Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Zaragoza.

Caracterización proteómica de los bacteriófagos de *Pseudomonas aeruginosa* PaMx42, PaMx28 y PaMx25.

TESIS PROFESIONAL PRESENTADA POR

Martínez Sánchez José Manuel en el Departamento de Genética y Biología Molecular del Centro de Investigación y Estudios

Avanzados de I.P.N. Unidad Zacatenco.

Para optar por el grado de

LICENCIADO EN BIOLOGÍA.

Bajo la dirección de

Doctor Gabriel Guarneros Peña Director de Tesis

Doctora Rosalva Rangel Corona Asesor Interno Ciudad de México, Verano 2014.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. El presente trabajo se llevó a cabo de Marzo de 2013 a Junio de 2014 en el laboratorio 3 del Departamento de Genética y Biología Molecular del Centro de Investigación y Estudios Avanzados del IPN Unidad Zacatenco bajo la dirección del Doctor Gabriel Guarneros Peña (Departamento de Genética y Biología Molecular, Cinvestav) y de la Doctora Rosalva Rangel Corona (Unidad de Investigación Multidiciplinaria Experimental, FESZ-UNAM).

FACULTAD DE ESTUDIOS SUPERIORES

"ZARAGOZA"

Vniveradad Nacional AvFnoma de Mexico DIRECCIÓN

JEFE DE LA UNIDAD DE ADMINISTRACIÓN ESCOLAR P R E S E N T E.

Comunico a usted que el alumno MARTÍNEZ SÁNCHEZ JOSÉ MANUEL, con número de cuenta 408027094, de la carrera de Biología, se le ha fijado el día 5 de mayo de 2015 a las 10:00 hrs., para presentar examen profesional, el cual tendrá lugar en esta Facultad con el siguiente jurado:

PRESIDENTE M. en C. CARLOS REYES BAUTISTA

VOCAL Dr. GABRIEL GUARNEROS PEÑA*

SECRETARIO M. en C. ROSALVA RANGEL CORONA

SUPLENTE Dr. JUAN J. RODRÍGUEZ MERCADO

SUPLENTE M. en C. JOSÉ M. V. HERNÁNDEZ VÁZQUEZ

El título de la tesis que presenta es: Caracterización proteómica de los bacteriófagos de Pseudomonas aeruginosa PaMx42, PaMx28 y PaMx25.

Opción de titulación: Tesis.

Agradeceré por anticipado su aceptación y hago propia la ocasión para saludarle.

	ATENTAMENTE
"POR I	<i>I</i> I RAZA HABLARÁ EL ESPÍRITU"
Méx	tico, DEFESSIONE marzo de 2015
DR. VIC	DIRECTOR
RECIBÍ OFICINA DE EXÁMENES PROFESIONALES Y DE CRADO	ZARAGOZA DIRECCION M. en C. ARMANDO CERVANTES SANDOVAL
FROFESIONALES T DE GRADU	JEFE DE CARRERA

Agradecimientos.

El presente trabajo representa los esfuerzos dedicados a numerosas personas, muchas de las cuales merecen una mención especial:

Al Doctor GABRIEL GUARNEROS PEÑA, jefe del Laboratorio 3 del Departamento de Genética y Biología Molecular del CINVESTAV-IPN, por la oportunidad de trabajar bajo su dirección en su laboratorio y por la continua asesoría a lo largo del proyecto.

Al Doctora ROSALVA RANGEL CORONA, jefa del Laboratorio de Biología Molecular, UMIEZ, UNAM por sus recomendaciones, consejos y asesoría.

Al los miembros de mi comité de evaluación el Doctor JUAN JOSÉ RODRÍGUEZ MERCADO, el Maestro CARLOS REYES BAU-TISTA y el Maestro MISAEL HERNÁNDEZ VÁZQUEZ por su asesoría y observaciones al manuscrito.

A los Doctores VICTOR FLORES, ADRIÁN CAZARES Y ANTO-NIO CARBALLO por su ayuda y numerosos consejos.

A OMÁR SEPÚLVEDA Y VICTOR ARENAS por proporcionar las muestras biológicas y cepas nesesarias para este proyecto.

A mi familia y amigos, por su apoyo y amistad.

Abreviaturas Utilizadas

BCA Bicarbonato de amonio.

CHCA Ácido α -ciano-4-hidroxicinámico

CRISPR Repeticiones palindrómicas cortas agrupadas interespaciadas regularmente, del inglés *Clustered regularly interspaced short palindromic repeats.*

DNA Ácido desóxirribunocléico.

DTT Dithiothreitol

Kb Kilobases.

LB Luria-Bertani (Medio).

- LPS Lipopoliacáridos.
- Mb Megabases.
- MS Espectrometría de Masas, del inglés Mass Spectrometry.
- Nm Nanómetros.
- **ORF** Marco Abierto de lectura, del inglés *Open Reading Frame*.
- **PAGE** Electroforesis en Gel de Poliacrilamida, del inglés *Pol*yacrylamide gel electrophoresis.
- **PaMx** Pa (*P. aeruginosa*) Mx (México). Designación de nomenclatura para nombrar a especies distintas de bacteriófagos de *P. aeruginosa* aisaldos e identificados en México.
- $\mathbf{RBP}_{ge.}$ Receptor celular del fago, del inglés Receptor binding pha-
- **RFLP** Polimorfismos de longitud de fragmentos de restricción, del inglés *Restriction Fragment Length Polymorphism*.
- **RNA** Ácido ribonucléico.
- **RNA-Pol** RNA polimerasa.

- **RNAP** Subunidad RNA polimerasa.
- ${\bf RPM}$ Revoluciones por minuto.
- **SDS** Dodecil Sulfato de Sodio.
- tRNA Ácido Ribonucléico de Transferencia.
- **UFP** Unidades Formadoras de Placas.

Resumen.

Los bacteriófagos son entidades biológicas ubicuas megadiversas, cruciales en el proceso de evolución, diversidad y ecología microbiana. Son virus bactericidas y se estima que son el reservorio genético más grande del planeta. Pseudomonas aeuruginosa es un patógeno oportunista Gram Negativo con un amplio rango de huéspedes incluido el ser humano. Es agente causante de diversas infecciones nosocomiales a humanos así como responsable de infecciones a animales domésticos y diversos cultivos vegetales de interés comercial. P. aeuruginosa es también hospedero de numerosas especies de bacteriófagos, tanto de tipo lítico como lisogénico, y la relacion huésped-hospedero implica, entre otros fenómenos, la transferencia horizontal de genes hacia la bacteria para conferir nuevas características fisiológicas. En base a estudios previos acerca de la diversidad de bacteriófagos de P. aeuruginosa presentes en diversos puntos de la República Mexicana, se observó que para determinados tipos de fagos, la información generada mediante diversos estudios compartivos resulta insuficiente para esclarecer su filiación y relación con grupos ya conocidos [44]. En el presente trabajo se investigó la generación de un perfil proteómico de los bacteriófagos de P. aeuruqinosa PaMx42, PaMx28 y PaMx25 asumiendo como objetivo principal el resolver e identificar las proteínas estructurales de sus cápsides. Fueron identificadas por espectrometría de masas cinco proteínas estructurales de cada fago analizado, se observó que los marcos abiertos de lectura que codifican para dichas proteínas estructurales se encuentran ubicados en módulos transcripcionales definidos en el genoma viral, observandose también que existen grupos de genes que marcan el inicio y fin de dichos módulos, además de que su configuración es análoga en las tres especies, dicha información generada representa un aporte para complementar los datos genéticos con los que se cuenta.

Índice

Ag	Agradecimientos. I		
Ał	orevi	aturas Utilizadas	II
Re	esum	en.	IV
1.	Intr	oducción	1
	1.1.	Características generales de los bacteriófagos	1
	1.2.	Perspectivas de estudio	3
	1.3.	Ciclo replicativo y clasificación taxonómica	5
	1.4.	Relación virus-hospedero y mecanismos de infec-	
		$\mathrm{ción.} $	7
	1.5.	Reconocimiento de bacteriófagos hacia su cepa	
		hospedera	9
		Receptores de bacteriófagos en células Gram ne-	
		gativas.	9
		Receptores de bacteriófagos en células Gram po-	
		sitivas	11
		Receptores de bacteriófagos en estructuras móvi-	
		les y estructuras accesorias	12
		Mecanismos de adsorción y penetración de la partícu	-
		la viral.	13
	1.6.	La célula huesped: <i>Pseudomonas aeruginosa.</i>	14
	1.7.	Bacteriófagos de Pseudomonas aeruginosa	18
	1.8.	El enfoque proteómico en el estudio de los bacte-	
		riófagos	20
2.	Ant	ecedentes.	24
3.	Obj	etivos	27
4.	Mat	teriales y Métodos	28

	4.1.	Cepas hospederas y repropagación de fagos	28
	4.2.	Titulación de fagos	29
	4.3.	Purificación de fagos	30
	4.4.	Resolución de proteinas estructurales	31
	4.5.	Digestión enzimática de las proteínas estructurales.	32
	4.6.	Espectrometría de Masas.	32
	4.7.	Identificación de los genes que codifican para las	
		nomas de los fagos	33
5.	Res	ultados y Discusión.	34
	5.1.	Purificación de viriones	34
	5.2.	Resolución de las proteínas estructurales	34
	5.3.	Análisis por Espectrometría de Masas	36
	5.4.	Correlación gene-proteína	40
6.	Con	clusiones.	46
A.	Apé	endice A, Datos de Espectrometría de Masas	48
		$PaMx42 \dots \dots$	48
		$PaMx28 \dots \dots$	56
		$PaMx25 \dots \dots$	64
A.	Apé	endice B	70
	A.1.	Medios de Cultivo	70
	A.2.	Soluciones de Diálisis	71
	A.3.	Reguladores de Electroforesis	72
в.	Apé	endice C	73
	B.1.	Detalles sobre las soluciones y montaje de gra-	
		dientes de densidad. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	73
	B.2.	Protocolos.	74

Índice de figuras

1.	Esquema general de la morfología de un bateriófago	2
2.	Ejemplo de usos terapéuticos de preparaciones de	
	bacteriófagos. \ldots \ldots \ldots \ldots \ldots \ldots	4
3.	Inserción del genoma viral en el huésped	5
4.	Ciclos replicativos de los bacteriófagos	6
5.	Infección viral a la célula huésped	8
6.	Ensamblaje de las partículas virales	9
7.	Estructura de la pared celular de una bacteria	
	Gram (-)	10
8.	Estructura de la pared celular de una bacteria	
	$Gram (+) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12
9.	Receptores de fagos en estructuras móviles de la	
	célula	12
10.	Micrografía electrónica de <i>P. aeruginosa</i>	16
11.	Comparación de homologias nucleotídicas entre	
	PaMx42, PaMx25 y Pae-Kakethi 25	25
12.	Comparación de homologias nucleotídicas entre	
	PaMx28, PaMx11 y M6 Yu-A	26
13.	Patrón de electroforético de PaMx42	35
14.	Patrón de electroforético de PaMx28	35
15.	Patrón de electroforético de PaMx25	36
16.	Mapa genético de PaMx42	43
17.	Mapa genético de PaMx28	44
18.	Mapa genético de PaMx25	45

Índice de cuadros

1.	Datos genéticos de PaMx 42, PaMx 28 y PaMx 25	19
2.	Características generales de los fagos de P. aeru-	
	ginosa	23
3.	Bacteriófagos y sus hospederos	28

4.	Bacteriófagos utilizados y sus lugares de origen.	29
5.	Resultados de las titulaciones de partículas vira-	
	les obtenidas para las distintas preparaciones de	
	fagos	34
6.	Resumen de los datos obtenidos por espectrometría	
	de masas. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	38
7.	Organización del modulo transcripcional de pro-	
	teínas estructurales en los tres bacteriófagos	41

1. Introducción

1.1. Características generales de los bacteriófagos

Los bacteriófagos son virus capaces de infectar específicamente células bacterianas, están constituidos por una cubierta protéica o cápside en cuyo interior está contenido su material genético que puede ser DNA o RNA de simple o doble cadena, circular o lineal [8], mismo que posee el potencial para tomar el control, modificar y explotar la maquinaria celular del huésped y dirigir así la producción de los componentes de nuevas partículas virales [8, 9]. En base a la relación proporcional de 1:10 del número de bacterias con fagos se estima que existen 10³¹ partículas de fagos en el planeta [41]. Estimaciones recientes sugieren la posibilidad de la existencia de una población global de 100 millones de especies [41], sin embargo, solo una mínima fracción de los fagos ha sido caracterizada [17].

Las primeras observaciones sobre la existencia de los bacteriófagos se dan en 1913, con los trabajos del bacteriólogo británico Frederick Twort, quien descubrió la presencia de un agente infeccioso que destruye bacterias formulando, entre otras hipótesis, la posibilidad de que se trara de un virus; independientemente, en Septiembre de 1917 Félix d'Hérelle del Instituto Pasteur de Paris aunció el descubrimiento de «un invisible antagonista microbiano del bacilo de la disenteria» el cual afirmó, se trataba de un virus y acuño el término *bacteriófago*¹ para describirlo, además del término «Placa» para describir las zonas circulares de lisis originadas por la infección de un fago sobre tapices bacterianos.

 $^{^1}Bacteriofago,$ término formado de la conjución de **Bacteria** y el griego **Phaguein** (comer/devorar.)

La cápside viral puede presentar diversos patrones geométricos y estructurales complejos (Figura 1) y disponer en ciertos casos de una estructura similar a un tallo, contáctil o no, que a su vez puede contener en su núcleo interno, fibras proteícas con actividad catalítica o de reconocimiento hacia el huésped [8]. Su tamaño puede variar de 20-200 nm con genomas que varian en longitud de los 5.000 a 500.000 pares de bases [17].

Figura 1: Diagrama general de un bateriófago. Se esquematizan las estructuras básicas de una partícula viral madura.

La diversidad y la complejidad estructural de los fagos resulta del número y organización de las diferentes proteínas que contituyen su cápside, así como del tipo y estructura de su cromosoma [40].

Los bacteriófagos son entidades biológicas ubicuas, extremadamente abundantes y juegan un papel crítico en los procesos de dinámica biogeoquímica, evolución y diversidad bacteriana ya que estan implicados en la modificación del genoma microbiano através de la infección y la inserción del genoma viral, generando así la posibilidad de conferir nuevas características fisiológicas y bioquímicas al hospedero [17, 41]. Tanto fagos de tipo virulento como temperados participan activamente en la evolución de las bacterias, incluyendo bacterias patógenas mediante el mecanismo transferencia horizontal de genes. Los estudios de la estructura de islas de patogenicidad en diferentes especies bacterianas confirmaron la presencia en ellos de genomas completos o fragmentados de fagos lisogénicos. Muchas de las nuevas formas emergentes de enfermedades infecciosas son causadas por la aparición de islas de patogenicidad de cepas patógenos previamente conocidas o por el efecto de nuevos genes introducidos por fagos mediante plásmidos y transposones; los cuales pueden ser considerados como elementos genéticos en gran medida interrelacionados que forman un fondo común de genes evolutivos [17].

1.2. Perspectivas de estudio

El estudio de los bacteriófagos representa un campo de investigación muy importante en las ciencias biológicas. Los bacteriófagos han estado involurados en investigaciones genéticas, son una herramienta importante en el desarrollo de tecnología de biología molecular al ser utilizados como vectores de clonación de ADN recombinante para la construcción de bibliotecas genómicas, también se utilizan como agentes de diagnóstico para infecciones microbianas y son objeto de estudio en proyectos de fagoterapia donde se investiga su uso como agente terapéutico para combatir infecciones bacterianas [2]. En el campo de investigación referente a la relación bacteriófago-hospedero, investigaciones recientes se enfocan en el papel de los bacteriófagos en la evolución y mejora de la adaptación de su huésped, su potencial terapeútico antimicrobiano, su uso como herramienta de diagnóstico y su papel como reservorio genético [2, 8, 17].

