TEMA DE TESIS SIN CREDITOS PARA OPTAR POR EL GRADO DE MAESTRO EN INGENIERIA

1

"EFECTOS DE CAMBIOS VOLUMETRICOS EN ESTRUCTURAS CONTINUAS DE CONCRETO PRESFORZADO"

José Luis Camba C. México, D.F. Agosto 1982 0668

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INSTITUTO DE INGENIERIA

CIUDAD UNIVERSITARIA MEXICO, D. F.

Julio 26, 1982

Dr. Gonzálo Alduncin DEPFI-UNAM Presente

Propongo el siguiente tema para ser desarrollado por el Ing. JL Camba como requisito para optar por el grado de Maestro en Ingeniería (Estructuras). "Efectos de cambios volumétricos en estructuras continuas de concreto presforzado".

En la primera parte presentará un tratamiento general sobre los efectos de temperatura y contracción por fraguado en estructuras presforzadas incluyendo la influencia del proceso constructivo así como sobre los métodos de análisis disponibles para evaluar dicho efecto.

En la segunda parte deberá determinar la magnitud de dichos efectos en una estructura de tres niveles para estacionamiento en el Distrito Federal, marcos de nueve crujías de 12 m en una dirección y cinco crujirás de 9 m en la otra. Los marcos son a base de elementos prefabricados que se ligan en obra para formar una estructura continua. Obtendrá conclusiones sobre la importancia de estos efectos y dará recomendaciones sobre la forma de minimizarlos.

Atentamente

Roberto Meli

•		
		•
ñ. 1	n an the second seco In the second	
¢		•
· · · · ·		•
	INDICE	ng di kana palasi Ka
· : ·.		
		Página
· · · .		r agana
1.	INTRODUCCION	1
2.	EFECTOS DE TEMPERATURA	
	2 1 Tooría alfatica	C.
	2.11 Teoría lineal en trabes	12
	2.11 feoria finear en clabes	12
, 3,	SECCIONES COMPLIESTAS A BASE DE TRABES	,
	PRESFORZADAS	
	3.1 Concepto introductorio	14
	3.2 Efectos de temperatura	17 ·
	2.4 Evaluación de los métodos de amélicis	32
	5.4 Evaluación de los metodos de analisis	37
4.	ETEMPLOS DE APLICACION	
		13
	4.1 Ejemplo No. 1	40
	4.2 Ejemplo No. 2	55
	4.3 Conclusiones y recomendaciones	78
.5.	REFERENCIAS	81 [.]
	APENDICE A	•
•	Microclima de la ciuoad de México	A-1
	APENDICE B	
-	Cambios volumétricos de estructuras de	B-1
	concreto presforzadas y prefabricadas (PCI)	
		· · ·

T UNAM 1982 CAM EFECTOS DE CAMBIOS VOLUMETRICOS EN ESTRUCTURAS CONTINUAS DE CONCRETO

José Luis Camba C.

1. INTRODUCCION

Una estructura no es pasiva como un objeto inerte, ya que ademas de las deformaciones debidas a cargas gravitacionales y accidentales, puede por ejemplo, deformarse por efectos de tem peratura y contracción del concreto, causando alargamientos en los miembros de una estructura, los cuales pueden tener efectos significativos que se manifiestan en agrietamientos en el caso de trabes presforzadas, así como ciertas deformaciones.

1.1 Temperatura

En general, los efectos debidos a cambios de temperatura no se consideran en el diseño de estructuras de edificios, ya que en forma indirecta, los reglamentos de construcción especifican ciertas longitudes máximas en las construcciones para minimizar dichos efectos.

Los efectos de curvaturas debidos a temperaturas diferencia les tienen prácticamente poco significado en edificios, ya que de presentarse esas diferencias entre el exterior e interior de una estructura, son pequeños y solamente llegan a tener cierta importancia en el caso de estructuras destinadas a puentes some tidas a fuertes exposiciones solares o en el caso de nevadas. La figura 1, indica los efectos que tendría en el agrietamiento una trabe postensada bajo una temperatura diferencial, siendo el caso semejante en una estructura pretensada (figura 2).

Los efectos dependientes del tiempo como son el flujo plás tico, la contracción del concreto, variación en su módulo de e-lasticidad con respecto a la edad del mismo, sugiere que aún en el caso del estado permanente térmico, los esfuerzos varían con el tiempo¹.

La temperatura efectiva de una construcción no es igual a la temperatura exterior debido a la energía calorífica. La va--riación máxima anual de la temperatura efectiva en una construcción no es igual a la máxima mencionada, ya que estas últimas solo se alcanzan en periodos de tiempo muy cortos y el concreto tiene una conductibilidad mediocre, por lo que no se pone inmediatamente en equilibrio con la temperatura ambiente, presentán dose el caso de que si la velocidad de variación de la tempera tura es lenta, las variaciones de esfuerzos son sensiblemente mas lentos que éstas².

De los efectos mencionados, así como la no homogeneidad del concreto, puede haber discrepancias importantes del orden del -50 % o mas al comparar la teoría elástica con los esfuerzos re<u>a</u> les en una estructura.

En el presente trabajo se hace una introducción de la teoría elástica debida a esfuerzos de origen térmico así como los métodos de análisis derivados básicamente de esta teoría y sus

Momentos debidos a carga viva + temperatura

. A'grietamiento debido a temperatura

FIG

Mamentos debidos a carga viva + temperatura

Agrietamiento debido a temperatura

AGRIETAMIENTO POR TEMPERATURA EN TRABES PRETENSADAS

a) Trazo del presfuerzo.

b) Sección compuesta.

c) Agrietamiento debido a temperatura diferencial

FIG. 2

aplicaciones núméricas a un marco simple y posteriormente a una estructura mas compleja.

1.2 Contracción del concreto

Las deformaciones por contracción se deben principalmente a cambios en el contenido de agua en el concreto y que varía a lo largo del tiempo hasta estabilizarse. Estas deformacionesson independientes del estado de esfuerzos. Las principales va riables que afectan la contracción del concreto son: la cantidad original del agua de la mezcla, la humedad del medio ambiente, las dimensiones de los elementos, entre otras.

Las varillas restringen la contracción del concreto y desarrollan esfuerzos en el mismo, si no se deforma libremente. Cuando el refuerzo es simétrico en una sección, solo ocurre deformación longitudinal y cuando no lo es, hay una deformación por curvatura.

En el presente trabajo se analiza mas detalladamente el efecto de la contracción del concreto en secciones compuestas formadas por trabes pretensadas prefabricadas sobre las cuales se cuela una losa de concreto. Se considera que las deformacio nes debidas a contracción por diferencia de simetrías en el ace ro de refuerzo no presentan efectos de importancia comparadas con la contracción diferencial que ocurre en las secciones compuestas.

Se exponen algunos métodos para analizar los efectos de con tracción diferencial y como en el caso de temperatura, se resuel ven dos estructuras para cuantificar dichos efectos.

2. EFECTOS DE TEMPERATURA

2.1 Teoría Elástica

2.11 Esfuerzos y deformaciones de orgien térmico

Si una barra se puede deformar libremente, teniendo una longitud inicial L_0 a la temperatura T_0 , si la temperatura se leva uniformemente a T grados, la barra sufrirá una deformación unitaria:

siendo \checkmark el coeficiente de dilatación térmica lineal, no provocándose ningun esfuerzo.

Si por el contrario, se impide a los dos extremos de la barra a permanecer con la longitud inicial L_0 , la elevación de la temperatura T-T₀, provocará un esfuerzo normal uniforme de compresión, aplicando la Ley de Hooke:

 $\int = E \mathcal{E} = \mathcal{L} (T - T_{0}) E \dots (2)$

siendo E el módulo de elasticidad del material.

La temperatura puede por lo tanto provocar deformaciones y/o esfuerzos.

La ley experimental de dilatación térmica de los sólidos, respecto a la ley de Hooke-Duhamel que relaciona esfuerzos y deformaciones teniendo en cuenta la temperatura, dice que: "un sólido elástico, homogéneo e isótropo y con posibilidad de deformarse libremente, sufre un cambio $\boldsymbol{\mathcal{E}} = \boldsymbol{\swarrow} (\mathbf{T} - \mathbf{T}_{o})$, cuando la temperatura uniforme varía de T_o a T."

Las relaciones esfuerzo-deformación para problemas tridimensionales, considerando las deformaciones térmicas y tomando en cuenta que las deformaciones son pequeñas, se pueden sumar y serían⁴:

$$\begin{aligned} \varepsilon_{x} &= \frac{1}{E} \left(\overline{J}_{x} - \nu \overline{J}_{y} - \nu \overline{J}_{z} \right) + \angle \Delta T \\ \varepsilon_{y} &= \frac{1}{E} \left(-\nu \overline{J}_{x} + \overline{J}_{y} - \nu \overline{J}_{z} \right) + \angle \Delta T \\ \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\begin{aligned} \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\begin{aligned} \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\begin{aligned} \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\begin{aligned} \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \varepsilon_{z} &= \frac{1}{E} \left(-\nu \overline{J}_{x} - \overline{J}_{y} \nu + \overline{J}_{z} \right) + \angle \Delta T \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\begin{cases} x_{Y} = \frac{G_{XY}}{G} \quad j \quad \begin{cases} y_{YS} = \frac{G_{YS}}{G} \quad j \quad \begin{cases} z_{X} = \frac{G_{ZX}}{G} \end{cases} \end{cases}$$

Para materiales isótropos, un cambio de temperatura no causa deformaciones por cortante, por lo tanto:

$$X \times y = X_{i2} = Y_{2x} = 0$$

en las expresiones anteriores:

\$\mathcal{V}\$ = coeficiente de Poisson
 \$\Lambda\$ T= cambio de temperatura
 \$G\$= m\$\vec{6}dulo de elasticidad por cortante.

) J

Sumando las ecuaciones y haciendo:

$$\Theta = \nabla_x + \nabla_y + \nabla_z$$

$$\Theta = E_x + E_y + E_z$$

se tendría:

$$\mathcal{Q} = \frac{1}{E} (1 - 2 \mathcal{V}) \Theta + 3 \mathcal{A} \Delta T, \qquad (6)$$

. (5)

que es la expansión del volumen . , substituyendo este valor en las ecuaciones (3)

$$\begin{aligned} \nabla_{x} &= \lambda e + 2GE_{x} - \frac{\sqrt{E\Delta T}}{1 - 2U} \\ \nabla_{y} &= \lambda e + 2GE_{y} - \frac{\sqrt{E\Delta T}}{1 - 2U} \\ \nabla_{z} &= \lambda e + 2GE_{z} - \frac{\sqrt{E\Delta T}}{1 - 2U}
\end{aligned}$$

en las expresiones anteriores:

$$\nabla^2 = \frac{d^2}{dx^2} + \frac{d^2}{dy^2} + \frac{d^2}{dz^2}$$

 $(\lambda + G)\frac{de}{dx} + G\nabla^2 u_x - \frac{\chi E}{1 - 2u}\frac{dT}{dx} = 0$ $(\lambda + G) \frac{de}{dr} + G \nabla^2 U_{\gamma} - \frac{\omega E}{1 - cv} \frac{dT}{d\gamma} = 0$ $(2+G)\frac{de}{dz}+G\nabla u_{z}-\frac{zE}{1-7}\frac{dT}{dz}=0$ (9)

sustituyendo (7) y (4) en las ecuaciones (8)

Las ecuaciones de equilibrio son:

$$\frac{\partial \overline{\Gamma_x}}{\partial x} + \frac{\partial \overline{C_x r}}{\partial \gamma} + \frac{\partial \overline{C_{x^2}}}{\partial z} + X = 0$$

$$\frac{\partial \overline{C_x r}}{\partial x} + \frac{\partial \overline{T_r}}{\partial \gamma} + \frac{\partial \overline{C_{x^2}}}{\partial z} + Y = 0$$

$$\frac{\partial \overline{C_{x^2}}}{\partial x} + \frac{\partial \overline{C_{y^2}}}{\partial \gamma} + \frac{\partial \overline{T_z}}{\partial z} + Z = 0$$
(8)
$$\frac{\partial \overline{C_{x^2}}}{\partial x} + \frac{\partial \overline{C_y}}{\partial \gamma} + \frac{\partial \overline{T_z}}{\partial z} + Z = 0$$

en las cuales : $\lambda = \frac{E U}{(1+v)(1-2v)} ; G = \frac{E}{2(1+v)}$

Con las ecuaciones (9) se calculan los esfuerzos debidos a cambios de temperatura.

10

Si llamamos $\overline{X}, \overline{Y}$ y \overline{Z} las componentes de las fuerzas de superficie por unidad de area, tendremos:

 $\overline{X} = \nabla_{x} L + \overline{b}_{x} \gamma m + \overline{b}_{x} \gamma m$ $\overline{Y} = \overline{b}_{x} \gamma L + \overline{b}_{y} \gamma m + \overline{b}_{x} \gamma m$ $\overline{Z} = \overline{b}_{x} \sigma L + \overline{b}_{y} \sigma m + \overline{b}_{x} \gamma m$

en las cuales l, m y n son los cosenos directores; si sustitui mos ahora las ecuaciones de frontera en (7) y (4) y suponiendo que no hay fuerzas de superficie:

$$\lambda e_{\lambda} + G\left(\frac{\partial v}{\partial x}L + \frac{\partial v}{\partial y}m + \frac{\partial v}{\partial z}n\right) + G\left(\frac{\partial v}{\partial x}L + \frac{\partial v}{\partial x}m + \frac{\partial v}{\partial z}n\right) + G\left(\frac{\partial v}{\partial x}L + \frac{\partial v}{\partial x}m + \frac{\partial v}{\partial z}n\right)$$
(11)

(10)

(12)

comparando las ecuaciones (10) y (11), los términos:

$$-\frac{\sqrt{E}}{1-2D}\frac{dT}{dx}, -\frac{\sqrt{E}}{1-2D}\frac{dT}{dy}, -\frac{\sqrt{E}}{1-2D}\frac{dT}{dy}$$

reemplazan los componentes X, Y.y Z de las fuerzas de cuerpo y entonces los desplazamientos U, \forall y \forall debidos a un cambio de tem peratura Δ T, son los mismos que los desplazamientos producidos por las fuerzas de cuerpo:

$$X = \frac{2E}{1-2\nu} \frac{dT}{dx}, \quad Y = \frac{-2E}{1-2\nu} \frac{dT}{dy}, \quad Z = \frac{2E}{1-2\nu} \frac{dT}{dz}$$

y las tensiones normales

distribuidas en la superficie

Si la solución de las ecuaciones (9) satisfacen las condiciones de frontera (11), conocidos los desplazamientos **U**, **V**, y **W**, los esfuerzos normales y cortantes se calculan en las ecuaciones (7) y (4). De estas últimas ecuaciones vemos que el esfuerzo normal se compone de dos partes:

(13)

1) de los componentes de deformación uniforme

2) una presión semejante a la hidrostática cuyo valor es $\underbrace{JE\Delta T}(14)$, proporcional en cada punto al cambio de temperatura en ese punto. Entonces el total del esfuerzo producido por un cambio de temperatura no uniforme será la superposición de (14) con las fuerzas de cuerpo y de superficies (12) y (13).

En el caso de deformaciones planas las matrices de esfuerzos y deformaciones serán:

 $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} T_{x} & \overline{c}_{xy} & 0 \\ \overline{c}_{xy} & T_{y} & 0 \end{bmatrix} \begin{bmatrix} E \end{bmatrix} = \begin{bmatrix} E_{x} & Y_{xy} & 0 \\ Y_{xz} & \overline{c}_{y} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} E \end{bmatrix} = \begin{bmatrix} T_{x} & \overline{c}_{yy} & 0 \\ 0 & 0 & 0 \end{bmatrix}$

y las relaciones esfuerzos-deformaciones dados por la ley de

12

Hooke-Duhamel:

$$E_{x} = \frac{1}{E} \left(\left(T_{x} - \partial T_{y} \right) + 2 \Delta T \right)$$

2.12 Teoría lineal en trabes

Aplicando los efectos de temperatura al caso de trabes, las solicitaciones por separado de esfuerzo normal y de flexión, se tendrá:

2.12 1) Esfuerzo normal

Si la temperatura es uniforme, las matrices de esfuerzo y deformaciones serán:

como $\sqrt{\frac{F}{A}} = \frac{F}{A}$ según la ley de Hooke-Duhamel:

(16)

(15)

$$\mathcal{E}_{x} = \frac{\nabla_{x}}{E} + \omega \Delta T = \frac{F}{AE} + \omega \Delta T$$

$$\mathcal{E}_{y} = \mathcal{E}_{e} = -\frac{\nabla \nabla_{e}}{E} + \omega \Delta T = -\frac{\nabla F}{AE} + \omega \Delta T \quad (17)$$

y el desplazamiento de secciones distantes entre sí de <u>ds</u> será una translación:

13

$$\Delta l = \mathcal{E}_{x} ds = \begin{bmatrix} F \\ AE + \Delta T \end{bmatrix} ds \quad (18)$$

2.12

2) Momento flexionante

 $dw = (\underbrace{H}_{I} + \alpha \Delta T) ds$

Suponiendo un efecto de temperatura: $T=T_{o}+M_{v}$

Las matrices de esfuerzos y deformaciones tiene la misma forma que las mencionadas en el esfuerzo normal, pero ahora los valores serán:

$$\begin{aligned} \nabla_{x} &= \frac{M\gamma}{I} \\
\mathcal{E}_{x} &= \frac{\prod_{x}}{E} + \omega \Delta T = \frac{M\gamma}{EI} + \omega \Delta T \\
\end{aligned}$$
(19)

La deformación entre las secciones A y A' distantes de un diferencial <u>ds</u> será una rotación de A con respecto a A':

(20)

3. SECCIONES COMPUESTAS A BASE DE TRABES PRESFORZADAS

3.1 Concepto introductorio

Una viga compuesta está formada por dos secciones, general mente es una trabe prefabricada presforzada y una losa colada en el lugar y sin presforzar. Cuando el concreto colado en el lugar ha endurecido, parte de la losa interviene para formar una sección compuesta.

