

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Maestría y Doctorado en Ciencias Bioquímicas

COMPOSICIÓN Y ACTIVIDAD DE LOS CENTROS DE REPLICACIÓN DE ADENOVIRUS

TESIS

QUE PARA OPTAR POR EL GRADO DE: Maestro en Ciencias

PRESENTA: PALOMA R. HIDALGO OCAMPO

DR. RAMÓN A. GONZÁLEZ GARCÍA-CONDE FACULTAD DE CIENCIAS-UAEM

DR. SUSANA LÓPEZ CHARRETÓN INSTITUTO DE BIOTECNOLOGÍA-UNAM

DR. ANA LORENA GUTIÉRREZ ESCOLANO CINVESTAV-IPN

CUERNAVACA, MORELOS. Octubre, 2013

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

El presente trabajo fue realizado en el Laboratorio de Virología Molecular de la Facultad de Ciencias de la Universidad Autónoma del Estado de Morelos, bajo la asesoría del Dr. Ramón A. González García-Conde. Durante la realización de este trabajo se contó con una beca otorgada por SEP-CONACyT #153639, con fondos del proyecto SEP-CONACyT #168497 y del programa Research Group Linkage Program de la Fundación Alexander von Humboldt. Se realizó una estancia de investigación en el Laboratorio de Virología Molecular, Instituto Heinrich-Pette, Instituto Leibniz de Virología Experimental, en Hamburgo, Alemania. Para la estancia se contó con una beca mixta otorgada por SEP-CONACyT #290749, con apoyo del proyecto de la Fundación Alexander von Humboldt y del IBT/UNAM.

<u>ÍNDICE</u>

4
5
5
6
7
9
10
11
14 20
20 A
20
20
21
21
22
24
ICACIÓN
30
32
32 ación de
34
35
35
35
35
36
51
51

7 7	7.1.1 EFICIENCIA DE PRODUCCIÓN DE PROGENIE VIRAL EN HFF 7.1.2 EFICIENCIA DE REPLICACIÓN DE DNA VIRAL EN HFF	51 52
7.2	OBTENCIÓN DE FRACCIONES DE CR Y NUCLEOPLASMA (Npl)	54
7.3	EFECTO DE LA FOSFORILACIÓN Y LA SUMOILACIÓN DE LA E1B S	OBRE
LA	ASOCIACIÓN DE mRNA VIRALES TARDÍOS A LOS CR Y SU	
PR	OCESAMIENTO POSTRANSCRIPCIONAL	57
7 7 7	 3.1 VALIDACIÓN DE PRIMERS PARA PCR (PCR PUNTO FINAL) 3.2 RT-PCR punto final: análisis semi-cuantitativo 4.2 RT-PCR tiempo real: análisis cuantitativo 	57 59 66
7.4	EFECTO DE LA FOSFORILACIÓN Y LA SUMOILACIÓN DE LA E1B S	OBRE
LA	S PROTEÍNAS ASOCIADAS A LOS CR	70
LA 7.5	S PROTEÍNAS ASOCIADAS A LOS CR ANÁLISIS DEL EFECTO DE LA FOSFORILACIÓN Y SUMOILACIÓN D	70 E LA
LA 7.5 E1	S PROTEÍNAS ASOCIADAS A LOS CR ANÁLISIS DEL EFECTO DE LA FOSFORILACIÓN Y SUMOILACIÓN D B SOBRE LA COMPOSICIÓN DE LOS CENTROS DE REPLICACIÓN DI	70 E LA E
LA 7.5 E1 AD	S PROTEÍNAS ASOCIADAS A LOS CR ANÁLISIS DEL EFECTO DE LA FOSFORILACIÓN Y SUMOILACIÓN D B SOBRE LA COMPOSICIÓN DE LOS CENTROS DE REPLICACIÓN DI ENOVIRUS 74	70 E LA E
LA 7.5 E1 AD <i>8.</i>	S PROTEÍNAS ASOCIADAS A LOS CR ANÁLISIS DEL EFECTO DE LA FOSFORILACIÓN Y SUMOILACIÓN D B SOBRE LA COMPOSICIÓN DE LOS CENTROS DE REPLICACIÓN D ENOVIRUS 74 DISCUSIÓN	70 E LA E <i>83</i>
LA 7.5 E1 AD 8. 9.	S PROTEÍNAS ASOCIADAS A LOS CR ANÁLISIS DEL EFECTO DE LA FOSFORILACIÓN Y SUMOILACIÓN D B SOBRE LA COMPOSICIÓN DE LOS CENTROS DE REPLICACIÓN D ENOVIRUS 74 DISCUSIÓN CONCLUSIONES	70 E LA E 83 91
LA 7.5 E1 AD 8. 9. 10.	S PROTEÍNAS ASOCIADAS A LOS CR ANÁLISIS DEL EFECTO DE LA FOSFORILACIÓN Y SUMOILACIÓN D B SOBRE LA COMPOSICIÓN DE LOS CENTROS DE REPLICACIÓN D PENOVIRUS 74 DISCUSIÓN CONCLUSIONES PERSPECTIVAS	70 E LA E 83 91 91

12.	APÉNDICE	10.	1
-----	----------	-----	---

ABREVIATURAS

	HERM4140 (Mutanta da adanavirua con 4 cadance da naro on al E'
4	de la regién additioente de E1D 5EK
Ad	Adenovirus Baraulfata da Araguia
APS	Persultato de Amonio
ATM	Ataxia telangiectasia mutated
ATR	ATM and Rad related
BLM	Helicasa Bloom
CAR	Receptor de virus Coxsackie y adenovirus
СВ	Cuerpos de Cajal
CBP	Proteína de unión a CREB
CR	Centros de Replicación
	1' 6-Diamidino-2-Fenilindol
	Protoína adopoviral do upión a DNA do cadopa sopoilla
DBF	Pioteiria aucitovital de utitori a DINA de cadeira Sencina
DEPC	Dietilpirocarbonato
DFC	Componente fibrilar denso
DTT	Ditiotreitol
E	Genes tempranos de adenovirus
FC	Centros fibrilares
GC	Componente granular
Golai	Aparato de Golgi
HEPES	Ácido 4-(2-hidroxietil)-1-ninerazinaetanosulfónico
hni	Horas post-infección
	Interferén
IFN	
IG	Granulos de Intercromatina
IRF	Factor de regulación de interferón
ITR	Repeticiones terminales invertidas
K/kDa	kilo Dalton
L	Genes tardíos de adenovirus
MK	Mock
MI	Major Late
MLP	Promotor Mayor Tardío (Major Late)
MOI	Multiplicidad de Infección
	Mra11 Dad50 Nha1
	Mile I I-Rausu-INDS I
ND10	Dominios nucleares 10
NES	Señal de exportación nuclear
NLS	Señal de localización nuclear
NPC	Complejo del Poro Nuclear
Npl	Nucleoplasma
ORF	Marco abierto de lectura
PAGE	Electroforesis en gel de poliacrilamida
ph	Pares de bases
PBS	Buffer fosfato salino
nM	H5nm4227 (Mutante de adenovirus con la substitución
pm	
DMI	Drate(na da Laucomia Dramialas(tica
PML	Proteína de Leucenna Promielocitica
PP2A	Proteina-fostatasa 2A
pRB	Proteína de retinoblastoma
RE	Retículo Endoplásmico
RISC	Complejo de silenciamiento inducido por RNA
S	Svedberg
SDS	Dodecil sulfato de sodio
SR	Proteínas ricas en serinas y argininas
STAT1	Transductor de señal y activador de la transcrinción 1
SUMO	Modificador pequeño similar a ubiquitina
SUMO (mutanta)	HEnm (102) (Mutanta da adanavirua con la substitución K104P)
	Dispina 102 (Mulanie de adenovirus com la substitución K 104K)
IBP	
TEMED	letrametiletilendiamina
	Antigeno intracelular restringido a células T1
IP	Proteina terminal
TPL	Líder tripartita
U2AF	Factor asociado a U2
UTR	Región no traducida
VA RNA	RNA asociado a virus
v/v	Volumen por volumen
WT	H5ng4100 (Adenovirus tino silvestre)
w/w	Pasa nor volumen
	Teso por volumen Zene periférice de repliceción
ZMR	zona pemerica de replicación

INTRODUCCIÓN

1.1 CLASIFICACIÓN Y GENERALIDADES DE LOS ADENOVIRUS

La familia *Adenoviridae* consiste en aproximadamente 100 serotipos diferentes, divididos en cinco géneros dependiendo de los organismos que infectan (Fields, Knipe et al. 2007). Los géneros *Mastadenovirus* y *Aviadenovirus* comprenden los serotipos que infectan mamíferos y aves, respectivamente. Por otra parte están los géneros *Atadenovirus* y *Siadenovirus*, los cuales infectan un espectro mayor de especies. Los *Atadenovirus* fueron nombrados así como consecuencia del alto contenido en A+T en su genoma e infectan reptiles, aves y rumiantes, y se han encontrado en un marsupial. Los *Siadenovirus* adquirieron su nombre debido a la presencia de un gen que codifica una sialidasa y han sido aislados de aves y de una rana. El quinto género, *Ichtiadenovirus*, consiste de adenovirus que infectan peces (Davison, Benko et al. 2003). Hasta la fecha, 54 serotipos de adenovirus (Ad) humanos han sido identificados y clasificados en 7 especies (A-G) de acuerdo a su homología en secuencia, capacidad de hemaglutinación y en su oncogenicidad en roedores inmunosuprimidos (Schreiner, Wimmer et al. 2012).

Los adenovirus fueron aislados por primera vez en 1953 a partir de tejidos adenoides de humanos (Rowe, Huebner et al. 1953). Son el agente etiológico de algunas enfermedades respiratorias agudas, faringitis, gastroenteritis y conjuntivitis; también se ha demostrado que pueden inducir tumores en roedores de laboratorio. En 1962, Trentin y colaboradores descubrieron por primera vez la capacidad oncogénica de un virus humano al inocular adenovirus serotipo 12 en hámsteres recién nacidos, induciendo la formación de tumores malignos (Trentin, Yabe et al. 1962).

Además de su relevancia como agentes infecciosos, estos virus también han funcionado como modelo para estudiar procesos celulares, como la expresión génica en eucariontes, así como los mecanismos de la virología tumoral. Estudios de células infectadas con adenovirus permitieron el descubrimiento del procesamiento por splicing de mRNA de eucariontes y han brindado diversas perspectivas sobre procesos regulatorios del ciclo celular, genes supresores de tumores, apoptosis y otros procesos asociados con cáncer

(Fields, Knipe et al. 2007). Además, los adenovirus tienen varias características que permiten utilizarlos como vectores en terapia génica, terapia anti-cáncer y vacunación. Son agentes ubicuos; se han aislado de diferentes especies e infectan diferentes tipos celulares, incluso células post-mitóticas. Los adenovirus presentan baja patogenicidad en humanos inmunocompetentes y la mayoría de los adultos han sido expuestos a los serotipos usados más comúnmente en terapia génica (Ad2 y Ad5). Además, estos virus pueden acomodar segmentos relativamente grandes de DNA en su genoma (hasta 32 kb) y producir altos títulos virales en células infectadas (Vorburger and Hunt 2002).

1.2 ESTRUCTURA

Los adenovirus forman partículas no envueltas y se caracterizan por tener una cápside icosaédrica y un genoma de DNA lineal de doble cadena. La cápside de Ad5 (la cepa prototipo de los adenovirus) tiene un diámetro de aproximadamente 90 nm y está compuesta por once proteínas estructurales. La proteína II se organiza en 240 trímeros formando la estructura más abundante de la cápside, conocida como hexón. La proteína III forma una estructura llamada pentón a la que está asociada la proteína IV, la cual forma espículas de fibra que se proyectan desde la superficie de cada uno de los doce vértices. La superficie interna de la cápside tiene asociadas a las proteínas IX, IIIa, VI y VIII. La nucleocápside está formada por las proteínas V, VII, Mu y TP. Las proteínas V, VII y Mu son ricas en argininas, por lo cual pueden interaccionar con las cargas negativas del DNA. El DNA viral se enrolla sobre la proteína VII, la cual es la más abundante de la nucleocápside (Fields, Knipe et al. 2007). Además, dentro de las partículas virales se encuentran aproximadamente diez copias de una proteasa viral (L3 23K), la cual es esencial para el ciclo infeccioso del virus; por una parte ayuda a la maduración de las partículas virales recién sintetizadas por el corte proteolítico de los precursores (p) pIIIa, pVI, pVII, pVII, pMu y pTP y por otro lado permitiendo la entrada del virus a la célula, favoreciendo la salida del endosoma y el desensamble de las partículas virales (Perez-Berna, Marabini et al. 2009).

1.3 EL GENOMA VIRAL Y SUS PRODUCTOS

El genoma de Ad5 tiene una longitud aproximada de 36 kb y como se mencionó anteriormente, es de DNA lineal de doble cadena y en sus extremos 5' se encuentra unida covalentemente la proteína terminal (TP). Ésta ayuda a la localización del genoma asociado a la matriz nuclear y funciona como "primer" en el inicio de la replicación del DNA viral. El genoma posee además secuencias terminales repetidas invertidas (ITR) en sus extremos, las cuales sirven como orígenes de replicación (Fields, Knipe et al. 2007).

El genoma está organizado en unidades transcripcionales tempranas y una unidad tardía. Las unidades tempranas son E1A, E1B, E2, E3 y E4. La unidad de transcripción tardía se llama unidad principal tardía o ML ("Major Late" por sus siglas en inglés). Además existen dos genes, IX y IVa2, cuya transcripción es inducida por el aumento en la concentración de DNA viral, por un efecto de titulación sobre un represor que inhibe su transcripción y por lo tanto se clasifican como tempranos retrasados (Fields, Knipe et al. 2007).

Todas estas unidades son transcritas por la RNA polimerasa II de la célula. También existen dos genes que son transcritos por la RNA polimerasa III, los cuales originan dos transcritos pequeños llamados VA RNA (del inglés Virus Associated RNA) I y II (Fields, Knipe et al. 2007). Por convención, el mapa del genoma de adenovirus se dibuja comenzando con la unidad E1A del lado izquierdo. En la hebra que se lee de izquierda a derecha, se ubican las unidades E1A, E1B, IX, ML, VA RNA y E3. En la hebra complementaria, se ubican E4, E2 y IVa2 en sentido opuesto a las unidades anteriores (Fields, Knipe et al. 2007).

Figura 2. Diagrama de la organización del genoma de Ad5 en unidades transcripcionales. La barra azul marino representa el DNA viral. Las unidades transcripcionales están representadas por flechas: la unidad temprana inmediata E1A, las unidades tempranas E1B, E4, E3 y E2; las unidades tempranas retrasadas IX y IVa2; y la unidad transcripcional tardía ML (Formada por 5 familias L1-L5 y la secuencia del líder tripartita, TPL).

La mayoría de los mRNA de Ad5 son procesados por splicing. Los transcritos de los genes tempranos, sintetizados a partir de diferentes promotores, dan lugar a múltiples mRNA que se producen por splicing alternativo. El transcrito primario para la proteína IX es el único que no es procesado por splicing y el transcrito de IVa2 es el único producto de esa unidad transcripcional (Fields, Knipe et al. 2007).

El producto de la transcripción de la unidad transcripcional tardía ML consiste en un pre-mRNA con aproximadamente 28 kb de longitud procesado por selección diferencial de sitio de poliadenilación. Estos transcritos son procesados por splicing alternativo, generando un mínimo de veinte mRNA diferentes. Estos mRNA se agrupan en cinco familias, llamadas L1 a L5, con base en el uso de un sitio común de adición de poli (A). Cada familia consiste de múltiples mRNA procesados por splicing alternativo que contienen un líder tripartita (TPL) no traducido de 201 nucleótidos en el extremo 5', generado a partir del splicing de tres exones cortos unidos a un exón de mayor tamaño que contiene un marco de lectura abierto (ORF), que generalmente no se encuentra interrumpido por intrones (Fields, Knipe et al. 2007).

8

Muchas de las unidades transcripcionales de adenovirus codifican una serie de proteínas con funciones relacionadas (Fields, Knipe et al. 2007). Las proteínas de E1A son nombradas por el coeficiente de sedimentación del mRNA que las codifica (12S y 13S), las cuales son activadores transcripcionales e inductores de la entrada a fase S del ciclo celular. Las proteínas de E1B y E3 se nombran por su masa molecular; E1B codifica para dos proteínas que bloquean apoptosis y en E3 se encuentran codificadas proteínas que modulan la respuesta de la célula a la infección. Los productos de E2 participan directamente en la replicación del DNA viral y son llamadas de acuerdo a su función: pol (DNA polimerasa viral), DBP (proteína de unión a DNA de cadena sencilla) y TP (proteína terminal). Las proteínas de E4 se designan dependiendo del ORF; ésta es la única unidad que codifica un set de proteínas con funciones no relacionadas. Los productos de E4 participan en la regulación de la transcripción y traducción, splicing y exportación de mRNA virales, así como en la modulación de la replicación del DNA y de la apoptosis. Además, existen dos genes intermedios, IVa2 y IX. El producto de IVa2 es una proteína que participa en la activación del promotor tardío MLP (Lutz and Kedinger 1996). El producto de IX, pIX, es una proteína minoritaria estructural que estabiliza las interacciones de hexón (Boulanger, Lemay et al. 1979) pero además es un activador transcripcional con la capacidad de activar promotores con caja TATA tanto virales como celulares (Lutz, Rosa-Calatrava et al. 1997). Por último, las proteínas codificadas en la unidad transcripcional ML son nombradas por números romanos, de la II a la VIII, y principalmente son proteínas estructurales, o que se requieren para el ensamble de nuevas partículas virales y la expresión de los genes tardíos (Fields, Knipe et al. 2007).

1.4 CICLO DE REPLICACIÓN VIRAL

Para estudiar el ciclo de replicación de adenovirus humanos se han utilizado principalmente los Ad2 y Ad5 (grupo C de *Mastadenovirus*), debido a que estos virus fueron de los primeros en aislarse, son fácilmente amplificados en el laboratorio y a la gran diversidad de mutantes que se han desarrollado (Fields, Knipe et al. 2007).

El ciclo de replicación viral se divide, por convención, en una fase temprana y en una tardía, separadas por el inicio de la replicación del DNA viral. La fase temprana tiene la función general de establecer las condiciones óptimas dentro de la célula para la replicación y expresión eficiente del genoma viral. La fase tardía comienza con el inicio de la replicación del DNA viral. Durante esta fase se expresan los genes virales tardíos y se ensambla la progenie viral.

A pesar de que los términos temprano y tardío son convenientes para describir los eventos que ocurren durante el ciclo de replicación de adenovirus, no son lo más descriptivo para el caso de los genes virales. Los genes virales tempranos continúan expresándose durante la fase tardía y el promotor que controla la expresión de todos los genes tardíos (MLP) dirige una baja tasa de transcripción durante la fase temprana (Fields, Knipe et al. 2007). Los genes virales que codifican para las proteínas IVa2 y IX se expresan en un tiempo intermedio, por lo cual, como se describió antes, se clasifican en una categoría temprana-retrasada.

1.4.1 Entrada a la célula

La entrada del virus a la célula ocurre como consecuencia de la interacción de la proteína fibra con el receptor CAR (Coxsackie B virus and adenovirus receptor) (Nemerow, Pache et al. 2009). CAR es un componente de las uniones estrechas de células epiteliales. Después de esta interacción, la base pentón se une a integrinas $\alpha_v\beta_3$ con una afinidad menor que la interacción de fibra con CAR (Nemerow, Pache et al. 2009). Esto provoca el desprendimiento de fibras del virión y la subsecuente endocitosis del virión mediada por clatrina. Dentro del endosoma continúa un desensamble parcial de la cápside debido a que el bajo pH activa a una proteasa viral asociada al virión. Se liberan las proteínas pentón, IIIa y hexones. Se cree que la liberación de la proteína VI facilita la lisis del endosoma, lo cual libera la nucleocápside al citoplasma, en donde se une a dineínas a lo largo de los microtúbulos para ser dirigida hacia el núcleo. El DNA viral entra al núcleo a través del complejo de poro nuclear (NPC) (Nemerow, Pache et al. 2009).

1.4.2 Expresión de genes virales tempranos

Cada producto viral tiene una o más funciones durante el ciclo de replicación y en la producción de progenie viral; durante la fase temprana del ciclo de replicación viral se establecen las condiciones necesarias en la célula para que ocurra la replicación del genoma viral y se expresen los genes tardíos que codifican las proteínas necesarias para la producción de progenie viral.

E1A: activación de genes virales y celulares

La primera unidad en ser transcrita es E1A debido a que posee un promotor constitutivamente activo. Como se describió arriba, sus principales productos son E1A 12S y E1A 13S que resultan de un procesamiento por splicing diferencial, las cuales tienen cinco regiones conservadas: el N-terminal, CR1 (Región Conservada 1), CR2, CR3 (sólo en 13S) y CR4 (Fields, Knipe et al. 2007).

Las proteínas de E1A no tienen dominios de unión a DNA, pero activan la transcripción a través de interacciones con proteínas celulares reguladoras y factores transcripcionales, como la proteína de retinoblastoma (pRB), los factores de transcripción E2F y la proteína de unión a la caja TATA, TBP (Russell 2000), entre otros.

Los productos de esta unidad transcripcional permiten la liberación del activador transcripcional E2F al unir pRb. E2F fue descubierto en células infectadas con adenovirus y fue llamado así porque se asocia y activa al promotor de la unidad E2 durante la infección por adenovirus (Fields, Knipe et al. 2007). Al liberar la represión de E2F por pRb, éste puede activar tanto a genes virales tempranos como a genes celulares que se requieren para inducir a la célula a entrar a fase S, como la DNA polimerasa α , ciclina A y E, cdc2 y c-*myc*, entre otros (Fields, Knipe et al. 2007).

Además de su papel como activador transcripcional, los productos de E1A causan un aumento en la concentración del supresor tumoral, p53. La forma en la que E1A estimula la acumulación de p53 se debe a la inducción de p19^{ARF}, la cual aumenta los niveles de p53 al inhibir a MDM2, E3 ubiquitina ligasa que induce la degradación de p53 (Fields, Knipe et al. 2007).

11

Inhibición de las defensas celulares

Antagonistas de Interferón y de Interferencia de RNA

Una función adicional de las proteínas de E1A es la inhibición de la acción antiviral de interferón (IFN) a través del N-terminal y CR1. A través de estas regiones, estas proteínas virales tempranas se unen directamente al transductor de señales y activador de la transcripción 1 (STAT1), el cual es un mediador de la transcripción estimulada por IFN. De esta forma, bloquea su unión a las acetilasas de histonas, p300 y CBP, y al factor transcripcional IRF1, requeridos para interaccionar con "enhancers" de sus genes blanco (Fields, Knipe et al. 2007).

Un mecanismo adicional que regula la respuesta antiviral, depende de los RNA VA. Los RNA VA son RNA no codificantes transcritos por la RNA polimerasa III, con una longitud aproximada de 160 bases, que se asocian en estructuras de RNA de doble cadena (dsRNA). Los RNA VA son muy abundantes, acumulándose en aproximadamente 10⁸ copias por célula infectada, y se piensa que podrían saturar o bloquear la actividad de las moléculas celulares con las que interaccionan. Por ejemplo, se sabe que los RNA VA se asocian y presumiblemente saturan la exportina-5, el transportador celular de miRNA de núcleo a citoplasma. El RNA VA I está involucrado en el bloqueo de la cinasa celular PKR. PKR es una serina-treonina cinasa inducible por interferón, activada como parte de la respuesta antiviral (O'Malley, Mariano et al. 1986).

Adicionalmente, los VA RNA participan en la inhibición de la interferencia de RNA. Debido a su estructura similar a los pre-miRNA, los VA RNA se unen y bloquean a Dicer. Sin embargo, un porcentaje bajo (2-5%) de los VA RNA es procesado por Dicer, produciendo miRNA adenovirales llamados mivaRNA (micro VA RNA). Se producen aproximadamente 10⁶ mivaRNA, los cuales pueden unir al complejo RISC (Aparicio, Carnero et al. 2010). El análisis de miRNA asociados a RISC en células infectadas con adenovirus ha mostrado que el 80% corresponde a mivaRNA, lo cual indica que podría existir una saturación del complejo RISC y una disminución en la regulación por miRNA celulares. No se han encontrado genes celulares o virales perfectamente

complementarios a estos mivaRNA, sin embargo por análisis bioinformáticos y genómicos se han identificado genes blanco putativos de estos miRNA virales, como TIA-1 (Aparicio, Carnero et al. 2010).

Inhibición de apoptosis

La actividad de E1A resulta en la activación de defensas celulares que inducen la activación de apoptosis, lo que sería deletéreo para la replicación viral, ya que el virus necesita que la célula se mantenga en un estado proliferante para producir progenie viral. Durante la infección, la proteína E1B 19K es el principal responsable de la inhibición de apoptosis. Esta proteína tiene una secuencia homóloga a la proteína antiapoptótica celular Bcl-2. La E1B 19K posee dos dominios BH que le permiten unirse a Bax y Bak, evitando así la liberación de citocromo C y la subsecuente activación de caspasas 9 y 3 (Fields, Knipe et al. 2007). Por otra parte, las proteínas virales tempranas E1B 55K (E1B) y E4orf6 (Orf6) están relacionadas indirectamente con la inhibición de la apoptosis. Estas proteínas se asocian con las proteínas celulares Culina 5, Elonguinas B y C y Rbx 1, formando un complejo de E3 ubiquitina ligasa (Fields, Knipe et al. 2007). Uno de los blancos de este complejo es p53, el cual es poliubiquitilado para su degradación vía proteasoma. Otros de los substratos degradados, pero independiente de Orf6, es Daxx, la cual también se ha relacionado con la inducción de apoptosis por Fas y por p53. Además la E1B por sí sola también puede unir a p53 en el extremo N-terminal; esta interacción cambia la afinidad de p53 por sus sitios de unión en el DNA y el complejo actúa como un represor de los genes activados por p53 (Fields, Knipe et al. 2007). La Orf6 se asocia también a p53, pero en el extremo C-terminal, bloqueando su actividad (Fields, Knipe et al. 2007).

Inhibición de la respuesta celular de daño al DNA

El genoma de adenovirus, como se describió anteriormente, es una molécula linear de DNA de doble cadena, la cual es reconocida por la maquinaria celular como un fragmento de DNA roto, por lo que se activa la respuesta a daño en DNA de doble cadena. Esta respuesta es inhibida por las proteínas tempranas de adenovirus E4orf3 (Orf3), E4orf6 (Orf6) y E1B 55K (E1B). En mutantes que no expresan E4, se activan las cinasas de respuesta a daño en DNA, ATM y

ATR (Fields, Knipe et al. 2007). Estas cinasas activan a otras proteínas celulares de respuesta a daño en DNA como el complejo MRN (compuesto de Mre11, Rad50 y Nbs1), resultando en la concatamerización del genoma viral, evitando así que sea encapsidado (Fields, Knipe et al. 2007). Se sabe que el complejo de E3 ubiquitina ligasa formado por E1B y Orf6 también poliubiquitila e induce la degradación por proteosoma de Mre11, interfiriendo así con la reparación de DNA (Fields, Knipe et al. 2007).

La proteína Orf3 induce la reorganización de estructuras nucleares que se conocen como cuerpos de PML (Leucemia promielocítica) o Dominios Nucleares 10 (ND10) (descritos más adelante). Estos son sitios de ensamblaje y modificación de complejos proteicos involucrados en la reparación del DNA y en la inducción de apoptosis en respuesta a daño al DNA (Fields, Knipe et al. 2007). Desde la fase temprana del ciclo de replicación viral, Orf3 se acumula en estos dominios nucleares e induce su reorganización, de estructuras con forma punteada a una distribución con apariencia filamentosa tipo hebra (que se han denominado "tracks"). PML es una proteína celular de respuesta a IFN que se localiza y acumula en estos dominios y funciona como proteína de andamiaje para la localización de otros componentes de los ND10. La redistribución de los ND10 inducida en la infección ocurre por la interacción de la Orf3 con la isoforma II de PML y resulta en la reorganización de otros componentes de los ND10 como el represor de la transcripción Daxx, lo que produce una inhibición de la respuesta antiviral inducida por INF. Además, en tiempos tardíos, Daxx es degradada vía proteasoma (Schreiner, Wimmer et al. 2010). La reorganización de los ND10 inicia también la formación de estructuras nucleares en las que se replica y transcribe el genoma viral, llamados Centros de Replicación (CR) viral, como se describirá más adelante.

1.4.3 Replicación del genoma viral y expresión de genes tardíos

Como se describió antes, la unidad transcripcional temprana E2 contiene los genes que codifican para proteínas que actúan a nivel de replicación del DNA. En E2A (promotor temprano de E2) se encuentra el gen que codifica para la proteína de unión a DNA de cadena sencilla, DBP (Russell 2000). En E2B (promotor tardío de E2) se encuentran los genes para la DNA polimerasa viral, Pol, y para la proteína pre-terminal, pTP (Fields, Knipe et al. 2007).

El genoma de los adenovirus codifica pocas proteínas involucradas en su replicación, por lo que se estimula a la célula a entrar a fase S para que se expresen los genes celulares involucrados en la biosíntesis de dNTP y en otros aspectos de la síntesis de DNA (Fields, Knipe et al. 2007).

La replicación del DNA de adenovirus ocurre por un mecanismo de desplazamiento de cadena. Como se mencionó anteriormente, las secuencias ITR (Repeticiones Terminales Invertidas) en ambos extremos del genoma lineal funcionan como orígenes de replicación y las TP unidas covalentemente al 5' de cada cadena, como "primers" para que Pol sintetice nuevas hebras de DNA (Fields, Knipe et al. 2007).

Los factores de transcripción celulares, NFI y Oct-1, ayudan a la replicación al unirse y doblar a la cadena de DNA 82°, facilitando de esta forma el ensamble óptimo del complejo de preinicio. NFI interactúa con Pol y es estimulada por DBP y, Oct-1 se une a TP (Fields, Knipe et al. 2007).

Como se mencionó previamente, la fase tardía comienza con el inicio de la replicación del DNA del virus. Durante esta etapa, los genes tardíos comienzan a expresarse en mayor grado que los bajos niveles observados en la fase temprana de la infección (Fields, Knipe et al. 2007). La transcripción de la mayoría de los genes virales tempranos es reducida y la exportación y traducción de la mayoría de los mRNA celulares son inhibidas.

Como se mencionó antes, la unidad transcripcional tardía contiene al MLP y una secuencia 5' conocida como líder tripartita (TPL), que consta de 201 nucleótidos (Fields, Knipe et al. 2007), la cual se forma por la unión de tres exones (I1, I2 y I3) y está presente en las cinco familias de mensajeros virales tardíos (L1-L5) (Prescott and Falck-Pedersen 1992). El MLP exhibe una baja actividad en tiempos tempranos del ciclo replicativo viral, pero su actividad aumenta más de 100 veces en la fase tardía, con la acumulación de moléculas replicadas del genoma viral (Fields, Knipe et al. 2007). En la fase temprana, la transcripción de ML no procede hasta el final de esta unidad transcripcional, sino que termina en múltiples sitios entre L2 y L3, pero el procesamiento ocurre casi exclusivamente por la selección del sitio de poliadenilación de L1 (Prescott and Falck-Pedersen 1992; Fields, Knipe et al. 2007) (Figura 3).

El pre-mRNA de L1 puede ser procesado por la unión de su sitio de splicing 5' a uno de dos diferentes sitios 3'. Durante la fase temprana del ciclo replicativo viral, sólo está activo el sitio 3' proximal, resultando en la producción casi exclusiva del mRNA L1 52/55K (ver Figura 3). En la fase tardía, ambos sitios 3' están activos resultando en la producción de cantidades casi equivalentes de los mRNA para L1 52/55K y IIIa (Kreivi, Zerivitz et al. 1991). Se conocen algunos aspectos que podrían impedir la selección por IIIa durante la fase temprana. El sitio de splicing 3' tiene una menor afinidad por el factor U2AF que el sitio 3' de 52/55K (Fields, Knipe et al. 2007). Además, un sitio de unión para proteínas SR se sobrepone con el sitio de unión a U2 snRNP en el sitio de ramificación 3'; durante la fase temprana, las proteínas SR fosforiladas impiden estéricamente la unión de U2 snRNP a esta región, por lo tanto, inhiben su procesamiento por splicing (Kreivi, Zerivitz et al. 1991).

