# ANALISIS DE CONFIAB<sup>I</sup>LIDAD ESTRUCTURAL DE PILOTES SUJETOS A CARGAS LATERALES ESTATICAS



CIUDAD UNIVERSITARIA, D.F., Agosto de 1984



Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

### DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AUNIVE SE NEXICO DEPFI T. UNAM

ý

Ĩ.

84 9

RUI

# ANALISIS DE CONFIABILIDAD ESTRUCTURAL DE PILOTES SUJETOS A CARGAS LATERALES ESTATICAS



;

Con amor, a mi Mami, modelo de fortaleza, cariño y comprensión.

> A la memoria de mi papá, de mi abuelo Fernando, y de don Abu.

> > A mis hermanos.

A mis maestros.

A mis amigos.

#### DICE I N

| Capítulo |                                          | Página |
|----------|------------------------------------------|--------|
|          | RECONOCIMIENTOS                          | · 1    |
|          | RESUMEN                                  | 2      |
|          | NOTACION                                 | 4      |
|          | INTRODUCCION                             | 15     |
| 1        | ANALISIS ESTRUCTURAL DE PILOTES CARGADOS |        |
|          | LATERALMENTE                             | 19     |
|          | 1.1 Métodos de análisis estructural      | 19     |
|          | 1.2 Determinación experimental de curvas |        |
|          | p- <i>y</i>                              | 24     |
| 2        | INCERTIDUMBRE EN EL COMPORTAMIENTO DEL   |        |
|          | SUELO                                    | 36     |
|          | 2.1 Introducción                         | 36     |
|          | 2.2 Elección de las variables aleatorias |        |
|          | significativas                           | 37     |

- 2.3 Modelos probabilistas y criterios de
  - estimación de  $\beta_1$  y  $\beta_2$

2.4 Estimación bayesiana de los parámetros de la distribución de  $\beta_{iL}$ 

FUNCIONES DE DISTRIBUCION DE LA RESPUESTA DE UN PILOTE AISLADO

3.1 Hipótesis y objetivos

3

4

3.2 Cálculo de las medias y covarianzas de los desplazamientos a lo largo de un pilote

3.3 Cálculo de las medias y varianzas de los momentos flexionantes

EJEMPLO ILUSTRATIVO

4.1 Formulación del problema

4.2 Distribución bayesiana de los parámetros

de la distribución de  $p_u y E_i$  normali-

zados

4.3 Respuesta probabilista del pilote

108

79

50

65

65

65

75

78

| •                                     |                                         | · · ·      |
|---------------------------------------|-----------------------------------------|------------|
| 5                                     | SOLUCION ADIMENSIONAL GENERALIZADA      | 125        |
|                                       |                                         | - <u>-</u> |
| · · · ·                               | 5.1 Antecedentes                        | 125        |
|                                       |                                         |            |
| •                                     | 5.2 Curvas p-u adimensionales           | 131        |
|                                       |                                         |            |
| ,.<br>,.                              | 5.3 Cooficientes adimensionales much    | •<br>•     |
| · · · ·                               | 5.5 Coefficiences adimensionales proba- | •          |
|                                       | bilistas                                | 133        |
| · · ·                                 |                                         | ,          |
| 6                                     | CONFIABILIDAD DE PILOTES SUJETOS A      | ·          |
| •                                     | FLEXION                                 | 146        |
| •                                     |                                         |            |
|                                       | 6.1 Estado límite                       | 147        |
|                                       |                                         | 14/        |
| · · · · · · · · · · · · · · · · · · · |                                         | *          |
| ,                                     | 6.2 Formato probabilista                | 148        |
| ·<br>· · ·                            |                                         |            |
|                                       | 6.3 Estadísticas de la solución         | , -        |
|                                       | (momento flexionante actuante)          | 149        |
|                                       |                                         | , •        |
| · · ·                                 | 6 4 Estadísticas de la registorgia      | · · · ·    |
|                                       | de la resistencia                       | * : *      |
|                                       | (momento ilexionante resistente)        | 151        |
|                                       |                                         |            |
|                                       | 6.5 Ejemplos                            | /152       |
|                                       |                                         |            |
| 7 🚬                                   | CONCLUSIONES Y RECOMENDACIONES          | 164        |
|                                       |                                         |            |
|                                       | REFERENCIAS                             | 171        |

## iii

APENDICE A CONCEPTOS BASICOS DEL ANALISIS BAYESIANO 182 • , APENDICE B FUNCIONES DE DISTRIBUCION DE PROBABILI-DADES GAMMA-2 Y MULTINORMAL 185 190 APENDICE C DEDUCCION DE LA ECUACION 3.7 191 APENDICE D DEDUCCION DE LAS ECS. 3.14 Y 3.18 APENDICE E REPRESENTACION BIDIMENSIONAL DE B 196 199 APENDICE F OBTENCION DE LA ECUACION 6.6 ۰. APENDICE G LISTA DE TABLAS Y DE FIGURAS 200

iv

.

### RECONOCIMIENTOS

Deseo manifestar mi gratitud a Luis Esteva, director de esta tesis, por la orientación y estímulo que me ha brindado durante mi formación de posgrado, transmitiéndome siempre su experiencia y conocimientos con un sentido de alta calidad académica y humana; a Abraham Díaz Rodríguez por su apoyo constante desde mi ingreso a la División de Estudios de Posgrado de la Facultad de Ingeniería y por sus acertados comentarios hechos a esta tesis; a Roberto Meli, Neftalí Rodríguez, Francisco Sánchez-Sesma, Octavio Rascón y Eulalio Juárez Badillo por sus valiosas sugerencias para el mejor contenido y presentación de este trabajo.

También agradezco a Lymon Reese sus alentadores comentarios, así como el haberme facilitado su biblioteca particular para obtener los datos experimentales que contiene esta tesis; y a José M. Roesset el apoyo académico y financiero que me otorgo durante mi estancia en la Universidad de Texas en Austin.

Expreso mi agradecimiento también a René Olvera, Alfonso Gutiérrez y Federico Cervantes de la sección de dibujo del Instituto de Ingeniería por la elaboración de las figuras, y a Gloria Cortés-Rubio la cuidadosa transcripción del manuscrito.

. .

#### RESUMEN

Se desarrolla un criterio para encontrar la confiabilidad estructural de pilotes aislados sujetos a cargas laterales estáticas.

Se consideran como variables aleatorias la carga que actúa sobre el pilote y los principales parámetros que definen las relaciones entre desplazamientos del pilote a diversas alturas y reacciones del suelo, ambos en la dirección horizontal. Por simplicidad en este trabajo se supone que dichas relaciones se representan mediante curvas p-y no-lineales de resortes independientes (modelo de Winkler).

Para obtener la descripción estadística del comportamiento del suelo, se propone un criterio de tipo bayesiano, que permite incorporar información directa e indirecta, tanto de modelos de laboratorio como de pruebas a escala natural. Se encuentran los valores estadísticos típicos de la resistencia última y del módulo tangente inicial de la reacción del suelo, ambos normalizados con respecto a sus valores calculados a partir de un criterio comúnmente empleado en la práctica profesional, correspondientes a suelos arcillosos blandos saturados.

Se propone una metodología para calcular la respuesta probabilista de un pilote sujeto a cargas estáticas aplicadas monótonamente. Dicha metodología se aplica a un caso particular,

así como para obtener gráficas de soluciones adimensionales de las esperanzas y desviaciones estándar de los desplazamientos y momentos flexionantes a lo largo del pilote, bajo la hipótesis de variación lineal del módulo secante de la reacción del suelo con respecto a la profundidad.

Se presenta un criterio para valuar la confiabilidad de pilotes sujetos a flexión diseñados de acuerdo con la práctica común profesional. Dicho criterio se ilustra para el caso de un pilote largo de acero hincado en un suelo arcilloso blando saturado, bajo la acción de una carga horizontal de corta duración aplicada en su cabeza.

Se encuentran valores del índice de confiabilidad y de la probabilidad de falla de pilotes hipotéticos correspondientes a cimentaciones de plataformas marinas de acero ubicadas en cinco distintos sitios. Se obtienen valores de los factores parciales de seguridad que deben emplearse para que el diseño de todos los pilotes en estudio tengan la misma probabilidad de falla. Dichos valores no son normas de diseño generales sino indicadores de las variaciones de los factores parciales de seguridad que necesitan aplicarse en los casos estudiados para obtener una confiabilidad especificada.

Se presentan conclusiones y recomendaciones derivadas de este estudio.

#### NOTACION

En este trabajo se usan los siguientes símbolos:

AM

А<sub>у</sub>

**B** =

C

С

ē

cov(,)

с<sub>u</sub>

- = Coeficiente de momento flexionante adimensional para un pilote cuya cabeza puede girar
  - = Coeficiente de desplazamiento adimensional para un pilote cuya cabeza puede girar
    - = Vector que contiene los valores  $\beta_1$  y  $\beta_2$
  - = Resistencia al corte del suelo,  $k/pie^2$  (ton/m<sup>2</sup>)
  - = Módulo de Young del suelo, k/pie<sup>2</sup> (kg/cm<sup>2</sup>)
  - = Valor característico de la resistencia al corte del suelo, k/pie<sup>2</sup> (ton/m<sup>2</sup>)
  - = Valor medio de la resistencia al corte del suelo, k/pie<sup>2</sup> (ton/m<sup>2</sup>)

= Covarianza entre variables

= Resistencia al esfuerzo cortante del suelo, obtenida de una prueba triaxial no drenada, k/pie<sup>2</sup> (ton/m<sup>2</sup>)

. đ

5

= Diámetro exterior del pilote, pie (m)

.

| ā,             | = Valor medio del desplazamiento en la cabeza<br>del pilote, pie (m)                                                  |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
| d <sub>n</sub> | = Desplazamiento normalizado de la cabeza del pilote                                                                  |
| ā <sub>n</sub> | = Media del valor medio de d <sub>n</sub>                                                                             |
| E              | = Módulo de la reacción horizontal del suelo,<br>lb/pulg <sup>2</sup> (kg/m <sup>2</sup> )                            |
| E <sub>i</sub> | = Módulo tangente inicial de reacción horizontal<br>del suelo, lb/pulg <sup>2</sup> (kg/m <sup>2</sup> )              |
| E<br>s         | = Módulo secante de reacción horizontal del suelo,<br>lb/pulg² (kg/m²)                                                |
| E<br>ic        | = Módulo tangente inicial calculado de la reacción<br>horizontal del suelo, lb/pulg <sup>2</sup> (kg/m <sup>2</sup> ) |
| Ε(•)           | = Esperanza de una variable aleatoria                                                                                 |
| E'             | = Matriz diagonal que contiene los valores de E <sub>i</sub><br>para cada resorte                                     |

- = Deformación unitaria correspondiente a la mitad de la diferencia de esfuerzos principales máximos determinada con una prueba de compresión triaxial UU, (%)
- = Esfuerzo horizontal a lo ancho del pilote,
   k/pie<sup>2</sup> (kg/m<sup>2</sup>)

f(.) = f.d.p. = Función de densidad de probabilidad

- Fy = Coeficiente de deflexión adimensional para un pilote cuya cabeza no puede girar
- F<sub>M</sub> = Coeficiente de momento flexionante adimensional para un pilote cuya cabeza no puede girar
- g(•) = Matriz diagonal que contiene la reacción del suelo

g'(•) = Matriz diagonal que contiene las derivadas de

g (•)

ĝ(•)

e<sub>50</sub>

f

= Matriz g(·) cuando la reacción del suelo y la carga adquieren sus valores medios

H= Matriz de precisiónh= Precisión media
$$h_{\beta}$$
= Precisión media de la variable  $\beta$ I= Momento de inercia de la sección transversal del  
pilote, pie<sup>4</sup> (m<sup>4</sup>)I= Matriz cuyos elementos se valúan por integración  
de la ecuación de MindlinJ= Vector cuyos elementos son unitariosk= Gradiente de la tangente inicial del módulo de  
reacción del suelo, k/pie<sup>3</sup> (kg/m<sup>3</sup>)K= Matriz de rigideces del piloteK= Factor de forma =  $Z_p/Z_e$ .K\_c= Coeficiente de presión de tierrak(c)= Gradiente de la tangente inicial del módulo del  
suelo, función de la resistencia al corte del  
suelo

= Longitud del segmento en que se divide el pilo-

te, pie (m)

= Criterio de diseño de factores de carga y resistencia (Load Resistance Factor Design)

8

= Logaritmo natural

= Momento flexionante del pilote, lb-pulg (kg-m)

= Momento flexionante del pilote en el punto m, lb-pulg (kg-m)

$$m_{\beta} = \bar{\beta} = E(\beta) = Valor medio de la variable aleatoria$$

= Tamaño de una muestra

= Número de pruebas, localizadas en la literatura, en las que se midió carga lateral y desplazamiento en la cabeza del pilote

= Rango de una matriz

= Vector de cargas laterales aplicadas al sistema suelo-pilote

= Esperanza de la carga, kips (kg).

 $\bar{\mathtt{P}}$ 

0

Ρ

l

ln

Μ

Mm

n

n `d

L.R.F.D.

p = Carga lateral externa aplicada en la cabeza del t pilote, kips (kg)

p\* = Carga de diseño, kips (kg)

- P\* = Carga de diseño necesaria para que la plataforma tenga una probabilidad de falla de 0.5 por ciento, kips (ton)
- p = Fuerza lateral del suelo sobre el pilote, por
  ,
  unidad de longitud, lb/pulg (kg/m)

p<sub>F</sub> = Probabilidad de falla por año

- p\_u = Reacción última del suelo, por unidad de longitud, lb/pulg (kg/m)
- p̃"

Q

- = Resistencia última normalizada del suelo
- p<sub>L</sub> = Reacción lateral del suelo sobre un pilote ficticio

= Coeficiente empírico

| * •            |                                                   |
|----------------|---------------------------------------------------|
|                |                                                   |
| ·              |                                                   |
| R              | = Resistencia                                     |
| · .            |                                                   |
|                |                                                   |
|                |                                                   |
| R*.            | = Resistencia nominal                             |
|                |                                                   |
| ú              |                                                   |
| R              | = Resistencia media                               |
|                | Nobib tonoitu medilu                              |
| · · · ·        |                                                   |
|                |                                                   |
| r              | = Factores que toman en cuenta la incertidumbre   |
| <b>T</b>       |                                                   |
| · .            | en el criterio de cálculo                         |
|                |                                                   |
| · . · ·        |                                                   |
| c í            | = Vector de valores reales de las propiedades del |
|                | vector de valores reales de las propredades der   |
| •              | suelo                                             |
|                |                                                   |
| •              |                                                   |
|                |                                                   |
| s*             | = Vector de valores nominales de las propiedades  |
|                |                                                   |
| • '            | del suelo                                         |
|                |                                                   |
| •              |                                                   |
| s <sup>2</sup> | = Varianza de la variable observada               |
|                |                                                   |
|                |                                                   |
| ,              |                                                   |
| S .            | = Solicitación                                    |
|                |                                                   |
|                | · · · · · · · · · · · · · · · · · · ·             |
| <b>C</b> *     | = Solicitación nominal                            |
| U              | borrereacton nominar                              |
| ·              |                                                   |
| _              |                                                   |
| . <b>Š</b>     | = Solicitación media                              |
|                |                                                   |
|                |                                                   |
| <b>Z</b> ~     | - Nodia dol momento flovionente en la setara lal  |
| S<br>C         | = Media dei momento flexionante en la cabeza dei  |
| •.             | pilote                                            |
| · .            | P                                                 |
|                |                                                   |
|                |                                                   |
| +              | = Econocor dol piloto pula (am)                   |

| Т                       | = Factor de rigidez relativa, pulg (cm)                                       |
|-------------------------|-------------------------------------------------------------------------------|
| U                       | = Vector de parámetros aleatorios                                             |
| טט                      | = Tipo de prueba triaxial sin drenar ni consolidar                            |
| ν, ν                    | ,<br>= Parámetros de una función de distribución Gamma-2                      |
| $var(\cdot) = \sigma^2$ | = Varianza de una variable aleatoria                                          |
| v <sub>p</sub>          | = Coeficiente de variación de la carga                                        |
| V <sub>R</sub>          | = Coeficiente de variación de la resistencia                                  |
| v <sub>s</sub>          | = Coeficiente de variación de la solicitación                                 |
| V <sub>S</sub> c        | = Coeficiente de variación del momento flexionante<br>en la cabeza del pilote |
| x                       | = Profundidad medida a partir de la superficie del terreno, pie (m)           |
| У                       | = Môdulo de Young del pilote, k/pulg <sup>2</sup> (kg/cm <sup>2</sup> )       |
| У                       | = Desplazamiento lateral del pilote, pulg (cm)                                |
| <i>Y</i> 1              | = Desplazamiento horizontal en la cabeza del pilo-<br>te, pulg (cm)           |

= Vector que contiene los desplazamientos calculados del pilote cuando la reacción del suelo y la carga adquieren sus valores medios

= Valor medio del desplazamiento en la cabeza del pilote, pulg (cm)

= Valor del desplazamiento lateral del sistema suelo-pilote, que corresponde a la mitad de la resistencia última del suelo, pulg (cm)

= Coeficiente de profundidad

= Coeficiente de profundidad máxima

= Módulo de sección elástico, pulg<sup>3</sup> (cm<sup>3</sup>)

= Módulo de sección plástico, pulg<sup>3</sup> (cm<sup>3</sup>)

 $\alpha'_i, \alpha''_i$  = Factores que toman en cuenta las discrepancias entre las condiciones de campo y de laboratorio

 $\alpha_1, \alpha_2 = Factores numéricos$ 

= Indice de confiabilidad

= Relación igual a  $p_u/p_u_c$ 

= Relación igual a  $E_i/E_i$ 

βz

β1

β

ŷ

 $\bar{y}_{c}$ 

Y 5 0

z

<sup>z</sup>máx

Z<sub>e.</sub>

ż

Indice de confiabilidad de la resistencia
 Valor medio de β<sub>i</sub>
 Peso volumétrico del suelo *in situ*, k/pie<sup>3</sup> (ton/m<sup>3</sup>)
 Factor de carga

= Peso volumétrico efectivo medio del suelo de la superficie a una profundidad x, k/pie<sup>3</sup> (ton/m<sup>3</sup>)

= Factores que consideran la variabilidad de las propiedades del suelo

= Función gamma

β<sub>R</sub>

β<sub>i</sub>

Υ<sub>m</sub>

γ

γľ

Υ<sub>i</sub>

Г

ε

η

Ψ

Φ

θ

= Coeficiente que es función de la reacción del suelo

= Matriz de precisión relativa

= Curvatura del pilote

= Factor de resistencia

= Vector que contiene parametros inciertos

| к<br>,                   | = Número que define la probabilidad de que la car-<br>ga exceda a su valor nominal (P*) |
|--------------------------|-----------------------------------------------------------------------------------------|
| μ                        | = Relación de Poisson                                                                   |
| ρ<br>ij                  | = Coeficiente de correlación entre i y j                                                |
| ρ <sub>s</sub>           | = Vector de desplazamientos horizontales del suelo                                      |
| σ                        | = Desviación estándar de una variable aleatoria                                         |
| σ <sup>2</sup>           | = Varianza de la variable aleatoria                                                     |
| $\sigma^2_{\sigma\beta}$ | = Varianza de la varianza de la variable aleato-<br>ria $\beta$                         |
| Σ                        | = Matriz de covarianzas                                                                 |
| Σ <sub>β</sub>           | = Varianza de la variable aleatoria β                                                   |
|                          |                                                                                         |

17.



#### INTRODUCCION

Las normas modernas de diseño estructural recomiendan en general usar el criterio de factores de carga y de resistencia (LRFD) a fin de lograr niveles adecuados de seguridad en las construcciones. Dichos factores deben ser de magnitudes tales que no resulten excesivos los costos de construcción, al mismo tiempo que las obras sean suficientemente seguras y desarrollen adecuadamente las funciones para las que se proyectaron.

Para fines operativos, el criterio de diseño mencionado se expresa como sigue:

#### Y'S\* < \$ R\*

Aquí  $\gamma$  y  $\phi$  son factores de carga y de resistencia; y S\* y R\* los valores nominales de la solicitación y la resistencia. Los valores de  $\gamma$  y  $\phi$  toman en cuenta el nivel de confiabilidad (o el de riesgo) adoptado para una estructura y varían según el tipo de construcción los fines para los que se construye, su ubicación, etc. En el diseño estructural de cimentaciones constituidas por pilotes estos factores se eligen con base en la experiencia y juicio del ingeniero. Al parecer, según la revisión de la literatura hecha por la autora, no se han desarrollado estudios probabilistas que cuantifiquen las confiabilidades implícitas en los criterios de diseño de dichos miembros estructurales.

La necesidad de estimar la confiabilidad implícita en los criterios convencionales de diseño de pilotes condujo a hacer este estudio enfocado a desarrollar una metodología que marque el camino a seguir para establecer factores de seguridad para el diseño de los elementos citados.

Los criterios y algoritmos que aquí se desarrollan cubren varias etapas del proceso de análisis de confiabilidad, desde la formulación de modelos probabilistas de las propiedades de los suelos y de las fuerzas de interacción entre suelo y pilote hasta el análisis probabilista en primera aproximación de la respuesta de un pilote hincado sobre suelo con propiedades inciertas y sujeto a una carga estática aleatoria aplicada horizontalmente en la cabeza. Los criterios y algoritmos en cuestión se ilustran mediante su aplicación al caso de pilotes hincados en arcillas blandas saturadas.

En este trabajo la confiabilidad se expresa en términos de la que corresponde a una sección crítica de un pilote de acero sujeto a momento flexionante. Se cuantifican los índices de confiabilidad ( $\beta$ ) para cinco casos que corresponden a un mismo pilote hincado en cada caso en un lugar distinto, con propiedades del suelo similares y sujeto a condiciones de carga diferentes. Para ello se toman en cuenta incertidumbres asociadas al comportamiento del suelo que circunda al pilote (representado por curvas p-y) al desplazarse éste horizontalmente, así como a la magnitud de las cargas laterales que actúan sobre el pilote.

El primero de estos conceptos depende a su vez de variables tales como la incertidumbre en las propiedades del suelo en el sitio, así como la asociada con las expresiones matemáticas de las curvas p-y (de la literatura existente); la discrepancia entre resultados de pruebas de campo y de laboratorio; y la incertidumbre en estimaciones estadísticas.

Además de estas incertidumbres existen otras como las asociadas a la forma de modelar el sistema suelo-pilote, a la imprecisión en los aparatos de medición, a errores humanos, criterios de ajuste de curvas, etc. Sin embargo, aquí se considera que la incertidumbre asociada con estos últimos es pequeña comparada con la que proporcionan los mencionados en el párrafo anterior, por lo que en este trabajo se desprecia su influencia.

÷.

Los capítulos de esta tesis constan de lo siguiente: en el capítulo I se presente una revisión de los métodos comúnmente usados para el análisis estructural de pilotes sujetos a cargas laterales estáticas. También se presenta una revisión de los procedimientos experimentales para obtener curvas p-y. En el capítulo II se propone un criterio bayesiano para valuar las propiedades estadísticas de las curvas p-y. En dicho criterio se toma en cuenta tanto información objetiva (proveniente de pruebas de laboratorio y campo) como subjetiva, dada por expertos en la materia. El capítulo 3 plantea una forma de obtener los primeros dos momentos de la función de distribución de probabilidades de la respuesta estructural de un pilote sujeto

a carga lateral estática monótonamente aplicada. Los dos momentos antes mencionados se obtienen mediante las fórmulas aproximadas de primero y segundo orden dadas por Benjamin y Cornell (7). En el planteamiento se consideran como variables aleatorias la carga lateral aplicada y los parámetros correspondientes a las curvas p-y que mayor influencia tienen en la respuesta del pilote. En el capítulo IV se ilustran, con un ejemplo, los criterios propuestos. Aquí se encuentra la respuesta probabilista de un pilote, hincado en arcilla blanda saturada, sujeto a una carga lateral aplicada sobre su cabeza en un intervalo corto de tiempo.

Para fines de aplicación práctica, se obtienen en el capítulo V soluciones generalizadas adimensionales de pilotes hincados en suelos en los que se supone que el módulo secante de la reacción horizontal del suelo varía linealmente con la profundidad.

La confiabilidad implícita en los criterios convencionales de diseño se valúa en el capítulo 6 para un pilote que forma parte de la cimentación de una plataforma marina ubicado en cinco distintos sitios. La seguridad se mide en términos del índice de confiabilidad,  $\beta$ . Se encuentran los valores de los factores parciales de seguridad que deberían de emplearse para que los casos estudiados tengan la misma confiabilidad. En el último capítulo se presentan las conclusiones de este trabajo y algunas recomendaciones sobre estudios futuros.

#### CAPITULO 1

#### ANALISIS ESTRUCTURAL DE PILOTES CARGADOS LATERALMENTE

En la primera parte de este capítulo se revisan brevemente los métodos más usados en la práctica común profesional para el análisis estructural de pilotes ante cargas laterales estáticas. Se describen dos tipos de métodos: los que representan al suelo como un medio continuo y los que lo representan como una serie de elementos independientes entre sí.

En la segunda parte del capítulo se describen tres diferentes formas de obtener curvas p-y experimentalmente. Estas son: pruebas de pilotes hechas a escala natural, medición de reacción del suelo *in situ* y pruebas hechas a pequeña escala.

#### 1.1 METODOS DE ANALISIS ESTRUCTURAL

Una de las principales dificultades que se presenta para el análisis estructural de pilotes es la complejidad de la distribución de la reacción del suelo que circunda al pilote, dado que el comportamiento del suelo ante grandes deformaciones es no-lineal y se trata de un problema tridimensional. En la práctica común profesional esto generalmente se simplifica adoptando modelos bidimensionales y suponiendo que el suelo tiene comportamiento elástico-lineal. Los métodos de análisis más empleados son:

por 🐇

a) Los que representan al suelo como un medio continuo Douglas y Davis (15) presentan la solución al problema de pilotes aislados cargados lateralmente, suponiendo al suelo en donde se encuentra hincado el pilote como un medio continuo, isótropo, elástico y lineal. Poulos (40) presenta una extensión del trabajo de estos investigadores; supone que el comportamiento lateral del pilote es similar al de una lámina delgada vertical de ancho d, longitud L y rigidez flexionante constante, Y I. Divide al pilote en elementos. Cada elemento lo supone sujeto a un esfuerzo horizontal, f, uniforme y constante a lo ancho del pilote. Supone que el suelo es un semi-espacio elástico, isótropo y homogéneo con módulo de Young, C, y relación de Poisson µ. Los desplazamientos del suelo, a lo largo del pilote, están dados

 $\rho_{s} = \frac{d}{C} I_{s} f$ 

En donde  $\rho_s$  es un vector, que representa el desplazamiento horizontal del suelo,  $I_s$  es una matriz cuyos elementos se valúan por integración de la ecuación de Mindlin. La ecuación de Mindlin se usa para obtener el desplazamiento horizontal de cualquier punto dentro del medio, causado por una carga horizontal concentrada aplicada en un punto distinto.

Para determinar los desplazamientos del pilote se usa la ecuación de flexión de una viga.

El método de Poulos supone que los desplazamientos del suelo,  $\rho_s$ , son iguales a los del pilote.

Una aproximación ligeramente diferente a la anterior ha sido planteada por Penzien (39). El procedimiento general es el mismo mencionado anteriormente; su diferencia radica en la manera de encontrar la reacción del suelo. "También se usa la ecuación de Mindlin, pero el pilote se representa como un cilindro en vez de una lámina delgada vertical.

Las soluciones basadas en la teoría de la elasticidad, como las anteriores, son muy útiles para el estudio sobre el comportamiento de pilotes cuando éstos presentan desplazamientos muy pequeños, de manera que el suelo que los circunda tenga un comportamiento lineal. Son principalmente útiles para realizar estudios paramétricos de tipo cualitativo para niveles bajos de carga y para el análisis del comportamiento de grupos de pilotes. Poulos (40, 41) plantea soluciones más refinadas respecto al comportamiento del sistema suelo-pilote. Él formula la solución al problema de falla local del suelo utilizando modelos simplificados para representar su resistencia última y presenta sugerencias para tomar en cuenta de manera aproximada la separación que ocurre entre el suelo y el pilote, cerca de la superficie cuando existen esfuerzos de compresión muy grandes frente al pilote y de tensión detrás de él, en la dirección en que se aplica la carga.

Dada la naturaleza continua del suelo, resulta realista representarlo mediante un modelo continuo. Los criterios antes mencionados tienen esta ventaja sobre los que se mencionan enseguida.

b) Soluciones que representan al suelo como una serie de elementos independientes

El modelo matemático más simple para estudiar el comportamiento de un pilote es el que simula al suelo mediante un modelo de Winkler (fig. 1).

En éste, el suelo se representa por resortes que actúan independientemente entre sí. Cada uno de ellos tiene una ley de variación dada por las curvas p-y. La reacción lateral del suelo por unidad de longitud, p, y el desplazamiento del pilote, y, se relacionan a través del módulo secante de reacción horizontal del suelo,  $E_s$ , de la siguiente manera

$$p = -E_s y$$

El signo negativo indica que la reacción, p, actúa en sen-

tido opuesto al desplazamiento y.

El modelo de Winkler tiene la ventaja de su simplicidad analítica y que toma en cuenta de manera sencilla el comportamiento no-lineal del suelo, así como la variación irregular del módulo  $E_s$  y de la resistencia última del suelo,  $p_u$ , con la profundidad. Su extensión al caso de suelos estratificados es inmediata. Este modelo es el comúnmente empleado para el análisis estructural de pilotes de plataformas marinas, de acero y de duques de alba.

La limitación más importante de este modelo es que ignora la interconexión entre los elementos que representan al suelo.

Para obtener los desplazamientos del pilote se usa la ecuación diferencial de flexión de una viga.

Jamiolkowski y Garassino (25) presentan una revisión crítica del estado del arte en donde discuten los parámetros que interesan para el diseño de pilotes cargados lateralmente usando el método del módulo de reacción horizontal del suelo. En dicho trabajo se da una amplia bibliografía sobre el tema.

Novak (37) presenta una solución al problema de un pilote cargado lateralmente utilizando un modelo de Winkler gene-

ralizado. Supone que el suelo está compuesto por una serie de capas con comportamiento elástico, de espesor infinitesimal que se extienden horizontalmente hasta el infinito. El modelo es muy útil para el caso en que el pilote esté cargado dinámicamente y se provoquen desplazamientos laterales del suelo que estén dentro del intervalo lineal.

Las incertidumbres introducidas al modelar el sistema suelo-pilote son pequeñas comparadas con las asociadas a propiedades del suelo, carga lateral aplicada y comportamiento del suelo que circunda al pilote al desplazarse éste lateralmente. Aquí se emplea el modelo de Winkler porque tiene la ventaja de facilitar el manejo del álgebra sin introducir errores graves en los resultados. Se hace hincapié en que la metodología que aquí se presenta puede aplicarse a modelos suelo-pilote diferentes al de Winkler.

1.2 DETERMINACION EXPERIMENTAL DE CURVAS p-y

La reacción del suelo que circunda a un pilote sometido a solicitaciones laterales depende de varios factores como son: características estructurales del pilote (dimensiones, rigidez, forma de la sección transversal, etc.); tipo y magnitud de las cargas aplicadas; leyes esfuerzo-deformación del suelo, etc.