Entre las ventajas principales que tienen las secciones com puestas son: economía de la cimbra, el ahorrro de cantidades d_e concreto, control de calidad, optimización de secciones y estan darización.

Es muy importante garantizar el trabajo de conjunto trabe y losa para formar la sección compueta a base de conectores de cortante que garanticen el no deslizamiento de una sección con respecto a otra. En general a base de superficies rugosas y/o estribos se logra la adherencia necesaria para garantizar la sección compuesta.

Las etapas de carga a las que están sujetas las secciones compuestas son las siguientes:

 presfuerzo y peso proio de la trabe, en sección simple
 presfuerzo, peso propio y peso de la losa en sección simple
 restante de cargas permanentes y cargas vivas en sección compuesta

14

La sección efectiva de la losa (figura 3) que participa con la trabe para formar la sección compuesta, depende de los valores especificados por los reglamentos de construcción:

FIGURA 3

Como en general, el concreto de la losa colada en el lugar es de calidad inferior al de la trabe prefabricada, además del ancho máximo de losa que forma la sección compuesta, hay una disminución de este valor para obtener una sección homogeiniza da de concreto, de tal forma que el ancho inicial especificado por reglamento, se verá disminuido en una proporción:

 $b_r = mb$, siendo m ≤ 1.0

15. -

La forma usual para obtener la modificación del ancho es con base en las deformaciones unitarias al mismo nivel que son iguales, por lo tanto:

FIG. 4

Como la resistencia de ambas secciones debe ser la misma, la fuerza de compresión será:

(21)

(22)

$$dC = (fc) dy = (fc) brdy$$

y substituyendo (21) en (22):

br = nb

Todas las consideraciones anteriores se tomarán en cuenta al aplicarse los efectos de temperatura y contracción del concreto en las secciones compuestas.

3.2 Efectos de temperatura

3.21 Deformaciones uniformes

En este caso se supone que las deformaciones debidas a una variación de la temperatura, los ejes de los diferentes elemen tos, se verán sujetos a una deformación unitaria uniforme, cuyo valor sería:

17

 $\mathcal{E}_{T} = \mathcal{A} \overline{\mathcal{A}} \overline{\mathcal{A}}$, en la cual

 \checkmark es el coeficiente de dilatación lineal, que se tomará en es te trabajo como un valor constante e igual a:

 $10 \times 10^{-6} \text{ cm/cm}$

El modelo matemático que se analizará para tomar en cuenta el alargamiento o acortamiento de los miembros, según se trate de ascenso o descenso de la temperatura respectivamente (figura 5), será una estructura a la que aplicamos fuerzas cuyo valor será:

 $F = \angle \Delta T E A$ impidiendo que

se desplaze el miembro libremente y que se llamárá estado "1" y otro con la aplicación de esas mismas fuerzas en la estructura que provocarán desplazamientos no nulos, que son los causantes de los elementos mecánicos en las mismas, que será el estado "2"

F= 2 ATAE ${d} = 0$

Fz

7700

F.

FIG. 5

18

F.

 $F = \angle \Delta T A E$ $\left\{ \neq O \right\}$ FL

F2

3.22 Deformaciones no uniformes

Los métodos de análisis se refieren al caso de temperaturas diferenciales entre la losa y la trabe.

El análisis por temperatura diferencial tiene en la práctica cierta importancia principalmente en el caso de puentes. En este trabajo se analizan diversos métodos de análisis y que son semejantes a los que se estudiarán mas adelante en el caso de la contraccion diferencial de secciones compuestas.

El método desarrollado por Zuk⁵, supone que la temperatura es constante transversal y longitudinalmente a lo largo de la trabe, pero variable segun el peralte, habiendo analizado cuatro c<u>a</u> sos de distribución de temperatura (figura 7), los cuales fueron:

Caso A.- La losa tiene temperatura uniforme menor que la de la trabe. Esta condición ocurre cuando la temperatura del aire se incrementa repentinamente. Caso B.- Cuando la losa tiene una temperatura más alta que la trabe. Ocurre cuando la temperatura del aire disminuye.

19

Caso C.- Ceando hay una distribución lineal de la temperatura en el peralte de la losa, estando el lecho superior de la losa más frío que el inferior. Caso de nieve ó lluvia fría.

Caso D.- Caso contrario al caso C. Ocurre cuando la losa está expuesta a la radiación solar.

El método de análisis propuesto es válido para distribucio nes de temperatura no lineales, pero se seleccionaron los casos anteriores para simplificar el proceso operativo.

Zuk supone la losa separada de la trabe y permite que cada una de ellas se deforme por separado y analizando los esfuerzos normales y cortantes en la superficie de contacto las une en tal forma que haya compatibilidad entre deformaciones longitudinales y curvaturas idénticas en la mencionada superficie.

Para los casos A y B, el procedimiento de análisis viene a continuación.

Del sistema de ecuaciones (3), si la losa está restringida en la dirección Z, por las trabes adyacentes y libre en la di-rección Y (fig. 6), tenemos:

 $f_{\Xi} = D f_{X} - E \angle \Delta T$ $f_{Y} = O$ (23)

Si se supone la losa separada de la trabe,pero sujeta a -una distribución de temperatura, el esfuerzo en la losa será:

 $f_{P_{1}} = -\frac{2}{1-v} = \frac{1}{h(1-v)} \int_{V_{1}}^{V_{1}} \frac{1}{2(2-v)} \int_{V_{1}}^{V_{1}} \frac{3}{2(2-v)} \frac{1}{h(1-v)} \frac{1}{(V_{1})^{2}}$

siendo h=peralte de la losa

b

hi

de

El primer término de (24) representa el esfuerzo uniforme dado por la ecuación (2) y los dos últimos términos representan la resultante de fuerzas y de momentos térmicos debidos a la no simetría de la temperatura; con respecto al eje Z.

20

De las ecuaciones (3), la deformación unitaria abajo de la losa es: $\mathcal{E} \times \mathcal{L} = \mathcal{L} (1 + \mathcal{J}) \Delta T$ (25)

 $\Delta T = T_1 - T_0$, siendo T_0 la temperatura incial de construcción y T_1 la temperatura de la losa.

21

En la misma forma, la deformación unitaria en el lecho alto de la viga será:

$$\mathcal{E}_{\mathbf{x}} \mathbf{t} = \mathcal{L} \left(\mathbf{T}_{\mathbf{z}} - \mathbf{T}_{\mathbf{0}} \right)$$
 (26)

siendo T_2 = temperatura de la trabe

Entre las dos superficies en contacto se requiere una fue<u>r</u> za horizontal por compatibilidad en los extremos en contacto de la losa y la trabe.

De la teoría de flexión:

$$f_{xl} = \frac{F}{bh} + \frac{3(F^{\frac{h}{2}} - Q)}{2(\frac{h}{2})^{2}b} = \frac{4F}{bh} - \frac{3}{2}\frac{Q}{(\frac{h}{2})^{2}b}_{(27)}$$

en la cual F es la fuerza cortante entre las dos caras y Q es el momento entre esas dos caras (figura 6)

De la ecuacion (23) no considerando el término 🛆 T:

 $f_{x} = \frac{4VF}{bh} - \frac{3VQ}{2(1/2)}$

De la ecuación (3) y de (27) y (28), la deformación en la parte inferior de la losa debida a cortantes y momentos será:

$$\mathcal{E}''_{x} = \frac{(1-v)^2}{bh/2} \left(2F - \frac{3Q}{h} \right)$$
(29)

Superponiendo la deformación libre (ecuación 25) y la deformación obligada de la losa:

$$\mathcal{E}_{xl} = \mathcal{L}(1+v)(T_{i}-T_{o}) + \frac{2(1-v^{2})}{hb E_{1+v}}(2F - \frac{3Q}{h})$$

(30)

Similarmente para la trabe, el esfuerzo en la dirección X en la superficie de contacto es:

$$f_{x}t = -\frac{F}{A_{t}} + \frac{d}{I}\left(-Fd_{t} - Q\right) = -\frac{Qd_{t}}{I} - F\left(\frac{d}{I}^{2} + \frac{I}{A_{t}}\right)$$
(31)

en la cual: A_t = area trabe I = momento centroidal de la trabe . la deformación forzada en el lecho superior de la trabe será:

$$\mathcal{E}''_{\star t} = \frac{f_{\star t}}{E_{t}} = -\frac{Qd_{1}}{E_{t}} - \frac{F}{E_{t}} \left(\frac{d_{1}}{T} + \frac{1}{A_{t}} \right)$$
(32)

22

siendo $E_t = modulo de elasticidad de la trabe$

y superponiendo las deformaciones libres (26) y forzadas (32)

$$\varepsilon_{\star t} = \mathcal{L}(T_2 - T_0) - \frac{Qd_1}{E_t I} - \frac{F}{E_t} \left(\frac{d_1^2}{I} + \frac{1}{A_t} \right)$$
(33)

por compatibilidad de deformaciones: $\mathcal{E}_{\mathbf{x}\mathbf{k}} = \mathcal{E}_{\mathbf{x}\mathbf{k}}$

$$\angle (I+V)(T_{1}-T_{0}) + \frac{2(I-V^{*})}{hbE_{x}}\left(2F - \frac{3Q}{h}\right) = \\ \angle (T_{2}-T_{0}) - \frac{Qd_{1}}{E_{t}d} - \frac{F}{E_{t}}\left(\frac{d_{1}^{2}}{I} + \frac{I}{A_{t}}\right)$$

$$(34)$$

el radio de curvatura de la losa y la trabe será:

$$R_{s} = \frac{2t_{s}(\gamma_{c})b}{3(1-\nu^{2})(F\gamma_{c}-Q)} + \frac{h}{2}$$
(35)
(se debe a la restricción lateral de la losa

$$\mathcal{R}_{t} = \frac{E_{t}I_{t}}{F_{d}I_{t}+Q} - d. \qquad (36)$$

Como el segundo término de (35) y (36) es pequeño en compa ración del pr mero, el radio de curvatura de la superficie común será: $2 E_{I} (\frac{h}{2})^{2} b = \frac{E_{t} I_{t}}{3(1-\nu^{2})(F_{t}/2-Q)} = \frac{E_{t} I_{t}}{Fd_{1}+Q}$

CASOS DE TEMPERATURA DIFERENCIAL ANALIZADOS / FIG.7

Las ecuaciones (34) y (37) pueden resolverse simultáneamente para obtener F y Q.

Suponiendo comportamiento elástico y homogéneo, los esfuer zos en la losa pueden ser calculados superponiendo todos los esfuerzos debidos a la losa aislada como sigue:

Losa:

$$f_{x\ell} = \frac{F}{bh} + \frac{3\gamma_{k}}{2(\frac{1}{2})^{3}b} (F\frac{1}{2}-Q)$$

$$f_{\ell}\ell = \partial f_{xs} - \Delta E_{\ell} \Delta T \qquad (38)$$

en las cuales Y₁ es medida de la mitad del peralte de la losa

(39)

Trabe:
$$f_{xt}_{(Y)} = -\frac{F}{A} + \frac{Y_t}{I}(-F_d, -Q)$$

siendo y, medida a partir del eje centroidal de la trabe.

El procedimiento anterior fué para los casos A y B; para los C y D es semejante, salvo el caso de que las cur vaturas difieren debido a la variación de temperatura de<u>n</u> tro del peralte de la losa.

Es evidente que el desplazamiento de las secciones en el caso de temperatura no uniforme depende de la diferencia entre las dos superficies, siendo l mismo si la temperatura aumente de 10° a 20°C que de 45 a 55°C

NOTA.- El método de Zuk para analizar el efecto de contrac-

ción del concreto, solo substituye el valor del coeficiente de contracción \mathfrak{E} sn por el de \prec , en la ecuación (34) quedando sin variación la ecuación (37), calculando F χ Q a partir de (34) modificada y la (37).

Los esfuerzosen la losa debido a la contracción serán (ec. 38)

 $f_{*}l = \frac{F}{bh} + \frac{3Y_{*}}{2(\frac{1}{2})^{3}b} (F\frac{h}{2} - Q)$ $f_{*}l = 0 f_{*}l - E_{sh} E_{J} (38A)$

Para calcular los esfuerzos en la trape, no hay cambios.

25

÷ŝ

 $Ac = A trabe + A \log \frac{E \log a}{E trabe}$

Isc= momento de inercia de la sección compuesta

1) Características de las secciones

2) Efectos de temperatura antes de la adherencia 3) Se autocancela F con una fuerza aplicada excentricamente a la sección compuesta provocándose deformaciones unitarias.

4) Esfuerzos correspondientes

METODO DE LA SECCION COMPUESTA

(utilizado por Branson 6)

FIG. 8

La máxima deflexión vertical de una trabe de sección compuesta, libremente apoyada se obtiene por cualquier método de Mecánica de Materiales. En el caso de flexión de una trabe su jeta a momentos en los extremos, su valor es:

27

$$\Delta = \frac{ML}{8EI} = \frac{(Fd, +Q)L}{8EI}$$
(40)

3.23 Metodo de Branson

El método utilizado por Branson⁶ para calcular los efectos de temperatura diferencial entre la losa y la trabe en se<u>c</u> ciones compuestas, supone una fuerza horizontal a lo largo de la trabe y con punto de aplicación en el centroide de la losa, produciéndose deflexiones y momentos en la sección compuesta.

El llamado método de la sección compuesta, está basado en la teoría elástica. y consiste básicamente en suponer que la temperatura diferencial se aplica como el equivalente a una fuer za de tensión (en caso de descenso de temperatura) en el centro de gravedad de la losa (figura 8) y posteriormente como una fuerza excéntrica de compresión en el mismo punto, pero ahora actuando sobre la sección compuesta.

(41)

De acuerdo con la figura:

 $F = D_T A_{losa} E_{losa}$

en la cual

$$D_{T} = 2\Delta T$$

En esta simplificación del problema se supone que la losa tiene una temperatura diferente de la trabe y que ésta es uniforme en el espesor de la losa. Para temperaturas no unifor mes se requerirán algunos refinamientos adicionales.

28

Aplicando esta fuerza primeramente a la losa y posteriormente a la sección compuesta, el cálculo de los esfuerzos corres pondientes será:

 $f_{2t} = \frac{F}{A_c} - \frac{FY_FY_{cc}}{I_c}$

(43)

Cuando el centroide de la sección compuesta quede dentro de la losa, el signo empleado será positivo.

(42).

Las ecuaciones anteriores se obtuvieron aplicando las fórmulas de la teoría elástica, debidas a una fuerza F aplic<u>a</u> da excéntricamente, provocando un momento M = F x Y_F

Si la trabe está libremente apoyada, el valor de la flecha al centro del claro valdrá:

$$\Delta = \frac{ML^2}{8EI} = \frac{FY_FL^2}{8EI}$$
(44)

Los valores del coeficiente D $_{\rm T}$ así como los módulos de elastícidad, se pueden calcular de acuerdo a las siguientes co<u>n</u> sideraciones:

$$E_{trabe} = \frac{(E_c)_t}{1 + \frac{1}{2}C_t}$$

$$E_{tosa} = \frac{(E_c)_1}{1 + \frac{2}{5}C_t}$$

$$F_{t} = \chi F$$

en las cuales:

$$C_t = \frac{t^{\circ.5}}{10 + t^{\circ.5}} C_u$$

 $\int = \frac{2}{3}$

(47)

(46)

(45)

 $c_t = \text{coeficiente de flujo para concreto humedecido y cargado a}$ los 7 días y para concreto curado a vapor 1 - 3 días $C_v = \text{coeficiente último de flujo}$ t = tiempo y tomando valores promedio: $E_{losa} = 0.5 \text{ (Ec) } 28 \text{ dias}$ $E_{trabe} = 0.55 \text{ (Ec) } 28 \text{ dias } \text{ para trabes con un mes de colado al colar}$ $= 0.60 \text{ (Ec) } 28 \text{ dias } \ge 2 \text{ meses}$

y en caso general <u>para cualquier tiempo</u> después de 28 días de colada la losa:¹⁶

 $E_{losa} = (E_c) 28 días$ $E_{trabe pref.} = (E_c) 28 días$

 $F_{i} = \int F \quad j \quad V = \frac{1}{2}$ (48) $\Delta = \frac{4}{3} \frac{FY_{F}}{8EI}$ (49)

 $D_{T} = \cancel{\Delta}T = 0.00001 \times 20^{0}C = 200 \times 10^{-6}$ (50) valor promedio de T; sugerido normalmen te por reglamentos.

