ω−1,l+1,̃l,ml

in both equations, then those in front of φS,a
ω−1,l−1,̃l,ml

, and so on):

jS,aaωl
!
= jS,aaω−1,l+1

!
= jS,aaω−1,l−1

!
= jS,aaω+1,l+1

!
= jS,aaω+1,l−1 (C.363)

and

jS,abω−1,l+1 z̃
(S,a)+−

ω−1,l+1,l̃

!
= jS,abωl z̃(S,b)+−

ω−1,l+1,l̃
jS,abω−1,l−1 z̃

(S,a)++

ω−1,l−1,l̃

!
= jS,abωl z̃(S,b)++

ω−1,l−1,l̃
(C.364)

jS,abω+1,l+1 z
(S,a)−−

ω+1,l+1,l̃

!
= jS,abωl z(S,b)−−

ω+1,l+1,l̃
jS,abω+1,l−1 z

(S,a)−+

ω+1,l−1,l̃

!
= jS,abωl z(S,b)+−

ω+1,l−1,l̃

Further, we have the pairs of actions(
Jρ
(
K0d .φ

))S,b
ωlml

!
=
(
K0d .

(
Jρφ

))S,b
ωlml(

Jρ
(
Kd+1,d .φ

))S,a
ωlml

!
=
(
Kd+1,d .

(
Jρφ

))S,a
ωlml(

Jρ
(
Kd+1,d .φ

))S,b
ωlml

!
=
(
Kd+1,d .

(
Jρφ

))S,b
ωlml

.

It is straightforward to check that these equalitites hold as well, provided that (C.363), (C.364) and
the following equalities are met:

jS,baω−1,l+1 z̃
(S,b)+−

ω−1,l+1,l̃

!
= jS,baωl z̃(S,a)+−

ω−1,l+1,l̃
jS,baω−1,l−1 z̃

(S,b)++

ω−1,l−1,l̃

!
= jS,baωl z̃(S,a)++

ω−1,l−1,l̃
(C.365)

jS,baω+1,l+1 z
(S,b)−−

ω+1,l+1,l̃

!
= jS,baωl z(S,a)−−

ω+1,l+1,l̃
jS,baω+1,l−1 z

(S,b)−+

ω+1,l−1,l̃

!
= jS,baωl z(S,a)+−

ω+1,l−1,l̃
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This means, that if we can find any solution jS,ab of (C.364), then setting jS,ba = −1/jS,ab yields a
solution of (C.365). Moreover, (C.364) and (C.365) give us the product

jS,abω±1,l±1 j
S,ba
ω±1,l±1 = jS,abωl jS,baωl .

This makes the boost condition (C.363) for jS,aaωl compatible with those for jS,abωl and jS,baωl :

(jS,aaω±1,l±1)2 = −1− jS,abω±1,l±1 j
S,ba
ω±1,l±1 = −1− jS,abωl jS,baωl = (jS,aaωl )2.

Therefore it is sufficient to study the solutions to the four conditions (C.364). Plugging the values
of the z and z̃-factors (C.258), (C.259), (C.266) and (C.267) into (C.364), turns the four conditions
into

jS,abω−1,l+1
!
= −jS,abωl

(m̃++ω−l−d) (m̃+−ω+l)

(2l+d) (2l+d−2)
(C.366)

jS,abωl
!
= −jS,abω−1,l−1

(m̃+−ω−l−d+2) (m̃++ω+l−2)

(2l+d−2) (2l+d−4)
(C.367)

jS,abω+1,l+1
!
= −jS,abωl

(m̃+−ω−l−d) (m̃++ω+l)

(2l+d) (2l+d−2)
(C.368)

jS,abωl
!
= −jS,abω+1,l−1

(m̃++ω−l−d+2) (m̃+−ω+l−2)

(2l+d−2) (2l+d−4)
. (C.369)

It is easy to read off that ω → ω+1
l→ l−1 turns (C.366) into (C.369), and ω → ω+1

l→ l+1 turns (C.367) into (C.368).
Thus the only two conditions we need to consider are

jS,abω−1,l+1
!
= −jS,abωl

(m̃++ω−l−d) (m̃+−ω+l)

(2l+d) (2l+d−2)
(C.370)

jS,abω+1,l+1
!
= −jS,abωl

(m̃+−ω−l−d) (m̃++ω+l)

(2l+d) (2l+d−2)
. (C.371)

After some educated guessing, we find several solutions to these conditions, for example:

jS,abωl = (−1)l
Γ(αS,a) Γ(βS,a)

Γ(αS,b) Γ(βS,b) Γ(γS,a) Γ(γS,a−1)
(C.372)

jS,abωl = (−1)l
Γ(1−αS,b) Γ(1−βS,b)

Γ(1−αS,a) Γ(1−βS,a) Γ(γS,a) Γ(γS,a−1)
(C.373)

jS,abωl =
1

Γ(αS,b) Γ(βS,b) Γ(1−αS,a) Γ(1−βS,a) Γ(γS,a) Γ(γS,a−1)
(C.374)

jS,abωl =
Γ(αS,a) Γ(βS,a) Γ(1−αS,b) Γ(1−βS,b)

Γ(γS,a) Γ(γS,a−1)
(C.375)

We have

αS,a = + 1
2

(
m̃+−ω+l

)
βS,a = + 1

2

(
m̃++ω+l

)
(1−αS,a) = − 1

2

(
m̃+−ω+l−2

)
(1−βS,a) = − 1

2

(
m̃++ω+l−2

)
(C.376)

αS,b = + 1
2

(
m̃+−ω−l−d+2

)
βS,b = + 1

2

(
m̃++ω−l−d+2

)
(1−αS,b) = − 1

2

(
m̃+−ω−l−d

)
(1−βS,b) = − 1

2

(
m̃++ω−l−d

)
.

C.5 Fixing Jρ through amplitude equivalence

In order to further fix the complex structure Jρ of the hypercylinder, we impose now the requirement
that it be amplitude-equivalent to Jt as discussed in Section 3.1.10. (For Minkowski spacetime this
is done in Section B.4.) That is, we want Jρ to induce coincidence of the free amplitudes for
time-interval and rod regions for coherent states whose characterizing functions are related through
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ξ0 = ξR
12− JρξI

12 as described below. Amplitude-equivalence is made precise in (3.71), saying that Jt
and Jρ must make the following amplitudes coincide for all global solutions η1 and ζ2:

ρ[t1,t2]

(
Kη1

Σ1
⊗Kζ2

Σ2

)
= exp

Å
−gt(ξ

I
12, ξ

I
12)− igt(ξ

R
12, ξ

I
12)

ã
!
= ρρ0

(
Kξ0

Σ0

)
= exp

Å
− 1

2gρ(ξ
I
12, ξ

I
12)− i

2gρ(ξ
R
12, ξ

I
12)

ã
,

(C.377)

wherein (mind where we have Jt and where Jρ!)

ξR
12 = 1

2 (η1 + ζ2) ξI
12 = 1

2 (−Jtη1 + Jtζ2). ξ0 = ξR
12 − JρξI

12. (C.378)

As discussed above (3.73), Jt and Jρ are amplitude-equivalent for global solutions, precisely if for all
global solutions η1, ζ2 they induce

gt(η1, ζ2) = 1
2 gρ(η1, ζ2). (C.379)

We recall that the real g-product gt for the equal-time hypersurface is given by (2.213), which using
the normalization constant (C.67) becomes

gt(η, ζ) = Rd−1
AdS

∑
nlml

ß
η−nlml ζ

+
nlml

+ η+
nlml

ζ−nlml

™
n! Γ(γS)2 Γ(n+ν+1)

Γ(n+γS) Γ(n+ν+γS)
(C.380)

= Rd−1
AdS

∑
nlml

ß
η−nlml ζ

+
nlml

+ η+
nlml

ζ−nlml

™
Γ(γS)

2 Γ(1−αS,b) Γ(βS,b)

Γ(1−αS,a) Γ(βS,a)
. (C.381)

In the last line, the parameters αS,·, βS,· and γS are understood as evaluated at the respective values
of l and at positive magic frequencies ω = +ω+

nl. The last line results from the first by plugging in
relations (C.376). Our goal is thus to reproduce this result as 1

2 gρ(η1, ζ2) thus starting from the real
g-product gρ of the hypercylinder which is given by (2.64):

gρ(η, ζ) := 2ωρ(η, Jρζ).

To this end we first compare expansions of global solutions near equal-time hypersurfaces and hy-
percylinders. We can expand any global solution ξ using the Jacobi expansion (2.201) of solutions
near equal-time hypersurfaces:

ξ(t, ρ,Ω) =
∑
nlml

{
ξ+
nlml

µ
(+)
nlml

(t, ρ,Ω) + ξ−nlml µ
(+)
nlml

(t, ρ,Ω)

}
. (C.382)

The µ(+)-modes are defined in (2.173) as µ(a)-modes with magic frequencies ω+

nl:

µ
(+)
nlml

(t, ρ,Ω) = µ
(S,a)

ω+
nl
lml

(t, ρ,Ω) = e−iω+
nl
t Y mll (Ω) J (+)

nl (ρ) J (+)

nl (ρ) = Sa
ω+
nl
,l

(ρ) . (C.383)

The µ(a) and µ(b)-modes are defined in (2.167) as

µ
(S,a)
ωlml

(t, ρ,Ω) = e−iωt Y mll (Ω) Saωl(ρ) µ
(S,b)
ωlml

(t, ρ,Ω) = e−iωt Y mll (Ω) Sbωl(ρ). (C.384)

These modes are used in the hypergeometric S-expansion (2.186) of general solutions ξ near hyper-
cylinders:

ξ(t, r,Ω) =
ˆ

dω
∑
l,ml

{
ξS,aωlml µ

(S,a)
ωlml

(t, ρ,Ω) + ξS,bωlml µ
(S,b)
ωlml

(t, ρ,Ω)

}
. (C.385)
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Then, in order for ξ to be a global solution it must have ξbωlml ≡ 0. Further, for all frequencies ω
that are not magic, ξ must also have ξaωlml = 0. In order to compare a global solution’s expansions

near an equal-time hypersurface and near a hypercylinder, we now convert the S-expansion (C.385)
(which is continuous in ω) into a discrete sum over magic frequencies. Using Dirac delta functions,
we write

ξS,aωlml =
∞∑
n=0

(
ξa+n,l,mlδ(ω−ω

+

nl) + ξa−n,l,mlδ(ω+ω+

nl)
)

(C.386)

ξS,bωlml =
∞∑
n=0

(
ξb+n,l,mlδ(ω−ω

+

nl) + ξb−n,l,mlδ(ω+ω+

nl)
)
. (C.387)

With this the S-expansion (C.385) of a solution consisting of a and b-modes of magic frequencies
becomes

ξ(t, r,Ω) =
∑
l,ml

∞∑
n=0

{
ξa+n,l,ml µ

(S,a)

ω+
nl
lml

(t, ρ,Ω) + ξa−n,l,ml µ
(S,a)

−ω+
nl
,l,ml

(t, ρ,Ω) (C.388)

+ ξb+n,l,ml µ
(S,b)

ω+
nl
lml

(t, ρ,Ω) + ξb−n,l,ml µ
(S,b)

−ω+
nl
,l,ml

(t, ρ,Ω)

}
. (C.389)

Let us call this the discrete S-expansion. For global solutions we have ξb±n,l,ml ≡ 0, then the Jacobi
and the discrete S-expansion are equivalent and we can transcribe them into each other:

ξa+n,l,ml = ξ+
nlml

ξa−n,l,−ml = ξ−nlml . (C.390)

It turns out useful to introduce yet another expansion: we now consider solutions consisting of a-
modes with only magic frequencies and b-modes of all real frequencies. That is, we discretize only the
a-part of the solution applying (C.386), while leaving its b-part continuous by not applying (C.387).
The result of this is the hybrid S-expansion

ξ(t, r,Ω)=
∑
l,ml

∞∑
n=0

{
ξa+n,l,ml µ

(S,a)

ω+
nl
lml

(t, ρ,Ω) + ξa−n,l,ml µ
(S,a)

−ω+
nl
,l,ml

(t, ρ,Ω)

}
+

ˆ
dω
∑
l,ml

ξS,bωlml µ
(S,b)
ωlml

(t, ρ,Ω).

