

Vniver4dad NacionaL AvFnºma de Mexico

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERÍA

INSTRUMENTACION EXTERNA EN SISTEMAS ESTRUCTURALES USANDO FOTOGRAFÍA DIGITAL

TESIS

QUE PARA OPTAR POR EL GRADO DE

MAESTRO EN INGENIERÍA (ESTRUCTURAS)

PRESENTA:

MIGUEL ANGEL ZÚÑIGA BRAVO

TUTOR: DR. ÓSCAR LÓPEZ BÁTIZ

MEXICO 2009

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

- Presidente: DR. MELI PIRALLA ROBERTO
- Secretario: DR. REINOSO ANGULO EDUARDO
- Vocal: DR. LÓPEZ BÁTIZ OSCAR
- 1^{er.} Suplente: DR. PÉREZ GAVILÁN ESCALANTE JUAN JOSE
- 2º Suplente: M.I. GARCÍA DOMÍNGUEZ OCTAVIO

Lugar o lugares donde se realizó la tesis:

CENTRO NACIONAL DE PREVENCIÓN DE DESASTRES (CENAPRED) MÉXICO, D.F.

TUTOR DE TESIS:

DR. ÓSCAR LÓPEZ BÁTIZ

Agradecimientos

Quiero dar un agradecimiento especial por su apoyo para la realización de esta tesis:

A mi amada esposa Claudia,

A mis padres,

A mis hermanos,

A mis amigos,

A mis compañeros de clase,

A mis profesores del Posgrado,

A la UNAM,

En especial al Dr. Oscar López Bátiz, quien dirigió este trabajo.

Indice

Página

	INTRODUCCIÓN	1
1.	FOTOGRAFÍA DIGITAL 1.1. Funcionamiento de una cámara digital 1.2. Resolución y formato de las imágenes 1.3. El Sensor 1.4. Recomendaciones comunes para la utilización de cámaras digitales 1.5. Formatos para imágenes digitales 1.6. Distorsión de imágenes en equipos ópticos	3 6 7 7 9 11
2.	GEORREFERENCIACIÓN DE IMÁGENES DIGITALES2.1. Sistemas de Información Geográfica.2.2. Técnicas, principios y conceptos básicos.2.3. Componentes de un SIG.2.4. Equipo (hardware).2.5. Programas (software).2.6. Estructura vectorial.2.6.1. Modelo Vectorial.2.7. Estructura raster (o barrido).2.7.1. Modelo Raster.2.8. Ventajas y Desventajas de los Modelos Vectorial y Raster.2.9. Georreferenciación.	13 13 14 14 15 15 16 16 16 17 18 18
3.	 IMPLEMENTACION EN LA MEDICION DE DESPLAZAMIENTOS EN TRABAJO EXPERIMENTAL 3.1. Descripción general de la metodología	30 33 33 39 42 52 54 58 69
4.	CONCLUSIONES Y COMENTARIOS	75
5.	REFERENCIAS	79

INTRODUCCIÓN

En el desarrollo de diversos ensayes de trabajos experimentales que se realizan en laboratorios de universidades e instituciones de investigación, la medición de desplazamientos es la forma más útil para conocer el comportamiento y calcular los esfuerzos en elementos o sistemas estructurales que se deseen ensayar.

Existen diferentes dispositivos para medir desplazamientos en trabajos experimentales como son los micrómetros, LVDT o strain gage. Todos estos dispositivos se conectan directamente en el modelo a ensayar y cada uno mide los desplazamientos puntuales del sitio donde se localiza el instrumento. Si se desean medir desplazamientos en 10 puntos diferentes dentro de un modelo a ensayar, hay que colocar 10 dispositivos, uno en cada punto de interés.

El precio en el mercado de este tipo de dispositivos varía de uno a otro, pero coincidiendo para todos en que es elevado y no siempre está al alcance de cualquier universidad o institución donde se deseen realizar trabajos de investigación.

La instrumentación externa mediante fotografía digital es un método alternativo que podría complementar a los dispositivos mencionados en laboratorios de investigación y, dado su bajo costo, puede representar una buena opción a tomar en cuenta por parte de los investigadores.

El objetivo de esta investigación es realizar un primer acercamiento a la utilización de la georeferenciación de imágenes digitales para medir desplazamientos en ensayes de trabajos experimentales, utilizando instrumentos de bajo costo económico.

Después de una introducción al concepto de georreferenciación, se propone una metodología, la cual se aplicará para un caso particular, se revisará el grado de exactitud encontrada y se comentará al respecto.

Durante la investigación previa, prácticamente no se encontró información relativa a la utilización de las imágenes digitales para medir desplazamientos en ensayes de laboratorio, siendo que pueden existir muchas aplicaciones favorables al medir desplazamientos con una exactitud razonable en fotografías digitales, como por ejemplo, obtener de forma aproximada la medición del daño sufrido por alguna estructura durante algún siniestro, sin necesidad de acercarse para tomar muestras y llevarlas a probar a un laboratorio.

El trabajo consta de 6 capítulos, en el siguiente o capítulo dos, se hace una breve introducción a las cámaras digitales y su funcionamiento, así como también a los tipos más usuales de formatos existentes para imágenes digitales.

En el capítulo tres nos introducimos en lo que son los sistemas de información geográfica (SIG), sus principios y conceptos básicos, la georreferenciación, los programas de computadora existentes más conocidos y su funcionamiento general, las imágenes raster y vectoriales, se realiza un breve ejemplo de una georreferenciación y con la exactitud encontrada en los diferentes programas para georreferenciación, se comentará la forma más conveniente de aplicarlo al medir desplazamientos en trabajo experimental de laboratorio.

El capítulo cuatro es el que incluye la propuesta de un procedimiento matemático para llevar a cabo la georreferenciación y con ella obtener mediciones, así como dos formas de realizar correcciones de las mismas debido a la distorsión de la imagen que induce el lente de la cámara digital. Dicho procedimiento se aplica a un ejemplo real, que consiste en el ensaye de un muro diafragma realizado en las instalaciones del CENAPRED. Después de medir los desplazamientos, se comparan los resultados obtenidos con los reales, medidos por el sistema de adquisición de datos utilizado durante la prueba y se mide el porcentaje de error cometido.

Finalmente en el capítulo cinco se hacen conclusiones, comentarios y recomendaciones sobre el procedimiento propuesto, la forma de aplicarlo tanto en el momento de la realización del ensaye como en el análisis de la información obtenida y las ventajas y desventajas que puede presentar su aplicación en pruebas experimentales. También se comenta sobre las diferentes aplicaciones que el procedimiento podría tener para ayudar de forma alternativa a la investigación de sistemas estructurales.

Capítulo 1

FOTOGRAFÍA DIGITAL

1.1 Funcionamiento de una Cámara Digital.

La imagen que se obtiene al ser tomada con una cámara digital consta de millones de píxeles. Un pixel o cuadro es la unidad elemental de la imagen digital y están ordenados en líneas y columnas. Esto puede verse en una pantalla de computador haciendo un efecto de zoom de una imagen. La figura 1.1 muestra una pequeña parte de una imagen digital. Cada cuadrado es un píxel, aquí sólo hay 1.290 píxeles (43 x 30), pero las cámaras digitales comunes pueden reproducir más de tres millones de pixeles.

Figura 1.1. Imagen digital donde se observan los píxeles (cuadros)

En la pantalla de un computador, el color de cada píxel se obtiene mediante tres elementos separados llamados luminóforos. Uno para el rojo, otro para el verde y el tercero para el azul. Su brillo varía según la intensidad que se les aplica. Las combinaciones de estos tres colores pueden reproducir casi cualquier color del espectro visible. La mayoría de los computadores visualizan 16.777.216 colores.

Figura 1.2. Cada píxel de una pantalla consta de tres elementos de color

En la pantalla de un monitor se obtienen todos los colores con base en estos tres colores: rojo (Red), el verde (Green) y azul (Blue), de allí el nombre "RGB" dado a este tipo de esquema de colores, figura 1.2.

Los píxeles de los captadores en las cámaras digitales no emiten luz, sino que crean una corriente eléctrica con base en la luz recibida. La técnica utilizada es más compleja que para un monitor. Está basada en pequeños elementos fotosensibles llamados puntos de fósforo. Durante el tiempo de exposición cada punto de fósforo recibe una parte de la luz que pasa a través del lente y la convierte en corriente eléctrica. Entre más intensa sea la luz y más prolongada sea la exposición, mayor será la carga eléctrica resultante, ver figura 1.3.

Figura 1.3. Puntos de fósforo convirtiendo rayos de luz en cargas eléctricas

Para las fotografías en color, desde un punto de vista eléctrico, el captador es el mismo. Cada punto de fósforo está cubierto simplemente por un filtro rojo, verde o azul. Por ejemplo, un filtro rojo detiene los rayos verdes y azules, pero deja pasar el componente rojo de la luz, como se observa en la figura 1.4.

Figura 1.4. Un filtro cromático sólo deja pasar su propio color

Dado que los puntos de fósforo son menos sensibles al azul que los puntos rojos y verdes, las cámaras digitales requieren dos captadores para el componente azul, ver figura 1.5.

Figura 1.5. Un punto de fósforo para el rojo, uno para el verde y dos para el azul.

La transferencia de una imagen se logra al tomarse la fotografía. Los varios millones de puntos de fósforo del captador contienen diferentes cargas eléctricas, la cámara digital debe ahora guardarlas en forma de un archivo de imagen, para esto, debe enviar el contenido de todos los puntos de fósforo a la memoria de la cámara (figura 1.6). En una fracción de segundo se transfieren todas las cargas eléctricas almacenadas en los puntos de fósforo a una zona de almacenamiento. Después, se desplazan las cargas de una a otra zona y se les transfiere a la memoria. Durante esta operación, se amplifican las cargas eléctricas.

Figura 1.6. Desplazamiento de las cargas eléctricas del captador, de una a otra zona de almacenamiento, antes de enviarlas a la memoria.

Después, las cargas eléctricas se convierten en valores digitales, que van de 0 a 255, se mantiene el orden en el que se ha guardado cada punto de fósforo de manera que los píxeles estén dispuestos correctamente en la imagen final visualizada en la pantalla del computador. En función de la marca y del modelo, se guarda la imagen en alguno de los diferentes formatos para imágenes digitales, los cuales se revisarán a continuación.

Finalmente, se almacena la imagen en la unidad de almacenamiento de la memoria de la cámara (tarjeta de memoria, disco duro, CD-Rom, etc.) y así se puede visualizar.

1.2 Resolución y formato de las imágenes.

El primer elemento que distingue a una cámara digital de otra, es su resolución de imagen. La resolución es uno de los principales factores que determina la calidad y el tamaño de las fotografías que vamos a realizar y esto vale tanto si se trata de una imagen en formato digital como también en fotografía impresa. Como ya se comentó, la resolución de una imagen se mide en píxeles (PIcture ELements).

Por lógica, cuanto mayor cantidad de puntos tenga una imagen, mayor será la definición, el tamaño y la calidad de la misma.

Toda imagen digital tiene una determinada cantidad de píxeles de altura y una cantidad de ancho. Para obtener la resolución deberemos multiplicarlos. Por ejemplo, una cámara que pueda obtener como máximo, imágenes de 1800 píxeles de ancho por 1600 de alto, se dice que tiene una resolución de 2.88 millones de píxeles (1800 x 1600= 2, 880,000), definido comúnmente como 2.8 megapíxeles o 2.8 MP. Un megapíxel representa un total de 1.000.000 de píxeles. Cada cámara fotográfica ofrece una resolución mínima y una resolución máxima. Cuanto mayor sea la resolución máxima de la cámara, mayor será la calidad y definición de las imágenes. Esto también repercute en el tamaño del

archivo electrónico que se genera y en las dimensiones que una fotografía impresa pueda tener.

1.3 El sensor.

Es el elemento fotosensible en una cámara digital y funciona como una película fotográfica, su tecnología se basa en los semiconductores de silicio, que capturan los fotones que componen la luz. En el interior del sensor los fotones liberan electrones que se transforman en voltaje cuyo valor se puede medir y convertir en datos digitales.

El sensor lo forman miles de fotodetectores o elementos fotosensibles cuya carga eléctrica durante la fotografía será proporcional a la cantidad de luz recibida; esa diferente carga eléctrica dará lugar a los diferentes tonos de la imagen. Tras el procesado de la información, cada uno de estos elementos dará lugar a un píxel. Hay 2 tipos de sensores en el mercado, los CCD (charged coupled device) y los CMOS (complementary metal oxide semiconductors).

Los CCD convierten la intensidad de luz en voltaje, que a su vez debe ser convertido en datos digitales binarios para que el computador los pueda leer. Este proceso se hace fuera del sensor en otro chip denominado ADC (analogic digital converter).

Los CMOS se caracterizan porque la conversión de datos analógicos a digitales se realiza en el mismo sensor y también puede integrar otras funciones como la compresión de imágenes en formato JPEG. Esta versatilidad permite un importante ahorro de costos para los fabricantes, que, unido a la mejora en la calidad de las imágenes que se obtienen con ellos, los convierten en una seria alternativa a los CCD.

La resolución del sensor, o número de píxeles que lo integran, constituye un dato muy importante. Se especifica como un número total (Por ejemplo 6 millones de píxeles o 6 megapíxeles) o indicando el número de píxeles que tiene el sensor a lo largo y a lo ancho. Algunos fabricantes distinguen entre el número de píxeles reales y efectivos; la diferencia suele ser inferior al 10% y este porcentaje corresponde a píxeles del sensor que no componen la imagen sino que se utilizan para diversos cálculos como eliminar el "ruido" o ajustar el balance de blancos. El sensor en las cámaras digitales determina en gran medida el segmento de calidad en que nos movemos. Es uno de los elementos más importantes de la cámara e influye en su precio. El tamaño de los archivos que corresponden a las imágenes depende de la resolución del sensor; a mayor número de píxeles los archivos ocuparán más memoria. Dependiendo de la aplicación que vamos a dar a las imágenes podremos utilizar resoluciones mayores o menores del sensor.

1.4 Recomendaciones comunes para la utilización de Cámaras Digitales.

Cámaras digitales con menos de 1.5 megapixeles: fotografías chicas o de baja calidad. Generalmente son cámaras en teléfonos celulares o móviles.

Cámaras digitales con 2 o 3 mega píxeles: Ofrecen calidad media en las fotografías.

Con 3 megapíxeles se pueden obtener fotografías de relativamente buena calidad. Si se desea imprimir el tamaño ideal es 4" x 6", pero pueden producir fotografías más grandes de suficiente calidad.

Cámaras digitales de 4 megapíxeles: Estas fotografías pueden llamarse de alta calidad, casi la misma que se obtiene si se envían los rollos de cámaras tradicionales a revelar. Los precios varían mucho dependiendo de la marca y la capacidad de memoria para almacenar las imágenes.

Cámaras de más de 5 megapíxeles: Estas cámaras digitales dan imágenes de alta calidad. Actualmente son las más caras del mercado y entre mas alta sea la resolución más aumenta su precio.

De la exactitud que se busque en la imagen digital dependerá la elección sobre el tipo de cámara a escoger.

Si se utiliza un software para edición de imágenes digitales que utilice los píxeles como base para tomar mediciones en la imagen, se puede tener mucha o poca precisión tal como se muestra en el siguiente ejemplo.

Se desea analizar por medio de una fotografía un modelo cuyas dimensiones son de 3283 x 3145 mm, el cual tendrá deformaciones que se medirán mediante las imágenes obtenidas con una cámara digital.

a) Usando una cámara de 3.1 MP.

Resolución obtenida en la imagen: 2032×1524 píxeles

Si la fotografía se toma de manera que la abertura del lente abarque todo el modelo, el número de pixeles verticales son los que rigen si se maximiza el modelo dentro del espacio de la fotografía.

Figura 1.7. Imagen de 2032×1524 píxeles

Cada píxel representaría una distancia de 3145/1524 = 2.06 mm, por lo tanto esta sería la mínima deformación que se podría medir.

b) Usando una cámara de 10.16 MP.

Resolución obtenida en la imagen: 3676 × 2764 píxeles

Si al igual que en el caso anterior, la fotografía se toma de manera que la abertura del lente abarque todo el modelo, el número de pixeles verticales son los que rigen si se maximiza el modelo dentro del espacio de la fotografía.

Figura 1.8. Imagen de 3676×2764 píxeles

Cada píxel correspondería a una distancia de 3145/2764 = 1.137 mm, por lo tanto esta sería la mínima deformación que se podría medir.

Cuando la medición se realiza mediante un software para georeferenciación se puede obtener una mejor precisión, esto se estudiará con detalle en el capítulo siguiente.

1.5 Formatos para imágenes digitales.

A la hora de almacenar una imagen digital se puede elegir de entre varios formatos en que la información de tonos, brillos y contrastes va a ser recogida. Unos de ellos son comprimidos, algunos con pérdidas y otros sin ellas; otros en cambio no tienen compresión alguna. En algunos casos nos interesará que ocupen poco espacio porque tenemos memoria limitada, o porque queramos que tarden poco en descargarse si se van a publicar en Internet. En otros casos, nos interesará tener la máxima calidad posible y poco importará el espacio en disco que puedan ocupar. Se presenta un resumen de los formatos digitales (extensiones de archivos) más usuales para imágenes digitales.

TIFF: (Tag Image File Format).

Este formato fue desarrollado en 1986 por la Aldus Corporation, específicamente para grabar imágenes desde los escaners y los programas gráficos y de retoque fotográfico.

Hoy en día es uno de los formatos más versátiles y populares para mantener las imágenes en su estado original o comprimidas sin pérdida de calidad. Es leído por la mayoría de las aplicaciones gráficas y plataformas. Como no altera la calidad de la imagen, este formato mantiene "el peso" de ésta y al comprimirlas la reducción es muy pequeña.

JPEG o JPG (Joint Photographic Experts Group).

Este es el principal formato de compresión de imágenes existente y por lo tanto ha sido el adoptado para la publicación y distribución de imágenes a través de la web. Está diseñado para comprimir imágenes en colores y en escala de grises. Funciona muy bien con fotografías e ilustraciones pero no tanto con texto y dibujo lineal. Es compatible con una amplia variedad de aplicaciones y plataformas, siendo compatible con todos los programas para navegar en la Web. Posee un enorme poder de compresión, pudiendo reducir el tamaño de una imagen hasta un 90%. Su factor en contra es que si se decide disminuir o comprimir las imágenes, se debe descartar información (pixeles) lo que afecta enormemente la calidad y nitidez. Esta información descartada se pierde y no puede volver a ser recuperada al descomprimir el archivo. Sin embargo, una imagen en formato JPG con calidad igual o cercana al 100% puede dar una calidad adecuada. Es importante mencionar que la mayoría de las cámaras digitales que se encuentran en el mercado almacenan las fotografías en este formato.

EPS (Encapsulated Post Script).

Este formato generalmente es utilizado cuando las imágenes van a ser impresas en una imprenta o impresora Post Script, al ser parte de un diseño o publicación. Es un formato compatible con los programas de ilustración empleados para el diseño gráfico. Este formato soporta tanto ilustraciones vectoriales como imágenes en mapa de bits (fotografías), las cuales se mantienen en alta resolución y conservan tamaño original. Dentro de este formato se puede almacenar información adicional a la fotografía en si, como los trazados de recorte (clipping path), que nos permiten eliminar el fondo a una fotografía. De esta manera al imprimir el diseño solo se imprimirá la parte de la imagen contenida dentro de este trazado descartando el resto. Además, al crear un diseño, no es necesario pegar la imagen sobre éste, pudiéndose vincular a la imagen archivada, mostrándose en el documento solo una pre-visualización en baja resolución. De esta forma el documento con el que estamos trabajando no va a ocupar tanta capacidad de memoria.

PSD (PHOTOSHOP).

Este es el formato original del programa Adobe Photoshop, el más poderoso programa de edición y manipulación de imágenes que existe en el mercado. Las fotografías en éste formato solo podrán ser leídas por algunos programas además del Photoshop. Al trabajar con esta aplicación, podemos dividir una imagen en diferentes capas para facilitar su manipulación. De esta manera podemos tener por ejemplo, el fondo en una capa y los objetos en otra. Si la imagen se guarda en otro formato como TIFF o JPEG estas capas se perderán, no así si se guarda en formato Photoshop. Debido a esto este programa es ideal para guardar una imagen mientras se encuentra en proceso de edición.

GIF (Graphic Interchange Format).