En el caso de estructuras continuas, el efecto de continuidad se estudiará en detalle en el análisis de contracción del concreto **consi**derando continuidad (pag. 39)

3.3 Contracción del concreto

3.31 Efectos génerales

El concreto tiene pérdidas de volumen al realizarse las reacciones químicasen el proceso de fraguado, produciéndose una contracción del concreto al hidratarse el cemento. Este fenómeno de contracción es relativamente rápido al principio; se ad mite en general que para espesores comunes, la cuarta parte de la contracción se efectúa a los 7 días, la tercera parte a los 14, la mitad en un mes y las tres cuartas partes a los seis meses².

La magnitud de la deformación por contracción, como ya se comentó en la introducción depende de la composición del concreto y del medio ambiente. Varía con el contenido de humedad, es débil para porcentajes del 90 % y fuerte para climas secos. Aumenta con la relación agua-cemento.

La contracción aumenta con la temperatura, ya que arriba de 20 0 C, la contracción última aumentaría de 0.05 x 10 $^{-4}$, por grado centígrado⁷.

Así mismo la contracción del concreto tiene influencia sobre el tensado del acero de presfuerzo provocándole pérdidas a partir del momento de efectuar el tensado, siendo las pérdidas por contracción mas importantes en elementos pretensados que postensados.
Las varillas de refuerzo y los torones del pretensado res tringen la contracción del concreto y desarrollan esfuerzos en el mismo. Cuando el refuerzo es simétrico en la sección se deforma por contracción linealmente sin curvatura; si por el contrario no hay simetría en el refuerzo, habrá deformaciones por curvatura.

Para humedades del 100 %. el factor correctivo para la contracción del concreto es cero.

Los valores de la contracción del concreto, se expresan como:

 $(\mathcal{E}_{sh})_{t} = \frac{t}{35+t} (\mathcal{E}_{sh})_{v}$ para concreto humedecido después de 7 días

 $(\mathcal{E}_{sh})_{t} = \frac{t}{5S+t} (\mathcal{E}_{sh})_{v} \text{ para concreto curado al vapor de}$ 1 - 3 días(51)

 $(\mathcal{E}_{sh})_{v}$ = deformación por contracción última del concreto y varía entre 0.000415 y 0.00107, con valores promedio de 0.0008 para curado húmedo y 0.0007 para curado con vapor⁶.

Existen factores correctivos de la contracción del concr<u>e</u> to para relaciones volumen-superficie de acuerdo con la siguie<u>n</u> te tabla:

F.C.

V/S cm.

3.8 -----1.0 5.1 -----0.96 Estos valores permiten estimar 7.6-----0.87 el efecto del tamaño del ele-10.2 -----0.78 mento en la contracción del 12.7 -----0.69 concreto 15.2 -----0.60

32

En el presente trabajo se estudiará mas detalladamente el efecto de la contracción del concreto en secciones compuestas.

3.32 Contracción diferencial en secciones compuestas

En una trabe pretensada ya está en general realizado el cura do de concreto y tiene una cierta edad al recibir la losa cola da en el lugar, para formarposteriormente la sección compuesta, una vez que endureció el concreto de la losa. El problema consiste en determinar la deflexión y los esfuerzosdebidos a contracción en la superficie común a ambas a todo lo largo de la trabe.

3.321 Método de H. W. Bikerland⁸

Un análisis riguroso que incluye el factor tiempo para tomar en cuenta, entre otros efectos, la variabilidad del módulo de sección de la losa, sería muy dificil y se necesitarían un número considerable de ensayes de laboratorio para determinar las magnitudes de tales efectos. En el método propuesto por Bikerland, la simplificación importante que hace, consiste en suponer constantes los módulos de elasticidad para cada uno de los concretos y un valor definido para la contracción del concreto.

Se tratará inicialmente una trabe presforzada libremente apoyada, con momento de Inercia constante y con la hipótesis de Navier de la conservación de las secciones planas. Las simplificaciones mencionadas se muestran en las figuras 9 y 10, y son semejantes a las utilizadas por Branson⁶ en el efecto de temperatura diferencial.

La fuerza externa aplicada en el centroide de la losa para anular la contracción diferencial vale:

$$P = \mathcal{E} A_{losa} E_{losa}$$
(52)

en la cual \mathcal{E} es la contracción diferencial

Esta fuerza es también la fuerza de compresión externa aplicada a la sección compuesta en el mismo punto, que anula la fuerza de tensión previamente aplicada.

Si la fuerza de compresión se traslada al centroide de la sección compuesta, es acompañada de un momento:

$$M_{c} = P \times e$$

Los esfuerzos serán, aplicando la teoría de la flexión compuesta:

$$f = \frac{P}{A} + \frac{M_Y}{I}$$
 (-) tensión
(+) compresión

Los esfuerzos de la losa serán:

$$f_{11} = -\frac{P}{A_{lose}} + \frac{P}{A_{s.e.}} + \frac{Pe T_{isc}}{Is.c.}$$

$$f_{11} = -\frac{P}{A_{lose}} + \frac{P'}{A_{s.e}} + \frac{Pe T_{isc}}{Isc.}$$

(53)

(54)

Los esfuerzos de la trabe serán:

$$f_{1t} = \frac{P}{A_{s.c.}} + \frac{PeY_{z}}{Isc.}$$

$$f_{2t} = \frac{P}{A_{s.c.}} - \frac{PeY_{z.s.c.}}{Isc.}$$

a) Fuerzas de tensión aplicadas a la losa para anular la contracción.

c) Fuerzas de compresión aplicadas a las sección compuesta para anular las fuerzas externas.

SIMPLIFICACIONES SUPUESTAS POR H. W. BIRKELAND

FIG. 9

METODO DE H.W. BIRKELAND

FIG. 10

Que son los resultados semejantes a los analizados en el método de Branson y Zuk en el caso de la temperatura diferencial.

NOTA.- El hecho de no trabajar con la sección homogenea, transformando el acero de presfuerzo a concreto en general es despreciable, ya que las diferencias son del orden del 1 %.

3.33 Efectos de la contracción en estructuras continuas

En el caso de trabes continuas o de marcos hiperestáticos, el efecto de contracción incluye el cálculo de momentos hiperes táticos, debidos a este efecto y que deberán sumarse algebraicamente, aplicando para ello cualquier método de análisis estructural.

Para mostrar como se determinan los momentos de contina nuidad se muestra un ejemplo en la figura 11.

En el caso de temperatura diferencial se calcularán los momentos hiperestáticos debidos a la continuidad en forma semejante a los de contracción, aplicando cualquier método de análisis estructural⁹.

· · 37 _

. .

7.4 ¹

$$\Delta = \frac{1}{2} \operatorname{Lik} = \frac{1}{2} \times 2 \operatorname{L} \frac{\operatorname{Mc}}{\operatorname{EI}} \times \frac{2 \operatorname{L}}{4}$$
$$= -\frac{\operatorname{Mc}}{\operatorname{EI}} \frac{\operatorname{L}^{2}}{2}$$
$$f_{22} = \frac{1}{3} \operatorname{Lik} = \frac{1}{3} 2 \operatorname{L} \frac{2 \operatorname{L}}{4 \operatorname{EI}} \times \frac{2 \operatorname{L}}{4}$$
$$= \frac{\operatorname{L}^{3}}{6 \operatorname{EI}}$$

Ecuación de compatibilidad

$$\Delta + f_{22} R_2 = 0$$

$$R_2 = \frac{3 Mc}{5}$$

$$R_1 = R_3 = -\frac{3 Mc}{3 L}$$

EFECTOS DE CONTINUIDAD DEBIDOS A LA CONTRACCION DEL CONCRETO

FIG

3.4 Evaluación de los métodos de análisis.

2:

1.- La teoría elástica debe considerarse solamente como una buena aproximación para cuantificar los efectos de tempe ratura y contracción del concreto, debido principalmente a la idealización de este último como material elástico y homogeneo.

39.

De los tres métodos analizados para calcular los efectos de temperatura y contracción del concreto, Zuk^5 , Birke-land⁸ y el utilizado por Branson⁶, tienen prácticamente las mismas hipótesis de base y aún cuando el método de -Zuk es el que tiene más fundamento en la teoría elástica, los tres conducen a resultados semejantes.

3.- El método utilizado por Branson y Birkeland son de más fácil aplicación, debiendo solamente tener cuidado en la utilización de los coeficientes que dependen de características como el módulo de elasticidad del concreto y el coeficiente de contracción del mismo, para suplir lo mejor posible los efectos dependientes del tiempo en esos dos parámetros.

4.- Los cálculos de esfuerzos y deflexiones en secciones com puestas haciendo variar espesores de losas y secciones de trabes prefabricadas nó permiten llegar a conclusio-nes evidentes en cuanto a la relación entre losas y trabes prefabricadas⁶

Se requiere de más investigación y experiencia para po-der valuar el módulo de elasticidad del concreto, ya que éste varía de un estado pastoso casi líquido, hasta un - valor máximo cuando se alcanza la resistencia del mismo y como se suponen fuerzas inducidas dependiendo de su va lor para considerar los efectos de cambios volumétricos, es importante lograr una buena precisión.

6.- Las conclusiones anteriores (4 y 5), no invalidamel hecho de tomar en cuenta los efectos mencionados, ya que los esfuerzos derivados de ellos, pueden provocar agrie tamientos y deformaciones en general, no considerados en los diseños por cargas gravitacionales. Los resultados obtenidos experimentalmente¹³, para el cálculo de la carga de agrietamiento en trabes presforzadas, confirmarían la anterior debido a la diferencia existente cuando se considera ó no los efectos de contracción del concreto. (fig. 11-A).

7.- Los efectos de temperatura, <u>afectan básicamente el comportamiento de elementos estructurales en el estado límite de servicio, ya que si factorizamos las "cargas" de origen térmico y las sumamos a las gravitacionales la fuerza equivalente de origen térmico sería pequeña comparada con la del estado límite de servicio, debido al comportamiento no lineal. (fig. 11-B).</u>

8.- Si el procedimiento constructivo es a base de estructuras de concreto coladas monolíticamente, el efecto de la contracción del concreto es provocar tensiones prácticamente uniformes en el concreto; en el caso de trabes de sección compuesta, ó sea, coladas en dos etapas, la diferencia de contracciones entre la losa y la trabe provocarán esfuerzos debidos a una fuerza excéntrica.

I.— Gráfica Carga - Deflexión de secciones compuestas

FIG. II-A

FIG. 11 в.

4. EJEMPLOS DE APLICACION

Se presenta a continuación un ejemplo numérico de un mar co simple de un nivel, al cual se le aplicarán los efectos de temperatura y contracción del concreto, para aclarar el proceso operativo en cada caso de solicitación y posteriormente se tratará el de un edificio de tres niveles destinado a estacionamiento.

4.1 Ejemplo No. 1

4,11 Descenso uniforme de temperatura de $20^{\circ}C^{-14}$ (Apéndice A) a) Características geométricas del margo (figura 12) 190×076=145 I = $\frac{30(40)^3}{12} = 160,000 \text{ cm}^4 = 0.0016 \text{ m}^4$ 10 $1 = 30 \times 40 = 1200 \text{ cm}^2 = 0.12 \text{ m}^2$ $4 = 0.12 \text{ m}^2$ Ecol = 141,000 kg/cm² Itabe = $1,528,123 \text{ cm}^4 = 0.01528 \text{ m}^4$ $4 = 1,528,123 \text{ cm}^4 = 0.01528 \text{ m}^4$ $4 = 1,97081 \text{ kg/cm}^2 = 1.87 \times 10^{\frac{1}{9}} \text{ tor}/m^2$

b) Obtención de las fuerzas

Como los marcos estan supuestamente separados a cada 7 metros, la furza axial horizontal, aplicada en el centro de gravedad de la sección de la trabe será; aplicando la fórmula (41): $F_x = - \Delta T A E$ = 10 × 10⁻⁶ × 20 (700×10+30×60)141,421 = 253.14 ton.

NOTA.- Se despreció el hecho de que la trabe tiene un E diferente, por ser pequeña la relación entre el área de la trabe y el área de la losa.

En forma semejante, la fuerza en la columna será:

F, =24T A E

 $= 10 \times 10^{-6} \times 20 \times 1200^{\times} 141082$

= 33.94 ton

c) Método de análisis,

El método utilizado será el de las rigideces¹², considerando efectos de flexión y acortamiento de los miembros, tal y como se aprecia en la figura 13.

El vector de fuerzas será:

$$\begin{cases} F = \begin{cases} 0 \\ +253.14 \\ -253.14 \\ -33.94 \\ -33.94 \end{cases}$$

De la ecuación;

$$F = [K] d$$

en la cual [K] es la matriz de rigideces en este caso de $6^{\times}6$ y d el vector de desplazamientos.

El cálculo de la matriz de rigideces se muestra en la figura 13.

FIG. 13

Invirtiendo la matriz de rigideces:

162,382 -45.502 90.416 \$6.572 1.572 -1.572 1.572 -1.572 90.418 -45.502 162.382 86.572 839.53 2,381 -2.381 86.572 857.05 90.413 [K]'= 839.53 857.05 2.381 -2.381 90.418 86.572 2.381 2.381 24.594 6.00129 1.572 1.572 3, 0129 24.999 -2.381 -2.381 -1.572 -1.572

 $[K]^{-1} \} F \{ = \} d \}$

Los desplazamientos finales serán:

Calculando ahora los momentos flexionantes en marcos:

$$M_{2-3} = \frac{2 \times 12.61 \times 0.0016E}{15} \times \frac{973.57}{E} = 2.62 \pm m$$

$$M_{1-2} = \frac{2 \times E \times 0.0016}{3} \times \frac{973.57}{E} \left(\frac{6 \times 0.0016}{9} \times \frac{9435.77}{E} \right)$$

$$= 3.69 \pm m$$

Una vez superponiendo los valores encontrados con el estado "1" que es el que permite el desplazamiento libre sin restricciones, la gráfica de momentos flexionantes y axiales se encuentra en la figura 14.

NOTA ACLARATORIA.- Si el marco se hubiese resuelto por el método de Cross, por ejemplo, despreciando los efectos de acortamiento, los resultados obtenidos tendrían diferencias del orden de 53% de los valores de momentos obtenidos.

48

4.12 Suponiendo ahora una temperatura diferencial de 20^{0} C entre el intrados y el extrados de la trabe, habiendo un calen tamiento súbito en el interior, calcular los efectos de esta temperatura diferencial.

Si la trabe se deformara libremente, la rotación en el extremo de la trabe sería:

si la trabe está restringida, los momentos de empotramiento serán:

$$M = \frac{4ET}{L} \bigcirc_2 - \frac{2ET}{L} \bigcirc_2 = \frac{2ET}{L} \bigcirc_2$$

$$= \frac{2 \times 141082 \times 1528 / L^3}{1500}, \frac{0.00061 \times 20 \times 1500}{2 \times 70}$$
(3) = 6.15 + m
$$\frac{0.55}{2 \times 12.51}$$

$$\frac{0.44}{-6.15}$$

$$\frac{0.55}{2 \times 12.51}$$

$$\frac{2 \times 12.51}{15}$$

$$\frac{2 \times 12.51}{15}$$

$$\frac{2 \times 12.51}{15}$$

$$\frac{2 \times 12.51}{15}$$

Los diagramas de elementos mecánicos correspondientes se dibujan en la figura 14.

Efectos de la contracción del concreto 4.13

Considerando que la diferencia del tiempo de colado entre la trabe prefabricada y la losa colada en el lugar es de 3 días, los módulos de elasticidad de ambos elementos serán:

a) obtención de la fuerza

La fuerza F que provocaría la contracción libre será:

$$F = D A_{101n} E_{101n}$$

$$D = coef. contract. diferencial$$

$$D_{0} = coef. Siltimo ::$$

$$D = 0.0003 \text{ cm/c- } prz \text{ concreto } prosodorzado$$

$$var ac.47$$

$$F = \frac{2}{3} \times 0.00033 \times 700 \times 10 \times 126257 = 197,989 \text{ kg}$$

$$= 197.98 \text{ for}$$

$$M = 197.98 (0.245 - 0.05) = 38.61 \text{ fm}$$

Como la trabe es continua con las columnas, el momento isos tático debido ala contracción, debera corregirse por el efecto de continuidad.

