

Vniver4dad Nacional AvFn@ma de Mexiço

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN ASTROFÍSICA

INSTITUTO DE ASTRONOMÍA

ESTUDIO DE ESTRELLAS BINARIAS Y SISTEMAS MÚLTIPLES EN LA VÍA LÁCTEA. MULTIPLICIDAD ESTELAR DEL CÚMULO ABIERTO ASCC 113

TESIS

QUE PARA OPTAR POR EL GRADO DE DOCTOR EN CIENCIAS (ASTROFÍSICA)

PRESENTA

CARLOS ALBERTO GUERRERO PEÑA

TUTOR DR. VALERI ORLOV INSTITUTO DE ASTRONOMÍA

MÉXICO, D. F. Marzo de 2014

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

Agradezco al Posgrado en Astrofísica de la Universidad Nacional Autónoma de México por haberme formado como investigador. Agradezco también al CONACYT por haberme apoyado para llevar a cabo mis estudios de Posgrado. Agradezco al poryecto PAPIIT IN102514 por el apoyo que me brindó para la realización de mi tesis y concluir las actividades académicas del proyecto.

Quiero agradecer a los miembros del Comité Tutor por su disposición y enorme ayuda para mejorar mi trabajo de tesis.

Tutor Principal. Dr. Valeri Orlov Instituto de Astronomía UNAM orlov@astro.unam.mx

Miembros del Comité Tutor

M. en C. Christine Allen Armiño Instituto de Astronomía UNAM chris@astro.unam.mx

M. en C. José Hermenegildo Peña Saint Martín Instituto de Astronomía UNAM jhpena@astro.unam.mx

Dr. Raúl Michel Murillo

Instituto de Astronomía UNAM rmm@astro.unam.mx

Dr. Luis José Herminio Corral Escobedo Centro Universitario de Ciencias Exactas Universidad de Guadalajara luis.corral@gmail.com

Agradecimientos a Título Personal

Con esta tesis termino un ciclo muy importante en mi vida y quiero agradecer a todas las personas que forman parte de ella, por su apoyo y acompañamiento durante estos años.

Te agradezco mamá por ser mi pilar y fundamento, sabes que todo lo que hago está inspirado por ti. Gracias a mis hermanos por todo. Daniel, te quiero mucho hermano. Gracias por todo Alfonso.

Abuelita, mi papá no pudo acompañarnos, pero yo me quedo en su representación para acompañarte a ti. Te quiero, gracias por todo.

Isa, tú siempre tienes un apartado especial en mi vida, eres y serás parte de ella por siempre. Te quiero.

Jenny, te quiero mucho guapa, gracias por nuestras inolvidables experiencias juntos.

Tío Pepe, tía Ara, Bere, Yaz. Gracias por su compañía y su cariño, los llevo en mi corazón.

Tía Paty, te quiero mucho, gracias a ti por todo tu amor.

Argelia Sol-Haret, gracias por todas nuestras interminables pláticas, no sólo yo te ayudo y acompaño a ti, tú también me ayudas y me inspiras a seguir a mí. Gracias, te quiero mucho.

Gracias Miguel Monroy por estos años de convivencia en el cubo que compartimos juntos.

Dedicatoria

Con todo mi cariño y mi amor para la persona que hizo todo en la vida para que yo pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el camino se terminaba.

A ti mamá, por siempre mi corazón y mi agradecimiento.

Resumen

Muchas estrellas de la Vía Láctea se forman como sistemas binarios o múltiples (Goodman & Hut, 1993) y sabemos que la mayoría de las estrellas se forma en cúmulos estelares y en regiones aisladas de formación estelar (Lada & Lada , 2003). Las observaciones muestran que una fracción significativa de las estrellas de campo son binarias o de mayores órdenes de multiplicidad (Duquennoy & Mayor, 1991; Eggleton & Tokovinin , 2008); sin embargo, nuestros estudios de estrellas binarias han demostrado que en realidad sólo una pequeña fracción de estrellas son binarias cerradas o múltiples (Orlov et al. , 2009, 2010, 2011; Orlov, Voitsekhovich & Guerrero, 2012; Orlov, Guerrero & Voitsekhovich , 2014).

A partir de observaciones de regiones de formación estelar, sabemos que las estrellas se forman en sistemas múltiples que varían desde estrellas binarias hasta asociaciones y cúmulos abiertos; de ahí la importancia de estudiar cúmulos estelares, pues nos pueden ayudar a entender cuál es el proceso dominante de formación estelar. Sin embargo, existen varias preguntas abiertas en relación a este tema que no han podido ser respondidas; por ejemplo, si la formación de estrellas se caracteriza por la universalidad en la distribución de multiplicidades, es decir, si la formación estelar se caracteriza por una Función Inicial de Masa (IMF) aparentemente universal y cuál es la forma funcional de la IMF; la aparente variación de la frecuencia de binariedad como función del ambiente en el cual ocurre la formación estelar; la falta de conocimiento de las condiciones iniciales para la formación de cúmulos estelares y las dificultades que aparecen en los modelos de fragmentación de nubes moleculares que resulten en las fracciones de estrellas que se observan en la Galaxia. Estos problemas pueden ser atendidos caracterizando con detalle la estructura interna de los cúmulos abiertos, estableciendo constricciones observacionales a partir del conocimiento de la fracción de multiplicidad y su dependencia con la posición relativa de las binarias en los cúmulos.

Sin embargo, hay un desconocimiento total en cuanto a la posición esperada de las estrellas binarias y múltiples dentro de un cúmulo abierto; por un lado se han propuesto modelos jerárquicos de formación estelar en los cuales las estrellas más masivas se forman en la región central de los cúmulos (Elmegreen , 1999; Klessen, Burkert & Bate , 1998), lo que puede inducir un déficit de estrellas binarias en el núcleo de los cúmulos pues éstas serán disueltas debido a interacciones dinámicas, y las que permanecen estarán sesgadas hacia binarias muy cerradas con estrellas principales muy masivas. En las partes exteriores de los cúmulos ocurrirá lo contrario, serán regiones menos densas con un contenido de binarias más abiertas. Por otro lado, Bica & Bonatto (2005) hicieron un análisis detallado usando simulaciones de N cuerpos y concluyeron que para reproducir la morfología observada en los diagramas color-magnitud (CMD), es necesaria una fracción mínima de binarias en el núcleo del cúmulo de cerca del 11%, y alrededor de 35% a 70% en la corona del cúmulo, dependiendo de la densidad estelar.

En este trabajo de tesis abordamos un problema abierto en el campo de la astrofísica estelar que no puede resolverse usando fotometría clásica. Con los datos disponibles en la literatura, en combinación con una técnica de observación de alta resolución espacial que requiere sólo de telescopios pequeños, nos propusimos observar estrellas en cúmulos abiertos para determinar la fracción de estrellas binarias y múltiples que los componen y verificar si en efecto la "secuencia de binarias" está compuesta por estrellas "binarias gemelas" como se ha propuesto en la literatura. Presentamos un estudio de alta resolución angular de 239 estrellas en dirección del cúmulo abierto ASCC 113. Nuestras observaciones se realizaron con el Telescopio de 2.1 m del Observatorio Astronómico Nacional, Sierra San Pedro Mártir, México. Combinando nuestros resultados observacionales con los datos obtenidos de la literatura, encontramos una razón entre el número de estrellas individuales y estrellas binarias de 27:7 para los miembros más probables, por lo que la fracción de multiplicidad de este cúmulo es $20.06\% \pm 3\%$, para el intervalo de separaciones angulares accesibles a nuestra técnica, a saber, 0".055
 $\leq \rho \leq 25''$ para $\lambda = 550$ nm. También observamos estrellas de campo en la vecindad del cúmulo y estimamos una razón de multiplicidades de 125:27:4:1:0:0:0:1 (entre una y ocho compañeras), equivalente a una fracción multiplicidad de $20.09\% \pm 1\%$, en el mismo intervalo de separaciones angulares. Haciendo un cálculo conservador, estimamos que el número de estrellas compañeras no detectadas en la muestra es muy pequeño. Comparando nuestra estimación de la frecuencia de multiplicidad del cúmulo con la frecuencia del campo, llegamos a la conclusión de que son estadísticamente indistinguibles entre sí. Concluímos también que la "secuencia de binarias" no puede ser explicada en términos de estrellas "binarias gemelas" pues éstas son muy poco abundantes en la Galaxia y que los modelos de contaminación por estrellas binarias y los modelos jerárquicos de formación estelar deben ser evaluados en términos de las fracciones estimadas en recientes estudios para poder reproducir de forma más fiel los resultados de las observaciones. Otra conclusión importante de nuestro estudio es que la distribución superficial de estrellas binarias en el cúmulo es completamente aleatoria, no hay evidencia de ningún gradiente radial. Finalmente, ofrecemos una breve reseña sobre el tema de la multiplicidad estelar en nuestra Galaxia y en los cúmulos abiertos y concluímos que tal vez la mayoría de las estrellas de la Vía Láctea no son binarias o múltiples cerradas, esta es una afirmación que surgió históricamente debido a un efecto de selección y a limitaciones tecnológicas.

Abstract

In this thesis we address an open problem of stellar astrophysics that cannot be solved using classical photometry. With data available in the literature, in combination with an observation technique of high spatial resolution that requires only small telescopes, we decided to observe stars in open clusters to determine the fraction of binary and multiple stars that compose them and verify if the "binary sequence" consists of "twin binary stars" as proposed in the literature. We present a study of high angular resolution of 239 stars in the direction of the open cluster ASCC 113. Our observations were made with the 2.1 m telescope of the National Astronomical Observatory, Sierra San Pedro Mártir, México. Combining our observational data with results obtained from the literature, we found a ratio of number of individual and binary stars fo 27:7, for the most probable members, so that the fraction of multiplicity of this cluster is $20.06\% \pm 3\%$, for the range accessible to our angular separations technique, namely, 0".055 $\leq \rho \leq 25$ " for $\lambda = 550$ nm. We also observed field stars in the vicinity of the cluster and estimates a ratio of multiplicities of 125:27:4:1:0:0:0:1 (between one and eight companions), equivalent to a multiplicity fraction of $20.09\% \pm 1\%$, in the same range of angular separations. Making a conservative calculation, we estimate the number of undetected companion stars in the sample to be very small. Comparing our estimate of the multiplicity frequency of the cluster with the frequency of the field, we conclude that they are statistically indistinguishable from each other. We also conclude that the "binary sequence" can not be explained in terms of "twin binary stars", because they are very scarce in the Galaxy and that the models of binary star contamination and hierarchical models of star formation must be evaluated in terms of the fractions estimated in recent studies. Another important finding of our study is that the surface distribution of binary stars in the cluster is completely random, there is no evidence of any radial gradient. Finally, we provide a brief overview on the topic of stellar multiplicity in our Galaxy and in open clusters and conclude that perhaps the majority of stars in the Milky Way are not close binary or multiples.

Índice general

Ag	gradecimientos	Ι
A	gradecimientos a Título Personal	III
De	edicatoria	IV
Re	esumen	v
Al	bstract	VIII
Ín	dice general	XI
In	troducción General	1
1.	Interferometría de Motas	8
	1.1. Reconstrucción de la Amplitud	10
	1.2. Cálculo y Modelaje del Espectro de Potencias	12
	1.3. Reconstrucción de Fase	14
	1.4. Fotometría Relativa de Estrellas Binarias	15
2.	$uvby - \beta$ Photoelectric Photometry of the Open Clusters NGC 1647	
	and NGC 1778	17
3.	Speckle Interferometry at the Observatorio Astronómico Nacional.	
	Ι	28

4.	Speckle Interferometry at the Observatorio Astronómico Nacional.						
	II	35					
5.	Speckle Interferometry at the Observatorio Astronómico Nacional.						
	III	44					
6.	Speckle Interferometry at the Observatorio Astronómico Nacional.						
	IV						
7.	Stellar Multiplicity of the Open Cluster ASCC 113	59					
8.	Speckle Interferometry at the Observatorio Astronómico Nacional.						
	V	72					
9.	Conclusiones Generales y Trabajo a Futuro	92					
Bi	3ibliografía 9						

Introducción General

La multiplicidad estelar es un resultado estándar del proceso de formación estelar, razón por la cual resulta de suma importancia estudiar la frecuencia y las características principales de los sistemas múltiples y su dependencia del medio ambiente y de la masa progenitora; sin embargo, los primeros intentos por hacer estimaciones de la frecuencia de multiplicidad en diferentes entornos estuvieron severamente afectados por sesgos de selección y completez. El desarrollo instrumental de las pasadas dos décadas ha permitido refinar y robustecer el análisis en prácticamente todos los campos de la astrofísica observacional, en particular en la búsqueda de estrellas múltiples.

La existencia de estrellas binarias fue reconocida poco tiempo después del nacimiento de la astronomía moderna. Mitchell (1767) señaló que la presencia de estrellas dobles en el cielo era demasiado alta para ser un efecto aleatorio. Herschel (1802) descubrió y catalogó cientos de estrellas binarias e hizo los primeros cálculos rudimentarios para sus determinar parámetros orbitales. A principios del siglo XX decenas de miles de estrellas binarias habían sido catalogadas (Burnham 1906) y Kuiper (1935) fue uno de los primeros en argumentar que la determinación empírica de la frecuencia de multiplicidad y la distribución de parámetros orbitales era de vital importancia para la astronomía desde el punto de vista observacional y teórico.

A mediados del siglo XX se hicieron estudios muy profundos para establecer la frecuencia de multiplicidad en estrellas de secuencia principal para tipos espectrales F y G. Derivado de estos estudios, se concluyó que la frecuencia de binarias visuales de estas estrellas era del 70%–80% (Heintz 1969; Abt & Levy 1976), es decir, que la mayoría de las estrellas de secuencia principal de tipos espectrales F y G eran binarias. Más recientemente, Duquennoy & Mayor (1991) publicaron un estudio más

completo de estrellas F y G en el que concluyen que 2/3 de estas estrellas son binarias espectroscópicas o múltiples, pero sólo dentro de la vecindad solar. Raghavan et al. (2010) hicieron el mismo estudio pero sólo para estrellas tipo G dentro de una burbuja de 25 pc con centro en el Sol y concluyeron que el 56% de todas las estrellas de tipo solar son dobles. Estas conclusiones son las que han llevado a pensar que la mayoría de las estrellas de la Vía Láctea son dobles o múltiples. Fischer & Marcy (1992) concluyeron además que la frecuencia de estrellas dobles espectroscópicas es función del tipo espectral. Poveda, Allen & Parrao (1982) hicieron un estudio estadístico de estrellas binarias y múltiples en el IDS (Index Catalogue of Visual Double Stars) (Jeffers, van de Bos & Greeby 1963) y encontraron que el catálogo está completo hasta magnitud 10 (en el sistema de magnitudes del catálogo). Usando un criterio de discriminación del 1%, es decir, que a menos de que la probabilidad de encontrar una estrella de campo dentro del radio de un posible compañero sea inferior al 1%, el compañero es rechazado como probable estrella secundaria visual, concluyeron que todas las estrellas deben tener en promedio al menos una compañera física visual y que una estrella de cada tres en el campo debe ser múltiple.

Se ha demostrado que la frecuencia de estrellas binarias declina a partir de las estrellas tipo G. La forma funcional de la IMF ha sido constreñida a partir de observaciones de estrellas de campo (Kroupa 2002) y estrellas en cúmulos estelares embebidos (Muench et al. 2002); sabemos que la IMF del universo presente alcanza su máximo entre ~ 0.1 y $0.5M_{\odot}$, lo que indica que la mayoría de las estrellas que se forman en el disco Galáctico son de tipo M y sin embargo, sólo 35% de las estrellas tipo M son binarias espectroscópicas (Leinert et al. 1997; Reid & Gizis 1997; Siegler et al. 2005). Delfosse et al. (2004) publicaron el estudio más preciso para estrellas tipo M en el que concluyen que 74% de estas estrellas son individuales.

Para tipos espectrales más tardíos de estrellas enanas (L y T), Gizis et al. (2003) estimaron que sólo el 15% son binarias cerradas y que la frecuencia de binariedad para binarias abiertas es menor al 1.7%, pero estos tipos espectrales son más abundantes que todos los demas tipos espectrales combinados, al menos dos órdenes de magnitud (Artigau et al. 2013), por lo que esta conclusión podría entrar en conflicto con la afirmación absoluta de que la mayoría de las estrellas del Universo son múltiples.

Las estrellas de masa intermedia tienen una pronunciada relación masa-luminosidad,

por lo que es muy difícil detectar compañeras débiles, lo que puede inducir un sesgo observacional. En 2005, Kouwenhoven et al. estimaron que 37% de las estrellas tipo A en la asociación Scorpius OB2 son binarias visuales; más tarde De Rosa et al. (2011) hicieron un estudio limitado por volumen (< 200 pc) en el que concluyeron que 40% de las estrellas tipo A son binarias visuales o múltiples.

En el caso de las estrellas masivas tenemos varios problemas para establecer la fracción de multiplicidad: son estrellas muy distantes (no conocemos ninguna estrella tipo O en la vecindad solar); son extremadamente brillantes (Sana & Evans 2011); la mayoría están en su lugar de nacimiento o en asociaciones OB, sólo $\sim 20\%$ de todas las estrellas tipo O se pueden encontrar en el campo (Chini et al. 2012), por lo que son muestras muy sesgadas e incompletas. Sin embargo, varios autores han tratado de hacer estimaciones de la frecuencia de multiplicidad para este tipo de estrellas. Abt, Gomez & Levy (1990) establecieron un límite inferior para estrellas masivas, concluyen que la fracción de multiplicidad estelar es 60%; posteriormente Shana et al. (2012) estimaron una frecuencia del 70% para estrellas D y también en 2012, Chini et al. encontraron una fracción del 52% para estrellas B tempranas. Sin embargo, Peter et al. (2012) concluyeron que la frecuencia de binarias visuales en estrellas masivas es un efecto de proyección (binarias ópticas), sólo el 45% tienen alta probabilidad de ser binarias gravitacionalmente ligadas.

En la literatura también podemos encontrar estudios enfocados a estrellas de Población II. Algunos estudios concluyen que hay un posible déficit de compañeras secundarias (Oort 1926, Abt & Willmarth 1987); sin embargo, más recientemente Goldberg et al. (2002) concluyeron que las estrellas de Población II tienen la misma frecuencia de binariedad que las estrellas de Población I y Rastegaev (2010) estimó que la frecuencia de multiplicidad de las estrellas binarias cerradas de Población II es 26%, que es muy similar a las estimaciones encontradas por Latham et al. (2002) para estrellas binarias, también ceradas, de Población I en el disco Galáctico.

La situación cambia un poco en regiones de formación estelar, donde encontramos estrellas pre-secuencia principal. Duchêne (1999) encontró un relativo exceso en la frecuencia de multiplicidad de aproximadamente 1.7 veces comparada con la frecuencia de las estrellas de secuencia principal en el campo. Sin embargo, no hay evidencia contundente de que haya más estrellas binarias pre-secuencia principal para todas las regiones de formación estelar, podría ser un efecto de selección; Brandner & Köehler (1998) concluyeron que la frecuencia general de binariedad de estrellas pre-secuencia principal en regiones individuales de formación estelar no es necesariamente mayor que entre las estrellas de secuencia principal y es del orden de 31%, para binarias abiertas.

El caso de los cúmulos abiertos es muy especial, pues a pesar de que son excelentes laboratorios para probar teorías de formación y evolución estelar, no se han hecho estudios profundos de multiplicidad estelar. Los cúmulos abiertos son conjuntos físicos de estrellas que se formaron al mismo tiempo a partir de la misma nube de gas y polvo cósmicos, que se mantienen juntas debido a su atracción gravitacional mutua. Representan ejemplos de estrellas de la misma edad y composición química intrínseca, que son importantes en el estudio de los procesos de formación y evolución estelar. Tradicionalmente consideramos que los cúmulos abiertos están constreñidos al disco delgado de la Vía Láctea y dados sus amplios intervalos de distancia, metalicidad y edad, resultan excelentes trazadores de los procesos relacionados con la composición química, la dinámica estelar, estructura, formación y evolución de este subsistema Galáctico.

Se han descubierto más de 1500 cúmulos abiertos en nuestra Galaxia y se estima que hay muchos más, como lo demuestran recientes estudios sistemáticos que han descubierto nuevos cúmulos abiertos (Karchenko, 2005), aunque el número de cúmulos abiertos estudiados con distancias heliocéntricas mayores a 2 kpc es todavía relativamente pequeño (Glushkova, 2013). El catálogo de Días et al. (2002), es la base de datos de cúmulos abiertos más completa hasta la fecha; sin embargo, la principal debilidad del catálogo es que está construido en base a una recopilación de datos de varios autores, que hicieron diferentes supuestos y utilizaron diferentes técnicas de observación, instrumentos y calibraciones, reflejados en una falta de homogeneidad de los datos y su análisis. Los parámetros fundamentales que se pueden obtener mediante la observación de cúmulos abiertos son: enrojecimiento interestelar, módulo de distancia, edad y metalicidad, parámetros que tienen un alto impacto en las conclusiones derivadas de su estudio. La técnica que se ha utilizado históricamente para estimar estos parámetros es la fotometría clásica, pero hay un problema observacional por la presencia de estrellas en sistemas binarios o múltiples que no están resueltas y que no se toman en cuenta cuando se estiman los parámetros físicos sólo con fotometría absoluta, pues estas estrellas introducen un error en la determinación de los parámetros de los cúmulos (Reid, 1986).

El diagrama Hertzsprung-Russell teórico de los cúmulos abiertos muestra una línea bien definida para la secuencia principal. Sin embargo, el diagrama observacional color-magnitud (CMD) muestra que la secuencia principal es una banda con un ancho finito y, además, hay algunas estrellas que se encuentran un poco menos de una magnitud por arriba de la secuencia principal. La dispersión de color entre las estrellas en el CMD a lo largo de la secuencia principal, desde el punto de partida hasta las estrellas tardías no evolucionadas, se debe en parte a una abundante población de estrellas binarias no resueltas (Daniel et al., 1994). La fotometría puede darnos información sobre muchas propiedades físicas y químicas de las estrellas; también sobre su distancia, pero si la estrella se encuentra en un sistema binario o múltiple cerrado es difícil realizar fotometría con métodos tradicionales, como fotometría de Johnson, Strömgren, etc., pues se introduce un error debido a las magnitudes combinadas de estrellas que no pueden ser observadas de forma separada. Este problema observacional afecta la determinación de los parámetros de las estrellas de dos formas (Stobie, 1987): la primera es que la luminosidad de la estrella se ve aumentada por la inclusión de la luminosidad de la secundaria y la segunda es que el índice de color del sistema es más rojo pues, en general, la estrella secundaria es más débil y más roja. Estos efectos combinados subestiman la distancia, situando a las estrellas más cerca de lo que en realidad están, lo que a su vez causa un error en la edad estimada (Jeffery 2009).

La fracción de estrellas binarias está dominada por varios procesos. En los cúmulos estelares, hay una continua formación y destrucción de sistemas binarios debido a la interacción entre estrellas binarias, múltiples y estrellas individuales. Este escenario se complica debido a la evolución dinámica de los cúmulos que, en principio, produce gradientes radiales en la frecuencia de estrellas binarias. El modelaje teórico de sistemas estelares que incluyan el efecto de estrellas binarias continúa siendo un reto abierto (Ivanova et al., 2005; Portegies Zwart, McMillan & Makino, 2007; Hurley, Aarseth & Shara, 2007; Sollima, 2008). Desde el punto de vista observacional, la fracción de estrellas binarias cerradas sólo se ha estimado en algunos cúmulos globulares (por ejemplo, Trimble, 1980; Hesser et al., 1990; Margon, Wilcots & Bolte, 1991; Romani & Weinberg, 1991; Bolte, 1992; Rubenstein & Bailyn, 1997; Bellazzini et al., 2002; Clark, Sandquist & Bolte, 2004; Zhao & Bailyn, 2005; Jun & Bregman, 2013). Estos estudios indican que hay una presencia de binarias cerradas que varía desde el 11% hasta el 50% dependiendo del cúmulo.

Son muy escasos los estudios que investigan la fracción de multiplicidad estelar en cúmulos abiertos (Duchêne & Kraus, 2013), y hay muy pocos ejemplos en la literatura (por ejemplo, Bolte, 1991; Daniel et al., 1994; Bouvier et al., 1997, 2001; Patience et al., 1998, 2002; Duchêne et al., 1999; Martín et al., 2003; Simone et al., 2003; Bouy et al., 2006; Meibon et al., 2006; Geller & Mathieu, 2012; Sandquist et al., 2013). Estos estudios se traslapan y están centrados sólo en cuatro cúmulos abiertos: α Per, las Pléyades, Praesepe y las Híadas, y concluyen que la frecuencia de multiplicidad en cúmulos abiertos varía desde 25%–30% (Duchêne & Bouvier 2008) a un 65%–70% (Kähler 1999) para binarias abiertas. Sin embargo estas conclusiones son derivadas de estudios fotométricos. Sólo recientemente se han llevado a cabo estudios de alta resolución espacial para buscar estrellas múltiples en cúmulos abiertos; por ejemplo, haciendo un estudio con observaciones de óptica adaptativa (AO), Duchêne et al. (2013) concluyeron que la frecuencia de binariedad de las Híadas es del orden de 19% para binarias cerradas, (un valor comparable con nuestros resultados).

Alcanzar altas resoluciones espaciales no es un problema trivial; se requieren telescopios y equipos muy poderosos y caros, pero la interferometría de motas (o speckle interferometry) permite a los telescopios en tierra alcanzar una resolución limitada sólo por la difracción, aún sin contar con la corrección de la AO multiconjugada. Son necesrias mediciones continuas de alta resolución espacial de estrellas binarias para estudiar el movimiento orbital en torno a su centro de masa, pues es el único método directo para calcular masas estelares, razón por la cual hemos estado publicando mediciones interferométricas de estrellas binarias desde 2009.

Esta tesis comienza con el Capítulo 1 describiendo las bases generales de la interferometría de motas, pues es la técnica observacional que utilizamos para llevar a cabo nuestros estudios. En el Capítulo 2 presento el primer artículo en el cual participé como primer autor y que fue publicado durante el segundo año de mi doctorado; aunque cronológicamente no es mi primera colaboración, sí fue mi primer acercamiento a la astronomía profesional. En el artículo reportamos un estudio de fotmetría fotoeléctrica de Strömgren de dos cúmulos abiertos, NGC 1647 y NGC 1778. Los Capítulos 3, 4, 5 y 6 resumen las observaciones de estrellas binarias que hemos llevando a cabo desde 2009.

Durante mis estudios de Maestría y Doctorado me he dedicado a familiarizarme con la interferometría, y ese proceso me llevó a ser capaz de combinar las dos áreas de interés que han llamado mi atención: los cúmulos abiertos y las técnicas de alta resolución. Esta combinación derivó en la propuesta central de este trabajo: observar estrellas binarias en cúmulos abiertos usando interferometría de motas para tratar de resolver el problema de la "secuencia de binarias". Los resultados de la investigación están condensados en el Capítulo 7, en un artículo publicado en el Astronomical Journal (Guerrero et al. 2014).

El Capítulo 8 contiene el más reciente artículo de la serie de estrellas binarias, ya aceptado para su publicación en la Revista Mexicana de Astronomía y Astrofísica. Finalmente presentamos las conclusiones generales, el trabajo a futuro y las referencias.

Capítulo 1

Interferometría de Motas

La limitación real de la resolución para los telescopios en tierra no es el diámetro de la apertura, sino la atmósfera. Como resultado, un telescopio de cualquier apertura muy raramente podrá alcanzar una resolución en luz visible menor a 1" de arco. La interferometría de motas nos permite alcanzar una resolución de hasta 0".07 en la banda R (Orlov, 2013) para el Telescopio de 2.1 m de San Pedro Mártir, y no sólo nos da información sobre las posiciones aparentes de las estrellas, sino también proporciona información sobre la diferencia en magnitudes de los componentes que forman el sistema.

Labeyrie (1970) introdujo el principio de la interferometría de motas. Un patrón de motas es un efecto de interferencia en una imagen causado por perturbaciones aleatorias de fase y amplitud inducidas en el frente de onda de la luz incidente, debidas a la turbulencia atmosférica y a las aberraciones del telescopio. Las imágenes tradicionales de larga exposición consisten de un gran número de imágenes instantáneas que juntas forman el disco de *seeing* (ver Figura 1.1). En la interferometría de motas se utilizan grandes aumentos y se toman cientos de exposiciones muy cortas. Cuando estas imágenes se combinan y se analizan (en forma digital), se puede llegar a la resolución límite del telescopio.

Si usáramos un telescopio ideal con apertura infinita para observar la imagen de una estrella ideal, puntual y monocromática, produciríamos una imagen $\delta(r)$ en el plano focal r del telescopio. Sin embargo, los telescopios tienen aperturas finitas y tenemos la atmósfera que varía continuamente con el tiempo. Lo que se produce

Figura 1.1: Specklegrama de la estrella Hip 74643, obtenido con el Telescopio de 1.5 m OAN/SPM. La imagen tiene 1 s de tiempo de exposición.

entonces es una imagen $p(\mathbf{r}, t)$, que es la función monocromática de dispersión de punto (PSF) definida como la distribución de brillo de un objeto puntual después de que pasa por la atmósfera, instantánea y atmosféricamente degradada, del telescopio en el tiempo t. Este es un "patrón de motas" para una estrella no resuelta.

La imagen $i(\mathbf{r}, t)$ de una fuente real será entonces la convolución entre la PSF y la distribución de brillo del objeto, es decir, la imagen de la fuente $o(\mathbf{r})$:

$$i(\mathbf{r},t) = o(\mathbf{r}) * p(\mathbf{r},t).$$
(1.1)

La ecuación 1.1 representa la intensidad de la imagen, por lo que puede ser obtenida directamente usando un intensificador de imagen y una cámara para grabarla. De acuerdo con el teorema de convolución, la transformada de Fourier de la convolución representada en 1.1 es el producto punto a punto de las transformadas:

$$I(\mathbf{u},t) = O(\mathbf{u}) \cdot P(\mathbf{u},t). \tag{1.2}$$

Para obtener la imagen a partir de una imagen "speckle" hacemos el siguiente cálculo:

$$O(\mathbf{u}) = \frac{I(\mathbf{u}, t)}{P(\mathbf{u}, t)}.$$
(1.3)

Sin embargo, es muy difícil determinar $P(\mathbf{u}, t)$, peor aún, es muy ruidosa $S/N \approx 1$,

Figura 1.2: Cuatro imágenes de motas consecutivas del cubo de imágenes de la estrella binaria WDS 00279+234. Entre cada imagen han pasado 500 ms. Estas imágenes muestran el cambio rápido en las distorsiones inducidas por la atmósfera. Debido a que la separación entre las estrellas es pequeña, la distorsión en las dos distribuciones de brillo es similar. Imagen obtenida con el Telescopio de 1.5 m OAN/SPM, en agosto de 2010.

sumado al ruido del cielo y el detector. Este cociente tan pequeño de señal a ruido dificulta observar estructuras complejas o estrellas compañeras muy débiles. Por lo tanto, la baja sensibilidad debe ser compensada tomando muchas imágenes para ser analizadas; estas secuencias de imágenes muestran la evolución temporal del patrón de motas: *cubo de imágenes* (ver Figura 1.2). Sin embargo, un simple promedio sobre las imágenes no generará una imagen al límite de difracción.

1.1. Reconstrucción de la Amplitud

El análisis del espectro de potencias (PS) (Labeyrie , 1970) se basa en que la resolución en el régimen limitado por difracción se conserva usando el cuadrado del espectro de potencias $\langle |I|^2 \rangle$ en vez del promedio del número de imágenes $\langle i \rangle$ o del promedio de sus transformadas de Fourier $\langle I \rangle$. Cuando se toma una imagen de

una estrella individual, con un tiempo de integración corto, aparece un patrón de motas aleatorio. El cálculo la autocorrelación (ACF) –la transformada de Fourier del PS– de muchas imágenes, da lugar a un continuo más o menos plano. Cuando una segunda estrella está presente, todos los patrones de motas aparecen dobles con respecto a la separación y razón de flujo de las estrellas. Por lo tanto, la ACF promedio indica claramente la duplicidad por arriba del continuo, debido al máximo en los dos patrones de motas.

Si asumimos que la distribución de brillo del objeto es constante durante la observación, la ecuación 1.2 puede ser escrita como:

$$\left\langle |I_{obj}|^2 \right\rangle = |O_{obj}|^2 \cdot \left\langle |P_{obj}|^2 \right\rangle. \tag{1.4}$$

El promedio del PS de la PSF exhibe solo una moderada variabilidad espacial, por lo que se puede usar una estrella de referencia, es decir, una estrella separada algunos grados del objeto para determinar la PSF. El promedio del espectro de potencias se puede considerar constante hasta algunas horas; entonces, una referencia se puede observar antes o después de la observación. La correspondiente ecuación 1.4 para la referencia es:

$$\langle |I_{ref}|^2 \rangle = 1 \cdot \langle |P_{ref}|^2 \rangle \approx 1 \cdot \langle |P_{obj}|^2 \rangle.$$
 (1.5)

aquí se ha tomado en cuenta que la función de distribución de brillo de una estrella individual es una delta de Dirac, cuya transformada de Fourier es una constante. Dividiendo 1.4 entre 1.5 tenemos:

$$|O_{obj}|^2 \approx \frac{\left\langle |O_{obj}|^2 \right\rangle}{\left\langle |P_{ref}|^2 \right\rangle}.$$
(1.6)

Cuando observamos, hay que tomar en cuenta el ruido de la electrónica y el ruido del cielo. Estos ruidos pueden ser evaluados de forma simultánea si el objeto no ocupa toda el área del detector. Cuando se resta de los datos obtenemos:

$$|O_{obj}|^2 \approx \frac{\left\langle |O_{obj}|^2 \right\rangle - \left\langle |O_{obj,sky}|^2 \right\rangle}{\left\langle |P_{ref}|^2 \right\rangle - \left\langle |P_{ref,sky}|^2 \right\rangle}.$$
(1.7)

11

1.2. Cálculo y Modelaje del Espectro de Potencias

Típicamente, cada cubo de datos contiene cerca de 500 imágenes. El PS de un cubo de imágenes se calcula sumando los módulos cuadrados de las transformadas de Fourier de cada imagen:

$$P(f_x, f_y) = \frac{C}{K} \sum_{i=1}^{N} |I_i(f_x, f_y)|^2.$$
 (1.8)

Las frecuencias espaciales $\mathbf{f} = f_x, f_y$ corresponden a los elementos del arreglo cuadrado de la imagen. La constante de normalización C, se determina a partir de la condición P(0,0) = 1; en general se usa la frecuencia normalizada $K = f/f_c$, con $f_c = D/\lambda$ la frecuencia de corte, D el diámetro del telescopio y λ la longitud de onda central del filtro.

Para poder hacer un modelo de los datos observacionales es necesario conocer la función de transferencia del patrón de motas (STF) $P_0(\mathbf{f})$. Como vimos en la Sección 1.1, se usa una estrella de referencia para ese propósito; Tokovinin, Mason & Hartkopf (2010) proponen un método empírico para modelar el PS de una estrella binaria. El espectro de potencias de una estrella binaria (ver Figura 1.3) muestra franjas características. Sin embargo, es más práctico buscar estrellas compañeras en la función de autocorrelación, calculada a partir de la transformada de Fourier del PS. La estructura de dos componentes del PS se conserva y la ACF muestra un disco ancho de *seeing* y tres picos estrechos, en el caso de una estrella binaria (ver Figura 1.4).

Los parámetros que se obtienen del espectro de potencias son: el tiempo de observación T, la separación ρ , que está representada por la separación entre los máximos de las franjas de interferencia, el ángulo de posición θ , obtenido a partir de la inclinación de las franjas, y la diferencia en magnitudes Δm . El primer parámetro es arbitrariamente preciso, y los siguientes dos parámetros se combinan en un vector de dos dimensiones $\mathbf{r} = (\rho \cos\theta, \rho \sin\theta)$. El ángulo de posición solo puede ser determinado módulo 180° (ver Sección 1.3). El espectro de potencias observado $P(\mathbf{f})$, después de restar el ruido, puede ser ajustado entonces por el siguiente modelo:

$$P_{mod}(\boldsymbol{f}) = P_0(\boldsymbol{f})[A + B\cos(2\pi\boldsymbol{f}\boldsymbol{r})], \qquad (1.9)$$

12

Figura 1.3: Espectro de potencias de la estrella WDS 00279+234, $\rho=0''.6$ y $\Delta m=0.49$ mag.

Figura 1.4: Función de autocorrelación para la estrella binaria WDS 00279+234.

Figura 1.5: Ejemplo de un PS, P(f), con $f = |\mathbf{f}|$. La línea entre cortada está dividida por una función gaussiana de tipo $T(\mathbf{f}) = \exp(-k(\mathbf{f}x)^2)$ para simular el efecto de distorsión de la atmósfera. La línea punteada es el modelo y la línea continua el PS de la estrella SN 1077 (Tokovinin, Mason & Hartkopf , 2010).

donde $P_0(\mathbf{f})$ se obtiene de la estrella de referencia, y A y B están relacionados con la diferencia de magnitud de las estrellas (ver Sección 1.4). La Figura 1.5 ilustra el modelaje del espectro de potencias realizado por Tokovinin, Mason & Hartkopf (2010).

La Figura 1.6 muestra el PS de una estrella binaria y su modelo ajustado. El hecho de que el PS esté incluido explícitamente en el modelo ayuda a distinguir entre verdaderos compañeros y la elongación de las motas producidas por la distorsión atmosférica.

Un modelo de PS de estrellas triples o múltiples se ajusta de manera similar, pero con un número mayor de parámetros.

1.3. Reconstrucción de Fase

Las observaciones con interferometría de motas de estrellas binarias permiten la reconstrucción muy precisa de su estructura (Bonneau et al. , 1980): el ángulo de posición de la estrella compañera, la separación angular entre las dos componentes y

Figura 1.6: (Parte superior) PS de la estrella FOX 102AB ($\rho = 0''.17, \Delta m = 0.45$ mag). (Parte inferior) Ajuste del modelo (Tokovinin, Mason & Hartkopf , 2010).

la razón de flujo definida como la razón entre el flujo de la primaria y la secundaria. Sin embargo, durante el cálculo de la transformada de Fourier perdemos informción de la fase, por lo que el ángulo de posición sufre de una ambigüedad de 180°. Este problema puede resolverse con otras observaciones y métodos: el algoritmo Knox - Thompson (Knox & Thompson, 1974) o el método Shift-and-add, pero para este trabajo de tesis, no es necesario, sólo lo es en casos interesantes de estrellas múltiples.

1.4. Fotometría Relativa de Estrellas Binarias

El contraste $\beta = B/A$ de las franjas de interferencia en el PS, o la razón de picos en la ACF, $\beta/2$, está relacionado con la diferencia en magnitudes entre las componentes de un sistema binario de la siguiente forma:

$$\Delta m = -2.5 \log_{10}[(1 - \sqrt{1 - \beta^2})/\beta].$$
(1.10)

Sin embargo, Goodman & Belsher (1976) mostraron que en la determinación de diferencias de magnitud hay que tomar en cuenta el efecto del ruido de fotones de fondo y rayos cósmicos que caen en el detector cuando se están tomando las imágenes. Pluzhnik (2005) propone un método en el que el error introducido por los fotones

Figura 1.7: Función de autocorrelación de la estrella binaria DF Tau ($\rho = 0''.1, \Delta m = 0.23$ mag), (izquierda) sin la corrección de fotones y (derecha) con la corrección (Pluzhnik , 2005).

puede ser determinado como el espectro de potencias normalizado (normalizado al número de eventos) de una imagen de campo plano. La Figura 1.7 muestra la ACF de una estrella binaria sin la corrección de fotones (izquierda) y con la corrección (derecha). Esta corrección es muy importante en la detección de estrellas secundarias débiles, pues pueden ser confundidas con ruido.

Cuando se corrige por el error de fotones, la señal de la estrella secundaria aumenta considerablemente, previniendo una falsa detección o que no haya detección. En la sección anterior hablamos de la ambigüedad de 180° que aparece al efectuar la transformada de Fourier de la imagen para obtener el PS; este problema también influye la identificación de la estrella primaria y la estrella secundaria cuando la diferencia en magnitudes es pequeña (Bagnuolo et al. , 1992), lo que afecta gravemente a la determinación de los parámetros físicos de sistemas binarios. Este problema puede ser corregido usando el algoritmo de Walker (1978), en el que se multiplica cada imagen del cubo de imágenes por una función arbitraria, pero que crece monotónicamente en dirección de la estrella primaria a la secundaria; esto provocará un cambio en Δm . El verdadero cuadrante puede ser obtenido analizando el signo de Δm , que cambiará dependiendo de la dirección de crecimiento de la función. Sin embargo, como dije antes, para mi proyecto no es necesario conocer la posición precisa de las estrellas componentes de los sistemas binarios.

Capítulo 2

$uvby - \beta$ Photoelectric Photometry of the Open Clusters NGC 1647 and NGC 1778

En este artículo presentamos los resultados de las observaciones de la fotometría fotoeléctrica que realizamos en dos cúmulos abiertos: NGC 1647 y NGC 1778. Usando fotometría de Strömgren $(uvby - \beta)$ reportamos los siguientes parámetros físicos: enrojecimiento interestelar, módulo de distancia y edad, y basados en las distancias individuales de cada estrella, establecimos una probabilidad de pertenencia al cúmulo NGC 1647, no así para el cúmulo NGC 1778 pues con nuestras observaciones no fuimos capaces de establecer si hay o no un cúmulo en esa dirección.

Los cúmulos NGC 1647 y NGC 1778 fueron escogidos por dos razones principales: ninguno de los dos tenía estudios reportados de fotometría de Strömgren y eran óptimos para observar, dada la temporada observacional que nos fue asignada.

La información de la ubicación de los cúmulos, la magnitud visual de sus estrellas y los estudios que se han realizado sobre ellos, fue extraída del sitio WEBDA¹ (Mermilliod , 1995), que es un banco de datos con información relativa a cúmulos galácticos.