Es casi imposible intentar un análisis riguroso del comportamiento del suelo en este tipo de problemas, por lo que es necesario hacer simplificaciones substanciales y considerar solamente los parámetros que tienen mayor influencia en la respuesta estructural del pilote.

El modelo de Winkler permite considerar de manera simple el comportamiento no-lineal del suelo. A cada resorte se le asocia una curva p-y que representa al comportamiento lateral del suelo a la altura del segmento de pilote en cuestión. En la fig. 2 se presenta una posible distribución de presiones, a una cierta profundidad, antes y después de aplicar la carga. A medida que el desplazamiento, y, crece, la reacción del suelo, p, aumenta, hasta alcanzar un valor último. Esto puede representarse mediante curvas p-y como las que muestran en la fig. 3.

Existen expresiones matemáticas sencillas para determinar curvas p-y para distintos tipos de suelo y carga (2, 21, 26, 47, 50, 55). Se puede lograr de varias formas: con pruebas de pilotes hechas a escala natural, con aparatos de medición directa en el sitio, probando modelos a pequeña escala, o bien, combinando algunos de estos procedimientos con pruebas convencionales de laboratorio sobre muestras de suelos.

Enseguida se describen algunos tipos de estudios experimentales.

Pruebas de pilotes a escala natural

Algunas de las maneras de obtener curvas p-y con pruebas hechas a escala natural son:

 Medición directa de la presión del suelo en diferentes puntos de secciones transversales del pilote, a lo largo del eje vertical a través de medidores de presión.

El principal obstáculo de esta forma de obtener curvas p-y, es el hecho de que la presión del suelo, p, sólo se mide en el área de contacto entre el suelo y el medidor. Dicha presión se debe integrar alrededor de la sección transversal del pilote, pero las variaciones locales de presión son desconocidas, por lo que deben de adoptarse hipótesis razonables sobre la presión resultante. Lo anterior da lugar a una gran incertidumbre (16, 33).

Esta forma de medición ha sido utilizada por algunos investigadores (1, 24). Por ejemplo, Holloway *et al* (24) obtienen curvas p-y en arcillas rígidas a lo largo de un pilote de 15 pies (4.58 m) de largo y 3 pies (0.92 m) de diámetro. En su estudio comparan los resultados de obtener la resistencia última del suelo con 5 diferentes expresiones matemáticas simples aplicables a arcillas rígidas; concluyen que la fórmula sugerida por Matlock (31) es la que se acerca más a la realidad. Sus resultados se
muestran en la fig. 4.

Generalmente los desplazamientos laterales se miden con inclinómetros de alta precisión, instalados a lo largo del pilote. A partir de las mediciones obtenidas con éstos, se calculan por integración los desplazamientos.

ii) Otro procedimiento para obtener curvas p-y consiste en medir las deformaciones de flexión a lo largo del pilote a través de celdas de resistencia eléctrica ("straingauges"). A partir de un número suficiente de mediciones a lo largo del pilote, se obtienen los momentos flexionantes del pilote, M. Por doble integración y derivación se calculan los valores del desplazamiento, y la reacción por unidad de longitud, p, respectivamente, como sigue

$$y = \int \int \frac{M(x)}{YI} dx dx$$

$$p = \frac{d^2 M}{d x^2}$$

La rigidez flexionante del pilote, YI, se obtiene por métodos de calibración en laboratorio a través de

$$YI = \frac{M}{\Psi}$$

En donde la curvatura Y se determina midiendo las defor-

maciones flexionantes a lo largo del pilote.

Las mediciones de las deformaciones por flexión deben ser muy precisas para que la doble diferenciación pueda hacerse numéricamente; de otra manera debe ajustarse una función matemática continua a fin de obtener valores de p confiables. Por ejemplo, Reese y Welch (50) utilizan, en un trabajo enfocado a predecir curvas p-y en arcillas rígidas que se encuentren arriba del nivel freático, un polinomio de séptimo grado; sin embargo, Parker y Reese (38) no aproximan una función continua en su trabajo, sino que utilizan procedimientos numéricos (diferencias centrales y regla de Simpson) para encontrar los valores de p y de y.

Los datos que se presentan en la literatura sobre curvas p-yobtenidas de pruebas a escala natural se refieren exclusivamente a dos tipos de carga: estática de corta duración y cíclica. En pruebas del primer tipo la carga se aplica monótonamente. Las del segundo tipo se aplica cíclicamente con periodos promedio de carga de 15-20 segundos (11). Durante los primeros ciclos de carga las partículas del suelo en donde se encuentra hincado el pilote de prueba no se han reacomodado y las curvas p-y no se han ablandado, por lo que generalmente se utilizan las curvas p-y correspondientes a cargas estáticas para el diseño de pilotes que no estarán sometidos a numerosos ciclos de carga durante su vida útil, sino a pocos

ciclos aplicados a baja frecuencia. Por ejemplo, comúnmente se supone (49) que el suelo que circunda los duques de alba (diseñados para absorber la energía cinética de los barcos que chocan contra ellos) tienen un comportamiento intermedio entre estático y cíclico.

## Utilización de aparatos de medición in situ

Algunos investigadores (6, 12, 19) recomiendan para la obtención de curvas p-y el uso del presiómetro. Este aparato se basa en los esfuerzos y deformaciones que ocurren directamente en el suelo ante la acción de una presión inducida. Este criterio supone que el fenómeno de reacción lateral de un pilote es similar a la expansión de una cavidad en el suelo causada por el presiómetro. El método es totalmente empírico y discutible, pues no hay bases teóricas suficientes para considerar los resultados de estos instrumentos confiables para la determinación de curvas p-y. La reacción del suelo que circunda a un pilote cargado lateralmente es de diferente forma que la reacción del suelo alrededor de una cavidad que se expande simultáneamente en todas direcciones. Por otro lado, el efecto de la forma de la sección transversal y dimensiones del pilote no puede reproducirse fielmente con este tipo de aparatos en los que el comportamiento local del suelo tiene gran influencia. La alteración de la estructura del suelo local es un factor muy importante en los resultados obtenidos con este aparato.

Es deseable establecer, con número suficiente de casos, las relaciones entre las curvas p-y estimadas con este tipo de instrumentos y las determinadas con métodos más directos, como los explicados en los incisos anteriores.

## Pruebas de modelos a pequeña escala

El número de pruebas a pequeña escala que se encuentra en la literatura es reducido. La razón por la que no son muy empleadas las pruebas a pequeña escala es porque las curvas p-yobtenidas con ellas reproducen el efecto de la profundidad del pilote. Los resultados así obtenidos son menos confiables mientras más pequeño es el tamaño del espécimen probado.

Los tamaños y forma de medición que se han empleado en los experimentos hechos a pequeña escala son variados (8, 46); por ejemplo, se han probado pilotes hincados en arena, de diferentes tamaños, por ejemplo: de 40 cm de longitud (58), de 2.44 m (39), de 4 m (27), etc. De los resultados de estos experimentos se puede concluir que los pilotes más pequeños no reproducen fielmente las curvas p-y, mientras que los de mayor longitud (2.44 m y 4 m) sí dan resultados aceptables de curvas p-y para fines de diseño.

Resultados de campo combinados con resultados de laboratorio

Algunos investigadores correlacionan las curvas esfuerzo-de-

formación obtenidas de pruebas triaxiales en laboratorio con las curvas p-y obtenidas de experimentos con pilotes hechos a escala natural.

Los primeros en proponer tal tipo de correlación son McClelland y Focht (34), quienes realizan experimentos de pilotes a escala natural hincados en arcillas.

Basado en lo anterior, Matlock (31) propone expresiones matemáticas simples para calcular curvas p-y correspondientes a arcillas blandas saturadas. Para ello usa  $\bigcirc$  resultados de laboratorio y de pruebas de pilotes hechas a escala natural. Posteriormente varios investigadores han seguido este criterio para proponer expresiones matemáticas para obtener curvas p-y aplicables a distintos tipos de suelo (38, 47, 50, 54, 55, 57).

Este criterio, a la fecha, es bastante usado en la práctica. Su validez es mayor cuando se aplica a suelos cohesivos, de los cuales es posible obtener muestras inalteradas de gran calidad y, por lo tanto, mejor correlación entre los resultados de laboratorio y de campo.



Fig 2 Corte A-A. Distribución de presiones alrededor de un pilote, antes y después de aplicar la carga lateral (Reese y Welch, 1975)







Fig 4 Reacción última del suelo-vs-profundidad (Holloway et al, 1977)

# CAPITULO

#### INCERTIDUMBRE EN EL COMPORTAMIENTO DEL SUELO

#### 2.1 INTRODUCCION

Para el análisis de confiabilidad de un pilote sujeto a carga estática se adoptará un modelo constituido por dicho elemento estructural que recibe el empuje de un sistema de cargas laterales y que se apoya sobre un conjunto de resortes no lineales que representan la rigidez lateral del suelo circundante. Las propiedades mecánicas de los resortes citados se expresan en términos de sus curvas p-y, las que son inciertas como consecuencia tanto de la variabilidad espacial intrínseca de las propiedades mecánicas del suelo, como de las incertidumbres asociadas en la estimación estadística de dichas propiedades. En efecto, las pruebas de campo que se llevan a cabo para determinar las propiedades del suelo en la vecindad de un pilote no bastan para determinar distribuciones estadísticas de dichas propiedades; además, las propiedades de las curvas p-y no se obtienen directamente de los sondeos y pruebas de laboratorio usuales en la práctica, sino que se estiman por medio de modelos teóricos y relaciones semiempíricas a partir de propiedades básicas de muestras de suelo en pruebas de campo o de laboratorio. Al pasar de dichas propiedades básicas a rigideces laterales del suelo y al expresar éstas mediante curvas p-y de resortes de Winkler se introducen

incertidumbres adicionales como resultará obvio más adelante, las incertidumbres asociadas con las propiedades mecánicas *in situ*, así como con la relación entre éstas y las rigideces laterales del suelo son muy grandes en relación con las que pueden provenir de representar el medio continuo por un sistema de resortes de Winkler; por ello, las incertidumbres relacionadas con este último concepto se desprecian en este trabajo.

En este capítulo se desarrolla un criterio para establecer una descripción probabilista (primeros dos momentos) de la incertidumbre acerca de la forma y parámetros de las curvas p-ycorrespondientes a arcilla blanda saturada. Se eligen como variables aleatorias la resistencia última del suelo,  $p_u$ , y la tangente inicial del módulo de la reacción horizontal del suelo,  $E_i$ , ambas normalizadas respecto a los valores que adquieren de acuerdo con la expresión matemática que se adopte para representar las curvas p-y. En la fig. 5 se ilustra la variabilidad posible de los parámetros  $p_u$  y  $E_i$ .

La información estadística usualmente disponible respecto a los valores normalizados de  $p_u$  y  $E_i$  es escasa y por lo tanto insuficiente para definir las funciones de densidad de probabilidad (f.d.p.) directamente. Por otro lado, las pruebas hechas en modelos a pequeña escala y a escala natural proporcionan información indirecta sobre dichos parámetros. Dada la escasez de información directa disponible se propone el

empleo del método de Bayes para la estimación estadística de los parámetros elegidos como variables aleatorias.

El análisis bayesiano permite el uso de diversas fuentes de información (modelos teóricos, juicio ingenieril, datos directos e indirectos, etc.) en el establecimiento de modelos probabilísticos que tomen en cuenta tanto la incertidumbre asociada con la variabilidad de los procesos naturales como la que proviene de nuestro conocimiento imperfecto sobre ellos.

2.2 ELECCION DE LAS VARIABLES ALEATORIAS SIGNIFICATIVAS

La forma de las curvas p-y puede definirse mediante expresiones matemáticas simples en las que intervienen parámetros como los mencionados en el capítulo anterior.

En este trabajo se eligen como variables aleatorias los valores normalizados de  $p_u$  y de  $E_i$  porque están muy relacionados con las ordenadas de las curvas p-y en sus diferentes rangos y por considerar que son los parámetros cuya variabilidad influye más significativamente en la incertidumbre acerca de la respuesta del pilote (45). Dado que la incertidumbre en las propiedades mecánicas del pilote es bastante menor, éstas se consideran parámetros deterministas.

La resistencia última del suelo, p<sub>u</sub>, y la tangente inicial

del módulo del suelo, E<sub>i</sub>, son funciones de la profundidad y dependen de i) propiedades del suelo (incluyendo efectos de hincado del pilote en el suelo circundante), ii) características geométricas del pilote, iii) tipo de carga aplicada y iv) forma de obtención de los valores p<sub>u</sub> y E<sub>i</sub>.

Existen diversos métodos para valuar la resistencia última del suelo, p<sub>u</sub>, ante la acción lateral de un pilote en función de las propiedades mecánicas del material. Algunos son del tipo analítico y se basan en las hipótesis de que el suelo es homogéneo e isótropo con comportamiento rígido-plástico; otros utilizan la técnica del elemento finito (13, 42, 60); algunos más son procedimientos semi-empíricos basados en modelos simples de falla del suelo, como el que supone falla del terreno superficial en forma de cuña, y el que idealiza el movimiento del terreno alrededor del pilote como un movimiento de bloques de suelo (23, 44, 54).

En la literatura se encuentran diferentes expresiones matemáticas simples para valuar p<sub>u</sub> (23, 31). Algunas de las fórmulas aplicables a arcillas son:

$$p_u = K_c c d$$
 (Hansen)

 $p_{\mu} = 2 \eta' c d + \epsilon x$  (Hays)

 $p_u = (3 + \frac{\gamma_m x}{c} + \frac{0.5x}{d}) c d$ 

(Matlock)

$$p_u = (\gamma_m x + 2 c)d$$
 (Rankine)

$$p_u = (3 + \frac{\gamma_m x}{c} + \frac{2.83x}{b}) c d$$
 (Reese)

Aquí,  $\gamma_m$  representa el peso volumétrico del suelo in situ, c la resistencia al esfuerzo cortante a la profundidad x, d el diámetro del pilote,  $K_c$  el coeficiente de presión lateral de tierra, n' un factor de reducción de la resistencia del suelo y  $\varepsilon$  un coeficiente que es función de la reacción del suelo. En la fig. 4 se comparan los resultados de aplicar estas fórmulas a un caso específico (24). Las diferencias son notorias. En consecuencia, la distribución de las desviaciones de los valores observados de p<sub>u</sub> respecto a los valores calculados,  $p_{u_c}$ , dependerán significativamente de la expresión que se adopte. En lo que sigue se llama  $\beta_1$  a la relación  $p_u/p_{u_c}$ .

En la literatura también se encuentran diferentes criterios para estimar el módulo de la reacción lateral del suelo, (27, 47, 50, 52, 56). Algunas de las expresiones propuestas son las siguientes:

$$E = k x^n \mu$$

(Kubo)

$$E = kx^{n}$$

(Reese y Cox)

$$E = E (x = 0) + k x$$
 (Reese y Welch)

(Terzaghi)

En estas expresiones, x es la profundidad, y el desplazamiento lateral, n y m son coeficientes que adquieren distintos valores según el tipo de suelo, y k es el gradiente del módulo de la reacción horizontal del suelo.

 $\mathbf{E} = \mathbf{x}$ 

Igual que para  $p_u$ , la distribución de las desviaciones de los valores observados  $E_i$ , respecto a los calculados,  $E_i$ , depende del criterio adoptado. En lo que sigue se llama  $\beta_2$  a la relación  $E_i/E_i$ , y B al vector que contiene los valores  $\beta_1$  y  $\beta_2$ .

Rigurosamente, en la incertidumbre de las curvas p-y contribuyen factores tales como errores de medición, criterios para ajuste de curvas, imprecisión en aparatos de medición, errores humanos, etc.; sin embargo, en lo que sigue no se tratan éstos como variables aleatorias, por considerar que la variabilidad de  $\beta_1$  y  $\beta_2$  contribuye mucho más en la incertidumbre de la respuesta del pilote.

# 2.3 MODELOS PROBABILISTAS Y CRITERIOS DE ESTIMACION DE $\beta_1$ Y $\beta_2$

Los primeros dos momentos de  $\beta_1$  y  $\beta_2$  se estimarán dentro de

un marco bayesiano. En la fig. 6 se presentan en forma esquemática, mediante un diagrama de bloques, los pasos que se proponen en esta tesis para obtener la descripción probabilista de estos parámetros. Como se indica en tal figura, el teorema de Bayes se aplica secuencialmente durante el análisis. Las variables bayesianas en cada caso son distintas. En el apéndice A se presentan algunos conceptos básicos del análisis bayesiano.

A fin de estimar las distribuciones de las desviaciones de  $p_u$ y  $E_i$  con respecto a  $p_{u_c}$  y  $E_i$  para un tipo de suelo dado, se toma en cuenta lo siguiente:

 i) Incertidumbre en el criterio de cálculo de p<sub>uc</sub> y E<sub>ic</sub>, determinada a partir de los resultados de pruebas en modelos a pequeña escala.

ii) Variabilidad de las propiedades del suelo.

iii) Discrepancia entre resultados obtenidos de modelos a pequeña escala y los obtenidos de pruebas hechas a escala natural.

A esto se le incorpora la información directa e indirecta de observaciones hechas en pilotes a escala natural.

Debido a que la variabilidad intrínseca de las propiedades

de los suelos es muy grande comparada con la debida a la imprecisión de las pruebas de laboratorio o *in situ* (29, 59); y a que no existen razones de peso para decir que las curvas p-y, obtenidas de pruebas de campo a escala natural hechas sobre pilotes cargados lateralmente presentan mayor variabilidad a una profundidad que a otra, en este estudio se considera que la función de distribución de probabilidades de B es independiente de la profundidad.

En lo que sigue se encuentra una estimación estadística de los parámetros de la función de distribución de probabilidades (f.d.p.) de B suponiéndola normal y lognormal, respectivamente.

Sean  $r_1$  y  $r_2$  dos variables adimensionales. Para el caso en que B tiene distribución normal éstas son iguales a las relaciones de los valores de  $p_u$  y  $E_i$  obtenidos de mediciones hechas en modelos a pequeña escala, divididos entre los valores calculados cuando se conoce el vector de propiedades del suelo s = { $s_1 \ s_2 \ s_3 \ \dots \ s_n$ }<sup>T</sup>:

$$r_{1} = \frac{p_{u}(s)}{p_{u_{c}}(s)}$$
,  $r_{2} = \frac{E_{i}(s)}{E_{i_{c}}(s)}$ , (2.1 a)

Para el caso en que B se supone con distribución lognormal,  $r_1 y r_2$  se definen como los logaritmos de tales relaciones; o sea,

.42

$$r_{1} = ln \frac{p_{u}(s)}{p_{u_{c}}(s)}, r_{2} = ln \frac{E_{i}(s)}{E_{i_{c}}(s)}$$
 (2.1 b)

La dispersión de  $r_1$  y  $r_2$  representa la incertidumbre asociada al criterio de cálculo de  $p_{u_c}$  y  $E_{i_c}$ . Si se tuvieran suficientes datos de pruebas hechas a pequeña escala, las f.d.p. de  $r_1$  y  $r_2$  podrían inferirse directamente; sin embargo, la información que se encuentra en la literatura no basta para ello (46, 58, 38), por lo que se propone usar las técnicas bayesianas descritas más adelante.

ii) La variabilidad de las propiedades del suelo se toma en cuenta mediante los factores  $\gamma_i$ , i = 1, 2. Estos se definen enseguida para las formas de distribución gaussiana y lognormal de B, respectivamente

$$\gamma_1 = \frac{p_{u_c}(s)}{p_{u_c}(s^*)}$$
,  $\gamma_2 = \frac{E_{i_c}(s)}{E_{i_c}(s^*)}$ ; (2.2 a)

$$\gamma_{1} = ln \frac{P_{u_{c}}(s)}{P_{u_{c}}(s^{*})}, \quad \gamma_{2} = ln \frac{E_{i_{c}}(s)}{E_{i_{c}}(s^{*})}$$
 (2.2 b)

En estas ecuaciones s representa el vector de valores reales de las propiedades mecánicas básicas del suelo y s\* sus valores nominales (valores medios, valores asociados a una probabilidad dada de excedencia, según el

caso) usados en un análisis determinista convencional. El modelo probabilista que describa la incertidumbre asociada a s debe tomar en cuenta principalmente la variabilidad intrínseca en las propiedades del suelo (29, 59) así como errores de medición, influencia del muestreo y tipo de pruebas, efectos de hincado del pilote, correlación espacial entre distintos puntos del terreno y correlación entre distintas propiedades del suelo (14, 29).

Los factores  $\beta_1$  y  $\beta_2$ , definidos antes, se obtienen como . sigue para el caso de distribución normal

$$(\beta_i) = \gamma_i r_i$$
,  $i = 1, 2$  (2.3 a)

y para el caso de distribución lognormal

$$(\beta_{i})_{IN} = \gamma_{i} + r_{i}$$
,  $i = 1, 2$  (2.3 b)

Los subíndices N y LN indican que B tiene una f.d.p. normal o lognormal, respectivamente.

Los valores medios y las covarianzas están dadas por

$$(\overline{\beta}_{i})_{N} = \overline{\gamma}_{i} \overline{r}_{i}$$
, (2.4 a)

$$(\operatorname{cov} (\beta_{i}, \beta_{j}))_{N} = \operatorname{cov} (\gamma_{i}, \gamma_{j}) \operatorname{cov} (r_{i}, r_{j}) + \overline{\gamma}_{i}\overline{\gamma}_{j} \operatorname{cov} (r_{i}, r_{j}) + \overline{r}_{i}\overline{r}_{j} \operatorname{cov} (\gamma_{i}, \gamma_{j}) ,$$
 (2.4 b)

$$(\overline{\beta}_{i})_{LN} = \overline{\gamma}_{i} + \overline{r}_{i}$$
, (2.5 a)

 $(cov (\beta_{i}, \beta_{j}))_{LN} = cov (\gamma_{i}, \gamma_{j}) + cov (r_{i}, r_{j})$ , (2.5 b)

$$i = 1, 2$$
  
 $j = 1, 2$ 

Aquí se supone que  $\gamma_1$  está correlacionada con  $\gamma_2$ , y que  $r_1$  lo está con  $r_2$ , pero las  $r_i$ 's son independientes de las  $\gamma_i$ 's. Si se considera que  $r_i$  es independiente de  $r_j$ , para i  $\neq$  j la covarianza entre  $\beta_i$  y  $\beta_j$  para el caso de distribuciones normales resulta igual a

$$(cov (\beta_i, \beta_j))_N = \overline{r}_i \overline{r}_j cov (\gamma_i, \gamma_j) , i \neq j$$

por lo que en este caso el coeficiente de correlación es igual a

$$(\rho_{\beta_{i}\beta_{j}})_{N} = \frac{\overline{r_{i}} \ \overline{r_{j}} \ cov \ (\gamma_{i}, \gamma_{j})}{(var \ \beta_{i} \ var \ \beta_{j})} , \quad i \neq j$$

Para el caso de distribución lognormal, si se considera que  $r_i$  es independiente de  $r_j$ , para i  $\neq j$ , se obtiene

$$\operatorname{cov} (\beta_{i}, \beta_{j})_{LN} = \operatorname{cov} (\gamma_{i}, \gamma_{j}) , \quad i \neq j$$

el respectivo coeficiente de correlación es como sigue

$$(\rho_{\beta_{i}\beta_{j}})_{LN} = \frac{cov (\gamma_{i}, \gamma_{j})}{(var \beta_{i} var \beta_{j})}, \quad i \neq j$$

Para el caso en el que i = j las ecuaciones 2.4 b y 2.5 b se convierten en

$$(\operatorname{var} \beta_{i})_{N} = \sigma_{\gamma_{i}}^{2} \sigma_{r_{i}}^{2} + \overline{\gamma}_{i}^{2} \sigma_{r_{i}}^{2} + \overline{r}_{i}^{2} \sigma_{\gamma_{i}}^{2}$$
(2.6)

$$(\operatorname{var} \beta_{i})_{iN} = \sigma_{\gamma_{i}}^{2} + \sigma_{r_{i}}^{2}$$
(2.7)

Los momentos de las distribuciones de y se pueden obtener a partir de las aproximaciones de primer y segundo orden propuestas por Benjamin y Cornell (7), en donde las variables aleatorias son las propiedades del suelo,

s. Entonces,

...C

СC

23

.••>

Ϋ.

$$\overline{\gamma}_{i} = \gamma_{i}(\overline{s}) + \frac{1}{2} \sum_{m n}^{\Sigma} \frac{\partial^{2} \gamma_{i}(s)}{\partial s_{m} \partial s_{m}} | cov (s_{m}, s_{n})$$

$$\operatorname{cov}(\gamma_{i}, \gamma_{j}) = \sum_{m \ n} \frac{\partial_{\gamma_{i}}(s)}{\partial s_{m}} \left| \frac{\partial_{\gamma_{j}}(s)}{\partial s_{n}} \right| = \frac{\operatorname{cov}(s_{m}, s_{n})}{\operatorname{cov}(s_{m}, s_{n})}$$

La covarianza entre  $\gamma_i$  y  $\gamma_j$  puede referirse a diversas propiedades del suelo en un mismo punto o en puntos distintos o a la misma propiedad en puntos distintos.

Si en las ecs. 2.4 a y 2.6 se consideran  $\overline{r}_i$  y  $\sigma_{r_i}$  como variables aleatorias y se aplican nuevamente las aproximaciones de Benjamin y Cornell para los primeros dos momentos, se obtiene

$$(\beta_i)_N = \overline{\gamma}_i \overline{r}_i$$
 (2.8 a)

$$(\overline{\sigma_{\beta_{i}}^{2}})_{N} = \sigma_{\gamma_{i}}^{2} \overline{\sigma_{r_{i}}^{2}} + \overline{\gamma_{i}^{2}} \overline{\sigma_{r_{i}}^{2}} + \overline{\overline{r}_{i}^{2}} \sigma_{\gamma_{i}}^{2} + \frac{1}{2} \left[\frac{\partial^{2}\sigma_{\beta}^{2}}{\partial\sigma_{r_{i}}^{2}} \operatorname{var} \sigma_{r_{i}}\right]$$
$$+ \frac{\partial^{2}\sigma_{\beta_{i}}^{2}}{\partial\overline{r_{i}^{2}}} \operatorname{var} \overline{r_{i}} + 2 \frac{\partial^{2}\sigma_{\beta_{i}}^{2}}{\partial\overline{r_{i}} \partial\sigma_{r_{i}}} \operatorname{cov} (\overline{r_{i}}, \sigma_{r_{i}}) \left[\frac{\partial}{\sigma_{r_{i}}} \overline{\overline{r_{i}}}\right] (2.8 \text{ b})$$

$$= \sigma_{\gamma_{i}}^{2} \overline{\sigma_{r_{i}}^{2}} + \overline{\gamma_{i}}^{2} \overline{\sigma_{r_{i}}^{2}} + \overline{\overline{r}_{i}}^{2} \sigma_{\gamma_{i}}^{2} + \sigma_{\gamma_{i}}^{2} \operatorname{var} \overline{r_{i}} + (\sigma_{\gamma_{i}}^{2} + \overline{\gamma}_{i}^{2}) \operatorname{var} \sigma_{r_{i}}$$

$$(\text{var}(\overline{\beta}_{i}))_{N} = \overline{\gamma}_{i}^{2} \text{ var}(\overline{r}_{i})$$
 (2.8 c)

$$(\operatorname{var} (\sigma_{\beta_{i}}^{2}))_{N} = (\frac{\partial \sigma_{\beta_{i}}^{2}}{\partial \sigma_{r_{i}}})^{2} \operatorname{var} \sigma_{r_{i}} + (\frac{\partial \sigma_{\beta_{i}}^{2}}{\partial \overline{r_{i}}})^{2} \operatorname{var} \overline{r_{i}} + (\frac{\partial \sigma_{\beta_{i}}^{2}}{\partial \overline{r_{i}}$$

$$= 4\overline{\sigma}_{r_{i}}^{2} (\sigma_{\gamma_{i}}^{2} + \overline{\gamma}_{i}^{2}) \operatorname{var} \sigma_{r_{i}} + 4 \sigma_{\gamma_{i}}^{4} \overline{\overline{r}}_{i}^{2} \operatorname{var} \overline{r}_{i}$$

$$+ 8 \sigma_{\gamma_{i}}^{2} \overline{\sigma}_{r_{i}} \overline{\overline{r}}_{i} (\sigma_{\gamma_{i}}^{2} + \overline{\gamma}_{i}^{2}) \operatorname{cov} (\overline{r}_{i}, \sigma_{r_{i}})$$

$$(2.8 d)$$

Las correspondientes al caso con distribución logarítmico-normal resultan como sigue

$$(\overline{\overline{\beta}}_{i})_{LN} = \overline{\gamma}_{i} + \overline{\overline{r}}_{i}$$
 (2.9 a)

$$(E(\sigma_{\beta_{i}}^{2}))_{LN} = \sigma_{\gamma_{i}}^{2} + \overline{\sigma}_{r_{i}}^{2} + \frac{1}{2} \frac{\partial^{2} \sigma_{\beta_{i}}^{2}}{\partial \sigma_{r_{i}}^{2}} \text{ var } \sigma_{r_{i}} |_{\overline{\sigma}_{r_{i}}}$$

$$= \sigma_{\gamma_{i}}^{2} + \overline{\sigma}_{r_{i}}^{2} + \text{ var } \sigma_{r_{i}}$$

$$(2.9 \text{ b})$$

$$\left(\sigma_{\overline{\beta}_{i}}^{2}\right)_{LN} = \sigma_{\overline{r}_{i}}^{2}$$
(2.9 c)

$$(\sigma_{\sigma_{\beta_{i}}^{2}}^{2})_{LN} = (\frac{\partial \sigma_{\beta_{i}}^{2}}{\partial \sigma_{r_{i}}})^{2} \operatorname{var} \sigma_{r_{i}} |_{\overline{\sigma}_{r_{i}}} = 4\overline{\sigma}^{2} \operatorname{var} \sigma_{r_{i}}$$
(2.9 d)

iii) Las discrepancias entre las condiciones de campo y de laboratorio se toman en cuenta suponiendo que la media de  $\beta_i$  en el campo,  $\overline{\beta}_{iC}$ , es igual a la correspondiente media de  $\beta_i$  en el laboratorio,  $\overline{\beta}_{iL}$ , multiplicada por un factor  $\alpha'_i$ . Las varianzas de  $\beta_i$  en campo,  $\sigma^2_{\beta_iC}$ , y en laboratorio,  $\sigma^2_{\beta_iL}$ , se relacionan mediante el factor  $\alpha''_i$ . Es-

 $\sigma_{\beta_{iC}}^{2} = \alpha^{"} \sigma_{\beta_{iL}}^{2}$ (2.10 Ь) En estas relaciones los subíndices C y L representan las condiciones de campo y laboratorio respectivamente. Los momentos de las f.d.p. de estas variables están dados por  $\overline{\overline{\beta}}_{iC} = \overline{\alpha}_{i}' \overline{\overline{\beta}}_{iL}$ (2.11 a)  $\sigma_{\overline{\beta}_{iC}}^{2} = \sigma_{\alpha_{i}}^{2} \sigma_{\overline{\beta}_{iL}}^{2} + \overline{\alpha}_{i}^{2} \sigma_{\overline{\beta}_{iL}}^{2} + \overline{\beta}_{iL}^{2} \sigma_{\alpha_{i}}^{2}$ (2.11 b)  $E(\sigma_{\beta_{iC}}^{2}) = \overline{\alpha}_{i}^{"} \cdot E(\sigma_{\beta_{iL}}^{2})$ (2.11 c) var  $(\sigma_{\beta_{iC}}^2) = var (\alpha_i^{"}) var (\sigma_{\beta_{iL}}^2) + \overline{\alpha}_i^{"} var (\sigma_{\beta_{iL}}^2)$ 

+  $(\overline{\sigma_{\beta_{1L}}^2})^2$  var  $(\alpha_{i}^{"})$  (2.11 d)

Las medias y varianzas de  $\alpha'_i$  y  $\alpha''_i$  las deben proporcionar personas con experiencia en esta materia. Para el caso en que ambos grupos de propiedades (pruebas a escala natural y pequeña escala) tengan la misma f.d.p., las esperanzas de  $\alpha'_i$  y  $\alpha''_i$  son unitarias y sus variancias

49

(2.10 a).

to es

 $\overline{\beta}_{iC} = \alpha' \quad \overline{\beta}_{iL}$ 

son nulas.