Durante la fase tardía, la proteína E4orf4 se une a la fosfatasa celular PP2A, induciendo la fosfatación de proteínas SR y de esta forma liberando la represión del sitio de ramificación de IIIa (Kleinberger and Shenk 1993; Kanopka, Muhlemann et al. 1998). Este sitio de IIIa, además posee una región "enhancer" a la cual se une la proteína viral tardía L4-33K (33K), estimulando el splicing de IIIa mediante un mecanismo que no requiere a U2AF (Lutzelberger, Backstrom et al. 2005; Tormanen, Backstrom et al. 2006).

Al inicio de la fase tardía del ciclo de replicación, comienza la transcripción de los genes IX y IVa2, mientras aumenta la actividad del MLP (Morris, Scott et al. 2010). En la fase tardía, existe una tendencia para procesar por splicing, intrones alternativos más grandes a partir de transcritos virales primarios; al parecer, debido a la titulación de proteínas SR celulares, su fosfatación y la síntesis de la proteína 33K que promueve el splicing de sitios específicos (Morris and Leppard 2009).

La proteína IVa2 activa la transcripción de L4 (Fields, Knipe et al. 2007). Los mensajeros generados se traducen para producir las proteínas 33K y 22K, las cuales son requeridas para aumentar la actividad del MLP y producir los transcritos de las familias tardías L2, L3 y L5 (Morris, Scott et al. 2010).

Leppard y Shenk (Leppard and Shenk 1989) y, Pilder y colaboradores (Pilder, Moore et al. 1986) notaron que en células infectadas con un virus mutante que tiene una deleción en la región codificante de E1B, las tasas de transcripción de los mRNA virales tardíos disminuían precipitadamente a las 40 horas post infección (hpi) (un tiempo muy tardío en el ciclo de replicación viral), en comparación con células infectadas con el virus silvestre. Leppard y Shenk sugirieron que este efecto podría deberse a una falla en la producción de cantidades adecuadas del producto de algún gen tardío, aún no definido, que podría estimular la transcripción tardía.

Recientemente se propuso que debido a la acumulación de los mensajeros de L4 durante el comienzo de la fase tardía previa a la acumulación de los mensajeros de L2, L3 y L5, la expresión de L4 debía estar regulada de forma diferente a las otras regiones de la unidad ML (Morris, Scott et al. 2010). Más recientemente, Morris y colaboradores demostraron que la expresión de L4 22K (22K) y 33K es independiente del MLP, pero dependiente de la presencia de la E1A, Orf3, de la replicación del genoma viral y de la proteína IVa2 (Morris, Scott et al. 2010). La expresión de 22K y 33K depende de un nuevo promotor recientemente identificado y denominado L4P, embebido en la unidad transcripcional ML. Por lo tanto, el L4P desencadena la progresión del ciclo de replicación viral durante la fase tardía (Morris, Scott et al. 2010).

La proteína 22K favorece la transcripción y procesamiento de mRNA virales tardíos y en la regulación de la expresión de las proteínas tardías (Morris and Leppard 2009). La 33K actúa como factor de splicing, regulando varios sitios aceptores de splicing (Morris and Leppard 2009). Por lo tanto, las proteínas de L4, 22K y 33K, tienen efectos complementarios en la expresión de los genes virales tardíos.

Otro producto de L4 es la proteína 100K. En contraste con 22K y 33K, el gen de esta proteína está bajo la regulación del MLP. La proteína 100K es necesaria para favorecer la traducción de los mensajeros virales tardíos. Esta proteína inhibe la síntesis de proteínas celulares al unirse al factor de traducción elF4E. Además, se asocia al líder tripartita de los mensajeros virales tardíos, promoviendo la traducción selectiva y producción de proteínas virales tardías (Fields, Knipe et al. 2007). Por lo tanto, la familia L4 participa en la regulación de la expresión de las demás familias de la unidad ML.

Figura 3. Diagrama del genoma y transcritos de adenovirus. En la figura se muestra un diagrama del genoma adenoviral, mostrando los mRNA por unidades transcripcionales y familias (Fields, Knipe et al. 2007).

Los mRNA virales tardíos están sujetos a un programa de expresión selectiva. Durante su transcripción, la síntesis de mensajeros celulares continúa, pero contrario a los virales, la mayoría no se acumula en el citoplasma, lo cual indica que su exportación está siendo bloqueada (Flint 1986). Esta exportación selectiva es mediada por la interacción de la proteína E1B con Orf6. Infecciones con mutantes que impiden la interacción entre estas proteínas han mostrado una deficiencia en la exportación de mRNA virales tardíos hacia el citoplasma y en el bloqueo de la exportación de mRNA celulares. (Gonzalez and Flint 2002; Gonzalez, Huang et al. 2006). Se sabe que la E1B participa en la exportación selectiva de los mRNA recién sintetizados, posiblemente en un paso temprano de la vía de exportación.

Se ha observado que los mensajeros celulares de Hsp70, entre otros mRNA celulares, expresados a partir de genes cuya transcripción se activa durante la fase tardía del ciclo de replicación, escapan a la inhibición de la exportación inducida por Ad5, pero también dependen de la proteína E1B para ser exportados (Yang, Huang et al. 1996). Hsp70 es un mensajero que no contiene intrones, por lo tanto no es procesado por splicing. Se ha propuesto que un posible mecanismo por el cual adenovirus afecta la exportación de mensajeros celulares es por el secuestro de la maquinaria de procesamiento

postranscripcional, evitando que los mRNA celulares sean correctamente procesados y por lo tanto, interfiriendo con su selección por la maquinaria de exportación (Yang, Huang et al. 1996).

Recientemente se identificó la vía de exportación de Nxf1/Tap-Nxt1/p15 como la responsable de la exportación de mensajeros virales tardíos (Yatherajam, Huang et al. 2011), una vía que no es utilizada por rRNA 5.8S, 28S y 18S.

Se sabe que la exportación de otros tipos de RNA celulares (tRNA, 5S RNA y snRNA transcritos por las RNA polimerasas II y III) no es inhibida en células infectadas por adenovirus (Smiley, Young et al. 1995). Sin embargo, la acumulación citoplásmica de los rRNA 5.8S, 28S y 18S, exportados por CRM1 y transcritos por la RNA polimerasa I, disminuye debido a la infección por Ad5. Además se ha sugerido que los VA RNA podrían saturar la maquinaria de exportación de miRNA que depende de Exportina 5, debido a que se producen del orden de 10⁸ moléculas por célula durante la infección con adenovirus (Mathews 1995; Lu and Cullen 2004). Por lo tanto, el virus podría regular la exportación selectiva de mensajeros virales tardíos independientemente de la forma como regula los RNA ribosomales o los miRNA. Estos datos indican que el virus podría alterar diferentes vías de exportación de RNA por mecanismos independientes, pero estos procesos deben estudiarse con mayor detalle.

Además de la exportación selectiva de los mRNA virales, durante la fase tardía del ciclo de replicación también tiene lugar un proceso de traducción selectiva. Este proceso depende de L4 100K y el VA RNA I (Hayes, Telling et al. 1990; Mathews and Shenk 1991; Cuesta, Xi et al. 2001; Schneider and Mohr 2003). La inhibición de la traducción de los mensajeros celulares resulta por la fosfatación de elF4E, reduciendo la traducción dependiente de cap (Huang and Schneider 1991). Mientras tanto, la región no traducida (UTR) del TPL en los mensajeros virales tardíos promueve un proceso llamado "ribosome shunting" (cambio de vía del ribosoma) dependiente de 3 regiones en esta secuencia que son complementarias al 3' del rRNA 18S (Yueh and Schneider 1996; Yueh and Schneider 2000). Esto ocurre cuando la subunidad ribosomal 40S se une al 5' cap y es transferida directamente al codón de inicio sin que exista la necesidad de escanear la región 5' UTR del líder tripartita (Yueh and Schneider 2000). De

esta forma, se producen muy eficientemente las proteínas tardías estructurales que formarán las nuevas partículas virales.

2. ANTECEDENTES

2.1 FORMACIÓN DE FÁBRICAS VIRALES COMO ESTRATEGIA PARA FAVORECER EL CICLO DE REPLICACIÓN VIRAL Y CONTRARRESTAR LAS DEFENSAS ANTIVIRALES DE LA CÉLULA

Los virus inducen la formación de inclusiones que se organizan en compartimentos especializados en la célula infectada, asociados a membranas celulares, a componentes del citoesqueleto o a dominios nucleares (Ivanovic, Boulant et al. 2011). La formación de estos microambientes depende de la reorganización de componentes celulares y la consecuente regulación de funciones celulares. Estas "fábricas virales" han sido estudiadas sólo en algunas familias virales, pero parece claro que en todos los casos cumplen la función de concentrar factores y regular procesos que son requeridos tanto para la replicación viral como para controlar a la célula infectada.

Se cree que estas fábricas virales generan una plataforma para concentrar el genoma viral, proteínas para su replicación y expresión, y al mismo tiempo separar físicamente estos sitios de replicación de las defensas celulares contra la infección (Netherton and Wileman 2011). Además, en algunos casos se reclutan a estos sitios moléculas que participan en mecanismos de defensa antiviral, secuestrándolas y posiblemente de esta forma evitando que frenen el avance del ciclo de replicación viral.

En células infectadas con virus que se replican en el citoplasma de células infectadas, principalmente virus con genoma de RNA de polaridad positiva, se han realizado análisis estructurales de estos compartimentos virales que han permitido estudiarlos con detalle. Sin embargo, la información estructural de las fábricas virales de virus con genoma de DNA que se replican en el núcleo celular, es menos clara, en parte debido a la complejidad de la arquitectura intranuclear (Erickson, Bouchet-Marquis et al. 2012).

El estudio del ciclo de replicación de los virus ha brindado información única sobre las funciones celulares, como señalización y expresión génica. La

caracterización de estas fábricas virales ha demostrado que diferentes virus no relacionados pueden interferir con procesos celulares comunes para reclutar y formar nuevos compartimentos celulares, en los cuales se establecen complejos de replicación, de expresión génica y sitios de ensamble de progenie viral (Novoa, Calderita et al. 2005).

2.2 ORGANIZACIÓN NUCLEAR EN DOMINIOS ESPECIALIZADOS

El núcleo de las células eucariontes está organizado en dominios especializados, como gránulos de intercromatina (IG), cuerpos de Cajal, ND10 y nucleolo, entre otros. Estos compartimentos o dominios subnucleares contienen moléculas encargadas de la transcripción y el procesamiento postranscripcional de RNA (Dundr and Misteli 2001). Los dominios subnucleares son estructuras con composición definida pero dinámica; su integridad estructural está mediada por interacciones proteína-proteína y proteína-ácidos nucleicos (Misteli 2001) y su función principal es la de concentrar substratos y enzimas para favorecer las reacciones que se llevan a cabo en el núcleo de la célula (Dundr 2012). A continuación se describen los dominios nucleares mejor caracterizados y que se sabe, son reorganizados durante la infección por adenovirus.

2.2.1 Gránulos de Intercromatina (IG)

Los IG o "speckles" son estructuras nucleares en las que se acumulan snRNP y factores de splicing (Lamond and Earnshaw 1998). Los IG se caracterizan por el enriquecimiento del factor SC-35, una proteína rica en serinas y argininas (SR). Esta proteína es relocalizada a los CR durante la infección por adenovirus (Valdés 2011). Se ha visto que el domino SR, presente en proteínas de procesamiento post-transcripcional, es suficiente para la localización de proteínas hacia los IG. Estas estructuras miden entre 0.8 y 1.8 µm de diámetro; en estos sitios también se acumulan mRNA de genes transcritos activamente, por lo cual se ha sugerido que estos sitios podrían participar en la transcripción y maduración de mRNA. Sin embargo, los IG no son los sitios principales de transcripción.

La localización de factores de splicing es dinámica; parecería que la síntesis de pre-mRNA ocurre en sitios de transcripción activa, conocidos como fábricas de

transcripción, dispersos en el nucleoplasma, en asociación con matriz nuclear y que los componentes necesarios para su procesamiento se mueven entre estos sitios de transcripción y los IG. Se ha propuesto que los IG están involucrados en el ensamble y modificación de factores de splicing, no obstante, todavía debe determinarse si los IG funcionan simplemente como almacenes de factores de procesamiento postranscripcional o si participan activamente en algún paso de la síntesis, maduración y transporte de mRNA (Lamond and Earnshaw 1998; Spector 2001).

En células infectadas con adenovirus, la mayoría de los snRNP se acumulan en clusters de IG que se reorganizan y se acumulan alrededor de los CR (Bridge, Carmo-Fonseca et al. 1993; Puvion-Dutilleul, Bachellerie et al. 1994).

Figura 4. Gránulos de Intercromatina (IG). SC-35 detectada con un anticuerpo monoclonal contra proteínas SR. *Fu, X. and Maniatis, T. (1990) Nature 343:437-441.*

2.2.2 Cuerpos de Cajal (CB)

Los factores de splicing, adicionalmente pueden localizarse en los Cuerpos de Cajal. Estos dominios nucleares dinámicos tienen un diámetro de 0.2-1.0 µm y participan en la biogénesis de snRNP y en el transporte de snRNP y snoRNP. Se ha propuesto que estos factores son intercambiados dinámicamente entre los CB y los IG (snRNP) o los nucleolos (snoRNP) (Spector 2001), sin embargo aunque su función parece ser el ensamblaje de snRNP y snoRNP, no está muy claramente definida. Los CB se han relacionado con el nucleolo. En algunas ocasiones, los CB se han observado dentro de estas estructuras nucleares prominentes. Los CB contienen otros antígenos nucleolares, como NOPP140 y p80 coilina. Esta última molécula está enriquecida en los CB, por lo que se usa

como marcador de estos sitios (Lamond and Earnshaw 1998; Spector 2001). La reorganización de los Cuerpos de Cajal durante la infección con adenovirus ocurre durante la expresión de los genes virales tardíos. Análisis por microscopía de inmunofluorescencia muestran que los snRNP se acumulan en los sitios donde hay transcripción (Aspegren and Bridge 2002) y con el avance de la fase tardía del ciclo de replicación viral, los cuerpos de Cajal se desintegran en puntos nucleares, en los que se localiza p80 coilina (Rebelo, Almeida et al. 1996).

Figura 5. Cuerpos de Cajal. Células HeLa teñidas con 5P10, un anticuerpo monoclonal contra p80 coilina. Almeida, F., Saffrich, R., Ansorge, W., Carmo-Fonseca, M. (1998) J. Cell Biol. 142:899-912.

2.2.3 Nucleolo

El nucleolo es la estructura más prominente en el núcleo y es el sitio de síntesis de rRNA y ensamble de las subunidades ribosomales 40S y 60S. La mayoría de las células de mamífero contienen de 1-5 nucleolos, los cuales pueden tener diámetros de 0.5 a 5 μ m (Spector 2001).

El nucleolo se divide en tres regiones morfológicamente y funcionalmente distintas. Los centros fibrilares (FC), donde se encuentran los *loci* de los distintos cromosomas en donde están los genes de rRNA arreglados en tándem. El componente fibrilar denso (DFC), que es una región en donde se encuentran los genes de rRNA que se transcriben activamente y los rRNA recién transcritos. El componente granular (GC), región en la que se llevan a cabo los eventos de procesamiento tardío en la biogénesis de los rRNA (Lamond and Earnshaw 1998).

Existen aproximadamente cuatrocientas proteínas asociadas a estas estructuras, de las cuales el 30% son proteínas no caracterizadas. La nucleolina, una de las proteínas no ribosomales más abundantes, forma aproximadamente el 10% del contenido proteico del nucleolo (Tajrishi, Tuteja et al. 2011). El resto de las proteínas se puede asociar a las funciones que se sabe que son reguladas en el nucleolo, como la biogénesis de ribosomas, metabolismo de mRNA, traducción, regulación del ciclo celular, plegamiento de proteínas y procesamiento de miRNA (Lamond and Earnshaw 1998).

La formación del nucleolo depende de la transcripción de los rRNA y del ciclo celular. En la mayoría de las células eucariontes, su estructura se forma y se desintegra durante cada ciclo mitótico. Por lo tanto, el nucleolo es una estructura dinámica que se forma en respuesta al requerimiento de ensamble de ribosomas (Lamond and Earnshaw 1998).

En células infectadas por adenovirus, se ha reportado que B23 es redistribuida a CR virales y nucleolina es redistribuida, además de que su nivel detectable *in situ* disminuye en células infectadas (Walton, Moen et al. 1989; Matthews 2001). La transfección de la proteína V de adenovirus induce la relocalización de B23 y nucleolina hacia el citoplasma. (Matthews 2001). En experimentos de nuestro laboratorio hemos observado cambios en la localización de nucleolina entre los CR y el nucleoplasma (Valdés 2009).

Figura 6. Nucleolo. Células HeLa teñidas con 72B9, un anticuerpo monoclonal contra fibrilarina. Reimer, G. et al. (1987) Arthritis Rheum. 7:793-800.

2.2.4 Dominios Nucleares 10 (ND10)

Los ND10 son dominios nucleares con un tamaño que varía de 0.3 µm a 1.0 µm de diámetro y generalmente se encuentran de 10 a 30 copias en el núcleo. Estas estructuras están enriquecidas con la proteína de Leucemia Promielocítica (PML), una proteína identificada en este tipo de leucemia, en la que existe una translocación cromosomal que resulta en la fusión del gen del receptor de ácido retinoico con el de la proteína PML. Este dominio nuclear contiene proteínas como Sp100, CBP, p53, Daxx, HAUSP, pRB, eIF4E, la helicasa Bloom (BLM), entre otras. Los ND10 están además enriquecidos con SUMO1, miembro de la familia de ubiquitinas, la cual está unida covalentemente a PML y Sp100 (Lamond and Earnshaw 1998; Spector 2001). Estas estructuras han sido implicadas en la regulación de varias funciones celulares, como la inducción de apoptosis y la senescencia celular, inhibición de la proliferación celular, el mantenimiento de la estabilidad del genoma y la respuesta antiviral, pero las evidencias acumuladas sugieren que los ND10 son sitios en los que se llevan a cabo modificaciones postraduccionales de las proteínas que son reclutadas. Los ND10 son regulados por el estrés celular y también por infecciones virales. Durante la infección, varias proteínas virales, e incluso el genoma viral, pueden encontrarse en los ND10 (Spector 2001).

Figura 7. Dominios Nucleares 10 (ND10). Células HeLa teñidas con DAPI y 5E10, el cual reconoce PML. Imagen del Dr. Alfred Vertegaal en LamondLab.

2.3 CENTROS DE REPLICACIÓN DE ADENOVIRUS Y ACTIVIDADES ASOCIADAS

Durante la infección por adenovirus se induce la reorganización de dominios nucleares, como los ND10, nucleolo, IG, CB. Algunos de sus componentes son reclutados a compartimentos nucleares inducidos por el virus en los cuales se

llevan a cabo la replicación del genoma viral, la transcripción de los genes virales tardíos y al menos el inicio del procesamiento postranscripcional de los mRNA virales tardíos. Estas estructuras virales son inclusiones electrodensas llamadas Centros de Replicación (CR). Los adenovirus poseen mecanismos que les permiten reorganizar los componentes celulares involucrados en replicación, transcripción y procesamiento postranscripcional y reclutarlos hacia las regiones donde se forman los CR. Además de reclutar moléculas necesarias para la expresión del genoma viral, también se asocian a estas estructuras virales, componentes de la maquinaria de reparación de DNA ("Ataxia Telangiectasia Mutated"-ATM, "ATM and Rad3 related"-ATR (Blackford, Bruton et al. 2008), el complejo MRN, formado por Mre11, Rad50 y Nbs1 (Evans and Hearing 2005), así como los cofactores de ATR, "replication proteins A 32"-RPA32, "ATR interacting protein"-ATRIP y "DNA topoisomerase II binding protein 1"-TopBP1(Carson, Orazio et al. 2009)); señalización ("Signal Transducers and Activators of Transcription"-STAT-1 (Sohn and Hearing 2011)); supresores tumorales (p53 (Cardoso, Kato et al. 2008); PML (Rosa-Calatrava, Puvion-Dutilleul et al. 2003)); factores transcripcionales y de procesamiento postranscripcional ("Y-box binding protein 1"-YB-1 (Holm, Bergmann et al. 2002); "Breast cancer type 1 susceptibility protein"-BRCA1 (Maul, Jensen et al. 1998) y SC-35 (Valdés 2009)) y proteínas celulares de la respuesta inmune innata (como el factor de respuesta a interferón 3- IRF3) (Navarro 2011)). Estas evidencias sugieren que la modulación de procesos celulares para establecer un ciclo de replicación viral exitoso y, simultáneamente controlar la respuesta celular contra la infección, se establece desde los CR.

Figura 8. Centros de Replicación de adenovirus. En azul se muestran los núcleos. En rojo se muestra la proteína DBP, marcando los sitios de síntesis de DNA viral. Ramírez y González (2008).

Cuando el DNA viral entra al núcleo, se asocia a los ND10. Posteriormente la presencia de Orf3 y E1A en estos dominios induce su reorganización en estructuras tipo hebra o "tracks". Los CR se forman adyacentes a estas estructuras, reclutando algunos componentes de los ND10 hacia el genoma viral (Doucas, Ishov et al. 1996). En estos "tracks" también se concentra la E1B debido a su interacción con Orf3, que posteriormente es relocalizada hacia la periferia de los CR (en un zona llamada zona periférica de replicación o ZPR) (Leppard and Everett 1999). Se ha propuesto que la liberación de la E1B de estas estructuras tipo "track" requiere de su interacción con la proteína Orf6, la cual compite con la Orf3 por su asociación con la E1B (los detalles se describen más adelante).

Los CB y los IG también sufren una reorganización durante la infección. Como se describió anteriormente, estos dominios contienen componentes de la maquinaria de procesamiento postranscripcional. Gracias a estudios con microscopía de fluorescencia, se ha observado la acumulación de snRNP en los sitios donde se transcriben los genes virales (Aspegren and Bridge 2002). Los CB se van dispersando en pequeños puntos marcados por p80 coilina durante la fase tardía del ciclo de replicación viral (Rebelo, Almeida et al. 1996). Por otro lado, la mayoría de los snRNP presentes en CB y en IG, se relocalizan hacia los CR. Debido a que en estos sitios se han observado mRNA virales

tardíos poliadenilados, se cree que al menos el inicio de su procesamiento postranscripcional podría comenzar en los CR.

Por otra parte, se ha demostrado que algunos antígenos nucleolares, UBF, B23.1 y Nopp140 son secuestrados a los CR (Lawrence, McStay et al. 2006; Hindley, Davidson et al. 2007; Lam, Evans et al. 2010). Además, otros componentes dinámicos del nucleolo, como hnRNPU, SFPQ y U2AF65, se han visto adyacentes a los CR (Lam, Evans et al. 2010).

Gracias a los análisis por microscopía electrónica, se conocen algunos detalles de la organización de los CR de adenovirus. En una etapa tardía, el DNA viral de doble cadena (dsDNA) que no está siendo transcrito ni replicado se localiza en el centro de los CR (Puvion-Dutilleul and Pichard 1992). Rodeando esta estructura, se encuentra lo que se conoce como la Zona Periférica de Replicación (ZPR), una red fibro-granular en la que está presente el DNA viral de cadena sencilla (ssDNA) (Puvion-Dutilleul and Pichard 1992). En este sitio ocurre la transcripción y replicación del genoma de adenovirus. Se sabe que la proteína viral DBP se asocia a regiones de la ZPR, lo cual es un indicador de que en esos sitios se están sintetizando nuevas moléculas de DNA viral. En la ZPR también se localizan las proteínas virales tempranas E1B y Orf6 (Ornelles and Shenk 1991).

Por lo tanto, resumiendo qué proteínas son reclutadas a los CR de adenovirus (Tabla 1), podemos sugerir que estos sitios son esenciales para que se lleve a cabo eficientemente el ciclo replicativo del virus, tanto para favorecer la replicación y transcripción del genoma viral y procesar los mRNA virales tardíos, como para controlar la respuesta celular contra la infección.

Tabla 1. Proteínas relocalizadas a	los Centros de Replicación de Adenovirus	
Función	Ejemplos de proteínas	Referencia
		(Blackford,
	ATM	Bruton et al.
		2008)
		(Blackford,
REPARACIÓN DE DNA	ATR	Bruton et al.
		2008)
		(Evans and
	MRN	Hearing
		2005)

		(Carson,
	RPA32	Orazio et al.
		2009)
		(Carson,
	ATRIP	Orazio et al.
		2009)
		(Carson,
	TopBP1	Orazio et al.
		2009)
		Comunicado
	Spoc-1	personal T.
		Dobner.
		Comunicado
	USP7	personal T.
		Dobner.
		(Sohn and
SEÑALIZACIÓN	STAT-1	Hearing
		2011)
		(Cardoso,
	р53	Kato et al.
		2008)
SUPRESORES TUMORALES		(Rosa-
		Calatrava,
	PML	Puvion-
		Dutilleul et
		al. 2003)
	IRE3	(Navarro
		2011)
RESPUESTA INMUNE INNATA		(Doucas,
	Sp100	Ishov et al.
		1996)
		(Holm,
	YB-1	Bergmann
		et al. 2002)
		(Maul,
	BRCA1	Jensen et
FACTORES TRANSCRIPCIONALES Y DE		al. 1998)
SPLICING		(Maul,
	SC-35	Jensen et
		al. 1998)
		(Lindberg,
	ASE/SE2	Gama-
		Carvalho et
		al. 2004)

		(Lawrence,
		McStay et
		al. 2006;
	500	Hindley,
	BZ3	Davidson et
		al. 2007;
		Lam, Evans
		et al. 2010)
		(Lawrence,
	LIDE	McStay et
		al. 2006;
		Hindley,
		Davidson et
		al. 2007;
		Lam, Evans
		et al. 2010)
		(Lawrence,
		McStay et
		al. 2006;
	Nonn140	Hindley,
	Корртно	Davidson et
		al. 2007;
		Lam, Evans
		et al. 2010)

2.4 FUNCIONES DE LA E1B ASOCIADAS A LOS CENTROS DE REPLICACIÓN DE ADENOVIRUS

2.4.1 Estructura

Entre los productos de los genes tempranos, la proteína E1B 55kDa (E1B) es una proteína multifuncional que interacciona con varias proteínas virales y celulares y, es responsable de inhibir la respuesta celular a la infección y de favorecer la replicación y expresión del genoma viral.

La E1B es una proteína de 496 aminoácidos que es modificada postraduccionalmente, por fosforilación en las serinas 490 y 491 y en la treonina 495 y, por SUMOilación en la lisina 104 (Blackford and Grand 2009). Aparte de los sitios sujetos a modificaciones postraduccionales, la proteína posee secuencias consenso de dominios funcionales. Estos son un motivo putativo de dedo de zinc C_2H_2 entre los residuos 350 y 376; un dominio de unión a RNA (RNP) entre los residuos 250 y 308 (Horridge and Leppard 1998; Flint and Gonzalez 2003; Blackford and Grand 2009); una señal de exportación nuclear rica en leucinas (NES) entre los residuos 83 y 93; y una señal de localización nuclear (NLS) en el carboxilo terminal (Horridge and Leppard 1998; Flint and Gonzalez 2003; Blackford and Grand 2009). Estas dos últimas le permiten translocarse entre el núcleo y el citoplasma y, se sabe que la proteína puede hacer "shuttling" activamente. No obstante, su estructura no ha sido resuelta y el polipéptido parece ser estructuralmente muy complejo por lo que existe poca información sobre la relación estructura-función de la proteína.

Figura 9. Representación diagramática de la proteína de Ad5 E1B 55K. Se muestran los sitios de SUMOilación (K104) y fosforilación (490/S491/T495), así como los dominios de NES, RNP y dominio putativo de dedo de zinc (C_2H_2) (Blackford y Grand, 2009).

La actividad multifuncional de la E1B está ligada a sus modificaciones postraduccionales y a las proteínas con las cuales se asocia. Se sabe que la fosforilación de E1B favorece su SUMOilación (Wimmer, Blanchette et al. 2013). Mutaciones en las cuales las serinas 490 y 491 son substituidas por alaninas, muestran una disminución en la eficiencia de la replicación viral; una reducción en la frecuencia de transformación en células de rata en combinación con la E1A; y en la habilidad para inhibir la transactivación de p53 (Teodoro, Halliday et al. 1994). La sustitución de los tres sitios de fosforilación por alaninas inhibe la asociación de la E1B con p53 y otras proteínas celulares, pero no con Orf6 (Schwartz, Lakdawala et al. 2008). Estas substituciones causan una pérdida en las propiedades de la E1B como represor transcripcional en ensayos in vitro y en su habilidad para bloquear las funciones de p53 inducidas por E1A (Teodoro and Branton 1997). En estudios en los que se transfectó una E1B con sustituciones en los tres sitios de fosforilación por ácidos aspárticos, mimetizando la carga de los grupos fosfato, se observó que la E1B muestra un patrón de localización celular similar al tipo silvestre; sin embargo se observó una disminución parcial en la degradación de p53

(Schwartz, Lakdawala et al. 2008). Por otra parte, la eliminación del sitio de SUMOilación, al cambiar la lisina 104 por arginina, induce también una disminución en la habilidad de E1B para complementar la actividad transformante de E1A y en la represión de la transcripción dependiente de p53 (Endter, Kzhyshkowska et al. 2001), su localización nuclear en los CR disminuye (Kindsmuller, Groitl et al. 2007) y se observa una reducción en los niveles de p53 modificados por SUMO1 (una modificación que depende de E1B) (Pennella, Liu et al. 2010). En células infectadas con Ad5, sólo una pequeña fracción de la E1B se encuentra conjugada a SUMO1 (<5%) (Endter, Kzhyshkowska et al. 2001), pero se desconoce si esta modificación contribuye a su localización en múltiples sitios intracelulares durante el ciclo de replicación viral. En efecto, se desconocen los requerimientos para que la E1B sea SUMOilada o fosforilada y cómo impactan estas modificaciones sobre la replicación del genoma y la expresión selectiva de los genes virales tardíos.

2.4.2 Funciones

2.4.2.1 Replicación del genoma viral

La E1B facilita la replicación del genoma viral durante la fase tardía. Esta proteína viral está involucrada en el reclutamiento del factor transcripcional YB-1 a los CR. En estos sitios, YB-1 facilita la expresión de los genes de E2 durante la fase tardía del ciclo de replicación viral (Holm, Bergmann et al. 2002). Otra proteína celular con la cual se asocia E1B es p53. Esta interacción resulta en la relocalización de p53 a CR y la localización de ambas proteínas en los CR es necesaria para la replicación eficiente del DNA viral (Cardoso, Kato et al. 2008).

2.4.2.2 Exportación selectiva de mRNA virales

La presencia de E1B y E4orf6 en la ZPR podría estar implicada en la exportación selectiva de los mRNA virales tardíos (Ornelles and Shenk 1991). Ensayos con fracciones nucleares en los cuales se analizó la dinámica de acumulación y flujo de los mRNA virales tardíos en ausencia de la E1B, en los cuales se observó que la presencia de E1B correlaciona con el tránsito de los

mensajeros virales tardíos hacia un compartimento nuclear intermediario en el trayecto hacia su exportación a citoplasma (Leppard and Shenk 1989). Lo anterior sugiere que las funciones de la E1B se requieren en algún paso anterior a la exportación de mRNA. Por otra parte, mutaciones que impiden la unión de la E1B con la E4orf6 evitan que E1B se localice en la ZPR y resultan en una reducción de la exportación de mensajeros virales tardíos (Gonzalez and Flint 2002). A pesar de que la regulación de la exportación de mensajeros virales tardíos parece estar relacionada con la formación de estructuras nucleares que permitan su síntesis y procesamiento, el mecanismo molecular por el que E1B actúa se desconoce.

Las observaciones de que la E1B puede hacer "shuttling" entre núcleo y citoplasma, llevaron inicialmente a proponer que la E1B debe funcionar como exportador de los mRNA virales. Sin embargo, recientemente se encontró que su transporte a citoplasma no es necesario para la exportación de los mRNA virales (Schmid, Kindsmuller et al. 2011).

