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Chapter 1

Introduction

During the development of physics, there has been one fundamental question in its history. The question is
what are the laws that control physical systems’ behavior?

In the atomic domain, experiments based on the physical phenomenon known as scattering have been
performed and have given a variety of answers. To mention some of these we have spectroscopy, diffraction
and collision in particle accelerator experiments.

In this introductory part we speak of the scattering phenomenon. Scattering theory is a tool which helps
explain some of the phenomena in the atomic world, it forms an important part of a great physical theory
known as quantum mechanics (it is also important in classical mechanics). There are a variety of scattering
experiments, but in general those experiments consist of four essential parts:

(a) The source, which is an apparatus that will produce particles that will interact with those in the target.
Here, it is important to mention that the source must produce particles in a recurrent, continuous way
and under practically the same conditions, that is because all scattering experiments involve recurrent
measurements for identical systems.

(b) The preparing apparatus (for example it can be a “colimator”, the beam of an spectrometer, or a
polarizer), it serves to define initial conditions of the incident particles.

(c) The target, it contains particles that will interact with incident particles. Conditions on the state of the
target will largely affect measurements, that is why they must be taken into consideration to be able
to give a correct interpretation. For example, if the target is thick then it will be possible to observe
multiple scattering, and if for example, the target has crystalline structure then it will be possible to
observe a diffraction pattern. On the other hand, if we deal with a moving target (for example a gas)
then that effect will be present in the measurements made. The easiest interpretation of the results is
found when the target is very thin and it contains a random distribution of particles at rest.

(d) The detector, which is a device that is responsible of recording results and is usually found in a place
where it is possible to only detect scattered particles, in other words, if the target is taken off from the
experimental arrangement then the detector does not register anything. In practice this condition is
not so easy to have since it is not always possible to produce a sufficiently collimated beam, or because
there exists scattering remains in the material due to other interactions (This is the reason why good
calibration of the detector is important). It is also important to locate the detector sufficiently far
from the target not to detect interactions between scattered particles and particles in the target. In
almost every case the detector has a finite resolution angle, the better we can do is to make this
angle small enough to have better measurements, but it is also true that there exists certain physical
limitations that do not allow to make this resolution very precise, and the same problems happen with
the preparing apparatus.
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I The physical characteristics of scattering systems

The essential physical characteristics of a scattering system are the following:
In a scattering process we have to distinguish three moments in the temporal evolution of the system.
At the beginning, the system’s state is found in the remote past. At this time, the incident particle and

the target particle are located far enough so their mutual interaction is negligible. Thus, it is expected that
the system’s state evolves obeying the laws that govern the behavior of free particles.

During the second moment the particles will mutually interact and the evolution of the system is ruled by
a movement equation in which the interaction term plays an important role. It is in the interaction moment
that scattering occurs.

For the third moment one is placed in an analogous situation to that at the first moment. In fact, when
the scattering phenomenon has happened, the particles are far from each other such that mutual interaction
is again negligible and it has no effect in the future of the system’s evolution. At this stage, the detector,
observes the new state of the particles created by the scattering process.

The states describing scattering phenomena must be characterized in time in the remote past t = (−∞)
and in the remote future t = (+∞) by quantities concerning the dynamics of free particles is known as the
asymptotic condition. To be able to describe such states in mathematical terms, it is necessary to study
the description of the evolution in time of quantum mechanical systems (it can also be done for classical
mechanical systems) and to introduce a topology (a convergence notion) that will help express the difference
between the perturbed system and the free system (in the remote past and in the remote future).

II Different types of scattering

So far we have not made any distinction between different types of scattering. The simplest process in
scattering is the elastic scattering between different particles. This process can be symbolically represented
as follows:

a + b → a + b. (I.2.1)

Expression (I.2.1) indicates that particles a and b in some initial state are scattered to the particles a
and b in some final state. We say that the scattering is elastic because it refers to the fact that the total
kinetic energy of the particles is the same before and after the scattering process. A special case of elastic
scattering is the scattering between identical particles.

a + a → a + a. (I.2.2)

When the incident or target particles have internal degrees of freedom, it is possible that during the
scattering process one of the particles undergoes a change on its internal state. If this occurs then the
kinetic energy of the particles before and after the scattering is no longer the same and we speak of inelastic
scattering. The most frequent case is the excitation of an internal state, the final kinetic energy is less than
the initial energy in a quantity equals the excitation energy. This is called hypoelastic or endoergic scattering.
However, it is also possible that some excited metastable states of one of the particles gets unexcited during
the scattering process. In this case, the final kinetic energy is grater than the initial one and we may speak
of hyperelastic or exoergy scattering.

Another type of scattering associated to the internal degrees of freedom is observed when those degree
are degenerated in energy. This is the case for particles with spin, the scattering process would be still
described by (I.2.1) but one has to take into account that the effect in dispersion over the internal degrees
of freedom of the incident particles. This gives place to a variety of interesting phenomena of polarization
which can provide significant information on the dependence-spin of the interaction.

An entirely different type of scattering is observed if the outgoing particles differ in number and class
compared with the incoming ones. For example, the constituents of the incident beam and the scattering
centers in the target cannot be elementary particles but complex structures such as α particles, hydrogen
atoms, etc., and through the scattering process the interaction can decompose such composite systems into
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some of the constituent parts or reorganize these parts into new composite systems. We speak then of
scattering reordering and we can schematically write

a + b → c + d + e + . . . (I.2.3)

Scattering Theory can be developed in such a way elastic, inelastic, hypoelastic, hyperelastic scattering
and scattering with reordering can be treated in a unified way. This unified theory is called multichannel
scattering theory.

A typical example of multichannel scattering is the scattering of a deuteron d by a fixed center of force.
A deuteron can be elastically scattered or can be decomposed into its constituent parts (a proton p and a
neutron n), in such a way that we have two possibilities.

d ���� d
���� p + n

Each different collection possible of particles and composed systems after the collision determines the so
called scattering channel. In the example above, there are only two scattering channels.

Another reason for a change in the type and number of particles is the creation of new types of particles
during the scattering process. These creation processes are frequently observed in scattering at high energies;
at highly enough energies this creation processes are always present. A collision between two nucleons N1

and N2, for example, can be carried as in the following schemes:

N1 + N2
�

���
N1 + N2 elastic channel

���� N1 + N2 + π
����

}
many inelastic channelsN1 + N2 + K + K̄�

��	 . . . . . .

Here new particles, like mesons π and K, can be created, and some final channels clearly represent more
than a simple reordering of the constituents of N1 and N2. The usual theory of multichannel scattering does
not include such collisions and its theoretical descriptions goes beyond the scope of this work.

In all these cases we have considered, so far, that the initial number of particles or composite systems,
which participate in a individual scattering is always two. It is logically possible to consider scattering
process with more than two initial particles. Such situations seldom are found in the laboratory due to
experimental difficulties to prepare such states. Those experiments play certain role in dense gas theory.
But in elementary particle physics they are not important.

Another case of importance, however, is that of one incident free particle only. Evolution of the state of
only one free stable particle does not give information on any interaction. If it is unstable, though, it will
decay in some stables and unstables fragments and it is perfectly possible to look a decay like a certain type
of scattering process degenerated in concordance to the scheme (I.2.4):

a → b + d + . . . (I.2.4)

In this case one does not need any target to observe scattering. It is possible to consider such decay of
a unstable particle as part of an ordinary scattering process, because the unstable particle must have been
created in some point in the past thanks to another ordinary scattering process. This way to see unstable
systems is specially useful if the life time of the unstable particle is very short. We have then a case of
resonant scattering (formation and decay of a resonance). This is often observed and is known in nuclear
physics where resonances are associated with some excited state of an intermediate nucleus of short duration.

If the unstable particle has a life time largely enough, it is possible to produce ordinary scattering effects
with this particle and to develop a theory where the particle is treated as a stable particle with a sufficient
good approximation.
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III Observable quantities

Every physical theory must have an interpretation in terms of certain effects physically observable. These
effects are usually expressed giving numerical values of some quantities. The main quantities that appear
in scattering theory are the scattering cross section, life time of an unstable particle or the resonance width
and the bifurcation rate of multichannel processes. By the reasons given in sections above the life time is in
some sense a secondary quantity which can be related to the behavior of the cross section in a appropriate
scattering process.

The bifurcation rate (i.e. the probability of the scattering in a particular channel) in reality is not a
independent physical quantity, because one can obtain it if individual cross sections for different channels
are known. Often it is possible on symmetry considerations, without a detailed theory, to obtain expressions
for the bifurcation rates without the knowledge of the cross sections’ values.

There exists another theoretical approach, which is known as inverse scattering. In this Theory, it
is assumed that some experimental data, i.e., results from a scattering process are given then one finds an
interaction (usually a potential) that produces exactly the given data when one considers the direct scattering
problem.

In the following sections, we will discuss the concepts on inverse problems, first in general and then in the
context of quantum mechanics; these sections will be mainly based on the book of Chadan and Sabatier [63]
and the contents of the course “Inverse scattering in Quantum Mechanics” lectured by professor Ricardo
Weder at the spring school in classical and quantum mechanics in IIMAS-UNAM in March, 2008.

IV Inverse problems in physics

The normal work of physicists can be schematically thought with a movement prediction of the particles over
the base of known forces, or the propagation of radiation on the ground of the knowledge on the constitution
of matter. The inverse problem is to conclude what forces or components are on the basis of the observed
movement. A great part of our sensorial contact with the world that surrounds us depends on an intuitive
solutions of an inverse problem: We infer the shape, size and texture of a surface of strange objects from
scattering and absorption of light, which is detected by our eyes. When one uses scattering experiments to
know the size or the shape of particles, or the forces that some particles exert on others, the nature of the
problem is similar, or more refined. Kinematics, movements equations, usually are supposed to be known.
We research how forces are and how they change on time.

The mathematical expression of a physics law is a rule that defines a mapping M of a set of functions C,
called parameters, a set of functions E called results. This rule is usually a set E of equations, in terms of the
parameters C, solutions to these equations are the corresponding elements of E , therefore, the definition of M
is given implicitly. Nevertheless, from the sole definition of a mapping, the solution of E must exist and to
be unique in E for any element of C. This is the only constraint that must be asked to E. We call computed
results to elements in E which are thus obtained from those obtained from C. Deriving the computed results
for a given element of C is called to solve the direct problem. Conversely, to obtain the subset of C that
corresponds to a given element of E is called to solve the inverse problem.

To give physical meaning to M, E must be such that its elements can be compared with experimental
results. From now on, we assume that the result of any relevant measure is an element of a subset, Ee of
E , called the subset of experimental results. E therefore it contains the union of experimental results and
computed results. Also we assume that E can be given the structure of a metric space. The comparison of
a given computed result ei, and an experimental result, ej , is then measured by the distance d(ei, ej).

The set C was defined as the set of functions such that E can be solved. Greater limitations often appear
when physical properties are taken into consideration. In other words, C could be the set S of all functions
such that E can be solved and that are consistent with all the ”physical information” that comes either of
general principles or from previous measures. However, the definition of S is, in most of the cases, indirect
or difficult to be made precise, and since that, one is left the choice of C as a convenient subset of S, with a
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clear definition. On the other hand, the aim of incrementing the definition of C many times gives acces to a
new class of parameters for those the direct and inverse problem can be solved.

With these definition, it could seem that all physical problems are inverse problems. Really, one generally
reserves this name for problems with precise mathematical expressions for the generalized inverse transfor-
mations from E into C. This excludes the so called data fit process in which models that depend on some
parameters and that give a good data fitting of the experimental results are obtained by trial and error or
by another technique.

The first person that studied inverse problem of the class that we consider was Lord Rayleigh (1877) [76],
who discussed the possibility of infering the density of a string by means of their vibration frequencies. More
recently, a generalization was exposed by Marc Kac (1966) [75] in his famous paper: ”Can one hear the
shape of a drum ?”.

V Inverse scattering in quantum mechanics

With the invention of Schrödinger equation, the applicability of spectral problems in partial differential
equations to physics problems increased: The type of equations that had only applications to problems of
mechanical vibrations in the past, now, they will be used to describe atoms and molecules.

Some experimental results in physics are quantities measured in scattering experiments, e.g., cross sections
o related quantities. Since this quantities are associated to an asymptotical behavior of wave functions, we
will always consider problems where the set E consists of “theoretical measurements” of this asymptotical
behaviour, e.g., the scattering amplitude or the phase shift. This leads, in a natural way, to the particular
problem of building the scattering amplitude from the cross section. Leaving this discussion, the equations
E that define the transformation M consist of a wave equation (e.g., Schrödinger equation, Klein-Gordon
equation, Dirac equation with the proper conditions). The sets C of “parameters” are local or non local
potential sets, from which it is possible to predict scattering results.

Inverse scattering problems in quantum mechanics have been extensively studied since the seminal work
of W. Heisenberg in the theory of scattering theory in 1943 and 1944, [71–73]. In precise terms, there are
three problems of inverse scattering problems in quantum mechanics:

• Uniqueness. To prove that scattering operators uniquely determines potentials.

• Reconstruction. To give methods to reconstruct potentials from a scattering operator.

• Characterization. To give necessary and sufficient conditions for an operator to be the scattering
operator associated to a potential that belongs, to a certain given class.

There are different ways to provide scattering information. For example, one can give the scattering
operator for all energies, the limit of high energies of the scattering operator, or the scattering operator at
fixed energy.

Because all the information that can be obtained on nuclei, physical particles and sub-particles is gotten
from scattering experiments, these problems are of obvious physical importance. Moreover, there exists the
very related problem of inverse scattering of acoustic, electromagnetic and elastic waves, that has a lot of
technological applications, for example, tomography.

Inverse problems are related to the following mathematical tools: advanced results in differential and
integral equations theory, harmonic analysis, spectral operator theory, holomorphic functions, asymptotic
expansions, numerical analysis, etc.

The majority of contributions to inverse problems in quantum physics use stationary methods. On the
contrary, in this work we use a method that depends on time. More information on this subject is found in
Chapter 2.
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VI Stark Effect

In 1913 Johannes Stark observed that spectral lines in the Balmer series split and shift in the presence of
a uniform electric field. This phenomenon was called Stark effect and it is the electric counterpart to the
Zeeman effect, where, by the spin of the electron and the presence of a magnetic field, spectral lines also split
and shift. One of the first applications of Schrödinger’s quantum theory was the explanation of the Stark
Effect made by Epstein in 1926 [68]. Currently the Stark Effect is referred to physical phenomena where a
uniform electric field is present.

VII Structure of this thesis

The structure of this thesis is the following: This introduction gives the physical motivation and locates the
work inside the specific area of inverse problems in non-relativistic quantum mechanics scattering theory.
Chapter 2 is an exact transcription of the paper published in the Journal of Mathematical Physics [84].

Assuming measure theory and some notions of general topology then we study Hilbert spaces (chapter
3) necessary to postulate quantum mechanics and to understand our work. We expand our understanding
of Fourier transform by studying Fourier transform on groups and we close that chapter with unbounded
operators and the construction of their evolution groups, all this material being used in chapter 2.

Finally, in the appendix we give more details on assertions made in chapter 2.



Chapter 2

High-Velocity Estimates and Inverse

Scattering for Quantum N-Body

Systems with Stark Effect

Abstract

In an N–body quantum system with a constant electric field, by inverse scattering, we uniquely
reconstruct pair potentials, belonging to the optimal class of short-range potentials and long-
range potentials, from the high-velocity limit of the Dollard scattering operator. We give a
reconstruction formula with an error term.

I Introduction

We study the direct and inverse scattering problems for an N–body quantum mechanical system in an
n ≥ 2 dimensional space under Stark effect, i.e. in a constant electric field, with interactions given by pair
potentials (multiplication operators).

When we speak of scattering by a potential V , it is common that V is classified as being short-range
if the canonical wave operators W±(H0 + V,H0) exist, where H0 is the unperturbed Hamiltonian. On the
other hand, if they do not exist, we say that we have a long-range potential; in this case we have to modify
the free evolution and thus, to define modified wave operators.

As it is well known, the Coulomb potential Vc(x) = q/|x| is long-range when H0 = −�. It is also well
known, that Vc is short-range in the case of the Stark effect, where H0 = −�− E · x, and E is a constant
electric field. More generally, potentials V that decay at infinity as V (x) ≈ |x|−γ , γ ≤ 1 are long-range when
H0 = −� and on the contrary, when there is a constant electric field, they are short-range if 1/2 < γ ≤ 1
and long-range if 0 < γ ≤ 1/2.

This feature of the Stark effect is particularly interesting in inverse scattering. For example, because it
allows to prove that the Coulomb potential is uniquely determined by the scattering matrix, defined from
canonical wave operators, without having to modify the free dynamics, as first proved in [40].

We denote by mj ∈ R
+, qj ∈ R and x̃j ∈ R

n, j = 1, 2, . . . , N , respectively, the masses, the charges and
the positions of the particles. The free Hamiltonian generates the free time evolution,

H̃0 =
N∑

j=1

(2mj)
−1 p̃2

j +
N∑

j=1

qjE · x̃j , p̃j = −i∇x̃j
, (II.1.1)

where the electric field E = (−E, 0, . . . , 0), E = |E| > 0 is directed along minus the first coordinate direction.
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We study the system in the center of mass frame and we separate off the motion of the center of mass

HCM = (2M)
−1

(PCM )
2

+ QE · XCM ,

where M =
N∑

j=1

mj , is the total mass, XCM = (1/M)
N∑

j=1

mjx̃j , is the center of mass, PCM =
N∑

j=1

p̃j , is the

momentum of the center of mass, Q =
N∑

j=1

qj , is the total charge.

The free Hamiltonian in the center of mass frame is H0 := H̃0 − HCM ,

H0 =

N∑
j=1

(2mj)
−1 p̃2

j − (2M)
−1

(PCM )
2

+

N∑
j=1

(qj − mjQ/M)E · x̃j .

H0 is essentially self-adjoint in the space of Schwartz. We also denote by H0 the unique self-adjoint
extension.

In the center of mass frame the space of states is the Hilbert space, H, represented in configuration space
by wave functions φ in

L2(X), X =

⎧⎨⎩x̃ = (x̃1, . . . , x̃N )

∣∣∣∣ N∑
j=1

mj x̃j = 0

⎫⎬⎭ ∼= R
n(N−1) (II.1.2)

with the measure induced on X by the following norm on R
nN : |||x̃||| =

[
N∑

j=1

mj x̃2
j

]1/2

. The space

L2(X̂), X̂ =

⎧⎨⎩p̃ = (p̃1, . . . , p̃N )

∣∣∣∣ N∑
j=1

p̃j = 0

⎫⎬⎭ ∼= R
n(N−1), (II.1.3)

where X̂ is equipped with the dual metric induced by

[
N∑

j=1

(mj)
−1 p̃2

j

]1/2

on R
nN , is the set of momentum

space wave functions φ̂. Fourier transform maps unitarily L2(X) onto L2(X̂). The measures on X and

X̂ are equivalent to Lebesgue measure. Given an (abstract) state Φ ∈ H we use both its configuration or
momentum space wave functions where appropriate.

As a general reference for multiparticle scattering see e.g. [36], where Jacobi coordinates are defined

ξj := x̃j+1 −
(

j∑
k=1

mk

)−1( j∑
k=1

mkx̃k

)
, j = 1, . . . , N − 1. (II.1.4)

These coordinates are obtained by first changing variables from (x̃1, x̃2) to ξ1 = x̃2 − x̃1 and the center
of mass of particles (1) and (2), R̃12 = (m1 + m2)

−1(m1x̃1 + m2x̃2). Then we change from (R̃12, x̃3) to
ξ2 = x̃3 − R̃12 and the center of mass of particles (1), (2), and (3), and so on. In the end we obtain the
Jacobi coordinates ξj , 1 ≤ j ≤ N − 1, on X and the center of mass coordinate XCM . In these coordinates
H0 is expressed as

H0 =

N−1∑
j=1

((2νj)
−1p̂

2
j + qR

j E · ξj), p̂j = −i∇ξj
, (II.1.5)

where

ν−1
j = m−1

j+1 +

(
j∑

k=1

mk

)−1

, 1 ≤ j ≤ N − 1,
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qR
j = (qj+1Mj − mj+1Qj)/(mj+1 + Mj), Mj =

j∑
k=1

mk, (II.1.6)

Qj =

j∑
k=1

qk, 1 ≤ j ≤ N − 1,

νj and qR
j , 1 ≤ j ≤ N − 1, are, respectively, the reduced mass and the relative charge of the particle (j + 1)

with respect to the masses and the charges of the first j particles. Formula (II.1.5) shows that the proof
that H0 is essentially self-adjoint in the space of Schwartz reduces to the one in the two-body case. The
Jacobi coordinates above are based in the pair of particles (1, 2) in the sense that we have taken as the first
coordinate ξ1 = x̃2 − x̃1 the relative distance of the particles (1) and (2). Of course, we can base Jacobi
coordinates in any pair of particles (j, k), j, k = 1, 2, ..., N.

In order to determine the potential for a given pair we number the particles in such a way that the given
pair consists of particles one and two. By (II.1.5) we write

H0 =

[
(2ν1)

−1p̂
2
1 +

(q2m1 − m2q1)

m1 + m2
E · ξ1

]
⊗ I + I ⊗ Ĥ0, (II.1.7)

under the decomposition of L2(X) as

L2(X) = L2(Rn
ξ1

) ⊗
⎡⎣⊗N−1∏

j=2

L2(Rn
ξj

)

⎤⎦ ,

where

Ĥ0 =

N−1∑
j=2

((2vj)
−1p̂

2
j + qR

j E · ξj). (II.1.8)

This shows that if the relative charge of the pair (1, 2), (q2m1 −m2q1)/(m1 + m2), is different from zero
the relative distance of the pair (1, 2) is accelerated by the electric field as in the two-body case. However, if
the relative charge is zero both particles are accelerated in the same way by the electric field and the relative
distance is not accelerated, and then, with respect to the pair (1, 2), the relative scattering is as in the case
when the external constant electric field is zero. This shows that, for any given pair of particles, the inverse
scattering problem has to be formulated as in the two-body case with no electric field if the relative charge
of the pair is zero and, as in the two-body case with an electric field, if the relative charge of the pair is
different from zero.

For any given pair of particles we construct as in Enss and Weder [20] appropriate states where all
particles have high-velocity relative to each other in order to reconstruct the corresponding pair potential.
For this purpose we first introduce some kinematical notation. We use a numbering of the particles such
that the pair of interest consists of particles 1 and 2. As usual we take as one n-dimensional variable the
relative distance x and momentum p of the chosen pair (1, 2).

x = ξ1 := x̃2 − x̃1, p = p̂1 = −i∇x = μ12[(−i∇x̃2
/m2) − (−i∇x̃1

)/m1)], (II.1.9)

where μ12 is the reduced mass of the pair (1, 2), μ12 = m1m2/(m1 + m2). We also use the position xj and
the momentum pj of the jth particle, j = 1, ..., N , relative to the center of mass of the pair (1,2),

xj := x̃j − (m1x̃1 + m2x̃2)/(m1 + m2), j = 1, . . . , N, (II.1.10)

pj = μj(p̃j/mj − (p̃1 + p̃2)/(m1 + m2)), j = 1, . . . , N, (II.1.11)

where μj is the reduced mass of the jth particle with respect to the center of mass of the pair (1,2),

μj = mj(m1 + m2)/(mj + m1 + m2), j = 1, . . . , N,
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and p̃j = −i∇x̃j
is the momentum relative to some origin (see (II.1.1)). Note that x is the first Jacobi

coordinate ξ1, p = μ12(p̃2/m2 − p̃1/m1) and pj/μj are the relative velocities with respect the center of
mass of the distinguished pair (1, 2). {x,x3, . . .xN} and {p,p3, . . .pN} are sets of N − 1 independent n-
dimensional variables in the configuration and momentum space, respectively, relative to the center of mass
frame.

Let Φ0 ∈ H be an asymptotic configuration with the product wave function of the form in momentum
space,

Φ0 ∼ φ̂12(p)φ̂3(p3, . . . ,pN ), (II.1.12)

where φ̂12 ∈ C∞
0 (Rn) varies while φ̂3 ∈ C∞

0 (Rn(N−2)) is a fixed normalized function with support in
{(p3, . . . ,pN ) : |pj | < μj}; i.e., the particles 3 to N have speed smaller than one relative to the pair

(1,2). We take an η > 0 such that φ̂12 ∈ C∞
0 (Bμ12η), where Bμ12η denotes the open ball of center zero and

radius μ12η in R
n.

The high-velocity state is defined as (see Enss and Weder [20])

Φv ∼ φ̂12(p − μ12v)φ̂3(p3 − μ3v3, . . . ,pN − μNvN ), (II.1.13)

where v = vv̂, |v̂| = 1,vj = v2dj , with dj �= 0, for j = 3, . . . , N and where we assume that dj − dk �= 0 for
j, k = 3, . . . N . We, moreover, define v1 = −vμ12/m1,v2 = vμ12/m2.

We denote the relative velocities by

vjk = vk − vj , vjk = |vjk|, j, k = 1, . . . , N.

Then with dj = |dj |,
v1,j = v2(dj + μ12v̂/(m1v)) �= 0 if v > μ12/(m1dj), j = 3, . . . , N,

v2,j = v2(dj − μ12v̂/(m2v)) �= 0 if v > μ12/(m2dj), j = 3, . . . , N, (II.1.14)

vj,k = v2(dk − dj) �= 0 j, k = 3, . . . , N.

We denote v̂jk = vjk/|vjk|. We assume for all pairs (j, k) with qj,k �= 0 that |v̂jk · Ê| ≤ δ for some
0 ≤ δ < 1. It follows that in our high-velocity states the relative average velocity of the pair (1, 2) is v
while all other particles travel with minimal velocity proportional to v2 relative to each other as well as with
respect to particles 1 and 2.

The relative momentum of particles j and k is

pjk = −i∇(x̃k−x̃j), (II.1.15)

where in the derivative the positions of all other particles, as well as of the center of mass, are kept fixed.
The relative velocity of the pair (j, k) is

pjk/μjk = p̃k/mk − p̃j/mj = pk/μk − pj/μj . (II.1.16)

It follows from the definition that φ0 ∈ S(Rn(N−1)) and that

Φv = eiμ12v·x
N∏

j=3

eiμjvj ·xj Φ0. (II.1.17)

Moreover, by (II.1.10)

|x̃k − x̃j | = |xk − xj | ≤ |xk| + |xj |, j, k = 1, · · · , N, |x1| ≤ |x|, |x2| ≤ |x|.
Hence, we have good initial localization uniformly in v,

‖(1 + |x̃k − x̃j |2)2Φv‖ ≤ C, j, k = 1, . . . , N. (II.1.18)
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Additionally, by (1.15) there are functions fjk ∈ C∞
0 (Bμjkηjk

) such that

Φv = fjk(pjk − μjkvjk)Φv, (II.1.19)

where μjk is the reduced mass of the pair (j, k),

μjk =
mjmk

mj + mk
. (II.1.20)

Furthermore, η12 = η, η1j = 2(1 + ημ12/m1), η2j = 2(1 + ημ12/m2), j = 3, . . . , N, and ηjk = 4, for
j, k = 3, . . . , N .

Note that by (II.1.10)

x = x̃2 − x̃1 = i
∂

∂p
, x̃k − x̃j = i

∂

∂pk

− i
∂

∂pj

, j, k = 3, . . . , N, (II.1.21)

x̃k − x̃1 = i
∂

∂pk

+
μ12

m1
i

∂

∂p
, x̃k − x̃2 = i

∂

∂pk

− μ12

m2
i

∂

∂p
, k = 3, . . . , N. (II.1.22)

As in Enss and Weder [20] and Weder [40], (II.1.18), (II.1.19), (II.1.21) and (II.1.22) allow us to reduce
the proofs in the N-body case to the ones for two bodies. We introduce below an appropriate class of
potentials where Dβ , Dα0 denotes the derivative with the usual multi-index notation.

DEFINITION II.1.1. We denote by V0 the class of real-valued potentials, V 0(x), defined on R
n with

values in R such that V 0(x) = V 0, vs(x) + V 0, l(x) with V 0, vs(x) ∈ V0, vs, V 0, l(x) ∈ V0, l, where V0, vs is the
class of real-valued potentials, V 0, vs, that are relatively bounded with respect to the Laplacian with relative
bound zero and ∫ ∞

0

dR
∥∥∥V 0, vs(x) (−Δ + I)−1F (|x| ≥ R)

∥∥∥ < ∞. (II.1.23)

V0, l is the class of real-valued potentials V 0, l that satisfy V 0, l(x) ∈ C1
∞(Rn), the space of all continuously

differentiable functions that tend to zero at infinity, and that

|DβV 0, l(x)| ≤ C(1 + |x|)−γ1 , |β| = 1, γ1 > 3/2, (II.1.24)

where without loss of generality we assume that γ1 ≤ 2, otherwise V 0, l would be of short range.

Let ε0 satisfy: 0 < ε0 < γ1 − 3
2 . After Hörmander [25], we can write, without loss of generality that, for

all V 0(x) ∈ V0, V 0(x) = V 0, vs(x) + V 0, l(x) with V 0, vs ∈ V0, vs, V 0, l ∈ C4(Rn) and

|Dα0V 0, l(x)| ≤ C(1 + |x|)−1−|α0|(ε0+1/2), for 2 ≤ |α0| ≤ 4. (II.1.25)

The more intuitive condition∫ ∞

0

dR
∥∥∥F (|x| ≥ R)V 0, vs(x) (−Δ + I)−1

∥∥∥ < ∞,

by Reed and Simon [36], is equivalent to the decay property (II.1.23).

DEFINITION II.1.2. [2]. We denote by VE the class of potentials, V E(x), defined on R
n with values

in R such that V E(x) = V E, vs(x) + V E, s(x) + V E, l(x) with V E, vs(x) ∈ VE, vs, V E, s(x) ∈ VE, s, and

V E, l(x) ∈ VE, l, where VE, vs is the class of real-valued potentials, V E, vs, that satisfy V E, vs = V E, vs
1 +V E, vs

2

with (1 + |x1|)V E, vs
1 relatively bounded with respect to the Laplacian with relative bound zero and V E, vs

2

bounded and that ∫ ∞

0

dR
∥∥∥V E, vs(x) (−Δ + I)−1F (|x| ≥ R)

∥∥∥ < ∞. (II.1.26)
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VE, s is the class of real-valued potentials V E, s that satisfy V E, s(x) ∈ C1(Rn) and that

|V E, s(x)| ≤ C(1 + |x|)−γ , (II.1.27)

|DβV E, s(x)| ≤ C(1 + |x|)−1−α, |β| = 1, (II.1.28)

with some 1/2 < α ≤ γ ≤ 1. VE, l is the class of real-valued potentials V E, l that satisfy V E, l(x) ∈ C2(Rn)
and that

|DβV E, l(x)| ≤ C(1 + |x|)−γD−μ|β|, |β| ≤ 2, (II.1.29)

with 0 < γD ≤ 1/2 and 1 − γD < μ ≤ 1.

The class of potentials VE in Definition II.1.2 is the same as in Adachi and Maehara [2]. Again we can
assume, without loss of generality by [25], that for all V E(x) ∈ VE , V E(x) = V E, vs(x)+V E, s(x)+V E, l(x)
with V 0, vs ∈ V0, vs, V E, s(x) ∈ VE, s, V E, l ∈ C4(Rn) with V E, l satisfying (II.1.29) and

|DβV E, l(x)| ≤ C(1 + |x|)−γD−μ(2+|β|)/2, 3 ≤ |β| ≤ 4. (II.1.30)

We call the potentials V 0, vs and V E, vs very short-range, the potential V E, s short-range and the potentials
V 0, l and V E, l long-range.

For a particle with mass m and charge q, there is a formula for the free time evolution, it was proven
simultaneously by Avron and Herbst [8] and by Veselić and Weidmann [39]. There is also a generalization
for the time-dependent case considered by Kitada and Yajima [31],

e−it(p2/(2m)−qEx1) = eiqEx1te−it3q2E2/(6m)e−ip1qEt2/(2m)e−itp2/(2m). (II.1.31)

We will also make frequent use of the following relations that are obtained under translation in configu-
ration or momentum space generated by x or p, respectively,

eip·vtf(x)e−ip·vt = f(x + vt), (II.1.32)

e−imv·xf(p)eimv·x = f(p + mv), (II.1.33)

for any measurable and bounded function f. In particular, (II.1.33) implies that

e−imv·xe−itp2/(2m)eimv·x = e−ip·vte−itp2/(2m)e−imv2t/2, (II.1.34)

where v = |v|. Since eitp2/(2m) x e−itp2/(2m) = x + tp/m and functional calculus,

eitp2/(2m) f(x) e−itp2/(2m) = f(x + tp/m). (II.1.35)

We denote by e1 = (1, 0, . . . , 0) the unit vector along the x1 direction and Ê = E/|E|. We designate by

qjk = (qkmj − qjmk)/(mj + mk) the relative charge of the pair (j, k) and we denote by
∑0

j<k and
∑E

j<k,
respectively, the sum over all indices, j < k, j, k = 1, . . . , N , with qjk = 0, and qjk �= 0.

We assume that the potential of the N-body system is a multiplication operator that is a sum of pair
potentials,

V =

0∑
j<k

V 0
jk(x̃k − x̃j) +

E∑
j<k

V E
jk(x̃k − x̃j), (II.1.36)

with V 0
jk ∈ V0 (see Definition II.1.1), and V E

jk ∈ VE (see Definition II.1.2). By using a decomposition of H0 as

in (II.1.7) for each pair (j, k) we see that each of the pair potentials V 0
jk and V E

jk are relatively bounded with
respect to H0 with relative bound zero. Note that for a given pair the corresponding pair potential belongs
to V0 if the relative charge of the pair is zero and that it belongs to VE if the relative charge is different
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from zero. Then V is relatively bounded with respect to H0 with relative bound zero and the interacting
Hamiltonian,

H = H0 + V, (II.1.37)

is self-adjoint on D(H) = D(H0).
It is convenient to split the potential into the very short-, short- and long-range potentials. For this

purpose we define

VV SR =

⎧⎨⎩V V S =
0∑

j<k

V 0, vs
jk (x̃k − x̃j) +

E∑
j<k

V E, vs
jk (x̃k − x̃j)

∣∣∣ V 0, vs
jk ∈ V0, vs, V E, vs

jk ∈ VE, vs

⎫⎬⎭ ,(II.1.38)

VSR =

⎧⎨⎩V S =

E∑
j<k

V E, s
jk (x̃k − x̃j)

∣∣∣ V E, s
jk ∈ VE, s

⎫⎬⎭ , (II.1.39)

VLR =

⎧⎨⎩V L =
0∑

j<k

V 0, l
jk (x̃k − x̃j) +

E∑
j<k

V E, l
jk (x̃k − x̃j)

∣∣∣ V 0, l
jk ∈ V0, l, V

E, l
jk ∈ VE, l

⎫⎬⎭ . (II.1.40)

Then
V = V V S + V S + V L, H = H0 + V = H0 + V V S + V S + V L. (II.1.41)

Let SD = SD(V L;V V S + V S) be the Dollard modified scattering operator defined in equation (II.2.10)
below.

Our main results are the reconstruction formulae given in Theorems II.2.8 and II.2.10 that we prove in
Section II. The uniqueness result given in Theorem II.1.3 follows from Theorem II.2.8.

THEOREM II.1.3. Let γ1 be as in Definition II.1.1 and, γD and μ as in Definition II.1.2. If there are
two pairs 1 ≤ j < k ≤ N, 1 ≤ j′ < k′ ≤ N, with qjk �= 0 and qj′k′ = 0 we assume that γ1 > 3− 4(γD + μ)/3.
Then,

1. Suppose that V i = V V S, i + V S, i + V L, i ∈ VV SR + VSR + VLR, i = 1, 2, and that SD(V L, 1;V V S, 1 +
V S, 1) = SD(V L, 2;V V S, 2 + V S, 2). Then, V 1 = V 2.

2. Furthermore, it is possible to uniquely reconstruct the total potential V from any Dollard scattering
operator SD.

REMARK II.1.4. Note that in item 1 of Theorem II.1.3 it is enough to assume that the high-velocity
limits of SD(V L, 1;V V S, 1 + V S, 1) and SD(V L, 2;V V S, 2 + V S, 2) are the same. Furthermore, we prove item
2 of Theorem II.1.3 giving a method for the unique reconstruction of V from the high-velocity limit of any
Dollard scattering operator. See the reconstruction formulae (II.2.44), (II.2.75) and the proof of Theorem
II.1.3.

REMARK II.1.5. For a given V L ∈ VLR let us define, as in [2] and [40], the scattering map S1 :=
SD(V L; ·), S1(Q) = SD(V L;Q), Q ∈ VV SR + VSR, an operator from VV SR + VSR into the Banach space
L(H) of all bounded operators in H. Clearly, Theorem II.1.3 implies that S1 = SD(V L; ·) is injective.

REMARK II.1.6. For a given V L ∈ VLR and a given V S ∈ VSR we define the scattering map S2 :=
SD(V L; · + V S), S2(V

V S) = S2(V
L;V V S + V S), an operator from VV SR into L(H). It is immediate that

Theorem II.1.3 implies that S2 = SD(V L; · + V S) is injective. However, as we show in Remark II.2.11 this
result can also be proven using the reconstruction formula (II.2.75) given in Theorem II.2.10, that is simpler
than the formula (II.2.44) in Theorem II.2.8, because in (II.2.75) it is not necessary to take the commutator
of SD with a component of the momentum operator. This is important in applications where the tail at
infinity of the potential is already known and one wishes to uniquely reconstruct V V S assuming that V S

and V L are known.
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REMARK II.1.7. Under the Stark effect, for a pair potential where the relative charge is not zero, the
short-range decay rate at infinity of this potential depends on γ given in our equation (II.1.27). Theorem
II.1.3 is proved by the first time by Weder [40], where he considers γ > 3/4 and N-Body pair potentials
which are short-range if the corresponding relative charge is not zero and long-range if the corresponding
relative charge is zero. Then, for two body short-range potentials, Nicoleau [34] proves this Theorem with
γ > 1/2, the dimension of the space n ≥ 3 and the regularity and decay of the potential:

V : |∂β
x V (x)| ≤ Cβ(1 + |x|)−γ−|β|, (II.1.42)

for all multi-index β. Later, in the two-body case, Adachi and Maehara [2] improve the results of Nicoleau [34]
because, besides γ > 1/2, they relax the conditions on the derivatives on the potential and use dimension
n ≥ 2. Furthermore, Adachi and Maehara [2] consider long-range potentials whereas Nicoleau [34] does not.

We improve the N-body results of Weder [40]. Our potential V is given, by

V =
0∑

j<k

(
V 0, vs

jk (x̃k − x̃j) + V 0, l
jk (x̃k − x̃j)

)
+

E∑
j<k

(
V E, vs

jk (x̃k − x̃j) + V E, s
jk (x̃k − x̃j) + V E, l

jk (x̃k − x̃j)
)

where, for all 1 ≤ j < k ≤ N, V 0, vs
jk ∈ V0, vs, V 0, l

jk ∈ V0, l, V E, vs
jk ∈ VE, vs, V E, s

jk ∈ VE, s, V E, l
jk ∈ VE, l. Our

potential V E, l
jk has no counterpart in [40], i.e. potentials that are long-range with respect to the Stark effect,

when the relative charge qjk �= 0, are not allowed in [40] whereas, here, we do. This is our first improvement
over [40]. Secondly, in equation (1.4) of [40] γ > 3/4 and in our equation (II.1.27) we have γ > 1/2, thus we

improve the results of [40] because our potential V E, s
jk is allowed to have the optimal short-range decay rate

at infinity.
We give a reconstruction formula with an error term that goes to zero as an inverse power of the velocity,

that depends on the decay rate of the potentials, see Theorems II.2.8 and II.2.10. If we only assume (II.1.26),
our results coincide with those of Adachi and Maehara [2], in the case N = 2 and q12 �= 0. If, instead of
(II.1.26), we assume (II.2.21), we give a sharper error term than theirs. In this sense, we can say that we
obtain a new result, even in the two body case.

In this paper, we prove Theorem II.1.3 by extending to the N-body case the results obtained, in the
two-body case, by Adachi and Maehara [2] using the the findings published in 1993 [18], 1994 [19], 1995 [20]
by V. Enss and R. Weder where a new time-dependent method was developed. Here, physical propagation
properties of finite energy wave functions are used to estimate the high-velocity behavior of solutions of the
Schrödinger equation and solve inverse scattering problems in quantum mechanics. It is intuitive from the
point of view of the physics related to the problem. Contrary to the stationary approach, this method can
be applied to study non-linear equations [37, 42–48, 50, 52–54]. Lately, this time-dependent approach [51]
has been exploited to study: Hamiltonians with electric and magnetic fields [5–7, 30], N-body systems
[19–21,40,41], the Stark effect [1,2,34,35,40], the Aharanov-Bohm effect [9–11,33,49,55,56], time-dependent
potentials [35,41], Dirac equation [16,26–29], Klein-Gordon equation [16,17,45,50], mass and charge of black
holes [12,13], amongst others.

II Reconstruction Formulae

Let us define

V vs
jk =

{
V 0, vs

jk , if qjk = 0,

V E, vs
jk , if qjk �= 0,

V s
jk =

{
0, if qjk = 0,

V E, s
jk , if qjk �= 0,

V l
jk =

{
V 0, l

jk , if qjk = 0,

V E, l
jk , if qjk �= 0.

(II.2.1)

where V 0, vs
jk and V 0, l

jk are defined in Definition II.1.1, and V E, vs
jk , V E, s

jk and V E, l
jk are defined in Defini-

tion II.1.2. Moreover, the decays of V 0, l
jk and V E, l

jk are to be taken as in (II.1.25), (II.1.29) and (II.1.30),
respectively.
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We introduce the Graf-type modifier (II.2.2) Graf [22] and Zorbas [57], to define auxiliary wave operators,
whose existence and completeness were proven in the N body case for long-range Stark Hamiltonians by
Adachi and Tamura [3]. We note that the v dependence of the Graf-type modifier (II.2.2) is first introduced in
Adachi and Maehara [2] by taking into account the v dependence of Φv. In Graf [22] and Zorbas [57], v is taken
0 in the definiton of the Graf-type modified wave operators. We define the Graf-type modifier [2], [22], [57]
and the Dollard-type modifier by (II.2.2), and (II.2.3), respectively

ŨG,v(t) = exp

⎛⎝−i
E∑

j<k

∫ t

0

ds V E, s
jk (vjk s + e1qjkEs2/(2μjk))

⎞⎠ , (II.2.2)

ŨD(t) = exp

⎛⎝−i
∑
j<k

∫ t

0

ds V l
jk(spjk/μjk + e1qjkEs2/(2μjk))

⎞⎠ . (II.2.3)

For completeness we mention, for the short-range case, the modified Graf propagator, the modified Graf
wave operators [22], [57] and the wave operators for the free channel which are defined, respectively, by
(II.2.4) (II.2.5) and (II.2.6):

UG,v(t) = e−itH0ŨG,v(t), (II.2.4)

ΩG,v
± = s − lim

t→±∞ eitH UG,v(t), (II.2.5)

W± = s − lim
t→±∞ eitH e−itH0 . (II.2.6)

The modified Dollard-Graf propagator, the modified Dollard-Graf wave operators [22], [57] and the
modified Dollard wave operators for the free channel are defined, respectively, by (II.2.7) (II.2.8) and (II.2.9):

UD,G,v(t) = e−itH0ŨD(t)ŨG,v(t), (II.2.7)

ΩD,G,v
± = s − lim

t→±∞ eitH UD,G,v(t), (II.2.8)

WD
± = s − lim

t→±∞ eitH e−itH0ŨD(t). (II.2.9)

Tamura proved the existence of the W± for short range N-Body Stark systems [38], Korotyaev [32] did it
for the case N=3. Adachi and Tamura [4], and, Herbst, Møller and Skibsted [24] proved the existence of WD

±
given by (II.2.9) for the N-Body long-range case. Actually, the existence of the WD

± and W± also follows

from our estimates. We give the simple proof of the existence of ΩD,G,v
± and ΩG,v

± in Proposition II.2.6. The
Dollard scattering operator SD from the free channel to the free channel is defined as

SD = SD(V L;V V S + V S) := (WD
+ )∗WD

− , (II.2.10)

SD is not unique because there is more than one short- and long-range splitting of the potential. We also
mention the scattering operator S from the free channel to the free channel defined for the short-range case
as

S = (W+)∗W−. (II.2.11)

Proposition II.2.1, below, shall be frequently used in this text. Its proof is given in the Proposition 2.10
in Enss [15].

PROPOSITION II.2.1. For any f ∈ C∞
0 (Rn) with supp f ⊂ Bmη0

, for some m, η0 > 0 and any l =
1, 2, 3, . . . there is a constant Cl such that the following estimate is true:∥∥∥F (x ∈ M′) e−itp2/(2m)f(p − mv)F (x ∈ M)

∥∥∥ ≤ Cl(1 + r + |t|)−l,

for every v ∈ R
n, t ∈ R and any measurable sets M′, M such that r := dist(M′, M + vt) − η0|t| > 0.
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To treat the case whether or not the relative charge qjk is zero, we define

δjk :=

{
δ, if qjk �= 0,

0, if qjk = 0.
(II.2.12)

where δ is such that |v̂jk · Ê| ≤ δ < 1, for all integers 1 ≤ j < k ≤ N with qjk �= 0.
A cornerstone throughout this work is the existence of 0 < δ1, δ2 ≤ 1 such that

|vt + e1q12Et2/(2μ12)| ≥
√

δ1|vt|2 + δ2(q12E/(2μ12))2t4 ≥
√

δ1|vt|. (II.2.13)

When q12 = 0, we can take δ1 = δ2 = 1, and if q12 �= 0, we use δ1 = δ2 = 1− δ, Moreover, if 0 ≤ σ̃ ≤ 1, q12 �=
0, |p| ≤ μ12η, and η/v <

√
1 − δ/4, from a simple computation, there exist two positive constants c1 and c2

such that
|tp/μ12 + vt + e1q12Et2/(2μ12)| ≥ c1|vt|,
|tp/μ12 + vt + e1q12Et2/(2μ12)| ≥ c2t

2,

|tp/μ12 + vt + e1q12Et2/(2μ12)| ≥ cσ̃
1 c1−σ̃

2 |vt|σ̃t2(1−σ̃). (II.2.14)

For any pair (j, k), we establish three conditions: ζa
jk as “γ1 < 2 and there is, at least, one pair (j′, k′)

with qj′k′ = 0, V l
j′,k′ �= 0, and either j′ = j or j′ = k or k′ = j or k′ = k or j′ + j = 3”, ζb

jk as “γ1 = 2

and there is, at least, one pair (j′, k′) with qj′k′ = 0, V l
j′,k′ �= 0, and either j′ = j or j′ = k or k′ =

j or k′ = k or j′ + j = 3”, and ζc
jk as “there is no pair (j′, k′) with qj′k′ = 0, V l

j′,k′ �= 0, and either
j′ = j or j′ = k or k′ = j or k′ = k or j′ + j = 3”. We define the following constant, for any ε > 0:

θjk :=

⎧⎪⎨⎪⎩
2 − γ1, if ζa

jk,

ε, if ζb
jk,

0, if ζc
jk.

(II.2.15)

LEMMA II.2.2. Let ŨD(t) be given as in (II.2.3). Then there exists a constant C, such that for all t ∈ R,
for every vjk ∈ R

n, as in (II.1.14), with vjk ≥ 4ηjk/
√

1 − δjk and v = v12, for all fjk ∈ C∞
0 (Bμjkηjk

), for
all integers 1 ≤ j < k ≤ N, for all κ > 0 and 0 < ε̃ < min{4ε0, 2γD + 5μ + ε0 − 5/2, 2γD + 6μ − 3}, one
has that

Ajk :=

∥∥∥∥∥∥(x̃k − x̃j) ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−1/2

∥∥∥∥∥∥
≤ C

⎧⎪⎨⎪⎩
1 + v

−(2−γ1/2)
jk |vjkt|2−γ1 , if ζa

jk,

1 + v−1
jk ln(1 + v

−1/2
jk |vjkt|), if ζb

jk,

1, if ζc
jk,

≤ C
(
1 + v

−(2−γ1/2)
jk |vjkt|θjk

)
, (II.2.16)

Bjk :=

∥∥∥∥∥∥F (|x̃k − x̃j | > κ|vjkt|) ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
≤ C (1 + |vjkt|)−2−ε̃

. (II.2.17)

Proof.

