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Prefacio

El trabajo de investigación contenido en esta tesis está enmarcado dentro del área de

las Matemáticas Discretas. El eje principal que se aborda es un tipo de coloración

llamado �coloración completa� (esto es, cada par de colores se encuentran) al colorear

diversas estructuras de incidencia: grá�cas, diseños de bloques y geometrías �nitas.

Todos los resultados expuestos fueron desarrollados a lo largo del trabajo doctoral

y debido a que el material fue muy extenso decidimos (en acuerdo con mi asesora de

doctorado) elaborar esta tesis recopilando los artículos de investigación que realizamos,

mismos que están publicados, aceptados, en proceso de revisión o en preparación.

Cabe resaltar que la tesis está escrita en inglés (idioma universal en el que se

encuentran reportados los resultados relevantes en matemáticas dentro del ámbito in-

ternacional).

A continuación se dan algunas especi�caciones de los artículos recopilados:

Capítulo 2: Los resultados de este capítulo fueron un trabajo conjunto con Gabriela

Araujo-Pardo los cuales están contenidos en la nota �On ωψ-perfection of graphs� pu-

blicado en la revista �Electronic Notes in Discrete Matematics� [AR13], en el artículo

�On ωψ-perfect graphs� el cual está en revisión [AR], y en el artículo �A new charac-

terization of trivially perfect graphs� el cuál está publicado en la revista �Electronic

Journal of Graph Theory and Applications� [Rub15].

En el artículo �On ωψ-perfect graphs� [AR] y en el acta �On ωψ-perfection of graphs�

[AR13] trabajé ampliamente en las demostraciones de los teoremas y en colaboración

con mi asesora le dimos estructura y redactamos ambos escritos; posteriormente elaboré

el artículo �A new characterization of trivially perfect graphs� [Rub15] en el cual yo he
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sido el único autor.

Capítulo 3: Los resultados de este capítulo fueron un trabajo conjunto con Gabriela

Araujo-Pardo, Juan José Montellano-Ballesteros y Ricardo Strausz, cuyos resultados

están contenidos en el artículo �On the pseudoachromatic index of the complete graph

II� publicado en la revista �Boletín de la Sociedad Matemática Mexicana� [AMRS14] y

en el artículo �On the pseudoachromatic index of the complete graph III� el cual está

en preparación [AMRS].

En los artículos �On the pseudoachromatic index of the complete graph II� [AMRS14]

y �On the pseudoachromatic index of the complete graph III� [AMRS] he aportado con-

tribuciones desde mi tesis de licenciatura y tesina de maestría; en colaboración con mis

coautores trabajamos ampliamente en las demostraciones de los teoremas, les dimos

estructura y redactamos los artículos.

Capítulo 4: Los resultados de este capítulo fueron un trabajo conjunto con Gabriela

Araujo-Pardo, György Kiss y Adrián Vázquez-Ávila los cuales están contenidos en el

artículo �Achromatic and pseudoachromatic indices of designs� el cuál está en preparación

[AKRV].

En el artículo �Achromatic and pseudoachromatic indices of designs� [AKRV] he

contribuído en la elaboración del problema, trabajamos ampliamente en las demostra-

ciones de los teoremas y en la estructura del artículo, ahora estamos redactándolo.

Capítulo 5: Los resultados de este capítulo fueron un trabajo conjunto con Oswin

Aichholzer, Gabriela Araujo-Pardo, Natalia García-Colín, Thomas Hackl, Dolores Lara

y Jorge Urrutia, los cuales están contenidos en el artículo �Geometric achromatic and

pseudoachromatic indices�, aceptado para su publicación en la revista indizada �Graphs

and Combinatorics� [AAG+].

El artículo �Geometric achromatic and pseudoachromatic indices� [AAG+] lo inici-

amos trabajando en un taller de geometría combinatoria, posteriormente a�namos las

demostraciones, primero con Dolores Lara y posteriormente con todo el grupo logrando

interesantes contribuciones.
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Capítulo 6: Los resultados de este capítulo fueron un trabajo conjunto con György

Kiss, los cuales están contenidos en el artículo �A note on m-factorizations of complete

multigraphs arising from designs� aceptado para su publicación en la revista indizada

por matemáticas �Ars Mathematica Contemporanea� [KR15].

El artículo �A note on m-factorizations of complete multigraphs arising from de-

signs� [KR15] se realizó durante una estancia de investigación que realizé bajo la su-

pervisión de György Kiss en la universidad del ELTE. Trabajamos ampliamente en las

demostraciones de los teoremas, estructuramos y redactamos el artículo.
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Resumen

A continuación se dará una descripción breve de cada uno de los capítulos de este

trabajo:

Capítulo 1: Introducción.

Contiene las de�niciones básicas de teoría de grá�cas enfocadas en el componente

principal de esta tesis: coloraciones completas. Además se describen los objetos

combinatorios llamados diseños y el caso especial de las geometrías �nitas.

Capítulo 2: Caracterizando grá�cas ab-perfectas.

En este capítulo se estudia una generalización de las llamadas �grá�cas perfectas�.

Damos caracterizaciones de las grá�cas ab-perfectas en términos de parámetros

relacionados con coloraciones completas. Además se extienden algunas de�ni-

ciones a grá�cas in�nitas.

Capítulo 3: Índices acromático y pseudoacromático de la grá�ca completa.

En este capítulo se exhiben coloraciones en aristas de la grá�ca completa, las

cuales prueban muchos de los valores exactos del �índice acromático� y del �índice

pseudoacromático� de la grá�ca completa (parámetros estrechamente relacionadas).

También se mejora la cota superior del índice pseudoacromático de la grá�ca com-

pleta.

Capítulo 4: Índices acromático y pseudoacromático de diseños.

Un (v, κ)-diseño es una pareja (P ,B); donde P es un v-conjunto de puntos y B es

una colección de κ-subconjuntos de P llamados bloques. Cada 2-subconjuntos de
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P aparece en precisamente un bloque. En este capítulo se extiende la noción de

los índices acromático y pseudoacromático a los diseños y se presentan resultados

en los espacios proyectivos y a�nes �nitos.

Capítulo 5: Índices acromático y pseudoacromático geométricos.

Una grá�ca geométrica es una grá�ca dibujada en el plano tal que sus vértices

son puntos en posición general y sus aristas son segmentos rectilíneos. En este

capítulo se extiende la noción de los índices acromático y pseudoacromático a

las grá�cas geométricas y se presentan resultados para las grá�cas geométricas

completas.

Capítulo 6: Sobre m-factorizaciones de multigrá�cas completas que provienen de los

espacios proyectivos a�nes.

Se presentan algunas nuevas familias in�nitas de m-factorizaciones simples e

indescomponibles de la multigrá�ca completa. Las construcciónes provienen de

las geometrías �nitas.

Capítulo 7:

En el capítulo �nal incluímos una discusión sobre las distintas contribuciones

de esta tesis al conocimiento y desarrollo del área de la Matemática Discreta y

Combinatoria.
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Preface

The research contained in this thesis is in the area of Discrete Mathematics. The

main topic is a type of coloring called �complete coloring� (ie, each pair of colors are

incident) used for coloring various incidence structures: graphs, block designs and �nite

geometries.

All results presented have been developed during the PhD and since the material

was very extensive we decided (in agreement with my main advisor) to develop this

thesis by compiling my research papers, which have been published, accepted or are

being reviewed or are in preparation.

Below there are some speci�cations of the papers included:

Chapter 2: The results of this chapter were a joint work with Gabriela Araujo-

Pardo which are contained in the paper �On ωψ-perfection of graphs� published in

the proceedings �Electronic Notes in Discrete Mathematics� [AR13], in the paper �On

ωψ-perfect graphs� which is in review [AR], and in the paper �A new characterization

of trivially perfect graphs� published in the �Electronic Journal of Graph Theory and

Applications� journal [Rub15].

In the papers �On ωψ-perfect graphs� [AR] and �On ωψ-perfection of graphs� [AR13]

I worked extensively in the proofs of theorems and in collaboration with my advisor

we gave structure and we wrote both of them; subsequently I elaborated the article �A

new characterization of trivially perfect graphs� [Rub15] in which I was the sole author.

Chapter 3: The results of this chapter were a joint work with Gabriela Araujo-

Pardo, Juan José Montellano-Ballesteros and Ricardo Strausz which are contained in
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the paper �On the pseudoachromatic index of the complete graph II� published in the

�Boletín de la Sociedad Matemática Mexicana� journal [AMRS14] and in the paper

�On the pseudoachromatic index of the complete graph III� which is in preparation

[AMRS].

In the papers �On the pseudoachromatic index of the complete graph II� [AMRS14]

and �On the pseudoachromatic index of the complete graph III� [AMRS] I have made

contributions since my undergraduate thesis and master's thesis; in collaboration with

my coauthors worked extensively in the proofs of theorems, we gave structure and write

both of them.

Chapter 4: The results of this chapter were a joint work with Gabriela Araujo-

Pardo, György Kiss and Adrián Vázquez-Ávila which are contained in the paper �Achro-

matic and pseudoachromatic indices of designs� which is in preparation [AKRV].

In the paper �Achromatic and pseudoachromatic indices of designs� [AKRV] I con-

tributed in part in the elaboration of the problem. My coauthors and me worked

extensively in the proofs of theorems and structure of the article. We are now writing

it.

Chapter 5: The results of this chapter were a joint work with Oswin Aichholzer,

Gabriela Araujo-Pardo, Natalia García-Colín, Thomas Hackl, Dolores Lara, and Jorge

Urrutia which are contained in the paper �Geometric achromatic and pseudoachromatic

indices�. This paper is accepted for publication in the �Graphs and Combinatorics�

indexed journal [AAG+].

The paper �Geometric achromatic and pseudoachromatic indices� [AAG+] was started

at a workshop in combinatorial geometry, later we re�ne the proofs, �rst with Dolores

Lara and later with the rest of the group. The contributions of the group were very

interesting.

Chapter 6: The results of this chapter were a joint work with György Kiss, which are

contained in the paper �A note onm-factorizations of complete multigraphs arising from

designs� accepted for publication in the �Ars Mathematica Contemporanea� indexed
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journal [KR15].

The paper �A note on m-factorizations of complete multigraphs arising from de-

signs� [KR15] was made during a research visit that I made under the supervision

of György Kiss at ELTE University. We work extensively in the proofs of theorems,

structured and drafted the paper.
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Abstract

Below is a brief description of each of the chapters of this work:

Chapter 1: Introduction.

We will give the basic de�nitions of the Graph Theory focused on the major

component of this thesis: Complete Colorings. In addition to describing the

combinatorial objects called Designs and the special case of the Finite Projective

Geometries.

Chapter 2: Characterizing ab-perfect graphs.

In this chapter, we will cover a generalization of graph perfection. We will charac-

terize the ab-perfect graphs for several parameters related to complete colorations

and we will extend some de�nitions to in�nite graphs.

Chapter 3: Achromatic and pseudoachromatic indices of the complete graph.

In this chapter we will exhibit closely related edge-colorings of the complete graph

and prove many exact values of the achromatic and pseudoachromatic indices of

the complete graph of order n. We will also improve the upper bound of the

pseudoachromatic index of the complete graph.

Chapter 4: Achromatic and pseudoachromatic indices of designs.

A (v, κ)-design is a pair (P ,B); P is a v-set of points and B is a collection of κ-

subsets of P called blocks. Each 2-subset of P appears in precisely one block. In

this chaptes, we will extend the notion of the achromatic and pseudoachromatic

indices for designs and present results for the �nite projective and a�ne spaces.
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Chapter 5: Geometric achromatic and pseudoachromatic indices.

A geometric graph is a graph drawn in the plane such that its vertices are points

in general position, and its edges are straight-line segments. In this chapter,

we will extend the notion of the achromatic and pseudoachromatic indices for

geometric graphs and we present results for complete geometric graphs.

Chapter 6: On m-factorizations of complete multigraphs arising from designs.

Some new in�nite families of simple, indecomposablem-factorizations of the com-

plete multigraph are presented. Most of the constructions come from �nite ge-

ometries.

Chapter 7:

In this concluding chapter we include a discussion on how the thesis provides

contributions to knowledge in Discrete Mathematics and Combinatorics.
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Chapter 1

Introduction

A graph G is a nonempty set V of vertices together with a set E of 2-subsets of V

called edges. Each edge {u, v} of E is commonly denoted by uv or vu. The number

of vertices of a graph G is its order ; its number of edges is its size. Graphs are �nite,

in�nite, countable and so on according to their order. Except in Subsection 2.1.2, our

graphs will be �nite. To indicate that a graph G has vertex set V and edge set E, we

sometimes write G = (V,E). To emphasize that V is the vertex set of a graph G, we

often write V as V (G). For the same reason, we also write E as E(G).

If uv is an edge of G, then u and v are adjacent vertices. Two adjacent vertices

are referred to as neighbors of each other. The set of neighbors of a vertex v is called

the neighborhood of v and is denoted by NG(v) (or only by N(v) if the graph G under

discussion is clear). The set NG[v] = NG(v) ∪ {v} (or only N [v]) is called the closed

neighborhood of v.

The degree of a vertex v in a graph G is the number of vertices in G that are

adjacent to v. The degree of a vertex v is denoted by degG(v) (or deg(v)). A vertex of

degree 0 is referred to as an isolated vertex. The largest degree among the vertices of

G is called the maximum degree of G and it is denoted by ∆(G). The minimum degree

of G is denoted by δ(G). If every vertex of G has degree r, then G is r-regular.

A graph H is said to be a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G)

(brie�y denoted by H ⊆ G). If V (H) = V (G), then H is a spanning subgraph of G. For
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a nonempty subset A of V (G), the subgraph 〈A〉G of G induced by A (or anly 〈A〉) has A
as its vertex set and two vertices u and v in A are adjacent in 〈A〉G if and only if u and

v are adjacent in G. A subgraph H of a graph G is called an induced subgraph (for short

denoted by H ≤ G) if there is a nonempty subset A of V (G) such that H is isomorphic

to 〈A〉G. Then given S ⊆ V (G), G \ S is the subgraph of G induced by V (G) \ S. If
we consider a set {v1, . . . , va} ⊆ V (G) then we write 〈v1, . . . , va〉 := 〈{v1, . . . , va}〉. A

graph G without an induced subgraph H is called H-free. A graph H1-free, H2-free,

. . . , Ha-free is denoted by (H1, H2, . . . , Ha)-free.

For two (not necessarily distinct) vertices u and v in a graph G, a u − v walk

W in G is a sequence of vertices in G, beginning at u and ending at v such that

consecutive vertices in W are adjacent in G. Such a walk W in G can be expressed as

W = (u = v0, v1, . . . , vk = v), where vivi+1 ∈ E(G) for 0 ≤ i ≤ k − 1. Two vertices u

and v in a graph G are connected if G contains a u − v walk. The graph G itself is

connected if every two vertices of G are connected. A graph G that is not connected

is a disconnected graph. A connected subgraph H of a graph G is a component of G

if H is not a proper subgraph of a connected subgraph of G. A walk whose initial

and terminal vertices are distinct is an open walk ; otherwise, it is a closed walk. An

open walk in a graph G in which no vertex is repeated is called a path. A nontrivial

closed walk of a graph G in which no vertex is repeated is a cycle in G. A cycle in G

that contains every vertex of G is called a Hamiltonian cycle of G. The graph that is

itself a cycle of order n ≥ 3 is denoted by Cn and the graph that is a path of order

n is denoted by Pn. A graph is complete if every two distinct vertices in the graph

are adjacent. The complete graph of order n is denoted by Kn and K0 is de�ned as ∅
�when it is convenient we may denote ∅ by K0�. The complete multigraph λKv has v

vertices and λ edges joining each pair of vertices. Note that 1Kv is Kv.

By a factor of a graph G, we mean a spanning subgraph of G. A k-regular factor

is called a k-factor. A 1-factor in a graph G is also called a perfect matching in G. A

factorization F of a graph G is a collection of factors of G such that every edge of G

belongs to exactly one factor in F . Therefore, if each factor in F is nonempty, then

the edge sets of the factors produce a partition of E(G). A k-factorization of a graph

G is a factorization of G into k-factors. A graph G is k-factorable if there exists a
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k-factorization of G.

The stability number β(G) is the cardinality of the largest set of pairwise nonad-

jacent vertices. A maximal complete subgraph of G is also called a clique of G. The

total number of cliques of G is denoted by m(G). The maximum order of a clique of

G is called the clique number of G and is denoted by ω(G). Given two graphs G and

H, the set of edges with one vertex in G and one in H is denoted as V (G)V (H)-edges.

We denote by G ⊕ H the join between graphs (or directed sum) ⊕, which is de�ned

as the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ (V (G)V (H)-

edges). If G is a graph, G ⊕ ∅ is de�ned as G. For k mutually vertex-disjoint graphs

G1, G2,..., Gk, the union G = G1 ∪ G2 ∪ · · · ∪ Gk of these k graphs is de�ned by

V (G) = V (G1) ∪ V (G2) ∪ · · · ∪ V (Gk) and E(G) = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk). If

G1 = G2 = · · · = Gk = H, then G = G1 ∪ G2 ∪ · · · ∪ Gk is denoted as G = kH. Note

that 1H = H. 0H is de�ned as ∅.
A vertex coloring (for short coloring) of a graph G with k colors is a surjective

function that assigns to each vertex of G a color from the set [k] := {1, 2, . . . , k}. A

coloring is proper if any two adjacent vertices have di�erent colors, and it is complete

if every pair of colors appears on at least one pair of adjacent vertices. The chromatic

number χ(G) of G is the smallest number k for which there exists a proper coloring of

G with k colors. It is not hard to see that any proper coloring of G with χ(G) colors is a

complete coloring. The achromatic number α(G) of G is the largest number k for which

there exists a proper and complete coloring of G with k colors. The pseudoachromatic

number ψ(G) of G is the largest number k for which there exists a complete coloring

of G with k colors. Clearly we have that

ω(G) ≤ χ(G) ≤ α(G) ≤ ψ(G). (1.1)

For convenience, in this thesis 0 ∈ N. See [BCL79, BM76, CZ09, Die05, Har69] for

a more detailed introduction.
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1.1 On complete colorings

In this section we collect some interesting facts and results from the achromatic and

pseudoachromatic numbers. Interesting results on these invariants can be found in

[BRT93, CZ09, Edw00, GK74, HM76, Xu91] and the references therein.

The achromatic number was introduced by Harary, Hedetniemi and Prins in 1967

[HHP67] (see also [Hed66]), and the pseudoachromatic number was introduced by

Gupta in 1969 [Gup69]. It turns out that the exact determination of the numbers

is quite di�cult, see [CE97, EM95, Yeg01, YG80, Zak06] to know about the computa-

tional complexity. Several authors have studied these parameters, some known results

are the following:

Harary, Hedetniemi and Prins proved that for any graph G and for every integer k

with χ(G) ≤ k ≤ α(G) there is a proper and complete coloring of G with k colors (see

[HHP67, CZ09]).

Gupta proved the inequalities type Nordhaus-Gaddum for the chromatic, achro-

matic and pseudoachromatic numbers which give lower and upper bounds on the sum

and the product of the chromatic number of a graph and its complement, in terms of

the order of the graph (see [Gup69, NG56]).

Yegnanarayanan, Balakrishnan and Sampathkunar prove that if 2 ≤ a ≤ b ≤ c

then there exists a graph G with chromatic number a, achromatic number b, and

pseudoachromatic number c (see [YBS00, Bha79, COTZ10]).

4

2

3

2

1 1

Figure 1.1: Di�erent colorations of K3,3 − e.

Figure 1.1 shows a graph G = K3,3 − e, where all of these parameters are di�erent:

G has χ(G) = 2, α(G) = 3 (a proper and complete coloring with the points •, � and
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×) and ψ(G) = 4 (a complete coloring with the numbers 1, 2, 3 and 4), see [Rub09] for

details.

1.2 Block designs

In this section we collect some concepts and results from block design theory. For a

detailed introduction to block designs we refer to [And90, CvL91].

Let v, b, κ, r and λ be positive integers with v > 1 and v > κ. Let D = (P ,B, I)
be a triple consisting of a set P of v distinct objects, called points of D, a set B of b

distinct objects, called blocks of D, and an incidence relation I, a subset of P ×B. We

say that x is incident to y (or y is incident to x) if and only if the ordered pair (x, y)

is in I. D is called a 2− (v, b, κ, r, λ) design if it satis�es the following axioms:

1. Each block of D is incident to exactly κ distinct points of D.

2. Each point of D is incident to exactly r distinct blocks of D.

3. If x and y are distinct points of D, then there are exactly λ blocks of D incident

to both x and y.

We say that two blocks are incident if there is a point that is incident to both.

The parameters of a 2 − (v, b, κ, r, λ) design are not all independent. The two basic

equations connecting them are the following:

vr = bκ and r(κ− 1) = λ(v − 1). (1.2)

These necessary conditions are not su�cient, for example, no 2 − (43, 43, 7, 7, 1)-

design exists [Tar00].

A 2− (v, b, κ, r, λ) design is called a balanced incomplete block design and it is also

denoted by (v, κ, λ)-design (if λ = 1, for short, it is denoted by (v, κ)-design). `Balance'

refers to the Property 3, and `incomplete' refers to the condition κ < v.
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1.2.1 Correspondence

Let D = (P ,B, I) be a (v, κ, λ)-design, where B = {B1, B2, . . . , Bb} is the set of its

blocks. Identify the points of D with the vertices of the complete multigraph G = λKv.

