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Introduccion.

La variabilidad de variables aleatorias siempre ha sido un tema interesante en
la Teoria de Probabilidad. La forma més simple y usual de medirla es com-
parando las varianzas de dos o més variables aleatorias, inclusive es posible
inducir un orden! en el espacio de variables aleatorias con la misma esperanza
fija: sin embargo, nada garantiza que esta manera de medir la variabilidad
sea la correcta.? En este manuscrito estudiamos una manera alternativa de
medir la variabilidad: mediante el orden convexo de medidas, también cono-
cido como mayorizacién. En principio, decimos que una medida de probabil-
idad p es mayor que v en el sentido del orden convexo (o que p mayoriza a
v) sii

/fd,u > /fdy para toda f convexa.

El orden convexo es mas fuerte que el orden inducido por la varianza. Ademas,
este orden ha tenido una gran variedad de aplicaciones en finanzas y teoria
del riesgo (ver Kaas et. al. [9] para algunos ejemplos).

En 1865, Volker Strassen probé un celebrado resultado en [18] que exhibe
una equivalencia entre orden convexo y la existencia de un espacio de prob-
abilidad con cierta “propiedad de martingala”.® Especificamente, si (S, || - ||)
es un espacio de Banach, y p y v son medidas de probabilidad sobre él,
tenemos que p mayoriza a v sii existe un espacio de probabilidad (2, %, P)
en el cual podemos definir variables aleatorias X : @ — Sy Y : Q — S
tales que X ~ pu, Y ~ vy E(X|Y) =Y (bajo P). Este teorema, conocido
comunmente como teorema de Strassen para orden convexo (o para may-

'De hecho un orden parcial.

2Es dificil proponer una manera “éptima” sin dar argumentos subjetivos.

3De hecho, en dicho articulo se estudia un problema mucho més general y éste fue sélo
un ejemplo.



orizacion), ha sido una herramienta poderosa para entender mejor la teoria
detras de la mayorizacién de medidas. Un gran “inconveniente” es que su
prueba es extremadamente técnica, asi que existen muy pocas pruebas en la
literatura.*

En 1987, David Aldous y Larry Shepp probaron en [1] que dentro de
la clase de distribuciones tipo fase®, las distribuciones Erlang son las menos
variables en el sentido de coeficiente de variacién.®Las distribuciones tipo fase
han sido una herramienta eficiente en varias ramas de Probabilidad Aplicada,
y este problema de variabilidad habia sido estudiado mucho antes del famoso
articulo de Aldous y Shepp. Algunos anos después, Colm Art O’Cinneide
probé en [13] que no solamente las distribuciones Erlang son las de menor
variabilidad en el sentido de coeficiente de variacién, sino también en el sen-
tido del orden convexo: su prueba contiene una elegante aplicaciéon del teo-
rema de Strassen para mayorizaciéon. Una gran implicacion de este resultado
es la validacion del método de erlangizacién, que consiste en aproximar una
distribucion puntual en ¢ > 0, digamos d., con una sequencia de distribu-
ciones Erlang. Especificamente, los articulos de O’Cinneide, y Aldous y
Shepp prueban que si deseamos aproximar . con una sequencia de distribu-
ciones tipo fase, el método de erlangizacion es la mejor manera de hacerlo.

La aplicacion del método de erlangizacion en la que estamos interesados
tiene dos partes:

e Por un lado, podemos usarlo para dar un método de aproximacion de
la probabilidad de ruina a tiempo finito para dos procesos de riesgo
clasicos: el proceso Cramér-Lundberg y el proceso Sparre-Andersen.
Este ha sido un problema dificil de resolver, pero con la ayuda de
las distribuciones tipo fase y el método de erlangizacién serd posible
aproximar arbitrariamente bien esta probabilidad. El enfoque que uti-
lizaremos estd basado en el trabajo de Asmussen et. al. [4].

e Por otro lado, deseamos considerar una manera moderna de declararse

4Existen pruebas alternativas més cortas del teorema de Strassen en el caso S = R,
pero nos centramos en estudiar la versién més general posible.

SRecordemos que una distribucién tipo fase estd asociada al tiempo de absorcién de
una cadena de Markov de saltos.

SEl coeficiente de variacién de una variable aleatoria X estd definido como
Var(X) /E(X)2



en bancarrota, llamado ruina parisina: esta manera de arruinarse, in-
troducida por Angelo Dassios y Shanle Wu en [6], dicta que la reserva
de la compania de seguros puede quedar por debajo del nivel 0 sin
declararse en bancarrota, siempre y cuando ésta se recupere antes de
algiin tiempo (posiblemente aleatorio). Existe muy poca literatura ac-
erca de este tipo de ruina, y la mayoria esta inclinada hacia el estudio
de la ruina parisina para procesos de Lévy, cuyos procedimientos son
mas analiticos que probabilisticos. Uno podria imaginar que un estu-
dio andlogo al de Asmussen [4] puede ser llevado a cabo para la ruina
parisina en procesos Cramér-Lundberg y Sparre-Andersen.

La estructura de este manuscrito es la siguiente:

En el Capitulo 1 se da una breve revision de algunos temas y resultados
utiles del area de analisis. Este capitulo fue planeado para ser auto-contenido,
aunque se hacen diversas referencias externas cuando nos topemos con resul-
tados famosos de analisis funcional y topologia. Ademas exponemos dos re-
sultados no-tan-conocidos que necesitaron ser demostrados: que una funciéon
semicontinua superiormente y convexa es siempre continua, y una condicion
para la compacidad de una red de medidas de Radon sobre un espacio normal
basado en Tgpsoe [19].7 Ambos serdn de vital importancia en el Capitulo 2.

En el Capitulo 2 estudiamos el teorema de Strassen para el orden con-
vexo en el caso de espacios de Banach. Para esto seguimos el trabajo de
Hoffmann-Jgrgensen en [8]. Varios detalles (y una correcién minima) nece-
sitaban ser anadidos para que esta prueba fuera totalmente entendible.® Més
adelante, estudiamos el orden convexo en el caso R: tal estudio nos permitira
comprender a la mayorizaciéon como un método para estudiar la variabilidad.

En el Capitulo 3 se estudia el bloque fundamental de nuestro trabajo: las
distribuciones tipo fase. Se presentan algunas propiedades y algunos resul-
tados auxiliares que se usaran en los capitulos siguientes. Después, seguimos
el método de O’Cinneide [13] para validar el método de erlangizacion.

"El caso del espacio normal es bastante més complicado que el caso de espacio métrico,
que es el mas famoso y puede ser encontrado en una variedad de libros.
8Para éstandares personales.



En el Capitulo 4 algunos modelos estocasticos son estudiados. El primero
es llamado modelo de flujo de fluidos, el cual es un proceso que describe el
nivel de fluido en una reserva sujeto a periodos aleatorios de llenado y va-
ciado: la teoria detrds de este proceso serda de gran ayuda en los siguientes
capitulos, especificamente, la teorfa encontrada en Asmussen [3]. Después de
esto, intoduciremos dos modelos de riesgo: los procesos Cramer-Lundberg y
Sparre-Andersen. Su probabilidad de ruina a tiempo infinito sera calculada
en el caso en que sus componentes tengan una distribucion tipo fase.

En el Capitulo 5 trabajamos con la probabilidad de ruina a tiempo finito
para el proceso Sparre-Andersen y el proceso Cramér-Lundberg, basado en
el trabajo de Asmussen et. al. [4], que requiere de el encaje del proceso de
riesgo en un modelo de flujo de fluidos y de un argumento de erlangizacion.

Finalmente, en el Capitulo 6 una teoria analoga a la del Capitulo 5 es
desarrollada para la ruina parisina: esta es la parte novedosa del actual
manuscrito.



Introduction.

Variability of random variables has always been an interesting topic in Proba-
bility Theory. The simplest and most used way to measure it is by comparing
the variance between two or more random variables, even an order? can be
induced in the space of square integrable random variables with some fixed
mean: nevertheless, nothing guarantees that this way of measuring variabil-
ity is the correct one.'® In this manuscript we study instead a different way of
measuring variability: through the convex ordering of measures, also known
as majorization. Namely, we say that some probability measure y is greater
than v in the convex order sense (or that p majorizes v) iff

/fdu > /fdy for all convex f.

Convex order is stronger than the ordering induced by the variance, and it
has a wide variety of applications in finance and risk theory (see Kaas et. al.
9] for some examples).

In 1965, Volker Strassen proved a celebrated result in [18] which gives
an equivalence between convex ordering and the existence of a probability
space with certain “martingale property”.!* More specifically, if (S, -]|) is
a Banach space and p and v are probability measures over it, we have that
p majorizes v iff there exists some probability space (€2,.%#,P) in which we
can define some random variables X :  — S and Y : Q@ — S such that
X ~p, Y ~vand E(X|Y) =Y (under P). This theorem, commonly known
as Strassen’s theorem for convex order (or majorization), has been proved

9Actually a partial order.

10Tt ig difficult to propose an “optimal” way without being subjective.

1His paper actually dealt with a much more general problem and this was only a quick
example.



to be a powerful tool to get a better grasp of the theory of majorization of
measures. A huge “drawback” is that its proof is extremely technical, so very
few proofs of it are available on papers and books.!?

In 1987, David Aldous and Larry Shepp proved in [1] that amongst the
class of phase-type distributions'?, Erlang distributions are the least variable
ones in the coefficient of variation sense.!* Phase-type distributions have
quite an efficient tool in several branches of Applied Probability, and this
problem of variability amongst them had been studied long before the fa-
mous paper of Aldous and Shepp. A few years later, Colm Art O’Cinneide
proved in [13] that not only Erlang distributions are the least variable ones
in the coefficient of variation sense, but also in the convex order sense: his
proof uses an elegant application of Strassen’s theorem for majorization. A
huge implication of this result is the validation of the method of erlangiza-
tion, which consists in approximating a point mass at ¢ > 0, say J., with a
sequence of Erlang distributions. More specifically, O’Cinneide’s, and Aldous
and Shepp’s papers prove that if we want to approximate ¢, with a sequence
of phase-type distributions, the erlangization method is the best way for do-
ing it.

The application of the erlangization method we are interested in this
manuscript is twofold:

e In one hand it can be used to give an approximation method for com-
puting the finite-horizon probability of ruin for two classic risk pro-
cesses: the Cramér-Lundberg and the Sparre-Andersen processes. This
had been a difficult problem to solve, but with the aid of phase-type
distributions and the erlangization method it is possible to approxi-
mate arbitrarily well this probability. The specific approach we are
interested in is based in the work of Asmussen et. al. [4].

e On the other hand, we wish to consider a rather modern way of get-
ting ruined, which is called parisian ruin: this way of ruin, introduced
by Angelo Dassios and Shanle Wu [6], dictates that the reserve of a

12There exist shorter alternative proofs of Strassen’s theorem in the case S = R, but we
were interested in studying the most general one.

13Recall that a phase-type distribution is associated to the time of absorption of a
Markov jump process.

14The coefficient of variation of a random variable X is defined as Var(X) /E(X)2.
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company can get below level 0 without it being declared out of busi-
ness, as long as it recovers before some (possibly random) time. There
exists very little literature about this kind of ruin, and most of it is
inclined towards the study of parisian ruin for Lévy processes, whose
procedures are more analytical than probabilistic. One could imagine
that an analogous study to that of Asmussen [4] could be carried on for
parisian ruin for the Cramér-Lundberg and Sparre-Andersen process.

The structure of this manuscript is the following:

In Chapter 1 we give a brief review of useful topics and results borrowed
from analysis. This chapter was made to be as self-contained as possible, al-
though we do make external references whenever we encounter fairly famous
results from functional analysis and topology. There are two not-so-known
theorems which needed to be proved: that an upper semicontinuous and con-
vex function is always continuous, and a condition for compactness of a net
of Radon measures over a normal space based in Tgpsoe [19].'> Both of them
will be of huge importance in Chapter 2.

In Chapter 2 we review the Strassen’s theorem for convex order in the
Banach space case. To do this we follow the work of Hoffmann-Jgrgensen in
[8]. Several details (and one minor correction) needed to be added for this
proof to be fully understandable.'® Later, we make a study of convex order in
the R case: such study will give us more insight of why we use majorization
as a way to measure variability.

In Chapter 3 the founding block of our work is studied: phase-type dis-
tributions. Some properties are presented, in addition to some auxiliary
results which will be used in further chapters. Later, we follow the proof of
O’Cinneide [13] to validate the erlangization method.

In Chapter 4 some useful stochastic models are reviewed. The first one
is called a fluid-flow model, which is a process that describes fluid level in
a reservoir subject to randomly determined periods of fillings and emptying:
the theory behind this process will be of great help in further chapters, more

I5The normal space case is far more difficult than the metric space case, which is the
most famous one and can be found in a wide variety of books.
16By personal standards.
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specifically the work of Asmussen [3]. After this, we introduce two classic
risk models: the Cramer-Lundberg and Sparre-Andersen process, and their
infinite-horizon probability of ruin is computed in the case their components
are phase-type distributed.

In Chapter 5 we work with the finite-horizon probability of ruin for the
Sparre-Andersen and the Cramér-Lundberg process, based in the work of
Asmussen et. al. [4], which involves the embedding of the risk process in a
fluid-flow model and an erlangization argument.

Finally, in Chapter 6 an analogous theory to that of Chapter 5 is devel-
oped for parisian ruin: this is the novel part of the manuscript.

11



Chapter 1

Preeliminaries from Analysis.

In this chapter we introduce a wide variety of definitions and results in anal-
ysis which we will use throughout this text. Although most of them are
classic, the reader might find some of them quite challenging and technical.

In Section 1.1 the most basic results are presented; even though the reader
may be familiar with them, it is strongly recommended not to skip this sec-
tion, since here we basically introduce all the notation used throughout the
first part of this manuscript. The majority of definitions and results are
based on Rudin [16], [17] and Willard [21].

In Section 1.2 we will prove that any upper semicontinuous and convex
function over some topological vector space is actually continuous; this result
will be of great help in Section 2.2. This section is based on Section 5.7 of
Aliprantis et al. [2].

Finally, in Section 1.3 we will show a sufficient condition that guarantees

the compactness of a net of measures over a fixed normal space; this result
will be crucial in Section 2.1. This section is based on Tgpsoe [19].

12



1.1 Basic definitions and known results.

1.1.1 Topological spaces.

A topological space is a set X in which a collection 7 of subsets of X
(called open sets) has been specified with the following properties: X is
open, () is open, the intersection of any two open sets is open, and the union
of every collection of open sets is open. Such a collection 7 is called a topol-
ogy on X. When we need to be clearer, we will write (X, 7) to denote the
topological space X equipped with the topology 7.

A set F C X is closed iff X \ E is open. The closure of E, denoted by
E, is the intersection of all closed sets that contain E. The interior of E,
denoted by E°, is the union of all open sets that are subsets of £. We say
that £ C 7 is a base for 7 if every element of 7 can be written as the union
of elements in £&. A neighborhood of a point p € X is any open set that
contains p. A collection v of neighborhoods of a point p € X is a local base
at p if every neighborhood of p contains a member of v. Every topology
can be specified either by a base or by the collection of local bases at every
point of X. (X, 7) is a Hausdorff space and 7 is a Hausdorff topology
iff for each two different points there exist two disjoint neighborhoods of said
points. A set K C X is compact iff every open cover! of K has a finite
subcover.

Proposition 1.1.1. Compact sets of Hausdorff spaces are closed
Proof. See Corollary to Theorem 2.5 (pp. 36) in Rudin [16]. O

Theorem 1.1.1. Suppose K is compact and F' is closed in a topological space
X. Then F N K 1s compact.

Proof. See Corollary to Theorem 2.5 (pp. 36) in Rudin [16]. O

Proposition 1.1.2. The family K of compact sets contains (), and is closed
under finite unions and arbitrary intersections.

Proof. The first two assertions are immediate from the definition of compact-
ness. Proposition 1.1.1 yields that the arbitrary intersection of compact sets
is closed; Theorem 1.1.1 shows that this intersection is also compact. O

LAn open cover of a subset A C X is a collection of open subsets of X such that A is
contained in the union of said collection.

13



Theorem 1.1.2. If{K,} (countable or not) is a collection of compact subsets
of a Hausdor(f space and if N, K, = 0, then some finite subcollection of { K, }
also has empty intersection.

Proof. See Theorem 2.6 (pp. 37) in Rudin [16]. O

Definition 1.1.1. Let X and Y be two topological spaces. The product
topology on X x Y is the one generated by the base

§¢={Ax B:Aisopenin X, BisopeninY}.

From here on, when we encounter any Cartesian product of two topo-
logical spaces, we will assume that it is equipped with its product topology
(unless otherwise stated).

Theorem 1.1.3. K x L is a compact subset of X x Y iff K is compact in
L and B is compact in'Y .

Proof. See Theorem 17.8 (pp. 120) in Willard [21]. ]

Lemma 1.1.1. Let K X L be a compact subset of X XY and G an open
subset of X XY such that K x L. C G. Then, there exist open subsets U and
V oof X and Y (respectively), such that

KxLcUxV CAG.

Proof. 1f either K = () or L = (), then it would suffice to take U =V = () for
the statement to be true. Thus, suppose that K # () # L. Define

I'¢={AxBCG:Aisopenin X, B is open in Y};

notice that the union of all the elements of I'i; is in fact G. Fix x € L. Clearly
K x {z} is a compact subset of G, so there exists a finite subcollection of I'g,
say v = {A?x B }!=, (with n, € IN), such that K x{z} C U=, (A?xBY?). Ifit
happens that x ¢ BY for some j € {1,...n,}, then (K x{z})N(AFx B}) = 0,
so v\ {Af x B} would still be a finite cover for K x {x}; this way, w.lLo.g.
we can assume that x € BY for each ¢ = 1,...,n,. In other words, we have
that
(K x{z}) cWlxW2CG

where W := Ul"* A¥ and W2 := N['*; B are both open subsets of X and Y,
respectively.

14



Now define
A={W!xW2:2¢eL}

clearly A covers K x L, so there exists a finite subcollection of A, say 6 =
{W,, x W2}, (with m € ), such that K x L C U, (W} x W2 ). By
construction we have that K C le for every k =1,...,m. This means that

KxLcUxVc@

where U := N2, W, and V := U2, W are both open subsets of X and Y,
respectively. O

Definition 1.1.2. A mapping f from a topological space (X, 7) into a topo-
logical space (Y,¢) is continuous iff f~!(U) € 7 for every U € .

Definition 1.1.3. Let X be any topological space. Define C'(X) to be the
collection of continuous functions from X to R and let

Cy(X) :={f € C(X): fis bounded}.

Also, for any function ¢ : X — R which is continuous and bounded away
from zero, we shall define the collection C,(X)? by

Co(X) :={f € C(X) : f/o € Cy(X)}.

1.1.2 Normal spaces.

A Hausdorff space X is normal iff whenever A and B are disjoint closed sets
in X, there exist disjoint open sets U and V such that A C U and B C V.

Lemma 1.1.2. (Urysohn’s Lemma) A space X is normal iff whenever A C X
is a closed set and B C X is an open set such that A C B, there exists a
continuous mapping f: X — [0, 1] with

Ia< f< 1B

Proof. See 15.6 (pp. 102) in Willard [21]. O

2p will never denote a function throughout this manuscript, avoiding any (possible)
confusion concerning the definition of Cy(X).

15



1.1.3 Topological vector spaces.

Let X be a vector space and 7 a topology on it such that
e cvery point of X is a closed set, and
e the vector space operations are continuous with respect to 7.

Then 7 is said to be a vector topology, and X a topological vector
space.

Remark 1.1.1. In this manuscript, we are only working with real vector
spaces. Thus, from here on we shall omit the word “real” since any vector
space we encounter will be a real vector space.

If X is a topological vector space, then the following notation will be
used:

r+A={r+a:a€ A}

r—A={r—a:ac A}

A+B={a+b:ac Abe B}
A ={Xa:a€ A},

where A € R, z € X, and A, B C X.

A set B C X is said to be balanced if aB C B for every a € [—1,1].

Theorem 1.1.4. In a topological vector space X, every neighborhood of 0
contains a balanced neighborhood of 0

Proof. See Theorem 1.14 (pp. 12) in Rudin [17]. O
Proposition 1.1.3. Every topological vector space is a Hausdorff space.
Proof. See Theorem 1.10 (pp. 10) in Rudin [17]. O
A set C C X is said to be convex if
tC+(1—-t)cCC forallte]0,1].
Theorem 1.1.5. Let X be a topological vector space. If C' is a convexr subset

of X, sois C.

16



Proof. See Theorem 1.13 (pp. 11) in Rudin [17]. O

A topological vector space is said to be locally convex if for every x € X,
there exists a local base at z whose members are convex.

Theorem 1.1.6. Let X be a locally convex topological vector space, let A C
X be conver and closed, and let xy € X be such that xo ¢ A. Then there
exists a continuous linear functional on X, say Ay, such that

AQ(A) <1 and Aol’o > 1.

Proof. See Corollary 5.80 (pp. 208) in Rudin [17]. O

1.1.4 Metric spaces.

Let X be a set. X is said to be a metric space if it is equipped with a

function d : X x X — R such that
1. 0 <d(z,y) < oo forall z,y € X,

(z,
dz,y) = 0iff 2 = y,
d(z,y) =d(y,x) for all z,y € X,
d(z,z) < d(z,y) +d(y, z) for all z,y,z € X.

It is usual to call d(x,y) the distance between = and y.

We can obtain a topology over any metric space X by declaring the local
base at = to be the collection {B,(z)},~0, where

B.(x) ={y € X : d(z,y) < r}.

From now on, when talking about metric spaces, we will imply that its topol-
ogy is obtained this way.

Theorem 1.1.7. Every metric space is normal.
Proof. See 15.3 (pp. 100) in Willard [21]. O

A metric space X is said to be complete if every Cauchy sequence con-
verges in X. In other words, if d(z,,z,) — 0 as n,m — oo, then there is
some y € X such that d(z,,y) — 0 as n — 0.
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1.1.5 Normed spaces.

Consider a real vector space X. X is said to be a normed linear space if
to each z € X there is an associated non-negative real number ||z||, called
the norm of z, such that

Ll +yll < llzlf + [lyll for all 2,y € X,
2. Jaz|| = |a|||z|| if z € X and a € R,
3. |lz|| = 0 implies = = 0.

Every normed linear space may be regarded as a metric space by defining
the distance between = and y by ||z — y||.

Proposition 1.1.4. Every normed vector space is a normal topological vector
space.

Proof. That it is normal is a direct consequence of Theorem 1.1.7. It is easy
to prove that the norm is continuous, so it is indeed a topological vector
space. ]

A Banach space is a normed linear space which is complete in the metric
defined by the norm.

1.1.6 Nets.

Let X be a topological space. A directed set is a non-empty set D with
a transitive and reflexive relation, denoted by <, such that any finite subset
of D has an upper bound; i.e. if F' is a finite subset of D, then there exists
¢ € D such that a < ¢ for every a € F. A net on X is a mapping of a
directed set into X; it is usually denoted by {4 }acp or {zo}. We say that
a net {x,}aep is eventually in A, where A C X if there exists ag € D
such that z, € A for every a > ap.> A net {Z4}aep is universal if for
every subset A C X it is either true that {z,} C A eventually or else we
have that {z,} C A° eventually. Let {Zs}aep and {zo,}ser be two nets
on X such that the mapping 8 — ag of F into D satisfies the requirement
that for any ap € D, we have ag > ag eventually; then {x,,}gcpis called
a subnet of {x,}aep. The next theorem is a classic and easy result from
General Topology.