Figura 2: Preparación de bacteriófagos *Koliproteyny* (ImBio Nizhny Novgorod) en presentación de 100 ml, comercializado en Rusia como parte del tratamiento terapéutico para infecciones microbianas.

Los bacteriofagos han sido un exelente modelo de investigación en genética y su estudio detallado ha permitido numerosos avances en la biología moderna y las ciencias médicas. Diversos avances en el entendimiento detallado de procesos de replicación de DNA y herencia han surgido como resultado del estudio de la genética de los fagos a partir de los años 1940 a 1970, y siendo utilizados en otras áreas, se han convertido en un poderoso impulso a la investigación de los diversos sistemas de procariotas y eucariotas [17, 20]. En las últimas dos décadas, el interés por los bacteriófagos se incrementó significativamente de nuevo. Una de las razones es la recurrente resitencia de diversas bacterias patógenas los antibióticos y la consecuente supervivencia microbiana. Otro factor importante es la posibilidad de que el uso de fagos viables o sus productos derivados (péptidos de fagos con efecto antibacterial) puedan ayudar en el tratamiento de infecciones bacterianas [9, 11] (Figura 1.2).

1.3. Ciclo replicativo y clasificación taxonómica

Los bacteriófagos pueden dividirse en dos grandes grupos en función de su tipo de ciclo replicativo: 1) Fagos de tipo lítico y 2) Fagos de tipo lisogénico o temperado. Los fagos líticos infectan al hospedero mediante el reconocimiento y unión de la partícula viral a su célula huesped tras la interacción con receptores de membrana, posteriormente, tras diversas reacciones de acomplamiento y penetración, el virus inserta su material genético al interior de la bacteria, expresándose mediante transcripción por el ribosoma huésped, iniciando así el control de la maquinaria celular para dirigir la síntesis y ensamblaje de los componentes virales, culminando con la lísis del hospedero y la liberación al medio de nuevas partículas virales [40].

Figura 3: Esquematización del proceso general de inserción del genoma viral al interior de la célula huésped.

Los fagos lisogénicos o temperados presentan un proceso de infección análogo al de los virus líticos, sin embargo, tras la penetración viral, el material genético exógeno se integra de forma residente al cromosoma bacteriano (estado conocido como Profago) sin activar su traducción, estos profagos residentes son muy comunes pues pueden conformar hasta un 20 % del genoma bacteriano, contribuyendo a la diferencias entre individuos de una misma especie [8]. Con el profago, el huésped se divide indefinidamente replicandolo de forma simultánea y transmitiendo a la descendencia el genoma viral, generando así un estado de latencia en donde la estimulación por factores externos puede provocar la escisión del profago del cromosoma huésped, pudiendo llevar consigo fragmentos del genoma bacteriano y alterando su código genético, pero induciendo la transducción y traducción del profago y la activación de un ciclo lítico de replicación.

Figura 4: Esquema general de los ciclos replicativos de los bacteriófagos. En la parte superior, se ejemplifica el ciclo lítico de replicación que culmina con la destrucción del huésped y la liberación al medio extracelular de las nuevas partículas virales. En la parte inferior, la integración residente del Profago en el genoma huésped y la replicación simultánea a la bacteria, tras un estímulo espontáneo externo, pueden conducir a la entrada a un ciclo lítico.

Otros criterios importantes considerados para la clasificación de los bacteriófagos son la morfología de las partícula virales, donde se específica la prescencia o ausencia de cola contráctil o no, la presencia de proteínas accesorias y la forma de la cápside. De igual manera, se considera la composición y topología de su material genético. Mas del 95 % de los tipos de fagos reportados pertenecen al orden *Caudovirales*, que poseen cola y DNA de doble cadena. Las tres familias principales que comprenden este orden se distinguen por morfologías distintas de la cola: 60 % son *Siphoviridae* con colas largas y flexibles; 25 % son *Myoviridae* con colas contráctiles y 15 % *Podoviridae* con colas cortas. Los fagos de tipo oliédricos, filamentosos y polimórficos (fagos PFP) representan solo el 3-4 % de los fagos conocidos [8, 17].

1.4. Relación virus-hospedero y mecanismos de infección.

Los bacteriófagos son considerados el reservorio genético más grande del planeta debido a la presencia en su genoma de elementos transponibles adquiridos de células huésped y genes suceptibles a transferencia horizontal [17], sus interacciones con diversas especies y cepas bacterianas son determinantes para la evolución microbiana, hecho que influye a su vez, en la dinámica biogeoquímica del planeta especialmente en bacterias asociadas a suelos y vegetales involucradas en los ciclos del agua, del carbono, y del nitrógeno [33]. Estas interacciones también pueden contribuir a la homeóstasis de la población bacteriana además de la adquisición de elementos genéticos que conllevan la adaptación y colonización de nuevos hábitats, la resistencia a fármacos, la conversión a formas virulentas de cepas inocuas e incluso, la exclusión y resistencia a infecciones de nuevos fagos causada por una infeción precedente [33, 40].

Figura 5: Micrografía de la bacteriófago T4 acoplado a la membrana de *E. Coli*. El proceso de infección viral inicia con el reconocimiento y acoplamiento del virus hacia la célula huéped.

El primer evento en la infección de un bacteriófago hacia la bacteria es el reconocimiento del fago hacia su huésped por medio de la interacción entre la proteína de unión al receptor celular de fago (RBP, por sus siglas en inglés) y un receptor específico de la superficie de la célula huésped. Diferentes proteínas de unión a receptor determinan especificidad de infección para huéspedes distintos [40]. Los mecanismos detallados de acoplamiento y penetración de la partícula viral varían en diferentes especies de fagos, pero todos ellos son iniciados por la interacción entre el receptor en la superficie celular y la proteína RBP del fago [40]. En el hábitat bacteriano, los fagos difunden aleatoriamente en el microambiente de una población bateriana hasta encontrarse con la célula huésped e interaccionar con el receptor específico para iniciar el proceso de infección mediante la adsorción del fago hacia en interior de la célula. En términos generales, tras el reconocimiento de fago a su huésped mediante las proteína RBP, se lleva a cabo la fijación de la partícula viral a la superficie de la célula mediante la interacción entre proteínas de la partícula viral y los restos de lipopolisacáridos bacterianos, induciendo eventualmente una señal transmitida a la cabeza del fago que desencadena la liberación de DNA en la bacteria para su posterior traducción en un cliclo lítico o su inserción en el genoma viral en un ciclo lisogénico.

1.5. Reconocimiento de bacteriófagos hacia su cepa hospedera.

La capacidad de una especie de bacteriófago en partícular para infectar a un rango definido de cepas bacterianas esta dada por la naturaleza, cantidad, localización, características químicas, configuración espacial y propiedades estructurales de receptores en la superficie de la célula bacteriana [40]. Las características y tipo de dichos receptores varian en función de la diverisad taxonómica bacteriana y determinan la suceptibilidad de infección a grupos de fagos específicos.

Figura 6: Esquema del proceso de morfogénesis y maduración de viriones. Tras la inserción del material genético exógeno en el huésped por lainfección viral, las proteínas tempranas son expresadas para formar la estructura inicial del virión, el proceso continua con la génesis de la cápside completa y el empaquetamiento en ella del material genético viral, el proceso culmina con la expresión de las proteínas accesorias y la liberación de las partículas virales maduras.

Receptores de bacteriófagos en células Gram negativas.

Las células gram negativas poseen como característica distintiva una alta permeabilidad causada por niveles elevados de proteínas integrales de membrana en canales transportadores y por la presencia de una envoltura de lipopolisacáridos, dichas proteínas integrales de membrana y la capa externa de lipopolisacáridos actuan como receptores de bacteriofagos. Los receptores de fagos formados por proteínas participan en sistemas de transporte y secreción celular, mecanismo que es explotado por los fagos para su adsorción al interior de la célula [36, 40].

Figura 7: Esquema de la estructura de la pared celular de una bacteria Gram negativa.

Adicionalmente a los receptores proteícos, los receptores de lipopolisacáridos (LPS) también participan en la adsorción de bacteriófagos al interior de la célula. Los LPS son polímeros complejos constituidos estructuralmente de un *lípido* A compuesto usualmente de fracciones de N-acetilglucosamina unidas por enlaces β 1-6 de ácidos grasos mediante enlace éster, este lípido actua como elemento hidrofóbico protector para la célula. A continuación esta presente un *núcleo* formado por hexosas y monosacáridos diversos. Finalmente se encuentra un *antígeno-O* que esta formado por series redundantes de azúcares específicos para cada bacteria y que estan dispuestos hacia el exterior de

la célula actuando como receptor para muchos bacteriófagos, y desencadenando junto con el lípido A, la respuesta inmune del huésped [40]. Existen dos tipos de LPS, el tipo liso, caracterizado por la estructura típica de lipopopoliscardidos que incluye el lípido A, el núcleo y el antígeno O; y el tipo rugoso carece de antígeno O. Algunos bacteriófagos pueden reconocer ambos tipos de lipopoliscáridos. Los fagos específicos del tipo liso de LPS muestran un rango muy específico y estrecho de huéspedes, determinado por la amplia variabilidad de la estructura del antígeno O en bacterias de diferentes grupos taxonómicos. Los bacteriófagos que reconocen el tipo rugoso de LPS muestran un amplio rango de huésped debido a que la estructura base de los lipopolisacáridos esta altamente conservada en varias especies y géneros de bacterias Gram negativas, sin embargo, una característica común entre ambos tipos de bacteriófagos es que tras el reconocimiento y fijación de la partícula viral a sus respectivos receptores, su adsorción al interior de la célula es mediada por actividad enzimática capaz de digerir enlaces repetitivos de la capa de lipopolisacáridos [20, 40].

Receptores de bacteriófagos en células Gram positivas.

El principal componente de la envoltura celular de bacterias Gram positivas es el peptidoglucano, que representa hasta un 90% del peso seco de la célula. El peptidoglucano es un heteropolímero compuesto por monómeros formados por N-acetil-2-D-glucosamina unido en orientación β -1,4 con N-acetil ácido murámico, además de ácidos teicoicos y lipoteicoicos, que sirven como agentes quelantes y de adherencia. Los bacteriófagos específicos para bacterias Gram positivas reconocen restos de N-acetil ácido murámico y de ácidos teicoicos de la superficie celular de hospedero durante el proceso de infección [40].

Figura 8: Esquema de la estructura de la pared celular de una bacteria Gram positiva.

Receptores de bacteriófagos en estructuras móviles y estructuras accesorias.

Ciertos tipos de bacteriófagos usan como receptores a elementos móviles de la célula huésped tales como el pili y el flagelo y presentan un mecanísmo de adsorción análogo a fagos cuyos receptores se ubican en otras zonas de la célula, otro tipo de fagos reconoce restos de monosacáridos presentes en la superficie de células encapsuladas [40].

Figura 9: Interacción entre el pili de una célula bacteriana y bacteriófagos durante el proceso de infección.

Mecanismos de adsorción y penetración de la partícula viral.

La ley de acción de masas establece que para una reacción química reversible en equilibrio a temperatura constante, existe una relación determinada y constante de concentraciones de reactivos y productos. El proceso de adsorción viral es el resultado de colisiones aleatorias entre la célula huésped y el fago descritas de acuerdo a la ley de acción de masas, por lo tanto una alta concentración de partículas virales en el microambiente bacteriano implica un incremento en el número de colisiones entre el virión y la célula, elevando también la tasa de adsorción [33, 40]. La tasa de adsorción entre la partícula viral y el huésped es un fenómeno con valores característicos para las diferentes especies de huésped y hospedero y es determinado también por factores como el pH, la temperatura ambiental y la concentración en el medio de diversas sales y solutos [40].

El mecanismo molecular de las diferentes etapas de adsorción del virión es específico para cada sistema fago-hospedero diferente y sus características determinan la resistencia de la bacteria hacia la infección viral. Sin embargo como característica general, la adsorción del virión en la superficie celular se lleva a cabo usualmente en dos etapas: la unión reversible y la unión irreversible [20]. La unión reversible se lleva a cabo con el reconocimiento e interacción del bacteriófago con los receptores celulares de la bacteria para generar cambios conformacionales tanto en el virión como en los receptores, la unión irreversible implica la degradación enzimática de la capa de péptidoglucano además de cambios electroquímicos y de potencial de membrana para culminar con la inserción del material genético viral al interior de la célula[17, 40].

1.6. La célula huesped: Pseudomonas aeruginosa.

Pseudomonas aeruginosa es un patógeno aeróbico Gram negativo, oportunista en humanos y vegetales [19], ubicuo, presente en numerosos ambientes naturales y artificiales incluyendo suelos, aguas y equipo médico [14], es una especie altamente heterogénea cuyas diferentes cepas muestran diferentes niveles de patogenicidad hacia plantas y animales [1], es uno de los agentes causantes de la fibrosis quística y un patógeno común de otras infecciones nosocomiales en pacientes inmuno comprometidos [1, 19]. Su capacidad de rápida adaptación a diversos ambientes es la principal razón de su designación como patógeno oportunista [4]. Las cepas de *Pseudomonas aeruginosa* son componentes comunes en las comunidades microbianas de diferentes orígenes designadas como agentes patógenos hospitalarios y pueden ser aisladas a partir de muestras clínicas tomadas de las heridas, vejiga, la uretra, genitales, oídos, ojos y las vías respiratorias. Pseudomonas aeruginosa posee una resistencia inherente a antibióticos en parte debido a los extensos sistemas de eflujo y a su membrana altamente impermeable [4, 11], y en parte a adaptaciones genéticas que confieren mayor versatilidad metabólica y de adaptación. La aparición de resistencia a antibióticos en dichas cepas clínicas de *P. aeruginosa*, que se produce incluso durante el tratamiento clínico y representa un grave riesgo para la salud del paciente.

En la mayoría de los genomas de las cepas hospitalarias de P. aeruginosa se ha descubierto la presencia de islas de patogenicidad, donde los genes codifican diversos factores de patogenicidad y virulencia específicos de esta especie bacteriana, como la fosfolipasa C elastasa, proteasa, sideróforos, DNAsa, piocianina, entre otras. Del mismos modo, en común encontrar en el mismo locus a los genes que controlan la resistencia a múltiples antibióticos. Una de estas grandes islas genómicas, PAPI-1, se puede transformar en un plásmido, después de la escisión precisa del cromosoma bacteriano y eventualmente adquirir la capacidad de ser transferido a otras cepas receptoras de *P. aeruginosa* por un mecanismo de conjugación, a través de un pili tipo IV [4]. Dicho fenómeno, confiere rápidamente una resistencia a los antibióticos en nuevas cepas, haciendo así ineficaz el uso de antibióticos convencionales.

La célula mide 0.5-0.8 μ m de ancho por 1.5-3.0 μ m de largo y presenta motilidad gracias a la prescencia de un flagelo polar. Secreta una amplia gama de pigmentos como la **fluoresceína** (color amarillo verdoso fluourescente), la **piocianina** (azul verdoso) y la **piorubina** (rojo pardo); en condiciones *In vitro*, esta bacteria forma colonias aisladas de apariencia aperlada y presenta un aroma dulce característico, estos atributos permiten su identificación preeliminar, la identificación clínica se basa en el análisis de la presencia en sobrenadantes de piocianina y piorubina y la capacidad del cultivo bacteriano para crecer a 42 °C. Pseudomonas aeruginosa presenta también la síntesis de biofilm, asociado a la resistencia a diversos antibióticos, a la adaptación metabólica en nichos diversos y al proceso de infección y colonización en el huésped [15, 43]. Es potencialmente capaz de metabolizar una gran variedad de compuestos orgánicos para su aprovechamiento como fuente de energía, confieriendole flexibilidad adaptativa en ambientes con baja disponibilidad de nutrientes, paralelamente, es capaz de expresar un amplio rango de factores de virulencia permitiendole infectar a diversos organismos [14, 15].