(C.391)

For global solutions the hybrid S-expansion as well has ξS,bωlml ≡ 0, and then becomes equivalent to

the Jacobi expansion, relating to it through (C.390). Since the real g-product is defined via the
symplectic structure

gρ(η, ζ) := 2ωρ(η, Jρζ),

let us have a look at the latter now. The symplectic structure (2.195) for generic solutions η, ζ near
hypercylinders is

ωρ(η, ζ) = Rd−1
AdS

ˆ
dω
∑
l,ml

{
ηS,aωlml ζ

S,b
−ω,l,−ml − η

S,b
ωlml

ζS,a−ω,l,−ml

}
ιπ(2l+d−2). (C.392)

(For global solutions η, ζ the symplectic structure ωρ vanishes, since these have ηS,bωlml ≡ 0.) For
solutions consisting only of a and b-modes with magic frequencies, we can evaluate the sympletic
structure by plugging the discrete S-representation (C.386)+ (C.387) into (C.392), resulting in

ωρ(η, ζ) = Rd−1
AdS

∑
l,ml

∞∑
n=0

{
ηa+n,l,ml ζ

b
−n,l,−ml + ηa−n,l,ml ζ

b
+n,l,−ml (C.393)

− ηb+n,l,ml ζ
a
−n,l,−ml − η

b
−n,l,ml ζ

a
+n,l,−ml

}
ιπ
2 (2l+d−2) δ(0).
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(The factor 1
2 comes from the scaling property of the Dirac delta: δ(ω+

nl − ω
+

n′,l) = δ(2n − 2n′) =
1
2 δ(n − n

′).) That is, if our solutions consist only of magic frequency modes, then the symplectic
structure on the hypercylinder has a δ-divergence! The reason for this is the following: in the
definition (2.194) of the symplectic structure

ωρ(η, ζ) = 1
2

ˆ
dtd

d−1
Ω Rd−1

AdS tand−1ρ
(
η ∂ρζ − ζ ∂ρη

)
. (C.394)

we integrate η ∂ρζ − ζ ∂ρη over the hypercylinder, which is infinite in t-direction. However, using
only modes with the discrete magic frequencies we cannot form wave packets that are compactly
supported (respectively decay sufficiently fast) on the hypercylinder. Hence the integral diverges. For
the Minkowski hypercylinder the situation is different: there the global solutions cover a continuous
range of frequencies, and therefore we obtain a finite symplectic structure for solutions with a and
b-modes in this range.

This points to the following remedy: instead of the discrete S-expansion we use the hybrid one.
Its continuous range of b-modes allows for wave packets of sufficient decay, while the discrete range
of a-modes still lets us compare it to the global modes near an equal-time hypersurface. Plugging
the hybrid S-representation (C.386) without (C.387) into (C.392) results in

ωρ(η, ζ) = Rd−1
AdS

∑
l,ml

∞∑
n=0

{
ηa+n,l,ml ζ

S,b

−ω+
nl
,l,−ml

+ ηa−n,l,−ml ζ
S,b

ω+
nl
,l,ml

(C.395)

− ηS,b
ω+
nl
,l,ml

ζa−n,l,−ml − η
S,b

−ω+
nl
,l,−ml

ζa+n,l,ml

}
ιπ(2l+d−2).

Hence using the hybrid S-expansion (C.391) keeps the symplectic structure on the hypercylinder
finite. (The same would be achieved by keeping the a-part continuous and the b-part discrete, but
then we could not compare the solution to global ones. Thus we are lead to making the a-part
discrete and keeping the b-part continuous.)

With the symplectic structure (C.395) ready, we can come back to gρ(η, ζ) := 2ωρ(η, Jρζ). We
let therein act on ζ a complex structure as in (C.358)

(
Jρφ

)S,a
ωlml

= jS,aaωl φS,aωlml + jS,abωl φS,bωlml jS,ab−ω,l = jS,abωl(
Jρφ

)S,b
ωlml

= jS,baωl φS,aωlml − j
S,aa
ωl φS,bωlml jS,ba−ω,l = jS,baωl .(

jS,aaωl

)2
= −jS,abωl jS,baωl − 1 ≥ 0.

Using the hybrid representation, for global solutions η, ζ we then obtain (going from second to third



i220 C. Anti de Sitter spacetimeX
X

XX

line we use the frequency symmetry jS,ba
ω+
nl
l

= jS,ba−ω+
nl
l
):

1
2 gρ(η, ζ) = ωρ(η, Jρζ)

= Rd−1
AdS

∑
n,l,ml

ιπ(2l+d−2)

ß
ηa+n,l,ml

(
Jρζ
)S,b
−ω+

nl
,l,−ml

+ ηa−n,l,−ml
(
Jρζ
)S,b
ω+
nl
,l,ml

− ηS,b
ω+
nl
,l,ml︸ ︷︷ ︸
0

(
Jρζ
)a
−n,l,−ml

− ηS,b−ω+
nl
,l,−ml︸ ︷︷ ︸
0

(
Jρζ
)a

+n,l,ml

™
= Rd−1

AdS

∑
n,l,ml

ιπ(2l+d−2)

ß
ηa+n,l,ml

(
jS,ba
ω+
nl
l
ζS,a−ω+

nl
,l,−ml

− jS,aa
ω+
nl
l
ζS,b−ω+

nl
,l,−ml︸ ︷︷ ︸
0

)

+ ηa−n,l,−ml

(
jS,ba
ω+
nl
l
ζS,a
ω+
nl
,l,ml

− jS,aa
ω+
nl
l
ζS,b
ω+
nl
,l,ml︸ ︷︷ ︸
0

)™
= Rd−1

AdS

∑
n,l,ml

ιπ(2l+d−2)jS,ba
ω+
nl
l

ß
ηa+n,l,mlζ

S,a

−ω+
nl
,l,−ml

+ ηa−n,l,−mlζ
S,a

ω+
nl
,l,ml

™
= Rd−1

AdS

∑
n,l,ml

ιπ
2 (2l+d−2) δ(0) jS,ba

ω+
nl
l

ß
ηa+n,l,mlζ

a
−n,l,−ml + ηa−n,l,−mlζ

a
+n,l,ml

™
.

(Again, the factor 1
2 comes from the scaling property of the Dirac delta: δ(ω+

nl − ω
+

n′,l) = δ(2n −
2n′) = 1

2 δ(n− n
′).) Evaluating the real g-product gρ for global solutions, only the a-modes appear.

Therefore, using the hybrid representation does not prevent it from diverging. As commented above,
this divergence is due to only using discrete frequencies. The wave packets of these modes do not
decay sufficiently fast and integrating them over the infinite hypercylinder results in divergence. This
means, that in order to obtain a finite gρ(η, ζ), and thus finite rod amplitudes, it is necessary to use
a continuous frequency range, that is: to use evanescent modes. Using only propagating modes is
not sufficient on AdS.

Due to this circumstance, our plan to construct an amplitude equivalence between amplitudes
for AdS time-interval and rod regions does not work out in the strict sense. We therefore have to
accept the occurence of the δ(0)-divergence, and construct only a weak amplitude equivalence that
holds except for the δ(0)-factor. On the other hand, we could have easily avoided this factor by not
using the Dirac delta (distribution) but rather its square root (distribution) in (C.386). That is,
the issue has to do with how exactly we bring into correspondence the modes on the hypercylinder
with the modes on the equal-time hyperplane. The freedom is justified, since we are only after a
weak amplitude equivalence and we shall thus remove the δ(0)-factor from here onwards. Plugging

translations (C.390), that is ξanlml = ξ+
nlml

and ξa−n,l,−ml = ξ−nlml , into the last line, we obtain for
global solutions η, ζ

1
2 gρ(η, ζ) = Rd−1

AdS

∑
n,l,ml

ιπ
2 (2l+d−2) δ(0) jS,ba

ω+
nl
l

ß
η+
nlml

ζ−nlml + η−n,l,−mlζ
+
n,l,−ml

™
= Rd−1

AdS

∑
n,l,ml

ιπ(γS−1) δ(0) jS,ba
ω+
nl
l

ß
η+
nlml

ζ−nlml + η−nlmlζ
+
nlml

™
.

We can read off that except for the δ(0)-factor this agrees with

gt(η, ζ) = Rd−1
AdS

∑
nlml

ß
η−nlml ζ

+
nlml

+ η+
nlml

ζ−nlml

™
n! Γ(γS)2 Γ(n+ν+1)

Γ(n+γS) Γ(n+ν+γS)
. (C.396)
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precisely if

jS,ba
ω+
nl
l

= jS,ba−ω+
nl
l

=
1

ιπ(γS−1)

n! Γ(γS)2 Γ(n+ν+1)

Γ(n+γS) Γ(n+ν+γS)
(C.397)

= 1
ιπ Γ(γS)Γ(γS−1)

Γ(1−αS,b) Γ(βS,b)

Γ(1−αS,a) Γ(βS,a)
. (C.398)

(Again, the parameters αS,·, βS,· and γS are understood as evaluated at the respective values of l and
at positive magic frequencies ω = +ω+

nl.) That is, as for Minkowski spacetime the requirement of
amplitude equivalence fixes only the factor jS,ba of the complex structure while not fixing jS,aa and
jS,ab. Therefore, as for Minkowski spacetime we choose an anti-diagonal complex structure, that is:
jS,aaωl ≡ 0. This induces jS,ab = −1/jS,ba and also that Jρ maps a-modes to b-modes and vice versa.
This is a natural implementation of the property that Jρ maps solutions well defined on the whole
interior of the rod region to solutions that are well defined only near the boundary hypercylinder
(and vice versa).

Further, we see that amplitude equivalence fixes the factor jS,ba only for the discrete set of magic
frequencies ±ω+

nl. In the following we shall make use of this remaining freedom to fix jS,ba also for
nonmagic frequencies. First we recall all the properties that jS,ba is to fulfill. We use the anti-diagonal
form of (C.358) that we discussed right above:(

Jρφ
)S,a
ωlml

=
−1

jS,baωl

φS,bωlml
(
Jρφ

)S,b
ωlml

= jS,baωl φS,aωlml .

Now the essential properties of compatibility with the symplectic structure, J2
ρ = −1, and mapping

real solutions to real solutions, together with commuting with time translations and spatial rotations
are encoded already in the form (C.358). However,this holds only if Jρ fulfills the first remaining
requirement of frequency symmetry, that is

jS,baω,l = jS,ba−ω,l. (C.399)

The second remaining requirement for Jρ is to commute also with the boost generators, which
amounts to (C.370)

jS,baω−1,l+1
!
= −jS,baωl

(2l+d) (2l+d−2)

(m̃++ω−l−d) (m̃+−ω+l)

jS,baω+1,l+1
!
= −jS,baωl

(2l+d) (2l+d−2)

(m̃+−ω−l−d) (m̃++ω+l)
.

(C.400)

We observe that this condition only relates factors jS,ba with a discrete difference in frequency ω and
angular momentum l. (Compare this to Minkowski spacetime, where the corresponding condition
related factors jS,ba with infinitesimally close frequencies.) This means that after fixing jS,ba for
one frequency ω0 and angular momentum l0, this condition then does not fix jS,ba for all other ω
and l, but only for those that are at discrete steps from ω0 and l0. The third and final remaining
requirement is amplitude equivalence, represented by (C.397)

jS,ba
ω+
nl
l

= jS,ba−ω+
nl
l

=
1

ιπ(γS−1)

n! Γ(γS)2 Γ(n+ν+1)

Γ(n+γS) Γ(n+ν+γS)
. (C.401)

For immediate use we now define two different candidate versions for the factor jS,baωl , which we call
the α-version respectively β-version:

jS,ba,αωl = 1
ιπ Γ(γS,a) Γ(γS,a−1)

Γ(αS,b)

Γ(αS,a)

Γ(1−βS,a)

Γ(1−βS,b)
(C.402)

jS,ba,βωl = 1
ιπ Γ(γS,a) Γ(γS,a−1)

Γ(βS,b)

Γ(βS,a)

Γ(1−αS,a)

Γ(1−αS,b)
. (C.403)
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We recall that in each line the parameters α, β and γS are calculated from ω and l. Since switching
the sign of ω corresponds to interchanging α and β-parameters, we have

jS,ba,αω,l = jS,ba,β−ω,l .