By (II.1.21) and (II.1.22), for 1 ≤ a ≤ 4, multiplication by (x̃k − x̃j)
a

becomes derivatives in the p,pk, k =
3, . . . , N variables.

The norm ∥∥∥∥∥∥(x̃k − x̃j)
a

ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−a/2

∥∥∥∥∥∥
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is bounded by a finite sum of terms of the form C
∏a

b=1 Iβb
, with Iβb

= 1 if the multi-index βb = 0 and if
|βb| > 0,

Iβb
=

∥∥∥∥∫ t

0

|s||βb| (DβbV l
j′k′

) (
s(pj′k′/μj′k′ + vj′k′) + e1qj′k′Es2/(2μj′k′)

)
ds gj′k′(pj′k′)

∥∥∥∥ , (II.2.18)

where (j′, k′) is a pair of integers 1 ≤ j′ < k′ ≤ N such that j′ = j or j′ = k or k′ = j or k′ = k or j′+j = 3,
gj′k′ ∈ C∞

0 (Bμj′k′ηj′k′ ) and gj′k′ = 1 in the support of fj′k′ . Note that
∑a

b=1 |βb| ≤ a.
Below, we take σ̃ = 0, if qj′k′ �= 0 and σ̃ = 1, if qj′k′ = 0. We define

iβb,vj′k′ (s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + |vj′k′s|)−γ1 , if qj′k′ = 0 and |βb| = 1,

(1 + |vj′k′s|)−1−|βb|(ε0+1/2), if qj′k′ = 0 and 2 ≤ |βb| ≤ 4,

(1 + |s|2)−γD−μ|βb|, if qj′k′ �= 0 and 1 ≤ |βb| ≤ 2,

(1 + |s|2)−γD−μ(2+|βb|)/2, if qj′k′ �= 0 and 3 ≤ |βb| ≤ 4,

(II.2.19)

It follows from (II.1.24), (II.1.25), (II.1.29), (II.1.30), (II.2.13), (II.2.14), (II.2.18) and (II.2.19) that

Iβb
≤ C

∫ |t|

0

s|βb|iβb,vj′k′ (s) ds ≤ Cv
−(|βb|+1)σ̃/(2−σ̃)
j′k′

∫ v
σ̃/(2−σ̃)

j′k′ |t|

0

τ |βb|iβb,1(τ) dτ. (II.2.20)

Let us assume |βb| = 1 in (II.2.20). If qj′k′ �= 0,

Iβb
≤ C

∫ |t|

0

τ(1 + τ)2(−γD−μ) dτ ≤ C.

If qj′k′ = 0, we have that

Iβb
≤ Cv−2

j′k′

∫ vj′k′ |t|

0

τ(1 + τ)−γ1 dτ ≤ Cv−2
j′k′

{
(1 + |vj′k′t|)2−γ1 , if γ1 < 2,

ln(1 + |vj′k′t|), if γ1 = 2.

≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + v−2
jk |vjkt|2−γ1 , if γ1 < 2 and either (j′, k′) = (j, k) = (1, 2),

or (j′, k′) �= (1, 2) and (j, k) �= (1, 2),

1 + v
−(2+γ1)
jk |vjkt|2−γ1 , if γ1 < 2, (j′, k′) �= (1, 2) and (j, k) = (1, 2),

1 + v
−(2−γ1/2)
jk |vjkt|2−γ1 , if γ1 < 2, (j′, k′) = (1, 2) and (j, k) �= (1, 2)

v−2
jk ln(1 + |vjkt|), if γ1 = 2 and either (j′, k′) = (j, k) = (1, 2),

or (j′, k′) �= (1, 2) and (j, k) �= (1, 2),

v−4
jk ln(1 + |v2

jkt|), if γ1 = 2, (j′, k′) �= (1, 2) and (j, k) = (1, 2),

v−1
jk ln(1 + |v1/2

jk t|), if γ1 = 2, (j′, k′) = (1, 2) and (j, k) �= (1, 2).

This implies that (II.2.16) is true.
In the other hand, similarly to (II.2.20), we have that,

Iβb
≤ C

∫ |t|

0

s|βb|iβb,v(s) ds ≤ Cv−(|βb|+1)σ̃/(2−σ̃)

∫ vσ̃/(2−σ̃)|t|

0

τ |βb|iβb,1(τ) dτ

≤ C

⎧⎪⎨⎪⎩
1 + |vt||βb|(−ε0+1/2), if qj′k′ = 0 and 1 ≤ |βb| ≤ 4,

1, if qj′k′ �= 0 and 1 ≤ |βb| ≤ 2,

1 + |vt|max{|βb|+1−2γD−(|βb|+2)μ, 0}, if qj′k′ �= 0 and 3 ≤ |βb| ≤ 4.
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Then, it follows that

C

4∏
b=1

Iβb
≤ C(1 + |vt|)2−ε̃,

hence

κ4|vjkt|4 Bjk ≤
∥∥∥∥∥∥|x̃k − x̃j |4F (|x̃k − x̃j | > κ|vjkt|) ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
≤ C(1 + |vt|)2−ε̃ ≤ C(1 + |vjkt|)2−ε̃.

This proves Equation (II.2.17).
Lemma (II.2.3), below, is a generalization of equations (3.8) and (3.17) in Weder [40]. Note that conditions

(II.1.23) and (II.1.26) imply that
‖V vs(x)g(p)F (|x| ≥ R)‖

is an integrable function of R for all g ∈ C∞
0 (Rn) (see Corollary 2.4 in Enss [15]). It follows that potentials

in VE,vs and V0,vs, satisfy condition (II.2.21) below with ρ = 0. Of course, larger ρ means faster decay.

LEMMA II.2.3. Suppose that V vs
jk is given as in (II.2.1) and satisfies

(1 + R)ρ‖V vs
jk (x̃k − x̃j)g(pjk)F (|x̃k − x̃j | ≥ R)‖ ∈ L1((0,∞), dR), (II.2.21)

for some 0 ≤ ρ ≤ 1 and all g ∈ C∞
0 (Rn), ŨD(t) is given as in (II.2.3). Then, for all functions fj′k′ ∈

C∞
0 (Bμj′k′ηj′k′ ) with 1 ≤ j′ < k′ ≤ N, there is a function hjk with (1 + τ)ρhjk(τ) ∈ L1((0,∞)) such that

for every vjk ∈ R
n with vjk > c for some constant 0 < c, we have the following estimate, for all integers

1 ≤ j < k ≤ N :

Djk :=

∥∥∥∥∥∥V vs
jk (x̃k − x̃j) e−itH0ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥ ≤ hjk(|vjkt|). (II.2.22)

Proof. Let us take gjk ∈ C∞
0 (Bμjkηjk

) that satisfies gjk ≡ 1 on the support of fjk.

Djk ≤ I1 + I2 + I3, (II.2.23)

where, for any positive constant λ,

I1 =
∥∥V vs

jk (x̃k − x̃j)gjk(pjk − μjkvjk)
∥∥ ∥∥F (|x̃k − x̃j − vjkt − e1qjkEt2/(2μjk)| ≥ λ|vjkt|5/8) e−itH0

×gjk(pjk − μjkvjk)F (|x̃k − x̃j | < λ|vjkt|/8)
∥∥

×
∥∥∥∥∥∥ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥ ,

I2 =
∥∥V vs

jk (x̃k − x̃j)gjk(pjk − μjkvjk)F (|x̃k − x̃j − vjkt − e1qjkEt2/(2μjk)| ≥ λ|vjkt|5/8) e−itH0
∥∥

×
∥∥∥∥∥∥F (|x̃k − x̃j | ≥ λ|vjkt|/8) ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥ ,

I3 =
∥∥V vs

jk (x̃k − x̃j)gjk(pjk − μjkvjk)F (|x̃k − x̃j − vjkt − e1qjkEt2/(2μjk)| < λ|vjkt|5/8)
∥∥

×
∥∥∥∥∥∥e−itH0 ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥ .



Reconstruction Formulae 23

We give the proof for the pair (1, 2), the other cases are similar, using Jacobi coordinates based in the
pair (j, k). Let us set x = x̃2 − x̃1,p = −i∇x we obtain as in (II.1.7) that

H0 =
[
(2ν1)

−1p2 + q12E · x]⊗ I + I ⊗ Ĥ0,

where I ⊗ Ĥ0 conmutes with x, by virtue of Ĥ0’s independence from x. Note that ν1 = μ12. Let us write
v = v12 = |v|. Therefore, thanks to commutativity

e−itH0 = e−it[(2ν1)
−1p2+q12E·x]⊗I−itI⊗Ĥ0 = e−it[(2ν1)

−1p2+q12E·x] ⊗ e−itĤ0 .

We observe that the second factor in the tensorial product above conmutes with any operator depending
on x and p. It is also unitary, thus it disappears from the following norm estimations. We define M′ =
{x ∈ R

n
∣∣ |x − vt| ≥ λ|vt|5/8} and M = {x ∈ R

n
∣∣ |x| < λ|vt|/8}. We proceed as in Weder [40] using

(II.1.31)-(II.1.34).

I1 ≤ C
∥∥F (|x − vt − e1q12Et2/(2μ12)| ≥ λ|vt|5/8) e−itH0g12(p − μ12v)F (|x| < λ|vt|/8)

∥∥
= C

∥∥∥F (|x − vt − e1q12Et2/(2μ12)| ≥ λ|vt|5/8) e−ip·e1q12Et2/(2μ12)

×e−itp2/(2μ12)g12(p − μ12v)F (|x| < λ|vt|/8)
∥∥∥

= C
∥∥∥F (|x − vt| ≥ λ|vt|5/8) e−itp2/(2μ12)g12(p − μ12v)F (|x| < λ|vt|/8)

∥∥∥
= C‖F (x ∈ M′) e−itp2/(2μ12)g12(p − μ12v)F (x ∈ M)‖
≤ C(1 + λ|vt|/4 + |t|)−3 ≤ C(1 + |vt|)−3. (II.2.24)

To justify (II.2.24), we will prove that r ≥ λ|vt|/4 in Proposition II.2.1, provided v > 4η/λ. Let us take
x ∈ M′ and y ∈ M + vt, then |x − y| = | (x − vt) − (y − vt) | ≥ λ|vt|5/8 − λ|vt|/8 = λ|vt|/2. Thus,
r ≥ λ|vt|/2 − η|t| ≥ λ|vt|/2 − λ|vt|/4.

Application of Lemma II.2.2, equation (II.2.17), yields for an ε > 0,

I2 ≤ C(1 + |vt|)−2−ε. (II.2.25)

Then, by (II.2.13), I3 ≤ C‖V vs
12 (x)g(p)F (|x − vt − e1q12Et2/(2μ12)| < λ|vt|5/8)‖

≤ C‖V vs
12 (x)g(p)F (|x| ≥ |vt|(

√
δ1 − 5λ/8))‖

:= h12(|vt|), (II.2.26)

where, by (II.2.21), h12(τ) ∈ L1((0,∞)), provided λ < 8
√

δ1/5.
Inequalities (II.2.23), (II.2.24), (II.2.25) and (II.2.26) prove the Lemma.

LEMMA II.2.4. Given V E, s
jk ∈ VE, s, where 1 ≤ j < k ≤ N, α as in Definition II.1.2, ŨD(t) be given as

in (II.2.3). Then for all functions fj′k′ ∈ C∞
0 (Bμj′k′ηj′k′ ) with 1 ≤ j′ < k′ ≤ N, there is a constant 0 < c

such that for every vjk ∈ R
n with vjk > c, the following estimate is true for all 0 < ε1 < 1 :

∞∫
−∞

dt

∥∥∥∥∥(V E, s
jk (x̃k − x̃j) − V E, s

jk (vjkt + e1qjkEt2/(2μjk))
)

×e−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥ =

{
O(v−α

jk ), if α < 1,

O(v−1+ε1
jk ), if α = 1.

(II.2.27)
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Proof. The proof is quite similar to that of Lemma 2.2 in Adachi and Maehara [2]. To simplify the
notation let us assume, in this Lemma, that q12 �= 0 and consider the pair (1,2), i.e. x = x̃2 − x̃1,p = −i∇x.
Let us take g12 ∈ C∞

0 (Bμ12η) that satisfies g12 ≡ 1 on the support of f12.

We simplify as follows, noting that V E, s
12 is bounded:

I =

∥∥∥∥∥∥
(
V E, s

12 (x) − V E, s
12 (vt + e1q12Et2/(2μ12))

)
e−itH0ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥
≤ C(I1 + I2 + I3),

where, for 0 < α̃ < 1,

I1 =
∥∥F (|x − vt − e1q12Et2/(2μ12)| ≥ 3|vα̃t|) e−itH0g12(p − μ12v)F (|x| < |vα̃t|)∥∥

=
∥∥∥F (|x − vt| ≥ 3|vα̃t|) e−itp2/(2μ12)g12(p − μ12v)F (|x| < |vα̃t|)

∥∥∥ ,

I2 =

∥∥∥∥∥∥F (|x| ≥ |vα̃t|)ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥ ,

I3 =
∥∥∥(V E, s

12 (x) − V E, s
12 (vt + e1q12Et2/(2μ12))

)
F (|x − vt − e1q12Et2/(2μ12)| < 3|vα̃t|)

∥∥∥
=
∥∥∥(V E, s

12 (x + vt + e1q12Et2/(2μ12)) − V E, s
12 (vt + e1q12Et2/(2μ12))

)
F (|x| < 3|vα̃t|)

∥∥∥ .

I1 and I2 are estimated as in the proof of Lemma II.2.3, by Proposition II.2.1 and equation II.2.17,
respectively: ∫ ∞

−∞
(I1 + I2) dt = O(v−α̃).

By lemma 2.2 of Adachi and Maehara [2] (see also page 042101-5, equation 2.10 of [2]), we get, for all
0 < α̃ < 1 and v sufficiently large that∫ ∞

−∞
I3 dt =

{
O(vα̃−2α), if α < 1,

O(vα̃−2| ln v|), if α = 1.

We finish the proof by setting α̃ =

{
α, if α < 1,

1 − ε1, if α = 1, 0 < ε1 < 1.

LEMMA II.2.5. Let V l
jk and ŨD(t) be given as in (II.2.1) and (II.2.3), respectively. Let γ1, ε0 be as in

Definition II.1.1, γD, μ be as in Definition II.1.2, θjk as in (II.2.15). Let us define two constants σjk and

σ̃jk; if qjk �= 0 and V l
jk �= 0, then σjk =

σ̃jk

2−σ̃jk
and 0 < σ̃jk < 2 − max{ 1+θjk

γD+μ , 2
γD+2μ , 1}, else, if qjk = 0 or

V l
jk = 0, then σjk := σ̃jk := 1. Then for all functions fj′k′ ∈ C∞

0 (Bμj′k′ηj′k′ ) with 1 ≤ j′ < k′ ≤ N, and for

all integers 1 ≤ j < k ≤ N, there is a constant v0 > 0 such that for every vjk ∈ R
n with vjk > v

1/σjk

0 , we
have the following estimate:

∞∫
−∞

dt

∥∥∥∥∥ (V l
jk(x̃k − x̃j) − V l

jk(tpjk/μjk − e1qjkEt2/(2μjk))
)

× e−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥ ≤ O(v
−σjk

jk ). (II.2.28)
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Proof. The proof in the case where qjk = 0 is quite similar to that of Lemma 3.3 in Enss and
Weder [20], and the proof in the case where qjk �= 0 is quite similar to that of Lemma 3.4 in Adachi and
Maehara [2]. In this Lemma, let us denote x = x̃k − x̃j ,p = −i∇x. From (II.2.14), a constant is defined as
follows

c :=

{
c
σ̃jk

1 c
1−σ̃jk

2 , if qjk �= 0,

1/2, if qjk = 0.

Let’s split the long-range potential V l
jk into two parts with controllable decay properties. Let χ ∈

C∞(Rn) satisfy, 0 ≤ χ ≤ 1, χ(u) = 1, for |u| ≥ c and χ(u) = 0, for |u| ≤ c/2; and V l
jk,vjkt(u) =

V l
jk(u)χ(u/(v

σ̃jk

jk |t|2−σ̃jk)). In consequence, supp
(
V l

jk,vjkt − V l
jk

)
⊂ B

cv
σ̃jk
jk |t|2−σ̃jk

, and ‖V l
jk,vjkt − V l

jk‖ ≤
‖V l

jk‖.
Choosing again g ∈ C∞

0 (Bμjkηjk
) such that g ≡ 1 on the support of fjk, it follows that∥∥∥∥∥∥(V l

jk(x) − V l
jk(tp/μjk − e1qjkEt2/(2μjk))

)
e−itH0ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥
≤ I1 + I2 + I3, (II.2.29)

where

I1 =

∥∥∥∥∥∥
(
V l

jk,vjkt(x) − V l
jk(tp/μjk − e1qjkEt2/(2μjk))

)
e−itH0g(p − μjkvjk)

× ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥ , (II.2.30)

I2 =
∥∥∥(V l

jk − V l
jk,vjkt

)
(x) e−itH0g(p − μjkvjk)F (|x| < v

σjk

jk |t|/8)
∥∥∥

×
∥∥∥∥∥∥ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥ , (II.2.31)

I3 =
∥∥∥(V l

jk − V l
jk,vjkt

)
(x) e−itH0g(p − μjkvjk)

∥∥∥
×
∥∥∥∥∥∥F (|x| ≥ v

σjk

jk |t|/8)ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥ . (II.2.32)

If qjk �= 0, for q ∈ Bμjkηjk
, v0 ≥ 4ηjk/

√
1 − δjk, by (II.2.14), we have

|tq/μjk + vjkt + e1qjkEt2/(2μjk)| ≥ cv
σ̃jk

jk |t|2−σ̃jk . (II.2.33)

If qjk �= 0 with p in the support of g, we note, by (II.2.33), that V l
jk,vjkt(tp/μjk+vjkt+e1qjkEt2/(2μjk)) =

V l
jk(tp/μjk + vjkt + e1qjkEt2/(2μjk)). If qjk = 0, p belongs to the support of g(· − μjkvjk), and v0 > 2ηjk

then V l
jk,vjkt(tp/μjk) = V l

jk(tp/μjk).

As in Enss and Weder [20] and Adachi and Maehara [2], by (II.1.31)-(II.1.35) and the Baker-Campbell-
Hausdorff formula [14],
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I1 ≤
∫ 1

0

ds

∥∥∥∥[(∇V l
jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk)) · x

+
it

(2μjk)

(
ΔV l

jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk))

]
g(p) e−iμjkvjk·x

×ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥ . (II.2.34)

For qjk = 0, ε0 < γ1 − 3/2, having in consideration that in the support of V l
jk,vjkt we must have

|x| ≥ (c/2)|vjkt|, (II.2.16) and (II.2.34) imply that

I1 ≤ C
[
|vjkt|−γ1

(
1 + v

−(2−γ1/2)
jk |vjkt|θjk

)
+ |vjkt|−1−2ε0

]
≤ C|vjkt|−1−2ε0 .

Then, by the fact that I1 is uniformly bounded, for all t ∈ R and all vjk,
∫

dt I1 = O(v−1
jk ).

We consider now the case when qjk �= 0. Recall that in the support of V l
jk,vjkt we must have |x| ≥

(c/2)v
σ̃jk

jk |t|2−σ̃jk for 0 < σ̃jk < 1. For 0 < b, (II.2.16) and (II.2.34) imply:

I1 ≤ I11 + I12, where, I12 ≤ C‖V l
jk‖,

I11 ≤ C
((

v
−σ̃jk(γD+μ)
jk |t|−(2−σ̃jk)(γD+μ) + v

−σ̃jk(γD+1)
jk |t|−(2−σ̃jk)(γD+1)

)
×
(
1 + v

−(2−γ1/2)
jk |vjkt|θjk

)
F (|t| > v−b

jk ) + ‖V l
jk‖F (|t| ≤ v−b

jk )
)

and

I12 ≤ C
(
v
−σ̃jk(γD+2μ)
jk |t|−(2−σ̃jk)(γD+2μ)+1 + v

−σ̃jk(γD+μ+1)
jk |t|−(2−σ̃jk)(γD+μ+1)+1

+v
−σ̃jk(γD+2)
jk |t|−(2−σ̃jk)(γD+2)+1

)
.

By a straightforward calculation, provided σ̃jk < 2 − (1 + θjk)/(γD + μ),∫
dt I11 = O(v−b

jk ),

having taken

b =
σ̃jk

2 − σ̃jk
= min

{
σ̃jk

2 − σ̃jk
,

σ̃jk + (2 − γ1/2 − θjk)/(γD + 1)

2 − σ̃jk − θjk/(γD + 1)
,

σ̃jk + (2 − γ1/2 − θjk)/(γD + μ)

2 − σ̃jk − θjk/(γD + μ)

}
.

Using Adachi and Maehara’s computations [2] of the last three terms of the integral of I3 in the proof of
their Lemma 3.4, assuming that σ̃jk < 2 − 2/(γD + 2μ), we obtain:∫ +∞

−∞
dt I12 = O(v

−σ̃jk/[(2−σ̃jk)−1/(γD+2)]
jk ).

Thus we have, in general: ∫ +∞

−∞
dt I1 = O(v

−σjk

jk ). (II.2.35)

If |x| ≤ (5/8) v
σjk

jk |t| and v
σjk−1
jk ≤ (2/5)

√
1 − δjk, for qjk �= 0, we obtain as in (II.2.33)

|x + vjkt + e1qjkEt2/(2μjk)| ≥ cv
σ̃jk

jk |t|2−σ̃jk , (II.2.36)
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by equations (II.1.31)-(II.1.34) and (II.2.36) we can invoke Proposition 2.10 from Enss [15] in (II.2.31) to
estimate I2 with v0 > 4ηjk,

I2 ≤ C
∥∥∥(V l

jk − V l
jk,vjkt

)
(x + vjkt + e1qjkEt2/(2μjk)) e−itp2/(2μjk)g(p)F (|x| < v

σjk

jk |t|/8)
∥∥∥

≤ C

∥∥∥∥∥F
(
|x − vjkt| ≥

{
5v

σjk

jk |t|/8, if qjk �= 0,

vjk|t|/2, if qjk = 0,

)
e−itp2/(2μjk)g(p − μjkvjk)F (|x| < v

σjk

jk |t|/8)

∥∥∥∥∥
≤ C(1 + v

σjk

jk |t|)−2. (II.2.37)

Again, by Lemma II.2.2, equation (II.2.17), we estimate I3,

I3 ≤ C(1 + v
σjk

jk |t|)−2. (II.2.38)

By (II.2.35), (II.2.37) and (II.2.38) we finish the proof.
Let us denote,

IG,v,a,b = exp

⎛⎝−i

E∑
j<k

∫ b

a

ds V E, s
jk (vjks + e1qjkEs2/(2μjk))

⎞⎠ and IG,v = IG,v,−∞,∞. (II.2.39)

Observe that ŨG,v(t) = IG,v,0,t.

PROPOSITION II.2.6. The wave operators ΩD,G,v
± and ΩG,v

± exist and, moreover,

ΩD,G,v
± = WD

± IG,v,0,±∞, ΩG,v
± = W±IG,v,0,±∞. (II.2.40)

Proof. We give only the proof for ΩD,G,v
± , the other is similar. Note that:

s − lim
t→±∞ eitHUD,G,v(t) = s − lim

t→±∞ eitHe−itH0ŨD(t)IG,v,0,t = WD
± s − lim

t→±∞ IG,v,0,t.

Furthermore, for any Φ ∈ L2 we have that:

‖ (IG,v,0,t − IG,v,0,±∞) Φ‖2 =

∫
Rn

|IG,v,0,t − IG,v,0,±∞|2|Φ|2 −→t→±∞ 0,

by the Lebesgue dominated convergence theorem, taking into account that the integrand is dominated by
4|Φ|2 for all t. This proves the proposition.

Now we focus in the wave operator estimates. We use Jacobi Coordinates based on the pair (1,2), where
v = |v| = |v2 − v1| and vjk = O(v2), for (j, k) �= (1, 2). Lemma II.2.7, below, is a N-body generalization of
Lemma 3.5 in Adachi and Maehara [2]. See also Lemma 4.6 of Adachi, Kamada, Kazuno and Toratani [1],
for a generalization of Lemma 3.5 of Adachi and Maehara [2] to the case where the external electric field is
asymptotically zero in time, in the two-body case.

LEMMA II.2.7. Let α be as in Definition II.1.2, where, without loss of generality, α = 1 if qjk = 0
for all 1 ≤ j < k ≤ N. For all 1 ≤ j < k ≤ N, let 0 < σjk ≤ 1 be as in Lemma II.2.5. Let us take

V V S ∈ VV SR, V S ∈ VSR, V L ∈ VLR. Then, for all Φv as in (II.1.13) with a fixed normalized φ̂3, where, with

δjk being defined as in (II.2.12), the relative velocities satisfy |v̂jk · Ê| ≤ δjk for all integers 1 ≤ j < k ≤ N

with qj,k �= 0, and vjk > v
1/σjk

0 for some v0 > 0 and all integers 1 ≤ j < k ≤ N :

sup
t∈R

∥∥∥(ΩD,G,v
± − eitHUD,G,v(t))Φv

∥∥∥ = O(v−min{α, σjk | 1≤j<k≤N}). (II.2.41)
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In the short-range case, where V l
jk = 0 (see (II.2.1)) for all 1 ≤ j < k ≤ N, we obtain the following result

sup
t∈R

∥∥∥(ΩG,v
± − eitHUG,v(t))Φv

∥∥∥ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(v−α), if α < 1 and

∑
j<k

|qjk| > 0,

O(v−(1−ε1)), if α = 1 and
∑
j<k

|qjk| > 0,

O(v−1), if
∑
j<k

|qjk| = 0,

(II.2.42)

for all 0 < ε1 < 1.

Proof. We give the proof for ΩD,G,v
+ . By Duhamel’s formula, (II.1.31) and (II.1.33):

ΩD,G,v
+ − eitHUD,G,v(t) = lim

t′→+∞
eit′HUD,G,v(t′) − eitHUD,G,v(t) = lim

t′→+∞

∫ t′

t

ds
d

ds

(
eisHUD,G,v(s)

)
= i

∫ ∞

t

ds eisH

⎛⎝∑
j<k

[
V vs

jk (x̃k − x̃j) + V l
jk(x̃k − x̃j)

−V l
jk(spjk/μjk − e1qjkEs2/(2μjk))

]
+

E∑
j<k

[
V E, s

jk (x̃k − x̃j) − V E, s
jk (vjks + e1qjkEs2/(2μjk))

]⎞⎠UD,G,v(s).

Using that the Graf-type modifier ŨG,v(t) (II.2.2) conmutes with any operator, and Lemmata II.2.3, II.2.4,
II.2.5, it follows for any 0 < ε1 < 1, t ∈ R:∥∥∥(e−itHΩD,G,v

+ − UD,G,v(t)
)

Φv

∥∥∥ ≤ C
∑
j<k

∫ ∞

−∞

∥∥∥V vs
jk (x̃k − x̃j)

×e−isH0ŨD(s)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2
∥∥∥ ds

+C
∑
j<k

∫ ∞

−∞

∥∥∥ (V l
jk(x̃k − x̃j) − V l

jk(spjk/μjk − e1qjkEs2/(2μjk))
)

×e−isH0ŨD(s)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2
∥∥∥ ds

+C

E∑
j<k

∫ ∞

−∞

∥∥∥ (V s
jk(x̃k − x̃j) − V s

jk(vjks + e1qjkEs2/(2μjk))
)

×e−isH0ŨD(s)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2
∥∥∥ ds

≤
∑
j<k

(
O(v−1

jk ) + O(v
−σjk

jk )
)

+

E∑
j<k

{
O(v−α

jk ), if α < 1,

O(v
−(1−ε1)
jk ), if α = 1.

The proof is finished by the use of the following arguments: α < 1 implies for v ≥ 1 that v−1 ≤ v−α,

0 < σjk < 1 implies, for ε1 sufficiently small that O(v
−(1−ε1)
jk ) ≤ O(v

−σjk

jk ), and noting that v12 = v and vjk

is O(v2) for j < k = 3, . . . , N.
Lemma II.2.5 above defines two sets of exponents σjk and σ̃jk. Theorem II.2.8 below needs σjk > 1/2.

For this purpose we have to ask, for all 1 ≤ j < k ≤ N with qjk �= 0 and V l
jk �= 0, that θjk, being as in
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(II.2.15), must hold:

2 − max{1 + θjk

γD + μ
,

2

γD + 2μ
, 1} >

2

3
⇐⇒ θjk <

4

3
(γD + μ) − 1. (II.2.43)

In particular, inequality (II.2.43) is always true if θjk ≤ 1/3 because 1/3 < 4(γD + μ)/3 − 1 for all γD and
μ as in Definition II.1.2. Inequality (II.2.43) is always met in conditions ζb

jk and ζc
jk, see (II.2.15), because

in the former, θjk can be taken arbitrarily small, and in the later, θjk is zero. If there is a pair (j, k) with
qjk �= 0 and the condition ζa

jk is true, (II.2.43) is equivalent to max{3/2, 3 − 4(γD + μ)/3} < γ1 < 2. If∑ |qjk| = 0 we just need 3/2 < γ1 ≤ 2. Theorem II.1.3 is stated considering long-range potentials, in this
case, ζa

jk is true for some pair (j, k) with qjk �= 0, if and only if, there are two pairs (j∗, k∗) and (j′, k′) such
that 1 ≤ j∗ < k∗ ≤ N, 1 ≤ j′ < k′ ≤ N, qj∗k∗ �= 0 and qj′k′ = 0. We can also use Theorem II.1.3 with
short-range potentials: the condition 3− 4(γD +μ)/3 < γ1 is always true because, without loss of generality,
we can take γ1 = 2 in this situation.

THEOREM II.2.8. (Reconstruction Formula) Let γ1 be as in Definition II.1.1, α, γD, μ be as in Definition
II.1.2, where, without loss of generality, α = 1 if qjk = 0 for all 1 ≤ j < k ≤ N. If there exists two pairs
1 ≤ j < k ≤ N, 1 ≤ j′ < k′ ≤ N such that qjk �= 0, qj′k′ = 0, V l

j′k′ �= 0, and either j′ = j or j′ =
k or k′ = j or k′ = k or j′ + j = 3, we additionally assume γ1 > 3 − 4(γD + μ)/3. For all 1 ≤ j < k ≤ N,
let 0 < σjk ≤ 1 be as in Lemma II.2.5. Let us take V V S ∈ VV SR, V S ∈ VSR, V L ∈ VLR, where V vs

12 satisfies
(II.2.21) for all g ∈ C∞

0 (Rn), with 0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1. Let us set pl = p · el for any

l = 1, . . . , N. Then, for all Φv,Ψv as in (II.1.13) with the same fixed normalized φ̂3, with δjk being defined

as in (II.2.12), the relative velocities satisfy |v̂jk · Ê| ≤ δjk for all integers 1 ≤ j < k ≤ N with qj,k �= 0, and

vjk > v
1/σjk

0 for some v0 > 0, as in Lemma II.2.5, and all integers 1 ≤ j < k ≤ N :

v(i[SD,pl]Φv,Ψv) =

∫ ∞

−∞
dτ
[
(V vs

12 (x + τ v̂)plΦ12,Ψ12) − (V vs
12 (x + τ v̂)Φ12,plΨ12)

+i

((
∂V s

12

∂xl

)
(x + τ v̂)Φ12,Ψ12

)
+ i

((
∂V l

12

∂xl

)
(x + τ v̂)Φ12,Ψ12

)]

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρl), if γ2 − 1 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

for any ρl, 0 ≤ ρl < γ2 − 1,

o(v−ρ), if 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1,

o(v−ρl), if ρ = 1,
∑ |qjk| = 0 and V l

12 �= 0,

for any ρl, 0 ≤ ρl < γ1 − 1,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 = 0.

(II.2.44)

where γ2 :=

⎧⎪⎨⎪⎩
γ1, if q12 = 0 and V l

12 �= 0,

γD + μ, if q12 �= 0, and V l
12 �= 0,

2, if V l
12 = 0.

REMARK II.2.9. Note that the first term in the right-hand side of (II.2.44) can be written as

i

∫ ∞

−∞
dτ

((
∂V12

∂xl

)
(x + τ v̂)Φ12, Ψ12

)
,

where V12 = V vs
12 + V s

12 + V l
12, and the derivative ∂V12

∂xl
is taken in distribution sense. This shows that the

high-velocity limit of v(i[SD,pl]Φv,Ψv) is independent of the decomposition of the potential V into the part
V V S +V S , that is of short range under the constant electric field E and the part V L that is long-range; that
is used for the definition of the Dollard scattering operator (II.2.10).
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Proof.

The scattering operator can be expressed as SD = (ΩD,G,v
+ I−1

G,v,0,+∞)∗(ΩD,G,v
− I−1

G,v,0,−∞) =

IG,v(ΩD,G,v
+ )∗ΩD,G,v

− , by (II.2.10) and (II.2.40). Noting that [SD,pl] = [SD,pl − μ12vl] = [SD − IG,v,pl −
μ12vl] and (pl −μ12vl)Φv = (plΦ0)v where pl and vl are the l-th components of the relative momentum and

the velocity v of the chosen pair (1, 2), respectively. By the fact that ΩD,G,v
± are partially isometric and the

application of Duhamel formula, (II.1.31) and (II.1.33), as in the proof of Lemma II.2.7, we obtain

i(SD − IG,v)Φv = IG,vi
(
ΩD,G,v

+ − ΩD,G,v
−

)∗
ΩD,G,v

− Φv = IG,v

∫ +∞

−∞
dt
(
UD,G,v(t)

)∗
Vt(x̃)e−iHtΩD,G,v

− Φv,

with x̃ defined as (II.1.2) and Vt = V3,t + V12,t where

V3,t(x̃) =
∑

j<k,3≤k≤N

[
V vs

jk (x̃k − x̃j) + V l
jk(x̃k − x̃j) − V l

jk(tpjk/μjk − e1qjkEt2/(2μjk))
]

+

E∑
j<k,3≤k≤N

[
V s

jk(x̃k − x̃j) − V s
jk(vjkt + e1qjkEt2/(2μjk))

]
and

V12,t = V vs
12 (x) + V l

12(x) − V l
12(tp/μ12 − e1q12Et2/(2μ12))

+V s
12(x) − V s

12(vt + e1q12Et2/(2μ12)). (II.2.45)

Thus we have
v
(
i[SD,pl]Φv,Ψv

)
= IG,v (I(v) + R(v)) (II.2.46)

with

I(v) =

∫ +∞

−∞
dτ lv(τ), (II.2.47)

where

lv(vt) =
(
V12,t(x)e−itH0ŨD(t) (plΦ0)v , e−itH0ŨD(t)Ψv

)
−
(
V12,t(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t) (plΨ0)v

)
(II.2.48)

and

R(v)/v =

∫ +∞

−∞
dt
[(

V3,te
−itH0ŨD(t) (plΦ0)v , e−itH0ŨD(t)Ψv

)
−
(
V3,te

−itH0ŨD(t)Φv, e−itH0ŨD(t) (plΨ0)v

)
+
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
(plΦ0)v ,

VtU
D,G,v(t)Ψv

)
−
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
Φv, VtU

D,G,v(t) (plΨ0)v

)]
. (II.2.49)

In the derivation of (II.2.48) and (II.2.49) we used that ŨG,v(t) commutes with any operator.
We are going to need to translate the Dollard-type modifier (II.2.3)

ŨD(v, t) = e−iμ12v·x
N∏

j=3

e−iμjvj ·xj ŨD(t) eiμ12v·x
N∏

j=3

eiμjvj ·xj . (II.2.50)

Using equations (II.1.31)-(II.1.35) and substituting (II.2.45) and (II.2.50) in (II.2.48), it follows that

I(v) = J1(v) − J2(v) + iJ3(v) + iJ4(v), (II.2.51)
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where

J1(v) =

∫ (
V vs

12 (x + τ v̂ + e1q12Eτ2/(2v2μ12)) e−iτp2/(2vμ12)ŨD(v, τ/v)plΦ0,

e−iτp2/(2vμ12) ŨD(v, τ/v)Ψ0

)
dτ, (II.2.52)

J2(v) =

∫ (
V vs

12 (x + τ v̂ + e1q12Eτ2/(2v2μ12)) e−iτp2/(2vμ12) ŨD(v, τ/v)Φ0,

e−iτp2/(2vμ12) ŨD(v, τ/v)plΨ0

)
dτ, (II.2.53)

J3(v) =

∫ ((
∂V E,s

12 /∂xl

)
(x + τ v̂ + e1q12Eτ2/(2v2μ12)) e−iτp2/(2vμ12) ŨD(v, τ/v)Φ0,

e−iτp2/(2vμ12) ŨD(v, τ/v)Ψ0

)
dτ. (II.2.54)

J4(v) =

∫ ((
∂V l

12/∂xl

)
(x + τ v̂ − e1q12Eτ2/(2v2μ12)) e−iτp2/(2vμ12) ŨD(v, τ/v)Φ0,

e−iτp2/(2vμ12) ŨD(v, τ/v)plΨ0

)
dτ. (II.2.55)

There exists C > 0 that uniformly bounds the following expression, for all j < k:

‖Φv‖ + ‖(plΦ0)v‖ +
∥∥(1 + |x̃k − x̃j |2)2Φv

∥∥+
∥∥(1 + |x̃k − x̃j |2)2 (plΦ0)v

∥∥ ≤ C.

Then,

|R(v)|
v

≤ C
∑

j<k,3≤k≤N

∫
dt

∥∥∥∥∥∥V vs
jk (x̃k − x̃j)e

−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
+C

∑
j<k,3≤k≤N

∫
dt

∥∥∥∥∥∥(V l
jk(x̃k − x̃j) − V l

jk(tpjk/μjk − e1qjkEt2/(2μjk))
)

×e−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
+C

E∑
j<k,3≤k≤N

∫
dt

∥∥∥∥∥∥(V s
jk(x̃k − x̃j) − V s

jk(vjkt + e1qjkEt2/(2μjk))
)

×e−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
+C

[
sup
t∈R

∥∥∥(e−iHtΩD,G,v
− − UD,G,v(t)

)
(plΦ0)v

∥∥∥+ sup
t∈R

∥∥∥(e−iHtΩD,G,v
− − UD,G,v(t)

)
Φv

∥∥∥]

×
⎡⎣∑

j<k

∫
dt

∥∥∥∥∥∥V vs
jk (x̃k − x̃j)e

−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
+
∑
j<k

∫
dt

∥∥∥∥∥∥(V l
jk(x̃k − x̃j) − V l

jk(tpjk/μjk − e1qjkEt2/(2μjk))
)

× e−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
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+
E∑

j<k

∫
dt

∥∥∥∥∥∥(V s
jk(x̃k − x̃j) − V s

jk(vjkt + e1qjkEt2/(2μjk))
)

× e−itH0ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−2

∥∥∥∥∥∥
⎤⎦ .

Thus, by Lemmata II.2.3, II.2.4 and II.2.7, if V l
jk = 0 for all 1 ≤ j < k ≤ N :

R(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2α − 1,

O(v−ρ), if ρ = 2α − 1 < 1,
∑
j<k

|qjk| > 0,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0,

(II.2.56)

Similarly, by Lemmata II.2.3, II.2.4, II.2.5 and II.2.7, if V l
jk �= 0 for some 1 ≤ j < k ≤ N :

R(v) =

⎧⎪⎨⎪⎩
O
(
v1−2 min{α, σjk | 1≤j<k≤N}) , if

∑
j<k

|qjk| > 0,

O(v−1), if
∑
j<k

|qjk| = 0,

=

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.
(II.2.57)

Now, let us compute the following: limv→∞ v
(
i[SD,pl]Φv,Ψv

)
, using (II.2.46):

lim
v→∞ IG,v = exp

⎛⎝−i
E∑

j<k

lim
v→∞

∫ ∞

−∞
ds V s

jk(vjks + e1qjkEs2/(2μjk))

⎞⎠ = 1.

We have used the Lebesgue dominated convergence theorem: There exist 0 < δ1, δ2 ≤ 1 such that
|vjks+e1qjkEs2/(2μjk)| ≥√δ1|vjkt|2 + δ2(qjkE/(2μjk))2t4, since, |v̂jk·Ê| ≤ δ < 1, by (II.2.13), when q12 =
0, we can take δ1 = δ2 = 1, and if q12 �= 0, we use δ1 = δ2 = 1−δ. We can estimate V s

jk(vjks+e1qjkEs2/(2μjk))
as follows: ∣∣V s

jk(vjks + e1qjkEs2/(2μjk))
∣∣ ≤ C

(
1 +
∣∣vjks + e1qjkEs2/(2μjk)

∣∣)−γ

≤ C
(
1 + δ1v

2
jks2 + δ2|qjkE/(2μjk)|2s4

)−γ/2

≤ C(1 + s−2γ).

This last term is integrable in R because 1/2 < γ ≤ 1.
Note that pointwise in τ ,

lim
v→∞ lv(τ) = (V vs

12 (x + τ v̂) (plΦ12), Ψ12) − (V vs
12 (x + τ v̂)Φ12, (plΨ12))

+i

((
∂V s

12

∂xl

)
(x + τ v̂)Φ12,Ψ12

)
+ i

((
∂V l

12

∂xl

)
(x + τ v̂)Φ12,Ψ12

)
. (II.2.58)

We want to compute limv→∞ I(v), by (II.2.47), (II.2.58) and the Lebesgue dominated convergence theo-
rem, thus showing the rate of convergence when ρ = 0 in (II.2.21):

lim
v→∞ I(v) =

∫ ∞

−∞

[
(V vs

12 (x + τ v̂) (plΦ12), Ψ12) − (V vs
12 (x + τ v̂)Φ12, (plΨ12))

+i

((
∂V s

12

∂xl

)
(x + τ v̂)Φ12,Ψ12

)
+ i

((
∂V l

12

∂xl

)
(x + τ v̂)Φ12,Ψ12

)]
dτ, (II.2.59)
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this means in terms of the J1, J2, J3, J4 functions that

lim
v→∞J1(v) =

∫
(V vs

12 (x + τ v̂)(plΦ12),Ψ12) dτ, (II.2.60)

lim
v→∞J2(v) =

∫
(V vs

12 (x + τ v̂)Φ12, (plΨ12)) dτ, (II.2.61)

lim
v→∞J3(v) =

∫ ((
∂V E,s

12 /∂xl

)
(x + τ v̂)Φ12,Ψ12

)
dτ, (II.2.62)

lim
v→∞J4(v) =

∫ ((
∂V l

12/∂xl

)
(x + τ v̂)Φ12,Ψ12

)
dτ. (II.2.63)

To justify the use of the Lebesgue dominated convergence theorem observe that
∂V s

12

∂xl
and

∂V l
12

∂xl
are very

short-range. By (II.2.48) and Lemma II.2.3:

|lv(τ)| ≤ C

∥∥∥∥∥∥V vs
12 (x)e−i(τ/v)H0ŨD(τ/v)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x|2)−2

∥∥∥∥∥∥
+C

∥∥∥∥∥∥∂V s
12

∂xl
(x)e−i(τ/v)H0ŨD(τ/v)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x|2)−2

∥∥∥∥∥∥
+C

∥∥∥∥∥∥∂V l
12

∂xl
(x)e−i(τ/v)H0ŨD(τ/v)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x|2)−2

∥∥∥∥∥∥
≤ Ch12(|τ |),

where h12 ∈ L1((0,∞)).
Let us find the rate of convergence of (II.2.59) when ρ > 0 in (II.2.21). We estimate the rate of convergence

of, J1, the first term in the right-hand side of (II.2.51) (i.e. (II.2.52)) to its limit. From (II.2.52) and (II.2.60)
we have:

J1(v) − lim
v→∞J1(v) =

∫ −∞

−∞
dτ
(
V vs

12 (x + τ v̂ + e1q12Eτ2/(2v2μ12)) e−iτp2/(2vμ12) ŨD(v, τ/v)(plΦ0),

e−iτp2/(2vμ12) ŨD(v, τ/v)Ψ0

)
−
∫ −∞

−∞
dτ (V vs

12 (x + τ v̂)(plΦ12),Ψ12)

=

∫
dτ
[(

V vs
12 (x + τ v̂)e−ip·e1q12Eτ2/(2v2μ12) e−iτp2/(2vμ12) ŨD(v, τ/v)(plΦ0),

e−ip·e1q12Eτ2/(2v2μ12) e−iτp2/(2vμ12) ŨD(v, τ/v)Ψ0

)
−
(
V vs

12 (x + τ v̂)e−ip·e1q12Eτ2/(2v2μ12) e−iτp2/(2vμ12) ŨD(v, τ/v)(plΦ0),Ψ0

)]
+

∫
dτ [− ((plΦ0), V

vs
12 (x + τ v̂)Ψ0)

+
(
e−ip·e1q12Eτ2/(2v2μ12) e−iτp2/(2vμ12) ŨD(v, τ/v)(plΦ0), V

vs
12 (x + τ v̂)Ψ0

)]
.

The latter calculations suggest us to define:

h(1)
v =

(
V vs

12 (x + τ v̂)e−ip·e1q12Eτ2/(2v2μ12) e−iτp2/(2vμ12) ŨD(v, τ/v)(plΦ0),(
e−ip·e1q12Eτ2/(2v2μ12) e−iτp2/(2vμ12) ŨD(v, τ/v) − I

)
Ψ0

)
, (II.2.64)

h(2)
v =

((
e−ip·e1q12Eτ2/(2v2μ12) e−iτp2/(2vμ12) ŨD(v, τ/v) − I

)
(plΦ0), V

vs
12 (x + τ v̂)Ψ0

)
. (II.2.65)
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With this notation

J1(v) − lim
v→∞J1(v) =

∫
dτ
(
h(1)
v + h(2)

v

)
. (II.2.66)

Let us analyze the rate of convergence of h
(1)
v . On one hand, with t = τ/v :∥∥∥(e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v)ŨD(v, τ/v) − I)Ψ0

∥∥∥2 ≤
[
C
∣∣∣τ/v
∣∣∣ (1 +

∣∣∣τ/v
∣∣∣)]2 ,

On the other hand:∥∥∥(e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v) ŨD(v, τ/v) − I)Ψ0

∥∥∥ ≤ 2 ‖Ψ12‖ .

Consider two cases, with 0 < a ≤ 1 in mind:

(a) |τ/v| < 1: Clearly we have that |τ/v|a ≥ |τ/v|, therefore:∥∥∥(e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v) ŨD(v, τ/v) − I)Ψ0

∥∥∥ ≤ C
∣∣∣τ/v
∣∣∣ (1 +

∣∣∣τ/v
∣∣∣) ≤ C

∣∣∣τ/v
∣∣∣a. (II.2.67)

(b) |τ/v| ≥ 1: In this case |τ/v|a ≥ 1, thus:∥∥∥(e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v) ŨD(v, τ/v) − I)Ψ0

∥∥∥ ≤ C ≤ C
∣∣∣τ/v
∣∣∣a. (II.2.68)

Now we study |h(1)
v (τ)|’s decay as v → ∞ applying Lemma II.2.3, and (II.2.67), (II.2.68) with a = ρ:

|h(1)
v (τ)| ≤ C

∣∣∣τ/v
∣∣∣ρ
∥∥∥∥∥∥V vs

12

(
x + τ p/(μ12v) + e1q12Eτ2/(2v2μ12)

)
ŨD(τ/v)

×
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x|2)−2

∥∥∥∥∥∥ .

Then
vρ|h(1)

v (τ)| ≤ C|τ |ρh12(|τ |) ∈ L1(−∞,∞). (II.2.69)

Hence, for ρ = 1

v

∫
|h(1)

v (τ)|dτ ≤ C.

