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Introduction

The Theory of Control has presented a great development in the last sixty
years thanks to its application to a wide variety of interesting problems: risk
theory, consumption problems, production control, investment’s portfolios,
exit problems, among others. See [?], [?], [?], [?], [?] and the reference therein.

In a broad sense, control is the action responsible for evolution of a pro-
cess applied in order to achieve a desired goal. Control theory has many
approaches depending on the dynamic of the controlled process: The deter-
ministic case next to the calculus of variations, has a long history starting
with the brachistochrone problem solved by Johann Bernoulli nearly 300
years ago (see [?] for a general presentation). The stochastic case has its
beginning in the late 1950’s and early 1960’s, however its development has
been very intensive since then (see [?], [?] or [?]). Two types of problems
are generated depending on the considerations made on time: discrete or
continuous. For a survey on the discrete theory see [?], [?], [?] or [?].

In this work we deal with stochastic control problems in continuous case.
In the deterministic case, the evolution of a system is in general modeled
with a differential equation of the form

dX(s)

ds
= b(X(s))

Many interesting problems present some features which are random or
simply unknown for the observer. One way of modeling this is by considering
an Ito’s jump diffusion in Rd,

dX(s) = b(X(s))ds+ σ(X(s))dW (s) +

∫
Rn
γ(X(s), z)M(ds, dz)

where W is a Brownian motion and M(·) represents a Poisson random mea-
sure generated by the jumps of a Levy process (in this work we only consider
the special case of a compound Poisson process).

1
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The control theory assumes that the dynamic of the system can be changed
via a control process A = {A(s)}. Generally, the control process are selected
over a class of predictable stochastic processes with some integrability prop-
erties (denoted by A). In this case, we assume that the state process with
control A has the following dynamic

X(s) =x+

∫ s

0

b(t− s,X(s−), A(s))ds+

∫ s

0

σ(t− s,X(s−), A(s))dW (s)

+

∫
(0,s]

∫
Rn
γ(t− s,X(s−), A(s−), z)M(ds, dz).

An stochastic control problem consists in optimize a given goal, in par-
ticular, we are interested in the case when the goal is given by means of an
utility function, V (·;A). In this work we consider two types of problems:
first, we consider the problem in a finite horizon t and in this case we only
work with continuous diffusion processes, that is, we assume that the jump
part does not exists. Second, we consider the problem in an infinite horizon.
In this case we focus in a jump risk process and study the probability of ruin.

Finite horizon.

We are interested in determine and analyze the value function V defined as

V (t, x) := sup
A∈A
{V (t, x;A)} (1)

where x represents the initial state of the system, t is the final horizon and

V (t, x;A) :=Ex

[∫ t

0

e
R s
0 c(t−r,XA(r),A(r))drf(t− s,XA(s), A(s))ds

]
+ Ex

[
e

R t
0 c(t−r,XA(r),A(r))drh(XA(t))

]
with c representing a discounting factor, f a running utility function and h
the final utility function.

Two main questions arise: What can we say about the value function V
and in case of existence of an optimal control A∗, i.e. a control that satisfies
V (·;A∗) = V (·), what can we say about it?

A well-known approach to these problems is the Dynamic Programming
Principle and the Hamilton-Jacobi-Bellman equations (HJB equations). By



3

considering constant control processes acting over very short times (see sec-
tion ?? for a more detailed explanation), it can be proposed, by an heuristic
argument, that the value function V satisfies the following HJB equation

−ut(t, x) + sup
α∈Λ
{Dα[u](t, x) + f(t, x, α)} =0, (t, x) ∈ (0,∞)× Rd

u(0, x) =h(x), x ∈ Rd
(2)

where

Dα[u](r, x) :=
∑
ij

aij(r, x, α)Diju(r, x) +
∑
i

bi(r, x, α)Diu(r, x)

+ c(r, x, α)u(r, x)

with {aij} = a = σσ′ and Λ ⊂ Rm is the set of control values.
Since the derivation of the HJB equation is heuristic only, further results

are needed to guarantee that the value function is in fact a solution to the
HJB equation: a Verification Theorem and an Existence Theorem. The
Verification Theorem states that if a solution to the HJB equation exists,
then it has to be the value function and so the solution is unique. More
precisely, it is important to notice that the supremum in equation (1) is
taken over a class of stochastic process while the supremum in equation (2)
is taken over a set of real numbers. In general, the optimal control policy is
given in a feedback form A∗(s) = α∗(t− s,X(s)), where

α∗(t, x) := argmaxα∈Λ{Dα[u](t, x) + f(t, x, α)}

In that case, there exists an optimal utility function and the equality V (·;A∗) =
V (·) is fulfilled.

The remaining result is an Existence Theorem for the solution to the
HJB equation. In general, the existence of a classical solution to equation
(2) is not an easy task to solve due the non linearity in the second order
derivatives. There exists some general results, however, they need some
restrictive hypotheses like the boundedness of all the coefficients and their
derivatives (see [?] Chapter 6 or [?] Chapter IV).