Then in the natural way, the set of points of each block of D induces in G a subgraph

isomorphic to Kκ. For Bi ∈ B, Gi denotes the complete subgraph of order κ of G

induced by Bi. The graphs Gi are constructed in such a way that the sets E(Gi) form

a partition of the set E(G).

In this way when we said that a graph G isomorphic to λKn is a representation of

the design D we will understand that V (G) is identi�ed with the points of D and that

there is a family of subgraphs (blocks) {G1, . . . , Gb} of G, such that for each block Bi

of D, Gi is the subgraph induced by the set of points of Bi.

1.2.2 Resolvability

A resolution class (or, a parallel class) of a (v, κ, λ)-design D is a partition of the

point-set of the design into blocks (then κ divides v). In general, an f -resolution class

of a design is a collection of blocks, which together contain every point of the design

exactly f times. A resolution of a design is a partition of the block-set of the design

into r resolutions (since each point of D is incident to exactly r distinct blocks of D).

A (v, κ, λ)-design with a resolution is called resolvable.

Necessary conditions for the existence of a resolvable (v, κ, λ)-design are λ(v−1) ≡ 0

(mod (κ−1)), v ≡ 0 (mod κ) and b ≥ v+r−1, (see [Bos42]). In [RW71] and [HRW72]

it is proved that there exists a resolvable (v, κ)-design for κ = 3 and κ = 4 respectively

when the previous conditions are met.

1.3 Projective and a�ne spaces

In this section we collect the basic properties of the projective and a�ne spaces. For a

more detailed introduction we refer to the book [Hir79].

Let Vn+1 be an (n + 1)-dimensional vector space over the �nite �eld of q ele-

ments, GF(q). The n-dimensional projective space PG(n, q) is the geometry whose
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k-dimensional subspaces for k = 0, 1, . . . , n are the (k + 1)-dimensional subspaces of

Vn+1 with the zero deleted. A k-dimensional subspace of PG(n, q) is called k-space.

In particular subspaces of dimension zero, one and two are respectively a point, a line

and a plane, while a subspace of dimension n− 1 is called a hyperplane.

The relation ∼
x ∼ y⇔ ∃ 0 6= α ∈ GF(q) : x = αy

is an equivalence relation on the elements of Vn+1 \0 whose equivalence classes are the

points of PG(n, q). Let v = (v0, v1, . . . , vn) be a vector in Vn+1 \ 0. The equivalence

class of v is denoted by v. The homogeneous coordinates of the point represented by v

are (v0 : v1 : . . . : vn). Hence two (n+ 1)-tuples (x0 : x1 : . . . : xn) and (y0 : y1 : . . . : yn)

represent the same point of PG(n, q) if and only if there exists 0 6= α ∈ GF(q) such

that xi = αyi holds for i = 0, 1, . . . , n.

A k-space contains those points whose representing vectors x satisfy the equa-

tion xA = 0, where A is an (n + 1) × (n − k) matrix of rank n − k with entries in

GF(q). In particalur a hyperplane contains those points whose homogeneous coordi-

nates (x0 : x1 : . . . : xn) satisfy a linear equation

u0x0 + u1x1 + · · ·+ unxn = 0

where ui ∈ GF(q) and (u0, u1, . . . , un) 6= 0.

The number of k-spaces in an n-dimensional vector space over GF(q) (with k ≤ n)

is [
n

k

]

q

:=





(qn−1)(qn−q)...(qn−qk−1)
(qk−1)(qk−q)...(qk−qk−1)

if k ≥ 1,

1 if k = 0

The proof of the following proposition is straightforward:

Proposition 1.

• The number of k-spaces in PG(n, q) is
[
n+1
k+1

]
q
.

• The number of k-spaces of PG(n, q) through a given i-space in PG(n, q) (i ≤ k)

is
[
n−i
k−i
]
q
.
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• In particular the number of k-spaces of PG(n, q) through 2 distinct points in

PG(n, q) (1 ≤ k) is
[
n−1
k−1
]
q
.

If H∞ is any hyperplane of PG(n, q), then the n-dimensional a�ne space over

GF(q) is AG(n, q) = PG(n, q) \ H∞. The subspaces of AG(n, q) are the subspaces of

PG(n, q) with the points of H∞ deleted in each case. The hyperplane H∞ is called

the hyperplane at in�nity of AG(n, q), and for k = 0, 1, . . . , n − 2 the k-dimensional

subspaces in H∞ are called the k-spaces at in�nity of AG(n, q). Let 1 < i < n be

an integer. Two i-spaces of AG(n, q) are called parallel, if the corresponding i-spaces

of PG(n, q) intersect H∞ in the same (i− 1)-space. The parallelism is an equivalence

relation on the set of i-spaces of AG(n, q). As a straightforward corollary of Proposition

1 we get the following:

Proposition 2. In AG(n, q) each equivalence class of parallel i-spaces contains qn−i

subspaces.

1.3.1 Spreads and packings

Following terminology from geometry, an i-spread S i of PG(n, q) or of AG(n, q) (a

resolution class) is a set of pairwise disjoint i-spaces which gives a partition of the

points of the geometry. A i-packing P i of PG(n, q) or of AG(n, q) (a resolution) is a

set of pairwise disjoint i-spreads which gives a partition of the set of i-spaces of the

geometry.

1.3.2 Examples

Projective and a�ne spaces provide examples of (v, κ, λ)-designs.

Example 3. Let i < n be positive integers. The projective space PG(n, q) can be

considered as a 2-design D = (P ,B, I), where P is the set of points of PG(n, q), B is

the set of i-spaces of PG(n, q) and I is the set theoretical inclusion. The parameters of

D are v = qn+1−1
q−1 , b =

[
n+1
i+1

]
q
, κ = qi+1−1

q−1 , r =
[
n
i

]
q
and λ =

[
n−1
i−1
]
q
.
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Figure 1.2: PG(2, 2) and AG(2, 2).

Example 4. Let i < n be positive integers. The a�ne space AG(n, q) can be considered

as a 2-design D = (P ,B, I), where P is the set of points of AG(n, q), B is the set of

i-spaces of AG(n, q) and I is the set theoretical inclusion. The parameters of D are

v = qn, b = qn−i
[
n
i

]
q
, κ = qi, r =

[
n
i

]
q
and λ =

[
n−1
i−1
]
q
.

In Sections 3 and 4, Examples 3 and 4 will be denoted by PG(n, q) and AG(n, q),

respectively for i = 1. In Section 6, Examples 3 and 4 will be denoted by PG(i)(n, q)

and AG(i)(n, q), respectively.

Figure 1.3: PG(2, 3).

32



Figure 1.4: PG(2, 4).
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Chapter 2

Characterizing ab-perfect graphs

A coloring of G is called pseudo-Grundy if it is a coloring having the property that for

every two colors i and j with i < j, every vertex colored j has a neighbor colored i (see

[Ber73, CZ09]). Consequently, every pseudo-Grundy coloring is a complete coloring.

The pseudo-Grundy number γ(G) is the maximum k for which a pseudo-Grundy color-

ing of G with k colors exists. A Grundy coloring is a proper pseudo-Grundy coloring.

The Grundy number Γ(G) is the maximum k for which a Grundy coloring of G exists

(see [CZ09]).

Clearly,

ω(G) ≤ χ(G) ≤ Γ(G) ≤ a(G) ≤ ψ(G) (2.1)

where a is the pseudo-Grundy number γ or the achromatic number α (see Equation

1.1).

Figure 2.1 (Up) shows a graph with a Grundy coloring with 3 colors, and Figure

2.1 (Down) shows a graph with a pseudo-Grundy coloring with 3 colors.

Recall that a greedy coloring ς of a graph G is a proper coloring obtained from an

ordering φ : v1, v2, . . . , vn of the vertices of G in some manner, by de�ning ς(v1) = 1,

and once colors have been assigned to v1, v2, . . . , vt for some integer t with 1 ≤ t < n,

ς(vt+1) is de�ned as the smallest color not assigned to any neighbor of vt+1 belonging

to the set {v1, v2, . . . , vt}. The coloring ς so produced is then a Grundy coloring of G.

That is, every greedy coloring is a Grundy coloring and then Grundy colorings always
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u1 u2 u3 u4

1 2 3 1

u1 u2 u3 u4

1 2 3 1

ω χ Γ γ α ψ

2 2 3 3 3 3

2 2 2 3 2 3

Figure 2.1: A Grundy coloring of P4 with 3 colors.

exist for a graph G.

The Grundy number was introduced by Grundy in 1939 (see [Gru39]) and the

pseudo-Grundy number by Chartrand and Zhang in 2009 (see [CZ09] page 442, and

see also the variant pseudo-Grundy fuction in Berge's book of 1973 [Ber73] page 312).

Let a, b be two parameters of a graph G. The graph G is called ab-perfect if for every

induced subgraph H of G, a(H) = b(H). This de�nition extends the usual notion of

perfect graph introduced by Berge [Ber61] in 1961; with this notation a perfect graph

is denoted by ωχ-perfect. The concept of the ab-perfect graphs was introduced by

Christen and Selkow in [CS79] and extended in [AR, BIEM12, Rub15, RZ01, Yeg01]

(see also [AR13]).

Some important known results related to this are the following: Lóvasz [Lov72b]

proved in 1972 that G is ωχ-perfect if and only if its complement is ωχ-perfect; Chud-

novsky, Robertson, Seymour and Thomas [CRST06] proved in 2006 that G is ωχ-

perfect if and only if G and its complement are C2k+1-free for all k ≥ 2. Christen

and Selkow proved in [CS79] that for any graph G the following are equivalent: G is

ωΓ-perfect, G is χΓ-perfect, and G is P4-free. They also proved in [CS79] that for

any graph G the following are equivalent: G is ωα-perfect, G is χα-perfect, and G is

(P4, P3 ∪K2,
3K2)-free.

Theorem 5 (Seinsche [Sei74]). A P4-free graph is ωχ-perfect.

By the hereditary property of the H-free graphs we have the following remark:

Remark 6. If G is an H-free graph then all induced subgraph of G are also H-free.
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In Section 2.1, characterizations are given of the families of βm-perfect graphs,

ωγ-perfect graphs and χγ-perfect graphs and we further extended some de�nitions to

locally �nite graphs and countable graphs. The results of this section are contained in

[Rub15]. In Section 2.2, characterizations are given of the families of ωψ-perfect graphs

and χψ-perfect graphs. The results of this section are contained in [AR, AR13].

2.1 Trivially perfect graphs

A βm-perfect graph G is called trivially perfect, i.e. if for every induced subgraph β(G)

(the stability number) equals m(G) (the number of cliques).

Since there must be β(G) distinct cliques containing the members of a maximum

stable set, clearly,

β(G) ≤ θ(G) ≤ m(G), (2.2)

where θ denotes the clique cover : the least number of cliques of G whose union covers

V (G) (see Fig 2.2).

1 2 3 1

ω χ Γ γ

2 2 3 3

1
2 3

1

ω χ Γ γ

2 2 32

α θ m

2 2 3

α θ m

2 2 4

Figure 2.2: Left; a Grundy coloring of P4 with 3 colors. Right; a pseudo-Grundy
coloring of C4 with 3 colors.

Since a graph G is ωχ-perfect if and only if its complement is ωχ-perfect (see

[Ber73, Ber75, Lov72a]) then:

Theorem 7. (Lóvasz [Lov72b]) A graph G is ωχ-perfect if and only if G is βθ-perfect.

By Equation (2.2), a βm-perfect graph is �trivially� perfect (see [Gol78, Gol80]).

The trivially perfect graphs are also called comparability graphs of trees by Wolk (see

[Wol62, Wol65]); or quasi-threshold graphs by Ma (see [MWW89, YCC96]).
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2.1.1 Characterizations for �nite graphs

There exist several characterizations of trivially perfect graphs, e.g. [AR13, AR, Gol78,

Wol62, Wol65, YCC96]. We will use the following equivalence to prove Theorem 13:

Theorem 8 (Golumbic [Gol78]). A graph G is trivially perfect if and only if G is

(C4, P4)-free.

Corollary 9. A graph G is θm-perfect if and only if G is βm-perfect.

Proof. (⇒) Since θ(C4) = θ(P4) = 2, m(C4) = 4 and m(P4) = 3 then G is (C4, P4)-free,

then the implication follows.

(⇐) This implication is immediate from Equation (2.2).

It is not di�cult to note the following remarks:

Remark 10. If G is a connected P4-free graph, then diam(G) ≤ 2.

Lemma 11 (Wolk [Wol65]). If G is a connected (C4, P4)-free graph of order n, then

∆(G) = n− 1.

Proof. Let x be a vertex of maximum degree. Suppose that deg(x) < n− 1. So x has

a non-neighbor z. Since G is connected, there is a path between x and z, and since G

is P4-free, this path is x− y− z for some y. Since deg(x) ≥ deg(y) and z is adjacent to

y and not to x, there must be a vertex u adjacent to x and not to y. Then {u, x, y, z}
induces a P4 or C4, a contradiction. So deg(x) = n− 1.

Theorem 12. A connected graph G is (C4, P4)-free if and only if G is a complete graph

or there exist a set of connected (C4, P4)-free graphs {G1, . . . , Gk} for some k ≥ 2 and

m ≥ 1 such that G = Km ⊕
k∪
i=1
Gi.

Proof. Assume that G is a (C4, P4)-free graph. By Lemma 11, there exists w1 ∈ V (G),

such that deg(w1) = n − 1. If G \ {w1} is disconnected, then G = K1 ⊕
k∪
i=1
Gi where

K1 = w1 and G1, . . . , Gk are the components of G \ {w1}. As each component is

an induced subgraph of G then, by Remark 6 it is (C4, P4)-free graph, hence, the

implication is true. Now, if G \ {w1} is connected and also, since it is an induced
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subgraph of G, yet again, by Remark 6, it is (C4, P4)-free graph. By Lemma 11 there

exists w2 ∈ V (G \ {w1}), such that degG\{w1}(w2) = n − 2. Newly, if G \ {w1, w2}
is disconnected, then G = K2 ⊕

k∪
i=1
Gi where K2 = 〈w1, w2〉 and G1, . . . , Gk are the

components of G\{w1, w2}. Each component is an induced subgraph of G and applying

the same argument than before the implication is true. As G is a �nite graph we can

repeat this procedure obtaining a complete graph Km with V (Km) = {w1, . . . , wm},
and {G1, . . . , Gk} a set of connected (C4, P4)-free graphs which are the components of

G \ {w1, . . . , wm}, and G = Km ⊕
k∪
i=1
Gi with G \Km a disconnected graph for k ≥ 2.

To prove the converse we take a set X = {v1, v2, v3, v4} of vertices in V (G) and we

analize three cases:

• If X ⊆ V (Gi) for some i ∈ [k] then, by hypothesis, 〈X〉 is a (C4, P4)-free graph.

• If X is in two or more components of {G1, . . . , Gk} then 〈X〉 is disconnected and

then it is a (C4, P4)-free graph.

• If there exists vi in V (Km) for some i ∈ [4] then we have a vertex of degree 3 in

〈X〉 and neither P4 nor C4 have a vertex of degree 3.

In the following result, one should note that the �niteness of G is not necessary for

the proof; the �niteness of ω(G) is su�cient.

Theorem 13. For any graph G the following are equivalent: 〈1〉 G is (C4, P4)-free, 〈2〉
G is ωγ-perfect, and 〈3〉 G is χγ-perfect.

Proof. To prove 〈1〉 ⇒ 〈2〉 assume that G is (C4, P4)-free. Let ς be a pseudo-Grundy

coloring of G with γ(G) colors. We will prove by induction on t that for t ≤ γ(G), G

contains a complete subgraph of t vertices with the t highest colors of ς. This proves

(for t = γ(G)) that G is ωγ-perfect since every induced subgraph of G is (C4, P4)-free

(see Remark 6).

For t = 1, there exists a vertex with color γ(G), then the assertion is trivial. Let

us now suppose that we have t− 1 vertices v1, . . . , vt−1 in the t− 1 highest colors such
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that they are the vertices of a complete subgraph, and de�ne Vi as the set of vertices

colored γ(G)− (t− 1) by ς and adjacent to vi (1 ≤ i < t). Since ς is a pseudo-Grundy

coloring, no Vi is empty. Any two such sets are comparable with respect to inclusion:

otherwise there must be vertices p in Vi \ Vj and q in Vj \ Vi and the subgraph induced

by {p, vi, vj, q} would be isomorphic to C4 or P4. Therefore the t−1 sets Vi are linearly

ordered with respect to inclusion, and there is a k (1 ≤ k < t) with

Vk =
⋂

1≤i<t
Vi.

Thus there is a vertex vt in Vk which is colored with γ(G)− t+ 1 by ς and is adjacent

to each of the vi (1 ≤ i < t).

The proof of 〈2〉 ⇒ 〈3〉 is immediate from Equation (2.2).

To prove 〈3〉 ⇒ 〈1〉 note that if H ∈ {C4, P4} then χ(H) = 2 and γ(H) = 3 hence

the implication is true (see Fig 2.2).

Corollary 14. Every χγ-perfect graph is ωχ-perfect.

2.1.2 Extensions for in�nite graphs

We presuppose here the axiom of choice. The de�nitions of pseudo-Grundy coloring

with k colors and of proper coloring with k colors of a �nite graph are generalizable

to any cardinal number. The chromatic number χ(G) of a graph G is de�ned as the

smallest cardinal κ such that the graph has a proper coloring with κ colors. The clique

number ω(G) of a graph as the supremum of the cardinalities of the complete subgraphs

of the graph G (see [CS79]). Similarly, for any ordinal number µ (such that |µ| = κ),

a pseudo-Grundy coloring of a graph with κ colors is a coloring of the vertices of the

graph with the elements of µ such that for any µ′′ < µ′ and any vertex v colored µ′

there is a vertex colored µ′′ adjacent to v. The pseudo-Grundy number γ(G) of a graph

G is the supremum of the cardinalities κ for which there is a pseudo-Grundy coloring

of the graph with µ colors such that |µ| = κ. A graph is locally �nite (or countable) if

all its vertices have �nite (or countable) degrees (see [Die05]).
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Next we proof a generalization of Theorem 13 for some classes of in�nite graphs.

Afterwards we show that there exists a graph, not belonging to these classes, for which

the theorem does not hold.

Theorem 15. The statements 〈1〉, 〈2〉 and 〈3〉 of Theorem 13 are equivalent for each

locally �nite graph and for each countable graph.

Proof. To prove 〈1〉 ⇒ 〈2〉, let H be an induced subgraph of G. If ω(H) is �nite, we

can use the proof of Theorem 13 to show that γ(H) = ω(H). Otherwise, if ω(H) is

in�nite, then γ(H) = ω(H), because γ(H) is at most the supremum of the degrees of

the vertices of H, which is at most ℵ0, if G is locally �nite or countable.

The implications 〈2〉 ⇒ 〈3〉 and 〈3〉 ⇒ 〈1〉 hold for any graph, �nite or not.

The following example can be found in [CS79] but �rst recall some de�nitions of

Set Theory, see [JW96] for a more detailed introduction (see also [Die05]):

• To begin with, we recall that ω is the smallest ordinal greater than every natural

number and ω1 is the �rst uncountable ordinal.

• Additionally, a limit ordinal is an ordinal number that neither zero nor a successor

ordinal, limω1 = {µ < ω1 : µ is a limit ordinal}, then | limω1| = |ω1| = ℵ1 and if

µ ∈ limω1, |µ| = |ω| = ℵ0.

• Finally, for every µ ∈ limω1 there exists a bijection fµ : ω → µ and an injection

F : (limω1)× ω → ω1 such that (µ, n) 7→ fµ(n) ∈ µ and F |{µ}×ω= fµ.

Let G be the non-countable, locally countable graph formed by the disjoint union

of ℵ1 complete countable subgraphs of ℵ0 vertices, where its components are indexed

with the countable limit ordinals, and their vertices with the natural numbers, that is

G = t
µ∈limω1

K|µ|.

Clearly ω(G) = χ(G) = ℵ0, and G is (C4, P4)-free.

Color the n-th vertex of the µ-th component with F (µ, n). Each µ ∈ limω1 is used

as a color in the (µ + 1)-th component. Since for each µ ∈ limω1, fµ(n) is injective,
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the function F de�nes a coloring with | limω1| colors. Since fµ(n) is surjective for each

µ ∈ limω1, the function F is a pseudo-Grundy coloring with | limω1| colors.

2.2 On ωψ-perfect graphs

In 2001, Yegnanarayanan [Yeg01] states the following:

1. For any �nite graph G the following are equivalent: 〈1〉 G is ωψ-perfect, 〈2〉 G is

χψ-perfect, 〈3〉 G is αψ-perfect and 〈4〉 G is C4-free.

