

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

PROPUESTA DE INSTALACIÓN EXPERIMENTAL EN EL LABORATORIO DE HIDRÁULICA PARA LA ENSEÑANZA TEÓRICO-PRÁCTICA DEL FENÓMENO DE GOLPE DE ARIETE

TESIS PARA OBTENER EL TÍTULO DE INGENIERO CIVIL

Presenta Mario David Bonilla Sánchez

DIRECTOR
M.I. NIKTE NORMA OCAMPO GUERRERO

MÉXICO, D.F., 2014

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DIVISIÓN DE INGENIERÍAS CIVIL Y GEOMÁTICA COMITÉ DE TITULACIÓN FING/DICYG/SEAC/UTIT/102/10

Señor MARIO DAVID BONILLA SÁNCHEZ Presente

En atención a su solicitud me es grato hacer de su conocimiento el terna que propuso la profesora M.I. NIKTE NORMA OCAMPO GUERRERO, que aprobó este Comité, para que lo desarrolle usted como tesis de su examen profesional de INGENIERO CIVIL.

"PROPUESTA DE INSTALACIÓN EXPERIMENTAL EN EL LABORATORIO DE HIDRÁULICA PARA LA ENSEÑANZA TEÓRICO-PRÁCTICA DEL FENÓMENO DE GOLPE DE ARIETE"

INTRODUCCIÓN

- ANTECEDENTES
- II. CONCEPTOS FUNDAMENTALES DE LA TEORÍA DEL GOLPE DE ARIETE
- III. CASO DE ESTUDIO
- IV. PROPUESTAS DE DISPOSITIVOS EXPERIMENTALES
- V. PROPUESTA DE PRÁCTICAS DE LABORATORIO
- VI. CONCLUSIONES

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el Título de ésta.

Asimismo le recuerdo que la Ley de Profesiones estipula que deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar Examen Profesional.

A tentamente "POR MI RAZA HABLARĂ EL ESPÎRITU" Cd. Universitaria a 18 de Octubre del 2010. EL PRESIDENTE

ING. RODÓLFO SOLIS UBALDO

RSU/MTH*gar.

DEDICATORIA

El esfuerzo plasmado en esta tesis es un esfuerzo compartido. Si bien, he aprendido que en la vida es imposible avanzar solo para poder cumplir los objetivos, y que siempre será necesario tener a las personas adecuadas a mi lado. Es por ello que dedico todo este trabajo principalmente a mi familia...Mamá, Papá, esta dedicatoria la llevaba guardada conmigo desde hace mucho tiempo y hoy que la escribo me causa nostalgia, pero sobre todo una enorme satisfacción. Creo fielmente que todo el camino recorrido hasta este momento ha sido de gran aprendizaje para todos. Con el corazón en la mano les doy las gracias por enseñarme a luchar por mis ideales, a enseñarme a enfrentar los retos, a enseñarme a enfrentar la vida y a disfrutarla con todos mis sentidos. Gracias por respetar mis decisiones, gracias por darme la libertad y la confianza para explorar todos los caminos posibles, gracias por educarme para ser una mejor persona cada día, sé que nunca terminaré de aprender de ustedes, pero pueden tener la certeza de que han hecho de mí la persona que yo siempre anhelé ser y que a pesar de todos los cambios que pueda tener hasta el último de mis días, mi esencia siempre trataré de conservarla y siempre los amaré y procuraré hasta que la vida lo permita.

De igual forma dedico esta tesis a mis hermanos, Adriana, Felipe y Alejandro. Mania, dedico mi esfuerzo a tu apoyo en el inicio de mi carrera, por siempre brindarme tú cálida compañía, por procurarme siempre y por mostrarme caminos y opciones de vida. Felipe, dedico mi esfuerzo a tu apoyo y a tus palabras siempre bien intencionadas, y aunque nuestras vidas sean paralelas, agradezco siempre tu respeto a mis decisiones tomadas. Alex, dedico este trabajo a tu esfuerzo por hacerme un lugar en tu vida en el inicio de este proyecto y por compartir muchos momentos juntos, has sido siempre una persona muy importante en mi vida.

En fin...es imposible escribir toda la gama de sentimientos y pensamientos en una hoja de papel, es por ello que les digo, ¡Gracias por disfrutar junto conmigo este éxito profesional logrado!.

MARIO DAVID BONILLA SÁNCHEZ

AGRADECIMIENTOS

Agradezco a la Facultad de Ingeniería, UNAM, por darme la oportunidad de formarme profesionalmente y obtener el conocimiento técnico y ético brindado por todos y cada uno de sus profesores.

Agradezco a la Mtra. Nikte Norma Ocampo Guerrero por darle la dirección adecuada a la elaboración de esta tesis y por toda su paciencia.

Agradezco a mis compañeros de clases, por todos los momentos vividos en esta Facultad de Ingeniería, UNAM.

Agradezco a mis amigos y amigas, que aunque sé que son pocos, pero al final sé que siempre voy a poder contar con ellos.

Agradezco a las personas que en algún momento me brindaron apoyo y palabras de aliento para continuar adelante.

Agradezco a todas y todos los profesionistas que al inicio y a lo largo de mi vida profesional han contribuido con compartir conmigo toda su experiencia y conocimiento y por sus ganas de enseñarme a ser un profesionista el cual tenga respeto por su trabajo y nunca olvidar que todo el conocimiento y la experiencia adquirida debe ser siempre utilizada en beneficio de los demás.

Por último quiero hacer un agradecimiento especial a mi persona. Por permitirme vivir toda experiencia que me haga crecer, que me permita hacer algo por los demás, que me permita seguir aprendiendo y que me permita siempre ser un mejor ingeniero.

MARIO DAVID BONILLA SÁNCHEZ

CONTENIDO

IN	ΓROD	DUCCIÓN	1		
1.	ANT	ECEDENTES	4		
	1.1.	Marco histórico	4		
	1.2.	Práctica "Golpe de ariete" en el Laboratorio de Hidráulica de la Facultad	de Ingeniería		
		UNAM	8		
2.	CON	ICEPTOS FUNDAMENTALES DE LA TEORÍA DEL GOLPE DE ARIETE	E 10		
	2.1.	Flujo permanente	10		
	2.2. Flujo transitorio				
	2.3.	Ecuación de continuidad para un conducto	10		
	2.3	3.1. Principio de conservación de la masa	10		
	2.3	3.2. Ecuación de continuidad	11		
	2.4.	Ecuación dinámica para un conducto	13		
	2.5.	Descripción del fenómeno en un conducto por gravedad	15		
	2	2.5.1.Celeridad de onda	18		
	2	2.5.2.Leyes para maniobras de cierre	21		
	2.6.	Teoría de la columna elástica	22		
	2.6	6.1. Ecuación de continuidad	23		
	2.6	6.2. Ecuación dinámica	25		
	2.7.	Ecuaciones diferenciales del golpe de ariete	25		
	2.8.	Interpretación física de las ecuaciones integrales del golpe de ariete	27		
	2.9.	Métodos de solución	30		
	2	2.9.1.Método de las características	30		
		2.9.1.1. Ecuaciones características	30		
		2.9.1.2. Solución de ecuaciones características y de compatibilidad	34		
		2.9.1.3. Condiciones de frontera	37		
		2.9.1.4. Condiciones de estabilidad y convergencia	40		
		2.9.1.5. Ejemplo	41		
	2.9.2.Método de Allievi				
		2.9.2.1. Ecuaciones generales de Allievi	50		
		2.9.2.2. Desarrollo en cadenas de Allievi	51		
3.	CASO	O DE ESTUDIO	53		
	3.1.	Dispositivo experimental tanque-tubería-válvula esférica	53		
	3.2.	Mediciones y registro de lecturas	55		
	3.3.	Determinación de condiciones iniciales	56		
	3.4.	Cálculo de celeridad de onda de presión en tubería	57		
	3.5.	Periodo T de la onda de presión	58		
	3.6.	Pérdidas por fricción en la tubería	58		
	3.7.	Pérdidas locales	70		
	3.8.	Ley para maniobra de cierre no uniforme	76		

	3.9. Solución aplicando el método de Allievi	145 149 en dispositivo	
	3.9.1. Resultados	87	
	3.10. Solución aplicando el método de las características	112	
	3.10.1. Resultados	122	
4.	PROPUESTAS DE DISPOSITIVOS EXPERIMENTALES	131	
	4.1. Mejoras al dispositivo experimental tanque-tubería-válvula esférica		
	4.1.1.Implementación de los instrumentos de medición y control adecuados		
	4.2. Propuesta de nuevo dispositivo	134	
	4.2.1.Instalación hidráulica red-tubería en espiral-válvula	134	
	4.2.2.Instrumentos de medición y control	134	
	4.2.3.Implementación de los instrumentos de medición y control en la instalación	n hidráulica	
	propuesta	145	
5.	PROPUESTA DE PRÁCTICAS DE LABORATORIO	149	
	5.1. Práctica "Golpe de ariete aplicando el método de las características" en	dispositivo	
	experimental existente	149	
	5.2. Práctica "Golpe de ariete aplicando el método de las características" en	dispositivo	
	experimental propuesto.	156	
6.	CONCLUSIONES	183	
ΒI	BLIOGRAFÍA	186	

INTRODUCCIÓN

En nuestro país existen necesidades primordiales como el abastecimiento de agua potable a las pequeñas poblaciones o a las grandes ciudades. Actualmente la infraestructura existente para estos fines carece de planeación en algunos sectores, la cual es muy importante para evitar futuros problemas o solucionar situaciones en el presente. Hoy en día existen proyectos en marcha ejercidos por instituciones privadas y públicas para rehabilitar y reordenar las redes principales de abastecimiento, pero para ello, se deben considerar muchas variables, ya sean de tipo técnico o incluso social.

Por estas razones, es muy importante tener en cuenta la parte teórica de las posibles soluciones, ya que se pueden obtener simulaciones de los fenómenos físicos que ocurren, lo que lleva a tomar mejores decisiones.

El objetivo de esta tesis es, principalmente aplicar un método numérico de solución para el fenómeno transitorio conocido como golpe de ariete en el dispositivo experimental instalado en el Laboratorio de Hidráulica de la Facultad de Ingeniería de la UNAM y realizar una propuesta de práctica de laboratorio para que los alumnos de la asignatura *Hidráulica de Máquinas*, conozcan y empleen el método de solución de uso generalizado para tal efecto. También se analiza la conveniencia del dispositivo existente y se propone una nueva instalación experimental.

Sobre el fenómeno del golpe de ariete se sabe que una de las aportaciones más importantes sobre la teoría, fue dada a conocer por el italiano Lorenzo Allievi. Sin embargo, con la evolución de las computadoras en los años 50, el investigador Gray, introdujo un procedimiento de análisis del fenómeno conocido como Método de las Características.

Este método es de uso generalizado para el análisis y es el que se propone para la solución de la práctica de laboratorio, pues permite introducir algunas variables que son necesarias para simular el fenómeno de golpe de ariete de una forma más apegada a las circunstancias reales, ya que se pueden incluir condiciones como el efecto de las pérdidas por fricción en la tubería y la ley de cierre del órgano de control. También es posible considerar los cambios geométricos que pudiera tener una tubería, como sucede en la operación real de las redes de distribución.

En el capítulo *uno*, se presenta un marco histórico sobre el estudio del golpe de ariete, debido que es importante conocer el tiempo que los investigadores del tema tardaron en observar el fenómeno y desarrollar algún método para representarlo numéricamente o poder dar solución a situaciones que se generan en las tuberías producto de este fenómeno. En este mismo capítulo se presenta la situación actual de la práctica *Golpe de Ariete* que se desarrolla en el Laboratorio de Hidráulica. En

esta práctica se incluyen los antecedentes necesarios que el alumno debe poseer para comprender el fenómeno físico. Así mismo se muestra el desarrollo que debe tener la práctica para dar solución al fenómeno transitorio con las ecuaciones de Allievi.

En el capítulo *dos* se muestran los conceptos fundamentales que se utilizarán a lo largo de este trabajo. Estos conceptos se refieren a la parte teórica del fenómeno, así como definiciones sobre la clasificación de flujos. También se muestra la deducción de las ecuaciones de continuidad y la ecuación dinámica para un conducto mediante el principio de conservación de la masa. Se describe el fenómeno del golpe de ariete en un conducto por gravedad, así como las definiciones de celeridad de onda y las leyes para maniobras de cierre. Se presenta la deducción de la ecuación de continuidad y la ecuación dinámica mediante la teoría de la columna elástica. A su vez se presentan las ecuaciones diferenciales del golpe de ariete, así como la interpretación física de las ecuaciones integrales del mismo fenómeno.

En este mismo capítulo se presenta la teoría del Método de las Características y el Método de Allievi. Para el Método de las Características se describen las ecuaciones características, y su solución; las ecuaciones de las condiciones de frontera aguas abajo y aguas arriba de la tubería. Parte importante de este método, son las condiciones de estabilidad y convergencia, mismas que determinan la obtención de resultados favorables. Al final de este capítulo se presenta un ejemplo de aplicación, mismo que sirvió para realizar la calibración de la hoja de cálculo que posteriormente se utilizara para la resolución del caso experimental en el laboratorio.

Por otra parte se muestra la deducción de las ecuaciones generales de Allievi, así como el desarrollo en cadenas que se debe llevar a cabo para obtener una solución.

En el capítulo *tres*, se describe el caso de estudio, para lo cual se describe detalladamente el dispositivo experimental utilizado. Posteriormente se muestra el procedimiento experimental para determinar las condiciones iniciales de flujo, así como para determinar los valores de algunas constantes necesarias en el cálculo. Se presenta también la forma en que fueron calculadas las pérdidas totales de energía en la tubería. En seguida, se detalla la solución del caso de estudio mediante los dos métodos desarrollados teóricamente en el capítulo *dos*, haciendo una comparación entre los resultados obtenidos con ambos métodos.

En el capítulo *cuatro* se hacen algunas propuestas para mejorar el dispositivo experimental actual, así como la implementación de instrumentos de medición y control adecuados. También se hace la propuesta de un nuevo dispositivo y de igual forma la implementación de instrumentos de medición y control.

Finalmente, en el capítulo *cinco* se presenta una propuesta de prontuario de práctica de laboratorio, utilizando como método de solución el Método de las Características y empleando el dispositivo experimental actual. También se presenta una propuesta de práctica de laboratorio usando el nuevo dispositivo experimental y como método de solución el método de las características a través de la hoja de cálculo desarrollada en el capítulo *dos*.

Así es como se desarrolla el contenido de este trabajo, el cual puede formar parte del material didáctico utilizado en el Laboratorio de Hidráulica de la Facultad de Ingeniería de la UNAM.

1 ANTECEDENTES

1.1 Marco histórico

De entre los investigadores y científicos que contribuyeron con sus estudios y experimentos relacionados con el golpe de ariete, cabe mencionar a Michaud, quien probablemente fue el primero en hacer investigaciones de este fenómeno en tuberías, mismas que dio a conocer en una publicación que apareció en Lausana, Suiza, en 1878 y cuyo título fue *Coups de Bélier dans les Conduites. Etude des moyens employés pour atténuer les effets* (Golpe de ariete en tuberías. Estudio de las maneras de mitigar los efectos), donde establece un análisis matemático del golpe de ariete que tiene lugar en una columna de agua elástica contenida en una tubería rígida.

Posteriormente, el ruso Nicolai Egorovich Joukowsky (1847-1921) llevó a cabo importantes estudios vinculados con este fenómeno. Perfeccionó sus estudios en París y más tarde retornó a su patria para pasar el resto de su vida profesional en Moscú, donde fue profesor de mecánica en el Instituto Politécnico (1872) y posteriormente en la Universidad (1886).

Con antelación a los estudios y resultados a que llegó el profesor Joukowsky, Helmholtz, dentro de sus investigaciones en el campo de la Acústica había demostrado en 1848, que la celeridad o velocidad de propagación del sonido en el seno de un fluido compresible contenido en una tubería, era una función de la elasticidad del material de las paredes de esta última, y en ese mismo año D. J. Korteweg determinó la ecuación correspondiente.

En tales circunstancias, fue Joukowsky quien en 1897 demostró que cuando en una tubería se presenta un incremento de presión a causa de un cierre brusco de una válvula situada en el extremo aguas abajo, la celeridad de la onda de presión generada por tal maniobra, al igual que el sonido, también es una función de la elasticidad de las paredes.

En ese tiempo Joukowsky investigó y experimentó los efectos producidos por cierres de válvulas, cámaras de oscilación, válvulas de seguridad, etc., y en cada caso presentó un análisis matemático riguroso, incluyendo todos los elementos necesarios, de acuerdo con las diferentes condiciones.

Los estudios y experimentos realizados por este científico con relación al golpe de ariete, dieron como resultado las primeras ecuaciones básicas en su forma más correcta. Tales resultados fueron publicados en 1898 en las Memorias de la Academia Imperial de San Petersburgo y, posteriormente, la traducción del ruso al inglés fue hecha por la profesora O. Simin y fue editada

por la American Water Works Association (AWWA) en 1904. Las ecuaciones de Joukowsky son consideradas como la primera gran aportación a la teoría del golpe de ariete.

El sabio italiano Lorenzo Allievi (1856-1942) es quizá la figura más importante por sus estudios y aportaciones a la teoría del golpe de ariete. Profundizó en las investigaciones efectuadas por Joukowsky y en 1902, partiendo de los resultados obtenidos por el científico ruso, los cuales complementó con ideas propias, elaboró su primer trabajo importante sobre el golpe de ariete (1903) al cual tituló como *Teoría generale del moto perturbato del l'acqua nei tubi in pressione* (Teoría general del movimiento perturbado del agua en las tuberías bajo presión), que fue editado por la sociedad italiana de ingenieros y arquitectos, y que posteriormente fue traducido al alemán por Dubs y Bataillard y en 1909 fue publicado por la editorial Springer de Berlín. El mismo Allievi tradujo al francés su teoría, que fue difundida por la *Revue de Mécanique* (Diario de mecánica).

Su gran interés por mejorar cada vez más sus teorías acerca del fenómeno en cuestión, tuvo un gran resultado con la aparición en 1913 de su obra *Teoría del colpo d'ariete* (Teoría del golpe de ariete), editada en las actas del Colegio de Ingenieros y Arquitectos de Italia. Asimismo, es necesario destacar que su tratado de 1913 es considerado como la base para el desarrollo de los descubrimientos realizados posteriormente en este campo de relevante importancia en la hidráulica moderna, y que además existen otras publicaciones del mismo Allievi, todas ellas de gran utilidad. Lorenzo Allievi falleció en 1942.

En 1909, E. Braun aportó una de las mejores contribuciones al desarrollo de la teoría del golpe de ariete, al introducir el valor de la característica de la tubería (ϵ) en el trabajo que presentó en Stuttgart, bajo el título *Druckschwankungen in Rohrleitungen* (Las fluctuaciones de presión en las tuberías). En Berlín, en 1910, en la revista alemana *Die Turbine* (La Turbina), publicó trabajos similares a los expuestos por Allievi en su segundo tratado en 1912. Es por ello que en otro artículo publicado el 16 de agosto de 1934 titulado *Bermerkungen zur Theorie des Duckschwankungen in Rohrleitungen*, (Observaciones sobre la teoría de las fluctuaciones de presión en las tuberías) Braun manifiesta una prioridad sobre Allievi en la elaboración de la teoría del golpe de ariete. Sin embargo, el nombre de Allievi destaca preponderantemente en esta teoría, conocida como teoría de Allievi, porque la presentación de los análisis y desarrollos, en especial en su trabajo de 1913, es una obra ejemplar en elegancia y claridad matemática.

Por otra parte, A.H. Gibson, profesor de Ingeniería de la Universidad de Manchester, alumno y sucesor de Osborne Reynolds, considerado como uno de los pioneros en Gran Bretaña de la aplicación de la mecánica de fluidos a la Ingeniería, escribió numerosas publicaciones acerca de varias ramas de la Hidráulica y en 1925, en su libro *The Mechanical Properties of Fluids* (Las

propiedades mecánicas de los fluidos), proporciona una introducción excelente a la teoría del golpe de ariete.

Posteriormente surgieron los métodos gráficos, cuyo precursor fue el suizo Othmar Schnyder, que en 1929 desarrolló un método gráfico de solución del golpe de ariete en bombas, y en 1932 publicó un trabajo donde expone su método para resolver cualquier sistema de tuberías, especialmente para las que alimentan turbinas.

Es necesario citar también al célebre científico francés Louis Bergeron (1876-1948), quien fue profesor en la Escuela Central de París y que en 1933 trabajando independientemente de Schnyder, desarrolló el mismo método gráfico ideado por este último y que en publicaciones en francés de los años 1935 y 1936 llevan su nombre. En 1937, Bergeron demostró que el método gráfico de análisis que había desarrollado para resolver problemas de golpe de ariete podía ser aplicado a otros campos de la teoría de la elasticidad y también en problemas eléctricos. Después de su fallecimiento, en 1950 la editorial Dunod de París publicó su libro *Du coup de bélier en hydraulique au coup de foudre en électricité* (El martillo hidráulico para aplastar a la electricidad).

Otro colaborador en el desarrollo de la teoría en cuestión fue el profesor R. W. Angus de la Universidad de Toronto, en Canadá, que mejoró notablemente los métodos gráfico y analítico de solución, mediante valiosas aportaciones. Prueba de su interés por este fenómeno son varios de sus escritos, dentro de los cuales destacan *Water Hammer in Pipes, including those supplied by Centrifugal Pumps; Graphical Treatment y Graphical Analysis of Water Hammer Pressures in Compound and Branched Pipes* (Golpe de ariete en tuberías, incluidos los suministrados por bombas centrífugas, tratamiento gráfico y análisis gráfico de las presiones del golpe de ariete en tuberías compuestas y ramificadas), publicados en 1937 y 1939 respectivamente.

Cabe citar también al francés H. Favre, quien llevó a cabo investigaciones en tuberías con disminución gradual de diámetro y en 1938 publicó sus investigaciones bajo el nombre de *Theorie des coups de bélier dans les conduites á caractéristiques linéairement variables le long de l'axe* (Teoría del golpe de ariete en tuberías con características linealmente variables a lo largo de su eje). En *Cours de mécanique* (Cursos de mecánica), explica y desarrolla con detalle la integración de las ecuaciones del golpe de ariete elaborada por Riemann.

Entre 1940 y 1960 se publicaron un gran número de trabajos acerca del fenómeno en estudio, dentro de los que destacan los libros publicados por Parmakian, Rich y Jaeger.

En 1953, con la aparición de las computadoras, Gray introdujo el método de las características para poder llevar a cabo el análisis computarizado del golpe de ariete. En 1967 se publica el libro de

Streeter, V. L. y Wylie, E. B. bajo el título *Hydraulic Transients* (Transitorios hidráulicos), que presenta el análisis de los fenómenos transitorios en hidráulica mediante la aplicación del método anteriormente citado y el de la impedancia.

En 1979 M. Hanif Chaudrhy publica su libro *Applied Hidraulic Transients* (Transitorios hidráulicos aplicados), que contiene una exposición completa de los fenómenos transitorios en hidráulica.

En 1985 el Instituto de Ingeniería de la Universidad Nacional Autónoma de México, publica la obra *Diseño y Operación Hidráulicos de Conducciones de Agua a Presión*, que contiene una extensa y detallada exposición tanto de los fenómenos transitorios en los conductos a presión, como de los dispositivos que existen para su control.

Sin dejar de mencionar el trabajo desarrollado por el ingeniero Francisco de Asís Tavera Escobar, quien en su tesis profesional titulada *Teoría General del Golpe de Ariete y sus aplicaciones*, hace una brillante descripción del fenómeno y presenta una exposición detallada de los métodos gráficos propuestos por Schnyder y Bergeron.

Finalmente, existe un software llamado "Trans" desarrollado por el Instituto de Ingeniería el cual analiza el transitorio y permite establecer la adecuada ubicación de dispositivos de alivio de acuerdo a la magnitud del fenómeno transitorio.

CAPÍTULO 1. ANTECEDENTES

1.2 Práctica "Golpe de Ariete" en el laboratorio de hidráulica de la Facultad de Ingeniería, UNAM

Actualmente, la carrera de Ingeniería Civil, a través del Departamento de Ingeniería Hidráulica, imparte en el sexto semestre del plan de estudios, la asignatura *Hidráulica de Máquinas y Transitorios*. Los objetivos de este curso, se basan principalmente en que los alumnos puedan analizar el funcionamiento y condiciones de operación de las turbomáquinas para su selección en estaciones de bombeo y en centrales hidroeléctricas y dimensionar dichas instalaciones; así como calcular las variaciones de presión debidas al golpe de ariete y comprender el funcionamiento de los dispositivos que lo reducen.

Los temas de esta asignatura se resumen en los siguientes:

- 1. Conceptos generales
- 2. Teoría general de las turbomáquinas
- 3. Bombas
- 4. Turbinas
- 5. Flujo transitorio en conductos a presión

Específicamente el tema cinco se enfoca a describir y mencionar la importancia de los fenómenos transitorios, en particular el golpe de ariete, sus ecuaciones básicas y su solución, por medio de las ecuaciones de Allievi y el método de las características. También se estudian los dispositivos de alivio que reducen el efecto del golpe de ariete.

Para una mejor comprensión de los temas y sobre todo, para que los alumnos observen la aplicación práctica de los conceptos teóricos, el Departamento de Ingeniería Hidráulica a través del Laboratorio de Hidráulica imparte cuatro prácticas relacionadas con dicha asignatura.

En particular, la práctica número 3, titulada *Golpe de Ariete*, está diseñada para observar la variación de la carga de presión a lo largo de una tubería, provocada por el cierre y apertura de una válvula colocada en su extremo final. Asimismo, se analiza la sobrepresión generada en una tubería debida al cierre de la válvula, aplicando el método de las cadenas de Allievi.

Para llevar a cabo la práctica y comprender lo que sucede experimentalmente en el desarrollo de ésta, los alumnos deben poseer antecedentes teóricos, tales como el concepto de flujo transitorio en conductos a presión, así como la teoría del golpe de ariete, la celeridad de una onda de presión,

conocer la clasificación de maniobras para una válvula y conocer las ecuaciones de Allievi. Aunque estos conceptos fundamentales son adquiridos por los alumnos en el curso teórico, se les recomienda que, antes de comenzar la realización de la práctica, acudan a la bibliografía sugerida en el temario de la asignatura o bien la que se sugiere en el prontuario de la práctica.

Cada una de las prácticas del laboratorio tiene un prontuario de práctica, donde se especifica el objetivo de la práctica, los antecedentes teóricos que debe tener el alumno, el desarrollo de la práctica, un procedimiento para presentar la memoria de cálculo, bibliografía en la cual se pueden encontrar los conceptos necesarios, así como un cuestionario de cinco preguntas relacionadas, tanto con la comprensión de los conceptos teóricos, como con el desarrollo de la práctica.

La práctica *Golpe de Ariete*, utiliza como método de solución las ecuaciones de Allievi. Sin embargo, como se ha mencionado anteriormente, en el presente trabajo se aplicará el método de las características como método de solución y se realizará la propuesta de un prontuario para realizar la práctica *Golpe de Ariete* con dicho método.

2 CONCEPTOS FUNDAMENTALES DE LA TEORÍA DEL GOLPE DE ARIETE

En este capítulo se definen algunos conceptos fundamentales que posteriormente serán utilizados para el análisis del golpe de ariete en el caso experimental de estudio, tales como flujo permanente, flujo transitorio, se establecen las ecuaciones de continuidad y dinámica para un conducto, se describe el fenómeno de golpe de ariete en un conducto, se explica la teoría de la columna elástica, se muestran las ecuaciones diferenciales del golpe de ariete, así como la interpretación física de las ecuaciones integrales del golpe de ariete.

2.1 Flujo permanente

El flujo permanente es aquel en el que las características hidráulicas en una determinada sección del conducto permanecen constantes para cualquier instante y no varían con el tiempo, es decir

$$\frac{\partial}{\partial x}(p, V, Q) = 0 \tag{2.1}$$

donde

p es la presión manométrica en el conducto

V es la velocidad

Q es el gasto

2.2 Flujo transitorio

Se define como el flujo no permanente intermedio que tiene lugar entre el permanente inicial y el final en un conducto. Un ejemplo particularmente importante de este tipo de flujo es el fenómeno del golpe de ariete.

2.3 Ecuación de continuidad para un conducto

2.3.1 Principio de conservación de la masa

Este principio establece que de la totalidad de la masa que en la unidad de tiempo entra a un volumen finito dentro del flujo, una parte queda almacenada dentro del mismo y el resto sale del volumen. Lo anterior, también puede expresarse como

2.3.2 Ecuación de continuidad

En la figura 2.1 se muestra un volumen elemental limitado por la superficie interna del conducto 3, y por las secciones transversales 1 y 2 normales a la coordenada curvilínea x, que a su vez coincide con el eje del mismo.

La cantidad neta de masa que atraviesa la superficie A de frontera del volumen en estudio es

$$\left[\rho VA + \frac{1}{2}\frac{\partial}{\partial x}(\rho VA)dx\right] - \left[\rho VA - \frac{1}{2}\frac{\partial}{\partial x}(\rho VA)dx\right] = \frac{\partial}{\partial x}(\rho VA)dx$$

donde

A es la superficie de frontera del volumen,

Ves la velocidad,

 ρ es la densidad del agua.

y la rapidez de variación de la masa dentro del mismo

$$\frac{\partial}{\partial x}(\rho A dx)$$

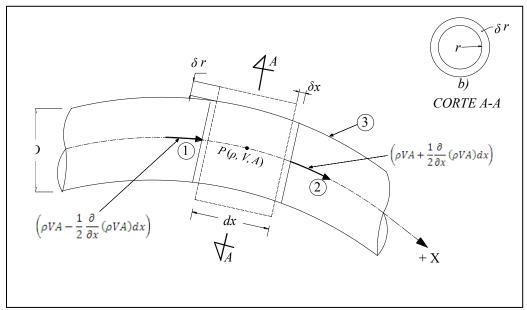


Figura 2.1. Volumen elemental limitado.

En consecuencia, de acuerdo con el principio de conservación de la masa, se puede escribir

$$\frac{\partial}{\partial x}(\rho VA)dx + \frac{\partial}{\partial t}(\rho Adx) = 0 \tag{2.2}$$

Sin embargo, si se acepta que la variación longitudinal del volumen elemental es despreciable $(\delta x \approx 0)$, la ecuación (2.2) se reduce a

$$\frac{\partial}{\partial x}(\rho VA) + \frac{\partial}{\partial t}(\rho A) = 0 \tag{2.2 a}$$

Al desarrollar las derivadas parciales de la ecuación anterior y ordenar términos, se obtiene

$$\rho A \frac{\partial V}{\partial x} + \rho \left(V \frac{\partial A}{\partial x} + \frac{\partial A}{\partial t} \right) + A \left(\frac{\partial \rho}{\partial x} + \frac{\partial \rho}{\partial t} \right) = 0$$
 (2.2 b)

Así, también las derivadas totales de A y ρ se pueden escribir como

$$\frac{dA}{dt} = \frac{\partial A}{\partial x}\frac{dx}{dt} + \frac{\partial A}{\partial t} = V\frac{\partial A}{\partial x} + \frac{\partial A}{\partial t}$$

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial x}\frac{dx}{dt} + \frac{\partial\rho}{\partial t} = V\frac{\partial\rho}{\partial x} + \frac{\partial\rho}{\partial t}$$

Sustituyendo las expresiones anteriores en la ecuación (2.2b) y dividiendo entre ρA resulta

$$\frac{\partial V}{\partial x} + \frac{1}{A}\frac{dA}{dt} + \frac{1}{\rho}\frac{d\rho}{dt} = 0 \tag{2.3}$$

que es la ecuación de continuidad para un conducto con flujo no uniforme, no permanente y compresible.

2.4 Ecuación dinámica para un conducto

Para obtener la ecuación dinámica de un conducto sólo es necesario establecer el equilibrio de las fuerzas que actúan en la dirección tangencial a la coordenada curvilínea x, sobre la superficie de frontera que limita el volumen elemental que se muestra en la figura 2.2.

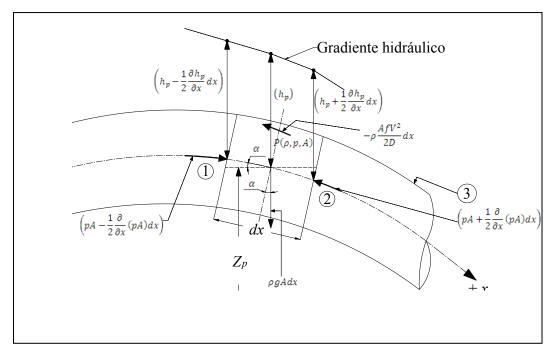


Figura 2.2.

Estas fuerzas aplicadas en la dirección + x, son las siguientes:

a) La fuerza de superficie resultante de las que actúan en las secciones 1 y 2 debida a un gradiente de presión

$$\left[pA - \frac{1}{2}\frac{\partial}{\partial x}(pA)dx\right] - \left[pA + \frac{1}{2}\frac{\partial}{\partial x}(pA)dx\right] = -\frac{\partial}{\partial x}(pA)dx \approx -A\frac{\partial p}{\partial x}dx \tag{2.4}$$

b) La fuerza de superficie resultante debida a la resistencia al movimiento, aplicada al volumen elemental y calculada a partir de la fórmula de Darcy-Weisbach

$$-\rho A \frac{fV^2}{2D} dx \tag{2.5}$$

donde

f es el factor de fricción

 La componente tangencial del peso propio del volumen, aplicada en el centro de gravedad del mismo

$$\rho g A dx \sin \alpha = -\rho g A \frac{\partial Z_p}{\partial x} dx \tag{2.6}$$

$$\sin \alpha = -\frac{\partial Z_p}{\partial x}$$

donde

 Z_p es la carga de posición del conducto

De acuerdo con la segunda ley de Newton, la suma de estas fuerzas debe ser igual a la masa del elemento ρAdx multiplicada por la componente tangencial de la aceleración, lo cual permite escribir

$$A\frac{\partial p}{\partial x}dx + \rho A\frac{fV^2}{2D}dx + \rho gA\frac{\partial Z_p}{\partial x}dx = -\rho A\left[\frac{\partial}{\partial x}\frac{(V^2)}{2} + \frac{\partial V}{\partial t}\right]dx \tag{2.7}$$

Si se recuerda que $p=\rho gh_p$ y se divide la ecuación anterior entre $\rho gAdx$, después de ordenar términos resulta

$$\frac{\partial}{\partial x} \left(h_p + \frac{V^2}{2g} + Z_p \right) + \frac{h_p}{\rho} \frac{\partial \rho}{\partial x} + \frac{1}{g} \frac{\partial V}{\partial t} + \frac{fV^2}{2gD} = 0$$
 (2.8)

Para una determinada sección del conducto el valor $H = h_p + \frac{V^2}{2g} + Z_p$ representa la energía total por unidad de peso o carga total que tiene el líquido, medida con relación a un plano horizontal de referencia, y el término V^2 puede ser definido como V|V| para tomar en cuenta la inversión en la dirección del flujo cuando éste es transitorio. De acuerdo con esto, la ecuación (2.8) adquiere la forma

$$\frac{\partial H}{\partial x} + \frac{h_p}{\rho} \frac{\partial \rho}{\partial x} + \frac{1}{g} \frac{\partial V}{\partial t} + \frac{fV|V|}{2gD} = 0$$
 (2.9)

que es la ecuación dinámica para un conducto con flujo no uniforme, no permanente y compresible.

2.5 Descripción del fenómeno en un conducto por gravedad

Con el fin de poder describir el fenómeno del golpe de ariete en un conducto por gravedad, por facilidad, se puede considerar un conducto con sección transversal y espesor constantes, con eje horizontal y longitud L tal como el mostrado en la figura 2.3, donde se tiene un flujo permanente cuando t=0, con una válvula o compuerta (órgano de control) situada en el extremo aguas abajo que permite regular la magnitud del gasto y que es alimentado por un depósito que contiene una gran masa de agua cuya superficie libre tiene un nivel constante.

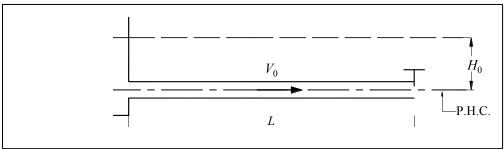


Figura 2.3. Conducto con sección transversal y espesor constantes

Suponiendo que se lleva a cabo una maniobra de cierre instantáneo total en el órgano de control, la energía cinética del agua en esta sección del conducto se transformará en energía potencial, que a su vez, dará origen a un incremento en la carga piezométrica original, llevándose a cabo un trabajo elástico de deformación en las paredes del conducto y en el agua. Esta conversión de energía constituye lo que se conoce como onda de presión positiva o directa que se propaga hacia aguas arriba con velocidad o celeridad *a*.

Esta onda modifica considerablemente las condiciones originales del conducto aguas arriba del frente de la misma, ocasionando una deformación en las paredes del mismo, el agua al comprimirse aumenta su densidad y la velocidad en esta zona se reduce a cero. Aguas abajo del frente de onda, el conducto, el agua, la carga piezométrica y la velocidad del escurrimiento, permanecen en su estado original (figura 2.4*a*).

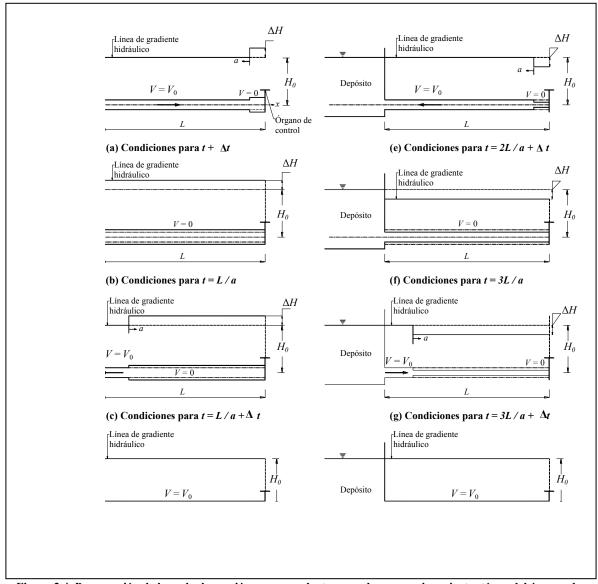


Figura 2.4. Propagación de la onda de presión en un conducto causada por un cierre instantáneo del órgano de control.

Cuando el frente de onda llega al depósito en un tiempo $t = \frac{L}{a}$, la totalidad del conducto se encuentra deformado (figura 2.4b), la velocidad de flujo es igual a cero, la carga piezométrica es mayor que la original y el agua se encuentra comprimida.