Las infecciones causadas por *P. aeruginosa* representan un grave problema de salud pública debido principalmente a su tolerancia a bactericidas y desinfectantes, así como su capacidad

Figura 10: P. aeruginosa es un bacilo patógeno oportunista Gram negativo.

intrínseca de desarrollar multiresistencia a nuevos fármacos a través del fenómeno de la hipermutación genética [15], dotando a la bacteria de una combinación de distintos mecanismos como la prescencia de bombas de eflujo membranales, enzimas de modificación de aminoglucósidos y β -lactamasas, así como la modificación de los sitios blanco de reconocimiento por antibióticos [47], además de su capacidad para sintetizar proteínas citotóxicas de daño tisular extensivo que interfieren con el sistema inmune del huésped y destruyen las células infectadas, favoreciendo la colonización a nuevos órganos y tejidos através de enzimas degradativas que digieren membranas celulares y tejidos conectivos.

Los factores de virulencia que utiliza *Pseudomonas aeuruginosa* actuán en diferentes estadios de la infección por lo que estan implicados en la adhesión, la colonización e invasión y finalmente la diseminación microbiana en el organismo que infecta. De manera importante está reportado el sistema de secreción tipo III, el cual permite a la bacteria inyectar diferentes proteínas efectoras en el citoplasma de las células huésped [47]. Cuatro de estas proteínas efectoras han sido identificadas: ExoS y ExoT, que son enzimas bifuncionales con actividad GTPasa ADP ribosilasa; ExoU, una citotoxina y ExoY, una adenilato ciclasa. Distintas combinaciones de estas proteínas causan importantes y devastadores efectos sobre la función protectora y de cicatrización de los epitelios [4, 47]. En el transcurso de las infecciones crónicas en pacientes con fibrósis quística, *Psedomonas aeruginosa* sufre una gran cantidad de cambios genéticos como la adquisisción de un fenotipo mucoide debido a la sobreproducción de polisacáridos aniónicos, mutaciones en genes reguladores y la capacidad de insertar el antígeno O en el núcleo de sus lipopolisacáridos [11].

La diversidad de cepas de *Pseudomonas aeruginosa* está dirigida por regiones del genoma *cepa-específicas* de alta plasticidad adquiridas por transferencia horizontal de genes [11, 47]. Este mecanismo permite a la bacteria presentar adaptabilidad a una amplia gama de nichos ecológicos así como la capacidad para incrementar su eficacia y potencial metabólico [11].

Otro mecanismo de adaptación y supervivencia de P. aeruginosa es la inhibición de la adsorción del fago a la bacteria y la degradación del DNA del fago por enzimas de restricción mediante el sistema de inmunidad bacteriano CRISPR-Cas² que protege a la bacteria de la infección viral de fagos específicos mediante el almacenamiento de copias de fragmentos de DNA homólogos a secuencias virales, dichos segmentos no repetitivos son llamados espaciadores y se encuentran intercalados entre regiones hipervariables que junto con la proteína Cas, son usadas para marcar y degradar DNA exógeno generando interferencia específica contra la transcripción de fagos temperados mediante la hibridación del mRNA bacteriano con el DNA viral exógeno

²Acrónimo de Clustered Regularly Interspaced Short Palindromic Repeats

permitiendo inmunizar a la bacteria y generar resistencia a la infección [6, 5].

1.7. Bacteriófagos de Pseudomonas aeruginosa

P. aeruginosa es un hospedero natural de numerosas especies de bacteriófagos tanto de tipo lítico, como lisogénico y su versatilidad para adaptación a un amplio rango de nichos ecológicos sugiere la existencia de una posible relación entre la diversidad de bacteriófagos y la presencia del hospedero en diveros ambientes [21].

En estudios recientes, los esfuerzos de secuenciación de genomas de fagos que infectan a *Pseudomonas aeruginosa* han revelado a este grupo de bacteriofagos como ampliamente diversos a nivel de organización del genoma, hecho que es consistente con su diversidad reportada en la especificidad para cepas hospederas [21]. Los fagos de *P. aeruginosa* son objeto de investigaciónes para revelar los detalles del mecanismo de interacción con el huésped y determinar el alcance de su potencial terapeútico para biocontrol de cepas patógenas [34]. En la actualidad, diferentes secuencias de genomas completos de fagos que infectan a *P. aeruginosa* se han depositado en bases de datos públicas[44].

Los bacteriofagos de P. aeruginosa son ampliamente distribuidos y se sabe que la diversidad actual muestra una distribución en 7 generos de fagos líticos (T7-like, Φ KMV-like, LUZ24like, N4-like, PB1-like, Φ KZ-like, JG004-like) en adición al mismo número de generos para fagos temperados [9, 17, 39]. La mayoría de los fagos de *Pseudomonas aeruginosa* han sido clasificados en función de sus características morfológicas dentro del orden *Caudovirales* [9], que comprende a las familias *Siphoviridae*, *Myoviridae* y *Podoviridae* [9, 44]. Los bacteriófagos de la familia *Myoviridae* presentan una cola larga helicoidal que se contrae después de la infección, poseen ADN de doble cadena como material genético y cápside icosaédrica. La familia *Siphoviridae* engloba al cerca del 60 % de fagos descritos de *P. aeruginosa*, poseen ADN bicatenario y colas helicoidales largas, la cápside tiene un diámetro de 55-60 nm. La familia *Podoviridae* integra fagos de cola corta no contráctil y cápside de 60 nm, con genomas lineales de ADN bicatenario de 40-42 kb de longitud[9, 44]. En base a estudios genómicos donde se consideran como principales parámetros el tamaño, topología y arquitectura del genoma, así como como el número de ORFs y tRNAs característicos, los fagos del orden *Caudovirales* que han sido secuenciados, han sido clasificados en 8 géneros y 20 especies [9] reconocidas por el Comité Internacional de Taxonomía de Virus (Cuadro 2).

Fago	Tamaño del Genoma	Porcentaje de GC	Numero de ORF's	Fagos relacionados.
PaMx42	43 Kb	54.64%	56	-
PaMx28	55 Kb	66.41%	74	Similitud en secuen- cia de nucleótidos con PaMx11.
PaMx25	57 Kb	58.43%	74	Similitud en secuen- cia de nucleótidos con PaMx 10, PA 73 y VB- PAE-Kakheti25

Cuadro 1: Datos genéticos de los bateriófagos utilizados.

1.8. El enfoque proteómico en el estudio de los bacteriófagos.

El proteoma es la dotación total de proteínas producidas por un organismo o sistema biológico [7]. La proteómica es definida como estudio detallado y a gran escala del proteoma y permite estudiar la composición, estructura y función de las proteínas. El término **proteómica** fue acuñado el científico australiano Marc Wilkins en 1994 como una analogía con la genómica.

El estudio detallado del proteoma permite tener una imagen congruente e integral de todas las proteínas expresadas en un sistema biológico, en un tiempo dado y bajo condiciones ambientales específicas. El estudio y comparación sistemáticos de proteomas de especies distintas permite complementar datos genómicos preexistentes para establecer relaciones evolutivas o filogenéticas entre diversos grupos de organismos, mientras que en el análisis proteómico para aplicaciones biomédicas, permite identificar aquellas proteínas correlacionadas con determinados estadios fisiológicos relacionados con diferentes situaciones metabólicas y/o patológicas permitiendo identificar biomarcadores asociados a dignósticos y tratamientos clínicos.

Para la realización de analisis proteómicos , ha sido necesaria la aplicación de procedimientos de separación y fraccionamiento de proteínas cada vez mas sensibles, así como la consolidación definitiva de la espectrometría de masas (MS) como técnica aplicada al análisis de moléculas biológicas y el crecimiento sustancial de bases de datos de proteínas. Mediante la separación de los núcleos por su relación masa-carga la espectrometría de masas permite analísis y posterior identificación de diferentes compuestos químicos e isótopos atómicos y es el método utilizado para las dos técnicas de identificación de proteínas más comunes: la identificación por huella peptídica y el análisis MS/MS. Ambos procedimientos implican la digestión de las proteínas resueltas mediante el tratamiento enzimático con una proteasa de patrón de corte definido generando un conjunto de péptidos específicos de la proteína para su posterior extracción con solventes orgánicos. El análisis por espectrometría de masas de los péptidos extraídos genera datos referentes al tiempo de vuelo en masas de los diferentes péptidos de cada muestra permitiendo obtener un espectro de masas que es sometido a comparación con bases de datos de secuencias proteícas conocidas através de motores de búsqueda que asignan una identidad a la proteína problema en función de probabilidades de homología de estructura y función relativas a las entradas en la base de datos en cuestión [12, 16].

A pesar de grandes esfuerzos de secuenciación y caracterización genómica, muchos aspectos de la diversidad de los bacteriófagos no han sido aclarados. Recientemente se ha optado por la secuenciación metagenómica de comunidades virales procedentes de regiones oceánicas y se ha demostrado que, aunque existen patrones comunes de organización genómica, se han descubierto hasta un 90% de secuencias genéticas sin homología, revelando una gran diversidad de fagos marinos nuevos [10, 35]. Otros proyectos de estudio de la secuenciación genética de bacteriofagos revelaron niveles distintos de diversidad genómica entre los fagos que infectan bacterias diferentes.

Para abordar el estudio y caracterización detallada de bacteriófagos, se ha considerado el uso de datos derivados de la caracterización de proteómica de las partículas virales como estratategía para identificar marcadores de comparación entre especies de fagos [7, 10, 25] y para complementar datos genéticos obtenidos previamente. Esta estrategía implica resolver las proteínas que conforman las partículas virales y obtener datos sobre su secuencia a nivel de aminoácidos para realizar una busqueda de homología contra bases de datos de proteínas y asignar así una identidad y posible función a la proteína problema [25], estos datos son útiles para estudios de diversidad de fagos, de genómica comparada y terápia antimicrobiana basada en fagos [24, 38].

Características generales de los fagos de P. aeruginosa			
Familia	Género	Características generales	
Podoviridae	$\phi \mathrm{KMV}$	Presentan regiones de corte sito-específicas conser- vadas de la cadena no codificante de su DNA, pre- sentan invariablemente un gen codificante para una proteína RNAP (Sub-unidad RNA-Polimerasa)	
	LUZ24	No codifican una RNAP durante su desarrollo , pre- sentan repetidos directos en los extremos de sus genomas y carecen de cualquier gen regulador que suguiera la integración de su genoma en el cormo- soma bacteriano.	
	N4	Presentan un genoma de 72-74 Kb y codifican pa- ra tres RNA-Pol que transcirben la totalidad del genóma fágico.	
My oviridae	PB1	Genoma circular permutado con tamaño de 210- 316 kb codificante para 210-461 genes. Amplio ran- go de huésped; se concen mas de 20 fagos de este tipo.	
	$\phi \mathrm{KZ}$	Carecen de tRNAs y genes relacionados con lisogénia, presentan un genoma lineal y no permutado de 65 kb con 88 genes de los cuales el 96% es conservado entre el género.	
Siphoviridae	D3112	Son fagos tipo Mu -like, ampliamente estudiados de- pendientes del Pili tipo IV, temperados y transpo- nibles, con genomas de 40 Kb	
	D3	Es similar al fago λ a nivel de regulación transcricional y organización genómica con un genoma no transponible de 56 Kb.	
	YuA	Presentan cápside elongada y un genoma de 58 Kb; son dependientes del pili para infectar a su huésped.	

Cuadro 2: Características generales de los fagos de P.~aeruginosa, se presenta una descripción breve de las características principales de cada género[9].

2. Antecedentes.

El estudio de los bacteriófagos a través de enfoques diversos, permite la generación de información referente a su papel ecológico, características genómicas, morfología, etc; dicha información puede ser usada para investigaciones posteriores con aplicación práctica [15, 19]. En el trabajo de Sepúlveda-Robles (2012) se investigó la diversidad de 68 fagos de Pseudomonas aeruginosa aislados en México los cuales fueron agrupados en 12 especies através de estudios compartivos de morfología, hibridación, rango de huésped y RFLPs. De estas 12 especies encontradas, los fagos PaMx10, PaMx12, PaMx13, PaMx32, PaMx62 y PaMx73 habían sido descritos anteriormente [44], sin embargo la comparación de los resultados obtenidos con secuencias genéticas disponibles en GenBank pertmitió identificar a los fagos PaMx74, PaMx42, PaMx31, PaMx28, PaMx25 y PaMx11 como representantes de nuevas especies, no obstante, aunque se cuenta con datos acerca de la morfología, rango de hospedero y secuencia genética de dichos fagos, esta información ha sido insuficiente para identificar relaciones evolutivas entre estos 6 fagos y representantes de otras especies. Considerando que se ha reportados el uso de proteínas estructurales de la partícula viral como marcadores de comparación entre fagos [25], se infiere que la similitud entre las secuencias de aminoácidos de proteínas estructurales puede usarse para encontrar información que permita evidenciar relaciones de estos fagos con otros o revelar la existencia de nuevas proteínas estructurales.

Se conoce que la secuencias anotadas de los genomas completos de PaMx28 y PaMx25 se encuentran disponibles en la base de datos local del laboratorio, mientras que la anotación del genoma de PaMx42 esta en curso³. En base a esta información

³Adrián Cazares, Comunicación personal.
se sabe que PaMx42 posee un genoma de 43 Kb y presenta similitud en secuencia de nucleótidos con PaMx73 y PaMx45 (P. *aeruginosa*), PAE-Kaketi 25 (P. *aeruginosa*) y KL 1 (*Burkhodelia sp*) (Figura 11) ⁴. El genoma de PaMx 28 posee 74 ORF's predichos y tiene un tamaño de 55 Kb, además guarda similitud en secuencia nucleotídica con el fago PaMx11 (Figura 12).⁵ En el caso de PaMx25 su genoma posee ORF's predichos en una longitud de 57 Kb,⁶ mientras que los genomas de PaMx25 y PaMx42 presentan similitud con el genoma de PaMx10. Sin embargo, aunque no existe una interrelación a nivel de secuencia de nucleotídos entre ninguno de los tres fagos de interés, ha sido posible determinar que existe una relación de proteínas conservadas entre PaMx25 y PaMx28 siendo estas la DNA ligasa, cuatro proteínas estructurales y cuatro proteínas de función desconocida⁷.

Figura 11: Comparación entre homologia de secuencias nucleotídicas y de aminoácidos entre PaMx42, PaMx25 y Pae-Kakethi 25. Se muestra en lineas verdes la homología nucleotídica entre PAE-Kaketi 25 y PaMx42 y en lineas grises la relación a nivel de secuencia de aminoácidos entre PaMx25 y PaMx42 así como entre el fago de *Burkhodelia sp* BcepGomr y PaMx25.

Se conoce que la secueciación del genoma, estudios de morfología y rango de hospedero de los fagos representantes de nuevas especies PaMx42, PaMx28, PaMx25 han sido insuficientes para obtener la asignación de proteínas estructurales del virión [44],

⁴Adrián Cazares, Comunicación personal.

⁵Victor Flores, Comunicación personal.

⁶Datos no publicados.

⁷Datos no publicados.

y considerando que el conocimiento de las secuencias de proteínas estructurales permitirá inferir similitudes entre especies o grupos de fagos, el presente trabajo aborda la generación de un perfil proteómico de las proteínas estructurales de los bacteriófagos PaMx42, PaMx28 y PaMx25 y pretende complementar con dicha información, a los datos genéticos con los que se cuenta.