For 0 ≤ ρ < 1, by Lebesgue dominated convergence theorem

lim
v→∞ vρ

∫
h(1)
v (τ)dτ =

∫
lim

v→∞ vρh(1)
v (τ)dτ = 0,

where we used that limv→∞ vρh
(1)
v (τ) = 0, since by (II.2.67) and (II.2.68) with a = 1 we have vρ|h(1)

v (τ)| ≤
C|τ |vρ−1.

As a result ∫ +∞

−∞
dτh(1)

v (τ) =

{
o(v−ρ), if 0 ≤ ρ < 1,

O(v−1), if ρ = 1.
(II.2.70)

At this moment, we turn our attention to the rate of convergence of h
(2)
v . When |x + τ v̂| ≤ |τ |/2, we

have |x| ≥ |τ | − |x + τ v̂| ≥ |τ |/2. With the last inequality we can estimate the second factor in the scalar

product of (II.2.65). Let g be a C∞
0 (Rn) such that g(p)ψ̂12 = ψ̂12. By (II.2.67) and (II.2.68):

vρ

∫ ∞

−∞
dτ |h(2)

v (τ)| ≤ C

∫ +∞

−∞
dτ |τ |ρ (‖V vs

12 (x + v̂τ)g(p)F (|x + v̂τ | ≥ |τ |/2)‖
+ ‖V vs

12 (x + v̂τ)g(p)‖ ‖F (|x| ≥ |τ |/2)Ψ12‖) . (II.2.71)
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Due to the short-range condition (II.2.21), the first integral in (II.2.71) is finite; the fast decay in config-
uration space of Ψ12 makes the second integral in (II.2.71) be bounded:∫ ∞

−∞
dτ |τ |ρ ‖F (|x| ≥ |τ |/2)Ψ12‖ =

∫ ∞

−∞
dτ |τ |ρ(1 + |τ |)−3

∥∥∥∥(1 + |τ |)3F (|x| ≥ |τ |
2

)Ψ12

∥∥∥∥ < ∞.

Hence, for ρ = 1

v

∫
|h(2)

v (τ)|dτ ≤ C,

and for 0 ≤ ρ < 1, by Lebesgue dominated convergence theorem

lim
v→∞ vρ

∫
h(2)
v (τ)dτ =

∫
lim

v→∞ vρh(2)
v (τ)dτ = 0,

where we used that limv→∞ vρh
(2)
v (τ) = 0, since by (II.2.67) and (II.2.68) with a = 1 we have vρ|h(2)

v (τ)| ≤
C|τ |vρ−1.

As a result ∫ +∞

−∞
dτh(2)

v (τ) =

{
o(v−ρ), if 0 ≤ ρ < 1,

O(v−1), if ρ = 1.
(II.2.72)

We have just estimated the rate of convergence of J1, the first term in the right-hand side of (II.2.51).

Since φ̂12 ∈ C∞
0 (Bμ12η), we have that

(
plφ̂12

)
∈ C∞

0 (Bμ12η), therefore, we can apply the same treatment to

J2, the second term in the right-hand side of (II.2.51). For J3, in the right-hand side of (II.2.51), when we

estimate the term with ∂/∂xlV
E,s
12 we have that

(1 + |x|)ρs |∂/∂xlV
E,s
12 (x)| ≤ C(1 + |x|)−1−α+ρs

satisfies the very short-range condition if ρs < α ≤ 1. Nevertheless, when q12 �= 0, we do not have an extra
error term of the form o(v−ρs) because in (II.2.56) and (II.2.57) ρ < α, for that reason one can always choose
ρs such that ρ < ρs < α ≤ 1. Regarding J4 in (II.2.51), we estimate the term with ∂/∂xlV

l
12, one sees that

(1 + |x|)ρl |∂/∂xlV
l
12(x)| ≤ C

{
(1 + |x|)−γD−μ+ρl , if q12 �= 0,

(1 + |x|)−γ1+ρl , if q12 = 0,

satisfies the very short-range condition if ρl <

{
γD + μ − 1, if q12 �= 0,

γ1 − 1, if q12 = 0.
Therefore, we have another error

term of the form
o(v−ρl). (II.2.73)

Moreover, when there is at least one pair with non-zero relative charge, we have to estimate the following
error, see (II.2.39) and (II.2.46). In this case, ρ < 1, and −(2γ − 1) ≤ −(2α − 1) ≤ −ρ, where γ is as in
Definition II.1.2. By equation (II.2.13):

|IG,v − 1| ≤
E∑

j<k

∫ ∞

−∞
ds |V s

jk(vjks + e1qjkEs2/(2μjk))| ≤ C

{
v−(2γ−1), if 1/2 < γ < 1,
ln v
v , if γ = 1,

=

{
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1.
(II.2.74)

Finally, to prove the convergence rate given in (II.2.44) we sum the terms, corresponding to I(v), R(v),
IG,v, respectively, in (II.2.46), recalling (II.2.56), (II.2.57), (II.2.66), (II.2.70), (II.2.72), (II.2.74) and taking
in consideration (II.2.73) with the highest possible values of ρl in order to have the optimal error rate in all
the cases enounced in Theorem II.2.8.

The following reconstruction formula is of independent interest.
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THEOREM II.2.10. Assume the same hypothesis as in Theorem II.2.8, Then

v(i[SD − IG,v]Φv,Ψv) − IG,v

∫ ∞

−∞
vdt
((

V s
12(x) − V s

12(vt + e1q12Et2/(2μ12)) + V l
12(x)

−V l
12(tp/μ12 − e1q12Et2/(2μ12))

)
e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
=

∫ ∞

−∞
dτ(V E, vs

12 (x + τ v̂)Φ12,Ψ12)

+

⎧⎪⎨⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1, and
∑ |qjk| = 0.

(II.2.75)

Proof. The left hand side of (II.2.75) can be written as equal to the right hand side of (II.2.46)
exactly with the same IG,v but with

I(v) = v

∫ +∞

−∞
dt
(
V vs

12 (x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
,

and, with the same V3,t and Vt as in the proof of Theorem II.2.8,

R(v)/v =

∫ +∞

−∞
dt
[(

V3,te
−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
Φv, VtU

D,G,v(t)Ψv

)]
.

The convergence rate of I(v) is computed like that one of J1, see equations (II.2.52), (II.2.64), (II.2.65),
(II.2.70), (II.2.72). R(v) and IG,v are estimated like in (II.2.57) and (II.2.74), respectively.
Proof of Theorem II.1.3:

Let us consider the states Φ ∼ φ̂12(p)φ̂3(p3, . . . , pN ), Ψ ∼ ψ̂12(p)φ̂3(p3, . . . , pN ), such that φ̂12, ψ̂12 ∈
C∞

0 (Rn) and φ̂3 is like in (II.1.12). Let y be an element of a two dimensional subspace of R
n, for instance,

we associate each y = (y1, y2) ∈ R
2 with the vector y1e1 + y2e2 ∈ R

n. We express by

Φy = e−ip·yΦ ⇔ φy = φ12(x − y)φ3(x3, . . . ,xN ), Ψy = e−ip·yΨ ⇔ ψy = ψ12(x − y)φ3(x3, . . . ,xN ),
(II.2.76)

the states, translated in the configuration space by y, considered as an vector in R
n.

Suppose that V i = V V S, i+V S, i+V L, i ∈ VV SR+VSR+VLR, i = 1, 2, and that SD(V L, 1;V V S, 1+V S, 1) =
SD(V L, 2;V V S, 2 + V S, 2). Then, we can write the potentials V i, i = 1, 2,

V i =
∑

1≤j<k≤N

V i
jk(x̃k − x̃j), V i

jk = V vs, i
jk + V s, i

jk + V l, i
jk ,

with, for all 1 ≤ j < k ≤ N, V vs, i
jk ∈ VV SR, V s, i

jk ∈ VSR, and V l, i
jk ∈ VLR.

It is enough to prove uniqueness for the pair (1, 2). Let us assume q12 �= 0, the other case is similar and

simpler. Note that as q12 �= 0, V vs, i
12 ∈ VE, vs, V s, i

12 ∈ VE, s, and V l, i
12 ∈ VE, l. We define⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qvs
12(x) = V vs,2

12 (x) − V vs,1
12 (x),

Qs
12(x) = V s,2

12 (x) − V s,1
12 (x),

Ql
12(x) = V l,2

12 (x) − V l,1
12 (x),

Q12(x) = Qvs
12(x) + Qs

12(x) + Ql
12(x).

(II.2.77)

With Φy and Ψy as in (II.2.76), and p1 = p · e1, the function f : R
2 → C is defined as

f(y) := f1(y) + f2(y) + f3(y), (II.2.78)
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where

f1(y) := (Qvs
12(x)p1Φ

y,Ψy),

f2(y) := −(Qvs
12(x)Φy,p1Ψ

y),

f3(y) := i

((
∂Qs

12

∂x1
+

∂Ql
12

∂x1

)
(x)Φy,Ψy

)
.

Let us focus on f1. Let g1 be a C∞
0 (Rn) function such that g1(p)φ̂12(p) = φ̂12(p),

|f1(y)| ≤ C‖Qvs
12(x)g1(p)‖ (II.2.79)

|f1(y)| ≤ C (‖Qvs
12(x)g1(p)F (|x| ≥ |y|/2)‖

+ ‖Qvs
12(x)p1g1(p)‖ ‖F (|x| < |y|/2)φ12(x − y)‖) . (II.2.80)

Inequality (II.2.79) shows that f1 is bounded. By the very short range condition (II.2.21):

‖Qvs
12(x)g1(p)F (|x| ≥ |y|/2)‖ ∈ L2(R2).

Additionally

‖F (|x| < |y|/2)φ12(x − y)‖ =

∥∥∥∥ 1

1 + |x − y|2 F (|x| < |y|/2)(1 + |x − y|2)φ12(x − y)

∥∥∥∥
≤ C

(1 + |y|/2)2
∈ L2(R2).

Then, f1(y) ∈ L2(R2). Moreover, f1(y) is continuous because the operator e−ip·y is strongly continuous
on L2(R2).

Working with f2 and f3 is analogous to the case of f1, remarking that (II.1.28) and (II.1.29) imply that
∂Qs

12

∂x1
+

∂Ql
12

∂x1
belongs to our very short-range class VE, vs. Thus f(y) ∈ L2(R2) and it is a bounded continuous

function.
The Radon transform of f(y), for any v in the y-plane satisfying |v̂ · Ê| < 1, is given by

f̃(v̂;y) :=

∫ ∞

−∞
f(y + τ v̂)dτ =

∫ ∞

−∞
[(Qvs

12(x + τ v̂)p1Φ
y,Ψy)

−(Qvs
12(x + τ v̂)Φy,p1Ψ

y)

+i

((
∂Qs

12

∂x1
+

∂Ql
12

∂x1

)
(x + τ v̂)Φy,Ψy

)]
. (II.2.81)

By Theorem II.2.8 applied to the pair (1, 2), we have that

f̃(v̂;y) = lim
v→∞

[
v(i[SD(V L, 1;V V S, 1 + V S, 1),p1]Φ

y
v,Ψy

v)

−v(i[SD(V L, 2;V V S, 2 + V S, 2),p1]Φ
y
v,Ψy

v)
]

≡ 0.

Then, the Plancherel formula associated with the Radon transform [23] implies that f(y) = 0. From
(II.2.78) we have that

∂

∂y1
(Q12Φ

y,Ψy) = −if(y).

This implies that (Q12Φ
y,Ψy) does not depend on y1. Moreover, lim|y1|→∞(Q12Φ

y,Ψy) = 0 by (II.1.26),
(II.1.27) and (II.1.29). Therefore, (Q12Φ

y,Ψy) ≡ 0. In particular (Q12Φ
0,Ψ0) = (Q12φ12, ψ12) = 0, what

implies by the density of the states φ12, ψ12 that Q12(x) ≡ 0 a.e. We conclude that the total potential V
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is uniquely determined by the high-velocity limit of the commutator of any Dollard scattering operator SD

and some component of the momentum.
We consider the reconstruction problem of the total potential V as in (II.1.36), by means of Theorem

II.2.8. We assume q12 �= 0 because the case q12 = 0 is easier. Let us compute V12 := V vs
12 + V s

12 + V l
12 ∈

VV SR + VSR + VLR from the high-velocity limit of [SD,p1]. We substitute Qvs
12 by V vs

12 , Qs
12 by V s

12 and
Ql

12 by V l
12 in (II.2.78). We know limv→∞ v(i[SD,p1]Φ

y
v,Ψy

v) for all Φy and Ψy as in (II.2.76). Then, by
Theorem II.2.8 and (II.2.81) we reconstruct f̃(v̂;y) and by the inversion of the Radon transform [23], we
uniquely reconstruct f(y). From (II.1.26), (II.1.27), (II.1.28) and (II.1.29) f is integrable along any line and
limy→∞((V12)Φ

y,Ψy) = 0. Then we have

(V12φ12, ψ12) = i

∫ ∞

0

f(y1, 0)dy1,

in a dense set in L2. Hence V12 is obtained almost everywhere as a function. Repeating this process for all
pairs we reconstruct V.

REMARK II.2.11. As we have already mentioned in Remark II.1.6 the reconstruction formula (II.2.75)
from Theorem II.2.10 is simpler than the formula (II.2.44) in Theorem II.2.8. Let us show how (II.2.75)
can be used. Let us suppose that q12 �= 0. The case q12 = 0 follows in the same way. The potentials
V E, vs

12 ∈ VE, vs, V E, s
12 ∈ VE, s, V E, l

12 ∈ VE, l are the very short-, short- and long-range potentials, respectively,

for the pair (1, 2). Let us assume that we want to recover V E, vs
12 knowing V E, s

12 , V E, l
12 and the high-velocity

limit of SD for each Φy and Ψy as in (II.2.76). Defining

h(y) = (V E,vs
12 (x)Φy,Ψy), (II.2.82)

using Theorem II.2.10 and inverting the Radon transform we obtain h(y). Then, we can compute (V E, vs
12 φ12, ψ12)

= h(0) in a dense set in L2. This implies that we recover V E, vs
12 almost everywhere as a function.
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Chapter 3

Linear operators in Hilbert space

This chapter contains the mathematical material used in chapters 2 and the appendix. A brief description
of Lp spaces is given in section I. In section II we introduce Hilbert space, where we discuss some of its
elementary properties, which are illustrated in the case of L2 spaces. Hilbert space is a basic mathematical
object, which is necessary to describe particles in quantum mechanics. In section III many simple results
concerning linear operators in Hilber space are presented. We develop Fourier transform in sections IV
and V, we have chosen the approach taken by Rudin to generalize Fourier transforms to Groups (where a
manifold is a group).

In sections VI, VII, IX and X we deal with bounded and unbounded operators, the spectral theorem
applied to both types of operators and tensorial products of them. We present, in section, VIII the Stone
theorem used to prove the existence of evolution group of self-adjoint operators. For the writting of this
chapter we have used Amrein books such as [58] and [59].

I L
p Spaces

Briefly we collect here a few definitions and results from the theory of Lp spaces. Let (M ;μ) be a measure
space, in other words let μ be a measure defined on a σ-algebra R of subsets of the set M. If Δ is a measurable
subset of M (i.e. an element of R), we denote by χΔ the characteristic function of Δ, which is defined as
follows:

χΔ(s) =

{
1 s ∈ Δ
0 s �∈ Δ.

(III.1.1)

For p ∈ [1,∞], Lp(M ; dμ) is the set of all equivalence classes of measurable functions f : M → C satisfying
‖f‖p < ∞, where two functions are said equivalent if they are equal μ-almost everywhere, and where ‖f‖p

is defined as follows:

‖f‖p :=

[∫
M

|f(s)|pdμ(s)

]1/p

if p < ∞ (III.1.2)

and
‖f‖∞ := ess sup

s∈M
|f(s)|. (III.1.3)

Here ess sup f(s) is the infimum of suph(s) as h varies over all functions that are equal to f almost
everywhere. In other words ess sup f(s) is the infimum of all m such that the measure μ(Δm) of the set
Δm = {s ∈ M |f(s) > m} is zero. If for example, M is the closed interval M = [a, b], μ Lebesgue measure
and f is continuous in [a, b], then ‖f‖∞ = maxx∈[a,b] |f(x)|.
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Lp(M ; dμ) is a complete normed linear space with respect to the norm ‖ · ‖p. If f ∈ Lp(M ; dμ), g ∈
Lp(M ; dμ) and 1/r = 1/p + 1/q, entonces f(·)g(·) ∈ Lr(M ; dμ) and

‖fg‖r ≤ ‖f‖p‖g‖q (III.1.4)

Inequality (III.1.4) is known as the Hölder inequality. The following facts about Lp spaces are often
useful:

LEMMA III.1.1. (a) If Δ is a measurable subset of M with finite measure, p ∈ [1,∞] and f ∈ Lp(M ; dμ),
then χΔ(·)f(·) ∈ Lr(M ; dμ) for each r ∈ [1, p]. (b) If 1 ≤ p < q ≤ ∞, then Lp(M ; dμ) ∩ Lq(M ; dμ) ⊂
Lr(M ; dμ) for each r ∈ [p, q].

An important theorem, which allows one to interchange a limit with an integral, is the Lebesgue Domi-
nated convergence Theorem. We use it only for p = 1 :

THEOREM III.1.2. Lebesgue Dominated convergence Theorem

i g, ft ∈ L1(M ; dμ)(t ∈ R),

ii |ft(s)| ≤ g(s) for almost all s ∈ M and all t,

iii limt→t0 ft(s) = f(s) for almost all s ∈ M .

Then f ∈ L1(M ; dμ) and

lim
t→t0

∫
M

ft(s)dμ(s) =

∫
M

ft0(s)dμ(s).

Instead of using functions with values in C, one could also consider functions from M into some complete
normed space H0 and define the spaces Lp(M,H0; dμ).

II Hilbert Space

DEFINITION III.2.1. A Hilbert space is a set H of elements f, g, h, . . . called vectors satisfying the
following three axioms:

I H is a linear vector space over the field C of complex numbers: Whenever f, g ∈ H and α, β ∈ C, then
αf + βg is an element of H, and

(a) f + g = g + f, (f + g) + h = f + (g + h),

(b) α(f + g) = αf + αg, (α + β)f = αf + βf,

(c) α(βf) = (αβ)f, 1 · f = f,

and there exists a vector θ, called the zero vector and often written as 0, such that

(d) f + θ = f, and 0 · f = θ for all f ∈ H.

II There exists on H a positive definite scalar product, i.e. a mapping from H×H to C, denoted by (·, ·),
such that for all f, g, h ∈ H and α, β ∈ C :

(f, g) = (g, f), (III.2.5)

(f, g + αh) = (f, g) + α(f, h) for all complex α, (III.2.6)

(f, f)1/2 ≥ 0, and (f, f)1/2 = 0 only for f = θ. (III.2.7)

The scalar product induces a metric on H. The distance d(f, g) between two vectors f and g is d(f, g) =
‖f − g‖, where the norm ‖ · ‖ is defined as

‖f‖ = (f, f)1/2. (III.2.8)
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III H is complete with respect to the norm (III.2.8): If {fn} is a Cauchy sequence in H, i.e such that
‖fn − fm‖ → 0 as n,m → ∞, there exists a vector f ∈ H such that ‖fn − f‖ → 0 as n → ∞.

DEFINITION III.2.2. Let H be a Hilbert space:

IV H is separable if there exists a dense numerable subset in H. A set D is dense in H if for all f ∈ H
and any η > 0 there exists an element fη in D such that ‖f − fη‖ < η.

Throughout this thesis, H is assumed to be a separable complex Hilbert space.

Before introducing the L2 spaces as explicit examples of Hilbert spaces, we give some additional definitions
and some basic results that follows from the previous axioms.

PROPOSITION III.2.3. Schwarz Inequality. For all f, g in H
|(f, g)| ≤ ‖f‖ ‖g‖. (III.2.9)

A consequence of (III.2.9) is the triangle inequality:

PROPOSITION III.2.4. Triangle Inequality. For all f, g in H
‖f + g| ≤ ‖f‖ + ‖g‖. (III.2.10)

The triangle inequality with the Axioms I and II imply that a Hilbert space be a normed space.

Since the vectors of H will be interpreted as the pure states of some physical system, two states f and g
are practically indistinguishable if ‖f − g‖ is very small. By this reason we will examine the properties of
convergence of sequences {fn} of elements of H.

DEFINITION III.2.5. The convergence of a sequence of vectors in the norm ‖ · ‖ has already been used
in Axiom III. In Hilbert space theory this is called strong convergence. In this case, we write s-lim fn = f as
n → ∞. The strong limit f es unique.

A necessary and sufficient condition for strong convergence is that the sequence be Cauchy in the sense
defined in Axiom III.

The convergence in H obtained by means of the scalar product is called weak convergence.

DEFINITION III.2.6. A sequence {fn} converges weakly to a limit f if for every g ∈ H the sequence of
scalar products {(fn, g)} converges to {(f, g)}. If this is the case, we write w-lim fn = f as n → ∞. The
weak limit f is unique.

Strong convergence implies weak convergence, but the converse is not true. If fact one has the following
relation which is often very useful:

PROPOSITION III.2.7. s-lim fn = f if and only if w-lim fn = f and lim ‖fn‖ = ‖f‖.
We have to introduce the notion of orthogonality and mutually orthogonal subsets.

DEFINITION III.2.8. Two vectors f and g are said to be orthogonal to each other if (f, g) = 0.

DEFINITION III.2.9. Two subsets M1 and M2 of H are mutually orthogonal if (f1, f2) = 0 for all
f1 ∈ M1 and f2 ∈ M2.

An important relation concerning mutually orthogonal vectors is the following:

THEOREM III.2.10. Pythagoras Theorem.

∥∥ n∑
i=1

fi

∥∥2 =
n∑

i=1

‖fi‖2 if (fi, fj) = 0 for all i �= j. (III.2.11)
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DEFINITION III.2.11. An orthonormal sequence of vectors {hi} is characterized by the property that
(hi, hj) = δi,j where δij = 1 if i = j and δij = 0 if i �= j.

PROPOSITION III.2.12. Bessel Inequality. Let {hi}∞i=1 be a orthonormal sequence of vectors in H then
for all n ∈ N, f ∈ H:

n∑
i=1

|(hi, f)|2 ≤ ‖f‖2 (III.2.12)

DEFINITION III.2.13. An orthonormal set of vectors {ei} is called an orthonormal basis of H if the set
of all linear combinations of vectors belonging to {ei} is dense in H.

In a separable Hilbert space an orthonormal basis is always a countable set. The existence of an or-
thonormal set basis can be established by choosing a subset of linearly independent vectors of a countable
dense set D and applying to it the Schmidt orthogonalization process.

DEFINITION III.2.14. The dimension of a separable Hilbert space is equal to the number N of vectors of
an orthonormal basis if this basis is finite, otherwise, if this basis is an infinite countable set, the dimension
of this separable Hilbert space is equal to ℵ0.

One can prove that any two orthonormal bases of the same Hilbert space have the same cardinal, therefore,
the dimension of a Hilbert space is well defined. Hilbert space Axioms apply to finite or infinite dimensional
spaces. Nevertheless, in the finite dimension case, Axioms III and IV are consequence of Axiomas I and II;
furthermore, in this case, strong convergence coincides with weak convergence.

THEOREM III.2.15. Parseval Relation. If {ei} is an orthonormal basis of vectores in H and f ∈ H, then

‖f‖2 =

∞∑
i=1

|(ei, f)|2. (III.2.13)

Parseval relation implies that each f ∈ H can be expressed as the strong limit of the sequence {fn},
where fn =

∑n
i=1(ei, f)ei.

PROPOSITION III.2.16. Let D be a dense set in H and f ∈ H. If (f, g) = 0 for all g ∈ D, then f = θ.

DEFINITION III.2.17. A linear manifold is a subset M of H that satisfies Axiom I but not necessarily
Axiom III (M will always verify Axioms II and IV, since it is a subset of H). A subset of H that satisfies
all four Axioms will be called a subspace.

An important example of a closed linear manifold (i.e. a subspace) is given in Definition III.2.18.

DEFINITION III.2.18. The orthogonal complement N⊥ of a subset N of H is the set of all vectors f ∈ H
such that (f, g) = 0 for all g ∈ N .

It is worth noticing the following fact known as the Projection Theorem.

THEOREM III.2.19. Projection Theorem. If M is a subspace and M⊥ is its orthogonal complement,
then each vector f in H has a unique decomposition f = f1 + f2 with f1 ∈ M and f2 ∈ M⊥.

A simple but very important consequence is the following:

PROPOSITION III.2.20. Density criterion. If M is a linear manifold such that the unique vector of H
that is orthogonal to M is the vector θ, then M is dense in H.

DEFINITION III.2.21. A linear bounded functional in a Hilbert space H, is a linear function Φ from H
into C, which is bounded with respect to the norm in H, i.e.,

‖Φ‖ = sup
f 
=θ

|Φ(f)|
‖f‖ < ∞.
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If g is a fixed vector in H, one may associate with it a bounded linear functional Φg in H by Φg(f) = (g, f).
The converse is true and known as:

THEOREM III.2.22. Riesz representation Theorem. Let Φ : H → C be a bounded linear functional. Then
there exists a uniquely determined vector g ∈ H such that Φ(f) = (g, f) for all f ∈ H, and ‖Φ‖ = ‖g‖.

We present one of the most concrete and useful examples of Hilbert spaces: The set of all functions in
L2(Rn) form a linear vectorial space if we define the sum and multiplication by scalar as follows:

(f1 + f2)(x) = f1(x) + f2(x), (αf)(x) = αf(x).

The scalar product between two function is defined by

(f, g) =

∫
Rn

f(x)g(x) dnx.

This integral can be shown to be finite by Hölder Inequality.

The Hilbert space L2(Rn) does not consist of individual functions by themselves but rather of classes of
equivalent functions. Two functions are defined to be equivalent if they differ only on a set of measure zero.
It is in most cases possible to transfer all operations in the Hilbert space L2(Rn) to individual functions (a
practice which we shall frequently follow in the traditional manner). There are occasional situations where
the above remark is essential and must be borne in mind.

Completeness of L2(Rn) is a classic result of analysis known as the Riesz-Fischer Theorem. Separability
of L2(Rn) can also be proved.

III Linear operators in Hilbert space

DEFINITION III.3.1. A linear operator in a Hilbert space H is a linear mapping between vectors of H.

A linear operator is defined giving its domain, i.e. a linear manifold D(A) in H, and a linear mapping A
of D(A) in H. The following notation is widely used: If M is a subset of D(A), then AM is the subset of
all vectors f in H such that f = Ag for a g in M . The subset AD(A) is known as the range of the operator A.

Two linear operators A and B are equal if and only if D(A) = D(B) and Af = Bf for all f ∈ D(A).

DEFINITION III.3.2. A linear operator A′ is called an extension of A if D(A) ⊂ D(A′) and A′f = Af
for all f ∈ D(A). In such case we write A ⊂ A′. One can say that A is the restriction of A′ in D(A). A
linear operator is usually called an operator.

DEFINITION III.3.3. Let A be an operator in H. We say that A is closable if the following condition
holds: Whenever {fn} and {f ′

n} are two Cauchy sequences in D(A) that strongly converge to the same limit
f , and both {Afn} and {Af ′

n} are also Cauchy, then s-lim Afn and s-lim A′fn are equal.

Since A is linear, we have the following equivalence:

PROPOSITION III.3.4. An operator A is closable if and only if {fn} is a sequence in D(A), such that
fn → θ and Afn is strongly Cauchy implies Afn → θ.

A very natural way to define an extension Ā of an operator A is the following:

DEFINITION III.3.5. If an operator A is closable we define la closure Ā of the operator A whose domain
is D(Ā). We say that f ∈ D(Ā) if f is the strong limit of a Cauchy sequence {fn} of elements in D(A)
such that {Afn} is also Cauchy and strongly converges to g. We define Āf = g. The closure is well defined
because A is closable.
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If an operator A is closable, then its closure Ā is its smallest closed extension, i.e. if A′ is an arbitrary
closed extension of A, then Ā ⊂ A′.

A very important class of closable operators is the class of bounded operators.

DEFINITION III.3.6. We say that a linear operator A is bounded if there exists a number M < ∞ such
that ‖Af‖ ≤ M‖f‖ for all f ∈ D(A). If there does not exist such M , A is called unbounded. For A bounded
one defines its norm ‖A‖ as

‖A‖ = sup
f∈D(A),f 
=θ

‖Af‖
‖f‖ . (III.3.14)

We denote by B(H) the set of all bounded operators A in H such that D(A) = H.

In consequence, one has that for f ∈ D(A):

‖Af‖ ≤ ‖A‖‖f‖, (III.3.15)

this implies the following result very important in scattering theory.

PROPOSITION III.3.7. If A is an bounded linear operator in a Hilbert space H, then it has a unique
bounded extension Ā in the subspace generated by D(A) (i.e. the closure D(A) of D(A)). Ā is closed, and
‖Ā‖ = ‖A‖. In particular, if D(A) is dense in H, then D(Ā) = H.

We will define the concept of adjoint operator A∗ of a linear operator A.

DEFINITION III.3.8. Assume that D(A) is dense in H. First, we define the domain D(A∗) : A vector
g ∈ H belongs to D(A∗) if there exists a vector g∗ ∈ H such that

(g,Af) = (g∗, f) ∀f ∈ D(A). (III.3.16)

The mapping A∗ is then defined as A∗g = g∗.

Equation (III.3.16) can be rewritten in the following way:

(g,Af) = (A∗g, f) ∀f ∈ D(A), g ∈ D(A∗). (III.3.17)

One can show that A∗ is well defined, i.e. the vector g∗ in (III.3.16) is unique. Clearly, A∗ is linear.
Some of the properties of the adjoint operator of a linear operator are the following:

(a) The adjoint of a linear operator A is always a closed operator.

(b) If A is closable and D(A) is dense, then

A∗ = (Ā)∗ ≡ Ā∗. (III.3.18)

If D(A∗) is also dense in H, then A∗∗ ≡ (A∗)∗ exists. We have the following result:

PROPOSITION III.3.9. Let A be a linear operator such that D(A) and D(A∗) are dense in H. Then A
is closable and Ā = A∗∗.

DEFINITION III.3.10. A is symmetric if D(A) is dense in H and A ⊂ A∗ (i.e. if D(A) ⊂ D(A∗) and
A∗f = Af for each f ∈ D(A)).

Condición A ⊂ A∗ can also be written as follows:

(Af, g) = (f,Ag) for all f, g ∈ D(A). (III.3.19)

DEFINITION III.3.11. Self-adjointness. A is self-adjoint if D(A) is dense in H and A = A∗ (i.e. if
D(A) = D(A∗) and A∗f = Af for all f ∈ D(A)).
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Clearly every self-adjoint operator is symmetric. If A is bounded and D(A) = H, then A is symmetric if
and only if it is self-adjoint. If A is not bounded, the condition A to be self-adjoint is a very strong condition,
because it requires that D(A∗) be exactly equal to D(A). Condition (III.3.19) which is easy to verify in
applications, it is not sufficient for the self-adjointness of A.

DEFINITION III.3.12. A symmetric operator A is called essentially self-adjoint if Ā is self-adjoint.

An equivalent definition of essential self-adjointness is that A∗ = A∗∗. An essentially self-adjoint operator
has one and only one self-adjoint extension. The notion of essentially self-adjointness is important because
in applications one often has a non closed symmetric operator. If it is shown that such operator is essentially
self-adjoint it follows that it determines a unique self-adjoint operator.

Each self-adjoint operator in a naturally way induces a decomposition of the underlying Hilbert space H
in a direct sum of two orthogonal subspaces.

DEFINITION III.3.13. Let A be an operator on H. We define Hp(A) as the subspace generated by all
the eigenvectors of A, i.e., the closure of the linear manifold of all linear combinations of eigenvectors of A.
Alternatively, Hp(A) is the direct sum of all eigenspaces of A : Hp(A) =

⊕Mi =
⊕

N(A− λi), where {λi}
are the eigenvectors of A.

DEFINITION III.3.14. We define Hc(A) as the orthogonal complement of Hp(A).

We see that H is the orthogonal direct sum of Hp(A) and Hc(A):

H = Hp(A) ⊕Hc(A). (III.3.20)

Thus, each vector f in H has a unique decomposition as

f = fp ⊕ fc (III.3.21)

with fp ∈ Hp(A), fc ∈ Hc(A) and (fp, fc) = 0. The indexes p and c are abbreviations of “puntual spectrum”
and “continuous spectrum”. If Hp(A) = H,Hc(A) = {0}, we say that A has a pure puntual spectrum.
An example is the Hamiltonian of the harmonic oscillator A = P̄ 2 + Q̄2 in L2(Rn). If, on the other hand,
Hp(A) = {0},Hc(A) = H, we say that A has a pure continuous spectrum. An example is the free Hamiltonian
H0 = P̄ 2 in non-relativistic quantum mechanics.

PROPOSITION III.3.15. Let A be a self-adjoint operator in a Hilbert space H. Let Ap and Ac be the
restrictions of A in D(A)∩Hp(A) and D(A)∩Hc(A), respectively. Then Ap leaves Hp(A) invariant and Ac

leaves Hc(A) invariant. Therefore, we can see Ap as an operator in Hp(A) and Ac as an operator in Hc(A).
With this convention, Ap and Ac are self-adjoint operators in Hp(A) and Hc(A), respectively, and we can
write, in the decomposition (III.3.20) of H:

A = Ap ⊕ Ac. (III.3.22)

DEFINITION III.3.16. Let A be a closed linear operator. The complex number z is called a regular point
of A if

(i) (A − zI) is invertible,

(ii) D((A − zI)−1) = H,

(iii) (A − zI)−1 is bounded.

In other words if (A − zI)−1 exists and belongs to B(H). The set of all regular points is called the resolvent
set of A and is denoted by ρ(A).
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The complement σ(A) of ρ(A) in C is called the spectrum of A :

σ(A) := C\ρ(A)

The spectrum of the operator Ap is called the puntual spectrum σp(A) of A and the spectrum of Ac the
continuous spectrum σc(A) of A. Thus, by definition,

σp(A) = σ(Ap), σc(A) = σ(Ac).

PROPOSITION III.3.17. Let A = A∗ and z = x + iy with x, y ∈ R and y �= 0 then z ∈ ρ(A).

If λ is an eigenvalue of an operator A from H (into itself), N(A − λ) is a nonempty subspace of H, in
consequence A − λI is not invertible. If λ is not an eigenvalue but it belongs to the continuous spectrum
of A, then A − λI is invertible but either D((A − λI)−1) is only a proper subset of H or (A − λI)−1 is not
bounded.

DEFINITION III.3.18. Let A be a closed operator. Then the operator-valued function: z �→ (A − zI)−1

from ρ(A) into B(H) is called the resolvent of A.

PROPOSITION III.3.19. Let A be a closed operator and z, z1, z2 ∈ ρ(A). Then

(a) (A − zI)−1 maps H onto D(A) and

A(A − zI)−1f = (A − zI)−1Af, ∀f ∈ D(A).

(b) The following identity, called the first resolvent equation:

(A − z1I)−1 − (A − z2I)−1 = (z1 − z2)(A − z1)
−1(A − z2)

−1

(c) (A− z1I)−1(A− z2I)−1 = (A− z2I)−1(A− z1I)−1, i.e. the resolvent in the point z1 ∈ ρ(A) commutes
with the resolvent in any other point z2 ∈ ρ(A).

PROPOSITION III.3.20. Let A be a closed operator. Then

(a) The mapping z �→ (A − zI)−1 is continuous in the operator norm on ρ(A) = {z : (A − zI)−1

exists and lies in B(H)} i.e. u-limz1→z, z,z1∈ρ(A) ‖(A − z)−1 − (A − z1)
−1‖ = 0

(b) The resolvent is differentiable in the operator norm and

d

dz
(A − zI)−1 := u − lim

z1→z
(z1 − z)−1[(A − z1)

−1 − (A − z)−1]

= (A − zI)−2

DEFINITION III.3.21. Let Δ be an open set in R
n and a : Δ → C be a measurable function. The

multiplication operator A associated with a is the following linear operator in L2(Δ):

D(A) = {f ∈ L2(Δ) :

∫
Δ

|a(x)|2|f(x)|2dnx < ∞} y

(Af)(x̄) = a(x̄)f(x̄) for each f ∈ D(A).

Clearly D(A) is the maximal domain whereby multiplication by a(x̄) makes sense.

PROPOSITION III.3.22. Let a : Δ → R be measurable and |a(x̄)| < ∞ almost everywhere. Then the
multiplication operator associated is a self-adjoint operator in L2(Δ).
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PROPOSITION III.3.23. Let A be the multiplication operator associated with a function a : Δ → C.
Then A is in B(L2(Δ)) if and only if ‖a‖∞ < ∞ in which case

‖A‖ = ‖a‖∞. (III.3.23)

DEFINITION III.3.24. An orthogonal projection (a projection, briefly) is a linear operator E that satisfies
D(E) = H and

E2 = E = E∗. (III.3.24)

We establish
M(E) = {f ∈ H|Ef = f}. (III.3.25)

It is easy to see that M(E) is a subspace. Moreover, if g ⊥ M(E), we have that for any h ∈ H
(Eg, h) = (g,E∗h) = (g,Eh). (III.3.26)

Now E2h = Eh, in consequence Eh ∈ M(E), in such a way that (III.3.26) implies that (Eg, h) = 0.
Therefore Eg = 0 by proposition III.2.16. This shows that E is not nothing else that the orthogonal
projection operation of H over M(E).

Below, we define the concept of isometry. This approach was taken from Amrein [59]:
An isometry (or isometric operation) is a linear operator Ω in B(H) that satisfies

Ω∗Ω = I. (III.3.27)

In, Reed and Simon [77], an isometry is defined as in (III.3.29).

PROPOSITION III.3.25. Let Ω be an isometry. Then

(a) Ω preserves scalar products:
(Ωf,Ωg) = (f, g) for all f, g ∈ H. (III.3.28)

In particular
‖Ωf‖ = ‖f‖ for all f ∈ H. (III.3.29)

(b) ‖Ω‖ = 1.

(c) ΩΩ∗ is a projection, and M(ΩΩ∗) = R(Ω).

(d) Ω is invertible.

(e) Ω∗ = Ω−1f if f ∈ R(Ω), and Ω∗f = 0 if f ⊥ R(Ω).

Proposition III.3.25 shows that every isometric operator Ω maps the Hilbert space H onto a subspace
M(ΩΩ∗) while it preserves the length of vectors and the angles between vectors. A special case is the unitary
operators U such that M(UU∗) = H. Thus, U is unitary if it is isometric and F ≡ UU∗ = I; in other words
U is unitary if

U∗U = I and UU∗ = I. (III.3.30)

In this case U∗ = U−1 in H
A generalization of the notion of isometry is the partial isometry. An operator Ω ∈ B(H) is called a

partial isometry if
Ω∗Ω = E, (III.3.31)

where E is a projection. Some properties of partial isometries are given in the following proposition:

PROPOSITION III.3.26. Let Ω a partial isometry. Then

(a)
ΩE = Ω, (III.3.32)
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(b)
(Ωf,Ωg) = (Ef,Eg) ∀f, g ∈ H, (III.3.33)

(c) ‖Ω‖ = 1 unless that E = 0,

(d) ΩΩ∗ is a projection, and M(ΩΩ∗) = R(Ω).

IV Fourier Transform

The Fourier transform is an element ubiquitous in quantum mechanics.

DEFINITION III.4.1. We denote by C∞
0 (Rn) the set of all functions infinitely differentiable f : R

n → C

each of them being identically zero in the complement of a compact subset of R
n. Last, if Γ ⊂ R

n is closed
and with zero Lebesgue measure, we denote by C∞

0 (Rn\Γ) the set of all functions in C∞
0 (Rn) whose support

lies in R
n\Γ.

To define Fourier transform, besides infinitely differentiable functions, we need to define functions of
rapidly decrease.

DEFINITION III.4.2. A function f belongs to S(Rn) if it is infinitely differentiable and if for each tuple
of 2n coordinates of non-negative integers {j1, . . . , jn,m1, . . . , mn} one has that

sup
x̄∈Rn

∣∣∣xj1
1 · · ·xjn

n

∂|m1+...+mn|

∂xm1
1 · · · ∂xmn

n
f(x1, . . . , xn)

∣∣∣ < ∞.

Such functions are also called rapidly decreasing functions. One example is the function e−x2

.

DEFINITION III.4.3. If f ∈ S(Rn), we can define a new function f̃ : R
n → C by means of the formula

f̃(k̄) = (2π)−n/2

∫
dnxe−ik̄·x̄f(x̄), (k̄ ∈ R

n). (III.4.34)

We have the following properties of C∞
0 (Rn \ Γ) and S(Rn) :

LEMMA III.4.4. (a) S(Rn) is dense in Lp(Rn), 1 ≤ p < ∞.

(b) S(Rn) is invariant under Fourier transforms.

LEMMA III.4.5. Let Γ ⊂ R
n be closed and with Lebesgue measure zero, then the set C∞

0 (Rn \Γ) is dense
in Lp(Rn), 1 ≤ p < ∞. In particular C∞

0 (Rn) is dense in Lp(Rn), 1 ≤ p < ∞.

The result of lemma III.4.4 can still be strengthened. In fact, Fourier transform is a map of S(Rn) onto
S(Rn). This can be seen defining the inverse Fourier transform in S(Rn) by

f̂(x̄) = (2π)−n/2

∫
dnk eik̄·x̄f(k̄), f ∈ S(Rn) (III.4.35)

Equation (III.4.35) defines the inverse of (III.4.34). From this point on, we will denote the map f �→ f̃

by F . Then we have that f = F−1f̃ =
ˆ̃
f . In the following sections F and F−1 will be extended over the

whole space L2(Rn).

We have that both F are F−1 isometric in S(Rn), i.e.

‖f̃‖ = ‖f‖ = ‖f̂‖ f ∈ S(Rn), (III.4.36)

(f̃ , g̃) = (f, g) = (f̂ , ĝ) f, g ∈ S(Rn), (III.4.37)

Before enouncing Proposition III.4.6 which is a partial version of Theorem 7.2 from Rudin’s book [80],
we define the following:
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(a) Por each y ∈ R
n, the character ey is the function defined by

ey(x) = eiy·x = ei
Pn

j=1 yjxj , x ∈ R
n.

(b) The translation operators τx are defined by

(τxf)(y) = f(y − x), x, y ∈ R
n.

PROPOSITION III.4.6. Suppose f, g ∈ L1(Rn), x ∈ R
n. Then, denotingˆas the Fourier transform,

(a) (τxf )̂ = e−xf̂ ,

(b) (exf )̂ = τxf̂ ,

(c) (f ∗ g)̂ = f̂ ĝ.

Proof. The proof of (a) and (b) are detailed in Theorem 7.2 [80], (c) is obtained by Fubini’s Theorem
and one explicit proof of (c) can be found in Reed and Simon [77] Theorem IX.3.

Even though the set {f̃ |f ∈ L2(Rn)} is again L2(Rn), it is convenient to distinguish between these two
representations of L2(Rn), because variables x̄ and k̄ have different interpretations in quantum mechanics.
Multiplication of f(x̄) by xi corresponds to the i-th component of the position operator, and multiplication
of f̃(k̄) by ki corresponds to the i-th component of the momentum operator. Therefore, we will denote
the set of functions {f |f ∈ L2(Rn)} by L2(Rn) and the set {f̃ |f ∈ L2(Rn)} of their Fourier transforms
by L̃2(Rn). In other word, we do not considerate L2(Rn) as an abstract space but as the set of all square
integrable quantum mechanical wave functions defined in the n dimensional configuration space.

One can apply Proposition III.3.7 to show that Fourier transform F defined in D(F) = S(Rn) with norm
equals 1 can be extended to a bounded operator with norm 1 defined in all L2(Rn). For functions also in
L1(Rn) ∩ L2(Rn) Fourier transform is also defined by (III.4.34). For any f in L2(Rn) one has to define Ff
as Ff = s-limFfm as m → ∞, where fm ∈ L1(Rn) ∩ L2(Rn) and fm → f . Similarly F−1 can be extended
to whole L2(Rn) and again this extension will be denoted by F−1. One application of Proposition III.3.7
implies that FF−1 = F−1F = I in the whole L2(Rn).

Now let us see some very important examples in quantum mechanics:

Example III.4.7. Qm, (m = 1, . . . , n) the multiplication operator by xm in L2(Rn):

(Qmf)(x̄) = xmf(x̄) (III.4.38)

It is called the m-th component of the position operator in quantum mechanics.

Example III.4.8. Pm, (m = 1, . . . , n) the multiplication operator by km in L̃2(Rn):

(FPmf)(k̄) = kmf̃(k̄) (III.4.39)

Pm is called the m-th component of the momentum operator.

Example III.4.9. Let H0 be the multiplication operator by |k̄|2 in L̃2(Rn):

(FH0f)(k̄) = |k|2f̃(k̄). (III.4.40)

This operator is called the free Hamiltonian of Schrödinger in quantum mechanics.

H0 = P̄ 2 =
n∑

m=1

P 2
m. (III.4.41)
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Example III.4.10. If v : R
n → R is any measurable function then it determines a multiplication operator

V in L2(Rn). We will use letters v and V for such operators when we have in mind the interaction operator
of a non-relativistic quantum particle, and function v will be called a potential.

The Hamiltonian for a particle that moves under the influence of a potential v formally is given by
H = H0 + V.

PROPOSITION III.4.11. (a) H0 is a non-bounded positive operator, its spectrum is [0,∞) and is purely
continuous. In particular Hp(H0) = {0}, Hc(H0) = H.

(b) D(H0) lies in D(Pm), and Pm(H0 − zI)−1 belongs to B(H) for each complex z outside of [0,∞).

(c) The resolvent of H0 is the multiplication operator by (k̄2 − z)−1 in L̃2(Rn).

PROPOSITION III.4.12. (a) If f ∈ S(Rn), then f ∈ D(H0) and

(H0f)(x̄) = −(�f)(x̄), (III.4.42)

where � :=
∑n

m=1 ∂2/∂x2
m is the Laplacian.

(b) (H0 + I) transforms onto S(Rn) in S(Rn).

(c) The restriction Ĥ0 of H0 in S(Rn) is essentially self-adjoint, and Ĥ∗
0 = H0.

REMARK III.4.13. There exist other linear sub-manifolds of D(H0) on which, H0 is essentially self-
adjoint. We mention two of these sub-manifolds:

(a) The set C∞
0 (Rn) of all infinitely differentiable compactly supported functions.

(b) The set C̃∞
0 (Rn) of all functions f : R

n → C whose Fourier transform f̃ are infinitely differentiable
and compact supported.

V Fourier Analysis on Groups

When we map the space L2(X) in (II.1.2) onto the space L2(X̂) in (II.1.3) we use, in fact, a more general
notion of Fourier transform than the one we have described in Section IV. To understand more this, we
include the material from Rudin [79].

V.1 Topological Groups

DEFINITION III.5.1. An Abelian Group is a set G in which a binary operation, +, is defined with the
following properties:

(a) x + y = y + x for all x, y ∈ G.

(b) x + (y + z) = (x + y) + z for all x, y, z ∈ G.

(c) G contains an element 0 such that x + 0 = x for all x ∈ G.

(d) To each x ∈ G corresponds an element −x such that x+(−x) = 0. We write x−x in place of x+(−x).

A homomorphism of a group G into a group G1 is a map ϕ from G into G1 such that

ϕ(x + y) = ϕ(x) + ϕ(y) x, y ∈ G.

A homomorphism which is one to one is an isomorphism. If there is an isomorphism of a group G into a
group G1, then G and G1 are isomorphic groups, and for many purposes one need not to distinguish between
them.
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The kernel of a homomorphism ϕ is the set ϕ−1(0); the kernel is always a subgroup.
If H is a subgroup of G, the sets H + x, x ∈ G are the cosets of H. Two cosets H + x and H + y are

identical if and only if x − y ∈ H; otherwise H + x and H + y are disjoint. The set of all cosets of H is
denoted by G/H and G/H becomes an Abelian group (the quotient group of G modulo H) if we define

(H + x) + (H + y) = H + (x + y), x, y ∈ G.