In case σ does not depend on the control, the HJB equation becomes a
semilinear equation of the form

−ut(t, x) +
∑
ij

aij(t, x)Dij(t, x) + sup
α∈Λ
{Lα[u](t, x) + fα(t, x)} =0, in (0,∞)× Rd,

u(0, x) =h(x), x ∈ Rd,

(3)
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where
Lα :=

∑
i

bi(t, x, α)Diu(t, x) + c(t, x, α)u(t, x)

and
fα(·) := f(·, α).

There exist many interesting problems in which the HJB equation can be
reduced into a equation of the form of equation (3) (see e.g. [?], [?], [?],
[?], [?], [?] and [?]). However, there are no general procedures to prove the
existence of a classical solution and each equation is treated in a particular
way. Despite this, in all the papers mentioned above, the basis for the solution
to the HJB equation is a result proved by Fleming (see [?] Theorem VI.6.2). It
is assumed that the control set Λ is compact, c ≡ 0, the functions b, σ ∈ C1,2

with σ, σx and bx bounded. In this case, the boundedness is relaxed for the
data functions f and h which are assumed to have a polynomial growth and
C2 regularity. The main idea used to prove this theorem is a linearization
technique (see [?] Appendix E), that is, approximate the solution of equation
(3) by equations of the form

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ (0,∞)× Rd,

u(0, x) = h(x) for x ∈ Rd.
(4)

where

L[u](t, x) =
∑
i,j

aij(t, x)Diju(t, x) +
∑
i

bi(t, x)Diu(t, x).

In Chapter ?? we study the existence and uniqueness of a classical solution
to equation (3) when the coefficients σ, b, c and f are locally Hölder in t
and locally Lipschitz in (x, α), not necessarily differentiable, σ and b have
linear growth, c is bounded from above and f has a polynomial growth of
any order. h is a continuous function with polynomial growth and Λ ⊂
Rm is a connected compact set. We assume the ellipticity condition to be
local, that is, for any [0, T ] × A ⊂ [0,∞) × Rd there exists λ(T,A) such
that

∑
aij(t, x)ξiξj ≥ λ(T,A)‖ξ‖2 for all x, ξ ∈ A and t ∈ [0, T ]. These

hypotheses were considered due the combination of the unboundedness and
the continuity of the coefficients. As we present in section ??, there exist some
stochastic control problems in which these hypotheses appear naturally.

We construct a solution by approximation with linear parabolic equa-
tions. Despite the approximation technique is standard, the linear equations
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involved can not be solved with the traditional results. Therefore, we study
the existence of a classical solution to the Cauchy problem for a second order
linear parabolic equation when the coefficients fulfil the same hypotheses of
the ones of the semilinear problem (3).

In Chapter ?? we study the existence and uniqueness of a classical solu-
tion to a more general problem, the Cauchy-Dirichlet problem, for a linear
parabolic differential equation in a general unbounded domain. Let L be the
differential operator

L[u](t, x) :=
d∑

i,j=1

aij(t, x)Diju(t, x) +
d∑
i=1

bi(t, x)Diu(t, x)

where {aij} = a = σσ′, Di = ∂
∂xi

and Dij = ∂2

∂xi∂xj
. The Cauchy-Dirichlet

problem is

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x), (t, x) ∈ (0,∞)×D,
u(0, x) = h(x), x ∈ D, (5)

u(t, x) = g(t, x), (t, x) ∈ (0,∞)× ∂D

where D ⊂ Rd is an unbounded, open, connected set with regular boundary.
In the case of bounded domains, the Cauchy-Dirichlet problem is well

understood (see [?] and [?] for a detailed description of this problem). More-
over, when the domain is unbounded and the coefficients are bounded, the
existence of a classical solution to equation (5) is well known. For a survey
of this theory see [?] and [?] where the problem is studied with analytical
methods and [?] for a probabilistic approach.

In the last years, parabolic equations with unbounded coefficients in un-
bounded domains have been studied in great detail. For the particular case
when D = Rd, there exists many papers in which the existence, uniqueness
and regularity of the solution is studied under different hypotheses on the
coefficients; see e.g. [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?] and [?].

In the case of general unbounded domains, Fornaro, Metafune and Pri-
ola in [?] studied the homogeneous, autonomous Cauchy-Dirichlet problem.
They proved using analytical methods in semigroups, the existence and
uniqueness of a solution to the Cauchy-Dirichlet problem when the coeffi-
cients are C1 locally Hölder continuous, with aij bounded, b and c func-
tions with a Lyapunov type growth and D has a C2 boundary. Schauder
type estimates were obtained for the gradient of the solution in terms of the
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data. Bertoldi and Fornaro in [?] obtained analogous results for the Cauchy-
Neumann problem for an unbounded convex domain. Later, in [?] Bertoldi,
Fornaro and Lorenzi, generalized the method to non-convex sets with C2

boundary. They studied the existence, uniqueness and gradient estimates for
the Cauchy-Neumann problem. For a survey of this results see [?].

In the paper of Hieber, Lorenzi and Rhandi [?], the existence and unique-
ness of a classical solution for the autonomous, non-homogeneous Cauchy-
Dirichlet and Cauchy-Neumann problems is proved. The domain is consider
to be an exterior domain with C3 boundary. The coefficients are assumed to
be C3-Hölder continuous functions with Lyapunov type growth. The conti-
nuity properties of the semigroup generated by the solution of the parabolic
problem are studied in the spaces Cb(D) and Lp(D).