Further, both (C.402) and (C.402) are boost-compatible in the sense of (C.365), that is: the actions
of complex structure and boost generators commute. Trying out the factors of the jS,ab-candidates
(C.372), we find that the only possibility for jS,ba to fulfill (C.401) is setting

jS,ba
ω+
nl
,l

= jS,ba,β
ω+
nl
,l

= 1
ιπ Γ(γS,a) Γ(γS,a−1)

Γ(βS,b)

Γ(βS,a)

Γ(1−αS,a)

Γ(1−αS,b)
(C.404)

jS,ba−ω+
nl
,l

= jS,ba,α−ω+
nl
,l

= 1
ιπ Γ(γS,a) Γ(γS,a−1)

Γ(αS,b)

Γ(αS,a)

Γ(1−βS,a)

Γ(1−βS,b)
. (C.405)

We recall that in (C.404) the parameters α, β are calculated from +ω+

nl, while in (C.405) they derive
from −ω+

nl. Since switching the sign of ω corresponds to interchanging α and β-parameters, we can
see directly that frequency symmetry becomes fulfilled by this choice:

jS,ba
ω+
nl
,l

= jS,ba,β
ω+
nl
,l

= jS,ba,α−ω+
nl
,l

= jS,ba−ω+
nl
,l
.

Before extending this choice to nonmagic frequencies, let us verify that it indeed reproduces the
amplitude equivalence condition (C.401). Plugging the definition (C.44) of the magic frequencies
ω+

nl = m̃+ + 2n+ l into the right hand side of (C.404) and using the parameter definitions (2.172)
we obtain (C.401):

jS,ba
ω+
nl
,l

= 1
ιπ Γ( 1

2
(2l+d)) Γ( 1

2
(2l+d−2))

Γ(m̃+− d
2

+n+1)

Γ(m̃++l+n)

Γ(n+1)

Γ(n+l+ d
2

)

= 1
ιπ Γ( 1

2
(2l+d))

Γ( 1
2

(2l+d))

1
2 (2l+d−2)

Γ(n+ν+1)

Γ(n+ν+γS)

n!

Γ(n+γS)

= 1
ιπ

Γ(γS)2

(2l+d−2)

Γ(n+ν+1)

Γ(n+ν+γS)

2n!

Γ(n+γS)
.

Before extending this choice to the remaining frequencies and fixing also jS,aaωl and jS,abωl , we remark
that already the existence of our choice is quite nontrivial, because the factors related therein have
rather different origins. The factor appearing in amplitude equivalence condition (C.401) stems
from integrating a global solution over an equal-time hyperplane Σt, while the factors in the boost
conditions (C.400) stem from boost compatibility of the complex structure Jρ for more general
solutions near a hypercylinder Σρ.

C.5.1 Two-branches choice Jtwo
ρ

The problem at this point is that the α and β-versions of jS,ba are different functions of ω and l.
For instance we can choose to define a first version jS,ba,two by simply using choice (C.404) for all
positive frequencies, while using (C.405) for all negative frequencies. That is, we use the β-version
for the ”right branch” consisting of all positive frequencies, and the α-version for the ”left branch”
of all negative frequencies. This results in an expression that contains ω only as |ω| and is thus
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manifestly frequency symmetric:

jS,ba,two
ωl =

jS,ba,βωl ω > 0

jS,ba,αωl ω < 0
(C.406)

= 1
ιπ Γ( 1

2
(2l+d)) Γ( 1

2
(2l+d−2))

Γ( 1
2

(m̃++|ω|−l−d+2))

Γ( 1
2

(m̃++|ω|+l))

Γ(− 1
2

(m̃+−|ω|+l−2))

Γ(− 1
2

(m̃+−|ω|−l−d))
, (C.407)

Jρ,two
ωl =

(
0 −1/jS,ba,two

ωl

jS,ba,two
ωl 0

)
. (C.408)

However, since the α and β-versions are different functions of ω, the gluing of the two versions at
ω = 0 is only continuous, but not smooth. While the non-smoothness of the choice jS,ba,two causes
no problems, its definition through case distinction breaks the boosts-compatibility of (C.402) and
(C.403). This breaking occurs for the boosts generators only for frequencies with |ω| < 1, because
for these frequencies the action of boosts generators creates frequencies ω± 1 which cross the gluing
point ω = 0.

In order to see this, let us consider the example of a solution consisting of a single mode

µ
(S,a)
0.5,0 (t, ρ,Ω) with frequency ω = 0.5 and l = 0. We remark that when Jρ directly acts on a mode

(instead within the momentum representation) then we have to use the transposed matrix (Jρωl)
>.

This can be seen as follows. We first write the solution in the usual hypergeometric S-expansion,
and switch to matrix notation:

φ(t, r,Ω) =
ˆ

dω
∑
l,ml

{
φaωlml µ

(S,a)
ωlml

(t, ρ,Ω) + φbωlml µ
(S,b)
ωlml

(t, ρ,Ω)

}

=
ˆ

dω
∑
l,ml

(
µ

(S,a)
ωlml

(t, ρ,Ω),

µ
(S,b)
ωlml

(t, ρ,Ω)

)>(
φaωlml
φbωlml

)
.

Now we let Jρ act as usual on the momentum representation, and then move its action towards the
modes: (

Jρφ
)
(t, r,Ω) =

ˆ
dω
∑
l,ml

{(
Jρφ

)a
ωlml

µ
(S,a)
ωlml

(t, ρ,Ω) +
(
Jρφ

)b
ωlml

µ
(S,b)
ωlml

(t, ρ,Ω)

}

=
ˆ

dω
∑
l,ml

(
µ

(S,a)
ωlml

(t, ρ,Ω),

µ
(S,b)
ωlml

(t, ρ,Ω)

)>
Jρωl

(
φaωlml
φbωlml

)

=
ˆ

dω
∑
l,ml

[
(Jρωl)

>

(
µ

(S,a)
ωlml

(t, ρ,Ω),

µ
(S,b)
ωlml

(t, ρ,Ω)

)]>(
φaωlml
φbωlml

)
. (C.409)

The transposed matrix for general Jρ is of course

(Jρωl)
> =

(
jS,aaωl jS,baωl

jS,abωl −jS,aaωl

)
, (C.410)

and for our antidiagional complex structure becomes

(Jρωl)
> =

(
0 jS,baωl

−1/jS,baωl 0

)
. (C.411)

Now let the complex structure (C.408) and the boost generator K0d act on our mode. That is, we

compare the actions of (J two
ρ K0d) and (K0d J

two
ρ ) on µ

(S,a)
0.5,0 (t, ρ,Ω). We recall that χ

(d−1)
− (0, 0) = 0.
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Using (C.407) and actions (C.270) together with (C.266) and (C.258), we then obtain

J two
ρ

(
K0d .µ

(S,a)
0.5, 0

)
= i

2 z̃
(S,a)++
0.5, 0 jS,ba,two

1.5, 1 µ
(S,b)
1.5, 1 + i

2 z
(S,a)−+
0.5, 0 jS,ba,two

−0.5, 1 µ
(S,b)
−0.5, 1 (C.412)

= − i
ιπ χ

(d−1)
+ (0, 0) Γ2

( d
2

)
Γ( 1

2
(m̃+−d+2.5))

Γ( 1
2

(m̃++0.5))

Γ(− 1
2

(m̃+−2.5))

Γ(− 1
2

(m̃+−d−0.5))
µ

(S,b)
1.5, 1

+ i
ιπ χ

(d−1)
+ (0, 0) Γ2

( d
2

)
Γ( 1

2
(m̃+−d+1.5))

Γ( 1
2

(m̃+−0.5))

Γ(− 1
2

(m̃+−1.5))

Γ(− 1
2

(m̃+−d+0.5))
µ

(S,b)
−0.5, 1,

while

K0d .
(
J two
ρ µ

(S,a)
0.5, 0

)
= i

2 z̃
(S,b)++
0.5, 0 jS,ba,two

0.5, 0 µ
(S,b)
1.5, 1 + i

2 z
(S,b)−+
0.5, 0 jS,ba,two

0.5, 0 µ
(S,b)
−0.5, 1 (C.413)

= − i
ιπ χ

(d−1)
+ (0, 0) Γ2

( d
2

)
Γ( 1

2
(m̃+−d+2.5))

Γ( 1
2

(m̃++0.5))

Γ(− 1
2

(m̃+−2.5))

Γ(− 1
2

(m̃+−d−0.5))
µ

(S,b)
1.5, 1

+ i
ιπ χ

(d−1)
+ (0, 0) Γ2

( d
2

)
Γ( 1

2
(m̃+−d+2.5))

Γ( 1
2

(m̃++0.5))

Γ(− 1
2

(m̃+−2.5))

Γ(− 1
2

(m̃+−d−0.5))
µ

(S,b)
−0.5, 1.

We observe that the factors in front of µ
(S,b)
1.5, 1 coincide in (C.412) and (C.413). However, for µ

(S,b)
−0.5, 1

the frequency has crossed the gluing point of ω = 0, and the factors in front of it disagree in (C.412)
and (C.413).

As we commented above, if we consider commutation of J two
ρ only with the infinitesimal gen-

erators, then this breaking of the boost-compatibility of J two
ρ occures only for frequencies |ω| < 1.

However, if we proceed to consider finite boosts, then there appear not only frequency shifts of ±1,
but of ±2, ±3, and so on. Thus, the compatibility becomes lost for the whole frequency range for
finite boosts. In the next section we construct a complex structure Jρ that is invariant under all AdS
isometries, including the boosts.

Another point to remember is that the α and β-versions have zeros and singularities. At these
points either jS,abωl or jS,baωl vanishes. Therefore, for all frequencies for which this occurs, the complex
structure must be set to the diagonal form (C.351).

C.5.2 Isometry-invariant choice J iso
ρ

Here we actually make use of the fact that the conditions (C.400) encoding the boost compatibility
of the complex structure

jS,baω−1,l+1
!
= −jS,baωl

(2l+d) (2l+d−2)

(m̃++ω−l−d) (m̃+−ω+l)

jS,baω+1,l+1
!
= −jS,baωl

(2l+d) (2l+d−2)

(m̃+−ω−l−d) (m̃++ω+l)

only relate factors jS,ba with integer frequency differences. In particular, if we consider only jS,baωl

with l fixed, then these conditions relate only factors whose frequency difference is an even integer
(since we have to apply them twice to get back the original l). Our starting point are again the
conditions (C.404) and (C.405), which are induced by amplitude equivalence of time-interval and
rod regions:

jS,ba
ω+
nl
,l

= jS,ba,β
ω+
nl
,l

jS,ba−ω+
nl
,l

= jS,ba,α−ω+
nl
,l

= jS,ba,β
+ω+

nl
,l
.

That is, for the positive magic frequencies +ω+

nl we need to choose the β-version, and for the negative
magic frequencies −ω+

nl we need to choose the α-version. This does not break boost compatibility
as long as positive and negative magic frequencies are not separated by an even integer gap. Since
ω+

nl = m̃+ +2n+l, and if we fix l, then the difference between some positive magic frequency ω+

n1l

and some negative magic frequency −ω+

n2l
is 2m̃+ + 2(n1+n2) + 2l. This difference is thus an even

integer only if 2m̃+ = d+ 2ν is an even integer. That is, since d is odd, 2ν must be odd, too, which
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makes ν half-integer. Therefore, the complex structure we are to construct here will only be valid
for values of ν that are not half-integer, that is, for values of m̃+ that are non-integer. Since from
the outset we only considered non-integer ν, this is an additional condition. Hence, we now only
consider values of both m̃+ and ν that are neither integer nor half-integer.