Este formato nació como una forma de intercambio de imágenes gráficas para transmisión en línea. Las imágenes pueden ser comprimidas a 8 bits solamente, por lo que no es muy aconsejable para fotografías ya que perderán muchos de sus colores afectando la continuidad del tono. Este formato en consecuencia es ideal para ilustraciones que posean bloques de colores (sin degradados), permitiendo que tengan un bajísimo tamaño de archivo. Al igual el formato JPEG, es un formato muy utilizado para la generación de gráficos en Internet.

BMP (Bit Map).

El formato BMP (Bit Map) es el formato de las imágenes en bitmap de Windows. Aunque muy extendido, tiene la dificultad de la escasa compresión que realiza en los archivos por lo que ocupan mucho espacio en memoria. Pero el formato de Mapa de Bits tiene una importante característica a su favor, es que casi todos los usuarios tienen una PC que puede soportarlo. Existe otro formato llamado PCX, que es un formato establecido por Zsoft para el programa Paintbrush que viene integrado tradicionalmente con Windows, por tanto la extensión de este formato va ligada con la introducción de este programa en las PC. La mayoría de las PC soportan la versión 5 del formato PCX.

1.6 Distorsión de imágenes en equipos ópticos.

En todo equipo óptico se presenta con frecuencia el fenómeno de la distorsión de la imagen, desde una cámara fotográfica digital casera hasta un avanzado fluoroscopio para registrar imágenes médicas, son susceptibles a sufrir problemas de distorsión en su focalización y por lo tanto en las imágenes que reproducen. Obviamente para algunos casos un poco de distorsión en la imagen no produce problema en los resultados que se busquen, en otros casos es aceptable un ajuste manual de la lente para eliminar lo mayor posible el factor de la distorsión y así reducirlo al punto de que sea casi imperceptible para el ojo humano.

En casos mas técnicos de investigación como la microscopia, el registro de imágenes medicas, en ingeniería, en escanografía, etc., la distorsión es un problema que debe ser atacado con técnicas potentes, puesto que aun siendo imperceptible para la vista humana, dependiendo de la aplicación especifica, se pueden generar errores importantes en los resultados, producto de existencia de una distorsión leve en el equipo utilizado.

El problema de la distorsión en la imagen como tal es un problema físico donde intervienen las propiedades de las lentes y de los rayos de luz, en ocasiones imposible de solucionar en su totalidad debido a la complejidad en el manejo de medidas de ajustes de ordenes menores a las micras. También se tiene el problema de que no todos los aparatos ópticos ni las cámaras fotográficas producen la misma distorsión y hay que atacar cada caso de forma diferente. Este problema se puede abordar no solo desde el punto de vista físico, esto quiere decir no corrigiendo en el aparato como tal, sino en la imagen que este produce, con la ayuda de una computadora y la programación de alguna técnica específica. La figura 1.9 nos muestra las representaciones de las dos clases de distorsión visual más comunes en los aparatos ópticos: la de cojín y la de barril.

Figura 1.9 Tipos comunes de distorsión visual. a) Imagen sin distorsión, b) distorsión tipo cojín, c) distorsión tipo barril

Existen muchas formas para corregir las distorsiones utilizando herramientas matemáticas, algunas muy sofisticadas y otras más sencillas. Algunos programas para edición de fotografía como Adobe Photoshop cuentan con herramientas que tienden a eliminar las distorsiones, pero lo hacen de forma cualitativa y no cuantitativa, por lo tanto no se llega a algún grado de exactitud deseado.

Para el caso que nos ocupa, el hecho de tener que analizar una gran cantidad de imágenes digitales de forma cualitativa en un programa como Photoshop, hace poco práctico el realizar una corrección muy sofisticada para cada una de ellas, ya que no se pueden cuantificar los resultados obtenidos. Sin embargo, con la aplicación de la georreferenciación se llegará a resultados razonablemente aproximados, esto se verá en los próximos dos capítulos.

Capítulo 2

GEORREFERENCIACIÓN DE IMÁGENES DIGITALES

2.1 Sistemas de Información Geográfica.

La tecnología actual, en particular la computación, permite desarrollar sistemas automatizados de información de gran capacidad; en este ámbito se han generado herramientas para la manipulación computarizada interactiva de mapas u objetos que tienen atributos espaciales, estos se denominan Sistemas de Información Geográfica (SIG), cuya característica primordial es que permiten conservar la ubicación de la información referida a un sistema tipo de coordenadas.

Estos sistemas son resultado de la conjunción de desarrollos de cómputo llevados a cabo por diversas disciplinas y técnicas relacionadas con el procesamiento de datos espaciales cartografía, fotogrametría, tecnología de sensores remotos, geometría computacional, representación gráfica, entre otros. Como herramienta técnica desarrollada en el campo del quehacer geográfico, los SIG han destacado por el hecho de facilitar las tareas básicas y las principales características de la geografía: análisis, integración y síntesis de los procesos espaciales.

2.2 Técnicas, principios y conceptos básicos.

Con el empleo de un SIG es posible observar gráficamente la localización de objetos, hechos o fenómenos que tengan una expresión espacio-tiempo; por ejemplo, las áreas de

influencia, las relaciones geográficas y las tendencias regionales; con ello se puede, a la vez, realizar correlaciones de variables sociales y ambientales, calcular distancias y áreas, diseñar estrategias, construir modelos matemáticos, identificar rutas de acceso o evacuación y estimar las necesidades de equipamiento urbano o de infraestructura en general para una localidad o región. Los SIG cuentan con facilidades para manipular distintas clases de objetos en forma diferenciada, así como para relacionar las clases entre sí y formar jerarquías de objetos entrelazados. Aparte de la información geográfica, que incluye localización, morfología y estructura, los objetos geográficos tienen información asociada de carácter no geográfico organizada en atributos. Para que las bases de datos estadísticas tengan sentido de análisis espacial, deben de estar ligadas con las bases de datos geográficas, ya que, de no ser así, se estaría desperdiciando la potencialidad del sistema y no se estarían aprovechando las virtudes de la representación territorial.

Un SIG nos permite ver el mundo y lo que hay en él, con una perspectiva distinta. Las definiciones tradicionales los describen como un conjunto de hardware, software, datos, personas y procedimientos, organizados para capturar, almacenar, actualizar, manejar, analizar y desplegar eficientemente rasgos de información referenciados geográficamente.

La solución de muchos problemas requiere el acceso a diferentes tipos de información. El SIG permite almacenar y manipular información diversa usando la geografía como enlace, lo que posibilita analizar patrones, relaciones y tendencias. A través de un SIG los mapas pueden ser integrados y correlacionados fácilmente con múltiples datos. De hecho, mediante un campo común de referencia, cualquier información en una tabla puede visualizarse en un mapa instantáneamente y cualquier problema representado en un mapa puede analizarse varias veces. Al contrario de los mapas tradicionales, los de un SIG cambian dinámicamente en la medida que los datos numéricos son actualizados.

El campo de utilización de los SIG es tan amplio como el del quehacer geográfico, de manera que es aplicable lo mismo en materia de servicios a la población, que en actividades económicas, protección del medio ambiente, planeación de uso del suelo, administración de recursos naturales, análisis demográficos, entre otros.

2.3 Componentes de un SIG.

Un SIG, como cualquier sistema de información computarizado, trabaja de manera integrada con cinco componentes fundamentales que son: equipo o hardware, programas o software, datos, personal y métodos o procedimientos.

2.4 Equipo (hardware).

El hardware es la computadora con la que opera el SIG, para estos sistemas se requiere de equipos con alta velocidad de procesamiento y con capacidad de despliegue y almacenamiento de datos digitales.

Existen en el medio diferentes equipos, marcas y configuraciones, de acuerdo a las necesidades del usuario. En un ambiente empresarial se utilizan generalmente servidores y

equipos de escritorio conectados en red. También forman parte del hardware los periféricos o equipo adicional, como son: plotters para impresión de mapas, scanner, impresoras y unidades de almacenamiento.

2.5 Programas (software).

El software o programas para un SIG proveen las funciones y las herramientas necesarias para almacenar, acceder, analizar, visualizar y representar la información geográfica. Se debe disponer de herramientas para entrada, manipulación y salida de la información geográfica:

- Herramientas que permitan consultas de estadísticas, análisis y visualización.
- Una interfaz gráfica para que el usuario acceda fácilmente a las herramientas.
- También se incluye por su importancia en un SIG, el software para procesamiento de imágenes, elaboración de mapas, transformación de coordenadas y visualización tridimensional.

Los datos en formato digital presentan dos tipos diferentes de estructura: la "estructura vectorial" y la "estructura raster". Su utilización depende del tipo de datos que se tengan y del tipo de análisis que se pretenda realizar. No todos los sistemas de información geográfica son capaces de manipular ampliamente ambos tipos de estructuras, ya que se trabajan de manera muy diferente.

2.6 Estructura vectorial.

La estructura vectorial es por naturaleza más complicada matemáticamente; un "vector" es definido como un conjunto de puntos encadenados, definidos por coordenadas, que tienen una magnitud, una dirección y un sentido. Las estructuras vectoriales de datos con referencia espacial están basadas en puntos cuya localización es conocida con precisión. El formato vectorial utiliza entidades geométricas para la representación de los elementos geográficos. La información asociada se almacena tanto en la base de datos gráfica como en la tabla de atributos. En una estructura vectorial la información se puede almacenar por puntos, líneas, nodos y polígonos. La tabla 2.1 muestra algunos ejemplos.

Entidad Geométrica	Representa	Ejemplo
Puntos	Fenómenos puntuales en los	Alcantarillas, casetas, bancos de
	cuales se desea conocer la	material, pozos, señales, postes,
	posición o coordenadas X-Y	hidrantes, etc.
Arcos	Fenómenos lineales en los cuales	Vías drenajes, oleoductos, líneas
	se define su posición y longitud	eléctricas, etc.
Nodos	Fenómenos puntuales en la	Intersecciones o entronques,
	intersección de arcos.	semáforos, entregas de aguas en
		redes de drenaje, etc.
Polígonos	Fenómenos superficiales	Lotes, usos del suelo, cobertura
	definidos por regiones	vegetal, manzanas, barrios,
	homogéneas acotadas por una	derechos de vías, etc.
	frontera.	

 Tabla 2.1. Estructura Vectorial de la Información Geográfica

2.6.1 Modelo Vectorial.

Presenta los fenómenos gráficos mediante puntos, líneas o polígonos, los cuales son los elementos geométricos básicos y basan su representación en vértices y segmentos. Los puntos y vértices se representan por sus coordenadas X-Y. Las líneas están articuladas por uno o varios segmentos articulados en vértices a los cuales se les denominan nodos. Los polígonos son un conjunto de líneas donde el nodo inicial y final coinciden en posición.

Los elementos vectoriales se convierten en objetos cuando se les asocia a entidades reales, como pueden ser ríos, carreteras, etc. Para cada objeto se pueden guardar atributos o datos específicos de la entidad real.

Los programas de computadora para dibujo técnico como AutoCAD, Microstation, TurboCAD, etc., utilizan figuras basadas en elementos vectoriales, algunos programas para diseño gráfico también los usan, como por ejemplo Corel Draw, y las extensiones de archivos de modelos vectoriales más utilizadas son DWG de AutoCAD y DXF, que es aceptada prácticamente por todos los programas de dibujo técnico o similares.

2.7 Estructura raster (o barrido).

La estructura de datos con referencia espacial más sencilla es la raster; ésta ordena los datos en una forma celular o de celdas. El valor de cada parámetro de interés es almacenado en un arreglo espacial para cada celda. Por lo general las celdas son pixeles cuadrados, aún cuando se han tratado de implementar formas hexagonales y triangulares, de tamaño constante dentro del mismo mapa y cuyo tamaño está directamente ligado a la resolución de la imagen y por lo tanto a los datos asociados a ésta.

El carácter celular del raster obliga a tener cuidado en lo que se refiere a la relación que existe entre el tamaño de la celda y el elemento más pequeño que se desea "mapear". Si el tamaño de la celda es similar al tamaño mínimo de mapeo, es posible que nuestra imagen omita características que son de interés para el análisis que se pretende efectuar.

Estas consideraciones son importantes al momento de planear el proyecto. Una sugerencia conservadora es definir el tamaño de la celda de un tercio o un cuarto del tamaño de la característica más pequeña que se desea representar en el mapa. La resolución define el tamaño de los archivos digitales así como también la precisión de localización de los elementos. A mayor precisión, mayor resolución, por lo tanto crece el tamaño de los archivos; pueden llegar a ser demasiado grandes y el procesamiento muy lento. Pero si la resolución es baja, los datos pueden estar representados inadecuadamente, ver figura 2.1.

Figura 2.2. Componentes de una malla o rejilla de celdas en el formato raster de información.

Como se observa en la figura 3.2, los componentes de una malla son entonces: la celda, las filas y las columnas, que a su vez deben estar referidas mediante un sistema cartesiano de coordenadas, proyectado cartográficamente a su posición en el mundo real para, de esta manera, hacer posible la sobreposición de otras mallas con información diversa del mismo espacio representado.

2.7.1 Modelo Raster.

Los modelos Raster basan su funcionalidad en una concepción implícita de las relaciones de vecindad entre los objetos geográficos. Su forma de proceder es dividir la zona de estudio de la base de datos en una retícula o malla regular de pequeñas celdas (pixeles) y atribuir un valor numérico a cada celda como representación de su valor temático (por ejemplo a imágenes digitales). Dado que la malla es regular (tamaño de pixel constante) se puede conocer la posición en coordenadas del centro de una de las celdas, entonces se puede decir que todos los píxeles pueden estar georreferenciados. Las extensiones de archivos para los modelos raster más utilizadas son TIFF, BMP y JPG.

2.8 Ventajas y Desventajas de los Modelos Vectorial y Raster.

Modelo Vectorial.

Ventajas

- Una estructura de datos más compacta.
- Codifica eficientemente la forma.
- La salida en papel presenta muy buena calidad.
- Es más adecuado para gráficos parecidos a mapas convencionales lineales.

Desventajas

- Su estructura es más compleja que un ráster.
- La representación espacial es más ineficiente, al estar formado por puntos líneas y polígonos.

Modelo Ráster.

Ventajas

- Estructura de datos simple.
- Superposiciones en diferentes capas que se implementan de manera rápida y eficiente.
- Representa bien las formas espaciales, ya que da la posibilidad de generar modelos de elevación del terreno.
- Su formato es utilizado en el análisis de imágenes digitales.

Desventajas

- La estructura es menos compacta. La compresión puede ser necesaria.
- La representación de topologías es más compleja, siendo algunas muy difíciles de representar.
- La calidad de los mapas finales depende de una alta resolución, lo cual significa tener archivos más grandes.

2.9 Georreferenciación.

La georreferenciación es el posicionamiento en el que se define la localización de un objeto espacial en un sistema de coordenadas determinado. Este proceso es utilizado dentro de los Sistemas de Información Geográfica (SIG).

Figura 2.3. Esquema de conversión de datos vector-raster.

Las imágenes se pueden obtener por medio de fotografías digitales o por medio de un scanner y pueden estar distorsionadas, como en el caso de las fotografías aéreas. En ambos casos, para poder utilizar estas imágenes en un SIG junto a otras capas de información, debemos asignarles coordenadas, es decir, georreferenciarlas (figura 2.3). Además, debido a la distorsión de la lente de la cámara digital, muchas veces es necesario hacer una corrección o ajuste para crear una nueva distribución de píxeles.

Al georreferenciar, el ajuste de la geometría de una imagen raster a una vectorial, se realiza estableciendo una función matemática que pone en relación las coordenadas de la imagen con las del mapa. De esta forma, a partir de la coordenada columna y línea de cada píxel, puede estimarse las coordenadas de la imagen de salida.

Desde el punto de vista práctico, conviene considerar que una función lineal basta para aplicar unas transformaciones elementales de la imagen, como cambiar su escala y origen, inclinarla, modificar la relación entre sus ejes y rotarla. Estas alteraciones serán, de modo habitual, suficientes para corregir imágenes pequeñas, siempre que no se presenten contrastes altimétricos importantes.

En caso de precisar una modificación más rigurosa, puede acudirse a funciones de segundo o tercer grado, en donde se abordan alteraciones geométricas no lineales.

El grado de ajuste conseguido se mide por la importancia de los residuales. Como es bien sabido, el residual de la regresión es la diferencia entre el valor estimado y el real, para cada una de las observaciones empleadas en el proceso. Cuanto mayor sea ese valor, el ajuste entre las variables independientes y dependientes es menor. En nuestro caso la calidad del ajuste geométrico puede valorarse comparando para cada punto de control, las coordenadas estimadas por la regresión con las reales.

Las funciones antes analizadas permiten traducir coordenadas del mapa a la imagen. Ahora bien, si pretende crearse una imagen que se corresponda adecuadamente con esas coordenadas, resulta necesario trasladar, de alguna forma, los nudos de la imagen original a esa nueva posición. Las funciones de ajuste permiten calcular la posición correcta de cada píxel.

Figura 2.4. a) Superposición de las imágenes raster con su respectiva malla de pixeles y una imagen vectorial.b) Imagen raster de salida con los nuevos datos de cada píxel obtenidos mediante remuestreo.

Idealmente, cada píxel de la imagen final deberá corresponderse a un solo píxel en la original, según se ilustra en la figura 2.4. Lo normal es que no sea así, sino que el píxel de la nueva imagen se sitúe entre varios de la original, ya que este proceso supone una alteración considerable de la geometría original de la escena. Por otra parte, puede variarse también el tamaño del píxel en la imagen corregida, haciendo aun más complejo encontrar el nudo que mejor exprese el valor radiométrico originalmente detectado.

2.9.1 Software para Georreferenciación.

Los diferentes programas de SIG para georreferenciación que existen en el mercado varían en funcionalidad y costo. La tabla 2.2 muestra algunos paquetes de software o programas más usuales.

Software	Desarrollador	Costo	Funcionalidad	Características principales
Arcinfo	Enviromental Systems Research Institute (ESRI)	Alto	Alta	Modular, con facilidad para desarrolladores de sistemas y usuarios de nivel profesional. Construcción de topología. Manejo de grandes volúmenes de de datos. Manejo de información en formato Raster y Vectorial. Interfaz gráfica mejoradda. Altamente flexible. Soportado por Unix y Windows,
ArcGIS y ArcVIEW	Enviromental Systems Research Institute (ESRI)	Medio	Alta	Modular, manejo de grandes volúmenes de datos. Manejo de información en formato vectorial y raster. Interfaz gráfica muy amigable. Altamente flexible. Aprendizaje rápido. Soportado por Unix y Windows.

Tabla 2.2. Cuadro comparativo de algunos de los programas SIG más usuales.

Genasys	Genasys Inc.	Alto	Alta	Plataforma para servicios de localización con terminales móviles. Modular. Manejo de grandes volúmenes de datos en formato vectorial y raster. Excelentes índices espaciales. Aceptable interfaz gráfica. Soportado por Unix y Windows.
GeoMedia y Modular GIS Enviroment (MGE)	Intergraph Corp.	Alto	Alta	Modular. Manejo de grandes volúmenes de datos. Menejo de información en formato vectorial y raster. Buena interfaz gráfica. Soportado por Windows y las máquinas propias de Intergraph Corp. Con sistema Unix propietario.
Mapinfo	Mapinfo Inc.	Medio	Medio	Muy usado en aplicaciones urbanas para estadística demográfica. Buena interfaz gráfica. Soportado por Windows.
Erdas Imagine	Erdas Inc.	Alta	Alta	Modular. Es un SIG raster muy usado en procesamiento de imágenes de satélite y radar. Integra datos vectoriales en formato nativo Arcinfo. Ecelente interfaz gráfica. Soportado por Unix y Windows.
EASI / PACE	PCI Remote Sensing Corp.	Alta	Alta	Modular. Es un SIG raster. Muy usado en procesamiento de imágenes de satélite y radar. Soportado para Unix y Windows.
ILWIS	International Institute for Aerospace Survey and Earth Sciences, ITC.	Medio	Medio	Menejo de información raster. Permite digitalización y cálculo de áreas. Soportado para DOS y Windows.
ArcCAD	Enviromental Systems Research Institute (ESRI)	Medio	Medio	SIG Vectorial. Necesita de AutoCAD, soportado para DOS y Windows
PC-ArcInfo	Enviromental Systems Research Institute (ESRI)	Medio	Medio	SIG Vectorial soportado para DOS y Windows
Idrisi	Escuela de Geografía de la Universidad de Clark	Bajo	Bajo	SIG raster. Muy usado para educación e investigación en sensores remotos.
GRASS	Armada de Estados Unidos	Bajo	Bajo	SIG raster. Fue desarrollado para cumplir funciones muy específicas.