Como el nivel del agua en el depósito permanece constante, en esta zona no pueden presentarse modificaciones de ninguna especie, permaneciendo la misma carga; entonces el depósito actúa como una pantalla que refleja totalmente la onda de presión y en este instante se produce la traslación de una onda negativa hacia el órgano de control (figura 2.4c), ocasionando que aguas abajo del frente, el agua fluya hacia el depósito con una velocidad V_0 idéntica en magnitud a la inicial, dando lugar a que el conducto y el agua adquieran sus propiedades iniciales en esta región, y

cuando la onda llega al órgano en el instante $t = \frac{2L}{a}$, todo el conducto y el agua contenida por éste se encuentran en su estado original, pero con escurrimiento del órgano hacia el depósito (figura 2.4d).

A esta primera serie de eventos que consisten en la formación de un frente de onda positivo que viaja del órgano de control hacia el depósito y un frente de onda negativo que viaja de este último hacia el primero, se le conoce como fase directa del golpe de ariete.

Ahora bien, como consecuencia del flujo de agua hacia el depósito, se origina una caída de carga y una contracción de las paredes del conducto, que adopta dimensiones inferiores a las del estado original, y una reducción a cero de la velocidad en la zona aguas abajo del frente de onda negativa que viaja hacia el depósito (figura 2.4e), al que llega en el instante $t = \frac{3L}{a}$ cuando el conducto se encuentra contraído en su totalidad, la velocidad del agua es nula y la densidad de la misma es mayor que la original (figura 2.4f).

A partir del instante $t = \frac{3L}{a}$, el depósito funciona nuevamente como una pantalla y refleja una onda positiva, volviendo el conducto a su estado original aguas arriba del frente de ésta, con un escurrimiento hacia el órgano y con velocidad V_0 , de tal manera que en el instante $t = \frac{4L}{a}$ el conducto vuelve a tener las características iniciales en toda su longitud (figura 2.4h).

A esta segunda serie de eventos se le conoce como fase inversa del golpe de ariete que, al igual que la fase directa, tiene una duración $t = \frac{2L}{a}$, a la que se conoce como periodo del conducto T.

Finalmente, es necesario señalar que si no existiese el efecto de la fricción en el conducto que transforma la energía en forma de calor, el ciclo de eventos antes descrito se repetiría indefinidamente dando lugar a una variación de la carga piezométrica con respecto al tiempo en el órgano de control, tal como se indica en la figura 2.5. Sin embargo, dado que prácticamente todos los conductos son hidráulicamente rugosos, la variación de la carga corresponde a la mostrada en la figura 2.6.

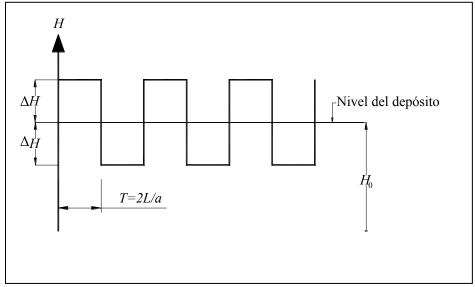


Figura 2.5. Variación de la carga piezométrica en el órgano de control sin considerar pérdidas por fricción.

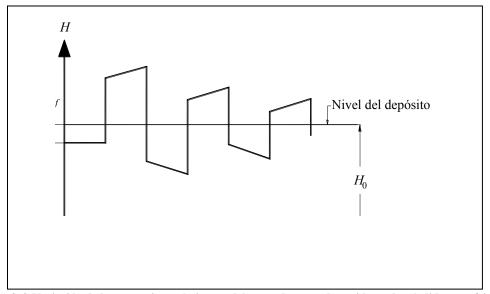


Figura 2.6. Variación de la carga piezométrica en el órgano de control considerando pérdidas por fricción.

2.5.1 Celeridad de onda

La celeridad de las ondas de presión en un conducto está definida por la ecuación (2.10), en la cual puede observarse que su valor depende tanto de las propiedades elásticas del conducto y el fluido, como de la geometría del primero.

$$a = \frac{1}{\sqrt{\rho \left(\frac{1}{E_{\nu}} + \frac{D}{eE_{t}}\right)}} \tag{2.10}$$

donde

a es la celeridad de la onda de presión

D es el diámetro del conducto

 ρ es la densidad del fluido

e es el espesor de las paredes del conducto

 E_{ν} es el módulo de elasticidad volumétrico del fluido

 E_t es el módulo de elasticidad del material del conducto

Cuando el fluido es agua dulce y en la mencionada ecuación se aceptan valores prácticos de $E_v = 2.18X \, 10^9 \, Pa$ y $\rho = 1000 \, \frac{Kg}{m^3}$ se obtiene:

$$a = \frac{1,482}{\sqrt{1 + \frac{E_v D}{E_t e}}}$$
 (2.11)

La ecuación anterior permite calcular la magnitud de la celeridad de la onda de presión en un conducto de pared delgada, cuyo espesor es menor o igual a la décima parte del diámetro, es decir, si $\frac{e}{D} \le 0.10$. En la tabla 2.1 se indican los valores del módulo de elasticidad E_t para algunos materiales usados en conductos, y en la tabla 2.2 se proporcionan valores del módulo de elasticidad volumétrico E_v y la densidad ρ para algunos líquidos.

Tabla 2.1. Valores del módulo de elasticidad E_t para algunos materiales

Material	E_t (Pa)
Acero	2.06 X 10 ¹¹
Asbesto cemento	2.40 X 10 ¹⁰
P.V.C.	1.10 X 10 ⁹
Fierro fundido	9.11 X 10 ¹⁰
Cobre	1.19 X 10 ¹¹
Bronce	1.03 X 10 ¹¹
Latón	1.03 X 10 ¹¹
Zinc	3.63 X 10 ¹⁰
Plomo	1.37 X 10 ¹⁰
Estaño	1.27 X 10 ¹¹
Aluminio	7.05 X 10 ¹⁰
Concreto simple	1.23 X 10 ¹⁰
Madera	6.86 X 10 ⁹
Hule	3.43 X 10 ⁹
Vidrio	6.86 X 10 ¹⁰

Tabla 2.2. Valores comúnmente usados del módulo de elasticidad volumétrico E_{ν} y de la densidad ρ para algunos líquidos

Líquido	Ev (Pa)	ρ (Kg/m ³)	Temperatura (°C)
Agua dulce	2.18 X 10 ⁹	1000	20
Agua salada	2.33 X 10 ⁹	1025	15
Petróleo	2.06 X 10 ⁹	850	15
Gasolina	1.39 X 10 ⁹	680	15

Por otro lado, es necesario señalar que algunos autores sugieren la aplicación de la siguiente ecuación para el cálculo de la celeridad de la onda

$$a = \sqrt{\frac{E_v/\rho}{1 + \frac{E_v}{E_t} \frac{D}{e} C_1}}$$
 (2.11 a)

donde C_I es un parámetro que depende de la relación de Poisson μ del material con que está hecho el conducto y de sus condiciones de apoyo.

Sin embargo, puede aceptarse un valor práctico de C_I igual a la unidad para la gran mayoría de los conductos, con lo que la ecuación (2.11a) se reduce a la (2.11).

Para algunos de los materiales más comunes en conductos de pared delgada, a partir de esta última ecuación, se puede obtener la siguiente expresión

$$a = \frac{1,482}{\sqrt{1 + K_a \frac{D}{e}}} \tag{2.12}$$

donde K_a vale 0.0106 para conductos de acero, 0.091 para conductos de asbesto-cemento y 1.993 para conductos de P.V.C. Obsérvese que si el valor de K_a fuese igual a cero, para un material con módulo de elasticidad infinito, el valor máximo de la celeridad sería de 1,482 m/s, que es la velocidad con la cual se propaga el sonido en el agua a una temperatura de 20°C.

Tratándose de conductos de pared gruesa (figura 2.7), si se desprecia el efecto de la relación de Poisson μ , la celeridad de onda se define como

$$a = \sqrt{\frac{E_v/\rho}{1 + \frac{2E_v}{E_t} \left[\frac{(R+e)^2 + R^2}{(R+e)^2 - R^2} \right]}}$$
 (2.13)

donde R es el radio interior del conducto.

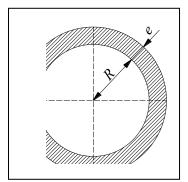


Figura 2.7. Tubo de pared gruesa.

Para conductos de concreto reforzado existe alguna incertidumbre debido a la heterogeneidad del material; sin embargo, para valuar la celeridad de onda se recurre a un conducto de acero equivalente con un espesor virtual e_v dado por la siguiente ecuación

$$e_v = e_a \left(1 + \frac{E_c}{E_a} \frac{e_c}{e_a} \right) \tag{2.14}$$

Siendo e_c el espesor del tubo de concreto, e_a el de una placa continua de acero equivalente al refuerzo, E_c y E_a los módulos de elasticidad del concreto y acero de refuerzo respectivamente.

2.5.2. Leyes para maniobras de cierre

Para obtener los valores de la carga piezométrica y la velocidad en el órgano de control cuando éste se somete a una maniobra de cierre o apertura, es necesario conocer la ley con la cual se efectúa dicha maniobra; para tal fin, a continuación se presentan las ecuaciones que pueden utilizarse para los casos más comunes que corresponden a condiciones iniciales de apertura o cierre total.

Cierre uniforme o lineal

Para una maniobra de cierre uniforme o lineal se tiene la siguiente ecuación

$$\eta_i = 1 - \left(1 - \eta_f\right) \frac{i}{\theta}, \quad 0 \le i \le \theta$$
(2.15)

$$\eta_i = \eta_f, \qquad i \ge \theta$$
(2.15 a)

donde $\eta_f > 0$ para un cierre parcial, e igual a cero si éste es total.

donde

 θ es la relación entre el tiempo de maniobra to y el periodo de la onda de presión T.

 η_i es la ley lineal de cierre lento al inicio de la maniobra.

 η_f es la ley de cierre lento al final de la maniobra.

Cierre no uniforme

Cuando la ley de cierre no es uniforme, se tendrá una variación de η con respecto al tiempo tal como la mostrada en la figura 2.8; en este caso resulta conveniente hacer una gráfica semejante a la que se muestra de acuerdo con las características de la maniobra e interpolar de ésta el valor deseado de η , o bien, si se dispone de una computadora se puede simular la maniobra mediante líneas rectas como las que se muestran en la misma figura.

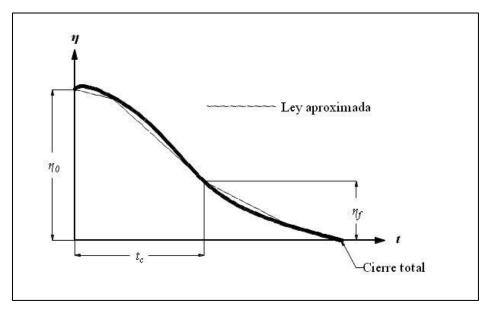


Figura 2.8. Ley para maniobra de cierre no uniforme.

2.6 Teoría de la columna elástica

Esta teoría se acerca más al comportamiento real del fenómeno y ha sido comprobada en laboratorio. Las ecuaciones de continuidad y dinámica en este caso están sujetas a las siguientes hipótesis simplificatorias:

- 1. El conducto permanece lleno de agua todo el tiempo y la presión mínima en cualquier sección siempre es mayor que la de vaporización del fluido.
- 2. Las distribuciones de velocidad y presión en cualquier sección del conducto son uniformes.
- 3. Las ecuaciones para el cálculo de pérdidas de carga cuando el flujo es permanente, también son válidas cuando éste es transitorio.

- 4. La pared del conducto y el fluido se comportan de una manera elástica lineal y tienen pequeñas deformaciones.
- 5. El incremento de la presión con respecto a la coordenada curvilínea *x* resulta pequeño comparado con el incremento de la misma con respecto al tiempo.

$$\frac{dp}{dt} = \frac{\partial p}{\partial t}$$

6. El incremento de la carga de velocidad y la densidad del fluido resulta pequeño comparado con el de la carga piezométrica.

$$\frac{\partial H_T}{\partial x} + \frac{h_p}{\rho} \frac{\partial \rho}{\partial x} \approx \frac{\partial H}{\partial x}, \qquad \frac{\partial p}{\partial t} \approx \rho g \frac{\partial H}{\partial t}$$

2.6.1 Ecuación de continuidad

De acuerdo con la hipótesis 5

$$\frac{1}{\rho} \frac{d\rho}{dt} = \frac{1}{E_{\nu}} \frac{\partial p}{\partial t} \tag{2.16}$$

Por otra parte, de acuerdo con la fig. 2.1 el incremento de la sección transversal del conducto se puede expresar como

$$dA = 2\pi r \delta r = 2A \frac{\delta r}{r} \tag{2.17}$$

Según la ley de Hooke para sólidos que tienen un comportamiento elástico lineal se tiene que

$$d\sigma = \left(\frac{\delta r}{r}\right) E_t \tag{2.18}$$

Sustituyendo la ecuación (2.12) en la (2.11), resulta

$$dA = \frac{2A}{E_t} d\sigma \tag{2.19}$$

Observando el diagrama de cuerpo libre de las presiones sobre la pared de la tubería mostrado en la figura 2.9 se deduce que

$$\sigma = \frac{pr}{e},$$
 $\Delta \sigma = \frac{1}{e}(p\Delta r + r\Delta p)$

Como

$$p\Delta r \ll r\Delta p,$$
 $\Delta \sigma = \frac{r\Delta p}{e}$

O bien

$$d\sigma = -\frac{r}{\rho}dp\tag{2.20}$$

Esta última ecuación, al ser sustituida en la ecuación (2.13) da como resultado

$$dA = \frac{AD}{eE_t}dp$$

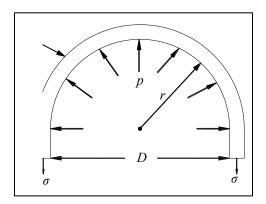


Figura 2.9. Diagrama de cuerpo libre de las presiones sobre la pared de la tubería

O bien, según la hipótesis 5

$$\frac{1}{A}\frac{dA}{dt} = \frac{D}{eE_t}\frac{\partial p}{\partial t} \tag{2.21}$$

Sustituyendo las ecuaciones (2.16) y (2.21) en la (2.3), y tomando en cuenta la hipótesis 6, esta última ecuación queda como

$$\frac{\partial V}{\partial x} + \rho g \left(\frac{1}{E_V} + \frac{D}{eE_t} \right) \frac{\partial H}{\partial t} = 0$$
 (2.22)

Recordando que Q=VA y ordenando términos, la ecuación anterior se puede escribir como

$$\frac{\partial H}{\partial t} + \frac{a^2}{gA} \frac{\partial Q}{\partial x} = 0 \tag{2.23}$$

donde el parámetro a se define como la celeridad de la onda de presión en el conducto y su valor es

$$a = \frac{1}{\sqrt{\rho \left(\frac{1}{E_{y}} + \frac{D}{eE_{t}}\right)}}$$
 (2.24)

2.6.2 Ecuación dinámica

La ecuación dinámica para esta teoría puede deducirse fácilmente de la ecuación (2.9) si se considera la hipótesis 6, la definición de carga piezométrica H y la relación Q=VA, las cuales después de ordenar términos permiten escribir

$$\frac{\partial Q}{\partial t} + gA \frac{\partial H}{\partial x} + \frac{fQ|Q|}{2DA} = 0 \tag{2.25}$$

Finalmente, es necesario destacar que para el cálculo de las pérdidas por fricción en el conducto, se ha utilizado la ecuación de Darcy-Weisbach; no obstante, es posible utilizar cualquier expresión de la forma $K_1 Q |Q|^m D^b$ con valores de K_1 , m y b que dependen de la ecuación utilizada; así, para la fórmula de Manning, que en la práctica también se aplica a los conductos a presión, $K_1 = 8.08 \text{ gn}^2$, m = 1 y b = -10/3, siendo n el coeficiente de rugosidad.

2.7 Ecuaciones diferenciales del golpe de ariete

Con base en las ecuaciones de continuidad y dinámica establecidas para la teoría de la columna elástica, despreciando el efecto de la fricción y haciendo Q=VA, las ecuaciones (2.23) y (2.25) se pueden escribir como

$$\frac{\partial H}{\partial t} + \frac{a^2}{g} \frac{\partial V}{\partial x} = 0 \tag{2.26}$$

y

$$\frac{\partial V}{\partial t} + g \frac{\partial H}{\partial x} = 0 \tag{2.27}$$

que se conocen como las ecuaciones de continuidad y dinámica del golpe de ariete. Si se recuerda que

$$\frac{\partial^2 V}{\partial x \partial t} = \frac{\partial^2 V}{\partial t \partial x} \qquad y \qquad \frac{\partial^2 H}{\partial x \partial t} = \frac{\partial^2 H}{\partial t \partial x}$$

entonces las ecuaciones 2.26 y 2.27 pueden escribirse como

$$\frac{\partial^2 H}{\partial t^2} - a^2 \frac{\partial^2 H}{\partial x^2} = 0 {(2.26 a)}$$

y

$$\frac{\partial^2 V}{\partial t^2} - a^2 \frac{\partial^2 V}{\partial x^2} = 0 {(2.27 a)}$$

Para el caso particular de un conducto con eje horizontal y la carga piezométrica H valuada con respecto a un plano horizontal de comparación que contiene a dicho eje, ésta resultará igual a la carga de presión h_p , con lo cual la ecuación (2.26a) se simplifica como

$$\frac{\partial^2 h_p}{\partial t^2} - a^2 \frac{\partial^2 h_p}{\partial x^2} = 0 {(2.28)}$$

que es la ecuación diferencial utilizada por Allievi para conductos con eje horizontal y sección transversal constante.

Sin embargo, con el fin de obtener el valor de la carga piezométrica H en cualquier sección del conducto, independientemente del perfil de su eje, a continuación se analiza la solución e interpretación física de las ecuaciones (2.26a y 2.27a), donde la carga de presión h_p se obtiene con sólo restar la carga de posición Z_p de la piezométrica correspondiente.

Estas ecuaciones tienen la forma de la ecuación denominada de D'Alambert, cuya solución simultánea general fue obtenida por Riemann y para un sistema tal como el mostrado en la figura 2.10 resulta

$$H = H_0 + F\left(t + \frac{x}{a}\right) + f\left(t - \frac{x}{a}\right) \tag{2.29}$$

$$V = V_0 - \frac{g}{a} \left[F\left(t + \frac{x}{a}\right) - f\left(t - \frac{x}{a}\right) \right]$$

$$para \ t \ge \frac{x}{a}$$
(2.29 a)

Las expresiones anteriores permiten determinar la carga piezométrica y la velocidad en cualquier sección de un conducto durante el flujo transitorio en función de la coordenada curvilínea x con origen en el depósito y el tiempo t.

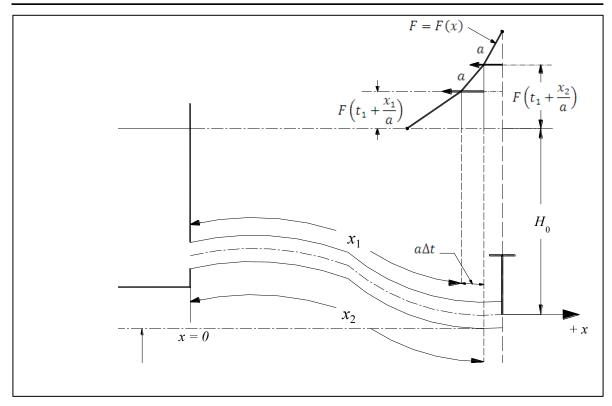


Figura 2.10.

2.8 Interpretación física de las ecuaciones integrales del golpe de ariete

Con el fin de ayudar a la mejor comprensión del fenómeno en estudio y deducir ecuaciones de tipo práctico que permitan la cuantificación de sus efectos, resulta conveniente interpretar el significado de las funciones $F\left(t+\frac{x}{a}\right)$ y $f\left(t-\frac{x}{a}\right)$.

Considerando que por alguna razón pudiera justificarse que la función $f\left(t-\frac{x}{a}\right)$ fuese nula, es posible encontrar el efecto que la existencia de $F\left(t+\frac{x}{a}\right)$ traería consigo. De esta manera las ecuaciones (2.29) y (2.29a) tomarían la forma

$$H = H_0 + F\left(t + \frac{x}{a}\right) \tag{2.30}$$

$$V = V_0 - \frac{g}{a}F\left(t + \frac{x}{a}\right) \tag{2.30 a}$$

Si se despeja $F\left(t+\frac{x}{a}\right)$ en la ecuación (2.30a) y se sustituye su valor en la (2.30) resulta

$$H = H_0 + \frac{a}{g}(V_0 - V)$$
 (2.30 b)

Al realizar una maniobra de cierre en el órgano de control de la figura 2.10 cuando t=0, se tendrá que la velocidad para el flujo permanente inicial V_0 será siempre mayor que la velocidad para el flujo transitorio V, es decir, $V_0 - V > 0$ y por lo tanto $H > H_0$.

Ahora bien, para un observador que partiera del órgano de control cuando $t=t_0$ y viajara a lo largo del conducto en la dirección -x con una velocidad -a, en un instante t_1 se encontraría en la sección $x_1=L-a(t_1-t_0)$, donde el valor de la función $F\left(t+\frac{x}{a}\right)$ sería (figura 2.10)

$$F\left(t_1 + \frac{x_1}{a}\right) = F\left(\frac{L}{a} + t_0\right) = cte.$$

y para otro observador que partiera cuando $t=t_0+\Delta t$ y viajara en las mismas condiciones, en el mismo instante t_1 se encontraría en la sección $x_2=L-a(t_1-t_0-\Delta t)$ resultando entonces que

$$F\left(t_1 + \frac{x_2}{a}\right) = F\left(\frac{L}{a} + t_0 + \Delta t\right) = cte.$$

De acuerdo con lo anterior se deduce que $F\left(t+\frac{x}{a}\right)$ representa una onda de carga positiva que se propaga con dirección al depósito, de tal manera que para un observador que viaja en la misma dirección con velocidad -a, su magnitud permanecerá constante.

Una consideración similar con $F\left(t+\frac{x}{a}\right)=0$, aceptando que solo existiera $f\left(t-\frac{x}{a}\right)$, conduce a la conclusión de que esta última función representa una onda de carga negativa que se propaga del depósito hacia el órgano de control, con un valor constante para un observador que viaja en la dirección +x con velocidad a.

Por otra parte, como la magnitud de la carga piezométrica H_0 permanece constante en el depósito, de la ecuación (2.29) se obtiene para x = 0 y el instante t

$$f(t) = -F(t) \tag{2.31}$$

Además, si se considera una onda directa F que parte del órgano de control en el instante t, llega al depósito cuando $t = t + \frac{L}{a}$, y se refleja dando origen a una onda f con la misma magnitud pero con signo opuesto que viaja hacia el órgano al que llega en el instante $t = t + \frac{2L}{a}$, puede afirmarse que en la sección del conducto correspondiente a este último resulta válida la siguiente relación:

$$f(t) = -F\left(t - \frac{2L}{a}\right) \tag{2.32}$$

Es decir, la magnitud de la onda f en el órgano de control para el instante t es igual a la de la onda F con signo opuesto que partió del mismo con dirección al depósito $\frac{2L}{a}$ segundos antes.

2.9. MÉTODOS DE SOLUCIÓN

2.9.1 Método de las características

2.9.1.1. Ecuaciones características

La base del método de las características consiste en transformar las ecuaciones diferenciales parciales de continuidad (ecuación 2.23), y dinámica (ecuación 2.25), en ecuaciones diferenciales ordinarias y posteriormente resolverlas mediante un esquema explícito de diferencias finitas. Las dos ecuaciones mencionadas se pueden escribir como

$$L_1 = \frac{\partial Q}{\partial t} + gA \frac{\partial H}{\partial x} + \frac{fQ|Q|}{2DA} = 0$$
 (2.33)

$$L_2 = \frac{\partial H}{\partial t} + \frac{a^2}{qA} \frac{\partial Q}{\partial x} = 0 \tag{2.34}$$

Si se lleva a cabo una combinación lineal de las ecuaciones (2.33) y (2.34), después de multiplicar por gA ambos miembros de la ecuación (2.34) se tendrá que $L = L_1 + \lambda L_2$

Lo que da como resultado

$$\left(\frac{\partial Q}{\partial t} + \lambda a^2 \frac{\partial Q}{\partial x}\right) + \lambda g A \left(\frac{\partial H}{\partial t} + \frac{1}{\lambda} \frac{\partial H}{\partial x}\right) + \frac{f Q |Q|}{2DA} = 0 \tag{2.35}$$

Si las funciones H=H(x, t) y Q=Q(x, t) son soluciones de las ecuaciones (2.33) y (2.34), las derivadas totales de estas funciones son

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} + \frac{\partial H}{\partial x} \frac{dx}{dt}$$
 (2.36)

$$\frac{dQ}{dt} = \frac{\partial Q}{\partial t} + \frac{\partial Q}{\partial x} \frac{dx}{dt}$$
 (2.37)

Igualando el primer término de la ecuación (2.35) con la (2.37) y el segundo con la (2.36), se obtiene

$$\frac{\partial Q}{\partial t} + \lambda a^2 \frac{\partial Q}{\partial x} = \frac{\partial Q}{\partial t} + \frac{\partial Q}{\partial x} \frac{dx}{dt} = \frac{dQ}{dt}$$
 (2.38)

$$\frac{\partial H}{\partial t} + \frac{1}{\lambda} \frac{\partial H}{\partial x} = \frac{\partial H}{\partial t} + \frac{\partial H}{\partial x} \frac{dx}{dt} = \frac{dH}{dt}$$
 (2.39)

de estas dos últimas ecuaciones se deduce que

$$\frac{1}{\lambda} = \frac{dx}{dt} = \lambda a^2 \tag{2.40}$$

$$\lambda = \pm \frac{1}{a} \tag{2.41}$$

$$\frac{dx}{dt} = \pm a \tag{2.42}$$

Si se sustituyen las ecuaciones (2.38), (2.39), (2.41) y (2.42) en la ecuación (2.35), resulta

$$\frac{dQ}{dt} + \frac{gA}{a}\frac{dH}{dt} + \frac{fQ|Q|}{2DA} = 0 {(2.43)}$$

para

$$\frac{dx}{dt} = a \tag{2.44}$$

y

$$\frac{dQ}{dt} - \frac{gA}{a}\frac{dH}{dt} + \frac{fQ|Q|}{2DA} = 0 {(2.45)}$$

para

$$\frac{dx}{dt} = -a \tag{2.46}$$

Como puede verse, las ecuaciones diferenciales parciales (2.33) y (2.34) se han transformado en dos ecuaciones diferenciales ordinarias (2.43) y (2.45), que tienen como variable dependiente al tiempo t, y que resultan válidas siempre que sean satisfechas las ecuaciones (2.44) y (2.46)

respectivamente. Matemáticamente, las dos últimas ecuaciones representan en el plano x-t dos líneas rectas con pendiente igual a $\frac{1}{a}$ y $-\frac{1}{a}$ (figura 2.11), y se conocen como líneas características positiva $m = \frac{1}{a}$ y negativa $m = -\frac{1}{a}$, a lo largo de las cuales se cumplen las ecuaciones (2.43) y (2.45), denominadas como ecuaciones de compatibilidad.

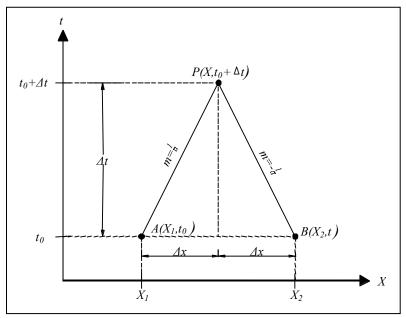


Figura 2.11. Líneas características en el plano x-t.

Físicamente representan la trayectoria recorrida por una perturbación iniciada en cualquier sección de una tubería; así, por ejemplo, si se considera un conducto por gravedad, como el que se muestra en la figura 2.12, cuyo órgano de control se somete a una determinada maniobra de cierre o apertura cuando $t=t_0$, en dicho instante se originará una onda de presión que partiendo del órgano de control, viaja hacia el depósito situado en el extremo aguas arriba, al que llegará en el instante $t=t_0+T/2$.

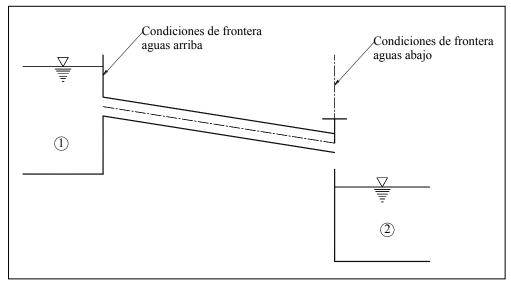


Figura 2.12. Conducto por gravedad.

Si la trayectoria de la onda mencionada se grafica en el plano x-t, se obtiene la representación que aparece en la figura 2.13, en esta figura se puede observar que las condiciones en la región I dependen solo de las del flujo permanente inicial, puesto que las correspondientes a las fronteras situadas en los extremos aguas arriba y aguas abajo no se modifican al permanecer constante el nivel de la superficie libre del agua en los depósitos 1 y 2 mientras que en la región II las condiciones dependen de las impuestas por el órgano de control. De acuerdo con esto puede afirmarse que las líneas características CE y DE dividen al plano x-t en dos regiones, para cada una de las cuales existe una solución.

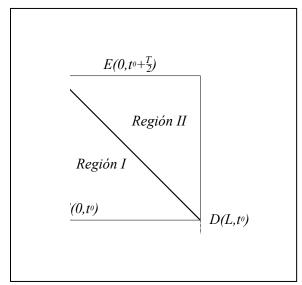


Figura 2.13. Conducto por gravedad con excitación en la frontera aguas abajo.

2.9.1.2. Solución de ecuaciones características y de compatibilidad

Con relación a la figura 2.11, si las condiciones del sistema hidráulico cuando $t=t_0$ son las del flujo permanente inicial, y se conocen para cualquier sección x del conducto, tal que $0 \le x \le L$, el cálculo de las condiciones para el instante $t_0 + \Delta T$ puede efectuarse mediante un esquema de diferencias finitas de primer orden, mismo que siguiendo la línea característica positiva AP permite escribir

$$dQ = Q_P - Q_A \tag{2.47}$$

y

$$dH = H_P - H_A \tag{2.48}$$

y al seguir la línea característica negativa BP resulta:

$$dQ = Q_P - Q_B \tag{2.49}$$

$$dH = H_P - H_R \tag{2.50}$$

Sustituyendo las ecuaciones (2.47) y (2.48) en la ecuación (2.43) y las ecuaciones (2.49) y (2.50) en la ecuación (2.45), realizando el cálculo del término de fricción en los puntos A y B, y después de hacer operaciones resulta

$$Q_P - Q_A + \frac{gA}{a}(H_P - H_A) + \frac{f\Delta t}{2DA}Q_A|Q_A| = 0$$
 (2.51)

y

$$Q_P - Q_B - \frac{gA}{a}(H_P - H_B) + \frac{f\Delta t}{2DA}Q_B|Q_B| = 0$$
 (2.52)

La ecuación (2.51) puede ser escrita como

$$Q_P = C_p - C_a H_P \tag{2.53}$$

y la ecuación (2.52) como

$$Q_P = C_n + C_a H_P \tag{2.54}$$

en las cuales

$$C_p = Q_A + \frac{gA}{g}H_A - \frac{f\Delta t}{2DA}Q_A|Q_A|$$
 (2.55)

$$C_n = Q_B - \frac{gA}{a}H_B - \frac{f\Delta t}{2DA}Q_B|Q_B|$$
 (2.56)

y

$$C_a = \frac{gA}{a} \tag{2.57}$$

Se observa que la ecuación (2.53) es válida a lo largo de la línea característica AP y la ecuación (2.54) a lo largo de la línea característica negativa BP. Los valores de las constantes C_p y C_n se pueden conocer para cada instante de tiempo, y la constante C_a depende de las propiedades del conducto. La ecuación (2.53) será referida como la ecuación característica positiva y la ecuación (2.54) como la ecuación característica negativa. En las ecuaciones (2.53) y (2.54), se tienen dos variables, llamadas, H_P y Q_P . Los valores de estas variables pueden ser determinados resolviendo simultáneamente estas ecuaciones.

$$Q_P = 0.5(C_p + C_n) (2.58)$$

Ahora, el valor de H_P puede ser determinado con cualquiera de las ecuaciones (2.53) o (2.54).

Con el fin de explicar el uso de las ecuaciones (2.53) a (2.58), se considera el sistema mostrado en la figura 2.12, dividiendo la tubería de descarga en un número de tramos iguales con longitud Δx , tal como se muestra en la figura 2.14.

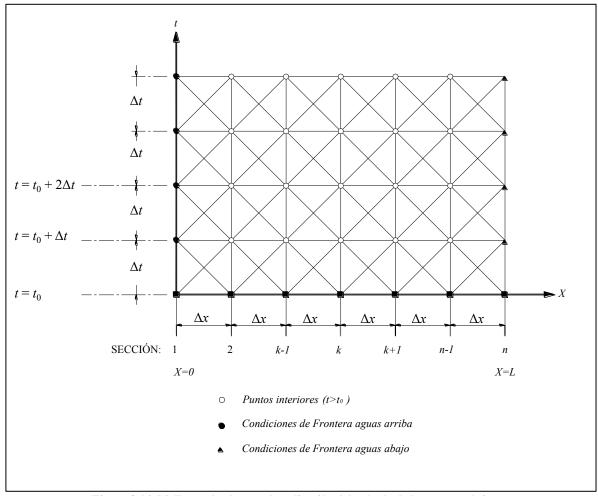


Figura 2.14. Malla empleada para la aplicación del método de las características.

Una vez hecho lo anterior, se determinan en cada sección x los parámetros h_0 y Q_0 para las condiciones del flujo permanente inicial que tiene lugar en el sistema cuando $t = t_0$, y a partir de estos últimos se lleva a cabo el cálculo de h_P y Q_P en los puntos interiores para el instante $t=t_0+\Delta T$, tomando en cuenta las ecuaciones (2.53) a (2.58). Por lo que se refiere a las condiciones de frontera del sistema, éstas quedarán definidas por la ecuación (2.53) para la ubicada aguas abajo, y por la ecuación (2.54) para la que se encuentra aguas arriba, además de una ecuación adicional para cada frontera que permita establecer una relación entre h_P y Q_P en las mismas. Estas ecuaciones adicionales dependerán del tipo particular de frontera y serán establecidas en la siguiente sección para el caso en el que se encuentra nuestro dispositivo experimental.

2.9.1.3. Condiciones de frontera

• Depósito con nivel constante

Independientemente de la ubicación del depósito de almacenamiento, ya sea, aguas arriba o aguas abajo (figura 2.15), si las pérdidas locales por entrada, así como la carga de velocidad resultan despreciables comparadas con las de fricción, entonces

$$H_P = H_{dep} \tag{2.59}$$



Figura 2.15. Depósito con nivel constante.

En la cual H_{dep} es la carga medida a partir de la superficie libre del agua hasta el plano horizontal de comparación. La ecuación (2.54) para el depósito situado aguas arriba, puede ser escrita como

$$Q_P = C_n + C_a H_{den} (2.60)$$

Sin embargo, si la carga de velocidad o las pérdidas locales a la entrada no son despreciables, entonces, estas pudieran ser consideradas en el análisis como sigue.

Las pérdidas a la entrada están dadas por la ecuación

$$h_e = \frac{KQ_P^2}{2gA^2} \tag{2.61}$$

Donde K es el coeficiente de pérdidas por entrada. A partir de la figura 2.15 se tiene,

$$H_P = H_{dep} - (1+K)\frac{Q_P^2}{2qA^2}$$
 (2.62)

La solución simultánea de las ec. 2.62 y 2.54 resulta

$$Q_P = \frac{-1 + \sqrt{1 + 4k_1(C_n + C_a H_{dep})}}{2K_1}$$
 (2.63)

donde

$$k_1 = \frac{C_a(1+K)}{2gA^2} \tag{2.64}$$

Ahora, H_P puede ser determinada con la ecuación (2.62).

• Válvula situada en el extremo final aguas abajo

El gasto que pasa por la válvula (figura 2.16) para condiciones de flujo permanente inicial está definido por la ecuación

$$Q_0 = (C_d A_v)_0 \sqrt{2gH_{0v}} (2.65)$$

En la cual el subíndice 0 indica la condición en flujo permanente inicial,

 C_d = coeficiente de descarga,

 H_{ov} = carga aguas abajo de la válvula

 A_v = área de la válvula abierta

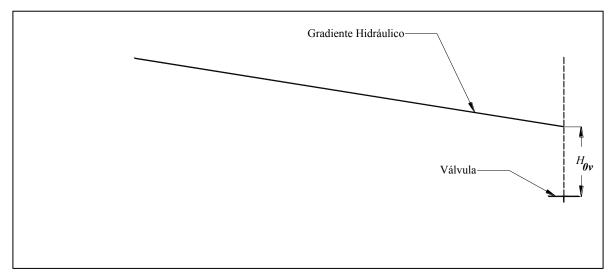


Figura 2.16. Válvula en el extremo final aguas abajo.

Una ecuación similar a la ecuación (2.65), puede ser escrita para el estado transitorio como

$$Q_P = (C_d A_v) \sqrt{2gH_P} \tag{2.66}$$

Dividiendo miembro a miembro la ecuación (2.66) entre la ecuación (2.65), sacando raíz cuadrada a ambos lados y definiendo la relación $\tau = (C_d A_v)/(C_d A_v)_0$, obtenemos

$$Q_P^2 = \frac{(Q_0 \tau)^2}{H_{0v}} H_P \tag{2.67}$$

Sustituyendo de la ecuación característica positiva, ecuación (2.53), por H_P en la ecuación (2.67), resulta

$$Q_P^2 + C_v Q_P - C_p C_v = 0 (2.68)$$

en la cual $C_v = (\tau Q_0)^2/(C_a H_{0v})$. Resolviendo para Q_P y despreciando la raíz negativa, tenemos

$$Q_P = 0.5 \left(-C_v + \sqrt{{C_v}^2 + 4C_p C_v} \right) \tag{2.69}$$

Por su parte, H_P puede ser determinado con la ecuación (2.53).

Para calcular las condiciones en estado transitorio para un cierre de válvula, la curva τ -t (figura 2.17), puede ser planteada con cualquiera de las formas, ya sea tabular o con una expresión algebraica. Notemos que $\tau = 1$ corresponde a la válvula totalmente abierta, en la cual el gasto que pasa a través de ella es Q_0 bajo una carga de H_0 .

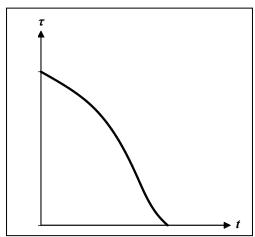


Figura 2.17. Cierre de válvula.

