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cisco González Acuña, Jesús González y Jacob Mosovoy. Gracias por los comentarios, las
sugerencias y las correcciones que enriquecieron esta tesis.

Agradezco al CONACyT por otorgarme la beca para realizar mis estudios de Docto-
rado.

Investigación realizada gracias al Programa de Apoyo a Proyectos de Investigación
e Innovación Tecnológica (PAPIIT) de la UNAM por medio de los proyectos IN106614
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Introducción

Nuestro principal objetivo es estudiar invariantes de 3-variedades hiperbólicas de volumen
finito M . Estas variedades son cocientes del espacio hiperbólico H3 por un subgrupo
discreto y libre de torsión Γ del grupo PSL2(C) de isometŕıas de H3 que preservan la
orientación. El espacio H3 es el cubriente universal de M ya que H3 es contraible; más
aún, el grupo fundamental π1(M) es Γ por lo que M = BΓ es el espacio clasificante de Γ.
A tales variedades hiperbólicas les podemos asociar una representación ρ̄ : Γ→ PSL2(C)
inducida por la inclusión. Denotemos por Ḡ al grupo PSL2(C). La representación ρ̄ es
canónica salvo equivalencia a la que le corresponde una aplicación Bρ : BΓ→ BḠ, donde
BḠ es el espacio clasificante de Ḡ. En el caso en que M es cerrada y orientada, hay un
invariante [M ] bien conocido de M en el grupo H3(PSL2(C);Z), dado por la imagen de
su clase fundamental bajo el homomorfismo inducido por Bρ̄ en homoloǵıa.

Otro invariante bien conocido para las 3-variedades hiperbólica de volumen finito, fue
definido por Neumann y Yang [30]. Este invariante está en el pre-grupo de Bloch P(C)
generado por clases de congruencia de tetraedros ideales y cierta relación. El pre-grupo
de Bloch está relacionado con PSL2(C) en la siguiente sucesión exacta

0 // Q/Z // H3(PSL2(C);Z) σ // P(C) ν // ∧2
ZC // H2(PSL2(C);Z) // 0,

El núcleo de ν es el grupo de Bloch B(C). Por lo que la sucesión se reduce a

0 // Q/Z // H3(PSL2(C);Z) // B(C) // 0,

estas sucesiones se deben a Bloch y Wigner. SiM es no compacta y tiene una triangulación
ideal, se puede definir un elemento en el grupo de Bloch B(C). Neumann y Yang probaron
que este elemento no depende de la triangulación, por lo que es un invariante de M que se
conoce como el invariante de Bloch β(M). No se sabe si toda 3-variedad hiperbólica tiene
una triangulación ideal, pero todas tienen una triangulación de grado 1, que es suficiente
para definir β(M) incluso en el caso en que M sea compacta.

En el caso en que M es una variedad de volumen finito no compacta, también tenemos
un invariante en H3(PSL2(C);Z): Neumann introdujo el grupo extendido de Bloch B̂(C)
como una generalización del grupo de Bloch B(C) ([28], [29]). Neumann da la definición
del grupo extendido de Bloch para resolver la discrepancia Q/Z en la sucesión exacta

de Bloch–Wigner. El teorema principal de Neumann en este contexto es que B̂(C) ∼=
H3(PSL2(C);Z). Neumann prueba que la sucesión

0 // H3(PSL2(C);Z) // H3(PSL2(C), P̄ ;Z) // H2(P̄ ;Z) // 0

vii
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se escinde, donde P̄ =
(

1 b
0 1

)
, b ∈ C. Con esto, Neumann da un invariante para una

3-variedad hiperbólica M en B̂(C) que generaliza al invariante de Bloch β(M), en el
sentido de que este nuevo invariante es mandado a β(M) ∈ B(M) a través de un ho-

momorfismo B̂(C) → B(C) dado por el mismo Neumann. Zickert [43] también da un

invariante en B̂(C): Zicker define una clase F (M) en la homoloǵıa relativa de grupos
de Takasu H3(Ḡ, P̄ ;Z) := H3(BḠ,BP̄ ;Z). Esta clase F (M) depende de la elección de

una “decoración”. Zickert dio un homomorfismo H3(PSL2(C), P̄ ;Z)→ B̂(C) que escinde
a la sucesión de Neumann, y bajo el cual las clases, asociadas a las diferentes decora-
ciones, van a un mismo elemento [M ]PSL ∈ B̂(C) ∼= H3(PSL2(C);Z). En [29], Neumann
también introduce el grupo más extendido de Bloch EB(C) y hace la pregunta de la
relación de éste con H3(SL2(C);Z); Dupont, Goette y Zickert ([12], [14]) prueban que
H3(SL2(C);Z) ∼= EB(C).

Otra manera de construir invariantes en el caso no compacto, es la de Cisneros-Molina
y Jones [7]. Ellos usaron que tales variedades no compactas M tienen el mismo tipo de
homotoṕıa que una variedad M0 con frontera ∂M0; esta variedad tiene clase fundamental
relativa a la frontera. Por otro lado, Cisneros-Molina y Jones consideraron el espacio
BF(B̄)(Ḡ) que es el espacio clasificante para la familia generada por el subgrupo B̄ =(
a b
0 a−1

)
donde a ∈ C∗ y b ∈ C. Se puede dar una aplicación M0/∂M0 → BF(B̄)(Ḡ),

con lo que se tiene una situación similar al caso en que M es cerrada: la aplicación
induce un homomorfismo entre H3(M0, ∂M0;Z) y H3(BF(B̄)(Ḡ);Z). Aśı pues, la imagen
de la clase fundamental relativa es un invariante para M al que llamamos βB(M), como
H3(BF(B̄)(Ḡ);Z) ∼= P(C), Cisneros-Molina y Jones probaron que βB̄(M) es el invariante
de Bloch β(M). El invariante βB̄(M) es homotópico, esto prueba que β(M) no depende
de ninguna triangulación.

Siguiendo la idea de Cisneros-Molina y Jones, en esta tesis definimos el invariante
βP (M) asociado a la variedad no compacta, orientada y de volumen finito M . Sólo hay que
remplazar B̄ por P̄ en dicha construcción para obtener una aplicación M0/∂0 → BF(P̄ )(Ḡ).
Aśı, βP̄ (M) es la imagen de la clase fundamental relativa de M0 en H3(BF(P̄ )(Ḡ);Z).

En este trabajo, probamos que la homoloǵıa simplicial H∗(BF(H)(G);Z) es isomorfa
a la homoloǵıa relativa de grupos de Adamson H∗([G : H];Z), de esta manera podemos
hacer cálculos algebraicos o topológicos según nos convenga. En 1954, en el art́ıculo
de Adamson [1] se define la cohomoloǵıa relativa de grupos Hn([G : H]). El art́ıculo
de Hochschild [18] interpreta la teoŕıa de Adamson en términos de álgebra homológica
relativa y también define la correspondiente teoŕıa de homoloǵıa Hn ([G : H]). En la
literatura, hay muchos art́ıculos relacionados con esta cohomoloǵıa relativa, por ejemplo,
[34], [35], [5], [15], mientras que la correspondiente teoŕıa de homoloǵıa es tratada en [26],
[17], [27].

La homoloǵıa relativa de Adamson H∗([G : H];Z) no es la misma que la homoloǵıa de
Takasu H∗(G,H;Z), como probamos en esta tesis. La clase fundamental de Zickert F (M)
está definido en la homoloǵıa relativa de Takasu H3(Ḡ, P̄ ;Z). En 1954, Auslander presentó
su tesis doctoral [4] donde define la cohomoloǵıa relativa de grupos Hn(G,H). Después,
Takasu en [37] y [38] da respuesta al problema 22 de Massey del art́ıculo [24]. Takasu define
la cohomoloǵıa relativa de grupos que ya hab́ıa dado Auslander y define la correspondiente
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teoŕıa de homoloǵıa. También en la literatura hay muchos art́ıculos relacionados con esta
cohomoloǵıa relativa, por ejemplo, [32], [22], [19] pero, hasta donde tenemos conocimiento,
no hay más art́ıculos acerca de esta teoŕıa de homoloǵıa y cohomoloǵıa relativa. Udrescu
en su art́ıculo [42] da axiomas para las homoloǵıas relativas de Adamson y Takasu. Aunque
las homoloǵıas relativas de Adamson y Takasu no son iguales, éstas son comparables por
medio de un homomorfismo que hemos dado. Más aun, demostramos que en el caso
de que H sea un subgrupo malnormal de G, las homoloǵıas coinciden. Construimos
expĺıcitamente el homomorfismo entre H3(Ḡ, P̄ ;Z) y H3([Ḡ : P̄ ];Z); a través de este
homomorfismo, la clase fundamental F (M) de M , definida por Zickert, es mandada al
invariante βP̄ (M). Todas las diferentes clases de Zickert se aplican en βP̄ (M). La clase
F (M) se puede calcular por métodos cumputacionales, creemos que el invariante βP̄ (M)
también se puede calcular por estos métodos y que seŕıa más eficiente pues requiere
demenos parámetros que la clase F (M).

Puesto que P̂(C) ∼= H3([Ḡ : B̄];Z), conjeturamos que el pre-grupo extendido de Bloch

P̂(C) es isomorfo a H3([Ḡ : P̄ ];Z). Como primer paso para resolver la conjetura, hemos
estudiado la sucesión espectral de una pareja (G,H) formada por un grupo y un subgrupo.
Dicha sucesión tiene la forma

E2
p,q = Hp(BF(H)(G);Hq)⇒ Hp+q(G;Z),

donde Hq = {Hq (Gσ)} y Gσ es el grupo de isotroṕıa de un simplejo σ ⊂ EF(H)(G) que
representa a un simplejo en BF(H)(G), por lo que Hq es un “sistema local de coeficientes”.
En particular, cuando el subgrupo H es normal, la sucesión espectral de la pareja toma
la forma de la sucesión espectral de Lyndon–Hochschild–Serre, es decir,

E2
p,q = Hp(G/H;Hq(H;Z))⇒ Hp+q(G;Z). (1)

La demostración de (1) , que presentamos en este trabajo, es distinta a las existentes al
menos hasta donde tenemos conocimiento.

Como trabajo futuro, queremos demostrar la conjetura por medio de la sucesión es-
pectral de la pareja (Ḡ, P̄ ).

En resumen, nuestras principales aportaciones son:

• Definimos el invariante βP̄ (M) en la homoloǵıa relativa de grupos de Adamoson
H3([G : H];Z).

• En el caso de la homoloǵıa relativa de grupos de Adamson, dimos las pruebas
expĺıcitas a los enunciados de Hochschild en [18], y dimos resultados originales que
complementan los dados en ese art́ıculo.

• Probamos que la homoloǵıa relativa de grupos de Adamson, definida de manera
algebraica por el mismo Adamson, es isomorfa a la homoloǵıa simplicial de un
espacio clasificante para familias.

• En la literatura, muchos autores trabajan con homoloǵıa relativa sin dar crédito
a los trabajos previos porque desconocen la relación entre las teoŕıas, hasta donde
sabemos, éste es el primer tratado que establece cuáles trabajos fuero pensandos en
la homoloǵıa relativa de grupos de Adamson y cuales en la de Takasu.
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• Por primera vez (también hasta donde sabemos), damos relaciones entre las dos
homoloǵıas relativas: probamos, por medio de ejemplos, que las homoloǵıa relativa
de grupos de Adamson y de Takasu no son iguales, aun aśı, dimos un homomorfismo
expĺıcito entre ellas, probamos que siempre H1(G,H;Z) ∼= H1([G : H];Z) y que,
cuando H es malnormal, las homoloǵıas relativas coinciden.

• Las relaciones previas, permiten observar que el invariante de Bloch está definido en
la homoloǵıa relativa de Adamson H3([Ḡ : B̄];Z), que la clase de Zickert F (M) está
definida en la homoloǵıa relativa de Takasu y que el invariante βP̄ (M) ∈ H3([Ḡ :
P̄ ];Z) es claramente diferente a F (M). Es importante hacer notar que βP̄ (M) está
bien definido y de manera natural, mientras que F (M) no está bien definido y
su construcción es complicada; por ello, es importante el estudio de la homoloǵıa
relativa de grupos de Adamson que se teńıa en el olvido.

• Como caso especial de la sucesión espectral de homoloǵıa G-equivariante, hemos
dado una sucesión espectral que nos permitió demostrar la sucesión espectral de
Lyndon–Hochschild–Serre.



Introduction

Our main goal is to study invariants of hyperbolic 3-manifolds of finite volume M . These
manifolds are quotients of the hyperbolic space H3 by a discrete and torsion freee subgroup
Γ of the preserving orientation isometries group PSL2(C) of H3. The space H3 is the
universal cover of M since H3 is contractible; even more, the fundamental group π1(M)
is Γ so M = BΓ is the classifying space of Γ. We can associate a representation ρ̄ : Γ →
PSL2(C) to such manifolds which is induced by the inclusion. Denote by Ḡ the group
PSL2(C). The representation ρ̄ is canonical upto equivalence and it is corresponding to an
application Bρ : BΓ→ BḠ, where BḠ is the classifying space of Ḡ. In the case when M is
closed and oriented, there is a well defined invariant [M ] of M that lies in H3(PSL2(C);Z),
given by the image of the fundamental class under the induced homomorphism Bρ̄ in
homology.

Another well known invariant of hyperbolic 3-manifolds is the Bloch invariant β(M)
defined by Neumann and Yang [30]. This invariant lies in the pre-Bloch group P(C)
generated by congruence classes of ideal thetrahedra under a relation. The pre-Bloch
group is related with PSL2(C) in the following exact sequence

0 // Q/Z // H3(PSL2(C);Z) σ // P(C) ν // ∧2
ZC // H2(PSL2(C);Z) // 0,

The kernel of ν is the Bloch group B(C). Therefore the exact sequence turn into

0 // Q/Z // H3(PSL2(C);Z) // B(C) // 0,

Exactness of this sequence was proved by Bloch and Wigner. If M has a ideal trian-
gulation, Neumann and Yang give an element in B(C). They proved that this element
does not depend on the ideal triangulation. Then it is an invariant of M called the Bloch
invariant β(M). It is not know if all manifolds have an ideal triangulation, but all of them
have a 1-grade triangulation that is sufficient to define β(M) even if M is compact.

When M is a non compact manifold of finite volume, we also have an invariant in
H3(PSL2(C);Z): Neumann introduced the extend Bloch group B̂(C) as a generalization
of the Bloch group B(C) ([28], [29]). Neumann gives the definition of the extend Bloch
group to resolve the discrepancy Q/Z in the Bloch–Wigner exact sequence. The main

theorem of Neumann, in this context, is that B̂(C) ∼= H3(PSL2(C);Z). Neumann proves
that the exact sequence

0 // H3(PSL2(C);Z) // H3(PSL2(C), P̄ ;Z) // H3(P̄ ;Z) // 0

xi
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splits, P̄ =
(

1 b
0 1

)
, b ∈ C. Neumann gave an invariant of hyperbolic 3-manifold M in

B̂(C) which generalize the Bloch invariant β(M), in the sense that this new invariant

is being sent to β(M) ∈ B(M) through a homomorphism to B̂(C) → B(C) given by
Neumann himself. Zickert [43] constructs a class F (M) which lies in H3(Ḡ, P̄ ;Z) :=
H3(BḠ,BP̄ ;Z). The class F (M) depends on an election of a “decoration”. Also Zickert
gave an splitting homomorphism H3(PSL2(C), P̄ ;Z)→ H3(PSL2(C);Z) for the sequence
of Neumann under which the classes, associated to the diferent decorations, are applyed
to the same element [M ]PSL ∈ H3(PSL2(C);Z). In [29], Neumann also introduces the
more extend Bloch group EB(C) and poses the question of the relationship of this group
with H3(SL2(C);Z); Dupont, Goette and Zickert ([12], [14]) prove that H3(SL2(C);Z) ∼=
EB(C).

Other way to construct invariants in the non compact case, is given by Cisneros-
Molina and Jones [7]. They used that such a non compact manifold M has the same
homotopy type of a manifold M0 with boundary ∂M0; this manifold has a relative fun-
damental class to the boundary. On the other hand, Cisneros-Molina and Jones consider
the space BF(B̄)(Ḡ) which is the classifying space of the family generated by the sub-

group B̄ =
(
a b
0 a−1

)
where a ∈ C∗ and b ∈ C. It is possible to give an application

M0/∂0 → BF(B̄)(Ḡ). We get a similar situation to the closed case: The aplication in-
duces an homomorphism between H3(M0, ∂M0;Z) and H3(BF(B̄)(Ḡ);Z). Therefore, the
image of the relative fundamental class gives an invariant for M that we denote by βB(M),
since H3(BF(B̄)(Ḡ);Z) ∼= P(C), Cisneros-Molina and Jones prove that βB̄(M) is the Bloch
invariant β(M).

Following the idea of Cisneros-Molina and Jones, in this thesis we define the invariant
βP (M) associated to a non compacta 3-manifold of finite volume M . We only remplace
B̄ by P̄ in such construction to obtain an aplication M0/∂0 → BF(P̄ )(Ḡ). So, βP̄ (M) is
the image of the relative fundamental class of M0 in H3(BF(P̄ )(Ḡ);Z).

In this research work, we prove that simplicial homology H∗(BF(H)(G);Z) is isomorphic
to the Adamson relative gorup homology H∗([G : H];Z). In 1954, in the article of
Adamson [1], he defines the relative group cohomology Hn([G : H];Z). In the article [18],
Hochschild interprets the theory of Adamson in terms of relative homological algebra and
also define the corresponding theory of homology Hn([G : H];Z). In the literature there
are many articles relationed with this relative cohomology, for instance, [34], [35], [5], [15],
while the corresponding homology theory is studied in [26], [17], [27].

The Adamson relative group homology H∗([G : H];Z) is not the same as the Takasu
relative group homology H∗(G,H;Z) as we prove in this thesis. The class of Zickert F (M)
lies in the Takasu relative group homology H3(Ḡ, P̄ ;Z). In 1954, Auslander presented his
PhD thesis [4] where he defines the relative group cohomology Hn(G,H;Z). Before,
Takasu in [37] and [38] gives an answer to the problem 22 of Massey of the article [24].
Takasu defines the relative goup cohomology that already Auslander has defined and he
defines the corresponding homology theory. Also in the literature there are many articles
relationed with this relative cohomology, for instance, [32], [22], [19], but there are not
more articles about the relative homology and cohomology theory, as far as we known.
Udrescu in his article [42] gives axioms for Adamson and Takasu relative homologies.
Even if the Adamson and Takasu relative group homologies are not equal, these are



xiii

comparable through a homomorphism that we have given; even more, we have proved
that, in the case of H being a malnormal subgroup of G, the relative homologies agree.
We construct an explicit homomorphism between H3(Ḡ, P̄ ;Z) and H3([Ḡ : P̄ ];Z); through
this homomorphism, all classes F (M) of M are sent to the invariant βP̄ (M). The class
F (M) can be computed by a computational way, we believe that βP̄ (M) too, but we
expect that it will be more efficient because the invariant βP̄ (M) has less parameters.

Since P̂(C) ∼= H3([Ḡ : B̄];Z), we conjeture that extended pre-Bloch group P̂(C) is
isomorphic to H3([Ḡ : P̄ ];Z). As a first step to resolve the conjeture, we have studied the
spectral sequence of a pair (G,H) of a group and a subgroup. Such spectral sequence has
the form

E2
p,q = Hp(BF(H)(G);Hq)⇒ Hp+q(G;Z),

where Hq = {Hq (Gσ)} and Gσ is the isotropy group of a simplex σ ⊂ EF(H)(G) rep-
resented by a simplex in BF(H)(G), for this reason Hq is consider as a “local coefficient
system.” In particular, when H is normal, the spectral sequence of the pair has the form
of the Lyndon–Hochschild–Serre spectral sequence, i.e.,

E2
p,q = Hp(G/H;Hq(H;Z))⇒ Hp+q(G;Z). (2)

The proof of (2), in this thesis, is different to the other in the literature. For future work,
we expect that the conjeture is resolved if we use the pair (Ḡ, P̄ ) in the corresponding
spectral sequence.

In summary, our main apportations are:

• We defined the invariant βP̄ (M) in the Adamoson relative group homology H3([G :
H];Z).

• In the Adamson relative group homology, we gave explicit proofs of the propositions
of Hochschild in [18], and we gave originals results that complement the given in
this article.

• We proved that the Adamson relative group homology, defined algebraically by
Adamson himself, is isomorphic to the simplicial homology of a classifying space for
a family of a subgroup.

• In the literature, there are many authors which work with relative homology, they
did not give credit to others because they did not know the relation between both
theories. As far as we know, this work is the first one that establish what works was
done with the Adamson relative group homology and what with Takasu one.

• Also it is the first time (as far as we know), that relations are given between both
relative homologies: We proved, by examples, that the Adamson and Takasu relative
group homologies are no equal, however, we gave a explicit homomorphism between
them, we proved that always H1(G,H;Z) ∼= H1([G : H];Z) and, when H is a
malnormal subgroup, the relative homologies agree.
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• The previous relations, allow us to see that the Bloch invariant is defined in the
Adamson relative group homology H3([Ḡ : B̄];Z), the Zickert class F (M) lies in
the Takasu relative group homology and βP̄ (M) ∈ H3([Ḡ : P̄ ];Z) is clearly diferent
invariant to F (M). It is important to note that βP̄ (M) is well defined and it is
defined in a natural way, while F (M) is not well defined and has a more complicated
construction; for this reason the study of the Adamson relative group homology is
important.

• As special case of the spectral sequence of G-equivariant homology, we have given
an spectral sequence that allow us to give a proof of the Lyndon–Hochschild–Serre
spectral sequence.



CHAPTER 1.

Preliminaries: Homology of a Group

In this chapter we shall give different definitions for the homology of a group. We will
give the definition of chain complex, Tor functor, and classifying space. We introduce
classical results of this theory in order to give sufficient preliminaries for this thesis.

Since this chapter is classical theory, we do not give proofs of most results. In the
successive chapters we will generalize these concepts which included homology of a group
as a particular case.

1.1. Homology

Let Λ be a ring, let {Cn}n∈Z be a family of Λ-modules and let {∂n : Cn → Cn−1}n∈Z be a
family of homomorphisms of Λ-modules such that ∂n◦∂n+1 = 0. We call C∗ = {Cn, ∂n}n∈Z
a chain complex over Λ and we write

C∗ : · · · // Cn+1
∂n+1 // Cn

∂n // Cn−1
// · · · .

We call ∂n the boundary homomorphism.
Let C∗ = {Cn, ∂n} and D∗ = {Dn, ∂

′
n} be two chain complexes. A chain homo-

morphism ϕ : C∗ → D∗ is a family of Λ-homomorphisms {ϕn : Cn → Dn} such that the
following squares commute:

C∗ :

ϕ

��

· · · // Cn+1

ϕn+1

��

∂n+1 // Cn

ϕn

��

∂n // Cn−1

ϕn−1

��

// · · ·

D∗ : · · · // Dn+1

∂′n+1 // Dn
∂′n // Dn−1

// · · ·

Let C∗ = {Cn, ∂n} be a chain complex over Λ. The n-th homology group of C∗
denoted by Hn (C∗) is defined by the quotient

Hn (C∗) = ker ∂n/ Im ∂n+1.

We denote by H∗ (C∗) the family {Hn (C∗)}n∈Z. The elements of Cn are called chains,
we denote by Zn(C∗) (or only by Zn when there is not confusion) the kernel of ∂n, the
elements of Zn are called cycles. Finally, we denote by Bn(C∗) (or simply Bn) the

1
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image of ∂n+1 and the elements of Bn are called boundaries. Therefore, we can write
Hn(C∗) = Zn(C∗)/Bn(C∗). We say that the complex C∗ is acyclic if Hn (C∗) = 0 for all
n.

Given a chain homomorphism ϕ : C∗ → D∗, we have a well defined homomorphism
H∗ (ϕ) =: H∗ (C∗) → H∗ (D∗) given by a family of homomorphism Hn (ϕ) : Hn (C∗) →
Hn (D∗) which send the class [z] to the class [ϕn(z)] (see [33, Proposition 6.8]). The
homomorphism Hn (ϕ) is called the induced homomorphism.

Let C∗ = {Cn, ∂n} and D∗ = {Dn, ∂
′
n} be two chain complexes and let ϕ, ϕ′ : C∗ → D∗

be chain homomorphisms. We say that ϕ is chain homotopic to ϕ′ if there exist a family
of Λ-homomorphisms s = {sn : Cn → Cn+1} such that

∂′n+1 ◦ sn + sn−1 ◦ ∂n = ϕn − ϕ′n
for all n ∈ Z:

C∗ : · · · // Cn+1

ϕ′n+1

��
ϕn+1

��

∂n+1 // Cn
sn

||
ϕ′n
��
ϕn

��

∂n // Cn−1
sn−1

||
ϕ′n−1

��
ϕn−1

��

// · · ·

D∗ : · · · // Dn+1

∂′n+1 // Dn
∂′n // Dn−1

// · · ·
The family s = {sn} is called a chain homotopy and is denoted by ϕ ∼ ϕ′ : C∗ → D∗.
We say that the complex C∗ is contractible if the identity chain homomorphism is

chain homotopic to the zero chain homomorphism.

Theorem 1.1.1 ([33, Theorem 6.14]). If ϕ ∼ ϕ′ : C∗ → D∗ then

H∗(ϕ) = H∗(ϕ
′) : H∗(C∗)→ H∗(D∗).

Theorem 1.1.2 ([33, Proposition 6.9]). Let

0 // A∗
ϕ // B∗

ϕ′ // C∗ // 0

be a short exact sequence of chain complexes. Then there exist a homomorphism

κn : Hn(C∗)→ Hn−1(A∗)

for n ∈ Z such that the following sequence is exact

· · · // Hn(A∗)
ϕn∗ // Hn(B∗)

ϕ′n∗ // Hn(C∗)
κn //

κn // Hn−1(A∗)
ϕn−1∗ // Hn−1(B∗)

ϕ′n−1∗ // Hn−1(C∗)
κn−1 // · · ·

Note that a contractible chain complex is acyclic. In fact, we have

Proposition 1.1.3 ([6, Proposition I.0.3]). The chain complex C∗ is contractible if and
only if it is acyclic and each short exact sequence

0 // Zn+1
// Cn+1

∂n // Zn // 0

splits.



Homology 3

1.1.1. Chain complex of a G-space. We will give a chain complex that we will use
frequently in this thesis. For any G-set X we can construct a complex (C∗(X), ∂∗), of
abelian groups by letting Cn(X) be the free abelian group generated by the ordered (n+1)-
tuples of elements of X. Define the i-th face homomorphism di : Cn(X)→ Cn−1(X) by

di(x0, . . . , xn) = (x0, . . . , x̂i, . . . , xn)

where x̂i denotes deletion. The boundary homomorphism ∂n : Cn(X)→ Cn−1(X) is given
by

∂n =
n∑
i=0

(−1)idi.

using the fact that if i ≤ j− 1 then di ◦ dj = dj−1 ◦ di, we have that ∂n+1 ◦ ∂n = 0 proving
that (C∗(X), ∂∗) is indeed a chain complex. We represent (C∗(X), ∂∗) in a diagram as
follows:

C∗(X) : · · · // C2(X)
∂2 // C1(X)

∂1 // C0(X)
∂0 // 0.

Define C−1(X) = Z as the infinite cyclic group generated by ( ) and define ε(x) = ( )
for any x ∈ X. This extended complex is precisely the augmented complex

· · · // C2(X)
∂2 // C1(X)

∂1 // C0(X) ε // Z // 0.

with ε the augmentation homomorphism. We also call IG = ker ε the augmentation
ideal.

The action of G on X induces an action of G on Cn(X) with n ≥ 0 given by

g · (x0, . . . , xn) = (g · x0, . . . , g · xn)

which endows Cn(X) with the structure of a G-module. We also let G act on C−1(X) = Z
trivially. Let Z[G] be the group ring of G over Z, since the definitions of Z[G]-modules
and G-modules are equivalent, in the sequel we use both indistinctly.

We say that C̃∗(X) is a chain subcomplex of C∗(X) if any C̃i(X) is a subgroup of
the respective Ci(X). If the actions is preserved then C̃∗(X) is a G-chain subcomplex.

For each x ∈ X and n ≥ −1 define the map sxn : Cn(X)→ Cn+1(X) given by

sxn(x0, . . . , xn) = (x, x0, . . . , xn) (1.1)

Lemma 1.1.4. Let Gx be the isotropy subgroup of x. Then sxn is a Gx-homomorphism.

Proof. Let g ∈ Gx. Then we have

sxn(g(x0, . . . , xn)) = sxn((g · x0, . . . , g · xn))

= (x, g · x0, · · · , , g · xn)

= (g · x, g · x0, . . . , g · xn)

= g(x, x0, . . . , xn)

= gsxn((x0, . . . , xn)).
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Proposition 1.1.5. The augmented complex (C∗(X), ∂∗) is acyclic.

Proof. Let x ∈ X and consider the homomorphisms sxn, for n ≥ −1. Then we have,

∂n+1 ◦ sxn(x0, . . . , xn)− sxn−1 ◦ ∂n(x0, . . . , xn)

= ∂n+1(x, x0, · · · , xn)− sxn−1(
n∑
i=0

(−1)idi(x0, . . . , xn))

= (x0, . . . , xn)−
n+1∑
i=1

(−1)idi(x, x0, · · · , xn) +
n∑
i=0

(−1)isxn−1 ◦ di(x0, . . . , xn)

= (x0, . . . , xn)−
n+1∑
i=1

(−1)idi(x, x0, · · · , xn) +
n+1∑
i=1

(−1)idi(x, x0, · · · , xn)

= (x0, . . . , xn).