Figura 12: Comparación entre homologia de secuencias nucleotídicas entre PaMx28, PaMx11 y M6 Yu-A. Se muestra en lineas azules las regiones del genoma donde existe homología nucleotídica entre los fagos mencionados.

Planteamiento del problema.

En el trabajo de Sepúlveda-Robles (2012), se describen seis nuevas especies de fagos de *Pseudomonas aeruginosa* de los cuales se cuenta con datos genómicos pero se desconocen sus perfiles proteómicos de las partículas virales por lo tanto, el presente trabajo pretende complementar la información respecto de los fagos de nuevas especies PaMx42, PaMx28 y PaMx25.

Justificación.

La identificación de las proteínas estructurales de los fagos de *Pseudomonas aeruginosa* que representan nuevas especies, aporta datos complementarios a la información genómica con la que se cuenta, dicha información correlaciona las proteínas estructurales con los genes que las codifican, y puede ser empleada en diversos estudios posteriores para los fagos mencionados.

3. Objetivos

Objetivo General.

Identificar mediante espectrometría de masas (MS) las proteínas estructurales de los fagos de *P. aeruginosa* que representan nuevas especies.

Objetivos Particulares.

- Obtener abastos de los bacteriófagos PaMx42, PaMx28 y PaMx25.
- Purificar los fagos mencionados mediante gradientes discontinuos de CsCl.
- Aislar mediante SDS-PAGE las proteínas que conforman las partículas virales.
- Identificar en los genomas de los fagos los genes que codifican para las proteínas que conforman las partículas virales mediante MS.

4. Materiales y Métodos

4.1. Cepas hospederas y repropagación de fagos.

Las cepas hospederas de *Psedomonas aeruginosa* Ps 26, Ps 25,Ps 17 y Ps 9 utilizadas en el presente trabajo fueron cultivadas a partir de la colección de ceparios del Laboratorio 3 del Departamento de Genética y Biología Molecular (DGBM), Cinvestav, aisladas originalmente a partir de muestras colectadas en diferentes hospitales de la Ciudad de México.[44] La relación entre los distintos fagos utilizados, y su cepa huésped, se presenta en la siguiente tabla:

Bacteriófago	Cepa Hospedera
PaMx42	Ps 26
PaMx28	Ps 25
PaMx25	Ps17

Cuadro 3: Bacteriófagos y sus hospederos.

Los bacteriófagos usados en este trabajo, proceden de la colección de fagos del Laboratorio 3 del DGBM, Cinvestav, mantenidos en *stocks* purificados, la relación entre los bacteriófagos y sus hospederos se presenta en el Cuadro 3, la procedencia de las muestras a partir de las cuales fueron aislados los fagos de intéres, se presentan en el Cuadro 4 [44].

Para la repropagación de los fagos de interés, mediante el uso de los ceparios microbianos disponibles, las colonias bacterianas hospederas fueron sembradas en cajas petri con medio de Cultivo LB he incubadas a 37 °C durante 12 horas para permitir el desarrollo de colonias bacterianas aisladas. Tras aislar dichas colonias, se realizó un cultivo de la bacteria en 5 ml de medio de cultivo LB líquido, y se incubó por 12 horas a 37 °C en

Fago	Procedencia	Estado	Localidad
PaMx42	Drenaje	DF	Laguna Xochimilco
PaMx28	Drenaje	Querétaro	Carretera Tequisquiapan
PaMx25	Drenaje	Querétaro	Parque Tequisquiapan

Cuadro 4: Bacteriófagos utilizados y sus lugares de origen.

agitación continua (200 rpm), a partir de este material, se realizaron los tapices bacterianos correspondientes a fago mezclando un volumen de 300 μ l del cultivo líquido bacteriano con 3 ml de medio T \emptyset a 50 °C, la mezcla homogenizada fue extendida en cajas petri con medio TØ semisólido y mantenida a temperatura ambiente durante 15 minutos para permitir su solidificación, una vez sólido el tapiz bacteriano, se realizó el ensayo de infección colocando un volumen de 10μ l de fago correspondiente a la cepa, tras la adsorción del volumen colocado, se incubó cada placa a 37 °C durante 12 horas. Del punto de lisis generado, se tomó una muestra con un palillo estéril y se colocó trazando una linea recta sobre una placa nueva con medio $T\emptyset$, inmediatamente después, se colocó un nuevo tapiz bacteriano preparado de acuerdo a el procedimiento descrito anteriormente, este proceso se repitió hasta alcanzar tres pasajes del fago, tomando en cada vez, placas de lisis aisladas. Tras alcanzar tres pasajes, se tomaron 10 placas de lisis con ayuda de una pipeta pasteur, y se colocaron en un tubo cónico de plástico estéril de 1.5 ml (Eppendorf, USA) con solución TMG SM (1 ml), el tubo se colocó en agitación en frio 12 horas para posteriormente centrifugarlo a 10,000 rpm/10', se recuperó el sobrenadante y se almacenó a 4 °C en un nuevo tubo eppendorf.

4.2. Titulación de fagos.

Para conocer el número de unidades formadoras de placas (ufp) presentes en cada colección del fago tras su repropagación, se realizó la titulación de cada muestra. Se prepararon diluciones seriadas de cada fago hasta una dilución máxima de 1×10^{-8} , posteriormente se aplicó un volumen de 5μ l de cada dilución sobre un tapiz bacteriano de la cepa correspondiente a fago, preparado previamente de acuerdo al procedimiento descrito con anterioridad. Tras finalizar la absorción de las suspenciones de fagos, se incubó el tapiz a 37 °C durante 12 horas, transcurrida la incubación de cada tapiz, se realizó en conteo de placas de lisis aisladas en el punto de menor dilución, el valor encontrado, se introdujo en la siguiente ecuación para conocer el número de unidades formadoras de placas presentes por mililitro [13]:

$$\left(\frac{N_{placas}}{Volumen_{goteado}(ml)}\right)(I_{Dilucion})\tag{1}$$

donde;

- N_{placas} Corresponde al número de placas de lisis observadas en la zona del tapiz bacteriano donde se aplicó la menor dilución.
- $Volumen_{goteado}$ Corresponde al volumen aplicado de cada dilución del fago (expresado en ml).
- $I_{Dilucion}$ Inverso de la dilución máxima donde se observaron placas aisladas.

4.3. Purificación de fagos.

Una vez repropagados los fagos de interés y determinado su título correspondiente, los lisados fágicos se trataron con 1 μ g/ml de DNAsa I y 1 μ g/ml de RNAsa A en incubación por 30 min a 37 °C para eliminar los restos de material genético bacteriano, posteriormente, se favoreció la precipitación de las partículas virales mediante la adicción a cada muestra de 2 g de NaCl y 4 g de Polietilenglicol 8000 y su incubación en hielo

durante 12 hrs. Concluida la precipitación, las muestras fueron centrifugadas a 10,000 rpm durante 20 minutos, la pastilla generada se resuspendió en 1 ml de solución TMG y se trató con 1 ml de Cloroformo en centrifugación a 10,000 rpm durante 10 minutos, recuperando el sobrenadante de la fase acuosa. Posteriormente las muestras se purificaron mediante gradientes discontinuos de CsCl en tubos Beckman[®] Ultra-Clear (14x95 mm) utilizando 2.5 ml de soluciones de densidad 1.08, 1.3, 1.5 g/cm^3 y 3.5 ml de la solución con densidad 1.7 g/cm³ por cada gradiente [3]. Una vez preparados los gradientes con las muestras de interés, se centrifugaron a 22.000 rpm durante 2:30 h a 4 °C en un rotor Beckman[®] SW40 Ti. Finalmente las muestras fueron procesadas para eliminar los remanentes de CsCl mediante diálisis con Membranas Spectra/Pro^(R) de porosidad de 68.000 kD en proporción 1:1000 de solución de diálisis (Trisma Base 50 mM, NaCl 10 mM, MgCl₂) realizando cambios de la solución cada 2 horas, las muestras purificadas fueron almacenadas a 4 °C en tubos estériles.

4.4. Resolución de proteinas estructurales.

Las muestras purificadas de viriones fueron desnaturalizadas mediante baño de agua a 100 °C y tratadas con 3 μ l de amortiguador de carga , posteriormente, fueron cargadas en geles de electroforesis de 0.75 mm y 10x15 cm al 10 % de acrilamida y corridos a 80 Volts durante 120 minutos. Los geles fueron teñidos con azul de comassie R-250 al 10 % v/v en agitación orbital durante 2 horas y desteñidos posteriormente con solución de desteñido (Ácido acético 7 % v/v - metanol 10 % v/v) durante 60 min.

4.5. Digestión enzimática de las proteínas estructurales.

Para preparar las muestras para su análisis por espectrometría de masas, las bandas de proteínas de los geles fueron digeridas mediante tratamiento enzimático con tripsina. Cada banda fue cortada de manera individual en torno a su perímetro y separada de su carril correspondiente evitando la contaminación con bandas aledañas, posteriormente fue desteñida con solución 50 % v/v metanol y ácido acético 5 % v/v. Cada muestra así obtenida fue lavada con agua desionizada e incubada durante 10 minutos en bicarbonato de amonio 100 mM, posteriormente la pieza de gel fue cortada en secciones de menor tamaño y deshidratadas con acetonitrilo al 100% mediante secado al vacío. La muestra se trató con DTT 10 mM como agente reductor y cisteína S- alquilada con yodoacetamida 100 mM en bicarbonato de amonio 100 mM, finalmente la muestra se trató con 30 μ l de solución de Tripsina porcina modificada a una concentración de 20 ng/ μ l (Promega, Madison, WI, EE.UU.) en bicarbonato de amonio 50 mM, la muestra se incubó durante 12 h a 37.5 °C. Los péptidos se extrajeron con acetonitrilo 50%(v/v) y ácido fórmico 5 % (v/v) con cambios de estas soluciones dos veces cada 30 minutos con sonicación de las muestras. Los extractos se secaron al vacío y se resuspendieron en 20 μ l de ácido fórmico al 0.1 %.

4.6. Espectrometría de Masas.

El análisis de los péptidos de interés fue llevado a cabo por el servicio de Espectrometría de Masas del Laboratorio Nacional de Servicios Experimentales del Cinvestav Zacatenco y por la unidad de Proteómica del Departamento de Biotecnología y Bioquímica, Cinvestav Unidad Irapuato. 4.7. Identificación de los genes que codifican para las proteínas estructurales de los viriones en los genomas de los fagos.

Mediante las listas pesos obtenidas del análisis por espectrometría de masas del conjunto de péptidos derivados de las proteínas resueltas, la asignación de identidad a dichos péptidos se llevó a cabo mediante la comparación de los datos experimentales obtenidos con la base de datos de proteínas disponible en el laboratorio mediante el uso del sistema de software TPP (Trans Proteomic Pileline) de Seattle Proteome Center y Protein Pilot (ABSciex)[®]

- 1. Conversión de los datos. Se llevó a cabo la conversión de los datos originales *Raw* al formato común mzML/mzXML a través de las herramientas RAMP y readmzXML, incluidas en el sofware TPP.
- 2. Asignamiento e identificación de péptidos. Los archivos disponibles en formato mzML se analizaron contra las bases de datos locales del laboratorio mediante los algoritmos X!Tandem y Paragon como motores de búsqueda.
- 3. Validación estadística de los resultados del motor de búsqueda. Se utilizó la herramienta *PeptideProphet* para realizar una validación estadística de los datos obtenidos asignando valores de probabilidad a cada relación espectro-péptido.
- 4. Validación estadística de las identificaciones de proteínas. Se hizo uso de la herramienta *ProteinProphet* para validar estadísticamente la asignación de las correspondencias péptido-proteína.

5. Resultados y Discusión.

5.1. Purificación de viriones.

La purificación de viriones y los valores de titulación correspondientes a cada preparación fueron los siguientes:

Especie.	Concentración. (UFP)
PaMx42	$1x10^{9}$
PaMx28	$1 x 10^{11}$
PaMx25	$1 x 10^{10}$

Cuadro 5: Resultados de las titulaciones de partículas virales obtenidas para las distintas preparaciones de fagos. UFP = Unidades formadoras de Placas.

5.2. Resolución de las proteínas estructurales.

Las proteínas estructurales de las partículas virales purificadas fueron resueltas por electroforesis en SDS-PAGE de acuerdo a la metodología descrita previamente, este procedimiento permitió la detección de bandas de proteínas en todas las preparaciones. A continuación se presentan los resultados obtenidos para cada fago. En el caso del fago PaMx42 al menos siete bandas de proteínas fueron observadas (Figura 13).

Figura 13: Patrón de separación de bandas de proteínas de PaMx 42 por electroforesis SDA-PAGE. Son visibles al menos siete bandas de proteínas entre los marcadores de peso de 25 hasta 100 kDa. MW = Marcador de peso molecular.

El análisis electroforético de las preparaciones del fago PaMx28 permitió observar al menos doce bandas de proteínas claramente definidas (Figura 14).

Figura 14: Patrón de separación de bandas de proteínas de PaMx28 por electroforesis SDA-PAGE. Son visibles doce bandas con claridad en el rango de 16 hasta 85 kDa. MW = Marcador de peso molecular.

En el caso del fago PaMx25, se observaron al menos 8 bandas de proteínas definidas:

Figura 15: Patrón de separación de bandas de proteínas de PaMx25 por electroforesis SDA-PAGE, se observan siete bandas de proteínas ubicadas entre los 75 y 26 kDa . MW = Marcador de peso molecular.

5.3. Análisis por Espectrometría de Masas.

Tras la resolución de proteínas por electroforesis en gel unidimensional y la extracción y purificación de los péptidos derivados, se llevó a cabo el análisis de los mismos en los servicios de espectrometría antes mencionados. Las especificaciones y condiciones del análisis fueron las siguientes:

Instrumento: MALDI-TOF/TOF (ABSCIEX) Reactivo para co-cristalización: CHCA. Para la obtención de espectros MS:

Modo reflector:	Positivo
Rango de masas:	800-4000 Da
Intensidad del láser para espectros MS:	3100
Número de disparos para la obtención de espectros MS:	1000

Para la obtención de espectros MS/MS:

Modo MS/MS 1kVA:	Positivo
CID:	Activado
Supresor de iones metaestables:	Activado
Intensidad del láser para espectros MS/MS:	3800
Número de disparos para la obtención de espectros MS/MS:	3000

Posterior al análisis de las muestras por Espectrometría de Masas y el procesamiento de los datos obtenidos, se eligió un punto de corte de valores de probabilidad ⁸ a partir de 0.9 (\geq 0.9) para la asignación de identidad a las proteínas identificadas. A continuación se presentan los datos obtenidos de cada banda resuelta así como la secuencia de aminoácidos de la proteína identificada y los péptidos correspondientes (Cuadro 6).

 $^{^{8}}$ Los valores de probabilidad asignados para cada proteína fueron obtenidos de la validación estadísitica de los datos realizada con la herramienta ProteinProphet.