2.4.2.3 Control postranscripcional

La proteína E1B participa en el control postranscripcional, durante el movimiento de mensajeros virales tardíos de su sitio de procesamiento en el núcleo hacia el citoplasma. Células infectadas con mutantes nulos para esta proteína muestran defectos en la expresión de genes virales tardíos a nivel de transporte de RNA dentro del núcleo y hacia el citoplasma (Pilder, Moore et al. 1986; Leppard and Shenk 1989). La acumulación de mensajeros sintetizados a partir del MLP y otros transcritos tardíos depende de la presencia de esta proteína viral, mientras que los mensajeros transcritos en tiempos tempranos son independientes de E1B (Pilder, Moore et al. 1986; Leppard 1993). Se ha visto que los mensajeros de L1 sintetizados en la fase temprana del ciclo replicativo viral no son afectados por la ausencia de E1B, pero se vuelven dependientes de esta proteína cuando son producidos después del comienzo de la síntesis de DNA viral, es decir una vez iniciada la fase tardía (Leppard 1993; Gonzalez and Flint 2002). Por otro lado, la exportación de los mRNA de L4 son menos dependientes de la E1B que los demás transcritos de las familias de ML (Pilder, Moore et al. 1986). Estudios que miden la eficiencia de exportación de mensajeros virales tardíos con distintos mutantes para la E1B,

muestran defectos menos dramáticos para la exportación del mRNA de L4-100 K que para el mensajero de L2 pentón (Gonzalez and Flint 2002). De forma similar, se ha visto que los mRNA más largos de cada familia de mensajeros virales tardíos muestran una mayor dependencia de E1B que los más pequeños (Leppard 1993). Se sabe que la exportación de mensajeros transcritos a partir de otros promotores virales (IX, IVa2 y E2-L) activados durante la fase tardía también dependen de esta función de E1B (Dobner 2001). Por lo tanto, se sugiere que el efecto que tiene E1B sobre la exportación selectiva no depende de una secuencia específica de los transcritos, sino de la fase de infección en la cual son sintetizados (Leppard 1993). Las evidencias sugieren que la E1B participa en procesos postranscripcionales que favorecen el procesamiento de los mRNA virales tardíos desde los CR y permiten su exportación selectiva eficiente.

2.4.3 Participación de la E1B en el procesamiento postranscripcional y localización de mRNA virales tardíos

Para mi tesis de licenciatura obtuvimos fracciones subnucleares enriquecidas con CR con las que analizamos el efecto de la ausencia de la E1B sobre el procesamiento por splicing de los mRNA virales tardíos y su distribución entre los CR y el nucleoplasma, obteniendo datos novedosos (Hidalgo 2011). Estos datos mostraron que los mRNA virales tardíos, procesados y no procesados, tienen diferentes patrones de asociación con los Centros de Replicación, en diferentes tiempos del ciclo de replicación viral, lo que sugiere que las familias de mRNA tardíos están sujetas a diferentes reglas de procesamiento postranscripcional (estos datos concuerdan con observaciones recientes hechas por Leppard con L4-22K y 33K (Morris, Scott et al. 2010). Adicionalmente, se observó que en ausencia de la E1B, disminuye la cantidad de transcritos tardíos procesados. Estas observaciones sugieren que E1B participa en algún paso de la biogénesis de los mRNA, entre su procesamiento asociado a CR y su liberación a nucleoplasma.

En conjunto estas evidencias sugieren que las actividades de E1B relacionadas con el establecimiento de una expresión eficiente del genoma viral y con la regulación de la respuesta celular ante la infección dependen de su localización en CR.
3. JUSTIFICACIÓN

Los adenovirus son agentes infecciosos ubicuos y el agente etiológico de diversas enfermedades. Por otra parte, representan uno de los principales modelos de la virología tumoral, así como una de las alternativas más promisorias en el desarrollo de vectores para terapia génica y, más recientemente, terapia anti-cáncer. Sin embargo, los mecanismos moleculares por los cuales los productos de oncogenes adenovirales alteran el funcionamiento de la célula, no se conocen con detalle. Entre estos oncogenes se encuentra el que codifica para la proteína E1B 55K. Esta proteína parece favorecer la formación de CR y regula actividades asociadas a estos sitios, favoreciendo la replicación viral y el control de la respuesta antiviral de la célula. El estudio detallado de los CR y los componentes moleculares asociados a estas estructuras, nos permitirá aprender sobre el papel de la E1B en la regulación de actividades celulares y el procesamiento postranscripcional de mRNA virales. Adicionalmente, estos estudios deberán permitirnos aprender sobre los mecanismos moleculares encargados de la formación de "fábricas virales" como una estrategia general de los virus para regular actividades celulares y establecer un ciclo de replicación productivo.

4. HIPÓTESIS

Las actividades de la E1B 55K son necesarias para la formación de Centros de Replicación funcionales y el reclutamiento de proteínas celulares que llevan a la replicación del genoma viral y a la producción de mRNA virales tardíos.

5. OBJETIVO

Determinar el efecto de sustituciones en la secuencia que codifica para la E1B 55K sobre la replicación del genoma viral y el procesamiento postranscripcional de los mRNA virales tardíos.

5.1 OBJETIVOS PARTICULARES

- Determinar la eficiencia de replicación del DNA viral, así como la eficiencia de producción de progenie viral de mutantes de adenovirus con sustituciones en la E1B.
- Analizar del procesamiento postranscripcional de los mRNA virales tardíos y RNA celulares asociados a los CR en células infectadas con Ad WT y los mutantes de E1B.
- Analizar los componentes de la maquinaria de exportación de mRNA y de la maquinaria de procesamiento postranscripcional asociados a los CR.

6. MATERIALES Y MÉTODOS

Células y virus.

Se crecieron fibroblastos humanos (HFF, Human Foreskin Fibroblasts) en monocapa en medio DMEM (Dulbecco Modified Eagle's Medium) suplementado con 10% (v/v) suero fetal bovino (SFB). Se incubaron a 37° C, 5% CO_2 .

Las células HFF se infectaron con los siguientes virus:

Virus	Nombre común	Características	Referencia
dl309	WT	Fenotipo silvestre. Deleción en la región de E3.	(Jones and Shenk 1979)
H5pg4100	WT	Fenotipo silvestre. Deleción en la región de E3.	(Groitl and Dobner 2007)
H5pm4149	4X	Porta cuatro codones de paro en el amino terminal de la secuencia codificante para la E1B 55K (E1B)	(Blanchette, Kindsmuller et al. 2008)
H5pm4102	H5pm4102 SUMO		(Kindsmuller, Groitl et al. 2007)

		E1B	
H5pm4227	pM (fosfo-mimic)	Porta sustituciones S490,491D/T495D en la secuencia de E1B.	(Wimmer, Blanchette et al. 2012)

Los ensayos de infección en las células HFF se realizaron a las 16, 24 y 36 hpi. Se utilizó una multiplicidad de infección (MOI) de 30 unidades formadoras de focos (UFF) por célula para todos los experimentos.

La adsorción con el virus se realizó durante 1 hora, a 37° C, durante la cual se movieron las células cada 10-15 min para asegurar una distribución homogénea del inóculo. Posteriormente se retiró el inóculo y se adicionó DMEM/10% SFB, manteniendo las células a 37° C dependiendo del tiempo post-infección requerido.

Obtención de fracciones subcelulares.

La obtención de fracciones de nucleoplasma y fracciones enriquecidas con CR se realizó utilizando un método desarrollado por Muramatsu y colaboradores en 1963, modificado por el laboratorio de Lamond A., para la purificación de nucleolos y adaptado por Margarita Valdés en nuestro laboratorio para la obtención de CR de adenovirus (Valdés 2009; Lam, Evans et al. 2010; Valdés 2011). Se utilizaron células HFF con una confluencia ~90% (1 X 10^7 células por condición). Para cosecharlas, se lavaron 2 veces con 5 ml/caja de PBS (NaCl (58.44 g/mol), KCI (74.55 g/mol), Na2HPO4 (141.96 g/mol) y KH2PO4 (136.09 g/mol)) a 37° C y durante el último lavado, se cosecharon utilizando gendarme. Se colectaron todas las células en un tubo por condición. A partir de este paso, todas las soluciones y material se usaron fríos. Las células se lavaron 3 veces con 5 ml de PBS a 4° C, centrifugando durante 5 min a 200 g y 4° C. El pellet con las células se resuspendió en 700 µl de buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.5 mM DTT, 20 µg/ml PMSF, 10 µg/ml aprotinina y 10µg/ml leupeptina) a 4°C y se incubó en hielo durante 3 h. Las células se monitorearon en microscopio de contraste de fases. Antes de lisar las células, se adicionó 1µl/ml de inhibidor de RNasa. Las células se lisaron usando un homogenizador Dounce de vidrio y teflón (previamente enfriado en hielo).

Durante la lisis, las muestras se monitorearon en el microscopio hasta tener más del 90% de células sin membrana plasmática y con núcleos intactos. El homogenizado de células se centrifugó a 220 g durante 5 min a 4°C; el sobrenadante corresponde a la fracción citoplásmica, y el pellet contiene los núcleos y detritos celulares. Para la obtención de una fracción de núcleos limpia, el pellet se resuspendió en 500 µl de solución S1 (0.25 M sacarosa y 10 mM MgCl2) y se depositó sobre 500 µl de solución S2 (0.35 M sacarosa y 0.5 mM MgCl), asegurándose de mantener separadas las dos fases. Se centrifugó a 1,400 g durante 5 min a 4° C. El pellet corresponde a la fracción de núcleos limpios. Los núcleos se resuspendieron en 500 µl de solución S2 y se lisaron con un sonicador sumergido con 2 pulsos de 5 min cada uno para evitar que la muestra se calentara. La lisis se monitoreó en el microscopio hasta que todos los núcleos estuvieran lisados. La suspensión de núcleos sonicados se depositó sobre 500 µl de solución S3 (0.88 M sacarosa y 0.5 mM MgCl2), asegurándose de mantener separadas las dos fases. Se centrifugó durante 10 min a 3,000 g y 4° C. El pellet corresponde a la fracción enriquecida con CR y el sobrenadante a la fracción de nucleoplasma. El pellet de CR se resuspendió en 700 µl de solución S2. Todas las fracciones se almacenaron a -70° C hasta su uso.

Figura 10: Diagrama del procedimiento para obtención de fracciones subcelulares. Las células infectadas con adenovirus fueron lisadas en condiciones nativas y sometidas a gradientes de velocidad para obtener una fracción de nucleoplasma y una fracción enriquecida con CR.

Fracción (Centros de Replicación-	Virus con el que se	Hora post infección en la que
CR o Nucleoplasma-Npl)	infectaron las células	se cosecharon las células
CR	WT	16, 24 y 36
CR	4X	16, 24 y 36
CR	SUMO	16, 24 y 36
CR	рМ	16, 24 y 36
Npl	WT	16, 24 y 36
Npl	4X	16, 24 y 36
Npl	SUMO	16, 24 y 36
Npl	рМ	16, 24 y 36

Tabla 2. Fracciones subnulceares

Validación de la obtención de fracciones subnucleares.

Una vez obtenidas las fracciones subnucleares, era necesario validarlas. Para esto, verificamos el enriquecimiento de moléculas que en estos experimentos funcionan como marcadores *bona fide* de los CR: DBP y el DNA viral.

Para la detección del enriquecimiento de DBP en los CR se realizó un western blot (WB). En la Figura 11 se muestra el WB para fracciones de citoplasma (CIT), nucleoplasma (Npl), Centros de Replicación (CR), lisado de núcleo (LN) y lisado total de la célula (LT) para células infectadas con el Ad WT y cosechadas 36 hpi; además se incluye un lisado de células no infectadas (MK) como control negativo (Valdés 2011).

Figura 11. Detección del enriquecimiento de DBP en las fracciones de CR. En la figura se muestra el análisis por WB de las fracciones de citoplasma (CIT), nucleoplasma (Npl), Centros de Replicación (CR), lisado de núcleo (LN) y lisado total (LT) de células infectadas con el Ad WT a las 36 hpi, así como de un lisado total de células no infectadas (MK).

Además, se realizaron ensayos de PCR punto final a partir de DNA extraído de las fracciones de CR y Npl con primers que permiten la amplificación de secuencias genómicas dentro del líder tripartita. En la Figura 12 se muestra la amplificación del DNA viral para ambas fracciones (Hidalgo 2012).

Figura 12. Detección del DNA en fracciones de CR. En la figura se muestra el ensayo de PCR para la detección del DNA viral en células no infectadas (MK) o infectadas con Ad WT en las fracciones subnucleares.

La descripción del procedimiento para el WB y la amplificación de DNA viral mediante PCR punto final se describen más adelante.

Eficiencia de replicación del DNA

Para comparar la eficiencia de replicación de DNA entre el virus WT y mutantes, se crecieron células HFF en cajas de 100 mm (78.5 cm²) y cuando llegaron al 90% de confluencia se adsorbieron los diferentes virus, WT y mutantes por 1 h, como se describe en la sección Células y virus. Las células se colectaron 16, 24 y 36 hpi, centrifugando por 5 minutos a 3,500 rpm a 4°C, dando un lavado con PBS 4°C. Posteriormente, el pellet se resuspendió en 200 µl de una solución con 1 mg/ml de Proteinasa K (Promega) y 1:200 de Tween20 (Promega). Esta preparación se incubó por 1 h a 55°C y después se inactivó la proteinasa K durante 10 min a 95°C. La solución se centrifugó por 2 min a 14000 rpm y se colectó el SN. El DNA se precipitó con 1/10 de acetato de sodio 3M y un volumen de isopropanol a 4°C toda la noche. Después de precipitar, se centrifugó a 14,000 rpm durante 10 min a TA. El pellet se lavó con 1 ml de etanol al 70%, centrifugando por 5 minutos a 14,000 rpm 4°C. El DNA se resuspendió en 10 µl de Tris 10 mM pH 7.4 y se almacenó a 4°C hasta su uso. Este ensayo se realizó por triplicado para cada virus.

Para evaluar el DNA sintetizado por cada virus en HFF, en cada uno de los tres tiempos, el DNA se cuantificó utilizando NanoDrop y se utilizaron 100 ng de RNA por condición para realizar amplificación por PCR, utilizando los siguientes primers, los cuales permiten la amplificación de una secuencia dentro de la región del TPL:

Fw: 5'-GAGCGAGGTGTGGGTGAGC-3'; Rv: 5'-GGATGCGACGACACTGACTTCA-3'.

Las condiciones que se usaron para los ensayos de PCR son las siguientes: 3 min a 95°C, seguido de 20 ciclos de 1 min a 95°C, 1 min a 62°C y 30 s a 72°C. Los productos de la PCR se analizaron mediante electroforesis en gel de agarosa al 2% y se analizaron por densitometría usando el programa ImageJ (Java).

Eficiencia de producción de progenie viral

Para determinar la producción de progenie viral en HFF, las células se crecieron en cajas de 6 pozos (9.6 cm² por pozo) y cuando llegaron al 90% de confluencia se infectaron con el virus WT y mutantes usando una MOI de 30

UFF/célula (descrito en Células y virus). Las células se cosecharon 36, 48 y 60 hpi y se centrifugaron por 5 minutos a 3,500 rpm a 4°C, dando un lavado con PBS 4°C. El pellet se resuspendió en 140 μ l de la solución IV USB (10 mM Tris-Hcl pH 7.4, 150 mM NaCl, 5 mM KCl, 10 mM MgCl2 y 0.1% w/v Dextrosa) y se lisaron por tres ciclos de congelación en nitrógeno líquido (5 minutos) y descongelación a 37°C (10 minutos). Después se centrifugó 5 minutos a 14,000 rpm 4°C y el sobrenadante (SN) se colectó e un criovial y se almacenó a -20°C. Este ensayo se realizó por triplicado.

Para titular la progenie viral producida en HFF, se crecieron células HEK-293 en cajas de doce pozos sobre cubreobjetos (previamente lavados con etanol 100% y esterilizados en autoclave). Cuando llegaron al 90% de confluencia se adsorbieron los diferentes virus WT y mutantes de E1B cosechados a partir de las HFF. Para todos los casos se utilizaron diluciones 10^{-2} , 10^{-3} y 10^{-4} del virus. Después de 24 hpi, se retiró el medio de los pozos y las células se lavaron con 1 ml/pozo de PBS y se fijaron con 500 µl por pozo de formaldehído 3.7% en PBS durante 20 min en campana. Posteriormente se retiró el formaldehido y las células se lavaron 3 veces con PBS en agitación (5 min. por lavado). Las células se permeabilizaron con 500 µl de PBS/Tritón X-100 0.5% durante 5 min a temperatura ambiente con agitación suave; posteriormente se lavaron 3 veces en agitación con PBS y se adicionaron 300 µl de PBS con el anticuerpo primario contra DBP a una dilución 1:500. El anticuerpo primario se incubó durante 2 h a TA y después se lavaron 3 veces con PBS. Como anticuerpo secundario se utilizó un anti-IgG de ratón acoplado a Alexa 568 a una dilución 1:1,500; se utilizaron 300 µl por pozo y se incubó durante 2 h a TA. Después se lavaron 3 veces con PBS y se añadió DAPI (10 µg/ml) por 5 min y se lavó con PBS. Para analizar las muestras, los cubreobjetos se montaron sobre PBS/10% glicerol en portaobjetos y se sellaron con barniz de uñas. Las muestras se guardaron a -20 °C hasta ser analizadas utilizando un microscopio de epifluorescencia Axiovert 200M, Carl Zeiss Inc., con un objetivo 20X y el sistema ApoTome (Carl Zeiss Inc.). Para cada muestra se tomaron fotos de 6 campos de forma aleatoria y posteriormente se utilizó el programa Photoshop para hacer el conteo de células infectadas sobre células no infectadas y calcular el título de los virus.

Análisis del procesamiento postranscripcional de mRNA.

El análisis de los efectos de la E1B sobre el procesamiento postranscripcional de mRNA virales tardíos se realizó mediante ensayos de PCR punto final y análisis semicuantitativo por densitometría, o por ensayos de RT-PCR en tiempo real. El RNA se extrajo inmediatamente después de haber obtenido las fracciones subnucleares descritas anteriormente de la siguiente forma:

Extracción de RNA. El RNA se purificó usando un volumen de TRIzol (Reagent® InvitrogenTM), dando pequeños golpes hasta homogenizar, posteriormente incubando por 5 min a temperatura ambiente (TA). Se añadieron 200 µl de cloroformo por cada ml de TRIzol. Se incubó por 3 minutos a TA y se centrifugó a 12,000 rpm a 4°C por 15 min. En este punto se separaron tres fases: superior (fase acuosa con RNA), interfase (DNA) y fase inferior roja (proteínas). La fase acuosa se transfirió a otro tubo, cuidando de no llevarse la interfase, y se precipitó con 500 µl de isopropanol por cada ml de TRIzol, moviendo la muestra delicadamente. Se incubó 30 min a 4°C y después se centrifugó por 15 min a 14,000 rpm. El pellet se lavó con 1ml de etanol al 70% por cada ml de TRIzol inicial. Se mezcló por inversión y se centrifugó a 14,000 rpm durante 5 min a 4°C. Se descartó el sobrenadante y el pellet de RNA se dejó secar durante 5 min. Finalmente, se resuspendió en 50 µl de agua tratada con DEPC (dietilpirocarbonato) y las muestras se guardaron a -70°C. El RNA de cada muestra se cuantificó utilizando NanoDrop.

RT-PCR punto final. Para los ensayos semicuantitativos, se utilizaron 100 ng de RNA para ser retro-transcritos, usando 20 pmol de cada uno de los "primers" para ML, L2, L4, U1 snRNA y p53 (descritos en la Tabla 3), 4 μl de buffer de reacción 5X (Fermentas), 10 unidades (U) de inhibidor de RNasa RiboLock (Fermentas), 2 μl de una mezcla de desoxirribonucleótidos (dNTPs) (Fermentas) con 10 mM de cada uno y 50 U de transcriptasa reversa RevertAid (Fermentas). La reacción se mezcló cuidadosamente y se centrifugó por un corto tiempo, posteriormente incubando a 42°C por 60 minutos. La reacción se terminó calentando a 70°C por 10 minutos. El cDNA obtenido a partir de esta reacción se utilizó para realizar ensayos de PCR punto final y tiempo real (descrito en la siguiente sección). Cada reacción se preparó utilizando 1.25 μl de Buffer 10X KCl y 1.25 μl de Buffer 10X (NH4)2SO4 para obtener una concentración final 1X de ambos; 4.5mM MgCl₂; 0.2 μM de cada primer; 0.2 μM

de la mezcla de dNTPs; 1 µl de cDNA, 0.625 U de Taq DNA polimerasa Recombinante (Fermentas) y agua miliQ estéril para llevar a un volumen final de 25 µl. Los productos se corrieron en un gel de agarosa al 2% y se analizaron por densitometría usando el programa ImageJ.

<u>RT-PCR tiempo real</u>. Para en análisis cuantitativo de los mRNA, se utilizó el sistema de detección SYBR Green PCR Master Mix (Applied Biosystems), usando los "primers" para L5 procesado (P) y no procesado (NP) como genes de interés (GOI), así como los "primers" para el 18S rRNA y U1 snRNA como genes de referencia, descritos en la Tabla 3, partiendo de los cDNA preparados como se describe arriba. Este kit utiliza el siguiente programa de ciclado:

10 minutos a 95°C

40 ciclos de: 15 segundos a 95°C y 1 minuto a 60°C

Para la amplificación de los GOI, se utilizaron 50 ng del templado (cDNA), 1X del Master Mix del kit (SYBR® Green I Dye, AmpliTaq Gold® DNA Polymerase UP, dNTPs, referencia pasiva (ROX) y componentes optimizados de buffer). Las reacciones se llevaron a cabo en el equipo StepOne (Applied Biosystems). Para cada par de primers se hicieron controles de retrotranscripción (RT-) para comprobar que no hubiera contaminación de las muestras de RNA con DNA y sin muestra templado (NTC) para verificar si existía amplificación por formación de estructuras secundarias entre los primers. Además, se hicieron curvas con diluciones 1:5 partiendo de 50 ng totales de RNA de la muestra de CR WT24 (fracción de Centros de Replicación obtenida de células infectadas con el virus WT, cosechadas a las 24 hpi) para verificar que la eficiencia de amplificación de todos los pares de primers utilizados fuera similar. Las muestras se analizaron por el método comparativo $\Delta\Delta$ Ct en el cual se seleccionó como genes de referencia (ref) al 18S rRNA y al U1 snRNA para calcular el Δ Ct de acuerto a la siguiente fórmula:

 $\Delta Ct_{muestra} = Ct_{GOI} - Ct_{ref}$ ecuación 1

Como calibrador se seleccionó el gen de L5NP (mRNA de L5 No Procesado) en la muestra de nucleoplasma (Npl) de células infectadas con el virus 4X y

cosechadas a las 24 hpi (Npl 4X24 L5NP) para calcular el $\Delta\Delta$ Ct de acuerdo a la ecuación 2:

 $\Delta\Delta Ct = \Delta Ct_{muestra} - \Delta Ct_{calibrador} \qquad ecuación 2$

Se obtuvo el cambio de expresión (Fold-change) de cada muestra, en relación al calibrador, de acuerdo a la ecuación 3.

Fold-change = $2^{(-\Delta\Delta Ct)}$ ecuación 3

El análisis se realizó utilizando dos fraccionamientos independientes por cada virus, cada uno por triplicado. Los resultados (fold-change) y la desviación estándar se graficaron utilizando el programa Graph Prism.

Diseño de primers para PCR

Para el diseño y evaluación de primers se utilizaron los programas CLC Sequence Viewer (CLC Bio), PrimerPlex (Premier Biosoft) y Primer-Blast de NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Los pares de primers se diseñaron para que generaran un producto entre 70 y 150 pb aproximadamente (excepto para Hsp70), para tener una eficiencia óptima en el ensayo de qPCR. Se seleccionaron los primers que no generaran productos secundarios inespecíficos.

Figura 13. Diagrama de los genes de la MLTU. Los genes se muestran clasificados por familias (L1-L5). En morado se muestran los exones del líder tripartita (TPL, el cual forma el extremo 5' de todos los mRNA virales tardíos) y en verde los exones de los genes virales tardíos. En rosa se muestran los intrones.

Las secuencias de cada par de primers y sus especificaciones se describen en la Tabla 3.

Nombre	Secuencia 5'-3'	Tm °C	Producto (pb)	
	Fw: CTTCCTTCCTGGGCATGGAGTCC		130	
ACTE I	Rv: GCAATGCCAGGGTACATGGTGG	02		
	Fw: TCACATCCAGGGTCCTCACTGC		148	
ACTEN	Rv: CGTCATACTCCTGCTTGCTGATCC		140	
n53 P	Fw: TGCTCAGATAGCGATGGTCTGG		143	
р53 F	Rv: CAGTCAGAGCCAACCTCAGGC		140	
rRNA 18S	Fw: CGATGCCGACCGGCGATG 60		101	
	Rv: CTCCTGGTGGTGCCCTTCCG		101	
LI1 enRNA	Fw: ACCTGGCAGGGGGAGATACCAT	68	116	
UT SIIKINA	Rv: GCAGTCGAGTTTCCCACATTTGG		110	
	Fw: GCCTCCGAACGGTACTCCGCC	60	121	
	Rv: CGCCACGGTGCTCAGCCTACC	00	121	

	Fw: GAGCGAGGTGTGGGGTGAGC		81	
	Rv: GGATGCGACGACACTGACTTCA	00	01	
L4-100K P	Fw: CAGTCGCAAGATGGAGTCAGTCG	58	154	
	Rv: GTCCTGCTCGATAATCACTTCCTCC			
L4-100K NP	Fw: CTGCTCCTCTTCCCGACTGG		109	
	Rv: GGTGGTGGCGAACTCAGAGG			
L4-22K v 33K P	Fw: CAGTCGCAAGATGGCACCCA	62	132	
	Rv: CTCTCCCAGTCTTCCATCATGTCC	-		
L4-pVIII P	Fw: CCTCCGAACGGTACTCCGC	64	110	
	Rv: CCTTGCTCATCTTGCGACTGTG	•		
L5 P	Fw: GTC ACA GTC GCA AGA TGA AGC G	60	139	
	Rv: GGTAACTAGAGGTTCGGATAGGCG			
L5 NP	Fw: GTCCATCCGCACCCACTATCTTC	58	117	
	Rv: AAGGCACAGTTGGAGGACCG			
L2-pV	Fw P: ACAGTCGCAAGATGTCCAAGC			
	Rv: GGGCTTGTAATCCTGCTCTTCC		104	
	Fw NP: GCAACGAAGCTATGTCCAAGC			

ACTB: Actina B; P: Procesado por splicing; NP: No Procesado por splicing; rRNA: RNA ribosomal; snRNA: RNA pequeño nuclear; ML: Major Late (reconocimiento de la región del líder tripartita).

Análisis de proteínas asociadas a CR.

Las fracciones correspondientes a nucleoplasma y CR se analizaron por electroforesis en condiciones desnaturalizantes (SDS-PAGE) y por Western Blot (WB).

Todos los geles de poliacrilamida se prepararon con 10% acrilamida. Se tiñeron con Coomasie para analizar el contenido total de proteínas de cada muestra.

Para los ensayos de western blot, los geles de poliacrilamida se transfirieron a membranas de PVDF (difluoruro de polivinildeno) por el método de transferencia sumergido. La transferencia se hizo a 450 mA por 1.5 horas, usando buffer de transferencia pH 8.3 con 25 mM de Tris Base, 192 mM de glicina y 20% metanol. Después de la transferencia, las membranas se tiñeron con Ponceau para verificar que se transfirieran las proteínas y posteriormente se bloquearon con 3% de leche semidescremada en PBS conteniendo 0.5% (vol/vol) Tween 20. Se decidió detectar proteínas de la maquinaria de exportación de mRNA y componentes de la maquinaria de procesamiento

postranscripcional, DBP como marcador de los CR, E1B y B23. Los anticuerpos utilizados fueron los siguientes:

Función	Anticuerpo	Marca
Maquinaria de exportación	Tap/Nxf1	Abcam
de mRNA	Aly	Santa Cruz
		Biotechnology
Procesamiento	UAP56	Santa Cruz
postranscripcional y		Biotechnology
exportación de mRNA		
Factores de splicing	ASF/SF2	Santa Cruz
		Biotechnology
	SC-35	GeneTex
Proteínas adenoviral de	DBP/B6-8	Sobrenadante (SN) de
unión a DNA de cadena		hibridoma. Donado por
sencilla que participa en la		A. Levine
replicación del genoma		
viral y que en estos		
experimentos funcionó		
como marcador de CR		
Proteína principal de	E1B/2A6	SN de hibridoma.
estudio en este trabajo		Donado por A. Levine
Componente de nucleolo	B23/Nucleofosmina	Abcam

Tabla 4. Anticuerpos

Como anticuerpo secundario se utilizó anti-inmunoglobulina G (anti-IgG) acoplado a peroxidasa (Jackson Immuno Research). Los anticuerpos primarios y secundarios se incubaron 2 h. Después de cada incubación, los anticuerpos se lavaron 3 veces durante 10 min con 50 ml solución de lavado (PBS/0.3% leche semidescremada/0.05% Tween 20). Las membranas se revelaron por el método de quimioluminiscencia, incubando con SuperSignal® West Pico Chemiluminescent Substrate (Pierce ThermoScientific) y expuestas a películas radiográficas (Kodak).

Análisis por densitometría

El análisis por densitometría de los geles de DNA, RNA y proteínas se hizo usando el programa ImageJ (Java). Los geles se invirtieron y se hizo la substracción del fondo para tener una medición más limpia. Después, utilizando la opción de análisis de geles, se definió cada carril (se delimitó la banda de interés en el primer carril y los mismos parámetros se aplicaron para la selección de los demás carriles), se midió la intensidad relativa de las banadas analizadas y se utilizó el programa GraphPrism para graficar los datos.

Análisis de la composición proteica de los CR.

ANÁLISIS POR LC-MS/MS (orbitrap velos): Se utilizaron 3.5x10⁷ células para obtener fracciones de CR MK (Centros de Replicación de células no infectadas) o infectadas con Ad WT cosechadas a las 36hpi mediante el procedimiento antes descrito. Las fracciones se concentraron en 20 µl de solución S2 para poder cargar el total de proteínas en un pozo en el gel de poliacrilamida al 10% y se corrió por 1 hora. Posteriormente el gel se tiñó con Coomassie; todas las soluciones utilizadas fueron esterilizadas y el gel se preparó en la campana de extracción para evitar contaminación con gueratinas, ya que estas proteínas son muy abundantes y pueden dificultar la detección de otras proteínas que sean de interés al dar una señal más intensa en el espectro. El gel teñido se cortó en tres segmentos de la siguiente forma para cada muestra: Primer segmento con las bandas en el rango de 250-70 kDa; segundo segmento con bandas de 70-25 kDa y tercer segmento con bandas de 25-10 kDa. Cada segmento de bandas se colocó en tubos eppendorf estériles con 50 µl de agua estéril y se mandaron a analizar para identificación de proteínas por cromatografía líquida acoplada a espectrómetros de masas capaces de producir espectros en tándem en la Unidad de Proteómica del Instituto de Biotecnología, UNAM.

Brevemente, las muestras son reducidas con ditiotreitol (DTT), alquiladas con iodoacetamida y digeridas "in gel" con tripsina. Los péptidos resultantes son aplicados en un sistema LC-MS constituido de un cromatógrafo líquido de micro-flujo Accela (Thermo-Ficher Co. San Jose, CA) con "spliter" (1/20) y un espectrómetro de masas LTQ-Orbitrap Velos (Thermo-Ficher Co., San Jose,

CA) con sistema de ionización tipo nano-electrospray (ESI). Para la fragmentación de los péptidos se utilizan los métodos de CID (Collision-Induced Dissociation) y HCD (High energy Collision Dissociation) donde solamente los iones con carga 2⁺ y 3⁺ son seleccionados para los eventos de fragmentación. Los datos espectrométricos fueron sometidos a la búsqueda contra la base de datos del NBCInr a través del programa ProteinProspector.