That is ∂n+1 ◦ sxn − sxn−1 ◦ ∂n = 1Cn(X) for n ≥ 0. Therefore sx∗ defines a contracting
homotopy and the augmented complex is acyclic.

Lemma 1.1.6 ([12, Lemma 1.3]). Let C̃∗(X) be a chain subcomplex of the augmented
chain complex C∗(X). Suppose that for each cycle σ in C̃n(X) there exists a point x(σ) ∈
X such that s

x(σ)
n ∈ C̃n+1(X), where sxn is given by (1.1). Then C̃∗(X) is acyclic.

Proof. Note that

∂n+1 ◦ sx(σ)
n (x0, . . . , xn) = ∂n(x(σ), x0, · · · , xn)

= (x0, . . . , xn)−
n+1∑
i=1

(−1)idi(x(σ), x0, · · · , xn)

= (x0, . . . , xn)−
n∑
i=0

(−1)is
x(σ)
n−1 ◦ di(x0, · · · , xn)

= (x0, . . . , xn)− sx(σ)
n−1(

n∑
i=0

(−1)idi(x0, · · · , xn))

= (x0, . . . , xn)− sx(σ)
n−1 ◦ ∂n(x0, . . . , xn).

(1.2)

Let σ be a cycle in C̃n(X). By hypothesis there exists x(σ) ∈ X such that s
x(σ)
n (σ) ∈

C̃n+1(X). Since ∂(σ) = 0, by (1.2) we have σ = ∂n+1s
x(σ)
n (σ), that is, σ is a boundary.

Thus the augmented chain complex C̃∗(X) is acyclic.

As usual, here we see C∗(X) as a right G-module by defining

(x0, . . . , xn) · g = g−1 · (x0, . . . , xn).

Denote by (B∗(X), ∂∗ ⊗ 1Z) the complex given by

Bn(X) = Cn(X)⊗Z[G] Z,

where 1Z denotes the identity homomorphism of Z.
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1.1.2. Homology of a permutation representation. Let X a G-set. We call the
pair (G,X) a permutation representation, since the G-set can be represented by a
homomorphism from the group G to the group of automorphism of X which is a subgroup
of the group of permutations of X.

Let A be a Z[G]-module, then

Hn(G,X;A) = Hn

(
Cn(X)⊗Z[G] A

)
is called the homology groups of the permutation representation of (G,X) with
coefficient in A. It is the homology theory corresponding to the cohomology defined by
Snapper in [34].

The homology groups of the permutation representation Hn(G,X;A) is a functor
from the category of Z[G]-modules to the category of abelian groups: let f : A→ A′ be a
Z[G]-homomorphism then we have the following commutative diagram

C∗(X)⊗Z[G] A //

Id⊗f
��

Cn−1(X)⊗Z[G] A

id⊗f
��

C∗(X)⊗Z[G] A
′ // Cn−1(X)⊗Z[G] A

′.

This gives a chain homomorphism which in turn induces a homomorphism

Hn(G,X;A)→ Hn(G,X;A′).

In fact, given a homomorphism α : G→ G′, a G′-set Y can be seen as G-set via α, if
y ∈ Y and g ∈ G then we define g · y = α(g) · y. We denote by α#Y the set Y seen as
a G-set via α. Let ϕ : X → Y be a function between the G-set X and the G′-set Y . We
say that (α, ϕ) is a compatible pair if ϕ : X → α#Y is a G-map. For a compatible pair
(α, ϕ) we can induce ϕ to G-map ϕ# : C∗(X) → C∗(α

#Y ). Moreover, if α : G → G′ is a
group homomorphism, ϕ : X → Y is a set function between the G-set X and the G′-set Y ,
and f : A→ A′ is a Z-homomorphism between the Z[G]-module A and the Z[G′]-module
A′, then the tuple (α, ϕ, f) is called admissible tuple if ϕ : X → α#Y is a G-map and
f : A→ A′ is a Z[G]-homomorphism, where A′ is considered as Z[G]-module via f . This
tuple (α, ϕ, f) induces a homomorphism

(α, ϕ, f)# : C∗(X)⊗Z[G] A→ C∗(Y )⊗Z[G] A
′

σ ⊗ a 7→ ϕ(σ)⊗ f(a)

which in turn induces a homomorphism

(α, ϕ, f)∗ : Hn(G,X;A)→ Hn(G′, Y ;A′).

1.2. Classifying space of a group

Let G be a discrete group, i.e., a group with discrete topology. A classifying space
of the group G is a space BG such that π1(BG) = G and πn(BG) = 0 for n ≥ 2.
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For each groupG its classifying space always exist. Let EG be the geometric realization
of the simplicial set whose n-simplices are ordered (n+ 1)-tuples (g0, · · · , gn) of elements
of G. The face morphism are given by

di(g0, · · · , gn) = (g0, · · · , ĝi, · · · , gn)

where ĝi means omitting the element gi. The degeneracy morphisms are defined by

si(g0, · · · , gn) = (g0, · · · , gi, gi, · · · , gn)

The space EG is called the universal G-bundle. This space is contractible (see for
instance [16, Example 1B.7]) and the group G acts freely on EG by g(g0, · · · , gn) =
(gg0, · · · , ggn). Then the orbit space EG/G is the classifying space BG of G. We denote
by [g0, · · · , gn] the orbit of (g0, · · · , gn).

Another way to obtain BG directly from a CW-complex is the following. Consider

0 // R // F // G // 0

a presentation of G, where F and R are free groups. Take as 0-skeleton one point ∗.
For each generator of G (i.e., for each generator of F ) attach a 1-cell to ∗. We have as
1-skeleton X(1) a bouquet of circles with π1(X(1)) = F . Each element of R is a word in the
generators of F and hence, corresponds to a path γ in X(1). For each such word, attach a 2-
cell e2 via the map f : ∂e2 → γ. This yields a space X(2) with π1(X(2)) = F/R = G. Now,
attach a 3-cell for each generator of π2(X(2)) to obtain a space X(3) with π1(X(3)) = G
and π2(X(3)) = 0. Continue this process, adding i-cells to obtain a space X(n) at each
stage with π1(X(n)) = G and πj(X

(i)) = 0 for 1 < j ≤ n. Now define

BG =
⋃
i

X(i).

Clearly π1(BG) = G and πj(BG) = 0 for j > 1.

Proposition 1.2.1 ([16, Example 1B.7, Theorem 1B.8]). The space BG is unique up to
homotopy.

Example 1.2.2. By uniqueness we have that

1. The circle S1 is the classifying space for Z.

2. The infinite real projective space RP∞ is the classifying space for Z2. In fact, we
can construct RP∞: a presentation for Z2 is

0 // 2Z // Z // Z2
// 0,

then a circle S1 is a space such that π1(S1) = Z. The homotopy class of the map
f(z) = z2 is the generator of 2Z ⊂ π1(S1), attach a 2-cell e2 to S1 using f in the
boundary, this gives the real projective plane RP2. The antipodal map p : S2 → RP2

gives the universal cover RP2 and the homotopy class of p is a generator of π2(RP2).
Then we can attach a 3-cell to RP2 using p in the boundary to obtain RP3 and so
on to obtain RP∞. By construction π1(RP∞) = Z2 and πn(RP∞) = 0 for n ≥ 2.
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We define the group homology with coefficients in Z as

H∗(G;Z) = H∗(BG;Z)

Where H∗(BG;Z) is the simplicial homology of the topological space BG.

Example 1.2.3. By Examples 1.2.2,

1. Hn(Z) = Hn(S1) =

{
Z if n = 0, 1

0 otherwise.

2. Hn(Z2) = Hn(RP∞) =


Z if n = 0

Z2 if n is odd

0 otherwise.

See [16, Example 2.42].

1.3. Group homology

We finished last section with a definition of group homology using a topological space.
Another way to define homology of a group is using methods of homological algebra.

A Z[G]-module P is said to be projective if, for every exact sequence

N t′ // N ′′ // 0

and every Z[G]-homomorphism ψ : P → N ′′, there exist a Z[G]-homomorphism ψ′ : P →
N such that t′ ◦ ψ′ = ψ. This is shown in the following commutative diagram

P

ψ
��

ψ′

}}
N t′ // N ′′ // 0.

Let Z[G] be the group ring of G over Z and let M be a (left) Z[G]-module. A
Z[G]-projective resolution of M is an exact sequence of Z[G]-modules

P∗ : · · · // P1
∂1 // P0

ε //M // 0

where each Pn is a projective Z[G]-module. Such resolution exist for any Z[G]-module
[33, Proposition 6.2].

If P∗ is a projective resolution of M , then its reduced projective resolution is the
complex

PM : · · · // P1
∂1 // P0

// 0

A reduced projective resolution is no longer exact if M 6= 0 for Im ∂1 = ker ε 6=
ker (P0 → 0) = P0.
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Deleting M loses no information: M ∼= coker ∂1 and ε is the projection, the inverse
operation, restoring M to PM is called augmentation.

Given a Z[G]-projective reduced resolution PM of a right Z[G]-module M and any left
Z[G]-module N , we define the Tor functor by

TorZ[G]
n (M,N) = Hn (PM ⊗ZG N) .

Proposition 1.3.1 (Comparison Theorem, [33, Proposition 6.16]). Given a homomor-
phism f : M → N , consider the following diagram

P∗ : · · · // P2
∂2 // P1

∂1 // P0
ε //M //

f

��

0

P ′∗ : · · · // P ′2 ∂′2

// P ′1 ∂′1

// P ′0 ε′
// N // 0

where the top row is a projective resolution and the bottom row is exact, then there exist a
chain map f∗ : P∗ → P ′∗ making the completed diagram commutative. Moreover, any two
such maps are homotopic.

Remark 1.3.2. The Tor fuctor is well defined, i.e. does not depend on the projective
resolution, by the Comparison Theorem (see [33, Proposition 6.20]).

The Tor functor is characterized by the following theorem

Proposition 1.3.3 (Axioms for Tor, [33, Theorem 6.33]). Let (Tn)n≥0 be a sequence of
additive covariant functors from the category of Z[G]-modules to the category of abelian
groups. If

1. For any short exact sequence

0 //M ′ //M //M ′′ // 0

of right Z[G]-modules, there is a long exact sequence with natural connecting homo-
morphisms

// Tn+1(M ′′)
∆n+1 // Tn(M ′) // Tn(M) // Tn(M ′′)

∆n // Tn−1(M ′) //

2. T0 is naturally isomorphic to the functor ⊗Z[G] N .

3. Tn(P ) = {0} for all projective Z[G]-module P and all n ≥ 1,

then Tn is naturally isomorphic to TorZ[G]
n ( , N).

Now, let G be a group and choose a Z[G]-projective resolution P∗ of the trivial module
Z. If A is a Z[G]-module, we define the group homology of G with coefficient in A to
be

Hn(G;A) = TorZ[G]
n (Z, A) = Hn (PZ ⊗ZG A) .
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1.3.1. Canonical resolution. Let G be a group. Consider G as a G-set via the op-
eration as a group, then the corresponding augmented complex F∗ = C∗(G) is the well
known standard resolution of Z. Actually, F∗ is a Z[G]-free resolution (see for instance
[33, Proposition 9.36]). Also we can replace the G-set G for any other G-set G-isomorphic
to G, for this reason we call C∗(G) the canonical resolution.

We can obtain a G-standard resolution from contractible simplicial complex X on
which the group G acts simplicially and freely (see for instance [6, Section I.5]). Let
S∗(X) denote the simplicial chain complex of X, each Sn(X) is a Z[G]-free module with
one basis element for each G-orbit of n-cell. Since X is contractible Hn (S∗(X)) = 0, so
the augmented complex S∗(X) is a G-standard resolution of Z.

Then, we can use the canonical resolution to compute the group homology as

Hn(G;Z) = Hn (C∗(G)⊗ZG Z) .

We have given two definition of group homology, one using the classifying space BG
and the other one by using the Tor functor. To see that both definitions agree, we shall
give a useful Lemma. First note that a right Z[G]-module A is equivalent to a right
G-module; we use both forms in the sequel. Denote by AG the orbit space of the action
of G on A, then we have the following

Lemma 1.3.4. Let A be a right Z[G]-module, then A⊗Z[G] Z ∼= AG.

Proof. Define f : A× Z → AG by f(a, z) = [az]. This f is bi-additive because, for all
z, z′ ∈ Z, a, a′ ∈ A and g ∈ Z[G]:

1. f(a, z + z′) = [a(z + z′)] = [az + az′] = [az] + [az′] = f(a, z) + f(a, z′).

2. f(a+ a′, z) = [(a+ a′)z] = [az + a′z] = [az] + [a′z] = f(a, z) + f(a′, z).

3. f(a, gz) = [a(gz)] = [(ag)z] = f(ag, z).

Then, there exist a homomorphism f̄ : A⊗ZG Z → AG defined by f̄(a ⊗ z) = [az]. The
homomorphism f̄ is an isomorphism with inverse ḡ : AG → A⊗ZG Z defined by ḡ([a]) =
a⊗ 1, which is well defined because, for all g ∈ ZG,

ḡ([ag − a]) = (ag − a)⊗ 1

= ag ⊗ 1− a⊗ 1

= a⊗ 1g − a⊗ 1

= a⊗ 1− a⊗ 1

= 0

Note that f̄◦ḡ([a]) = f̄(a⊗1) = [1a] = [a] and ḡ◦f̄(a⊗z) = ḡ([az]) = az⊗1 = a⊗z.

So, consider the (contractible!) simplicial universal cover EG → BG. The group
G acts freely on EG as the group of deck transformations and hence the cellular chain
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complex C∗(EG) is a chain complex of free Z[G]-modules. Moreover, since EG is con-
tractible the augmented complex C∗(EG)→ Z→ 0 is a (free) resolution of Z. Therefore,
identifying C∗(G) with the simplicial complex S∗(EG) of the space EG,

Hn(G;Z) = Hn

(
C∗(G)⊗Z[G] Z

)
∼= Hn

(
S∗(EG)⊗Z[G] Z

)
∼= Hn (S∗(EG)G)
∼= Hn (S∗(BG))
∼= Hn(BG;Z).



CHAPTER 2.

Adamson Relative Group Homology

In this chapter, we define the Adamson relative group homology, we use the classifying
spaces for a family of subgroups for a topological definition, so we use the relative homo-
logical algebra introduced by Hochschild [18] for algebraic definition. In the last section
we include the proof that both definitions agree.

For the topological definition (Section 2.1 and Section 2.2) we introduce the classifying
space of a certain family of subgroup of a group G, which is a generalization of the
classifying space for a group G. This allows to give preliminary results about this relative
homology; for example: if H is a normal subgroup of G, the relative group homology
of the pair (G,H) and the group homology of the group G/H are isomorphic. For the
algebraic definition we give explicit proofs of results that are indicated in [18] for the
particular case of the group ring Z[G]. We give some other results that are not included
in [18]. In Section 2.3 we give generalizations of the Tor functor for a special class of exact
sequences called (G,H)-projective, while in Section 2.4 we use the relative Tor functor to
give the definition of the Adamson relative group homology and some properties.

2.1. G-CW-complexes

Let G be a discrete group. Let X be a G-space. For each subgroup H of G, we define
the set XH = {x ∈ X | h · x = x for all h ∈ H} of fixed points of H, we call it the H-fix
point set. We denote by Gx = {g ∈ G | g ·x = x} the isotropy subgroup fixing x ∈ X.
More generally, let Y ⊂ X be a subspace, then GY =

⋂
y∈Y Gy is the isotropy subgroup

(pointwise) fixing Y . We also denote by G(Y ) = {g ∈ G | g ·Y = Y } the subgroup leaving
Y invariant. In general GY ⊂ G(Y ). We denote by Gx = {gx | g ∈ G} the orbit of x ∈ X
and we denote by XG or X/G the orbit space.

Proposition 2.1.1 ([41, Proposition 1.15]). Since G is discrete, a G-CW-complex is
an ordinary CW-complex X together with a continuous action of G such that,

1. for each g ∈ G and any open cell σ of X, the translation g · σ is again an open cell
of X,

2. if g · σ = σ, then the induced map σ → σ given by the translation x 7→ g · x is the
identity, i. e., if a cell is fixed by an element of G, it is fixed pointwise, in other
words G(σ) = Gσ.

11
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Remark 2.1.2. Notice that in a G-CW-complex X for each open cell σ of X one has
Gσ = Gx for every x ∈ σ. Hence

{Gσ | σ is a cell of X} = {Gx | x ∈ X},

i. e., the set of isotropy subgroups of the points of X is the same as the set of isotropy
subroups of the cells of X.

2.2. Classifying spaces for G-actions

In this section we generalize the classifying space defined in the Section 1.2.
A family F of subgroups of G is a set of subgroups of G which is closed under

conjugation and taking subgroups. Let {Hi}i∈I be a set of subgroups of G, we denote
by F(Hi) the family consisting of all subgroups of {Hi}i∈I and all their conjugates by
elements of G.

Let F be a family of subgroups of G. A model for the universal classifying space
for a family F or universal classifying spaces for G-actions is a G-CW-complex
EF(G) which has the following properties:

1. All isotropy groups of EF(G) belong to F.

2. For any G-CW-complex Y , whose isotropy groups belong to F, there is, up to G-
homotopy, a unique G-map Y → EF(G).

In other words, EF(G) is a terminal object in the G-homotopy category of G-CW-
complexes, whose isotropy groups belong to F. In particular two models for EF(G) are
G-homotopy equivalent and for two families F1 ⊂ F2 there is up to G-homotopy precisely
one G-map EF1(G)→ EF2(G).

Remark 2.2.1. There is another version for the classifying space for the family F in the
category of F-numerable G-spaces (see [23, Definition 2.1] or [41, page 47] for the def-
inition), but both versions are G-homotopy equivalent when G is a discrete group [23,
Theorem 3.7]. Moreover, any G-CW-complex with all its isotropy groups in the family F
is F-numerable [23, Lemma 2.2], thus we can work with any of the two versions.

There is a homotopy characterization of EF(G) which allow us to determine whether
or not a given G-CW-complex is a model for EF(G).

Theorem 2.2.2 ([23, Theorem 1.9]). A G-CW-complex X is a model for EF(G) if and
only if all its isotropy groups belong to F and the H-fix-point set XH is weakly contractible
for each H ∈ F and it is empty otherwise. In particular, EF(G) is contractible.

2.2.1. Construction I: join. Let {Hi}i∈I be a set of subgroups of G such that every
group in F is conjugate to a subgroup of an Hi, that is, F = F(Hi). Consider the disjoint
union ∆F =

⊔
i∈I G/Hi, then we have that

EF(G) = ∗∞n=1∆F
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the join of a countable number of copies of ∆F with the strong topology [41, Theorem I.6.6].
More generally, let XF be any G-set such that F is precisely the set of subgroups of G
which fix at least one point of XF. Notice that ∆F is an example of such G-set. Then
EF(G) = ∗∞n=1XF, the join of a countably number of copies of XF [9, Proposition 2.2].

2.2.2. Construction II: simplicial. The following proposition gives a simplicial con-
struction of a model for EF(G) (compare with [13, Theorem A.3]):

Proposition 2.2.3. Take XF as in Construction I. A model for EF(G) is the geomet-
ric realization Y of the simplicial set whose n-simplices are the ordered (n + 1)-tuples
(x0, . . . , xn) of elements of XF. The face operators are given by

di(x0, . . . , xn) = (x0, . . . , x̂i, . . . , xn)

where x̂i means omitting the element xi. The degeneracy operators are defined by

si(x0, . . . , xn) = (x0, . . . , xi, xi, . . . , xn)

The action of g ∈ G on an n-simplex (x0, . . . , xn) of Y gives the simplex (gx0, . . . , gxn).

Proof. Let σ = (x0, . . . , xn) be an n-simplex of Y . By the definition of the action of G
and since F is closed with respect to subgroups we have that

Gσ =
n⋂
i=0

Gxi ⊂ F.

Hence by Remark 2.1.2 we have that all the isotropy subgroups of points of Y belong
to the family F. Let H ∈ F, then its H-fix point set is given by

Y H =

{
(x0, . . . , xn) | H ⊂

n⋂
i=0

Gxi

}
.

Notice that if σ is a cell in Y H then di(σ) ⊂ Y H and si(σ) ⊂ Y H , and therefore Y H

is a simplicial subset of Y . Let x ∈ XF be such that h · x = x for every h ∈ H, that is,
x is fixed by H, in other words, H ⊂ Gx. Such an x exists by definition of XF and since
H ∈ F. We shall see that Y H is contractible defining a contracting homotopy c of Y H to
the vertex (x). Let σ = (x0, . . . , xn) be an arbitrary cell in Y H , define

c(σ) = (x, x0, . . . , xn)

This defines a contraction as we saw in Proposition 1.1.5. Therefore c indeed defines
a contracting homotopy. This shows Y H is contractible and, therefore by Theorem 2.2.2
Y is a model for EF(G).
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Remark 2.2.4. Remember that we can use ∆F as a model for XF, Then a particular case
of Construction II (that will be useful in the sequel) is when we consider the family F(H)
of only one subgroup H of G which consists of all the subgroups of H and their conjugates
by elements of G. Then a model for EF(H)(G) is the geometric realization of the simplicial
set whose n-simplices are the ordered (n + 1)-tuples (g0H, · · · , gnH) of cosets in G/H
and the i-th face (respectively, degeneracy) of such a simplex is obtained by omitting
(respectively, repeating) giH. The action of g ∈ G on an n-simplex (g0H, · · · , gnH) gives
the simplex (gg0H, · · · , ggnH).

Remark 2.2.5. When F = {e}, the above construction corresponds to the universal bundle
EG of G. The G-orbit space of EG is the classical classifying space BG of G. In analogy
with BG, we denote by BF(G) the G-orbit space of EF(G). Thus when F = {e}, we have
that B{e}(G) = BG.

Let H be a subgroup of G. For a G-space X, let resGHX be the H-space obtained by
restricting the group action. If F is a family of subgroups of G, let F/H = {L∩H | L ∈ F}
be the induced family of subgroups of H.

Proposition 2.2.6 ([40, Proposition 7.2.4], [13, Proposition A.5]).

resGHEF(G) = EF/H(H).

Proposition 2.2.7. Let H be a subgroup of G and let K be a normal subgroup of G
contained in H. Then a model for EF(H/K)(G/K) is also a model for EF(H)(G).

Proof. Suppose that we have the space EF(H/K)(G/K). The group G also acts on the
space EF(H/K)(G/K) via the natural projection p : G → G/K. If x ∈ EF(H/K)(G/K) is
a (H/K)-fix point, let h ∈ H then h · x = hK · x = x, that is the H-fix set point is
the same that the (H/K)-fix set point given by the action of G/K. Since any element
ghg−1 is sent to g(hK)g−1 by p the same applies for the other elements of F(H). Then
by Theorem 2.2.2 we have the desired result.

Corollary 2.2.8. Let H be a normal subgroup of G. Let E(G/H) be the universal G/H-
bundle of the group G/H, then E(G/H) is a model for EF(H)(G).

Let G be a discrete group and let H be a subgroup, we can define the Adamson
relative group homology of the pair (G,H) by

Hn([G : H];Z) = Hn(BF(H)(G);Z).

Proposition 2.2.9. Consider the pair (G,H) of the group G and subgroup H. Let K be
a normal subgroup of G contained in H then

Hn([G/K : H/K];Z) = Hn([G : H];Z).

Proof. By Proposition 2.2.7

Hn([G/K : H/K];Z) = Hn(BF(H/K)(G/K);Z)

= Hn(BF(H)(G);Z)

= Hn([G : H];Z).
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It follows immediately that

Corollary 2.2.10. If H is a normal subgroup of G, then

Hn([G : H];Z) = Hn(G/H;Z).

2.3. Relative Tor functor

In this section we give the definition of relative Tor functor which we will use to give
another definition of Adamson relative group homology. Here we present results due to
Hochschild in [18] for the case of group rings. The proof of some of this results were
included in [18]; here we give the detailed proofs for completeness.

Consider a group G and a subgroup H ⊂ G. Let Z[G] be the group ring of G, let
Z[H] be the group ring of H seen as a subring of Z[G]. An exact sequence of Z[G]-
homomorphisms between Z[G]-modules,

Ni+1
ti+1 // Ni

ti // Ni−1

is called (G,H)-exact or relative exact if, for each i, the kernel of ti is a direct Z[H]-
module summand of Ni.

Proposition 2.3.1 ([18, Section 1]). A sequence

ν : Ni+1
ti+1 // Ni

ti // Ni−1

of Z[G]-homomorphisms is (G,H)-exact, if and only if, for each i:

1. ti ◦ ti+1 = 0, and

2. there exists a contracting Z[H]-homotopy

Proof. Suppose that ν is a (G,H)-exact sequence. As usual, we denote by Zi = ker ti
and Bi = Im ti+1. Since ν is (Z[G], Z[H])-exact, it is an exact sequence of Z[G]-homo-
morphisms. Hence ti ◦ ti+1 = 0 and Zi/Bi = 0 for every i. Thus Bi = Zi and the short
sequences

0 // Zi+1
// Ni+1

ti+1 // Zi // 0 (2.1)

are exact. Since ν is (G,H)-exact, we have that Zi+1 is a direct summand of Ni+1, i.e.,
Ni+1 = Zi+1 ⊕ Ci+1 as Z[H]-modules for some Z[H]-module Ci+1. Hence the sequence
(2.1) splits and there exists a contracting Z[H]-homotopy (see Proposition 1.1.3).

Conversely, suppose the sequence ν of Z[G]-homomorphisms satisfies 1 and 2. Suppose
that h is a Z[H]-contraction. By 1 we have that Im ti+1 ⊂ Zi and by 2, if x ∈ Zi we have
that

ti+1(h(x)) = x. (2.2)
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Thus x ∈ Im ti+1 and the sequence ν is exact, that is, Zi = Bi. Hence the sequence

ν : Ni+1
ti+1 // Ni

ti // Ni−1

is exact. Also we have the short exact sequence

0 // Zi+1
// Ni+1

ti+1 // Zi // 0. (2.3)

Moreover, by (2.2) we also have that h|Zi is a section of ti+1 and therefore the sequence
(2.3) splits. Since h is a Z[H]-homomorphism, we have that Zi+1 is a direct Z[H]-module
summand of Ni+1. Thus ν is (G,H)-exact.

A very useful result is the following,

Corollary 2.3.2. A short exact sequence of Z[G]-homomorphisms is (G,H)-exact if and
only if there exist a splitting Z[H]-homomorphism.

Proof. Directly from Proposition 1.1.3 and Proposition 2.3.1.

Lemma 2.3.3. There is a natural isomorphism of the group of Z[G]-homomorphisms
HomZ[G](Z[G]⊗Z[H] A,M) onto HomZ[H](A,M).

Proof. The isomorphism is given by k 7→ k1, where k1(a) = k(1⊗a), for every a ∈ A with
inverse k1 7→ k where k(g ⊗ a) = gk1(a) for every g ∈ Z[G] and a ∈ A.

A Z[G]-module P is said to be (G,H)-projective or relative projective if, for every
(G,H)-exact sequence

N
t′ // N ′′ // 0

and every Z[G]-homomorphism ψ : P → N ′′, there is a Z[G]-homomorphism ψ′ : P → N
such that t′ ◦ ψ′ = ψ. This is shown in the following commutative diagram

P

ψ
��

ψ′

}}
N

t′ // N ′′ // 0.

Lemma 2.3.4 ([18, Lemma 2]). For every Z[H]-module A, the Z[G]-module

IndGH A = Z[G]⊗Z[H] A

is (G,H)-projective.

Proof. Let

0 // N ′ // N
t′ // N ′′ // 0.

be an (G,H)-exact sequence. Since the kernel of t′ is a direct Z[H]-module summand of
N the sequence above splits as sequence of Z[H]-modules. Suppose that q : N ′′ → N is a
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splitting homomorphism, then given a Z[G]-homomorphism φ : A→ N ′′ we have a Z[H]-
homomorphism φ : A→ N given by q′◦φ. On the other hand, for any Z[G]-module M , by
Lemma 2.3.3 HomZ[G](Z[G] ⊗Z[H] A,M) ∼= HomZ[H](A,M) as Z[G]-modules. Using this
with M = N and M = N ′′, we conclude that the map k 7→ q◦k sends HomZ[G](Z[G]⊗Z[H]

A,N) onto HomZ[G](Z[G]⊗Z[H]A,N
′′), which means precisely that Z[G]⊗Z[H]A is (G,H)-

projective.

Remark 2.3.5. Any projective Z[G]-module is (G,H)-projective. The converse is not
always true: let M be a non projective Z[G]-module, then there exist an exact sequence

ν : N
p //M // 0

such that ν does not split.
Suppose that Z[G] ⊗Z[H] M is a projective Z[G]-module, then the following diagram

commutes
Z[G]⊗Z[H] M

ψ

��

ψ′

xx
N

p //M // 0

where ψ(g ⊗m) = gm. Define ψ0 : M →M by ψ0(m) = ψ(1⊗m) = m and ψ′0 : M → N
by ψ′0(m) = ψ′(1⊗m), then

p ◦ ψ′0(m) = p ◦ ψ′(1⊗m)

= ψ(1⊗m)

= ψ0(m)

which is not possible since ν does not split.

If N is any G-module, the natural map

i : Z[G]⊗Z[H] N → N

g ⊗ n 7→ gn
(2.4)

gives rise to an exact sequence (see [6, Equation III.3.4])

0 // K // Z[G]⊗Z[H] N // N // 0 (2.5)

where K is the kernel of the homomorphism i. The map

φ : N → Z[G]⊗Z[H] N

n 7→ 1⊗ n
(2.6)

is a Z[H]-homomorphism since

φ(hn) = 1⊗ hn = h⊗ n = h(1⊗ n) = hφ(n).