2.9.1.4. Condiciones de estabilidad y convergencia

Con relación al esquema de cálculo que se vio en la sección anterior, se dice que es convergente si la solución de las ecuaciones expresadas en términos de diferencias finitas se aproxima a la solución exacta de las ecuaciones diferenciales originales conforme los valores de Δx y Δt tienden a cero. Si el error de redondeo debido a la representación de números irracionales por un número finito de dígitos significantes, aumenta en la solución del esquema de cálculo, se dice entonces que es inestable y, en caso contrario se denomina estable; así mismo, se ha podido comprobar que la convergencia de un esquema implica su estabilidad y viceversa.

Un criterio recomendable para la convergencia y estabilidad de las ecuaciones en diferencias finitas para el caso de sistemas simples, tales como los que tienen conductos con características geométricas y elásticas constantes, es el siguiente (ver figuras 2.11 y 2.14)

$$\frac{\Delta t}{\Delta x} = \frac{1}{a} \tag{2.70}$$

Las soluciones al esquema de diferencias finitas con mayor precisión que se pueden obtener, se dan si se satisface el criterio de convergencia de la ecuación (2.70). De este modo, el criterio de convergencia y/o estabilidad para las ecuaciones de diferencias finitas (ecuaciones 2.51 y 2.52) está dado por la expresión

$$\frac{\Delta t}{\Delta x} \le \frac{1}{a} \tag{2.71}$$

La expresión anterior es conocida como Condición de estabilidad de Courant.

2.9.1.5. Ejemplo

El ejemplo que a continuación se presenta consiste en determinar las cargas y los gastos a lo largo de los 5 primeros segundos, para la tubería mostrada en la figura 2.18, considerando $\Delta x = 100$ m y f = 0.016.

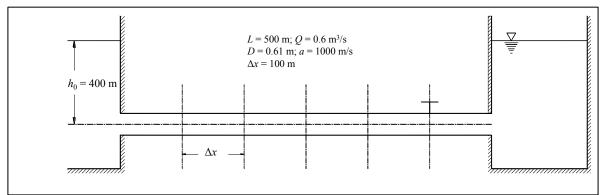


Figura 2.18.

Solución:

Condiciones iniciales para flujo establecido

$$A = \frac{\pi d^2}{4} = \frac{\pi (0.61)^2}{4} = 0.292 \text{ m}^2 \quad \therefore \quad V = \frac{0.6}{0.292} \text{m/s}$$

$$h_{f_{500\text{m}}} = 0.016 \left(\frac{500}{0.61}\right) \left(\frac{2.054^2}{19.62}\right) = 2.82 \text{ m} : h_{f_{100\text{m}}} = 0.564 \text{ m } (por \frac{c}{100 \text{ m}})$$

$$h_0 = 400 \text{ m}$$

$$h_1 = 400 - 0.56 = 399.44 \text{ m}$$

$$h_2 = h_1 - 0.56 = 398.88 \text{ m}$$

$$h_3 = h_2 - 0.56 = 398.32 \text{ m}$$
 $Q_0 = Q_1 = Q_2 = Q_3 = Q_4 = Q_5 = 0.6 \text{ m}^3/\text{s}$

$$h_4 = h_3 - 0.56 = 397.76 \text{ m}$$

$$h_5 = h_4 - 0.56 = 397.20 \text{ m}$$

$$C_a = \frac{gA}{a} = \frac{9.81(0.292)}{1000} = 0.00286$$

$$\Delta t = \frac{\Delta x}{a} = \frac{100}{1000} = 0.1 \, s$$

$$F = \frac{f\Delta t}{2DA} = \frac{0.016(0.1)}{2(0.61)(0.292)} = 0.00449$$

$$C_{P_i} = Q_{i-1} + 0.00286h_{i-1} - 0.00449Q_{i-1}|Q_{i-1}|$$
 (I)

$$C_{n_i} = Q_{i+1} - 0.00286h_{i+1} - 0.00449Q_{i+1}|Q_{i+1}|$$
(II)

Puntos interiores

$$Q_i = \frac{c_{P_i} + c_{n_i}}{2} \tag{III}$$

$$h_i = \frac{c_{P_i} - c_{n_i}}{2C_n} = 174.825 (C_{P_i} - C_{n_i})$$
 (IV)

Condiciones de Frontera

Extremo inicial (0), $h_0 = 400 \text{ m} = \text{cte.}$

$$C_P = C_n + 2C_a h_0 = C_n + 2(0.00286)(400) = C_n + 2.288$$

$$\therefore Q_P = Q_0 = C_n + C_a h_0 = C_n + 0.00286(400) = C_n + 1.144$$
 (V)

Extremo final (5)

$$h_{P_5} = \frac{c_P - Q_P}{c_a} = \frac{c_P - Q_P}{0.00286} = 349.65(C_{P_5} - Q_5)$$
 (VI)

$$Q_5 = 0.6 - 0.375(t)$$
; $0 \le t < 1.6$

$$Q_5 = 0 \; ; \; t \ge 1.6$$

Las ecuaciones para determinar el gasto Q y la carga h, para el instante de tiempo de 0.1 segundos son para t = 0.1 s e i = 0

Para
$$t = 0.1$$
 s e i = 0

$$h_0 = 400 \; \mathrm{m}, \;\; Q_0 = 0.6 = C_n + 1.144 \;\; \therefore \;\; C_{n_0} = 0.6 - 1.144, \qquad C_{n_0} = -0.544$$

Entonces:
$$h_0 = 400 \text{ m}$$
, $Q_0 = 0.6 \text{ m}^3/\text{S}$, $C_{n_0} = -0.544$

Para
$$i = 1$$

$$C_{P_1} = 0.6 + 0.00286(400) - 0.00449(0.6)|0.6|; \quad C_{P_1} = 1.745$$

$$C_{n_1} = Q_{2,0} - 0.00286h_{2,0} - 0.00449Q_{2,0}|Q_{2,0}|$$

$$C_{n_1} = 0.6 - 0.00286(398.88) - 0.00449(0.6)|0.6|;$$
 $C_{n_1} = -0.545$

$$Q_{P_1} = \frac{C_{P_1} + C_{n_1}}{2} = \frac{1.745 + (-0.545)}{2}; \ Q_{P_1} = 0.6 \ \text{m}^3/\text{s}$$

$$h_{P_1} = 174.83(C_{P_1} - C_{n_1}); h_{P_1} = 174.83(1.745 - (-0.545)); h_{P_1} = 399.44 \text{ m}$$

Para i = 2

$$C_{P_2} = 0.6 + 0.00286(399.44) - 0.00449(0.6)|0.6|; C_{P_2} = 1.744$$

$$C_{n_2} = 0.6 - 0.00286(398.31) - 0.00449(0.6)|0.6|; \quad C_{n_2} = -0.544$$

$$Q_{P_2} = \frac{C_{P_2} + C_{n_2}}{2} = \frac{1.744 + (-0.544)}{2}; \ Q_{P_2} = 0.6 \ \text{m}^3/\text{s}$$

$$h_{P_2} = 174.83(C_{P_2} - C_{n_2}); h_{P_2} = 174.83(1.744 - (-0.544)); h_{P_2} = 398.87 \text{ m}$$

Para i = 3

$$C_{P_3} = 0.6 + 0.00286(398.88) - 0.00449(0.6)|0.6|; C_{P_3} = 1.739$$

$$C_{n_3} = 0.6 - 0.00286(397.76) - 0.00449(0.6)|0.6|; \quad C_{n_3} = -0.539$$

$$Q_{P_3} = \frac{C_{P_3} + C_{n_3}}{2} = \frac{1.739 + (-0.539)}{2}; \ Q_{P_3} = 0.6 \ \text{m}^3/\text{s}$$

$$h_{P_3} = 174.83(C_{P_3} - C_{n_3}); h_{P_3} = 174.83(1.739 - (-0.539)); h_{P_3} = 398.31 \text{ m}$$

Para i = 4

$$C_{P_4} = 0.6 + 0.00286(398.32) - 0.00449(0.6)|0.6|; C_{P_4} = 1.738$$

$$C_{n_4} = 0.6 - 0.00286(397.20) - 0.00449(0.6)|0.6|; \quad C_{n_4} = -0.538$$

$$Q_{P_4} = \frac{C_{P_4} + C_{n_4}}{2} = \frac{1.738 + (-0.538)}{2}; \ Q_{P_4} = 0.6 \ \text{m}^3/_{\text{S}}$$

$$h_{P_4} = 174.83(C_{P_4} - C_{n_4}); h_{P_4} = 174.83(1.738 - (-0.538)); h_{P_4} = 397.75 \text{ m}$$

Para i = 5

$$C_{P_5} = 0.6 + 0.00286(397.75) - 0.00449(0.6)|0.6|; \quad C_{P_5} = 1.739$$

$$Q_{P_5} = 0.6 - 0.375(0.1) = 0.563 \text{ m}^3/\text{s}$$

$$h_{P_5} = 348.80(1.739 - 0.563); h_{P_5} = 410.26 \text{ m}$$

En la tabla 2.3 se muestran los resultados y las figuras 2.19 a 2.24. se presentan las gráficas de la variación en la carga piezométrica.

Tabla 2.3. Tabla de resultados del ejemplo de aplicación del método de las características

i	0		1		2	,	3		4	5	0)	1	1	2	?	3	}	4	1	5	
t(s)	Cn_{θ}	Cp_1	Cn_1	Cp_2	Cn ₂	Cp_3	Cn ₃	Cp ₄	Cn ₄	Cp_5	h_0	Qo	h_1	Q_1	h ₂	Q_2	<i>h</i> ₃	Qз	h_4	Q4	h ₅	Q5
0	0	0	0	0	0	0	0	0	0	0	400	0.6	399.44	0.6	398.87	0.6	398.31	0.6	397.75	0.6	397.18	0.6
0.1	-0.547	1.745	-0.545	1.744	-0.544	1.742	-0.542	1.740	-0.540	1.739	400.00	0.600	399.44	0.600	398.87	0.600	398.31	0.600	397.75	0.600	410.26	0.563
0.2	-0.547	1.745	-0.545	1.744	-0.544	1.742	-0.542	1.740	-0.615	1.739	400.00	0.600	399.44	0.600	398.87	0.600	398.31	0.600	410.79	0.563	423.34	0.525
0.3	-0.547	1.745	-0.545	1.744	-0.544	1.742	-0.617	1.740	-0.690	1.739	400.00	0.600	399.44	0.600	398.87	0.600	411.32	0.563	423.84	0.525	436.49	0.488
0.4	-0.547	1.745	-0.545	1.744	-0.618	1.742	-0.691	1.741	-0.765	1.739	400.00	0.600	399.44	0.600	411.85	0.563	424.34	0.525	436.96	0.488	449.63	0.450
0.5	-0.547	1.745	-0.619	1.744	-0.692	1.742	-0.766	1.741	-0.840	1.739	400.00	0.600	412.38	0.563	424.84	0.526	437.43	0.488	450.07	0.450	462.84	0.413
0.6	-0.621	1.745	-0.694	1.744	-0.767	1.742	-0.841	1.741	-0.915	1.740	400.00	0.526	425.33	0.526	437.89	0.488	450.52	0.451	463.26	0.413	476.04	0.375
0.7	-0.695	1.672	-0.768	1.744	-0.842	1.743	-0.916	1.741	-0.990	1.740	400.00	0.452	425.48	0.452	450.96	0.451	463.67	0.413	476.43	0.375	489.30	0.338
0.8	-0.769	1.598	-0.843	1.671	-0.917	1.743	-0.991	1.742	-1.066	1.741	400.00	0.378	425.62	0.378	451.24	0.377	476.82	0.376	489.67	0.338	502.54	0.300
0.9	-0.843	1.524	-0.917	1.597	-0.992	1.670	-1.066	1.742	-1.141	1.741	400.00	0.303	425.75	0.303	451.49	0.303	477.21	0.302	502.89	0.301	515.84	0.263
1	-0.918	1.450	-0.992	1.523	-1.067	1.597	-1.142	1.670	-1.217	1.742	400.00	0.229	425.87	0.229	451.73	0.228	477.56	0.228	503.37	0.226	529.12	0.225
1.1	-0.992	1.376	-1.067	1.450	-1.142	1.523	-1.217	1.596	-1.292	1.669	400.00	0.154	425.97	0.154	451.94	0.154	477.88	0.153	503.79	0.152	516.86	0.188
1.2	-1.067	1.301	-1.142	1.375	-1.217	1.449	-1.292	1.523	-1.294	1.596	400.00	0.080	426.07	0.080	452.13	0.079	478.16	0.079	491.39	0.114	504.50	0.150
1.3	-1.142	1.226	-1.217	1.301	-1.292	1.375	-1.295	1.449	-1.296	1.523	400.00	0.005	426.16	0.005	452.30	0.004	465.64	0.040	478.88	0.076	491.99	0.113
1.4	-1.217	1.152	-1.292	1.226	-1.295	1.301	-1.296	1.375	-1.298	1.449	400.00	-0.070	426.23	-0.070	439.67	-0.034	453.02	0.002	466.26	0.039	479.39	0.075
1.5	-1.292	1.077	-1.295	1.152	-1.296	1.226	-1.298	1.301	-1.299	1.375	400.00	-0.146	413.52	-0.109	426.96	-0.072	440.29	-0.036	453.53	0.001	466.66	0.037
1.6	-1.294	1.001	-1.296	1.077	-1.298	1.152	-1.299	1.226	-1.300	1.301	400.00	-0.148	400.74	-0.148	414.14	-0.111	427.47	-0.074	440.69	-0.037	453.83	0.000
1.7	-1.296	0.999	-1.298	1.001	-1.299	1.077	-1.300	1.152	-1.301	1.226	400.00	-0.150	400.63	-0.149	401.27	-0.149	414.55	-0.112	427.77	-0.075	427.80	0.000
1.8	-1.298	0.997	-1.299	0.999	-1.300	1.002	-1.301	1.077	-1.226	1.152	400.00	-0.151	400.53	-0.151	401.05	-0.151	401.58	-0.150	401.67	-0.075	401.72	0.000
1.9	-1.299	0.996	-1.300	0.997	-1.301	0.999	-1.226	1.002	-1.152	1.077	400.00	-0.152	400.42	-0.152	400.84	-0.152	388.19	-0.114	375.55	-0.075	375.56	0.000
2	-1.300	0.994	-1.301	0.996	-1.226	0.997	-1.152	0.999	-1.077	1.002	400.00	-0.153	400.31	-0.153	387.56	-0.115	374.82	-0.077	362.08	-0.039	349.39	0.000
2.1	-1.301	0.994	-1.226	0.995	-1.152	0.996	-1.077	0.998	-1.002	0.999	400.00	-0.154	387.15	-0.116	374.31	-0.079	361.46	-0.040	348.66	-0.002	348.61	0.000
2.2	-1.226	0.993	-1.152	0.994	-1.077	0.995	-1.002	0.996	-0.999	0.998	400.00	-0.079	374.01	-0.079	361.06	-0.042	348.15	-0.004	347.99	-0.002	347.94	0.000
2.3	-1.152	1.067	-1.077	0.993	-1.002	0.994	-0.999	0.995	-0.998	0.996	400.00	-0.005	373.92	-0.005	347.86	-0.004	347.59	-0.003	347.43	-0.001	347.38	0.000
2.4	-1.077	1.142	-1.002	1.067	-0.999	0.993	-0.998	0.994	-0.996	0.995	400.00	0.070	373.85	0.070	360.44	0.034	347.14	-0.002	346.97	-0.001	346.92	0.000

Tabla 2.3. Tabla de resultados del ejemplo de aplicación del método de las características (Continuación)

i	0		1		2		3		4	5	0)	1	!	2	,	3	}	4	!	5	
t(s)	Cn_{θ}	Cp_1	Cn_1	Cp_2	Cn_2	Cp_3	Cn_3	Cp ₄	Cn ₄	Cp ₅	h_{θ}	Qo	h_1	Q_1	h ₂	Q_2	h ₃	Q3	h_4	Q4	h ₅	Q5
2.5	-1.002	1.217	-0.999	1.142	-0.998	1.067	-0.996	0.993	-0.995	0.994	400.00	0.145	386.53	0.109	373.12	0.072	359.83	0.036	346.63	-0.001	346.57	0.000
2.6	-0.999	1.292	-0.998	1.217	-0.996	1.142	-0.995	1.067	-0.994	0.993	400.00	0.147	399.26	0.147	385.90	0.110	372.61	0.074	359.43	0.037	346.34	0.000
2.7	-0.998	1.294	-0.996	1.292	-0.995	1.217	-0.994	1.142	-0.993	1.067	400.00	0.149	399.37	0.149	398.74	0.149	385.49	0.112	372.32	0.074	372.27	0.000
2.8	-0.996	1.296	-0.995	1.294	-0.994	1.292	-0.993	1.217	-1.067	1.142	400.00	0.151	399.47	0.151	398.95	0.150	398.43	0.149	398.33	0.075	398.28	0.000
2.9	-0.995	1.297	-0.994	1.296	-0.993	1.294	-1.067	1.291	-1.142	1.217	400.00	0.152	399.58	0.152	399.16	0.151	411.78	0.113	424.38	0.075	424.38	0.000
3	-0.994	1.299	-0.993	1.297	-1.067	1.296	-1.142	1.294	-1.217	1.291	400.00	0.153	399.69	0.153	412.40	0.115	425.10	0.077	437.81	0.039	450.46	0.000
3.1	-0.993	1.300	-1.067	1.299	-1.142	1.297	-1.217	1.296	-1.291	1.294	400.00	0.154	412.81	0.116	425.61	0.078	438.43	0.040	451.18	0.002	451.25	0.000
3.2	-1.067	1.300	-1.142	1.300	-1.217	1.298	-1.291	1.297	-1.294	1.296	400.00	0.079	425.91	0.079	438.83	0.041	451.69	0.004	451.86	0.002	451.90	0.000
3.3	-1.142	1.226	-1.217	1.300	-1.291	1.300	-1.294	1.298	-1.296	1.297	400.00	0.005	426.01	0.005	451.98	0.004	452.26	0.003	452.41	0.001	452.47	0.000
3.4	-1.217	1.152	-1.291	1.226	-1.294	1.300	-1.296	1.300	-1.297	1.298	400.00	-0.070	426.07	-0.070	439.45	-0.034	452.70	0.002	452.87	0.001	452.92	0.000
3.5	-1.291	1.077	-1.294	1.152	-1.296	1.226	-1.297	1.300	-1.298	1.300	400.00	-0.145	413.43	-0.108	426.79	-0.072	440.06	-0.036	453.21	0.001	453.27	0.000
3.6	-1.294	1.002	-1.296	1.077	-1.297	1.152	-1.298	1.226	-1.300	1.300	400.00	-0.147	400.74	-0.147	414.06	-0.110	427.31	-0.073	440.46	-0.037	453.50	0.000
3.7	-1.295	1.000	-1.297	1.002	-1.298	1.077	-1.299	1.152	-1.300	1.226	400.00	-0.149	400.63	-0.149	401.26	-0.148	414.47	-0.111	427.60	-0.074	427.65	0.000
3.8	-1.297	0.998	-1.298	1.000	-1.299	1.002	-1.300	1.077	-1.226	1.152	400.00	-0.150	400.52	-0.150	401.05	-0.150	401.57	-0.149	401.67	-0.074	401.71	0.000
3.9	-1.298	0.997	-1.299	0.998	-1.300	1.000	-1.226	1.003	-1.152	1.077	400.00	-0.151	400.42	-0.151	400.83	-0.151	388.26	-0.113	375.70	-0.075	375.69	0.000
4	-1.299	0.995	-1.300	0.997	-1.226	0.998	-1.152	1.000	-1.077	1.003	400.00	-0.152	400.31	-0.152	387.64	-0.115	374.97	-0.077	362.29	-0.038	349.69	0.000
4.1	-1.300	0.994	-1.226	0.995	-1.152	0.997	-1.077	0.998	-1.003	1.000	400.00	-0.153	387.23	-0.116	374.46	-0.078	361.68	-0.040	348.97	-0.002	348.90	0.000
4.2	-1.226	0.994	-1.152	0.994	-1.077	0.996	-1.003	0.997	-1.000	0.998	400.00	-0.079	374.17	-0.079	361.28	-0.041	348.47	-0.004	348.29	-0.002	348.25	0.000
4.3	-1.152	1.068	-1.077	0.994	-1.003	0.994	-1.000	0.996	-0.998	0.997	400.00	-0.005	374.06	-0.005	348.18	-0.004	347.89	-0.003	347.75	-0.001	347.68	0.000
4.4	-1.077	1.142	-1.003	1.068	-1.000	0.994	-0.998	0.994	-0.997	0.996	400.00	0.070	374.01	0.070	360.66	0.034	347.46	-0.002	347.28	-0.001	347.24	0.000
4.5	-1.003	1.216	-1.000	1.142	-0.998	1.068	-0.997	0.994	-0.996	0.994	400.00	0.144	386.61	0.108	373.29	0.072	360.05	0.035	346.95	-0.001	346.88	0.000
4.6	-1.000	1.291	-0.998	1.216	-0.997	1.142	-0.996	1.068	-0.994	0.994	400.00	0.146	399.27	0.146	385.98	0.110	372.78	0.073	359.65	0.037	346.66	0.000
4.7	-0.999	1.293	-0.997	1.291	-0.996	1.216	-0.994	1.142	-0.994	1.068	400.00	0.148	399.37	0.148	398.74	0.148	385.58	0.111	372.48	0.074	372.42	0.000
4.8	-0.997	1.295	-0.996	1.293	-0.995	1.291	-0.994	1.216	-1.068	1.142	400.00	0.150	399.48	0.150	398.96	0.149	398.44	0.148	398.34	0.074	398.29	0.000
4.9	-0.996	1.297	-0.995	1.295	-0.994	1.293	-1.068	1.291	-1.142	1.216	400.00	0.151	399.58	0.151	399.17	0.150	411.70	0.113	424.23	0.074	424.25	0.000
5	-0.995	1.298	-0.994	1.296	-1.068	1.295	-1.142	1.293	-1.216	1.291	400.00	0.152	399.69	0.152	412.33	0.114	424.95	0.076	437.60	0.038	450.16	0.000

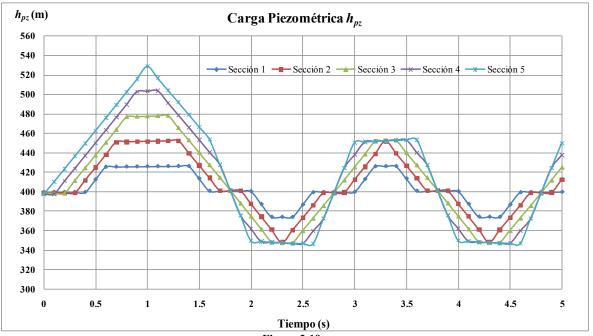


Figura 2.19.

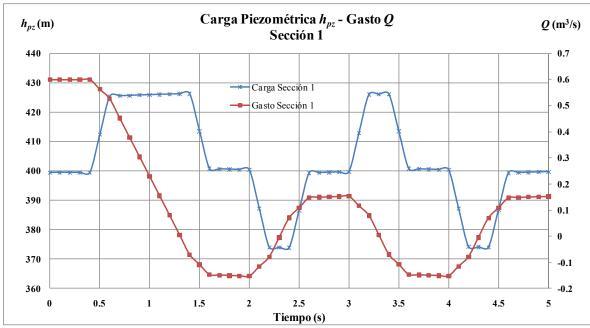


Figura 2.20.

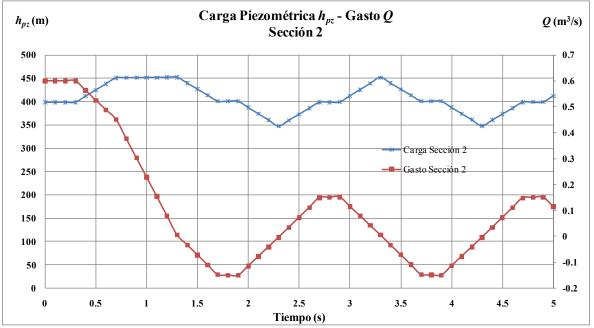


Figura 2.21.

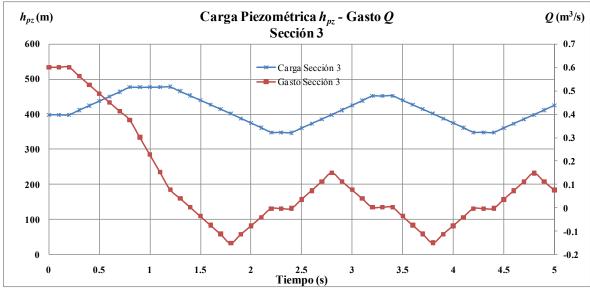


Figura 2.22.

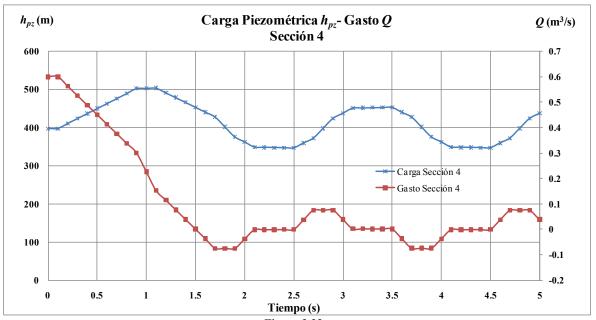


Figura 2.23.

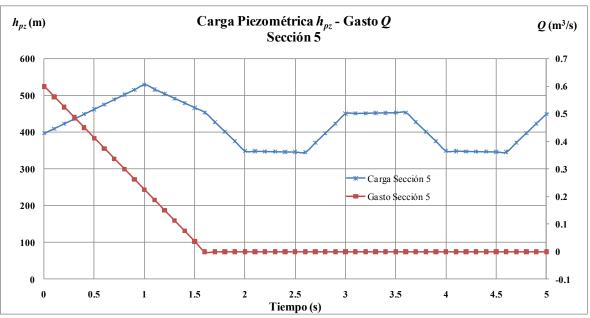


Figura 2.24.

2.9.1 Método de Allievi

2.9.1.2. Ecuaciones generales de Allievi

El conocimiento de las funciones F y f es dificil tenerlo a la mano para resolver un determinado problema, sin embargo, Allievi propuso un sistema de ecuaciones muy simple cuya solución permite calcular la variación de la carga piezométrica y la velocidad en la sección adyacente inmediatamente aguas arriba del órgano de control que se muestra en la figura 2.10. Si en las ecuaciones (2.29) y (2.29a) se hace x=L, resulta

$$H = H_0 + F\left(t + \frac{L}{a}\right) + f\left(t - \frac{L}{a}\right) \tag{2.72}$$

y

$$V = V_0 - \frac{g}{a} \left[F\left(t + \frac{L}{a}\right) - f\left(t - \frac{L}{a}\right) \right] \tag{2.73}$$

expresiones que se conocen con el nombre de Ecuaciones de Allievi.

Por otra parte, si se hace $i = \frac{t}{T}$ la ecuación (2.32) puede escribirse como

$$f(iT) = -F[(i-1)T]$$

donde i es un número adimensional entero o fraccionario, además, si se define $f(iT) = f_i$ y $F[(i-1)T] = F_{i-1}$, la ecuación anterior queda

$$f_i = -F_{i-1} (2.74)$$

Al sustituir esta ecuación en la (2.72) para instantes i e i-1 se obtiene

$$H_i = H_0 - F_{i-1} + F_i (2.75)$$

y

$$H_{i-1} = H_0 - F_{i-2} + F_{i-1} (2.76)$$

sumando miembro a miembro estas últimas ecuaciones y haciendo operaciones resulta

$$H_i + H_{i+1} - 2H_0 = F_i - F_{i-2} (2.77)$$

Si se hace un razonamiento semejante con la ecuación (2.73) se llega a

$$\frac{a}{g}(V_{i-1} - V_i) = F_i - F_{i-2} \tag{2.78}$$

y al igualar las ecuaciones (2.77) y (2.78) resulta finalmente

$$H_i + H_{i-1} - 2H_0 = -\frac{a}{g}(V_{i-1} - V_i)$$
 (2.79)

La ecuación anterior es la fórmula clásica de Allievi y permite llevar a cabo un desarrollo en cadena mediante el cual se puede obtener la carga piezométrica en la sección adyacente al órgano de control para el instante *i*, si se conoce su valor para el instante *i*-1, y el incremento de velocidad entre dichos instantes, mismo que estará determinado por la ley de cierre o apertura en el órgano de control que se analiza más adelante.

Es necesario subrayar que en la ecuación original de Allievi el valor de la carga piezométrica H que aparece en la ecuación (2.79), corresponde al de la carga de presión h_p en un conducto de eje horizontal; no obstante, esta última ecuación es válida para cualquier perfil del eje y se reduce a la de Allievi, si el plano horizontal de comparación se elige de tal manera que contenga al menos un punto del primero en la sección en estudio (figura 2.10), lo que da como resultado que en el órgano de control se tenga entonces $H=h_p$.

2.9.2.2. Desarrollo en cadenas de Allievi

Si se dividen ambos miembros de la ecuación (2.79) entre H_0 se obtiene

$$\frac{H_i}{H_0} + \frac{H_{i-1}}{H_0} - \frac{2H_0}{H_0} = \frac{a}{gH_0}(V_{i-1} - V_i)$$

Al introducir el valor de V_0 en el segundo miembro de la ecuación anterior resulta

$$\frac{H_i}{H_0} + \frac{H_{i-1}}{H_0} - 2 = \frac{aV_0}{gH_0} \left(\frac{V_{i-1}}{V_0} - \frac{V_i}{V_0} \right)$$

haciendo $\xi_i^2 = \frac{H_i}{H_0}$ y $\epsilon = \frac{aV_0}{2gH_0}$, esta última ecuación toma la forma

$$\xi_i^2 + \xi_{i-1}^2 - 2 = 2\epsilon \left(\frac{V_{i-1}}{V_0} - \frac{V_i}{V_0} \right)$$
 (2.80)

Ahora bien, si se aplica la ecuación de continuidad para una sección transversal ubicada inmediatamente aguas arriba del órgano de control, y se toma en cuenta lo mencionado acerca del plano horizontal de comparación, se puede escribir

$$\frac{V_i}{V_0} = \frac{(C_d A_v)_i}{(C_d A_v)_0} \sqrt{\frac{H_i}{H_0}}$$

o bien

$$\frac{V_i}{V_0} = \tau_i \xi_i \qquad ec. (2.81)$$

Sustituyendo la ecuación anterior en la ecuación (2.80), se tendrá:

$$\xi_i^2 + \xi_{i-1}^2 - 2 = 2\epsilon(\tau_{i-1}\xi_{i-1} - \tau_i\xi_i)$$
(2.82)

ecuación que se conoce con el nombre de Ecuación Adimensional de Allievi.

3 CASO DE ESTUDIO

Como se mencionó en el primer capítulo, se analizará el fenómeno del golpe de ariete con el método de las características, para lo cual, se cuenta con el antecedente del análisis del fenómeno transitorio con las ecuaciones de Allievi. En este capítulo se realizará la solución del caso experimental con los dos métodos citados y se hará una comparación entre los resultados obtenidos. El objetivo principal es observar la variación de la carga de presión a lo largo de la tubería, provocada por el cierre de la válvula. Con el método de las cadenas de Allievi, se calculará y analizará la sobrepresión generada en la tubería por el cierre de la válvula y por otra parte, con el método de las características se determinará la variación de la carga de presión a lo largo de la tubería, utilizando las pérdidas por fricción y condiciones de frontera variables.

A continuación se presenta una descripción del dispositivo experimental, el cual se ha utilizado para observar el fenómeno transitorio del golpe de ariete, en la práctica número 3 del laboratorio de la asignatura *Hidráulica de máquinas*.

3.1 Dispositivo experimental tanque – tubería – válvula esférica

En la figura 3.1 se observa un esquema del dispositivo experimental, el cual se encuentra instalado en el Laboratorio de Hidráulica de la Facultad de Ingeniería, UNAM.

Este dispositivo está formado por un tanque o depósito con carga constante, una tubería de cobre de 4.3 metros de longitud y 2.5 pulgadas de diámetro, 5 piezómetros distribuidos a lo largo de la tubería, en los cuales se mide la columna de agua que se genera por la presión de la onda, un accesorio conocido como Te bridada, y una válvula de esfera, colocada en el extremo final de la tubería. Como dispositivo de aforo, se cuenta con un vertedor de pared delgada de sección triangular.

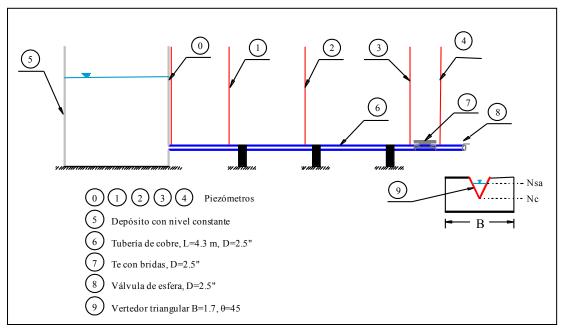


Figura 3.1. Dispositivo experimental

Fotografía 3.1. Perspectiva del dispositivo experimental

En la fotografía 3.1, se puede observar una perspectiva del dispositivo experimental, así como los componentes de este.

A continuación se presentan las mediciones que se realizaron en el dispositivo al simular el fenómeno transitorio.

3.2 Mediciones y registro de lecturas

El procedimiento que se realizó para determinar las condiciones iniciales, es el que se utiliza actualmente en el prontuario de la práctica golpe de ariete.

- 1. Abrir la válvula de alimentación del tanque y establecer una carga constante H_0 y registrar su valor, en m.
- 2. Medir el nivel de cresta N_c , en m, en el vertedor triangular.
- 3. Abrir totalmente la válvula de esfera ubicada en el extremo final aguas abajo y purgar los piezómetros para establecer el flujo permanente. Medir la carga de presión *H*, en m, en cada uno de ellos.
- 4. Medir el nivel de la superficie libre del agua N_{sa} , en m, en el canal de aproximación del vertedor de sección triangular.

Se registraron los siguientes datos

Tabla 3.1. Registro de datos (Flujo permanente)

Depósito o tanque con carga constante.	H_{θ} =	1.00	m
Vertedor triangular	N_c =	0.2479	m
v er teuer er ungum	$N_{sa}=$	0.3791	m
	$H_1=$	0.86	m
Piezómetros	$H_2=$	0.81	m
1 tezometros	$H_3=$	0.755	m
	$H_4=$	0.61	m

Para el caso de flujo no permanente se realizó un cierre brusco en la válvula de esfera con el fin de medir la carga máxima de presión que se presentó. Esta lectura únicamente se tomó en el piezómetro 4 (ver figura 3.1) y el dato obtenido fue $H_{máx} = 1.5$ m

3.3 Determinación de condiciones iniciales

La ecuación que se utiliza para el cálculo del gasto en un vertedor de pared delgada de sección triangular es:

$$Q = Ch^{5/2} (3.1)$$

donde:

C coeficiente de descarga del vertedor, en m $^{1/2}$ /s

$$C = \frac{8}{15}\sqrt{2g}\tan\frac{\theta}{2}\mu K \tag{3.2}$$

- h carga en el vertedor, $h = |N_{sa} N_c|$, en m;
- g aceleración de la gravedad, en m/s²;
- θ ángulo del vértice del vertedor, $\theta = 45^{\circ}$;
- B ancho del canal de aproximación, B = 1.70 m;
- μ coeficiente experimental que depende de θ y h según figura 3.2
- K coeficiente experimental que depende de B y h según figura 3.3

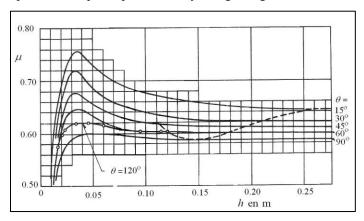


Figura 3.2. Coeficiente de gasto µ de vertedores triangulares en la fórmula de la Universidad Católica de Chile

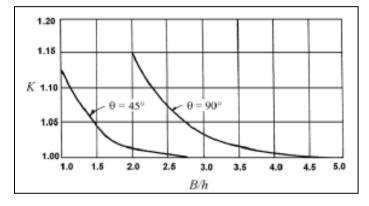


Figura 3.3. Valores de K en la fórmula de la Universidad Católica de Chile para vertedores triangulares

Carga en el vertedor h = |0.3791 - 0.2479| = 0.1312 m

Coeficiente experimental μ , con h = 0.1312 m y $\theta = \pi/4$ rad., de la figura 3.2

$$\mu = 0.616$$

Coeficiente experimental K, con B/h = 1.7/0.1312 = 12.96

$$K = 1.0$$

Coeficiente de descarga del vertedor C

$$C = \frac{8}{15}\sqrt{2 \times 9.81} \tan \left[\frac{(\pi/4)}{2}\right] (0.616)(1.0)$$

$$C = 0.603 \,\mathrm{m}^{1/2}/\mathrm{s}$$

Gasto Qo

$$Q_0 = (0.603)(0.1312)^{5/2}$$

$$Q_0 = 0.00376 \,\mathrm{m}^3/\mathrm{s}$$

De esta forma, se determinaron las condiciones iniciales correspondientes al flujo permanente en el dispositivo experimental, que se muestra en la tabla 3.2.

Tabla 3.2. Condiciones iniciales a flujo permanente

Q_0	H_0	H_1	H_2	H_3	H_4
(m^3/s)	(m.c.a.)	(m.c.a.)	(m.c.a.)	(m.c.a.)	(m.c.a.)
0.00376	1.00	0.86	0.81	0.755	0.61

3.4 Cálculo de celeridad de onda de presión en tubería

Se sabe que el valor de la celeridad de la onda de presión depende de las propiedades elásticas del conducto y el fluido, así como de la geometría de la tubería. En el dispositivo experimental, todas estas propiedades son constantes a lo largo de la tubería, por lo tanto se obtuvo un solo valor de la celeridad *a* de la onda de presión, en m/s.

$$a = \frac{1}{\sqrt{\rho \left(\frac{1}{E_{\nu}} + \frac{D}{E_{t}e}\right)}}$$
(3.3)

donde:

 ρ densidad del agua, $\rho = 1,000 \text{ Kg/m}^3$;

 E_{ν} módulo de elasticidad del agua, $E_{\nu} = 2.18 \times 10^9 \text{ Pa};$

 E_t módulo de elasticidad de la tubería de cobre, $E_t = 118.7 \times 10^9$ Pa;

D diámetro de la tubería, D = 0.0635 m;

e espesor de la tubería, e = 0.0018 m.