3We are using the usual convention that the expression a > b is equivalent to b < a.
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Theorem 1.1.8. Fvery net has a universal subnet.

Now suppose that X is a Hausdorff space. A net {z,}.cp converges to
x € X if for every neighborhood U of x, {z,} C U eventually; we denote
this by lim, x, = x.

Definition 1.1.4. A net is said to be compact if every universal subnet
converges.

If {z4}aep happens to be a net on R, then limsup, z, and liminf, z,
are defined by

lim sup z, = inf {sup xﬂ} , liminf z, = sup { inf xf;} )
« « @ B>a

a B>«

1.1.7 Set functions.

For now, let X be a topological space, and denote by ¥ the collection of
open sets and I the collection of compact sets; also let GG, G; be members
of 4, and let K, K; be members of K. A set function on .%# (where .7 is
a family of subsets of X) is a non-negative, possibly infinite-valued function
defined on the members of .%.

Let 3 be a set function on .# and let F, F; be members of .%. Then*

e [ is monotone if Fy C F, implies that S(F}) < B(F}).

e [ is subadditive if S(F; U Fy) < B(Fy) + B(F).

e [ is additive if Fy N F, = () implies that S(Fy U Fy) = B(Fy) + B(Fy).

e [ is called a content if ) € .7, .Z is closed under finite intersection
and union, and f is finite, monotone, additive and subadditive.

e fismodular if ) € &, if (@) =0, and if S(F1 U Fy) + B(F1 N Fy) =
B(F1) + B(F).

e A finite § is tight if | D F5 implies that sup{S(F) : ' C F} \ F2} =
B(F1) — B(F2).

4These statements are valid only when they make sense, that is, if 3 is correctly defined
on the sets it is evaluated.
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Now suppose that K C .%; then

e (3 is o-smooth with respect to K if for any countable collection *
of elements of L whose intersection is Ag, and Ay € %, it is true that
B(Ap) = inf{B(F)|3K € K : F D K}, provided that the Lh.s. is finite.
If ) € . and we only require the last relation to hold when Ag = 0,
then we say that 3 is c-smooth at () with respect to K. If it happens
that K = .% in the previous settings, then we say that 5 is o-smooth
and o-smooth at (), respectively.

e [ is said to be regular with respect to K if §(F') = sup{f(K) : K C
F,K € K}.

We need to be careful, because the previous statements were made for gen-
eral set functions; some of those names, like tightness or regularity, have a
different meaning when we are talking about measures.

Definition 1.1.5. Let B(K) denote the smallest o-field containing every set
E C X for which KNE € K for every K € K. Define M, (X) to be the set of
finite, non-negative measures defined on B(K). Define M, (X;K) to be the
set of measures on M, (X) which are regular with respect to K; M, (X; K) is
called the class of finite Radon measures on X. Finally, for any function
o : X — R, which is continuous and bounded way from 0, we shall define

Pro(X)={p e My (X;K): n(X) =1 and o is p-integrable}.

Remark 1.1.2. We say that a topological space X is compactly generated
if it satisfies the next condition: a set A is closed iff A N K is closed for
every compact set K. This implies that if I is the collection of compact
sets in X, then B(K) coincides with B(X) (that is, the Borel o-algebra of
X) when X is compactly generated. It can be shown that every metric
space is compactly generated (see pp.282 in Munkres [12]), so in particular,
B(K) = B(X) whenever X is a metric space.

1.1.8 Weak topology on spaces of measures.

Definition 1.1.6. Let p € M, (X) and {u.} C M (X). We say that {juq}
converges in the w-topology iff

/ fdpg —>/ fdu for every f € Cyp(X).
X X

20



In other words, the w-topology on M, (X) is the weakest topology that makes
the mapping f — [, fdu from Cy(X) to R continuous.

Theorem 1.1.9. (Portmanteau Theorem) If X is a normal space, p €
M (X;K) and {uo} C My (X;K), then the following are equivalent:

1. fto = L.

2. lim sup fX fdue < fX fdu for all f which are bounded from above and
Upper semicontinuous.

3. liminf fX fdue > fX fdu for all f which are bounded from below and

lower semicontinuous.
4. limsup po(K) < p(K) for all K € K and lim p,(X) = p(X).
5. liminf o (G) > p(G) for all G € 9 and lim p1,(X) = u(X).
Proof. See Theorem 8.1 (pp. 40) in Topsge [20]. O

1.1.9 Weak and weak” topologies.

Let X be a topological vector space. The dual space of X, denoted by
X*, is the space whose elements are continuous linear functionals on X. It is
regarded as a vector space when we define addition and scalar multiplication
by

(A1 + Aoz = Az + Aoz, (aN)z = a - Az,

for all A, As,Ae X*,ae Rand z € X.

Let H be a non-empty family of mappings f : X — R. Consider the
weakest topology over X that makes every f € H continuous; this topology
is called the weak topology on X induced by H. In the case H = X*,
then this topology is called the weak topology.

Let H C X*; we say that H separates the points of X if for any pair
x,y € X, there exists A € H such that Ax # Ay.

Theorem 1.1.10. Suppose X is a topological vector space and H is a sep-
arating vector space of linear functionals. Then the weak topology on X
induced by H makes X into a locally convex space whose dual is H.
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Proof. See Theorem 3.10 (pp. 64) in Rudin [17]. O

Now, instead of studying the topological properties of X, we shall study
the structure of X*. Note that every x € X induces a linear functional f,
on X* defined by

foA=Ax, forall A e X"

Consider A, A" € X* such that f,A = f,A’ for all x € X; then Ax = A'x
for all x, and so A = A’. This means that {f, : © € X} separates the
points of X*. Hence, we can topologize X* with the weak topology induced
by {f: : = € X}. This topology is called the weak® topology on X*.
Applying Theorem 1.1.10 we get immediately the following.

Corollary 1.1.1. The weak™ topology makes X* into a locally convex topo-
logical vector space, and every linear functional on X™ is of the form A — Ax
for some x € X.

Theorem 1.1.11. (Riesz-Markov Theorem) The dual space of Cy(X) (topol-
ogized by the weak”™ topology) is homeomorphic to the the space of finite Radon
measures on X (topologized by the w-topology).

Proof. See Theorem 14.10 (pp. 495) in Aliprantis et al. [2]. O
Thus combining Corollary 1.1.1 and Theorem 1.1.11, we get the following:

Corollary 1.1.2. The set of finite Radon measures equipped with the w-
topology is a locally convex topological vector space, and every linear func-
tional on it is of the form u — [ fdu for some f € Cy(X).

1.2 Upper semicontinuous and convex func-
tions.

Definition 1.2.1. Let f be a real function on a topological space X. If
{z:f(z)>a}

is open for every real a, then f is said to be lower semicontinuous. We
say that f is lower semicontinuous at z if for every € > 0 there exists a
neighborhood U of xy such that f(z) > f(xg) — € for allz € U. If

{z: f(z) < a}
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is open for every real «, f is said to be upper semicontinuous. We say
that f is upper semicontinuous at x; if for every ¢ > 0 there exists
a neighborhood U of xy such that f(x) < f(zo) + € for all x € U. It is
easy to prove that f is upper (lower) semicontinuous iff f is upper (lower)
semicontinuous at z for every z € X.

For this section, let X be a topological vector space.

Lemma 1.2.1. If C' is a convex subset of X, if f : C — R is convex, if
r, x4+ z,x —z € C, and if 6 € [0,1], then

[f(z+02) = ()] < dmax{f(z + 2) = f(z), f(x — 2) = f(2)}.

Proof. Notice that x4+ 6z = (1=48)x+0(z+2), so f(v+dz) < (1-9)f(x)+
df(z + z). Rearranging the previous inequality yields

flo+0z) = f(x) <O[f(z+2) — f(2)]. (1.2.1)
Replacing z with —z yields that
flw = d2) = f(z) <O[f(x —2) — f()]. (1.2.2)

On the other hand, note that x = (1/2)(x + 02) + (1/2)(z — dz), so f(x) <
(1/2)f(x 4+ 6z) + (1/2) f(z — 0z). This is equivalent to

f(x) = fle+062) < fz = 62) = f(=); (1.2.3)
thus, combining (1.2.2) and (1.2.3) we get that

F@) — (o +62) < 8f (- 2) — f()] (1.2.4)
Then the theorem follows form (1.2.1) and (1.2.4). O

Theorem 1.2.1. Let f: C — R be a convex function, where C' is a convex
subset of a topological vector space X. If there exists an interior point x
and a neighborhood U of x such that f is bounded above on U, then f is
continuous at x.

Proof. By Theorem 1.1.4, there exists a balanced neighborhood of 0, say V,
such that x +V CU. Fixy € x + V. Let M > 0 be such that

fw) < f(z) + M for each w € x + V. (1.2.5)
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Fix € > 0 and choose some ¢ € (0,1) such that 6M < e. Then, if we let
y € x+dV and z = (y — z)d, we have that

[f(y) = f(2)] = [f(z + 62) — f(2)
=omax{f(z+2)— f(z), f(x —2) — f(z)} (By Lemma 1.2.1))
<o0M (Because z,—z € V and (1.2.5))
<€

since this is true for every y € x + 0V, then f is continuous at z. O]

Theorem 1.2.2. If C' is an open convex subset of X, and if f : C' — R is
convex, then the following are equivalent:

1. f is continuous on C.
2. f is upper semicontinuous on C.

3. For each v € C, there exists some neighborhood of x on which f s
bounded above.

4. There is some x € C and some neighborhood of x on which f is bounded
above.

5. There is some x € C' at which f is continuous.

Proof. (1. = 2.) Immediate.

(2. = 3.) Fix z € C. Since f is upper semicontinuous, then {y € C': f(y) <
f(x) 4+ 1} is an open neighborhood of x on which f is bounded.

(3. = 4.) Immediate.

(4. = 5.) Follows from Theorem 1.2.1.

(5. = 1.) Suppose f is continuous at = € C. We need to prove that f is
continuous at any y € C; fix y € C. The mapping t — = +t(y — =) of R into
X is continuous. Since it sends 1 to y, and C' is open, then there is some
to > 1 such that x +to(y —x) € C. Set z = o + to(y — ) € C; then

1 1 n 1
= ——|z+ —z
Y fo to >

y = Xx + (1 — Xo)z for some \g =1 —1/t5 € (0,1).

or
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Since f is continuous at x, then for every ¢ > 0 there exists a balanced
neighborhood V' of 0 such that if y € x + V, then |f(y) — f(2)| < ¢; since
C is open, V can be chosen so that x + V' &€ C'. Then there is some M > 0
such that f(w) < M forw € x + V. If v € V, then

y+ = x4+ (1=XNz+v=Az+v)+ (1 —-N)z; (1.2.6)

since z + v,z € C, then y + A € C. Therefore y + AV C C. Because f is
convex,

fly+2w) < Af(z+v)+ (1= Nf(z)  (By (12.6))
<AM + (1= \)f(2).

This holds for every v € V| so in the neighborhood 3+ AV of y, the function
f is bounded by AM + (1 — \) f(z). Hence applying Theorem 1.2.1, we get
that f is continuous at y. O]

The next corollary is immediate.

Corollary 1.2.1. Let X be a topological vector space. If f : X — R is a
convex upper semicontinuous function, then it is continuous.

1.3 Compactness of measures.

Let X be a normal space and denote by ¢ and K the families of open and
compact sets in X, respectively. As before, we are going to use the letters G
and K (with possible super-indices or sub-indices) to denote members of ¢
and IC, respectively.

Lemma 1.3.1. Let A be a finite set function on IC which is tight. Then it is
also true that

1. X\ is monotone and modular,
2. X is o-smooth.

Proof. From the definition of tightness, we immediately get that A is mono-
tone. Also, note that

AD) =sup{\(K) : K CO\ D=0} =X0)— \0) =0.
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Since A is defined only in /C, let us consider a new set function p over all the
subsets of X, defined by

w(A) =sup{\(K): K C A} for any A C X. (1.3.1)

The monotonicity of A implies that p is an extension of A which satisfies
w(Kq \ Ks) = u(Kq) — p(Ky) for all Ky O Ky (since A is tight). It follows
from Proposition 1.1.2 that for any pair K7, K}, we have that

P U K3) — p(KG) = p(K7\ K3) = p(Ky) — p(K1 N Ky, (1.3.2)
and since A and g coincides in K, then

AKT U KG) = A(K) = p(K\ K) = AK7) — MK N EK;); (1.3.3)
hence A is modular and then the statement 1 is proved.

To prove the statement 2, let us prove first that A is o-smooth at (). If
{K,}n>1 is a decreasing sequence such that N2, K,, = (), then there exists
N € N such that N, K,, = 0 for all m > N (this follows from the Theorem
1.1.2). Then

0=\0) =N K,) > inf {A(K) - K 2 K, for some n > 1} >0,
€
so \ is o-smooth at (.

Now, let {K},>1 be a decreasing sequence of sets in K such that K} =
N, K] € K. Fix e > 0 and choose K’ C K1\ K/ such that A\(K") + \(K{) >
A(K7) — € this choice can be made by using (1.3.3) and the tightness of
A. Choose n such that A(K] N K') < € such an n exists because of the
o-smoothness at () of A\. Now,

MEK)) = MK UK+ XMNK,NK')=XNK'") < MNK))+e—NK") < MNK])—2e,
so A is actually o-smooth. O

Theorem 1.3.1. Let X\ be a tight content on K. Then X can be extended to
a measure p on B(K) defined by p(A) = sup{\(K) : K C A} such that u is
reqular with respect to K.
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Proof. Notice that p is exactly defined as in (1.3.1). Here we further assume
that A\ is content, so for fixed ¢ > 0, and disjoint A, B C X, there exist
K' C A and K? C B such that A(K') > u(A) — e and A\(K?) > u(B) — ¢, so

WAUB) = p(K'UK?) = MK UK?) = A(KY) + A(K?) > p(A) +p(B) +2¢;
then it is true that
H(AU B) > ju(A) + u(B) (1.3.4)

for any disjoint subsets A and B. Next, consider the class
E={ECX uK=uwKnNE)+uK\FE) VK € KC}.

Notice that € is closed under complementation and that K C &€ (by (1.3.2)).
Let us prove that £ is also closed under countable unions. Let {E,},>1 be
a sequence of sets in £. Fix e > 0 and K € K. Choose K, C K N E, and
K] C K\ E, such that

W(K) < (K + p(K2) + 27, n> 1 (1.3.5)

such sets can be found because of the very definitions of p and €. The
previous inequality implies that

A (K MU KGY) + A (K U{NLETD)
= MK MU KT} U (K UANLLKTY))
(Because A is additive on K and Proposition 1.1.2)
(K) (Because A is monotone and K|, K C K Vi >1)

<A
<A ) + A ) + €2~ D (Because of (1.3.5)),

which in turn, using that A is modular on /C, is equivalent to

MUK + X (M) > M (UL ) + A (D7, K — e,

and this finally implies that
MU K + X (N2 K > MK + A (K) — ¢ Z 9~

1=2
n

> \NK) — eZ2‘i (Because of (1.3.5))

> A\NK) —e.
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Lemma 1.3.1 yields that A is o-smooth; then for sufficiently large n we have
that
MU KG) + A (NZ2K) > A(K) — 2,

so it follows from the definition of x that
p (K OH{UZ EG) + p (KA\A{UZ Ei}) > AK) = 26
this combined with (1.3.4) shows that U°, E; € £. Using the subadditivity
of A we also get that
Z)\ ) 4+ AMN2,K") > MK — 2e.
It follows that
Zu )+ (K \{UZ,E) = A(K) = p(K);
since U2, B; € £ and if we only consider K C U2, E;, then
ZN ) > pu(KN{UR,E}) = u(K)  forall K C UR,E;.

This shows that

(U2 Ey) = sup {u(K) : K C U B} < ) n(Ey); (1.3.6)

i=1

if the sequence {E,},>1 were chosen to be disjoint, it is easy to see that
equality in (1.3.6) must be attained, due to (1.3.4). This means that the
restriction of u to £ has all the required properties. O

Lemma 1.3.2. Let v be a monotone, additive and subadditive set function
defined on ¢ such that to any K € KC there exists G € ¢ with K C G and
v(G) < oo. Define the set function X\ on K by \(K) = inf{v(G) : G O K}.
Then we have that \ is a tight content.

Proof. Tt is immediate to see that A is finite, monotone and subadditive. ¥
separates the sets in IC (since X is a normal space). Then, for disjoint sets
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Ki, K} in K choose disjoint sets G, G, such that K| C G} and K} C G,
Using the properties of v, we get that

AMK]UKS) =inf{v(G) : G 2 K] UKj}
>inf{r({GNGIU{GNGL}): G D KUK}
=inf{v(GNG) +v(GNGy) : G2 K{UK,}
> inf{v(GNG)) : G 2D K{UK}}

+inf{r(GNG,): G2 KUK}
> inf{v(G): G 2 K} +inf{v(G): G 2 K}
— MK + A(KD),
so A is also additive. Next, assume that K; O K5. Notice that for any K, C
K\ K with Ky € K, we have that A(Ky) + A\(K3) = MKy U Ky) < A(K7)

Now fix € > 0. Choose Gy O K such that v(Gy) < M(K3) + €. Put K =
K \ Go; then K € K because of Theorem 1.1.1. If G O K, then

V(G) 2 v(GU Gs) — v(G2) = A1) — v(G2) > A(K71) — A(K>) —€,
so it follows that A(K) > A(K7) — A(K3) — €. In other words, we have that
sup{\(K) : K C K7 \ K3} > A(K;) — AM(K3), (1.3.8)
so the result follows from (1.3.7) and (1.3.8). O

Theorem 1.3.2. Let v be a monotone, additive and subadditive set function
defined on & such that to any K € IC there exists a G € 4 with G O K and
v(G) < oo. Then there exists a larger measure p reqular w.r.t. KC such that
w(G) < v(Q) for all G € 4. This measure is given by the formula

1(A) = sup { inf V(G)}, A€ B(K).

KCA (G2K

Proof. Just apply Lemma 1.3.1 to construct a tight content A on K which is
defined by A\(K) = inf{v(G)|G 2 K}; then apply Theorem 1.3.1 to construct
a measure p on B(K) defined by pu(A) = sup{A\(K)|K C A} such that pu is
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regular w.r.t. K. Finally, fix Go € G and K’ C Gg such that K’ € K. Then
infeor V(G) < v(Gy), so it must happen that

sup { inf V(G)} < v(Gy),

K'CGo GDOK'
or in other words, u(Go) < v(Gy). O

Lemma 1.3.3. If {ia} is a universal net of measures in M (X;K) and
lim sup g6 (X) < o0, (1.3.9)

then lim pu,(A) exists and is finite for every A € B(K). Moreover, the set
function v on &4 defined by v(G) = lim p1,(G) is monotone and modular.

Proof. Fix A € B(K) and define
Ba=inf{a > 0: {u.(A)} C[0,a] eventually}

and
va =sup{a > 0: {u.(A)} C [a,00) eventually}.

It is clear that v4 < f4 and (1.3.9) implies that 84 < oo. Assume that
va < Ba and fix @ € (vy4,4). Consider the subset A C M, (X;K) defined
by

A={pe M (X;K): pu(A) <0}

then either {4} is eventually in A or {u,} is eventually in A, since {pq}
is a universal net. If we suppose the former were true, then 6 > 34, which
is a contradiction; if we suppose the latter were true, then 6 < ~,4, which is
also a contradiction. Hence 4 = 4. This also implies that lim p,(A) exists
and is equal to #4. That v is monotone and modular is straightforward to
check. O

Definition 1.3.1. Let A; be a collection of subsets of X, for i = 1,2. We
shall say that A; dominates A, (and write A; > Ap) if for all Ay € A; there
exists A; € A; such that 4; O A,.

Theorem 1.3.3. Consider the space M (X;K) with the w-topology. Let
{ltataep be a net on M (X;K). Then {pa} is compact (recall Definition
1.1.4) if the following conditions hold:

30



1. limsup, pa(X) < oo

2. For every subclass 9' C ¢ which dominates IC,

Ve >0 3G e ¥ :limsup p,(G°) <e.

Proof. Suppose 1 and 2 hold and let {f,} be a universal subnet of {j}.
Applying Lemma 1.3.3, we get that the set function v : 4 — R, defined by
v(G) = lim i, (G) is monotone, additive and subadditive. Then, according
to Theorem 1.3.2, there exists a measure p € M (X, ) such that pu(G) <
v(QG) for every G € ¢, which is actually defined by

p(A) = sup { inf V(G)}, A € B(K). (1.3.10)
KCA GDOK
Hence condition (5) from Theorem 1.1.9 is attained, so it is enough to prove
that
oy (X) = p(X) (1.3.11)

to get that jia, — p. Assume that (X) > v(X). Hence, using (1.3.10) we
note that there exists 6 > 0 such that for all K € IC,

ég% v(G)+ > v(X),

which in turn is equivalent to

d > v(X)+ sup{—v(G)} = sup v(G°);
GOK GOK
this means that for each K € IC we can choose G € ¢4 such that Gx O K
and v(G%) > /2, s0 pa,(G%) > /4 happens eventually for all K € K.
Notice that {Gk} ke is a subclass of ¢ that dominates K, but condition 2

is not attained. Hence we conclude that (1.3.11) must be true, thus i, —
. ]

Remark 1.3.1. It is possible to show that the conditions 1 and 2 in the
statement of Theorem 1.3.3 are not only sufficient, but also necessary; how-
ever, in this manuscript necessity will not be crucial. See Tgpsoe [19] for
more details.
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Lemma 1.3.4. Let {7,}a be a netin M (S xT) and let po and v, represent

the marginals of each vo; that is, pa(-) = Ya(- X T) and va(-) = 74 (S X ).

If pta = 1 and vy = v for some p,v € M, (S), then there exists a w-limit

point v € M, (S x T) with marginals p and v.

Proof. 1t is clear that any limit point of {~,} must have marginals x and v;
w w

if it were not the case, then either u, 4 p or v, 4 v. It follows that it is
enough to prove the existence of a w-limit point of {7,}. Let us verify the
compactness criteria provided by Theorem 1.3.3; we may check that

1. limsup, 7.(S x T') < oo, and that
2. for each € > 0 there exists G € ¥, such that limsup, 7,(G®) <,

whenever ¢¢, - is a family of open subsets of S’ x T" that dominates the family
Ksywr of compact sets of S x T.

By Theorem 1.1.9, the statement 1 is trivially true since

lim sup 7, (S X Y') = lim sup p () < o0.

Next, fix € > 0. Since p and v are Radon measures, there exist compact
sets L; C T and Ly C S such that pu(LS) < €/2 and v(L§) < €/2. Ly X Lo
is a compact subset of S x T (see Theorem 1.1.3). Let ¥4, be such that
Goor > Kgxr; then there exists G € ¥4, - such that G O K x L. By Lemma
1.1.1, there exist open sets U D Ly and V D Ly such that U x V C G.