NGC 1647 está situado más allá del complejo de nubes oscuras de Tauro, las coordenadas ecuatoriales de su centro son $\alpha(2000) = 4^{h}46^{m}8^{s}.45 \text{ y} \delta(2000) = +19^{\circ}04'37'';$

¹http://www.univie.ac.at/webda/navigation.html

tiene un diámetro medio de 45' y es un cúmulo relativamente poblado. NGC 1778 se ubica en dirección del brazo de Perseo y las coordenadas ecuatoriales de su centro son $\alpha(2000) = 5^h 08^m 04^s.56$ y $\delta(2000) = +37^\circ 01'24''$, tiene un diámetro de unos 10' y es cúmulo muy débil y poco poblado.

Llevamos a cabo las observaciones en el Observatorio Astronómico Nacional, Sierra San Pedro Mártir, durante cinco noches de Octubre de 2007, con el telescopio tipo Cassegrain de 1.5 m y el espectrofotómetro Danés multicanal integrado.

El proceso de reducción de datos fue hecho con los programas numéricos del paquete NABAPHOT (Arellano–Ferro & Parrao, 1988), los cuales reducen los datos instrumentales al sistema estándar.

Los resultados que obtuvimos para el cúmulo NGC 1647 son los siguientes: enrojecimiento $E(b-y) = 0.32 \pm 0.02$ mag y módulo de distancia $V_0 - M_V = 8.75 \pm 0.09$ mag, correspondiente a una distancia $d = 564 \pm 106$ pc; encontramos las estrellas miembros más probables y calculamos un valor numérico para la edad del cúmulo de log edad (en años) = 7.98 ± 0.23.

En el caso de NGC 1778, no pudimos concluir con nuestros datos si en efecto hay un cúmulo en esa dirección, pues las distancias que encontramos para las estrellas observadas fueron muy diferentes; podemos ver que la incertidumbre asociada a la distancia que calculamos usando fotometría no es suficiente para determinar la pertenencia de las estrellas al cúmulo. Sin embargo, en la literatura encontramos otros estudios fotométricos en los que se confirma que NGC 1778 es un cúmulo abierto. (ver Tabla 2 del artículo).

Las conclusiones resumen lo descrito anteriormente; reportamos nuevos datos de fotometría fotoeléctrica de Strömgren para estrellas de dos cúmulos abiertos y fuimos capaces de encontrar un agrupamiento en el caso de NGC 1647; sin embargo, no tuvimos datos estadísticamente significativos para extraer alguna conclusión para NGC 1778.

En este artículo participé activamente durante todo el proceso. Yo seleccioné los objetos a observar y llevé a cabo las observaciones en el telescopio.

Hice las reducciones del sistema instrumental al sistema estándar, analicé los datos y extraje las conclusiones.

Capítulo 2. uvby – β Photoelectric Photometry of the Open Clusters NGC 1647 and NGC 1778

Escribí el artículo y lo envié, siendo responsable de todo el proceso por el que atraviesa un artículo para ser publicado.

Revista Mexicana de Astronomía y Astrofísica, 47, 185-192 (2011)

$uvby - \beta$ PHOTOELECTRIC PHOTOMETRY OF THE OPEN CLUSTERS NGC 1647 AND NGC 1778

C. A. Guerrero,¹ J. H. Peña,¹ and J. P. Sareyan²

Received 2010 October 21; accepted 2011 February 15

RESUMEN

Se presenta fotometría $uvby - \beta$ de 35 estrellas en la dirección del cúmulo abierto NGC 1647 y de 16 estrellas del cúmulo NGC 1778. Del análisis de los datos obtenidos para NGC 1647 se ha determinado un enrojecimiento $E(b - y) = 0.32 \pm 0.02 \text{ mag}$ y un módulo de distancia de $V_0 - M_V = 8.75 \pm 0.09$ correspondiente a una distancia $d = 564 \pm 106$ pc; asimismo, se han encontrado las estrellas miembros y se ha determinado un valor numérico para la edad del cúmulo de log edad (en años) = 7.98 ± 0.23 . A partir del análisis de los datos obtenidos para NGC 1778, se concluye que no es posible determinar si hay un cúmulo en esa dirección, pues las distancias encontradas para las estrellas observadas son muy diferentes.

ABSTRACT

We present photometry $uvby - \beta$ for 35 stars in the direction of the open cluster NGC 1647 and for 16 stars in the direction of the cluster NGC 1778. From the analysis of the data obtained for NGC 1647 we determine a mean reddening of $E(b-y) = 0.32 \pm 0.02$ mag and a distance modulus of $V_0 - M_V = 8.75 \pm 0.09$ corresponding to a distance $d = 564\pm106$ pc; also, we find the cluster member stars and a numerical value of log age (in years) = 7.89 ± 0.23 . From the analysis of data obtained for NGC 1778, we conclude that it is not possible to determine whether there is a cluster in that direction, because the distances found for the observed stars are very different.

Key Words: open clusters and associations: individual (NGC 1647, NGC 1778) techniques: photometric

1. INTRODUCTION

Galactic open clusters are ensembles of stars with low concentration and irregular shape, gravitationally-bound systems formed at the same time from the same original cloud. They represent examples of stars of comparable age and intrinsic chemical composition and are important in the study of stellar evolution and star formation. As a consequence, the problem of determining the cluster member stars is very important. For this, it is necessary to know the distance, reddening and absolute magnitude of each star.

The present work studies two open clusters, NGC 1647 and NGC 1778, using Strömgren photometry $(uvby - \beta)$ to determine their parameters: reddening, distance modulus and age. The results will be compared with those obtained from the Johnson photometry taken from the literature.

Based on the individual distances of the stars, we will determine whether they belong to the cluster. There are other important physical characteristics in the study of stellar evolution to characterize a star cluster namely temperature and surface gravity of the stars. Using them we can determine the clusters' age (Meynet, Mermilliod, & Maeder 1993).

NGC 1647 is situated beyond the Taurus dark cloud complex, only a few degrees from the Hyades cluster. The center equatorial coordinates are $\alpha(2000) = 4^{h}46^{m}8^{s}.45$ and $\delta(2000) = +19^{\circ}04'37''$. The diameter of the cluster is about 45' and it is a relatively rich cluster that has not been studied by $uvby - \beta$ photometry. Other authors have reported physical parameters (Table 1): Hoag & Applequist (1965) observed 65 stars and reported a distance d = 549 pc, a reddening E(B - V) = 0.30 and

 $^{^1 \}mathrm{Instituto}$ de Astronomía, Universidad Nacional Autónoma de México, Mexico.

 $^{^2\}mathrm{Lesia},$ Observatoire de Paris-Meudon and Observatoire de la Cote d'Azur, France.

GUERRERO, PEÑA, & SAREYAN

)		
Parameter	Paunzen ^a	Hoag ^b	Turner ^c	Hebb ^d	Zdanavičius ^e	Guerrero
E(B-V)	0.370	0.30	0.29	0.37	0.35	0.35
$V_0 - M_V$	9.81	8.7	8.67	8.7	8.42	8.75
d (pc)	540	549	542	550	555	564
log age	8.158	_	8.27	8.3	8.1	7.98

TABLE 1 COMPARISON OF PARAMETERS, NGC 1647

^aPaunzen & Mermilliod (2007). ^bHoag & Applequist (1965). ^cTurner (1992). ^dHebb et al. (2004). ^eZdanavičius et al. (2005). ^fThis paper.

TABLE 1

COMPARISON OF PARAMETERS, NGC 1778

Parameter	Paunzen ^a	$\operatorname{Hoag}^{\mathrm{b}}$	Barbon ^c	Joshi ^d	Pandey ^e	$\operatorname{Xin}^{\mathrm{f}}$
E(B-V)	0.33 6	0.34	0.33	0.34	0.23	0.23
$V_0 - M_V$	11.88	10.7	11.11	10.3	10.2	11.53
d (pc)	1469	1380	1670	1062	1100	2023
log age	8.155	_	_	8.2	11.3	11.8

^aPaunzen & Mermilliod (2007). ^bHoag & Applequist (1965). ^cBarbon & Hassan (1973). ^dJoshi et al. (1975). ^ePandey (1998). ^fXin et al. (2007).

a distance modulus $V_0 - M_V = 8.7$. Using Johnson photometry Turner (1992) observed 45 stars, reported a distance $d = 542 \pm 4$ pc, and measured a reddening $E(B - V) = 0.29 \pm 0.01$, a distance modulus $V_0 - M_V = 8.67 \pm 0.02$ and an age log age = 8.27 years. Hebb, Wyse, & Gilmore (2004) with 53 stars determined a distance d = 550 pc, a reddening E(B - V) = 0.37, a distance modulus $V_0 - M_V = 8.7$ and an age log age = 8.3 years. Using the Vilnius seven-color photometric system, Zdanavičius et al. (2005) published a study of 252 stars and reported a distance $d = 555 \pm 74$ pc, a reddening $E(B - V) = 0.35 \pm 0.01$, a distance modulus $V_0 - M_V = 8.42 \pm 0.02$ and an age log age = 8.1 years.

NGC 1778 lies in the direction of the Perseus arm; the coordinates for its center are: $\alpha(2000) = 5^{h}08^{m}04^{s}.56$ and $\delta(2000) = +37^{\circ}01'24''$. The diameter of the cluster is about 10' and it is a very poorly populated, faint cluster, which has no previously observed $uvby - \beta$ photometry. Other authors have reported physical parameters (Table 2): Hoag & Applequist (1965) observed 10 stars and reported a distance d = 1380 pc, a reddening E(B-V) = 0.34 and a distance modulus of $V_0 - M_V = 10.7$, using Johnson photometry. In 1973, Barbon & Hassan ob-

served 14 stars and reported a distance d = 1670 pc, a reddening E(B - V) = 0.33 and a distance modulus $V_0 - M_V = 11.11$. Joshi, Sagar, & Pandey (1975) observed 85 stars and reported a reddening E(B - V) = 0.34, a distance d = 1062 pc, a distance modulus $V_0 - M_V = 10.13$ and an age log age = 8.2 years. Pandey (1998) observed 16 stars and reported a distance d = 1100 pc, a distance modulus $V_0 - M_V = 10.2$ and an age log age = 11.3 years. Xin, Deng, & Han (2007) using 15 stars determined a distance d = 2023 pc, a reddening E(B - V) = 0.23, a distance modulus $V_0 - M_V = 11.53$ and an age log age = 11.18 years.

2. OBSERVATIONS

Observations were made at the Observatorio Astronómico Nacional, San Pedro Mártir, Mexico, with the 1.5 m telescope and a Strömgren spectrophotometer. The observing run consisted of five nights from 22 to 26 in October 2007. We chose to observe all the brightest stars up to magnitude 13 (close to the limit of the telescope-photometer system), according to the chart of Paunzen & Mermilliod (2007, WEBDA, magnitude limit 13).

In order to be able to transform the data into the $uvby - \beta$ absolute system, a set of photometric standards was observed along with the program stars.

186

$uvby - \beta$ PHOTOMETRY OF NGC 1647 AND NGC 1778

Capítulo 2. $uvby - \beta$ Photoelectric Photometry of the Open Clusters NGC 1647

2.1. Data acquisition

Each measurement consisted of five ten-second integrations for each star. The obtained values of the standard stars and for all the observed bright stars are the average of these measurements. A tensecond integration of the sky was subtracted from the *uvby* filters and from the N and W filters that define H β . Individual uncertainties were determined by calculating the standard deviations of the fluxes in each filter for each star. The precision of each measurement is a function of both the brightness and the spectral type of each star, but we tried to observe them long enough to obtain a sufficient number of source counts to ensure a signal/noise ratio $N/\sqrt{(N)}$ close to a 0.01 mag accuracy.

Seasonal errors were evaluated through the diferences (calculated minus reported) of the magnitude and colors for the standard stars. Ten to fifteen standard stars were observed each night. Emphasis is made on the large range in the magnitude and color values of the standard stars (see Figure 1).

2.2. Data reduction

Standard data reduction procedures have been done with the numerical package NABAPHOT (Arellano Ferro & Parrao 1988). The chosen system was that defined by the standard values of Olsen (1983), and we also took some bright standard stars from the Astronomical Almanac (2006). The transformation equations (1–5) are those given by Crawford & Barnes (1970) and by Crawford & Mander (1966); in these equations D, F, H and L are the slope coefficients for $(b - y), m_1, c_1$ and β , respectively. B, J and I are the color term coefficients of V, m_1 and c_1 . The errors are calculated through the standard stars observed, evaluating the differences in magnitude and colors between the derived values and those of the literature. These differences for V, $(b - y), m_1, c_1$ and β are $\pm 0.010, \pm 0.006, \pm 0.007, \pm 0.021$ and ± 0.004 respectively, providing a numerical estimation of our uncertainties when transforming into the standard system.

$$V = 19.096 + 1.000(b - y) + y_{\rm obs}, \tag{1}$$

$$(b-y) = -0.002 + 0.867(b-y)_{\rm obs},\tag{2}$$

$$m_1 = 0.981 + 0.001(m_1)_{\text{obs}} + 0.375(b - y),$$
 (3)

$$c_1 = -0.048 + 1.044(c_1)_{\text{obs}} + 0.042(0 - y), \quad (4)$$

 $H\beta = 2.978 + 1.237 (H\beta)_{obs}.$ (5)

Table 3 lists the photometric values of the observed stars of NGC 1647 and Table 4 the values of the NGC 1778 stars, ordered by decreasing β values. Column 1 reports the WEBDA ID of the stars as listed by Paunzen & Mermilliod (2007), Columns 2 to 5 the Strömgren values V, (b - y), m_1 , and c_1 respectively; Column 6, the β value, Columns 7 and 8, the reddening-free indexes $[m_1]$ and $[c_1]$ (independent of interstellar extinction) derived from the observations. Column 9 lists the spectral types reported by Paunzen & Mermilliod (2007), and Column 10 the photometric spectral type obtained from the diagram $[c_1] - [m_1]$.

3. METHODOLOGY

When studying a cluster it is important to establish membership of its star on a star-by-star basis, taking advantage of the Strömgren photometry, with the calibrations made by Nissen (1988) based on the calibrations by Crawford (1975, 1979) for the A and F stars and by Shobbrook (1984) for early type stars. In the present study the determination of physical parameters, such as the effective temperature and surface gravity, has been done through the measured Strömgren photometric data in the standard system, once corrected for interstellar extinction. Theoretical $uvby - \beta$ indexes, such as those of Lester, Gray, & Kurucz (1986, hereinafter LGK86), allowed us to directly compare our photometry with that obtained theoretically. LGK86 calculated grids for stellar atmospheres for G, F, A, B and O stars in a temperature range from 5500 K up to 50000 K; they also calculated $\log g$ and $T_{\rm eff}$ as a function of the Strömgren indexes. The determination was done in the (b-y) versus β diagram and in the $[c_1]$ versus β diagram (Figure 2).

The evaluation of reddening was done by establishing to which spectral class each star belongs:

and NGC 1778

GUERRERO, PEÑA, & SAREYAN

$uvby - \beta$ Photoelectric Photometry of NGC 1647									
WEBDA	V	b-y	m_1	c_1	$[m_1]$	$[c_1]$	β	MK	ST
2	7.465	0.996	0.510	0.245	0.828	0.045	2.893	K0	late
10	11.052	0.398	0.035	0.979	0.162	0.899	2.892	B7.5IV	B9
68	10.150	0.361	0.117	0.995	0.232	0.922	2.889		A3
71	10.671	0.312	0.054	0.941	0.153	0.878	2.864	A0	B9
34	10.593	0.257	0.061	0.900	0.143	0.848	2.851	B9	B9
42	9.667	0.246	0.077	0.912	0.155	0.862	2.850	B9.5IV	B9
29	10.674	0.259	0.062	0.967	0.144	0.915	2.838	A0 IV	B9
49	10.048	0.290	0.083	0.945	0.175	0.887	2.832	B8	B8
31	10.264	0.219	0.082	0.905	0.152	0.861	2.794	B8	B9
48	10.402	0.247	0.075	0.825	0.154	0.775	2.778	A0	B8
5	10.220	0.358	0.056	0.660	0.170	0.588	2.774	A0	B6
37	8.864	0.246	0.040	0.651	0.118	0.601	2.774	B9.5IV	B5
57	9.985	0.333	0.041	0.691	0.147	0.624	2.772	A0	B5
70	10.466	0.288	0.062	0.707	0.154	0.649	2.767	B9	B6
419	9.811	0.197	0.047	0.629	0.110	0.589	2.756		B4
51	9.943	0.303	0.080	0.766	0.177	0.705	2.753	B9 IV	B7
99	10.059	0.327	0.044	0.794	0.148	0.728	2.753	B9 IV	B7
54	10.075	0.290	0.053	0.654	0.145	0.596	2.746	A0 V	B5
22	9.067	0.199	0.042	0.739	0.105	0.699	2.742	B9 II	B6
59	9.698	0.400	0.008	0.773	0.136	0.693	2.738	A0	B7
3	10.026	0.290	0.055	0.656	0.147	0.598	2.736	B7.5IV	B4
94	9.667	0.216	0.047	0.666	0.116	0.622	2.726	B9 III	B5
55	10.246	0.341	0.040	0.632	0.149	0.563	2.724	B7 V	B4
66	10.246	0.350	0.017	0.913	0.129	0.843	2.721	B8	B8
233	10.136	0.254	0.092	0.571	0.173	0.520	2.708		B4
102	9.307	0.281	0.026	0.770	0.115	0.713	2.702	B9 III	B6
45	8.860	0.248	0.039	0.645	0.118	0.595	2.700	B7.5IV	B4
44	9.213	0.231	0.033	0.769	0.106	0.722	2.697	B8 IV	B8
15	8.561	0.304	0.020	0.644	0.117	0.583	2.620	B8 III	B4
65	9.561	0.364	0.153	0.34	0.269	0.267	2.611	G0	late
105	8.391	1.048	0.556	0.214	0.891	0.004	2.585	K2	late
1	5.963	0.727	0.694	0.280	0.926	0.134	2.562	K0	late
84	8.779	1.084	0.840	0.088	1.186	-0.128	2.553	K5	late
16	9.480	0.496	0.232	0.449	0.30	0.349	2548	K0 V	late

TABLE 3 $uvby - \beta$ PHOTOELECTRIC PHOTOMETRY OF NGC 1647

early (B or early A) or late (late A or F) types; the later-class stars (later than G) were not considered in the analysis since no reddening determination calibration has yet been developed for such MS stars. Further analyses were done considering the numerical criteria of Lindroos (1980) for Strömgren photometry.

4. RESULTS

The application of the above mentioned numerical packages gave the results listed in Table 5 for NGC 1647 and Table 6 for NGC 1778. The following values are listed: the WEBDA identificator, the reddening, E(b-y), the reddening-free indexes (in decreasing β values), the absolute magnitude, the distance modulus, the distance (in parsecs), the effective temperature and the surface gravity. When histograms of the distances are drawn (Figure 3a), one can see that 24 of the 35 observed stars in NGC 1647 lie around a distance of 564 pc corresponding to a distance modulus of 8.75 \pm 0.09. However, when the histogram of distances to the stars is plotted for

188
$uvby-\beta$ PHOTOMETRY OF NGC 1647 AND NGC 1778

189

WEBDA	V	b-y	m_1	c_1	$[m_1]$	$[c_1]$	β	MK	ST
46	13.014	0.570	0.150	0.380	0.330	0.270	2.830		late
33	10.975	0.250	0.020	0.950	0.100	0.900	2.828	A0	B9
36	11.527	0.240	0.050	0.720	0.120	0.680	2.764		B6
8	11.794	0.250	-0.086	0.750	0.280	0.700	2.753		late
5	11.150	0.240	0.010	0.710	0.090	0.660	2.744	B9.5IV	B5
39	11.681	-0.200	0.320	0.810	0.250	0.850	2.740	B7 IV-V	A3
41	11.964	0.250	0.010	0.620	0.090	0.570	2.740		B4
32	10.283	0.240	-0.010	0.640	0.070	0.590	2.729	B6 III-IV	B3
3	10.190	0.480	0.110	0.600	0.270	0.500	2.699	B6 IV	late
141	11.285	0.230	-0.065	0.530	0.070	0.490	2.671		B2
7	11.810	0.280	-0.030	0.840	0.060	0.780	2.664	B6 IV-V	B6
31	10.197	0.270	-0.020	0.840	0.070	0.780	2.623	B9 III	B6
37	11.599	0.470	0.150	0.360	0.300	0.260	2.617		late
140	9.638	0.280	-0.040	0.630	0.050	0.570	2.614	A0	B3
2	10.104	0.860	0.370	0.360	0.640	0.190	2.585	G8 III	late
34	11.437	1.000	0.560	0.310	0.880	0.110	2.579		late

TABLE 4 $uvby - \beta \text{ PHOTOELECTRIC PHOTOMETRY OF NGC 1778}$

Fig. 2. Left panels (a) LGK86 isotherms for NGC 1647. (b) LGK86 isogravities for NGC 1647. Right panels (a) LGK86 isotherms for NGC 1778. (b) LGK86 isogravities for NGC 1778.

GUERRERO, PEÑA, & SAREYAN

TABLE 3	5
---------	---

REDDENING AND UNREDDENED PARAMETERS OF NGC 1647

WEBDA	E(b-y)	$(b - y)_0$	$(m_1)_0$	$(c_1)_0$	$H\beta$	V_0	M_V	DM	dist (pc)	$T_{\rm eff}~({\rm K})$	$\log g$	membership
94	0.428	-0.030	0.163	0.898	2.892	9.21	1.23	7.98	395	11000	4.0	n
71	0.343	-0.033	0.162	0.870	2.864	9.20	0.98	8.22	440	11000	4.5	У
34	0.292	-0.035	0.148	0.845	2.851	9.34	0.86	8.48	496	11000	4.5	У
42	0.284	-0.032	0.162	0.874	2.850	9.04	0.84	8.21	438	11000	4.5	У
29	0.287	-0.028	0.148	0.912	2.838	9.44	0.68	8.76	564	11000	4.0	У
49	0.325	-0.030	0.181	0.900	2.832	8.65	0.62	8.03	404	11000	4.0	У
31	0.253	-0.034	0.158	0.857	2.794	9.18	0.18	9.00	632	11000	3.5	У
48	0.293	-0.039	0.164	0.784	2.778	9.14	0.02	9.12	667	12000	3.5	У
5	0.417	-0.051	0.170	0.594	2.774	8.46	0.07	8.39	476	13000	4.0	У
37	0.341	-0.051	0.157	0.591	2.774	8.56	0.07	8.50	501	13000	4.0	У
57	0.382	-0.049	0.155	0.618	2.772	8.34	0.04	8.31	459	13000	4.0	У
70	0.335	-0.047	0.162	0.643	2.767	9.03	-0.04	9.06	649	12000	4.0	У
419	0.248	-0.052	0.123	0.580	2.756	8.75	-0.16	8.91	605	13000	4.0	У
51	0.350	-0.043	0.186	0.712	2.753	8.44	-0.29	8.72	556	12000	3.0	У
99	0.369	-0.042	0.155	0.724	2.753	8.47	-0.30	8.77	567	12000	3.5	У
54	0.341	-0.051	0.155	0.589	2.746	8.61	-0.31	8.92	607	13000	3.5	У
22	0.240	-0.043	0.118	0.700	2.742	8.64	-0.45	9.10	659	12000	3.5	У
59	0.444	-0.044	0.141	0.689	2.738	7.80	-0.51	8.31	458	12000	3.5	У
3	0.311	-0.058	0.185	0.512	2.736	8.80	-0.43	9.23	701	14000	4.0	n
15	0.265	-0.049	0.126	0.616	2.726	8.53	-0.64	9.17	682	13000	3.5	У
55	0.395	-0.054	0.158	0.557	2.724	8.55	-0.63	9.18	686	13000	3.5	У
66	0.385	-0.035	0.133	0.84	2.721	8.59	-1.06	9.65	851	13000	3.0	n
233	0.296	-0.050	0.129	0.595	2.708	7.59	-0.95	8.54	511	13000	3.0	У
102	0.324	-0.043	0.123	0.708	2.702	7.91	-1.24	9.16	678	12000	3.0	У
45	0.299	-0.051	0.129	0.588	2.700	7.57	-1.10	8.68	544	13000	3.0	У
44	0.273	-0.042	0.115	0.717	2.697	8.04	-1.38	9.41	763	12000	3.0	n
10	0.356	-0.052	0.127	0.576	2.620	7.05	-3.63	10.68	1365	13000	3.0	n

TABLE (3
---------	---

WEBDA	E(b-y)	$(b - y)_0$	$(m_1)_0$	$(c_1)_0$	${\rm H}\beta$	V_0	M_V	DM	dist (pc)	$T_{\rm eff}$ (K)	$\log g$
33	0.231	-0.038	0.017	0.797	2.828	9.85	0.64	9.21	695	11000	4.0
36	0.218	-0.053	0.036	0.560	2.764	10.44	-0.06	10.49	1256	13000	4.0
8	0.242	-0.050	-0.013	0.600	2.753	10.39	-0.21	10.60	1317	13000	3.5
5	0.223	-0.055	0.003	0.547	2.744	10.05	-0.32	10.38	1189	14000	3.5
41	0.238	-0.064	0.004	0.453	2.740	10.79	-0.38	11.17	1716	15000	3.5
32	0.243	-0.060	-0.007	0.490	2.729	9.10	-0.53	9.63	845	14000	3.0
141	0.263	-0.072	0.014	0.388	2.671	10.16	-1.53	11.70	2184	16000	3.0
7	0.270	-0.045	-0.028	0.676	2.664	10.29	-2.19	12.48	3137	12000	2.5
31	0.261	-0.045	-0.012	0.680	2.623	8.94	-3.88	12.83	3677	12000	2.0
140	0.286	-0.062	-0.016	0.472	2.614	8.24	-3.54	11.79	2275	14000	2.5
39	0.449	-0.041	0.273	0.835	2.740	14.43	-0.66	15.09	1043	14000	2.5
3	0.555	-0.078	0.255	0.341	2.699	7.66	-1.02	8.68	545	13000	30
37	0.502	-0.101	0.234	0.147	2.617	9.28	-2.86	12.14	2678	12000	2.5
2	0.836	-0.102	0.506	0.141	2.585	6.40	-4.08	10.48	1247	13000	3.5
34	1.044	-0.118	0.829	-0.041	2.579	7.43	-4.47	11.90	2394	11000	3.0

REDDENING AND UNREDDENED PARAMETERS OF NGC 1778

 $uvby - \beta$ PHOTOMETRY OF NGC 1647 AND NGC 1778

Fig. 3. Histogram of the distances for the stars in the direction of (a) NGC 1647 and (b) NGC 1778. The thin line is a Gaussian fit to the data.

NGC 1778 (Figure 3b), it is not possible to identify a cluster in that direction. We compared the distances obtained photometrically with those derived from studies of proper motions and Hipparcos (1997). However, only two stars in NGC 1647 were observed by Hipparcos; the first star is NGC 1647 15 (HIP 22122), with a parallax 1.66 mas, equivalent to a distance of 602 pc. This distance is consistent, within the error, with 682 pc, a distance that we determined photometrically. The second star observed by Hipparcos is NGC 1647 94 (HIP 22185), with a parallax 3.52 mas, equivalent to a distance 284 pc. This distance is smaller than that determined with photometry (395 pc). However, is still closer than the rest of the stars. For NGC 1647, stars which are members of the cluster are listed un the last column of Table 5; the criterion for those stars is a one sigma deviation from the average.

Once the membership is established, the age can be estimated by first calculating the effective temperature of the hottest stars. These temperatures are determined by plotting the location of such stars on the theoretical grids of LGK86, after evaluating the unreddened colors (Figure 2) for a solar chemical composition. We have considered this metallicity because, although no metallicity has been reported for NGC 1647, the cluster is located within 1.5 kpc from the Sun, i.e., at galactocentric distances where no substantial radial metallicity gradient has been detected (see e.g., Andrievsky et al. 2002). Thus, we can adopt the solar abundance of heavy elements for the cluster and neglect metallicity corrections.

Star 3 is the star with the highest temperature, but based on the distance, we concluded that it does not belong to the cluster. The next hottest star is star 55 because, even though there are several stars with effective temperature of 13000 K, that star has the most negative value of $(b-y)_0$. Hence, given the calibrations of Meynet et al. (1993) for open clusters, a log age of 7.98 ± 0.23 (i.e. 9.54×10^7 yr) is found from the relation log age (yr) = $-3.6 \log T_{\rm eff} + 22.956$, which is valid in the range [3.98, 4.25] of log $T_{\rm eff}$ (with a precision of 3×10^{-3}).

In the case of NGC 1778, Hipparcos (1997) also observed only two stars in the cluster. The first star is NGC 1772 5 (HIP 23904), which has a negative parallax, -0.59 mas, because the true parallax is smaller than the error. The second star is NGC 1778 2 (HIP 23894), which has a parallax of 2.84 mas, equivalent to a distance of 352 pc, very different from 1247 pc, the distance that we determined. In Table 5 we can see that there is a wide spread in the distances determined by different authors, but Joshi et al. (1975) propose that the difference is due to the fact that they used a revised value of 6.1 for the reddening coefficient R for NGC 1778 (Johnson 1968) because R varies significantly with longitude and galactic extinction in the region $100^{\circ} < l < 220^{\circ}$. This value differs from the usually accepted value of R = 3, but NGC 1778 has galactic coordinates $l = 168^{\circ}.88$ and $b = -2^{\circ}.00$.

5. CONCLUSIONS

New $uvby - \beta$ photoelectric photometry has been acquired for 35 stars of the open cluster NGC 1647 and 16 stars of the open cluster NGC 1778. For NGC 1647, unreddened indexes in the LGK86 grids allowed us to determine the effective temperature of the hottest star as 13000 K. We found a mean distance to the cluster of 564 ± 106 pc, which corresponds to a distance modulus of 8.75 ± 0.09 and a reddening $E(b - y) = 0.32 \pm 0.02$, which, through the relation E(b - y) = 0.9E(B - V), gives a color excess of E(B - V) = 0.35 mag. These results are in good agreement with the parameters reported by other authors (Table 1).

In the case of NGC 1778, we were unable to determine whether a cluster in that direction exists or not. NGC 1778 observations include only 16 bright stars and, due to observing limitations, have not reached the cluster MS which is fainter. The determined distance to the stars represented in the histogram (Figure 3b) does not show any clustering of stars. Consequently, we do not have statistically significant data to derive any conclusion regarding this cluster, but based on an earlier and deeper photometric study, it is clear that NGC 1778 is an open star cluster.

191

GUERRERO, PEÑA, & SAREYAN

We would like to thank the staff of the OAN-SPM for their assistance in securing the observations. Proofreading was done by J. Miller. One of us, Guerrero, C. A., would like to thank S. S. Gil for fruitful discussions. This work was partially supported by PAPIIT IN108106 and PAPIIT IN114309. This research has made use of the Simbad databases operated at CDS, Strasbourg, France; NASA ADS Astronomy Query Form and the WEBDA database, operated at the Institute for Astronomy of the University of Vienna.

REFERENCES

- Andrievsky, S. M., Bersier, D., Kovtyukh, V. V., Luck, R. E., Maciel, W. J., Lépine, J. R. D., Beletsky, Yu. V. 2002, A&A, 384, 140
- Arellano Ferro, A., & Parrao, L. 1988, Reporte Técnico, 57 (Mexico: IA-UNAM)
- Barbon, R., & Hassan, S. M. 1973, A&AS, 10, 1
- Crawford, D. L. 1975, AJ, 80, 955
- Crawford, D. L., & Barnes, J. V. 1970, AJ, 75, 978
- Crawford, D. L., & Mander, J. 1966, AJ, 71, 114
- Hebb, L., Wyse, F. G. R., & Gilmore, G. 2004, AJ, 128, 2881

- ESA 1997, Hipparcos and Tycho Catalogues, ESA SP-1200 (Noordwijk: ESA)
- Hoag, A., & Applequist, N. L. 1965, ApJS, 12, 215
- Johnson, H. L. 1968, in Nebulae and Interstellar Matter, ed. B. M. Middlehurst & L. H. Aller (Chicago: University of Chicago), 167
- Joshi, U. C., Sagar, R., & Pandey, P. 1975, Pramana, 4, 160
- Lester, J. B., Gray, R. O., & Kurucz, R. I. 1986, ApJ, 61, 509 (LGK86)
- Lindroos, K. P. 1980, Stockholms Obs. Rep., 17, 68
- Meynet, G., Mermilliod, J. C., & Maeder, A. 1993, A&AS, 98, 477
- Nissen, P. 1988, A&A, 199, 146
- Olsen, E. H. 1983, A&AS, 54, 55
- Pandey, A. K. 1998, Bull. Astron. Soc. India, 26, 539
- Paunzen, E., & Mermilliod, J. C. 2007, WEBDA, A Site Devoted to Stellar Clusters in the Galaxy and the Magellanic Clouds (Vienna: Institute of Astronomy of the University of Vienna), http://www.univie.ac. at/webda/
- Shobbrook, R. R. 1984, MNRAS, 211, 659
- Turner, D. G. 1992, AJ, 104, 1865
- Xin, Y., Deng, L., & Han, Z. W. 2007, ApJ, 660, 319
- Zdanavičius, J., et al. 2005, Baltic Astron., 14, 179

- C. A. Guerrero and J. H. Peña: Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, 04510, México, D. F., Mexico (cguerrero, jhpena@astro.unam.mx)
- J. P. Sareyan: Lesia, Observatoire de Paris-Meudon and Observatoire de la Cote d'Azur, France (jeanpierre.sareyan@obspm.fr).

Capítulo 3

Speckle Interferometry at the Observatorio Astronómico Nacional. I

En la Introducción de esta tesis discutí el estatus de la multiplicidad estelar de las estrellas de la Vía Láctea. También comenté sobre uno de los motivos más importantes para estudiar estrellas binarias: el movimiento orbital de estos sistemas es la única manera directa de medir las masas estelares. En la actualidad, el catálogo más completo de estrellas binarias y múltiples es el Washington Double Star Catalog (WDS)¹ (Worley & Douglass, 1997); este catálogo contiene información astrométrica de cerca de 60,000 estrellas binarias, sin embargo, a la fecha sólo se han calculado alrededor de 2000 órbitas.

Una característica importante de las estrellas binarias reportadas en el WDS es que muchas son proyecciones ópticas, por lo que es importante monitorearlas para estudiar su comportamiento y verificar o descartar si en realidad son sistemas ligados gravitacionalmente. La interferometría de motas (Labeyrie , 1970) permite hacer mediciones de sistemas binarios cerrados (con separaciones $\rho < 1''$) y como vimos en el Capítulo 1, esta técnica nos permite obrener información acerca de la posición relativa de estrellas que se encuentran en sistemas binarios o múltiples, con una precisión limitada por la difracción.

¹http://ad.usno.navy.mil/wds/orb6.html

Con este artículo comenzamos un programa de observación y monitoreo de estrellas binarias usando interferometría de motas y los telescopios del OAN. En particular, los objetos seleccionados para este artículo son estrellas binarias bien conocidas del WDS que escogimos para probar la técnica. Realizamos las observaciones con el telescopio de 1 m de Tonantzintla, Puebla, durante una temporada en noviembre de 2008. En esta temporada usamos una cámara ICCD Hamamatsu y probamos la rutina Tohtli StarCapture, desarrollada exclusivamente para obtener imágenes interferómetricas. Este artículo fue aceptado antes de mi ingreso formal al doctorado. Sin embargo, lo incluyo por continuidad con la serie de binarias, además de que fue presentado durante la presentación ante el Comité Académico del posgrado, como sustento de mi anteproyecto de tesis.

Los resultados que obtuvimos están contenidos en la Tabla 1 del artículo. Presentamos mediciones de 175 ángulos de posición y separaciones para 163 sistemas. Detectamos separaciones que van desde 0".15 hasta 4".00, con un error medio de 0".03 en la separación y 1° en el ángulo de posición. El ángulo de posición de las estrellas se mide con respecto al norte, pero al calcular la transformada de fourier de la auto correlación, perdemos la fase, por lo que sólo podemos conocer la posición aparente de la estrella secundaria módulo 180°. Sin embargo, existen otros métodos para determinarla con precisión, por ejemplo (ver Capítulo 1) Shift–and–Add, tip– tilt, etc. Los reportes de ángulo de posición que publicamos y que tienen un valor mayor a 180°, se hicieron comparando con otros autores; en algunos casos, cuando la separación es suficientemente grande, a simple vista en el *speckelgrama* se aprecia si las estrellas están al norte o al sur y así lo determinamos.

Esta temporada de observación fue mi primera aproximación a la interferometría de motas, aprendí la metodología y el procedimiento para llevar a cabo las mediciones. Yo participé directamente en las observaciones y en el análisis de los datos y la revisión del texto del artículo.

Revista Mexicana de Astronomía y Astrofísica, 45, 155–159 (2009)

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. I

V. G. Orlov,¹ V. V. Voitsekhovich,¹ G. A. Mendoza-Valencia,^{1,2} A. Svyryd,^{1,2} J. L. Rivera,¹ F. Ortiz,¹ and C. A. Guerrero¹

Received 2009 April 17; accepted 2009 June 1

RESUMEN

Presentamos los resultados de mediciones mediante interferometría de motas de algunas estrellas binarias, llevadas a cabo en noviembre de 2008 en el telescopio de 1 m del Observatorio Astronómico Nacional en Tonantzintla (Puebla, México). Los datos consisten de 175 ángulos de posición y separaciones medidas para 163 sistemas. Las separaciones medidas están comprendidas entre 0.15" y 4.00". La magnitud máxima de las componentes más brillantes es igual a 9.32. El error medio en la medición de las separaciones es de 0.03", y en los ángulos de posición, de 1 grado. La mayor parte de los ángulos de posición tienen la usual ambigüedad de 180 grados, y algunos de ellos se corrigieron comparándolos con observaciones hechas por otros autores.

ABSTRACT

We present the results of speckle interferometric measurements of binary stars performed in November, 2008 with the 1 m telescope at the Observatorio Astronómico Nacional of Tonanzintla (Puebla, Mexico). The data include 175 position angle and separations measured for 163 systems. The measured angular separations range from 0.15'' to 4.00''. The maximum magnitude of the brighter components is equal to 9.32. The mean error in the separation measurement is 0.03''and in the position angle is 1°. The majority of position angles were determined with the usual 180° ambiguity, and some of them were corrected by comparison with observations performed by other observers.

Key Words: stars: binaries: visual — stars: fundamental parameters — techniques: interferometric — techniques: high angular resolution

1. INTRODUCTION

A binary star system is a pair of stars which are gravitationally bound. The study of the orbital motion around their centre of mass is the only direct method for the calculation of stellar mass, and presently there are many objects which can be investigated with this method. For example, the Washington Double Star Catalog (WDS) includes the notes for more than 84000 components of binary systems (Mason et al. 2001). However, only around 2000 orbits have been calculated up to now (Hartkopf & Mason 2003; Cvetković & Novaković 2006). Some of the stars in the WDS catalog are optical doubles; however, most of them are members of binary or multiple systems, so it is important to study their behavior. The wide binary systems $(\rho > 1'')$ can be observed by amateur astronomers, but close binary systems $(\rho < 1'')$ are difficult. Very close binary systems cannot be resolved into two separate stars without using special methods. Results of amateur observations are published en Journal of Double Star Observations (http://www.jdso.org). The speckle interferometry (SI) technique (Labeyrie 1970) allows the measurement of close binary systems. This technique recovers the information about relative positions of components in binary and in multiple stars systems with diffraction-limited accuracy.

In a previous paper (Orlov et al. 2007) we have described the usage of SI technique at Observato-

 $^{^1 \}mathrm{Instituto}$ de Astronomía, Universidad Nacional Autónoma de México, Mexico.

²Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico.

ORLOV ET AL.

Fig. 1. The Graphic Interface of the Tohtli StarCapture program.

rio Astronómico Nacional (OAN). The OAN is a facility of the Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM). There are two astronomical sites where the four telescopes are mounted: one site is located at San Pedro Mártir (OAN-SPM), Baja California, Mexico, and the second one at Tonantzintla (OAN-T), near Puebla, Mexico. The 1 m telescope located at Tonantzintla can be effectively used for speckle interferometric measurements of binary stars to the Rayleigh resolution limit $R = 1.22\lambda/D$.

With this paper we start publishing results of SI observations of binary stars at the telescopes of OAN. In this paper we present result of observations which were carried out in November 2008 at OAN-T. For this observation we prepared an observing list of visual binaries from the WDS Catalog (Worley & Douglass 1997).

2. BRIEF DESCRIPTION OF THE EQUIPMENT

Speckle images were taken with an old Hamamatsu ICCD. The image intensifier of this ICCD does not allow us to take frames with resolutions higher than 25 lines per mm, so frame sizes of 352×240 px were chosen. The microscope objective provides a scale of $0.024 \times 0.026''/px$ on the detector, with a total field of view of 8.448×6.24 arcsec. The very wide band filter centered at the V band (≈ 550 nm) was placed in front of the microscope objective. We developed the special software named Tohtli StarCapture for saving speckle images on the hard disc. Tohtli StarCapture is a video capture software for Windows. It does not require any installation; however it needs DirectX 8 or higher to be installed. It offers the following features:

 Capturing frames from any WDM / DirectXenabled video device, such as PCI and PC-Card grabbers, TV tuner cards, FireWire cameras, USB/USB2 cameras, and DV (digital video) devices.

- Selecting any video mode exposed by the device.
- Selecting a region from the input video to be captured, so the resulting file will be smaller.
- Saving the frame set to a file without losing any precision using a RAW RGB format.
- Including a Unicode comment in the file.

Figure 1 shows the Graphic Interface of the Tohtli StarCapture program. It is free, and it is available upon request.

3. OBSERVATIONS AND RESULTS

The observations were performed at the 1 m telescope under moderate seeing that we estimated to be between 3 to 4 arcsec. For each binary star, a typical observing procedure involved the accumulation of one set of 999 short exposure images on a hard disk. One short exposure image consists of a two-dimensional 352×240 array of 8-bit numbers. The volume of one set of frames on the hard disk is only 80.5 MB.

The data were processed by the standard speckle algorithm which permits the derivation of binarystar parameters.

The calibration results show that the measured value of the camera orientation error is less than 1[°] and the scale error less than 1.5%. We must note that the accuracy obtained for the 1 m telescope depends on the separation between stars and on the effective focal length of system. The speckle data processing is made in three classical steps. The first step is the computation of the mean power spectrum (PS) of an object following the standard Labevrie procedure (Labeyrie 1970). The second step is the Winer filtration of the PS which is applied to remove atmospheric distortions. The third step is the calculation of the autocorrelation function (ACF). As a final step, we compute the distance between stars and the position angle. The position of the component is calculated as the weighted center of the ACF in some area around the maximum value. Table 1 presents the main body of performed measures. Columns 1 and 2 give the identification number in the WDS (Worley & Douglass 1997) and discoverer designation. The third column gives the epoch of the observation in fractional Besselian year. The fourth and fifth columns contain the measured position angle θ in degrees and the angular separation ρ in arcseconds.