Por lo tanto

$$a = \frac{1}{\sqrt{(1000)\left(\frac{1}{2.18 \times 10^9} + \frac{0.0635}{(118.7 \times 10^9)(0.0018)}\right)}}$$
$$a = 1,150.17 \text{ m/s}$$

3.5 Periodo T de la onda de presión

Se sabe que el periodo *T* de la onda de presión, es el tiempo que tarda la onda de perturbación en recorrer la distancia desde la sección de la válvula hasta el tanque y reflejarse hasta llegar nuevamente a la válvula. De este modo

$$V = \frac{d}{t} = > t = \frac{d}{V}$$

Según esta definición con la distancia d = 2L y si la velocidad V es representada por la celeridad a de la onda de presión, entonces, el periodo T, queda definido con la siguiente ecuación

$$T = \frac{2L}{a} \tag{3.4}$$

Donde, de acuerdo al caso de estudio

L = 4.3 m

a = 1,150.17 m/s

Por lo tanto
$$T = \frac{(2 \times 4.3)}{1.150.17} = 0.00748 \text{ s}$$

3.6 Pérdidas por fricción en la tubería

Para obtener una estimación numérica del fenómeno en estudio lo más cercano a la realidad, fue necesario obtener una relación entre las mediciones realizadas a flujo permanente y los resultados

obtenidos en forma teórica, por ello es que en este apartado, se realiza el cálculo de las pérdidas por efecto de la fricción entre el fluido y la tubería, con las ecuaciones de fricción de Darcy-Weisbach, Manning-Strickler y Hazen-Williams. Al obtener los resultados de las pérdidas por fricción, además de calcular también las pérdidas locales, se realizó una comparación y se definió la ecuación con mayor aproximación a las mediciones realizadas.

Tres características geométricas de la sección en una conducción hidráulica muy importantes en el cálculo de las pérdidas de fricción, son las siguientes.

Área hidráulica A, es decir, el área de la sección transversal ocupada por el líquido dentro del conducto.

Perímetro mojado P, que es el perímetro de la sección transversal del conducto en el que hay contacto del líquido con la pared (no incluye la superficie libre si ésta existe).

Radio hidráulico R_h , o sea la relación entre el área hidráulica y el perímetro mojado de la sección $(R_h=A/P)$

Los valores de estas características geométricas para la tubería en estudio son:

Área hidráulica A

$$A = \frac{\pi D^2}{4}$$

$$A = \frac{\pi (0.0635)^2}{4} = 0.003167 \text{ m}^2$$

Perímetro mojado P

$$P = \pi D$$

$$P = 0.0635\pi = 0.19949 \text{ m}$$

Radio hidráulico R_h

$$R_h = \frac{A}{P}$$

$$R_h = \frac{0.003167}{0.19949} = 0.01587 \,\mathrm{m}$$

Ahora bien, para obtener las pérdidas por fricción, se debe conocer el factor de fricción de la tubería.

El factor de fricción f es función de la rugosidad ε y del número de Reynolds Re en el tubo.

Por otra parte, se sabe que existen distintos intentos de evaluar el efecto corrosivo del agua en conductos, basándose en la reducción del gasto calculado teóricamente, de acuerdo con el PH del agua y el número de años de servicio de la tubería. Sin embargo, el criterio que parece más efectivo es el de Genijew al modificar la rugosidad absoluta del tubo nuevo, de acuerdo con el tipo de agua que va a escurrir y el número de años de servicio; esto es

$$\varepsilon_t = \varepsilon_0 + at \tag{3.5}$$

donde

- ε_{θ} rugosidad del tubo (nuevo), en mm;
- a coeficiente que depende del grupo en el que se clasifique el agua que va a escurrir, según la tabla 3.3;
- t número de años de servicio de la tubería;
- ε_t rugosidad del conducto, después de t años de servicio, en mm.

Según la tabla 3.3, para la tubería lisa de cobre, la rugosidad absoluta (tubería nueva de cobre) es $\varepsilon_0=0.0015~\text{mm}$

Tabla 3.3. Rugosidad absoluta ϵ en tubos comerciales

Material	ε, en mm
Tubos lisos	
De vidrio, cobre, latón, madera (bien cepillada), acero nuevo soldado y con una mano interior de pintura; tubos de acero de precisión sin costura, serpentines industriales, plástico, hule	0.0015
Tubos industriales de latón	0.025
Tubos de madera	0.2 a 1
Hierro forjado	0.05
Fierro fundido nuevo	0.25
Fierro fundido, con protección interior de asfalto	0.12
Fierro fundido oxidado	1 a 1.5
Fierro fundido, con incrustaciones	1.5 a 3
Fierro fundido, centrifugado	0.05
Fierro fundido nuevo, con bridas o juntas de macho y campana	0.15 a 0.3
Fierro fundido usado, con bridas o juntas de macho y campana	2 a 3.5
Fierro fundido para agua potable, con bastantes incrustaciones y diámetro de 50 a 125 mm	1 a 4
Fierro galvanizado	0.15
Acero rolado, nuevo	0.05
Acero laminado, nuevo	0.04 a 0.1
Acero laminado con protección interior de asfalto	0.05
Tubos de acero soldado de calidad normal	
Nuevo	0.05 a 0.10
Limpiado después de mucho uso	0.15 a 0.20
Moderadamente oxidado, con pocas incrustaciones	0.4
Con muchas incrustaciones	3
Con remaches transversales, en buen estado	0.1
Con costura longitudinal y una línea transversal de remaches en cada junta, o bien laqueado interiormente	0.3 a 0.4
Con líneas transversales de remaches, sencilla o doble; o tubos remachados con doble hilera longitudinal de remaches e hilera transversal sencilla, sin incrustaciones	0.6 a0.7
Acero soldado, con una hilera transversal sencilla de pernos en cada junta, laqueado interior, sin oxidaciones, con circulación de agua turbia	1

Tabla 3.3. (Continuación)

Material	ε, en mm
Acero soldado, con costura doble de remaches transversales, muy oxidado. Acero remachado, de cuatro a seis filas longitudinales de remaches, con mucho tiempo de servicio.	2
Tubos remachados, con filas longitudinales y transversales	
a) Espesor de lámina < 5 mm	0.65
b) Espesor de lámina de 5 a 12 mm	1.95
c) Espesor de lámina > 12 mm, o entre 6 y 12 mm, si las hileras de pernos tienen cubrejuntas	3
d) Espesor de lámina > 12 mm con cubrejuntas	5.5
Tubos remachados, con cuatro filas transversales y seis longitudinales con cubrejuntas interiores	4
Asbesto - cemento nuevo	0.025
Asbesto - cemento, con protección interior de asfalto	0.0015
Concreto centrifugado, nuevo	0.16
Concreto centrifugado, con protección bituminosa	0.0015 a 0.125
Concreto en galerías, colado con cimbra normal de madera	1 a 2
Concreto en galerías, colado con cimbra rugosa de madera	10
Concreto armado en tubos y galerías, con acabado interior cuidadosamente terminado a mano	0.01
Concreto de acabado liso	0.025
Conductos de concreto armado, con acabado liso y varios años de servicio	0.2 a 0.3
Concreto alisado interiormente con cemento	0.25
Galerías con acabado interior de cemento	1.5 a 1.6
Concreto con acabado normal	1 a 3
Concreto con acabado rugoso	10
Cemento liso	0.3 a 0.8
Cemento no pulido	1 a 2
Concreto presforzado Freyssinet	0.04
Concreto presforzado Bona Socoman	0.25
Mampostería de piedra, bien junteada	1.2 a 2.5
Mampostería de piedra rugosa, sin juntear	8 a 15
Mampostería de piedra, mal acabada	1.5 a 3

También se sabe, que la tubería bajo análisis tiene aproximadamente 15 años en servicio.

En la tabla 3.4, se observan distintos coeficientes a de la fórmula de Genijew. Se sabe que el agua utilizada en el Laboratorio de Hidráulica es agua poco corrosiva y con un pequeño contenido de materia orgánica, por lo tanto, se usará el valor medio del grupo I, es decir a = 0.025.

Tabla 3.4. Coeficientes a de la fórmula de Genijew

Grupo I

Agua con poco contenido mineral que no origina corrosión. Agua con un pequeño contenido de materia orgánica y de solución de hierro:

a varía de 0.005 a 0.055; valor medio, 0.025.

Grupo II

Agua con poco contenido mineral que origina corrosión. Agua que contiene menos de 3 mg/lt de materia orgánica y hierro en solución:

a varía de 0.055 a 0.18; valor medio, 0.07.

Grupo III

Agua que origina fuerte corrosión y con escaso contenido de cloruros y sulfatos (menos de 100 a 150 mg/lt). Agua con un contenido de hierro de más de 3 mg/lt:

a varía de 0.18 a 0.40; valor medio, 0.20.

Grupo IV

Agua que origina corrosión, con un gran contenido de sulfatos y cloruros (más de 500 a 700 mg/lt). Agua impura con una gran cantidad de materia orgánica:

a varía de 0.40 a 0.60; valor medio, 0.51.

Grupo V

Agua con cantidades importantes de carbonatos, pero de dureza pequeña permanente, con residuo denso de 2000 mg/lt:

a varía de 0.6 a más que 1.

De esta forma, se puede calcular la rugosidad del conducto, de acuerdo con los años de servicio y el tipo de agua utilizada.

Sustituyendo los valores correspondientes en la ecuación 3.5

$$\varepsilon_t = 0.0015 + (0.025 \times 15) = 0.3765 \,\mathrm{mm}$$

El factor de fricción f es función del número de Reynolds y en el caso de un conducto cilíndrico a presión, este número se define como

$$R_e = \frac{VD}{v} \tag{3.6}$$

Donde V es la velocidad media, D es el diámetro del conducto y v la viscosidad cinemática del fluido.

De la ecuación de continuidad Q = VA, la velocidad V = Q/A, por lo cual

$$V = \frac{0.00376}{0.003167} = 1.1872 \text{ m/s}$$

La viscosidad cinemática del fluido v, se obtiene de la figura 3.4, para una temperatura promedio de 20° C.

$$v = 1 \times 10^{-6} \text{ m}^2/\text{s}$$

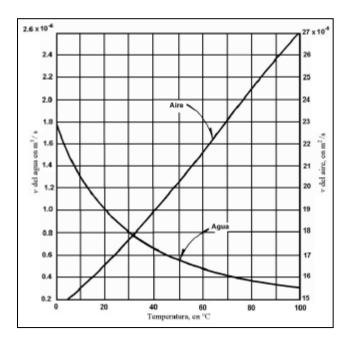


Figura 3.4. Viscosidad cinemática del agua y del aire a la presión atmosférica del nivel del mar

Una vez determinada la velocidad y la viscosidad cinemática del fluido, y sustituyendo estos valores en la ecuación 3.6, el número de Reynolds tomó el siguiente valor

$$R_e = \frac{(1.1872 \times 0.0635)}{1 \times 10^{-6}} = 75,387.2$$

A partir del diagrama de Moody (figura 3.5), y con la rugosidad relativa ε/D , se determinó el factor de fricción correspondiente a la tubería del dispositivo experimental

$$\frac{\varepsilon}{D} = \frac{0.3765}{63.5} = 0.00593$$

Del diagrama de Moody con el valor de la relación anterior y el número de Reynolds obtenido anteriormente, el valor del factor de fricción f = 0.035.

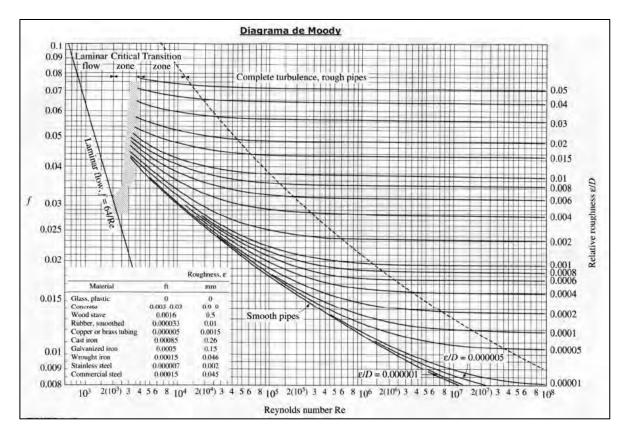


Figura 3.5. Coeficiente de fricción para cualquier tipo y tamaño de tubo; diagrama universal de Moody

Una vez determinado el factor de fricción, se realizó el cálculo de las pérdidas por fricción. Para ello se dividió la tubería en cinco tramos. Como se puede observar en la figura 3.6, se encuentran colocados cinco piezómetros a lo largo de la tubería, y ello permitió establecer los tramos de estudio.

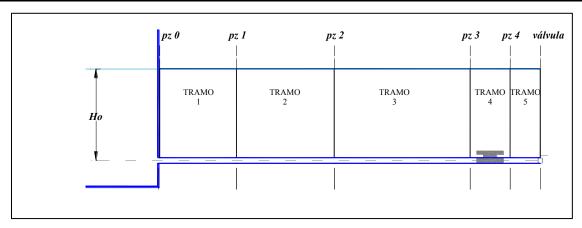


Figura 3.6. Distribución de piezómetros

Como se mencionó anteriormente, se utilizaron tres fórmulas empíricas para calcular las pérdidas por fricción. A continuación se muestra el cálculo realizado con la fórmula de Darcy-Weisbach.

Fórmula de Darcy-Weisbach

Para un flujo permanente, en un tubo de diámetro constante, la línea de cargas piezométricas es paralela a la línea de energía e inclinada en la dirección del movimiento. En 1850, Darcy, Weisbach y otros, dedujeron experimentalmente una fórmula para calcular en un tubo la pérdida por fricción

$$h_f = f \frac{L}{D} \frac{V^2}{2g} \tag{3.7}$$

donde

- f factor de fricción, sin dimensiones;
- g aceleración de la gravedad, en m/s²;
- D diámetro, en m;
- L longitud del tubo, en m;
- h_f pérdida por fricción, en m;
- V velocidad media, en m/s.

En la siguiente tabla, se muestran las pérdidas por fricción calculadas con la fórmula de Darcy-Weisbach

Tabla 3.5. Pérdidas por fricción con la fórmula de Darcy-Weisbach

	Longitud <i>L</i>	Factor de fricción f	f L/D	h_f
	(m)			(m)
Tramo 1	0.88	0.035	0.485	0.035
Tramo 2	1.1	0.035	0.606	0.044
Tramo 3	1.53	0.035	0.843	0.061
Tramo 4	0.45	0.035	0.248	0.018
Tramo 5	0.34	0.035	0.187	0.013
Total	4.3			0.170

Fórmula de Manning-Strickler

La fórmula de Manning es

$$V = \frac{1}{n} R_h^{2/3} S_f^{1/2} \tag{3.8}$$

donde

V velocidad media, en m/s;

 R_h radio hidráulico, en m;

 S_f pendiente de fricción;

n factor de rugosidad, depende del material de la tubería.

Si se despeja la pendiente de fricción de la ecuación 3.8, resulta

$$S_f = \left(\frac{Vn}{R_h^{2/3}}\right)^2 \tag{3.9}$$

Si S_f representa la relación entre la pérdida de energía y la longitud del tubo en que esta ocurre

$$S_f = \frac{h_f}{L} \tag{3.10}$$

De donde

$$h_f = S_f L \tag{3.11}$$

A partir de estas definiciones, en la tabla 3.6 se presentan los resultados obtenidos con la fórmula de Manning-Strickler.

Tabla 3.6. Pérdidas por fricción con la fórmula de Manning-Strickler

	L	N	S_f	h_f
	(m)			(m)
Tramo 1	0.88	0.01	0.035	0.031
Tramo 2	1.1	0.01	0.035	0.039
Tramo 3	1.53	0.01	0.035	0.054
Tramo 4	0.45	0.01	0.035	0.016
Tramo 5	0.34	0.01	0.035	0.012
Total	4.3			0.152

Fórmula de Hazen-Williams

$$h_f = 10.674 \left[\frac{Q^{1.852}}{C^{1.852}D^{4.871}} \right] L \tag{3.12}$$

donde

 h_f pérdida por fricción;

C depende del material del tubo, (tabla 3.7);

D diámetro de la tubería, en m;

L longitud de la tubería, en m.

Tabla 3.7. Valores de CH, Δ , m, n, y N de acuerdo con el material de que está construido el tubo

Material	C_H	Δ	m	N	N
Acero corrugado	60	-	-	-	-
Acero con juntas lock-bar (nuevo)	135	-	-	-	-
Acero galvanizado (nuevo y usado)	125	-	-	0.014	-
Acero remachado (nuevo)	110	-	-	0.015 a 0.016	31
Acero remachado (usado)	85	-	-	-	28 a 26
Acero soldado o con remache avellanado y embutido (nuevo)	120	-	-	0.012 a 0.013	34
Acero soldado o con remache avellanado y embutido (usado)	90	-	-	-	31 a 27
Acero sin costura (nuevo)	-	0.10	0.25	-	38
Acero sin costura (usado)	-	-	0.35	-	36
Acero soldado, con revestimiento especial (nuevo y usado)	130	-	-	-	-
Fierro fundido limpio (nuevo)	130	0.16	0.25	0.013	35
Fierro fundido, sin incrustaciones (usado)	110	0.23	0.275	-	-
Fierro fundido, con incrustaciones (viejo)	90	0.36	0.35	-	30
Plástico	150	-	-	-	-
Asbesto – cemento (nuevo)	135	0.06	-	-	-
Cobre y latón	130	-	-	-	-
Conductos con acabado interior de cemento pulido	100	-	0.10	-	-
Concreto, acabado liso	130	-	0.20	-	38
Concreto, acabado común	120	0.18	-	-	-
Concreto monolítico, colado con cimbras deslizantes (D>1.25 m)	-	-	-	0.010 a 0.011	-
Concreto monolítico bien cimbrado y pulido (D>1.25 m)	-	-	-	0.011 a 0.0123	-
Concreto monolítico bien cimbrado y sin pulir (D>1.25 m)	-	-	-	0.014 a 0.015	-
Concreto con acabado tosco (D>1.25 m)	-	-	-	0.015 a 0.017	27 a 26
Concreto con juntas de macho y campana (D>0.8 m)	-	-	-	0.0105 a 0.012	-
Concreto con juntas toscas (D>0.5 m)	-	-	-	0.0125 a 0.014	30
Concreto con juntas toscas (D<0.5 m)	-	-	-	0.014 a 0.017	-
Conductos para alcantarillado	-	-	-	-	28
Tubos de barro vitrificado (drenes)	110	-	-	0.011	34
Túneles perforados en roca sin revestimiento	-	-	-	0.025 a 0.040	-
Madera cepillada o en duelas	120	-	0.10	0.0105 a 0.012	-

En la tabla 3.8 se muestran los resultados obtenidos con la fórmula de Hazen-Williams.

Tabla 3.8. Pérdidas por fricción con la fórmula de Hazen-Williams

	L	<i>C</i>	h_f
	(m)		(m)
Tramo 1	0.88	130	0.0250
Tramo 2	1.1	130	0.0313
Tramo 3	1.53	130	0.0435
Tramo 4	0.45	130	0.0128
Tramo 5	0.34	130	0.0097
Total	4.3		0.1223

A continuación se muestra una tabla resumen con los resultados obtenidos para las pérdidas por fricción calculadas con los diferentes criterios.

Tabla 3.9. Tabla resumen. Pérdidas por fricción

	Pérdidas por fricción h _f , en m				
	Darcy-Weisbach	Manning	Hazen-Williams		
Tramo 1	0.0348	0.0311	0.0250		
Tramo 2	0.0435	0.0388	0.0313		
Tramo 3	0.0606	0.0540	0.0435		
Tramo 4	0.0178	0.0159	0.0128		
Tramo 5	0.0135	0.0120	0.0097		
Total	0.1702	0.1518	0.1223		

3.7 Pérdidas locales

Las tuberías que se utilizan están compuestas, generalmente por tramos rectos y curvos para ajustarse a los accidentes topográficos del terreno, así como a los cambios que se presentan en la geometría de la sección y de los distintos dispositivos para el control de las descargas (accesorios). Estos cambios originan pérdidas de energía, distintas a las de fricción, localizadas en el sitio mismo del cambio de geometría o de la alteración del flujo. Tal tipo de pérdida se conoce como *pérdida local* o por accesorio. Su magnitud se expresa como una fracción de la carga de velocidad,

inmediatamente aguas abajo del sitio donde se produjo la pérdida; la expresión general de pérdida local es

$$h = K \frac{V^2}{2g} \tag{3.13}$$

donde

h pérdida de energía, en m,

K coeficiente sin dimensiones que depende del tipo de accesorio que se trate, del número de Reynolds y de la rugosidad del tubo,

 $V^2/2g$ la carga de velocidad, aguas abajo, de la zona de alteración del flujo (salvo aclaración en contrario) en m.

En los siguientes apartados, se presentan los valores del coeficiente K, de acuerdo con el tipo de perturbación que se presenta en el dispositivo del Laboratorio.

a) Pérdida por entrada

A la entrada de las tuberías se produce una pérdida por el efecto de contracción que sufre la vena líquida y la formación de zonas de separación; el coeficiente *K* depende, principalmente, de la brusquedad con que se efectúa la contracción del chorro.

En la figura 3.7 se observan diferentes formas de entrada a tuberías, sin embargo, observando la entrada a la tubería del dispositivo experimental (fotografía 3.2), se asemeja a la que se muestra en la figura 3.7a.

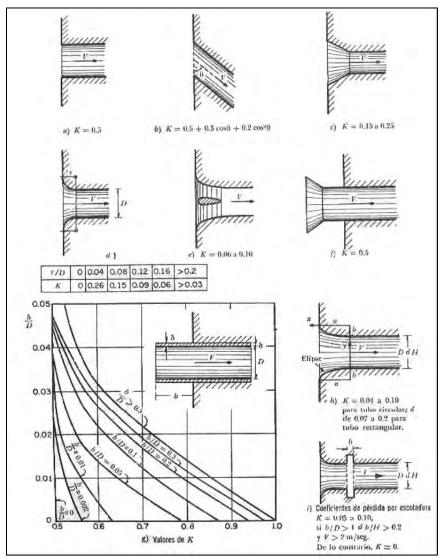


Figura 3.7. Coeficientes de pérdida -por entrada- para diferentes formas

Fotografía 3.2. Entrada a la tubería del dispositivo experimental

De esta forma, el valor de K por entrada, es

$$K = 0.5$$

b) Pérdidas por bifurcación

La pérdida de energía en una bifurcación de conductos depende –además del ángulo que forma la tubería secundaria con la principal- de la relación entre los diámetros de ambas tuberías y de la dirección de la corriente. Dicha pérdida es mayor en la unión que en la bifurcación y se expresa como un porcentaje de la carga de velocidad, lo que demuestra que el coeficiente K es independiente del número de Reynolds.

En el dispositivo experimental, se encuentra instalada una T bridada de 2.5 pulgadas de diámetro (elemento 7, figura 3.1), la cual origina una pérdida local en el último tramo de la tubería.

Para determinar el valor del coeficiente se calculó la carga total antes y después del accesorio en las condiciones de flujo permanente y se obtuvo experimentalmente un valor K = 1.7.

Con los coeficientes por entrada y por bifurcación, se determinaron las pérdidas locales correspondientes, en la siguiente tabla 3.10 se muestran los resultados.

Pérdida por Coefic. Coefic. Pérdida a la bifurcación bifurcación entrada entrada \overline{V} $V^2/2g$ K K h_e h_b (m/s)(m) (m) (m) 1.1872 0.0718 0.5 1.7 0.0359 0.1221

Tabla 3.10. Pérdidas locales

Al sumar las pérdidas por fricción y las pérdidas locales se obtuvo la pérdida total en la tubería. En seguida se muestran los resultados correspondientes a cada una de las fórmulas utilizadas.

Utilizando las pérdidas por fricción calculadas con la fórmula de Darcy-Weisbach y tomando en cuenta la carga de velocidad, se obtuvieron las pérdidas totales y las cargas piezométricas correspondientes, cuyos valores se muestran en las tablas 3.11 y 3.12.

Tabla 3.11. Pérdida total con la fórmula de Darcy-Weisbach

Pérdida tota	Pérdida total h_r , en m				
Tramo 1	0.0707				
Tramo 2	0.1143				
Tramo 3	0.1748				
Tramo 4	0.3147				
Tramo 5	0.3282				

Tabla 3.12. Carga piezométrica (Fórmula de Darcy-Weisbach)

	Carga Piezométrica					
	h_{pz1}	h_{pz2}	h_{pz3}	h_{pz4}	H_{ov}	
	(m)	(m)	(m)	(m)	(m)	
Calculado	0.857	0.814	0.753	0.613	0.600	
Medido	0.86	0.81	0.755	0.61	-	

Utilizando las pérdidas por fricción calculadas con la fórmula de Manning y de igual manera tomando en cuenta la carga de velocidad, se obtuvieron los siguientes resultados

Tabla 3.13. Pérdida total con la fórmula de Manning

Pérdida total h_r , en m			
Tramo 1	0.0670		
Tramo 2	0.1058		
Tramo 3	0.1599		
Tramo 4	0.2978		
Tramo 5	0.3098		

Tabla 3.14. Carga piezométrica (Fórmula de Manning)

	Carga Piezométrica				
	h_{pz1}	h_{pz2}	h_{pz3}	h_{pz4}	H_{ov}
	(m)	(m)	(m)	(m)	(m)
Calculado	0.861	0.822	0.768	0.630	0.618
Medido	0.86	0.81	0.755	0.61	-

Por último, los resultados obtenidos con la fórmula de Hazen-Williams, se presentan a continuación

Tabla 3.15. Pérdida total con la fórmula de Hazen-Williams

Pérdida total h_r , en m			
Tramo 1	0.0609		
Tramo 2	0.0922		
Tramo 3	0.1358		
Tramo 4	0.2706		
Tramo 5	0.2803		

Tabla 3.16. Carga piezométrica (Fórmula de Hazen-Williams)

	Carga Piezométrica				
	h_{pz1}	h_{pz2}	h_{pz3}	h_{pz4}	H_{ov}
	(m)	(m)	(m)	(m)	(m)
Calculado	0.867	0.836	0.792	0.658	0.648
Medido	0.86	0.81	0.755	0.61	-

De los resultados mostrados en las tablas 3.9 a 3.14, se puede observar que con la fórmula de Darcy-Weisbach y con el ajuste de los coeficientes de pérdidas locales, se obtuvieron cargas piezométricas muy cercanas a las medidas en el dispositivo experimental.

En las figuras 3.8a, 3.8b y 3.8c se muestra la línea piezométrica medida y calculada con las diferentes fórmulas.

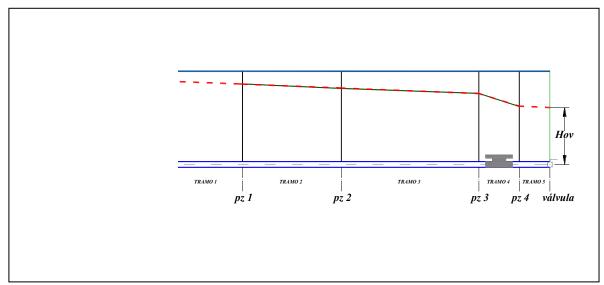


Figura 3.8a. Línea de cargas piezométricas (Fórmula de Darcy-Weisbach)

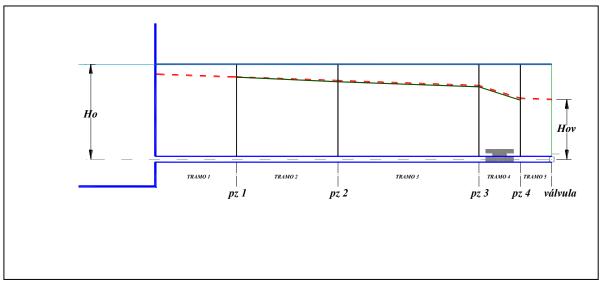


Figura 3.8b. Línea de cargas piezométricas (Fórmula de Manning)

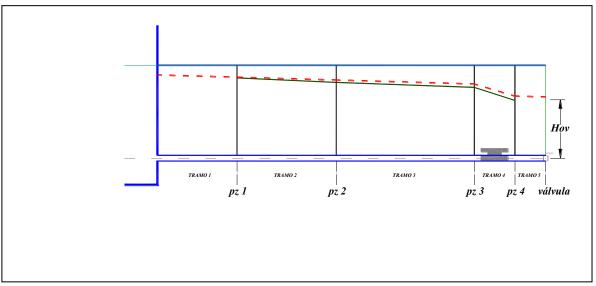


Figura 3.8c. Línea de cargas piezométricas (Fórmula de Hazen-Williams)

3.8 Ley para maniobra de cierre no uniforme

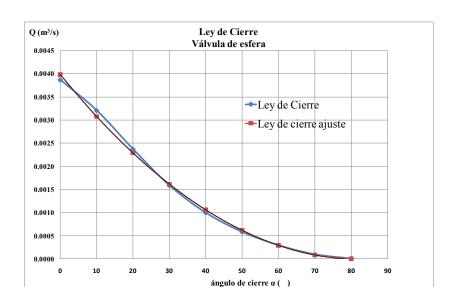
La ley de cierre se determinó de forma experimental. Esta ley de cierre no uniforme consiste en una relación entre el gasto medido con la válvula totalmente abierta y el gasto medido para un cierre parcial de la válvula y luego asociarla a un tiempo de cierre.

Para determinar la relación entre gastos se implementó un dispositivo de apoyo para medir el ángulo de cierre de la válvula. Este dispositivo de apoyo consistió en colocar sobre la válvula una

base de acrílico con una graduación de 0° a 90°, ya que éste es el intervalo en el que el maneral de la válvula alcanza el cierre o la apertura total.

En el vertedor triangular de aforos se registraron los siguientes datos, de acuerdo al ángulo de cierre.

Tabla 3.17. Mediciones en vertedor triangular


Cierre	N_c	N _{sa}
(°)	(m)	(m)
0	0.2479	0.3809
10	0.2479	0.3709
20	0.2479	0.3568
30	0.2479	0.3403
40	0.2479	0.3244
50	0.2479	0.3089
60	0.2479	0.2939
70	0.2479	0.2768
80	0.2479	0.2479

Con los datos de la tabla 3.17, se determinó el gasto correspondiente a cada ángulo de cierre. El procedimiento de cálculo para determinar el gasto fue el mismo que se utilizo al calcular el gasto en flujo permanente. Los resultados se muestran a continuación, en la tabla 3.18.

Tabla 3.18. Gasto – Ángulo de cierre

Cierre	h	g	θ	В	μ	B/h	K	C	Q
(°)	(m)	(m^2/s)	(°)	(m)				$\left(\mathbf{m}^{1/2}/\mathbf{s}\right)$	(m^3/s)
0	0.13	9.81	45	1.7	0.613	12.782	1	0.5998	0.0039
10	0.12	9.81	45	1.7	0.618	13.821	1	0.6047	0.0032
20	0.11	9.81	45	1.7	0.619	15.611	1	0.6057	0.0024
30	0.09	9.81	45	1.7	0.624	18.398	1	0.6106	0.0016
40	0.08	9.81	45	1.7	0.628	22.222	1	0.6145	0.0010
50	0.06	9.81	45	1.7	0.644	27.869	1	0.6302	0.0006
60	0.05	9.81	45	1.7	0.654	36.957	1	0.6400	0.0003
70	0.03	9.81	45	1.7	0.676	58.824	1	0.6615	0.0001
80	0.00	9.81	45	1.7	0	-	1	0	0

Con la medición de estos gastos, se realizó una curva de gastos en función del ángulo de cierre de la válvula (figura 3.9). En seguida, esta curva se ajustó a una ecuación general.

 $Q = 0.0000005790\alpha^2 - 0.0000963008\alpha + 0.0039831151$ (3.14)

Figura 3.9. Curva de gastos en función del ángulo de cierre de la válvula

La finalidad de la ecuación 3.14, es conocer el gasto para cualquier ángulo de cierre, aunque cabe destacar que el cierre total de la válvula se produjo entre 80° y 82°. Utilizando esta ecuación de ajuste, se recalculó el gasto en función del ángulo de cierre y los resultados se muestran en la tabla 3.19.

α	Q
(°)	(m ³ /s)
0	0.00398
10	0.00308
20	0.00229
30	0.00162
40	0.00106
50	0.00062
60	0.00029
70	0.00008
80	0

Tabla 3.19. Gastos de acuerdo a ecuación de ajuste

Con los gastos de la tabla 3.19, se obtuvo la relación $\tau = Q/Q_0$, donde Q_0 es el gasto que pasa a través de la válvula totalmente abierta. Esta relación se observa en la tabla 3.20.

Tabla 3.20. Relación τ

а	τ
(°)	
0	1.0000
10	0.7728
20	0.5746
30	0.4055
40	0.2655
50	0.1545
60	0.0727
70	0.0199
80	0.0000

Cuando la ley de cierre no es uniforme, se tiene una variación de τ con respecto al tiempo de cierre (t_c). Por otra parte, se tiene la experiencia de utilizar un tiempo de cierre de un segundo cuando se realiza la práctica *Golpe de Ariete* utilizando como método de solución a las cadenas de Allievi. Sin embargo, es importante mencionar que la ley de cierre utilizada en dicha práctica es una ley de cierre lineal. En este caso se utilizaron tiempos de cierre diferentes, con el fin de observar la relación entre las cargas piezométricas cuando se presenta el flujo transitorio y el tiempo de cierre correspondiente.

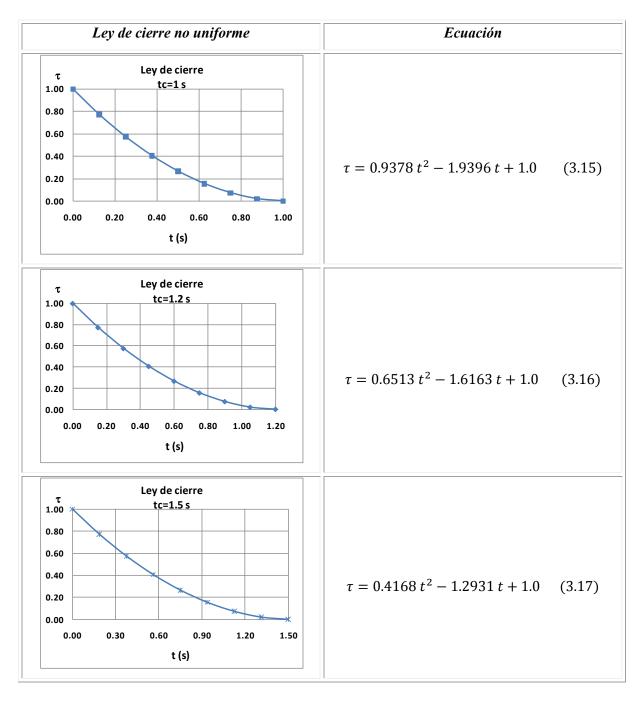

Los tiempos de cierre utilizados fueron $t_c = 1.0$ segundos, $t_c = 1.2$ segundos y $t_c = 1.5$ segundos. La ley de cierre para cada uno de estos tiempos, con respecto al ángulo de cierre, se muestra en la siguiente tabla.

Tabla 3.21. Ley de cierre

α	τ	$t_c = 1.0$	$t_c = 1.2$	$t_c = 1.5$
(°)		(s)	(s)	(s)
0	1.0000	0	0	0
10	0.7728	0.1250	0.1500	0.1875
20	0.5746	0.2500	0.3000	0.3750
30	0.4055	0.3750	0.4500	0.5625
40	0.2655	0.5000	0.6000	0.7500
50	0.1545	0.6250	0.7500	0.9375
60	0.0727	0.7500	0.9000	1.1250
70	0.0199	0.8750	1.0500	1.3125
80	0.0000	1	1.2	1.5

Por último se realizó la gráfica τ - t_c y se hizo un ajuste a la curva, obteniendo la ecuación de la ley de cierre no uniforme. Estos gráficos y su correspondiente ecuación de ajuste se muestran a continuación.

Tabla 3.22. Ley de cierre no uniforme

Para determinar la relación entre el área de la válvula totalmente abierta y el área para cada ángulo de cierre, se hizo una medición en un dispositivo como el mostrado en la fotografía 3.3.

Fotografía 3.3. Dispositivo de medición de apertura de válvula

El procedimiento consistió en tomar fotografías del área de la válvula que se iba obturando para cada ángulo de cierre. Se realizó en intervalos de 10°. En las siguientes fotografías se puede observar más claramente.

Aunque la relación entre áreas que finalmente se obtuvo no se utilizó directamente para determinar la ley de cierre, puede funcionar para determinar coeficientes de pérdida para válvulas de esfera. La tabla que a continuación se muestra es parte de una recopilación de información bibliográfica y contiene coeficientes de pérdida para válvulas esféricas en función de la relación de áreas.

Tabla 3.23. Coeficientes de pérdida para válvulas esféricas

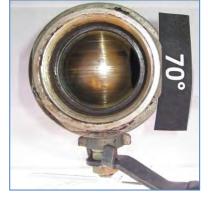
θ°	K	A/A_0
5	0.05	0.926
10	0.29	0.85
15	0.75	0.772
20	1.56	0.692
25	3.1	0.613
30	5.17	0.535
35	9.68	0.458
40	17.3	0.358
45	31.2	0.315
50	52.6	0.25
55	106	0.19
60	206	0.137
65	486	0.091
82		0

Fotografía 3.4. Totalmente abierta

Fotografía 3.5. Cierre 10°

Fotografía 3.6. Cierre 20°

Fotografía 3.7. Cierre 30°



Fotografía 3.8. Cierre 40°

Fotografía 3.9. Cierre 50°

Fotografía 3.10. Cierre 60°

Fotografía 3.11. Cierre 70°

Fotografía 3.12. Cierre 80°

Se trasladaron las fotografías al programa Autocad y se determinaron las áreas correspondientes (fígura 3.10), mismas que se muestran en la tabla 3.24.

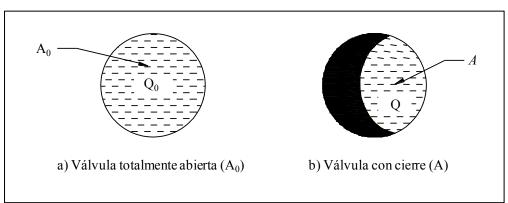


Figura 3.10. Válvula totalmente abierta y cierre parcial

Tabla 3.24. Relación de áreas

α	A	A/A_0
(°)	(m2)	
0	0.0032	1.0000
10	0.0027	0.8551
20	0.0021	0.6684
30	0.0018	0.5693
40	0.0014	0.4466
50	0.0009	0.2722
60	0.0005	0.1595
70	0.0002	0.0529
80	0.0000	0.0000

Al comparar las tablas 3.21 y 3.22, se observó que varían en un pequeño porcentaje las relaciones A/A_0 , lo que permite establecer que los datos experimentales que se obtuvieron para la válvula del caso de estudio son adecuados.

Una vez determinada la ley de cierre no uniforme, se dio solución al caso de estudio aplicando dos procedimientos: utilizando las ecuaciones de Allievi y el método de las características. Cabe mencionar que al utilizar las ecuaciones de Allievi, se utilizó una ley de cierre lineal y al utilizar el método de las características se usó la ley de cierre no uniforme obtenida. Es por ello la importancia de utilizar el método de las características, ya que da la oportunidad de analizar el fenómeno del golpe de ariete de manera más cercana a la realidad.