En la siguiente sección se formula el caso de la distribución bayesiana conjunta para las condiciones de laboratorio.

2.4 ESTIMACION BAYESIANA DE LOS PARAMETROS DE LA DISTRIBU-CION DE  $\beta_{it}$ 

Como se discutió antes, el criterio bayesiano combina juicio profesional, resultados de pruebas de laboratorio, a pequeña escala y a escala natural, a fin de estimar la incertidumbre asociada a los parámetros de la f.d.p. de B\*. En la inferencia bayesiana, la distribución a priori representa lo que se conoce acerca de los parámetros inciertos antes de que se tengan datos de observaciones. A ésta se le incorporan datos observados a fin de tener un mejor conocimiento de los mencionados parámetros y se obtiene una f.d.p. a posteriori.

La aplicación del teorema de Bayes para el caso que nos interesa se puede resumir en la siguiente ecuación:

 $f_{\mu,\sigma}^{"}$  ( $\tilde{m}, \tilde{s}$ ) = N L ( $\tilde{m}, \tilde{s} \mid x_1, x_2, \ldots, x_n$ )  $f_{\mu,\sigma}^{'}$  ( $\tilde{m}, \tilde{s}$ ) (2.12)

\*Por simplicidad de notación, los subíndices C y L se omiten cuando no hay posibilidad de confusión.

En esta ecuación  $\mu$  y  $\sigma$  son parámetros inciertos cuya distribución se busca (en este caso, medias y desviaciones estándar de la distribución de  $\beta_i$ ), i = 1, 2; m, s son variables mudas; N es una constante normalizadora; x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> es el conjunto de valores de las variables que pueden observarse o deducirse de mediciones; en este caso, son valores de  $\beta_1$  y  $\beta_2$ ; n es el número de observaciones; L la función de versimilitud de m, s, dado que se observaron los valores x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>; y f', f" las f.d.p. inicial y final de  $\mu$ ,  $\sigma$ .

En lo que sigue los superíndices ' y " se relacionan con funciones de distribución a priori y a posteriori, respectivamente.

Para elegir una familia, F, de funciones de distribución a priori es deseable que se cumplan los siguientes requisitos:

- a) Dicha familia, F, debe ser tal que sea razonablemente fácil determinar la f.d.p. a posteriori que resulta de una f.d.p. a priori y una muestra dada.
- b) Si la f.d.p. a priori es un miembro de F, la f.d.p. a posteriori también debe pertenecer a F. En este caso a la primera se le llama f.d.p. a priori conjugada de la función de verosimilitud, L.

Raiffa y Schlaifer (43) presentan familias de f.d.p. conjugadas naturales de algunos procesos comunes (Bernoulli, Poisson, Rectangular, Normal y Multinormal).

En esta tesis se supone que la función de verosimilitud, L, es de tipo gaussiano. Para que se cumplan los incisos a y b antes mencionados la f.d.p. a priori más conveniente debe de ser Normal-Gamma, de modo que la f.d.p. a posteriori resulte también tipo Normal-Gamma.

La f.d.p. Normal-Gamma r-dimensional con parámetros (m, v, n,  $\nu$ ) está dada por el producto de una distribución Normal con parámetros (m, hn) y una distribución Gamma-2 con parámetros (v,  $\nu$ ), es decir,

$$f_{N\gamma}^{(r)}(\mu \mid m, v, \eta, v) = f_{N}^{(r)}(\mu \mid m, h\eta) f_{\gamma 2}^{(h \mid v, v)} \ll (2.13 a)$$

 $e^{-0.5h (\mu - m)^T \eta (\mu - m)} h^{0.5o} e^{0.5vvh} h^{0.5v-1}$  (2.13 b)

Aquí m es un vector que contiene los valores medios de las variables aleatorias;  $h\eta = H$  es la matriz de precisión o inversa de la matriz de covarianzas. En esta última expresión h es un escalar llamado precisión media,  $h \equiv |H|^{1/r}$ ;  $\eta$  es una matriz igual a  $\eta = H/h$  conocida como precisión relativa, cuyo determinante es unitario, y o es el rango\* de  $\eta$ .

\*El rango es el número de vectores o columnas linealmente independientes entre sí. Los parámetros v y v representan lo siguiente: v está relacionada con el primer momento de la f.d.p. de la variable aleatoria, en este caso v = 1/E(h); y v lo está con el primer y segundo momentos, o sea v =  $2E^2(h)/var$  (h).

En el apéndice B de esta tesis se trata más extensamente los conceptos relacionados con las f.d.p. Multinormal y Gamma-2.

La función de verosimilitud, para este caso, en el que se supone n conocida, es tipo gaussiano. Está dada por

$$L(\mu, h \mid m_o, n_o, v_o, v_o)$$

$$e^{-0.5h\nu_{0}\nu_{0}-0.5h(m_{0}-\mu)^{T}n_{0}(m_{0}-\mu)}h^{0.5(r+\nu_{0})}$$
(2.14)

En donde las variables con subíndice "o" representan las características de las observaciones. Están dadas por

$$m_{o} = \frac{1}{n} \Sigma x^{j}$$
 (2.15 a)

$$n_{0} = n\eta$$
 (2.15 b)

$$v_0 = r(n - 1)$$
 (2.15 c)

$$v_{o} = \frac{1}{v_{o}} \Sigma (x^{j} - m_{o})^{T} \eta (x^{j} - m_{o}) \quad (= 0 \text{ si } v_{o} = 0) \quad (2.15 \text{ d})$$

Aquí x<sup>]</sup> representa el j-ésimo vector observado que contiene

r variables; n es el número de observaciones hechas;  $\eta$  es la matriz de precisión relativa (que se supone conocida). A n<sub>o</sub> se le llama tamaño efectivo de la muestra.

Si la distribución inicial de ( $\mu$ , h) es Normal-Gamma con parámetros (m', v', n', v') donde n' es de rango o', y las observaciones tienen estadísticas (m<sub>o</sub>, v<sub>o</sub>, n<sub>o</sub>, v<sub>o</sub>) donde n<sub>o</sub> es de rango o , la distribución final de ( $\mu$ , h) es Normal-Gamma con parámetros (Raiffa y Schlaifer, 1961):

$$m'' = (n' + n_0)^{-1} (n'm' + n_0 m_0), \qquad (2.16 a)$$

$$n'' = n' + n_{o}$$
, (2.16 b)

$$v'' = \frac{(v'v' + m'^{T}n'm') + (v_{o}v_{o} + m_{o}^{T}n_{o}m_{o}) - m''^{T}n''m''}{(v' + o') + (v_{o} + o_{o}) - o''} , \quad (2.16 \text{ c})$$

$$v'' = (v' + o') + (v_0 + o_0) - o'',$$
 (2.16 d)

en que o" es el rango de n".

Estos parámetros están relacionados con los valores centrales y las medidas de dispersión como sigue

$$E''(\mu) = m''$$
 (2.17 a)

$$(\sigma_{\mu}^{2})^{n} = n^{n-1} v^{n} \frac{v^{n}}{v^{n-2}} , \qquad (2.17 b)$$

E"(h) = 
$$\frac{1}{v''}$$
, en donde h =  $\frac{1}{\sigma^2}$  (2.17 c)  
 $(\sigma_h^2)'' = \frac{2}{v''v^{2''}}$ .

Las distribuciones marginales de la media y de la desviación estándar se encuentran a partir de

$$f_{\sigma}^{"}(\tilde{s}) = \int_{0}^{\infty} f_{\mu, \sigma}^{"}(\tilde{m}, \tilde{s}) d \tilde{m}$$

La f.d.p. marginal de  $\mu$  resulta de la familia t de Student y la f.d.p. marginal de  $\sigma$  de tipo  $\chi^2$ . Sus estadísticas, para el caso unidimensional (o sea el caso en el que se considere la distribución de  $\beta_i$  independiente de  $\beta_j$ ,  $i \neq j$ ) son iguales a

$$\overline{\mu} = E(\mu) = m''$$
 (2.18 a)

$$\sigma_{\mu}^{2} = s''^{2} \frac{n'' - 1}{n''(n'' - 2)}$$
 (2.18 b)

$$\overline{\sigma} = E(\sigma) = s''^2 \sqrt{\frac{n''-1}{2}} \frac{\Gamma[(n''-3)/2]}{\Gamma[(n''-2)/2]} , n'' > 3 \quad (2.18 \text{ c})$$

$$\sigma_{\sigma}^{2} = s''^{2} \frac{n'' - 1}{n'' - 4} - E^{2}(\sigma) \qquad (2.18 \text{ d})$$

En que l'representa la función gamma; y m", s" y n" son pa-

rámetros (media, varianza y tamaño) de la distribución a posteriori, normal gamma, de ( $\mu$ ,  $\sigma$ ).

La distribución incondicional de la variable aleatoria B, para el caso r-dimensional, es igual a

$$f_{B}(\beta) = \int_{-\infty}^{\infty} \int_{0}^{\infty} f_{N}^{(r)} (\tilde{\beta} | \tilde{\mu}, \tilde{h}_{\eta})$$

$$f_{N\gamma}^{(r)} (\tilde{\mu}, \tilde{h} | m'', v'', n'', v'') d\tilde{h} d\tilde{\mu} \qquad (2.19)$$

Esta distribución puede ser interpretada como un promedio pesado de todas las posibles distribuciones de B asociadas con diferentes valores de sus parámetros ( $\mu$ , h). (Este es el mismo sentido que tiene el Teorema de Probabilidad Total).

La distribución  $f_B(\beta)$  así obtenida es, en este caso, una f.d.p. de Student. Sus primeros dos momentos son como sigue

$$E(B) = m''$$
 (2.20 a)

$$\Sigma_{\rm B} = \left(\frac{u}{v''}\right)^{-1} \frac{v''}{v''-2} , \quad v'' > 2$$
 (2.20 b)

donde  $n_u^{-1} = n''^{-1} + \eta^{-1}$ .

Hasta aquí se ha presentado una visión global sobre la aplicación del Teorema de Bayes. Enseguida se propone su aplicación en varias etapas de esta tesis: 1) Para encontrar la dispersión de  $r_i$ , i = 1, 2 mencionada en el inciso 3.i) de este capítulo. En este caso la función de probabilidad *a priori* se supone *di{usa* como indicación de la ignorancia que se tiene inicialmente sobre el valor de la variable aleatoria. Esto implica que la varianza de la f.d.p. es relativamente grande y que n' y v' son casi nulas.

Cuando la información a priori es difusa la distribución a posteriori resulta igual a la función de verosimilitud multiplicada por una constante. En este caso los datos observados son los correspondientes a pruebas hechas a pequeña escala.

 La segunda aplicación del Teorema de Bayes incorpora los datos de mediciones hechas en pruebas de pilotes a escala natural (sobre el mismo tipo de suelo).

En esta sección los valores de los parámetros correspondientes a la distribución *a priori* se obtienen al aplicar las ecs. 2.11 y los datos de observaciones corresponden a mediciones hechas en campo, las cuales no forman parejas de valores ( $p_u$ ,  $E_i$ ). Es decir, en este grupo de observaciones  $p_u$  y  $E_i$  no corresponden a una misma curva p-y, sino a curvas que se encuentran a diferentes profundidades.

3) El Teorema de Bayes nuevamente se usa para incorporar los

datos correspondientes a las parejas de valores  $p_u \ y \ E_i$  de mediciones hechas en pruebas a escala natural. En esta sección se toma en cuenta la correlación entre los parámetros  $\beta_i$  observados. Es decir, se trabaja con funciones de distribución conjunta de  $\beta_1$  y  $\beta_2$ . En este inciso la aplicación de las ecs. 2.16 es directa.

4) Por último se aplican las ecs. 2.12-2.18, para incorporar a la información resultante del inciso anterior los resultados de pruebas hechas a escala natural, en donde la carga lateral y el desplazamiento se miden al nivel del terreno. La actualización de la información no es directa en este caso, porque los datos observados no son las variables aleatorias  $\beta_1$  y  $\beta_2$ , sino que son mediciones de la carga aplicada lateralmente, P, y del desplazamiento en la cabeza del pilote,  $y_1$ . Por ello, se propone el siguiente tratamiento para poder manejar esta información indirecta:

Según la ec. 3.14 del capítulo 3, el vector de esperanzas de los desplazamientos laterales de un pilote sujeto a cargas horizontales estáticas, está dado por:

 $E(y) = \hat{y} + FQ - F\overline{B}H\Delta_1 + FA'H\Delta_1 \qquad (2.21)$ 

La notación correspondiente se presenta también en el capítulo 3.

La ec. 2.21 puede expresarse como sigue

$$E(y) = \hat{y} + FQ - F\overline{B}X + FA'X$$

En que  $X = H\Delta_1$ 

El primer elemento del vector de esperanzas de y, correspondiente a la media del desplazamiento en la cabeza del pilote,  $E(y_1)$ , es igual a

$$E(y_1) = \hat{y}_1 + \sum_{j} F_{1j} Q_j - \sum_{j} F_{1j} \overline{B}_{i,jj} X_j + \sum_{j} F_{1j} A'_{jj} X_j$$

En donde, según la ec. 3.14

$$A_{jj} = L_{jj}$$
 var  $B_{i,jj}$ ,  $i = 1, 2$ 

Suponiendo  $\overline{B}_{i,jj} = \overline{\beta}_i$  y var  $B_{i,jj} = var \beta_i$ , es decir, que tanto la media como la varianza de los parámetros  $\beta_i$ , i = 1, 2 se consideran iguales a lo largo del pilote, se obtiene

$$E(\mathcal{Y}_{1}) = \hat{\mathcal{Y}}_{1} + \sum_{j=1}^{n} F_{1j} Q_{j} - \overline{\beta}_{i} \sum_{j=1}^{n} F_{1j} X_{j}$$
  
+ var  $\beta_{i} \sum_{j=1}^{n} F_{1j} L_{jj} X_{j}$ 

o sea

$$E(y_1) = a' + c'\overline{\beta}_i + e' var \beta_i$$
,  $i = 1, 2$  (2.22)

El valor de i es igual a 1 si el desplazamiento  $\hat{y}$  es tal que se encuentra dentro del intervalo no-lineal de la curva p-y correspondiente, y es igual a 2 si  $\hat{y}$  se encuentra dentro del intervalo lineal.

En la ec. 2.22

$$\mathbf{a'} = \hat{\mathbf{y}}_1 + \sum_{j=1}^n \mathbf{F}_{1j} \mathbf{Q}_j$$

 $c' = \sum_{j=1}^{n} F_{1j}X_{j}$ 

 $e' = \sum_{j=1}^{n} F_{1j}L_{j}X_{j}$ 

n = número de resortes

Del mismo modo se trata la varianza del desplazamiento en la cabeza del pilote. Se parte de la ec. 3.18 que es la siguiente

$$\Sigma_{\mathbf{v}} = \mathbf{F}\mathbf{U}\mathbf{F} - \mathbf{F}\mathbf{V}\mathbf{N}^{\mathrm{T}} - \mathbf{N}\mathbf{W}\mathbf{F} + \mathbf{N}\mathbf{Z}\mathbf{N}^{\mathrm{T}} + \mathbf{R}\mathbf{O}\mathbf{R}^{\mathrm{T}}$$

La notación correspondiente también se presenta en el capítulo III.

Para el primer elemento de la matriz de covarianzas se tiene

$$var y_{1} = \sum_{j=1}^{n} (F_{1j}U_{jj}F_{j1} - F_{1j}V_{jj}N_{j1}^{T} - N_{1j}W_{jj}F_{j1} + N_{1j}Z_{jj}N_{j1}^{T} + R_{1j}^{T}O_{jj}R_{j1}^{T}) var B_{i,jj}$$

Si se considera que la varianza de B<sub>i</sub> es la misma a lo largo del pilote, se tiene

var 
$$B_{i,jj} = var \beta_i$$
,  $i = 1, 2$   
 $j = 1, 2, 3... r$ 

Llamando

$$h' = \sum_{j=1}^{n} (F_{1j}U_{jj}F_{j1} - F_{1j}V_{jj}N_{j1}^{T} - N_{1j}W_{jj}F_{j1}$$
$$+ N_{1j}Z_{jj}N_{j1}^{T} + R_{1j}O_{jj}R_{j1}^{T})$$

Entonces

var 
$$(y_{1}) = h' var \beta_{i}$$
 (2.23)

Normalizando las ecs. 2.22 y 2.23 con respecto al valor calculado del desplazamiento en la cabeza del pilote y a su cuadrado, respectivamente, se obtiene

$$\overline{d}_{n} = \frac{E(y_{1})}{y_{1_{c}}} = \frac{a'}{y_{1_{c}}} + \frac{c'}{y_{1_{c}}} \overline{\beta}_{i} + \frac{e'}{y_{1_{c}}} \operatorname{var} \beta_{i}$$

$$\overline{d}_{n} = a + c\overline{\beta}_{i} + e \operatorname{var} \beta_{i} \qquad (2.24)$$

$$\sigma_{d_{n}}^{2} = \frac{\operatorname{var}(y_{1})}{y_{1}^{2}} = \frac{h'}{y_{1}^{2}} \operatorname{var} \beta_{i} = h \operatorname{var} \beta_{i} \qquad (2.25)$$

Los primeros dos momentos de  $\overline{d}_n$  y  $\sigma_{d_n}^2$  están dados por

var 
$$(\overline{d}_n) = c^2 \sigma^2 \overline{\beta}_i + e^2 \text{ var } \sigma^2_{\beta_i}$$
 (2.26 b)

$$\sigma_{d_n}^2 = h \sigma_{\beta_i}^2$$
 (2.26 c)

var 
$$(\sigma_{d_n}^2) = h^2 \operatorname{var} \sigma_{\beta_i}^2$$
 (2.26 d)

Los valores de las ecs. 2.26 constituyen la información a priori que se tiene sobre el desplazamiento lateral al nivel del terreno; a ésta se le incorporan los datos correspondientes observados, aplicando el Teorema de Bayes. Con la información actualizada se puede conocer el valor de  $\bar{\beta}_i$ ,  $\sigma^2_{\bar{\beta}_i}$ ,  $\bar{\sigma}^2_{\beta_i}$  y  $\sigma^2_{\sigma^2_{\beta_i}}$ , a partir de las ecs. 2.26.

En el capítulo 5 se presenta un ejemplo en el que se ilustra la aplicación de estos conceptos.


Fig 5 Posible variación de la tangente inicial de la reacción del suelo, E<sub>i</sub>, y de la reacción última del suelo, p<sub>u</sub>



Fig 6 Diagrama de bloques para obtener los parámetros estadísticos de B

64

#### .CAPITULO 3

#### FUNCIONES DE DISTRIBUCION DE LA RESPUESTA DE UN PILOTE AISLADO

#### 3.1 HIPOTESIS Y OBJETIVOS

A fin de desarrollar la metodolgía necesaria para obtener la función de densidad de probabilidad (f.d.p.) de la respuesta de un pilote aislado, se supondrá que el pilote tiene un comportamiento lineal, y que el suelo que lo circunda lo tiene no-lineal representado por curvas p-y (modelo de Winkler, fig 1). En la formulación que sigue se supone que las curvas p-y tienen características inciertas cuyos primeros dos momentos pueden obtenerse de acuerdo al capítulo anterior.

Se supone que el pilote está sujeto a una carga lateral estática monótonamente aplicada con magnitud aleatoria.

- ·; .
- 3.2 CALCULO DE LAS MEDIAS Y COVARIANZAS DE LOS DESPLAZAMIEN TOS A LO LARGO DE UN PILOTE

La ecuación de equilibrio que gobierna al sistema suelo-pilote representado en la fig 1, es la siguiente

P = Ky + g(y) J

(3.1)

En que

- K = matriz de rigideces del pilote
- y = vector formado por los desplazamientos laterales del pilote en los puntos de su eje donde se conectan los resortes que representan la rigidez lateral del suelo
- P = vector de cargas laterales aplicadas al sistema suelo-pilote
- g(y)= matriz diagonal de reacciones del suelo, correspon dientes a cada resorte, expresadas en unidades de fuerza, como función de los desplazamientos y. En general g(·) contiene valores de funciones no lineales
- J = vector cuyos elementos son unitarios

Para obtener los valores medios y covarianzas de los desplaza mientos del pilote, tomando en cuenta la incertidumbre en la reacción del suelo y en la carga, se hace un desarrollo en se rie de Taylor de la ec. 3.1 con respecto a  $\hat{y}$ , que es el vector que contiene los desplazamientos calculados del pilote cuando la reacción del suelo y la carga adquieren sus valores medios (17, 18). Es decir, cuando B =  $\tilde{B}$  y P =  $\tilde{P}$ . Resulta en tonces

$$P = K\hat{y} + g(\hat{y})J + (K + g'(\hat{y})) (y - \hat{y})$$
(3.2)

En esta ecuación

 ŷ = vector formado por los desplazamientos del pilote cuando β<sub>1</sub>, β<sub>2</sub> y P adquieren sus valores medios
 g(ŷ) = matriz diagonal que contiene la reacción del suelo que corresponde a un desplazamiento ŷ
 y = vector de desplazamientos aleatorios del pilote
 g'(ŷ) = matriz diagonal que contiene las derivadas de g(y) con respecto a y, evaluada en ŷ

Sea

$$\langle (\hat{y}) = g'(\hat{y}) - \hat{g}'(\hat{y})$$
 (3.3)

En donde  $\hat{g}$  (y) es la función g(y) cuando  $\beta_1$ ,  $\beta_2$  y P adquieren sus valores medios y  $\hat{g}'(y)$  es su derivada con respecto a y (fig 7).

$$g'(\hat{y}) = \kappa(\hat{y}) + g'(\hat{y})$$
 (3.4)

Sustituyendo la ec. 3.4 en la 3.2 y despejando la variable y, se obtiene

$$y = (K + \kappa(\hat{y}) + \hat{g}'(\hat{y}))^{-1} (P - K\hat{y} - g(\hat{y})J) + \hat{y}$$
(3.5)

Si se definen

$$K_{2} = K + \hat{g}'(\hat{y})$$
$$C = P - K\hat{y} - g(\hat{y})J$$

se obtiene

$$y = (K_2 + \kappa(\hat{y}))^{-1} (C) + y$$
 (3.6)

La inversa de la Matriz  $(K_2 + \kappa(\hat{y}))$  puede aproximarse por (16)

$$(K_{2} + \kappa(\hat{y}))^{-1} = F(I - \kappa(\hat{y})F + (\kappa(\hat{y})F)^{2} - ...)$$
 (3.7)

En que  $F = K_2^{-1}$ , e I es la matriz identidad. En el apéndice C se presenta la deducción de la ec. 3.7.

Remplazando la ec. 3.7 en la 3.6 se obtiene

$$y = F(I - \kappa(\hat{y})F + ..) (P - K\hat{y} - g(\hat{y})J) + \hat{y}$$
(3.8)

Con esta última expresión se puede estudiar la incertidumbre que resulta en los desplazamientos, y, como consecuencia de la incertidumbre de las curvas p-y, y de la carga P. Para ello se deberán tomar  $\kappa(\hat{y})$  y g $(\hat{y})$  como funciones de los parámetros inciertos  $E_i$  y  $P_u$  que determinan las curvas p-y. Si en la ec. 3.8 se desprecian los términos de grado superior, se obtiene

$$y = F(I - \kappa(\hat{y})F) (P-K\hat{y} - g(\hat{y})J) + \hat{y}$$

Desarrollando ésta, resulta

$$y = \hat{y} + F(P - K\hat{y}) - Fg(\hat{y})J - F_K(\hat{y})FP + F_K(\hat{y})FK\hat{y} + F_K(\hat{y})Fg(\hat{y})J$$
$$y = \hat{y} + F(P - K\hat{y}) - Fg(\hat{y})J - F_K(\hat{y})F(P - K\hat{y} - g(\hat{y})J) \quad (3.9)$$

En esta tesis se estudia el caso de pilotes hincados en suelos arcillosos saturados. Las curvas p-y para este tipo de suelo, recomendadas por Matlock (31) y Sullivan (54) son dadas por las ecs. 4.3. En estas se observan tres tramos de curva: interva-lo lineal, intervalo intermedio e intervalo no lineal.

Dado que las curvas p-y, antes mencionadas, suponen formas diversas, por tramos, las funciones  $g(\hat{y}) \ y \ \kappa(\hat{y})$  que intervienen en la ec. 3.9, dependen del intervalo de valores en que se encuentre el desplazamiento y correspondiente a cada resorte.

i) para un resorte s cuya deformación  $\hat{y}$  corresponda al tramo lineal

$$g_{s}(\hat{y}) = \beta_{2} \sum_{s} E_{i} \hat{y}_{s}$$

$$\kappa_{s}(\hat{y}) = g_{s}' (\hat{y}) \cdot - g_{s}' (\hat{y}) = (\beta_{2} - \overline{\beta}_{2}) E_{i}$$

En este caso (lineal) la ec. 3.9 se convierte en

$$y = \hat{y} + F(P - K\hat{y}) - FB_2 E'\hat{y} - F(B_2 - \bar{B}_2)E'F(P - K\hat{y} - B_2 E'\hat{y})$$
(3.10)

En donde  $B_2$  es la matriz diagonal de las  $\beta_{2_s}$ , E' es la matriz diagonal de las  $E_{i_s}$ , y la letra s se asocia a cada resorte que se encuentra a lo largo del pilote.

ii) Para el caso en el que el desplazamiento y del resorte s corresponda al tramo intermedio

$$g_{s}(\hat{y}) = \beta_{1_{s}} (\frac{p_{u_{c}}}{2})_{s} (\frac{\hat{y}}{Y_{50}})_{s}^{1/3} = \beta_{1_{s}} H'_{s} \hat{y}^{1/3}$$

$$\kappa_{s}(\hat{y}) = (\beta_{1s} - \overline{\beta}_{1s}) H'_{s} (\hat{y}^{-2/3}/3)$$

En que  $p_{u_c}$  es el valor de la resistencia última para el resor te correspondiente,  $y_{50}$  es igual a 2.5  $e_{50}$  d según se define en el capítulo IV, ec. 4.1. En este caso la ec. 3.9 se convierte en

$$y = \hat{y} + F(P - K\hat{y}) - FB_1 H' \hat{y}^{1/3} - F(B_1 - \bar{B}_1)H' (\hat{y}^{-2/3}/3)$$
$$F(P - K\hat{y} - B_1 H' \hat{y}^{1/3})$$
(3.11)

Aquí  $B_1$  es la matriz diagonal de las  $\beta_{1_s}$ , H' es la matriz diagonal que contiene (0.5  $p_{u_c}/y_{s_0}^{1/3}$ ), y s se asocia a cada resor te que se encuentra a lo largo del pilote.

$$g_{s}(\hat{y}) = \beta_{1}(p_{u_{c}})$$
$$\kappa_{s}(\hat{y}) = 0$$

En este caso la ec. 3.9 se convierte en

$$y = \hat{y} + F(p - K\hat{y}) - FB_1P'J$$
 (3.12)

En donde p' es una matriz diagonal que contiene los valores de  $p_u_c$  correspondientes a cada resorte y J es un vector con elementos iguales a uno.

Las ecs. 3.10, 3.11 y 3.12 pueden expresarse en forma general como sigue

$$y = \hat{y} + F(P-K\hat{y}) - FBH\Delta_1 - F(B-\bar{B})H\Delta_2F(P - K\hat{y} - BH\Delta_1)$$
 (3.13)

Para el caso en el que  $\hat{y}$  se encuentre en el intervalo lineal (0<  $\hat{y}$  <y<sub>0</sub>), en que y<sub>0</sub> = 0.5 y<sub>50</sub>, (y<sub>50</sub> se define en la ec. 4.1), se tiene

B = matriz diagonal que contiene los valores de  $\beta_2$  descritos en el capítulo anterior.

Para el caso en el que  $\hat{y}$  se encuentre dentro del intervalo intermedio ( $y_0 < \hat{y} < 8y_{50}$ ), entonces

- H = matriz que contiene los valores 0.5  $p_{u_c}/y_{50}^{1/3}$  asociados a las profundidades correspondientes
- $\Delta_1$  = vector que contiene los valores  $\hat{y}^{1/3}$ , correspondientes a los desplazamientos elevados a la 1/3, a lo largo del pilote
- $\Delta_2$  = matriz diagonal cuyos elementos son iguales a  $\hat{y}^{-2/3}/3$ , correspondientes a cada desplazamiento a lo largo del pi lote
- B = matriz diagonal que contiene los valores de  $\beta_1$  encontrados en el capítulo anterior

Para el caso en el que  $\hat{y}$  sea mayor que  $8y_{50}$ , se tiene

- H = matriz que contiene los valores de  $p_{u_c}$  correspondientes a una profundidad dada
- $\Delta_{1}$  = vector cuyos elementos son iguales a uno
- $\Delta_{2}$  = matriz nula
- B = matriz diagonal que contiene los valores de  $\beta_1$ , descritos en el capítulo anterior

La esperanza de los desplazamientos, E(y), resulta igual a

$$E(y) = \hat{y} + F\bar{Q} - F\bar{B}H\Delta_{1} + FA'H\Delta_{1}$$
(3.14)

En donde

 $\overline{B}$  = matriz diagonal que contiene los valores medios de B A' = matriz cuyos elementos son iguales a

$$A'_{mn} = L_{mn} \operatorname{cov} (B_{imm}, B_{inn}) , \quad i = 1, 2$$

En que i es igual a 1 cuando el valor de  $\hat{y}$  se encuentra en el intervalo no-lineal, e igual a 2 cuando se encuentra en el l<u>i</u> neal

$$L = H\Delta_{2}F$$
$$\vec{Q} = \vec{P} - K\hat{y}$$

La deducción de la ec. 3.14 se presenta en el apéndice D.