2. Every αψ-perfect graph is χα-perfect.

3. Every χα-perfect graph is ωχ-perfect.

Unfortunately, (1.) is false (a counterexample is P4 because it is C4-free but not

ωψ-perfect, see Figure 2.2); i.e., 〈4〉 does not necessarily imply 〈1〉). Consequently (2.)

and (3.) are not well founded. However, while (2.) is false (newly the counterexample

is P4, see Figure 2.2), (3.) is true (see Theorem 16). Note that if a graph G is ωψ-

perfect then immediatly it is ωχ-perfect (see Equation 2.1). That is, G is perfect in

the usual sense and it is well known that G does not allow odd cycles (except triangles)

or their complements (see [CRST06]) and then the condition C4-free is not su�cient.

With the aim of �nding the correctness of these statements we obtain the following

results:

Theorem 16. Let G be a graph and let a ∈ {Γ, α, ψ}. G is χa-perfect if and only if

G is ωa-perfect. Moreover, if G is χa-perfect then it is ωχ-perfect.

In the following two theorems we prove some equivalences between graphs. Note

that in Theorem 17 we analyze some equivalence when G is a connected graph, and

in Theorem 18 we analize the same, but in this case G is any graph (not necessarily

connected).

Theorem 17. For any connected graph G the following are equivalent: 〈1〉 G is ωψ-

perfect, 〈2〉 G is χψ-perfect, 〈3〉 G is (C4, P4, P3 ∪ K2,
3K2)-free and 〈4〉 G = Kn1 ⊕
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(Kn2 ∪Kn3 ∪ n4K1) or G = Kn1 ⊕ (G′ ∪ n2K1) for n1 ∈ Z+ and n2, n3, n4 ∈ N where

G′ is a connected non complete (C4, P4, P3 ∪K2,
3K2)-free graph.

Theorem 18. For any graph G the following are equivalent: 〈1〉 G is ωψ-perfect, 〈2〉
G is χψ-perfect, 〈3〉 G is (C4, P4, P3 ∪ K2,

3K2)-free and 〈4〉 G = Kn1 ∪ Kn2 ∪ n3K1

or G = G′ ∪ n2K1 for n1 ∈ Z+ and n2, n3 ∈ N, where G′ is a connected non complete

(C4, P4, P3 ∪K2,
3K2)-free graph.

2.2.1 Relationship

In Figure 2.3 we show a directed transitive graph D where the vertices of D represent

the classes of ab-perfect graphs and they are labeled at its label is ab respectively for

a, b ∈ {ω, χ,Γ, α, ψ}. If two classes are equivalent they de�ne the same vertex (see

Theorem 16). If a class of ab-perfect graphs implies a class of cd-perfect graphs then

there is an arrow from vertex ab to vertex cd. To prove that D does not contain another

arrow we have the following counterexamples: P4, C4, C5 and P3 ∪K2 (see Tables 2.1,

2.2, 2.3, 2.4).

Γψ

ωψ = χψ

ωα = χα

ωΓ = χΓ

ωχ

Γα

αψD

1

Figure 2.3: Relationship between ab-perfect graphs with a, b ∈ {ω, χ,Γ, α, ψ}.
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αψ 9 ωψ Γψ 9 ωψ Γα 9 ωψ ωχ9 ωψ
αψ 9 ωα Γψ 9 ωα Γα9 ωα ωχ9 ωα
αψ 9 ωΓ Γψ 9 ωΓ Γα9 ωΓ ωχ9 ωΓ

Table 2.1: P4 is a counterexample in these cases.

ωα9 ωψ ωα9 Γψ ωα9 αψ ωχ9 Γψ Γα9 Γψ
ωΓ 9 ωψ ωΓ 9 Γψ ωΓ 9 αψ ωχ9 αψ Γα 9 αψ

Table 2.2: C4 is a counterexample in these cases.

αψ 9 ωχ Γψ 9 ωχ Γα 9 ωχ

Table 2.3: C5 is a counterexample in these cases.

αψ 9 Γψ αψ 9 Γα ωΓ 9 Γα ωχ9 Γα ωΓ 9 ωα

Table 2.4: P3 ∪K2 is a counterexample in these cases.

2.2.2 Results

Proof of Theorem 16. Assume that G is χa-perfect. G is P4-free because χ(P4) = 2

and a(P4) = 3 (see Figure 2.1). By Theorem 5, G is ωχ-perfect, then for all induced

subgraphs H we have that ω(H) = χ(H) = a(H), i.e., G is ωa-perfect. The converse

is immediate from (2.1).

We will prove a short, but useful lemma:

Lemma 19. If H = Km1 ∪Km2 ∪m3K1 where m1 ∈ Z+ and m2,m3 ∈ N then ω(H) =

ψ(H).

Proof. Note that ω(H) = max{m1,m2}, suppose that max{m1,m2} < ψ(H) and let

ς : V (H)→ [ψ(H)] be a complete coloring of H with ψ(H) colors. Note that each color

class has at least two vertices in Km1∪Km2 , in other case, as deg(v) ≤ max{m1,m2}−1

for any v ∈ V (H), ς would not be complete. Then ψ(H) ≤ m1+m2

2
≤ max{m1,m2}

which is a contradiction and we conclude that ψ(H) = max{m1,m2}.
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Proof of Theorem 17. The proof of 〈1〉 ⇒ 〈2〉 is immediate from (2.1).

To prove 〈2〉 ⇒ 〈3〉 note that if H ∈ {C4, P4, P3 ∪ K2,
3K2} then χ(H) = 2 and

ψ(H) = 3 hence the implication is true.

We prove 〈3〉 ⇒ 〈4〉 using Theorem 12. We know that G is complete, or there

exists k ≥ 2 and n1 ∈ Z+ such that all the {G1, . . . , Gk} are connected (C4, P4)-free

graphs, G = Kn1 ⊕
k∪
i=1
Gi and G \ Kn1 is disconnected. Without loss of generality, if

|E(Gi)| ≥ 2 for three distinct values of i then 3K2 is an induced subgraph of G which

is not possible by hypothesis. Then we have that G = Kn1 ⊕ (G1 ∪G2 ∪ n4K1) for

n4 ∈ N. Now, if G1 is a connected non complete graph, as we noted in the proof of

Lemma 11 G1 has P3 as induced subgraph, in which case necessarily G2
∼= K1 since in

other case we have P3 ∪K2 as induced subgraph of G. Using Remark 6 we have that

G1 is a (C4, P4, P3 ∪K2,
3K2)-free graph hence the implication is true.

Finally, we will divide the proof of 〈4〉 ⇒ 〈1〉 into two cases and in both proofs we

will use induction over |V (G)|:
Case 1) Let G = Kn1 ⊕ (Kn2 ∪Kn3 ∪ n4K1), by induction, if |V (G)| = 1 then

G ∼= K1 is ωψ-perfect. Assume that if |V (G)| ≤ m then G is ωψ-perfect and take a

graph G = Kn1 ⊕ (Kn2 ∪Kn3 ∪ n4K1) such that n1 + n2 + n3 + n4 = m+ 1. If H is an

induced connected subgraph of G such that |V (H)| < |V (G)| then clearly H = Km1 ⊕
(Km2 ∪Km3 ∪ m4K1) where mi ≤ ni for all i ∈ {1, . . . , 4} and m1 +m2 +m3 +m4 ≤ m,

then by induction hypothesis H is ωψ-perfect, in particular ω(H) = ψ(H).

Now, if H is a disconnected induced subgraph of G such that |V (H)| < |V (G)| then
H = Km1 ∪Km2 ∪ m3K1 where m1 ∈ Z+ and m2,m3 ∈ N and by Lemma 19, ω(H) =

ψ(H).

Now, we will prove that we also have that ω(G) = ψ(G). Let n = max{n2, n3, a} with
a = 1 if n4 > 0 and a = 0 if n4 = 0. If n = 0 then G = Kn1 and it is ωψ-perfect.

Suppose that n 6= 0, clearly ω(G) = n1 + n. Suppose that ψ(G) > n1 + n and let

ς : V (G) → [ψ(G)] a complete coloring of G with ψ(G) colors. First, we suppose also

that n4 > 0; let u be a vertex of n4K1. As the neighbours of u are n1 then u meets at

most n1 di�erent chromatic classes, then there must exist another vertex v such that

ς(u) = ς(v) and clearly N(u) ⊆ N [v]. Then ψ(G) = ψ(G\u), but ω(G) = ω(G\u) and

G \ u is an induced subgraph of G, contradicting the induction hypothesis. Then we
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have that G = Kn1 ⊕ (Kn2 ∪Kn3) and n = max{n2, n3}. Let u ∈ V (Kn2 ∪Kn3) such

that ς(u) /∈ {ς(v) : v ∈ V (Kn1)}. As the neighbours of u are at most n1 + n − 1 then

u meets at most n1 + n− 1 di�erent chromatic classes, then there must exist another

vertex v in V (Kn2 ∪Kn3) such that ς(u) = ς(v) and ψ(G) ≤ n1 + n2+n3

2
≤ n1 +n which

is a contradiction. Then ω(G) = ψ(G), hence G is ωψ-perfect.

Case 2) Let G = Kn1 ⊕ (G′ ∪ n2K1), if |V (G)| = 4 then G = K1⊕P3 = K2⊕ (2K1)

and by the previous case G is ωψ-perfect. Now, assume that any graph with this

structure and order less or equal than m is ωψ-perfect, and let G = Kn1 ⊕ (G′ ∪ n2K1)

be such that n1 + n′ + n2 = m + 1, where n′ = |V (G′)|. If H is an induced connected

subgraph of G such that |V (H)| < |V (G)| then by Remark 6, H is a (C4, P4, P3 ∪
K2,

3K2)-free graph, hence by 〈3〉 ⇒ 〈4〉 we have that

1. H = Kn5 ⊕ (Kn6 ∪Kn7 ∪ n8K1) or H = Kn5 ⊕ (H ′ ∪ n6K1) for n5 ∈ Z+ and

n6, n7, n8 ∈ N where H ′ is a connected graph (C4, P4, P3 ∪K2,
3K2)-free.

2. If H = Kn5 ⊕ (Kn6 ∪Kn7 ∪ n8K1) then using the previous case we conclude that

H is ωψ-perfect, in particular, ω(H) = ψ(H).

3. If H = Kn5 ⊕ (H ′ ∪ n6K1) then by induction hypothesis H is ωψ-perfect, in

particular, ω(H) = ψ(H).

Furthermore, if H is an induced disconnected subgraph of G = Kn1 ⊕ (G′ ∪ n2K1)

such that |V (H)| < |V (G)| then H is an induced disconected subgraph of G′ ∪ n2K1.

Then if H ≤ n2K1, ω(H) = ψ(H). Now, if H 6≤ n2K1 then ψ(H) = ψ(H \ n2K1) and

ω(H) = ω(H \ n2K1). Since H \ n2K1 ≤ G′ and G′ is a proper induced connected

subgraph of G, by arguments like those in 1., 2. and 3. G′ is ωψ-perfect, in particular

ω(H \ n2K1) = ψ(H \ n2K1), then ω(H) = ψ(H).

Finally, we will prove that ω(G) = ψ(G). Note that ω(G) = ω(G′) +n1 and ω(G′) ≥ 2.

Suppose that ω(G′) + n1 < ψ(G). Let ς : V (G) → [ψ(G)] a complete coloring of G

with ψ(G) colors. First, we suppose that n2 > 0; let u be a vertex of n2K1. As the

neighbours of u are n1 then u meets at most n1 di�erent chromatic class from u, then

there exists another vertex v such that ς(u) = ς(v) and clearly N(u) ⊆ N [v]. Then

ψ(G) = ψ(G \ u) but ω(G) = ω(G \ u) and G \ u is an induced subgraph of G with
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ω(G \ u) < ψ(G \ u) which is newly a contradiction. Then, if ω(G′) + n1 < ψ(G) we

have that G = Kn1 ⊕ G′. Now, if there exist u and v in Kn1 such that ς(u) = ς(v),

clearly N(u) ⊆ N [v] then ψ(G) = ψ(G \ u) but ω(G) = ω(G \ u) and G \ u is an

induced subgraph of G, which newly is a contradiction. Hence ς(u) 6= ς(v) for all

u, v ∈ V (Kn1). Now, since G′ is not a complete graph, ω(G′) ≥ 2 and by induction

hypothesis ψ(G) ≥ ω(G′) + n1 then there exist at least two colors i and j that do not

appear in vertices of Kn1 and there exists xy ∈ E(G′) such that ς(x) = i and ς(y) = j.

Then ψ(G′) = ψ(G)−n1 and on the other hand ω(G′) = ω(G)−n1. By argumens like

those in 1., 2. and 3. this is a contradiction. Hence G is ωψ-perfect.

Proof of Theorem 18. The proof of 〈1〉 ⇒ 〈2〉 is immediate from (2.1).

To prove 〈2〉 ⇒ 〈3〉 note that if H ∈ {C4, P4, P3 ∪ K2,
3K2} then χ(H) = 2 and

ψ(H) = 3, hence the implication is true.

To prove 〈3〉 ⇒ 〈4〉 we only note that if G is connected we apply Theorem 17.

In other case let {G1, . . . , Gn} be the connected components of G, then at most two

of them are di�erent of K1 because in other case we have 3K2 as induced subgraph

of G which it is not possible. When one of them is a non complete graph then the

rest of them are isolated vertices because in other case we have P3 ∪K2 as an induced

subgraph of G. Then we have two di�erent cases, either G = Kn1 ∪ Kn2 ∪ n3K1 or

G = G′ ∪ n2K1 where n1 ∈ N and n2, n3 ∈ Z+ and G′ is connected non complete

(C4, P4, P3 ∪K2,
3K2)-free graph and the result follows.

Finally, the arguments to proof 〈4〉 ⇒ 〈1〉 are exactly the same that those used to

proved the Theorem 17, only it is important to note that if G = Kn1 ∪Kn2 ∪ n3K1 then

Lemma 19 states that ω(G) = ψ(G), and is also necessary to prove the equality for all

induced subgraph but this analysis is similar that those made in the Lemma 19. To

prove the ωψ-perfectness of G when G = G′ ∪ n2K1 we also use similar arguments to

those in the proof of Theorem 17.
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Chapter 3

Achromatic and pseudoachromatic

indices of the complete graph

It is central in Graph Theory to study the behavior of any parameter in complete

graphs. In this chapter we endeavour to determine the pseudoachromatic number

of the line graph of the complete graph ψ1(Kn) := ψ(L(Kn)), also known as the

pseudoachromatic index of the complete graph, and its close relation with α1(Kn) :=

α(L(Kn)), the achromatic index of such a graph (see [AMS11, Bou78, Jam89, San05,

TRJL88]).

The pseudoachromatic index of two in�nite classes of complete graphs have been

found so far, namely ψ1(Kq2+q+1) for any odd prime power q [Bou78], and ψ1(Kq2+2q+2)

when q is a power of 2 [AMS11]. And the achromatic index of an in�nite class of

complete graphs have been found so far, namely α1(Kq2+q+1) for any odd prime power

q [Bou78]. Table 3.1 can be found in [HPW04] in which we describe the �rst values of

the achromatic index of the complete graph.

n 2 3 4 5 6 7 8 9 10 11 12 13 14
α1(Kn) 1 3 3 7 8 11 14 18 22 27 32 39 39

Table 3.1: Exact values for α1(Kn), 2 ≤ n ≤ 14.
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In particular, we prove the following:

Theorem 20. If x ≥ 2 is an integer, then

ψ1(Km) ≤





gm(x)− 1 m ∈ {4x2 − x, . . . , 4x2 + 3x− 3}
gm(x) m ∈ {4x2 + 3x− 2, 4x2 + 3x− 1}
fm(x+ 1) m ∈ {4x2 + 3x, . . . , 4(x+ 1)2 − (x+ 1)− 1} .

where gm(x) := 2x(m− x− 1) + 1 and fm(x+ 1) :=

⌊
(n2)
x+1

⌋
.

On the other hand, supported in the combinatorial structure of projective planes

of even order, we exhibit optimal complete edge-colorings of the complete graphs with

some particular numbers of vertices; we show the following

Theorem 21. Let q ≥ 4 be a power of 2. If n = q2 + q + 1 and a ∈ {0, 1, 2} then

ψ1(Kn+q−a) = α1(Kn+q−a) = q(n+ q − 2a).

Theorem 22. Let q ≥ 4 be a power of 2. If n = q2 + q + 1 and a ∈ {3, 4, . . . , q
2

+ 1}
then

ψ1(Kn+q−a) ≥ q(n+ q − 2a).

Putting Theorem 20 and Theorem 22 together, we obtain the following set of exact

values for the psudoachromatic index of the complete graph:

Corollary 23. Let q ≥ 4 be a power of 2. If a ∈ {3, 4, . . . ,
⌈
1+
√
4q+9
2

⌉
− 1} and

n = q2 + q + 1 then

ψ1(Kn+q−a) = q(n+ q − 2a).

Theorem 21, when q = 4 and a = 0, states that α1(K25) = 100. This value was

given earlier by Jamison [Jam89] using some type of diagrams. For q = 2, Theorems

22 works for ψ1(Kq2+q+1−a) and a ∈ {0, 1}, and that give the same values that in Table

3.1.
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In Section 3.1 we prove Theorem 20 and the upper bounds of Theorem 21 and

Corollary 23. In Section 3.2 we exhibit close related edge-colorings of the complete

graph to prove Theorem 21 and Theorem 22. The results of this chapter are contained

in [AMRS14, AMRS]).

3.1 Upper bound

We use the following result due to Jamison [Jam89]:

Lemma 24. If x ≥ 2 is an integer, then

ψ1(Km) ≤




gm(x) if m ∈ {4x2 − x, . . . , 4x2 + 3x− 1},
fm(x+ 1) if m ∈ {4x2 + 3x, . . . , 4(x+ 1)2 − (x+ 1)− 1}

where gm(x) := 2x(m− x− 1) + 1 and fm(x+ 1) :=

⌊
(m2 )
x+1

⌋
.

Lemma 24 can be deduced by the following facts: Given ς : V (G) → [ψ1(Km)] a

complete coloring of the line graph G of Km with ψ1(Km) colors, let x be the size of

the smallest chromatic class H in the colored graph G. It follows that the number of

chromatic classes, ψ1(Km), is at most
⌊(

m
2

)
/x
⌋
. On the other hand, it is not hard to

see that the number of vertices, which are not in H, but are adjacent to some vertex in

H is at most 2x(m−x− 1). Thus, since ς is complete the number of chromatic classes

ψ1(Km) is at most 2x(m− x− 1) + 1. Therefore

ψ1(Km) ≤ max {min{gm(x), fm(x) : x ∈ N}} .

From here, and by a detailed and technical analysis, the order between the values of

2x(m − x − 1) + 1 and
⌊(

m
2

)
/x
⌋
in terms of m and x can be obtained, and it yields

Lemma 24.

In Table 3.2 the �rst values of the pseudoachromatic index of the complete graph

are described; they follow from Table 3.1 and Lemma 24 except for m = 4 and m = 12,
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which are easy to prove. For m = 12, if we suppose that ψ1(K12) = 33 then each

chromatic class is a matching.

n 2 3 4 5 6 7 8 9 10 11 12 13
ψ1(Km) 1 3 4 7 8 11 14 18 22 27 32 39

Table 3.2: Exact values for ψ1(Km), 2 ≤ m ≤ 13.

Corollary 25. Let q be even, n = q2 + q + 1 and a ∈ {0, 1, . . . , q
2

+ 1}, then

ψ1(Kn+q−a) ≤ fn+q−a(
q
2

+ 1).

If a ∈ {0, 1, . . . ,
⌈
1+
√
4q+9
2

⌉
− 1}, then

ψ1(Kn+q−a) ≤ q(n+ q − 2a).

Proof. Since 4
(
q
2

)2
+ 3

(
q
2

)
= q2 + 3q

2
≤ n+ q− a ≤ q2 + 7q

2
+ 2 = 4

(
q+2
2

)2−
(
q+2
2

)
− 1,

then by Lemma 24,

ψ1(Kn+q−a) ≤ fn+q−a(
q
2

+ 1) =

⌊
(n+ q − a)(n+ q − a− 1)

2( q+2
2

)

⌋
.

After some easy calculations we see that

⌊
(n+ q − a)(n+ q − a− 1)

q + 2

⌋
= q(n+ q − 2a) +

⌊
a2 − a
q + 2

⌋
.