By Theorem 1.1.9 again,

lim sup 6 (U) < p(U€) < €/2 and limsup v, (U¢) < v(U°) < €/2,

and since G° C (U x V)¢ C (U* x T) U (S x V), we have that

limsup 7, (G°) <,

a

so the statement 2 holds. This means that {7,} is a compact net (with
respect to the w-topology), so a w-limit point must exist. O
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Chapter 2

Strassen’s Theorem and convex
order.

We devote this chapter to study a famous result by Volker Strassen con-
cerning the existence of probability measures with given marginals, which
originally appeared in Strassen [18].

In Section 2.1 we give a condition for said existence following the proce-
dure of Hoffmann-Jgrgensen [8] in the case each marginal measure is defined
over some normal topological vector space.

In Section 2.2 we still follow the work of Hoffmann-Jgrgensen [8], but
now we work within the case that both marginal measures are defined over
a Banach space. Later, we will find a sufficient and necessary condition to
guarantee the existence of a probability space with measure P on which some
random variables X ~ p and Y ~ pu are defined such that X = E(Y|X) (un-
der P); this condition is the so-called convex order (or majorization) for the
measures p and v. This result is commonly known as the Strassen’s Theorem
for convex order (or for majorization).

In Section 2.3 we will be interested in working only with probability
measures over R. First, we will study majorization within the framework of
reinsurance. Later we will move on to a more mathematical point of view and
connect the majorization of measures with the Strassen’s theorem explained
in Section 2.2: this connection will allow us to make a much more detailed
study of majorization.
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2.1 The general Strassen’s Theorem.

Let S and T be normal spaces. For any ¢ : S — R which is continuous and
bounded away from 0, recall the definitions of C,(S), M,(S), M (S) and
Pr,(S) introduced in Subsections 1.1.1 and 1.1.7.

Definition 2.1.1. (w,-topology) The w,-topology on M,(S) is the small-
est topology which makes the mapping p — | ¢ fdu continuous for every

f € C,(S). In other words, we have that if {u.} C M,(S), then uo =% i iff
Jg fdpa = [ fdp for each f € C,(S).

Remark 2.1.1. We can also consider the w,-topology on Pr,(S) instead of
M, (S).

Proposition 2.1.1. The w-topology is the same as the wi-topology. Also,
the mapping u(-) — [qoleydp is a homeomorphism of (My(S),w,) onto
(M(S), w).

Proof. Tt follows from the Definitions 2.1 and 1.1.6. m
Lemma 2.1.1. 1. Ifp € M,(S) and f € C,(S) then f € L' ().

2. Cy(S) = aCp(S) :={oh: he Cy(5)}.

3. The dual space of C,(S) is (homeomorphic to) M,(S).

Proof. 1. Just notice that since |f/o| < K for some K € R, then

Jinian= | ]é

2. Immediate from the Definition 1.1.3.

UdugK/adp<oo.
S

3. Let ¢ be a linear functional on C,(S). Denote by ¢* the linear func-
tional on Cy(S) defined by

o*(h) = d(ah)  Vh e Cy(S).

By the Riesz-Markov theorem (Th. 1.1.11), there exists a finite Radon
measure 4 such that

o*(h) :/Shd,u Yh € Cy(S).
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By the point 2 of the current Lemma, we have that for any fixed f, €
Cy(S) there exists hg € Cy(S) such that fo = ohg. Then

¢%FWWM=LMM=L%M=L%%=L%@C

where dy' := du/o. Notice that o € Li(y'). By the Radon-Nikodym
theorem, any measure in M,(S) can be constructed this way, so the

proof is complete.
]

Proposition 2.1.2. p, = p and lim, [ odpe = [qodp iff pe =3 p

Proof. Suppose that ji, =3 1 holds. Then, according to the point 2 of Lemma
2.1.1,

/ hodjg — / hodp  Vh € Cy(S).
S S

Taking h = g/o with g € C(S) in the previous limit implies that g, —
and taking h = 1 implies that lim, [, odu, = [ odpu.

Now assume that p, — p and lim, [godu, = [gody; let f € Cy(S)

and let K € Ry be such that |f| < Ko. Define f; = f — Ko < 0 and
fo=f+ Ko >0. Then

Lﬂm—KAmMZAﬁM

> lim sup/ fidpe  (By point 2 of Theorem 1.1.9)
a S

> limsup/fdp,a—K/ad,u,
o S S

which implies that
/fdu > limsup/ fdpig. (2.1.1)
S a s
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Similarly,

/Sfdu+K/Sadu:/Sf2du

< lim inf/ fodpe  (By point 3 of Theorem 1.1.9)
@ s

< liminf/fd,ua—l—K/adu,
a Js s
which implies that
/fd,u<hm1nf/fd,ua, (2.1.2)

combining (2.1.1) and (2.1.2), we get that in fact

/ fdyt = lim / Fdpa,
S @ Js

so the proof is complete. O

Iff:S—Randg:T — R, let usdefine fdg: S xT — R by
f@®g(s,t)=f(s)+g(t) forall (s,t) € S xT.

Theorem 2.1.1. Let 0 : S — Ry and 7 : T — Ry be continuous and

bounded from below away from 0, and define p = o & 7. Suppose that p €
Pry(S), ve Pr(T), AC Pr,(S xT) and that

/fdu+/gdy<sup/(f@g)d)\ VfeC,(S) and Vg € C.(T). (2.1.3)

Then there exists v € Pr,(S x T) with marginals p and v, which satisfies

/ edy < sup/g@d/\ Vo e C,(S xT). (2.1.4)
SxT

AEA

If A is chosen to be convex and w,-closed, then any v that satisfies (2.1.4)
must be a member of A.

Proof. Let us prove the last assertion first. Theorem 1.1.6 and Corollary 1.1.2
yields that if we suppose that A is convex, w,-closed and v ¢ A, then there
exists g € C,(S x T) such that [, pedX < 1forall A€ A and [, pody > 1,
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which is a contradiction to (2.1.4). Hence, the last statement of the theorem
is true; now, we need to prove the existence of ~.
Let us define

F:{WEPTP(SXT):/ godygsup/cpd)\ VngC’p(SXT)}.
s

xT AEA

It is fairly easy to prove that I is a convex and w),-closed subset of Pr,(SxT).
Notice that we actually have that

sup/gpd'y:sup/apd)\ Vo e Cp)(SxT):

yel AEA

one inequality (<) is implied by the definition of I" and the other (>) by the
fact that A C I

Now let A be the set of all (¢,n) € Pr,(S) x Pr(T') for which there exists
d € I" with marginals ¢ and 7. Then A is a convex subset of M, (S) x M.(T),
which is the dual of C,(S) x C;(T") under the pairing

< (f,9). (o) >= /S fdc + /S gy (2.1.5)

indeed, since any continuous functional over C,(S) x C(T') is of the form
o (f)+b-(g), where ¢,(+) is some continuous functional over C,(.S) and ¢, (+)
is some continuous functional over C.(7'), (2.1.5) follows from the point 3 of
Lemma 2.1.1. Next, (2.1.5) and (2.1.3) imply that

<(f.9),(n,v) >< sup < (f,g),(C,n)>.
(¢meA

The closure of convex sets are also convex (see Theorem 1.1.5), so the same
argument at the beginning of this proof shows that (y,v) € A", Hence
there exists {7,} C I', where each 7, has marginals p, and v, such that
to =5 1 and v, =5 v; thus, by Proposition 2.1.2 we have that p, — p and
Vo — v. By means of Lemma 1.3.4 we have that {v,} has a w-limit point

with marginals © and v. Note that

/ pdYa :/Udua+/7dy
SxT S T

— /ad,u—i—/le/ (Because 0 € C,(5), 7 € C(T))
s T

= / odfiy.
S

Proposition 2.1.2 yields the desired result. ]
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Corollary 2.1.1. (The general Strassen’s Theorem) Let o, 7 and p =0 & T
be as in Theorem 2.1.1. Let A be a conver w,-closed subset of Pr,(S x T),
and for all s € S let M(s) be a subset of Pr.(T) such that

dsxmeN VseS Vnpe M(s). (2.1.6)

Also, for each g € Cr(T) define

g*(s) = sup /gdn, g*(s) = inf gdn. (2.1.7)
neM(s) JT neM(s) Jr

If we Pry(S) and v € Pr.(T), then the inequalities

/Sfdu + /ngu < sslelg{f(s) +g*(s)} VfeC,(9),vgeC.(T) (2.1.8)
and

/Sfdu + /ngu > ;Ielg{f(s) +g.(s)} VfeC,(9),YgeC(T) (2.1.9)

are equivalent. Furthermore, if any of them holds, then there exists v € A
with marginals @ and v.

Proof. To prove the equivalence between (2.1.8) and (2.1.9), recall that if
A C R, then inf(—A) = —sup(A), so (—g)« = —(¢*) and thus

/Sfdwr /ngv < sup{f(s) +¢"(s)}
o= [ fn= [ gz nt{=16) - @ ()
& [Ehans [ o = b= + (-0 ()

since f € C,(S9) iff —f € C,(S) and g € C.(T) iff —g € C(T), the equiva-
lence follows.
Next, define

P(s) == sup / (s, n(dt) = sup / (6, % 1)
neM(s) JT neM(s) J SxT
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for each ¢ € Cp(S x T'). Then

o(s) < Sup/ ed\ Vse S
ANEA J ST

since 0, x n € A for all n € M(s). Hence

sup @(s) < sup/ edA. (2.1.10)
ses AEA JSXT
Thus,
Fouls) = sw [ (7))
neM(s) JT

— swp / (f(s) + g(£))n(dt)

neM(s)

~enls {/ Fomian + | g<t>n<dt>}
— f(S) + sup /Tg(t)ﬁ(dt)

neEM(s)
(f does not depend on ¢t and n(7T) = 1)
= [(s) +9"(s).
If we suppose that (2.1.8) holds, then

/fdu + / gdv < sup(f @ g)*(s)
S T seS

gsup/ (f®g)dh  (By (2.1.10)
AEA JSxT

for all f € Cy(S) and for all g € C(T), so the result follows from Theorem
2.1.1. [l

From here on we shall work with the particular case in which S'is a normal
space, 0 : S — R, is a continuous and bounded from below away from 0
function, and we take ' =5, 7 =0 and p = 0 @ 0. Also, let A C Pr,(S x.S5)
and for each s € S let M(s) C Pr,(S) be such that

ds € M(s) VseS, (2.1.11)
A is convex and w,-closed, (2.1.12)
dsxa€e N Vae M(s),VseS. (2.1.13)
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As before, define

g*(s) = sup /gdn, g«(s) = inf /gdn (2.1.14)
neM(s) neM(s)

for g € C,(9).
Definition 2.1.2. A function f : S — R is called M-convex if
f(s) < af(t) + (1 — a)f(u) and
aM(t) + (1 —a)M(u) C M(s) whenever 0 < a < 1.

The set of M-convex functions is denoted by M.
Lemma 2.1.2. Under the previous assumptions, we have that

1.g.<g<g VgeC(9),

2. g. € M VgeC,(9),

3. If f,g € M and b > 0, then f+ g, bf and max{f, g} belong to M,

and,

4. Bvery constant function is M-convew.

Proof. 1. It is a trivial consequence of (2.1.11) and the definition (2.1.14).
2. Let g € C,(S), fix a € [0,1] and s,t,u € S such that
aM(t) + (1 —a)M(u) C M(s).
Then

ag«(t) + (1 —a)gi(u) = a inf /gdn + (1 —a) inf /gd(

neM(t) CEM(u)

=%M&£Mw{/ﬁdwﬁwl—®0}

= ael.?/lf(s)/gda
(Because aM(t) + (1 — a)M(u) C M(s))
= O« (S>7

S0 g, is M-convex.
3. The proof is similar to the previous one.

4. Tt is obvious from the definition of M-convexity. m
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2.2 Strassen’s Theorem for convex order.

Let Sy be a Banach space with norm || - ||, and let Sy be an ordered Banach
space with norm || - ||z and order <. Also, let o; : S; — R, be defined by
o= |-+ 1, and p; = 0; ® oy, for i = 1,2. For this subsection, we shall

define the triplet (S1, {Mi($)}ses,, A1) where

Mi(s) = {n € Pr, (S) - /S n(dz) = s}

and

Ay = {v e Proy(six 5): 1Y (wh(dx{;}yé - bf( ;11; (2)7(dz, dy) } |

and the triplet (S2, {Ma(s)}ses,, A2) where

My(s) = {n € Pro,(Sh) : /S (dz) = s}

and

Ay = {’7 S Psz(Sz X 5'2) : fyf(x)ﬁ\(v/(ijc$,€dz%<§1{7? éx())’y(dx, dy) } .

Theorem 2.2.1. For i = 1,2, the triplet (S;, {M;(s)}ses,, \i) satisfies the
conditions (2.1.11),(2.1.12) and (2.1.13). Also, M;-convezity implies ordi-
nary convexity.

Proof. The condition (2.1.11) is trivial for ¢ = 1,2. To check that the condi-
tion (2.1.12) is attained, just notice that

‘ yf(x) [y llll.f ()]s <17 @)

pi )l 2+ llalli + Iyl —
so yf(x) € C,,(S; x S;) whenever f € Cy(S;). Similarly, we can check that
xf(x) € Cp(S; x 8;) if f € Cy(S;). Hence, from the very definition of w,,-
convergence, we get that A; is a w,,-closed set for « = 1,2. It is easy to
check that A; is convex for i = 1,2. To check that the condition (2.1.13) is
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attained, fix s; € S7 and 1, € My (s1). Then

[ use, < mas.ap) - ( [ Fsaan) ([ | () )

= f(s1)s1
(Because 7, € M;(s1) and f > 0)

:/S . xf(x)(ds, X m(dz,dy)),

50 0g, X M1 € Aq. Now, fix s € Sy and 1y € Ms(sy). Then

/S W), (. dy) = ( i f(x)ész(dx)) ( /S 2 yn2(dy)>

= [(52)s2
(Because 1y € Ma(s2))

_ / £ (1) (8, x 1a(de, dy)),
SaxSo

80 ds, X M2 € Ag. Hence, the condition (2.1.13) is valid for ¢ = 1,2. Finally, let
a € [0,1] and notice that aM; (u)+(1—a)My(v) C My (s) iff au+(1—a)v = s.
It is also true that au+ (1 —a)v = s implies aMy(u)+ (1 —a)Mz(v) C Ma(s)
(although the implication in the opposite direction may not hold); in either
case, M;-convexity implies ordinary convexity, for i = 1, 2. O

For each triplet (S;, {M;(s)}ses,Ai), g% : S — R is defined by

‘(s) ;= inf dn, fori=1,2, 2.2.1
)= it [ ody (2:2.)

just as in (2.1.14).

Theorem 2.2.2. Fori = 1,2, if g € C,,(S;) and 0 < g < 0y, then ¢’ is a
continuous convex function such that 0 < ¢ < ;. Hence, g. is measurable
and p-integrable for every u € Pr,.(S;). Moreover, g2 is increasing (with

respect to the order < in Sy).

Proof. Fix @ = 1,2. Let g be continuous with 0 < g < o;; then by 1 and
2 of Lemma 2.1.2, 0 < ¢! < 0; and ¢¢ is M;-convex. By Theorem 2.2.1,
this implies that ¢ is a convex function. Now suppose ¢i(sg) < a for some
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s € S; and a € R; then there exists n € M;(sg) so that fSi gdn < a. Define
n:(A) = n(A — z); then the function p : S; — R defined by

p(r) = / gdn, = / 9(y + x)n(dy)
Si Si

is effectively finite for each z,' continuous ? and p(0) = [ gdn < a. Hence,
there exists 0 > 0 so that p(x) < a for ||z||; < 0. But n, € M;(so + ) and
so gi(sg + ) < a for ||z||; < §. This coincides with the definition of upper
semicontinuity in the Definition 1.2.1; just replace a with g (so) +¢. Then g’
us an upper semicontinuous convex function on S;, and applying Corollary
1.2.1 we conclude that it is actually a continuous convex function on S;.

To see that g2 is increasing, just note that {Ms(s)}ses, is a decreasing
collection of sets (with respect the order < in Sy), so by the definition in
(2.2.1), g2 must be increasing. O

Lemma 2.2.1. Let p,v € Pry, (S1) (u,v € Pry,(Ss)) and assume that

/hdﬂ < /hdy (2.2.2)

for all h continuous and convex with 0 < h < oy (for all h continuous, convex
and increasing with 0 < h < 03); then for all g € C,,(S1) (g9 € C,,(S2)) we

have that
/gidu < /gidv (/gfdu < /gde)- (2.2.3)

Proof. (We are giving the full proof when g € C,,(S;); for g € C,,(S2) the
reasoning is completely analogous). If g € C,,(S) is such that 0 < g < o7 ,
then g} is continuous, convex and 0 < g! < oy (by Theorem 2.2.2), so (2.2.3)
is valid due to the hypothesis (2.2.2).

Now, take g € Cy,(S1) which is bounded from below; then there exist
a,b > 0 such that 0 < ag+ b < 07 and since ag + b is convex and continuous,
then the preceding case gives us that

[ g+ niaus [ Gag+nian
S1

St

'Since [p(x)| < [g 19(y +2)ln(dy) < [ o3y +2)n(dy) < [5, 0i(y)n(dy) + ||z]| < oo.
2By the Dominated Convergence Theorem for Bochner Integrals; see Theorem 11.46
(pp. 427) of Aliprantis et al. [2].
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and since (ag + b)! = ag! + b, then

/ godp < / gidv
Sl Sl

0 (2.2.3) is also valid in this case.

Finally, take any g € C,,(S1). Define
gn = max(g, —n),n € IN.

Clearly each g, is bounded from below and g, € Cy,(S1), so the previous

case yields that
/(gn)idué/ (9n)dv.
S1 Sl

Furthermore g, | g for all n € IN, so
(9n)s 4 ho > g5, (2.2.4)

where hg is some measurable function on S;. Fix s € S;. If a > g!(s), then
by definition of g} there exists 79 € Mj(s) such that f51 gdng < a. Since
Jn 4 g, then by the MCT there is ng € IN such that

/ gndng < a for all n > nyg;
St

hence

(gn)i(s) = ne}\r/tlf( )/s gndn < a for all n > ny.

This means that hy = lim,,_,.(g,)! < gl: combining this with (2.2.4), we get
that hg = g.. Notice that gy € Ly(u) N L1(v), so by the MCT

/ gdp = lim [ (g,)idp < lim (gn)idy—/ gdv,
Sy S1 S1

n—oo Sl n—oo

0 (2.2.3) is true for all g € Cy, (S1). O
Lemma 2.2.2. Let p,v € Pry (S1) , (p,v € Pry,(S2)) and assume that

/hdu</hdy

for all h continuous and conver with 0 < h < oy (for all h continuous,
convex and increasing with 0 < h < gy). Then there exists a measure v € Ay
(v € As) with marginals p and v.
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Proof. For i =1,2, Let f,g € C,,(S;). Notice that

B+ < [ 1)+ sl

(Since p and v are probability measures)

[ s

§/ fdu—l—/ gldv  (By Lemma 2.2.1)
Si Si

S/ fdu+/ gdv
S S

3

(Since g < g; see point 2 of Lemma 2.1.2);

since this is true for all f,g € C,,(S;), the result follows from Corollary
2.1.1. ]

Theorem 2.2.3. (Strassen’s Theorem for convex order) Let jn and v be
Radon probability measures on the Banach space (S1, || - ||1) (ordered Banach
space (Sa, || - ||l2, X) ). Assume that

1 [y, lelap(de) < o, f, llalliv(de) < o0
([, lollop(da) < o<, [, lllav(da) < ),

2. [hdp < [ hdv for all h continuous and convex with 0 < h <1+ |
(for all h continuous, convex and increasing with 0 < h <1+ |- ||2).

Then there exists a probability space (0,.%,P) and random variables X and
Y such that

1. X ~pandY ~ v,
2. X =EY|X) (X K EY|X)).

Proof. For i = 1,2, apply Lemma 2.2.2 to the measures u,v € Pr,.(S;), to
obtain v € A;. Then take Q = S; x §;,.% = B(S; x S1), P =~. Let X :
S; x S; = S; be the projection of the first coordinate and let Y : S; x .S; — S;
be the projection of the second coordinate. O]

In the case when S; = R, then Theorem 2.2.3 takes the next easier form.
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Theorem 2.2.4. Let pu and v be integrable probability measures on (R, B(R)).?
Then the condition

/ fdp < / fdv VY convex f: R — R (2.2.5)
R R

is equivalent to the existence of a probability space with measure P and random
variables X ~ p and Y ~ v defined on (R,B(R)) such that

X = E(Y|X) under P.

Proof. Suppose that X = E(Y|X) is valid. Then, Jensen’s inequality for
conditional expectation implies that that

f(X) = FEY]X)) < E(f(Y)|X);

computing the expected value in the previous inequality implies (2.2.5) so
necessity is proved. Theorem 2.2.3 implies sufficiency. ]

2.3 A review of convex order in R

2.3.1 An actuarial view.

Suppose that a person suffers some accident which results in a (random) total
loss of X > 0 units of money. If said damage was insured, then in an “ideal”
and easy setting the insurance company would pay the total loss, that is, it
would pay X units of money to cover the loss. In real life, there exist more
complex contracts in which the main insurance company (called the cedant)
cedes part of its obligation (or risk) to other insurance company (called the
reinsurer), that is, two companies would pay for the loss X: such contracts
are commonly called reinsurance agreements. There exist several types of
reinsurance agreements, however we will only be interested in the next one.

Definition 2.3.1. Consider a reinsurance agreement in which the cedant
retains a risk of d > 0 units of money and lets the reinsurer pay for the
remainder, that is, if the loss X is less or equal than d, then the cedant

3 Any probability measure over the Borel sets of any metric space is automatically a
Radon measure (see Theorem 1.2 (pp. 27) in Parthasarathy [14]), so it is not necessary
to specify that u and v are Radon measures.
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will fully pay for that loss (and the reinsurer will not pay anything); if X is
greater than d, then the cedant will pay d units of money and the reinsurer
will pay X — d units of money, so that both contributions fully cover the
loss. This kind of agreement is called stop-loss reinsurance. Consider
the payment corresponding to the reinsurer for that particular claim and let
mx(d) be its mean; that is, let

7x(d) == E(X —d)") = E(max{X — d,0});
we call mx(d) the stop-loss premium.

From now on, let us assume that the total loss X is integrable.

Proposition 2.3.1. 1. If Fx is the distribution function of the random
variable X, then for all d € R

7@uyzlmu—pﬂ@m& (2.3.1)

2. x : R — R is a non-increasing convex function such thatlimg_, . mx(d)+
d=FE(X) and limg . mx(d) = 0.

Proof. 1. Just notice that

[oa=res= [ [ tadr@as

:/ / Ljcs<dsdF(z) (By Tonelli’s Theorem)

<_/ (z — d)dF(x)

d
— E((X — d)*) = 7x(d).

2. From (2.3.1) we have got that
my(d) = Fx(d) — 1,

which is non-decreasing and non-positive, so mx(+) must be convex and
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non-decreasing. Next, notice that for each d < 0,

]E((X—d)*)er—/doo(l—FX /d ds

:/ (1 — Fy(s))ds — /dOFX

0
— EX+ / FX(S

d——00

= E(X") - E(X") =E(X).

o0

Finally,
lim 7x(d) = lim E(X —d)T)
d—o0 d—o0
= E(dlim (X —d)*) (By DCT, since E(X) < o)
—00
=E((—0)%) =0.