The map x → H + x is a homomorphism of G into G/H, with kernel H.

DEFINITION III.5.2. A Topological Abelian Group is a Hausdorff space G which is also an Abelian
group, provided the map (x, y) → x − y is a continuous map of the product space G × G onto G. If, in
addition, the topology of G is locally compact, then G is a locally compact Abelian (LCA) group.

THEOREM III.5.3. Suppose that G is LCA, ϕ is the natural homomorphism of G onto G/H, where H
is a closed group of G, and a subset of G/H is declared open if and only if it is the image under ϕ of an
open subset of G. Then G/H is an LCA group.

If {Gα} is a collection of Abelian groups, their complete direct sum is the group G defined as follows:
G, as a set, is the Cartesian product of the sets Gα, and addition is performed coordinatewise: If x and y
belong to G, then x + y is the element of G whose αth coordinate is x(α) + y(α) ∈ Gα.

The direct sum of the groups Gα is the subgroup of their complete direct sum which consists of all x
which have x(α) �= 0 for only finitely many α.

By the Tychonoff Theorem: The direct sum of any finite collection of LCA groups is a LCA group. The
complete direct sum of any collection of compact Abelian groups is a compact Abelian group.

If G = H1 + H2, where H1 and H2 are subgroups of G, the G is (isomorphic to) the direct sum H1 ⊕H2

of these two subgroups if and only if H1 ∩ H2 = {0}.

V.2 Weak topology and continuous functions

We commence with recalling some definitions from topology.
If τ1 and τ2 are two topologies on a set S and if τ1 ⊂ τ2, then τ1 is said to be weaker than τ2.
If F is a family of maps of S into a topological space Y, the collection of all finite intersections of sets of

the form f−1(V ), with f ∈ F and V open in Y, forms a base for a topology τF on S. Each f ∈ F is evidently
continuous with respect to τF , and τF is the weakest topology on S with this property; τF is called the weak
topology induced in S by F.

F is said to separate points on S if to every pair of points p1 and p2 in S there corresponds an f ∈ F
such that f(p1) �= f(p2). If F separates points on S and if Y is a Hausdorff space then S with the weak
topology induced by F is also a Hausdorff space.

DEFINITION III.5.4. If S is a topological space, C(S) denotes the set of all bounded continuous complex-
valued functions in S. The set of all f ∈ C(S) whose support is compact is denoted by Cc(S). If, for each
ε > 0, the inequality |f(p)| < ε holds for all p in the complement of some compact set in S, then f is said to
vanish at infinity. The set of all f in C(S) such that f vanishes at infinity is denoted by C0(S).

The spaces C(S), C0(S) and Cc(S) are closed under pointwise addition, multiplication, and scalar mul-
tiplication: (f + g)(p) = f(p) + g(p); (fg)(p) = f(p)g(p); (αf)(p) = α(f(p)). Since the usual commutative,
associative, and distributive laws holds, these spaces are algebras over the complex field.

If we introduce a norm in C(s) by setting

‖f‖∞ = sup
p∈S

|f(p)|, f ∈ C(S),

The metric ‖f − g‖∞ turns C(S) and C0(S) into complete metric spaces, since they are closed under the
formation of limits of uniformly convergent sequences.
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THEOREM III.5.5. Stone-Weierstrass Theorem. Let S be a locally compact Hausdorff space and let A be
a subalgebra of C0(A)(S) which separates points on S, which is self-adjoint (i.e., f ∈ A implies f ∈ A, where
f is the complex conjugate of f) and which contains, for each p0 ∈ S, a function f such that f(p0) �= 0.
Then A is dense in C0(A)(S).

V.3 Haar measure

Let X be a locally compact Hausdorff space, B be the family of Borel subsets of X and μ a measure defined
on (X,B). With each measure μ on X there is associated a set function |μ|, the total variation of μ, defined
by

|μ|(E) = sup
∑

|μ(Ej)|,
the supremum being taken over all finite collections of pairwise disjoint Borel sets Ej whose union is E. Then
|μ| is also a measure on X. If

|μ|(E) = sup |μ|(K) = inf |μ|(V )

for every Borel set E, where K ranges over all compact subsets of E and V ranges over all open supersets
of E, the μ is called regular.

DEFINITION III.5.6. We put
‖μ‖ = |μ|(X)

and define M(X) to be the set of all complex-valued regular measures μ on X for which ‖μ‖ is finite.

On every LCA group G there exists a non-negative regular measure m, the so called Haar measure of G,
which is not identically zero and which is translation invariant. That is to say

m(E + x) = m(E)

for every x ∈ G and every Borel set E in G. For the construction of that measure see [79] section 1.1.1 and
the references given therein.

There is a uniqueness theorem for the Haar measure.

THEOREM III.5.7. If m and m′ are two Haar measures on G, then m′ = λm where λ is a positive
constant.

As usual, for 1 ≤ p ≤ ∞, Lp(G) = Lp(G,B,m) is the space of complex valued functions f defined on G
such that

‖f‖p =

(∫
G

|f(x)|p dm(x)

)1/p

< ∞.

L2(G) is a Hilbert space with the customary scalar product (f, g) =
∫

G
f(x)g(x) dm(x).

DEFINITION III.5.8. Convolution. For any pair of Borel functions f and g on the LCA group G we
define their convolution f ∗ g by the formula

(f ∗ g)(x) =

∫
G

f(x − y)g(y) dm(y) =

∫
G

(τyf)(x)g(y) dm(y),

provided f(x)g(y) ∈ L1(y ∈ G).

We have the following theorem

THEOREM III.5.9. For any LCA group G, L1(G) is a commutative Banach algebra, if multiplication is
defined by convolution.

Proof. Look at Theorem 1.1.7 in Rudin [79].
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V.4 The Dual Group and the Fourier Transform

DEFINITION III.5.10. Characters. A complex function γ on a LCA group G is called a character of G
if |γ(x)| = 1 for all x ∈ G and if the functional equation,

γ(x + y) = γ(x)γ(y) x, y ∈ G,

is satisfied. The set of all continuous characters of G forms a group Γ, the dual group of G, if addition is
defined by

(γ1 + γ2)(x) = γ1(x)γ2(x) x ∈ G; γ1, γ2 ∈ Γ.

Throughout this section, the letter Γ will denote the dual group of the LCA group G. In view of the
duality between G and Γ which will be established in Subsection V.6 below, it is customary to write

(x, γ)

in place of γ(x).
We identify the relation that exists between Γ and L1(G).

THEOREM III.5.11. If γ ∈ Γ and if

f̂(γ) =

∫
G

f(x)(−x, γ) dm(x), f ∈ L1(G), (III.5.43)

then the map f → f̂(γ) is a complex homomorphism of L1(G), and is not identically zero. Conversely, every
non-zero complex homomorphism of L1(G) is obtained in this way, and distinct characters induce distinct
homomorphisms. Proof. See Theorem 1.2.2 in Rudin [79].

DEFINITION III.5.12. The Fourier Transform. For all f ∈ L1(G), the function f̂ defined on Γ by

(III.5.43) with γ ∈ Γ is called the Fourier transform of f. The set of all functions f̂ so obtained will be
denoted throughout by A(Γ).

Since f̂ : Γ → C, we give Γ the weak topology induced by A(Γ).
We limit ourselves to enounce some results from Theorem 1.2.4 in Rudin [79].

THEOREM III.5.13. (a) A(Γ) is a separating self-adjoint subalgebra of C0(T ), so that A(Γ) is dense
in C0(T ), by the Stone Weierstrass Theorem.

(b) The Fourier transform, considered as a map of L1(G) into C0(T ), is norm-decreasing and therefore

continuous: ‖f̂‖∞ ≤ ‖f‖1.

At present, we have that Γ is a group and a locally compact Hausdorff space
By an alternative description of the topology of Γ one can prove the following:

THEOREM III.5.14. (a) (x, γ) is a continuous function on G × Γ.

(b) Let K and C be compact subsets of G and Γ, respectively, let Ur be the set of all complex numbers z
with |1 − z| < r, and put

N(K, r) = {γ : (x, γ) ∈ Ur ∀x ∈ K},
N(C, r) = {x : (x, γ) ∈ Ur ∀ γ ∈ C}.

Then N(K, r) and N(K, r) are open subsets of Γ and G, respectively.

(c) The family of all sets N(K, r) and their translates is a base for the topology of Γ.

(d) Γ is a LCA group.
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V.5 The inversion theorem

DEFINITION III.5.15. Let B(G) be the set of all functions f on G which are representable in the form

f(x) =

∫
Γ

(x, γ) dμ(γ) x ∈ G,

for some μ ∈ M(X).

Let us denote dγ the Haar measure in the LCA group Γ.

THEOREM III.5.16. (a) If f ∈ L1(G) ∩ B(G), then f̂ ∈ L1(G).

(b) If the Haar measure of G is fixed, the Haar measure of Γ can be so normalized that the inversion
formula,

f(x) =

∫
Γ

f̂(γ)(x, γ) dγ, x ∈ G,

is valid for every f ∈ L1(G) ∩ B(G).

If the Haar measure of G given, the inversion theorem singles out a specific Haar measure of Γ, adjusted
so that the inversion theorem holds.

From now on, it will always be tacitly assumed that the Haar measure of G and Γ are so adjusted that
the inversion theorem holds.

THEOREM III.5.17. Plancherel Theorem. The Fourier transform, restricted to L1(G) ∩ L2(G), is an
isometry (with respect to the L2-norms ) onto a dense linear subspace of L2(Γ). Hence it may be extended,
in a unique manner, to an isometry of L2(G) onto L2(Γ).

The above extension of the Fourier transform to L2(G) is sometimes referred to as the Plancherel trans-

form; the symbol f̂ will be used in this context as well.

V.6 The Pontryagin duality Theorem

Since Γ is a LCA group, it has a dual group, say Γ̂, and everything we have proved so far for the ordered
pair (G,Γ) holds equally well for the pair (Γ, Γ̂). The value of a character γ̂ ∈ Γ̂ at the point γ ∈ Γ will be
temporarily written (γ, γ̂). By Theorem III.5.14 (a) every x ∈ G may be regarded as a continuous character
on Γ, and thus there is a natural map α of G into Γ̂, defined by

(x, γ) = (γ, α(x)) x ∈ G, γ ∈ Γ.

THEOREM III.5.18. The Pontryagin duality Theorem. The above map α is an isomorphism and a
homeomorphism of G onto Γ̂.

Thus: Every LCA group is the dual of its dual group.

V.7 Duality between subgroups and quotient groups

Suppose H is a closed subgroup of the LCA group G, and Λ is the set of all γ ∈ Γ (the dual group of G)
such that (x, γ) = 1, for all x ∈ H. We call Λ the annihilator of H.

For any fixed x ∈ H, the continuity of (x, γ) shows that the set of all γ with (x, γ) = 1 is closed, so that
Λ is an intersection of closed sets. Since Λ is evidently a group, we conclude that Λ is a closed group of Γ.

THEOREM III.5.19. With the above notation Λ and Γ/Λ are (isomorphically homeomorphic to) the dual
groups of G/H and H, respectively.
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V.8 Direct sums

In subsection V.1 above we have already defined the direct sum and complete direct sum of LCA groups.
The direct sum of G1 and G2 will be written G1 ⊕ G2, and the direct sum of n copies of G will be denoted
by Gn.

THEOREM III.5.20. If G = G1⊕. . .⊕Gn and Γi is the dual group of Gi, 1 ≤ i ≤ n, then Γ = Γ1⊕. . .⊕Γn.

COROLLARY III.5.21. R
n is its own dual.

V.9 Fourier transforms on subgroups and on quotient groups

Throughout this section, H will be a closed group of G, and Λ will be the annihilator of H.

THEOREM III.5.22. The functions belonging to B(Λ) are precisely the restrictions to Λ of the functions
belonging to B(Γ).

Suppose mG,mH , and mG/H are the Haar measures of the indicated groups.

THEOREM III.5.23. The functions belonging to A(Λ) are precisely the restrictions to Λ of the functions

belonging to A(Γ). For f ∈ L1(G), f̂ vanishes on Λ if and only if∫
H

f(x + y) dmH(y) = 0

for almost all x ∈ G.

In the last theorem the Haar measures can be adjusted so that∫
G

f dmG =

∫
G/H

dmG/H(ξ)

∫
H

f(x + y)dmH(y),

where f ∈ Cc(G), and ξ = ξ(x) is the coset of H (an element in G/H ) which contains x and x ∈ G.

V.10 Normalization of the Haar measure

Now, we are going to develop in more detail the case where G = R with the Haar measure.
Theorem 1.18 in Folland [69] shows that every Lebesgue-Stieltjes measure in R is regular, in particular

Lebesgue measure is Lebesgue-Stieltjes. Since Lebesgue measure is translation invariant we can conclude
that:

THEOREM III.5.24. The Haar measure in the Real line is the Lebesge measure up to a positive factor.

Take G = R. Let Γ the dual group of the group G. Fix γ ∈ Γ. Because γ is not identically zero, by means
of the fundamental Theorem of calculus, there exists an δ > 0 such that∫ δ

0

γ(t) dt = α,

for some α �= 0.
By the functional equation

γ(x + t) = γ(x)γ(t) x, t ∈ R, (III.5.44)

then it implies that

αγ(x) =

∫ δ

0

γ(t)γ(x) dt =

∫ δ

0

γ(t + x) dt =

∫ x+δ

x

γ(t) dt.
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Since γ is continuous, the last expression is differentiable, and so γ has a continuous derivative γ′. We
differentiate (III.5.44):

γ′(x + t) = γ(x)γ′(t),

setting t = 0, we obtain
γ′(x) = γ(x)γ′(0), (III.5.45)

Since |γ(x)| = 1, there exists a differentiable function θ : G = R → R such that γ(x) = eiθ(x), moreover
θ(0) = 0 because γ(0) = 1. Equation (III.5.45) becomes

eiθ(x)iθ′(x) = eiθ(x) eiθ(0)iθ′(0)

θ′(x) = θ′(0)

θ(x) = θ′(0)x (III.5.46)

θ(x) = xy

where y ∈ R is such that θ′(0) = y. Thus, we have a map ζ : Γ → R, such that γ �→ y. Let γ, γ1, γ2 ∈ Γ,
so γ(x) = eiθ(x), γ1(x) = eiθ1(x) and γ2(x) = eiθ2(x) with θ1, θ2 : G = R → R being differentiable and
γ = γ1 + γ2. We know that for all x ∈ R the sum in Γ goes as follows:

γ(x) = (γ1 + γ2)(x) = γ1(x)γ2(x),

this implies that
θ(x) = (θ1 + θ2)(x).

Hence ζ is a homomorphism between Γ and R. Let us see that it is one to one. Suppose that ζ(γ1) = ζ(γ2)
then θ′1(0) = θ′2(0), by (III.5.46) θ1(x) = θ2(x), for all x ∈ R, finally γ1 = γ2. Then, for all γ ∈ Γ there exist
a unique y ∈ R such that, for all x ∈ G = R,

γ(x) = eiyx. (III.5.47)

Therefore, Γ are R are isomorphic.
We use the topology of Γ described in Theorem III.5.14, known also as the Gelfand topology, to give a

topology (the Gelfand topology) to the real line R. That is a set O is open in R if and only if ζ−1(O) is open
in Γ. Then the collection of images ζ(N(K, r)) and their translates is a base for R. Let us take any open set,
in the Gelfand topology of R, V that contains 0, then it exists K compact in R with the usual topology and
an r > 0 such that 0 ∈ ζ(N(K, r)) ⊂ V. There exists n ∈ N such that |x| ≤ n for all x ∈ K. If we denote
V (n, r) = {y ∈ R : |1 − eiyx| < r, ∀ |x| ≤ n} and Br denotes the open ball of center zero and radius r in
R

n. We have that 0 ∈ V (n, r) = ζ(N(Bn, r)) ⊂ ζ(N(K, r)) ⊂ V. This proves that the sets V (n, r) form a
neighborhood base at zero with respect to the Gelfand topology in R.

At this moment, we want to show for 0 < r ≤ 2 that y ∈ V (n, r) ⇔ |y| < 2
n arcsin r

2 . This means that

V (n, r) =

{
(− 2

n arcsin r
2 , 2

n arcsin r
2 ), if r ≤ 2,

R if r > 2.

So, the Gelfand and the usual topologies are the same. Meaning also that Γ with the Gelfand topology and
R with the usual are isomorphic and homeomorphic.

First we do the following calculations with 0 < |x| ≤ n and we take arcsin : [0, 1] → [0, π] :

|1 − eiyx| < r ⇔
(1 − cos(yx))2 + sin2(yx) < r2 ⇔

2 − 2 cos(yx) < r2 ⇔
sin2(yx/2) < (r/2)2 ⇔
| sin(yx/2)| < r/2 ⇔

|yx/2| < arcsin(r/2) ⇔
|y| <

2

x
arcsin(r/2)
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Assume y ∈ V (n, r), then, for all |x| ≤ n we have that |1 − eiyx| < r, in particular for x = n this implies
that |y| < 2

n arcsin(r/2). Conversely, take |y| < 2
n arcsin(r/2), because 2

n arcsin(r/2) < 2
x arcsin(r/2) with

0 < |x| ≤ n we have that |1 − eiyx| < r, for all |x| ≤ n.
Now we have established that the dual group of R is Γ � R. Let αdx, βdp the Haar measures in G and

in Γ, where α, β > 0 and dx and dp denote the ordinary Lebesgue Measure on the real line.
By a straightforward computation

2β

1 + x2
=

∫ ∞

−∞
e−|p|eixp βdp,

Because e−|p| and 2β
1+x2 are L1 functions (see theorem 7.7 in Rudin [80]) and the inversion Theorem for

Fourier transform in R, we have that

e−|p| = 2αβ

∫ ∞

−∞

1

1 + x2
e−ixp dx,

Setting p = 0,

1 = 2αβ

∫ ∞

−∞

1

1 + x2
dx = 2αβ arctan x

∣∣∣∞
−∞

= 2παβ. (III.5.48)

Two of the possible choices that are frequently used: α = 1/(2π), β = 1 or α = β = (2π)−1/2.
We can generalize to the case G = Γ = R

n. Following the same idea, let αdx1 · · · dxn, βdp1 · · · dpn the
Haar measures in G and in Γ, where α, β > 0∫

Rn

e−
Pn

j=1 |pj |ei
Pn

j=1 xjpj βdp1 · · · dpn = β

n∏
j=1

(∫ ∞

−∞
e−|pj |eixjpj dpj

)

= 2nβ

n∏
j=1

1

1 + x2
j

By the inversion theorem

e−
Pn

j=1 |pj | =

∫
Rn

2nβ
n∏

j=1

1

1 + x2
j

e−i
Pn

j=1 xjpj αdx1 · · · dxn

Setting p1 = · · · = pn = 0 :

1 = 2nαβ

n∏
j=1

∫
R

1

1 + x2
j

dxj

1 = (2π)nαβ. (III.5.49)

VI Unbounded operators

Many of the most important operators which occur in mathematical physics are not bounded. The Hellinger-
Toeplitz Theorem (see Theorem III.6.8) says that an everywhere-defined operator A which satisfies (Aφ,ψ) =
(φ,Aψ) is necesarily a bounded operator suggesting that a general unbounded operator T will only be defined
on a dense linear subset of the Hilbert space H. To identify an unbounded operator on a Hilbert space one
must give the domain on which it acts and the specify how it acts on that space. Before (the Hellinger-
Toeplitz) Theorem III.6.8 is enounced we give a Definition and a Theorem to help us to understand how
Reed and Simon prove Hellinger-Toeplitz’s Theorem.
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DEFINITION III.6.1. Let T be a mapping of a normed linear space X into a normed linear space Y. The
graph of T, denoted by Γ(T ), is defined as

Γ(T ) = {〈x, y〉 ∈ X × Y
∣∣ y = Tx}.

If T is unbounded operator in X then we modify the later definition

Γ(T ) = {〈x, y〉 ∣∣x ∈ D(T ) ⊂ X, y = Tx}.
T is a closed operator if Γ(T ) is a closed subset in the Hilbert space H × H with the scalar product:

(〈φ1, ψ1〉, 〈φ2, ψ2〉) = (φ1, φ2) + (ψ1, ψ2) .

DEFINITION III.6.2. An Alternative way to define closable operators. An operator T is closable if it
has a closed extension. Every closable operator has a smallest closed extension, called its closure, which we
denote by T .

PROPOSITION III.6.3. If T is closable, then Γ(T ) = Γ(T ).

THEOREM III.6.4. Let T be a densely defined operator on a Hilbert space H. Then:

(a) T ∗ is closed.

(b) T is closable if and only if D(T ∗) is dense in which case T = T ∗∗.

(c) If T is closable, then (T )∗ = T ∗.

As a remainder: A symmetric operator is always closable, since D(T ∗) ⊃ D(T ) is dense. If T is symmetric,
T ∗ is a closed extension of T , so the smallest closed extension T ∗∗ of T must be contained in T ∗. Thus for
symmetric operators, we have

T ⊂ T ∗∗ ⊂ T ∗. (III.6.50)

For closed symmetric operators,
T = T ∗∗ ⊂ T ∗. (III.6.51)

For self-adjoint operators,
T = T ∗∗ = T ∗. (III.6.52)

From this we can easily see that a closed symmetric operator is self-adjoint if and only if T ∗ is symmetric.
The distinction between closed symmetric operators and self-adjoint operators is very important. It is only
for self-adjoint operators that the spectral theorem holds and it is only self-adjoint operators that may be
exponentiated to give the one-parameter unitary groups which give the dynamics in quantum mechanics.

If T is essentially self-adjoint, then it has one and only one self-adjoint extension, for that suppose that S
is a self-adjoint extension of T. Then S is closed, and thereby, since S ⊃ T , S ⊃ T ∗∗. By Definitions III.3.10
and III.3.12, T and T ∗ are symmetric and applying (III.6.50) to both T and T ∗ we have that (T ∗∗)∗ = T ∗∗.
Thus, S = S∗ ⊂ (T ∗∗)∗ = T ∗∗. By the results in Section X.1 of Reed and Simon [78] the converse is also
true; namely, if T has one and only one self-adjoint extension, then T is essentially self-adjoint. This follows
by the corollary of Theorem VIII.3 in Reed and Simon [77] and the corollary of Theorem X.2 in Reed and
Simon [78].

Since T ∗ = T
∗

= T ∗∗∗, T is essentially self-adjoint if and only if

T ⊂ T ∗∗ = T ∗.

The importance of essential self-adjointness is that one is often given a non-closed symmetric operator T.
If T can be shown to be essentially self-adjoint, then there is uniquely associated to T a self-adjoint operator
T = T ∗∗. Another way of saying this is that if A is a self-adjoint operator, then to specify A uniquely one
need not give the exact domain of A (which is often difficult) but just some core (see Definition III.6.9) for
A.
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THEOREM III.6.5. The basic criterium for self-adjointness. Let T be a symmetric operator on a Hilbert
space H. Then the following three statements are equivalent:

(a) T is self-adjoint.

(b) T is closed and ker(T ∗ ± i) = {0}.
(c) Ran (T ± i) = H.

We give the simple proof of Corollary III.6.6 below, in view that Reed and Simon omitted it.

COROLLARY III.6.6. The basic criterium for essential self-adjointness. Let T be a symmetric operator
on a Hilbert space H. Then the following three statements are equivalent:

(a) T is essentially self-adjoint.

(b) ker(T ∗ ± i) = {0}.
(c) Ran (T ± i) is dense.

Proof. Assume T is essentially self-adjoint. Then T is self-adjoint. By Theorem III.6.4, T ∗ = T
∗

and then, Theorem III.6.5 implies ker(T ∗ ± i) = {0}.
Let us suppose that ker(T ∗± i) = {0}, then T is closed and ker(T

∗± i) = {0}. (c) in Theorem III.6.5 tell
us that Ran (T ± i) = H. Let g be any element in H, then there exists a f ∈ D(T ± i) such that g = (T ± i)f.
Because T ±i is the closure of T ±i there exists a sequence in fn ∈ D(T ) such that fn → f and (T ±i)fn → g.
This concludes that Ran (T ± i) is dense.

Conversely, If Ran (T ± i) is dense, then Ran (T ± i) = H. Using Theorem III.6.5 we obtain that T is
self-adjoint.

THEOREM III.6.7. Closed graph Theorem. Let X and Y be Banach spaces and T a linear map of X
into Y. Then T is bounded if and only if the graph of T is closed.

THEOREM III.6.8. Hellinger-Toeplitz Theorem. Let A be an everywhere-defined linear operator on a
Hilbert space H with (x,Ay) = (Ax, y) for all x and y ∈ H. Then A is bounded.

Proof. Reed and Simon [77] prove that the graph of A is closed.
We summarize the concept of adjointness. The distinction between closed symmetric operators and self-

adjoint operators is very important. It is only for self-adjoint operators that the spectral theorem holds and
it is only self-adjoint operators that may be exponentiated to give the one parameter unitary groups which
give the dynamics in quantum mechanics.

We give the notion of a core for an operator.

DEFINITION III.6.9. If T is a closed symmetric operator, a subset D ⊂ D(T ) is called a core for T if
T � D = T.

VII The spectral Theorem for unbounded operators

We will transcript some theorems from Kato [70] and Reed and Simon [77]. Kato’s book is used because he
shows directly how we can define by functional calculus φ(H) where φ is any complex continuous function (
in Kato’s book [70], page 356 mentions that more general functions φ can be allowed) and H is a self-adjoint
operator. Theorems from [77] section VIII.3 are helpful because they are used throughout this entire thesis
and because in the case of functional calculus we arrive to define h(A) by a strong limit of hn(A) with hn a
sequence of bounded measurable functions.
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VII.1 Approach in Kato’s book

Let T an operator in H. The numerical range of Θ(T ) of T is the set of all complex numbers (Tu, u) where
u changes over all u ∈ D(T ) with ‖u‖ = 1. (We assume dimH > 0. )

A symmetric operator T is said to be bounded from below if its numerical range (which is a subset of
the real axis) is bounded from below, that is, if

(Tu, u) ≥ γ(u, u), u ∈ D(T ). (III.7.53)

In this case we simply write T ≤ γ. The largest number γ with this property is the lower bound of T.
An operator is said to be accretive if the numerical range Θ(T ) is a subset of the right half-plane, that

is, if �e(Tu, u) ≥ 0 for all u ∈ D(T ).
An operator T satisfying (III.7.54) will be said to be m-accretive:

(T + λ)−1 ∈ B(H), ‖(T + λ)−1‖ ≤ (�eλ)−1, for�eλ > 0. (III.7.54)

An m-accretive operator T is maximal accretive, in the sense that T is accretive and has no proper
accretive extension. An m-accretive operator T is necessarily densely defined.

We shall say that T is quasi-accretive if T + α is accretive for some scalar α. This is equivalent to the
condition that Θ(T ) is contained in a half-plane of the form �eζ ≥ const. In the same way we say that T is
quasi-m-accretive if T + α is m-accretive for some α.

For some quasi-accretive operators T, the numerical range Θ(T ) is not only a subset of the half-plane
�eζ ≥ const. but a subset of a sector | arg(ζ−γ)| ≤ θ < π/2. In such a case T is said to be sectorially-valued
or simply sectorial; γ and θ will be called a vertex and a semi-angle of the sectorial operator (these are not
uniquely determined). T is said to be m-sectorial if it is sectorial and quasi-m-accretive.

DEFINITION III.7.1. Let H be a Hilbert space, we define a form t defined for u and v both belonging to
a linear manifold D of H by the following: t[u, v] is complex valued and linear in u ∈ D for each fixed v ∈ D
and semilinear in v ∈ D for each fixed u ∈ D. D will be called the domain of t and is denoted by D(t). t is
densely defined if D(t) is dense in H.

A form t is said to be symmetric if
t[u, v] = t[v, u]. (III.7.55)

We write t[u] instead of t[u, u]. We call t[u] the quadratic form associated with t[u, v].

DEFINITION III.7.2. A symmetric form h is said to be bounded from below if the set of (real) values
h[u] for ‖u‖ = 1 is bounded from below or, equivalently,

h[u] ≥ γ‖u‖2, u ∈ D(h). (III.7.56)

This will be simply written h ≥ γ.

Let us now consider a nonsymmetric form t. The set of values of t[u] for u ∈ D(t) with ‖u‖ = 1 is called
the numerical range of t and will be denoted by Θ(t).

t will be said to be sectorial if Θ(t) is a subset of a sector of the form

ζ ∈ C such that |arg(ζ − γ)| ≤ θ, 0 ≤ θ < π/2, γ real. (III.7.57)

The number γ and θ are not uniquely determined by t.
Let t be a sectorial form. A sequence {un} of vector will be said to be t-convergent (to u ∈ H), in symbol:

un →t u, n → ∞, if un ∈ D(t), un → u and t[un − um] → 0 for n,m → ∞.
A sectorial form is said to be closed if un →t u implies that u ∈ D(t) and t[un −n] → 0. A sectorial form

is said to be closable if it has a closed extension. The closure of a closable sectorial form t is the smallest
closed extension of t. When t is a closed sectorial form, a linear submanifold D′ if D(t) is called a core of t
if the restriction t′ of t with domain D′ has the closure t.
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THEOREM III.7.3. The first Representation Theorem Let t[u, v] be a densely defined, closed, sectorial
sesquilinear form in H. There exists a m-sectorial operator T such that

(i) D(T ) ⊂ D(t) and
t[u, v] = (Tu, v) (III.7.58)

for every u ∈ D(T ) and v ∈ D(t),

(ii) D(T) is a core of t.

(iii) if u ∈ D(T ) and w ∈ H and
t[u, v] = (w, v)

holds for every v belonging to a core of t, then u ∈ D(T ) and w = Tu. The m-sectorial operator T is
uniquely determined by the condition (i).

We define the order relation h1 ≥ h2 for any two symmetric forms h1 and h2 bounded from below by

D(h1) ⊂ D(h2) and h1[u] ≥ h2[u] foru ∈ D(h1). (III.7.59)

Let H1,H2 be the selfadjoint operators bounded from below associated respectively with closed symmetric
forms h1, h2 bounded from below. We write H1 ≥ H2 if h1 ≥ h2 in the sense defined above.

Let H be a Hilbert space, and suppose there is a nondecreasing family {M(λ)} of closed subspaces of H
depending on a real parameter λ, −∞ < λ < ∞, such that the intersection of all the M(λ) is 0 and their
union is dense in H. By “nondecreasing” we mean that M(λ′) ⊂ M(λ′′) for λ′ < λ′′.

For any fixed λ, then, the intersection M(λ + 0) of all M(λ′) with λ′ > λ contains M(λ). Similarly, we
have M(λ) ⊃ M(λ − 0), where M(λ − 0) is the closure of the union of all M(λ′) with λ′ < λ. We shall say
that the family {M(λ)} is right continuous at λ if M(λ+0) = M(λ), left continuous if M(λ−0) = M(λ) and
continuous if it is right as well as left continuous. As it is easily seen, {M(λ + 0)} has the same properties
as those required of {M(λ)} above and, moreover, it is everywhere right continuous.

These properties can be translated into properties of the associated family {E(λ)} of orthogonal projec-
tions on M(λ). We have:

E(λ′) ≤ E(λ′′) for λ′ < λ′′. (III.7.60)

s − lim
λ→−∞

E(λ) = 0, s − lim
λ→∞

E(λ) = 1. (III.7.61)

Equation III.7.60 is equivalent to

E(μ)E(λ) = E(λ)E(μ) = E(min{μ, λ}). (III.7.62)

A family {E(λ)} of orthogonal projections with the properties (III.7.60) and (III.7.61) is called a spectral
family or a resolution of the identity.

The projections E(λ ± 0) on M(λ ± 0) are given by

E(λ ± 0) = s − lim
ε→0+

E(λ ± ε).

For any semiclosed interval I = (λ′, λ′′] of the real line we set

E(I) = E(λ′′) − E(λ′),

If S is the union of a finite number if intervals (open, closed or semiclosed) on the real line, S can be
expressed as the union of disjoint sets of the form I stated below. If we define E(S) as the sum of the
corresponding E(I), it is easily seen that E(S) has the property that E(S′)E(S′′) = E(S′ ∩ S′′). E(S) is
called a spectral measure on the class of all sets S of the kind described. This measure E(S) can then be
extended to the class of all Borel sets S of the real line by a standard measure-theoretic construction.

For any u ∈ H, (E(λ)u, u) is a nonnegative, nondecreasing function of λ and tends to zero for λ → −∞
and to ‖u‖2 for λ → +∞. For any u, v ∈ H, the polar form (E(λ)u, v) is a linear combination of functions
of the form (E(λ)w,w). Hence the complex-valued function (E(λ)u, v) of λ is of bounded variation. See
Kato [70] for more details.
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The selfadjoint operator associated with a spectral family

To any spectral family E(λ), there is associated a selfadjoint operator H expressed by

H =

∫ +∞

−∞
λ dE(λ). (III.7.63)

D(H) is the set of all u ∈ H such that∫ +∞

−∞
λ2d(E(λ)u, u) < ∞.

For such u, (Hu, v) is given by

(Hu, v) =

∫ +∞

−∞
λd(E(λ)u, v),

These two last integrals are Stieltjes integrals. This type of integrals, measure the length of intervals by
using a increasing function and uses a similar approach to the Riemann integral. For the proof please check
Kato [70].

More generally, we can define operators

φ(H) =

∫ +∞

−∞
φ(λ) dE(λ). (III.7.64)

Where φ may be any complex-valued, continuous function. More general functions φ can be allowed, but
then the integral (φ(H)u, v) =

∫
φ(λ) d(E(λ)u, v) must be taken in the sense of the Radon-Stieltjes integral,

where by the use of increasing functions a measure can be defined in the real line and applied to the Lebesgue
approach of integrals.

An operation calculus can be developed for the operators φ(H). φ(H) is in general unbounded if φ(λ) is
unbounded; D(φ(H)) is the set of all u ∈ H such that

∫ |φ(λ)|2d(E(λ)u, u) < ∞.

THEOREM III.7.4. The Spectral Theorem Every spectral family {E(λ)} determines a selfadjoint operator
by (III.7.63). The spectral theorem asserts that every selfadjoint operator H admits an expression (III.7.63)
by means of a spectral family {E(λ)} which is uniquely determined by H.

VII.2 Approach in Reed and Simon’s book

PROPOSITION III.7.5. Let 〈M,μ〉 be a measure space with μ a finite measure. Suppose that f is a

measurable, real-valued function on M which is finite a.e [μ]. Then the operator φ
Tf

−→fφ on L2(M,dμ) with

domain
D(Tf ) = {φ ∣∣ fφ ∈ L2(M,μ)}

is self-adjoint.

PROPOSITION III.7.6. Let f and Tf obey the conditions in Proposition III.7.5 above. Suppose in
addition that f ∈ Lp(M,dμ) for 2 < p < ∞. Let D be any dense set in Lq(M,dμ) where q−1 + p−1 = 1/2.
Then D is a core for Tf .

Unless f ∈ L∞(M,μ) the operator Tf described in Propositions 1 et 2 will be unbounded. Thus, we have
found a large class of unbounded self-adjoint operators. In fact, we have found them all.

THEOREM III.7.7. Spectral Theorem-multiplication operator form. Let A be a self-adjoint operator on a
separable Hilbert space H with domain D(A). Then there is a measure space 〈M,μ〉 with μ a finite measure,
a unitary operator U : H → L2(M,μ), and a real-valued function f on M which is finite a.e. so that
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(a) ψ ∈ D(A) if and only if f(·)U(ψ)(·) ∈ L2(M,μ).

(b) If φ ∈ U [D(A)], then (UAU−1φ)(m) = f(m)φ(m).

There is a natural way to define functions of a self-adjoint operator by using the above theorem. Given a
bounded Borel function h on R we define h(A) = U−1Th(f)U where Th(f) is the operator on L2(M,μ) which
acts by multiplication by the function h(f(m)). Using this definition, Theorem III.7.8 below follows easily

from Theorem III.7.7. In Theorem III.7.8 below φ̂ does not mean Fourier transform apart from the rest of
this thesis.

THEOREM III.7.8. Spectral Theorem-functional calculus form. Let A be a self-adjoint operator on H.
Then there is a unique map φ̂ from the bounded Borel functions on R into L(H) so that

(a) φ̂ is an algebraic *-homeomorphism.

(b) φ̂ is norm continuous, that is, ‖φ̂(h)‖L(H) ≤ ‖h‖∞.

(c) Let hn(x) be a sequence of bounded Borel functions with hn(x) → x as n → ∞, for each x and

|hn(x)| ≤ |x| for all x and n. Then, for any ψ ∈ D(A), limn→∞ φ̂(hn)ψ = Aψ.

(d) If hn(x) → h(x) pointwise and if the sequence ‖hn‖∞ is bounded, then φ̂(hn) → φ̂(h) strongly.

In addition

(e) If Aψ = λψ, φ̂(h)ψ = h(λ)ψ.

(f) if h ≥ 0, then φ̂(h) ≥ 0.

The functional calculus is very useful. For example, it allows us to define the exponential eitA and prove
easily many of its properties as a function of t.

Finally, the spectral Theorem in its projection-valued measure form follows easily from the functional
calculus. Let PΩ be the operator χΩ(A) where χΩ is the characterized function of the measurable set Ω ⊂ R.
The family of operators {PΩ} has the following properties:

(a) Each PΩ is an orthogonal projection.

(b) P∅ = 0, P(−∞,∞) = I.

(c) If Ω =
⋃

n=1 Ωn with Ωn ∩ Ωm = if n �= m, then PΩ = s- limN→∞
∑N

n=1 PΩn
.

(d) PΩ1
∩ PΩ2

= PΩ1∩Ω2
.

THEOREM III.7.9. Spectral Theorem-projection valued measure form. There is a one-to-one correspon-
dence between self-adjoint operators A and projection valued measures {PΩ} on H, the correspondence given
by

A =

∫ ∞

−∞
λ dPλ.

If g(·) is a real-valued Borel function on R, then

g(A) =

∫ ∞

−∞
g(λ) dPλ,

defined on Dg (Theorem III.7.8) is self-adjoint. If g is bounded, g(A) coincides with φ̂(g) in Theorem III.7.8.
We have the following remark: The spectrum of an unbounded self-adjoint operator is an unbounded set

of the real axis. We note that the measure space of Theorem III.7.7 can always be chosen so that Proposition
III.7.6 is applicable:

PROPOSITION III.7.10. Let A be a self-adjoint operator in a separable Hilbert space H. Then the
measure space 〈M,μ〉 and the function f of Theorem III.7.7 can be chosen so that f ∈ Lp(M,μ) for all p
with 1 ≤ p < ∞.
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VIII Stone’s Theorem

In this section we prove a theorem due to Stone which, like the spectral Theorem, is fundamental for quantum
mechanics. Suppose that A is a self-adjoint operator on H. If A is bounded, we can define the exponential
of A by

eitA =
∞∑

n=0

(it)nAn

n!
.

since the series converges in norm. If A is unbounded and self-adjoint, we cannot use the power series
directly, but we can use the functional calculus developed in the last section to define eitA.

THEOREM III.8.1. Let A be a self-adjoint operator and define eitA. Then

(a) For each t ∈ R, U(t) is a unitary operator and U(t + s) = U(t)U(s) for all s, t ∈ R.

(b) If φ ∈ H and t → t0, then U(t)φ → U(t0)φ.

(c) For φ ∈ D(A), U(t)ψ−ψ
t → iAψ as t → 0.

(d) If limt→0
U(t)ψ−ψ

t exists then ψ ∈ D(A).

DEFINITION III.8.2. An operator-valued function U(t) satisfying (a) and (b) is called a strongly contin-
uous one-parameter unitary group.

The following theorem says that every strongly continuous unitary group arises as the exponential of a
self-adjoint operator.

THEOREM III.8.3. Stone’s theorem. Let U(t) be a strongly continuous one-parameter unitary group on
a Hilbert space H. Then, there is a self-adjoint operator A on H so that U(t) = eitA.

DEFINITION III.8.4. If U(t) is a strongly continuous one-parameter unitary group, then the self-adjoint
operator A with U(t) = eitA is called the infinitesimal generator of U(t).

THEOREM III.8.5. von Neumann. Let U(t) be a one-parameter unitary group on a separable Hilbert
space H. Suppose that for all φ, ψ ∈ H, (U(t)ψ, φ) is measurable. Then U(t) is strongly continuous.

Now we have the following self-adjointness criterion:

THEOREM III.8.6. Let A be a self-adjoint operator on H and D be a dense linear set contained in D(A).
If for all t, eitA : D → D, then D is a core for A.

Finally, we have the following generalization of Stone’s Theorem that is helpful in the case of time
dependent Hamiltonians.

THEOREM III.8.7. Let t → U(t) = U(t1, . . . , tn) be a strongly continuous map of R
n into the unitary

operators on a separable Hilbert space H satisfying U(t + s) = U(t)U(s) and U(0) = I. Let D be the set of
finite linear combinations of vectors of the form

φf =

∫
Rn

f(t)U(t)φdt φ ∈ H, f ∈ C∞
0 (Rn).

Then D is a domain of essential self-adjointness for each of the generators Aj of the one parameter subgroups
U(0, 0, . . . , tj , . . . , 0), each Aj : D → D and the Aj commute, j = 1, . . . , n. Furthermore, there is a projection-
valued measure PΩ on R

n so that

(φ,U(t)ψ) =

∫
Rn

eit·λ d(φ, Pλψ)

for all φ, ψ ∈ H.
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IX Tensor products of Hilbert spaces

Here, we present some material taken from Reed and Simon [77]. Let H1 and H2 be Hilbert spaces with scalar
products (·, ·)1 and (·, ·)2 , respectively. Both scalar products are linear in the first entry and antilinear in
the second one. When there is no possibility of confusion, we simply denote them as (·, ·) . For each φ1 ∈ H1

and φ2 ∈ H2, let φ1 ⊗ φ2 denote the conjugate (bilinear) form which acts on H1 ×H2 by

(φ1 ⊗ φ2) 〈ψ1, ψ2〉 = (ψ1, φ1)1 (ψ2, φ2)2 . (III.9.65)

PROPOSITION III.9.1. The form φ1 ⊗ φ2 is bilinear.

Proof. Let α ∈ R, ψ1, ψ11, ψ12 ∈ H1 and ψ2, ψ21, ψ22 ∈ H2.

(φ1 ⊗ φ2) 〈αψ11 + ψ12, ψ2〉 = (αψ11 + α12, φ1) (ψ2, φ2)

= (α (ψ11, φ1) + (ψ12, φ1)) (ψ2, φ2)

= α (ψ11, φ1) (ψ2, φ2) + (ψ12, φ1) (ψ2, φ2)

= α (φ1 ⊗ φ2) 〈ψ11, ψ2〉 + (φ1 ⊗ φ2) 〈ψ12, ψ2〉.

Then φ1 ⊗ φ2 is linear in the first entry. To prove linearity in the second entry we proceed as follows:

(φ1 ⊗ φ2) 〈ψ1, αψ21 + ψ22〉 = (ψ1, φ1) (αψ21 + ψ22, φ2)

= (ψ1, φ1) (α (ψ21, φ2) + (ψ22, φ2))

= α (ψ1, φ1) (ψ21, φ2) + (ψ1, φ1) (ψ22, φ2)

= α (φ1 ⊗ φ2) 〈ψ1, ψ21〉 + (φ1 ⊗ φ2) 〈ψ1, ψ22〉.

Let E be the set of finite linear combinations of such conjugate linear forms, see (III.9.65). We define an
inner product (·, ·) on E by defining

(φ ⊗ ψ, η ⊗ μ) = (φ, η)(ψ, μ) φ, η ∈ H1, ψ, μ ∈ H2. (III.9.66)

and extending it by linearity to E .

LEMMA III.9.2. Suppose that μ is a finite sum which is the zero form, then (η, μ) = 0 for all η ∈ E .

Proof. Let η =
∑N

i=1 ci(φi ⊗ ψi), then

(η, μ) =

(
N∑

i=1

ci(φi ⊗ ψi), μ

)

=

N∑
i=1

ci ((φi ⊗ ψi), μ)

=

N∑
i=1

ciμ〈φi, ψi〉

= 0,

because μ is the zero form.

PROPOSITION III.9.3. The scalar product (·, ·) in E is well defined and positive definite.
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Proof. Let us prove that (λ, λ′) does not depend on which finite linear combinations are used to
express λ and λ′. Let λ, λ′ be written as

λ =
∑

ciφ1i ⊗ φ2i =
∑

akψ1k ⊗ ψ2k,

λ′ =
∑

bjη1j ⊗ η2j .

By Lemma III.9.2, it follows that(∑
ciφ1i ⊗ φ2i, λ′

)
−
(∑

akψ1k ⊗ ψ2k, λ′
)

=
∑

ci (φ1i ⊗ φ2i, λ
′) −
∑

ak (ψ1k ⊗ ψ2k, λ′)

=
∑∑

cibj (φ1i ⊗ φ2i, η1j ⊗ η2j)

−
∑∑

akbj (ψ1k ⊗ ψ2k, η1j ⊗ η2j)

=
∑

j

(∑
ciφ1i ⊗ φ2i −

∑
akψ1k ⊗ ψ2k, η1j ⊗ η2j

)
=
(∑

ciφ1i ⊗ φ2i −
∑

akψ1k ⊗ ψ2k, λ′
)

= 0.

It is enough to consider λ as having two different expressions as a linear combination. If λ′ had two of
them then we would have to use property (III.2.5) to the scalar products in H1 and H2.

Now suppose λ =
∑M

k=1 dk(ηk⊗μk). Then {ηk}M
k=1 and {μk}N

k=1 span subspaces M1 ⊂ H1 and M2 ⊂ H2,

respectively. If we let {φj}N1
j=1 and {ψl}N2

l=1 be orthogonal bases for M1 and M2, we can express each ηk in
terms of the φ′

js and each μk in terms of the ψ′
ls obtaining:

λ =

M1,M2∑
j=1,l=1

cjl(φj ⊗ ψl).

But

(λ, λ) =
(∑

cjl(φj ⊗ ψl),
∑

cim(φi ⊗ ψm)
)

=
∑

cjlcim (φj ⊗ ψl, φi ⊗ ψm)

=
∑

cjlcim(φj , φi)(ψl, ψm)

=
∑

|cjl|2.

So, if (λ, λ) = 0, then all the cjl = 0 and λ is the zero form.

DEFINITION III.9.4. We define H1⊗H2 to be the completion of E under the scalar product (·, ·) defined
above (III.9.66). H1 ⊗H2 is called the tensor product of H1 and H2.

PROPOSITION III.9.5. If {φk} and {ψl} are orthonormal basis for H1 and H2, respectively, then {φk ⊗
ψl} is an orthonalmal basis for H1 ⊗H2.

Proof. See Reed and Simon [77] page 50.
To show how the tensor product arises naturally, we will show how it is related to Hilbert spaces with

which the reader is already familiar. First, let 〈M1, μ1〉 and 〈M2, μ2〉 be measure spaces. We consider
the Hilbert spaces L2(M1, μ1) and L2(M2, μ2). Let {φk} and {ψl} be orthogonal basis in L2(M1, μ1) and
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L2(M2, μ2), respectively. We want to show that {φk(x), ψl(y)} is an orthonormal set in L2(M1×M2, μ1⊗μ2),
where μ1 ⊗ μ2 is the measure product of μ1 and μ2. Suppose that f(x, y) ∈ L2(M1 × M2, μ1 ⊗ μ2), and∫ ∫

M1×M2

f(x, y)φk(x)ψl(y)dμ1(x)dμ2(y) = 0 (III.9.67)

for all k and l. Because∫ ∫
M1×M2

|f(x, y)φk(x)ψl(y)|dμ1(x)dμ2(y) =

∫
M1

|φk(x)|
[∫

M2

|f(x, y)ψl(y)|dμ2(y)

]
dμ1(x)

≤
∫

M1

|φk(x)| ‖f(x, ·)‖L2(M2,μ2)dμ1(x)

≤ ‖φk(x)‖2
L2(M1,μ1)

∫
M1

‖f(x, ·)‖2
L2(M2,μ2)

dμ1(x)

=

∫
M1

∫
M2

|f(x, y)|2dμ2(y)dμ1(x)

= ‖f‖2
L2(M1×M2,μ1⊗μ2)

< ∞.