On the other hand,

a2 − a
q + 2

< 1⇔ a2 − a− (q + 2) < 0⇔
(
a− 1−√4q + 9

2

)(
a− 1 +

√
4q + 9

2

)
< 0

so, 1−√4q+9
2

< a < 1+
√
4q+9
2

and then a ∈ {0, . . . ,
⌈
1+
√
4q+9
2

⌉
− 1} and the result

follows.
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The following theorem improves Lemma 24:

Proof of Theorem 20. Let x ≥ 2 and let n ∈ {4x2−x, . . . , 4x2+3x−3}. By Lemma 24,

ψ1(Kn) ≤ gn(x). We will prove that ψ1(Kn) ≤ gn(x) − 1, to do this, we suppose that

ψ1(Kn) = gn(x) and �nally arrive to a contradiction. Let ς : E → [gn(x)] be a complete

coloring with 2x(n − x − 1) + 1 colors. First of all we will prove that no chromatic

class can have less than x edges. Suppose there exist a color class C with s edges such

that s < x, then C will be adjacent to at most
(
2s
2

)
− s + 2s(n − 2s) = 2s(n − s − 1)

edges, but 2s(n − s − 1) < 2x(n − x − 1), in consequence C could not be adjacent to

all other color classes. Then, each color class has at least x edges. Suppose now that

there exist a color class C with exactly x edges then it is clear that C is adjacent to

exactly 2x(n−x−1) other edges and also they must all have di�erent colors, otherwise

C does not meet all the other color classes. Note that the only way to get this is

when C is a matching. Since each color class has at least x edges, the number of

color classes with more than x edges is at most
(
n
2

)
− xgn(x), hence there are at least

gn(x) − {
(
n
2

)
− xgn(x)} color classes with x edges. For the rest of the proof, we need

at least two color classes of size x, but as we see in the following this is true. In fact

2 ≤ gn(x)−{
(
n
2

)
−x(gn(x))} if and only if n2−(4x2+4x+1)n+4x3+8x2+2x+2 ≤ 0,

i.e.,
(
n− 4x2 + 4x+ 1−√D1

2

)(
n− 4x2 + 4x+ 1 +

√
D1

2

)
≤ 0,

where 4x2 + 2x − 3/2 <
√
D1 =

√
16x4 + 16x3 − 8x2 − 7 < 4x2 + 2x − 1, which is

equivalent to
√
D1 = 4x2 + 2x− 3/2 + ε for some 0 < ε < 1/2, and then

n ∈
[
x+

5

4
− ε

2
, 4x2 + 3x− 1

4
+
ε

2

]
∩ {4x2 − x, . . . , 4x2 + 3x− 3},

ie, n ∈ {4x2 − x, . . . , 4x2 + 3x− 3}.

Let C be a color class of size x. This class is a matching with 2x vertices and there

are
(
2x
2

)
− x edges in the induced subgraph 〈C〉 that are not in C. Therefore, each one

of this edges has di�erent color and each one of this colors is in a class with more than
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x edges because they are adjacent to two edges of C.

C′
C

. . .

u

Kn − V (C)

. . .

1

Figure 3.1: Kn

Let C ′ be another color class of size x. C ′ meets C in a vertex u. In Fig 3.1 we

give a diagram of Kn indicating the vertices of C and C ′. The 2x − 2 edges through

u in 〈C ′〉 \ C ′ meet C ′ in two vertices, therefore its color classes are larger than x. As

mentioned before, there are at least gn(x) − {
(
n
2

)
− x(gn(x))} color classes of size x,

then there are at most
(
2x
2

)
− x + (2x − 2)(gn(x) − {

(
n
2

)
− x(gn(x))} − 1) chromatic

classes of size greater than x and hence we have the following:

(
n
2

)
− x(gn(x)) ≥

(
2x
2

)
− x+ (2x− 2)(gn(x)− {

(
n
2

)
− x(gn(x))} − 1).

In other words, it must meet the following:

(2x− 1)n2 − (8x3 + 4x2 − 6x− 1)n+ 8x4 + 12x3 − 12x2 − 2x ≥ 0

i.e.,
(
n− 8x3 + 4x2 − 6x− 1−√D2

4x− 2

)(
n− 8x3 + 4x2 − 6x− 1 +

√
D2

4x− 2

)
≥ 0

where
√
D2 =

√
64x6 − 144x4 + 80x3 − 4x2 + 4x+ 1 = 8x3 − 9x+ 5 + r2 and then

(
n− (x+

5

4
+ r3)

)(
n− (4x2 + 3x− 9

4
+ r4)

)
≥ 0,
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i.e., n ∈
[
4x2 + 3x− 9

4
+ r4,∞

)
∩ {4x2 − x, . . . , 4x2 + 3x− 3} = ∅.

Then we have a contradiction and we conclude that if if x ≥ 2 is an integer and

n ∈ {4x2 − x, . . . , 4x2 + 3x− 3} then ψ1(Kn) ≤ gn(x)− 1.

The rest of the chapter will prove the lower bound of Theorem 21 and Theorem 22

given by edge-colorations.

3.2 Lower bound: edge-colorations

Since ψ1(Kn+q−a) ≥ α1(Kn+q−a) in order to prove Theorem 21 it su�ces to show that

α1(Kn+q−a) ≥ q(n+ q − 2a). Similary, in order to prove Theorem 22 we need to show

that ψ1(Kn+q−a) ≥ q(n+ q − 2a). We will do this by exhibiting, for each a ∈ {0, 1, 2},
a proper and complete edge-coloring of Kn+q−a with q(n + q − 2a) colors, and for

a ∈ {3, 4, . . . , q
2

+ 1}, a complete edge-coloring of Kn+q−a with q(n+ q− 2a) colors. For

the construction of such an edge-coloring we need some de�nitions and remarks.

3.2.1 Basic terminology

A projective plane consists of a set of n points, a set of lines, and an incidence relation

between points and lines having the following properties:

1. Given any two distinct points there is exactly one line incident to both of them.

2. Given any two distinct lines there is exactly one point incident to both of them.

3. There are four points, such that no line is incident to more than two of them.

Such a plane has n = q2 + q + 1 points (for some number q) and n lines; each line

contains q+ 1 points and each point belongs to q+ 1 lines. The number q is called the

order of the projective plane. A projective plane of order q is called Πq. It is not hard

to prove that the projective space PG(2, q) is a projective plane, then if q is a prime
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power there exists a projective plane of order q, namely PG(2, q), which is called the

algebraic projective plane since it arises from �nite �elds (see Section 1.3).

In the remainder of this section we exclusively work with PG(2, q) for q a power of

two, but the proofs also work for any projective plane of even order q.

Let IP be the set of points of PG(2, q) and let IL = {Il1, . . . , Iln} be the set of

lines of PG(2, q). Now identify the points of PG(2, q) with the set of vertices of the

complete graph Kn. In a natural way the set of points of each line of PG(2, q) induces

in Kn a subgraph isomorphic to Kq+1. For each line Ili ∈ IL let li = (V (li), E(li))

be the subgraph of Kn induced by the set of q + 1 points (vertices) of Ili. By the

properties of the projective plane for every pair {i, j} ⊆ [n], |V (li) ∩ V (lj)| = 1 and

then {E(l1), . . . , E(ln)} is a partition of E(Kn). In this way when we said that a

graph G isomorphic to Kn is a representation of the projective plane PG(2, q) we will

understand that V (G) is identi�ed with the points of PG(2, q) and that there is a

family of subgraphs (lines) {l1, . . . , ln} of G, such that for each line Ili of PG(2, q) li is

the subgraph induced by the set of points of Ili.

Let m be a positive integer. Given an edge-coloring Γ: E(Km) → C we say that

a vertex x ∈ V (Km) is an owner of a set of colors C ′ ⊆ C whenever for every c ∈ C ′
there is y ∈ V (Km), such that Γ(xy) = c; and given a subgraph G of Km we say that

G is an owner of a set of colors C ′ ⊆ C, if each vertex of G is an owner of C ′. With

this notation, Γ is a complete edge-coloring, if for every pair of colors in C there is a

vertex in Km, which is an owner of both colors.

Lemma 26. Let n = q2 + q + 1, with q a prime power, and let t be a positive integer.

Let G be a subgraph of Kn+t isomorphic to Kn and assume that G is a representation

of PG(2, q). Let Γ: E(Kn+t) → C be an edge-coloring of Kn+t. Suppose that each

line li of G is an owner of a set of colors Ci ⊆ C. Then for every pair of colors

{c1, c2} ⊆
q2+q+1⋃
i=1

Ci there is x ∈ V (G), which is an owner of c1 and c2.

Proof. Let {c1, c2} ⊆
q2+q+1⋃
i=1

Ci. If there is i ∈ [q2 + q+ 1], such that {c1, c2} ⊆ Ci, since

li is the owner of Ci it follows that each x ∈ V (li) is an owner of c1 and c2. If c1 ∈ Ci
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and c2 ∈ Cj then there is x ∈ V (G) such that x = V (li) ∩ V (lj), and since li and lj
are owners of Ci and Cj, respectively, x is an owner of c1 and c2.

Now, we de�ne di�erent edge-colorations for some special graphs that will be used

later.

It is well know (see [BM76], [Har69]) that any complete graph of even order r admits

a 1-factorization and that any complete graph of odd order r admits a 2-factorization

by hamiltonian cycles.

De�nition 27. Let r be an even integer. An edge-coloring Γ: E(Kr)→ [r− 1] will be

said to be of Type 1 if for every i ∈ {1, 2, . . . , r− 1} the set {xy ∈ E(Kr) : Γ(xy) = i}
is a perfect matching of Kr.

De�nition 28. Let r be an odd integer. An edge-coloring Γ: E(Kr)→ [r] will be said

to be of Type 2 if we obtain Γ in the following way: Let G be the graph (isomorphic

to Kr+1) obtained by adding a new vertex x0 and all the x0V (Kr)-edges. Let Γ′ be an

edge-coloring of Type 1 of G and, for every e ∈ E(Kr), let Γ(e) := Γ′(e).

De�nition 29. Let r be an odd integer. An edge-coloring Γ: E(Kr − xy) → [r − 2]

will be said to be of Type 3 if we obtain Γ in the following way: Let G be the graph

(isomorphic to Kr−1) obtained by deleting from Kr a vertex x and all the xV (Kr−1)-

edges. Let Γ′ be an edge-coloring of Type 1 of G and, for every e ∈ E(Kr − xy), let

Γ(e) := Γ′(e) if e ∈ E(G), and Γ(xw) := Γ′(yw) ∀w ∈ V (G) \ {y}.

De�nition 30. Let r be an odd integer. An edge-coloring Γi : E(Cr)→ {i, i+ r−1
2
} will

be said to be of Type 4 if we obtain Γi in the following way: Let G be the graph obtained

by deleting the edge xy ∈ E(Cr). Let Γ′i : E(G)→ {i, i+ r−1
2
} be a proper edge-coloring

of G (remember that proper means that each vertex has di�erent colors in its edges)

and, for every e ∈ E(Cr), let Γi(e) := Γ′i(e) if e ∈ E(G), and Γi(xy) := Γ′i(xw) for

w = N(x) \ {y}. Observe that x is owner of one color.

De�nition 31. Let r be an odd integer. An edge-coloring Γ: E(Kr)→ [r − 1] will be

said to be of Type 5 in x0 if we obtain Γ in the following way: Let {G1, . . . , G r−1
2
} be a

2-factorization of Kr such that Gi = Cr ∀i ∈ {1, . . . , r−12 }. Let Γi be a edge-coloring of
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Gi of Type 4 for x = x0 and, for every e ∈ E(Kr), let Γ(e) := Γi(e) if e ∈ Gi. Observe

that x0 is owner of r−1
2

colors.

3.2.2 The proper and complete edge-colorings

Proof of Theorem 21. To prove the lower boud of this theorem we will exhibit a com-

plete proper edge-coloring of Kn+q−a with q(n + q − 2a) colors, for n = q2 + q + 1.

Let C be a set of q(n + q − 2a) colors and let {C1, C2, . . . , Cq2+q+2} be a partition of

C in the following way: for 1 ≤ i ≤ (a + 1)q + 1, Ci is a set of q − 1 colors, and for

(a+ 1)q + 2 ≤ i ≤ q2 + q + 2, Ci is a set of q + 1 colors.

Let G be a subgraph of Kn+q−a isomorphic to Kn and let H = Kn+q−a \ V (G).

Clearly H is isomorphic to Kq−a and Kn+q−a = G ⊕H. Let G be a representation of

PG(2, q), let {l1, . . . , lq2+q+1} be the set of lines of G, and let V (H) = {h1, . . . , hq−a}.
The remainder of the proof is divided into 3 cases given by a = 0, a = 1 and a = 2:

1. Case a = 0.

Let v0 ∈ V (G) and let Lv0 be the set of lines of G through v0. Without loss of

generality, let Lv0 = {li : i ∈ [q + 1]} and Lcv0 = {li : q + 2 ≤ i ≤ q2 + q + 1}.
For each li ∈ Lv0 let pi ∈ V (li) ∩ V (lq+2) ⊆ V (G). Let E1 = {v0pi : i ∈ [q]} ⊆
E(G) and E2 = {hipi : i ∈ [q]} ∪ {v0pq+1} ⊆ E(Kn+q). In Figure 3.2 we give a

description of Kn+q.

We colo the edges of Kn+q in the following way:

i) For each li ∈ Lcv0 let Γi : E(li) → Ci be an edge-coloring of Type 2. For each

li ∈ Lcv0 and for each x ∈ V (li) let c(x, li) be the only color c ∈ Ci, such that

for every y ∈ V (li), Γi(xy) 6= c. Observe that
⋃

x∈V (li)

c(x, li) = Ci. For each

x ∈ V (G) \ {v0} let c(x) = {c(x, li) : x ∈ V (li) and li ∈ Lcv0}. Given that for each

x ∈ V (G) \ {v0} there are q lines l in Lcv0 , such that x ∈ V (l), c(x) is a set of q

colors.

For each x ∈ V (G) \ {v0, p1, . . . , pq}, we color the set of q edges {xh : h ∈ V (H)}
with the set of colors c(x). For each pj ∈ {p1, . . . , pq} we color the set of q edges
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G

E1 E2

p1
p2 pi

pq

v0

pq+1

h1

h2

.

.

.

hi

.

.

.

hq

lq+1l1 l2 li lq

lq+2

lj

Lv0

H

1

Figure 3.2: Kn+q.

{pjh : h ∈ V (H) \ {hj}} ∪ {pjv0} with the set of colors c(pj). Observe that we

are coloring edges in E1 and avoid coloring edges in E2.

In this way, each line li ∈ Lcv0 is an owner of Ci; and at this point we have assigned
a color to each edge of E1 ∪

⋃
l∈Lcv0

E(l) and, except for those edges in E2, to all

the (V (G) \ {v0})V (H)-edges. The coloring so far is proper.

ii) For each li ∈ Lv0 let l′i be the subgraph of G obtained by deleting v0 from

li. Let Γi : E(l′i) → Ci be an edge-coloring of Type 1. For each i ∈ [q + 1] let

Ji = {v0z : z ∈ V (l′i) \ {pi}} (observe that Ji = {v0z : z ∈ V (li)} \ (E1 ∪E2)). For

i ∈ [q] we color the set of q − 1 edges in Ji with the set of colors Ci+1 and color

the set of q − 1 edges Jq+1 with the set of colors C1. In this way each line li in

Lv0 is an owner of Ci, and since for every pair {i, j} ⊆ [q + 1], V (l′i) ∩ V (l′j) = ∅
there is no pair of edges of the same color incident with the same vertex.

Now we shall assign colors to the edges in E2 ∪ E(H) and to all the {v0}V (H)-

edges.
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iii) Let H ′ = H ⊕ v0 and let Γq2+q+2 : E(H ′) → Cq2+q+2 be an edge-coloring

of Type 2 and for each x ∈ V (H ′) let c(x,H ′) be the only color c ∈ Cq2+q+2,

such that for every y ∈ V (H ′) Γq2+q+2(xy) 6= c. For each x ∈ V (H ′) there is

yx ∈ {pi : 1 ≤ i ≤ q + 1}, such that xyx ∈ E2. Let Γ(xyx) = c(x,H ′). In this way

H ′ is an owner of Cq2+q+2.

We have already assigned a color to each edge in Kn+q. By the construction

it follows that the resultant edge-coloring Γ of Kn+q is a proper edge-coloring.

Let {c1, c2} ⊆ C. If {c1, c2} ⊆
q2+q+1⋃
i=1

Ci, since every line li in G is an owner of

Ci, it follows by Lemma 26 that there is x ∈ V (G), which is an owner of both

colors. Analogously, if {c1, c2} ⊆ Cq2+q+2, since H ′ is an owner of Cq2+q+2, every

x ∈ V (H ′) is an owner of both colors.

Let us suppose c1 ∈
q2+q+1⋃
i=1

Ci and c2 ∈ Cq2+q+2. If c1 ∈ Cj with j ∈ [q + 1], v0 is

an owner of c1, and since v0 ∈ V (H ′), v0 is also an owner of c2. If c1 ∈ Cj with
q + 2 ≤ j ≤ q2 + q + 1 then there is a vertex x ∈ V (lj) such that c(x, lj) = c1

and, by construction, there is y ∈ V (H ′) such that Γj(xy) = c1. Hence, y is an

owner of c1 and since y ∈ V (H ′) y is an owner of c2. Therefore, Γ is a complete

proper edge-coloring of Kn+q and the lemma follows for a = 0.

2. Case a = 1.

Let {v0, v1} ⊆ V (G) and `∗ be the unique line of G, such that {v0, v1} ⊆ V (`∗).

For i ∈ {0, 1} let Lvi = {`vij : j ∈ [q]} be the set of lines l 6= `∗ of G such that

vi ∈ V (l). Without loss of generality suppose that `v0i = li, `v1i = lq+i for i ∈ [q],

and `∗ = l2q+1. Let Lc = {l2q+2, . . . , lq2+q+1}.
Observe that for every x ∈ V (G) \ V (`∗) there is a unique pair `v0i ∈ Lv0 and

`v1j ∈ Lv1 such that x = V (`v0i ) ∩ V (`v1j ). This allows us to assign coordinates to

the vertices in V (G) \ V (`∗) in the following way: for each pair `v0i ∈ Lv0 and

`v1j ∈ Lv1 let p(i,j) ∈ V (`v0i ) ∩ V (`v1j ). Thus V (G) \ V (`∗) = {p(i,j) : i, j ∈ [q]}.
Let E1 = {v0p(i,q) : i ∈ [q − 1]}; E2 = {v1x : x ∈ V (`∗) \ {v0, v1}}; E3 =

{v1p(q,i) : i ∈ [q − 1]} and E4 = {hip(i,q) : i ∈ [q − 1]} ∪ {v0p(q,q)} ∪ {v1p(q,q)}.
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In Figure 3.3 we illustrate Kn+q−1.
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Figure 3.3: Kn+q−1.

We color the edges of Kn+q−1 in the following way:

i) For each li ∈ Lc let Γi : E(li) → Ci be an edge-coloring of Type 2. For each

li ∈ Lc, and for each x ∈ V (li), let c(x, li) be the only color c ∈ Ci, such that

for every y ∈ V (li), Γi(xy) 6= c. Observe that
⋃

x∈V (li)

c(x, li) = Ci; for each

x ∈ V (G) \ {v0, v1} let c(x) = {c(x, li) : x ∈ V (li) and li ∈ Lc}.
For each x ∈ V (G) \V (`∗), c(x) is a set of q− 1 colors (since there are q− 1 lines

l in Lc such that x ∈ V (l)). Since x = p(i,j) for some i, j ∈ [q], on one hand, if

(i, j) = (q, q) or j 6= q we color the set of q − 1 edges {xh : h ∈ V (H)} with the

set of colors c(x). On the other hand, if j = q and i ∈ [q− 1], we color the set of

q − 1 edges {xh : h ∈ V (H) \ {hi}} ∪ {p(i,q)v0} with the set of colors c(x) (here

we are coloring edges of E1 and avoid coloring the edges of E4).

If x ∈ V (`∗) \ {v0, v1}, c(x) is a set of q colors (since there are q lines l in Lc such

that x ∈ V (l)) we color the set of q edges {xh : h ∈ V (H)} ∪ {v1x} with the set
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of colors c(x) (here we are coloring edges of E2).

Observe that in this way each line li in Lc is an owner of Ci. At this point we

have assigned a color to each edge in E1 ∪ E2 ∪
⋃
l∈Lc

E(l) and, except for those

edges in E4, to all the (V (G) \ {v0, v1})V (H)-edges.

ii) For each `v0i ∈ Lv0 let `
v0
i be the subgraph of G obtained by deleting v0 from

`v0i . Let Γi : E(`
v0
i ) → Ci be an edge-coloring of Type 1. For each `v0i ∈ Lv0 let

Ji = {v0z : z ∈ V (`
v0
i ) \ {p(i,q)}} (observe that Ji = {v0z : z ∈ V (`i)} \ (E1 ∪E4)).

For i ∈ [q − 1], we color the set of q − 1 edges Ji with the set of colors C1+i,

and coloring the set of q − 1 edges Jq with the set of colors C1. In this way

each line `v0i = li in Lv0 is the owner of Ci and since for every pair {i, j} ⊆ [q],

V (`
v0
i ) ∩ V (`

v0
j ) = ∅, there is no pair of edges of the same color incident with the

same vertex.

Analogously, for each `v1i ∈ Lv1 let `
v1
i be the subgraph of G obtained by deleting

v1 from `v1i . Let Γq+i : E(`
v1
i ) → Cq+i be an edge-coloring of Type 1 (recall

that `v1i = lq+i for i ∈ [q]). For each `v1i ∈ Lv1 let Ji = {v1z : z ∈ V (`
v1
i ) \

{p(q,i)}}(observe that Ji = {v1z : z ∈ V (`i)} \ E3). For i ∈ [q − 1], we color the

set of q − 1 edges Ji with the set of colors Cq+1+i, and the set of q − 1 edges Jq
with the set of colors Cq+1.

Let `
∗
be the subgraph ofG obtained by deleting v1 from `∗ (recall that `∗ = l2q+1).