Notice that if h is in Z[G] but not in Z[H] we cannot perform the second step, so φ
in general is not a Z[G]-homomorphism. Since θ ◦ φ(n) = θ(1 ⊗ n) = n, φ is a section
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of θ and it is an Z[H]-isomorphism of N onto a Z[H]-module complement of KN in
Z[G] ⊗Z[H] N , showing that the exact sequence is actually (G,H)-exact. If N is (G,H)-
projective, considering the identity map on N , there exists ψ′ : N → Z[G]⊗Z[H] N which
makes the following diagram of Z[G]-homomorphisms commute

N
ψ′

xx
1N
��

0 // K // Z[G]⊗Z[H] N // N // 0.

So, N is Z[G]-isomorphic with a direct Z[H]-module summand of Z[G]⊗Z[H] N .

Proposition 2.3.6. Let P1 and P2 be Z[G]-modules, then P = P1⊕P2 is (G,H)-projective
if and only if P1 and P2 are (G,H)-projective.

Proof. Let p1 : P → P1 be the projection and i1 : P1 → P be the inclusion. Let

N
t // N ′ // 0

be an (G,H)-exact sequence and let ψ : P1 → N ′ be a Z[G]-homomorphism. Consider
the composition ψ ◦ p1 : P → N ′. Since P is (G,H)-projective there exists a Z[G]-
homomorphism φ : P → N such that the following diagram commutes

P

p1

��
φ

��

P1

ψ′~~

i1

OO

ψ
��

N t // N ′ // 0

Thus ψ′ = φ ◦ i1 : P →M is such that

t ◦ ψ′ = t ◦ φ ◦ i1 = ψ ◦ p1 ◦ i1 = ψ.

Therefore P1 is (G,H)-projective. Analogously with P2.
Suppose that P1 and P2 are (G,H)-projective and suppose that we have a Z[G]-

homomorphism ψ : P → N ′. Consider ψ1 = ψ ◦ i1 : P1 → N ′ and ψ2 = ψ ◦ i2 : P2 → N ′.
Since P1 and P2 are (G,H)-projective, there exist ψ′1 : P1 → N and ψ′2 : P2 → N such
that t ◦ ψ′1 = ψ1 and t ◦ φ2 = ψ2. By the universal property of the direct sum, there exist
ψ′ : P1 ⊕ P2 →M such that ψ′ ◦ i1 = ψ′1 and ψ′ ◦ i2 = ψ′2. Then

t ◦ ψ′ ◦ i1 = t ◦ ψ′1 = ψ1 = ψ ◦ i1
t ◦ ψ′ ◦ i2 = t ◦ ψ′2 = ψ2 = ψ ◦ i2.

By uniqueness we have t ◦ ψ′ = ψ as we wished.



Relative Tor functor 19

Corollary 2.3.7. A Z[G]-module N is (G,H)-projective if and only if it is Z[G]-isomor-
phic with a direct G-module summand of Z[G] ⊗Z[H] N , or if and only if KN is a direct
Z[G]-module summand of Z[G]⊗Z[H] N .

Proposition 2.3.8 ([18, Proposition 2]). Let M be an (G,H)-projective module, and
suppose that V → W is a Z[G]-homomorphism such that the induced map

HomZ[H](M,V )→ HomZ[H](M,W )

is an epimorphism. Then the induced map

HomZ[G](M,V )→ HomZ[G](M,W )

is also epimorphism.

Proposition 2.3.9 ([18, Proposition 3]). Let M be a (G,H)-projective module, and sup-
pose that U → V is a Z[G]-homomorphism such that the induced map

U ⊗Z[H] M → V ⊗Z[H] M

is a monomorphism. Then the map

U ⊗Z[G] M → V ⊗Z[G] M

is also monomorphism.

2.3.1. Relative Tor functor. By a (G,H)-projective resolution or relative pro-
jective resolution of a Z[G]-module M we shall mean a (G,H)-exact sequence

P∗ : · · · // P1
// P0

//M // 0

in which each Pi is (G,H)-projective, and we call

PM : · · · // P2
// P1

// P0
// 0

the reduced (G,H)-projective resolution.

Proposition 2.3.10 ([18, Section 2]). Every Z[G] module N has an (G,H)-projective
resolution.

Proof. By Lemma 2.3.4, Z[G]⊗Z[H] N is (G,H)-projective. Take P0 = Z[G]⊗Z[H] N , by
the exact sequence (2.5) we have that

Z[G]⊗Z[H] N // N // 0

which is (G,H)-exact because we have the splitting Z[H]-homomorphism given in (2.6).
Then proceed in the same way from the kernel KN of this map in order to obtain P1 =
Z[G]⊗Z[H] KN , splice with the previous sequence by taking the composition

Z[G]⊗Z[H] KN
t // KN

i // Z[G]⊗Z[H] N.

Note that the kernel of the composition t ◦ i is the kernel of t.
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The (G,H)-projective resolution obtained in the proof of Proposition 2.3.10 is called
in [18, Section 2] the standard (G,H)-projective resolution of N .

Given a reduced (G,H)-projective resolution PM of a right Z[G]-module M and any
left Z[G]-module N , we define the relative Tor functor by

Tor(G,H)
n (M,N) = Hn(PM ⊗ZG N).

We can change either the roles of M and N or we can use relative resolutions for M
and N (see [18, Section 2]) in order to define the Tor functor, but in any case they are
equal.

An important fact is that Tor(G,H)
n (M,N) does not depend on the (G,H)-projective

resolution. This was pointed out by Hochschild in [18, Section 2]. We shall give a
complete proof of this fact following step by step the proof of the classical Comparison
Theorem 1.3.1.

Proposition 2.3.11 (Relative Comparison Theorem). Given f : M → N a Z[G]-homo-
morphism , consider the following diagram

P∗ : · · · // P2
∂2 // P1

∂1 // P0
ε //M //

f

��

0

P ′∗ : · · · // P ′2 ∂′2

// P ′1 ∂′1

// P ′0 ε′
// N // 0

where the top row is a (G,H)-projective resolution and the bottom row is (G,H)-exact.
Then there exist a chain map f∗ : P∗ → P ′∗ making the completed diagram commutative.
Moreover, any two such maps are chain homotopic.

Proof. 1. We prove the existence of f∗ by induction. For the base step n = 0 consider
the diagram

P0

f0

~~
f◦ε
��

P ′0 ε′
// N // 0

Since P0 is (G,H)-projective, there is a Z[G]-homomorphism f0 : P0 → P ′0 with
ε′ ◦ f0 = f ◦ ε. For the inductive step, consider the diagram

Pn+1
∂n+1 // Pn

∂n //

fn
��

Pn−1

fn−1

��
P ′n+1 ∂′n+1

// P ′n ∂′n

// P ′n−1.

If Im fn ◦ ∂n+1 ⊂ Im ∂′n+1, then we have the diagram

Pn+1

fn+1

zz
fn◦∂n+1

��
P ′n+1 ∂′n+1

// Im ∂n+1
// 0
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and since Pn+1 is (G,H)-projective and the row is (G,H)-exact (by hypothesis) this
gives fn+1 : Pn+1 → P ′n+1 with ∂′n+1 ◦ fn+1 = fn ◦ ∂n+1. To check that the inclusion
holds, note that exactness at P ′n of the bottom row of the original diagram gives
Im ∂′n+1 = ker ∂′n, and so it is sufficient to prove that ∂′n ◦ fn ◦ ∂n+1 = 0. But
∂′n ◦ fn ◦ ∂n+1 = fn−1 ◦ ∂n ◦ ∂n+1 = 0.

2. We prove uniqueness of f∗ up to homotopy. If h∗ : P∗ → P ′∗ is another chain map
such that ε′ ◦h0 = f ◦ε we construct the Z[G]-homomorphism terms sn : Pn → P ′n+1

of a homotopy s by induction on n ≥ −1: That is, we will show that

hn − fn = ∂′n+1 ◦ sn + sn−1 ◦ ∂n.

For the base step, first view M and 0 as being terms -1 and -2 in the top complex,
and define (for this proof) ∂0 = ε and ∂−1 = 0. Analogously for the bottom row.
Finally define f−1 = f = h−1 and s−2 = 0. With this notation, defining s−1 = 0
gives h1 − f1 = f − f = 0 = ∂′0 ◦ s−1 + s−2 ◦ ∂−1.

For the inductive step, it is sufficient to prove for all n > −1, that

Im (hn+1 − fn+1 − sn ◦ ∂n+1) ⊂ Im ∂n+2,

for then we have a diagram with (G,H)-exact row

Pn+1

sn+1

zz
hn+1−fn+1−sn◦∂n+1

��
P ′n+2 ∂′n+2

// Im ∂n+2
// 0

and (G,H)-projectivity of Pn+1 gives a Z[G]-homomorphism sn+1 : Pn+1 → P ′n+2

satisfying the desired equation. For the inclusion, the exactness at P ′n of the bottom
row of the original diagram gives Im ∂′n+2 = ker ∂′n+1, and so it is sufficient to prove
∂′n+1 ◦ (hn+1 − fn+1 − sn ◦ ∂n+1) = 0. But

∂′n+1 ◦ (hn+1 − fn+1 − sn ◦ ∂n+1)

= ∂′n+1 ◦ (hn+1 − fn+1)− ∂′n+1 ◦ sn ◦ ∂n+1

= ∂′n+1 ◦ (hn+1 − fn+1)− (hn − fn − sn−1 ◦ ∂n) ◦ ∂n+1

= ∂′n+1 ◦ (hn+1 − fn+1)− (hn − fn) ◦ ∂n+1,

(2.7)

and the last term is 0 because h and f are chain maps.

Corollary 2.3.12. The relative Tor functor Tor(G,H)
∗ (M,N) does not depend on the

(G,H)-projective resolution of the right Z[G]-module M .

Proof. Let P∗ and P ′∗ be two (G,H)-projective resolutions of M . Consider the diagram

// P1
// P0

//M //

1M
��

0

// P ′1 // P ′0 //M // 0.
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By the Relative Comparison Theorem 2.3.11, there is a chain map ι : P∗ → P ′∗. This gives
a chain map ι# : P∗ ⊗Z[G] N → P ′∗ ⊗Z[G] N which induces a morphism, one for each n,

ιn∗ : Hn

(
P∗ ⊗Z[G] N

)
→ Hn

(
P ′∗ ⊗Z[G] N

)
Now, we prove that ιn∗ is an isomorphism by constructing its inverse. Turn the preceding
diagram upside down, so that the chosen (G,H)-projective resolution P∗ is now the bottom
row. Again, the Relative Comparison Theorem gives a chain map κ : P ′∗ → P∗. Now the
composite κ◦ι is a chain map from P∗ to itself. By uniqueness statement in the comparison
theorem, κ ◦ ι is homotopic to 1P∗ ; similarly, ι ◦ κ is homotopic to 1P ′∗ . By functoriality of
tensorial product and homology, we have that

(ι ◦ κ)n∗ = ιn∗ ◦ κn∗ = κn∗ ◦ ιn∗ = (κ ◦ ι)n∗ = 1

It is well known that, in the following commutative diagram, if two columns are exact
then the third is also exact,

0

��

0

��

0

��
0 // A′ //

��

A //

��

A′′ //

��

0

0 // B′ //

��

B //

��

B′′ //

��

0

0 // C ′ //

��

C //

��

C ′′ //

��

0

0 0 0

(2.8)

Proposition 2.3.13 (Relative Horseshoes Lemma). Consider the following diagram

�� ��
P ′1

��

P ′′1

��
P ′0

��

P ′′0

��
0 //M ′ //

��

M //M ′′ //

��

0

0 0

where the columns are (G,H)-projective resolutions and the row is (G,H)-exact, then
there exist a projective resolution of M and chain maps such that the three columns form
a (G,H)-exact sequence of complex.
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Proof. We first show that there is a (G,H)-projective Q0 and a commutative 3×3 diagram
with (G,H)-exact columns and rows:

0

��

0

��

0

��
0 // K ′0

��

// V0

��

//

��

K ′′0

��

// 0

0 // P ′0

ε′

��

i0 // Q0

ε

��

q0 // P ′′0

ε′′

��

//

σ
}}

0

0 //M ′

��

i
//M q

//

��

M ′′ //

��

0

0 0 0

We omit the proof of exactness this is a classical exercise, we only give the necessary
splitting Z[H]-homomorphisms. Define Q0 = P ′0 ⊕ P ′′0 it is (G,H)-projective because
both P ′0 and P ′′0 are (G,H)-projective (Proposition 2.3.6). Define i0 : P ′0 → P ′0 ⊕ P ′′0 by
x′ 7→ (x′, 0), and define q0 : P ′0 ⊕ P ′′0 → P ′′0 by (x′, x′′) 7→ x′′. It is clear that

0 // P ′0
i0 // Q0

q0 // P ′′0 // 0

is (G,H)-exact. Since P ′′0 is (G,H)-projective and the bottom row is (G,H)-exact there
exist a map σ : P ′′0 → M with q ◦ σ = ε′′. Now define ε : Q0 → M by (x′, x′′) 7→
(i◦ε′)(x′)+σ(x′′) (the map σ makes the square with base M →M ′′ commute). Surjectivity
of ε follows from (2.8).

The middle column is (G,H)-exact, to see it, we shall give a splitting Z[H]-homo-
morphism ϕ : M → Q0. Since P ′∗ and P ′′∗ are (G,H)-projective resolutions, then there
are splitting Z[H]-homomorphism ϕ′ : M ′ → P ′0 and ϕ′′ : M ′′ → P ′′0 . Let m ∈ M , on one
hand m is send to x = i′0 ◦ ϕ′′ ◦ q(m) ∈ Q0 where i′0 is the inclusion of P ′′0 in Q0, on the
other hand q ◦ ε(x) = ε′′ ◦ q0(x) = q(m), then m − ε(x) ∈ ker q = Im i, i.e., there exist a
unique element m′ ∈M ′ such that i(m) = m− ε(x). Now, consider i0 ◦ϕ′(m′) and define
ϕ(m) = i0 ◦ ϕ′(m′) + x. Note that

ε ◦ ϕ(m) = ε ◦ i0 ◦ ϕ′(m′) + ε(x)

= i ◦ ε′ ◦ ϕ′(m′) + ε(x)

= i(m′) + ε(x)

= m+ ε(x)− ε(x)

= m.

Since the middle row is (G,H)-exact then

0 // K ′0 // V0
// K ′′0 // 0
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is (G,H)-exact.
We now prove, by induction on n > 0, that the bottom n rows can be constructed.

For the inductive step, assume that the first n steps have been filled in, and let Vn =
kerQn → Qn−1, while K ′n = ker ∂′n and K ′′n = ker ∂′′n. As in the base step we have a
commutative diagram with (G,H)-exact rows and columns.

0

��

0

��

0

��
0 // K ′n+1

��

// Vn+1

��

//

��

K ′′n+1

��

// 0

0 // P ′n+1

∂′n+1

��

in+1 // Qn+1

∂n+1

��

qn+1 // P ′′n+1

∂′′n+1

��

// 0

0 // K ′n //

��

Vn //

��

K ′′n //

��

0

0 0 0

Now splice this diagram to the n-th diagram by defining ∂n+1 : Qn+1 → Qn as the com-
posite Qn+1 → Vn → Qn. Notice that ker ∂n+1 does not change taking the composite.

As a consequence of Proposition 1.3.1, we can establish the following results as in the
classical Group Homology.

Proposition 2.3.14. As a functor Tor
(G,H)
0 ( , N) is naturally isomorphic to the functor

⊗Z[G] N .

Proof. Let

P∗ : · · · // P1
∂1 // P0

ε //M // 0

be a (G,H)-projective resolution of M . Then by right exactness of ⊗Z[G]N we have the
exact sequence

P1 ⊗Z[G] N
∂1⊗id // P0 ⊗Z[G] N

ε⊗id //M ⊗Z[G] N // 0 .

By definition Tor
(G,H)
0 (M,N) = coker ∂1 ⊗ id, but ε⊗ id induces an isomorphism

τ : coker ∂1 ⊗ id→M ⊗Z[G] N

, by the First Isomorphism Theorem; that is

coker ∂1 ⊗ id = P0 ⊗Z[G] N/ Im ∂1 ⊗ id
= P0 ⊗Z[G] N/ ker ε⊗ id
= Im ε⊗ id = M ⊗Z[G] N.

Is easy to see that this isomorphism is natural.
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Proposition 2.3.15. Let P be a (G,H)-projective module. Then Tor(G,H)
n (P,N) = 0 for

all n ≥ 1 and all Z[G]-module N .

Proof. This is trivial since

0 // P
id // P // 0

is an (G,H)-projective resolution of P .

Proposition 2.3.16. For any short (G,H)-exact sequence

0 //M ′ //M //M ′′ // 0

the induced sequence

→ Tor
(G,H)
2 (M ′, N) // Tor

(G,H)
2 (M,N) // Tor

(G,H)
2 (M ′′, N) //

Tor
(G,H)
1 (M ′, N) // Tor

(G,H)
1 (M,N) // Tor

(G,H)
1 (M ′′, N) //

M ′ ⊗Z[G] N //M ⊗Z[G] N //M ′′ ⊗Z[G] N // 0

is exact for any Z[G]-module N .

Proof. Let P ′∗ and P ′′∗ be (G,H)-projective resolutions of M ′ and M ′′ respectively. By the
Relative Horseshoes Lemma 2.3.13, we have that

0 // P ′M ′
// PM // P ′′M ′′

// 0

is an exact sequence of complexes. Each sequence

0 // P ′n // Pn // P ′′n // 0

splits. Applying the functor ⊗Z[G] N , it gives the sequence

0 // P ′M ′ ⊗Z[G] N // PM ⊗Z[G] N // P ′′M ′′ ⊗Z[G] N // 0.

Since additive functors preserve split short exact sequence, the previous sequence is exact.
Then by the long exact sequence in homology the result holds.

2.4. Adamson relative group homology

We shall give another definition of the Adamson relative group homology using relative
homological algebra [18].

Given a (G,H)-projective resolution of Z, we define the Adamson relative group ho-
mology with coefficients in the right Z[G]-module A by

Hn([G : H];A) = Tor(G,H)
n (Z, A).
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Remark 2.4.1. Since the relative functor Tor is independent on the (G,H)-projective
resolution of Z (see Corollary 2.3.12), then Hn([G : H];A) is well defined.

Let A be a left Z[G]-module. The coinvariants of A is the factor module AG = A/IGA
where IGA is the submodule generated by all elements of the form gy − y, (g ∈ G and
y ∈ A). Note that gy − y = (g − 1)y, for an arbitrary group G, then IGA is, in fact, the
direct product of the augmentation ideal IG and A.

Corollary 2.4.2. H0([G : H];A) ∼= Z⊗Z[G] A ∼= AG

Proof. By Proposition 2.3.14, notice that Tor
(G,H)
0 (Z, A) ∼= Z⊗Z[G]A, and by Lemma 1.3.4

it is clearly isomorphic to AG.

Let f : A → A′ be a homomorphism of left Z[G]-modules. Given a (G,H)-projective
resolution P∗ of Z, the following diagram commutes for a fixed group G,

Pn ⊗Z[G] A //

��

Pn−1 ⊗Z[G] A

��
Pn ⊗Z[G] A

′ // Pn−1 ⊗Z[G] A
′.

(2.9)

This gives a chain homomorphism which in turn induces a homomorphism

H∗([G : H];A)→ H∗([G : H];A′)

By Proposition 2.3.16 we have the following

Proposition 2.4.3. Let

0 // A′ // A // A′′ // 0

be an (G,H)-exact sequence. Then we have a long exact sequence

→ Hn([G : H];A′) // Hn([G : H];A) // Hn([G : H];A′′) // Hn−1([G : H];A′)→ .

Proof. Let P∗ be a (G,H)-projective resolution of Z. Since

0 // A′ // A // A′′ // 0

is (G,H)-exact and the functor Pn⊗Z[H] preserves splitting exact sequences, we have
that

0 // Pn ⊗Z[H] A
′ // Pn ⊗Z[H] A // Pn ⊗Z[H] A

′′ // 0,

are exact for any n ≥ 0. Then by Proposition 2.3.9 and right exactness of Pn⊗Z[G] we
have that the induced sequences

0 // Pn ⊗Z[G] A
′ // Pn ⊗Z[G] A // Pn ⊗Z[G] A

′′ // 0,

are also exact. Then the result follows from taking the long exact sequence induced from
the short exact sequence of chain complex

0 // P∗ ⊗Z[G] A
′ // P∗ ⊗Z[G] A // P∗ ⊗Z[G] A

′′ // 0.
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Corollary 2.4.4. Consider the (G,H)-exact sequence given in (2.5):

0 // K // Z[G]⊗Z[H] N // N // 0.

Then Hn−1([G : H];K) ∼= Hn([G : H];N) for n ≥ 2.

Proof. Since Z[G] ⊗Z[H] N is (G,H)-projective, Hn−1([G : H];Z[G] ⊗Z[H] N) = 0. The
result follows from Proposition 2.3.16.

Then Hn([G : H];A) is a functor of Z[G]-modules to abelian groups. We are interested
to prove that Hn([G : H];A) is a functor of two variables.

A homomorphism α : G→ G′ induces a ring homomorphism α̃ : Z[G]→ Z[G′], which
extend α linearly. Every Z[G′]-module A is a Z[G]-module: if g ∈ G, and a ∈ A, then
g · a = α(g) · a. Denote a Z[G′]-module A viewed as a Z[G]-module by α#A. This define
a change of groups functor α# : Z[G′]Mod→ Z[G]Mod.

We define the category of pairs of groups GpsR: an object in GpsR is a pair (G,H)
where G is a group and H is a subgroup of G, a morphism between two pairs α : (G,H)→
(G′, H ′) is a homomorphism α : G→ G′ such that α(H) ⊂ H ′.

Consider a morphism α : (G,H)→ (G′, H ′) in GpsR, and a Z-homomorphism f : A→
A′ from the Z[G]-module A to Z[G′]-module A, we say that the pair (α, f) is an admis-
sible pair if f : A → α#A′ is a Z[G]-homomorphism. Define the category Pair∗ where
the objects are pairs ((G,H);A) and morphisms are admissible pairs.

Now, we shall prove that the Adamson relative group homology is a functor from
Pair∗ to abelian groups.

Lemma 2.4.5. Let α : (G,H)→ (G′, H ′) be a morphism in GpsR. Let P∗ = (Pn, ∂n) be
a (G,H)-projective resolution of Z and P ′∗ = (P ′n, ∂

′
n) a (G′, H ′)-projective resolution of

Z. Then α#P ′∗ is a (G,H)-exact sequence.

Proof. Since (P ′n, ∂
′
n) is (G′, H ′)-exact, then ker ∂′n is a Z[H ′]-summand of P ′n. Since

α(H) ⊂ H ′, then α# ker ∂′n is a Z[H] direct summand of α#P ′n.

Therefore, by the Relative Comparison Theorem 2.3.11 we obtain a Z[G]-map from P∗
to α#P ′∗ which induces a well defined map (α, f)# : P∗ ⊗Z[G] A→ P ′∗ ⊗Z[G′] A

′ since σg⊗a
is send to σα(g)⊗ f(a) and σ ⊗ ga is send to σ ⊗ f(ga) that is equal to σ ⊗ α(g)f(a) =
σα(g)⊗ f(a). The map (α, f)# induces a homomorphism

(α, f)∗ : Hn([G : H];A)→ Hn([G′ : H ′];A′),

as we saw before. By the Relative Comparison Theorem 1.3.1 this homomorphism is
unique.

When f : A → A′ is the identity we denote (α, f)∗ only by α∗. Then any induced
homomorphism (α, f)∗ may be written as the composition:

Hn([G : H];A)
f∗ // Hn([G : H];A′)

α∗ // Hn([G′ : H ′];A′),

this homomorphism makes sense since f is a Z[G]-homomorphism.
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2.4.1. Relative canonical resolution. In virtue of Proposition 1.3.1, we shall give a
canonical (G,H)-projective resolution of Z. Here, we generalize the canonical resolution
given in Subsection 1.3.1. Also we will show that both definitions, using the classifying
spaces for G actions and using relative homological algebra agree.

Remember that Cn(G/H) is the abelian group generated by the n-tuples of cosets
(g0H, · · · , gnH), and also remember that C∗(G/H) has structure of G-module through
the action

g · (g0H, · · · , gnH) = (gg0H, · · · , ggnH).

Lemma 2.4.6 ([6, Proposition III.5.3, Corollary III.5.4]). We have that

Cn(G/H) =
⊕
σ∈Σn

IndGGσ Zσ,

where Σn is a set of representatives of the G-orbits of Cn(G/H).

Proposition 2.4.7. The augmented complex C∗(G/H) is a (G,H)-projective resolution
of the trivial Z[G]-module Z.

Proof. By Lemma 2.3.4 and Proposition 2.3.6 each Cn(G/H) is (G,H)-projective and
therefore C∗(G/H) is a (G,H)-projective reduced resolution of Z.

We call C∗(G/H) the relative canonical resolution. As a consequence of the Rel-
ative Comparison Theorem 2.3.11 we have

Corollary 2.4.8. The homology Hn (Bn(G/H)) = Hn

(
Cn(G/H)⊗Z[G] Z

)
is the Adam-

son relative group homology.

Notice that when H is the trivial group we recover the group homology Hn(G;Z) of
G. Therefore, when H is normal, the group G/H acts on C∗(G/H) by

gH · (g0H, · · · , gnH) = g · (g0H, · · · , gnH) = (gg0H, · · · , ggnH).

this action is well-defined. In fact, this action is G/H-free and it gives a G/H-module
structure to C∗(G/H), Then we have that

Corollary 2.4.9. There is an isomorphism Hn (Bn(G/H)) ∼= Hn(G/H;Z).

Compare with Corollary 2.4.15.
In a little more general context, let X(H) be a G-set, such that the action of G on X

is transitive and the set of isotropy subgroups of points in X(H) is the conjugacy class
of H in G. Then X(H) and G/H are isomorphic as G-sets, moreover the augmented
complex C∗(X(H)) and the canonical reduced resolution are Z[G]-isomorphic. We call the
augmented complex C∗(X(H)) the relative standard resolution. Then we have proved
that

Proposition 2.4.10. Hn(G,X(H);Z) = Hn([G : H];Z).

Proposition 2.4.11. Hn([G : H];Z) = Tor(G,H)
n (Z,Z) ∼= Hn(BF(H)(G);Z).
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Proof. The simplicial construction of EF(H)(G) (Subsection 2.2.2) gives a canonical way
to identify the simplicial complex S∗(EF(H)(G)) of the topological space EF(H)(G) with
the (G,H)-standard resolution. Now

H∗([G : H];Z) = H∗
(
C∗(G/H)⊗Z[G] Z

)
= H∗

(
S∗(EF(H)(G))⊗Z[G] Z

)
= H∗

(
S∗(EF(H)(G))G

)
= H∗

(
S∗(BF(H)(G))

)
= H∗(BF(H)(G);Z)

2.4.2. Natural G-maps and induced homomorphism. Let H and K be subgroups
of G. There exists a G-map G/H → G/K if and only if there exists a ∈ G such that
a−1Ha ⊂ K and is given by

Ra : G/H → G/K,

gH → gaK.

Any G-map G/H → G/K is of the form Ra for some a ∈ G such that a−1Ha ⊂ K
and Ra = Rb only if ab−1 ∈ K, see tom Dieck [41, Proposition I(1.14)].

Let H and K be subgroups of G such that H is conjugate to a subgroup of K, then
there is a G-map

hKH : X(H) → X(K).

This induces a G-homomorphism

(hKH)∗ : C∗(X(H))→ C∗(X(K)),

which in turn induces a homomorphism of homology groups

(hKH)∗ : H∗([G : H];Z)→ H∗([G,K];Z). (2.10)

Remark 2.4.12. Let NG(H) = {g ∈ G | gHg−1 = H} be the normalizer of H in G. Then
we can consider K = NG(H) to define a map

h
NG(H)
H : X(H) → X(NG(H)).

Remark 2.4.13. Let H and K be subgroups of G. Consider the families F(H) and
F(K) generated by H and K respectively and suppose that F(H) ⊂ F(K). Then
there exists a G-map unique up to G-homotopy EF(H)(G) → EF(K)(G). Notice that
F(H) ⊂ F(K) implies that H is conjugate to a subgroup of K and therefore there exists a
G-map hKH : X(H) = XF(H) → X(K) = XF(K). Using the Simplicial Construction of Propo-
sition 2.2.3 we can see the G-map EF(H)(G) → EF(K)(G) as the simplicial G-map given
in n-simplices by

(x0, · · · , xn) 7→ (hKH(x0), · · · , hKH(xn)), xi ∈ XF(H), i = 0, 1, · · · , n.
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This map induces a canonical map BF(H)(G)→ BF(K)(G) between the corresponding
G-orbit spaces. This map in turn induces a canonical homomorphism in homology

Hn(BF(H)(G);Z)→ Hn(BF(K)(G);Z),

which by Proposition 2.4.11 corresponds to the homomorphism (hKH)∗ in (2.10).

Proposition 2.4.14. Let H be a subgroup of G and let K be a normal subgroup of G
contained in H. Then

Hn([G,H];A) ∼= Hn([G/K,H/K];AK).

Compare with Proposition 2.2.9.

