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Discriminant analysis with Gaussian graphical tree models

Abstract
This thesis presents a study of the use of Gaussian graphical models in discriminant

analysis for two populations. By using estimates of the associated concentration ma-
trices, the plug-in allocation rules are defined. Two estimation problems are involved
when considering graphical models with restrictions: parameter and structure estima-
tion.

In the first part of the thesis, we consider the problem of parameter estimation
when a linear concentration model for each of the two populations is considered. Ad-
ditionally, we consider the case where some equalities between elements of the two
concentration matrices are imposed. Considering Maximum Likelihood, we derive the
analytical expressions needed to use the iterative partial maximization algorithm, to
then solve the parameter estimation problem.

When considering these linear restrictions, the estimation of the structure is com-
plex, and for this, we restrict the study to Gaussian graphical models with a tree graph
in the second part of the thesis. In this part of the thesis the interest focusses on the
structure estimation problem, since the parameter estimation is solved by using Max-
imum Likelihood Estimators which have explicit expressions.

We describe six methods for estimating the structure of Gaussian graphical tree
models. In each method an unknown tree structure is assumed for each concentration
matrix involved in the discriminant function. By finding a minimum weight spanning
tree and using maximum likelihood estimation, the concentration matrices are esti-
mated. Three of these methods have been introduced in the literature, and based on
these, three others are introduced in this thesis.

The six methods take advantage of the tree structure, specifically of an efficient
algorithm for finding the minimum weight spanning tree, and the existence of closed
form expressions for the maximum likelihood estimator of the concentration matrices.

A numerical study is presented, where the performance of the six methods are com-
pared when the training sample size is the same in both populations, though in this
case two pair of methods are equivalent. The comparison of the four different methods
is based on estimated error rates obtained from real and simulated data. Diagonal
discriminant analysis is considered as a benchmark, as well as quadratic and linear
discriminant analysis whenever the sample size is sufficient.

In spite of showing that none of the methods based on tree models outperforms the
benchmarks in all data sets, tree models offer a simple and computationally inexpensive
alternative to well established discriminant methods in high dimensional settings, where
sample size is similar to, or smaller than, the number of variables.
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Introduction

Discriminant analysis considers the problem of classifying new observations into different popu-

lations. In discriminant analysis for two populations with p-variate Gaussian distributions, the

optimal allocation rule is based on the log-likelihood ratio, and hence on the means and concen-

tration matrices. In practical applications, these parameters are estimated and replaced into the

allocation rule, giving what is known as the plug-in rule. Typically, the means and concentration

matrices are considered with no restriction, so that their maximum likelihood estimators (MLEs)

correspond to the sample means and the inverse of each sample covariance matrix.

However, the number of parameters involved in the optimal rule grows quickly as a function

of the number of variables. And in current statistical applications, problems involving a large

number of variables, but only a small number of observations often appear. In these cases, the use

of the plug-in rule associated with the optimal rule becomes impractical and the use of allocation

rules with less number of parameters is an alternative.

Alternative rules can be obtained when using some restrictions on the parameters; noticing

that the restrictions can be considered either on the covariance or the concentration matrices, and

on the mean vectors as well. For instance, when considering zero mean differences, as in the twins

example given by Bartlett and Please (1963). Or when considering a diagonal matrix for each

covariance matrix. Here, the allocation rule becomes simpler, since the number of parameters and

the minimum required sample size diminish considerably.
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Introduction

Another example is the use of restrictions on each concentration matrix with the purpose of

reflecting particular characteristics of the populations or distributions such as symmetry, marginal

or conditional independences. Some models which consider these kind of restrictions are Gaussian

graphical models (Lauritzen, 1996), symmetry models (Højsgaard and Lauritzen, 2008), and linear

concentration models (Anderson, 1970 and Sturmfels and Uhler, 2010).

The kind of restrictions considered in the linear concentration models were introduced by An-

derson (1970), and later on Sturmfels and Uhler (2010) gave this name to these models. In Chapter

3, we consider a linear concentration model independently for each of the two populations; addi-

tionally, we consider the case where some corresponding elements between the two concentration

matrices are equal.

When considering these models with restrictions, two estimation problems arise: parameter

estimation, which corresponds to estimating the concentration matrix given a specific structure,

and structure estimation or model selection, which corresponds to identifying or estimating the

structure.

Exploiting that these models are special cases of the regular exponential family, we adapt the

iterative partial maximization (IPM) algorithm (Jensen et al., 1991) to solve the parameter esti-

mation problem. That is, we derive the analytical expressions needed to use this algorithm. On

the other hand, the estimation of the structure is complex. For this aspect, we list some algorithms

which are found in the literature and have been developed for models with less restrictions. For

instance, when the models are restricted to be Gaussian graphical models in both populations

without considering equalities between corresponding elements of the two concentration matrices.

However, we note that there is no single method which can be used when all the restrictions are

considered.
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Introduction

Considering the case where the structure is unknown and with the purpose of studying the use

of linear restrictions on the concentration matrices in the context of classification, we restrict the

study to the case where the concentration matrices are associated with Gaussian graphical tree

models. These models are Gaussian graphical models (GGMs) with a tree graph, and they are

one of the simplest decomposable models for which a explicit expression exists for the MLE of the

concentration matrix.

We consider six methods for structure estimation. They all use Maximum Likelihood (ML)

estimation for the parameters, but use a different function to be optimized for the estimation of

the tree structure. Three of these methods have been studied in the literature: Chow and Liu

(1968), Friedman et al. (1997, 1998), and Tan et al. (2010). And based on these, three others

are introduced in this thesis, for which the function to be optimized is the J-divergence for one

of them, and the empirical log-likelihood ratio (log-ratio) for the other two. We show in Proposi-

tions 4.5.1 and 4.5.2 that their associated optimization problems are equivalent to one of finding

a minimum weight spanning tree (MWST). As a result of this last property and the existence of

closed form expressions for the MLEs, any of these methods offers a simple and computationally

inexpensive alternative in high dimensional settings, where sample size is similar to, or smaller

than, the number of variables. This also permit using simulation or cross-validation procedures

to estimate error rates for the comparison of methods for structure estimation in the context of

classification of observations.

We compare the classification performance of these methods using estimated error rates. These

are computed for breast cancer data and for simulated data sets. The latter were generated from

four specific models: an autoregressive of order 1; a moving average of order 1; a set of equal cor-

related variables; and a set of variables from a Gaussian distribution with a random concentration

matrix.
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Introduction

For the numerical comparison, we consider training samples of equal size in both populations,

and for this case the method given in Tan et al. (2010) and the one based on the log-ratio are

equivalent, as well as the methods based on the J-divergence and the log-ratio with equal trees.

We also compute error rates for diagonal quadratic and linear discriminant analysis, DQDA and

DLDA respectively, and also for QDA and LDA when the sample size is large enough.

We also consider HIV data to illustrate the case when the data correspond to repeated mea-

sures and the training samples sizes are different. In this case, diagonal discriminant analysis is

also considered as a benchmark.

The results of the study show that among the methods based on trees, there is no single one

that outperforms the others. It is observed that there are cases where DQDA and DLDA are

better than the methods based on trees, and in some cases LDA is also better. However, in most

cases the performance of the methods using trees is superior, especially when the group sample

size is similar to the number of variables. In this case, we conclude that using trees is a good

alternative to diagonal, linear and quadratic discriminant analysis.

The present thesis is organized as follows. Chapter 1 provides an introduction to discriminant

analysis, Gaussian graphical models, and models with linear restrictions on the concentration

matrices as those introduced by Anderson (1970). The statistical theory of Gaussian graphical

models, which is briefly described, appears in Lauritzen (1996) and the implementation in R of

algorithms for these models in Højsgaard et al. (2012).

Chapter 2 gives some early examples found in the literature, where some linear structures on

the concentration matrices are used in discriminant analysis or in the context of one population. In

Chapter 3, we describe the linear concentration models with some equalities between correspond-

ing elements of the two matrices. We also derive the expressions for the IPM algorithm to obtain
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Introduction

ML estimates and list some algorithms used for structure estimation. An example in the context of

an educational testing problem is presented to illustrate the use of the algorithm to obtain the ML

estimates, and the breast cancer data is introduced to illustrate the use of algorithms to estimate

the structure. In the latter example, error rates are estimated using the repeated holdout method

assuming a given structure, though in Chapter 4, this method is used for this data including the

structure estimation.

In Chapter 4, we state the six methods for structure estimation of Gaussian graphical tree

models, giving their corresponding optimization problems together with the weights needed for

the associated MWST problems. We also present the results of the numerical study for the case of

equal group sample size and for data on repeated measures. In Chapter 5, we give conclusions of

the work and describe future work. Finally, in the appendices, the proofs of the propositions and

corollary are given, also some details needed for the use of the IPM algorithm and supplementary

figures.
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1. Preliminaries

1.1 Discriminant Analysis

Discriminant analysis considers the problem of discriminating between different populations or

groups. It has been used with at least one of two objectives: (i) to understand the discriminating

power of the variables on the observations, and (ii) to classify new observations into one of the

groups based on their characteristics.

In its linear form and without distributional assumptions, discriminant analysis was introduced

by Fisher (1936). Welch (1939) formulated the discrimination rule based on probability distribu-

tions for two populations, Π1 and Π2, as follows. Assign an observation x into population Π1

when

π1f1(x) > π2f2(x),

and otherwise to Π2. Or equivalently, based on the log-likelihood ratio criterion, when

ln
f1(x)

f2(x)
> ln

π2
π1
,

where fc(x) = f(x|C = c) is an arbitrary density or probability function and πc = P (C = c),

c = 1, 2. This rule is also equivalent to the Bayes rule: Assign an observation x into Π1 when

P (C = 1|x) = π1
f1(x)

f(x)
> P (C = 2|x) = π2

f2(x)

f(x)
,

and into Π2 otherwise.

11



1.1. Discriminant Analysis

In particular, when fc is the density of a Gaussian distribution N(µc,K
−1
c ) with Σc = K−1

c ,

c = 1, 2,

ln
f1(x)

f2(x)
= 1

2
ln

| K1 |
| K2 |

+ 1
2
(x− µ2)

tK2(x− µ2)− 1
2
(x− µ1)

tK1(x− µ1)

= xtAx+ btx+ d,

(1.1)

where A = 1
2
(K2−K1), b = K1µ1−K2µ2, and d =

1
2
ln |K1|

|K2|
+ 1

2
(µt

2K2µ2−µt
1K1µ1). Expression

(1.1) is called the quadratic discriminant function.

This rule is optimal in the sense that minimizes the error rate or probability of misclassification

P (e) defined as

P (e) = π1P (2|1) + π2P (1|2), (1.2)

where P (i|j) denotes the probability of assigning an observation from population Πj to Πi.

We also obtain the same rule if we consider that the joint distribution of the vector (C,X) is

a Conditional Gaussian distribution, CG-distribution, with density (see Lauritzen, 1996, s. 6.1.1)

f(c,x) = πc(2π)
−p/2 | Kc |1/2 exp

[
−1

2
(x− µc)

tKc(x− µc)

]
, (1.3)

where X|C = c ∼ N(µc,K
−1
c ), P (C = c) = πc, c = 1, 2, and π1 + π2 = 1.

In general, we note that the joint distribution can be factorized as follows

f(c,x) =





f(x|c)P (c),

P (c|x)f(x).

When the interest focuses on estimating f(x|c), the methods are called generative. On the

12



1.1. Discriminant Analysis

other hand, when it focuses on P (c|x), the methods are called discriminative.

In discriminant analysis, the interest focuses on f(x|c) = fc(x). Hence, in a practical appli-

cation, we need to estimate the unknown parameters µ1, µ2, K1 and K2. When the parameter

estimates are inserted in fc(x), we obtain what is called the plug-in allocation rule.

ML can be used to estimate µ1, µ2, K1 and K2 as follows. Given a sample x
(c)
1 , ...,x

(c)
nc from

each group c, c = 1, 2, the MLEs are

µ̂c = x(c) =
nc∑

k=1

x
(c)
k /nc; (1.4)

K̂c = W−1
c with Wc =

nc∑

k=1

(x
(c)
k − x(c))(x

(c)
k − x(c))t/nc, c = 1, 2; (1.5)

see, for example, Anderson (2003, p. 613). The estimator µ̂c is unbiased; but Σ̂c = Wc is biased;

and an unbiased estimator is nc

nc−1
Wc, c = 1, 2. We refer to the plug-in allocation rule obtained

with the MLEs as quadratic discriminant analysis (QDA).

When Σ1 = Σ2 = Σ, the quadratic term in (1.1) vanishes giving

ln
f1(x)

f2(x)
= (µ1 − µ2)

tK[x− 1
2
(µ1 + µ2)] = btx+ d, (1.6)

where b = K(µ1 − µ2) and d = −1
2
(µ1 − µ2)

tK(µ1 + µ2). (1.6) is called the linear discriminant

function. In this case given a sample x
(c)
1 , ...,x

(c)
nc on each group c, c = 1, 2, the MLEs are

K̂ = W−1 with W =

2∑

c=1

nc∑

k=1

(x
(c)
k − x(c))(x

(c)
k − x(c))t/(n1 + n2), (1.7)

and µ̂c as in (1.4). The plug-in allocation rule obtained with these MLEs is referred as linear

13



1.1. Discriminant Analysis

discriminant analysis (LDA).

Discriminant analysis and logistic regression are two closely related models in supervised statis-

tical classification, however, in logistic regression interest focuses on the conditional probabilities:

P (C = c|X = x) =
πcf(x|C = c)

π2f(x|C = 2) + π1f(x|C = 1)
, c = 1, 2.

In order to obtain the conditional probabilities, logistic regression models the function:

ln
P (C = 1|X = x)

P (C = 2|X = x)
= ln

π1
π2

+ ln
f(x|C = 1)

f(x|C = 2)
. (1.8)

And in its linear form, logistic regression models (1.8) assuming a linear function of x,

ln
P (C = 1|X = x)

P (C = 2|X = x)
=βtx+ β0. (1.9)

Therefore

P (C = 1|X = xi) =
exp(βtxi + β0)

1 + exp(βtxi + β0)
and P (C = 2|X = xi) =

1

1 + exp(βtxi + β0)
.

In this case, the goal is to estimate the parameters (β, β0) directly from the sample and not

through a function of the estimated group means and concentration matrices.

In order to use ML, it is assumed that the distribution of C conditional on X = x is Bernoulli

with probabilities P (C = c|X = x). Then given a sample {(c,x)1, ..., (c,x)n}, the MLEs are those

that maximize the log-likelihood function

14



1.1. Discriminant Analysis

ln(ℓ(β, β0)) =

n∑

i=1

δ1(ci) ln(P (C = 1|X = xi)) + (1− δ1(ci)) ln(P (C = 2|X = xi)) (1.10)

where δ1(c) =





1 if c = 1

0 if c 6= 1
.

We note that when the distribution of X conditional on C = c is N(µc,K
−1), function (1.8)

is in fact linear,

ln
P (C = 1|X = x)

P (C = 2|X = x)
= ln

π1
π2

+ ln
f(x|C = 1)

f(x|C = 2)
= ln

π1
π2

+ btx+ d, (1.11)

with b and d as in (1.6). And where the parameters in (1.9) and (1.11) are related by

β = b = K(µ1 − µ2) and β0 = ln
π1
π2

+ d = ln
π1
π2

− 1

2
(µ1 − µ2)

tK(µ1 + µ2).

However, the estimates for β and β0 obtained by maximizing (1.10) are not the same as those

obtained by plugging in the ML estimates computed using (1.4) and (1.7), see for example Ripley

(1996, p. 45) and Cox and Snell (1989, p. 136).

Anderson (1975) considers the logistic regression in its quadratic form as

ln
P (C = 1|X = x)

P (C = 2|X = x)
=xtΩx+ βtx+ β0. (1.12)

This model, for example, is obtained when the distribution of X conditional on C = c is

N(µc,K
−1
c ), where Ω corresponds to A given in (1.1).

Due to the large number of parameters in the quadratic logistic regression model, Anderson
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1.1. Discriminant Analysis

(1975) proposes to approximate Ω with lmaxvmaxv
t
max, where lmax is the largest eigenvalue and

vmax its associated eigenvector from the spectral decomposition Ω =
∑p

i=1 liviv
t
i .

Therefore, the number of parameters to be estimated in (1.12) are only 2p + 1, because the

coefficients of quadratic and crossed terms are functions of p parameters: lmax, v1max
, ..., v(p−1)max

.

For example, when p = 4

xtΩx+ βtx+ β0 ≃lmax
4∑

k=1

4∑

s=1

xkxsvkmax
vsmax

+ βtx+ β0. (1.13)

where v24max
= 1− v21max

− v22max
− v23max

. The author also suggests to use more than one from the p

terms in the spectral decomposition and mentions other approximations when dealing with binary

variables instead of continuous.

In discriminant analysis, usually no assumption is made on the pattern of the mean vectors

or the concentration matrices. However, we can consider particular patterns or structures on the

group means and either on the covariance or the concentration matrices. In this work, we consider

linear restrictions on the concentration matrices. These restrictions may be considered for two rea-

sons: (i) to help to diminish the number of unknown parameters and (ii) to identify a model which

could be more readily interpretable for a specific problem. To diminish the number of parameters is

a growing need in applications where the number of variables outgrows the number of observations.

For example, when n1 or n2 are smaller than p, QDA cannot be used since W1 or W2 could be

singular matrices. In this case, LDA is often used, even when the assumption of equal covariance

matrices is not plausible, though its performance could be poor when n1 + n2 is similar to the

number of variables, and it cannot be used when n1 + n2 < p.

We remark that linear restrictions on the concentration matrices also impact the logistic regres-
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1.1. Discriminant Analysis

sion function such that the number of unknown parameters in (1.12) may diminish. For example,

when K1 and K2 are diagonal distinct matrices, (1.8) can be expressed as

ln
P (C = 1|X = x)

P (C = 2|X = x)
=αtz + βtx+ β0, (1.14)

where z = (x21, ..., x
2
p). Though, there are other linear restrictions that imply this expression.

The assumption of diagonal matrices is made very often when p is larger than n1 and n2.

Diagonal quadratic discriminant analysis (DQDA) is based on the plug-in rule with D̂−1
c in-

stead of K̂c, where D̂c = diag(Wc), c = 1, 2; and diagonal linear discriminant analysis (DLDA)

uses D̂1 = D̂2 = diag(W ). Bickel and Levina (2004) studied the behaviour of DLDA, using

(n1+n2)W /(n1+n2−2) instead of W , and under some conditions when the number of variables

grows: a Mahalanobis distance at least c, where c is constant; a bound on the ratio of the largest

and the smallest eigenvalue; and the mean vectors belonging to a specific compact subset of l2.

They showed that when Σ1 = Σ2 and under these conditions, the performance of DLDA is better

than random guessing and in some cases is asymptotically optimal when n = n1 = n2 → ∞,

p → ∞ and (ln p)/n → 0. Under the same conditions they also showed that DLDA can indeed

greatly outperform LDA.

The good classification performance of DQDA and DLDA led us to consider a spectrum of

possibilities spanning the range between assuming full independence and arbitrary dependence;

whereas the good classification performance of LDA between assuming equal and arbitrary matri-

ces. In the following section, we describe the models with linear restrictions on the concentration

matrices that we consider.
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1.2. Gaussian Graphical models

1.2 Gaussian Graphical models

In terms of Gaussian graphical models (GGMs), a zero on the concentration matrix is equivalent

to assume conditional independence between the corresponding variables. Specifically, a GGM

has an undirected graph G = (V,E) where V = {v1, ..., vp} is a set of vertices representing

the set of variables {x1, ..., xp} and E a set of edges. G, also referred as dependence graph,

represents conditional independence relations for the set of random variables. The model satisfies

the following relations:

xi ⊥⊥ xj |{x1, ..., xp} \ {xi, xj} ⇐⇒ kij = 0 ⇐⇒ (i, j) /∈ E,

where kij is the entry ij of the concentration matrix K.

For example, we consider three particular patterned concentration matrices associated with the

following graphs: a cycle Cp, a path τ and the edgeless κ; and compare them with a non restricted

concentration matrix which corresponds to the complete graph κ, as shown in Figure 1.1 for p = 4

variables.

The associated concentration matrices to the four graphs in Figure 1.1 are the following.

Kκ =




k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44



, KC4

=




k11 k12 0 k14

k12 k22 k23 0

0 k23 k33 k34

k14 0 k34 k44



,

Kτ =




k11 k12 0 k14

k12 k22 k23 0

0 k23 k33 k34

k14 0 k34 k44



, Kκ =




k11 0 0 0

0 k22 0 0

0 0 k33 0

0 0 0 k44



,
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1.2. Gaussian Graphical models

with kij 6= 0, i, j = 1, ..., 4.

Hereafter, we use the notation KG to make the dependence on the specific graph G clear.

Considering these four graphs in the context of discriminant analysis with the same kind of

graph in both populations, the number of parameters to be estimated for the quadratic and linear

discriminant functions given in (1.1) and (1.6) diminishes, see Table 1.1.

❡

❡

❡

❡

a) κ = (V,E1)
4 3

1 2

✑
✑
✑
✑
✑
✑
✑
✑✑

◗
◗

◗
◗

◗
◗

◗
◗◗

❡

❡

❡

❡

b) C4 = (V,E2)
4 3

1 2

c) τ = (V,E3)

❡ ❡ ❡ ❡

1 2 3 4

d) κ = (V,E4)

❡ ❡ ❡ ❡

1 2 3 4

Figure 1.1: Four examples of graphs G = (V,Ei), i = 1, 2, 3, with V = {1, 2, 3, 4}. a) complete with
E1 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, b) a cycle with E2 = {(1, 2), (1, 4), (2, 3), (3, 4)}, c) a
tree graph called path with E3 = {(1, 2), (2, 3), (3, 4)}, and d) empty graph with E4 = ∅.

Discriminant Number of parameters for p = 100

function κ C4 τ κ κ C4 τ κ

Quadratic 3p+ p2 6p 6p− 2 4p 10,300 600 598 400
Linear (p2 + 5p)/2 4p 4p− 1 3p 5,250 400 399 300

Table 1.1: Number of parameters in the quadratic and linear discriminant functions when considering
concentration matrices associated with graphs of order p: κ, Cp, τ , and κ.

We note that particular cases of discriminant analysis described in Section 1.1 are associated

with known graphs: (i) LDA and QDA are associated with κ; and (ii) DLDA and DQDA with κ.

For example, for p = 4, the associated graphs are given in Figure 1.1a) and 1.1d), respectively.

When considering a GGM, two estimation problems exist: parameter estimation which cor-

responds to estimate K given an specific graph G, and structure estimation or model selection
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1.2. Gaussian Graphical models

which is to identify or estimate the dependence graph G.

ML can be used for the estimation of the concentration matrix. For an arbitrary GGM, ML

estimates must be found iteratively, for example using the iterative proportional scaling (IPS)

algorithm, see for example, Speed and Kiiveri (1986). Though for decomposable models, MLEs

can be found in closed form (Lauritzen, 1996, and Højsgaard et al., 2012). Decomposable models

are GGM with triangulated or chordal dependence graphs and their properties follow from the

existence of the clique-separator factorization, see Lauritzen (1996, p. 145) or Green and Thomas

(2013) for details. That is, the density function of a decomposable model associated with graph

G can be factorized in terms of the set of cliques C , from which a perfect sequence can be formed,

and the set of separators S as

fG(x1, ..., xp) =

∏
C∈C

f(xC)∏
S∈S

f(xS)v(S)
, (1.15)

where v(S) is the number of times that S occurs in a perfect sequence.

For example, the decomposable model associated with the chordal graph (Jiroušek and Přeučil,

1995) given in Figure 1.2 has a density that can be factorized as

f(x1, ..., x7) =
f(x1, x2, x3) f(x2, x3, x6) f(x2, x5, x6) f(x4) f(x6, x7)

f(x2, x3) f(x2, x6) f(x6)
,

where the set of Cliques is C = {C1, C2, C3, C4, C5} with C1 = {1, 2, 3}, C2 = {2, 3, 6}, C3 =

{2, 5, 6}, C4 = {4} and C5 = {6, 7}. The set of separators is S = {S1, S2, S3} with S1 = {2, 3},

S2 = {2, 6} and S3 = {6}.

Other examples of triangulated graphs are given in Figures 1.1a), 1.1c) and 1.1d). The cycle

given in 1.1b) is an example of a graph that is not chordal.
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1.2. Gaussian Graphical models

1

2 3 4

5 6 7

a) 1

2 3

2 3

6

4

2

65 6 7

b)

Figure 1.2: Example of a decomposable model: (a) the associated dependence graph and (b) the set
of cliques: C1 = {1, 2, 3}, C2 = {2, 3, 6}, C3 = {2, 5, 6}, C4 = {4}, C5 = {6, 7}

The MLE of the concentration matrix KG for a decomposable model with graph G is given by

K̂G =
∑

C∈C

[W−1
C ]p −

∑

S∈S

v(S)[W−1
S ]p. (1.16)

whereW is the sample covariance matrix given in (1.5) for a specific population; and for any vector

of indexes m, we let W−1
m

denote the inverse of the submatrix of W formed by selecting the subset

of rows and columns of W given by m. We note that entry lk of W−1
m

is associated with indexes

ml and mk, so that we let [W−1
m

]p denote the p × p matrix such that ([W−1
m

]p)mlmk
= (W−1

m
)lk,

l, k = 1, 2, ..., |m|, and zero otherwise. For example, the matrix [W−1
C ]p associated to the clique

C2 = {2, 3, 6} of the decomposable model with graph given in Figure 1.2a) is as follows

[W−1
C2

]7 =




0 0 0 0 0 0 0

0 a11 a12 0 0 a13 0

0 a12 a22 0 0 a23 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 a13 a23 0 0 a33 0

0 0 0 0 0 0 0




,
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1.3. Gaussian linear concentration models

where




a11 a12 a13

a12 a22 a23

a13 a23 a33


 =




w22 w23 w26

w23 w33 w36

w26 w36 w66




−1

and wij is the entry ij of the matrix W .

The analytical expressions for the MLEs in decomposable models are useful in high dimen-

sional settings, where iterative methods can be computationally expensive. However, prior to the

parameter estimation, the structure of G has to be specified, which is not an easy task.

1.3 Gaussian linear concentration models

We consider Gaussian models with linear structure in the concentration matrix. This structure

was already suggested by Anderson (1970), where the concentration matrix can be expressed as a

linear combination of given symmetric matrices as

K = Σ−1 =

q∑

h=0

ψhHh, (1.17)

where Hh, h = 0, ..., q, are symmetric and given matrices which are linearly independent and the

values ψ0, ψ1, ..., ψq are such as to make K positive definite.

These models have been recently called linear concentration models by Sturmfels and Uhler

(2010). Particular cases of these patterns in the context of discriminant analysis have already

been studied and applied, see for example, Bartlett and Please (1963), Penrose (1946–47), Smith

(1946–47) and Dudoit and Fridlyand (2003); we describe some of them in Chapter 2.