Bacteriófago	Banda	ORF	Función Putativa	P.M. teórico $(Da)^9$	P.M. observado(KDa) ¹⁰	Longitud	PC.	Cobertura.
	2			22552	<u>.</u>	Z 0.0		
PaMx42	3	ORF_24	-	63559	64	568 aa	0.9998	31.87%
	4	ORF_8	-	55281	55	504aa	0.9993	60.32%
	5	ORF_{-17}	-	53200	51	513aa	0.9970	12.09%
	6	ORF_09	-	40582	40	364aa	0.9990	30.21%
	7	ORF_11	-	34761	34	324aa	1.0	75%
PaMx28	6	ORF_8	Putative structural protein	56453	55	509aa	0.9864	3.1%
	7	$ORF_{-}30$	Putative structural protein	52627	52	483aa	0.7708	1.9%
	12	ORF_38	Hypothetical protein	17333	20	161aa	0.7555	4.3%
	13	ORF_4	Putative terminase small subunit	19183	18	164aa	0.9989	9.8%
	14	ORF_60	Hypothetical protein	14556	16	131aa	0.9472	6.9%
PaMx25	3	ORF_42	Putative tail structural protein	77749	69	725aa	1.0	26.2%
	4	ORF_21	Putative portal protein	56112	56	517aa	1.0	21.1%
	5	ORF_24	Putative structural protein	36932	40	344aa	1.0	48.5%
	6	ORF_37	Putative structural protein	35700	38	331aa	1.0	53.2%
	7	ORF_28	Putative structural protein	26162	26	170aa	0.9966	7.1%

Cuadro 6: Resumen de los datos obtenidos por espectrometría de masas. a
a= aminoácidos, P.M. = Peso Molecular, P.C = Probabilidad Calculada.

El exámen de los datos presentados muestra una relación entre el porcentaje de cobertura de una proteína identificada y su intensidad de tinción en el gel de electroforésis, de forma que fue común observar coberturas con altos porcentajes en bandas intensas y valores de cobertura bajos en bandas tenues, este hecho que sugiere que las proteínas tienen presencia en el virión en proporciones estequiométricas distintas, sin embargo también es posible afirmar que los valores variables de coberturas observadas estan relacionados con el procedimiento de extracción y purificación de péptidos siendo este un factor determinante para la eficiencia y calidad del experimento. Se observa también que todas las asignaciones de identidad¹¹ a las proteínas identificadas corresponden a proteínas estructurales del virión, hecho que comprueba que la aproximación experimental planteada para identificar proteínas estructurales de un virión mediante su resolución por electroforesis SDS-PAGE es exitosa.

En el caso de algunas bandas de proteínas que presentan un peso molecular teórico ligeramente menor al peso observado es posible que esto se deba a la existencia de procesos de modificación postraduccional para dichas proteínas, sin embargo la investigación del origen de dicho fenómeno esta fuera del alcance del presente trabajo.

Algunas de las proteínas descritas en la anotación de los genomas de los tres fagos como proteínas hipotéticas han sido identificadas en el presente trabajo como proteínas estructurales del virión, en el caso de PaMx28 se identificó al ORF 38 que codifica para una proteína de 20 kDa como gen estructural del virión debido a que dicho gen se encuentra agrupado dentro del módulo de genes estructurales del virión, en el caso del ORF 60, la proteína correspondiente de 14.5 kDa, no se considera como

¹¹Información basada en el procesamiento bioinformático de los datos de MS

proteína estructural debido a que dicho ORF no está ubicado en el genoma dentro del bloque de proteínas estructurales. Para el fago PaMx25, se observa que todas las proteínas identificadas por espectrometría de masas corresponden a marcos abiertos de lectura predichos para proteías estructurales al igual que para el fago PaMx42.

5.4. Correlación gene-proteína.

De acuerdo a los resultados obtenidos por espectrometría de masas, se observa que en las tres especies de bacteriófagos analizadas la ubicación de los marcos abiertos de lectura correspondientes a las proteínas estructurales identificadas, están organizados en el genoma fágico dentro de módulos transcripcionales específicos (Figuras 16, 17 y 18), el análisis de las secuencias de los genomas muestra la presencia de los genes correspondientes a la proteína portal y a las subunidades de la terminasa como punto de inicio del módulo estructural así como un terminador ubicado al final del mismo, lo cual sugiere que la organización de los genes que codifican para las proteínas estructurales del virión están configuradas en un operón con organización conservada en los tres fagos.

Bacteriófago		ORF	Función putativa	Posición del terminador (pb)
D.M. 49	т · ·			20407
PaMx42	Inicio	ORF_08	-	30407
	Término	ORF_31	-	30438
PaMx28	Inicio	ORF_04	Putative terminase small subunit	33044
	Término	ORF_40	Putative structural protein	33065
PaMx25	Inicio	ORF_19	Putative terminase small subunit	34124
	Término	ORF_42	Putative tail structural protein	34148

Cuadro 7: Organización del modulo transcripcional de proteínas estructurales en los tres bacteriófagos. Se muestran los marcos abiertos de lectura que delimitan como puntos de inicio y fin el bloque transcripcional que corresponde a proteínas estructurales.

En el cuadro 7 se muestra la información derivada de la anotación de los genomas de los tres fagos de interés, se presentan los genes que delimitan el inicio y fin del bloque estructural así como la posición de un terminador ubicado de manera inmediata al último gen que codifica para proteínas estructurales. De acuerdo a las referencias citadas en el presente trabajo, frecuentemente el inicio de los genes estructurales en bacteriófagos está determinado por los ORFs correspondientes a la enzima terminasa y a la proteína portal, el análisis de la anotación de los genomas de los tres bacteriófagos de interés revela que los genes predichos para proteínas estructurales aparecen precedidos en sus genomas por el ORF correspondiente a la terminasa.

De igual manera, en base a observaciones derivadas de las anotaciones del genoma se observa en general que el grupo de ORFs predichos para proteínas estructurales del virión están ubicados precediendo a un terminador de la transcripción. En cada una de las preparaciones de bacteriófagos fueron identificadas cinco proteínas estructurales del virión, en el caso de PaMx42, tal como se ilustra en la figura 16, se muestran resaltados los ORF's correspondientes a las proteínas estructurales identificadas, considerando los datos presentados en el cuadro 7 se observa que las proteínas identificadas se encuentran ubicadas dentro del bloque estructural del genoma, delimitado por los ORF's 8 y 31.

A continuación se presentan los mapas genéticos de los bacteriófagos analizados, dichos mapas fueron obtenidos de la anotación de sus genomas, en color negro se muestran resaltados los ORF's identificados contrastando con el resto de los ORF's marcados en color bronce, el circulo central representa el porcentaje de GC del genoma (%GC Plot), la numeración exterior representa los pares de bases del genoma en sentido horario, los puntos *Start* y *end* representan el inicio y fin de cada módulo estructural.

Figura 16: Mapa genético de PaMx42. Se muestran en negro los ORFs correspondientes a proteínas estructurales identificadas en este fago, el módulo transcripcional de proteínas estructurales abarca desde el ORF 8 hasta el ORF 31.

Las proteínas estructurales identificadas de PaMX42 corresponden a ORF's ubicados dentro de módulo estructural del genoma, delimitado por los ORF's 8 y 31.

Figura 17: Mapa genético de PaMx28. Se identificó como proteína estructrural a la proteína del ORF 38, descrita como *Proteína Hipotetica* en la anotación del genoma.

En el caso de los fagos PaMx28 y PaMx25 se observa que las proteínas identificadas se ubican igualmente dentro de los módulos estructurales delimitados por los marcos abiertos de lectura que se muestran en el cuadro 7. Para el caso del fago PaMx28 se identificó a la proteína del ORF 60 como proteína estructural, cuya anotación en el genoma corresponde a una *Proteína Hipotética*, sin embargo, delimitando el módulo de proteínas estructurales en función de la presencia del ORF correspondiente a la terminasa como inicio del módulo y de un terminador ubicado al final de los genes predichos como genes estructurales como final del mismo, se considera que el ORF 60 esta fuera del módulo estructural del genoma de PaMx28. De igual modo para el mismo fago, si observó que la proteína del ORF 38 marcada en la anotación del genoma como proteína hipotética fue identificada por espectrometría de masas como proteína estructural del virión.

Figura 18: Mapa genético de PaMx25, los ORF's correspondientes a las proteínas identificadas se ubican dentro del módulo estructural del genoma, que esta delimitado por los ORF 19-ORF 42.

Los ORF's correspondientes a las proteínas estructurales identificadas de PaMx25 se ubican también dentro del módulo trasncipcional de proteínas estructurales de su genoma, delimitado por los ORF's 19 y 42.

6. Conclusiones.

Del análisis y discusión de la información y los datos obtenidos, se derivan las siguientes conclusiones:

La organización de los genes que codifican para las proteínas estructurales de la partícula viral esta configurada en bloques transcripcionales definidos, hecho que resulta conservado en los tres bacteriófagos analizados.

El módulo estructural en el genoma de los fagos esta delimitado de manera general por un punto de inicio en los genes que codifican para la terminasa y la proteína portal y por un terminador inmediato al último ORF estructural que marca el fin del módulo, tal como se ilustra en las figuras 16, 17 y 18.

Una proteína marcada como hipotética en la anotación de los genomas virales fue identificada como proteína estructural, siendo esta la proteína del ORF 38 del fago PaMx 28.

Perspectivas de estudio

En base a los resultados obtenidos en el presente trabajo se establecen las siguientes posibilidades de investigación para trabajos futuros de mayor alcance:

Indagar acerca del mecanismo de regulación de los genes correspondientes al módulo estructural del virión.

Predecir las estructuras de las proteínas por medios bioinformáticos para inferir su localización en la partícula viral. Generar un modelo descriptivo del virión maduro, donde se especifique la localización de las proteínas que conforman la partícula viral.

A. Apéndice A

Datos de Espectrometría de Masas.

PaMx42

BANDA:3 Peso observado: 64 kDa.

Match. Nombre. Función Anotada. 1 PaMx_42_ORF_24 -

Probabilidad	Peso molecular teórico	Longitud	Cobertura	Péptidos únicos.
0.9998	$63559 \mathrm{\ Da}$	568aa	31.87%	15

Péptidos observados:

Posición	Masa	Péptido.
28-43	1807.94	YSEVEYLPVGIDVIGR
44-53	1249.67	RVFGPYAVWR
78-96	2136.12	IHVSPQEIDLQTIASTQTR
233-244	1356.69	KFYSDLMAAVGR
245 - 255	1438.72	LWIPEYQYATR
336-349	1554.76	YSVNEVAETTLVCK
355 - 377	2473.36	SQLTRPGSTVVLPTYLGVPVFDK
425 - 435	1493.70	IQRPEEMDYWK
436-442	900.45	TLFAYMR
447-454	1047.59	KVWVPTYR
459-480	2339.15	LVVQPSDGASTFTIEGVEYAEK
481-488	981.58	LFPIVTHR
489-500	1387.71	YIEIETASGIHR
534 - 542	1131.66	RISFLLPMR
543 - 551	1060.56	LGDDKVTWK

MAGRIGVFTQ	PFIYGEDNPD	YSDELDK YSE	VEYLPVGIDV
IGR RVFGPYA	VWR VHAPNRW	PIVGEEFENF	FKDYYFR IHV
SPQEIDLQTI	ASTQTR EVNV	WNAYPFTSAI	MQDILVNNPV
GVEIIGPNPL	TFPPLFEQTY	EIEVGTSGPA	NIDLQILFDF
ANVTNPLPVL	VTGTRAVKFD	IIPETPVTEE	WQFLTDNIVA
VDGTEQRIAL	RGEMPRVTEN	LKVIFDDSTK	IR KFYSDLMA
AVGR LWIPEY	QYATR TLTAS	AVGTFQLYFD	RQKTDIRAGE
YVLIQTPLTA	ALVEIDVLTV	TGATVTSALL	FDIPVGSLIM
PGSPALLNDG	AGLSR YSVNE	VAETTLVCK M	LRQR SQLTRP
GSTVVLPTYL	GVPVFDK RPL	ADEMVDDNVS	TGQQSIDNQT
GLPDIISRWD	YSRIGGARSY	KVNR IQRPEE	MDYWK TLFAY
MR GAVR KVWV	PTYR TDMK LV	VQPSDGASTF	TIEGVEYAEK
LFPIVTHR YI	EIETASGIHR	TEVTGAAVAG	TGLSTIIVFD
PALPAGAGWM	NIK RISFLLP	MR LGDDKVTW	K HYGLESLLQ
LSLITAEP			

BANDA:4 Peso observado: 55 kDa.

Match.	Nombre.	Función Anotada.
1	PaMx_42_ORF_8	-

Probabilidad	Peso molecular teórico	Longitud	Cobertura	Péptidos únicos.
0.9993	55281 Da	504aa	60.32%	26

Péptidos observados:

Posición	Masa	Péptido.
1-13	1502.79	MPNVSFVRPELSK
14-22	1180.67	LLPMYYLIR
23-32	999.52	DAIAGEPTVK
55-61	870.42	YDAYIAR
62-69	938.50	AVFYNVAR
70-82	1536.86	RTLFGLIGQVFMR
88-111	2390.35	VPALLNPLVANATGSGINLTQLSK
113-122	1092.59	AVSLNLAYSR
123 - 147	2404.18	AGILVDYPTTEGNGGASVADLEAGK
148-164	2104.15	IRPTLYVYAPTEIINWR
203-221	2374.12	LDEEGYYVHEIWREPNPTK
222-229	856.48	ADGTKIPR
230 - 247	2058.99	GNYQLHEVFKPTDANGNR
315-322	836.41	GTVNFGSR
323-334	1095.59	GGIPLPTGADAK
335 - 345	1256.68	LLQAEPNTmLK
354 - 361	816.45	QMVALGAK
371-391	2052.97	TATEAELEAASEGSTLSSATK
392-402	1234.63	NVSAAFEWALK
407-416	972.50	WIGAGDAGVK
417 - 427	1339.64	FELNTDFDIAR
434 - 442	1228.66	RQIIEEWQK
443 - 451	1024.50	GAITFTEMR
457 - 466	989.47	AGIATEDDAK
469-504	3378.55	ADIAKDTAEAMALAMPDNVPGDGNTPPAGNVGNGGA

MPNVSFVRPE	LSK LLPMYYL	IR DAIAGEPT	VK EARTKYLP
MPNASDQSKE	NKAR YDAYIA	R AVFYNVARR	TLFGLIGQVF
MR DPVVK VPA	LLNPLVANAT	GSGINLTQLS	K K AVSLNLAY
SR AGILVDYP	TTEGNGGASV	ADLEAGK IRP	TLYVYAPTEI
INWR TIDRGA	EEVLSLVVIF	ETWCVQDDGF	EMKNSGQFRV
LR LDEEGYYV	HEIWREPNPT	K ADGTKIPR G	NYQLHEVFKP
TDANGNR LDE	IPFMFMGSEN	NDVNPDNPNF	YDLASLNLAH
YRNSADYEES	CYVVGQPTPV	LTGLTEEWVN	NVLK GTVNFG
SR GGIPLPTG	ADAK LLQAEP	NTMLK EAMDT	KER QMVALGA
K LVEQKEVQR	TATEAELEAA	SEGSTLSSAT	KNVSAAFEWA
LK WAAR WIGA	GDAGVK FELN	TDFDIAR MTP	DER RQIIEEW
QK GAITFTEM	R TGLRK AGIA	TEDDAK AK AD	IAKDTAEAMA
LAMPDNVPGD	GNTPPAGNVG	NGGA	

BANDA:5 Peso observado: 51 kDa.