In all the papers cited above, the uniformly elliptic condition is assumed,
that is, there exists λ > 0 such that

∑
aij(t, x)ξiξj ≥ λ‖ξ‖2 for all t ≥ 0 and

x, ξ ∈ D.

In this work we prove the existence and uniqueness of a classical solution
to equation (5), when the coefficients are locally Lipschitz continuous in
x and locally Hölder continuous in t, aij has a quadratic growth, bi has
linear growth and c is bounded from above. We allow f , g and h to have a
polynomial growth of any order. We also consider the elliptic condition to
be local, that is, for any [0, T ] × A ⊂ [0,∞) × D there exists λ(T,A) such
that

∑
aij(t, x)ξiξj ≥ λ(T,A)‖ξ‖2 for all t ∈ [0, T ] and x, ξ ∈ A. We assume

that D is an unbounded, connected, open set with regular boundary (see [?]
Chapter III Section 4, for a definition of regular boundary). Furthermore, we
prove that the solution is locally Hölder continuous up to the second space
derivative and the first time derivative.

Our approach is using stochastic differential equations and parabolic dif-
ferential equations in bounded domains. For proving existence, many an-
alytical methods construct the solution by solving the problem in nested
bounded domains that approximate the domain D. The problem here lies
in proving the convergence of the approximating solutions to the global one.
This presents some drawbacks depending on the geometry of the domain
and the regularity of the functions involved. Unlike these methods, first we
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propose as a solution to equation (5), a functional of the solution to a SDE,

v(t, x) =Ex

[∫ t∧τD

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R t
0 c(t−r,X(r))drh(X(t))1τD≥t

]
+ Ex

[
e

R τD
0 c(t−r,X(r))drg(t− τD, X(τD))1τD<t

]
where

dX(s) = b(t− s,X(s))ds+ σ(t− s,X(s))dW (s), X(0) = x,

and

τD := inf{s > 0|X(s) /∈ D}

Using the continuity of the paths of the SDE we prove that this function is
continuous in [0,∞) ×D. Then, using the theory of parabolic equations in
bounded domains, we study locally the regularity of the function v and prove
that it is a C1,2 function. Finally, with some standard arguments we prove
that it solves the Cauchy-Dirichlet problem. This kind of idea has been used
for several partial differential problems (see [?], [?] and [?]).

Infinite horizon.

In Chapter ?? we work with some risk processes and present some of the
partial results of this investigation. The notation in this part corresponds
with the usual one of this theory. A natural field of the application of control
techniques is insurance mathematics. Since 1903, when Lundberg proposed a
collective risk model based on a Poisson claim process, the theory of non-life
insurance has presented a great development. The Cramér-Lundberg model
is

R(t) = x+ ct− S(t),

where x ≥ 0 is the initial capital, c > 0 stands for the premium income rate
and S(t) =

∑N(t)
n=1 ξn, where {N(t)}t≥0 is a Poisson process with intensity

λ, {ξn}∞n=1 are i.i.d. positive random variables independent of the Poisson
process, corresponding to the incoming claims, with common distribution Q
and mean µ <∞.
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One of the main concerns for an insurance company is to analyze the
possibility of a default, that is, study the probability of ruin or survival

ψ(x) := P [τ <∞|R(0) = x] ,

δ(x) := P [τ =∞|R(0) = x] .

where
τ := inf{t > 0|R(t) < 0}

is the ruin time.
Since then, more complicated models have been proposed in order to

reflect more accurately real aspects of the insurance’s field. There are many
authors for this problem, e.g. [?], [?], [?], [?], [?], [?], [?] and the references
therein. It has been considered problems as investment, reinsurance, payment
of dividends, severity of the ruin and combinations of them. See [?] for a very
nice survey of this theory.

In all the problems mentioned above, the control theory plays an essential
role in order to find optimal strategies (for investment, reinsurance, etc.). In
this chapter, we focus in the problem when the insurer company puts its
capital in some investment instruments: a non-risk bonus and a risky asset.
Here is the extra problem of finding an optimal investment strategy that
maximizes the survival probability. This problem was solved by Hipp and
Plum in [?] and [?] when the non-risk rate is constant and the risky asset is
a Geometric Brownian motion, that is,

dZ0(t) =Z0(t)rdt,

dZ(t) =Z(t)µdt+ Z(t)σdW (t),

where µ > r ≥ 0, σ > 0 and {W (t)}t≥0 is an standard Brownian motion
independent of the claim process {S(t)}t≥0.

The reserve process with investment strategy A is

X(t;A) =R(t) +

∫ t

0

As
dZ(s)

Z(s)
+

∫ t

0

(X(s−)− As)
dZ0(s)

Z0(s)

=x+

∫ t

0

[c+ bAs + rX(s−)]ds+

∫ t

0

σAsdW (s)− S(t),

where b := µ− r and the survival probability is defined as

δ(x;A) := P [τ(A) =∞|X(0;A) = x] .
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with
τ(A) := inf{t > 0|X(t;A) < 0}.