Proof. The groups G and G/K act by left multiplication in G/H and (G/K)/(H/K)
respectively. The canonical projection α : G→ G/K gives a bijection of G-sets,

G/H ∼= α#{(G/K)/(H/K)}
gH ↔ gK(H/K)

Let x, g ∈ G, since xKgK(H/K) = xgK(H/K), the action of G induced by α in
(G/K)/(H/K) is the same than the given by G/K. Then C∗(α

#{(G/K)/(H/K)}) is
a (G,H)-projective resolution of Z. Therefore, by Remark 2.4.1 we have

α∗ : H∗([G : H];A) ∼= H∗([G/K : H/K];A).

In the other hand, the coinvariants AK is a G/K-module,

f : G/K × AK → AK

(gK, a+ IKA) 7→ ga+ IKA

It is well defined because

(gkK, a+ IKA) 7→gka+ IKA

= k1ga− ga+ ga+ IKA

= ga+ IKA.

Actually, the actions of G and G/K on AK agree. Then

C∗((G/K)/(H/K))⊗Z[G/K] AK

makes sense. So, by (2.9), we have an isomorphism

fn : Cn((G/K)/(H/K))⊗Z[G] A→ Cn((G/K)/(H/K))⊗Z[G/K] AK

(g0K(H/K), · · · , gnK(H/K))⊗ a↔ (g0K(H/K), · · · , gnK(H/K))⊗ a+ IKA
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whose inverse is well defined since

f−1
n ((g0K(H/K), · · · , gnK(H/K))⊗ a+ kb− b+ IKA)

= (g0K(H/K), · · · , gnK(H/K))⊗ a+ kb− b
= (g0K(H/K), · · · , gnK(H/K))⊗ a
− (g0K(H/K), · · · , gnK(H/K))⊗ kb
+ (g0K(H/K), · · · , gnK(H/K))⊗ b

= (g0K(H/K), · · · , gnK(H/K))⊗ a
− (k−1g0K(H/K), · · · , k−1gnK(H/K))⊗ b
+ (g0K(H/K), · · · , gnK(H/K))⊗ b

= (g0K(H/K), · · · , gnK(H/K))⊗ a
− (g0K(H/K), · · · , gnK(H/K))⊗ b
+ (g0K(H/K), · · · , gnK(H/K))⊗ b

= (g0K(H/K), · · · , gnK(H/K))⊗ a

Therefore,
f∗ : H∗((G/K)/(H/K);A) ∼= H∗((G/K)/(H/K);AK)

and composing α∗ and f∗

(α, f)∗ : H∗([G,H];A) ∼= H∗([G/K,H/K];AK).

Corollary 2.4.15. If H is a normal subgroup of G, then,

Hn([G : H];A) ∼= Hn(G/H;AH).
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CHAPTER 3.

Takasu Relative Group Homology

In this chapter we give the definition of Takasu relative group homology, again in topo-
logical and algebraic ways. We use the classifying space of a group, the algebraic and
topological cone, and projective resolutions to give equivalent definition of this relative
homology of other authors. In Subsection 3.2.1 we give a particular resolution that we
use later to define invariants of hyperbolic manifolds.

3.1. Takasu relative group homology

Let G be a discrete group and let H be a discrete subgroup. Consider the classifying
spaces BG and BH of G and H respectively. Let ι : BG → BH be the map induced by
the inclusion. The topological cylinder Cyl(ι) of ι can be consider as a model for BG
(Cyl(ι) is homotopically equivalent to BG) that contains BH as subspace. We define the
Takasu relative group homology Hn(G,H;Z) as the homology of the topological pair
(BG,BH), i.e:

Hn(G,H;Z) = Hn(BG,BH;Z).

In this case Hn(BG,BH;Z) ∼= H̃n(BG/BH;Z) for n > 0, where H̃n( ) denotes reduced
homology. The quotient space BG/BH is precisely the topological cone Con(ι) of ι.

Another approach to Takasu relative group homology is using homological algebra.

Let i : Z[G]⊗Z[H] N → N be the homomorphism given in (2.4) by i(g⊗n) = gn. Here,
we denote ker i = I(G,H)(N). We have some facts about I(G,H)(N):

Proposition 3.1.1 ([38, Proposition 1.1]). We have the following affirmations

1. I(G,H)(A) is a covariant exact functor with respect the variable A.

2. If A is Z[G]-projective, then I(G,H)(A) is Z[G]-projective.

3. There exists a natural equivalence of functors:

I(G,H)(A)⊗Z[G] C = A⊗Z[G] I(G,H)(C).

33



34 Takasu Relative Group Homology

Given a Z[G]-projective reduced resolution P∗ of I(G,H)(Z) and a right Z[G]-module
A, we define the Takasu relative group homology of the pair (G,H) by

Hn(G,H;A) = Tor
Z[G]
n−1(I(G,H)(Z), A) = Hn−1

(
PI(G,H)(Z) ⊗Z[G] A

)
,

for n ≥ 1.

Remark 3.1.2. Remember that the functor Tor does not depend on the Z[G]-projective
resolution of I(G,H)(Z) (Remark 1.3.2).

3.2. Canonical resolution of I(G,H)(Z)

Since Takasu relative group homology is well defined, in this section we will give different
projective resolutions of I(G,H)(Z) in order to use them to calculate Hn(G,H;Z). The
first one is given by:

Proposition 3.2.1 ([38, Proposition 3.1]). If P∗ is a Z[G]-projective resolution of Z, then
I(G,H)(P∗) is a Z[G]-projective resolution of I(G,H)(Z).

The previous is a consequence of Proposition 3.1.1.
Let φ : {C ′∗, ∂′∗} → {C∗, ∂∗} be a chain map. The algebraic mapping cone of φ is

the chain complex N∗(φ) = {Ni, ∂̄i} defined by Nn = C ′n−1 ⊕ Cn and

∂̄(c′, c) = (−∂′(c′), φ(c) + ∂(c))

The algebraic mapping cylinder of φ is the complex M∗(φ) = {Mn, ∂} defined by
Mn = C ′n ⊕ C ′n−1 ⊕ Cn and

∂̄(a, b, c) = (−∂′(a)− b,−∂′(b), φ(b) + ∂(c)).

Remark 3.2.2. Notice Nn
∼= Mn−1/Cn−1, then the induced homomorphism Mn/Cn →

Mn−1/Cn−1 is precisely the boundary homomorphism of the algebraic mapping cone.
Then we can obtain the algebraic mapping cone from the algebraic mapping cylinder.

Lemma 3.2.3 ([37, Lemma 1.1]). We have the following facts:

1. There exist maps µ : C∗ →M∗(φ) and ν : M∗(φ)→ C∗ such that the composite maps
µ ◦ ν and ν ◦ µ are homotopic with the identity maps of C ′∗ and M∗(φ) respectively.

2. Let α : C∗ →M∗(φ) be the homomorphism given by α(a) = (a, 0, 0) and let β : M∗ →
N∗ be the homomorphism given by β(a, b, c) = (b, c), then

0 // C ′∗
α //M∗(φ)

β // N∗(φ) // 0

is exact.
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3. Thus we have an exact sequence

· · · // Hn(C ′∗)
φ∗ // Hn(C∗) // Hn(N∗(φ)) // Hn−1(C ′∗) // · · ·

Proof. We only give the proof of 1. Set µ(c) = (0, 0, c) and ν(a, b, c) = c+φ(a). We define
homomorphisms s : Mn(φ) → Mn−1(φ) by sn(a, b, c) = (0, a, 0). Then s∗ = {sn} is the
homotopy conecting µ ◦ ν with the identity map of M∗(φ). The other composition ν ◦ µ
is, in fact, the identity map of C∗.

Let G be a group and let H be a subgroup. Consider a Z[G]-projective resolution P∗ of
Z and a Z[H]-projective resolution P ′∗ of Z. For a Z[H]-chain map φ∗ : P

′
∗ → P∗ over the

identity map of Z, we define a Z[G]-chain map φ̄∗ given by the maps φ̄n : P ′∗ ⊗Z[H] Z[G]→
P∗ written as φ̄n(σ′ ⊗ g) = φn(σ′)g for n ≥ 0.

Proposition 3.2.4. Consider the algebraic mapping cone N(φ̄∗) of φ̄∗ and the Z[G]-
module A. Then

N ′∗(φ̄) · · · // Nn
// · · · // N2

// ker ∂̄1
// I(G,H)(A) // 0

is a Z[G]-projective resolution of I(G,H)(A).

For a proof see the proof of Theorem 3.4 in [37].
Denote by N̄∗(φ̄) the reduced Z[G]-projective resolution obtained from N ′∗(φ̄), then

we can compute Hn(G,H;A) = Hn

(
N̄∗(φ̄)⊗Z[G] A

)
.

By Lemma 3.2.3 we have a long exact sequence

· · · // Hn(H;A) // Hn(G;A) // Hn(G,H;A) // Hn−1(H;A) // · · · .

Let G act in Z trivially, in order to compute Hn(G,H;Z), by the Comparison Teo-
rem 1.3.1, we can use the canonical Z[G]-projective resolution C∗(G) of Z, which is also
a Z[H]-projective resolution of Z. Then, as before, we have a Z[G]-chain map

ϕ∗ : C∗(H)⊗Z[H] Z[G]→ C∗(G). (3.1)

We denote N ′∗(ϕ̄) by N∗. Then

Hn(G,H;Z) = Hn

(
N∗ ⊗Z[G] Z

)
Consider

C∗(G,H) := (C∗(G)⊗Z[G] Z)
/

(C∗(H)⊗Z[H] Z) ,

Lemma 3.2.5. The following sequence of complexes

0 // C∗(H)⊗Z[H] Z
ϕ // C∗(G)⊗Z[G] Z // C∗(G,H) // 0.

is exact.
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Proof. We claim that the map

C∗(H)⊗Z[H] Z
ϕ // C∗(G)⊗Z[G] Z

is injective. To see this, note that the map in question is the composition

C∗(H)⊗Z[H] Z // C∗(G)⊗Z[H] Z // C∗(G)⊗Z[G] Z.

Since Cn(G) ∼= Z[Gn], it is therefore sufficient to treat the special case

Z[H]⊗Z[H] Z // Z[G]⊗Z[H] Z // Z[G]⊗Z[G] Z.

(After, we can replace the group G by the group Gn). The composition is clearly an
isomorphism since

Z[H]⊗Z[H] Z ∼= Z[G]⊗Z[G] Z ∼= Z.

Remark 3.2.6. Notice that Z[G] ⊗Z[H] Z ∼= C0(G/H) (see the proof of Proposition 2.4.7)
and with this isomorphism the epimorphism i : Z[G]⊗Z[H] Z → Z corresponds to the
augmentation homomorphism ε : C0(G/H)→ Z. Therefore

I(G,H)(Z) = ker ε.

Let ϕ : C∗(H)⊗Z[H] Z → C∗(G)⊗Z[G] Z be the map of Lemma 3.2.5. Consider the
maps µ : C∗ → M∗(φ) and ν : M∗(φ) → C∗ given by the Lemma 3.2.3. Since ϕ is an
inclusion, µ and ν give a well defined homomorphism

µ′ : C∗(G)⊗Z[G] Z/C∗(H)⊗Z[H] Z→M∗(φ)/C∗(H)⊗Z[H] Z,
ν ′ : M∗(φ)/C∗(H)⊗Z[H] Z→ C∗(G)⊗Z[G] Z/C∗(H)⊗Z[H] Z.

Then we have the following

Proposition 3.2.7. Let ϕ : C∗(H)⊗Z[H] Z→ C∗(G)⊗Z[G] Z be the map of Lemma 3.2.5,
then the cone N∗(ϕ) and C∗(G)⊗Z[G] Z/C∗(H)⊗Z[H] Z give the same homology.

Proof. This is a consequence of Remark 3.2.2 and the previous analysis.

Actually, we have that

Proposition 3.2.8. We have the following equivalent definition of the Takasu relative
group homology for n > 0:

Hn(G,H;Z) = Tor
Z[G]
n−1(I(G,H)(Z),Z)

= Hn−1

(
N∗ ⊗Z[G] Z

)
(3.2)

= Hn−1

(
C∗(G)⊗Z[G] Z/C∗(H)⊗Z[H] Z

)
(3.3)

= Hn−1 (C∗(G)G/C∗(H)H) (3.4)

= Hn (BG,BH) (3.5)
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Proof. We have that

(3.2) This is a consequence of the Comparison Theorem 1.3.1 and the fact that N∗ is a
Z[G]-projective resolution of I(G,H)(Z).

(3.3) This is a consequence of Proposition 3.2.7 since N∗ ⊗Z[G] Z ∼= N∗(ϕ)

(3.4) By Lemma 1.3.4.

(3.5) By the simplicial construction of the classifying space.

3.2.1. Particular resolution. Let C
hKH 6=
∗ (X(H)) be the subcomplex of C∗(X(H)) gener-

ated by tuples mapping to different elements by the homomorphism hKH . We call this
subcomplex the hKH-subcomplex of C∗(X(H)). As before, set

B
hKH 6=
∗ (X(H)) = C

hKH 6=
∗ (X(H))⊗Z[G] Z.

Lemma 3.2.9. Let H and K be subgroups of G such that H is conjugate to a subgroup of
K and suppose K has infinite index in G (and therefore also H). Then the hKH-subcomplex

C
hKH 6=
∗ (X(H)) is acyclic.

Proof. Since K has infinite index in G, given an n-cycle σ =
∑
ni(x

i
0, · · · , xin) in the

group C
hKH 6=
n (X(H)) there exists y ∈ X(K) such that y is different from all the hKH(xij). Let

x(σ) ∈ hKH
−1

(xij) ⊂ X(H), then we have that s
x(σ)
n (σ) ∈ ChKH 6=

n+1 (X(H)) and by Lemma 1.1.6
we get the result.

Proposition 3.2.10. Let H and K be subgroups of G such that H is conjugate to a
subgroup of K and suppose K has infinite index in G. Also assume that for any g /∈ K
we have H ∩ gHg−1 = {e}. Consider the hKH-subcomplex C

hKH 6=
∗ (X(H)). Then C

hKH 6=
∗ (X(H))

is a free resolution of I(G,H)(Z) and therefore we have an isomorphism

Hn(G,H;Z) ∼= Hn(B
hKH 6=
∗ (X(H))), n = 2, 3, · · · .

Proof. Firstly, we claim that C
hKH 6=
∗ (X(H)) is a free G-module for n ≥ 1. By Remark 2.1.2

it is enough to compute the isotropy subgroup of an n-simplex. Without loss of generality

we can consider an n-simplex σ = (x0, . . . , xn) ∈ ChKH 6=
∗ (X(H)) such that Gx0 = H since the

G-orbit of any n-simplex has an element of this form, and isotropy subgroups of elements
in the same G-orbit are conjugate. We have that Gxi = giHg

−1
i for some gi ∈ G and

g0 = e. The isotropy subgroup of σ is given by

Gσ =
n⋂
i=0

giHg
−1
i .
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By the definition of C
hKH 6=
∗ (X(H)) we have that gi /∈ K for i = 1, · · · , n and by hypoth-

esis the intersection of H with any conjugate gHg−1 with g /∈ K is the identity. Therefore

Gσ = e and C
hKH 6=
∗ (X(H)) is a free G-module for n ≥ 1.

Now, we have that C
hKH 6=
0 (X(H)) = C0(X(H)) and by Lemma 3.2.9 the augmented

hKH -subcomplex

· · · // C
hKH 6=
2 (X(H))

∂2 // C
hKH 6=
1 (X(H))

∂1 // C0(X(H))
ε // Z // 0

is exact, so Im ∂1 = ker ε. Finally, by Remark 3.2.6 we have that ker ε = I(G,H)(Z) and
therefore

· · · // C
hKH 6=
2 (X(H))

∂2 // C
hKH 6=
1 (X(H))

∂1 // I(G,H)(Z) // 0

is a free G-resolution of I(G,H)(Z).

By Remark 2.4.12 and Proposition 3.2.10, we have the following

Corollary 3.2.11. Suppose that H ∩ gHg−1 = {e} for all g /∈ NG(H) and suppose that
NG(H) has infinite index in G, then

Hn(G,H;Z) ∼= Hn(B
h
NG(H)

H 6=
∗ (X(H))), n = 2, 3, · · · .



CHAPTER 4.

Relation Between Adamson and
Takasu Relative Group Homologies

In this chapter we give examples in which Adamson and Takasu relative group homologies
disagree. We give homomorphisms between them. Relative homologies agree when the
subgroup H is malnormal in the group G.

4.1. Relation Between Adamson and Takasu Relative Group

Homologies

We are interested in the relation between the Hochschild and Takasu relative group ho-
mologies.

Example 4.1.1. We shall give an example of a pair (G,H) for which Hochschild and
Takasu relative group homologies disagree: Denote the torus by T 2 and the circle by S1,
then the pair (T 2, S1) is a model for the pair (B(Z× Z), BZ), then

Hn(Z⊕ Z,Z;Z) ∼= Hn (B(Z× Z), BZ)

∼= Hn

(
T 2, S1

)
∼= H̃n(T 2/S1)

∼= H̃n(S2 ∨ S1),

here H̃n(·) denotes the reduced homology (see [16, p 110] and [16, Proposition A.5]). On
the other hand

Hn([Z× Z : Z];Z) ∼= Hn(BF(Z)(Z× Z);Z)
∼= Hn(BZ;Z)
∼= Hn(S1;Z),

since Z is normal in Z× Z.
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Example 4.1.2. Another example is the Möbius band M and S1 as the boundary of M ,
then (M,S1) is a model for the pair (BZ, B(2Z)). So

Hn(Z, 2Z;Z) ∼= Hn(BZ, B(2Z))

∼= H̃n(RP2;Z),

which is Z/2Z for n = 1 and zero in other case. But

Hn([Z : 2Z];Z) ∼= Hn(BF(2Z)(Z);Z)
∼= Hn(B(Z/2Z);Z)
∼= Hn(RP∞),

which is Z for n = 0, Z/2Z for n odd and 0 otherwise.

There is a homomorphism between the Hochschild and Takasu relative group homolo-
gies: Consider the augmented complex

· · · // C2(G/H)
∂2 // C1(G/H)

∂1 // C0(G/H) ε // Z // 0

Then, by Remark 3.2.6, we have that Im ∂1 = ker ε = I(G,H)(Z). Consider the identity
homomorphism 1: I(G,H)(Z)→ I(G,H)(Z), by the Comparison Theorem 1.3.1, we have the
following commutative diagram

P∗ : · · · // P2

∂′2 //

f1

��

P1

∂′1 //

f2

��

P0
ε′ //

f0

��

I(G,H)(Z) //

1
��

0

C ′∗ · · · // C3(G/H)
∂3 // C2(G/H)

∂2 // C1(G/H)
∂1 // I(G,H)(Z) // 0.

where P∗ is any Z[G]-projective resolution of I(G,H)(Z). The chain map f∗ : P∗ → C ′∗
induces homomorphisms

Hn (f∗) : Hn(G,H;Z)→ Hn([G : H];Z) (4.1)

for n ≥ 2.
As a consequence of Proposition 2.4.10 and Proposition 3.2.10 we have the following

Corollary 4.1.3. Let K and H as in the Proposition 3.2.10. The inclusion of C
hKH 6=
n (X(H))

in Cn(X(H)) induces a homomorphism

Hn(G,H;Z)→ Hn([G : H];Z) (4.2)

for n = 2, 3, · · · .

We can give an explicit resolution P∗ and explicit morphism f∗ using the Z[G]-
projective resolution given in Proposition 3.2.1.
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Lemma 4.1.4. Consider the canonical Z[G]-projective resolution C∗(G) of Z, the kernel
I(G,H)(Cn(G)) of i : Z[G]⊗Z[H] Cn(G)→ Cn(G) is generated by elements of the form g ⊗
σ − 1⊗ gσ.

Proof. It is clear that any element generated by g ⊗ σ − 1⊗ gσ is in I(G,H)(Cn(G)). Let∑
i ni(g ⊗ σ) be an element in I(G,H)(Cn(G)), then

0 =
∑
i

ni(gσ) = 1⊗
∑
i

ni(gσ) =
∑
i

ni(1⊗ gσ).

Therefore ∑
i

ni(g ⊗ σ) =
∑
i

ni(g ⊗ σ)−
∑
i

ni(1⊗ gσ)

=
∑
i

ni(g ⊗ σ − 1⊗ gσ)

as we desired.

Since I(G,H)(Cn(G)) is generated by elements of the form g ⊗ (g0, · · · , gn) − 1 ⊗
(gg0, · · · , ggn). Then we can give a Z[G]-chain map:

fn : I(G,H)(Cn(G))→ Z[G]⊗Z[H] Cn(G/H) ∼= Cn+1(G/H)

for n ≥ 1, given by

g ⊗ (g0, · · · , gn)− 1⊗ g(g0, · · · , gn) 7→ g ⊗ (g0H, · · · , gnH)− 1⊗ g(g0H, · · · , gnH).

Consider the simplicial constructions of the classifying spaces BG and BH of the
discrete group G and its discrete subgroup H respectively. The inclusion of H in G induces
a map between classifying spaces ι : BH → BG (see for instance [25]), by Lemma 3.2.5 ι
is an inclusion. The composition of ι with the induced map BG→ BF(H)(G) is constant,
then by [2, Proposition 3.1.7] we have, up to homotopy, a map BG/BH → BF(H)(G)
which induces a homomorphism

Hn(G,H;Z) = Hn(BG/BH;Z)→ Hn(BF(H)(G);Z) = Hn([G : H];Z),

for n ≥ 1. Morover, consider the universal simplicial cover π : EG→ BG of the classifying
space BG, then inverse image π−1(BH) is the disjoint union of gEH (one copy for each
coset gH). Let X be the space obtained by collapsing each gEH ⊂ EG to a point xg.
Since the action of g ∈ G sends EH to gEH the action descends to an action of G on X.

Proposition 4.1.5. Let X be as before, the quotient BG/BH is homeomorphic to X/G.

Proof. Let EG be the universal cover of the classifying space of G. See that ψ̃ : EG→ X
is given in the simpleces by

ψ̃(g0, · · · , gn) =

{
xg if (g0, · · · , gn) ∈ gEH
(g0, · · · , gn) otherwise.
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The map ψ̃ is G-equivariant and we have the following commutative diagram

EG
ψ̃ //

π

��

X

p

��
BG

ψ
// X/G

It is clear that π(gEH) = BH and p(xg) is a point x ∈ X/G. Then ψ(BH) = x, so
we have a map f : BG/BH → X/G which makes commutative the following diagram

BG
ψ //

��

X/G

BG/BH

f

99

The map f is a homeomorphism with inverse f−1 : X/G→ BG/BH defined as follows:
if [g0, · · · , gn] represents an element in BG, we use [g0, · · · , gn] to denote an element in
the quotient BG/BH and (g0, · · · , gn)G to denote elements in X/G− {x}, so

f−1(x) = [e]

where e is the identity in G and

f−1(g0, · · · , gn)G = [g0, · · · , gn]

The map f−1 is well defined because [e] = [g0, · · · , gn] for any n if and only if
[g0, · · · , gn] belongs to BH.

We say that H is a malnormal subgroup of G if gHg−1 ∩H = {e} for all g /∈ H.

Proposition 4.1.6. The space BF(H)(G) is homotopically equivalent to the quotient space
BG/BH if and only if H is malnormal.

Proof. The action of G on X is not longer free, each point xg has isotropy a subgroup
gHg−1. If gHg−1∩H = {e} for all g /∈ H, any element of F(H) fixes only one point, then
by Theorem 2.2.2 we we have the desired result.

On the other hand, if X is a EF(H)(G), then by Theorem 2.2.2 X(H) is contractible for
all H ∈ F(H), since X(H) ⊂ X is a point then gHg−1 ∩H = {e} for all g /∈ H.

Theorem 4.1.7. Let H be a malnormal subgroup of G. Then, for n ≥ 1, we have that

Hn(G,H;Z) = Hn([G : H];Z).

Proof. By Proposition 3.2.8 we have

Hn(G,H;Z) ∼= Hn(BG,BH) = H̃n(BG/BH),
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for n ≥ 1. The Proposition 4.1.6 gives

H̃n(BG/BH) ∼= Hn(BF(H)(G))

and by definition we obtain Hn(BF(H)(G)) ∼= Hn([G : H];Z). Therefore

Hn(G,H;Z) ∼= Hn([G : H];Z),

for n ≥ 1.

Proposition 4.1.8. If 〈H〉 is the normal subgroup of G generated by H, then

π1(BF(H)(G)) ∼= G/〈H〉.

Proof. It is a direct application of a result by M. A. Armstrong [3, Theorem 3] which says
that π1(BF(H)(G))/N where N is the normal subgroup of G generated by those elements
which leave fixed at least one point of EF(H(G). Since all isotropy of EF(H)(G) belongs to
F(H) then N = 〈H〉.

Proposition 4.1.9. The relative groups homology H1(G,H;Z) and H1([G : H];Z) are
isomorphic.

Proof. The quotient BG/BH is homotopic to the cone induced by the inclusion H ↪→ G.
Then by the Van Kampen theorem, π1(BG/BH) ∼= G/〈H〉. So, by Proposition 4.1.8,
π1(BG/BH) ∼= π1(BF(H)(G)) ∼= G/〈H〉, the first homology of these spaces are equal.
Therefore H1(G,H;Z) ∼= H1([G : H];Z).
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CHAPTER 5.

Relative Group Homology of SL2(C)

In this chapter we study the groups SL2(C) and PSL2(C) and some of their subgroups in
order to give models in which these groups act, and in turn, they give classifying spaces
of SL2(C) and PSL2(C)-actions. These models allow us to calculate Adamson relative
group homology. Also these spaces allow us to define invariants of hyperbolic manifolds
that we study later.

5.1. The group SL2(C) and some of its groups

We denote by C∗ the multiplicative group of the field of complex numbers. In this chapter
and the sequel, we denote by G = SL2(C) and we consider H as one of the following
subgroups:

±I =

{(
±1 0
0 ±1

)}
,

T =

{(
a 0
0 a−1

)
| a ∈ C∗

}
,

U =

{(
1 b
0 1

)
| b ∈ C

}
,

P =

{(
±1 b
0 ±1

)
| b ∈ C

}
,

B =

{(
a b
0 a−1

)
| a ∈ C∗, b ∈ C

}
.

By abuse of notation, we denote by I the identity matrix and also the subgroup of G
which consists only of the identity matrix. Denote by Ḡ = G/± I = PSL2(C). Given a
subgroup H of G denote by H̄ the image of H in Ḡ. Notice that Ū = P̄ . We denote by
ḡ the element of Ḡ with representative g ∈ G. As usual we consider all groups with the
discrete topology.

We list some known facts about these groups. Their proofs are in Lang [21].

1. SL2(C) is generated by elementary matrices [21, Lemma XIII.8.1].
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2. B is a maximal proper subgroup [21, Proposition XIII.8.2].

3. NG(P ) = NG(U) = B, so NḠ(P̄ ) = NḠ(Ū) = B̄. Indeed, if g =
(
a b
c d

)
∈ G and

p =
( ±1 x

0 ±1

)
∈ P ,

gpg−1 =

(
±1− acx a2x

c2x ±1 + acx

)
;

gpg−1 ∈ P for all p ∈ P if and only if c = 0, that is g ∈ B.

4. The subgroups U and P are normal in B and we have the exact sequences

I // U i // B // T ∼= C∗ // I

I // P
i // B // T ∼= C∗ // I

(5.1)

5. PSL2(C) is a simple group [21, Theorem XIII.8.4]. Hence, ±I is the only normal
subgroup of SL2(C).

Lemma 5.1.1. Let g /∈ B. Then

U ∩ gUg−1 = I,

P ∩ gPg−1 = ±I.

Proof. Suppose that g =
(
a b
c d

)
/∈ B and h =

(
1 x
0 1

)
∈ U , then c 6= 0 and

ghg−1 =

(
1− acx a2x
c2x 1 + acx

)
.

The only way to have ghg−1 ∈ U is to have x = 0, in that case ghg−1 = I. Analogously
if h =

( ±1 x
0 ±1

)
∈ P .

Now we give models for the G-sets X(H) with H = U, P,B.

Remark 5.1.2. Recall that for H = P,B we have bijections of sets G/H ∼= Ḡ/H̄ which are
equivariant with respect to the actions of G on G/H and of Ḡ on Ḡ/H̄ via the natural
projection G → Ḡ. Thus, we have that X(H) = X(H̄) as sets, the subgroup will indicate
whether we are considering the action of G or Ḡ on it.

5.1.1. The G-set X(U). Consider g =
(
a b
c d

)
∈ G and u =

(
1 x
0 1

)
∈ U . Then

gu =

(
a ax+ b
c cx+ d

)
Therefore the class gU is totaly determined by the pair (a, c) ∈ C2\{(0, 0)}, since ad−bc =
0, i.e., SL2(C)/U and C2\{(0, 0)} are G-isomorphic.

In the sequel, we set X(U) = C2\{(0, 0)}.
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5.1.2. The G-set X(P ). Now consider g =
(
a b
c d

)
∈ G and p =

( ±1 x
0 ±1

)
∈ P . Then

gp =

(
±a ax± b
±c cx± d

)
.

Since ad − bc = 0, the class gP is totaly determined by the pair [a, c] ∈ C2\{(0, 0)}/Z2

where −1 ∈ Z2 sends (a, c) to (−a,−c), i.e., SL2(C)/P and C2\{(0, 0)}/Z2 are G-
isomorphic.

We set X(P ) = C2\{(0, 0)}/Z2 for the sequel. By Remark 5.1.2 we also have that
X(P̄ ) = C2\{(0, 0)}/Z2.