Fubini’s Theorem can be used, thus (III.9.67) implies that, for all k and l∫
M2

(∫
M1

|f(x, y)|2φk(x)dμ1(x)

)
ψl(y) dμ2(y) = 0,

since {ψl} is basis for L2(M2, μ2), we have that∫
M1

f(x, y)φk(x)dμ1(x) = 0

for all y except on a set Sk ⊂ M2 with μ2(Sk) = 0. Thus, for y ∈ M2 \
⋃

Sk,∫
M1

f(x, y)φk(x)dμ1(x) = 0

for all k, which implies that f(x, y) = 0, a.e. [μ1]. Thus, f = 0 a.e. [μ1 ⊗ μ2]. Therefore, {φk(x), ψl(y)} is an
orthonormal set in L2(M1 × M2, μ1 ⊗ μ2).

Next, we present a abbreviated version of Theorem II.10 in Reed and Simon [77].

THEOREM III.9.6. Let 〈M1, μ1〉 and 〈M2, μ2〉 be measure spaces so that L2(M1, μ1) and L2(M2, μ2) are
separable. Then, there is a unique isomorphism from L2(M1, μ1)⊗L2(M2, μ2) to L2(M1 ×M2, μ1 ⊗ μ2), so
that f ⊗ g �→ fg.

Proof. Let
U : φk ⊗ ψl �→ φk(x)ψl(y).

Then U takes an orthonormal basis for L2(M1, μ1)⊗L2(M2, μ2) onto an orthonormal basis L2(M1×M2, μ1⊗
μ2), and extends uniquely to a unitary mapping of L2(M1, μ1) ⊗ L2(M2, μ2) onto L2(M1 × M2, μ1 ⊗ μ2).

Notice that if f ∈ L2(M1, μ1) and g ∈ L2(M2, μ2), then

U (f ⊗ g) = U
(∑

ckφk ⊗
∑

dlψl

)
= U

⎛⎝∑
k,l

ckdl φk ⊗ ψl

⎞⎠
=
∑
k,l

ckdl U (φk ⊗ ψl) =
∑
k,l

ckdl φk(x)ψl(y)

= f(x)g(x).
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Because of this property, we often say that L2(M1, μ1) ⊗ L2(M2, μ2) and L2(M1 × M2, μ1 ⊗ μ2) are
“naturally” isomorphic. Let Mi = R and μi the Lebesgue measure, then we have shown that L2(R2) is
naturally isomorphic to L2(R) ⊗ L2(R). Comment: L2(RnN ) ∼= L2(Rn) ⊗ . . . ⊗ L2(Rn).

X Tensor products of bounded and unbounded operators

This section is mainly based on section VIII.10 of Reed and Simon [77]. Here we describe some aspects of
tensor products of operators in Hilbert spaces. Let A and B be densely defined operators on Hilbert spaces
H1 and H2, respectively. We represent by D(A) and D(B) the domains of A and B, respectively. We will
denote D(A) ⊗ D(B) the set of finite linear combinations of vectors of the form φ ⊗ ψ where φ ∈ D(A) and
ψ ∈ D(B). We define A ⊗ B on D(A) ⊗ D(B) by

(A ⊗ B)(φ ⊗ ψ) = (Aφ ⊗ Bψ)

and extend it by linearity.
Let us prove that D(A) ⊗ D(B) is dense in H1 ⊗ H2. Let us take f a bilinear form in H1 ⊗ H2 such

that f〈φ, ψ〉 = (φ ⊗ ψ, f)H1⊗H2
= 0, for all φ ∈ D(A) and ψ ∈ D(B). Then f = 0 in the Cartesian product

D(A) × D(B) which is a dense set in H1 ×H2. If f =
∑

cklφk ⊗ ψl then

f〈φ, ψ〉 =
∑

ckl(φ ⊗ ψ, φk ⊗ ψl)

=
∑

ckl(φ, φk)(ψ,ψl)

|f〈φ, ψ〉| ≤
(∑

|ckl| ‖φk‖ ‖ψl‖
)
‖φ‖ ‖ψ‖.

It follows that f is a bounded bilinear form. By Theorem III.10.2 below f is continuous, that is why f = 0
in H1 ×H2. So, D(A) ⊗ D(B) is dense in H1 ⊗H2.

Before we enounce a simplified version of Theorem 2.17 from Rudin [80], we define the following, extracted
from definition 1.8 of the same book:

DEFINITION III.10.1. X is an F-space if its topology is induced by a complete invariant metric d.

THEOREM III.10.2. Suppose B : X × Y → Z is bilinear and separately continuous, X is an F-space, Y
is a metric space and Z a topological vector space, it follows that B is continuous.

We define A ⊗ B on D(A) ⊗ D(B) by

(A ⊗ B) (φ ⊗ ψ) = (Aφ ⊗ Bψ) , φ ∈ D(A), ψ ∈ D(B),

and extend by linearity.

PROPOSITION III.10.3. The operator A ⊗ B is well defined. Further, if A and B are closable, so are
A ⊗ B and A ⊗ I + I ⊗ B.

Proof. See Reed and Simon [77].

DEFINITION III.10.4. Let A and B be operators in H1,H2, respectively. The tensor product of A and
B is the closure of the operator A ⊗ B defined in D(A) ⊗ D(B). We will denote the closure by A ⊗ B also.
Usually A + B will denote the closure of A ⊗ I + I ⊗ B on D(A) ⊗ D(B).

PROPOSITION III.10.5. Let A and B be bounded operators on H1,H2, respectively. Then ‖A ⊗ B‖ =
‖A‖ ‖B‖.
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Proof. Reed and Simon’s proof [77] uses orthonormal bases.
We remark that both of above propositions have natural generalizations to arbitrary finite tensor products

of operators. This can be proven directly or by using the associativity of the tensor product of Hilbert spaces.
We turn now to questions of self-adjointness and spectrum. Let {Ak}N

k=1 be a family of operators, Ak

self-adjoint on the Hilbert space Hk, k = 1, . . . N. We will denote the closure of I ⊗ . . . ⊗ Ak ⊗ . . . I on
D = ⊗Dk by Ak also. Let P (x1, xN ) be a polynomial of degree nk in xk. The the operator P (A1, . . . , AN )
makes sense on ⊗D(Ank), since D(Ank) ⊂ D(Al) for all l ≤ nk. In fact, P is essentially self-adjoint in that
domain.

THEOREM III.10.6. Let Ak be a self-adjoint operator on Hk. Let P (x1, . . . , xN ) a polynomial with real
coefficients of degree nk in the kth variable and suppose that Dl

k is a domain of essential self-adjointness for
Ank

k . Then,

(a) P (A1, . . . , AN ) is essentially self-adjoint on

Dl = ⊗N
k=1D

l
k.

(b) The spectrum of P (A1, . . . , AN ) is the closure of the range of P on the product of the spectra of the
Ak. That is,

σ(P (A1, . . . , AN )) = P (σ(A1), . . . , σ(AN )).

Proof. We will first prove that P (A1, . . . , AN ) is essentially self-adjoint on D = ⊗N
k=1D(Ank

k ). By the
spectral Theorem, there is a measure space 〈Mk, μk〉 so that Ak is unitarily equivalent to multiplication by a
real-valued measurable function fk on L2(Mk, μk). By proposition 3 in Section VIII.3 Reed and Simon [77]
we may assume that μk is finite and that fk ∈ ∩1≤p<∞Lp(Mk, μk). Furthermore, by Theorem III.9.6,
⊗N

k=1L
2(Mk, μk) is naturally isomorphic to L2(×N

k=1Mk,⊗N
k=1μk). Under this isomorphism P (A1, . . . , AN )

corresponds to multiplication by P (f1, . . . , fN ) and D corresponds to the set of finite linear combinations of
finite linear combinations of functions φ1(m1), φ2(m2), . . . , φN (mN ) such that fnk

k φk ∈ L2(Mk, μk).
To prove essential self-adjointness we use Proposition III.7.6. First, since μk is finite and fnk

k ∈ Lp(Mk, μk)
we conclude that f l

k ∈ Lp(Mk, μk), for l ≤ p < ∞. From this it follows immediatly that P (f1, . . . , fn) is in
Lp for all such p. In particular P (f1, . . . , fn) is in L4(×N

k=1Mk,⊗N
k=1μk). Since fnk

k is self-adjoint in Dk,
Dk, contains all the characteristic functions of measurable sets in Mk. Thus D contains all finite linear
combinations of the characteristic functions of rectangles. It is a fact that the characteristic function of any
measurable set in ×N

k=1Mk is equal to such finite linear combination except on a set of arbitrarily small
⊗N

k=1μk measure. Thus, the simple functions on ×N
k=1Mk can be approximated in the Lp sense (1 ≤ p < ∞)

by elements of D. In particular, D is dense in L4(×N
k=1Mk,⊗N

k=1μk). Essential self-adjointness now follows
by Proposition III.7.6.

To show that P is essentially self-adjoint on Dl we need only show (by problem 14 in Reed and Simon’s

book [77]) that P � Dl extends P � D. Suppose ⊗n
k=1φk ∈ D. Then φk ∈ D(Ank

k ), so since Dl
k is a domain

of essential self-adjointness of Ank

k there is a sequence {φl
k}∞l=1 so that φl

k → φk, and Ank

k φl
k → Ank

k φk.
An easy estimate shows that this implies that Am

k φl
k → Am

k φk for all 1 ≤ m ≤ nk. Therefore ⊗N
k=1φ

l
k →

⊗N
k=1φk and P (A1, . . . , AN )

(⊗N
k=1φ

l
k

) → P (A1, . . . , AN )
(⊗N

k=1φk

)
. The same argument works for finite

linear combinations of vectors of the form ⊗N
k=1φk so P � Dl extends P � D. This completes the proof of (a).

To prove (b), suppose that λ ∈ P (σ(A1), . . . , σ(AN )). If I is any open interval about λ then P−1(I) con-

tains a product ×N
k=1Ik of open intervals so that Ik∩σ(Ak) �= ∅. Since σ(Ak) = ess range fnk

k , μk[(fnk

k )
−1

(Ik)]
�= 0 so

μ[P ((f1, . . . , fN )
−1

(I)] �= 0.

That is, λ ∈ ess range P (f1, . . . , fN ), which equals σ(P (A1, . . . , AN )) by the first proposition in Section

VIII.3 in Reed and Simon [77]. Conversely if λ /∈ P (σ(A1), . . . , σ(AN )) then (λ − P (f1, . . . , fN ))
−1

is

bounded a.e. on ×N
k=1Mk so λ ∈ ρ

(
P (A1, . . . , AN )

)
.

If A1, . . . , AN are bounded, P (σ(A1), . . . , σ(AN )) is closed, but in general is not (Problem 43 in Reed
and Simon [77]). The following Corollary displays the two most important special case of Theorem III.10.6.
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COROLLARY III.10.7. Let A1, . . . , AN be self-adjoint operators on H1, . . . ,HN and suppose that, for
each k, Dk is a domain of essential self-adjointness for Ak. Then,

(a) The operators AΠ = A1⊗. . .⊗AN and AΣ = A1+. . .+AN are essentially self-adjoint on D = ⊗N
k=1Dk.

(b) σ(AΠ) = ΠN
k=1σ(Ak) and σ(AΣ) = ΣN

k=1σ(Ak).

XI Perturbation Theory. Schrödinger Hamiltonians

In this section, we give conditions on the potential v that allows to consider V, the multiplication operator
associated to v, as a ”small” perturbation of H0, in such a way that the sum operator H0 +V be self-adjoint.
Clearly a sufficient condition is that ‖v‖∞ < ∞, thanks to V ∈ B(H). Nevertheless, it is important to deal
with unbounded operators, since these potentials appear in quantum mechanics, as an example we have
Coulomb potential.

First we give some abstract results, which will be applied to Schrödinger operators. If A and B are
self-adjoint and, at least, one of them is bounded, say B, then A + B is self-adjoint with D(A + B) = D(A).
If both A and B are unbounded but D(A + B) = D(A) ∩ D(B) is dense in H, then A + B is symmmetric
but in general it is neither self-adjoint nor essentially self-adjoint.

Next, we introduce the concept of relative boundedness that allows to compare two unbounded operators.

DEFINITION III.11.1. Let A and B be two linear operators. We say that B is A-bounded if

(a) D(A) ⊂ D(B),

(b) There exist two numbers β and γ in [0,∞) such that

‖Bf‖ ≤ β‖Af‖ + γ‖f‖ ∀f ∈ D(A). (III.11.68)

The infimum of all numbers β such that (III.11.68) is true is called the A bounde of B.

REMARK III.11.2. γ in (III.11.68) can be different for different values β. The A bound of B is determined
uniquely considering all the possible values of β.

As an immediate consequence of Definition III.11.1 we have that if D(A) ⊂ D(B) and A is a bounded
operator then A is B-bounded with relative bound 0, because for any φ ∈ D(B),

‖Aφ‖ ≤ 0‖Bφ‖ + ‖A‖ ‖φ‖. (III.11.69)

LEMMA III.11.3. Assume that A = A∗.

(i) The following three statements are equivalent:

(a) B es A bounded.

(b) B(A − zI)−1 ∈ B(H) for some z ∈ ρ(A).

(c) D(A) ⊂ D(B) and
‖Bf‖2 ≤ β2

0‖Af‖2 + γ2
0‖f‖2 ∀f ∈ D(A), (III.11.70)

where β0, γ0 are numbers is [0,∞).

The A bound of B is also equal to the infimum of all numbers β0 such that (III.11.70) holds.

(ii) The following two statements are equivalent::

(d) B is A bounded with A bound ν < 1.

(e) There exists a number z ∈ ρ(A) such that ‖B(A − zI)−1‖ < 1.
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PROPOSITION III.11.4. If B is A bounded, then B(A − zI)−1 ∈ B(H) for all z ∈ ρ(A).

Moreover, we have a more precise result taken from [64] Proposition 1.3 (a).

PROPOSITION III.11.5. Assume A to be self-adjoint and D(A) ⊂ D(B). Then B is A-bounded if and
only if B(A + i)−1 is bounded. The A-bound of B is equal to

limγ→∞‖B(A + iγ)−1‖.

PROPOSITION III.11.6. Kato-Rellich Theorem. Let A self-adjoint, B symmetric and A-bounded with
A-bound ν < 1. Then A + B is self-adjoint in D(A). Moreover, if A is bounded by below, so A + B is. (A
is called bounded by below if A + μ ≥ 0, or equivalently if (−∞, μ) ∈ ρ(A), for some μ ∈ R).

PROPOSITION III.11.7. Under the hypothesis of Proposition III.11.6, B is (A+B) bounded. Moreover,
we have the second resolvent equation for all z ∈ ρ(A) ∩ ρ(A + B):

(A + B − z)−1 = (A − z)−1 − (A − z)−1B(A + B − z)−1

= (A − z)−1 − (A + B − z)−1B(A − z)−1. (III.11.71)

Example III.11.8. Let A = A∗, B = B∗ and B belong to B(H). Then we know that A+B is self-adjoint in
D(A). This results, of course, also from Proposition III.11.6. In fact, B is A-bounded with A-bound ν = 0,
because we can set β = 0, γ = ‖B‖ in (III.11.68).

Example III.11.9. Let A = A∗ be unbounded, and B = −λA with λ ≥ 0. Then ‖Bf‖ ≤ λ‖Af‖,∀f ∈ D(A),
in consequence B is A-bounded with A-bound λ. If λ < 1, A + B = (1 − λ)A which is self-adjoint. On the
other hand, if λ = 1, A + B is the restriction of the zero operator with domain H. This shows that the
hypothesis ν < 1 cannot be made weaker in Proposition III.11.6 (If ν = 1, one can show, however, that
A + B is essentially self-adjoint).

Now we will apply Proposition III.11.6 to Schrödinger operators in L2(Rn). We begin with an auxiliary
estimation.

LEMMA III.11.10. Let D = L2(Rn). Let 2 ≤ p ≤ ∞ and φ, ψ ∈ Lp(Rn). Denote by φ(P̄ ) the multiplica-
tion operator by φ(k̄) in L̃2(Rn), and define Aφψ = φ(P̄ )ψ(Q̄), Bφψ = ψ(Q̄)φ(P̄ ). Then the closures of Aφψ

and Bφψ lie in B(L2(Rn)), and

‖Aφψ‖ ≤ ‖φ‖p‖ψ‖p, (III.11.72)

‖Bφψ‖ ≤ ‖φ‖p‖ψ‖p. (III.11.73)

We introduce a class of potentials often used. A measurable function v : R
n → R will be called class υ

if can be written as v = v1 + v2 with v1 ∈ L∞(Rn) and v2 ∈ Lp(Rn) for some p that satisfies p ≥ 2 and
p > n/2.

Examples:

1. Squared well or barrier:

V (x̄) =

{
V0 |x̄| ≤ a,

0 |x̄| > a,

where V0 ∈ R, we can take V1 = V, V2 = 0 or V1 = 0, V2 = V.

2. Yukawa potential:
V (x̄) = α|x̄|−1 exp(−μ|x̄|),

with α ∈ R and μ > 0. If n = 3 one can take V1 = 0, V2 = V and p = 2.
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3. Coulomb potential:
V (x̄) = α|x̄|−1, α ∈ R.

Here, we take:

V1(x̄) =

{
V (x̄) |x̄| > 1,

0 |x̄| ≤ 1,
V2(x̄) = V (x̄) − V1(x̄), p = 2.

PROPOSITION III.11.11. Let H = L2(Rn), n = 1, 2, ... Let v ∈ υ. Then D(H0) ⊂ D(V ), V is H0

bounded with H0 bound V = 0, and V (H0 − z)−1 ∈ B(H),∀z ∈ ρ(H0).

PROPOSITION III.11.12. Under the hypothesis of Proposition III.11.11 H = H0 +V is self-adjoint and
bounded by below.

LEMMA III.11.13. Let H = L2(Rn). Assume that v, w ∈ υ, let H = H0 + V and denote by W the
multiplication operator by w(x̄). Then, for z ∈ ρ(H), the operator W (H−z)−1 and the closure of (H−z)−1W
belong to B(H).



Chapter 4

Appendix

In this chapter we are going to present more definitions, computations and proofs with a more depth of
detail than in the chapters below. This level of detail has not been found by the author of this thesis in the
literature even though the results are well known.

I N-Body Kinematics

PROPOSITION IV.1.1. Assertions given in (II.1.2), and in (II.1.3) are true. In particular: Fourier

transform maps unitarily L2(X) onto L2(X̂).

Proof.

This approach is based in the following references, Adachi [60], Deift et al [65], Enss [67], Rudin [79] and
Sigalov and Sigal [81].

We study a system of N distinguishable particles of masses mj , charges qj each moving in n-dimensional
space. The positions for the N particles can be considered as elements in the Hilbert space R

nN with the
scalar product

(x̃, ỹ)1 =

N∑
j=1

mj x̃j · ỹj , (IV.1.1)

where x̃ = (x̃1, . . . , x̃N ) , ỹ = (ỹ1, . . . , ỹN ) and · is the usual scalar product in R
n. This scalar product

defines a norm,

|||x̃||| = ‖x̃‖G = (x̃, x̃)
1/2
1 =

⎡⎣ N∑
j=1

mj x̃2
j

⎤⎦1/2

. (IV.1.2)

To prove that X ∼= R
n(N−1), let us rewrite (II.1.2):

X =

⎧⎨⎩x̃ =

⎛⎝−m−1
1

N∑
j=2

mj x̃j , x̃2, . . . , x̃N

⎞⎠ ∈ R
nN

⎫⎬⎭ .

Then, a Hamel base for X is the following set, B(X) :=

{
−(mj/m1)en−i + ej(n)−i

∣∣∣∣ 2 ≤ j ≤ N, i = 1, . . . , n

}
,

where eq, q = 1 . . . , nN are the canonical vectors in R
nN . The cardinality of B(X) is n(N − 1).

We can define the space Y as follows:

Y =

{
ỹ = (ỹ1, . . . , ỹN ) ∈ R

nN

∣∣∣∣ ỹ1 = . . . = ỹN ∈ R
n

}
∼= R

n. (IV.1.3)
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For all z̃ = (z̃1, . . . , z̃N ) ∈ R
nN ,

z̃ = x̃ + ỹ,

where

x̃ =

⎛⎝z̃1 − M−1
N∑

j=1

mj z̃j , . . . , z̃N − M−1
N∑

j=1

mj z̃j

⎞⎠ ∈ X,

ỹ =

⎛⎝M−1
N∑

j=1

mj z̃j , . . . , M−1
N∑

j=1

mj z̃j

⎞⎠ ∈ Y.

Hence, R
nN is the direct sum of X and Y : R

nN = X ⊕ Y. It is evident that both X and Y are closed
spaces. In physics terms, X describes the positions of the N particles with respect to the center of mass of
the whole system, i.e. the center of mass is the origin. Besides, Y represents the set of all possible centers
of mass where all particles are considered as one body, that is, all particle’s position are equal to the center
of mass. With the scalar product (·, ·)1, X and Y are mutually orthogonal spaces because, for x̃ ∈ X and
ỹ ∈ Y,

(x̃, ỹ)1 =

⎛⎝ N∑
j=1

mj x̃j

⎞⎠ · ỹ1 = 0.

Denote G = R
nN , Gj = R

n
x̃j

where the subindex means that the variable we use in this copy of R
n is x̃j .

With the notation given in subsection (V.1) we have the following isomorphisms (homeomorphisms) between
locally compact Abelian (LCA) groups:

G ∼=
N⊕

j=1

Gj (IV.1.4)

G ∼= X ⊕ Y (IV.1.5)

X ∼= G/Y. (IV.1.6)

At present, (IV.1.4) and (IV.1.5) are clear. To prove (IV.1.6) we establish an isomorphism between X and
G/Y. Let ζ : X → G/Y such that x̃ �→ x̃ + Y. It is not difficult to see that ζ(x̃ + ỹ) = ζ(x̃) + ζ(ỹ). It is one
to one: If x̃, ỹ ∈ X and x̃ + Y = ỹ + Y, then x̃ − ỹ ∈ X ∩ Y, therefore x̃ = ỹ.

Let dμ(x̃) denote the element of volume with respect to the norm ||| · |||. We can think of μ as the product

measure defined in the Cartesian product R
nN
x̃

∼=⊗N
j=1 R

n
x̃j

. In each R
n
x̃j

the norm ||| · ||| induces the metric

ds2
j = (

√
mjdx̃j)

2, that is the metric tensor is represented by the matrix mjIn×n, and thus, the measure

in the j-th copy of R
n
x̃j

is μj :=
√

det(mjIn×n)λ where λ is the Lebesgue measure in R
n. By the fact that

Lebesgue measure is σ−finite, that Borel σ−algebra in R
nN is generated by the Cartesian product of N

copies of the Borel σ−algebra in R
n, and the measure product Theorem [61], we conclude that

dμ(x̃) = (m
n/2
1 dx̃1) · · · (mn/2

N dx̃N ) =

⎛⎝ N∏
j=1

m
n/2
j

⎞⎠ dx̃1 · · · dx̃N , (IV.1.7)

where dx̃j is the element of volume given by the Lebesgue measure in R
n.

Let Γ,Γj be the dual of G,Gj , 1 ≤ j ≤ N, respectively. Let X̂ be the annihilator of Y. Then, by Theorem

III.5.19, Theorem III.5.20 and its corollary III.5.21, X̂ is the dual of X, Γ/X̂ is the dual of Y, Γj
∼= R

n
p̃j

,

Γ ∼=
N⊕

j=1

Γj ,

Γ ∼= X̂ ⊕ (Γ/X̂).
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By extending the calculations done to get (III.5.47), the following is valid: For any γ ∈ Γ there a unique
p̃ = (p̃1, . . . , p̃N ) ∈ R

nN such that
γ(x̃) = eip̃·x̃

where · is the usual scalar product in R
nN . These set of p̃-s are going to be considered as the elements of Γ.

Having said that, the annihilator X̂ of Y are all p̃ ∈ R
nN such that eip̃·x̃ = 1 for all x̃ ∈ Y, this implies the

following computations:

p̃ · x̃ = 0∑
p̃j · x̃j = 0(∑

p̃j

)
· x̃1 = 0∑
p̃j = 0.

That is why the conjugated momenta p̃, in the center of mass frame, are elements of the dual space X̂, as
in (II.1.3),

X̂ =

⎧⎨⎩p̃ = (p̃1, p̃2, . . . , p̃N ) ∈ R
nN

∣∣∣∣ N∑
j=1

p̃j = 0 ∈ R
n

⎫⎬⎭ ∼= R
n(N−1). (IV.1.8)

Recalling the Plancherel Theorem III.5.17, the Fourier transform is an isometry from L2(G) = L2(RnN )
onto L2(Γ) ∼= L2(RnN ), with the Haar measures μ in G and ν in Γ, both being equivalent to the Lebesgue
Measure λ in R

nN by Theorem III.5.24 (generalized to the n-dimensional case) and Theorem III.5.7. Thus
μ = αλ and μ = βλ, where these α, β > 0 must hold (III.5.49) and also μ has to take into account (IV.1.7).
There is no a unique choice of α, β > 0, but we prefer that both μ and ν share the same factor of 2π, then

μ = (2π)−nN/2

⎛⎝ N∏
j=1

m
n/2
j

⎞⎠λ,

ν = (2π)−nN/2

⎛⎝ N∏
j=1

m
−n/2
j

⎞⎠λ.

We can drop the (2π)−nN/2 from the measure and consider it as part of the definition on the Fourier
transform, we put in these cases, where λj is the usual lebesgue measure in the j-th copy of R

n,

μ =
N⊗

j=1

m
n/2
j λj , (IV.1.9)

ν =
N⊗

j=1

m
−n/2
j λj . (IV.1.10)

Therefore, we modify (III.5.43) and the transition to the momentum representation is, for any φ ∈ L1(X) ∩
B(X), where B(X) is like in Definition III.5.15,

φ̂(p) = (2π)−nN/2

∫
X

φ(x) e−ip·x dμ(x), p ∈ X̂

φ(x) = (2π)−nN/2

∫
X̂

φ̂(p) ep·x dν(p), x ∈ X,

We conclude, by the Plancherel Theorem III.5.17, that Fourier transform maps unitarily L2(X) onto L2(X̂).
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Using the same reasoning the related measure and metric as in (IV.1.7), the measure ν corresponds to
the following metric in Γ.

|||p̃|||Γ =

⎡⎣ N∑
j=1

m−1
j p̃2

j

⎤⎦1/2

.

COMPUTATION IV.1.2. Proof of (II.1.5).

Proof.

We extend the definitions of Qj and Mj in (II.1.6) and set QN = Q and MN = M.
The first part is motivated in Reed y Simon [36], pp. 78. and as a problem 52b. We give here the solution

with our notation:
We consider the change of coordinates given by (II.1.4). Additionally, we set

ξN = −
(

N∑
k=1

mk

)−1( M∑
k=1

mkx̃k

)
, (IV.1.11)

and we write x̃ = (x̃1, . . . , x̃N ) and ξ = (ξ1, . . . , ξN ).
Let

g : R
nN → R

nN

x̃ �→ ξ (IV.1.12)

be the map that transforms the x̃ into the ξ coordinates given by (II.1.4) and (IV.1.11). It is not difficult to
see that it is a linear function and its kernel is {0}, thus, g is an isomorphism (bijective map) because the
dimensions of their domain and codomain are the same. Being g an isomorphism we have that g−1 is also
an isomorphism, in particular it is a linear map, this linearity implies g is an homeomorphism with respect
the usual topology in R

nN . From our further calculations, its Jacobian is equal to 1. This establishes that
the map U : L2(RnN ) → L2(RnN ), given by Uψ = ψ ◦ g is unitary.

Let be f any twice continuously differentiable function in R
nN
ξ . We want to find ∇x̃j

Uf, for each
j = 1, . . . N. To do that we compute ∇x̃ = (∇x̃1

, . . . ,∇x̃N
). By the chain rule:

∇x̃Uf = (∇ξ1
f, . . . ,∇ξN

f)(1×nN)

⎛⎜⎝∇x̃1
ξ1 . . . ∇x̃N

ξ1

...
...

∇x̃1
ξN . . . ∇x̃N

ξN

⎞⎟⎠
(nN×nN)

=

N∑
j=1

(
∂ξj

∂x̃1
∇ξj

f, . . . ,
∂ξj

∂x̃N
∇ξj

f

)
(1×nN)

because

∇x̃k
ξj =

⎛⎜⎝∇x̃k
(ξj · e1)
...

∇x̃k
(ξj · en)

⎞⎟⎠
(n×n)

=
∂ξj

∂x̃k
In×n,

where

∂ξj

∂x̃k
=

⎧⎪⎨⎪⎩
0 if k > j + 1,

1 if k = j + 1,

−mk

Mj
if k ≤ j,

,
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ei, i = 1, . . . , n, the canonical vectors in R
n, and I the identity matrix.

Thus, based on [74] page 240, the first part of (II.1.1) can be written as follows.

N∑
k=1

(2mk)−1p̃2
k = −

N∑
k=1

N∑
j=1

N∑
j′=1

(2mk)−1 ∂ξj

∂x̃k

∂ξj′

∂x̃k
∇ξj

· ∇ξj′

= −
N∑

j=1

N∑
j′=1

(2m1)
−1 ∂ξj

∂x̃1

∂ξj′

∂x̃1
∇ξj

· ∇ξj′

−
N∑

k=2

N∑
j=1

N∑
j′=1

(2mk)−1 ∂ξj

∂x̃k

∂ξj′

∂x̃k
∇ξj

· ∇ξj′

= −
N∑

j=1

N∑
j′=1

1

2m1

m1

Mj

m1

Mj′

∇ξj
· ∇ξj′

−
N∑

k=2

N∑
j=k−1

1

2mk

∂ξj

∂x̃k

∂ξj

∂x̃k
∇ξj

· ∇ξj

−2
N∑

k=2

N∑
j=k−1

N∑
j′>j

1

2mk

∂ξj

∂x̃k

∂ξj′

∂x̃k
∇ξj

· ∇ξj′

= −
N∑

j=1

m1

2M2
j

�ξj
−

N∑
j=1

N∑
j′>j

m1

MjMj′

∇ξj
· ∇ξj′

−
N∑

k=2

1

2mk
�ξk−1

−
N∑

k=2

N∑
j=k

mk

2M2
j

�ξj
+

N∑
k=2

N∑
j′>k−1

1

Mj′

∇ξk−1
· ∇ξj′

−
N∑

k=2

N∑
j=k

N∑
j′>j

mk

MjMj′

∇ξj
· ∇ξj′

= −
N∑

k=1

N∑
j=k

N∑
j′>j

mk

MjMj′

∇ξj
· ∇ξj′

+

N∑
k=2

N∑
j′>k−1

1

Mj′

∇ξk−1
· ∇ξj′

−
N∑

k=1

N∑
j=k

mk

2M2
j

�ξj
−

N∑
k=2

1

2mk
�ξk−1

= −
N−1∑
j=1

N∑
j′>j

j∑
k=1

mk

MjMj′

∇ξj
· ∇ξj′

+
N−1∑
j=1

N∑
j′>j

1

Mj′

∇ξj
· ∇ξj′

−
N∑

j=1

j∑
k=1

mk

2M2
j

�ξj
−

N−1∑
j=1

1

2mj+1
�ξj

= −
N−1∑
j=1

N∑
j′>j

1

Mj′

∇ξj
· ∇ξj′

+
N−1∑
j=1

N∑
j′>j

1

Mj′

∇ξj
· ∇ξj′

−
N∑

j=1

1

2Mj
�ξj

−
N−1∑
j=1

1

2mj+1
�ξj

= − 1

2M
�ξN

− 1

2

N−1∑
j=1

(
1

Mj
+

1

mj+1

)
�ξj
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It is more convenient to replace the variable ξN by the center of mass XCM . Because XCM = −ξN , we
have:

(PCM )
2

= −�ξN
.

Hence, by (II.1.6),
N−1∑
j=1

((2νj)
−1p̂

2
j =

N∑
k=1

(2mk)−1p̃2
k − (2M)−1 (PCM )

2
. (IV.1.13)

For the second part of (II.1.5):

N−1∑
j=1

qR
j E · ξj =

N−1∑
j=1

(
qj+1Mj − mj+1Qj

Mj+1

)
E · ξj

=

N−1∑
j=1

(
qj+1Mj + qj+1mj+1 − qj+1mj+1 − mj+1Qj

Mj+1

)
E · ξj

=

N−1∑
j=1

(
qj+1Mj+1 − mj+1Qj+1

Mj+1

)
E · ξj

=

N∑
j=2

(
qj − mjQj

Mj

)
E · ξj−1

=

N∑
j=2

(
qj − mjQj

Mj

)
E ·
[
x̃j −

(
1

Mj−1

) j−1∑
k=1

mkx̃k

]

=
N∑

j=2

(
qj − mjQj

Mj

)
E · x̃j −

N∑
j=2

j−1∑
k=1

(
qj − mjQj

Mj

)(
1

Mj−1

)
mkE · x̃k

=
N∑

j=2

(
qj − mjQ

M
+

mjQ

M
− mjQj

Mj

)
E · x̃j

−
N∑

j=2

j−1∑
k=1

(
qj − mjQj

Mj

)(
1

Mj−1

)
mkE · x̃k

=
N∑

j=2

(
qj − mjQ

M

)
E · x̃j +

N∑
j=2

mj

(
Q

M
− Qj

Mj

)
E · x̃j

−
N−1∑
k=1

N∑
j=k+1

(
qj − mjQj

Mj

)(
1

Mj−1

)
mkE · x̃k

=

N∑
j=1

(
qj − mjQ

M

)
E · x̃j +

N∑
j=1

mj

(
Q

M
− Qj

Mj

)
E · x̃j

−
N−1∑
j=1

mjE · x̃j

N∑
k=j+1

(
qk − mkQk

Mk

)(
1

Mk−1

)

=
N∑

j=1

(
qj − mjQ

M

)
E · x̃j

+

N−1∑
j=1

mjE · x̃j

⎡⎣ Q

M
− Qj

Mj
−

N∑
k=j+1

(
qk − mkQk

Mk

)(
1

Mk−1

)⎤⎦



N-Body Kinematics 79

=

N∑
j=1

(
qj − mjQ

M

)
E · x̃j

+

N−1∑
j=1

mjE · x̃j

⎡⎣ Q

M
− Qj

Mj
−

N∑
k=j+1

(
Qk − Qk−1 − mkQk

Mk

)
1

Mk−1

⎤⎦
=

N∑
j=1

(
qj − mjQ

M

)
E · x̃j

+

N−1∑
j=1

mjE · x̃j

⎡⎣ Q

M
− Qj

Mj
−

N∑
k=j+1

(
1 − mk

Mk

)
Qk

Mk−1
+

N∑
k=j+1

Qk−1

Mk−1

⎤⎦
=

N∑
j=1

(
qj − mjQ

M

)
E · x̃j +

N−1∑
j=1

mjE · x̃j

⎡⎣ Q

M
−

N∑
k=j+1

Mk−1

Mk

Qk

Mk−1
+

N∑
k=j+2

Qk−1

Mk−1

⎤⎦
=

N∑
j=1

(
qj − mjQ

M

)
E · x̃j +

N−1∑
j=1

mjE · x̃j

⎡⎣ Q

M
−

N∑
k=j+1

Qk

Mk
+

N∑
k=j+2

Qk−1

Mk−1

⎤⎦
=

N∑
j=1

(
qj − mjQ

M

)
E · x̃j +

N−1∑
j=1

mjE · x̃j

⎡⎣− N−1∑
k=j+1

Qk

Mk
+

N−1∑
k=j+1

Qk

Mk

⎤⎦
=

N∑
j=1

qjE · x̃j − QE ·
N∑

j=1

mj

M
x̃j .

Therefore
N−1∑
j=1

qR
j E · ξj =

N∑
j=1

(qj − mjQ/M)E · x̃j . (IV.1.14)

By (IV.1.13) and (IV.1.14) we obtain (II.1.5).

PROPOSITION IV.1.3. The passage from the x̃j to xj variables.

Proof.

We turn our attention, now, to the change from the variable with˜ to the ones without. Let us prove,
using (II.1.9) and (II.1.10) that

X ∼= X12 :=
{

(x,x3, . . . ,xN ) ∈ R
n(N−1)

}
,

We consider the change of coordinates given by (II.1.9) and (II.1.10).
Let

h : X → R
n(N−1)

x̃ �→ (x,x3, . . . ,xN ) (IV.1.15)

be the map that transforms the x̃ in X into the {xj}3≤j≤N+1 coordinates given by (II.1.9) and (II.1.10).
It is not difficult to see that it is a linear function. It is one to one because, if x̃, ỹ ∈ X such that, for all
3 ≤ j ≤ N,

ỹ2 − ỹ1 = x̃2 − x̃1,

ỹj − m1ỹ1 + m2ỹ2

m1 + m2
= x̃j − m1x̃1 + m2x̃2

m1 + m2
.



N-Body Kinematics 80

Then
ỹ2 − x̃2 = ỹ1 − x̃1,

and, for all 3 ≤ j ≤ N,

ỹj − x̃j =
m1ỹ1 + m2ỹ2

m1 + m2
− m1x̃1 + m2x̃2

m1 + m2

=
m1(ỹ1 − x̃1) + m2(ỹ2 − x̃2)

m1 + m2

= ỹ1 − x̃1.

The condition
∑N

j=1 mj(ỹj − x̃j) = 0 implies that ỹj − x̃j = 0, for all 1 ≤ j ≤ N.
Therefore, h is an isomorphism (bijective map) because the dimensions of their domain and codomain are

the same and it is injective. Being h an isomorphism we have that h−1 is also an isomorphism, in particular
it is a linear map, this linearity implies h is an homeomorphism with respect the usual topology in R

n(N−1).
To compute the Hamiltonian in the xj variables we have to define another mapping g that can be seen

as an extension of h given in (IV.1.15). To take advantage of the similarity between the ξj and the xj

coordinates we introduce a new set of variables:

z1 = x,

zj = xj+1, 2 ≤ j ≤ N − 1,

zN = ξN ,

where x, {xj}3≤j≤N are the coordinates given by (II.1.9), (II.1.10) and ξN is defined in (IV.1.11). The
mapping g is defined as follows:

g : R
nN → R

nN

x̃ �→ (z1, . . . , zN ) (IV.1.16)

For the same reasons as h, g is an homeomorphism with respect the usual topology from R
nN to itself. By

means of the map U : L2(RnN ) → L2(RnN ), given by Uψ = ψ ◦ g we make the change of variables. Because
g is linear, we can take U as a unitary map by adjusting the measure in the copy of R

nN considered in the
codomain of U. It is important that U is unitary in order to preserve probability when considering quantum
states, i.e., the change of variables should not change the probability of finding the particle in the Universe.

Let be f any twice continuously differentiable function in R
nN . We want to find ∇x̃j

Uf, for each
j = 1, . . . N. To do that we compute ∇x̃ = (∇x̃1

, . . . ,∇x̃N
). By the chain rule:

∇x̃Uf = (∇z1f, . . . ,∇zN
f)(1×nN)

⎛⎜⎝Dx̃1
z1 . . . Dx̃N

z1

...
...

Dx̃1
zN . . . Dx̃N

zN

⎞⎟⎠
(nN×nN)

=

N∑
j=1

(
∂zj

∂x̃1
∇zj f, . . . ,

∂zj

∂x̃N
∇zj f

)
(1×nN)

where

Dx̃k
zj =

⎛⎜⎝∇x̃k
(zj · e1)
...

∇x̃k
(zj · en)

⎞⎟⎠
(n×n)

=
∂zj

∂x̃k
In×n,
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and

∂zj

∂x̃k
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if k = 1, j = 1,

− mk

m1+m2
if 1 ≤ k ≤ 2, 2 ≤ j ≤ N − 1,

1 if k = j + 1, 1 ≤ j ≤ N − 1,

0 if k �= j + 1, 3 ≤ k ≤ N, 1 ≤ j ≤ N − 1,

−mk

M if j = N,

ei, i = 1, . . . , n, the canonical vectors in R
n, and I the identity matrix.

Then the free Hamiltonian without considering the electric field in (II.1.1) is

N∑
k=1

p̃2
k

2mk
= −

N∑
k=1

N∑
j=1

N∑
j′=1

(2mk)−1 ∂zj

∂x̃k

∂zj′

∂x̃k
∇zj

· ∇zj′

= −
N∑

j=1

N∑
j′=1

(2m1)
−1 ∂zj

∂x̃1

∂zj′

∂x̃1
∇zj

· ∇zj′

−
N∑

j=1

N∑
j′=1

(2m2)
−1 ∂zj

∂x̃2

∂zj′

∂x̃2
∇zj · ∇zj′

−
N∑

k=3

N∑
j=1

N∑
j′=1

(2mk)−1 ∂zj

∂x̃k

∂zj′

∂x̃k
∇zj

· ∇zj′

= −
N∑

j=1

(2m1)
−1

(
∂zj

∂x̃1

)2

�zj
− 2

N−1∑
j=1

N∑
j′>j

(2m1)
−1 ∂zj

∂x̃1

∂zj′

∂x̃1
∇zj

· ∇zj′

−
N∑

j=1

(2m2)
−1

(
∂zj

∂x̃2

)2

�zj
− 2

N−1∑
j=1

N∑
j′>j

(2m2)
−1 ∂zj

∂x̃2

∂zj′

∂x̃2
∇zj

· ∇zj′

−
N∑

k=3

N∑
j=1

(2mk)−1

(
∂zj

∂x̃k

)2

�zj − 2

N∑
k=3

N−1∑
j=1

N∑
j′>j

(2mk)−1 ∂zj

∂x̃k

∂zj′

∂x̃k
∇zj · ∇zj′

= −(2m1)
−1

(
∂z1

∂x̃1

)2

�z1
−

N−1∑
j=2

(2m1)
−1

(
∂zj

∂x̃1

)2

�zj
− (2m1)

−1

(
∂zN

∂x̃1

)2

�zN

−2

N−1∑
j′=2

(2m1)
−1 ∂z1

∂x̃1

∂zj′

∂x̃1
∇z1

· ∇zj′
− 2(2m1)

−1 ∂z1

∂x̃1

∂zN

∂x̃1
∇z1

· ∇zN

−2
N−2∑
j=2

N−1∑
j′>j

(2m1)
−1 ∂zj

∂x̃1

∂zj′

∂x̃1
∇zj

· ∇zj′
− 2

N−1∑
j=2

(2m1)
−1 ∂zj

∂x̃1

∂zN

∂x̃1
∇zj

· ∇zN

−(2m2)
−1 ∂z1

∂x̃2

∂z1

∂x̃2
�z1 −

N−1∑
j=2

(2m2)
−1 ∂zj

∂x̃2

∂zj

∂x̃2
�zj − (2m2)

−1 ∂zN

∂x̃2

∂zN

∂x̃2
�zN

−2

N−1∑
j′=2

(2m2)
−1 ∂z1

∂x̃2

∂zj′

∂x̃2
∇z1 · ∇zj′

− 2(2m2)
−1 ∂z1

∂x̃2

∂zN

∂x̃2
∇z1 · ∇zN

−2

N−2∑
j=2

N−1∑
j′>j

(2m2)
−1 ∂zj

∂x̃2

∂zj′

∂x̃2
∇zj

· ∇zj′
− 2

N−1∑
j=2

(2m2)
−1 ∂zj

∂x̃2

∂zN

∂x̃2
∇zj

· ∇zN
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−
N∑

k=3

N−1∑
j=1

(2mk)−1 ∂zj

∂x̃k

∂zj

∂x̃k
�zj

−
N∑

k=3

(2mk)−1 ∂zN

∂x̃k

∂zN

∂x̃k
�zN

−2
N∑

k=3

N−2∑
j=1

N−1∑
j′>j

(2mk)−1 ∂zj

∂x̃k

∂zj′

∂x̃k
∇zj

· ∇zj′
− 2

N∑
k=3

N−1∑
j=1

(2mk)−1 ∂zj

∂x̃k

∂zN

∂x̃k
∇zj

· ∇zN

= −(2m1)
−1�z1

−
N−1∑
j=2

m1

2(m1 + m2)2
�zj

− m1

2M2
�zN

−
N−1∑
j′=2

1

m1 + m2
∇z1 · ∇zj′

− 1

M
∇z1 · ∇zN

−
N−2∑
j=2

N−1∑
j′>j

m1

(m1 + m2)2
∇zj

· ∇zj′
−

N−1∑
j=2

1

m1 + m2

m1

M
∇zj

· ∇zN

−(2m2)
−1�z1

−
N−1∑
j=2

m2

2(m1 + m2)2
�zj

− m2

2M2
�zN

+

N−1∑
j′=2

1

m1 + m2
∇z1

· ∇zj′
+

1

M
∇z1

· ∇zN

−
N−2∑
j=2

N−1∑
j′>j

m2

(m1 + m2)2
∇zj

· ∇zj′
−

N−1∑
j=2

m2

(m1 + m2)M
∇zj

· ∇zN

−
N∑

k=3

1

2mk
�zk−1

−
N∑

k=3

mk

2M2
�zN

−2

N∑
k=3

N−2∑
j=1

N−1∑
j′>j

(2mk)−1(0)∇zj · ∇zj′

−2

N∑
k=3

(2mk)−1(1)
−mk

M
∇zk−1

· ∇zN

= −(2m1)
−1�z1 −

N−1∑
j=2

m1

2(m1 + m2)2
�zj −

m1

2M2
�zN

−
N−1∑
j′=2

1

m1 + m2
∇z1 · ∇zj′

− 1

M
∇z1 · ∇zN

−
N−2∑
j=2

N−1∑
j′>j

m1

(m1 + m2)2
∇zj

· ∇zj′
−

N−1∑
j=2

1

m1 + m2

m1

M
∇zj

· ∇zN

−(2m2)
−1�z1

−
N−1∑
j=2

m2

2(m1 + m2)2
�zj

− m2

2M2
�zN

+
N−1∑
j′=2

1

m1 + m2
∇z1

· ∇zj′
+

1

M
∇z1

· ∇zN

−
N−2∑
j=2

N−1∑
j′>j

m2

(m1 + m2)2
∇zj · ∇zj′

−
N−1∑
j=2

m2

(m1 + m2)M
∇zj · ∇zN
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−
N−1∑
j=2

1

2mj+1
�zj

−
N∑

k=3

mk

2M2
�zN

+

N−1∑
j=2

1

M
∇zj

· ∇zN
(IV.1.17)

= −1

2

(
1

m1
+

1

m2

)
�z1

−
N−1∑
j=2

1

2

[
1

mj+1
+

m1

(m1 + m2)2
+

m2

(m1 + m2)2

]
�zj

−1

2

[
m1

M2
+

m2

M2
+

∑N
3 mk

M2

]
�zN

−
[

1

M
− 1

M

]
∇z1 · ∇zN

−
[

m1

(m1 + m2)2
+

m2

(m1 + m2)2

]N−2∑
j=2

N−1∑
j′>j

∇zj
· ∇zj′

−
[

m1

(m1 + m2)M
+

m2

(m1 + m2)M
− 1

M

]N−1∑
j=2

∇zj
· ∇zN

−
[

1

m1 + m2
− 1

m1 + m2

]N−1∑
j′=2

∇z1
· ∇zj′

= − 1

2μ12
�z1 −

N−1∑
j=2

1

2μj+1
�zj −

1

2M
�zN

− 1

(m1 + m2)

N−2∑
j=2

N−1∑
j′>j

∇zj · ∇zj′

= − 1

2μ12
�x −

N∑
j=3

1

2μj
�xj

− 1

2M
�ξN

− 1

(m1 + m2)

N−1∑
j=3

N∑
j′>j

∇xj
· ∇xj′

(IV.1.18)

It is important to remark that in (IV.1.18), there are neither ∇x · ∇ξN
nor ∇xj

· ∇ξN
terms, as Reed

and Simon’s book [36] requires in the section named “Quantum scattering II: N-Body case”.
To change variables electric in the field part of in (II.1.1), we perform the following computations:

N∑
j=1

qjx̃j − QXCM =
N∑

j=1

qjx̃j −
N∑

k=1

qk
1

M

N∑
j=1

mjx̃j =
N∑

j=1

(
qj − Qmj

M

)
x̃j

=
N∑

j=1

(
qj − Qmj

M

)(
x̃j − m1x̃1 + m2x̃2

m1 + m2

)

+

⎛⎝ N∑
j=1

qj − Q

M

N∑
j=1

mj

⎞⎠ m1x̃1 + m2x̃2

m1 + m2

=

(
q1 − Qm1

M

) −m2

m1 + m2
(x̃2 − x̃1) +

(
q2 − Qm2

M

)
m1

m1 + m2
(x̃2 − x̃1)

+

N∑
j=3

(
qj − Qmj

M

)
xj

=

(
−q1m2 +

Qm1m2

M
+ q2m1 − Qm1m2

M

)
x

m1 + m2
+

N∑
j=3

(
qj − Qmj

M

)
xj

=
q2m1 − q1m2

m1 + m2
x +

N∑
j=3

(
qj − Qmj

M

)
xj (IV.1.19)

PROPOSITION IV.1.4. (II.1.9)-(II.1.22) are true.
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Proof.