Match.	Nombre.	Función Anotada.
1	$PaMx_{42}ORF_{17}$	-

Probabilidad	Peso molecular teórico	Longitud	Cobertura	Péptidos únicos.
0.9970	53200 Da	513aa	12.09%	4

Péptidos observados:

Posición	Masa	Péptido.
221-232	1291.63	WVFIGGDAASNR
249-267	1914.92	ALVFDDTTFAAATETGTGK
355 - 371	1841.84	IAAPGEDAYNTSSDIYR
442-455	1314.71	ANADVGLSVISAAK

MADCAINKID	SNITGLAYAE	EECLKQLPTT	PVWYGLEPNS
YSDFGGELST	VARAPIDPSR	QNKKGTITDL	DASGGFNSDF
TKSNLTRLLQ	GFFFADAREL	ASTAPINGAA	VAISGVAAST
KTYTVASGGA	AFAANMLVNA	TGFANAANNG	LKTVASSTAT
TVVVNETLID	EAAPPAGVKL	EVVGRQLAAA	DANIAVTSGV
ASLVVTAGDF	TTMPELFPGR	WVFIGGDAAS	NR FANNVGYA
RIKSVSAK AL	VFDDTTFAAA	TETGTGK SIR	LFVGVVIKNE
KNPALIKRRS	YNIERQLGQG	LNGVQAEYLE	GAVANEFTLN
IPQADKLNAD	LTFIACDNTH	RSGDAGDTIK	SGTR IAAPGE
DAYNTSSDIY	R IKMNVLDPA	SSNPAALFGY	VSEANVSINN
NVSPNKAVGI	LGAFDTTAGN	FEVGGSITAY	FTTVAAVKAV
R ANADVGLSV	ISAAK NAGFI	FDIPLLGLGG	GRLNVEKDAP
ITVPLEPAGA	ENPNGYTMLY	EVFSYLPTVA	MPD

BANDA:6 Peso observado: 40 kDa.

Match.	Nombre.	Función Anotada.
1	PaMx_42_ORF_09	-

Probabilidad	Peso molecular teórico	Longitud	Cobertura	Péptidos únicos.
0.9990	40582 Da	364aa	30.21%	9

Péptidos observados:

Posición	Masa	Péptido.
1-8	933.47	MALSDNKR
9-15	1022.55	RLYDISTR
16-24	976.56	LAVYVEGVK
37-44	930.54	DISEVLKK
76-89	1655.88	IYSAYTSQLIEQLK
90-100	1235.60	AFMAADLEVNR
195-202	1018.51	WTVDETLR
203-211	972.49	EIIGEEGAR
212-220	956.50	QGTPSQLAR
276-287	1231.68	FGAGPLPPAHIR
343-356	1752.83	YEADEPLTLDEFRR

MALSDNKR LY	DISTR LAVYV	EGVK VQQSRQ	FNFVLR DISE
VLKK LLGRVR	YKTLDGLSKA	QLNKLVAELR	ESQSK IYSAY
TSQLIEQLK A	FMAADLEVNR	RAWVTGYIEL	DGDSSDEIIS
DEDAIQFLIE	ANDSGANPLF	GIAAITGGDE	RIWSQVTNSP
LPANGLYLLP	FIKTFTTSAQ	ASIESIIRKA	WANR WTVDET
LR EIIGEEGA	R QGTPSQLAR	INNQAASVIH	TAFAHTAAIV
AAGVASAVFS	WYVWFSVMDG	NTTEVCRSRN	RKRYR FGAGP
LPPAHIR CRS	HTAPANTASD	LIDETFYTWL	ARQPLEVQDD
ILGTEGGEAL	RDGKLKASDI	PK YEADEPLT	LDEFRR KIKQ
ILSR			

BANDA:7 Peso observado: 34 kDa.

Match. Nombre. Función Anotada. 1 PaMx_42_ORF_11 -

Probabilidad	Peso molecular teórico	Longitud	Cobertura	Péptidos únicos.
1.0	34761 Da	324aa	75%	19

Péptidos observados:

Posición	Masa	Péptido.
1-22	2500.18	MALSDLAVYSEYAYSSFSEVLR
23 - 55	3420.71	QQIDLFNAATGGAIILQGAAHQGDFSDVAFFAK
65 - 75	1065.51	NAYGSGAVAEKVMK
79-86	897.49	HLVDTSVK
87-95	880.51	VAAGTPPIR
96-102	831.42	LDPGQFR
103 - 146	4517.24	WIQQNPEVAGAAGQQLAVDTMADMLNTGLGATYAALTQVAAVK
147 - 170	2533.11	YDATGNTAPDDGPTWNNLNNGQAK
171 - 190	2271.06	FGDQSSQIAAWIMHSTPMHK
191 - 201	1292.61	LYGNNLNNSER
202 - 217	1825.97	LFTYGTVNVIRDPFGK
218-261	4658.29	LLVMTDSPNLFAAGTPNVYHILGLVPGAVMIGQNNDFDAMEEGK
262 - 269	916.46	TGDENLIR
270-282	1569.76	VYQAEWSYNVGVR
283 - 293	1135.54	GFAWDKGNGGK
289 - 308	2093.98	GNGGKSPTDAALFTSTNWDR
294 - 308	1680.77	SPTDAALFTSTNWDR
309-324	1729.89	YATSEKDLAGVIVEVH

MALSDLAVYS	EYAYSSFSEV	LR QQIDLFNA	ATGGAIILQG
AAHQGDFSDV	AFFAK VAGGL	VRRR NAYGSG	AVAEKVMK HL
VDTSVK VAAG	TPPIR LDPGQ	FR WIQQNPEV	AGAAMGQQLA
VDTMADMLNT	GLGATYAALT	QVAAVK YDAT	GNTAPDDGPT
WNNLNNGQAK	FGDQSSQIAA	WIMHSTPMHK	LYGNNLNNSE
R LFTYGTVNV	IRDPFGK LLV	MTDSPNLFAA	GTPNVYHILG
LVPGAVMIGQ	NNDFDAMEEG	K TGDENLIR V	YQAEWSYNVG
VR GFAWDKGN	GGK SPTDAAL	FTSTNWDR YA	TSEKDLAGVI
VEVH			

PaMx28

BANDA: 6 Peso observado: 55 kDa.

Match.	Nombre.	Función Anotada.
1	PaMx_28_ORF_8	Putative structural protein

Probabilidad	Peso molecular teórico	Longitud	Cobertura	Péptidos únicos.
0.9864	56453 Da	509aa	3.1%	3

Péptidos observados:

Posición	Masa	Péptido.
2-8	742.43	ADGPKKK
435-443	1104.58	KTLLDEMQK

Ν	ADGPKKK AT	VATPSSAYQR	MYPRWRMIDV	LLGGTEAMRD
	AGRDFLPQYE	NETNKNYEAR	LARATLLNMT	EQTLDTIAGK
	PFREQVVLGD	DVPSQIEELT	EDIDMQGNNL	HAFCRSWFRE
	SWGKGLSHVL	VEHPTPEERV	NPETGEPVVR	TLADDREEGL
	RPYWVHVKPE	CLIAAYSMVV	NGREVLTHVR	IRETTVERVG
	WDEVEVTRVR	VLEPGRWELW	APDEKGEEWH	VEDEGTTALG
	YVPLVTFYAG	KRTGLMECKP	PLTDLAHLNV	AHWQSSSDQR
	NVLTVSRFPL	LAASGVPADQ	KVTIGPNNFL	TTEASDGKWY
	YVEHTGAAIK	SGAEDLASLE	DQMATYGAEF	MRKRPGDQTA
	TGRALDSAES	SSYLASTVRD	FQDCVELAMQ	YTADWLGLDE
	GGSVRINADV	DLSEADAAEL	DALLKMRAQR	DISR KTLLDE
	MQK RSVLSDD	FDEEADAELL	AEESANTMGD	MFGGGNGTGG
l	QPGAAQPGKE	EEEDPPSDMP	PSDMPPAQE	

Match.	Nombre.	Función Anotada.
2	PaMx_28_ORF_30	Putative structural protein

Probabilidad	Masa	Longitud	Cobertura	Péptidos únicos.
0.9550	52627 Da	483aa	6.6%	2

Péptidos observados:

Posición	Masa	Péptido.
3-22	2331.17	AALTELYRFVEMGFVDPFAR
11-18	942.42	FVEMGFVD
33-44	1205.61	SGSMAELVVGTR

MS AALTELYR	FVEMGFVDPF	AR NNNLYFVL	DR SGSMAELV
VGTR TRMDIA	KQQLIDVLDR	LLEISVENGI	SIDVGVCSFS
GAASTTEIVR	RGIDATKVEE	LKAWVAALTP	IWEGTAYNYP
MQFARNHFLV	PSPGWRRACF	FITDGVPEPA	SSADAAASLA
ADMIARTGLF	SKAVDNDVSI	YGIAVDLFDT	VQLAKLDNTP
RDGIQSISST	ASQGLYNALL	TPDYEEKLVW	TYTNAPYEVT
YAGEVYAPAA	VQHSEVESKE	DIARANLDIT	FDVYNDAARR
WMKDSIEAIV	TATVWQLHED	DDVSVIWKGR	LTGVRPSGVD
IKLSFDSIFT	SLARPGLGAR	YQRMCRHALY	GRGCKVAKSA
HGVQGVPSAA	AGAVVTVPEA	AGYPDGWFSG	GMIETPDGAL
RFVIGHAGAQ	LTLMRPMESL	IRLFTQQGYG	TSYGMIYGGL
VVKLYPGCDR	SRGTCNSKFN	NLENYGGFDW	IPTRNPFAGS
SIV			

BANDA: 7 Peso observado: 52 kDa.

Match.	Nombre.	Función Anotada.
1	PaMx_28_ORF_30	Putative structural protein.

Probabilidad	Peso Molecular Teórico	Longitud	Cobertura	Péptidos únicos.
0.7708	$52627 \mathrm{\ Da}$	483aa	1.9%	1

Péptidos observados:

Posición	Masa	Péptido.
347-355	1003.50	HALYGRGCK

MSAALTELYR	FVEMGFVDPF	ARNNNLYFVL	DRSGSMAELV
VGTRTRMDIA	KQQLIDVLDR	LLEISVENGI	SIDVGVCSFS
GAASTTEIVR	RGIDATKVEE	LKAWVAALTP	IWEGTAYNYP
MQFARNHFLV	PSPGWRRACF	FITDGVPEPA	SSADAAASLA
ADMIARTGLF	SKAVDNDVSI	YGIAVDLFDT	VQLAKLDNTP
RDGIQSISST	ASQGLYNALL	TPDYEEKLVW	TYTNAPYEVT
YAGEVYAPAA	VQHSEVESKE	DIARANLDIT	FDVYNDAARR
WMKDSIEAIV	TATVWQLHED	DDVSVIWKGR	LTGVRPSGVD
IKLSFDSIFT	SLARPGLGAR	YQRMCR HALY	GRGCK VAKSA
HGVQGVPSAA	AGAVVTVPEA	AGYPDGWFSG	GMIETPDGAL
RFVIGHAGAQ	LTLMRPMESL	IRLFTQQGYG	TSYGMIYGGL
VVKLYPGCDR	SRGTCNSKFN	NLENYGGFDW	IPTRNPFAGS
SIV			

BANDA: 12 Peso observado: 20 kDa.

Match.	Nombre.	Función Anotada.
1	PaMx_28_ORF_38	Hypothetical protein

 $\begin{array}{cccc} \mbox{Probabilidad} & \mbox{Peso Molecular Teórico} & \mbox{Longitud} & \mbox{Cobertura} & \mbox{Péptidos únicos.} \\ 0.7555 & 17333 \mbox{ Da} & 161aa & 4.3 \mbox{\%} & 2 \end{array}$

Péptidos observados:

Posición	Masa	Péptido.
146 - 152	699.37	QGATAPR

MLNLTGLQWK	IGAGILIGVA	TVTVIALSYR	HYTGLVDAKA
ELSAQVATLR	EDVAREKSRA	DALSSAVDRW	DQAAREQARA
LDQLTTAQRE	AGTYARELRD	VLSKHDLGAL	AKRKPGLIEN
RINAGTADAL	RLLERSTEGA	AAAER QGATA	PR TATPRARQ
D			

BANDA: 13 Peso observado: 18 kDa.

Match.	Nombre.	Función Anotada.
1	$PaMx_{28}ORF_{4}$	Putative terminase small subunit

ProbabilidadPeso Molecular TeóricoLongitudCoberturaPéptidos únicos.0.998919183 Da164aa9.8 %1

Péptidos observados:

Posición	Masa	Péptido.
125-140	1918.95	TLLPEDLDHIHAEFNR

PPGPRLRGRD	LRQPGPPPRG	AIRMMGPQAR	VLRSAQRRIV
AHLRATRTQA	KVEPAQGLFN	FRCHENCVQW	VRQRPDEDLE
VVETVYVDNG	EPILHYVVRE	RVTGRLLEVT	LGWRAKQLEY
YPVR TLLPED	LDHIHAEFNR	SLDHWLRAYV	PWWGRALLGI
ERCL			
Match.	Nombre.	Función Anotada.	
--------	----------------	---------------------	
2	PaMx_28_ORF_37	Putative endolysin.	

ProbabilidadPeso Molecular TeóricoLongitudCoberturaPéptidos únicos.0.998918398 Da166aa11.4 %1

Péptidos observados:

Posición	Masa	Péptido.
125-143	2020.96	TLADLGDDLEDEVAGYVAR

MSYVLGNKSR	QNLQGVHPHL	VRVVERAIEL	TAVDFSVHEG
LRTRARQAKL	VAAGASQTMD	SRHLAGGPTG	YGHAVDLVPF
VDFDGDGRSE	LRWDWSLCYR	VAEAVRRASI	ELKVPIRWGG
VWDRTLADLG	DDLEDEVAGY	VARRKAQGKK	AFLDGPHFEL
PSSVYP			

Match.	Nombre.	Función Anotada.
3	PaMx_28_ORF_38	Hypothetical protein

 $\begin{array}{cccc} \mbox{Probabilidad} & \mbox{Peso Molecular Teórico} & \mbox{Longitud} & \mbox{Cobertura} & \mbox{Péptidos únicos.} \\ 0.9985 & 17333 \mbox{ Da} & 161aa & 6.8 \mbox{\%} & 1 \end{array}$

Péptidos observados:

Posición	Masa	Péptido.
40-50	1157.64	AELSAQVATLR

MLNLTGLQWK	IGAGILIGVA	TVTVIALSYR	HYTGLVDAK A
ELSAQVATLR	EDVAREKSRA	DALSSAVDRW	DQAAREQARA
LDQLTTAQRE	AGTYARELRD	VLSKHDLGAL	AKRKPGLIEN
RINAGTADAL	RLLERSTEGA	AAAERQGATA	PRTATPRARQ
D			

BANDA: 14 Peso observado: 16 kDa.

Match.	Nombre.	Función Anotada.
1	PaMx_28_ORF_60	Hypothetical protein

 $\begin{array}{cccc} \mbox{Probabilidad} & \mbox{Peso Molecular Teórico} & \mbox{Longitud} & \mbox{Cobertura} & \mbox{Péptidos únicos.} \\ 0.9472 & 14556 \mbox{ Da} & 131aa & 6.9 \mbox{\%} & 1 \end{array}$

Péptidos observados:

Posición Masa Péptido. 104-112 860.42 ALANGLTSD

MTRCAEHNMT	EPCPLCAQGA	WPLRDLNAVA	DFAGKPVDRP
DGLVPGVRYV	KLSDVVRSVG	RRWQELEVVK	LTALRPIYAT
KNALVREARI	GAIDIGRLER	AAR ALANGLT	SD PDPLVDHY
MRTHEDESS	W		

PaMx25

BANDA: 3 Peso observado: 69 kDa.

Match.	Nombre.	Función Anotada.
1	$PaMx_{25}ORF_{42}$	Putative tail structural protein.