51

b) el método de análisis será también elmétodo de las rigideces, considerando acortamiento de la trabe.

El vector de fuerzas será:

+38.61 $\langle F \rangle = \begin{pmatrix} -33.61 \\ +197.98 \\ -197.98 \end{pmatrix}$

la ecuación: De F{= [K] dd se obtiene 8787.75 1-87.87.75 +3617.10 Ē -3617.10

Calculando los momentos flexionantes

$$M_{2-3} = \frac{2 \times 12.61 \times 0.0016E}{15} = \frac{8787.65}{E} = 23.65 \text{ fm}$$

$$M_{2-3} = \frac{4 \times 0.0016E}{3} \times \frac{8787.65}{E} \left(-\frac{6 \times 0.0016E}{9} \times \frac{3.017.10}{E}\right)$$

$$= 14.91 \text{ fm}$$

$$M_{12} = 9.37 - 3.86 = 5.51 + m$$

Los resultados numéricos obtenidos mediante el programa de computadora (ver hojas de listadol a 4) prácticamente coinciden con los calculados.

La gráfica de los momentos flexionantes se muestra en la figura 14.

Los valores de`los esfuerzos provocados, por los efectos de temperatura y contracción del concreto, se calculan a continuación:

Resultados numéricos de los esfuerzos resultantes del ejemplo No. 1

a) Centro del claro

Efectos debidos a cambios uniformes de temperatura

Farial

M = 2.62 ton-m

$$s = \frac{2.62 \times 10^3 \times 24.5}{1.528 \times 123} = 4 \text{ Kg/cm}^2$$

 $f_{1} = \frac{2.62 \times 10^{5} \times 45.5}{1528 123} = -8 \text{ kg/cm}^{2}$

2) Efectos debidos a diferencias de temperatura

53

$$M = 2.71 \text{ ton}$$
$$f_{s} = 4 \text{ kg/cm}^{2}$$
$$f_{i} = -8 \text{ kg/cm}^{2}$$

3) Efectos debidos a la contracción del concreto

$$MT = Mi + Mh = 38.6 | -23.65 = | 4.96 + m$$

 $F_{axial} \approx 0$

F= 204.59 for

 $f_{11} = -\frac{264590}{3700} + \frac{204590}{3230} + \frac{14.96 \times 10^{5} \times 24.5}{1529123} = +32$ $f_{21} = +22 \text{ Ky/cm}^{2}$ $f_{21} = +76 \text{ Ky/cm}^{2}$ $f_{22} = +19 \text{ Kg/cm}^{2}$

* En general este valor es una tensión, pero en este caso particular, la correción hiperestática del momento de contracción del concreto resultó muy grande.

4.2 PROBLEMA No. 2

Calcular la magnitud de los efectos debidos a temperatura y contracción del concreto para una estructura de tres niveles para estacionamiento en el Distrito Federal, formada por marcos de nueve crujías de 12 m. en una dirección y cinco crujías de 9 m. en la otra. Los marcos son a base de elementos prefabricados que se ligan para formar una estructura continua.

Obtener conclusiones sobre la importancia de estos efectos y dar recomendaciones sobre la forma de minimizarlos.

SOLUCION

La estructuración propuesta será a base de trabes prefabr<u>i</u> cadas pretensadas apoyadas sobre columnas coladas en el lugar. Una vez colocadas en su sitio definitivo, se colará una losa so bre elementos secundarios que á su vez se apoyan sobre las tr<u>a</u> bes prefabricadas, formándose así la sección compuesta.

Las trabes prefabricadas se diseñaron para tomar en sección simple su peso propio y el debido a la losa colada en el lugar y una vez endurecida ésta, la trabe trabajará en sección compuesta para tomar el resto de carga permanente, el total de la carga viva y la carga accidental debida a sismo así como los .

;55

efectos antes mencionados.

La estructuración en planta y elevación, mostrando las características antes mencionadas se pueden apreciar en las figuras 15 y 16.

<u>56</u>

Para simplificar el problema, se analizará un marco long<u>i</u> tudinal y otro transversal que permitan mostrar principalmente los efectos debidos a temperatura y a la contracción por fraguado del concreto, ya que el resto de solicitaciones por ser comunmente conocidas se presentarán solamente análisis que permitan valuar su magnitud para ser comparados con los menci<u>o</u> nados.

Las dimensiones propuestas para columnas y trabes se hicieron en/función de las cargas gravitacionales factorizadas, habiendose considerado un firme de 5 cm. sobre la losa y una carga viva uniformemente repartida de 200 Kg/m², de acuerdo al destino de la estructura y se supuso ubicada en --terreno blando, todo esto de acuerdo con el reglamento de -construcciones del Distrito Federal.

Análisis por cargas verticales.- Tomando una crujía central tipo de 12 metros, se calcularon las diversas etapas de carga como se mencionó en la introducción delcapítulo, de las secciones compuestas y los resultados numéricos de los esfuer sos debidos a flexión, se indican en la figura 17 A. <u>Análisis Sísmico.</u>- Se trata de una estructura del tipo 1 y ubicada en terreno compresible, correspondiéndole un coeficiente sísmico: Cs = 0.24

El factor de ductilidad Ω es igual a 4.

7

57

Se hizo un análisis sísmico estático utilizando el método simplificado del Factor, para calcular los elementos mecánicos y tener una base de referencia para poder compararlos con los obtenidos por cambios volumétricos.

Los resultados de los momentos obtenidos se encuentran en la Fig. 17-B.

(Cargas en toneladas)

FIGURA 16

Análisis por temperatura

Este análisis se hará de acuerdo a una variación de 20° C en la temperatura. (descenso).

60

El efecto que se analizará será solamente el debido al acortamiento en los miembros, ya que el efecto de temperatura di ferencial no se presenta en este caso por tratarse de una estruc tura totalmente abierta y además protegida por un enladrillado. y entortado en el nivel azotea.

El modelo matemático seleccionado para el análisis se hará de la siguiente forma:

d=desplazamientos nulos

d=desplazamientos no nulos

En el estado "1", la estructura se le impide deformarse librem. estando sujetos los miembros a una fuerza axial y em el estado -"2", la estructura estará sometida a esas mismas fuerzas provocando desplazamientos en una estructura continua, provocandole desplazamientos en los nudos.

La forma como se calcularon las fuerzas en las barras, por ejemplo, para un marco interior longitudinal fué:

61[°]

a) trabes

$F = \checkmark \Delta T \in A$

= $10 \times 10^{-6} \times 20 \times 141,421$ (10,800) = 309,000 kg= 309 ton.

Para el área se tomó integramente el área de la losa entre marco y marco, incluyendo el área de la trabe.

b) columnas

 $F_{\text{exterior}} \checkmark \Delta T E A$ = $10 \times 10^{-6} \times 20 \times 141421 \times 1200$ = 33,931 kg = 33.93 ton $F_{\text{inderior}} = 10 \times 10^{-1} \times 20 \times 141421 \times 2025$ = 52,275 kg = 52.72 ton.

Estas fuerzas, se considerarán aplicadas en el centroide

Con las fuerzas así obtenidas, se analizó la estructura aplicando el método de las rigideces a través de un programa de computadora; se incluyen los listados con los resultados obtenidos y así mismo las gráficas de los momentos flexionantes.

En las figuras 17c y 18, se muestran dichos resultados acla rando que en las barras donde no aparece la grafica es porque los valores son practicamente despreciables (menos de 1 ton.-m. en el caso de momentos flexionantes).

Se calcularon marcos semejantes al longitudinal, pero con 6 y 3 crujías respectivamente, para comparar resultados con el de 9 crujías. Los resultados se muestran en las figuras 19 y 20 y en la conclusión 4.31 C.

Análisis por contracción de concreto

El análisis se hará de acherdo con el método propuêsto por Branson, ya que de los tres métodos discufidos anteriormente ^{5,6 y 8}, aún cuando todos están basados em la teoría clásica elástica, el uso de los coeficientes utilizados por él, permiten una aplicación mas sencillas Posteriormente se discutirá la validez de aplicación de los mencionados coeficientes.

FIG.

a) Cargas por temperatura

b) Momentos en columnas

c) Momentos en trabes

> F = D Alow Eloin

69. -

D = coef. contracción del concreto

D t = 1.2 (Esh) t los - [(Esh) t - (Esh) t] trobe

siendo t = edad de la trabe prefabricada me nor que 7 días para concreto curado con humedad y 1 a 3 días pa ra concreto curado a vapor.

ts = edad de la trabe prefabricada en días cuando se cuela la losa.

Para concreto presforzado, el valor recomendado para t = 2 meses, y tomando en cuenta el factor correctivo mencionado en 3.3 es de:

 $D = 300 \times 10^{-6} \text{ cm/cm}$

y de acuerdo a las recomendaciones para cualquier --tiempo después de 28 días de colado el concreto, incluyendo valores últimos de la contracción (ec. 47)

 $D = \frac{2}{3} \times 300 \times 10^{5} = 200 \times 10^{-6}$

el valor de la fuerza para el marco longitudinal se

rá:

 $F = 200 \times 10^{-6} (900 \times 10) 141421$ = 254500 kg = 254.5 ton.

Esta fuerza estará aplicada en el centro de gravedad de la losa, por lo tanto el momento aplicado con relación al -centro de gravedad homogeneizada será: $M = 254.5 \times 0.195$ = 49.63 for - m

NOTA.- En la sección homogeneizada los concretos de la losa y la trabe, no se transformó el área de acero de presfuerzo a -concreto, ya que la diferencia sería del orden de 1%.

7Q

Como se trata de una estructura continua, el momento isostático calculado se modificará debido a la hiperestatici-dad como se comentó anteriormente.

Debido a que el fenómeno de la contracción del concreto va ocurriendo principalmente en el momento inmediato posterior al colado, el modelo matemático que se idealizó, fue con tres eta pas de colado, tal y como se muestra en la figura siguiente:

1er colado

2º colado

3 ricolado

7.1.

Como se indicó para el caso de temperatura, utilizan do el método de las rigideces se obtuvieron los momentos ----flexionantes , graficándose en las figuras 21y 22.

Si se aplicaran las solicitaciones simultáneamente en los 3 niveles para fines de análisis, los resultados ten--drían una pequeña variación. (fig. 23).

Interpretación de resultados y cálculo de esfuerzos resultan-tes.

1) Temperatura.

a) Columnas.

En este caso, los valores de momentos flexionantes y fuerzas cortantes en el primer entrepiso de ambos marcos, trans versales y longitudinales, son importantes, ya que sobrepasan en gran proporción a los debidos a cargas verticales e inclus<u>i</u> ve a los momentos debidos a fuerzas horizontales por sismo, por lo tanto deben tomarse en cuenta en el cálculo del acero de re-fuerzo.

Los valores se disipan notablemente en los entrepi-sos superiores.

b) Trabes

Los momentos flexionantes en el primer nivel del mar co longitudinal son importantes, siendo el mayor de ellos ---igual a 26.71 + — en los apoyos, provocando esfuerzos a un ter cio del claro del orden de 10 + — y prácticamente nulos al centro del claro.

 $f_s = \frac{M}{S_s} = \frac{10 \times 10^s}{63273} = 16 \text{ Ky/cm}^s$ $f_{i} = \frac{M}{S_{i}} = \frac{10 \times 10^{5}}{33585} = 29 \text{ Kg/cm}^{\circ}$

Los esfuerzos fibrarios máximos serán:

$$f_{comp} = 136 + 9.6 = 145 \text{ Kg/cm}^2$$

 $f_{tens} = -29 - 30 = -50 \text{ Kg/cm}^2$

 $S_s y S_i$ son los módulos de sección de la sección com

En el caso de los apoyos, los esfuerzos serían;

puesta.

+75 En ambos casos provocarían principalmente tensiones que en algún momento vienen a adicionarse a las ya existentes provocando seguramente agrietamientos no previstos en el estado límite de servicio.

2) Contracción del concreto.

a) Columnas.

Los momentos en columnas, principalmente en las prime ras crujías son más importantes que los debidos a carga viva, por lo que deberá considerarse para tomarlos en cuenta en el -acero de refuerzo de las mismas.

Hacia los centros de claros, los momentos van disminu yendo, considerándose despreciables para las dos columnas cen-trales del marco transversal y las cuatro centrales del marco longitudinal. b) Trabes.

En los centros de claros interiores, debido a que la corrección de momentos hiperestáticos es relativamente pequeña puede despreciarse y tomar solamente el valor del momento isos tático.

Así por ejemplo tomando la crujía central del marco longitudinal se tendrán los siguientes valores:

> F = 204.8 fonM = 204.8 × 0.195 - 0.64 = 39.29 fm

Aplicando estos valores a la sección compuesta y de acuerdo con las fórmulas debidas a flexo-compresión, los es--fuerzos serán:

+18 -7 100 se presentan a continuación algunos valores numéricos de trabes compuestas de efectos de contracción del concreto en trabes libremente apoyadas

Si tomamos los valores de momentos flexionantes en -los claros extremos, la envolvente tendría la forma siguiente:

valores que afectarían principalmente los apoyos y que se diseñarían con acero de refuerzo convencional para tomar esos efectos y en el caso de presentarse compresiones altas en las zonas ya precomprimidas por el concreto, evitar por ejemplo, la adherencia del presfuerzo cerca de los apoyos, para disminuir 10s valores altos de compresión.

Valores para secciones diferentes de puentes, con separaciones aproximadas de 2.50 a 3 m. entre trabes.

74

a) Momentos en trabes (ton-m)

4.3. Conclusiones y recomendaciones.

Los resultados numéricos obtenidos en el ejemplo ---No. 2 del estacionamiento de tres niveles, permiten concluír los siguientes puntos:

78

4.3.1. Temperatura.

 a) Los efectos de temperatura provocan momentos --flexionantes en el primer entrepiso, que distan de considerarse despreciables, tanto en trabes como en columnas.

b) En el caso de trabes, los momentos pueden ocasionar un incremento en las tensiones a los centros de claros, -que al combinarse con las cargas gravitacionales, alcanzan el momento de agrietamiento antes de los previsto en los cálculos usuales.

c) A mayor longitud del edificio, los efectos de -temperatura son mayores en trabes y columnas, debido a que la rigidez por axial A E/L de las trabes disminuye, lo cual condu ce a la necesidad de considerar esos efectos y/o prever juntas constructivas para minimizarlos.

En el ejemplo numérico, la diferencia de momentos -flexionantes tomando el marco longitudinal original con 9 crujías, los resultados hubieran sido de**/ 607.** y 207. si el marco se reduce a 6 y 3 crujías respectivamente. (figs /9 y 20) 4.3.2. Contracción del concreto.

79

4.3.2.1. Provoca momentos flexionantes no - despreciables tanto en trabes como columnas.

4.3.2.2. Conclusión semejante a la (c) de las de temperatura.

4.3.2.3. Mientras mayor sea el tiempo que transcurra entre el concreto de la trabe presforzada y el de la losa colada en el lugar, los efectos de la diferencia de contracciones entre ambos concretos serán también mayores.

4.3.2.4. Contrariamente a la conclusión anterior, el hecho de que el tiempo mencionado sea menor, el efecto de la contracción diferencial será -también menor, debido al efecto del flujo plástico y la contracción de la trabe prefabricada, reduciéndola avalores casi nulos.

4.3.2.5. Los valores de los esfuerzos calcu lados en el presente ejemplo son bastante mayores -que los calculados por los autores mencionados 5, 6,8 pero es importante aclarar que la separación entre trabes que forman marcos en este ejemplo es del or-den de tres veces mayor que la utilizada por ellos y que las secciones de trabes del ejemplo son bastante menores.

Si se quiere simplificar al máximo las recomendaciones para minimizar los efectos de temperatura y contracción diferencial, se reducirían en forma simple como sigue:

 a) Disminuir longitudes de estructuras largas a base de juntas constructivas. b) Reducir separaciones entre trabes de sección com puesta lo más posible.

- 80

5. REFERENCIAS.

- 1. Bresler, B., Steady State Thermal Stresses in Rigid Frames ACI journal, Junio 1962.
- 2. Guyon , Y. "Construction en béton précontrant". Tomo I Edi ciones Eyrolles, Paris 1966.
- Park R. y Pauley T. "Estructuras de concreto reforzado". Editorial LIMUSA, México. 1979.
- Timoshenko, S y Goodier, "Theory of Elasticity". McGraw-Hill Book Co, New York, 1951.
- 5. Zuk William, "Thermal and Shrinkage Stresses in Composite --Beams", ACI journal, Proceedings 58, Sept 1961.
- 6. Branson, D. E. "Deformation of Concrete Structures", McGraw-Hill, New York, 1977.
- 7. Ross and England, Magazine of Concrete Research, Londres 1972.
- 8. "Birkeland Halvard, Differencial Shrinkage in Composite Beams" ACI journal, Proceedings V. 56, No. 11 Mayo 1960.
- 9. Camba, J.L. "Efectos hiperestáticos debidos al presfuerzo".
 Revista Fac. Ingeniería UNAM, Vol. 2, 1979.
- 10. La Gue D.J," Thermal Movements in Prestressed Hollow-cure root slabs, PCI journal, Marzo- Abril 1972.
- 11. Priestley, J.M., "Design of Concrete Bridges for Temperature -Gradients," ACI journal, Mayo 1978.