Concentration matrices expressed as in (1.17) have taken relevance with the recent advances

on GGMs, in the following subsections we consider some particular forms of expression 1.17 which

correspond to models known as Coloured Gaussian graphical models (Højsgaard and Lauritzen,

2005, 2007 and 2008).
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1.3. Gaussian linear concentration models

We note that the concentration matrix associated with a GGM with graph G = (V,E) can be

expressed as in (1.17) as follows

KG =

p∑

i=1

kiiHii +
∑

i<j
(i,j)∈E

kijHij ,

where Hij is the p × p matrix with all entries equal to zero, except for entries ij and ji which

are equal to 1, i, j = 1, ..., p. For example, the concentration matrix associated with the complete

graph in Figure 1.1 can be expressed as

Kκ =

q∑

h=0

ψhHh, (1.18)

where q = 9, (ψ0, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8, ψ9) = (k11, k12, k13, k14, k22, k23, k24, k33, k34, k44), and

Hh is a 4× 4 matrix such that {Hh}ij equals to 1 when {K}ij = ψh and 0 otherwise, h = 0, ..., 9.

And the one associated with κ is as follows

Kκ = ψ0




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




+ ψ1




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




+ ψ2




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




+ ψ3




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1



, (1.19)

where q = 3 and (ψ0, ψ1, ψ2, ψ3) = (k1, k2, k3, k4).

1.3.1 Coloured graphical Gaussian models

Coloured graphical Gaussian models as introduced by Højsgaard and Lauritzen (2005, 2007, 2008)

and further studied in Neufeld (2009) are models that impose constraints on some elements of

the concentration matrix, or on the partial correlations. Two examples are RCON and RCOR

models which are GGMs with some elements of the concentration and partial correlation matrix,
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1.3. Gaussian linear concentration models

respectively, restricted to be equal. Another one is RCOP models which are RCON models such

that the restrictions on the concentration matrix are also reflected on the partial correlation matrix.

A coloured graphical Gaussian model is associated with a coloured graph G = (V, E), where

V is a partition of V into k subsets, V = {V1, ..., Vk}, and E is a partition of E into l subsets,

E = {E1, ..., El}. Each subset Vi, i = 1, ..., k, represents a subset of variables whose partial variances

are equal and whose vertices are coloured with the same colour. Each subset Ei, i = 1, ..., l,

represents a subset of edges which are coloured with the same colour and whose corresponding

partial covariances or partial correlations are equal. That is

V = V1 ∪ ... ∪ Vk, 1 ≤ k ≤ |V |, E = E1 ∪ ... ∪ El, 1 ≤ l ≤ |E|.

An RCON model has a coloured graph G = (V, E) with restrictions on the elements of the

concentration matrix, {kij, i, j = 1, ..., p}, as follows.

a) kij = 0 ⇐⇒ (i, j) /∈ E.

b) kii = kjj ⇐⇒ {vi, vj} ∈ Vr, for some r, r = 1, ..., k.

c) kij = knm 6= 0 ⇐⇒ {(i, j), (n,m)} ∈ Er, for some r, r = 1, ..., l.

As an example of an RCON model, we consider one related to a coloured graph G = (V, E)

with V = {V1, V2} and E = {E1, E2}, where V1 = {1, 3}, V2 = {2, 4}, E1 = {(1, 2), (2, 3), (1, 4)}

and E2 = {(3, 4)}; and whose graph is the cycle of order 4 displayed in Figure 1.3.

1 2

34

Figure 1.3: A coloured graph associated with an RCON model with G = (V, E), V = {V1, V2} and
E = {E1, E2}, where V1 = {1, 3}, V2 = {2, 4}, E1 = {(1, 2), (2, 3), (1, 4)} and E2 = {(3, 4)}.
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The corresponding concentration matrix is given by

K =




a d 0 d

d b d 0

0 d a c

d 0 c b




= ψ0




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




+ ψ1




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1




+ ψ2




0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0




+ ψ3




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0



,

(1.20)

where q = 3, (ψ0, ψ1, ψ2, ψ3) = (a, b, d, c), and a, b, c and d are different from zero.

In general, the concentration matrix of RCON models can be expressed as in (1.17) as follows

K = Σ−1 =

q∑

h=0

ψhHh, (1.21)

where if {Hk}ij 6= 0, then {Hl}ij = 0 ∀ l 6= k, k, l = 0, ..., q; and each matrix Hh corresponds to

a vertex or edge colour class.

ML estimates for these models can be found using iterative algorithms, for example: the Scor-

ing algorithm or the Iterative Partial Maximisation algorithm. These algorithms are described in

Højsgaard and Lauritzen (2007) and implemented in the gRc package for R.

RCOP models constitute a subset of the RCON models and an example is presented in the

following subsection.

1.3.2 Other examples of linear concentration models

RCON models have concentration matrices that can be expressed as in (1.17), though not any

model with this kind of matrix is an RCON model. An example of a concentration matrix cor-

responding to a GGM that can be expressed as in (1.17), though it does not correspond to an
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1.3. Gaussian linear concentration models

RCON model, is the following.

K =




a b 0 2b

b a 2b 0

0 2b a b

2b 0 b a




= a




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+ b




0 1 0 2

1 0 2 0

0 2 0 1

2 0 1 0



.

RCON models whose concentration matrix can be expressed as in (1.17) impose restrictions

on the off-diagonal elements of the concentration matrix which are linear, whereas RCOR models

impose non linear restrictions on the concentrations or partial covariances. An RCOR model has

a coloured graph G = (V, E) where the elements of the concentration matrix, {kij, i, j = 1, ..., p},

are constrained as follows.

a) kij = 0 ⇐⇒ (i, j) /∈ E.

b) kii = kjj ⇐⇒ {vi, vj} ∈ Vr, for some r, r = 1, ..., k.

c) ρij|V \{vi,vj} = ρnm|V \{vn,vm} 6= 0 ⇐⇒ {(i, j), (n,m)} ∈ Er, for some r, r = 1, ..., l;

where ρij|V \{vi,vj} = − kij√
kii
√
kjj

.

An example of an RCOR model with coloured graph G = (V, E) with V = {V1, V2} and E =

{E1, E2, E3}, where V1 = {1, 2}, V2 = {3, 4}, E1 = {(1, 2), (3, 4)}, E2 = {(1, 4)} and E3 = {(2, 3)};

is shown in Figure 1.4.

1 2

34

Figure 1.4: A coloured graph G = (V, E) associated with an RCOR model; with V = {V1, V2}
and E = {E1, E2, E3}, where V1 = {1, 2}, V2 = {3, 4}, E1 = {(1, 2), (3, 4)}, E2 = {(1, 4)} and
E3 = {(2, 3)}.
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1.3. Gaussian linear concentration models

The corresponding concentration matrix to the RCOR model with graph shown in Figure 1.4

is as follows.

K = Σ−1 =




a ca
b

0 d
ca
b

a e 0

0 e b c

d 0 c b



,

where a, b, c, d and e represent values different from zero. We note that this concentration matrix

cannot be expressed as in (1.17).

An RCOP model is a GGM that is both an RCON and an RCOR model. These models are

defined using some properties of the associated graph G = (V,E) as follows. Let Aut(G) denote

the group of automorphisms of G. Let Γ be a subgroup of Aut(G), vertex orbits are defined as

the class of equivalence

i ≡Γ j ⇔ j = σ(i) for some σ ∈ Γ,

where i, j ∈ V . Also, edge orbits are defined as the class relation

(i, j) ≡Γ (k, l) ⇔ (k, l) = (σ(i), σ(j)) for some σ ∈ Γ,

with {(i, j), (k, l)} ∈ E.

An RCOP model is a model whose vertex colour classes correspond to the vertex orbits for a

subgroup Γ of Aut(G). An the edge colour classes correspond to the edge orbits of Γ.

For example, let G = (V,E) be the 4–cycle graph shown in Figure 1.1b). Then the group

of automorphisms of G is Aut(G) = {id, (13), (24), (13)(24), (12)(34), (14)(23), (1234), (1432)}.

Let Γ = {id, (13)(24)}, then V = {V1, V2} and E = {E1, E2}, where V1 = {1, 3}, V2 = {2, 4},

E1 = {(1, 2), (3, 4)} and E2 = {(1, 4), (2, 3)}. Then the coloured graph associated with the RCOP

model generated considering Γ = {id, (13)(24)} for the 4–cycle graph is the one shown in Figure 1.5.
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1 2

34

Figure 1.5: Coloured 4–cycle graph associated with the RCOP model generated by Γ = {id, (13)(24)}.

The concentration matrix associated with the RCOP model shown in Figure 1.5 is as follows.

K = Σ−1 =




a c 0 d

c b d 0

0 d a c

d 0 c b



,

where a, b, c and d are all different from zero.

We note that the symmetries imposed by the coloured graph in an RCOP model are also

reflected in the partial correlation and covariance matrices. For example, the covariance matrix

associated with the RCOP model shown in Figure 1.5 is

Σ =
1

h




b(ba− c2 − d2) −c(ba− c2 + d2) 2bcd −(ba − d2 + c2)d

−c(ba − c2 + d2) a(ba− c2 − d2) −(ba− d2 + c2)d 2cda

2bcd −(ba− d2 + c2)d b(ba− c2 − d2) −c(ba− c2 + d2)

−(ba− d2 + c2)d 2cda −c(ba− c2 + d2) a(ba− c2 − d2)



,

where h = a2b2 − 2bac2 − 2d2ba + d4 + c4 − 2c2d2.

Votaw (1948) and Wilks(1946) imposed symmetry restrictions on the covariance matrix which

are also reflected in the concentration matrices. These models are examples of RCOP models.

1.3.3 Comments

For the parameter estimation in GGMs, the algorithms depend on whether the graph is decom-

posable. When it is, there exists an analytical expression for the MLE of the concentration matrix.
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1.3. Gaussian linear concentration models

When it is not, there are some algorithms to find numerical solutions for the ML estimates, for

example: the IPS algorithm (Lauritzen, 1996, p134) and another given in Hastie et al. (2009, p.

634). Both algorithms require that the structure of the matrix is known, and the IPS additionally

requires that the cliques of the graph are given.

For the estimation of coloured graphical Gaussian models, at least two algorithms are imple-

mented in the package gRc in R: Scoring algorithm and Iterative partial maximization algorithm.

Both are described in Højsgaard and Lauritzen (2007).

For the estimation of linear concentration models, given that the structure of the matrix is

known, Anderson (1970) described an algorithm to solve the corresponding nonlinear equations

system using the Newton-Raphson algorithm.

For the case of RCON models with additional restrictions on the mean vectors, Gehrmann and

Lauritzen (2012) give the necessary and sufficient condition for the estimation of the means to be

independent from the estimation of the concentration matrix when using ML.

The existence of MLEs has been assumed, however, Sturmfels and Uhler (2010) and Ulher

(2012) study the problem of the minimum number of observations that ensure the existence of

MLEs with probability one.

In the following chapter, some early examples in discriminant analysis are described, where

some linear restrictions on the concentration matrices appear.
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2. Early examples of the use of Gaus-

sian linear concentration models

In Chapter 1, we described some models with linear restrictions on the concentration matrix with

the purpose of using them in the context of discriminant analysis. Instances of these models

have been studied recently, and in this chapter, we describe some of the early cases considered in

the literature. We also describe some restrictions on the mean vectors which can be considered

in discriminant analysis: (i) means with some elements, in one or both vectors, restricted to be

equal, and (ii) zero mean differences. We conclude the chapter giving two practical examples, with

data taken from the described cases, to show how the estimation of the parameters can be done

using tools already developed.

2.1 Unrestricted group means

With no assumption on the structure of the mean vectors µ1 and µ2, their MLEs are independent

from the corresponding to the concentration matrices K1 and K2, and are given by the sample

mean vectors as in (1.4). Kc is then estimated by maximizing the profile likelihood function, that

is the likelihood function evaluated in µ̂c, c = 1, 2.

An early example in the context of classification, where there is no restriction on the mean

vectors but with some structure on the concentration matrices, is given by Penrose (1946–1947)

using the concepts of size y shape. Also, we can find examples in the context of the classification

of biological samples using gene expression data from DNA microarray experiments where naive
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2.1. Unrestricted group means

Bayes classification is very useful, see Dudoit and Fridlyand (2003).

2.1.1 Penrose’s concepts of size and shape

The old idea of describing an object with two measurements, one of size and another of shape,

has been referred and studied in various areas of research, particularly in morphometrics. In the

context of Principal components, Rao (1964) gives some comments on what different authors call

size and shape. Size is basically a weighted sum of p variables with positive weights; whereas

shape is a weighted sum of p variables with weights summing to zero.

In the context of discriminant analysis, Penrose (1946–47) defines size as the linear function

W = X1 + ...+Xp and shape as P = k1X1 + ...+ kpXp with
∑p

i=1 ki = 0. He also assumes that

on each of the two populations the covariance and concentration matrices has the same pattern:

Σ =




1 ρ · · · ρ ρ

ρ 1 · · · ρ ρ

. . .

ρ ρ · · · 1 ρ

ρ ρ · · · ρ 1




= (1−ρ)I+ρzzt, K = Σ−1 =




c d · · · d d

d c · · · d d

. . .

d d · · · c d

d d · · · d c




= (c−d)I+dzzt,

where z = (1, ..., 1), c =
−(ρ(p− 2) + 1)

(ρ− 1)[ρ(p− 1) + 1]
and d =

ρ

(ρ− 1)[ρ(p− 1) + 1]
. When K = Σ−1 has

this special pattern, the linear discriminant function (1.6) becomes:

ln
f1(x)

f2(x)
=

−P∑p
i=1(µ1i − µ2i)

(ρ− 1)p
+
W
∑p

i=1(µ1i − µ2i)

p[ρ(p− 1) + 1]
+

1

2

1

ρ− 1

p∑

i=1

(µ1i − µ2i)(µ1i + µ2i)

−1

2

ρ

(ρ− 1)[ρ(p − 1) + 1]

p∑

i=1

(µ1i − µ2i)

p∑

i=1

(µ1i + µ2i)

=
−∑p

i=1(µ1i − µ2i)

(ρ− 1)p

[
P +

W (1− ρ)

[ρ(p− 1) + 1]

]
+

1

2

1

ρ− 1

p∑

i=1

(µ1i − µ2i)(µ1i + µ2i)

−1

2

ρ

(ρ− 1)[ρ(p − 1) + 1]

p∑

i=1

(µ1i − µ2i)

p∑

i=1

(µ1i + µ2i).
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2.1. Unrestricted group means

This model considers strong assumptions on the concentration matrix, though the graph associated

with this model is the complete graph κ. We note, however, that when these assumptions are

satisfied, the parameters to be estimated reduce to the means and one parameter ρ.

2.1.2 Diagonal discriminant analysis

Naive Bayes classification for Gaussian class conditional densities corresponds to diagonal discrim-

inant analysis where the covariance and concentration matrices are diagonal as follows

Σ =




σ11 0 · · · 0 0

0 σ22 · · · 0 0

. . .

0 0 · · · σ(p−1)(p−1) 0

0 0 · · · 0 σpp




and K = Σ−1 =




k11 0 · · · 0 0

0 k22 · · · 0 0

. . .

0 0 · · · k(p−1)(p−1) 0

0 0 · · · 0 kpp



,

with σii > 0, i = 1, ..., p.

The fundamental assumption of naive Bayes classification is that the variables are marginally

independent given the class or group. The graph for each group is a set of p dots without edges,

the edgeless graph κ.

We can see that when K = Σ−1 has this special pattern and under the assumption of equal

covariance matrices, the linear discriminant function in (1.6) becomes:

ln
f1(x)

f2(x)
=

∑p
i=1 kii

[
(µ1i − µ2i)xi − 1

2
(µ2

1i − µ2
2i)
]
.

On the other hand, assuming that both K1 and K2 have this special pattern and are arbitrary,

the quadratic function in (1.1) reduces to a simpler expression as follows.

ln
f1(x)

f2(x)
= 1

2

∑p
i=1

[
(xi − µ2i)

2k
(2)
ii − ln(k

(2)
ii )− (xi − µ1i)

2k
(1)
ii + ln(k

(1)
ii )
]
.
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2.2. Group means vectors partitioned into subsets of equal elements

In the context of Bioinformatics and Genetics, where it is needed to estimate covariance matri-

ces of large dimension with relatively few observations, this pattern in the covariance matrices is

often used. For example, Dudoit and Fridlyand (2003) compared Diagonal discriminant analysis

with other four models using microarrays to study the molecular variations among tumours, we

describe their main results in Section 2.4 where we consider the data for the illustrative example.

2.2 Group means vectors partitioned into subsets of equal

elements

It is also possible to impose restrictions on the elements of the mean vectors. Anderson (1970)

gives some examples where it is possible to assume a linear structure on the mean vector, he also

gives some comments on the estimation of the mean vector, covariance and concentration ma-

trices. Recently, Gehrmann and Lauritzen (2012) studied the problem of estimation when linear

constraints are imposed on the mean vector, in particular when the concentration matrix has also

restrictions associated with RCON, RCOR or RCOP models.

The problem of restrictions on the means and on elements of the concentration matrix has

been studied in Votaw (1948), and some examples are given in Votaw et al. (1950), though these

examples are not given in the context of discriminant analysis.

2.2.1 Votaw’s concept of compound symmetry

Votaw (1948) studies the case of compound symmetry in multivariate Gaussian distributions,

as a generalization of the concept of symmetry given in Wilks (1946). Compound symmetry

corresponds to Gaussian distributions with concentration matrices with a structure of symmetry

by blocks. One of the assumed structures for the mean vectors and concentration matrices is as

follows.
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2.2. Group means vectors partitioned into subsets of equal elements

K = Σ−1 =




A1 D12 D13 . . D1h

Dt
12 A2 D23 . . D2h

Dt
13 Dt

23 A3 . . D3h

. . . . . .

. . . . . .

Dt
1h Dt

2h Dt
3h . . Ah




and µ =




µ1

µ2

µ3

.

.

µh




,

where Aj is a matrix of dimension pj × pj and µj is a mean vector of dimension pj with the

following structures

Aj =




aj bj . bj

bj aj . bj

. . . .

bj bj . aj



, µj =




µj

µj

.

µj



,

where pj ≥ 1, j = 1, 2, ..., h and Σhj=1pj = p. Dij is a matrix of dimension pi × pj structured as

Dij =




cij cij . cij

cij cij . cij

. . . .

cij cij . cij



.

In Wilks (1946), symmetry corresponds to the case of elements instead of matrices in Σ−1, i.e.

the case with h = 1.

Votaw et al. (1950) illustrate the concept of compound symmetry with an example of four

measurements on each of 16 rabbits. These measurements correspond to the anterior or posterior

muscle weights in both of the hind legs. Let X1, X2, X3 and X4 be the anterior left, anterior right,

posterior left, and posterior right muscle, respectively. From six test of hypothesis presented in

the article, one is of our interest, the hypothesis H0 : {µ1 = µ2, µ3 = µ4, σ1 = σ2, σ3 = σ4, ρ13 =

ρ14 = ρ23 = ρ24}, which corresponds to test whether variable X1 is interchangeable with X2, and

X3 with X4. The concentration matrix and mean vector for this hypothesis are as follows.

K = Σ−1 =




a b c c

b a c c

c c d e

c c e d




and µ =




w

w

q

q



. (2.1)
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2.3. Zero mean differences

The example on the rabbits can be seen as a particular case of the models studied by Gehrmann

and Lauritzen (2012). The coloured graph associated with the rabbits example is shown in Fig-

ure 2.1.

The model associated with the concentration matrix given in (2.1), with no assumption about

the mean vectors, is an RCOP model generated by Γ = {id, (12), (34), (12)(34)} with incident

graph the complete of order 4.

1 2

34

Figure 2.1: Coloured graph corresponding to the concentration matrix for the rabbits example pre-
sented in Votaw et al. (1950).

2.3 Zero mean differences

In some practical cases of discrimination, it is assumed equality of the group mean vectors,

µ1 = µ2. In spite of this assumption, it is still possible to discriminate among the two popu-

lations, provided that the covariance matrices are different. Bartlett and Please (1963) studied

this case when equal means are assumed. They considered patterned concentration matrices that

correspond to an RCOP model.

2.3.1 Bartlett’s model for discriminant analysis with zero mean dif-

ferences

Bartlett and Please (1963) consider the particular case of discriminant analysis with zero mean

differences, µ1 = µ2, and different covariance and hence concentration matrices with the following

pattern:
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2.3. Zero mean differences

Σ =




a b · · · b b

b a · · · b b

. . .

b b · · · a b

b b · · · b a




= (a− b)I + bzzt, K = Σ−1 =




c d · · · d d

d c · · · d d

. . .

d d · · · c d

d d · · · d c




= (c− d)I + dzzt,

(2.2)

where c =
−[b(p− 2) + a]

(b− a)[b(p− 1) + a]
and d =

b

(b− a)[b(p− 1) + a]
.

A model with this concentration matrix is an RCON, whose dependence graph is the complete

of order p and is coloured as follows, G = {V, E}, with V = {V } and E = {E}. For example, the

graph associated with the corresponding RCON model with p = 4 is given in Figure 2.2.

1 2

34

Figure 2.2: Coloured graph associated with the model considered by Bartlett and Please (1963) when
p = 4; G = {V, E} with V = {V } and E = {E}.

We observe that Penrose (1946–47) uses a special case for these matrices with a = 1. Bartlett

and Please (1963) consider the pattern on the concentration matrix given in (2.2) with a = 1 and

b = ρ1 for group one, and with a = σ2 and b = σ2ρ2 for group two. That is

Σ1 = (1− ρ1)I + ρ1zz
t, Σ2 = σ2[(1− ρ2)I + ρ2zz

t].

Assuming that the covariance matrices have this pattern, their corresponding inverses also

have the same pattern, as:

K1 = (c− d)I + dzzt, K2 =
1

σ2

(
(e− f)I + fzzt

)
, (2.3)
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2.4. Two practical examples

where c =
−[ρ1(p− 2) + 1]

(ρ1 − 1)[ρ1(p − 1) + 1]
, d =

ρ1
(ρ1 − 1)[ρ1(p − 1) + 1]

, e =
−[ρ2(p− 2) + 1]

(ρ2 − 1)[ρ2(p − 1) + 1]
and f =

ρ2
(ρ2 − 1)[ρ2(p − 1) + 1]

.

Assuming µ1 = µ2 = 0 and concentration matrices as in (2.3), the quadratic function in (1.1)

reduces to a simpler expression as follows.

ln
f1(x)

f2(x)
= −1

2

{[
1

1− ρ1
− 1

σ2(1− ρ2)

]
z1 −

[
ρ1

1− ρ1

1

1 + (p− 1)ρ1
− ρ2
σ2(1− ρ2)

1

1 + (p− 1)ρ2

]
z2

}

+
1

2
ln

(
1 + (p− 1)ρ2
1 + (p− 1)ρ1

(
ρ2 − 1

ρ1 − 1

)p−1 (
σ2
)p
)
,

where z1 = x21 + ... + x2p and z2 = (x1 + ... + xp)
2. In Penrose (1946–47),

√
z2 corresponds to the

size variable.

The covariance pattern in (2.2) considered by Bartlett and Please (1963) corresponds to an

RCOP model generated by Γ = Aut(G) where G is a complete graph of order p.

2.4 Two practical examples

We consider two data sets. One has been analysed and reported by Dudoit and Fridlyand (2003),

we replicate part of the analysis of this data and present the obtained results. The second data

set has been presented and analysed by Votaw et al. (1950) in the context of one population.

2.4.1 Breast cancer data from Dudoit and Fridlyand (2003)

The data set deals with the supervised classification of 49 breast tumour mRNA samples, each

sample or observation has 7,129 measurements or variables. Also, estrogen receptor status was

measured for each tumour sample: ER+ (25 samples) and ER− (24 samples). It is believed that

different biological mechanisms are involved in the development of breast cancer depending on the
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2.4. Two practical examples

ER status of a patient, and we consider this variable as the one that identifies the two groups.

Dudoit and Fridlyand (2003) compared six different methods for the classification: knn with

Euclidean distance; Diagonal linear discriminant analysis, DLDA; Diagonal quadratic discrimi-

nant analysis, DQDA; LogitBoost; Random forest; and Support vector machine, SVM. They used

subsets of different number of variables: 10, 50, 100, 500, 1000, and 7129, and found that the two

simple methods of DLDA and DQDA had a good performance when compared to the other more

complex methods.

We downloaded the data base from http : //data.cgt.duke.edu/west.php, PNAS paper.zip.

This file contains 49 original files, one for each sample or observation. Each of the 49 observations

was preprocessed, as indicated by Dudoit and Fridlyand (2003), as follows.

i) thresholding of each xjk value, j = 1, ..., 49, k = 1, ..., 7129, with a floor of 100 and ceiling of

16,000; 100 ≤ xjk ≤ 16, 000.

ii) base-10 logarithmic transformation of each value; yjk = log10(xjk).

iii) standardization of each of the 49 observations to have zero mean and unit variance;

zjk =
yjk − yj√∑7129

k=1 (yjk − yj)
2/7129

.

The classification errors were estimated by cross-validation in two ways: external and internal.

The external is performed in three steps as described bellow.

For each observation, j = 1, ..., 49, we did the following.

i) With the rest of 48 observations, we selected 10 variables from 7,129 available, those with

the largest t absolute value statistic for the two sample t-test of equality of means.

ii) With the 10 selected variables, the functions corresponding to DLDA and DQDA are esti-

mated.
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2.4. Two practical examples

iii) The observation j is classified with the estimated functions.

The internal cross-validation is performed in two steps as follows. Considering the 49 observations,

we selected 10 variables from 7129 available, those with the largest absolute value of the t statistic

for the two sample t-test of equality of means, then for the jth observation, j = 1, ..., 49, we did

the following.

i) With the 10 selected variables, the functions corresponding to DLDA and DQDA are esti-

mated.

ii) The jth observation is classified with the estimated functions.

The previous cross-validation procedures were also performed using the W statistic for the

Wilcoxon rank sum test, a nonparametric alternative to the two sample t-test, instead of the t

statistic. The estimated classification errors by external cross-validation are displayed in Table 2.1

and the ones by internal cross-validation are displayed in Table 2.2.

Observed
DLDA DQDA

t-statistic W-statistic t-statistic W-statistic
ER− ER+ ER− ER+ ER− ER+ ER− ER+

Predicted
ER− 20 4 21 4 20 3 20 3
ER+ 4 21 3 21 4 22 4 22

Table 2.1: Classification errors estimated by external cross-validation. Ten variables or genes were
selected out of 7,129 using the t-statistic and the W-statistic. DLDA: Diagonal Linear Discriminant
Analysis and DQDA: Diagonal Quadratic Discriminant analysis.