<u>ANÁLISIS POR ESI Q-TOF (Burker)</u>: Se hizo un análisis por espectometría de masas de las fracciones de CR de células HFF infectadas con los virus Ad WT, 4X y pM (descritos en la sección de Células y virus). Las muestras de CR se centrifugaron por 30 minutos, 4°C a 14,000 rpm. El pellet se lavó con una solución de Tris-HCl 10mM pH 7.4/0.5 mM de MgCl₂ y se centrifugó 30 minutos, 4°C a 14,000 rpm. El pellet se resuspendió en 500 µl de 9M urea/50 mM NH₄CO₃ y se guardaron a -80°C hasta ser enviados en hielo seco a la Universidad de Birmingham, UK.

Brevemente, las muestras se digieren con tripsina, se someten a cromatografía líquida de fase reversa (HPLC) y se analizan mediante la técnica de ESI-QTOF ("Electrospray ionization quadrupole time-of-flight", por sus siglas en inglés). Esta técnica funciona de la siguiente manera: Las proteínas son ionizadas en solución por ESI. Pasan al cuadrupolo (MS1 en la Figura 14) en el cual se seleccionan los péptidos por su masa. Este segmento permite sólo la entrada de péptidos con un cociente masa/carga (M/z) determinado a la celda de colisión (MS2 en la Figura 14). La celda de colisión o hexapolo está inundada con argón, lo que permite que el péptido se disocie en varios fragmentos de longitud variable los cuales entran al segmento MS3 (Figura 14) en donde la masa de los fragmentos es calculada de acuerdo a su tiempo de vuelo (TOF). Como se conocen las masas de todos los aminoácidos, al hacer la sustracción de las masas de los fragmentos entre uno y otro, es posible deducir la secuencia del péptido.

Figura 14. ESI-QTOF. En la imagen se muestra un diagrama del funcionamiento de un espectómetro de masas Burker ESI-QTOF. University College London.

La identificación de los péptidos se hace mediante los programas Mascot y ProteinScape 3.0. Para Mascot, se consideran como válidos aquellos péptidos que tengan un Score mayor a 30.

7. <u>RESULTADOS</u>

7.1 EFICIENCIA DE REPLICACIÓN VIRAL DE VIRUS MUTANTES CON SUSTITUCIONES EN LA SECUENCIA DE E1B

Para conocer la eficiencia de replicación de los virus mutantes en células HFF, se comparó la eficiencia de producción de progenie viral y replicación del genoma viral del Ad WT y de cada uno de los mutantes. Para estos ensayos se utilizaron células infectadas con una MOI de 30 UFF/célula, como se describe en Materiales y Métodos.

7.1.1 EFICIENCIA DE PRODUCCIÓN DE PROGENIE VIRAL EN HFF

La producción de progenie viral se determinó por el conteo de focos infecciosos formados, mediante ensayos de inmunofluorescencia (IF) con los virus, WT y mutantes. Para estos ensayos utilizamos células infectadas cosechadas a 36, 48 y 60 hpi para la obtención de lisados virales. Posteriormente, los lisados se

titularon en células HEK-293 por conteo de focos fluorescentes. Los títulos obtenidos para cada tiempo se muestran en la Figura 15.

Producción de progenie viral

hpi	WT Media	Stdev WT	SUMO Media	Stdev SUMO	pM Media	Stdev pM	4X Media	Stdev 4X
36	1.57E+08	1.03E+08	6.87E+08	5.11E+08	5.52E+09	3.52E+09	2.90E+07	2.55E+07
48	1.00E+09	4.90E+08	5.87E+09	3.43E+09	2.03E+10	7.76E+09	2.50E+08	5.10E+07

Figura 15. Producción de progenie viral en células HFF. En la gráfica se muestran los títulos obtenidos a las 36 y 48 hpi para los virus WT, SUMO, pM y 4X. En la Tabla se muestra la media de tres experimentos independientes y la desviación estándar (St dev) de los valores graficados.

La producción de progenie de los virus SUMO y pM fue un orden de magnitud mayor al virus WT, tanto a las 36 como a las 48 hpi, aunque el virus pM produjó alrededor del doble que el virus SUMO en cualquiera de los dos tiempos. En contraste, la progenie producida por 4X fue un orden de magnitud menor al WT, tanto a las 36 como a las 48 hpi. A las 60 hpi, el porcentaje de células lisadas por la infección con los virus WT y los mutantes SUMO y pM, fue muy alto y por lo tanto no se obtuvieron datos que permitan comparar el título entre los diferentes virus (datos no mostrados).

7.1.2 EFICIENCIA DE REPLICACIÓN DE DNA VIRAL EN CELULAS HFF

Aunque las actividades de la proteína E1B se han asociado a eventos tardíos del ciclo de replicación de adenovirus en líneas celulares transformadas, en células no transformadas, la E1B impacta también la replicación del DNA viral (Gonzalez et al. 2006; Cardoso et al. 2008). Por ello, además de analizar la eficiencia de producción de progenie viral, analizamos la síntesis de DNA en

células infectadas con cada uno de los virus. Las células fueron infectadas con el virus WT, 4X, SUMO o pM y cosechadas 16, 24 ó 36 hpi para extraer DNA y analizarlo mediante PCR punto final. Los productos de amplificación se sometieron a elecroforesis en un gel de agarosa al 2% y se analizaron mediante densitometría. En la Figura 16 se muestra el análisis por densitometría del DNA viral amplificado durante 20 ciclos, para cada virus en tres experimentos independientes.

hpi	WT Media	Stdev WT	SUMO Media	Stdev SUMO	pM Media	Stdev pM	4X Media	Stdev 4X
16	1.96E+03	2.15E+02	1.86E+03	1.83E+02	1.72E+03	2.79E+02	1.33E+03	1.32E+02
24	4.68E+03	1.79E+03	3.63E+03	9.50E+02	1.10E+04	4.31E+03	2.17E+03	4.65E+02
36	1.27E+04	3.03E+03	1.58E+04	2.59E+02	1.95E+04	1.57E+03	3.78E+03	8.69E+02

Figura 16. Síntesis de DNA viral de los virus WT y mutantes, en células HFF. Los valores obtenidos de tres experimentos independientes se analizaron por densitometría (ImageJ) y se graficaron utilizando el programa Graph Prism. En la Tabla se muestra la media de los triplicados y la desviación estándar (St dev).

En la Figura 16 se puede observar la cinética de síntesis del DNA viral esperada para el virus WT. El DNA detectado a las 16 hpi representa el DNA inicial (input), en el que se observaron niveles muy similares entre WT y los mutantes. Para las 24 hpi, se observó el aumento en el nivel de DNA viral, como era de esperarse, ya que se sabe que el inicio de síntesis de DNA viral ocurre alrededor de las 24 hpi en estas células (Gonzalez et al. 2006). El aumento en el nivel de DNA entre las 16 y 24 hpi, del mutante SUMO, mostró niveles muy similares a WT, tanto a las 24 como a las 36 hpi; el mutante pM mostró niveles alrededor de dos veces mayores que WT. En contraste, la

síntesis de DNA por el mutante 4X fue alrededor del 50% en relación a la obtenida con el WT.

Estos datos muestran que existe un aumento en la eficiencia de replicación del DNA viral cuando la E1B está en un estado que mimetiza un estado constitutivo de fosforilación y que el estado de SUMOilación de la E1B no parece afectar la síntesis de DNA viral; además, los datos obtenidos con la mutante 4X confirman que la E1B es necesaria para la replicación eficiente del DNA viral.

7.2 OBTENCIÓN DE FRACCIONES DE CR Y NUCLEOPLASMA (Npl)

Como se describió en los antecedentes, la regulación postranscripcional de los genes virales tardíos mediada por la E1B podría depender de su asociación a los CR virales. Para analizar el papel de esta proteína en la composición de los CR, usamos una estrategia que nos permite obtener fracciones subnucleares enriquecidas con estas estructuras virales. Para evaluar el papel de la E1B y de las modificaciones postraduccionales a las que está sujeta, sobre las funciones de la proteína asociadas a los CR, se obtuvieron fracciones subnucleares en dos experimentos independientes a partir de células infectadas con Ad5 WT, 4X, SUMO o pM.

Se utilizaron tres tiempos post infección, 16 hpi, que corresponde a la fase temprana del ciclo de replicación viral; 24 hpi, tiempo intermedio que corresponde a la transición a la fase tardía; y 36hpi, correspondiente a la fase tardía del ciclo de replicación viral. De esta forma pudimos analizar cambios en la composición de los CR y los diferentes patrones de síntesis y procesamiento de los mRNA virales tardíos.

Para comprobar que el procedimiento utilizado para la obtención de estas fracciones permitió obtener el enriquecimiento de componentes de CR, las fracciones de Npl y CR se analizaron por WB y por PCR, como se describe en Materiales y Métodos.

En la Figura 17 se muestra el análisis por Western Blot para detectar a la proteína DBP. En estos experimentos esta proteína funciona como un marcador de CR ya que está asociada al DNA viral de cadena sencilla en los sitios de síntesis de DNA viral.

Figura 17. Presencia de la proteína viral DBP en las fracciones de células infectadas. Células HFF fueron infectadas con Ad WT, 4X, SUMO o pM y los extractos correspondientes a CR y Npl fueron sometidos a un análisis por WB para la detección de DBP.

Estos experimentos funcionan como control de la obtención de fracciones para el caso de las células infectadas con Ad WT, ya que los resultados obtendos con este virus correlaciona con las condiciones establecidas para detectar a DBP asociada a los CR, previamente establecidas en nuestro laboratorio, en contraste, la asociación de DBP con la fracción de CR en células infectadas con los mutantes no había sido analizada.

En las fracciones de células infectadas con Ad WT se detectó la DBP a partir de las 24 hpi y la señal aumentó para las 36 hpi. Estos resultados se esperaban, ya que a las 24 hpi inicia la síntesis de DNA viral y la asociación de la proteína con los CR. En la fracción de nucleoplasma la proteína se detectó a partir de las 16 hpi, también como se espera, ya que ésta se acumula en el núcleo antes del inicio de la fase tardía. En las células infectadas con los mutantes SUMO y pM. la distribución de DBP resultó ser similar a la detectada con los virus WT en ambas fracciones (CR y Npl), en donde su acumulación en CR inició también a las 24 hpi y aumentó para las 36 hpi. Sin embargo, en ambos casos la intensidad de las bandas mostró diferencias en comparación con WT. En el caso de pM se observó una señal debil pero clara de la DBP a las 16 hpi en CR y el aumento en la acumulación de la proteína para las 36 hpi, fue ligeramente menor que en WT. El mutante de SUMO mostró niveles muy bajos de la proteína en nucleoplasma a las 24 hpi. Para el caso de las células infectadas con 4X sólo se detectó DBP en los CR a las 16 hpi, pero no en otro tiempo ni en nucleoplasma.

Este resultado no se esperaba porque la DBP puede detectarse en células infectadas tanto con este mutante como con los otros en CR por inmunofluoresecencia (Figura 18), lo que sugiere que no se detectó en las fracciones del virus 4X por un problema técnico del WB, por ejemplo de

sensibilidad. En todo caso, éste es un aspecto que deberá de explorarse para determinar si en este mutante la síntesis o distribución de DBP está alterada.

Figura 18. Localización de DBP en núcleos de células infectadas con WT, 4X, pM o SUMO. En la figura se muestra el análisis por inmunofluorescencia de la localización de DBP a las 36 hpi (cian) en núcleos de células infectadas (marcados por DAPI).

Además de determinar la presencia de DBP, analizamos el enriquecimiento del DNA viral en las fracciones de CR (Figura 19). Al igual que para el caso de DBP, sólo en las células infectadas con Ad WT estaba establecido el patrón de asociación del DNA con las fracciones de CR.

Figura 19. Deteccion del DNA viral en las fracciones subnucleares de células infectadas con Ad WT, 4X, SUMO o con pM. Se detectó el DNA viral en las fracciones de Centros de Replicación

(CR) y de Nucleoplasma (Npl) por PCR punto final, usando primers que permiten la amplificación de una secuencia dentro del líder tripartita incluyendo intrones.

Se espera que el DNA total, en cada tiempo, sea la suma del DNA en CR más el DNA en Npl, ya que el volumen total del núcleo se obtiene en estas dos fracciones. En las células infectadas con Ad WT observamos el patrón esperado para la distribución del DNA viral entre la fracción de CR y Npl a los tiempos analizados. A las 24 hpi, el DNA viral se detectó tanto en CR como en Npl y para las 36 hpi se observó un claro aumento en los CR. En contraste, en células infectadas con 4X, se detectó DNA a las 16 hpi en los CR y el nivel disminuyó para las 24 hpi, mientras que en la fracción de Npl el DNA se mantuvo en niveles apenas detectables, similares, tanto a las 24 como a las 36 hpi. En el caso de las células infectadas con el mutante SUMO, el DNA se detectó en los tres tiempos analizados, con patrones similares en ambas fracciones: hubo un aumento en el DNA a las 36hpi tanto en CR como en Npl. Cuando las células se infectaron con pM, el DNA se detectó a las 16 hpi sólo en Npl, mientras que para las 24 y 36 hpi se detectó en ambas fracciones pero con señal más intensa en los CR.

Estos resultados indican que el procedimiento para la obtención de fracciones funcionó como se esperaba y mostraron que hay diferencias en el patrón de asociación de DBP y el DNA viral a los CR debido a las mutaciones en la E1B.

7.3 EFECTO DE LA FOSFORILACIÓN Y LA SUMOILACIÓN DE LA E1B SOBRE LA ASOCIACIÓN DE mRNA VIRALES TARDÍOS A LOS CR Y SU PROCESAMIENTO POSTRANSCRIPCIONAL

7.3.1 VALIDACIÓN DE PRIMERS PARA LOS ENSAYOS DE RT-PCR Y qRT-PCR

Para analizar el efecto que tiene la E1B sobre el procesamiento postranscripcional de los mRNA virales tardíos, se obtuvieron fracciones subnucleares de células infectadas con Ad WT, 4X, SUMO y con pM. A partir de estas fracciones se purificó el RNA que se utilizó en los ensayos de RT-PCR punto final y qPCR para cuantificar las moléculas de mRNA procesados y no procesados por "splicing" y analizar los cambios en el procesamiento y distribución de los mRNA virales tardíos en fracciones de CR y Npl.

En todos los casos, los primers debían ser específicos para el gen de interés (Tabla 3) y permitir la amplificación de un producto único y del tamaño esperado. Para establecer las condiciones de cada par de primers para cada mRNA de interés por RT-PCR, se utilizó un lisado total de células infectadas con Ad WT, cosechadas 36 hpi. A partir de este lisado se extrajo RNA como se describe en la sección de Materiales y Métodos. Posteriormente se cuantificó el RNA obtenido y se utilizaron 100 ng de RNA para las reacciones de RT-PCR punto final.

Para todos los pares de primers se utilizó una temperatura inicial de desnaturalización a 95°C por 3 min, seguido de 40 ciclos de 15 s a 95°C, 30 s a 55-70°C (dependiendo de la Tm de cada par de primers) y 30 s a 72°C. Se probaron diferentes temperaturas de alineamiento y en algunos casos, concentraciones de MgCl₂ y (NH₄)₂SO₄ diferentes a las descritas en Materiales y Métodos, hasta obtener un producto único de amplificación con la longitud esperada. Las condiciones finales para cada par de primers se resumen en la Tabla 5 y los geles con cada uno de los productos únicos y del tamaño esperado se muestran en la Figura 20.

Tabla 5. Condiciones de primers para qPCR					
PRIMERS	Tm	OTRAS CONDICIONES			
ACTB P	62°C	-			
ACTB NP	70°C	-			
P53 P	60°C	-			
rRNA	58°C	-			
U1 snRNA	62°C	-			
ML P	60°C	-			
ML NP	62°C	No usar (NH ₄) ₂ SO ₄			
L4-100K P	58°C	-			
L4-100K NP	71°C	No usar (NH ₄) ₂ SO ₄			
L4-22K y 33K P	62°C	-			
L4-pVIII P	66°C	No usar (NH ₄) ₂ SO ₄ ; 2mM de MgCl ₂			
L5 P	60°C	-			
L5 NP	58°C	-			
L2-pV P	58°C	-			
L2-pV NP	58°C	-			

Figura 20. Estandarización de la amplificación de los diferentes productos de amplificación con cada par de primers. El RNA extraído a partir de células HFF infectadas con Ad WT 36 hpi se utilizó para la sintesis por RT-PCR de los diferentes amplicones, utilizando pares de primers con diferentes condiciones. Los productos de amplificación obtenidos se analizaron en geles de agarosa al 2%. Para cada condición se obtuvo una unica banda, y los tamaños de estos productos fureon correspondientes a los tamaños esperados (Tabla 3). En cada caso se marca el tamaño de la banda (pb) única esperada para cada set de primers. Los números arriba de las figuras (1-14) indican los diferentes geles en los cuales se analizaron los productos de amplificación para cada mRNA.

7.3.2 RT-PCR punto final: análisis semi-cuantitativo

Como se describió en la introducción, la proteína multifuncional E1B está sujeta a dos tipos de modificaciones postraduccionales: SUMOilación en la lisina 104 y fosforilación en las serinas 490 y 491, así como en la treonina 495. Estas modificaciones parecen ser necesarias para regular las funciones asociadas a la E1B, por lo que quisimos investigar su efecto sobre el procesamiento postranscripcional de los mRNA virales.

Debido a que la localización de la E1B en los CR correlaciona con la exportación eficiente de mRNA virales tardíos y que cambios en las modificaciones postraduccionales alteran su localización subnuclear, decidimos analizar el efecto de las mutaciones en los sitios de SUMOilación (K104R) y fosforilación (S490D/S491D/T495D) sobre el procesamiento de los mRNA virales tardíos.

Para este ensayo se purificó RNA total de las fracciones de CR y Npl, y los mRNA de interés (ML P, ML NP, L2 P, L2 NP y U1 snRNA) se cuantificaron mediante PCR. Se comprobó que las muestras de RNA no presentaran DNA,

ya que cuando se usaron en una reacción de PCR no se obtuvieron productos de amplificación. Los ensayos se hicieron por duplicado y con dos experimentos independientes para medir tanto mensajeros procesados (P) por splicing (los primers hibridan en uniones exón-exón) como pre-mRNA (NP) (los primers hibiridan en uniones intrón-exón). Los productos se analizaron por electroforesis en geles de agarosa al 2% teñidos con bromuro de etidio y las bandas se cuantificaron por densitometría. Los valores obtenidos para cada condición se graficaron usando los cocientes P/NP (mRNA/pre-mRNA) (Figuras 21 y 22) para analizar procesamiento y distribución de las especies de RNA seleccionadas.

En las gráficas de la Figura 21 se muestran los datos obtenidos con los mRNA virales tardíos de las células infectadas con WT o mutantes. Para estos experimentos se usaron los primers que amplifican la región del líder tripartita (TPL, descrito en la introducción), compartida por todos los mRNAs virales tardíos.

Figura 21. Comparación del análisis por densitometría entre WT y mutantes, de la relación de mRNA virales tardíos procesados sobre los no procesados (P/NP). En la figura se muestran las gráficas y las tablas con los datos obtenidos por densitometría de todos los mRNA virales tardíos (ML) en fracciones subnucleares de células infectadas con A) WT, B) SUMO, C) pM o D) 4X.

En células infectadas con WT (Figura 21, panel A), a las 16 hpi se observaron niveles mayores de mRNA no procesados que procesados en los CR (P/NP = 0.85 ± 0.25), mientras que en el nucleoplasma el nivel de pre-mRNAs fue ligeramente superior al de mRNAs procesados (P/NP = 0.66 ± 0.14). Para las 24

hpi se observó una relación similar de P/NP entre las fracciones, y en ambas hubo un ligero enriquecimiento de los mRNA P (P/NP_{CR}= 1.02 ± 0.3 y P/NP_{Npl}= 1.03 ± 0.32). En la fase tardía, se detectó un nivel mayor de mRNA procesados en los CR (P/NP_{CR}= 1.03 ± 0.06) y en el nucleoplasma se observaron niveles ligeramente mayores de mRNA NP que P (P/NP_{Npl}= 0.86 ± 0.15).

Estas diferencias entre condiciones son pequeñas ya que en los experimentos previos obtenidos en nuestro laboratorio (Hidalgo 2011) se observaron diferencias marcadas entre las condiciones analizadas para la detección de mRNA virales tardíos (proporciones de P/NP desde 0.4 en Npl a las 16 hpi hasta 1.85 en Npl a las 36 hpi). En estos experimentos los RT-PCR se realizaron por 40 ciclos y esta amplificación pudo haber saturado los niveles de los mRNA, lo que dificultaría la detección de posibles diferencias, por lo que será necesario e interesante hacer la amplificación con un número menor de ciclos para comparar las diferencias entre cada condición.

Si comparamos el patrón de mRNA virales tardíos de mutantes con WT, podemos observar que las diferencias entre condiciones tampoco son muy grandes. Sin embargo podemos observar que en la fracción de Npl de SUMO a las 36 hpi, se detectó una mayor proporción de mRNA procesados que para WT. En las fracciones de pM la diferencia con WT más notable se observó en el Npl a las 24 hpi, en la cual se obtuvo una proporción del doble de la obtenida en WT. En ausencia de la E1B, la proporción de mRNA P/NP en cada condición fue menor a 1, lo que indica que se detectó un mayor nivel de mRNA NP que P. Las diferencias más notables en comparación con WT se observaron a las 24 y 36 hpi, con una disminución del 60% en 4X.

En la Figura 22 se muestran los datos para el mRNA de L2 que codifica para la proteína pV. Con este mRNA las diferencias fueron ligeramente más notables que para ML.

Figura 22. Comparación del análisis por densitometría entre WT y mutantes de la relación de mRNA virales tardíos procesados sobre los no procesados (P/NP). En la figura se muestran las gráficas y las tablas con los datos obtenidos por densitometría de los productos de RT-PCR de L2 en fracciones subnucleares de células infectadas con A) WT, B) SUMO, C) pM o D) 4X. St dev: desviación estándar.

Al analizar este mRNA en células infectadas con WT (panel A, Figura 22), observamos que en las fracciones de CR a las 16 y 24 hpi y en Npl 16 hpi, la proporción de mRNA P y NP fue similar (P/NP~1); mientras que en Npl 24 hpi el nivel de los mRNA procesados fue 14% mayor que los pre-mRNA. A las 36 hpi en CR, los niveles de mRNA y pre-mRNA de L2 fueron similares (P/NP~1) y en Npl el nivel de los pre-mRNA fue ligeramente mayor al de los mRNA procesados (P/NP=0.7±0.1).

Con los mutantes de SUMO y 4X los mRNA NP se detectaron en mayor nivel que los P, ya que la proporción P/NP fue menor que 1 para cada condición. En las fracciones de pM, a las 36 hpi se obtuvo una proporción mayor de mRNA procesados que la obtenida para WT.

Para comparar qué efectos tienen las mutaciones en los sitios de modificaciones postraduccionales de la E1B sobre la localización y procesamiento de RNA celulares y virales, los valores obtenidos para los mutantes se normalizaron con los valores de WT. En la Figura 23 se muestra la gráfica de la comparación de los mutantes con el WT.

Figura 23. Análisis por densitometría de los mRNA virales tardíos P/NP. Los productos de RT-PCR de todos los mRNA virales tardíos (reconocimiento de la secuencia común del líder tripartita) extraídos a partir de células infectadas con el Ad WT, 4X, SUMO y pM, en diferentes horas post-infección (hpi), se analizaron por densitometría utilizando el programa ImageJ. La relación de los valores obtenidos para los mensajeros procesados (P) sobre los no procesados (NP) se graficó para cada condición comparándolos con WT, normalizado a 1. En la tabla se muestran los valores graficados. St dev: desviación estándar.

Cuando la proteína E1B está ausente (4X), durante la fase temprana (16 hpi) no se observaron diferencias con WT. Éstas se observaron en la transición a la fase tardía (24 hpi) y durante la fase tardía (36 hpi). En ambas fracciones en estos tiempos la proporción de mensajeros no procesados fue mayor que la de los procesados ($P/NP_{24}\sim0.7$ y $P/NP_{36}\sim0.5$), similar a los datos previos obteindos en nuestro laboratorio (virus nulo para la E1B) (Hidalgo 2011). Estos datos sugieren que en ausencia de la E1B, el procesamiento de los mRNA virales tardíos es deficiente.

Para el mutante SUMO se esperaba detectar diferencias similares a 4X, ya que cuando se inhibe la SUMOilación de E1B, su localización en los CR es deficiente (Wimmer, Blanchette et al. 2012) y parece ser necesario que la E1B se localice en los CR para favorecer la exportación selectiva de mRNA virales tardíos. Sorprendentemente, no observamos una disminución en los mRNA procesados como en el caso de 4X, pero sí valores mayores de P/NP respecto

al WT. A las 16 hpi en los CR, se observó una proporción 20% mayor en SUMO que en WT y en Npl fue aproximadamente 40% mayor. A las 24 hpi la proporción de mRNA procesados fue 20% mayor en CR y 10% mayor en Npl comparado con WT. Para las 36 hpi, la mayor diferencia se observó en Npl, ya que la proporción P/NP en SUMO fue 60% mayor que en WT.

Para el virus pM observamos que la proporción P/NP a las 16 y 24 hpi fue mayor para la fracción de Npl que para los CR. La proporción de Npl 16 hpi fue casi el doble que para WT. En la fracción de Npl a las 24 hpi también se observaron diferencias muy grandes en comparación con WT (2.5 veces más). A las 36 hpi, las diferencias con WT fueron menos notables (un aumento del 12% en CR y del 6% en Npl).

Estos datos sugieren que la fosforilación y/o la ausencia de la SUMOilación de la E1B tienen un efecto sobre la distribución de mRNA virales tardíos en las fracciones subnucleares.

Este análisis también se hizo para los mensajeros de L2 (pV) y la gráfica de la relación P/NP se muestra en la Figura 24 para cada condición.

Figura 24. Análisis por densitometría de la relación de los mRNA de L2-pV P/NP. Los productos de RT-PCR de los mRNA de L2 extraídos a partir de células infectadas con el Ad WT, 4X, SUMO y pM, en diferentes horas post-infección (hpi), se analizaron por densitometría utilizando el programa ImageJ. La relación de los valores obtenidos para los mensajeros procesados (P) sobre los no procesados (NP) se graficó para cada condición comparándolos con WT. En la tabla se muestran los valores graficados. St dev: desviación estándar

Para el caso específico de L2 también se observó una disminución en la proporción P/NP respecto a WT para todas las condiciones de 4X, lo cual sugiere que la presencia de la E1B se requiere para que el mRNA de L2 se procese por splicing eficientemente.

Las diferencias entre las fracciones de SUMO y WT fueron menores que para el patrón general de todos los mRNA virales tardíos. En las fracciones de 16 y 24 hpi se observaron niveles similares de L2 en SUMO y WT. En los CR a las 36 hpi se detectó una proporción 20% mayor de P/NP que en WT y aproximadamente 40% mayor en Npl.

En las fracciones de CR de pM a las 16 y 24 hpi se observó una proporción de P/NP similar a WT, pero a las 36 hpi se observó un aumento del 33% respecto a WT. En las fracciones de Npl de pM, a las 16 hpi se observó una proporción de P/NP 40% mayor que WT. A las 24 hpi se observó un aumento aproximadamente del 90% en la proporción P/NP respecto a WT. Para las 36 hpi, esta proporción fue 55% mayor.

Estos datos sugieren que la regulación de las funciones de la E1B por fosforilación, pero no por SUMOilación, tienen un efecto sobre la distribución del mRNA de L2-pV entre CR y Npl.

También hicimos el análisis para el snRNA U1 ya que es un factor importante en la formación del spliceosoma durante el procesamiento postranscripcional de mRNA, por lo que debería participar en el "splicing" de los mRNA virales tardíos en los CR.

65

Figura 25. Análisis por densitometría de la relación CR/Npl de los U1 snRNA. Los productos de RT-PCR de snRNA U1 extraídos a partir de células infectadas con el Ad WT, 4X, SUMO y pM, en diferentes horas post-infección (hpi), se analizaron por densitometría utilizando el programa ImageJ. La relación de los valores obtenidos para los mensajeros procesados en CR sobre los del Npl se graficó para cada condición comparándolos con WT. En la tabla se muestran los valores graficados. St dev: desviación estándar

En la Figura 25 podemos observar que a las 16 hpi en células infectadas con Ad WT, la proporción del snRNA U1 en los CR fue el doble que en células infectadas con los mutantes. En todas las demás condiciones se detectaron proporciones similares y éstas fueron menores a 1 (0.6-0.7), lo cual indica que el nivel de U1 fue mayor en Npl que en CR.

Nuevamente, se observaron diferencias pequeñas entre las condiciones analizadas, por lo que usando menos ciclos de amplificación por PCR se podría facilitar la identificación de diferencias, si las hubiera.

Por estos datos, podemos sugerir que la E1B tiene un efecto sobre la localización de U1 en los CR que podría estar implicado en el splicing de los mRNA virales.

7.4.2 RT-PCR tiempo real: análisis cuantitativo

Además del análisis semi-cuantitativo, se hizo el análisis cuantitativo de los mRNA procesados y no procesados de L5-fibra.

Se utilizaron los primers que permiten la amplificación de regiones específicas para el pre-mRNA de L5 (L5 NP) y para el mRNA de L5 (L5 P) para hacer un análisis cuantitativo por el método $\Delta\Delta$ Ct y comparar el efecto que tiene la ausencia de la E1B sobre el procesamiento de estos mensajeros a las 16, 24 y 36 hpi, en los CR y en el Npl. Primero, fue necesario evaluar la eficiencia de amplificación para los primers utilizados. Para esto se hicieron diluciones de los cDNA 1:5, partiendo de 50 ng de cDNA, para obtener una curva estándar y la regresión lineal que permitiera calcular la eficiencia de amplificación.

Se usaron U1 snRNA y 18S rRNA como genes de referencia y los genes de interés (GOI) fueron L5NP y L5P. La regresión lineal para los cuatro genes se muestra en la Figura 26.

Figura 26. Regresión lineal para los genes de referencia y GOI. Se hizo una curva estándar relativa para cada uno de los sets de primers (18S rRNA, U1 snRNA, L5P y L5NP) con 6 diluciones 1:5 partiendo de 50 ng de cDNA total. Los valores de Ct se graficaron contra el logaritmo de la concentración relativa y se obtuvo la ecuación de la recta. Los valores óptimos para la curva son una pendiente de m=-3.3 y un coeficiente de correlación R²=0.99.

Los valores de cada regresión lineal (Figura 26) permitieron calcular la eficiencia de amplificación (E). El valor óptimo es E=2, lo cual indica que en cada ciclo de amplificación se duplica el templado inicial. La eficiencia calculada para cada set de primers fue la siguiente:

Los valores fueron aproximados a los valores óptimos, por lo que decidimos continuar con la cuantificación por el método comparativo.

Mientras mayor el Ct, menor es el número de moléculas de mRNA en la muestra y una diferencia de una unidad del Ct representa un cambio del doble en el número de moléculas amplificadas en la reacción. En la Figura 27 se muestra la gráfica del "fold-change" de las muestras, comparadas con la cantidad en la fracción de Npl de células infectadas con 4X 24 hpi (Npl 4X24) ($\Delta\Delta$ Ct=0, fold-change=2^{- $\Delta\Delta$ Ct}=1). Esta muestra se seleccionó como calibrador debido a que mostró el Δ Ct más alto tanto para L5 NP como para L5 P, y permitió evaluar cómo aumentaba la cantidad de cada mRNA en las diferentes muestras.

Figura 27. Niveles de L5 en fracciones subnucleares de células infectadas con Ad WT o 4X. Promedio de dos experimentos independientes, cada uno por triplicado y desviación estándar de la cuantificación relativa de A) L5 NP y B) L5 P en las fracciones de CR y Npl de células infectadas con Ad WT o con 4X. La muestra utilizada como calibrador para la cuantificación de L5 NP y L5 P fue Npl 4X24 y a partir de ésta se comparó el aumento en la cantidad de las demás muestras. St dev: desviación estándar.