There is another model for X(P ) which we learned from Ramadas Ramakrishnan.
Consider the set Sym of 2 × 2 non-zero symmetric complex matrices with determinant
zero. The set Sym is given by matrices of the form

Sym =

{(
x2 xy
xy y2

)
| (x, y) ∈ C2\{0, 0}

}
. (5.2)

Let g ∈ SL2(C) and S ∈ Sym. We define an action of G on Sym by

g · S = gSgT ,

where gT is the transpose of g. The action is well defined because transpose conjugation
preserves symmetry and the determinant function is a homomorphism. Since −I acts as
the identity, this action descends to an action of Ḡ.

Proposition 5.1.3. The group G acts transitively on Sym.

Proof. Let
(
x2 xy
xy y2

)
and

(
z2 zw
zw w2

)
be elements of Sym. Then the matrix g′ =

(
a b
c d

)
∈ SL2(C)

which send
(
x2 xy
xy y2

)
to
(
z2 zw
zw w2

)
is given by:

If x 6= 0: we have two cases: w 6= 0:

a = −zw + xy

xw
, b =

x

w
, c = −w

x
, d = 0.

That is

g′ =

(
− zw+xy

xw
x
w

−w
x

0

)
.

w = 0: which implies that z 6= 0

a = −z + by

x
, c =

y

z
, d = −x

z
, b = 0.

g′ =

(
− z
x

0
y
z
−x
z

)
.

If x = 0: which implies y 6= 0, then we have

b = −z
y
, d = −w

y
, a =

{
0 if z 6= 0,

− y
w

if w 6= 0.
c =

{
y
w

if z 6= 0,

0 if w 6= 0.
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That is

g′ =



(
0 − z

y
y
z

w
y

)
if z 6= 0,(

− y
w
− z
y

0 −w
y

)
if w 6= 0.

This proves the transitivity of the action.

Proposition 5.1.4. The isotropy subgroup of
(

1 0
0 1

)
∈ Sym is P . Therefore, there is a

G-isomorphism between SL2(C)/P and Sym given by

gP 7→ g

(
1 0
0 0

)
gT .

Proof. Let g =
(
a b
c d

)
∈ SL2(C) such that(
a b
c d

)(
1 0
0 0

)(
a c
d d

)
=

(
a2 ac
ac c2

)
=

(
1 0
0 0

)
.

This implies that a = ±1, c = 0 and d = ±1 because of the determinant of g, therefore
g =

( ±1 b
0 ±1

)
∈ P .

We denote X̄(P ) = Sym to distinguish it from X(P ). By Remark 5.1.2 we have that
Sym is also a model for Ḡ/P̄ . We use the notation X̄(P̄ ) = Sym to distinguish it from
X(P ) and emphasize the action of G.

Corollary 5.1.5. The G-sets C2\{(0, 0)}/Z2 and Sym are G-isomorphic.

5.1.3. The G-set X(B). Consider g =
(
a b
c d

)
∈ G and b =

( x y
0 y−1

)
∈ U . Then

gb =

(
ax ay + bx−1

cx cy + dx−1

)
since ab − bc = 0, the class gB is totally determined by the pair [a : c] ∈ CP =
C2\{(0, 0)}/C∗ where C∗ acts on C2\{(0, 0)} by x · (a, c) = (xa, xc). Therefore SL2(C)/U
and CP1 are G-isomorphic.

Explicitly g =
(
a b
c d

)
∈ G acts on an element [z1 : z2] in CP1 by matrix multiplication

g · [z1 : z2] =

(
a b
c d

)(
z1

z2

)
= [az1 + bz2 : cz1 + d2].

We can also identify CP1 with Ĉ via [z1 : z2] ↔ z1
z2

, where [z1 : z2] ∈ CP is written in
homogeneous coordinates. This gives the following

Proposition 5.1.6. The isotropy subgroup of ∞ ∈ Ĉ is B. Therefore, there is a G-
isomorphism between SL2(C)/B and Ĉ given by

SL2(C)/B → Ĉ
B 7→ g · ∞.

Therefore we set X(B) = Ĉ. Again, by Remark 5.1.2 we also have that X(B̄) = Ĉ.
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5.1.4. The explicit G-maps. The inclusions

I ↪→ U ↪→ P ↪→ B (5.3)

induce G-maps
G→ G/U → G/P → G/B

g 7→ gU 7→ gP 7→ gB.

Using the models X(H) for the G-sets G/H with H = U, P,B given in the previous
subsections we give the explicit G-maps between them.

Let g =
(
a b
c d

)
∈ G. We have the G-maps

G
hUI // X(U)

hPU // X(P )

hBP // X(B)

g =

(
a b
c d

)
� // g ·

(
1
0

)
=

(
a
c

)
� // g ·

[
1
0

]
=

[
a
c

]
� // g · [1 : 0] = g · ∞ = a

c
.

(5.4)

Notice that hPU : X(U) → X(P ) is just the quotient map given by the action of Z2. On
the other hand, we have that

hBU = hBP ◦ hPU (5.5)

where hBU is the Hopf map
hBU : X(U) → X(B)

hBU (a, c) =
a

c
(5.6)

Using X̄(P ) instead of X(P ) we have

G
hUI // X(U)

h̄PU // X̄(P )

h̄BP // X(B)

(
a b
c d

)
� //

(
a
c

)
� //

(
a2 ac
ac c2

)
� // a2

ac
= ac

c2
= a

c
.

(5.7)

We have that
h̄BP ◦ h̄PU = h̄BU

Remark 5.1.7. For the case of Ḡ we have practically the same G-homomorphisms as in
(5.4) and (5.7) except that X(Ū) = X(P̄ ).

Remark 5.1.8. Consider∞ ∈ X(B) = S2 and its inverse image under the Hopf map (5.1.4)

(hBU )−1(∞) = {(x, 0) | x ∈ C× ⊂ X(U)},

which corresponds to the first coordinate complex line minus the origin. Since by Propo-
sition 5.1.6 the isotropy subgroup of ∞ ∈ X(B) under the action of G is B, we have that
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(hBU )−1(∞) is a B-invariant subset of X(U). Since the short exact sequence (5.1) splits,
any element of B can be written in a unique way as the product of an element in U and
an element in T (

a b
0 a−1

)
=

(
1 ab
0 1

)(
a 0
0 a−1

)
. (5.8)

It is easy to see that U fixes pointwise the points of (hBU )−1(∞), while T acts freely and
transitively on(hBU )−1(∞) where the matrix

(
a 0
0 a−1

)
acts multiplying (x, 0) by a ∈ C×.

Another way to interpret this is to write ∞ ∈ X(B) in homogeneous coordinates
[λ : 0], then the elements in U fix ∞ and the homogeneous coordinates [λ : 0], while an
element

(
a 0
0 a−1

)
∈ T (∞) also fix∞ but multiply the homogeneous coordinates by a ∈ C×

obtaining the homogeneous coordinates [aλ : 0].

More generally, for any point z ∈ X(B), its isotropy subgroup Gz is a conjugate of B,
which can be written as the direct product of the corresponding conjugates of U and T
, which we denote by Uz and Tz. Writing z ∈ X(B) in homogeneous coordinates [λz : λ]
the elements of Uz fix z and the homogeneous coordinates, while the elements of Tz fix z
but multiply the homogeneous coordinates by a constant.

Remark 5.1.9. Analogously, consider ∞ ∈ X(B) and its inverse image under the G-map
hBP

(hBP )−1(∞) = {[x, 0] | x ∈ C× ⊂ X(P )},

By (5.8) any element of P can be written in a unique way as the product of an element
in U and an element in T (

±1 b
0 ±1

)
=

(
1 ±b
0 1

)(
±1 0
0 ±1

)
. (5.9)

Given a representative (x, 0) of [x, 0] ∈ (hBP )−1(∞) the matrix
( −1 0

0 −1

)
∈ T changes the

sign of the representative to (−x, 0) but fixes its class [x, 0] and the matrix
(

1 ±b
0 1

)
∈ U

fixes any representative of [x, 0], thus it fixes the class itself. Therefore, the elements in
P fix pointwise the points in (hBP )−1(∞) while T acts transitively on (hBP )−1(∞) with
isotropy Z2 , where the matrix

(
a 0
0 a−1

)
acts multiplying [x, 0] by a ∈ C× obtaining [ax, 0].

If we use instead h̄BP the inverse image of ∞ ∈ X(B) is given by

(h̄BP )−1(∞) =

{(
x 0
0 0

)
| x ∈ C× ⊂ X̄(P )

}
,

The elements in P fix pointwise the points in (h̄BP )−1(∞) while T acts transitively on
(h̄BP )−1(∞) with isotropy Z2, where the matrix

(
a 0
0 a−1

)
acts multiplying

(
x 0
0 0

)
by a2 with

a ∈ C× obtaining
(
a2x 0
0 0

)
.

More generally, for any point z ∈ X(B), its isotropy subgroup Gz is a conjugate of B,
and let Pz denote the corresponding conjugate of P . The elements of Pz fix pointwise the
points in (h̄BP )−1(z) while Tz acts transitively on (h̄BP )−1(z) multiplying by a constant.
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5.1.5. Canonical homomorphisms. As in Section 2.2, we denote by F(H) the family
of subgroups of G generated by H. The inclusions (5.3) induce the inclusions of families
of subgroups of G

F(I) ↪→ F(U) ↪→ F(P ) ↪→ F(B)

and in turn, these inclusions give canonical G-maps between classifying spaces

EG→ EF(U)(G)→ EF(P )(G)→ EF(B)(G), (5.10)

which are unique up to G-homotopy. Taking the quotient by the action of G we get
canonical maps

BG→ BF(U)(G)→ BF(P )(G)→ BF(B)(G).

The homomorphisms induced in homology give the sequence

Hn(BG)→ Hn(BF(U)(G))→ Hn(BF(P )(G))→ Hn(BF(B)(G)),

which by Proposition 2.4.11 is the same as the sequence of homomorphisms

Hn(G;Z)
(hUI )∗// Hn([G : U ];Z))

(hPU )∗ // Hn([G : P ];Z)
(hBP )∗ // Hn([G : B];Z).

Recall that we denote by Ḡ = G/ ± I = PSL2(C) and given a subgroup H of G we
denote by H̄ the image of the H in Ḡ. Notice that Ū = P̄ . Analogously, the inclusions
I ↪→ P̄ ↪→ B̄ induce a sequence of homomorphisms

Hn(Ḡ;Z) // Hn([Ḡ : P̄ ];Z) // Hn(Ḡ : B̄];Z) .

The relation between the coset sets of G and Ḡ can be shown in the following diagram

G

$$

// G/U // G/P = Ḡ/P̄ // G/B = Ḡ/B̄

Ḡ = G/± I

66

// Ḡ/T̄ = G/T.

66

In turn, by Proposition 2.2.9 this induces the following commutative diagram of rela-
tive homology groups

Hn(G;Z) //

((

Hn([G : U ]);Z) // Hn([G : P ];Z) // Hn([G : B];Z)

Hn(Ḡ;Z) //

55

Hn([G : T ];Z).

66
(5.11)

5.1.6. Relative group homology of SL2(C). Consider C
hBU 6=
∗ (X(U)) the hBU -subcom-

plex, and the hB̄
P̄

-subcomplex C
hB̄
P̄
6=

∗ (X(P̄ )) defined in Subsection 2.4.2.



52 Relative Group Homology of SL2(C)

Proposition 5.1.10. We have isomorphisms

Hn(G,U ;Z) ∼= Hn

(
B
hBU 6=
∗ (X(U))

)
, n = 2, 3, . . .

Hn(Ḡ, P̄ ;Z) = Hn(Ḡ, Ū ;Z) ∼= Hn

(
B
hB̄
P̄
6=

∗ (X(P̄ ))

)
, n = 2, 3, . . .

Proof. By Lemma 5.1.1 U ∩ gUg−1 = I for any g /∈ B and P̄ ∩ ḡP̄ ḡ−1 = I for any g /∈ B.
Since NG(U) = B and NG(P̄ ) = B̄ the result follows by Corollary 3.2.11.



CHAPTER 6.

Invariants of Hyperbolic 3-Manifolds
of Finite Volume

We use the different calculations in the previous chapters to compare different invariants
of hyperbolic 3-manifolds, some of them are in the literature, but some other are original
ones. In Section 6.2 we give the definition of the invariants βB̄(M) and βP̄ (M) which lie
in H3([PSL2(C) : B̄];Z) and H3([PSL2(C) : P̄ ];Z) respectively. Then in Section 6.3 we
compare βB̄(M) with the Bloch invariant β(M). In Section 6.5 we compute the invariant
βB̄(M) and βP̄ (M) through the different models of EF(H)(PSL2(C)) with H = P̄ , B̄.
In Section 6.6 we compare βP̄ (M) with Zickert’s class F (M), in fact, F (M) is not well
defined but is sent through an explicit homomorphism to βP̄ (M) which is well defined.
In the last sections we generalize the invariant βP̄ (M) to other manifolds and we give an
application to the volume of those manifolds.

6.1. Hyperbolic 3-manifolds

Consider the upper half space model for the hyperbolic 3-space H3 and identify it with

the set of quaternions {z + tj | z ∈ C, t > 0}. Let H3
= H3 ∪ Ĉ be the standard

compactification of H3. The group of orientation preserving isometries of H3 is isomorphic
to PSL2(C) and the action of

(
a b
c d

)
∈ PSL2(C) in H3 is given by the linear fractional

transformation

φ(w) = (aw + b)(cw + d)−1, w = z + tj, ad− bc = 1,

which is the Poincaré extension to H3 of the complex linear fractional transformation on
Ĉ given by

(
a b
c d

)
.

Recall that isometries of hyperbolic 3–space H3 can be of three types: elliptic if fixes a
point in H3; parabolic if fixes no point of H3 and fixes a unique point of Ĉ and hyperbolic
if fixes no point of H3 and fixes two points of Ĉ (see for instance [20, Proposition 1.16]).

A subgroup of SL2(C) or PSL2(C) is called parabolic if all its elements correspond
to parabolic isometries of H3 fixing a common point in C. Since the action of SL2(C)
(or PSL2(C)) in Ĉ is transitive and the conjugates of parabolic isometries are parabolic
(see the proof of [31, Theorem 4.7.2]) we can assume that the fixed point is the point at

53
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infinity ∞ which we denote by its homogeneous coordinates ∞ = [1 : 0] and therefore
parabolic subgroups are conjugate to a group of matrices of the form

( ±1 b
0 ±1

)
, with b ∈ C,

or its image in PSL2(C). In other words, a parabolic subgroup of SL2(C) or PSL2(C) is
conjugate to a subgroup of P or P̄ respectively.

A complete oriented hyperbolic 3-manifold M is the quotient of the hyperbolic
3-space H3 by a discrete, torsion-free subgroup Γ of orientation preserving isometries.
Since Γ is torsion-free, it acts freely on H3 [31, Theorem 8.2.1] and therefore it consist
only of parabolic and hyperbolic isometries [20, Corollary 1.17].

Notice that, since H3 is contractible, it is the universal cover of M and therefore
π1(M) = Γ and M = BΓ, the classifying space of Γ. To such an hyperbolic 3-manifold we
can associate a representation ρ̄ : Γ→ PSL2(C) given by the inclusion, which is canonical
up to equivalence. This representation can be lifted to a representation ρ : Γ → SL2(C)
[8, Proposition 3.1.1]. We identify Γ with a subgroup of SL2(C) using the representation
ρ : Γ→ SL2(C).

Let M be a non-compact orientable complete hyperbolic 3-manifold of finite volume.
Such manifolds contain a compact 3-manifold-with-boundary M0 such that M−M0 is the
disjoint union of a finite number of cusps. Each cusp of M is diffeomorphic to T 2×(0,∞),
where T 2 denotes the 2-torus, see for instance [31, p. 647 Corollary 4 and Theorem 10.2.1].
The number of cusps can be zero, and this case corresponds when the manifold M is a
closed manifold.

Let M be an oriented complete hyperbolic 3-manifold of finite volume with d cusps,
with d > 0. Each boundary component Ti of M0 defines a subgroup Γi of π1(M) which is
well defined up to conjugation. The subgroups Γi are called the peripheral subgroups
of Γ. The image of Γi under the representation ρ : Γ → SL2(C) given by the inclusion
is a free abelian group of rank 2 of SL2(C). The subgroups Γi consist only of parabolic
elements, that is, they fix no points of H3 and fix a unique point of the boundary Ĉ of
H3. All the elements in Γi have as a fixed point the corresponding cusp point [39, §4.5].
Since the action of SL2(C) in C is transitive and the conjugates of parabolic isometries
are parabolic [31, p. 141] we can assume that the fixed point is the point at infinity ∞
which we denote by its homogeneous coordinates∞ = [1 : 0] and therefore the subgroups
Γi are conjugate to a group of matrices of the form

( ±1 b
0 ±1

)
, with b ∈ C. Hence we have

that Γi ⊂ F(P ). Therefore the image of Γi under the representation ρ̄ : Γ→ PSL2(C) is
contained in F(P̄ ).

Let M = H3/Γ be a non-compact orientable complete hyperbolic 3-manifold of finite
volume. Let π : H3 → H3/Γ = M be the universal cover of M. Consider the set C of

parabolic elements of Γ in Ĉ and divide by the action of Γ, the resulting set Ĉ are call
the cusp points.

Remark 6.1.1. No hyperbolic element in Γ has as fixed point any point in C, otherwise
the group Γ would not be discrete [31, Theorem 5.5.4].

Let Ŷ = H3 ∪ C and consider M̂ = Ŷ /Γ. If M is closed C = ∅ and M̂ = M , if

M is non-compact we have that M̂ is the end-compactification of M which is the result
of adding the cusp points of M . We get an extension of the covering map π to a map
π̂ : Ŷ → M̂ .
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Consider as well the one-point-compactification M+ of M which consists in identifying
all the cusps points of M to a single point. Since M is homotopically equivalent to the
compact 3-manifold-with-boundary M0 we have that M+

∼= M̂/C ∼= M0/∂M0. By the

exact sequence of the pair (M̂, C) we have that H3(M̂ ;Z) ∼= H3(M̂, C;Z) and therefore
we have that

H3(M̂ ;Z) ∼= H3(M̂, C;Z) ∼= H3(M̂/C;Z) ∼= H3(M+;Z) ∼= H3(M0, ∂M0;Z) ∼= Z.

We denote by [M̂ ] the generator and call it the relative fundamental class of M̂ .

6.2. Invariants of hyperbolic 3-manifolds of finite volume

Let M be a compact oriented hyperbolic 3-manifold. To the canonical representation
ρ̄ : Γ → PSL2(C) corresponds a map Bρ : BΓ → BPSL2(C) where BPSL2(C) is the
classifying space of PSL2(C). There is a well known invariant [M ]PSL of M in the group

H3(PSL2(C);Z) given by the image of the relative fundamental class of M̂ under the
homomorphism induced in homology by Bρ.

We generalize the construction given in Cisneros-Molina–Jones [7] to extend this in-
variant when M is a complete oriented hyperbolic 3-manifold of finite volume (i.e. M
is compact or with cusps) to invariants βH(M), but in this case βH(M) takes values in
H3([PSL2(C) : H̄];Z), where H̄ is one of the subgroups P̄ or B̄ of Ḡ = PSL2(C).

Let Γ be a discrete torsion-free subgroup of SL2(C). The action of Γ on the hyperbolic
3–space H3 is free and since H3 is contractible, by Theorem 2.2.2 it is a model for EΓ.

The action of Γ on Ŷ is no longer free. The points in C have as isotropy subgroups the
peripheral subgroups Γ1, . . . ,Γd of Γ or their conjugates and any subgroup in F(Γ1, . . . ,Γd)
fixes only one point in C. Therefore, by Theorem 2.2.2 we have that Ŷ is a model for
EF(Γ1,...,Γd)(Γ).

We have the following facts:

1. Since {e} ⊂ F(Γ1, . . . ,Γd) there is a Γ-map H3 → Ŷ unique up to Γ-homotopy. We
can use the inclusion.

2. By Proposition 2.2.6 resḠΓEḠ is a model for EΓ. Therefore, there is a Γ-homotopy
equivalence H3 → resḠΓEḠ which is unique up to Γ-homotopy.

3. Since F(Γ1, . . . ,Γd) = F(P̄ )/Γ ⊂ F(B̄)/Γ we have Γ-maps

Ŷ → resḠΓEF(P̄ )(Ḡ)→ resḠΓEF(B̄)(Ḡ)

which are unique up to Γ–homotopy.

Remark 6.2.1. Since F(Γ1, . . . ,Γd) = F(P̄ )/Γ, we have that the Γ-space resḠΓEF(P̄ )(Ḡ) is

a model for EF(Γ1,...,Γd)(Γ) by Proposition 2.2.6. Therefore, the Γ-map Ŷ → resḠΓEF(P̄ )(Ḡ)
is in fact a Γ–homotopy equivalence.
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Combining the previous Γ-maps with the G-maps given in (5.10) we have the following
commutative diagram

EḠ // EF(P̄ )(Ḡ) // EF(B̄)(Ḡ)

H3 //

>>

Ŷ

ψP
;;

ψB

44

Taking the quotients by SL2(C) and Γ we get the following commutative diagram

EḠ //

��

EF(P̄ )(Ḡ) //

��

EF(B̄)(Ḡ)

��

H3 //

��

>>

Ŷ

;; 44

��

BḠ // BF(P̄ )(Ḡ) // BF(B̄)(Ḡ)

M //

f

>>

M̂

ψ̂P
;;

ψ̂B

44

(6.1)

where f = Bρ : BΓ → BḠ is the map between classifying spaces which on fundamental
groups induces the representation ρ̄ : Γ → PSL2(C) of M , and ψ̂P and ψ̂B are given by
the compositions

ψ̂P̄ : M̂ → EF(P̄ )(Ḡ)/Γ→ BF(P̄ )(Ḡ),

ψ̂B̄ : M̂ → EF(B̄)(Ḡ)/Γ→ BF(B̄)(Ḡ),

and they are well defined up to homotopy.
The maps ψ̂P and ψ̂B induce homomorphisms

(ψ̂P̄ )∗ : H3(M̂ ;Z)→ H3(BF(P̄ )(Ḡ);Z),

(ψ̂B̄)∗ : H3(M̂ ;Z)→ H3(BF(B̄)(Ḡ);Z),

We denote by βP (M) and βB(M) the canonical classes in the groups H3(BF(P̄ )(Ḡ);Z)
and H3((BF(B̄)(Ḡ);Z) respectively, given by the images of the relative fundamental class

[M̂ ] of M̂

βP̄ (M) = (ψ̂P̄ )∗([M̂ ])

βB̄(M) = (ψ̂B̄)∗([M̂ ])

By the commutativity of the lower triangle in (6.1) we have that βP (M) is sent to
βB(M) by the canonical homomorphism from H3(BF(P )(G);Z) to H3(BF(B)(G);Z).

Thus, by Proposition 2.4.11 we have the following
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Theorem 6.2.2. Given a complete oriented hyperbolic 3–manifold of finite volume M we
have well defined invariants

βP̄ (M) ∈ H3([Ḡ : P̄ ];Z),

βB̄(M) ∈ H3([Ḡ : B̄];Z).

Moreover, we have that
βB̄(M) = (hBP )∗(βP̄ (M)),

where (hBP )∗ : H3([Ḡ : P̄ ];Z)→ H3([Ḡ : B̄];Z) is the homomorphism described in (2.10).

Notice that in diagram (6.1) we can replace Ḡ by G. Since by Proposition 2.2.9
H3([Ḡ : P̄ ];Z) ∼= H3([G : P ];Z) and H3([Ḡ : B̄];Z) ∼= H3([G : B];Z), by (5.11) we get the
same invariants βP̄ (M) and βB̄(M). Then we have proved the following

Remark 6.2.3. The invariants βP̄ (M) and βB̄(M) of M only depend on the canonical
representation ρ̄ : Γ → PSL2(C) and not on the lifting ρ : Γ → SL2(C). In other words,
they are independent of the choice a spin structure of M .

Remark 6.2.4. The invariants βP̄ (M) and βB̄(M) extend the invariant [M ]PSL for M

closed in the following sense: when M is compact M̂ = M , by the commutativity of the
lower diagram in (6.1) and by Remark 2.4.13 we have that

(ψ̂P̄ )∗ = (hP̄Ī )∗ ◦ f∗,
(ψ̂B̄)∗ = (hB̄B̄)∗ ◦ f∗,

where (hP̄
Ī

)∗ and (hB̄
B̄

)∗ are the homomorphisms described in (2.10). Thus

βP̄ (M) = (hP̄Ī )∗([M ]PSL),

βB̄(M) = (hB̄Ī )∗([M ]PSL).

6.3. Relation with the extended Bloch group

In the present section we recall the definitions of the Bloch and extended Bloch groups
and the Bloch invariant. We see that the Bloch group is isomorphic to H3([G : B];Z) and
under this isomorphism the Bloch invariant is the invariant βB̄(M).

6.3.1. The Bloch group. The pre-Bloch group P(C) is the abelian group generated by
the formal symbols [z], z ∈ C\{0, 1} subject to the relation

[x]− [y] +
[y
x

]
−
[

1− x−1

1− y−1

]
+

[
1− x
1− y

]
= 0, x 6= y (6.2)

This relation is called the five term relation. By Dupont–Sah [11, Lemma 5.11] we
also have the following relations in P(C)

[x] =

[
1

1− x

]
=

[
1− 1

x

]
=

[
1

x

]
=

[
x

x− 1

]
= [1− x] (6.3)
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Using this relations it is possible to extend the definition of [x] ∈ P(C) allowing x ∈ Ĉ
and removing the restriction x 6= y in (6.2). This is equivalent [11, after Lemma 5.11]

to define P(C) as the abelian group generated by the symbols [z], z ∈ Ĉ subject to the
relations

[0] = [1] = [∞] = 0,

[x]− [y] +
[y
x

]
−
[

1− x−1

1− y−1

]
+

[
1− x
1− y

]
= 0.

The pre-Bloch group can be interpreted as a Adamson relative homology group. The
action of Ḡ on Ĉ by fractional linear transformations (see Subsection 5.1.3) is not only

transitive but triply transitive, that is, given four distinct points z0, z1, z2, z3 in Ĉ, there
exists an element ḡ ∈ PSL2(C) such that

ḡ · z0 = 0 ḡ · z1 =∞ ḡ · z2 = 1 ḡ · z3 = z

where z = [z0 : z1 : z2 : z3] is the cross-ratio of z0, z1, z2, z3 given by

[z0 : z1 : z2 : z3] =
(z0 − z3)(z1 − z2)

(z0 − z2)(z1 − z3)
(6.4)

In other words, the orbit of a 4-tuple (z0, z1, z2, z3) of distinct points in Ĉ under the
diagonal action of Ḡ is determined by its cross-ratio.

If we extend the definition of the cross-ratio to [z0 : z1 : z2 : z3] = 0 whenever zi = zj
for some i 6= j, we get a well defined homomorphism

σ : B3(X(B̄)) = B3(Ĉ)→ P(C)

(z0, z1, z2, z3)G 7→ [z0 : z1 : z2 : z3]
(6.5)

where (z0, z1, z2, z3)G denotes the G-orbit of the 3-simplex (z0, z1, z2, z3) ∈ C3(X(B)). It is
easy to see that the five term relation (6.2) is equivalent to the relation

4∑
i=0

(−1)i[z0 : · · · : ẑi : · · · z4] = 0

By the triply transitivity of the action of Ḡ on Ĉ we have that B2(X(B̄)) = Z and B3(X(B̄))
consists only of cycles. Thus σ induces an isomorphism, compare with [36, Lemma 2.2]

H3([Ḡ : B̄];Z) = H3

(
B∗(X(B̄))

) ∼= P(C). (6.6)

Remark 6.3.1. If we consider the first definition of the pre-Bloch group where for the
generators [z] of P(C) we only allow z to be in C\{0, 1}, each generator [z] corresponds
to the G-orbit of a 4-tuple (z0, z1, z2, z3) of distinct points in C. In this case we have that

H3

(
B 6=∗ X(B̄)

) ∼= P(C). (6.7)

Also using this definition of the pre-Bloch group it is possible to prove that it is isomorphic
to the corresponding Takasu relative homology group:
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Proposition 6.3.2.
H3(G,B;Z) = H3([G : B];Z) ∼= P(C).

Proof. By [38, Theorem 2.2] we have that H3(G,B;Z) = H2(G, I(G,H)(Z);Z) and by [11,
(A27), (A28)] we also have H2(G, I(G,H)(Z);Z) ∼= P(C)

The Bloch group B(C) is the kernel of the map

ν : P(C)→ ∧2
Z(C∗)

[z] 7→ z ∧ (1− z)
(6.8)

6.3.2. The Bloch invariant. An ideal simplex is a geodesic 3-simplex in H3 whose

vertices z0, z1, z2, z3 are all in ∂H3 = Ĉ. We consider the vertex ordering as part of the
data defining an ideal simplex. By the triply transitivity of the action of G on H3 the
orientation-preserving congruence class of an ideal simplex with vertices z0, z1, z2, z3 is
given by the cross-ratio z = [z0 : z1 : z2 : z3]. An ideal simplex is flat if and only if the
cross-ratio is real, and if it is not flat, the orientation given by the vertex ordering agrees
with the orientation inherited from H3 if and only if the cross-ratio has positive imaginary
part.

From (6.4) we have that an even (i.e. orientation preserving) permutation of the zi
replaces z by one of three so-called cross-ratio parameters,

z, z′ =
1

1− z
, z′′ = 1− 1

z
,

while an odd (i.e. orientation reversing) permutation replaces z by

1

z
,

z

z − 1
, 1− z,

Thus, by the relations (6.3) in P(C) we can consider the pre-Bloch group as being gener-
ated by (congruence classes) of oriented ideal simplices.