Hipp and Plum proved in [?] and [?], via a Verification and an Existence
Theorem, that the optimal survival probability is the unique classical solution
to the HJB equation

sup
α∈R
{Mα[f ](x)} = 0,

with

Mα[f ](x) :=
1

2
σ2α2f ′′(x) + (c+ bα+ rx)f ′(x) +λ

∫ ∞
0

[f(x− z)− f(x)]dQ(z)

and boundary conditions

• limx→∞ f(x) = 1 and

• α∗(0) = 0

where

α∗(x) = − bf ′(x)

σ2f ′′(x)
.

It is important to notice that the boundary conditions are not usual, this
happens because the risk process can not reach the zero boundary contin-
uously. This imposes some additional considerations to prove the existence
of a classical solution. Even for the Verification Theorem, despite the proof
follows the traditional arguments, it presents some additional problems due
the behavior of the risk process when t → ∞ and the degeneration of the
optimal process at x = 0.

We are interested in generalize the results of Hipp and Plum when the
rates of the investment instruments are stochastic and depend on an external
factor. We assume that the external factor has the following dynamic

Y (t) = y +

∫ t

0

g(Y (s))ds+ β(ρW1(t) + εW2(t)),

with 0 ≤ ρ ≤ 1, ε =
√

1− ρ2 and the investment instruments fulfil

dZ0(t) =Z0(t)r(Y (t))dt,

dZ(t) =Z(t)µ(Y (t))dt+ Z(t)σ(Y (t))dW1(t),
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The reserve process with investment strategy {At}t≥0 is

X(t;A) =R(t) +

∫ t

0

As
dZ(s)

Z(s)
+

∫ t

0

(X(s−)− As)
dZ0(s)

Z0(s)

=x+

∫ t

0

[c+ b(Y (s))As + r(Y (s))X(s−)]ds

+

∫ t

0

σ(Y (s))AsdW1(s)− S(t),

where b(·) := (µ− r)(·).
The value function is defined as

δ(x, y) := sup
A
{δ(x, y;A)}

with
δ(x, y;A) := P [τ(A) =∞|X(0;A) = x, Y (0) = y] .

In this case we propose as a HJB equation for the optimal survival probability

sup
α∈R
{Lα[f ](x, y)} = 0

where

Lα[f ](x, y) := g(y)fy(x, y) + (c+ b(y)α + xr(y))fx(x, y)

+
1

2
β2fyy(x, y) +

1

2
σ(y)2α2fxx(x, y) + βρσ(y)fxy(x, y)

+ λ

∫ ∞
0

(f(x− z, y)− f(x, y))dQ(z).

with α∗(0, ·) = 0 where

α∗(x, y) = −b(y)fx(x, y) + βρσ(y)fxy(x, y)

σ2(y)fxx(x, y)
,

We prove a Verification Theorem. The Existence Theorem is a work in
progress.

The work is divided as follows: In Chapter ?? we present the preliminaries
and many of the main ideas used throughout the rest of the work. We first
present a general overview for the theory of stochastic optimal control. Next
we discuss some of the general ideas used to prove the existence of solutions
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to semilinear parabolic differential equations. Finally, we look through the
relation between the linear partial differential equations and the stochastic
differential equations. Chapter ?? presents the main result and the proofs
for the existence of a classical solution to the Cauchy-Dirichlet problem for
class of linear parabolic differential equations with unbounded coefficients
in a unbounded domain. Chapter ?? is devoted to prove the results for the
semilinear problem. In section ?? of this chapter, we apply the results proved
to an optimal consumption problem. This problem shows situations in which
the hypotheses appear naturally. In Chapter ?? we present the problem of
optimal investment for an insurance company in an incomplete market when
the coefficients of the investment instruments are stochastic. We present the
partial results of this investigation. Finally, in Appendix ?? the reader will
find some of the results used in the proofs of the theorems.
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Introducción.

La Teoŕıa del Control ha tenido un gran desarrollo en los últimos sesenta
años gracias a la gran variedad de aplicaciones que presenta: teoŕıa del riesgo,
problemas de consumo, control de producción, portafolios de inversión, prob-
lemas de salida, entre otros. Véase [?], [?], [?], [?], [?] y las referencias en
ellos.

En un sentido amplio, el control es la acción ejercida en la evolución
de un proceso con la finalidad de obtener una meta deseada. La teoŕıa
del control tiene varias clasificaciones de acuerdo a la dinámica del proceso
controlado: El caso determinista junto con el cálculo de variations, tiene una
larga historia que comienza con el problema de la braquistocrona resuelto
por Johann Bernoulli hace aproximadamente 300 años (véase [?] para una
presentación general). El caso estocástico tuvo sus principios a finales de
los 1950’s y principios de los 1960’s, sin embargo su desarrollo ha sido muy
intenso desde entonces (véase [?], [?] o [?]). Se generan dos tipos de problemas
dependiendo de las consideraciones sobre la evolución temporal: discreto y
continuo. Véase [?], [?], [?] o [?] para un panorama general sobre esta teoŕıa
en el caso discreto.