Probabilidad	Peso Molecular Teórico	Longitud	Cobertura	Péptidos únicos
1.0000	77749 Da	725aa	26.2%	16

Péptidos observados:

Posición	Masa	Péptido.
90-98	928.55	LGALVPGFR
99-106	833.48	GVVSAVFR
107-117	1324.68	QVYLGMNPYLK
141-154	1505.78	AAIGQDMNPAHIIR
197-209	1533.83	SVTLEEFIQEVLK
210-219	1157.58	HIDGSLFVDR
299-311	1380.70	QFPGFTNGTIATK
319-333	1531.84	ALSVPLASGTIYANR
351-359	1065.56	YGISQLVMR
360-374	1526.83	VANVELGALDSNVVK
528-542	1488.84	GVLDSVPVVHALGAR
543 - 564	2554.19	VFFPDVYFETDTVEYATGEVAR
567 - 573	742.46	LLPTTAK
574-591	1797.96	GTLAEGSAPVQTVTIQAR
603-613	1276.64	INTQAYPDTVR

VGGSSKSVTV	GYKYYLGMHM	VFCHGPIDKI	IRIDFDDKTA
WTGNATGGQI	TISAENLFGG	QKREGGVSGA	VDIDMGGDAQ
TPNSYLVSK L	GALVPGFRGV	VSAVFRQVYL	GMNPYLK RPS
FWGQRILVRQ	NGIAQWYSAK	AAIGQDMNPA	HIIR ECLTDP
DWGMGYPEAD	VDDTAFQAAA	DQMFSEGMGM	SILWDK SVTL
EEFIQEVLKH	IDGSLFVDR T	SGKFVLKLAR	GGYDVNSLLV
LDESSVDKIS	DFKRNTIGEL	INSVTVVYWD	ASTGKNNSVT
VQDIALAAQQ	$QSVVSTTK \mathbf{QF}$	PGFTNGTIAT	K VAARSLK AL
SVPLASGTIY	ANR KAASLNI	GDVFVLSWPR	YGISQLVMRV
ANVELGALDS	NVVK ISAVED	VFALSSAIYA	PPPPSGWTDP
NNAPSACPYH	CVIEAPFWEL	CQRMGETDAR	SIPTTAGFVV
ATGVRPTSDA	GNAQLLTNPT	NTAYEEAGTV	DFCPTAVLSA
AITPNQTVIP	ISGGIDLDIV	KLNTYAIIDN	ELVVVTSISS
$\operatorname{SSMTVGR} \mathbf{GVL}$	DSVPVVHALG	ARVFFPDVYF	ETDTVEYATG
EVAR IK LLPT	TAKGTLAEGS	APVQTVTIQA	\mathbf{R} SSKPYPPQR
LR INTQAYPD	TVR GDQDITV	AWVHRDRLQQ	TATLVDTEAA
SIGPEANTTY	TCRLLTAAGS	VLVTHAGLTG	VVTDTFTLAE
MGSNYGRLRI	QLWAVRDGIQ	SLQIHDWEFT	RSGYGTGYGY
SYGGA			

BANDA: 4 Peso observado: 56 kDa.

Match.	Nombre.	Función Anotada.
1	$PaMx_{25}ORF_{21}$	Putative portal protein.

Probabilidad	Peso Molecular Teórico	Longitud	Cobertura	Péptidos únicos.
1.0000	56112 Da	517aa	21.1%	8

Péptidos observados:

Posición	Masa	Péptido.
2-9	865.47	ALDSVHPK
103 - 115	1444.79	ATAYGEPLELLLR
103-116	1600.89	ATAYGEPLELLLRR
117 - 126	1157.60	INEEQLVTGR
127 - 138	1277.72	LGLLLDLPVNPD
169-180	1360.74	LNLVVLDESGFR
254 - 269	1677.89	DIVSTPDEPPLLGLGR
314-329	1548.71	TGAGSMIEVEQGGDAK
330-342	1449.72	YIGVNSQGLSEQR
439-446	803.42	TMGAPLSK

M ALDSVHPK Y	SEFKEDWVTM	RDLYKGERAV	KAKGETYLPP
TKGMRLDGMD	SGKPGREAYD	AYKLRAVFHD	YVKEGVEAYI
GLMWQKTPTI	ELPANMEALR	DK ATAYGEPL	ELLLRRINEE
QLVTGRLGLL	LDLPVNPD PT	NPMPYVAMYV	AESIRNWDDG
EADEGEAR LN	LVVLDESGFR	RSTDFEWVSQ	TKYRVLQLGA
KDENEAEGQG	VYQVGVFTNN	DGQSAAYDET	QMVPPQLRGV
TLDKIPFVFV	NTK DIVSTPD	EPPLLGLGR L	ALAVYRGEAD
YRQNLFMQGQ	DTLVVVGGVK	KTDATEDEGT	PLR TGAGSMI
EVEQGGDAKY	IGVNSQGLSE	QR QALENDRK	RAETRSGQLI
NSGGNNTESG	SALQTRIGAQ	TATLNQIAMT	GASALESLLK
ICAQWMGANP	DDVKVTPNLE	FADFEMSGKD	LVDFMTAR TM
GAPLSK KSIH	AMLVDRGVTK	MDFDAEMEEI	GEEDANAPSG
GGTGAGGDPA	LEPGMQGQQG	GQQQQPPQG	GAQGAGA

BANDA: 5 Peso observado: 40 kDa.

Match.	Nombre.	Función Anotada.
1	$PaMx_{25}ORF_{24}$	Putative structural protein.

Probabilidad	Peso Molecular Teórico	Longitud	Cobertura	Péptidos únicos.
1.0000	36932 Da	344aa	48.5%	16

Péptidos observados:

Posición	Masa	Péptido.
1-7	720.36	MASGVTR
8-28	2420.23	IADVVVPEIFSPYVQQMTQEK
34-60	2676.38	SGAIVLDAQLNSALAGGGLTFNEPSFK
61-73	1421.54	DLDNDAENVSTDD
61-82	2332.98	DLDNDAENVSTDDPATDSTPNK
83-92	1086.60	IGTATEIQVR
209-225	1832.90	NNLIDFVSDSVNGNAVR
226-232	802.47	IPTFLGR
233 - 242	1097.57	EVIVDDGVPR
243 - 254	1369.68	SSGVFNTWLFGR
255 - 265	1015.52	GAVRGGMGSPK
259-265	632.30	GGMGSPK
266-288	2426.23	VPTEVDRKPSAGNGGGQDILFNR
273 - 288	1629.82	KPSAGNGGGQDILFNR

MASGVTRIAD	VVVPEIFSPY	VQQMTQEK SR	LIR SGAIVLD
AQLNSALAGG	GLTFNEPSFK	DLDNDAENVS	TDDPATDSTP
NKIGTATEIQ	VR LSRNNSWS	SMDLSGDLAG	ADPMQAIANR
VSDYWTRRQQ	AAFVATLNGV	FADNAAAPTG	TEHVQNDMTH
DVSGASFVDG	VTNFSAESFI	DATATMGDSM	EDLTMVMVHS
IVYARMLK NN	LIDFVSDSVN	GNAVRIPTFL	GREVIVDDGV
PRSSGVFNTW	LFGRGAVRGG	MGSPKVPTEV	DRKPSAGNGG
GQDILFNR TE	WIIHPVGHAY	AGTPPNGGPS	NASTTNNLAH
ADSWKRVFSE	RKQIRIARLI	TREF	

BANDA: 6 Peso observado: 38 kDa.

Match.	Nombre.	Función Anotada.
1	$PaMx_{25}ORF_{37}$	Putative structural protein.

Probabilidad	Peso Molecular Teórico	Longitud	Cobertura	Péptidos únicos.
1.0000	35700 Da	331aa	53.2%	9

Péptidos observados:

Posición	Masa	Péptido.
2-19	2028.98	AYQTGTSSDVNDLLDKFR
20-31	1346.71	LFAIAQGWTANR
46-53	960.45	GSAYFNFR
97-128	3468.67	GTTPNEQSCVLFPLVTTTGPFPAYHFFAPDSK
129-143	1716.84	TLYAEVEITTGSFMR
144-161	1734.81	FGCGSLDLFNPAAPGGGR
199-216	1886.77	GADYSSSNSGYSYGSMVR
239-249	1105.41	MACQGGGCHDK
253-289	3876.07	DYSPNPLNGIGLLLPNIVSLNIGDEYLSPIGSVPGIR
325-331	762.46	GIAYLKV

M AYQTGTSSD	VNDLLDKFRL	FAIAQGWTAN	R WATVGSGRE
LCIQK GSAYF	NFR SWSNETM	LVNGTSTASK	YGITLNGSDG
YAAGNAWDKQ	PGYPVR GTTP	NEQSCVLFPL	VTTTGPFPAY
HFFAPDSKTL	YAEVEITTGS	FMRFGCGSLD	LFNPAAPGGG
R FCYAVCGHH	VTNSTSSTNW	LGADMDNSNY	ALEFVPFR GA
DYSSSNSGYS	YGSMVR AAFG	SFDNWAGSGR	TVATAGLR MA
CQGGGCHDK V	LR DYSPNPLN	GIGLLLPNIV	SLNIGDEYLS
PIGSVPGIR Y	MDMTNYLPGD	EFTIGSDTWK	VFPWYAKGGI
GYNR GIAYLK	\mathbf{V}		

BANDA: 7 Peso observado: 26 kDa.

Match.Nombre.Función Anotada.1PaMx_25_ORF_28Putative structural protein.

 $\begin{array}{cccc} \mbox{Probabilidad} & \mbox{Peso Molecular Teórico} & \mbox{Longitud} & \mbox{Cobertura} & \mbox{Péptidos únicos.} \\ 0.9966 & 26162 \mbox{ Da} & 170 \mbox{aa} & 7.1 \mbox{\%} & 1 \end{array}$

Péptidos observados:

Posición	Masa	Péptido.
113-124	1159.64	VDASGLTVVATK

MAFVVEDGTA	KADATSYVTI	TEADGYFSDR	GVTGWTGADA
VKQSALIKAT	DYIEGRFGQR	FIGSKKTTTQ	ALAWPRTGAA
DFADTDIPVK	LRRACCEYAL	RALTAELAPD	LK VDASGLTV
VATK KKVGPI	ETEFAVPQTG	LGATPMLFRP	YPAADMLLRG
LVYSASQVIR			

A. Apéndice B

PREPARACIÓN DE REACTIVOS Y SOLUCIONES.

A.1. Medios de Cultivo

A exepción de que se indique expresamente lo contrario, los materiales aqui descritos se esterilizaron en autoclave a 15 psi (1.05 kg/cm^2) durante 20 minutos.

Medio LB

Triptona	10 gramos.
Extracto de levadura	5 gramos.
NaCl	10 gramos.

Disolver en agua destilada estéril y ajustar a pH 7.0 con NaOH 1N.

Stab Agar

Bacto Nutrient Broth	10 gramos.
NaCl	8 gramos.
Bacto Agar	6 gramos.

Disolver en agua destilada estéril y colocar 3-4 ml de medio por vial.

$\mathbf{Medio} \mathbf{T} \emptyset$	
Triptona	10 gramos.
NaCl	5 gramos.

Disolver en agua destilada estéril y ajustar pH a 7.2.

Buffer TMG SM

NaCl	10 gramos.
\mathbf{MgSO}_4	8 gramos.
Tris-HCl	6 gramos.

A.2. Soluciones de Diálisis.

Soluciones Stock

TRIS-HCl	0.5 L 2 M.
NaCl	0.5 L 4 M.
MgCl_2	4 M.

Ajustar el pH de la solución TRIS-HCl a 8.0.

Solución de diálisis.

A partir de las soluciones stock:

50 ml.
5.5 ml.
5.5 ml.

Aforar a 2 litros y esterilizar en autoclave.

A.3. Reguladores de Electroforesis.

Buffer pH 8.8 TRIS-HCl

Preparar la solución a 1.5 M y ajustar pH a 8.8.

Buffer pH 6.8 TRIS-HCl

Preparar la solución a 0.5 M y ajustar pH a 6.8.

Buffer de Corrida (10x)	
TRIS	30.3 gramos.
Glicina	142.2 gramos.
SDS	10 gramos.

Buffer de corrida para geles desnaturalizantes. Aforar a 1 L con agua destilada.

Buffer de Carga 1x(Buffer de Laemli)

Glicerol	1 ml.
SDS 10%	2 ml.
β -Mercaptoetanol	0.5 ml.
Azul de bromofenol	0.1 gramos.

Aforar a 10 ml con agua destilada.

Staining BufferAzul brillante de Coomasie R-2500.5 gramos.Metanol250 ml.Ácido acético glacial50 ml.Aforar a 500 ml con agua destilada.

Destaining Buffer

Metanol	100 ml.
Ácido acético glacial	70 ml.

Aforar a 1L con agua destilada.

B. Apéndice C

Especificaciones de Equipo y Material.

B.1. Detalles sobre las soluciones y montaje de gradientes de densidad.

Especificaciones de las soluciones de CsCl para el monaje de gradientes discontinuos.

La lista de valores del índice refractivo nesesario para alcanzar la densidad correspondiente en soluciones de CsCl a $25\,^{\circ}$ C.

CsCl. Peso Molecular = 168.37 gr/mol.

δ	Molaridad	Indice refractivo.
1.0877	0.710	1.3414
1.311	2.492	1.3631
1.513	4.134	1.3822
1.720	5.823	1.4012

Mantener los gradientes en formación a 4 °C para evitar su ruptura.

B.2. Protocolos.

Protocolo para la digestión de proteínas en gel.

- 1. Corte de las bandas de proteínas. Mediante el uso de un bisturí estéril, escindir del gel de acrilamida las bandas de proteínas de interés en torno a su perímetro, seccionar la muestra en piezas mas pequeñas y colocarlas en tubos ependorff estériles.
- Destinción de bandas. Desteñir cada muestra mediante la adición a cada tubo de solución de desteñido Metanol 50 % - Ácido Acético 5 %. Incubación a temperatura ambiente durante 12 horas.
- 3. Lavado. Descartar la solución de desteñido y lavar las muestras con agua desionizada en agitación durante 10 min.
- 4. Incubación en BCA. Incubación de Buffer de Bicarbonato de Amonio 100 mM durante 10 minutos, colocar 100μ l por muestra.
- 5. Deshidratación por tratamiento con Acetonitrilo. Añadir a cada muestra 100μ l de Acetronitrilo al 100% y centrifugar al vacio hasta el secado total de la muestra. Realizar dos rondas de deshidratación.
- 6. Tratamiento con Dithiothreitol. Añadir 100μ l de solución 10 mM de DTT en Buffer de Bicarbonato de Amonio 100 mM e incubar a 56 °C durante 60 minutos.
- 7. Incubación con Iodoacetamida. Descartar la solución exedente de DTT e incubar con Iodoacetamida 10 mM durante 60 minutos a temperatura ambiente.
- 8. Secado al vacío. Centrifugar al vacío las muestras hasta su secado.
- 9. Digestión enzimatica con Tripsina. Añadir 30μl de Tripsina modificada (Grado Espectrometría de Masas) por muestra e incubar durante 45 minutos a 4 °C para permitir su absorción, posteriomente retirar el exeso de tripsina y añadir 100 μl de buffer de Bicarbonato de Amonio 50 mM e incubar a 37.5 °C durante 12 horas.
- 10. Extracción de los péptidos. Recuperar el volumen obtenido tras la incubación con tripsina en tubos nuevos. Añadir 50 μ l de solución de extracción (50% Acetonitrilo- 5%Ácido Fórmico) a los tubos que contienen las pizas de gel y sonicar durante 30 minutos, recuperar el

volumen obtenido tras la sonicación y renovar la solución de extracción. Realizar dos rondas de sonicación-extracción y recuperar el volumen total. Concentrar los extractos en vacío hasta un volumen de 100μ l y almacenar a -20 °C.

11. Desalación de las muestras.¹² Preparar el sistema de desalación para las puntas empacadas con resina C_{18} con las siguientes soluciones:

Tubo	Solución.
1	100% Acetonitrilo.
2	50/50 Acetonitrilo/Agua.
3	100~% Agua.
4	Muestra.
5	100~% Agua.
6	50/50 Acetonitrilo/Agua.
7	75/25 Acetonitrilo/Agua.
8	100% Acetonitrilo.