Si consideramos que una de las características más sobresalientes, aunque muchas veces inconveniente, de los SIG es la velocidad de innovación y desarrollo, conviene distinguir el universo de paquetes y programas de acuerdo a sus funciones y capacidades; así, se pueden

clasificar en seis tipos principales y, adicionalmente, considerar como tecnologías paralelas a los servidores de bases de datos espaciales y a los sistemas de diseño asistido por computadora (CAD).

Se utilizó el programa ArcGIS para llevar a cabo un ejemplo de georreferenciación, esta se realizó en el módulo ArcMAP perteneciente al mismo software. Este método, (Moreno, A. 2006, "Sistemas y Análisis de la Información Geográfica, Manual de Aprendizaje con ArcGIS") consiste en insertar dos imágenes, una vectorial, por ejemplo un polígono DXF y otra tipo raster, de preferencia con algún formato que no comprima la imagen y mantenga la calidad de la misma, en este caso el formato TIFF. En la figura 2.5 vemos la interfaz del ArcMAP en donde ya se insertó un polígono rectangular realizado en AutoCAD y exportado como archivo DXF.

Figura 2.5. Interfaz del programa ArcGIS donde se insertó un polígono realizado en AutoCAD.

Después se inserta una imagen obtenida de una fotografía o de una digitalización en un scanner, de tal manera que se tendrán las dos imágenes sobrepuestas, como se muestra en la figura 2.6.

Figura 2.6. Superposición de una imagen raster sobre una vectorial en ArcGIS.

Con las herramientas del software se realiza un zoom hacia una de las cuatro esquinas de la zona de interés de la imagen raster (imagen TIFF) dando clic sobre ella, ver figura 2.7. Después se vuelve a dar click sobre la esquina correspondiente del polígono vectorial para ajustarlos, de manera que ambas esquinas coincidan.

Figura 2.7. Se ajusta el punto de interés de la imagen raster sobre la esquina del polígono vectorial.

Se hace lo mismo con las tres restantes esquinas, figuras 2.8 y 2.9. Cabe mencionar que las unidades de la entidad vectorial (polígono insertado como DXF) se respetan en ArcGIS y se toman como unidades para el sistema de georeferenciación.

Figura 2.8. Ajuste de la imagen superior derecha de la imagen raster sobre la esquina correspondiente del polígono vectorial.

Continuando con el procedimiento se ajusta al vector la imagen raster (TIFF) en la esquina inferior derecha.

Figura 2.9. Ajuste de las esquinas inferiores izquierdas en ambas imágenes raster y vectorial.

Una vez terminado el proceso (figura 2.10), se tienen ajustadas las dos imágenes, raster y vectorial y se pueden leer en cualquier punto del mapa TIFF las coordenadas X-Y del polígono vectorial cuyas dimensiones fueron 2572 x 2072 unidades de dibujo, creado en AutoCAD.

Figura 2.10. Zona de interés de la imagen raster ajustada al polígono DXF y georreferenciada a sus coordenadas X-Y.

Al final se puede obtener una tabla de enlaces que muestra las coordenadas de inicio y final de cada punto, así como el error obtenido, ver figura 2.11.

Q Sin titulo - AreMap - AreEditor			- 6 2
Lie Lot yew Insert Selection Lo	s Muqom Reip		
	•• 🚸 1:7,944 💌 📢	? 🔊 🕲 🗖 🗤	
Georeferencing - Layet ordenzo	u 💌 - 🖌 💷 👘		Tools X
Red: Bard_3	III 902 Link Table 1 0.9010 5.05176 1 0.94010 5.05176 5.052724 2 5.550176 0.006471 0.006471 4 0.386954 0.466103 0.466103	X Mgr Y Mgr Cent ************************************	P × P ×
Digley Source Selection	Auto Adjust Transformation 1st Order Cosd Sere El Co Cosd Sere El Co Cosd Sere Sere Cosd Sere S	Polynomial (A + 1 Tatal RMS Great R.43800 Uladillo 6° I 899	Corre Porre
	104		

Figura 2.11. Error medio cuadrático medido con las diferencias de las coordenadas de cada esquina de las imágenes raster y vectorial.

En resumen, el polígono (imagen vectorial) que intrínsicamente tiene sus propias coordenadas, sirve para referenciar el mapa (imagen raster) y que este tenga un sistema

coordenado de referencia con el cual podamos definir algún o algunos puntos sobre él, quedando cada punto definido por sus coordenadas X-Y.

La georreferenciación llevada a cabo con el programa ArcGIS mostró que se obtienen resultados que pueden ser lo suficientemente exactos para algunas áreas como la fotogrametría, pero esto es relativo ya que para mediciones más exactas, como un punto que se desplaza solo unos cuantos milímetros, ya no ofrece resultados confiables.

También se realizó un ejercicio en el programa AutoCAD para georreferenciar una imagen con formato TIFF y medir distancias sobre la imagen ya georreferenciada. La imagen raster tiene una resolución de 800 x 600 pixeles.

La imagen fue creada en el programa para edición de imágenes Adobe Photoshop y arbitrariamente se marcaron 7 puntos (en realidad pequeños rectángulos del tamaño de un píxel) con sus coordenadas X-Y, tomando los ejes como se muestra, ver figuras 2.12 y 2.13.

D (Coordenadas			
Puntos	x	Y		
REF	10.000	5.000		
1	20.000	120.000		
2	220.000	400.000		
3	360.000	510.000		
4	600.000	360.000		
5	700.000	170.000		
6	450.000	15.000		

Figura 2.12. Coordenadas X-Y y convención de signos para los puntos arbitrariamente escogidos.

Figura 2.13. Imagen TIFF de 800 x 600 pixeles con los 7 puntos escogidos.

En AutoCAD se dibujó un rectángulo de 800 x 600 unidades de dibujo, después se insertó la imagen raster (TIFF) de 800 x 600 pixeles y se escaló con el comando SCALE para que se ajustara al tamaño del rectángulo previamente realizado, figura 2.14.

Figura 2.14. Imagen raster TIFF 800 x 600 insertada y escalada en AutoCAD, no se alcanzan a apreciar en esta vista los puntos marcados como REF, 1 2 3 4 5 y 6.

Una vez que se hicieron coincidir todas las esquinas de ambas imágenes, ya se tuvo la imagen "ajustada" o referenciada al polígono. Auxiliados con la herramienta zoom se procedió a dibujar líneas rectas que fueron uniendo los puntos uno tras otro, comenzando con el marcado como punto de referencia REF, seguido por el punto 1, el 2 y así sucesivamente, ver figura 2.15. Se le pidió al programa que enlistara la longitud de cada línea dibujada para obtener la longitud de cada una de ellas, es decir, la distancia entre cada punto.

Figura 2.15. Rectángulo vectorial con los puntos y líneas ya marcados

En una hoja de cálculo se realizó una tabla donde se calcularon teóricamente las mismas distancias entre los puntos, utilizando la fórmula de la distancia entre dos puntos de un sistema coordenado ortogonal clásico, en donde si se tienen los puntos $P_1(X_1, Y_1)$ y $P_2(X_2, Y_2)$ la distancia entre ellos es.

$$d = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

Los resultados obtenidos teóricamente y los medidos en AutoCAD se muestran y comparan en la tabla 2.3, donde se leen las diferencias entre los cálculos realizados y el error obtenido, expresado como porcentaje.

Cabe aclarar que para este ejemplo las unidades de dibujo son los mismos píxeles de la imagen. En un ejemplo real cada píxel va a representar una longitud escogida a conveniencia.

			CÁLCULO TEÓRICO	MEDICIÓN EN AUTOCAD		
Puntos	Coordenadas		Dist. Respecto al	Dist. Respecto	DIFERENCIA	ERROR
i unico	х	Y	anterior	al punto anterior		%
REF	10.000	5.000	0.000	0.000	0.000	0.000
1	20.000	120.000	115.434	115.274	0.160	0.139
2	220.000	400.000	344.093	344.033	0.060	0.017
3	360.000	510.000	178.045	177.973	0.072	0.040

Tabla 2.3 Comparación de resultados teóricos y medidos con AutoCAD.

4	600.000	360.000	283.019	283.042	-0.023	0.008
5	700.000	170.000	214.709	214.821	-0.112	0.052
6	450.000	15.000	294.151	294.248	-0.097	0.033

Los errores en este caso son muy pequeños, pero esto será relativo, ya que en cada caso particular un pixel va a representar una distancia diferente de la realidad, dependiendo del problema que se trate.

Para el caso de medir mediante georreferenciación desplazamientos pequeños en trabajo experimental de laboratorio, se encontró que programas como AutoCAD son más prácticos, además de ser de uso común en el mundo de la investigación. Como se explicará con mayor detalle en el capítulo siguiente, el ajuste o corrección de la imagen ya georreferenciada se llevará a cabo mediante un procedimiento matemático relativamente sencillo, que se presenta como propuesta.

Capítulo 3

IMPLEMENTACIÓN EN LA MEDICIÓN DE DESPLAZAMIENTOS EN TRABAJO EXPERIMENTAL

3.1 Descripción general de la metodología.

La metodología propuesta en este trabajo se basa en la localización referenciada de cualquier punto contenido en una imagen digital, respecto a un sistema de ejes locales propios del elemento o sistema estructural que se esté fotografiando durante un ensaye en laboratorio.

La apertura del lente en la fotografía digital siempre va a captar un poco más del objeto (elemento o sistema estructural) que se vaya a ensayar, es decir, que solo interesa georreferenciar una parte dentro del espacio de la imagen digital. Es posible que dicho objeto en estudio no esté alineado con la horizontal y presente un giro respecto de esta, o también es posible que la toma de fotografías se realice presionando directamente el botón de la cámara y no mediante un sistema remoto, esto va a inducir un giro en la cámara digital, lo que ocasionaría que en la imagen el objeto a georreferenciar presente un pequeño giro, el cual tendría pequeñas variaciones en cada fotografía.

Por lo anterior, es preferible tener un sistema de ejes locales propios del objeto a referenciar, de este modo dicho sistema siempre va a estar alineado con el objeto en estudio y se facilita el análisis.

Como se comentó en el capítulo 1, se requieren imágenes digitales con la mayor resolución y nitidez posibles que permita la cámara digital que se esté utilizando, para poder localizar los puntos de interés dentro de la imagen digital con la mayor precisión posible.

Todos los programas para georreferenciación cuentan un sistema de coordenadas X-Y, y cualquier dibujo u objeto que se inserte quedará referenciado a él, pero como ya se comentó, el objeto a estudiar puede presentar un giro respecto al sistema coordenado del software, por lo tanto se definirán dos sistemas de ejes: el sistema global del software (X_G, Y_G) y el sistema local del objeto (X_L, Y_L) , como lo muestra la figura 3.1.

Figura 3.1. Ejes globales del software y locales del objeto en estudio.

Dependiendo del objeto en estudio, previamente se deberán haber escogido dos puntos a los cuales llamaremos puntos 1 y 2, tales que no experimenten desplazamientos durante todo el ensaye, pueden estar en la base del objeto en estudio o en cualquier otra parte. Estos puntos servirán como referencia para los demás que si se desplazarán, como por ejemplo el punto 3, ver figura 3.2.

Figura 3.2. Coordenadas globales de los puntos fijos 1, 2 y del punto "móvil" 3.
En la figura 3.2 se puede observar que cada uno de los puntos 1, 2 y 3 tiene asociadas las coordenadas globales que el software le asigna.

Para obtener las coordenadas locales referidas a su origen, localizado en el punto 1, sin necesidad de calcular el ángulo de giro entre ambos sistemas de ejes, se propone lo siguiente.

Utilizando las coordenadas globales y con la ecuación general para calcular la distancia entre dos puntos en el plano, se pueden obtener las longitudes de los tres lados del triángulo oblicuángulo formado por los puntos 1, 2 y 3, a las cuales se les designará como d_{1-2} , d_{1-3} y d_{2-3} , que son las distancias de los puntos uno a dos, de uno a tres y de dos a tres respectivamente, ver figura 3.3.

Figura 3.3. Ángulo oblicuángulo con las distancias de sus lados: d₁₋₂, d₁₋₃ y d₂₋₃.

Una vez calculados los 3 lados del triángulo (distancias d_{1-2} , d_{1-3} y d_{2-3}), los ángulos internos quedan obligados y por medio de la ley de cosenos se puede hallar el ángulo α , que en este caso será el que nos interesa. La ecuación es la siguiente.

$$d_{2-3}^{2} = d_{1-2}^{2} + d_{1-3}^{2} - 2d_{1-2}d_{1-3}\cos\alpha$$

de donde se despeja α

$$\alpha = \cos^{-1} \left(\frac{d_{1-2}^{2} + d_{1-3}^{2} - d_{2-3}^{2}}{2d_{1-2}d_{1-3}} \right)$$

Ahora solo queda utilizar el ángulo α para proyectar la distancia d₁₋₃ en los ejes locales y obtener así las coordenadas X_L, Y_L del punto 3, como se observa en la figura 3.4.

Figura 3.4. Proyección de d₁₋₃ en los ejes locales.

De la figura 4.4 se puede ver que

$$X_{L_3} = d_{1-3} \cos \alpha$$
$$Y_{L_3} = d_{1-3} sen \alpha$$

Con el procedimiento anterior se pueden obtener coordenadas locales sin importar cual sea el ángulo de giro del objeto a georreferenciar, con respecto de la horizontal.

Una vez que el punto 3 experimente un desplazamiento y en ese instante sea fotografiado nuevamente, al analizar la fotografía presentará nuevas coordenadas locales, la diferencia entre las coordenadas locales X_L e Y_L antes y después de dicho desplazamiento serán los desplazamientos (vertical y horizontal) de dicho punto.

3.2 Aplicación a un ejemplo real.

Se aprovechó la oportunidad de aplicar la metodología de georreferenciación en un muro diafragma que se ensayó en el laboratorio del CENAPRED. Dicho muro es parte de una serie de ensayes de varios muros que coordina el M.I. Leonardo Flores, investigador de dicho centro.

3.2.1 Descripción del trabajo experimental.

Para aplicar la georreferenciación de imágenes y medir desplazamientos de elementos estructurales directamente en fotografías, se necesitaba alguna prueba en donde los desplazamientos fueran del orden de un milímetro o mayores, de otra manera, si las deformaciones son menores al milímetro, las marcas colocadas como referencia serían demasiado grandes con respecto de las deformaciones y la cámara digital difícilmente las captaría.

El muro diafragma tuvo las siguientes características: un marco de concreto reforzado confinando al muro de ladrillo rojo recocido con castillos en sus extremos y dalas en las partes superior e inferior el muro no tiene acero horizontal en las juntas de mortero. Las dimensiones nominales del modelo son las que se muestran en la figura 3.5.

Figura 3.5. Dimensiones nominales del muro diafragma.

Las cargas se aplicaron mediante un solo gato de doble acción de 100 toneladas de capacidad, el cual "empujaba" y "jalaba" el muro en su extremo superior. El gato se apoyaba en el muro de reacción del CENAPRED, ver figura 3.6. En la corona del muro se colocó un medidor de desplazamientos horizontales, mismos que sirvieron para calcular las distorsiones angulares, parámetro que permitió llevar el control de la prueba por desplazamientos.

Figura 3.6. Vista lateral del muro, donde se observan al fondo, el muro de reacción y el gato de 100 ton.

El muro fue instrumentado para medir deformaciones en varias direcciones y dichos instrumentos estaban conectados a un sistema de adquisición de datos que a su vez mandaba toda la información a una computadora.

3.7. Parte frontal del muro. Encerrado en un ovalo en la parte superior se puede observar el punto de control instrumentado para medir los desplazamientos horizontales.

3.8. Instrumentación en la parte posterior del muro.

Horas antes del ensaye fueron medidas sus dimensiones reales, las cuales tienen pequeñas variaciones respecto a las dimensiones nominales, figuras 3.9 y 3.10.

3.9. Medición de las dimensiones reales del muro.

3.10. Dimensiones reales del muro en milímetros. Se marcan los 25 puntos en los cruces.

Se puede observar en la figura 3.11 que en el muro, sobre la mampostería, se pintaron líneas verticales y horizontales formando una malla que se tomó como referencia para colocar marcas en sus cruces. A cada cruce se le designó un número, los cuales aumentan de izquierda a derecha y de abajo hacia arriba, teniendo un total de 25. En cada cruce se pegó con silicón una marca de cartón, misma que sería utilizada después para localizar cada punto durante el análisis de las imágenes digitales, figura 3.12.

3.11. Malla de líneas hechas con plumón sobre el muro diafragma.

3.12. Marcas de cartón en los cruces de la malla.

Es de interés mencionar que inicialmente se colocaron con pegamento dos marcas mas entre la base de concreto que sirvió de soporte al muro y la dala inferior del muro diafragma, ambas marcas sobre una línea horizontal. Dichas marcas servirían como referencia ya que esta base no se desplazó y se tendrían dos puntos totalmente fijos.

Desafortunadamente dichas marcas no fueron de un tamaño suficiente y durante la prueba los fragmentos de tabique y mortero que se iban desprendiendo conforme el muro se iba agrietando las fueron cubriendo, siendo imposible localizarlas claramente durante el análisis en la mayoría de las fotografías que se tomaron, por lo tanto dichos puntos se descartaron y solo se tomaron en cuenta los 25 puntos en los cruces mencionados, mostrados en las figuras 3.10 y 3.11.

Debido al problema de los dos puntos iniciales de referencia que tuvieron que ser descartados, para el análisis se tomaron nuevos puntos horizontales de referencia, que son los puntos marcados como 1 y 2.

Los nuevos puntos de referencia 1 y 2 no se encuentran exactamente sobre la base del muro, están a 36 cm de esta y para cargas laterales grandes presentaron pequeños desplazamientos, lo cual llevó a pequeños errores. Posteriormente se va a observar en los

resultados que la distancia entre los puntos 1 y 2 no fue constante durante toda la prueba y que conforme el muro se fue agrietando esta distancia tuvo una tendencia a aumentar.

Fue desafortunadamente al final de la prueba, durante el análisis de las fotografías, cuando se identificó que se tenian que descartar los puntos de referencia originales; no obstante esto, se analizaron las fotografías conociendo de antemano esta situación.

El punto de referencia o punto de control de prueba que se tomó para medir los desplazamientos horizontales, es el marcado como 23, y la altura para calcular las distorsiones angulares es la que se observa en la figura 4.11, H = 2210 mm.

La cámara digital que se utilizó para la realización de este trabajo tiene las siguientes características:

Cámara: KODAK Modelo: EASYSHARE V1003 Tipo de sensor: CCD de 46 mm (1,8 pulg.) Píxeles reales: 10,16 MP (3676 × 2764) Formato de imágenes digitales: JPG

La cámara tiene la opción de almacenar las fotografías con diferentes resoluciones y se escogió la mayor posible, entre mayor resolución se tendrá una mejor precisión, en este caso con 10.16 MP se considera que hubo una precisión aceptable al analizar las fotografías.

La cámara se colocó frente al muro, tratando de que estuviera centrada respecto de este, sobre una base fija elaborada con cajones de acero, atornillados en su parte inferior a una base de concreto anclada con la losa del laboratorio del CENAPRED. Sobre el acero se pegó madera con resina epóxica y sobre esta, atornillada con pijas, una base de plástico que es parte del kit de la cámara digital. Por último la cámara se fijó con pegamento al plástico, ver figura 3.13.

La distancia entre la cámara y el muro no pudo escogerse a voluntad totalmente y fue de 515 cm, hubo que ajustarse al punto donde se encuentran los tornillos de conexión en la base de concreto. La altura de la cámara con respecto al piso fue de 198 cm, así se buscó que coincidiera lo más posible con el centro geométrico del muro.

3.13. Posición de la cámara digital respecto del muro diafragma.

Se buscó un dispositivo para la cámara el cual pudiera conectarse a la misma de manera que el disparo de cada fotografía se pudiera realizar desde un control alámbrico, sin necesidad de presionar directamente el botón de la cámara y así no se indujera un giro en esta; sin embargo no fue posible encontrar tal dispositivo para este modelo de cámara digital y se tuvo que aceptar la toma de todas las fotografías presionando directamente el botón de la cámara provocando un giro en cada fotografía. La solución de este problema se tratará posteriormente durante el análisis de las imágenes digitales.