SPECKLE INTERFEROMETRY AT OAN. I

157

TABLE 1

	SPECKLE	MEASUREMENTS	ON THE 1	Μ	TELESCOPE
--	---------	--------------	----------	---	-----------

	· · ·
$(\alpha, \delta J 2000.0)$ (deg) (arcsec) $(\alpha, \delta J 2000.0)$ (deg)	(arcsec)
00028+0208 BU 281 2008 8875 162 7 1 57 02504+0620 STE 334 2008 8878 300 1	1.16
00025+0206 DC261 2005.0515 102.1 1.31 02394 70039 511 534 2005.0516 30511 0004743416 STF3056 2008.8402 1397 0.77 03065±1800 STT 49 2008.8878 49.6	2.27
00071-0710 511-0000 2000.0792 100.1 0.11 00000 1000 511 49 2000.0010 45.0	0.54
00089-0042 HDS 18 2008.8875 1515 0.25 0306 ± 0512 A 2030 2008.8878 12.7	0.27
00095+1907 COU 247 2008 8875 256 2 0 31 03140 + 0044 STF 367 2008 8878 134 1	1.23
0018+2895 BU 255 2008 8493 69 0 0 47 03160 - 0555 BU 84 2008 8878 8 5	0.99
00134+2659 STT 2 2008 8493 163 0 041 03177 + 3838 STT 53 2008 8497 242 6	0.67
00174+0853 A 1803 2008 8875 235 4 3 98 03184 - 0056 A C 2 2008 8878 260 0	1.25
00206±1219 BU 1015 2008 8875 103 8 0.49 03206±1011 STF 377 2008 8878 111 1	1.16
00209+1159 BU 1093 2008 8875 118 2 0 77 03213+1038 HEI 449 2008 8878 66 5	0.23
00266-0003 HDS 61 2008 8875 275 9 0.43 03284 - 0434 BU 1180 2008 8878 24 4	0.37
00352-0336 HO 212 2008 8876 2074 0 15 03286 + 2004 STF 395 2008 8879 91 0	1.84
00424-0410 STT 18 2008 8876 2094 1 97 03307 - 0416 STF 408 2008 8878 322 9	1.01
00470-0115 BU 494 2008 8876 1611 1 29 03312 + 1947 STF 403 2008 8879 173 1	2.32
00487±1841 BU 495 2008 8876 257 0 0 26 03318±0749 A 1931 2008 8878 50 0	0.85
00516+1011 B0 100 2000,8404 100 7 010 03344 2428 STE 412 2008,8407 354 5	0.73
00501+220 11 1000 2000.000 150.1 0.10 0000+1220 011 12 2000.0001 304.0	0.75
00521+1010 STT 20 2008 8876 183 9 0 57 03356 + 3141 BU 533 2008 8879 222 4	1.07
0050+12338 STF 73 2008 8494 321 9 1.04 03362 + 4220 A 1535 2008 8879 340 2	0.75
00554±3040 BU 500 2008 8494 122 6 0.48 03372±1021 A 2419 2008 8879 100.8	0.82
0053+010 BU 302 2008 844 206 6 0 30 03426 + 0838 HDS 472 2008 8879 245 1	0.54
00503-1011 A 1902 2008 8876 208 9 0.36 0343 + 3217 BU 535 2008 8879 23.7	1.04
01005±1841 HDS 132 2008 8876 135.0 0.41 03463±2411 BU 536 2008 8879 179.7	1.01
01007+029 STF 82 2008 8876 305 4 1 86 03489+1143 A 831 2008 8879 46 2	0.26
01014+1155 BU 867 2008 8876 355 0 0 66 03493 - 0127 BST4760 2008 8879 286 0	0.81
01041+150 BO 2008 8494 115 9 0.28 03520 + 0632 KUI 15 2008 8879 207 5	0.78
01063-0016 HDS 141 2008.8876 14.8 0.26 03521 + 4048 STT 66 2008.8879 145.0	1.03
01097+2348 BU 303 2008 8494 293 0 0 62 03555 + 0734 A 1935 2008 8879 4 8	0.56
01196-0520 A 313 2008.8876 324.7 0.23 03590+0947 HU 27 2008.8879 329.7	0.40
01213+1132 BU 4 2008.8876 109.9 0.59 04064 + 4325 A 1710 2008.8879 313.4	0.63
01291+1026 HDS 195 2008 8877 185 4 0 19 04069 + 327 STT 71 2008 8497 230 3	0.76
01315+1521 BU 506 2008.8877 61.8 0.61 04081+3407 COU1082 2008.8879 57.4	0.31
01360+0739 STF 138 2008.8877 59.6 1.74 04081+3407 COU1082 2008.8497 56.4	0.32
01393+1638 BU 5 2008 8877 284 1 0 55 04089 + 2911 BU 1232 2008 8879 353 5	0.32
01512+2439 HO 311 2008 8495 173 5 0 34 04091 + 2839 HO 326 2008 888 290 1	0.41
01532+1526 BU 260 2008.8877 260.0 1.14 04117 + 3133 COU 880 2008.888 42.6	0.77
01559+0151 STF 186 2008 8877 247 3 0 87 04124 + 2334 COU 703 2008 888 98 0	1.09
02020+0246 STF 202 2008 8877 268 9 1 86 04140 + 4235 A 1711 2008 888 80 7	0.69
02026+0905 MCA 4 2008.8877 152.3 0.18 04159+3142 STT 77 2008.8497 294.6	0.56
02052-0058 BU 516 2008 8877 316 6 0 69 04159 + 3142 STT 77 2008 888 294 1	0.56
02070-0413 HDS 283 2008 8877 269 5 0 92 04170+1941 HO 328 2008 888 1 6	0.48
02214+0853 BU 8 2008.8877 224.7 1.53 04182 + 2248 STF 520 2008.8497 78.1	0.60
02280+0158 KUI 8 2008 8877 38 8 0 51 04182 + 2248 STF 520 2008 888 78 3	0.60
02296+0934 BU 518 2008 8877 143 2 1 50 04263 + 3443 HU 609 2008 8497 305 4	0.18
02409+0452 STT 45 2008 8878 264 3 0 84 04316 + 3739 BU 789 2008 8881 322 8	0.10
02460-0457 BU 83 2008.8878 16.6 0.94 $04348+2242$ STF 562 2008.8881 284.9	1.89
02477+0142 A 2411 2008.8878 284.9 0.32 04357 + 394 HU 1084 2008.8498 75.9	0.24
02513+0142 VOU 36 2008.8878 12.2 0.32 04366+1946 STT 86 2008.8498 0.9	0.48
02572+0153 A 2413 2008.8878 157.2 0.54 04385 + 2656 STF 572 2008.8498 190.2	4.25
02586+2408 BU 1173 2008 8496 99.7 0.21 $04422+3731$ STF 577 2008 8498 344.0	0.76
02589+2137 BU 525 2008.8496 271.9 0.55 $04422+3731$ STF 577 2008.8881 344.2	0.76

ORLOV ET AL.

WDS	Disc.	Date	P.A.	Sep.	WD	s	Disc.	Date	P.A.	Sep.
$(\alpha, \delta J2000.0)$			(deg)	(arcsec)	$(\alpha, \delta J20)$	~ (0.0)			(deg)	(arcsec)
0.4500 + 85.40	IIII oto	0000 0001	077.0	0.40		, 0014		2000 0002	000	0.57
04529 + 3548	HU 819	2008.8881	277.3	0.46	06097 +	2914	A 54	2008.8882	333.6	0.57
05017 + 2050	HU 445	2008.8498	133.8	0.39	06117 +	2846	A 55	2008.8882	260.5	0.42
05017 + 2640	A 1844	2008.8881	349.3	0.30	06200 +	2826	BU 895	2008.85	158.9	0.24
05044 + 2139	COU 154	2008.8881	301.4	0.20	06211 +	3619	A 1954	2008.8882	109.3	0.68
05044 + 2139	COU 154	2008.8498	302.3	0.21	06256 +	2227	STT 139	2008.8882	256.7	0.72
05044 + 2938	A 1024	2008.8881	333.8	0.78	06290 +	2013	BU 1192	2008.8882	320.9	0.25
05055 + 1948	STT 95	2008.8498	298.1	0.95	06317 +	2823	BU 1021	2008.8882	76.7	0.73
05055 + 1948	STT 95	2008.8881	298.1	0.96	06357 +	2816	A 506	2008.8882	39.5	0.21
05056 + 2304	STT 97	2008.8498	153.3	0.34	06396 +	2816	STT 152	2008.85	36.1	0.87
05056 + 2304	STT 97	2008.8881	149.3	0.35	07486 +	2308	WRH 15	2008.8501	33.0	0.26
05060 + 3556	HDS 664	2008.8498	33.1	0.23	07560 +	2342	COU 929	2008.8501	196.6	0.27
05064 + 4002	HU 1095	2008.8881	36.7	0.35	22288 -	0001	STF2909	2008.8873	170.7	2.11
05072 + 2224	COU 155	2008.8881	330.6	0.23	22295 -	0012	BU 76	2008.8873	8.4	1.64
05072 + 2224	COU 155	2008.8498	335.6	0.26	22352 +	1437	HU 982	2008.8874	219.0	0.58
05081 + 2416	HDS 674	2008.8881	202.5	0.37	22385 +	0218	HO 479	2008.8874	63.3	0.38
05103 + 3718	STF 644	2008.8881	222.3	1.64	22400 +	0113	A 2099	2008.8874	164.1	0.79
05131 + 2424	COU 468	2008.8882	39.3	0.63	22409 +	1433	HO 296	2008.8874	77.9	0.38
05140 + 3655	POP 140	2008.8498	166.5	0.31	22552 -	0459	BU 178	2008.8874	323.4	0.66
05219 + 3934	COU2037	2008.8498	145.7	0.39	22579 +	1337	HU 989	2008.8874	72.6	0.35
05270 + 2737	HO 226	2008.8498	90.3	0.70	22586 +	0921	STT 536	2008.8874	166.6	0.33
05297 + 3523	HU 217	2008.8498	253.9	0.62	22592 +	1144	STT 483	2008.8874	359.0	0.47
05351 + 3056	BU 1267	2008.8498	174.4	0.40	23078 +	1240	$BU \ 1025$	2008.8874	327.1	0.83
05386 + 3030	BU 1240	2008.8498	328.9	0.16	23088 +	1058	A 1238	2008.8874	118.4	0.31
05399 + 3757	STT 112	2008.8498	49.8	0.89	23141 -	0238	BU 714	2008.8874	107.0	0.35
05449 + 2621	A 496	2008.8499	5.8	0.29	23176 +	1818	HU 400	2008.8874	84.1	0.34
05460 + 2119	STF 787	2008.8499	57.2	0.72	23176 -	0131	BU 79	2008.8874	13.2	1.65
05499 + 3147	STF 796	2008.8499	63.0	3.74	23189 +	0524	BU 80	2008.8875	229.3	0.52
05522 + 3834	STF 799	2008.85	162.3	0.77	23309 +	0929	STT 497	2008.8875	217.2	1.42
05558 + 3656	STT 122	2008.8882	88.9	0.37	23311 +	1847	STF3020	2008.8875	100.7	2.26
05558 + 3656	STT 122	2008.85	87.8	0.38	23322 +	0705	HU 298	2008.8875	53.3	0.16
05580 + 2437	COU 905	2008.85	206.5	0.23	23324 +	1724	STF3023	2008.8875	281.4	1.79
05580 + 2437	COU 905	2008.8882	204.0	0.24	23407 -	0023	STF3030	2008.8875	223.0	2.46
06046 + 4535	A 1729	2008.8882	72.8	0.73	23460 +	0016	STF3036	2008.8875	222.5	2.64
06078 + 4240	STT 130	2008.8882	202.1	0.42	23544 +	0228	STF3045	2008.8875	272.2	1.74
06097 + 2307	BU 1241	2008.85	346.9	0.60	23568 +	0444	A 2100	2008.8875	267.1	0.36
06097 + 2307	BU 1241	2008.8882	247.4	0.61	23587 -	0333	BU 730	2008.8875	322.6	0.78

TABLE 1 (CONTINUED)

4. CONCLUSION

A program of speckle observations has been initiated at OAN telescopes, with the goal of obtaining data on the double stars. This study has been started with well-known binaries from WDS catalogue. One hundred seventy five position angle and separation measures for one hundred sixty three binaries have been presented, a subset of which has been used to determine the measurement precision. We only present here the cases when the binary was clearly resolved. The results for binaries which demand a more detailed analysis will be reported in subsequent publications.

REFERENCES

- Cvetković, Z., & Novaković, B. 2006, Serb. Astron. J., 173, 73
- Hartkopf, W. I., & Mason, B. D. 2003, Sixth Catalog of Orbits of Visual Binary Stars (Washington: USNO), http://ad.usno.navy.mil/wds/orb6.html

Labeyrie, A. 1970, A&A, 6, 85

- Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E. 2001, AJ, 122, 3466
- Orlov, V. G., Voitsekhovich, V. V., Sánchez, L. J., & Garfias, F. 2007, RevMexAA, 43, 137
- Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523

SPECKLE INTERFEROMETRY AT OAN. I

- C. A. Guerrero, V. Orlov, F. Ortiz, J. L. Rivera, and V. Voitsekhovich: Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, 04510 México, D. F., Mexico (cguerrero, orlov, fortiz, jrivera, voisteko@astroscu.unam.mx).
- G. A. Mendoza-Valencia and A. Svyryd: Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad, 3000, Circuito Exterior s/n, Coyoacán, C.P. 04510, Ciudad Universitaria, México, D. F., Mexico (gustahavo@gmail.com, tantanoid@yahoo.com).

Capítulo 4

Speckle Interferometry at the Observatorio Astronómico Nacional. II

En este Capítulo presento el segundo artículo en la serie de observción y monitoreo de estrellas binarias que iniciamos en 2008 (ver Capítulo 3). Una vez que probamos la técnica de interferoemtría de motas con el telescopio de 1 m de Tonantzintla, solicitamos tiempo de observación en el telescopio de 1.5 m de San Pedro Mártir. El motivo principal de observar en San Pedro fue que la magnitud límite que podemos detectar usando interferometría de motas depende fuertemente del *seeing* del sitio astronómico.

Para estas observaciones usamos la cámara DRAGON (Voitsekhovich et al. , 2005), y tuvimos excelentes condiciones de *seeing* (entre 0".7 y 1"). Durante cuatro noches de observación en junio de 2009, hicimos 189 mediciones de 144 estrellas binarias; más de la mitad de estos sistemas tienen separaciones menores a 1". A partir de estas observaciones, utilizamos el procedimiento de reducción descrito por Tokovinin, Mason & Hartkopf (2010), pues este algorítmo empírico permite derivar los parámetros astrométricos de las estrellas binarias sin la necesidad de usar una estrella de referencia, aunque este procedimiento no funciona bien cuando la estrella es extremadamente débil.

Los resultados están contenidos en la Tabla 2 del artículo; el formato de la tabla

es diferente al presentado en el artículo anterior (Orlov et al. , 2009), pues incluímos tres columnas más en las que presentamos las efemérides calculadas para la fecha de observación y referencias a artículos en los que hay reportes de elementos orbitales.

Mi colaboración en este artículo fue un poco más profunda. Participé en las observaciones y me introduje al procedimiento de reducción de los datos y al análisis. Busqué algunas referencias bibliográficas y comparé los parámetros de algunas estrellas. Participé brevemente en la elaboración del texto y en la revisión del artículo. Este artículo también fue aceptado antes de mi ingreso al doctorado, pero se incluye por continudad y por las mismas razones que el artículo anterior. Revista Mexicana de Astronomía y Astrofísica, 46, 245–251 (2010)

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. II

V. G. Orlov, V. V. Voitsekhovich, J. L. Rivera, C. A. Guerrero, and F. Ortiz

Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico

Received 2010 March 27; accepted 2010 May 27

RESUMEN

Presentamos mediciones interferométricas de motas para estrellas binarias, obtenidas en junio de 2009 en el telescopio de 1.5 m del Observatorio Astronómico Nacional en San Pedro Mártir (México). Nuestros datos comprenden 189 mediciones de ángulos de posición y separaciones de 144 sistemas. Las separaciones angulares medidas abarcan desde 0".16 hasta 3".64. La magnitud máxima de la componente más brillante es de 10.96. El error medio en las separaciones es de 0".02 y en los ángulos de posición de 1.5°. Algunos ángulos de posición se determinaron con la ambigüedad usual de 180°.

ABSTRACT

We present speckle interferometric measurements of binary stars made during June of 2009 with the 1.5 m telescope of the Observatorio Astronómico Nacional at SPM (Mexico). The data contain 189 position angle and separation measures of 144 systems. The measured angular separations range from 0''.16 to 3''.64. The maximum magnitude of the brighter component is 10.96. The mean error in separation is 0''.02 and in the position angles 1.5°. Some of the position angles were determined with the usual 180° ambiguity.

Key Words: binaries: visual — stars: fundamental parameters — techniques: high angular resolution — techniques: interferometric

1. INTRODUCTION

In our previous paper (Orlov et al. 2009) we reported results of speckle observations of binary stars obtained at the 1 m telescope of Observatorio Astronómico Nacional at Tonanzintla (OAN-Tonanzintla), Mexico. The telescope is located at a site with moderate seeing. As it is well known the resolution of speckle interferometry (SI) does not depend on seeing. However, the limiting magnitude of stars which can be resolved by SI does depend on seeing. The Instituto de Astronomía has a total of four telescopes. Three of them are situated at Observatorio Astronómico Nacional at San Pedro Mártir, Mexico (OAN-SPM). The OAN-SPM is located in one of the best astronomical sites (Avila, Cruz-González, & Tapia 2003). Included at the SPM site are 3 telescopes: 84 cm, 1.5 m and 2.1 m.

In this paper we present results from four observing nights in June 2009. The observations were performed at the 1.5 m telescope of the OAN-SPM.

2. OBSERVATIONS

The observations were performed at the 1.5 m telescope of the Observatorio Astronómico Nacional which is located at the San Pedro Mártir (Mexico). For these observations we used the DRAGON equipment (Voitsekhovich et al. 2005), which was slightly modified to be able to record speckle interferograms (Orlov et al. 2007). During the observations we had good seeing conditions. We estimated that the seeing was between 0.7 to 1 arcsec. Unfortunately, aberrations introduced by the telescope had a larger effect. It can be clearly seen on a centered image of one of the stars (Figure 1). Aberrations of the 1.5 m mirror cannot be corrected because the telescope is not equipped with an active optics system.

After calibration we determine the Pixel Scale = 0.024''/px and detector orientation. For calibration we used 40 wide pairs with very slow orbital motions and some of them with known orbital parameters.

ORLOV ET AL.

Fig. 1. The centered image of the binary star COU 1581. It was obtained by averaging 700 previously centered speckle interferograms. The window is $6''.3 \times 6''.3$.

During four nights of observations we made 189 measurements of 144 pairs. Most of observed binaries have separations less than 1". Table 1 shows how these 144 pairs are distributed according to their separations.

3. DATA PROCESSING AND RESULTS

For each binary star, a typical observing procedure involved the accumulation of one set of 700 short exposure images on hard disk. One short exposure image consists of a two-dimensional 582×584 array of 8-bit numbers. The volume of one set on the hard disk is 226 MB. The data were processed by the algorithm which was explained in detail by Tokovinin, Mason, & Hartkopf (2010). This algorithm permits derivation of the binary star parameters without using the reference star. The resulting autocorrelation function (ACF) of one binary star COU 1581 calculated by this algorithm is shown in Figure 2. The position of the secondary is calculated as the center of weight of values of the ACF in a region around the maximum value.

TABLE 1

DISTRIBUTION OF PAIRS BY THEIR SEPARATIONS

> 1''.5	1''.5 - 1''	1'' - 0''.5	0''.5 - 0''.25	$<0^{\prime\prime}.25$
18	23	38	57	12

Fig. 2. Reconstructed ACF of the binary star COU 1581. Separation $= 0^{\prime\prime}.305$.

Fig. 3. Result of self-calibrating shift-and-add technique for the binary star COU 1581.

As is well known, the ACF has no information about the Fourier phase of the image; therefore, the position angle is determined only modulo 180°. To avoid this inconvenience we also used Christou's selfcalibrating shift-and-add technique (Christou et al. 1986). Figure 3 shows an image which was calculated using this technique. We have to admit that the SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. II $\ 247$

WDS	Disc.	Date	P.A	Sep.	P.A. Orb.	Sep. Orb.	Reference
$(\alpha,\delta J2000.0)$	Name	Besselian	(deg)	(arcsec)	(deg)	(arcsec)	
12154 + 4008	A 1999	2009.4326	62.2	0.29	40.9	0.53	Seymour et al. 2002
12182 + 2718	HDS1733	2009.4410	241.9	0.32			
12244 + 4305	STT 250	2009.4327	351.2	0.33			
12306 + 3431	HDS1759	2009.4327	203.3	0.27			
12328 + 2301	AG 179	2009.4327	142.0	0.99			
12510 + 3129	HDS1804	2009.4300	256.8	0.75			
12510 + 3129	HDS1804	2009.4327	257.2	0.75			
12575 + 2457	COU 397	2009.4300	60.6	0.68			
12575 + 2457	COU 397	2009.4410	60.6	0.68			
12575 + 2457	COU 397	2009.4327	61.1	0.69			
13004 + 3545	HU 1141	2009.4327	343.5	0.49			
13037 + 2339	STF1714	2009.4410	307.2	3.12			
13037 + 2339	STF1714	2009.4327	307.2	3.13			
13063 + 2044	HU 739	2009.4327	204.1	1.37	207.3	1.39	Seymour et al. 2002
13063 + 2044	HU 739	2009.4410	204.1	1.37			
13091 + 2127	HU 572	2009.4411	344.6	0.46	10.1	0.35	Zulevic 1969
					105.5	0.52	Baize 1981
					50.7	0.35	Baize 1986
13128 + 4030	A 1606	2009.4328	195.9	1.29			
13128 + 4030	A 1606	2009.4411	196.5	1.30			
13221 + 3952	HDS1876	2009.4300	88.9	0.26			
13225 + 4242	COU1581	2009.4411	157.5	0.33			
13266 + 3235	COU 787	2009.4300	147.4	0.34			
13280 + 3235	A 1856	2009.4411	343.5	1.08			
13280 + 3235	A 1856	2009.4328	343.7	1.07			
13305 + 3430	A 1857	2009.4301	340.9	0.48			
13305 + 3430	A 1857	2009.4328	341.4	0.47			
13348 + 4242	HDS1908	2009.4411	24.1	0.48			
13387 + 3823	COU1429AB	2009.4411	64.0	0.66			
13387 + 3823	COU1429AB	2009.4301	64.4	0.66			
13465 + 1545	A 2063	2009.4411	136.9	0.23			
13465 + 1545	A 2063	2009.4328	136.9	0.19			
13465 + 1545	A 2063	2009.4301	137.4	0.25			
13509 + 3555	COU1132	2009.4301	147.5	0.79			
13509 + 4422	A 1613AB	2009.4328	259.9	3.08			
13571 + 3426	BU 937	2009.4301	135.0	1.04			
14082 + 3645	STT 276AB	2009.4301	206.9	0.44			
14087 + 3341	HU 742	2009.4329	354.0	0.24	67.0	0.29	Popovic 1972
14087 + 3341	HU 742	2009.4412	355.6	0.25			
14109 + 1513	HDS1989Aa,Ab	2009.4412	358.7	0.43			
14109 + 2412	HDS1988	2009.4329	150.2	3.29			
14113 + 3013	COU 605	2009.4412	163.5	0.26			
14113 + 3013	COU 605	2009.4329	164.4	0.27			
14124 + 2843	STT 277 AB	2009.4301	64.3	0.19			
14164 + 2539	HDS2006	2009.4412	249.2	0.70			
14184 + 3412	HU 901	2009.4301	32.6	0.61			
14276 + 2037	HO 542	2009.4329	213.6	0.98			
14278 + 3257	STF1848	2009.4302	356.2	3.09			
14278 + 3257	STF1848	2009.4412	356.3	3.08			
14295 + 3612	HU 1268	2009.4412	345.2	0.30	313.0	0.38	Erceg 1975
14436 + 3745	STF1875	2009.4329	128.5	3.06			
14485 + 2445	COU 304	2009.4329	300.8	0.46			

TABLE 2

SPECKLE MEASUREMENTS ON THE 1.5 M TELESCOPE

ORLOV ET AL.

	TABLE 2 (CONTINUED)											
WDS	Disc.	Date	P.A	Sep.	P.A. Orb.	Sep. Orb.	Reference					
$(\alpha, \delta J2000.0)$	Name	Besselian	(deg)	(arcsec)	(deg)	(arcsec)						
15002 + 2129	HU 907	2009.4413	277.3	0.24								
15002 + 2129	HU 907	2009.4329	278.0	0.21								
15049 + 3428	STF1908AB	2009.4413	151.4	1.33								
15075 + 1541	A 2228	2009.4330	12.2	3.29								
15136 + 3453	HO 60	2009.4413	68.1	0.18	72.7	0.16	Baize 1993a					
15136 + 3453	HO 60	2009.4330	73.5	0.16	72.7	0.16	Baize 1994					
15151 + 3650	STT 295	2009.4413	150.3	0.30								
15192 + 4329	A 1630	2009.4330	244.8	0.78								
15208 + 4242	A 573	2009.4413	171.9	0.71								
15257 + 2638	STF1941	2009.4330	212.6	1.38								
15271 + 2355	A 82	2009.4330	351.0	0.83								
15272 + 4133	COU1443	2009.4413	172.8	0.49								
15307 + 3810	HU 1163	2009.4413	168.1	0.22	189.1	0.17	Couteau 1990					
15307 + 3810	HU 1163	2009.4330	169.3	0.21	191.9	0.21	Zulevic 1995					
					191.9	0.21	Zulevic 1996					
					169.4	0.21	Hartkopf et al. 2000					
15390 + 2545	COU 612	2009.4413	177.5	0.29	326.6	0.15	Baize 1992a					
					326.6	0.15	Baize 1993b					
					176.2	0.26	Docobo & Ling 1998a					
					173.2	0.30	Aristidi et al. 1999					
15404 + 2123	HU 579	2009.4414	136.5	0.70								
15498 + 4431	BU 621	2009.4302	26.4	0.67								
15554 + 2932	HO 399	2009.4302	117.3	3.59								
15574 + 4140	STF1991AB	2009.4331	195.5	3.02								
15574 ± 4140	STF1991AB	2009.4414	195.8	3.01								
15574 ± 4140	S1F1991AB	2009.4302	196.4	2.99								
16110 ± 1007 16108 ± 2000	A 1799 STE2028	2009.4414	117.0	0.70	140.8	0.99	Alamon 2001					
10120 ± 3922 16156 ± 1044	SIF 2028 HU 480	2009.4302	144.7 961.0	1.61	140.8	0.33	Alzlief 2001					
10130 ± 1944 16161 ± 2036	A 348	2009.4331	201.9	1.01								
16101 ± 2530 16102 ± 4140	STT 309	2009.4302	307.4	0.28	306.6	0.28	Sevenour et al. 2002					
16199 ± 2341	COU 108	2009.4302	255.1	0.20	500.0	0.20	beymour et al. 2002					
16199 + 2341 16199 + 2341	COU 108	2009.4331	255.9	0.62								
16248 + 3925	HU 1276	2009.4302	270.3	0.39								
16248 + 3925	HU 1276	2009.4414	270.4	0.42								
16273 + 2653	A 226	2009.4331	94.1	1.01								
16273 + 2653	A 226	2009.4415	94.3	1.02								
16309 + 3804	STF2059	2009.4303	186.3	0.36								
16326 + 2314	BU 817	2009.4303	327.9	0.94								
16326 + 2314	BU 817	2009.4331	328.1	0.94								
16384 + 3514	COU 985	2009.4415	69.4	0.30	79.4	0.20	Baize 1993c					
16384 + 3514	COU 985	2009.4331	70.1	0.30	82.8	0.21	Docobo & Ling 1998b					
					82.8	0.20	Docobo et al. 2000					
16412 + 1714	HDS2366	2009.4331	95.8	0.53								
16422 + 3753	HDS2372	2009.4303	252.1	0.18								
16422 + 4112	STF2091	2009.4303	325.9	0.40								
16476 + 4255	COU1452	2009.4415	103.5	0.26								
16476 + 4255	COU1452	2009.4332	108.6	0.29								
16539 + 2547	COU 492	2009.4332	91.9	0.52								
16539 + 2547	COU 492	2009.4415	91.9	0.52								
17063 + 2631	A 228	2009.4388	185.7	0.46								
17075 + 3810	COU1291	2009.4303	301.1	0.28	0.6	0.15	Baize 1993c					
					356.3	0.07	Docobo & Ling 1998a					
					348.0	0.07	Docobo & Ling 2002					

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. II 249

				2 (00111	interp)		
WDS	Disc.	Date	P.A	Sep.	P.A. Orb.	Sep. Orb.	Reference
$(\alpha, \delta J2000.0)$	Name	Besselian	(deg)	(arcsec)	(deg)	(arcsec)	
17094 + 1901	A 2086	2009.4332	204.3	3.14			
17116 + 3916	HU 1178AB	2009.4332	9.5	0.36			
17116 + 3916	HU 1178AB	2009.4303	10.4	0.36			
17116 + 3916	HU 1178AB	2009.4303	10.7	0.36			
17184 + 3240	BU 628	2009.4303	267.1	0.52	255.4	0.39	Zulevic 1986
17215 + 2845	KUI 80AB	2009.4388	169.9	0.62			
17221 + 2310	COU 415	2009.4388	249.3	0.24	174.5	0.27	Baize 1992a
					174.5	0.27	Baize 1993b
17239 + 3627	STF2162	2009.4304	284.5	1.35			
17250 + 4306	COU1454	2009.4304	148.0	0.98			
17251 + 3444	HU 922	2009.4304	225.4	0.21	6.8	0.31	Heintz 1982
17275 + 1627	A 2184	2009.4388	30.4	1.87			
17377 + 4250	HDS2489	2009.4304	346.7	0.55			
17377 + 4250	HDS2489	2009.4332	347.1	0.55			
17412 + 4139	STF2203	2009.4416	293.7	0.73			
17434 + 3357	HO 560	2009.4304	263.3	1.32			
17434 + 3357	HO 560	2009.4416	263.3	1.33			
17434 + 3357	HO 560	2009.4388	265.2	1.37			
17486 + 2339	BAR 8	2009.4416	237.8	1.16			
$17504 + 3526^*$	STF2236	2009.4389	18.9	0.31			
$17504 + 3526^*$	STF2236	2009.4304	22.6	0.32			
17504 + 3526	STF2236	2009.4389	97.0	3.39			
17504 + 3526	STF2236	2009.4304	97.1	3.37			
17506 + 3932	COU1301	2009.4389	84.3	1.74			
17506 + 3932	COU1301	2009.4416	85.0	1.74			
17541 + 2949	AC 9	2009.4389	240.6	1.09			
17577 + 2815	HO 424	2009.4389	203.0	1.42			
17584 + 3524	COU1000	2009.4416	153.3	0.89			
17591 + 3228	HU 1185	2009.4416	138.5	0.36	148.4	0.27	Heintz 1975
18017 + 4011	STF2267	2009.4304	271.1	0.55			
18017 + 4011	STF2267	2009.4389	271.7	0.56			_
18025 + 4414	BU 1127AB	2009.4332	52.9	0.73	65.4	1.15	Popovic 1970
					62.6	1.02	Popovic & Pavlovic 1995a
10000 - 0001	CERTICAL	2000 4440			62.6	1.02	Popovic & Pavlovic 1995b
18033 + 3921	STF2275	2009.4416	297.2	0.27	300.0	0.26	Popovic 1998
100/20 + 200/	1111 1100	2000 4204	115 0	0.05	299.9	0.26	Popovic et al. 2000
18003+3824	HU 1180	2009.4304	115.0	0.25	141.3	0.09	Heintz 1965
18003 ± 3824	HU 1180	2009.4416	123.3	0.30	119.0	0.22	Baize 1992b
18196 3896	BU 1001	2000 4305	320.7	0.72	121.1	0.20	11ciutz 1339
10120+3030	BU 1091	2009.4303	320.7 220.7	0.72			
10120 ± 3030 19179 ± 4951	A 578 AD	2009.4410	157.9	1.75			
18178 ± 4351	A 578 Ap Ab	2009.4332	247.0	1.75			
18170 ± 4331 18264 ± 4326	HDS2606	2009.4332	40.3	1.02			
10204 ± 4320 18422 ± 2822	HDS2651	2009.4417	49.3	0.44			
18450 + 4990	HDS2657	2009.4303	37.1	0.44			
10400+4209	COU1619	2009.4303	318.7	0.21			
19079±4451	A 703	2003.4303	188 /	0.54			
19072+4431	A 703	2009.4303	180.2	0.54			
19089 ± 3404	COU1462	2009.4390	204 7	0.00	225 1	0.62	Mante 1994
10000 0104	0001402	2000.4000	201.1	0.10	203.0	0.02	Mante 1997
					203.0	0.20	Mante 1999
19122 + 3215	HU 941	2009.4333	146.1	1.08	200.0	0.20	
19131 + 2154	A 153	2009.4306	267.7	0.71			
10101 2101	100	2000.1000	-0	0.1.1			

TABLE 2 (CONTINUED)

ORLOV ET AL.

		IAE	SLE 2 (CONTIN	UED)		
WDS	Disc.	Date	P.A	Sep.	P.A. Orb.	Sep. Orb.	Reference
$(\alpha, \delta J2000.0)$	Name	Besselian	(deg)	(arcsec)	(deg)	(arcsec)	
10014 + 1049	UO 627	2000 4222	97.6	1.90	/	. ,	
19214 ± 1946 10951 ± 9912	HU 037	2009.4333	27.0	1.20			
19251 + 2213 10266 + 2120	UDC9769	2009.4333	2.0	0.25			
19200 + 5120	HDS2702	2009.4300	214.0	0.55			
19272 + 1020	HDS2705	2009.4333	1//.5	0.30			
19331 + 3254 10221 + 2254	HU 948AB	2009.4306	149.9	0.26			
19551 ± 5254 10250 ± 2047	ПU 946AD	2009.4355	152.2	0.27			
19350 + 2947	A 308	2009.4306	103.4	0.50	194.9	0.94	C (1 0000
19356 + 4002	A 1400	2009.4390	122.5	0.35	134.3	0.24	Seymour et al. 2002
19508 ± 2510	A 105 HDC9810	2009.4355	20.8	0.25	1.7	0.18	Dalze 1981
19400 + 4340 10520 + 4020	HDS2810	2009.4390	49.5	0.34			
19532 + 4238 10532 + 9927	COU2635	2009.4390	157.5	0.54			
19538 + 2237 10575 + 2019	COU 825AB	2009.4334	32.0	1.23			
19575+2018	BU 425AB	2009.4334	239.7	1.35			
19583 + 2208	AG 244AB	2009.4334	273.2	1.51			
20010 + 3435	L 1169	2009.4307	88.4	0.27			
20082 + 2105	J 1168	2009.4334	192.6	0.88			
20109 + 2237	HDS2877	2009.4334	201.4	0.45	140 7	0.01	7 1 : 1007
20157+4339	A 2095AB	2009.4390	155.9	0.26	140.7	0.21	Zulevic 1997
00157 + 4990	CITERCEO A CI	2000 4200	914.0	9.09	140.8	0.24	Ling 1999
20157 + 4339	STF2659AC	2009.4390	314.0	3.03			
20172+2415	HDS2893	2009.4334	108.4	0.31			
20177 + 4030	HDS2897	2009.4390	269.0	0.33			
20302+2651	WOR 9AB	2009.4334	256.4	0.51			
20333+2727	HDS2935	2009.4334	114.1	0.48			
20477+4204	BU 268	2009.4391	199.3	0.39			
20506+3024	STT 415	2009.4280	232.2	3.68			
20531+2909	STT 417AB	2009.4280	27.7	0.90			
20564+4308	COU2544	2009.4391	160.4	0.32			
20564 + 4308	COU2544	2009.4280	160.5	0.33			
20582+3510	COU1813	2009.4335	308.9	1.10	100.0	0.04	T : : : : 1055
21000 + 4004	KUI 103AB	2009.4335	356.2	0.42	182.6	0.64	Lippincott 1975
21000 + 4004	KUI 103AB	2009.4280	357.1	0.43	44.0	0.54	Baize 1989
					44.0	0.54	Baize 1991
					40.5	0.60	Heintz 1994
					32.8	0.31	Docobo & Ling 1994
					330.9	0.23	Sodernjeim 1999
					12.4	0.35	Dante 2000
91019 ± 9016	9TE9746	2000 4201	201.1	1 10	12.4	0.45	Pourbaix 2000
21018 + 3910 21080 + 1748	51F2740 HU 265	2009.4391	321.1	1.19			
21069 ± 1746	11U 305 11EI 197	2009.4335	19.9	1.05			
21111 ± 1704	ПЕІ 107 СТТ 421 А.D.	2009.4355	200.7	1.15			
21113 + 4113	511 451AD	2009.4391	120.2	2.02			
21113 + 4113 21142 + 4100	STT 451AD	2009.4281	120.0	2.01			
21143 ± 4109	S11 432	2009.4391	114.8	1.33			
21101 ± 4101	COU2229	2009.4281	212.1	0.78			
21171+4312	A 401	2009.4391	219.7	0.41			
21326+3904	A 1445	2009.4391	240.4	0.27			
21328+3904	A 1445	2009.4281	240.7	0.25			
21334+3058	COU 732Aa,Ab	2009.4336	204.8	0.49			
21300 + 3440	UD01481	2009.4281	1/1./	0.04			
21303 + 1027	пDS30/6 А 402	2009.4336	202.5	0.34			
21380 + 4153	A 402	2009.4281	45.9	0.85			
21421 + 4414	A 403	2009.4281	(1.7	0.48			

TABLE 2 (CONTINUED)

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. II 251

technique doesn't work for weak objects when single photon events are strongly dominant in the speckle image.

Table 2 contains 189 measurements pertaining to 144 binary or multiple stars. The format for presentation of these measurements is not the same as in our previous publication (Orlov et al. 2009). We include three new columns for ephemerides of binaries with known orbital elements. Column 1 contains the epoch-2000 coordinates in the format used in the Washington Double Star (WDS) Catalog (Worley & Douglass 1997). The second column gives the name of the star or discoverer designation. The third column gives the epoch of the observation in fractional Besselian year. The two following columns contain the measured position angles θ given in degrees and angular distances ρ in arcseconds. The last three columns show ephemerides calculated for the date of observation and references to publications in which orbital elements can be found. As one can see, some orbits give very discrepant position of the secondary.

4. CONCLUSION

A program of speckle observations has been started at the Observatorio Astronómico Nacional telescopes, with the goal of obtaining astrometric data of double stars. This study started with wellknown binaries from the WDS catalogue. One hundred seventy five position angle and separation measures for one hundred sixty three binaries have been presented, a subset of which has been used to determine measurement precision. We only present here the cases where the binary was clearly resolved. The results on binaries which demand more detailed analysis will be reported in subsequent publications.

The speckle interferometry program at the OAN telescopes is supported by the Direccion General de Asuntos del Personal Académico (Universidad Nacional Autónoma de México, Mexico) under projects IN104910 and IN113308 (PAPIIT).

REFERENCES

Alzner, A. 2001, IAUDS, Inf. Circ. 144		
Aristidi, E., et al. 1999, A&AS 134, 545		
Ávila, R., Cruz-González, I., & Tapia,	М.	2003
RevMexAA (SC), 19, 121		
Baize, P. 1981, A&AS, 44, 199		
1986, A&AS, 65, 551		

1989, IAUDS, Inf. Circ. 107
1991, A&AS, 87, 49
1992a, IAUDS, Inf. Circ. 116
1992b, IAUDS, Inf. Circ. 117
1993a, IAUDS, Inf. Circ. 120
1993b, A&AS 99, 205
1993c, IAUDS, Inf. Circ. 121
. 1994. A&AS 106, 267
Couteau, P. 1990, IAUDS, Inf. Circ. 112
Christou, J. C., Hege, E. K., Freeman, J. D., & Ribak,
E. 1986, J. Opt. Soc. Am., A, 3, 204
Docobo, J. A., & Ling, J. F. 1994, IAUDS, Inf. Circ. 124
1998a, IAUDS, Inf. Circ. 136
1998b, IAUDS, Inf. Circ. 135
2002, IAUDS, Inf. Circ. 147
Docobo, J. A., Balega, Y. Y., Ling, J. F., Tamazian, V.,
& Vasyuk, V. A. 2000, AJ, 119, 2422
Erceg, V. 1975, Bull. Obs. Astron. Belgr., 126, 50
Hartkopf, W. I., et al. 2000, AJ, 119, 3084
Heintz, W. D. 1965, Veroff. Sternw. Munchen, 7, 7
1975, ApJS, 29, 331
1982, A&AS, 47, 569
1994, AJ, 108, 2338
1995, ApJS, 99, 693
Ling, J. F. 1999, IAUDS, Inf. Circ. 137
Lippincott, S. L. 1975, AJ, 80, 833

- Mante, R. 1994, Obs. Trav. Soc. Astron. France, 39, 21 ______. 1997, Obs. Trav. Soc. Astron. France, 52, 44 ______. 1999, IAUDS, Inf. Circ. 138
- _____. 2000, IAUDS, Inf. Circ. 142
- Orlov, V. G., Voitsekhovich, V. V., Mendoza-Valencia, G. A., Svyryd, A., Rivera, J. L., Ortiz, F., & Guerrero, C. A. 2009, RevMexAA, 45, 155
- Orlov, V. G., Voitsekhovich, V. V., Sánchez, L. J., & Garfias, F. 2007, RevMexAA, 43, 137
- Popovic, G. M. 1970, Bull. Obs. Astron. Belgr., 28, 141 ______. 1972, Bull. Obs. Astron. Belgr., 29, 31
- _____. 1998, IAUDS, Inf. Circ. 136
- Popovic, G. M., & Pavlovic, R. 1995a, Bull. Obs. Astron. Belgr., 151, 45

_____. 1995b, IAUDS, Inf. Circ. 125

- Popovic, G. M., Pavlović, R., & Zivkov, V. 2000, A&AS, 144, 211
- Pourbaix, D. 2000, A&AS, 145, 215
- Seymour, D., Mason, B. D., Hartkopf, W. I., & Wycoff, G. L. 2002, AJ, 123, 1023
- Soderhjelm, S. 1999, A&A, 341, 121
- Tokovinin, A., Mason, B. D., & Hartkopf, W. I. 2010, AJ, 139, 743
- Voitsekhovich, V. V. Sánchez, L. J., Orlov, V. G., Garfias, F., & Benitez, R. 2005, RevMexAA, 41, 399
- Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523
- Zulevic, D. J. 1969, Bull. Obs. Astron. Belgr., 27, 55
- _____. 1986, IAUDS, Inf. Circ. 98 _____. 1995, IAUDS, Inf. Circ. 127
- _____. 1995, IAODS, III. Circ. 127 _____. 1996, Bull. Obs. Astron. Belgr., 153, 79
- ______. 1997, Bull. Obs. Astron. Belgr., 155, 109
- C. A. Guerrero, V. G. Orlov, F. Ortiz, J. L. Rivera, and V. V. Voitsekhovich: Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, 04510 México D. F., Mexico (cguerrero, orlov, fortiz, jrivera, voisteko@astroscu.unam.mx).