We recall that p = −i∇x. Besides, pj = −i∇xj
must be true because p and x are conjugate variables

and so they are, pj and xj . By (IV.1.18) and a direct computation we have that:

p = 2μ i[H0, x], (IV.1.20)

pj = 2μj i[H0, xj ], j = 1, . . . , N. (IV.1.21)

By (IV.1.28) and (IV.1.29) below, we can obtain (IV.1.21) for j = 1, 2. In general, we can construct momen-
tum operators by equations similar to (IV.1.20) and (IV.1.21). For more details, please check Berg [62].

Similarly, because p̃j = −i∇x̃j
, we have that

p̃j = 2mj i[H0, x̃j ], j = 1, . . . , N. (IV.1.22)

Therefore, we have (II.1.9) by substituting x := x̃2 − x̃1 and (IV.1.22) into (IV.1.20). Equation (II.1.10)
is true by definition, if we substitute (II.1.10) and (IV.1.22) into (IV.1.21) we obtain (II.1.11).

Considering that pj/μj is the velocity operator of the jth particle with respect to the center of mass of
the pair (1, 2), p̃j/mj is the velocity operator of the jth particle and (p̃1 + p̃2)/(m1 + m2) is the velocity
operator of the pair (1, 2), we obtain (II.1.11). Moreover, xj ,pj , j = 3, . . . , N, x and p satisfy commutation
relations. To see that, and without loss of generality, let us assume that n = 1,

[xj , pj ] = [x̃j − (m1x̃1 + m2x̃2)/(m1 + m2), μj(p̃j/mj − (p̃1 + p̃2)/(m1 + m2))]

=
μj

mj
[x̃j , p̃j ] − μj

m1 + m2
([x̃j , p̃1] + [x̃j , p̃2]) − μj

mj(m1 + m2)
(m1[x̃1, p̃j ] + m2[x̃2, p̃j ])

+
μjm1

(m1 + m2)2
([x̃1, p̃1] + [x̃1, p̃2]) +

μjm2

(m1 + m2)2
([x̃2, p̃1] + [x̃2, p̃2])

=
m1 + m2

m1 + m2 + mj
iδjj − mj

m1 + m2 + mj
i (δ1j + δ2j) − 1

m1 + m2 + mj
i (m1δ1j + m2δ2j)

+
mjm1

(m1 + m2 + mj)(m1 + m2)
(i) +

mjm2

(m1 + m2 + mj)(m1 + m2)
(i)

= i

(
1 − (m1 + mj)δ1j + (m2 + mj)δ2j

m1 + m2 + mj

)

= i

⎧⎪⎨⎪⎩
1, if j = 3, . . . , N,

m2

m1+m2+mj
, if j = 1,

m1

m1+m2+mj
, if j = 2.

[x, p] = [x̃2 − x̃1, μ12(p̃2/m2 − p̃1/m1)]

=
μ12

m2
[x̃2, p̃2] − μ12

m1
[x̃2, p̃1] − μ12

m2
[x̃1, p̃2] +

μ12

m1
[x̃1, p̃1] =

μ12

m2
+

μ12

m1
= 1.

If 3 ≤ j, k ≤ N, j �= k then xj and pk are independent variables, so are x and pj , and xj and p.
In summary {x,x3, . . .xN} and {p,p3, . . .pN} satisfy canonical commutation relations. Please also see
Enss [16] equations 3.2 and 3.3, and equations 393-395 in Dollard [66].

Now, let us see why {p,p3, . . .pN} is linearly independent is a set of N − 1 independent n-dimensional
variables relative to the center of mass frame. We identify the n-dimensional variables p̃j , j = 1, . . . , N as
variables in a (N − 1)n dimensional space as follows

p̃1 ∼
n∑

l=1

p̃1,lel, p̃j ∼
n∑

l=1

p̃j,l e(j−2)n+l, j = 2, . . . , N, (IV.1.23)
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where p̃k = (p̃k,1, . . . , p̃k,n) ∈ R
n, k = 1, . . . , N, and e(j−2)n+l, l = 1, . . . , n, j = 2, . . . , N, are the canonical

vectors in R
(N−1)n. On the other hand, we have

p = μ12

⎛⎝m−1
2 p̃2 + m−1

1

N∑
j=2

p̃j

⎞⎠ = μ12

⎛⎝(m−1
1 + m−1

2

)
p̃2 + m−1

1

N∑
j=3

p̃j

⎞⎠
= p̃2 +

m2

m1 + m2

N∑
j=3

p̃j . (IV.1.24)

From (II.1.11), (IV.1.23) and (IV.1.24) we get the wanted linearly independence. To prove that {x,x3, . . .xN}
is linearly independent we use (II.1.11).

For the proof of (II.1.14), we note that v1 = −vμ12/m1 and v2 = vμ12/m2 mean that in the center of
mass frame of particles 1 and 2, these particles have momenta equal in magnitude and are in exactly opposite
directions.

We commence with v1,j , for j = 3, 4, . . . , N :

v1,j = vj − v1 = djv
2 − (−v̂vμ12/m1) = v2 (dj + v̂μ12/(m1v))

= v2 (dj + v̂μ12/(m1v)) .

Similarly, for j = 3, 4, . . . , N :
v2,j = v2 (dj − v̂μ12/(m2v)) .

If (dj + v̂μ12/(m1v)) = 0, then |dj | = |v̂μ12/(m1v)|, i.e. v = μ12/(m1dj). Thereby, if we ask v > μ12/(m1dj)
we have v1,j �= 0. Likewise, if v > μ12/(m2dj) then v2,j �= 0.

As a consequence we have that vjk = O(v2), for 1 ≤ j < k and 3 ≤ k ≤ N.

PROPOSITION IV.1.5. Inequality (II.1.18) is true.

Proof. First, we use (II.1.10)

|x̃k − x̃j | =

∣∣∣∣x̃k − 1

m1 + m2
(m1x̃1 + m2x̃2) −

[
x̃j − 1

m1 + m2
(m1x̃1 + m2x̃2)

]∣∣∣∣
= |xk − xj | ≤ |xk| + |xj |, j, k = 1, · · · , N,

and

|x1| =

∣∣∣∣x̃1 − 1

m1 + m2
(m1x̃1 + m2x̃2)

∣∣∣∣ = 1

m1 + m2
|m1x̃1 + m2x̃1 − (m1x̃1 + m2x̃2)|

=
m2

m1 + m2
|x| ≤ |x|,

|x2| =

∣∣∣∣x̃2 − 1

m1 + m2
(m1x̃1 + m2x̃2)

∣∣∣∣ = 1

m1 + m2
|m1x̃2 + m2x̃2 − (m1x̃1 + m2x̃2)|

=
m1

m1 + m2
|x| ≤ |x|.

At this moment, we estimate the left hand side of (II.1.18). Because φ0 ∈ S(Rn(N−1)), we have for any
1 ≤ j,< k ≤ N :

∥∥(1 + |x̃k − x̃j |2)2Φv

∥∥ ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥∥∥(1 + (|xk| + |xj |)2

)2
φv(x,x3, . . . ,xN )

∥∥∥ , if j, k = 3, . . . , N,∥∥∥(1 + (|xk| + |x|)2)2 φv(x,x3, . . . ,xN )
∥∥∥ , if j = 1, 2 and k = 3, . . . , N,∥∥∥(1 + |x|2)2 φv(x,x3, . . . ,xN )

∥∥∥ , if j = 1 and k = 2.

≤ Cjk

≤ C.
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We can think of pjk, the momentum as an operator of the kth particle with respect to the jth one,
as being a multiplication operator in the momentum space and as a derivative, with respect the relative
coordinate of the kth particle with respect to the jth one, in the configuration space. This justifies (II.1.15).
The relative velocities do not depend on the frame of reference chosen to compute them, that is why (II.1.16)
should be true. To prove (II.1.16), by an easy permutation of the change or variables, where now x := x̃k−x̃j ,
(IV.1.18) can be written as:

N∑
k′=1

p̃2
k′

2mk′

= − 1

2μjk
�x −

j′ 
=j,j′ 
=k∑
1≤j′≤N

1

2μj′

�xj′
− 1

2M
�ξN

− Cjk

{j′,j′′}∩{j,k}=∅∑
j′′ 
=j′

∇xj′
· ∇xj′′

. (IV.1.25)

From (IV.1.25), we get (IV.1.26) in a similar fashion as (IV.1.20) was gotten:

pjk = 2μjk i[H0, x̃k − x̃j ], (IV.1.26)

from which it follows the first equality in (II.1.16). The second equality can be derived from (II.1.11).

We have to notice that, for j = 3, . . . , N, xj and pj are the relative position and the relative momenta
operators with respect the center of mass of the pair (1, 2). Then, we have that xj = i∇pj

. To prove (II.1.21)
we use (II.1.10) to get x̃k − x̃j = xk − xj .

Let us take k=3, . . . , N.

x̃k − x̃1 = x̃k − (m1x̃1 + m2x̃2)/(m1 + m2) + (m1x̃1 + m2x̃2)/(m1 + m2) − x̃1

= xk +
m2

m1 + m2
(x̃2 − x̃1) = xk +

μ12

m1
x = i

∂

∂pk

+
μ12

m1
i

∂

∂p
,

x̃k − x̃2 = x̃k − (m1x̃1 + m2x̃2)/(m1 + m2) + (m1x̃1 + m2x̃2)/(m1 + m2) − x̃2

= xk − m1

m1 + m2
(x̃2 − x̃1) = xk − μ12

m2
x = i

∂

∂pk

− μ12

m2
i

∂

∂p
,

Hence we have proved (II.1.22).

COMPUTATION IV.1.6. Determination of ηjk, for 1 ≤ j < k ≤ N used to define the support of the
functions fjk in (II.1.19).

Proof. Let us rewrite (II.1.19). By the use (II.1.16), there are functions fjk ∈ C∞
0 (Bμjkηjk

) such
that, for all 1 ≤ j < k ≤ N,

φ̂12(p − μ12v)φ̂3(p3 − μ3v3, . . . ,pN − μNvN )

= fjk

(
μjk[(pk/μk − vk) − (pj/μj − vj)]

)
φ̂12(p − μ12v)φ̂3(p3 − μ3v3, . . . ,pN − μNvN ).(IV.1.27)

We want to find a R > 0 such that if q ∈ R
n \ Bμ12R, then f12(q) = 0. Let us analyze the following cases:

(a) (j, k) = (1, 2).

By (IV.1.27):

φ̂12(p − μ12v)φ̂3 = f12 (p − μ12v) φ̂12(p − μ12v)φ̂3.

From here, we see that we can choose supp f12 such that supp φ̂12 ⊂ supp f12 ⊂ Bμ12η. Thus R = η.

(b) (j, k), j < k; 3 ≤ k ≤ N.
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Here, it is important to realize that p1 and p2 are the momenta operators in the center of mass frame
of particles 1 and 2, respectively. Thus, by physics arguments, p = −m1

μ1
p1 = m2

μ2
p2. Let us verify

these equalities, by (II.1.9) and (II.1.11):

p +
m1

μ1
p1 =

m1m2

m1 + m2
(p̃2/m2 − p̃1/m1) +

m1

μ1
μ1(p̃1/m1 − (p̃1 + p̃2)/(m1 + m2))

=
m1

m1 + m2
p̃2 − m2

m1 + m2
p̃1 + p̃1 − m1

m1 + m2
p̃1 − m1

m1 + m2
p̃2

p = −m1

μ1
p1, (IV.1.28)

p − m2

μ2
p2 =

m1m2

m1 + m2
(p̃2/m2 − p̃1/m1) − m2

μ2
μ2(p̃2/m2 − (p̃1 + p̃2)/(m1 + m2))

=
m1

m1 + m2
p̃2 − m2

m1 + m2
p̃1 − p̃2 +

m2

m1 + m2
p̃1 +

m2

m1 + m2
p̃2

p =
m2

μ2
p2. (IV.1.29)

In the particular case where j = 2, k = 3, . . . , N , (IV.1.27) and (IV.1.29) imply that

φ̂12(p − μ12v)φ̂3(p3 − μ3v3, . . . ,pN − μNvN )

= f2k (μ2k[(pk/μk − vk) − (p/m2 − vμ12/m2)]) φ̂12(p − μ12v)φ̂3(p3 − μ3v3, . . . ,pN − μNvN ).

We want f2k = 1 for pk,p such that φ̂12(p−μ12v) and φ̂3(p3 −μ3v3, . . . ,pN −μNvN ) are supported.
i.e.

|p − μ12v| < μ12η

μ2k |p/m2 − μ12v/m2| < (μ2kμ12/m2)η,

|pk − μkvk| < μk

μ2k |pk/μk − vk| < μ2k,

Then
μ2k |(pk/μk − vk) − (p/m2 − vμ12/m2)| < μ2k(1 + ημ12/m2).

Similarly when j = 1, k = 3, . . . , N, φ̂12(p − μ12v) and φ̂3(p3 − μ3v3, . . . ,pN − μNvN ) are supported
if

μ1k |(pk/μk − vk) + (p/m1 − vμ12/m1)| < μ2k(1 + ημ12/m1).

In the case 3 ≤ j < k ≤ N φ̂12(p − μ12v) and φ̂3(p3 − μ3v3, . . . ,pN − μNvN ) are supported if

μjk

∣∣(pk/μk − vk) + (pj/μj − vj)
∣∣ < 2μjk.

By setting η1j = 2(1 + ημ12/m1), η2j = 2(1 + ημ12/m2) and, for 3 ≤ j < k ≤ N, ηjk = 4, we define,
for 1 ≤ j < k, 3 ≤ k ≤ N, fjk ∈ C∞

0 (Bμjkηjk
) with fjk(q) = 1 if |q| < μjkηjk/2.

II Dynamics

Next, we turn our attention to the subject of self-adjointness of the Hamiltonian in (II.1.41) and why we
impose some restrictions to the potentials involved wherein.

LEMMA IV.2.1. Let A and B be operators in a Hilbert space. If b is any non-negative constant, then A
is (B/b)-bounded with relative bound ab if and only if A is B-bounded with relative bound a.
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Proof. Let φ ∈ D(B). Then, there exist α and β non-negative such that

‖Aφ‖ ≤ α‖Bφ‖ + β‖φ‖ = αb‖(B/b)φ‖ + β‖φ‖.

The result follows.

LEMMA IV.2.2. Assume x → V (x) is a real-valued function defined in R
n with x = (x1, . . . , xn). If

(1 + |x1|)V is relatively bounded with respect to the Laplacian with relative bound a, then x1V is relatively
bounded with respect to the Laplacian with relative bound not greater that a and V is relatively bounded with
respect to the Laplacian with relative bound not greater that a.

Proof. By assumption, there are non-negative real numbers α and β such that

‖(1 + |x1|)V φ‖2 ≤ α2 ‖�φ‖2
+ β2 ‖φ‖2 ∀φ ∈ D(�), (IV.2.30)

with a being the infimum of all α such that (IV.2.30) is true. Take φ ∈ C∞
0 (Rn) then

‖x1V φ‖2
=

∫
Rn

dx |x1|2|V (x)φ(x)|2

≤
∫

Rn

dx (1 + |x1|)2|V (x)φ(x)|2 = ‖(1 + |x1|)V φ‖2

≤ α2 ‖�φ‖2
+ β2 ‖φ‖2

, (IV.2.31)

and

‖V φ‖2
=

∫
Rn

dx |x1|2|V (x)φ(x)|2

≤
∫

Rn

dx (1 + |x1|)2|V (x)φ(x)|2 = ‖(1 + |x1|)V φ‖2

≤ α2 ‖�φ‖2
+ β2 ‖φ‖2

. (IV.2.32)

From (IV.2.31) and (IV.2.32) we obtain the result.
Now we put Lemma 2 in section 8 “Electric Fieds” in Simon [82] which we can use it to justify the

hipothesis imposed on the potential by Adachi and Maehara [2]. We have included the mass m and the
magnitud of the electric field E to adjust the lemma for our purposes.

LEMMA IV.2.3. Let us define H0 = −�/(2m) − Ex1 where m and E are non-negative real numbers.
Suppose that V = V1 + V2 with V2 bounded, V1 �-bounded with relative bound a and V1x1 �-bounded. Then
V is H0-bounded with relative bound 2ma.

Proof. Recall that the Laplacian � is represented in the momentum space as p2 =
∑

p2
j . We first

observe that

x1

[
(−�/(2m) + ib)−1(H0 + ib)−1

]
= i

∂

∂p1

[
(−�/(2m) + ib)−1(H0 + ib)−1

]
= i

[
∂

∂p1
(−�/(2m) + ib)−1

]
(H0 + ib)−1

+(−�/(2m) + ib)−1

[
i

∂

∂p1
(H0 + ib)−1

]
= i

[−1(p2/(2m) + ib)−2(p1/m)
]
(H0 + ib)−1

+(−�/(2m) + ib)−1
[
x1(H0 + ib)−1

]
.
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Then

(−�/(2m) + ib)−1x1(H0 + ib)−1 = x1(−�/(2m) + ib)−1(H0 + ib)−1

+i(p1/m)(−�/(2m) + ib)−2(H0 + ib)−1. (IV.2.33)

Now we decompose V1(H0 + ib)−1 by (IV.2.33) and estimate it by using Proposition III.11.5 as follows

V1(H0 + ib)−1 = V1(−�/(2m) + ib)−1(−�/(2m) + ib)(H0 + ib)−1

= V1(−�/(2m) + ib)−1(−�/(2m) − Ex1 + ib)(H0 + ib)−1

+V1(−�/(2m) + ib)−1Ex1(H0 + ib)−1

= V1(−�/(2m) + ib)−1 + E V1(−�/(2m) + ib)−1x1(H0 + ib)−1

= V1(−�/(2m) + ib)−1 + E V1x1(−�/(2m) + ib)−1(H0 + ib)−1

+iE V1(−�/(2m) + ib)−1(p1/m)(−�/(2m) + ib)−1(H0 + ib)−1

Calculating the norm:

‖V1(H0 + ib)−1‖ ≤ ‖V1(−�/(2m) + ib)−1‖ + E‖V1x1(−�/(2m) + ib)−1‖ ‖(H0 + ib)−1‖
E‖V1(−�/(2m) + ib)−1‖ ‖(p1/m)(−�/(2m) + ib)−1‖ ‖(H0 + ib)−1‖

lim
b→∞

‖V1(H0 + ib)−1‖ ≤ lim
b→∞

‖V1(−�/(2m) + ib)−1‖ + E

[
lim

b→∞
‖V1x1(−�/(2m) + ib)−1‖

+ lim
b→∞

‖V1(−�/(2m) + ib)−1‖ lim
b→∞

‖(p1/m)(−p2/(2m) + ib)−1‖
]

× lim
b→∞

‖(H0 + ib)−1‖

= 2ma + E

[
lim

b→∞
‖V1x1(−�/(2m) + ib)−1‖

+ lim
b→∞

‖V1(−�/(2m) + ib)−1‖(0)

]
(0)

= 2ma.

Finally, by (III.11.69)

lim
b→∞

‖V (H0 + ib)−1‖ ≤ 2ma + lim
b→∞

‖V2(H0 + ib)−1‖
≤ 2ma.

In Lemma IV.2.3 we take V = V1 +V2 because there are bounded operators V2 such that V2x1 are not �-
bounded. Example: the identity operator. Let us take y = (y1, 0, . . . , 0), φ ∈ C∞

0 with supp φ ∈ B|y1|/2(0).
Recall that τyφ(x) = φ(x − y).

‖x1(τyφ)‖2 =

∫
dx |x1φ(x − y)|2

=

∫
B|y1|/2(0)

dz |(z1 + y1) |φ(z)|2

=

∫
B|y1|/2(0)

dz | |y1| − |z1| |2 |φ(z)|2

≥
∫

B|y1|/2(0)

dz y2
1/4 |φ(z)|2

= (y2
1/4)‖φ‖2 → ∞ as |y1| → ∞.
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On the other hand, by Proposition III.4.6,

‖�(τyφ)‖ = ‖F−1p2F(τyφ)‖ = ‖p2(τyφ)ˆ‖ = ‖p2e−ip·yφ̂‖

=

(∫
dp |p2e−iy·pφ̂(p)|2

)1/2

=

(∫
dp |p2φ̂(p)|2

)1/2

= ‖p2φ̂‖
= ‖�φ‖.

Hence, ‖�(τyφ)‖ is constant whereas ‖x1(τyφ)‖ goes to ∞ as |y1| goes to ∞. That is the reason why Ix1 is
not �-bounded.

At this moment we are prepared to justify the hypotheses over the boundedness of the potential given
in Definitions II.1.1 and II.1.2 that allow the perturbed Hamiltonian to be essentially self-adjoint and thus
we can apply Stone’s Theorem in order to define the propagator e−itH with H given in (II.1.37). We will
assume that the relative charge qR

1 , given by (II.1.6), is not zero when Jacobi coordinates are based on every
pair 1 ≤ j < k ≤ N. The case where qR

1 is zero is similar and simpler. We define

H12 = (2ν1)
−1p̂

2
1 + qR

1 E · ξ1, (IV.2.34)

thus we compactly reexpress (II.1.7) as

H0 = H12 ⊗ I + I ⊗ Ĥ0.

First we take φl ∈ C∞
0 (Rn), ψl ∈ C∞

0 (R(n−1)N ). The beauty of having based Jacobi coordinates is that
this procedure applies to all pairs. Let us consider the potential V vs

jk given in (II.2.1). Therefore,

V vs
jk (x̃k − x̃j) = V vs

jk (ξ1) ⊗ I.

By Definition II.1.2 and Lemmas IV.2.1, IV.2.2 and IV.2.3 there exist non-negative constants αl and βl such
that

‖(V vs
jk ⊗ I)(φl ⊗ ψl)‖ = ‖Vjkφl‖ ‖ψl‖

≤ αl‖ψl‖ ‖H12φl‖ + βl‖ψl‖ ‖φl‖
= αl‖(H12 ⊗ I)(φl ⊗ ψl)‖ + βl‖φl ⊗ ψl‖
≤ αl‖(H12 ⊗ I + I ⊗ Ĥ0)(φl ⊗ ψl)‖ + βl‖φl ⊗ ψl‖ + αl‖φl ⊗ Ĥ0ψl‖
≤ αl‖H0(φl ⊗ ψl)‖ +

(
βl + αl‖Ĥ0ψl‖/‖ψl‖

)
‖φl ⊗ ψ‖,

where the infimum of all such αl is zero by assumption in Definition II.1.2.
Taking linear combinations of the φl ⊗ψl there exist α and β such that for any η in a dense set of L2(X)

‖V vs
jk η‖ ≤ αjk‖H0η‖ + βjk‖η‖.

We can conclude that the H0-bound of V vs
jk is zero. This applies also to V s

jk and V l
jk as in (II.2.1) because they

are bounded. Thus, summing up and using the fact that for all 1 ≤ j < k ≤ N, V 0
jk and V E

jk are relatively
bounded with respect to H0 with relative bound zero, we obtain that the operator V, given in (II.1.41) is
H0-bounded with relative bound zero and, hence, H, also given in (II.1.41), is essentially self-adjoint by the
celebrated Kato-Rellich Theorem III.11.6. Therefore we can invoke Theorem III.8.1 to get a propagator.

PROPOSITION IV.2.4. The following estimations are true for y = (y1, . . . , yn) ∈ R
n.

|y|∞ ≤ |y|p ≤ n1/p|y|∞, (IV.2.35)

with p ≥ 1 and |y|pp =
∑n

i=1 yp
i .
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Proof. First inequality follows from |y|p ≥ |yi|, ∀ 1 ≤ i ≤ n. For the second:

|y|∞ ≥ |yi|, ∀ 1 ≤ i ≤ n

n|y|p∞ ≥
n∑

i=1

|yi|p

n1/p|y|∞ ≥ |y|p.

The following Lemma is a slightly modified version of Lemma 3.3 in Hörmander [25]. It is used to add
more regularity to long range potentials.

LEMMA IV.2.5. Let V ∈ Ck(Rn) and assume that |DαV (x)| ≤ C(1 + |x|)−m(|α|), |α| ≤ k, where

m(0), . . . , m(k) are positive numbers, and suppose that 0 < δ < max0<j≤k
m(j)−1

j , δ < 1. Then, one can

split V = V1 + V2, so that for some ε > 0, |V1(x)| ≤ C(1 + |x|)−1−ε, thus V1 is of short-range, and for all α,
|DαV2(x)| ≤ Cα(1 + |x|)−m′(|α|), where m′(j) = maxi≤j,i≤k (m(i) + δ(j − i)) .

COMPUTATION IV.2.6. Decay of the second, third and fourth derivatives of the potential V 0,l given in
(II.1.25).

Proof. Let us assume (II.1.24) and consider 1 ≤ i ≤ n. Then, by the fundamental Theorem of
calculus and the fact that V 0, l(y) → 0 as y → ∞ :

1. Case yi ≤ 0 ∣∣V 0, l(y1, . . . , yn)
∣∣ =

∣∣∣∣∫ yi

−∞
∂iV

0, l(y1, . . . , yi−1, ξi, yi+1, . . . , yn) dξi

∣∣∣∣
≤
∫ yi

−∞

∣∣∂iV
0, l(y1, . . . , yi−1, ξi, yi+1, . . . , yn)

∣∣ dξi

≤ C

∫ yi

−∞
(1 + |(y1, . . . , yi−1, ξi, yi+1, . . . , yn)|)−γ1 dξi

≤ C

∫ yi

−∞
(1 + |ξi|)−γ1 dξi

= C

∫ yi

−∞
(1 − ξi)

−γ1 dξi =
−C

−γ1 + 1
(1 − ξi)

−γ1+1
∣∣∣yi

−∞

=
C

γ1 − 1
(1 + |yi|)−(γ1−1)

2. Case yi > 0 ∣∣V 0, l(y1, . . . , yn)
∣∣ =

∣∣∣∣∫ ∞

yi

∂iV
0, l(y1, . . . , yi−1, ξi, yi+1, . . . , yn) dξi

∣∣∣∣
≤
∫ ∞

yi

∣∣∂iV
0, l(y1, . . . , yi−1, ξi, yi+1, . . . , yn)

∣∣ dξi

≤ C

∫ ∞

yi

(1 + |(y1, . . . , yi−1, ξi, yi+1, . . . , yn)|)−γ1 dξi

≤ C

∫ ∞

yi

(1 + |ξi|)−γ1 dξi

≤ C

∫ ∞

yi

(1 + ξi)
−γ1 dξi =

C

−γ1 + 1
(1 + ξi)

−γ1+1
∣∣∣∞
yi

=
C

γ1 − 1
(1 + |yi|)−(γ1−1)
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Thus, by (IV.2.35)∣∣V 0, l(y1, . . . , yn)
∣∣ ≤ C (1 + |yi|)−(γ1−1)

, ∀ 1 ≤ i ≤ n∣∣V 0, l(y1, . . . , yn)
∣∣ ≤ C min

1≤i≤n
(1 + |yi|)−(γ1−1)

= C

(
1 + max

1≤i≤n
|yi|
)−(γ1−1)

≤ C (1 + |y|∞)
−(γ1−1) ≤ C (1 + |y|)−(γ1−1)

.

That is why we can assume that

|∂βV 0,l| ≤ C (1 + |x|)−(γ1−1+|β|)
, |β| ≤ 1,

with 3/2 < γ1 ≤ 2.
Let us define:

m(0) = γ1 − 1,

m(1) = γ1.

Let us apply Lemma 3.3 from Hörmander

max
0<j≤1

m(j) − 1

j
=

m(1) − 1

1
= γ1 − 1.

Let δ be such that 0 < δ < γ1 − 1 and δ < 1. This is equivalent to choose an 0 < ε0 < 1/2 with
δ = ε0 + 1/2, then 0 < ε < γ1 − 3/2 ≤ 1/2.

Now we compute the new exponents

m′(0) = max
i≤0,i≤1

(m(i) + δ(0 − i))

m′(0) = m(0)

= γ1 − 1.

m′(1) = max
i≤1,i≤1

(m(i) + δ(1 − i))

m(0) + δ = γ1 − 1 + ε0 + 1/2 = γ1 − (1/2 − ε0)

m(1) + 0 = γ1

m′(1) = γ1.

So far, we have recovered the same exponents we already had, now we will obtain the new ones. Because
2ε0 < ε0 + 1/2 :

m′(2) = max
i≤2,i≤1

(m(i) + δ(2 − i))

m(0) + 2δ = γ1 − 1 + 2(ε0 + 1/2) = γ1 + 2ε0

m(1) + δ = γ1 + (ε0 + 1/2)

m′(2) = γ1 + (ε0 + 1/2)

> ε0 + 3/2 + ε0 + 1/2 = 1 + 2(ε0 + 1/2).

Because 3ε0 + 1/2 < 2ε0 + 1 :

m′(3) = max
i≤3,i≤1

(m(i) + δ(3 − i))

m(0) + 3δ = γ1 − 1 + 3(ε0 + 1/2) = γ1 + 3ε0 + 1/2

m(1) + 2δ = γ1 + 2(ε0 + 1/2)

m′(3) = γ1 + 2(ε0 + 1/2)

> ε0 + 3/2 + 2(ε0 + 1/2) = 1 + 3(ε0 + 1/2).
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Because 4ε0 + 1 < 3ε0 + 3/2 :

m′(4) = max
i≤4,i≤1

(m(i) + δ(4 − i))

m(0) + 4δ = γ1 − 1 + 4(ε0 + 1/2) = γ1 + 4ε0 + 1

m(1) + 3δ = γ1 + 3(ε0 + 1/2)

m′(4) = γ1 + 3(ε0 + 1/2)

> ε0 + 3/2 + 3(ε0 + 1/2) = 1 + 4(ε0 + 1/2).

Therefore, we can additionally assume without loss of generality that

|∂α0V 0,l| ≤ C (1 + |x|)−1−|α0|(ε0+1/2)
, 2 ≤ |α0| ≤ 4, V 0,l ∈ C4(Rn).

COMPUTATION IV.2.7. Decay of the third and fourth derivatives of the potential V E,l given in (II.1.30).

Proof.

We know that
|∂βV E,l| ≤ C < x >−γD−μ|β|, |β| ≤ 2

with 0 < γD ≤ 1/2 and 1 − γD < μ ≤ 1.
Let us define:

m(0) = γD,

m(1) = γD + μ,

m(2) = γD + 2μ.

Let us apply Lemma 3.3 from Hörmander

max
0<j≤2

m(j) − 1

j
= max

{
m(1) − 1

1
,
m(2) − 1

2

}
= max

{
γD + μ − 1,

γD + 2μ − 1

2

}
=

γD + 2μ − 1

2
.

Because

γD + 2μ − 1

2
− (γD + μ − 1) = (γD + 2μ − 1 − 2γD − 2μ + 2) /2

= (1 − γD) /2

≥ 1/4

> 0.

We have to choose δ such that 0 < δ < γD+2μ−1
2 and δ < 1. Let δ be equal to μ/2. Clearly 0 < δ < 1. To

prove that δ < γD+2μ−1
2 we do the following estimation:

γD + μ > 1

γD + 2μ − 1 > 1 + μ − 1
γD + 2μ − 1

2
> μ/2 = δ.
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Now we compute the new exponents

m′(0) = max
i≤0,i≤2

(m(i) + δ(0 − i))

m′(0) = m(0)

= γD.

m′(1) = max
i≤1,i≤2

(m(i) + δ(1 − i))

m(0) + δ = γD + μ/2

m(1) + 0 = γD + μ

m′(1) = γD + μ.

m′(2) = max
i≤2,i≤2

(m(i) + δ(2 − i))

m(0) + 2δ = γD + μ

m(1) + δ = γD + 3μ/2

m(2) + 0 = γD + 2μ

m′(2) = γD + 2μ.

So far, we have recovered the same exponents we already had, now we will obtain the new ones.

m′(3) = max
i≤3,i≤2

(m(i) + δ(3 − i))

m(0) + 3δ = γD + 3μ/2

m(1) + 2δ = γD + 2μ

m(2) + δ = γD + 5μ/2

m′(3) = γD +
2 + 3

2
μ.

m′(4) = max
i≤4,i≤2

(m(i) + δ(4 − i))

m(0) + 4δ = γD + 2μ

m(1) + 3δ = γD + 5μ/2

m(2) + 2δ = γD + 3μ

m′(4) = γD +
2 + 4

2
μ.

Therefore, we can additionally assume without loss of generality that

|∂βV E,l| ≤ C < x >−γD−μ
2+|β|

2 , 3 ≤ |β| ≤ 4, V E,l ∈ C4(Rn).

Proposition IV.2.8 below has been taken from Cycon et Al [64]. Some computations has been added to
render the proof even more clear. This proposition proves (II.1.31).

PROPOSITION IV.2.8. Let K0 be the closure of p2/(2m) + qEx1 on S(Rn). Then K0 is self-adjoint,
and the time evolution is

e−it(p2/(2m)−qEx1) = eiqEx1te−it3q2E2/(6m)e−ip1qEt2/(2m)e−itp2/(2m),

for t ∈ R.
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Proof. Consider the decomposition L2(Rn) = L2(R) ⊗ L2(Rn−1), according to the coordinate de-
composition p = (p1,p⊥) and x = (x1,x⊥), in configuration space as well as in momentum space. Let φ(p)
belong to S(Rn). Since x1 acts as i∂/∂p1,

e−ip3
1/(6mqE) (qEx1) eip3

1/(6mqE) φ(p) = e−ip3
1/(6mqE)

(
iqE ∂/∂p1

(
eip3

1/(6mqE)
)

+iqEeip3
1/(6mqE) ∂/∂p1

)
φ(p)

= e−ip3
1/(6mqE)

(
iqE(ip2

1/(2mqE))eip3
1/(6mqE)

+eip3
1/(6mqE) qEx1

)
φ(p)

=
(
iqE(ip2

1/(2mqE)) + qEx1

)
φ(p)

e−ip3
1/(6mqE)

(
p2
⊥/(2m) − qEx1

)
eip3

1/(6mqE) φ(p) =
(
p2
⊥/(2m) + p2

1/(2m) − qEx1

)
φ(p)

= K0 φ(p). (IV.2.36)

So, we have that K0 is unitarily equivalent to the operator
(
p2
⊥/(2m) + p2

1/(2m) + qEx1

)
which, by Fourier

transform in the x⊥ variable, in its turn becomes a multiplication operator in the (x1, p⊥) variables. We
conclude that K0 is self-adjoint.

Let ψ(x) belong to S(Rn) and t ∈ R. Since p1 acts as −i∂/∂x1,

e−iqEx1t p1 eiqEx1t ψ(x) = e−iqEx1t
(−i∂/∂x1e

iqEx1t + eiqEx1tp1

)
ψ(x)

= (qEt + p1) ψ(x),

then, in S(Rn)
e−iqEx1t p1 eiqEx1t = p1 + qEt. (IV.2.37)

By (IV.2.36) and (IV.2.37) and functional calculus, we have in S(Rn)

e−itK0 = e−ip3
1/(6mqE) e−it(p2

⊥/(2m)−qEx1) eip3
1/(6mqE)

= e−ip3
1/(6mqE) eitqEx1 eip3

1/(6mqE) e−itp2
⊥/(2m)

= eitqEx1 e−itqEx1 e−ip3
1/(6mqE) eitqEx1 eip3

1/(6mqE) e−itp2
⊥/(2m)

= eitqEx1 e−i(p1+qEt)3/(6mqE) eip3
1/(6mqE) e−itp2

⊥/(2m)

= eitqEx1 e−i(p3
1+3p2

1qEt+3q2E2t2p1+(qEt)3)/(6mqE) eip3
1/(6mqE) e−itp2

⊥/(2m)

= eitqEx1 e−iqEt/(2m)p1 e−it3q2E2/(6m) e−itp2
1/(2m) e−itp2

⊥/(2m)

= eiqEx1te−it3q2E2/(6m)e−ip1qEt2/(2m)e−itp2/(2m).

Finally we take closures on both sides of the equation.

PROPOSITION IV.2.9. Relations that are obtained under translation in configuration or momentum
space. Proof of Equations II.1.32, II.1.33, II.1.34 and II.1.35.

Proof.

Let us denote by F and by ˆ the Fourier transform in R
n. Let us take φ ∈ L1(Rn), and g ∈ L∞(Rn). We

note that g (τvtφ) ∈ L1(Rn). Then, by proposition III.4.6,

g(x + vt)φ(x) = τ−vt (g(x) (τvtφ(x)))

= F−1 [τ−vt (g(x) (τvtφ(x)))]̂

= F−1eip·vtFg(x)F−1F (τvtφ(x))

= F−1eip·vtg(x)e−ip·vtFφ(x)

g(x + vt) = F−1eip·vtg(x)e−ip·vtF
Fg(x + vt)F−1 = eip·vtg(x)e−ip·vt

g(x + vt) = eip·vtg(x)e−ip·vt
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and

g(p + mv)φ = F−1g(p + mv)Fφ

= F−1τ−mv

(
g(p)φ̂(p − mv)

)
= F−1τ−mv

(
F−1g(p)φ̂(p − mv)

)
ˆ

= F−1
(
e−imv·xF−1g(p)φ̂(p − mv)

)
ˆ

= e−imv·xF−1g(p)FF−1τmvφ̂(p)

= e−imv·xg(p)F−1
(
eimv·xφ

)̂
= e−imv·xg(p)eimv·xφ.

Then, in L1(Rn)∩L2(Rn) which is a dense set in L2(Rn), one has that g(x+vt) = eip·vtg(x)e−ip·vt and
g(p + mv) = e−imv·xg(p)eimv·x in particular

x + vt = eip·vt x e−ip·vt, (IV.2.38)

p + mv = e−imv·x p eimv·x. (IV.2.39)

Now, Let φ̂ ∈ C∞
0 (Rn). We compute as follows:

eitp2/(2m) x e−itp2/(2m)φ̂(p) = eitp2/(2m)
(
e−itp2/(2m)i∇p φ̂(p) + ie−itp2/(2m) (−itp/m) φ̂(p)

)
= (x + tp/m) φ̂(p).

Then, in C∞
0 (Rn) :

e−itp2/(2m) (x + tp/m) eitp2/(2m) = x

eitp2/(2m) (x) e−itp2/(2m) = x + tp/m. (IV.2.40)

This means that the operator x + tp/m is diagonalizable.
By functional calculus, i.e, by (III.7.64), (IV.2.38), (IV.2.39) and (IV.2.40) we obtain (II.1.32), (II.1.33)

and (II.1.35):

f (x + vt) = eip·vt f(x) e−ip·vt, (II.1.32)

f (p + mv) = e−imv·x f(p) eimv·x, (II.1.33)

f (x + tp/m) = eitp2/(2m)f (x) e−itp2/(2m). (II.1.35)

We remark that in (III.7.64), f can be any complex measurable function, not necessarily bounded nor
continuous.

Finally, by (II.1.33) we get (II.1.34),

e−imv·xe−itp2/(2m)eimv·x = e−it(p+mv)2/(2m) = e−it(p2+2mv·p+m2v)/(2m)

= e−itp2/(2m) e−itv·p e−itmv2/2

= e−ip·vte−itp2/(2m)e−imv2t/2. (IV.2.41)

III Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorff formula is used in Valencia and Weder [84] (II.2.34). Therein, we mention
that our source is Enss [14]. In this section, we will clarify what Baker-Campbell-Hausdorff version we are
using and the reason why we need it.
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We recall that x and tp/m do not commute in Quantum Mechanics. For this reason, in order to
compute ei(x+t p/m)·q we use (II.1.35) with the function f equals the exponential function: eiτq·•. Then, we
apply (IV.2.41).

eiτq·(x+t p/m) = eitp2/(2m)eiτq·xe−itp2/(2m)

= eitp2/(2m)e−iτ(−q)·xe−i(tτ/m)p2/(2τ)eiτ(−q)·xeiτq·x

= eitp2/(2m)e−ip·(−q)(tτ/m)e−i(tτ/m)p2/(2τ)e−iτq2(tτ/m)/2eiτq·x

= eiτq·(p/m)teiτq·xe−iτ2q2t/(2m). (IV.3.42)

Our (IV.3.42) is equivalent to equation (13) in Enss [14], taking his velocity operator as p/m.

LEMMA IV.3.1. Let V be a real function with domain R
n. If V (x) and its first and second order derivatives

are continuous and decay towards infinity, m > 0 and t is real, then

V (x + tp/m) − V (tp/m) =

∫ 1

0

ds

[
(∇V ) (sx + tp/m) · x +

it

2m
(ΔV ) (sx + tp/m)

]
. (IV.3.43)

Proof. Let us denote ̂ as Fourier Transform. Because V is measurable and bounded, and both
x + tp/m and tp/m are self-adjoint operators in S(Rn), we can apply functional calculus:

V (x + tp/m) =
1

(2π)n/2

∫
dnq V̂ (q)ei(x+t p/m)·q (IV.3.44)

V (tp/m) =
1

(2π)n/2

∫
dnq V̂ (q)ei(t p/m)·q. (IV.3.45)

By (IV.3.42), for any θ real

ei(θx+t p/m)·q = eit p/m·q eiθx·q e−i θt
2m q2

. (IV.3.46)

Therefore, by (IV.3.45) and (IV.3.46),

V (x + tp/m) − V (tp/m) =
1

(2π)n/2

∫
dnq V̂ (q)eit p/m·q

[
eix·q e−i t

2m q2 − 1
]
. (IV.3.47)

By Duhamel formula:

eix·q e−i t
2m q2 − 1 =

∫ 1

0

dθ
d

dθ

[
eθ(ix·q−i t

2m q2)
]

=

∫ 1

0

dθ i(x · q − t

2m
q2)eθ(ix·q−i t

2m q2). (IV.3.48)

Substituting (IV.3.46), (IV.3.48) into (IV.3.47):

V (x + tp/m) − V (tp/m) =
1

(2π)n/2

∫ ∫ 1

0

V̂ (q) eit p/m·q eiθx·q e−i θt
2m q2

i(x · q − t

2m
q2)dθ dnq,

by (IV.3.46), Fubini and inverting Fourier transform:

V (x + tp/m) − V (tp/m) =
1

(2π)n/2

∫ ∫ 1

0

V̂ (q) eit p/m·q+iθx·qi(x · q − t

2m
q2)dθ dnq,

=

∫ 1

0

1

(2π)n/2

∫
eit p/m·q+iθx·q V̂ (q) (ix · q − it

2m
q2)dnq dθ,

=

∫ 1

0

1

(2π)n/2

∫
ei(t p/m+θx)·q (x · (iq) +

it

2m
(−q2))V̂ (q)dnq dθ,

=

∫ 1

0

[
(x · ∇x +

it

2m
(�x))V

]
(tp/m + θx) dθ,

=

∫ 1

0

[
(∇V )(tp/m + θx) · x +

it

2m
(�V )(tp/m + θx)

]
dθ.
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The Fourier step is justified by the following relations (given in Enss [16] equation 2.5), with x and q
being the conjugate variables:

−i∇x ←→ q ⇐⇒ ∇x ←→ iq,

and
−i∇x(−i∇x) ←→ q(q) ⇐⇒ −�x ←→ q2.

IV High-velocity estimates

COMPUTATION IV.4.1. Proof of (II.2.14).

Proof.

Let us show (II.2.13). Let r1 and r2 be two vectors in R
n. Please note that

−2|r1||r2| ≥ −r2
1 − r2

2. (IV.4.49)

By (IV.4.49):

|r1 + r2| =
√

r2
1 + r2

2 + 2r1 · r2 ≥
√

r2
1 + r2

2 − 2r1 · r2 ≥
√

r2
1 + r2

2 − 2|r1||r2||r̂1 · r̂2|

|r1 + r2| ≥
√

r2
1 + r2

2

√
1 − |r̂1 · r̂2|. (IV.4.50)

Taking, r1 = vt, r2 = e1q12Et2/(2μ12) and noting, by (II.2.12), that 1 − |r̂1 · r̂2| ≥ 1 − δ > 0, we obtain
(II.2.13).

For all r ∈ R
n,

n∑
i=2

|r̂ · ei|2 = 1 − |r̂ · e1|2. (IV.4.51)

For r = (r · e1, r · e2, . . . , r · en) ∈ R
n, we can define a vector r⊥ = (r · e2, . . . , r · en) ∈ R

n−1. By
(IV.4.51),

|r⊥|2 = |r|2 − |r · e1|2. (IV.4.52)

We have the following equivalency: There exists 0 ≤ Δ1 < 1 such that |r · e1| ≤ Δ1|r|, if and only if,
there exists 0 < Δ2 ≤ 1 such that |r⊥| ≥ Δ2|r|. We note that Δ2

2 = 1 − Δ2
1.

Now, we make r1 = v + p/μ12, r2 = e1q12Et/(2μ12), with |p| ≤ μ12η, and η/v <
√

1 − δ/4. Using
(IV.4.52):

|r1⊥| = |(v + p/μ12)⊥| ≥ |v⊥| − | (p/μ12)⊥ | ≥
√

1 − δ2 v − | (p/μ12)⊥ | ≥
(√

1 − δ2 −√
1 − δ/4

)
v

≥
(√

1 + δ − 1/4
)√

1 − δ v ≥ 3
√

1 − δ v/4 =
3
√

1 − δ v/4

|v + p/μ12| |r1| ≥ 3
√

1 − δ v/4

|v| + |p/μ12| |r1|

>
3
√

1 − δ

4 +
√

1 − δ
|r1| =

3
√

1 − δ
(
4 −√

1 − δ
)

16 − (1 − δ)
|r1| =

12
√

1 − δ − 3 + 3δ

15 + δ
|r1|. (IV.4.53)

From (IV.4.53), we define Δ2 = 12
√

1−δ−3+3δ
15+δ . Clearly 0 < Δ2. To see that Δ2 ≤ 1, it is enough to note

that: δ < 1 < 3, then 12
√

1 − δ < 12 < 18 − 2δ, then 12
√

1 − δ − 3 + 3δ < 15 + δ.
Let us observe the following estimate:

|r1| = |v + p/μ12| ≥ |v| − |p/μ12| >
(
1 −√

1 − δ/4
)

v ≥ (1 − 1/4) v = 3v/4. (IV.4.54)
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Hence, by our equivalency above:

|r̂1 · e1| ≤ Δ1 =
√

1 − Δ2
2 < 1. (IV.4.55)

We can now estimate what we want. By (IV.4.50), (IV.4.54) and (IV.4.55);

|r1 + r2| |t| ≥ |r1|
√

1 − Δ1 |t| >
3
√

1 − Δ1

4
|vt|, (IV.4.56)

|r1 + r2| |t| ≥ |r2|
√

1 − Δ1 |t| =

√
1 − Δ1q12E

2μ12
t2. (IV.4.57)

This proves (II.2.14) with c1 = 3
√

1−Δ1

4 , and c2 =
√

1−Δ1q12E
2μ12

.