3.2.1.1 Características del ensaye.

El registro del ensaye se llevó a cabo por medio de "pasos", que son instantes en que el sistema de adquisición de datos registra los datos, que consisten en la fuerza aplicada en cierto instante y las deformaciones y desplazamientos asociados a esta. Se investigó que en la mayoría de los ensayes de muros se requieren aproximadamente un total de entre 800 y 1000 pasos, aunque este valor puede variar dependiendo del tipo de prueba a realizar.

En el ensaye de muros es de máxima utilidad el uso de ciclos de histéresis, que son gráficas donde en el eje de las ordenadas se tienen las cargas aplicadas (o esfuerzos) y en el eje de las absisas los desplazamientos medidos (o distorsiones). Como las cargas son reversibles, cada ciclo inicia con la aplicación de la carga en un sentido, llega a su punto de carga y deformación máximas, se descarga hasta cero, se aplica la carga en el sentido inverso hasta encontrar los máximos negativos y se vuelve a descargar hasta tener nuevamente carga igual a cero. Antes de comenzar un nuevo ciclo, principalmente en materiales no elásticos, desde un inicio se presentan deformaciones permanentes que provocan que cuando la carga es cero los desplazamientos no lo son y viceversa, lo anterior se ilustra en la figura 3.14.

3.14. Ciclo de histéresis típico para materiales no elásticos.

Teniendo en cuenta que la cámara almacenó las imágenes con la mayor resolución, ocupando cada una en promedio 2.6 MB (mega bytes) y tomando como promedio 900 pasos, se necesitarían 900 fotografías, requiriendo una capacidad de memoria total en la cámara de 2.6 x 900 = 2340 MB, que excedieron la capacidad de memoria disponible con que se contaba, por lo tanto se decidió no tomar fotografías en todos los pasos.

Finalmente se tuvieron un total de 888 pasos, de los cuales solo se tomaron fotografías en 490 de ellos, almacenando 490 imágenes con formato JPG. Para la toma de fotografías se escogieron primeramente los pasos más representativos de cada ciclo de carga (ver figura 3.14) y también otros pasos intermedios.

En los primeros ciclos las cargas aplicadas fueron relativamente pequeñas, para ir formando el ciclo histerético de cargas, de forma gradual se fueron aumentando las cargas laterales de cada ciclo hasta alcanzar deformaciones que llevaron al agrietamiento del muro y continuar con este hasta los valores máximos de carga y de deformaciones.

3.15. Primer agrietamiento del muro con una carga de 10.2 ton.

El primer agrietamiento que se presentó durante el ensaye fue en el ciclo número 10, con una carga lateral de 10.2 ton y una distorsión, medida por el sistema de adquisición de datos igual a $\gamma = 0.14\%$, figura 3.15.

3.16. Acercamiento a la zona central del muro al final del ensaye.

En los últimos ciclos, se presentaron desplazamientos horizontales en la corona del muro del orden de 32 mm asociadas a cargas de 39 ton.

3.17. Acercamiento a una zona donde la mampostería fue totalmente destruida por los esfuerzos a que fue sometida.

3.18. Fotografía final del muro. Se observa el patrón del agrietamiento.

3.2.2 Análisis de los resultados

Con base en el total de fotografías obtenidas durante el ensaye, se procedió a su análisis considerando como base o patrón la primer fotografía tomada sobre el muro antes de comenzar a aplicar carga sobre él, esta corresponde al llamado paso cero.

En dicha fotografía como, en las restantes, se observó que al presionar el botón que activa la toma de fotografías se indujo un giro en la cámara a pesar de que, como ya se comentó, esta se colocó en una base y se fijó a ella con pegamento.

La mayoría de los programas para georreferenciar lo hacen ajustando la imagen digital a un polígono, que en este caso, debería tener el mismo ángulo de inclinación del muro que aparece dentro de la fotografía y por lo tanto habría que obtener dicho ángulo para cada una de las fotografías a georreferenciar; además, en algunos programas no se permite girar el polígono de referencia y el objeto o la zona a referenciar debe estar alineado en su verticalidad y horizontalidad respecto de los ejes X-Y. Entonces se requirió de un software en que fuera fácil insertar la fotografía, asignarle coordenadas (X,Y) a cada punto de interés, en que no se necesitara calcular el ángulo de giro en cada ocasión, y algo muy importante, que se pudiera colocar una marca en cada punto de interés analizado para poder localizarlo después.

Por lo anterior, se escogió como software para la georreferenciación de este muro el programa AutoCAD, ya que reúne los requisitos comentados y es un software con una interfaz ya muy conocida.

Al insertar la imagen en AutoCAD fue necesario escalarla a sus dimensiones reales, pero la fotografía presentaba una distorsión de la imagen creada por el lente de la cámara.

Figura 3.19. Posición de la cámara digital respecto del muro.

Así, para escalar la fotografía en AutoCAD se consideraron las dimensiones medidas en el software alrededor del centro muro, donde no hay distorsión de la imagen o ésta es mínima, debido a que la cámara se alineó con ese punto con un ángulo de 90°, ver figura 3.19. Entre más nos alejamos del centro, las dimensiones medidas sobre la fotografía presentan más distorsión y no son reales. Sobre la corrección que hay que realizar debido a la distorsión de la imagen se hablará más adelante.

Los puntos fijos marcados como 1 y 2 que servirán como referencia junto con el punto 23 que experimentará desplazamientos, serán los que se analizarán.

Con base en la metodología propuesta, se decidió tener dos sistemas de coordenadas: Coordenadas globales de AutoCAD (X_G , Y_G) y Coordenadas locales del muro (X_L , Y_L), como se puede observar en la figura 3.20.

3.20. Coordenadas Globales y locales.

Tomando en cuenta lo antes mencionado, el muro presenta un giro respecto a la horizontal con pequeñas variaciones de una fotografía con respecto de las otras, por lo tanto se procedió como se indica en los siguientes párrafos.

En AutoCAD se localizan las coordenadas de los puntos en estudio 1, 2 y 23. Estas serán coordenadas referidas al sistema global, figura 3.21.

Figura 3.21. Coordenadas globales de los puntos 1, 2 y 23.

 $\begin{array}{c} P_1 \left(X_{G1}, \, Y_{G1} \right) \\ P_2 \left(X_{G2}, \, Y_{G2} \right) \\ P_{23} \left(X_{G23}, \, Y_{G23} \right) \end{array}$

Una vez definidas las coordenadas globales para todos los puntos de interés, se procede a realizar el cambio de coordenadas, pasando de las globales a las locales.

Utilizando las coordenadas globales se calculan las distancias entre los tres puntos, utilizando la fórmula para calcular la distancia entre dos puntos en el plano.

$$d = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

A las distancias o longitudes de los tres lados del triángulo formado por los puntos 1, 2 y 23 se les llamará d_{1-2} , d_{1-23} y d_{2-23} , que son las distancias de los puntos uno a dos, de uno a veintitrés y de dos a veintitrés respectivamente.

Una vez calculados los 3 lados del triángulo, los ángulos internos quedan obligados y por medio de la ley de cosenos se halla el ángulo α , ver figura 3.22.

Figura 3.22. Triángulo oblicuángulo donde se puede deducir el ángulo α.

por la Ley de Cosenos

$$d_{2-23}^{2} = d_{1-2}^{2} + d_{1-23}^{2} - 2d_{1-2}d_{1-23}\cos\alpha$$

de donde se despeja α

$$\alpha = \cos^{-1} \left(\frac{d_{1-2}^{2} + d_{1-23}^{2} - d_{2-23}^{2}}{2d_{1-2}d_{1-23}} \right)$$

Ahora solo queda utilizar el ángulo α para proyectar la distancia d₁₋₂₃ en los ejes locales y obtener así las coordenadas X_L, Y_L del punto 23 como se observa en la figura 3.23.

Figura 3.23. Proyección de d₁₋₂₃ en los ejes locales.

$$X_{L_{23}} = d_{1-23} \cos \alpha$$
$$Y_{L_{23}} = d_{1-23} sen\alpha$$

Se aplicó todo el procedimiento explicado anteriormente a los puntos 1, 2 y 23 en los 18 ciclos reversibles del ensaye, únicamente en los pasos de valores máximos de cada ciclo o "valores picos", para obtener las coordenadas locales de los puntos de interés en cada pico. Los resultados se presentan en la tabla 3.1.

CICLO	PASO	FOTOGRAFÍA	PTO.	COORD. 0	GLOBALES	DISTANCIA RESPECTO	DISTANCIA RESPECTO	DISTANCIA ENTRE 1 y	ANGULO α	ANGULO α	X Local	Y Local
				х	Y	mm	mm	mm	rad	arados	mm	mm
			1	22582,1886	26166.4492	0.0000	2395.0028	2395.0028	0.0000	0.0000	0.0000	0.0000
0	0	318	2	24977.0811	26189.4361	2395.0028	0.0000	2395.0028	0.0000	0.0000	2395.0028	0.0000
			23	23752.3919	28361.5439	2487.5322	2493.5749	2395.0028	1.0714	61.3880	1191.2176	2183.7621
			1	1491.8316	21606.1176	0.0000	2394.0608	2394.0608	0.0000	0.0000	0.0000	0.0000
	13	323	2	3885.7088	21635.7635	2394.0608	0.0000	2394.0608	0.0000	0.0000	2394.0608	0.0000
			23	2656.0196	23804.6685	2487.7620	2493.2478	2394.0608	1.0714	61.3881	1191.3236	2183.9661
1			1	6758.3813	21579.0882	0.0000	2395.9494	2395.9494	0.0000	0.0000	0.0000	0.0000
	32	332	2	9154.2107	21603.0674	2395.9494	0.0000	2395.9494	0.0000	0.0000	2395.9494	0.0000
			23	7927.5640	23776.3545	2488.9691	2495.5639	2395.9494	1.0718	61.4088	1191.1149	2185.4548
			1	12031.9781	21578.5193	0.0000	2395.9740	2395.9740	0.0000	0.0000	0.0000	0.0000
	43	337	2	14427.8341	21602.3023	2395.9740	0.0000	2395.9740	0.0000	0.0000	2395.9740	0.0000
2			23	13201.5995	23776.1945	2489.5362	2495.8883	2395.9740	1.0718	61.4090	1191.3784	2185.9570
2			1	17304.5653	21578.5624	0.0000	2397.1326	2397.1326	0.0000	0.0000	0.0000	0.0000
	53	343	2	19701.5930	21600.9892	2397.1326	0.0000	2397.1326	0.0000	0.0000	2397.1326	0.0000
			23	18475.2336	23774.4846	2488.4812	2495.6041	2397.1326	1.0717	61.4014	1191.1614	2184.8737
			1	22578.5760	21579.5173	0.0000	2398.5351	2398.5351	0.0000	0.0000	0.0000	0.0000
	67	351	2	24977.0227	21600.1116	2398.5351	0.0000	2398.5351	0.0000	0.0000	2398.5351	0.0000
2			23	23751.8379	23776.6918	2490.8070	2497.7148	2398.5351	1.0717	61.4064	1192.0840	2187.0196
3			1	27853.8462	21585.8471	0.0000	2397.7128	2397.7128	0.0000	0.0000	0.0000	0.0000
	85	359	2	30251.4453	21609.1931	2397.7128	0.0000	2397.7128	0.0000	0.0000	2397.7128	0.0000
			23	29023.5966	23784.8701	2490.7867	2498.2359	2397.7128	1.0722	61.4318	1191.1064	2187.5292
			1	33125.4910	21577.8149	0.0000	2399.0336	2399.0336	0.0000	0.0000	0.0000	0.0000
	100 115	367	2	35524.4170	21600.5317	2399.0336	0.0000	2399.0336	0.0000	0.0000	2399.0336	0.0000
4			23	34297.8306	23776.6667	2491.8526	2498.0148	2399.0336	1.0715	61.3927	1193.1083	2187.6522
4			1	38398.9310	21581.9834	0.0000	2399.0302	2399.0302	0.0000	0.0000	0.0000	0.0000
		374	2	40797.8702	21602.8836	2399.0302	0.0000	2399.0302	0.0000	0.0000	2399.0302	0.0000
			23	39569.7180	23780.4193	2490.7554	2500.0039	2399.0302	1.0727	61.4631	1189.8952	2188.1526
			1	43677.0887	21589.3662	0.0000	2395.2585	2395.2585	0.0000	0.0000	0.0000	0.0000
	142	391	2	46072.2080	21615.1889	2395.2585	0.0000	2395.2585	0.0000	0.0000	2395.2585	0.0000
5			23	44846.6955	23786.4201	2488.9809	2493.2160	2395.2585	1.0708	61.3536	1193.2247	2184.3170
5			1	1487.6728	17013.9610	0.0000	2397.4219	2397.4219	0.0000	0.0000	0.0000	0.0000
	170	407	2	3884.9578	17039.5829	2397.4219	0.0000	2397.4219	0.0000	0.0000	2397.4219	0.0000
			23	2652.8341	19214.4032	2489.8889	2499.5944	2397.4219	1.0731	61.4859	1188.6115	2187.8641
			1	6765.9382	17036.9247	0.0000	2394.6269	2394.6269	0.0000	0.0000	0.0000	0.0000
	193	418	2	9160.3638	17067.9727	2394.6269	0.0000	2394.6269	0.0000	0.0000	2394.6269	0.0000
6			23	7930.7164	19237.0418	2489.4223	2493.3699	2394.6269	1.0709	61.3596	1193.2063	2184.8300
Ŭ			1	12034.7264	17021.3238	0.0000	2396.0051	2396.0051	0.0000	0.0000	0.0000	0.0000
	208	426	2	14430.5763	17048.5987	2396.0051	0.0000	2396.0051	0.0000	0.0000	2396.0051	0.0000
			23	13198.9167	19221.9102	2489.5621	2498.0529	2396.0051	1.0728	61.4673	1189.1652	2187.1913
			1	17306.1842	17003.7865	0.0000	2397.3667	2397.3667	0.0000	0.0000	0.0000	0.0000
	232	446	2	19703.4283	17028.0316	2397.3667	0.0000	2397.3667	0.0000	0.0000	2397.3667	0.0000
7			23	18479.3501	19201.7828	2491.4867	2494.7067	2397.3667	1.0704	61.3298	1195.3347	2186.0194
			1	22584.3430	17049.2521	0.0000	2395.0328	2395.0328	0.0000	0.0000	0.0000	0.0000
	257	459	2	24979.1661	17080.9416	2395.0328	0.0000	2395.0328	0.0000	0.0000	2395.0328	0.0000
			23	23742.3471	19251.1038	2487.7951	2497.8641	2395.0328	1.0734	61.5010	1187.0362	2186.3370
			1	27860.4735	17050.9687	0.0000	2395.7830	2395.7830	0.0000	0.0000	0.0000	0.0000
	277	471	2	30256.0459	17082.7324	2395.7830	0.0000	2395.7830	0.0000	0.0000	2395.7830	0.0000
8		L	23	29026.8637	19253.0269	2491.8921	2494.2067	2395.7830	1.0704	61.3310	1195.4829	2186.4005
			1	33133.0626	17046.8200	0.0000	2395.4834	2395.4834	0.0000	0.0000	0.0000	0.0000
	300	483	2	35528.3571	17076.9033	2395.4834	0.0000	2395.4834	0.0000	0.0000	2395.4834	0.0000
1	1		23	34291.6141	19247.5486	2487.0561	2498.2462	2395.4834	1.0737	61.5163	1186.0976	2186.0056

Tabla 3.1. Coordenadas locales en los picos de cada ciclo de carga.

				00000	00000	DISTANCIA RESPECTO	DISTANCIA RESPECTO	DISTANCIA ENTRE 1 y				
CICLO	PASO	FOTOGRAFIA	PIO.	COORD. G	IUBALES	DE 1	DE 2	2	ANGULU α	ANGULO α	X Local	Y Local
				Х	Y	mm	mm	mm	rad	grados	mm	mm
	333		1	38402.4861	17021.4515	0.0000	2395.6733	2395.6733	0.0000	0.0000	0.0000	0.0000
		508	2	40797.9569	17052.6009	2395.6733	0.0000	2395.6733	0.0000	0.0000	2395.6733	0.0000
9			23	39573.0666	19221.7635	2492.3145	2491.1087	2395.6733	1.0689	61.2417	1199.0908	2184.9057
Ŭ			1	43676.8001	17018.6039	0.0000	2396.8440	2396.8440	0.0000	0.0000	0.0000	0.0000
	363	521	2	46073.4734	17047.2067	2396.8440	0.0000	2396.8440	0.0000	0.0000	2396.8440	0.0000
			23	44834.6509	19218.2728	2485.7920	2499.6418	2396.8440	1.0743	61.5550	1184.0182	2185.6950
			1	1488.5939	12432.7808	0.0000	2398.8877	2398.8877	0.0000	0.0000	0.0000	0.0000
	389	540	2	3887.3253	12460.1663	2398.8877	0.0000	2398.8877	0.0000	0.0000	2398.8877	0.0000
10			23	2665.1696	14635.5361	2497.2908	2495.1750	2398.8877	1.0688	61.2375	1201.6455	2189.1801
			1	6758.9059	12430.1888	0.0000	2399.5950	2399.5950	0.0000	0.0000	0.0000	0.0000
	420	557	2	9158.3601	12456.1805	2399.5950	0.0000	2399.5950	0.0000	0.0000	2399.5950	0.0000
			23	7919.1353	14632.6348	2489.3575	2504.5222	2399.5950	1.0751	61.5995	1184.0176	2189.7495
	440	572	1	12036.4484	12431.2702	0.0000	2398.3324	2398.3324	0.0000	0.0000	0.0000	0.0000
	449	5/3	2	14434.6317	12458.0112	2398.3324	0.0000	2398.3324	0.0000	0.0000	2398.3324	0.0000
11			23	13210.1144	12420 1624	2497.9561	2491.2022	2390.3324	1.0669	01.1200	0.0000	2107.4741
	/01	50/	2	10707 6257	12430.1034	2400.0220	2400.9329	2400.9329	0.0000	0.0000	2400 0220	0.0000
	431	334	2	18/63 2801	1/633 3835	2400.9329	2508 2827	2400.9329	1.0769	61 7002	2400.9329	2100 9924
			23	22577 2310	12448 2763	0.0000	2404 5149	2400.5525	0.0000	0.0000	0.0000	0.0000
	521	609	2	24981 6098	12473 8569	2404 5149	0 0000	2404.5149	0.0000	0.0000	2404 5149	0.0000
	521	003	23	23761 2711	14652 0694	2501 7304	2496 7652	2404.5149	1.0671	61 1425	1207 4183	2191 0719
12			1	27847 9841	12444 5481	0.0000	2404 6846	2404.6846	0.0000	0.0000	0.0000	0.0000
	547	622	2	30252 5651	12466 8716	2404 6846	0.0000	2404.6846	0.0000	0.0000	2404 6846	0.0000
	0.11		23	29005 7798	14646 1895	2487 5120	2510 7569	2404 6846	1 0774	61 7292	1178 1844	2190 7983
			1	33128.3953	12428.1178	0.0000	2399.6010	2399.6010	0.0000	0.0000	0.0000	0.0000
	574	636	2	35527.8408	12455.4344	2399.6010	0.0000	2399.6010	0.0000	0.0000	2399.6010	0.0000
			23	34317,7395	14629.7505	2502.3441	2488.3721	2399.6010	1.0641	60.9694	1214.3301	2187,9508
13			1	38398.8934	12427.0988	0.0000	2400.3299	2400.3299	0.0000	0.0000	0.0000	0.0000
	604	651	2	40799.0986	12451.5662	2400.3299	0.0000	2400.3299	0.0000	0.0000	2400.3299	0.0000
			23	39550.2865	14629.0544	2484.8168	2510.1766	2400.3299	1.0788	61.8111	1173.7786	2190.1046
		1	1	43672.3514	12440.6151	0.0000	2402.0308	2402.0308	0.0000	0.0000	0.0000	0.0000
	633	665	2	46074.2371	12467.0134	2402.0308	0.0000	2402.0308	0.0000	0.0000	2402.0308	0.0000
14			23	44862.3823	14644.8552	2504.9647	2492.3056	2402.0308	1.0648	61.0065	1214.1836	2191.0286
14			1	1482.3282	7857.8417	0.0000	2402.8917	2402.8917	0.0000	0.0000	0.0000	0.0000
	656	679	2	3885.0678	7884.8768	2402.8917	0.0000	2402.8917	0.0000	0.0000	2402.8917	0.0000
			23	2634.0348	10062.2687	2487.1523	2511.1987	2402.8917	1.0781	61.7705	1176.4359	2191.3295
			1	6762.1378	7859.8336	0.0000	2398.2755	2398.2755	0.0000	0.0000	0.0000	0.0000
	686	699	2	9160.2496	7887.8569	2398.2755	0.0000	2398.2755	0.0000	0.0000	2398.2755	0.0000
15			23	7952.8226	10062.6463	2504.0196	2487.4865	2398.2755	1.0636	60.9380	1216.3429	2188.7494
			1	12033.5922	7862.8247	0.0000	2399.2222	2399.2222	0.0000	0.0000	0.0000	0.0000
	716	717	2	14432.6608	7889.9769	2399.2222	0.0000	2399.2222	0.0000	0.0000	2399.2222	0.0000
			23	13178.5905	10065.6189	2482.6042	2511.1970	2399.2222	1.0801	61.8864	1169.8542	2189.6951
	744	704	1	17312.8877	/863.1713	0.0000	2396.4532	2396.4532	0.0000	0.0000	0.0000	0.0000
	744	/31	2	19709.1490	1893.4949	2396.4532	0.0000	2396.4532	0.0000	0.0000	2396.4532	0.0000
16			23	18502.3089	10066.1210	2503.5395	2485.3103	2396.4532	1.0631	60.9094	1217.2011	2187.7230
	700	740	1	22581.3667	7865.4062	0.0000	2397.7417	2397.7417	0.0000	0.0000	0.0000	0.0000
	/00	743	2	24978.9293	10067 2720	2397.7417	0.0000	2397.7417	0.0000	0.0000	2397.7417	0.0000
			23	23724.3239	7962 2906	2461.0220	2006.7620	2397.7417	0.0000	0.0000	0.0000	2107.0309
	700	760	2	20252 7706	7803.2800	2206 29/1	0.0000	2390.2041	0.0000	0.0000	2206 2941	0.0000
	190	700	22	29053 2565	10064 6176	2505 0620	2482 2661	2390.2041	1 0613	60.8067	1221 9652	2186 8666
17			1	33128 8025	7863.8006	0.0000	2397 7860	2397 7860	0.0000	0.0000	0.0000	0.0000
	830	777	2	35526 50/8	7892 7597	2397 7860	0.0000	2397 7860	0.0000	0.0000	2397 7860	0.0000
	000	,,,,	23	34265 7464	10064 6455	2477 0384	2511 2944	2397 7860	1 0819	61,9905	1163 2600	2186 9031
<u> </u>			1	38393 6904	7872 8482	0.0000	2401 3839	2401 3839	0.0000	0.0000	0.0000	0.0000
	854	789	2	40794.9041	7901.4361	2401.3839	0.0000	2401.3839	0.0000	0.0000	2401.3839	0.0000
			23	39585.5958	10078.0790	2506.7272	2490.0203	2401.3839	1.0634	60.9271	1218.0737	2190.8852
18			1	43666.8190	7868.8523	0.0000	2403.3961	2403.3961	0.0000	0.0000	0.0000	0.0000
	878	801	2	46070.0685	7895.3997	2403.3961	0.0000	2403.3961	0.0000	0.0000	2403.3961	0.0000
			23	44807.1647	10073.7221	2482.3052	2517.9385	2403.3961	1.0824	62.0194	1164.6307	2192.1393