So far we thus have chosen the β-version for the positive magic frequencies +ω+

nl, and the α-version
for the negative magic frequencies −ω+

nl:

jS,ba,isoωl =

jS,ba,αωl ω = −ω+

nl

jS,ba,βωl ω = +ω+

nl

. (C.414)

Let us keep l fixed for the moment, for example at l = 0. The above boost compatibility conditions
then induce the β-version for all frequencies at an even integer distance from the positive magic
frequencies +ω+

n,0, and the α-version for all frequencies at an even integer distance from the negative
magic frequencies −ω+

n,0. Apart from this discrete set of frequencies we are at liberty to choose our

jS,baωl (as long as we respect frequency symmetry and boost compatibility). In any way, we obtain

a pattern of interlaced frequency intervals, on some of which we choose jS,b,αωl while on others we

choose jS,ba,βωl . We denote the result by jS,ba,isoωl , with the label (i) referring to the interlacing.
We shall now try to design our factor jS,ba,iso such that we avoid zeros and also singularities if

possible. For some fixed l, the α-version vanishes if the frequency ω is either magic ω = +ω+

nl, or if
it is one of those which we call zero frequencies ω = +ω0

nl:

jS,ba,αωl = 0 ⇐⇒ ω = +ω+

nl := +m̃+ + 2n + l = +ν+ d
2 +2n+l

ω = +ω0

nl := −m̃++d+2n+l = −ν+ d
2 +2n+l

. (C.415)

While the magic frequencies are always positive, the zero frequencies are positive for 2n+l > ν − d
2

and negative for 2n+l < ν − d
2 . The β-version vanishes if the frequency ω is either negative-magic

ω = −ω+

nl, or ”negative”-zero ω = −ω0

nl:

jS,ba,βωl = 0 ⇐⇒ ω = −ω+

nl := −m̃+ − 2n − l = −ν− d
2−2n−l

ω = −ω0

nl := +m̃+−d−2n−l = +ν− d
2−2n−l

. (C.416)

If one version becomes zero for some frequency, then we have to choose the remaining version at this
frequency. This leads to the following choice, giving us amplitude equivalence and avoiding zeros:

jS,ba,isoωl =



jS,ba,αωl ω = −ω+

nl

jS,ba,αωl ω = −ω0

nl

jS,ba,βωl ω = +ω+

nl

jS,ba,βωl ω = +ω0

nl

. (C.417)

However, we still have to verify that this choice is self-consistent, that is, that all frequencies associ-
ated to the β-version are not located at an even integer distance of any frequency associated to the
α-version and vice versa. This amounts to: (1) the ”negative” zero frequencies −ω0

nl are not at an
even integer distance from the positive magic frequencies +ω+

nl, and (2) the ”positive”zero frequencies
+ω0

nl are not at an even integer distance from the negative magic frequencies −ω+

nl, and (3) the ”neg-
ative” zero frequencies −ω0

nl are not at an even integer distance from the ”positive” zero frequencies
+ω0

nl. Case (1) writes +ω+

n1l
−−ω0

n2l
6= 2z for any z ∈ Z. Since +ω+

n1l
−−ω0

n2l
= d+ 2(n1+n2+l)

and d is odd, case (1) never occurs. Case (2) never occurs for the same reason. Case (3) writes
+ω0

n1l
−−ω0

n2l
6= 2z for any z ∈ Z. Since +ω0

n1l
−−ω0

n2l
= −2m̃+ + 2(d+n1+n2+l) 6= 2z, case (3)

means just that m̃+ must be non-integer, which we had already found above (C.414).
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Next we try to achieve that jS,ba,isoωl remains free of singularities. For some fixed l, the α-version

becomes singular if the frequency ω is either ”sing” ω = +ωsing
nl or ”ular” ω = +ωular

nl :

jS,ba,αωl = singular ⇐⇒ ω = +ωsing
nl := +m̃++2n−l−d+2 = +ν−l− d

2 +2n+2

ω = +ωular
nl := −m̃+ + 2n− l + 2 = −ν−l− d

2 +2n+2
. (C.418)

The ”sing” frequencies are positive for ν+2n+2 > l+ d
2 and negative for ν+2n+2 < l+ d

2 . The ”ular”

frequencies are positive for 2n+2 > ν+l+d
2 and negative for 2n+2 < ν+l+d

2 . The β-version becomes

singular if the frequency ω is either ”negative-sing” ω = −ωsing
nl or ”negative-ular” ω = −ωular

nl :

jS,ba,βωl = singular ⇐⇒ ω = −ωsing
nl := −m̃+−2n+l+d−2 = −ν+l+ d

2−2n−2

ω = −ωular
nl := +m̃+ − 2n+ l − 2 = +ν+l+ d

2−2n−2
. (C.419)

If one version becomes singular for some frequency, then we have to choose the remaining version
at this frequency. This leads to the following choice, hopefully uniting amplitude equivalence with
avoiding zeros and singularities:

jS,ba,isoωl =



jS,ba,αωl ω = −ω+

nl

jS,ba,αωl ω = −ω0

nl

jS,ba,αωl ω = −ωsing
nl

jS,ba,αωl ω = −ωular
nl

jS,ba,βωl ω = +ω+

nl

jS,ba,βωl ω = +ω0

nl

jS,ba,βωl ω = +ωsing
nl

jS,ba,βωl ω = +ωular
nl

. (C.420)

However, it remains to be checked whether this choice is really possible. To this end we have to verify
again that all frequencies associated to the β-version are not located at an even integer distance of any
frequency associated to the α-version. Unfortunately, we find that the ”negative”-zero frequencies
−ω0

n2,l
are at an even integer distance from the ”sing” frequencies ωsing

n1,l
, and the negative magic

frequencies are at even integer distance from the ”ular” frequencies: ωsing
n1,l
−−ω0

n2,l
= 2(n1+n2+1)

and ωular
n1,l
−−ω+

n2,l
= 2(n1+n2+1). That is: the choice (C.420) is not self-consistent.

Since we cannot avoid the singularities of jS,baωl , we cannot avoid the zeros of jS,ab,βωl = (jS,ba,βωl )−1.

Hence there appears to be little benefit in avoiding the zeros of jS,ba,βωl . Therefore we stick to the
simpler version (C.414):

jS,ba,isoωl =

jS,ba,αωl ω = −ω+

nl

jS,ba,βωl ω = +ω+

nl

. (C.421)

It remains to extend the choice (C.421) from its discrete set of frequencies ω = ±ω+

nl to all ω ∈ R
for fixed l, for example l = 0. The values for the other l are then determined completely by the
boost compatibility relations (C.400). The extension of the choice jS,ba,isoωl to all ω ∈ R must fulfill
three properties: first, include the magic frequencies as in (C.421). Second, be frequency-symmetric:

jS,ba,isoωl = jS,ba,iso−ω,l . Third, the pattern of interlaced intervals where we choose the α and β-versions
must be translation-invariant for steps of 2 in ω-direction and l-direction. This is necessary in order
to comply with the boost conditions (C.400), which relate jS,baωl to jS,baω±2,l and jS,baω,l±2. Therefore,
choosing the α-version for some frequency ω induces choosing the α-version for all frequencies ω±2z
with z ∈ Z (ditto for the β-version). The last two conditions imply that the interlaced intervals of
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the α and β-version alternate, and have the same length. Due to the step length of 2, this length
can be set to values of 1, 1

2 , 1
4 , 1

6 , 1
8 , 1

10 , . . .. For simplicity, we choose this length to be 1, see Figure
C.422 (a). Therein, we have ω on the horizontal axis and l on the vertical. Intervals on which we
choose the α-version appear in orange (light gray in monochrome), and intervals with the β-version
are dark green (darker gray).

(a) Case α (b) Case β

Figure C.422: Interlaced complex structure J iso
ρ : intervals in (ω, l)-space with α and β-version.

The first condition determines which of these intervals are associated to the α respectively β-version.
This goes as follows. For l = 0, we associate the interval ( bm̃+c, dm̃+e ] to the β-version. We use
the standard notation of bxc for the floor function (largest integer ≤ x), and dxe for ceiling (smallest
integer ≥ x). This choice already determines all other intervals: for l = 0 they alternate between α
and β-version, and for higher l they are induced by the boost conditions. Thus the α and β-version
alternate both horizontally (ω-direction) and vertically (l-direction), see Figure C.422 (a). In the
(ω, l)-plane let us denote by Iβ the set of intervals associated to the β-version as described above,
and by Iα the set of intervals associated to the α-version. Then, our interlaced choice J iso

ρ writes as

jS,ba,isoωl =

jS,ba,αωl (ω, l) ∈ Iα

jS,ba,βωl (ω, l) ∈ Iβ

, (C.423)

wherein jS,ba,αωl and jS,ba,βωl are those of (C.402). This implies that two different patterns are possible
for our choice: for ”Case α”: m̃+ ∈ (d+2n, d+2n+1) with n ∈ N0 we have the unit interval ω ∈ (0, 1) for
l = 0 associated to the α-version, see Figure C.422 (a), while for ”Case β”: m̃+ ∈ (d+2n+1, d+2n+2)
we have it associated to the β-version. see Figure C.422 (b). The label of the case thus refers to
which version occupies the unit interval ω ∈ (0, 1) for l = 0. (We recall that d is odd, and that we
only consider values of m̃+ that are neither integer nor half-integer.) In both figures, the position
of ω = +m̃+ is marked by a black disk, and that of ω = −m̃+ by a black circle. For d = 3 with
RAdS = 1, the example in Figure C.422 (a) arises from Klein-Gordon mass m = 1 giving m̃+ ≈ 3.3,
the example (b) from m = 2.5 giving m̃+ ≈ 4.4. In any case, we choose the complex structure such
that for l = 0 the black disk of ω = +m̃+ sits on a green (dark gray) interval of the β-version, and
hence the circle of ω = −m̃+ on an orange (light gray) interval of the α-version.

We recall again that the α and β-versions have zeros and singularities, which happen to lie in
some of the intervals we choose. At these points either jS,abωl or jS,baωl vanishes. Therefore, for all
frequencies for which this occurs, the complex structure must be set to the diagonal form (C.351).

We thus have fixed completely the element jS,baωl of our complex structure J iso
ρ through interlacing

intervals on which we choose the α respectively β-version. While not very elegant, this is physically
motivated: it makes our complex structure fulfill the essential properties, commute with all isometry
actions, and induce amplitude equivalence between time-interval and rod amplitudes. We still have

to fix jS,abωl , which in turn fixes jS,aaωl through
(
jS,aaωl

)2
= −jS,abωl jS,baωl −1. As discussed in Appendix

C.7, requiring the flat limit of the AdS real g-product gρ to reproduce the Minkowski real g-product

gr implies an anti-diagonal Jρ, that is: jS,aaωl ≡ 0, which in turn implies jS,abωl = −1/jS,baωl . With this,

fixing jS,baωl determines Jρ completely.
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C.6 Real g-products for AdS

Via (2.195), any anti-diagonal choice (that is: setting jS,aaωl ≡ 0) induces the real g-product

gρ(η, ζ) = 2ωρ(η, Jρζ)

= 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηaωlml (Jρζ)b−ω,l,−ml − η

b
ωlml

(Jρζ)a−ω,l,−ml

}
(2l+d−2)

= 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηaωlml ζ

a
−ω,l,−ml j

S,ba
ωl + ηbωlml ζ

b
−ω,l,−ml/j

S,ba
ωl

}
(2l+d−2). (C.424)

For real solutions φ we have φa−ω,l,−ml = φaωlml and φb−ω,l,−ml = φbωlml and thus obtain

gρ(φ, φ) = 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{∣∣∣φaωlml ∣∣∣2jS,baωl +
∣∣∣φbωlml ∣∣∣2/jS,baωl

}
(2l+d−2). (C.425)

We can read off that the real g-product is positive for modes with ω and such that jS,baωl is positive.
Let us have a look where this is the case. Plotting the α and β-version reveals that the β-version
is positive for all ω ≥ (m̃+ + l) while the α-version is positive for all ω ≤ −(m̃+ + l). For all
other frequencies, both versions alternate between intervals with positive and negative sign. (See for
example Figure C.430.)

Therefore, the interlaced version jS,ba,isoωl alternates its sign quite frequently. However, it is positive

for all magic frequencies ±ω+

nl. For the two-branched version jS,ba,two
ωl the situation is simpler: due

to its definition, jS,ba,two
ωl is positive for all frequencies with |ω| ≥ (m̃++l), while it alternates its sign

for the remaining frequencies.
Let us compare this to the real g-product of a Minkowski hypercylinder. There we also have

two complex structures: Jpos
r and J iso

r . Both induce positive real g-products for the propagating
modes (which there are those with |ω| > m). Moreover, gpos

r is positive for the evanescent modes
as well, while giso

r alternates sign for evanescent modes (|ω| < m). On AdS, both the interlaced and
two-branched version have similar properties: for the propagating modes (which here are those with
magic frequencies ±ω+

nl) the real g-products become positive, while for the evanescent modes (all
other frequencies) their sign alternates.

We now want to find explicit expressions that tell us where jS,baωl is positive, and where negative.