Let Γ2q+1 : E(`
∗
) → C2q+1 be an edge-coloring of Type 1. We color the set of

q − 1 edges E3 = {v1p(q,i) : i ∈ [q − 1]} with the set of colors C2q+1. Since

{p(q,i) : i ∈ [q−1]}∩V (`
∗
) = ∅ there is no pair of edges of the same color incident

with the same vertex.

In this way, each line li in Lv0 ∪Lv1 is an owner of Ci, and `∗ = l2q+1 is an owner

of C2q+1. Now it just remains to assign colors to the edges in E4 ∪ E(H), to the

edge v1v0 and to all the ({v0, v1})V (H)-edges.

iii) Let H ′ = H ⊕ v0 ⊕ v1 and let Γq2+q+2 : E(H ′)→ Cq2+q+2 be an edge-coloring

of Type 2 and for each x ∈ V (H ′), let c(x,H ′) be the only color c ∈ Cq2+q+2

such that for every y ∈ V (H ′) Γq2+q+2(xy) 6= c. For each x ∈ V (H ′) there is
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yx ∈ {p(i,q) : i ∈ [q]}, such that xyx ∈ E4. Let Γ(xyx) = c(x,H ′); in this way, H ′

is an owner of Cq2+q+2.

We have already assigned a color to each edge in Kn+q−1. By the construction

it follows that the resulting edge-coloring Γ is a proper edge-coloring of Kn+q−1.

Let {c1, c2} ⊆ C. If {c1, c2} ⊆
q2+q+1⋃
i=1

Ci since every line li in G is an owner

of Ci by Lemma 26 it follows that there is x ∈ V (G) which is an owner of

both colors. Analogously, if {c1, c2} ⊆ Cq2+q+2, since H ′ is an owner of Cq2+q+2,

every x ∈ V (H ′) is an owner of both colors. Let us suppose c1 ∈
q2+q+1⋃
i=1

Ci and

c2 ∈ Cq2+q+2. If c1 ∈ Cj, with j ∈ [q], v0 is an owner of c1 and since v0 ∈ V (H ′), v0
is also an owner of c2. If c1 ∈ Cj with q+ 1 ≤ j ≤ 2q+ 1, v1 is an owner of c1 and

since v1 ∈ V (H ′), also is an owner of c2. If c1 ∈ Cj, with 2q+ 2 ≤ j ≤ q2 + q+ 1,

there is a vertex x ∈ V (lj) such that c(x, lj) = c1 and, by construction, there is

y ∈ V (H ′) such that Γj(xy) = c1. Hence y is an owner of c1 and since y ∈ V (H ′),

y is an owner of c2. Therefore Γ∗ is a complete proper edge-coloring of Kn+q−1

and the lemma follows for a = 1.

3. Case a = 2.

Let {v0, v1, v2} ⊆ V (G) be three non-colinear points in PG(2, q). For {i, j} ⊂
{0, 1, 2}, with i 6= j, let `i,j be the line in G such that {vi, vj} ⊆ V (`i,j). For

i ∈ {0, 1, 2} let Lvi = {`jvi : j ∈ [q − 1]} be the set of lines l of G, such that

vi ∈ V (l) and l 6∈ {`i,j : {i, j} ⊂ {0, 1, 2}; i 6= j}.
Now we assign coordinates to the set of vertices (V (`0,1) ∪ V (`0,2) ∪ V (`1,2)) \
{v0, v1, v2} in the following way:

For each j ∈ [q − 1] let pj0,1 ∈ V (`0,1) ∩ V (`jv2), p
j
0,2inV (`0,2) ∩ V (`jv1) and p

j
1,2 ∈

V (`1,2) ∩ V (`jv0).

Since {l1, . . . , lq2+q+1} is the set of lines of G, without loss of generality, for each
j ∈ [q − 1] and each i ∈ {0, 1, 2}, `jvi = l(q−1)i+j; `0,1 = l3q−2; `0,2 = l3q−1 and

`1,2 = l3q. Let Lc = {l3q+1, . . . , lq2+q+1}.
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Let E0 = {v0pj1,2 : j ∈ [q−1]};E1 = {v1pj0,2 : j ∈ [q−1]};E2 = {v2pj0,1 : j ∈ [q−1]}
and E3 = {v1h : h ∈ V (H)} ∪ {v0v1}. In Figure 3.4 we illustrate Kn+q−2.
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Figure 3.4: Kn+q−2.

We color the edges of Kn+q−2 in the following way:

i) For each li ∈ Lc let Γi : E(li)→ Ci+1 be an edge-coloring of Type 2. For each

line li ∈ Lc, and for each x ∈ V (li), let c(x, li) be the only color c ∈ Ci+1, such

that for every y ∈ V (li), Γi(xy) 6= c. Observe that
⋃

x∈V (li)

c(x, li) = Ci. For each

x ∈ V (G) \ {v0, v1, v2} let c(x) = {c(x, li) : x ∈ V (li) and li ∈ Lc}.
Let x ∈ V (G) \ {v0, v1, v2}. If x ∈ V (G) \ (V (`0,1) ∪ V (`0,2) ∪ V (`1,2)), c(x) is

a set of q − 2 colors (since there are q − 2 lines l in Lc such that x ∈ V (l)).

We color the set of q − 2 edges {xh : h ∈ V (H)} with the set of colors c(x). If

x ∈ (V (`0,1) ∪ V (`0,2)) ∪ V (`1,2) \ {v0, v1, v2}, c(x) is a set of q − 1 colors (since

there are q− 1 lines l in Lc, such that x ∈ V (l)) and x = pji,k for some j ∈ [q− 1]

and {i, k} ⊂ {0, 1, 2}. Let r = {0, 1, 2} \ {i, k} and coloring the set of q− 1 edges

{xh : h ∈ V (H)}∪ {vrpji,k} with the set of colors c(x) (here we are coloring edges
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of Er, with r ∈ {0, 1, 2}).
In this way, each line li in Lc is an owner of Ci+1. At this point we have as-

signed a color to each edge in
( ⋃
i∈{0,1,2}

Ei
)
∪ ⋃

l∈Lc
E(l), and to all the (V (G) \

{v0, v1, v2})V (H)-edges.

ii) Let i ∈ {0, 1, 2}. For each `jvi ∈ Lvi let `
j′
vi
be the subgraph of G obtained

by deleting vi from `jvi . Let Γ(q−1)i+j : E(`j
′
vi

) → C(q−1)i+j be an edge-coloring of

Type 1 (recall that for each j ∈ [q− 1] and i ∈ {0, 1, 2}, `jvi = l(q−1)i+j). For each

`jvi ∈ Lvi let J
j
i = {viz : z ∈ V (`j

′
vi

) \ {pjs,k}; {s, k} = {0, 1, 2} \ {i} (observe that
J ji = {viz : z ∈ V (`jvi)} \Ei). Similarily as before, for j ∈ [q− 2] and i ∈ {0.1.2},
we color the set of q− 1 edges in J ji with the set of colors C(q−1)i+j+1, and the set

of q − 1 edges Jq−1i with the set of colors C(q−1)i+1. In this way, for i ∈ {0, 1, 2},
each line lj in Lvi is the owner of Cj, and since for every i ∈ {0, 1, 2} and every

pair {k, j} ⊆ [q − 1], V (`j
′
i ) ∩ V (`k

′
i ) = ∅, there is no pair of edges of the same

color incident with the same vertex.

Let `′0,1 be the subgraph ofG obtained by deleting v0 from `0,1. Let Γ3q−2 : E(`′0,1)→
C3q−2 be an edge-coloring of Type 1 (recall that `0,1 = l3q−2). Let `′0,2 be the sub-

graph of G obtained by deleting v0 from `0,2, and let Γ3q−1 : E(`′0,2) → C3q−1 be

an edge-coloring of Type 1. Similarily, let `′1,2 be the subgraph of G obtained by

deleting v1 from `1,2; and let Γ3q : E(`′1,2)→ C3q be an edge-coloring of Type 1.

We color the set {v0pj0,1 : j ∈ [q − 1]} with the set of colors C3q−1 (observe that

Γ[E(`′0,1)] = C3q−2); the set {v0pj0,2 : j ∈ [q− 1]} with C3q−2 and we color E3 with

C3q. Since V (`′0,1) ∩ V (`′0,2) = ∅ and V (`′1,2) ∩ (V (H) ∪ {v0, v1}) = ∅ there is no
pair of edges of the same color incident with the same vertex.

In this way, each line li in G is an owner of Ci. Now it just remains to assign colors

to the edges in E(H) and {v1pj1,2 : j ∈ [q − 1]}, to all the ({v0, v2})V (H)-edges

and to the edges v0v2, v1v2.

iii) Let H ′ = H ⊕ v0 ⊕ v2 and let Γ3q+1 : E(H ′) → C3q+1 be an edge-coloring of

Type 1 and we color the set of q − 1 edges {v1pj1,2 : j ∈ [q − 1]} with C3q+1. In

this way, the graph H ′ ⊕ v1 is an owner of C3q+1 (although the edge v1v2 has no
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color assigned yet). We color v1v2 with any color in C which neither v1 nor v2
are owners.

We have already assigned a color to each edge in Kn+q−2. By the construction

it follows that the resulting edge-coloring Γ is a proper edge-coloring of Kn+q−2.

Let {c1, c2} ⊆ C. If {c1, c2} ⊆
⋃

i 6=3q+1

Ci, since every line li in G is an owner of Ci

if i < 3q + 1, and every line li is an owner of Ci+1 if i > 3q + 1, by Lemma 26

it follows that there is x ∈ V (G) which is an owner of both colors. Analogously,

if {c1, c2} ⊆ C3q+1, since H ′ ⊕ v1 is an owner of C3q+1, there is x ∈ V (H ′ ⊕ v1)
which is an owner of both colors. Let us suppose c1 ∈

⋃
i 6=3q+1

Ci and c2 ∈ C3q+1.

If c1 ∈ Cj, with j ∈ [3q], we have that for some i ∈ {0, 1, 2}, vi is an owner

of c1, and since vi ∈ V (H ′ ⊕ v1), vi is also an owner of c2. If c1 ∈ Cj, with

3q + 2 ≤ j ≤ q2 + q + 2, there is x ∈ V (lj) such that c(x, lj) = c1 and, by

construction, there is y ∈ V (H ′⊕v1), such that Γj(xy) = c1. Hence y is an owner

of c1 and since y ∈ V (H ′ ⊕ v1), y is an owner of c2. Therefore Γ is a complete

proper edge-coloring of Kn+q−2 and the lower bound on theorem follows.

Finally, from Corollary 25 we know that ψ1(Kn+q−a) ≤ q(n+ q − 2a) for q an even

number, n = q2 + q + 1 and a ∈ {0, 1, 2}. On the other hand, since there exist a

projective plane of ordes q when q is a power of 2, it follows that q(n + q − 2a) ≤
α1(Kn+q−a). By equation (1.1), α1(Kn+q−a) ≤ ψ1(Kn+q−a), and the result follows.

3.2.3 The complete edge-colorings

Proof of Theorem 22. To prove this theorem we will exhibit a complete edge-coloring

of Kn+q−a with q(n+ q − 2a) colors for n = q2 + q + 1. Let C be a set of q(n+ q − 2a)

colors and let {C1, C2, . . . , Cn} be a partition of C in the following way: Ci is a set of q

colors, for 1 ≤ i ≤ q−2a+3; Ci is a set of q−1 colors, for q−2a+4 ≤ i ≤ a(q−1)+q+1;

Ci is a set of q+ 1 colors, for a(q− 1) + q+ 2 ≤ i ≤ q2 + q and Cn is a set of q− 1 colors.

Let G be a subgraph of Kn+q−a isomorphic to Kn and let H = Kn+q−a \ V (G) be.

Clearly H is isomorphic to Kq−a and Kn+q−a = G ⊕H. Let G be a representation of

PG(2, q) and let L = {l1, . . . , ln} be the set of lines of G.
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Let V (H) = {h1, . . . , hq−a}, let v0 ∈ V (G) be and let `∗ be a line l of G such that

v0 /∈ V (`∗).

Let W , U and V be a partition of V (`∗) such that W = {w1, . . . , wq−2a+3}, U =

{u1, . . . , ua−2} and V = {v1, . . . , va}, then `∗ = 〈W 〉 ⊕ 〈U〉 ⊕ 〈V 〉. Let L0 = {`x : x ∈
`∗ and v0 ∈ `x} ⊆ L the set of lines through v0. Let LW , LU and LV be a partition of

L0 such that LW = {`x : x ∈ W}, LU = {`x : x ∈ U} and LV = {`x : x ∈ V }.
For i ∈ {1, . . . , a}, let Li = {`vij : vi ∈ `vij , j ∈ [q − 1], `vij 6= `∗, `vij 6∈ L0} the set of

lines through vi di�erent to `∗ and `vi . For i ∈ {1, . . . , a} and j ∈ {1, . . . , q−1}, let Z =

{zvij ∈ `vij ∩`vi+1
: i 6= a}∪{zvaj ∈ `vaj ∩`v1} ⊆ V (G). Let Y = V (G)\{Z∪V (`∗)∪{v0}}.

Without loss of generality, let li = `wi be for i ∈ {1, . . . , q− 2a+ 3}, li+q−2a+3 = `ui
for i ∈ {1, . . . , a − 2}, li+q−a+1 = `vi for i ∈ {1, . . . , a} and let li(q−1)+2+j = `vij for

i ∈ {1, . . . , a} and j ∈ {1, . . . , q−1}. Finally, let L′ = {li : a(q−1)+q+2 ≤ i ≤ q2 +q}
and `∗ = ln. In Fig 3.5 we illustrate Kn+q−a.
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Figure 3.5: Kn+q−a.

With the aim to de�ne some subset of edges of Kn+q−a we �rst de�ne a special

function h:
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For i ∈ {1, . . . , q − 2a+ 3} and j ∈ {1, . . . , q
2
− a+ 1}, let

h(i+ j) =




i+ j if i+ j ≤ q − 2a+ 3,

i+ j − (q − 2a+ 3) if i+ j > q − 2a+ 3,

and let

E ′wi = {wiwh(i+1), . . . , wiwh(i+ q
2
−a+1), wiu1, . . . , wiua−2, wiva}

be a set of q
2
edges.

Now, we will de�ne other subsets of edges of Kn+q−a.

For x ∈ U ∪W , let

Ex = {xv1, . . . , xva−1, xh1, . . . , xhq−a}

be a set of q − 1 edges. For each zvij , let

Ezvij = {zvij vi, zvij h1, . . . , zvij hq−a}

be a set of q − a+ 1 edges. Let

E ′ = {v0va, v0u1, . . . , v0ua−2, vau1, . . . , vaua−2} ∪ E(〈U〉)

be a set of
(
a
2

)
edges.

We color the edges of Kn+q−a in the following way:

1. For li ∈ LW , let Γi : E(li)→ Ci be an edge-coloring of Type 5 in wi and let C(wi)
be the subset of q

2
colors of Ci which wi is not owner then we assignt to te set E ′wi

exactly the colors of C(wi).
In this way, each line li ∈ LW is an owner of Ci, and we have assigned a color to

each edge of
q−2a+3⋃
i=1

(E(li) ∪ E ′i).

2. For each li ∈ LU ∪ LV let l′i be the subgraph of G obtained by deleting the
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edge v0ui from li if i ∈ {q − 2a + 4, . . . , q − a + 1} and the edge v0vi from li if

i ∈ {q − a+ 2, . . . , q + 1}. Let Γi : E(l′i)→ Ci be an edge-coloring of Type 3.

For each lj ∈ Li, let l′j = lj \ Ezvij be and let Γj : E(l′j)→ Cj be an edge-coloring

of Type 3.

Now, each line lj in Li is an owner of Cj, and at this point we have assigned a

color to each edge of
q−2a+3⋃
i=1

(E(li) ∪ E ′i) ∪
a(q−1)+q+1⋃
i=q−2a+4

(E(l′i).

3. For each li ∈ L′ let Γi : E(li)→ Ci be an edge-coloring of Type 2. For each li ∈ L′,
and for each x ∈ V (li), let c(x, li) be the only color c ∈ Ci such that for every

y ∈ V (li − x), Γi(xy) 6= c. Observe that
⋃

x∈V (li)

c(x, li) = Ci. For each x in L′ let

c(x) = {c(x, li) : x ∈ V (li) and li ∈ L′} be.
For each y in Y there are a + 1 lines l /∈ L′ such that y ∈ V (l), then c(y) is a

set of q − a colors. Color the set of q − a edges {yh1, . . . , yhq−a} with the set of

colors c(y).

For each z in Z there are a lines l /∈ L′ such that z ∈ V (l), then c(z) is a set of

q − a+ 1 colors. Color the set of q − a+ 1 edges Ez with the set of colors c(z).

For each x ∈ U ∪ V there are 2 lines l /∈ L′ such that x ∈ V (l), then c(x) is a set

of q − 1 colors. Color the set of q − 1 edges Ex with the set of colors c(x).

Now it just remain to assign colors to the edges H⊕ < V > ⊕{v0} and E ′.

4. Let H ′ = H⊕ < V > ⊕v0 be and let Γn : E(H ′− v0va)→ Cn be an edge-coloring

of Type 3. In this way, H ′ is an owner of Cn.

5. Let Γ: E ′ → {c} be a edge-coloring where c ∈ C.

We have already assigned a color to each edge in Kn+q−a. If {c1, c2} ⊆
n−1⋃
i=1

Ci,

then since every line li in G is an owner of Ci, by Lemma ?? it follows that there

is x ∈ V (G) which is an owner of both colors. Analogously, if {c1, c2} ⊆ Cn, since

H ′ is an owner of Cn, there is x ∈ V (H ′) which is an owner of both colors. Let

us suppose c1 ∈
n−1⋃
i=1

Ci and c2 ∈ Cn. If c1 ∈ Cj with 1 ≤ j ≤ a(q − 1) + q + 1,
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there is a vertex x ∈ V ∩ V (lj) and x is an owner of c1, and since x ∈ V (H ′), x

is also an owner of c2. If c1 ∈ Cj with a(q − 1) + q + 2 ≤ j ≤ q2 + q, there is a

vertex x ∈ V (lj) such that c(x, lj) = c1 and, by construction, there is y ∈ V (H ′)

such that Γj(xy) = c1. Hence y is an owner of c1 and since y ∈ V (H ′), y is an

owner of c2. Therefore Γ is a complete edge-coloring of Kn+q−a and the theorem

follows.
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Chapter 4

Achromatic and pseudoachromatic

indices of designs

Given a (v, κ)-design D = (V ,B), a block-coloring (for short coloring) of D with k

colors is a surjective function ς : B → [k]. A coloring of D with k colors is proper,

if any two di�erent blocks B,B′ ∈ B with B ∩ B′ 6= ∅ satisfy ς(B) 6= ς(B′). The

chromatic index χ1(D) of D is the smallest k such that there exists a proper coloring

with k colors of D.

A coloring of a design D is complete, if each pair of colors appears on at least one

point of D. The achromatic index α1(D) of D is the largest number k for which there

exists a complete and proper coloring of D with k colors. The pseudoachromatic index

ψ1(D) of D is the largest number k for which there exists a complete coloring of D

with k colors.

Clearly we have that

χ1(D) ≤ α1(D) ≤ ψ1(D). (4.1)

The well-known Erd®s-Faber-Lovász Conjecture (for short EFL) [Erd76, Erd81]

states (or, more precisely, a particular case of an equivalent formulation of it is) that

χ1(D) ≤ v,
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for D any (v, κ)-design. It is important to say that the EFL Conjecture is open even

for the (v, 3)-designs (Steiner triple systems STS(v)). In fact, in [CC82] it is proved

that χ1(D) < κv
κ−1 , for any (v, κ)-design D; moreover, the main result of [CC82] states

that χ1(D) ≤ v, for cyclic designs D = (Zv,B) (that is the mapping i 7→ i + 1 is

an automorphism). For general results on the EFL Conjecture see [ARV, AV, CL88,

CC82, Fab10, Kah92, KM08, MS10, RS07a, RS07b], and references therein.

If D is a (v, 2)-design, then χ1(D), α1(D) and ψ1(D) are the usual chromatic,

achromatic and pseudoachromatic indices respectively of the complete graph Kv (see

[Gup69, HHP67] and Chapter 3). For instance, Vizing's Theorem veri�es the EFL

Conjecture, since χ1(Kv) is at most v.

The main result of [BJV89] veri�ed the EFL conjecture for �nite projective spaces

(see Section 1.3.2). It is not hard to see that χ1(Πq) = α1(Πq) = ψ1(Πq) = v, where

v = q2 + q + 1 is the number of points in any projective plane Πq of order q (see

Subsection 3.2.1).

The achromatic index of STS(v) has been studied before. The following two theo-

rems are proved in [CC83] (see also [RC92]):

Theorem 32. For any STS(v), α1(STS(v)) ≤ 1√
2
v1.5 + Θ(n).

Theorem 33. For in�nitely many v, there exists an STS(v), such that α1(STS(v)) ≥
1
2
v1.5 + Θ(n).

In the next section we give upper bounds for the achromatic and pseudoachromatic

indices for some types of designs. In Section 4.2 we give the exact values for the

achromatic and pseudoachromatic indices for the a�ne plane. The results of this

chapter are contained in [AKRV].