LEMMA IV.4.2. More details for the proof of Lemma II.2.2.

Proof. In the proof of Lemma II.2.2, the norm of the operator

Gjk := (x̃k − x̃j)
a

ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−a/2 (IV.4.58)

is estimated. Let us see why this estimation is correct.
We rewrite:

Gjk := (x̃k − x̃j)
a
ŨD(t) Jjk, where Jjk :=

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−a/2.

If a is an odd number, we notice that Gjk is a mapping from a dense subset of L2(Rn) to
(
L2(Rn)

)n
.

More explicitly, if a is an odd number and φ is a function in a dense set L2(Rn), we note that:

Gjk φ =
(
(x̃k − x̃j) · e1 (x̃k − x̃j)

a−1
ŨD(t) Jjk φ, . . . , (x̃k − x̃j) · en (x̃k − x̃j)

a−1
ŨD(t) Jjk φ

)
.

If a is an odd number, the norm of Gjk φ is

‖Gjk φ‖2 =

∫
Rn

n∑
l=1

∣∣∣(x̃k − x̃j) · el (x̃k − x̃j)
a−1

ŨD(t) Jjk φ
∣∣∣2

=
n∑

l=1

∫
Rn

|Gjk · el φ|2 =
n∑

l=1

‖Gjk · el φ‖2
. (IV.4.59)

Otherwise, if a is an even number:

‖Gjk φ‖2 =

∫
Rn

∣∣∣(x̃k − x̃j)
a
ŨD(t) Jjk φ

∣∣∣2 . (IV.4.60)

The norm ‖Gjk‖ is computed in the customary way:

‖Gjk‖ := sup
‖φ‖=1

‖Gjk φ‖.

When a is even, (x̃k − x̃j)
a

is a polynomial of degree a, and when a is odd is a vector in R
n whose entries

are polynomials of degree a. These polynomials are of the form:

(x̃k − x̃j)
a

=

{
((x̃k − x̃j) · e1, . . . , (x̃k − x̃j) · en) , if a = 1,∑n

r=1

∑n
r′=1 ((x̃k − x̃j) · er)

2
((x̃k − x̃j) · er′)

2
, if a = 4.
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Therefore, a being 1 or 4, ‖Gjk‖ can be estimated by linear combinations of the norm of

(x̃k − x̃j)
αb ŨD(t) Jjk, (IV.4.61)

where the multi-index αb = (αb1, . . . , αbn) and (x̃k − x̃j)
αb = ((x̃k − x̃j) · e1)

αb1 · · · ((x̃k − x̃j) · en)
αbn , with

αbr an even number for all 1 ≤ r ≤ n, if a = 4.
We reproduce equations (II.1.21) and (II.1.22)

x = x̃2 − x̃1 = i
∂

∂p
, x̃k − x̃j = i

∂

∂pk

− i
∂

∂pj

, j, k = 3, . . . , N, (II.1.21)

x̃k − x̃1 = i
∂

∂pk

+
μ12

m1
i

∂

∂p
, x̃k − x̃2 = i

∂

∂pk

− μ12

m2
i

∂

∂p
, k = 3, . . . , N. (II.1.22)

Similarly, we recall that

p = −m1

μ1
p1, (IV.1.28)

p =
m2

μ2
p2. (IV.1.29)

We start with the case a = 1, by (II.1.21) and (II.1.22), for 1 ≤ l ≤ n, ((x̃k − x̃j) · el) are first order
derivatives. Then, by (IV.4.61) and the Leibnitz rule,

‖Gjk‖ ≤ C

n∑
l=1

[∥∥∥(((x̃k − x̃j) · el) ŨD(t)
)

Jjk

∥∥∥+
∥∥∥ŨD(t) ((x̃k − x̃j) · el) Jjk

∥∥∥]

≤ C

n∑
l=1

⎡⎣∥∥∥∥∥∥((x̃k − x̃j) · el) ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)

∥∥∥∥∥∥
+

∥∥∥∥∥∥((x̃k − x̃j) · el)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)

∥∥∥∥∥∥+

∥∥∥∥ x̃k − x̃j

(1 + |x̃k − x̃j |2)1/2

∥∥∥∥
⎤⎦ .

Because fj′k′ are compactly supported infinitely differentiable functions for all j′, k′ we have that:

‖Gjk‖ ≤ C
n∑

l=1

[
1 +
∥∥∥((x̃k − x̃j) · el) ŨD(t)

∥∥∥] . (IV.4.62)

We remember that V : R
n → R, (y1, . . . , yn) �→ V (y1, . . . , yn). We are composing it after the mapping

g, from
{

(p, p3, . . . , pN )
∣∣ p = −m1

μ1
p1 = m2

μ2
p2

} ∼= R
n(N−1) ⊂ R

nN onto R
n, (p, p3, . . . , pN ) �→ s(pk/μk −

pj/μj) + e1qjkEs2/(2μjk), with s any real. The derivative D(V ◦ g) is the following:

D(V ◦ g) = (∇V (g(p, p3, . . . , pN )))1×n

((
∂g

∂p,1

)T

,

(
∂g

∂p,2

)T

, . . . ,

(
∂g

∂pN,n

)T
)

n×n(N−1)

=

(
n∑

r=1

∂V

∂yr
(g(p, p3, . . . , pN ))

∂g · er

∂p,1
, . . . ,

n∑
r=1

∂V

∂yr
(g(p, p3, . . . , pN ))

∂g · er

∂pN,n

)
1×n(N−1)

=

(
∂V

∂y1
(g(p, p3, . . . , pN ))

∂g · e1

∂p,1
, . . . ,

∂V

∂yn
(g(p, p3, . . . , pN ))

∂g · en

∂p,n
, . . . ,

∂V

∂y1
(g(p, p3, . . . , pN ))

∂g · e1

∂pN,1
, . . . ,

∂V

∂yn
(g(p, p3, . . . , pN ))

∂g · en

∂pN,n

)
1×n(N−1)

.
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Having computed the derivative of the potential, we have that, for 3 ≤ l′ ≤ n, gj′k′ ∈ C∞
0 (Bμj′k′ηj′k′ )

and gj′k′ = 1 in the support of fj′k′ .∥∥∥∥(( ∂

∂pl′
· el

)
ŨD(t)

)

×
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)

∥∥∥∥∥∥ =

∥∥∥∥∥∥ŨD(t)
∑

j′<k′

∫ t

0

ds
∂

∂pl′,l

(
V l

j′k′ (s(pk′/μk′ − pj′/μj′)

+e1qj′k′Es2/(2μj′k′)
)) ∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)

∥∥∥∥∥∥
≤

∑
j′<k′

∥∥∥∥gj′k′(pj′k′ − μj′k′vj′k′)

∫ t

0

ds∇V l
j′k′

(
spj′k′/μjk

+e1qj′k′Es2/(2μj′k′)
) · ∂g

∂pl′,l

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)

∥∥∥∥∥∥

≤ C
∑

j′<k′

∥∥∥∥∥gj′k′(pj′k′ − μj′k′vj′k′)

∫ t

0

ds |s|∂V l
j′k′

∂yl
(spj′k′/μj′k′

+e1qj′k′Es2/(2μj′k′))

⎧⎪⎨⎪⎩
1/μk′ , if l′ = k′,
1/μj′ , if l′ = j′,
0, if l′ �= j′ and l′ �= k′,

∥∥∥∥∥∥∥
≤ C

∑
j′<k′, l′∈{j′,k′}

∥∥∥∥∥
∫ t

0

|s|∂V l
j′k′

∂yl
(s(pj′k′/μj′k′ + vj′k′)

+e1qj′k′Es2/(2μj′k′)) gj′k′(pj′k′) ds
∥∥ , (IV.4.63)

Likewise, by (IV.1.28) and (IV.1.29),∥∥∥∥∥∥
(

∂

∂p
· el

)
ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)

∥∥∥∥∥∥ ≤ C
∑

j′<k′, j′∈{1,2}

∥∥∥∥∥
∫ t

0

|s|∂V l
j′k′

∂yl
(s(pj′k′/μj′k′ + vj′k′)

+e1qj′k′Es2/(2μj′k′)) gj′k′(pj′k′) ds
∥∥ . (IV.4.64)

In both (IV.4.64) and (IV.4.63), we could interchange the derivative with the integral by using the same
estimations given in (II.2.20) that allow to dominate the integrand and its derivatives with respect to the
parameters p,p3, . . . ,pN by an integrable function depending only on the integration variable s.

Hence, by (IV.4.62), (IV.4.63) and (IV.4.64), for 1 ≤ j < k ≤ N, with Iβb
is as in (II.2.18),∥∥∥∥∥∥(x̃k − x̃j) ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−1/2

∥∥∥∥∥∥ ≤ C

⎛⎝1 +
∑

|βb|=1

Iβb

⎞⎠ (IV.4.65)

Let us write Ij′k′

βb
instead of Iβb

is as in (II.2.18). Then, the terms that are summed in the right hand
side of (IV.4.65) are those pairs (j′, k′) such that 1 ≤ j′ < k′ ≤ N, and either {j′, k′} ∩ {j, k} �= ∅ or j =
1 and j′ = 2 or j = 2 and j′ = 1.
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Let us define a new set of pairs,

Njk :=
{
(j′, k′)

∣∣ 1 ≤ j′ < k′ ≤ N and either j′ = j or j′ = k or k′ = j or k′ = k or j′ + j = 3
}

. (IV.4.66)

Then, (II.2.18) can be reformulated as:∥∥∥∥∥∥(x̃k − x̃j) ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−1/2

∥∥∥∥∥∥ ≤ C

⎛⎝1 +

|βb|=1∑
(j′,k′)∈Njk

Ij′k′

βb

⎞⎠ . (IV.4.67)

The presence of gj′k′(pj′k′) allows us to only consider |pj′k′ | ≤ μj′k′ηj′k′ , necessary to apply the estima-
tions given by (II.2.13) and (II.2.14). We use the definition of (II.2.18) and (II.2.19) and the decay of the
potentials given in (II.1.24), (II.1.25), (II.1.29), (II.1.30). Remember that we take σ̃ = 0, if qj′k′ �= 0 and
σ̃ = 1, if qj′k′ = 0. In inequality (II.2.20), we make the change of variable τ = vσ̃/(2−σ̃)s. Then

Iβb
≤ C

∫ |t|

0

s|βb|iβb,vj′k′ (s) ds

= Cv
−(|βb|+1)σ̃/(2−σ̃)
j′k′

∫ |t|

0

(v
σ̃/(2−σ̃)
j′k′ s)|βb|iβb,1(v

σ̃/(2−σ̃)
j′k′ s) d(v

σ̃/(2−σ̃)
j′k′ s)

= Cv
−(|βb|+1)σ̃/(2−σ̃)
j′k′

∫ v
σ̃/(2−σ̃)

j′k′ |t|

0

τ |βb|iβb,1(τ) dτ. (II.2.20).

Let us compute Iβb
, focusing in |βb| = 1.

If qj′k′ �= 0, then we have, 2(−γD − μ) + 2 < 0, that

Iβb
≤ C

∫ |t|

0

τ(1 + τ2)−γD−μ dτ ≤ C

∫ |t|

0

τ(1 + τ)2(−γD−μ) dτ ≤ C

∫ |t|

0

(1 + τ)2(−γD−μ)+1 dτ

≤ C(1 + τ)2(−γD−μ)+2
∣∣∣|t|
0

≤ C(1 + |t|)2(−γD−μ)+2 < C, (IV.4.68)

else, if qj′k′ = 0 then we have that

Iβb
≤ Cv−2

j′k′

∫ vj′k′ |t|

0

τ(1 + τ)−γ1 dτ ≤ v−2
j′k′

∫ vj′k′ |t|

0

(1 + τ)−γ1+1 dτ

≤ Cv−2
j′k′

⎧⎪⎨⎪⎩
(1 + τ)−γ1+2

∣∣∣vj′k′ |t|

0
, if γ < 2,

ln(1 + τ)
∣∣∣vj′k′ |t|

0
, if γ = 2,

≤ Cv−2
j′k′

{
(1 + |vj′k′t|)2−γ1 , if γ < 2,

ln(1 + |vj′k′t|), if γ = 2
(IV.4.69)

We want to pass from vj′k′ to vjk in (IV.4.69). We have three cases:

(a) Either (j′, k′) = (j, k) = (1, 2), or (j′, k′) �= (1, 2) and (j, k) �= (1, 2). In the first instance, vj′k′ = vjk =
v, and in the second, vj′k′ = Cv2, vjk = Cv2. In both cases, vj′k′ = Cvjk. Then

v−2
j′k′ |vj′k′t|2−γ1 = Cv−2

jk |vjkt|2−γ1 .

(b) (j′, k′) �= (1, 2) and (j, k) = (1, 2). Here, vj′k′ = Cv2, vjk = v, therefore, vj′k′ = Cv2
jk and

v−2
j′k′ |vj′k′t|2−γ1 = Cv−4

jk |v2
jkt|2−γ1 = Cv−4+2−γ1

jk |vjkt|2−γ1 = Cv
−(2+γ1)
jk |vjkt|2−γ1 .
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(c) (j′, k′) = (1, 2) and (j, k) �= (1, 2). In this case, vj′k′ = v, vjk = Cv2, therefore, vj′k′ = Cv
1/2
jk and

v−2
j′k′ |vj′k′t|2−γ1 = Cv−1

jk |v1/2
jk t|2−γ1 = Cv

−1−1+γ1/2
jk |vjkt|2−γ1 = Cv

−(2−γ1/2)
jk |vjkt|2−γ1 .

By L’Hôpital rule:

lim
τ→∞

v−2
jk ln(1 + τ)

v−1
jk ln(1 + v

−1/2
jk τ)

= lim
τ→∞ v−1

jk

1
1+τ

v
−1/2
jk

1+v
−1/2
jk τ

= lim
τ→∞ v

−1/2
jk

1 + v
−1/2
jk τ

1 + τ
lim

τ→∞ v
−1/2
jk

1
τ + v

−1/2
jk

1
τ + 1

= v−1
jk ,

lim
τ→∞

v−4
jk ln(1 + vjkτ)

v−1
jk ln(1 + v

−1/2
jk τ)

= lim
τ→∞ v−3

jk

vjk

1+vjkτ

v
−1/2
jk

1+v
−1/2
jk τ

= lim
τ→∞ v

−3/2
jk

1 + v
−1/2
jk τ

1 + vjkτ
= v−3

jk ,

and

lim
τ→∞

v−1
jk ln(1 + v

−1/2
jk τ)

1 + v
−(2−γ1/2)
jk τ ε

= lim
τ→∞ v

1−γ1/2
jk

v
−1/2
jk

1+v
−1/2
jk τ

ετ ε−1

=
v
(1−γ1)/2
jk

ε
lim

τ→∞
1

τ ε−1 + v
−1/2
jk τ ε

= 0. (IV.4.70)

Then, by (IV.4.69)

Iβb
≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + v−2
jk |vjkt|2−γ1 , if γ1 < 2 and either (j′, k′) = (j, k) = (1, 2),

or (j′, k′) �= (1, 2) and (j, k) �= (1, 2),

1 + v
−(2+γ1)
jk |vjkt|2−γ1 , if γ1 < 2, (j′, k′) �= (1, 2) and (j, k) = (1, 2),

1 + v
−(2−γ1/2)
jk |vjkt|2−γ1 , if γ1 < 2, (j′, k′) = (1, 2) and (j, k) �= (1, 2)

v−2
jk ln(1 + |vjkt|), if γ1 = 2 and either (j′, k′) = (j, k) = (1, 2),

or (j′, k′) �= (1, 2) and (j, k) �= (1, 2),

v−4
jk ln(1 + vjk|vjkt|), if γ1 = 2, (j′, k′) �= (1, 2) and (j, k) = (1, 2),

v−1
jk ln(1 + v

−1/2
jk |vjkt|), if γ1 = 2, (j′, k′) = (1, 2) and (j, k) �= (1, 2),

≤ C

{
1 + v

−(2−γ1/2)
jk |vjkt|2−γ1 , if γ1 < 2,

v−1
jk ln(1 + v

−1/2
jk |vjkt|), if γ1 = 2.

(IV.4.71)

By (IV.4.68) and (IV.4.71)

Iβb
≤ C

⎧⎪⎨⎪⎩
1 + v

−(2−γ1/2)
jk |vjkt|2−γ1 , if γ1 < 2, qj′k′ �= 0,

v−1
jk ln(1 + v

−1/2
jk |vjkt|), if γ1 = 2, qj′k′ �= 0,

1, if qj′k′ = 0.

(IV.4.72)

Finally (IV.4.67), (IV.4.70) and (IV.4.72) imply that

Ajk :=

∥∥∥∥∥∥(x̃k − x̃j) ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x̃k − x̃j |2)−1/2

∥∥∥∥∥∥
≤ C

⎧⎪⎨⎪⎩
1 + v

−(2−γ1/2)
jk |vjkt|2−γ1 , if ζa

jk,

1 + v−1
jk ln(1 + v

−1/2
jk |vjkt|), if ζb

jk,

1, if ζc
jk,

≤ C
(
1 + v

−(2−γ1/2)
jk |vjkt|θjk

)
.
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This completes the proof of (II.2.16).

At this moment, we are particularly interested in (x̃k − x̃j)
4

:

(x̃k − x̃j)
4

=

(
n∑

l=1

((x̃k − x̃j) · el)
2

)2

=

n∑
l=1

((x̃k − x̃j) · el)
4

+ 2
∑

1≤l<l′′≤n

((x̃k − x̃j) · el)
2
((x̃k − x̃j) · el′′)

2

=
n∑

l=1

(
x̃4

k,l − 4x̃3
k,lx̃j,l + 6x̃2

k,lx̃
2
j,l − 4x̃k,lx̃

3
j,l + x̃4

j,l

)
+2

∑
1≤l<l′≤n

(
x̃2

k,lx̃
2
k,l′ − 2x̃2

k,lx̃k,l′ x̃j,l′ + x̃2
k,lx̃

2
j,l′ − 2x̃k,lx̃j,lx̃

2
k,l′ + 4x̃k,lx̃j,lx̃k,l′ x̃j,l′

−2x̃k,lx̃j,lx̃
2
j,l′ + x̃2

j,lx̃
2
k,l′ − 2x̃2

j,lx̃k,l′ x̃j,l′ + x̃2
j,lx̃

2
j,l′
)
.

We continue with the case a = 4. By the same argument used to obtain (IV.4.62), we have that, for
non-negative integers a1, a2 such that a1 + a2 ≤ 4 and all 1 ≤ l, l′′ ≤ n,

‖((x̃k − x̃j) · el)
a1 ((x̃k − x̃j) · el′′)

a2 Jjk‖ ≤ C. (IV.4.73)

By (II.1.21), (II.1.22), (IV.4.61), (IV.4.73) and the Leibnitz rule, for 1 ≤ l, l′ ≤ n,

‖Gjk‖ ≤ C

⎛⎝1 +

1≤l,l≤n∑
1≤a1+a2≤4

‖( ((x̃k − x̃j) · el)
a1 ((x̃k − x̃j) · el′′)

a2 ŨD(t) ) Jjk‖
⎞⎠ . (IV.4.74)

It is convenient to write our Dollard-type modifier as

ŨD(t) = eM(t), M(t) := −i
∑
j<k

∫ t

0

ds V l
jk(spjk/μjk + e1qjkEs2/(2μjk)). (IV.4.75)

Let us compute the derivatives of our Dollard-type modifier:

((x̃k − x̃j) · el′′) ŨD(t) = ŨD(t) ((x̃k − x̃j) · el′′) M(t). (IV.4.76)

((x̃k − x̃j) · el) ((x̃k − x̃j) · el′′) ŨD(t) = ŨD(t) ((x̃k − x̃j) · el) M(t) ((x̃k − x̃j) · el′′) M(t)

+ŨD(t) ((x̃k − x̃j) · el) ((x̃k − x̃j) · el′′) M(t). (IV.4.77)

((x̃k − x̃j) · el)
2
((x̃k − x̃j) · el′′) ŨD(t) = ŨD(t) (((x̃k − x̃j) · el) M(t))

2
((x̃k − x̃j) · el′′) M(t)

+ŨD(t)
(
((x̃k − x̃j) · el)

2
M(t)

)
((x̃k − x̃j) · el′′) M(t)

+ŨD(t) (((x̃k − x̃j) · el) M(t))

× ((x̃k − x̃j) · el) ((x̃k − x̃j) · el′′) M(t)

+ŨD(t) ((x̃k − x̃j) · el) M(t)

× ((x̃k − x̃j) · el) ((x̃k − x̃j) · el′′) M(t)

+ŨD(t) ((x̃k − x̃j) · el)
2
((x̃k − x̃j) · el′′) M(t). (IV.4.78)
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((x̃k − x̃j) · el) ((x̃k − x̃j) · el′′)
2
ŨD(t) = ŨD(t) (((x̃k − x̃j) · el′′) M(t))

2
((x̃k − x̃j) · el) M(t)

+ŨD(t)
(
((x̃k − x̃j) · el′′)

2
M(t)

)
((x̃k − x̃j) · el) M(t)

+2ŨD(t) (((x̃k − x̃j) · el′′) M(t))

× ((x̃k − x̃j) · el′′) ((x̃k − x̃j) · el) M(t)

+ŨD(t) ((x̃k − x̃j) · el′′)
2
((x̃k − x̃j) · el) M(t). (IV.4.79)

((x̃k − x̃j) · el)
2
((x̃k − x̃j) · el′′)

2
ŨD(t) = ŨD(t) (((x̃k − x̃j) · el′′) M(t))

2
(((x̃k − x̃j) · el) M(t))

2

+2ŨD(t) (((x̃k − x̃j) · el′′) M(t))

× (((x̃k − x̃j) · el) ((x̃k − x̃j) · el′′) M(t))

× ((x̃k − x̃j) · el)M(t)

+ŨD(t) (((x̃k − x̃j) · el′′) M(t))
2
((x̃k − x̃j) · el)

2
M(t)

+ŨD(t)
(
((x̃k − x̃j) · el′′)

2
M(t)

)
(((x̃k − x̃j) · el) M(t))

2

+ŨD(t)
(
((x̃k − x̃j) · el) ((x̃k − x̃j) · el′′)

2
M(t)

)
× ((x̃k − x̃j) · el)M(t)

+ŨD(t)
(
((x̃k − x̃j) · el′′)

2
M(t)

)
((x̃k − x̃j) · el)

2
M(t)

+2ŨD(t) (((x̃k − x̃j) · el) M(t)) (((x̃k − x̃j) · el′′) M(t))

× ((x̃k − x̃j) · el′′) ((x̃k − x̃j) · el) M(t)

+2ŨD(t) (((x̃k − x̃j) · el′′) ((x̃k − x̃j) · el) M(t))
2

+2ŨD(t) (((x̃k − x̃j) · el′′) M(t))

× ((x̃k − x̃j) · el′′) ((x̃k − x̃j) · el)
2
M(t)

+ŨD(t) (((x̃k − x̃j) · el) M(t))

× ((x̃k − x̃j) · el′′)
2
((x̃k − x̃j) · el) M(t)

+ŨD(t) ((x̃k − x̃j) · el′′)
2
((x̃k − x̃j) · el)

2
M(t). (IV.4.80)

We note that∥∥∥∥∥ ((x̃k − x̃j) · el′′)
a1 ((x̃k − x̃j) · el)

a2

× M(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)

∥∥∥∥∥∥ ≤ C
∑

(j′,k′)∈Njk

∥∥∥∥∥
∫ t

0

|s|a1+a2
∂a1+a2V l

j′k′

∂ya1

l′′ ∂ya2

l

(s(pj′k′/μj′k′ + vj′k′)

+e1qj′k′Es2/(2μj′k′)) gj′k′(pj′k′) ds
∥∥

= C

|βb|=a1+a2∑
(j′,k′)∈Njk

∥∥∥∥∫ t

0

|s||βb| (DβbV l
j′k′

)
(s(pj′k′/μj′k′ + vj′k′)

+e1qj′k′Es2/(2μj′k′)) gj′k′(pj′k′) ds
∥∥

≤ C

|βb|=a1+a2∑
(j′,k′)∈Njk

Ij′,k′

βb
. (IV.4.81)
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We attain (IV.4.82) in a similar way as in (IV.4.67) by (IV.4.66), (IV.4.74), (IV.4.75), (IV.4.76), (IV.4.77),
(IV.4.78), (IV.4.79), (IV.4.80) and (IV.4.81):

‖Gjk‖ ≤ C

⎛⎝1 +

4∑
b′=1

∏
P |βb|=b′

∑
(j′,k′)∈Njk

Ij′,k′

βb

⎞⎠ (IV.4.82)

Next, we dedicate ourselves to compute Ij′,k′

βb
, for 2 ≤ |βb| ≤ 4,

If qj′k′ = 0, then we have 2(−γD − 2μ) + 3 < 0. This is possible because γD + μ > 1 and μ > 1/2. Then,
for |βb| = 2,

Iβb
≤ C

∫ |t|

0

τ2(1 + τ2)−γD−2μ dτ ≤ C

∫ |t|

0

τ2(1 + τ)2(−γD−2μ) dτ

≤ C

∫ |t|

0

(1 + τ)2(−γD−2μ)+2 dτ ≤ C(1 + τ)2(−γD−2μ)+3
∣∣∣|t|
0

≤ C(1 + |t|)2(−γD−2μ)+3 ≤ C, (IV.4.83)

for 3 ≤ |βb| = 4,

Iβb
≤ C

∫ v|t|

0

τ |βb|(1 + τ2)−γD−μ(2+|βb|)/2 dτ ≤ C

∫ v|t|

0

τ |βb|(1 + τ)2[−γD−μ(2+|βb|)/2] dτ

≤ C

∫ v|t|

0

(1 + τ)2[−γD−μ(2+|βb|)/2]+|βb| dτ ≤ C(1 + τ)2[−γD−μ(2+|βb|)/2]+|βb|+1
∣∣∣v|t|
0

≤ C(1 + |vt|)|βb|+1−2γD−(2+|βb|)μ. (IV.4.84)

We note that |βb| + 1 − 2γD − (2 + |βb|)μ can either be positive or non-positive. For |βb| = 4,

min{5 − 2γD − 6μ} = 5 − 2(1/2) − 6 = −2, and sup{5 − 2γD − 6μ} = 5 − 2(1) − 4(1/2) = 1.

Therefore, for 3 ≤ |βb| = 4, and by (IV.4.84):

Iβb
≤ C

(
1 + |vt|max{|βb|+1−2γD−(2+|βb|)μ, 0}

)
.

Else, i.e. If qj′k′ = 0, then we have that, for 2 ≤ |βb| = 4,

Iβb
≤ C

∫ v|t|

0

τ |βb|(1 + τ)−1−|βb|(ε0+1/2) dτ ≤ C

∫ v|t|

0

(1 + τ)−1−|βb|(ε0+1/2−1) dτ

≤ C(1 + τ)−|βb|(ε0−1/2)
∣∣∣v|t|
0

≤ C(1 + |vt|)|βb|(−ε0+1/2).

Finally, we want to estimate the right hand side of (IV.4.82). For that matter, we form the following
combinations:

(a) All the charges qj′k′ , with (j′, k′) ∈ Njk, are equal to zero,

4∑
b′=1

∏
P |βb|=b′

∑
(j′,k′)∈Njk

Ij′,k′

βb
≤ C

4∑
b′=1

(1 + |vt|)|b′|(−ε0+1/2) ≤ C(1 + |vt|)−4ε0+2 ≤ C(1 + |vt|)2−ε̃,

with 0 < ε̃ ≤ 4ε0.
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(b) All the charges qj′k′ , with (j′, k′) ∈ Njk, are different from zero. Observe that 4 − 2γD − 5μ ≤
5 − 2γD − 6μ,

4∑
b′=1

∏
P |βb|=b′

∑
(j′,k′)∈Njk

Ij′,k′

βb
≤ C

4∑
b′=3

∏
P |βb|=b′

∑
(j′,k′)∈Njk

Ij′,k′

βb

≤ C

4∑
|βb|=3

(
1 + |vt||βb|+1−2γD−(2+|βb|)μ

)
≤ C

(
(1 + |vt|)4−2γD−5μ

+ (1 + |vt|)5−2γD−6μ
)
≤ C (1 + |vt|)5−2γD−6μ

≤ C (1 + |vt|)2−ε̃
,

provided 2 > 2 − ε̃ ≥ 5 − 2γD − 6μ, that is 0 < ε̃ ≤ 2γD + 6μ − 3. Note that inf{2γD + 6μ − 3} =
2 + 4(1/2) − 3 = 1.

(c) There are two pairs (j′, k′), (j′′, k′′) ∈ Njk such that qj′k′ = 0 and qj′′,k′′ �= 0:

4∑
b′=1

∏
P |βb|=b′

∑
(j′,k′)∈Njk

Ij′,k′

βb

≤ C
4∑

b′=1

∏
P |βb|=b′

∑
(j′,k′)∈Njk

⎧⎪⎨⎪⎩
(1 + |vt|)|βb|(−ε0+1/2), if qj′k′ = 0 and 1 ≤ |βb| ≤ 4,

1, if qj′k′ �= 0 and 1 ≤ |βb| ≤ 2,

(1 + |vt|)|βb|+1−2γD−(|βb|+2)μ, if qj′k′ �= 0 and 3 ≤ |βb| ≤ 4.

≤ C

4∑
b′=1

∏
P |βb|=b′

⎛⎝1 +

4∑
|βb|=1

(1 + |vt|)|βb|(−ε0+1/2) +

4∑
|βb|=3

(1 + |vt|)|βb|+1−2γD−(2+|βb|)μ

⎞⎠

≤ C
(
1 + (1 + |vt|)−ε0+1/2 + (1 + |vt|)2(−ε0+1/2) + (1 + |vt|)3(−ε0+1/2) + (1 + |vt|)4−2γD−5μ

+(1 + |vt|)4(−ε0+1/2) + (1 + |vt|)−ε0+1/2 (1 + |vt|)4−2γD−5μ
+ (1 + |vt|)5−2γD−6μ

)
≤ C

(
1 + (1 + |vt|)4(−ε0+1/2) + (1 + |vt|)−ε0+1/2 (1 + |vt|)4−2γD−5μ

+ (1 + |vt|)5−2γD−6μ
)

≤ C (1 + |vt|)2−ε̃
,

with 0 < ε̃ < min{4ε0, 2γD + 5μ + ε0 − 5/2, 2γD + 6μ − 3}, because,

(1) 2 > 2 − ε̃ ≥ 9/2 − 2γD − 5μ − ε0, that is 0 < ε̃ ≤ 2γD + 5μ + ε0 − 5/2. Note that inf{2γD + 5μ +
ε0 − 5/2} = 2 + 3(1/2) − 5/2 = 1.

(2) 2 > 2− ε̃ ≥ 4− 2γD − 5μ, that is 0 < ε̃ ≤ 2γD + 5μ− 2. Recall that 4− 2γD − 5μ ≤ 5− 2γD − 6μ.

(3) Note that if 0 < ε0 < 1/4 and 1 ≥ μ > 3/4, then 2γD + 5μ + ε0 − 5/2 < 2γD + 6μ− 3, conversely,
if 1/4 < ε0 < 1/2 and 1/2 < μ < 3/4, then 2γD + 5μ + ε0 − 5/2 > 2γD + 6μ − 3.

(4) Note that if 0 < ε0 < 1/4, then 4ε0 < 1 < 2γD + 6μ − 3. On the other hand, if ε0 = γD = 7/15
and μ = 9/15, which are possible values, then 4ε0 = 28/15 > 14/15+3/5 = 14/15+6(9/15)−3 =
2γD + 6μ − 3.

In general we take

0 < ε̃ < min{4ε0, 2γD + 5μ + ε0 − 5/2, 2γD + 6μ − 3} < 2,
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where the last inequality is true because 0 < ε0 < 1/2.
If qj′k′ = 0 for all (j′, k′), then we can take γD = 1/2 and μ = 1; in this case min{4ε0, 2γD + 5μ + ε0 −

5/2, 2γD + 6μ − 3} = 4ε0. On the contrary, If qj′k′ �= 0 for all (j′, k′) then we can take ε0 so big such that
min{4ε0, 2γD + 5μ + ε0 − 5/2, 2γD + 6μ − 3} = min{2, 2γD + 6μ − 3}. It is important that ε̃ be less than 2
to assure the last step in the proof of Lemma II.2.2, i.e.,

C(1 + |vt|)2−ε̃ ≤ C(1 + |vjkt|)2−ε̃.

At this moment we have the estimations that finish the proof of Lemma II.2.2.

LEMMA IV.4.3. Completion of the proof of Lemma II.2.5.

Proof. Actually, we do not have that supp
(
V l

jk,vjkt − V l
jk

)
⊂ B

cv
σ̃jk
jk |t|2−σ̃jk

, but supp
(
V l

jk,vjkt − V l
jk

)
⊂ B

cv
σ̃jk
jk |t|2−σ̃jk

, where the line over means topological closure. Let us take x ∈ {y∣∣(V l
jk,vjkt − V l

jk)(y) �= 0},
then χ(x/(v

σ̃jk

jk |t|2−σ̃jk)) �= 1, and so, |x| < c v
σ̃jk

jk |t|2−σ̃jk and

{y∣∣(V l
jk,vjkt − V l

jk)(y) �= 0} ⊂ B
cv

σ̃jk
jk |t|2−σ̃jk

. (IV.4.85)

The following estimations are straightforward:

‖V l
jk,vjkt − V l

jk‖ ≤ ‖V l
jk‖ ‖(1 − χ)‖ ≤ ‖V l

jk‖.
It is not difficult to realize that the sentence “If qjk �= 0 with p in the support of g, we note, by (II.2.33),

that V l
jk,vjkt(tp/μjk + vjkt + e1qjkEt2/(2μjk)) = V l

jk(tp/μjk + vjkt + e1qjkEt2/(2μjk))” is true.

In the other hand, the sentence “If qjk = 0, p belongs to the support of g(· − μjkvjk), and v0 > 2ηjk

then V l
jk,vjkt(tp/μjk) = V l

jk(tp/μjk)” requires some easy computations. Let us prove the sentence: vjk >

v0 > 2ηjk implies that −ηjk > −vjk/2. The fact that p belongs to the support of g(· − μjkvjk) means that
|p − μjkvjk| < μjkηjk, then:

|p| = |μjkvjk − (p − μjkvjk)| ≥ μjkvjk − |p − μjkvjk|
> μjkvjk − μjkηjk > μjkvjk − μjkvjk/2 > μjkvjk/2.

This implies V l
jk,vjkt(tp/μjk) = V l

jk(tp/μjk).

If qjk = 0, p belongs to the support of g(·−μjkvjk), and v0 > 2ηjk then V l
jk,vjkt(tp/μjk) = V l

jk(tp/μjk).

By equations (II.1.31)-(II.1.35):

e−iμjkvjk·x eitH0

(
V l

jk,vjkt(x) − V l
jk(tp/μjk − e1qjkEt2/(2μjk))

)
e−itH0 g(p − μjkvjk)

= e−iμjkvjk·x eitp2/(2μjk) eip·e1qjkEt2/(2μjk) e−iqjkEx1t
(
V l

jk,vjkt(x) − V l
jk(tp/μjk − e1qjkEt2/(2μjk))

)
×eiqjkEx1t e−ip·e1qjkEt2/(2μjk) e−itp2/(2μjk) g(p − μjkvjk)

= e−iμjkvjk·x eitp2/(2μjk) eip·e1qjkEt2/(2μjk)
(
V l

jk,vjkt(x) − V l
jk(tp/μjk + e1qjkEt2/(2μjk))

)
×e−ip·e1qjkEt2/(2μjk) e−itp2/(2μjk) g(p − μjkvjk)

= e−iμjkvjk·x eitp2/(2μjk)
(
V l

jk,vjkt(x + e1qjkEt2/(2μjk)) − V l
jk(tp/μjk + e1qjkEt2/(2μjk))

)
e−itp2/(2μjk)

×g(p − μjkvjk)

= e−iμjkvjk·x
(
V l

jk,vjkt(x + tp/μjk + e1qjkEt2/(2μjk)) − V l
jk(tp/μjk + e1qjkEt2/(2μjk))

)
×g(p − μjkvjk)

=
(
V l

jk,vjkt(x + tp/μjk + vjkt + e1qjkEt2/(2μjk)) − V l
jk,vjkt(tp/μjk + vjkt + e1qjkEt2/(2μjk))

)
×g(p) e−iμjkvjk·x. (IV.4.86)
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The Baker-Campbell-Hausdorff formula [14] gives us the following equality (equation (IV.4.87) is com-
pletely justified by (IV.3.43))(

V l
jk,vjkt(x + tp/μjk + vjkt + e1qjkEt2/(2μjk)) − V l

jk,vjkt(tp/μjk + vjkt + e1qjkEt2/(2μjk))
)

=

∫ 1

0

ds
[(

∇V l
jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk)) · x

+
it

(2μjk)

(
ΔV l

jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk))

]
. (IV.4.87)

From the Leibniz rule we have that,

|∇V l
jk,vjkt(x)| ≤ |∇V l

jk(x)| + O(v
−σ̃jk

jk |t|−(2−σ̃jk))|V l
jk(x)|,

|ΔV l
jk,vjkt(x)| ≤ |ΔV l

jk| + O(v
−σ̃jk

jk |t|−(2−σ̃jk))|∇V l
jk(x)| + O(v

−2σ̃jk

jk |t|−2(2−σ̃jk))|V l
jk(x)|.

Focusing in the case qjk = 0, we compute, having in consideration that in the support of V l
jk,vjkt we must

have |x| ≥ (c/2)|vjkt| :

|∇V l
jk,vjkt(x)| ≤ C

(
(1 + |vjkt|)−γ1 + |vjkt|−1(1 + |vjkt|)−γ1+1

) ≤ C(|vjkt|)−γ1 ,

|ΔV l
jk,vjkt(x)| ≤ C

(
(1 + |vjkt|)−2−2ε0 + |vjkt|−1(1 + |vjkt|)−γ1 + |vjkt|−2(1 + |vjkt|)−γ1+1

)
≤ C(|vjkt|)−2−2ε0 ,

where 3/2 < γ1 ≤ 2, 0 < ε0 < γ1 − 3/2 are as in Definition II.1.1 and (II.1.25), respectively.
As in Enss and Weder [20], (II.2.17), (IV.4.86), (IV.4.87), (IV.4.88), (IV.4.88) and ε0 < γ1 − 3/2 imply,

for qjk = 0:

I1 ≤
∫ 1

0

ds

∥∥∥∥[(∇V l
jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk)) · x

+
it

(2μjk)

(
ΔV l

jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk))

]
g(p) e−iμjkvjk·x

×ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥
≤ C

⎡⎣|vjkt|−γ1

∥∥∥∥∥∥x ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−1/2

∥∥∥∥∥∥+ |vjkt|−1−2ε0

⎤⎦
≤ C

[
|vjkt|−γ1

{
(1 + |vjkt|)2−γ1 , if 3/2 < γ1 < 2,

1 + ln(1 + |vjkt|), if γ1 = 2,
+ |vjkt|−1−2ε0

]
≤ C|vjkt|−1−2ε0 ,

The justification of Equation (IV.4.88) is straightforward. To show (IV.4.88) we note, as in Definition
II.1.1 that 1 + 2ε0 < 3/2 + ε0 < γ1, then 2 + 2ε0 < γ1 + 1, thus let us estimate as follows:

|ΔV l
jk,vjkt(x)| ≤ C

(
(1 + |vjkt|)−2−2ε0 + |vjkt|−1(1 + |vjkt|)−γ1 + |vjkt|−2(1 + |vjkt|)−γ1+1

)
≤ C

(|vjkt|−2−2ε0 + |vjkt|−γ1−1 + |vjkt|−γ1−1
) ≤ C|vjkt|−2−2ε0 .

In both (IV.4.88) and (IV.4.88) we note that it is important to have |vjkt| ≥ 1.
When qjk = 0, the estimation of I1, given by (II.2.30) is easily followed, but we want to do some

computations to make it even more clear. We have to cases:
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(a) 3/2 < γ1 < 2. We know that ε0 < γ1 − 3/2. Then 3 < 2γ1 − 2ε0 which is equivalent to −γ1 < 2− 2γ1 <
−1 − 2ε0.

(b) γ1 = 2. Here, it is enough to show that: limτ→∞
τ−2 ln(1+τ)

τ−1−2ε0
< C. By L’Hôpital rule and the fact that

ε0 < γ1 − 3/2 = 2 − 3/2 = 1/2 :

lim
τ→∞

τ−2 ln(1 + τ)

τ−1−2ε0
= lim

τ→∞
ln(1 + τ)

τ1−2ε0
= lim

τ→∞

1
(1+τ)

(1 − 2ε0)τ−2ε0
< C lim

τ→∞ τ2ε0−1 = 0.

Because of the presence of the natural logarithm and the estimation in case (b) above, we need a large M > 1
such that that |vjkt| > M in order to conclude that

I1 ≤ C|vjkt|−1−2ε0 .

Additionally, directly from (II.2.30) we have that,

I1 ≤ 2C sup
y∈Rn

|V (y)| ≤ C. (IV.4.88)

That is, I1 is uniformly bounded
Then, we compute the integral of I1,∫ ∞

−∞
I1 dt ≤

∫
|vjkt|≤M

I1 dt +

∫
|vjkt|>M

I1 dt ≤ Cv−1
jk

(∫
|τ |≤M

dτ +

∫
|τ |>M

|τ |−1−2ε0 dτ

)

≤ Cv−1
jk

(
2M + 2

1

−2ε0
τ−2ε0

∣∣∞
M

)
= Cv−1

jk

(
2M +

1

ε0
M−2ε0

)
= O(v−1

jk ).

Now, we will consider qjk �= 0. Thus we complete the details of the estimation of I1 :

I1 ≤
∫ 1

0

ds

∥∥∥∥[(∇V l
jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk)) · x

+
it

(2μjk)

(
ΔV l

jk,vjkt

)
(sx + tp/μjk + vjkt + e1qjkEt2/(2μjk))

]
g(p) e−iμjkvjk·x

×ŨD(t)
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−2

∥∥∥∥∥∥

≤ C

⎡⎣((1 + v
σ̃jk

jk |t|2−σ̃jk)−(γD+μ) + v
−σ̃jk

jk |t|−(2−σ̃jk)(1 + v
σ̃jk

jk |t|2−σ̃jk)−γD

)

×
∥∥∥∥∥∥x ŨD(t)

∏
j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + x2)−1/2

∥∥∥∥∥∥+ |t|
(
(1 + v

σ̃jk

jk |t|2−σ̃jk)−(γD+2μ)

+v
−σ̃jk

jk |t|−(2−σ̃jk)(1 + v
σ̃jk

jk |t|2−σ̃jk)−(γD+μ) + v
−2σ̃jk

jk |t|−2(2−σ̃jk)(1 + v
σ̃jk

jk |t|2−σ̃jk)−γD

)⎤⎦
We apply (II.2.16). Thus we arrive to the estimation given in the text,

I1 ≤ I11 + I12.
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While computing the integral of I11, we require σ̃jk < 2− (1+θjk)/(γD +μ). This inequality is equivalent
to the following inequalities:

2 − σ̃jk > (1 + θjk)/(γD + μ)

(2 − σ̃jk)(γD + μ) > 1 + θjk

0 > −(2 − σ̃jk)(γD + μ) + θjk + 1

≥ −(2 − σ̃jk)(γD + 1) + θjk + 1.

Furthermore, because 0 < σ̃jk < 1,

0 > −(2 − σ̃jk)(γD + μ) + 1,

0 > −(2 − σ̃jk)(γD + 1) + 1.

Then,

lim
t→∞ t−(2−σ̃jk)(γD+μ)+θjk+1 = lim

t→∞ t−(2−σ̃jk)(γD+1)+θjk+1 = 0

lim
t→∞ t−(2−σ̃jk)(γD+μ)+1 = lim

t→∞ t−(2−σ̃jk)(γD+1)+1 = 0.

Let us show that
∫∞
−∞ dt I11 = O(v−b

jk ) and determine the value of b :

I11 ≤ C
((

v
−σ̃jk(γD+μ)
jk |t|−(2−σ̃jk)(γD+μ) + v

−σ̃jk(γD+1)
jk |t|−(2−σ̃jk)(γD+1)

)
×
(
1 + v

−(2−γ1/2)
jk |vjkt|θjk

)
F (|t| > v−b

jk ) + ‖V l
jk‖F (|t| ≤ v−b

jk )
)

≤ C
(
v
−σ̃jk(γD+μ)
jk |t|−(2−σ̃jk)(γD+μ) + v

−σ̃jk(γD+1)
jk |t|−(2−σ̃jk)(γD+1)

+v
−σ̃jk(γD+μ)−(2−γ1/2)+θjk

jk |t|−(2−σ̃jk)(γD+μ)+θjk + v
−σ̃jk(γD+1)−(2−γ1/2)+θjk

jk |t|−(2−σ̃jk)(γD+1)+θjk

)
×F (|t| > v−b

jk ) + F (|t| ≤ v−b
jk ).

Integrating,∫
dt I11 ≤ C

(
v
−σ̃jk(γD+μ)
jk

(
v−b

jk

)−(2−σ̃jk)(γD+μ)+1

+ v
−σ̃jk(γD+1)
jk

(
v−b

jk

)−(2−σ̃jk)(γD+1)+1

+v
−σ̃jk(γD+μ)−(2−γ1/2)+θjk

jk

(
v−b

jk

)−(2−σ̃jk)(γD+μ)+θjk+1

+v
−σ̃jk(γD+1)−(2−γ1/2)+θjk

jk

(
v−b

jk

)−(2−σ̃jk)(γD+1)+θjk+1

+ v−b
jk

)

∫
dt I11 ≤ Cv−b

jk

(
1 + v

[−σ̃jk+b(2−σ̃jk)](γD+μ)
jk + v

[−σ̃jk+b(2−σ̃jk)](γD+1)
jk

+v
[−σ̃jk+b(2−σ̃jk)](γD+μ)−(2−γ1/2)+θjk−bθjk

jk + v
[−σ̃jk+b(2−σ̃jk)](γD+1)−(2−γ1/2)+θjk−bθjk

jk

)
.

Provided vjk > 1, let us find b such as
∫

dt I11 ≤ Cv−b
jk :

[−σ̃jk + b(2 − σ̃jk)] (γD + μ) ≤ 0 ⇔ b ≤ σ̃jk

2 − σ̃jk
,

[−σ̃jk + b(2 − σ̃jk)] (γD + 1) ≤ 0 ⇔ b ≤ σ̃jk

2 − σ̃jk
,
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[−σ̃jk + b(2 − σ̃jk)] (γD + μ) − (2 − γ1/2) + θjk − bθjk ≤ 0

b [(2 − σ̃jk)(γD + μ) − θjk] ≤ σ̃jk(γD + μ) + (2 − γ1/2) − θjk

b ≤ σ̃jk + (2 − γ1/2 − θjk)/(γD + μ)

2 − σ̃jk − θjk/(γD + μ)
,

and, similarly,

[−σ̃jk + b(2 − σ̃jk)] (γD + 1) − (2 − γ1/2) + θjk − bθjk ≤ 0

b ≤ σ̃jk + (2 − γ1/2 − θjk)/(γD + 1)

2 − σ̃jk − θjk/(γD + 1)
.

By μ ≤ 1 and 2 − γ1/2 − θjk > 0, we have that

σ̃jk + (2 − γ1/2 − θjk)/(γD + 1) ≤ σ̃jk + (2 − γ1/2 − θjk)/(γD + μ),

likewise,
0 < 2 − σ̃jk − θjk/(γD + μ) ≤ 2 − σ̃jk − θjk/(γD + 1).