Una vez preparadas las soluciones necesarias, hacer pasar 10 μ l del contenido del tubo 1 através de la resina durante 10 veces, descartando el volumen tomado en cada ocasión, aplicar este procedimiento hasta llegar al tubo 3. Para el tubo de la muestra, hacer pasar la totalidad del volumen obtenido a través de la resina en por lo menos 5 ocasiones, posteriormente enjuagar la muestra con el tubo 5 haciendo pasar 10 μ l durante 10 veces descartando el volumen tomado en cada ocasión, del tubo 6 al tubo 8 hacer pasar 10 μ l durante 10 ocasiones colectando los péptidos eluidos de la resina en nuevos tubos eppendorf. Almacenar los péptidos extraidos libres de buffer a -20 °C.

¹²El procedimiento y especificaciones pueden variar en función del sistema de desalación elegido.

Referencias

- AHMAD., S. Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous *Pseudomonas spp* notoriously resistant to antibiotics. *Med. Hypotheses.* 58, 4 (2002), 327–331.
- [2] ALEMAYEHU, D., CASEY, P. G., MCAULIFFE, O., GUINANE, C. M., MARTIN, J. G., SHANAHAN, F., COFFEY, A., ROSS, R. P., AND HILL, C. Bacteriophages ØMR299-2 and ØNH-4 can eliminate *Pseudo-monas aeruginosa* in the murine lung and on cystic fibrosis lung airway cells. *mBio 3*, 2 (2012).
- [3] AUSUBEL, F. M. Current Protocols in Molecular Biology. 1994.
- [4] BETTS, A., VASSE, M., KALTZ, O., AND HOCHBERG, M. E. Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen *Pseudomonas aeruginosa* PAO1. *Evol. Appl.* 6, 7 (2013), 1054–1063.
- [5] CADY, K. C., BONDY-DENOMY, J., HEUSSLER, G. E., DAVIDSON, A. R., AND O'TOOLE, G. A. The CRISPR/Cas adaptive immune system of *Pseudomonas aeruginosa* mediates resistance to naturally occurring and engineered phages. *J. Bacteriol.* 194, 21 (2012), 5728–5738.
- [6] CADY, K. C., WHITE, A. S., HAMMOND, J. H., ABENDROTH, M. D., KARTHIKEYAN, R. S. G., LALITHA, P., ZEGANS, M. E., AND O'TOOLE, G. A. Prevalence, conservation and functional analysis of *Yersinia* and *Escherichia* CRISPR regions in clinical *Pseudomonas aeruginosa* isolates. *Microbiol.* 157 (2011), 430–437.
- [7] CARVALHO, C. M., KROPINSKI, A. M., LINGOHR, E. J., SANTOS, S. B., KING, J., AND AZEREDO, J. The genome and proteome of a *Campylobacter coli* bacteriophage vBCcoM -IBB 35 reveal unusual features. *Virol. J. 9*, 35 (2012).
- [8] CASJENS, J. Comparative genomics and evolution of the tailedbacteriophages. *Curr. Opin. Microbiol.* 8, 4 (2005), 451458.
- [9] CEYSSENS, PIETER-JAN, L. R. Bacteriophages of pseudomonas. *Future Microbiology.* 5, 7 (2010), 1041–1055.
- [10] CLOKIE, M. R., MILLARD, A. D., LETAROV, A. V., AND HEAPHY, S. Phages in nature. *Bacteriophage* 1, 1 (2011), 31–45.

- [11] DEBARBIEUX, L., LEDUC, D., MAURA, D., MORELLO, E., CRISCUO-LO, A., GROSSI, O., BALLOY, V., AND TOUQUI, L. Bacteriophages can treat and prevent *Pseudomonas aeruginosa* lung infections. *J. Infect. Dis. 201*, 7 (2010), 1096–1104.
- [12] DEUTSCH, E. W., MENDOZA, L., SHTEYNBERG, D., FARRAH, T., LAM, H., TASMAN, N., SUN, Z., NILSSON, E., PRATT, B., PRAZEN, B., ENG, J. K., MARTIN, D. B., NESVIZHSKII, A. I., AND AEBER-SOLD, R. A guided tour of the trans-proteomic pipeline. *Proteomics 10*, 6 (2010), 1150–1159.
- [13] DOUGLAS, J. Bacteriophages. 1975.
- [14] ESSOH, C., BLOUIN, Y., LOUKOU, G., CABLANMIAN, A., LATHRO, S., KUTTER, E., VU THIEN, H., VERGNAUD, G., AND POURCEL, C. The susceptibility of *Pseudomonas aeruginosa* strains from cystic fibrosis patients to bacteriophages. *PLoS ONE* 8, 4 (2013).
- [15] FU, W., FORSTER, TERRI, MAYER, O., CURTIN, J. J., LEHMAN, S. M., AND DONLAN, R. M. Bacteriophage cocktail for the prevention of biofilm formation by *Pseudomonas aeruginosa* on catheters in an *In Vitro* model system. *Antimicrob. Agent. Chemoth.* 54, 1 (2010), 397– 404.
- [16] GEER, L. Y., MARKEY, S. P., KOWALAK, J. A., WAGNER, L., XU, M., MAYNARD, D. M., YANG, X., SHI, W., AND BRYANT, S. H. Open mass spectrometry search algorithm. *J. Proteome Res.* 3, 5 (2004), 958–964.
- [17] GLAZKO, G., MAKARENKOV, V., LIU, J., AND MUSHEGIAN, A. Evolutionary history of bacteriophages with double-stranded dna genomes. *Biol. Direct* 2, 1 (2007), 36.
- [18] HÄUSER, R., SABRI, M., MOINEAU, S., AND UETZ, P. The proteome and interactome of *Streptococcus pneumoniae* phage Cp-1. J. Bacteriol. 193, 12 (2011), 3135–3138.
- [19] HURLEY, M. N., MIGUEL, C., AND SMYTH, A. R. Novel approaches to the treatment of *Pseudomonas aeruginosa* infections in cystic fibrosis. *Eur. Respir. J.* 40, 4 (2012), 1014–1023.
- [20] HYMAN, P., AND ABEDON, S. T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 70 (2010), 217–248.

- [21] KARUMIDZE, N., THOMAS, J. A., KVATADZE, N., GODERDZISHVI-LI, M., HAKALA, K. W., WEINTRAUB, S. T., ALAVIDZE, Z., AND HARDIES, S. C. Characterization of lytic *Pseudomonas aeruginosa* bacteriophages via biological properties and genomic sequences. *Appl. Microbiol. Biotechnol.* 94 (2012), 1609–1617.
- [22] KROPINSKI, A. M., ARUTYUNOV, D., FOSS, M., CUNNINGHAM, A., DING, W., SINGH, A., PAVLOV, A. R., HENRY, M., EVOY, S., KELLY, J., AND SZYMANSKI, C. M. The genome and proteome of *Campylobacter jejuni* bacteriophage NCTC 12673. *Appl. Envirion. Microbiol.* 77, 23 (2011), 8265–8271.
- [23] KROPINSKI, A. M., VAN DEN BOSSCHE, A., LAVIGNE, R., NOBEN, J.-P., BABINGER, P., AND SCHMITT, R. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting *Agrobacterium sp* H13-3. *Virol. J. 9*, 102 (2012).
- [24] KRYLOV, V., SHABUROVA, O., KRYLOV, S., AND PLETENEVA, E. A genetic approach to the development of new therapeutic phages to fight *Pseudomonas Aeruginosa* in wound infections. *Viruses 5*, 1 (2012), 15– 53.
- [25] KWAN, T., LIU, J., DUBOW, M., GROS, P., AND PELLETIER, J. The complete genoma an proteomes of 27 Saphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. 102, 14 (2005), 5174–5179.
- [26] KWAN, T., LIU, J., DUBOW, M., GROS, P., AND PELLETIER, J. Comparative genomic analysis of 18 *Pseudomonas aeruginosa* bacteriophages. J. Bacteriol. 188, 3 (2006), 1184–1187.
- [27] LAVIGNE, R., DARIUS, P., SUMMER, E., SETO, D., MAHADEVAN, P., NILSSON, A., ACKERMANN, H., AND KROPINSKI, A. Classification of *Myoviridae* bacteriophages using protein sequence similarity. *BMC Microbiol.* 9, 1 (2009), 224.
- [28] LE, S., HE, X., TAN, Y., HUANG, G., ZHANG, L., LUX, R., SHI, W., AND HU, F. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of *Pseudomonas aeruginosa* bacteriophages PaP1 and JG004. *PLoS ONE* 8, 7 (2013).
- [29] LIAO, K., LEHMAN, S., TWEARDY, D., DONLAN, R., AND TRAUT-NER, B. Bacteriophages are synergistic with bacterial interference for the prevention of *Pseudomonas aeruginosa* biofilm formation on urinary catheters. J. Appl. Microbiol. 113, 6 (2012), 1530–1539.

- [30] LU, S., LE, S., TAN, Y., ZHU, J., LI, M., RAO, X., ZOU, L., LI, S., WANG, J., JIN, X., HUANG, G., ZHANG, L., ZHAO, X., AND HU, F. Genomic and proteomic analyses of the terminally redundant genome of the *Pseudomonas aeruginosa* phage PaP1: Establishment of genus PaP1-like phages. *PLoS ONE 8*, 5 (2013).
- [31] LYNCH, K. H., PAUL, S., AND DENNIS, J. J. Comparative analysis of two phenotypically-similar but genomically-distinct *Burkholderia cenocepacia*-specific bacteriophages. *BMC Genomics* 13, 223 (2012).
- [32] MARTÍNEZ-PEÑAFIEL, E., FERNÁNDEZ-RAMÍREZ, F., ISHIDA, C., REYES-CORTÉS, R., SEPÚLVEDA-ROBLES, O., GUARNEROS-PEÑA, G., BERMÚDEZ-CRUZ, R. M., AND KAMEYAMA, L. Overexpression of Ipe protein from the coliphage mEp021 induces pleiotropic effects involving haemolysis by HlyE-containing vesicles and cell death. *Biochimie 94*, 6 (2012), 1262–1273.
- [33] MCNAIR, K., BAILEY, B. A., AND EDWARDS, R. A. PHACTS, a computational approach to classifying the lifestyle of phages. *Bioinformatics* 28, 5 (2012), 614–618.
- [34] MCVAY, C. S., VELÁSQUEZ, M., AND FRALICK, J. A. Phage therapy of *Pseudomonas aeruginosa* infection in a mouse burn wound model. *Antimicrob.Agen. Chemoth.* 51, 6 (2007), 1934–1938.
- [35] MIZUNO, C. M., RODRIGUEZ-VALERA, F., KIMES, N. E., AND GHAI, R. Expanding the marine virosphere using metagenomics. *PLoS Genet* 9, 12 (12 2013), e1003987.
- [36] NGUYEN., H. M. Functions of Bacteriophage T7 Transcription Terminator. PhD thesis, Korean Advanced Institute of Science and Technology., 2013.
- [37] OLIVEIRA, H., MELO, L. D. R., SANTOS, S. B., NÓBREGA, F. L., FERREIRA, E. C., CERCA, N., AZEREDO, J., AND KLUSKENS, L. D. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 87, 8 (2013), 4558–4570.
- [38] PIRNAY, J.-P., DE VOS, D., VERBEKEN, G., MERABISHVILI, M., CHANISHVILI, N., VANEECHOUTTE, M., ZIZI, M., LAIRE, G., LAVIG-NE, R., HUYS, I., VAN DEN MOOTER, G., BUCKLING, A., DEBAR-BIEUX, L., POUILOT, F., AZEREDO, J., KUTTER, E., DUBLANCHET, A., GÓRSKI, A., AND ADAMIA, R. The phage therapy paradigm: *Prêt-à-Porter* or *Sur-mesure? Pharm. Res.* 28, 4 (2011), 934–937.

- [39] PLETENEVA, E. A., SHABUROVA, O. V., SYKILINDA, N. N., MI-ROSHNIKOV, K. A., KRYLOV, S. V., V, M. V., AND KRYLOV, V. N. Study of the diversity in a group of phages of *Pseudomonas aerugino*sa species PB1 (*Myoviridae*) and their behavior in adsorbtion-resistant bacterial mutants. *Genetika*. 44, 2 (2008), 150–158.
- [40] RAKHUBA, D. V., KOLOMIETS, E. I., DEY, E. S., AND NOVIK, G. I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. *Pol. J. Microbiol.* 59, 3 (2010), 145–155.
- [41] ROHWER, F., AND EDWARDS, R. The phage proteomic tree: a genomebased taxonomy for phage. J. Bacteriol. 184, 16 (2002), 4529–4535.
- [42] SANTOS, S. B., KROPINSKI, A. M., CEYSSENS, P.-J., ACKERMANN, H. W., VILLEGAS, A., LAVINGE, R., KRYLOV, V. N., CARVALHO, C. M., FERREIRA, E. C., AND AZEREDO, J. Genomic and proteomic caracterization of the broad host range *Sallmonella* phage PVP-SE1: Creation of new phage genus. J. Virol. 85, 21 (2011), 11265–11273.
- [43] SCANLAN, P. D., AND BUCKLING., A. Co-evolution with lytic phage selects for the mucoid phenotype of *Pseudomonas fluorescens* SBW25. *ISME J.* 6 (2012), 1148–1158.
- [44] SEPÚLVEDA-ROBLES, O., KAMEYAMA, L., AND GUARNEROS, G. High diversity and novel species of *Pseudomonas aeruginosa* bacteriophages. *Appl. Environ. Microbiol.* 78, 12 (2012), 4510–4515.
- [45] SKURNIK, M., HYYTIINEN, H. J., HAPPONEN, L. J., KILJUNEN, S., DATTA, N., MATTINEN, L., WILLIAMSON, K., KRISTO, P., SZELI-GA, M., KALIN-MNTTRI, L., AHOLA-IIVARINEN, E., KALKKINEN, N., AND BUTCHER, S. J. Characterization of the genome, proteome, and structure of yersiniophage ØR1-37. J. Virol. 86, 23 (2012), 12625– 12642.
- [46] STERN, A., AND SOREK, R. The phage-host arms race: Shaping the evolution of microbes. *Bioessays* 33, 1 (2011), 43–51.
- [47] STEWART, R. M. K., WIEHLMANN, L., ASHELFORD, K. E., PRES-TON, S. J., FRIMMERSDORF, E., CAMPBELL, B. J., NEAL, T. J., HALL, N., TUFT, S., KAYE, S. B., AND WINSTANLEY, C. Genetic characterization indicates that a specific subpopulation of *Pseudomonas aeruginosa* is associated with keratitis infections. J. Clin. Microbiol. 49, 3 (2011), 993–1003.

- [48] VOLOZHANTSEV, N. V., OAKLEY, B. B., MORALES, C. A., VEREV-KIN, V. V., BANNOV, V. A., KRASILNIKOVA, V. M., POPOVA, A. V., ZHILENKOV, E. L., GARRISH, J. K., SCHEGG, K. M., WOOLSEY, R., QUILICI, D. R., LINE, J. E., HIETT, K. L., SIRAGUSA, G. R., SVE-TOCH, E. A., AND SEAL, B. S. Molecular characterization of *Podoviral* bacteriophages virulent for *Clostridium perfringens* and their comparison with members of the *Picovirinae*. *PLoS ONE* 7, 5 (2012).
- [49] YOUNG, J., DILL, B., PAN, C., HETTICH, R., BANFIELD, J., SHAH, M., FREMAUX, C., HORVATH, P., BARRANGOU, R., AND VERBERK-MOES, N. C. Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in *Streptococcus thermophilus*. *PLoS ONE* 7, 5 (2012).
- [50] ZEHR, E., TABATABAI, L., AND BAYLES, D. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting *Haemophilus parasuis*. *BMC Genomics* 13, 331 (2012).