A fin de obtener la matriz de covarianzas de los desplazamien tos,  $\Sigma_y$ , se parte de la ec. 3.13 la cual puede expresarse como sigue

$$y = \hat{y} + GFP - GFK\hat{y} - AB\Delta - FBH\Delta FP + FBH\Delta FK\hat{y} + FBDB\Delta$$
 (3.15)

En donde

 $G = I + F\overline{B}H\Delta_{2}$  $A = F(I + BH\Delta_{2}F)H$  $D = H\Delta_{2}FH$ 

Se supone B =  $\overline{B}$  + b, P =  $\overline{P}$  + p en donde b y p son variables aleatorias con medias nulas y varianzas iguales a  $\sigma_b^2 = \sigma_B^2$ ,  $\sigma_b^2 = \sigma_P^2$ . Estas se sustituyen en 3.15 dando lugar a una expre sión en función de b y p. En la expresión obtenida se despre cian los términos de segundo orden y ésta se sustituye en la siguiente

$$\Sigma_{y} = E(yy^{T}) - E(y)E(y^{T})$$
 (3.16)

La matriz de covarianzas resultante es

$$\Sigma_{\mathbf{y}} = \mathbf{FE}(\mathbf{b}\mathbf{C}\mathbf{C}^{\mathrm{T}}\mathbf{b})\mathbf{F} - \mathbf{FE}(\mathbf{b}\mathbf{C}\boldsymbol{\Delta}_{1}^{\mathrm{T}}\mathbf{b})\mathbf{N}^{\mathrm{T}} - \mathbf{NE}(\mathbf{b}\boldsymbol{\Delta}_{1}\mathbf{C}^{\mathrm{T}}\mathbf{b})\mathbf{F} + \mathbf{NE}(\mathbf{b}\boldsymbol{\Delta}_{1}\boldsymbol{\Delta}_{1}^{\mathrm{T}}\mathbf{b})\mathbf{N}^{\mathrm{T}} + \mathbf{RE}(\mathbf{p}\mathbf{p}^{\mathrm{T}})\mathbf{R}^{\mathrm{T}}$$
(3.17)

En que

$$C = L(P - K\hat{y})$$

$$N = 2F\bar{B}D - A$$

$$R = GF - F\bar{B}L$$

La ec. 3.17 puede expresarse como sigue

$$\Sigma_{v} = FUF - FVN^{T} - NWF + NZN^{T} + ROR^{T}$$
(3.18)

En donde

- $U_{mn} = (CC^{T})_{mn} cov (b_{m}, b_{n})$  (3.19 a)
- $V_{mn} = (C\Delta_{1}^{T})_{mn} cov (b_{m}, b_{n})$ (3.19 b)  $W = (\Delta_{1}^{T}C^{T}) cov (b_{n}, b_{n})$ (3.19 c)
- $W_{mn} = (\Delta_{1}^{T}C^{T})_{mn} \operatorname{cov} (b_{m}, b_{n})$ (3.19 c)  $Z_{mn} = (\Delta_{1}\Delta_{1}^{T})_{mn} \operatorname{cov} (b_{m}, b_{n})$ (3.19 d)
- $O_{mn} = (JJ^{T})_{mn} cov (p_{m}, p_{n})$  (3.19 e)

Debe notarse que el último término se asocia con la variabil<u>i</u> dad de las cargas, mientras que los otros con la variabilidad de los parámetros de la reacción del suelo.

La demostración de las ecs. 3.17 y 3.19 se encuentra en el apéndice D.

En la ec. 3.18 los términos que multiplican a la covarianza de  $(b_m, b_n)$ , y de  $(p_m, p_n)$  corresponden al elemento (m,n) de la matriz correspondiente, es decir, la que resulta de multiplicar un vector por otro vector transpuesto; por ejemplo,  $(CC^T)_{mn}$  es el elemento (m,n) de la matriz que resulta de la multiplica ción  $CC^T$ .

### 3.3 CALCULO DE LAS MEDIAS Y COVARIANZAS DE LOS MOMENTOS FLEXIONANTES

Los momentos flexionantes en diversos puntos del pilote se obtienen como transformaciones lineales de los desplazamientos.

75

En forma simplificada los momentos felxionantes pueden expresar se en términos de diferencias finitas, como sigue

(3.20)

$$f_{m} = \frac{y_{m-1} - 2y_{m} + y_{m+1}}{\ell^{2}}$$
 (YI)

En que

ι

$$M_{m} = \text{momento felexionante en el punto m}$$

$$y_{m-1}, y_{m}, y_{m+1} = \text{desplazamientos correspondiente a los}$$

$$puntos m-1, m y m+1, respectivamente$$

$$(YI)_{m} = \text{rigidez flexionante del pilote en el}$$

$$punto m$$

$$\ell = \text{distancia entre los puntos m-1 y m, y}$$

$$entre m y m+1.$$

A partir de la ec. 3.20 se obtiene la esperanza de  $M_m$ 

$$E(M)_{m} = \frac{E(y)_{m-1} - 2E(y)_{m} + E(y)_{m+1}}{\ell^{2}} (YI)_{m}$$
(3.21)

La varianza resulta  

$$\operatorname{var}(M)_{m} = \frac{(YI)_{m}^{2}}{\ell^{4}} (\operatorname{var} y_{m-1} + 4 \operatorname{var} y_{m} + \operatorname{var} y_{m+1})$$
  
 $- 4 \operatorname{cov} (y_{m-1}, y_{m}) + 2 \operatorname{cov} (y_{m-1}, y_{m+1})$   
 $- 4 \operatorname{cov} (y_{m}, y_{m+1})) (3.22)$ 



Fig 7 Formas hipotéticas de la función g(y) para diversos valores de  $\beta_1$  y  $\beta_2$ 



### Fig 8 Ejemplo ilustrativo

77

#### CAPITULO 4

#### EJEMPLO ILUSTRATIVO

#### 4.1 FORMULACION DEL PROBLEMA

En este capítulo se presenta un ejemplo ilustrativo de los criterios propuestos para estimar los parámetros estadísticos de las curvas p-y, y para obtener una descripción probabilista de la respuesta del pilote. Esta última se representa mediante los desplazamientos y momentos flexionantes. Se considera un pilote cuyas características se muestran en la fig 8. Este se encuentra sujeto a una carga lateral, aplicada durante un intervalo corto de tiempo.

Las propiedades básicas del suelo, determinadas de acuerdo con pruebas estándar, se presentan en la tabla 2 y pertenecen a un suelo arcilloso saturado.

Las propiedades del pilote se suponen deterministas, mientras que el comportamiento del suelo, representado por curvas p-y, se considera en forma probabilista. En este ejemplo se supone que la carga es determinista con magnitud igual a 275 kips\* (125 ton).

La razón por la que se seleccionó este ejemplo es para notar la influen cia de la incertidumbre en las curvas p-y separadamente de la aleatorie dad de la carga. En el capítulo VI se presenta el mismo ejemplo suponiendo que la carga aplicada es incierta. El problema se resuelve en dos etapas. La primera relacionada con la incertidumbre de las curvas p-y (capítulo 2), y la segunda con sus implicaciones en la respuesta estructural del <u>pi</u> lote (capítulo III).

79

## 4.2 DISTRIBUCION BAYESIANA DE LOS PARAMETROS DE LA DISTRIBU-CION DE $p_u$ Y E NORMALIZADOS

Self W#2

DEPF

En esta sección se encuentra la distribución bayesina de los parámetros de la función de distribución de probabilidades (f.d.p.) de la resistencia última del suelo,  $\textbf{p}_{u},$  y del módulo inicial de la reacción del suelo, E<sub>i</sub>, ambos normalizados con respecto a sus valores calculados. Esta sección cuenta con ocho partes (A a H). En la parte A se encuentran los parámetros correspondientes a La distribución a priori de B; en la B se incorpora la información dada por pruebas hechas a escala natural, de las cuales se tienen datos de curvas p-y a 10 largo de los prototipos, pero en donde p<sub>u</sub> y E<sub>i</sub> no pertenecen a una misma curva p-y; en la C se obtienen los parámetros de la a posteriori; en la D se incorporan datos de parejas f.d.p. de valores (p<sub>u</sub>, E<sub>i</sub>) correspondientes a pruebas hechas a escala natural, en donde se han medido curvas p-y en diferentes profundidades a lo largo de los pilotes; en la parte E se obtiene una "segunda distribución a posteriori" de los parámetros de la distribución de B; en la F se incorporan los datos in directos de mediciones de cargas y desplazamientos hechos en las cabezas de los pilotes (pruebas hechas a escala natural);

en la parte G se obtiene una tercera distribución a posteriori correspondiente a la f.d.p. de los parámetros de la distribución de B; finalmente, en la parte H, se obtienen los primeros dos momentos de la distribución incondicional de B.

A. Distrubución inicial de 
$$(\beta_i, h_{\beta_i})$$
,  $i = 1, 2$ 

Matlock (31) recomienda la siguiente forma de curva p-y, para el caso de un suelo constituido por arcilla blanda saturada

$$p = 0.5 p_u (y/y_{50})^{1/3}$$
 (4.1)

en donde

p = fuerza del suelo sobre el pilote, por unidad de longitud

p = resistencia última del suelo, por unidad de longitud

y = desplazamiento horizontal

d = diámetro del pilote

A fin de evitar una pendiente inicial infinita, Sullivan (54, 55) sugiere una modificación como la mostrada en la fig 9. La parte inicial de la curva es lineal, de modo que

80

$$p = E_i y$$

3E

en que E<sub>i</sub> es el valor de la tangente inicial del módulo de la reacción horizontal del suelo. Considerando esto último, las ecuaciones que representan el comportamiento de este tipo de suelo están dadas por

$$p = \beta_{2} E_{1} y \qquad ; \quad 0 \le y \le Y_{0} \qquad (4.3 a)$$
$$= \beta_{1} 0.5 p_{u_{c}} (y/y_{50})^{1/3} ; \quad Y_{0} \le y \le 8y_{50} \qquad (4.3 b)$$

 $= \beta_1 p_{u_c}$ ;  $y > 8y_{50}$  (4.3 c)

Aquí el subíndice c se refiere al valor calculado, y se supone un valor determinista, y y<sub>0</sub> =  $0.5y_{50}$ .

A.1 Resistencia última del suelo (p<sub>n</sub>)

Según Matlock (31), la resistencia última del suelo para arcillas blandas saturadas es el valor menor que resulte de las siguientes expresiones

$$p_{u_c} = (3 + \bar{\gamma}x/c + Qx/d) c d$$
 (4.4 a)  
 $p_{u_c} = 9 c d$  (4.4 b)

En que

74

(4.2)

- $\overline{\gamma}'$  = peso volumétrico efectivo medio del suelo de la superficie a una profundidad x
- Q = coeficiente empírico. Matlock (31) recomienda un va lor igual a 0.5 para arcillas blandas, como las que se encuentran en el Golfo de México

$$x = profundidad donde se determina la curva p-y, mediadesde la superficie del suelo$$

- c = resistencia del suelo al esfuerzo cortante, a la
  profundidad x
- d = diámetro del pilote

Sólamente se encontró un estudio hecho con modelos a pequeña escala enfocado a predecir  $p_u$ , para el tipo de suelo considerado (34). Los resultados de sus curvas p-y se muestran en la fig 10. Ellos utilizaron tubos verticales de una pulgada (2.54 cm) de diámetro, d, empotrados en su cabeza. La resistencia al esfuerzo cortante promedio del suelo, c, fue de 0.56  $\ell$ b/pulg<sup>2</sup> (394.0 kg/m<sup>2</sup>). El suelo se tomó de sitios ubic<u>a</u> dos en el Lago de Austin, Texas. El suelo utilizado se hizo lo más homogéneo posible. El valor de su peso volumétrico sumergido fue de 0.0278  $\ell$ b/pulg<sup>3</sup> (0.77 ton/m<sup>3</sup>). La longitud de los especímenes varió de una a nueve pulgadas (2.54 a 22.8 cm).

En la fig 10 se presentan con líneas interrumpidas las cotas superior e inferior del valor de la resistencia última calculadas con las ecs. 4.4. En la tabla que sigue se muestran los valores de  $p_u_c$ ; calculados con las ecs. 2.1 y 4.4. También se

82

muestra la esperanza y varianza de  $r_1$ , suponiendo B con distribución normal.

| <u> </u> |                                               |        |                                                | •       | -                           |                             |
|----------|-----------------------------------------------|--------|------------------------------------------------|---------|-----------------------------|-----------------------------|
| Prueba   | p <sub>u</sub><br>(fig 10)<br>Lb/pulg (kg/cm) |        | p<br>uc<br>(ec. 4.4)<br><i>lb/pulg</i> (kg/cm) |         | r <sub>1</sub><br>(ec. 2.1) | $(r_{1} - \bar{r}_{1})^{2}$ |
| , 1      | 1.93                                          | (0.35) | 1.98                                           | (0.35)  | 0.974                       | 0.0269                      |
| 2        | 2.35                                          | (0.42) | 2.60                                           | (0:47)  | 0.904                       | 0.0088                      |
| 3        | 2.55                                          | (0.46) | 3.22                                           | (0.58)  | 0.792                       | 0.0003                      |
| 4        | 2.80                                          | (0.50) | 3.83                                           | (0.69)  | 0.731                       | 0.0062                      |
| 5        | 2, 90                                         | (0.52) | 4.45                                           | (.0.80) | 0.652                       | 0.0250                      |
| · · ·    | -                                             |        | S t                                            | J M A = | 4.053                       | 0.0673                      |

= 4.053/5 = 0.81

 $\sigma_{r_1}^2 = 0.0673/4 = 0.0168$ 

A.2 Tangente inicial del módulo de la reacción del suelo (E<sub>1</sub>)

Para el cálculo de  $E_i$ , Sullivan (54) sugiere las siguiente expresión

(4.5)

En donde

ī,

En la fig 11 se muestran los valores típicos del valor medio de k para diferentes valores de la resistencia al esfuerzo co<u>r</u> tante.

En seguida se presentan los resultados asociados al parámetro E obtenidos de las pruebas a pequeña escala hechas por Matlock y Ripperger (34).

La siguiente tabla muestra los valores obtenidos de dichas pruebas (fig 12) y los calculados con las ecs. 2.1 a 4.5

|         | Prof.          |         | E <sub>i</sub>       |                       | Eic       |                             | r <sub>2</sub> |                     |
|---------|----------------|---------|----------------------|-----------------------|-----------|-----------------------------|----------------|---------------------|
| PRUEBA  | <sup>~</sup> x |         | (fig 12)             |                       | (ec. 4.5) |                             | (ec. 2.1a)     | $(r_{2}-r_{2})^{2}$ |
|         | pul            | lg:(cm) | lb/pulg <sup>2</sup> | (kg/cm <sup>2</sup> ) | lb/pulc   | $g^2$ (kg/cm <sup>2</sup> ) |                |                     |
| 1       | 1              | (2.54)  | 20.5                 | (1.44)                | 18        | (1.27)                      | 1.14           | 0.1954              |
| 2       | 3              | (7.62)  | 69.0                 | (4.86)                | 54        | (3.80)                      | 1.28           | 0.3384              |
| 3       | 5              | (12.7)  | 49.0                 | (3.45)                | 90        | (6.34)                      | 0.54           | 0.0250              |
| 4       | 7              | (17.8)  | 42.8                 | (3.02)                | 126       | (8.88)                      | 0.34           | 0.1282              |
| 5       | 9              | (22.8)  | 31.5                 | (2.22)                | 162 ·     | (11.41)                     | 0.19           | 0.2581              |
| <b></b> | -              |         |                      |                       | S         | U M A =                     | 3.49           | 0.9451              |

$$\vec{r}_{2} = 3.49/5 = 0.70$$
  
 $\sigma^{2}_{r} = 0.9451/4 = 0.24$ 

La aplicación del Teorema de Bayes, cuando la distribución a priori es difusa, conduce a parámetros s"<sup>2</sup>, m" y n", corres pondientes a la distribución a posteriori, iguales a los obtenidos a partir de las observaciones. Para el caso en que r<sub>1</sub> y r<sub>2</sub> se suponen independientes, los valores en cuestión sustitui dos en las ecs. 2.18, dan lugar a lo siguiente

$$\overline{\overline{r}}_{1} = 4.053/5 = 0.81 ; \ \overline{\overline{r}}_{2} = 3.49/5 = 0.70$$
(4.6 a)  

$$\sigma_{r_{1}}^{2} = 0.0168 \frac{4}{5 \times 3} = 0.00448; \qquad \sigma_{r_{2}}^{2} = 0.24 \frac{4}{5 \times 3} = 0.063$$
(4.6 b)  

$$\overline{\sigma}_{r_{1}} = \sqrt{0.0168} \sqrt{\frac{4}{2}} \frac{1}{0.5 \sqrt{\pi}} = 0.2076 ;$$
  

$$\overline{\sigma}_{r_{2}} = \sqrt{0.24} \sqrt{\frac{4}{2}} \frac{1}{0.5 \sqrt{\pi}} = 0.782$$
(4.6 c)  

$$\sigma_{\sigma_{r_{1}}}^{2} = (0.0168) \frac{4}{1} - (0.207)^{2} = 0.0242;$$
  

$$\sigma_{\sigma_{r_{2}}}^{2} = (0.24) (\frac{4}{1}) - (0.782)^{2} = 0.3435$$
(4.6 d)

## A.3 Influencia de la incertidumbre en las propiedades del suelo

En este ejemplo sólo se considera como variable aleatoria la resistencia al esfuerzo cortante del suelo, c, y se suponen de terministas todas las demás propiedades del suelo que intervienen en el cálculo de  $p_u$  y de  $E_i$ . En la tabla 2 se presentan los valores de c, en un sitio dado para diferentes profundidades.

Los valores de c fueron obtenidos con varios tipos de pruebas diferentes, como puede verse en dicha tabla, sin embargo, para los fines ilustrativos que aquí se pretenden, se supone que la variabilidad asociada a cada tipo de prueba es mínima con respecto a las pruebas triaxiales UU (29). Por lo tanto, en lo que sigue, se utilizan directamente los datos que se dan en esta tabla.

La influencia de c se considera en las siguientes expresiones (suponiendo que B tiene distribución normal)

$$\beta_{1} = r_{1} \frac{p_{u}(c)}{p_{u}(c^{*})} = r_{1}\gamma_{1}, \quad \beta_{2} = r_{2} \frac{k(c)}{k(c^{*})} = r_{2}\gamma_{2} \quad (4.7)$$

en que

Los valores medios y covarianzas de  $\beta_1$ , i = 1, 2 están dados por las ecs. 2.4. Los valores aproximados de  $\overline{\beta}_i$  y  $\sigma_{\beta_i}^2$ , indicados en las ecs. 2.8, se expresan en forma explícita en lo que sigue

$$\overline{\overline{\beta}}_{i} = \overline{\overline{r}}_{i}, \qquad (4.8 a)$$

$$\sigma_{\overline{\beta}_{i}}^{2} = \sigma_{\overline{r}_{i}}^{2} , \quad h_{\overline{\beta}_{i}} = 1/\sigma_{\overline{r}_{i}}^{2}$$
(4.8 b)

$$\sigma_{\beta_{i}}^{2} = (\tilde{\sigma}_{r_{i}})^{2} + (\tilde{\bar{r}}_{i})^{2} \sigma_{\gamma_{i}}^{2} + (\tilde{\sigma}_{r_{i}})^{2} \sigma_{\gamma_{i}}^{2} + \text{var } \sigma_{r_{i}}$$

$$+ \sigma_{\gamma}^{2} \sigma_{r_{i}}^{2} + \sigma_{\gamma_{i}}^{2} \text{ var } \sigma_{r_{i}} \qquad (4.8 \text{ c})$$

$$\sigma_{\sigma_{\beta_{i}}^{2}}^{2} = 4 \left[ \left( \bar{\sigma}_{r_{i}} \right)^{2} \operatorname{var} \sigma_{r_{i}} + \left( \bar{\bar{r}}_{i} \sigma_{\gamma_{i}}^{2} \right)^{2} \operatorname{var} \bar{\bar{r}}_{i}$$

En donde se supone por simplicidad que cov  $(\vec{r}_i, \sigma_i) = 0$ .

Aquí se consideró que el valor característico de c es igual a su valor medio  $\overline{c}$ , y por lo tanto  $\overline{\gamma}_i = 1$ , i = 1, 2.

Dado que se cuenta con suficientes datos de la resistencia al esfuerzo cortante, c, (92) es posible obtener la varianza de  $\gamma_i$ , i = 1, 2 directamente de estas pruebas. En la Tabla 1 se presentan los datos de c,  $\bar{c}$ ,  $\gamma_1$  y  $\gamma_2$  correspondientes al subsuelo del sitio de interés. La última columna se obtuvo a partir de la fig 11.

De dicha tabla se obtiene

 $\sigma_{\gamma_1}^2 = 1.1733/91 = 0.0129$   $\sigma_{\gamma_2}^2 = 4.7566/91 = 0.0523$ cov ( $\gamma_1, \gamma_2$ ) = 0.0237

Sustituyendo los valores correspondientes en las ecs. 4.8, se calcula lo siguiente

$$\overline{\beta}_{1} = 0.81$$
;  $\overline{\beta}_{2} = 0.70$  (4.9 a)

 $h_{\overline{\beta}_{1}} = 223.21 ; h_{\overline{\beta}_{2}} = 15.873$  (4.9 b)  $\bar{\sigma}_{\beta_{1}}^{2} = 0.0766 ; \bar{\sigma}_{\beta_{2}}^{2} = 1.056$  (4.9 c)  $\sigma_{\sigma_{\beta_{1}}}^{2} = 0.0042 ; \sigma_{\sigma_{\beta_{2}}}^{2} = 0.9158$  (4.9 d)

A.4 Parámetros de la distribución bayesiana de B.

En este ejemplo se supone que los valores obtenidos de modelos a pequeña escala y a escala natural tienen la misma distribución probabilista, por lo que  $E(\alpha_i^{"}) = E(\alpha_i^{"}) = 1$ , y  $\sigma_{\alpha_i}^2 =$  $\sigma_{\alpha_i^{"}}^2 = 0$ , i = 1, 2. Entonces los parámetros de la distribución bayesiana de B son idénticos a los obtenidos en las ecs. 4.9.

La anterior hipótesis es discutible. Para estimar las estadísticas de  $\alpha'_i$  y  $\alpha''_i$  deberían de aplicarse cuestionarios a los expertos en mecánica de suelos. Las personas calificadas para contestar tales cuestionarios, deben de tener suficiente experiencia de modo que los juicios emitidos por ellos puedan tomarse con alto nivel de confianza. De esta manera, se utiliza la experiencia obtenida a través de los años dentro de un formato cuantitativo.

En lo que sigue se relacionan los valores centrales, dados por las ecs. 4.9 con los parámetros m, n, v y  $\nu$  según las ecs. 2.17.

. Valores medios de  $\tilde{\beta}_{i}$  $m_{\tilde{B}}^{\prime} = 0.81$ 

(4.10 a)

. Parámetros  $v'_{\beta_i}$ , i = 1, 2

Según la relación 2.17 c

$$v_{\beta_{i}} = 1/E(1/\sigma_{\beta_{i}}^{2})$$

A fin de obtener el valor de esta expresión se introduce una aproximación de segundo orden, como sigue

$$E(1/\sigma_{\beta_{i}}^{2}) = 1/\overline{\sigma}_{\beta_{i}}^{2} + var(\sigma_{\beta_{i}}^{2})/E^{3}(\sigma_{\beta_{i}}^{2}), i = 1, 2$$
 (4.10 b)

Entonces,

 $E(1/\sigma_{\beta_1}^2) = 22.58$ 

$$E(1/\sigma_{\beta_2}^2) = 1.72$$

Sustituyendo estos valores en la expresión correspondiente a v' se obtiene

- $v'_{\beta_1} = 0.0443$  (4.10 c)  $v'_{\beta_2} = 0.5809$  (4.10 d)
- . Parametros  $v_{\beta_{i}}^{i}$ , i = 1, 2 $v_{\beta_{i}}^{i} = \frac{2}{\text{var}^{i}(1/\sigma_{\beta_{i}}^{2}) \cdot v_{\beta_{i}}^{i2}}$ , i = 1, 2 (4.11 a)

Así como se hizo en el inciso anterior, aquí también introducimos una aproximación de segundo orden (7), de modo que

var 
$$(1/\sigma_{\beta_{i}}^{2}) = (1/E^{2}(\sigma_{\beta_{i}}^{2}))^{2}$$
 var  $(\sigma_{\beta_{i}}^{2})$ ,  $i = 1, 2$  (4.11 b)

Sustituyendo valores en la ec. 4.11, resulta

 $v_{\beta_1} = 8.201$  (4.12 a)

$$v_{\beta_2}^{*} = 8.087$$
 (4.12 b)

Despejando el valor de n' de 2.17 b se obtiene

$$n'_{\beta_{i}} = \frac{v'v'}{var(\bar{\beta}_{i})(v'-2)}$$
,  $i = 1, 2$ 

Sustituyendo en ésta, se llega a

4

$$n'_{\beta_{1}} = 13.02$$
 (4.12 c)

$$n'_{\beta_2} = 12.25$$
 (4.12 d)

Los valores de n' pueden interpretarse como un tamaño equivalente de una muestra ficticia cuyos datos conducen a la distribución a priori.

# B. Estadísticas de las mediciones en campo de curvas p-y a diferentes profundidades

A fin de tener un mejor conocimiento sobre la distribución de los parámetros de la f.d.p. de B, enseguida se incorpora la información obtenida a partir de pruebas hechas a escala natu ral. En éstas se han medido valores de  $p_u \ y \ E_i$  a distintas profundidades. En la primera parte de esta sección se incor poran valores obtenidos en campo ya sea de  $p_u$  o de  $E_i$  encontrados por separado en la literatura. En la segunda se incor poran simultáneamente parejas de valores ( $p_u, \ E_i$ ).

En la tabla 3 se presentan resultados de mediciones hechas por diferentes investigadores (20, 24, 26, 35) de los parámetros  $p_u \ y \ E_i$ , así como sus respectivas relaciones con respecto a valores calculados usando las ecs. 4.4 y 4.5

B.1 Incorporación de datos p<sub>u</sub> y E<sub>i</sub> obtenidos de pruebas hechas a escala natural

Las estadísticas de las observaciones anotadas en la parte su perior de la tabla 3 (24, 26, 35) son las siguientes

. Valores medios

 $m_{\overline{\beta}_{1}} = \frac{\Sigma \beta_{1_{1}}}{n_{\beta_{1}}} = 1.09$ 

(4.13 a)

$$m_{\overline{\beta}_2} = \frac{\Sigma \beta_{2_1}}{n_{\beta_2}} = 0.51$$
 (4.13 b)

 $n_{\beta_1} y n_{\beta_2}$  son los datos de  $\beta_1 y \beta_2$ , que no forman parejas de valores.

. Parametros  $v_{\beta_i}$ , i = 1, 2

$$v_{\beta_1} = 2 - 1 = 1$$
 (4.14 a)

$$v_{\beta_2} = 6 - 1 = 5$$
 (4.14 b)

. Parámetros  $v_{\beta_i}$ , i = 1, 2

$$v_{\beta_1} = \frac{1}{v_{\beta_1}} \Sigma (\bar{\beta}_1 - m_{\bar{\beta}_1})^2 = 0.0032$$
 (4.15 a)

$$v_{\beta_2} = \frac{1}{v_{\beta_2}} (\bar{\beta}_2 - m_{\bar{\beta}_2})^2 = 0.31$$
 (4.15 b)

C. <u>Primera distribución a posteriori de los parámetros de</u> <u>la distribución de B</u>

Si se considera que la distribución de  $(\beta_i; h_{\beta_i})$  es Normal-Gamma con los parámetros dados por las ecs. 4.10 y 4.12, y que las estadísticas de las observaciones están representadas por las ecs. 4.13-4.15, entonces la f.d.p. posterior es Normal-Gamma con los parámetros siguientes, obtenidos según las ecs. 2.16

$$\begin{split} m_{\tilde{B}_{1}}^{u} &= \frac{(13.02) (0.81) + (2) (1.09)}{13.02 + 2} = 0.85 & (4.16 \text{ a}) \\ m_{\tilde{B}_{2}}^{u} &= \frac{(12.25) (0.70) + (6) (0.51)}{12.25 + 6} = 0.64 & (4.16 \text{ b}) \\ n_{\tilde{B}_{1}}^{u} &= 15.02 & (4.17 \text{ a}) \\ n_{\tilde{B}_{2}}^{u} &= 18.25 & (4.17 \text{ b}) \\ v_{\tilde{B}_{1}}^{u} &= 8.201 + 1 + 1 = 10.201 & (4.18 \text{ a}) \\ v_{\tilde{B}_{2}}^{u} &= 8.087 + 5 + 1 = 14.087 & (4.18 \text{ b}) \\ v_{\tilde{B}_{2}}^{u} &= \frac{(0.0443) (8.201) + (13.02) (0.81)^{2}}{10.201} \\ &+ (1) (0.0032) + (2) (1.09)^{2} - (15.02) (0.85)^{2} \\ &= 0.0425 & (4.19 \text{ a}) \\ v_{\tilde{B}_{2}}^{u} &= \frac{(0.5809) (8.087) + (12.25) (0.70)^{2}}{14.087} \\ &+ (5) (0.31) + (6) (0.51)^{2} - (18.25) (0.64)^{2} \\ &= 0.4498 & (4.19 \text{ b}) \end{split}$$

A partir de estos parámetros se pueden calcular los valores centrales y de dispersión, usando las ecs. 2.17, así se obti<u>e</u>

ne

$$E(\overline{\beta}_{1}) = 0.85 ; E(\overline{\beta}_{2}) = 0.64$$
(4.20 a)  
var  $(\overline{\beta}_{1}) = 0.0035 ; var (\overline{\beta}_{2}) = 0.0287$ (4.20 b)  

$$E(h_{\beta_{1}}) = 23.53 ; E(h_{\beta_{2}}) = 2.22$$
(4.20 c)  
var  $(h_{\beta_{1}}) = 108.54 ; var (h_{\beta_{2}}) = 0.7017$ (4.20 d)

# C.1 Expresiones de la primera distribución a posteriori en forma bidimensional

En los incisos anteriores, los parámetros  $\beta_1$  y  $\beta_2$  se trataron separadamente, considerando funciones de densidad de probabilidades unidimensionales. Su representación bidimensional es la siguiente

$$m = \begin{cases} 0.85 \\ 0.64 \end{cases}$$

$$n = \begin{bmatrix} 48.57 & 0 \\ 0 & 5.923 \end{bmatrix}$$

$$v = 0.14$$

$$v = 10.01$$

(4.21 a)

- (4.21 b)
- (4.21 c)
  - (4.21 d)

La obtención detallada de estos valores se presenta en el ápendice E.