3.9 Solución aplicando el método de Allievi

A continuación se presenta la solución para el caso de estudio mediante el método de las cadenas de Allievi. Anteriormente se determinaron las condiciones iniciales, el valor de la celeridad de la onda, así como el periodo de la onda de presión. En seguida se presentan algunos cálculos previos también necesarios para aplicar este método.

Se calculó la relación entre el tiempo de maniobra t_c y el periodo de la onda de presión T, considerando que el tiempo de la maniobra fue de un segundo.

$$\theta = \frac{t_c}{T} \tag{3.18}$$

Lo que resulta

$$\theta = \frac{1.0}{0.00747} = 133.86$$

Se debe cerrar al número entero siguiente. Por lo tanto $\theta = 134$

Posteriormente, el objetivo fue calcular la carga de presión H_i y la sobrepresión ΔH_i en m, en la sección cercana a la válvula, aplicando las ecuaciones de Allievi y considerando una ley de cierre lineal, con la ecuación

$$H_i = H_0 \xi_i^2$$

donde:

 H_i carga de presión correspondiente a cada instante relativo i = t/T del cierre en la válvula, en m:

 H_0 carga de presión medida en la sección 0 con la válvula cerrada, en m;

 ΔH_i sobrepresión en cada instante relativo del cierre, en m;

$$\Delta H_i = H_i - H_0$$

 ξ_i relación de cargas en cada instante relativo del cierre; se obtiene con la expresión de Allievi.

$$\xi_i = \sqrt{\frac{H_i}{H_0}}$$

Con estos antecedentes, se planteó la solución mediante la siguiente forma.

Como se explicó en el capítulo 2, la ecuación 2.82 es la ecuación propuesta por Allievi, misma que reescribiremos como

$$\xi_i^2 + \xi_{i-1}^2 - 2 = 2\epsilon(\tau_{i-1}\xi_{i-1} - \tau_i\xi_i)$$
(3.19)

Para su solución en cadena, es más conveniente despejar a la relación de cargas ξ_i .

$$\xi_i = -\epsilon \tau_i + \sqrt{(\epsilon \tau_i)^2 + 2(1 + \epsilon \tau_{i-1} \xi_{i-1}) - \xi_{i-1}^2}$$
(3.20)

donde:

 ξ_{i-1} relación de cargas en el instante inicial del intervalo de análisis, según la ley de cierre;

- ξ_i relación de cargas en el instante final del periodo T, según la ley de cierre. Para el primer instante $\xi_0 = \sqrt{\frac{H_0}{H_0}} = 1$
- ϵ Constante de Allievi $\epsilon = \frac{aV_0}{2gH_0}$
- g aceleración de la gravedad, en m/s²;
- V_0 velocidad a la salida de la tubería antes del cierre, en m/s;
- τ_i ley lineal de cierre lento que se muestra en la figura 3.11 y que tiene por ecuación

$$\tau_i = 1 - \frac{i}{\theta}$$

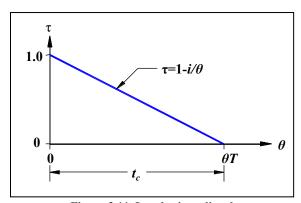


Figura 3.11. Ley de cierre lineal

3.9.1 Resultados

Siguiendo el procedimiento anterior, se obtuvo la variación de la carga de presión con respecto al tiempo para los instantes i=0, i=1, i=2 e i=3, correspondientes a un tiempo de cierre de un segundo.

Para i = 0

$$t_i = iT;$$
 $t_0 = 0 \times 0.00748 \text{ s}$

$$\tau_i = 1 - \frac{i}{\theta};$$
 $\tau_0 = 1 - \frac{0}{134} = 1$

$$\xi_i = \sqrt{\frac{H_0}{H_0}} = 1$$

$$H_i = H_0 \xi_i^2;$$
 $H_0 = 1 \times 1^2 = 1 \text{ m}$

$$\Delta H_i = H_i - H_0;$$
 $\Delta H_0 = H_0 - H_0;$ $\Delta H_0 = 1 - 1 = 0 \text{ m}$

Para i=1

$$\xi_{1} = -\epsilon \tau_{1} + \sqrt{(\epsilon \tau_{1})^{2} + 2(1 + \epsilon \tau_{0} \xi_{0}) - {\xi_{0}}^{2}}$$

$$\epsilon = \frac{aV_{0}}{2gH_{0}}; \qquad \epsilon = \frac{1150.17 \times 1.19}{2 \times 9.81 \times 1} = 69.569$$

$$\tau_{1} = 1 - \frac{1}{134} = 0.9925373$$

$$\tau_{0} = 1$$

$$\xi_{0} = 1$$

Sustituyendo valores,

$$\xi_1 = -(69.569 \times 0.9925373) + \sqrt{(69.569 \times 0.9925373)^2 + 2(1 + (69.569 \times 1)(1)) - 1^2}$$
 $\xi_1 = 1.007411$
 $H_1 = H_0 \xi_1^2; \qquad H_1 = 1 \times 1.007411^2 = 1.0148 \text{ m}$
 $\Delta H_1 = H_1 - H_0; \qquad \Delta H_1 = 1.0148 - 1 = 0.0148 \text{ m}$

Para i=2

$$\xi_2 = -\epsilon \tau_2 + \sqrt{(\epsilon \tau_2)^2 + 2(1 + \epsilon \tau_1 \xi_1) - {\xi_1}^2}$$

$$\epsilon = \frac{aV_0}{2gH_0}; \qquad \epsilon = \frac{1150.17 \times 1.19}{2 \times 9.81 \times 1} = 69.569$$

$$\tau_2 = 1 - \frac{2}{134} = 0.9850746$$

$$\tau_1 = 0.9925373$$

$$\xi_1 = 1.007411$$

Sustituyendo valores,

$$\xi_2 = -(69.569 \times 0.9850746) + \sqrt{(69.569 \times 0.9850746)^2 + 2(1 + (69.569 \times 0.9925373)(1.007411)) - 1.007411^2}$$

$$\xi_2 = 1.0147$$

$$H_2 = H_0 \xi_2^2$$
; $H_2 = 1 \times 1.0147^2 = 1.0296 \text{ m}$
 $\Delta H_2 = H_2 - H_0$; $\Delta H_2 = 1.0296 - 1 = 0.0296 \text{ m}$

Para i=3

$$\xi_3 = -\epsilon \tau_3 + \sqrt{(\epsilon \tau_2)^2 + 2(1 + \epsilon \tau_2 \xi_2) - {\xi_2}^2}$$

$$\epsilon = \frac{aV_0}{2gH_0}; \qquad \epsilon = \frac{1150.17 \times 1.19}{2 \times 9.81 \times 1} = 69.569$$

$$\tau_3 = 1 - \frac{3}{134} = 0.97761194$$

$$\tau_2 = 0.9850746$$

$$\xi_2 = 1.0147$$

Sustituyendo valores,

$$\xi_3 = -(69.569 \times 0.97761194) + \sqrt{(69.569 \times 0.97761194)^2 + 2(1 + (69.569 \times 0.9850746)(1.0147)) - (1.0147)^2}$$

$$\xi_3 = 1.0219$$

$$H_3 = H_0 \xi_3^2; \qquad H_2 = 1 \times 1.0219^2 = 1.044 \text{ m}$$

$$\Delta H_3 = H_3 - H_0; \qquad \Delta H_3 = 1.044 - 1 = 0.044 \text{ m}$$

En seguida se muestra la totalidad de los resultados de la variación de la carga de presión para los tiempos de cierre de 1 s, 1.2 s y 1.5 s en las tablas 3.25a, 3.25c y 3.25e y su representación gráfica en las figuras 3.12a, 3.12b y 3.12c, respectivamente.

Tabla 3.25a. Variación de $H(t_c = 1.0 \text{ s})$

i	t	$ au_i$	ξ_i	Н	ΔН
	(m)			(m)	(m)
0	0	1	1	1	0
1	0.00748	0.99254	1.00741	1.01488	0.01488
2	0.01495	0.98507	1.01472	1.02965	0.02965
3	0.02243	0.97761	1.02192	1.04432	0.04432
4	0.02991	0.97015	1.02902	1.05888	0.05888
5	0.03739	0.96269	1.03601	1.07331	0.07331
6	0.04486	0.95522	1.04289	1.08762	0.08762
7	0.05234	0.94776	1.04966	1.10180	0.10180
8	0.05982	0.94030	1.05633	1.11584	0.11584
9	0.06729	0.93284	1.06289	1.12974	0.12974
10	0.07477	0.92537	1.06934	1.14349	0.14349
11	0.08225	0.91791	1.07568	1.15709	0.15709
12	0.08973	0.91045	1.08191	1.17053	0.17053
13	0.09720	0.90299	1.08803	1.18381	0.18381
14	0.10468	0.89552	1.09404	1.19693	0.19693
15	0.11216	0.88806	1.09995	1.20988	0.20988
16	0.11963	0.88060	1.10574	1.22265	0.22265
17	0.12711	0.87313	1.11142	1.23525	0.23525
18	0.13459	0.86567	1.11699	1.24767	0.24767
19	0.14207	0.85821	1.12245	1.25990	0.25990
20	0.14954	0.85075	1.12781	1.27194	0.27194
21	0.15702	0.84328	1.13305	1.28380	0.28380
22	0.16450	0.83582	1.13818	1.29546	0.29546
23	0.17197	0.82836	1.14321	1.30693	0.30693
24	0.17945	0.82090	1.14813	1.31821	0.31821
25	0.18693	0.81343	1.15294	1.32928	0.32928
26	0.19441	0.80597	1.15765	1.34015	0.34015
27	0.20188	0.79851	1.16225	1.35082	0.35082

Tabla 3.25a. Variación de $H(t_c = 1.0 \text{ s})$ (Continuación)

i	t	$ au_i$	ξ_i	Н	ΔН
	(m)			(m)	(m)
28	0.20936	0.79104	1.16674	1.36129	0.36129
29	0.21684	0.78358	1.17113	1.37156	0.37156
30	0.22431	0.77612	1.17542	1.38161	0.38161
31	0.23179	0.76866	1.17960	1.39147	0.39147
32	0.23927	0.76119	1.18369	1.40111	0.40111
33	0.24675	0.75373	1.18767	1.41055	0.41055
34	0.25422	0.74627	1.19155	1.41978	0.41978
35	0.26170	0.73881	1.19533	1.42880	0.42880
36	0.26918	0.73134	1.19901	1.43762	0.43762
37	0.27665	0.72388	1.20259	1.44623	0.44623
38	0.28413	0.71642	1.20608	1.45464	0.45464
39	0.29161	0.70896	1.20948	1.46284	0.46284
40	0.29909	0.70149	1.21278	1.47083	0.47083
41	0.30656	0.69403	1.21599	1.47863	0.47863
42	0.31404	0.68657	1.21910	1.48622	0.48622
43	0.32152	0.67910	1.22213	1.49361	0.49361
44	0.32899	0.67164	1.22507	1.50080	0.50080
45	0.33647	0.66418	1.22792	1.50779	0.50779
46	0.34395	0.65672	1.23069	1.51459	0.51459
47	0.35143	0.64925	1.23337	1.52119	0.52119
48	0.35890	0.64179	1.23596	1.52760	0.52760
49	0.36638	0.63433	1.23848	1.53382	0.53382
50	0.37386	0.62687	1.24091	1.53986	0.53986
51	0.38133	0.61940	1.24326	1.54571	0.54571
52	0.38881	0.61194	1.24554	1.55137	0.55137
53	0.39629	0.60448	1.24774	1.55686	0.55686
54	0.40377	0.59701	1.24987	1.56217	0.56217

Tabla 3.25a. Variación de $H(t_c = 1.0 \text{ s})$ (Continuación)

i	t	$ au_i$	ξ_i	Н	ΔН
	(m)			(m)	(m)
55	0.41124	0.58955	1.25192	1.56730	0.56730
56	0.41872	0.58209	1.25390	1.57226	0.57226
57	0.42620	0.57463	1.25581	1.57706	0.57706
58	0.43367	0.56716	1.25765	1.58168	0.58168
59	0.44115	0.55970	1.25942	1.58614	0.58614
60	0.44863	0.55224	1.26113	1.59044	0.59044
61	0.45611	0.54478	1.26277	1.59459	0.59459
62	0.46358	0.53731	1.26435	1.59858	0.59858
63	0.47106	0.52985	1.26587	1.60241	0.60241
64	0.47854	0.52239	1.26732	1.60611	0.60611
65	0.48601	0.51493	1.26872	1.60965	0.60965
66	0.49349	0.50746	1.27006	1.61305	0.61305
67	0.50097	0.50000	1.27135	1.61632	0.61632
68	0.50845	0.49254	1.27258	1.61945	0.61945
69	0.51592	0.48507	1.27375	1.62245	0.62245
70	0.52340	0.47761	1.27488	1.62532	0.62532
71	0.53088	0.47015	1.27596	1.62806	0.62806
72	0.53835	0.46269	1.27698	1.63068	0.63068
73	0.54583	0.45522	1.27796	1.63319	0.63319
74	0.55331	0.44776	1.27890	1.63558	0.63558
75	0.56079	0.44030	1.27979	1.63785	0.63785
76	0.56826	0.43284	1.28063	1.64002	0.64002
77	0.57574	0.42537	1.28144	1.64208	0.64208
78	0.58322	0.41791	1.28220	1.64404	0.64404
79	0.59069	0.41045	1.28293	1.64590	0.64590
80	0.59817	0.40299	1.28361	1.64767	0.64767
81	0.60565	0.39552	1.28427	1.64934	0.64934

Tabla 3.25a. Variación de $H(t_c = 1.0 \text{ s})$ (Continuación)

i	t	$ au_i$	ξ_i	Н	ΔH
	(m)			(m)	(m)
82	0.61313	0.38806	1.28488	1.65092	0.65092
83	0.62060	0.38060	1.28546	1.65242	0.65242
84	0.62808	0.37313	1.28601	1.65383	0.65383
85	0.63556	0.36567	1.28653	1.65516	0.65516
86	0.64303	0.35821	1.28702	1.65641	0.65641
87	0.65051	0.35075	1.28748	1.65759	0.65759
88	0.65799	0.34328	1.28791	1.65870	0.65870
91	0.68042	0.32090	1.28904	1.66162	0.66162
92	0.68790	0.31343	1.28937	1.66247	0.66247
93	0.69537	0.30597	1.28968	1.66326	0.66326
94	0.70285	0.29851	1.28996	1.66400	0.66400
95	0.71033	0.29104	1.29023	1.66468	0.66468
96	0.71781	0.28358	1.29047	1.66532	0.66532
97	0.72528	0.27612	1.29070	1.66590	0.66590
98	0.73276	0.26866	1.29091	1.66645	0.66645
99	0.74024	0.26119	1.29110	1.66694	0.66694
100	0.74771	0.25373	1.29128	1.66740	0.66740
101	0.75519	0.24627	1.29144	1.66782	0.66782
102	0.76267	0.23881	1.29159	1.66820	0.66820
103	0.77015	0.23134	1.29172	1.66855	0.66855
104	0.77762	0.22388	1.29185	1.66887	0.66887
105	0.78510	0.21642	1.29196	1.66916	0.66916
106	0.79258	0.20896	1.29206	1.66942	0.66942
107	0.80005	0.20149	1.29215	1.66965	0.66965
108	0.80753	0.19403	1.29223	1.66986	0.66986

Tabla 3.25a. Variación de $H(t_c = 1.0 \text{ s})$ (Continuación)

i	t	$ au_i$	ξ_i	Н	ΔН
	(m)			(m)	(m)
109	0.81501	0.18657	1.29230	1.67005	0.67005
110	0.82249	0.17910	1.29237	1.67021	0.67021
111	0.82996	0.17164	1.29242	1.67036	0.67036
112	0.83744	0.16418	1.29247	1.67048	0.67048
113	0.84492	0.15672	1.29252	1.67060	0.67060
114	0.85239	0.14925	1.29255	1.67069	0.67069
115	0.85987	0.14179	1.29259	1.67078	0.67078
116	0.86735	0.13433	1.29261	1.67085	0.67085
117	0.87483	0.12687	1.29264	1.67091	0.67091
118	0.88230	0.11940	1.29266	1.67096	0.67096
119	0.88978	0.11194	1.29267	1.67100	0.67100
120	0.89726	0.10448	1.29269	1.67104	0.67104
121	0.90473	0.09701	1.29270	1.67107	0.67107
122	0.91221	0.08955	1.29271	1.67109	0.67109
123	0.91969	0.08209	1.29271	1.67110	0.67110
124	0.92717	0.07463	1.29272	1.67112	0.67112
125	0.93464	0.06716	1.29272	1.67113	0.67113
126	0.94212	0.05970	1.29272	1.67113	0.67113
127	0.94960	0.05224	1.29273	1.67114	0.67114
128	0.95707	0.04478	1.29273	1.67114	0.67114
129	0.96455	0.03731	1.29273	1.67114	0.67114
130	0.97203	0.02985	1.29273	1.67115	0.67115
131	0.97951	0.02239	1.29273	1.67115	0.67115
132	0.98698	0.01493	1.29273	1.67115	0.67115
133	0.99446	0.00746	1.29273	1.67115	0.67115
134	1.00194	0.00000	1.29273	1.67115	0.67115

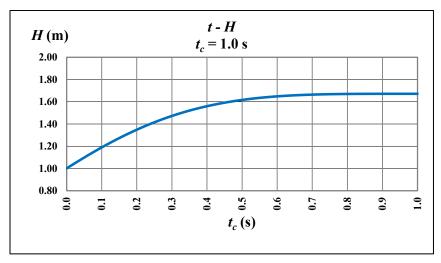


Figura 3.12a. Variación de $H(t_c=1.0 \text{ s})$

Finalmente, de la solución obtenida con las ecuaciones de Allievi, observamos que la carga máxima que se presentó fue

$$H_{m\acute{a}x} = 1.671 \text{ m}$$

y la sobrepresión máxima

$$\Delta H_{m\acute{a}x} = H_{m\acute{a}x} - H$$

$$\Delta H_{\text{máx}} = 1.671 - 1.0 = 0.671 \text{ m}$$

Con la medición realizada se tiene

$$H_{m \acute{a} x} = 1.5 \text{ m}$$

$$\Delta H_{m\acute{a}x} = 1.5 - 0.61 = 0.89 \text{ m}$$

Comparando la carga máxima y la sobrepresión máxima calculada con la medida, obtuvimos los siguientes porcentajes de error.

Tabla 3.25b. Porcentaje de error (t_c =1.0 s)

	Allievi	Medido	% error
$H_{m\acute{a}x}$	1.671	1.5	11%
ΔH	0.671	0.89	25%

Resultados con $t_c = 1.2$ segundos y $t_c = 1.5$ segundos

Para $t_c = 1.2 \text{ s}$

Tabla 3.25c. Variación de $H(t_c = 1.2 \text{ s})$

i	t	τί	ξi	Н	∆Н
	(m)			(m)	(m)
0	0	1	1	1	0
1	0.00748	0.99379	1.00616	1.01236	0.01236
2	0.01495	0.98758	1.01222	1.02459	0.02459
3	0.02243	0.98137	1.01818	1.03669	0.03669
4	0.02991	0.97516	1.02403	1.04865	0.04865
5	0.03739	0.96894	1.02979	1.06047	0.06047
6	0.04486	0.96273	1.03544	1.07214	0.07214
7	0.05234	0.95652	1.04100	1.08367	0.08367
8	0.05982	0.95031	1.04645	1.09506	0.09506
9	0.06729	0.94410	1.05180	1.10629	0.10629
10	0.07477	0.93789	1.05705	1.11736	0.11736
11	0.08225	0.93168	1.06221	1.12828	0.12828
12	0.08973	0.92547	1.06726	1.13904	0.13904
13	0.09720	0.91925	1.07221	1.14964	0.14964
14	0.10468	0.91304	1.07707	1.16008	0.16008
15	0.11216	0.90683	1.08183	1.17035	0.17035
16	0.11963	0.90062	1.08649	1.18046	0.18046
17	0.12711	0.89441	1.09106	1.19040	0.19040
18	0.13459	0.88820	1.09553	1.20018	0.20018
19	0.14207	0.88199	1.09990	1.20978	0.20978
20	0.14954	0.87578	1.10418	1.21922	0.21922
21	0.15702	0.86957	1.10837	1.22848	0.22848
22	0.16450	0.86335	1.11246	1.23758	0.23758
23	0.17197	0.85714	1.11647	1.24650	0.24650
24	0.17945	0.85093	1.12038	1.25525	0.25525
25	0.18693	0.84472	1.12420	1.26383	0.26383
26	0.19441	0.83851	1.12794	1.27224	0.27224
27	0.20188	0.83230	1.13158	1.28048	0.28048

Tabla 3.25c. Variación de $H(t_c = 1.2 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
28	0.20936	0.82609	1.13514	1.28854	0.28854
29	0.21684	0.81988	1.13861	1.29644	0.29644
30	0.22431	0.81366	1.14200	1.30417	0.30417
31	0.23179	0.80745	1.14530	1.31172	0.31172
32	0.23927	0.80124	1.14853	1.31911	0.31911
33	0.24675	0.79503	1.15166	1.32633	0.32633
34	0.25422	0.78882	1.15472	1.33339	0.33339
35	0.26170	0.78261	1.15770	1.34027	0.34027
36	0.26918	0.77640	1.16060	1.34700	0.34700
37	0.27665	0.77019	1.16343	1.35356	0.35356
38	0.28413	0.76398	1.16617	1.35996	0.35996
39	0.29161	0.75776	1.16885	1.36620	0.36620
40	0.29909	0.75155	1.17145	1.37229	0.37229
41	0.30656	0.74534	1.17397	1.37821	0.37821
42	0.31404	0.73913	1.17643	1.38398	0.38398
43	0.32152	0.73292	1.17881	1.38960	0.38960
44	0.32899	0.72671	1.18113	1.39507	0.39507
45	0.33647	0.72050	1.18338	1.40039	0.40039
46	0.34395	0.71429	1.18556	1.40556	0.40556
47	0.35143	0.70807	1.18768	1.41058	0.41058
48	0.35890	0.70186	1.18973	1.41546	0.41546
49	0.36638	0.69565	1.19172	1.42021	0.42021
50	0.37386	0.68944	1.19365	1.42481	0.42481
51	0.38133	0.68323	1.19552	1.42927	0.42927
52	0.38881	0.67702	1.19733	1.43360	0.43360
53	0.39629	0.67081	1.19908	1.43780	0.43780
54	0.40377	0.66460	1.20078	1.44187	0.44187

Tabla 3.25c. Variación de $H(t_c = 1.2 \text{ s})$ (Continuación)

i	t	τί	ζi	Н	ΔН
	(m)			(m)	(m)
55	0.41124	0.65839	1.20242	1.44581	0.44581
56	0.41872	0.65217	1.20400	1.44963	0.44963
57	0.42620	0.64596	1.20554	1.45332	0.45332
58	0.43367	0.63975	1.20702	1.45689	0.45689
59	0.44115	0.63354	1.20845	1.46035	0.46035
60	0.44863	0.62733	1.20983	1.46369	0.46369
61	0.45611	0.62112	1.21116	1.46691	0.46691
62	0.46358	0.61491	1.21245	1.47003	0.47003
63	0.47106	0.60870	1.21369	1.47303	0.47303
64	0.47854	0.60248	1.21488	1.47593	0.47593
65	0.48601	0.59627	1.21603	1.47873	0.47873
66	0.49349	0.59006	1.21714	1.48143	0.48143
67	0.50097	0.58385	1.21820	1.48402	0.48402
68	0.50845	0.57764	1.21923	1.48652	0.48652
69	0.51592	0.57143	1.22022	1.48893	0.48893
70	0.52340	0.56522	1.22116	1.49124	0.49124
71	0.53088	0.55901	1.22208	1.49347	0.49347
72	0.53835	0.55280	1.22295	1.49561	0.49561
73	0.54583	0.54658	1.22379	1.49766	0.49766
74	0.55331	0.54037	1.22459	1.49963	0.49963
75	0.56079	0.53416	1.22537	1.50152	0.50152
76	0.56826	0.52795	1.22611	1.50334	0.50334
77	0.57574	0.52174	1.22681	1.50507	0.50507
78	0.58322	0.51553	1.22749	1.50674	0.50674
79	0.59069	0.50932	1.22814	1.50833	0.50833
80	0.59817	0.50311	1.22876	1.50985	0.50985
81	0.60565	0.49689	1.22935	1.51131	0.51131

Tabla 3.25c. Variación de $H(t_c = 1.2 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	∆Н
	(m)			(m)	(m)
82	0.61313	0.49068	1.22992	1.51270	0.51270
83	0.62060	0.48447	1.23046	1.51403	0.51403
84	0.62808	0.47826	1.23097	1.51530	0.51530
85	0.63556	0.47205	1.23146	1.51650	0.51650
86	0.64303	0.46584	1.23193	1.51766	0.51766
87	0.65051	0.45963	1.23238	1.51875	0.51875
88	0.65799	0.45342	1.23280	1.51980	0.51980
89	0.66547	0.44720	1.23320	1.52079	0.52079
90	0.67294	0.44099	1.23358	1.52173	0.52173
91	0.68042	0.43478	1.23395	1.52263	0.52263
92	0.68790	0.42857	1.23429	1.52347	0.52347
93	0.69537	0.42236	1.23462	1.52428	0.52428
94	0.70285	0.41615	1.23493	1.52504	0.52504
95	0.71033	0.40994	1.23522	1.52576	0.52576
96	0.71781	0.40373	1.23549	1.52644	0.52644
97	0.72528	0.39752	1.23575	1.52709	0.52709
98	0.73276	0.39130	1.23600	1.52770	0.52770
99	0.74024	0.38509	1.23623	1.52827	0.52827
100	0.74771	0.37888	1.23645	1.52881	0.52881
101	0.75519	0.37267	1.23666	1.52932	0.52932
102	0.76267	0.36646	1.23685	1.52979	0.52979
103	0.77015	0.36025	1.23703	1.53024	0.53024
104	0.77762	0.35404	1.23720	1.53066	0.53066
105	0.78510	0.34783	1.23736	1.53106	0.53106
106	0.79258	0.34161	1.23751	1.53143	0.53143

Tabla 3.25c. Variación de $H(t_c = 1.2 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
107	0.80005	0.33540	1.23765	1.53177	0.53177
108	0.80753	0.32919	1.23778	1.53209	0.53209
109	0.81501	0.32298	1.23790	1.53239	0.53239
110	0.82249	0.31677	1.23801	1.53267	0.53267
111	0.82996	0.31056	1.23812	1.53293	0.53293
112	0.83744	0.30435	1.23821	1.53317	0.53317
113	0.84492	0.29814	1.23830	1.53339	0.53339
114	0.85239	0.29193	1.23839	1.53360	0.53360
115	0.85987	0.28571	1.23846	1.53379	0.53379
116	0.86735	0.27950	1.23853	1.53397	0.53397
117	0.87483	0.27329	1.23860	1.53413	0.53413
118	0.88230	0.26708	1.23866	1.53428	0.53428
119	0.88978	0.26087	1.23871	1.53441	0.53441
120	0.89726	0.25466	1.23876	1.53454	0.53454
121	0.90473	0.24845	1.23881	1.53465	0.53465
122	0.91221	0.24224	1.23885	1.53475	0.53475
123	0.91969	0.23602	1.23889	1.53485	0.53485
124	0.92717	0.22981	1.23892	1.53493	0.53493
125	0.93464	0.22360	1.23896	1.53501	0.53501
126	0.94212	0.21739	1.23898	1.53508	0.53508
127	0.94960	0.21118	1.23901	1.53514	0.53514
128	0.95707	0.20497	1.23903	1.53520	0.53520
129	0.96455	0.19876	1.23905	1.53525	0.53525
130	0.97203	0.19255	1.23907	1.53529	0.53529
131	0.97951	0.18634	1.23909	1.53533	0.53533
132	0.98698	0.18012	1.23910	1.53537	0.53537

Tabla 3.25c. Variación de $H(t_c = 1.2 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
133	0.99446	0.17391	1.23911	1.53540	0.53540
134	1.00194	0.16770	1.23912	1.53543	0.53543
135	1.00941	0.16149	1.23913	1.53545	0.53545
136	1.01689	0.15528	1.23914	1.53547	0.53547
137	1.02437	0.14907	1.23915	1.53549	0.53549
138	1.03185	0.14286	1.23915	1.53550	0.53550
139	1.03932	0.13665	1.23916	1.53551	0.53551
140	1.04680	0.13043	1.23916	1.53553	0.53553
141	1.05428	0.12422	1.23917	1.53553	0.53553
142	1.06175	0.11801	1.23917	1.53554	0.53554
143	1.06923	0.11180	1.23917	1.53555	0.53555
144	1.07671	0.10559	1.23917	1.53555	0.53555
145	1.08419	0.09938	1.23918	1.53556	0.53556
146	1.09166	0.09317	1.23918	1.53556	0.53556
147	1.09914	0.08696	1.23918	1.53556	0.53556
148	1.10662	0.08075	1.23918	1.53556	0.53556
149	1.11409	0.07453	1.23918	1.53557	0.53557
150	1.12157	0.06832	1.23918	1.53557	0.53557
151	1.12905	0.06211	1.23918	1.53557	0.53557
152	1.13653	0.05590	1.23918	1.53557	0.53557
153	1.14400	0.04969	1.23918	1.53557	0.53557
154	1.15148	0.04348	1.23918	1.53557	0.53557
155	1.15896	0.03727	1.23918	1.53557	0.53557
156	1.16643	0.03106	1.23918	1.53557	0.53557
157	1.17391	0.02484	1.23918	1.53557	0.53557
158	1.18139	0.01863	1.23918	1.53557	0.53557

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
159	1.18887	0.01242	1.23918	1.53557	0.53557
160	1.19634	0.00621	1.23918	1.53557	0.53557
161	1.20382	0.00000	1.23918	1.53557	0.53557

Tabla 3.25c. Variación de $H(t_c = 1.2 \text{ s})$ (Continuación)

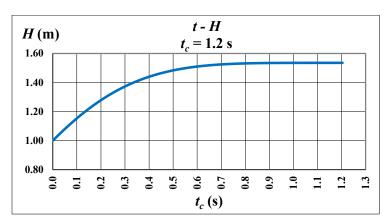


Figura 3.12b. Variación de $H(t_c=1.2 \text{ s})$

Se observó que para un tiempo de cierre de 1.2 s, la carga máxima fue de $H_{m\acute{a}x}$ = 1.536 m y la sobrepresión máxima

$$\Delta H_{m\acute{a}x} = H_{m\acute{a}x} - H$$

$$\Delta H_{max} = 1.536 - 1.0 = 0.536 \text{ m}$$

Con la medición realizada, sucedió lo siguiente

$$H_{m\acute{a}x} = 1.5 \text{ m}$$

$$\Delta H_{m\acute{a}x} = 1.5 - 0.61 = 0.89 \text{ m}$$

Comparando la carga máxima y la sobrepresión máxima calculada con la medida, obtuvimos los siguientes porcentajes de error.

 Allievi
 Medido
 % error

 H_{mάx}
 1.536
 1.5
 2%

 ΔH
 0.536
 0.89
 40%

Tabla 3.25d. Porcentaje de error (t_c =1.2 s)

Para $t_c = 1.5 \text{ s}$

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$

i	t	τί	ξi	Н	∆Н
	(m)			(m)	(m)
0	0	1	1	1	0
1	0.00748	0.99502	1.00493	1.00988	0.00988
2	0.01495	0.99005	1.00976	1.01962	0.01962
3	0.02243	0.98507	1.01451	1.02923	0.02923
4	0.02991	0.98010	1.01916	1.03869	0.03869
5	0.03739	0.97512	1.02372	1.04800	0.04800
6	0.04486	0.97015	1.02819	1.05718	0.05718
7	0.05234	0.96517	1.03257	1.06621	0.06621
8	0.05982	0.96020	1.03687	1.07509	0.07509
9	0.06729	0.95522	1.04107	1.08383	0.08383
10	0.07477	0.95025	1.04519	1.09242	0.09242
11	0.08225	0.94527	1.04922	1.10086	0.10086
12	0.08973	0.94030	1.05317	1.10916	0.10916
13	0.09720	0.93532	1.05703	1.11731	0.11731
14	0.10468	0.93035	1.06081	1.12531	0.12531
15	0.11216	0.92537	1.06450	1.13317	0.13317
16	0.11963	0.92040	1.06812	1.14088	0.14088
17	0.12711	0.91542	1.07165	1.14844	0.14844
18	0.13459	0.91045	1.07511	1.15585	0.15585
19	0.14207	0.90547	1.07848	1.16312	0.16312
20	0.14954	0.90050	1.08178	1.17025	0.17025
21	0.15702	0.89552	1.08500	1.17723	0.17723
22	0.16450	0.89055	1.08815	1.18407	0.18407
23	0.17197	0.88557	1.09122	1.19076	0.19076
24	0.17945	0.88060	1.09422	1.19731	0.19731
25	0.18693	0.87562	1.09714	1.20373	0.20373
26	0.19441	0.87065	1.10000	1.21000	0.21000
27	0.20188	0.86567	1.10278	1.21613	0.21613

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
28	0.20936	0.86070	1.10550	1.22213	0.22213
29	0.21684	0.85572	1.10815	1.22799	0.22799
30	0.22431	0.85075	1.11073	1.23372	0.23372
31	0.23179	0.84577	1.11324	1.23931	0.23931
32	0.23927	0.84080	1.11569	1.24477	0.24477
33	0.24675	0.83582	1.11808	1.25010	0.25010
34	0.25422	0.83085	1.12040	1.25531	0.25531
35	0.26170	0.82587	1.12267	1.26038	0.26038
36	0.26918	0.82090	1.12487	1.26533	0.26533
37	0.27665	0.81592	1.12701	1.27016	0.27016
38	0.28413	0.81095	1.12910	1.27486	0.27486
39	0.29161	0.80597	1.13112	1.27944	0.27944
40	0.29909	0.80100	1.13310	1.28391	0.28391
41	0.30656	0.79602	1.13501	1.28826	0.28826
42	0.31404	0.79104	1.13688	1.29249	0.29249
43	0.32152	0.78607	1.13869	1.29661	0.29661
44	0.32899	0.78109	1.14045	1.30062	0.30062
45	0.33647	0.77612	1.14215	1.30452	0.30452
46	0.34395	0.77114	1.14381	1.30831	0.30831
47	0.35143	0.76617	1.14542	1.31199	0.31199
48	0.35890	0.76119	1.14698	1.31557	0.31557
49	0.36638	0.75622	1.14850	1.31905	0.31905
50	0.37386	0.75124	1.14997	1.32243	0.32243
51	0.38133	0.74627	1.15140	1.32571	0.32571
52	0.38881	0.74129	1.15278	1.32890	0.32890
53	0.39629	0.73632	1.15412	1.33199	0.33199
54	0.40377	0.73134	1.15542	1.33499	0.33499

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$ (Continuación)

i	t	τί	ζi	Н	ΔН
	(m)			(m)	(m)
55	0.41124	0.72637	1.15667	1.33789	0.33789
56	0.41872	0.72139	1.15789	1.34071	0.34071
57	0.42620	0.71642	1.15907	1.34344	0.34344
58	0.43367	0.71144	1.16021	1.34609	0.34609
59	0.44115	0.70647	1.16131	1.34865	0.34865
60	0.44863	0.70149	1.16238	1.35113	0.35113
61	0.45611	0.69652	1.16342	1.35354	0.35354
62	0.46358	0.69154	1.16441	1.35586	0.35586
63	0.47106	0.68657	1.16538	1.35811	0.35811
64	0.47854	0.68159	1.16631	1.36029	0.36029
65	0.48601	0.67662	1.16721	1.36239	0.36239
66	0.49349	0.67164	1.16808	1.36442	0.36442
67	0.50097	0.66667	1.16892	1.36638	0.36638
68	0.50845	0.66169	1.16974	1.36828	0.36828
69	0.51592	0.65672	1.17052	1.37011	0.37011
70	0.52340	0.65174	1.17127	1.37188	0.37188
71	0.53088	0.64677	1.17200	1.37358	0.37358
72	0.53835	0.64179	1.17270	1.37523	0.37523
73	0.54583	0.63682	1.17338	1.37681	0.37681
74	0.55331	0.63184	1.17403	1.37834	0.37834
75	0.56079	0.62687	1.17466	1.37982	0.37982
76	0.56826	0.62189	1.17526	1.38123	0.38123
77	0.57574	0.61692	1.17584	1.38260	0.38260
78	0.58322	0.61194	1.17640	1.38391	0.38391
79	0.59069	0.60697	1.17694	1.38518	0.38518
80	0.59817	0.60199	1.17745	1.38640	0.38640
81	0.60565	0.59701	1.17795	1.38757	0.38757

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
82	0.61313	0.59204	1.17843	1.38869	0.38869
83	0.62060	0.58706	1.17889	1.38977	0.38977
84	0.62808	0.58209	1.17933	1.39081	0.39081
85	0.63556	0.57711	1.17975	1.39181	0.39181
86	0.64303	0.57214	1.18015	1.39276	0.39276
87	0.65051	0.56716	1.18054	1.39368	0.39368
88	0.65799	0.56219	1.18091	1.39456	0.39456
89	0.66547	0.55721	1.18127	1.39540	0.39540
90	0.67294	0.55224	1.18161	1.39621	0.39621
91	0.68042	0.54726	1.18194	1.39698	0.39698
92	0.68790	0.54229	1.18225	1.39772	0.39772
93	0.69537	0.53731	1.18255	1.39843	0.39843
94	0.70285	0.53234	1.18284	1.39911	0.39911
95	0.71033	0.52736	1.18311	1.39976	0.39976
96	0.71781	0.52239	1.18338	1.40038	0.40038
97	0.72528	0.51741	1.18363	1.40097	0.40097
98	0.73276	0.51244	1.18386	1.40153	0.40153
99	0.74024	0.50746	1.18409	1.40207	0.40207
100	0.74771	0.50249	1.18431	1.40259	0.40259
101	0.75519	0.49751	1.18451	1.40308	0.40308
102	0.76267	0.49254	1.18471	1.40354	0.40354
103	0.77015	0.48756	1.18490	1.40399	0.40399
104	0.77762	0.48259	1.18508	1.40441	0.40441
105	0.78510	0.47761	1.18525	1.40481	0.40481
106	0.79258	0.47264	1.18541	1.40520	0.40520