12. Ghali y Neville, "Structural Analysis" Intent Educational

Publishers, San Francisco 1972.

13. Evans, R. y Parker, A. "Behavior of Prestressed Composite

8.2.

Beams", ACI journal V.26, No. 9, Mayo 1965.

14.- Jáuregui E, "Mesomicroclima de 1a Ciudad de México", Instituto de Geografía UNAM,1971

15.- "PCI design handbook", 2º edición, 1978

16.- "Volume Changes in Precast Prestressed Concrete Structures" PCI journal, septiembre-octubre 1977.

APENDICE A

Mesomicroclima de la Ciudad de México¹⁴

El objeto del presente apéndice es el de presentar los val<u>o</u> de temperatura máximos, mínimos y promedios en la Ciudad de México, para justificar, entre otros objetivos, los valores de cambios de temperatura, adoptados en el presente trabajo.

Cuando se estudia el ambiente atmosférico de un área gene-ralmente del orden de un kilómetros cuadrado o menor se entra al dominio de la microclimatología y para áreas grandes pero conservándose pequeñas, se estudian en el mesoclima, como sería el área urbana de la Ciudad de México.

La determinación de la influencia de las áreas urbanas en el clima, es desde hace algún tiempo tema de investigación, ya que las areas citadinas con sus masas compactas de edif<u>i</u> cios, fábricas, casas y calles, constituyen una interrup- ción marcada de la conformación natural del paisaje.

En el presente apéndice se muestran los factores que influyen en la distribución de la temperatura del aire y de otros elementos del clima en la Ciudad de México, para tratar de fijar ideas sobre los valores de la temperatura que deberían tomarse, al analizar los efectos de ésta sobre las estruct<u>u</u> ras.

Con base en una serie de mediciones de temperatura del aire por medio de recorridos en automóvil, utilizando termómetros de mercurio, haciendo los recorridos a las 21:00 hrs. y entre 4 y 5:00 hrs., se obtuvieron los resultados siguientes: Se encontró que la temperatura del aire aumenta de la periferia hacia el centro de la ciudad de México, ll<u>a</u> mándosele "Isla de calor".

1)

2)

A - 2

La modificación del equilibrio de radiación originado por la contaminación del aire es un factor muy importante, ya que durante el día solo llega del orden de un 30% de la radiación global, siendo el resto dispe<u>r</u> sado y absorbido por las capas de impurezas del aire; por lo tanto, las temperaturas mínimas más elevadas dentro de la ciudad que en la perifería. (Figs. A-1 y A-2)

- 3) La mayor capacidad térmica de las superficies urbanas tiene el efecto de retardar la ocurrencia de la temp<u>e</u> ratura máxima y la nube de impurezas en el aire, afe<u>c</u> ta en forma insignificante, el valor de esa temperat<u>u</u> ra. (figs. A-3 y A-4). Se puede apreciar que las te<u>m</u> peraturas máximas en el centro de la ciudad se reducen ya que una parte apreciable de la radiación solar es interceptada por la nube de impurezas.
- 4) Las heladas ocurren con menor frecuencia en el centro de la ciudad debido a la "isla de calor" disminuyendo así el número de días anuales con temperaturas, bajo cero; en cambio, en la periferia se presentan entre 40 y 50 días por año.
- 5) Las lluvias en la ciudad de México son del orden de -90 a 130 días por año, siendo las zonas sur y poniente donde llueve más.
 - La temperatura media anual al finalizar el siglo pas<u>a</u> do era de 15.4°C, con base en observaciones meteorol<u>ó</u>

gicas entre 1877 y 1892. El enturbamiento del aire por el crecimiento del área urbana se aceleró a par-tir de la década de los años cuarenta y en la actual<u>i</u> dad la temperatura media es de 17°C. (Fig. 5-A)

La amplitud térmica promedio en la Ciudad de México, calculada a partir de las temperaturas máximas y mínimas es del orden de 13° a 15°C en la época de lluvias y sube de 18°a 20°C en la estación seca. En el ejemplo númerico resuelto en el presente trabajo, se tomó una amplitud ∆T = 20°C.

En los recorridos que se hicieron para medir la humedad relativa en el área de la Ciudad de México, se encontraron d<u>i</u> ferencias del orden del 20%. (fig. 6-A) Los promedios son del orden de 55% en el período frío y de 40% en el período seco.

A-7

APENDICE B

"Cambios[®] volumétricos en estructuras de concreto presforzadas y prefabricadas" ¹⁵

El objeto del presente apéndice, es mostrar el criterio que sigue el manual de PCI, 2a. edición 1978, para la obtención de los efectos en las estructuras debidos a cambios volumétricos.

Los cambios volumétricos que provienen del flujo plástico y contracción del concreto, así como la temperatura afectan las estructuras de edificios, básicamente después de cons-truídos.

Existen dos tipos de deformaciones debidas a cambios volum<u>é</u> tricos: movimientos axiales y rotacionales. Las restricci<u>o</u> nes a estos movimientos provocan cargas sobre los marcos de edificios.

Para el cálculo de las deformaciones unitarias debidas a -cambios volumétricos, el comité del PCI propone 2 métodos:

<u>En el primer método</u>, se hacen intervenir las variables principales para obtener las deformaciones por flujo, contrac--ción del concreto y los cambios de temperatura y que serían:

1a

Plano geográfico mostrando los máximos cambios de te<u>m</u> peratura en Estados Unidos y Canadá. (fig. B - 1).

1b Plano geográfico de la mencionada región, mostrando el porcentaje promedio de humedad relativa (fig B-2) Tabla mostrando el flujo plástico y la contracción del concreto en función del tiempo de colado, de una compresión promedio debida al presfuerzo y de la hum<u>e</u> dad relativa y de la relación volumen/superficie - -(tabla B-1).

B - 2

1 d

1e

1f

1 c

Tabla mostrando factores de corrección de la compresión de presfuerzo promedio en función de la calidad del concreto (tabla B-2)

Tabla con los factores de corrección para la humedad relativa (tabla B-3)

Tabla con los factores correctivos de volumen/superficie (tabla B-4)

1e

Tabla con las deformaciones unitarias para temperat<u>u</u> ras (tabla B-5)

Las ecuaciones que sirvieron de base para obtener los valores de las tablas mencionadas, son las que se mostraron en el desarrollo del presente trabajo y para mayor información consultar la referencia 16.

El segundo método llamado <u>cambio equivalente de volumen</u>, el cual utiliza menos variables que el anterior y se basa en que un elemento horizontal de un marco, si se restringe el cambio de volumen, aparece una fuerza de tensión en el elemento y se transmite a las columnas. Sin embargo como el acortamiento tiene lugar en un cierto período de tiempo, e<u>s</u> te efecto sobre los momentos y cortantes de los apoyos es menor debido al flujo y al microagrietamiento del elemento y sus apoyos. Para facilitar el diseño, los cambios volumétricos se trat<u>a</u> rán de la misma forma que las deformaciones elásticas util<u>i</u> zando el concepto de "acortamiento equivalente"

Básicamente las ecuaciones se escriben:

$$\partial_{ec} = \partial_{c/Kl}$$

 $\partial_{es} = \partial_{s/Kl}$, en las cuales;

[∂]ec, [∂]es [≠] flujo y contracción equivalente, respectivamente

 ∂_c , ∂_s = flujo y contracción calculados. respectivamente

Kl = una constante de diseño que varia entre 3 y 5 y que - está cerca del 3 cuando los elementos tienen bastante refuerzo y 5 cuando tienen poco refuerzo.

La deformación debido al cambio de temperatura se modifica en forma semejante:

$$\partial_{et} = \partial_{t/Kt}$$

⁹et y ⁹t = deformaciones por temperaturas equivalente y
calulada respectivamente.

Kl = constante, cuyo valor recomendado es = 1.5

Por lo tanto, la deformación total será:

 $\Delta = \partial_{ec} + \partial_{ec} + \partial_{et}$

B - 3

Cuando se usa el método de la deformación equivalente en el análisis de marços para determinar momentos y cortantes, <u>se</u> usa el módulo de elasticidad normal y no el módulo de elasticidad reducido como en otros métodos.

e. j

Las tablas B-6 y B-7, muestran los valores de las deforma-ciones reales y equivalentes para edificios.

De los ejemplos mostrados, en el PCI, la diferencia entre ambos métodos es pequeña, por lo que se recomienda el uso del segundo método por ser más sencillo de aplicar.

TABLA B-1 Deformaciones Unitarias en millon Creep and shrinkage strains (millionths), Flujo plictus y contract

Concrete Release Strength = 3500 pst
Average Prestress = 1000 psl
Relative Humidity = 70 percent
Volume / Surface Batio $= 15$ in

Time	Crei	ep	Shrink	age
Days'	Normal weight	Lightweight	Accelerated cure	Moist cure
· 1	48	71	10	14
3	85	126	29	40
5	109	162	47	64
7	127	190	63	85
.9	. 143	212	79	104
10	149	222	86	113
20	197	294	149 .	185
30	228	340	198	235
40	250	. 373	236	272
50	268	399	267	300
60	282	420	292	
70	294	438	314	- 340
80	305	454	332	355
90	313	467	348	367
100	321	479	361	378
200	370	- 551	439	434
1 Yr	406	605	487	465
3 Yr	456	679	533	494
. 5 Yr	472	703	.544	500
Final	524	. 781	560	. 510 .

1. These factors are based on average values of a large amount of data with significant scatter (see "Volume Changes in Precast Prestressed Concrete Structures". PCI Journal, September-October, 1977). Thus, they may not apply in particular situations. The use of reliable creep and shrinkage properties, based on local concretes and conditions, may be used when available. Table values may be modified by simple proportion when using other creep and shrinkage factors.

2. Refers to days after release of prestress for creep and shrinkage-accelerated cure; and to days after completion of moist curing (of 5 to 7 days) for shrinkage-moist cure.

TABLA	B-2 Fratores correctivos p Correction factors for prestress and concrete st	trength (creep only) darl concr	istenci eto
Ave. P/A	Release strend	athe far (psi)	

Ave. P/A	× .	and the second	Relea	ise strength, f	(psi)		
(psi)	2500	3000	3500	4000	4500	5000	<u> </u>
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
200	0.24	0.22	0.20	0.19	0.18	0.17	0.15
400	0.47	0.43	0.40	0.37	0.35	0.33	0.31
600	0.71	0.65	0.60	0.56	0.53	0.50	0.46
800	0.95	0.86	0.80	0.75	0.71	0.67	0.61
1000	1.18	1.08	1.00	0.94	· 0.88	0.84	0.76
1200	1.42	1.30	1.20 •	1.12	1.06	1.00	0.92
1400	1.66	1.51	1.40	1.31	. 1.23	1.17	1.07
1600		1.73	1.60	1.50	1.41	1.34	1.22
1800		1.94	1.80	1.68	1.59	1.51	1.37
2000			2.00	1.87	1.76	1.67	1.53
2200	<u> </u>		•	2.06	1.94	1.84	1.68
2400			· · · ·	2.24	2.12	2.01	1.83
2600				· . ·	2.29	2.18	1.99
2800		· · · .		* • .		2.34	2.14
3000				-	-	2.51	2.29

B-3 Factores de corrección para humachad relativa Correction factors for relative humidity

Ave. Ambient R.H. (from Fig. 4.4.2)	Creep	Shrinkage	
40	1.25	1.43	
50	1.17	1.29	•
60	1.08	1.14	
70	1.00	1.00	•
80	0.92.	0.86	ء ب دم
90	0.83	. 0.43	· · · · · ·
100	0.75	0.00	
	<u></u>	\ · •	1.

Factores de corrección para relac. volumensu perficie B-4 * Correction factors for volume/surface ratio 1 12 4

			Cre	ep		Shrinkage						
Time,			V	S	•	,		•	V	/ S		
days	1	2	3	<u> </u>	<u>5</u>	6	.1	2	3	4	5	6
1	1.30	0.78	0.49	0.32	0.21 ·	0.15	1.25	0.80	0.50	0.31	0.19	0.11
3	1.29	0.78	0.50	0.33	0.22	0.15	1.24	0.80	0.51	0.31	0.19	0.11
5	1.28	0.79	0.51	0.33	0.23	0.16	1.23	0.81	0.52	0.32	0.20	0.12
. 7	1.28	0.79	0.51	0.34	0.23	0.16	1.23	0.81	0.52	0.33	0.20	0.12
9.	1.27	0.80	0.52	0.35	• 0.24	0.17	1.22	0.82	0.53	0.34	0.21	0.12
10	1.26	0.80	0.52.	0.35	0.24	0.17	1.21	0.82	0.53	0.34	0.21	0.13
20 -	1.23	0.82	0.56	0.39	0.27	0.19	1.19	0.84	0.57	0.37	0.23	0.14
30	1.21	0.83	0.58	0.41	0.30	0.21	1.17	0.85	-0.59	0.40	0.26	0.16
40	1.20	0.84	0.60	0.44	0.32	0.23	1.15	0.86	0.62	0.42	0.28	0.17
50	1.19	0.85	0.62	0.46	0.34	• 0.25	1.14	0.87	0.63	0.44	0.29	0.19
60 .	1.18	.0.86	0.64	0.48	0.36	0.26	1.13	0.88	0.65	0.46	0.31	0.20
70	1,17	0.86	0.65	0.49	0.37	0.28	1.12	0.88	0.66	0.48	0.32	0.21
80	1.16	0.87	0.66	0.51	0.391	0.29	1.12	0.89	0.67	0.49	0.34	0.22
90	1.16	0.87	0.67	0.52	0.40	0.31	1.11	0.89	0.68	0.50	0.35	0.23
• 100	1.15	0.87	0.68	0.53	0.42	0.32	1.11	0.89	0.69	0.51	0.36	0.24
200	1.13	0.90	0.74	0.61	0.51	0.42	1.08	0.92	0.75	.0.59	0.44	0.31
1 Yr	1.11	0.91	0.77	0.67	0.58	0.50	1.07	0.93	0.79	0.64	0.50	0.38
- 3 Yr	1.10	0.92	0.81	0.73	0.67	0.62	·1.06	0.94	0.82	0.71	0.59	0.47
5 Yr	1.10.1	0.92	0.82	0.75	0.70	0.66	1.06	0.94	0.83	0.72	0.61	0.49
Final	1.09	0.93	0.83	0.77	0.74	0.72	1.05	0.95 -	0.85	0.75	0.64	0.54

B-5-Deformaciones de diseño por temperature Senter Condension temperature strains* (millionths)

Temperature zone	Norma	l weight	Light	weight
from Fig 4.4.1	Heated	Unheáted	Heated	Unheated
10	30	45	25	. 38
20	60	90	50	75
30	90	135	75	113
40	120	180	100	150
50	150	225	125	188
60	180 .	270	150	225
. 70	210 · ·	315	175	263.
80	240	360	200	300
90	270	405	225	/ 338
100	300	450	250	375

Based on accepted coefficients of thermal expansion, reduced to account for thermal lag. (See referenced committee report. PCI Journal, September October, 1977)

-14

B-G-Deformaciones debidas à cambius de volumen par édificios

Volume change strains for typical buildings (millionths) Prestressed members (P/A = 1000 p5i), normal weight concrete

				Heated	buildings					
. I		۸	ctual strai	n		Equivalent strain				
Temp. zone	` Av	re. relative	e humidity	(Fig. 4.4.	2)	A	ve. relativo	e humidity	(Fig. 4.4.	2)
(Fig. 4.4.1)	40	50	60	70	80	40	50	60	70	80
0	.703	643	583	524	464	176	161	146	131	116
10	733	673	613	- 554	494	196	181	166	151	136
20	763	703	643	584	524	216	201	186	171	156
. 30	793	733	673	614	554	236	221	206	- 191	176
40	623	763	703 ·	644	584	256	241	226	211	196
· 50	853	793	733	674	614	276	261	246	231	217
60	883	823	763	704	644	296	281	266	252	237
70	913-	853.	793	.734	674	316	301,	287	272	257
80	943	883	823	764	704	336	322	307	292	2.77
90	973	913	853	794	734	357	. 342	327	312	297
100	1003	943	883	824	764	377	362	347	332	.317
			*	Unheated	d structure	es		•	,	
0	703	643.	583	524	464	176	161	146	131	116
- 10	748	688	628	569	509	206	191	176	161	146
- 20	793	733	673	614	. 554	236	221	206	191	176
30 ·	838	778	718	659	599	266	251	236	221	206
40	883	823	763	704	644	296	281	266	252	237 .
50 [,]	928	868	808	749	689	326	312	297	282	267
60	973	913	853	794	734	. 357	342	327	312	297
70	1018	958	898	839 -	779	387	372	357	342	327
80	1063	1003	943	884,	824	417	.402	387	372	357
90	1108	1048	988	929	869	447	432	417	402	· 387
100	1153	1093	1033	974	914	477	462	447 .	432	418