En este trabajo trataremos problemas de control estocástico en tiempo
continuo. Desde la perspectiva determinista, la evolución de un sistema se
modela de manera general mediante una ecuación diferencial de la forma

dX(s)

ds
= b(X(s))

Muchos problemas interesantes presentan caracteŕısticas que son aleato-
rias o simplemente desconocidas para el observador. Una manera de modelar
esto es considerando una difusión de Ito con saltos en Rd

dX(s) = b(X(s))ds+ σ(X(s))dW (s) +

∫
Rn
γ(X(s), z)M(ds, dz)

13
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donde W es un movimiento Browniano y M(·) representa una medida aleato-
ria Poisson generada por los saltos de un proceso de Levy (en este trabajo
consideraremos solamente el caso especial de un proceso Poisson compuesto).

La teoŕıa del control supone que la dinámica del sistema puede ser modifi-
cada mediante un proceso de control A = {A(s)}. Generalmente, los procesos
de control son seleccionados dentro de una clase de procesos estocásticos pre-
decibles con ciertas condiciones de integrabilidad (denotados por A). En este
caso, suponemos que la dinámica del proceso de estado con control A está
dada por

X(s) =x+

∫ s

0

b(t− s,X(s−), A(s))ds+

∫ s

0

σ(t− s,X(s−), A(s))dW (s)

+

∫
(0,s]

∫
Rn
γ(t− s,X(s−), A(s−), z)M(ds, dz).

Un problema de control estocástico consiste en optimizar cierta meta
dada, en particular, estamos interesados en el caso que dicha meta está dada
por una función de utilidad, V (·;A). En este trabajo consideramos dos tipos
de problemas: primero, consideramos el problema en un horizonte finito t y
en este caso trabajamos únicamente con procesos de difusión continuos, es
decir, suponemos que la parte de saltos no existe. Segundo, consideramos el
problema en horizonte infinito. En este caso nos enfocamos en un proceso de
riesgo con saltos y estudiamos la probabilidad de ruina.

Horizonte finito.

Estamos interesados en derminar y analizar la función de valor V definida
por

V (t, x) := sup
A∈A
{V (t, x;A)} (6)

donde x representa el estado inicial del sistema, t es el horizonte final y

V (t, x;A) :=Ex

[∫ t

0

e
R s
0 c(t−r,XA(r),A(r))drf(t− s,XA(s), A(s))ds

]
+ Ex

[
e

R t
0 c(t−r,XA(r),A(r))drh(XA(t))

]
con c representando un factor de descuento, f la función de utilidad corriente
y h la función de utilidad final.
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De esto surgen dos preguntas: ¿Qué podemos decir acerca de la función
V y en caso de que existe un control óptimo A∗, i.e., un control que satisfaga
V (·;A∗) = V (·), qué podemos decir de éste?

Un método usual para este tipo de problemas es el Principio de la Progra-
mación Dinámica y las ecuaciones de Hamilton-Jacobi-Bellman (ecuaciones
de HJB). Considerando procesos de control constantes actuando sobre inter-
valos de tiempo muy pequeños (véase la sección ?? para una explicación de-
tallada), se puede proponer mediante un argumento heuŕıstico, que la función
de valor V satisface la siguiente ecuación de HJB

−ut(t, x) + sup
α∈Λ
{Dα[u](t, x) + f(t, x, α)} =0, (t, x) ∈ (0,∞)× Rd

u(0, x) =h(x), x ∈ Rd
(7)

donde

Dα[u](r, x) :=
∑
ij

aij(r, x, α)Diju(r, x) +
∑
i

bi(r, x, α)Diu(r, x)

+ c(r, x, α)u(r, x)

con {aij} = a = σσ′ y Λ ⊂ Rm representa el conjunto de valores del control.
Debido a que la derivación de la ecuación de HJB es heuŕıstica, se requiere

de ciertos resultados adicionales para garantizar que la función de valor es
de hecho la solución para la ecuación de HJB: un Teorema de Verificación
y un Teorema de Existencia. El Teorema de Verificación establece que el
en caso que exista una solución de la ecuación de HJB, ésta tiene que ser
la función de valor y por lo tanto la solución es única. Es importante no-
tar que el supremo en la ecuación (6) se toma sobre una clase de procesos
estocásticos mientras que el supremo en la ecuación (7) se toma sobre un
conjunto de reales. En general, la estrategia de control óptima está dada de
forma retroactiva A∗(s) = α∗(t− s,X(s)), donde

α∗(t, x) := argmaxα∈Λ{Dα[u](t, x) + f(t, x, α)}

En este caso, se tiene una función de utilidad óptima y se cumple la igualdad
V (·;A∗) = V (·).

El resultado restante es un Teorema de Existencia para la solución de la
ecuación de HJB. En general, probar la existencia de una solución clásica
para la ecuación (7) no es una tarea sencilla debido a la no linealidad en
las derivadas de segundo orden. Existen algunos resultados generales, sin
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embargo, requieren de hipótesis restrictivas sobre los coeficientes, como el
acotamiento de éstos y sus derivadas (véase [?] Caṕıtulo 6 o [?] Caṕıtulo
IV).