Continuación de la tabla 3.1.

En la tabla 3.1 las coordenadas locales del punto 23 o punto de control se muestran en la última columna. Conforme el muro se fue agrietando, algunas distancias tomaron la tendencia de aumentar ligeramente, como por ejemplo las coordenadas Y_L del punto 23 y la distancia entre los puntos 1 y 2, esto en parte es debido al inconveniente comentado en la sección 3.2.1 sobre los dos puntos de referencia originales que se tuvieron que descartar.

En las figuras 3.24 a 3.31 se presentan algunos pasos representativos del ensaye con las coordenadas locales de los puntos 1, 2 y 23 de cada caso.

Figura 3.24. Coordenadas locales de los puntos 1, 2 y 23 en el paso 170, en el cual se presentó el primer agrietamiento.

Figura 3.25. Coordenadas locales de los puntos 1, 2 y 23 en el paso 232, en el cual se tuvieron nuevos agrietamientos.

Figura 3.26. Coordenadas locales de los puntos 1, 2 y 23 en el paso 333, en el cual se presentaron deformaciones horizontales del orden de 11cm.

Figura 3.27. Coordenadas locales de los puntos 1, 2 y 23 en el paso 420, perteneciente al ciclo número 20.

Figura 3.28. Coordenadas locales de los puntos 1, 2 y 23 en el paso 574, perteneciente al ciclo número 25.

Figura 3.29. Coordenadas locales de los puntos 1, 2 y 23 en el paso 686, en el cual se aplicaron cargas del orden de 38 toneladas.

Figura 3.30. Coordenadas locales de los puntos 1, 2 y 23 en el paso 798, perteneciente al ciclo número 33.

Figura 3.31. Coordenadas locales de los puntos 1, 2 y 23 en el paso 878, perteneciente al último ciclo número 36, con cargas del orden de 37 ton.

Hasta ahora se obtuvieron las coordenadas locales X_L , Y_L para cada uno de los puntos de interés en el muro, pero no hay que olvidar que el lente de la cámara induce una distorsión de la imagen al tomar la fotografía, esto ocasiona que no se tengan datos reales y por lo tanto se tendrán que corregir.

3.2.3 Corrección de la distorsión visual en las fotografías.

En AutoCAD se realizó a escala el dibujo del muro con las dimensiones reales medidas antes del ensaye, después se insertó la fotografía del paso cero, es decir, cuando todavía no se aplicaba carga y no se presentaba deformación alguna, se escaló y se superpusieron ambos haciéndolos coincidir en el centro del muro, ya que la cámara se colocó a dicha altura y así se pudo observar que tipo de distorsión visual se tuvo.

Para superponer el dibujo de AutoCAD con el muro, primero se tuvo que obtener el ángulo de giro del muro en la fotografía con respecto a la horizontal, esto únicamente en la primer fotografía correspondiente al paso cero. Para lo anterior se obtuvo un promedio de dos ángulos medidos con la línea horizontal en la parte media del muro, entre los puntos 11 y 15 y después entre los puntos 12 y 14, ambas mediciones cercanas al centro, donde la distorsión de la imagen es nula o mínima. Se tomaron dos mediciones del ángulo debido a que las líneas dibujadas con plumón sobre el muro no son perfectamente horizontales por las impurezas de la superfície y por el error humano que se tiene al trazarlas.

Figura 3.32. Primer cálculo del ángulo de inclinación.

En la figura 3.32 se pueden observar los puntos 11 y 15, con los cuales se hizo la primera medición para calcular el ángulo de inclinación β , de ahí se obtienen los siguientes valores:

$$Lh = 2404.4279$$

 $Lv = 24.3519$

Utilizando el concepto de tangente inversa, se calcula el ángulo β:

$$\beta = \tan^{-1} \left(\frac{24.3519}{2404.4279} \right) = 0.5802^{\circ}$$

Figura 3.33. Segundo cálculo del ángulo de inclinación.

De la figura 3.33 se obtienen los catetos del triángulo rectángulo que sirven para hacer la segunda medición de β :

$$Lh = 1196.2239$$

 $Lv = 11.3338$

Utilizando el concepto de tangente inversa, se calcula nuevamente el ángulo β:

$$\beta = \tan^{-1} \left(\frac{11.3338}{1196.2239} \right) = 0.5428^{\circ}$$

Finalmente se obtiene un promedio entre los dos ángulos:

Figura 3.34. Superposición de la imagen con el dibujo del muro.

Una vez girado el dibujo un ángulo $\beta = 0.5615^{\circ}$, al superponerlo se observó que la distorsión de la cámara fotográfica fue de tipo barril, con las esquinas desplazadas hacia el centro de la fotografía, esto se alcanza a observar en la figura 3.34 y se ejemplifica claramente en la figura 3.35.

Figura 3.35. Distorsión visual tipo "barril" inducida por el lente de la cámara fotográfica.

3.2.3.1 Primera corrección.

La primer corrección que se realizó fue haciendo coincidir un punto entre la fotografía y la imagen deformada, pudo ser el centro del muro como ya se hizo, pero como el procedimiento para obtener las coordenadas locales es con respecto al punto 1, resultó más sencillo una nueva superposición haciéndolos coincidir en dicho punto cuyas coordenadas locales son $P_1(0,0)$, ver figura 3.36. Se leyeron directamente de la tabla 3.1 las coordenadas locales de los otros puntos de interés (puntos 2 y 23), y se obtuvieron las diferencias en X e Y con respecto a sus coordenadas reales en el muro, es decir, cuantos milímetros hay que desplazar horizontal y verticalmente los puntos 2 y 23 de la imagen distorsionada, para llevarlos a su posición real. Las coordenadas reales se muestran en la figura 3.37.

Figura 3.36. Superposición de la imagen con el dibujo del muro, haciéndolos coincidir en el Punto $P_1(0,0)$.

Figura 3.37. Coordenadas reales de los puntos 1, 2 y 23, medidas directamente sobre el muro.

En la siguiente tabla se muestran las correcciones que hay que realizar a los tres puntos de interés, 1, 2 y 23.

	COORD. O	BTENIDAS	COORD.	REALES	CORRECCIÓN EN X e Y		
PUNTO	Х	Y	Х	Y	Х	Y	
	m	m	m	m	mm		
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
2	2395.0028	0.0000	2422.0000	0.0000	26.9972	0.0000	
23	1191.2176	2183.7621	1209.0000	2210.0000	17.7824	26.2379	

Tabla 3.2. Corrección de las coordenadas en sentido horizontal (X) y vertical (Y).

Se presentan en la tabla 3.3 las correcciones realizadas. En la penúltima columna se muestran las diferencias entre todas las coordenadas X del punto 23 con respecto de su coordenada X original del paso cero, que vienen siendo los desplazamientos horizontales δ que fue experimentando la parte superior del muro durante todos los ciclos de carga. Finalmente con estos desplazamientos y teniendo la altura (H = 2210 mm) mostrada en la figura 3.10, se calculan las distorsiones angulares γ del muro al hacer δ/H , dichas distorsiones están expresadas en porcentaje.