4.1 Upper bound of ψ1(D)

We obtain the following upper bound for the pseudoachromatic index for designs:
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Theorem 34. Let D be a (v, κ)-design. Then

ψ1(D) ≤
√
v(v − 1)

κ− 1
<

v1.5

κ− 1
.

Proof. If r is the number of blocks incident to a point then the number of incidences

of blocks is v
(
r
2

)
≥
(
ψ1(D)

2

)
so that ψ1(D)2−ψ1(D) ≤ vr(r− 1). Solving this inequality

we get

ψ1(D) ≤ 1 +
√

1 + 4vr(r − 1)

2
.

Since
√

1 + 4vr(r − 1) ≤
√

4vr2 − 1, we get ψ1(D) ≤ √vr and the result follows.

For k = 3, Theorem 34 improves Theorem 32.

4.1.1 Projective plane with resolvable lines

We use the next proposition in Theorem 36.

Proposition 35. Let κ > 1 and γ > 0 be integers, then (k − 1)2γ ≡ 1 mod k.

Proof. Since (k−1)2 ≡ 1 mod k then (k−1)2γ ≡ 1γ mod k and the result follows.

Theorem 36. If κ− 1 is a prime power, q = (κ− 1)2γ+1 and there exists a resolvable

(q + 1, κ)-design D′, then there exista a (v, κ)-design D such that

α1(D) ≥ b
√
vc v

κ− 1

Proof. By Proposition 35 we have that (k − 1)2γ+1 ≡ k − 1 mod k(k − 1) and then

q + 1 ≡ κ mod κ(κ− 1). If there exists D′ (note that there are q
κ−1 pairwise disjoint

resolution classes) we can de�ne a new (q2 + q+ 1, κ)-design D obtained from PG(2, q)

and D′ taking each line of PG(2, q) as the resolvable design D′. If resolvable classes

of each line have di�erent colors, then the coloring is proper. The coloring is complete

due to the properties of PG(2, q), therefore

α1(D) ≥ qv

κ− 1
=
b√vc v
κ− 1

, where v = q2 + q + 1.
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When κ = 3 (or κ = 4) and q = 22γ+1 (q = 32γ+1 respectively), then there exist

the corresponding resolvable design and the projective plane of order q; moreover, for

κ = 3 Theorem 36 implies Theorem 33 for c = 1/2.

4.2 A�ne plane

In this section we shall prove that ψ1(Aq) = b (q+1)2

2
c (see Theorems 38 and 41).

4.2.1 Upper bound of ψ1(Aq)

The next lemma is an immediate consequence of the properties of the a�ne plane Aq.

Lemma 37. Any set of q + 2 lines of the a�ne plane Aq contains two lines in the

same parallel class.

As a consecuence of the Lemma 37 we have the following upper bound for ψ1(Aq).

Theorem 38.

ψ1(Aq) ≤ b (q+1)2

2
c.

Proof. We proceed by contradiction. Assume that there exists a complete coloring

using at least b (q+1)2

2
c + 1 colors for Aq. This coloring must have at most q2 + q −(

b (q+1)2

2
c+ 1

)
chromatic classes of cardinality greater than one (remember that the

a�ne plane has q2 + q lines). Thus, there are at least

h(q) = b (q+1)2

2
c+ 1−

(
q2 + q −

(
b (q+1)2

2
c+ 1

))

chromatic classes of size one. Hence, there are at least q+ 2 lines intersecting pairwise

since

h(q) = 1−
(

(q + 1)2 − 2

⌊
(q + 1)2

2

⌋)
+ q + 2 =




q + 2 if q is even,

q + 3 if q is odd.
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This contradicts Lemma 37 and therefore the theorem follows.

4.2.2 Lower bound of ψ1(Aq)

In Theorem 41 we prove that Theorem 38 is tight. To derive the lower bound we use a

certain complete coloring of Aq with b (q+1)2

2
c colors. Before this, we need the following

simple lemmas:

Lemma 39. If l and l′ are two lines of Aq in di�erent parallel class, then l∩ l′ 6= ∅.

Lemma 40. If l and l′ are two non-intersecting lines of Aq, then l and l′ are in the

same parallel class.

Theorem 41.

ψ1(Aq) ≥ b (q+1)2

2
c.

Proof. As Aq is resolvable, there are q+1 spreads S0, . . . ,Sq given by the parallel clases

(see Subsection 1.3), each one with q lines; that is Si = {li,1, . . . , li,q} for i = 0, . . . , q

(each line having q points). Consider the following arrangement of lines:

M =




l0,1 l0,2 · · · l0,q−1 l0,q

l1,1 l1,2 · · · l1,q−1 l1,q

l2,1 l2,2 · · · l2,q−1 l2,q
...

... . . . ...
...

lq−1,1 lq−1,2 · · · lq−1q−1 lq−1,q

lq,1 lq,2 · · · lq,q−1 lq,q




We start by coloring the set of lines S0 = {l0,1, l1,2 . . . , lq−1,q, lq,q}, that is, the lines in
the main upper diagonal and the last element in the lower main diagonal. We assign

colors to the elements of S0 using the following function:

f0 : S0 → {1, . . . , q + 1}, given by

f0(li,i+1) = i+ 1, for i ∈ {0, . . . , q − 1}, and f0(lq,q) = q + 1
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Note that these lines are is in di�erent parallel classes. Hence, the partial coloring

to this point is complete (by Lemma 39). The number of colors we have used so far is

N0 = q + 1.

Let Si,j = {lj,i, li−1,j}, for i ∈ {1, . . . , q − 1} and j ∈ {i + 1, . . . , q}. Note that the
lines of Si,j are in di�erent parallel classes (since j 6= i− 1), also Si,j ∩Sr,s = ∅, if i 6= r

or j 6= s. We assign
(
q
2

)
colors to the lines of

⋃
i,j

Si,j as follows:

fi,j : Si,j → {q + 2, . . . , q + 1 +
(
q
2

)
}, given by

fi,j(li−1,j) = fi,j(lj,i) = q + 1 + j − i+
(
q
2

)
−
(
q+1−i

2

)
.

If we replace the lines in M with their corresponding colors assigned until now, we

have the following matrix:




1 q + 2 · · · 2q − 1 2q

l1,1 2 · · · 3q − 3 3q − 2

q + 2 l2,2 · · · 4q − 6 4q − 5
...

... . . . ...
...

2q − 1 3q − 3 · · · lq−1q−1 q

2q 3q − 2 · · · q + 1 +
(
q
2

)
q + 1




We are assigning colors to the lines in the upper triangle and the lines in the lower

triangle. The number of colors we have used so far is N1 = N0 +
(
q
2

)
.

This leaves the lines {l1,1, . . . , lq−1,q−1} uncolored, which are in di�erent parallel

classes. Let Si be the set of two lines {li,i, lq−i,q−i}, for i ∈ {1, . . . ,
⌈
q−1
2

⌉
}. We assign⌊

q−1
2

⌋
colors to the lines of

⋃
i

Si as follows:

fi : Si → { q
2+q+2

2
+ 1, . . . , q

2+q+2
2

+
⌊
q−1
2

⌋
} such that:

f0(li,i) = f0(lq−i,q−i) = q2+q+2
2

+ i.

We are assigning colors to the lines of the lower diagonal of M . Note that the lines

of Si are in di�erent parallel classes. Hence, the partial coloring so far is complete by
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Lemma 39. Therefore, the number of colors used are

N2 = N1 +
⌊
q−1
2

⌋
=
⌊
(q+1)2

2

⌋
.

Note that if q is odd, then all lines ofM are colored. However, if q is even, then the

line l⌈ q−1
2

⌉
,

⌈
q−1
2

⌉ is uncolored, but this is not a problem, since we can assign trivially

the color 1.
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Chapter 5

Geometric achromatic and

pseudoachromatic indices

In this chapter we extend the notions of pseudoachromatic and achromatic indices

to geometric graphs, and present upper and lower bounds for the case of complete

geometric graphs. The results of this chapter are contained in [AAG+].

5.1 Preliminaries

Let G = (V,E) be a simple graph. A geometric embedding of a graph G is a function

that maps V to a set S of points in the plane, and E to a set of (possibly crossing)

straight-line segments whose endpoints belong to S. A geometric graph G is the image

of a particular geometric embedding of G. Throughout this chapter we assume that all

sets of points of S are in general position, that is, no three points are on a common

line. For brevity we refer to the points in S as vertices of G, and to the straight-line

segments connecting two points in S as edges of G. Note that any set of points in the

plane induces a complete geometric graph. We say that two edges of G intersect if they

have a common endpoint or they cross. Two edges are disjoint if they do not intersect.

A coloring of the edges of G is proper if every pair of edges of the same color is disjoint.

A coloring is complete if each pair of colors appears on at least one pair of intersecting
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edges.

The chromatic index χ1(G) of G is the smallest number k for which there exists a

proper coloring of the edges of G using k colors. The achromatic index α1(G) of G is

the largest number k for which there exists a complete and proper coloring of the edges

of G using k colors. The pseudoachromatic index ψ1(G) of G is the largest number k

for which there exists a complete coloring of the edges of G using k colors.

We extend these de�nitions to graphs in the following way. Let G be a graph. The

geometric chromatic index χg(G) of G is the largest value k for which a geometric

embedding H of G exists such that χ1(H) = k. Likewise, the geometric achromatic

index αg(G) and the geometric pseudoachromatic index ψg(G) of G, are de�ned as the

smallest value k for which a geometric embedding H of G exists such that α1(H) = k

and ψ1(H) = k, respectively.

From the above de�nitions we get that for any graph G

χ1(G) ≤ χg(G), (5.1)

χ1(G) ≤ α1(G) ≤ ψ1(G) ≤ ψg(G), (5.2)

αg(G) ≤ ψg(G); (5.3)

and for geometric graphs we obtain

χ1(G) ≤ α1(G) ≤ ψ1(G). (5.4)

Consider the cycle Cn of length n ≥ 3. In this case χ1(Cn) is equal to 2 if n is even,

and is equal to 3 if n is odd. On the other hand, it is not hard to see that χg(Cn) = n−1

if n is even and χg(Cn) = n if n is odd. However, α(Cn) = α1(Cn) = max{k : kbk
2
c ≤

n} − s(n), where s(n) is the number of positive integer solutions to n = 2x2 + x + 1;

and ψ(Cn) = ψ1(Cn) = ψg(Cn) = max{k : kbk
2
c ≤ n} (see [CZ09, HM76, Yeg00]).

It is known that if G is a planar graph then there always exists a geometric embed-

ding j, where no two edges of j(G) intersect, except possibly in a common endpoint

[Fár48]. Therefore, ψ1(G) = ψ1(j(G)) = ψg(G) and α1(G) = α1(j(G)) ≥ αg(G).

87



However, χ1(G) = χ1(j(G)) ≤ χg(G) (for instance, and as we mentioned before,

χ1(C4) = 2 and χg(C4) = 3). In general, α1(G) is not comparable to αg(G), for

example, α1(Kn) = Θ(n3/2) (see [Jam89]) but αg(Kn) = Θ(n2) as we shall see in

Theorem 44.

The chromatic index of a geometric graph G has been studied before. Let l be a

positive integer and I(S) the graph in which one vertex corresponds to one subset of S

of size l, and one edge corresponds to two vertices of G whose respective convex hulls

intersect. This graph was de�ned in [ADH+05], where the authors study its chromatic

number for the case when l = 2. If we denote by Kn the complete geometric graph with

vertex set S, then for the case l = 2, χ(I(S)) = χ1(Kn). In the same paper the authors

de�ne and study the number i(n) = max{χ(I(S)) : S ⊂ E2 in general position, |S| =

n}. Note that for the case l = 2 it happens that i(n) = χg(Kn). Recall that by Kn we

denote the complete graph on n vertices. The following theorem appears in [ADH+05].

Theorem 42. For each n ≥ 3: i) If the vertices of Kn are in convex position then

χ1(Kn) = n, ii) n ≤ χg(Kn) ≤ cn3/2for some constant c > 0.

In this chapter we prove:

Theorem 43. Let G be a geometric graph of order n. The pseudoachromatic index

ψ1(G) of G is at most bn2+n
4
c.

Theorem 44. For each n ≥ 3:

i) If the vertices of Kn are in convex position then

α1(Kn) = ψ1(Kn) = bn2+n
4
c,

ii) 0.0710n2 −Θ(n) ≤ ψg(Kn) ≤ 0.1781n2 + Θ(n).

5.2 Points in convex position

In this section we prove Claim i) of Theorem 44. In Subsection 5.2.1 we present an

upper bound for ψ1(G) for any geometric graph G; and then in Subsection 5.2.2 we
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exclusively work with point sets in convex position, and derive a tight lower bound for

α1(Kn).

5.2.1 Upper bound: ψ1(G) ≤ bn2+n4 c
The following theorem is a consequence of the fourth issue of [Erd46] (see also [�er05]).

Theorem 45. Any geometric graph with n vertices and n + 1 edges, contains two

disjoint edges.

Using this theorem we obtain the following result.

Corollary 46. Let G be a geometric graph of order n. There are at most n chromatic

classes of size one in any complete coloring of G.

This corollary immediately implies an upper bound on ψ1(G).

Proof of Theorem 43. We proceed by contradiction. Assume there exists a geometric

graph G for which a complete coloring using at least bn2+n
4
c + 1 colors exist. This

coloring must have at most
(
n
2

)
−
(
bn2+n

4
c+ 1

)
chromatic classes of cardinality larger

than one. Thus, the number of chromatic classes of size one is at least bn2+n
4
c + 1 −((

n
2

)
− bn2+n

4
c − 1

)
, that is,

1−
((

n+ 1

2

)
− 2

⌊(
n+1
2

)

2

⌋)
+ n+ 1 =




n+ 1 if

(
n+1
2

)
is odd,

n+ 2 if
(
n+1
2

)
is even.

(5.5)

This contradicts Corollary 46 and therefore the theorem follows.

5.2.2 Tight lower bound: α1(G) ≥ bn2+n4 c
In this subsection we prove that the bound presented in Theorem 43 is tight. To derive

the lower bound we use a complete geometric graph induced by a set of points in

convex position. We call this type of graph a complete convex geometric graph. The

crossing pattern of the edge set of a complete convex geometric graph depends only on

the number of vertices, and not on their particular position. Without loss of generality
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we therefore assume that the point set of the graph corresponds to the vertices of a

regular polygon. In the remainder of this section we exclusively work with this type of

graphs. To simplify the proof of the main statement of this section, in the following we

will de�ne di�erent sets of edges and prove some important properties of these sets.

Let G be a complete convex geometric graph of order n, and let {1, . . . , n} be the
vertices of the graph listed in clockwise order. For the remainder of this section it is

important to bear in mind that all sums are taken modulo n; for the sake of simplicity

we will avoid writing this explicitly. We denote by ei,j the edge between the vertices i

and j. We call an edge ei,j a halving edge if in both of the two open semi-planes de�ned

by the line containing ei,j, there are at least bn−22 c points of G. Using this concept we

obtain the following de�nition.

De�nition 47. Let i, j, k ∈ {1, . . . , n}, such that ei,j and ej+1,k do not intersect. We

call the pair of edges (ei,j, ej+1,k) a halving pair of edges (halving pair, for short) if at

least one of ei,j+1, ei,k, or ej,k is a halving edge. This halving edge is called the witness

of the halving pair.

See Figure 5.1 for an example of a halving pair (ei,j, ej+1,k), with ei,k as witness.

Note that a halving pair may have more than one witness.

i

j j+1

kk

Figure 5.1: Example for n = 13. Edges of the halving pair (ei,j, ej+1,k) are shown solid,
dashed edges represent the possible halving edges, of which ei,k is a halving edge (the
witness) in the shown example.

We say that an edge e intersects a pair of edges (f, g) if e intersects at least one

of f or g. We say that two pairs of edges intersect if there is an edge in the �rst pair

which intersects the second pair.
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Lemma 48. Let G be a complete convex geometric graph of order n. i) Each two

halving edges intersect. ii) Any halving edge intersects any halving pair of edges. iii)

Any two halving pairs intersect.

Proof. To prove Claim i) assume that there are two halving edges which do not inter-

sect. These edges divide the set of vertices of G into two disjoint sets of size at least

bn−2
2
c and one set of size at least 4 (the vertices of the two halving edges). Then, the

total number of vertices is:

2

⌊
n− 2

2

⌋
+ 4 =




n+ 1 if n is odd

n+ 2 if n is even
(5.6)

This is a contradiction, which proves Claim i).

Observe that the convex hull of each halving pair (ei,j, ej+1,k) de�nes a quadrilateral

(i, j, j+1, k) (see Figure 5.1). The halving edge witnessing the halving pair is contained

in the corresponding convex hull: it is either the edge ei,k, or one of the diagonals of the

quadrilateral. It is easy to see that if either ei,k or one of the diagonals is intersected

by an edge f , then f also intersects at least one edge of the pair (ei,j, ej+1,k). Using

this observation we prove the remaining two cases by contradiction.

Assume there exists a halving edge and a halving pair which do not intersect, or

two halving pairs which do not intersect. Then their corresponding halving edges

(witnesses) do not intersect either, because they are contained in the quadrilaterals.

This contradicts Claim i), and thus proves Claim ii) and iii).

De�nition 49. Let G be a complete convex geometric graph of even order n. We call

an edge ei,j an almost-halving edge if ei,j+1 is a halving edge.

Please observe that this de�nition and the following lemma are only stated (and

valid) for even n.

Lemma 50. Let G be a complete convex geometric graph of even order n. Let f be an

almost-halving edge, e a halving edge, and E a halving pair. Then i) f and e intersect,

ii) f and E intersect.
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Proof. We prove Claim i) by contradiction. If e and f do not intersect, then they

divide the set of vertices of G into three sets: one of size at least n−2
2
, one of size at

least n−2
2
− 1, and one of size at least 4. In total the number of vertices is (at least):

2

(
n− 2

2

)
− 1 + 4 = n+ 1 (5.7)

This is a contradiction, which proves Claim i).

To prove Claim ii) we use Claim i): the halving edge witnessing E must intersect f .

On the other hand such a halving edge is inside the convex hull of E (see Figure 5.1).

From these two observations it follows that E and f intersect.

We need two more concepts from the literature. A straight-line thrackle [LPS97]

of G is a subset of edges of G with the property that any two distinct edges intersect

(they have a common endpoint or they cross). Theorem 45 implies that the size of any

straight-line thrackle of G is at most n. In the following we always refer to a straight-line

thrackle as thrackle, since we are only working with geometric embeddings of graphs.

Given a set J ⊆ {1, . . . , bn
2
c}, a circulant graph Cn(J) of G is de�ned as the graph

with vertex set equal to V (G) and E(Cn(J)) = {ei,j ∈ E(G) : j − i ≡ k mod n, or j −
i ≡ −k mod n, k ∈ J}. See Figure 5.2 (left) for an example of a circulant graph Cn(J)

with J = {
⌊
n
2

⌋
− 1} and n = 13.

The following theorem provides the lower bound on the achromatic index.

Theorem 51. Let G be a complete convex geometric graph of order n. The achromatic

index of G satis�es the following bound:

α1(G) ≥ bn2+n
4
c.

Proof. Consider the following partition of the set of edges of G:

E(G) = E(Cn({bn
2
c}))

⋃
E(Cn({bn

2
c − 1}))

⋃(⋃

i∈I
E(Cn({i, bn

2
c − 1− i}))

)
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where I = {1, . . . , b b
n
2
c−1
2
c}.

j+i+1+i′
j+i

j

j+i+1

Figure 5.2: Examples for n = 13. Left: A circulant graph Cn
({⌊

n
2

⌋
− 1
})
. Right: A

pair of edges (solid) with same color from E(Cn({i, i′})), with i = 2 and some �xed j.
The witness of the halving pair is shown dashed.

Observe that the �rst term is a circulant graph of halving edges and thus, by

Lemma 48, its set of edges de�nes a thrackle. This thrackle is maximal (containing n

edges) if n is odd but it is not maximal (containing only n
2
edges) if n is even. Note

further, that for �xed i the third term is either the union of two circulant graphs of

size n, or one circulant graph of size n (only in the case when i = bn
2
c − 1− i).

If n is odd, then, in total, the edge set of G is partitioned into n−1
2

circulant graphs,

each of them of size n. If n is even, then the partition consists of n
2
−1 circulant graphs

of size n, plus one circulant graph of size n
2
. Using this partition we give a coloring on

the edges of G, and prove that this coloring is proper and complete.

We start by coloring all circulant graphs in the third term of the partition, except

for i = b b
n
2
c−1
2
c. In the following we set i′ = bn

2
c − 1 − i and therefore refer to

Cn({i, bn
2
c − 1 − i}) as Cn({i, i′}). For every i ∈ I \

{
b b

n
2
c−1
2
c
}

we assign colors to

Cn({i, i′}) using the following function.

fi : E(Cn({i, i′})) −→ {(i− 1)n+ 1, . . . , (i− 1)n+ n} such that:

ej,j+i 7→ (i− 1)n+ j, and

ej+i+1,j+i+1+i′ 7→ (i− 1)n+ j,
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for j ∈ {1, . . . , n}. See Figure 5.2 (right) for an example with i = 2.