Let M be a non-compact orientable complete hyperbolic 3-manifold of finite volume.
An ideal triangulation for M is a triangulation where all the tetrahedra are ideal simplices.

Let M be an hyperbolic 3-manifold and let ∆1, · · · ,∆n be the ideal simplices of an
ideal triangulation of M . Let zi ∈ C be the parameter of ∆i for each i. These parameters
define an element β(M) =

∑n
i=1[zi] in the pre-Bloch group. The element β(M) ∈ P(C)

is called the Bloch invariant of M .

Remark 6.3.3. Neumann and Yang defined the Bloch invariant using degree one ideal
triangulations, in that way it is defined for all hyperbolic 3-manifolds of finite volume,
even the compact ones, see Neumann–Yang [30, § 2] for details.

In [30, Theorem 1.1] it is proved that the Bloch invariant lies in the Bloch group B(C).
An alternative proof of this fact is given in Cisneros-Molina–Jones [7, Corollary 8.7].

Remark 6.3.4. By (6.6) we have that H3([G : B];Z) ∼= P(C) and in [7, Theorem 6.1] it is
proved that βB(M) is precisely the Bloch invariant β(M) of M , see Subsection 6.5.1.
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6.3.3. The extended Bloch group. Given a complex number z we use the convention
that its argument arg z always denotes its main argument −π < arg z ≤ π and log z
always denotes a fixed branch of logarithm, for instance, the principal branch having
arg z as imaginary part.

Let ∆ be an ideal simplex with cross-ratio z. A flattening of ∆ is a triple of complex
numbers of the form

(w0, w1, w2) = (Log z + pπi,−Log(1− z) + qπi,Log(1− z)− Log z − pπi− qπi)

with p, q ∈ Z. The numbers w0, w1 and w2 are called the log parameters of ∆. Up to
multiples of πi, the log parameters are logarithms of the cross-ratio parameters.

Remark 6.3.5. The log parameters uniquely determine z. Hence we can write a flattening
as [z; p, q]. Note that this notation depends on the choice of logarithm branch.

Following [29] we assign cross-ratio parameters and log parameters to the edges of a
flattened ideal simplex as indicated in Figure 6.1.

z0

z1 z2

z3

z z
z′

z′

z′′

z′′ z0

z1 z2

z3

w0 w0

w1

w1

w2

z2

Figure 6.1: Cross-ratio and log parameters of a flattened ideal simplex.

Let z0, z1, z2, z3 and z4 be five distinct points in Ĉ and let ∆i denote the ideal simplices
(z0, · · · , ẑi, · · · , z4). The five points are configured in such way that five thetrahedra ∆i

are positively oriented by the ordering of its vertices, this implies the configuration of
the Figure 6.2. Let (w0, w1, w2) be flattenings of the simplices ∆i. Every edge [zi, zj]
belongs to exactly three of the ∆i and therefore has three associated log parameters. The
flattenings are said to satisfy the flattening condition if for each edge the signed sum of
the three associated log parameters is zero. The sign is positive if and only if i is even.

From the definition we have that the flattening condition is equivalent to the following
ten equations:

[z0, z1] : w2
0 − w3

0 + w4
0 = 0 [z0, z2] : −w1

0 − w3
2 + w4

2 = 0

[z1, z2] : w0
0 − w3

1 + w4
1 = 0 [z1, z3] : w0

2 + w2
1 + w4

2 = 0

[z2, z3] : w0
1 − w1

1 + w4
0 = 0 [z2, z4] : w0

2 − w1
2 − w3

0 = 0

[z3, z4] : w0
0 − w1

0 + w2
0 = 0 [z3, z0] : −w1

2 + w2
2 + w4

1 = 0

[z4, z0] : −w1
1 + w2

1 − w3
1 = 0 [z4, z1] : w0

1 + w2
2 − w4

2 = 0

(6.9)
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z2

z1
z0

z4

z3

Figure 6.2: Configuration for the flattening condition

The extended pre-Bloch group P̂(C) is the free abelian group generated by flat-
tened ideal simplices subject to the relations:

4∑
i=0

(−1)i(w0, w1, w2) = 0 (6.10)

if the flattenings satisfy the flattening condition, and

[z; p, q] + [z; p′, q′] = [z; p, q′] + [z; p′, q]. (6.11)

The first relation (6.10) is called the lifted five term relation and the second one
(6.11) is called the transfer relation.

The extended Bloch group B̂(C) is the kernel of the homomorphism

ν̂ : P̂(C)→ ∧2
Z(C)

(w0, w1, w2) 7→ w0 ∧ w1

6.4. Mapping via configurations in X(P )

In this section following the ideas in Dupont–Zickert [12, § 3] we define a homomorphism

H3(G,P ;Z)→ B̂(C).

We simplify notation by setting

hU = hBU : X(U) → X(B),

hP = hBP : X(P ) → X(B).

Consider the hH-subcomplexes ChU 6=
∗ (X(U)), C

hP 6=
∗ (X(P )) and C 6=∗ (X(B)) defined in Sub-

section 3.2.1.
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Since hPU , hU and hP are G-equivariant they induce maps

(hPU)∗ : C
hU 6=
∗ (X(U))→ ChP 6=

∗ (X(P )),

(hU)∗ : C
hU 6=
∗ (X(U))→ ChP 6=

∗ (X(B)),

(hP )∗ : C
hP 6=
∗ (X(P ))→ ChP 6=

∗ (X(B)),

such that (hU)∗ = (hP )∗ ◦ (hPU) by (5.5).

We start defining a homomorphism ChU 6=
∗ (X(U)) → P̂(C) which descends to a homo-

morphism ChP 6=
∗ (X(P ))→ P̂(C).

We assign to each 4-tuple (v0, v1, v2, v3) ∈ ChU 6=
∗ (X(U)) a combinatorial flattening of

the ideal simplex (hU(v0), hU(v1), hU(v2), hU(v3)) in such a way that the combinatorial
flattenings assigned to tuples (v0, · · · , v̂i, · · · , v4) satisfy the flattening condition.

Remember that we are using C2 − {0, 0} as a model for the space X(U). Given vi =
(v1
i , v

2
i ) ∈ X(U) we denote by

det(vi, vj) = det

(
v1
i v2

i

v1
j v2

j

)
= v1

i v
2
j − v2

i v
1
j .

As was noticed in [12, Section 3.1], the cross-ratio parameters z, 1
1−z and z−1

z
of the

simplex (hU(v0), hU(v1), hU(v2), hU(v3)) can be expressed in terms of determinants

z = [hU(v0) : hU(v1) : hU(v2) : hU(v3)] =
det(v0, v3) det(v1, v2)

det(v0, v2) det(v1, v3)
, (6.12)

1

1− z
= [hU(v1) : hU(v2) : hU(v0) : hU(v3)] =

det(v1, v3) det(v0, v2)

det(v0, v1) det(v2, v3)
, (6.13)

z − 1

z
= [hU(v0) : hU(v2) : hU(v3) : hU(v1)] =

det(v0, v1) det(v2, v3)

det(v0, v3) det(v2, v1)
.

Hence we also have

1− z
z

= [hU(v0) : hU(v2) : hU(v3) : hU(v1)] =
det(v0, v1) det(v2, v3)

det(v0, v3) det(v2, v1)
. (6.14)

We have that

hU(vi) 6= hU(vj)⇔
v1
i

v2
i

−
v1
j

v2
j

6= 0⇔
v1
i v

2
j − v2

i v
1
j

v2
i v

2
j

6= 0⇔ det(vi, vj) 6= 0.

Then all the previous determinants are non-zero.
We define

〈vi, vj〉 = Log det(vi, vj)
2. (6.15)

Using formulae (6.12), (6.13), and (6.14), we assign a flattening to (v0, v1, v2, v3) ∈
ChU 6=

3 (X(U)) by setting
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w̃0(v0, v1, v2, v3) =〈v0, v3〉+ 〈v1, v2〉 − 〈v0, v2〉 − 〈v1, v3〉,
w̃1(v0, v1, v2, v3) =〈v0, v2〉+ 〈v1, v3〉 − 〈v0, v1〉 − 〈v2, v3〉,
w̃2(v0, v1, v2, v3) =〈v0, v1〉+ 〈v2, v3〉 − 〈v0, v3〉 − 〈v1, v2〉.

(6.16)

Recall that for w ∈ C∗ we have that

1

2
Logw2 =


Logw + πi if argw ∈ (−π,−π

2
],

Logw if argw ∈ (−π
2
, π

2
],

Logw + πi if argw ∈ (π
2
, π],

(6.17)

By the addition theorem of the logarithm and (6.17) we have that:

w̃0 = Log z + ikπ, w̃1 = Log

(
1

1− z

)
+ ilπ, w̃2 = Log

(
1− z
z

)
+ imπ,

for some integers k, l and m. Hence, w̃0, w̃1 and w̃2 are respectively logarithms of
the cross-ratio parameters z, z′ and z′′ up to multiples of πi and clearly we have that
w̃0 + w̃1 + w̃2 = 0. Therefore (w̃0, w̃1, w̃2) is a flattening in P̂(C) of the ideal simplex
(hU(v0), hU(v1), hU(v2), hU(v3)).

This defines a homomorphism

σ̃ : ChU 6=
3 (X(U))→ P̂(C)

(v0, v1, v2, v3) 7→ (w̃0, w̃1, w̃2).

Lemma 6.4.1. Let vi, vj ∈ X(U). Then det(vi, vj) is invariant under the action of G on
X(U).

Proof. Let
(
a b
c d

)
∈ SL2(C) and set

v̄i = (v1
i , v

2
i ) =

(
a b
c d

)(
v1
i

v2
i

)
= (av1

i + bv2
i , cv

1
i + dv2

i )

We have that

det(v̄i, v̄j) = det

(
v̄1
i v̄2

i

v̄1
j v̄2

j

)
= v̄1

i v̄
2
j − v̄2

i v̄
1
j

= (av1
i + bv2

i )(cv
1
j + dv2

j )− (cv1
i + dv2

i )(av
1
j + bv2

j )

= (ad− bc)(v1
i v

2
j − v2

i v
1
j )

= det(vi, vj).

(6.18)
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Hence the homomorphism σ̃ descends to the quotient by the action of SL2(C)

σ̃ : BhU 6=
3 (X(U))→ P̂(C)

Now suppose that (w̃0
0, w̃

0
1, w̃

0
2), · · · , (w̃4

0, w̃
4
1, w̃

4
2) are flattenings defined as above for the

simplices (hU(v0), · · · ĥU(vi), · · · , hU(v4)). We must check that these flattenings satisfy the
flattening condition, that is, we have to check that the ten equations (6.9) are satisfied.
We check the first equation, the others are similar:

w̃2
0 =〈v0, v4〉+ 〈v1, v3〉 − 〈v0, v3〉 − 〈v1, v4〉,

−w̃3
0 =− 〈v0, v4〉 − 〈v1, v2〉+ 〈v0, v2〉+ 〈v1, v4〉,

w̃4
0 =〈v0, v3〉+ 〈v1, v2〉 − 〈v0, v2〉 − 〈v1, v3〉.

Having verified all the ten equations, it now follows from [12, Theorem 2.8] or [29,
Lemma 3.4] that σ̃ sends boundaries to zero and we obtain a homomorphism

σ̃ : H3(BhU 6=
∗ (X(U)))→ P̂(C).

6.4.1. The homomorphism σ̃ descends to ChP 6=
3 (X(P )). Given (v1

i , v
2
i ) ∈ X(U) we

denote by vi = [v1
i , v

2
i ] its class in X(P ) = C2 − {0, 0}/Z2.

Remark 6.4.2. Notice that if (v1
i , v

2
i ) ∈ X(U), then

det(vi, vj) = det

(
v1
i v2

i

v1
j v2

j

)
= v1

i v
2
j − v2

i v
1
j = det(−vi,−vj), (6.19)

but in the other hand

det(−vi, vj) = det

(
−v1

i −v2
i

v1
j v2

j

)
= −v1

i v
2
j + v2

i v
1
j = − det(vi, vj). (6.20)

Thus, the quantity det(vi, vj) is just well defined up to sign. However, its square
det(vi, vj)

2 is well defined.
By Lemma 6.4.1, (6.19) and (6.20) we have:

Lemma 6.4.3. Let vi,vj ∈ X(P ). Then det(vi,vj)
2 is invariant under the action of G

on X(P ).

So, we define
〈vi,vj〉 = Log det(vi, vj)

2. (6.21)

Let (v0,v1,v2,v3) ∈ ChP 6=
3 (X(P )). The homomorphism σ̃ descends to a well defined

homomorphism

σ̃ : ChP 6=
3 (X(P ))→ P̂(C)

(v0,v1,v2,v3) 7→ (w̃0, w̃1, w̃2).
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by assign to (v0,v1,v2,v3) the flattening of the ideal simplex

(hP (v0), hP (v1), hP (v2), hP (v3)) = (hU(v0), hU(v1), hU(v2), hU(v3))

given by (6.16) and we obtain a homomorphism

σ̃ : BhP 6=
3 (X(P ))→ P̂(C)

Proposition 6.4.4. The image of σ̃ : BhP 6=
3 (X(P ))→ P̂(C) is in B̂(C).

Proof. Define a map µ : BhP 6=
2 (X(P ))→ ∧2

Z(C) by

(v0,v1,v2) 7→ 〈v0,v1〉 ∧ 〈v0,v2〉 − 〈v0,v1〉 ∧ 〈v1,v2〉+ 〈v0,v2〉〈v1,v2〉

Recall that the extended Bloch group B̂(C) is the kernel of the homomorphism

ν̂ : P̂(C)→ ∧2
Z(C)

(w0, w1, w2) 7→ w0 ∧ w1

The following diagram

BhP 6=
2 (X(P ))

∂3

��

σ̃ // P̂(C)

ν̂

��
BhP 6=

2 (X(P )) µ
// ∧2

Z(C)

is commutative. This means that cycles are mapped to B̂(C), then

σ̃ : H3(BhP 6=
∗ (X(P ))→ B̂(C). (6.22)

6.4.2. Using X̄(P ). Remember that we are considering X̄(P ) = Sym. Sometimes is useful
to express the homomorphism σ̃ using X̄(P ) instead of X(P ) since with X̄(P ) we do not
have to worry about equivalence classes and representatives. Again, we simplify notation
by setting

hU = hBP : X̄(U) → X(B).

For this subsection, we are abusing notation setting hBP = h̄BP . Let Si, Sj ∈ X̄(P ), then we
have that

Si =

(
ri ti
ti si

)
, risi = t2i (6.23)

Define

DS(Si, Sj) = risj − 2titj + rjsi.
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Recall from Corollary 5.1.5 that the G-isomorphism between X(P ) and X̄(P ) is given
by

% : X(P ) → X̄(P )[
u
v

]
↔
(
u2 uv
uv v2

)
.

Lemma 6.4.5. Let vi = [ui, vi] and vj = [uj, vj] in X(P ), denote the classes of vi and vj
in X(U). Then

DS(%(vi), %(vj)) = det(vi, vj)
2

Proof. We have that

%(vi) =

(
u2
i uivi

uivi v2
i

)
, %(vj) =

(
u2
j ujvj

ujvj v2
j

)
.

then

DS(%(vi), %(vj)) = u2
i v

2
j − uiviujvj + u2

jv
2
i = det(vi, vj)

2

Combining Corollary 5.1.5 and Lemma 6.4.5 we get the following corollary which can
also be proved with a straightforward but tedious computation.

Corollary 6.4.6. Let Si, Sj ∈ X̄(P ) and g ∈ G. Then DS(Si, Sj) is G-invariant, that is,
DS(gSig

T , gSjg
T ) = DS(Si, Sj).

So by Lemma 6.4.5, given vi,vj ∈ X(P ) we have that 〈%(vi), %(vj)〉 = 〈vi,vj〉
Let (S0, S1, S2, S3) ∈ ChP 6=

3 (X̄(P )). Then the homomorphism

σ̃ : ChP 6=
3 (X̄(P ))→ P̂(C)

(S0, S1, S2, S3)→ (w̄0, w̄1, w̄2),

is given by assigning to (S0, S1, S2, S3) the flattening defined by

w̄0 = 〈S0, S3〉+ 〈S1, S2〉 − 〈S0, S2〉 − 〈S1, S3〉, (6.24)

w̄1 = 〈S0, S2〉+ 〈S1, S3〉 − 〈S0, S1〉 − 〈S2, S3〉, (6.25)

w̄2 = 〈S0, S1〉+ 〈S2, S3〉 − 〈S0, S3〉 − 〈S1, S2〉, (6.26)

which by Lemma 6.4.5 is the same as the one given in (6.16).
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6.4.3. Important diagrams. Consider G = SL2(C) and H = P , then by (4.2) we have
a homomorphism

H3(G,P ;Z)→ H3([G : P ];Z)

that makes the following diagram commutes

H3(G,P ;Z) σ̃ //

��

P̂(C)

��

H3([G : P ];Z)

(hBP )∗
��

H3(M̂)
ψ̂B//

ψ̂P
77

H3([G : B];Z)σ // P(C)

Remark 6.4.7. In [29, Proposition 14.3] Neumann proves that the long exact sequence
(3.2) gives rise to a split exact sequence

0 // H3(Ḡ) // H3(Ḡ, P̄ ) // Hn

(
P̄
)

// 0 (6.27)

We will see in Remark 6.6.11 that the homomorphism σ̃ defines a splitting of sequence
(6.27), that is, σ̃ ◦ i∗ = id.

6.5. Computing βP (M) and βB(M) using an ideal triangulation

of M

Let M be a non-compact orientable complete hyperbolic 3-manifold of finite volume. Let
π : H3 → H3/Γ = M be the universal cover of M . Then M lifts to an exact, convex,
fundamental, ideal polyhedron P for Γ [31, Theorem 11.2.1]. An ideal triangulation of
M gives a decomposition of P into a finite number of ideal tetrahedra (zi0, z

i
1, z

i
2, z

i
3),

i = 1, · · · , n. Since P = {gP | g ∈ Γ} is an exact tessellation of H3 [31, Theorem 6.7.1],
this decomposition of P gives an ideal triangulation of H3.

As in Section 6.1, let C be the set of fixed points of parabolic elements of Γ in ∂H3 = Ĉ
and consider Ŷ = H3∪C, which is the result of adding the vertices of the ideal tetrahedra
of the ideal triangulation of H3. Hence we can consider Ŷ as a simplicial complex with
0–simplices given by the elements of C ⊂ Ĉ. The action of G on Ŷ induces an action of G
on the tetrahedra of the ideal triangulation of Ŷ . Taking the quotient of Ŷ by Γ we obtain
M and we get an extension of the covering map π to a map π̂ : Ŷ → M . The Γ-orbits
(z0, z1, z2, z3)Γ of the tetrahedra (z0, z1, z2, z3) of the ideal triangulation of Ŷ correspond

to the tethahedra of the ideal triangulation of M . The Γ-orbit set Ĉ of C corresponds to
the cusps points of M , we suppose that M has d cups, so the cardinality of Ĉ is d.

6.5.1. Computation of βB(M). Using the simplicial construction of EF(G) given by
Proposition 2.2.3 we have that a model for EF(B)(G) is the geometric realization of the
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simplicial set whose n–simplices are the ordered (n+ 1)–tuples (z0, · · · , zn) of elements of

XF(B) = Ĉ and the i-th face (respectively, degeneracy) of such a simplex is obtained by
omitting (respectively, repeating) zi. The action of g ∈ G on an n-simplex (z0, · · · , zn)
gives the simplex (g · z0, · · · , g · zn).

Considering Ŷ as the geometric realization of its ideal triangulation and since its
vertices are elements in C ⊂ Ĉ we have that the Γ-map ψB : Ŷ → EF(B)(G) in diagram
(6.1) is given by the (geometric realization of the) Γ-equivariant simplicial map

ψB : Ŷ → EF(B)(G)

(z0, z1, z2, z3) 7→ (z0, z1, z2, z3)

This induces the map ψ̂B : M̂ → BF(B)(G) in diagram 6.1. Furthermore, this induces on

simplicial 3-chains the homomorphism (ψ̂B)∗ : C3(M̂) → B3(BF(B)(G)) = B3(X(B)) (see
Proposition 2.4.11) which we can compose with homomorphism (6.5) to get

σ ◦ (ψ̂B)∗ : C3(M̂) = C3(Ŷ )Γ → B3(X(B))→ P(C)

(z0, z1, z2, z3)Γ 7→ (z0, z1, z2, z3)G 7→ [z0 : z1 : z2 : z3]
(6.28)

where (z0, z1, z2, z3)Γ (resp. (z0, z1, z2, z3)G) denotes the Γ-orbit (respectively G-orbit) of

the 3–simplex (z0, z1, z2, z3) in C3(Ŷ ) (respectively in B3(X(B)) and [z0 : z1 : z2 : z3] is the
cross-ratio parameter of the ideal tetrahedron (z0, z1, z2, z3).

Let (zi0, z
i
1, z

i
2, z

i
3)Γ, i = 1, · · · , n, be the ideal tetrahedra of the triangulation of M

and let zi = [zi0 : zi1 : zi2 : zi3] ∈ C be the cross-ratio parameter of the ideal tetrahedron

(zi0, z
i
1, z

i
2, z

i
3) for each i. Then the image of the relative fundamental class [M̂ ] under the

homomorphism in homology given by (6.28) is given by

σ ◦ (ψ̂B)∗ : H3

(
M̂
)
→ H3([G : B];Z)→ P(C)

[M̂ ] =
n∑
i=1

(zi0, z
i
1, z

i
2, z

i
3)Γ 7→

n∑
i=1

(zi0, z
i
1, z

i
2, z

i
3)G 7→

n∑
i=1

[zi],

and we have that the invariant βB(M) under the isomorphism σ corresponds to the Bloch
invariant β(M), see Cisneros-Molina–Jones [7, Theorem 6.1].

6.5.2. Computation of βP (M). We want to give a simplicial description of the Γ-map

ψP : Ŷ → EF(P )(G) in diagram (6.1). For this, we also use the Simplicial Construction
of Proposition 2.2.3 to give a model for EF(P )(G) as the geometric realization of the
simplicial set whose n-simplices are the ordered (n+1)-tuples of elements of XF(P ) = X(P )

(or XF(P ) = X̄(P )) (see Remark 2.4.11 and Subsection 5.1.2). The i-th face (respectively,
degeneracy) of such a simplex is obtained by omitting (respectively, repeating) the i-th
element. The action of g ∈ G on an n-simplex is the diagonal action.

Since the vertices of Ŷ are elements in C ⊂ C, to give a simplicial description of the
Γ-map ψP : Ŷ → EF(P )(G) is enough to give a Γ-map

Φ: C → X(P ) or Φ: C → X̄(P )
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and define
ψP : Ŷ → EF(P )(G)

(z0, z1, z2, z3) 7→ (Φ(z0),Φ(z1),Φ(z2),Φ(z3)).
(6.29)

For i = 1, · · · , d, every cusp point ĉi ∈ Ĉ of M corresponds to a Γ-orbit of C. Choose
ci ∈ C in the Γ-orbit corresponding to ĉi ∈ Ĉ. Now choose an element vi ∈ (h̄BP )−1(ci) ⊂
X(P ) (or Si ∈ (h̄BP )−1(ci) ⊂ X̄(P )) and define

Φ: C → X(P )

ci 7→ vi
or

Φ: C → X̄(P )

ci 7→ Si
(6.30)

and extend Γ-equivariantly by Φ(g · ci) = g · vi, or Φ(g · ci) = gSig
T .

Remark 6.5.1. Suppose that for every cusp point ĉi ∈ Ĉ we have chosen ci ∈ C ⊂ Ĉ in the
Γ-orbit corresponding to ĉi. Using homogeneous coordinates we can write ci = [zi : wi].
So, one way to choose vi (or Si) is given by

vi = [zi, wi] or Si =

(
z2
i ziwi

ziwi w2
i

)
.

The Γ-isotropy subgroups of the ci are conjugates of the periferal subgroups Γi and they
consist of parabolic elements, that is, elements in a conjugate of P , and by Remark 5.1.9
they fix pointwise the elements of (h̄BP )−1(ci). On the other hand, by Remark 6.1.1 no
hyperbolic element in Γ has as fixed point any point in C. Therefore Φ is a well defined
Γ-equivariant map and the map ψ̂P in (6.29) is a well defined Γ-equivariant map. Since
any two such Γ-maps are Γ-homotopic, ψP is independent of the choice of the vi and the
Si up to Γ-homotopy. This induces the map ψ̂P : M → BF(P )(G) in diagram (6.1) and
choosing different vi and Si we obtain homotopic maps. Thus, this induces a canonical
homomorphism in homology (ψ̂P )∗ : H3(M ;Z)→ H3([G : P ];Z) independent of choices.

Let (zi0, z
i
1, z

i
2, z

i
3)Γ i = 1, · · · , n be the ideal tetrahedra of the ideal triangulation of

M . The image of the relative fundamental class [M̂ ] under (ψ̂P )∗ is given by

(ψ̂P )∗ : H3(M ;Z)→ H3([G : P ];Z)

[M̂ ] =
n∑
i=1

(zi0, z
i
1, z

i
2, z

i
3)Γ 7→ βP (M) =

n∑
i=1

(Φ(zi0),Φ(zi1),Φ(zi2),Φ(zi3))G
(6.31)

obtaining an explicit formula for the invariant βP (M).

6.6. Relation between Zickert’s class and βP (M)

In [43] Zickert defines a complex C̄∗(Ḡ, P̄ ) of truncated simplices and proves that the
complex B̄n(Ḡ, P̄ ) = C̄∗(Ḡ, P̄ ) ⊗Z[G] Z computes the Takasu relative homology groups
Hn(Ḡ, P̄ ;Z) [43, Corollary 3.8]. This complex is used to define a homomorphism

Ψ: H3(Ḡ, P̄ ;Z)→ B̂(C)



70 Invariants of Hyperbolic 3-Manifolds of Finite Volume

[43, Theorem 3.17]. Given an ideal triangulation of an hyperbolic 3-manifold and using a
developing map of the geometric representation to give to each ideal simplex a decoration
by horospheres, it is defined a class in the group Hn(Ḡ, P̄ ;Z) [43, Corollary 5.6]. This
class depends on the choice of decoration, but it is proved that its image under the
homomorphism Ψ is independent of the choice of decoration [43, Theorem 6.10]. In fact,
in [43] it is considered the more general situation of a tame 3-manifold with a boundary
parabolic PSL2(C)-representation, this will be considered in the following section.

In this section we compare the results in [43] with our construction of the invariant

βP (M). We give an explicit isomorphism between the complexes C̄∗(Ḡ, P̄ ) and C
hB̄
P̄
6=

∗ (XP̄ ).

Remark 6.6.1. Notice the difference of notation, in [43] G = PSL2(C) and P corresponds
to the subgroup of PSL2(C) given by the image of the group of upper triangular matrices
with 1 in the diagonal, that is, in our notation to the subgroup Ū = P̄ .

6.6.1. The complex of truncated simplices. Let ∆ be an n-simplex with a vertex
ordering given by associating an integer i ∈ {0, · · · , n} to each vertex. Let ∆̄ denote the
corresponding truncated n-simplex obtained by chopping off disjoint regular neighbor-
hoods of the vertices. Each vertex of ∆̄ is naturally associated with an ordered pair ij of
distinct integers. Namely, the ijth vertex of ∆̄ is the vertex near to the ith vertex of ∆
and on the edge going to the jth vertex of ∆.

Let ∆̄ be a truncated n-simplex. A Ḡ-vertex labeling {ḡij} of ∆̄ assigns to the
vertex ij of ∆̄ an element ḡij ∈ Ḡ satisfying the following properties:

1. For a fixed i, the labels ḡij are distinct elements in Ḡ mapping to the same left
P̄ -coset.

2. The elements ḡij = (ḡij)−1ḡji are counterdiagonal, that is, of the form
(

0 −c−1

c 0

)
.

Remark 6.6.2. Let C̄n(Ḡ, P̄ ), n ≥ 1, be the free abelian group generated by Ḡ-vertex
labelings of truncated n-simplices. Since X(P̄ ) is Ḡ-isomorphic to the set of left P̄ -cosets,

using the homomorphism hP̄
Ī

given in (5.4) (see Remark 5.1.7), property 1 means that for
a fixed i we have

hP̄Ī (ḡij) = [ai, ci]

for some fixed element [ai, ci] ∈ X(P̄ ) and for all j 6= i. By the definition of hP̄
Ī

we have
that for fixed i all the ḡij have the form

ḡij =

(
ai bij
ci dij

)
, with j 6= i; bij 6= bik or dij 6= dik for j 6= k.

Left multiplication endows C̄n(Ḡ, P̄ ) with a free G-module structure and the usual
boundary map on untruncated simplices induces a boundary map on C̄n(Ḡ, P̄ ), making it
into a chain complex. Explicitly given a Ḡ-vertex labeling {ḡij}i,j∈{0,··· ,n},i6=j of a truncated
n-simplex ∆̄

∂n{ḡij}i,j∈{0,··· ,n},i6=j =
n∑
l=0

(−1)l{ḡij}i,j∈{0,··· ,l̂,··· ,n},i6=j. (6.32)
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Define
B̄n(Ḡ, P̄ ) = C̄n(Ḡ, P̄ )⊗Z[G] Z ∼= C̄n(Ḡ, P̄ )G.