Capítulo 5

Speckle Interferometry at the Observatorio Astronómico Nacional. III

En este capítulo presento el tercer artículo de la serie de publicaciones de interferometría de motas de observaciones hechas con los telescopios del OAN. En esta ocasión combinamos las mediciones que hicimos en dos temporadas de observación, la primera en agosto de 2010 con el telescopio de 1.5 m, en la que observamos 105 objetos con excelentes condiciones de *seeing*, y la segunda en noviembre de 2010, por primera vez con el telescopio de 2.1 m, en la que observamos 120 pares de estrellas con condiciones muy malas de *seeing*.

Para estas observaciones utilizamos un nuevo detector, una cámara CCD amateur Watec 120N, que no tiene suficiente sensibilidad para hacer observaciones interferométricas; por ello, combinamos la cámara con un intensificador de imagen de tercera generación. Esta cámara presentó varias dificultades durante las mediciones y el proceso de reducción de los datos. Cada imagen está compuesta por dos mitades, una con líneas pares y otra con líneas impares. Dependiendo de las condiciones de *seeing*, el procesamiento de los datos es más sencillo o complicado (ver Sección 2 del artículo), además de que los píxeles de la cámara no son cuadrados, lo que hay que tomar en cuenta durante el procesamiento de los datos. Otra desventaja de la cámara es su operación manual; sin embargo, logramos hacer buenas mediciones interferométricas.

Los resultados de las observaciones están contenidos en las Tablas 1 y 2 del artículo. La magnitud límite que pudimos detectar usando esta cámara fue V = 12.2 y el rango dinámico es del orden de $\sim \Delta V = 4$. De los 225 pares que observamos, 211 tienen separaciones menores a 1". También confirmamos 38 estrellas binarias descubiertas por la misión Hipparcos (ESA , 1997), que no tenían confirmación secundaria. Para la selección de objetos de esta muestra establecimos un criterio de búsqueda: binarias con reportes de rápidos movimientos relativos, pues éstas estrellas son candidatos para determinar sus elementos orbitales.

En este artículo colaboré en la selección de algunos objetos de la muestra durante la preparación de las temporadas de observación. Participé en las observaciones de las dos temporadas y en el proceso de pre-procesamiento de los datos. Verifiqué los parámetros de las mediciones comparándolos con algunas referencias. Revisé el texto del artículo. Revista Mexicana de Astronomía y Astrofísica, 47, 211-217 (2011)

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. III

V. G. Orlov, V. V. Voitsekhovich, C. A. Guerrero, F. Ángeles, A. Farah Simon, E. Luna, and R. Vázquez Robledo

Instituto de Astronomía Universidad Nacional Autónoma de México, Mexico

Received 2011 March 10; accepted 2011 April 6

RESUMEN

Se presentan las mediciones interferométricas de motas de estrellas binarias realizadas durante agosto de 2010 con el telescopio 1.5 m y en noviembre de 2010 con el telescopio de 2.1 m del Observatorio Astronómico Nacional en SPM (Mexico). Los resultados reportados aquí son 238 mediciones de 225 pares con una magnitud límite de V = 12.2. De éstas, 211 parejas presentan separaciones de menos de 1". El error medio obtenido en la separación es de 0".02 y en el ángulo de posición de 1.5°. Algunos de los ángulos de posición se determinaron con los 180° usuales de ambigüedad.

ABSTRACT

We present speckle interferometric measurements of binary stars performed during August of 2010 with the 1.5 m telescope and during November of 2010 with the 2.1 m telescope of the Observatorio Astronómico Nacional at SPM (Mexico). We report here the results of 238 measurements of 225 pairs with a primary limiting magnitude of V = 12.2; 211 of them have separations less than 1". The mean error in separation is 0".03 and 1.5° in position angle. Some of the position angles were determined with the usual 180° ambiguity.

Key Words: binaries: visual — stars: fundamental parameters — techniques: high angular resolution — techniques: interferometric

1. INTRODUCTION

This is the third paper in the serie of publications presenting the results of speckle interferometric observations of binary stars performed with telescopes of the Observatorio Astronómico Nacional (OAN) of the Instituto de Astronomía Universidad Nacional Autónoma de México. Regular speckle interferometric measurements of binary stars have been made with telescopes of the OAN since 2008 (Orlov et al. 2009). This paper presents the results of double star observations carried out with the 1.5 m and the 2.1 m Telescopes of Sierra San Pedro Mártir National Astronomical Observatory (OAN-SPM) in August and November of 2010. For these observations we developed a new detector. This detector is a combination of the CCD camera Watec 120N with a third generation image intensifier. The third generation image intensifier also allows us to carry out near infrared speckle interferometric observations. The results reported here consist of 238 measures of 225 pairs with a primary limiting magnitude of V = 12.2; 211 of them have separations of less than 1". In these speckle observations we confirmed and measured 38 binaries first detected by Hipparcos. The paper concludes with a tabulation of the observational results. The analysis of specklegram has been performed using the technique described by Tokovinin, Mason, & Hartkopf (2010).

2. BRIEF DESCRIPTION OF THE EQUIPMENT

The observations were performed with the CCD camera Wat-120N which is optically connected with the 18 mm third-generation image intensifier. Because the Watec CCD device Wat-120N is primarily designed for amateur astronomers, its limiting sensitivity (0.00002 lx) is not enough for speckle interferometry, so we had to use the third-generation image intensifier. We describe some technical details

ORLOV ET AL.

Fig. 1. Odd and even half frames taken with good seeing conditions.

Fig. 2. Odd and even half frames taken with bad seeing conditions.

related to our CCD camera. The Wat-120N is an interline CCD camera where each single frame is a combination of two half-frames. One half-frame contains odd lines while the second one consists of the even lines. One half-frame is taken every 1/50th of a second. As one can see in Figure 1, in the case of good seeing conditions there are no difference between odd and even half frames. So, we can make the data processing for a complete frame 720×480 . If the seeing conditions are not so good (Figure 2), the half-frames are very different. In this case we have to perform the data processing for the odd and even half-frames separately. Also we have to note that the Wat-120N does not have square pixels; this has to be taken into account during data processing.

The other disadvantage of Wat-120N is a manual control. We developed a simple Ethernet controller to resolve this problem. The set of our camera controls consists of three parts: gain control, gamma control, and on/off image intensifier switcher. The gain control has 8 values from 0 to 7 (Figure 3, the value 7 corresponds to the maximum gain). The gamma control allows three modes: linear (Off), low (Lo) and high (Hi). Two modes Lo and Hi are not linear and, if one needs measure accurate magnitude differences of components, they are not used during data recording. The last control is a switch on/off for the image intensifier.

	d Camera C 🗐 🗖 🔀
	camera control
Gamma © Off C Lo C Hi	Gain ∣⊅ ➡ Intensifier

Fig. 3. Ethernet camera control.

3. OBSERVATIONS AND RESULTS

Data were recorded during the two observation campaigns carried out in August and November 2010. In August observations of 105 stars were performed at the OAN-SPM 1.5 m telescope. The atmospheric conditions (seeing and transparency) were excellent. For three nights in November 2010 we observed 120 stars with the 2.1 m telescope of OAN-SPM under poor atmospheric conditions. All the measurements were made through the R filter with a 640/130 nm bandpass window. In these speckle observations we measured 38 new binaries detected by Hipparcos (ESA 1997). For each star, a typical observing procedure involved the accumulation of one set of 998 frames (1996 half-frames). One frame consists of a two-dimensional 440×400 array of 8-bit numbers. After the calibration we determined that the pixel scales are equal to 0.039''/pxand 0.038''/px for the 2.1 m telescope and for the 1.5 m telescope, respectively. Tables 1 and 2 contain the results of the measurements of binary stars performed at the 1.5 m and 2.1 m telescopes. The format for the presentation of these measurements is the same as in our previous publication (Orlov et al. 2010). The first column contains the epoch-2000 coordinates in the format used in the Washington Double Star (WDS) Catalog (Worley & Douglass 1997). The second column gives the name of the star or the discoverer designation. The third column gives the epoch of the observation in fractional Besselian years. The two following columns contain the measured position angles given in degrees and the angular distances in arcseconds. The last three columns show ephemerides calculated for the date of observation and references to publications in which orbital elements can be found (Hartkopf & Mason 2003).

-

-

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. III. 213

WDS	Disc.	Date	P.A.	Sep.	P.A. Orb.	Sep. Orb.	Reference
$(\alpha, \delta J2000.0)$	Name	Besselian	(deg)	(arcsec)	(deg)	(arcsec)	
00008 + 1659	BAG 18	2010.6349	0.7	0.63			
00024 + 1047	A 1249	2010.6349	72.9	0.21	74.5	0.16	Zirm (2003)
00039 + 2759	A 429	2010.6349	331.4	0.53			
00039+2759 AC	A 429	2010.6349	289.4	5.26			
00061 + 0943	HDS 7	2010.6350	178.4	0.19			
00073 + 2058	HDS 12	2010.6350	191.3	1.35			
00074 + 2029	KU 3	2010.6350	76.2	0.92			
00090 + 2339	HU 402	2010.6350	68.7	0.56			
00095 + 1907	COU 247	2010.6350	249.9	0.30	258.0	0.37	Zirm (2003)
00260 + 1905	HDS 59	2010.6350	264.7	0.79			
00262 + 2827	COU 446	2010.6350	312.9	0.85			
00279 + 2334	BU 779	2010.6350	246.4	0.62			
00287 + 2134	HU 601	2010.6350	307.4	0.63			
00295 + 1501	HEI 200	2010.6350	62.9	0.76			
00307 + 1339	HDS 66	2010.6350	267.3	0.98			
00324 + 2147	HDS 72	2010.6351	39.4	0.22			
00445 + 1956	TDS1595	2010.6351	273.3	0.84			
00470 + 2315	HU 413	2010.6351	313.7	0.35	317.2	0.38	Olevic (2002)
00487 + 1841	BU 495	2010.6351	253.9	0.28	250.4	0.31	Scardia et al. (2000)
00511 + 2853	COU 447	2010.6351	39.4	0.84			
00536 + 1911	COU 252	2010.6351	96.9	0.31			
00557 + 1706	HEI 94	2010.6351	255.2	1.04			
01007 + 1659	HEI 96	2010.6351	68.2	0.38			
01024 + 0504	HDS 135	2010.6351	90.7	0.65	91.1	0.66	Balega et al. (2006)
01028 + 0214	A 2308	2010.6351	292.2	0.36	293.0	0.27	Baize (1984)
01041 + 2635	COU 351	2010.6351	245.9	0.77	202 5		T (1000)
01055 + 2107	AG 14	2010.6351	315.2	0.76	263.5	0.55	Heintz (1998)
01093+2428	COU 78	2010.6351	358.2	0.76			
01166+1831	HDS 169	2010.6351	240.5	0.61			
17452+2107	COU 630	2010.6352	115.2	0.22			
17453+1750	TDT 488	2010.6352	9.7	0.74			
17470 + 2915 17470 + 1500	1D5 881	2010.6352	243.2	1.01			
17472+1302	ПU 1200	2010.0552	105.2	0.40			
17502+2704 17506+1517	IDI 520	2010.0552	147.2	0.85			
17500 ± 1517 17519 ± 1799	TDT 526	2010.0352	69.2	1.04			
17513 ± 1723 17571 ± 1547	1D1 550 MCT 10	2010.0352	981.9	1.04			
18021 + 2702	TDT 652	2010.0352	201.2	0.74			
18031 ± 2702 18032 ± 2603	HO 565	2010.0352	20.4	0.74			
18032 ± 2003 18086 ± 1700	HDS2555	2010.0352	$\frac{51.4}{111.7}$	0.15			
18086 1838	HU 314	2010.0352	70.2	0.48			
18088±1023	TDT 707	2010.0352	68.2	0.27			
18303+1907	COU 508	2010.0352	254.4	0.01			
18312 ± 2516	A 248	2010.0352	34.2	0.48			
18382 ± 1426	HU 675	2010.0352	61.2	0.25			
18389 ± 2324	TDT 972	2010.6352	48.7	0.85			
18396 ± 2356	TDT 980	2010 6352	101.9	0.25			
18406 + 2636	COU 641	2010.6352	54.2	0.57			
18421 + 2753	TDT1009	2010.6352	268.4	0.58			
18443 + 2720	TDS 941	2010.6352	92.4	0.85			
19073 + 2432	A 262	2010.6352	266.9	0.17			
19224+2517 Aa, Ab	TDT1405	2010.6353	159.9	0.61			
19266+2619	HDS2763	2010.6353	209.2	0.76			
19276 + 1806	TDT1471	2010.6353	105.2	0.59			
19282 + 1507	TDT1476	2010.6353	330.4	0.73			
19284 + 2734	TDT1480	2010.6353	167.4	0.66			
19409 + 1523	HEI 74	2010.6353	109.9	0.86			
19421 + 1533	HU 1305	2010.6353	102.2	0.42			
19464 + 2438	TDT1727	2010.6353	222.7	0.61			
19477 + 1913	TDT1759	2010.6344	354.2	0.65			

TABLE 1

SPECKLE MEASUREMENTS ON THE 1.5 M TELESCOPE

ORLOV ET AL.

			11101		(III(CLD)		
WDS $(\alpha, \delta J2000.0)$	Disc. Name	Date Besselian	P.A. (deg)	Sep. (arcsec)	P.A. Orb. (deg)	Sep. Orb. (arcsec)	Reference
90916 + 9946	OTTEO 670	2010 6244	945 7	0.60	(0)	()	
20210 ± 2040	S1F2072	2010.0344	545.7 64.4	0.09			
20221+2031	TDT2218	2010.0344	04.4	0.20			
20227 ± 2930	TDT2216	2010.0344	292.4	0.41			
21007 ± 2321 21068 ± 2206	1D12700 HU 264	2010.0344	215.7	0.84			
21003 ± 2000 21083 ± 2013	COU1331	2010.0345	36.2	0.21			
21005 + 2010 21085 ± 2000	TDT2781	2010.0345	317.0	0.30			
21000 + 2002 21091 + 1906	COIL 329	2010.0345	99.9	0.10			
21091 + 1900 21091 + 2922	COU1332	2010.0010	21.2	0.23			
21091 + 2022 21096 + 2632	COU 529	2010.6345	218.7	0.36			
21106 + 1650	HU 367	2010 6345	339.2	0.30			
21100 + 1000 21107 + 1334	HEI 186	2010.6345	262.2	0.17			
21109 + 2925	BAG 29	2010.6345	279.7	0.24			
21115 + 2144	COU 227	2010.6345	112.9	0.51	213.0	0.13	Couteau (1995)
21125 + 2821	HO 152	2010.6345	135.4	0.22	132.8	0.27	Scardia et al. (2002)
21461 + 2448	TDT3149	2010.6345	218.4	0.65			× ,
21466 + 1929	COU 431	2010.6345	183.2	0.46			
21468 + 2718	HO 608	2010.6346	127.4	0.57			
21481 + 2100	HU 378	2010.6346	297.4	0.18			
21488 + 2439	TDT3169	2010.6346	350.2	0.82			
21500 + 2157	TDT3184	2010.6346	170.7	2.56			
21521 + 2748	HO 171	2010.6346	341.7	0.73			
22196 + 2107	HU 383	2010.6346	29.9	0.36			
22202 + 2931	BU 1216	2010.6346	278.2	0.91			
22217 + 1125	TDT3484	2010.6346	256.7	0.26			
22392 + 2014	HU 393	2010.6347	226.4	0.87			
22396 + 2822	A 413	2010.6347	14.9	1.09			
22457 + 2924	HO 481	2010.6347	287.2	0.44			
22474 + 1749	WSI 91	2010.6347	113.7	0.26			
22479+1259	HU 985	2010.6347	136.4	0.70	139.6	0.67	Seymour et al. (2002)
23024 + 1837	HU 398	2010.6347	287.9	0.47	293.3	0.45	Baize (1981)
23038 + 2851	TDT3868	2010.6347	10.2	0.17			
23039 + 2512	COU 142	2010.6347	190.4	0.50			
23301+2027	1D14118	2010.6347	1.9	0.58			
23300 ± 2340 22270 ± 2510	COU 498	2010.0348	298.2	0.67			
200/9+2010	A 1941	2010.0348	10.7	0.69			
23360 ± 1233 23401 ± 1258	A 1241 HU 1325	2010.0348	30.2	0.02	31.6	0.63	Olovia & Jovanovia (2001)
23401 ± 1258	HU 1325	2010.0348	30.2	0.85	26.0	0.03	Scardia (2003)
23401 ± 1250 $23/31 \pm 1150$	Δ 1949	2010 6348	337 7	0.00	20.0	0.04	Ling (2003)
23431 + 1150 $23/35 \pm 1652$	HEL 196	2010.0348	167.4	0.83	551.4	0.50	Ling (2004)
23465 ± 1705	EGB 8	2010.6348	86.4	1.07			
23470 ± 1726	TDT4190	2010 6348	33.9	0.55			
23475 + 1729	TDT4195	2010.6348	315.2	0.70			
23486 + 1622	HEI 91	2010.6348	152.7	0.68			
23491 + 1915	COU 343	2010.6349	102.7	0.17			
23504 + 2620	COU 545	2010.6349	315.7	0.73			

TABLE 1 (CONTINUED)

4. CONCLUSION

We have presented the results of binary star observations focused on binaries from the WDS catalogue. In particular, we have been interested in new binaries discovered by Hipparcos. We confirmed 38 new binaries detected by Hipparcos. The main aim of this study was in the selection of binaries with a fast relative motion allowing to obtain candidates for determinations of new orbits. From our observation results we can also conclude that our new detector based on Wat-120N CCD is suitable for speckle observations with the OAN-based telescopes.

The speckle interferometry program at the OAN telescopes is supported by the Dirección General de Asuntos del Personal Académico (Universidad Nacional Autónoma de México, Mexico) under projects IN104910 and IN113308 (PAPIIT).

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. III. 215

							5.4
WDS	Disc.	Date	P.A.	Sep.	P.A. Orb.	Sep. Orb.	Reference
(<i>a</i> , <i>o</i> J 2000.0)	Name	Dessenan	(deg)	(arcsec)	(deg)	(arcsec)	
00004 + 2749	TDS1238	2010.8836	87.9	0.85			
00008 + 1659	BAG 18	2010.8836	0.9	0.59			
00055 + 3406	HU 1201	2010.8919	304.2	0.21	307.19	0.192	Zirm (2003)
00085 + 3456	HDS 17	2010.8919	78.9	0.12	79.71	0.126	Cvetkovic (2010)
00260 + 1905	HDS 59	2010.8836	263.7	0.84			
00271 ± 1852	TDS 19	2010.8836	137.4	0.90			
00295 + 1320	HEI 200	2010.8830	00.7	0.77			
00307 ± 1339	TDS1505	2010.8830	200.9	0.95			
00312 ± 0237 00324 ± 2147	HDS 72	2010.8836	38.0	0.70			
00324 ± 2147 00344 ± 2411	COU 350	2010.8830	140.9	0.21			
00353 ± 2456	TDS1533	2010.8837	28.7	0.77			
00364 + 1213	A 807	2010.8837	233.9	0.86			
00374 + 0900	A 808	2010.8837	181.4	0.23			
00404 + 2504	COU 75	2010.8837	52.2	0.48			
00429 + 2047	A 2205	2010.8837	6.9	0.34	4.37	0.306	Baize (1989)
00487 + 1841	BU 495	2010.8837	247.7	0.28	249.789	0.314	Scardia et al. (2000)
01014 + 1155	BU 867	2010.8837	354.2	0.63	354.475	0.626	Hartkopf et al. (2008)
01046 + 2558	COU 253	2010.8837	95.9	0.95			
01055 + 2107	AG 14	2010.8837	314.7	0.76	263.073	0.549	Heintz (1998)
01072 + 3839	A 1516	2010.8920	4.7	0.22	355.60	0.145	Hartkopf et al. (2000)
01080 + 1204	A 2101	2010.8837	258.9	0.64			
01093 + 2428	COU 78	2010.8837	357.9	0.89			
01106 + 4917	COU2156	2010.8920	161.9	0.45	840.04	0.015	
01112 + 4113	A 655	2010.8920	353.9	0.33	349.24	0.317	Cvetkovic & Novakovic (2006)
01148 ± 6056	BU 1100	2010.8920	353.4	0.33	331.21 152.79	0.268	Muller (1955) Stavilarya (1077)
01148 ± 0050 01178 ± 4045	HU 520	2010 8020	167.4	0.33	155.72	0.199	Starikova (1977)
01173 ± 4537 01251 ± 4537	A 939	2010.8920	194.9	0.33	226.87	0.175	Starikova (1983)
01283 ± 4247	AC 14	2010.8838	91.4	0.78	220.01	0.110	544116574 (1505)
01283 + 4247	AC 14	2010.8921	91.4	0.75			
01449 + 1951	A 2322	2010.8921	208.2	1.26			
01502 + 2702	BU 1313	2010.8921	153.7	0.53			
01510 + 2551	COU 452	2010.8921	179.2	0.23			
01513 + 6021	A 951	2010.8921	225.9	0.43			
01535 + 4437	STF3113	2010.8838	278.2	0.66			
01550 + 5817	A 954	2010.8921	198.7	0.63			
01551 + 5958	A 955	2010.8838	106.4	1.00			
01573 + 4812	A 818	2010.8838	204.7	0.28			
01584 + 5154	COU2559	2010.8838	65.4	0.40			
01586 + 3334	HDS 267	2010.8838	161.7	0.26			
01580 + 3334	HDS 267	2010.8922	165.7	0.23			
01088 + 3820	COULTIO	2010.8838	237.2	0.41			
02010 ± 4821	COU1510	2010.8838	133.4	0.41			
02019 ± 4031 02063 ± 4036	COU2009 COU2561	2010.8839	123.4	0.50			
02003 + 4550 02085 + 5852	HDS 284	2010.8839	77 7	0.22			
02085 ± 5852	HDS 284	2010.8833	76.7	0.22			
02279 ± 4523	COU2011	2010 8922	59.7	0.34			
02314 + 4234	A 660	2010.8922	311.4	0.52			
02323 + 3542	A 1927	2010.8922	192.2	0.81			
02382 + 4604	A 1278	2010.8922	311.7	0.22	286.29	0.231	Hartkopf & Mason (2001)
02417 + 5529	A 1280	2010.8923	12.7	0.33			-
02454 $+$ 5634 Aa, Ab	MLR 599	2010.8923	359.7	0.23			
03032 + 4121	COU1381	2010.8839	71.2	0.24			
03041 + 5040	COU2567	2010.8839	62.2	0.41			
03058 + 4818	COU2016	2010.8839	58.7	0.15			
03061+5144	COU2454	2010.8839	24.9	0.41			
03068 + 5813	TDS2446	2010.8839	351.4	0.77			

TABLE 2 $\,$

SPECKLE MEASUREMENTS ON THE 2.1 M TELESCOPE

ORLOV ET AL.

		1	ADLE	2 (CON 1	INUED)		
WDS	Disc.	Date	P.A.	Sep.	P.A. Orb.	Sep. Orb.	Reference
(α, δJ2000.0)	Name	Besselian	(deg)	(arcsec)	(deg)	(arcsec)	
03076 ± 5230	MLR 658	2010.8839	80.2	0.40			
03081 + 4327	COU1679	2010.8839	1.9	0.50			
03084 ± 4736	COU2017	2010.8839	9.4	0.28			
03129+3120 02128+2722 Ap. Ab.	COU2568 COU1075	2010.8839	309.4 40.4	0.40			
03138+3735 Aa, AD	UU 542	2010.8839	40.4	0.89			
03141 ± 3023 03150 ± 3543	HO 502	2010.8840	15.9	0.29			
03150 ± 3043 03250 ± 4013	HU 1058	2010.8840	10.2 112.4	0.82			
03264 ± 3520	HDS 430	2010.8923	278.2	0.23			
03279 ± 4551	COU1687	2010.8840	290.4	0.77			
03279 + 4614	COU1686	2010.8840	262.7	0.53			
03354 + 3529	POP 83	2010.8923	265.9	0.51			
03484 + 5202	HU 546	2010.8840	26.2	0.30	28.527	0.358	Hartkopf & Mason (2009)
03499 + 4314	COU1691	2010.8840	318.4	0.38			
03503 + 4403	COU1692	2010.8840	37.9	0.53			
03522 + 5357	MLR 665	2010.8840	335.4	0.37			
03546 + 4554	TDS 121	2010.8840	113.4	0.97			
03586 + 4605	COU1696	2010.8840	139.2	0.86			
03594 + 4321	A 1708	2010.8840	338.2	0.82			
04016 + 5044	COU2458	2010.8841	141.2	0.65			
04017 + 5611	HDS 507	2010.8841	133.4	0.45			
04035 + 4211	A 1709	2010.8923	222.7	1.01			
04050 + 4936	COU2267	2010.8841	106.9	0.42			
04081 ± 3407 04081 ± 4525	COU1082	2010.8923	07.9 220.9	0.33			
04081 ± 4555 04150 ± 3142	STT 77	2010.8923	204 2	0.53	205 60	0.550	Starikova (1985)
04133+3142 04284 ± 4014	HDS 575	2010.8924	294.2 315.7	0.35	255.00	0.000	Stalikova (1965)
04302 ± 5343	A 1300	2010.8524	148.2	0.45			
04306+5014	HU 550	2010.8841	298.4	0.53			
04308 + 4550	A 1007	2010.8841	161.9	0.27			
04310 + 4159	HDS 583	2010.8924	116.7	0.21			
04378 + 5249	MLR 696	2010.8841	66.2	1.05			
04381 + 5707	HDS 598	2010.8924	333.9	0.23			
04430 + 5712	A 1014	2010.8924	17.4	0.34	18.19	0.346	Brendley & Hartkopf (2007)
04477 + 4014	A 1545	2010.8924	95.7	0.45			
04542+4935 B	STF 603	2010.8925	105.9	1.13			
04542+4935 A	STF 603	2010.8925	99.4	2.18			
04599 + 4319	A 1551	2010.8841	273.4	0.23			
05038 + 3813	TDS3054	2010.8841	4.2	0.26			
05044 ± 2139	A 1024	2010.8869	303.9	0.17			
05044 ± 2958 05047 ± 4458	A 1024 A 1022	2010.8809	342.4	0.75			
05057 ± 4516	COU2463	2010.8842	40.9	0.52			
05061 + 4222	COU2464	2010.8842	181.4	0.59			
05078 + 3723	COU1529	2010.8842	358.2	0.59			
05085 + 3755	COU1531	2010.8925	45.7	0.22			
05106 + 4924	HDS 684	2010.8925	57.2	0.46			
05119 + 4459	TDS3105	2010.8842	214.2	0.65			
05133 + 4940	COU2578	2010.8842	109.4	0.47			
05140 + 3655	POP 140	2010.8925	166.4	0.32			
05195 + 3809	COU1870	2010.8925	19.2	0.43			
05208+3329	COU1231	2010.8925	165.9	0.64			
05240+3238	COU1090	2010.8925	233.9	0.22			
05207+3857 05210+2625	HDS 714	2010.8925	262.4	0.45			
0.0310 ± 2030 0.5310 ± 2141	COU 269	2010.8809	164.9	0.32			
05319 ± 2141 05326 ± 4422	HDS 720	2010.8809	104.2 163.7	0.72			
05350+1838	A 2354	2010.8920	310.0	0.43			
05357 ± 2054	COU 270	2010.8870	42.4	0.71			
06000 + 4643	A 1727	2010.8842	247.4	0.62			
06016 ± 4111	COU2049	2010 88/13	233.0	1.98			

TABLE 2 (CONTINUED)

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. III. 217

WDS Disc. Date P.A Sep. P.A. Orb. Sep. Orb. Reference $(\alpha, \delta J2000.0)$ Name Besselian (deg) (arcsec (deg) (arcsec) 06025 ± 3620 HU 1236 2010.8843 37.20.4106049 + 3211HU 827 2010.884374.40.2306060 + 2331 $\rm HU~450$ 2010.8870244.20.4406065 + 1832A 2444 2010.8870 181.40.1206073 + 1848COU 471 2010.8870 159.20.3406087 + 1724STF 849 2010.8870 241.40.9106097+1630 A 2514 2010.8870102.70.2406097 + 2914A 54 $\,$ 2010.8870 332.4 0.5506117 + 2846A 55 2010.8870 259.7 0.43 06142 + 1217TDS36522010.88700.4317.906150 + 1649A 2044 2010.8871 0.3434.906152 + 2917COU1103 2010.8871 0.23 51.906185 + 2241HDS 863 2010.8871 50.70.22

TABLE 2 (CONTINUED)

REFERENCES

- Baize, P. 1981, A&AS, 44, 199

 - _____. 1989, A&AS, 78, 125
- Balega, I. I., Balega, Y. Y., Hofmann, K.-H., Malogolovets, E. V., Schertl, D., Shkhagosheva, Z. U., & Weigelt, G. 2006, A&A, 448, 703
- Brendley, M., & Hartkopf, W. I. 2007, IAUDS Inf. Circ. 163
- Couteau, P. 1995, VizieR Online Data Catalog 1209, http://cdsarc.u-strasbg.fr/viz-bin/Cat? I/209A
- Cvetković, Z., & Novaković, B. 2006, Serb. Astron. J., 173, 73
- Cvetkovic, Z. 2010, IAUDS Inf. Circ. 172
- ESA 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200 (Noordwijik: ESA)
- Hartkopf, W. I., & Mason, B. D. 2001, IAUDS Inf. Circ. 145
- - . 2009, AJ, 138, 813
- Hartkopf, W. I., Mason, B. D., & Rafferty, T. 2008, AJ, 135, 1334
- Hartkopf, W. I., et al. 2000, AJ, 119, 3084

- Heintz, W. D. 1998, ApJS, 117, 587
- Ling, J. F. 2004, IAUDS Inf. Circ. 154
- Muller, P. 1955, J. Obs., 38, 58
- Olevic, D. 2002, IAUDS Inf. Circ. 147
- Olevic, D., & Jovanovic, P. 2001, Serb. Astron. J., 163, 5
- Orlov, V. G., Voitsekhovich, V. V., Mendoza-Valencia, G. A., Svyryd, A., Rivera, J. L., Ortiz, F., & Guerrero, C. A. 2009, RevMexAA, 45, 155
- Orlov, V. G., Voitsekhovich, V. V., Rivera, J. L., Guerrero, C. A., & Ortiz, F. 2010, RevMexAA, 46, 245 Scardia, M. 2003, IAUDS Inf. Circ. 149
- Scardia, M. 2005, IAUDS III. CIrc. 149
- Scardia, M., Prieur, J.-L., Aristidi, E., & Koechlin, L. 2000, Astron. Nachr., 321, 255
- Scardia, M., Prieur, J.-L., Koechlin, L., & Aristidi, E. 2002, IAUDS Inf. Circ. 146
- Seymour, D., Mason, B. D., Hartkopf, W. I., & Wycoff, G. L. 2002, AJ, 123, 1023
- Starikova, G. A. 1977, Astron. Tsirk. 961, 7

- ______. 1985, Trudy Gos. Astron. Inst. Sternberga, 57, 243
- Tokovinin, A., Mason, B. D., & Hartkopf W. I. 2010, AJ, 139, 743
- Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523 Zirm, H. 2003, IAUDS Inf. Circ. 151

F. Ángeles, A. Farah Simon, C. A. Guerrero, E. Luna, V. G. Orlov, R. Vázquez Robledo, and V. V. Voitsekhovich: Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, 04510 México D.F., México (fernando.angeles@gmail.com, farah, cguerrero@astro.unam.mx, eala@astrosen.unam.mx, orlov, rvazquez@astro.unam.mx, vvv.spm@gmail.com).

Capítulo 6

Speckle Interferometry at the Observatorio Astronómico Nacional. IV

Este Capítulo contiene el cuarto artículo de la serie de observaciones interferométricas de estrellas binarias que comenzamos en 2008 (Orlov et al. , 2009). En este artículo publicamos 200 mediciones de 196 estrellas binarias con separaciones angulares que van desde 0".115 a 5".26, con un error medio de 0".03 en la separación y 1°.5 en el ángulo de posición.

Llevamos a cabo las observaciones durante septiembre y octubre de 2009, con el telescopio de 2.1 m del OAN, San Pedro Mártir, con excelentes condiciones de seeing (entre 0".6 y 0".9). Durante estas observaciones usamos la cámara DRAGON (Voitsekhovich et al. , 2005) que hemos usado en otras observaciones (Orlov et al. , 2010). Los resultaos de nuestras observaciones están contenidos en la Tabla 2.

Mi colaboración en este artículo consistió en proponer algunos objetos para observar y buscar información bibliográfica para algunas las referencias en relación con elementos orbitales. Participé en todas las noches de observación y en el preprocesamiento de los datos. En esta ocasión participé en el procedimiento de calibración de los parámetros astrométricos y en la revisión de las tablas de resultados. También participé en la redacción y revisión del artículo. Revista Mexicana de Astronomía y Astrofísica, 48, 177-181 (2012)

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. IV

V. G. Orlov, V. V. Voitsekhovich, and C. A. Guerrero

Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico

Received 2012 February 10; accepted 2012 March 12

RESUMEN

Presentamos resultados de mediciones hechas mediante interferometría de motas de algunas estrellas estrellas binarias, llevadas a cabo durante septiembre y octubre de 2009 con el telescopio de 2.1-m del Observatorio Astronómico Nacional en SPM (México). Presentamos 200 mediciones de 196 pares con magnitud límite V = 12.3 para la estrella primaria. Las separaciones angulares medidas varían desde 0".115 a 5".26. Noventa y siete pares tienen separaciones menores que 1". El error medio en las separaciones es 0".03 y 1°.5 en el ángulo de posición. La ambigüedad habitual de 180° se corrigió para la mayoría de los ángulos de posición, comparando con mediciones realizadas por otros observadores.

ABSTRACT

We present speckle interferometric measurements of binary stars performed during September and October of 2009 with the 2.1 m telescope of the Observatorio Astronómico Nacional at SPM (Mexico). We report here the results of 200 measurements of 196 pairs with a primary limiting magnitude of V = 12.3. The measured angular separations range from 0".115 to 5".26. Ninety seven pairs have separations less than 1". The mean error in separation is 0".03 and 1°.5 in position angle. The usual 180° ambiguity was corrected for a majority of position angles by comparison with observations performed by other observers.

Key Words: binaries: visual — stars: fundamental parameters — techniques: high angular resolution — techniques: interferometric

1. INTRODUCTION

This is the fourth paper in the series of publications presenting the results of speckle interferometric observations of binary stars performed with telescopes of the Observatorio Astronómico Nacional (OAN) of the Instituto de Astronomía-Universidad Nacional Autónoma de México. Regular speckle interferometric measurements of binary stars have been made with telescopes of the OAN since 2008 (Orlov et al. 2009). This paper presents the results of double star observations carried out with the 2.1m Telescope of Sierra San Pedro Mártir National Astronomical Observatory (OAN-SPM) in September and October of 2009.