En el caso que σ no dependa del control, la ecuación de HJB se convierte
en una ecuación semilineal de la forma

−ut(t, x) +
∑
ij

aij(t, x)Dij(t, x) + sup
α∈Λ
{Lα[u](t, x) + fα(t, x)} =0, in (0,∞)× Rd,

u(0, x) =h(x), x ∈ Rd,

(8)

donde
Lα :=

∑
i

bi(t, x, α)Diu(t, x) + c(t, x, α)u(t, x)

y
fα(·) := f(·, α).

Existen muchos problemas interesantes para los cuales la ecuación de HJB se
reduce a una ecuación de esta forma (véase e.g. [?], [?], [?], [?], [?], [?] y [?]).
Sin embargo, no existen procedimientos generales para probar la existencia
de soluciones clásicas y por lo tanto cada ecuación es tratada de manera
particular. A pesar de esto, en todos los art́ıculos mencionados, la base
para la existencia de una solución para la ecuación de HJB es un resultado
probado por Fleming (véase [?] Teorema VI.6.2). En éste se trabaja en un
espacio de control Λ acotado, c ≡ 0, las funciones b, σ ∈ C1,2 con σ, σx y bx
acotadas. En este caso, se relaja la hipótesis de acotamiento para los datos f
y h a los cuales se les permite tener un crecimiento polinomial y regularidad
C2. La principal idea detrás de la prueba de este teorema es una técnica de
linealización (véase [?] Apéndice E), estos es, se aproxima la solución de la
ecuación (8) por ecuaciones de la forma

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ (0,∞)× Rd,

u(0, x) = h(x) para x ∈ Rd.
(9)

donde

L[u](t, x) =
∑
i,j

aij(t, x)Diju(t, x) +
∑
i

bi(t, x)Diu(t, x).

En el Caṕıtulo ?? estudiamos la existencia y unicidad de una solución clásica
para la ecuación (8) cuando los coeficientes σ, b, c y f son localmente Hölder
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en t y localmente Lipschitz en (x, α), no necesariamente diferenciables, σ y b
tienen crecimiento lineal, c es acotado por arriba y f presente un crecimiento
polinomial de cualquier orden. h es una función continua con crecimiento
polinomial y Λ ⊂ Rm es un conjunto conexo y compacto. Suponemos la
condición de elipticidad localmente, esto es, para todo [0, T ]×A ⊂ [0,∞)×Rd

existe λ(T,A) tal que
∑
aij(t, x)ξiξj ≥ λ(T,A)‖ξ‖2 para todo x, ξ ∈ A y

t ∈ [0, T ]. Estas hipótesis son consideradas debido a la combinación entre
el no acotamiento y la continuidad de los coeficientes. En la sección ??
presentamos un problema de control estocástico en donde estos supuestos
aparecen de manera natural.

La solución la construimos mediante una aproximación por ecuaciones
parabólicas lineales. A pesar de que esta técnica es estándar, las ecua-
ciones lineales no cumplen las hipótesis de los resultados tradicionales. Por lo
tanto, estudiamos la solución clásica al problema de Cauchy de una ecuación
parabólica lineal de segundo orden cuando los coeficientes satisfacen las mis-
mos supuestos que los del problema semilineal.

En el Caṕıtulo ?? estudiamos la existencia y unicidad de una solución
general para un problema más general, el problema de Cauchy-Dirichlet,
para una ecuación diferencial parabólica lineal en un dominio no acotado
general. Sea L el operador diferencial

L[u](t, x) :=
d∑

i,j=1

aij(t, x)Diju(t, x) +
d∑
i=1

bi(t, x)Diu(t, x)

donde {aij} = a = σσ′, Di = ∂
∂xi

y Dij = ∂2

∂xi∂xj
. El problem de Cauchy-

Dirichlet es

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x), (t, x) ∈ (0,∞)×D,
u(0, x) = h(x), x ∈ D, (10)

u(t, x) = g(t, x), (t, x) ∈ (0,∞)× ∂D

donde D ⊂ Rd es un conjunto no acotado, abierto, conexo con frontera
regular.

En el caso de dominios acotados, el problema de Cauchy-Dirichlet está
muy bien entendido (véase [?] y [?] para una descripción detallada de este
problema). Es más, cuando el dominio es no acotado y los coeficientes son
acotados, el problema de la existencia de soluciones clásicas para la ecuación
(10) está resuelto. Para un estudio general de esta teoŕıa véase [?] y [?]
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donde el problema es tratado mediante argumentos de análisis y [?] para un
tratamiento probabiĺıstico.

En los últimos años, se han estudiado en gran detalle las ecuaciones
parabólicas con coeficientes no acotados en dominios no acotados. En el
caso particular D = Rd, existen muchos art́ıculos en los que se estudia la
existencia, unicidad y regularidad de las soluciones bajo una gran variedad
de hipótesis sobre los coeficientes; véase e.g. [?], [?], [?], [?], [?], [?], [?], [?],
[?], [?], [?] y [?].