Observed
DLDA DQDA

t-statistic W-statistic t-statistic W-statistic
ER− ER+ ER− ER+ ER− ER+ ER− ER+

Predicted
ER− 22 2 22 2 21 3 22 2
ER+ 2 23 2 23 3 22 2 23

Table 2.2: Classification errors estimated by internal cross-validation. Ten variables or genes were
selected out of 7,129 using the t-statistic and the W-statistic, and the 49 observations. DLDA:
Diagonal Linear Discriminant Analysis and DQDA: Diagonal Quadratic Discriminant analysis.
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2.4. Two practical examples

Figures 2.3 and 2.4 display the linear projection in two dimensions of the 49 observations in

a 10–dimensional space. Ten variables or genes were selected out of 7,129 using the t-statistic

and the W-statistic, respectively, and the 49 observations. The axes corresponds to the directions

given by the first two principal components.
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Figure 2.3: Linear projection in two dimensions of the 49 observations in a 10–dimensional space.
The axes corresponds to the directions given by the first two principal components. The ten selected
variables or genes using the t statistic, those with the largest absolute value of the t statistic for the
two sample t-test of equality of means, and the 49 observations were: L08044 s at, M26311 s at,
U39840 at, U41060 at, U42408 at, U79293 at, X03635 at, X17059 s at, X58072 at, X83425 at.
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Figure 2.4: Linear projection in two dimensions of the 49 observations in a 10–dimensional space.
The axes corresponds to the direction given by the first two principal components. The ten selected
variables or genes using theW statistic, those with the largest absolute value of theW statistic for the
two sample Wilcoxon test, and the 49 observations were: D38521 at, HG4716.HT5158 at, J03827 at,
L17131 rna1 at, M16038 at, M24485 s at, M26062 at, M26311 s at, U42408 at, X87212 at.
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2.4. Two practical examples

2.4.2 Rabbit example from Votaw et al. (1950)

The second example is taken from Votaw et al. (1950). There are four measurements on each of

16 rabbits corresponding to the anterior or posterior muscle weights in both of the hind legs. Let

X1, X2, X3 and X4 be the measurement on the anterior left, anterior right, posterior left, and

posterior right muscle, respectively. We consider the estimation for the hypothesis

H0 : {µ1 = µ2, µ3 = µ4, σ1 = σ2, σ3 = σ4, ρ13 = ρ14 = ρ23 = ρ24},

which corresponds to test whether variable X1 is interchangeable with X2, and X3 with X4. The

concentration matrix and mean vector for this hypothesis are as in (2.1). The coloured graph

associated with this example is shown in Figure 2.1. In Figure 2.5, we present some graphs

that display the 16 observations and four variables. We observe that the assumptions given by

H0 : {µ1 = µ2, µ3 = µ4, σ1 = σ2, σ3 = σ4, ρ13 = ρ14 = ρ23 = ρ24} are plausible.
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Figure 2.5: Scatter plots and Box plots for variables X1, X2, X3, and X4.
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2.4. Two practical examples

We use the gRc R-package, Højsgard and Lauritzen (2007), to get the estimates. First without

considering restrictions on the means and then considering the restrictions. For the estimation

with restricted means we have used the fact that the model is RCOP, and hence the estimation of

the means is independent from the one of the concentration matrix, see Gehrmann and Lauritzen

(2012), so we estimate the means and then use the gRc package to estimate the concentration

matrix with given estimated means. The results are as follows. Considering restrictions on the

concentration matrix and unrestricted means.

K̂ = Σ̂−1 =




41.8509 −35.0722 −1.2683 −1.2683

−35.0722 41.8509 −1.2683 −1.2683

−1.2683 −1.2683 10.5230 −9.4853

−1.2683 −1.2683 −9.4853 10.5230




and µ̂ =




5.4812

5.5562

15.5500

15.4937



.

Considering restrictions on both, the concentration matrix and the vector of means.

K̂ = Σ̂−1 =




36.4119 −31.6992 −1.4431 −1.4431

−31.6992 36.4119 −1.4431 −1.4431

−1.4431 −1.4431 11.6011 −10.4204

−1.4431 −1.4431 −10.4204 11.6011




and µ̂ =




5.5187

5.5187

15.5219

15.5219



.

We have compared these estimates with those calculated with an analytical expression given

in Votaw et al. (1950). We did not find differences. In Appendix H, we present the R scripts used

to generate the numerical results.

These examples consider some restrictions on each concentration matrix for which algorithms

or closed form expressions exist to obtain ML estimates. However, other restrictions for elements

within each concentration matrix or between elements of the two matrices can be considered, and

the structure of these matrices in most of the cases is unknown. In the following chapters, these

two aspects are studied.
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3. Restrictions between elements of two

concentration matrices

In this chapter, we consider that the vector (C,X) follows a CG-distribution (see, for example,

Lauritzen, 1996, s. 6.1.1) and that we are interested in using discriminant analysis in order to

predict the membership group of a new observation x. As mentioned in Chapter 1, we need to

estimate the parameters π1, π2, µ1, µ2, K1 and K2.

Usually, the group mean vectors µ1 and µ2, and covariance matrices or their inverses, are

not restricted. For example, there is no assumption on the presence of marginal or conditional

independences among the continuous variables.

We consider restrictions as in (1.17) and some elements of one concentration matrix equal

to their corresponding ones in the other concentration matrix. We adapt the Iterative Partial

Maximization (IPM) algorithm (Jensen et al., 1991) to get ML estimates, and derive the necessary

expressions for this.

3.1 Equalities between elements of concentration matrices

with linear restrictions

One could consider some constrains as we described in Chapters 1 and 2. Additionally, since in

discriminant analysis we have two populations, we can also consider that some parameters in K1
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3.1. Equalities between elements of concentration matrices with linear restrictions

are restricted to being equal to their corresponding in K2. Usually, the only assumption is to

assume that K1 = K2.

If we assume that there is no relation between parameters from K1 and K2, but there are

some linear restrictions within elements of each matrix, the estimation of the parameters for each

matrix can be done independently. In this case the IPM algorithm can be adapted and used for

the estimation in each population. This algorithm was adapted in Højsgaard and Lauritzen (2007,

2008) for RCON models.

In the case where some parameters in K1 are equal to their corresponding in K2, the esti-

mation cannot be performed independently. Only in some special cases the MLEs can be found

analytically. For example, when the only restriction is that both concentration matrices are equal,

in such case, the MLE is as in (1.7). Another example is when assuming that both concentration

matrices are equal and the covariance matrices have a pattern of compound symmetry (Votaw,

1948) or circular symmetry (Olkin and Press, 1969). Some conditions for explicit MLEs are given

in Szatrowsky (1978, 1979) for some specific linear restrictions on the covariance matrices in the

context of one population and when assuming that both populations have the same covariance

matrix with linear restrictions.

In order to express the equalities between the parameters of the two concentration matrices

in a simple way, we observe that restrictions considered in (1.17) can be divided in the following

three cases.

i) q1 = q2 = q and H
(1)
h = H

(2)
h , h = 0, 1, ..., q.

ii) q1 = q2 = q and H
(1)
h 6= H

(2)
h for some h ∈ {0, 1, 2, ..., q}.

iii) q1 6= q2.

We note that case i) corresponds to concentration matrices with the same structure, unlike
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3.1. Equalities between elements of concentration matrices with linear restrictions

cases ii) and iii). Here, the IPM algorithm is adapted and implemented to compute numerical

estimates in case i). These models satisfy (1.17) as follows

Kc = Σ−1
c =

q∑

h=0

ψ
(c)
h Hh, c = 1, 2. (3.1)

The type of relations between parameters of K1 and K2 are limited to the following.

I. ψ
(1)
h 6= ψ

(2)
h , h = 0, 1, ..., q.

II. ψ
(1)
h = ψ

(2)
h = ψh, h = 0, 1, ..., q.

III. ψ
(1)
h = ψ

(2)
h = ψh, h = 0, 1, ..., f , and ψ

(1)
h 6= ψ

(2)
h , h = f + 1, , ..., q, 0 ≤ f < q.

Examples of cases I and II have been previously considered, for example in Lauritzen (1996),

Abreu et al. (2010) and Edwards et al. (2010). Models in case I are called heterogeneous and

those in II homogeneous. In the last two articles, the authors consider suitable models for appli-

cations with a large number of variables, as in those in Genetics and Bioinformatics. They restrict

themselves to models whose associated graph is a forest or a tree, as we shall do in Chapter 4.

We present two instances of models that follow (3.1) and some examples for cases I, II and III.

1. Considering a saturated model on each population and p = 3, we can consider restrictions

as follows

(a) K1 and K2 arbitrary matrices, that is, case I with

K1 = ψ
(1)
0




1 0 0

0 0 0

0 0 0


+ ψ

(1)
1




0 1 0

1 0 0

0 0 0


+ ψ

(1)
2




0 0 1

0 0 0

1 0 0


+ ψ

(1)
3




0 0 0

0 1 0

0 0 0




+ ψ
(1)
4




0 0 0

0 0 1

0 1 0


+ ψ

(1)
5




0 0 0

0 0 0

0 0 1


 =




ψ
(1)
0 ψ

(1)
1 ψ

(1)
2

ψ
(1)
1 ψ

(1)
3 ψ

(1)
4

ψ
(1)
2 ψ

(1)
4 ψ

(1)
5


 ,
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3.1. Equalities between elements of concentration matrices with linear restrictions

K2 = ψ
(2)
0




1 0 0

0 0 0

0 0 0


+ ψ

(2)
1




0 1 0

1 0 0

0 0 0


+ ψ

(2)
2




0 0 1

0 0 0

1 0 0


+ ψ

(2)
3




0 0 0

0 1 0

0 0 0




+ ψ
(2)
4




0 0 0

0 0 1

0 1 0


+ ψ

(2)
5




0 0 0

0 0 0

0 0 1


 =




ψ
(2)
0 ψ

(2)
1 ψ

(2)
2

ψ
(2)
1 ψ

(2)
3 ψ

(2)
4

ψ
(2)
2 ψ

(2)
4 ψ

(2)
5


 .

(3.2)

(b) K1 = K2, that is, case II with

K1 = K2 = K = ψ0




1 0 0

0 0 0

0 0 0


+ ψ1




0 1 0

1 0 0

0 0 0


+ ψ2




0 0 1

0 0 0

1 0 0


+ ψ3




0 0 0

0 1 0

0 0 0




+ ψ4




0 0 0

0 0 1

0 1 0


+ ψ5




0 0 0

0 0 0

0 0 1


 =




ψ0 ψ1 ψ2

ψ1 ψ3 ψ4

ψ2 ψ4 ψ5


 .

(3.3)

(c) Parameters of the two concentration matrices corresponding to the submatrix composed

of rows and columns 2 and 3 are equal. That is, case III with

K1 = ψ0




0 0 0

0 1 0

0 0 0


+ ψ1




0 0 0

0 0 1

0 1 0


+ ψ2




0 0 0

0 0 0

0 0 1


+ ψ

(1)
3




1 0 0

0 0 0

0 0 0




+ ψ
(1)
4




0 1 0

1 0 0

0 0 0


+ ψ

(1)
5




0 0 1

0 0 0

1 0 0


 =




ψ
(1)
3 ψ

(1)
4 ψ

(1)
5

ψ
(1)
4 ψ0 ψ1

ψ
(1)
5 ψ1 ψ2


 ,

K2 = ψ0




0 0 0

0 1 0

0 0 0


+ ψ1




0 0 0

0 0 1

0 1 0


+ ψ2




0 0 0

0 0 0

0 0 1


+ ψ

(2)
3




1 0 0

0 0 0

0 0 0




+ ψ
(2)
4




0 1 0

1 0 0

0 0 0


+ ψ

(2)
5




0 0 1

0 0 0

1 0 0


 =




ψ
(2)
3 ψ

(2)
4 ψ

(2)
5

ψ
(2)
4 ψ0 ψ1

ψ
(2)
5 ψ1 ψ2


 .

(3.4)
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3.1. Equalities between elements of concentration matrices with linear restrictions
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Figure 3.1: Graphs associated with models 1a, 1b and 1c, respectively. The concentration matrices
associated with these graphs are (3.2), (3.3) and (3.4), respectively. Symbol ∗ on a node or an edge
indicates that the corresponding parameters in both matrices are equal.

The graphs associated with models 1a, 1b and 1c, are shown in Figure 3.1, where

symbol ∗ on a node or an edge indicates that the corresponding parameters in both

concentration matrices are equal.

2. Considering an RCON model with a cycle of size 4 for each population and the restrictions:

all diagonal elements are equal, and all off-diagonal elements different from zero are equal.

(a) Case I, K1 and K2 such that

K1 = ψ
(1)
0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+ ψ
(1)
1




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0




=




ψ
(1)
0 ψ

(1)
1 0 ψ

(1)
1

ψ
(1)
1 ψ

(1)
0 ψ

(1)
1 0

0 ψ
(1)
1 ψ

(1)
0 ψ

(1)
1

ψ
(1)
1 0 ψ

(1)
1 ψ

(1)
0



,

K2 = ψ
(2)
0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+ ψ
(2)
1




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0




=




ψ
(2)
0 ψ

(2)
1 0 ψ

(2)
1

ψ
(2)
1 ψ

(2)
0 ψ

(2)
1 0

0 ψ
(2)
1 ψ

(2)
0 ψ

(2)
1

ψ
(2)
1 0 ψ

(2)
1 ψ

(2)
0



. (3.5)

(b) Case II, K1 = K2, with

K1 = K2 = ψ0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+ ψ1




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0




=




ψ0 ψ1 0 ψ1

ψ1 ψ0 ψ1 0

0 ψ1 ψ0 ψ1

ψ1 0 ψ1 ψ0



. (3.6)
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3.1. Equalities between elements of concentration matrices with linear restrictions

(c) Parameters corresponding to diagonal elements are equal. That is, case III with

K1 = ψ0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+ ψ
(1)
1




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0




=




ψ0 ψ
(1)
1 0 ψ

(1)
1

ψ
(1)
1 ψ0 ψ

(1)
1 0

0 ψ
(1)
1 ψ0 ψ

(1)
1

ψ
(1)
1 0 ψ

(1)
1 ψ0



,

K2 = ψ0




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+ ψ
(2)
1




0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0




=




ψ0 ψ
(2)
1 0 ψ

(2)
1

ψ
(2)
1 ψ0 ψ

(2)
1 0

0 ψ
(2)
1 ψ0 ψ

(2)
1

ψ
(2)
1 0 ψ

(2)
1 ψ0



. (3.7)
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34

(a)
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34

∗ ∗
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∗

∗ ∗
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34

∗ ∗
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(c)

Figure 3.2: Graphs associated with models 2a, 2b and 2c, respectively. The concentration matrices
associated with these graphs are (3.5), (3.6) and (3.7), respectively. Symbol ∗ on a node or an edge
indicates that the corresponding parameters in both matrices are equal.

The graphs associated with models 2a, 2b and 2c, respectively, are shown in Figure 3.2, where

an ∗ on a node or an edge indicates that the corresponding parameters in both concentration

matrices are equal.

In this work we are not considering any assumption on the structure of the group mean vectors.

Anderson (1970, 1973) considers some models where the mean vector can be expressed as a linear

combination of known linearly independent vectors, that is, µ =
∑

j βjzj . Particular instances

are presented in Votaw (1948), Olkin and Press (1969) and Szatrowsky (1979). Gehrmann and

Lauritzen (2012) and Gehrmann (2011) also study models where some elements of the mean vector

are restricted to being equal.
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3.2. An algorithm for finding ML estimates.

In the following section, we present the algorithm to be implemented for fitting these restricted

models.

3.2 An algorithm for finding ML estimates.

There are two estimation problems in the models we are considering, as those of GGMs: (1) pa-

rameter estimation (quantitative aspect) and (2) structure estimation (structural aspect). In this

section, we adapt the IPM algorithm for parameter estimation, that is, we derive the analytical

expressions needed to use this algorithm. For structure estimation, in Section 3.3, we comment on

some algorithms already studied for finding some specific linear restrictions on the concentration

matrices.

In order to use the IPM algorithm, we have to show that i) the CG-distribution with density

given in (1.3) and with restrictions on the concentration matrices given by (3.1) for cases I, II and

III, belongs to the regular exponential family; and ii) the parameters that we want to estimate

are the canonical parameters of the CG-distribution with the assumed restrictions.

In Appendix A.1 we show i). In Appendix A.2, we use the result that the MLE, if it exists,

is unique and can be obtained by equating the sufficient canonical statistics to their expectations

(see Lauritzen, 1996, Theorem D.1, p. 268). We present the system of equations and observe that

the unknown parameters from the concentration matrices: ψh, h = 0, ..., f , ψ
(1)
h , h = f + 1, ..., q,

and ψ
(2)
h , h = f + 1, ..., q, are the canonical parameters. Results are given for case III, results for

case I and II can be obtained in a similar way.

Since the CG-distribution, with density given in (1.3) and with restrictions on the concentration

matrices given by (3.1) for cases I, II and III, belongs to the regular exponential family, numerical
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3.2. An algorithm for finding ML estimates.

solutions for the system of equations given in A.5 can be found using the IPM algorithm. This con-

verges globally to a unique solution when it exists. The IPM algorithm can be described as follows.

Suppose that there are m canonical parameters θ1, θ2, ..., θm. Let θ
(0)
1 , θ

(0)
2 , ..., θ

(0)
m be initial

values, then

1. Let i = 1

2. Let j = 1

3. The value for θ
(i)
j that maximizes the likelihood function is found, assuming that the rest of

the parameters are known, as

θk =





θ
(i)
k if k = 1, 2, ..., j − 1

θ
(i−1)
k if k = j + 1, j + 2, ..., m

.

The modified Newton method is applied to the derivative of the n-th root of the reciprocal

likelihood function.

4. Step 3 is repeated for j = j + 1 if j < m, otherwise the following step follows.

5. Start in step 2 with i = i+ 1 until convergence is reached.

When applying the modified Newton method in step 3, variances of the sufficient statistics

are needed. These are obtained from the second derivatives of the cumulant function. The first

and second derivatives of the cumulant function are given in (A.6) and (A.7), respectively, in

Appendix A.2. Specifically, the iterative step 3 of the IPM algorithm for each parameter is the

following.

ψhj = ψhj−1
+

− 1
2n

∑n
i=1 tr(Hhxix

t
i)− ∂ψ(θ)

∂ψh

∂2ψ(θ)

∂ψ2
h

+
{
− 1

2n

∑n
i=1 tr(Hhxix

t
i)− ∂ψ(θ)

∂ψh

}2

∣∣∣∣∣∣∣
ψh=ψhj−1

, h = 0, ..., f
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3.2. An algorithm for finding ML estimates.

ψ
(1)
hj

= ψ
(1)
hj−1

+
− 1

2n

∑n
i=1 tr(Hhxix

t
iδ1(ci))− ∂ψ(θ)

∂ψ
(1)
h

∂2ψ(θ)

∂ψ
(1)
h

2 +

{
− 1

2n

∑n
i=1 tr(Hhxix

t
iδ1(ci))− ∂ψ(θ)

∂ψ
(1)
h

}2

∣∣∣∣∣∣∣∣∣
ψ
(1)
h

=ψ
(1)
hj−1

, h = f + 1, ..., q

ψ
(2)
hj

= ψ
(2)
hj−1

+
− 1

2n

∑n
i=1 tr(Hhxix

t
i(1− δ1(ci)))− ∂ψ(θ)

∂ψ
(2)
h

∂2ψ(θ)

∂ψ
(2)
h

2 +

{
− 1

2n

∑n
i=1 tr(Hhxix

t
i(1− δ1(ci)))− ∂ψ(θ)

∂ψ
(2)
h

}2

∣∣∣∣∣∣∣∣∣
ψ
(2)
h

=ψ
(2)
hj−1

, h = f + 1, ..., q.

(3.8)

The algorithm has been implemented in C++, some comments are the following.

1. The number of matrices H , q+1, has to be known and given.

2. The number of parameters that are equal in the two concentration matrices has to be given.

3. The matrices H have to be given, first those associated to the parameters that are equal in

both concentration matrices followed by the rest.

4. The initial values correspond to those obtained from the diagonal of the sample covariance

matrices.

We note that the algorithm is used only to find ML estimates but not for finding the graph

or the structure of the concentration matrices. This is, a) zeroes, b) linear restrictions, and c)

equalities between corresponding parameters of the two concentration matrices, are assumed to

be known. When this structure is unknown, additional algorithms should be developed for the

structure estimation, which is a complex problem.

3.2.1 Illustrative example on parameter estimation.

We consider the data on educational testing analysed in Szatrowski (1982). There are p = 8

variables and two groups (1-male and 2-female): X1 and X2 represent verbal and quantitative test
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3.2. An algorithm for finding ML estimates.

scores; (X3, X4, X5) and (X6, X7, X8) represent Mathematics, Science, and Social Studies scores

on achievement test 1 and 2, respectively. The sample means and covariance matrices are the

following.

x1 =




390

460

362

418

385

355

410

394




, W1 =




7365 4845 6649 4988 6567 5142 3828 6613

4845 6300 5718 4435 4992 4582 2685 5440

6649 5718 9199 5889 7367 5582 3910 6978

4988 4435 5889 6423 6065 4902 3688 6176

6567 4992 7367 6065 8675 6221 4632 7864

5142 4582 5582 4902 6221 7880 4888 6625

3828 2685 3910 3688 4632 4888 4970 5275

6613 5440 6978 6176 7864 6625 5275 10764




x2 =




436

487

388

440

439

400

437

440




, W2 =




5974 2632 3050 2726 5471 2104 2694 4804

2632 4825 2872 1826 3335 1871 1642 2191

3050 2872 3671 2040 3806 1843 1597 3288

2726 1826 2040 3437 4228 1817 2198 3815

5471 3335 3806 4228 9144 3010 3727 7103

2104 1817 1843 1817 3010 3622 2108 3702

2694 1642 1597 2198 3727 2108 3825 4254

4804 2191 3288 3815 7103 3702 4254 8945




.

Szatrowski (1982) considered different hypothesis tests about the block compound symmetry

(BCS) assumption on the means and covariances matrices of each population, and equalities of

means or covariance matrices of the populations given the BCS assumption. We note that the

pattern in the covariance matrix assumed in the BCS coincides with the one in the concentration

matrix.

The type of BCS assumed for the data in each covariance matrix and therefore in each con-

centration matrix is

52



3.2. An algorithm for finding ML estimates.

Σ =




A∗ C∗ C∗

C∗t B∗ D∗

C∗t D∗ B∗


 , K =




A C C

Ct B D

Ct Dt B


 , (3.9)

where A and A∗ are 2× 2 symmetric matrices, C and C∗ are 2× 3 matrices, and B, D, B∗ and

D∗ are 3× 3 symmetric matrices.

The BCS assumptions correspond to a RCON model with a coloured graph G = (V, E), where

G is the complete graph κ, V = {V1, ..., V5} = {{v1}, {v2}, {v3, v6}, {v4, v7}, {v5, v8}} and E =

{E1, ..., E16} = {{(1, 2)}, {(1, 3), (1, 6)}, {(1, 4), (1, 7)}, {(1, 5), (1, 8)}, {(2, 3), (2, 6)}, {(2, 4), (2, 7)},

{(2, 5), (2, 8)}, {(3, 4), (6, 7)}, {(3, 5), (6, 8)}, {(4, 5), (7, 8)}, {(3, 6)}, {(3, 7), (4, 6)}, {(3, 8), (5, 6)},

{(4, 7)}, {(5, 8)}, {(4, 8), (5, 7)}}.

In this work, we consider the BCS and three types of equalities between the parameters of K1

and K2 considered in the description of the algorithm given in this section.

a) Heterogeneous case, K1 and K2 are patterned matrices due to the BCS assumption with

arbitrary entries.

K1 =




a
(1)
11 a

(1)
12

a
(1)
12 a

(1)
22

c
(1)
11 c

(1)
12 c

(1)
13

c
(1)
21 c

(1)
22 c

(1)
23

c
(1)
11 c

(1)
12 c

(1)
13

c
(1)
21 c

(1)
22 c

(1)
23

c
(1)
11 c

(1)
21

c
(1)
12 c

(1)
22

c
(1)
13 c

(1)
23

b
(1)
11 b

(1)
12 b

(1)
13

b
(1)
12 b

(1)
22 b

(1)
23

b
(1)
13 b

(1)
23 b

(1)
33

d
(1)
11 d

(1)
12 d

(1)
13

d
(1)
12 d

(1)
22 d

(1)
23

d
(1)
13 d

(1)
23 d

(1)
33

c
(1)
11 c

(1)
21

c
(1)
12 c

(1)
22

c
(1)
13 c

(1)
23

d
(1)
11 d

(1)
12 d

(1)
13

d
(1)
12 d

(1)
22 d

(1)
23

d
(1)
13 d

(1)
23 d

(1)
33

b
(1)
11 b

(1)
12 b

(1)
13

b
(1)
12 b

(1)
22 b

(1)
23

b
(1)
13 b

(1)
23 b

(1)
33




=




A1 C1 C1

Ct
1 B1 D1

Ct
1 D1 B1


 ,
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K2 =




a
(2)
11 a

(2)
12

a
(2)
12 a

(2)
22

c
(2)
11 c

(2)
12 c

(2)
13

c
(2)
21 c

(2)
22 c

(2)
23

c
(2)
11 c

(2)
12 c

(2)
13

c
(2)
21 c

(2)
22 c

(2)
23

c
(2)
11 c

(2)
21

c
(2)
12 c

(2)
22

c
(2)
13 c

(2)
23

b
(2)
11 b

(2)
12 b

(2)
13

b
(2)
12 b

(2)
22 b

(2)
23

b
(2)
13 b

(2)
23 b

(2)
33

d
(2)
11 d

(2)
12 d

(2)
13

d
(2)
12 d

(2)
22 d

(2)
23

d
(2)
13 d

(2)
23 d

(2)
33

c
(2)
11 c

(2)
21

c
(2)
12 c

(2)
22

c
(2)
13 c

(2)
23

d
(2)
11 d

(2)
12 d

(2)
13

d
(2)
12 d

(2)
22 d

(2)
23

d
(2)
13 d

(2)
23 d

(2)
33

b
(2)
11 b

(2)
12 b

(2)
13

b
(2)
12 b

(2)
22 b

(2)
23

b
(2)
13 b

(2)
23 b

(2)
33




=




A2 C2 C2

Ct
2 B2 D2

Ct
2 D2 B2


 .

b) Homogeneous case, K1 and K2 are patterned matrices due to the BCS assumption with

K1 = K2.

K1 = K2 =




a11 a12

a12 a22

c11 c12 c13

c21 c22 c23

c11 c12 c13

c21 c22 c23

c11 c21

c12 c22

c13 c23

b11 b12 b13

b12 b22 b23

b13 b23 b33

d11 d12 d13

d12 d22 d23

d13 d23 d33

c11 c21

c12 c22

c13 c23

d11 d12 d13

d12 d22 d23

d13 d23 d33

b11 b12 b13

b12 b22 b23

b13 b23 b33




=




A C C

Ct B D

Ct D B


 .

c) K1 and K2 are patterned matrices due to the BCS assumption with A1 = A2 = A and

C1 = C2 = C.

K1 =




a11 a12

a12 a22

c11 c12 c13

c21 c22 c23

c11 c12 c13

c21 c22 c23

c11 c21

c12 c22

c13 c23

b
(1)
11 b

(1)
12 b

(1)
13

b
(1)
12 b

(1)
22 b

(1)
23

b
(1)
13 b

(1)
23 b

(1)
33

d
(1)
11 d

(1)
12 d

(1)
13

d
(1)
12 d

(1)
22 d

(1)
23

d
(1)
13 d

(1)
23 d

(1)
33

c11 c21

c12 c22

c13 c23

d
(1)
11 d

(1)
12 d

(1)
13

d
(1)
12 d

(1)
22 d

(1)
23

d
(1)
13 d

(1)
23 d

(1)
33

b
(1)
11 b

(1)
12 b

(1)
13

b
(1)
12 b

(1)
22 b

(1)
23

b
(1)
13 b

(1)
23 b

(1)
33




=




A C C

Ct B1 D1

Ct D1 B1


 ,
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K2 =




a11 a12

a12 a22

c11 c12 c13

c21 c22 c23

c11 c12 c13

c21 c22 c23

c11 c21

c12 c22

c13 c23

b
(2)
11 b

(2)
12 b

(2)
13

b
(2)
12 b

(2)
22 b

(2)
23

b
(2)
13 b

(2)
23 b

(2)
33

d
(2)
11 d

(2)
12 d

(2)
13

d
(2)
12 d

(2)
22 d

(2)
23

d
(2)
13 d

(2)
23 d

(2)
33

c11 c21

c12 c22

c13 c23

d
(2)
11 d

(2)
12 d

(2)
13

d
(2)
12 d

(2)
22 d

(2)
23

d
(2)
13 d

(2)
23 d

(2)
33

b
(2)
11 b

(2)
12 b

(2)
13

b
(2)
12 b

(2)
22 b

(2)
23

b
(2)
13 b

(2)
23 b

(2)
33




=




A C C

Ct B2 D2

Ct D2 B2


 .