Moreover, we have the next result:

Proposition 2.3.2. If 0 : R — R is non-increasing, convez, limy_,, 0(d) =
0 and limg_, o mx(d)+d ezists and is finite, then 0(-) is the stop-loss premium
of some unique integrable distribution whose mean is limg_, o mx(d) +d: we
will call such a function 6 a stop-loss function.

Proof. Tt is straightforward to prove that 1 + 9,.6* is the only distribution
function that accepts 6(-) as its associated stop-loss premium. ]

It can be shown that the stop-loss reinsurance scheme is the least vari-
able agreement possible, from the point of view of the cedant (see Theorem
1.4.3 in Kaas et al. [9]). Nevertheless, we will be more interested in see what
happens with this type of reinsurance from the point of view of the reinsurer:

Suppose we are part of an insurance company which has the option to
choose between being a stop-loss reinsurer for the cedant A or being a stop-
loss reinsurer for the cedant B (assume there is no pay for us). Suppose
that the claims that A receives have the same distribution as some random

4In this context, d; denotes the right derivative of ().
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variable X and the claims that B receives have the same distribution as some
random variable Y. Also, suppose that E(X) = E(Y) but

E(X —d)") <E(Y —d)") foralldeR. (2.3.2)

Which would be the best option to choose from, A or B? At first we would
think that since E(X) = E(Y), then it really does not matter which option
we choose; nevertheless, (2.3.2) tells us that the most desirable one is option
A, since we are expected to pay less. But what else can we say about X
and Y7 Notice that for fixed d, we (as the reinsurers) ignore claims which
are less than d units of money: that is, if (2.3.2) is true then Y must have
a higher probability than X of taking “extremely” larger values than d, but
since E(X) = E(Y), then Y must also have a higher probability than X
of taking “extremely” small values (since we must compensate those larger
values of Y with smaller ones to guarantee that the expected value is the
same). This gives us the intuition that Y is more “variable” than X and
suggests the following definition.

Definition 2.3.2. Let X and Y be positive and integrable random variables.
We write X <g, Y whenever E(X —d)") <E((Y —d)") for all d € R: we
call the relation <g; the stop-loss order.

Remark 2.3.1. The relation <gj, is not an order in the mathematical sense
of the word: it is actually a partial order, since not every pair of random
variables can be related by <gr, even if their expected value is the same.

Now that we have given a constructive reasoning behind the stop-loss
order, let us forget about the insurance setting and move on to “variability”
arguments. We have seen that (2.3.2) hints that Y is more variable than X.
Suppose that also

E((d— X)) <BE((d—-Y)") foralldeR. (2.3.3)

For fixed d, this means that Y takes values smaller than d in a more “extreme”
way than X; this is consistent with the explanation of (2.3.2), so both (2.3.2)
and (2.3.3) hint that X is more “constant” than Y. Let us study both
properties and let us lift the condition of X and Y being positive random
variables.
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Proposition 2.3.3. Let X an integrable random variable with distribution
function Fx. Then

E((X — d)*) = /d (1= Fy(s))ds, and B(d — X)*) = /_ Fy(s)ds.

Proof. 1t is analogue to the proof of Proposition 2.3.2. O

Theorem 2.3.1. Let X and Y be two integrable random variables. Then the
next statements are equivalent

1. BE(X) =E(®Y) and

E(X —ad)") <E(Y —d)") for alld € R. (2.3.4)

E(X—d)*) < E(Y—d)*) and E((d—X)*) < E((d—Y)*) for all d € R.
(2.3.5)

3. E(f(X)) <E(f(Y)) for all convex function f : R — R in the case both

expected values are finite.

If either of them happens, we write X <. Y and we call the relation <.,
convex order.

Proof. (1. = 2.) Fix d € R. Since E(X) = E(Y) and E(X —d)") <
E((Y —d)"), then

B((d—X)*) = B(X~d)")~E(X ~d) < B((Y—d)*)~E(Y —d) = E((d-Y)"),
so the result follows.

(2. = 3.) Let f: R — R be a convex function such that E(f(X)) and
E(f(Y)) are finite. It is known that convex functions are differentiable at
all but countably many points: let a € R be such that f is differentiable
in a. Define g(z) = f(z) — g(a) — (x — a)f'(a). Since E(X) = E(Y),
the inequality E(f(X)) < E(f(Y)) < oo is equivalent to the inequality
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E(g(X)) < E(g(Y)) < co. Also, notice that g(a) = ¢’(a) = 0. Let Fx be the
distribution function of X. Then we have that

Blo(¥) = [ g~ [ gl Fan

—00

a +oo
— [ d@F@ds [ g F (2:3.6)

—00

(By integration by parts)

(] o) [ ([

(By integration by parts)

“ +oo
— / E((x — X)%)dg'(z) +/ E((X — 2)*)dd () (2.3.7)

—00

(By Proposition 2.3.3).

Before continuing with the proof we must clarify a few details of the previous
calculations: since f is convex it can be checked that g is also convex and thus
differentiable at all but countably many points, say C' € R. This means that
¢’ is defined in R\ C; hence we can extend ¢’ by defining ¢'(z) = limg, ¢'(s)
for all z € R (where the limit is taken over s € R\ C'). This extended ¢’
is right-continuous and we can see that this extension does no harm since
the first time we introduced ¢’ was in (2.3.6) where an integral with respect
to the Lebesgue measure was being computed. Now, since g is convex then
¢’ is non-decreasing, so the integrals at (2.3.7) are well-defined as Lebesgue-
Stieltjes integrals. Moreover, this means that dg’ > 0, so the result follows
from (2.3.5).

(3. = 1.) Both fi(z) = x and fo = —x are convex functions, hence
E(X) < E(Y) and E(—X) < E(-Y), so E(X) = E(Y). (2.3.4) follows
because f3(z) = (x — d)™ is convex for all d € R. O

Remark 2.3.2. As in Definition 2.3.2, the relation <., is not an order since
not every pair of random variables can be compared, but it straightforward
to prove that it is a partial order.

Proposition 2.3.4. If X <., Y and X,Y are square integrable, then

Var(X) < Var(Y) (2.3.8)
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Proof. Let a = E(X) = E(Y). Since the real function f defined by f(z) =
(r — a)? is convex, then (2.3.8) follows from the definition of convex order
and variance. ]

The previous result ultimately proves that convex order effectively is a
measure for variability, and is actually stronger than the order induced by
the variance.

2.3.2 A mathematical view.

We have defined what does it mean for a pair of random variables to be
convex ordered. Nevertheless, one can see that in Theorem 2.3.1 we were
actually working with the distribution functions of that pair rather than
with the random variables themselves. This motivates the next definition.

Definition 2.3.3. Let x and v be probability measures over (R, B(R)). Then
we say that v majorizes p (and we denote it by u < v) if

/Rfduﬁ/Rfdv (2.3.9)

for all real-valued convex function f.

Although it is a quite easy definition, most of the computations become
very difficult. Nevertheless, we have developed a powerful tool in Subsection
2.2 which makes computations a lot easier and compact.

Theorem 2.3.2. Let i1 and v be integrable probability measures over (R, B(R)).
Then p < v iff there exists a probability space and real random variables
X ~pandYY ~ v such that X = E(Y|X) in that space.

This result, which is a particular case of Theorem 2.2.4, is called the
Strassen’s theorem for majorization. From now on we will only work
with integrable measures over (R, B(R)), so in the remaining proofs of this
chapter we will use the equivalence in Theorem 2.3.2 as an alternative defi-
nition of majorization.

Proposition 2.3.5. Let {Z;}!' , be any collection of integrable random vari-
ables. If E(Zy|Z1, ..., Zy) = g(Z1,. .., Zy) for some measurable g : R" — R,
then B(Zolg(Zs. .. Z0)) = 9(Z. ... Z0).
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Proof. Just apply the tower property of conditional expectation. O

Lemma 2.3.1. Let X1, Xo,..., X, be i.i.d. with finite mean, aq,...,a, are
real constants and definea =Y., a,/n. Then

c (ZX) . (Z X) |

Proof. Consider a random permutation, say o, of 1,2,...,n, which is dis-
tributed uniformly on the set of all permutations, and is also independent
from {X;},. Then

E (Z oy Xi| X1, . - ,Xn> => E(aw) Xi=a )y X,
=1 =1 =1

so by Proposition 2.3.5 we have

E (i aU(Z)XZ|6in> == Ei X, (2310)
=1

i=1 i=1

Since the collection X1, ..., X, is exchangeable, then
L (Z ag(i)Xz) =L (Z a'o(i)Xi>
i=1 i=1
so the result follows from (2.3.10). O

Lemma 2.3.2. Let X and Y be independent random variables with finite
means, and let a = E(Y"). Then L(aX) < L(XY).

Proof. E(YX|X) = E(Y|X)X = aX; using Proposition 2.3.5 we have that
E(Y X]aX) = aX and the proof is complete. O

Lemma 2.3.3. For i = 1,2, suppose that p; < v; where u; and v; are
integrable probability measures, and suppose that p € [0,1]. Then we have

1. py * pig < vy * 1y and,
2. ppn + (1L —p)pg < pri+ (1 — p)ra.

Proof. Direct from definition. ]
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Theorem 2.3.3. Let {X;}5°,, {Y:}52,, {N;}2_, be three independent i.i.d. se-
quences of non-negative random variables with finite means, with N1 and No
being integer valued. Then

L (Z X; + ZY> <L (i(xi + 5@)) . (2.3.11)

=1

Proof. According to Theorem 2.2.4, it is enough to construct a probability
space on which there is defined a martingale (W5, W5) such that the marginal
distribution of W) is the L.h.s. of (2.3.11) and the marginal distribution of
Wy is the r.hus. of (2.3.11).

We are going to work on a fixed probability space that supports the
random variables Xi,...,Y],..., N1, Ny (described as in the theorem) plus an
uniformly distributed random variable on [0, 1], say U, which is independent
from all the previous random variables. Now, define W; by

Ny No
Wy = Z X+ Z Yi;
i=1 i=1

it clearly has the desired distribution. Next, define a new random variable
N as follows. Let u
ZL+1 Xi

C = , (2.3.12)
Z%ﬂ (Xi + Y;)

where L = min(Ny, No) and M = max(Ny, No). If the denominator of
(2.3.12) is ever 0, we arbitrarily define C' to be 1/2. Now, define

( N1 if Nl = N2 or,
Ni>N,, U<C or,
Ni <Ny, U>1-— C,

Ny if N;> No, U>C or,
N1<N2, U<1-C.

Define W5 by

N

W =) (Xi+Y)).
=1

We must prove
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E(W,|Wy) = Wh,

2. N is independent of {X;}22,,{Y;}2, and has the same distribution as
Ny.

Let 7 := o({X;}2,,{Yi}52,). According to the definition of N, we have:

For ny = no,
E(Wg‘y, N1 = ?7,17N2 = 77,2> = Z(X,L -+ Y;)
For n; > no,

n2
E(W,|.Z, Ny = ny, Ny = ny) = CZX+Y €)Y (X +Y))
i=1

=1 =

_ (anJrlX Z (X +Y)+Zn2+1 X@‘FY; )
N a1 (Xi +Y7)

]I{anﬂ Xi+Y:)>0}
(2.3.13)

n2

< Z (X +Y5) + : Z(X,- + Yi)> Lrsm xievi=0} (2.3.14)

=1
i=1 i=1

where the last equality was obtained by making

ni ng ni

Z(Xz +Y;) = Z(Xz-f—yz) + Z (X;+Y)

=1 =1 i=ng+1

in (2.3.13) and by noting that

i=no—+1 1=ng+1

n (2.3.14).

95



For n; < ny, applying similar procedures as before, we have that

n2

E(Wo|.Z, Ny =n1, Ny =mp) = (1= C) Y (X; + V) + C Y (X; +Y))

i=1 i=1

Hence we get that

E(W5|.#, Ny, Ny) = ZXi + ZYi =W,

i=1 =1

so point 1 follows by applying Proposition 2.3.5.

To prove point 2, define m; = P(N; =) for i = 0,1,2,... and let

JVE .
R D Y P S N

Cip =1 XjkXitYi Nk :
1/2 if YO Xi+Y; =0

notice that Cj; = Cj ;. Then

P(N = n|.7)
=P(N =n|.#,N; = Ny = n)72

n—1
+ Y [P(N =n|lZ, Ny =n,N; = a) + P(N = n|F, Ny = n, N; = a)|m,,
a=0

+ Y [P(N =n|F Ny =b,Ny =n) + P(N =n|F, Ny = n, N, = b)|mym,
b=n+1

n—1

=2+ Z[C’W + (1 = Cop)lmnm, + (1 = Chp) + Crplmemy
a=0

b=n+1
oo
= Tp E Ty = T,
=0

this proves point 2 and thus the proof is complete. O
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On a short proof of Strassen’s theorem in R.

With the aid of the results of stop-loss premiums for distributions over R
given in the current section, we can provide a much simpler proof of Strassen’s
theorem for majorization over R: said proof is due to Miiller et. al. [11].

Lemma 2.3.4. Let 01 be a stop-loss function and let | : R — R be some
affine function with l(x) = ax + b for some a € (—1,0) and some b € R.
Define 05(z) = max{0,(x),l(x)}. Then there exists a probability space with
random variables X1 and Xy where mx, = 01, mx, = 6 and E(X5|X;) = X;.

Proof. 1f l(z) < 61(x) for all x € R, then #; = 65 and hence the result is
trivial. So let us assume that this is not the case: since #; is a stop-loss
funtion then there must exist two points in R, say z; and x5, where [ and 6,
coincide.® Notice that the maximum of two non-increasing convex functions
is convex and non-increasing. Furthermore, notice that

lim 6y(d)+d= lim 6:(d)+d

d——o0 d——o0
exists and is finite, and

lim max{6,(d),!(d)} = max{lim 6,(d), lim {(d)} = max{0, —co} = 0.
d—o0 d—o00 d—o0

Thus, by Proposition 2.3.2, 5 must be a stop-loss function. Let F} and Fj

be the respective associated distributions of the stop-loss functions 6; and

5. By the definition of 5 and by Theorem 2.3.1, it follows that F, majorizes

Fi. Next, define the Markov kernel

- 5, if xR\ (t,t2)
Qz,") —{ 0 T o0 i @€ (tt)

to—t1 to—1t1

It is straightforward to check that [yQ(z,dy) = z. It is also easy to ver-
ify that 6, is the stop-loss premium of [ Q(z,dy)Fi(dz)® and thus Fy(-) =
[ Q(x,)Fi(dz). Within this context, if we consider a Markov chain {X,,}2_,
with Markov kernel given by () and initial distribution X; ~ Fi, we will have
that E(X5|X;) = X; and X3 ~ F, proving the result. O

5Notice that this is the only way ! and §; can coincide since the right derivative of 6;
is non-decreasing, at —oo is —1 and at +oco is 0. See Proposition 2.3.2.

®We only need to check that if A € (t1,15) then [Q(z, A)Fi(dz) =0, if A € R\ [t1, 2]
then [ Q(z, A)Fy(dz) = Fy(A). After doing this, everything will follow from the definition
of 6, and 05.
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With the previous lemma in mind we are ready to provide a much shorter
proof of Strassen’s theorem for majorization over R, which we state again
for the sake of clarity.

Theorem 2.3.4. Let p and v be probability measures over R. Then p < v
iff there exists a probability space with random wvariables X1 and Y where
Xy ~p, Y ~vand E(Y|X)) = X;.

Proof. Let 61 and 6, be the stop-loss premium functions associated to p and
v, respectively. Since 6, is a stop-loss function, it can be written as the
supremum of some affine functions Iy, ls, 13, ..., where [;(x) = a;x + b; for
a; € (—1,0) and b; € R for all ¢ € IN. Now, recursively define the functions
¢1 = 0y and ¢p11 = max{¢,,[,}. Notice that {¢,},>1 is a non-decreasing
sequence of stop-loss functions, and that the pair (¢, ¢n+1) satisfies the
assumptions of Lemma 2.3.4 for every n > 1: within that context, let @,
be the Markov kernel associated to the pair (¢, ¢,+1). Following the proof
of Lemma 2.3.4, if we consider the non-homogeneous Markov chain { X, },,>1
with initial distribution X; ~ u and successive Markovian kernels {Q,, }n>1,
we will have that E(X,,.1|X,) = X,,. Since

E(1X,|) = 2E(X,]) — E(X,)
— 26, — (dggnoo Gu(d) — d)
<20, — ( lim 6 (d) — d) < o0,

d——00

X1, Xs5,... is an Ly-bounded martingale, and hence it converges to a ran-
dom variable Y such that E(Y|X,) = X,, for all n € IN, and in particular
E(Y|X;) = X;i. Moreover, it is obvious that my = 6y, so the distribution of
Y must be v. O
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Chapter 3

Phase-type distributions
theory.

In this chapter we will review some of the most used tools in Applied Prob-
ability, which will be vital in further chapters.

In Section 3.1 we state some known properties of Markov jump processes,
which are defined to be continuous time Markov processes with an at most
countable state space; here we will deal with the time-homogeneous and fi-
nite state space case.

In Section 3.2 we study the pillar of this manuscript: phase-type distri-
butions. A random variable which is phase-type distributed is defined as the
random time it takes to a certain Markov jump process to get absorbed in
some fixed state. We will show how to manipulate this class of distributions
and some important results about it.

In Section 3.3 we review some basic results for renewal processes in the
case their interarrival times are phase-type distributed; these are extremely
desirable since we get explicit quantities in an easier way than in the general
case.

In Section 3.4 we investigate the method of uniformization for Markov
jump processes, which basically is the idea of simulating trajectories of a
given Markov jump process by generating a Markov chain which changes
state at each arrival time of a Poisson process. Later, we investigate an ex-
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tension of this method which will be useful in Section 4.1.

In Section 3.5 we will prove that Erlang distributions are the least “vari-
able” ones within the class of phase-type distributions. This classic result
was originally proved by Aldous and Shepp [1] by demonstrating that Er-
lang distributions of order n have the minimum coefficient of variance within
the class of phase-type distributions of order n. However, we give a much
stronger result based on O’Cinneide [13], which states that Erlang distribu-
tions of order n are majorized by any n-dimensional phase-type distribution
of the same mean. This will be the founding argument of the erlangization
method, which consists in approximating certain fixed positive value with
Erlang distributed random variables: this method will be used in Chapters
5 and 6.
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3.1 Markov jump processes.

Let X = {X:}+>0 be a Markov process which takes values in the state space
E=1{1,2,...,n}.! Then X is called a Markov jump process: some of its
properties are being presented next (see Section 2.3 in Peralta [15] for a full
proof of the following statements).

Define Ty = 0 and let T37,75,... denote the successive times at which X
switches states, that is, its jump times. Then the discrete-time process
Y = {Y.}nenuioy where Y, = Xy, is a Markov chain (with some transi-
tion matrix Q = {¢;;}i jer) which takes note of the states that the process
Xsequentially visits; if X ever gets absorbed in some state, say at the m-th
jump, then we may define Y,,,11 = Y,,,00 = -+ = Y,,,. It can be shown that the
conditional distribution of T, .1 — T, given the event {Y, = i} is exponential
with a certain parameter that depends on 4, say A; > 0.2 This is equivalent to
say that P(Xyq # 7| X; = i) = \;dt. Hence, we may call \; the intensity of
jump from the state i. Now, given that there exists a jump in the interval
[t,t +dt), it will land in j with probability ¢;;, according to the definition
of Q@ = {¢;}ijer; this means that P(Xy, 4 = j|X; = i) = \igi;dt. Thus, for
i # j we may define )\;; := \;g;; and call it the intensity of jump from
state i to state j. Define \;; = —\; and A = {\;;};jep. Then A is called
the intensity matrix of the process X. If we let p}; := P(X; = j| X, = 1)
and P":= {p};}ijep, then it can be shown that

P' = exp(At),

where exp(A) denotes the exponential of the matrix A, defined by

exp(A) := T

k=0

We say that a state i € E is absorbing (transient) for X iff i is ab-
sorbing (transient) for Y; particularly ¢ is absorbing iff \; = 0 or ¢;; = d;;.

! Actually, in our setting, it needs to be homogeneous in time and standard. We also
suppose that we are working with the cadldg version of the process. See Section 2.3 in
Peralta [15] for more details on this.

2When \; = 0 this means that a jump from i never occurs, which is compatible with
the idea of its jump time being an exponentially distributed of parameter 0.
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3.2 Phase-type distributions.

Let X = {X;}+>0 be a Markov jump process with finite state space E =
{1,...,p,p+ 1} such that the states 1,...,p are transient and p + 1 is ab-
sorbing. Then X has an intensity matrix

A= (%) , (3:2.1)

where T' = {t;;}ijeq1,.pp and t = (t1,...,t,).> We call T the sub-intensity
matrix and t the vector of absorption rates (or intensities). Since the
elements of each row of any intensity matrix must sum 0, we have that t =
—Te where e = (1,1,...,1)"* so the matrix A is completely characterized
by the matrix T'.

Remark 3.2.1. The sum of the elements of each row of T' is non-positive
and the elements of its diagonal are also non-positive; we refer to any matrix
which satisfies this properties as a sub-intensity matrix. We can associate
such a matrix to a possibly terminating Markov jump process with
states {1,...p}.%¢

Another condition we impose on X is that it cannot start in the state
p+1,that is P(Xg =p+1) =0.7 Let m; :=P(Xy =14),i=1,...,p and let
7 = (m,...,my). We call 7 the initial vector distribution of X.

Definition 3.2.1. Let X be a Markov jump process as the one we described
previously. Then, the time until absorption

T=inf{t>0: X, =p+1}

3We will use this kind of matrix-block notation constantly. To get the proper dimension
of the matrix 0, we need to notice that its height must coincide with the height of the
block which is on its right, and its width must coincide with the width of the block which
is above; this in this case, 0 is a row vector of dimension p. From here on, we shall omit
these details, unless it is necessary a clarification.

4In this case, the necessary dimension of e for Te to make sense is p: again, we shall
omit these details, unless it is necessary a clarification.

°Being terminating means that o := sup{t > 0: X; € {1,...,p}} is a.s. finite. o is
known as the lifetime of the process X. At time ¢ one usually sends the process X to
a cemetery state where it remains forever.

6This can be done by defining the lifetime of the process to be the time of absorption
to p+ 1 and the cemetery state to be p + 1, all of this within the setting defined at the
beginning of this section.

"This condition will be lifted in further pages, when we consider phase-type distribu-
tions which have an atom at 0; see Section 3.5.
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is said to have a p-dimensional phase-type distribution or PH,-distribution
with representation (7r,T") and we write

T~ PH,(m,T).

In the case we do not want to specify its dimension, we simply call it phase-
type distribution or PH-distribution.

Remark 3.2.2. Given a phase-type distribution, neither its dimension nor
representation is unique.

Here are two examples of phase-type distributions which will be used
throughout this manuscript.

Example 3.2.1. (Exponential Distribution) Let 7 ~ PHy(w,T), that is,
there only exists one transient state in the associated process X . Notice that
the time of absorption is just the time it takes X to make a jump from 1,
that is, T ~ Exp(—t11). Thus, the family of PH,-distribution coincides with
the family of exponential distributions.