B-7

Volume change strains for typical buildings (millionths)

Prestressed members (P/A = 1000 psi), lightweight concrete

				Heated	buildings					
• `		A	ctual strai	n		Equivalent strain				
Temp, zone	. A	ve. relative	humidity	(Fig. 4.4.	2)	Ave. relative humidity (Fig. 4.4.2)				
(Fig. 4.4.1)	40	50	60	70	80	. 40	50	60	70	80
0	861	791	721	650	580	215	1,98	180	163	145
10	886	816	746	675	605	232	215	197	179	162
20	911	841	771	700	630	249	231	214	196	:179
30	936	866	796	725	655	266	248	230	213	195
40	961	891	821	750	680	+ 282	265	247	230	212
50	986	916	846	775	705	299	281	264	246	. 229
· 60	1011	941	871	800	720	. 316	298	281	263	246
70	1036	966	896	825	755	333	315	297	280	262
80	1061	991	921	850	780	- 349 -	332	314	297	279
90	1086	1016	946	875	805	366	349	331	313	296
100	1111	1041	971	900	830	383	365	348	330	313
				Unheater	d shuchur	es		٠		
· 0	861	791	721	650	550	215	· 198	180	163	145
10	. 899	529	758	698	618	240	223-	205	188	170
20 .	936	866	796	725	: 655	266	248	230	213	195
30.	974	904	833	763	693	291	273	256	238	220
40	1011	941	874	800	730 -	316	298	- 281	263	246
50	1049	979	. 608	838	.768	341	323	306	288	. 271
60	1085	1016 -	946	875	805	366	349	331	313	296
70	1124	1053	983.	913	643	391	374	355	338	321
80	1161	1091	1021	950	880	416	399	381	364 .	346
90 -	1199	1128	1058	988 -	918	441	424	406	389	371
100	1236	1166	1096	1025	955	467	449	431	414	- 396
I		.*								(4) (1)

-				· · · · ·					· ·	· · ·		•			• •
	•		***	* * 4 * + * *	**** Ar;	*** 1510	DF FFFC	TESTNA 1982		JOSE LUTS CAL HARCO DEOLE		**** *******			
·	N0]	-0F	мүло	S =		י א						······································	*		
	NO. NO.	DE	APNY	AS = OS =	· .	7 1			· · ·						• •
•	PR0	· PIFD	ADES	çE0	METR	ICAS	y MEI	CANICAS	S DE LAS	RARRAS			• •	· · · ·	• • •
	HAR	RA 1	NCTD	ENCI	AS L	UNCI	TUD GI	SADOS N	MINUTOS	TNERCTA	AREA	ĸ	E	图11	
·	1		31	1		- 3 7	100 50	0	0	1600000F702 1528123F-01	12000E+	05.1 0V.	1414210 1870820	E+07 0.200	0
งกุษก	рE	RAND	A DE	LΑ	MATR	I7 K	= 2	•			•••	• •			
			• . •	•		· . ·		a. T				L= m	etros		· · · · · ·
				•	* - -	•						A = ^ T = ~	^		
				12. s		· ·			. •	· · · · · · · · · · · · · · · · · · ·	• • •	Fzq =	ton		
					•			н с. 1				M =	ton-m		
•	•						· ·		•		•	Despl.	= ~		
	• •			•			•					E =	ton/m ²		
•					· ·	• • •				· •			•	· · · ·	
		• •	· · ·		· .			•		·. ·		·			
	· · ·	•	•	:	• •				••••••	· · ·	:		•		· · . -
	••	· · ·			••			· .'					· · ·		
			·			•									
· · ·						. * *									
	· · ·		•		÷	•	÷				· ·	· . ·		,	•
· ·			•		· · ·				. •		×	•			
• •	· ·	• .	•	•••						· · .	. · ·				v .
• .•	• •	· , ·	•. •	••••											
	•	. •		•									·		

CONDICION DF CARGA 1 FFFCTOS DE TEMPERATURA

ELEMENTOS MECANTEOS DE NUNDZHARRA (EN COORDENADAS IOCALES)

MTEMBRO		FYTREMO INICIAL			EXTREMO FINAL	· · ·
· · · · ·	F7A NORMAL	F7A. CORTANTE	MOMENTO	F7A NURDAL	FZA. CORTANTE	NOVENTO
12	44-89 251-11	R 03	_3_54	-244 89		2.54 2.54

DESPLATAMTENTOS (COORDENADAS GLOBALES) Y EQUILIBRIO EN NUNOS

NUNO	DESPLAZAMIENTOS		.SU	MA DE FUERTAS		
X	Ŷ	GIRU	×	Y	MUNENTUS	
1 2 0 31167141=-0;	- 79355258=-03 - 32899236=-02	- 66569894r-03	251.14		-2.54	•

REACCIONES EN APOYOS (COOPOENADAS GLOBALES)

4P0Y0	F7A. ¥	FZA, Y 44_89	MOMENTO 3154	
		· · · ·		

CONDICION DE CARGA 2 EFECTO DE CONTRACCION DEL CONCRETO

ELEMENTOS MECANICOS DE NUDOZBARRA (EN COORDENADAS LOCALES)

MIFMOPO	· · · · · · ·	EVTREMO INICIAL		•	EXTREMO FINAL
· · ·	FZA NORMAL	E74. CORTANTE	MOMENTO	F7A. NURMAL	FZA: CORTANTE NOVENTO
1	204 59	-6.60 0.00	-515	-0,00	6.60 -0.00 23.97

DESPLAZAMIENTOS (COORDENADAS GLOBALES) Y EQUILIBRID EN NUDOS

NUND	÷	•	. •	DESPLAZAMIENTOS		×	SUMA DE FL	ERTAS		· · · · · ·		
		X	1	· · · · · · · · · · · · · · · · · · ·	GIRO	. 🗙	Y	· , = .	MOIAF	NTOS _	·. ·	
1	0,25	3923	07=0	2 - 35527137 - 14 - 23584197F-01	0.62891191e=02	204	.0v	0 00	· · ·	-23.97	^ •. •.	

REACCIONES EN APDYOS (COURDENADAS GLORALES)

	APOYO FZA.	Y 🗸 🕹	FZA.	Y 🖕 🖞	MOMENTO	
-	3	6.60	/	0100	=5_15	

TIEMPO DE EJECUCION = 0.6 SEGUNDOS

The second for the second second second second second
			*****	**: *** ***	****; Å	** AGDS1	TFSIN TO DE 1 FFFCTO	A DE 982. DE	TOSE LHTS CAN MARCO I ONGITU TEMPERATURA	MBA **** DINAL 9-	ru1123		
		Di Di	NUDO HARP E APOY	S = = AS = = OS =	23 30 0			· · ·			, J		
· ·	PR	0PI	EDADES	GFOM	ETRT	CAS Y	FCANIC	AS DE LA	SBARRAS				
	ŖΔ	RRA	INCTO	FNCIA	3 LO	NGITIN	GRADOS	MINUTOS	TNEPOTA	AREA	ĸ	E	Hu - Ch
	111111111110000000000000000000000000000	127456789012745678901234567890	125678905789012345689012 112545689012 112545689012 112545689012	678907890123456345678901290123		92020000000000000000000000000000000000	44000000000000000000000000000000000000			WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		141442200000000000000000000000000000000	

ANCHO DE BANDA DE LA MATRIZ K = 7

and the second sec

NO. DE CONDICIONES DE CARGA=

FUERZAS EN NUNOS

	- 1	e	M
NUDO C. DE FARGA	F¥09100	6 <u>0</u> 0	0,00
12 1	309 00	ñ 7 0 0	0 1 0 0
18 1	309,00	-33 93	0100
19 1	0.00	-57 27	0,00
20 1	0.00	-57 27	0100
21 1	0,00	-57 27	0.00
22 1	0.00	-57,27	0.00

· · ·

CONDICION DE CARGA 1 EFECTOS DE TEMPERATURA

ELEMENTOS MECANICOS DE NUDOZBARRA (EN COORDENADAS INCALES)

MIEMBRO	EXTREMO INICIAL			EXTREMO FINAL	
FZA. NORMAL	F7A. CORTANTE	MOMENTO	TZA: NURHAL	FZA. CORTANTE	NOMENTO
1 29 18 12 58 44 58 44 58 58 45 58 58 45 58 59 37 24 56 29 37 20 37 37 20 37 37 23 37 44 10 12 37 11 57 44 15 57 44 10 57 44 11 57 44 12 57 44 13 57 44 14 57 57 14 57 57 14 57 57 17 16 30 17 10 30 17 10 30 17 10 30 17 10 30 17 10 30 10 30 30 17 30 30	129977777 129077578 129077578 12907134 13900864 10008649 10008649 10008649 10008649 10008649 10008649 1000868577 100000000000000000000000000000000000	97107721257594850376201550383702 9710776504850376201550383702 	**************************************	$ \begin{array}{c} -18 & 91 \\ -29 & 79 \\ -20 & 57 \\ -12 & 07 \\ -33 & 98 \\ -4 & 24 \\ 313 \\ -08 \\ -1 & 26 \\ -0 & 08 \\ -2 & 45 \\ -$	24297754771151977992247201210 2171151255312210000000000000000000000000000

DESPLAZAMTENTAS (CORDENADAS BLOBALES) Y EQUILIBETA EN NUDOS

•	οπημα	×	DESPLAZAMIENTOS	GIRO	X	SUMA E	Y FUER7AS	MOMENTOS	
	1 0 3 0 5 0 6 17 6 17 10 62 10 62 11 0 12 7 11 0 12 7 12 7 1	A73002F=01 094713F=01 055405F=01 760067F=02 029199F=02 188867F=0 068636F=0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 20708609=-02 -15487761=-02 -11061198=-02 -66045482=-03 -21984424=-03 0 -19085903=-03 -22482594=-03	189 200 123 70 0 0 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 100	9 7 7 5 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$ \begin{array}{c} -29 & 93 \\ -47 & 19 \\ -32 & 63 \\ -19 & 17 \\ -6 & 32 \\ 0 & 00 \\ -0 & 00 \\ -0 & 00 \\ -1 & 05 \\ -6 & 00 \\ 0 & 00 \\ -1 & 05 \\ -6 & 00 \\ 0 & 00 \\ \end{array} $	-

.14999865F=01 -.12136603F=02 -.18019863=03 89782357F=02 -.12144986E=02 -.11928178E=03 29889428F=02 -.12150158F=02 -.41315303F=04 0 -.13309617F=02 0 14 15 16 17 0.00 70,04 -0.0V 301.0--0.00 0. 0.00 27597000F=01 = 17059432F=02 = 28875171F=04 21462212F=01 = 18113069F=02 = 18384098F=04 15328576F=01 = 18137112F=02 = 13616103F=04 91964607F=02 = 18145676F=02 = 93201371F=05 30653602F=02 = 18151127F=02 = 33017667F=05 = 18250180F=02 0 <u>.</u>0.0~ 18901223 -0.00 0.00 -0.0v 0,00 -0-00 0.04 -0.00 308.7-00.02 20.0-0 -0 00

TTEMPO DE EJECUCION = 4.3 SEGUNDOS

 NO. DI	E NUDOS =	12	·					· · ·
NO. DE	E AREAS = E APOYOS = .	21	· · ·					
PROPIE	EDADES GEONE	TRICAS Y M	ECANICAS DE LAS	EARRAS				
BARRA	INCIDENCIAS	LENGITUD	GRADOS MINUTOS	INERCIA	AREA	K	E	PU
1234567890112345678901	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 90 0 0 0 0 0 0 0 0 0 0 0	1600000EF-022 1600000EF-022 1600000EF-022 1600000EF-022 34170000EF-022 34170000EF-022 34170000EF-022 34170000EF-022 170000EF-022 170000EF-022 170000EF-021 177000EF-021 177000EF-021 177000EF-021 177000EF-021 177000EF-021 177000EF-021 177000EF-021 177000EF-021 177000EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-021 17700EF-	12000000000000000000000000000000000000	NANNANANANANANANANANANANANANANANANANAN	1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 14142210E+07 14142210E+07 1414220E+07 1414220E+07 18700820E+07 18700820E+07 18700820E+07 1870820E+07	CC000000000000000000000000000000000000

CHO DE BANDA DE LA MATRIZ K = + 4

CREDIAS

FX 309.00 309.00 359.00 0.00 0.00

CO C. DE CARCA

LEHENTOS HECANICOS DE NUDOZBARRA (EN COORDENADAS LOCALES).

0.00

0.00

,		*	****	EFEC	TOS PO	IR TEMP	ERATUR	NIVELES A - CON	~ 3	******* CRUJIAS	****	•		
	NO. DE NO. DE NO. DE	NUDO EARR APOY	S = AS = OS =	12					•					
,	PROFIE	EDADES	GEOM	ETRICAS	S Y MECA	NICAS D	ELAS	BARRAS			•			
	BARRA	INCID	DENCIA	3 LONGI	TUD GR/	DOS MIN	UTOS	INERCIA		AREA	K	E	MU	
	1234567890112 10112		123456456789					-1600000EE -1600000EE -1600000EE -34170000E -34170000E -34170000E -34170000E -34170000E -34170000E -15228123EE -15528123EE -15528123EE -15528123EE -15528123EE		12000E+00 12000E+00 12000E+00 200250E+00 20250E+00 322300E+00 322300E+00 322300E+00 322300E+00 322300E+00 322300E+00 322300E+00 322300E+00		1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07 1870820E+07 1870820E+07	00000000000000000000000000000000000000	· · · ·
NCHO	DE PAI	NDA DE	E LA M	ATRIZ I	K = 4	•		۰.				•		· .
					•	· · ·		• •		· · · · · · · · · · · · · · · · · · ·				
							•	3						

and a to a margaret for an is a so or entrate the parties of a strate of a few

TENDER CONTRACTOR LAN ANTIN METHOD STATE

INDICIÓN DE CARGA 1 TEMPERATURA EMENTOS MECANTOOS DE NUDOZDARRA (EN COORDENADAS LOCALES) EMBRO. EXTREMO INICIAL EXTREMO FINAL MOMENTO FZA NORMAL FZA CORTANTE FZA. CORTANTE FZA. MORMAL NOMENTO -7.36 0 -0.00 .0.00 308.99 0 Õ -308.99 0.00 -0 0.01 SPLAZAMIENTOS (COORDENADAS GLOBALES) Y EQUILIBRIO EN NUDOS NUDO SUMA DE FUERZAS DESPLAZAMTENTOS X GIRO MOMENTOS .89060253E-02 -.57971198E-03 -.81029945E-03 92318897E-02 -.11005448E-02 .44948675E-04 92037686E-02 -.17803754E-02 -.52783667E-05 .29314717E-02 -.61184921E-03 -.20945801E-03 .30793934E-02 -.12111824E-02 -.19183788E-05 .30680844E-02 -.18111094E-02 .13926862E-05 0.00 -0'.00 -0.00 23456789 0.00 00 -0100 -0 -0,00 ÓŌ - 0 0 00 00 30660844E-02 - 18111094E-02 0.00 IÖC 00 0 C. - 12169375E-02 0. - 18069314E-02 0. ŏ Õ Õ Õ 01 -0.00 308.99 0.01 ACCIONES EN APOYOS (COORDENADAS GLODALES) APOYO FZA. Y 32.79 58.41 MOMENTO FZA. X 10 -7.36 11.65 8.26 EMPO DE EJECUCION 🚊 🛛 1.1 SEGUNDOS -

	NO DE	E NUND	S = AS =	15 18					· ·			
	PROPIE	EDADES	05 = GE0ME	TRICAS Y	ECANICA	S DE LAS	BARRAS	· · ·			 	•
	PARPA	INCTO	FUCIAS	LONGITUD	GRADOS	MTNUTOS	TNERCTA	AREA	к	E E		MU ¹ ()
•	123456789012345678	123456456890890 108910234	4565678909011234345	3339943339994 34399943339994 35994433339994 3599944 359994 359944 359994	90 90 90 90 90 90 90 90 90 90 90 90 90 9		160000F-02 6417000F-02 1528123F-01 1528123F-01 1528123F-01 1528123F-01 1528123F-01 160000F-01 3417000F-01 1528123F-01 1528123F-01 1528123F-01 1528123F-01 1528123F-01 1528123F-01 1528123F-01	1000000000000000000000000000000000000	1 2 2 2 2 2 2 2 2 2 2 2 2 2	141422 141422 141422 141422 1887 1887 1887 1887 1887 1887 1887 18	00000000000000000000000000000000000000	00000 00000 00000 00000 00000 00000 0000