Durante la fase temprana del ciclo de replicación de adenovirus no se esperaría que hubiera síntesis de mRNA de L5; no obstante, este mRNA se detectó desde las 16 hpi. No es claro por qué se detecta este mRNA en nuestros experimentos, ya que está reportado que el mRNA de L5 se detecta normalmente en los tiempos finales de la fase tardía; sin embargo, estos resultados se han obtenido de forma reproducible, y hemos comprobado que no se trata ni de contaminación de la muestra con DNA, ni de amplificación inespecífica (Fig.), por lo que se tendrá que evaluar detalladamente si en estas células puede haber transcripción de L5 en tiempos anteriores a los reportados.

Para los mRNA de L5 NP (panel A, Figura 27) podemos observar que, a las 16 hpi se detectó una cantidad similar en las fracciones de CR tanto de WT como de 4X (fold-change aproximadamente 100). A las 24 hpi en los CR, se detectaron aproximadamente 280 veces menos mRNA NP en 4X que en WT y a las 36 hpi la diferencia fue de 5 veces menos en 4X. En las fracciones de Npl, a las 16 hpi se detectó aproximadamente 8 veces menos L5 NP en las fracciones de 4X, mientras que para las 24 y 36 hpi la disminución fue de 300 y 40 veces, respectivamente.

En las fracciones subnucleares (CR y Npl) de WT y 4X se detectaron niveles similares de L5 procesado. En todas las condiciones restantes, se detectó menos L5 procesado en las fracciones de 4X que en WT. En los CR 24 hpi la diferencia entre virus fue de 20 veces y a las 36 hpi de 3 veces. En la fracción de Npl a las 24 hpi, la disminución fue de 30 veces mientras que a las 36 hpi fue de 8 veces.

En resumen, en fracciones subnucleares de células infectadas con WT se observó el patrón para L5 que se esperaba. En CR a las 24 hpi se midió un aumento en la síntesis del pre-mRNA de L5 y para las 36 hpi disminuyó en estra fracción subnuclear. En estos tiempos se observó un aumento en Npl para el mRNA NP. Por otro lado, el mRNA procesado de L5 aumentó para las 24 hpi disminuyó para las 36 hpi tanto en CR como en Npl.

En asuencia de la E1B se midieron menos mRNA para L5 que en WT. En las fracciones de Npl y de CR se observó un aumento de las 24 a las 36 hpi del pre-mRNA de L5. El mRNA procesado aumentó en CR a las 36 hpi y en Npl se mantuvo en cantidades similares en los tres tiempos analizados.

Estos datos sugieren que la síntesis y procesamiento por splicing de L5 son deficientes en ausencia de la E1B.

7.4 EFECTO DE LA FOSFORILACIÓN Y LA SUMOILACIÓN DE LA E1B SOBRE LAS PROTEÍNAS ASOCIADAS A LOS CR

Como se describió en la introducción, en los CR se lleva a cabo la expresión de los genes virales tardíos y al menos el inicio de su procesamiento postranscripcional (Bridge, Carmo-Fonseca et al. 1993; Pombo, Ferreira et al.
1994; Puvion-Dutilleul, Bachellerie et al. 1994; Bridge, Xia et al. 1995; Bridge, Riedel et al. 1996; Aspegren, Rabino et al. 1998). Algunas evidencias sugieren que la E1B podría tener un efecto sobre la eficiencia del procesamiento de estos mRNA y se ha reportado que el reclutamiento de algunas proteínas celulares a los CR correlaciona con la presencia de E1B (Holm, Bergmann et al. 2002; Cardoso, Kato et al. 2008).

En estos experimentos se analizó el efecto de la E1B, sobre el reclutamiento de factores de splicing y componentes de la maquinaria de exportación de mRNA a la fracción subnuclear de CR. En la Figura 28 se muestra el WB de proteínas celulares responsables de exportación de mRNA (Tap, Aly, UAP56), procesamiento postranscripcional (UAP56, ASF/SF2 y SC-35), así como de la proteína nucleolar nucleofosmina (B23), la cual se ha reportado que es reclutada a los CR y podría favorecer la replicación viral, ya que se asocia a DBP y pTP y favorece la encapsidación del genoma viral (Samad, Komatsu et al. 2012; Ugai, Dobbins et al. 2012).

Figura 28. Proteínas relocalizadas a los CR de Adenovirus. Las fracciones de Centros de Replicación (CR) y nucleoplasma (Npl) de células HFF infectadas con una MOI de 30 UFF/célula, con el virus tipo silvestre (WT) o con los mutantes de la E1B (4X, SUMO y pM) se corrieron en geles de poliacrilamida al 10% y se analizaron mediante Western Blot para la detección de las proteínas Tap, Aly, UAP56, ASF/SF2, SC-35 o B23. Para cada proteína se utilizó una membrana diferente.

En la Figura 28 se observa que para todas las proteínas (excepto SC-35) se detectó una banda del peso molecular esperado. En el caso de SC-35 se

detectó una sola banda de 70 kDa y no la banda del peso molecular esperado de 35 kDa (ver Discusión). Para el caso de B23, se detectó la banda esperada de 37 KDa pero adicionalmente se detectaron bandas de mayor peso molecular. Está reportado que esta proteína puede sufrir modificaciones postraduccionales por fosforilación y SUMOilación (Okuwaki, Tsujimoto et al. 2002; Tago, Chiocca et al. 2005), lo que sugiere que estas bandas de mayor peso molecular corresponden a las formas modificadas de B23, pero estas observaciones se tienen que comprobar con otros experimentos.

El patrón de bandas para cada proteína entre CR y Npl para cada virus fue muy complejo, por lo que se cuantificaron por densitometría para facilitar el análisis. Esta medición se hizo en células no infectadas (Figura 29) para analizar el patrón normal de distribución de estas proteínas y en células infectadas con el virus WT y mutantes de E1B (Figura 30).

Figura 29. Densitometría de los WB de HFF no infectadas. El análisis semi-cuantitativo se hizo usando el programa ImageJ y los resultados se graficaron haciendo una relación de los valores obtenidos en la fracción de CR sobre los valores obtenidos en Npl.

En células no infectadas observamos una mayor proporción de proteínas en Npl que en CR, como se podría anticipar, ya que estas proteínas no se asocian a nucleolo de forma abundante y en células no infectadas la fracción de CR corresponde a estos dominios subnucleares. En el caso de la proteína B23 estos datos no se esperaban, ya que es un componente muy abundante de nucleolos.

Figura 30. Densitometría de los WB de fracciones subnucleares de HFF infectadas con Ad WT o con mutantes de la E1B. El análisis semi-cuantitativo se hizo usando el programa ImageJ y los resultados se graficaron haciendo una relación de los valores obtenidos en CR sobre los valores obtenidos en Npl. Panel A: ASF/SF2; Panel B: SC-35; Panel C: UAP56; Panel D: Aly; Panel E: Tap; Panel F: B23 (se cuantificó sólo la banda correspondiente a 37 kDa).

En la infección con Ad WT se observó una mayor proporción de las proteínas en la fracción de Npl que a los CR. En contraste con esta observación, cuando la E1B está ausente, la mayoría de las proteínas se detectaron en niveles mayores en CR que en Npl. Cuando la E1B no es SUMOilada o tiene cargas negativas en los sitios de fosforilación, los efectos fueron similares durante la fase tardía al patrón obrevado para WT, pero en tiempos más tempranos se observaron variaciones. En tiempos tempranos, tanto en SUMO como en pM se detectaron mayores niveles de proteínas en los CR y para la fase tardía se observó una mayor proporción en el nucleoplasma (en pM este patrón se observa desde las 24 hpi).

El patrón tan complejo para cada una de las proteínas en las diferentes condiciones analizadas no permite establecer un modelo claro de su distribución durante la infección, pero sugiere que la E1B tiene un efecto sobre su localización y asociación a CR.

7.5 ANÁLISIS DEL EFECTO DE LA FOSFORILACIÓN Y SUMOILACIÓN DE LA E1B SOBRE LA COMPOSICIÓN DE LOS CENTROS DE REPLICACIÓN DE ADENOVIRUS

La formación de los CR es necesaria para la replicación del DNA viral y para la expresión de los genes virales tardíos, eventos que llevan a la producción de progenie viral. Además, simultáneamente están implicados en la regulación de la respuesta celular contra la infección, promoviendo un ciclo de replicación viral eficiente. La formación de los CR depende de un patrón complejo de interacciones que implican, entre otras proteínas, a la E1B, la cual es reclutada a estos sitios, no obstante, la composición de estas estructuras virales se conoce sólo parcialmente. La obtención de fracciones enriquecidas con los CR no se ha reportado, por lo que esta es la primera vez que se puede analizar su composición y funcionalidad. Los CR obtenidos con este procedimiento corresponden a una fracción bioquímicamente definida y puede ser viable para ser analizada por métodos estructurales. Además, debido a las funciones de la E1B asociadas a los CR, resulta interesante conocer el efecto que tiene esta proteína sobre la composición de los CR. Por esto decidimos hacer un análisis proteómico de las fracciones de CR en células HFF infectadas con el virus WT y virus con mutaciones en la secuencia de E1B.

Los datos mostrados para estos análisis son preliminares y deberán confirmarse haciendo al menos un experimento adicional independiente y completando el análisis bioinformático de los datos. Como análisis inicial, se compararon las fracciones de CR de células infectadas con Ad WT a las 36hpi con la fracción correspondiente en células no infectadas, mediante LC-MS/MS. Este experimento se realizó utilizando $3.5x10^7$ células por condición para obtener fracciones de CR, ya que la cantidad mínima de proteína para ser analizada por este método es de 10 pmol. En la Figura 31 se muestra el gel

teñido con Azul de Coomassie que se analizó en la la Unidad de Proteómica del IBt/UNAM.

Figura 31. Fracciones de CR MK y CR WT 36. Muestras de CR de células no infectadas (MK) e infectadas con el virus silvestre se cosecharon a las 36 hpi (WT 36) y se separaron mediante electroforesis gel de poliacrilamida al 10%. Los marcador de peso molecular de 250, 70, 25 y 10 kDa que delimitan los segmentos cortados para ser analizados por cromatografía líquida acoplada a espectrometría de masas.

La intención de este análisis fue hacer una identificación general de las proteínas que están enriquecidas en los CR en comparación con células no infectadas. Las proteínas identificadas por este método se muestran en el apéndice. Sorprendentemente, no se detectó ninguna proteína viral en los CR WT36. Esta observación sugiere que su abundancia relativa en comparación con las proteínas celulares fue muy baja, por lo cual no se detectaron por espectometría.

Además del análisis por LC-MS/MS, se hizo un análisis proteómico de fracciones de CR de células Mock e infectadas con los virus WT, 4X o pM 36 hpi mediante ESI-QTOF para comparar el efecto de la E1B sobre la composición proteica de los CR. Se planea repetir este análisis para tener una mayor confianza de que las proteínas identificadas en las diferentes condiciones son reproducibles, por lo que estos datos son preliminares.

En el análisis proteómico se identificaron 863 proteínas asociadas a la fracción de CR en células MK y 509 en CR de células infectadas con WT.

En el caso de las proteínas en CR MK (en esta condición CR corresponde a una fracción enriquecida con nucleolos) se esperaba identificar nucleolina, nucleofosmina, otras proteínas nucleolares y proteínas ribosomales. En la

Tabla 6 se muestran algunos ejemplos de proteínas nucleolares que se identificaron en esta fracción. Como era de esperarse las proteínas más representadas fueron proteínas ribosomales, nucleoilina, componente principal de nucleolos; nucleofosmina (B23), entre otras proteínas nucleolares *bona fide*.

<u>Uniprot</u> Accession	Proteínas de CR MK (Nucleolo)
DDX21_HUMAN	Nucleolar RNA helicase 2
NOP56_HUMAN	Nucleolar protein 56
NOP58_HUMAN	Nucleolar protein 58
NUCL_HUMAN	Nucleolin
RL5_HUMAN	60S ribosomal protein L5
RL13_HUMAN	60S ribosomal protein L13
RS3A_HUMAN	40S ribosomal protein S3a
RS18_HUMAN	40S ribosomal protein S18
RL4_HUMAN	60S ribosomal protein L4
RL10A_HUMAN	60S ribosomal protein L10a
RS3_HUMAN	40S ribosomal protein S3
MK67I_HUMAN	MKI67 FHA domain-interacting nucleolar phosphoprotein
NOG1_HUMAN	Nucleolar GTP-binding protein 1
NOC3L_HUMAN	Nucleolar complex protein 3 homolog
NOC2L_HUMAN	Nucleolar complex protein 2 homolog
NOP16_HUMAN	Nucleolar protein 16
BRX1_HUMAN	Ribosome biogenesis protein BRX1 homolog
RLP24_HUMAN	Probable ribosome biogenesis protein RLP24
UTP18_HUMAN	U3 small nucleolar RNA-associated protein 18 homolog
UT14A_HUMAN	U3 small nucleolar RNA-associated protein 14 homolog A
LYAR_HUMAN	Cell growth-regulating nucleolar protein
IMP3_HUMAN	U3 small nucleolar ribonucleoprotein protein IMP3
rndUTP11_HUMAN	Probable U3 small nucleolar RNA-associated protein 11
THOC4_HUMAN	ALY
SFRS1_HUMAN	ASF/SF2
NPM_HUMAN	Nucleophosmin

Tabla 6. Proteínas en CR en células no infectadas/MK (Nucleolo)

Para la fracción de CR WT, se esperaba identificar proteínas virales que participan en la replicación del genoma viral (DBP, pTP y polimerasa), así como la E1B 55K, E4orf6 y proteínas virales que favorecen la expresión de los genes virales tardíos (como L4-33K, 22K, IVa2). Además, se esperaba identificar proteínas celulares que participan en transcripción y procesamiento postranscripcional, y proteínas que se sabe se reclutan a los CR durante la

infección por adenovirus (Tabla 1). En la Tabla 7 se muestran algunos ejemplos representativos de proteínas identificadas en estos experimentos.

Uniprot Accession	Proteínas de CR WT
HEX ADE05	Hexon protein
DNB2 ADE05	Early E2A DNA-binding protein
L100 ADE05	Late 100 kDa protein
VC07_ADE05	Major core protein
V33P ADE05	33 kDa phosphoprotein
E1BS ADE05	E1B protein, small T-antigen
HEX3 ADE05	Peripentonal hexon-associated protein
VCOM ADE05	Minor core protein
	Early E3 14.5 kDa protein
PIVA2 ADE05	Maturation protein
HEX9_ADE05	Hexon-associated protein
HEX8_ADE05	Hexon-associated protein
NPM_HUMAN	Nucleophosmin
EF1A1_HUMAN	Elongation factor 1-alpha 1
ROA2_HUMAN	Heterogeneous nuclear ribonucleoproteins A2/B1
HNRPK_HUMAN	Heterogeneous nuclear ribonucleoprotein K
EF1G_HUMAN	Elongation factor 1-gamma
EF2_HUMAN	Elongation factor 2
ILF3_HUMAN	Interleukin enhancer-binding factor 3
DKC1_HUMAN	H/ACA ribonucleoprotein complex subunit 4
EF1D_HUMAN	Elongation factor 1-delta
SF3A1_HUMAN	Splicing factor 3A subunit 1
NUCL_HUMAN	Nucleolin
IF4A3_HUMAN	Eukaryotic initiation factor 4A-III
PRP8_HUMAN	Pre-mRNA-processing-splicing factor 8
UTP18 HUMAN	U3 small nucleolar RNA-associated protein 18 homolog
	Activated RNA polymerase II transcriptional coactivator
TCP4_HUMAN	p15
UAP56_HUMAN	UAP56
PRP6_HUMAN	Pre-mRNA-processing factor 6
U5S1_HUMAN	component
RU2A_HUMAN	U2 small nuclear ribonucleoprotein A'
UT14A_HUMAN	U3 small nucleolar RNA-associated protein 14 homolog A
PSPC1_HUMAN	Paraspeckle component 1
UBIQ_HUMAN	Ubiquitin
PTRF_HUMAN	Polymerase I and transcript release factor
RALY_HUMAN	RNA-binding protein Raly

Tabla 7. Proteínas de CR en células infectadas con Ad WT 36 hpi

FL2D_HUMAN	Pre-mRNA-splicing regulator WTAP
U520_HUMAN	U5 small nuclear ribonucleoprotein 200 kDa helicase
RBP2_HUMAN	E3 SUMO-protein ligase RanBP2
PM14_HUMAN	Pre-mRNA branch site protein p14
SFR15_HUMAN	Splicing factor, arginine/serine-rich 15
ELL_HUMAN	RNA polymerase II elongation factor ELL
MRE11_HUMAN	MRE11A
TOP1_HUMAN	DNA topoisomerase 1
TOP2A_HUMAN	DNA topoisomerase 2-alpha
IF4A3_HUMAN	elF4A3
H33_HUMAN	H3.3
SFRS2_HUMAN	SC35
YBOX1_HUMAN	YB1

Interesantemente, se encontraron factores de splicing, hnRNP, factores de elongación dependientes de la RNA polimerasa II o de la RNA polimerasa I, nucleolina, UAP56, SUMO ligasas y Mre11, entre otras.

Inesperadamente, no se identificó a la proteína E4orf6, la cual se ha reportado que se asocia a E1B y esta unión permite la localización de la E1B en los CR. Por otro lado, se identificaron también proteínas estructurales de adenovirus. No se ha reportado que los CR de adenovirus funcionen como sitios de ensamblaje de partículas virales, por lo que resulta sorprendente que este tipo de proteínas se asocien a los CR (ver discusión).

Además de este análisis inicial, se hizo una sustracción de proteínas compartidas entre los CR MK y CR WT36. De esta forma se obtuvieron los péptidos que normalmente están en esta fracción en células no infectadas (nucleolos) y las proteínas que son reclutadas a esta fracción por la infección con adenovirus.

A partir de las proteínas únicas para cada fracción, se hizo una clasificación. Inicialmente se utilizaron los programas bioinformáticos DAVID y Panther para clasificar funcionalmente y ontológicamente a las proteínas, pero las categorías que resultaron de este análisis fueron redundantes. Además, este tipo de programas toma en cuenta sólo algunas de las funciones de las proteínas para clasificarlas, sin embargo, continuamente se reportan nuevas funciones para las proteínas, que no se actualizan en las bases de datos, por lo que se hizo una clasificación manualmente, buscando las diversas funciones de cada proteína y haciendo categorías menos redundantes y de interés en relación a los CR. En la Figura 32 se muestra la clasificación preliminar para ambas fracciones.

Figura 32. Clasificación de las proteínas de CR MK y CR WT36. En el Panel A se muestra la clasificación de las proteínas de los CR en células no infectadas (MK) y en el Panel B los CR de las células infectadas con el Ad WT.

En la figura 32 se puede observar que se detectaron diferencias en la composición de cada fracción. Debido a la infección, la fracción de CR se enriqueció con proteínas de transporte núcleo-citoplasma y con proteínas que participan en la respuesta antiviral, además de que estuvieron enriquecidas proteínas virales que se esperaría que estén en los CR para ayudar a la replicación eficiente del virus.

Es también interesante el enriquecimiento relativo de proteínas de respuesta antiviral en los CR WT, lo que sugiere que posiblemente sean secuestradas en estos sitios para inhibir sus funciones antivirales (como se describió en la introducción), pero estas observaciones deben comprobarse mediante otros experimentos.

Por otro lado, se analizaron los cambios que hay en las fracciones de CR debido a la ausencia de la E1B (4X) o su fosforilación (pM). Se hizo la sustracción de las proteínas compartidas entre CR MK, WT y pM o CR MK, WT

y 4X para diferenciar los cambios causados en la composición de CR por las mutaciones en estos virus.

En los CR pM se identificaron 401 proteínas, de las cuales 66 se identificaron únicamente en CR pM36. En los CR 4X se identificaron 680 proteínas, 106 únicas para esta fracción. A partir de las 66 proteínas únicas de pM o de las 106 proteínas únicas de 4X, se realizó la clasificación de igual forma que para MK y WT. En la figura 33 se muestran las gráficas.

Figura 33. Clasificación de las proteínas de CR pM36 y CR 4X36. En el Panel A se muestra la clasificación de las proteínas de los CR en células infectadas con el virus mutante fosfo-mimic (pM) y en el Panel B los CR de las células infectadas con el 4X.

Cuando la E1B está en un estado constitutivo que mimetiza su fosforilación (Figura 33, panel A), se identificó una proporción relativamente alta de proteínas de respuesta antiviral en los CR, similar a los CR WT. En contraste con los CR de Ad WT, en los CR de pM se identificó un aumento relativo de las proteínas que unen DNA o que participan en la remodelación de la cromatina. También se observó un aumento relativo de proteínas de membrana plasmática y de Retículo Endoplásmico (RE) y Aparato de Golgi (Golgi). Por otro lado, se observó una disminución relativa de proteínas adenovirales en CR y de proteínas que participan en la biogénesis de ribosomas.

En la ausencia de la E1B (4X, panel B de la Figura 33), se observó un aumento relativo en proteínas de RE y Golgi, proteínas que participan en la traducción de mRNA y proteínas de unión a DNA. Interesantemente, se observó una disminución relativa de las proteínas de respuesta antiviral.

Estos datos preliminares sugieren que la E1B tiene un efecto sobre la composición proteica de los CR y sobre actividades asociadas a estas inclusiones virales, como son el reclutamiento de componentes de la respuesta celular contra la infección y de factores que participan en transcripción y procesamiento postranscripcional.

8. DISCUSIÓN

En nuestro laboratorio estamos interesados en elucidar la importancia de la proteína viral temprana E1B 55K (E1B) sobre la replicación eficiente de adenovirus. Como se describió en la introducción, muchas de las funciones de la E1B dependen de su asociación con los CR, los cuales son estructuras densas que forma el virus en el núcleo celular y desde los cuales se regulan tanto actividades virales como celulares para establecer un ciclo replicativo exitoso.

En nuestro grupo se aislaron por primera vez fracciones subnucleares que están enriquecidas con componentes de CR de adenovirus. Para comparar qué efectos tiene la E1B sobre la composición y actividad de los CR, se utilizaron células infectadas con el adenovirus tipo silvestre (WT), con un mutante que impide la SUMOilación de la E1B, con un virus que mimetiza la fosforilación de

los tres sitios de la E1B o con un mutante nulo para esta proteína; a partir de estas células se obtuvieron fracciones subnucleares de CR y se compararon con la fracción de nucleoplasma (Npl) para analizar tanto el procesamiento postranscripcional de mRNA virales tardíos como la asociación de RNA y proteínas a los CR.

Como primer paso, se caracterizó la eficiencia de replicación de los virus mutantes. Para esto, se analizó la eficiencia de producción de progenie viral (Figura 15) y de síntesis de DNA viral (Figura 16). Como era de esperarse, la ausencia de la E1B, resultó en una deficiencia en ambos procesos, ya que se observó la disminución de alrededor de dos veces tanto de la producción de progenie viral como de la síntesis de DNA, en relación con el Ad WT, lo que indica que la E1B es necesaria para que estos procesos ocurran eficientemente, resultados que son congruentes con datos anteriores del grupo (Cardoso et al. 2008). Por otra parte, con los mutantes pM y SUMO, se observó un aumento en la eficiencia de replicación del virus. En el caso de pM, condición que mimetiza un estado permanentemente fosforilado de la E1B, resultó en un aumento, tanto en la síntesis de DNA, como en la producción de progenie viral. Interesantemente, con este virus se observó un aumento de 10 veces en la producción de progenie viral comparada con el Ad WT, mientras que el aumento de la síntesis de DNA fue sólo 2 veces mayor que el WT. Estos datos sugieren que además de una síntesis más eficiente de DNA viral, la sustitución que mimetiza el estado fosforilado en la E1B impacta otros eventos que favorecen la producción de progenie viral. El mutante en el que la E1B no puede ser modificada por SUMOilación mostró un incremento sutil en la síntesis de DNA viral, pero un aumento de alrededor de 6 veces en la producción de progenie. Estos datos sugieren que la ausencia de SUMOilación de la E1B favorece la replicación del virus sin influir la replicación del genoma viral.

Una vez obtenidas las fracciones, éstas se validaron mediante WB (Figura 17) y PCR (Figura 19) para comprobar que estuvieran enriquecidas con componentes de CR. En estos experimentos se determinó que tanto la proteína DBP como el DNA viral están presentes en estas fracciones. A las 16 hpi se

esperaría obtener una fracción con componentes que favorecen la formación de los CR, en estructuras que sirven como nucleadores, como las proteínas E4orf3 y E1B en los "tracks" de PML, además del inicio de la acumulación de proteínas de E2 (DBP, pTP, PoI), pero no con todos los componentes que se necesitan para la síntesis de DNA viral y expresión de genes virales tardíos.Al comparar los niveles relativos del DNA viral entre las fracciones obtenidas de células infectadas con el virus WT y los mutantes se observaron diferencias desde las 16 hpi para cada condición. Se esperaba que el input del DNA fuera el mismo en todos los virus. Sin embargo, esto no se observó. Esta observación podría interpretarse como una diferencia en la eficiencia de localización del DNA viral con la fracción que se puede obtener por el procedimiento empleado, a las 16 hpi o como un inicio más temprano en la síntesis del DNA viral en los mutantes SUMO y pM. Esta observación se deberá comprobar haciendo ensayos cuantitativos para el DNA en las fracciones subnucleares a diferentes tiempos pi.

Se ha observado que el mutante SUMO interfiere con la localización de la E1B en los CR pero sin un efecto negativo sobre la exportación selectiva de los mRNA virales tardíos (Kindsmuller, Groitl et al. 2007; Wimmer, Blanchette et al. 2012). Para el mutante pM se ha reportado que favorece la SUMOilación de la E1B y su localización en los CR, pero no se han publicado fenotipos relacionados a la exportación de mRNA (Kindsmuller, Groitl et al. 2007). En ausencia de la E1B, la exportación selectiva y la formación de los CR son deficientes. Pilder y colaboradores (Pilder, Moore et al. 1986), reportaron que en células transformadas (HeLa) infectadas con el virus H5dl338, el cual no expresa a la E1B, la replicación del DNA viral es normal, sin embargo muestra defectos en la acumulación de transcritos de la MLTU durante la fase tardía; los autores llegaron a la conclusión que la E1B facilita el transporte y la acumulación de mRNA virales durante la fase tardía al mismo tiempo que se bloquean los mismos procesos para los mRNA celulares. Recientemente, se reportó que la exportación de los mRNA virales tardíos es facilitado por la maguinaria de Tap/p15 y que no se requiere que la E1B (en asociación con E4orf6 como se describió en la introducción) pueda translocarse entre el núcleo y el citoplasma (Schmid, Kindsmuller et al. 2011; Yatherajam, Huang et al.

2011). Sin embargo, la etapa de la biogénesis de los mRNA virales tardíos en la que participa la E1B sigue siendo una incógnita.

La síntesis de L5-fibra requiere que la maquinaria de "splicing" ignore aproximadamente 13 sitios potenciales de "splicing" alternativos y 4 sitios de poli(A) disponibles antes del sitio de L5 (Prescott and Falck-Pedersen 1992). En células HFF, el aumento en la concentración del DNA viral se detectó alrededor de las 24 hpi y L5-fibra se detectó de 8 a 10 horas después del inicio de la replicación del DNA viral (Gonzalez, Huang et al. 2006). En los experimentos de Pilder y colaboradores observaron que la acumulación tanto de mRNA no procesados de L5 como la forma procesada se acumula a niveles menores comparando la infección de H5dl338 con la del Ad WT y sugirieron que el efecto de la E1B sobre la acumulación de los mRNA virales tardíos no es en el procesamiento por "splicing" (Pilder, Moore et al. 1986). Además reportaron que la acumulación de algunos mRNA virales tardíos en células infectadas con H5dl338 está más afectada que la de otros (L5>L3>L4). En un reporte más reciente se publicó que el efecto de la ausencia de la E1B es más marcado para L5 y L2 que para L4-100K (Gonzalez and Flint 2002). Por lo tanto se seleccionaron los mRNA de L2 (Figuras 22 y 24) y L5 (Figura 27) para analizar el efecto de la E1B sobre su procesamiento postranscripcional.

La organización de la MLTU dificulta la selección específica de pre-mRNA de las familias L1-L4 para su medición. Por ejemplo, si se desea medir el premRNA para L2-pentón, éste no sólo corresponde al mRNA no procesado de pentón, sino también a los de L2-pVII, L2-pV, L2-pMu, así como los mRNA de L3, L4 y L5 (ver Figura 3). El único pre-mRNA que se puede medir individualmente es el de L5-fibra, ya que no hay mRNA tardíos posteriores codificados en la MLTU. Por esta razón, se cuantificó el mRNA de L5 por RT-PCR cuantitativo.

Inicialmente se hizo el análisis semi-cuantitativo por RT-PCR de todos los mRNA virales tardíos (Figuras 21 y 23), con los virus mutantes de E1B para conocer si había cambios en el procesamiento postranscripcional de los mRNA virales tardíos. En ausencia de la E1B se observó una disminución en la relación de los mRNA virales tardíos procesados sobre los no procesados, lo cual sugiere que el procesamiento postranscripcional de estos mRNA es

deficiente. Esto también se observó específicamente para el mRNA L2-pV (Figuras 22 y 24). Además, cuando la E1B no puede ser SUMOilada o está en un estado permanente que mimetiza su fosforilación, aumentó el nivel de mRNA virales tardíos en los CR en la fase tardía del ciclo de replicación viral. Al medir los mRNA por ensayos cuantitativos (Figura 27), en ausencia de la E1B también se observó una disminución en la eficiencia del procesamiento de mRNA virales tardíos, específicamente L5, en contraste con los datos de Pilder y colaboradores. Además estos datos mostraron una disminución en la abundancia de mRNA, tanto procesados como no procesados de L5, similar a los datos de Pilder y colaboradores. Como observamos que en la ausencia de la E1B, la acumulación de DNA viral fue deficiente y debido a que se necesita el aumento en el número de copias del DNA viral para la expresión eficiente de la MLTU, la síntesis deficiente de DNA viral podría ser la causa de la disminución en la transcripición de los mRNA de L5 y consecuentemente la disminución en la producción de progenie viral. En este análisis cuantitativo se observó que el efecto de la ausencia de la E1B fue mayor sobre los pre-mRNA de L5 que sobre los mRNA procesados. Para conocer si la deficiencia en el procesamiento postranscripcional se debe a una deficiencia en la transcripción de L5, deberán hacerse experimentos se secuenciación cuantitativa para determinar cuál es la causa de esta deficiencia.

Otra observación interesante y no esperada fue la detección de mRNA virales tardíos en la fase temprana. Por RT-PCR punto final se detectó el mRNA de L2, L4 y L5 a las 16 hpi. Incluso, para L5, mediante RT-PCR tiempo real se detectó específicamente este mRNA en tiempos tempranos. Estos resultados se han observado usando diferentes sets de "primers" que permiten la amplificación única y específica de estos mRNA (Hidalgo 2011), por lo que estos datos se deberán comprobar mediante otros experimentos, como secuenciación y northern blot, para confirmar que existe síntesis de estos mRNA desde tiempos tempranos de la infección.

Para la selección del gen de referencia para los análisis por RT-PCR cuantitativo, se utilizó el U1 snRNA y el 18S rRNA. Los datos obtenidos para los valores normalizados de L5 procesado y no procesado fueron similares a los patrones esperados para el WT y se obtuvieron mediciones con

desviaciones estándar pequeñas, a pesar de observar pequeñas variaciones entre las condiciones analizadas para estos genes de referencia. Seleccionamos estos genes constitutivos porque no se ha reportado que la infección afecte su transcripción. Además, para otros genes de referencia comúnmente usados para RT-PCR en tiempo real como actina y GAPDH (Pilder, Moore et al. 1986; Hidalgo 2011). Tenemos pensado utilizar un control exógeno en las fracciones para comprobar estas observaciones.