In the three cases, the mean vectors are not restricted, then µ̂1 = x1 and µ̂2 = x2. The

number of unknown parameters in the concentration matrices are 42, 21 and 33 for cases a), b)

and c), respectively.

We implemented the IPM algorithm in C++ to obtain the ML estimates for the three cases.

However, we note that for cases a) and b), explicit expressions for the MLEs exist (Szatrowski,

1982). The ML estimates of K̂1 and K̂2 are the following

a)

K̂1 = 10−5 ×




50.18 −8.80 −8.40 −0.04 −9.67 −8.40 −0.04 −9.67

−8.80 41.55 −11.67 2.15 −1.35 −11.67 2.15 −1.35

−8.40 −11.67 42.97 −18.87 −7.91 2.00 0.38 −1.99

−0.04 2.15 −18.87 55.17 −11.64 0.38 −4.64 −7.14

−9.67 −1.35 −7.91 −11.64 44.48 −1.99 −7.14 −11.26

−8.40 −11.67 2.00 0.38 −1.99 42.97 −18.87 −7.91

−0.04 2.15 0.38 −4.64 −7.14 −18.87 55.17 −11.64

−9.67 −1.35 −1.99 −7.14 −11.26 −7.91 −11.64 44.48




,

K̂2 = 10−5 ×




40.19 −7.30 −2.38 −1.65 −9.70 −2.38 −1.65 −9.70

−7.30 37.72 −15.88 −3.61 4.44 −15.88 −3.61 4.44

−2.38 −15.88 59.32 −7.20 −15.94 −3.91 3.14 1.22

−1.65 −3.61 −7.20 67.11 −19.92 3.14 −10.7 −4.05

−9.70 4.44 −15.94 −19.92 44.93 1.22 −4.05 −15.89

−2.38 −15.88 −3.91 3.14 1.22 59.32 −7.2 −15.94

−1.65 −3.61 3.14 −10.7 −4.05 −7.2 67.11 −19.92

−9.70 4.44 1.22 −4.05 −15.89 −15.94 −19.92 44.93




.
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b)

K̂1 = K̂2 = 10−5 ×




44.33 −7.64 −5.18 −1.18 −9.80 −5.18 −1.18 −9.80

−7.64 38.54 −12.82 −0.22 1.46 −12.82 −0.22 1.46

−5.18 −12.82 46.05 −15.41 −9.22 −2.83 1.71 0.37

−1.18 −0.22 −15.41 59.20 −14.21 1.71 −7.42 −5.84

−9.80 1.46 −9.22 −14.21 42.79 0.37 −5.84 −14.02

−5.18 −12.82 −2.83 1.71 0.37 46.05 −15.41 −9.22

−1.18 −0.22 1.71 −7.42 −5.84 −15.41 59.20 −14.21

−9.80 1.46 0.37 −5.84 −14.02 −9.22 −14.21 42.79




.

c)

K̂1 = 10−5 ×




44.33 −7.64 −5.17 −1.17 −9.80 −5.17 −1.17 −9.80

−7.64 38.55 −12.83 −0.24 1.47 −12.83 −0.24 1.47

−5.17 −12.83 42.91 −17.87 −9.30 1.93 1.38 −3.40

−1.17 −0.24 −17.87 55.05 −11.24 1.38 −4.76 −6.66

−9.80 1.47 −9.30 −11.24 44.55 −3.40 −6.66 −11.21

−5.17 −12.83 1.93 1.38 −3.40 42.91 −17.87 −9.30

−1.17 −0.24 1.38 −4.76 −6.66 −17.87 55.05 −11.24

−9.80 1.47 −3.40 −6.66 −11.21 −9.30 −11.24 44.55




,

K̂2 = 10−5 ×




44.33 −7.64 −5.17 −1.17 −9.80 −5.17 −1.17 −9.80

−7.64 38.55 −12.83 −0.24 1.47 −12.83 −0.24 1.47

−5.17 −12.83 57.63 −8.84 −14.13 −5.74 1.64 3.10

−1.17 −0.24 −8.84 66.69 −19.72 1.64 −11.14 −3.95

−9.80 1.47 −14.13 −19.72 44.57 3.10 −3.95 −16.27

−5.17 −12.83 −5.74 1.64 3.10 57.63 −8.84 −14.13

−1.17 −0.24 1.64 −11.14 −3.95 −8.84 66.69 −19.72

−9.80 1.47 3.10 −3.95 −16.27 −14.13 −19.72 44.57




.

Three types of hypothesis test can be done with the ML estimates:

i) Homogeneous vs heterogeneous,

Ho: K1 = K2 =




A C C

Ct B D

Ct D B


 vs Ha: K1 =




A1 C1 C1

Ct
1 B1 D1

Ct
1 D1 B1


 , K2 =




A2 C2 C2

Ct
2 B2 D2

Ct
2 D2 B2


.
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ii) Ho: K1 =




A C C

CtB1 D1

CtD1 B1


 , K2 =




A C C

CtB2 D2

CtD2 B2


 vs Ha: K1 =



A1 C1 C1

Ct
1 B1 D1

Ct
1D1 B1


 , K2 =



A2 C2 C2

Ct
2 B2 D2

Ct
2D2 B2


.

iii) Ho: K1 = K2 =




A C C

CtBD

CtDB


 vs Ho: K1 =




A C C

CtB1D1

CtD1 B1


 , K2 =




A C C

CtB2 D2

CtD2B2


.

Using a likelihood ratio test for each case, we have the following value for the test statistic

−2 lnλ: 23.3045, 3.0011 and 20.3034 for i), ii) and iii), respectively. The degrees of freedom are 21,

9 and 12, respectively. Considering the approximation of a chi-squared distribution, the p-values

are 0.328, 0.964 and 0.062.

From the test in i), the null hypothesis is not rejected when compared with the heterogeneous

case, that is, it is plausible to consider

K1 = K2 =




A C C

CtBD

CtDB


 . (3.10)

The null hypothesis is not rejected either with test in ii), when compared with the heterogeneous

case, that is, it is also plausible to consider

K1 =




A C C

CtB1D1

CtD1 B1


 , K2 =




A C C

CtB2 D2

CtD2B2


 . (3.11)

Finally, using test iii) to compare these two cases and using α = .10, the homogeneous case in

(3.10) is rejected against the model with concentration matrices as in (3.11).

We note that the equalities between corresponding elements of K1 and K2 in model c) are not
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reflected in the covariance matrices, see Appendix F.

3.3 Comments on some methods for structure estimation.

In this section, we list some methods and their associated algorithms that can be used for finding

some specific restrictions on the concentration matrices considered in this work. There is no

method that can be used to find all plausible restrictions, however, we could try using one of

these methods in a first stage for finding some kind of restrictions and then using another one for

finding other kind of restrictions. For example, this procedure was used in Højsgaard and Lauritzen

(2008) in the context of one population and RCON models, they found the zeros or conditional

independences in a first stage and then the equality of elements within the concentration matrix.

1. The method given in Abreu et al. (2010) and in Edwards et al. (2010) finds the zeroes

for graphical models which consider a CG-distribution with trees or forests as associated

graphs. The authors extended the approach studied in Chow and Liu (1968) in two ways:

first, to find a forest optimizing a penalized likelihood criterion, for example AIC or BIC,

and second, to handle data with both discrete and Gaussian variables. In the context of

discriminant analysis, this method can be used in two ways: to find two independent tree

structures, one for each population, for the set of variables {X1, ..., Xp}; and to find a tree

structure for the set of variables that includes the group variable, {X1, ..., Xp, C}.

2. Tan et al. (2010) developed a method to learn tree-structured graphical models which

optimizes an approximation of the log-likelihood ratio of the densities of the two populations.

This method does not consider directly a CG-distribution but could handle data with both

discrete and continuous variables on each population. The trees obtained on each population

could be different. We will talk about this method in Chapter 4.

3. Gou et al. (2011) considered Gaussian graphical models on each population. They proposed

a method that jointly estimates the graphical models corresponding to the different groups
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presented in the data. They used a penalized criterion with two tuning parameters in

order to identify the common zero elements across the populations whereas allowing graphs

belonging to different categories to have different zero structures. This method just finds

the zero structures. The algorithm that they proposed uses the glasso algorithm (Friedman

et al., 2008) in one of its iterative steps.

4. Zhang and Wang (2010) also considered the case of continuous variables on each popula-

tion and graphical Gaussian models. They proposed a method that jointly estimates the

graphical models corresponding to two different groups, aiming to identify the common edge

parameters between the two concentration matrices, while allowing differences for the zero

structures. They used a penalized criterion with two tuning parameters and a block coordi-

nate descent algorithm to solve the problem.

5. Hara and Washio (2011) also considered continuous variables on each population and a Gaus-

sian graphical model. They considered the case where there are more than two populations

or groups. The proposed method is based on a block coordinate descent optimization, where

subproblems can be solved efficiently by existing algorithms. They used a penalized criterion

that includes two tuning parameters in order to identify the common edge parameters across

the two populations and to identify the common zero elements across the populations. This

method does not allow different zero structures.

6. Danaher, Wang and Witten (2014) proposed the joint graphical lasso, which is based on a

penalized log-likelihood approach where the choice of penalty depends on the characteristics

of the models that are expected to be shared. They considered two convex penalty functions

giving what they called fussed graphical lasso and group graphical lasso. Fussed graphical

lasso encourages not only similar zero structure but also similar edge values. Group graphical

lasso encourages only a shared pattern of sparsity.

7. Simon and Tibshirani (2011) also proposed a regularized model which adaptively pools
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elements of the concentration matrices. The proposed objective function encourages only

similar edge values, it does not consider the zero structure. They used the obtained estimates

in the context of discriminant analysis.

8. Gehrmann (2011) studied the properties of the RCON models for one population. She

showed that these models are complete non-distributive lattices and therefore a procedure

for model selection, like the one given in Edwards and Havránek (1987), could be applied to

find the equalities on the elements of the concentration matrix. However, since the number of

RCON models grows super-exponentially in p, this procedure could not be convenient even

for the four particular classes of RCON models that she considered. She also mentioned

that a viable alternative to find the equalities could be to use a penalized criterion with

three tuning parameters. The first one used to find the zeroes, the second one to find the

equalities on the diagonal elements of the concentration matrix, and finally, the third one to

find the equalities on the off-diagonal elements of the concentration matrix.

We note that methods described in 1 to 3 are aimed at finding only the zero structure. Methods

in 4 to 6 find the zero structure and equalities of corresponding elements between two concen-

tration matrices, whereas method in 7 only equalities of corresponding elements between two

concentration matrices. Finally, method in 8 only finds equalities within the elements of one sin-

gle concentration matrix.

We also remark that when parameters of the mean vectors have no restrictions imposed, the

canonical parameters, ε(c) = Kcµc, c = 1, 2, have also no restrictions. However, linear restric-

tions on the mean vectors do not necessarily imply the same linear restrictions on the canonical

parameters. For example, suppose that µ1 and K1 have the following restrictions

µ1 = µ11




1

0

1


 + µ21




0

1

0


 =




µ11

µ21

µ11


 ,
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K1 = ψ1




1 0 0

0 0 0

0 0 0


+ ψ2




0 0 0

0 1 0

0 0 1


+ ψ3




0 1 0

1 0 0

0 0 0


 = ψ1




ψ1 ψ3 0

ψ3 ψ2 0

0 0 ψ2


 ,

then ε(1) does not have the same linear restriction as µ(1):

ε(1) =




ψ1µ11 + ψ3µ21

ψ2µ21 + ψ3µ11

ψ2µ11


 .

This example also shows that the associated CG-distribution is not a member of the regular

exponential family. Therefore, if we consider linear restrictions on the mean vectors, the associ-

ated CG-distribution does not necessarily belong to the regular exponential family and the IPM

algorithm could not be used. Some linear restrictions on the mean vector, for one population, that

also imply linear restrictions on the canonical parameters are studied in Gehrmann and Lauritzen

(2012). Properties and a selection model procedure for a particular class of RCON models with

equalities in the concentration matrices and in the mean vector are studied in Gehrmann (2011).

In the following section we present an example to illustrate the use of the algorithm devel-

oped for parameter estimation and the use of some algorithms for structure estimation, we also

compare the resubstitution error rates when using the corresponding parameter estimates in the

discriminant functions.

3.4 Illustrative example

We consider part of the study reported in Miller et al. (2005). The corresponding data base is

available in the gRbase R package (Dethlefsen and Højsgaard 2005) with the name breastcancer. It

contains information on 1,000 genes on each of 250 patients with breast cancer. These 1,000 genes

had been previously selected as being the more informative under the criterion of the Wilcoxon
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test. The 1,000 genes can be treated as continuous variables and have already been standardized

to have mean zero and variance one.

Additionally, the data base contains a binary variable that indicates the condition of the mu-

tation on the p53 gene. This variable takes value 1 in 58 patients whose p53 gene presents the

mutation, and 0 in 192 whose p53 gene does not present the mutation. The total of 250 patients are

treated as the observations, of which 58, where the binary variable is equal to one, are considered

as cases, and the other 192 as controls. According to the presence or absence of the mutation the

prognosis for the patient varies; in the presence of the mutation the tumours are more aggressive

and more resistant.

The data were analysed by Miller et al. (2005) using three classification methods: diagonal

linear discriminant analysis, k nearest neighbours, and support vector machines. They selected

diagonal lineal discriminant analysis because it showed to have the highest sensitivity for detecting

p53 mutants. The optimal classifier was comprised of 32 genes, the classification rates estimated

using a cross validation procedure are given in Table 3.6.

The subgroup of the 58 cases and a selected subset of 150 genes, has been used to illustrate the

performance of algorithms to search structure on a graph when using Coloured graphical Gaussian

models in Højsgaard and Lauritzen (2008). Edwards et al. (2010) used the 250 observations, 1,000

genes and the group variable to illustrate the performance of an algorithm to search a graphical

model that best fits the data, restricting the search to models that follow a CG-distribution and

whose graph is a tree or a forest. In this thesis, we consider the full data set, 250 observations,

1,000 continuous variables and one binary variable.
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3.4.1 Exploratory analysis

To get an idea of the linear structure of the data, we compute the linear correlations among pairs

of variables, the 10 largest in absolute value are shown in Table 3.1, where we can see the presence

of correlations close to one.

Computing the eigenvalues for the sample covariance matrix, taking subsets of 250 variables at

the time due to the sample size of 250 observations, we observe that a large proportion of them are

smaller than 1, and the largest and the smallest for each subset are: (λ1 : 108.27, λ250 : 9.08e−17),

(λ1 : 96.03, λ250 : 5.00e− 324), (λ1 : 103.53, λ250 : 1.35e− 16) and (λ1 : 97.02, λ250 : 1.38e− 16),

respectively. The first 20 largest eigenvalues sorted in descending order for the subset of variables

1 to 250 are presented in Figure 3.3a. The frequency of eigenvalues that are less than 0.01 for

this subset of variables is presented in Figure 3.3b. We observe that the values of the eigenvalues

decrease very quickly and that there is a large proportion very close to zero. A similar behaviour

is observed with the other three subsets of 250 variables.
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(a) Principal Components. Variables: 1 to 250.

Eigenvalues sorted in descending order

(b) Variables:1 to 250

PC variances
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Figure 3.3: (a) The first 20 largest eigenvalues sorted in descending order for the set of variables 1
to 250. (b) Frequency of Principal Components which have a variance less than 0.01 for the set of
variables 1 to 250.

Xi 468 364 243 441 243 672 319 298 304 399
Xj 490 368 437 506 298 1000 320 437 366 506

|ρ̂xixj | 0.996 0.982 0.979 0.978 0.978 0.978 0.975 0.970 0.970 0.967

Table 3.1: The ten largest linear correlations between pairs of variables, |ρ̂xixj |
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Variables: 1 to 250

Scatter Plot Matrix
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Figure 3.4: Scatterplot of the 250 observations on three Principal Components whose eigenvalues are
the largest

Additionally, for each of the four matrices of dimension 250 × 250, the projection of the 250

points on the planes generated by the first three eigenvectors, those corresponding to the Principal

components, are presented in Figure 3.4. The projection of the data set into planes suggests that

it may exist some linear projections where the points can be distinguished by group, the 58 cases

in red and the 192 controls in blue. In fact the projection onto the first eigenvector or principal

component separates a large part of each group from the other.
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3.4.2 Selection of variables and classification rates

In order to diminish the dimensionality of the space where the 250 points lie, we could: a) construct

composite or derived variables, like the principal components and take a subset of them, those

associated to the largest eigenvalues, or b) select a subset of variables. We do the latter. The

selection of variables is done in two ways.

1. We consider a CG-distribution, f(c, x1, ..., x1000), whose associated graph is a tree, and use

this tree as a guide to select the variables. We select those corresponding to nodes in the

tree that are closest to the variable C.

2. We select a subset of variables directly from each subgroup of 100 variables. We use the

relation between the linear discriminant function and the least squares linear regression

Y = β0 + β1X1 + ... + β100X100 + ǫ. Technically, the parameters in a linear discriminant

function subject to a proportionality factor can be estimated by using a least squares linear

regression of Y on X1, ..., Xp, taking

Y =





n
n1

if C = 1

− n
n2

if C = 2,

see e.g., Hastie et al. (2009, p. 135) or Fisher (1936). We then search for the structure of

the graph using the set of selected variables.

We note that in case 1, we first learn the structure of the graph, then select a subset of variables,

and finally estimate the parameters of the model to compute the conditional probabilities of each

group. Whereas in case 2, we first select a subset of variables using least squares linear regression,

then learn the structure of the graph, and finally estimate the parameters to get the conditional

probabilities.
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3.4. Illustrative example

3.4.3 Results

Case 1. When considering a CG-distribution f(c, x1, ..., x1000) with a tree as associated graph,

we used the gRapHD R package (Abreu et al., 2010) with the function MinForest and assuming

the homogeneous case, i.e., considering that the conditional distribution f(x1, ..., x1000|c) has the

same concentration matrix for each value of c. The MinForest function searches for the best

CG-distribution whose graph is a tree or a forest.

Figure 3.5 displays the tree associated to the CG-distribution that best adjust to the data set.

This is the same tree as the one found and presented by Edwards et al. (2010).
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Figure 3.5: Minimal LR tree for the breast cancer data. The class variable C=1001 is shown as a
blue circle.
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The graph shows that the binary variable C (displayed as number 1001 and in blue) appears

connected only with variable X108 (the path between X1001 and X693 is a path that crosses X108

and connects X693 with X108). This means that variable C is conditionally independent from the

other 999 variables given variable X108, (X \X108) ⊥⊥ C |X108. Similar conditional independences

can be read off from the graph when considering nodes in a neighbourhood of X108.

When reading off conditional independences from the tree, one may think that variables whose

nodes are within a neighbourhood of the grouping variable C should have some discriminative

power. We selected the subset of 41 variables, those at distance less than or equal to 3 from C.

Then we estimate the discriminant function and compute the conditional probabilities for three

cases: saturated concentration matrices, diagonal, and those associated with a tree obtained from

the original tree in Figure 3.5 when removing the class variable.

We estimate the error rates using the repeated holdout method (Kim, 2009) assuming the set

of 41 variables and a fixed graph structure. In this method, approximately three fourths of the

observations (144 controls and 44 cases) were randomly selected for training and one fourth for

testing. This was repeated 200 times and the error rates were then estimated by the average of

the 200 percentages of misclassified observations.

The discriminant analysis was done considering two cases, equal and different concentration

matrices corresponding to the homogeneous and heterogeneous model, respectively. The tree graph

associated with the tree model is shown in Figure 3.6. The estimated error rates are presented

in Table 3.2. In Table G.1 in Appendix G, the resubstitution error rates are presented, those

computed using the n = 250 observations to fit the model and use this to predict the class for

each of these n = 250 observations.

Additionally, we fit a linear logistic regression with the 41 continuous variables. The estimated
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error rates are presented in Table 3.2.
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Figure 3.6: Tree graph τ associated with the tree model with p = 41 selected variables.

Discriminant Analysis
Logistic
RegSample size

Heterogeneous Homogeneous
K1,K2 K1 = K2

nt nv Kκ Kκ Kτ Kκ Kκ Kτ Kκ

Controls 144 48 0.13 16.58 14.42 10.49 16.47 10.34 14.26
Cases 44 14 99.43 35.25 37.54 52.89 30.36 38.89 54.71
Global 188 62 22.55 20.80 19.64 20.06 19.60 16.79 23.40

# of param 1,804 164 244 943 123 163 42

Table 3.2: Error rates computed using repeated holdout method with 200 random samples and
considering 41 variables, those selected as the neighbours at distance less than 4 to variable class
C = 1001: 108, 70, 97, 177, 213, 223, 228, 252, 254, 262, 318, 693, 430, 83, 34, 49, 75, 136, 154, 179,
198, 302, 329, 395, 402, 554, 604, 669, 781, 849, 653, 275, 525, 365, 462, 877, 190, 801, 880, 912, 942.
# of param = Number of estimated parameters including the corresponding to the mean vectors.

We observe that when using the saturated models, the classification performance is poor, espe-

cially in the group of Cases. Considering the global error rates, the best performance is obtained

when using a tree structure and the homogeneous case.

We also observe that the resubstitution error rates when using the empty graph or the tree

graph are similar to those obtained using the holdout method. For the saturated cases, the resub-
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stitution error rates are very optimistic, for example, the saturated model in the heterogeneous

case has a resubstitution error rate in the group of Cases of 8.62% while the error rate estimated

using the holdout method is 99.43%.

Case 2. In this case, we first select a subset of variables and then search for the structure of

the graph. Using the 250 observations, we used a stepwise method for selection of the variables

based on the t statistic associated with the test H0 : βj = 0, where βj is one of the coeffi-

cients in the least squares linear regression. This test is equivalent to the one about comparing

the Mahalanobis distance between two distributions, one with k variables and the other with

k − 1, see for example Seber (1984, p. 338) or Bodnar and Okhrin (2011). Due to the limited

number of observations, the stepwise method was performed on each of ten subsets of variables,

{X1, ..., X100}, ..., {X901, ..., X1000}. In this way 55 variables were selected, see Table 3.3.

1− 100 101− 200 201− 300 301− 400 401− 500 501− 600 601− 700 701− 800 801− 900 901− 1000

69 108 209 318 415 508 693 754 807 967
48 120 287 347 430 525 654 775 802 987
83 132 277 326 414 591 656 724 803 915
3 160 207 377 418 594 603 712 885 921
79 138 279 384 466 567 663 701 812 968

328 652 923
374
363

Table 3.3: Subsets of selected variables when using a stepwise method in a linear regression of Y on
each of ten subsets of X variables.

Using the 55 selected variables we estimated a CG-distribution assuming four different depen-

dence graphs:

i) Complete κ.

ii) Isolated nodes, i.e. with no edges, κ.

iii) A forest f , which is an acyclic undirected graph.
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iv) A decomposable G.

And for each graph, two models were used: homogeneous and heterogeneous, i.e., considering

equal or different concentration matrices on the two groups.

The structure on the concentration matrix associated with the forest graph f was found using

function MinForest of gRapHD R package to find a tree, with the 55 continuous variables and

the group variable C. Once the tree graph is found, we considered the forest which is the subgraph

obtained when discarding variable C.

The structure on the concentration matrix associated with a decomposable graph G is obtained

as follows. First a tree is found considering the 55 continuous variables and the group variable C.

Then, starting with this tree and using function stepw in gRapHD R package, a decomposable

graph is found. Finally, the decomposable graph G is the subgraph obtained when discarding

variable C.

As before, we estimate error rates using the repeated holdout method considering the graph

and variables as fixed in each of the 200 iterations. In Figure 3.7 the associated graphs for the forest

and decomposable models are displayed. In Table 3.4, estimated error rates are presented for each

model. The error rates for the saturated model in the heterogeneous case were not computed since

the sample size was not enough. However, these errors are larger than the ones computed for the

other models. Error rates obtained when using a linear logistic regression on the 55 are also shown.

From the classification results we observe that the saturated model in the homogeneous case

is the one with the best global performance, however this is the one with the worst performance

in the Cases group. Models in the homogeneous case assuming a forest or a decomposable graph

have the best general performance. We observe that the error rates with these 55 variables are
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smaller than those presented in Table 3.2 obtained with a set of 41 variables.

Discriminant Analysis
Logistic
RegSample size

Heterogeneous Homogeneous
K1,K2 K1 = K2

nt nv Kκ Kκ Kf KG Kκ Kκ Kf KG Kκ

Controls 144 48 11.61 9.90 10.29 5.61 11.40 9.20 9.40 9.55
Cases 44 14 17.75 24.43 20.89 24.89 18.14 17.61 18.00 24.11
Global 188 62 13.00 13.18 12.69 9.97 12.92 11.10 11.34 12.84

# of param 3,190 220 320 354 1,650 165 270 287 56

Table 3.4: Error rates computed using repeated holdout method with 200 random samples and
considering 55 variables: 3, 48, 69, 79, 83, 108, 120, 132, 138, 160, 207, 209, 277, 279, 287, 318, 326,
328, 347, 363, 374, 377, 384, 414, 415, 418, 430, 466, 508, 525, 567, 591, 594, 603, 652, 654, 656, 663,
693, 701, 712, 724, 754, 775, 802, 803, 807, 812, 885, 915, 921, 923, 967, 968, 987.
# of param = Number of estimated parameters including the corresponding to the mean vectors.
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Figure 3.7: Graphs associated with CG-distribution models with 55 continuous variables. a) a forest
f and b) a decomposable G

As an extra exercise, we tried a stepwise selection method on the 55 variables and got the

following 15 variables: 3, 79, 132, 328, 347, 374, 415, 525, 567, 591, 654, 885, 915, 923, 987.

Using this subset we got the corresponding estimated error rates shown in Table 3.5. The cor-

responding graphs associated with the forest and decomposable models are displayed in Figure 3.8.
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Discriminant Analysis
Logistic
RegSample size

Heterogeneous Homogeneous
K1,K2 K1 = K2

nt nv Kκ Kκ Kf KG Kκ Kκ Kf KG Kκ

Controls 144 48 5.35 7.66 8.94 7.49 3.41 7.03 5.36 3.76 5.11
Cases 44 14 26.64 22.68 22.57 24.57 19.54 22.07 21.29 19.14 17.14
Global 188 62 10.16 11.05 12.02 11.35 7.05 10.43 8.96 7.23 7.83

# of param 270 60 74 92 150 45 52 61 16

Table 3.5: Error rates computed using repeated holdout method with 200 random samples and
considering 15 variables: 3, 79, 132, 328, 347, 374, 415, 525, 567, 591, 654, 885, 915, 923, 987.
# of param = Number of estimated parameters including the corresponding to the mean vectors.
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Figure 3.8: Graphs associated with CG-distribution models with 15 continuous variables. a) a forest
f and b) a decomposable G

When taking 15 variables out of the 55, the global error rates are smaller, however, error rates

for the Cases group are larger in some instances. The saturated model in the homogeneous case

has the best performance.