### D. Incorporación de parejas de valores $p_u y E_i$ medidas a dis tintas profundidades en pruebas hechas a escala natural

En seguida se incorpora información de pruebas hechas a escala natural en las que se obtuvieron curvas p-y completas a di<u>s</u> tintas profundidades (20,35). Es decir, con estos datos se puede obtener la correlación entre las variables  $\beta_1$  y  $\beta_2$  para una profundidad dada. Debido a lo anterior, en esta sección se tratan los datos que forman parejas de valores  $\beta_1$  y  $\beta_2$  en forma bidimensional correspondientes a pruebas hechas por di<u>s</u> tintos investigadores. Esta información, (10 parejas de valo res), aparece en la parte inferior de la tabla 3. Sus estadísticas correspondientes según las ecs. 2.15, son las siguie<u>n</u> tes

 $m_{0} = \begin{cases} 0.65\\ 0.878 \end{cases}$ (4.22 a)  $\Sigma_{0} = \begin{bmatrix} 0.318 & 0.29\\ 0.29 & 1.443 \end{bmatrix} ; H_{0} = \begin{bmatrix} 3.85 & -0.77\\ -0.77 & 0.85 \end{bmatrix}$ ;  $h_{0} = 1.637$   $\eta_{0} = \begin{bmatrix} 2.35 & -0.47\\ -0.47 & 0.52 \end{bmatrix} ; \eta_{0} = \eta_{0} = \begin{bmatrix} 23.5 & -4.7\\ -4.7 & 5.2 \end{bmatrix} ; (4.22 b)$   $v_{0} = r(n - 1) = 2(10 - 1) = 18$ (4.22 c)  $v_{0} = \frac{10.74}{18} = 0.6$ (4.22 d) E. <u>Segunda distribución a posteriori de los parámetros de</u> la distribución de B

Los parámetros a posteriori que se obtienen al sustituir los va lores dados por las ecs. 4.21 y 4.22 en las ecs. 2.16 son iguales a

$$m'' = \begin{cases} 0.78\\ 0.79 \end{cases}$$

$$n'' = \begin{bmatrix} 72.07 & -4.7\\ -4.7 & 11.12 \end{bmatrix}$$

$$(4.23 a)$$

$$(4.23 b)$$

$$(4.23 b)$$

$$(4.23 c)$$

$$v'' = 0.444$$

$$(4.23 d)$$

Estos valores expresados en términos de valores centrales y de dispersión son como sigue

$$m_{\overline{B}} = \{ 0.78 \\ 0.79 \}$$
 (4.24 a)

$$\Sigma_{\overline{B}} = n^{-1} v \frac{v}{v-2} = \begin{bmatrix} 11.12 & 4.7 \\ 4.7 & 72.07 \end{bmatrix} \frac{0.4444}{779.33} \cdot \frac{30.01}{28.01} =$$

$$= \begin{bmatrix} 0.0068 & 0.0029 \\ 0.0029 & 0.044 \end{bmatrix}$$
(4.24 b)

$$E(h_B) = \frac{1}{v} = \frac{1}{0.444} = 2.25$$
 (4.24 c)

var (h<sub>B</sub>) = 
$$\frac{2}{v v^2}$$
 =  $\frac{2}{(30.01)(0.444)}$  = 0.338 (4.24 d)

Tratando las ecs. 4.10 b y 4.11 b como un sistema de ecuaciones simultáneas, para  $\beta_i = \beta$ , se obtiene

$$E(\operatorname{var} \beta) = \frac{E(h_{\beta}) \pm \sqrt{E(h_{\beta}) - 4 \operatorname{var} h_{\beta}}}{2 \operatorname{var} h_{\beta}}$$
(4.25 a)

var (var 
$$\beta$$
) = E<sup>4</sup> (var  $\beta$ ) var (h <sub>$\beta$</sub> ) (4.25 b)

Sustituyendo 4.24 c y d en 4.25 resulta

$$E(var) = \frac{2.25 \pm \sqrt{5.0625 - 4(0.338)}}{2(0.338)} = \begin{cases} 0.478 \\ (4.26 a) \\ 6.17 \\ \end{cases}$$

var 
$$(var \beta) = (0.478)^4 (0.338) = 0.0176$$
 (4.26 b)

#### F. Mediciones hechas en la cabeza de los pilotes

Para mejorar el conocimiento sobre la distribución bayesiana de  $(\bar{B}, h_{\bar{B}})$  en seguida se incorporan datos obtenidos de pruebas hechas a escala natural en las que se midieron la carga lateral aplicada al nivel del terreno (P) y el desplazamiento  $(y_1)$  en la cabeza de los pilotes. Dado que estas no son las variables que se han manejado aquí, se aprovechará dicha información indirecta mediante el tratamiento expuesto al f<u>i</u> nal del capítulo II.

\* De estas dos soluciones se toma 0.478, que es la más cercana a la solu ción para la aproximación de primer orden:  $E(var \beta) = E^{-1}(h_{\beta}) = 2.25^{T}$  F.1 Distribución a priori de la media y la varianza del desplazamiento lateral normalizado, en la cabeza del pilote

 $(\bar{d}_n, \sigma_{d_n}^2)$ 

Las ecs. 2.24 describen los primeros dos momentos de la media y la varianza del desplazamiento lateral en la cabeza de los pilotes, normalizados respecto a su desplazamiento calcu lado y al cuadrado de este valor.

Los valores de los coeficientes, obtenidos con un programa de computadora hecho para estos fines, para una carga lateral igual a 275 kips (125 ton) son

a = 2.64; c = -1.64; e = 0.18; h = 0.56

(Estos coeficientes dependen de los intervalos a los que per tenezcan las deformaciones esperadas de los resortes de Winkler en la parte superior, que son los que influyen en el desplazamiento de la cabeza del pilote).

Sustituyendo los valores de los coeficientes anteriores y los de las ecs. 4.24 y 4.26 en las expresiones dadas por las ecs. 2.26 se obtienen los siguientes parámetros (aplicables a los casos en que las deformaciones de los resortes que determinan d<sub>n</sub> se encuentran en el intervalo en que la curva carga-deformación está definida por  $\beta_1$ , o sea, en el interv<u>a</u> lo no-lineal).
$$(\overline{\overline{d}}_n)_1 = 2.64 - 1.64(0.78) + 0.18(0.478) = 1.447$$
 (4.27 a)

 $(\sigma_{\tilde{d}_n}^2)_1 = (-1.64)^2 (0.0068) + (0.18)^2 (0.0176) = 0.0189 (4.27 b)$ 

$$(\bar{\sigma}_{d_n}^2)_1 = 0.56(0.478) = 0.268$$
 (4.27 c)

$$(\sigma_{\sigma_{d_n}^2}^2)_1 = (0.56)^2 (0.0176) = 0.0055$$
 (4.27 d)

Para el caso en que la parte significativa de la curva carga-deformación de los resortes está definida por  $\beta_2$ , o sea en el intervalo lineal, se obtiene

$$(\bar{d}_n)_2 = 2.64 - 1.64(0.79) + (0.18)(0.478) = 1.430$$
 (4.28 a)  
 $(\sigma_{d_n}^2)_2 = (-1.64)^2(0.044) + (0.18)^2(0.0176) = 0.1189$  (4.28 b)  
 $(\bar{\sigma}_{d_n}^2)_2 = 0.56(0.478) = 0.268$  (4.28 c)  
 $(\sigma_{\sigma_{d_n}^2}^2)_2 = (0.56)^2(0.0176) = 0.0055$  (4.28 d)

Las ecs. 4.27 y 4.28 constituyen la información a priori sobre la distribución de  $(\bar{d}_n, \sigma_d^2)$ . En lo que sigue se expresan estos valores en términos de los parámetros m, n, v y v, (notación usada por Raiffa y Schlaifer, 43)

. Valores medios de  $\overline{d}_{n_i}$ , i = 1, 2

 $m_{d_1} = 1.447$  (4.29 a)

 $m_{\bar{d}_2} = 1,430$ 

Parametros 
$$(v_{d_n})_i$$
,  $i = 1, 2$ 

En que 
$$v_{d_n} = \frac{1}{E(1/\sigma_{d_n}^2)}$$

A fin de conocer el valor del denominador de esta expresión, se usa una similar a la ec. 4.10 b, a saber

$$E(1/\sigma_{d_n}^2) = 1 / \sigma_{d_n}^2 + var(\sigma_{d_n}^2) / E(\sigma_{d_n}^2)$$

Por lo que

 $E(1/\sigma_{d_n}^2) = 1/0.268 + 0.0055/(0.268)^3 = 4.017$ 

$$E(1/\sigma_{d_n}^2) = 4.017$$

O sea que los valores de  $(v_{d_n})$  i = 1, 2 son iguales a

$$(v_{d_n})_1 = 0.25$$
 (4.30 a)

(4.30 b)

Parámetros  $(v_d)$ , i = 1, 2

= 0.25

En donde

$$v_{d_n} = \frac{2}{\operatorname{var}(h_{d_n})v_{d_n}^2}$$

Igual que en el inciso anterïor, se usa una ecuación similar a la 4.11 b que es la siguiente

$$\operatorname{var}(1/\sigma_{d_{n}}^{2}) = (1/E^{2}(\sigma_{d_{n}}^{2}))^{2} \operatorname{var}(\sigma_{d_{n}}^{2})$$

Sustituyendo valores en ésta se obtiene

var
$$(1/\sigma_{d_n}^2)_1 = (1/0.268^2)^2 (0.0055) = 1.066$$

 $var(1/\sigma_{d_n^2}^2) = 1.066$ 

Los valores de  $(v_{d_n i})$ , i = 1, 2 están dados por

$$(v_{d_n}) = \frac{2}{(1.066)(0.25)^2} = 30.02$$
 (4.31 a)

$$(v_{d_n})_2 = 30.02$$
 (4.31 b)

Parámetros  $(n_{d_n})_{i}$ , i = 1, 2

En que 
$$n_{d_n} = \frac{1}{var(\bar{d}_n)} v_{d_n} \frac{v_{d_n}}{v_{d_n^{-2}}}$$
  
 $(n_{d_n})_1 = \frac{1}{0.0189} (0.25) \frac{30.02}{28.02} = 14.17$  (4.32 a)

$$(n_{d_n})_2 = \frac{1}{0.1189} (0.25) \frac{30.02}{28.02} = 2.25$$
 (4.32 b)

En lo que sigue se considera como información a priori las ecs. 4.29 a 4.32, y se incorporan las estadísticas de las m<u>e</u> diciones tomadas al nivel del suelo.

n<sub>a</sub>.

n

F.2 Estadísticas de las mediciones tomadas en la cabeza de los pilotes

Las tablas 4 y 5 (28, 31 y 34) muestran los resultados de los desplazamientos en la cabeza de los pilotes, divididos entre los desplazamientos calculados (usando curvas p-y determistas). La primera columna se puede asociar principalmente con el parámetro  $\beta_2$  dado que la deformación esperada del suelo se encuentra dentro de un intervalo de comportamiento lineal; la segunda puede asociarse a  $\beta_1$ , porque los datos corresponden a un comportamiento no-lineal del suelo.

Las estadísticas de las observaciones son las siguientes

Valores medios de los desplazamientos normalizados\*

$$m_{d_1} = \frac{\sum_{j=1}^{n_1} (d_n) 1j}{n_{d_1}} = \frac{56.47}{45} = 1.25$$
(4.33 a)

$$m_{d_2} = \frac{\sum_{j=1}^{d_2} (d_n) 2j}{n_{d_2}} = \frac{51.43}{39} = 1.32$$
(4.33 b)

n y n corresponden al número de datos de la primera y segunda columna de las tablas 4 y 5, y (d<sub>n</sub>) , (d<sub>n</sub>) son los correspondientes valores de  $y_1/y_{1c}$ .

En lo que sigue se omite el subíndice n por simplicidad de notación.

Varianzas de los desplazamientos normalizados

$$v_{d_{1}} = \frac{31.05}{44} = 0.71$$
 (4.34 a)

$$v_{d_2} = \frac{29.68}{38} = 0.78$$
 (4.34 b)

F.3 Distribución a posteriori de  $(\bar{d}_n, \sigma_{d_n}^2)$ 

A fin de obtener los parámetros a posteriori se aplica nuevamente el Teorema de Bayes. Sustituyendo las ecs. 4.29 a 4.34 en las ecs. 2.16 se obtiene

$$(m_d)_1'' = \frac{(1.447)(14.17) + (1.25)(45)}{14.17 + 45} = 1.30$$

$$(m_d)_2'' = \frac{(1.43)(2.25) + (1.32)(39)}{2.25 + 39} = 1.33$$

 $n_{d_1}^{"} = 14.17 + 45 = 59.17$ 

 $n_{d_{2}}^{"} = 2.25 + 39 = 41.25$ 

$$v_{a}^{"} = 30.02 + 1 + 44 = 75.02$$

$$v_d^* = 30.02 + 1 + 38 = 69.02$$

$$d_1 = \frac{(30.02)(0.25) + (1.447)^2(14.17) + (44)(0.71)}{75.02}$$

$$\frac{+ (1.25)^2 (45) - (1.3)^2 (59.17)}{75.02} = 0.52$$

$$v_{d_{2}}^{"} = \frac{(30.02)(0.25) + (1.43)^{2}(2.25) + (38)(0.78)}{69.02}$$
$$\frac{+ (1.32)^{2} (39) - (1.33)^{2}(41.25)}{69.02} = 0.53$$

Los parámetros anteriores pueden expresarse en términos de valores centrales, según las ecs. 2.17, como sigue

$$E(\bar{d})_{1} = 1.30$$
 (4.35 a)

(4.35 b)

 $E(\bar{d})_{2} = 1.33$ 

$$E(h_d)_1 = \frac{1}{0.52} = 1.923$$

$$E(n_{d})_{2} = \frac{1.88}{0.53}$$

$$\operatorname{var}(h_d)_1 = \frac{2}{\nu_d \nu_d^2} = \frac{2}{(75.02)(0.52)^2} = 0.098$$

$$\operatorname{ar}(h_{d})_{2} = \frac{2}{(69.02)(0.53)^{2}} = 0.103$$

$$\operatorname{var}(\bar{d})_{1} = \frac{\operatorname{v}_{d_{1}}}{\operatorname{n}_{d_{1}}} \frac{\operatorname{v}_{d_{1}}}{(\operatorname{v}_{d_{1}}-2)} = \frac{(0.52)}{(59.17)} \frac{(75.02)}{(73.02)} = 0.009 \quad (4.36 \text{ a})$$
$$\operatorname{var}(\bar{d})_{2} = \frac{(0.53)}{(41.25)} \frac{(69.02)}{(67.02)} = 0.013 \qquad (4.36 \text{ b})$$

Utilizandó las relaciones dadas por la ec. 4.25 se obtiene

$$E(var d)_{1} = \frac{1.923 \pm \sqrt{(1.923)^{2} - (4)(0.098)}}{(2)(0.098)} = 0.53 \quad (4.37 a)$$

÷.

$$E(var d)_{2} = \frac{1.88 \pm \sqrt{(1.88)^{2} - 4(0.103)}}{(2)(0.103)} = 0.55$$
 (4.37 b)

$$var(var d)_1 = (0.53)^4 (0.098) = 0.0077$$
 (4.38 a)

 $var(var d)_2 = (0.55)^4(0.103) = 0.0094$  (4.38 b)

# G. <u>Tercera distribución a posteriori de los parámetros de la</u> <u>distribución de B</u>

A partir de las ecs. 2.26 se establecen dos sistemas de ecuaciones de donde se despejan las variables  $\overline{\overline{\beta}}_{i}$ , var  $\overline{\beta}_{i}$ , E(var  $\beta_{i}$ ) y var(var  $\beta_{i}$ ), i = 1, 2.

Para i = 1, resulta

$$1.30 = 2.64 - 1.64 \overline{\beta}_{1} + 0.18 \overline{\sigma}_{\beta}_{1}$$

 $0.009 = (1.64)^2 \sigma_{\beta_1}^2 + (0.18)^2 \operatorname{var}(\sigma_{\beta_1}^2)$ 

0.53 = 0.56  $\overline{\sigma}_{\beta_1}^2$ 0.0077 = (0.56)<sup>2</sup> var ( $\sigma_{\beta_1}^2$ ) Para i = 2, el sistema es el siguiente

 $1.33 = 2.64 - 1.64 \overline{\overline{\beta}}_2 + 0.18 \overline{\sigma}_{\beta_2}^2$ 

0.013 =  $(1.64)^2 \sigma_{\beta_2}^2 + (0.18)^2 \operatorname{var}(\sigma_{\beta_2}^2)$ 

$$0.55 = 0.56 \ \overline{\sigma}_{\beta_2}^2$$

$$0.0094 = (0.56)^2 \ var(\sigma_{\beta_2}^2)$$
De estos dos sistemas se obtienen los siguientes valores
$$\overline{\beta}_1 = 0.92 \qquad ; \ \overline{\beta}_2 = 0.91 \qquad (4.39 \ a)$$
var  $\overline{\beta}_1 = 0.003 \qquad ; \ var \ \overline{\beta}_2 = 0.0045 \qquad (4.39 \ b)$ 

$$E(var \beta_1) = 0.94 \qquad ; \ E(var \beta_2) = 0.98 \qquad (4.39 \ c)$$
var(var  $\beta_1$ ) = 0.024 ; var(var  $\beta_2$ ) = 0.03 (4.39 \ d)  
A partir de las ecs. 4.10 b y 4.11 b se obtiene
$$E(1/\sigma_{\beta_1}^2) = 1/0.94 + 0.024/(0.94)^3 = 1.09 \qquad (4.39 \ c)$$

$$E(1/\sigma_{\beta_2}^2) = 1/0.98 + 0.030/(0.98)^3 = 1.05 \qquad (4.39 \ f)$$
var( $1/\sigma_{\beta_1}^2$ ) = (1.0.94)<sup>4</sup> (0.024) = 0.0307 \qquad (4.39 \ h)

Los valores dados por las ecs. 4.39 pueden expresarse en términos de los parámetros m, n, y y v. Se obtiene lo siguiente

106

$$\begin{split} & m_{\widetilde{B}_{1}} = 0.92 & (4.40 \text{ a}) \\ & m_{\widetilde{B}_{2}} = 0.91 & (4.40 \text{ b}) \\ & v_{\widetilde{B}_{1}} = 1/1.09 = 0.92 & (4.41 \text{ a}) \\ & v_{\widetilde{B}_{2}} = 1/1.003 = 0.95 & (4.41 \text{ b}) \\ & v_{\widetilde{B}_{2}} = 1/1.003 = 0.95 & (4.41 \text{ b}) \\ & v_{\widetilde{B}_{2}} = \frac{2}{(0.0307)(0.92)^{2}} = 76.9 & (4.42 \text{ a}) \\ & v_{\widetilde{B}_{2}} = \frac{2}{(0.032)(0.95)^{2}} = 69.25 & (4.42 \text{ b}) \\ & n_{\widetilde{B}_{1}} = \frac{(0.92)(76.9)}{(0.003)(74.9)} = 314.8 & (4.43 \text{ a}) \\ & n_{\widetilde{B}_{2}} = \frac{(0.95)(69.25)}{(0.0045)(67.25)} = 217.38 & (4.43 \text{ b}) \\ & \text{H}. \quad \underline{\text{Distribuci6n incondicional de B}} \\ & \text{Los parametros de las distribuciones incondicionales de } \beta_{1} y \beta_{2} \\ & \text{están dados por las ecs. 2.20 para el caso unidimensional} \\ & & var(\beta_{1}) = \frac{v_{\widetilde{B}_{1}}}{n_{u_{1}}(v_{\widetilde{B}_{1}}-2)} & (4.44 \text{ b}) \\ & & n_{u_{1}} = -\frac{n_{\widetilde{B}_{1}}}{n_{\widetilde{B}_{1}}+\eta}, i = 1, 2 & (4.44 \text{ c}) \\ \end{split}$$

(4.44 c)

<sup>8</sup> 107

En este caso el valor de  $\eta$  es igual a 1 porque es lo mismo un valor de la variable  $\beta_i$  que la media de una muestra de tamaño 1 de dicha variable.

Sustituyendo en estas se obtienen los siguientes valores

 $E(\beta_1) = 0.92$  (4.45 a)  $E(\beta_2) = 0.91$  (4.45 b)  $n_{u_1} = \frac{314.8}{315.8} = 0.997$ 

$$n_{u_0} = \frac{217.38}{218.38} = 0.995$$

 $\operatorname{var}(\beta_1) = \frac{(0.92)(76.9)}{(0.997)(74.9)} = 0.95$  (4.46 a)

$$\operatorname{var}(\beta_2) = \frac{(0.95)(69.25)}{(0.995)(67.25)} = 0.98$$
 (4.46 b)

Los valores  $E(\beta_i)$  y  $var(\beta_i)$ , i = 1, 2 son los parámetros que nos dan la información estadística sobre las curvas p-y

4.3 RESPUESTA PROBABILISTA DEL PILOTE

En esta sección se calcula la respuesta probabilista del pi lote representado en la fig 8. El pilote es hueco de 4 pies (1.22 m) de diámetro externo con espesores variables entre 1.75" (4.45 cm) y 0.75" (1.91 cm). Se encuentra hincado en arcilla saturada cuyas propiedades se dan en la tabla 2 y sujeto a una carga cuyo valor medio es 275 kips (125 ton) y varianza nula.

Del análisis convencional hecho con un programa de computadora se llegó a la conclusión de que bastaba analizar la mitad superior del pilote, ya que el movimiento en la otra mitad era casi imperceptible y de poca influencia en la respuesta del p<u>i</u> lote completo, por lo que se considera, en el análisis que sigue, que el pilote tiene 171.5 pies (52.25 m) de longitud.

La mitad superior se analiza dividiéndola en incrementos de igual tamaño. Generalmente, para un pilote largo, flexible, la longitud de los incrementos en que se divide éste es aprox<u>i</u> madamente igual a la mitad de su diámetro exterior(36). En e<u>s</u> te estudio se hicieron varias pruebas sobre la influencia del tamaño de la subdivisión llegando a la conclusión de dividir la mitad superior del pilote en 49 elementos.

Las medias y covarianzas de las deflexiones y momentos se cal cularon mediante un programa de computadora.

En las figs 13 y 14 se presentan los desplazamientos y momentos flexionantes calculados en forma determinista, así como los desplazamientos y momentos esperados y sus correspondientes desviaciones estándar a lo largo del pilote. La respuesta probabilista del pilote depende en este caso, de los valores de los parámetros estadísticos de las curvas p-y, dados por las ecs. 4.45 y 4.46. El coeficiente de variación en la cabeza del pilote del desplazamiento es igual a 0.6, mientras que el del momento flexionante es igual a 0.25.



Fig 9 Curva p-y para arcilla blanda saturada (Matlock, 1970; Sullivan, 1977)



Fig 10 Mediciones carga deformación en segmentos de pilotes verticales. Se consideró arbitrariamente E<sub>i</sub>=11b/pulg<sup>2</sup>=0.0703 kg/cm<sup>2</sup> (Matlock y Ripperger, 1957)



Fig 12

Diagramas esfuerzo-deformación correspondientes a pruebas de compresión no confinada de arcillas blandas (Matlock y Ripperger, 1957)









## T, A B L A 1

Valores de la resistencia última y del gradiente de la tangente inicial del módulo de la reacción del suelo normalizados, a diferentes profundidades en el sitio de interés.

|       |         |                        |             | • .                    |             |                                        | • •          |
|-------|---------|------------------------|-------------|------------------------|-------------|----------------------------------------|--------------|
|       | X       | , -                    | c           |                        | c           | p <sub>u</sub> (c) /p <sub>u</sub> (c) | k (c) /k (c) |
| (pies | ) (m)   | (lb/pie <sup>2</sup> ) | $(ton/m^2)$ | (lb/pie <sup>2</sup> ) | $(ton/m^2)$ |                                        |              |
| 2     | (0.61)  | 53.3                   | (0.26)      | 69.33                  | (0.34)      | 0.8324                                 | 0.80         |
| 4     | (1.22)  | 96.00                  | (0.47)      | 80.00                  | (0.39)      | 1.1241                                 | 1.12         |
| 8     | (2.44)  | 80.00                  | (0.39)      | 109.33                 | (0.53)      | 0.849                                  | 0.80         |
| 10    | (3.05)  | 108.00                 | (0.53)      | 126.67                 | (0.62)      | 0.917                                  | 0.90         |
| 10    | (3.05)  | 146.00                 | (0.71)      | 126,67                 | (0.62)      | 1.08                                   | 1.10         |
| 13    | (3.97)  | 173.33                 | (0.85)      | 146.67                 | (0.72)      | 1.09                                   | 1.10         |
| 16    | (4.88)  | 106.67                 | (0.52)      | 162.67                 | (0.80)      | 0.81                                   | 0.80         |
| 18    | (5.49)  | 166.67                 | (0.82)      | 186.67                 | (0.91)      | 0.94                                   | 0.90         |
| 22    | (6.71)  | 246.67                 | (1.21)      | 206.67                 | (1.01)      | 1.11                                   | 1.10         |
| 26    | (7.93)  | 226.00                 | (1.11)      | 226.67                 | (1.11)      | 0.99                                   | 0.99         |
| 28    | (8.54)  | 293.33                 | (1.43)      | 253.33                 | (1.24)      | 1.09                                   | 1.10         |
| 32    | (9.76)  | 282.67                 | (1.38)      | 277.33                 | (1.36)      | 1.01                                   | 1.01         |
| 35    | (10.68) | 266.67                 | (1.30)      | 300.00                 | (1.47)      | 0.93                                   | 0.90         |
| 35    | (10.68) | 346.67                 | (1.70)      | 300.00                 | (1.47)      | 1.09                                   | 1.10         |
| 38    | (11.59) | 280.00                 | (1.37)      | 320.00                 | (1.56)      | 0.92                                   | 0.90         |
| 39    | (11.90) | 386.67                 | (1.89)      | 322.67                 | (1.58)      | 1.11                                   | 1.10         |
| 40    | (12.20) | 294.67                 | (1.44)      | 333.33                 | (1.63)      | 0.92                                   | 0.90         |
| 40    | (12.20) | 353.33                 | (1.73)      | 333.33                 | (1.63)      | 1.03                                   | 1.03         |
| 40    | (12.20) | 440.00                 | (2.15)      | 333.33                 | (1.63)      | 1.19                                   | 1.20         |

· 117

,

|        | x        |                        | С           | Ū                      |             | p <sub>u</sub> (c)/p <sub>u</sub> (c) | k (c) /k (c) |
|--------|----------|------------------------|-------------|------------------------|-------------|---------------------------------------|--------------|
| (pies) | (m)      | (Lb/pie <sup>2</sup> ) | $(ton/m^2)$ | (lb/pie <sup>2</sup> ) | $(ton/m^2)$ |                                       |              |
| 46     | (14.03)  | 386.67                 | (1.89)      | 373.33                 | (1.83)      | 1.02                                  | 1.02         |
| 48     | (14.64)  | 263.33                 | (1.29)      | 393.33                 | (1.92)      | 0.67                                  | 0.60         |
| 53     | (16.17)  | 413.33                 | (2.02)      | 426.67                 | (2.09)      | 0.97                                  | 0.90         |
| 58     | (17.69)  | 526.67                 | (2.58)      | 466.67                 | (2.28)      | 1.08                                  | 1.23         |
| 58     | (17.69)  | 294.67                 | (1.44)      | 466.67                 | (2.28)      | 0.75                                  | 0.50         |
| 64     | (19.52)  | 546.67                 | (2.67)      | 506.67                 | (2.48)      | 1.05                                  | 1.16         |
| 66     | (20.13)  | 520.00                 | (2.54)      | 520.00                 | (2.54)      | .1.00                                 | 1.00         |
| 68     | (20.74). | 546.67                 | (2.67)      | 533.33                 | (2.61)      | 1.01                                  | 1.04         |
| 72     | (21.96)  | 473.33                 | (2.31)      | 566.67                 | (2.77)      | 0.88                                  | 0.69         |
| 75     | (22.88)  | 640.00                 | (3.13)      | 586.67                 | (2.87)      | 1.06                                  | 1.17         |
| 79     | (24.10)  | 466.67                 | (2.28)      | 613.33                 | (3.00)      | 0.83                                  | 0.60         |
| 83     | (25.32)  | 650.00                 | (3.18)      | 640.00                 | (3.13)      | 1.01                                  | 1.02         |
| 88     | (26.84)  | 946.67                 | (4.63)      | 680.00                 | (3,33)      | 1.28                                  | 1.72         |
| 89     | (27.15)  | 680.67                 | (3.33)      | 682.67                 | (3.34)      | 0.99                                  | 0.95         |
| 95     | (28.98)  | 866.67                 | (4.24)      | 720.00                 | (3.52)      | 1.14                                  | 1.35         |
| 95     | (28.98)  | 1093.83                | (5.35)      | 720.00                 | (3.52)      | 1.37                                  | 2.04         |
| 105    | (32.03)  | 746.67                 | (3.65)      | 800.00                 | (3.91)      | 0.95                                  | 0.92         |
| 113    | (34.47)  | 826.67                 | (4.04)      | 800.00                 | (3.91)      | 1.02                                  | 1.04         |
| 117    | (35.69)  | 780.00                 | (3.81)      | 800.00                 | (3.91)      | 0.98                                  | 0.85         |
| 118    | (35.99)  | 806.67                 | (3.94)      | 800:00                 | (3.91)      | 1.01                                  | 1.04         |
| 120    | (36.60)  | 776.00                 | (3.79)      | 800.00                 | (3.91)      | 0.97                                  | 0.93         |
| 124    | (37.82)  | 840,00                 | (4.11)      | 800.00                 | (3,91)      | 1.03                                  | 1.07         |
| 127    | (38.74)  | 766.67                 | (3.75)      | 800.00                 | (3.91)      | 0.96                                  | 0.93         |
| 132    | (40.26)  | 893.33                 | (4.37)      | 800.00                 | (3.91)      | 1.08                                  | 1.15         |
| 134    | (40.87)  | 793.30                 | (3.88)      | 800.00                 | (3.91)      | 0.99                                  | 0.97         |

| ·      | x       |                        | C           | Ċ                      | 5                     | p <sub>u</sub> (c) /p <sub>u</sub> (c) | k (c) /k (c) |
|--------|---------|------------------------|-------------|------------------------|-----------------------|----------------------------------------|--------------|
| (pies) | (m)     | (lb/pie <sup>2</sup> ) | $(ton/m^2)$ | (lb/pie <sup>2</sup> ) | (ton/m <sup>2</sup> ) |                                        | 9            |
| 138    | (42.09) | 853.30                 | (4.17)      | 800.00                 | (3.91)                | 1.04                                   | 1.10         |
| 145    | (44.23) | 746.67                 | (3.65)      | 800.00                 | (3.91)                | 0.95                                   | 0.88         |
| 155    | (47.28) | 760.00                 | (3.72)      | 800.00                 | (3.91)                | 0.96                                   | 0.89         |
| 163    | (49.72) | 686.60                 | (3.36)      | 800.00                 | (3.91)                | 0.89                                   | 0.75         |
| 170    | (51.85) | 866.67                 | (4.24)      | . 800.00               | (3.91)                | 1.06                                   | 1.11         |
| 173    | (52.77) | 533.33                 | (2.61)      | 800.00                 | (3.91)                | 0.75                                   | 0.50         |
| 176    | (53.68) | 773.33                 | (3.78)      | 800.00                 | (3.91)                | 0.97                                   | 0.93         |
| 180    | (54.90) | 893.33                 | (4.37)      | 800.00                 | (3.91)                | 1.08                                   | 1.15         |
| 182    | (55,51) | 726.67                 | (3.55)      | 800.00                 | (3.91)                | 0.93                                   | 0.90         |
| 186    | (56.73) | 820,00                 | (4.01)      | 800.00                 | (3.91)                | 1.01                                   | 1.05         |
| 189    | (57.65) | 866.67                 | (4.24)      | 800.00                 | (3.91)                | 1.06                                   | 1.11         |
| 195    | (59.48) | 693.33                 | (3.39)      | 800.00                 | (3.91)                | 0.90                                   | 0.78         |
| 205    | (62.53) | 866.67                 | (4.24)      | 800.00                 | (3.91)                | 1.06                                   | 1.11         |
| 207    | (63,14) | 726.67                 | (3.55)      | 800.00                 | (3.91)                | 0.93                                   | 0.90         |
| 215    | (65.58) | 866.67                 | (4.24)      | 800.00                 | (3.91)                | 1.06                                   | 1.11         |
| 224    | (68.32) | 773.33                 | (3.78)      | 800.00                 | (3.91)                | 0.97                                   | 0.90         |
| 227    | (69.24) | 766.67                 | (3.75)      | 800.00                 | (3.91)                | 0.97                                   | 0.93         |
| 235    | (71.68) | 693,33                 | (3.39)      | 800.00                 | (3.91)                | 0.90                                   | 0.80         |
| 236    | (71.98) | 840.00                 | (4.11)      | 800.00                 | (3,91)                | 1.03                                   | 1.09         |
| 239    | (72.90) | 733.33                 | (3.59)      | 800.00                 | (3.91)                | 0.94                                   | 0.96         |
| 250    | (76.25) | 760.00                 | (3.72)      | 800.00                 | <u>(</u> 3.91)        | 0.96                                   | 0.93         |
| 253    | (77.17) | 866.67                 | (4.24)      | 826.67                 | (4.04)                | 1.03                                   | 1.07         |
| 261    | (79.61) | 1093.33                | (5.35)      | 866.67                 | (4.24)                | 1.19                                   | 1.47         |
| 263    | (80.22) | 826.67                 | (4.04)      | 833.33                 | (4.08)                | 0.99                                   | 0.95         |
| 268    | (81.74) | 866.67                 | (4.24)      | 920.00                 | (4.50)                | 0.95                                   | 0.90         |

| x      |          | с         |             |                        | ē             | p <sub>u</sub> (c) /p <sub>u</sub> (c) | k (c) /k (c) |
|--------|----------|-----------|-------------|------------------------|---------------|----------------------------------------|--------------|
| (pies) | (m)      | (lb/pie²) | $(ton/m^2)$ | (lb/pie <sup>2</sup> ) | $(ton/m^2)$   |                                        |              |
| 277    | (84.49)  | 1173.33   | (5.74)      | 973.33                 | (4.76)        | 1.15                                   | 1.18         |
| 282    | (86.01)  | 873.33    | (4.27)      | 986.67                 | (4.82)        | 0.98                                   | 0.88         |
| 285    | (86.93)  | 1008.00   | (4.93)      | 1008.00                | (4.93)        | 1.00                                   | 1.00         |
| 292    | (89.06)  | 1266.67   | (6.19)      | 1053.33                | (5.15)        | 1.15                                   | 1.35         |
| 294    | (89.67)  | 800.00    | (3.91)      | 1066.67                | (5.22)        | 0.80                                   | 0.63         |
| 296    | (90.28)  | 1073,33   | (5.25)      | 1080.00                | (5.28)        | 0.99                                   | 0.97         |
| 301    | (91.81)  | 1226.67   | (6.00)      | 1106.67                | (5.41)        | 1.08                                   | 1.30         |
| 307    | (93.64)  | 1026.67   | (5.02)      | 1133.33                | <b>(5.54)</b> | 0.92                                   | 0.87         |
| 311    | (94.86)  | 1066.67   | (5.22)      | 1173.33                | (5.74)        | 0.92                                   | 0.86         |
| 313    | (96.47)  | 1253.33   | (6.13)      | 1186.67                | (5.80)        | 1.04                                   | 1.10         |
| 316    | (96.38)  | 893.33    | (4.37)      | 1200.00                | (5.87)        | 0.79                                   | 0.63         |
| 319    | (97.30)  | 1373.33   | (6.72)      | 1220.00                | (5.97)        | 1.09                                   | 1.17         |
| 319    | (97.30)  | 1040.00   | (5.09)      | 1220.00                | (5.97)        | 0.88                                   | 0.72         |
| 322    | (98.21)  | 1120.00   | (5.48)      | 1233.33                | (6.03)        | 0.93                                   | 0.88         |
| 328    | (100.04) | 1253.33   | (6.13)      | 1266.67                | (6.19)        | 0.99                                   | 0.93         |
| 330    | (100.65) | 1466.67   | (7.17)      | 1280.00                | (6.26)        | 1.11                                   | 1.21         |
| 331    | (100.96) | 933.33    | (4.56)      | 1283.00                | (6.27)        | 0.78                                   | 0.60         |
| 333    | (101.57) | 1113.30   | (5.44)      | 1293.33                | (6.32)        | 0.88                                   | 0.79         |
| 339    | (103.40) | 1640.00   | (8.02)      | 1333.33                | (6.52)        | 1.18                                   | 1.33         |
| 342    | (104.31  | 1226.67   | (6.00)      | 1346.67                | (6.59)        | 0.92                                   | 0.85         |
| 344    | (104.92) | 1374.67   | (6.72)      | 1360.00                | (6.65)        | 1.01                                   | 1.03         |
| 346    | (105.53) | 1307.07   | (6.39)      | 1373.33                | (6.72)        | 0.96                                   | 0.94         |
| 348    | (106.14) | 1346.67   | (6.59)      | 1387.00                | (6.78)        | 0.97                                   | 0.95         |