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
107	0.80005	0.46766	1.18556	1.40556	0.40556
108	0.80753	0.46269	1.18571	1.40591	0.40591
109	0.81501	0.45771	1.18585	1.40623	0.40623
110	0.82249	0.45274	1.18598	1.40655	0.40655
111	0.82996	0.44776	1.18610	1.40684	0.40684
112	0.83744	0.44279	1.18622	1.40712	0.40712
113	0.84492	0.43781	1.18633	1.40738	0.40738
114	0.85239	0.43284	1.18644	1.40764	0.40764
115	0.85987	0.42786	1.18654	1.40787	0.40787
116	0.86735	0.42289	1.18663	1.40810	0.40810
117	0.87483	0.41791	1.18672	1.40831	0.40831
118	0.88230	0.41294	1.18681	1.40851	0.40851
119	0.88978	0.40796	1.18689	1.40870	0.40870
120	0.89726	0.40299	1.18696	1.40887	0.40887
121	0.90473	0.39801	1.18703	1.40904	0.40904
122	0.91221	0.39303	1.18710	1.40920	0.40920
123	0.91969	0.38806	1.18716	1.40935	0.40935
124	0.92717	0.38308	1.18722	1.40949	0.40949
125	0.93464	0.37811	1.18727	1.40962	0.40962
126	0.94212	0.37313	1.18732	1.40974	0.40974
127	0.94960	0.36816	1.18737	1.40985	0.40985
128	0.95707	0.36318	1.18742	1.40996	0.40996
129	0.96455	0.35821	1.18746	1.41006	0.41006
130	0.97203	0.35323	1.18750	1.41016	0.41016
131	0.97951	0.34826	1.18754	1.41024	0.41024
132	0.98698	0.34328	1.18757	1.41033	0.41033

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	ΔН
	(m)			(m)	(m)
133	0.99446	0.33831	1.18760	1.41040	0.41040
134	1.00194	0.33333	1.18763	1.41047	0.41047
135	1.00941	0.32836	1.18766	1.41054	0.41054
136	1.01689	0.32338	1.18769	1.41060	0.41060
137	1.02437	0.31841	1.18771	1.41066	0.41066
138	1.03185	0.31343	1.18773	1.41071	0.41071
139	1.03932	0.30846	1.18775	1.41076	0.41076
140	1.04680	0.30348	1.18777	1.41081	0.41081
141	1.05428	0.29851	1.18779	1.41085	0.41085
142	1.06175	0.29353	1.18781	1.41089	0.41089
143	1.06923	0.28856	1.18782	1.41092	0.41092
144	1.07671	0.28358	1.18784	1.41095	0.41095
145	1.08419	0.27861	1.18785	1.41098	0.41098
146	1.09166	0.27363	1.18786	1.41101	0.41101
147	1.09914	0.26866	1.18787	1.41104	0.41104
148	1.10662	0.26368	1.18788	1.41106	0.41106
149	1.11409	0.25871	1.18789	1.41108	0.41108
150	1.12157	0.25373	1.18790	1.41110	0.41110
151	1.12905	0.24876	1.18790	1.41112	0.41112
152	1.13653	0.24378	1.18791	1.41113	0.41113
153	1.14400	0.23881	1.18792	1.41115	0.41115
154	1.15148	0.23383	1.18792	1.41116	0.41116
155	1.15896	0.22886	1.18793	1.41117	0.41117
156	1.16643	0.22388	1.18793	1.41118	0.41118
157	1.17391	0.21891	1.18794	1.41119	0.41119
158	1.18139	0.21393	1.18794	1.41120	0.41120

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$ (Continuación)

i	t	τί	ξi	Н	∆Н
	(m)			(m)	(m)
159	1.18887	0.20896	1.18794	1.41121	0.41121
160	1.19634	0.20398	1.18794	1.41121	0.41121
161	1.20382	0.19900	1.18795	1.41122	0.41122
162	1.21130	0.19403	1.18795	1.41122	0.41122
163	1.21877	0.18905	1.18795	1.41123	0.41123
164	1.22625	0.18408	1.18795	1.41123	0.41123
165	1.23373	0.17910	1.18795	1.41124	0.41124
166	1.24121	0.17413	1.18796	1.41124	0.41124
167	1.24868	0.16915	1.18796	1.41124	0.41124
168	1.25616	0.16418	1.18796	1.41124	0.41124
169	1.26364	0.15920	1.18796	1.41125	0.41125
170	1.27111	0.15423	1.18796	1.41125	0.41125
171	1.27859	0.14925	1.18796	1.41125	0.41125
172	1.28607	0.14428	1.18796	1.41125	0.41125
173	1.29354	0.13930	1.18796	1.41125	0.41125
174	1.30102	0.13433	1.18796	1.41125	0.41125
175	1.30850	0.12935	1.18796	1.41125	0.41125
176	1.31598	0.12438	1.18796	1.41125	0.41125
177	1.32345	0.11940	1.18796	1.41125	0.41125
178	1.33093	0.11443	1.18796	1.41126	0.41126
179	1.33841	0.10945	1.18796	1.41126	0.41126
180	1.34588	0.10448	1.18796	1.41126	0.41126
181	1.35336	0.09950	1.18796	1.41126	0.41126
182	1.36084	0.09453	1.18796	1.41126	0.41126
183	1.36832	0.08955	1.18796	1.41126	0.41126
184	1.37579	0.08458	1.18796	1.41126	0.41126

Tabla 3.25e. Variación de $H(t_c = 1.5 \text{ s})$ (Continuación)

i	t	τί	ζi	Н	∆Н
	(m)			(m)	(m)
185	1.38327	0.07960	1.18796	1.41126	0.41126
186	1.39075	0.07463	1.18796	1.41126	0.41126
187	1.39822	0.06965	1.18796	1.41126	0.41126
188	1.40570	0.06468	1.18796	1.41126	0.41126
189	1.41318	0.05970	1.18796	1.41126	0.41126
190	1.42066	0.05473	1.18796	1.41126	0.41126
191	1.42813	0.04975	1.18796	1.41126	0.41126
192	1.43561	0.04478	1.18796	1.41126	0.41126
193	1.44309	0.03980	1.18796	1.41126	0.41126
194	1.45056	0.03483	1.18796	1.41126	0.41126
195	1.45804	0.02985	1.18796	1.41126	0.41126
196	1.46552	0.02488	1.18796	1.41126	0.41126
197	1.47300	0.01990	1.18796	1.41126	0.41126
198	1.48047	0.01493	1.18796	1.41126	0.41126
199	1.48795	0.00995	1.18796	1.41126	0.41126
200	1.49543	0.00498	1.18796	1.41126	0.41126
201	1.50290	0.00000	1.18796	1.41126	0.41126

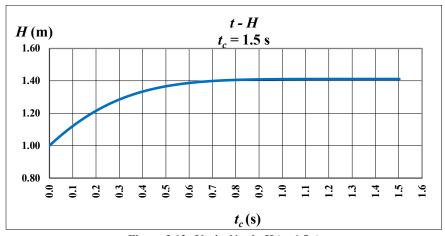


Figura 3.12c. Variación de $H(t_c=1.5 \text{ s})$

Se observó que para un tiempo de cierre de 1.5 s, la carga máxima fue de $H_{m\acute{a}x}$ = 1.411 m y la sobrepresión máxima

$$\Delta H_{m\acute{a}x} = H_{m\acute{a}x} - H$$

$$\Delta H_{m\acute{a}x} = 1.411 - 1.0 = 0.411 \text{ m}$$

Con la medición realizada, sucedió lo siguiente

$$H_{m\acute{a}x} = 1.5 \text{ m}$$

$$\Delta H_{m\acute{a}x} = 1.5 - 0.61 = 0.89 \text{ m}$$

Comparando la carga máxima y la sobrepresión máxima calculada con la medida, obtuvimos los siguientes porcentajes de error.

Tabla 3.25f. Porcentaje de error (t_c =1.5 s)

	Allievi	Medido	% error
H _{máx}	1.411	1.5	6%
ΔН	0.411	0.89	54%

3.10 Solución aplicando el método de las características

A diferencia de la solución con las ecuaciones de Allievi, en este método se consideran otras variables como las pérdidas por fricción, así como el uso de condiciones de frontera variables. Una de ellas es la ley de cierre no uniforme determinada anteriormente, no obstante que en la solución de Allievi, se utilizó una ley de cierre lineal.

Con el fin de llevar cierto orden en el cálculo, el primer paso fue obtener las condiciones iniciales a flujo permanente. Posteriormente se aplicó la condición de estabilidad y convergencia del método y de esta forma se definió la malla característica que se empleó como apoyo para plantear el esquema de diferencias finitas.

Condiciones de estabilidad y convergencia

Se requiere conocer el intervalo de tiempo y los puntos de interés, para lo cual aplicamos la condición de estabilidad de Courant, ecuación (2.71), de la cual podemos decir lo siguiente

$$\Delta t \le \frac{\Delta x}{a}$$

Donde Δx se define de la siguiente forma.

$$\Delta x = \frac{L}{N}, N \ge 2$$

donde

L longitud de la tubería, en m

N número mínimo entero de tramos en que debe dividirse el conducto

Si N = 5 tramos y L = 4.3 m, se tiene

$$\Delta x = \frac{4.3}{5} = 0.86 \text{ m}$$

Así, Δt resulta:

$$\Delta t = \frac{0.86}{1.150.17} = 0.000747 \,\mathrm{s}$$

De esta manera

$$\frac{1}{a} = \frac{1}{1,150.17} = 0.0008694 \text{ s/m}$$

У

$$\frac{\Delta t}{\Delta x} = \frac{0.000747}{0.86} = 0.000868 \text{ s/m}$$

Con esto se cumple con la condición de estabilidad de Courant, sin embargo cabe mencionar que se puede elegir un número mayor de tramos con el fin de obtener más precisión en el cálculo, pero en este caso se considera adecuado el número de tramos elegido ya que la finalidad de este trabajo es su aplicación en la implementación como práctica de laboratorio, y una malla más grande implicaría mucho más iteraciones creando dependencia con la capacidad de las computadoras personales de los alumnos.

Una vez conocidos Δt y Δx , se define la malla característica, la cual se encuentra representada en la figura 3.13. Esta malla está compuesta de cinco secciones, de las cuales, la sección 0 representa la condición de frontera aguas arriba (tanque con nivel constante), la sección 5 representa la condición de frontera aguas abajo (válvula de esfera) y las secciones 1, 2, 3 y 4, representan los puntos interiores de la malla.

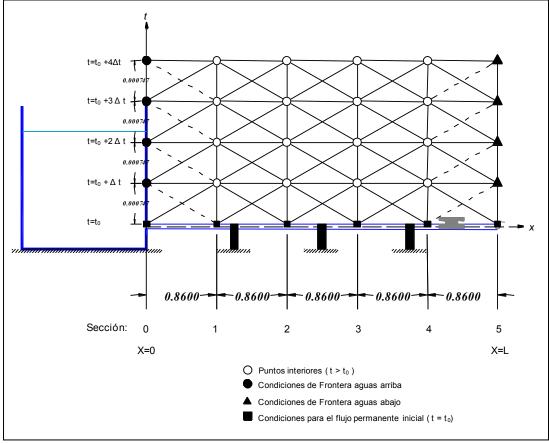


Figura. 3.13. Malla característica del caso de estudio

Planteamiento de las ecuaciones características

Una vez definida la malla característica, se realizó el cálculo de las constantes necesarias para realizar el planteamiento de las ecuaciones características.

De la ecuación 2.57, obtenemos el valor de la constante C_a . Sustituyendo valores, resultó

$$C_a = \frac{9.81 \times 0.00317}{1,150.17} = 2.7011 \times 10^{-5}$$

Así mismo, existe otra constante que está en función del factor de fricción obtenido, la cual definimos con la siguiente ecuación

$$F = \frac{f\Delta t}{2DA}$$

Sustituyendo los valores se tiene

$$F = \frac{(0.035)(0.000747)}{2(0.0635)(0.00317)} = 0.065$$

Con estos valores, se hizo el planteamiento de las constantes C_p y C_n , las cuales pueden ser conocidas para cada instante de tiempo y que forman parte de las ecuaciones características. Estas constantes quedaron definidas con las ecuaciones 2.55 y 2.56, y ahora, sustituyendo los valores se tiene

$$C_{pi} = Q_{i-1} + 2.7011 \times 10^{-5} h_{i-1} - 0.065 Q_{i-1} |Q_{i-1}|$$
(3.21)

y

$$C_{ni} = Q_{i+1} - 2.7011 \times 10^{-5} h_{i+1} - 0.065 Q_{i+1} |Q_{i+1}|$$
(3.22)

Ahora, la ecuación característica positiva (ecuación 2.53), queda de la siguiente forma

$$Q_{Pi} = C_{pi} - 2.7011 \times 10^{-5} h_{Pi} \tag{3.23}$$

y la ecuación característica negativa (ecuación 2.54), queda como

$$Q_{Pi} = C_{ni} + 2.7011 \times 10^{-5} h_{Pi} \tag{3.24}$$

Los puntos interiores de la malla (figura 3.8) se definen a partir de la ecuación 2.58

$$Q_{ni} = 0.5(C_{Pi} + C_{ni}) (3.25)$$

y de la ecuación (3.23)

$$h_{pi} = \frac{C_{pi} - C_{ni}}{2C_a}$$

Sustituyendo el valor de la constante C_a en la ecuación anterior, resulta

$$h_{pi} = 18,510.86 \left(C_{pi} - C_{ni} \right) \tag{3.26}$$

Las ecuaciones 3.25 y 3.26, definen el gasto Q y la carga de presión h en los puntos interiores de la malla.

Condiciones de frontera

• Condición de frontera aguas arriba (Sección 0)

En este caso, se tomó en cuenta tanto la pérdida local a la entrada de la tubería, como la carga de velocidad, a fin de que el fenómeno transitorio sea modelado lo más apegado a la realidad.

La condición de frontera aguas arriba está representada por el depósito de carga constante y las ecuaciones que determinan el gasto Q y la carga h en esta sección son las ecuaciones 2.62 y 2.63. Para el dispositivo experimental utilizado, se determinó el valor del coeficiente de pérdidas a la entrada de la tubería con un valor de k = 0.5 (ver pérdidas locales), lo que lleva a calcular el valor de la constante k_1 (ecuación 2.64). Sustituyendo el valor de k y C_a en la ecuación (2.64), dio como resultado

$$k_1 = 0.206$$

Sustituyendo las constantes en la ecuación (2.62), para obtener la carga h en la condición de frontera aguas arriba

$$H_P = 1 - (1 + 0.5) \frac{Q_P^2}{2(9.81)(0.003167)^2}$$
 (3.27)

y sustituyendo constantes en la ecuación (2.63), resultó

$$Q_P = \frac{-1 + \sqrt{1 + 4(0.206)[C_{ni} + (2.7011 \times 10^{-5})(1)]}}{2(0.206)}$$
(3.28)

Nota: en las ecuaciones (2.62) y (2.63), H_{dep} está medido a partir del P.H.C. hasta el nivel de la superficie libre de agua en el depósito. En este caso, la carga de posición no está tomándose en cuenta por encontrarse totalmente horizontal nuestro dispositivo experimental, por lo cual H_{dep} = carga constante en el depósito, la cual en las mediciones se fijó en 1.0 m.

• Condición de frontera aguas abajo (Sección 5)

La variable Q_p en la frontera aguas abajo, quedó definida con la ecuación 2.69, en la cual C_v está dado por la siguiente relación

$$C_v = (\tau Q_0)^2 / (C_a H_{0v})$$

La ley de cierre no uniforme o curva τ -t, quedó definida en la tabla 3.20 donde se observa el comportamiento de la carga piezométrica a lo largo de la tubería con respecto al tiempo de cierre (t_c) de la válvula de esfera.

Se sabe que en flujo permanente $Q_0 = 0.00376 \text{ m}^3/\text{s}$ en cualquier sección de la tubería y la carga en la sección aguas arriba de la válvula $H_{0v} = 0.6 \text{ m}$, obtenido del cálculo de las pérdidas totales, por lo que, la expresión para determinar el coeficiente C_v , queda de la siguiente forma

$$C_v = [\tau(0.00376)]^2 / [(2.7011 \times 10^{-5})(0.6)]$$

Esquema de diferencias finitas.

Una vez definidas las condiciones iniciales, las condiciones de frontera aguas arriba de la tubería, las condiciones de frontera aguas abajo de la tubería y los puntos intermedios de la malla característica aplicada al dispositivo experimental, se realizó el esquema explícito de diferencias finitas. En esta sección se presenta el cálculo para el primer instante de tiempo, es decir para $t=t_0+\Delta t$ y posteriormente, en el anexo A, se presentan las tablas donde se muestra el cálculo para cada instante de tiempo, así como para cada tiempo de cierre propuesto.

Se sabe que para $t=t_0$ se presentan las condiciones iniciales a flujo permanente. Estos datos se pueden ver en la tabla 3.26.

Sección \boldsymbol{X} Q h_{pz} (m3/s)(m) (m) 0.00 0.00376 0.8923 1 0.86 0.00376 0.8583 2 1.72 0.00376 0.8242 0.00376 3 2.58 0.7902 4 3.44 0.00376 0.7562 5 4.30 0.00376 0.6000

Tabla 3.26. Condiciones iniciales a flujo permanente

Para el instante $t = t_0 + \Delta t$, es decir para t = 0.000747 s, se presenta la forma en que deben ser calculados el gasto Q y la variación de la carga h con respecto a la posición en la tubería. Los subíndices que aparecerán en las ecuaciones, por ejemplo $Q_{1,0}$, representan la sección (i) y el instante de tiempo (t) respectivamente que se deben utilizar para realizar el cálculo.

Condición de frontera aguas arriba

Sección 0: X = 0, i=0

$$C_{n_0} = Q_{1,0} - 2.7011 \times 10^{-5} h_{1,0} - 0.065 Q_{1,0} |Q_{1,0}|$$

$$C_{n_0} = 0.00376 - 2.7011 \times 10^{-5} (0.8583) - 0.065 (0.00376) |0.00376|$$

$$C_{n_0} = 0.0037359$$

$${Q_p}_0 = \frac{-1 + \sqrt{1 + 4(0.206)[0.0037359 + (2.7011 \times 10^{-5})(1)]}}{2(0.206)}$$

$$Q_{p_0} = 0.00376 \text{ m}^3/\text{s}$$

$$h_{p_0} = 1 - (1 + 0.5) \left[\frac{0.00376^2}{2(9.81)(0.003167)^2} \right]$$

$$h_{p_0} = 0.892236$$
 m.c.a.

Puntos interiores

Sección 1: X=0.86m, i=1

$$C_{p_1} = Q_{0,0} + 2.7011 \times 10^{-5} h_{0,0} - 0.065 Q_{0,0} |Q_{0,0}|$$

$${C_p}_1 = 0.00376 + 2.7011 \times 10^{-5} (0.8923) - 0.065 (0.00376) |0.00376|$$

$$C_{p_1} = 0.00378318$$

$$C_{n_1} = Q_{2,0} - 2.7011 \times 10^{-5} h_{2,0} - 0.065 Q_{2,0} \left| Q_{2,0} \right|$$

$$C_{n_1} = 0.00376 - 2.7011 \times 10^{-5}(0.8242) - 0.065(0.00376)|0.00376|$$

$$C_{n_1} = 0.00373682$$

$$Q_{p_1} = 0.5 \left(C_{p_1} - C_{n_1} \right)$$

$$Q_{p_1} = 0.5(0.00378318 - 0.00373682)$$

$$Q_{p_1} = 0.00376 \text{ m}^3/\text{s}$$

$$h_{p_1} = 18,510.86 \left(C_{p_1} - C_{n_1} \right)$$

$$h_{p_1} = 18,510.86(0.00378318 - 0.00373682)$$

$$h_{p_1} = 0.8582 \text{ m. c. a.}$$

Sección 2: X=1.72 m, i=2

$$C_{p_2} = Q_{1,0} + 2.7011 \times 10^{-5} h_{1,0} - 0.065 Q_{1,0} |Q_{1,0}|$$

$${C_p}_2 = 0.00376 + 2.7011 \times 10^{-5} (0.8583) - 0.065 (0.00376) |0.00376|$$

$$C_{p_2} = 0.00378226$$

$$C_{n_2} = Q_{3,0} - 2.7011 \times 10^{-5} h_{3,0} - 0.065 Q_{3,0} |Q_{3,0}|$$

$$C_{n_2} = 0.00376 - 2.7011 \times 10^{-5} (0.7902) - 0.065 (0.00376) |0.00376|$$

$$C_{n_2} = 0.0037377$$

$$Q_{p_2} = 0.5 \left(C_{p_2} - C_{n_2} \right)$$

$$Q_{p_2} = 0.5(0.00378226 - 0.0037377)$$

$$Q_{p_2} = 0.00376 \text{ m}^3/\text{s}$$

$$h_{p_2} = 18,510.86 \left(C_{p_2} - C_{n_2} \right)$$

$$h_{p_2} = 18,510.86(0.00378226 - 0.0037377)$$

$$h_{p_2} = 0.8241 \text{ m. c. a.}$$

Sección 3: X=2.58 m, i=3

$$C_{p_3} = Q_{2,0} + 2.7011 \times 10^{-5} h_{2,0} - 0.065 Q_{2,0} |Q_{2,0}|$$

$$C_{p_3} = 0.00376 + 2.7011 \times 10^{-5} (0.8242) - 0.065 (0.00376) |0.00376|$$

$$C_{p_3} = 0.0037813435$$

$$C_{n_3} = Q_{4,0} - 2.7011 \times 10^{-5} h_{4,0} - 0.065 Q_{4,0} |Q_{4,0}|$$

$$C_{n_3} = 0.00376 - 2.7011 \times 10^{-5} (0.7562) - 0.065 (0.00376) |0.00376|$$

$$C_{n_3} = 0.0037386553$$

$$Q_{p_3} = 0.5 \left(C_{p_3} - C_{n_3} \right)$$

$$Q_{p_2} = 0.5(0.0037813435 - 0.0037386553)$$

$$Q_{p_3} = 0.00376 \text{ m}^3/\text{s}$$

$$h_{p_3} = 18,510.86 \left(C_{p_3} - C_{n_3} \right)$$

$$h_{p_2} = 18,510.86(0.0037813435 - 0.0037386553)$$

$$h_{p_3} = 0.7902 \text{ m. c. a.}$$

Sección 4: X=3.44 m, i=4

$$C_{p_4} = Q_{3,0} + 2.7011 \times 10^{-5} h_{3,0} - 0.065 Q_{3,0} |Q_{3,0}|$$

$${C_p}_4 = 0.00376 + 2.7011 \times 10^{-5} (0.7902) - 0.065 (0.00376) |0.00376|$$

$$C_{p_4} = 0.0037804251$$

$$C_{n_4} = Q_{5,0} - 2.7011 \times 10^{-5} h_{5,0} - 0.065 Q_{5,0} |Q_{5,0}|$$

$$C_{n_4} = 0.00376 - 2.7011 \times 10^{-5} (0.6) - 0.065 (0.00376) |0.00376|$$

$$C_{n_4} = 0.0037428744$$

$$Q_{p_4} = 0.5 \left(C_{p_4} - C_{n_4} \right)$$

$$Q_{p_4} = 0.5(0.0037804251 - 0.0037428744)$$

$$Q_{p_A} = 0.0037616 \text{ m}^3/\text{s}$$

$$h_{p_4} = 18,510.86 \left(C_{p_4} - C_{n_4} \right)$$

$$h_{p_4} = 18,510.86(0.0037804251 - 0.0037428744)$$

$$h_{p_A} = 0.6951 \text{ m. c. a.}$$

Condición de frontera aguas abajo

Sección 5: X=4.3 m, i=5

$$C_{p_5} = Q_{4,0} + 2.7011 \times 10^{-5} h_{4,0} - 0.065 Q_{4,0} |Q_{4,0}|$$

$$\mathsf{C_{p_5}} = 0.00376 + 2.7011 \times 10^{-5} (0.7562) - 0.065 (0.00376) |0.00376|$$

$$C_{p_5} = 0.0037795067$$

$$Q_{p_5} = 0.5 \left(-C_v + \sqrt{{C_v}^2 + 4C_p C_v} \right)$$

$$C_{v} = \frac{(\tau Q_0)^2}{C_a H_0}$$

Para un tiempo de cierre $t_c = 1.0$ segundos (ecuación 3.15):

$$\tau = 0.9378(0.0007477)^2 - 1.9396(0.0007477) + 1.0$$

 $\tau = 0.998550$

$$C_v = \frac{(0.998550 \times 0.00376)^2}{(2.7011 \times 10^{-5})(0.6)}$$

$$C_v = 0.8698085$$

$${Q_p}_5 = 0.5 \left(-0.8698085 + \sqrt{(0.8698085)^2 + 4(0.0037795067)(0.8698085)} \right)$$

$$Q_{p_5} = 0.0037632 \text{ m}^3/\text{s}$$

$$h_{p_5} = \frac{C_{p_5} - Q_{p_5}}{C_a}$$

$$h_{p_5} = 37,021.73(0.00377951 - 0.0037632)$$

$$h_{p_5} = 0.6038 \text{ m. c. a.}$$

De esta forma, se determinaron las variables Q_p y h_p a lo largo de la tubería para cada instante de tiempo, así como para cada tiempo de cierre propuesto.

3.10.1 Resultados

A continuación se presentan las gráficas donde se puede observar la variación de la carga de presión (h) con respecto a la posición en la tubería (X) y el instante de tiempo que se presenta (t). Así mismo, las tablas con los resultados de los cálculos correspondientes, se presentan en el anexo A.

Tiempo de cierre ($t_c = 1.0 \text{ s}$)

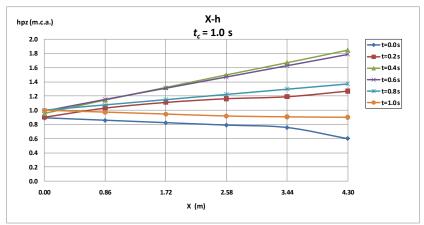


Figura 3.14. Carga de presión – Posición (t_c =1.0 s)

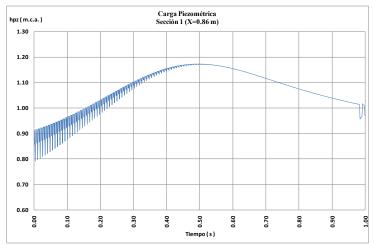


Figura 3.15. Sección 1, Carga de presión – Tiempo (t_c =1.0 s)

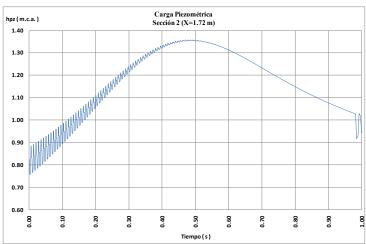


Figura 3.16. Sección 2, Carga de presión – Tiempo (t_c =1.0 s)

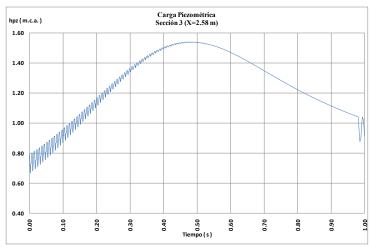


Figura 3.17. Sección 3, Carga de presión – Tiempo (t_c =1.0 s)

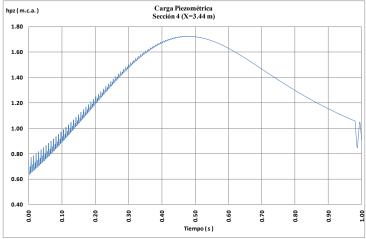


Figura 3.18. Sección 4, Carga de presión – Tiempo $(t_c=1.0 \text{ s})$

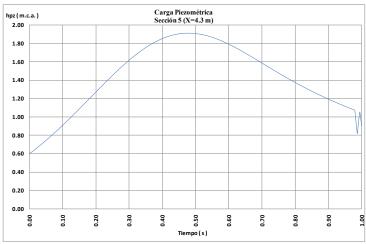


Figura 3.19. Sección 5, Carga de presión – Tiempo (t_c =1.0 s)

Tiempo de cierre ($t_c = 1.2 \text{ s}$)

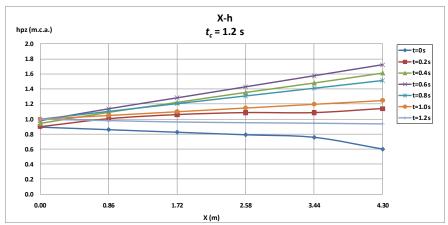


Figura 3.20. Carga de presión – Posición (t_c =1.2 s)

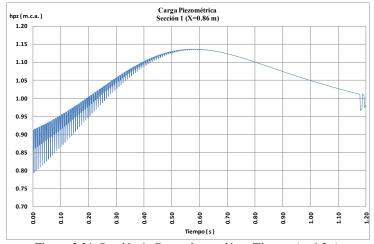


Figura 3.21. Sección 1, Carga de presión – Tiempo (t_c =1.2 s)

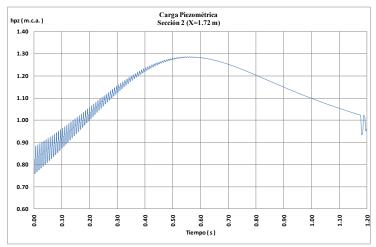


Figura 3.22. Sección 2, Carga de presión – Tiempo (t_c =1.2 s)

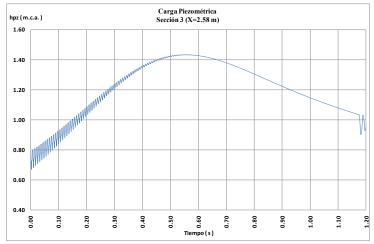


Figura 3.23. Sección 3, Carga de presión – Tiempo (t_c =1.2 s)

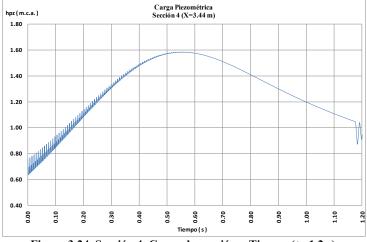


Figura 3.24. Sección 4, Carga de presión – Tiempo (t_c =1.2 s)

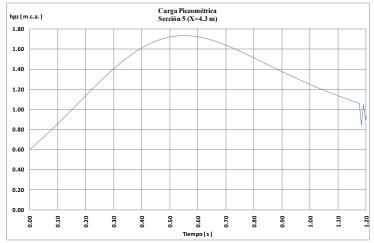


Figura 3.25. Sección 5, Carga de presión – Tiempo (t_c =1.2 s)

Tiempo de cierre ($t_c = 1.5 \text{ s}$)

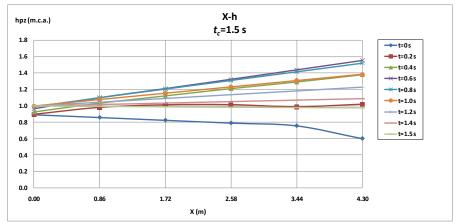


Figura 3.26. Carga de presión – Posición (t_c =1.5 s)

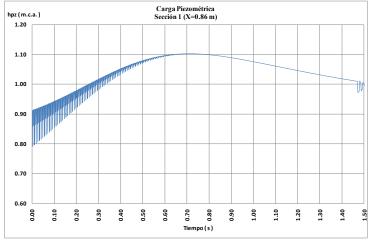


Figura 3.27. Sección 1, Carga de presión – Tiempo (t_c =1.5 s)

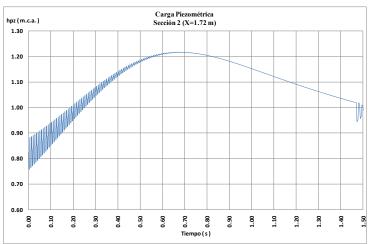


Figura 3.28. Sección 2, Carga de presión – Tiempo (t_c =1.5 s)

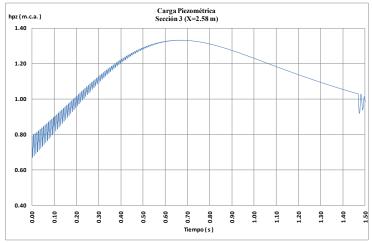


Figura 3.29. Sección 3, Carga de presión – Tiempo (t_c =1.5 s)

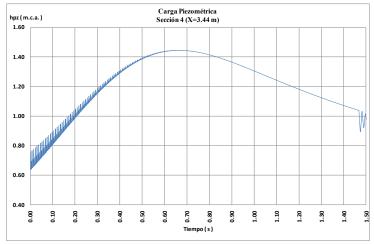


Figura 3.30. Sección 4, Carga de presión – Tiempo (t_c =1.5 s)

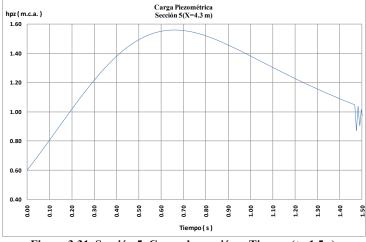


Figura 3.31. Sección 5, Carga de presión – Tiempo (t_c =1.5 s)

De los resultados obtenidos, se observa la variación de la carga de presión respecto a la posición en la tubería y respecto a cada instante de tiempo. Para el tiempo de cierre propuesto de t_c =1.0 segundos, la carga máxima calculada en la sección 5, tuvo una variación entre 1.8 y 1.9 metros. Respecto al tiempo de cierre t_c =1.2 segundos, la carga máxima calculada en la sección 5 fue de 1.73 m y por último al realizar el cálculo para un tiempo de maniobra de cierre t_c =1.5 segundos, la carga máxima calculada en la sección 5 de la tubería, fue de 1.56 m.

Recordando que la carga de presión máxima que se midió en el dispositivo experimental en la sección 5 fue de 1.5 metros, se puede decir que el cálculo realizado con un tiempo de cierre propuesto de t_c =1.5 segundos, es el que más se aproxima a lo medido. Sin embargo, aunque sigue existiendo una diferencia del 5 por ciento, debido a la posición que existe entre el piezómetro instalado y la sección 5 propuesta teóricamente, se considera una buena aproximación ya que también intervienen factores como la exactitud al determinar la ley de cierre o al determinar las pérdidas por fricción y locales. También existe otro factor importante, como los dispositivos utilizados para medir la carga de presión, conocidos como piezómetros, los cuales se considera que no tienen la suficiente resolución para tomar una medida más exacta.

Es por ello que se agregarán a este trabajo algunas propuestas para poder obtener mejores mediciones, así como algunas modificaciones al dispositivo experimental para obtener resultados más representativos del fenómeno transitorio.

4 PROPUESTAS DE DISPOSITIVOS EXPERIMENTALES

En el laboratorio de hidráulica de la Facultad de Ingeniería UNAM existen dos dispositivos experimentales para reproducir el fenómeno de golpe de ariete y realizar las mediciones asociadas. Uno de ellos es el que se ha utilizado en el caso de estudio del capítulo 3 y consta de tanque – tubería – válvula de esfera. Existe otro dispositivo que consta de instalación hidráulica – tubería en espiral – válvula, pero no se encuentra en operación.

Estos dispositivos podrían funcionar mejor con equipo de medición y control adecuados, por ello se proponen las siguientes mejoras a los equipos.

4.1 Mejoras al dispositivo experimental tanque – tubería – válvula esférica

Las mejoras que se proponen al dispositivo experimental actual tienen por objetivo el poder observar la variación real de la onda de presión al presentarse el golpe de ariete y compararla con la presión simulada mediante el método de las características.

El dispositivo experimental actual permite observar en los piezómetros el aumento de la presión cuando se presenta el golpe de ariete. La medición que se hace en los piezómetros al momento de realizar el cierre brusco en la válvula suele ser poco precisa ya que depende de la vista del observador, la cual puede incurrir en errores de medición. El dato que se obtiene de la medición es puntual y no permite observar la variación de la onda de presión.

Además de los piezómetros se propone utilizar transductores de presión que tienen la capacidad de calibrarse para medir señales eléctricas y convertirlas en valores de presión.

4.1.1. Implementación de los instrumentos de medición y control adecuados

Como se observa en la figura 4.1 se puede aprovechar la infraestructura del dispositivo experimental actual. Las mejoras consisten en instalar dos sensores de presión con un intervalo de medición de 0 a 50 psi (0 a 3.5 kg/cm²) alimentados por una fuente de voltaje. Uno de los sensores sería instalado en el extremo inicial de la tubería (sensor 1, figura 4.1) y el segundo sensor, sería instalado en el extremo final de la tubería, antes de la válvula de esfera (sensor 2, figura 4.1). Estos sensores podrán monitorear la variación en la onda de presión durante las maniobras de cierre o apertura de la válvula de esfera, así como almacenar estos datos en una tarjeta de adquisición de datos. Se tiene la ventaja de poder conectar una computadora a la tarjeta de adquisición de datos y desplegar mediante un software en tiempo real la variación de la onda de presión.

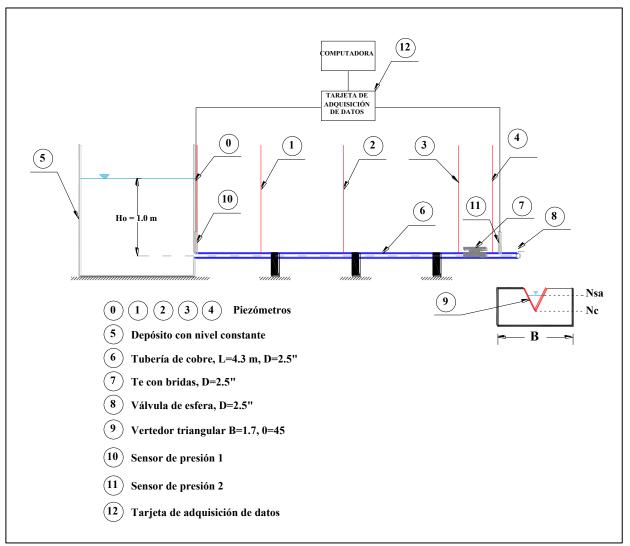


Figura 4.1. Mejoras al dispositivo experimental tanque – tubería – válvula de esfera

En lo que respecta al sistema electrónico del equipo (figura 4.2) la señal de voltaje que transmite cada sensor es enviada a la tarjeta de adquisición de datos y mediante un software, estas señales se pueden desplegar y almacenar en una computadora personal. También se pueden programar las tareas necesarias para adquirir las señales de voltaje enviadas por los sensores de presión.

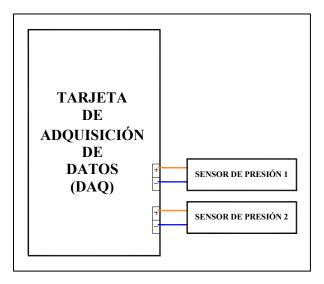


Figura 4.2. Esquema del sistema electrónico sensor - DAQ

El costo aproximado en Moneda Nacional que implican estas mejoras, se resume en la tabla 4.1.