Combining the four relations (C.366) respectively their versions for jS,baωl , we find that

jS,baω−2,l = jS,baωl κ−ωl κ−ωl =
(m̃+−ω−l−d+2) (m̃++ω+l−2)

(m̃+−ω+l) (m̃++ω−l−d)
(C.426)

jS,baω+2,l = jS,baωl κ+
ωl κ+

ωl =
(m̃++ω−l−d+2) (m̃+−ω+l−2)

(m̃++ω+l) (m̃+−ω−l−d)
. (C.427)

Consistency is assured by κ+
ωl = 1/κ−ω+2,l. These relations relate the signs of jS,baωl only for even

integer frequency differences. In particular, they are fulfilled by both the α-version jS,ba,αωl and the

β-version jS,ba,βωl . Since jS,ba,βωl = jS,ba,α−ω,l , it is sufficient to consider the signs of the α-version. We
write

κ+
ωl =

κ1
ωl κ

2
ωl

κ3
ωl κ

4
ωl

κ1
ωl = (m̃++ω−l−d+2) κ2

ωl = (m̃+−ω+l−2) (C.428)

κ3
ωl = (m̃++ω+l) κ4

ωl = (m̃+−ω−l−d),

and denote by λal the unique frequency for which κaωl becomes zero (with l fixed):

λ1
l = −(m̃+−l−d+2) λ2

l = +(m̃++l−2) (C.429)

λ3
l = −(m̃++l) λ4

l = +(m̃+−l−d).
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Then, κ1
ωl is negative for ω < λ1

l and κ3
ωl is negative for ω < λ3

l , while κ2
ωl is negative for ω > λ2

l and
κ4
ωl is negative for ω > λ4

l . For all l ≥ 0 we thus have λ3
l < λ1

l < λ2
l and λ3

l < λ4
l < λ2

l , while λ1
l < λ4

l

for ”small” l < ν− d−2
2 but λ1

l > λ4
l for ”large” l > ν− d−2

2 . Hence for all ω < λ3
l we have negative κ1

ωl

and κ3
ωl but positive κ2

ωl and κ4
ωl, making κ+

ωl positive for all ω < λ3
l . Further, the α-version jS,ba,αωl

is positive for all ω < λ3
l + 2 because of jS,baω+2,l = jS,baωl κ+

ωl.

We make this our starting point: the α-version jS,ba,αωl is positive for all ω < λ3
l +2 = −m̃+− l+2,

and the sign for ω > λ3
l +2 is determined by counting sign changes. In order to illustrate the following

considerations, in Figure C.430 we plot the α-version and mark the values of the four λ’s.

Figure C.430: Typical plot of the α-version jS,ba,αωl (orange continuous curves): here d = 3, m = 1,
RAdS = 1, l = 2, giving us m̃+ ≈ 3.3. Thus λ3

2 ≈ −5.3 (dot-dashed red line), λ4
2 ≈ −1.7 (dashed red

line), λ1
2 ≈ −0.3 (dashed blue line) and λ2

2 ≈ 3.3 (dot-dashed blue line). The vertical orange lines

at ω = λ3
2 + 2n and ω = λ4

2 + 2n with integer n ≥ 1 are the poles of jS,ba,αω,2 . The background color
indicates the sign: the α-version is positive where the orange background is above the ω-axis, and
negative where the orange background lies below it.

We observe that the α-version changes sign at each singularity and at each zero. The singularities
are caused by the factors κ3

ωl and κ4
ωl and appear to the right of λ3

l and λ4
l in steps of ∆ω = 2. We

use the usual notation of bxc for the floor function (largest integer ≤ x), and θ(x) for the Heaviside
step function which is 0 for all x ≤ 0 and 1 for x > 0. The singularities induced by λ3

l contribute
σ3
ωl sign changes between some frequency ω > λ3

l and λ3
l :

σ3
ωl = θ(ω−λ3

l ) b(ω−λ3
l )/2c. (C.431)

In the same way the singularities induced by λ4
l contribute σ4

ωl sign changes:

σ4
ωl = θ(ω−λ4

l ) b(ω−λ4
l )/2c. (C.432)

The zeros come from κ1
ωl and κ2

ωl and appear to the right of λ1
l and λ2

l , also in steps of ∆ω = 2. The
zeros induced by λ1

l and λ2
l contribute σ1

ωl and σ2
ωl sign changes:

σ1
ωl = θ(ω−λ1

l ) b(ω−λ1
l )/2c (C.433)

σ2
ωl = θ(ω−λ2

l ) b(ω−λ2
l )/2c. (C.434)

The total of sign changes is the sum of the four σ’s, resulting in the following formula for the sign
of the α-version (the step functions ensure that this formula actually holds for all ω, not only for
ω > λ3

l + 2):

sign jS,ba,αωl = (−1)σ
α
ωl σαωl = σ1

ωl + σ2
ωl + σ3

ωl + σ4
ωl. (C.435)
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(This formula has been used to color the background in Figure C.430, we can see that the sign
obtained by (C.435) agrees precisely with the sign of the plotted curve.) Hence the signs of choices

jS,ba,isoωl and jS,ba,two
ωl result to be

sign jS,ba,isoωl =

(−1)σ
α
ωl (ω, l) ∈ Iα

(−1)σ
α
−ω,l (ω, l) ∈ Iβ

σαωl = σ1
ωl + σ2

ωl + σ3
ωl + σ4

ωl (C.436)

sign jS,ba,two
ωl =

(−1)σ
α
ωl ω < 0

(−1)σ
α
−ω,l ω > 0

. (C.437)

Formula (C.436) thus tells us whether the AdS hypercylinder’s real g-product gρ in (C.425) is positive

or negative for each mode µ(S,a)

ωlml
and µ(S,b)

ωlml
.

C.7 Flat limits

C.7.1 Flat limits: time-intervals

Another property that indicates a good choice of complex structures for AdS is that the action of the
complex structure on an AdS solution should ”commute” with the process of taking the flat limit.
That is, the two diagrams below should become commutative.

φAdS JAdS
t φAdS

φMink JMink
t φMink

w

JAdS
t

u
flat lim.

u
flat lim.

w

JMink
t

φAdS Jρφ
AdS

φMink Jrφ
Mink

w

Jρ

u
flat lim.

u
flat lim.

w

Jr

Further, the induced real g-products should recover their Minkowski counterparts in the flat limit.
That is, Jt of AdS induces the real g-product gt, whose flat limit we wish to reproduce the real
g-product gt of the Minkowski equal-time plane. Ditto, Jρ of AdS induces gρ, whose flat limit should
reproduce gr of the Minkowski hypercylinder. This section treats the equal-time hypersurface, and
the next one the hypercylinder.

We proceed with the following three steps: first, to compute for a solution (near an equal-time
plane Σt) the expansion that makes the solution’s flat limit reproduce directly the expansion of a
solution near a Minkowski equal-time plane. Second, check that the left diagram above is indeed
commutative. Third, to check whether the flat limit of the real g-product gAdS

t (η, ζ) (wherein we
expand the solutions using the above expansion) reproduces directly the real g-product for solutions
near a Minkowski equal-time plane. We will then perform the same two steps for solutions near an
AdS hypercylinder Σρ in the next section.

Step one is done already in Section 2.6.5. Let us recall the expansion (2.90) of a solution near a
Minkowski equal-time plane:

φ(t, r,Ω) =

∞̂

0

dp
∑
l,ml

2p (2 ιπ)−1/2 jl(pr)
{
φ+
plml

e−iEpt Y mll (Ω) + φ−plml eiEpt Y mll (Ω)

}
. (C.438)

Our usual expansion (2.201) of a solution near an AdS equal-time plane is the (ordinary) Jacobi
expansion:

φ(t, ρ,Ω) =
∑
nlml

{
φ+
nlml

µ(+)

nlml
(t, ρ,Ω) + φ−nlml µ

(+)

nlml
(t, ρ,Ω)

}
. (C.439)
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We can rescale the momentum representation as in (2.202)

φ±nlml = φ±
ω+
nl
lml

= φF,±
nlml

2

RAdS

2ω+

nl√
2 ιπ

(pRnl)
l

(2l+d−2)!!
(C.440)

φF,±
nlml

= R−1
AdS φ̃

F,±
p̃lml

with here p̃ short for p̃nl, (C.441)

obtaining what we shall call flat Jacobi expansion:

φ(t, ρ,Ω) =
∑
nlml

{
φF,+
nlml

2

RAdS

2ω+

nl√
2 ιπ

(pRnl)
l

(2l+d−2)!!
µ(+)

nlml
(t, ρ,Ω)

+ φF,−
nlml

2

RAdS

2ω+

nl√
2 ιπ

(pRnl)
l

(2l+d−2)!!
µ(+)

nlml
(t, ρ,Ω)

}
. (C.442)

Using (C.90) from Appendix C.2.8, we obtain that in the flat limit for d = 3 the flat Jacobi expansion
(C.442) becomes the Minkowski time-interval expansion (C.438):

φ(t, r,Ω) −→flat

lim.

∞̂

0

dp̃
∑
l,ml

2p̃ (2 ιπ)−1/2 jl(p̃r)
{
φ̃F,+
p̃lml

e−iω̃p̃τ Y mll (Ω) + φ̃F,−
p̃lml

eiω̃p̃τ Y mll (Ω)

}
. (C.443)

It is straightforward to verify that the flat limit commutes indeed with Jt, since for both Minkowski
and AdS we have simply (Jtφ)± = −iφ±. Thus we can proceed with the third step. We want
to reproduce the result (2.98) of the real g-product for two solutions near an equal-time plane in
Minkowski spacetime:

gt
(
η, ζ

)
=

∞̂

0

dp
∑
l,ml

2Ep

ß
η−plml ζ

+
plml

+ η+
plml

ζ−plml

™
. (C.444)

To this end, we start with the real g-product (2.213) for two solutions near an AdS equal-time plane:

gt(η, ζ) =
∑
nlml

2ω+

nlR
d−1
AdSN+

nl

ß
η−nlml ζ

+
nlml

+ η+
nlml

ζ−nlml

™
. (C.445)

The normalization factor stems from (C.67)

N+
nl =

n! Γ(γS)2 Γ(n+ν+1)

2ω+

nl Γ(n+γS) Γ(n+ν+γS)
. (C.446)

Plugging the flat Jacobi expansion (C.459) into the AdS real g-product we get

gt(η, ζ) =
∑
nlml

ß
ηF,−
p̃lml

ζF,+
p̃lml

+ ηF,+
p̃lml

ζF,−
p̃lml

™
Rd−3

AdS

n! Γ(γS)2 Γ(n+ν+1)

Γ(n+γS) Γ(n+ν+γS)

(pRnl)
2l 8(ω+

nl)
2

ιπ ((2l+d−2)!!)2
.

Setting d = 3, using k! = Γ(k+1) and that for odd k we have [DLMF 5.4.2]

k!! = Γ( k
2

+1)
2
k+1
2

√
ιπ
, (C.447)

the real g-product becomes

gt(η, ζ) =
∑
nlml

ß
ηF,−
p̃lml

ζF,+
p̃lml

+ ηF,+
p̃lml

ζF,−
p̃lml

™
Γ(n+1) Γ(l+ 3

2
)
2 Γ(n+ν+1)

Γ(n+l+ 3
2

) Γ(n+ν+l+ 3
2

)

(pRnl)
2l 8(ω+

nl)
2 ιπ

ιπ Γ(l+ 3
2

)
2 22l+2

=
∑
nlml

ß
ηF,−
p̃lml

ζF,+
p̃lml

+ ηF,+
p̃lml

ζF,−
p̃lml

™
Γ(n+1) Γ(n+ν+1)

Γ(n+l+ 3
2

) Γ(n+ν+l+ 3
2

)

(pRnl)
2l 8(ω+

nl)
2

22l+2
.
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In the next lines we perform the flat limit, which involves ν → mR (again, R is short for RAdS)
and making the sum into an integral. To this end, from ω+

nl := m̃+ + 2n + l we also substitute
n → 1

2 (ω+

nl − m̃+ − l).

gt(η, ζ) =
∑
lml

∆ω=2∑
ω=ω+

0l

ß
η̃F,−
p̃lml

ζ̃F,+
p̃lml

+ η̃F,+
p̃lml

ζ̃F,−
p̃lml

™
(pRnl)

2l 8(ω+

nl)
2

R2 22l+2

Γ( 1
2

(ω+

nl
−ν−l+ 1

2
))

Γ( 1
2

(ω+

nl
−ν+l+ 3

2
))

Γ( 1
2

(ω+

nl
+ν−l+ 1

2
))

Γ( 1
2

(ω+

nl
+ν+l+ 3

2
))

−→flat

lim.