÷



Tabla 2. Resultados de pruebas y descripción del suelo del ejemplo

121

- lace 1

720.9

17

## TABLA 3

| Tabla 3. | Valores de | β1 | y β <sub>2</sub> | obtenidos de | pruebas | hechas a | escala | natural | (Ref. | 20, | 24, | 26, | 35) |  |
|----------|------------|----|------------------|--------------|---------|----------|--------|---------|-------|-----|-----|-----|-----|--|
|----------|------------|----|------------------|--------------|---------|----------|--------|---------|-------|-----|-----|-----|-----|--|

1

| Ref.                                               | Profi                                                                                              | undidad                                                                                          |                                                                              | C                                                                                                |                                                                    | ς.                                                                                               | į. J                                                                         | E <sub>i</sub>                                                                                      | •••••                                                                        | P <sub>u</sub>                                                                                             | Ĕ                                                                               | )<br>u_                                                                                                          | β1                                                                      | β2                                                                   |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| •                                                  | pies                                                                                               | (metros)                                                                                         | k/pie²                                                                       | (ton/m²)                                                                                         | k/pulg <sup>3</sup>                                                | (kg/cm <sup>3</sup> )                                                                            | k/pulg²                                                                      | (kg/cm²)                                                                                            | k/pulg                                                                       | (kg/cm)                                                                                                    | k/pulg                                                                          | (kg/cm)                                                                                                          | t                                                                       |                                                                      |
| 24<br>26<br>26<br>26<br>26<br>35<br>35             | 2.00<br>14.0<br>1.64<br>4.92<br>5.56<br>8.20<br>7.00<br>12.0                                       | (0.61)<br>(4.27)<br>(0.50)<br>(1.50)<br>(1.70)<br>(2.50)<br>(2.14)<br>(3.66)                     | 1.00<br>1.00<br>0.92<br>0.92<br>0.92<br>0.92<br>0.22<br>0.24                 | (4.89)<br>(4.89)<br>(4.50)<br>(4.50)<br>(4.50)<br>(4.50)<br>(1.07)<br>(1.17)                     | .1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.03<br>.03                     | (2.77)<br>(2.77)<br>(2.77)<br>(2.77)<br>(2.77)<br>(2.77)<br>(0.83)<br>(0.83)                     | -<br>.44<br>.82<br>1.15<br>1.42<br>3.6<br>4.15                               | (31.0)<br>(57.8)<br>(81.0)<br>(100.0)<br>(253.6)<br>(292.4)                                         | 2.7<br>4.4<br>-<br>-<br>-<br>-                                               | (483.18)<br>(787.40)<br>-<br>-<br>-<br>-<br>-<br>-                                                         | 2.4<br>4.0<br>-<br>-<br>-<br>-                                                  | (429.49)<br>(751.61)<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                          | 1.13<br>1.05<br>-<br>-<br>-<br>-<br>-                                   | -<br>0.22<br>0.14<br>0.14<br>1.43<br>0.96                            |
| 20<br>20<br>20<br>20<br>20<br>20<br>35<br>35<br>35 | $1.00 \\ 3.28 \\ 6.56 \\ 9.84 \\ 13.12 \\ 16.40 \\ 19.70 \\ 1.00 \\ 3.00 \\ 5.00 \\ \end{bmatrix}$ | (0.31)<br>(1.00)<br>(2.00)<br>(3.00)<br>(4.00)<br>(5.00)<br>(6.00)<br>(0.31)<br>(0.92)<br>(1.53) | .005<br>.010<br>.033<br>.050<br>.066<br>.083<br>.100<br>.160<br>.170<br>.200 | (0.02)<br>(0.08)<br>(0.16)<br>(0.24)<br>(0.32)<br>(0.41)<br>(0.49)<br>(0.78)<br>(0.83)<br>(0.98) | .03<br>.03<br>.03<br>.03<br>.03<br>.03<br>.03<br>.03<br>.03<br>.03 | (0.83)<br>(0.83)<br>(0.83)<br>(0.83)<br>(0.83)<br>(0.83)<br>(0.83)<br>(0.83)<br>(0.83)<br>(0.83) | 0.11<br>0.21<br>0.40<br>0.61<br>0.88<br>1.28<br>1.73<br>1.35<br>1.90<br>3.23 | (7.75)<br>(14.8)<br>(28.2)<br>(43.0)<br>(62.0)<br>(90.2)<br>(121.9)<br>(95.1)<br>(133.8)<br>(227.6) | 0.16<br>0.35<br>0.50<br>0.48<br>0.47<br>0.44<br>0.41<br>0.11<br>0.38<br>0.52 | (28.63)<br>(62.63)<br>(89.48)<br>(85.90)<br>(84.11)<br>(78.74)<br>(73.37)<br>(19.69)<br>(68.00)<br>(93.06) | 0.17<br>0.57<br>1.18<br>1.80<br>2.37<br>2.98<br>3.60<br>0.179<br>0.235<br>0.324 | (30.42)<br>(102.00)<br>(211.17)<br>(322.12)<br>(424.12)<br>(533.29)<br>(644.24)<br>(32.03)<br>(42.05)<br>(57.98) | 0.91<br>0.61<br>0.26<br>0.20<br>0.15<br>0.11<br>0.612<br>1.617<br>1.605 | 0.31<br>0.18<br>0.17<br>0.19<br>0.22<br>0.24<br>3.75<br>1.76<br>1.79 |

k = Kips

## TABLA 4

|                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y1/                                                                                                                                                                                                                                                                                    | <i>y</i> <sub>1</sub> <sub>c</sub>                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prueba                                                                                                                                                                                                                                         | c<br>(ton/m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intervalo<br>lineal                                                                                                                                                                                                                                                                    | Intervalo<br>No-lineal                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ \end{array} $ | 3.58<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55 | $\begin{array}{c} 0.38\\ 1.00\\ 0.83\\ 0.92\\ 2.08\\ 0.80\\ 1.00\\ 0.50\\ 0.75\\ 0.50\\ 1.60\\ 3.45\\ 1.09\\ 1.82\\ 2.22\\ 1.67\\ 0.80\\ 0.40\\ 4.17\\ 3.00\\ 2.2\\ 1.67\\ 0.80\\ 0.40\\ 4.17\\ 3.00\\ 2.2\\ 1.2\\ 0.83\\ 0.63\\ 1.00\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$ | 0.78<br>1.00<br>1.28<br>2.67<br>3.87<br>0.96<br>0.17<br>0.08<br>1.21<br>1.71<br>0.44<br>2.38<br>1.56<br>1.40<br>1.46<br>1.10<br>1.45<br>1.22<br>2.34<br>3.91<br>0.64<br>1.52<br>1.60<br>0.69<br>2.75<br>1.69<br>1.00<br>1.31<br>1.00<br>1.38<br>0.55<br>0.69<br>0.40<br>0.92<br>0.79<br>0.49<br>0.76<br>0.71<br>1.48<br>0.52<br>0.81 |

Valores normalizados de desplazamientos en la cabeza de pilotes, obtenidos de pruebas hechas a escala natural (Ref. 28). TABLA 5

Valores normalizados de desplazamientos en la cabeza de pilotes obtenidos de pruebas a escala natural (Refs. 31, 34)

| •    | ·                   |                        |  |  |  |  |  |  |
|------|---------------------|------------------------|--|--|--|--|--|--|
|      | $y_1/y_1_c$         |                        |  |  |  |  |  |  |
| Ref. | Intervalo<br>lineal | Intervalo<br>No-lineal |  |  |  |  |  |  |
| 31   |                     | 1.25                   |  |  |  |  |  |  |
| 34   | 2.                  |                        |  |  |  |  |  |  |
| 34   | 2.04                |                        |  |  |  |  |  |  |
| 34   | 1.85                | · · ·                  |  |  |  |  |  |  |
| 34   | 0.94                |                        |  |  |  |  |  |  |
| 34   |                     | 0.76                   |  |  |  |  |  |  |
| 34   |                     | 0.91                   |  |  |  |  |  |  |
| 34   |                     | 1.04                   |  |  |  |  |  |  |
|      | · ]                 | ·                      |  |  |  |  |  |  |

124

#### CAPITULO 5

#### SOLUCION ADIMENSIONAL GENERALIZADA

#### 5.1 ANTECEDENTES

Con fines de aplicación práctica conviene obtener soluciones generalizadas en forma adimensional al problema de pilotes sometidos a cargas laterales estáticas. La formulación de dichas soluciones parte de los principios del análisis dimensional, como se describe a continuación.

El desplazamiento de un pilote sujeto a una carga lateral es función de varios parámetros

$$y = f(x, T, L, E_{r}, YI, P_{r})$$
 (5.1)

: en donde

- x = profundidad
- T = factor de rigidez relativa, definido más adelante

L = longitud del pilote

 $E_s = módulo$  secante de la reacción horizontal del suelo, definido como la pendiente de la secante medida desde el origen a un punto de la curva p-y YI = rigidez flexionante del pilote

P = carga lateral externa aplicada en la cabeza del pilote

Estas son seis variables significativas expresadas mediante dos unidades básicas: longitud y fuerza. Existen, por lo tanto, cuatro parámetros independientes adimensionales en la función dada por la ec. 5.1.

Matlock y Reese (32) seleccionan los siguientes parámetros adimensionales, los cuales tienen los mismos valores numéricos para cada elemento de un par de sistemas semejantes, o para cualquier modelo y su prototipo. Estos son

a) Coeficiente de profundidad

$$z = \frac{x}{T}$$

b) Coeficiente de profundidad máxima

$$z_{max} = \frac{L}{T}$$

c) Función que depende del coeficiente de profundidad

$$\phi(z) = \frac{E_s T^4}{YI}$$

d) Coeficiente de desplazamiento

$$A_y = \frac{y YI}{P_+ T^3}$$

Introduciendo estos parámetros en la ecuación diferencial que gobierna el comportamiento de un pilote sujeto solamente a solicitaciones laterales estáticas dada por

$$\frac{d^4y}{dx^4} + \frac{E_s}{YI} y = 0$$

se obtiene la siguiente

$$\frac{d^{4}A_{y}}{dz^{4}} + \phi(z)A_{y} = 0$$
 (5.3)

(5.2)

Las condiciones de frontera necesarias para resolver la ecuación diferencial 5.2 son las siguientes: el momento flexionante y la fuerza cortante se consideran nulos en la punta del pilote. En la cabeza de éste se imponen otras dos condiciones. Esta son: la carga lateral aplicada y el momento flexionante actuante, para el caso en que la cabeza del pilote se considere libre de girar y desplazarse lateralmente; y la carga lateral aplicada y la pendiente nula con respecto al eje longitudinal (x) del pilote, para el caso en que la cabeza del pilote pueda desplazarse lateralmente pero no pueda girar. La variación de  $E_s$  con la profundidad puede suponerse de di-

versas formas. Por ejemplo

$$E_{s} = k_{0} + k_{1}x + k_{2}x^{2}$$

 $E_s = k x^n$ 

En donde n,  $k_0$ ,  $k_1$  y  $k_2$  son parametros constantes.

Conocida la variación de  $E_s$  es posible encontrar el factor de rigidez relativa, T. Por ejemplo si se supone  $E_s = kx^n$ , entonces

$$\phi(z) = \frac{kx^n}{YI} T^4$$

Se define T de modo que resulte para  $\phi(z)$  una expresión simple; así, si se toma

$$T^{n+4} = \frac{YI}{k}$$

La función  $\phi(z)$  resulta igual a

$$\phi(z) = \frac{x^{n} T^{4}}{T^{n} T^{4}} = (\frac{x}{T})^{n}$$

La ecuación diferencial (5.3), para n = 1, se convierte en

$$\frac{d^{4}A_{y}}{dz^{4}} + zA_{y} = 0$$
 (5.4)

Esta ecuación equivale a tener un pilote ficticio cuyos desplazamientos son  $A_y$ , y cuyo módulo secante de la reacción del suelo dividido entre YI es igual a una cantidad directamente proporcional al coeficiente de profundidad z. Para resolver esta ecuación se necesitan cuatro condiciones de frontera similares a las mencionadas antes para resolver la ec. (5.2). Matlock y Reese (32, 48) calculan valores de los desplazamientos adimensionales bajo la hipótesis que  $E_s$  varía linealmente con la profundidad,  $E_s = kx$ , para distintas condiciones de frontera en la cabeza de los pilotes y para diferentes longitudes normalizadas ( $z_{máx}$ ). Resuelven las respectivas ecuaciones diferenciales mediante un programa de computadora que utiliza el método de diferencias finitas (22), y obtienen los valores de dichos coeficientes adimensionales.

En esta tesis se tratan los casos de pilotes cuya longitud normalizada máxima es igual a 5 ( $z_{máx} = 5$ ), para dos condiciones de frontera: libre y guiada en la cabeza de los pilotes. En lo que sigue se restringirá el empleo de A<sub>y</sub> para denotar el desplazamiento adimensional a lo largo de un pilote con cabeza libre de restricciones y se usará F<sub>y</sub> para designar el desplazamiento adimensional para un pilote cuya cabeza no puede girar.

129

El desplazamiento de un pilote cuya cabeza está libre de restricciones, sujeta a una carga lateral P<sub>t</sub> aplicada al nivel del suelo, se encuentra usando los coeficientes adimensionales A<sub>y</sub> (32). Sus respectivos momentos flexionantes pueden encontrarse empleando los coeficiente A<sub>M</sub>:

$$y = A_{y} \frac{P_{t}T^{3}}{YI}$$
(5.5)

$$1 = A_{M} P_{t} T$$
(5.6)

En que

 $A_{M}, A_{y}$  = coeficientes adimensionales  $P_{t}$  = fuerza aplicada en la cabeza del pilote

T = factor de rigidez relativa
 (T = (YI/k<sup>1/5</sup>)
YI = rigidez flexionante del pilote

= desplazamiento lateral del pilote
 = momento flexionante del pilote

Para encontrar desplazamientos y momentos flexionantes cuando la cabeza del pilote puede desplazarse horizontalmente sin girar, se usan los coeficientes adimensionales  $F_y$  y  $F_M$ . O sea

$$= F_{y} \frac{P_{t}T^{3}}{YI}$$

y

$$M = F_M P_t T$$

Más adelante se obtienen los valores esperados y las desviaciones estándar de  $A_y$ ,  $A_M$ ,  $F_y$  y  $F_M$  suponiendo diferentes niveles de incertidumbre en los parámetros de las curvas p-y.

### 5.2 CURVAS p-y ADIMENSIONALES

La ec. 5.4 considera un pilote hincado en un medio con comportamiento lineal cuya rigidez lateral varía en forma proporcional a la profundidad. A fin de poder aplicar los resultados de los análisis que se lleven a cabo para tales condiciones a los casos en que se tengan curvas p-y no lineales, es necesario relacionar rigideces secantes adimensionales con valores también adimensionales de los parámetros  $E_i y p_u$ . Por supuesto la extrapolación de los resultados obtenidos a partir de la ec. 5.4 queda limitada a aquellos casos en que la variación resultante de la rigidez secante del suelo sea lineal con la profundidad ( $E_s = kx$ ).

Las curvas p-y seleccionadas corresponden a arcillas blandas saturadas. Sus expresiones son (31, 54)

 $p = E_{i} y \qquad 0 \le y \le y_{0} \qquad (5.7 a)$ 

$$p = \frac{P_u}{2} \left(\frac{y}{y_{50}}\right)^{1/3} \qquad y_0 < y \le 8y_{50} \qquad (5.7 b)$$

Las condiciones que debe cumplir cada curva p-y adimensional son:

 $y > .8y_{50}$ 

(5.7 c)

132

 a) Que pase por el punto definido por el desplazamiento lateral del pilote ficticio y su respectiva "reacción del suelo", cuando este es sometido a una carga unitaria.

b) Que pase por el origen.

 $p = p_u$ 

c) Que su forma esté dada por las ecs. 5.7.

La reacción última del suelo en forma adimensional se escoge como sigue

$$\tilde{\mathbf{p}}_{\mathbf{u}} = \frac{\mathbf{p}_{\mathbf{u}} \mathbf{T}}{\mathbf{p}_{\mathbf{t}}}$$

El valor de  $y_{50}$  adimensional se denomina  $A_{50}$ . Para el caso de una arcilla blanda saturada es igual a lo siguiente

$$A_{50} = \frac{A_y}{8} (\frac{\tilde{p}_u}{p_L})^3$$

En que''

 $A_y$  = desplazamiento lateral del pilote ficticio  $\begin{array}{l} \textbf{p}_{L} = \text{reacción adimensional del suelo ficticio} \\ \tilde{\textbf{p}}_{u} = \text{resistencia áltima normalizada del suelo} \end{array}$ 

Las variables que aquí intervienen se definieron en el capítulo 4.

Para desplazamientos pequeños, en que se aplica la ec. 5.7 a, se toma el valor de  $E_i$  igual a

$$E_{i} = \frac{YI}{T^{5}} \cdot zT = \frac{YI}{T^{4}} z$$

por lo tanto, las curvas p-y adimensionales son de la forma

$$p_{L} = zA_{y} \qquad 0 \leq A_{y} \leq A_{0} \qquad (5.8 a)$$

$$p_{L} = \frac{p_{u}}{2} \left(\frac{A_{y}}{A_{50}}\right)^{1/3} \quad A_{0} < A_{y} \leq 8A_{50}$$
 (5.8 b)

$$p_{L} = \tilde{p}_{u} \qquad A_{y} > 8A_{50} \qquad (5.8 c)$$

El valor de  $A_0$  es equivalente al parámetro adimensional  $y_0$ , o sea,  $A_0 = 0.5 A_{50}$ .

#### 5.3 COEFICIENTES ADIMENSIONALES PROBABILISTAS

En las figs 15-18 se presentan las esperanzas y desviaciones estándar de los coeficientes  $A_y$ ,  $A_M$ ,  $F_y$  y  $F_M$  para casos en que la carga se considera determinista y los parámetros  $\beta_1$  y  $\beta_2$  toman los siguientes valores:

$$E(\beta_{1}) = 1.5, 1.0 \text{ y } 0.5 \text{ ; } var(\beta_{1}) = 1.0, i = 1, 2$$

En estos casos se considera que el comportamiento del medio que circunda al pilote es no-lineal.

Si se considera que los desplazamientos laterales del pilote son suficientemente pequeños, de modo que el comportamiento del suelo se encuentre dentro del intervalo lineal, entonces los coeficientes  $A_y$ ,  $A_M$ ,  $F_y$ -y  $F_M$  probabilistas son los que se presentan en las figs 19-22.

En las tablas 6 y 7 se presentan las desviaciones estándar de tales coeficientes para el caso en que las curvas p-y se consideran deterministas y la carga externa es aleatoria. Se analizaron casos en que la varianza de la carga,  $P_t$ , toma los siguientes valores

$$\sigma_{P_{+}}^{2} = 0.25, 0.67, 1.0, 2.0 \text{ y} 2.25$$

En estos casos, el valor medio de la respuesta del pilote ficticio es idéntico al dibujado en las figs 15-18 para cuando  $E(\beta) = 1$  y var $(\beta) = 0$ . La razón es que el valor de las cargas aplicadas coinciden en ambos casos (unitarias).

Basados en las figs 15-18 y en las tablas 6 y 7 es posible

establecer combinaciones de casos en los que se incluyan las incertidumbres en las curvas p-y, así como en la carga aplicada.

La respuesta media del pilote se presenta en las figs 15-18. Su varianza es igual a la suma de la varianza de la respuesta debida a incertidumbre en las curvas p-y más la varianza debida a la aleatoriedad en la carga. (Esta superposición la justifica la ec. 3.18).

$$\sigma_{A_{y}}^{2} = (\sigma_{A_{y}}^{2})_{\text{curvas } p-y} + (\sigma_{A_{y}}^{2})_{\text{carga}}$$
(5.9)

Por ejemplo, supongamos que nos interesa conocer la varianza del coeficiente  $A_y$ , al nivel del suelo, cuando se sabe que los parámetros tienen los siguientes momentos probabilistas

$$E(\beta) = 1.0$$
,  $var(\beta) = 1.0$ ,  $E(P_1) = 1.0$ ,  $var(P_1) = 1.0$ 

De la fig 15 se obtiene  $(\sigma_{A_y})_{curvas p-y} = 1.58$  y de la tabla 6: $(\sigma_{A_y})_{carga} = 4.45$ , por lo tanto

$$v_{A_{y}}^{2} = (1.58)^{2} + (4.45)^{2} = 22.3$$


Fig 15 Coeficientes adimensionales probabilistas Ay, suponiendo comportamiento • no-lineal del suelo y carga determinista



Fig 16 Coeficientes adimensionales probabilistas  ${\rm A}_{\rm M}$  , suponiendo comportamiento no-lineal del suelo y carga determinista



Fig 17 Coeficientes adimensionales probabilistas F<sub>y</sub>, suponiendo comportamiento no-lineal del suelo y carga determinista



Fig 18 Coeficientes adimensionales probabilistas F<sub>M</sub>, suponiendo comportamiento no-lineál del suelo y carga determinista



Fig<sup>19</sup> Coeficientes adimensionales probabilistas A<sub>y</sub>, suponiendo comportamiento lineal del suelo y carga determinista



Fig 20 Coeficientes adimensionales probabilistas A<sub>M</sub>, suponiendo comportamiento lineal del suelo y carga determinista



Fig 21 Coeficientes adimensionales probabilistas Fy, suponiendo comportamiento lineal del suelo y carga determinista



Fig 22 Coeficientes adimensionales probabilistas Fy, suponiendo comportamiento lineal del suelo y carga determinista

## TABLA.6

Valores medios y desviaciones estándar de los coeficientes  $A_y$  y  $A_M$ , correspondientes a pilotes sometidos a cargas aleatorias.

| Āy   |                      |                          | σ <sub>A</sub> y         |                       |                          | Ā <sub>M</sub> , |                           |                    | σ <sub>A</sub> M         | •                     |                          |
|------|----------------------|--------------------------|--------------------------|-----------------------|--------------------------|------------------|---------------------------|--------------------|--------------------------|-----------------------|--------------------------|
|      | σ <sub>Pt</sub> =.50 | σ <sub>p</sub> =.82<br>t | σ <sub>p</sub> =1.0<br>t | σ <sub>Pt</sub> =1.41 | σ <sub>p</sub> =1.5<br>t |                  | σ <sub>p.</sub> =.50<br>t | $\sigma_{p_t}=.82$ | σ <sub>p</sub> =1.0<br>t | σ <sub>Pt</sub> =1.41 | σ <sub>p</sub> =1.5<br>t |
| 2.44 | 2.23                 | 3.63                     | 4.45                     | 6.30                  | ·6.68                    | 0.               | 0.                        | 0.                 | 0.                       | 0.                    | 0.                       |
| .50  | 1.50                 | 2.45                     | 3.00                     | 4.24                  | 4.51                     | .53              | 0.28                      | 0.45               | 0.56                     | 0.79                  | .83                      |
| .74  | 0.87                 | 1.43                     | 1.75                     | 2.47                  | 2.62                     | .76              | 0.45                      | 0.74               | 0.91                     | 1.29                  | 1.37                     |
| .24  | 0.41                 | 0.66                     | 0.81                     | 1.15                  | 1.22                     | .69              | 0.51                      | 0.83               | 1.02                     | 1.44                  | 1.53                     |
| 008  | 0.12                 | 0.19                     | 0.23                     | 0.33                  | 0.35                     | .46              | 0.44                      | 0.71               | 0.87                     | 1.24                  | 1.31                     |
| 08   | 0.02                 | 0.03                     | 0.03                     | 0.05                  | 0:05                     | .23              | 0.27                      | 0.45               | 0.55                     | 0.77                  | .82                      |
| 07   | 0.05                 | 0.08                     | 0.10                     | 0.11                  | 0.16                     | .07              | 0.12                      | 0.20               | 0.24                     | .34                   | .36                      |
| 03   | 0.04                 | 0.07                     | 0.08                     | 0.12                  | 0.13                     | .008             | 0.03                      | 0.05               | 0.06                     | .09                   | 0.09                     |

TABLA 7

Valores medios y desviaciones estándar de los coeficientes  $F_y$  y  $F_M$ , correspondientes a pilotes sometidos a cargas aleatorias.

| Fy   |                          |                     | σ <sub>F</sub> y    | · ·                  |                          | F <sub>M</sub> |                     | • 3                 | σ <sub>F</sub> M         | · ·                  |                     |
|------|--------------------------|---------------------|---------------------|----------------------|--------------------------|----------------|---------------------|---------------------|--------------------------|----------------------|---------------------|
|      | σ <sub>P</sub> =.50<br>t | σ <sub>p</sub> =.82 | σ <sub>p</sub> =1.0 | σ <sub>P</sub> =1.41 | σ <sub>p</sub> =1.5<br>t |                | σ <sub>p</sub> =.60 | σ <sub>P</sub> =.82 | σ <sub>p</sub> =1.0<br>t | σ <sub>P</sub> =1.41 | σ <sub>P</sub> =1.5 |
| .93  | . 88                     | 1.44                | 1.76                | 2.49                 | 2.64                     | 93             | .57                 | 0.93                | 1.14                     | 1.61                 | 1.71                |
| .79  | .79                      | 1.29                | 1.58                | 2.24                 | 2.37                     | 36             | .30                 | 0.48                | 0.59                     | 0.84                 | 0.89                |
| .53  | .60                      | 0.97                | 1.19                | 1.69                 | 1.79                     | .05            | .06                 | 0.10                | 0.12                     | 0.17                 | 0.18                |
| .27  | .38                      | 0.61                | 0.75                | 1.06                 | 1.13                     | .23            | .10                 | 0.16                | 0.20                     | 0.28                 | 0.29                |
| .09  | .19                      | 0.31                | 0.38                | 0.54                 | 0.57                     | .24            | .18                 | 0.29                | 0.35                     | 0.50                 | 0.53                |
| .007 | .06                      | 0.11                | 0.13                | 0.18                 | 0.20                     | .16            | .18                 | 0.29                | 0.35                     | 0.50                 | 0.53                |
| -0.2 | 1x10 <sup>-3</sup>       | 2x10 <sup>-3</sup>  | 3x10 <sup>-3</sup>  | 4x10 <sup>-3</sup>   | 4x10 <sup>-3</sup>       | .08            | .11                 | 0.18 -              | 0.22                     | 0.31                 | 0.33                |
| -0.2 | .02                      | 0.04                | 0.05                | 0.06                 | 0.07                     | .02            | .04                 | 0.06                | 0.08                     | 0.11                 | 0.12                |

: 72

#### CAPITULO 6

#### CONFIABILIDAD DE PILOTES SUJETOS A FLEXION

Los criterios de diseño de pilotes ante cargas laterales usados en la práctica común profesional recomiendan que la carga nominal actuante se multiplique por un factor de carga,  $\gamma$ , mayor que la unidad y que la resistencia lateral del suelo que circunda al pilote se multiplique por un factor de resistencia,  $\phi$ , menor que la unidad (10). Mediante la definición de los valores nominales citados y el empleo de los factores parciales de seguridad  $\gamma$  y  $\phi$ , se logra que la confiabilidad de los elementos estructurales sea aproximadamente la misma para cualquier elemento estructural, independientemente de la variabilidad de cargas y resistencias.