En el caso de dominios no acotados generales, Fornaro, Metafune y Priola
en [?] estudiaron el problema de Cauchy-Dirichlet homogéneo y autónomo.
Probaron mediante argumentos de semigrupos, la existencia y unicidad de
una solución clásica del problema de Cauchy-Dirichlet cuando los coeficientes
son C1 localmente Hölder continuos, con aij acotado, b y c funciones con un
crecimiento del tipo Lyapunov y D con regularidad C2. Se obtuvieron esti-
maciones del tipo Schauder para el gradiente de la solución en términos de los
datos del problema. Bertoldi y Fornaro en [?] obtuvieron resultados análogos
para el problema de Cauchy-Neumann para un dominios convexo, no acotado.
Posteriormente, en [?] Bertoldi, Fornaro y Lorenzi, generalizaron el método
para conjuntos no-convexos con frontera C2. Estudiaron la existencia, uni-
cidad y estimaciones del gradiente para el problema de Cauchy-Neumann.
Para un compendio de esta teoŕıa véase [?].

En el art́ıculo de Hieber, Lorenzi y Rhandi [?], se probó la existencia y
unicidad de una solución clásica del problema autónomo, no homogéneo de
Cauchy-Dirichlet y de Cauchy-Neumann. El dominio se considera que es un
dominio exterior con frontera C3. Los coeficientes son C3-Hölder continuos
con un crecimiento del tipo Lyapunov. Se estudiaron las propiedades de
continuidad del semigrupo generado por la solución del problema parabólico
en los espacios Cb(D) and Lp(D).

En todos los trabajos mencionados, se supone la condición de elipticidad
uniforme, esto es, existe λ > 0 tal que

∑
aij(t, x)ξiξj ≥ λ‖ξ‖2 para todo

t ≥ 0 y x, ξ ∈ D.
En este trabajo probamos la existencia y unicidad de una solución clásica

de la ecuación (10), cuando los coeficientes son localmente Lipschitz continuos
en x y localmente Hölder continuos en t, aij tiene un crecimiento cuadrático,
bi tiene un crecimiento lineal y c es acotado por encima. Las función f , g
y h tienen un crecimiento lineal de cualquier orden. También consideramos
que la condición de elipticidad es local, esto es, para todo [0, T ] × A ⊂
[0,∞) × D existe λ(T,A) tal que

∑
aij(t, x)ξiξj ≥ λ(T,A)‖ξ‖2 para todo
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t ∈ [0, T ] y x, ξ ∈ A. Suponemos que D es un conjunto no acotado, conexo
con frontera regular (véase [?] Caṕıtulo III Sección 4, para una defición de
frontera regular). Aún más, probamos que la solución es localmente Hölder
continua hasta la segunda derivada espacial y la primera derivada temporal.

Nuestro tratamiento se centra en ecuaciones diferenciales estocásticas y
ecuaciones diferenciales parabólicas en dominios acotados. Para probar ex-
istencia, muchos métodos de análisis construyen la solución resolviendo el
problema en una sucesión anidada de dominios acotados que aproximan el
dominio D. El problema en este caso radica en probar la convergencia de las
soluciones aproximanentes a la global, lo que presenta varios inconvenientes
dependiendo de la geometŕıa del dominio y la regularidad de las funciones
involucradas. A diferencia de estos métodos, primero proponemos como una
solución para la ecuación (10) un funcional de la solución de una ecuación
diferencial estocástica,

v(t, x) =Ex

[∫ t∧τD

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R t
0 c(t−r,X(r))drh(X(t))1τD≥t

]
+ Ex

[
e

R τD
0 c(t−r,X(r))drg(t− τD, X(τD))1τD<t

]
donde

dX(s) = b(t− s,X(s))ds+ σ(t− s,X(s))dW (s), X(0) = x,

y

τD := inf{s > 0|X(s) /∈ D}

Usando la continuidad de las trayectorias de la ecuación diferencial estocástica
probamos que esta función es continua en [0,∞) × D. Luego, utilizando
la teoŕıa de las ecuaciones diferenciales parabólicas en dominios acotados,
estudiamos localmente la regularidad de la función v y probamos que es
una función C1,2. Finalmente, mediante algunos argumentos estándares
probamos que ésta resuelve el problema de Cauchy-Dirichlet. Este tipo de
ideas han sido utilizados en varios problemas de ecuaciones diferenciales par-
ciales (véase [?], [?] y [?]).
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Horizonte infinito.

En el Caṕıtulo ?? trabajamos con algunos procesos de riesgo y presentamos
algunos de los resultados parciales de esta investigación. La notación en esta
parte del trabajo corresponde a la notación usual en este teoŕıa. Un campo
natural para la aplicación de la teoŕıa del control el la matemática actuarial
o del seguro. Desde 1903 cuando Lundberg propuso un modelo de riesgo
colectivo basado en un proceso de reclamaciones Poisson, la teoŕıa del seguro
de no-vida ha presentado un gran desarrollo. El modelo de Cramér-Lundberg
es

R(t) = x+ ct− S(t),

donde x ≥ 0 es el capital inicial, c > 0 representa la tasa de primas y
S(t) =

∑N(t)
n=1 ξn, con {N(t)}t≥0 un proceso Poisson con intensidad λ, {ξn}∞n=1

variables aleatorias i.i.d. positivas independientes del proceso Poisson, que
representan las reclamaciones, con función de distribución común Q y media
µ <∞.