The �rst rule colors the edges of Cn({i}), while the second rule colors the edges of

Cn({i′}). For �xed i and j both rules assign the same color. Therefore, the chromatic

classes are pairs of edges, one edge (ej,j+i) from Cn({i}) and one edge (ej+i+1,j+i+1+i′)

from Cn({i′}). Observe, that all these pairs are halving pairs (ej,j+i, ej+i+1,j+i+1+i′) of

G, because the edge ej,j+i+1+i′ = ej,j+bn
2
c is halving. Hence, the partial coloring so far

is complete (by Lemma 48) and proper (because the two edges in each color class do

not intersect). The number of colors we have used so far is N1 = n

(
bb

n
2 c−1
2
c − 1

)
.

So far a subset of edges of the third term of the above partition of the set of edges

of G is colored. This leaves the following parts of the partition uncolored:

E(Cn({bn
2
c}))

⋃
E(Cn({bn

2
c − 1}))

⋃
E(Cn({i, i′}))

where i = b b
n
2
c−1
2
c and i′ = bn

2
c − 1− i.

These remaining circulant graphs di�er for n even or odd. Further, the two cases

i = i′ and i 6= i′ need to be distinguished (for the remainder of the third term). This

basically results in the four cases n ≡ x mod 4, for x ∈ {0, 1, 2, 3}. In a nutshell, to

color the remaining edges, the thrackle, E(Cn{bn2 c})) will be colored �rst (if n is even

together with one half of E(Cn({bn
2
c−1}))). Then (the remaining half of) the circulant

graph Cn({bn
2
c − 1}) together with Cn({i, i′}) (i = b b

n
2
c−1
2
c and i′ = bn

2
c − 1 − i) is

colored. In each step we will prove, that the (partial) coloring is proper and complete.

1. Case n is odd. To color the maximal thrackle, E(Cn({bn
2
c})), we assign colors to

its edges using the function

f : E(Cn({bn
2
c})) −→ {N1 + 1, . . . , N1 + n} such that:

ej,j+bn
2
c 7→ N1 + j,

for each j ∈ {1, . . . , n}. Observe that E(Cn({bn
2
c})) is a set of n halving edges.

See Figure 5.3 (left) for an example of such a thrackle.

The coloring so far is proper, because each new chromatic class has size one.
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j+i+1+i′

j+i

j

j+i+1

Figure 5.3: Examples for n = 15. Left: A circulant graph Cn
({⌊

n
2

⌋})
of halving edges

if n is odd. Right: Halving pair (solid) with color N2 + j from E(Cn({i, i′})), with
n ≡ 3 mod 4 and some �xed j. The witness of the halving pair is shown dashed.

Further, each chromatic class so far consists of either a halving edge or a halving

pair. Hence, by Lemma 48, the coloring is also complete. It is easy to see that

we are using N2 = N1 + n = nb b
n
2
c−1
2
c colors so far.

The remaining uncolored edges are partitioned into

E(Cn({bn
2
c − 1}))

⋃
E(Cn({i, i′}))

where i = b b
n
2
c−1
2
c and i′ = bn

2
c − 1 − i. These two circulant graphs will be

colored together. Let i′′ = bn
2
c − 1. Cn({i′′}) consists of n edges. The size of

E(Cn({i, i′})) depends on the two cases i = i′ and i 6= i′.

(a) i = i′: As n is odd, n ≡ 3 mod 4. The circulant graph Cn({i, i′}) = Cn({i})
is of size n. Thus, 2n edges remain uncolored. We assign n colors to the 2n

edges of Cn({i, i′′}) as follows:

fi : E(Cn({i, i′′})) −→ {N2 + 1, . . . , N2 + n}, such that

ej,j+i 7→ N2 + j,

ej+i+1,j+i+1+i′′ 7→ N2 + j

for j ∈ {1, . . . , n}.
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Each new chromatic class consists of a pair (ej,j+i, ej+i+1,j+i+1+i′′) of edges.

See Figure 5.3 (right) for an example of such a pair. Because the edge

ej+i,j+i+1+i′′ = ej+i,j+i+bn
2
c is a halving edge, the pair (ej,j+i, ej+i+1,j+i+1+i′′)

is a halving pair. Therefore, all edges are colored and each chromatic class

consists of either a halving edge or a halving pair. By Lemma 48 the coloring

is complete and proper (as the edges of halving pairs are disjoint).

The total number of colors used is N3 = N2 + n = n(b b
n
2
c−1
2
c + 1), that is

N3 =
⌊
n2+n

4

⌋
colors, as n ≡ 3 mod 4 in this case.

(b) i 6= i′: As n is odd, n ≡ 1 mod 4. The circulant graph Cn({i, i′}) is of size
2n. Thus, 3n edges remain uncolored. We assign n colors to the 2n edges

of Cn({i, i′}) and
⌊
n
2

⌋
colors to the n edges of Cn({i′′}) as follows:

fi : E(Cn({i, i′, i′′})) −→ {N2 + 1, . . . , N2 + n+ bn
2
c}, such that

ej,j+i 7→ N2 + j,

ej+i+1,j+i+1+i′ 7→ N2 + j,

for j ∈ {1, . . . , n}, and

ej,j+i′′ 7→ N2 + n+ j,

ej+i′′+1,j+i′′+1+i′′ 7→ N2 + n+ j,

for j ∈ {1, . . . , bn
2
c}. See Figure 5.4 (left and middle) for examples.

Each new chromatic class consists of a pair of edges. These pairs are either

(ej,j+i, ej+i+1,j+i+1+i′) or (ej,j+i′′ , ej+i′′+1,j+i′′+1+i′′) combined from the edges

of Cn({i, i′}) or Cn({i′′}), respectively. The pair (ej,j+i, ej+i+1,j+i+1+i′) is a

halving pair with the halving edge ej,j+i+1+i′ = ej,j+bn
2
c as witness, and

(ej,j+i′′ , ej+i′′+1,j+i′′+1+i′′) is a halving pair with the halving edges ej,j+i′′+1 =
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j+i′′

j

j+i′′+1+i′′

j

j+i

j+i+1 j+i+1+i′

j+i′′+1
n

⌊
n
2

⌋
−1

⌊
n
2

⌋

n−1

Figure 5.4: Examples with n = 13, for n is odd and i 6= i′: n ≡ 3 mod 4. Left: Halving
pair with color N2 + j from E(Cn({i, i′})). Middle: Halving pair with color N2 + n+ j
from E(Cn({i′′})). Both for �xed j. Halving pairs are shown solid, witnesses of the
halving pairs are shown dashed. Right: The single remaining edge en,bn

2
c−1 (solid) is

combined with the halving edge ebn
2
c,n−1 (dotted), colored with color N1 + bn

2
c.

ej,j+bn
2
c and ej+i′′,j+i′′+1+i′′ = ej+i′′,j+i′′+bn

2
c as witnesses. Each chromatic

class so far consists of either a halving edge or a halving pair. Hence, the

coloring is complete (by Lemma 48) and proper (as the edges of halving

pairs are disjoint).

Note, that a single edge, e
n,bn

2
c−1 of Cn({i′′}), remains uncolored. We add

this edge to the chromatic class (with color N1+bn
2
c) containing the halving

edge ebn
2
c,n−1 = ebn

2
c,bn

2
c+bn

2
c. See Figure 5.4 (right). Observe, that en,bn

2
c−1

and ebn
2
c,n−1 are disjoint, thus the coloring remains proper. Further, adding

an edge to an existing chromatic class of a complete coloring, maintains the

completeness of the coloring.

As all edges are colored, the total number of colors used is N3 = N2 + n +

bn
2
c = n(b b

n
2
c−1
2
c + 1) + bn

2
c, that is N3 =

⌊
n2+n

4

⌋
, as n ≡ 1 mod 4 in this

case.

2. Case n is even. Recall that only N1 chromatic classes exist so far, each containing

a halving pair of edges. The thrackle E(Cn({bn
2
c})) = E(Cn({n

2
})) is not maximal

in this case. See Figure 5.5 (left). To get a maximal thrackle we add half the edges

of Cn({n
2
− 1}) to Cn({n

2
}). Note that E(Cn({n

2
− 1})) is a set of almost-halving

edges in the case of n even.

Let the thrackle E(C ′n({n
2
−1})) = {e1,n

2
, . . . , en

2
,n−1} and the thrackle E(C ′′n({n

2
−
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n
2

1

n

n
2

1

n

n
2

1

n

Figure 5.5: Examples with n = 14, for the case when n is even. Left: The thrackle,
E(Cn(n

2
})), of the n

2
halving edges. Middle: The thrackle, E(C ′n({n

2
− 1})), of the �rst

n
2
almost-halving edges of E(Cn({n

2
− 1})). Right: The thrackle, E(C ′′n({n

2
− 1})), of

the second n
2
almost-halving edges of E(Cn({n

2
− 1})).

1})) = {en
2
+1,n, . . . , en,n

2
−1} de�ne the two halves of Cn({n

2
− 1}) with n

2
almost-

halving edges each. See Figure 5.5 (middle and right). It is easy to see that

E(C ′n({n
2
− 1})) is a thrackle (all its edges intersect each other). Further, by

Lemma 50, each almost-halving edge intersects each halving edge. Thus, E(Cn({n
2
})∪

C ′n({n
2
− 1})) is a maximal thrackle of size n. The following function assigns one

color to each edge of this maximal thrackle.

f : E
(
Cn({n

2
}) ∪ C ′n({n

2
− 1})

)
−→ {N1 + 1, . . . , N1 + n}, such that

ej,j+n
2
7→ N1 + j,

ej,j+n
2
−1 7→ N1 +

n

2
+ j

for each j ∈ {1, . . . , n
2
}.

The coloring so far is proper, because each new chromatic class has size one.

Further, each chromatic class consists of either a halving edge, a halving pair,

or an almost-halving edge. The almost-halving edges used so far form a thrackle

and thus, intersect each other. Hence, by Lemmas 48 and 50, the coloring is also

complete. It is easy to see that we are using N2 = N1 +n = nbn−2
4
c colors so far.
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The remaining uncolored edges are partitioned into

E(C ′′n({bn
2
c − 1}))

⋃
E(Cn({i, i′}))

where i = bn−2
4
c and i′ = n

2
− 1 − i (as n is even). These two circulant graphs

will be colored together. For brevity, let i′′ = n
2
− 1 and C ′′n({i′′}) be the set of

the remaining n
2
almost-halving edges. The size of E(Cn({i, i′})) depends on the

two cases i = i′ and i 6= i′.

(a) i = i′: As n is even, n ≡ 2 mod 4. The circulant graph Cn({i, i′}) = Cn({i})
is of size n. Thus, n+ n

2
edges remain uncolored. We assign n

2
+ bn

4
c colors

to the n+ n
2
edges of Cn({i}) ∪ C ′′n({i′′}) as follows:

fi : E(Cn({i}) ∪ C ′′n({i′′})) −→ {N2 + 1, . . . , N2 + n
2

+ bn
4
c}, such that

en
2
+j,

n
2
+j+i′′ 7→ N2 + j,

en
2
+j+i′′+1,

n
2
+j+i′′+1+i

= ej,j+i 7→ N2 + j

for j ∈ {1, . . . , n
2
}, and

en
2
+j,

n
2
+j+i

7→ N2 + n
2

+ j,

en
2
+j+i+1,

n
2
+j+i+1+i

7→ N2 + n
2

+ j

for j ∈ {1, . . . , bn
4
c}. See Figure 5.6 (left and middle) for examples.

Each new chromatic class consists of a halving pair of edges from E(Cn({i})∪
C ′′n({i′′})), either (en

2
+j,n

2
+j+i′′ , en

2
+j+i′′+1,n

2
+j+i′′+1+i) with the halving

edge en
2
+j,n

2
+j+i′′+1 = en

2
+j,n

2
+j+n

2
as witness, or (en

2
+j,n

2
+j+i, en

2
+j+i+1,n

2
+j+i+1+i)

with, again, the halving edge en
2
+j,n

2
+j+i+1+i = en

2
+j,n

2
+j+n

2
as witness.

Each chromatic class so far consists of either a halving edge, a halving pair,

or one of the n
2
almost-halving edges that form a thrackle. Hence, the

coloring is complete (by Lemmas 48 and 50) and proper (as the edges of
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n
2 +j

n
2 +j+i

′′

n

n
2 +j+i

′′+1

n
2 +j+i

′′+1+i

n
2 +j

n
2 +j+i

n
2 +j+i+1

n
2 +j+i+1+i

1

n
2 +bn

4 c+1

2

3
n
2 +1

Figure 5.6: Examples with n = 14, for the case when n is even and i = i′: n ≡ 2 mod 4.
Left: Halving pair with color N2 + j. Middle: Halving pair with color N2 + n

2
+ j. Both

for �xed j. Halving pairs are shown solid, witnesses of the halving pairs are shown
dashed. Right: The single remaining edge en

2
+bn

4
c+1,n (solid) is combined with the

halving pair (e1,2, e3,n
2
+1) (dotted), colored with color 1.

halving pairs are disjoint).

Note, that a single edge, en
2
+bn

4
c+1,n of Cn({i}), remains uncolored. We

add this edge to the chromatic class (with color 1) containing the halv-

ing pair (e1,2, e3,n
2
+1) (see Figure 5.6 (right)). Observe, that en

2
+bn

4
c+1,n

and (e1,2, e3,n
2
+1) are disjoint. Thus, the coloring remains proper. Further,

adding an edge to an existing chromatic class of a complete coloring, main-

tains the completeness of the coloring.

As all edges are colored, the total number of colors used is N3 = N2 + n
2

+

bn
4
c = nbn−2

4
c+ n

2
+ bn

4
c, that is N3 =

⌊
n2+n

4

⌋
, as n ≡ 2 mod 4 in this case.

(b) i 6= i′: As n is even, n ≡ 0 mod 4. The circulant graph Cn({i, i′}) is of size
2n. Thus, 2n + n

2
edges remain uncolored. We assign n

2
+ 3n

4
colors to the

2n+ n
2
edges of Cn({i, i′}) ∪ C ′′n({i′′}) as follows:

fi : E(Cn({i, i′}) ∪ C ′′n({i′′})) −→ {N2 + 1, . . . , N2 + n
2

+ 3n
4
}, such that

en
2
+j,

n
2
+j+i′′ 7→ N2 + j,

en
2
+j+i′′+1,

n
2
+j+i′′+1+i

= ej,j+i 7→ N2 + j,
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e
3
n
4
+j,3

n
4
+j+i′′ 7→ N2 + n

4
+ j,

e
3
n
4
+j+i′′+1,3

n
4
+j+i′′+1+i′ 7→ N2 + n

4
+ j,

for each j ∈ {1, . . . , n
4
}, and

en
4
+j,

n
4
+j+i

7→ N2 + n
2

+ j,

en
4
+j+i+1,

n
4
+j+i+1+i′ 7→ N2 + n

2
+ j

for each j ∈ {1, . . . , 3n
4
}. See Figure 5.7 for an example of these three

di�erent types of pairs of edges.

n
2 +j+i

′′
n
2 +j

n
2 +j+i

′′+1+i

n
2 +j+i

′′+1

3n
4 +j+i

′′

3n
4 +j+i

′′+1+i′
3n
4 +j

3n
4 +j+i

′′+1

n
4 +j+i+1+i′

n
4 +j+i+1

n
4 +j+i

n
4 +j

Figure 5.7: Examples with n = 16, for the case when n is even and i 6= i′: n ≡ 0 mod 4.
Left: Halving pair with color N2+j. Middle: Halving pair with color N2+ n

4
+j. Right:

Halving pair with color N2 + n
2

+ j. All for �xed j. Halving pairs are shown solid,
witnesses of the halving pairs are shown dashed.

Each new chromatic class consists of a halving pair of edges from Cn({i, i′})∪
C ′′n({i′′}), either (en

2
+j,n

2
+j+i′′ , en

2
+j+i′′+1,n

2
+j+i′′+1+i) with the halving edge

en
2
+j,n

2
+j+i′′+1 = en

2
+j,n

2
+j+n

2
as its witness (see Figure 5.7 (left)),

(e3n
4
+j,3n

4
+j+i′′ , e3n

4
+j+i′′+1,3n

4
+j+i′′+1+i′) with halving edge e3n

4
+j,3n

4
+j+i′′+1 =

e3n
4
+j,3n

4
+j+n

2
as its witness (see Figure 5.7 (middle)),

or (en
4
+j,n

4
+j+i, en

4
+j+i+1,n

4
+j+i+1+i′) with, again, the halving edge

en
4
+j,n

4
+j+i+1+i′ = en

4
+j,n

4
+j+n

2
as witness (Figure 5.7 (right)). Each chro-

matic class so far consists of either a halving edge, a halving pair, or one

of the n
2
almost-halving edges that form a thrackle. Hence, the coloring is

complete (by Lemmas 48 and 50) and proper (as the edges of halving pairs
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are disjoint).

As all edges are colored, the total number of colors used isN3 = N2+
n
2
+3n

4
=

nbn−2
4
c+ n

2
+ 3n

4
, that is N3 =

⌊
n2+n

4

⌋
, as n ≡ 0 mod 4 in this case.

Proof of Theorem 44 i). Using Theorem 51 we get that
⌊
n2+n

4

⌋
≤ α1(G), and by

Theorem 43 and Equation 5.4 we conclude that α1(G) = ψ1(G) =
⌊
n2+n

4

⌋
.

5.3 On ψg(Kn)

In this section we consider point sets in general position in the plane, and present lower

and upper bounds for the geometric pseudoachromatic index.

5.3.1 Upper bound for ψg(Kn)

It seems natural that there should be a relationship between the rectilinear crossing

number of a graph, and its geometric achromatic and pseudoachromatic indices. Using

known bounds for the rectilinear crossing number, we obtain the following results. Let

with deg(v) denote the degree of vertex v.

Lemma 52. Let G be a geometric graph of size m, with m =
∑

v∈V
(
deg(v)

2

)
. Denote by

cr(G) the number of edge crossings in G. Then:

ψ1(G) ≤
⌊

1+
√

1+8(m+cr(G))

2

⌋
.

Proof. The number of incidences between pairs of edges is I ≥
(
ψ1(G)

2

)
, so that ψ1(G)(ψ1(G)−

1) ≤ 2I = 2(m+cr(G)). Solving this inequality we get ψ1(G) ≤
⌊

1+
√

1+8(m+cr(G))

2

⌋
.

Theorem 53. Let G be a graph of size m, with m =
∑

v∈V
(
deg(v)

2

)
. Denote by cr(G)

its rectilinear crossing number. Then: ψg(G) ≤
⌊

1+
√

1+8(m+cr(G)

2

⌋
.
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Proof. Let G0 be a geometric graph of G such that cr(G0) = cr(G). By Lemma 52 we

have the following:

ψg(G) = min{ψ1{G} : G is a geometric graph of G} ≤ ψ1{G0}

≤
⌊

1 +
√

1 + 8(m+ cr(G0))

2

⌋
=

⌊
1 +

√
1 + 8(m+ cr(G))

2

⌋
.

In [ÁCF+10] the following result was proven:

Theorem 54. cr(Kn) ≤ c
(
n
4

)
+ Θ(n3) for c = 0.380488.

Using the above theorem we obtain the following upper bound on ψg(Kn).

Theorem 55. The geometric pseudoachromatic index of Kn has the following upper

bound:

ψg(Kn) ≤ 0.1781n2 + Θ(n).

Proof. Since |E(L(Kn))| = ∑
v∈V (Kn)

(
deg(v)

2

)
= n

(
n−1
2

)
, by Theorems 53 and 54,

ψg(Kn) ≤ 1

2

√
8cr(Kn)) + Θ(n3) + Θ(1) ≤ 1

2

√
8
c

4!
n4 + Θ(n3) + Θ(1)

=

√
c

12
n2 + Θ(n) ≤ 0.1781n2 + Θ(n),

where c = 0.380488.

5.3.2 Lower bound for ψg(Kn)

In order to obtain a lower bound for ψg(Kn), we divide the plane into seven regions and

then use this partition of the plane to construct a partition of the edges of the graph.

We utilize a speci�c con�guration L of lines, de�ned as follows; see also Figure 5.8 for

a drawing of the con�guration. Let S be a set of m = 13n + 6 + r points in general

position in the plane (r < 13). Choose horizontal lines l1, l2, and l3 (listed top-down)

103



so that when writing A′, B′ for the set of points between l1 and l2, and between the

lines l2 and l3, respectively, we have |A′| = 12n + 6 and |B′| = n + r. Let l4, l5, l6 be

concurrent lines that divide the set A′ into 6 parts [Ced64] (at most there are 6 points

contained in the concurrent lines), each containing at least 2n points in its interior. We

call those six the sets as A,B,C,D,E, F and they are listed in clockwise order. Denote

by p the point of intersection of the three lines and take G ⊆ B′ such that |G| = n.

l1

l2

l3

l4

l6

l5

p

A

F

E
D

C

B

G

{
{

A′

B′

Figure 5.8: The line con�guration L.

Let A = {a1, . . . , a2n}, B = {b1, . . . , b2n}, C = {c1, . . . , c2n}, D = {d1, . . . , d2n},
E = {e1, . . . , e2n}, F = {f1, . . . , f2n}, and G = {g1, . . . , gn}. For i, j ∈ {1, . . . , 2n}, we
construct three sets of graphs:

• The subgraphs Xi,j with vertex set {ai, bj, di, ej, gd j2e} and edges

{aibj, bjdi, diej, ejai} ∪




{aig j

2
} if j is even

{dig j+1
2
} if j is odd .