2. OBSERVATIONS AND RESULTS

The observations were performed at the 2.1-m telescope of the Observatorio Astronómico Nacional

TABLE 1

DISTRIBUTION OF PAIRS BY THEIR
SEPARATIONS

> 1''.5	$1''_{}5 - 1''_{}$	$1\rlap.''-0\rlap.''5$	0''.5 - 0''.25	$<0.^{\prime\prime}25$
73	27	52	31	13

which is located at the San Pedro Mártir (Mexico). For these observations we used the DRAGON equipment (Voitsekhovich et al. 2005). This equipment was used for various observations at OAN telescopes during 2009 (Orlov et al. 2010). During the observations we had good seeing conditions. We estimated it was between 0.6 to 0.9 arcsec. Aberrations introduced by the telescope have similar values. As a result, long exposure images have a resolution of about 1.5 arc seconds. All the measurements were

ORLOV, VOITSEKHOVICH, & GUERRERO

TABLE 2 $\,$

SPECKLE MEASUREMENTS ON THE 2.1 M TELESCOPE

WDS	Disc.	Date	P.A.	Sep.	Δ P.A. $(O - C)$	Δ Sep. $(O - C)$	Ref.
$(\alpha, \delta \ J2000.0)$	Name	Besselian	(deg)	(arcsec)	(deg)	(arcsec)	
00015 + 3044	HO208	2009.6850	189.5	1.09			
00039+2759AB	A429	2009.7506	330.8	0.55			
00039 + 2759 AB, C	HJ1929	2009.7506	289.1	5.26			
00043 + 3705	TDS1281	2009.7587	335.1	1.54			
00077 + 3711	A1501	2009.7477	238.3	0.93			
00086 + 3228	COU647	2009.7477	34.6	0.26			
00098+3731AB	COU847	2009.7587	1.1	1.69			
00126 + 3325 00174 + 3303	COU650	2009.7506	49.1	1.24			
00174 ± 3303 00230 ± 2735	E52274 TDS16	2009.7300	173.3	1.85			
00256 ± 3629	HO210	2009.7506	76.8	0.95			
00287+3718AB	A1504	2009.7477	42.8	0.58			
00318 + 2346	COU74	2009.7506	5.6	2.06			
00339 + 2419	COU349	2009.7588	222.1	2.67			
00382 + 3357	COU655	2009.7506	212.1	0.49			
00423 + 2919	COU658	2009.7478	128.3	0.64			
00444 + 3337	STF55	2009.7506	330.6	2.21			
00464 + 3243	COU748	2009.7588	180.4	1.08			
00481+2533	HO306	2009.7478	159.1	1.46			
00554 2040	A437 BU500	2009.7478	29.1	2.96			
01012 ± 3704	BBT2585	2009.7507	246.1	2.47			
01053+3117	COU549	2009.7588	255.1	1.32			
01058 + 2655	BRT121	2009.7507	193.1	2.71			
01062 + 2509	COU77	2009.7478	230.8	2.75			
01127 + 3536	DOO27	2009.7589	203.3	1.46			
01128 + 3700	COU1058	2009.7478	248.6	0.79			
01157+3712AB	A1519	2009.7507	72.8	1.64			
01187 + 3345	COU663	2009.7478	354.8	0.34			
01247+3510	J2387	2009.7507	307.8	3.25			
01266+3126	ES318 A 1008	2009.7507	245.1	3.19			
01208 ± 3553 01328 ± 3553	A1908 A1911	2009.7479	177.3	0.33			
01328 ± 3533 01349 ± 2532	TDS1920	2009.7307	246.6	0.33			
01360 + 2646	BU507	2009.7535	145.8	2.15			
01388 + 3453	COU1060	2009.7589	192.3	0.56			
01394 + 3729	COU1216	2009.7589	32.3	1.46			
01398 + 3415	COU667	2009.7589	210.3	1.92			
01399 + 3525	ES2082	2009.7507	298.6	2.45			
01414 + 3408	A1916	2009.7479	227.3	0.93			
01421 + 3559 01400 + 3740	TDS59	2009.7588	161.3	0.96			
01428 ± 3749 01448 ± 2251	COU1062	2009.7588	88.0 171.2	0.28			
01440+2331 01467+3310AB	STE158	2009.7507	269.6	2.15	_25	0.09	Hartkopf & Mason 2011
01510 + 2551	COU452	2009.7535	180.1	0.27	2.0	0.05	martköpi æ mason 2011
01579+3310	A1920	2009.7535	234.6	1.74			
01590 + 3640	TDS2079	2009.7508	197.6	2.15			
02062 + 2507	STF212	2009.7508	161.8	1.93			
02080 + 2618	TDS2132	2009.7535	26.6	1.58			
02099 + 3449	HU1034	2009.7535	110.1	0.33			
02108+3005	COU456	2009.7508	70.3	0.42			
02145+3650	COU1367	2009.7535	19.1	0.80			
02104+3028BC 02172±3720AP	L52/U 4206	2009.7589	336.4 152.6	3.05			
02112+0129AD 02212+2751	COI1457	2009.7308	161.0	0.40			
02239+3330AB	BU876	2009.7508	241.1	1.23			
02291+2331Ba,Bb	VBS6	2009.7508	49.1	0.41			
02372+3024	COU671	2009.7508	111.6	0.63			
02393 + 2552	A2023	2009.7536	228.3	0.51			
02434 + 3148	A825	2009.7508	129.1	1.86			
02489 + 3714	COU1073	2009.7536	318.8	1.61			
02503+3230	COU675	2009.7589	56.8	0.54			
02506+2629	COU553	2009.7536	127.3	0.56			
02535+3134	A973	2009.7536	254.3	0.41			
02585+2328	COU679	2009.7536	223.1	1.54			
03005+3339Aa,Ab	KUII	2009.7509	21.3	0.18			
03000+3339AB 03099+3339	COU682	2009.7509	138.1	2.97			
03117 + 3403	COU683	2009.7536	253.6	3,35			
03136 + 3649	ES2331	2009.7509	129.8	1.77			
03204+2341AB	STF375	2009.7509	316.3	2.67			

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. IV 179

WDS	D:	Data	D A		A. D. A. (O) 18 (0 ()	D_f
$(\alpha, \delta J2000.0)$	Name	Besselian	(deg)	(arcsec)	Δ F.A. (O = C (deg)	Δ Sep. $(O - C)$ (arcsec)	nei.
03241+3705	COU1223	2009.7536	201.8	1.52			
03242+2347AB	WOR4	2009.7509	341.3	2.48			
03308 + 3319	COU 871	2009.7537	199.3	1.30			
03333 + 3522 AB	COU1079	2009.7537	39.3	0.33			
03337 + 2351	COU465	2009.7537	30.3	0.32			
03343 + 2625	OL152	2009.7590	50.3	2.31			
03389 + 2703	TDS2610	2009.7510	348.3	1.51			
03414+2602	TDS2629	2009.7590	270.1	1.47			~
03513+2621AB	A1830	2009.7510	194.1	0.39	16.5	0.25	Olević & Cvetković 2005
04030 + 2425 04117 + 2122	TDS2728	2009.7591	78.6	1.04			
04117+3133	COUSSO	2009.7510	41.0	1.60			
04244 ± 3520 04275 ± 3538	COU1228	2009.7310	185.1	1.05			
04296 ± 2321	COU566	2009.7402	162.3	0.71			
04402 + 2749	COU705	2009.7511	108.8	1.63			
04491+3301	COU1086	2009.7511	78.8	1.72			
04550 + 3653	HU1089	2009.7511	352.1	0.54			
05000 + 3244	COU887	2009.7511	83.3	3.35			
05070 + 3004	A1028	2009.7511	217.3	0.42			
05131 + 2424	COU468	2009.7511	37.3	0.61			
05193 + 3453	SEI180	2009.7511	21.1	1.52			
19208+3711	COU1801	2009.7500	340.3	0.34			
19281+3521AB	HU1194	2009.7500	37.3	0.95			
19326+3649	COU2204	2009.7582	231.8	0.33			
19399+2833	TDT1614	2009.7582	23.1	2.99			
19440 ± 2021 19460 ± 3717	COU2284	2009.7501	331.1	0.56			
19541 ± 2657	TDT1834	2009.7583	344.8	0.64			
20030 + 3701	COU2211	2009.7528	255.6	0.94			
20043+3033	STF2626	2009.7473	128.1	1.00			
20050 + 3707	COU2212	2009.7473	196.6	0.49			
20072 + 2611	A2996	2009.6846	251.0	3.00			
20074 + 3543 AB	STT 398	2009.6846	83.5	0.98			
20083 + 2950	A1198	2009.6846	230.8	1.51			
20090 + 2401	TDS1047	2009.7528	102.8	1.70			
20151+3742	COU2416	2009.7583	117.3	0.26	-0.6	0.02	Docobo et al. 2008
20250+3034	HDS2921	2009.7583	356.1	0.81			
20280+3128	1 D S 1074	2009.7473	333.8	0.71			
20381+2955	TDT2446	2009.7502	280.1	0.45			
20334 + 2455 20424 + 3455	COU1965	2009.6846	275.5	0.32			
20432+3350	HDS2949	2009.6846	164.5	0.96			
20442 + 3404	TDT2507	2009.7502	164.8	0.94			
20503+3615	TDT2569	2009.7502	54.5	0.41			
20511 + 2630	TDT2579	2009.7584	37.6	1.97			
20530 + 3136	TDT2602	2009.7529	62.6	0.55			
20531 + 2909 AB	STT417	2009.6846	27.8	0.90			
20536 + 3514	HO146	2009.6847	46.0	0.37			
20570 + 2340 AB	A175	2009.7502	293.1	2.00			
20579 + 3002	TDT2662	2009.7584	99.6	1.46			
21004+3411AB	BU1329	2009.6847	39.8	0.31			
21026+3041 21025 2540BC	COU1182 B2	2009.6847	180.1	1.00			
21030+304900	HO152	2009.7474	20.3 137-3	2.00	5.5	_0.09	Scardia et al 2002
21120 + 2021 21152 + 2753	COU531	2009.7474	143.3	0.92	0.0	0.05	Scardia et al. 2002
21171+3546AB	BU162	2009.7502	252.3	1.23			
21230 + 2726	COU533	2009.6847	289.3	0.70			
21243+3740	WSI7	2009.7530	79.8	0.18			
21284 + 3447	COU1638	2009.6847	226.8	1.30			
21284 + 3447	COU1638	2009.7530	226.1	1.31			
21299 + 2353	J612	2009.7503	280.1	2.44			
21330 + 2408 Aa, Ab	HDS3065	2009.7530	233.6	0.31			
21368 + 3217	COU1184	2009.6847	157.8	0.22			
21372 + 3142	TDT3064	2009.7474	89.8	0.78			
21392+2451	TDT3084	2009.7585	300.1	0.80			a
21439+2751	HO166	2009.6847	318.5	0.19	-15.5	-0.02	Couteau 1958
21461+2448	TDT3149	2009.7585	213.6	0.70			
21493+3451	COU1483	2009.7474	130.3	0.71			
21001+3151AB	BU092 HO171	2009.6848	9.8	2.85			
21021+2148 21566±3052	HDS2110	2009.0848	341.8	0.70			
21566+3421AB	BU1914	2009.0848	207.3	1.46			
21000T0421AD	DU1214	2003.1410	407.3 162.1	1.40			
21581 ± 3650	TDT3263	2009 / 585	111	0.79			

TABLE 2 (CONTINUED)

ORLOV, VOITSEKHOVICH, & GUERRERO

TABLE 2 (CONTINUED)							
WDS $(\alpha, \delta J2000.0)$	Disc. Name	Date Besselian	P.A. (deg)	Sep. (arcsec)	Δ P.A. $(O - C)$ (deg)	Δ Sep. $(O - C)$ (arcsec)	Ref.
000101000	1000	2000 5500			((
22012+2650	A306	2009.7503	308.8	1.40			
22116+3727	UO11486	2009.7475	33.1	0.56			
22120+3013AB	HO179	2009.7503	280.3	0.89			
22154+3727	COU1342	2009.7503	103.3	1.90			
22103+2010	51F2889	2009.6848	197.8	2.20			
22230+3443	TD13498	2009.7585	159.3	0.70			
22231+2932	1D13499	2009.7475	23.0	0.55			
22248+2841	HDS3176	2009.6848	327.8	0.33			
22278+3227	TDT3533	2009.7586	360.1	0.37			
22287+3514	POP99	2009.6848	207.8	0.29			
22306+2411	J918	2009.7475	283.3	2.54			
22307+3729BC	ES2072	2009.7504	273.3	1.70			
22328+2625Aa,Ab	HO475	2009.6848	49.3	0.20			
22328+2625AB	HO475	2009.6848	307.3	1.10			
22344+3424	ES2202	2009.7586	278.8	2.80			
22364 + 3007	MLB624	2009.7475	298.6	1.93			
22372+2645Aa,Ab	COU737	2009.6848	35.0	0.16			
22391 + 2715	TDT3636	2009.7504	159.1	0.94			
22396 + 2822	A413	2009.6848	14.5	1.13			
22430 + 3013BC	BU1144	2009.7475	73.1	0.25	14.2	0.23	Hummel et al. 1998
22438 + 2935	HDS3225	2009.6849	1.8	0.94			
22455 + 3359	HU782	2009.7504	321.3	1.98			
22528 + 2926 CD	COU541	2009.7504	68.1	1.39			
22587 + 3422	ES2204	2009.6849	165.8	2.86			
23002 + 2409	TDT3834	2009.7504	16.3	2.45			
23015 + 3516	COU842	2009.7476	51.6	0.71			
23039 + 3510	ES2134	2009.6849	119.5	1.51			
23067+3302Aa,Ab	COU741	2009.7504	190.8	0.93			
23083 + 2642	COU438	2009.7476	65.1	0.86			
23083+3028	HO196	2009.6849	296.8	1.90			
23121+2656AB	HDS3305	2009.6849	169.8	1.31			
23199 + 2844	COU439	2009.6849	337.0	0.12	8.5	-0.02	Docobo & Ling 2003
23199 + 3444	COU742	2009.6849	27.3	0.19			0
23206+3621AB	POP68	2009.7476	320.6	1.24			
23232 + 2439	TDT4012	2009.7587	36.6	2.30			
23239 + 3456	COU1346	2009.7505	62.3	0.18			
23239 + 3456	COU1346	2009.6849	60.3	0.20			
23272 + 3026	POP21	2009.7476	30.1	0.79			
23296+2617AB	A420	2009.7505	287.6	0.57			
23326+3011	MLB628	2009 7587	324.1	1.72			
23326+3127AB	WNC6	2009 6849	154.5	1.70			
23345±2703	COU440	2009.0045	235.6	1.70			
23362+3226	A1240	2009.1410	250.0	2.13			
23368+3045	ES401	2009.0000	68.6	2.10			
23308-3043	COULOAF	2009.1381	49.6	1.40			
22282 2250	UU702	2009.1000	926.0	0.10			
23362+3230	FS402	2009.0630	230.0	0.19			
23401+3101	L13403	2009.1411	294.3	2.10			
23409+3339	BU004	2009.0630	220.8	2.07			
23430+2300	BU994 TDT4186	2009.7505	314.8	1.38			
23407+2321	1014186	2009.7505	230.3	1.84			
23485+3608	COU944	2009.7477	87.8	0.18			
23519+2648	MLB630	2009.7587	293.6	1.97			
23542+2443	COU145	2009.7477	147.6	2.45			
23572+3751	AG297	2009.7505	312.6	2.08			
23597 + 2305	TDT4311	2009.7587	148.6	1.12			

© Copyright 2012: Instituto de Astronomía, Universidad Nacional Autónoma de México

made through the R filter with a 640/130 nm bandpass window. After calibration we determine the pixel scale = 0.019 arcsec/pixel and detector orientation. During six nights of observations we made 200 measurements of 196 pairs. Half of the observed binaries have separations less than 1". Table 1 shows how these 196 pairs are distributed according to their separations.

Table 2 contains 200 measurements concerning 196 binary or multiple stars. The presentation of measurements is the same as in our previous publication (Orlov, Voitsekhovich, & Guerrero 2011). The first column contains the epoch-2000 coordinates in the format used in the Washington Double Star (WDS) Catalog (Worley & Douglass 1997). The second column gives the name of the star or the discoverer designation. The third column gives the epoch of the observation in fractional Besselian years. The two following columns contain the measured position angles given in degrees and the angular distances in arcseconds. The last three columns give the difference between observation and the ephemerides cal-

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. IV 181

culated for the date of observation, as well as references to publications in which orbital elements can be found (Hartkopf & Mason 2003).

3. CONCLUSION

We have presented the results of binary star observations focused on binaries from WDS catalogue. In particular, we have been interested in new binaries discovered by *Hipparcos*. We confirmed 38 new binaries detected by *Hipparcos*. The main aim of this study was the selection of binaries with a fast relative motion, allowing to obtain candidates for determination of new orbits.

The speckle interferometry program at the OAN telescopes is supported by the Dirección General de Asuntos del Personal Académico (Universidad Nacional Autónoma de México) under projects IN104910 and IN113308 (PAPIIT).

REFERENCES

Couteau, P. 1958, J. Obs., 41, 91 Docobo, J. A., & Ling, J. F. 2003, A&A, 409, 989

- Docobo, J. A., Tamazian, V. S., Andrade, M., Ling, J. F., Balega, Y. Y., Lahulla, J. F., & Maximov, A. A. 2008, AJ, 135, 1803
- Hartkopf, W. I., & Mason, B. D. 2003, Sixth Catalog of Orbits of Visual Binary Stars (Washington: USNO), http://ad.usno.navy.mil/wds/orb6.html _______. 2011, AJ, 142, 56
- Hummel, C. A., Mozurkewich, D., Armstrong, J. T., Hajian, A. R., Elias, N. M., II, & Hutter, D. J. 1998, AJ, 116, 2536
- Olevic, D., & Cvetkovic, Z. 2005, RevMexAA, 41, 17
- Orlov, V. G., Voitsekhovich, V. V., Guerrero, C. A., Ángeles, F., Farah Simon, A., Luna, E., & Vázquez Robledo, R. 2011, RevMexAA, 47, 211
- Orlov, V. G., Voitsekhovich, V. V., Mendoza-Valencia, G. A., Svyryd, A., Rivera, J. L., Ortiz, F., & Guerrero, C. A. 2009, RevMexAA, 45, 155
- Orlov, V. G., Voitsekhovich, V. V., Rivera, J. L., Guerrero, C. A., & Ortiz, F. 2010, RevMexAA, 46, 245
- Scardia, M., Prieur, J. L., Koechlin, L., & Aristidi, E. 2002, Inf. Circ. 146
- Voitsekhovich, V. V., Sánchez, L. J., Orlov, V. G., Garfias, F., & Benitez, R. 2005, RevMexAA, 41, 399
- Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523

V. G. Orlov, V. V. Voitsekhovich, and C. A. Guerrero: Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, 04510 México, D.F., Mexico (orlov, voisteko, cguerrero@astro.unam.mx).

Capítulo 7

Stellar Multiplicity of the Open Cluster ASCC 113

En este Capítulo presento el artículo central de mi tesis. Como mencioné en la Introducción, una pregunta abierta de la astrofísica contemporánea es si las propiedades de multiplicidad que resultan del proceso de formación estelar son universales o dependen del ambiente. Sin embargo, esta pregunta no se puede responder de forma trivial, por una razón fundamental: la fracción de multiplicidad que observamos en cualquier subgrupo particular de estrellas no es la fracción primigenia, ni siquiera en un cúmulo muy jóven. La evolución y el procesamiento dinámico destruye los sistemas binarios débilmente ligados (Parker et al. , 2009).

Como dije, si la mayoría de las estrellas se forman en cúmulos estelares y la mayoría de estas estrellas se forman en sistemas binarios o múltiples, ¿cómo podemos explicar las fracciones de multiplicidad que se observan en el campo? El campo es una mezcla de todas las poblaciones estelares que han sido dinámicamente procesadas, en diferente grado, en regiones de fomación estelar; el campo representa entonces la población de estrellas con la que habrá que comparar todas las observaciones, pues tiene un contenido de estrellas binarias con todos los intervalos de separación y cocientes de masa.

Usando una técnica de alta resolución espacial, nosotros propusimos iniciar un estudio para buscar estrellas en sistemas binarios y múltiples en cúmulos abiertos, por varias razones. La primera y más importante fue investigar la "secuencia de
las binarias" en los diagramas CMD. Nos propusimos tratar de identificar posibles estrellas binarias a partir de su posición por arriba de la secuencia principal y verificar a través de las observaciones, si en efecto eran estrellas múltiples. Es interesante estudiar la fracción de multiplicidad en los cúmulos abiertos pues tenemos un amplio intervalo de tipos espectrales de estrellas que se encuentran a la misma distancia, que tienen la misma edad y que sólo son diferentes en masa; sin embargo, la interpretación de los resultados debe considerar la evolución dinámica y su efecto disruptivo.

Otro objetivo de la investigación era tratar de conciliar los modelos numéricos de formación de cúmulos abiertos con nuestros resultados observacionales; es decir, comparar las frecuencias estimadas por las simulaciones con nuestros datos.

Una razón más para estimar la fracción de multiplicidad en cúmulos abiertos es la falta de artículos relacionados con el tema. Los cuatro cúmulos más estudiados en la literatura son los más cercanos al Sistema Solar ($d \leq 200$ pc), pero las comparaciones con respecto a sus frecuencias de multiplicidad muestran diferencias tan grandes, que es imposible hacer una conclusión general sobre el contenido de estrellas binarias. Por supesto hay que tener presente que comparar diferentes *surveys* es mucho más complejo de lo que aparenta.

En este artículo reportamos los resultados que obtuvimos para el cúmulo abierto ASCC 113. Este cúmulo fue recientemente identificado por Kharchenko et al. (2005), tiene coordenadas ecuatoriales $\alpha(2000) = 21^{h}12^{m}00^{s}$ y $\delta(2000) = +38^{\circ}35'59''$ y un diámetro de 56'.4; se encuentra a una distancia de 450 pc y tiene un enrojecimiento E(B - V) = 0.00 mag, módulo de distancia $V_0 - M_V = 8.27$ mag y una edad log edad (en años) = 8.14.

Buscando en la literatura, encontramos que 7 de las 34 estrellas con más alta probabilidad de pertenecer al cúmulo estaban previamente reportadas como binarias (ver Sección 2 del artículo), lo que significa que el cúmulo tiene una frecuencia de multiplicidad de 20.6% (ver Ecuación 1 del artículo). Nosotros consideramos 158 estrellas de la muestra como estrellas de campo. Estas estrellas son aquellas cuya probabilidad cinemática y probabilidad fotométrica son menores que 1% (verSección 2 del artículo), y de estas, 15 estaban reportadas como binarias y una como un sistema múltiple formado por 8 estrellas, lo que se traduce en una fracción de multiplicidad de 10.1%.

Realizamos las observaciones con el telescopio de 2.1 m del OAN San Pedro Mártir, durate dos temporadas de observación en septiembre y octubre de 2012, con un *seeing* mejor que 1" en las dos temporadas. En esta ocasión utilizamos una nueva cámara, EMCCD iXon 885 DU de Andor, que tiene una eficiencia cuántica de más del 40% en el rango de 400–800 nm, y dada su velocidad de transferencia, puede ser usada para realizar observaciones de interferometría de motas. Las observaciones y la reducción de datos fueron realizadas siguiendo la misma metodología de nuestras publicaciones previas.

En la Sección 4 del artículo presentamos los resultados de la investigación. Fuimos capaces de resolver sistemas con separaciones que van de 0".24 hasta 23".94. Detectamos 35 compañeras interferométricas para las estrellas de nuestra muetra; resolvimos 20 estrellas binarias y dos estrellas triples por primera vez. También confirmamos 10 estrellas binarias conocidas y detectamos 4 nuevas componentes en binarias previamente identificadas. Nuestros resultados están contenidos en la Tabla 2.

Cuando tratamos con muestras limitadas por magnitud, debemos tomar en cuenta el sesgo de Malmquist; además, la interferometría de motas no tiene un poder infinito de resolución. Es por ello que realizamos un análisis conservador para estimar el número de binarias que no pudimos resolver, usando la idea de que la función de distribución acumulada de separaciones para estrellas binarias debe ajustar una ley tipo Öpik (Öpik , 1924) (ver Sección 5 del artículo). Concluímos que, dada la distancia del cúmulo y el poder de resolución del telescopio de 2.1 m, combinando con los datos de la literatura, no pudimos detectar cerca del 3% de las posibles componentes secundarias de las estrellas de nuestra muestra.

Una vez obtenidas las mediciones, nos dispusimos a estimar las fracciones de multiplicidad del cúmulo y del campo. Aunque no hay duda de que los componentes más cercanos que 1" están ligados gravitacionalmente (Rastegaev, Balega & Malogolovets , 2007), no podemos decir lo mismo con seguridad para las binarias más separadas, es por ello que se necesitan monitoreos continuos como los que hacemos con la serie de artículos de binarias; sin embargo, utilizamos nuestras detecciones para estimar las fracciones de multiplicidad. En el caso del cúmulo, no encontramos ninguna estrella binaria nueva, sólo confirmamos una previamente conocida, por lo que la fracción de multiplicidad permaneció intacta en $20.6\% \pm 3\%$ y demostramos que las estrellas binarias en la superficie del cúmulo se distribuyen de forma aleatoria, no hay evidencia de ningún gradiente radial. En las estrellas de campo detectamos 28 compañeras interferométricas, 16 de estas detecciones son nuevas estrellas binarias y una es una nueva estrella triple, por lo que la fracción del campo cambió a $20.9\% \pm 1\%$, por lo que las fracciónes son estadísticamente indistinguibles entre sí.

En la Sección 7 del artículo hicimos una discusión de nuestros resultados y una breve reseña de los estudios de multiplicidad estelar en la literatura y cerramos la sección diciendo que debemos reconsiderar el paradigma aceptado de que la mayoría de las estrellas de la Vía Láctea son binarias o múltiples.

Una de las estrellas de nuestra muestra es la bien conocida τ Cyg (ADS 14787, HR 8130, HD 202444, HIP 104887, WDS 21148+3803, AGC 13 AB, ASCC 2602929) en la constelación del Cisne. Este es un sistema múltiple cuya componente principal AB es conocida desde 1886. Nosotros resolvimos astrométricamente este sistema y estimamos una separación de $\rho = 0''.89$ y un ángulo de posición de $\theta = 39^{\circ}$, módulo 180°.

Finalmente discutimos las implicaciones de nuestra investigación sobre el diagrama H–R. Abundamos sobre el tema de las "binarias gemelas" y concluímos diciendo que no podemos culpar a este tipo de estrella binaria de todas las características morfológicas que se observan en el CMD, por lo que esta secuencia tiene que re examinarse.

Las conclusiones resumen lo descrito en esta pequeña introducción al artículo.

En este artículo fui responsable de todo el proceso de la investigación. Yo solicité el tiempo de telescopio, planeé la temporada de observación y seleccioné los objetos de la muestra. Realicé las observaciones y llevé a cabo las reducciones y calibraciones junto con mi tutor. Yo analicé e interpreté los datos y extraje las conclusiones. Hice la revisión completa de las referencias bibliográficas y escribí la reseña de la multiplicidad estelar en la Galaxia. Yo escribí el artículo y fui responsable durante todo el proceso de publicación hasta que fue aceptado y publicado en el Astronomical Journal (Guerrero et al. 2014).

THE ASTRONOMICAL JOURNAL, 147:28 (9pp), 2014 February © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-6256/147/2/28

STELLAR MULTIPLICITY OF THE OPEN CLUSTER ASCC 113

C. A. GUERRERO, V. G. ORLOV, M. A. MONROY-RODRÍGUEZ, AND V. V. VOITSEKHOVICH Instituto de Astronomía, Universidad Nacional Autónoma de México, México, D. F. 04510, Mexico; cguerrero@astro.unam.mx, orlov@astro.unam.mx, mmonroy@astro.unam.mx Received 2013 September 26; accepted 2013 November 12; published 2013 December 24

ABSTRACT

We present a high angular resolution survey for binary and multiple stars in the Galactic open cluster ASCC 113. Our observations were conducted on the 2.1 m telescope of the Observatorio Astronómico Nacional, Sierra San Pedro Mártir, México. Combining our results with data taken from the literature, we found a ratio of the number of single to binary stars to be 27:7 for the most probable members, so the multiplicity fraction for this cluster is $20.6\% \pm 3\%$. We also observed field stars in the vicinity of the cluster and estimated a ratio of multiplicities to be 125:27:4:1:0:0:0:1 (between one and eight companions), equivalent to a multiplicity fraction of $20.9\% \pm 1\%$. We estimated the number of undetected companions in our sample to be very small. Comparing the multiplicity frequency of the cluster with the frequency of the field, we concluded that they are statistically indistinguishable from each other. We provide a brief review on the topic of stellar multiplicity in open clusters.

Key words: binaries: close - open clusters and associations: individual (ASCC 113)

1. INTRODUCTION

Open clusters are ensembles of stars formed at the same time from the same cloud of gas and cosmic dust that stay together due to their mutual gravitational attraction. They represent examples of stars of comparable age and intrinsic chemical composition, which are important in the study of star formation and stellar evolution. Given their wide ranges in distance, metallicity, and age, open clusters are excellent laboratories for investigating the dynamics and chemical evolution of the Galaxy.

Classical photometry is used to estimate the physical characteristics of clusters, such as interstellar reddening, distance modulus, metallicity, and age; using multicolor photometry, the reddening due to interstellar dust can be removed from the colors of the stars, yielding intrinsic colors used to construct the color-magnitude diagram (CMD). The CMD of open clusters shows a narrow and very well-defined main sequence; however, several open clusters also show a very prominent second sequence of stars slightly less than 1 mag above the main sequence. Daniel et al. (1994) concluded that the dispersion among stars in the CMD along the main sequence is due in part to a large population of unresolved binary stars but binaries inferred by their position in the CMD are extremely sensitive to the zero-age main sequence used for adjustment (Trimble & Ostriker 1978). There is an observational problem caused by the presence of unresolved binary or multiple systems (Reid 1987), and this observational bias affects the parameters of the stars in two ways (Stobie et al. 1989): the first is that the star's luminosity is enhanced, and the second is that the color index of the system becomes redder; those effects introduce an uncertainty in the determination of the cluster's distance, reddening, and metallicity, which in turn causes an error in the estimated age (Jeffery 2009). Because of this and because binary stars have been commonly evoked to explain different cluster phenomena rather than actually being detected in clusters, we need to know the accurate stellar multiplicity fraction in open clusters.

From the observational point of view, the fraction of binary stars has been estimated in some globular clusters (e.g., Trimble 1980; Hesser et al. 1990; Margon et al. 1991; Romani & Weinberg 1991; Bolte 1992; Rubenstein & Bailyn 1997; Bellazzini et al. 2002; Clark et al. 2004; Zhao & Bailyn 2005; Jun & Bregman 2013). These studies conclude that the binary frequency varies from 6% to 50% depending on the cluster. Studies investigating the stellar multiplicity fraction in open clusters are very scarce (Duchêne & Kraus 2013), and there are just few examples in the literature (e.g., Bolte 1991; Daniel et al. 1994; Bouvier et al. 1997, 2001; Patience et al. 1998, 2002; Duchêne et al. 1999; Martín et al. 2003; Simone et al. 2003; Bouy et al. 2006; Meibon et al. 2006; Geller & Mathieu 2012; Sandquist et al. 2013); these studies conclude that the multiplicity frequency in open clusters varies from 25%-30% (Duchêne & Bouvier 2008) to 65%-70% (Kähler 1999). Theoretical simulations have also been carried out to estimate the multiplicity frequency in open clusters (e.g., Kroupa 1995; Sandhu et al. 2003; Hurley et al. 2007; Portegies Zwart et al. 2007; Bate 2009, 2012; Geller et al. 2013; Duchêne et al. 2013); in particular, Bica & Bonatto (2005) made a detailed statistical analysis comparing proper motions and Two Micron All Sky Survey photometry data to simulate the observed morphology in the CMD of open clusters and concluded that we need a fraction of unresolved binaries in the cluster's core of about 11%, and about 54% in the cluster's corona, depending on the superficial density distribution of stars.

According to Lada & Lada (2003), most of the stars are formed in clusters, and Goodman & Hut (1993) probed that most of the stars are formed as binaries, so we would expect a higher fraction of binary or multiple stars in clusters since the stellar density in open clusters is higher than the density of field stars; however, binary systems in clusters will suffer changes (or will be completely destroyed) by dynamical processes; Parker et al. 2009). Therefore, we cannot give a simple answer about whether the multiplicity fraction as a result of star formation is universal, but it is interesting to search for binary stars in open clusters, as we can study the multiplicity fraction for stars of the same age over a range of different spectral types. Now, binary stars are mainly found in three different ways: visual binaries, photometric binaries, and spectroscopic binaries; however, the first two methods exclude binaries closest than 1", which requires high-resolution techniques to be resolved. Continuous measurements of binary stars are necessary to study the orbital motion around their center of mass, which is the only direct method to calculate stellar masses; we have been publishing

THE ASTRONOMICAL JOURNAL, 147:28 (9pp), 2014 February

GUERRERO ET AL.

	Known Stellar Multiplicity										
ASCC Number	WDS (α, δJ2000.0)	Disc. Name	P.A. (deg)	Sep. (arcsec)	Δm (mag)	P _{kin}	P _{phot}				
531854	21091+3844	S 779	110	9.6	1.96	0.0000	0.0000				
531973	21097+3856	COU1967	191	0.8	0.31	0.0000	0.0000				
532042	21102+3844	SEI1426	20	17.6	1.48	0.0005	0.0000				
532074 ^a	21105+3851	SEI1429	351	25.1	1.15	0.8638	1.0000				
532141°	21108+3814	TDT2806	259	0.4	0.16	0.9740	0.0123				
532176 ^a	21109+3830	ES 254	326	2.2	0.13	0.6634	1.0000				
532217	21111+3821	ES 207	246	2.8	0.39	0.0000	0.0007				
532227 ^a	21112+3855	ES 1991	25	2.6	1.57	0.8984	0.9726				
532417	21122+3828	SMA 137	122	10.5	1.00	0.0001	0.9999				
532420	21123+3808	TDT2822	185	0.6	0.05	0.0000	0.0000				
532422 ^b	21124+3810	COU1971	282	0.6	3.00	0.9374	0.2230				
532441 ^a	21125+3834	SEI1445	23	27.9	3.30	0.7824	1.0000				
532454 ^a	21126+3846	COU2136	293	0.4	0.90	0.8950	0.9185				
532484	21130+3858	ES 257	318	6.5	3.98	0.0000	0.0000				
532502	21128+3907	SEI1447	151	13.2	2.66	0.0000	0.0000				
532546	21130+3858	ES 257	318	2.5	3.98	0.0002	0.0000				
532578	21132+3904	TDT2833	88	0.6	0.18	0.0000	0.0000				
532587	21133+3803	TOB 214	213	24.4	0.10	0.0000	0.0000				
532630 ^a	21133+3835	SMA 140	127	17.2	2.39	0.9071	0.9798				
532710	21140+3809	SEI1456	357	21.2	0.62	0.0000	0.0000				
532715 ^a	21139+3830	COU1817	108	0.6	0.74	0.9499	1.0000				
532788	21144+3803	SEI1461	136	10.7	0.36	0.0000	0.0000				
532822	21146+3832	SEI1464	264	28.2	1.31	0.0000	0.0000				
532853	21148+3803	AGC 13 AC	212	71.5	8.37	0.0000	0.0000				
532853	21148+3803	AGC 13 AB,D	208	205.4	6.11	0.0000	0.0000				
532853	21148+3803	AGC 13 AE	257	86.9	8.57	0.0000	0.0000				
532853	21148+3803	AGC 13 AF	185	90.4	8.12	0.0000	0.0000				
532853	21148+3803	DAL 38 AG	109	120.9	8.67	0.0000	0.0000				
532853	21148+3803	LEP 100 AI	77	534.5	12.19	0.0000	0.0000				
532862	21148+3901	ALI 966	100	6.5	0.59	0.0000	0.0000				
2602929	21148+3803	AGC 13 AB	224	0.9	2.74	0.0000	0.0000				

Table 1

Notes.

^a Most probable member stars of the open cluster ASCC 113.

^b Probable member star of the open cluster ASCC 113.

^c Possible member star of the open cluster ASCC 113.

speckle-interferometric measurements of binary stars since 2009 (Orlov et al. 2009) and with this work, we initiate an investigation of the stellar multiplicity in open clusters using speckle-interferometry and data obtained from the literature and will offer a little review on the topic. We start with the open cluster ASCC 113, described in Section 2. In Section 3, we describe our observations and data reduction procedure. In Section 4, we present the results of our observations. In Section 5, we estimate the completeness of our sample and the probable undetected systems and in Section 6, we discuss the binary frequency of the field around the cluster. Finally, we discuss our results in Section 7 and present our conclusions in the last section.

2. OPEN CLUSTER ASCC 113

The open cluster ASCC 113 is on the list of 130 new open clusters identified by Kharchenko et al. (2005) in the All-Sky Compiled Catalog of 2.5 million stars (ASCC-2.5,¹Kharchenko 2001); it has a diameter of 56'.4 and its equatorial and galactic coordinates, taken from the WEBDA data base² (Mermilliod 1995) are: $\alpha_{2000} = 21^{h}12^{m}00^{s}$, $\delta_{2000} = +38^{\circ}35'59''$, and

 $b = 82^{\circ}88$, $l = -6^{\circ}65$, respectively. Kharchenko et al. (2005) reported the following physical parameters: distance d = 450 pc (i.e., 1" corresponds to 450 AU), reddening E(B - V) =0.00 mag, distance modulus $V - M_V = 8.27$ mag, log(*t*, years) = 8.14, core radius $r_{core} = 0^{\circ}.12$, and corona radius $r_{cl} = 0^{\circ}.47$.

Kharchenko et al. (2005) analyzed 239 stars in the direction of ASCC 113 and established a membership selection procedure based on three criteria (Kharchenko et al. 2004): a kinematic constraint, P_{kin} , that takes into account kinematic proper motion; a photometric selection, $P_{\rm phot}$, to exclude background comoving stars; and a position factor, P_s , equal to 1 within the cluster radius and zero elsewhere. Using such criteria, they defined the most probable members, those stars for which $P_{\rm kin}$, $P_{\rm phot} \ge 61\%$ (1 σ members); probable member stars for which both P_{kin} and P_{phot} are between 61% and 14% (2 σ members); and possible members for which all stars within a 3σ deviation, i.e., P_{kin} and $P_{\rm phot}$ between 14% and 1%. Stars with $P_{\rm kin}, P_{\rm phot} \leqslant 1\%$ were considered as nonmembers. The open cluster ASCC 113 has 34 most probable members, and seven of these stars are reported as binaries; 29 are reported as probable members; one of them is reported as binary and 18 possible members, with one of these stars previously known to be binary. The 158 remaining stars were considered as field stars, and among these, 15 are reported as binary stars and 1 star as a multiple star consisting of 8 stars. Table 1 summarizes the data available in the

¹ http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=I/280B

² http://www.univie.ac.at/webda/navigation.html

Figure 1. Distribution of the apparent magnitudes of stars in the open cluster ASCC 113 and in the field around the cluster, separated in 1σ , 2σ , and 3σ members, and nonmembers.

literature for the known multiple stars; the first column contains the number of each star in the ASCC-2.5 Catalog, the second column contains the epoch-2000 coordinates in the format used in the Washington Double Star (WDS) Catalog (Worley & Douglass 1997). The third column gives the name of the star or the discoverer designation. The three following columns contain the measured position angles given in degrees, the angular distances in arc seconds, and the component magnitude difference in magnitudes. The next column contains the value of the proper motion probability of being a cluster member, and the last column the value of the photometric probability.

We notice that the multiplicity fraction (see Equation (1), where *S*, *B*, *T*, etc., are the total number of single, binary, triple, etc., systems, respectively) for this cluster is 20.6% if we only consider the most probable member stars, 15.1% if we consider both the most probable and the probable members, and 12.7% considering the most probable, probable, and possible members. For the field stars, the multiplicity fraction is 10.1% which contradicts the notion that most field stars are binary or a higher order of multiplicity systems (see Goodwin (2010), and references therein). We should take into account the selection effect due to the bright limit of the ASCC-2.5, about V = 14 and completeness limit of about V = 11.5 (Kharchenko et al. 2004), although the magnitudes of the vast majority of the stars in our sample are within this limit:

$$f_{\rm bin} = \frac{B+T+\cdots}{S+B+T+\cdots}.$$
 (1)

In Figure 1, we show the apparent magnitude distribution for the 239 stars observed, divided into field stars and cluster stars. Figure 2 represents the *V* versus (B - V) diagram for the 239 sample stars, in which we can see the wide dispersion among field stars; it is also important to note that from this diagram, we cannot discriminate which of the stars could be binaries only by their position along or above the main sequence (Atkinson 1937).

3. OBSERVATIONS AND DATA REDUCTION

The data were obtained during two sets of observations at the 2.1 m telescope of the Observatorio Astronómico Nacional (OAN) which is placed at the astronomical site Sierra San Pedro Mártir, México. The diffraction-limited resolution of the 2.1 m telescope is 0".055 for $\lambda = 550$ nm and 0".088 for

Figure 2. V vs. (B - V) diagram for the 239 sample stars. Large solid circles represent the most probable members of the ASCC 113 open cluster, gray squares represent the probable members, gray triangles represent the possible members of the cluster, and small diamonds represent the field stars.

 $\lambda = 800$ nm (Orlov 2013). The observations were performed using the EMCCD iXon 885 DU from Andor Technology. This is a low-noise, high-sensitivity EMCCD camera. It is cooled thermoelectrically to -95° C which provides excellent elimination of EM-amplified dark current noise, even for the short time exposures. This detector has more than 40% of quantum efficiency in the range of 400–800 nm and given its fast frame rate, it can be used for high-resolution imaging. The CCD has 1004 × 1002 pixels of 8 μ m.

During seven nights, from 2012 September 27 to October 3, we used the f/30 secondary and after calibration, we determined a scale of 28.6 mas per pixel, equivalent to a field of 25" for the total area of the detector. For these observations, we used five standard UBVRI Johnson-Cousins filters. During three nights of the second set, from 2012 October 27 to 30, we used the f/7.5 secondary combined with a microscope, which together provides a scale of 18 mas per pixel after calibration, corresponding to a field of 16" for the total area of the detector. All objects in this season were observed using VRI Johnson-Cousins filters. For calibration, we observed 30 wide pairs with very slow orbital motions and some of them with known orbital parameters. Typically, 400 speckle frames of 900×900 pixel per object were taken with exposure times from 20 to 50 ms. Data were processed by the algorithm explained in detail by Tokovinin et al. (2010).

We estimated the seeing was better than 1'' for both observational seasons, but aberrations introduced by the telescope had a larger effect. As a result, long exposure images have a resolution of about 1''.5, and the mean error in the component separation is 0''.03 and 1°.5 in the position angle, modulo 180°.

4. RESULTS

Following the methodology of our previous publications (Orlov et al. 2010, 2011, 2012), we were able to resolve systems as close as 0?24 and as wide as 23?94 in some directions. We detected speckle-interferometric companions for 35 of the stars in our sample. We astrometrically resolved 20 binary stars and two triple stars for the first time; we detected new companions in four objects and confirm ten previously known binaries. Table 2 contains the results of our measurements; the first column lists the number of each star in the ASCC-2.5 Catalog, and the second

THE ASTRONOMICAL JOURNAL, 147:28 (9pp), 2014 February

GUERRERO ET AL.

			Speckle Measureme	nts			
ASCC Number	Components	Disc. Name	Date (Besselian)	P.A. (deg)	Sep. (arcsec)	$P_{\rm kin}$	Pphot
531922			2012.8305	331	8.17	0.0000	0.0000
531942			2012.8276	247	3.94	0.0000	0.0000
532042		SEI1426	2012.7483	20	17.60	0.0005	0.0000
532046			2012.8277	164	1.79	0.0000	0.0000
532146			2012.8305	286	5.10	0.0000	0.0000
532176 ^a		ES 254	2012.8250	145	2.20	0.6634	1.0000
532188			2012.8250	2	0.24	0.0000	0.0000
532217		ES 207	2012.7511	245	2.83	0.0000	0.0007
532218 ^c			2012.8304	167	3.61	0.9359	0.0805
532240 ^b	AB		2012.8248	257	10.15	0.3256	0.9584
532240 ^b	AC		2012.8248	242	7.24	0.3256	0.9584
532261°			2012.7511	9	10.49	0.0470	0.0367
532417		SMA 137	2012.7511	122	9.54	0.0001	0.9999
532422 ^b	AB		2012.7429	113	16.87	0.9374	0.2230
532422 ^b	AC		2012.7429	65	9.81	0.9374	0.2230
532422 ^b	AD		2012.7429	75	18.48	0.9374	0.2230
532468 ^c			2012.8249	114	5.32	0.0374	1.0000
532476			2012.8305	39	0.41	0.0000	0.0000
532484		ES 257	2012.8250	323	2.63	0.0000	0.0000
532502	AB	SEI1447	2012.8276	332	13.15	0.0000	0.0000
532502	Aa,Bb		2012.8276	44	0.50	0.0000	0.0000
532520			2012.8305	24	7.77	0.0152	0.0003
532536 ^b			2012.8250	244	4.82	0.7600	0.5329
532546		ES 257	2012.8250	136	6.51	0.0002	0.0000
532578			2012.7565	285	11.47	0.0000	0.0000
532665			2012.7508	106	9.73	0.0000	0.0000
532674			2012.7484	302	14.08	0.9297	0.0006
532713°			2012.7427	124	9.07	0.0363	1.0000
532729			2012.8250	17	1.64	0.0000	0.0000
532788	AB	SEI1461	2012.7508	137	10.70	0.0000	0.0000
532788	AC		2012.7508	184	23.95	0.0000	0.0000
532813			2012.8305	157	6.13	0.0000	0.0000
532814			2012.7481	60	10.53	0.0000	0.0000
532822	AB		2012.8248	84	7.30	0.0000	0.0000
532822	AC		2012.8248	38	5.40	0.0000	0.0000
532850			2012.7482	153	9.82	0.0000	0.0000
532862		ALI 966	2012.7456	100	6.50	0.0000	0.0000
532865	AB		2012.7482	326	7.52	0.0000	0.0000
532865	AC		2012.7482	275	15.72	0.0000	0.0000
532870			2012.8304	322	7.69	0.0000	0.0000
532873			2012.8276	115	0.29	0.0000	0.0000
2602929		AGC 13 AB	2012.7401	39	0.89	0.0000	0.0000

Notes.

^a Most probable member star of the open cluster ASCC 113.

^b Probable member stars of the open cluster ASCC 113.

^c Possible member stars of the open cluster ASCC 113.

column contains information about stars whose multiplicity is 3 or more. The third column gives the name of the star or the discoverer designation (only for stars previously known). The fourth column gives the epoch of the observation in fractional Besselian years and the following two columns contain the measured position angles given in degrees and the angular distances in arc seconds. The next column contains the value of the proper motion probability of being a cluster member, and the last column contains the value of the photometric probability.

5. UNDETECTED COMPANIONS AND SAMPLE COMPLETENESS

When using samples limited by magnitude, we must take into account the effect of the Malmquist bias but as we mentioned

in Section 2, our sample is complete within the completeness limit of the ASCC-2.5. Furthermore, there are at least two unavoidable effects preventing the detection of binary stars when using speckle-interferometry. The first is due to the angular separation of the components of the system, which should be at least equal to the diffraction limit of the telescope; if we have a binary star that has an elliptical orbit with semimajor axis *a*, then the expected observable separation is 1.4ρ , where ρ is the projected separation (Couteau 1960). Therefore, following Rastegaev (2010), at a distance of 450 pc, we can expect separations around 0%059, which is close to the diffraction limit of the 2.1 m telescope in the *V* band; so the probability of resolving a binary with semimajor axis of about 40 AU (i.e., close to the semimajor axis of the Neptune orbit) is nearly 100%. The second effect is due to the dynamical range of the

Figure 3. Cumulative distribution of the angular separations of the stars that we resolved. The straight line is a fit to the Öpik distribution $f(\rho) = k/\rho$ in the interval $5.10 < \rho('') < 23.95$.

detector used to collect the data. The EMCCD iXon 885 DU we used has high linearity (better than 99%) and a digitization of 14 bit, which implies a dynamical range of ~8–9 mag. Read noise decreases the magnitude difference we can detect but the number of frames we take reduces the error. This effect also depends on the separation of the components, so we can detect every companion whose separation is larger than 1" (and less than 16" or 25", see Section 3) and $\Delta m \leq 8$. For stars with $\rho \leq 1$ ", there is a compromise between separation and magnitude-difference; we estimate we cannot detect about 10% of stars in that range.