Example 3.2.2. (Erlang distribution) Consider the particular case of the
distribution Gamma(p,d) when p € IN. This is known as Erlang distri-
bution of parameters (p,0) and it is denoted by Erl(p,0). Since this
distribution corresponds to the convolution of p exponential distributions of
parameter 6, the distribution Erl(p,d) can be represented by the following
diagram

1 2 p p+1

which corresponds to the PH,-distribution where 7 = (1,0,...,0,0),

-5 6 0 -+ 0 0 0
0 =06 -+ 0 0 0
T=]| : ol t=
0O 0 0 - =0 & 0
0 0 0 0 =4 6

It is easy to check that for every s > 0 and for A as in (3.2.1), we have

P — exp (As) - (exp (T5) e=ew (Ts)e);
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see Section 3.1 in Peralta [15] for a full proof. This means that the transition
probabilities (from time 0 to time s) between transient states are given by the
matrix exp(T's). This observation allows us to obtain several distributional
properties of 7 ~ PH,(m,T).

Theorem 3.2.1. Let 7 ~ PH,(w,T). Then for all s > 0,
1. F(s)=1—meT%e, and
2. fr(s) = weTst.
Proof. Let X be the Markov jump process associated to 7.
1.
F.(s) =P(1r <s)
=1—-P(r >5s)
=1-P(X;e{1,...,p})

=1- ZIP’(XO = )P(X, € {1,...,p}| Xy = 1)

p p
=1-> P(Xo=1)> P(X,=j|Xo=1)
i=1 j=1

p p
=1- Zﬂi pr]

i=1 =1
=1—mele

fr(s)ds =P(1 € [s,s 4+ ds))

- ZIP’(XS = j)P(1 € [5,5 + ds)| X, = j)

=3 ) P(Xo = i)P(X, = j|Xo = i)P( € [s,5 + ds)| X, = j)

j=1 i=1

p P
= Z Z Wipfjtjds

j=1 i=1

= mwel*t,.
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The proof of Theorem 3.2.1 shows the standard procedure for working
with phase-type distributions, which heavily relies on probabilistic argu-
ments.

Theorem 3.2.2. Let T' be a sub-intensity matriz and 0 > 0. Then

1. T — 61 is a sub-intensity matriz.

2. T is invertible iff T is associated to an effectively terminating Markov
jump process.

3. If either condition of point 2 is true, then T — 61 is also invertible.

Proof. See Theorem 2.1.3 (pp. 37) and Lemma 2.1.4 (pp. 40) in Peralta
[15]. O

Theorem 3.2.3. Let 7 ~ PH,(m,T); then its Laplace transform L.(s) :=
E(e™*T) (for s > 0) is given by

L,(s)=m(sI —T)'t.
Proof. See Theorem 2.1.5 (pp. 41) in Peralta [15]. O

Theorem 3.2.4. Let X ~ PHy(w,T) and Y ~ PH,(e, S) be independent.
Then
min(X,Y) ~ PHy(r @ a, T & S), (3.2.2)

where ® denotes the Kronecker product and & the Kronecker sum.

Proof. Let us denote by E7 the set of transient states associated to T and
by E° the transient states associated to §. Furthermore, let them be such
that ETNEY = 0. Let T = {t;;}, t = —T'e and s = —Se. By definition of
Kronecker product and Kronecker sum,

7r®a:(7r1a ot =+ -+ 7rda),
and

ToS=TRL,+1,®8

tlle + S tlng tlng S tlde
tlep tQQIp + S t23Ip s thIp
= tsdy tsndy,  t3l,+S - t3ady . (3.2.3)
tad,  twl,  tel, - twl,+S
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where I; and I, denote the identity matrix of dimension d and p, respectively.
By inspection, it is really easy to see that m®@a and T'@.S are indeed an initial
vector distribution and a sub-intensity matrix, respectively. The form of both
matrices suggest that our new state space is E7*° = {(i,5) : i € ET,j € E°},
whose elements are ordered in a row-major fashion.® With this in mind, the
structure of ™ ® a tells us that at time 0 we are picking a pair (i, j) € ET*
with probability m;c;; that is, we are picking the first entry according to 7
and independently we are choosing the second entry according to . Now let
(10, jo) be that initial state. Notice that according to the structure in (3.2.3),
the first jump can happen in one of the following three ways: it lands in
some (k, jo) with intensity ¢k, it lands in some (4o, !) with intensity s;,;, or
either it gets absorbed with intensity ¢; + s;. The important thing to notice
is that jumps between states in E7*° maintain one of their entries fixed,
and the one that changes, will do it according to the intensities of T or S
(depending if it is the first or second entry the one that changes); also, we
can think of absorption as coming from the first entry (with intensity t) or
from the second entry (with intensity s). This is basically the same as letting
two independent Markov jump process with parameters (w,T') and (a, S)
evolve in a parallel fashion; in the moment either of them gets absorbed,
we stop both processes. Thus, the time until absorption of the process with
parameters (7 ®@ a, T @ S) is the minimum between the times of absorption
of parallel (and independent) Markov jump processes with parameters (7, T")
and (o, S); this is equivalent to (3.2.2). O

Now, consider a sub-intensity matrix T of dimension p and a defective
vector distribution 7 of the same dimension: that is, 0 < > 7 7 < 1. We
can associate the pair (7, T) to an absorbing Markov jump process with
space state F = {1,...,p,p + 1, A} in the following way: it starts in some
transient state ¢ € {1,...,p} with probability m; and will evolve according
to the sub-intensity matrix T'; otherwise, it starts in the cemetery state A
with probability 1 — >% | 7 and will stay in that state forever.” In this
setting we say that the random time 7 = inf{t > 0 : X; = p+ 1} has a
defective p-dimensional phase-type distribution, and is denoted also

8That is, the first p elements correspond to the first row of E7 x E the next p elements
correspond to the second row of ET x E¥, and so on. Whenever we encounter a problem
of ordering the elements of a matrix in a linear way, we will use this type of sorting.

9In this setting, we need that A # p 4 1, so that absorption to p 4+ 1 and termination
will be two entirely different things.
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by PH;(mw,T). Note that the event {7 = oo} = {X, = A} happens with

probability 1 — P | 7, so 7 is effectively a defective random variable.

Theorem 3.2.5. Let 7 ~ PHy(w,T). Then

Ts

1. F(s) =me —mel*e, and

2. [-(s) = meTst.

Proof. The same arguments as in the proof of Theorem 3.2.1 apply. However,
in the first one we must take into account that the event {r = oo} happens
with probability 1 — me. O

3.3 Renewal theory for phase-type distribu-
tions.

Definition 3.3.1. Let {7} };cn be a sequence of i.i.d. random variables whose
support is [0,00). Then the process {0;};enuqoy Where

n
Oy = g T;
i=1

is called a renewal process, each o; (i = 0,1,2,...) is called an arrival
(or renovation) time and each T; (i = 0,1,2,...) is called an interarrival
time. If the distribution of T3 is such that the event {7} = oo} happens
with positive probability (that is, T} has a defective distribution), then the
process {o;} will be called a terminating renewal process.

Basically, the process {o;} is a concatenation of random times. One of
the fundamental interests in renewal theory is knowing the probability that
renewals occur in a certain interval. Moreover, it is interesting to explicitly
know the renewal density (in the case it exists at all), which is defined as the
function u : Ry — R such that

u(z)dz = P(There exists a renewal in [z, z + dz)).

It turns out that this density is not easy to calculate, even when we assume
that the interarrival times have an absolutely continuous distribution; how-
ever, when T} ~ PHy(m, T), u(-) can be explicitly calculated with the help
of some probabilistic arguments.
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Theorem 3.3.1. Consider a renewal process with non-defective interarrival
times {T;} which have a PH,(m,T) distribution. Then the renewal density
u(-) exists and is given by

u(z) = we Tt for all x> 0. (3.3.1)

Proof. Let {Jt(k)} be the underlying Markov jump process of T}, and define
{J:} to be the ordered concatenation of the sequence {Jt(k)}; that is,

;

Jt(l) for 0<t<Ty
Jt(f)al for o1 <t <oy
J = : . )

J(n-i-l)

o, for o, <t <opy

\

Then {jt} is a Markov jump process which has two kinds of jumps; the jumps
“contained” in each Jt(k), and the ones corresponding to the transitions from
Jt(k) to Jt(kﬂ) for £k € IN. Jumps of the first type occur according to the
intensity matrix T', while a jump of the second type, from i to j, occurs

with intensity ¢;7;.'% Then, the intensity matrix of J is T + tm and the

T+tm)r - Sipce

state-distribution of jx is 7rel
P(A renovation occurs in [z, z + d:v)|j; =1) = t;dz,
then

u(z)dz = P(A renovation occurs in [z, z + dz))
P
= ZIP’(JQC = 1)P(A renovation occurs in [z, x + dx)|J, = 1)
i=1
p

_ Z (ﬂ_e(T—Hm')x)i tda

=1
= weT ™74 q,,

so the result follows. O

OTndeed, since we need to get absorbed from i (which happens with intensity ¢;) and
we also need that the next concatenated process starts in state j (which happens with
probability 7;). Independence yields the result.

68



The argument used in the previous proof illustrates the method which
we call concatenation; that is, a method in which we sequentially merge
several processes into one.

Definition 3.3.2. Let {0;} be a terminating renewal process with defective
interarrival times {T;};,en. Let

N
N :=inf{n e N: T, = oo}, and & := ZTi;
i=1

then we call £ the lifetime of the terminating renewal process {o;}.

Theorem 3.3.2. Consider a terminating renewal process with defective in-
terarrival times {1} which have a PH(m,T) distribution. Then

P(¢ > z) = weTHtm™e,

Proof. We will use the same idea of concatenation introduced in the proof
of Theorem 3.3.1. That is, take each underlying process of {T;} and glue
them together:!' this way we have that the sub-intensity matrix of this
concatenated process is given by T' + t7 and its initial distribution is given
by 7r. Thus

P(¢ > x) = P(The concatenated process is in E at time x)
p
= ZIP’(The concatenated process is in 7 at time x)
i=1
p
_ Z(ﬂe(Tthﬂ-)x)i
i=1

T+t7r):r;e. n

= el
Remark 3.3.1. The particular arguments given in the previous proof will be
heavily used throughout Part 3; in there, the proofs may not be as detailed
as this one, but the idea is basically the same: merging processes into one
and computing the distribution of the lifetime of this concatenated process.

1Here we have that T} is defective and although the concatenated process is terminating,
its construction is basically the same ase the one given in the proof of Theorem 3.3.1
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3.4 Uniformization.

Consider a (terminating) Markov jump process X = {X;};>¢ with finite
state space F = {1,...,n}, initial distribution @ = (my,...,m,) and (sub-)
intenisty matrix T' = {t;; }1<i j<n. Fix 6 > maxo<;<, —t; and consider the
matrix S = I+ (1/6)T. Then we have the following:

Lemma 3.4.1. If T is a (sub-) intensity matriz, then S is a (sub-) stochastic
matriz.

Proof. Let T be an intensity matrix. Fix i¢,5 € {1,...,n}: if i # j then
Sij = (1/9)2513 Z O, and if 7 = j then Sij = 1+ (1/9)t” = (‘9+tw)/9 Z 0.
Also, Zj si; =1+ Zj tij/0 = 1. The case when T is a sub-intensity matrix
is similar. O

Now, notice that for = > 0,

mexp(Tz) = mwexp (9 (—I + I+ %T) a:)
=mexp(0(—I + S)x)
= mexp(0Sz)e

— f: 71,51'6—930 (91.)2 .
— il

we may recognize the terms wS® as the row vector that provides the prob-
ability distribution (over E) after ¢ steps of the discrete-time Markov chain
whose initial distribution is given by 7r and whose (sub-) stochastic transition
probability matrix is given by S. The term e~%(fz)’/i! may be recognized
as the probability of ¢ arrivals from a Poisson process with rate 6 up to the
time x. That is, the (terminating) process {X;};>o may be regarded as the
process {Yn, }+>0, where {Y;, }neqo,1,2,..1 is a (terminating) Markov chain with
(sub-)stochastic matrix S and {N;}:>¢ is an independent Poisson process
with rate 6. This is the idea behind uniformization, which was introduced
in Grassmann [7]. It is called this way because now the jumps happen at
a constant rate; nevertheless, a jump can happen to the same state it came
from.

Later in this manuscript we shall need the following extension of the
uniformization method. Consider the bivariate process {Z,, M;}ne{o,1,...3,60;

70



where {Z,, }nefo,1,...} is @ Markov chain with initial distribution 7 and whose

(sub-)stochastic matrix is given by U = I+Aq /,,, T where Ay, = diag{1/n; :
1 <i < mn} for some fixed n; > —t;;, 7 € {1,...,n}, and {M;};>¢ is an arrival

process with exponential interarrival times whose successive parameters are

given by the sequence {1z, , }icq1,..}. Then we have the following:

Theorem 3.4.1. The process {Xi}i>0 is equal in distribution to the process
{Zm,} o0

Proof. Tt suffices to study the distributional properties of the first jump. Let
10 = inf{s > 0: Zy, # Zy} and assume that Z, = k. Then

P(ro > t) = P(Zy, = k for every s € [0,1])

=Y P(M,=jZy=-=2;=k)
j=0

=Y P(My=j|Zy==Z;=k)P(Z1 == Z; =k)
j=0

- Zefﬁkt (77]1::'> (1 +tkk/77k)k
=0 '

— ekt oMkt (14tk /mk)

e*t(*tkk);

this means that its first “real” jump occurs at an exponential time of param-
eter —tg,. Now, for [ # k,

Pz =1 _ tra /1 _
1-P(Zi=k) 1—1+tw/ne)  t

P(Zy,, =1) =P(Z1 = 1|21 # k) =

Since the distribution of time between “real” jumps and the distribution of
where said jumps land are the same as in the process X, then we have that
{Xi}i>0 and {Zyy, }i>0 are equal in distribution. O

Notice that the previous proof formalizes the intuitive idea given at the
beginning of this section about the method of uniformization. Also notice
that the uniformization scheme creates “non-real” jumps: that is why we are
going to refer to them as transitions instead of jumps.
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3.5 The least variable phase-type distribution
of order n.

Recall from Section 3.2 the definition of a defective phase-type distribution,
that is, a phase-type distribution which has an atom at +oo of size 1 —
e, where 7 is the initial distribution parameter of said PH*-distribution.
In several settings we wish to consider phase-type distributions which have
atoms at 0 instead of at +o0o: to do, this we extend (without any effort)
the definition of a phase-type distribution PH (7w, T') to allow an atom at 0
of size 1 — we.'> Hence, whenever we encounter a pair (m,7T") such that
is a non-negative row vector of size n, we < 1 and T is an invertible sub-
intensity n X n-matrix, it can be associated to either a P H *-distribution (that
is, a defective one) or to a PH,-distribution (that is, one that has an atom
at 0). In this section we are only interested in working with non-defective
P H-distributions with (possible) atoms at 0.

Remark 3.5.1. Within the previous framework, the point mass distribution
at 0 is considered a P H"-distribution for any n € IN. Moreover, if we extend
the definition of an Erlang distribution with parameters (n, \) to allow A €
(0, +00], then the point mass distribution at 0 is also an Erlang distribution
(of any order): we are working with this extended definition during this
section.

Corollary 3.5.1. Consider the collection of distributions { Erl(n, \;) Y™, for
m,n € N and \; € (0,400]. Then any mizture of those distributions ma-
jorizes the Erlang distribution of order n which has the same mean as said
muxture.

Proof. Consider the mixture > . | a; Erl(n, \;) foray,...,a, > 0and Y a; =
1. If X ~ Erl(n,1) and Y is an independent discrete random variable
that takes the value 1/)\; with probability a;, i € {1,...,m}, then XY ~
Yo o Erl(n, A;), so the result follows from Lemma 2.3.2. O

For every measure p over (R,B(R)), let E, := [zu(dz): this notation
will be used throughout the next lemma and theorem. Also, we are going to
denote by 1; the column vector whose i-th entry is 1 and the remaining ones
are 0.13

120me direct way to do this is by taking P(Xo = p+ 1) = 1 — me in Section 3.2: it is
easy to see that this leaves us with a phase-type distribution with an atom at 0.
13 As in previous sections, its dimension will be implicit in the situation it is being used.
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Lemma 3.5.1. Let n > 2 and suppose that for any PH,_, distribution, say
', we have that v 1 < p" 1, where vt ~ Erl(n — 1, (n —1)/E n-1). If
i ~ PH,(17,T), we have that vy < p1, where vy = Erl(n,n/E,,).

Proof. Let Z be an absorbing Markov jump process with sub-intensity matrix
T = {ti;}ijeqn,...ny On its transient states {1,...,n}, which initializes in the
state 1, and let 7 be the time of its absorption. Define 71 to be the time the
process spends in the state 1 before the absorption and 7-; to be the time
the process spends in the states {2,...,n}. Clearly 7, + 71 = 7, but notice
that 7 and 7> are not independent. Let N be the number of visits Z makes
to state 1. For ¢ = 1,..., N — 1, let X; be the time the process spends in
state 1 during the ¢-th visit and let U be the time it spends in its last visit
to 1. Let Y; be the time the process spends in the states {2,...,n} between
the ¢-th and ¢ + 1-th visit to 1, and let V' be the time the process spends
in its last visit to the states {2,...,n} right before absorption (define V' to
be 0 if the absorption comes directly from state 1). By the strong Markov
property, given N =m > 1, X;,..., X,,_; are i.id., Y;,...,Y,,_; are i.i.d.14
and these sequences, together with U and V' are independent between them;
also, their distributions are independent from m. We extend these sequences
to {X;}2, and {Y;}°, which are i.i.d., independent between them and from
U and V. Let us introduce a new r.v., N, which is independent from the
previous r.v.’s and has the same distribution as N. Then, by Theorem 2.3.3,

we have
N-1 N'—1 N-1
L (ZXW > 1@-) <L (Z(X#Yi)) .
i=1 i=1

i=1

141n case they exist, X; is just an exponential distribution whose parameter is the exit
rate from state 1; and Y; is a PH,,_1-distribution which has an initial distribution that is
given by (—t12/t11, —t13/t11, ..., —t1n/t11), or in other words, the exit probabilities from
1to (2,...,n).
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Using Lemma 2.3.3, we have

E(T{+T'>1):£< Z_:XmLU) + (iﬁ—i—‘/))

i=1

"<[’<Z_(Xi+}/z’>+U+V>

=1

where 71 ~ 7 and 7., ~ 751, but now 7{ L 7{,. Notice that 77, is the
distribution of the occupation time of Z in the states {2,...,n}; hence it is
PH,_,-distributed;* thus by hypothesis, £(0,_1) <2 L£(72;) where 0,1 ~
Erl(n — 1,(n — 1)/E(r,)) and 0,1 is independent from 7{. Using the
same reasoning as before, 7/ must be an exponentially distributed random
variable. Then 7| 4+ 0,,_; is basically a weighted sum of n i.i.d. exponential
random variables so according to Lemma 2.3.1, L(0,,) < L(7]{ + 0,,_1) where
on ~ Erl(n,n/E(r{ + 0,-1)) = Erl(n,n/E,,). In conclusion, we have that

vy = L(0y) < L(1] + 0p1) < L(11 +71,) < L(T) = pua,
and the proof is complete. O

Remark 3.5.2. By relabelling, we can replace “PH, (1}, T)" with “PH, (1{,T)"
for any i € {2,...,n} in the statement of Lemma 3.5.1 and the result still
holds.

Theorem 3.5.1. Let p = PH,(n,T). Thenv < pu, where v = Erl(n,n/E,).

Proof. The proof is by induction on representation order. In the case n =1,
= (1 —m1)d + mp1 where py is an exponential distribution, that is, p is
the mixture of Erlang distributions of dimension 1,6 so by Corollary 3.5.1
the statement is true in this case.

150ther explanation is that 72, is a geometric sum of i.i.d. PH,_; random variables,
so it is also a PH,,_1 random variable.
16Recall that 6y can be considered as an Erlang distribution.
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Now suppose that the statement holds for PH,,_;-distributions; by Lemma
3.5.1 and the previous Remark, it must also hold for P H,,-distributions whose
initial distribution is non-random; that is,

pi = v; for all ¢ € {1,...n}, (3.5.1)

where p; ~ PH,(1;,T) and v; ~ Erl(n,n/E,,). Then, we would have the
next string of equalities and “inequalities”:

n = Zn:WZ/LZ—F (1 —Zn:ﬂ'l> (50 — zn:ﬂ'iyi—l- (1 —zn:ﬂ'z) 50 a2
=1 =1 =1 =1

where v ~ Erl(n,n/Es» g, ) = Erl(n,n/E,). The first equality follows
from a standard decomposition of PH,-distributions. The middle “inequal-
ity” follows from (3.5.1) and from the first part of Lemma 2.3.3. The last
“inequality” follows from Corollary 3.5.1. This proves the main result.  [J

We have shown that within the class of phase-type distributions of di-
mension n and fixed mean, the Erlang distribution is the least variable one
in the convex order sense.

What is erlangization and why we use it?

Suppose that we have a complex stochastic model which has some random
component which is Erlang-distributed and suppose that we are able to com-
pute the probability of some event of this stochastic model.!'” What if we
are more interested in having a non-random component of length ¢ > 0 in-
stead of an Erlang-distributed one?'® The approach that makes the most
sense (and is actually the easiest in most cases) is to consider the sequence
{Eri(n,n/c)}>2: it is fairly easy to prove that the mean of each one of
those distributions is ¢ and that actually Erl(n,n/c) converges weakly to
0. as n — oo. This way, if we compute the desired probability in the case
the component is Erl(n,n/c)-distributed for a sufficiently large n, we can

I"For example, suppose that we are able to compute the probability that some risk pro-
cess gets ruined before an Erlang-distributed time (we will explain this example carefully
in Chapter 5).

18Tt makes sense that we are more interested in computing the finite-horizon probability
of ruin rather than an Erlang-horizon probability of ruin, or at least insurance companies
are more interested in that.
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get an approximation for the non-random case.'® This method is known as
erlangization.

Now that we have given an heuristic idea of the erlangization method,
we need to ask ourselves another question: why do we use this method in
particular? To answer this, it is important to state that a large portion of
stochastic models are computationally tractable whenever we assume that its
components have a markovian-like behaviour, and in particular, are tractable
whenever we work with phase-type distributions.?’ Going back to the situa-
tion of the previous paragraph, it is a rule of thumb that whenever “some-
thing” can be computed in the Erlang case, it may also be computable in
the phase-type case: suppose that this is actually true, so now we are able to
compute the probability of some event associated to a stochastic model with
some P H-distributed component. Can we choose an alternative approach
similar to erlangization which consists in approximating . with another se-
quence of P H-distributed random variables of increasing dimension and fixed
mean c¢? The answer is yes, but we have a major drawback: if we take any
other sequence, it will have more variability (in the convex order sense) than
the erlangization method, so the convergence to d. could be slower. This is
the whole point of this chapter: to convince the reader that the erlangization
method is the best one amongst any other P H-method we can think of.

In the following chapters we will work with a pair of risk processes and
we will study several types of ruin for them. It turns out that the prob-
ability of these ruins are easily computable whenever we assume that one
specific component is P H-distributed, however, we are actually more inter-
ested in the case when that component is non-random: thus, we can apply
the erlangization method to compute an approximation.