CHEAD PMSD VMSD VLcal VLcal ENV X Y Å γ - -					COORD. LOCALES		CORRECCIÓN		COORD. FINALES		DESPLAZAM.	DISTORSIÓN
Image: bit is a start of the image is a start of the im	CICLO	PASO	FOTOGRAFÍA	PTO.	X Local	Y Local	EN X	EN Y	х	Y	δ	γ
0 0 318 2 23 1191.2176 2183.7621 17.7524 26.2379 1209.0000 0.00000 0.0000					mm	mm	mm	mm	mm	mm	mm	%
0 0 318 2 2385.028 0.0000 24.9270 0.0000 2422.0000 0.0000 0.0000 0.0000 1 3 333 2 1191.177 177242 26.2379 1200.000 210.0000 0.00000 0.0000 0.0000 <td></td> <td></td> <td></td> <td>1</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td></td> <td></td>				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Image: biology of the start is the	0	0	318	2	2395.0028	0.0000	26.9972	0.0000	2422.0000	0.0000	0.0000	0.0000
1 3 323 2 2340668 0.0000				23	1191.2176	2183.7621	17,7824	26,2379	1209.0000	2210.0000		
11 323 2 2394.0606 0.0000 2421.0579 0.0000				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
1 1 23 1191.3236 2183.3661 17.7824 282.379 1200.1060 2010003 0.0000 <td></td> <td>13</td> <td>323</td> <td>2</td> <td>2394.0608</td> <td>0.0000</td> <td>26,9972</td> <td>0.0000</td> <td>2421.0579</td> <td>0.0000</td> <td>0.1060</td> <td>0.0048</td>		13	323	2	2394.0608	0.0000	26,9972	0.0000	2421.0579	0.0000	0.1060	0.0048
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-		23	1191.3236	2183.9661	17.7824	26.2379	1209.1060	2210.2039		
32 332 2 295,9444 0.0000 242.948 0.0000	1			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
1 0.000 0.0000		32	332	2	2395,9494	0.0000	26,9972	0.0000	2422,9466	0.0000	-0.1027	-0.0046
43 337 2 295740 0.0000 20000 20000 2223712 0.0000 2231712 0.0000 0.1698 0.0073 53 343 2 23971326 0.0000 269972 0.0000 22423712 0.0000 224213948 0.0000 2424171 0.0000 2424171 0.0000 2424171 0.0000 2424171 0.0000 2424171 0.0000 2424171 0.0000 2425171 0.0000 <t< td=""><td></td><td></td><td></td><td>23</td><td>1191.1149</td><td>2185.4548</td><td>17.7824</td><td>26,2379</td><td>1208.8973</td><td>2211.6927</td><td></td><td></td></t<>				23	1191.1149	2185.4548	17.7824	26,2379	1208.8973	2211.6927		
43 337 2 295 9740 0.0000 242 271 0.0000 0.0608 0.0073 53 343 2 293 11913784 2168.570 17.7824 282.379 1208.4608 2211.1948 0.0000				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
2 1 0.000 10.0000 0.0000		43	337	2	2395,9740	0.0000	26,9972	0.0000	2422,9712	0.0000	0.1608	0.0073
2 - - - - 0.0000 </td <td></td> <td></td> <td></td> <td>23</td> <td>1191.3784</td> <td>2185.9570</td> <td>17.7824</td> <td>26.2379</td> <td>1209.1608</td> <td>2212.1948</td> <td></td> <td></td>				23	1191.3784	2185.9570	17.7824	26.2379	1209.1608	2212.1948		
53 343 2 2371326 0.0000 26.972 0.0000 2241388 0.0000 0.0562 -0.0025 3 1 0.0000 0.0000 0.0000 0.0000 20.99348 2211.1116 0.0000 0.0000 225.923 0.0000 0.0000 225.923 0.0000 0.0000 225.923 0.0000 0.0000 2213.3575 0.0000 0.0000 2213.3575 0.0000 0.0000 0.0000 2213.3575 0.0000 0.0000 2213.3575 0.0000 0.0000 2213.3575 0.0000 0.0000 2213.3575 0.0000 0.0000 2213.3575 0.0000 2213.3575 0.0000 0.0000 2213.3575 0.0000 0.0000 2213.9771 0.0000 0.0000 2213.9771 0.0000 0.0000 2213.9771 0.0000 0.0000 2213.9771 0.0000 0.0000 2213.9771 0.0000 0.0000 2213.9771 0.0000 0.0000 2213.9771 0.0000 0.0000 0.0000 2213.9771 0.0000 0.0000	2			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
1 1 0.0000 239 1 0.0000 2439 0.0000 259 0.0000 2425 0.0000 2423 0.0000 259 0.0000 2424 0.0000 250 0.0000 2424 0.0000 250 0.0000 250 0.0000 2424 1.00000 250 0.0000 250 0.0000 2424 1.00000 250 0.0000 250 0.00000 250 0.0000 24242 <		53	343	2	2397,1326	0.0000	26,9972	0.0000	2424,1298	0.0000	-0.0562	-0.0025
67 351 2 2385351 0.0000 0.0000 24255323 0.0000 0.0000 24255323 0.0000 0.0000 24255323 0.0000 0.0000 24255323 0.0000 1.8907 0.0856 115 374 2 2398.0325 218.1562 17.7824 26.2379 1210.897 0.0000 1.3224 -0.0598 115 374 2 2398.0325 218.45370 17.7824 26.2379 1210.6971 0.0000 0.0000 2.0071 0.0998 <				23	1191.1614	2184.8737	17,7824	26,2379	1208.9438	2211.1116		
				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
3 1 23 1192.940 2187.0196 17.7824 26.3279 1209.8664 2213.2575 10000 100000 85 359 2 2397.7128 0.0000 26.9972 0.0000 2424.7099 0.0000 -0.0010 -0.0050 4 10 367 2 2397.7128 0.0000 26.9972 0.0000 0.0000 0.0000 10.0000 0.0000 0.0000 10.0000 0.0000 10.0000 0.0000 0.0000 10.0000 0.0000 1115 3674 2 239.0322 0.0000 246.0371 120.8687 221.3950 -0.0598 115 374 2 2399.0322 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		67	351	2	2398.5351	0.0000	26,9972	0.0000	2425,5323	0.0000	0.8664	0.0392
3 85 359 2 2397.7128 0.0000 26.9972 0.0000 2424.7099 0.0000 -0.1113 -0.0050 4 100 367 2 2397.7128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1208.8887 2213.7670 0.0000 0.0000 1208.887 2213.7670 0.0000 0.0000 1.8907 0.0856 100 367 2 2399.0356 0.0000 26.972 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.38907 0.0856 115 374 2 2399.0326 0.0000 2.6077 0.0000 0.0000 1.3224 -0.0598 142 391 1 0.0000 0.0000 2.6077 2213.990 1.3224 -0.0598 142 391 1 0.0000 0.0000 0.0000 0.0000 2.0071 0.0908 170 407 2 2397.219 0.0000 0.0000				23	1192.0840	2187.0196	17.7824	26.2379	1209.8664	2213.2575		
85 359 2 2371728 0.0000 28.9972 0.0000 2424.7099 0.0000 -0.0113 -0.0050 4 1 0.0000 0.0	3			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
10 10 23 1191.1064 2187.5292 17.7824 26.3279 1208.887 2213.7670 100 100 4 100 367 2 3299.038 0.0000 0.0000 2426.037 0.0000 1.8907 0.0000 115 374 2 2399.038 0.0000 26.9972 0.0000 2426.027 0.0000 -0.0596 115 374 2 2399.038 0.0000 26.9772 0.0000 2426.0274 0.0000 -0.0598 115 374 2 239.0302 0.0000 26.9772 0.0000 2420.2577 0.0000 -0.0598 142 391 2 2395.2585 0.0000 <t< td=""><td></td><td>85</td><td>359</td><td>2</td><td>2397.7128</td><td>0.0000</td><td>26,9972</td><td>0.0000</td><td>2424,7099</td><td>0.0000</td><td rowspan="2">-0.1113</td><td>-0.0050</td></t<>		85	359	2	2397.7128	0.0000	26,9972	0.0000	2424,7099	0.0000	-0.1113	-0.0050
4 100 367 2 2090.0336 0.0000 20.0000 20.0000 2426.0307 0.0000 1.8907 0.0856 4 1 193.083 2399.0336 0.0000 26.9972 0.0000 2426.0307 0.0000 1.8907 0.0856 115 374 2 2399.0302 0.0000 0.0000 0.0000 0.0000 1.3224 -0.0598 115 374 2 2399.0302 0.0000 26.9972 0.0000 0.0000 1.3224 -0.0598 112 391 2 239.5256 0.0000 26.9972 0.0000 <td></td> <td></td> <td></td> <td>23</td> <td>1191,1064</td> <td>2187,5292</td> <td>17 7824</td> <td>26 2379</td> <td>1208.8887</td> <td>2213,7670</td> <td></td>				23	1191,1064	2187,5292	17 7824	26 2379	1208.8887	2213,7670		
4 100 367 2 2390336 0.0000 26.9972 0.0000 2426.0307 0.0000 1.8907 0.0856 115 374 2 2399.0302 0.0000 26.9972 0.0000 2426.0374 0.0000 -1.3224 -0.0598 115 374 2 2399.0302 0.0000 26.9972 0.0000 2426.0274 0.0000 -1.3224 -0.0598 23 1189.8952 2188.1565 17.7824 262.379 1211.0071 2218.3906 -0.0090 142 391 2 2395.2585 0.0000 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0179 170 407 1 0.0000 0.0000 0.0000 0.0000 0.0000 -2.6061 -0.1179 23 1188.6115 2187.8641 17.7824 26.2379 1210.071 221.6179 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0909 223.118679	-			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
4 10 23 1193.1083 2187.6522 17.7824 26.2379 1210.8907 2213.8900 10000 0.0000 115 374 2 3299.0302 0.0000 0.0000 0.0000 0.0000 0.0000 1.13244 -0.0598 115 374 2 329.0302 2188.1526 17.7824 26.2379 120.8907 2213.8900 -0.0098 142 3911 2 2395.2585 0.0000 <td></td> <td rowspan="5">100 115</td> <td rowspan="2">367</td> <td>2</td> <td>2399 0336</td> <td>0.0000</td> <td>26 9972</td> <td>0.0000</td> <td>2426 0307</td> <td>0.0000</td> <td>1.8907</td> <td>0.0856</td>		100 115	367	2	2399 0336	0.0000	26 9972	0.0000	2426 0307	0.0000	1.8907	0.0856
4 0 0 0.0000 2 (29972) 0.0000 (20000) 0.0000 2 (26,9972) 0.00000 (26,9972) 0.0000 (2426,0274) 0.0000 (0.0000) 4.1.3224 -0.0598 5 1 0.0000				23	1193.1083	2187.6522	17.7824	26.2379	1210.8907	2213.8900		0.0000
115 374 2 2399.0302 0.0000 26.9972 0.0000 2428.0274 0.0000 -1.3224 -0.0598 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2216.0274 0.00000 0.0000 0.0000	4			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
International state 23 1189.8952 2188.1526 17.7824 26.2379 1207.6776 2214.3905 None None 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2422.257 0.0000 2.0071 20071 0.0908 170 407 2 239.74219 0.0000 26.972 0.0000 <td></td> <td>374</td> <td>2</td> <td>2399.0302</td> <td>0.0000</td> <td>26,9972</td> <td>0.0000</td> <td>2426.0274</td> <td>0.0000</td> <td>-1.3224</td> <td>-0.0598</td>			374	2	2399.0302	0.0000	26,9972	0.0000	2426.0274	0.0000	-1.3224	-0.0598
142 391 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.0071 0.0908 5 142 391 2 2395.2585 0.0000 26.9972 0.0000 2422.2557 0.0000 2.0071 0.0908 170 407 2 2397.4219 0.0000 0.0000 0.0000 0.0000 2.0000 2.6061 -0.1179 23 1188.6115 2187.8641 17.7824 26.2379 120.63339 2214.1020 -0.1179 23 1193.2063 2184.800 17.7824 26.2379 1210.9887 2211.0679 0.0900 208 426 2 236.0051 0.0000 0.0000 0.0000 26.9972 0.0000 26.9972 0.0000 242.4379 120.9876 2213.4291 -0.0929 208 426 2 2396.051 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 242.3539 0.0000 4.0924 -0.0929 2				23	1189.8952	2188.1526	17.7824	26,2379	1207.6776	2214.3905		
142 391 2 2395,2585 0,0000 26,9972 0,0000 2422,2557 0,0000 2.0071 0,0908 170 407 2 2397,4219 0,0000 26,9972 0,0000 2424,4191 0,0000 -2,6061 -0,1179 170 407 2 2397,4219 0,0000 26,9972 0,0000 2424,4191 0,0000 -2,6061 -0,1179 193 418 2 2394,6269 0,0000 26,9972 0,0000 2421,6241 0,0000 1,9887 0,0900 208 426 2 2396,0051 0,0000 26,9972 0,0000 2421,6241 0,0000 -2,0524 -0,0929 208 426 2 2396,0051 0,0000 26,9972 0,0000 2423,023 0,0000 -2,0524 -0,0929 23 189,1652 218,71913 17,7824 26,2379 1206,9476 2213,4291 -0,0929 23 195,347 2186,0194 17,7824 26,2379 <td< td=""><td></td><td rowspan="4">142</td><td rowspan="3">391</td><td>1</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td></td><td></td></td<>		142	391	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
5 - 23 1193.2247 218.3170 17.7824 26.2379 1211.0071 2210.5548 - - 170 407 2 2397.4219 0.0000 0.0000 0.0000 2424.4191 0.0000 -2.6061 -0.1179 23 1188.6115 2187.8641 17.7824 26.2379 1206.3339 2214.1020 - -0.1179 193 418 2 2394.6269 0.0000 26.0972 0.0000				2	2395,2585	0.0000	26,9972	0.0000	2422.2557	0.0000	2.0071	0.0908
5 10 1 0.0000 0.0000 0.0000 0.0000 0.0000 2.6.061 -0.1179 170 407 2 2337.4219 0.0000 26.9972 0.0000 2424.4191 0.0000 -2.6061 -0.1179 183 418 2 2334.6269 0.0000 2.0524 -0.0929 208 426 2 2337.3667 0.0000 26.9972 0.0000 2.026.9476 213.4291 -0.1863 7 23 1185.0347 2186.0154 1.77824 26.2379 1	_			23	1193.2247	2184.3170	17,7824	26,2379	1211.0071	2210.5548		
170 407 2 2397.4219 0.0000 26.9972 0.0000 2424.4191 0.0000 -2.6061 -0.1179 188.6115 2187.8641 17.7824 26.3379 1206.3393 2214.1020 -0.000 0.0000 193 418 2 2394.6269 0.0000 26.9972 0.0000 2421.6241 0.0000 1.9867 0.0900 208 426 2 2396.051 0.0000 26.9972 0.0000 2421.6241 0.0000 -0.0929 208 426 2 2396.051 0.0000 26.9972 0.0000 242.3023 0.0000 -0.0929 231 1189.1652 2187.1913 17.7824 26.3379 1206.9476 2213.4291 -0.0929 23 1189.1652 2187.1913 17.7824 26.379 1213.1171 2212.2573 -0.0929 23 1195.3347 2186.0194 17.7824 26.2379 1213.1171 2212.2573 -0.1830 257 459 2 239	5			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
-1 -23 1188.6115 2187.8641 17.7824 26.2379 1206.3939 2214.1020 -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.9887 0.0900 1.9887 0.0900 -2.0524 -0.0929 -0.0929 -0.0000 2421.6241 0.0000 -2.0524 -0.0929 -0.0929 -0.0000 2421.6241 -0.0000 -2.0524 -0.0929 -0.0000 2421.6241 -0.0000 -2.0524 -0.0929 -0.0000 2423.6239 1206.9476 221.4291 -0.0929 -0.0000 -2.0524 -0.0929 -0.0000 2423.6339 0.0000 -2.0524 -0.0929 -0.0000 2423.6339 0.0000 2423.6339 0.0000 -2.0524 -0.0929 -0.0000 2424.6339 0.0000 -2.0524 -0.0929 -0.0000 2424.6339 0.0000 -2.0524 -0.0929 -0.0000 2424.8353 0.0000 -2.0524 -0.0929		170	407	2	2397,4219	0.0000	26,9972	0.0000	2424,4191	0.0000	-2.6061	-0.1179
193 418 1 0.0000 0.0000 0.0000 0.0000 20.0000 2421.6241 0.0000 1.9887 0.0900 23 1193.2063 2184.8300 17.7824 26.2379 1210.9887 2211.0679 0.0000 4.1171 0.1863 7 23 1195.3327 2186.0194 17.7824 26.2379 1213.1171 2212.2573 4.1171 0.1863 257 459 2 2395.0328 0.0000 <t< td=""><td></td><td>-</td><td>23</td><td>1188.6115</td><td>2187.8641</td><td>17,7824</td><td>26,2379</td><td>1206.3939</td><td>2214,1020</td><td></td><td></td></t<>		-		23	1188.6115	2187.8641	17,7824	26,2379	1206.3939	2214,1020		
193 418 2 2394,6269 0.0000 26.972 0.0000 2421,6241 0.0000 1.9887 0.0900 6 1 0.0000 0.0			418	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
6 1 2.3 1193.2063 2184.8300 17.7824 26.2379 1210.9887 2211.0679		193		2	2394.6269	0.0000	26,9972	0.0000	2421.6241	0.0000	1.9887	0.0900
6 1 0.0000 0.0000 0.0000 0.0000 0.0000 2423.0023 0.0000 -2.0524 -0.0929 208 426 2 2396.0051 0.0000 26.9972 0.0000 2423.0023 0.0000 -2.0524 -0.0929 231 1189.1652 2187.1913 17.7824 26.2379 1206.9476 2213.4291 -0.0929 7 232 446 2 2397.3667 0.0000 26.9972 0.0000 0.0000 0.0000 257 459 2 2395.0328 0.0000 26.9972 0.0000 2422.029 0.0000 -4.1814 -0.1892 257 459 2 2395.0328 0.0000 26.9972 0.0000 2422.029 0.0000 -4.1814 -0.1892 257 459 2 2395.0328 0.0000 26.9972 0.0000 2422.029 0.0000 -4.1814 -0.1892 23 1187.0362 2186.370 17.7824 26.2379 1213.2653 2212				23	1193.2063	2184.8300	17,7824	26,2379	1210.9887	2211.0679		
208 426 2 2396.0051 0.0000 26.9972 0.0000 2423.023 0.0000 -2.0524 -0.0929 232 1189.1652 2187.1913 17.7824 26.2379 1206.9476 2213.4291 -	6			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Image: border		208		2	2396.0051	0.0000	26.9972	0.0000	2423.0023	0.0000	-2.0524	-0.0929
232 446 1 0.0000 0.0000 26.9972 0.0000 2424.3639 0.0000 4.1171 0.1863 232 446 2 2397.3667 0.0000 26.9972 0.0000 2424.3639 0.0000 4.1171 0.1863 257 459 2 2395.0328 0.0000 26.9972 0.0000 0.0000 0.0000 257 459 2 2395.0328 0.0000 26.9972 0.0000 0.0000 -4.1814 -0.1892 257 459 2 2395.7830 0.0000 26.9972 0.0000 0.0000 0.0000 277 471 2 2395.7830 0.0000 26.9972 0.0000 2422.7802 0.0000 4.2653 0.1930 300 483 2 2395.7830 0.0000 26.9972 0.0000 2422.7802 0.0000 -0.2317 23 1195.4829 2186.4005 17.7824 26.2379 1213.2653 2212.2434 -0.2317 2				23	1189.1652	2187.1913	17.7824	26.2379	1206.9476	2213.4291		
232 446 2 237.3667 0.0000 26.9972 0.0000 2424.3639 0.0000 4.1171 0.1863 7 23 1195.3347 2186.0194 17.7824 26.2379 1213.1171 2212.2573				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		232	446	2	2397.3667	0.0000	26.9972	0.0000	2424.3639	0.0000	4.1171	0.1863
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2422.0299 0.0000 -4.1814 -0.1892 257 459 2 2395.0328 0.0000 26.9972 0.0000 2422.0299 0.0000 -4.1814 -0.1892 23 1187.0362 2186.3370 17.7824 26.2379 1204.8186 2212.5749 - 4 1 0.0000 0.000	7			23	1195.3347	2186.0194	17.7824	26.2379	1213.1171	2212.2573		
257 459 2 2395.0328 0.0000 26.9972 0.0000 2422.0299 0.0000 -4.1814 -0.1892 23 1187.0362 2186.3370 17.7824 26.2379 1204.8186 2212.5749 -				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		257	459	2	2395.0328	0.0000	26.9972	0.0000	2422.0299	0.0000	-4.1814	-0.1892
8 277 471 1 0.0000 <th< td=""><td></td><td></td><td></td><td>23</td><td>1187.0362</td><td>2186.3370</td><td>17.7824</td><td>26.2379</td><td>1204.8186</td><td>2212.5749</td><td></td><td></td></th<>				23	1187.0362	2186.3370	17.7824	26.2379	1204.8186	2212.5749		
277 471 2 2395.7830 0.0000 26.9972 0.0000 2422.7802 0.0000 4.2653 0.1930 8 23 1195.4829 2186.4005 17.7824 26.2379 1213.2653 2212.6383 0.0000 2422.4806 0.0000 -5.1200 -0.2317 9 333 508 2 2395.6733 0.0000 26.9972 0.0000 2422.6705 0.0000 7.8732 0.3563 9 333 508 2 2395.6733 0.0000 26.9972 0.0000 2422.6705 0.0000 7.8732 0.3563 9 363 521 2 2396.8440 0.0000 0.0000 0.00				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
8 1 23 1195.4829 2186.4005 17.7824 26.2379 1213.2653 2212.6383		277	471	2	2395.7830	0.0000	26.9972	0.0000	2422.7802	0.0000	4.2653	0.1930
0 300 483 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2422.4806 0.0000 -5.1200 -0.2317 23 1186.0976 2186.0056 17.7824 26.2379 1203.8800 2212.2434 -0.2317 333 508 2 2395.6733 0.0000 26.9972 0.0000	c			23	1195.4829	2186.4005	17.7824	26.2379	1213.2653	2212.6383		
300 483 2 2395.4834 0.0000 26.9972 0.0000 2422.4806 0.0000 -5.1200 -0.2317 23 1186.0976 2186.0056 17.7824 26.2379 1203.8800 2212.2434 - 2 3 - 3 0.0000 2 2 2 0.0000 2 2 2 0.0000 2 2 2 0.0000 2 2 2 0.0000 2 2 2 1	0			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
1 0.0000		300	483	2	2395.4834	0.0000	26.9972	0.0000	2422.4806	0.0000	-5.1200	-0.2317
9 1 0.0000				23	1186.0976	2186.0056	17.7824	26.2379	1203.8800	2212.2434		
333 508 2 2395.6733 0.0000 26.9972 0.0000 2422.6705 0.0000 7.8732 0.3563 9 119.0908 2184.9057 17.7824 26.2379 1216.8732 2211.1435 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
9 363 521 23 1199.0908 2184.9057 17.7824 26.2379 1216.8732 2211.1435 1 0.0000 0.0000 0.0000 0.0000 0.0000 363 521 2 2396.8440 0.0000 26.9972 0.0000 2423.8412 0.0000 -7.1995 23 1184.0182 2185.6950 17.7824 26.2379 1201.8005 2211.9329 -0.3258		333	508	2	2395.6733	0.0000	26.9972	0.0000	2422.6705	0.0000	7.8732	0.3563
3 1 0.0000 2423.8412 0.0000 -7.1995 -0.3258 23 1184.0182 2185.6950 17.7824 26.2379 1201.8005 2211.9329 -0.3258	0			23	1199.0908	2184.9057	17.7824	26.2379	1216.8732	2211.1435		
363 521 2 2396.8440 0.0000 26.9972 0.0000 2423.8412 0.0000 -7.1995 -0.3258 23 1184.0182 2185.6950 17.7824 26.2379 1201.8005 2211.9329 -	9			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
23 1184.0182 2185.6950 17.7824 26.2379 1201.8005 2211.9329		363	521	2	2396.8440	0.0000	26.9972	0.0000	2423.8412	0.0000	-7.1995	-0.3258
				23	1184.0182	2185.6950	17.7824	26.2379	1201.8005	2211.9329		

Tabla 3.3. Primera corrección de coordenadas y cálculo de la distorsión angular γ .

	DACO	PASO FOTOGRAFÍA	fotografía PTO.	COORD. LOCALES		CORRECCIÓN		COORD. FINALES		DESPLAZAM.	DISTORSIÓN
CICLU	PASU			X Local	Y Local	EN X	EN Y	Х	Y	δ	γ
				mm	mm	mm	mm	mm	mm	mm	%
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	389	540	2	2398.8877	0.0000	26.9972	0.0000	2425.8849	0.0000	10.4279	0.4719
10			23	1201.6455	2189.1801	17.7824	26.2379	1219.4279	2215.4179		
10			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	420	557	2	2399.5950	0.0000	26.9972	0.0000	2426.5922	0.0000	-7.2000	-0.3258
			23	1184.0176	2189.7495	17.7824	26.2379	1201.8000	2215.9874		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	449	573	2	2398.3324	0.0000	26.9972	0.0000	2425.3296	0.0000	14.9133	0.6748
11			23	1206.1309	2187.4741	17.7824	26.2379	1223.9133	2213.7120		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	491	594	2	2400.9329	0.0000	26.9972	0.0000	2427.9301	0.0000	-11.5595	-0.5231
			23	1179.6581	2190.8834	17.7824	26.2379	1197.4405	2217.1213		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	521	609	2	2404.5149	0.0000	26.9972	0.0000	2431.5121	0.0000	16.2007	0.7331
10			23	1207.4183	2191.0719	17.7824	26.2379	1225.2007	2217.3097		
12			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	547	622	2	2404.6846	0.0000	26.9972	0.0000	2431.6818	0.0000	-13.0332	-0.5897
			23	1178.1844	2190.7983	17.7824	26.2379	1195.9668	2217.0362		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	574	636	2	2399.6010	0.0000	26.9972	0.0000	2426.5982	0.0000	23.1125	1.0458
40	604		23	1214.3301	2187.9508	17.7824	26.2379	1232.1125	2214.1886		
13		651	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
			2	2400.3299	0.0000	26.9972	0.0000	2427.3271	0.0000	-17.4390	-0.7891
			23	1173.7786	2190.1046	17,7824	26.2379	1191.5610	2216.3425		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	633	665	2	2402.0308	0.0000	26.9972	0.0000	2429.0279	0.0000	22.9660	1.0392
			23	1214.1836	2191.0286	17,7824	26.2379	1231.9660	2217.2664		
14	656	679	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-14.7817	
			2	2402.8917	0.0000	26,9972	0.0000	2429.8889	0.0000		-0.6689
			23	1176.4359	2191.3295	17,7824	26.2379	1194.2183	2217.5674		
		699	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	686		2	2398.2755	0.0000	26,9972	0.0000	2425.2727	0.0000	25.1253	1.1369
			23	1216.3429	2188.7494	17.7824	26,2379	1234.1253	2214.9873		
15			1	0,0000	0.0000	0,0000	0.0000	0,0000	0.0000		
	716		2	2399.2222	0.0000	26,9972	0.0000	2426.2194	0.0000	-21.3634	-0.9667
			23	1169.8542	2189.6951	17.7824	26,2379	1187.6366	2215.9329		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	744	731	2	2396.4532	0.0000	26,9972	0.0000	2423.4503	0.0000	25.9835	1.1757
		-	23	1217.2011	2187.7230	17,7824	26,2379	1234.9835	2213.9608		-
16			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	768	743	2	2397 7417	0.0000	26 9972	0.0000	2424 7389	0.0000	-21.2322	-0.9607
			23	1169.9855	2187.8309	17.7824	26.2379	1187.7678	2214.0688		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	798	760	2	2396 2841	0.0000	26 9972	0.0000	2423 2813	0.0000	30.6476	1.3868
17			23	1221.8652	2186.8666	17 7824	26 2379	1239.6476	2213.1044		
			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	830	777	2	2397 7860	0.0000	26 9972	0,0000	2424 7832	0.0000	-27.9576	-1.2650
			23	1163 2600	2186 9031	17 7824	26 2379	1181 0424	2213 1410	21.0010	1.2000
<u> </u>	1		1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	854	789	2	2401 3830	0.0000	26 9972	0.0000	2428 3811	0.0000	26 8561	1 2152
	004	,	23	1218 0727	2100 8852	17 7824	26 2379	1235 8561	2217 1220	20.0001	1.2132
18			1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	878	801	2	2403 3961	0.0000	26 9972	0.0000	2430 3933	0.0000	-26 5870	-1 2030
	8/8	001	23	1164 6207	2102 1202	17 7024	26.2270	1102 1120	2219 2774	-20.3070	-1.2030
	1	1	23	1104.030/	2192.1393	11.1024	20.2319	1102.4130	2210.3//1		1

Continuación de la tabla 3.3.

3.2.3.2 Segunda corrección.

Para la segunda corrección se supondrá que la superficie del muro de frente a la cámara digital se distorsionó visualmente tomando una geometría similar al lente, de tal forma que dejó de ser plano para tener una concavidad, tal y como se muestra en la figura 3.38.

Figura 3.38. Distorsión supuesta de la superficie del muro en la imagen digital.

El centro geométrico de la superficie del muro (C) y los puntos cercanos a su alrededor, prácticamente no experimentan distorsión en la imagen, pero conforme nos alejamos hacia los bordes la distorsión va creciendo. La proyección en el plano XY del muro distorsionado muestra la deformación tipo barril previamente mencionada en la figura 3.35.

Analizando un punto cualquiera sobre el muro diferente del centro C, por ejemplo el de la esquina superior izquierda, al cual se le llamará P_R cuando está en su posición real y P_D cuando se desplaza a su posición distorsionada.

Figura 3.39. Angulo Φ entre las líneas que unen P_R y P_D con C.

Se traza una línea recta con longitud L_R desde el centro del muro hacia el punto P_R , es decir a la esquina. Después de que el punto se desplaza de P_R a P_D , se traza otra línea recta desde C hasta P_D a cuya longitud se le llamará L_D , de tal forma que las dos líneas van a formar un ángulo al que se denominará Φ . El triángulo que se forma entre el centro del muro C y los puntos P_R y P_D es un triángulo rectángulo cuya hipotenusa es el lado con longitud L_R , como se observa en la figura 3.39. Dicho triángulo se encuentra en un plano que no es paralelo a ninguno de los planos coordenados XY, XZ o YZ, por lo tanto el desplazamiento de la posición real a la distorsionada se puede descomponer en dos partes, una paralela al plano XY más otra paralela al plano YZ. Al descomponer esta deformación se tendrá que definir un punto intermedio entre P_R y P_D , al cual se le denominará P_1 .