Finally, we notice that when selecting a set of variables using some properties of discriminant

analysis before learning the structure of the graph, we got the best classification rates.

Miller et al. (2005) reported the classification rates, estimated using a cross validation proce-
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dure, given in Table 3.6. We observe that the performance of any of the models with 15 variables

is better than, or similar to, the one associated with the optimal model in Miller et al. (2005).

Predicted
Observed Controls Cases %

Controls 166 26 86.5
Cases 12 46 79.3

84.8
# of param 96

Table 3.6: Classification rates reported in Miller et al. (2005) considering a diagonal linear discrimi-
nant analysis with p = 32 variables and estimated using a cross validation procedure.
# of param-Number of estimated parameters.

3.5 Comments

In the context of discriminant analysis we are considering the conditional Gaussian distribution

as the joint distribution for the vector of p features and the group variable. Considering only

two groups or classes, we consider linear restrictions on each of the two concentration matrices as

those introduced by Anderson (1970). We have adapted the IPM algorithm to obtain estimates,

only for the particular case of linear restrictions as in (3.1) and when some parameters in one

concentration matrix are equal to their corresponding ones in the second.

The algorithm have been implemented in C++ and works well for small values of p, say p ≤ 30

or when the number of matrices Hh is similar to p with p <= 1000. For larger values it is time

consuming, therefore its implementation has to be optimized or alternative algorithms should be

considered.

We remark that the algorithm is used only to obtain the parameter estimates of the concentra-

tions matrices, but not their structure, i.e. we assume that a) the zeroes, b) the linear restrictions,

and c) the equalities between corresponding parameters of the two matrices are given. An algo-

73



3.5. Comments

rithm for searching the structure has to be developed, or adapted from the existing ones. Some

algorithms or methods have already been proposed for particular cases, for example, the ones

listed in Section 3.3.

We note that linear restrictions on the concentration matrices can also be considered in the

logistic regression function, and with this the number of parameters in (1.12) diminishes as we

mentioned in Chapter 1, equation 1.14. In the illustrative example with p = 1, 000 variables and

250 observations, the use of diagonal discriminant analysis and the use of a tree structure are al-

ternatives even when considering the set of p = 1, 000 variables, whereas linear logistic regression

needs at least 1,001 observations to be used.

Another issue is variable selection for classification in high dimensionality. We have used the

relation between linear discriminant analysis and linear regression to select some variables in the

practical example, but we could have used the relation between discriminant analysis and logistic

regression. Witten and Tibshirani (2011) and Clemmensen et al. (2011) present methods for

performing linear discriminant analysis with a sparseness criterion imposed, such that, classifica-

tion and variable selection are performed simultaneously, though they are not interested in the

structure of the concentration matrices, that is, they estimate directly the parameters associated

with the features in the linear discriminant function.
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4. Some allocation rules based on trees

in discriminant analysis

In this chapter, we describe and compare six methods for learning Graphical Gaussian tree mod-

els in the context of discriminant analysis for two Gaussian populations. In each method an

unknown tree structure is assumed for each concentration matrix involved in the discriminant

function. By finding a minimum weight spanning tree (MWST) and using maximum likelihood

(ML) estimation, the concentration matrices are estimated and used in the plug-in allocation rules.

Three of these methods have been introduced in the literature: Chow and Liu (1968), Fried-

man et al. (1997, 1998), and Tan et al. (2010). And based on these, three others are introduced

in this work, for which the function to be optimized is the J-divergence for one of them, and the

empirical log-likelihood ratio (log-ratio) for the two others. We show in Propositions 4.5.1 and

4.5.2, and corollary 4.5.3, that the optimization problems of the proposed methods are equivalent

to a problem of finding a MWST.

All methods take advantage of the tree structure, specifically of an efficient algorithm for finding

the MWST, and the existence of analytical expressions for the Maximum Likelihood Estimators

(MLEs) of the concentration matrices.

We present a numerical study where the performance of the six methods is compared when the

group training sample size is the same in both populations; and for this case the method given in
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Tan et al. (2010) and the one based on the log-ratio are equivalent, as well as the methods based

on the J-divergence and the log-ratio with equal trees. The comparison of the different methods

is based on the estimated error rates of the corresponding rules, obtained from real and simulated

data. Diagonal discriminant analysis is considered as a benchmark, as well as quadratic and linear

discriminant analysis but only whenever the sample size is sufficient.

We also consider HIV data to illustrate the case when the data correspond to repeated mea-

sures and the training samples sizes are different. In this case, the performance of the six methods

is compared, and diagonal discriminant analysis is also considered as a benchmark.

In spite of showing that none of the methods based on tree models outperforms the benchmarks

in all data sets, any of these methods offers a simple and computationally inexpensive alternative

to well established discriminant methods in high dimensional settings, where sample size is similar

to, or smaller than, the number of variables.

4.1 Related work

The idea of using trees for pattern recognition was introduced by Chow and Liu (1966). They

proposed a procedure for finding two independent tree structures, one on each population, for a set

of binary variables. Later on, Chow and Liu (1968) proposed the use of trees to approximate the

distribution of a set of discrete variables, and these approximating distributions were then used to

build allocation rules. The problem of estimating a single tree structure was expressed as an opti-

mization problem, where the Kullback-Leibler divergence is optimized over the set of all possible

trees with as many nodes as variables. They showed that the optimization problem is equivalent

to the one of finding the ML tree model, and also that it can be formulated as the one of finding

a MWST. To find the MWST, a set of weights are calculated, one for each pair of variables, and

then the use of an efficient algorithm for finding a MWST for the weighted complete graph is used.
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Based on Chow and Liu’s idea, other classification methods have been developed, all of which

are based on the MWST problem. Tree-augmented naive Bayesian network is one of them in-

troduced in Friedman et al. (1997) for discrete variables, and in Friedman et al. (1998) for the

Gaussian case. When using this network the joint likelihood is maximized assuming the same tree

in both populations. Another method based on a mixture of trees is given in Meilǎ and Jordan

(2000), for both discrete and continuous variables, where Chow and Liu’s method is a special case

when the mixture is based on a single tree.

More recently, Tan et al. (2010) proposed a method based on optimizing an approximation of

the J−divergence for either discrete or continuous variables. They also considered the log-ratio

measure, but only for discrete variables, in which case, showed that the problems of optimizing the

approximated J-divergence and the log-ratio are equivalent. They did not consider the log-ratio

for the Gaussian case, which we study in two versions: with two arbitrary and with two equal trees

for both populations. The idea of using the J-divergence is also studied, it is based on their work,

but avoiding the use of empirical distributions which may not be well defined for the multivariate

case when the number of variables is larger than the sample size. Therefore, the proposed method

optimizes the J-divergence between two tree multivariate Gaussian distributions which are well

defined. To obtain the equivalence between the associated optimization problem of this method

and the one of finding the MWST, the same tree in both populations is assumed.

Chow and Liu’s idea has also been used in other contexts, for example, in Edwards et al. (2010)

it is used to approximate single distributions based on the AIC and BIC.

Before stating the six methods, we describe some properties of GGMs with tree structure and

the problem of finding the MWST.
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4.2. Graphical Gaussian models with tree structure

4.2 Graphical Gaussian models with tree structure

A tree graph τ = (V,E) is an acyclic undirected graph where all vertices are connected. For

example, three different tree graphs with six vertices and different edge set are shown in Figure

4.1.

a) b) c)

1 2 3 4 5 6 1

2

3

45

6
1

2

3

45

6

τ ∗ = (V,E1) τ ∗∗ = (V,E2) τ ∗∗∗ = (V,E3)

Figure 4.1: Three examples of tree graphs τ = (V,Ei), i = 1, 2, 3, with V =
{1, 2, 3, 4, 5, 6} and a) a path with E1 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}, b) a star with E2 =
{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}, and c) another tree with E3 = {(1, 2), (1, 4), (1, 5), (2, 6), (3, 4)}.

Let Tp denote the set of all the tree graphs with p vertices. When considering a graphical

model with a tree τ = (V,Eτ ) ∈ Tp as associated graph, the distribution of the p variables can

be factorized into factors which depend on the marginal distributions of one or two variables as

follows

fτ (x1, ..., xp) =

p∏

i=1

f(xi)
∏

i<j
(i,j)∈Eτ

f(xi, xj)

f(xi) f(xj)
. (4.1)

This property follows from properties 4.2.1 to 4.2.3 described below and makes the problems

of parameter and structure estimation solvable in an efficient way. Graphical models with tree

graphs are particular instances of decomposable models described in Chapter 1, which also have

useful properties for parameter estimation. In particular, when considering a GGM with a tree

graph τ = (V,Eτ ), the following properties follow, some of them can be found in Lauritzen (2011).

4.2.1 It is a decomposable model. That is, the density function can be factorized in terms of
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4.2. Graphical Gaussian models with tree structure

the set of cliques C and the set of separators S as in (1.16)

fτ (x1, ..., xp) =

∏
C∈C

f(xC)∏
S∈S

f(xS)v(S)
.

4.2.2 Its set of cliques C consists of all the edges in the tree.

4.2.3 Its set of separators S consists of the set of nodes such that each node is in S as many

times as one less than its degree.

4.2.4 The clique-separator factorization is based on univariate and bivariate distributions and

can be expressed as in (4.1).

4.2.5 Kτ can be decomposed as

Kτ =
∑

C∈C

[KC]
p −

∑

S∈S

v(S)[KS ]
p =

∑

i<j
(i,j)∈Eτ

(
[K(i,j)]

p − [K(i)]
p − [K(j)]

p
)
+

p∑

j=1

(
[K(j)]

p
)
.

4.2.6 The MLE of Στ , Σ̂τ , given a sample x1, ...,xn has the following property

Σ̂τ (τ) = W (τ),

where W =
∑n

j=1(xj − x)(xj − x)t/n, and for any square matrix A, A(τ) is the square

matrix such that

(A(τ))ij =





(A)ij if i = j or (i, j) ∈ E,

0 otherwise.

4.2.7 For any square matrix A,

tr(KτA) = tr(KτA(τ)).

Moreover, if the MLE of Kτ , K̂τ , exists, then tr(K̂τA) = tr(K̂τA(τ)).
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4.2. Graphical Gaussian models with tree structure

4.2.8 K̂τ can be expressed as

K̂τ =
∑

C∈C

[W−1
C ]p−

∑

S∈S

v(S)[W−1
S ]p =

∑

i<j
(i,j)∈Eτ

(
[W−1

(i,j)]
p − [W−1

(i) ]
p − [W−1

(j) ]
p
)
+

p∑

j=1

(
[W−1

(j) ]
p
)
.

(4.2)

4.2.9 f̂τ (x1, ..., xp) =
∏p

i=1 f̂(xi)
∏

i<j
(i,j)∈Eτ

f̂(xi, xj)

f̂(xi) f̂(xj)
, where f̂τ is the density of N(µ̂, K̂τ).

4.2.10

ln
f̂(xi, xj)

f̂(xi) f̂(xj)
= −1

2
ln(1− ρ̂2ij)−

ρ̂2ij
2(1− ρ̂2ij)

{
(xi − xi)

2

wii
+

(xj − xj)
2

wjj
−2(xi − xi)(xj − xj)

wij

}
,

where ρ̂ij = wij/
√
wiiwjj.

Properties 4.2.6 and 4.2.7 are also true for any dependence graph G. We note that the

existence of the MLE in equation 4.2 is assured for sample size larger than the maximal clique

size, in this case n > 2, see for example, Proposition 7 in Frydenberg and Lauritzen (1989)

or Proposition 5.9 in Lauritzen (1996). We also note that the number of unknown parameters

in the concentration matrix is reduced from p(p+1)/2, which corresponds to the graph κ, to 2p−1.

We consider tree models with trees τ1 = (V,Eτ1) and τ2 = (V,Eτ2). Hereafter, we use the

notation f1τ1 , f2τ2 , K1τ1
and K2τ2

, to clarify the dependence on the specific population and on

the specific tree.

We note that when considering arbitrary covariance matrices or, equivalently, concentration

matrices K1τ1
and K2τ2

, two cases can be considered: (i) τ1 and τ2 are arbitrary trees and (ii)

τ1 = τ2 = τ . Additionally, we can also make the assumption of equal covariance matrices which

implies τ1 = τ2 = τ , so that K1τ1
= K2τ2

= K
τ
. For example, when considering the tree τ ∗ given

in Figure 4.1a) in both populations, the concentration matrices could be the same:
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K1τ∗ = K2τ∗ =




k11 k12 0 0 0 0

k12 k22 k23 0 0 0

0 k23 k33 k34 0 0

0 0 k34 k44 k45 0

0 0 0 k45 k55 k56

0 0 0 0 k56 k66




,

or different:

Kcτ∗ =




k
(c)
11 k

(c)
12 0 0 0 0

k
(c)
12 k

(c)
22 k

(c)
23 0 0 0

0 k
(c)
23 k

(c)
33 k

(c)
34 0 0

0 0 k
(c)
34 k

(c)
44 k

(c)
45 0

0 0 0 k
(c)
45 k

(c)
55 k

(c)
56

0 0 0 0 k
(c)
56 k

(c)
66




, c = 1, 2.

4.3 Kullback and Leibler divergence

The KL-divergence and the J-divergence (Kullback and Leibler, 1951) are two measures that

have been used to define some of the optimization problems for the tree structure estimation.

Let I(f1, f2) and J(f1, f2) denote the KL-divergence and the J-divergence between two functions

f1 and f2. When f1 and f2 are the densities of N(µ1,K
−1
1 ) and N(µ2,K

−1
2 ), respectively, the

expressions are

I(f1, f2) =

∫
f1(x) ln

f1(x)

f2(x)
dx

= 1
2
ln

|Σ2|
|Σ1|

+
1

2
tr
(
Σ1(K2 −K1)

)
+

1

2
tr
(
K2(µ1 − µ2)(µ1 − µ2)

t
)
,

(4.3)
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4.3. Kullback and Leibler divergence

J(f1, f2) = I(f1, f2) + I(f2, f1) =

∫ (
f1(x)− f2(x)

)
ln
f1(x)

f2(x)
dx

=
1

2
tr
(
(Σ1 −Σ2)(K2 −K1)

)
+

1

2
tr
(
(K1 +K2)(µ1 − µ2)(µ1 − µ2)

t
)
.

(4.4)

For example, if we consider GGMs with associated graph κ in each population, then K1κ and

K2κ are diagonal matrices and

J(f1κ , f2κ) =
1

2

p∑

j=1

(
σ
(1)
jj

σ
(2)
jj

+
σ
(2)
jj

σ
(1)
jj

+
(µ

(1)
j − µ

(2)
j )2

σ
(1)
jj

+
(µ

(1)
j − µ

(2)
j )2

σ
(2)
jj

)
− p. (4.5)

When the tree graph τ is a path and the covariance matrices have the following entries σ
(c)
ij =

ρ
|i−j|
c /(1− ρ2c), i, j = 1, ..., p, c = 1, 2; the J-divergence is as follows

J(f1τ , f2τ ) = 1
2(1−ρ21)

(
2− 2(p− 1)ρ1ρ2 + (p− 2)(1 + ρ22)

)
+ 1

2(1−ρ22)

(
2− 2(p − 1)ρ1ρ2 + (p − 2)(1 + ρ21)

)

+1
2(2 + ρ21 + ρ22)

p−1∑

j=2

(µ
(1)
j − µ

(2)
j )2 − (ρ1 + ρ2)

p−1∑

j=1

(µ
(1)
j − µ

(2)
j )(µ

(1)
j+1 − µ

(2)
j+1)

+(µ
(1)
1 − µ

(2)
1 )2 + (µ

(1)
p − µ

(2)
p )2 − p.

(4.6)

In particular, the covariance and concentration matrices for each population, with this pattern

and associated with the path τ ∗ given in Figure 4.1a), are

Σcτ∗ =
1

1− ρ2c




1 ρc ρ2c ρ3c ρ4c ρ5c

ρc 1 ρc ρ2c ρ3c ρ4c

ρ2c ρc 1 ρc ρ2c ρ3c

ρ3c ρ2c ρc 1 ρc ρ2c

ρ4c ρ3c ρ2c ρc 1 ρc

ρ5c ρ4c ρ3c ρ2c ρc 1




, Kcτ∗ =




1 −ρc 0 0 0 0

−ρc 1 + ρ2c −ρc 0 0 0

0 −ρc 1 + ρ2c −ρc 0 0

0 0 −ρc 1 + ρ2c −ρc 0

0 0 0 −ρc 1 + ρ2c −ρc
0 0 0 0 −ρc 1




,
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and J(f1τ∗ , f2τ∗ ) = 1
2(1−ρ21)

(2− 10ρ1ρ2 + 4(1 + ρ22)) +
1

2(1−ρ22)
(2− 10ρ1ρ2 + 4(1 + ρ21))

+1
2
(2 + ρ21 + ρ22)

5∑

j=2

(µ
(1)
j − µ

(2)
j )2 − (ρ1 + ρ2)

5∑

j=1

(µ
(1)
j − µ

(2)
j )(µ

(1)
j+1 − µ

(2)
j+1)

+(µ
(1)
1 − µ

(2)
1 )2 + (µ

(1)
6 − µ

(2)
6 )2 − 6.

(4.7)

4.4 Minimum weight spanning tree

Graham and Hell (1985) in their work ’On the history of the minimum spanning tree problem’

mention that Boru̇vka (1926) seems to be the first work where the problem of finding a MWST was

formulated. This problem has been used in various types of applications, for example, in commu-

nications and transportation networks. It also offers a method of solution to other problems where

it applies less directly, for example, Chow and Liu (1968) showed that the problem of tree struc-

ture estimation when using the KL-divergence can be formulated as a problem of finding a MWST.

Given a connected and undirected graph G = (V,E) with p nodes, a spanning tree of G is a

subgraph that is a tree. Let T (G) = {τ |τ = (V,Eτ ) with Eτ ⊆ E and τ ∈ Tp} denote the set of

all spanning trees of G, then T (G) ⊆ Tp and every connected graph contains at least one spanning

tree, that is, |T (G)| ≥ 1. For example, for the complete graph κ with p nodes, T (κ) = Tp and

|T (κ)| = pp−2, the last equality is called the Cayley Tree Formula. In Figure 4.2, the complete

graph κ with three nodes is shown together with its three spanning trees.

2

1

3 2

1

3 2

1

3 2

1

3

κ τ ∗ τ ∗∗ τ ∗∗∗

Figure 4.2: The complete graph κ with three nodes, and all its spanning trees: τ∗, τ∗∗ and τ∗∗∗.
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If a real number λ(i, j), called weight or cost, is assigned to each edge (i, j) ∈ E, the total

weight λ(G) of G is defined as

λ(G) =
∑

(i,j)∈E

λ(i, j).

The weight of each spanning tree of G is the sum of the weights associated with its edges. A

MWST of G is any spanning tree whose weight is minimum among all the spanning trees of G. If

all the weights of G are different, then the MWST is unique. The problem of finding a MWST is

called minimum spanning tree problem and can be expressed as follows.

Find τ ∗ such that

τ ∗ = argmin
τ∈T (G)

∑

(i,j)∈Eτ

λ(i, j) , (4.8)

where T (G) = {τ |τ = (V,Eτ ) with Eτ ⊆ E and τ ∈ Tp}.

Among the algorithms used to solve the minimum spanning tree problem, there are two algo-

rithms commonly used: Kruskal’s (Kruskal, 1956) and Prim’s algorithm (Prim, 1957). The former

can also be used to find a Minimum Weight Spanning Forest (MWSF) with t edges, t < p, during

its iterations, and in the end a MWST is found, where a forest is an acyclic undirected graph. On

the other hand, in each iteration of the Prim’s algorithm there is always a component which is a

tree, and the other components are isolated nodes; at the end of the algorithm there is just one

component which is a MWST. In Appendix B, we describe Kruskal’s algorithm which is the one

we have used to obtain the numerical results presented in this chapter.

In the following section, we describe the optimization problem associated with each of the six

methods. Each of these problems can be formulated as one of finding a MWST. We notice that

the graph G associated with each problem is the complete graph κ, so that T (G) = T (κ) = Tp.
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4.5. Tree based allocation rules

4.5 Tree based allocation rules

The methods based on trees described in this section have the two estimation problems associated

with GGMs: parameter and structure estimation. Once both problems are solved, the plug in

allocation rule is specified.

The parameter estimation problem for each method is solved using the MLEs for the means and

for the concentration matrices. Each concentration matrix depends on a specific tree τc, c = 1, 2.

In the heterogeneous case, MLEs of the concentration matrices are K̂1τ1
and K̂2τ2

with

K̂cτc =
∑

i<j
(i,j)∈Eτc

(
[W−1

c(i,j)
]p − [W−1

c(i)
]p − [W−1

c(j)
]p
)
+

p∑

j=1

[W−1
c(j)

]p, (4.9)

and µ̂c and Wc as in (1.4) and (1.5), respectively. In the homogeneous case, the rule is based on

(1.6) with µ̂c as in (1.4), and K̂τ as in (4.9) with W as in (1.7). For instance, when considering

the path given in Figure 1.1c) and W as the sample covariance matrix, the MLE of Kτ is

K̂τ =





w11 w12

w12 w22




−1

0 0

0 0

0 0

0 0

0 0

0 0




−




w−1
11 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




−




0 0 0 0

0 w−1
22 0 0

0 0 0 0

0 0 0 0




+




0 0 0 0

0

0


w22 w23

w23 w33




−1

0

0

0 0 0 0




−




0 0 0 0

0 w−1
22 0 0

0 0 0 0

0 0 0 0




−




0 0 0 0

0 0 0 0

0 0 w−1
33 0

0 0 0 0




+




0 0

0 0

0 0

0 0

0 0

0 0


w33 w34

w34 w44




−1




−




0 0 0 0

0 0 0 0

0 0 w−1
33 0

0 0 0 0




−




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 w−1
44



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+




w−1
11 0 0 0

0 w−1
22 0 0

0 0 w−1
33 0

0 0 0 w−1
44




=





w11 w12

w12 w22




−1

0 0

0 0

0 0

0 0

0 0

0 0




+




0 0 0 0

0

0


w22 w23

w23 w33




−1

0

0

0 0 0 0




+




0 0

0 0

0 0

0 0

0 0

0 0


w33 w34

w34 w44




−1




−




0 0 0 0

0 w−1
22 0 0

0 0 w−1
33 0

0 0 0 0



.

On the other hand, the estimation of the tree structure depends on a a specific optimization

problem for each method. Each optimization problem can be formulated as one of finding a MWST

with a specific set of weights, {λ(i, j), i 6= j; i, j = 1, ..., p}, for expression (4.8).

In the following we state the optimization problem, and the specific set of weights for the

corresponding MWST problem, for each of the six methods.

4.5.1 Existing methods

We give the optimization problem corresponding to each of the three methods that have already

been studied and implemented in the literature.

Let f̂cτc denote the density of N(µ̂c, K̂
−1
cτc

) and f̃c the density of the empirical distribution

N(x(c),Wc), c = 1, 2. Notice that µ̂c = x(c), but K̂cτc 6= W−1
c .
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i) Chow and Liu (1968). Find two independent trees τ ∗1 and τ ∗2 such that

τ ∗c = argmin
τc∈Tp

I(f̃c, f̂cτc) = argmin
τc∈Tp

∫
f̃c(x) ln

f̃c(x)

f̂cτc (x)
dx, c = 1, 2, (4.10)

where Tp = {τ |τ is a tree with p nodes}. The weights λ(c)(i, j), i, j = 1, ...p, for the MWST

problem associated with τ ∗c are given by

λ(c)(i, j) =
1

2
ln
(
1− ρ̂

(c)
ij

2
)
, c = 1, 2, (4.11)

where ρ̂
(c)
ij = w

(c)
ij

(
w

(c)
ii w

(c)
jj

)−1/2

and w
(c)
ij is the entry ij of the matrix Wc given in (1.5).

ii) Friedman et al. (1997, 1998). Find a single tree τ ∗ such that

τ ∗ = argmin
τ∈Tp

2∑

c=1

(
π̃cI(f̃c, f̂cτ ) + π̃c ln

(
π̃c
π̂c

))

= argmax
τ∈Tp

{
π̂1

n1∑

l=1

ln f̂1τ (xl) + π̂2

n1+n2∑

l=n1+1

ln f̂2τ (xl)

}
,

(4.12)

where observations from Π1 have indexes from 1 to n1, and from Π2 from n1 + 1 to n1 + n2.

Here π̃c = π̂c = nc/(n1 + n2). The weights λ(i, j), i, j = 1, ...p, for the MWST problem

associated with τ ∗ are

λ(i, j) =
n1

2(n1 + n2)
ln
(
1− ρ̂

(1)
ij

2
)
+

n2

2(n1 + n2)
ln
(
1− ρ̂

(2)
ij

2
)
. (4.13)

iii) Tan et al. (2010). Find two trees (τ ∗1 , τ
∗
2 ) such that

(τ ∗1 , τ
∗
2 ) = argmax

τ1,τ2∈Tp

{
−I(f̃1, f̂1τ1 ) + I(f̃2, f̂1τ1 )− I(f̃2, f̂2τ2 ) + I(f̃1, f̂2τ2 )

}

= argmax
τ1,τ2∈Tp

∫ (
f̃1(x)− f̃2(x)

)
ln
f̂1τ1 (x)

f̂2τ2 (x)
dx.

(4.14)
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The optimization problem in (4.14) is equivalent to two independent problems of finding

MWSTs τ ∗1 and τ ∗2 , with weights λ(c)(i, j), i, j = 1, ..., p, given by the following expression

for c = 1, 2.

λ(c)(i, j) =
−ρ̂(c)ij

2

2
(
1− ρ̂

(c)
ij

2
)





(
x
(3−c)
j − x

(c)
j

)2

w
(c)
jj

+

(
x
(3−c)
i − x

(c)
i

)2

w
(c)
ii

+
w

(3−c)
ii

w
(c)
ii

+
w

(3−c)
jj

w
(c)
jj

−
2w

(3−c)
ij

w
(c)
ij

−
2
(
x
(3−c)
i − x

(c)
i

)(
x
(3−c)
j − x

(c)
j

)

w
(c)
ij



 .

(4.15)

We denote these three methods as C-L, Fried and Tan, respectively.

4.5.2 Proposed methods

Propositions 4.5.1 and 4.5.2, and corollary 4.5.3, give the optimization problem associated with

each of the three proposed methods, and state the equivalence between each optimization problem

and one of finding a MWST. The first method, J-div, searches for the tree for which the two

estimated tree distributions differ the most according to the J-divergence. To get the equivalence

between its optimization problem and the MWST problem, the same tree in both populations,

τ1 = τ2 = τ , is assumed. The second, based on the log-ratio, is considered in Tan et al. (2010) for

discrete variables, since in this case this is equivalent to Tan method based on (4.14), where the

Gaussian case was mentioned, but not studied. And the third, referred as Log-ratio-equal, is also

based on the log-ratio but considering equal trees.

The equivalence between each optimization problem in (4.10), (4.12) and (4.14) and one of

finding a MWST has also been proven by Chow and Liu (1968), Friedman et al. (1997, 1998) and

Tan et al. (2010), respectively.