90nly in some specific cases the convergence of these probabilities can be rigorously
proved: for complex systems one can just hope for the best, but it is difficult to imagine
practical cases in which this convergence could fail.

20Tt is not that whenever we have phase-type distributed components, explicit quantities
can always be computed: it is just that phase-type distributions have been shown to be
very useful to compute exact probabilities in areas like queueing and risk theory, so one
hopes that having these “phase-type” components in a model will make things easier (at
least this is the case throughout this whole manuscript).
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Chapter 4

Fluid-flow and risk models.

In this chapter we study some classic stochastic models.

In Section 4.1 we will review the fluid-flow process, which is a model
used to describe the fluid level in a reservoir subject to randomly determined
periods of fillings and emptying; in this case, those random periods will be
determined by a Markov jump process with finite state space. We will find
a method for getting the distribution of the maximum of a fluid-flow model
via an iterative algorithm, based on Asmussen [3].

In Section 4.2 we will study two of the most important classic risk models:
the PH-Cramér-Lundberg and P H-Sparre-Andersen processes. Both pro-
cesses model the reservoir of an insurance company; the difference between
them is that the PH-Cramer-Lundberg process is a Lévy process while the
P H-Sparre-Andersen process has an underlying renewal process. Several re-
sults about the probability of ruin are presented for both processes: in this
manuscript the probability of ruin for the latter is calculated by using fluid-
flow arguments; the usual approach is to use the theory of random walks.
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4.1 The fluid-flow model.

Let {J; }+>0 denote a non-absorbing Markov jump process over a finite state-
space E = {1,...,d} with intensity matrix A = {\;;};ijer. Also, consider
some fixed constants r; = (i) # 0 for i = 1,...,d. We define the fluid-flow
process {V;}i>o by

t
Vt:/ r(Jy)du.
0

This means that in an interval where J; = i, the process {V;} increases
linearly with slope r;. Let us consider an interval of this kind and denote by X
its length: we know that X is exponentially distributed with parameter \; :=
—MX;ii > 0. Then, the fluid-flow process increases or decreases (depending on
sgn(r;)) |r;|X units in total during the length of said interval. Since |r;| X ~
Exp(\;/|r;]), then we conclude that the sequence of piecewise increments and
decrements of {V;};>¢ are exponentially distributed of successive parameters
{As,, /73, 1321, where 01,09, .. correspond to the jump times of the process
J. This leads us to define

T = A1/|T|)\, (4.1.1)
where
. 1 1
A1/|,.| = dlag (—, ey T | -
|74 |7l
Hence,
A1 A1 A1d
[ri]  [r1] &Tﬂ
A21 Azg Aad
T — |7"2| |T.2| Ir2|
Adi Ad2 Add
Iral  |ral |7l

Remark 4.1.1. From here on, we shall consider the bivariate stochastic
process {(J:, Vi) }+>0, and even if we are only talking about {V;}, we should
keep in mind that the process {.J;} is associated to it. Another detail that
needs to be pointed out is that {V;} by itself is not an homogeneous Markov
process, but {(J;, V;)} is:' this property will be heavily used throughout this
manuscript, usually without explicitly mentioning it.

1Tt is actually a strong Markov process, since it inherits its properties from {.J;}.
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At any given time ¢, V' is will be either increasing or decreasing, depending
on sgn(ry,): hence we may partition the state space E = E* U E~ 2 where

Et={ieE:r,>0}, and E ={i€F:r, <0}

With this partition in mind, we need to rearrange the elements of 1" into

T++ T+-—
Stuga]

where T is the block which contains the transitions between the states in
ET, T~ is the block which contains the transitions from the states in £+
to the states in £—, T~ is the block which contains the transitions from
the states in £~ to the states in E*, and T~ is the block which contains
the transitions between the states in £~.

For a moment, let us consider the process {(J;, V;)} such that Vj = 0 and
Jo =1 for some ¢ € E~. Define ozi_j+ to be the probability that the process V'
up-crosses for the first time the level 0 while the process J is in state j € E™.
Let o= := {a;;" }iep- jep+. This matrix of dimension |E~| x |E*| will be
referred as the matrix of up-crossing probabilities.

Next, define 7(z) = inf{t > 0 : V; = x} and consider the (possibly ter-
minating) stochastic process {m(z)} defined by m(x) = J.(,) for > 0 such
that 7(x) < oo. That is, {m(x)} is the ascending ladder process (taking
values in E71) that takes note of the state in which the process J was at the
instant at which the process V reached the level x for the first time. If the
main process is such that V) = 0 and Jy = i for some ¢ € F, then the initial
distribution of {m(z)} (that is, the distribution of m(0)) is 1} if i € E™, and
a; 7= {oj; }jepr ifi€e E™.

The process {m(x)} can jump from a state i € ET to j € ET in two
ways: either directly (which happens with intensity \;;/r;, according to the
discussion which leads to the definition in (4.1.1)), or by jumping from ¢
to another state k € E~ (which happens with intensity A;z/r;) and then
up-crossing for the first time the previous maximum level in state j (which

2In further pages we will want to consider the case in which Eg := {i € E : r; = 0} is
not empty. However, working in this setting for now does no harm.
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happens with probability al;;r). That is,

o \
P(m(x + dz) = jlm(z) =) = Z‘] dz + Z —Z‘ka];.*dq;,

—_ y
T
t kel t

This discussion implies that m(z) is a (possibly terminating) Markov jump
process with intensity matrix given by

U=T"t+T T a . (4.1.2)

If we were capable of knowing the exact values of =7, then we would be able
to describe the distributional behaviour of m(x) explicitly. Unfortunately,
computing directly the values of = is not an easy task: nevertheless, in
the following pages we are giving an iterative algorithm whose limit is said
matrix of probabilities.

Let us focus first on obtaining the probability a;jJr fori € E~and j € E™:
consider the case when Vy = 0 and Jy = i. We have discussed before that
V,, is exponentially distributed with rate A;/|r;|; then at time oy the process
J will change to some other state £ € E. Consider an independent and
identically distributed fluid-flow process {(J',V’)} such that Jj = k and
Vy = 0. By the strong Markov process and homogeneity, the conditional
probability that V' up-crosses the level 0 while J is in state j € ET (given
that V,, = —x (x > 0) and the first jump of J is to state k) is equal to the
probability that V"’ up-crosses the level z for the first time while J is in state
j € ET. But this probability has an explicit form (see the discussion after
(4.1.2)), which is

P(V up-crosses 0 while J is in the state j|First jump of J is to k, X = x)
= (1;€6E+ (k‘) + a,;+(5E7 (k))elej.

Integrating over the possible values of V,,, summing over all k € E* U E~
and recalling that the transition probabilities between the states of J are
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given by {pix := (1 — dir) \ix /i }iker, we have that

a;t = P(V up-crosses 0 while J is in the state j)

(%]
) Ai iy
- ( 2 WE*(@W*&E<k>>ew1jpik) P da
0

keE+tUE— | L

(4.1.3)
. %(1_5%)(1;5%@”% 55 (k) (/Oooe(U 2 )dx)

T
keE+tUE—

(4.1.4)

From here on, we assume that {m(z)} is a terminating process.®> Then, U is
an invertible sub-intensity matrix; by Theorem 3.2.2, U — \;/|r;|I (x > 0) is
also an invertible sub-intensity matrix. Moreover,

00 X -1
/ (U-RiT)e gy <‘A |I U> . (4.1.5)
0 T

If we let cj T denote the i-th row of a7, then (4.1.4) and (4.1.5) imply
that

a;t = ( 3 )\—Zﬁ(l — G) (146 (k) + ap T (k:))) (ﬁf - U)

k€E+UE~ 7

Aik -, T Y ( \; )‘1
(,;E; [ral ,g; [ral " 7l |7l
Notice that

L. > peme (Nig/|ri]) 1), corresponds to the i-th row of T— T,

2. S em (Ai/|ril)ag T corresponds to the i-th row of T-~a~t, and

3. (\i/|ri])a; Tt corresponds to the i-th row of Ay~ (Where Ay ) =
ding( /|| - i € B-).

3This can happen in two cases: either V has a negative drift or if the process J
eventually gets absorbed in some state A such that 7o = 0. The latter is the case which
we will study en Chapters 5 and 6.
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This implies that

-1
a; T = <(T—+ +T "ot + Aypa™™) <ﬁ1 - U> ) (4.1.7)

7]

\; -1
= <(T—+ +T "o T+ Ay ™) (WI —(T** + T+—a—+)) ) :

(4.1.8)

where again, the subindex ¢ in the matrices of the previous equalities means
that we are referring to the i-th row of said matrix.

This is not a direct solution to the problem of finding the values of a=T,
but notice that the equality in (4.1.8) means that we have found an operator
[ on Mig-x g+ (R)* such that o=+ = f(a~%), that is, @~ is a fixed point
of said operator. If we were able to show that f is a contraction, we would be
done; however, it seems easier to prove that = (n) converges (entry-wise)
to a~t as n — oo, where a~1(0) is some fixed |[E~| x |E*|-matrix and
a~t(n):= f(a=T(n—1)) for n € N, so we are doing it this way.

Definition 4.1.1. (Order between matrices) From here on, if S and R are
two matrices of the same dimensions, then we say that § > R whenever
S — R is a matrix with non-negative elements.

Notice that et~ must have certain properties, such as a¥~ > 0 and
at~e < e, so we may work only in the space of |E~| x |E™|-matrices that
attain those properties: let us denote this space by I'. Then the operator f
restricted to I' is such that

f(B)i = ((T‘* +T77B+ Ax/riB) ( Af I— (T + T+‘ﬂ)) _ ) ,

|74
(4.1.9)

4That is, the space of matrices of dimension |E~| x |E*| over R.
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or rearranging the terms in (4.1.3), we get that

o S N VI
f(B): =< E / pikl,;ge(T+++T+ P e Tl dx (4.1.10)
kep+ 70 Iri
T e v
. ikMk |’I“Z' y

keE-\{i}

where B := {Bj}jept

Lemma 4.1.1. Let 3 € . Then Tt + TT=3 is an intensity (or sub-
intensity) matriz and moreover, the mapping 3 — exp((TTT + TT=3)z) is
non-decreasing for each x > 0.

T++ T+—
)
is an intensity matrix. Since T7~ > 0 and 3 > 0, then T7—3 > 0. This

implies that T+ + T 7= (3 is non-negative in its non-diagonal entries. Next,
using again that T is a intensity matrix, we have that for each i € £,

0>ty + Z tij+ztij2 Z tij‘f‘ztzjﬁjia

JEET\{i} JEE~ JEET\{i} JEE~

Proof. First, recall that

proving that the sum of the elements of each row of TT+ + T+~ is not
greater than 0. Moreover, it is easy to see that the mapping 8 — T+ +
T+~ 3 is non-decreasing.

If 3 € I'is such that TTT+T+~3 is an intensity matrix, then any 8’ € T’
such that 3’ > B3 will render T7+ +T+—3 = T+ + T+=3’; the reason is
that the sum of the elements of the i-th row of TT+ + T+~ 3’ (which is not
greater than 0, because of the previous paragraph) is equal to the sum of the
elements of the i-th row of T+ +T+~3 (which is 0, because it is an inten-
sity matrix) plus the sum of the elements of the i-th row of T+ (8" — 3),
and since 3’ — 3 > 0, the only valid option is that TF~ (8’ — 3) = 0. In this
case, the second statement of the Lemma is trivially true.
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Next, we shall study the case when B € T renders Tt + TT—3 a
sub-intensity matrix, say R. Fix 8’ € I" such that 3 > 3 and let S =
T+ + T+~ 3 S must be an intensity or sub-intensity matrix. Let {X;}i>0
be a Markov jump process with sub-intensity matrix Tt * and let {Y;};>0
be a Markov jump process with sub-intensity matrix R: what we are doing
next is to construct a Markov jump process X’ which depends on X and
which has the same distribution as Y. Denote by 7x the time at which the
process X terminates and define the new process { X]}:>o such that X] = X,
for all t € [0,7x), and at time 7x, X' either effectively terminates or jumps
to any state in E* (dependant of the last non-cemetery state of X; this will
be explained later) and continues its path repeating this dynamic: that is,
we may have to concatenate a random number of independent terminating
copies of X until an effective termination of X’ exists. Let®

P(X7, =JIX - =i) = > B/t
keE-
fori,je Bt andlet 1 =3, p. > 5 tiBrj/ti be the probability of effec-
tively terminating the process X’ at the moment 7x. It is an easy exercise to
verify that the intensity matrix of the process X’ is given by T++ 4+ T+~ 3;
that is, X’ has the same distribution as Y. Consequently we have that

P(Y; = j|Yo = 1) = P(X; = j|Xo = 1)
> P(X; = j,7x > t|X; =)
=P(X; = j| Xy = 1);
this implies that exp(T+1) < exp(TT+T+T1T~3). To prove that exp(T++ +

TT=08) < exp(TTT + T+~3), we only need to replace TTT with T+ +
TT=3 and TT—3 with TF~ (8’ — 3) in the previous argumentation. O

From this lemma and from the equality in (4.1.10) it easily follows that
f is a non-decreasing operator. Now, let = (0) := 0. Since =T > 0 =
a~1(0) and a~7 is a fixed point of f, then we have that

a = fla™") = fla™"(0)) = a”F(1).
Thus, by induction it follows that

a~ T >a t(n) for all n € IN.

5Notice that t;; > 0 for all i € Et, since there are no absorbing states in E7.
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Since f is non-decreasing, the sequence {1 (n)},en is also non-decreasing,
so this sequence must converge (entry-wise) to some v € I' such that v <
a~T. We must prove that this inequality is actually an equality. To this
end, let us define for each n € INU {0} the event

G, = {V up-crosses 0 before the (n + 1)-th jump of J},
and for each i € E~ and j € Et define

ki, (n) == P({V up-crosses 0 while j is in j} N G,|Jo = 1). (4.1.11)
Naturally, let &=+ (n) := {x;;"(n)}icg- jep+. From (4.1.11), it follows triv-
ially that £~1(0) = 0, since it is impossible that a fluid-flow up-crosses level
0 before any jump of J ocurred. According to the definition of f in (4.1.10),
f(k~%(n));; could be (probabilistically) interpreted in the following way: we
wait until the first jump of J occurs, leaving V' with a negative height which
is exponentially distributed of intensity A;/|r;|. Said jump will land in ei-
ther ET or E~: let us name them case 1 and case 2, and let us study what
happens after this jump.

Case 1) We let the jump process evolve according the intensity matrix TT+ +
T+ k~%(n) and let it up-cross the (original) level 0 in state j. The
intensity matrix TT+ + T~ k™1 (n) means that the process has two
types of jumps: the ones corresponding to the direct jumps from states
in £ to states in ET, and the ones corresponding to the case when
a excursion away from the V-maximum occurs, but this time, we let
each excursion have at most n J-jumps.

Case 2) We let a excursion away from the V-maximum of at most n associated
J-jumps occur, then we let the process evolve with the same intensity
matrix as the one explained in case 1, and let it up-cross the (original)
level 0 in state j.

This finalizes the probabilistic interpretation of each element of the matrix

f(E=F(n)).

Notice that any trajectory of the process V' associated to the probability
Ky (n+1) is contained in either case 1 or 2 of f(k~+(n)). This means that
kT (n+1) < f(k~T(n)).
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All this led us to the equation:
K™T(1) < f(77(0))
< f(a=t(0)) (Since k~F(0) < a~1(0) and f is non-decreasing)
=a~ (1)
Applying f iteratively to the previous equation leads us to
k™ T(n) <a T(n) foralln e NU{0}.

By the definition in (4.1.11) we have that K~ (n) T @~ so we can conclude
that v = lim,, ..o @~ T (n) = a~T. All this discussion is summarized in the
next theorem (we shall use the notation introduced in the previous part).

Theorem 4.1.1. Let {V;, Ji}i>0 be a fluid-flow process such that Vo = 0 and
Jo = 1 for some i € E. Then the ascending ladder process {m(x)}.>o is a
possibly terminating Markov jump process with (sub-)intensity matriz

U=T""+T " a™ ¥,

and initial distribution given by 1, if i € ET, or ai_"' if i € B, If the
process {m(x)} is terminating, then the matriz o=+ can be calculated by

a T = lim a~ " (n),
n—oo

where a=T(0) = 0, a~t(n+ 1) = f(a~%(n)), and [ is an operator on
M g-xjp+|(R) given by (4.1.9).

Theorem 4.1.2. The iterative scheme proposed in Theorem 4.1.1 can be
changed by making a~% = lim,_,o @~ (n) where a=7(0) = 0, o=+ (n +
1) = gla™T(n)) and g is the operator on M g-|« g+ (R) given by
9(B) = (T~ +T~"B+nB)(nI —-U)™"
= (T~ +T~ " B+n8)nI — (TTF+T77B))~",

for any n > sup;cp- /|-

Proof. Let us consider the uniformization scheme described in Theorem 3.4.1
for the process J by taking 7, = n|r;] > A;. Within that scheme and if
Jo = 1, the next clock rings according to an exponential distribution with
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rate n|r;|, and its transition® is governed by the sub-stochastic matrix Q =
I+Aq/mirp A, where Aq i,y = diag{1/(n|r;|) : i € E~}. This means that
the value of |V/| at the time the first clock rings is exponentially distributed
with rate 7. Then, along the same argumentation given before (4.1.3), we
have that

a;; 7 = P(V up-crosses 0 while .J is in the state j)

ij
:/ ( E qie(1,0+ (k) —|—oz,;+5E—(k))eU“1j) ne " dx
0

keEtUE—

>\i / — > _
0

k€eE+UE- v

By the same reasons as the ones preceding (4.1.6), we get that

_ Ai _ _
a;t = ( S (0t ) @idee )+ +5E-<k>>> (I -U)"!
keE+tUE- mri
/\z‘kz / /\z‘kz —+ —+ -1
kep+ ! kep— "

applying the same arguments given before (4.1.7) we have that
a;t=((TT+T"a +no ) (I -U)™),

- ((T“" +T "o T +na~t) (nI — (T + T+_a_+))_1> .
(4.1.12)

The rest of the proof is analogous to what we have done before stating The-
orem 4.1.1. [

4.2 Risk models.

Consider an insurance company which has an initial capital v > 0, that
continuously receives some premium rate (for now, suppose it is constant
and it is 1; if we wish to increase or decrease that rate, we can use time-
scaling, which will be explained shortly in this section) and whose positive

6Recall that “transitions” are different from “jumps”; see Section 3.4.
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claims (say Y1, Y2, Ys, ... ) arrive according to some counting process {V; }>o.
The amount of capital the insurance company having through time is called
a classic risk (or reserve) model, and we shall denote it by { R, };>0 where
Ny
Ri=u+t—>Y Y t>0. (4.2.1)
i=1
Although we have just defined this model in a very general setting, there
exist further extensions, some of which will be discussed in the conclusion of
this manuscript.

Sometimes it is more useful (or at least less difficult) to work with the
surplus process associated to {R;}:>0, which is denoted by {S;}:>o and is
defined by

Ny
Sy=u—Ry=—t+) Y, t>0.
=1

Let 7(u) = inf{s > 0 : Ry < 0} = inf{s > 0 : S; > u}. We call 7(u) the
time of ruin. Basically we are interested in (at least) three things:
1. ¥(u) := P(r(u) < o0), which is the probability that {R;} ever gets
ruined,

2. Y(u, H) := P(r(u) < H), which is the probability that that {R;} gets

ruined before some time H,

3. the value of —R.(,) (on the event {7(u) < co}), which is the negative
quantity of money the insurance company has at the moment it is
ruined.

These three elements shall be called, respectively, infinite-horizon prob-
ability of ruin (also called probability of ruin), finite-horizon proba-
bility of ruin, and severity of ruin.

Remark 4.2.1. In the beginning of this section we mentioned that we would
only study the case in which the reserve model R increases at constant rate
1 between arrivals. Now, suppose we need to model a reserve that increases
at some other rate ¢ > 0 and let us denote that model by R¢; that is, let
Ny
R =u+ct— Z Y.

i=1
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In particular

Nt/c N,

JEPET o N 5 (4.2.2)
1=1 i=1

where N’ := { N/} is the (accelerated) counting process N by a rate of 1/¢
(that is, N/ := Ny, for each t > 0). Clearly the probability of ruin and the
distribution of the severity of ruin for the process { R }:>o coincide with the
ones from the process {R{, }+>0, and the finite-horizon probability of ruin
before time H of { R };>¢ is the same as the finite-horizon probability of ruin
before time H/c of {Rj, }+>0, so basically we can study {Rj, }>o instead of
studying { R }+>o: this is known as the time-scaling method. Furthermore,
the form of (4.2.2) is exactly as in (4.2.1), so the process {Rf, }:>0 is a risk
process which increases at a rate of 1 between arrivals: this is the reason why
we stated that it was enough to study risk processes that were defined as in
(4.2.1).

4.2.1 PH-Cramér-Lundberg process.

The Cramér-Lundberg process is a risk model {R;} as the one described
in (4.2.1) with these further characteristics:

1. {N;} is a Poisson process of intensity p > 0, and

2. Y1,Y5,Y;5, ... areii.d. random variables which are also independent of

{NV:}.

This makes {S;} and {R; — u} Lévy processess, that is, cddladg processes
with independent and stationary increments. It is a known fact that if {X;}
is a Lévy process with negative jumps, then its Laplace exponent, denoted
and defined by ¢y (s) = log(IE(e*X1)), exists and is finite for every s > 0. In
particular the next theorem follows.

Theorem 4.2.1. Let R be a Cramér-Lundberg process. Then

Or—u(8) =s—p+pLy(s).

Proof. See Section 3.3 of Kyprianou [10]. O]
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The Cramér-Lundberg process has been widely studied, nevertheless, ex-
plicit formulae for the probability and severity of ruin have been found in a
very few cases.

In our setting, we are further assuming that Y; ~ PHy (8, D); since
phase-type distributions are dense in the class of distributions with positive
support (see Theorem 9.14 (pp. 183) in Breuer et al. [5]), this sounds
like a not-so-restrictive assumption. We will refer to this particular model as
the phase-type Cramér-Lundberg process (or PH-Cramér Lundberg
process). By assuming this model we can easily prove the next theorem
using probabilistic arguments, which is not possible in the general case. For
a proof of it see Section 3.1 in Peralta [15].

Theorem 4.2.2. Let R; be a PH-Cramér-Lundberg process. Then:
1. ME(Y}) > 1 < liminf; R, = —oo ; in that case, we have that

P(7(u) < 00) = 1.

2. If \E(Y)) < 1, then R, — +00 ast — 0o, in that case, we have that
P(r(u) < o0) = vePT)e and — R,(,) ~ PHy(vePT)" D),
where v = —pdD~! and d = —De.

Remark 4.2.2. In most papers and books, the reasoning behind the distri-
bution of the severity of ruin in the phase-type case is not mentioned, since
it is fairly easy to guess how it is obtained; however, we are giving a brief ex-
planation of it next. The Markov jump process associated to the claim that
ruins the process will be in state ¢ at the moment of the ruin with probabil-
ity (veP+dv)u), 7 Then, given that said claim is in state 4 at that moment,
we just have to let it evolve according to the sub-intensity matrix D until
absorption happens, which marks the end of the ruining claim and thus its
severity is obtained. This same argument will work with further models, so
we shall omit it from future proofs.