∑
lml

∞̂

0

dp̃
R

2

p̃

ω̃p̃

ß
η̃F,−
p̃lml

ζ̃F,+
p̃lml

+ η̃F,+
p̃lml

ζ̃F,−
p̃lml

™
p2l 8(ωp)

2

R2 22l+2

Γ( 1
2

(R(ω̃−m)−l+ 1
2

))

Γ( 1
2

(R(ω̃−m)+l+ 3
2

))

Γ( 1
2

(R(ω̃+m)−l+ 1
2

))

Γ( 1
2

(R(ω̃+m)+l+ 3
2

))

≈
∑
lml

∞̂

0

dp̃

ß
η̃F,−
p̃lml

ζ̃F,+
p̃lml

+ η̃F,+
p̃lml

ζ̃F,−
p̃lml

™
p̃

ω̃p̃

p2l 4(ωp)
2

R 22l+2

(
1
2R(ω̃−m)

)−l− 1
2
(

1
2R(ω̃+m)

)−l− 1
2

Now we can simplify(
1
2R(ω̃−m)

)−l− 1
2
(

1
2R(ω̃+m)

)−l− 1
2

=
(

1
4R

2(ω̃2−m2)
)−l− 1

2

=
(

1
4R

2p̃2
)−l− 1

2

=
(

1
4p

2
)−l− 1

2

= 22l+1 p−2l−1 ,

giving us

gt(η, ζ) −→flat

lim.

∑
lml

∞̂

0

dp̃

ß
η̃F,−
p̃lml

ζ̃F,+
p̃lml

+ η̃F,+
p̃lml

ζ̃F,−
p̃lml

™
p̃

ω̃p̃

p2l 4(ωp)
2

R 22l+2
22l+1 p−2l−1

=
∑
lml

∞̂

0

dp̃

ß
η̃F,−
p̃lml

ζ̃F,+
p̃lml

+ η̃F,+
p̃lml

ζ̃F,−
p̃lml

™
2ω̃p̃ .

This is precisely the real g-product (C.444) for two solutions near a Minkowski equal-time plane.
We have computed it here in the momentum representation: For gt(η, ζ) = 2ωt(η, Jtζ) we have used
the action of Jt in the momentum representation and plugged it into the momentum representation
(2.209) of ωt. Then we took the flat limit. In the diagram below this corresponds to starting top
left, going down and then right.

gAdS

t (η, Jtζ)

gMink

τ (ηM, Jτζ
M)

w

disc. flat lim.

u

´
dρ u

´
dr

w

disc. flat lim.

The other way of first going right and then down gives the same result, since it does so for the
symplectic structure, see (2.197), and the complex structure Jt commutes with the flat limit (see the
diagram at beginning of this subsection). Hence the above diagram commutes as well, indicating
that our flat limit of gt is self-consistent.

C.7.2 Flat limits: rod regions α and β-versions

Before also studying the flat limit of the real g-product gρ, we start by calculating the flat limit of

jS,ba,isoωl . That is, we calculate the flat limits of the α and β-versions jS,ba,αωl and jS,ba,βωl . We recall
that the α-version writes

jS,ba,αωl = 1
ιπ Γ(γS,a) Γ(γS,a−1)

Γ(αS,b)

Γ(αS,a)

Γ(1−βS,a)

Γ(1−βS,b)
.
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The flat limit only affects the the last two quotients of Gamma functions. Since the Gammas’
arguments are always real, the Gammas and their quotients must be real as well. Below we calculate
the flat limit, replacing step by step some expressions by their values for large R := RAdS, and
setting d = 3. Note that we do not apply the flat limit directly to the arguments of the Gamma
functions (but only after the factors emerge from the Gammas), in order to obtain the correct result
for the overall sign.

Γ(αS,b)

Γ(αS,a)

Γ(1−βS,a)

Γ(1−βS,b)
=

Γ( 1
2

(m̃+−ω−l−d+2))

Γ( 1
2

(m̃+−ω+l))

Γ(− 1
2

(m̃++ω+l−2))

Γ(− 1
2

(m̃++ω−l−d))
(C.448)

=
Γ(− 1

2
(ω−m̃++l+1))

Γ(− 1
2

(ω−m̃+−l))

Γ(− 1
2

(ω+m̃++l−2))

Γ(− 1
2

(ω+m̃+−l−3))

=
Γ(− 1

2
(ω−m̃+)− l

2
− 1

2
))

Γ(− 1
2

(ω−m̃+)+ l
2

))

Γ(− 1
2

(ω+m̃+)− l
2

+1))

Γ(− 1
2

(ω+m̃+)+ l
2

+ 3
2

))

≈
(
− 1

2

(
ω−m̃+

))−l(− 1
2

(
ω+m̃+

))−l Γ(− 1
2

(ω−m̃+)− l
2
− 1

2
))

Γ(− 1
2

(ω−m̃+)− l
2

))

Γ(− 1
2

(ω+m̃+)− l
2

+1))

Γ(− 1
2

(ω+m̃+)− l
2

+ 3
2

))

=
(
R2

4

(
ω̃2−m2

))−l Γ(Xα
−)

Γ(Xα
− + 1

2
)

Γ(Xα
+)

Γ(Xα
+ + 1

2
)
,

wherein

Xα
− = − 1

2 (ω−m̃+)− l
2−

1
2

Xα
+ = − 1

2 (ω+m̃+)− l
2 +1 .

(C.449)

The calculation for the β-version is the same up to some signs, and yields

Γ(βS,b)

Γ(βS,a)

Γ(1−αS,a)

Γ(1−αS,b)
≈
(
R2

4

(
ω̃2−m2

))−l Γ(Xβ
−)

Γ(Xβ
− + 1

2
)

Γ(Xβ
+)

Γ(Xβ
+ + 1

2
)
,

wherein

Xβ
− = + 1

2 (ω−m̃+)− l
2 +1

Xβ
+ = + 1

2 (ω+m̃+)− l
2−

1
2 .

(C.450)

In the flat limit, for all Xα,β
± their absolute value |X| becomes very large. Then, for positive X we

can use

Γ(X)

Γ(X + 1
2

)
≈ X−1/2 = |X|−1/2

,

while for negative X± we get

Γ(X)

Γ(X + 1
2

)
≈ |X|−1/2 ·

+1 X ∈ (−n,−n+ 1
2 )

−1 X ∈ (−n+ 1
2 ,−n+ 1)

n ∈ N+

(because the Gamma function alternates its sign for negative arguments). By N+ we denote the
positive natural numbers, thus excluding zero. Together this writes as follows for large |X| with X
positive or negative:

Γ(X)

Γ(X + 1
2

)
≈ |X|−1/2 ·

−1 X ∈ (−n+ 1
2 ,−n+ 1) n ∈ N+

+1 else
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With this we can complete the process of taking the flat limit. For the α-version we obtain

jS,ba,αωl −→flat

lim.

1
ιπ Γ(l+ 3

2
) Γ(l+ 1

2
)

(
R
2 p̃ω̃

)−2l (
R
2 p̃

R
ω̃

)−1

qα− q
α
+ (C.451)

qα∓ =

−1 Xα
∓ ∈ (−n+ 1

2 ,−n+ 1) n ∈ N+

+1 else
.

For the β-version we obtain the same result up to different sign factors q:

jS,ba,βωl −→flat

lim.

1
ιπ Γ(l+ 3

2
) Γ(l+ 1

2
)

(
R
2 p̃ω̃

)−2l (
R
2 p̃

R
ω̃

)−1

qβ− q
β
+ (C.452)

qβ∓ =

−1 Xβ
∓ ∈ (−n+ 1

2 ,−n+ 1) n ∈ N+

+1 else
,

In the following section we study what this implies for the real g-product.

C.7.3 Flat limits: rod regions giso
ρ

We recall that in Section C.7.1 the flat limit for the time-interval is considered only for the Jacobi
modes (a discrete set with magic frequencies ω+

nl), because only these are well-defined for all of
space. In the flat limit the corresponding frequencies ω̃ := ω/RAdS then become dense. For the
hypercylinder we shall do something similar, because in the end it turns out that we can make
use only of a discrete set of frequencies for which we have qα− q

α
+ = +1 on intervals Iα respectively

qβ− q
β
+ = +1 on intervals Iβ . (See (C.423) for the intervals on which we choose α respectively β-

version.)
That is, for |ω| ≥ m̃+ + l, we consider the flat limit only for hypergeometric Sa and Sb-modes

with magic frequencies ω = ±ω+

nl. For the magic frequencies −ω+

nl we always have qα−q
α
+ = +1 on

their intervals Iα, and for +ω+

nl we have qβ−q
β
+ = +1 on Iβ . In order to obtain qα,β− qα,β+ = +1 also

for frequencies with |ω| < m̃+ + l, we also choose some discrete subset of frequencies, since qα,β− qα,β+

is not everywhere +1 for |ω| < m̃+ + l. The magic frequencies ω+

nl start at m̃+ + l, increasing by steps
of ∆ω = 2. Hence, our first guess would be for |ω| < m̃+ + l to choose frequencies ω which start at
m̃+ + l, but now decreasing by steps of 2. Unfortunately, this does not work, since precisely at these
frequencies we encounter singularities of Gamma functions in our definitions of jS,ba,isoωl , making the
overall sign ill-defined there.

Therefore we need to choose a different discrete subset of frequencies ω with |ω| < m̃+ + l. The
simplest choice we found for this are what we call δ-frequencies

ωδnl := m̃δ + l − 2n n ∈
{

1, 2, . . . , bm̃++lc
}

(C.453)

(such that always ωδnl > 0), wherein

m̃δ := dm̃+e − δ
2 δ := |m̃+ − int(m̃+)| int(m̃+) := bm̃++0.5c. (C.454)

That is, δ is the distance of m̃+ to its nearest integer int(m̃+). For real numbers x, we use the usual
notation of bxc for the floor function (largest integer ≤ x), and dxe for ceiling (smallest integer ≥ x).
Then, the nearest integer of x is calculated through int(x) := bx+0.5c. In m̃δ := dm̃+e − 1

2 δ,
instead of the factor 1

2 we could choose any element of the open interval (0, 1), our choice here is
merely the simplest one. Like the magic ones, the δ-frequencies are a discrete set with ∆ω = 2.

It is straightforward to verify that with our choice the δ-frequencies ωδnl always fall on frequency

intervals for which we have chosen the β-version jS,ba,βωl , and that further we have both qβ− = +1

and qβ+ = +1 for the δ-frequencies. (Hence the negative δ-frequencies −ωδnl always fall on intervals
of the α-version, with qα− = +1 and qα+ = +1 for the negative δ-frequencies.) Of course this choice
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of δ-frequencies is somewhat artificial, its only physical justification being that in the flat limit they
give the signs that we need. We refer to magic and δ- frequencies together as flat frequencies. Thus,
for flat frequencies we always have qα,β− qα,β+ = +1.

Now we can repeat the procedure of Section C.7.1. To this end we use the following flat limit
analoguous to (C.90), which says that summing the values of a function f(ω) over all flat frequencies
turns in the flat limit into an integral over all positive frequencies:

∑
n

f(ω+,δ

nl ) −→flat

lim.

R
2

∞̂

0

dω̃ f(Rω̃). (C.455)

Step one again consists in finding what we call the flat hypergeometric expansion, whose flat limit
recovers the expansion (2.107) of a solution near a Minkowski hypercylinder:

φ(t, r,Ω) =

ˆ
dE
∑
l,ml

pRE
4 ιπ

{
φaElmle

−iEtY mll (Ω) ̌El(r) + φbElmle
−iEtY mll (Ω) ňEl(r)

}
. (C.456)

Our usual expansion (2.186) of a solution near an AdS hypercylinder is the S-expansion:

φ(t, r,Ω) =
ˆ

dω
∑
l,ml

{
φaωlml µ

(a)

ωlml
(t, ρ,Ω) + φbωlml µ

(b)

ωlml
(t, ρ,Ω)

}
. (C.457)

Considering only flat frequencies, what remains is the discrete S-expansion

φ(t, r,Ω) =
∑
nlml

{
φa
ω+,δ
nl

lml
µ(a)

ω+,δ
nl

lml
(t, ρ,Ω) + φb

ω+,δ
nl

lml
µ(b)

ω+,δ
nl

lml
(t, ρ,Ω) (C.458)

+ φa−ω+,δ
nl

lml
µ(a)

−ω+,δ
nl

lml
(t, ρ,Ω) + φb−ω+,δ

nl
lml

µ(b)

−ω+,δ
nl

lml
(t, ρ,Ω)

}
.