Proposition 4.5.1 (J-div) Let f̂1τ and f̂2τ be the densities of p-variate distributions N(µ̂1, K̂
−1
1τ )
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and N(µ̂2, K̂
−1
2τ ), respectively. The problem of finding τ ∗ such that

τ ∗ = argmax
τ∈Tp

J(f̂1τ , f̂2τ ) = argmax
τ∈Tp

∫ (
f̂1τ (x)− f̂2τ (x)

)
ln
f̂1τ (x)

f̂2τ (x)
dx, (4.16)

where Tp = {τ |τ is a tree with p nodes}, is equivalent to a problem of finding a MWST for the

complete graph κ with weights λ(i, j), i, j = 1, ..., p, given by

λ(i, j) = λ(1)(i, j) + λ(2)(i, j), (4.17)

where λ(c)(i, j) is defined in equation 4.15 for c = 1, 2.

Proposition 4.5.2 (Log-ratio) Let f̂1τ1 and f̂2τ2 be the densities of p-variate distributions N(µ̂1, K̂
−1
1τ1

)

and N(µ̂2, K̂
−1
2τ2

), respectively. The problem of finding (τ ∗1 , τ
∗
2 ) such that

(τ ∗1 , τ
∗
2 ) = argmax

τ1,τ2∈Tp





n1∑

l=1

ln
f̂1τ1 (xl)

f̂2τ2 (xl)
+

n1+n2∑

l=n1+1

ln
f̂2τ2 (xl)

f̂1τ1 (xl)



 , (4.18)

where Tp = {τ |τ is a tree with p nodes}, is equivalent to the problem of finding two independent

MWSTs, τ ∗1 and τ ∗2 , for the complete graph κ with weights λ(c)(i, j), i, j = 1, ..., p, given by

λ(c)(i, j) =
(nc − n3−c)

2
ln
(
1− ρ̂

(c)
ij

2
)
−

nb ρ̂
(c)
ij

2

2
(
1− ρ̂

(c)
ij

2
)
{
w

(3−c)
ii

w
(c)
ii

+
w

(3−c)
jj

w
(c)
jj

−
2w

(3−c)
ij

w
(c)
ij

+

(
x
(3−c)
i − x

(c)
i

)2

w
(c)
ii

+

(
x
(3−c)
j − x

(c)
j

)2

w
(c)
jj

−
2
(
x
(3−c)
i − x

(c)
i

)(
x
(3−c)
j − x

(c)
j

)

w
(c)
ij




,

(4.19)

where ρ̂
(c)
ij = w

(c)
ij

(
w

(c)
ii w

(c)
jj

)−1/2

, c = 1, 2.

An immediate consequence is the following
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Corollary 4.5.3 (Log-ratio equal) When τ1 = τ2 = τ in Proposition 4.5.2, the optimization

problem is reduced to the problem of finding τ ∗ such that

τ ∗ = argmax
τ∈Tp





n1∑

l=1

ln
f̂1τ (xl)

f̂2τ (xl)
+

n1+n2∑

l=n1+1

ln
f̂2τ (xl)

f̂1τ (xl)



 , (4.20)

where Tp = {τ |τ is a tree with p nodes}. This problem is equivalent to a problem of finding a

MWST for the complete graph κ with weights λ(i, j), i, j = 1, ..., p, given by

λ(i, j) = λ(1)(i, j) + λ(2)(i, j), (4.21)

where λ(c)(i, j) is defined in equation 4.19 for c = 1, 2.

The proofs of Propositions 1 and 2, and Corollary 1, are given in Appendix B.

Remark 1 We note that when n1 = n2 = n: (i) (4.15) is proportional to (4.19), and then Tan

method is equivalent to Log-ratio; and (ii) (4.17) is proportional to (4.21), and then method J-div

is equivalent to Log-ratio equal.

Remark 2 Also that when Σ1 = Σ2 is assumed, W , as in (1.7), is used to compute the weights

for each method instead of W1 and W2, then: (i) C-L and Fried are equivalent; and (ii) Tan,

Log-ratio, J-div and Log-ratio equal are also equivalent.

Finally, we note that the measure optimized in (4.14) under the assumption τ1 = τ2 = τ is

equal to the one in (4.16), see Proposition 4.5.4 below. This is not true in general, where the

measures are different as well as the solution of the corresponding optimization problems, though

their solutions agree in some cases.

Proposition 4.5.4 Let f̂cτ denote the density of N(µ̂c, K̂
−1
cτ ) and f̃c the density of the empirical

distribution N(x(c),Wc), c = 1, 2, then

J(f̂1τ , f̂2τ ) = Ĵ(f̂1τ , f̂2τ ; f̃1, f̃2),
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where Ĵ(f̂1τ , f̂2τ ; f̃1, f̃2) =

∫ (
f̃1(x)− f̃2(x)

)
ln
f̂1τ (x)

f̂2τ (x)
dx.

The proof of this proposition is also given in Appendix B. We note that the following opti-

mization problem without the restriction of τ1 = τ2 can be considered:

Find (τ ∗1 , τ
∗
2 ) such that

(τ ∗1 , τ
∗
2 ) = argmax

τ1,τ2∈Tp

J(f̂1τ1 , f̂2τ2 ), (4.22)

where Tp = {τ |τ is a tree with p nodes}.

However, as we have mentioned before, in this case the optimization problem is not equivalent

to a problem of finding a MWST. In this case, other algorithms for combinatorial optimization

problems could be used, though this could be computationally expensive.

In the following section, we illustrate the empirical performance of the six methods described

in this section using some real and simulated data. For the numerical experiment in Section 4.6.1

and the breast cancer data in Section 4.6.2, we restrict the study to the case n1 = n2. The example

on HIV data in Section 4.6.2 considers different group samples sizes.

4.6 Numerical studies

4.6.1 Simulated data

Structures in the covariance matrix

We consider four types of structures for the concentration matrix, each type is associated with

one of the following models: autoregressive of order 1, AR(1); moving average of order 1, MA(1);

a set of variables equally correlated, ECM; a model associated with a random graph generated
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as a power law network, RAND. The first three were used in Bickel and Levina (2004) when

comparing LDA and DLDA. The fourth one, has been used in Danaher et al. (2014) in the

context of estimation of concentration matrices.

i) AR(1). For this model, the covariance matrix Σ has entries

σij = ρ|i−j|, i, j = 1, ..., p, 0 < |ρ| < 1. (4.23)

Its associated dependence graph is a tree τ called path. For example, when p = 4, the graph

is as given in Figure 4.1c), and the covariance and concentration matrices are

Σ =




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1



, K =

1

1− ρ2




1 −ρ 0 0

−ρ 1 + ρ2 −ρ 0

0 −ρ 1 + ρ2 −ρ

0 0 −ρ 1



. (4.24)

ii) MA(1). In this case the covariance matrix Σ has entries

σij = ρ|i−j|I(|i− j| ≤ 1), i, j = 1, ..., p, 0 < |ρ| < 0.5. (4.25)

The dependence graph corresponds to a complete graph G = κ, though the associated

concentration matrix with no zeroes depends on a single parameter ρ. For example, when

p = 4,

Σ =




1 ρ 0 0

ρ 1 ρ 0

0 ρ 1 ρ

0 0 ρ 1



, K =

1

a




−2ρ2 + 1 ρ3 − ρ ρ2 −ρ3

ρ3 − ρ −ρ2 + 1 −ρ ρ2

ρ2 −ρ −ρ2 + 1 ρ3 − ρ

−ρ3 ρ2 ρ3 − ρ −2ρ2 + 1



, (4.26)

where a = ρ4 − 3ρ2 + 1, and the corresponding dependence graph as given in Figure 4.1a).
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iii) ECM. For this model where all p variables are equally correlated, the covariance and concen-

tration matrices have the same kind of pattern:

Σ = (1−ρ)I+ρzzt =




1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1



, K = (c−d)I+dzzt =




c d · · · d

d c · · · d

...
...

. . .
...

d d · · · c



, (4.27)

where z = (1, ..., 1), c =
−(ρ(p− 2) + 1)

(ρ− 1)[ρ(p− 1) + 1]
and d =

ρ

(ρ− 1)[ρ(p− 1) + 1]
. Its associated

graph is also a complete graph κ, and both matrices depend on a single parameter ρ.

iv) RAND. In this case, the concentration matrix is random, where (i) the number of zeroes

and their position are determined by a random graph generated as a power law network

(PLN) with power parameter α = 2.3 and (ii) the non zeroes are random values from a

uniform distribution. More details are given in Appendix E. Two random graphs, G1 and

G2, generated to be used in the simulation study are given in Figure 4.3.

a) b)

Figure 4.3: Random graphs. Two graphs generated randomly as two PLN with power parameter
α = 2.3 and p = 100. The nodes with a degree larger than 20 are coloured in red. a) graph G1 with
114 edges and b) graph G2 with 156 edges. These graphs will be used in the simulation study.
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We consider both the cases, when specifying the distributions of the two populations from

which the data is generated, of common and different covariance matrices. The details are the

following.

Common covariance matrix

Four types of common covariance matrices and three different values for the mean vectors are

considered and described below.

Σ1 = Σ2 = Σ is associated with one of the four models: AR(1) with ρ = 0.9; MA(1) with

ρ = 0.45; ECM with ρ = 0.9; and RAND with associated graph G1 given in Figure 4.3a).

(µ1,µ2) take values: (i) a(0, vmax), (ii) b(0, vmin), and (iii) (0,urand); where vmax and vmin

are the eigenvectors associated with the largest and smallest eigenvalue of Σ, respectively, and

urand is a vector where each element is a random number from a U(0, t). For each of the three

mean directions and each model, the values of a, b and t are specified to satisfy an asymptotic

error rate value for LDA, given in (1.2), of around 10%, or equivalently, to satisfy J(f1, f2) =

(µ1 − µ2)
tΣ−1(µ1 − µ2) ≈ 6.57. See Table D.1 in Appendix D for details.

The error rate of the optimal allocation rule (or equivalently, the asymptotic error rate of LDA)

given in (1.2) with π1 = π2 is

P (e) = P (1|2) = P (2|1) = Φ
(
−1

2

√
J(f1, f2)

)
= Φ

(
−1

2

√
(µ1 − µ2)

tΣ−1(µ1 − µ2)
)
. (4.28)

The asymptotic error rate of DLDA when π1 = π2 = 1/2, that is, for the allocation rule: x is

assigned to Π1 when L(x,µ1,µ2,D
−1) > 0, and otherwise to Π2, is given by
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P (e) = Φ

(−A/2√
B

)
= Φ

(
−(µ1 − µ2)

tD−1(µ1 − µ2)/2√
(µ1 − µ2)tD−1ΣD−1(µ1 − µ2)

)
, (4.29)

where A = (µ1 − µ2)
tD−1(µ1 − µ2), B = (µ1 − µ2)

tD−1ΣD−1(µ1 − µ2), D = diag(Σ) and

L(x,µ1,µ2,D
−1) = xtD−1(µ1 − µ2)− 1

2
(µ1 + µ2)

tD−1(µ1 − µ2). (4.30)

The asymptotic error rates for LDA and DLDA for any Σ, in particular for the four types of

Σ used in the simulation study, are equal when π1 = π2, n1 = n2 = n → ∞ and the mean values

are (0, avmax) or (0, bvmin). To verify this, we write Σ and K as

Σ =

p∑

i=1

liviv
t
i and K =

p∑

i=1

l−1
i viv

t
i ,

where {v1, ..., vp} is the set of orthonormal eigenvectors of Σ and li is the eigenvalue associated

with vi, i = 1, ..., p. Then, if (µ1,µ2) = (0, avj) with vj an eigenvector of Σ, a > 0, π1 = π2 = 1/2,

and Σ with all diagonal elements equal to one, then the probability of misclassification in (4.28)

is given by

P (e) = Φ
(
−1

2

√
J(f1, f2)

)
= Φ

(
−1

2

√
avtj

(∑p
i=1 l

−1
i viv

t
i

)
avj

)
= Φ

(
−a/2√
lj

)
,

and (4.29) is

P (e) = Φ

(−A/2√
B

)
= Φ


 −a2/2√

avtj (
∑p

i=1 liviv
t
i) avj


 = Φ

(
−a/2√
lj

)
.

For the case where the mean vector is (0,urand), the asymptotic error rates for LDA and DLDA

are not equal anymore. For example, the asymptotic error rates, for the AR(1) and ECM models,

are larger than 40% for DLDA and around 10% for LDA.
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Different covariance matrices

In this case Σ1 6= Σ2, and in all four cases Σ1 is the same random matrix associated with a

RAND model with graph G2 given in Figure 4.3b). Σ2 in each of the four cases is associated with

one of the following models: AR(1) with ρ = 0.3; MA(1) with ρ = 0.275; ECM with ρ = 0.2; and

RAND with associated graph G1 given in Figure 4.3a).

For this case, we use only one direction for the mean values, (µ1,µ2) = (0,urand), where each

element of urand is a random number from U(0, t). The t value is such that the asymptotic global

error rate for QDA is around 5%. For each model, the value of t was specified using a sample of

40, 000 observations in each population and the allocation rule in (1.1) to classify them. These

asymptotic error rates are referred as optimal. See Table D.2 in Appendix D for details.

Estimation of the error rates

Estimated error rates were obtained using a Monte Carlo study, where the error rates were cal-

culated as the average over 400 proportions of misclassified observations. Each proportion was

obtained by the following procedure.

1. Generate n1 and n2 independent training observations from p-variate distributions N(µ1,Σ1)

and N(µ2,Σ2), respectively, with p = 100 and n1 = n2 = n ∈ {10, 50, 100, 200, 1000,

50000, 200000}.

2. For each method, the tree structure and the parameters are estimated. Both the homoge-

neous and the heterogeneous case are considered, that is, with and without the assumption

Σ1 = Σ2, respectively.

3. The plug-in allocation rule is then used to classify n1v = 100 and n2v = 100 new independent

observations generated from N(µ1,Σ1) and N(µ2,Σ2), respectively.
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Technical note

All the numerical results were computed using C++; Kruskal’s algorithm was implemented to

find the MWST for each of the six methods.

Results

Common covariance matrix

Estimated error rates calculated considering concentration matrices associated with models

AR(1) and ECM are presented in Figures 4.4 and 4.5. Corresponding values for MA(1) and

RAND models, presented in Appendix E, show a similar behaviour to the one of the AR(1)

model. In Figures 4.4 and 4.5, the estimated error rates for each method are presented for both

the heterogeneous and homogeneous case. The population or asymptotic error rate for LDA,

Φ
(
−1

2

√
(µ1 − µ2)

tΣ−1(µ1 − µ2)
)
, is also included as a reference with the name Optimal. The

AR(1) model has a path-structured graph, and the estimated error rates when assuming its tree

structure are also included in Figure 4.4 with the name TrueTree. We observe the following.

1. The performance of tree allocation rules for the four models depends on the mean vectors’

direction.

(a) When (µ1,µ2) = (0, avmax), tree rules are worse than DQDA or DLDA. However, they

are better than LDA or QDA, except for ECM model.

(b) When (µ1,µ2) = (0, bvmin), tree rules are better than DLDA in the homogeneous case,

except for ECM when n ≥ 50, 000. In the heterogeneous case: (i) C-L, Fried and J-div

are better than DQDA except for ECM when n ≥ 50, 000, though in this case Fried

is similar to DQDA; and (ii) Tan is similar to, or worse than, DQDA for AR(1) and

MA(1) models, and also for ECM and RAND when n ≥ 50, 000. In general, DQDA

and DLDA have a bad performance when n ≤ 1, 000.
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(c) When (µ1,µ2) = (0,urand), tree methods are better than DQDA and DLDA for AR(1)

and ECM, and are similar for MA(1) and RAND.

2. In general, when (µ1,µ2) = (0, bvmin), DLDA and DQDA converge to their asymptotic error

rate very slowly. For example, for AR(1) model, they have high estimated error rates even

when group training sample size is n1 = n2 = 50, 000, whereas C-L and Fried are close to

their asymptotic error rates for n1 = n2 = 200.

3. The performance of DLDA with (µ1,µ2) = (0, bvmin), where its asymptotic error rate is

the same to the one for LDA, shows that for finite sample sizes, as on this case for n1 =

n2 ≈ 50, 000, it is not always true that a plug-in allocation rule with less parameters has a

better performance than LDA. In this case, methods based on trees are a good alternative

to DLDA.

4. Tan and J-div methods in none of the cases are the best methods.

5. C-L and Fried have a good performance in almost all cases. Their performance is better

than, or similar to, the one of the other methods, except for ECM.

6. TrueTree method, when (µ1,µ2) = (0, avmax), shows an example where the use of a di-

agonal matrix, or another matrix associated with trees, see Tan and J-div, gives a better

classification performance than the use of the true tree structure for small sample sizes, in

this example for n < 200.

We also observe the following which was expected since the design of the numerical experiment.

1. The methods in the homogeneous case have a better performance, or in the worst cases

similar, when compared with their corresponding heterogeneous case counterparts.

2. The performance of QDA and LDA does not change when modifying the model used for Σ.

It does not change either for the different directions of the mean vectors. It only changes
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when modifying the group training sample size n1 = n2 = n. We note that the data were

generated to satisfy J(f1, f2) = (µ1 − µ2)
tΣ−1(µ1 − µ2) ≈ 6.57.

3. For the ECMmodel, C-L and Fried methods, which only depend on the correlation parameter

ρ, can select any of the pp−2 possible trees since all of them have equal total weight. The

choice of the tree depends on numerical differences when estimating the parameters. On

the other hand, Tan and J-div methods, which also depend on the mean differences, select

specific trees, but they also have a poor performance.

4. For the AR(1) model using its true tree structure, TrueTree method illustrates the two

sources of estimation error: structure and parameter estimation. In this case, the estimation

error is due only to the parameter estimation. We observe that the estimated error rates

are very close to those corresponding to C-L and Fried, though these two consider both

parameter and structure estimation.

Different covariance matrices

For each case, in population one we use a random matrix, and in two a specific matrix,

that is: (RAND, AR(1)), (RAND, MA(1)), (RAND, ECM) and (RAND, RAND). Numerical

results corresponding to models (RAND, ECM) and (RAND, RAND), for the heterogeneous and

the homogeneous case, are shown in Figures 4.6 and 4.7. The population or asymptotic error

rates for QDA are also included as Optimal. In the case of different concentration matrices,

P (1|2) 6= P (2|1), and so the estimated error rates for each group are also included in the figures.

Corresponding values for (RAND, AR(1)) and (RAND, MA(1)) presented in Appendix E, show a

similar behaviour to the one for (RAND, RAND). We observe the following.

1. For (RAND, AR(1)), (RAND, MA(1)) and (RAND, RAND), tree based methods have a

better performance in the heterogeneous case than in the homogeneous, where their error

rates are larger than 20%. These are also better than DQDA and QDA for n1 = n2 > 10.
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2. For (RAND, ECM), tree methods in the heterogeneous case are very similar to DQDA, and

in the homogeneous case are very similar to DLDA. All tree methods, as well as the diagonal,

have a good performance for group 1 and a bad one for group 2. In spite of this, tree and

diagonal methods are a good alternative to QDA and LDA for small group training sample

sizes, in this example, for n ≤ 120.

3. In the four cases, C-L and Fried have similar estimated global error rates, though slightly

different group error rates for n ∈ {60, 120, 200}.

4. In general, global error rates are nearly the same for tree methods.

4.6.2 Real Data

Breast cancer data

We consider the data described in Section 3.4 and study the performance of the plug-in allocation

rules considering subsets of p variables, p ∈ {15, 50, 100, 250, 500, 1000}. For p = 15, the variables,

the ones described in 3.4.2 for Case 2, were selected using stepwise for least squares linear regres-

sion, in such a way that they gave low observed proportion of misclassified observations. These 15

variables are contained in all the subsets with p > 15. We note that the set of 15 variables were

selected in a way that could favour LDA. As we restrict the numerical study to the case where

the training sample is equal for both populations, we randomly selected 58 of the 192 observations

from the control group.

The estimated error rates are computed using the repeated holdout method (Kim, 2009).

For each group, approximately three fourths of the observations (44 cases and 44 controls) were

randomly selected for training and one fourth for testing. This was repeated 200 times. The

classification rates were then estimated by the average of the 200 percentages of misclassified

observations. The estimated group and global error rates, for each method, are shown in Figure
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4.8, in which the following is observed.

1. The performance of all methods is better, or similar, in the homogeneous case than in the

heterogeneous. For example, global error rates are larger than 20% in the heterogeneous

case for p = 100, whereas those in the homogeneous case are less than 20%.

2. Tree methods in the heterogeneous and homogeneous case are better than, or similar to,

DQDA and DLDA, respectively, when comparing the global error rates.

3. When considering the global estimated error rates and the homogeneous case with p ≥ 50,

C-L is better than, or similar to, the other methods.

4. The performance of tree methods is different for each group.

a) In the heterogeneous case, C-L and Fried have a better performance in the group of cases

than in the group of controls, whereas Tan and J-div have a similar one in both groups.

b) In the homogeneous case, Tan method has a different performance for each group, while

C-L has almost the same performance.

Ilustrative example in the context of repeated measures

We consider a data set with a biomarker indicative for HIV therapy resistance. The goal is to

classify patients either as resistant or non-resistant to HIV therapy based on longitudinal viral

load profiles. The data were presented and studied in May and DeGruttola (2007) in the context

of nonparametric tests. In Kohlmann et al. (2009), a subset of 85 out 356 patients is analysed in

the context of classification.

The viral load was measured by the amount of HIV RNA at six occasions: at baseline, after 2,

4 8, 16 and 24 weeks. The original data set consists of 356 patients, though the data are complete

for only 85 patients, 59 non-resistant and 26 resistant. We consider the set of 85 patients and
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log10-transformed values of HIV RNA. The box plots of the data are presented in Figure 4.9, the

scatter plots and correlations between the RNA level at two periods of time are also given.

The estimated error rates are computed using the repeated holdout method (Kim, 2009). For

each group, approximately two thirds of the observations (40 non-resistant and 18 resistant) were

randomly selected for training and one third for testing. This was repeated 200 times. The

classification rates were then estimated by the average of the 200 percentages of misclassified

observations. The estimated group and global error rates, for each method, are shown in Figure

4.10. The error rates estimated assuming the structure of a path are also included with the name

Path in both the heterogeneous and homogeneous cases. The following is observed.

1. Global estimated error rates are similar for all methods and in both the heterogeneous

and homogeneous cases. DQDA has the lowest global error rate, followed by J-div and

Log-ratio equal. These three methods consider the same structure for both concentration

matrices though arbitrary values for the parameters.

2. The performance of the methods is very similar in the non-resistant group, however, Log-

ratio method has the worst performance.

3. DQDA, J-div and Log-ratio equal methods in the heterogeneous case and DLDA and Tan in

the homogeneous have a better performance in the resistant group compared with the other

methods. The rest of the methods have error rates larger than 50%.

4. The common assumption of a path in the context of repeated measures does not help for

classification in this case. The performance of the method obtained assuming a path is very

similar than the one of QDA or LDA.

5. In general, five methods have the best performance: DQDA, J-div and Log-ratio equal in

the heterogeneous case and DLDA and Tan in the homogeneous. These methods do not
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estimate the real structure associated with the matrices, showing another example where a

simple structure, as the one of a diagonal matrix, gives a better classification performance.

4.7 Conclusions

We have described six different methods for estimating the tree structure of graphical Gaussian

models in the context of discriminant analysis. We have also compared their performance consid-

ering two populations and equal group sample size. These methods consider a tree structure on

the concentration matrices and take advantage of (i) the factorization of the distribution in terms

of bivariate and univariate densities, and (ii) the solution provided by an efficient algorithm to

find a MWST.

The MLE of the concentration matrices has an analytical expression for decomposable models

other than trees, however, the assumption of a tree structure makes it possible to find an exact

solution to the optimization problem of finding the structure. Without this assumption, finding a

solution could be computationally expensive for a large number of variables.

The numerical experiments show that tree methods are a good alternative to the usual QDA,

LDA, DQDA and DLDA.

DQDA and DLDA require a group sample size of at least two observations for the existence

of the MLEs, this makes them useful in high dimensional settings, however, as it was shown in

Figures 4.4b) and 4.5b), they can converge very slowly to their asymptotic error rate or, as it was

shown in Figures 4.4c) and 4.5c), they have a poor performance when they have a high asymptotic

error rate. Tree methods are an alternative in all these cases and only need a group sample size

of three observations for the existence of a solution.
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The results also show that among the methods based on trees there is no single one that out-

performs the others. Any of the tree methods can be used without an expensive computational

cost in a high dimensional setting. A way to select a method based on trees, among all of them, in

a practical application, is using cross-validation to estimate their error rates. These rates together

with the corresponding to diagonal discriminant analysis can be compared and then used to select

the best one.

gRapHD R Package can be used for the estimation of the two trees used in C-L method.

For the other tree methods, igraph R package (Csardi and Nepusz, 2006) includes an efficient

algorithm to find a MWST, which can be used using the specific weights given in this chapter for

each method. We have implemented the six methods in C++ using Kruskal’s algorithm.

104



4.7. Conclusions

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

a)

CL
Fried
Tan
J−div

TrueTree
DQDA/DLDA
QDA/LDA
Optimal

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50
b)

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50
c)

Figure 4.4: AR(1). Estimated error rates with p = 100 variables and n1 = n2 = n training samples
on each group. On the left the heterogeneous cases and on the right the homogeneous.
Σ with entries σij = 0.9|i−j|, i, j = 1, ..., p, and
a) (µ1,µ2) = (0, avmax), b) (µ1,µ2) = (0, bvmin), and c) (µ1,µ2) = (0,urand),
where vmax is the largest and vmin the smallest eigenvalue of Σ, and urand is a vector with random
numbers from U(0, t). a, b and t are constants such that the asymptotic error rate value for LDA is
around 10% 105



4.7. Conclusions

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

a)

CL
Fried
Tan
J−div

DQDA/DLDA
QDA/LDA
Optimal

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50
b)

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50

n = n1 = n2

E
rr

or
 r

at
es

10 60 120 200 1,000 50,000 200,000

10

20

30

40

50
c)

Figure 4.5: ECM. Estimated error rates with p = 100 variables and n1 = n2 = n training samples on
each group. On the left the heterogeneous cases and on the right the homogeneous.
Σ = (1− 0.9)I + 0.9zzt, where z = (1, ..., 1), and
a) (µ1,µ2) = (0, avmax), b) (µ1,µ2) = (0, bvmin), and c) (µ1,µ2) = (0,urand),
where vmax is the largest and vmin the smallest eigenvalue of Σ, and urand is a vector with random
numbers from U(0, t). a, b and t are constants such that the asymptotic error rate value for LDA is
around 10% 106
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Figure 4.6: (RAND, ECM). Estimated error rates with p = 100 variables and n1 = n2 = n training
samples. On the left the heterogeneous cases and on the right the homogeneous. a) Global, b) Group
1 and c) Group 2.

Σ1 is associated with a RAND model with graph G2 given in Figure 4.3b), Σ2 has entries σ
(2)
ij =

0.2I(i 6= j) + 1I(i = j), i, j = 1, ..., p, and (µ1,µ2) = (0,urand), where urand is a vector with random
numbers from U(0, t) and t is such that the asymptotic error rate value for QDA is around 5%
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Figure 4.7: (RAND, RAND). Estimated error rates with p = 100 variables and n1 = n2 = n training
samples. On the left the heterogeneous cases and on the right the homogeneous. a) Global, b) Group
1 and c) Group 2.
Σ1 and Σ2 are associated with a RAND model with graph G2 and G1 given in Figure 4.3b) and 4.3a),
respectively, and (µ1,µ2) = (0,urand), where urand is a vector with random numbers from U(0, t)
and t is such that the asymptotic error rate value for QDA is around 5%
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Figure 4.8: Estimated error rates computed using the repeated holdout method with 200 random
samples for Breast cancer data. On the top the heterogeneous cases and on the bottom the homoge-
neous. The original data set has 250 observations, 58 cases and 192 controls, but we randomly selected
58 controls to satisfy n1 = n2. Training: ncases = ncontrols = 44. Testing: ncases = ncontrols = 18.