La figuras 3.40 y 3.41 muestran la descomposición del desplazamiento y se observan las proyecciones del ángulo Φ sobre un plano paralelo al XY llamado Φ_{XY} , y la proyección de Φ sobre un plano paralelo al YZ llamado Φ_{YZ} . L₁ es la longitud medida desde C hasta P₁. En la figura 3.42 se muestra un resumen esquemático de la descomposición de desplazamientos.

Figura 3.40. Proyección XY de la distorsión de la imagen, desde P_R hasta P_D , pasando por el punto intermedio P_1 .

Figura 3.41. Proyección YZ de la distorsión de la imagen.

Figura 3.42. Resumen en la descomposición del desplazamiento desde P_R hasta P_D.

En la proyección XY de la descomposición se forma un triángulo rectángulo, sombreado en la figura, cuya hipotenusa es L_1 y forma el ángulo Φ_{XY} con el cateto de longitud L_D .

En la proyección YZ de la descomposición se forma otro triángulo rectángulo sombreado en la figura, cuya hipotenusa es L_R y forma el ángulo Φ_{YZ} con el cateto de longitud L_1 .

Por lo anterior se tiene que

$$L_R > L_1 > L_D$$

Se acepta que el punto P_R se fue proyectando primero hacia P_1 con el ángulo Φ_{YZ} y después hacia P_D con Φ_{XY} . La corrección trata de "regresar" el punto P_D hasta su posición original P_R pasando por el punto intermedio P_1 , ver figura 3.43.

Figura 3.43. Proyecciones ortogonales del desplazamiento.

Se podría pensar que es más fácil utilizar solamente el ángulo Φ y relacionar directamente P_R con P_D sin necesidad definir P_1 , sin embargo no hay que perder de vista que se busca asignar coordenadas en el plano XY a los puntos de interés y ya que se están manejando

líneas rectas y los ángulos entra ellas, resultará útil más adelante utilizar coordenadas polares en el plano XY, para las cuales se necesitará el ángulo Φ_{XY} , por lo cual no está de más obtener dicho ángulo. Después se transformarán las coordenadas polares en coordenadas cartesianas.

Para esta nueva corrección se referirán todos los puntos de interés al centro del muro C en donde, como ya se comentó, no hay distorsión de la imagen y al cual previamente se le ha llamado punto 13. Para esto se trasladará el origen (0,0) desde el punto 1 localizado en la esquina inferior izquierda hasta el punto 13.

Primero en la tabla 3.4 se calculan las coordenadas del punto 13 referidas al origen en el punto 1, con el procedimiento descrito en la sección 3.2.2.

PTO.	O. COORD. GLOBALES		DISTANCIA RESPECTO DE 1	DISTANCIA RESPECTO DE 2	DISTANCIA ENTRE 1 y 2	ANGULO α	ANGULO α	X Local	Y Local
	Х	Y	mm	mm	mm	rad	grados	mm	mm
1	22582.1886	26166.4492	0.0000	2395.0028	2395.0028	0.0000	0.0000	0.0000	0.0000
2	24977.0811	26189.4361	2395.0028	0.0000	2395.0028	0.0000	0.0000	2395.0028	0.0000
13	23774.0573	27263.3014	1619.7641	1612.5920	2395.0028	0.7343	42.0728	1202.3412	1085.3623

Tabla 3.4. Cálculo de las coordenadas locales del punto central P₁₃.

En seguida en la tabla 3.5 se muestran las nuevas coordenadas locales de los puntos 1, 2, 13 y 23 referidas al nuevo origen en el centro del muro (punto 13). Recordemos que estas se encuentran distorsionadas por el lente de la cámara.

1 a01a 5.5	rabia 5.5 Cambro de origen en las coordenadas locales												
COC	COORDENADAS LOCALES (DISTORSIONADAS)												
	CON ORIO	GEN EN P1	CON ORIGEN EN P ₁₃										
PUNTO	Х	Y	Х	Y									
	m	m	mm										
1	0.0000	0.0000	-1202.3412	-1085.3623									
2	2395.0028	0.0000	1192.6616	-1085.3623									
13	1202.3412	1085.3623	0.0000	0.0000									
22	1101 2176	2102 7621	11 1 2 2 4	1000 2000									

Tabla 3.5 Cambio de origen en las coordenadas locales

Ahora se explicará como se obtendrán cada uno de los parámetros L_D , L_1 , L_R , Φ_{XY} y Φ_{YZ} .

Algunas longitudes y ángulos se podrían medir directamente en AutoCAD, pero para no incrementar el margen de error, se consideran las coordenadas reales medidas antes de comenzar el ensaye y las coordenadas locales obtenidas en la tabla 3.5. Los ángulos Φ_{XY} y Φ_{YZ} son inducidos por la cámara digital a todas las fotografías y serán los mismos siempre, debido a que la cámara siempre permaneció fija en el mismo sitio. Así matemáticamente se hallarán los parámetros como se indica en los siguientes párrafos.

Parámetros que se obtendrán a partir del paso cero

 L_R únicamente para la primer fotografía del paso cero, se obtendrá a partir de las mediciones que se hicieron antes de comenzar el ensaye. De la figura 3.10 de la sección 3.2.1 se puede ver que $L_R = 1110$ mm. Este valor de L_R se utilizará como dato en la obtención de los siguientes parámetros y después a partir de ellos habrá que redefinirlo para las demás fotografías donde el muro sufrió deformaciones y ya no se midió directamente.

 Φ_{XY} se obtendrá como la diferencia entre dos ángulos: el primero es el ángulo medido con sentido antihorario entre el eje X y L_D, al que se definirá como Φ_M , en este caso se medirá para P₂₃ del paso cero, el segundo ángulo es 90°, que es el ángulo inicial entre el eje X y L_R del punto 23 antes de comenzar la prueba. Φ_{XY} será el mismo para todas las fotografías restantes. Para medirlo se seguirán las siguientes expresiones:

$$\Phi_{XY} = \Phi_M - 90^\circ$$

 Φ_M para P_{23} en el paso cero

donde

Si X_L > 0;
$$\Phi_M = \tan^{-1} \left(\frac{Y_L}{X_L} \right)$$

Si X_L < 0;
$$\Phi_M = \tan^{-1} \left(\frac{Y_L}{X_L} \right) + 180^0$$

X_L es la coordenada local del punto analizado.

 L_D se obtendrá utilizando el concepto de distancia entre dos puntos, los cuales serán el centro del muro, con coordenadas C(0,0) y las coordenadas locales del punto de interés, en este caso P₂₃.

Conocidos dos puntos, P_1 y P_2 , la distancia *d* entre ellos que definida por

$$d = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

que para este caso particular se simplifica a:

$$d = \sqrt{(X_L - 0)^2 + (Y_L - 0)^2} = \sqrt{(X_L)^2 + (Y_L)^2}$$

L₁ se obtendrá matemáticamente a partir de la figura 3.40, de donde se deduce que

$$L_1 = \frac{L_D}{\cos \Phi_{XY}}$$

 Φ_{YZ} se obtendrá a partir de conocer L₁ y L_R del paso cero, con la siguiente expresión deducida de la figura 3.41. Este ángulo se mide en el paso cero y será el mismo para todas las fotografías restantes.

$$\Phi_{YZ} = \cos^{-1}\left(\frac{L_1}{L_R}\right)$$

Parámetros que se obtendrán en cada uno de los pasos restantes.

- L_D para los pasos restantes al paso cero, se tendrá que ir calculando utilizando las mismas expresiones del paso cero explicadas anteriormente y con las coordenadas locales del punto que se esté analizando.
- L_1 para los pasos restantes se obtendrá igual que para el paso cero explicado anteriormente, pero con L_D del paso que se analice en el momento.
- L_R para los demás pasos esta longitud se redefine, ya que varía debido a las deformaciones del muro. Se obtendrá matemáticamente a partir de conocer previamente L_1 del paso que se esté analizando y con el valor de Φ_{YZ} . De la figura 3.41 se tiene.

$$L_R = \frac{L_1}{\cos \Phi_{_{YZ}}}$$

Coordenadas polares de cada punto corregido.

Con la última expresión ya se tiene la longitud real desde el centro C(0,0) hasta el punto de interés P_R , falta obtener el ángulo θ medido desde el eje X hasta la recta L_R en sentido antihorario.

Ya se definió el ángulo Φ_M medido desde el eje X hasta la recta distorsionada L_D en sentido antihorario. En la figura 3.44 se muestran los ángulos θ , Φ_M , y Φ_{XY} para el punto P_{23} .

Figura 3.44. Cálculo del ángulo θ para las coordenadas polares.

$$\Phi_M = \theta + \Phi_{XX}$$

de donde

$$\theta = \Phi_M - \Phi_{XY}$$

 θ = ángulo desde el eje X hasta L_R Φ_M = ángulo medido desde el eje X hasta L_D Φ_{XY} = ángulo inducido por el lente de la cámara digital

Se calculará Φ_M como se explicó anteriormente, las expresiones para su cálculo se repiten a continuación.

Si X_L > 0;
$$\Phi_M = \tan^{-1} \left(\frac{Y_L}{X_L} \right)$$

Si X_L < 0;
$$\Phi_M = \tan^{-1} \left(\frac{Y_L}{X_L} \right) + 180^0$$

Finalmente se van a tener para cada punto un par de valores L_R y θ , que serán las coordenadas polares ya corregidas, las cuales se tendrán que transformar a coordenadas cartesianas (*X*, *Y*).

$$(L_R, \theta) \rightarrow (X, Y)$$

donde
 $X = L_R \cos \theta \quad y \quad Y = L_R sen \theta$

Las diferencias de las coordenadas X entre el paso cero y todos los pasos restantes serán los desplazamientos horizontales δ que experimentó el muro en el punto 23 durante el ensaye, pero ya que el origen se colocó en el centro, la coordenada X del paso cero tendrá como valor X = 0, por lo tanto no será necesario hacer las diferencias y directamente la X obtenida al transformar las coordenadas polares en cartesianas será el desplazamiento horizontal buscado.

Ahora, como ejemplo, se aplicará paso a paso todo el procedimiento anterior para corregir el punto 23, obtener las coordenadas polares, las coordenadas cartesianas y finalmente la distorsión angular γ en alguno de los ciclos de carga, por ejemplo en el paso 744, después el mismo procedimiento se aplicará a todos los pasos en los picos de cada ciclo y los resultados se presentan resumidos en la tabla 3.6.

Cálculo de L_D (paso cero):

 $L_D = 1110.0 \text{ mm}$; dato medido antes de comenzar el ensaye

Cálculo de Φ_{XY} :

Coordenadas de P_{23} en el paso cero: $P_{23}(-11.1236, 1098.3998)$, referidas al centro en P_{13} (tabla 5.5).

como X_L < 0

$$\Phi_M = \tan^{-1} \left(\frac{1098.3998}{-11.1236} \right) + 180^{\circ}$$

 $\Phi_M = 90.5802^{\circ}$
por lo tanto
 $\Phi_{XY} = 90.5802^{\circ} - 90^{\circ}$
 $\Phi_{XY} = 0.5802^{\circ}$

Cálculo de L_D:

$$L_D = \sqrt{(-11.1236)^2 + (1098.3998)^2}$$

$$L_D = 1098.4561 \text{ mm}$$

Cálculo de L₁:

$$L_{1} = \left(\frac{1098.4561}{\cos(0.5802^{\circ})}\right)$$
$$L_{1} = 1098.5124 \text{ mm}$$

Cálculo de Φ_{YZ} :

$$\Phi_{YZ} = \cos^{-1} \left(\frac{1098.5124}{1110} \right)$$
$$\Phi_{YZ} = 8.2502^{\circ}$$

Parámetros del paso 744.

Cálculo de L_D.

Coordenadas de P_{23} en el paso 744: $P_{23}(1217.2011, 2187.7230)$, referidas al origen en P_1 .

Cambio de coordenadas al nuevo origen $X_{nueva} = X$

 $X_{nueva} = X_{anterior} - 1202.3412$ $Y_{nueva} = Y_{anterior} - 1085.3623$

Coordenadas de P_{23} en el paso 744: $P_{23}(14.8599, 1102.3607)$, referidas al origen en el centro, P_{13} .

$$L_D = \sqrt{(14.8599)^2 + (1102.3607)^2}$$
$$L_D = 1102.4608$$

Cálculo de L₁:

$$L_{1} = \left(\frac{1102.4608}{\cos(0.5802^{\circ})}\right)$$
$$L_{1} = 1102.5173 \text{ mm}$$

Cálculo de L_R:

$$L_{R} = \left(\frac{1102.5173}{\cos(8.2502^{\circ})}\right)$$
$$L_{R} = 1114.0467 \text{ mm}$$

Cálculo de θ :

Cálculo del ángulo Φ_M para L_D del paso 744.

X_L = 14.8599, Y_L = 1102.3607
como X_L > 0
$$\Phi_M = \tan^{-1} \left(\frac{1102.3607}{14.8599} \right)$$

 $\Phi_M = 89.2277^0$

$$\theta = \Phi_M - \Phi_{XY} = 89.2277 - 0.5802$$

$$\theta = 88.6475$$

Después de la corrección, las coordenadas polares del punto 23 en el paso 744 son

Transformándolas a coordenadas cartesianas

$$X = L_R \cos\theta = 1114.0467 \cos(88.6475^\circ) = 26.2953 \text{ mm}$$

$$Y = L_R sen\theta = 1114.0467 sen(88.6475^\circ) = 1113.7364 \text{ mm}$$

Por lo tanto, el desplazamiento δ horizontal referido al centro del muro es

$$\delta = 26.2953 \text{ mm}$$

Cálculo de la distorsión angular del muro en el paso 744

$$\gamma_{744} = \frac{\delta}{H} = \frac{26.2953}{2210} = 0.01189$$
$$\gamma_{744} \approx 1.189\%$$

Como ya se comentó, en la tabla 3.6 se presenta el resumen del cálculo de las correcciones, los desplazamientos horizontales y las distorsiones angulares del muro en los pasos pico de todos los ciclos de carga para el modelo de prueba.
		DATOS DE FU	DTOGRAFÍAS DISTORS	IONADAS										
		CON	ORIGEN EN P ₁	CON ORI-	GEN EN P ₁₃			CORRECCIÓN			COORD. CA	RTESIANAS	DE SPLAZAM.	DISTORSIÓN
CICLO	PASO P.	TO. X Local	Y Local	X Local	Y Local	LD	L1	L _R	$\Phi_{\rm M}$	θ	×	٢	ş	γ
		mm	mm	mm	mm	mm	mm	mm	grados	grados	mm	mm	mm	%
	0	23 1191.217	5 2183.7621	-11.1236	1098.3998	1098.4562	1098.5125	1110.0000	90.5802	90.0000	-0.0004	1110.0000	-0.0004	0.0000
Ŧ	13 2	23 1191.323	5 2183.9661	-11.0176	1098.6038	1098.6590	1098.7153	1110.2050	90.5746	89.9944	0.1088	1110.2050	0.1088	0.0049
-	32 2	23 1191.114	9 2185.4548	-11.2263	1100.0925	1100.1498	1100.2062	1111.7114	90.5847	90.0045	-0.0869	1111.7114	-0.0869	-0.0039
ç	43 2	23 1191.378	4 2185.9570	-10.9628	1100.5947	1100.6493	1100.7057	1112.2162	90.5707	89.9905	0.1846	1112.2162	0.1846	0.0084
~	53 2	23 1191.161	4 2184.8737	-11.1798	1099.5114	1099.5682	1099.6246	1111.1238	90.5826	90.0024	-0.0458	1111.1238	-0.0458	-0.0021
¢	67 2	23 1192.0840	2187.0196	-10.2572	1101.6573	1101.7051	1101.7616	1113.2831	90.5334	89.9532	0.9084	1113.2827	0.9084	0.0411
۰ ۲	85 2	23 1191.106	4 2187.5292	-11.2348	1102.1669	1102.2241	1102.2806	1113.8076	90.5840	90.0038	-0.0743	1113.8076	-0.0743	-0.0034
,	100	23 1193.108;	3 2187.6522	-9.2329	1102.2899	1102.3285	1102.3851	1113.9131	90.4799	89.8997	1.9499	1113.9114	1.9499	0.0882
4	115 2	23 1189.895.	2 2188.1526	-12.4460	1102.7903	1102.8606	1102.9171	1114.4507	90.6466	90.0664	-1.2917	1114.4500	-1.2917	-0.0584
Ľ	142 2	23 1193.224	7 2184.3170	-9.1165	1098.9547	1098.9925	1099.0488	1110.5420	90.4753	89.8951	2.0334	1110.5401	2.0334	0.0920
, ,	170 2	23 1188.611	5 2187.8641	-13.7297	1102.5018	1102.5873	1102.6439	1114.1746	90.7135	90.1333	-2.5918	1114.1716	-2.5918	-0.1173
ų	193 2	23 1193.206.	3 2184.8300	-9.1349	1099.4677	1099.5057	1099.5620	1111.0605	90.4760	89.8958	2.0201	1111.0587	2.0201	0.0914
	208 2	23 1189.165	2 2187.1913	-13.1760	1101.8290	1101.9077	1101.9642	1113.4879	90.6851	90.1049	-2.0391	1113.4860	-2.0391	-0.0923
7	232 2	23 1195.334	7 2186.0194	-7.0065	1100.6571	1100.6794	1100.7358	1112.2466	90.3647	89.7845	4.1829	1112.2387	4.1829	0.1893
L ,	257 2	23 1187.0362	2 2186.3370	-15.3050	1100.9747	1101.0811	1101.1375	1112.6525	90.7964	90.2162	-4.1992	1112.6446	-4.1992	-0.1900
•	277 2	23 1195.482	9 2186.4005	-6.8583	1101.0382	1101.0595	1101.1160	1112.6307	90.3569	89.7767	4.3366	1112.6223	4.3366	0.1962
5	300 2	23 1186.097	5 2186.0056	-16.2436	1100.6433	1100.7631	1100.8196	1112.3312	90.8455	90.2653	-5.1509	1112.3193	-5.1509	-0.2331
0	333 2	23 1199.090	9057	-3.2504	1099.5434	1099.5482	1099.6046	1111.1035	90.1694	89.5892	7.9668	1111.0750	7.9668	0.3605
0	363 2	23 1184.0182	2 2185.6950	-18.3230	1100.3327	1100.4853	1100.5417	1112.0504	90.9540	90.3738	-7.2553	1112.0268	-7.2553	-0.3283
10	389 2	23 1201.645	5 2189.1801	-0.6957	1103.8178	1103.8180	1103.8746	1115.4182	90.0361	89.4559	10.5920	1115.3679	10.5920	0.4793
2	420 2	23 1184.0170	5 2189.7495	-18.3236	1104.3872	1104.5392	1104.5959	1116.1470	90.9505	90.3703	-7.2144	1116.1237	-7.2144	-0.3264
11	449 2	23 1206.130	9 2187.4741	3.7897	1102.1118	1102.1183	1102.1748	1113.7007	89.8030	89.2228	15.1069	1113.5982	15.1069	0.6836
-	491 2	23 1179.658	1 2190.8834	-22.6831	1105.5211	1105.7538	1105.8105	1117.3743	91.1754	90.5952	-11.6079	1117.3140	-11.6079	-0.5252
10	521 2	23 1207.418	3 2191.0719	5.0771	1105.7096	1105.7212	1105.7779	1117.3414	89.7369	89.1567	16.4445	1117.2204	16.4445	0.7441
7	547 2	23 1178.184	4 2190.7983	-24.1568	1105.4360	1105.6999	1105.7566	1117.3199	91.2519	90.6717	-13.0979	1117.2431	-13.0979	-0.5927
12	574 2	23 1214.330	1 2187.9508	11.9889	1102.5885	1102.6537	1102.7102	1114.2416	89.3770	88.7968	23.3967	1113.9959	23.3967	1.0587
2	604 2	23 1173.778	5 2190.1046	-28.5626	1104.7423	1105.1115	1105.1682	1116.7253	91.4810	90.9008	-17.5569	1116.5873	-17.5569	-0.7944
.,	633 2	23 1214.183	5 2191.0286	11.8424	1105.6663	1105.7297	1105.7864	1117.3499	89.3863	88.8061	23.2801	1117.1074	23.2801	1.0534
t	656 2	23 1176.435	9 2191.3295	-25.9053	1105.9672	1106.2706	1106.3273	1117.8966	91.3418	90.7616	-14.8593	1117.7978	-14.8593	-0.6724
15	686 2	23 1216.342	9 2188.7494	14.0017	1103.3871	1103.4760	1103.5326	1115.0726	89.2730	88.6928	25.4387	1114.7824	25.4387	1.1511
2	716 2	23 1169.8542	2 2189.6951	-32.4870	1104.3328	1104.8105	1104.8672	1116.4212	91.6850	91.1048	-21.5265	1116.2136	-21.5265	-0.9740
16	744 2	23 1217.201	1 2187.7230	14.8599	1102.3607	1102.4608	1102.5173	1114.0467	89.2277	88.6475	26.2953	1113.7364	26.2953	1.1898
2	768 2	23 1169.985	5 2187.8309	-32.3557	1102.4686	1102.9433	1102.9999	1114.5343	91.6811	91.1009	-21.4129	1114.3286	-21.4129	-0.9689
17	798 2	23 1221.865.	2 2186.8666	19.5240	1101.5043	1101.6773	1101.7338	1113.2550	88.9845	88.4043	30.9995	1112.8233	30.9995	1.4027
	830 2	23 1163.2600	2186.9031	-39.0812	1101.5408	1102.2339	1102.2904	1113.8174	92.0319	91.4517	-28.2182	1113.4599	-28.2182	-1.2768
10	854 2	23 1218.073	7 2190.8852	15.7325	1105.5229	1105.6348	1105.6915	1117.2541	89.1847	88.6045	27.2094	1116.9227	27.2094	1.2312
2	878 2	23 1164.630	7 2192.1393	-37.7105	1106.7770	1107.4192	1107.4760	1119.0573	91.9514	91.3712	-26.7796	1118.7368	-26.7796	-1.2117

Tabla 3.6. Segunda corrección de coordenadas y cálculo de la distorsión angular γ .