TEMPERATURA

FFFCTOS

DE

CHO DE HANDA DE LA MATRIZ K = 5

FUFRZAS EN NUDOS NUD C. DE CARGA 7 1.4 c Š < N2

FX 383,00 383,00 383,00 383,00 0,00

00,00 00,00 00,00 00,00

Σ

FY 0.00 0.00 -33,93 -57,27

CONDICION DE CARGA 1 EFECTOS DE TEMPERATURA

LEMENTOS MECANICOS DE NUDOZBARRA (EN COORDENADAS IOCALES)

ITEMBRO	EVTREMO INICIAL			EXTREMO FINAL	
F7A. NORMAL	F7A. CORTANTE	MOMENTO	F7A NURMAL	FZA. PORTANTE	MOMENTO
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 11 & 29 \\ 24 & 09 \\ 7 & 86 \\ -3 & 18 \\ -1 & 70 \\ -0 & 20 \\ -0 & 40 \\ -0 & 20 \\ -0 & 38 \\ 0 & 00 \\ -0 & 45 \\ -0 & 45 \\ -0 & 16 \\ 0 & 04 \\ 2 & 0 & 00 \end{array} $	$ \begin{array}{c} 17, 63\\ 38, 44\\ -19, 19\\ -1, 9, 19\\ -1, 36\\ -1, 01\\ -1, 64\\ -3, 40\\ -1, 97\\ -0, 31\\ -0, 91\\ -0, 91\\ -0, 07\\ 0, 02$	- 30 - 53 - 55 - 55 - 57 - 34 - 51 - 35 - 51 - 35 - 71 - 35 - 71 - 35 - 71 - 55 - 37 - 10 - 55 - 37 - 10 - 55 - 17 - 55 - 17 - 55 - 17 - 10 - 55 - 10 - 10 - 10 - 10 - 55 - 57 - 33 - 57 - 55 - 57 - 33 - 57 - 44 - 60 - 33 - 57 - 33 - 57 - 33 - 57 - 33 - 57 - 44 - 57 - 33 - 57 - 57 - 57 - 57 - 57 - 57 - 57 - 57	$ \begin{array}{c} -11 & 29 \\ -24 & 09 \\ -7 & 86 \\ 3 & 18 \\ 1 & 75 \\ -0 & 00 \\ 0 & 20 \\ 2 & 45 \\ 0 & 40 \\ 0 & 20 \\ 0 & 38 \\ -0 & 00 \\ 0 & 03 \\ 0 & 45 \\ -0 & 03 \\ -0 & 04 \\ -0 & 00 \\ \end{array} $	$ \begin{array}{r} 16.24\\ 34.25\\ -13.40\\ -6.54\\ 0.41\\ -1.42\\ -1.42\\ -1.42\\ -0.74\\ -0.74\\ -0.12\\ -$

DESPLAZAMTENTOS (COURDENADAS GLOBALES) Y EQUILIBRTO EN NUDOS

NUDD X	DESPLAZAMIENTOS	GIRO	X SUMA DE	FUER7AS	MOMENTOS
1 0 2 0 3 0 1 3178639 5 76453999 6 25074415 8 14313777 9 86063243 10 28701048 11 0 12 14273118 13 85683832 14 28569449 15 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	1 1 - 2 n 4 4 - 0 n 7 - 8 E - 0 + 0 U 3 5 6 - 7 + 0 - 0 U 3 5 6 - 7 + 0 - 0 U 3 5 6 - 7 + 0 - 0 U 3 5 6	-30,58 -58 -59,36 -0,000 -0,0000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,000 -00	$ \begin{array}{c} -17 & 63 \\ -38 & 04 \\ -12 & 44 \\ -0 & 00 \\ 0 & 00 \\ 0 & 00 \\ -1 & 36 \\ 0 & 00 \\ 0 & 00 \\ 0 & 00 \\ -1 & 36 \\ 0 & 00 \\ -1 & 36 \\ 0 & 00 \\ -1 & 36 \\ 0 & 00 \\ -0 $

TIEMPO DE EJECUCION = 2.2 SEGUNDOS

		:	AGOS1	'0 198 -	** 2 EFEC	MARCO TOS DE	TESIN LONGIT CONTR	NA DE TUDINAL X RACCION	JOSE LUIS 1 NIVEL < ***	CAYBA ********	**			
•	NO NO NO	DE I DE I DE	NUDOS Parra Apoyo		11 10 0	• .				·		•		
	PROF	PIED/ RA IN	ADES NCIDE	GEOME	TRÌC Lon	AS Y M GITUD .	ECANIC GRADOS	AS DE LAS Minutos	S BARRAS Inercia	AREA	ĸ	E	MU	· · ·
	1234567 89 10		1234567890	6 7 8 9 10 7 8 9 10 11		000 000 000 000 1000 1120 000 1120 000 1120 000	90 90 90 90 90 0 0 0 0		1600000E 3417000E 3417000E 3417000E 3417000E 1528123E 1528123E 1528123E 1528123E 1528123E	02 .12000E+00 02 .20250E+00 02 .20250E+00 02 .20250E+00 02 .20250E+00 01 .32300E+00 01 .32300E+00 01 .32300E+00 01 .32300E+00 01 .32300E+00		1414210E+0 1414210E+0 1414210E+0 1414210E+0 1414210E+0 1414210E+0 1870820E+0 1870820E+0 1870820E+0 1870820E+0 1870820E+0	7 0 2000 7 0 20000 7 0 20000	
NCHO	DE E	BANDA	DE	LÀ MA	TRÍZ	К =	6							
	3				•									

FX 254,50 FUERZAS EN NUDOS NUDO C. DE CARGA

ľ

FY 01 00

H-49_60

62

्र**∱**च

CONDICION DE CARGA - 1 EFECTO DE CONTRACCION DEL CONCRETO

ELEMENTOS MECANICOS DE NUDOZBARRA (EN COORDENADAS LOCALES)

DESPLAZAMIENTOS (COORDENADAS GLOBALES) Y EQUILIBRIO EN NUDOS

NUDO	X	DESPLAZAMIENTOS	GIRO	X	SUMA DE FUERZAS	MOMENTOS	
1234567890111	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	9' 27 16 10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-18.58 -41.29 -26.32 -15.80 -5.16 -0.00 -0.00 -0.00 -0.00 -0.81	

TIEMPO DE EJECUCION = 1.7 SEGUNDOS

		AGOST	*** 0 198 ****	2. MARCU	I ONGITH EFECTOS	IDTNAL % 3 DE DE	2 NIVELER CAN 2 NIVELER CAN TEMPERATURA CONTRACCION	1)A **** *******				
•		E NUDOS E BARRA E APOYO	3 = 3 = 3 =	17 20 0	•	X .		•			· · · ·	• •
ŗ	PROPI	EDADES	GEOME NCIAS	TRICAS y Longitud	MECANICA GRADOS	S DE LAS MTNUTOS	BARRAS	AREA	ĸ	E	Мп	
	123456789011234567890	12345678906789023456 106789023456	678907890112345634567	355555 355555 355555555555555555555555	90 90 90 90 90 00 90 90 90 90 90 90 90 9		160700000000000000000000000000000000000	10000000000000000000000000000000000000	1	1414210 1414210 1414210 1414210 1414210 1414210 1870820 1870820 1870820 1870820 1870820 1870820 1414210 1414210 1414210 1414210 1414210 1414220 1870820 1870820 1870820 1870820 1870820	••••••••••••••••••••••••••••••••••••	000000000000000000000000000000000000000

ANCHO DE BANDA DE LA MATRIZ K = 7

FX 50

F 0 . 00

M-49,60

	******** AGOSTO 1982. MARC ****	TESINA DE D LONGITUDINAL % EFECTOS DE	JOSE LUIS CAMBA **** 3 MIVELES < ******* TEMPERATURA CONTRA COLDN		• • • • • • • • • • • • • • • • • • •	·
	NO. DE NUDOS = 23 NO. DE EARRAS = 30 NO. DE APOYOS = 0	•				
	PROPIEDADES GEOMETRICAS Y	MECANICAS DE LAS	EARRAS			
×	BARRA INCIDENCIAS LONGITU	O GRADOS MINUTOS	INERCIA - AREA	ĸ	E	MU
· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 16000000 = -02 \\ 34170000 = -02 \\ 202500 = +00 \\ 202500 = +00 \\ 202500 = +00 \\ 202500 = +00 \\ 202500 = +00 \\ 202500 = +00 \\ 202500 = +00 \\ 202500 = +00 \\ 202500 = +00 \\ 323000 = +00 \\ 323000 = +00 \\ 323000 = +00 \\ 1528123 = -01 \\ 323000 = +00 \\ 323000 = +00 \\ 1528123 = -01 \\ 323000 = +00 \\ 20250 = +00 \\ 323000 = +00 \\ 20250 = +00 \\ 20250 = +00 \\ 32300 = +00 \\ 20250 = +00 \\ 32300 = +00 \\ 32300 = +00 \\ 20250 = +00 \\ 32300 = +00 \\ 32300 = +00 \\ 32300 = +00 \\ 32300 = +00 \\ 32300 = +00 \\ 32300 = +00 \\ 32300 = +00 \\ 1528123 = -01 \\ 32300 = +00 \\ 1528123 = -01 \\ 32300 = +00 \\ 1528123 = -01 \\ 32300 = +00 \\ 1528123 = -01 \\ 32300 = +00 \\ 32300 = +00 \\ 1528123 = -01 \\ 32300 = +00 \\ 1528123 =$		$\begin{array}{c} 1414210 \Box + 07\\ 18708220 \Box + 07\\ 18708220 \Box + 07\\ 18708220 \Box + 07\\ 18708220 \Box + 07\\ 1414210 \Box + 07\\ 1414210 \Box + 07\\ 1414210 \Box + 07\\ 18708220 \Box + 07\\ 1414210 \Box + 07\\ 1414210 \Box + 07\\ 18708220 \Box + 07\\ 1870820 \Box + 07\\ 18708200 \Box + 07\\ 18708200 \Box + 07\\ $	00000000000000000000000000000000000000

ANCHO DE BANDA DE LA MATRIZ K = 7

FUERZAS EN NUDOS NUDD C. DE CARGA 18

FX 254,50

FΥ' 0..00

لر الر-40

CONDICION DE CARGA 1 CONTRACCION

ELEMENTOS MECANICOS DE NUDO/BARRA (EN COORDENADAS LOCALES)

MIEMBRO	. ,	EXTREMO INICIAL			EXTREMO FINAL	•
•	FZA. NORMAL	FZA. CORTANTE	HOMENTO	FZA. NORMAL	FZA. CORTANTE	romento
123456789012345678901234567890 11111111111112020020202020202020202020	-9.66 6.06 0.72 1.535 0.752 1.535 0.752 1.54 4.16 -9.41 6.06 0.67 1.44 1.20 25.985 4.59 25.985 4.59 2.22 4.6 .0 .25 .285 2.285 2.22 4.6 .0 .25 .38 .37 .38 .37 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	$\begin{array}{c} -0.00\\ 0.05\\ 0.03\\ 0.03\\ 0.021\\ -0.221\\ -0.10\\ -0.057\\ 1.491\\ 0.2210\\ -0.5034488\\ -1.4886\\ -0.6505\\ 2127\\ -2.694\\ -1.488\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -1.40\\ -0.05\\ -0.00\\ -1.40\\ -0.05\\ -0.00\\$	$\begin{array}{c} 0.11\\ 0.31\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.065\\ -1.00\\ -$	9607753759814067449601115563759814960 	$\begin{array}{c} 0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ 0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 \\ -21 & 0 & 0$	-0 -0 -0 -0 -0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

DESPLAZAMIENTOS (COORDENADAS GLOBALES) Y EQUILIBRIO EN NUDOS

NUCO	Χ	DESPLAZAMIENTOS Y	GIRO	X	SUPA DE FUERZAS	POMENTOS	
1 0 2 0 4 0 5 0 7 8 9 10 11 0	22084869E 20591638E 17563338E 11720721E 41292914E	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ \begin{array}{c} -0.11 \\ -0.31 \\ -0.21 \\ -0.16 \\ -0.00 $	

e an

7012946-03 -, 96380718E=03 -0.00 0.09 0.00 .25583455E-02 -.12696872E-03 -.11755147E-02 .20429279E-02 -.14544619E-04 -.65936509E-03 .1311089EE-02 -.31140563E-04 -.42671481E-03 134567890122 2222 0.00 -0.00 -0.00 Õ,ÕQ 0.00 0.00 -0100 0100 45050713E-03 - 27057468E-04 - 13424134C-03 - 42978148E-03 0 - 46034171E-03 - 59174901E-02 -0100 Ο. 0.0 0.0 0. 45.37 00 64 - 59174901E-02 - 11384055E-03 19839860E-01 14915899E-01 .00 0.00 - 0 . 00 -187931708-03 0.00 -0 .00 0.0 0 -.12608596E-04 -.83919964E-03 -.39767712E-04 -.35332702E-03 -.33087077E-04 -.13424698E-03 -.43582802E-03 0. .10409452E-01 0]0C -0100 0 0.0 61480876E-02 20336027E-02 0.00 0.00 .00 -0 -0.00 -0.00 0 00 0 204.81 0.00 -0.64

TIEMPO DE EJECUCION = 4.5 SEGUNDOS

			AGOS1	0 19 ***	**** \$2 	** HAPCO FECTOS	TESÍN LONGITI POR	A DE UDINAL % CONTRACCI	JOSE LUIS C 3 NIVELES < 10N - CON	AMBA *** ******** 9 CRUJIAS	* * * * *		· · ·
-	NO. D NO. D NO. D		NUDOS EARRA Apoyo	5 = (5 =)5 =	23 30 0		(CONS)	VELES	SIMULTAN	EAMENTE)	· · ·	· · · · ·
·	PROFI BARRA	LE C A J	ADES IN <mark>ci</mark> de	GEOM Encia	ETRI S_LO	CAS Y N NGITUD	GRADOS	AS DE LAS MINUTOS	S EARRAS INERCIA	APEA	ĸ	E	MU
	123456789012345678901234567890		123456789067890234562345689012	678907890123456345678901290123		00000000000000000000000000000000000000	90 90 90 90 90 90 90 90 90 90 90 90 90 9		160000E-00 34170000E-00 34170000E-00 15281223E-00 15281223E-00 15281223E-00 15281223E-00 15281223E-00 15281223E-00 15281223E-00 15281223E-00 15281223E-00 15281223E-00 152881223E-00 152881223E-00 15288123E-00 15288123E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00 1552881238E-00	1202000 1202000 <td< td=""><td></td><td>1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 14142200E+07 14142200E+07 18708220E+07 18708220E+07 18708220E+07 18708220E+07 1414210E+07 14142210E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 18708220E+07 188708220E+07 18870820E+07 18870820E+07 18870820E+07</td><td></td></td<>		1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 14142200E+07 14142200E+07 18708220E+07 18708220E+07 18708220E+07 18708220E+07 1414210E+07 14142210E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 1414220E+07 18708220E+07 188708220E+07 18870820E+07 18870820E+07 18870820E+07	

ANCHO DE BANDA DE LA MATRIZ K = 7

01 32300E 01 32300E 01 32300E

		9		
,		FX 254.50	254.50	254.50
		•	•	
	NUDGS	CARGA	•	÷
	2	DE 1		***1
	FUERZAS	кира с.	12	18

۲۲

× 40.60

CONDICION DE CAPGA - 1 CENTRACCION

ELEMENTOS MECANÍCOS DE NUDO/BARRA (EN COORDENADAS LOCALES)