We can rescale the momentum representation as in (C.94)

φaωlml = φF,a
ωlml

p̃Rω̃
(4 ιπ)

(pRω)l

(2l+d−2)!!
= R−1

AdSφ̃
F,a
ω̃lml

p̃Rω̃
(4 ιπ)

(pRω)l

(2l+d−2)!!

φbωlml = φF,b
ωlml

p̃Rω̃
(4 ιπ)

(2l+d−4)!!

(pRω)l+1
= R−1

AdSφ̃
F,b
ω̃lml

p̃Rω̃
(4 ιπ)

(2l+d−4)!!

(pRω)l+1
.

(C.459)

obtaining what we shall call flat discrete S-expansion:

φ(t, r,Ω) =
∑
nlml

{
φF,a

ω+,δ
nl

lml

p̃Rnl
(4 ιπ)

(pRnl)
l

(2l+d−2)!!
µ(a)

ω+,δ
nl

lml
(t, ρ,Ω) + φF,b

ω+,δ
nl

lml

p̃Rnl
(4 ιπ)

(2l+d−4)!!

(pRnl)
l+1

µ(b)

ω+,δ
nl

lml
(t, ρ,Ω)

(C.460)

+ φF,a

−ω+,δ
nl

lml

p̃Rnl
(4 ιπ)

(pRnl)
l

(2l+d−2)!!
µ(a)

−ω+,δ
nl

lml
(t, ρ,Ω) + φF,b

−ω+,δ
nl

lml

p̃Rnl
(4 ιπ)

(2l+d−4)!!

(pRnl)
l+1

µ(b)

−ω+,δ
nl

lml
(t, ρ,Ω)

}
.

Therein, again pnl is short for pω+,δ
nl

. Using (C.87) from Appendix C.2.7, together with (C.455)

we obtain that in the flat limit for d = 3 the flat S-expansion (C.460) becomes the Minkowski
hypercylinder expansion (C.456):

φ(t, r,Ω) −→flat

lim.

ˆ
dω̃
∑
l,ml

p̃Rω̃
4 ιπ

{
φ̃F,a
ω̃lml

e−iω̃τY mll (Ω) ̌ω̃l(r) + φ̃F,b
ω̃lml

e−iω̃τY mll (Ω) ňω̃l(r)
}
. (C.461)
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Next, let us verify that also for the hypercylinder the flat limit and complex structure ”commute”,
that is, make the below diagram commutative:

φAdS Jρφ
AdS

φMink Jrφ
Mink

w

J iso
ρ

u
flat lim.

u
flat lim.

w

J iso
r

To this end, we need to show that the flat limit of J iso
ρ φ reproduces the action of J iso

r on the flat
limit of φ. We start from the discrete S-expansion:

φ(t, r,Ω) =
∑
nlml

{
φS,a
ω+,δ
nl

lml
µ(S,a)

ω+,δ
nl

lml
(t, ρ,Ω) + φS,b

ω+,δ
nl

lml
µ(S,b)

ω+,δ
nl

lml
(t, ρ,Ω)

+ φS,a
−ω+,δ

nl
lml

µ(S,a)

−ω+,δ
nl

lml
(t, ρ,Ω) + φS,b

−ω+,δ
nl

lml
µ(S,b)

−ω+,δ
nl

lml
(t, ρ,Ω)

}
.

(J iso
ρ φ)(t, r,Ω) =

∑
nlml

{
−(jS,ba,iso

ω+,δ
nl

,l
)−1φS,b

ω+,δ
nl

lml
µ(S,a)

ω+,δ
nl

lml
(t, ρ,Ω) + (jS,ba,iso

ω+,δ
nl

,l
)φS,a
ω+,δ
nl

lml
µ(S,b)

ω+,δ
nl

lml
(t, ρ,Ω)

− (jS,ba,iso
ω+,δ
nl

,l
)−1φS,b

−ω+,δ
nl

lml
µ(S,a)

−ω+,δ
nl

lml
(t, ρ,Ω) + (jS,ba,iso

ω+,δ
nl

,l
)φS,a
−ω+,δ

nl
lml

µ(S,b)

−ω+,δ
nl

lml
(t, ρ,Ω)

}
,

and switch to the flat discrete S-expansion with d = 3

(J iso
ρ φ)(t, r,Ω) =

∑
nlml

{
−(jS,ba,iso

ω+,δ
nl

,l
)−1 p̃Rnl

(2 ιπ)

(2l−1)!!

(pRω)l+1
φF,b
ω+,δ
nl

lml
µ(S,a)

ω+,δ
nl

lml
(t, ρ,Ω)

+ (jS,ba,iso
ω+,δ
nl

,l
)
p̃Rnl

(2 ιπ)

(pRω)l

(2l+1)!!
φF,a
ω+,δ
nl

lml
µ(S,b)

ω+,δ
nl

lml
(t, ρ,Ω)

− (jS,ba,iso
ω+,δ
nl

,l
)−1 p̃Rnl

(2 ιπ)

(2l−1)!!

(pRω)l+1
φF,b
−ω+,δ

nl
lml

µ(S,a)

−ω+,δ
nl

lml
(t, ρ,Ω)

+ (jS,ba,iso
ω+,δ
nl

,l
)
p̃Rnl

(2 ιπ)

(pRω)l

(2l+1)!!
φF,a
−ω+,δ

nl
lml

µ(S,b)

−ω+,δ
nl

lml
(t, ρ,Ω)

}
.

This can be rewritten as

(J iso
ρ φ)(t, r,Ω) =

∑
nlml

p̃Rnl
(2 ιπ)

{
−T−1φF,b

ω+,δ
nl

lml

(pRnl)
l

(2l+1)!!
µ(S,a)

ω+,δ
nl

lml
(t, ρ,Ω)

+ T φF,a
ω+,δ
nl

lml

(2l−1)!!

(pRnl)
l+1

µ(S,b)

ω+,δ
nl

lml
(t, ρ,Ω)

− T−1φF,b
−ω+,δ

nl
lml

(pRnl)
l

(2l+1)!!
µ(S,a)

−ω+,δ
nl

lml
(t, ρ,Ω)

+ T φF,a
−ω+,δ

nl
lml

(2l−1)!!

(pRnl)
l+1

µ(S,b)

−ω+,δ
nl

lml
(t, ρ,Ω)

}
,

wherein we have used the shorthand

T =
jS,ba,iso
ω+,δ
nl

,l
(pRnl)

2l+1

(2l+1)!! (2l−1)!!
.
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Applying then the flat limits (C.455) and (C.87) we obtain

(J iso
ρ φ)(t, r,Ω) −→flat

lim.

∞̂

0

dω̃
∑
lml

p̃Rω̃
(4 ιπ)

{
−T−1φ̃F,bω̃lml µ

(a)

ω̃lml
(t, ρ,Ω) + T φ̃F,aω̃lml µ

(b)

ω̃lml
(t, ρ,Ω)

− T−1φ̃F,b−ω̃lml µ
(a)

−ω̃lml(t, ρ,Ω) + T φ̃F,a−ω̃lml µ
(b)

−ω̃lml(t, ρ,Ω)

}
=

∞̂

−∞

dω̃
∑
lml

p̃Rω̃
(4 ιπ)

{
−T−1φ̃F,bω̃lml µ

(a)

ω̃lml
(t, ρ,Ω) + T φ̃F,aω̃lml µ

(b)

ω̃lml
(t, ρ,Ω)

}
Therefore, it remains to compute the flat limit of the factor

T =
(pRnl)

2l+1

(2l−1)!! (2l+1)!!
jS,ba,iso
ω+,δ
nl

,l
−→flat

lim.

(pRnl)
2l+1

(2l−1)!! (2l+1)!!
1
ιπ Γ(l+ 3

2
) Γ(l+ 1

2
)

(
R
2 p̃nl

)−2l (
R
2 p̃

R
nl

)−1

q− q+.

Therein, for q− q+ we have to use qα− q
α
+ for frequencies for which we choose jS,ba,αωl , and qβ− q

β
+

where we choose jS,ba,βωl . Since we have used only flat frequencies, we always have q− q+ = 1 and
thus can omit this factor. (This is the reason for starting the whole process only with the flat

frequencies.) Using again [DLMF 5.4.2] that for odd k we have k!! = Γ( k
2

+1) 2
k+1
2 /
√
ιπ , and thus

(2l−1)!! (2l+1)!! = Γ(l+ 3
2

)Γ(l+ 1
2

) 22l+1/ ιπ, the factor becomes

T =
(pRnl)

2l+1

(2l−1)!! (2l+1)!!
jS,ba,iso
ω+,δ
nl

,l
−→flat

lim.

(p̃Rnl)
2l

(p̃nl)2l
=

1 ω̃2 > m2

(−1)l ω̃2 < m2
. (C.462)

With this we find that the flat limit of J iso
ρ φ recovers the action of J iso

r on the Minkowski solution
which is the flat limit of φ:

(J iso
ρ φ)(t, r,Ω) −→flat

lim.

∞̂

0

dω̃
∑
lml

p̃Rω̃
(4 ιπ)

(±1)l
{
−φ̃F,bω̃lml µ

(a)

ω̃lml
(t, ρ,Ω) + φ̃F,aω̃lml µ

(b)

ω̃lml
(t, ρ,Ω)

}
.

As the second step, again we aim to reproduce the result (B.91) of the real g-product for two solutions
near a hypercylinder in Minkowski spacetime:

giso
r (η, ζ) =

ˆ
dE
∑
l,ml

pRE
8 ιπ

(±1)l
ß
ηaElmlζ

a
−E,l,−ml + ηbElmlζ

b
−E,l,−ml

™
. (C.463)

Our point of departure is the definition

giso
ρ (η, ζ) = 2ωρ(η, J

iso
ρ ζ). (C.464)

We thus plug our complex structure J iso
ρ (C.423) into the discrete symplectic structure (C.393) in

which we omit the Dirac delta divergence, giving

giso
ρ (η, ζ)=Rd−1

AdS

∑
n,l,ml

{
ηS,anlml (J iso

ρ ζ)S,b−n,l,−ml− η
S,b
n,l,ml

(J iso
ρ ζ)S,a−n,l,−ml

+ ηS,a−n,l,ml (J iso
ρ ζ)S,bn,l,−ml− η

S,b
−n,l,ml (J iso

ρ ζ)S,an,l,−ml

}
ιπ(2l+d−2)

=Rd−1
AdS

∑
n,l,ml

{
ηS,anlml ζ

S,a
−n,l,−mlj

S,ba,iso

ω+,δ
nl

,l
+ ηS,bn,l,ml ζ

S,b
−n,l,−ml/j

S,ba,iso

ω+,δ
nl

,l

+ ηS,a−n,l,ml ζ
S,a
n,l,−mlj

S,ba,iso

ω+,δ
nl

,l
+ ηS,b−n,l,ml ζ

S,b
n,l,−ml/j

S,ba,iso

ω+,δ
nl

,l

}
ιπ(2l+d−2).
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Switching to the flat S-expansion gives for d = 3

giso
ρ (η, ζ)=

∑
n,l,ml

RAdS

p̃Rnl
4 ιπ

{
ηF,anlml

ζF,a−n,l,−ml T + ηF,bn,l,ml
ζF,b−n,l,−ml/T

+ ηF,a−n,l,ml ζ
F,a
n,l,−ml T + ηF,b−n,l,ml ζ

F,b
n,l,−ml/T

}
=
∑
n,l,ml

R−1
AdS

p̃Rnl
4 ιπ

{
η̃F,anlml

ζ̃F,a−n,l,−ml T + η̃F,bn,l,ml
ζ̃F,b−n,l,−ml/T

+ η̃F,a−n,l,ml ζ̃
F,a
n,l,−ml T + η̃F,b−n,l,ml ζ̃

F,b
n,l,−ml/T

}
.

Therein we again use the short

T =
jS,ba,iso
ω+,δ
nl

,l
(pRnl)

2l+1

(2l+1)!! (2l−1)!!
.