Let X′i,j ≤ Xi,j be the subgraph C4 induced by vertices ai, bj, di, ej.

• The subgraphs Yi,j with vertex set {bi, cj, ei, fj, gd j2e} and edges
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{bicj, cjei, eifj, fjbi} ∪




{big j

2
} if j is even

{eig j+1
2
} if j is odd .

Let Y′i,j ≤ Yi,j be the subgraph induced by vertices bi, cj, ei, fj.

• The subgraphs Zi,j with vertex set {ci, dj, fi, aj, gd j2e} and edges

{cidj, djfi, fiaj, ajci} ∪




{cig j

2
} if j is even

{fig j+1
2
} if j is odd .

Let Z′i,j ≤ Zi,j be the subgraph induced by vertices ci, dj, fi, aj.

Please note that each subgraph X′i,j,Y′i,j and Z′i,j, is a quadrilateral, not necessarily

convex.

Lemma 56. The point p is inside each of the polygons induced by the graphs X′i,j,Y′i,j
and Z′i,j, de�ned above.

Proof. Consider the polygon induced by X′i,j and recall that V (X′i,j) = {ai, bj, di, ej}.
Let `(aidi) be the line induced by the segment aidi, and let Πe be the semiplane de�ned

by `(aidi) containing p. Without loss of generality, ej is in Πe; let Πa be the semiplane

induced by `(diej) and containing ai, then p ∈ Πe ∩ Πa. Furthermore, the segment

aiej is in one of the two open semiplanes de�ned by l5, and di is in the opposite one.

Therefore, p is inside X′i,j. Analogously, p is inside Y′i,j and also inside Z′i,j.

Lemma 57. Any two graphs from the set {Xi,j,Yi,j,Zi,j} intersect.

Proof. We proceed by contradiction. Let Gi,j,Hi′,j′ ∈ {Xi,j,Yi,j,Zi,j}, and assume that

Gi,j and Hi′,j′ do not intersect. In particular, G′i,j does not intersect H′i′,j′ . Since p

is inside both polygons, without loss of generality H′i′,j′ is inside G′i,j. Therefore, the

edge hi′,j′ ∈ E(Hi,j) \ E(H′i,j) intersects G
′
i,j because hi′,j′ has a vertex in H′i′,j′ (in the

interior of G′i,j) and another vertex in the set G (in the exterior of G′i,j). The theorem

follows.
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Proof of Theorem 44 ii). For every geometric embedding of Kn one can construct

the con�guration L. By construction the partition A,B,C,D,E, F has
⌊
2n−6

13

⌋
points,

and Kn contains 3 4
169
n2 − Θ(n) edge disjoint graphs Gi,j (Gi,j ∈ {Xi,j,Yi,j,Zi,j}). We

assign a di�erent color to each of these graphs. By Lemma 57 each two of these

subgraphs intersect, therefore 0.0710n2 −Θ(n) ≤ ψg(Kn).
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Chapter 6

On m-factorizations of complete

multigraphs arising from a�ne spaces

The complete multigraph λKv has v vertices and λ edges joining each pair of vertices.

An m-factor of a multigraph G is a set of pairwise vertex-disjoint m-regular subgraphs,

which induce a partition of the vertices. An m-factorization of G is a set of pairwise

edge-disjoint m-factors such that these m-factors induce a partition of the edges. An

m-factorization is called simple if the m-factors are pairwise distinct (if no m-factor

is repeted). Furthermore, an m-factorization of λKv is decomposable if there exist

positive integers µ1 and µ2 such that µ1 + µ2 = λ and the factorization is the union of

m-factorizations of µ1Kv and of µ2Kv, otherwise it is called indecomposable. There is

no direct correspondence between simplicity and indecomposability.

Many papers deal with m-factorizations of graphs and multigraphs. This is an

interesting problem in its own right, but it is motivated by several applications, too.

In particular, if m = 1 then a one-factorization of Kv corresponds to a schedule of a

round robin tournament. For a comprehensive survey on one-factorizations we refer

to [Wal97]. A special case of 2-factorizations is the famous Oberwolfach problem (see

for example [Als96, BMR09]). Several authors investigated 3-factorizations of λKv

with a certain automorphism group (see for example [ABM04, KMT01]). In general,

decompositions of λKv is also a widely studied problem (see for example [BHMS11,
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BR08, FH11, Smi10]). As m increases, the structure of an arbitrary m-factor of λKv

can be much more complicated and the existence problem becomes much more di�cult.

In this chapter we restrict ourselves to construct factorizations in which all factors are

regular graphs of degreem whose connected components are complete graphs on (m+1)

vertices. In the case m = 1 an indecomposable one-factorization of λK2n is denoted by

IOF(2n, λ). Only a few conditions on the parameters are known: if IOF(2n, λ) exists,

then λ < 1 · 3 · . . . · (2n − 3) [BW89]; each IOF(2n, λ) can be embedded in a simple

IOF(2s, λ), provided that λ < 2n < s [CCR85]. Six in�nite classes of indecomposable

one-factorizations have been constructed so far, namely a simple IOF(2n, n− 1) when

2n− 1 is a prime [CCR85], IOF(2(λ + p), λ) where λ > 2 and p is the smallest prime

wich does not divide λ [AD91] (an improvement of this result can be found in [Chu01]),

a simple IOF(2h + 2, 2) where h is a positive integer [Son01], IOF(q2 + 1, q−1) where q

is an odd prime number [KSS01], a simple IOF(q2 + 1, q + 1) for any odd prime power

q [Kis02], and a simple IOF(q2, q) for any even prime power q [Kis02]. Most of these

constructions arise from �nite geometry.

The aim of this chapter is to construct new simple and indecomposablem-factoriza-

tions of λKv for di�erent values ofm, λ and v. In Section 6.1 we collect some de�nitions

and we describe a general construction method of m-factorizations which is based

on spreads of block designs. In Sections 6.2, a�ne spaces is the key object. We

present several new multigraph factorizations using con�gurations of that structure.

The results of this chapter are contained in [KR15].

6.1 Preliminaries

It follows from the properties of a resolvable (v, κ, λ)-design D that a resolution class

of D gives a (κ − 1)-factor of λKv and a resolution of D gives a (κ − 1)-factorization

of λKv (see Section 1.2.2). Hence we get the following well-known fact.

Lemma 58 (Basic Construction). The existence a resolvable (v, κ, λ)-design is equiv-

alent to the existence of a (κ− 1)-factorization of the complete multigraph λKv.

In PG(n, q) or AG(n, q)), an f -fold i-spread, S if , is a set of pairwise disjoint i-
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dimensional subspaces such that every point of the geometry is contained in exactly

f subspaces of S if . An i-packing, P i, of PG(n, q) (or of AG(n, q)) is a set of spreads

such that each i-dimensional subspace of the geometry is contained in exactly one of

the spreads in P i, i.e., the spreads give a partition of the i-dimensional subspaces of

the geometry. The i-spreads, f -fold i-spreads and i-packings induce a resolution class,

an f -resolution class and a resolution in PG(i)(n, q) (or in AG(i)(n, q)), respectively.

It is easy to construct spreads and packings in AG(i)(n, q), because each parallel

class of i-spaces is an i-spread. The situation is much more complicated in PG(i)(n, q).

There are only few constructions of spreads known. The following theorem summarizes

the known existence conditions.

Theorem 59 ([Hir79], Theorems 4.1 and 4.16).

• There exists an i-spread in PG(i)(n, q) if and only if (i+ 1)|(n+ 1).

• Suppose that i, l and n are positive integers such that (l+1)| gcd(i+1, n+1). Then

there exists an f -fold i-spread in PG(i)(n, q), where f = (qi+1 − 1)/(ql+1 − 1).

6.2 Factorizations arising from �nite a�ne spaces

In this section, we investigate the spreads and packings of AG(n, q) and the correspond-

ing factorizations of multigraphs. In each case we apply Lemma 58, so we identify the

points of AG(n, q) with the vertices of the complete multigraph.

Theorem 60. Let q be a prime power, i < n be a positive integer and λi = [n−1
i−1]q. Then

there exists a simple (qi− 1)-factorization F i of λiKqn . F i is decomposable if and only

if there exists an f -fold (i− 1)-spread in PG(i−1)(n− 1, q) for some 1 ≤ f < λi.

Proof. Consider the n-dimensional a�ne space as AG(n, q) = PG(n, q) \ H∞ where

H∞ is isomorphic to PG(n− 1, q). Take the design D = AG(i)(n, q) and apply Lemma

58. If Πi−1 is an (i − 1)-space of H∞, then the set of the qn−i parallel a�ne i-spaces

through Πi−1 is an i-spread of D. This spread induces a (qi− 1)-factor. We denote the

set of (i− 1)-spaces of H∞ as Πi−1
j for j ∈ {1, . . . , g} where g is the number of (i− 1)-

spaces of H∞. And we denote the i-spreads through Πi−1
j as F i

j . If Πi−1
1 ,Πi−1

2 , . . . ,Πi−1
g
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are distinct (i − 1)-spaces of H∞ and they form an f -fold spread, then f = (g(qi −
1))/(qn− 1), and the union of the corresponding (qi− 1)-factors F i

j , for j = 1, 2, . . . , g,

gives a (qi − 1)-factorization of fKqn . Distinct (i − 1)-spaces of H∞ obviously de�ne

distinct (qi − 1)-factors, so this factorization is simple. In particular if we consider all

(i− 1)-spaces of H∞, then

g =

[
n

i

]

q

, f =

[
n

i

]

q

qi − 1

qn − 1
=

[
n− 1

i− 1

]

q

= λi,

hence the union of the corresponding factors gives a simple (qi− 1)-factorization F i of
λiKqn .

Suppose that F i is decomposable, then there exist two positive integers µ1 and µ2

such that µ1 + µ2 = λi and F i can be written as the union F i = F1 ∪ F2; F1 and F2

are (qi − 1)-factorizations of µ1Kqn and µ2Kqn , respectively, having no (qi − 1)-factors

in common, since F i is simple. For h = 1, 2, the relation µh
(
qn

2

)
=
(
qi

2

)
qn−i|Fh| holds,

hence µh(qn − 1) = (qi − 1)|Fh|. Without loss of generality we can set F1 = ∪f1j=1F
i
j

with f1 = µ1(q
n − 1)/(qi − 1), and F2 = F i \ F1, f2 = |F2|.

Let u1 and u2 be two a�ne points and let w be the point at in�nity of the line u1u2.

Since Fh is a factorization of µhKqn , there are exactly µh factors of Fh containing

the edge [u1, u2], say F i
j1
, F i

j2
, . . . , F i

jµh
. The edge [u1, u2] belongs to F i

js if and only if

w ∈ Πi−1
js

for every 1 ≤ s ≤ µh. This happens if and only if ∪fhj=1Π
i−1
j contains each

point of H∞ exactly µh times, which means that ∪fhj=1Π
i−1
j is a µh-fold spread in H∞,

for every h = 1, 2. It is thus proved that if F i is decomposable, then PGi−1(n − 1, q)

posesses an f -fold spread for some 1 ≤ f < λi.

Conversely, suppose that there exists a µ1-fold spread in PGi−1(n − 1, q) for some

1 ≤ µ1 < λi. Let F1 = ∪f1j=1F
i
j be a µ1-fold spread in H∞. Then |F1| = f1 = µ1(q

n −
1)/(qi − 1). Let T be the set of all (i− 1)-dimensional subspaces in H∞ and let F2 =

T \ F1. Then |T | =
[
n
i

]
q
,

|F2| =
[
n

i

]

q

− µ1(q
n − 1)/(qi − 1) =

([
n− 1

i− 1

]

q

− µ1

)
qn − 1

qi − 1
,

112



so if µ2 =
[
n−1
i−1
]
q
− µ1, then F2 is a µ2-fold spread in H∞ and 1 ≤ µ2 < λi holds.

As we have already seen, Fh de�nes a (qi − 1)-factorization of µhKqn for h = 1, 2.

Then F i = F1 ∪F2, because µ1 +µ2 = λi. Hence the (qi− 1)-factorization F i of λiKqn

is decomposable.

Corollary 61. If gcd(i, n) > 1 then the (qi−1)-factorization F i described in Theorem

60 of λiKqn is decomposable.

Proof. Let 1 < l + 1 be a divisor of gcd(i, n). Then it follows from Theorem 59 that

there exists an (qi − 1)/(ql+1 − 1)-fold spread in H∞, so F i is decomposable.

To decide the decomposability of F i in the case gcd(i, n) = 1 is a hard problem in

general. We prove its indecomposability in the following important case.

Theorem 62. The (qn−1− 1)-factorization Fn−1 of (qn−1− 1)/(q− 1)Kqn is indecom-

posable.

Proof. It is enough to prove that if ∪gj=1Π
n−2
j is an f -fold (n− 2)-spread in H∞, then

∪gj=1Π
n−2
j consists of all (n − 2)-dimensional subspaces of H∞, because this implies

f = λn−1, so the statement follows from Theorem 60.

Each Πn−2
j contains exactly (qn−1 − 1)/(q − 1) points, thus the standard double

counting of the point-space pairs p ∈ Πn−2
j in H∞ gives

g
qn−1 − 1

q − 1
= f

qn − 1

q − 1
,

hence

f =
g(qn−1 − 1)

qn − 1
.

But gcd(qn − 1, qn−1 − 1) = q − 1 and f is an integer, so g ≥ (qn − 1)/(q − 1) which

implies g = (qn − 1)/(q − 1), hence f = λn−1.

In particular if n = 2, we get the following.

Corollary 63. If q is a prime power then there exists a simple and indecomposable

(q − 1)-factorization of Kq2.
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If q = 2r then each (qi−1)-factor in F i is the vertex-disjoint union of 2r−i complete

graphs on 2i vertices. It is well-known that these graphs can be partitioned into one-

factors in many ways (it was proved by Hartman and Rosa [HR85], that there is no

cyclic one-factorization of K2i for i ≥ 3, namely, An m-factorization of a graph G

into k copies of a graph H is a cyclic factorization if H is drawn in an appropriate

manner so that rotating H through an appropriate angle k − 1 times produces this m

factorization), hence Theorem 60 implies several one-factorizations of λiK2r .

Each of the one-factorizations arising from F i is simple. This follows since distinct

(i− 1)-dimensional subspaces de�ne distinct (qi − 1)-factors of F i, and the since one-

factors of λiKqn arising from distinct (qi − 1)-factors of F i are distinct because they

are the union of qn−i one-factors on qi vertices of a connected component.

There are both decomposable and indecomposable one-factorizations among these

examples. We show it in the smallest case q = 2, n = 3. Let F2 be the 3-factorization

of 3K8 induced by AG(3, 2).

Let PG(3, 2) = AG(3, 2) ∪ H∞. Then H∞ is isomorphic to the Fano plane. Let its

points be 0, 1, 2, 3, 4, 5 and 6 such that for j = 0, 1, . . . , 6, the triples Lj = (j, j+1, j+3)

form the lines of the plane, where the addition is taken modulo 7. Now the 3-factors of

F2 can be described in the following way. Let a be a �xed point in AG(3, 2). Then Lj
de�nes a 3-factor F 2

j whose connected components are complete graphs K2i = K4. Let

Lj,a be the complete graph containing a, and let Lj,a be the other component of F 2
j .

H∞ de�nes one-factors and a one-factorization of K8 in the following obvious way.

The edge joining two points of AG(3, 2), say b and c, belong to the one-factor Gs for

some s ∈ H∞ if and only if b, c and s are collinear points in PG(3, 2). Then G = ∪6s=0Gs
is a one-factorization of K8.

We can de�ne a decomposable one-factorization of 3K8 in the following way. Take

Lj,a and Lj,a and let s ∈ Lj be any point. Then Gs gives a one-factor of Lj,a and a

one-factor of Lj,a. Hence Gj = ∪s∈LjGs is the union of three one-factors of 3K8, and

G ′ = ∪6j=0Gj is a one-factorization of 3K8.

In H∞ there are three lines through the point s, hence G ′ contains each one-factor

Gs three times. Thus G ′ is decomposable, because it is obviously the union of three

copies of G.
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But we can de�ne an indecomposable one-factorization, too. Let Lj be a line in

H∞, take Lj,a and Lj,a and let M1
j be the one-factor which contains the following pairs

of points in AG(3, 2) :

� (b, c) if b, c ∈ Lj,a and b, c, j are collinear in PG(3, 2).

� (b, c) if b, c ∈ Lj,a and b, c, j + 1 are collinear in PG(3, 2).

Let M2
j be the one-factor which contains the following pairs of points in AG(3, 2) :

� (b, c) if b, c ∈ Lj,a and b, c, j + 1 are collinear in PG(3, 2).

� (b, c) if b, c ∈ Lj,a and b, c, j + 3 are collinear in PG(3, 2).

Finally let M3
j be the one-factor which contains the following pairs of points in

AG(3, 2) :

� (b, c) if b, c ∈ Lj,a and b, c, j + 3 are collinear in PG(3, 2).

� (b, c) if b, c ∈ Lj,a and b, c, j are collinear in PG(3, 2).

ThenMj = ∪3t=1M
t
j is a union of three one-factors of 3K8, andM = ∪6j=0Mj is a

one-factorization of 3K8.

Suppose that this 1-factorization is decomposable, then it contains a 1-factorization

E of K8. Therefore, E is the union of seven one-factors. We may assume without loss

of generality, that M1
0 belongs to E . It contains an edge through a, say (a, b), and a

pair (c, d) such that the lines ab and cd are parallel in AG(3, 2). There are two more

lines in the parallel class of ab, say ef and gh. It follows from the de�nition of the

one-factors that exactly one of them contains the pairs (e, f) and (a, b), another one

contains the pairs (e, f) and (c, d), and a third one contains the pairs (e, f) and (g, h).

But E contains each pair exactly once, hence it must contain the one-factor containing

the pairs (e, f) and (g, h). But this is a one-factor of type M t
0, where t 6= 1. Hence E

contains M t
0 where t = 2 or 3. If we repeat the previous argument, we get that E must

contain M l
0 for all t ∈ {1, 2, 3}. Thus E is the union of triples of type M t

j , t = 1, 2, 3,

but this is a contradiction, because E consists of seven one-factors.
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Chapter 7

Conclusion

There is little doubt that the most studied and best known subject within Graph

Theory is Coloring:

Graph Coloring is arguably the most popular subject in Graph Theory.

Noga Alon (1993)

Plane graphs and their colorings have been the main topic of intensive research since

the beginnings of graph theory because of their connection to the four color problem.

As stated originally the four color problem asked whether it is always possible to color

the regions of a plane map with four colors such that regions which share a common

boundary (and not just a point) receive di�erent colors. Then graph colorings has

become a subject of great interest, largely because of its diverse theoretical results, its

numerous applications, and its unsolved problems.

This thesis is devoted to this important subject, speci�cally in one branch of graph

colorings that has received attention recently: complete colorings [CZ09]. The paper's

collection provides contributions to knowledge in the following research areas:

Chapter 2: This chapter is about perfection in graphs where perfection means the

equality, for a graph G and every induced subgraph of G, of two parameters among the

lenght of the maximum clique, the chromatic number, the pseudo-Grundy chromatic

number [Rub15], the Grundy chromatic number, the achromatic number and the pseu-
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doachromatic number [AR, AR13]. This concept of perfection shelters the germinal

concept, introduced by C. Berge in 1961 [Ber61], and presents other ways to capture

the relation between graph coloring parameters. We shall mention that this concept

was introduced earlier by Christen and Selkow in 1979 [CS79] and extended by V.

Yegnanarayanan in 2001 [Yeg01].

Chapter 3: In this chapter we calculate achromatic and pseudoachromatic indices of

those complete graphs whose sizes are of the form (2γ+1)2−a, for a ∈ {0, 1, 2} and γ > 1

[AMRS14]; and the pseudoachromatic index for a ∈ {3, 4, . . . ,
⌈
1+
√
4q+9
2

⌉
−1} [AMRS].

The main contribution, and the main di�culty, lies on proving the lower bounds, since

the matching upper bounds follow rather easily from a theorem by Jamison [Jam89],

which is improved here. These bounds are obtained by nontrivial constructions, based

on the structure of projective planes [Bou78].

Chapter 4: This chapter is about complete colorings in block designs [And90]. We

bounded the achromatic and the pseudoachromatic indices of block design, we improve

some known theorems of [CC83] and we give some exact values for particular designs

(see [AKRV]).

Chapter 5: In this chapter we studied the achromatic and pseudoachromatic indices

for geometric graphs. The main result in this chapter is determining the achromatic and

the pseudoachromatic indices for the convex geometric complete graph and bounding

when points are in general position. We introduce the parameter �geometric achro-

matic and pseudoachromatic indices� of an abstract graph (see [AAG+]).

Chapter 6: This chapter is about simple and indecomposable κ-factorizations of the

complete multigraph λKv [Wal97]. The existence of a κ-factorization of the complete

multigraph λKv is equivalent to the existence of a resolvable (v, k, λ)-design. Here

examples of simple κ-factorizations of λKv for some values of κ and λ are given. We

show that in some cases these κ-factorizations are indecomposable and these examples

are obtained from a�ne and projective geometries [KR15].
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