Then,
σ̃jk + (2 − γ1/2 − θjk)/(γD + 1)

2 − σ̃jk − θjk/(γD + 1)
≤ σ̃jk + (2 − γ1/2 − θjk)/(γD + μ)

2 − σ̃jk − θjk/(γD + μ)
.

On the other hand, it is straightforward that,

σ̃jk

2 − σ̃jk
≤ σ̃jk + (2 − γ1/2 − θjk)/(γD + 1)

2 − σ̃jk − θjk/(γD + 1)
.

We conclude that in order to estimate
∫

dt I11 ≤ Cv−b
jk , we should take

b =
σ̃jk

2 − σ̃jk
= min

{
σ̃jk

2 − σ̃jk
,

σ̃jk + (2 − γ1/2 − θjk)/(γD + 1)

2 − σ̃jk − θjk/(γD + 1)
,

σ̃jk + (2 − γ1/2 − θjk)/(γD + μ)

2 − σ̃jk − θjk/(γD + μ)

}
.

We know that 0 < σ̃jk < 1, then 2 − σ̃jk > 1 and

2σ̃jk < 2 ⇐⇒ σ̃jk < 2 − σ̃jk ⇐⇒ 0 <
σ̃jk

2 − σ̃jk
< 1,

then b =
σ̃jk

2−σ̃jk
, satisfies 0 < b < 1.

We have to verify that we can choose σ̃jk such that 0 < σ̃jk < 2−max{ 1+θjk

γD+μ , 2
γD+2μ , 1}. We have three

cases:

(a) max{ 1+θjk

γD+μ , 2
γD+2μ , 1} =

1+θjk

γD+μ . Then, we should have in this case that 0 < 2− 1+θjk

γD+μ . This true because

2(γD + μ) > 2 and 3/2 > 1 + θjk.

(b) max{ 1+θjk

γD+μ , 2
γD+2μ , 1} = 2

γD+2μ . Then, 0 < σ̃jk < 2 − 2
γD+2μ . This is possible because 2(γD + 2μ) >

3 > 2.

(c) max{ 1+θjk

γD+μ , 2
γD+2μ , 1} = 1. Then, 0 < σ̃jk < 1, which we have by hipothesis.

The cases above show that our hypothesis on σ̃jk are perfectly plausible.

It is also a good moment to see that max{ 1+θjk

γD+μ , 2
γD+2μ , 1} can be either

1+θjk

γD+μ or 2
γD+2μ or 1. If we

consider the minimum values for γD and μ, then 2
γD+2μ ≈ 4

3 and 1
γD+μ ≈ 1. Thus, when θjk = 0, we have that

1+θjk

γD+μ < 1 < 2
γD+2μ and when θjk = 2

5 , (a possible value) we have that
1+θjk

γD+μ > 2
γD+2μ > 1. Else, if we consider

the maximum values for γD = 1/2 and μ = 1, and θjk = 0, we have that
1+θjk

γD+μ = 2
3 < 2

γD+2μ = 4
5 < 1.

Because we are using Adachi and Maehara’s computations [2] of the last three terms of the integral of I3

in the proof of their Lemma 3.4, we want to verify these computations.
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• First integral. Let a > 0 be a constant to be determined.

By the hypothesis we have that σ̃jk < 2 − 2/(γD + 2μ) ⇔ −(2 − σ̃jk)(γD + 2μ) + 2 < 0, we obtain:∫
|t|≥v−a

jk

dt v
−σ̃jk(γD+2μ)
jk |t|−(2−σ̃jk)(γD+2μ)+1 = v

−σ̃jk(γD+2μ)
jk

|t|−(2−σ̃jk)(γD+2μ)+2

−(2 − σ̃jk)(γD + 2μ) + 2

∣∣∣∞
v−a

jk

=
v−σ̃jk(γD+2μ)−a(−(2−σ̃jk)(γD+2μ)+2)

(2 − σ̃jk)(γD + 2μ) − 2
.

Then, with a =
σ̃jk(γD+2μ)

(2−σ̃jk)(γD+2μ)−1 ,∫ ∞

−∞
dt v

−σ̃jk(γD+2μ)
jk |t|−(2−σ̃jk)(γD+2μ)+1 = O

(
v−σ̃jk(γD+2μ)−a(−(2−σ̃jk)(γD+2μ)+2)

)
+ O
(
v−a
)

= O
(
v−σ̃jk(γD+2μ)/[(2−σ̃jk)(γD+2μ)−1]

)
.

• Second integral.

Because of 1 ≥ μ, we have that 2−2/(γD +μ+1) ≥ 2−2/(γD +2μ), therefore σ̃jk < 2−2/(γD +μ+1),
then by similar computations made for the first integral, in the previous item, we have that,∫ ∞

a

dt v
−σ̃jk(γD+μ+1)
jk |t|−(2−σ̃jk)(γD+μ+1)+1 = O

(
v−σ̃jk(γD+μ+1)/[(2−σ̃jk)(γD+μ+1)−1]

)
.

• Third integral.

We again use 1 ≥ μ, to deduce that 2 − 2/(γD + 2) ≥ 2 − 2/(γD + μ + 1),∫ ∞

a

dt v
−σ̃jk(γD+2)
jk |t|−(2−σ̃jk)(γD+2)+1 = O

(
v−σ̃jk(γD+2)/[(2−σ̃jk)(γD+2)−1]

)
.

Then, we observe that

max{−σ̃jk(γD + 2μ)/[(2 − σ̃jk)(γD + 2μ) − 1],

−σ̃jk(γD + μ + 1)/[(2 − σ̃jk)(γD + μ + 1) − 1],

−σ̃jk(γD + 2)/[(2 − σ̃jk)(γD + 2) − 1]} = −σ̃jk/[(2 − σ̃jk) − 1/(γD + 2)].

To prove this fact, let us prove only one inequality because the other is similar. Because 1 ≥ μ, ⇔
γD + 2 ≥ γD + μ + 1, we have that,

(2 − σ̃jk)(γD + 2) − 1 ≥ (2 − σ̃jk)(γD + μ + 1) − 1 > 0

1/[(2 − σ̃jk)(γD + 2) − 1] ≤ 1/[(2 − σ̃jk)(γD + μ + 1) − 1]

(γD + 2)/[(2 − σ̃jk)(γD + 2) − 1] ≤ (γD + μ + 1)/[(2 − σ̃jk)(γD + μ + 1) − 1]

−σ̃jk(γD + 2)/[(2 − σ̃jk)(γD + 2) − 1] ≥ −σ̃jk(γD + μ + 1)/[(2 − σ̃jk)(γD + μ + 1) − 1].

Finally,
∫ +∞
−∞ dt I12 = O

(
v
−σ̃jk/[(2−σ̃jk)−1/(γD+2)]
jk

)
.

To get the result (II.2.35), we have to simply note that − σ̃jk

(2−σ̃jk)−1/(γD+2) ≤ − σ̃jk

2−σ̃jk
.

For qjk �= 0, if |x| ≤ (5/8) v
σjk

jk |t| and v
σjk−1
jk ≤ (2/5)

√
1 − δjk, we obtain (II.2.36) as in (II.2.33), taking x

instead of tq/μjk and 5v
σ̃jk

jk /8 instead of ηjk, then
ηjk

vjk
≤ (5v

σ̃jk

jk /8)v−1
jk ≤ (5/8)(2/5)

√
1 − δjk =

√
1 − δjk/4.

By (II.2.36) we have that
(
V l

jk − V l
jk,vjkt

)
(x + vjkt + e1qjkEt2/(2μjk)) = 0 if qjk �= 0, |x| ≤ (5/8) v

σjk

jk |t|
and v

σjk−1
jk ≤ (2/5)

√
1 − δjk.
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If |x| ≤ vjk|t|/2, then |x+vjkt| ≥ |vjkt|− |x| ≥ vjk|t|/2. If, additionally, we assume that qjk = 0 we have

that
(
V l

jk − V l
jk,vjkt

)
(x + vjkt + e1qjkEt2/(2μjk)) = 0.

We define M′ = {x ∈ R
n
∣∣ |x − vjkt| ≥ |vσjk

jk t|/2} and M = {x ∈ R
n
∣∣ |x| < |vσjk

jk t|/8}. We will prove

that r ≥ |vσjk

jk t|/4 in Proposition II.2.1, provided v
σjk

jk > 4ηjk, Let us take x ∈ M′ and y ∈ M + vjkt, then

|x − y| = | (x − vjkt) − (y − vjkt) | ≥ |vσjk

jk t|/2 − |vσjk

jk t|/8 = 3|vσjk

jk t|/8. Thus, r ≥ 3|vσjk

jk t|/8 − ηjk|t| ≥
3|vσjk

jk t|/8 − |vσjk

jk t|/4 = |vσjk

jk t|/8.
Therefore, we estimate I2 as follows:

I2 ≤ C
∥∥∥(V l

jk − V l
jk,vjkt

)
(x) e−ip·e1qjkEt2/(2μjk) e−itp2/(2μjk)g(p − μjkvjk)F (|x| < vσjk |t|/8)

∥∥∥
= C

∥∥∥(V l
jk − V l

jk,vjkt

)
(x + e1qjkEt2/(2μjk)) e−itp2/(2μjk)g(p − μjkvjk)F (|x| < vσjk |t|/8)

∥∥∥
= C

∥∥∥(V l
jk − V l

jk,vjkt

)
(x + vjkt + e1qjkEt2/(2μjk)) e−itp2/(2μjk)g(p)F (|x| < v

σjk

jk |t|/8)
∥∥∥

≤ C
∥∥V l

jk

∥∥ ∥∥∥∥∥F
(
|x| ≥

{
5v

σjk

jk |t|/8, if qjk �= 0,

vjk|t|/2, if qjk = 0,

)
e−itp2/(2μjk)g(p)F (|x| < v

σjk

jk |t|/8)

∥∥∥∥∥
= C

∥∥∥∥∥F
(
|x − vjkt| ≥

{
5v

σjk

jk |t|/8, if qjk �= 0,

vjk|t|/2, if qjk = 0,

)
e−itp2/(2μjk)g(p − μjkvjk)F (|x| < v

σjk

jk |t|/8)

∥∥∥∥∥
≤ C‖F (x ∈ M′) e−itp2/(2μjk)g(p − μjkvjk)F (x ∈ M)‖
≤ C(1 + r + |t|)−2 ≤ C(1 + v

σjk

jk |t|/8 + |t|)−2 ≤ C(1 + v
σjk

jk |t|)−2.

We think that we have to mention that
(
V l

jk − V l
jk,vjkt

)
is a bounded function to complete the justification

of (II.2.38).

COMPUTATION IV.4.4. Constraints to assure that σjk > 1/2 in Theorem II.2.8.

Proof. Without loss of generality we assume throughout this computation that qjk �= 0. With this

new requirement σjk and σ̃jk must hold: 1/2 < σjk =
σ̃jk

2−σ̃jk
and 0 < σ̃jk < 2 − max{ 1+θjk

γD+μ , 2
γD+2μ , 1}.

Then, 2 − σ̃jk < 2σ̃jk ⇔ σ̃jk > 2
3 , and in consequence, (IV.4.89) below has to be true,

max{1 + θjk

γD + μ
,

2

γD + 2μ
, 1} <

4

3
. (IV.4.89)

Please observe, in view of γD + 2μ > 1 + μ > 3/2, that

max{ 2

γD + 2μ
, 1} <

4

3
. (IV.4.90)

We have two cases:

(a)
1+θjk

γD+μ < max{ 2
γD+2μ , 1}. In this case, we have that (IV.4.90) implies (IV.4.89). Then, the condition

on θjk is

θjk < (γD + μ)max{ 2

γD + 2μ
, 1} − 1. (IV.4.91)

(b)
1+θjk

γD+μ ≥ max{ 2
γD+2μ , 1}. In order to satisfy (IV.4.89), θjk must hold:

1+θjk

γD+μ < 4
3 ⇔ θjk < 4

3 (γD +μ)−1.
Then, the condition on θjk is

(γD + μ)max{ 2

γD + 2μ
, 1} − 1 ≤ θjk <

4

3
(γD + μ) − 1, (IV.4.92)

which is never empty by (IV.4.90).
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Finally, by the two cases above (IV.4.91) and (IV.4.92), (IV.4.89) is equivalent to θjk < 4
3 (γD + μ) − 1.

PROPOSITION IV.4.5. The three logical propositions P1, P2 and P3, defined below, are equivalent for
N ≥ 1.

P1 : There exist two pairs (j1, k1) and (j2, k2) with 1 ≤ j1 < k1 ≤ N and 1 ≤ j2 < k2 ≤ N, such that
qj1k1

�= 0 and qj2k2
= 0.

P2 : There exist two pairs (j, k) and (j′, k′) with 1 ≤ j < k ≤ N, 1 ≤ j′ < k′ ≤ N such that qjk �= 0,
qj′k′ = 0 and, at least one of the following is true, j′ = j or k′ = k.

P3 : There exist two pairs (j, k) and (j′, k′) with 1 ≤ j < k ≤ N, 1 ≤ j′ < k′ ≤ N such that qjk �= 0,
qj′k′ = 0 and, at least one of the following is true, j′ = j or j′ = k or k′ = j or k′ = k or j′ + j = 3.

Proof.

P1 ⇒)P2 N=1,2; true by vacuity. N ≥ 3; without loss of generality, assume that (j1, k1) = (1, 2), i.e, q12 �= 0.
We know that there exists a pair (j2, k2), such that j2 < k2, 3 ≤ k2 and qj2k2

= 0.

(a) q1k2
= 0. Let us set j′ := j := 1, k′ := k2, k := 2.

(b) q1k2
�= 0. Let us set j′ := j2, j := 1, k′ := k := k2.

Then, in both cases, qjk �= 0, qj′k′ = 0, j < k, j′ < k′, and either j′ = j or k′ = k.

P2 ⇒)P3 Trivial.

P3 ⇒)P1 Trivial.

LEMMA IV.4.6. More details to render clearer the proof of Theorem II.2.10.

Proof. In Valencia’s Thesis [83] Cálculo 8.5, it is shown the simple proof of [SD,pl] = [SD,pl −
μ12vl] = [SD − IG,v,pl − μ12vl] and (pl − μ12vl)Φv = (plΦ0)v where pl and vl are the l-th components
of the relative momentum and the velocity v of the chosen pair (1, 2), respectively. We justify (II.2.46)
by interchanging the integral with the scalar product because of the existence of the wave operators in the
strong topology:

1

IG,v

(
i[SD,pl]Φv,Ψv

)
=
([

(IG,v)
−1

i
(
SD − IG,v

)
,pl − μ12vl

]
Φv,Ψv

)
=

([(∫ +∞

−∞
dt
(
UD,G,v(t)

)∗
Vte

−iHtΩD,G,v
−

)
,pl − μ12vl

]
Φv,Ψv

)

=

(∫ +∞

−∞
dt
(
UD,G,v(t)

)∗
Vte

−iHtΩD,G,v
− (plΦ0)v ,Ψv

)
−
(∫ +∞

−∞
dt
(
UD,G,v(t)

)∗
Vte

−iHtΩD,G,v
− Φv, (plΨ0)v

)
=

∫ +∞

−∞
dt
(
VtU

D,G,v(t) (plΦ0)v , UD,G,v(t)Ψv

)− ∫ +∞

−∞
dt
(
VtU

D,G,v(t)Φv, UD,G,v(t) (plΨ0)v
)

+

∫ +∞

−∞
dt
(
Vt

(
e−iHtΩD,G,v

− − UD,G,v(t)
)

(plΦ0)v , UD,G,v(t)Ψv

)
−
∫ +∞

−∞
dt
(
Vt

(
e−iHtΩD,G,v

− − UD,G,v(t)
)

Φv, UD,G,v(t) (plΨ0)v

)
.
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Let us compute the following expression:

e−itH0ple
itH0 =

(
e−it[((2μ12))

−1p2+q12E·x] ⊗ e−itĤ0

)(
pl

)(
eit[((2μ12))

−1p2+q12E·x] ⊗ eitĤ0

)
=
(
e−it[((2μ12))

−1p2+q12E·x]ple
it[((2μ12))

−1p2+q12E·x]
)

=
(
eiq12Ex1te−it3q2

12E2/(6μ12)e−ip1q12Et2/(2μ12)e−itp2/(2μ12) pl e
itp2/(2μ12)

·eip1q12Et2/(2μ12)eit3q2
12E2/(6μ12)e−iq12Ex1t

)
=
(
eiq12Ex1t pl e

−iq12Ex1t
)

= (pl − δl,1q12Et) . (IV.4.93)

Let V sl
12 be either the operator V s

12 or V l
12. Remembering that pl = −i∂/∂xl and using (IV.4.93):

i

((
∂

∂xl
V sl

12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
(
V sl

12(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)(plΨ0)v

)
= −

((
plV

sl
12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
(
eitH0V sl

12(x)e−itH0ŨD(t)Φv,

ŨD(t)(pl − μ12vl)Ψv

)
= −

((
plV

sl
12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
(
e−itH0ple

itH0V sl
12(x)e−itH0ŨD(t)Φv,

e−itH0ŨD(t)Ψv

)
+
(
eitH0V sl

12(x)e−itH0ŨD(t)(−μ12vl)Φv, ŨD(t)Ψv

)
= −

((
plV

sl
12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
(
(pl − δl,1q12Et) V sl

12(x)e−itH0ŨD(t)Φv,

e−itH0ŨD(t)Ψv

)
+
(
eitH0V sl

12(x)e−itH0ŨD(t)(−μ12vl)Φv, ŨD(t)Ψv

)
= −

((
plV

sl
12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
((

plV
sl
12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
(
V sl

12(x) (pl − δl,1q12Et) e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
(
eitH0V sl

12(x)e−itH0ŨD(t)(−μ12vl)Φv, ŨD(t)Ψv

)
=
(
V sl

12(x)e−itH0ple
itH0e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+
(
V sl

12(x)e−itH0ŨD(t)(−μ12vl)Φv, e−itH0ŨD(t)Ψv

)
.

This implies that:

i

((
∂

∂xl
V sl

12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
=
(
V sl

12(x)e−itH0ŨD(t)(plΦ0)v, e−itH0ŨD(t)Ψv

)
−
(
V sl

12(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)(plΨ0)v

)
. (IV.4.94)

By equations (II.1.31)-(II.1.35), we have the following

eitH0 V vsl
12 (x) e−itH0 = eitp2/(2μ12)eip·(q12Et2/(2μ12))e1 V vsl

12 (x) e−ip·(q12Et2/(2μ12))e1e−itp2/(2μ12)

= eitp2/(2μ12) V vsl
12 (x + e1q12Et2/(2μ12)) e−itp2/(2μ12)

= V vsl
12 (x + tp/μ12 + e1q12Et2/(2μ12)), (IV.4.95)

where V vsl
12 represents any of the following operators V vs

12 , V s
12, or V l

12 defined in (II.2.1).
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Using equations (II.1.31)-(II.1.35) and substituting (II.2.45) , (IV.4.94), (IV.4.95) and (II.2.50) in (II.2.48),
we get:

lv(vt) =
(
V vs

12 (x)e−itH0ŨD(t)(plΦ0)v, e−itH0ŨD(t)Ψv

)
−
(
V vs

12 (x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)(plΨ0)v

)
+i

((
∂

∂xl
V s

12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)
+i

((
∂

∂xl
V l

12

)
(x)e−itH0ŨD(t)Φv, e−itH0ŨD(t)Ψv

)

=
(
eitH0V vs

12 (x)e−itH0ŨD(t)(plΦ0)v, ŨD(t)Ψv

)
−
(
eitH0V vs

12 (x)e−itH0ŨD(t)Φv, ŨD(t)(plΨ0)v

)
+i

(
eitH0

∂V s
12

∂xl
(x)e−itH0ŨD(t)Φv, ŨD(t)Ψv

)
+i

(
eitH0

∂V l
12

∂xl
(x)e−itH0ŨD(t)Φv, ŨD(t)Ψv

)
=
(
e−iμ12v·x V vs

12 (x + tp/μ12 + e1q12Et2/(2μ12)) eiμ12v·xŨD(v, t)plΦ0, ŨD(v, t)Ψ0

)
−
(
e−iμ12v·x V vs

12 (x + tp/μ12 + e1q12Et2/(2μ12)) eiμ12v·xŨD(v, t)Φ0, ŨD(v, t)plΨ0

)
+i

(
e−iμ12v·x ∂V s

12

∂xl
(x + tp/μ12 + e1q12Et2/(2μ12)) eiμ12v·xŨD(v, t)Φ0, ŨD(v, t)Ψ0

)
+i

(
e−iμ12v·x ∂V l

12

∂xl
(x + tp/μ12 + e1q12Et2/(2μ12)) eiμ12v·xŨD(v, t)Φ0, ŨD(v, t)Ψ0

)
=
(
V vs

12 (x + vt + e1q12Et2/(2μ12)) e−itp2/(2μ12)ŨD(v, t)plΦ0, e−itp2/(2μ12)ŨD(v, t)Ψ0

)
−
(
V vs

12 (x + vt + e1q12Et2/(2μ12)) e−itp2/(2μ12)ŨD(v, t)Φ0, e−itp2/(2μ12)ŨD(v, t)plΨ0

)
+i

(
∂V s

12

∂xl
(x + vt + e1q12Et2/(2μ12)) e−itp2/(2μ12)ŨD(v, t)Φ0, e−itp2/(2μ12)ŨD(v, t)Ψ0

)
+i

(
∂V l

12

∂xl
(x + vt + e1q12Et2/(2μ12)) e−itp2/(2μ12)ŨD(v, t)Φ0, e−itp2/(2μ12)ŨD(v, t)Ψ0

)
. (IV.4.96)

it follows that (II.2.51) is true.
Moreover,

R(v)

v
=

∑
j<k,3≤k≤N

∫
dt
(
V vs

jk (x̃k − x̃j)e
−itH0ŨD(t) (plΦ0)v , e−itH0ŨD(t)Ψv

)

+

E∑
j<k,3≤k≤N

∫
dt
((

V s
jk(x̃k − x̃j) − V s

jk(vjkt + e1qjkEt2/(2μjk))
)
e−itH0ŨD(t) (plΦ0)v ,

e−itH0ŨD(t)Ψv

)
+

∑
j<k,3≤k≤N

∫
dt
((

V l
jk(x̃k − x̃j) − V l

jk(tpjk/μjk − e1qjkEt2/(2μjk))
)
e−itH0ŨD(t) (plΦ0)v ,

e−itH0ŨD(t)Ψv

)
−

∑
j<k,3≤k≤N

∫
dt
(
V vs

jk (x̃k − x̃j)e
−itH0ŨD(t)Φv, e−itH0ŨD(t) (plΨ0)v

)
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−
E∑

j<k,3≤k≤N

∫
dt
((

V s
jk(x̃k − x̃j) − V s

jk(vjkt + e1qjkEt2/(2μjk))
)
e−itH0ŨD(t)Φv,

e−itH0ŨD(t) (plΨ0)v

)
−

∑
j<k,3≤k≤N

∫
dt
((

V l
jk(x̃k − x̃j) − V l

jk(tpjk/μjk − e1qjkEt2/(2μjk))
)
e−itH0ŨD(t)Φv,

e−itH0ŨD(t) (plΨ0)v

)
+
∑
j<k

∫
dt
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
(plΦ0)v , V vs

jk (x̃k − x̃j)U
D,G,v(t)Ψv

)
−
∑
j<k

∫
dt
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
Φv, V vs

jk (x̃k − x̃j)U
D,G,v(t) (plΨ0)v

)

+

E∑
j<k

∫
dt
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
(plΦ0)v ,

(
V s

jk(x̃k − x̃j) − V s
jk(vjkt + e1qjkEt2/(2μjk))

)
UD,G,v(t)Ψv

)
−

E∑
j<k

∫
dt
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
Φv,

(
V s

jk(x̃k − x̃j) − V s
jk(vjkt + e1qjkEt2/(2μjk))

)
UD,G,v(t) (plΨ0)v

)
+
∑
j<k

∫
dt
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
(plΦ0)v ,

(
V l

jk(x̃k − x̃j) − V l
jk(tpjk/μjk − e1qjkEt2/(2μjk))

)
UD,G,v(t)Ψv

)
−
∑
j<k

∫
dt
((

e−iHtΩD,G,v
− − UD,G,v(t)

)
Φv,

(
V l

jk(x̃k − x̃j) − V l
jk(tpjk/μjk − e1qjkEt2/(2μjk))

)
UD,G,v(t) (plΨ0)v

)
.

Thus, by Lemmata II.2.3, II.2.4 and II.2.7, if V l
jk = 0 for all 1 ≤ j < k ≤ N :

R(v)

v
= O(v−2) +

⎧⎪⎨⎪⎩
O(v−2α), if α < 1,

∑
j<k,3≤k≤N

|qjk| > 0,

O(v−2(1−ε1)), if α = 1,
∑

j<k,3≤k≤N

|qjk| > 0,

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(v−α), if α < 1,

∑
j<k,3≤k≤N

|qjk| > 0,

O(v−(1−ε1)), if α = 1,
∑

j<k,3≤k≤N

|qjk| > 0,

O(v−1), if
∑

j<k,3≤k≤N

|qjk| = 0,

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(v−α), if α < 1,

∑
j<k

|qjk| > 0,

O(v−(1−ε1)), if α = 1,
∑
j<k

|qjk| > 0,

O(v−1), if
∑
j<k

|qjk| = 0.

Then,

R(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(v1−2α), if α < 1,

∑
j<k

|qjk| > 0,

O(v−1+2ε1), if α = 1,
∑
j<k

|qjk| > 0,

O(v−1), if
∑
j<k

|qjk| = 0.
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Finally, the convergence rate of R(v) as v → ∞ is

lim sup
v→∞

vρ|R(v)| ≤ C lim sup
v→∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v1+ρ−2α, if α < 1,

∑
j<k

|qjk| > 0,

vρ−1+2ε1 , if α = 1,
∑
j<k

|qjk| > 0,

v−1+ρ, if
∑
j<k

|qjk| = 0.

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ ρ < 2α − 1,

C, if ρ = 2α − 1 < 1,
∑
j<k

|qjk| > 0,

C, if ρ = α = 1,
∑
j<k

|qjk| = 0,

∞, if ρ = α = 1,
∑
j<k

|qjk| > 0.

Then,

R(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2α − 1,

O(v−ρ), if ρ = 2α − 1 < 1,
∑
j<k

|qjk| > 0,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0,

(II.2.56)

Similarly, by Lemmata II.2.3, II.2.4, II.2.5 and II.2.7, if V l
jk �= 0 for some 1 ≤ j < k ≤ N :

R(v)

v
= O(v−2) + O

(
v−2 min{σjk | j<k,3≤k≤N}

)
+

⎧⎪⎨⎪⎩
O(v−2α), if α < 1,

∑
j<k,3≤k≤N

|qjk| > 0,

O(v−2(1−ε1)), if α = 1,
∑

j<k,3≤k≤N

|qjk| > 0,

+O
(
v−min{α, σjk | 1≤j<k≤N}

)

×

⎛⎜⎜⎜⎜⎝O(v−1) + O
(
v−min{σjk | 1≤j<k≤N}

)
+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(v−α), if α < 1,

∑
j<k

|qjk| > 0,

O(v−(1−ε1)), if α = 1,
∑
j<k

|qjk| > 0,

O(v−1), if
∑
j<k

|qjk| = 0.

⎞⎟⎟⎟⎟⎠ .

Then,

R(v) =

⎧⎪⎨⎪⎩
O
(
v1−2 min{α, σjk | 1≤j<k≤N}) , if

∑
j<k

|qjk| > 0,

O(v−1), if
∑
j<k

|qjk| = 0,

R(v) =

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.
(II.2.57)
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Let us analyze the rate of convergence of h
(1)
v . On one hand, with t = τ/v :∥∥∥(e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v)ŨD(v, τ/v) − I)Ψ0

∥∥∥2
=

∫
dpdp3 · · · dpN

∣∣(e−ip1q12Et2/(2μ12)e−ip2t/(2μ12) ŨD(v, τ/v) − 1)ψ̂12(p)ψ̂3(p3, . . . , pN )
∣∣2

=

∫
dpdp3 · · · dpN

∣∣∣∣∫ t

0

ds
d

ds

(
e−ip1q12Es2/(2μ12)e−ip2s/(2μ12) ŨD(v, s)

)∣∣∣∣2 ∣∣∣ψ̂12(p)ψ̂3(p3, . . . , pN )
∣∣∣2

≤
∫

dpdp3 · · · dpN

[∫ t

0

ds
∣∣∣ d

ds

(
e−ip1q12Es2/(2μ12)−ip2s/(2μ12) ŨD(v, s)

) ∣∣∣]2 ∣∣∣ψ̂12(p)ψ̂3(p3, . . . , pN )
∣∣∣2

≤
∫ ⎡⎣∫ t

0

ds

∣∣∣∣∣∣p1q12Es/μ12 + p2/(2μ12) +
∑
j<k

V l
jk(s(pjk/μjk + vjk) + e1qjkEs2/(2μjk))

∣∣∣∣∣∣
⎤⎦2

×
∣∣∣ψ̂12(p)ψ̂3(p3, . . . , pN )

∣∣∣2dpdp3 · · · dpN

≤
∫

dp
[|p1q12E|t2/(2μ12) + (p2/(2μ12) + C)t

]2 ∣∣∣ψ̂12(p)
∣∣∣2

≤
[
C
∣∣∣τ/v
∣∣∣ (1 +

∣∣∣τ/v
∣∣∣)]2 ,

On the other hand:∥∥∥(e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v) ŨD(v, τ/v) − I)Ψ0

∥∥∥ ≤ 2 ‖Ψ12‖ .

Now we study |h(1)
v (τ)|’s decay as v → ∞ applying Lemma II.2.3, and (II.2.67), (II.2.68) with a = ρ:

|h(1)
v (τ)| ≤

∥∥∥V vs
12 (x + v̂τ)e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v) ŨD(v, τ/v)plΦ0

∥∥∥
×‖(e−ip1q12Eτ2/(2μ12v2)e−ip2τ/(2μ12v) ŨD(v, τ/v) − I)Ψ0‖

≤ C
∣∣∣τ/v
∣∣∣ρ ∥∥∥V vs

12

(
x + (p/(μ12v) + v̂)τ + e1q12Eτ2/(2v2μ12)

)
e−iμ12v·x ŨD(τ/v) (plΦ0)v

∥∥∥
≤ C

∣∣∣τ/v
∣∣∣ρ
∥∥∥∥∥∥V vs

12

(
x + τ p/(μ12v) + e1q12Eτ2/(2v2μ12)

)
ŨD(τ/v)

×
∏

j′<k′

fj′k′(pj′k′ − μj′k′vj′k′)(1 + |x|2)−2

∥∥∥∥∥∥ .

Then
vρ|h(1)

v (τ)| ≤ C|τ |ρh12(|τ |) ∈ L1(−∞,∞). (II.2.69) (IV.4.97)

Hence, for ρ = 1

v

∫
|h(1)

v (τ)|dτ ≤ C.

For 0 ≤ ρ < 1, by Lebesgue dominated convergence theorem

lim
v→∞ vρ

∫
h(1)
v (τ)dτ =

∫
lim

v→∞ vρh(1)
v (τ)dτ = 0,

where we used that limv→∞ vρh
(1)
v (τ) = 0, since by (II.2.67) and (II.2.68) with a = 1 we have vρ|h(1)

v (τ)| ≤
C|τ |vρ−1.
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As a result ∫ +∞

−∞
dτh(1)

v (τ) =

{
o(v−ρ), if 0 ≤ ρ < 1,

O(v−1), if ρ = 1.
(II.2.70)

At this moment, we turn our attention to the rate of convergence of h
(2)
v . When |x + τ v̂| ≤ |τ |/2, we

have |x| ≥ |τ | − |x + τ v̂| ≥ |τ |/2. With the last inequality we can estimate the second factor in the scalar

product of (II.2.65). Let g be a C∞
0 (Rn) such that g(p)ψ̂12 = ψ̂12. By (II.2.67) and (II.2.68):

vρ

∫ ∞

−∞
dτ |h(2)

v (τ)| ≤ C

∫ ∞

−∞
dτ |τ |ρ‖V vs

12 (x + v̂τ)Ψ0‖

≤ C

∫ +∞

−∞
dτ |τ |ρ (‖V vs

12 (x + v̂τ)g(p)F (|x + v̂τ | ≥ |τ |/2)‖
+ ‖V vs

12 (x + v̂τ)g(p)‖ ‖F (|x| ≥ |τ |/2)Ψ12‖) . (II.2.71)

Due to the short-range condition (II.2.21), the first integral in (II.2.71) is finite; the fast decay in config-
uration space of Ψ12 makes the second integral in (II.2.71) be bounded:∫ ∞

−∞
dτ |τ |ρ ‖F (|x| ≥ |τ |/2)Ψ12‖ =

∫ ∞

−∞
dτ |τ |ρ(1 + |τ |)−3

∥∥∥∥(1 + |τ |)3F (|x| ≥ |τ |
2

)Ψ12

∥∥∥∥
≤
∫ ∞

−∞
dτ |τ |ρ(1 + |τ |)−3‖(1 + |2x|)3Ψ12‖

≤ C

∫ ∞

−∞

dτ

(1 + |τ |)2 < ∞.

Hence, for ρ = 1

v

∫
|h(2)

v (τ)|dτ ≤ C,

and for 0 ≤ ρ < 1, by Lebesgue dominated convergence theorem

lim
v→∞ vρ

∫
h(2)
v (τ)dτ =

∫
lim

v→∞ vρh(2)
v (τ)dτ = 0,

where we used that limv→∞ vρh
(2)
v (τ) = 0, since by (II.2.67) and (II.2.68) with a = 1 we have vρ|h(2)

v (τ)| ≤
C|τ |vρ−1.

As a result ∫ +∞

−∞
dτh(2)

v (τ) =

{
o(v−ρ), if 0 ≤ ρ < 1,

O(v−1), if ρ = 1.
(II.2.72)

Moreover, when there is at least one pair with non-zero relative charge, we have to estimate the following
error, see (II.2.39) and (II.2.46). In this case, ρ < 1, and −(2γ − 1) ≤ −(2α − 1) ≤ −ρ, where γ is as in
Definition II.1.2. By equation (II.2.13):

|IG,v − 1| ≤
E∑

j<k

∫ ∞

−∞
ds |V s

jk(vjks + e1qjkEs2/(2μjk))|

≤ C

E∑
j<k

∫ ∞

−∞
ds
(
1 + |vjks + e1qjkEs2/(2μjk)|)−γ ≤ C

∫ ∞

0

ds
(
1 + |vs| + s2

)−γ

= C

[∫ v

0

ds (1 + |vs|)−γ
+

∫ ∞

v

ds
(
1 + s2

)−γ
]
≤ C

{
v−(2γ−1), if 1/2 < γ < 1,
ln v
v , if γ = 1,
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=

{
o(v−ρ), if 1/2 < γ < 1 and ρ < 2γ − 1 or γ = 1,

O(v−ρ), if 1/2 < γ < 1 and ρ = 2γ − 1,

=

{
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1.
(II.2.74)

One of the main results of Valencia and Weder [84] (and this thesis) is the error term in (II.2.44). Let us
see in detail why this is true. We define e(v), the error term, for large v, as:

e(v) = v
(
i[SD,pl]Φv,Ψv

)− lim
v→∞ v

(
i[SD,pl]Φv,Ψv

)
. (IV.4.98)

First, until we say the opposite, we will assume that we do not know whether or not V L = 0.
By assumption of Theorem II.2.8,

0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1. (IV.4.99)

Moreover, from Lemma II.2.5, when qjk �= 0, one has 0 < σjk < 1. Then, (IV.4.99) implies that if we do
not know that whether V L = 0 and we know that

∑
j<k

|qjk| > 0, we must have that

0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1. (IV.4.100)

Conversely, if we have ρ = 1 then
∑
j<k

|qjk| = 0 must be true, because in this case, α = 1, and σjk = 1,

for all 1 ≤ j < k ≤ N, see the hypothesis of Theorem II.2.8. We will usually write ρ = 1 and
∑
j<k

|qjk| = 0

together even though ρ = 1 is enough when we do not know that whether V L = 0.

By (II.2.46), (II.2.51), (II.2.57), (II.2.66), (II.2.73) and (II.2.74), for all ρl <

{
γD + μ − 1, if q12 �= 0,

γ1 − 1, if q12 = 0,

and ρs < α.

|e(v)| =
∣∣∣IG,v (I(v) + R(v)) − lim

v→∞ IG,v (I(v) + R(v))
∣∣∣

≤ |(IG,v − 1) (I(v) + R(v))|
+
∣∣∣(I(v) + R(v)) − lim

v→∞ IG,v (I(v) + R(v))
∣∣∣

≤ C |(IG,v − 1)| +
4∑

l=1

∣∣∣Jl(v) − lim
v→∞Jl(v)

∣∣∣+ |R(v)|

= C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v−(2γ−1), if 1/2 < γ < 1, and

∑
j<k

|qjk| > 0,

ln v
v , if γ = 1, and

∑
j<k

|qjk| > 0,

0, if
∑
j<k

|qjk| = 0,

+

{
o(v−ρ), if 0 ≤ ρ < 1,

O(v−1), if ρ = 1.
+

{
o(v−ρs), if q12 �= 0,

0, if q12 = 0,
+

{
o(v−ρl), if V l

12 �= 0,

0, if V l
12 = 0,

+

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.
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From (II.2.57), we see the need of having σjk > 1/2 for all 1 ≤ j < k ≤ N in order to have R(v) → 0 as
v → ∞.

Furthermore, if γ < 1,

lim
v→∞

v−(2γ−1)

v−ρ
= lim

v→∞ vρ−(2γ−1)

=

⎧⎪⎨⎪⎩
0, if 0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 2γ − 1,

or 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 = 2γ − 1,

C, if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 = 2γ − 1,

we know that 1/2 < α ≤ γ < 1, then, by (IV.4.99), ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 ≤ 2α − 1 ≤
2γ − 1 < γ < 1. If γ = 1 by L’Hôpital’s rule,

lim
v→∞

ln v
v

v−ρ
= lim

v→∞
ln v

v1−ρ
= lim

v→∞
v−1

(1 − ρ)v−ρ
= lim

v→∞
vρ−1

(1 − ρ)
= 0.

Then, in view that
∑
j<k

|qjk| > 0 (which implies ρ < 1),

|(IG,v − 1)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρ), if 1/2 < γ < 1, and
∑
j<k

|qjk| > 0, and

0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1, ρ < 2γ − 1,

O(v−ρ), if 1/2 < γ < 1, and
∑
j<k

|qjk| > 0, and

ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 = 2γ − 1,

o(v−ρ), if γ = 1, and
∑
j<k

|qjk| > 0, and

0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

0, if
∑
j<k

|qjk| = 0 and

0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

=

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.
(IV.4.101)

We give more details to the argument given in Valencia and Weder [84]: When q12 �= 0, we do not have an
extra error term of the form o(v−ρs) because in (II.2.56) and (II.2.57) ρ < α. Let us prove this last statement:
First case, assume that ρ < 2min{α, σjk | 1 ≤ j < k ≤ N}− 1 then ρ < 2min{α, σjk | 1 ≤ j < k ≤ N}− 1 ≤
2α − 1 ≤ α, which implies that ρ < α. Second case ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1. Hence we
have two possibilities: ρ = 2α − 1 < 1 this implies that 2α − 1 < α < 1, thus ρ < α; the second possibility
is ρ < 2α − 1 but 2α − 1 ≤ α gives us ρ < α. If ρ < α, one can always choose ρs such that ρ < ρs < α ≤ 1.
Therefore,

{
o(v−ρs), if q12 �= 0,

0, if q12 = 0,
=

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.
(IV.4.102)

If ρ < 1, and we do not know whether or not any charge qjk is different from zero, then we only know
that 0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 must hold. If 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1
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then automatically ρ < 1, else, if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1, then, by ρ being less than 1,
ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1 is true. Now, it is no difficult to see that,{

o(v−ρ), if 0 ≤ ρ < 1,

O(v−1), if ρ = 1,
=

⎧⎨⎩o(v−ρ), if 0 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1, ρ < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0

=

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.

Let us recall the definition of γ2 given in the the hypothesis of Theorem II.2.8:

γ2 =

⎧⎪⎨⎪⎩
γ1, if q12 = 0 and V l

12 �= 0,

γD + μ, if q12 �= 0, and V l
12 �= 0,

2, if V l
12 = 0.

Let us define two functions,

e1(v) :=

{
o(v−ρl), if V l

12 �= 0, for all ρl < γ2 − 1

0, if V l
12 = 0,

e2(v) :=

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.

So far we have proven that
|e(v)| ≤ |e1(v)| + |e2(v)|.

Let us estimate this two errors. We have the following cases:

(a) Case V l
12 = 0 (γ2 = 2). This case applies when we only know that the pair potential, that we are

reconstructing, has a long-range part equals zero, but we do not know whether V L = 0. Then

|e(v)| = |e2(v)| =

⎧⎪⎨⎪⎩
o(v−ρ), if 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 = 0.

In this case γ2 − 1 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1 and V l
12 �= 0 are not true. Then we

can say that

|e(v)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρl), if γ2 − 1 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

for any ρl, 0 ≤ ρl < γ2 − 1,

o(v−ρ), if 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1,

o(v−ρl), if ρ = 1,
∑ |qjk| = 0 and V l

12 �= 0,

for any ρl, 0 ≤ ρl < γ1 − 1,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 = 0.
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(b) Case V l
12 �= 0.

It is obvious that either γ2−1 ≤ ρ or ρ < γ2−1. If ρ satisfies 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N}−1
then ρ satisfies one of the following subcases:

(i) γ2 − 1 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1.

(ii) 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 and ρ < γ2 − 1. We can bind these two inequalities
together by writting 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1.

On the other hand, if ρ satisfies ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1 then ρ satisfies one of the
following subcases:

(iii) γ2 − 1 ≤ ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1.

(iv) ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1.

Then, we can estimate e2 as follows:

|e2(v)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρ), if γ2 − 1 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

o(v−ρ), if 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if γ2 − 1 ≤ ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 �= 0,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 = 0.

It is not difficult to see that o(v−ρl)+o(v−ρ) = o(v−min{ρ,ρl}). We need to prove that o(v−ρl)+O(v−ρ) ={
o(v−ρl), if ρl < ρ,

O(v−ρ), if ρl ≥ ρ.
Let f(v) = o(v−ρl) and g(v) = O(v−ρ) :

Assume that ρl < ρ.

lim
v→∞

f(v) + g(v)

v−ρl
= lim

v→∞
f(v)

v−ρl
+ lim

v→∞
g(v)

v−ρl
= 0 + lim

v→∞
g(v)

v−ρ
lim

v→∞ vρl−ρ = C(0) = 0.

Conversely, suppose that ρl ≥ ρ. Then,

lim
v→∞

f(v) + g(v)

v−ρ
= lim

v→∞
f(v)

v−ρl
lim

v→∞ v−ρl+ρ + lim
v→∞

g(v)

v−ρ
= 0 + C = C.

In order to count e1(v), we need V l
12 �= 0, ρl < γ2 − 1 and ρl < ρ. Besides, e1(v) does not count

neither when we have ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1 because we can choose ρl such that
ρ < ρl min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N}−1, nor when ρ = 2min{α, σjk | 1 ≤ j < k ≤ N}−1 < γ2 −1
because we can choose ρl such that ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < ρl < γ2 − 1, nor when
ρ = 1 and V l

12 = 0. Hence e(v) can be estimated as follows:

|e(v)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρl), if ρl < γ2 − 1 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

o(v−ρ), if 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1,

o(v−ρl), if ρl < γ2 − 1 ≤ ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1,

o(v−ρl), if ρl < γ2 − 1 = γ1 − 1 ≤ ρ = 1,
∑ |qjk| = 0 and V l

12 �= 0,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 = 0,
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρl), if γ2 − 1 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

for any ρl, 0 ≤ ρl < γ2 − 1,

o(v−ρ), if 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1,

o(v−ρl), if ρ = 1,
∑ |qjk| = 0 and V l

12 �= 0,

for any ρl, 0 ≤ ρl < γ1 − 1,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 = 0.

(IV.4.103)

Now, we consider the special case where we suppose that V L = 0. If α < 1 then
∑
j<k

|qjk| > 0 because

when
∑
j<k

|qjk| = 0 necessarily α = 1. But, if α = 1 either
∑
j<k

|qjk| = 0 or
∑
j<k

|qjk| > 0. By (II.2.56) we

cannot have ρ = α = 1 and
∑
j<k

|qjk| > 0. That is why in (II.2.44) we always put ρ = 1 and
∑
j<k

|qjk| = 0

together in order to avoid ρ = 1 and
∑
j<k

|qjk| > 0. We note that we can have ρ < 2α − 1 ≤ α ≤ 1 whether∑
j<k

|qjk| = 0 or
∑
j<k

|qjk| > 0.

Following the same reasoning used to get (IV.4.101) and recalling that in this situation σjk = 1 :

|(IG,v − 1)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρ), if 1/2 < γ < 1, and
∑
j<k

|qjk| > 0, and

0 ≤ ρ ≤ 2α − 1, ρ < 2γ − 1,

O(v−ρ), if 1/2 < γ < 1, and
∑
j<k

|qjk| > 0, and

ρ = 2α − 1 = 2γ − 1,

o(v−ρ), if γ = 1, and
∑
j<k

|qjk| > 0, and

0 ≤ ρ ≤ 2α − 1,

0, if
∑
j<k

|qjk| = 0 and

0 ≤ ρ ≤ 2α − 1,

=

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.
(IV.4.104)

Also, (IV.4.102) is valid. Then, if V L = 0, (IV.4.98) is estimated by (II.2.46), (II.2.51), (II.2.56), (II.2.66),
(II.2.73), (II.2.74), (IV.4.102) and (IV.4.104) for all ρs < α.

|e(v)| =
∣∣∣IG,v (I(v) + R(v)) − lim

v→∞ IG,v (I(v) + R(v))
∣∣∣

≤ |(IG,v − 1) (I(v) + R(v))| +
∣∣∣(I(v) + R(v)) − lim

v→∞ IG,v (I(v) + R(v))
∣∣∣

= C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v−(2γ−1), if 1/2 < γ < 1, and

∑
j<k

|qjk| > 0,

ln v
v , if γ = 1, and

∑
j<k

|qjk| > 0,

0, if
∑
j<k

|qjk| = 0,

+

{
o(v−ρ), if 0 ≤ ρ < 1,

O(v−1), if ρ = 1.
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+

{
o(v−ρs), if q12 �= 0,

0, if q12 = 0,
+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2α − 1,

O(v−ρ), if ρ = 2α − 1 < 1,
∑
j<k

|qjk| > 0

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.

=

⎧⎪⎪⎨⎪⎪⎩
o(v−ρ), if 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

O(v−1), if ρ = 1,
∑
j<k

|qjk| = 0.
(IV.4.105)

Because V L = 0, meaning that there are not long-range forces, we have that V l
12 = 0, obviously V l

12 �= 0 is
not true, and γ2 = 2 is true. This makes impossible to have γ2−1 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N}−1 <
1. Besides 0 ≤ ρ < 2min{α, σjk | 1 ≤ j < k ≤ N}− 1 and 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N}− 1 are
equivalent, so are ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1 and ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 <
γ2 − 1 :

|e(v)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(v−ρl), if γ2 − 1 ≤ ρ ≤ 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < 1,

for any ρl, 0 ≤ ρl < γ2 − 1,

o(v−ρ), if 0 ≤ ρ < min{γ2, 2α, 2σjk | 1 ≤ j < k ≤ N} − 1,

O(v−ρ), if ρ = 2min{α, σjk | 1 ≤ j < k ≤ N} − 1 < γ2 − 1,

o(v−ρl), if ρ = 1,
∑ |qjk| = 0 and V l

12 �= 0,

for any ρl, 0 ≤ ρl < γ1 − 1,

O(v−1), if ρ = 1,
∑ |qjk| = 0 and V l

12 = 0.

(IV.4.106)

By (IV.4.103) and (IV.4.106) we obtain the error term given in (II.2.44).
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