We can make an independent conservative estimation of the minimum amount of binaries we cannot detect, using the idea that the cumulative distribution function of separations should adjust an Öpik distribution (Öpik 1924), as observed in several binary samples (Allen et al. 2000; Poveda et al. 2007; Allen & Monroy-Rodríguez 2014). To do that, we can establish a region of completeness in our separations distribution function. Figure 3 shows the cumulative distribution $N(\log \rho)$ versus $\log \rho$ for the stars we reported in Table 2. We give the equation of the best fit to the interval in which our data follows the Öpik's distribution, $0.73 < \log \rho < 1.38$, which corresponds to $5.10 < \rho('') < 23.95$. This means we have a complete sample for wide binaries but we can see an abrupt change in the slope of the distribution for separations $\rho < 4''_82$, i.e., we could say we have an important bias toward the region of very close binaries.

However, we can perform a Kolmogorov–Smirnov (K-S) test for cumulative distributions in order to evaluate the largest reliably interval in which Öpik's distribution still represents the cumulative distribution of angular separations. Figure 4 shows the result of the K-S test applied to the stars in our sample. The coefficient of significance, Q, is plotted in the secondary axis. The test gives a value of Q = 0.97 in the interval $0.42 < \log \rho < 1.38$, which corresponds to $2.66 < \rho('') < 23.95$, i.e., in that interval, our sample still follows the Öpik's distribution. Using logarithmic axes, the y-intercept of the Öpik fit indicates the number of expected binaries between 1" ($\log \rho = 0$) and the point where the fit intersects with the distribution function, about 3" or $\log \rho = 0.5$. In this case, we conclude that we are missing six or seven binaries (2.5%–3% in our total sample).

But we also have angular separations for the stars reported in the literature, so we can include them and perform the same

Figure 4. Kolmogorov–Smirnov test, giving a significance coefficient Q = 0.97 in the interval 2.66 < $\rho('') < 23.95$ for our observations.

Figure 5. Kolmogorov–Smirnov test, giving a significance coefficient Q = 0.96 for the complete sample of multiple stars, in the interval $1.00 < \rho('') < 28.68$.

analysis. In Figure 5, we present the results of the K-S test applied to the complete list of multiple stars in the sample. The test gives a value of Q = 0.96, so we can see that the cumulative distribution function of angular separations follows the Öpik's distribution from 1" (log $\rho = 0$); according to the y-intercept of the Öpik fit, the number of expected binaries we are missing is 1 or 2 (0.5%–0.8% in our total sample). It is important to note that the number of binaries previously known from the literature with separations $\rho < 1$ ", that we added to the second analysis is 7, precisely the number of binaries we were missing using only our observations. We can say that, although our sample is not volume-complete, it does not show a significant bias in the distribution of separations, which means we do not have an important number of undetected companions.

6. STELLAR MULTIPLICITY

6.1. Binaries in ASCC 113

We use all data available in the literature for the 239 objects in our sample and found that 7 of the 34 most probable members of the open cluster ASCC 113 are reported as binaries (see Table 1). With our observations, we confirm one of these stars, star number ASCC 532180 (see Table 2), first discovered in the *Tycho-2* survey (Høg et al. 2000) and later confirmed by Mason et al. (2000). Among the probable members, we found only one star previously known to be binary; star ASCC 532422

THE ASTRONOMICAL JOURNAL, 147:28 (9pp), 2014 February

Figure 6. Binary stars in the open cluster ASCC 113. Large solid circles represent the most probable members of the cluster, gray squares represent the probable members, and gray triangles represent the possible members. Open symbols represent binary and multiple systems.

has a binary companion with a separation of 0% (Gili & Prieur 2012), and we discovered four additional distant components with separations up to 18".48, so we reported it as a quintuple system. Star ASCC 532240 had no previous report of being binary but we found two additional components so we reported it as a triple system. Finally, we found a secondary component in star ASCC 532536. We also discovered secondary components in three of the possible member stars (see Table 2). Thus, considering only the most probable member stars, the total single:binary ratio for the open cluster ASCC 113 is 27:7, and the multiplicity fraction remains unchanged as $20.6\% \pm 3\%$. If we also consider the probable members, the ratio of multiplicities for the cluster is 53:8:1:0:1 (between one and five companions), and the multiplicity fraction decreases to 15.9%; considering the most probable and possible stars, the ratio of multiplicities becomes 67:12:1:0:1, equivalent to a multiplicity fraction of 17.3%. In Figure 6, we can see the random distribution of binary and multiple stars in the open cluster ASCC 113.

6.2. Stellar Multiplicity of the Field

We found that 28 of the 35 stars for which we detected interferometric companions are part of the sky area with ASCC 113 (see Table 2); 16 of these stars are new binary detections, and we discovered one new triple system. The binary stars ASCC 532042, ASCC 532217, ASCC 532417, ASCC 532484, ASCC 532502 AB, ASCC 532546, ASCC 532546, ASCC 532788 AB, ASCC 532862, and ASCC 2602929, were previously known and we were able to retrieve their parameters. We also discovered additional components in three different previously known multiple systems. Star ASCC 532502 was known since 1895 (Scheiner 1908) and we retrieved their parameters but we also discovered a new close companion at $\rho = 0'.5$. The star ASCC 532578 was discovered by the Tycho-2 survey (Høg et al. 2000) but no other confirmation is reported; we discovered a third component at a distance of $\rho = 11^{".47}$. Additionally, star ASCC 532788 AB was previously reported as binary (Scheiner 1908), and we retrieve its parameters but we also discovered a new distant component at $\rho = 23^{\prime\prime}.95$.

Although there is no doubt that interferometric systems appear to be physically bound (Rastegaev et al. 2007), we cannot

GUERRERO ET AL.

Table 3 Multiplicity Fraction

Fraction	$f_{\rm bin}(\%)$								
Stars	Pkin, Pphot	$P_{\rm kin}$	Pphot						
MP	20.6	22.6	18.6						
MP + P	15.9	16.9	16.0						
MP + P + p	17.3	17.9	16.8						
Field	20.9	20.8	19.9						

categorically say the same for wide binaries but we made an extensive search in the literature comparing angular separations and magnitude difference reported by various authors and concluded that the binaries previously known are unlikely to be optical projections; however, we need more observations of the newly discovered multiple systems to confirm they are indeed gravitationally bound systems. Nonetheless, we use the components reported in Tables 1 and 2 to compute the ratio of multiplicities for stars in the field as 125:27:4:1:0:0:0:1 (between one and eight companions), which is consistent with the results of Eggleton & Tokovinin (2008) that many field stars belong to a higher order of multiplicity systems. Therefore, the total multiplicity fraction for stars in the field is $20.9\% \pm 1\%$, similar to the value obtained by Tokovinin & Smekhov (2002) of 20% for visual binaries and 30% for spectroscopic binaries in the field. We recalculated the multiplicity fraction for the field, considering the cluster's most probable and probable members, which changes to 19.3%, and to 19.5% if we consider the most probable, probable, and possible stars, but the fraction does not change considerably in any of the three cases.

We can repeat our analysis dividing the stars into 1σ , 2σ , and 3σ members, and nonmembers using the kinematic criteria and photometric criteria separately. In Table 3, we list the multiplicity fraction we calculated as a function of membership selection criteria. In the first column, we list the stars in our sample divided by most probable members (MP), most probable members and probable members (P), most probable members, probable members, and possible members (p), and field stars. In the second column, we list the multiplicity fraction resulting if we consider both criteria simultaneously (as we did in the last subsection and at the beginning of this subsection). The third column contains the multiplicity fractions we estimated considering only the kinematic criteria, and the last column list the multiplicity fraction if we only consider the photometric criteria.

We can see that the kinematic criteria takes into account more binary stars of the sample as most probable members, which slightly increases the estimated multiplicity fraction of the cluster; the multiplicity fraction also decreases if we consider the most probable, probable and possible stars, but the fractions are very similar to those we calculated considering both criteria. We expected this because the kinematic criteria has a better constrain on the cluster membership probability. We can see that the multiplicity fraction of the field is also virtually identical.

The photometric criteria induces other effects, it takes into account more stars as most probable members, which reduces the multiplicity fraction, because the number of binary stars remains, in this case, unchanged. We conclude that using both criteria simultaneously is the best way to discriminate between membership probabilities; moreover, taking into account the possible stars induces a larger error in the multiplicity fraction determination. The Astronomical Journal, 147:28 (9pp), 2014 February

6.3. τ Cyg

One of the stars in our sample is the very well-known multiple system τ Cyg (ADS 14787, HR 8130, HD 202444, HIP 104887, WDS 21148+3803, AGC 13 AB, ASCC 2602929) in the constellation of Cygnus; it has an apparent magnitude of V = 3.73 (Oja 1993) and its an F3 IV-V star with an absolute magnitude of $M_V = 2.21$ (Brummelaar 2000). The components AB of the system were known since 1886 (Abetti 1912) and the primary component A is a Delta Scuti-type variable (Baize & Petit 1989). Orbital parameters and the masssum for AB were determined by Söderhjelm (1999) and later recalculated by Muterspaugh et al. (2010a); Muterspaugh et al. (2010b) has suggested the existence of a possible substellar component bound to the primary A, but this has not been proven. Components AC and AB,D were confirmed to be physically bound by Kiyaeva et al. (2008). Daley (2008) reported three additional common proper motion stars AE, AG, and AF. Lépine & Bongiorno (2007) found that A and I have common proper motions and concluded that they are distant companions. The AB system has been monitored throughout history. To calculate their orbital parameters more accurately, we astrometrically resolved this system and found an angular separation of $\rho =$ 0''89 and a position angle of $\theta = 39^\circ$, modulo 180°. Eggleton & Tokovinin (2008) found a slight bias of surveys preferably observing bright stars and established that there are higher orders of multiplicity for those stars because of selection effects, as we can see for this star; they listed the system AGC 13 ABC to be hierarchical, but considering the other wide companions, the total system could be considered as a nonhierarchical multiple system. However, we need more information on the suborbits.

7. DISCUSSION

We studied the stellar multiplicity fraction of the open cluster ASCC 113 and compared it with the multiplicity fraction of the field, a population whose multiplicity properties are the basis for comparing other stellar populations; the field population is an average over all star forming regions, and we can find stellar companions of all mass ratios and separations. We found that the multiplicity fraction is practically identical in both cases, which is consistent with a significant portion of field stars being formed in clusters that later evaporate and enrich the interstellar medium but we must keep in mind that the current multiplicity fraction in clusters can be very different from the original fraction due to dynamical processing. Only the closest systems remain unaffected by dynamical evolution in clusters (Parker et al. 2009), but how can we explain primordial triple systems or systems with higher multiplicity orders in the field? Formation via capture has been discarded because of the high inefficiency of this process, so stars with high multiplicity orders must have been formed in isolated star forming regions (Kraus et al. 2011), and we know that the multiple stellar content depends strongly on the environment (Bressert et al. 2010); therefore, the standard core collapse model of star formation must be modified to account for primordial stars with high multiplicity orders.

We found one triple star and one multiple system with n = 5 as being probable members of the cluster, so the number of binary and multiple systems and their separations distribution can help to determine the dynamical age of the cluster. We have a magnitude-complete sample, which may be biased toward similar-mass or luminosities companions, but it can constrain models of star formation and evolution in the field and in clusters

GUERRERO ET AL.

to reproduce the fractions we have found; however, we have to employ simulations very carefully when trying to compare the observed properties of stellar multiplicity because they do not include all effects that can alter the dynamical evolution of multiple systems (Hennebelle & Teyssier 2008).

The statement that most stars in the universe are single (Lada 2006) is still under intense debate, but the affirmation that the majority of stars in the Milky Way are binaries, is also imprecise for the whole range of spectral types. In the solar neighborhood, Duquennoy & Mayor (1991) estimated a multiplicity fraction of about 60% for solar-type stars, but Reid & Gizis (1997) found a much smaller fraction for M stars, about 35%. Rastegaev (2010), found a multiplicity fraction of 26% for population II stars, which is very similar to the estimates found for population I stars in the Galactic disk (Latham et al. 2002). However, the situation changes a bit in star-forming regions; Duchêne (1999) found a relative excess of about 1.7 times in their binary frequency compared to the frequency of main sequence stars, although it is unclear (and may be a selection effect) whether there are more pre-main sequence binary stars in star-forming regions than in main sequence stars (Brandner & Köehler 1998). We have not found a significant difference in two different stellar populations, so we must reconsider the accepted paradigm that high multiplicity orders are the standard outcome of star formation.

7.1. The Hertzsprung-Russell Diagram

Stars belonging to an open cluster should form a onedimensional sequence in the H-R diagram, since, in principle, they are a homogeneous population of stars with the same age and chemical composition, different only in mass. However, there is a sequence of stars ~ 0.75 magnitudes above the main sequence (see Section 1) which has often been called "binary sequence" because the most obvious interpretation of this characteristic is that they are unresolved binary stars with both components having the same mass ("twin binary stars"). But identifying stars by their position above the main sequence is very difficult and inaccurate; there is a dependence on the mass ratio and evolutionary state of the components of the system (Rajamohan & Mathew 1988). Moreover, "twin binary stars" are scarce. Mazeh et al. (2003) could not find enough twin binaries in a sample of 62 binaries with primary stars in the main sequence. Later, Simon & Obbie (2009) found that only 2.4% of spectroscopic binary stars in the disk of the Milky Way have a mass ratio $q \simeq 1$. Therefore, we cannot explain the "binary sequence" in CMDs of open clusters by blaming "twin binary stars" because the frequency of this kind of star is very low, and as we have seen, the content of multiple stars in open clusters is rather small. But twin binaries can survive dynamical evaporation in clusters, since they are typically very close, with periods less than 43 days (Lucy 2006), so we would expect a small fraction of this type of star in open clusters, but by no means, close to the fractions estimated by simulations. An alternative proposal is to combine the effect introduced by binaries and stellar rotation but Trimble & Ostriker (1978) showed that stars cannot be identified in the H-R diagram just by taking into account these effects, which play, to some extent, a role in determining the morphology of the CMDs but in no way they can explain all of the features observed in them (see Li et al. 2012, and references therein). Comparisons among the most studied clusters with respect to multiplicity frequencies (α Per, the Pleiades, Praesepe, and the Hyades) show differences so large that it is impossible to make any general conclusion about THE ASTRONOMICAL JOURNAL, 147:28 (9pp), 2014 February

the content of binary stars studying only their H-R diagrams, so the "binary sequence" should be and must be re-examined.

8. CONCLUSIONS

Using speckle-interferometry, we have initiated a survey of binary stars and multiple systems in Galactic open clusters. We initiated this survey with the ASCC 113 open cluster and, combining our observations with data taken from the literature, we found a ratio of the number of single to binary stars to be 27:7 for the most probable members, so the multiplicity fraction for this cluster is $20.6\% \pm 3\%$. We also observed field stars around the cluster and estimated a ratio of multiplicities to be 125:27:4:1:0:0:0:1 (between one and eight companions), which is equivalent to a multiplicity fraction of $20.9\% \pm 1\%$. When also considering the probable members, the multiplicity fraction slightly decreases to 15.9% and changes to 17.3% if we take into account the possible stars. We conclude that the multiplicity fraction of this cluster is statistically indistinguishable from the fraction of the field, although it is unclear whether the equal multiplicity fraction of the field and the cluster is primordial or due to dynamical effects. We estimated the number of undetected companions in our sample to be very small. We searched for previous stellar multiplicity studies in open clusters but found relatively few publications on the topic, which focused primarily on four clusters, α Per, the Pleiades, Praesepe, and the Hyades. Using high-resolution techniques, we found that the multiplicity fraction estimated in those studies are consistent with our estimations: the multiplicity fraction in open clusters is close to 20% and is very similar to that of the field.

Based on the literature, we discuss the "binary sequence" proposed to explain several features in the CMDs, and concluded that we should reconsider binaries alone to explain these features. We also comment on the controversial topic of stellar multiplicity in the Galaxy and argued that perhaps the majority of the stars in the Milky Way are not binaries or multiples. Duchêne & Kraus (2013) published a comprehensive review of the status quo of stellar multiplicity, and our results and future publications may contribute to expanding the general knowledge of stellar multiplicity for open clusters.

The speckle-interferometry program at the OAN telescopes is supported by the Dirección General de Asuntos del Personal Académico (Universidad Nacional Autónoma de México) under projects IN104910 and IN113308 (PAPIIT).

REFERENCES

- Abetti, G. 1912, MmSS, 1, 178
- Allen, C., & Monroy-Rodríguez, M. A. 2014, ApJ, in press
- Allen, C., Poveda, A., & Herrera, M. A. 2000, A&A, 356, 529
- Atkinson, R. d'E. 1937, Obs, 60, 299 Baize, P., & Petit, M. 1989, A&AS, 77, 497 Bate, M. R. 2009, MNRAS, 392, 590 Bate, M. R. 2012, MNRAS, 419, 3115

- Bellazzini, M., Pecci, F. F., Messineo, M., Monaco, L., & Rood, R. T. 2002, AJ, 123, 1509
- Bica, E., & Bonnato, C. 2005, A&A, 431, 943
- Bolte, M. 1991, ApJ, 376, 514 Bolte, M. 1992, ApJS, 82, 145
- Bouvier, J., Duchêne, G., Mermilliod, J.-C., & Simon, T. 2001, A&A, 375, 989 Bouvier, J., Rigaut, F., & Nadeau, D. 1997, A&A, 323, 139
- Bouy, H., Moraux, E., Bouvier, J., et al. 2006, ApJ, 637, 1056
- Brandner, W., & K
 ehler, R. 1998, ApJL, 499, L79 Bressert, E., Bastian, N., Gutermuth, R., et al. 2010, MNRAS, 409, 54 Brummelaar, T. 2000, AJ, 119, 2403
- Clark, L. L., Sandquist, E. L., & Bolte, M. 2004, AJ, 128, 3019

GUERRERO ET AL.

- Couteau, P. 1960, JO, 43, 41
- Daley, J. A. 2008, JDSO, 4, 34
- Daniel, S. A., Latham, D. W., Mathieu, R. D., & Twarog, B. A. 1994, PASP, 106, 281 Duchêne, G. 1999, A&A, 341, 547
- Duchêne, G., & Bouvier, J. 2008, ESOC, 56, 185
- Duchêne, G., Bouvier, J., Moraux, E., et al. 2013, A&A, 555, 137
- Duchêne, G., Bouvier, J., Simon, T., Close, L., & Eislöffel, J. 1999, ESOC, 56 185
- Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269
- Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485 Eggleton, P. P., & Tokovinin, A. A. 2008, MNRAS, 389,869
- Geller, A. M., Hurley, J. R., & Mathieu, R. D. 2013, AJ, 145, 8
- Geller, A. M., & Mathieu, R. D. 2012, AJ, 144, 54 Gili, R., & Prieur, J.-L. 2012, AN, 333, 727
- Goodman, J., & Hut, P. 1993, ApJ, 403, 271
- Goodwin, S. P. 2010, RSPTA, 368, 851 Hennebelle, P., & Teyssier, R. 2008, A&A, 447, 25
- Hesser, J. E., McClure, R. D., Fletcher, J. M., & Pryor, C. 1990, BAAS,
- Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A&A, 357, 367
- Hurley, J. R., Aarseth, S. J., & Shara, M. M. 2007, ApJ, 665, 707
- Jeffery, E. J. 2009, in Ld Symp. 258, The Ages of Stars, ed. E. E. Mamajek, D. R. Soderblom, & R. F. G. Wyse (Cambridge: Cambridge Univ. Press), 141
- Jun, J., & Bregman, J. N. 2013, ApJ, 768, 158
- Kähler, H. 1999, A&A, 346, 67
- Kharchenko, N. V. 2001, KFNT, 17, 409
 Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 2004, AN, 325, 740
- Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 440, 403 2005. A&
- Kiyaeva, O. V., Kiselev, A. A., & Izmailov, I. S. 2008, AstL, 34, 405
- Kraus, A. L., Ireland, M. J., Martinache, F., & Hillenbrand, L. A. 2011, ApJ, 731.8
- Kroupa, P. 1995, MNRAS, 277, 1522 Lada, C. J. 2006, ApJ, 640, 63
- Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57
- Latham, D. W. 2002, AJ, 124, 1144 Lépine, S., & Bongiorno, B. 2007, AJ, 133, 889
- Li, Z., Mao, C., Chen, L., & Zhang, Q. 2012, ApJ, 761, 22
- Lucy, L. B. 2006, A&A, 457, 629
- Margon, B., Wilcots, E., & Bolte, M. 1991, BAAS, 23, 948
- Martín, E. L., Barrado y Navascués, D., Baraffe, I., Bouy, H., & Dahm, S. 2003. 594, 525
- Mason, B. D., Hartkopf, W. I., Holdenried, E. R., et al. 2000, AJ, 120, 1120 Mazeh, T., Simon, M., Prato, L., Markus, B., & Zucker, S. 2003, ApJ, 599, 1344
- Meibon, S., Mathieu, R. D., & Stassun, K. G. 2006, ApJ, 653, 621
- Mermillion, S., Malmed, K. D., & Stassan, R. G. 2000, ApJ, 653, 621 Mermillion, J.-C. 1995, ASSL, 203, 127 Muterspaugh, M. W., Hartkopf, W. I., Lane, B. F., et al. 2010a, AJ, 140, 1623
- Muterspaugh, M. W., Lane, B. F., Kulkarni, S. R., et al. 2010b, AJ, 140, 1657 Oja, T. 2003, A&AS, 100, 591
- Öpik, E. 1924, PTarO, 25, 1
- Orlov, V. 2013, CEAB, 37, 137
- Orlov, V. G., Voitsekhovich, V. V., & Guerrero, C. A. 2012, RMxAA, 48, 177
- Orlov, V. G., Voitsekhovich, V. V., Guerrero, C. A., et al. 2011, RevMexAA, 47.211 Orlov, V. G., Voitsekhovich, V. V., Mendoza-Valencia, G. A., et al. 2009,
- RMxAA, 45, 155 Orlov, V. G., Voitsekhovich, V. V., Rivera, J. L., Guerrero, C. A., & Ortiz, F.
- 2010, RMxAA, 46, 245 Parker, R. J., Goodwin, S. P., Kroupa, P., & Kouwenhoven, M. B. N.
- 2009, N . 397, 15
- Patience, J., Ghez, A. M., Reid, I. N., & Matthews, K. 2002, AJ, 123, 1570Patience, J., Ghez, A. M., Reid, I. N., Weinberger, A. J., & Matthews, K. 1998, AJ, 115, 1972
- Portegies Zwart, S. F., McMillan, S. L. W., & Makino, J. 2007, MNRAS, 374 95
- Poveda, A., Allen, C., & Hernández-Alcántara, A. 2007, in IAU Symp. 240, Binary Stars as Critical Tools & Tests in Contemporary Astrophysics, ed. W. I. Hartkopf, E. F. Guinan, & P. Harmanec (Cambridge: Cambridge Univ. Press), 41'
- Rajamohan, R., & Mathew, A. 1988, JApA, 9, 107 Rastegaev, D. A. 2010, AJ, 140, 2013

THE ASTRONOMICAL JOURNAL, 147:28 (9pp), 2014 February

GUERRERO ET AL.

- Rastegaev, D. A., Balega, Yu. Yu., & Malogolovets, E. V. 2007, AstBu, 62, 235 Reid, I. N. 1987, MNRAS, 225, 873 Reid, I. N., & Gizis, J. E. 1997, AJ, 113, 2246
- Romani, R. W., & Weinberg, M. D. 1991, in ASP Conf. Ser. 13, The Formation Kontani, K. W., & Weinberg, M. D. 1991, in ASP Colin. Set: 15, The Formation and Evolution of Star Clusters, ed. K. Janes (San Francisco, CA: ASP), 443 Rubenstein, E. P., & Bailyn, C. D. 1997, ApJ, 447, 701 Sandquist, E. L., Shetrone, M., Serio, A. W., & Orosz, J. 2013, AJ, 146, 40 Sandhu, T. S., Pandey, A. K., & Sagar, R. 2003, A&A, 408, 515

- Scheiner, J. 1908, POPot, 59, 0 Simon, M., & Obbie, R. C. 2009, AJ, 137, 3442

- Simon, T., Duchêne, G., & Bouvier, J. 2003, CSSS, 12, 998
 Söderhjelm, S. 1999, A&A, 341, 121
 Stobie, R. S., Ishida, K., & Peacock, J. A. 1989, MNRAS, 238, 709

- Stoler, R. S., Isima, R., & Teacock, J. A. 1909, Micros *120*, 109
 Tokovinin, A., Mason, B. D., & Hartkopf, W. I. 2010, AJ, 139, 743
 Tokovinin, A. A., & Smekhov, M. G. 2002, A&A, 382, 118
 Trimble, V. L. 1980, in IAU Symp. 85, Star Clusters, ed. J. Hesser (Dordrecht: Reidel), 259
- Kindol, 207
 Trimble, V. L., & Ostriker, J. P. 1978, A&A, 63, 433
 Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523
 Zhao, B., & Bailyn, C. D. 2005, AJ, 129, 1934

Capítulo 8

Speckle Interferometry at the Observatorio Astronómico Nacional. V

En el último capítulo de esta tesis presento el más reciente artículo en la serie de binarias. Este artículo ya ha sido aceptado para su publicación en la Revista Mexicana de Astronomía y Astrofísica. Una de las cosas más relevantes de esta publicación es la cantidad de mediciones que estamos reportando. Conjuntamos los datos que obtuvimos durante tres temporadas de observación que llevamos a cabo en el OAN San Pedro Mártir con el telescopio de 1.5 m, en septiembre, octubre y noviembre de 2009.

En estas observaciones usamos la cámara DRAGON que tiene un rango dinámico de $\sim \Delta V = 6$. Estimamos que tuvimos un *seeing* que estuvo entre 0".6 y 0".9. Logramos detectar estrellas con separaciones que van de 0".144 a 5".170, con un error medio de 0".033 en la separación y 0°.9 en el ángulo de posición. En la Tabla 2 reportamos nuestros resultados, en esta ocasión reportamos 650 mediciones de 506 pares de estrellas; el formato de la tabla es diferente a nuestras publicaciones previas, en este caso añadimos dos columnas, pues desarrollamos un nuevo método de análisis durante el proceso de calibración de los datos que nos permite mejorar la precisión en nuestras mediciones.

Confirmamos 52 estrellas binarias detectadas por la misión Hipparcos (ESA,

1997) y que no tenían confirmación secundaria.

En este artículo propuse algunos de los objetos que observamos y busqué algunas de las referencias. Partipé en todas las temporadas de observación y el preprocesamiento de los datos; junto con mi tutor, realizamos la reducción y la calibración de las mediciones y discutimos sobre el nuevo método de análisis que fue implementado en el software de reducción de datos. Manuscript for Revista Mexicana de Astronomía y Astrofísica (2014)

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. V.

V. G. Orlov,¹ C. A. Guerrero,¹ and V. V. Voitsekhovich,¹

Draft version: March 6, 2014

RESUMEN

Presentamos resultados de mediciones hechas mediante interferometría de motas de algunas estrellas estrellas binarias, llevadas a cabo durante septiembre, octubre y noviembre de 2009 con el telescopio de 1.5 m del Observatorio Astronómico Nacional en SPM (México). Presentamos 650 mediciones de 506 pares con magnitud límite V = 12.3 para la estrella primaria. Las separaciones angulares medidas varían desde 0"144 a 5".17. Trescientos noventa y seis pares tienen separaciones menores a 1". El error medio en las separaciones es 0".033 y 0°.9 en el ángulo de posición. La ambigüedad habitual de 180° se corrigió para la mayoría de los ángulos de posición, comparando con mediciones realizadas por otro observadores.

ABSTRACT

We present speckle interferometric measurements of binary stars performed during September, October and November of 2009 with the 1.5 m telescope of the Observatorio Astronómico Nacional at SPM (México). We report here the results of 650 measurements of 506 pairs of stars with a primary limiting magnitude of V = 12.3. The measured angular separations range from 0".144 to 5".17. Three hundreds ninety six pair has separations less than 1". The mean error in separation is 0".033 and 0".9 in position angle. The usual 180° ambiguity was corrected for majority of position angles by comparison with observations performed by other observers.

 $Key\ Words:$ stars: binaries: visual — stars: fundamental parameters — techniques: interferometric — techniques: speckle — techniques: high angular resolution

1. INTRODUCTION

This is the fifth paper in the serie of publications presenting the results of speckle interferometric observations of binary stars performed with telescopes of the Observatorio Astronómico Nacional (OAN) of the Instituto de Astronomía Universidad Nacional Autónoma de México. Regular speckle interferometric measurements of binary stars have been made with telescopes of the OAN since 2008 (Orlov et al. 2009). This paper presents the results of double star observations carried out with the 1.5 m Telescopes of Sierra San Pedro Mártir (SPM) OAN in September, October and November of 2009. During the observations we used only one broadband filter R (6650/80nm)

¹Instituto de Astronomía,UNIVERSIDAD NACIONAL AUTONOMA DE México, Apdo. Postal 70-264, Cd. Universitaria, 04510 México D.F., México

 $\mathbf{2}$

TABLE 1

DISTRIBUTION OF PAIRS BY THEIR SEPARATIONS.

> 1''.5	1''.5 - 1''	1'' - 0''.5	0''.5 - 0''.25	< 0."25
140	72	145	135	14

2. OBSERVATIONS AND RESULTS

The observations were performed at the 1.5-m telescope of the OAN which is located at the OAN-SPM (México).

For these observations we used the DRAGON equipment (Voitsekhovich et al. 2005), which was slightly modified to be able to record of speckle interferograms (Orlov et al. 2007), (Orlov et al. 2010). During observations we had good seeing conditions. We estimated it was between 0.6 to 0.9 arcsec. Aberrations introduced by the telescope have similar values. As a result, a long exposure images have a resolution of about 1.5 arc seconds. All the measurements were made through R(630/120 nm) filter. After calibration we determine the pixel scale of 0.0246''/px and detector orientation. More than half observed binaries have separations less than 1". The table 1 shows how are distributed these 506 pairs according to their separations.

Table 2 contains 650 measurements concerning to 506 pairs of stars. The first column contains the epoch-2000 coordinates in the format used in the Washington Double Star (WDS) Catalog (Worley & Douglass 1997). The second column gives the name of the star or the discoverer designation. The third column gives the epoch of the observation in fractional Besselian years. The four following columns contain the measured position angles given in degrees, the errors of its determination, the angular distances in arcseconds and the errors of its determination. The last three columns give the difference between observation and the ephemerides calculated for the date of observation, as well as references to publications in which orbital elements can be found (Hartkopf & Mason 2003).

3. CONCLUSION

We have presented the results of binary star observations focused on binaries from WDS catalogue. In particular, we have been interested in new binaries discovered by Hipparcos. We confirmed 52 new binaries detected by Hipparcos.

3.1. Acknowledgements

The speckle interferometry program at the OAN telescopes is supported by the Direccion General de Asuntos del Personal Academico (UNAM, México) under the projects IN104910.

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. V3

REFERENCES

[]Baize, P.,1985,A&AS 60, 333

[Baize, P., 1986, A&AS 65, 551

[]Baize, P., 1987, A&AS 71, 177

[Couteau, P., 1958, Journal des Observateurs, 41, 91

[]Couteau, P.,1999 , Cat. de 2700 Etoiles Doubles "COU", 1999 Obs. de la Cote d'Azur, 3rd ed.

[Cvetkovic, Z., 2013 ,Inf. Circ. 179

[]Docobo, J.A. & Ling, J.F., 2005, Inf. Circ. 156

[]Docobo, J.A. & Ling, J.F., 2009, AJ 138, 1159

[]Docobo, J.A. & Ling, J.F., 2010, Inf. Circ. 171

[]Docobo, J.A. & Ling, J.F., 2012, Inf. Circ. 177

[]Heintz, W.D., 1984, A&AS 56, 5

[Hartkopf, W.I., & Mason, B.D., 2003, Sixth Catalog of Orbits of Visual Binary Stars, US Naval Observatory, Washington. Electronic version http://ad.usno.navy.mil/wds/orb6.html

[]Hartkopf, W.I., Mason, B.D., & Rafferty, T., 2008, AJ 135, 1334, 2008

[]Hartkopf, W.I. & Mason, B.D., 2009, AJ 138, 814

[Ling, J.F., 2012, AJ 143, 20

[]Ling, J.F., 2012, Inf. Circ. 176

[]Muller, P., 1978, A&AS 32, 173

[]Mason, B.D. & Hartkopf, W.I., 2001, Inf. Circ. 144

[]Olevic, D. & Jovanovic, P., 2001, Serbian AJ 163, 5

[Olevic, D., Popovic, G.M., Pavlovic, R., & Cvetkovic, Z., 2003, Serbian AJ 166, 43 (erratum Serbian AJ 167, 111, 2003)

[Orlov, V. G., Voitsekhovich, V. V., Sánchez, L. J., & Garfias, F. 2007, Rev. Mex. A&A, 43, 137

[Orlov, V. G., Voitsekhovich, V. V., Mendoza-Valencia, G.A., Svyryd, A., Rivera, J.L., Ortiz, F., & Guerrero, C.A. 2009, Rev. Mex. A&A, 45, 155

[]Orlov, V. G., Voitsekhovich, V. V., Rivera, J. L., Guerrero, C. A., & Ortiz, F. 2010, Rev. Mex. A&A, 46, 245

[]Scardia, M., Prieur, J.-L., Koechlin, L., & Aristidi, E. , 2001, AN 322, 161

[]Scardia, M., Prieur, J.-L., Koechlin, L., & Aristidi, E.,2003,Inf. Circ. 151

[]Schaefer, G.H., Prato, L., Simon, M., & Zavala, R.T.,2012, ApJ 756, 120

[]Soderhjelm, S.,1999,A&A 341, 121

[]Starikova, G.A., 1985, Trud. Astron. Inst. Sternberg 57, 243

[Voitsekhovich, V. V. Sánchez, L. J. Orlov, V. G. Garfias, F. and Benitez, R. 2005, Rev. Mex. A&A, 41, 399

[]Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523

[]Zirm, H., 2003, Inf. Circ. 151

[]Zirm, H., 2013, Inf. Circ. 179

Instituto de Astronomía,UNIVERSIDAD NACIONAL AUTONOMA DE México, Apdo. Postal 70-264, Cd. Universitaria, 04510 México D.F., México

4

TABLE 2

SPECKLE MEASUREMENTS ON THE 1.5M TELESCOPE.

WDS(2000)	Discoverer $designation$	Epoch +2000	heta (deg)	$\sigma_{ heta} \ (deg)$	ho (arcsec)	$\sigma_{ ho}$ (arcsec)	$ heta_O - heta_C \ (deg)$	$ \rho_O - \rho_C $ $(arcsec)$	Ref.
00002 + 3613	TDS1236	9.7368	331.4	0.2	0.50	0.00			
00002 + 0010 00004 + 2749	TDS1238	9.7342	87.5	0.1	0.86	0.00			
00013 + 3351	TDS1248	9.7423	51.2	3.1	0.71	0.05			
00015 + 3044	HO208	9.7289	190.8	4.4	1.05	0.17			
00015 + 3044	HO208	9.8460	189.6	7.6	1.03	0.41			
00023 + 3257	HO209AB	9.7342	347.0	0.3	1.40	0.01			
00035 + 3434	0L77	9.7289	255.4	0.3	2.80	0.01			
00037 + 3752	COU846	9.7423	150.7	1.0	0.93	0.05			
00047 + 3416	STF3056AB	9.7342	142.2	0.6	0.71	0.01			
00053 + 3533	COU746	9.7343	105.2	0.6	0.61	0.01			
00053 + 3533	COU746	9.7396	105.4	0.7	0.60	0.01			
00054 + 3348	COU646	9.7260	330.5	1.1	0.47	0.02			
00090 + 2339	HU402	9.7396	67.0	1.0	0.56	0.01			
00098 + 3731	COU847AB	9.8460	1.4	0.8	1.68	0.06			
00115 + 2936	HO1	9.7289	158.2	0.2	1.24	0.01			
00115 + 3556	HDS24	9.7423	355.2	4.9	0.49	0.08			
00121 + 3328	COU649AB	9.7396	352.1	0.9	0.54	0.04			
00162 + 3331	COU651	9.8542	107.9	1.6	0.30	0.03			
00165 + 2918	BU487BC	9.7289	264.1	0.2	2.40	0.03			
00172 + 3317	J869	9.7315	246.9	0.0	1.67	0.00			
00172 + 3317	J869	9.7315	246.9	0.0	1.67	0.00			
00179 + 3435	HDS41	9.7396	283.7	8.5	0.52	0.03			
00209 + 3259	AC1	9.7260	108.3	0.2	1.80	0.01			
00211 + 3539	HU1202	9.7315	195.5	0.2	1.10	0.02			
00241 + 2652	TDS1441	9.7315	136.7	0.5	0.47	0.02			
00241 + 2652	TDS1441	9.7369	135.9	0.3	0.49	0.01			
00261 + 2359	HU407	9.7807	330.1	6.5	1.20	0.46			
00262 + 2827	COU446	9.7260	314.9	0.9	0.87	0.05			
00262 + 2827	COU446	9.7289	311.9	0.7	0.85	0.06			
00269 + 2356	TDS1466	9.7451	20.4	3.1	0.29	0.06			
00270 + 3058	COU653	9.8542	257.6	3.5	0.45	0.02			
00298 + 3650	COU1049	9.7369	37.4	0.4	0.73	0.03			
00310 + 3406	STF33	9.7289	213.1	0.1	2.77	0.00			
00310 + 3406	STF33	9.7315	212.8	0.2	2.76	0.00			
00312 + 3325	HU1009	9.7261	239.7	0.1	1.90	0.01			
00329 + 3551	HO211	9.7807	17.3	15.0	1.65	0.08			
00345 + 3015	COU654	9.7289	31.8	1.1	0.28	0.04			
00352 + 3351	HU1010	9.7261	91.9	0.4	1.11	0.01			
00353 + 2456	TDS1533	9.7369	23.9	0.6	0.64	0.01			
00360 + 3708	COU850	9.7807	309.8	0.9	0.38	0.02			
00360 + 3708	COU850	9.8543	306.9	1.9	0.36	0.04			
00378 + 2913	ES315	9.7343	86.3	0.1	2.26	0.01			
00393 + 3359	COU656	9.7261	153.2	0.3	0.78	0.03			77
00393 + 3359	COU656	9.7289	151.9	0.7	0.79	0.05			
00393 + 3359	COU656	9.7424	151.6	0.7	0.82	0.04			

00394 + 3446	COU657	9.7316	38.0	0.1	1.20	0.00			
00404 + 2504	COU75	9.7369	59.8	0.8	0.46	0.01			
00453 + 3448	COU1204	9.7261	66.1	0.3	0.81	0.01			
00453 + 3448	COU1204	9.7289	67.5	1.2	0.74	0.04			
00453 + 3448	COU1204	9.7316	69.6	0.5	0.78	0.01			
00453 + 3448	COU1204	9.7369	67.2	0.9	0.76	0.03			
00453 + 3448	COU1204	9.7396	70.2	0.7	0.73	0.01			
00453 + 3448	COU1204	9.7397	68.0	1.4	0.73	0.01			
00453 + 3448	COU1204	9.7424	68.3	0.8	0.80	0.03			
00454 + 3434	ES2140	9.7343	232.8	0.1	2.16	0.01			
00464 + 3243	COU748	9.7780	182.2	0.1	1.14	0.01			
00464 + 3243	COU748	9.8460	180.9	1.1	1.11	0.04			
00487 + 3202	TDS1626	9.7451	159.0	0.5	1.17	0.03			
00493 + 3508	COU1208	9.7316	252.2	0.2	1.11	0.01			
00507 + 3357	HO4	9.7343	17.5	0.1	1.99	0.01			
00507 + 3649	COU1052	9.7781	121.5	0.0	0.94	0.00			
00508 + 3203	A922Aa, Ab	9.7261	334.3	0.9	0.55	0.01	-5.3	0.06	(Mason & Hartkopf 2001)
00511 + 2853	COU447	9.7369	38.4	0.3	0.87	0.03			
00511 + 2853	COU447	9.7397	218.5	0.8	0.86	0.03			
00513 + 3543	COU1209	9.7289	333.9	0.8	2.39	0.05			
00513 + 3543	COU1209	9.7807	333.9	0.6	2.41	0.12			
00517 + 3822	COU1053	9.7424	247.2	0.1	3.04	0.02			
00520 + 3154	A924	9.7316	315.6	2.0	0.28	0.03	0.2	0.02	(Hartkopf & Mason 2009)
00521 + 2520	TDS1644	9.8460	0.3	0.0	2.29	0.00			
00527 + 3316	ES316	9.7261	295.6	0.0	2.91	0.00			
00527 + 3316	ES316	9.7343	295.3	0.0	2.89	0.00			
00551 + 2811	A437AB	9.7290	29.4	0.1	2.99	0.01			
00559 + 2817	TDS33	9.7316	236.4	0.0	1.80	0.01			
00561 + 3352	HU1207	9.7261	181.9	2.7	0.32	0.03			
00561 + 3352	HU1207	9.7290	187.5	2.6	0.32	0.02			
00561 + 3352	HU1207	9.7343	186.2	1.4	0.31	0.02			
00567 + 3417	COU659	9.7451	213.9	0.1	1.04	0.01			
01005 + 3718	ES2008	9.7807	43.8	0.0	2.15	0.11			
01014 + 3535	COU854	9.7290	38.1	8.2	0.14	0.20	8.0	0.00	(Hartkopf & Mason 2009)
01041 + 2635	COU351	9.7261	243.2	0.9	0.78	0.05			
01041 + 2635	COU351	9.7290	243.1	3.1	0.82	0.23			
01041 + 2635	COU351	9.7370	241.9	16.9	0.75	0.25			
01041 + 2635	COU351	9.7397	249.3	19.2	0.80	0.03			
01053 + 3117	COU549	9.8461	255.1	0.2	1.30	0.02			
01063 + 3306	TDS1767	9.7316	179.8	0.3	0.95	0.01			
01065 + 2834	VKI2	9.7344	187.7	0.0	2.08	0.00			
01070 + 3014	A929AB	9.7397	126.5	0.8	0.67	0.02			
01070 + 3014	A929AB	9.7424	127.0	0.6	0.67	0.03			
01077 + 3440	COU661	9.7424	319.2	0.2	3.00	0.03			
01088 + 3024	HDS149	9.7261	176.9	10.7	0.38	0.06			