Let {ḡij} be a Ḡ-vertex labeling of a truncated n-simplex ∆̄. We define a Ḡ-edge
labeling of ∆̄ assigning to the oriented edge going from vertex ij to vertex kl the labeling
(ḡij)−1ḡkl. It is easy to see that for any ḡ ∈ Ḡ, the Ḡ-vertex labelings of ∆̄ given by
{ḡij} and {ḡḡij} have the same G-edge labelings. Hence, a G-edge labeling represents
a generator of B̄n(Ḡ, P̄ ). The labeling of an edge going from vertex i to vertex j in
the untruncated simplex is denoted by ḡij, and the labeling of the edges near the ith
vertex are denoted by ᾱijk’s. These edges are called the long edges and the short edges
respectively. By properties 1 and 2 in the definition of Ḡ-vertex labelings of a truncated
simplex, the ᾱijk’s are nontrivial elements in P̄ and the ḡij’s are counterdiagonal. Moreover,
from the definition of Ḡ-edge labelings we have that the product of edge labeling along
any two-face (including the triangles) is Ī.

In [43, Corollary 3.8] it is proved that the complex B̄n(Ḡ, P̄ ) computes the groups
Hn(Ḡ, P̄ ;Z). For this result, it is not necessary to have property 2, nor to ask to have
distinct elements in property 1 in the definition of Ḡ-vertex labelings [43, Remark 3.2].
The reason for asking this extra properties on the Ḡ-vertex labelings is to be able to assign
to each generator a flattening of an ideal simplex.

In what follows we need a more explicit version of [43, Lemma 3.5].

Lemma 6.6.3 ([43, Lemma 3.5]). Let ḡiP̄ =
(
ai bi
ci di

)
P̄ and ḡjP̄ =

( aj bj
cj dj

)
P̄ be P̄ -cosets

satisfying the condition ḡiB̄ 6= ḡjB̄. There exists unique coset representatives ḡix̄ij and
gjx̄ji satisfying the condition that (ḡix̄ij)

−1ḡjx̄ji is counterdiagonal given by

ḡix̄ij =

(
ai

aj
aicj−ajci

ci
cj

aicj−ajci

)
, ḡix̄ij =

(
aj

ai
ajci−aicj

cj
ci

ajci−aicj

)
. (6.33)

Proof. We start by reproducing the proof of [43, Lemma 3.5] since it saves computations.

Let ḡ−1
i ḡj =

(
a b
c d

)
, and let x̄ij =

(
1 pij
0 1

)
and x̄ji =

(
1 pji
0 1

)
. We have

x̄−1
ij ḡ

−1
i ḡjx̄ji =

(
a− cpij apji + b− pij(cpji + d)

c cpji + d

)
.

Since ḡiB̄ 6= ḡjB̄, it follows that c is nonzero. This implies that there exists unique
complex numbers pij and pji such that the above matrix is conterdiagonal. They are
given by

pij =
a

c
, pji = −d

c
.

Now, using the explicit expressions for ḡi and ḡj we have

(ḡi)
−1ḡj =

(
ajdi − bicj dibj − bidj
aicj − ajci ajci − aicj

)
=

(
a b
c d

)
, (6.34)

so,

pij =
ajdi − bicj
aicj − ajci

, pji =
cibj − aidj
aicj − ajci

.
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and we obtain the desired representatives. Notice that ḡix̄ij is a well defined element in
Ḡ, if we change the signs of ai and ci the whole matrix changes sign, while if we change
the signs of aj and cj the matrix does not change. Analogously for ḡjx̄ji.

Remark 6.6.4. Notice that the expressions for ḡix̄ij and ḡjx̄ji given in (6.33) only depend
on the classes [ai, ci] and [aj, cj] in X(P̄ ), so indeed they only depend on the left P̄ -
cosets ḡiP̄ and ḡjP̄ . Also notice that by (6.34) the condition ḡiB̄ 6= ḡjB̄ is equivalent to
aicj − ajci 6= 0 which is equivalent to hB̄

P̄
(ḡiP̄ ) = ai

ci
6= aj

cj
= hB̄

P̄
(ḡjP̄ ).

Corollary 6.6.5. Let ∆̄ be a truncated n-simplex. A generator of C̄n(Ḡ, P̄ ), i.e. a Ḡ-
vertex labeling {gij} of ∆̄ has the form

gij =

(
ai

aj
aicj−ajci

ci
cj

aicj−ajci

)
, i, j ∈ {1, · · · , n}, j 6= i, aicj − ajci 6= 0,

and the class [ai, ci] ∈ X(P̄ ) corresponds to the left P̄ -coset associated to the i-th vertex of
∆. Hence, a generator of B̄n(Ḡ, P̄ ), i.e. a Ḡ-edge labeling of ∆̄ has the form

ᾱijk =

(
1

akcj−ajck
(aicj−ajci)(aick−akci)

0 1

)
i, j, k ∈ {1, · · · , n}, i 6= j, k, j 6= k, (6.35)

ḡij =

(
0 − 1

aicj−ajci
aicj − ajci 0

)
i, j ∈ {1, · · · , n}, i 6= j. (6.36)

Proof. It follows from property 2 of the definition of C̄n(Ḡ, P̄ ) which implies that ḡiB̄ 6=
ḡjB̄ for all i, j ∈ {0, · · · , n} and i 6= j.

Corollary 6.6.6. There is a Ḡ-isomorphism of chain complexes

C
hB̄
P̄
6=

n (X(P̄ ))↔ C̄∗(Ḡ, P̄ )

([a0, c0], · · · , [an, cn])↔

ḡij =

(
ai

aj
aicj−ajci

ci
Cj

aicj−ajci

) .

Hence, there is an isomorphism of chain complexes B
hB̄
P̄
6=

n (X(P̄ )) ∼= B̄n(Ḡ, P̄ ) where
the Ḡ-orbit ([a0, c0], · · · , [an, cn])Ḡ corresponds to the Ḡ-edge labeling given by (6.35) and
(6.36).

Proof. This is a refined version of [43, Corollary 3.6] and follows from Corollary 6.6.5.
By direct computation it is easy to see that the isomorphism is Ḡ-equivariant. The only
thing that remains to prove is that the isomorphism commutes with the boundary maps
of the complexes, which is an easy exercise from the definition of ∂n given in (6.32).
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Remark 6.6.7. From Corollary 6.6.6, to represent a generator of C
hB̄
P̄
6=

n (X(P̄ )) we just need
2(n+ 1) complex numbers, while to represent a generator of C̄∗(Ḡ, P̄ ) we need 2(n+ 1)2

because there is a lot of redundant information in ḡij, the entries bij and dij in ḡij, see

Remark 6.6.2 and Remark 6.6.4. So it is more efficient to use the complex C
hB̄
P̄
6=

n (X(P̄ ))
than the complex C̄∗(Ḡ, P̄ ) to compute Hn(Ḡ : P̄ ;Z).

Another advantage is that by Proposition 2.2.9 we can work with the action of G
rather than with the action of Ḡ, as we did in Section 6.4.

Remark 6.6.8. If we denote by vi = [v1
i , v

2
i ] an element in X(P̄ ) as in Subsection 6.4.1, we

have that the isomorphism of Corollary 6.6.6 is written as

(v0, · · · ,vn)↔


v1

i

v1
j

det (vi,vj)

v2
i

v2
j

det (vi,vj)




where (v0, · · · ,vn) is an (n + 1)-tuple of elements of X(P̄ ) such that det(vi,vj)
2 6= 0 for

i 6= j see Remark 6.6.4. We also have that in this notation the Ḡ-edge labeling given by
(6.35) and (6.36) is written as

ᾱijk =

(
1

det (vk,vj)

det (vi,vj) det (vi,vk)

0 1

)
i, j, k ∈ {1, · · · , n}, i 6= j, k, j 6= k, (6.37)

ḡij =

(
0 − 1

det (vi,vj)

det (vi,vj) 0

)
i, j ∈ {1, · · · , n}, i 6= j. (6.38)

Notice that although det(vi,vj) is only well defined up to sign, see Remark 6.4.2, we
get well defined elements in Ḡ. The fact that the matrices (6.36) and (6.35) of the Ḡ-edge
labeling are constant under the action of Ḡ is because det(vi,vj) is invariant (up to sign)
under the action of Ḡ, see Lemma 6.4.1.

6.6.2. Decorated ideal simplices and flattenings. Also in [43] it is proved that there
is a one-to-one correspondence between generators of B̄3(Ḡ, P̄ ) and congruence classes of
decorated ideal simplices.

Remember that the subgroup P̄ fixes ∞ ∈ H3
and acts by translations on any horo-

sphere at ∞. A horosphere at ∞ is endowed with the counterclockwise orientation as
viewed from ∞. Since Ḡ acts transitively on horospheres, we get an orientation on all
horospheres.

A horosphere together with a choice of orientation-preserving isometry to C is called
an Euclidean horosphere [43, Definition 3.9]. Two horospheres based at the same
point are considered equal if the isometries differ by a translation. Denote by H(∞) the
horosphere at ∞ at height 1 over the bounding complex plane C, with the Euclidean
structure induced by projection. We let Ḡ act on Euclidean horospheres in the obvious
way, this action is transitive and the isotropy subgroup of H(∞) is P̄ . Hence the set



74 Invariants of Hyperbolic 3-Manifolds of Finite Volume

of Euclidean horospheres can be identified with the set Ḡ/P̄ of left P̄ -cosets, which is
Ḡ-isomorphic to X(P ), where an explicit Ḡ-isomorphism is given by

{Euclidean horospheres} ↔ X(P̄ )

H(∞)↔ [1, 0],
(6.39)

and extending equivariantly using the action of Ḡ.
A choice of Euclidean horosphere at each vertex of an ideal simplex is called a dec-

oration of the simplex. Having fixed a decoration, we say that the ideal simplex is
decorated. Two decorated ideal simplices are called congruent if they differ by an element
of Ḡ.

Using the identification of Euclidean horospheres with left P̄ -cosets, we can see a
decorated ideal simplex as an ideal simplex with a choice of a left P̄ -coset for each vertex
of the ideal simplex.

Proposition 6.6.9. Generators in C
hB̄
P̄
6=

3 (X(P̄ )) are in one-to-one correspondence with

decorated simplices. Thus, generators of B
hB̄
P̄
6=

3 (X(P̄ )) are in one-to-one correspondence
with congruence classes of decorated simplices.

Proof. Consider the homomorphism (hB̄
P̄

)∗ : C
hB̄
P̄
6=

3 (X(P̄ ))→ C 6=3 (X(B̄)) and consider a gen-

erator (v0, · · · ,v3) of C
hB̄
P̄
6=

3 (X(P̄ )). Its image ((hB̄
P̄

)∗(v0), · · · , (hB̄
P̄

)∗(v3)) is a 4-tuple of

distinct points in X(B̄), so it determines a unique ideal simplex in H3
. Moreover, vi rep-

resents a left P̄ -coset which corresponds to the vertex (hB̄
P̄

)∗(vi) of such ideal simplex.
Hence (v0, · · · ,v3) represents a decorated simplex.

This together with the isomorphism given in Corollary 6.6.6 proves that there is a one-
to-one correspondence between generators of B̄3(Ḡ, P̄ ) and congruence classes of decorated
ideal simplices, see [43, Remark 3.14].

For a matrix g =
(
a b
c d

)
, let c(g) denotes the entry c. Let α be a generator of B̄3(Ḡ, P̄ ),

i.e. a Ḡ-edge labeling. By (6.38) we have that c(ḡij) = ± det(vi,vj), that is, it is only
well defined up to sign. But we have that

c(ḡij)
2 = det(vi,vj)

2 (6.40)

is a well defined non-zero complex number. Squaring formulas (6.12), (6.13) and (6.14)
and using (6.40) we get

c(ḡ03)2c(ḡ12)2

c(ḡ02)2c(ḡ13)2
= z2,

c(ḡ13)2c(ḡ02)2

c(ḡ01)2c(ḡ23)2
=

(
1

1− z

)2

,
c(ḡ01)2c(ḡ23)2

c(ḡ03)2c(ḡ12)2
=

(
1− z
z

)2

,

which are the formulas of [43, Lemma 3.15]. Now, our choice of logarithm branch defines
a square root of c(ḡij), see [43, Remark 3.4], given by

Log c(ḡij) =
1

2
Log c(ḡij) =

1

2
Log det(vi,vj),

which is the definition of 〈vi,vj〉 given in (6.21).
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Proposition 6.6.10. The following diagram commutes

H3(B
hB̄
P̄
6=

3 (X(P̄ ));Z) σ̃ //

��

B̂(C)

H3(Ḡ, P̄ ;Z)

Ψ

77 ,

where Ψ is the homomorphism given in [43, Theorem 3.17], σ̃ is the homomorphism given
in (6.22) and the vertical arrow is given by the isomorphism of Corollary 6.6.6.

Proof. The definition of Ψ given by formula [43, (3.6)][22, (3.6)] coincides with the defi-
nition of σ̃ given by (6.16) via the isomorphism of Corollary 6.6.6.

Remark 6.6.11. In [43, Proposition 6.12] Zickert proves that Ψ defines a splitting of the
sequence (6.27). This together with Proposition 6.6.10 proves the claim made in Re-
mark 6.4.7 that σ̃ defines a splitting of the sequence (6.27).

6.6.3. The Zicker’s class. Now we compare the construction of Zickert’s class in
H3(Ḡ, P̄ ;Z) with our computation of the invariant βP (M) given in Subsection 6.5.2

As in Section 6.5, consider an hyperbolic 3-manifold of finite volume M and let
ρ̄ : π1(M) → PSL2(C) be the geometric representation. Let π̂ : Ŷ → M̂ be the ex-
tension of the universal cover of M to its end-compactification. A developing map of ρ̄
is a ρ̄-equivariant map

D : Ŷ → H3

sending the points in C to ∂H3
. Let ĉ ∈ Ĉ and for each lift c ∈ C of ĉ, let H(D(c)) be

an Euclidean horosphere based at D(c). The collection {H(D(c))}c∈π̂−1(ĉ) of Euclidean
horospheres is called a decoration of ĉ if the following equivariance condition is satisfied:

H(D(γ · c)) = ρ̄(γ)H(D(c)), for γ ∈ π1(M), c ∈ π̂−1(ĉ).

A developing map of ρ̄ together with a choice of decoration of each ĉ ∈ Ĉ is called a
decoration of ρ̄.

By [43, Corollary 5.16] a decoration of ρ̄ defines a class F (M) in H3(Ḡ, P̄ ;Z). This
can be seen as follows. The decoration of ρ̄ endows each 3-simplex of M with the shape
of a decorated simplex. By [43, Theorem 3.13] each congruence class of these decorated
simplices corresponds to a generator of B̄3(Ḡ, P̄ ) which is a truncated simplex with a
Ḡ-edge labeling. The decoration and the Ḡ-edge labelings respect the face pairings so
this gives a well defined cycle α in B̄3(Ḡ, P̄ ), see [43, p. 518] for details.

Theorem 6.6.12. The class F (M) is send to the invariant βP (M) under the homomor-

phism H3(Ḡ, P̄ ;Z)→ H3([Ḡ : P̄ ];Z) induced by the inclusion of C
hB̄
P̄
6=

3 (X(P̄ )) in C3(X(P̄ )).

Proof. In Subsection 6.5.2 the inclusion Ŷ → H3
is a developing map of the geometric

representation ρ̄ : π1(M) → PSL2(C). Chooce a decoration of each ĉ ∈ Ĉ. As before
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this gives a well defined cycle α in B̄3(Ḡ, P̄ ). The cycle α represents the class F (M)

in H3(Ḡ, P̄ ;Z). By Corollary 6.6.6, α corresponds to a cycle in B
hB̄
P̄
6=

3 (X(P̄ )), moreover,

Corollary 6.6.6 gives a correspondence between cj ∈ π−1(ĉ) and elements in C
hB̄
P̄
6=

3 (X(P̄ )),

i.e., an application Φ as in (6.30). Then the cycle α ∈ BhB̄
P̄
6=

3 (X(P̄ )) has the form

n∑
i=1

(Φ(cij,0),Φ(cij,1),Φ(cij,2),Φ(cij,3))G,

which is precisely the definition of βP (M) given in (6.31). In other words, the following
diagram commutes

C3(M̂) //

((

B̄3(B̄, P̄ ) ∼= B
hB̄
P̄
6=

3 (X(P̄ ))

��
B3(X(P̄ ))

,

where the vertical row is induced by the inclusion of C
hB̄
P̄
6=

3 (X(P̄ )) in C3(X(P̄ )).

Remark 6.6.13. Choosing a different decoration of ρ̄, that is, a different Γ-equivariant
map Φ′ in (6.30), we get a different Γ-equivariant map ψ′P , a different homomorphism
of complexes (ψP )′∗ and a different cycle α′ in B̄3(B̄, P̄ ) which may represent a different
class in H3(Ḡ, P̄ ;Z) (see [43, Remark 5.19]); but by the universal property of EF(P )(G)
we have that ψP and ψ′P are Γ-homotopic and therefore the inclusions of the cycles α and
α′ in B3(XP̄ ) are homologous.

Remark 6.6.14. Notice that the image of the PSL-fundamental class [M ]PSL under the
homomorphism (hT̄

Ī
)∗ : H3(PSL2(C);Z)→ H3([PSL2(C) : T̄ ];Z) in diagram (5.11) is also

an invariant of M which we can denote by βT (M). This invariant is sent to the classical
Bloch invariant βB(M) by the homomorphism

(hB̄T̄ )∗ : H3([PSL2(C) : T̄ ];Z)→ H3([PSL2(C) : B̄];Z).

It would be interesting to see which information carries this invariant and if it is possible
to obtain it directly from the geometric representation of M .

6.7. (G,H)-representations

Our construction also works in the more general context of (G,H)-representations of tame
manifolds considered in [43]. Here we give the basic definitions and facts, for more detail
see [43, § 4].

A tame manifold is a manifold M diffeomorphic to the interior of a compact manifold
M̄ . The boundary components Ei of M̄ are called the ends of M . The number of ends
can be zero to include closed manifolds as tame manifolds with no ends.
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Let M be a tame manifold. We have that π1(M) ∼= π1(M̄) and each end Ei of
M defines a subgroup π1(Ei) of π1(M) which is well defined up to conjugation. These
subgroups are called peripheral subgroups of M .

Let M̂ be the compactification of M obtained by identifying each end of M to a

point. We call the points in M̂ corresponding to the ends as ideal points of M . Let ̂̃M
be the compactification of the universal cover M̃ of M obtained by adding ideal points
corresponding to the lifts of the ideal points of M . The covering map extends to a map

from ̂̃M to M̂ . We choose a point in M as a base point of M̂ and one of its lifts as

base point of ̂̃M . With the base points fixed, the action of π1(M) on M by covering

transformations extends to an action on ̂̃M which is not longer free. The stabilizer of
a lift ẽ of an ideal point e corresponding to an end Ei is isomorphic to a peripheral
subgroup π1(Ei). Changing the lift ẽ corresponds to changing the peripheral subgroup by
conjugation.

Let G be a discrete group, let H be any subgroup and consider the family of subgroups
F(H) generated by H. Let M be a tame manifold, a representation ρ : π1(M)→ PSL2(C)
is called a (G,H)-representation if the images of the peripheral subgroups under ρ are
in F(H).

In the particular case when G = PSL2(C) and H = P̄ a (G,H)-representation
ρ : π1(M)→ PSL2(C) is called boundary-parabolic.

The geometric representation of a hyperbolic 3-manifold is boundary parabolic. For
further examples see Zickert [43, §4].

Let M be a tame n-manifold with d ends and let ρ : π1(M) → G be a (G,H)-
representation. Let Γ be the image of π1(M) in G under ρ, also denote by Γi the image
of the peripheral subgroup π1(Ei) under ρ and consider the family F = F(Γ1, · · · ,Γd)
of subgroups of G. On the other hand, define Γ′i = ρ−1(Γi) and consider the family
F′ = F′(Γ′1, · · · ,Γ′d) of subgroups of π1(M).

Proposition 6.7.1. Consider the classifying space EF(Γ) as a π1(M)-space defining the
action by

γ · x = ρ(γ) · x, γ ∈ π1(M), x ∈ EF(Γ)

Then, with this action EF(Γ) is a model for the classifying space EF′(π1(M)).

Proof. Consider the Γ-set ∆F defined in Subsection 2.2.3. It is enough to see that ∆F

seen as a π1(M)-set using ρ is π1(M)-isomorphic to ∆F′ . By the definition of Γ′ and Γ′i
we have that Γ′/ ker ρ ∼= Γ and Γ′i/ ker ρ ∼= Γi. Then

Γ′/Γ′i
∼= (Γ′/ ker ρ)/(Γ′i/ ker ρ) ∼= Γ/Γi.

Therefore

∆F′ =
d∐
i−1

Γ′/Γ′i
∼=

d∐
i−1

Γ/Γi = ∆F

So now we can use ∆F′ in the simplicial construction of EF′(π1(M)) and we obtain precisely
EF(Γ).
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Since the action of π1(M) on ̂̃M has as isotropy subgroups the peripheral subgroups
π1(Ei) and π1(Ei) ∈ F′ there is a π1(M)-map unique up to π1(M)-homotopy

ψF′ :
̂̃M → EF′(π1(M)) ∼= EF(Γ) (6.41)

Now consider the classifying space EF(H)(G), by Proposition 2.2.6, restricting the action
of G to Γ we have that resGHEF(H)(G) ∼= EF(H)/Γ(Γ). On the other hand, we have that
F ⊂ F(H)/Γ, so we have a Γ-map unique up to Γ-homotopy

ψF : EF(Γ)→ EF(H)(G). (6.42)

Composing (6.41) with (6.42) we obtain a ρ-equivariant map unique up to ρ-homotopy

ψρ : EF(Γ)→ EF(H)(G). (6.43)

Taking the quotients by the actions of π1(M) and G we get a map unique up to homotopy
given by the composition

ψ̂ρ : M̂ → EF(H)(G)/Γ→ BF(H)(G). (6.44)

Denote by βH(ρ) the image of the relative fundamental class [M̂ ] of M̂ under the map
induced in homology by ψ̂ρ

(ψ̂ρ)∗ : Hn(M̂ ;Z)→ Hn(BF(H)(G);Z)

[M̂ ] 7→ βH(ρ).
(6.45)

Thus, by Proposition2.4.11 we have:

Theorem 6.7.2. Given an oriented tame n-manifold with ρ : π1(M) → G a (G,H)-
representation, we have a well defined invariant

βH(ρ) ∈ Hn([G : H];Z)

As before, one can compute the class βH(ρ) using a triangulation of M . A triangulation
of a tame manifold M is an identification of M with a complex obtained by gluing together
simplices with simplicial attaching maps. A triangulation of M always exists and it lifts

uniquely to a triangulation of ̂̃M .
Let M be a tame n-manifold with d ends and let ρ : π1(M) → G be a (G,H)-

representation. In [43, §5.2], given a triangulation of M it is constructed a (G,H)-cocycle,
see [43, §5.2] for the definition, which defines a fundamental class F (ρ) in Hn(G,H;Z).
The construction of the (G,H)-cocycle depends on a decoration of ρ by conjugation ele-

ments. Such decorations are given as follows: for each ideal point ei ∈ M̂ choose a lifting

ẽi ∈ ̂̃M and assign to this lifting an element gi(ẽi) ∈ G, or rather an H-coset gi(ẽi)H,
then extend ρ-equivariantly by

gi(γ · ẽi) = ρ(γ)gi(ẽi) γ ∈ π1(M).
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Let I denote the set of ideal points in ̂̃M . Notice that a decoration by conjugation
elements is equivalent to give a ρ-equivariant map

Φρ : I → G/H.

The map Φρ defines explicitly the ρ-map (6.43) and using the triangulation of M it gives
also explicitly the homomorphism (6.45) as in Subsection 6.5.2.

Remark 6.7.3. For general G and H we do not necessarily have that Hn(G,H;Z) coincides
with Hn([G : H];Z), see Subsection 4.1. The construction of the (G,H)-cocycle a priori
depends on the choice of decoration of ρ by conjugation elements, so in principle, choosing
different decorations one can obtain different classes in Hn(G,H;Z), in that case, all
this classes are mapped to βH(ρ) ∈ Hn([G : H];Z) under the canonical homomorphism
(4.1) since βH(ρ) does not depend on the choice of decoration because the ρ-map (6.43)
given by the decoration is unique up to ρ-homotopy. So in this general context it is
more appropriate to use Adamson relative group homology than Takasu relative group
homology because we obtain invariants independent of choice.

6.7.1. Boundary-parabolic representations. In the case of boundary-parabolic rep-
resentations of tame 3-manifolds we can use a developing map with a decoration to com-
pute βP (ρ). Let M be a tame 3-manifold and let ρ̄ be a boundary-parabolic representation.

A developing map of ρ is a ρ-equivariant map Dρ : ̂̃M → H3
sending the ideal points of

M to ∂H3
= C. Taking a sufficiently fine triangulation of M it is always possible to con-

struct a developing map of ρ [43, Theorem 4.11]. Let C be the image under Dρ of the set

of ideal points I of ̂̃M . A decoration of ρ is a ρ-equivariant map Φρ : C → X(P̄ ) which can
be obtained assigning a Euclidean horosphere to each element of C as in Subsection 6.6.3
or as in Remark 6.5.1. Again, the decoration defines explicitly the ρ-map (6.43) which
gives explicitly the homomorphism (6.45) with G = PSL2(C) and H = P̄ .

The image of βP (ρ) under (hB̄
P̄

)∗ : H3([PSL2(C) : P̄ ];Z) → H3([PSL2(C) : B̄];Z) ∼=
P̂(C) gives an invariant βB(ρ) in the Bloch group B(C). The invariant βB(ρ) can be
computed using a developing map as in Subsection 6.5.1.

Also as in Remark 6.6.14 the image of the PSL-fundamental class [ρ]PSL under the
homomorphism (hB̄

Ī
)∗ : H3(PSL2(C);Z)→ H3([PSL2(C) : T̄ ];Z) in diagram (5.11) is also

an invariant βT (ρ) of ρ.

6.8. Complex volume

Recall that Rogers dilogarithm is given by

L(z) =

∫ z

0

Log(1− t)
t

dt+
1

2
Log(z) Log(1− z)
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In [29, Proposition 2.5] Neumann defines the homomorphism

L̂ : P̂(C)→ C/π2Z,

[z; p, q] 7→ L(z) +
πi

2
(q Log(z) + pLog(1− z))− π2

6
,

(6.46)

where [z; p, q] denotes elements in the extended pre-Bloch group using our choice of
logarithm branch, see Remark 6.3.5, but (6.46) is actually independent of this choice,
see [43, Remark 1.9]. In [29, Theorem 2.6 or Theorem 12.1] Neumann proves that un-

der the isomorphism H3(PSL2(C);Z) ∼= B̂(C) the homomorphism L̂ corresponds to the
Cheeger–Chern–Simons class.

6.8.1. Another invariant. We shall define a new Ḡ-vertex labeling of a truncated
simplex in order to give another invariant of hyperbolic manifolds.

Consider C
hKH 6=
n (X(P̄ )) the submodule of Cn(X(P̄ )) generated by tuples mapping to

different elements by the homomorphism hB̄
P̄

as in Subsection 3.2.1. We proved that

C
hKH 6=
3 (X(P̄ )) is a free G-module (Proposition 3.2.10). Denote by Sn a basis of C

hKH 6=
n (X(P̄ )).

Consider σ = ([a0, c0], · · · , [an, cn]) ∈ Sn. Let ∆ be a n-simplex whose vertices are labeled
by the cosets classes represented by the entries [ai, ci] of σ. We give a Ḡ-vertex labeling
to the truncated n-simplex ∆̄ associated to ∆ by{

ḡij =

(
1

ajci
det(vi,vj)

0 1

)}
.

This is well defined because det(vi, vj) 6= 0. Now, we will use the Ḡ-action on C
hKH 6=
n (X(P̄ ))

to construct another chain complex Ĉn(Ḡ, P̄ ) of truncated n-simplexes: for ḡ =
(
a b
c d

)
∈ Ḡ

the vertex labeling of ḡσ is given by{
ḡḡij =

(
a a

ajci
det(vi,vj)

+ b

c c
ajci

det vi,vj
+ d

)}
.

The boundary operator is the induced by the usual one on untruncated simplexes.
Also, we have an Ḡ-edge labeling given by the multiplication (gij)−1gji, i.e.{

ḡij =

(
1

ajci+aicj
det(vi,vj)

0 1

)}
. (6.47)

in the long edges, and {
ᾱijk =

(
1

aici det(vk,vj)

det(vi,vj) det (vi,vk)

0 1

)}
. (6.48)

in the short edges. This Ḡ-edge labeling is a generator of B̂n(Ḡ, P̄ ) = Ĉn(Ḡ, P̄ )G.
By construction this gives a G-equivariant chain homomorphism

C
hKH 6=
n (X(P̄ ))→ Ĉn(Ḡ, P̄ )



Complex volume 81

and therefore, we have a homomorphism

Hn(G,P ;Z)→ Hn

(
B̂n(Ḡ, P̄ )

)
(6.49)

As in Section 6.5, consider an hyperbolic 3-manifold of finite volume M and let
ρ̄ : π1(M) → PSL2(C) be the geometric representation. Given a decoration of ρ̄, we
have a class F (M) ∈ Hn(G,P ;Z) given in Subsection 6.6.3. Remember that different
decorations of ρ have different classes. We shall prove the following

Proposition 6.8.1. The image of the class F (M) by the homomorphism (6.49) is well
defined, i.e., it does not depend on the decoration of ρ̄.

Proof. The class F (M) depends on the choose of a decoration of ρ̄. To choose different
decoration of ρ̄ is to choose different Γ-equivalent map Φ as we point out in Remark 6.6.13.
Since Φ is constructed Γ-equivariant, two Γ-equivalent maps Φ and Φ′ differ by multiplying
by a complex number λ (see Remark 5.1.9). Now, note that

det(λai, cj) = λ det(ai, cj)

det(ai, λcj) = λ det(ai, cj)

det(λai, λ
′cj) = λλ′ det(ai, cj).