Además del efecto de la E1B sobre el procesamiento postranscripcional de mRNA virales tardíos, se analizó su efecto sobre la asociación de proteínas a los CR mediante WB (Figuras 28y 30). El patrón que se observó para los factores de splicing y componentes de la maguinaria de exportación de mRNA indican que sí podría haber un efecto de la ausencia de la E1B o de cambios en sus modificaciones postraduccionales sobre el reclutamiento de proteínas a los CR, a pesar de que fue complejo y difícil de interpretar para poder establecer un modelo de distribución de las proteínas analizadas durante la infección por adenovirus. Debido al intenso rearreglo del núcleo durante la infección por adenovirus y a la composición dinámica de los CR, se espera que las proteínas endógenas no tuvieran un patrón constante entre las diferentes condiciones analizadas. Por lo tanto, se planea repetir estos ensayos de WB utilizando una proteína purificada como control de carga exógeno. Por otro lado, para SC-35 se detectó una banda única y reproducible de 70 kDa entre experimentos independientes. Sin embargo, debería detectarse una banda de la mitad del peso molecular de la que estamos detectando. Una opción sería que la proteína forme dímeros, pero la electroforesis de proteínas las realizamos en geles desnaturalizantes. Además, no se ha reportado que la proteína sufra modificaciones postraduccionales que aumenten el doble de su peso, por lo que este problema se deberá resolver usando un anticuerpo alternativo para SC-35.

En el análisis del efecto de la E1B sobre la composición proteica de los CR observamos que las fracciones se enriquecieron con proteínas que se esperaba para cada condición. En CR de células no infectadas (Tabla 6 y Figura 32), se identificaron abundantemente proteínas ribosomales y otros

componentes nucleolares *bona fide*; en los CR de células infectadas (Tabla 7 y Figuras 32 y 33) se identificaron proteínas virales y celulares importantes para transcripción, procesamiento postranscripcional y exportación, además de proteínas que participan en el control celular contra la infección. Estos datos preliminares sugieren que los CR son centros reguladores importantes para establecer un ciclo de replicación eficiente y que la E1B participa en la composición y actividad de estos sitios virales.

Es importante resaltar que de las proteínas analizadas mediante WB, Tap no estuvo presente en ninguna de las fracciones de CR, pero se identificaron proteínas que se unen específicamente a Tap para translocar mRNP al citoplasma, como nucleoporinas, que se identificaron en los CR pM. La proteína Aly sólo se identificó en los CR MK y CR pM y ASF/SF2 sólo se identificó en CR MK y CR 4X. Las proteínas nucleofosmina (B23) y SC-35 se identificaron en las 4 fracciones de CR. UAP56 se identificó en CR MK, WT y 4X.

Además, en las fracciones de CR en células infectadas, se detectaron proteínas estructurales del virus. Estos patrones podrían deberse a que el procedimiento empleado para aislar las fracciones enriquecidas con los CR separa las fracciones de acuerdo a su densidad; si las proteínas no están estrechamente asociadas a los CR, éstas se quedan en la fracción de nucleoplasma. Entonces, podría ser que las proteínas estén transitoriamente en los CR y que debido a esta dinámica en su localización no las podamos enriquecer en estas fracciones. Además, el tiempo post infección en el que se analizaron las fracciones de CR por proteómica fue 36 hpi. Este tiempo pudo ser muy tardío. Los CR tienen una composición dinámica que cambia a lo largo del ciclo de replicación viral y las interacciones de moléculas en los CR son electrostáticas. En tiempos tardíos del ciclo de replicación viral, los CR comienzan a coalescer entre ellos y además se localizan adyacentes a estructuras en donde se ensamblan las partículas virales.

En conjunto, los datos presentados en este trabajo sugieren que la E1B es importante para la composición de los CR, para las funciones que se llevan en estos sitios y para establecer un ciclo de replicación viral eficiente.

Para continuar con el análisis proteómico, se planea utilizar valores estadísticos para valorar las proteínas identificadas en los CR. Uno de los programas que

se utilizó para la identificación de proteínas fue Mascot. Este programa compara los espectros de cada péptido con una base de datos de proteínas conocidas y de esta forma determina la identificación más probable de una proteína, tomando en cuenta la cobertura de secuencia del péptido en la proteína. El reporte de Mascot contiene una lista de proteínas identificadas positivamente y una puntuación o "Score". Este Score es una medida de la confianza de la identificación. Este valor se calcula de la siguiente manera:

S=-10*log(P); P=probabilidad de que una identificación sea errónea.

En el análisis proteómico de los CR se tomó un límite inferior del Score de 30, es decir, que la identificación de proteínas tuviera un 99.999% de probabilidad de ser verdadera. Por lo tanto el Score para cada péptido identificado nos permitirá discriminar entre las identificaciones correctas y las de baja confianza. Preliminarmente, se han observado diferencias en la composición de los CR en células infectadas y no infectadas; además, estos cambios son diferenciables entre los CR de células infectadas con el Ad WT y CR de células infectadas con los mutantes (pM o 4X). Por lo tanto, podemos tener certeza que con el análisis completo de los datos de espectrometría de masas observaremos cambios útiles para el análisis de la composición de los CR y el papel de la E1B.

Adicionalmente se planea hacer análisis bioquímicos por WB para validar la presencia de proteínas que tendría sentido que estén en los CR, así como de proteínas que en el análisis proteómico se identifican pero que no tienen sentido de estar presentes en esta fracción. Por ejemplo, las proteínas membranales no deberían estar presentes en la fracción de CR, ya que debido al procedimiento empleado éstas deberían quedar en una fracción diferente, por lo que debemos determinar si es un efecto de una contaminación o realmente un cambio debido a la infección. Adicionalmente se contrastarán las proteínas compartidas entre los CR MK y CR WT36 así como entre los CR pM36 y CR WT36 y CR 4X36 y CR WT36 mediante el Score. Este valor puede considerarse proporcional a la cantidad de proteína presente, si se compara la misma proteína en muestras diferentes. Por lo tanto, este análisis puede

permitir contrastar diferencias en la acumulación de proteínas comunes entre dos muestras.

9. CONCLUSIONES

- La E1B favorece la replicación eficiente del genoma viral y la producción de progenie viral, en células no transformadas.
- La ausencia de la E1B afecta la síntesis de transcritos de L5
- La E1B favorece el procesamiento postranscripcional de los mRNA virales tardíos.
- La E1B tiene un efecto sobre la composición proteica y de ácidos nucleicos de los CR de adenovirus.
- La fosforilación y SUMOilación de la E1B correlaciona con una síntesis muy eficiente del genoma viral, de producción de progenie viral y del procesamiento postranscripcional de mRNA virales tardíos.

En conjunto, estas observaciones sugieren que la E1B favorece la progresión eficiente del ciclo de replicación viral y es importante para la formación de los CR.

10.PERSPECTIVAS

- Análisis del efecto de la E1B sobre la composición proteica de las fracciones de CR (análisis proteómico).
- Validación de proteínas identificadas en el análisis proteómico mediante Western Blot
- Análisis del efecto de la E1B sobre los RNA asociados a los CR (análisis transcriptómico de los CR).
- Análisis cuantitativo del efecto de la E1B sobre la replicación del DNA viral
- Análisis de la síntesis e identificación de mRNA virales tardíos sintetizados durante la fase temprana del ciclo de replicación viral por otros métodos, como RNA seq y Northern blot.

11. REFERENCIAS

- Aparicio, O., E. Carnero, et al. (2010). "Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair." <u>Nucleic Acids Res</u> **38**(3): 750-763.
- Aspegren, A. and E. Bridge (2002). "Release of snRNP and RNA from transcription sites in adenovirus-infected cells." <u>Exp Cell Res</u> **276**(2): 273-283.
- Aspegren, A., C. Rabino, et al. (1998). "Organization of splicing factors in adenovirus-infected cells reflects changes in gene expression during the early to late phase transition." <u>Exp Cell Res</u> 245(1): 203-213.
- Blackford, A. N., R. K. Bruton, et al. (2008). "A role for E1B-AP5 in ATR signaling pathways during adenovirus infection." <u>J Virol</u> 82(15): 7640-7652.
- Blackford, A. N. and R. J. Grand (2009). "Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation." <u>J Virol</u> 83(9): 4000-4012.
- Blanchette, P., K. Kindsmuller, et al. (2008). "Control of mRNA export by adenovirus E4orf6 and E1B55K proteins during productive infection requires E4orf6 ubiquitin ligase activity." J Virol 82(6): 2642-2651.
- Boulanger, P., P. Lemay, et al. (1979). "Characterization of adenovirus protein IX." <u>J Gen Virol</u> **44**(3): 783-800.
- Bridge, E., M. Carmo-Fonseca, et al. (1993). "Nuclear organization of splicing small nuclear ribonucleoproteins in adenovirus-infected cells." <u>J Virol</u> 67(10): 5792-5802.
- Bridge, E., K. U. Riedel, et al. (1996). "Spliced exons of adenovirus late RNAs colocalize with snRNP in a specific nuclear domain." <u>J Cell Biol</u> **135**(2): 303-314.
- Bridge, E., D. X. Xia, et al. (1995). "Dynamic organization of splicing factors in adenovirus-infected cells." <u>J Virol</u> **69**(1): 281-290.
- Cardoso, F. M., S. E. Kato, et al. (2008). "An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells." <u>Virology</u> **378**(2): 339-346.

- Carson, C. T., N. I. Orazio, et al. (2009). "Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection." <u>Embo J</u> **28**(6): 652-662.
- Cuesta, R., Q. Xi, et al. (2001). "Preferential translation of adenovirus mRNAs in infected cells." <u>Cold Spring Harb Symp Quant Biol</u> **66**: 259-267.
- Davison, A. J., M. Benko, et al. (2003). "Genetic content and evolution of adenoviruses." J Gen Virol 84(Pt 11): 2895-2908.
- Dobner, T. K., Julia (2001). NUCLEAR EXPORT OF ADENOVIRUS RNA.
- Doucas, V., A. M. Ishov, et al. (1996). "Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure." <u>Genes Dev</u> **10**(2): 196-207.
- Dundr, M. (2012). "Nuclear bodies: multifunctional companions of the genome." <u>Curr Opin Cell Biol</u>.
- Dundr, M. and T. Misteli (2001). "Functional architecture in the cell nucleus." <u>Biochem J</u> **356**(Pt 2): 297-310.
- Endter, C., J. Kzhyshkowska, et al. (2001). "SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein." <u>Proc Natl Acad Sci U S A **98**</u>(20): 11312-11317.
- Erickson, K. D., C. Bouchet-Marquis, et al. (2012). "Virion assembly factories in the nucleus of polyomavirus-infected cells." <u>PLoS Pathog</u> 8(4): e1002630.
- Evans, J. D. and P. Hearing (2005). "Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication." J Virol **79**(10): 6207-6215.
- Fields, B. N., D. M. Knipe, et al. (2007). <u>Fields Virology</u>, Wolters Kluwer Health/Lippincott Williams & Wilkins.
- Flint, S. J. (1986). "Regulation of adenovirus mRNA formation." <u>Adv Virus Res</u> **31**: 169-228.
- Flint, S. J. and R. A. Gonzalez (2003). "Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins." <u>Curr Top Microbiol</u> <u>Immunol **272**: 287-330.</u>
- Gonzalez, R., W. Huang, et al. (2006). "Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the

late phase of infection in normal human fibroblasts." <u>J Virol</u> **80**(2): 964-974.

- Gonzalez, R. A. and S. J. Flint (2002). "Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism." <u>J Virol</u> 76(9): 4507-4519.
- Groitl, P. and T. Dobner (2007). "Construction of adenovirus type 5 early region 1 and 4 virus mutants." <u>Methods Mol Med</u> **130**: 29-39.
- Hayes, B. W., G. C. Telling, et al. (1990). "The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species." J <u>Virol</u> 64(6): 2732-2742.
- Hidalgo, P. (2011). Análisis de Ácidos Nucleicos Virales y Celulares Asociados

 a los Centros de Replicación de Adenovirus. <u>Virología Molecular</u>.
 Cuernavaca, México., Universidad Autónoma del Estado de Morelos: 69.
- Hindley, C. E., A. D. Davidson, et al. (2007). "Relationship between adenovirus DNA replication proteins and nucleolar proteins B23.1 and B23.2." <u>J Gen</u> <u>Virol</u> 88(Pt 12): 3244-3248.
- Holm, P. S., S. Bergmann, et al. (2002). "YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter." <u>J Biol Chem</u> 277(12): 10427-10434.
- Horridge, J. J. and K. N. Leppard (1998). "RNA-binding activity of the E1B 55kilodalton protein from human adenovirus type 5." <u>J Virol</u> **72**(11): 9374-9379.
- Huang, J. T. and R. J. Schneider (1991). "Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein." <u>Cell</u> 65(2): 271-280.
- Ivanovic, T., S. Boulant, et al. (2011). "Recruitment of cellular clathrin to viral factories and disruption of clathrin-dependent trafficking." <u>Traffic</u> 12(9): 1179-1195.
- Jones, N. and T. Shenk (1979). "Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells." <u>Cell</u> **17**(3): 683-689.

- Kanopka, A., O. Muhlemann, et al. (1998). "Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins." <u>Nature</u> 393(6681): 185-187.
- Kindsmuller, K., P. Groitl, et al. (2007). "Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation." <u>Proc Natl Acad Sci U S A</u> **104**(16): 6684-6689.
- Kleinberger, T. and T. Shenk (1993). "Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription." <u>J Virol</u> **67**(12): 7556-7560.
- Kreivi, J. P., K. Zerivitz, et al. (1991). "Sequences involved in the control of adenovirus L1 alternative RNA splicing." <u>Nucleic Acids Res</u> **19**(9): 2379-2386.
- Lam, Y. W., V. C. Evans, et al. (2010). "Proteomics analysis of the nucleolus in adenovirus-infected cells." <u>Mol Cell Proteomics</u> **9**(1): 117-130.
- Lamond, A. I. and W. C. Earnshaw (1998). "Structure and function in the nucleus." <u>Science</u> **280**(5363): 547-553.
- Lawrence, F. J., B. McStay, et al. (2006). "Nucleolar protein upstream binding factor is sequestered into adenovirus DNA replication centres during infection without affecting RNA polymerase I location or ablating rRNA synthesis." <u>J Cell Sci</u> **119**(Pt 12): 2621-2631.
- Leppard, K. N. (1993). "Selective effects on adenovirus late gene expression of deleting the E1b 55K protein." J Gen Virol **74 (Pt 4)**: 575-582.
- Leppard, K. N. and R. D. Everett (1999). "The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and affect ND10 components." <u>J Gen Virol</u> 80 (Pt 4): 997-1008.
- Leppard, K. N. and T. Shenk (1989). "The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism." <u>Embo J</u> 8(8): 2329-2336.
- Lindberg, A., M. Gama-Carvalho, et al. (2004). "A single RNA recognition motif in splicing factor ASF/SF2 directs it to nuclear sites of adenovirus transcription." <u>J Gen Virol</u> **85**(Pt 3): 603-608.
- Lu, S. and B. R. Cullen (2004). "Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis." <u>J Virol</u> **78**(23): 12868-12876.

- Lutz, P. and C. Kedinger (1996). "Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter." J Virol **70**(3): 1396-1405.
- Lutz, P., M. Rosa-Calatrava, et al. (1997). "The product of the adenovirus intermediate gene IX is a transcriptional activator." <u>J Virol</u> **71**(7): 5102-5109.
- Lutzelberger, M., E. Backstrom, et al. (2005). "Substrate-dependent differences in U2AF requirement for splicing in adenovirus-infected cell extracts." J Biol Chem **280**(27): 25478-25484.
- Mathews, M. B. (1995). "Structure, function, and evolution of adenovirus virusassociated RNAs." <u>Curr Top Microbiol Immunol</u> **199 (Pt 2)**: 173-187.
- Mathews, M. B. and T. Shenk (1991). "Adenovirus virus-associated RNA and translation control." <u>J Virol</u> **65**(11): 5657-5662.
- Matthews, D. A. (2001). "Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm." <u>J Virol</u> 75(2): 1031-1038.
- Maul, G. G., D. E. Jensen, et al. (1998). "Nuclear redistribution of BRCA1 during viral infection." <u>Cell Growth Differ</u> **9**(9): 743-755.
- Misteli, T. (2001). "Where the nucleus comes from." <u>Trends Cell Biol</u> **11**(4): 149.
- Morris, S. J. and K. N. Leppard (2009). "Adenovirus serotype 5 L4-22K and L4-33K proteins have distinct functions in regulating late gene expression." J <u>Virol</u> **83**(7): 3049-3058.
- Morris, S. J., G. E. Scott, et al. (2010). "Adenovirus late-phase infection is controlled by a novel L4 promoter." <u>J Virol</u> **84**(14): 7096-7104.
- Navarro, M. (2011). Activación de IRF3 (Factor de Regulación de Interferón 3) por la infección con adenovirus en células humanas no transformadas. <u>Molecular Virology</u>. Cuernavaca, México, Universidad Autónoma del Estado de Morelos: 47.
- Nemerow, G. R., L. Pache, et al. (2009). "Insights into adenovirus host cell interactions from structural studies." <u>Virology</u> **384**(2): 380-388.
- Netherton, C. L. and T. Wileman (2011). "Virus factories, double membrane vesicles and viroplasm generated in animal cells." <u>Curr Opin Virol</u> **1**(5): 381-387.

- Novoa, R. R., G. Calderita, et al. (2005). "Virus factories: associations of cell organelles for viral replication and morphogenesis." <u>Biol Cell</u> **97**(2): 147-172.
- O'Malley, R. P., T. M. Mariano, et al. (1986). "A mechanism for the control of protein synthesis by adenovirus VA RNAI." <u>Cell</u> **44**(3): 391-400.
- Okuwaki, M., M. Tsujimoto, et al. (2002). "The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype." <u>Mol Biol Cell</u> **13**(6): 2016-2030.
- Ornelles, D. A. and T. Shenk (1991). "Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein." <u>J Virol</u> 65(1): 424-429.
- Pennella, M. A., Y. Liu, et al. (2010). "Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies." <u>J Virol</u> 84(23): 12210-12225.
- Perez-Berna, A. J., R. Marabini, et al. (2009). "Structure and uncoating of immature adenovirus." J Mol Biol **392**(2): 547-557.
- Pilder, S., M. Moore, et al. (1986). "The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs." <u>Mol Cell Biol</u> 6(2): 470-476.
- Pombo, A., J. Ferreira, et al. (1994). "Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells." <u>Embo J</u> 13(21): 5075-5085.
- Prescott, J. C. and E. Falck-Pedersen (1992). "Varied poly(A) site efficiency in the adenovirus major late transcription unit." <u>J Biol Chem</u> **267**(12): 8175-8181.
- Puvion-Dutilleul, F., J. P. Bachellerie, et al. (1994). "Rearrangements of intranuclear structures involved in RNA processing in response to adenovirus infection." J Cell Sci **107 (Pt 6)**: 1457-1468.
- Puvion-Dutilleul, F. and E. Pichard (1992). "Segregation of viral double-stranded and single-stranded DNA molecules in nuclei of adenovirus infected cells

as revealed by electron microscope in situ hybridization." <u>Biol Cell</u> **76**(2): 139-150.

- Rebelo, L., F. Almeida, et al. (1996). "The dynamics of coiled bodies in the nucleus of adenovirus-infected cells." <u>Mol Biol Cell</u> **7**(7): 1137-1151.
- Rosa-Calatrava, M., F. Puvion-Dutilleul, et al. (2003). "Adenovirus protein IX sequesters host-cell promyelocytic leukaemia protein and contributes to efficient viral proliferation." <u>EMBO Rep</u> **4**(10): 969-975.
- Rowe, W. P., R. J. Huebner, et al. (1953). "Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture." <u>Proc Soc Exp Biol Med</u> 84(3): 570-573.
- Russell, W. C. (2000). "Update on adenovirus and its vectors." <u>J Gen Virol</u> **81**(Pt 11): 2573-2604.
- Samad, M. A., T. Komatsu, et al. (2012). "B23/nucleophosmin is involved in regulation of adenovirus chromatin structure at late infection stages, but not in virus replication and transcription." <u>J Gen Virol</u> **93**(Pt 6): 1328-1338.
- Schmid, M., K. Kindsmuller, et al. (2011). "The E3 ubiquitin ligase activity associated with the adenoviral E1B-55K-E4orf6 complex does not require CRM1-dependent export." J Virol **85**(14): 7081-7094.
- Schneider, R. J. and I. Mohr (2003). "Translation initiation and viral tricks." <u>Trends Biochem Sci</u> **28**(3): 130-136.
- Schreiner, S., P. Wimmer, et al. (2012). "Adenovirus degradation of cellular proteins." <u>Future Microbiol</u> **7**(2): 211-225.
- Schreiner, S., P. Wimmer, et al. (2010). "Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells." J Virol 84(14): 7029-7038.
- Schwartz, R. A., S. S. Lakdawala, et al. (2008). "Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates." <u>J Virol</u> 82(18): 9043-9055.
- Smiley, J. K., M. A. Young, et al. (1995). "The metabolism of small cellular RNA species during productive subgroup C adenovirus infection." <u>Virology</u> 206(1): 100-107.

Sohn, S. Y. and P. Hearing (2011). "Adenovirus sequesters phosphorylated STAT1 at viral replication centers and inhibits STAT dephosphorylation." J Virol **85**(15): 7555-7562.

Spector, D. L. (2001). "Nuclear domains." <u>J Cell Sci</u> **114**(Pt 16): 2891-2893.

- Tago, K., S. Chiocca, et al. (2005). "Sumoylation induced by the Arf tumor suppressor: a p53-independent function." <u>Proc Natl Acad Sci U S A</u> 102(21): 7689-7694.
- Tajrishi, M. M., R. Tuteja, et al. (2011). "Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus." <u>Commun Integr Biol</u> 4(3): 267-275.
- Teodoro, J. G. and P. E. Branton (1997). "Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5." J Virol **71**(5): 3620-3627.
- Teodoro, J. G., T. Halliday, et al. (1994). "Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity." <u>J Virol</u> **68**(2): 776-786.
- Tormanen, H., E. Backstrom, et al. (2006). "L4-33K, an adenovirus-encoded alternative RNA splicing factor." J Biol Chem **281**(48): 36510-36517.
- Trentin, J. J., Y. Yabe, et al. (1962). "The quest for human cancer viruses." <u>Science</u> **137**: 835-841.
- Ugai, H., G. C. Dobbins, et al. (2012). "Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1." <u>Virology</u> **432**(2): 283-295.
- Valdés, M. (2009). Reorganización de Estructuras Celulares Como Consecuencia de la Infección por Ad5 en Células Humanas No Transformadas Universidad Autónoma del Estado de Morelos: 69.
- Valdés, M. (2011). Análisis de la Dinámica de Formación de los Centros de Replicación de Adenovirus 5 en células HFF., Universidad Nacional Autónoma de México **Master:** 92.
- Vorburger, S. A. and K. K. Hunt (2002). "Adenoviral gene therapy." <u>Oncologist</u> **7**(1): 46-59.
- Walton, T. H., P. T. Moen, Jr., et al. (1989). "Interactions of minute virus of mice and adenovirus with host nucleoli." <u>J Virol</u> **63**(9): 3651-3660.

- Wimmer, P., P. Blanchette, et al. (2012). "Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein." <u>Oncogene</u>.
- Wimmer, P., P. Blanchette, et al. (2013). "Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein." <u>Oncogene</u> **32**(13): 1626-1637.
- Yang, U. C., W. Huang, et al. (1996). "mRNA export correlates with activation of transcription in human subgroup C adenovirus-infected cells." <u>J Virol</u> 70(6): 4071-4080.
- Yatherajam, G., W. Huang, et al. (2011). "Export of adenoviral late mRNA from the nucleus requires the Nxf1/Tap export receptor." <u>J Virol</u> **85**(4): 1429-1438.
- Yueh, A. and R. J. Schneider (1996). "Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells." <u>Genes</u> <u>Dev</u> 10(12): 1557-1567.
- Yueh, A. and R. J. Schneider (2000). "Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA." <u>Genes Dev</u> 14(4): 414-421.

12.<u>APÉNDICE</u>

Análisis por RT-PCR de las fracciones subnucleares de células infectadas con el virus WT o 4X

Muestr a	CT L5NP	CT L5P	CT U1	ΔCT L5NP	ΔCT L5P	CALIBRA DOR			ΔΔΟ	FOLD- CHANGE L5NP	FOLD- CHANGE L5NP
	31.87 2	29.1 09	15. 42	16.45	13.69	NPL 4X24 L5NP	22.98	-6.53	-9.29	92.48	627.71
	31.80 6	29.1 47	15. 43	16.37	13.72	NPL 4X24 L5NP	22.91	-6.54	-9.20	93.10	587.88
CR	31.91 9	29.2 11	15. 45	16.47	13.76	NPL 4X24 L5NP	23.08	-6.61	-9.31	97.35	635.75
VVIIO	4	29.4 81	63	16.23	13.85	L5NP	22.91	-6.68	-9.05	102.42	530.69
	31.53 9	29.4 02	15. 62	15.92	13.79	NPL 4X24 L5NP	22.32	-6.40	-8.53	84.27	370.64
	32.00 4	29.5 48	15. 66	16.35	13.89	L5NP	23.27	-6.92	-9.38	121.08	664.42
	28.54 6	28.9 77	14. 65	13.90	14.33	NPL 4X24 L5NP	22.98	-9.08	-8.65	542.08	401.84
	28.51 8	29.1 63	14. 63	13.89	14.54	NPL 4X24 L5NP	22.91	-9.02	-8.38	520.11	332.63
CR	28.55 2	29.0 64	14. 67	13.88	14.39	NPL 4X24 L5NP	23.08	-9.19	-8.68	586.00	410.97
WT24	28.47 1	29.4 16	14. 75	13.72	14.66	NPL 4X24 L5NP	22.91	-9.19	-8.24	583.61	303.21
	28.60 0	29.4 39	14. 79	13.81	14.65	NPL 4X24 L5NP	22.32	-8.51	-7.67	364.97	204.08
	28.60 2	29.4 69	14. 89	13.71	14.58	NPL 4X24 L5NP	23.27	-9.55	-8.69	752.18	412.31
	30.45 7	28.1 71	12. 05	18.40	16.12	NPL 4X24 L5NP	22.98	-4.58	-6.86	23.89	116.45
	30.37 4	28.1 98	12. 03	18 35	16 17	NPL 4X24	22.91	-4 57	-6 75	23 75	107 31
CR	30.34 8	28.2	12.	18.23	16.18	NPL 4X24	23.08	-4.85	-6.90	28.76	110.37
WT36	30.53 1	28.7 21	12.	18.30	16.10	NPL 4X24	22.00	-4.60	-6.41	24.28	85.18
	30.32 4	28.8 57	12. 22	18.11	16.64	NPL 4X24 L5NP	22.32	-4.21	-5.68	18.56	51.32
	30.63 5	28.8 41	12. 29	18.35	16.56	NPL 4X24 L5NP	23.27	-4.92	-6.71	30.19	104.68
	27.25 8	25.0 24	11. 30	15.96	13.73	NPL 4X24 L5NP	22.98	-7.02	-9.25	129.72	609.99
	27.27 9	24.9 95	11. 28	16.00	13.72	NPL 4X24 L5NP	22.91	-6.91	-9.20	120.58	587.34
CR	27.30 9	25.0 17	11. 34	15 97	13 68	NPL 4X24	23.08	-7 10	-9 39	137 46	673 25
4X16	27.19 8	25.5 61	11. 15	16.05	14 42	NPL 4X24	22.91	-6.85	-8 49	115.61	359 77
	27.22	25.5	11.	16.08	14.30	NPL 4X24	22.01	6.24	7.03	75.92	244.40
	27.25	25.5	11.	16.10	14.39	NPL 4X24	22.32	-0.24	-7.95	141.26	244.49
	33.22	34 29.5	10.	16.12	14.41	NPL 4X24	23.27	-7.14	-8.80	141.30	404.04
	7 33.15	12 29.3	96 10.	22.26	18.55	NPL 4X24	22.98	-0.72	-4.43	1.64	21.56
	9 33.46	02 29.4	97 10.	22.19	18.34	L5NP NPL 4X24	22.91	-0.72	-4.58	1.65	23.90
CR 4X24	1 33.24	93 29.8	99 10.	22.47	18.50	L5NP NPL 4X24	23.08	-0.60	-4.57	1.52	23.80
	4	98 20.0	95 10	22.30	18.95	L5NP	22.91	-0.61	-3.96	1.53	15.51
	5	25	98	22.36	18.94		22.32	0.04	-3.38	0.97	10.38
	4	29.9 64	02	21.92	18.95		23.27	-1.35	-4.32	2.55	19.95
	32.67	29.8 00	12.	20.58	17.70	L5NP	22.98	-2.40	-5.28	5.29	38.74
CR 4X36	32.93 5	29.5 52	12. 12	20.82	17.44	NPL 4X24 L5NP	22.91	-2.10	-5.48	4.28	44.62
	32.66 3	29.8 65	12. 11	20.56	17.76	NPL 4X24 L5NP	23.08	-2.52	-5.32	5.74	39.89

	32.89	30.0	12.	20.00	47 70	NPL 4X24	00.04	0.04	E 40	4.05	24 70
	32.72	04 29.9	12.	20.00	17.79	NPL 4X24	22.91	-2.31	-3.12	4.95	34.72
	7	38	33 12	20.40	17.61	L5NP NPI 4X24	22.32	-1.92	-4.71	3.79	26.22
	0	59	34	20.48	17.72	L5NP	23.27	-2.78	-5.54	6.88	46.63
	28.32 6	28.7 24	10. 28	18.05	18.45	L5NP	22.98	-4.93	-4.53	30.50	23.16
	28.25 7	28.8 37	10. 34	17.91	18.49	NPL 4X24 L5NP	22.91	-5.00	-4.42	32.02	21.42
NDI	28.36	28.8 27	10. 30	18.06	18 53	NPL 4X24	23.08	-5.01	-4 55	32.23	23 38
WT16	28.26	29.2	10.	47.00	10.00	NPL 4X24	20.00	5.00	4.05	02.20	40.50
	28.25	29.3	43	17.83	18.85	NPL 4X24	22.91	-5.08	-4.05	33.83	10.58
	0 28.25	41 29.3	48 10.	17.77	18.86	L5NP NPL 4X24	22.32	-4.55	-3.46	23.50	11.03
	1 24 69	40	46 10	17.79	18.88	L5NP NPI 4X24	23.27	-5.48	-4.39	44.52	20.93
	3	87	05	14.64	14.04	L5NP	22.98	-8.34	-8.94	323.02	491.49
	24.76 1	24.1 09	10. 03	14.73	14.07	L5NP	22.91	-8.19	-8.84	291.76	458.52
NPL	24.79 9	24.1 22	10. 04	14.76	14.08	NPL 4X24 L5NP	23.08	-8.32	-8.99	318.86	509.51
WT24	24.55 7	24.5 64	10. 24	14.31	14.32	NPL 4X24 L5NP	22.91	-8.59	-8.59	386.15	384.28
	24.56 4	24.5 47	10. 23	14.33	14.31	NPL 4X24	22 32	-7 99	-8.01	254.31	257 26
	24.93	24.6	10.	14.60	14 30	NPL 4X24	23.27	-8.58	-8.88	382 30	469.60
	24.83	25.9	10.	14.05	14.33	NPL 4X24	20.27	-0.00	-0.00	302.50	403.00
	3 24.73	58 25.9	18 10.	14.65	15.78	NPL 4X24	22.98	-8.33	-7.20	321.01	147.24
	7 24.86	39 25.9	19 10.	14.55	15.75	L5NP NPL 4X24	22.91	-8.36	-7.16	329.37	143.10
NPL WT36	0	90 26.3	20	14.66	15.79	L5NP	23.08	-8.41	-7.28	340.70	155.69
VV136	0	26	37	14.52	15.96	L5NP	22.91	-8.39	-6.95	334.83	123.74
	24.85 3	26.2 70	10. 37	14.48	15.90	L5NP	22.32	-7.84	-6.42	228.69	85.64
	24.87 5	26.3 11	10. 44	14.44	15.88	NPL 4X24 L5NP	23.27	-8.83	-7.39	453.70	167.79
	32.09 1	30.0 44	11. 17	20.93	18.88	NPL 4X24 L5NP	22.98	-2.05	-4.10	4.15	17.17
	31.91 9	30.3 06	11. 20	20.71	19.10	NPL 4X24 L5NP	22.91	-2.20	-3.81	4.60	14.05
NDI	32.06	30.1	11.	20.84	18.08	NPL 4X24	23.08	-2.24	-1 10	4 71	17 14
4X16	32.32	30.5	11.	20.04	10.90	NPL 4X24	23.00	-2.24	-4.10	4.71	17.14
	0 32.25	86 30.2	36 11.	20.96	19.22	NPL 4X24	22.91	-1.95	-3.68	3.87	12.86
	0 32.26	29 30.4	43 11.	20.82	18.80	L5NP NPL 4X24	22.32	-1.50	-3.52	2.82	11.46
	1 33 82	24 29.5	45 10	20.81	18.97	L5NP NPI 4X24	23.27	-2.46	-4.29	5.49	19.62
	4	99	65	23.17	18.95		22.98	0.19	-4.03	0.88	16.38
	33.75 9	29.0 31	62	23.14	19.01	L5NP	22.91	0.23	-3.90	0.86	14.96
NPL	33.91 9	29.5 81	10. 97	22.95	18.61	NPL 4X24 L5NP	23.08	-0.13	-4.47	1.09	22.10
4X24	33.75 0	29.9 19	10. 95	22.80	18.97	NPL 4X24 L5NP	22.91	-0.10	-3.93	1.07	15.29
	33.16 4	29.7 72	10. 93	22.23	18 84	NPL 4X24	22.32	-0.09	-3.48	1.06	11 17
	34.11	29.9	10.	22.16	18.06	NPL 4X24	22.02	0.10	4 31	1.07	10.83
	30.29	29.0	10.	20.10	10.90	NPL 4X24	23.21	-0.10	-4.31	1.07	13.00
	3 30.52	36 28.9	42 10.	19.88	18.62	L5NP NPL 4X24	22.98	-3.10	-4.36	8.60	20.55
NPL 4X36	0 30.30	89 29.9	43 10.	20.09	18.56	L5NP NPL 4X24	22.91	-2.83	-4.36	7.10	20.51
	1	71	37	19.93	19.60		23.08	-3.15	-3.48	8.85	11.12
	1	29.5	51	19.90	19.01	L5NP	22.91	-3.01	-3.90	8.05	14.92

30.54	29.5	10.			NPL 4X24					
2	67	54	20.01	19.03	L5NP	22.32	-2.31	-3.29	4.97	9.77
30.48	29.4	10.			NPL 4X24					
7	76	52	19.97	18.95	L5NP	23.27	-3.30	-4.31	9.85	19.85

Proteínas de CR identificadas por LC-MS/MS

WT 1: 250-70 KDa				
VIM	Componente de citoesqueleto (IF)			
lamin A/C, isoform CRA_c	Component de citoesqueleto (IF)			
EEF2	Factor de elongación (traducción)			
Miosina 9	Citoesqueleto (actina). UBI conjugation			
Hspgp96	immune chaperone to regulate			
	both innate and adaptiveimmunity			
unnamed protein product	highly similar to Protein disulfide-isomerase precursor			
Beta Actina	Citoesqueleto. Diferentes funciones nucleares			
Fibronectina 1	Unión a actina y DNA			
cytoskeleton-associated protein 4	Mediates the anchoring of the endoplasmic reticulum to			
	microtubules			
nucleolina	nucleolo			
X-ray repair complementing defective repair in Chinese	double-strand break repair via nonhomologous end joining			
hamster cells 6				
GRP78/BiP	Chaperona antiapoptótica. Plasmalemmar GRP78 also			
	plays a role in viral entry of Coxsackie B, and Dengue			
	Fever viruses			
annexin A6	exocytotic and endocytotic pathways			

WT 2: 70-25 KDa				
VIM	Componente de citoesqueleto (IF)			
beta-subunit (AA 1-312)	ATP synthase subunit beta			
annexin A2	exocytotic and endocytotic pathways			
unnamed protein product	Nucleotide-Binding Domain of the sugar			
	kinase/HSP70/actin superfamily. Highly similar to actin.			