The finite-horizon probability of ruin is entirely a different story, since
we no longer want to compute the distribution of global minimum of R, so
the arguments behind Theorem 4.2.2 do not work: we will come back to this
problem in the next chapter.

"This part also can be found in Section 3.1 of Peralta [15]
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4.2.2 PH-Sparre-Andersen process.

The Sparre-Andersen process is a risk model {R;} as the one described
in (4.2.1) with these further characteristics:

1. The successive times between the arrivals in {NV;}, say T3, 75, T3, .. .,
are positive i.i.d. random variables, and

2. Y1,Y5,Y;3, ... areii.d. random variables which are also independent of
{Ti }ien-

In this case {N;} (generally) stops being a Poisson process, but it is still a
renewal process. Notice that we can recover the Cramér-Lundberg process if
we set the sequence {7;} to be exponentially distributed.

The explicit probability of ruin is obtained in very rare cases. Once again,
we shall use the fact that phase-type distributions are dense amongst the dis-
tributions with positive support to argue that it is valid to work in the cases
where both sequences {Y;} and {T;} are phase-type distributed (using a dif-
ferent distribution for each sequence). Classically, the probability of ruin
of this particular case of Sparre-Andersen process, which will be referred as
the phase-type Sparre-Andersen process (or PH-Sparre-Andersen pro-
cess), is obtained using general random walks theory. Here we shall give an
equivalent result using fluid-flow arguments.

Let {S;} be the surplus process associated to the PH-Sparre-Andersen
process {R;} whose claims {Y;} are PHy, (8, D) distributed and the times
between claims {7;} are PHg,(p, P) distributed. Denote the space state
associated to each phase-type distribution by £ and E7, respectively, which
we assume to be disjoint.® Let

n
Un:Zﬂa RGIN,
i=1

and let 20 := {Z"} 20 and WO := {7}~ be the terminating Markov
jump processes associated to Y; and T}, respectively, for each i € IN.

8For example, we can take EY = {1,...,d1} and ET = {d; +1,...,d; +dz}. It really
does not matter which choice of states we use, as long as EY N ET = ).
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We shall construct a fluid-model (J, V') in which we can embed the original
process S; the idea is to construct it in a way such that each upward jump of
S can be identified with a piece-wise deterministic interval in V' with slope
1 such that each one of these piece-wise deterministic intervals has the same
length as the height of its associated jump, and such that the times between
arrivals in which premium is recollected in S can be identified with piece-wise
deterministic intervals of the same length and slope in V.2 Let us explain
it carefully by characterizing the process J first. Let £ = E~ U Et, where
E~ = FE" and £t = EY. Then, define J by making

( w for te€0,0q)
Zt(i)al for t € o, 01+ Y1)
Wt(;)(01+y1) for t e [0'1 +}/1,0'2+}/1)
Zt<_>(02+yl) for t € oy + Yi,00+ Y1+ V)
= s : :
(k) k—1 k—1
VVtzk()ak—l"'Zf:_ll v) for tefop+d . Yiior+ ., Yi)

k-1 k

\

What we just did was constructing a “linear” version of S, in the sense that
we stretched the original process N by making at each of its arrivals a time-
wise insertion of the Markov jump process associated to the corresponding
claim. We may refer to these inserted pieces of paths as artificial insertions
in further pages. Having clarified this, it is easy to see that the transition
matrix of the process J is given by

A — P ps\ (A AT
“\dp D) “\ATT ATT,
where p = —Pe and d = —De. It is also easy to see that its initial distri-
bution is (p, 0).

Let Vo = 0. Now that we have given the distributional behaviour of the
process J, to finalize the characterization of (J, V) it is enough to give the

9Recall that we are working with the process S, so the correct slope for these piece-wise
deterministic intervals is —1
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correct slopes for each state in E. To do this we only need to take r; = —1
fori € E7, r; = 1 for j € ET. The choice of r; = —1 for i € E~ is to
match (in V') the original slope between claims of the process S. Now, recall
that the length of each artificial insertion is exactly equal to the height of
its corresponding claim, so by taking r; = 1 for j € E™ we are matching the
height of the claims and the height of each artificial insertion.!® This way
we have made a one-to-one mapping between the trajectories of S and V', so
the next theorem follows directly.

Theorem 4.2.3. P(inf R; < 0) coincides with the probability that V will ever
exceed u. Furthermore, the severity of ruin is PHg, (@, D) distributed, where

w = (P(J is in state i while V upcrosses u) :i € EY).

Thus, combining Theorems 4.1.1 and 4.1.2 with the previous theorem, we
get the following.

Theorem 4.2.4. Using the previous assumptions and notation, the proba-
bility of ruin for the PH-Sparre-Andersen process is

’QZ)(U) _ pa——f—e(A'H'-‘rA"'_oF*)ue

_ —+
= pa +€(D+dpa )ue

where o= = lim, o™ T (n), a7 (0) =0, a=T(n+1) = g(a=F(n)) and
g is the operator on Mg-|x g+ (R) given by
9(B) = (A" + AT B+nB)(nI — (ATT + AT7B))""
= (pd + PB+nB)(nI — (D +dpB))~"

where n > —Py; for every i € E~. Moreover,
— Ry ~ PHy, (po—TePFdra™u )

On later chapters, we will have to deal with the delayed PH-Sparre-
Andersen process, which is just a P H-Sparre-Andersen process whose first
arrival has a different distribution from the subsequent ones; we denote this
process by R? = {R¢},>. The specific case we will encounter in future pages
is the next one.

10We are referring to the height of an artificial insertion as the difference between V'
evaluated at the finishing point of the artificial insertion and V' evaluated at the starting
point of the artificial insertion.
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Theorem 4.2.5. Let R? be a delayed PH-Sparre-Andersen process with
Ty ~ PHgy,(0,P) and whose claims and subsequent interarrival times are
PHy,(8,D) and PHg,(p, P)-distributed, respectively. Then the probability
of ruin of this delayed process, denoted by ?(u), is given by

77Dd(u> _ Qa—+€(A+++A+_a_+)ue

_ — D+dpa—Tt
— pa—teDHdpa g

where a1 is obtained in the same way as in Theorem 4.2.4. Moreover,
Rl ~ PHy, (0o P+ D)

Proof. The same arguments as in Theorem 4.2.4 follow, except that in this
case the associated fluid-flow model has (g, 0) as initial distribution. O

Remark 4.2.3. Notice that we have not solved the problem for general de-
layed phase-type Sparre-Andersen process, since the first interarrival time
must be phase-type distributed with the same sub-intensity matrix as the
other interarrival times. Nevertheless, this special kind of delayed phase-
type Sparre-Andersen process is the one that arises in most problems; for
example, the stationary phase-type Sparre-Andersen process fits in the set-
ting of Theorem 4.2.5 (see Section 4.1 in Peralta [15]).
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Chapter 5

Finite-horizon Ruin
Probabilities.

Let R = {R:}+>0 be a risk model as the one described in (4.2.1); that is,
Rt =Uu— St, t Z O,

where
Ny
Si=y Yi—t,
i=1

Y1, Ys, ... are positive random variables which represent the size of each claim
and N = {N,;};>0 is a counting process. Finding the explicit finite-horizon
probability of ruin in this general setting is not possible. Nevertheless, we
are presenting a method for finding an approximation of it when R is a PH-
Sparre-Andersen process following the next steps: we will find the solution for
a phase-type-horizon probability of ruin, using a fluid-flow method similar to
the one used in Subsection 4.2.2 which is based on Asmussen et al. [4]. Then,
we will be able to use an erlangization argument to give an approximation
of probability of ruin before a deterministic time. Later, we will state the
same result for PH-Cramér-Lundberg processes, which has a much simpler
and compact form.
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5.1 The PH-Sparre-Andersen case.

Let { R;} be a P H-Sparre-Andersen process with claims Y, Ys, -+ ~ PHy, (6, D)
and interarrival times T}, Ty, -+ ~ PHgy,(p, P). As we said earlier, we wish
to calculate

Y(u, H) :==P(r(u) < H).

The problem of calculating this when H is a fixed positive number is ex-
tremely difficult. The approach we are taking here is to suppose H is some
phase-type distributed random time, independent of R; we shall refer to this
random variable as the cemetery clock. If we let H ~ PHy, (A, L), then
we refer to this particular problem as the phase-type horizon probabil-
ity of ruin. We need to be careful, since we are going to be working with
three pairs of matrix-parameters; one way to remember which is which, is
to note that D is associated to the decrements caused by claims, P is as-
sociated to times where premium is recollected, and L is associated to the
random length at which we wish to analyse if ruin has or has not happened.
Also, we shall keep in mind the argumentations behind Theorem 4.2.4 and
Theorem 3.2.4 to solve this problem, since we are using both techniques here.

As in Theorem 4.2.4, instead of working with R, we are going to work
with the surplus process S = {S;}i>0. Suppose that the state spaces EY, ET
and E (associated to the claims, interarrival times and cemetery clock) are
pairwise disjoint. Let

let ZO .= {Zt(i)}tzo and W0 .= {Wt(i)}tzo be the terminating Markov
jump processes associated to Y; and Tj;, respectively, for each i € IN, and
let C'= {C}}+>0 be the terminating process associated to the cemetery clock
H. Define M :=sup{n > 0: 0, < H}; that is, M is the number of claims
before the random time H occurs.

We shall construct a fluid-flow model (J, V') in which we can embed the
surplus process S, just as in Theorem 4.2.4, but this time, we want to kill
it at the moment the cemetery clock rings. Let us explain it carefully by
characterizing the process J first. Let E = E- U ET U E°, where £~ =
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Ef x BT, Bt = E¥ x EY and E° contains only the absorbing state A. Then
define J by

( Cy X Wt(l) for t€|0,0q)
Cy, X Zt(i)gl for t € oy, 00+ Y1)
Ct_yl X 142(2)(01+Y1) for t e [01 + Yy, 00+ Yi)
Coy % 22 1) for t€loa+Yi,00+ Y1 +Y3)
=3 €y x W(n) f(.)r t € lon_1+ Zn_l.Y- on+3"7Y)
t—>"Y; (n)t—(an,rl—zn*l Y;) n— B i»On i
Cy, X Zt—(aﬁz’HYi) for telon+>." Yo, +>"Y)
o : . y
C’FZMY; X Wt7(0M+ZMY¢) for te€lon+>" Yo, H+> Y
\ A for te[H+ My, 00)

Notice that this process, unlike the one described in Theorem 4.2.4, has
a state space whose components are all pairs; these pairs have on its first
entry the process C' which is either evolving or stopped. For example, from
0 until the time of the first arrival, we are letting both C' and W1 evolve in
a parallel fashion; then, when a W) gets absorbed, we stop the process C
and let the process Z(M) evolve; when Z(V) gets absorbed, we start the process
W® and let C continue from the state it was when it was stopped, again,
in a parallel fashion; at the instant W) gets absorbed, we stop the process
C and we start the process Z® and so on. Notice that those times where C'
is stopped are the ones that were artificially inserted (see Subsection 4.2.2);
during these times C-absorption cannot happen. Actually, C-absorption will
happen while both C' and W) are running, and when this happens, we
send the process J to the cemetery state A.

Let us order the states in £ by B~ = Ef x ET, B+ = EH x EY and
E° = {A}, each one of them sorted linearly in a row-major order (see the
proof of Theorem 3.2.4). Then we get that the intensity matrix of the process
J is given by

LoP 1I;,,2(pd) 1xey A7 AT 1®ey,
A=|I,®(dp) I,®D 0 |=[At— A+t 0o |,
0 0 0 0 0 0
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where I, is the identity matrix of dimension ds, eg4, is the column vector of
1’s with size d3, d = —De, p = —Pe and 1 = —Le. Indeed:

1. L & P corresponds to the parallel evolution of C' and a W-process
(according to the reasoning in the proof of Theorem 3.2.4).

2. The intensity matrix pd corresponds to the jumps caused by an exit
from a W-process and the beginning of a Z-process. Now, suppose that
C is in some state i € Ef while this jump occurred. Since we want to
fix C in this state 7, we only allow jumps from the states {i} x ET to
the states in {i} x EY, all this with the transition intensities pd. This
explains the structure of the matrix I;, ® (pd).

3. D is the transition between states in EY. While this transitions hap-
pen, we want to keep C' fixed, and to keep track of which state C' was
when the Z-process started; this explains the structure of I;, ® D.

4. The matrix dp corresponds to the jumps caused by an exit from a Z-
process and the beginning of a W-process. Since we already kept track
of which state C' was, say i € E¥, and now we just want to resume this
C-process, we need to only allow jumps from {i} x EY to the states in
{i} x ET, all this with the transition intensities dp. This explains the
structure of the matrix I, ® (dp).

5. As we said before, absorption to A from the E* state space is impossi-
ble, while absorption to A from E~ is only caused by the termination
of the process C, whose intensities are given by 1. The matrix 1® ey,
is just the block-adjusted column vector of intensities.

6. Finally, A is a cemetery state, so all transition rates corresponding to
its row must be 0.

By a similar argument as in Theorem 4.2.4, it is clear that the initial
distribution of J must be given by (A ® p, 0,0).

Let Vo = 0. Now that we have given the distributional behaviour of the
process J, to finalize the characterization of (J, V) it is enough to give the
correct slopes for each state. The solution is to take r; = —1 for ¢ € £~ and
r; = 1 for j € E*; the argumentation is exactly the same as in Theorem
3.2.4. Nevertheless, we want to ignore further ruin events that might occur
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after the cemetery clock rings: what we are going to do is to take ra = 0.
This way, the process V is will stay fixed on the level Sy after the clock
rings. This means that we have just transformed the problem of checking if
S will up-cross the level u before some time H, to the problem of checking
if V' will up-cross the level u at all (in an infinite-horizon sense). Thus, we
have the next main result.

Theorem 5.1.1. P(7(u) < H) coincides with the probability that V will ever
exceed u. Further, the severity of ruin is PHy, (p, D) distributed, where

p = (P(J is in a state of the form (-,i) while V upcrosses u) : i € EY);
(5.1.1)

Combining Theorem 4.1.1 and Theorem 4.1.1 with the previous theorem,
we get the following.

Theorem 5.1.2. Using the previous assumptions and notation, the phase-
type-horizon probability of ruin for the PH-Sparre-Andersen process is

Y(u, H) = (A® p)a_+€(A+++A+_a_+)ue
= (A® p)a~ telseD Iy edp)a™ug

where a~ T =lim, o™ T (n), a=T(0) =0, a~T(n+1) = g(a=*(n)) and
g is the operator on Mg-|x g+ (R) given by
9(B) = (A~ + A=~ B +0B)(nI — (AT + A*=8)) !
= Iy, ® (p8) + (L& P)B +nB)(nI — (Is, ® D + Iy, @ (dp)B))~"
forn > supiepr jepn =Py — Ly;.

Remark 5.1.1. Notice that we used that (A ® p)a—teATT+AT e D g
the distribution vector of the up-crossings over Ef x EY | which was ordered
linearly in a row-major fashion. Thus, one way to obtain the row vector

p = (P(J is in a state of the form (-,7) while V upcrosses u) : i € EY)
= (Z P(J is in the state (I,7) while V' upcrosses u) : i € EY>
leEH
introduced in (5.1.1) is by making

A+++A+_of+)u(

® = (>‘ ® p)a_+e( €q; © Idl)’
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where I, is the identity matrix of dimension d; and ey, is the column vector
of 1’s with size d3: it is straightforward to check this fact by making an
inspection.

5.2 The PH-Cramér-Lundberg case

As we said before, the Cramér Lundberg process is a very special case of the
Sparre-Andersen process, and as we have seen in Section 4.2, it is usually
a lot easier to work with PH-Cramér-Lundberg processes than with PH-
Sparre-Andersen processes. In this manuscript we have already studied the
phase-type-horizon probability of ruin in the PH-Sparre-Andersen case, so
studying it in the PH-Cramér-Lundberg case is just a matter of substitution
in the final formulae; nevertheless, we can go deeper in the case of Erlang-
horizon probability of ruin and get a very simple formula for this probability,
which does not require any limiting argument (unlike Theorem 5.1.2).

Let us recall our setting: R is a risk process where {Y;} are i.i.d. random
variables with distribution PHy, (8, D), {T;} is an independent sequence of
i.i.d. with exponential distribution of rate p > 0,! and the cemetery clock
is H ~ PHgy, (A, L), independent from everything else. Then, we have the
following.

Theorem 5.2.1. Using the previous assumptions and notation, the phase-
type-horizon probability of ruin for the PH -Cramér-Lundberg process is

U(u, H) = Ao~ tellis@D+Taz@d)a™Dug. (5.2.1)

where d = —De, = = lim, sooa™T(n), a1 (0) = 0, a~T(n+1) =
gla=T(n)) and g is the operator on Mg-|x g+ (R) given by
(

( ) pId3 ® 6+ (L pIds)ﬁ + 77/6)( (Idzs ® D + (Id3 ® d)ﬁ))_l
where 1 > sup;cpn —Lj; + p.

Remark 5.2.1. Recall that the recursion proposed in Theorem 5.1.2 came
from a fixed point problem whose solution was a7 (see Theorem 4.1.2 for
more details). In other words, we had that

a1t =(ply,®6+(L—ply,)a~T+na 1) (nI — (I, D+ (I;,@d)o 1))~

'Recall that Exp(p) = PH(1,—p).
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Multiplying it by nI — (I;; ® D + (I, ® d)a™ 1) to the right, the previous
equation is equivalent to

a T(I;, @D+ (I, ed)a™ 1) + (L — plg)a™t +pl;, 6 =0. (5.2.2)
Having clarified this, it is easier to see that Theorem 5.2.1 is equivalent to

the result gotten in Asmussen et al. [4].

5.2.1 Erlang case.

Now we are interested in calculating the Erlang-horizon probability of ruin for
the P H-Cramér-Lundberg process. But first, let us calculate the exponential-
horizon probability of ruin, that is, let H; ~ Exp(l) be the cemetery clock,
where [ > 0. In this case, we have that a(_J (defined as the matrix =

from Theorem 5.2.1 for this particular case) is a ET = EY row vector and
(5.2.2) takes the form

agy (D +dag)) + (=l —plagy +pd =0. (5.2.3)
If welet s:=1+4p— a(_l')"d, then (5.2.3) is equivalent to
—+ —+ _
o) D — S0 +pd =0,

so that
a(_l;r =pd(sly, — D). (5.2.4)

Now, we only need to compute the value of s: to do this, just multiply (5.2.4)
by d to the right, so we get that

[+p—s=ag d=pd(sly, — D)"'d=pLy(s), (5.2.5)

were Ly () is the Laplace transform of Y; (see Theorem 3.2.3). Combining
(5.2.5) and Theorem 4.2.1 we get that

Or—u(s) =s—p+pLy(s) =1 (5.2.6)

that is, s > 0 is the unique root of the equation ¢r_,(s) = [*, where ¢r_(-)
is the Laplace exponent of the Lévy process { Ry — u}:>o. This way, we have

2Uniqueness and positivity can be verified by Theorem 3.12 in Kyprianou [10].
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found a method to calculate s and therefore a(_J

Next, consider the case when we let Hy ~ Eri(2,1) be the cemetery clock
and let a(_Q;' be defined as the matrix a~t from Theorem 5.2.1 for this
particular setting. Then a(_z;r is a 2 x 2d; matrix whose (7, j)-th entry (with
i€ E- = FE" and j € ET = F! x EY) represents the probability that the
associated fluid-flow process up-crosses 0 while being at state j, given that
it started in state ¢. Hence

(1) (2)
—_— « «
+

where aV) = ag) and a® is (currently) unknown. Indeed, since the
phase-type representation of Hy consists of two subsequent transient states,
say 1y and 2p, then there exist 4 cases:

1.2 = 1y and 7 = (1g,-): this means that from the time the process
started until it up-crossed level 0, there has not been any jumps in the
phases of Hy, that is, the exponential clock that marks the jump has
not rung, and that is why this probabilities are given by the vector

—+,
ICOR

2. i =2y and j = (2y,): this also means that there has not been any
jumps until the up-crossing of level 0, so this probabilities are also given
by the vector a(_J;

3. i =1y and j = (2g,-): this means that there was one (and only one)
jump from 15 to 25 which happened somewhere between the beginning
of the process and the moment it up-crossed level 0. For now we do
not know anything about this vector of probabilities, that is why we
just named it a(®;

4. i=2and j = (1g,-): since the associated process behind Hy does not
allow jumps from 2y to 1y, then this vector of probabilities must be 0.

To completely calculate a(_z')", it is necessary that we calculate the row vector
a® . To do this, we shall use formula (5.2.2), which in this setting takes the
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form
00 a® a® D o0 d 0\ /a® a®@
(00)= (% a0)(( 1)+ (6 &) (% &v))
+(—l—p l ><a(1) a(2)>+ (5 0)
0 —1-p/Lo a®m) Plo s
a® a®\ (da® £+ D  da®
- ( 0 a(l)) < 0 da® +D)

N —l—p l a® a® N J 0\
0 —l—p 0 aW Plo §)°

next, computing only the upper-right block of the previous equality we get
that
0=a®da® +a®(da®™ + D) + (-1 — p)a® +la®
=P (<l —p+aVA)I +da® + D) +la®. (5.2.8)

Recall that s :== 1 +p — a(l;rd =1+ p—a®d, so (5.2.8) implies that
a@(—sI +da® 4+ D) = —1aW.

Following an argumentation similar to Theorem 3.3.1, one can easily see that
da™ + D is an invertible sub-intensity matrix, so by Theorem 3.2.2 we get
that —sI + da™ + D is an invertible matrix. This means that

a® =1aW(sI —da™ — D)7,

and so, the case when H, is the cemetery clock is completely solved since we
have successfully found a way for computing a(_2‘)" explicitly.

Finally, let us examine what happens when H,, ~ Erl(n,[) is the cemetery
clock. Then by similar argumentation we have that a(_rj)r (defined as the

matrix a~t from Theorem 5.2.1 for this particular setting) has the form

a(l) a(2) a(3) e a(”)
0 a(l) a(z) e a(n_l)
agb=0 0 a¥ ... ot (5.2.9)
0 0 o --- ao®
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By plugging this matrix in (5.2.2) and computing the upper-right block of
that equality, we get that

0= Z aPDda™=) 4 a™D + (-1 - p)a™ + a1
i=1
n—1

= Z a®Dda™=* 1 o™ (—sI + da®™ + D) + o™V,
i=2

SO
n—1
a(n) — (Z a(i)da(n—i—f-l) + la(n—l)) (SI B da(l) . D)_l;
1=2

all this can be summarized in the next result.

Theorem 5.2.2. Let R be the PH-Cramér-Lundberg described in Theorem
5.2.1 and H,, ~ Erl(n,l). Then the H,-horizon probability of ruin for R is
given by the formula (5.2.1), where

a(l) a(2) a(s) e a(n)
0 a(l) a(z) e a(n_l)
-+ _ 1 ... (n—2)
agy = O 0 «o 6" 7
0 0 o --- ao®

a) = a(_l;r is given by (5.2.4) and o®) can be computed recursively by the
formula

k-1
o) = (Z a®Dda®=H+) 4 la(k_l)) (sI —da™ — D)™,

=2

where s is the unique positive number that meets the condition ¢r_,(s) = I.
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Chapter 6

Parisian Ruin Probabilities.