Then the edge labeling (6.47) and (6.48) are invariant by multiplication of complex num-
bers, and so the image of the representatives of the class F (M) are also invariant does.

We are interested in the relationship of the homology Hn

(
B̂n(Ḡ, P̄ )

)
and the homolo-

gies Hn(G,P ;Z), Hn(G;Z) and Hn(P ;Z). This is a future work.
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CHAPTER 7.

Spectral Sequences

Spectral sequences are useful tools to compute homology. In particular we are interested
in the spectral sequences of the bicomplex C∗,∗ = C∗(G) ⊗Z[G] C∗(G/H). The spectral
sequence of C∗,∗ gives relations, through different homomorphisms, between the Adamson
relative group homology and the classical group homology.

We start defining a spectral sequence in Section 7.1. Then we apply this theory to a
general bicomplex in Section 7.2. Then we use the particular bicomplex C∗,∗ in Section 7.3.
In the last Section 7.4 we give some exact sequence involving the Adamson relative group
homology of SL2(C), PSL2(C) and some of their subgroups P,B, P̄ and B̄.

7.1. A spectral sequence

Suppose C is a vector space endowed with a boundary operator ∂ ∈ End C, satisfying
∂2 = 0 and a ∂-invariant filtration F p(C)

· · · ⊂ F p−1 ⊂ F p ⊂ F p+1 · · ·

in the sense

∂(F p) ⊂ F p

for all p.

Define

Êr
p = {α ∈ F p | ∂α ∈ F p−r}

and define a relation ∼r,p in Êr,p by: α ∼r,p β if and only if there exist γ ∈ F p+r−1 such
that α− β ≡ ∂γ modulo F p−1. We define

Er
p = Êr

p/ ∼r,p and Er =
⊕
p

Er
p .

The quotient Er
p is also a vector space since the relation ∼r,p is linear. Alternatively we

have

Er
p = Êr

p/{α ∈ Êr
p | α ∼r,p 0}.

83
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Remark 7.1.1. In particular E0
p
∼= F p/F p−1, since for α ∈ F p the condition ∂α ∈ F p

is automatically satisfied. Similarly for γ ∈ F p−1 we have ∂γ ≡ 0 modulo F p−1 by
assumption.

Now we shall define an induced boundary operator

∂rp : Er
p → Er

p−r

[α]r,p 7→ [∂α]r,p−r.

The operator ∂r is well defined, in fact for α ∈ F p with ∂α ∈ F p−r we have ∂2α = 0 ∈
F p−2r, so that ∂α ∈ Êr

p−r and [∂α] ∈ Er
p−r makes sense. Moreover for α, β ∈ F p satisfying

[α]r,p = [β]r,p in Er,p then we have γ ∈ F p+r−1, ε ∈ F p−1 such that

α− β = ∂γ + ε

so that
∂α− ∂β = ∂ε

with ε ∈ F (p−r)+r−1. Therefore ∂α ∼r,p−r ∂β and [∂α]r,p−r = [∂β]r,p−r in Er,p−r.
Once well defined ∂rp, note that (∂rp)

2 = 0.

Lemma 7.1.2. Consider ∂r =
⊕

p ∂
r
p : Er → Er, then Er+1 ∼= H(Er, dr), that is,

Er+1
p
∼= Hp(E

r, ∂r) =
ker ∂rp : Er

p → Er
p−r

Im ∂rp : Er
p+r → Er

p

.

Proof. First, we shall prove that

ker (∂rp : Er
p → Er

p−r)
∼= Êr+1

p / ∼r,p .

Let α ∈ Êr
p be a representative of [α] ∈ Er

p with ∂r[α] = [∂α] = 0. then ∂α ∼r,p 0 if an
only if there exist γ ∈ F p−1 and ε ∈ F p−r−1 such that ∂α = ∂γ+ ε or equivalently if there
exist γ ∈ F p−1 and ε ∈ F p−r−1 such that ∂(α − γ) = ε ∈ F p−r−1. This implies that α̂ =

α− γ ∈ Êr+1
p . Also α̂ = α modulo F p−1 that is α̂ ∼r,p α, or [α̂] = [α] ∈ Êr+1

p / ∼r,p⊂ Er
p .

Conversely, if α ∈ Êr+1
p , then ∂α ∈ F p−r−1 so ∂α ≡ 0 modulo F p−r−1 or ∂α ∼r,p−r 0,

there for [∂α]r,p/r = ∂r[α]r+1,p = 0
Now, we shall prove that the natural map

φ : Êr+1
p / ∼r,p→ Êr+1

p / ∼r+1,p= Er+1
p

is well defined and we also will prove that the kernel of φ is Im ∂rp : Er
p+r → Er

p .

Note that if α, β ∈ Êr+1
p , the afirmation “α ∼r,p β if and only if there exist γ ∈ F p+r−1

such that α− β ≡ ∂γ modulo F p−1,” implies that “α ∼r+1,p β if and ponly if there exist
γ ∈ F p+r such that α− β ≡ ∂γ modulo F p−1.”

α ∼r,p β ⇐⇒ ∃γ ∈ F p+r−1 : α− β ≡ ∂γ mod F p−1.

implies that is φ is well defined.
If α ∈ Êr+1

p ⊂ F p such that α ∼r+1,p 0, then there exist γ ∈ F p+r such that α ≡ ∂γ

modulo F p−1, that is γ ∈ Êr
p+r or [γ] ∈ Er

p+r, therefore ∂r[γ]r,p+r = [∂γ]r,p = [α]r,p

We call (Er
p , ∂

r) the spectral sequence of the filtration F p(C).
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7.1.1. Convergence. We say that a filtration F p(C) of the vector space C is complete
if ⋂

p

F p = {0} and
⋃
p

F p = C.

Denote by H(C, ∂) = ker ∂/ Im ∂. The filtration of C induces a filtration of H(C, ∂)
by: [α] ∈ Hp if [α] has at least one representative in F p.

Note that
⋃
pHp = H. In general,

⋂
pHp 6= {0}, but we are interested in cases which⋂

pHp = {0}.

Lemma 7.1.3.

Hp/Hp−1 = ker ∂ ∩ F p/(Im ∂ ∩ F p + ker ∂ ∩ F p−1).

Proof. Consider

A = ker ∂ ∩ F p−1

B = ker ∂ ∩ F p

U = Im ∂ ∩ F p.

Then A ∩ U = Im ∂F p−1 and

Hp−1 = A/(A ∩ U)

Hp = B/U.

Now, the following sequence is exact

0 // A/(A ∩ U) // B/U // B/(A+ U) // 0

Then by the 3-lemma we have the result.

Proposition 7.1.4. The spectral sequence (Er
p , ∂

r) of a complete filtration F p(C), con-
verges to the quotients Hp/Hp−1.

Proof. Note that

Er
p = Êr

p/ ∼r,p= Êr
p/(∂F

p+r−1 + ker ∂ ∩ F p−1).

If r →∞, then since F p(C) is complete Êr
p → ker ∂ ∩ F p and⋂

r

Êr
p = {α ∈ F p | ∂α ∈

⋂
r

F p−r} = ker ∂ ∩ F p.

Therefore
Er
p → ker ∂ ∩ F p/(Im ∂ ∩ F p + ker ∂ ∩ F p−1) = Hp/Hp−1.

We say that an spectral sequence is convergent if satisfy hypothesis of Proposi-
tion 7.1.4. We denote convergence by

(Er, ∂r)⇒ H(C, ∂).
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7.2. Spectral sequence of a bicomplex

A bicomplex (or double complex) is an ordered triple (C, d′, d′′), where C = (Cp,q) is a
bigraded module, d′, d′′ : C → C are boundary operators of bidegree (−1, 0) and (0,−1),
respectively (so that d′d′ = 0 and d′′d′′ = 0), and

d′p,q−1d
′′
p,q + d′′p−1,qd

′
p,q = 0.

Example 7.2.1. Let C = (Cp,q) be a bigraded module, and assume that there are bi-
graded maps d′ : C → C of bidegree (−1, 0) and d′′ : C → C of bidegree (0,−1) making
the columns and rows of C complex. If C is a commutative diagram, then make it into
a bicomplex defining ∆′′p,q = (−1)pd′′p,q. Then (C, d′,∆′′) is a bicomplex (see [33, Exam-
ple 10.4]).

If C is a bicomplex, then its total complex, denoted by Tot(C), is the complex with
n-th term

Tot(C)n =
⊕
p+q=n

Cp,q

and with boundary operators ∂n : Tot(C)n → Tot(C)n−1 given by

∂n =
∑
p+q=n

(d′p,q + d′′p,q).

Lemma 7.2.2 ([33, Lemma 10.5]). If C is a bicomplex, then (Tot(C), ∂) is a complex.

Let (C, d′, d′′) be a bicomplex. We can give two filtration of Tot(C). The first filtration
of Tot(C) is given by

′F p(Tot(C)n) =
⊕
i≤p

Ci,n−i.

The second filtration of (Tot(C) is given by

′′F
p
(Tot(C)n) =

⊕
j≤p

Cn−j,j.

In the sequel we will work with the second filtration. Our purpose is to describe a
spectral sequence like Section 7.1 using the second filtration.

Lemma 7.2.3. The filtration ′′F p(C) is ∂-invariant.

Proof.

∂n−j,jCn−j,j = (d′n−j,j + d′′n−j,j)Cn−j,j

⊂ d′n−j,jCn−j,j + d′n−j,jCn−j,j

⊂ Cn−j−1,j ⊕ Cn−j,j−1

⊂ (′′F
p

TotC)n−1.
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Proposition 7.2.4.

′′E
1
p = (Hq(C∗,p, d

′))q,p and ′′E
2
p = (Hp(Hq(C∗,∗), Hp(d

′′)))q,p.

Proof. By Remark 7.1.1,

′′E
0
p = ′′F

p
/′′F

p−1
=
⊕
n

Cn−p,p.

Therefore

∂0 : ′′E
0
p → ′′E

0
p⊕

n

Cn−p,p →
⊕
n

Cn−p,p

α 7→ (d′n−p,pα + d′′n−p,pα)n,

but d′′n−p,pα ∈ Cn−p,p−1 ⊂ F p−1 implies that d′′n−p,pα = 0 then ∂0α = (d′n−p,pα)n.
For the second, ∂1 are a family of boundaries given by

∂1
q,p : Hq(C∗,p)→ Hq(C∗,p−1)

[α] 7→ [d′α + d′′α],

but α ∈ ker d′, then ∂1[α] = [d′′α].

If we denote ′′E0
p,q = Cq,p, then

′′E
0
p =

⊕
p+q=n

′′E
0
p,q.

and ∂0 is a family of boundaries d′q,p : ′′E0
p,q → ′′E0

p,q−1. That is, ′′E0
p is a bigraded module

and ∂0 is and endomorphism of degree (0,−1).
If we define ′′E1

p,q = Hq(C∗,p, d
′), then ′′E1

p is a bigraded module and ∂1 is an endo-
morphism of degree (−1, 0).

Lemma 7.2.5. For r ≥ 2, we have

′′Ê
r

p = {α ∈ ′′F p |
∑

p−r+1≤j≤p

d′n−j,jα = 0 and
∑

p−r+2≤j≤p

d′′n−j,jα = 0}

Proof. Let α ∈ ′′F p =
⊕

j≤p
⊕

nCn−j,j such that ∂α ∈ ′′F p−r =
⊕

j≤p−r
⊕

nCn−j,j. Then
dn−j,jα = 0 for p− r + 1 ≤ j ≤ p and d′′n−j,jα = 0 for all p− r + 2 ≤ j ≤ p.

Conversely, if∑
p−r+1≤j≤p

d′n−j,jα = 0 and
∑

p−r+2≤j≤p

d′′n−j,jα = 0

then
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∂α =
∑
j≤p−r

d′n−j,jα +
∑

j≤p−r+1

d′′n−j,jα ∈⊕
j≤p−r

⊕
n

Cn−j−1,j ⊕
⊕

j≤p−r+1

⊕
n

Cn−j,j−1 ⊂ ′′F p−r.

Lemma 7.2.6. Let α = (αn−j,j) and β = (βn−j,j) ∈ ′′Ê,

α ∼r,p β ⇐⇒ ∃γ = (γn−j+1,j) ∈ ′′Ê
r−1

p+r−1 : αn−p,p − βn−p,p = d′n−p,p+1γ + d′′n−p+1,pγ.

Proof. We have
∃γ ∈ ′′F p+r−1

: α− β ≡ ∂γ mod ′′F
p−1

.

if and only if γ = (γn−j+1,j) ∈ ′′Ê
r−1

p+r−1 and∑
p+1≤j≤p+r−1

d′n−j,jγ = 0 and
∑

p+2≤j≤p+r−1

d′′n−j,jγ = 0,

by Lemma 7.2.5. On the other hand, αn−j,j − βn−j,j ∈ ′′F p−1 for j ≤ p− 1. Therefore

αn−p+1,p − βn−p,p+1 = d′n−p,p+1γ + d′′n−p+1,pγ.

Proposition 7.2.7. For r ≥ 2, the morphism ∂rp : ′′Er
p → ′′Er

p−r is given by

∂rp[α] = [d′n−p+r,p−rα + d′′n−p+r−1,p−r+1α]r,p−r

Proof. Let α ∈ ′′Ê
r

p then∑
p−r+1≤j≤p

d′n−j,jα = 0 and
∑

p−r+2≤j≤p

d′′n−j,jα = 0

Now, ∑
j≤p−r−1

d′n−j,jα +
∑
j≤p−r

d′′n−j,jα ∈
⊕

j≤p−r−1

Cn−j−1,j ⊕
⊕
j≤p−r

Cn−j,j−1 ⊂ ′′F p−r−1

Then, by Lemma 7.2.6[ ∑
j≤p−r−1

d′n−j,jα +
∑
j≤p−r

d′′n−j,jα

]
r,p−r

= 0 ∈ ′′Er
p−r

Therefore
∂rp[α] = [d′n−p+r,p−rα + d′′n−p+r−1,p−r+1α]r,p−r.
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Inductively we have ′′Er
p,q = H∗

(′′Er−1
p,q , ∂

r−1
p,q

)
, then ′′Er is a bigraded module. And

∂r is a endomorphism of bidegree (−r, r − 1) since

d′n−p+r,p−rα + d′′n−p+r−1,p−r+1α ∈ Cn−p+r−1,p−r.

A first quadrant spectral sequence is a spectral sequence associated to a bicomplex
which is not trivial only for p ≥ 0 and q ≥ 0. In this case, we have classical results:

Theorem 7.2.8 ([33, Theorem 10.16]). Let ′Er and ′′Er be the first quadrant spectral
sequences of the complex Tot(C).

1. The first and the second filtrations are bounded.

2. For all p, q, we have ′E∞p,q = ′Er
p,q and ′′E∞p,q = ′′Er

p,q for a large r depending on p, q.

3. ′E2
p,q ⇒ Hn (Tot(C)) and ′′E2

p,q ⇒ Hn (Tot(C)).

A spectral sequence (Er, ∂r) collapses on the p-axis if E2
p,q = 0 for all q 6= 0; a spectral

sequence (Er, ∂r) collapses on the q-axis if E2
p,q = 0 for all p 6= 0.

Proposition 7.2.9 ([33, Proposition 10.21]). Let (Er, ∂r) be a first quadrant spectral
sequences, and E2

p,q ⇒ Hn (Tot(C)).

1. If (Er, ∂r) collapses on either axis, then E∞p,q = E2
p,q for all p, q.

2. If (Er, ∂r) collapses on the p-axis, then Hn (Tot(C)) ∼= E2
n,0;

If (Er, ∂r) collapses on the q-axis, then Hn (Tot(C)) ∼= E2
0,n.

Theorem 7.2.10 ([33, Theorem 10.31]). Let (Er, ∂r) be a first quadrant spectral sequence,
then

1. For each n, there is a surjection E2
0,n → E∞0,n; dually, there exist an injection E∞n,0 →

E2
n,0.

2. For each n, there is an injection E∞0,n → Hn (Tot(C)); dually, there is a surjection
Hp (Tot(C))→ E∞n,0.

3. There is an exact sequence

H2 (Tot(C)) // E2
2,0

// E2
0,1

// H1 (Tot(C)) // E2
1,0

// 0

7.3. Spectral sequences for the pair (G,H)

In this section we analyze a bicomplex from two points of view: topological and algebraic.
The first is a consequence of equivariant homology and the second is a consequence of the
(G,H)-canonical resolution of Z.



90 Spectral Sequences

7.3.1. Equivariant homology. Let X be a G-CW-complex and consider the simplicial
chain complex S∗(X) and let F∗ be a G-projective resolution of Z. The homology of the
total complex F∗⊗GS∗(X) is denoted by H∗ (G,S∗(X)) are denoted by HG

∗ (X) and called
the equivariant homology groups of (G,X). Let Σn be a set of representatives for
the G-orbit of n-cell and let Gσ be the isotropy group of σ, remember that Sn(X) has a
decomposition

Sn(X) =
⊕
σ′∈Σn

IndGGσ Zσ,

see [6, Example III.5.5b].

Proposition 7.3.1 ([6, Equations VII.7.2 and VII.7.7)]). There is a first spectral sequence

E2
p,q = Hp (G,Hq (X))⇒ HG

p+q(X)

and a second spectral sequence

E1
p,q =

⊕
σ∈Σ′p

Hq (Gσ,Zσ)⇒ HG
p+q(X).

For the sequel, suppose that Gσ fixes σ pointwise. If σ is a p-simplex of X and τ
is a (p − 1)-simplex, we denote by ∂στ : Zσ → Zτ the (σ, τ)-component of the boundary
operator ∂ : Sp(X) → Sp(X). Let Fσ = {τ | ∂στ 6= 0}. This is a finite set of (p − 1)-
simplexes and is Gσ-invariant.

Note that ∂στ : Zσ → Zτ is a Gσ-map, since ∂ is a G-map. For τ ∈ Fσ, it is necessarily
in the closure of σ and hence is fixed by Gσ, so Gσ ⊂ Gτ . The map ∂στ induces a map

uστ : Hq (Gσ,Zσ)→ Hq (Gτ ,Zτ ).

Let τ0 ∈ Σ′p−1 be the representative of the orbit of the simplex τ , and choose g(τ) ∈ G
such that g(τ)τ = τ0. Then the action of g(τ) on Sp−1(X) gives a isomorphism f : Zτ →
Zτ0 , which is canonical since Gσ acts on Zσ trivially under the assumption of “fixed
pointwise.” The isomorphism f is compatible with the conjugation isomorphism Gτ →
Gτ0 given by g(τ)gg(τ)−1; thus there is an induced isomorphism

vτ : Hq(Gτ ;Zτ )→ Hq(Gτ0 ;Zτ0).

We can define a map

ϕ :
⊕
σ∈Σ′p

Hq(Gσ;Zσ)→
⊕

τ∈Σ′p−1

Hq(Gτ ;Zτ )

by

ϕ|Hq(Gσ;Zσ) =
∑
τ∈Fσ

vτuστ ,

Proposition 7.3.2 ([6, Proposition VII.8.1]). Up to sign, the map ϕ is the boundary
operator d1 : E1

p,∗ → E1
p−1,∗ in the second spectral sequence of the Proposition 7.3.1.
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Remark 7.3.3. Since Gσ fixes σ pointwise, the space X/G is a CW-complex. The set of
representatives Σ′p can be identified with the set of simpleces of X/G that we denote by
Σp. Consider Hq = {Hq(Gσ;Zσ)}, then H∗(G;Sp(X)) is a chain complex of X/G with
local coefficient Hq.

Proposition 7.3.4. The second spectral sequence of Proposition 7.3.1 takes the form

E2
p,q = Hp(X/G;Hq)⇒ HG

p+q(X).

This is the remark at the end of Secction VII.8 in [6].

Proposition 7.3.5 ([6, Equation VII.7.10]). If X is acyclic, then

E2
p,q = Hp(X/G;Hq)⇒ Hp+q(G;Z).

Compare with Proposition 7.3.8.
Take X = EF(H)(G). Remember that in Proposition 2.1.1, we saw that if g fixes a

simplex σ ∈ Sn(X) then it is fixed pointwise. So we call the spectral sequence of the
pair (G,H) to the spectral sequence of Proposition 7.3.5 with X = EF(H)(G). Then the
spectral sequence takes the form

Proposition 7.3.6. We have an spectral sequence of the form

E2
p,q = Hp(BF(H)(G);Hq)⇒ Hp+q(G;Z),

The groups Gσ belong to F(H).

Corollary 7.3.7. If H is a normal subgroup of G, the spectral sequence (7.3.6) takes the
form

E2
p,q = Hp(G/H;Hq(H;Z))⇒ Hp+q(G;Z),

Proof. We already have seen that Sp(EF(H)(G)) is a free G/H-module (see for instance
Corollary 2.2.8 or Corollary 2.4.9). In this case, any σ ∈ Sn(EF(H)(G)) has trivial isotropy
subgroup, i.e., Gσ = H for all σ and we can consider vτ as the identity.

This make sense because Hq(H;Z) is a G/H-module (see for instance [6, Corol-
lary III.8.2]). Therefore, the spectral sequence of Proposition 7.3.6 is a generalization
of the Lyndon–Hochschild–Serre spectral sequence (for the definition see for instance [6,
Section VII.6] or [33, Theorem 10.52]).

7.3.2. The double complex. Let G be a group and let H be a subgroup of G. Consider
F∗ any G-projective resolution of Z, and P∗ any (G,H)-projective resolution of Z. We
call spectral sequence of the pair (G,H) the spectral sequence of the bicomplex

C∗,∗ = F∗ ⊗Z[G] P∗.

Since Fn is projective, Hq([G : H];Fp) = 0 for all q > 0, the ′E1 term of the spectral
sequence associated to the first filtration ′F p(Tot(C∗,∗)) has the form
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0 1 2 3

0

1

H0([G : H];F0) H0([G : H];F1) H0([G : H];F2) H0([G : H];F3)

0 0 0 0

By Corollary 2.4.2, this turns

0 1 2 3

0

1

F0 ⊗Z[G] Z F1 ⊗Z[G] Z F2 ⊗Z[G] Z F3 ⊗Z[G] Z

0 0 0 0

Then, the second them ′E2 has only one non zero row, namely Hn(G;Z). Then we
have

Proposition 7.3.8. The first spectral sequence of the pair (G,H) collapses at the second
term, so it converges to Hn(G;Z). In fact, ′E2

p,0
∼= Hp(G;Z) and zero for q > 0.

Proof. This is a consequence of Proposition 7.2.4, Proposition 7.2.8 and Proposition 7.2.9.

On the other hand, the ′′E1 term of the spectral sequence associated to the second
filtration (′F p Tot(C∗,∗)) has the form
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0 1 2 3

0

1

2

3

H0(G;P0)

H0(G;P1)

H0(G;P2)

H0(G;P3)

H1(G;P0)

H1(G;P1)

H1(G;P2)

H1(G;P3)

H2(G;P0)

H2(G;P1)

H2(G;P2)

H2(G;P3)

H3(G;P0)

H3(G;P1)

H3(G;P2)

H3(G;P3)

7.3.3. Calculate the second term. We can use the canonical resolution C∗(G) and
the relative canonical resolution C∗(G/H) in order to calculate the spectral sequence of
the pair associated to the bicomplex C∗,∗ = C∗(G)⊗ C∗(G/H).

Take X = EF(H)(G) (as a simplicial set) and identify S∗(X) with C∗(G/H), the
spectral sequence of the pair defined in Proposition 7.3.6 and the spectral sequence of the
pair associated to the bicomplex C∗,∗ = C∗(G) ⊗ C∗(G/H) are the same. Then the first
term ′′E1 has the form

′′E
1
p,q = Hq(G;Pp) =

⊕
σ∈Σp

Hq(Gσ;Z).

We also have

Proposition 7.3.9. The spectral sequence of the pair has the form

′′E
1
p,q = Hp([G : H];Hq)⇒ Hp+q(G;Z),

where Hq = {Hq(Gσ;Z)}.
Corollary 7.3.10. For the spectral sequence of the pair (G,H), we have

1. For each n, there exist an injection

′′E
∞
p,0 → Hp([G : H];Z)

2. There is an exact sequence

H2(G;Z) // H2([G : H];Z) // ′′E2
0,1

//

H1(G;Z) // H1([G : H];Z) // 0
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7.4. Spectral sequences in SL2(C)

Let G = SL2(C) and U the subgroup{(
1 b
0 1

)
| b ∈ C

}
,

then the term ′′E2 of the spectral sequence of the pair (G,U) is

0 1 2 3

0

1

2

3

Z

0

0

P(C)

0

0

0

*

∧2C∗

∧2C∗

0

0

Q/Z

Q/Z

*

*

This spectral sequence is used to prove the Bloch-Wigner exact sequence

0 // Q/Z // H3(G;Z) // P(C) // ∧2C∗ // H2(G;Z) // 0,

see [10, Theorem 8.19] and [36, Section 2] for details.
Now, we consider Ḡ = PSL2(C) and P̄ as the subgroup{(

1 b
0 1

)
| b ∈ C

}
,

Lemma 7.4.1. Consider σ = (g0P̄ , · · · , gnP̄ ) ∈ C∗(Ḡ/P̄ ), then the isotropy subgroup Ḡσ

is either P̄ or I.

Proof. Since (g0P̄ , · · · , gnP̄ ) has a representative (P̄ , g1P, · · · , gnP̄ ), then

Ḡσ = P̄σ =
n⋂
i=1

P̄giP̄

Note that pgP̄ = gP̄ for all p ∈ P if and only if g ∈ NḠ(P̄ ) = B̄. So

Ḡσ =

{
Ī if gi /∈ B for some gi,

P̄ if gi ∈ B for all gi.
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Explicitly (
1 x
0 1

)(
a ∗
c ∗

)
=

(
a+ xc ∗
c ∗

)
,

the isotropy is I if c 6= 0 and P̄ if c = 0.

Remark 7.4.2. By the previous analysis, the elements ([1, 0], [0, c]) and ([1, 0], [a, 0]) in
C1(Ḡ/P̄ ) are unique representatives of the Ḡ-orbits having isotropy Ī and P̄ respectively.
For the case C2(Ḡ/P̄ ) the unique representatives have the form ([1, 0], [0, c1], [a2, c2]),
([1, 0], [a1, 0], [0, c2]) and ([1, 0], [a1, 0], [a2, 0]) having isotropy Ī, Ī and P̄ respectively. We
can continuous this process inductively for each n. Then by Lemma 2.4.6 we have

C0(Ḡ/P̄ ) = IndḠP̄ Z

C1(Ḡ/P̄ ) =
⊕
c∈C∗

IndḠĪ Z
⊕
a∈C∗

IndḠP̄ Z

C2(Ḡ/P̄ ) =
⊕

z∈(C∗)3

IndḠĪ Z
⊕

w∈(C∗)2

IndḠĪ Z
⊕

a∈(C∗)2

IndḠP̄ Z

...

Then we can give the term E1 of the spectral sequence of the pair (Ḡ, P̄ ) using
Shapiro’s Lemma [6, Proposition III.6.2] and the homology of an abelian group [6, Theo-
rem V.6.4] (remember that P̄ ∼= C):

0 1 2 3

0

1

2

3

C0(Ḡ/P̄ )/Ḡ

C1(Ḡ/P̄ )/Ḡ

C2(Ḡ/P̄ )/Ḡ

C3(Ḡ/P̄ )/Ḡ

C

⊕
z∈(C∗) Cz

⊕
z∈(C∗)2 Cz

⊕
z∈(C∗)3 Cz

∧2C

⊕
z∈(C∗) ∧2Cz

⊕
z∈(C∗)2 ∧2Cz

⊕
z∈(C∗)3 ∧2Cz

*

*

*

*

Proposition 7.4.3. The fundamental group π1(BF(P̄ )(Ḡ)) = 0.

Proof. By Proposition 4.1.8, π1(BF(P̄ )(Ḡ)) ∼= 〈P̄ 〉. But Ḡ is a simple group [21, Theo-
rem XIII.8.4], then 〈P̄ 〉 = Ḡ.
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Corollary 7.4.4. The relative group homology H1([Ḡ : P̄ ];Z) = 0.

Then the term E2 of the spectral sequence of the pair (Ḡ, P̄ ) is given by

0 1 2 3

0

1

2

3

H0([Ḡ/P̄ ];Z)

0

H2([Ḡ/P̄ ];Z)

H3([Ḡ/P̄ ];Z)

*

*

*

*

*

*

*

*

*

*

*

*

7.4.1. Future work. For the future, we will still work in the spectral sequence of the
pair (PSL2(C), P̄ ) = (Ḡ, P̄ ). We guess that there is an exact sequence of the form

// H3(Ḡ;Z) // H3([Ḡ : P̄ ];Z) // H2(P̄ ;Z) //

// H2(Ḡ;Z) // H2([Ḡ : P̄ ];Z) // .

If this exact sequence exist we can compare with the exact sequence

0 // B̂(C) // P̂(C) // ∧2C // K2(C) // 0.

Where K2(C) is the second group of algebraic K-theory (see [29, Teorem 7.5]). Since

H3(Ḡ;Z) ∼= B̂(C), H2(P̄ ;Z) ∼= ∧2C and H2(Ḡ;Z) ∼= K2(C): we conjeture that H3([Ḡ :

P̄ ];Z) ∼= P̂(C) or maybe P̂(C) is a quotient of H3([Ḡ : P̄ ];Z).
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