En el diseño de cimentaciones constituidas por pilotes los valores numéricos de  $\gamma$  y  $\phi$  normalmente se estiman de acuerdo con la experiencia, de manera de lograr niveles aceptables de seguridad. Hasta la fecha no se han hecho estimaciones formales de la confiabilidad que corresponde a estos factores.

En esta tesis se propone un criterio para valuar la confiabilidad implícita en los procedimientos de cálculo para valores dados de  $\phi$  y  $\gamma$ . En lo que sigue se describe dicho criterio y se presentan algunos ejemplos ilustrativos.

### 6.1 ESTADO LIMITE

El colapso de un pilote cargado lateralmente ocurre cuando se forma un mecanismo de falla. Este puede presentarse de diferentes maneras según la longitud del pilote, las condiciones de frontera en su cabeza, la rigidez a la flexión del pilote y las características de la reacción lateral del suelo (9).

En general los modos de falla pueden asociarse a dos causas principales: a la falla del suelo al alcanzar éste su resistencia última a lo largo del pilote, o a la falla del pilote cuando su resistencia última sobrepasa a la que es capaz de soportar. El primer tipo de falla generalmente se presenta en pilotes cortos y el último en pilotes largos o de longitud intermedia cuya cabeza está restringida al giro. Una combinación de ambos tipos de falla se presenta en pilotes largos cuya cabeza tiene libertad de girar (10).

Dado que en esta tesis se elige como ejemplo un pilote largo guiado en su cabeza, se considera que éste falla cuando se presenta un mecanismo de falla en el pilote. Por simplicidad, y siguiendo un criterio muy frecuentemente empleado para el análisis de confiabilidad de estructuras convencionales, la confiabilidad del pilote se mide aquí a través de la correspondiente a la sección crítica con mayor probabilidad de falla que en este caso es la que corresponde a la<sup>(</sup> de la máxima esperanza de momento flexionante. La resistencia nominal se define, cuando no existen problemas de estabilidad, como

$$R^* = Z_p f^*_y \tag{6.1}$$

En donde Z es el módulo de sección plástico y f\* es el esfuerzo de fluencia nominal del acero que constituye al pilote. Se supone que la sección del pilote se diseña de acuerdo con un criterio elástico, tal que

$$Z_{e} = \frac{S^{*}}{0.66 f_{y}^{*}}$$
 (6.2)

en donde Z<sub>e</sub> es el módulo de sección elástico, y S\* la solicitación nominal. De lo anterior, la condición de diseño puede expresarse como sigue

$$R^* > \frac{K_f S^*}{0.66}$$
 (6.3)

en donde K<sub>f</sub> es el factor de forma K<sub>f</sub> =  $Z_p/Z_e$ .

#### 6.2 FORMATO PROBABILISTA

Una manera de expresar la confiabilidad de un elemento estructural es por medio del formato probabilista de primer orden y segundos momentos propuesto por A. Cornell (51). Dicho formato consiste en lo siguiente:

a) Las incertidumbres de las variables aleatorias se toman

en cuenta a través de la desviación estándar o del coeficiente de variación de las variables que intervienen.

- b) No se hace una estimación formal de la probabilidad de falla.
- c) La confiabilidad de un diseño se expresa mediante el índice de confiabilidad  $\beta$ , dado por lo siguiente, para el caso en que la resistencia R, y la solicitación S, se consideren con distribución lognormal (51)

$$\beta = \frac{\ln \left(\frac{\overline{R}}{\overline{S}} / \frac{1 + V_{S}^{2}}{1 + V_{R}^{2}}\right)}{\sqrt{\ln \left[(1 + V_{R}^{2}) + (1 + V_{S}^{2})\right]^{2}}}$$
(6.4)

En esta ecuación  $\overline{R}$  y  $\overline{S}$  son las medias de la resistencia y de la solicitación, respectivamente, y  $V_R$  y  $V_S$  los correspondientes coeficientes de variación.

# 6.3 ESTADISTICAS DE LA SOLICITACION (MOMENTO FLEXIONANTE ACTUANTE)

Para conocer el valor medio y el coeficiente de variación de la solicitación a la que se ve sujeta una sección crítica del pilote, es necesaria la descripción estadística de las cargas a las que se somete el pilote y de la reacción del suelo. Es decir, el momento flexionante esperado,  $\overline{S}$ , y su respectivo coeficiente de variación,  $V_s$ , dependen tanto de la carga media,  $\overline{P}$ , y su coeficiente de variación,  $V_p$ , como de la esperanza y coeficiente de variación de los parámetros que tienen mayor influencia en las curvas p-y, éstos son:  $\overline{\beta}_1$ ,  $\overline{\beta}_2$ ,  $V_{\beta_1}$  y  $V_{\beta_2}$ , los cuales intervienen en la respuesta del pilote.

Los valores de  $\overline{S}$  y  ${\tt V}_{\rm S}$  se pueden obtener con un programa de computadora.

El valor del momento flexionante nominal, S\*, se obtiene de un análisis determinista del pilote excitado por una carga de diseño P\* dada por

$$P^* = \overline{P} \exp(\kappa V_{\Sigma}) \tag{6.5}$$

en donde  $\kappa$  es un número que define la probabilidad de que la carga P exceda a su valor nominal, P\*.

En el análisis citado se supone que la resistencia lateral del suelo dada por las curvas p-y se afecta con un factor reductivo  $\phi$  menor que la unidad.

Con el valor de S\* se diseña la sección de acuerdo con la ec. 6.2.

# 6.4 ESTADISTICAS DE LA RESISTENCIA (MOMENTO FLEXIONANTE RESISTENTE)

Una vez obtenido S\*, de acuerdo con el párrafo anterior, se obtiene el momento flexionante resistente nominal, R\*, a partir de la ec.6.3, es decir

$$R^* = \frac{K_f S^*}{0.66}$$

Teniendo el valor de R\* es posible encontrar el valor de  $\overline{R}$  a partir de (Apéndice F)

$$\overline{R} = \phi_R R^* \exp(\alpha \beta_R V_R) \qquad (6.6)$$

en que

 $\overline{R}$  = Valor esperado de la resistencia  $\alpha$  = factor numérico, en general igual a 0.55  $\beta_R$  = Índice nominal de confiabilidad de la resistencia  $V_R$  = coeficiente de variación de la resistencia  $\phi_P$  = factor de resistencia

Yura, Galambos y Ravindra (61) obtuvieron los valores numéricos  $\phi_R$ ,  $V_R$  y  $\beta_R$  aplicables a vigas de acero sujetas a flexión. Ellos recomiendan usar los siguientes valores  $\phi_R = 0.86$ ,  $V_R = 0.12$ , y  $\beta_R = 3.0$ , utilizando dichas recomendaciones la ec. 6.6 se convierte en

 $\overline{R} = 0.86R^* \exp(0.2) = 1.05R^*$ 

(6.7)

#### 6.5 EJEMPLOS

#### A. Factores parciales de seguridad

Enseguida se obtiene el índice de confiabilidad,  $\beta$ , de un pilote típico de una plataforma marina, para diversas hipótesis sobre su ubicación.

El pilote (fig. 8) se supone sujeto a una carga lateral nominal igual a P\* = 204.55 kips (92.98 ton). Las características del suelo en donde se supone hincado están dadas en la Tabla 2 que corresponde a un suelo arcilloso blando saturado. Dichas características (resistencia al esfuerzo cortante, c) se multiplicaron por un factor reductivo,  $\phi$ , igual a 0.67. Para fines ilustrativos, aquí se consideran las curvas p-y estáticas en lugar de cíclicas, porque los parámetros estadísticos de las curvas p-y obtenidos en el capítulo 4 se refiere a este tipo de curvas.

Se supone que la longitud del pilote se determinó previamente y es igual a 343 pies (104.6 m); sin embargo, por las mismas razones dadas en el capítulo 4, inciso 3, solamente se considera en este análisis la mitad superior del pilote. La esperanza de la carga lateral equivalente, P, provocada por el oleaje y su correspondiente coeficiente de variación,  $V_p$ , dependerá del sitio en donde se suponga ubicado el pilote.

En esta tesis los valores de la carga lateral,  $\overline{P}$ , y del coeficiente de variación,  $V_{p'}$ , se obtuvieron de estudios hechos por Bea (4, 5), quien proporciona gráficas de la función de probabilidad acumulada del cortante basal, debido a tormentas, que se presenta en una plataforma, de acuerdo con su ubicación (fig 23); estas gráficas no incluyen la influencia de la incertidumbre asociada con los errores de predicción de fuerzas laterales a partir de altura de olas. Bea también proporciona la carga de diseño,  $P^*_{5}$ , necesaria para que la plataforma tenga una probabilidad de falla de 0.5 por ciento por año. De tal estudio se obtuvieron los siguientes valores

| Lugar                               | Ē       | V <sub>P</sub> | I    | • 5 • |           |
|-------------------------------------|---------|----------------|------|-------|-----------|
|                                     | kips    | (ton)          | ·    | kips  | (ton)     |
| Norte del Golfo<br>de México, (GOM) | 5140,99 | (2336.8)       | 0.79 | 13000 | (5909.1)  |
| Sur de California<br>(SC)           | 3278.04 | (1490.0)       | 0.79 | 9500  | (4318.2)  |
| Golfo de Alaska<br>(GOA)            | 9358.98 | (4254.1)       | 0.89 | 26000 | (11818.2) |
| Canal de Santa<br>Bárbara (SBC)     | 2440.60 | (1109.4)       | 0.79 | 5000  | (2272.7)  |
| Mar del Norte (NS)                  | 5700.00 | (2590.9)       | 0.59 | 9000  | (4090.9)  |

Los coeficientes de variación incluyen un término que refleja la incertidumbre en el modelo matemático (5) la que corresponde a un coeficiente de variación de 0.66.

Los valores anteriores se normalizaron de manera que el valor  $P^*$  fuera igual a 204.55 kips (92.98 ton), es decir,

| Lugar | Lugar P |         | ar P V <sub>P</sub> |        | Vp      | P | * 5 |
|-------|---------|---------|---------------------|--------|---------|---|-----|
|       | kips    | (ton)   |                     | kips   | (ton)   |   |     |
| GOM   | 80.89   | (36.77) | 0.79                | 204.55 | (92.98) |   |     |
| SC    | 70.58   | (32.08) | 0.79                | 204.55 | (92.98) |   |     |
| GOA   | 73.63   | (33.45) | 0.89                | 204.55 | (92.98) |   |     |
| SBC   | 99.84   | (45.38) | 0.79                | 204.55 | (92.98) |   |     |
| NS    | 129.55  | (58.89) | 0.59                | 204.55 | (92.98) |   |     |

Es notorio que los valores de  $\overline{P}$  que corresponden a una misma carga de diseño P\* difieren significativamente de un sitio a otro.

Si se supone que la fracción de la carga total que le toca a cada pilote es determinista, o sea que no presenta incertidumbres asociadas con las incertidumbres en las propiedades de estructura y suelo, entonces el coeficiente de variación de la carga en cada pilote es igual al de la carga total.

Con los valores anteriores de  $\overline{P}$  y  $V_p$ , y con los valores de  $\overline{\beta}_1 = 0.92, \ \overline{\beta}_2 = 0.91, \ \sigma_{\beta_1}^2 = 0.95, \ \sigma_{\beta_2}^2 = 0.98, \ \text{obtenidos en el}$ 

capítulo 4, se analizaron los pilotes con un programa de computadora.

La media del momento flexionante en la cabeza del pilote,  $\overline{S}_c$ , y su coeficiente de variación,  $V_s$ , resultantes, se presentan en la siguiente tabla

| Lugar | Ī                       | :       | Vsc  |
|-------|-------------------------|---------|------|
|       | <i>lb</i> -pulg         | ton-m   | · .  |
| GOM   | 0.396 x 10 <sup>8</sup> | (475.5) | 1.02 |
| sc    | 0.336 x 10 <sup>8</sup> | (388.2) | 1.01 |
| GOA   | 0.354 x 10 <sup>8</sup> | (408.9) | 1.14 |
| SBC   | 0.503 x 10 <sup>8</sup> | (581.1) | 1.03 |
| NS    | 0.686 x 10 <sup>8</sup> | (792.5) | 0.80 |

En la fig. 24 se presenta la variación de los momentos flexionantes a lo largo del pilote para el último caso (NS).

El momento flexionante, S\*, con el cual se diseñó la parte superior del pilote fue de 0.124 x 10<sup>9</sup>  $\ell b$ -pulg (1432.6 ton-m) y el esfuerzo de fluencia del acero f\* de 70 Ksi (4932 kg/cm<sup>2</sup>). Con los valores anteriores y un factor de forma K<sub>f</sub> = 1.32 se obtuvo la resistencia nominal, R\*, igual a 0.248 x 10<sup>9</sup>  $\ell b$ -pulg (2865.1 ton-m) y la resistencia media,  $\overline{R}_c$ , de 0.2599 x 10<sup>9</sup>  $\ell b$ -pulg (3002.6 ton-m) El subíndice c indica que los valores se refieren a la cabeza del pilote.

Los índices de confiabilidad respectivos se calculan usando

la ec. 6.4; sus probabilidades de falla por año,  $p_F$ , pueden encontrarse a partir de (51)

$$p_{\rm m} = 460 \, \exp(-4.3 \, \beta)$$
 (6.8)

Enseguida se presentan los índices de confiabilidad y las probabilidades de falla por año de los cinco casos en estudio

|       | [    |                |
|-------|------|----------------|
| Lugar | β    | P <sub>F</sub> |
| GOM   | 2.62 | 0.0059         |
| SC    | 2.82 | 0.0025         |
| · GOA | 2.61 | 0.0061         |
| SBC   | 2.33 | 0.0205         |
| NS    | 2.20 | 0.0358         |
|       |      |                |

Esta tabla muestra que las probabilidades de falla del pilote varían de un sitio a otro y difieren de la probabilidad de falla de la estructura.

Si elegimos una probabilidad de falla de cada pilote similar a la de la estructura (0.005) el índice de confiabilidad de los pilotes debería ser 2.66.

Para que la confiabilidad sea igual en los cinco pilotes se propone modificar la carga nominal P\* que actúa en la cabe-.5 za de los pilotes. Dado que el problema es de tipo no-lineal, las cargas nominales que conducen a la confiabilidad requerida se encontraron por aproximaciones sucesivas. El primer intento se desarrolló como sigue. Se alteraron las cargas nominales P\* y se normalizaron de manera que su va-.5 lor fuera igual a 204.55 kips (92.98 ton), dando lugar a los siguientes valores

| Lugar | a.     | P       | Р      | *       |
|-------|--------|---------|--------|---------|
| · · · | kips   | (ton)   | kips   | (ton)   |
| GOM   | 64.712 | (29.41) | 204.55 | (92.98) |
| SC    | 84.696 | (38.50) | 204.55 | (92.98) |
| GOA   | 66.024 | (30.01) | 204.55 | (92.98) |
| SBC   | 59.904 | (27.23) | 204.55 | (92.98) |
| NS    | 45.342 | (20.61) | 204.55 | (92.98) |

Con los valores anteriores y con los obtenidos en el Cap. 4 para  $\overline{B}$  y $\Sigma_{B'}$ , se analizaron nuevamente los pilotes. La media del momento flexionante máximo,  $\overline{S}_{c}$ , y su coeficiente de variación,  $V_{\tilde{s}_{c}}$ , resultantes fueron los siguientes

| Lugar |                         |         | V s      |
|-------|-------------------------|---------|----------|
|       | lb-pulg                 | (ton-m) | <b>,</b> |
| GOM   | 0.302 x 10 <sup>8</sup> | (348.7) | 1.24     |
| SC    | $0.418 \times 10^8$     | (482.6) | 0.89     |
| GOA   | 0.310 x 10 <sup>8</sup> | (357.9) | 1.25     |
| SBC   | 0.275 x 10 <sup>8</sup> | (317.5) | 1.62     |
| NS    | 0.196 x 10 <sup>8</sup> | (226.3) | 2.03     |

Los indices de confiabilidad y las probabilidades de falla por año asociados con estos valores son

| Lugar | β    | ₽ <sub>F</sub> |
|-------|------|----------------|
| GOM . | 2.67 | 0.0047         |
| SC    | 2.73 | 0.0037         |
| GOA   | 2.63 | 0.0056         |
| SBC   | 2.51 | 0.0094         |
| NS    | 2.63 | 0.0056         |

Después de hacer varios intentos como el anterior se obtuvieron las cargas de diseño que dan lugar a un índice de confiabilidad igual (2.66) en los cinco sitios. Se propone que los valores de dichas cargas se obtengan multiplicando las cargas nominales,  $P^*_{,5}$ , necesarias para que la plataforma tenga una probabilidad de falla de 0.005 (Ref. 4, 5), por un factor parcial de seguridad,  $\gamma$ , igual a

| -     |      |
|-------|------|
| Lugar | γ.   |
| GOM   | 1.23 |
| SC    | 0.72 |
| GOA   | 1.17 |
| SBC   | 1.92 |
| NS    | 3.03 |
|       |      |

El factor de resistencia,  $\phi$ , que se aplica a las características nominales del suelo (en este caso la resistencia al

esfuerzo cortante, c), y que afecta a las curvas p-y, es igual a 0.67.

#### B. Influencia del nivel de la carga

Es interesante hacer notar lo siguiente: los coeficientes de variación V obtenidos para los pilotes ubicados en diferentes sitios dependen no sólo de la variabilidad de la carga, y de  $\beta_1$  y  $\beta_2$ , sino también de la magnitud de la carga media lateral aplicada P. En la fig. 25 se muestra el coeficiente de variación del momento flexionante en la cabeza del pilote,  $V_{s}$ , ubicado en el sitio NS, sujeto a distintas condiciones de carga, de manera que se presentan distintos desplazamientos medios,  $\overline{y}_{c}$ , en su cabeza. La figura muestra en sus abscisas los desplazamientos esperados  $\overline{y}_{c}$  normalizados respecto al factor 8y<sub>50</sub> (esta variable se definió en la ec. 4.1). Se presentan tres casos: uno considerando un coeficiente de variación de la carga  $V_p$  igual a 0.89, uno igual a 0.59 (como el del sitio NS) y otro cuando el coeficiente de variación de la carga es igual a cero (el primero y el último corresponden a sitios hipotéticos).

En la parte inferior de la fig. 25 se indican horizontalmente tres intervalos (A, B y C). Estos corresponden a los inter-'valos lineal (A), intermedio (B) y no-lineal (C) de las curvas p-y, para este caso particular (estos tres intervalos se definieron en el capítulo 3. Como puede apreciarse en esta figura el coeficiente de variación del momento flexionante en la cabeza del pilote ( $V_{s}$ ) es sensible a la esperanza del desplazamiento lateral en el mismo punto. La variación del coeficiente en cuestión es muy irregular debido a que dicho coeficiente es sensible al intervalo de la curva p-y aplicable en cada punto a lo largo del pilote, y dicho intervalo varía: los desplazamientos laterales esperados del pilote en su parte superior corresponden al intervalo no-lineal de las correspondientes curvas p-y, mientras que los desplazamientos esperados de la parte inferior son muy pequeños y caen dentro del intervalo lineal de las curvas p-y correspondientes.

En la fig. 25 se indica el punto O que corresponde al pilote en estudio ubicado en el sitio NS (Mar del Norte) sometido a una carga media igual a 129.55 kips (58.9 ton) y un coeficiente de variación  $V_p$  de 0.59. En este caso el coeficiente de variación del momento flexionante en su cabeza es igual a 0.80



Fig 23 Probabilidades de excedencia anual de cortantes basales debidos a tormentas, para diferentes sitios (Bea, 1974; 1979) (1 Kip=453.7 kg)







Fig 25 Influencia del nivel de carga en el coeficiente de variación del momento máximo

#### CAPITULO 7

#### CONCLUSIONES Y RECOMENDACIONES

En esta tesis se desarrolla un estudio sistemático sobre el análisis de confiabilidad de pilotes aislados, tomando en cuenta la incertidumbre en la carga estática aplicada, así como la de los principales parámetros que definen la reacción lateral del suelo que circunda al pilote.

Este trabajo se ilustra con ejemplos de pilotes de acero hincados en suelos arcillosos blandos, cuyo comportamiento ante acciones laterales se representa mediante curvas p-y obtenidas de pruebas de pilotes sometidos a cargas estáticas de corta duración propuestas en la literatura. Sin embargo, el criterio aquí desarrollado puede aplicarse a cualquier otro tipo de suelo y a cualquier expresión matemática o algoritmo que describa al comportamiento lateral del suelo ante acciones estáticas, a través de un modelo de Winkler, y es posible generalizarlo a otras formas de representar la interacción entre pilote y suelo.

El criterio presentado incluye tres partes:

 Se cuantifican los parámetros estadísticos asociados a la reacción lateral del suelo representada por curvas p-y.

En esta parte se propone un criterio de tipo bayesiano que toma en cuenta información que proviene de distintas fuentes (pruebas a pequeña escala, a gran escala, juicio de los expertos en la materia, y datos de laboratorio). Es posible extender la metodología aquí desarrollada a otro tipo de problemas de mecánica de suelos.

Los valores típicos encontrados para arcillas blandas saturadas (capítulo 4) son:  $E(\beta_1) = 0.92$ ,  $E(\beta_2) = 0.91$ ,  $V(\beta_1) = 1.06$ ,  $V(\beta_2) = 1.09$ , en donde  $E(\cdot)$  representa la esperanza y V(·) el coeficiente de variación. Es decir, que la incertidumbre asociada a éstos es bastante grande.

Los valores anteriores no toman en cuenta la correlación estadística entre las características del suelo en diversos puntos, y resultan de suponer la misma función de distribución de probabilidades de  $\beta_1$  y de  $\beta_2$  a lo largo del pilote. Desafortunadamente, hasta este momento no se cuenta con suficiente información experimental, por lo que difícilmente se puede mejorar la descripción probabilista de dichas variables. Es deseable que en el futuro, cuando se cuente con mayor información, principalmente de pruebas hechas a escala natural, se desarrolle un modelo matemático que considere tanto la correlación espacial como la correlación entre las variables aleatorias en cuestión.

La forma de las curvas p-y con la que se ilustra el criterio desarrollado en este trabajo, es la propuesta por Matlock (31) y Sullivan (54). Ellos recomiendan su uso para el caso de pilotes hincados en arcillas blandas saturadas (como las que se encuentran en el Golfo de México). Dicha forma (dada mediante tres tramos discontinuos) es la recomendada por las Normas A.P.I. RP 2A(3).

Las curvas p-y adoptadas en este trabajo están constituidas por tres tramos, descritos por expresiones matemáticas distintas. Como el sistema pilote-resortes es estáticamente indeterminado, las fuerzas internas en los resortes dependen de la configuración deformada del sistema, y ésta a su vez es función de las fuerzas internas. La incertidumbre en estas últimas es función de la incertidumbre en las propiedades de los resortes y esta última depende del tramo de la curva p-y en la que se encuentre la deformación del resorte. Así pues, la incertidumbre en las fuerzas internas debe incluir una parte que represente el hecho de que no se conoce en forma determinista a qué tramo de la curva p-y corresponde la fuerza en cada resorte. Tratar de tomar en cuenta esta última incertidumbre complicaría excesivamente el problema y por ello no se intenta en este trabajo. Por ello se juzga conveniente que los estudios que en el futuro se hagan en relación con planteamien-

tos semejantes al presente partan de curvas p-y que se presenten por una sola expresión matemática en todo el intervalo de valores significativos del desplazamiento.

 ii) Se desarrolla un algoritmo para obtener los valores esperados y la matriz de covarianzas de los desplazamientos laterales y de los momentos flexionantes a lo largo del pilote. Estos últimos se expresan directamente como funciones lineales de los desplazamientos.

El algoritmo se aplica a casos de carga estática lateral, sin embargo su aplicación a pilotes cargados verticalmente es inmediata.

En el ejemplo que se presenta en las figs. 13 y 14 se puede apreciar la alta variabilidad de la respuesta debida a la incertidumbre de las propiedades del suelo; para este caso, el coeficiente de variación en la cabeza del pilote del desplazamiento es igual a 0.6, y del momento flexionante es 0.25. La influencia del nivel de carga y su coeficiente de variación se presenta en la fig. 25, la cual fue ampliamente discutida en el capítulo 6.

La evaluación de estas incertidumbres es esencial para un análisis racional y la elección de factores de seguridad adecuados.

Para fines de aplicación práctica se presentan soluciones adimensionales en términos de coeficientes de desplazamientos y de momentos flexionantes bajo la hipótesis de variación lineal del módulo secante de la reacción del suelo con la profundidad, para dos condiciones de restricción respecto a la rotación de la cabeza del pilote: fija y libre. De los casos analizados (figs. 15 - 22) se deduce que las incertidumbres asociadas a la reacción lateral del suelo dan lugar a coeficientes de variación grandes de la respuesta del pilote; por ejemplo, para el caso 1 de la figura 15 el coeficiente de variación de A<sub>y</sub> en la cabeza del pilote es igual a 1.2. En este mismo punto la incertidumbre de la respuesta asociada con la carga, suponiendo un coeficiente de variación de esta última igual a 0.82, es de 1.5 (Tabla 6).

iii) Se desarrolla una formulación de primer orden y segundos momentos probabilistas para obtener el índice de confiabilidad de secciones críticas de pilotes sujetos a flexión, tomando en cuenta las características inciertas de la reacción lateral del suelo y de la carga lateral aplicada.

Se analizan cinco pilotes hipotéticos hincados en el mismo tipo de suelo, pero sujetos a diferentes condiciones de carga, correspondientes a diferentes localidades.

Los valores del Índice de confiabilidad  $\beta$  que se obtienen, para estos casos, se encuentran entre intervalos amplios de variación (2.20-2.82). Esto indica que las probabilidades de falla de los cinco casos estudiados discrepan sustancialmente.

En el capítulo 6 se dan recomendaciones sobre los factores parciales de seguridad que deben emplearse para que los pilotes estudiados tengan probabilidades de falla iguales.

Los factores de carga ( $\gamma$ ) encontrados para los cinco sitios son los siguientes:

| Sur de California (SC)          | 0.72 |
|---------------------------------|------|
| Golfo de Alaska (GDA)           | 1.17 |
| Norte del Golfo de México (GOM) | 1.23 |
| Canal de Santa Bárbara (SBC)    | 1.92 |
| Mar del Norte (NS)              | 3.03 |

Los factores de reducción,  $\phi$ , que se aplican a las propiedades del suelo son iguales a 0.67 en todos los casos.

Como puede apreciarse los factores de carga difieren mucho entre sí. Debe advertirse que éstos corresponden solamente a un pilote ubicado en un suelo cuyas propiedades mecánicas tienen una cierta distribución de probabilidades, para una carga estática monótonamente aplicada, y que no deben tomarse como normas de diseño, sino solamente como indicadores de las variaciones de los factores parciales de seguridad que necesitan aplicarse para obtener una confiabilidad especificada, de acuerdo con la forma y coeficiente de variación de la carga lateral máxima durante el lapso que se toma como base para el diseño.

Es deseable llevar a cabo estudios de confiabilidad semejantes a los que aquí se presentan con el fin de proponer normas de diseño que conduzcan a niveles de seguridad congruentes con criterios beneficio-costo-riesgo estipulados.

El criterio de análisis de confiabilidad desarrollado en esta tesis no trata el problema de confiabilidad de sistemas, esto es, el análisis de falla gradual del suelo que circunda a un pilote, hasta llegar a formar un mecanismo de falla; sin embargo, dicho problema puede formularse utilizando las herramientas que aquí se presentan.

#### REFERENCIAS

- Adams, J.I. y Radarishna, H.S., "The Lateral Capacity of Deep Angered Footings", Proceedings, VIII International Conference on Soil Mechanics and Foundation Engineering, 1973.
- Alizadeh, M., "Lateral Load Tests on Instrumented Timber Piles", Report, Fruco and Associates, Inc., Saint Louis, Mo., 1968.
- 3. A.P.I. RP2A Recommended practice for planning, designing and constructing fixed offshore platforms, 12a. Edición, American Petroleum Institute, Washington, D.C., 1981.
- Bea, R.G., "Development of safe environmental criteria for offshore structures", Nota técnica CE-7, Shell Oil Co., 1974.
- Bea, R.G., "Earthquake and wave design criteria for offshore platforms", J. Structural Div., ASCE, ST2, Feb., 1979, pp. 401-419.
- 6. Baguelin, F., Jezequel, J., y Shields, A., The Pressurometer and Foundation Engineering, Trans. Tech. Publications, 1978.
- Benjamin, J.R. y Cornell, C.A., Probability, Statistics and Decision for Civil Engineers, McGraw-Hill, Inc., U.S.A., 1970.
- 8. Bowman, E.R., "Investigación of the Lateral Resistance to Movement of a Plate in Cohesionless Soil", M.S. Thesis, The University of Texas at Austin, Texas, 1958.
- 9. Broms, B.B., "Lateral Resistance of Piles in Cohesive Soils", J. Soil Mech. and Found. Div., ASCE, Vol. 90, SM2, Mar., 1964, pp. 27-58.
- 10. Broms, B.B., "Design of Laterally Loaded Piles", J. Soil Mech. and Found. Div., ASCE, Vol. 91, SM3, May., 1965, pp. 79-99.
- 11. Cox, W.R., Reese, L.C. y Grubbs, B.R., "Field Testing of Laterally Loaded Piles in Sand", VI Offshore Technology Conference, 2079, 1974, pp. 459-472.
- 12. Davidson, R.R. y Pérez, J., "Pressurometer", Research 1-90 Project, Seattle, Washington, Feb., 1980.
- Desai, C.S. y Christian, J.T. (Editores), Numerical Methods in Geotechnical Engineering, McGraw-Hill Inc., U.S.A., 1977.

- 14. Díaz Padilla, J. y Vanmarcke, E.H., "Settlement of Structures on Shallow Foundations: A Probabilistic Analysis", Research Report R74-9, Dept. of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass., Ene., 1974.
- 15. Douglas, K.J. y Davis, E.H., "The Movement of Buried Footing Due to Moment and Horizontal Load and the Movement of Anchor Plates", *Geotechnique*, Vol. 14, 1964, pp. 115-132.
- 16. Esteva, L., "Second Probabilistic Analysis of Statically Loaded and Non-Linear Structures", Proceedings, 11 International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Aachen, Alemania, 1974.
- 17. Esteva, L., "Uncertainty, Reliability and Decisions in Structural Engineering", Proceedings, International Conference on Applications of Statistics and Probability in Soil and Engineering, Trondheim, 1981.
- 18. Esteva, L., et al, "Criterio de Diseño Estructural para Plataformas Marinas, Etapa I. Modelos de Confiabilidad para Evaluar Criterios de Diseño", Informe Interno, Instituto de Ingeniería, UNAM, México, 1981.