109



4.7. Conclusions

1

2

3

4

5

6

lo
g1

0(
R

N
A

)

R
es

N
on

R

R
es

N
on

R

R
es

N
on

R

R
es

N
on

R

R
es

N
on

R

R
es

N
on

R

0 2 4 8 16 24

Status

Weeks

X1

2 4 6

r= 0.59 r= 0.50

1 3 5

r= 0.42 r= 0.27

1 3 5

3.
5

5.
5

r= 0.26

2
4

6

X2 r= 0.66 r= 0.50 r= 0.46 r= 0.38

X3 r= 0.85 r= 0.74

2
4r= 0.71

1
3

5

X4 r= 0.88 r= 0.85

X5

1
4r= 0.95

3.5 5.5

1
4

2 4 1 3 5

X6

Non−resistant

X1

3.0 4.5

r= 0.55 r= 0.57

2 4 6

r= 0.35 r= 0.33

1 3 5

4.
0

5.
5

r= 0.22

3.
0

5.
0

X2 r= 0.45 r= 0.36 r= 0.42 r= 0.36

X3 r= 0.73 r= 0.67

2
4r= 0.56

2
4

6

X4 r= 0.83 r= 0.79

X5

1
3

5

r= 0.92

4.0 5.5

1
4

2 4 1 3 5

X6

Resistant

Figure 4.9: Box and scatter plots for Log10 transformed amount of HIV RNA at six occasions. At
baseline, after 2, 4 8, 16 and 24 weeks (X1, X2, X3, X4, X5 and X6). Data set has 85 patients, 59
non-resistant and 26 resistant.

110



4.7. Conclusions

E
rr

or
 r

at
es

Q
D

A

D
Q

D
A

C
−

L

F
rie

d

Ta
n

J−
di

v

Lo
g−

r

Lo
g_

r_
e

P
at

h

LD
A

D
LD

A

C
−

L

Ta
n

P
at

h

20
40

60
80

Heterogeneous Homogeneous

Method

Non−resistant              Global Resistant

Figure 4.10: Estimated error rates computed using the repeated holdout method with 200 random
samples for HIV data. n = 85 patients, n1 = 59 non-resistant and n2 = 26 resistant. Training:
n1 = 40 and n2 = 18. Testing: n1 = 19 and n2 = 8.

111



5. Conclusions and Future Work

5.1 Conclusions

We have considered the use of patterned matrices in discriminant analysis for two Gaussian pop-

ulations. In a first stage, we considered linear restrictions on the concentration matrices, as those

introduced by Anderson (1970). Additionally, we considered the case where some corresponding

parameters between the two matrices are equal.

When considering these restrictions, two estimation problems emerge: parameter and struc-

ture estimation. For parameter estimation, we considered ML estimation and adapted the iterative

partial maximization (IPM) algorithm (Jensen et al., 1991) to obtain estimates.

The IPM algorithm was implemented in C++ and used to obtain the numerical results pre-

sented in Chapter 3. In order to use this algorithm, the structure of the concentration matrices

must be known in advance. However, the estimation of the structure when considering all the

restrictions is complex and requires the development of efficient algorithms. For this reason, we

restricted the study to graphical tree models.

Considering Gaussian graphical tree models, we studied six methods for estimating the struc-

ture in the context of discriminant analysis. They all use ML estimation for the parameters, but

use a different function to be optimized for the estimation of the tree structure. Four of these

methods optimize a measure of divergence between the two Gaussian populations.
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Three of these methods had been introduced in the literature, and based on these, three oth-

ers were introduced in this thesis. For these three methods, we proved the equivalence of their

corresponding optimization problems with one of finding a MWST. This equivalence makes the

structure estimation solvable in an efficient way even if the number of variables is large.

We compared the performance of these methods in the context of discriminant analysis for

equal group sample size, using real and simulated data. Diagonal discriminant analysis was con-

sidered as a benchmark, as well as quadratic and linear discriminant analysis whenever the sample

size was sufficient. We observed the following.

Tree based methods were a good alternative to the usual QDA, LDA, DQDA and DLDA;

especially in some of the examples presented where: (i) QDA and LDA could not be used or

had a poor performance because of the training sample size, (ii) DQDA and DLDA converged

very slowly to their asymptotic error rate, and (iii) DQDA and DLDA had high asymptotic er-

ror rates. The results also showed that among the methods based on trees there was no single

one that outperformed the others. Even though none of the methods based on the tree models

outperformed the benchmarks in all data sets, we conclude that any of the six tree methods is a

simple and computationally inexpensive alternative to well established discriminant methods in

high dimensional settings, where sample size is similar to, or smaller than, the number of variables.

We note the following aspects about the methods based on trees.

• They take advantage of the tree structure, specifically of (i) the existence of analytical

expressions for the MLEs, and (ii) the solution provided by an efficient algorithm to find a

MWST.

• The assumption of a tree structure makes it possible to find an exact and inexpensive solution
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to the optimization problem of finding the structure. Without this assumption, finding a

solution could be computationally expensive for a large number of variables.

• C-L and Fried methods try to estimate the zero structure associated with the true graphical

models. The log-likelihood is optimized in these methods, assuming two independent and

arbitrary trees, or the same tree in both populations. On the other hand, the other four

methods do not necessarily focus on the zero structure. In these methods, a measure of

divergence between the two distributions is optimized. This means that we cannot use the

estimates of the concentration matrices to interpret conditional independences when using

these four methods. In general, all the six methods were developed for the problem of

classifying new observations, though Chow and Liu’s idea is also used for approximating the

distribution of a single population.

• In any of the six methods, we can modify the tree structure estimation such that we do not

consider the space of pp−2 trees. We can use the subset of trees which do not have some edges;

these removed edges could be selected in advance when some conditional independences are

known, though the last only makes sense in C-L and Fried methods.

5.2 Future Work

• We can examine the use of decomposable models in discriminant analysis. The MLE of the

concentration matrix has an analytical expression for these models. However, the structure

estimation is not solvable using algorithms for the MWST problem.

A forward selection procedure could be developed and implemented for this purpose using

any of the measures associated with the six methods.

The main problem in a forward selection method is the identification of the edges that can
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be added such that the new graph remains decomposable, and some weights need to be

updated at each iteration. Two algorithms to identify the edges are given in Thomas and

Green (2009) and Deshpande et al. (2001). In the latter, Chow and Liu’s idea has been con-

sidered for decomposable models. Abreu et al. (2010) has implemented a forward algorithm

for single populations in the gRapHD R Package.

As starting point, the gRapHD R Package can be used for the structure estimation for each

matrix when considering C-L method with decomposable models. For the other 5 methods,

specific algorithms need to be implemented.

We note that when searching for a decomposable model, the maximal clique size should be

considered since the sample size needed for the existence of the MLE depends on this value.

• Considering tree models, other measures of divergence between two populations could be

optimized for structure estimation. However, their associated optimization problem could

not necessarily be equivalent to a MWST problem. Therefore, finding a solution would re-

quire the use of other existing algorithms of combinatorial optimization or the development

of specific ones.

For example, when using the Binomial deviance loss function (see Hastie et al., 2009, p.

346), the optimization problem is not equivalent to one of finding the MWST. We have

used this function and a forward selection procedure with the breast cancer data analysed

in Chapter 4. We considered sets of variables of size p ∈ {15, 50, 100} to estimate the error

rates. We observed that the estimated error rates of the associated rule were better than

those corresponding to any of the six methods, and similar to those for LDA and QDA.

These results show that this function could be a good alternative, though for a high number
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of variables, finding a solution is time-consuming and could be computationally unfeasible.

• In general, a penalized log-likelihood approach could be used to include, besides the zero

structure, equalities of elements within a concentration matrix or between elements of the

two matrices. However, finding a solution requires the use of algorithms for convex opti-

mization (Boyd and Vandenberghe, 2004), for example, those implemented in the package

cvx in Matlab; or the development of specific algorithms.

We did an exploratory experiment with a small data set of five variables and 88 observations.

We considered the problem of finding the zero structure and equalities of the elements of

the concentration matrix for one population. The observations correspond to examination

marks of 88 students in five subjects Algebra, Analysis, Mechanics, Statistics and Vectors

(Mardia et al., 1979). With this data set, Hφjsgaard and Lauritzen (2008) adjusted the

RCON model represented by the graph in Figure 5.1a); Gehrmann (2011) adjusted the one

represented by the graph in Figure 5.1b); and we adjusted the one represented by the graph

in Figure 5.1c) using the package cvx in Matlab to solve the optimization problem in (5.1).

max
K>0




(log |K| − tr(SK))− λ1‖K‖1 − λ2

∑

i6=j

|kii − kjj| − λ3
∑

i6=j,k 6=l,
(i,j)6=(k,l)

|kij − kkl|




. (5.1)

The solution for this example was easily found for specific values given to the tuning pa-

rameters λ1, λ2 and λ3. However, when we tried with p = 20 variables, we realized that the

development of a specific algorithm is needed. This is because cross-validation is used twice,

once to determine the values of the tuning parameters and once for the estimation of the

error rates. Danaher et al. (2014) and Hoefling (2010) may be useful for the development of

an algorithm for structure estimation using a penalized log-likelihood approach. Recently,
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Gao and Massam (2014) have considered a penalize approach to look for the equalities in

RCON and RCOR models.

In any case, it is necessary to carry out numerical and theoretical studies on the performance

of the different allocation rules obtained with the selected structures. In the numerical case, it is

important that both parameter and structure estimation could be efficiently solved in order to use

simulation procedures or a cross-validation approach.
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Figure 5.1: RCON models fitted for Mathematics Marks Data: a) in Hφjsgaard and Lauritzen (2008),
b) in Gehrmann (2011), and c) using the penalized log-likelihood function in (5.1).
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A. CG-distribution with linear concen-

tration matrices

A.1 CG-distribution as a member of the regular exponen-

tial family

We observe that (1.3), a Conditional Gaussian density (see Lauritzen, 1996, p. 158), can be expressed as

follows

f(c,x) = exp

[
δ1(c)

{
ln
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(A.1)

where δ1(c) is as in (1.10).

Taking equation 3.1 with restriction III into (A.1), one gets

f(c,x) = exp
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+
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i=1
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where ψ(θ), the cumulant function of f(c,x), is equal to
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And the vector of canonical parameters is

θ = (θ1, ψ0, ..., ψf , ψ
(1)
f+1, ..., ψ

(1)
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In this case, ε
(1)
i ’s and ε

(2)
p ’s have no restrictions since the vector means are not restricted, and

hence the CG-distribution with restrictions in III belongs to the regular exponential family and

(A.2) is given in his minimal expression with canonical parameter vector θ and vector of sufficient

statistics
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A.2. Maximum likelihood estimation

A.2 Maximum likelihood estimation

The maximum likelihood estimator of θ, if exists, it is unique and can be obtained by equating

the sufficient canonical statistics to their expectations as follows (see Lauritzen, 1996, Theorem

D.1, p. 268)
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Using the results:

1.
∂xtAx

∂A
= xxt,

2.
∂xtAx

∂x
= 2Ax when A is a symmetric matrix,
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one gets that the expectations correspond to the following expressions.
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where vector el has zero in all entries but in entry l has 1.

Using (A.5) and (A.6), we observe that π1, µ1 and µ2 can be estimated with an analytical

expression: π̂1 = n1

n
, µ̂1 = x1 and µ̂2 = x2; and these parameters do not depend on the canon-

ical parameters. Additionally, the equations for the canonical parameters ψh, h = 0, ..., f , ψ
(1)
h ,

h = f + 1, ..., q, and ψ
(2)
h , h = f + 1, ..., q, depend only on the canonical parameters θ1, ε

(1) and

ε(2) through π1, µ1 and µ2. Therefore, it is possible to estimate K1 and K2 in a first stage, and

afterwards to estimate ε(1), ε(2) and θ1.

Variances of the sufficient statistics are obtained from the second derivatives of the cumulant

function, as follows.
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1 Hhµ1)),

+ n(1− π1)(
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2
tr(HhK

−1
2 HhK

−1
2 ) + tr(µt2HhK

−1
2 Hhµ2)), h = 0, ..., f

n
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∂ψ
(1)
h

2 = nπ1(1 + π1)

(
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2
tr(K−1

1 Hh)−
1

2
tr
(
µ1µ

t
1Hh

))2

+ nπ1(
1

2
tr(HhK

−1
1 HhK

−1
1 ) + tr(µt1HhK

−1
1 Hhµ1)), h = f + 1, ..., q

n
∂2ψ(θ)

∂ψ
(2)
h

2 = nπ1(1 + π1)

(
−1

2
tr(K−1

2 Hh)−
1

2
tr
(
µ2µ

t
2Hh

))2

+ n(1− π1)(
1

2
tr(HhK

−1
2 HhK

−1
2 ) + tr(µt2HhK

−1
2 Hhµ2)), h = f + 1, ..., q.

(A.7)

Expressions in (A.6) and (A.7) are used in the IPM algorithm described in Section 3.2.
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B. Kruskal’s algorithm for the MWST

problem

Kruskal’s algorithm (Kruskal, 1956) is as follows . For a connected and weighted graph G = (V,E)

1. Sort all weights in increasing order.

2. Select the edge with the minimum weight among the edges not selected if it does not form

a cycle with the so far selected edges, otherwise discard this edge.

3. Do step 2 until all nodes are connected.

For example, the complete graph with four nodes and weights given in Figure B.1 has 16 span-

ning trees and total weight λ(G) = 19. A MWST can be found using Kruskal’s algorithm as in

Figure B.2 considering that the edges are sorted as: (1, 3), (1, 2), (2, 3), (1, 4), (2, 4) and (3, 4). A

red dotted edge means that this edge is discarded since it forms a cycle and a blue dashed edge

means that this edge is selected.

1 2

3 4

1

2

34 4

5

Figure B.1: A weighted complete graph G with four nodes and total weight λ(G) = 19.
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B.0. Kruskal’s algorithm for the MWST problem

1 2

3 4

1

1 2

3 4

1

2 1 2

3 4

1

2

3

1 2

3 4

1

2

4

τ

Figure B.2: Kruskal’s algorithm applied to the graph in Figure B.1. A red dotted edge means that
this edge is discarded since it forms a cycle. A blue dashed edge means that this edge is selected.
The weight of the MWST τ is λ(τ) = 7.

Another MWST for the graph in Figure B.1 can be obtained using Kruskal’s algorithm con-

sidering the following order: (1, 3), (1, 2), (2, 3), (2, 4), (1, 4) and (3, 4). The MWST τ ∗ obtained

is the one presented in Figure B.3 with weight λ(τ ∗) = 7.

1 2

3 4

1

2

4

τ ∗

Figure B.3: Another MWST, τ∗, for the graph in Figure B.1. The weight of this spanning tree is also
λ(τ∗) = 7.
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C. Proofs of propositions

Proof of proposition 4.5.1 We note that for a given tree τ = (V,Eτ ) with p nodes

J(f̂1τ , f̂2τ ) =
1

2

[
tr(Σ̂1τK̂2τ ) + tr(Σ̂2τ K̂1τ ) + tr(K̂1τ (x1 − x2)(x1 − x2)

t)

+tr(K̂2τ (x1 − x2)(x1 − x2)
t)
]
− p equation 4.4

=
1

2

[
tr(K̂2τ Σ̂1τ (τ)) + tr(K̂1τ Σ̂2τ (τ)) + tr(K̂1τD + K̂2τD)

]
− p prop. 4.2.7

=
1

2

[
tr(K̂2τW1(τ)) + tr(K̂1τW2(τ)) + tr(K̂1τD + K̂2τD)

]
− p prop. 4.2.6

= 1
2

∑

i<j
(i,j)∈Eτ

[
tr([W1

−1
(i,j)]

pD)− tr([W1
−1
(i) ]

pD)− tr([W1
−1
(j)]

pD)

+tr([W2
−1
(i,j)]

pD)− tr([W2
−1
(i) ]

pD)− tr([W2
−1
(j)]

pD)

+tr([W2
−1
(i,j)]

pW1)− tr([W2
−1
(i) ]

pW1)− tr([W2
−1
(j)]

pW1)

+tr([W1
−1
(i,j)]

pW2)− tr([W1
−1
(i) ]

pW2)− tr([W1
−1
(j)]

pW2)
]

+1
2

∑p
j=1 tr

(
[W2

−1
(j)]

pW1

)
+ 1

2

∑p
j=1 tr

(
[W1

−1
(j) ]

pW2

)

+1
2

∑p
j=1 tr

(
[W1

−1
(j)]

pD
)
+ 1

2

∑p
j=1 tr

(
[W2

−1
(j)]

pD
)
− p prop. 4.2.8

= −
∑

i<j
(i,j)∈Eτ

λ(i, j) + C = −λ(τ) + C,

where λ(τ) =
∑

i<j
(i,j)∈Eτ

λ(i, j) is the total weight of τ , D = (x1 − x2)(x1 − x2)
t, Σ̂cτ = K̂−1

cτ ,

c = 1, 2, C is a constant, and
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C.0. Proofs of propositions
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(C.1)

Since −λ(τ) is the only term of J(f̂1τ , f̂2τ ) that varies depending on a given tree τ , the problem

of maximizing J(f̂1τ , f̂2τ ) over Tp in equation 4.16 is equivalent to the problem of finding a MWST

for the complete graph with p nodes and weights defined in equation C.1 for each edge (i, j). We

noted that weights in (C.1) are equal to those in (4.17) .

Proof of proposition 4.5.2 The problem in (4.18) can be expressed as finding τ ∗1 and τ ∗2 such

that

τ ∗1 = argmax
τ1∈Tp





n1∑

l=1

ln f̂1τ1 (xl)−
n1+n2∑

l=n1+1

ln f̂1τ1 (xl)



 (C.2)

τ ∗2 = argmax
τ2∈Tp





n1+n2∑

l=n1+1

ln f̂2τ2 (xl)−
n1∑

l=1

ln f̂2τ2 (xl)



 . (C.3)

Considering the problem for τ ∗1 in (C.2), we note that for a given tree τ = (V,Eτ ) with p nodes
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n1∑

l=1

ln f̂1τ (xl) −
n1+n2∑

l=n1+1

ln f̂1τ (xl)

=

p∑

i=1

n1∑

l=1

ln f̂1(xil) +
∑

i<j
(i,j)∈Eτ

n1∑

l=1

ln
f̂1(xil , xjl)

f̂1(xil) f̂1(xjl)

−
p∑

i=1

n1+n2∑

l=n1+1

ln f̂1(xil) −
∑

i<j
(i,j)∈Eτ

n1+n2∑

l=n1+1

ln
f̂1(xil , xjl)

f̂1(xil) f̂1(xjl)
prop. 4.2.9

=

p∑

i=1




n1∑

l=1

ln f̂1(xil) −
n1+n2∑

l=n1+1

ln f̂1(xil)


−

∑

i<j
(i,j)∈Eτ

λ(i, j),

where

λ(i, j) =

n1+n2∑

l=n1+1

ln
f̂1(xil , xjl)

f̂1(xil) f̂1(xjl)
−

n1∑

l=1

ln
f̂1(xil , xjl)

f̂1(xil) f̂1(xjl)
. (C.4)

Since −∑ i<j
(i,j)∈Eτ

λ(i, j) is the only term that varies depending on a given tree τ , the problem

of maximizing
∑n1

l=1ln f̂1τ (xl) −
∑n1+n2

l=n1+1ln f̂1τ (xl) over Tp is equivalent to the problem of finding

a MWST for the complete graph with p nodes and weights defined in equation C.4 for each edge

(i, j). Using property 4.2.10 in (C.4) we can obtain the weights given in (4.19) for c = 1. A

similar procedure can be done for the problem for τ ∗2 in (C.3).

Proof of corollary 4.5.3 We note that for a given tree τ = (V,Eτ ) with p nodes

n1∑

l=1

ln
f̂1τ (xl)

f̂2τ (xl)
+

n1+n2∑

l=n1+1

ln
f̂2τ (xl)

f̂1τ (xl)

=





n1∑

l=1

ln f̂1τ (xl)−
n1+n2∑

l=n1+1

ln f̂1τ (xl)



+





n1+n2∑

l=n1+1

ln f̂2τ (xl)−
n1∑

l=1

ln f̂2τ (xl)



 .

The rest can be obtained using simultaneously the two procedures given in the proof of Proposition
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C.0. Proofs of propositions

4.5.2 for (C.2) and (C.3).

Proof of proposition 4.5.4 For a given tree graph τ = (V,Eτ ) with p nodes, we have

f̂cτ (x) =

p∏

i=1

f̂c(xi)
∏

i<j
(i,j)∈Eτ

f̂c(xi, xj)

f̂c(xi) f̂c(xj)
(C.5)

by property 4.2.9 for c = 1, 2. Now,

J(f̂1τ , f̂2τ ) =

∫ (
f̂1τ (x)− f̂2τ (x)

)
ln
f̂1τ (x)

f̂2τ (x)
dx

=

∫ (
f̂1τ (x)− f̂2τ (x)

)∑p
i=1

{
ln f̂1(xi) − ln f̂2(xi)

}
dx

+

∫ (
f̂1τ (x)− f̂2τ (x)

)∑
i<j

(i,j)∈Eτ

{
ln

f̂1(xi, xj)

f̂1(xi) f̂1(xj)
− ln

f̂2(xi, xj)

f̂2(xi) f̂2(xj)

}
dx.

Using property 4.2.6 , this can be written as

J(f̂1τ , f̂2τ ) =

p∑

i=1

∫ (
f̂1τ (x)− f̂2τ (x)

){
ln f̂1(xi) − ln f̂2(xi)

}
dx

+
∑

i<j
(i,j)∈Eτ

∫ (
f̂1τ (x)− f̂2τ (x)

){
ln

f̂1(xi, xj)

f̂1(xi) f̂1(xj)
− ln

f̂2(xi, xj)

f̂2(xi) f̂2(xj)

}
dx

=

p∑

i=1

∫ (
f̂1(xi)− f̂2(xi)

){
ln f̂1(xi) − ln f̂2(xi)

}
dxi

+
∑

i<j
(i,j)∈Eτ

∫ (
f̂1(xi, xj)− f̂2(xi, xj)

){
ln

f̂1(xi, xj)

f̂1(xi) f̂1(xj)
− ln

f̂2(xi, xj)

f̂2(xi) f̂2(xj)

}
d(xi, xj)
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=

p∑

i=1

∫ (
f̃1(xi)− f̃2(xi)

){
ln f̂1(xi) − ln f̂2(xi)

}
dxi

+
∑

i<j
(i,j)∈Eτ

∫ (
f̃1(xi, xj)− f̃2(xi, xj)

){
ln

f̂1(xi, xj)

f̂1(xi) f̂1(xj)
− ln

f̂2(xi, xj)

f̂2(xi) f̂2(xj)

}
d(xi, xj).

Finally, we obtain the result

J(f̂1τ , f̂2τ ) =

p∑

i=1

∫ (
f̃1(x)− f̃2(x)

){
ln f̂1(xi) − ln f̂2(xi)

}
dx

+
∑

i<j
(i,j)∈Eτ

∫ (
f̃1(x)− f̃2(x)

){
ln

f̂1(xi, xj)

f̂1(xi) f̂1(xj)
− ln

f̂2(xi, xj)

f̂2(xi) f̂2(xj)

}
dx

= Ĵ(f̂1τ , f̂2τ ; f̃1, f̃2).
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D. Design of the simulation experiments

Model Graph Mean values Concentration Asymp. error rates
µ1, µ2 matrix K LDA DLDA

AR(1) tree τ 0, avmax Kτ 10.00 10.00
ρ = .9 0, bvmin 10.00 10.00

0, urand 10.00 40.63

MA(1) complete κ 0, avmax Kκ 10.00 10.00
ρ = .45 0, bvmin 10.00 10.00

0, urand 10.00 14.92

ECM complete κ 0, avmax Kκ 10.00 10.00
ρ = .9 0, bvmin 9.99 9.99

0, urand 10.00 45.94

RAND random G1 0, avmax KG1
10.00 10.00

0, bvmin 10.00 10.00
0, urand 10.00 15.32

Table D.1: Design of the Numerical simulation. Independent samples are generated from two corre-
sponding densities of N(µ1,K) and N(µ2,K).
vmax is the largest and vmin the smallest eigenvalue of Σ = K−1, and urand is a vector with random
numbers from U(0, t). a, b and t are constants such that the asymptotic error rate value for LDA is
around 10%
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Model Graphs Mean values Concentration Asymp. error rates for QDA
µ1, µ2 matrices K1, K2 Group 1 Group 2 Global(

RAND,AR(1)
)

(G2, τ) 0, urand KG2, Kτ 4.90 4.76 4.83
ρ = .3
(
RAND,MA(1)

)
(G2, κ) 0, urand KG2, Kκ 5.33 4.86 5.10

ρ = .275
(
RAND,ECM

)
(G2, κ) 0, urand KG2, Kκ 4.49 5.53 5.01

ρ = .2
(
RAND,RAND

)
(G2, G1) 0, urand KG2, KG1 5.60 5.03 5.32

Table D.2: Design of the Numerical simulation. Independent samples are generated from two corre-
sponding densities of N(µ1,K1) and N(µ2,K2).
urand is a vector with random numbers from U(0, t), where t is a constant such that the asymptotic
global error rate value for QDA is around 5%
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E. Supplementary figures and details

a) Generation of the random concentration matrix associated with a PLN

Let pk be the fraction of vertices in the graph that have degree k. A PLN is a graph with

pk ∝ k−α, where α is the power parameter. We consider α = 2.3 and simulate the two networks

with graphs presented in Figure 4.3. Given a specific network with graph G = (V,E), we use the

following procedure to specify the associated covariance matrix. Let A be a matrix with entries

aij =





uij if (i, j) ∈ E,

0 if (i, j) 6∈ E,

where uij is a random number from a uniform distribution U(D). Then the diagonal elements of A

are defined such that the final matrix is a diagonally dominant matrix, i.e., aii = R×∑j 6=i |aij|, i =

1, ..., p, where R > 1. The covariance matrix Σ is then determined by σij = aij/
√
aiiajj, where aij

is the entry ij of A−1.