IIEMBRO	·	EXTREMO INICIAL	· · · ·		EXTREMO FINAL	
	FZA. NORMAL	FZA. CORTANTE	MOMENTO	FZA' NORMAL	FZA. CORTANTE	NONENTO
123456789012345678901034567890 111111111111102020202020	$ \begin{array}{c} -13,78\\12,02\\-0,54\\1,27\\1,04\\236,07\\215,07\\215,07\\215,07\\202,04\\189,32\\-7,16\\199,32\\-7,16\\-7,54\\-0,34\\189,32\\-7,16\\-7,54\\-0,34\\251,89\\248,88\\$	$ \begin{array}{c} 10.85\\ 25.63\\ 16.57\\ 9.24\\ -6.17\\ -0.059\\ -2.42\\ -2.17\\ -0.529\\ -2.17\\ -0.529\\ -1.5269\\ -0.5216\\ -0.5216\\ -0.16\\ -0.260\\ -0.38\\ -3.620\\ -0.38\\ -3.620\\ -0.18\\ -0.01\\ 0.00\\ \end{array} $	$ \begin{array}{r} 19 94 \\ 39 78 \\ 26 42 \\ 15 97 \\ -12 56 \\ -11 59 56 \\ -11 59 83 \\ -12 50 85 \\ -12$	13.7P -12.07 -12.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -1.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -1.07 -21.07 -21.07 -21.07 -21.07 -21.07 -1.07 -21.07 -21.07 -21.07 -21.07 -1.07 -21.07 -21.07 -21.07 -21.07 -21.07 -21.07 -1.07 -22.48 -22.48 -22.48 -22.48 -22.59 -2.59 -2.5	$ \begin{array}{c} -10.85\\ -25.63\\ -16.57\\ -9.87\\ -3.24\\ 6.62\\ 2.14\\ 1.77\\ 0.85\\ -0.00\\ -7.59\\ -4.63\\ -1.91\\ -1.49\\ -0.52\\ -3.26\\ 0.16\\ -0.00\\ -0.33\\ -0.08\\ -0.00\\ -0.57\\ -0.18\\ -0.00\\ -0.$	$ \begin{array}{c} 12.60\\ 37.122\\ 4.52\\ -30.121\\ -30.121\\ -30.121\\ -30.121\\ -30.121\\ -30.121\\ -30.121\\ -30.227\\ -4.52\\$
NUCO	Y DI	ESPLAZAMTENTOS	ILIBRIG EN NUDÓ	S SUMA DE	FUERZAS	
	18632236E=01 13944293E=01 96733814E=02 56934352E=02 18797867E=02	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2926E-02 7405E-03 6756E-03 756E-03 718E-03	x 10.85 25.63 16.57 9.87 3.24 -0.60 0.60 -0.60 -0.60 189.32	MOMENTO 13.78 -12.02 0.54 -1.27 -1.04 -0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 -0.000 -0.000 -0.000 -0.00 -0.00 -0.00 -0.0000 -0.00000 -0.0000 -0.0000 -0.00000 -0.000	DS 19.54 39.78 26.42 15.66 5.12 0.00

	$\begin{array}{c} 22394830E-01 & 37022886E-03 & 293193910 \\ 17373775E-01 & 20489739E-03 & 689020760 \\ 12371536E-01 & 15198036E-04 & 192619110 \\ 74073670E-02 & 16846279E-04 & 114781260 \\ 24661900E-02 & 12849251E-04 & 37759951E \\ 23302359E-01 & 43917078E-03 & 411467780 \\ 18064800E-01 & 25170703E-03 & 688360900 \\ 12900417E-01 & 22989838E-04 & 159923466 \\ 77360373E-02 & 18576379E-04 & 414088866 \\ \end{array}$	E - 02 E - 04 - 03 - 04 - 02 - 03 - 05 - 05	-0.00 -0.00 -0.00 -0.00 248.38 -0.00 -0.00 -0.00 -0.00	0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00	-0.00 0.00 -0.00 0.00 -0.12 0.00 -0.12 0.00 -0.00
2222	.77360373E-0218576379E-04 .41408886E .25781772E-0212955778E-0411837906E 048469494E-04 0.	-03 -05 -04	-0.00 0.00 -0.00 259.65	0.00 0.00 -0.00 0.00	-0.00 -0.00 -0.00 -0.00

TIEMPO DE EJECUCION = 4.1 SEGUNDOS

AOGOSTO 1982. MARCO TRANSVERSAL % I NIVELES < **** × ****** ***** **** NO. DE NUDOS = NO. DE EARRAS = NO. DE APOYOS = 0

PROPIEDADES GEOMETRICAS Y MECANICAS DE LAS BARRAS BARRA INCIDENCIAS LONGITUD GRADOS MINUTOS INERCÍA AREA Ε MU К 1600000E-02 6417000E-02 6417000E-02 1528123E-01 1528123E-01 1528123E-01 32300E+00 32300E+00 32300E+00 32300E+00 1, 200 1, MM 00000 4210E+07 4210E+07 4210E+07 90 0. 45 2345 90 90 0. 41 Ō., 545 Ú. 65 1870820E+07 1870820E+07 1870820E+07 • 0 • +07 Ŏ. Ŏ. 0 0.

ANCHO DE BANDA DE LA MATRIZ K = 4

•	**	AÖGC	**** STO-1 ****	**** 982, MAR(TESINA CO TRANS EFECTOS	DE VERSAL X DE	JOSE LUIS CAN 2 NIVELES < TEMPERATURA	/BA **** ******	•		
	DE DE DE	NUDOS EARPA APOYO	S == (S ==)S ==	11 12 0							. · · .
PR	OPIE	DADES	GEOME	TRICAS Y I	ECANICA	S DE LAS	BARRAS	· · · ·			•
ВA	RRA	INCIDE	INCTAS	LONGITUD	GRADOS	MINUTOS	INERCIA	AREA	, K	E	MU
1	123456789012	123456456890 10	4 56 56 7 89 10 90 10	00000000000000000000000000000000000000	90 90 90 0 90 90 90 90		1600000E-02 6417000E-02 6417000E-02 1528123E-01 1528123E-01 1528123E-01 1528123E-01 3417000E-01 3417000E-01 1528123E-01 1528123E-01	12000E+00 20250E+00 32300E+00 32300E+00 32300E+00 120250E+00 20250E+00 20250E+00 20250E+00 32300E+00 32300E+00 32300E+00	11 00000000000000000000000000000000000	1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07 1870820E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07	

ANCHO DE BANDA DE LA MATRIZ K = 5

11.12

FUERZAS EN NUDOS NUDO C. DE CARGA

FY 0.00

FX 339,40

CONDICION DE CARGA 1 CONTRACCION

ELEMENTOS MECÁNICOS DE NUDOZBARRA (EN COORDENADAS LOCALES)

IEMBRO		EXTREMO INICIAL			EXTREMO FINAL	6710
	FZA. NORMAL	FZA. CORTANTE	MOMENTO	FZA NORMAL	FZA, CORTANTE	MOMENTO
1234567890112 112	-14.76 8.67 6.09 2.19 38.40 48.53 -11.97 9.21 2.76 336.50 303.80 294.12	0.71 -3.51 -0.45 -2.79 -3.33 0.00 2.90 32.70 9.45 -70 9.97 -2.70 -76 -00	1' 18 -1' 41 0' 30 -8' 97 -17' 99 -2' 07 8' 01 43' 21 15' 70 -66 87 -14' 04	14.76 -67 -6.09 -38.09 -38.57 -48.57 -48.57 -9.21 -2.57 -36.58 -303 -21 -303 -12	-0.71 3.51 0.45 2.79 3.33 -0.00 -32.70 -32.70 -97 2.76 0.00	0.96 -9.11 -1.67 -16.11 -11.97 2.07 0.69 54.90 13.33 -40.86 -10.86

DESPLAZAMIENTOS (COORDENADAS GLOBALES) Y EQUILIBRIO EN INUDOS

NU	DO	X	DESPLAZAMIENTOS	GIRO	X	SU	MA CE FUERZAS	MOMENTOS
1234 56 789 11	0. 0. 93 .36 0. 11 .67 .21 0.	591504E-0 329451E-0 140324E-0 726787E-0 150166E-0 902920E-0	0. 0. 0. 0. 26086080E=03 3. 90807827E=04 5. 63776351E=04 79562907E=03 1. 47246057E=03 1. 18729378E=03 2. 92682856E=04 99027662E=03	0. 0. 14830026E=03 12723043E=02 32526787E=03 0. 50037209E=02 90938445E=03 0. 39893056E=03 0.		0.71 -3.45 0.00 -0.00 -0.00 48.53 0.00 0.00 294.12	$ \begin{array}{c} 14'.76\\ -8.67\\ -6.09\\ -0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.0$	$\begin{array}{c} -1 \cdot 18 \\ 1 \cdot 41 \\ -0 \cdot 30 \\ 0 \cdot 00 \\ -0 \cdot 00 \\ -0 \cdot 00 \\ -2 \cdot 07 \\ 0 \cdot 00 \\ 0 \cdot 00 \\ 0 \cdot 00 \\ 0 \cdot 00 \\ -2 \cdot 53 \end{array}$

TIEMPO DE EJECUCION =

1.6 SEGUNDOS

NO. DE NUDOS 15 NO. DE LAPRAS 18 NO. DE LAPRAS 18 NO. DE APOYOS 0 PROPIEDADES GEOMETRICAS Y MECANICAS DE LAS BARRAS BARRA INCIDENCIAS LONGITUD GRADOS MINUTOS INERCÍA AREA K E MU 1 1 4 3.00 90. 0. 1600000E-02 12000E+00 1.20 1414210E+07 0.2000 2 2 5 3.00 90. 0. 6417000E-02 .20250E+00 1.20 .1414210E+07 0.2000 4 4 5 9.00 0. .6417000E-02 .20250E+00 1.20 .1414210E+07 0.2000 4 4 5 9.00 0. .1528123E-01 .32300E+00 1.20 .1870820E+07 0.2000 5 6 9.00 0. .1528123E-01 .32300E+00 1.20 .1414210E+07 0.2000 6 7 4.8 3.00 90.0 0. .1528123E-01 .32300E+00 1.20 .1414210E+07 0.2000 0.2000 .1444210E+07 0.2000 0.0	*	**** AOGOSTO 19 ****	82. MARCO EF	TRANSVERSAL X TECTOS DE	JOSE LUIS CAN 3 NIVELES < TEMPERATURA	BA **** ******		· .	•
PROPIEDADES GEOMETRICAS Y MECANICAS DE LAS BARRAS BARRA INCIDENCIAS LONGITUD GRADOS MINUTOS INERCIA AREA K E MU 1 1 4 3.00 90. 0. 1600000E-02 12000E+00 1.20 1414210E+07 0.2000 2 2 5 3.00 90. 0. 1600000E-02 20250E+00 1.20 1414210E+07 0.2000 4 4 5 9.00 0. .6417000E-02 20250E+00 1.20 .1414210E+07 0.2000 4 4 5 9.00 0. .6417000E-02 .20250E+00 1.20 .1414210E+07 0.2000 5 5 6 9.00 0. 1528123E-01 .32300E+00 1.20 .1870820E+07 0.2000 6 7 4.83 3.00 90. 0. .1528123E-01 .32300E+00 1.20 .1870820E+07 0.2000 0.2000 0.2000 0.2000 1.870820E+07 0.2000 0.2000 0.2000 1.20 .1870820E+07 0.2000 0.2000 0.2000 1.20 .1870820E+07 0.2000	NO. DE NO. DE NO. DE	NUDOS = EARRAS = APOYOS =	15 18 0					•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PROPIE: BARRA	DADES GEOMET Incidencias	RICAS Y MEG Longitud Ge	CANICAS DE LAS Rados minutos	BARRAS INERCIA	AREA	ĸ	E	мU
	1234567890112345678 1012345678	1 45 65 67 89 109 1123 45 64 90 90 109 1123 145 109 109 1123 145 109 109 1123 145 109 109 109 109 109 109 109 109	35000000000000000000000000000000000000	90.00.00.00.00.00.00.00.00.00.00.00.00.0	160000E-02 6417000E-02 6417000E-02 1528123E-01 1528123E-01 1528123E-01 160000E-02 3417000E-01 3417000E-01 1528123E-01 1528123E-01 1528123E-01 1528123E-01 1528123E-01 1528123E-01 1528123E-01	120250E+00 20250E+00 322300E+00 322300E+00 322300E+00 120250E+00 322300E+00 322300E+00 322300E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 3220250E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 322000E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200250E+00 32200250E+00 322000E+00 32200250E+00 322000E+00 32000E+00 32000E+00 32000E+00 32000E+00 32000E+00 32000E+00 32000E+00 3000E+00 3000E+00 30000E+000	10000000000000000000000000000000000000	1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07 1870820E+07 1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07 1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07	00000000000000000000000000000000000000

CONDICION DE CARGA 1 CONTRACCION

ELEMENTOS MECANICOS DE NUDO/BARRA (EN COORDENADAS LOCALES)

DESPLAZAMIENTOS (COORDENADAS GLOBALES) Y EQUILIBRIO EN NUDOS

NUDU	X	DESPLAZAMIENTOS Y	GIRO	X	SUMA	re FUERZAS	MOMENTOS
1234567890112345	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	31	01-06 0-43 0-15 0-00 0-00 0-00 0-00 1-43 0-00 0-00 0-00 0-00 0-00 0-00 0-00 0	$ \begin{array}{c} 11'.70\\ -10.67\\ -1.03\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.00\\ 0.00\\ -0.00\\ 0.00\\ -0.00\\ 0.00\\ -0.00\\ 0.00\\ -0.00\\ -0.00\\ 0.00\\ -0.00\\$	$\begin{array}{c} 0 \cdot 08 \\ 0 \cdot 48 \\ 0 \cdot 17 \\ -0 \cdot 00 \\ 0 \cdot 00 \\ -0 \cdot 14 \\ 0 \cdot 00 \\ -0 \cdot 14 \\ 0 \cdot 00 \\ -0 \cdot 55 \\ 0 \cdot 00 \\ -0 \cdot 55 \\ 0 \cdot 00 \\ -0 \cdot 55 \\ 0 \cdot 00 \\ -0 \cdot 00 $

TIEMPO DE EJECUCION 🗄

1.9 SEGUNDOS

	× •	≱.	AOGO	*** STO 1 ****	**** 982. MAR	TESTNA CO TRANS EFECTOS	DE VERSAL X DE	JOSE LUIS CAN 3 NIVELES < TEMPERATURA	BA ****		· · ·		
•	NO. NO. NO.	DE DE DE	NUDOS EARRA APOYO		15 18 0	•	• •	CONTI(ACCIO	N		• •		
•	PROP	PIEI RA :	DADES INCIDE	GEOME NCIAS	TRICAS Y Longitud	MECÂNICA Grados	AS DE LAS Minutos	BARRAS INERCIA	AREA	Ķ	E	MU	
•	125456789012545678 1111115678		12345645689089021891234	4565678909101123143145	5 5 5 5 5 5 5 5 5 5 5 5 5 5	90. 90. 90. 90. 90. 90. 90. 90. 90. 90.		.1600000E-02 .6417000E-02 .6417000E-02 .1528123E-01 .1528123E-01 .1528123E-01 .1528123E-01 .3417000E-01 .3417000E-01 .1528123E-01 .1528123E-01 .1528123E-01 .160000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02 .3417000E-02	120250E+00 220250E+00 32250E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 32200E+00 322002E+00 32000E+00		1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1414210E+07 1870820E+07 1870820E+07 1870820E+07	20000 00000 000000 000000000000 00000000	

NCHO DE BANDA DE LA MATRIZ K = 5

FX3940

FY 01.00

K -66.18

CONTRACCION 1

CARGA

ELEMENTOS MECANÍCOS DE NUDO/BARRA (EN COORDENADAS LOCALES)

IEMBRO	•	EXTREMO INICIAL		. •	EXTREMO FI	NAL	-
	FZA. NORMAL	FZA. CORTANTE	MOMENTO	FZAS NORMAL	FZA CORTAN	TE FOMENTO	
123456789011234567890112345678901123456789011234567890112345678	-11.70 10.67 1.03 -0.15 -1.73 -1.43 -11.70 10.87 0.83 2.61 18.74 -10.25 10.45 -0.21 337.00 322.89 319.77	-0'.06 -0.43 -0.15 -0.01 -0.21 -0.21 -0.21 -2.01 -1.45 -1.03 -0.00 2.40 14.12 -1.03 -0.00 2.40 14.12 -0.00 ENADAS GLOBALES) Y	- 01 08 - 048 - 0 17 01 08 - 1 03 - 0 14 0 03 1 99 1 25 - 6 86 - 5 52 - 6 85 - 7 52 19 73 - 5 85 - 6 85 - 7 52 19 73 - 6 85 - 7 52 - 6 85 - 7 7 - 2 - 31 - 6 5 85 - 6 5 85 - 6 5 85 - 7 7 - 2 - 31 - 7 7 - 2 - 31 - 7 7 - 2 - 31 - 7 7 - 7 - 2 - 31 - 7 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	11.70 -10.67 -1.03 0.11 1.73 1.43 11.70 -10.87 -0.83 -20.83 -20.87 -21.71 10.21 -10.45 -337.00 -322.87 -319.77	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.6 \\ -0.11 \\ -0.81 \\ -0.30 \\ -0.15 \\ -0.15 \\ -0.82 \\ -$	
NUDO	X	DESPLAZAMIENTOS	GIRO	SUMA PI	FUERZAS	OMENTOS	
1234567890112345	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	18949895E=04 55145969E=04 21566236E=04 47370883E=03 36584715E=03 85913959E=04 56771507E=02 53280491E=03 36326494E=03	$ \begin{array}{c} -01.06\\ -0.43\\ -0.15\\ 0.00\\ -0.00\\ -1.43\\ 0.00\\ 0.00\\ 21.71\\ 0.00\\ 0.00\\ 21.71\\ 0.00\\ 0.00\\ 319.77\\ \end{array} $	$ \begin{array}{c} 11'.70\\ -10.67\\ -1.03\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.00\\ 0.00\\ -0.00\\ 0.00\\ -0.00\\ 0.00\\ -0.00\\ $	C. CE C. 42 O. 17 O. 00 C. 00 C. 00 O. 00	

4.77

TIEMPO DE EJECUCION =

1.9 SEGUNDOS