- 19. Gambin, M., Calculation of Foundation Subjected to Horizontal Forces Using Pressurometer Data", SOLS Soils, Vol. 8, No. 30/31, 1979, pp. 17-67.
- 20. Garassino, A., Jamiolkowsky, M.B. y Pasqualini, E., "Soils Modulus for Laterally Loaded Piles in Sands and N.C. Clays", Proceedings, W. European Conference on Soil Mechanic and Foundation Engineering, Viena, 1976.
- 21. Gill, H.L. y Demars, K.R., "Displacement of Laterally Loaded Structures in Non-Linearly Responsive Soils", Technical Report R-670, Naval Civil Eng. Lab. Port Huaneme, California, 1970.
- 22. Gleser, S.M., "Lateral Load Tests on Vertical Fixed-Head and Free-Head Piles", Publicación Especial 16154, Symposium on Lateral Load Tests on Piles, ASTM, 1953, pp. 75-101.
- 23. Hansen, J.B., "The Ultimate Resistance of Rigid Piles Against Transversal Forces", Bulletin 12, The Danish Geotechnical Institute, Copenhage, 1961, pp. 5-9.
- 24. Holloway, G.L., et al, "Field Test and Preliminary Design Method for Laterally Loaded Drilled Shafts in Clay", Research Report 211-2, Study 2-5-77-211, Texas Transportation Institute, 1977.

- 25. Jamiolkowsky, M. y Garassino, A., "Soil Modulus for Laterally Loaded Pîles", Panel, Discusión presentada en la Sesión Especial No. 10, IX International Conference on Soil Mechanics and Foundation Engineering, Tokio, 1979.
- 26. Jamiolkowski, M. y Marchetti, S., "Determinazione del Modulo di Reasione Orizzontale del Terreno Attraveso Misure Inclinometriche Effecttuatte Durante Prove di Carico Orizzontale su Pali", XI Convegno di Geotecnica, Associazione Geotecnia Italiana, Milán, Mar., 1973.
- 27. Kubo, K., "Experimental Study of the Behavior of Laterally Loaded Piles", Found. Lab., Port and Harbour Tech. Res. Inst., Japón, 1964.
- 28. Leicht, T.J. y Reese, L.C., "Load Deformation Characteristics of Pile Foundations", Geotechnical Engineering Report GR81-17, Geotechnical Engineering Center, Civil Engineering Department, The University of Texas at Austin, Texas, Ago., 1981.
- 29. Lumb, P., "Precision and accuracy of soil tests", International Conference on Application of Statistics and Probability to Soil and Structural Engineering, Hong Kong, Sep., 1971.

- 30. Marchetti, S., "In situ Tests by Flat Dilatometer", citado por Jamiolkowsky y Garassino, IX International Conference on Soil Mechanics and Foundation Engineering, Tokio, 1979.
- 31. Matlock, H., "Correlations for Design of Laterally Loaded Piles in Soft Clay", II Offshore Technology Conference, 1204, 1970, pp. 577-594.
- 32. Matlock, H. y Reese, L.C., "Generalized Solution for Laterlaly Loaded Piles", J. Soil Mech. and Found. Div., ASCE, SM5, Oct., 1960, pp. 63-90.
- 33. Matlock, H. y Ripperberger, E.A., "Measurement of Soil Pressure on a Laterally Load Pile", Proc. ASTM, Vol. 58, 1958, pp. 1245-1259.
- 34. Matlock, H. y Ripperberger, E.A., "Theoretical Analysis and Laboratory Studies of Laterally Loaded Model Pile Segments", 111 Report, Shell Oil Co., Explotation and Production Department, Technical Services Division, Houston, Tx., 1957.
- 35. McClelland, B. y Focht, J.A., "Soil Modulus for Laterally Loaded Piles", Transactions, ASCE, Vol. 123, 2954, 1958, pp. 1049-1086.

- 36. Meyer, B.J. y Reese, L.C., "Analysis of single piles under lateral loading", Research Report 244-1, Project 3-5-78-244, Center for Transportation Research, Bureau of Engineering Research, The University of Texas at Austin, Dic., 1979.
- 37. Novak, M., "Vibrations of embedded footings and structures", No. 2029, ASCE, National Structural Engineering Meeting, San Francisco, Cal., Abr., 1973.
- 38. Parker, T. y Reese, L.C., "Lateral Pile Soil Interaction Curves for Sand", Proceedings, International Symposium on the Engineering Properties of Sea-Floor Soils and Their Geophysical Identification, University of Washington, Seattle, Jul. 25, 1971.
- 39. Penzien, J., Schaffey, C.F. y Pamerlee, R.A., "Seismic Analysis of Bridge on Long Piles", Journal Engineering Mechanics Division, ASCE, EM3, 1964, pp. 223-254.
- 40. Poulos, H.G., "Behavior of Laterally Loaded Piles: I Single Piles", J. Soil Mech. and Found. Div., ASCE, SM5, May., 1971, pp. 711-731.
- 41. Poulos, H.G., "Pile Foundation Analysis and Design", John Wiley and Sons., U.S.A., 1980.

- 42. Radhakrishna, N. y Reese, L.C., "Soil Resistance-Movement Relationship for Laterally Loaded Piles in Clays at Great Depths", J. Indian Nat. Soc. of Soil Mechn and Foundation Engineering, Vol. 9, No. 4, Oct., 1970.
- 43. Raiffa, H. y Schlaifer, R., "Applied Statistical Decision Theory", Division of Research, Graduate School of Business Administration, Harvard University, Boston, 1961.
- 44. Reese, L.C., Discusión al artículo "Soil Modulus for Laterally Loaded Piles", por McClelland, B. y Focht, J.A., *Transactions*, ASCE, Vol. 123, 2954, 1958.
- 45. Reese, L.C., apuntes tomados en el Curso Interaction of soils and structures, CE 394, Universidad de Texas en Austin, Tx., 1981.
- 46. Reese, L.C., "Ultimate Resistance Against a Rigid Cylinder Moving Laterally in a Cohesionless Soil", J. Society of Petroleum Engineers, 1962, pp. 355-359.
- 47. Reese, L.C. y Cox, W.R., "Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay", VII Offshore Technology Conference, 2312, 1975, pp. 671-690.
- 48. Reese, L.C. y Matlock, H., "Non-dimensional Solutions for Laterally Loaded Piles with Soil Modulus Assumed Propor-

tional to Depth", Proceedings, VIII Texas Conference on Soil Mechanics and Foundation Engineering, Publicación Especial No. 29, Bureau of Engineering Research, The University of Texas at Austin, 1956.

- 49. Reese, L.C., O'Neill, M.W. y Radhakrisna, N., "Rational design concept for breasting dolphins", J. of the Waterways and Harbors Div., ASCE, WW2, May., 1970, pp. 433-450.
- 50. Reese, L.C. y Welch, R.G., "Lateral Loading on Deep Foundations in Stiff Clay", J. Geothech. Engng. Div., ASCE, GT7, Jul., 1975, pp. 633-649.
- 51. Rosenblueth, E. y Esteva, L., "Reliability Basis for some Mexican Codes", Publicación SP-31, Probabilistic Design of Reinforced Concrete Buildings, ACI, Detroit, Mich., 1972, pp. 1-41.
- 52. Singh, A., Wei-Hu, R.E. y Consineu, R.D., "Lateral Load Capacity of Piles in Sand and N.C. Clay", J. of Civil Engng. Div., ASCE, CE8, Vol. 41, 1971.
- 53. Sokolnikoff, I.S. y Redheffer, R.M., Mathematics of Physics and Modern Engineering, McGraw-Hill Inc., Nueva York, 1958.

- 54. Sullivan, W.R., "Development and Evaluation of a Unified Method for the Analysis of Laterally Loaded Piles in Clay", M.S. Thesis, University of Texas at Austin, Ago., 1977.
- 55. Sullivan, W.R. y Reese, L.C., "Unified Method for Analysis of Laterally Loaded Piles in Clay", Numerical Methods in Offshore Piling, Institution of Civil Engineers, Londres, 1979, pp. 107-118.
- 56. Terzaghi, K., "Evaluation of Coefficients of Subgrade Reaction", Geotechnique, The International Journal of Soil Mechanics, Vol. 5, No. 4, Dic., 1955.
- 57. Welch, R., "Lateral Load Behavior of Drilled Shafts", Ph. D. Thesis, The University of Texas at Austin, 1972.
- 58. Williams, D.J., "The Behavior of Model Piles Dense Sand Under Vertical and Horizontal Loading", Ph. D. Thesis, University of Cambridge, Oct., 1979.
- 59. Yegian, M.K. y Hadley, P.K., "Reliability of Laterally Loaded Pile Analysis", IX Offshore Technology Conference, 2841, 1977.
- 60. Yegian, M. y Wright, S.G., "Lateral Soil-Resistant-Displacement Relationship Pile Foundation in Soft Clays", V Offshore Technology Conference, 1973.

61. Yura, J.A., Galambos, T.V. y Ravindra, M.K., "The bending resistance of steel beams", J. Structural Div., ASCE, ST9, Sep., 1978, pp. 1355-1369.

\

### APENDICE A

## CONCEPTOS BASICOS DEL ANALISIS BAYESIANO

Supóngase que  $y = (y_1, y_2, \dots, y_n)$  es un vector de n observaciones cuya distribución de probabilidades  $p(y|\theta)$  depende de los valores de los K parámetros  $\theta = (\theta_1, \theta_2, \dots, \theta_K)$ . Supóngase también que  $\theta$  tiene una distribución de probabilidades  $p(\theta)$ . Entonces

$$p(y|\theta)p(\theta) = p(\theta|y)p(y) \qquad A.1$$

Dadas las observaciones y, la distribución condicional de  $\theta$  es

$$p(\theta | y) = \frac{p(y | \theta)p(\theta)}{p(y)}$$
 A.2

El denominador p(y) puede escribirse como

 $p(y) = c^{-1} = fp(y \mid \theta)p(\theta)d$ ,  $\theta$  continua

=  $\Sigma p(y | \theta) p(\theta)$  ,  $\theta$  discreta

Entonces la ec. A.2 puede escribirse como

$$p(\theta|y) = c p(y|\theta)p(\theta)$$
 A.3

La ec. A.2 es conocida como el Teorema de Bayes. En esta ex-

presión,  $p(\theta)$  es conocida como la distribución a priori de  $\theta$ , y  $p(\theta|y)$  es conocida como la distribución a posteriori de  $\theta$ dado y. La cantidad c es una constante normalizadora necesaria para que la integración o suma de  $p(\theta|y)$  sea igual a uno.

Dado que se conocen los datos, y, entonces  $p(y|\theta)$  es una función de  $\theta$  y no de y. A esta función se le conoce como función de verosimilitud de  $\theta$  dado y, y se escribe comunmente  $\ell(\theta|y)$ .

En otras palabras, el Teorema de Bayes dice que la distribución de probabilidad de  $\theta$  posterior a los datos y es proporcional al producto de la distribución de  $\theta$  antes de conocer los datos por la verosimilitud de  $\theta$  dado que se conoce y. Esto es,

distribución posterior « verosimilitud x distribución anterior

La base conceptual del método de Bayes es que la nueva evidencia que se obtiene es información adicional sobre la evidencia *a priori* y por lo tanto no la sustituye totalmente. Dicha información *a priori* puede ser de tipo subjetivo; por ello también se le llama "probabilidad personal" o "información colateral".

En ciertos casos es posible encontrar una forma de distribución a priori conjugada de la función de verosimilitud tal que la distribución posterior sea de la misma forma analítica

que ésta. Comúnmente los parámetros de la distribución posterior están relacionados de manera directa y simple con los parámetros de la distribución *a priori* y con las estadísticas de las observaciones.

El Teorema de Bayes permite actualizar la información sobre los mencionados parámetros  $\theta$  a medida que se cuenta con más observaciones. Supóngase que se tiene una muestra inicial de observaciones  $y_1$ ; la fórmula de Bayes en este caso es

$$p(\theta | y_1) \propto \ell(\theta | y_1) p(\theta)$$
 A.4

Ahora, supóngase que se tiene una segunda muestra de observaciones  $y_2$  que son independientes de  $y_1$ , entonces

$$p(\theta | y_2) \propto p(\theta) \mathcal{L}(\theta | y_1) \mathcal{L}(\theta | y_2)$$

$$\propto p(\theta | y_1) \ell(\theta | y_2)$$
 A.5

La ec. A.5 es de la misma forma que la ec. A.4. Aquí,  $p(\theta|y_1)$ juega el papel de la distribución *a priori*. Este proceso puede repetirse cuantas veces se requiera. FUNCIONES DE DISTRIBUCION DE PROBABILIDADES GAMMA-2 Y MULTINORMAL

1. Función Gamma-2

La función de densidad Gamma-2 se define por

$$f_{\gamma 2} (h | v, v) \equiv \frac{e^{-\frac{1}{2}vvh} (\frac{1}{2}vvh)^{\frac{1}{2}v-1}}{\Gamma(\frac{v}{2})} \frac{1}{2}vv, \quad h > 0$$

Sus primeros dos momentos son

$$m_h = \frac{1}{v}$$

$$\sigma_{\rm h}^2 = \frac{2}{\nu v^2}$$

La función gamma  $\Gamma(\cdot)$  se define como

$$\Gamma(k) = \int_0^\infty e^{-u} u^{k-1} du$$

Esta integral es en este caso una constante normalizadora necesaria para que f (h|v,v) sea una función de densidad de probabilidades.

2. Función Multinormal

La forma de la función estandarizada normal de una varia-

ble aleatoria x es como sigue

$$f_{x}(x) \equiv \frac{1}{(2\pi)^{\frac{1}{2}}} e^{-\frac{1}{2}x^{2}} -$$

Sus primeros dos momentos son

$$m_{\rm X} = 0$$

Su forma general no-estandarizada está dada por

$$f_{x}(x|m, h) \equiv (\frac{h}{2\pi})^{\frac{1}{2}} e^{-\frac{1}{2}h(x-m)^{2}}$$

cuyos momentos son

$$m_{\mathbf{X}} = m$$
$$\sigma_{\mathbf{X}}^2 = \frac{1}{h}$$

Al parámetro h se le llama precisión media. Para el caso de r variables aleatorias contenidas en un vector U, la función de densidad estandarizada (función normal esférica unitaria) es igual a

$$f_{U}(u) = \frac{1}{(2\pi)^{\frac{1}{2}r}} e^{-\frac{1}{2}u^{T}Iu} - \infty < u < \infty$$

< ∞

v

En donde

I = matriz identidad de tamaño r x r

Sus primeros dos momentos son

$$E(u) = 0$$

$$\Sigma_{\rm u} = I$$

E(U) representa un vector con los valores medios de las variables U y  $\Sigma_U$  la matriz de covarianzas de U, que en este caso es diagonal.

La forma general para el caso de r variables aleatorias es como sigue

$$f_{U}(u|m, H) = \frac{1}{(2\pi)^{\frac{1}{2}r}} e^{-\frac{1}{2}(u - m)^{T} H(u - m)} |H|^{\frac{1}{2}} - \infty < u < \infty$$

En donde

m = vector que contiene los valores medios de u

H = matriz de precisión o inversa de la matriz de covarianzas, de tamaño r x r |H| = determinante de la matriz H

Los primeros dos momentos de u son

$$E(U) = m$$

$$\Sigma_{\rm u} = {\rm H}^{-1}$$

Al parámetro H se le denomina como precisión del proceso. Esta puede expresarse como

$$H = \eta h$$

en que h =  $|H|^{1/r}$  es un escalar que representa la precisión media y η una matriz que representa la precisión relativa

$$\eta = \frac{H}{h} = \begin{bmatrix} h_{11}/h & h_{12}/h & h_{13}/h & h_{1r}/h \\ h_{21}/h & h_{22}/h & h_{23}/h & h_{2r}/h \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

 $|\eta|$  = determinante de  $\eta$ 

Para el caso de r = 2 la matriz H es igual a

$$H = \begin{bmatrix} \frac{1}{\sigma_{1}^{2} (1-\rho_{1,2}^{2})} & \frac{-\rho}{\sigma_{1} \sigma_{2} (1-\rho_{1,2}^{2})} \\ \frac{-\rho}{\sigma_{1} \sigma_{2} (1-\rho_{1,2}^{2})} & \frac{1}{\sigma_{2}^{2} (1-\rho_{1,2}^{2})} \end{bmatrix}$$

En donde  $\sigma_1^2$ ,  $\sigma_2^2$  son las varianzas de la primera y segunda variables respectivamente y  $\rho_{1,2}$  representa el coeficiente de correlación entre ellas.

$$|H| = \frac{1}{\sigma_{1} \sigma_{2} \sqrt{1 - \rho_{1/2}^{2}}}$$

## APENDICE C

DEDUCCION DE LA EC.  $(K_2 + \kappa(\hat{y}))^{-1} = F(I - \kappa(\hat{y})F + (\kappa(\hat{y})F)^2...)$ 

Sea  $K_2^{-1}$  una aproximación de  $(K_2 + \kappa(\hat{y}))^{-1}$ 

Entonces el residuo está dado por

$$R_{o} = I - (K_{2} + \kappa (\hat{y})) K_{2}^{-1} = I - K_{2} K_{2}^{-1} - \kappa (\hat{y}) K_{2}^{-1}$$
$$= \kappa (\hat{y}) K_{2}^{-1}$$
C.1

Se sabe\* que

$$(K_2 + \kappa(\hat{y}))^{-1} = K_2^{-1} [I + R_0 + R_0^2 + ...]$$
 C.2

Sustituyendo C.1 en C.2 se obtiene

$$= K_2^{-1} [I - \kappa(\hat{y}) K_2^{-1} + \kappa(\hat{y})^2 K_2^{-2} + ...]$$
 C.3

\*Householder A.S., "Theory of matrices in numerical analysis", Dover Publications, Inc., New York, 1975

# A P E N D I C E D

DEMOSTRACION DE LAS ECS. 3.14 Y 3.18

Se parte de la ec. 3.13, que es la siguiente

$$y = \hat{y} + F(P - K\hat{y} - BH\Delta_1) - F(B - \overline{B})H\Delta_2F(P - K\hat{y} - BH\Delta_1) \quad D.1$$

.

Sea

$$X = H \Delta_1$$

$$L = H\Delta_2 F$$

Entonces

$$y = \hat{y} + F(P - K\hat{y} - BX) - F(B - \overline{B}) L (P - K\hat{y} - BX)$$

٠.

que a su vez es igual a

$$y = \hat{y} + FP - FK\hat{y} - FBX - FBLP + FBLK\hat{y} + FBLBX + FBLP - FBLK\hat{y} - FBLBX$$

La esperanza de y está dada por

$$E(y) = \hat{y} + F\overline{P} - FK\hat{y} - F\overline{B}X - E[FBLP] + E[FBLBX] + F\overline{B}L\overline{P} - F\overline{B}L\overline{B}X$$
 D.2

$$= \hat{y} + F(\overline{P} - K\hat{y} - \overline{B}X) - FE[BLP] + F\overline{B}L\overline{P} + FE[BLB]X - F\overline{B}L\overline{B}X$$

$$= \hat{y} + F(\overline{P} - K\hat{y} - BX) - F\theta + FA^{1}X \qquad D.3$$

En donde

$$\theta_{\rm m} = L_{\rm mn} \, \operatorname{cov} \, (B_{\rm mn}, P_{\rm n}) \qquad D.4$$

 $A_{mn}^{1} = L_{mn} cov (B_{mm}, B_{nn})$ 

Teniendo en cuenta que cov  $(B_{mn}, P_n) = 0$ , se obtiene

$$E(y) = y + F (\overline{P} - Ky - \overline{B}X) + FA^{1}H\Delta_{1} \qquad D.5$$

Esta ecuación es equivalente a la ec. 3.14.

La demostración de la ec. D.4 se ve más adelante en este apéndice (ec. D.10).

A fin de demostrar la ec. 3.18 se parte de la ec. 3.15, o sea

$$y = \hat{y} + GFP - M - AB_{\Delta_1} - FBLP + FBLK\hat{y} + FBDB_{\Delta_1}$$
 D.6

en que

1

$$M = GFK\hat{y}$$

 $L = H\Delta_2 F$ 

$$D = LH$$

B es una matriz diagonal, y P es un vector.

Si hacemos  $B = \overline{B} + b$ ,  $P = \overline{P} + p$  en que E(b) = 0, E(p) = 0, var (B) = var(b), var (P) = var (p). Sustituyendo estos valores se obtiene

$$y = \hat{y} + GF(\overline{P}+p) - M - A(\overline{B}+b)\Delta_1 - F(\overline{B}+b)L(\overline{P}+p) + F(\overline{B}+b)LK\hat{y} +$$

 $F(\overline{B}+b)D(\overline{B}+b)\Delta_1$ 

$$y = \hat{y} + GFP - M - AB\Delta_1 - FBLP - FBLP - FbLP - FbLP$$

+  $F\overline{B}LK\hat{y}$  +  $F\overline{B}D\overline{B}\Delta_1$  +  $F\overline{B}Db\Delta_1$  +  $FbD\overline{B}\Delta_1$  +  $FbDb\Delta_1$ 

+ GFp -  $Ab\Delta_1$  + FbLK $\hat{y}$ 

Sea

 $\Delta = \hat{y} + GF\overline{P} - M - A\overline{B}\Delta_1 - F\overline{B}L\overline{P} + F\overline{B}LK\hat{y} + F\overline{B}D\overline{B}\Delta_1$ 

 $N = -A + F\overline{B}D$ ;  $T = D\overline{B}\Delta_1$ 

 $C_1 = L(\overline{P} - K\hat{y})$ 

Entonces

$$y = \Delta + Nb\Delta_1 - FbC_1 - F\overline{B}Lp - FbLp + GFp + FbDb\Delta_1 + FbT$$

Si se desprecian los términos de segundo grado y se define

$$R = GF - FBL, C = C_1 - T,$$

se obtiene

$$y = \Delta + NB\Delta_1 - FbC + Rp$$
 D.7

En que J es un vector compuesto por términos iguales a uno.

La matriz de covarianzas se obtiene al sustituir la ec. D.7 en la siguiente expresión

$$\Sigma_{\mathbf{y}} = \mathbf{E}(\mathbf{y} \ \mathbf{y}^{\mathrm{T}}) - \mathbf{E}(\mathbf{y}) \ \mathbf{E}(\mathbf{y}^{\mathrm{T}})$$
D.8

Esto es

$$E(\mathbf{y}\mathbf{y}^{\mathrm{T}}) = E \left\{ \left( \Delta + \mathrm{Nb}\Delta_{1} - \mathrm{FbC} + \mathrm{Rp} \right) \left( \Delta^{\mathrm{T}} + \Delta_{1}^{\mathrm{T}}\mathrm{bN}^{\mathrm{T}} - \mathrm{C}^{\mathrm{T}}\mathrm{bF}^{\mathrm{T}} + \mathrm{p}^{\mathrm{T}}\mathrm{R}^{\mathrm{T}} \right) \right\}$$
$$E(\mathbf{y})E(\mathbf{y}^{\mathrm{T}}) = E\left\{ \left( \Delta + \mathrm{Nb}\Delta_{1} - \mathrm{FbC} + \mathrm{Rp} \right) \right\} \cdot E\left\{ \Delta + \mathrm{Nb}\Delta_{1} - \mathrm{FbC} + \mathrm{Rp} \right\}^{\mathrm{T}}$$

De ahí resulta

$$\Sigma_{v} = FE(bCC^{T}b)F - FE(bC\Delta_{1}^{T}b)N^{T} - NE(b\Delta_{1}C^{T}b)F +$$

$$NE(b\Delta_1\Delta_1^T b)N^T + RE(pp^T)R^T$$

El valor de E(bSb), en que S representa una matriz cuadrada de valores conocidos, se encuentra con el siguiente algoritmo

sea X = bSb = bY, en que Y = Sb

$$Y_{ij} = \Sigma S_{ir} B_{rj}, \text{ pero } b_{rj} = \begin{cases} b_j, \text{ para } r = j \\ 0, \text{ para } r \neq j \end{cases}$$

 $\therefore Y_{ij} = S_{ij}b_{j}$ 

$$X_{mn} = \Sigma b_{ms} Y_{sn} = b_{m} Y_{mn} = b_{m} S_{mn} b_{n}$$

así que E(bSb) es una matriz, T, tal que

$$T_{mn} = S_{mn} E(b_m b_n) = S_{mn} (E(b_m) E(b_n) + cov (b_m, b_n))$$

D.10

D.9

### APENDICE E

## REPRESENTACION BIDIMENSIÓNAL DE B

Para representar las variables  $\beta_1$  y  $\beta_2$  en forma bidimensional se hizo lo siguiente

De las ecs. 4.20 se sabe que

$$E(h_{\beta_1}) = 23.53$$
 , var  $h_{\beta_1} = 108.54$ 

$$E(h_{\beta_2}) = 2.22$$
, var  $h_{\beta_2} = 0.7017$ 

0 sea

$$\overline{H} = \begin{bmatrix} 23.53 & 0 \\ 0 & 2.22 \end{bmatrix} = \begin{bmatrix} \eta_{11}\overline{h} & \eta_{12}\overline{h} \\ 0 & \eta_{21}\overline{h} & \eta_{22}\overline{h} \end{bmatrix} = E.$$

Por lo tanto

$$\left|\overline{H}\right|^{\frac{1}{2}} = 7.23 = \overline{h}$$

De aquí que

$$v = \frac{1}{E(h)} = 0.14$$

E.1

De la ec. E.1 se obtiene

$$\eta = \begin{bmatrix} 23.53/7.23 & 0 \\ 0 & 2.22/7.23 \end{bmatrix} = \begin{bmatrix} 3.26 & 0 \\ 0 & 0.31 \end{bmatrix}$$
 E.2

## Obtención de var h

÷

Las condiciones que se imponen para obtener la varianza de h, (var h), son

Dado que  $h_{\beta} = \eta h$ , entonces var  $h_{\beta} = \eta^2$  var h, por lo tanto

$$var h_{\beta_1} = \eta_{11}^2 var h$$
 E.3

$$\operatorname{var} h_{\beta_2} = \eta_{22}^2 \operatorname{var} h \qquad \qquad \text{E.4}$$

No es posible con una sola variable (var h) satisfacer simultáneamente las ecs. E.3 y E.4. Como una aproximación se obtendrá var h de manera que se satisfaga la suma de dichas ecuaciones.

var 
$$h_{\beta_1} + var h_{\beta_2} = (\eta_{11}^2 + \eta_{22}^2)$$
 var h

Despejando y sustituyendo los correspondientes valores se obtiene

var h = 
$$\frac{\operatorname{var} h_{\beta_1} + \operatorname{var} h_{\beta_2}}{\eta_{11}^2 + \eta_{22}^2} = \frac{108.54 + 0.7017}{(3.26)^2 + (0.31)^2} = 10.19$$

Obtención de v

$$v = \frac{2}{(var h)v^2} = 10.01$$

Obtención de n

De las ecs. 4.20 se sabe que

 $var(\overline{\beta}_1) = 0.0035$ ,  $var(\overline{\beta}_2) = 0.0287$ 

0 sea

.

$$\Sigma_{\mathbf{B}} = \begin{bmatrix} \operatorname{var} \overline{\beta}_{1} \\ & & \\ & \operatorname{var} \overline{\beta}_{2} \end{bmatrix} = \begin{bmatrix} 0.0035 \\ & & \\ & & \\ & & 0.0287 \end{bmatrix}$$

Pero se conoce también la siguiente relación

$$\Sigma_{\overline{B}} = n^{-1} v \frac{v}{v^{-2}}$$

Por lo tanto, despejando de esta última, se obtiene:

OBTENCION DE LA EC. 6.6

Se parte de lo siguiente

$$\frac{\overline{R}}{\overline{S}} = e^{\beta} \sqrt{V_R^2 + V_S^2}$$

que puede aproximarse por

$$\frac{\overline{R}}{\overline{S}} = e^{\alpha_1 \beta V_R} e^{\alpha_2 \beta V_S}$$

por lo que

$$\frac{\overline{R}}{e^{\alpha_1 \beta V_R}} = \overline{S} e^{\alpha_2 \beta V_S}$$

Tomando el primer término se obtiene

$$\phi_{R}R^{\star} = \overline{R} \ \overline{e}^{\alpha_{1}\beta V}_{R}$$
$$\overline{R} = \phi_{R} \ e^{\alpha_{1}\beta V}_{R} \cdot R^{\star}$$

#### APENDICE, G

#### LISTA DE TABLAS

#### Título

# Valores de la resistencia última y del gradiente de la tangente inicial del módulo de la reacción del suelo normalizados, a diferentes profundidades en el sitio de interés

Propiedades del suelo en donde se encuentra hincado el pilote del ejemplo

Valores de  $\beta_1$  y  $\beta_2$ , obtenidos de pruebas hechas a escala natural (Refs 20, 24, 26, 35)

Valores normalizados de desplazamientos en la cabeza de pilotes obtenidos de pruebas hechas a escala natural (Ref 28)

Valores normalizados de desplazamientos en la cabeza de pilotes obtenidos de pruebas hechas a escala natural (Refs 31, 34)

Valores medios y desviaciones estándar de los coeficientes  $A_y$  y  $A_M$ , correspondientes a pilotes sometidos a cargas aleatorias

Tabla

2

3

4

5

201

Valores medios y desviaciones estándar de los coeficientes  $F_y Y F_M'$  correspondientes a pilotes sometidos a cargas <u>aleatorias</u>

## LISTA DE FIGURAS

| Fig | Título                                                                               |
|-----|--------------------------------------------------------------------------------------|
| 1   | Modelo de Winkler                                                                    |
| 2   | Distribución de presiones antes y después de la carga                                |
| 3   | Posible familia de curvas p-y                                                        |
| 4   | Reacción última del suelo vs profundidad (Holloway,<br>G.L. et al, 1977)             |
| 5   | Posible variación de E <sub>i</sub> y p <sub>u</sub>                                 |
| 6   | Diagrama de bloques                                                                  |
| 7   | Formas hipotéticas de la función g( ) para diversos valores de $\beta_1$ y $\beta_2$ |
| 8   | Ejemplo ilustratîvo                                                                  |
| 9   | Curva p-y para arcilla blanda saturada (Matlock,<br>1970; Sullivan, 1977)            |
| 10  | Mediciones carga-deformación en segmentos de pilotes                                 |

verticales (Matlock y Ripperger, 1957)

.

11 Gradiente de la tangente inicial del módulo del suelo vs resistencia al corte

12 Diagramas esfuerzo-deformación correspondientes a pruebas de compresión no confinada de arcillas blandas (Matlock y Ripperger, 1957)

13 Desplazamientos probabilistas del pilote del ejemplo

14 Momentos probabilistas del pilote del ejemplo

- 15 Coeficientes adimensionales probabilistas A<sub>y</sub>, suponiendo comportamiento no-lineal del suelo y carga determinista
- 16 Coeficientes adimensionales probabilistas A<sub>M</sub>, suponiendo comportamiento no-lineal del suelo y carga determinista
- 17 Coeficientes adimensionales probabilista  $F_y$ , suponiendo comportamiento no-lineal del suelo y carga determinista
- 18 Coeficientes adimensionales probabilista F<sub>M</sub>, suponiendo comportamiento no-lineal del suelo y carga determinista

19

Coeficientes adimensionales probabilistas  $A_y$ , suponiendo comportamiento lineal del suelo y carga deterministas

20

21

Coeficientes adimensionales probabilistas A<sub>M</sub>, suponiendo comportamiento lineal del suelo y carga deterministas

Coeficientes adimensionales probabilistas  $F_y$ , suponiendo comportamiento lineal del suelo y carga deterministas

22 Coeficientes adimensionales probabilistas F<sub>M</sub>, suponiendo comportamiento lineal del suelo y carga deterministas

23 Probabilidades de excedencia anual de cortantes basales debidos a tormentas (Bea, 1974; 1977)

24 Momentos flexionantes probabilistas y deterministas para el pilote ubicado en el Mar del Norte (NS)

25 Influencia del nivel de carga en el coeficiente de variación del momento máximo