WT 3: 25-10 KDa		
H2A	Histona	
H2B	histona	
H1	histona	
hCG1749005	histone H3; Provisional	

MK 1: 250-70 KDa				
VIM	Componente de citoesqueleto (IF)			
Filamina A	Unión a filamentos de actina			
EEF2	Factor de elongación (traducción)			
Miosina 9	Citoesqueleto (actina). UBI conjugation			
Hspgp96	immune chaperone to regulate			
	both innate and adaptiveimmunity			
unnamed protein product	Synaptotagmin-like			
lamin A/C, isoform CRA_c	Component de citoesqueleto (IF)			
Fibronectina 1	Unión a actina y DNA			
Alfa-actinina-1	anchor actin to a variety of intracellular structures			
splicing factor proline/glutamine-rich (polypyrimidine tract	post-transcriptional gene expression processes			
binding protein associated)				
IQ motif containing GTPase activating protein 1	Interactúa con actina			
ATP-dependent RNA helicase A	Metabolism de RNA			
talin 1	Probably involved in connections of major cytoskeletal			
	structures to the plasma membrane			
Actin beta	Citoesqueleto y funciones nucleares			
Integrina beta1	fibronectin receptor			
MYB binding protein (P160) 1a	May activate or repress transcription via interactions			
	with sequence specific DNA-binding proteins			
unnamed protein product	Intermediate filament head (DNA binding) region			

calnexin precursor	Associates with ribosomes
activated leukocyte cell adhesion molecule	Adhesión cellular
spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)	seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane.
clathrin heavy chain 1 isoform 6	Transporte vesicular
collagen alpha-1(I) chain preproprotein	colágeno
X-ray repair cross-complementing protein 5	Involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination
unnamed protein product	highly similar to Homo sapiens leucine-rich PPR-motif containing (LRPPRC)
DDX50	Nucleolar protein Gu2. Helicasa de RNA
fer-1 like protein 3	endocytic recycling for membrane trafficking
DEAD (Asp-Glu-Ala-Asp) box polypeptide 1	RNA helicasa putativa
alpha2(l) collagen	colágeno
hnRNP U	hnRNPU, whereas histone H1c was cleared from the DBP rich centers and regions adjacent to the DBP centers
HYOU1 protein	heat shock protein 70 family.
unnamed protein product	highly similar to Sad1/unc-84-like protein 2
GRP78/BiP	Chaperona antiapoptótica. Plasmalemmar GRP78 also plays a role in viral entry of Coxsackie B, and Dengue Fever viruses
h PreP	Presequence protease

MK 2: 70-25 KDa				
VIM	Componente de citoesqueleto (IF)			
Beta actina	Citoesqueleto. Funciones nucleares			
annexin A2	exocytotic and endocytotic pathways			
: lamin A/C	Lamina nuclear			
unnamed protein product	F1 ATP synthase beta subunit, nucleotide-binding domain			
B23	nucleolo			
serpin peptidase inhibitor	serine protease inhibitor			
: tubulin, beta 2B	citoesqueleto			
ATP synthase, H+ transporting, mitochondrial F1	ATP sintasa			
complex, alpha subunit 1, cardiac muscle				
unnamed protein product	GroEL_like type I chaperonin			
unnamed protein product	highly similar to Protein disulfide-isomerase			
Annexin A5	exocytotic and endocytotic pathways			
protein disulfide isomerase family A, member 6	disulfide isomerase			
glutaminase C isoform 3	catabolism of glutamine			
Annexin A2	exocytotic and endocytotic pathways			
H2A	histona			
unnamed protein product	highly similar to Malate dehydrogenase,			
	mitochondrial precursor			
Tubulin, alpha 1c	citoesqueleto			
Annexin A6	exocytotic and endocytotic pathways			
cytoskeleton-associated protein 4	citoesqueleto			
cytoskeleton-associated protein 4	oliocoqueleto			

MK 3: 25-10 KDa	
H2A	Histona
H2B	histona
H1	histona
ciclofilina	inhibe a la fosfatasa dependiente de
	calcio/calmodulina, calcineurina
unnamed protein product	moderately similar to Cofilin-1
Ubiquitin B	ptm
MYL6 protein	calcium ion binding
hCG1749005	histone H3; Provisional

Proteínas presentes sólo en MK	
VDAC3_HUMA N	voltage-dependent anion channel 3
ALDR_HUMA N	aldo-keto reductase family 1, member B1 (aldose reductase)
CLIC1_HUMA N	chloride intracellular channel 1
SRP09_HUMA N	signal recognition particle 9-like 1; signal recognition particle 9kDa
NOL10_HUMA N	nucleolar protein 10
K2C7_HUMAN	keratin 7
TOIP2_HUMA N	torsin A interacting protein 2
LC7L3_HUMA N	cisplatin resistance-associated overexpressed protein
GBB1_HUMA N	guanine nucleotide binding protein (G protein), beta polypeptide 1
RS14_HUMAN	ribosomal protein S14
TAGL2_HUMA N	transgelin 2
DNJC3_HUMA N	DnaJ (Hsp40) homolog, subfamily C, member 3
SRC8_HUMA N	cortactin
STT3B_HUMA N	STT3, subunit of the oligosaccharyltransferase complex, homolog B (S. cerevisiae)
RAB7L_HUMA N	RAB7, member RAS oncogene family-like 1
LPPRC_HUMA N	leucine-rich PPR-motif containing
FLOT1_HUMA N	flotillin 1
CBX3_HUMAN	similar to chromobox homolog 3; chromobox homolog 3 (HP1 gamma homolog, Drosophila)
IBP7_HUMAN	insulin-like growth factor binding protein 7
NH2L1_HUMA N	NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)
SYNP2_HUMA N	synaptopodin 2
SF3B3_HUMA N	splicing factor 3b, subunit 3, 130kDa
REXO4_HUM AN	REX4, RNA exonuclease 4 homolog (S. cerevisiae)
TCTP_HUMAN	similar to tumor protein, translationally-controlled 1; tumor protein, translationally-controlled 1
KCC2D_HUM AN	calcium/calmodulin-dependent protein kinase II delta
DCTN1_HUMA N	dynactin 1 (p150, glued homolog, Drosophila)
CD63_HUMAN	CD63 molecule
PLP2_HUMAN	proteolipid protein 2 (colonic epithelium-enriched)
RAB1B_HUMA N	RAB1B, member RAS oncogene family
SMD3_HUMA N	small nuclear ribonucleoprotein D3 polypeptide 18kDa
DSRAD_HUM AN	adenosine deaminase, RNA-specific
CCAR1_HUM AN	cell division cycle and apoptosis regulator 1
ATD3A_HUMA N	ATPase family, AAA domain containing 3A
CAV2_HUMAN	caveolin 2
HNRH1_HUM AN	heterogeneous nuclear ribonucleoprotein H1 (H)

Proteínas de CR identificadas por ESI-QTOF

IMP3, U3 small nucleolar ribonucleoprotein, homolog (yeast)
pyruvate dehydrogenase (lipoamide) alpha 1
cytidine monophosphate N-acetylneuraminic acid synthetase
adaptor-related protein complex 2, mu 1 subunit
spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)
pyruvate dehydrogenase (lipoamide) beta
coatomer protein complex, subunit gamma
TRIO and F-actin binding protein
SH3-domain GRB2-like 1
ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)
ribosomal protein 35a
eukaryotic translation initiation factor 3 subunit A
A kinase (PRKA) anchor protein 2; paralemmin 2; PALM2-AKAP2 readthrough transcript
related RAS viral (r-ras) oncogene homolog 2; similar to related RAS viral (r-ras) oncogene homolog 2
NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa
PRP40 pre-mRNA processing factor 40 homolog A (S. cerevisiae)
death-domain associated protein
vitamin K epoxide reductase complex, subunit 1
solute carrier family 7 (cationic amino acid transporter, y+ system), member 5
splicing factor, arginine/serine-rich 1
CDP-diacylglycerolinositol 3-phosphatidyltransferase (phosphatidylinositol synthase)
splicing factor 3b, subunit 4, 49kDa
peptidylprolyl isomerase H (cyclophilin H)
anoctamin 10
chromosome 14 open reading frame 156
casein kinase 2, alpha prime polypeptide
WD repeat domain 77
paraoxonase 2
S100 calcium binding protein A10
hypothetical protein LOC100129652; ezrin
FK506 binding protein 8, 38kDa
Sec61 beta subunit
hydroxysteroid (17-beta) dehydrogenase 10
tubulin, beta 6
endoglin
COR18 HUM

AN
GBB2_HUMA N
RAP1B_HUMA N
RSU1_HUMA N
MAK16_HUMA
MOT4_HUMA
UCHL1_HUMA
SSRD_HUMA
N UFD1 HUMAN
TPM1_HUMA
N CPNE3_HUMA
N PROF1_HUMA
N
SAC1_HUMAN
DENR_HUMA N
TCPZ_HUMAN
N
ITA5_HUMAN
CLPT1_HUMA N
CYC_HUMAN
OAT_HUMAN
VAMP3_HUM AN
CBX5_HUMAN
THY1_HUMAN
OXSR1_HUM AN
NDUA5_HUM AN
NPTN_HUMA N
TXTP_HUMAN
SUMO1_HUM AN
AINX_HUMAN
LCE2B_HUMA N
MIF_HUMAN
WDR3_HUMA
K2C5_HUMAN
THOC4_HUM
VASP_HUMA
N THOC2_HUM
AN

ITAV_HUMAN	integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)
HS90B_HUMA	heat shock protein 90kDa alpha (cytosolic), class B member 1
U2AF1_HUMA	U2 small nuclear RNA auxiliary factor 1
PHB HUMAN	prohibitin
CDC5L_HUMA	CDC5 cell division cycle 5-like (S. pombe)
OFUT1_HUMA	protein O-fucosyltransferase 1
RS27A_HUMA	ribosomal protein S27a pseudogene 12; ribosomal protein S27a
RS27A_HUMA	ubiquitin A-52 residue ribosomal protein fusion product 1
RS27A_HUMA	ubiquitin C
RS27A_HUMA	ubiquitin B
NOMO3_HUM	NODAL modulator 3; NODAL modulator 1; NODAL modulator 2
RS30 HUMAN	Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed
RRP8_HUMA	ribosomal RNA processing 8, methyltransferase, homolog (yeast)
N DECR_HUMA	2.4-dienovl CoA reductase 1, mitochondrial
N VATH_HUMA	ATPase. H+ transporting, lysosomal 50/57kDa, V1 subunit H
N PDLI5_HUMA	PDZ and LIM domain 5
N RBP56_HUMA	TAF15 RNA polymerase II. TATA box binding protein (TBP)-associated factor. 68kDa
N MPCP_HUMA	solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3
N MAP1A_HUM	microtubule-associated protein 1A
AN RS5 HUMAN	ribosomal protein S5
 ZFR HUMAN	zinc finger RNA binding protein
DNJB4_HUMA	DnaJ (Hsp40) homolog, subfamily B, member 4
MOGS_HUMA	mannosyl-oligosaccharide glucosidase
RU17_HUMAN	small nuclear ribonucleoprotein 70kDa (U1)
AIFM1_HUMA	thioredoxin domain containing 12 (endoplasmic reticulum)
AIFM1_HUMA	apoptosis-inducing factor, mitochondrion-associated, 1
TCRG1_HUM	transcription elongation regulator 1
RFIP5_HUMA	RAB11 family interacting protein 5 (class I)
PAI2_HUMAN	serpin peptidase inhibitor, clade B (ovalbumin), member 2
RS19_HUMAN	ribosomal protein S19 pseudogene 3; ribosomal protein S19
UBP2L_HUMA	ubiquitin associated protein 2-like
HS71L_HUMA	heat shock 70kDa protein 1-like
TMM33_HUM	transmembrane protein 33
ACADV_HUM	acyl-Coenzyme A dehydrogenase, very long chain
TRA2B_HUMA	transformer 2 beta homolog (Drosophila)
RS27_HUMAN	ribosomal protein S27 pseudogene 29; ribosomal protein S27 pseudogene 9
SUCA_HUMA N	succinate-CoA ligase, alpha subunit
PP1B_HUMAN	protein phosphatase 1, catalytic subunit, beta isoform; speedy homolog A (Xenopus laevis)
SC22B_HUMA	SEC22 vesicle trafficking protein homolog B (S. cerevisiae)

N	
YLPM1_HUMA	YLP motif containing 1
TM165_HUMA	transmembrane protein 165
MACF1_HUM	microtubule-actin crosslinking factor 1
ARPC3_HUMA	similar to actin related protein 2/3 complex subunit 3
QCR2_HUMA	ubiquinol-cytochrome c reductase core protein II
PP1A HUMAN	protein phosphatase 1, catalytic subunit, alpha isoform
ATP5I_HUMA	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit E
GELS_HUMA	gelsolin (amyloidosis, Finnish type)
N PPIA_HUMAN	similar to TRIMCyp; peptidylprolyl isomerase A (cyclophilin A); peptidylprolyl isomerase A (cyclophilin
GTR1_HUMA	solute carrier family 2 (facilitated glucose transporter), member 1
N UBP36_HUMA	ubiguitin specific pentidase 36
<u>N</u> TIF1B_HUMA	tripartite motif-containing 28
N RAD50_HUMA	
N SCRB2 HUMA	
N CMC1 HUMA	scavenger receptor class B, member 2
	solute carrier family 25 (mitochondrial carrier, Aralar), member 12
N	chromosome 10 open reading frame 58; chromosome 10 open reading frame 57
SLFN5_HUMA N	schlafen family member 5
RLP24_HUMA N	ribosomal L24 domain containing 1; similar to ribosomal protein L24-like
GT251_HUMA N	glycosyltransferase 25 domain containing 1
COX2_HUMA N	Cytochrome c oxidase subunit 2
ACTN4_HUMA	actinin, alpha 4
NNTM_HUMA	nicotinamide nucleotide transhydrogenase
PBIP1_HUMA	pre-B-cell leukemia homeobox interacting protein 1
TOP2B_HUMA	topoisomerase (DNA) II beta 180kDa
1433G_HUMA	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide
LIMS2_HUMA	LIM and senescent cell antigen-like domains 2
DIAP1_HUMA	diaphanous homolog 1 (Drosophila)
1B18_HUMAN	major histocompatibility complex, class I, C; major histocompatibility complex, class I, B
GDIB_HUMAN	GDP dissociation inhibitor 2
ADT1_HUMAN	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 4
NDUS2_HUM AN	NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase)
GLSK_HUMA	glutaminase
FA98A_HUMA N	family with sequence similarity 98, member A
NDUAA_HUM	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42kDa
NDUAD_HUM	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 13
PRS6A_HUMA	proteasome (prosome, macropain) 26S subunit, ATPase, 3
END3B HUMA	fibronectin type III domain containing 3B

Ν	
TP53B_HUMA N	tumor protein p53 binding protein 1
DC1L2_HUMA N	dynein, cytoplasmic 1, light intermediate chain 2
SPTB2_HUMA	spectrin, beta, non-erythrocytic 1
CSRP2_HUMA	cysteine and glycine-rich protein 2
GANAB_HUM	glucosidase, alpha; neutral AB
PP2AB_HUMA	protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform
RL27_HUMAN	ribosomal protein L27
TCPQ_HUMA N	similar to chaperonin containing TCP1, subunit 8 (theta); chaperonin containing TCP1, subunit 8 (theta)
TCPG_HUMA	chaperonin containing TCP1, subunit 3 (gamma)
STML2_HUMA	stomatin (EPB72)-like 2
ZSC29_HUMA	zinc finger and SCAN domain containing 29
MYADM_HUM	myeloid-associated differentiation marker
RLA1_HUMAN	ribosomal protein, large, P1
S10A4_HUMA	S100 calcium binding protein A4
PICAL_HUMA	phosphatidylinositol binding clathrin assembly protein
TBB2A_HUMA	tubulin, beta 2A
SRPRB_HUM	signal recognition particle receptor, B subunit
DEK_HUMAN	DEK oncogene
ZC3H4_HUMA N	zinc finger CCCH-type containing 4
COX41_HUMA	cytochrome c oxidase subunit IV isoform 1
COF1_HUMA	cofilin 1 (non-muscle)
CISY_HUMAN	citrate synthase
ARF3_HUMAN	ADP-ribosylation factor 3
HNRDL_HUM AN	heterogeneous nuclear ribonucleoprotein D-like
SMC1A_HUM AN	structural maintenance of chromosomes 1A
NDUC2_HUM AN	NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2, 14.5kDa
RLA2_HUMAN	ribosomal protein, large, P2 pseudogene 3; ribosomal protein, large, P2
GALT2_HUMA N	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2)
PAIRB_HUMA	SERPINE1 mRNA binding protein 1
SNAA_HUMA	N-ethylmaleimide-sensitive factor attachment protein, alpha
SYNE1_HUMA	spectrin repeat containing, nuclear envelope 1
P5CS_HUMAN	aldehyde dehydrogenase 18 family, member A1
CIRBP_HUMA N	cold inducible RNA binding protein
UBC9_HUMA	ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast)
ACOT9_HUMA	acyl-CoA thioesterase 9
EGFR_HUMA	epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)
USO1_HUMA	USO1 homolog, vesicle docking protein (veast)
N	

SFRS4_HUMA N	splicing factor, arginine/serine-rich 4
SEPR_HUMA N	fibroblast activation protein, alpha
HMOX2_HUM AN	heme oxygenase (decycling) 2
DHCR7_HUM AN	7-dehydrocholesterol reductase
RER1_HUMA N	RER1 retention in endoplasmic reticulum 1 homolog (S. cerevisiae)
CALM_HUMA N	calmodulin 3 (phosphorylase kinase, delta)
PA2G4_HUMA N	proliferation-associated 2G4, 38kDa; proliferation-associated 2G4 pseudogene 4
4F2_HUMAN	solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2
CPSF6_HUMA N	cleavage and polyadenylation specific factor 6, 68kDa
NOP16_HUMA N	NOP16 nucleolar protein homolog (yeast)
OCC1_HUMA N	chromosome 12 open reading frame 75
SPCS3_HUMA N	signal peptidase complex subunit 3 homolog (S. cerevisiae)
STIM1_HUMA N	stromal interaction molecule 1
CHCH3_HUM AN	coiled-coil-helix-coiled-coil-helix domain containing 3
NSDHL_HUM AN	NAD(P) dependent steroid dehydrogenase-like
LDHB_HUMA N	lactate dehydrogenase B
VPS4B_HUMA N	vacuolar protein sorting 4 homolog B (S. cerevisiae)
EWS_HUMAN	similar to Ewing sarcoma breakpoint region 1; Ewing sarcoma breakpoint region 1
RL36_HUMAN	ribosomal protein L36; ribosomal protein L36 pseudogene 14
—	
TMEDA_HUM AN	transmembrane emp24-like trafficking protein 10 (yeast)
TMEDA_HUM AN TKT_HUMAN	transmembrane emp24-like trafficking protein 10 (yeast) transketolase
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa)
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278)
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA N CATD_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA N CATD_HUMA N SSBP_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA N CATD_HUMA N SSBP_HUMA N CAZA1_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA N CATD_HUMA N SSBP_HUMA N CAZA1_HUMA N AT1A1_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N SSBP_HUMA N CAZA1_HUMA N AT1A1_HUMA N P4HA2_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N CATD_HUMA N CAZA1_HUMA N AT1A1_HUMA N P4HA2_HUMA N NUP88_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II nucleoporin 88kDa
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N CATD_HUMA N CAZA1_HUMA N CAZA1_HUMA N P4HA2_HUMA N NUP88_HUMA N NUP88_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II nucleoporin 88kDa translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae)
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N CATD_HUMA N CAZA1_HUMA N AT1A1_HUMA N P4HA2_HUMA N NUP88_HUMA N NUP88_HUMA N ERP44_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II nucleoporin 88kDa translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae) endoplasmic reticulum protein 44
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N CATD_HUMA N CAZA1_HUMA N CAZA1_HUMA N P4HA2_HUMA N NUP88_HUMA N TIM50_HUMA N ERP44_HUMA N PININ_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II nucleoporin 88kDa translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae) endoplasmic reticulum protein 44 pinin, desmosome associated protein
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N CATD_HUMA N CAZA1_HUMA N CAZA1_HUMA N P4HA2_HUMA N NUP88_HUMA N TIM50_HUMA N ERP44_HUMA N PININ_HUMA N N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II nucleoporin 88kDa translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae) endoplasmic reticulum protein 44 pinin, desmosome associated protein ATPase, Na+/K+ transporting, beta 3 polypeptide
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N CAZA1_HUMA N CAZA1_HUMA N P4HA2_HUMA N P4HA2_HUMA N TIM50_HUMA N ERP44_HUMA N PININ_HUMA N DREB_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II nucleoporin 88kDa translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae) endoplasmic reticulum protein 44 pinin, desmosome associated protein ATPase, Na+/K+ transporting, beta 3 polypeptide
TMEDA_HUM AN TKT_HUMAN SFRS9_HUMA N HNRPD_HUM AN FLNB_HUMAN ACAD9_HUMA ACAD9_HUMA ACAD9_HUMA N CATD_HUMA N CATA1_HUMA N AT1A1_HUMA N NUP88_HUMA N NUP88_HUMA N NUP88_HUMA N ERP44_HUMA N ERP44_HUMA N AT1B3_HUMA N AT1B3_HUMA N DREB_HUMA N CATB_HUMA N	transmembrane emp24-like trafficking protein 10 (yeast) transketolase splicing factor, arginine/serine-rich 9 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) filamin B, beta (actin binding protein 278) acyl-Coenzyme A dehydrogenase family, member 9 cathepsin D single-stranded DNA binding protein 1 capping protein (actin filament) muscle Z-line, alpha 1 ATPase, Na+/K+ transporting, alpha 1 polypeptide prolyl 4-hydroxylase, alpha polypeptide II nucleoporin 88kDa translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae) endoplasmic reticulum protein 44 pinin, desmosome associated protein ATPase, Na+/K+ transporting, beta 3 polypeptide drebrin 1 kinectin 1 (kinesin receptor)

GCN1L_HUMA	GCN1 general control of amino-acid synthesis 1-like 1 (yeast)
C1QBP_HUM AN	complement component 1, q subcomponent binding protein
PARVA_HUM	parvin, alpha
STXB1_HUMA	syntaxin binding protein 1
B2MG_HUMA	beta-2-microglobulin
N SYEP_HUMA	glutamyl-prolyl-tRNA synthetase
N PTN1_HUMAN	protein tyrosine phosphatase, non-receptor type 1
GPNMB_HUM	glycoprotein (transmembrane) nmb
EIF3B_HUMA	eukaryotic translation initiation factor 3, subunit B
VPP1_HUMAN	ATPase, H+ transporting, lysosomal V0 subunit a1
BAP31_HUMA	B-cell receptor-associated protein 31
SMTN_HUMA	smoothelin
RAB3D_HUMA	RAB3D, member RAS oncogene family
THIM_HUMAN	hypothetical LOC648603; acetyl-Coenzyme A acyltransferase 2
ZN638_HUMA N	zinc finger protein 638
H2AZ_HUMAN	H2A histone family, member Z
CHD4_HUMA N	chromodomain helicase DNA binding protein 4
SEC13_HUMA N	SEC13 homolog (S. cerevisiae)
PLOD3_HUMA N	procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3
NDUA9_HUM	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa
COPD_HUMA	archain 1
ENAH_HUMA	enabled homolog (Drosophila)
AP3B1_HUMA	adaptor-related protein complex 3, beta 1 subunit
ZRAB2_HUMA	zinc finger, RAN-binding domain containing 2
ARMX3_HUM	armadillo repeat containing, X-linked 3
BAP29_HUMA	B-cell receptor-associated protein 29
ZN512_HUMA	zinc finger protein 512
TBA1B_HUMA	hypothetical gene supported by AF081484; NM 006082; tubulin, alpha 1b
AATM_HUMA	glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2)
LEMD2_HUMA	LEM domain containing 2
LONM_HUMA	lon peptidase 1, mitochondrial
RALB_HUMAN	v-ral simian leukemia viral oncogene homolog B (ras related; GTP binding protein)
COPB2_HUM	coatomer protein complex, subunit beta 2 (beta prime)
VATB2_HUMA	ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2
MYPT1_HUMA	protein phosphatase 1, regulatory (inhibitor) subunit 12A
U2AF2_HUMA	U2 small nuclear RNA auxiliary factor 2
SURF4_HUMA	surfeit 4
N	

Ν	
VATA_HUMAN	ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A
SMU1_HUMA N	smu-1 suppressor of mec-8 and unc-52 homolog (C. elegans)
UGGG1_HUM	UDP-glucose ceramide glucosyltransferase-like 1
NDUS1_HUM	NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase)
TPD54_HUMA	tumor protein D52-like 2
1C07_HUMAN	major histocompatibility complex, class I, C; major histocompatibility complex, class I, B
NEP_HUMAN	membrane metallo-endopeptidase
NUP85_HUMA	nucleoporin 85kDa
PAK2_HUMAN	p21 protein (Cdc42/Rac)-activated kinase 2
NDUBA_HUM AN	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa
BASP1_HUMA	brain abundant, membrane attached signal protein 1
CAPZB_HUMA	capping protein (actin filament) muscle Z-line, beta
RS10_HUMAN	ribosomal protein S10; ribosomal protein S10 pseudogene 4
ALDOC_HUM	aldolase C, fructose-bisphosphate
EF1B_HUMAN	eukaryotic translation elongation factor 1 beta 2; eukaryotic translation elongation factor 1 beta 2-like
RHOG_HUMA N	ras homolog gene family, member G (rho G)
LYRIC_HUMA N	metadherin
MK01_HUMAN	mitogen-activated protein kinase 1
GNAI2_HUMA N	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2
TRAM1_HUM	translocation associated membrane protein 1
NDUS4_HUM AN	NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase)
SP100_HUMA	SP100 nuclear antigen
CTNB1_HUMA	catenin (cadherin-associated protein), beta 1, 88kDa
RUVB2_HUMA	RuvB-like 2 (E. coli)
GLYM_HUMA	serine hydroxymethyltransferase 2 (mitochondrial)
LYAR_HUMAN	Ly1 antibody reactive homolog (mouse)
DERL1_HUMA N	Der1-like domain family, member 1
LASS2_HUMA N	LAG1 homolog, ceramide synthase 2
SRR35_HUMA	serine-arginine repressor protein (35 kDa)
DJB11_HUMA	DnaJ (Hsp40) homolog, subfamily B, member 11
PLIN3_HUMA N	mannose-6-phosphate receptor binding protein 1
IFIX_HUMAN	pyrin and HIN domain family, member 1
AT2A3_HUMA N	ATPase, Ca++ transporting, ubiquitous
ATP5J_HUMA N	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6
NB5R1_HUMA	cytochrome b5 reductase 1
PGK1_HUMA	phosphoglycerate kinase 1
ZO1_HUMAN	tight junction protein 1 (zona occludens 1)
SPF45_HUMA	RNA binding motif protein 17

N N	ribosomal protein L10a pseudogene 6; ribosomal protein L10a; ribosomal protein L10a pseudogene 9
FARP1_HUMA N	FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1 (chondrocyte-derived)
ACLY_HUMAN	ATP citrate lyase
APOH_HUMA N	apolipoprotein H (beta-2-glycoprotein I)
RBM39_HUMA N	similar to RNA binding motif protein 39; RNA binding motif protein 39
SPCS2_HUMA	signal peptidase complex subunit 2 homolog (S. cerevisiae); signal peptidase complex subunit 2 homolog pseudogene
LIMA1_HUMA	LIM domain and actin binding 1
PLOD1_HUMA	procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1
WFS1_HUMA	Wolfram syndrome 1 (wolframin)
DYL1_HUMAN	dynein, light chain, LC8-type 1
ADT2_HUMAN	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5
PCBP2_HUMA	poly(rC) binding protein 2
LRC15_HUMA	leucine rich repeat containing 15
CD99_HUMAN	CD99 molecule
OST48_HUMA N	dolichyl-diphosphooligosaccharide-protein glycosyltransferase
MPRIP_HUMA	myosin phosphatase Rho interacting protein
PGAM1_HUM AN	phosphoglycerate mutase 1 (brain)
WDR1_HUMA	WD repeat domain 1
SUMO4_HUM	SMT3 suppressor of mif two 3 homolog 4 (S. cerevisiae)
TFR1_HUMAN	transferrin receptor (p90, CD71)
DNMT1_HUM AN	DNA (cytosine-5-)-methyltransferase 1
TXND5_HUMA	thioredoxin domain containing 5 (endoplasmic reticulum); muted homolog (mouse)
BAG2_HUMA	BCL2-associated athanogene 2
MGST3_HUM	microsomal glutathione S-transferase 3
SFXN1_HUMA	sideroflexin 1
SEPT7_HUMA N	septin 7
STT3A_HUMA N	STT3, subunit of the oligosaccharyltransferase complex, homolog A (S. cerevisiae)
CATK_HUMA	cathepsin K
GLU2B_HUMA N	protein kinase C substrate 80K-H
ETFB_HUMAN	electron-transfer-flavoprotein, beta polypeptide
RAB2A_HUMA N	RAB2A, member RAS oncogene family
NEXN_HUMA N	nexilin (F actin binding protein)
RL26L_HUMA	ribosomal protein L26-like 1
MMP14_HUM AN	matrix metallopeptidase 14 (membrane-inserted)
SFXN3_HUMA	sideroflexin 3
UCRI_HUMAN	ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide-like 1
RCN2_HUMA N	reticulocalbin 2, EF-hand calcium binding domain
FHL1_HUMAN	four and a half LIM domains 1