Let R = {R;} be a risk model as the one described in (4.2.1). We have
previously defined ruin as the event in which the process R down-crosses
level 0 in some finite time; for the sake of clarity, we shall refer to it as
classic ruin. In this chapter, we will define another type of ruin, the so-
called parisian ruin which we will explain next. Let us define a sequence of
(possibly random) times {(; };ew, which we call parisian clocks. We attach
these clocks to the beginning of each excursion below zero that R might
possibly make. Then we declare R to be ruined in a parisian way iff at least
one of those clocks rings before its associated excursion below 0 ends. More
specifically, let 6y = 1o = 0 and define for i € IN

0; :=inf{s > ;1 : Ry <0}, and
t; :=1inf{s > 0; : Ry > 0}.

Then the sequence {6;} corresponds to the successive times the process R
starts an excursion below 0, and the sequence {i;} corresponds to the suc-
cessive times in which these excursions ended. Let

N:=inf{i e N: § < —6;}.

Then, according to the previous explanation, parisian ruin occurs iff N < oo,
and on this case, we define the time of parisian ruin to be 0y + (y.

There is not a known method for calculating parisian ruin probabilities

for a general risk model. However, we present one when we assume that R is
a PH-Sparre-Andersen process and the parisian clocks {(;} are phase-type
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i.i.d. random variables, independent from the P H-Sparre-Andersen process.
To do this, we will use a fluid-flow argument, so we need to keep Section 4.1
in mind. Later, we will present the same result when R is a PH-Cramér-
Lundberg process, which has a much simpler form than the PH-Sparre-
Andersen case. After this, with analogous computations as the ones made
in Section 5.2, we will get an even easier method to compute the probability
of a parisian ruin for a PH-Cramér-Lundberg process whenever the parisian
clocks are Erlang-distributed: with this in mind we would be able to apply
an erlangization argument to approximate the probability of a parisian ruin
with fixed deterministic clocks.
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6.1 The PH-Sparre-Andersen case.

Let {R:} be a PH-Sparre-Andersen process with claims Y1, Y, - - ~ PHy, (8, D)
and interarrival times 71, Ty, -+ ~ PHy,(p, P). Let the parisian clocks {(;}
be i.i.d. with distribution PH,,(k, K), independent from everything else.
Suppose that the state spaces EY, ET and E¢ (associated to the claims,
interarrival times and parisian clocks) are pairwise disjoint. Let

Op 1= ZTi’ n € NU{0},
i=1

let Z(l) = {Zt(i)}tz(], W(Z) = {Wt(i)}tzo and O(l) = {Ogi)}tzo be the termi-
nating Markov jump processes associated to Y;, T; and (;, respectively, for
each ¢ € IN.

6.1.1 Recovery probability.

Consider the case in which the reserve process starts on some level —x < 0;
this means that we immediately let the clock (; start from time 0 and we
check if the process R can recover (that is, if it can up-cross level 0) before
(1 rings: in this subsection we will compute the probability of this happening.
Notice that checking for a recovery is the same problem as letting Ry = 0
and checking if the process R can up-cross the level z before the clock (3
rings: this is the setting we will work with, since it is easier to work with a
process that start at 0. With this in mind, there is an obvious analogy of
the work we made in Section 5.1, since there we also had a clock running;’
nevertheless, there we were interested in the down-crossings of R, and here
we are interested in the up-crossings, so we need to make some adjustments.

Following the idea in Section 5.1, we need to construct a fluid-flow model
(J,V) in which we can embed the PH-Sparre-Andersen process R killed at
the moment (; rings. To explain it carefully, we need to characterize the
process J first. Let

Ny =sup{i e NU{0} : 0, < (1},

that is, let Ny be the number of claim arrivals before (; rings. Let E =
E-UE*TUE" where E~ = E¢ x EY, Et = E¢ x ET and E° only contains

!The phase-type horizon clock.
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the absorbing state A. Then define J by

( Oél) X Wt(l) for t€[0,0q)
O((711) X Zt(i)dl fOI' t e [017 01 + 1/1)
Ogl_)yl X Wt(f)(aﬁ—Yﬂ for t € oy + Y, 00+ Y1)
O x Zﬁ)(@m) for t€loy+Y1,00+ Y] +Y3)
Jp = < 1 : n ‘ n—l: n—1
t Oi_) noty, X Wt(—zan,ﬁZ”*lYi) for te€fon1+>)"" YVi,0,+>"Y))
1 n n—1 n
O((Tn) X Zt(—icrmLZ"*l Y) for tefon+>" Y0, +>."Y)
&) () ’ M Ny
Ot—ZNl v, X I/Vt_(aNleleyi) for  te€fon, +D Y, G+
{ A for tela+ MY, 00)

As in Section 5.1, this Markov jump process has a state space whose compo-
nents are all pairs; these pairs have on its first entry the process O which
is either evolving or stopped. From 0 until oy, OM and WM evolve in a
parallel fashion; when a W) gets absorbed, we stop the process O™") and let
the process ZW) evolve; when Z() gets absorbed, we start the process W
and let OM continue from the state it was when it was stopped, again, in a
parallel fashion; at the instant W) gets absorbed, we stop the process O
and we start the process Z® and so on. Notice that those times where O™
is stopped are the ones that were artificially inserted (see Subsection 4.2.2);
during these times the termination of O cannot happen. O™M-absorption
happens while both O® and W) are running, and when this happens, we
send the process J to the cemetery state A.

Order the states in E by E* = E¥ x ET, E= = E x EY and E° = {A},
each one of them sorted linearly in a row-major order.? By the exact same
arguments as the ones given in Section 5.1 we get that the intensity matrix
of the process J is given by

KaP I,®(pd) k®ey ATT AT k®ey
A=|I,®(dp) I,®D 0 = [A™T A~ 0 :
0 0 0 0 0 0

2See the proof of Theorem 3.2.4.
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where I, is the identity matrix of dimension ds, e4, is the column vector
of 1’s with size d3, d = —De, p = —Pe and k = —Ke. Notice that the
matrices ATT, AT~ A=~ and A~ have switched places (with respect how
they were in Section 5.1); this is beacuse here we are working directly with
the reserve process, while in Section 5.1 we were working with the surplus
process. By the same argumentation as in Section 5.1, the initial distribution
of J is given by (k ® p,0,0).

Let Vo = 0. To conclude with the characterization of (J, V') it is enough
to give the correct slopes for each state in . The solution is to take r; = —1
for i € E~ and r; = 1 for j € E7; the argumentation is exactly the same as
in Theorem 3.2.4. Now, we want to ignore further possible up-crossings of
level x after ¢; has rung; we do this by taking ro = 0. This way, the process
V' will stay fixed on the level R, after the parisian clock rings. Thus, we
have transformed the problem of checking if R has up-crossed the level z
before (3, to the problem of checking if V' has up-crossed the level x at all
(in an infinite-horizon sense). This implies the next theorem.

Theorem 6.1.1. Py(R up-crosses level x before (y rings) coincides with the
probability that V' will ever exceed x. Further, on the event it up-crossed the
level x before (i rang, the time until the next claim arrives is PHy, (v, P)
distributed, where

v = (P(J is in a state of the form (-,i) while V upcrosses x) : i € ET).
(6.1.1)

Combining Theorem 4.1.1 and Theorem 4.1.2 with the previous theorem,
we get the following.

Theorem 6.1.2. Using the previous assumptions and notation, the recovery
probability of a PH-Sparre-Andersen process that starts in some level —x <
0, on the event that this recovery is smaller than the parisian clock (y, s
given by

Ayt
)e(A FAT YTz g

~~

p(z) = (K
Kk ® p)e(KEBP+Id3®(p6)'y_+)xe

~—~

Y

where =+ = lim, 0oy~ (), ¥71(0) =0, v~ F(n + 1) = g(v""(n)) and
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g s the operator on M- |« g+|(R) given by

9B) = AT+ AT B+n8)(nI — (ATT + AT @)
= (I, ® (dp) + I, @ DB+ nB)(nI — (K & P+ I, ® (pd)B))~"

wh@r@ 7} > SupiGET,jEEC __Pm - K_]j
Remark 6.1.1. As in Section 5.1, the vector

v = (P(J is in a state of the form (-,4) while V upcrosses z) : i € E)

= (Z P(J is in a state of the form (-,7) while V' upcrosses z) : i € ET>

leES

introduced in (6.1.1) can be obtained explicitly by making
v=(k® p)7_+€(K®P+1d3®(p5)7_+)x(ed3 ® 1),

where I, is the identity matrix of dimension dy and ey, is the column vector
of 1’s with size ds.

6.1.2 Main result

In Subsection 4.2.2 we calculated the distribution of the severity of ruin
for a phase-type Sparre-Andersen process. In the previous Subsection we
calculated the probability of recovery before (; rings, given that Ry = —x <
0. Thus, integrating over the severity of ruin, we get that g;(u), defined by

01(u) :==P(0 < 00,11 — 0 < (G|Ry = u)

has the analytical form
o1(u) = /000 P(0; < 00,11 — 01 < (1|Rg, = —x)P(— Ry, € dx)
= [ (s ppereorHitnetmn e, ) patePrdre ey
0
= ((k® p) @ (pa~FelPraea™))
5 (/OO e((K®P+(Id3®(p5))7_+)€aD)xdx> (edyxay, ® d)
0

= —((k® p) ® (pa™ FelPHdea™))
x (K& P+ (I, ® (pd))y~ ") & D)™ (e xa, ® d),
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where all the matrices, vectors and notation where taken from Subsection
4.2.2 and Subsection 6.1.1.> Moreover, we are capable of calculating

. The corresponding W-process was in e ET
&= state ¢ while the first recovery happened | -

by making use of fluid-flow arguments, so that

o1 [ (5@ p)eKOP IS oy, 9 1, ) (paHelD 10 D)y
0

= —((k ® p) ® (paFePrdpahu))
x (K& P+ (I, ® (pd))y~ 1) ® D) ((eq, ® I,) ®d) : (6.1.2)

indeed, ((k ® p)eE@P+UsP)Y™ )7 i5 the distribution vector of
{J is in state ¢ while V upcrossed level 0 in the first recovery : i € E*}

conditional to given { Ry, = —x}. By multiplying to the right said vector by
eq, ® I, we recover the distribution vector of

The corresponding W-process was in . T
C ie kB
state ¢ while the first recovery happened

conditional to the event {Ry, = —z}.

Now that we have the probability of the first recovery, all we need to do
is to decompose the whole trajectory of R in recoveries of this kind. That is,
after we recovered for the first time, we wish to calculate the probability of
recovering a second time. The calculation in (6.1.2) is of great importance to
accomplish this, since the moment at which R recovers (for the first time) is
an instant between arrivals, so it is not possible to use a renewal argument.
What we are doing to calculate the probability of a second recovery is to start

3 Also, several identities of Kronecker product and Kronecker sum were used, which can
be summarized into the next result:

/OO(AeBIC) ® (DeP*F)dz = (A® D)(B® E)"Y(C® F)
0

whenever B and E are invertible sub-intensity matices. See Appendix 1 in Peralta [15]
for details.
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a delayed P H-Sparre-Andersen process, since at the moment of the (first)
up-crossing, the time until the next arrival has distribution PHg, (01, P);
once this claim arrives, the next ones will arrive according to the original
PHg,(p, P) distribution. In Theorem 4.2.5 we learned to deal with this kind
of delayed P H-Sparre-Andersen process, so by an analogous argumentation
as the one made there, we get the next result.

Theorem 6.1.3. For everyn > 1, let
on :=P(0, <o00,t1 — 01 < (iyevity — 0 < G|Ro =),

that is, o, (u) is the probability that R recovered from its n first classic ruins,
and each of this recoveries took mo more than the length of its associated
parisian clock. Also, let

. The corresponding W -process was in . T
On = (IP ( state i while the n-th recovery happened ) te B ), (6.13)

i a row vector fashion. Then
on=—(A® (gn-1B))C1, (6.1.4)
and
on = —(A® (en-1B))C>
where
A =K®p,
B = a_"‘e(DJ“dPa_"')u’
C,:= ((K ®© P+ (Id3 ® (pé))f}/—"‘) S D)_l(ed3><d2 ® d)?
Co = (K& P+ (I, ® (pd))y™ ") & D) ((eq, ® In,) ® d), and
Qo = p.
Let n > 1. We need to compute the probability that, given that R

underwent n recoveries without being parisian ruined, no further classic
ruins will occur: let ¢, be that conditional probability and let us work
within that conditioned space. From the definition in (6.1.3), we know that
the first interarrival time after the n-th recovery is PHgy,((1/0n€)0n, P)-

distributed.* Also, at the time of recovery, the process R will be at the level

4Notice that here we need to normalize the initial distribution g,,, since it is conditional
to the event that R up-crossed 0 (at the n-th recovery), the time of the next arrival must
not have an atom at 0.
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0. Thus ¢,, corresponds to the probability of ruin not happening in a delayed
P H-Sparre-Andersen which starts at level 0, whose first interarrival time is
PHy,((1/0ne)on, P)-distributed, and whose claims and subsequent interar-
rival times are PHy, (8, D) and PH,,(p, P)-distributed, respectively. Then,
according to Theorem 4.2.5, we get that

1 _
on =1— ——p,a TePrdpa™M0g (6.1.5)
1 —+
=1——o,a Te. (6.1.6)
n€
Thus, if E, := {R undergoes n recoveries without being parisian ruined},

then

P(No parisian ruin, 6,, < 00, 6, = 00)

The whole process R undergoes exactly
n recoveries without being parisian ruined

= P(FE,)P(R does not gets classically ruined after the n-th recovery|E,)
= On®Pn

Theorem 6.1.4. Let ?(u) be the probability of parisian ruin. Then
1/)p(u) = ¢(u) - Z OnPn;
n=1

where 1(u) is the classic probability of ruin (described in Theorem 4.2.4), on
is given by (6.1.4) and ¢, is given by (6.1.6).

Proof. Notice that

1 —¢”(u) = P,(There is no parisian ruin for R)

= P, (There is no classic ruin for R)

+ ZP(NO parisian ruin, ¢,, < oo, 6,, = c0)

n=1

=1- ¢(u) + Z OnPn,
n=1
so the result follows. O
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6.2 The PH-Cramér-Lundberg case.

Just as in Section 5.2, parisian ruin probability for the P H-Cramér-Lundberg
case becomes easier than in the PH-Sparre-Andersen. What we ought to do
is to let the interarrival times {7T;} be exponentially distributed of parameter
p. By simple substitution in the equations of Theorem 6.1.2, we have the next
result concerning the recovery probability of a Cramer-Lundberg process.

Theorem 6.2.1. Using the assumptions and notation in Subsection 4.2.1,
the recovery probability of the Crdmer-Lundberg process R that starts in some
level —x < 0, on the event that this recovery is smaller than the parisian clock
(1, 18 given by

(K—play+p(14,08)y~ )z

o(x) = ke e

Y

where v~ = lim,, ooy~ T(n), v~7(0) =0, v~ (n+1) = g(v+(n)) and
g is the operator on Mg x5+ (R) given by

9(B) = (L, ® d + (Is; ® D)B +nB)(nI — (K — ply, + p(Ls, ® 6)B))~"
where d = —De and n > sup;cpc —Kjj + p.

Remark 6.2.1. As in Theorem 5.2.1, the recursion proposed in Theorem
6.2.1 comes from a fixed point problem whose solution is 4¥~T. In other
words, we had that

Y = Iy, @d+ (L, ® D)y~ iy~ ") (I = (K —pla, +p(Is, )y~ "))

(6.2.1)
Multiplying (6.2.1) by nI — (K — pI4, + p(I4, ® 8)y~ ") to the right we get
that

YK — pLyy +p(Lay @ 8)y ) + (Ig, ® D)y~ + Ij; @ d = 0; (6.2.2)
we will work with this equation later.

Now, the distribution of the severity of ruin for a phase-type P H-Cramér-
Lundberg process was given in Theorem 4.2.2, and we have calculated the
probability of recovery from any point —x < 0. Thus, integrating over the
severity of ruin, we get that oo (u), defined by

oc(u) :=P(0; < oo, — 01 < (1|Ry = u)
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has the analytical form

oc(u) = / P(0; < 00,11 — 01 < (1|Rg, = —x)P(— Ry, € dx)
0

_ /Oo(K',e(K_pId3+p(Id3®6)7_+)xed3)(VG(D+dV)u6Dxd)d$)
0

= (k@ (velPTdu)) (/ 6((K—p1d3+p(1d3®5)7‘+)@D)xd$) (eq, @ d)
0

= —(k ® (e ) (K — pIy, + p(Is, © 8)y~F) @ D)™ (4, © d)
(6.2.3)

where all the matrices, vectors and notation were taken from Theorem 6.2.1
and Theorem 4.2.2.

As we mentioned in Subsection 4.2.1, the P H-Cramer-Lundberg process
is a Lévy process. Using the strong Markov property for Lévy processes,
we get that on the event ¢, < oo (m > 2), {(Ri—,_, : t € [ti—1,1;)) }1y are
independent and identically distributed processes. Moreover, each one of
them is equal in distribution to the process (R;:t € [0,¢1)) on the event
Ry = 0 and ¢; < co. In other words, the decomposition used for the PH-
Sparre-Andersen process works better in the PH-Cramer-Lundberg setting,
since at each time ¢;, we can work with a restarted PH-Cramér-Lundberg
process which starts at level 0 and each one of these recoveries will be equally
distributed. This idea results in the next theorem.

Theorem 6.2.2. Let ¢%.(u) be the probability of parisian ruin for the Crdamer-
Lundberg process R that starts at level w. Then

ec(uw)(1 — 1/1(0))’

w(w) = wlu) — FEE

where () is the classic probability of ruin computed in Theorem 4.2.2, o (u)
is given by (6.2.3) and oc = 0c(0).
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Proof. Notice that

1 —¢”(u) = P,(There is no parisian ruin for R)
= P, (There is no classic ruin for R)

+ ZP(NO parisian ruin, ¢,, < oo, ,, = 00)

n=1

=1—9(u)+ Y oclu)ey " (1-¥(0))

oc(uw)(1 - w<0>>7

= () - HE

so the result follows. O]

Clearly, the result for the PH-Cramér-Lundberg case is far easier than
the result for the PH-Sparre-Andersen one, since for the former there is no
need to compute any kind of series.

6.2.1 Erlang case.

Now we are interested in calculating the parisian ruin probability for the
PH-Cramér-Lundberg process with Erlang distributed parisian clocks. To
do this, first let us study the case when the parisian clocks are exponentially
distributed; that is, let {; ~ Fxp(k) where k& > 0. In this case, we have
that '7(_1;— (defined as the matrix 4~ from Theorem 6.2.1 for this particular

setting) is a ET = EY column vector and (6.2.2) takes the form
Ya) (k= p+pdyg)) + Dy +d=0. (6.2.4)

If we let
z:=k+p— p5'7(_1;', (6.2.5)

then (6.2.4) is equivalent to
(D — zI4)v5y +d =0, (6.2.6)

so that
Yo, = (21s, = D)7'd. (6.2.7)
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Now, we only need to compute the value of z: to do this, just multiply (6.2.7)
by pd to the right, so we get that

k+p—z=pdyy) =pd(zly, — D)"'d = pLy(2),

were Ly (-) is the Laplace transform of Y; (see Theorem 3.2.3). Just as in
(5.2.6) we get that

Pr—u(2) =2 —p+pLy(s) =k;

that is, z > 0 is the unique root of the equation ¢r_,(z) = k and this way,
we have found a method to calculate z and 'y(_l;L

Next, consider the case when we let (; ~ Erl(2,p) and let ’7(_2;" be defined
as the matrix 4v~% from Theorem 6.2.1 for this particular setting. Then
’y(_; is a 2d; X 2 matrix whose (i,7)-th entry (with i € B~ = E¢ x EY
and j € ET = E°) represents the probability that the associated fluid-flow
process up-crosses 0 while being at state j, given that it started in state 2.

Hence . )
Yot = ~1D ~(2)
(2) o ~®)
where (1) .= 7(_1;— and v® is (currently) unknown. The explanation for

said structure is completely analogous to (5.2.7).

To completely calculate 7(_2;r, it is necessary that we calculate the column

vector v, To do so, we shall use formula (6.2.2), which in this setting takes
the form

00 FB 43 -k Kk p 0 5§ 0\ (4D ~@
(0 0)= (o Z0) (0 5)-(5) (0 5) (o Tm))
Y p Y
+(0 D><0 ~+0 ) o d
0 ~W 0 —k —p+ pd~y®

+(0 Dy®) "o d)’
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next, computing only the upper-right block of the previous equality we get
that

0= (k+pdyP)y® + (=k = p +poyW)y® + DA
= kv + (D + py M6 — 21, 7P,
where z was defined in (6.2.5). This means that
2@ Z K(-D — py 5 1 20,) A,

and so, the case when the parisian clock are Erl(2, k)-distributed is com-
pletely solved, since we have found a way for explicitly computing the matrix

—+
T2
Finally, let us examine what happens when (; ~ Erl(n, k). Analogous to

(5.2.9) we have that 'y(j:)“ (defined as the matrix v~ from Theorem 6.2.1
for this particular setting) has the form

0 »7(1) 7(2) e ﬂy(n_l)
—_— 1 ... (n—2)
T = 0 07 i
0 0 0o --- ~M

By plugging this matrix in (6.2.2) and computing the upper left block of that
equality, we get that

n—1

0="> (k+psy®=F)y® 4 (=k — p + poy ™)y + Dy
=1

n—1

= by + D (k4 poy ")y D 4 (D 4+ py Vs — 21, )y ™,

=2

SO

1=2

n—1
Y™ = (D +pyVé — 21,,) " <k7‘” +> (k+ p57(”_"+1))7“)> :

all this can be summarized in the next result.
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Theorem 6.2.3. Let R be the PH-Cramér-Lundberg described in Subsection
4.2.1 and {(;} be Erl(n,k)-distributed. Then the parisian probability of ruin
for R is given by the formula (5.2.1), where

7(1) 7(2) 7(3) .. »)/(n)
0 Py(l) 7(2) e 7(77'_1)
—+ _ ¥ ... (n—2)
w0 Y
0 0 0o -~ ~M

~1) = 'y(_l;L which is given by (6.2.7) and v9) can be computed recursively
by the formula

j—1
YD = (D +pyVé - 21,,) " (k’y(l) + D (k+ PM“‘ZH)W(Z)) ’

1=2

where z is the unique positive number that meets the condition ¢r_.(z) = k.
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Conclusions and future work.

In addition to the review made to the existing literature, we have success-
fully given a method for computing the parisian probability of ruin for the
PH-Cramer-Lundberg and P H-Sparre-Andersen process, and even found
an efficient way for computing it for the P H-Cramer-Lundberg process with
Erlang distributed clocks, so that erlangization can be carried on quite easily.

At the moment two extensions are being considered:

e The parisian ruin probability for MArP-driven® risk processes. Ap-
parently, this extension can be carried without problem to that model
without much effort, although computational effort increases consider-
ably.

e The parisian ruin probability for spectrally negative Lévy processes.
This one is far more analytical than the previous one, since the aid of
functional calculus is needed.

A paper considering the previous models and the ones of Chapter 6 is in
the works.

SMATP are de initials for Markovian Arrival Process, not to be confused with Markov
Additive Process.
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