Applying now the flat limit (C.455) we get

giso
ρ (η, ζ)=

ˆ
dω̃
∑
l,ml

p̃Rω̃
8 ιπ

{
η̃F,aω̃lml

ζ̃F,a−ω̃,l,−ml T + η̃F,bω̃lml
ζ̃F,b−ω̃,l,−ml/T

}
.

With the flat limit (C.462)

T −→flat

lim.

1 ω̃2 > m2

(−1)l ω̃2 < m2

the real g-product’s flat limit reproduces the real g-product (C.463) of the Minkowski hypercylinder
(again, +1 for ω̃ > m and −1 for ω̃ < m):

giso
ρ (η, ζ) −→flat

lim.

ˆ
dω̃
∑
lml

p̃Rω̃
8 ιπ

(±1)l
{
η̃F,a
ω̃lml

ζ̃F,a
−ω̃,l,−ml + η̃F,b

ω̃lml
ζ̃F,b
−ω̃,l,−ml

}
.

We need to compose our complex structure J iso
ρ by interlacing two solutions of the conditions (C.370).

A possible way to get rid of the need for interlacing might be of defining the radial functions Sa

using a normalization constant, for instance the N−1/2 as given in equation (2.5) of [43] by Limic,
Niederle and Raczka. With our ν being their −iΛ, in our notation their normalization writes

N−1/2 =
1√
2 ιπ

∣∣∣∣ Γ( 1
2

(l+ω−ν+ d
2

)) Γ( 1
2

(l−ω−ν+ d
2

))

Γ(l+ d
2

) Γ(−ν)

∣∣∣∣ .
Using absolute values did not work for us when solving conditions (C.370) which make the complex
structure commute with the isometries. However, redefining the radial function Sa with N−1/2 (and
Sb with another suitable normalizer) induces different factors in the conditions (C.370). With some
luck, there might exist a solution of these new conditions that is invariant under ω → −ω, and
that does not need to be interlaced with another solution in order to fulfill amplitude-equivalence
(C.377), that is, making time-interval and rod amplitudes coincide.

Another possible strategy for finding a more elegant complex structure consists in giving up the
simple anti-diagonal form (3.94), that is, allowing nonzero jS,aaωl . A particular way of realizing this
is using a complex structure like that given by Ashtekar and Magnon on page 384 of [4]:

JΣ =
Ln√
−L2

n

. (C.465)
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Therein, Σ is a Cauchy hypersurface and n its normal vector field. Then the square of the Lie
derivative Ln has negative eigenvalues when acting on the modes, making the root well-defined.
Even though our hypercylinders are not Cauchy, one might try an Ashtekar-Magnon inspired complex
structure like

Jρ =
Ln
|Ln|

(C.466)

wherein n is the normal vector field of the hypercylinder. The action of this complex structure then
has to be calculated in the momentum representation, and commutation with isometries needs to be
checked. Finally, amplitude-equivalence needs to be checked as well.

Another question is whether either of these two methods can give us a complex structure which
makes our real g-product gρ positive-definite for modes of all frequencies, that is, for both propagating
and evenescent modes.

C.7.4 Flat limits: rod regions gpos
ρ

In the previous subsection we reproduce the real g-product gr for a Minkowski hypercylinder as
induced by the complex structure J iso

r . For the AdS hypercylinder we therein use the interlaced
complex structure J iso

ρ . Since J iso
ρ depends on the frequency ω, but J iso

r does not, reproducing the
Minkowski gr only works for a discrete set of frequencies.

In this subsection we reproduce the real g-product gr for a Minkowski hypercylinder as induced
by the complex structure Jpos

r , which is independent of frequency ω and angular momentum l, and
induces a positive-definite gr. For the AdS hypercylinder we start with the two-branched complex
structure J two

ρ . We already found that this choice does not commute with AdS boosts. Hence we let
go of this requirement (keeping thus only commutation with time translations and spatial rotations).
Therefore we are no longer tied to using the α and β-versions for all frequencies, but only for the
magic ones in order to keep our weak version of amplitude equivalence. We now make use of this
new freedom, with the goal of modifying J two

ρ such that it induces a positive-definite gpos
ρ for all

frequencies.
As sketched in Section C.7.1, we start by constructing a complex structure Jρ for AdS, whose

action ”commutes” with the process of taking the continuous flat limit:

φAdS Jρφ
AdS

φMink Jpos
r φMink

w

Jρ

u
cont. flat lim.

u
cont. flat lim.

w

Jpos
r

(C.467)

We recall the action (3.77) of the positive-definite complex structure of the Minkowski hypercylinder:(
Jpos
r φ

)a
Elml

= − φbElml
(
Jpos
r φ

)b
Elml

= + φaElml (C.468)(
Jpos
r φ

)
(t, r,Ω) =

ˆ
dE
∑
l,ml

pRE
4 ιπ

{
−φbElmle

−iEtY mll (Ω) ̌El(r) + φaElmle
−iEtY mll (Ω) ňEl(r)

}
.

This is the action we aim to reproduce as the continuous flat limit of Jρφ. An anti-diagonal complex
structure acts in the S-expansion as

(
Jρφ

)
(t, r,Ω) =

ˆ
dω
∑
l,ml

{
(Jρφ)S,aωlml e−iωt Y mll (Ω) Saωl(ρ) + (Jρφ)S,bωlml e−iωt Y mll (Ω) Sbωl(ρ)

}

=

ˆ
dω
∑
l,ml

{ −1

jS,baωl

φS,bωlml e−iωt Y mll (Ω) Saωl(ρ) + jS,baωl φS,aωlml e−iωt Y mll (Ω) Sbωl(ρ)

}
.
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Switching to the flat S-representation (C.94), for d = 3 this becomes

(
Jρφ

)
(t, r,Ω) =

ˆ
dω
∑
l,ml

p̃Rω̃
(4 ιπ)

{
−T−1φF,bωlml e−iωt Y mll (Ω)

(pRω)l

(2l+1)!!
Saωl(ρ)

+ T φF,aωlml e−iωt Y mll (Ω)
(2l−1)!!

(pRω)l+1
Sbωl(ρ)

}
.

wherein again we use the shorthand

T =
jS,baωl (pRω)2l+1

(2l+1)!! (2l−1)!!
.

Taking the flat limit we obtain

(
Jρφ

)
(t, r,Ω) −→flat

lim.

ˆ
dω̃
∑
l,ml

p̃Rω̃
(4 ιπ)

{
−T−1φ̃F,bωlml e−iω̃τ Y mll (Ω) ̌El(r) + T φ̃F,aωlml e−iω̃τ Y mll (Ω) ňEl(r)

}
.

Thus in order to reproduce the action (C.468) of the Minkowski Jpos
r , we need to fix jS,baωl such that in

the flat limit the factor T becomes unity. As found in Section C.6 above Figure C.430, the α-version
is positive for ω ≤ −(m̃++l−2) and the β-version is positive for ω ≥ (m̃++l−2). Hence from (C.451)
+(C.452) we can read off that for these frequencies the flat limit of both versions is

j
S,ba,α/β
ωl −→flat

lim.

1
ιπ Γ(l+ 3

2
) Γ(l+ 1

2
)

(
R
2 p̃

R
ω̃

)−2l−1

(C.469)

=(2l−1)!! (2l+1)!!
(
Rp̃Rω̃

)−2l−1

. (C.470)

Therein we use again [DLMF 5.4.2] that for odd k we have k!! = Γ( k
2

+1) 2
k+1
2 /
√
ιπ , and thus

Γ(l+ 3
2

)Γ(l+ 1
2

) = (2l−1)!! (2l+ 1)!!2−2l−1 ιπ. Thus for ”high” frequencies ω we can choose the α-
version respectively β-version and obtain the correct flat limit: the flat limit of T becomes unity
for these frequencies. For ”low” frequencies we need to find an alternative expression for jS,baωl with

the correct flat limit. We also need to fix a frequency ωsplit
l > (m̃+ +l−2) which distinguishes be-

tween high and low frequencies. Then we keep the α-version for ω ≤ −ωsplit
l and the β-version for

ω ≥ +ωsplit
l . The shortest expression for ωsplit

l is setting it to ωsplit
l = m̃+ + l. For the remaining

frequencies |ω| < ωsplit
l the most obvious choice is

jS,ba,obv
ωl = 1

ιπ Γ(γS) Γ(γS−1)

(
1
2p

R
ω

)−2l−1

(C.471)

=(2l+d−2)!! (2l+d−4)!! 23−d
(
pRω

)−2l−1

. (C.472)

Then, for these frequencies with d = 3 the factor T becomes unity trivially. Moreover, this choice
has the advantage of being positive. It diverges at |ω| = m̃+ since there the radial momentum

pRω :=
»∣∣ω2−m̃2

+

∣∣ becomes zero. This divergence is not a problem: actually it is even necessary
to counter the corresponding zero in the factor T . We now define the following modification of the
two-branched version and call it positive-definite version Jpos

ρ with ωsplit
l = m̃++l:

jS,ba,pos
ωl =


jS,ba,αωl ω ≤ −ωsplit

l

jS,ba,βωl ω ≥ +ωsplit
l

jS,ba,obv
ωl else

(C.473)

As its name suggests, this version is positive for all frequencies ω. It is discontinuous at ω = ±ωsplit
l .

At ω = 0 it is continuous (albeit not differentiable). At ω = ±m̃+ it diverges as commented above.
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(Thus for l = 0 we have ωsplit
l = m̃+ and hence the divergence and discontinuity coincide.) This

is shown (thick, continuous orange curve) in Figures 3.104 and 3.105, wherein we plot our different

versions of jS,baωl . For large |ω|, we see that jS,ba,two
ωl and jS,ba,pos

ωl coincide and are positive, while

for small |ω| only jS,ba,pos
ωl is positive and jS,ba,two

ωl alternates sign. Further, jS,ba,isoωl coincides with

jS,ba,two
ωl only on half of the integer ω-intervals. This is so, because their respective associations of

jS,ba,αωl and jS,ba,βωl coincide for half of these intervals while they are opposite for the other half. We

also see that all versions are frequency symmetric: jS,baωl = jS,ba−ω,l.

We remark that jS,ba,pos
ωl > 0 for all frequencies, thus inducing a positive-definite gpos

ρ . By
construction our new Jρ commutes with the continuous flat limit. We now study whether its induced
real g-product gpos

ρ in the flat limit indeed reproduces the positive-definite Minkowski gpos
r . To this

end, we start with the real g-product (C.424) for an anti-diagonal Jρ with the solutions written in
their S-expansions:

gρ(η, ζ) = 2ωρ(η, Jρζ)

= 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηaωlml (Jρζ)b−ω,l,−ml − η

b
ωlml

(Jρζ)a−ω,l,−ml

}
(2l+d−2)

= 2 ιπRd−1
AdS

ˆ
dω
∑
l,ml

{
ηaωlml ζ

a
−ω,l,−ml j

S,ba
ωl + ηbωlml ζ

b
−ω,l,−ml/j

S,ba
ωl

}
(2l+d−2). (C.474)

Substituting the flat S-expansion (C.94)

φS,aωlml = R−1
AdSφ̃

F,a
ω̃lml

p̃Rω̃
(4 ιπ)

(pRω)l

(2l+d−2)!!

φS,bωlml = R−1
AdSφ̃

F,b
ω̃lml

p̃Rω̃
(4 ιπ)

(2l+d−4)!!

(pRω)l+d−2

yields for d = 3

gρ(η, ζ) =

ˆ
dω̃
∑
l,ml

p̃Rω̃
8 ιπ

{
η̃F,aωlml

ζ̃F,a−ω,l,−ml T + η̃F,bωlml
ζ̃F,b−ω,l,−mlT

−1
}
, (C.475)

wherein once more

T =
jS,baωl (pRω)2l+1

(2l+1)!! (2l−1)!!
.

In order to reproduce the positive-definite Minkowski gpos
r (B.91)

gpos
r (η, ζ) =

ˆ
dE
∑
l,ml

pRE
8 ιπ

ß
ηaElmlζ

a
−E,l,−ml + ηbElmlζ

b
−E,l,−ml

™
, (C.476)

we thus again need a jS,baωl such that in the flat limit the factor T becomes unity. Since our jS,ba,pos
ωl

is constructed precisely to fulfill this condition, we have now verified that our complex structure
Jpos
ρ in the flat limit indeed reproduces the positive-definite inner product gpos

r of the Minkowski
hypercylinder.
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