ARP5L_HUMA N	actin related protein 2/3 complex, subunit 5-like
PLSI_HUMAN	plastin 1 (I isoform)
SUCB2_HUMA N	similar to sucb; succinate-CoA ligase, GDP-forming, beta subunit
TLK1_HUMAN	tousled-like kinase 1
CHP1_HUMA N	calcium binding protein P22
CCD56_HUMA N	coiled-coil domain containing 56
CD9_HUMAN	CD9 molecule
RL18A_HUMA N	ribosomal protein L18a pseudogene 6; ribosomal protein L18a
DDX46_HUMA N	DEAD (Asp-Glu-Ala-Asp) box polypeptide 46
MECP2_HUM AN	methyl CpG binding protein 2 (Rett syndrome)
SYMC_HUMA N	methionyl-tRNA synthetase
DDX3X_HUMA N	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked
SRRM1_HUM AN	serine/arginine repetitive matrix 1
AN32A_HUMA N	hepatopoietin PCn127; acidic (leucine-rich) nuclear phosphoprotein 32 family, member A
TMX3_HUMA N	thioredoxin-related transmembrane protein 3
IF4G1_HUMA N	eukaryotic translation initiation factor 4 gamma, 1
NDUS3_HUM AN	NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase)
CD81_HUMAN	CD81 molecule
MAVS_HUMA N	mitochondrial antiviral signaling protein
1	
TBB3_HUMAN	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)
TBB3_HUMAN K1C14_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast)
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N RB11A_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N RB11A_HUMA N UTP20_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73)
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N RB11A_HUMA N UTP20_HUMA N ECHM_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N RB11A_HUMA N UTP20_HUMA N ECHM_HUMA N ATPO_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N RB11A_HUMA N UTP20_HUMA N ECHM_HUMA N ATPO_HUMA N CHERP_HUM AN	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N BB11A_HUMA N UTP20_HUMA N ECHM_HUMA N ATPO_HUMA N CHERP_HUM AN BASI_HUMAN	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group)
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N GAR1_HUMA N UTP20_HUMA N UTP20_HUMA N ECHM_HUMA N CHERP_HUM AN BASI_HUMAN CTNA1_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)keratin 14heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1GAR1 ribonucleoprotein homolog (yeast)RAB11A, member RAS oncogene familysimilar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73)enoyl Coenzyme A hydratase, short chain, 1, mitochondrialATP synthase, H+ transporting, mitochondrial F1 complex, O subunitcalcium homeostasis endoplasmic reticulum proteinbasigin (Ok blood group)catenin (cadherin-associated protein), alpha 1, 102kDa
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N GAR1_HUMA N UTP20_HUMA N ECHM_HUMA N CHERP_HUM AN BASI_HUMAN CTNA1_HUMA N HNRLL_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group) catenin (cadherin-associated protein), alpha 1, 102kDa heterogeneous nuclear ribonucleoprotein L-like
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N GAR1_HUMA N UTP20_HUMA N ECHM_HUMA N ECHM_HUMA N CHERP_HUM AN BASI_HUMAN CTNA1_HUMA N HNRLL_HUMA N LAP2B_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group) catenin (cadherin-associated protein), alpha 1, 102kDa heterogeneous nuclear ribonucleoprotein L-like
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N RB11A_HUMA N UTP20_HUMA N ECHM_HUMA N CHERP_HUM AN BASI_HUMAN CTNA1_HUMA N HNRLL_HUMA N LAP2B_HUMA N PRDX5_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group) catenin (cadherin-associated protein), alpha 1, 102kDa heterogeneous nuclear ribonucleoprotein L-like thymopoietin peroxiredoxin 5
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N GAR1_HUMA N UTP20_HUMA N UTP20_HUMA N ECHM_HUMA N CHERP_HUMA N BASI_HUMAN CTNA1_HUMA N HNRLL_HUMA N LAP2B_HUMA N PRDX5_HUMA N SF01_HUMAN	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group) catenin (cadherin-associated protein), alpha 1, 102kDa heterogeneous nuclear ribonucleoprotein L-like thymopoietin peroxiredoxin 5 splicing factor 1
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N GAR1_HUMA N TP20_HUMA N ECHM_HUMA N CHERP_HUM AN BASI_HUMAN CTNA1_HUMA N HNRLL_HUMA N LAP2B_HUMA N SF01_HUMAN RU1C_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group) catenin (cadherin-associated protein), alpha 1, 102kDa heterogeneous nuclear ribonucleoprotein L-like thymopoietin peroxiredoxin 5 splicing factor 1 small nuclear ribonucleoprotein polypeptide C
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N RB11A_HUMA N UTP20_HUMA N ECHM_HUMA N CHERP_HUM AN BASI_HUMAN CTNA1_HUMA N HNRLL_HUMA N HNRLL_HUMA N PRDX5_HUMA N SF01_HUMAN RU1C_HUMA N SNR40_HUMA N	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group) catenin (cadherin-associated protein), alpha 1, 102kDa heterogeneous nuclear ribonucleoprotein L-like thymopoietin peroxiredoxin 5 splicing factor 1 small nuclear ribonucleoprotein polypeptide C small nuclear ribonucleoprotein 40kDa (U5)
TBB3_HUMAN K1C14_HUMA N ROA1_HUMA N GAR1_HUMA N GAR1_HUMA N UTP20_HUMA N UTP20_HUMA N ECHM_HUMA N CHERP_HUM AN BASI_HUMAN CTNA1_HUMA N HNRLL_HUMA N LAP2B_HUMAN N SF01_HUMAN SF01_HUMAN N SF01_HUMAN N SF01_HUMAN N SF01_HUMAN N SNR40_HUMA N ERF1_HUMAN	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) keratin 14 heterogeneous nuclear ribonucleoprotein A1-like 3; similar to heterogeneous nuclear ribonucleoprotein A1 GAR1 ribonucleoprotein homolog (yeast) RAB11A, member RAS oncogene family similar to Down-regulated in metastasis protein (Key-1A6 protein) (Novel nucleolar protein 73) (NNP73) enoyl Coenzyme A hydratase, short chain, 1, mitochondrial ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit calcium homeostasis endoplasmic reticulum protein basigin (Ok blood group) catenin (cadherin-associated protein), alpha 1, 102kDa heterogeneous nuclear ribonucleoprotein L-like thymopoietin peroxiredoxin 5 splicing factor 1 small nuclear ribonucleoprotein polypeptide C small nuclear ribonucleoprotein 40kDa (U5) eukaryotic translation termination factor 1

CPSF5_HUMA N	nudix (nucleoside diphosphate linked moiety X)-type motif 21
SF3A3_HUMA N	splicing factor 3a, subunit 3, 60kDa
MAP1B_HUM AN	microtubule-associated protein 1B
STAT1_HUMA N	signal transducer and activator of transcription 1, 91kDa
NDUA8_HUM AN	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa
GFPT1_HUMA N	glutamine-fructose-6-phosphate transaminase 1
MARE1_HUM AN	microtubule-associated protein, RP/EB family, member 1
HNRL2_HUMA N	heterogeneous nuclear ribonucleoprotein U-like 2
EIF3E_HUMA N	eukaryotic translation initiation factor 3, subunit E
SYPL1_HUMA N	synaptophysin-like 1
PABP1_HUMA N	poly(A) binding protein, cytoplasmic pseudogene 5; poly(A) binding protein, cytoplasmic 1
KIF5C_HUMA N	kinesin family member 5C
SON_HUMAN	SON DNA binding protein
IMMT_HUMAN	inner membrane protein, mitochondrial (mitofilin)
ODP2_HUMA N	dihydrolipoamide S-acetyltransferase
ARPC4_HUMA N	tubulin tyrosine ligase-like family, member 3; actin related protein 2/3 complex, subunit 4, 20kDa
PRDX6_HUMA N	peroxiredoxin 6
COR1C_HUM AN	coronin, actin binding protein, 1C
CAP1_HUMAN	CAP, adenylate cyclase-associated protein 1 (yeast)
LMAN1_HUMA N	lectin, mannose-binding, 1
LETM1_HUMA N	leucine zipper-EF-hand containing transmembrane protein 1
ARF4_HUMAN	ADP-ribosylation factor 4
PGRC2_HUM AN	progesterone receptor membrane component 2
HNRPQ_HUM AN	synaptotagmin binding, cytoplasmic RNA interacting protein
SET_HUMAN	SET nuclear oncogene; similar to SET translocation
PALLD_HUMA N	palladin, cytoskeletal associated protein
DPYL2_HUMA N	dihydropyrimidinase-like 2
COPZ1_HUMA N	coatomer protein complex, subunit zeta 1
NDUS8_HUM AN	NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzyme Q reductase)
SFRS7_HUMA N	splicing factor, arginine/serine-rich 7, 35kDa
HM13_HUMA N	histocompatibility (minor) 13
MPU1_HUMA N	mannose-P-dolichol utilization defect 1
SQRD_HUMA N	sulfide quinone reductase-like (yeast)
KRT34_HUMA N	keratin 34
RL19_HUMAN	ribosomal protein L19; ribosomal protein L19 pseudogene 12
DC1I2_HUMA N	similar to dynein cytoplasmic 1 intermediate chain 2; dynein, cytoplasmic 1, intermediate chain 2
FLII_HUMAN	flightless I homolog (Drosophila)
SURF6_HUMA N	surfeit 6

NSF_HUMAN	N-ethylmaleimide-sensitive factor
RNPS1_HUMA N	similar to ribonucleic acid binding protein S1; RNA binding protein S1, serine-rich domain
ROA0_HUMA N	heterogeneous nuclear ribonucleoprotein A0
PWP1_HUMA N	PWP1 homolog (S. cerevisiae)

Proteínas presentes sólo en WT		
HLAE_HUMAN	major histocompatibility complex, class I, E	
RPAB3_HUMAN	polymerase (RNA) II (DNA directed) polypeptide H	
CEBPZ_HUMAN	CCAAT/enhancer binding protein (C/EBP), zeta	
SRP14_HUMAN	signal recognition particle 14kDa (homologous Alu RNA binding protein) pseudogene 1	
TMED5_HUMAN	transmembrane emp24 protein transport domain containing 5	
TCPB_HUMAN	chaperonin containing TCP1, subunit 2 (beta)	
TADBP_HUMAN	TAR DNA binding protein	
TCPA_HUMAN	hypothetical gene supported by BC000665; t-complex 1	
UTP15_HUMAN	UTP15, U3 small nucleolar ribonucleoprotein, homolog (S. cerevisiae)	
AAAT_HUMAN	solute carrier family 1 (neutral amino acid transporter), member 5	
CO7_HUMAN	complement component 7	
PXDN_HUMAN	peroxidasin homolog (Drosophila)	
SAS10_HUMAN	UTP3, small subunit (SSU) processome component, homolog (S. cerevisiae)	
MAGT1_HUMAN	magnesium transporter 1	
RL10L_HUMAN	ribosomal protein L10-like	
H2B1K_HUMAN	histone cluster 1, H2bk	
AT1A3_HUMAN	ATPase, Na+/K+ transporting, alpha 3 polypeptide	
ELL_HUMAN	elongation factor RNA polymerase II	
ATP5L_HUMAN	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit G	
CO5_HUMAN	complement component 5	
ATPG_HUMAN	ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1	
H2AV_HUMAN	H2A histone family, member V	
PRS23_HUMAN	protease, serine, 23	
TSR1_HUMAN	TSR1, 20S rRNA accumulation, homolog (S. cerevisiae)	
KRR1_HUMAN	KRR1, small subunit (SSU) processome component, homolog (yeast)	
SMC3_HUMAN	structural maintenance of chromosomes 3	
CCD86_HUMAN	coiled-coil domain containing 86	
CBPN_HUMAN	carboxypeptidase N, polypeptide 1	
PK1IP_HUMAN	PAK1 interacting protein 1	
RRP7A_HUMAN	ribosomal RNA processing 7 homolog B (S. cerevisiae); ribosomal RNA processing 7 homolog A (S. cerevisiae)	
BYST_HUMAN	bystin-like	
RAB1A_HUMAN	RAB1A, member RAS oncogene family	
RBP2_HUMAN	RAN binding protein 2	
TOM22_HUMAN	translocase of outer mitochondrial membrane 22 homolog (yeast)	
IMA2_HUMAN	karyopherin alpha 2 (RAG cohort 1, importin alpha 1); karyopherin alpha-2 subunit like	
BRD9_HUMAN	bromodomain containing 9	

NUPL1_HUMAN	nucleoporin like 1
SYYC_HUMAN	tyrosyl-tRNA synthetase
ZSWM6_HUMAN	exosome component 10
ZSWM6_HUMAN	zinc finger, SWIM-type containing 6
LY10L_HUMAN	SP140 nuclear body protein-like
MGN_HUMAN	mago-nashi homolog, proliferation-associated (Drosophila)
CC121_HUMAN	coiled-coil domain containing 121
IDHC_HUMAN	isocitrate dehydrogenase 1 (NADP+), soluble
ATPK_HUMAN	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F2
TEX10_HUMAN	testis expressed 10
PCBP3_HUMAN	poly(rC) binding protein 3
RRP1B_HUMAN	ribosomal RNA processing 1 homolog B (S. cerevisiae)
LDHC_HUMAN	lactate dehydrogenase C
GNAT1_HUMAN	guanine nucleotide binding protein (G protein), alpha transducing activity polypeptide 1
SYFB_HUMAN	phenylalanyl-tRNA synthetase, beta subunit
CO4A2_HUMAN	collagen, type IV, alpha 2
PP1RA_HUMAN	protein phosphatase 1, regulatory (inhibitor) subunit 10
BMS1_HUMAN	BMS1 homolog, ribosome assembly protein (yeast) pseudogene; BMS1 homolog, ribosome assembly protein (yeast)
HMGB2_HUMAN	high-mobility group box 2
NOL6_HUMAN	nucleolar protein family 6 (RNA-associated)
MFGM_HUMAN	milk fat globule-EGF factor 8 protein
TM41B_HUMAN	transmembrane protein 41B
ACL6A_HUMAN	actin-like 6A
DDX50_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 50
RALY_HUMAN	RNA binding protein, autoantigenic (hnRNP-associated with lethal yellow homolog (mouse))
RL35_HUMAN	ribosomal protein L35; ribosomal protein L35 pseudogene 1; ribosomal protein L35 pseudogene 2
DDX49_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 49
SMRD2_HUMAN	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member
MXRA5_HUMAN	matrix-remodelling associated 5
RASEF_HUMAN	RAS and EF-hand domain containing
HNRPF_HUMAN	heterogeneous nuclear ribonucleoprotein F
PP1G_HUMAN	protein phosphatase 1, catalytic subunit, gamma isoform
RBM19_HUMAN	RNA binding motif protein 19
H2AW_HUMAN	H2A histone family, member Y2
NEK10_HUMAN	NIMA (never in mitosis gene a)- related kinase 10
NPM3_HUMAN	nucleophosmin/nucleoplasmin, 3
LOXL4_HUMAN	lysyl oxidase-like 4
SRRT_HUMAN	serrate RNA effector molecule homolog (Arabidopsis)
CYFP1_HUMAN	cytoplasmic FMR1 interacting protein 1
PCP_HUMAN	prolylcarboxypeptidase (angiotensinase C)
 ADT3_HUMAN	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 6

HMGN1_HUMAN	high-mobility group nucleosome binding domain 1
TPBG_HUMAN	trophoblast glycoprotein
POSTN_HUMAN	periostin, osteoblast specific factor
NU188_HUMAN	nucleoporin 188kDa
APEX1_HUMAN	APEX nuclease (multifunctional DNA repair enzyme) 1
PSIP1_HUMAN	PC4 and SFRS1 interacting protein 1
VAPA_HUMAN	VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa
RPF2_HUMAN	Ribosome production factor 2 homolog
PIVA2_ADE05	Maturation protein OS=Human adenovirus C serotype 5 GN=PIVA2 PE=3 SV=1
DNB2_ADE05	Early E2A DNA-binding protein OS=Human adenovirus C serotype 5 GN=DBP PE=1 SV=1
E1BS_ADE05	E1B protein, small T-antigen OS=Human adenovirus C serotype 5 PE=1 SV=1
E3145_ADE05	Early E3 14.5 kDa protein OS=Human adenovirus C serotype 5 PE=3 SV=1
HEX_ADE05	Hexon protein OS=Human adenovirus C serotype 5 GN=PII PE=1 SV=3
HEX3_ADE05	Peripentonal hexon-associated protein OS=Human adenovirus C serotype 5 GN=PIIIA PE=3 SV=2
RNDRUSD2_HU MAN	RNA pseudouridylate synthase domain-containing protein 2 OS=Homo sapiens GN=RPUSD2 PE=1 SV=2
VCOM_ADE05	Minor core protein OS=Human adenovirus C serotype 5 GN=PV PE=3 SV=1
L100_ADE05	Late 100 kDa protein OS=Human adenovirus C serotype 5 PE=3 SV=1
RNDPOTED_HU MAN	POTE ankyrin domain family member D OS=Homo sapiens GN=POTED PE=2 SV=2
VCO7_ADE05	Major core protein OS=Human adenovirus C serotype 5 GN=PVII PE=3 SV=1
HEX9_ADE05	Hexon-associated protein OS=Human adenovirus C serotype 5 GN=PIX PE=3 SV=1
RNDNSN5C_HU MAN	Putative methyltransferase NSUN5C OS=Homo sapiens GN=NSUN5C PE=1 SV=2
RNDGVIN1_HUM AN	Interferon-induced very large GTPase 1 OS=Homo sapiens GN=GVIN1 PE=2 SV=2
RNDEF1A1_HUM AN	Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1
RNDTTC17_HUM AN	Tetratricopeptide repeat protein 17 OS=Homo sapiens GN=TTC17 PE=1 SV=1
RNDMLKL_HUMA	Mixed lineage kinase domain-like protein OS=Homo sapiens GN=MLKL PE=1 SV=1
RNDTPD52_HUM AN	Tumor protein D52 OS=Homo sapiens GN=TPD52 PE=1 SV=2
HEX8_ADE05	Hexon-associated protein OS=Human adenovirus C serotype 5 GN=PVIII PE=3 SV=1
RNDGLP3L_HUM AN	Golgi phosphoprotein 3-like OS=Homo sapiens GN=GOLPH3L PE=1 SV=1
V33P_ADE05	33 kDa phosphoprotein OS=Human adenovirus C serotype 5 PE=3 SV=1
RA1L3_HUMAN	hnRNP A1-like 3
SEP13_HUMAN	Septin-13

Proteínas presentes sólo en pM		
IF4B_HUMAN	similar to eukaryotic translation initiation factor 4H; eukaryotic translation initiation factor 4B	
H2B1C_HUMAN	histone cluster 1, H2b	
SNUT1_HUMAN	squamous cell carcinoma antigen recognized by T cells	
NUP98_HUMAN	nucleoporin 98kDa	
NU153_HUMAN	nucleoporin 153kDa	
PRAF3_HUMAN	ADP-ribosylation-like factor 6 interacting protein 5	
TCPW_HUMAN	chaperonin containing TCP1, subunit 6B (zeta 2)	
STOM_HUMAN	stomatin	

PEBP1 HUMAN	phosphatidylethanolamine binding protein 1
ATPD HUMAN	ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit
STX7 HUMAN	syntaxin 7
RFC3 HUMAN	replication factor C (activator 1) 3, 38kDa
RS4Y2 HUMAN	ribosomal protein S4, Y-linked 2
DNJC5_HUMAN	DnaJ (Hsp40) homolog, subfamily C, member 5
TMCO1_HUMAN	transmembrane and coiled-coil domains 1
 DDX3Y_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked
SSRG_HUMAN	signal sequence receptor, gamma (translocon-associated protein gamma)
H3L_HUMAN	histone H3-like
STAU1_HUMAN	staufen, RNA binding protein, homolog 1 (Drosophila)
TMM43_HUMAN	transmembrane protein 43
GBB3_HUMAN	guanine nucleotide binding protein (G protein), beta polypeptide 3
RFC1_HUMAN	replication factor C (activator 1) 1, 145kDa
CATB_HUMAN	cathepsin B
SARM1_HUMAN	sterile alpha and TIR motif containing 1
GREM1_HUMAN	gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)
S10AG_HUMAN	S100 calcium binding protein A16
S10A6_HUMAN	S100 calcium binding protein A6
RENT1_HUMAN	UPF1 regulator of nonsense transcripts homolog (yeast)
PBX2_HUMAN	pre-B-cell leukemia homeobox 2
DLDH_HUMAN	dihydrolipoamide dehydrogenase
A2MG_HUMAN	alpha-2-macroglobulin
DNS2B_HUMAN	deoxyribonuclease II beta
S39A7_HUMAN	solute carrier family 39 (zinc transporter), member 7
SR140_HUMAN	U2-associated SR140 protein
OCAD1_HUMAN	OCIA domain containing 1
TCPD_HUMAN	chaperonin containing TCP1, subunit 4 (delta)
NOP10_HUMAN	NOP10 ribonucleoprotein homolog (yeast)
TOM70_HUMAN	translocase of outer mitochondrial membrane 70 homolog A (S. cerevisiae)
ACTA_HUMAN	actin, alpha 2, smooth muscle, aorta
ENOA_HUMAN	enolase 1, (alpha)
DAD1_HUMAN	defender against cell death 1
ANXA4_HUMAN	annexin A4
CLCC1_HUMAN	chloride channel CLIC-like 1
LCE2A_HUMAN	late cornified envelope 2A
REEP5_HUMAN	receptor accessory protein 5
VPS35_HUMAN	hypothetical protein LOC100133770; vacuolar protein sorting 35 homolog (S. cerevisiae)
UHRF1_HUMAN	ubiquitin-like with PHD and ring finger domains 1
PP12C_HUMAN	protein phosphatase 1, regulatory (inhibitor) subunit 12C
CTND1_HUMAN	catenin (cadherin-associated protein), delta 1
SMCE1_HUMAN	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1

SC24C_HUMAN	SEC24 family, member C (S. cerevisiae)
MYO1A_HUMAN	myosin IA
PCYXL_HUMAN	prenylcysteine oxidase 1 like
FBLN2_HUMAN	fibulin 2
MLEC_HUMAN	malectin
1A24_HUMAN	major histocompatibility complex, class I, A
RNDPIGM_HUMAN	GPI mannosyltransferase 1 OS=Homo sapiens GN=PIGM PE=1 SV=1
RNDAQP1_HUMAN	Aquaporin-1 OS=Homo sapiens GN=AQP1 PE=1 SV=3
L52_ADE05	Late L1 52 kDa protein OS=Human adenovirus C serotype 5 PE=3 SV=2
RNDIFIT3_HUMAN	Interferon-induced protein with tetratricopeptide repeats 3 OS=Homo sapiens GN=IFIT3 PE=1 SV=1
FIBP_ADE05	Fiber protein OS=Human adenovirus C serotype 5 GN=PIV PE=1 SV=1
RNDDYH3_HUMAN	Dynein heavy chain 3, axonemal OS=Homo sapiens GN=DNAH3 PE=2 SV=1
E1BL_ADE05	E1B protein, large T-antigen OS=Human adenovirus C serotype 5 PE=1 SV=1
RNDA2GL_HUMAN	Leucine-rich alpha-2-glycoprotein OS=Homo sapiens GN=LRG1 PE=1 SV=2
RNDYLPM1_HUMAN	YLP motif-containing protein 1 OS=Homo sapiens GN=YLPM1 PE=1 SV=3
RNDRS26L_HUMAN	Putative 40S ribosomal protein S26-like 1 OS=Homo sapiens GN=RPS26P11 PE=5 SV=1
PEN3_ADE05	Penton protein OS=Human adenovirus C serotype 5 GN=PIII PE=3 SV=1

Proteínas presentes sólo en 4X	
IMB1_HUMAN	karyopherin (importin) beta 1
APOA1_HUMAN	apolipoprotein A-I
NOP14_HUMAN	NOP14 nucleolar protein homolog (yeast)
TPP1_HUMAN	tripeptidyl peptidase I
TBB1_HUMAN	tubulin, beta 1
NEK7_HUMAN	NIMA (never in mitosis gene a)-related kinase 7
HNRL1_HUMAN	heterogeneous nuclear ribonucleoprotein U-like 1
CO8A1_HUMAN	collagen, type VIII, alpha 1
IF2P_HUMAN	eukaryotic translation initiation factor 5B
TRA2A_HUMAN	transformer 2 alpha homolog (Drosophila)
UBF1_HUMAN	upstream binding transcription factor, RNA polymerase I
NUP53_HUMAN	nucleoporin 35kDa
PVR_HUMAN	poliovirus receptor
CATB_HUMAN	cathepsin B
EXOS9_HUMAN	exosome component 9
SAHH_HUMAN	adenosylhomocysteinase
S10AG_HUMAN	S100 calcium binding protein A16
CNN1_HUMAN	calponin 1, basic, smooth muscle
DLDH_HUMAN	dihydrolipoamide dehydrogenase
LARP7_HUMAN	La ribonucleoprotein domain family, member 7
NUP54_HUMAN	nucleoporin 54kDa
TECR_HUMAN	glycoprotein, synaptic 2
CNN2_HUMAN	calponin 2
FEN1_HUMAN	flap structure-specific endonuclease 1

PABP3_HUMAN	poly(A) binding protein, cytoplasmic 3
CC137_HUMAN	coiled-coil domain containing 137
ALBU_HUMAN	albumin
URB2_HUMAN	URB2 ribosome biogenesis 2 homolog (S. cerevisiae)
NOLC1_HUMAN	nucleolar and coiled-body phosphoprotein 1
LASP1_HUMAN	LIM and SH3 protein 1
NDUS7_HUMAN	NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase)
ARL8B_HUMAN	ADP-ribosylation factor-like 8B
K1C16_HUMAN	keratin 16; keratin type 16-like
IMA4_HUMAN	karyopherin alpha 4 (importin alpha 3)
DDX10_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 10
NACA_HUMAN	nascent polypeptide-associated complex alpha subunit
ENOA_HUMAN	enolase 1, (alpha)
ANXA4_HUMAN	annexin A4
TBA4A_HUMAN	tubulin, alpha 4a
DHE3_HUMAN	glutamate dehydrogenase 1
SYCC_HUMAN	cysteinyl-tRNA synthetase
PRPF3_HUMAN	PRP3 pre-mRNA processing factor 3 homolog (S. cerevisiae)
LUC7L_HUMAN	LUC7-like (S. cerevisiae)
MLP3A_HUMAN	microtubule-associated protein 1 light chain 3 alpha
RAD21_HUMAN	RAD21 homolog (S. pombe)
NEP1_HUMAN	EMG1 nucleolar protein homolog (S. cerevisiae)
IF5_HUMAN	eukaryotic translation initiation factor 5
FLOT2_HUMAN	flotillin 2
RL21_HUMAN	ribosomal protein L21 pseudogene 134
CO5A1_HUMAN	collagen, type V, alpha 1
NIBL1_HUMAN	family with sequence similarity 129, member B
NOC4L_HUMAN	nucleolar complex associated 4 homolog (S. cerevisiae)
NLE1_HUMAN	notchless homolog 1 (Drosophila)
SC31A_HUMAN	SEC31 homolog A (S. cerevisiae)
RBM28_HUMAN	RNA binding motif protein 28
ARPC5_HUMAN	actin related protein 2/3 complex, subunit 5, 16kDa
WDR74_HUMAN	WD repeat domain 74
PWP2_HUMAN	PWP2 periodic tryptophan protein homolog (yeast)
WDR75_HUMAN	WD repeat domain 75
RPP30_HUMAN	ribonuclease P/MRP 30kDa subunit
DDX3Y_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked
EIF3C_HUMAN	eukaryotic translation initiation factor 3, subunit C-like
EIF3C_HUMAN	eukaryotic translation initiation factor 3, subunit C
NHP2_HUMAN	NHP2 ribonucleoprotein homolog (yeast)
MPP10_HUMAN	M-phase phosphoprotein 10 (U3 small nucleolar ribonucleoprotein)
TMM43_HUMAN	transmembrane protein 43
SAP_HUMAN	prosaposin

RHOA_HUMAN	ras homolog gene family, member A
RFC1_HUMAN	replication factor C (activator 1) 1, 145kDa
H2B1H_HUMAN	histone cluster 1, H2bh
LDHA_HUMAN	lactate dehydrogenase A
TIMP3_HUMAN	TIMP metallopeptidase inhibitor 3
H2B1J_HUMAN	histone cluster 1, H2bj
DDX24_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 24
RPAC1_HUMAN	polymerase (RNA) I polypeptide C, 30kDa
NMNA1_HUMAN	nicotinamide nucleotide adenylyltransferase 1
LRSM1_HUMAN	leucine rich repeat and sterile alpha motif containing 1
U2AF4_HUMAN	U2 small nuclear RNA auxiliary factor 1-like 4
ATP6_HUMAN	Cytochrome c oxidase subunit 3; ATP synthase subunit a; ATP synthase protein 8
UTP6_HUMAN	UTP6, small subunit (SSU) processome component, homolog (yeast)
SSF1_HUMAN	peter pan homolog (Drosophila)
SSF1_HUMAN	PPAN-P2RY11 readthrough transcript
DDX6_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 6
CK059_HUMAN	chromosome 11 open reading frame 59
AP3M1_HUMAN	adaptor-related protein complex 3, mu 1 subunit
PCBP1_HUMAN	poly(rC) binding protein 1
VAT1_HUMAN	vesicle amine transport protein 1 homolog (T. californica)
LIMS1_HUMAN	LIM and senescent cell antigen-like domains 1
SCMC1_HUMAN	solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 24
CIR1A_HUMAN	cirrhosis, autosomal recessive 1A (cirhin)
HSP71_HUMAN	heat shock 70kDa protein 1A; heat shock 70kDa protein 1B
NP1L4_HUMAN	nucleosome assembly protein 1-like 4
TBA1A_HUMAN	tubulin, alpha 1a
DDX47_HUMAN	DEAD (Asp-Glu-Ala-Asp) box polypeptide 47
NOL11_HUMAN	nucleolar protein 11
RAE1L_HUMAN	RAE1 RNA export 1 homolog (S. pombe)
ERGI1_HUMAN	endoplasmic reticulum-golgi intermediate compartment (ERGIC) 1
NSUN5_HUMAN	NOL1/NOP2/Sun domain family, member 5
KC1A_HUMAN	casein kinase 1, alpha 1
LAMP2_HUMAN	lysosomal-associated membrane protein 2
1A1L1_HUMAN	1-aminocyclopropane-1-carboxylate synthase homolog (Arabidopsis)(non-functional)
RNDWDR88_HUMAN	WD repeat-containing protein 88 OS=Homo sapiens GN=WDR88 PE=2 SV=1
RNDIFIT3_HUMAN	Interferon-induced protein with tetratricopeptide repeats 3 OS=Homo sapiens GN=IFIT3 PE=1 SV=1
RNDSEPP1_HUMAN	Selenoprotein P OS=Homo sapiens GN=SEPP1 PE=1 SV=3
L52_ADE05	Late L1 52 kDa protein OS=Human adenovirus C serotype 5 PE=3 SV=2
RNDATPA_HUMAN	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1
RNDK0467_HUMAN	Uncharacterized protein KIAA0467 OS=Homo sapiens GN=KIAA0467 PE=2 SV=2
RNDLRFN6_HUMAN	Leucine-rich repeat and fibronectin type-III domain-containing protein 6