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. V5

01088 + 3024	HDS149	9.7316	186.3	8.8	0.35	0.09			
01093 + 2428	COU78	9.7397	358.5	1.1	0.90	0.04			
01104 + 2952	BU2	9.7290	152.6	0.2	2.10	0.07			
01104 + 2952	BU2	9.7344	152.6	1.5	2.10	0.14			
01106 + 3557	BU1162	9.7808	131.7	4.2	0.30	0.02			
01106 + 3557	BU1162	9.8543	132.8	3.5	0.29	0.04			
01125 + 3747	COU1057	9.7397	174.5	1.5	0.43	0.02			
01125 + 3747	COU1057	9.7751	175.8	5.4	0.44	0.04			
01127 + 3536	DOO27	9.7808	203.0	0.3	1.44	0.07			
01127 + 3536	DOO27	9.8461	203.0	0.1	1.43	0.02			
01131 + 2942	A1260AB	9.7261	59.5	3.2	0.26	0.06	-2.1	0.13	(Olevic et al. 2003)
01146 + 2804	A1904	9.7316	73.0	0.1	1.21	0.01			
01151 + 3416	HU803	9.7290	215.0	8.2	0.90	0.12			
01180 + 3750	COU856	9.7452	21.3	0.7	1.19	0.07			
01191 + 3139	TDS47	9.7316	182.6	0.1	1.28	0.01			
01214 + 3440	POP54AB	9.7290	46.4	0.1	1.30	0.01			
01214 + 3440	POP54AB	9.7344	46.2	0.1	1.29	0.01			
01217 + 3238	COU665	9.7290	172.6	1.0	1.07	0.04			
01217 + 3238	COU665	9.7397	172.9	1.5	1.06	0.02			
01254 + 3353	ES2211	9.7316	224.8	0.0	2.90	0.00			
01255 + 2832	HO310	9.7344	355.9	0.1	1.68	0.00			
01258 + 2733	COU666	9.8461	145.3	2.9	0.40	0.04			
01258 + 2733	COU666	9.8543	147.0	2.7	0.43	0.02			
01286 + 3334	ES319	9.7262	111.5	0.1	2.21	0.01			
01286 + 3334	ES319	9.7344	291.8	0.1	2.21	0.00			
01345 + 3440	A1913AB	9.7344	311.9	0.5	0.40	0.02	32.4	0.14	(Baize 1987)
01349 + 2532	TDS1920	9.7452	246.7	2.2	0.41	0.05			
01349+2532	TDS1920	9.7751	244.5	0.8	0.45	0.05			
01359 + 3304	HLD6	9.7290	293.9	0.0	2.13	0.00			
01379 + 2753	MLB516	9.7262	60.0	0.2	1.79	0.01			
01379 + 2753	MLB516	9.7344	239.2	0.1	1.76	0.02			
01385 + 3448	COU1059	9.7290	127.6	1.2	0.31	0.02			
01385 + 3448	COU1059	9.7370	127.3	0.8	0.31	0.03			
01385 + 3448	COU1059	9.7398	131.0	1.4	0.37	0.02			
01388 + 3453	COU1060	9.8461	185.8	0.5	0.51	0.02			
01391+2656	BU508AB	9.7290	52.9	0.7	0.60	0.04			
01391 + 2656	BU508AB	9.8543	51.7	2.5	0.60	0.05			
01394+3729	COU1216	9.7808	32.2	0.4	1.48	0.07			
01394+3729	COU1216	9.8461	32.2	0.4	1.48	0.04			
01395 + 3310	COU749	9.7317	17.4	0.0	2.31	0.00			
01421 + 3559	TDS59	9.8461	159.7	0.0	1.05	0.00			
01428+3749	COU1062	9.7808	94.1	4.1	0.31	0.02			
01431 + 3426	COU668Aa, Ab	9.7345	253.0	0.4	0.69	0.00			
01431 + 3426	COU668Aa, Ab	9.7398	252.9	0.6	0.70	0.03			
01434 + 3426	COU668Aa, Ab	9.7452	251.8	2.8	0.34	0.05			

ORLOV, GUERRERO, & VOITSEKHOVICH

6

01450 + 2703	COU750	9.8543	26.9	1.2	0.28	0.05	-2.1	-0.06	(Docobo & Ling 2005)
01455 + 3452	HU1031	9.7262	156.1	1.1	1.08	0.05			
01455 + 3452	HU1031	9.7291	336.2	1.7	1.08	0.07			
01455 + 3452	HU1031	9.7345	336.8	0.7	1.08	0.02			
01462 + 3343	HU804	9.7291	68.8	2.8	0.28	0.02	-1.9	-0.13	(Olevic & Jovanovic 2001)
01465 + 2936	COU451	9.8516	74.8	1.6	0.30	0.02			
01475 + 3423	ES2213	9.7262	28.5	0.0	2.56	0.00			
01487 + 3746	COU1065	9.7836	155.0	1.9	0.48	0.02			
01487 + 3746	COU1065	9.8516	155.3	0.5	0.48	0.02			
01491 + 3441	COU751	9.7808	151.1	0.1	1.87	0.09			
01492 + 2815	A2009	9.8517	321.9	0.2	0.86	0.01			
01502 + 2702	BU1313	9.7291	152.9	2.9	0.55	0.02			
01502 + 2702	BU1313	9.7345	154.1	0.7	0.55	0.02			
01508 + 3455	ES2143	9.7291	202.8	0.1	3.00	0.02			
01508 + 3455	ES2143	9.8544	202.0	0.2	3.03	0.01			
01517 + 2657	TDS2028	9.7452	173.0	1.0	0.64	0.02			
01517 + 2657	TDS2028	9.7752	172.6	0.6	0.66	0.02			
01542 + 3607	COU858	9.7809	275.9	0.6	1.05	0.05			
01563 + 2520	COU453	9.7370	280.9	0.8	0.70	0.02			
01579+3310	A1920	9.7291	234.8	0.3	1.75	0.02			
01581 + 3041	TDS2070	9.8462	244.2	0.5	0.67	0.03			
01581 + 3041	TDS2070	9.8544	244.4	0.6	0.67	0.01			
01581+3444	COU859	9.7291	184.2	3.8	0.26	0.04			
01581+3444	COU859	9.7398	181.3	3.4	0.25	0.02			
01586+3334	HDS267	9.7262	166.9	20.0	0.25	0.06			
01588 + 3730	COU1364	9.8517	52.7	0.6	0.49	0.00			
01589+3741	HO10	9.7781	202.3	0.4	2.78	0.04			
01596 + 3044	COU669	9.7371	289.9	0.1	1.00	0.00			
02003 + 2436	COU753	9.7836	97.6	0.1	1.79	0.00			
02021 + 3347	A1924	9.8517	160.1	0.4	0.52	0.01			
02048 + 3110	COU454	9.7453	257.9	0.2	0.98	0.01			
02055 + 3018	COU455	9.7263	104.5	3.8	0.35	0.03			
02055 + 3308	ES322	9.7317	85.0	0.0	2.81	0.00			
02065 + 2650	COU353	9.7291	90.9	4.1	0.54	0.04			
02065 + 2650	COU353	9.7398	86.7	2.8	0.56	0.01			
02077 + 3418	A2012	9.7371	336.7	1.2	0.57	0.03			
02080 + 2618	TDS2132	9.7291	26.8	0.5	1.57	0.05			
02090 + 3540	COU1067	9.7263	34.2	5.4	0.22	0.06			
02099 + 3449	HU1034	9.7752	107.1	27.9	0.33	0.10			
02120 + 3349	COU862	9.7263	97.5	1.5	0.69	0.04			
02128 + 3722	HO497	9.8544	91.1	5.7	0.47	0.04			
02130 + 3129	TDS2161	9.7317	49.9	0.1	0.87	0.01			
02130 + 3129	TDS2161	9.7371	49.1	0.1	0.84	0.01			
02144 + 3454	HU807	9.7291	135.9	3.5	0.70	0.07			
02144 + 3454	HU807	9.8544	145.4	1.8	0.51	0.02			

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. V7

02161 + 3109	COU670	9.7263	134.3	0.9	0.77	0.06			
02161 + 3109	COU670	9.7426	132.5	1.6	0.81	0.03			
02161 + 3501	HU1036	9.7317	158.9	0.7	0.51	0.01			
02184 + 2757	COU354	9.7371	143.7	5.1	0.70	0.08			
02196 + 3315	HU808	9.7809	212.5	1.8	0.48	0.02			
02196 + 3315	HU808	9.8517	213.8	0.5	0.49	0.04			
02201 + 3043	TDS2209	9.7317	157.1	0.0	2.19	0.00			
02212 + 2751	COU457	9.7836	159.6	0.8	0.52	0.02			
02212 + 2751	COU457	9.8462	163.1	0.8	0.49	0.01			
02212 + 2751	COU457	9.8544	161.4	0.9	0.52	0.01			
02217 + 2631	A2014	9.7263	29.7	0.8	1.19	0.06			
02217 + 3441	PTT4BC	9.7317	148.0	0.1	1.81	0.01			
02222 + 3340	COU754	9.7809	79.2	0.6	0.70	0.03			
02222 + 3340	COU754	9.8517	79.2	0.2	0.70	0.01			
02229 + 3445	COU1069	9.7426	297.4	1.3	0.41	0.04			
02249 + 3039	HDS314Aa, Ab	9.7371	279.7	21.7	0.35	0.05	9.9	-0.03	(Ling 2012b)
02255 + 2745	COU458	9.7318	300.8	0.1	1.23	0.01			
02267 + 3207	A964Aa, Ab	9.7318	80.7	5.7	0.24	0.01			
02282 + 2320	HU428	9.8544	39.4	1.6	0.28	0.06			
02292 + 2904	A965	9.7318	213.0	1.1	1.88	0.07			
02333 + 3646	COU1219	9.7782	70.0	0.2	1.12	0.03			
02333 + 3646	COU1219	9.8517	69.1	0.1	1.12	0.01			
02361 + 2924	HDS338	9.7263	308.0	23.9	0.48	0.39			
02363 + 2834	A2022	9.7318	323.7	4.4	1.00	0.17			
02388 + 3325	STF285	9.7263	163.5	1.5	1.66	0.04			
02391 + 2854	ES324BC	9.7318	17.8	0.1	2.65	0.01			
02399 + 3403	YR22	9.7399	290.1	4.7	0.51	0.03			
02407 + 2637	STT43	9.7318	345.5	0.3	0.69	0.01	1.6	0.03	(Scardia et al. 2001)
02431 + 2700	HDS355	9.7371	279.4	79.2	0.42	0.18			
02434 + 3148	A825	9.7292	128.3	0.9	1.88	0.06			
02472 + 3634	COU1072	9.7399	30.9	35.5	0.67	0.00			
02478 + 3103	BU262	9.7263	51.4	1.4	1.72	0.07			
02490 + 3605	COU864	9.8463	63.6	0.3	0.95	0.02			
02492 + 3358	BU523AB	9.7318	205.6	0.1	2.00	0.01			
02500 + 3340	COU673	9.7292	13.2	1.1	0.65	0.05			
02500 + 3340	COU673	9.7371	12.3	1.3	0.65	0.04			
02500 + 3340	COU673	9.7426	12.3	1.9	0.64	0.03			
02501 + 3217	COU674	9.7318	281.7	0.2	1.96	0.02			
02503 + 3230	COU675	9.7782	55.3	0.5	0.55	0.04			
02503 + 3230	COU675	9.7809	55.7	0.5	0.56	0.03			
02503 + 3230	COU675	9.8463	58.3	0.5	0.59	0.02			
02503 + 3230	COU675	9.8545	55.2	0.6	0.56	0.02			
02505 + 2918	MLB637	9.7810	264.1	0.1	1.85	0.09			
02505 + 2918	MLB637	9.8518	263.8	0.1	1.85	0.01			
02524 + 2918	COU554	9.7292	196.7	1.4	0.32	0.03			

8

02524 + 2918	COU554	9.7318	195.9	1.4	0.33	0.03
02538 + 3544	COU866	9.7372	197.9	2.2	0.90	0.06
02542 + 2658	A1929	9.7264	302.3	0.3	2.99	0.06
02542 + 2658	A1929	9.7292	302.2	0.2	3.01	0.03
02557 + 3028	COU555AB	9.7810	280.4	4.5	1.72	0.08
02558 + 3532	HU810	9.7810	18.2	4.7	1.46	0.07
02581 + 3103	COU556	9.7426	318.2	3.9	0.32	0.04
02587 + 3338	TDS2400	9.7372	153.2	0.3	0.78	0.00
03017 + 3455	COU868	9.7264	173.5	0.1	1.20	0.00
03017 + 3455	COU868	9.7292	174.8	0.0	1.16	0.00
03022 + 2326	COU681	9.7399	115.5	37.9	0.74	0.01
03046 + 3238	COU755	9.7346	85.5	1.3	0.54	0.04
03049 + 3446	HU812	9.7292	27.5	3.8	0.33	0.07
03049 + 3446	HU812	9.7372	25.3	3.6	0.34	0.05
03080 + 3251	ES2456	9.7318	97.8	0.1	1.95	0.00
03080 + 3557	HO499	9.7292	235.6	0.5	1.89	0.05
03080 + 3557	HO499	9.7783	234.8	0.7	1.93	0.08
03099 + 3332	COU682	9.7783	138.4	0.1	1.31	0.01
03099 + 3332	COU682	9.7810	137.8	0.1	1.30	0.06
03119 + 3605	HO500AB	9.8518	45.0	0.8	0.70	0.03
03128 + 3003	MLB557	9.7264	115.2	0.1	1.73	0.01
03138 + 3733	AG63AB	9.7372	127.1	0.0	5.13	0.01
03138 + 3733	AG63AB	9.7399	127.3	0.0	5.17	0.02
03138 + 3733	AG63AB	9.7427	127.2	0.1	5.17	0.01
03138 + 3733	AG63AB	9.7753	127.3	0.1	5.14	0.02
03138 + 3733	COU1075Aa, Ab	9.7372	41.2	0.6	0.86	0.04
03138 + 3733	COU1075Aa, Ab	9.7399	40.1	1.0	0.86	0.00
03138 + 3733	COU1075Aa, Ab	9.7427	40.1	0.4	0.85	0.05
03138 + 3733	COU1075Aa, Ab	9.7753	40.2	0.5	0.85	0.05
03150 + 3543	HO502	9.7318	15.5	0.6	0.86	0.03
03161 + 3654	COU1076	9.7783	90.9	0.1	1.17	0.00
03161 + 3654	COU1076	9.7810	91.1	0.2	1.15	0.06
03161 + 3654	COU1076	9.8463	91.3	0.3	1.13	0.01
03162 + 2815	COU557	9.7346	356.6	0.5	0.87	0.01
03162 + 2815	COU557	9.7372	357.4	0.2	0.87	0.01
03166 + 2528	COU558	9.7454	87.0	7.9	0.52	0.10
03176 + 3407	COU1077	9.7427	54.7	1.0	2.46	0.19
03188 + 2617	COU559	9.7753	97.3	0.6	0.69	0.01
03188 + 2617	COU559	9.8518	97.2	0.5	0.69	0.01
03230 + 3521	ES273	9.7264	257.0	0.1	2.83	0.00
03231 + 3234	COU756	9.7318	244.3	0.1	1.51	0.01
03238 + 2605	COU464	9.7346	288.8	1.5	0.39	0.02
03238 + 2605	COU464	9.7372	289.6	1.5	0.39	0.04
03238 + 2605	COU464	9.7399	288.5	1.0	0.38	0.03
03252 + 3837	COU1383	9.7372	281.8	0.4	0.75	0.02

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. \9

10

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
03285 + 3738 $HU1059$ 9.7454 160.8 1.9 0.86 0.06 03297 + 3846 $COU685$ 9.7346 45.9 1.5 0.37 0.03 03297 + 3846 $COU1384$ 9.7400 44.9 1.7 0.38 0.01 03310 + 2937 A983 9.8518 139.7 1.6 0.47 0.02 -0.4 0.00 (Docobo 03317 + 3041 $COU757$ 9.7783 215.0 0.4 0.44 0.04 03333 + 3643 $COU1224$ 9.7783 215.0 0.4 0.44 0.04 03333 + 3643 $COU1224$ 9.7810 215.1 1.1 0.43 0.03 03343 + 2625 $OL152$ 9.8463 49.2 0.5 2.40 0.05 03343 + 2625 $OL152$ 9.8463 49.2 0.5 5.0 0.13 03354 + 3529 $POP83$ 9.8518 272.8 7.0 0.42 0.04 03372 + 2954 $COU6890$ 9.7401 176.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
03317 + 3041 $COU757$ 9.7372 50.3 4.1 0.23 0.06 $03332 + 2817$ $HO14$ 9.7346 205.9 0.2 2.15 0.01 $03333 + 3643$ $COU1224$ 9.7810 215.1 1.1 0.43 0.03 $03333 + 3643$ $COU1224$ 9.8518 214.2 0.6 0.43 0.03 $03343 + 2625$ $OL152$ 9.7810 49.7 0.3 2.32 0.11 $03343 + 2625$ $OL152$ 9.8463 49.2 0.5 2.40 0.05 $03343 + 2625$ $OL152$ 9.8545 49.6 0.3 2.32 0.03 $03349 + 2406$ $COU467$ 9.7427 91.6 0.4 2.03 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7364 199.5 1.4 0.47 0.04 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7264 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03439 + 2313$ $TRC1$ 9.7816 18.8 1.0 0.61 0.55 $03463 + 2850$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03443 + 2513$ $COU51$ 9.7783 161.2 1.3 1.87 0.66 $03456 + 2839$ $OL65$ 9.7347 317.8 0.2 1.69 0.01 $03463 + 2850$ <t< td=""><td>) (Docobo & Ling 2010)</td></t<>) (Docobo & Ling 2010)
03332 + 2817 $HO14$ 9.7346 205.9 0.2 2.15 0.01 $03333 + 3643$ $COU1224$ 9.7783 215.0 0.4 0.44 0.04 $03333 + 3643$ $COU1224$ 9.7810 215.1 1.1 0.43 0.02 $03333 + 3643$ $COU1224$ 9.8518 214.2 0.6 0.43 0.03 $03343 + 2625$ $OL152$ 9.7810 49.7 0.3 2.32 0.11 $03343 + 2625$ $OL152$ 9.8463 49.2 0.5 2.40 0.05 $03343 + 2625$ $OL152$ 9.8545 49.6 0.3 2.32 0.03 $03349 + 2406$ $COU467$ 9.7427 91.6 0.4 2.03 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7264 199.5 1.4 0.47 0.04 $03354 + 252$ $COU688Aa, Ab$ 9.7264 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7400 176.7 12.8 0.22 0.02 $03381 + 3416$ $COV872$ 9.7310 12.4 0.3 1.21 0.04 $03446 + 3210$ $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03456 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2850$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03463 + 2850$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03463 +$	
0333 3643 $COU1224$ 9.7783 215.0 0.4 0.44 0.04 03333 $+ 3643$ $COU1224$ 9.7810 215.1 1.1 0.43 0.02 03333 $+ 3643$ $COU1224$ 9.8518 214.2 0.6 0.43 0.03 $03343 + 2625$ $OL152$ 9.7810 49.7 0.3 2.32 0.11 $03343 + 2625$ $OL152$ 9.8463 49.2 0.5 2.40 0.05 $03349 + 2406$ $COU467$ 9.7427 91.6 0.4 2.03 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7264 199.5 1.4 0.47 0.04 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7264 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7100 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03439 + 2313$ $TRU1$ 9.780 315.4 0.61 0.05 $03463 + 2529$ $COU692$ 9.7427 317.8 0.2 1.02 $03463 + 2529$ $COU693$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU693$ 9.7427 317.8 0.3 2.18 0.06 $03463 + 2529$ $COU693$ 9.7427 317.8 0.3 2.18 0.06 $03463 + 2529$ <	
0333 + 3643 $COU1224$ 9.7810215.11.10.430.0203333 + 3643 $COU1224$ 9.8518214.20.60.430.0303343 + 2625 $OL152$ 9.781049.70.32.320.1103343 + 2625 $OL152$ 9.846349.20.52.400.0503343 + 2625 $OL152$ 9.845449.60.32.320.0303354 + 2406 $COU467$ 9.742791.60.42.030.0403353 + 2651 $COU688Aa, Ab$ 9.7364199.51.40.470.0403354 + 3529 $POP83$ 9.8518272.87.00.420.0403372 + 2954 $COU689$ 9.7000176.712.80.220.0203381 + 3416 $COU872$ 9.7319124.30.31.210.0403439 + 2313 $TRU1$ 9.7810315.40.31.520.0703446 + 3210 $BU880AB$ 9.851818.81.00.610.0503463 + 2529 $COU693$ 9.7454346.80.90.550.0203483 + 2513 $COU81$ 9.8546236.71.51.060.0803439 + 2313 $TRU1$ 9.781931.60.32.180.0603463 + 2529 $COU693$ 9.7454346.80.90.550.0203483 + 250 $COU693$ 9.7454346.80.90.550.0203483 + 250 $COU693$ 9.7454346.80.90.570.04 <td></td>	
03333 + 3643 $COU1224$ 9.8518214.20.60.430.0303343 + 2625 $OL152$ 9.781049.70.32.320.1103343 + 2625 $OL152$ 9.846349.20.52.400.0503343 + 2625 $OL152$ 9.846349.20.42.030.0403353 + 2651 $COU688Aa, Ab$ 9.722419.51.40.470.0403353 + 2651 $COU688Aa, Ab$ 9.7372199.36.50.500.1303354 + 3529 $POP83$ 9.8518272.87.00.420.0403372 + 2954 $COU689$ 9.7400176.712.80.220.0203381 + 3416 $COU872$ 9.7319124.30.31.210.0403414 + 2602 $TDS2629$ 9.8464268.70.91.420.0403439 + 2313 $TRU1$ 9.7810315.40.31.520.0703464 + 2210 $BU880AB$ 9.851818.81.00.610.0503456 + 2839 $COU692$ 9.7427317.80.21.690.0103463 + 2520 $COU561$ 9.7783161.21.31.870.0603463 + 2530 $COU693$ 9.7454346.80.90.550.0203484 + 2313 $COU81$ 9.8546236.71.531.0403463 + 2850 $COU693$ 9.7783181.21.31.870.0603463 + 2830 $MLB684$ 9.8742236.60.31.530.04 <td></td>	
03343 + 2625 $OL152$ 9.7810 49.7 0.3 2.32 0.11 $03343 + 2625$ $OL152$ 9.8463 49.2 0.5 2.40 0.05 $03343 + 2625$ $OL152$ 9.8455 49.6 0.3 2.32 0.03 $03349 + 2066$ $COU467$ 9.7427 91.6 0.4 2.03 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7372 199.3 6.5 0.50 0.13 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7400 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03439 + 2313$ $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03464 + 3210$ $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03463 + 2529$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2530$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03438 + 2513$ $COU81$ 9.8546 236.7 1.53 1.60 0.8 $03493 + 230$ $MLB684$ 9.7783 29.89 0.6 1.53 0.04 $03493 + 230$ $MLB684$ 9.7783 29.89 0.6 1.53 0.04 $03493 + 230$ $MLB684$ 9.7783 29.89 0.6 1.53 0.04 $03509 + 2309$ <	
03343 + 2625 $OL152$ 9.8463 49.2 0.5 2.40 0.05 $03343 + 2625$ $OL152$ 9.8545 49.6 0.3 2.32 0.03 $03349 + 2406$ $COU467$ 9.7427 91.6 0.4 2.03 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7322 199.3 6.5 0.50 0.13 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7264 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7264 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7401 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03414 + 2602$ $TDS2629$ 9.8464 268.7 0.9 1.42 0.04 $03439 + 2313$ $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03465 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03435 + 2529$ $COU561$ 9.7783 161.2 1.3 1.87 0.06 $03434 + 250$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03434 + 253$ $COU611$ 9.7783 298.9 0.6 1.53 0.04 $03491 + 3216$ $STT516$ 9.7373 298.9 0.6 1.53 0.04 $03491 + 2309$ <	
03343 + 2625 $OL152$ 9.8545 49.6 0.3 2.32 0.03 $03349 + 2406$ $COU467$ 9.7427 91.6 0.4 2.03 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7264 199.5 1.4 0.47 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7372 199.3 6.5 0.50 0.13 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7264 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7400 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU7872$ 9.7319 124.3 0.3 1.21 0.04 $03414 + 2602$ $TDS2629$ 9.8464 268.7 0.9 1.42 0.04 $03439 + 2313$ $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03466 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2850$ $COU693$ 9.7427 317.8 0.2 1.69 0.01 $03494 + 3216$ $STT516$ 9.7783 298.9 0.6 1.53 0.04 $03493 + 2930$ $MLB684$ 9.7783 298.9 0.6 1.53 0.04 $03493 + 2930$ $MLB684$ 9.7783 298.9 0.6 1.53 0.04 $03509 + 2309$ $COU695$ 9.7374 199.9 0.7 0.57 0.03 035	
03349 + 2406 $COU467$ 9.7427 91.6 0.4 2.03 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7264 199.5 1.4 0.47 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7372 199.3 6.5 0.50 0.13 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7640 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7400 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03414 + 2602$ $TDS2629$ 9.8464 268.7 0.9 1.42 0.04 $03439 + 2313$ $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03446 + 3210$ $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03456 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03483 + 2513$ $COU81$ 9.8546 236.7 1.5 1.06 0.08 $03491 + 3216$ $STT516$ 9.7319 43.6 0.3 1.53 0.04 $03493 + 2930$ $MLB684$ 9.8546 298.6 0.3 1.53 0.04 $03509 + 2309$ $COU695$ 9.7373 199.7 0.55 0.03 $03509 + 2309$	
03353 + 2651 $COU688Aa, Ab$ 9.7264 199.5 1.4 0.47 0.04 $03353 + 2651$ $COU688Aa, Ab$ 9.7722 199.3 6.5 0.50 0.13 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7644 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7400 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03414 + 2602$ $TDS2629$ 9.8464 268.7 0.9 1.42 0.04 $03439 + 2313$ $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03446 + 3210$ $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03456 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03483 + 2513$ $COU81$ 9.8546 236.7 1.53 0.04 $03491 + 3216$ $STT516$ 9.7319 43.6 0.3 1.53 0.04 $03493 + 2930$ $MLB684$ 9.783 29.89 0.6 1.53 0.04 $03509 + 2309$ $COU695$ 9.737 199.9 0.7 0.57 0.03 $03509 + 2309$ $COU695$ 9.737 199.9 0.7 0.57 0.03 $03511 + 3548$ <t< td=""><td></td></t<>	
03353 + 2651 $COU688Aa, Ab$ 9.7372 199.3 6.5 0.50 0.13 $03354 + 3529$ $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7264 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7400 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03414 + 2602$ $TDS2629$ 9.8464 268.7 0.9 1.42 0.04 $03439 + 2313$ $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03446 + 3210$ $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03456 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU561$ 9.7783 161.2 1.3 1.87 0.06 $03463 + 2850$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03483 + 2513$ $COU81$ 9.8546 236.7 1.5 1.06 0.08 $03491 + 3216$ $STT516$ 9.7139 43.6 0.3 1.53 0.04 $03493 + 2930$ $MLB684$ 9.8546 298.6 0.3 1.53 0.04 $03509 + 2309$ $COU695$ 9.7373 199.7 0.4 0.56 0.02 $03509 + 2309$ $COU695$ 9.7373 199.7 0.4 0.56 0.02 $03509 + 2$	
03354 + 3529 $POP83$ 9.8518 272.8 7.0 0.42 0.04 $03372 + 2954$ $COU689$ 9.7264 176.7 6.1 0.27 0.03 $03372 + 2954$ $COU689$ 9.7400 176.7 12.8 0.22 0.02 $03381 + 3416$ $COU872$ 9.7319 124.3 0.3 1.21 0.04 $03414 + 2602$ $TDS2629$ 9.8464 268.7 0.9 1.42 0.04 $03439 + 2313$ $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03446 + 3210$ $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03456 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU561$ 9.7783 161.2 1.3 1.87 0.06 $03463 + 2850$ $COU81$ 9.8546 236.7 1.5 1.06 0.08 $03491 + 3216$ $STT516$ 9.7319 43.6 0.3 2.18 0.06 $03493 + 2930$ $MLB684$ 9.8546 298.6 0.3 1.53 0.04 $03509 + 2309$ $COU695$ 9.7373 199.7 0.4 0.56 0.02 $03509 + 2309$ $COU695$ 9.7754 198.5 0.4 0.55 0.03 $03510 + 3234$ $HU814$ 9.7400 89.1 7.5 0.88 0.01 $03553 + 3538$ $ES2460$ 9.7319 309.7 0.1 3.07 0.01 $03553 + 3538$ <td></td>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
03439 + 2313 $TRU1$ 9.7810 315.4 0.3 1.52 0.07 $03446 + 3210$ $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03456 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU561$ 9.7783 161.2 1.3 1.87 0.06 $03463 + 2850$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03483 + 2513$ $COU81$ 9.8546 236.7 1.5 1.06 0.08 $03491 + 3216$ $STT516$ 9.7319 43.6 0.3 2.18 0.06 $03493 + 2930$ $MLB684$ 9.7783 298.9 0.6 1.53 0.04 $03493 + 2930$ $MLB684$ 9.8546 298.6 0.3 1.53 0.04 $03500 + 2351$ $STT64AB$ 9.7428 233.6 2.3 3.32 0.18 $03509 + 2309$ $COU695$ 9.7373 199.7 0.4 0.56 0.02 $03509 + 2309$ $COU695$ 9.7754 198.5 0.4 0.55 0.03 $03510 + 3234$ $HU814$ 9.7400 89.1 7.5 0.88 0.01 $03520 + 2801$ $COU696$ 9.8546 21.6 2.7 0.26 0.06 $03535 + 3538$ $ES2460$ 9.7319 309.7 0.1 3.07 0.01 $03553 + 3508$ $HU606$ 9.7265 34.2 0.1 3.00 0.01 $03559 + 3209$ <t< td=""><td></td></t<>	
03446 + 3210 $BU880AB$ 9.8518 18.8 1.0 0.61 0.05 $03456 + 2839$ $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU561$ 9.7783 161.2 1.3 1.87 0.06 $03463 + 2850$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03483 + 2513$ $COU81$ 9.8546 236.7 1.5 1.06 0.08 $03491 + 3216$ $STT516$ 9.7319 43.6 0.3 2.18 0.06 $03493 + 2930$ $MLB684$ 9.7783 298.9 0.6 1.53 0.04 $03493 + 2930$ $MLB684$ 9.8546 298.6 0.3 1.53 0.04 $03500 + 2351$ $STT64AB$ 9.7428 233.6 2.3 3.32 0.18 $03509 + 2309$ $COU695$ 9.7347 199.9 0.7 0.57 0.03 $03510 + 3234$ $HU814$ 9.7400 89.1 7.5 0.88 0.01 $03511 + 3548$ $BRT3238$ 9.7319 283.9 0.0 2.45 0.00 $03553 + 3538$ $ES2460$ 9.7319 309.7 0.1 3.07 0.01 $03553 + 3508$ $HU606$ 9.7265 34.2 0.1 3.00 0.01 $03559 + 3209$ $BU540AB$ 9.7319 320.5 0.4 1.36 0.03 $03551 + 3538$ $ES2460$ 9.7319 320.5 0.4 1.36 0.03 $03559 + 3209$ </td <td></td>	
03456 + 2839 $COU692$ 9.7427 317.8 0.2 1.69 0.01 $03463 + 2529$ $COU561$ 9.7783 161.2 1.3 1.87 0.06 $03463 + 2850$ $COU693$ 9.7454 346.8 0.9 0.55 0.02 $03483 + 2513$ $COU81$ 9.8546 236.7 1.5 1.06 0.08 $03491 + 3216$ $STT516$ 9.7319 43.6 0.3 2.18 0.06 $03493 + 2930$ $MLB684$ 9.7783 298.9 0.6 1.53 0.04 $03493 + 2930$ $MLB684$ 9.8546 298.6 0.3 1.53 0.04 $03500 + 2351$ $STT64AB$ 9.7428 233.6 2.3 3.32 0.18 $03509 + 2309$ $COU695$ 9.7347 199.9 0.7 0.57 0.03 $03510 + 3234$ $HU814$ 9.7400 89.1 7.5 0.88 0.01 $03520 + 2801$ $COU696$ 9.8546 21.6 2.7 0.26 0.06 $03535 + 3538$ $ES2460$ 9.7319 309.7 0.1 3.07 0.01 $03553 + 3508$ $HU606$ 9.7265 34.2 0.1 3.00 0.01 $03559 + 3209$ $BU540AB$ 9.7319 320.5 0.4 1.36 0.03 $03511 + 3424$ $COU874$ 9.8546 219.7 2.0 0.29 0.05 $03553 + 3538$ $ES2460$ 9.7319 309.7 0.1 3.00 0.01 $03559 + 3209$ <td></td>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
03553 + 3508 $HU606$ 9.7265 34.2 0.1 3.00 0.01 $03559 + 3209$ $BU540AB$ 9.7319 320.5 0.4 1.36 0.03 $03561 + 3424$ $COU874$ 9.8546 219.7 2.0 0.29 0.05 $03583 + 3245$ $HO505$ 9.7265 197.9 0.4 1.60 0.04	
03559 + 3209 $BU540AB$ 9.7319 320.5 0.4 1.36 0.03 $03561 + 3424$ $COU874$ 9.8546 219.7 2.0 0.29 0.05 $03553 + 3245$ $HO505$ 9.7265 1979 0.4 1.60 0.04	
$03561 + 3424 COU874 \qquad 9.8546 219.7 2.0 0.29 0.05$ $03583 + 3245 HO505 \qquad 9.7265 197.9 0.4 1.60 0.04$	
$0.3583 \pm 3245 HO505 = 0.7265 \pm 107.0 = 0.4 \pm 1.60 = 0.04$	
03503 ± 3243 110503 3.1203 131.3 0.4 1.00 0.04	

04009 + 3618	COU1081	9.8519	26.2	3.5	0.17	0.04			
04010 + 3415	ES237	9.7320	336.8	0.1	2.43	0.01			
04022 + 2808	STF481AB	9.7428	106.2	0.9	2.58	0.15			
04034 + 3414	COU878	9.7265	247.2	4.5	0.28	0.06			
04037 + 3448	TDS2734	9.7320	15.2	0.0	1.72	0.00			
04041 + 3657	COU1392	9.7347	148.3	4.3	0.91	0.08			
04041 + 3657	COU1392	9.7373	147.9	1.5	0.88	0.05			
04041 + 3657	COU1392	9.7400	147.9	1.1	0.90	0.02			
04041 + 3657	COU1392	9.7754	145.6	3.8	0.90	0.08			
04057 + 2824	BU1277AB	9.7784	253.7	0.6	1.54	0.05			
04059 + 3438	ES238	9.7265	137.4	0.1	1.82	0.00			
04062 + 3521	TDS2749	9.7320	145.1	0.5	1.11	0.05			
04066 + 2331	COU564	9.7428	0.7	4.0	1.66	0.21			
04081 + 3407	COU1082	9.8519	57.0	13.5	0.30	0.04			
04087 + 3227	HU1076	9.8519	334.7	0.9	0.45	0.01			
04089 + 2911	BU1232	9.7265	354.8	4.0	0.34	0.03	8.0	-0.07	(Muller 1978)
04091 + 2839	HO326	9.7320	290.7	1.4	0.40	0.03	-1.1	0.00	(Hartkopf et al. 2008 $)$
04095 + 3723	COU1395	9.7400	250.5	0.7	0.65	0.03			
04130 + 3459	COU1225	9.7347	37.8	0.3	0.82	0.03			
04135 + 3617	COU1226	9.7784	245.9	2.3	0.30	0.02			
04135 + 3617	COU1226	9.8465	243.1	2.9	0.31	0.03			
04135 + 3617	COU1226	9.8547	247.6	2.1	0.32	0.01			
04145 + 3342	COU1084	9.7455	53.3	4.8	0.27	0.08			
04158 + 2331	BU86AB	9.7811	49.2	0.1	4.34	0.21			
04159+3142	STT77AB	9.7265	293.3	5.5	0.54	0.05	-1.1	-0.02	(Starikova 1985)
04196 + 3709	COU1396	9.7400	15.6	2.3	0.77	0.00			
04198+3140	COU881	9.7784	30.7	1.3	0.91	0.06			
04202 + 3628	HU1078	9.7811	114.6	3.0	0.44	0.02			
04202 + 3628	HU1078	9.8465	113.9	2.5	0.41	0.04			
04207 + 3637	COU1397	9.7455	222.5	0.3	0.50	0.07			
04245 + 3007	HO15	9.7265	145.1	0.7	0.78	0.02			
04248 + 3015	TDS2842	9.7812	161.1	0.9	1.23	0.06			
04301 + 2515	TDS2873	9.7373	285.7	0.3	1.11	0.02			
04301 + 3324	TDS2872	9.7456	74.2	9.0	0.44	0.10			
04307 + 3041	KU18	9.7784	65.7	0.2	1.39	0.03			
04331 + 2410	GHE13Aa, Ab	9.8547	303.0	6.4	0.38	0.04			
04378 + 3116	COU883	9.7320	59.4	2.6	0.27	0.03			
04395 + 3408	COU1085	9.7401	261.5	1.7	0.50	0.03	0.1	0.12	(Couteau 1999)
04427+2441	COU82	9.7347	180.5	9.8	0.55	0.10			
04427 + 2441	COU82	9.7401	358.4	1.0	0.57	0.04			
04427 + 2441	COU82	9.7755	359.0	1.6	0.57	0.03			
04460 + 2619	COU707	9.7320	204.1	3.4	0.35	0.07			
04460 + 2619	COU707	9.7374	202.7	1.4	0.41	0.05			
04460 + 2619	COU707	9.7401	202.4	1.6	0.37	0.02			
04460 + 2619	COU707	9.7428	201.8	2.2	0.36	0.04			

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. VI

04460 + 2619	COU707	9.7755	203.7	7.8	0.33	0.08	
04464 + 2950	MLB686	9.7784	241.5	0.1	2.17	0.00	
04464 + 2950	MLB686	9.7812	241.6	0.1	2.17	0.11	
04522 + 3613	HDS628	9.7374	338.5	1.3	0.81	0.04	
04536 + 2951	MLB747	9.7320	259.8	0.1	2.04	0.00	
04538 + 3325	COU884	9.7456	163.6	0.3	0.94	0.01	
04571 + 3413	HO16	9.8520	36.6	7.9	0.28	0.08	
04572 + 2457	HDS643	9.7429	328.5	4.0	0.35	0.02	
04580 + 2935	COU 886	9.7429	262.5	2.1	0.65	0.03	
04581 + 2618	COU758	9.7785	143.6	1.9	0.35	0.04	
04581 + 2618	COU758	9.8520	143.9	2.9	0.35	0.02	
04595 + 2516	COU568	9.8520	161.0	0.1	0.80	0.00	
05020 + 2817	A480	9.7755	332.9	14.4	0.73	0.12	
05029 + 2802	COU759	9.7785	258.0	0.2	1.40	0.02	
05043 + 3428	COU1230	9.8520	83.8	5.5	0.31	0.03	
05049 + 3054	COU888Aa, Ab	9.8548	306.5	3.1	0.31	0.03	
05063 + 3739	COU1528	9.8465	69.7	0.6	0.57	0.03	
05078 + 3723	COU1529	9.8466	359.1	0.8	0.51	0.01	
05140 + 3655	POP140	9.7755	171.3	9.0	0.29	0.03	
05147+3236	COU1869	9.8520	137.2	2.9	0.31	0.02	
05208 + 3329	COU1231	9.8548	159.2	2.3	0.63	0.09	
05270 + 3446	HDS715	9.8521	300.0	3.4	0.63	0.06	
05302 + 3646	COU1727	9.8548	261.5	1.5	0.29	0.02	
05550 + 3407	COU1539	9.8521	298.1	0.8	0.44	0.01	
05561 + 2901	HDS801	9.8521	348.4	2.5	0.56	0.04	
05578 + 3704	AG102	9.8466	197.3	0.1	2.98	0.00	
06003 + 3643	COU1872	9.8466	245.2	0.2	0.49	0.02	
06084 + 2709	COU1099	9.8521	14.7	0.5	0.29	0.04	
06100 + 3745	COU1734	9.8467	252.1	2.2	0.43	0.05	
06120 + 3531	HU701	9.8521	31.9	1.7	0.27	0.05	
06294 + 3512	HDS 884	9.8522	163.9	19.7	0.49	0.08	
06389 + 3515	COU1550	9.8467	213.4	0.2	1.33	0.05	
06439 + 3448	COU1551	9.8522	343.7	0.4	0.57	0.01	
06473 + 3640	TDS4135	9.8522	167.4	11.5	0.36	0.14	
06538 + 2828	COU918	9.8549	148.8	2.4	0.28	0.02	
06597 + 3634	COU1880	9.8467	182.3	0.2	1.37	0.01	
07035 + 3415	HU704	9.8522	79.4	13.5	0.31	0.04	
07065 + 3736	COU2062	9.8522	245.8	4.7	0.31	0.01	
07150 + 3731	COU1882	9.8522	61.8	0.7	0.89	0.02	
07173 + 3744	COU1883	9.8523	61.2	1.1	0.68	0.02	
07282 + 3746	COU2070	9.8468	108.9	0.7	0.31	0.03	
07310 + 3644	COU1885	9.8523	352.6	0.7	0.45	0.03	
07325 + 3543	POP105	9.8523	50.0	0.2	0.74	0.01	
07384 + 3742	<i>COU</i> 2071	9.8468	58.3	0.4	1.14	0.01	
07403 + 2621	COU1248	9.8550	288.7	1.6	0.32	0.04	