Tabla 4.1. Presupuesto Opción 1

CONCEPTO	UNIDAD	CANTIDAD	P.U.	IMPORTE
Suministro de sensor de presión relativa de 50 PSI, con salida 0-10 VDC, alimentación 14-30VDC, material acero inoxidable, con rosca NPT 1/4-18 macho.	Pza.	2	\$2,494.08	\$4,988.16
Suministro de Fuente de poder 24V/1.04A, dimensiones 104mm X 35mm X 45mm, montaje en riel DIN, voltaje de entrada 100-240 VAC.	Pza.	1	\$622.08	\$622.08
Suministro de Tarjeta USB con 8 entradas y 2 salidas análogas de voltaje, 16 E/S digitales, frecuencia de muestreo de 48 KS/s (Tarjeta de adquisición de datos (DAQ)).	Pza.	1	\$3,627.00	\$3,627.00
Software TracerDAQ profesional.	Pza.	1	\$2,786.00	\$2,786.00
			SUBTOTAL	\$12,023.24
			IVA 16%	\$1,923.72
			TOTAL	\$13,946.96

4.2. Propuesta de nuevo dispositivo

Otro de los dispositivos experimentales utilizados para reproducir el golpe de ariete es el que consta de una instalación hidráulica – tubería en espiral – válvula. Con las mejoras que a continuación se presentan se pretende rehabilitar este dispositivo para su correcto funcionamiento ya que actualmente no se encuentra en operación.

4.2.1. Instalación hidráulica red-tubería en espiral-válvula.

El dispositivo mostrado en la figura 4.3 está formado por una tubería de cobre en espiral de 0.0127 m (1/2") de diámetro y 61 metros de longitud. Cuenta con la conexión a un manómetro de carátula y un osciloscopio donde anteriormente se observaba la variación de la presión en el interior de la tubería. Tiene también una válvula solenoide la cual puede cerrarse bruscamente para producir una sobrepresión en la tubería que es abastecida por medio de su conexión a la red hidráulica.

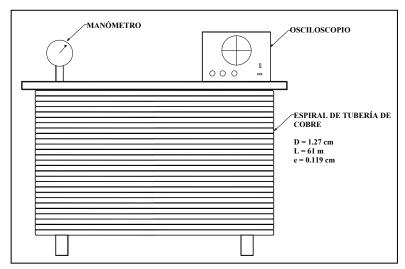


Figura 4.3. Instalación hidráulica - tubería en espiral - válvula

Los accesorios como el osciloscopio y la válvula solenoide no se encuentran en funcionamiento por lo cual se propone remplazarlos por otros accesorios que permitan reproducir y observar el fenómeno del golpe de ariete.

4.2.2. Instrumentos de medición y control

Existen instrumentos de medición y control de funcionamiento electrónico o electromecánico que pueden facilitar la operación de este tipo de sistemas, así como permitir el almacenamiento de registros. Tales equipos son

- 1. Sensores de presión
- 2. Fuente de voltaje
- 3. Relevador

- 4. Válvula solenoide
- 5. Tarjeta de adquisición de datos
- 6. Software

A continuación se muestra una descripción del funcionamiento y características de los instrumentos de medición y control que se proponen para el nuevo dispositivo experimental.

1. Sensores de presión

Se llama **sensor** al instrumento que produce una señal, usualmente eléctrica, que refleja el valor de una propiedad, mediante alguna correlación definida.

En términos estrictos, un **sensor** es un instrumento que no altera la propiedad sensada; existe, además, el concepto estricto de transductor: un instrumento que convierte una forma de energía en otra (o una propiedad en otra).

Para este caso los sensores de presión a implementar tanto para el dispositivo experimental que consta de tanque – tubería – válvula de esfera y el dispositivo que consta de instalación red – tubería en espiral – válvula, entregan una señal analógica de 4 a 20 miliamperes. Cada sensor posee un módulo de acondicionamiento de señal capaz de entregar una señal analógica de voltaje de 0-10 volts de corriente directa, proporcional a la presión medida.

Equipo a utilizar

Los sensores de presión OEM (Fabricante de Equipos Originales) serie PMP300 recomendados para estas opciones están diseñados con una precisión de ingeniería para adaptarse a muchas aplicaciones de medición de presión OEM e industriales. Su robusto diseño es resistente a la vibración, golpes, grandes variaciones de temperatura, RFI (Solicitud de Información) y muchas otras condiciones ambientales extremas que son típicas en aplicaciones industriales y OEM.

Su funcionamiento y fiabilidad son respaldados por la soldadura de todo el cuerpo de acero inoxidable de la celda de medición que elimina la necesidad de cubiertas en materiales suaves que pueden deteriorarse con el tiempo.

Figura 4.4. Sensor de presión

Características

- OEM
- Salida amplificada
- De bajo costo
- Tamaño compacto
- Intervalo de presión de 0 a 50 PSI (0 a 3.5 Kg/cm2)

Tabla 4.2. Especificaciones de los sensores de presión

Sensor de presión			
Canales	1		
Temperatura compensada	Min: 0 °C Max: 80 °C		
Excitación	14 Vdc a 30 Vdc para transductores con salida a voltaje 10 Vdc a 30 Vdc para transductores con salida de corriente		
Histéresis	Min: -0.16% de R.O. Max: 0.16% de R.O.		
No linealidad	Min: -1% de R.O. Max: 1% de R.O.		
No repetibilidad	Min: -0.1% R.O. Max: 1% de R.O.		
Temperatura en operación	Min: 0 °C, Max: 80 °C		
Temperatura Shift Span	Min: -0.02% de carga/F Max: 0.02% de carga/F		
Temperatura Shift Zero	Min: -0.02% de R.O./F Max: 0.02% de R.O./F		
Salida	De 0 – 10 Vdc ó 4 – 20 mA		
Excitación calibrada a	24 Vdc		
Altura	2.4"		
Peso	2.8 oz		
Diámetro	1.06"		

2. Fuente de voltaje LBCSP-142

Una fuente de voltaje es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato eléctrico al que se conecta.

Los sensores de presión a implementar requieren una fuente de voltaje para su alimentación y para proteger a los sensores de presión contra sobre voltajes y así evitar que puedan ser dañados o arrojar lecturas erróneas.

La fuente de voltaje que se propone para alimentar a los dos sensores de presión es la siguiente:

Equipo a utilizar

Figura 4.5. Fuente de voltaje

Características

- Posee una gran variedad de rangos de voltaje/corriente para diferentes tipos de aplicaciones
- Diseño compacto con montaje en riel DIN
- Opción de RoHS
- De bajo costo

Tabla 4.3. Especificaciones de la fuente voltaje

		Fuente de voltaje						
Modelo		25W						
ENTRADA								
Voltaje		100 ~ 240 Vac, 47 ~ 63 Hz						
Eficiencia (a 110V de entrada)	24V	76%						
Corriente pico de	110V	20A						
entrada	220V	40A						
SALIDA								
Indicador de salida		LED Verde						
Ajuste de voltaje		-10% a 10% (Con ajuste de VR)						
Ripple (Vp-p)	24V	150mV						
Tolerancia de voltaje		±1.0% max. (con entrada ajustada, 0 a 100% de carga)						
Linealidad		±1.0% max. (con entrada ajustada, 0 a 100% de carga)						
Influencia de la carga		±1.0% max. (con entrada ajustada, 0 a 100% de carga)						
Tiempo de inicio		Máximo de 3 segundos						
Tiempo en espera		13ms						
Protección contra corto		En el modelo estándar, se reinicia automáticamente						
ESPECIFICACIONES	AMBIEN	ITALES						
Temperatura ambiente		Operación:-15°C ~ 50°C; Almacén:-20°C~85°C (Sin condensación)						
Humedad		Operación: 5 a 95% RH; Almacén: 5 a 95% RH						
Influencia de la temperat	ura	Máximo 0.05% / °C (0 ~ 50 °C)						
Influencia del voltaje		Máximo 0.5% (de 85 a 264 VAC de entrada, 100% de carga)						
Vibración		10 a 500 Hz, 2G, 10 min/ciclo en una hora cada dirección X, Y y Z						
Resistencia al golpe		150 m/s2 (como 50 g) cada 3 veces en las direcciones X, Y, y Z						
SEGURIDAD ELÉCTE	RICA							
Estrecho dieléctrico		2.0 kV AC en 1 minuto (Entre la entrada, salida, carcasa; detección: 20mA)						
Dieléctrico		Mínimo 100MΩ (Entre entrada, salida y carcasa) a 500Vdc						
EMC		EN55022 Clase B, EN61000-3-2, EN61000-3-3, EN55024, IEC61000-4-2, -3, -4, -5, -6, -8, -11						
ESPECIFICACIONES	MECÁN	ICAS						
Dimensiones		104 x 35 x 45						
Material		ABS negro. UL94V0						
Terminales		Terminales a tornillo, hasta 2 x 2.5 mm, 2 cables						
Montaje		Riel DIN de 35mm (EN50022)						
Peso		190 g						

3. Relevador

El **relé** o **relevador** es un dispositivo electromecánico. Funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de una bobina y un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes.

Dado que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, como un amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "relevadores". De ahí relé.

Equipo a utilizar

En este caso se utilizará una tarjeta modelo CIO-ERB08, con su respectivo conector C37FF y su terminal a tornillos CIO-MINI37, la cual actuará como interfaz de control del cierre y apertura de la válvula solenoide. Dicha tarjeta estará conectada a la tarjeta de adquisición de datos.

Características del equipo a emplear

- 8 relevadores forma C
- Reset en encendido
- Todos los relevadores son reemplazables

Tarjeta CIO-ERB08 con 8 relevadores reemplazables

Conector C37FF

Terminal a tornillos CIO-MINI37

Figura 4.6. Tarjeta CIO-ERB08 y accesorios

Tabla 4.4. Especificaciones del relevador

	Relevador
Relevadores	8 SPDT, forma C
Capacidad de los contactos	10A a 28 VDC, 10A a 120 VAC
Tiempo de funcionamiento	20 milisegundos
Tiempo de liberación	10 milisegundos
Consumo de energía	máximo de 0.95A a +5V
Alimentación requerida	+ 5V, alimentación externa o desde la PC con el cable CPCPOWER-10 (incluido)

4. Válvula solenoide

En muchas aplicaciones es necesario controlar el paso de algún tipo de flujo, desde corriente eléctrica hasta gases o líquidos. Esta tarea es realizada por válvulas. En particular, las accionadas por solenoides permiten su implementación en lugares de difícil acceso y facilitan la automatización del proceso al ser accionadas eléctricamente.

Este tipo de válvula se opera variando la corriente que circula a través de un solenoide (conductor ubicado alrededor de un émbolo, en forma de bobina). Esta corriente, al circular por el solenoide, genera un campo magnético que atrae un émbolo móvil. Por lo general estas válvulas operan de forma completamente abierta o completamente cerrada, aunque existen aplicaciones en las que se controla el flujo en forma lineal.

Al finalizar el efecto del campo magnético, el émbolo vuelve a su posición por efecto de la gravedad, un resorte o por presión del fluido a controlar.

Figura 4.7. Válvula Solenoide

Para el dispositivo red – tubería en espiral – válvula solenoide, se implementará esta válvula para efectuar el cierre brusco del flujo en la tubería y así provocar el golpe de ariete. Como ya se comentó el cierre y la apertura de esta válvula se controlará mediante el relevador elegido.

Tabla 4.5. Especificaciones de la válvula solenoide

	Válvula solenoide						
Modelo	2PO160 – ½						
Tipo de válvula	2 vías normalmente abierto (NO)						
Acción	Diafragma ascensor directo, Unidireccional, diferencial cero						
Cv (orificio, en mm)	4.8 (16)						
Presión de trabajo	0 a 90 PSI						
Prueba de presión	200 PSI						
Temperatura de funcionamiento	Media: -5 a 50 °C; Ambiente: -5 a 45 °C						
Tamaño de puerto (NPT)	1/2"						
Materiales del cuerpo	Nylon de ingeniería						
Materiales de sellado	NBR (Buna N), Opciones: VITON, EPDM						
Bobina de servicio	Clase H, IP65, 100% ED						
Voltaje	Opciones de voltaje: 12, 24 VDC; 24, 110/120, 220/240 VAC, 50/60 Hz						
Tolerancia de tensión	10% del voltaje especificado						
Configuración de los contactos	14 a 30 W						
Conexiones eléctricas	DIN 43650, forma A						
Servicio	Líquido						

5. Tarjeta de adquisición de datos modelo USB - 1408FS

La **adquisición de datos** o adquisición de señales, consiste en la toma de muestras del mundo real (sistema analógico) para generar datos que puedan ser procesados por una computadora. Consiste, en tomar un conjunto de señales físicas, convertirlas en tensiones eléctricas y digitalizarlas de manera que se puedan procesar en una computadora. Se requiere una etapa de acondicionamiento, que adecua la señal a niveles compatibles con el elemento que hace la transformación a señal digital. El elemento que hace dicha transformación es el módulo de digitalización o tarjeta de adquisición de datos (DAQ).

Las señales procedentes de cada sensor de presión serán enviadas a la tarjeta de adquisición de datos cuyas características son las siguientes:

Equipo a utilizar

Figura 4.8. Tarjeta de Adquisición de Datos

El modelo USB – 1408FS es un dispositivo basado en la tecnología USB que fija un nuevo estándar para la rentabilidad, basado en la PC para entradas y salidas análogas y digitales. Proporcionando 8 entradas single – ended, resolución de 13 bits o 4 entradas diferenciales con resolución de 14 bits, las unidades ofrecen tasas de muestreo de hasta 48 kilomuestras/segundo con 8 rangos de entrada seleccionables por software. La unidad también proporciona 2 canales de salida análoga de 12 bits, un contador de 32 bits y 16 bits de entradas y salidas digitales.

El USB – 1408FS es confiable y bastante resistente para cualquier aplicación DAQ. Si no fuera así, no vendría con una garantía de por vida y una garantía por daños causados.

Características del equipo a emplear

- 8 entradas análogas con terminal común "single ended" y 4 diferenciales
- Resolución 14 bits (Diferencial) / 13 bits (SE)
- Tasa de muestreo de hasta 48 kilomuestras/segundo
- 2 salidas análogas de 12 bits
- 16 bits de entrada y salida digitales

6. Software a emplear

La tarjeta de adquisición de datos es conectada a una computadora personal. El software a emplear Tracer DAQ profesional sirve para desplegar los valores obtenidos por la tarjeta, así como graficar y realizar registros en la computadora para poder analizarlos posteriormente. Otra de las funciones del software es programar las funciones que corresponden a la adquisición de las dos señales de voltaje [0-10 VDC] entregadas por los dos sensores de presión y programar el envío de las señales de control [0-5 VDC] de la tarjeta de adquisición de datos al relevador de control de la válvula solenoide.

TracerDAQ profesional incluye las siguientes aplicaciones:

Graficador. Aplicación de 48 canales para registrar y graficar datos de entradas analógicas, digitales, contadores y temperaturas de una o más tarjetas DAQ de Measurement Computing. Características de muestreo basadas en la velocidad de la tarjeta utilizada (hasta 1 millón de muestras por canal), triggering usando un disipador de software interno, un disipador de software externo (o un disipador por intervalos de tiempo), la habilidad de configurar alarmas condicionales, agregar comentarios (anotaciones) al display de plot y volver a mostrar una adquisición.

Osciloscopio. Aplicación de osciloscopio con 4 canales que muestra los valores adquiridos de las entradas análogas. Características de muestreo basadas en la velocidad de la tarjeta utilizada y triggering usando un disipador de software interno o un disipador de hardware externo, la habilidad para agregar una referencia o un canal matemático, muestra valores de medidas específicas para cada canal y datos de canal a escala.

Generador de funciones. Genera múltiples formas de onda de 16 canales (seno, cuadrada, triangular, constante, sierra y personalizable). La aplicación de Generador de Funciones, genera formas de onda para salidas análogas a la tasa máxima del dispositivo de Measurement Computing. El generador de función muestra la forma de onda, muestras por ciclo, tasa de escaneo interno y frecuencia base de la señal de salida del canal análogo seleccionado. El usuario puede efectuar barrido logaritmico y lineal, cambiar la fase, ciclo de trabajo, múltiplo de pulso y amplitud de la forma de onda.

Generador de pulsos. Aplicación Generador de pulsos de 20 canales que muestra la forma de onda, muestras por ciclo, tasa de escaneo interno y frecuencia base de salida del canal contador/timer seleccionado. El usuario puede cambiar la frecuencia, el ciclo de trabajo y el estado inicial de la forma de onda.

Incluye el CD MCC DAQ con:

- Software Graficador y Registrador GRATUITO TracerDAQTM 2.0
- Librerías y ejemplos para C, C++, VB, Delphi, etc.
- Vis y ejemplos para LabVIEWTM
- Software configurador InstaCal

4.2.3. Implementación de los instrumentos de medición y control en la instalación hidráulica propuesta.

Una vez elegidos los instrumentos de medición y control, se deberán implementar en la instalación hidráulica existente que se describió en el apartado 4.2.1, de la cual se aprovechará la tubería en espiral de cobre, de 1/2" de diámetro y 61 m de longitud.

A esta tubería se le instalarán 2 sensores de presión (tabla 4.2), los cuales se colocarán en la parte media de la tubería (sensor 1) y en el extremo final de la misma (sensor 2). Se ha elegido que los sensores de presión tengan un intervalo de medición de 0 a 50 PSI (0 A 3.5 Kg/cm2), ya que es el rango en el que se espera se generen las sobrepresiones máximas.

Los sensores de presión elegidos necesitan ser alimentados por una fuente de voltaje (tabla 4.3). Esta fuente de voltaje a su vez funcionará para proteger a los sensores de presión contra sobre voltajes y a su vez para que no se envíen mediciones erróneas.

Al final de la tubería, después del sensor aguas abajo, se instalará una válvula solenoide (tabla 4.5) con el fin de garantizar la interrupción rápida del flujo para generar el golpe de ariete. Dicha válvula solenoide será activada por una interfaz llamada relevador (tabla 4.4).

En lo que respecta al sistema electrónico y de adquisición de datos, se utilizará una tarjeta DAQ (Tarjeta de adquisición de datos), la cual será la encargada de adquirir las señales procedentes de cada sensor.

A su vez la tarjeta de adquisición de datos alimentará directamente al relevador el cual actúa como interfaz del control de cierre y apertura de la válvula solenoide.

La tarjeta de adquisición de datos estará conectada a una computadora personal.

El software a emplear servirá para desplegar los valores obtenidos por la tarjeta, para graficar y registrar los datos de las mediciones en una computadora para su análisis posterior.

En la figura 4.9 se presenta el arreglo de la instalación hidráulica propuesta con los instrumentos de control y medición adaptados.

En la figura 4.10 se muestra el esquema del arreglo electrónico de los instrumentos de control y medición.

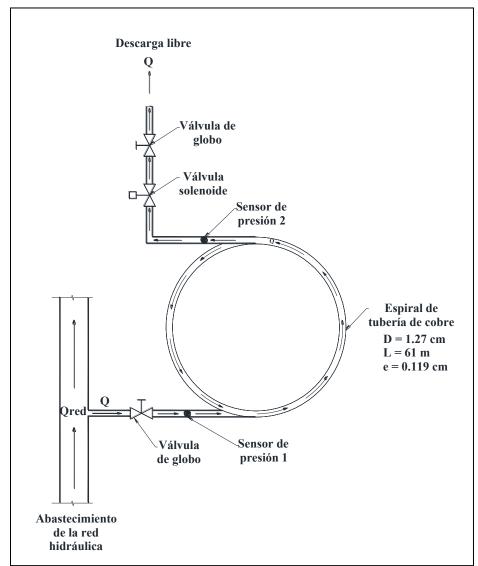


Figura 4.9. Arreglo de la instalación hidráulica propuesta

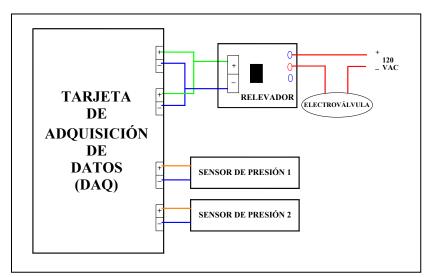


Figura 4.10. Arreglo electrónico

El costo aproximado en Moneda Nacional que implican estas mejoras, se resume en la tabla 4.6.

Tabla 4.6. Presupuesto Opción 2

CONCEPTO	UNIDAD	CANTIDAD	P.U.	IMPORTE
Suministro de sensor de presión relativa de 50 PSI, con salida 0-10 VDC, alimentación 14-30VDC, material acero inoxidable, con rosca NPT 1/4-18 macho.	Pieza.	2	\$2,494.08	\$4,988.16
Suministro de Fuente de poder 24V/1.04A, dimensiones 104mm X 35mm X 45mm, montaje en riel DIN, voltaje de entrada 100-240 VAC.	Pieza.	1	\$622.08	\$622.08
Suministro de Tarjeta USB con 8 entradas y 2 salidas análogas de voltaje, 16 E/S digitales, frecuencia de muestreo de 48 KS/s (Tarjeta de adquisición de datos (DAQ))	Pieza.	1	\$3,627.00	\$3,627.00
Software TracerDAQ profesional	Pieza.	1	\$2,786.00	\$2,786.00
Suministro de Módulo de 8 relevadores tipo C de 10 A. Salidas del relevador con terminales a tornillo. Entrada de control con conector de 37 pines. Entrada de voltaje de 5V (se puede tomar desde la fuente de la PC con el cable incluido). Incluye etapa driver de control	Pieza.	1	\$3,144.40	\$3,144.40
Suministro de Clave de 37 conductores, conectores hembra a hembra, 2 ft largo.	Pieza	1	\$558.18	\$558.18
Suministro de Terminal universal a tornillos 4 x 4	Pieza	1	\$1,469.86	\$1,469.86
Suministro de Válvula solenoide de ½"	Pza.	1	\$1,202.50	\$1,202.50
Suministro de Válvula de globo de ½"	Pza.	2	\$300.00	\$600.00
			SUBTOTAL	\$18,998.18
			IVA 16%	\$3,039.71
			TOTAL	\$22,037.89

5. PROPUESTA DE PRÁCTICAS DE LABORATORIO

5.1. Práctica "Golpe de ariete aplicando el método de las características" en dispositivo experimental existente

Parte del objetivo de esta tesis, fue vincular las bases teóricas del método de las características, con la parte experimental del fenómeno transitorio del golpe de ariete en una práctica de laboratorio. Es por ello que, en base a los resultados adquiridos en el caso de estudio, se presenta una propuesta de práctica de laboratorio, para que el alumno pueda conocer y tener la capacidad de aplicar el método de las características.

En esta propuesta de práctica de laboratorio se plantean los objetivos que el alumno deberá alcanzar en la realización de la práctica, así como los antecedentes para comprender de mejor manera el fenómeno transitorio. En seguida se muestra el desarrollo que se debe seguir durante la práctica, con el fin de que el alumno tome las lecturas adecuadas, las cuales serán la base para iniciar el análisis del golpe de ariete.

Posteriormente se indica la forma en que se deberá realizar la memoria de cálculo, en la cual está incluida la solución por medio del método de las características, el cual se pretende explicar de la manera más sencilla y didáctica posible.

Como se vio en la solución presentada en el capítulo *tres*, el criterio de estabilidad y convergencia del método, no permite utilizar una malla con menos de cinco tramos, ya que los resultados podrían no ser confiables, es por esta razón, que la malla propuesta para la práctica, sea igual a la presentada en la solución del capítulo *tres*, con la opción de que el alumno realice los cálculos en su computadora personal y presente únicamente los resultados por medio de gráficas.

Finalmente, se muestra cómo deben ser analizados los resultados obtenidos en la memoria de cálculo, seguido de una serie de preguntas por medio de las cuales se reflejen los aspectos más importantes del tema en estudio, así como del método empleado en la solución.

Se presenta a continuación la propuesta para la realización de la práctica de laboratorio "Golpe de ariete aplicando el método de las características".

Objetivo

Observar la variación de la carga de presión a lo largo de una tubería, provocada por el cierre y apertura de una válvula colocada en su extremo final.

Calcular y analizar la variación de la carga de presión generada en una tubería por el cierre de una válvula, aplicando el método de las características.

Antecedentes

- Flujo permanente en conductos a presión
- Flujo transitorio en conductos a presión
- Teoría del golpe de ariete
- Celeridad de una onda de presión
- Clasificación de maniobras de válvula
- Método de las características

Desarrollo

Medición de condiciones iniciales en flujo permanente.

- 1. Abrir la válvula de alimentación del tanque y establecer una carga constante H_0 en el depósito y registrar su valor, en m. Ver figura 5.1.
- 2. Abrir parcialmente la válvula de esfera ubicada en el extremo final de la tubería, hasta alcanzar el nivel de cresta N_c en el canal de aproximación y registrar la lectura correspondiente N_c en el vertedor de sección triangular.
- 3. Abrir totalmente la válvula de esfera y esperar a que se establezca el flujo. Cuando esto suceda, medir el nivel N_{sa} , en m, en el vertedor triangular.
- 4. Purgar los piezómetros y medir la carga de presión H_1 , H_2 , H_3 y H_4 , en m. Ver figura 5.1
- 5. Cerrar bruscamente la válvula de esfera y en el mismo instante, medir la carga de presión máxima $H_{m\acute{a}x}$, en el piezómetro no. 3 o 4. Ver figura 5.1.
- 6. Finalmente, realizar una maniobra de apertura y observar el comportamiento de la columna de agua en el piezómetro.

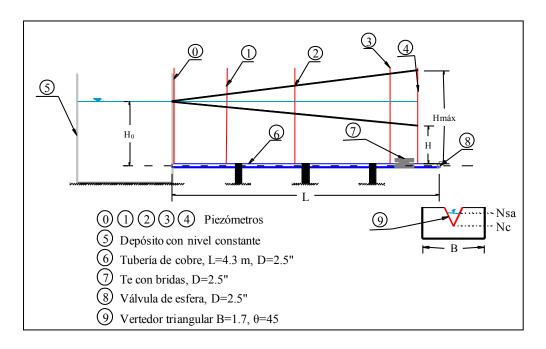


Figura 5.1. Dispositivo experimental

Registro de datos

Tabla 5.1. Registro de datos

Tanque de carga constante	$H_{\theta} =$	m
Vertedor	$N_c =$	m
triangular	$N_{sa} =$	m
	$H_1 =$	m
	$H_2 =$	m
Piezómetro	$H_3 =$	m
	$H_4 =$	m
	$H_{4m\acute{a}x} =$	m

Memoria de cálculo

1. Calcular el gasto Q de la tubería, en m³/s, que pasa por el vertedor triangular, según la ecuación $Q = Ch^{5/2}$

donde:

C coeficiente de descarga del vertedor, en m $^{1/2}$ /s

$$C = \frac{8}{15}\sqrt{2g}\tan\frac{\theta}{2}\mu \qquad ec. (4.2)$$

h carga en el vertedor, $h = |N_{sa} - N_c|$, en m;

g aceleración de la gravedad, en m/s²;

 θ ángulo del vértice del vertedor, θ =45°;

B ancho del canal de aproximación, B=1.70 m;

 μ coeficiente experimental que depende de θ y h según figura 7.9 de la referencia 1;

K coeficiente experimental que depende de B y h según figura 7.10 de la referencia 1.

2. Calcular la celeridad de la onda a, en m/s, de la onda de presión en la tubería, con la ecuación:

$$a = \frac{1}{\sqrt{\rho \left(\frac{1}{E_0} + \frac{D}{E_m e}\right)}}$$

donde:

a celeridad de la onda de presión, en m/s;

 ρ densidad del agua, $\rho = 1,000 \ Kg/m^3$;

 E_0 módulo de elasticidad del agua,

 $E_0 = 2.18 \, x 10^9 \, Pa;$

 E_m módulo de elasticidad de la tubería,

 $E_m = 118.7 \ x 10^9 \ Pa;$

D diámetro de la tubería, D = 0.0635 m;

e espesor de la tubería, e = 0.0018 m.

3. Calcular el periodo T, en segundos, de la onda de presión, como: $T = \frac{2L}{a}$, donde L es la longitud de tubería. Ver figura 5.1

4. Solución aplicando el Método de las Características

Ecuaciones características:

$$Q_P = C_p - C_a H_P \dots ec.$$
 (1) Ec. característica positiva

$$Q_P = C_n + C_a H_P \dots ec.$$
 (2) Ec. característica negativa

en las cuales:

$$C_{pi} = Q_{i-1} + C_a h_{i-1} - FQ_{i-1}|Q_{i-1}| \dots ec. (3)$$

$$C_{ni} = Q_{i+1} - C_a h_{i+1} - FQ_{i+1} |Q_{i+1}| \dots ec. (4)$$

donde:

$$C_a = \frac{gA}{a}$$
 y $F = \frac{f\Delta t}{2DA}$

Considerar f=0.035, Δt =0.000747 segundos y Δx =0.86 m. Ver figura 5.2

Puntos interiores:

$$Q_{Pi} = 0.5(C_{pi} + C_{ni}) \dots ec. (5)$$

$$h_{pi} = \frac{C_{pi} - C_{ni}}{2C_a} \dots ec. (6)$$

Condiciones de frontera:

Condición de frontera aguas arriba. Tanque con nivel constante

$$Q_{Pi} = \frac{-1 + \sqrt{1 + 4k_1(C_{ni} + C_aH_0)}}{2K_1} \dots ec. (7)$$

donde:

$$k_1 = \frac{C_a(1+k)}{2gA^2} \dots ec. (8)$$

Considerar k = 0.5 (Coeficiente de pérdida a la entrada de la tubería).

$$H_{Pi} = H_0 - (1+k)\frac{Q_P^2}{2gA^2} \dots ec. (9)$$

Válvula situada en el extremo final aguas abajo

$$Q_{Pi} = 0.5 \left(-C_v + \sqrt{{C_v}^2 + 4C_{pi}C_v} \right) \dots ec. (10)$$

donde:

$$C_v = (\tau Q_0)^2 / (C_a H_{0v}) \dots ec. (11)$$

Considerar H_{0v} =0.6 m (Carga de presión en la válvula en flujo permanente)

Siendo τ la ley de cierre no uniforme definida para un tiempo de cierre t_c =1.5 segundos. La ley de cierre está dada por la siguiente ecuación:

$$\tau = 0.4168 t^2 - 1.2931 t + 1.0 \dots ec. (12)$$

Por otra parte:

$$h_{p_5} = \frac{C_{p_5} - Q_{p_5}}{C_a} \dots ec. (13)$$

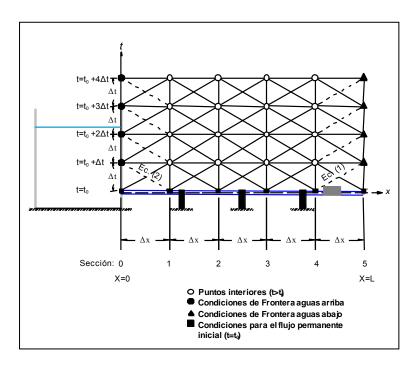


Figura 5.2. Malla característica

Tabla de cálculo

Tabla 5.2. Tabla de cálculo

Sección (i)		0				1			2	2			3	3			4	1			5	
t (s)	h_{θ}	Q_{θ}	Cn_{θ}	Cp_1	h_1	Q_I	Cn_1	Cp_2	h_2	Q_2	Cn_2	Cp_3	h_3	Q_3	Cn_3	Cp_4	h_4	Q_4	Cn ₄	Cp_5	h_5	Q_5
t=t0																						
t=t0+Δt																						
t=1.0																						

- 5. Dibujar la curva X-h, en m, para los instantes de tiempo 0, 0.4, 0.8, 1.2 y 1.5 segundos.
- 6. Dibujar la curva T-h, en s y m, respectivamente, en las secciones 1, 2, 3, 4 y 5.
- Comparar la carga máxima medida en el dispositivo con la obtenida en el inciso 5, en la sección
 5.

Instrumentos de medición

> Flexómetro

Referencias bibliográficas

- 1. Sotelo A., G., Hidráulica General Vol. I, Ed. Limusa, México 1990.
- 2. Mataix, C., Mecánica de Fluidos y Máquinas Hidráulicas, Ed. Harla, México, 1990.
- 3. Gardea V., H., Aprovechamientos Hidráulicos y de Bombeo, Facultad de Ingeniería, UNAM.
- 4. Mataix, C. Mecánica de Fluidos y Máquinas Hidráulicas, Ed. Harla, México, 1995.
- 5. Mancebo, U. *Teoría del golpe de ariete y sus aplicaciones en ingeniería hidráulica*. Ed. Limusa, México, 1997.
- 6. Chaudhry, M. Hanif. Applied Hidraulic Transients.

Cuestionario

El cuestionario tendrá de 5 a 10 preguntas relacionadas con el desarrollo y memoria de cálculo y variarán cada semestre.

5.2. Práctica "Golpe de ariete aplicando el método de las características" en dispositivo experimental propuesto.

Con base en la hoja de cálculo realizada en el capítulo 3 para dar solución al caso de estudio, se realizó la solución para el dispositivo experimental propuesto. A diferencia del dispositivo experimental existente, el dispositivo propuesto no cuenta con un aforador de pared delgada, por lo cual el gasto en condiciones iniciales en flujo permanente se determinará por medio de un aforo volumétrico. Así mismo, el dispositivo propuesto cuenta con una válvula solenoide para efectuar el cierre instantáneo y provocar el golpe de ariete. Para realizar las mediciones de la variación en la presión, se propone la instalación de dos sensores de presión aguas arriba y aguas abajo de la tubería, los cuales desplegarán las mediciones por medio de una tarjeta de adquisición de datos hacia una computadora.

En seguida se indica el procedimiento para realizar la práctica de laboratorio, así como la solución por medio del método de las características.

5.2.1. MEMORIA DE CÁLCULO

Medición y registro de lecturas.

Abrir la válvula de alimentación general a la tubería en espiral y mantener en posición abierta la válvula solenoide.

Una vez establecido el gasto en la tubería, medir con el manómetro de carátula y con el sensor de presión 1 la carga de presión establecida (hp_{θ}). El valor esperado o supuesto de la carga de presión inicialmente establecida es de 1.00 kg/cm² (10.00 m de columna de agua).

Realizar tres mediciones de volumen y tiempo para calcular el gasto correspondiente con la siguiente ecuación.

$$Q = \frac{V}{t}$$

Donde

V = volumen aforado

t = tiempo de aforo

y calcular el gasto promedio como

$$Q_{prom} = \frac{Q_1 + Q_2 + Q_3}{3}$$

El valor del gasto promedio esperado es de 0.1 l/s ó $1 \times 10^{-4} \text{ m}^3/\text{s}$

Poner en posición cerrada la válvula solenoide y observar la evolución de la presión en los dos sensores de presión.

Registrar los datos obtenidos en la tabla 5.3.

Tubería de $hp_0 =$ 10.00 m.c.a. descarga m^3 $V_1 =$ $t_1 =$ Aforador V_2 m^3 volumétrico S $V_3 =$ m $t_3 =$ S $hp_{s1} =$ m.c.a. Sensores de $hp_{s2} =$ m.c.a. presión m.c.a. $hp_{m\acute{a}xs2} =$

Tabla 5.3. Registro de lecturas

Cálculo de celeridad de la onda de presión en la tubería.

donde:

densidad del agua, $\rho = 1,000 \text{ Kg/m}^3$;

módulo de elasticidad del agua, $E_v = 2.18 \times 10^9 \text{ Pa}$;

módulo de elasticidad de la tubería de cobre, $E_t = 118.7 \times 10^9 \text{ Pa}$;

diámetro de la tubería, D = 0.0127 m;

espesor de la tubería, e = 0.00119 m.

Por lo tanto la celeridad es:

$$a = \frac{1}{\sqrt{(1000)\left(\frac{1}{2.18 \times 10^9} + \frac{0.0127}{(118.7 \times 10^9)(0.00119)}\right)}}$$

$$a = 1.350.09 \text{ m/s}$$

Periodo T de la onda de presión.

$$T = \frac{2L}{a}$$

donde:

L = 61.00 m

a = 1.350.09 m/s

Por lo tanto
$$T = \frac{(2 \times 61.00)}{1,350.09} = 0.0904 \, s$$

Determinación del factor de fricción

$$\varepsilon_t = \varepsilon_0 + at$$

donde

- ε_0 rugosidad del tubo (nuevo), en mm;
- a coefficiente que depende del grupo en el que se clasifique el agua que va a escurrir, según la tabla 3.4; a=0.025
- t número de años de servicio de la tubería; t = 15 años
- ε_t rugosidad del conducto, después de t años de servicio, en mm.

Según la tabla 3.3, para la tubería lisa de cobre, la rugosidad absoluta (tubería nueva de cobre) es $\varepsilon_0=0.0015~\text{mm}$

Sustituyendo los valores en la ecuación 3.5:

$$\varepsilon_t = 0.0015 + (0.025 \times 15) = 0.3765 \,\mathrm{mm}$$

De la ecuación de continuidad, la velocidad es

$$V = \frac{0.0001}{0.00013} = 0.769 \text{ m/s}$$

Si se considera una viscosidad cinemática del fluido v, se obtiene de la figura 3.4, para una temperatura promedio de 20°C.

$$\nu = 1 \times 10^{-6} \text{ m}^2/\text{s}$$

Una vez determinada la velocidad y la viscosidad cinemática del fluido, el número de Reynolds tiene el siguiente valor

$$R_e = \frac{(0.769 \times 0.0127)}{1 \times 10^{-6}} = 9,766.3$$

A partir del diagrama de Moody (figura 3.5), y con la rugosidad relativa ε/D , se determinó el factor de fricción correspondiente a la tubería del dispositivo experimental.

$$\frac{\varepsilon}{D} = \frac{0.3765}{12.7} = 0.029$$

Del diagrama de Moody con el valor de la relación anterior y el número de Reynolds obtenido anteriormente, el valor del factor de fricción f = 0.059

Una vez determinado el factor de fricción, se realizó el cálculo de las pérdidas por fricción con la ecuación de Darcy-Weisbach.

Algunas características geométricas e hidráulicas de la tubería son:

D (tubería) = 0.0127 m

A (tubería) = 0.00013 m2

 $Q_0 = 0.00010 \text{ m}3/\text{s}$

Rh = 0.00318 m

V = 0.78941 m/s

$$V^2/2g = 0.03176 \text{ m}$$

Considerando 5 tramos de tubería iguales a razón de 12.2 m cada uno, la pérdida por fricción calculada con la ecuación de Darcy-Weisbach, es

$$h_f = f \frac{L}{D} \frac{V^2}{2g} = 0.059 \frac{12.2}{0.0127} 0.03176 = 1.8 m$$

Utilizando las pérdidas por fricción calculadas con la ecuación de Darcy-Weisbach y tomando en cuenta la carga de velocidad, se obtuvieron las siguientes cargas de presión

Tabla 5.4. Pérdidas totales Darcy - Weisbach

Pérdida tota	l <i>hr</i> , en m
Tramo 1	1.8002
Tramo 2	3.6003
Tramo 3	5.4005
Tramo 4	7.2007
Tramo 5	9.0009

Tabla 5.5. Carga piezométrica

				Carga Piezom	étrica, en m		
	H_{θ}	h_{pz0}	h_{pz1}	h_{pz2}	h_{pz3}	h_{pz4}	h_{pz5}
Calculado	10	9.9682	8.1681	6.3679	4.5677	2.7675	0.9674

Ley para maniobra de cierre lineal.

$$Q_5 = 0.0001 - 0.0001t;$$
 $para 0 \le t \le 1$

$$Q_5 = 0;$$
 $para t > 1$

Una vez determinadas las condiciones iniciales a flujo permanente, se realiza la solución mediante el método de las características.