3.2.4 Comparación con los resultados reales y cálculo del error cometido.

Ya se obtuvieron los desplazamientos y las distorsiones angulares para el muro realizando dos tipos diferentes de correcciones, debidas al efecto de distorsión de imagen que produce el lente de la cámara digital. Dichos resultados serán comparados con los reales, obtenidos durante el mismo ensaye con el equipo de adquisición de datos de CENAPRED, para medir el nivel de error cometido.

En la tabla 3.7 se presentan las distorsiones angulares calculadas en la 1^a corrección de las mediciones, obtenidas mediante la georreferenciación de las imágenes digitales y se comparan con las distorsiones reales, calculándose finalmente el error, expresado como porcentaje.

		DISTORSIÓN	οιετορειόνι	
CICLO	PASO	CALCULADA, 1A CORRECCIÓN	REAL	ERROR
		γ	γ	E
		%	%	%
	0	0.0000	0.0000	0.0000
1	13	0.0048	0.0269	82.1658
-	32	-0.0046	-0.0353	86.8482
2	43	0.0073	0.0241	69.8553
2	53	-0.0025	-0.0366	93.0422
3	67	0.0392	0.0479	18.2065
5	85	-0.0050	-0.0621	91.8891
1	100	0.0856	0.0497	72.2905
-	115	-0.0598	-0.0666	10.0889
5	142	0.0908	0.1107	17.9507
5	170	-0.1179	-0.1014	16.3200
6	193	0.0900	0.1100	18.1931
0	208	-0.0929	-0.1400	33.6655
7	232	0.1863	0.2079	10.4054
'	257	-0.1892	-0.2079	9.0060
8	277	0.1930	0.2076	7.0258
0	300	-0.2317	-0.2072	11.7889
0	333	0.3563	0.3922	9.1752
9	363	-0.3258	-0.4012	18.8032
10	389	0.4719	0.4081	15.6202
10	420	-0.3258	-0.4076	20.0676
11	449	0.6748	0.6021	12.0821
11	491	-0.5231	-0.6010	12.9740
10	521	0.7331	0.6021	21.7573
12	547	-0.5897	-0.5981	1.3986
13	574	1.0458	0.8007	30.6142
15	604	-0.7891	-0.8148	3.1579
14	633	1.0392	0.8012	29.7025
14	656	-0.6689	-0.8002	16.4108
15	686	1.1369	1.0062	12.9877
15	716	-0.9667	-1.0207	5.2924
16	744	1.1757	1.0098	16.4280
10	768	-0.9607	-1.0028	4.1912
17	798	1.3868	1.1740	18.1268
17	830	-1.2650	-1.2072	4.7883
10	854	1.2152	1.2186	0.2801
10	878	-1.2030	-1.1981	0.4112

Tabla 3.7. Comparación de las distorsiones calculadas en la 1ª corrección y las distorsiones reales.

En la figura 3.45 se grafican las distorsiones calculadas para cada paso correspondiente a los picos de cada ciclo de carga y en la misma gráfica se incluyen las distorsiones reales para los mismos instantes.

Figura 3.45. Comparación de las distorsiones calculadas (1ª corrección) y las reales.

También se presenta en la figura 3.46 el nivel de error que se fue presentando en la medición de desplazamientos máximos de cada ciclo conforme fue avanzando el ensaye.

Figura 3.46. Error en las mediciones de desplazamientos máximos de cada ciclo de carga (1ª corrección).

Los puntos de desplazamientos máximos obtenidos en la 1^a corrección se superpusieron en el diagrama de histéresis real del muro para compararlos, ver figura 3.47.

Figura 3.47. Diagrama de histéresis real del muro diafragma donde en oscuro se marcan los puntos obtenidos con la 1ª corrección.

Para la segunda corrección se presenta de igual forma en la tabla 3.7 la comparación de las distorsiones calculadas y las reales.

	-	DISTORSIÓN	DISTORSIÓN	
CICLO	PASO	CALCULADA, 2A CORRECCIÓN	REAL	ERROR
		γ	γ	E
			%	%
	0	0.0000	0.0000	0.0000
1	13	0.0049	0.0269	81.6917
1	32	-0.0039	-0.0353	88.8797
2	43	0.0084	0.0241	65.4006
2	53	-0.0021	-0.0366	94.3308
3	67	0.0411	0.0479	14.2400
3	85	-0.0034	-0.0621	94.5869
4	100	0.0882	0.0497	77.6851
4	115	-0.0584	-0.0666	12.1776
F	142	0.0920	0.1107	16.8760
5	170	-0.1173	-0.1014	15.6798
6	193	0.0914	0.1100	16.9036
0	208	-0.0923	-0.1400	34.0937
7	232	0.1893	0.2079	8.9741
1	257	-0.1900	-0.2079	8.6196
Q	277	0.1962	0.2076	5.4733
0	300	-0.2331	-0.2072	12.4649
0	333	0.3605	0.3922	8.0948
5	363	-0.3283	-0.4012	18.1729
10	389	0.4793	0.4081	17.4398
10	420	-0.3264	-0.4076	19.9077
11	449	0.6836	0.6021	13.5368
11	491	-0.5252	-0.6010	12.6097
12	521	0.7441	0.6021	23.5899
12	547	-0.5927	-0.5981	0.9093
13	574	1.0587	0.8007	32.2201
15	604	-0.7944	-0.8148	2.5035
14	633	1.0534	0.8012	31.4767
14	656	-0.6724	-0.8002	15.9725
15	686	1.1511	1.0062	14.3970
15	716	-0.9740	-1.0207	4.5694
16	744	1.1898	1.0098	17.8255
10	768	-0.9689	-1.0028	3.3755
17	798	1.4027	1.1740	19.4831
17	830	-1.2768	-1.2072	5.7651
18	854	1.2312	1.2186	1.0319
10	878	-1.2117	-1.1981	1.1389

Tabla 3.7. Comparación de las distorsiones calculadas en la 2ª corrección y las distorsiones reales.

Se observa en la figura 3.48 la comparación de las distorsiones máximas de cada ciclo, calculadas en la 2ª corrección y las distorsiones reales para los mismos instantes.

Figura 3.48. Comparación de las distorsiones calculadas (2ª corrección) y las reales.

Para la 2^a corrección, la figura 3.49 muestra el nivel de error presentado en la medición de desplazamientos máximos de cada ciclo durante el ensaye.

Figura 3.49. Error en las mediciones de desplazamientos máximos de cada ciclo de carga (2ª corrección).

Como en el caso anterior, los puntos de desplazamientos máximos obtenidos en la 2^a corrección se superpusieron en el diagrama de histéresis real del muro para compararlos, ver figura 3.50.

Figura 3.50. Diagrama de histéresis real del muro diafragma donde en oscuro se marcan los puntos obtenidos con la 2^a corrección.

Tanto en la 1^a como en la 2^a corrección de los desplazamientos medidos, el margen de error marca claramente una fuerte diferencia entre mediciones mayores o menores a 2 mm. El error promedio para la medición de desplazamientos entre 0 y 2 mm es de 66 % y para desplazamientos mayores a 2 mm es de 13.5 %. Estos valores son prácticamente los mismos para los dos tipos de correcciones que se realizaron.

No hay que perder de vista que el nivel de error encontrado para la medición de los desplazamientos se tuvo tomando las fotografías a una distancia de 5.15 m, distancia que en parte fue forzada por las anclas donde se fijó la base de la cámara digital y en parte por la abertura del lente, de tal forma que se abarcara el muro en su totalidad.

Las mediciones con un porcentaje de error menor, como ya se analizó y comentó, fueron mayores o iguales a 2 mm, sin embargo colocando la cámara digital a una distancia menor se podrán realizar mediciones menores. Si suponemos una variación lineal entre la distancia de la cámara digital al modelo en estudio y la precisión obtenida en las mediciones, podemos decir que para una distancia de 2.57 m se podrán medir con un porcentaje de error bajo desplazamientos de 1 mm, y para distancias de aproximadamente 1.30 m, desplazamientos de 0.5 mm.

Para futuros ensayes, si se colocan varias cámaras cercanas (entre 1 y 1.5 m) al modelo en estudio, tomando dentro de la abertura del lente puntos fijos de referencia, se podrán realizar mediciones en zonas de interés particular, como por ejemplo para calcular distorsiones locales en diferentes zonas del muro donde se tienen para un mismo instante diferentes niveles de agrietamiento, y así compararlas con la distorsión total, que es la que normalmente se calcula.

Variando la distancia entre las cámaras y los modelos a estudiar, según el tipo de ensaye que se realice y el grado de precisión buscada, se puede tener una forma alternativa de medir desplazamientos en puntos donde no haya instrumentos para tal efecto, como por ejemplo en modelos grandes escala 1:1 ó 1:2, vigas y columnas de concreto reforzado o preesforzado, sistemas de piso, conexiones, etc.

<u>Capítulo 4</u>

CONCLUSIONES Y COMENTARIOS

Las conclusiones y comentarios que se deducen de este trabajo se puntualizan a continuación:

1. Tipo de ensaye.

Después de la comparación hecha entre las mediciones realizadas con el procedimiento propuesto y las mediciones reales arrojadas por el sistema de adquisición de datos, se observa que existe una diferencia sumamente marcada entre el nivel de error cometido para desplazamientos menores a 2 mm y desplazamientos mayores a este, esto se observa claramente en las figuras 4.46 y 4.49. Por lo tanto, este procedimiento se recomienda en ensayes en donde se presenten desplazamientos iguales o mayores a 2 mm, como pueden ser ensayes de algunos sistemas estructurales a escalas reales o relativamente grandes como sistemas de piso, vigas con claros grandes, columnas, algunos tipo de conexiones y muros, como fue este caso. Como se comentó al final del capítulo anterior, si las cámaras fotográficas se colocan mas cerca del modelo a estudiar se podrán tener mediciones más exactas de puntos específicos de particular interés.

2. Cámara digital.

El desarrollo de la tecnología de las cámaras digitales avanza a pasos agigantados, al igual que las computadoras, por lo tanto una cámara digital con gran capacidad y calidad pronto será obsoleta. Esto obviamente es favorable para este tipo de estudios, ya que la capacidad de la cámara digital en cuanto a pixeles y nitidez de la imagen es clave en este tipo de procedimientos. Por lo tanto la recomendación es que, aún contándose ya con una cámara digital, se busque otra con la mayor capacidad posible y se configure con la nitidez máxima, según lo permita, así como buscar alguna cámara que incluya un accesorio remoto para poder activar la toma de fotografías sin necesidad de presionar el botón de la cámara directamente con un procedimiento físico, ya que esta presión por pequeña que sea, siempre le provocará a la cámara un pequeño giro. El tomar las fotografías con el accesorio remoto facilitará el análisis de las mismas.

3. Desarrollo del ensaye.

En el desarrollo del ensaye se recomienda colocar la cámara digital de frente y lo más centrada posible con respecto al objeto que se va a estudiar, formando un ángulo de 90° con el plano del objeto o zona a fotografiar, ver figuras 4.13 y 4.19. La cámara deberá estar totalmente fija y no deberá moverse durante todo el ensaye.

Se deben tener puntos dentro de la fotografía que durante toda la prueba siempre permanezcan fijos y no experimenten desplazamientos, los cuales servirán como referencia. La distancia de la cámara al modelo a fotografiar debe ser lo más cercano posible, siempre y cuando en la imagen se abarque todo el modelo o la zona de interés, incluyendo los puntos que se tomen como referencia. Es muy importante colocar marcas con cartón, plástico u otro material en los puntos de referencia y en los puntos de interés donde se desea medir desplazamientos. Se recomienda que dichas marcas sean entre 1 y 2 cm, de un color claro y con tinta oscura se pinte una cruz en ellas, el centro de la cruz será el punto de análisis, de esta manera se facilitará su localización en la imagen digital.

4. Georreferenciación y análisis de las imágenes digitales.

Se pueden retocar las imágenes digitales antes de su análisis para resaltar los puntos de interés, esto se puede lograr en algún software profesional para edición de imágenes. Si la nitidez es lo suficientemente grande se puede programar algún algoritmo que calcule, a partir de los pixeles, el centroide de los puntos a analizar y de esta forma se automatice su localización dentro de la imagen digital. El inconveniente de esto es que si la nitidez no es la suficiente para que en todas las fotografías un mismo punto se vea exactamente igual, es decir, con el mismo número de pixeles, el cálculo del centroide de un mismo

punto será diferente de una a otra fotografía y esto aumentará el margen de error.

Existe gran variedad de programas de cómputo para la georreferenciación de imágenes digitales, se deberá escojer alguno donde se cuente con las herramientas básicas como son: un zoom muy potente, herramienta para medir distancias dentro de la imagen, que se puedan dibujar marcas sobre los puntos de interés, así en caso de que se requiera un análisis o revisión posterior, los puntos ya estarán previamente localizados o georreferenciados y siempre tendrán las mismas coordenadas. El programa deberá ser capaz de entregar las coordenadas de cada una de las marcas que se dibujen en él.

5. Ventajas y desventajas de la instrumentación externa mediante el análisis de fotografías digitales.

El procedimiento de instrumentar externamente sistemas estructurales en estudio por medio de fotografías digitales, puede ofrecer muchas ventajas como son hacer mediciones en zonas de interés, donde no se colocaron instrumentos de medición, para analizar el comportamiento local de cierta zona del modelo que se esté ensayando.

Algunas veces los instrumentos para medir desplazamientos tienen que ser retirados después de cierto nivel de deformaciones para que no sean dañados cuando el sistema o espécimen llega a la falla y se destruye total o parcialmente, sin embargo, mediante la instrumentación externa se pueden continuar midiendo los desplazamientos sin que el equipo corra peligro. Para estos momentos en que se retiran los instrumentos, en algunos casos ya se tienen deformaciones en las cuales los desplazamientos son mayores o iguales a los que capta la cámara digital con un nivel de error aceptable, en este caso mayores a 2 mm, y la instrumentación externa podrá entregar resultados satisfactorios con un margen de error aproximado del 13.5 %.

Una de las ventajas más claras es en lo referente al costo, ya que los instrumentos de medición usuales como micrómetros, LVDT o strain gage tienen un costo elevado, sobre todo estos últimos que normalmente no son recuperables después de un ensaye. El sistema de adquisición de datos en conjunto también tiene un costo muy elevado. Para la instrumentación externa solo se requiere de una (o varías) cámara digital, una computadora con el software necesario para la georreferenciación y el análisis de las imágenes digitales y la información derivada de estas.

Como desventajas principales de este procedimiento se pueden nombrar dos: la poca precisión para desplazamientos pequeños (en este caso menores a 2 mm), lo cual lo limita a cierto tipo de ensayes, y el elevado número de horas/hombre que hay que ocupar para llevar a cabo todo el análisis, sin embargo al correr del tiempo, con cámaras digitales y software cada vez más potentes, la

instrumentación externa en ensayes experimentales de sistemas estructurales podrá ser cada vez más exacta, con análisis en menos tiempo y el nivel de error tenderá a disminuir.

6. Recomendaciones para investigaciones futuras.

Para futuras aplicaciones de este procedimiento o similares, se puede recomendar el empleo de varias cámaras digitales a la vez, colocadas a diferentes distancias del modelo a ensayar, para de esta manera medir desplazamientos en imágenes que abarquen el modelo total y también en imágenes que abarquen ciertas zonas locales previamente escogidas.

Debido a la diferencia existente entre las características de cada cámara digital que se encuentra disponible en el mercado, o de los diferentes lentes para zoom o filtros, se recomienda realizar pruebas previas para calibrar la precisión de estas, fotografiando papel milimétrico o uno similar a diferentes distancias y medir previamente el grado de error que se obtendrá.

<u>Capítulo 5</u>

REFERENCIAS

- 1. Moreno, A. (2006), "Sistemas y Análisis de la Información Geográfica, Manual de Aprendizaje con ArcGIS", Ed. Alfaomega, 895 pp.
- 2. Enviromental Systems Research Institute (1992), "Understanding GIS", Enviromental Systems Research Institute, Inc. Redlans CA, USA.
- 3. Collogor, J.L. (1999), "Domine AutoCAD 14", Ed. Alfaomega, 495 pp.
- 4. Omura y Callori, (1994). "AutoCAD para Windows, Referencia Instantánea", Ed. Megabyte Noriega Editores, 351 pp.
- 5. Departamento del Distrito Federal (2004), "Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Mampostería", Gaceta Oficial del Departamento del Distrito Federal, México, 53 pp.
- Flores, L. E., Lazalde, G., Alcocer, S. M. (1999), "Estudio de la Rehabilitación de Centrales Telefónicas Empleando Malla y Aplanado de Concreto", Memoria del XII Congreso Nacional de Ingeniería Sísmica, Morelia Mich., México, 10 pp.
- 7. Meli R., Salgado G. (1969), "Comportamiento de Muros de Mampostería Sujetos a Carga Lateral", publicación No 237, Instituto de Ingeniería, UNAM.
- 8. Meli R., Reyes A., "Propiedades Mecánicas de la Mampostería", publicación No 288, Instituto de Ingeniería, UNAM.
- 9. Madinaveitia J. M., Rodríguez A. G. (1970), "Resistencia a Carga Vertical de Muros Fabricados con Materiales Usuales en el Distrito Federal", publicación No 261, Instituto de Ingeniería, UNAM.
- 10. Alcocer S. M., Zepeda J. A., Ojeda Z. M. (1997), "Estudio de la Factibilidad Técnica del Uso de Tabique Vintex y Multex para Vivienda Económica", Sistema Nacional de protección Civil, CENAPRED.

- 11. Mikyong L., Michael Pecht (2003), "Application of 3D Measurement System with CCD Camera in Microelectronics", CALCE Electronic Products and Systems Center, University of Maryland, College Park, MD 20742.
- 12. Tectimes, (2007) "Manual de Fotografía Digital, Capítulo 1: La Cámara Digital", Servicio de atención al lector, Tectimes, obtenido del sitio web: www.tectimes.com.
- Colmenares L., Montoreano R., Montilla G., Villegas H., "Uso de Procesamiento Digital de Imágenes para la Medición de Diámetro Arterial", Centro de Procesamiento de Imágenes (CPI), Universidad de Carabobo, Valencia, Venezuela.
- 14. Instituto Nacional del Consumidor (2000), "Calidad de Cámaras Digitales", Revista del Consumidor No 282, Instituto Nacional del Consumidor, México.
- 15. Muñoz, D. J. (2007) "Corrección de la Distorsión de Imágenes en Equipos Ópticos por medio de Splines y Técnicas de Análisis de Imágenes". Scientia et Technica año XIII, No 35, Universidad Tecnológica de Pereira, Colombia, 6 pp.
- 16. Rogers D. F., y Adams J. A. (1989), "Mathematical Elements for Computer Graphics", Ed. McGraw-Hill Science, 512 pp.
- 17. Leithold, L. (1989), "Matemáticas Previas al Cálculo, Análisis Funcional y Geometría Analítica", Ed. Harla, 945 pp.