ORLOV, GUERRERO, & VOITSEKHOVICH

12

- 1										
	07420 + 3655	ES2158AB	9.8468	153.3	0.1	2.76	0.01			
	07420 + 3655	ES2158AB, C	9.8468	322.4	0.3	1.08	0.01			
	07493 + 3541	COU2074	9.8523	118.9	3.2	0.28	0.02			
	08013 + 3613	COU1888	9.8523	161.5	0.5	0.87	0.04			
	18310 + 3115	A247	9.7336	56.7	0.6	3.03	0.09			
	18310 + 3115	A247	9.7336	56.8	0.9	3.02	0.07			
	18335 + 3510	HO86	9.7336	210.3	38.2	0.29	0.09			
	18387 + 2847	L25	9.7337	251.7	0.2	1.26	0.01			
	18406 + 2636	COU641	9.7444	52.3	0.7	0.57	0.02			
	18421 + 2753	TDT1009	9.7283	266.6	1.1	0.56	0.02			
	18465 + 3055	A254	9.7283	48.1	0.2	2.35	0.04			
	18486 + 3016	TDT1064	9.7283	163.0	0.7	0.48	0.01			
	18493 + 3301	ES2287	9.7444	294.9	0.0	3.90	0.02			
	18501 + 3149	A256	9.7309	59.0	0.2	2.86	0.05			
	18514 + 2954	TDT1087	9.7283	203.0	0.1	1.54	0.01			
	18518 + 3105	COU1012	9.7309	238.9	1.5	0.43	0.03			
	19016 + 3253	HU1295	9.7309	223.1	3.3	0.27	0.03			
	19023 + 3328	COU1312	9.7309	231.5	3.3	0.26	0.03			
	19039 + 2642	A2992	9.7309	48.2	4.8	0.24	0.06	-10.0	0.04	(Docobo & Ling 2009)
	19048+2944	TDT1213	9.7309	255.2	0.1	2.24	0.01			
	19060 + 3354	TDS965	9.7309	165.0	0.1	1.36	0.00			
	19066 + 2646	COU722	9.7310	335.2	0.7	1.03	0.03			
	19078 + 3040	STF2465	9.7310	249.3	3.7	1.23	0.14			
	19086 + 3008	TDT1248	9.7445	180.8	0.2	1.48	0.01			
	19101 + 2443	TDT1269AB	9.7364	164.9	1.3	0.44	0.02			
	19108 + 3726	COU1799	9.7417	194.0	0.3	1.40	0.03			
	19129 + 3510	HU942	9.7337	277.7	1.4	1.69	0.13			
	19173 + 3715	HDS2728	9.7418	117.2	4.7	0.78	0.07			
	19203 + 2831	TDS982	9.7283	298.4	0.4	0.74	0.01			
	19203 + 2831	TDS982	9.7445	298.5	0.3	0.75	0.03			
	19221 + 2907	J770	9.7283	14.5	0.0	3.25	0.00			
	19243 + 3156	COU1160	9.7283	196.1	4.7	0.56	0.09			
	19246 + 3535	COU1618	9.7418	31.0	0.7	1.01	0.05			
	19262 + 3542	COU1620	9.7445	296.4	0.9	1.38	0.07			
	19264+3305	COU1317	9.7310	292.6	0.8	0.44	0.03			
	19266+2619	HDS2763	9.7418	207.4	1.8	0.81	0.07			
	19266+2719	STF2525AB	9.7284	289.4	0.2	2.12	0.01	0.1	0.01	(Heintz 1984)
	19282+2942	AG380	9.7284	228.4	0.1	2.46	0.02			
	19291+3515	TDT 1489	9.7284	21.2	0.0	1.17	0.01			
	19334 + 3555	TDT 1540	9.7284	90.9	0.0	2.45	0.00			
	19350+2947	A368	9.7337	152.0	1.7	0.50	0.02			
	19402 + 2611	A272AB	9.7310	193.2	0.2	1.31	0.03			
	19404 + 3118	COU1164	9.7337	329.5	1.9	0.36	0.02			
	19418 + 3056	TDT 1645	9.7445	208.1	0.5	1.11	0.03			
	19498 + 2933	TDT1784	9.7310	56.8	0.1	0.73	0.00			

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. V3 $\,$

19568 + 2718	COU1165	9.7284	76.7	0.5	0.90	0.01			
20001 + 3423	HU1308	9.7338	28.6	1.2	0.46	0.06			
20014 + 3206	COU1472	9.7802	191.0	3.9	1.25	0.06			
20026 + 2859	ES496	9.7310	280.1	0.1	2.97	0.02			
20027 + 2939	COU1473	9.7364	345.8	0.7	0.56	0.01			
20049 + 3334	ES2350AB	9.7310	224.1	0.3	2.40	0.03			
20101 + 2712	TDT2040	9.7284	254.6	0.1	1.81	0.00			
20102 + 2930	TDT2041	9.7311	191.5	0.1	1.18	0.00			
20106 + 3338	STT541BC	9.7338	184.4	7.5	1.75	0.18			
20141 + 3706	A1419	9.7802	33.2	0.9	0.46	0.02			
20173 + 2651	TDT2143	9.7446	111.3	4.0	0.45	0.05			
20211 + 3104	TDT2200	9.7311	54.6	0.0	1.23	0.00			
20218 + 3230	TDT2206	9.7285	214.7	0.1	0.92	0.00			
20234 + 3007	J1772	9.7311	97.2	0.1	2.44	0.01			
20235 + 3618	ES2191	9.7446	181.0	0.6	1.89	0.04			
20242 + 3720	COU2288	9.7802	96.1	3.2	0.35	0.02			
20251 + 3304	ES2353	9.7338	151.5	3.7	1.72	0.45			
20260 + 3512	COU2129	9.8538	340.0	6.2	0.22	0.07			
20302 + 2651	WOR9AB	9.7338	255.5	1.0	0.51	0.02	3.0	0.03	(Zirm 2003)
20321 + 3558	COU2133	9.7285	28.1	0.2	2.37	0.03			
20333 + 2727	HDS2935	9.7285	113.3	1.8	0.48	0.04			
20364 + 3555	TDT2414	9.7419	221.8	1.3	0.87	0.04			
20365 + 3149	TDS1085	9.7256	57.6	0.3	1.51	0.06			
20397 + 3658	A1432	9.8538	117.6	1.2	0.43	0.02			
20416 + 3000	COU1174	9.7392	29.9	1.3	0.30	0.00			
20447 + 2601	HEI 182	9.7285	205.5	0.8	0.93	0.05			
20451 + 3529	COU1809	9.7285	101.9	6.2	0.71	0.07			
20451 + 3529	COU1809	9.7419	102.0	4.6	0.75	0.11			
20490 + 3619	COU1811	9.7392	254.2	1.1	0.74	0.03			
20531 + 2909	STT417AB	9.7285	27.9	0.5	0.90	0.02			
20548 + 3242	STT418	9.7285	283.7	0.4	0.99	0.02	-0.4	0.01	(32)
20548 + 3242	STT418	9.8456	283.8	0.3	0.99	0.02	-0.3	0.00	(32)
20550 + 2805	BU367AB	9.7339	150.4	5.1	0.27	0.05	-10.6	0.06	(Scardia et al. 2003)
20556 + 3809	COU2222Aa, Ab	9.7365	109.1	0.5	0.36	0.03			
20560 + 3546	COU2134	9.7392	258.3	1.8	0.53	0.03			
21000+3740	COU2297	9.7365	56.4	3.4	0.27	0.02			
21004 + 3022	COU1179	9.7339	357.2	0.5	0.87	0.02			
21023 + 2819	COU524	9.7447	257.4	0.2	1.33	0.01			
21061+2801	COU525	9.7285	167.4	0.7	1.03	0.04			
21077+3255	COU1330	9.7365	223.6	1.1	0.37	0.03			
21081 + 2353	TDS1118	9.8456	233.4	0.1	2.12	0.01			
21083+2913	COU1331	9.7285	34.2	1.3	0.31	0.05			
21083+2913	COU1331	9.7392	33.1	1.6	0.30	0.00			
21091+2922	COU1332	9.7286	21.4	2.9	0.21	0.04			
21096 + 2632	COU529	9.7392	217.6	2.4	0.35	0.03			

14

21104 + 3640	TDT2802	9.8538	92.0	0.2	0.49	0.00			
21126 + 3846	COU2136	9.7420	292.6	0.9	0.42	0.04			
21149 + 3702	COU1818	9.7447	30.6	0.6	1.37	0.05			
21151 + 2808	J1154	9.7257	105.6	0.4	1.77	0.04			
21161 + 3747	COU1819	9.7393	328.6	0.6	0.70	0.04			
21176 + 2915	COU835AB	9.7365	235.0	4.4	0.33	0.05			
21186 + 3430	HU769	9.8539	177.0	5.4	0.86	0.08			
21206 + 2743	A295	9.7286	251.1	7.3	0.29	0.03			
21207 + 3327	BU446AB	9.7286	258.3	0.2	3.13	0.04			
21207 + 3327	BU446AB	9.7339	258.2	0.3	3.13	0.04			
21209 + 2720	COU729	9.7257	333.5	5.3	0.26	0.04			
21209 + 2720	COU729	9.7393	315.3	3.8	0.22	0.04			
21223 + 2906	COU532	9.8539	45.8	7.0	0.31	0.08			
21245 + 3015	A1219	9.7257	311.1	0.2	1.46	0.02			
21267 + 3733	HDS3080Aa, Ab	9.7420	95.5	2.0	0.65	0.03			
21305 + 3701	SEI 1521	9.7804	225.1	0.0	2.93	0.14			
21308 + 3446	COU1479	9.7257	141.4	0.3	0.70	0.00			
21334 + 3058	COU732Aa, Ab	9.7365	265.0	2.3	0.51	0.04			
21351 + 2330	TDT3043	9.7448	62.8	0.5	0.74	0.02			
21356 + 3446	COU1481	9.7339	173.4	31.2	0.69	0.20			
21368+3217	COU1184	9.7366	156.8	4.0	0.23	0.01			
21379 + 2743	SKF245AC	9.7420	21.1	1.1	3.22	0.06			
21391 + 3356	COU1185AB	9.7804	55.0	0.1	1.43	0.07			
21395 + 3551	COU 1335	9.7776	295.0	3.0	0.50	0.04			
21439 + 2751	HO166	9.7286	317.3	3.4	0.15	0.11	-17.0	-0.05	(Couteau 1958)
21460 + 3626	HDS3100	9.7776	190.0	9.3	0.49	0.08			
21472 + 2409	HDS3103	9.7421	116.3	4.3	0.56	0.15			
21473 + 3451	COU1482	9.7393	56.1	1.0	0.83	0.01			
21498 + 3455	COU1484	9.7286	348.2	1.7	0.40	0.08			
21503 + 3451	ES2200BC	9.7258	181.9	0.1	1.05	0.00			
21503 + 3451	ES2200BC	9.7286	182.5	0.0	1.07	0.00			
21517 + 2856	HLD49	9.7286	340.9	0.2	2.09	0.01			
21559+2347	TDT3246	9.7366	98.8	0.3	0.73	0.02			
21566 + 3053	HDS3119	9.7421	34.5	1.4	0.56	0.06			
21581 + 3650	TDT3263	9.7777	163.5	0.2	0.84	0.01			
21585 + 2601	COU838	9.7393	262.2	14.6	0.22	0.03			
22020 + 2651	HO610AB	9.7258	241.0	0.5	0.65	0.03			
22020 + 2651	HO610AB	9.7340	240.9	0.3	0.64	0.02			
22020 + 3727	A1452	9.7804	288.1	0.2	1.90	0.09			
22023 + 3403	COU733	9.7804	279.1	0.1	1.78	0.09			
22041 + 3546	HDS3133	9.7393	228.9	1.6	0.42	0.03			
22044 + 3343	COU734	9.7448	302.3	1.0	0.61	0.05			
22052 + 2952	A893	9.7340	243.7	4.7	0.20	0.03	-50.9	0.00	$({\rm Baize}\ 1986)$
22059 + 2845	TDT3337	9.7366	151.6	0.4	0.67	0.01			
22063 + 2656	COU435	9.7421	12.2	2.2	1.46	0.10			

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. V5

22077 + 2622	COU537	9.7258	320.3	5.1	0.25	0.03	5.1	0.01	(Docobo & Ling 2012)
22106 + 3544	COU1188	9.7258	40.4	0.6	0.47	0.04			
22106 + 3544	COU1188	9.7287	40.5	0.6	0.45	0.05			
22106 + 3544	COU1188	9.7394	40.3	0.7	0.45	0.00			
22110 + 2429	EGG4	9.7832	149.4	2.2	0.57	0.03			
22127 + 3540	COU1189	9.7448	190.2	1.2	0.84	0.05			
22131 + 3653	A1458	9.7394	340.2	0.5	0.75	0.04			
22134 + 3123	TDT3410	9.8539	199.9	4.8	0.42	0.10			
22141 + 3123	BU476	9.7287	92.6	0.1	2.81	0.01			
22146 + 2934	STF2881	9.7340	76.8	0.4	1.27	0.01			
22146 + 3133	A1230	9.7804	280.2	1.2	2.28	0.11			
22164 + 3438	COU1191	9.7259	208.5	0.9	0.48	0.04			
22175 + 3338	ES2267	9.7340	232.3	0.3	2.80	0.04			
22195 + 2531	COU436	9.7394	254.7	2.9	0.34	0.03			
22202 + 2931	BU1216	9.7287	277.4	0.4	0.91	0.01	-1.3	0.04	(Ling 2012a)
22221 + 3234	TDT3492	9.7366	329.8	0.3	0.82	0.01			
22230 + 3443	TDT3498	9.7287	159.3	0.5	0.67	0.01			
22230 + 3443	TDT3498	9.8540	159.7	0.8	0.68	0.02			
22231 + 2932	TDT3499	9.7448	53.0	0.9	0.54	0.05			
22269 + 2653	COU539	9.7340	191.4	28.1	0.65	0.35			
22273 + 3822	COU1643	9.7394	346.0	2.2	0.44	0.04			
22278 + 3227	TDT 3533	9.8540	2.3	3.8	0.31	0.02			
22313 + 3820	HDS3193	9.7394	274.5	7.3	0.26	0.03			
22325 + 3500	POP39	9.7287	95.2	0.7	0.64	0.02			
22325 + 3500	POP39	9.7341	95.2	0.4	0.63	0.01			
22332 + 3356	HO293	9.7804	315.6	0.9	1.57	0.08			
22371 + 3712	A1472	9.8540	262.7	8.5	0.25	0.03			
22381 + 2856	TDT3628	9.7805	301.9	1.1	0.49	0.02			
22394+3524	HU779	9.7832	128.7	5.7	0.38	0.06			
22455 + 3359	HU782	9.7287	321.1	0.1	1.98	0.01			
22463 + 3319	HDS3233Aa, Ab	9.7287	126.6	1.4	0.29	0.03			
22463 + 3319	HDS3233Aa, Ab	9.7449	123.7	6.4	0.30	0.04			
22495+3622	COU1196	9.7394	270.3	1.3	0.53	0.03			
22524 + 2819	TDT3763	9.7259	14.0	0.2	1.58	0.01			
22524 + 2819	TDT3763	9.7287	13.4	0.2	1.56	0.02			
22537 + 2558	HDS3254	9.7394	314.4	3.8	0.25	0.04			
22542 + 3333	TDT3775	9.7314	71.8	0.0	2.27	0.00			
22567+3355	COU740	9.7832	108.3	0.7	2.16	0.05			
22567 + 3409	TDT3804	9.7314	337.0	0.1	2.45	0.00			
22587 + 2611	COU543	9.8541	79.9	8.9	0.23	0.04			
22599 + 2749	TDT3830	9.7314	121.5	0.4	0.49	0.02			
23009 + 3522	HU991	9.7259	298.5	0.4	0.84	0.03	-40.1	0.15	(Baize 1985)
23009 + 3522	HU991	9.7287	298.8	0.3	0.84	0.02	-39.8	0.15	(Baize 1985)
23019 + 3642	COU843Aa, Ab	9.7778	132.5	0.0	1.02	0.01			
23039 + 3510	ES2134	9.7805	119.4	0.1	1.54	0.08			

16

23042 + 2438	J211	9.7833	147.9	0.1	2.60	0.01			
23043+3744	COU1197	9.7395	165.1	1.8	0.42	0.02			
23050+3322	STF2974	9.7259	165.7	0.1	2.67	0.01			
23067+3302	COU741Aa, Ab	9.7288	191.3	0.4	0.89	0.03			
23102 + 3540	COU1198	9.7314	257.8	1.2	0.49	0.03			
23102 + 3540	COU1198	9.7341	259.2	0.3	0.49	0.01			
23102 + 3540	COU1198	9.7367	261.6	0.5	0.50	0.01			
23102 + 3540	COU1198	9.7395	259.5	0.9	0.50	0.03			
23102 + 3540	COU1198	9.7422	260.7	2.6	0.49	0.03			
23105 + 2602	TDT3917	9.7259	160.1	0.4	1.19	0.02			
23107 + 2631	BU852BC	9.7314	321.3	0.2	1.28	0.01			
23121 + 2656	HDS3305AB	9.7288	170.5	3.4	1.30	0.12			
23121 + 2656	HDS3305AB	9.7805	169.7	3.5	1.32	0.07			
23167+3441	HDS3315	9.7288	211.9	2.4	0.27	0.05	4.7	0.04	(Cvetkovic 2013)
23167+3441	HDS3315	9.7395	207.1	1.3	0.26	0.02	-0.1	0.03	(Cvetkovic 2013)
23176 + 2726	TDT3969	9.7314	147.0	0.7	0.62	0.01			
23176 + 3315	HU790	9.7341	310.2	0.3	1.17	0.03			
23200 + 2612	COU336	9.7314	358.8	0.0	1.59	0.00			
23204 + 2915	FOX101	9.7259	45.4	0.1	2.37	0.00			
23204 + 2915	FOX101	9.7341	45.7	0.1	2.38	0.00			
23225 + 3554	COU1345	9.7288	226.2	0.4	2.39	0.05			
23225 + 3554	COU1345	9.7806	225.6	0.4	2.37	0.12			
23237 + 3739	A1483	9.8541	323.5	1.7	0.55	0.03			
23249 + 3521	COU1347	9.7314	105.8	0.9	0.54	0.01			
23249+3521	COU1347	9.7368	106.5	0.6	0.54	0.02			
23249 + 3521	COU1347	9.7395	106.5	0.5	0.55	0.01			
23250 + 2656	ES546	9.7260	164.8	0.0	2.35	0.00			
23250 + 2656	ES546	9.7341	165.5	0.1	2.34	0.01			
23280 + 3333	STF3015	9.7288	189.8	0.1	2.91	0.00			
23280 + 3333	STF3015	9.7314	189.5	0.1	2.91	0.00			
23285 + 3153	J3303	9.7341	279.5	0.0	1.51	0.00			
23298+3142	COU544	9.7422	265.3	4.2	1.08	0.07			
23326 + 3127	WNC6AB	9.7314	154.1	1.2	1.77	0.31			
23334+3215	TDT4096	9.7260	100.1	1.5	0.46	0.02			
23334+3215	TDT4096	9.7288	104.8	1.0	0.44	0.02			
23334+3215	TDT4096	9.7368	105.9	1.2	0.45	0.03			
23334+3215	TDT4096	9.7395	105.2	0.8	0.45	0.01			
23334+3215	TDT4096	9.7422	105.6	1.2	0.44	0.02			
23334 + 3215	TDT4096	9.7423	105.3	1.3	0.45	0.02			
23362 + 3226	A1240	9.7833	351.0	0.4	2.11	0.04			
23362 + 3226	A1240	9.7806	350.9	0.3	2.11	0.10			
23368 + 2346	HU498	9.8541	298.2	0.9	0.68	0.04			
23368 + 3045	ES401	9.7806	67.9	0.1	2.33	0.11			
23370 + 3456	ES2208	9.7288	82.6	0.0	2.86	0.00			
23379 + 2510	COU441	9.7395	11.6	0.7	0.70	0.00			

SPECKLE INTERFEROMETRY AT THE OBSERVATORIO ASTRONÓMICO NACIONAL. $\ensuremath{\mathcal{V}}\xspace{7}$

23379 + 2510	COU441	9.7423	10.4	0.9	0.71	0.04
23409 + 3339	HU795	9.7288	227.1	0.3	2.65	0.04
23409 + 3339	HU795	9.7314	227.0	0.3	2.65	0.04
23413 + 3234	BU858AB	9.7342	222.7	0.6	0.85	0.01
23469 + 3553	COU845	9.7368	123.8	0.5	0.49	0.01
23469 + 3553	COU845	9.7395	120.7	0.8	0.49	0.01
23470 + 3538	COU943Aa, Ab	9.7288	101.0	0.1	0.98	0.00
23470 + 3538	COU943Aa, Ab	9.7368	135.9	1.1	0.73	0.03
23472 + 3044	A1244	9.7314	271.6	0.1	2.61	0.01
23472 + 3044	A1244	9.7342	271.6	0.1	2.61	0.01
23487 + 3002	COU644	9.7260	86.7	0.1	2.90	0.02
23504 + 2620	COU545	9.7450	314.8	5.8	0.48	1.04
23511 + 3147	A1246	9.7342	92.6	1.4	0.94	0.06
23516 + 2302	COU245AB	9.7450	52.9	0.4	1.72	0.07
23528 + 3841	A1496AB	9.7395	155.8	1.8	0.40	0.02
23538 + 2404	COU443	9.7806	144.3	0.2	2.24	0.11
23560 + 2815	A425	9.7260	161.3	0.2	1.85	0.01
23560 + 2815	A425	9.7342	160.9	0.1	1.85	0.01
23573 + 2744	A427	9.7342	222.5	0.4	1.83	0.04
23591 + 3416	HO206AB	9.7289	192.1	0.5	2.01	0.12

Capítulo 9

Conclusiones Generales y Trabajo a Futuro

Usando interferometría speckle, hemos iniciado un programa de búsqueda y monitoreo de estrellas binarias en nuestra Galaxia. Hasta ahora hemos reportado mediciones astrométricas para más de 1200 estrellas binarias.

A partir de la metodología de observación y procesamiento de los datos interferométricos que hemos desarrollado, nos propusimos investigar un problema que no puede ser resuelto usando métodos tradicionales de observación, pues se requiere de técnicas de alta resolución espacial. Presentamos los resultados que obtuvimos para el cúmulo abierto ASCC 113, combinando nuestras observaciones con datos obtenidos de la literatura.

Encontramos una razón de estrellas de 27:7 para estrellas individuales y estrellas binarias considerando a los miembros más probables del cúmulo ASCC 113, que equivale a una fracción de multiplicidad de $20.6\% \pm 3\%$. También observamos estrellas del campo en la vecindad del cúmulo, y encontramos una razón de multiplicidades de 125:27:4:1:0:0:0:1 (entre una y ocho compañeras), que se traduce en una fracción de multiplicidad de $20.9\% \pm 1\%$. A partir de estos resultados, concluímos que la fracción de multiplicidad del cúmulo es mucho menor que lo que se ha propuesto en la literatura y es estadísticamente indistinguible de la fracción del campo, aunque no podemos afirmar que la igualdad de las fracciones es primordial o debida a efectos de evolución dinámica. Estimamos que el número de compañeras que no pudimos

detectar debido a las limitaciones propias de la técnica, es pequeño.

Hicimos una profunda revisión de la literatura para buscar estudios previos de multiplicidad estelar en cúmulos abiertos, pero encontramos que hay muy pocos y sólo se centran en los cuatro cúmulos más cercanos al Sistema Solar. Nos dimos cuenta que las técnicas que se han empleado en esos estudios son fotométricas o numéricas, y las conclusiones a las que llegan hacen inferencias, suposiciones y análisis muy diferentes, por lo que es imposible extraer una conclusión general. Sin embargo, los pocos estudios de alta resolución espacial que se han hecho, en particular en el cúmulo de la Híadas, llegan a conclusiones parecidas a las nuestras, a saber, que la fracción de multiplicidad del cúmulo está alrededor del 20%. Nosotros concluímos que la fracción en los cúmulos es mucho menor que las estimaciones previas y es muy parecida a la fracción del campo.

Basados en la literatura, concluímos que la secuencia de binarias que se ha propuesto históricamente no puede reproducir de ninguna manera las características que se observan en el CMD, pues el contenido de binarias en los cúmulos abiertos es en realidad pequeño.

Comentamos también acerca del controvertido tema de la multiplicidad en la Vía Láctea, y concluímos que la mayoría de las estrellas de la Galaxia probablemente no son binarias o múltiples, al menos en el intervalo de separaciones angulares y rangos dinámicos que hemos explorado.

Hay mucho trabajo a futuro; tenemos una cantidad muy importante de datos acumulados de temporadas de observación de binarias que no hemos procesado, y que publicaremos poco a poco.

Debemos observar más cúmulos abiertos para determinar sus fracciones de multiplicidad y comparar con nuestros resultados.

Un trabajo que excede las limitaciones de esta tesis, y que sin embargo es de suma importancia, es dar una nueva interpretación a la secuencia de binarias. En nuestra investigación concluímos que las estrellas binarias no pueden explicar esta característica morfológica de los diagramas CDM, porque no encontramos tales estrellas en cantidad suficiente. Sin embargo, tenemos que proponer una explicación alternativa, que de ninguna manera será trivial.

Bibliografía

- Abetti, G. 1912, MmSS, 1, 178
- Allen, C., Poveda, A. & Herrera, M. A. 2000, A&A, 356, 529
- Allen, C. & Monroy-Rodríguez, M. A. 2013, ApJ, in press
- Alzner, A. 2001, Inf. Circ., 144
- Andrievsky, S. M., Bersier, D., Kovtyukh, V. V., et al. 2002 A&A, 384, 140
- Arellano Ferro, A. & Parrao, L. 1988 Reporte Técnico 57, IA-UNAM.
- Aristidi, E. et al. 1999, A&AS, 134, 545
- Atkinson, R. dE. 1937, Observatory, 60, 299
- Avila, R., Cruz-González, I., & Tapia, M. 2003, RevMexAA CS, Conference Series, 19, 121
- Bagnuolo, Jr., W. G., Mason, B. D., Barry, D. J.; Hartkopf, W. I. & McAlister, H. A., 1992, AJ, 103, 1399
- Baize, P. 1981, A&AS, 44, 199
- Baize, P. 1984, A&AS, 56, 103
- Baize, P. 1985, Inf. Circ., 97
- Baize, P. 1989a, Inf. Circ., 107
- Baize, P. 1989b, A&AS 78, 125

- Baize, P. 1991, A&AS 87, 49
- Baize, P. 1992a, Inf. Circ., 116
- Baize, P. 1992b, Inf. Circ., 117
- Baize, P. 1993a, A&AS 99, 205
- Baize, P. 1993b, Inf. Circ. 120
- Baize, P. 1993c, Inf. Circ. 121
- Baize, P. 1994, A&AS 106, 267
- Baize, P. & Petit, M. 1989, A&AS, 77, 497
- Balega, I. I., Balega, Y. Y., Hofmann, K.-H., Malogolovets, E. V., Schertl, D., Shkhagosheva, Z. U., Weigelt, G. 2006, A&A, 448, 703
- Barbon, R. & Hassan, S. M. 1973, A&AS, 10, 1
- Bate, M. R. 2009, MNRAS, 392, 590
- Bate, M. R. 2012, MNRAS, 419, 3115
- Bellazzini, M., Pecci, F. F., Messineo, M., Monaco, L., & Rood, R. T. 2002, AJ, 123, 1509
- Bica, E. & Bonnato, C. A&A, 431, 943
- Bolte, M. 1991, ApJ, 376, 514
- Bolte, M. 1992, ApJS, 82, 145
- Bouvier, J., Rigaut, F. & Nadeau, D. 1997, A&A, 323, 139
- Bouvier, J., Duchêne, G., Mermilliod, J.-C. & Simon, T. 2001, A&A, 375, 989
- Bouy, H. et al. 2006, ApJ, 637, 1056
- Brandner, W. & K
 ehler, R. 1998, ApJ, 499, 79
- Brendley, M. & Hartkopf, W. I. 2007, IAUDS Inf. Circ., 163
- Bressert et al. 2010, MNRAS, 409, 54
- Brummelaar, T. 2000, AJ, 119, 2403
- Christou, J. C., Hege, E. K., Freeman, J. D., & Ribak, E. 1986, JOSA A, 3, 204
- Clark, L. L., Sandquist, E. L. & Bolte, M. 2004, AJ, 128, 3019
- Couteau, P. 1958, Journal des Observateurs, 41, 91
- Couteau, P. 1960, Journal des Observateurs, 43, 41
- Couteau, P. 1990, Inf. Circ., 112
- Couteau, P. 1995, Catalogue de 2700 etoiles doubles, Observatoire de la Cote dÁzur, Departement: Augustin FRESNEL URA 1361, 2eme Edition Revisee http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/209A
- Crawford D. L. & Mander, J. 1966, AJ, 71, 114
- Crawford, D. L. & Barnes, J. V. 1970, AJ, 75, 978
- Crawford, D. L. 1975, AJ, 80, 955
- Crawford, D. L. 1979, AJ, 84, 1858
- Cvetković, Z., & Novaković, B. 2006, Serb. Astron. J., 173, 73
- Cvetkovic, Z. 2010, IAUDS, Inf. Circ., 172
- Daley, J. A. 2008, JDSO, 4, 34
- Daniel, S. A., Latham, D. W., Mathieu, R. D. & Twarog, B, A. 1994, PASP, 106, 281
- Delfosse, X. et al. 2004, ASPC, 318, 166
- De Rosa, R. J. et al. 2011, MNRAS, 415, 854

- Docobo, J.A. & Ling, J.F. 1994, Inf. Circ. ,124
- Docobo, J.A. & Ling, J.F. 1998a, Inf. Circ., 135
- Docobo, J.A. & Ling, J.F. 1998b, Inf. Circ., 136
- Docobo, J.A. & Ling, J.F. 2002, Inf. Circ., 147
- Docobo, J.A. et al. 2000, AJ, 119, 2422
- Docobo, J.A., & Ling, J.F. 2003, A&A, 409, 989
- Docobo, J. A., Tamazian, V. S., Andrade, M., Ling, J. F., Balega, Y. Y., Lahulla, J. F., & Maximov, A. A. 2008, AJ, 135, 1803
- Duchêne, G. 1999, A&A, 341, 547
- Duchêne, G., Bouvier, J., Simon, T., Close, L. & Eislöffel, J. 1999, ESOC, 56, 185
- Duchêne, G. & Bouvier, J. 2008, ESOC, 56, 185
- Duchêne, G., Bouvier, J., Moraux, E., Bouy, H., Konopacky, Q. & Ghez, A. M. 2013, A&A, 555, 137
- Duchêne, G. & Kraus, A. 2013, ARA&A, 51, 269
- Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485
- Eggleton, P. P. & Tokovinin, A. A. 2008, MNRAS, 389, 869
- Elmegreen, B. G. 1999, ApJ, 515, 323
- Erceg, V. 1975, Bull. Obs. Astron. Belgrade, 126, 50
- The Hipparcos and Tycho Catalogues, ESA SP-1200 (Noordwijik: ESA)
- Geller, A. M. & Mathieu, R. D. 2012, AJ, 144, 54
- Geller, A. M., Hurley, J. R. & Mathieu, R. D. 2013, AJ, 145, 8
- Gili, R. & Prieur, J.-L. 2012, AN, 333, 727

- Gizis, J. E. et al. 2003, AJ, 125, 3302
- Goodman, J., & Hut, P. 1993, ApJ, 403, 271
- Goodwin, S. P. 2010, RSPTA, 368, 851
- Guerrero, C. A., Orlov, V. G., Monroy-Rodríguez, M. A. & Voitsekhovich, V. V 2014, AJ, 147, 28
- Hartkopf, W.I. et al. 2000, AJ, 119, 3084
- Hartkopf, W.I. & Mason, B.D. 2001, IAUDS Inf. Circ., 145
- Hartkopf, W.I., & Mason, B.D., 2003, Sixth Catalog of Orbits of Visual Binary Stars, US Naval Observatory, Washington. Electronic version http://ad.usno.navy.mil/wds/orb6.html
- Hartkopf, W.I., Mason, B.D., & Rafferty, T. 2008, AJ, 135, 1334
- Hartkopf, W.I. & Mason, B.D. 2009, AJ, 138, 813
- Hartkopf, W.I. & Mason, B.D. 2011, AJ, 142, 56
- Hebb, L., Wyse, F. G. R., and Gilmore, G. 2004, AJ, 128, 2881
- Heintz, W.D. 1965, Veroff. Sternw. Munchen, 7, 714
- Heintz, W.D. 1975, ApJS, 29, 331
- Heintz, W.D. 1982, A&AS, 47, 569
- Heintz, W.D. 1994, AJ, 108, 2338
- Heintz, W.D. 1995, ApJS, 99, 693
- Heintz, W.D. 1998, ApJS, 117, 587
- Hennebelle, P. & Teyssier, R. 2008, A&A, 447, 25
- Hesser, J. E., McClure, R. D., Fletcher, J. M. & Pryor, C. 1990, BAAS, 22, 1284

- Høg, E. et al. 2000, A&A, 357, 367
- Hoag, A. A. & Applequist, N. L. 1965, ApJS, 12, 215
- Hummel, C. A. et al. 1998, AJ, 116, 2536
- Hurley, J. R., Aarseth, S. J. & Shara, M. M. 2005, ApJ, 665, 707
- Jeffers, H. M., van de Bos, W. H. & Greeby, F. M. 1693, Index Catalogue of Visual Double Stars (Mt. Hamilton: Lick Observatory)(IDS)
- Jeffery, E. J. 2009, IAUS, 258, 141
- Johnson, H. L. 1968 Nebulae and Interstellar Matter (University of Chicago), 167
- Joshi, U. C., Sagar, R. & Pandey, P. 1975, Pranama, 4, 160
- Jun, J. & Bregman, J. N. 2013, ApJ, 768, 158
- Kähler, H. A&A, 346, 67
- Kharchenko, N. V. 2001, KFNT, 17, 409
- Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 2004, AN, 325, 740
- Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E. & Scholz, R.-D. 2005, A&A, 440, 403
- Kiyaeva, O. V., Kiselev, A. A. & Izmailov, I. S. 2008, AstL, 34, 405
- Klessen, R. S., Burkert, A. & Bate, M. R. 1998, ApJ, 501, 205
- Kouwenhoven, M. B. N., Brown, A. G. A., Zinnecker, H., Kaper, L. & Portegies Zwart, S. F. A&A, 2005, 430, 137
- Kraus, A. L., Ireland, M. J., Martinache, F. & Hillenbrand, L. A. 2011, ApJ, 731, 8
- Kroupa, P. 1995, MNRAS, 277, 1522
- Kuiper, G. P. 1935, PASP, 47, 15

- Labeyrie, A. 1970, A&A, 6, 85
- Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57
- Lada, C. J. 2006, ApJ, 640, 63
- Latham, D. W. 2002, AJ, 124, 1144
- Lépine, S. & Bongiorno, B. 2007, AJ, 133, 889
- Lester, J. B., Gray, R. O. & Kurucz, R. I. 1986, ApJ, 61, 509
- Li, Z., Mao, C., Chen, L. & Zhang, Q. 2012, ApJ, 761, 22
- Lindroos, K. P. 1980, Report 17, Stockholms Observatorium, Sweden
- Ling, J.F. 1999, Inf. Circ., 137
- Ling, J.F. 2004, IAUDS Inf. Circ., 154
- Lippincott, S.L. 1975, AJ 80, 833
- Lucy, L. B. 2006, A&A, 457, 629
- Mante, R. 1994, Obs. et Travaux, 39, 21
- Mante, R. 1997, Obs. et Travaux, 52, 44
- Mante, R. 1999, Inf. Circ., 138
- Mante, R. 2000, Inf. Circ., 142
- Margon, B. Wilcots, E. & Bolte, M. 1991, BAAS, 23, 948
- Martín, E. L., Barrado y Navascués, D., Baraffe, I., Bouy, H. & Dahm, S. ApJ, 594, 525
- Mason, B. D. et al. 2000, AJ, 120, 1120
- Mason, B.D., Wycoff, G.L., Hartkopf, W.I., Douglass, G.G., & Worley, C.E. 2001, AJ, 122, 3466

- Mazeh, T., Simon, M., Prato, L., Markus, B. & Zucker, S. 2003, ApJ, 599, 1344
- Meibon, S. Mathieu, R. D. & Stassun, K. G. 2006, ApJ, 653, 621
- Mermilliod, J.-C. 1995, ASSL, 203, 127
- Meynet, G., Mermilliod, J. C., & Maeder, A. 1993, A&AS, 98, 477
- Muller, P. 1955, J. Obs., 38, 58
- Muterspaugh, M. W. et al. 2010, AJ, 140, 1623
- Muterspaugh, M. W. et al. 2010, AJ, 140, 1657
- Nissen, P. 1988, A&A, 199, 146
- Oja, T 2003, A&AS, 100, 5910
- Olevic, D. 2002, IAUDS Inf. Circ., 147
- Olevic, D. & Jovanovic, P. 2001, Serbian AJ, 163, 5
- Olevic, D. & Cvetkovic, Z. 2005, RevMexAA, 41, 17
- Olsen, E. H. 1983, A&AS, 54, 55
- Öpik, E. 1924, PTarO, 25, 6
- Orlov, V. G., Voitsekhovich, V. V., Sánchez, L. J., & Garfias, F. 2007, RevMexAA, 43, 137
- Orlov, V. G. et al. 2009, RevMexAA, 45, 155
- Orlov, V. G., Voitsekhovich, V. V., Rivera, J. L., Guerrero, C. A. & Ortiz, F. 2010, RevMexAA, 46, 245
- Orlov, V. G., Voitsekhovich, V. V. & Guerrero, C. A. et al. 2011, RevMexAA, 47, 211
- Orlov, V. G., Voitsekhovich, V. V. & Guerrero, C. A. 2012, RevMexAA, 48, 177

- Orlov, V. 2013, CEAB, 37, 1370
- Orlov, V. G., Guerrero, C. A. & Voitsekhovich, V. V. 2014, RevMexAA, 50
- Pandey, A. K. 1998, Bull. Astoron. Soc. India, 26, 539
- Parker, R. J., Goodwin, S. P., Kroupa, P. & Kouwenhoven, M. B. N. 2009, MNRAS, 397, 1577
- Patience, J., Ghez, A. M., Reid, I. N., Weinberger, A. J. & Matthews, K. 1998, AJ, 115, 1972
- Patience, J., Ghez, A. M., Reid, I. N. & Matthews, K. 2002, AJ, 123, 1570
- Paunzen, E. & Mermilliod, J. C., 2007 WEBDA; A site Devoted to Stellar Clusters in the Galaxy and the Magellanic Clouds (Viena:Institute of Astronomy of the University of Vienna)
- Pluzhnik, E. A. 2005, A&A, 431, 587
- Popovic, G.M. 1970, Bull. Obs. Astron. Belgrade 28, 141
- Popovic, G.M. 1972, Bull. Obs. Astron. Belgrade 29, 31
- Popovic, G.M. 1998, Inf. Circ. 136
- Popovic, G.M. & Pavlovic, R. 1995a, Inf. Circ. 125
- Popovic, G.M. & Pavlovic, R. 1995b, Bull. Obs. Astron. Belgrade 151, 45
- Popovic, G.M. et al. 2000, A&AS 144, 211
- Portegies Zwart, S. F., McMillan, S. L. W. & Makino, J. 2007, MNRAS, 374, 95
- Pourbaix, D. 2000, A&AS 145, 215
- Poveda, A., Allen, C. & Hernández-Alcántara, A. 2007, IAUS, 240, 417
- Rajamohan, R. & Mathew, A. 1988, JApA, 9, 107
- Rastegaev, D. A., Balega, Yu. Yu. & Malogolovets, E. V. 2007, AstBu 62, 235

- Rastegaev, D. A. 2010, AJ, 140, 2013
- Reid, I. N. 1987, MNRAS, 225, 873
- Reid, I. N. & Gizis, J. E. 1997, AJ, 113, 2246
- Romani, R. W. & Weinberg, M. D. 1991, ASPC, 13, 443
- Rubenstein, E. P. & Bailyn, C. D. ApJ, 447, 701
- Sandquist, E. L., Shetrone, M., Serio, A. W. & Orosz, J. 2013, AJ, 146, 701
- Sandhu, T. S., Pandey, A. K. & Sagar, R. 2003, A&A, 408, 515
- Scardia, M., Prieur, J.-L., Aristidi, E., & Koechlin, L. 2000, Astronomische Nachrichten, 321, 255
- Scardia, M. Prieur, J. L. Koechlin, L. & Aristidi, E. 2002, IAUDS Inf. Circ., 146
- Scardia, M., 2003, IAUDS Inf. Circ. 149
- Scheiner, J. 1908, POPot, 59
- Seymour, D. et al. 2002, AJ 123, 1023
- Shobbrook, R. R. 1984, MNRAS, 211, 659
- Simon, M. & Obbie, R. C. 2009, AJ, 137, 3442
- Simon, T., Duchêne, G. & Bouvier, J. 2003, CSSS, 12, 998
- Söderhjelm, S. 1999, A&A, 341, 121
- Starikova, G.A. 1977, Astron. Tsirk., 961, 7
- Starikova, G.A. 1983, SvAL, 9, 189
- Starikova, G.A. 1985, Trud. Astron. Inst. Sternberg, 57, 243
- Stobie, R. S., Ishida, K. & Peacock, J. A. 1989, MNRAS, 238, 709
- Tokovinin, A., Mason, B. D., & Hartkopf W. I. 2009, ApJ, 139, 743

- Tokovinin, A. A. & Smekhov, M. G. 2002, A&A, 382, 118
- Tokovinin, A., Mason, B. D. & Hartkopf, W. I. 2010, AJ, 238, 709
- Trimble, V. L. & Ostriker, J. P. 1978, A&A, 63, 433
- Trimble, V. L. 1980, IAUS, 85, 259
- Turner, D. G., 1992, AJ, 104, 1865
- Voitsekhovich, V. V. Sánchez, L. J. Orlov, V. G. Garfias, F. & Benitez, R. 2005, RevMexAA, 41, 399
- Walker, R. L. 1978, BAAS, 10, 410
- Worley, C. E. & Douglass, G. G. 1997. A&AS, 125, 523
- Xin, Y., Deng, L., & Han, Z. W. 2007, AJ, 660, 319
- Zdanavinius, J. & Kazlauskas, A. 2005, Baltic Astronomy
- Zhao, B. & Bailyn, C. D. 2005, AJ, 129, 1934
- Zirm, H. 2003, IAUDS Inf. Circ., 151
- Zulevic, D.J. 1969, Bull. Obs. Astron. Belgrade, 27, 55
- Zulevic, D.J. 1986, Inf. Circ., 98
- Zulevic, D.J. 1995, Inf. Circ., 127
- Zulevic, D.J. 1996, Bull. Obs. Astron. Belgrade, 153, 79
- Zulevic, D.J. 1997, Bull. Obs. Astron. Belgrade, 155, 109