Condiciones de estabilidad y convergencia

Se requiere conocer el intervalo de tiempo y los puntos de interés, para lo cual aplicamos la condición de estabilidad de Courant, ecuación (2.71), de la cual podemos decir lo siguiente

$$\Delta t \le \frac{\Delta x}{a}$$

Donde Δx se define de la siguiente forma.

$$\Delta x = \frac{L}{N}, N \ge 2$$

donde:

L longitud de la tubería, en m

N número mínimo entero de tramos en que debe dividirse el conducto

Si N = 5 tramos y L = 61.00 m, se tiene

$$\Delta x = \frac{61.00}{5} = 12.2 \text{ m}$$

Así, Δt resulta:

$$\Delta t = \frac{12.2}{1,350.09} = 0.00904 \,\mathrm{s}$$

De esta manera

$$\frac{1}{a} = \frac{1}{1,350.09} = 0.00074 \text{ s/m}$$

y

$$\frac{\Delta t}{\Delta x} = \frac{0.00904}{12.2} = 0.00074 \text{ s/m}$$

Con esto se cumple con la condición de estabilidad de Courant.

Una vez conocidos Δt y Δx , se define la malla característica, la cual se encuentra representada en la figura 5.3. Esta malla está compuesta de cinco secciones, de las cuales, la sección 0 representa la condición de frontera aguas arriba (tubería de red), la sección 5 representa la condición de frontera aguas abajo (válvula) y las secciones 1, 2, 3 y 4, representan los puntos interiores de la malla.

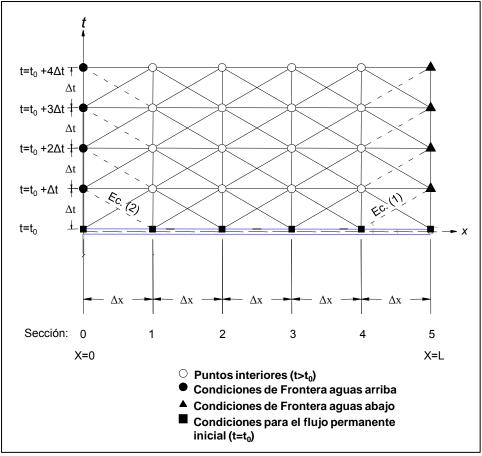


Figura 5.3. Malla característica

Planteamiento de las ecuaciones características

Una vez definida la malla característica, se realizó el cálculo de las constantes necesarias para las ecuaciones características.

De la ecuación 2.57, obtenemos el valor de la constante C_a . Sustituyendo valores, resultó

$$C_a = \frac{9.81 \times 0.00013}{1,350.09} = 9.45 \times 10^{-7}$$

Existe otra constante que está en función del factor de fricción obtenido, la cual definimos con la siguiente ecuación

$$F = \frac{f\Delta t}{2DA}$$

Sustituyendo los valores se tiene

$$F = \frac{(0.059)(0.00904)}{2(0.0127)(0.00013)} = 161.53$$

Con estos valores, se hizo el planteamiento de las constantes C_p y C_n , las cuales pueden ser conocidas para cada instante de tiempo y que forman parte de las ecuaciones características. Estas constantes quedaron definidas con las ecuaciones 2.55 y 2.56, y ahora, sustituyendo los valores se tiene

$$C_{pi} = Q_{i-1} + 9.45 \times 10^{-7} h_{i-1} - 161.53Q_{i-1}|Q_{i-1}|$$
(5.1)

y

$$C_{ni} = Q_{i+1} - 9.45 \times 10^{-7} \ h_{i+1} - 161.53Q_{i+1}|Q_{i+1}|$$
 (5.2)

Ahora, la ecuación característica positiva (ecuación 2.53), queda de la siguiente forma

$$Q_{Pi} = C_{pi} - 9.45 \times 10^{-7} h_{Pi} \tag{5.3}$$

y la ecuación característica negativa (ecuación 2.54), queda como

$$Q_{Pi} = C_{ni} + 9.45 \times 10^{-7} h_{Pi} \tag{5.4}$$

Los puntos interiores de la malla (figura) se definen a partir de la ecuación 2.58

$$Q_{pi} = 0.5(C_{Pi} + C_{ni}) (5.5)$$

y de la ecuación (3.23)

$$h_{pi} = \frac{C_{pi} - C_{ni}}{2C_a}$$

Sustituyendo el valor de la constante C_a en la ecuación anterior, resulta

$$h_{pi} = 529,100.53 \left(C_{pi} - C_{ni} \right) \tag{5.6}$$

Las ecuaciones 5.5 y 5.6, definen el gasto Q y la carga de presión h en los puntos interiores de la malla.

Condiciones de frontera

• Condición de frontera aguas arriba (Sección 0)

La condición de frontera aguas arriba está representada por una tubería con una presión constante y las ecuaciones que determinan el gasto Q y la carga h en esta sección son las ecuaciones 2.62 y 2.63. Para el dispositivo experimental utilizado, se determinó el valor del coeficiente de pérdidas a la entrada de la tubería con un valor de k = 0.5 (ver pérdidas locales), lo que lleva a calcular el valor de la constante k_1 (ecuación 2.64). Sustituyendo el valor de k y C_a en la ecuación (2.64), dio como resultado

$$k_1 = 0.206$$

Sustituyendo las constantes en la ecuación (2.62), para obtener la carga h en la condición de frontera aguas arriba

$$H_P = 1 - (1 + 0.5) \frac{Q_P^2}{2(9.81)(0.003167)^2}$$
 (5.7)

y sustituyendo constantes en la ecuación (2.63), resultó

$$Q_P = \frac{-1 + \sqrt{1 + 4(0.206)[C_{ni} + (2.7011 \times 10^{-5})(1)]}}{2(0.206)}$$
(5.8)

• Condición de frontera aguas abajo (Sección 5)

$$h_{P_5} = \frac{C_P - Q_P}{C_a} = \frac{C_P - Q_P}{9.45 \times 10^{-7}} = 1,058,201.06 (C_{P_5} - Q_5)$$

$$Q_5 = 0.0001 - 0.0001t; \quad para \ 0 \le t \le 1$$

$$Q_5 = 0; \quad para \ t > 1 \ s$$
(5.9)

Esquema de diferencias finitas

Se sabe que para $t = t_0$ se presentan las condiciones iniciales a flujo permanente. Estos datos se pueden ver en la tabla 5.6.

Tabla 5.6. Condiciones iniciales a flujo permanente							
X	Q	h_{pz}					
(m)	(m3/s)	(m)					
0.00	0.0001	9.9682					
12.20	0.0001	8.1681					
24.40	0.0001	6.3679					
36.60	0.0001	4.5677					
48.80	0.0001	2.7675					
61.00	0.0001	0.9674					
	X (m) 0.00 12.20 24.40 36.60 48.80	X Q (m) (m3/s) 0.00 0.0001 12.20 0.0001 24.40 0.0001 36.60 0.0001 48.80 0.0001					

Para el instante $t = t_0 + \Delta t$, es decir para t = 0.00904 s, se presenta la forma en que deben ser calculados el gasto Q y la variación de la carga h con respecto a la posición en la tubería. Los subíndices que aparecerán en las ecuaciones, por ejemplo $Q_{1,0}$, representan la sección (i) y el instante de tiempo (t) respectivamente que se deben utilizar para realizar el cálculo.

Condición de frontera aguas arriba

Sección 0:
$$X = 0$$
, $i=0$

$$C_{n_0} = Q_{1,0} - 9.45 \times 10^{-7} h_{1,0} - 161.53 Q_{1,0} |Q_{1,0}|$$

$$C_{n_0} = 0.0001 - 9.45 \times 10^{-7} (8.1681) - 161.53 (0.0001) |0.0001|$$

$$C_{n_0} = 9.066 \times 10^{-5}$$

$${Q_p}_0 = \frac{-1 + \sqrt{1 + 4(0.206)[9.066 \times 10^{-5} + (9.45 \times 10^{-7})(1)]}}{2(0.206)}$$

$$Q_{p_0} = 9.16032 \times 10^{-5} \text{ m}^3/\text{s}$$

$$h_{p_0} = 10 - (1 + 0.5) \left[\frac{(9.16032 \times 10^{-5})^2}{2(9.81)(0.000127)^2} \right]$$

$$h_{p_0} = 9.9602$$
 m.c.a.

Puntos interiores

Sección 1: X=12.2 m, i=1

$$C_{p_1} = Q_{0,0} + 9.45 \times 10^{-7} h_{0,0} - 161.53 Q_{0,0} |Q_{0,0}|$$

$${C_p}_1 = 0.0001 + 9.45 \times 10^{-7} (9.9682) - 161.53 (0.0001) |0.0001|$$

$$C_{p_1} = 0.0001078$$

$$C_{n_1} = Q_{2,0} - 9.45 \times 10^{-7} h_{2,0} - 161.53 Q_{2,0} |Q_{2,0}|$$

$$C_{n_1} = 0.0001 - 9.45 \times 10^{-7} (6.3679) - 161.53 (0.0001) |0.0001|$$

$$C_{n_1} = 0.000092367$$

$$Q_{p_1} = 0.5 \left(C_{p_1} - C_{n_1} \right)$$

$$Q_{p_1} = 0.5(0.0001078 - 0.000092367)$$

$$Q_{p_1} = 0.0000077165 \text{ m}^3/\text{s}$$

$$h_{p_1} = 529,100.53 \left(C_{p_1} - C_{n_1} \right)$$

$$h_{p_1} = 529,100.53(0.0001078 - 0.000092367)$$

$$h_{p_1} = 8.1656 \text{ m. c. a.}$$

Sección 2: X=24.4 m, i=2

$$C_{p_2} = Q_{1,0} + 9.45 \times 10^{-7} h_{1,0} - 161.53 Q_{1,0} |Q_{1,0}|$$

$$C_{p_2} = 0.0001 + 9.45 \times 10^{-7} (8.1681) - 161.53(0.0001) |0.0001|$$

$$C_{p_2} = 0.00010610$$

$$C_{n_2} = Q_{3,0} - 9.45 \times 10^{-7} h_{3,0} - 161.53 Q_{3,0} |Q_{3,0}|$$

$$C_{n_2} = 0.0001 - 9.45 \times 10^{-7} (4.5677) - 161.53 (0.0001) |0.0001|$$

$$C_{n_2} = 0.000094068$$

$$Q_{p_2} = 0.5 \left(C_{p_2} - C_{n_2} \right)$$

$$Q_{p_2} = 0.5(0.00010610 - 0.000094068)$$

$$Q_{p_2} = 0.000006016 \text{ m}^3/\text{s}$$

$$h_{p_2} = 529,100.53 \left(C_{p_2} - C_{n_2} \right)$$

$$h_{p_2} = 529,100.53(0.00010610 - 0.000094068)$$

$$h_{p_2} = 6.3661 \text{ m. c. a.}$$

Sección 3: X=36.6 m, i=3

$$C_{p_3} = Q_{2,0} + 9.45 \times 10^{-7} h_{2,0} - 161.53 Q_{2,0} |Q_{2,0}|$$

$$C_{p_3} = 0.0001 + 9.45 \times 10^{-7} (6.3679) - 161.53 (0.0001) |0.0001|$$

$$C_{p_2} = 0.0001044$$

$$C_{n_3} = Q_{4,0} - 9.45 \times 10^{-7} h_{4,0} - 161.53 Q_{4,0} |Q_{4,0}|$$

$$C_{n_3} = 0.0001 - 9.45 \times 10^{-7} (2.7675) - 161.53(0.0001)|0.0001|$$

$$C_{n_3} = 0.0000957$$

$$Q_{p_3} = 0.5 \left(C_{p_3} - C_{n_3} \right)$$

$$Q_{p_3} = 0.5(0.0001044 - 0.0000957)$$

$$Q_{p_3} = 0.00000435 \text{ m}^3/\text{s}$$

$${h_p}_3 = 529,\!100.53 \left({C_p}_3 - {C_n}_3\right)$$

$$h_{p_3} = 529,100.53(0.0001044 - 0.0000957)$$

$$h_{p_3} = 4.60317 \text{ m. c. a.}$$

Sección 4: X=48.8 m, i=4

$$C_{p_4} = Q_{3,0} + 9.45 \times 10^{-7} h_{3,0} - 161.53 Q_{3,0} |Q_{3,0}|$$

$$C_{p_A} = 0.0001 + 9.45 \times 10^{-7} (4.5677) - 161.53(0.0001) |0.0001|$$

$$C_{p_4} = 0.0001027$$

$$C_{n_4} = Q_{5,0} - 9.45 \times 10^{-7} h_{5,0} - 161.53 Q_{5,0} |Q_{5,0}|$$

PROPUESTA DE INSTALACIÓN EXPERIMENTAL EN EL LABORATORIO DE HIDRÁULICA PARA LA ENSEÑANZA TEÓRICO – PRÁCTICA DEL FENÓMENO DE GOLPE DE ARIETE

$$\begin{split} &C_{n_4} = 0.0001 - 9.45 \times 10^{-7} (0.9674) - 161.53 (0.0001) |0.0001| \\ &C_{n_4} = 0.00009747 \\ &Q_{p_4} = 0.5 \left(C_{p_4} - C_{n_4} \right) \\ &Q_{p_4} = 0.5 (0.0001027 - 0.00009747) \\ &Q_{p_4} = 0.000002615 \text{ m}^3/\text{s} \\ &h_{p_4} = 529,100.53 \left(C_{p_4} - C_{n_4} \right) \\ &h_{p_4} = 529,100.53 (0.0001027 - 0.00009747) \end{split}$$

Condición de frontera aguas abajo

Sección 5: X=61.0 m, i=5

 $h_{p_A} = 2.76719 \text{ m. c. a.}$

$$\begin{split} &C_{p_5} = Q_{4,0} + 9.45 \times 10^{-7} h_{4,0} - 161.53 Q_{4,0} \big| Q_{4,0} \big| \\ &C_{p_5} = 0.0001 + 9.45 \times 10^{-7} (2.7675) - 161.53 (0.0001) |0.0001| \\ &C_{p_5} = 0.0001009 \\ &Q_5 = 0.0001 - 0.0001 (0.00903645) \\ &Q_5 = 0.00009909 \text{ m}^3/\text{s} \\ &h_{P_5} = 1,058,201.06 \big(C_{P_5} - Q_5 \big) \\ &h_{P_5} = 1,058,201.06 (0.0001009 - 0.00009909) \\ &h_{P_5} = 1.915343 \text{ m. c. a} \end{split}$$

De esta forma, se determinan las variables Q_p y h_p a lo largo de la tubería para cada instante de tiempo.

A continuación se presentan las gráficas donde se puede observar la variación de la carga de presión (h) con respecto a la posición en la tubería (X) y el instante de tiempo que se presenta (t).

Tiempo de cierre ($t_c = 1.0 \text{ s}$)

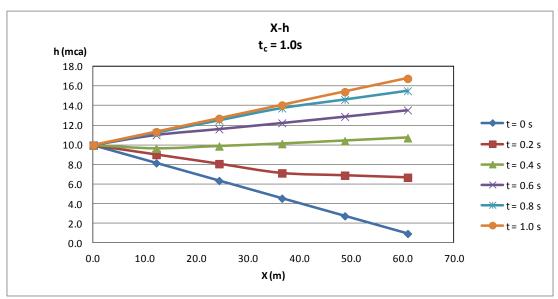


Figura 5.4. Carga de presión – Posición (t_c =1.0 s)

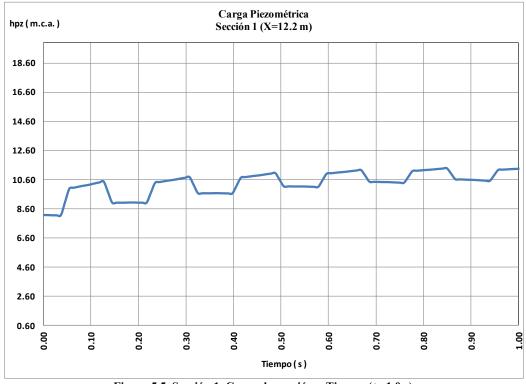


Figura 5.5. Sección 1, Carga de presión – Tiempo (t_c =1.0 s)

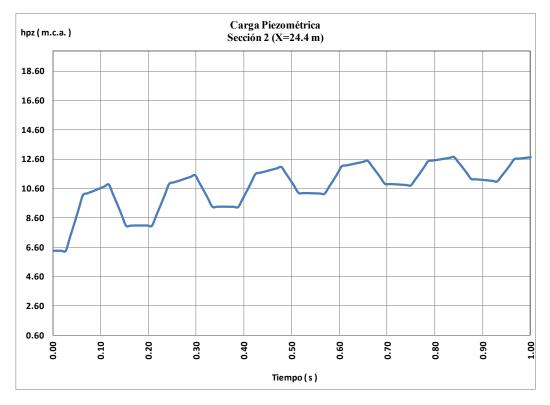


Figura 5.6. Sección 2, Carga de presión – Tiempo (t_c =1.0 s)

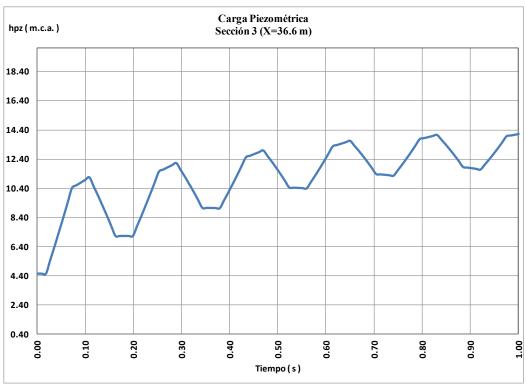


Figura 5.7. Sección 3, Carga de presión – Tiempo (t_c =1.0 s)

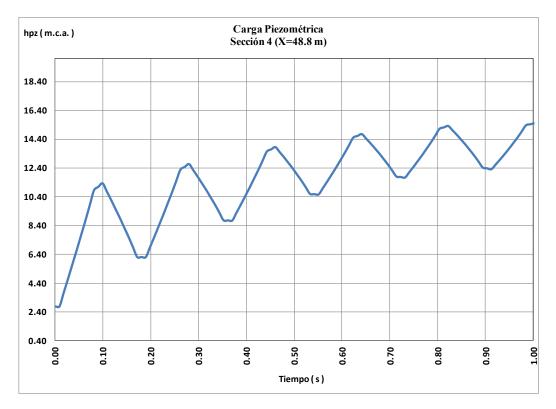


Figura 5.8. Sección 4, Carga de presión – Tiempo (t_c =1.0 s)

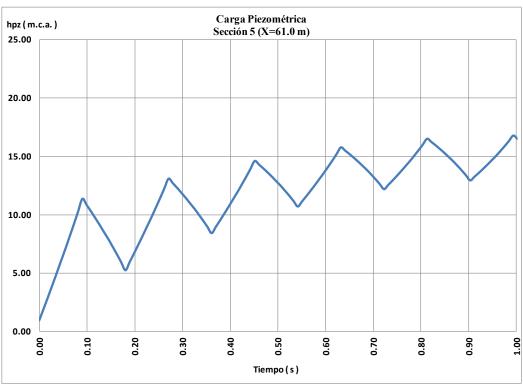


Figura 5.9. Sección 5, Carga de presión – Tiempo (t_c =1.0 s)

Tiempo de cierre ($t_c = 0.5 \text{ s}$)

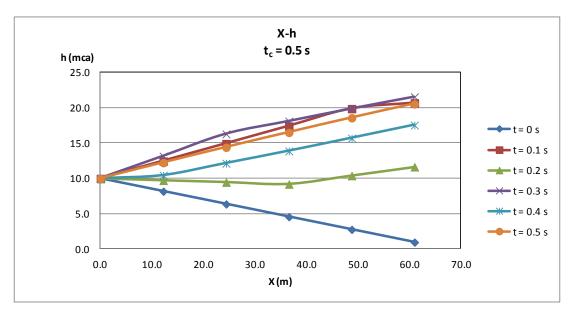


Figura 5.10. Carga de presión – Posición (t_c =0.5 s)

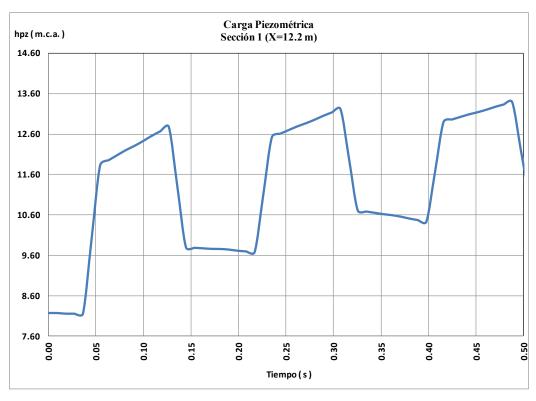


Figura 5.11. Sección 1, Carga de presión – Tiempo (t_c =0.5 s)

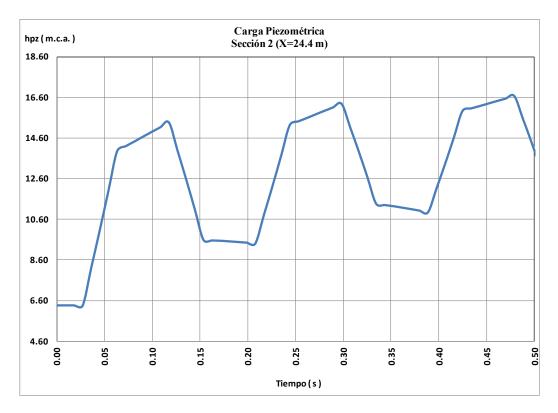


Figura 5.12. Sección 2, Carga de presión – Tiempo (t_c =0.5 s)

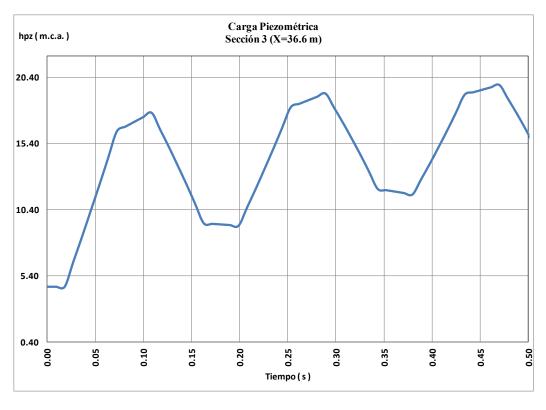


Figura 5.13. Sección 3, Carga de presión – Tiempo (t_c =0.5 s)

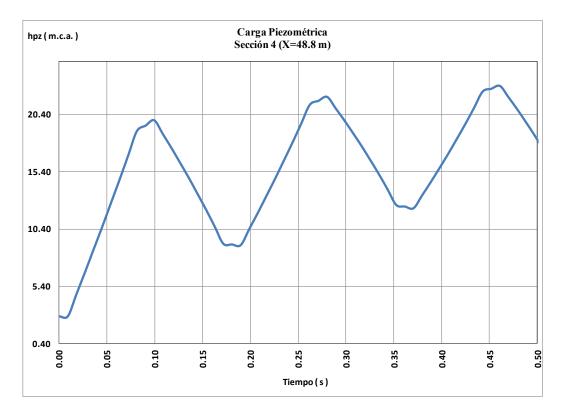


Figura 5.14. Sección 4, Carga de presión – Tiempo (t_c =0.5 s)

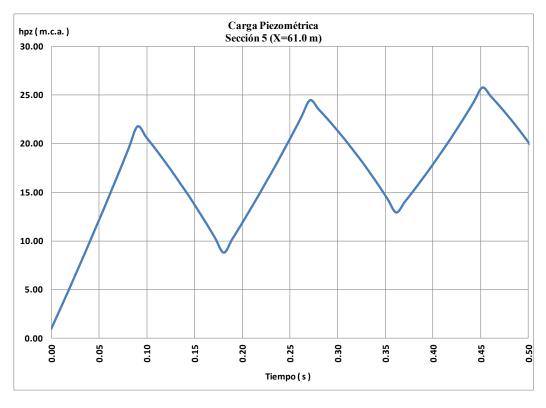


Figura 5.15. Sección 5, Carga de presión – Tiempo (t_c =0.5 s)

Las condiciones iniciales en cuanto a la presión inicial en la tubería y el gasto establecido corresponden a valores de 1.00 Kg/cm² y 0.0001 m³/s. Dichos valores son supuestos y adecuados a las características de la tubería.

De los resultados obtenidos, se observa la variación de la carga de presión respecto a la posición en la tubería y respecto a cada instante de tiempo. Para el tiempo de cierre propuesto de t_c =1.0 segundos, la carga máxima calculada en la sección 5, tuvo una presión máxima de 16.78 metros de columna de agua.

Para el tiempo de cierre propuesto de tc=0.5 segundos, la carga máxima calculada en la sección 5, tuvo una presión máxima de 25.76 metros de columna de agua.

La variación en la onda de presión calculada deberá ser comparada con la variación de la onda de presión registrada por los sensores de presión.

Se presenta a continuación la propuesta para la realización de la práctica de laboratorio "Golpe de ariete aplicando el método de las características", para un tiempo de cierre de 1.0 segundos.

Objetivo

Observar la variación de la carga de presión a lo largo de una tubería, provocada por el cierre y apertura de una válvula colocada en su extremo final.

Calcular y analizar la variación de la carga de presión generada en una tubería por el cierre de una válvula, aplicando el Método de las Características.

Antecedentes

- Flujo permanente en conductos a presión
- Flujo transitorio en conductos a presión
- Teoría del golpe de ariete
- Celeridad de una onda de presión
- Clasificación de maniobras de válvula
- Método de las características

Desarrollo

Medición de condiciones iniciales en flujo permanente.

- 1. Abrir la válvula de alimentación general y la válvula solenoide hasta que se establezca el flujo.
- 2. Determinar el gasto mediante aforo volumétrico.
- 3. Conectar los sensores de presión.
- 4. Colocar en posición de cerrado la válvula solenoide y observar la evolución de la presión en los dos sitios de ubicación de los sensores de presión.
- 5. Finalmente, realizar una maniobra de apertura y observar el comportamiento de la presión en los dos sitios de ubicación de los sensores de presión.

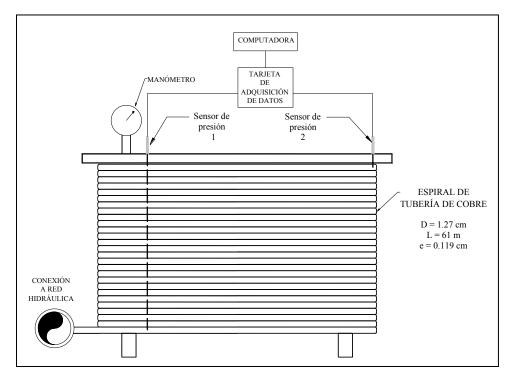


Figura 5.10. Dispositivo experimental

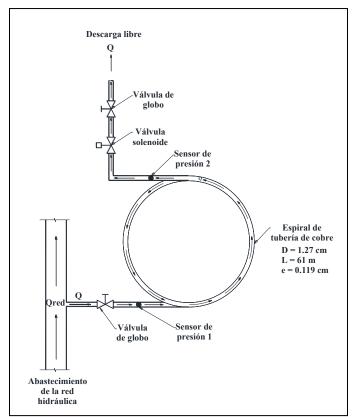


Figura 5.11. Arreglo de la instalación hidráulica propuesta

Registro de datos

Tabla 5.7. Registro de datos

Tubería de	11 _	M
descarga	$H_{\theta} =$	
	V1 =	m ³
	t1 =	S
Aforador	V2	m^3
volumétrico	t2 =	S
	V3 = t3 =	m^3
	<i>t</i> 3 =	S
G 1	$H_{s1} =$	M
Sensores de presión	$H_{s2} =$	M
presion	$H_{m\acute{a}xs2} =$	M

Memoria de cálculo

1. Una vez tomadas las tres mediciones de volumen y tiempo, calcular los gastos Q_1 , Q_2 y Q_3 de la tubería, en m3/s, según la ecuación

$$Q = \frac{V}{t}$$

Donde

V = volumen aforado

t = tiempo de aforo

y calcular el gasto promedio como

$$Q_{prom} = \frac{Q_1 + Q_2 + Q_3}{3}$$

2. Calcular la celeridad de la onda a, en m/s, de la onda de presión en la tubería, con la ecuación:

$$a = \frac{1}{\sqrt{\rho \left(\frac{1}{E_v} + \frac{D}{E_t e}\right)}}$$

donde:

a celeridad de la onda de presión, en m/s;

 ρ densidad del agua, $\rho = 1,000 \ Kg/m^3$;

 E_{ν} módulo de elasticidad del agua,

$$E_v = 2.18 \, x 10^9 \, Pa;$$

 E_t módulo de elasticidad de la tubería,

$$E_t = 118.7 \ x 10^9 \ Pa;$$

D diámetro de la tubería, D = 0.0127 m;

e espesor de la tubería, e = 0.00119 m.

- 3. Calcular el periodo T, en segundos, de la onda de presión, como: $T = \frac{2L}{a}$, donde L = 61.00 m es la longitud de tubería.
- 4. Solución aplicando el Método de las Características

Ecuaciones características:

$$Q_P = C_p - C_a H_P \dots ec.$$
 (1) Ec. característica positiva

$$Q_P = C_n + C_a H_P \dots ec.$$
 (2) Ec. característica negativa

en las cuales:

$$C_{ni} = Q_{i-1} + C_a h_{i-1} - FQ_{i-1} |Q_{i-1}| \dots ec. (3)$$

$$C_{ni} = Q_{i+1} - C_a h_{i+1} - FQ_{i+1} |Q_{i+1}| \dots ec. (4)$$

donde:

$$C_a = \frac{gA}{a} \quad y \quad F = \frac{f\Delta t}{2DA}$$

Considerar f=0.059, Δt =0.009036 segundos y Δx =12.2 m. Ver figura 5.12

Puntos interiores:

$$Q_{Pi} = 0.5(C_{pi} + C_{ni}) \dots ec. (5)$$

$$h_{pi} = \frac{C_{pi} - C_{ni}}{2C_a} \dots ec.$$
 (6)

Condiciones de frontera:

Condición de frontera aguas arriba. Tanque con nivel constante

$$Q_{Pi} = \frac{-1 + \sqrt{1 + 4k_1(C_{ni} + C_aH_0)}}{2K_1} \dots ec. (7)$$

donde:

$$k_1 = \frac{C_a(1+k)}{2gA^2} \dots ec. (8)$$

Considerar k = 0.5 (Coeficiente de pérdida a la entrada de la tubería).

$$H_{Pi} = H_0 - (1+k)\frac{Q_P^2}{2gA^2} \dots ec. (9)$$

Válvula situada en el extremo final aguas abajo

Considerando un cierre lineal ($t_c = 1.0 \text{ s}$)

$$Q_P = Q_0 - Q_0 t$$
; $0 \le t \le 1 \dots ec. (10)$ $Q_P = 0$; $t > 1 \dots ec. (11)$

Por otra parte:

$$h_{p_5} = \frac{C_{p_5} - Q_{p_5}}{C_a} \dots ec. (12)$$

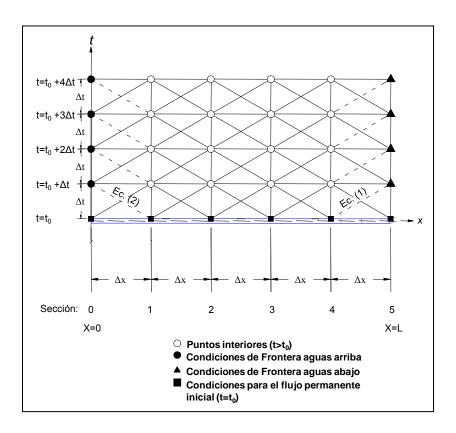


Figura 5.12. Malla característica

Tabla de cálculo

Tabla 5.8. Tabla de cálculo

Sección (i)	0			1			2			3				4				5				
t (s)	h_{θ}	Q_{θ}	Cn_0	Cp_1	h_1	Q_I	Cn_1	Cp_2	h_2	Q_2	Cn_2	Cp_3	h_3	Q_3	Cn_3	Cp_4	h_4	Q_4	Cn_4	Cp_5	h_5	Q_5
t=t0																						
t=t0+Δt																						
t=1.0																						

- 5. Dibujar la curva *X-h*, en m, para los instantes de tiempo 0, 0.4, 0.8 y 1.0 segundos.
- 6. Dibujar la curva *T-h*, en s y m, respectivamente, en las secciones 1, 2, 3, 4 y 5.
- 7. Comparar las curvas desplegadas por los sensores de presión, con la obtenida en el inciso 5, en la sección 5.

Instrumentos de medición

- Probeta graduada
- Cronómetro

Referencias bibliográficas

- 1. Sotelo A., G., Hidráulica General Vol. I, Ed. Limusa, México 1990.
- 2. Mataix, C., Mecánica de Fluidos y Máquinas Hidráulicas, Ed. Harla, México, 1990.
- 3. Gardea V., H., Aprovechamientos Hidráulicos y de Bombeo, Facultad de Ingeniería, UNAM.
- 4. Mataix, C. Mecánica de Fluidos y Máquinas Hidráulicas, Ed. Harla, México, 1995.
- 5. Mancebo, U. *Teoría del golpe de ariete y sus aplicaciones en ingeniería hidráulica*. Ed. Limusa, México, 1997.
- 6. Chaudhry, M. Hanif. Applied Hidraulic Transients.

Cuestionario

El cuestionario tendrá de 5 a 10 preguntas relacionadas con el desarrollo y memoria de cálculo y variarán cada semestre.

6 CONCLUSIONES

- Se definieron los conceptos principales que se utilizaron como base para comprender el fenómeno transitorio conocido como golpe de ariete.
- Se investigó sobre la teoría de dos métodos de solución para el golpe de ariete, tales como, el método de Allievi y el método de las características.
- Se aplicó un método numérico de solución para el fenómeno transitorio golpe de ariete en el dispositivo experimental instalado en el Laboratorio de Hidráulica de la Facultad de Ingeniería de la UNAM. Dicho método consistió en el método de las características y para fines de comparación se utilizó también el método de Allievi.
- Para la aplicación del método de las características se obtuvo la ley para maniobra de cierre no uniforme de la válvula de esfera específicamente.
- Se obtuvieron resultados del fenómeno transitorio golpe de ariete provocado en el dispositivo experimental tanque – tubería – válvula de esfera con el método de Allievi y con el método de las características, para diferentes tiempos de cierre de la válvula de esfera.
- Se propuso la instalación de instrumentos de medición en el dispositivo tanque tubería válvula de esfera, tales como dos sensores de presión con un rango de medición de 0 a 50 psi, alimentados mediante una fuente de poder, una tarjeta de adquisición de datos, y un software para desplegar las variaciones de la presión en una computadora.
- Se realizó una propuesta de práctica de laboratorio para que los alumnos de la asignatura
 Hidráulica de Máquinas, conozcan y empleen el método de las características como método
 de solución para el golpe de ariete provocado en el dispositivo experimental tanque –
 tubería válvula de esfera.

- Se realizó una propuesta para la rehabilitación del dispositivo experimental instalación hidráulica – tubería en espiral – válvula, para poder representar el fenómeno golpe de ariete en este dispositivo.
- Se realizó la solución mediante el método de las características para el caso del golpe de ariete provocado en el dispositivo instalación hidráulica – tubería en espiral – válvula a partir de datos supuestos, ya que el dispositivo no se encuentra en funcionamiento.
- Se propuso la instalación de instrumentos de medición y control para el dispositivo experimental que consta de instalación hidráulica tubería en espiral válvula. Los instrumentos de medición se resumen en: dos sensores de presión con un rango de medición de 0 50 psi, los cuales serán alimentados por una fuente de poder. Dicho rango de presión es apto para soportar las presiones calculadas para este caso. Así mismo se propone el uso de una tarjeta de adquisición de datos, para captar las señales enviadas por los sensores de presión. Dicha tarjeta viene acompañada de un software para poder desplegar en tiempo real la variación de la onda de presión.
- En cuanto al instrumento de control del dispositivo, se uso una válvula solenoide, la cual al momento de cerrarse provocará el golpe de ariete. Esta válvula será controlada mediante la tarjeta de adquisición de datos utilizando como interfase un módulo de relevadores, para realizar la activación de la válvula solenoide.
- El método de las características resulta ser más representativo de lo que realmente pasa en las conducciones, ya que se pueden incluir variables como condiciones de frontera tales como tanques de carga constante, bombas, leyes de maniobra de cierre no lineales, así como poder tomar en cuenta los cambios de diámetro a lo largo de la conducción, así como las pérdidas por fricción y locales que se presentan. Dichas variables no se pueden incluir en otros métodos como el método de Allievi o el método de Joukowsky.
- Finalmente, el método de las características resulta práctico y sencillo en su aplicación. Se pudieron obtener resultados muy apegados a lo medido, por lo cual se considera que la convergencia del método es aceptable.

- Con la realización de la memoria de cálculo del caso de estudio del capítulo 3, se pudo plantear una propuesta para práctica de laboratorio, teniendo como solución el método de las características.
- Con la realización de la memoria de cálculo para el caso del dispositivo propuesto instalación hidráulica tubería en espiral válvula, se pudo plantear una propuesta para práctica de laboratorio, teniendo como solución el método de las características.
- Por último, las dos propuestas de práctica de laboratorio pretenden formar parte del material didáctico para la impartición de la práctica "Golpe de Ariete" que actualmente se imparte en el laboratorio de hidráulica de la Facultad de Ingeniería, UNAM.

BIBLIOGRAFÍA

- 1. Sotelo A., G., Hidráulica General Vol. I, Ed. Limusa, México 1990.
- 2. Mataix, C., Mecánica de Fluidos y Máquinas Hidráulicas, Ed. Harla, México, 1990.
- 3. Gardea V., H., Aprovechamientos Hidráulicos y de Bombeo, Facultad de Ingeniería, UNAM.
- 4. Mataix, C. Mecánica de Fluidos y Máquinas Hidráulicas, Ed. Harla, México, 1995.
- 5. Mancebo, U. *Teoría del golpe de ariete y sus aplicaciones en ingeniería hidráulica*. Ed. Limusa, México, 1997.
- 6. Chaudhry, M. Hanif. Applied Hidraulic Transients.
- 7. Manual de Agua Potable, Alcantarillado y Saneamiento. Fenómenos Transitorios en Líneas de Conducción. Comisión Nacional de Agua, México, 2007
- 8. Moisés Berezowsky Verduzco. Cámaras de Oscilación. Análisis y Diseño Hidráulico.
- 9. José Luis Sánchez Bibriesca. *Método de las Características en Problemas de Frontera Variable*. Ingeniería Hidráulica en México. Enero/Abril de 1987.