For the numerical study, the RAND model associated with a PLN with graph given in Figure

4.3a) uses D = (−1,−0.5) ∪ (0.5, 1) and R = 1.01, whereas the one with graph given in Figure

4.3b) uses D = (−0.5, 0.5) and R = 1.01.

b) Supplementary Figures
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Figure E.1: MA(1). Estimated error rates with p = 100 variables and n1 = n2 = n training samples
on each group. On the left the heterogeneous cases and on the right the homogeneous.
Σ with entries σij = 0.45|i−j|I(|i− j| ≤ 1), i, j = 1, ..., p, and
a) (µ1,µ2) = (0, avmax), b) (µ1,µ2) = (0, bvmin), and c) (µ1,µ2) = (0,urand),
where vmax is the largest and vmin the smallest eigenvalue of Σ, and urand is a vector with random
numbers from U(0, t). a, b and t are constants such that the asymptotic error rate value for LDA is
around 10%
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Figure E.2: RAND. Estimated error rates with p = 100 variables and n1 = n2 = n training samples
on each group. On the left the heterogeneous cases and on the right the homogeneous.
Σ is associated with a RAND model with graph G1 given in Figure 4.3a), and
a) (µ1,µ2) = (0, avmax), b) (µ1,µ2) = (0, bvmin), and c) (µ1,µ2) = (0,urand),
where vmax is the largest and vmin the smallest eigenvalue of Σ, and urand is a vector with random
numbers from U(0, t). a, b and t are constants such that the asymptotic error rate value for LDA is
around 10%
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Figure E.3: (RAND, AR(1)). Estimated error rates with p = 100 variables and n1 = n2 = n training
samples. On the left the heterogeneous cases and on the right the homogeneous. a) Global, b) Group
1 and c) Group 2.

Σ1 is associated with a RAND model with graph G2 given in Figure 4.3b), Σ2 has entries σ
(2)
ij =

0.3|i−j|, i, j = 1, ..., p, and (µ1,µ2) = (0,urand), where urand is a vector with random numbers from
U(0, t) and t is such that the asymptotic error rate value for QDA is around 5%
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Figure E.4: (RAND, MA(1)). Estimated error rates with p = 100 variables and n1 = n2 = n training
samples. On the left the heterogeneous cases and on the right the homogeneous. a) Global, b) Group
1 and c) Group 2.

Σ1 is associated with a RAND model with graph G2 given in Figure 4.3b), Σ2 has entries σ
(2)
ij =

0.275|i−j|I(|i − j| ≤ 1), i, j = 1, ..., p, and (µ1,µ2) = (0,urand), where urand is a vector with random
numbers from U(0, t) and t is such that the asymptotic error rate value for QDA is around 5%
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F. Estimated covariance matrices in the

educational testing example

The ML estimates of Σ̂1 and Σ̂2 for the three types of equalities between corresponding elements

of the two concentration matrices considered in Section 3.2.1, are the following

a)

Σ̂1 =




7365 4846 5897 4406 6589 5897 4406 6589

4846 6299 5152 3559 5214 5152 3559 5214

5897 5152 8540 5387 6994 5581 4405 6601

4406 3559 5387 5696 5672 4405 3688 5405

6589 5214 6994 5672 9720 6601 5405 7863

5897 5152 5581 4405 6601 8540 5387 6994

4406 3559 4405 3688 5405 5387 5696 5672

6589 5214 6601 5405 7863 6994 5672 9720




,

Σ̂2 =




5974 2633 2575 2711 5138 2575 2711 5138

2633 4826 2358 1731 2766 2358 1731 2766

2575 2358 3647 2072 3754 1842 1709 3150

2711 1731 2072 3630 4244 1709 2199 3768

5138 2766 3754 4244 9043 3150 3768 7104

2575 2358 1842 1709 3150 3647 2072 3754

2711 1731 1709 2199 3768 2072 3630 4244

5138 2766 3150 3768 7104 3754 4244 9043




.
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b)

Σ̂1 = Σ̂2 =




6669 3738 4236 3559 5864 4236 3559 5864

3738 5563 3754 2647 3990 3754 2647 3990

4236 3754 6093 3731 5375 3713 3057 4874

3559 2647 3731 4664 4955 3057 2943 4588

5864 3990 5375 4955 9382 4874 4588 7483

4236 3754 3713 3057 4874 6093 3731 5375

3559 2647 3057 2943 4588 3731 4664 4955

5864 3990 4874 4588 7483 5375 4955 9382




.

c)

Σ̂1 =




7659 4954 5843 4491 6670 5843 4491 6670

4954 6818 5400 3784 5245 5400 3784 5245

5843 5400 8540 5387 6994 5581 4404 6601

4491 3784 5387 5697 5672 4404 3688 5403

6670 5245 6994 5672 9720 6601 5403 7864

5843 5400 5581 4404 6601 8540 5387 6994

4491 3784 4404 3688 5403 5387 5697 5672

6670 5245 6601 5403 7864 6994 5672 9720




,

Σ̂2 =




5680 2523 2630 2627 5058 2630 2627 5058

2523 4307 2108 1510 2734 2108 1510 2734

2630 2108 3646 2074 3756 1842 1709 3150

2627 1510 2074 3630 4244 1709 2199 3769

5058 2734 3756 4244 9043 3150 3769 7104

2630 2108 1842 1709 3150 3646 2074 3756

2627 1510 1709 2199 3769 2074 3630 4244

5058 2734 3150 3769 7104 3756 4244 9043




.
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G. Resubstitution error rates in the Breast

Cancer example

Predicted
Logistic

Discriminant Analysis Classification
Kκ Kκ Kτ Kκ

Observed Co Ca % Co Ca % Co Ca % Co Ca %

K1,K2 Co 191 1 0.52 161 31 16.15 169 23 11.98
Ca 5 53 8.62 20 38 34.48 21 37 36.21
G 2.40 20.40 17.60

# of param 1,804 164 244

K1 = K2 Co 181 11 5.73 161 31 16.15 177 15 7.81 182 10 5.21
Ca 21 37 36.21 17 41 29.31 20 38 34.48 16 42 27.59
G 12.80 19.20 14.00 10.40

# of param 943 123 163 42

Table G.1: Resubstitution error rates considering 41 variables, those selected as the neighbours at
distance less than 4 to variable class C = 1001: 108, 70, 97, 177, 213, 223, 228, 252, 254, 262, 318,
693, 430, 83, 34, 49, 75, 136, 154, 179, 198, 302, 329, 395, 402, 554, 604, 669, 781, 849, 653, 275, 525,
365, 462, 877, 190, 801, 880, 912, 942.
Co =Controls, Ca =Cases, G =Global. # of param = Number of estimated parameters including
the corresponding to the mean vectors.
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Predicted
Logistic

Discriminant Analysis Regression
Kκ Kκ Kf KG Kκ

Observed Co Ca % Co Ca % Co Ca % Co Ca %

K1,K2 Co 192 0 0.00 170 22 11.46 176 16 8.33 177 15 7.81
Ca 0 58 0.00 10 48 17.24 9 49 15.52 8 50 13.79
G 0.00 12.80 10.00 9.20

# of param 3,190 220 320 354

K1 = K2 Co 191 1 0.52 170 22 11.46 178 14 7.29 177 15 7.81 192 0 0.00
Ca 4 54 6.90 10 48 17.24 7 51 12.07 6 52 10.34 0 58 0.00
G 2.00 12.80 8.40 8.40 0.00

# of param 1,650 165 270 287 56

Table G.2: Resubstitution error rates considering models with 55 variables: 3, 48, 69, 79, 83, 108,
120, 132, 138, 160, 207, 209, 277, 279, 287, 318, 326, 328, 347, 363, 374, 377, 384, 414, 415, 418, 430,
466, 508, 525, 567, 591, 594, 603, 652, 654, 656, 663, 693, 701, 712, 724, 754, 775, 802, 803, 807, 812,
885, 915, 921, 923, 967, 968, 987.
Co =Controls, Ca =Cases, G =Global. # of param = Number of estimated parameters including
the corresponding to the mean vectors.

Predicted
Logistic

Discriminant Analysis Regression
Kκ Kκ Kf KG Kκ

Observed Co Ca % Co Ca % Co Ca % Co Ca %

K1,K2 Co 186 6 3.13 180 12 6.25 177 15 7.81 181 11 5.73
Ca 7 51 12.07 12 46 20.69 12 46 20.69 12 46 20.69
G 5.20 9.60 10.80 9.20

# of param 270 60 74 92

K1 = K2 Co 188 4 2.08 179 13 6.77 184 8 4.17 187 5 2.60 188 4 2.08
Ca 8 50 13.79 11 47 18.97 11 47 18.97 10 48 17.24 4 54 6.90
G 4.80 9.60 7.60 6.00 3.20

# of param 150 45 52 61 16

Table G.3: Resubstitution error rates considering models with 15 variables: 3, 79, 132, 328, 347, 374,
415, 525, 567, 591, 654, 885, 915, 923, 987.
Co =Controls, Ca =Cases, G =Global. # of param = Number of estimated parameters including
the corresponding to the mean vectors.
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H. R scripts used to obtain the numer-

ical results in Chapter 2

H.1 Script for the rabbits example.

rm(list = ls())

library(gRc)

X=matrix(c(

5.0, 4.8, 4.3, 5.1, 4.1, 4.0, 7.1, 5.9, 5.3, 5.3, 5.3, 5.9, 6.5, 6.3, 6.6, 6.2,

4.9, 5.0, 4.3, 5.3, 4.1, 4.0, 6.9, 6.3, 5.2, 5.5, 5.5, 5.9, 6.8, 6.3, 6.6, 6.3,

15.0, 14.2, 12.8, 14.4, 11.0, 12.5, 19.6, 15.9, 14.1, 14.5, 16.3, 16.4, 18.6, 18.1, 17.3, 18.1,

15.2, 14.3, 12.8, 14.6, 11.0, 12.6, 19.5, 15.8, 13.8, 14.8, 15.7, 16.2, 19.0, 17.4, 17.5, 17.7

), nrow=16, ncol=4)

X=as.data.frame(X)

names(X)[1:4] <- c("X1", "X2", "X3", "X4")

vcc = list(~X1+X2,~X3+X4)

ecc = list(~X1:X2, ~X1:X3+X1:X4+X2:X3+X2:X4, ~X3:X4)

####H(vc)

m1 <- rcox( vcc=vcc, ecc=ecc, data=X, method=’matching’)

summary(m1)

summary(m1, "K")

summary(m1, "KC")

K=summary(m1, "K")$K

solve(K)*15

mean(X)

###H(mvc)

media1=mean(c(X$X1, X$X2))

media2=mean(c(X$X3, X$X4))

X2=X

X2$X1=X$X1-media1

X2$X2=X$X2-media1

X2$X3=X$X3-media2

X2$X4=X$X4-media2

n=nrow(X2)

p=ncol(X2)

S=matrix(0,p,p)

for(i in 1:n){

149



H.2. Scripts for breast cancer data set.

S=S+t(X2[i,])%*%as.matrix(X2[i,])

}

S=S/n

m2 <- rcox( vcc=vcc, ecc=ecc, S=S, n=n, method=’matching’)

summary(m2)

summary(m2, "K")

summary(m2, "KC")

K2=summary(m2, "K")$K

(K2)*(n)/(n-1)

solve(K2)*(n)

media1

media2

H.2 Scripts for breast cancer data set.

Leave-one-out cross-validation

rm(list = ls())

#library(gRc)

library(doBy)

DatosBreastCancer0 <-

read.table("C:/Users/TOSHIBA/Documents/GONZALO/Doctorado/Datos_breastCancer_West2001_Speed2003

/Base4.csv", header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE)

DatosBreastCancerE=DatosBreastCancer0[,1:3]

numren=nrow(DatosBreastCancer0)

DatosBreastCancerE$DQDAG10W=0

DatosBreastCancerE$DLDAG10W=0

DatosBreastCancerE$DQDAG10t=0

DatosBreastCancerE$DLDAG10t=0

DatosBreastCancerE$DQDAG10Wv=0

DatosBreastCancerE$DLDAG10Wv=0

DatosBreastCancerE$DQDAG10tv=0

DatosBreastCancerE$DLDAG10tv=0

n1=sum(DatosBreastCancer0$ER.status=="ER+")

n2=sum(DatosBreastCancer0$ER.status=="ER-")

for(j in 1:numren){

index=0

DatosBreastCancer=0

DatosBreastCancerj=0

DatosBreastCancer=DatosBreastCancer0[-c(j),]

DatosBreastCancerj=DatosBreastCancer0[j,]

numcol=ncol(DatosBreastCancer)

index=1:numcol

index=as.data.frame(index)

index$statW[1]=1000000000000000

index$statW[2]=1000000000000000

index$statW[3]=1000000000000000

index$statt[1]=1000000000000000

index$statt[2]=1000000000000000

index$statt[3]=1000000000000000

for(i in 4:numcol){
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H.2. Scripts for breast cancer data set.

index$statW[i]=abs(wilcox.test(DatosBreastCancer[,i] ~ DatosBreastCancer[,1],

alternative="two.sided")[["statistic"]])

index$statt[i]=abs(t.test(DatosBreastCancer[,i]~DatosBreastCancer[,1],

alternative=’two.sided’, conf.level=.95,

var.equal=TRUE)[["statistic"]])

}

index <- orderBy(~-statW, data=index )

for(i in 1:numcol){

index$ordenW[i]=i}

index <- orderBy(~-statt, data=index )

for(i in 1:numcol){

index$ordent[i]=i}

index <- orderBy(~+index, data=index )

DatosBreastCancer10W=0

DatosBreastCancerj10W=0

DatosBreastCancer10W=DatosBreastCancer[,index$ordenW<=13]

DatosBreastCancerj10W=DatosBreastCancerj[,(index$ordenW<=13 & index$ordenW>=4)]

DatosBreastCancer10_1W=0

DatosBreastCancer10_2W=0

DatosBreastCancer10_1W=DatosBreastCancer[DatosBreastCancer$ER.status=="ER+",

(index$ordenW<=13 & index$ordenW>=4)]

DatosBreastCancer10_2W=DatosBreastCancer[DatosBreastCancer$ER.status=="ER-",

(index$ordenW<=13 & index$ordenW>=4)]

media1W=mean(DatosBreastCancer10_1W)

media2W=mean(DatosBreastCancer10_2W)

S1W=cov(DatosBreastCancer10_1W)

S1W=diag(diag(S1W), 10, 10)

S2W=cov(DatosBreastCancer10_2W)

S2W=diag(diag(S2W), 10, 10)

n1W=nrow(DatosBreastCancer10_1W)

n2W=nrow(DatosBreastCancer10_2W)

SW=(S1W*(n1W-1)+S2W*(n2W-1))/(n1W+n2W-2)

DatosBreastCancerE$DQDAG10Wv[j]=(1/2)*log(det(as.matrix(S2W))/det(as.matrix(S1W)))+

(1/2)*as.matrix(DatosBreastCancerj10W-media2W)%*%solve(as.matrix(S2W))

%*%t(as.matrix(DatosBreastCancerj10W-media2W))-

(1/2)*as.matrix(DatosBreastCancerj10W-media1W)%*%solve(as.matrix(S1W))

%*%t(as.matrix(DatosBreastCancerj10W-media1W))+log(n1/n2)

if (DatosBreastCancerE$DQDAG10Wv[j]>=0){

DatosBreastCancerE$DQDAG10W[j]="ER+"

}

if (DatosBreastCancerE$DQDAG10Wv[j]<0) {

DatosBreastCancerE$DQDAG10W[j]="ER-"

}

DatosBreastCancerE$DLDAG10Wv[j]=t(as.matrix(media1W-media2W))%*%solve(as.matrix(SW))%*%

t(as.matrix(DatosBreastCancerj10W-(1/2)*(media2W+media1W)))

+log(n1/n2)

if (DatosBreastCancerE$DLDAG10Wv[j]>=0){

DatosBreastCancerE$DLDAG10W[j]="ER+"

}

if (DatosBreastCancerE$DLDAG10Wv[j]<0) {

DatosBreastCancerE$DLDAG10W[j]="ER-"

}
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H.2. Scripts for breast cancer data set.

DatosBreastCancer10t=0

DatosBreastCancerj10t=0

DatosBreastCancer10t=DatosBreastCancer[,index$ordent<=13]

DatosBreastCancerj10t=DatosBreastCancerj[,(index$ordent<=13 & index$ordent>=4)]

DatosBreastCancer10_1t=0

DatosBreastCancer10_2t=0

DatosBreastCancer10_1t=DatosBreastCancer[DatosBreastCancer$ER.status=="ER+",

(index$ordent<=13 & index$ordent>=4)]

DatosBreastCancer10_2t=DatosBreastCancer[DatosBreastCancer$ER.status=="ER-",

(index$ordent<=13 & index$ordent>=4)]

media1t=mean(DatosBreastCancer10_1t)

media2t=mean(DatosBreastCancer10_2t)

S1t=cov(DatosBreastCancer10_1t)

S1t=diag(diag(S1t), 10, 10)

S2t=cov(DatosBreastCancer10_2t)

S2t=diag(diag(S2t), 10, 10)

n1t=nrow(DatosBreastCancer10_1t)

n2t=nrow(DatosBreastCancer10_2t)

St=(S1t*(n1t-1)+S2t*(n2t-1))/(n1t+n2t-2)

DatosBreastCancerE$DQDAG10tv[j]=(1/2)*log(det(as.matrix(S2t))/det(as.matrix(S1t)))+

(1/2)*as.matrix(DatosBreastCancerj10t-media2t)%*%solve(as.matrix(S2t))

%*%t(as.matrix(DatosBreastCancerj10t-media2t))-

(1/2)*as.matrix(DatosBreastCancerj10t-media1t)%*%solve(as.matrix(S1t))

%*%t(as.matrix(DatosBreastCancerj10t-media1t))+log(n1/n2)

if (DatosBreastCancerE$DQDAG10tv[j]>=0){

DatosBreastCancerE$DQDAG10t[j]="ER+"

}

if (DatosBreastCancerE$DQDAG10tv[j]<0) {

DatosBreastCancerE$DQDAG10t[j]="ER-"

}

DatosBreastCancerE$DLDAG10tv[j]=t(as.matrix(media1t-media2t))%*%solve(as.matrix(St))%*%

t(as.matrix(DatosBreastCancerj10t-(1/2)*(media2t+media1t)))

+log(n1/n2)

if (DatosBreastCancerE$DLDAG10tv[j]>=0){

DatosBreastCancerE$DLDAG10t[j]="ER+"

}

if (DatosBreastCancerE$DLDAG10tv[j]<0) {

DatosBreastCancerE$DLDAG10t[j]="ER-"

}

}

table(DatosBreastCancerE$DLDAG10t,DatosBreastCancerE$ER.status)

table(DatosBreastCancerE$DLDAG10W,DatosBreastCancerE$ER.status)

table(DatosBreastCancerE$DQDAG10t,DatosBreastCancerE$ER.status)

table(DatosBreastCancerE$DQDAG10W,DatosBreastCancerE$ER.status)

Leave-one-out internal cross-validation

rm(list = ls())

#library(gRc)

library(doBy)

DatosBreastCancer0 <-
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H.2. Scripts for breast cancer data set.

read.table("C:/Users/TOSHIBA/Documents/GONZALO/Doctorado/Datos_breastCancer_West2001_Speed2003

/Base4.csv",header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE)

DatosBreastCancerE=DatosBreastCancer0[,1:3]

numren=nrow(DatosBreastCancer0)

DatosBreastCancerE$DQDAG10W=0

DatosBreastCancerE$DLDAG10W=0

DatosBreastCancerE$DQDAG10t=0

DatosBreastCancerE$DLDAG10t=0

DatosBreastCancerE$DQDAG10Wv=0

DatosBreastCancerE$DLDAG10Wv=0

DatosBreastCancerE$DQDAG10tv=0

DatosBreastCancerE$DLDAG10tv=0

n1=sum(DatosBreastCancer0$ER.status=="ER+")

n2=sum(DatosBreastCancer0$ER.status=="ER-")

index=0

numcol=ncol(DatosBreastCancer0)

index=1:numcol

index=as.data.frame(index)

index$statW[1]=1000000000000000

index$statW[2]=1000000000000000

index$statW[3]=1000000000000000

index$statt[1]=1000000000000000

index$statt[2]=1000000000000000

index$statt[3]=1000000000000000

for(i in 4:numcol){

index$statW[i]=abs(wilcox.test(DatosBreastCancer0[,i] ~ DatosBreastCancer0[,1],

alternative="two.sided")[["statistic"]])

index$statt[i]=abs(t.test(DatosBreastCancer0[,i]~DatosBreastCancer0[,1],

alternative=’two.sided’, conf.level=.95,

var.equal=TRUE)[["statistic"]])

}

index <- orderBy(~-statW, data=index )

for(i in 1:numcol){

index$ordenW[i]=i}

index <- orderBy(~-statt, data=index )

for(i in 1:numcol){

index$ordent[i]=i}

index <- orderBy(~+index, data=index )

DatosBreastCancer0W=DatosBreastCancer0[,index$ordenW<=13]

DatosBreastCancer0t=DatosBreastCancer0[,index$ordent<=13]

library(MASS)

DatosBreastCancer0W.scal <- cmdscale(dist(DatosBreastCancer0W[,4:13]), k = 2, eig = T)

X11()

plot(DatosBreastCancer0W.scal$points, type = "n")

text(DatosBreastCancer0W.scal$points, labels = as.character(DatosBreastCancer0W[,1]),

col = 1 + unclass(DatosBreastCancer0W[,1]), cex = 0.8)

DatosBreastCancer0t.scal <- cmdscale(dist(DatosBreastCancer0t[,4:13]), k = 2, eig = T)

X11()

plot(DatosBreastCancer0t.scal$points, type = "n")

text(DatosBreastCancer0t.scal$points, labels = as.character(DatosBreastCancer0t[,1]),

col = 1 + unclass(DatosBreastCancer0t[,1]), cex = 0.8)

write.csv(DatosBreastCancer0W, file =
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H.2. Scripts for breast cancer data set.

"C:/Users/TOSHIBA/Documents/GONZALO/Doctorado/Datos_breastCancer_West2001_Speed2003/

DatosBreastCancer0W.csv",row.names=FALSE)

write.csv(DatosBreastCancer0t, file =

"C:/Users/TOSHIBA/Documents/GONZALO/Doctorado/Datos_breastCancer_West2001_Speed2003/

DatosBreastCancer0t.csv",row.names=FALSE)

for(j in 1:numren){

DatosBreastCancerW=0

DatosBreastCancerjW=0

DatosBreastCancerW=DatosBreastCancer0W[-c(j),]

DatosBreastCancerjW=DatosBreastCancer0W[j,]

DatosBreastCancert=0

DatosBreastCancerjt=0

DatosBreastCancert=DatosBreastCancer0t[-c(j),]

DatosBreastCancerjt=DatosBreastCancer0t[j,]

DatosBreastCancer10W=0

DatosBreastCancerj10W=0

DatosBreastCancer10W=DatosBreastCancerW

DatosBreastCancerj10W=DatosBreastCancerjW[,-c(1,2,3)]

DatosBreastCancer10_1W=0

DatosBreastCancer10_2W=0

DatosBreastCancer10_1W=DatosBreastCancerW[DatosBreastCancerW$ER.status=="ER+",-c(1,2,3)]

DatosBreastCancer10_2W=DatosBreastCancerW[DatosBreastCancerW$ER.status=="ER-",-c(1,2,3)]

media1W=mean(DatosBreastCancer10_1W)

media2W=mean(DatosBreastCancer10_2W)

S1W=cov(DatosBreastCancer10_1W)

S1W=diag(diag(S1W), 10, 10)

S2W=cov(DatosBreastCancer10_2W)

S2W=diag(diag(S2W), 10, 10)

n1W=nrow(DatosBreastCancer10_1W)

n2W=nrow(DatosBreastCancer10_2W)

SW=(S1W*(n1W-1)+S2W*(n2W-1))/(n1W+n2W-2)

DatosBreastCancerE$DQDAG10Wv[j]=(1/2)*log(det(as.matrix(S2W))/det(as.matrix(S1W)))+(1/2)*

as.matrix(DatosBreastCancerj10W-media2W)%*%solve(as.matrix(S2W))

%*%t(as.matrix(DatosBreastCancerj10W-media2W))-(1/2)*

as.matrix(DatosBreastCancerj10W-media1W)%*%solve(as.matrix(S1W))

%*%t(as.matrix(DatosBreastCancerj10W-media1W))+log(n1/n2)

if (DatosBreastCancerE$DQDAG10Wv[j]>=0){

DatosBreastCancerE$DQDAG10W[j]="ER+"

}

if (DatosBreastCancerE$DQDAG10Wv[j]<0) {

DatosBreastCancerE$DQDAG10W[j]="ER-"

}

DatosBreastCancerE$DLDAG10Wv[j]=t(as.matrix(media1W-media2W))%*%solve(as.matrix(SW))%*%

t(as.matrix(DatosBreastCancerj10W-(1/2)*(media2W+media1W)))

+log(n1/n2)

if (DatosBreastCancerE$DLDAG10Wv[j]>=0){

DatosBreastCancerE$DLDAG10W[j]="ER+"

}

if (DatosBreastCancerE$DLDAG10Wv[j]<0) {

DatosBreastCancerE$DLDAG10W[j]="ER-"

}

DatosBreastCancer10t=0
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H.2. Scripts for breast cancer data set.

DatosBreastCancerj10t=0

DatosBreastCancer10t=DatosBreastCancert

DatosBreastCancerj10t=DatosBreastCancerjt[,-c(1,2,3)]

DatosBreastCancer10_1t=0

DatosBreastCancer10_2t=0

DatosBreastCancer10_1t=DatosBreastCancert[DatosBreastCancert$ER.status=="ER+",-c(1,2,3)]

DatosBreastCancer10_2t=DatosBreastCancert[DatosBreastCancert$ER.status=="ER-",-c(1,2,3)]

media1t=mean(DatosBreastCancer10_1t)

media2t=mean(DatosBreastCancer10_2t)

S1t=cov(DatosBreastCancer10_1t)

S1t=diag(diag(S1t), 10, 10)

S2t=cov(DatosBreastCancer10_2t)

S2t=diag(diag(S2t), 10, 10)

n1t=nrow(DatosBreastCancer10_1t)

n2t=nrow(DatosBreastCancer10_2t)

St=(S1t*(n1t-1)+S2t*(n2t-1))/(n1t+n2t-2)

DatosBreastCancerE$DQDAG10tv[j]=(1/2)*log(det(as.matrix(S2t))/det(as.matrix(S1t)))+(1/2)*

as.matrix(DatosBreastCancerj10t-media2t)%*%solve(as.matrix(S2t))%*%

t(as.matrix(DatosBreastCancerj10t-media2t))-(1/2)*

as.matrix(DatosBreastCancerj10t-media1t)%*%solve(as.matrix(S1t))%*%

t(as.matrix(DatosBreastCancerj10t-media1t))+log(n1/n2)

if (DatosBreastCancerE$DQDAG10tv[j]>=0){

DatosBreastCancerE$DQDAG10t[j]="ER+"

}

if (DatosBreastCancerE$DQDAG10tv[j]<0) {

DatosBreastCancerE$DQDAG10t[j]="ER-"

}

DatosBreastCancerE$DLDAG10tv[j]=t(as.matrix(media1t-media2t))%*%solve(as.matrix(St))%*%

t(as.matrix(DatosBreastCancerj10t-(1/2)*(media2t+media1t)))

+log(n1/n2)

if (DatosBreastCancerE$DLDAG10tv[j]>=0){

DatosBreastCancerE$DLDAG10t[j]="ER+"

}

if (DatosBreastCancerE$DLDAG10tv[j]<0) {

DatosBreastCancerE$DLDAG10t[j]="ER-"

}

}

table(DatosBreastCancerE$DLDAG10t,DatosBreastCancerE$ER.status)

table(DatosBreastCancerE$DLDAG10W,DatosBreastCancerE$ER.status)

table(DatosBreastCancerE$DQDAG10t,DatosBreastCancerE$ER.status)

table(DatosBreastCancerE$DQDAG10W,DatosBreastCancerE$ER.status)
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