Una de las principales preocupaciones de una compañ́ıa de seguros en
analizar la posibilidad de un incumplimiento, es decir, estudiar la probabili-
dad de ruina o supervivencia

ψ(x) := P [τ <∞|R(0) = x] ,

δ(x) := P [τ =∞|R(0) = x] .

donde
τ := inf{t > 0|R(t) < 0}

es el tiempo de ruina.
Desde entonces, se han propuesto modelos más complejos que reflejan de

manera más precisa distintos aspectos del seguro. Existen muchos autores
para este problema, e.g. [?], [?], [?], [?], [?], [?], [?] y las referencias en
ellos. Se han considerado aspectos como la inversión, el reaseguro, el pago
de dividendos, la severidad de la ruina y combinaciones entre ellos. Véase [?]
para un muy buen resumen de esta teoŕıa.

En todos los problemas mencionados arriba, la teoŕıa del control juega
un rol esencial para la obtención de estrategias óptimas (para inversión,
reaseguro, etc.). En este caṕıtulo, nos enfocamos en el problema donde la
compañ́ıa de seguros coloca su capital en algunos instrumentos de inversión:
un cuenta sin riesgo y un activo con riesgo. En este caso se tiene el prob-
lema extra de encontrar una estrategia de inversión óptima que maximice su



21

probabilidad de supervivencia. Este problema fue resuelto por Hipp y Plum
en [?] y [?] cuando la tasa libre de riesgo es constante y el activo con riesgo
es un movimiento Browniano geométrico, esto es

dZ0(t) =Z0(t)rdt,

dZ(t) =Z(t)µdt+ Z(t)σdW (t),

donde µ > r ≥ 0, σ > 0 y {W (t)}t≥0 es un movimiento Browniano estándar
independiente del proceso de reclamaciones {S(t)}t≥0.

El proceso de reserva con estrategia de inversión A es

X(t;A) =R(t) +

∫ t

0

As
dZ(s)

Z(s)
+

∫ t

0

(X(s−)− As)
dZ0(s)

Z0(s)

=x+

∫ t

0

[c+ bAs + rX(s−)]ds+

∫ t

0

σAsdW (s)− S(t),

donde b := µ− r y la probabilidad de supervivencia se define como

δ(x;A) := P [τ(A) =∞|X(0;A) = x] .

con

τ(A) := inf{t > 0|X(t;A) < 0}.

Hipp y Plum probaron en [?] y [?], mediante un Teorema de Verificación y
uno de Existencia, que la probabilidad de supervivencia óptima es la única
solución clásica de la ecuación de HJB

sup
α∈R
{Mα[f ](x)} = 0,

con

Mα[f ](x) :=
1

2
σ2α2f ′′(x) + (c+ bα+ rx)f ′(x) +λ

∫ ∞
0

[f(x− z)− f(x)]dQ(z)

y condiciones de frontera

• limx→∞ f(x) = 1 y

• α∗(0) = 0
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donde

α∗(x) = − bf ′(x)

σ2f ′′(x)
.

Es importante notar que las condiciones de frontera no son comunes a las
condiciones de frontera tradicionales. Esto se debe a que el proceso de riesgo
no puede alcanzar la frontera cero de manera continua. Esto impone con-
sideraciones adicionales para probar la existencia de una solución clásica.
Incluso para el Teorema de Verificación, a pesar de que la prueba sigue los
argumentos tradicionales, ésta presenta algunos problemas adicionales debido
al comportamiento del proceso de riesgo cuando t → ∞ y la degeneración
del proceso óptimo en x = 0.

Estamos interesados en generalizar los resultados de Hipp y Plum al caso
en que las tasas de los instrumentos de inversión son estocásticas y dependen
de un factor externo. Suponemos que el factor externo tiene la siguiente
dinámica

Y (t) = y +

∫ t

0

g(Y (s))ds+ β(ρW1(t) + εW2(t)),

con 0 ≤ ρ ≤ 1, ε =
√

1− ρ2 y los instrumentos de inversión satisfacen

dZ0(t) =Z0(t)r(Y (t))dt,

dZ(t) =Z(t)µ(Y (t))dt+ Z(t)σ(Y (t))dW1(t),

El proceso de reserva con estrategia de inversión {At}t≥0 es

X(t;A) =R(t) +

∫ t

0

As
dZ(s)

Z(s)
+

∫ t

0

(X(s−)− As)
dZ0(s)

Z0(s)

=x+

∫ t

0

[c+ b(Y (s))As + r(Y (s))X(s−)]ds

+

∫ t

0

σ(Y (s))AsdW1(s)− S(t),

donde b(·) := (µ− r)(·).
La función de valor está definido por

δ(x, y) := sup
A
{δ(x, y;A)}

con
δ(x, y;A) := P [τ(A) =∞|X(0;A) = x, Y (0) = y] .
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En este caso proponemos la siguiente ecuación de HJB para la probabilidad
de supervivencia óptima

sup
α∈R
{Lα[f ](x, y)} = 0

donde

Lα[f ](x, y) := g(y)fy(x, y) + (c+ b(y)α + xr(y))fx(x, y)

+
1

2
β2fyy(x, y) +

1

2
σ(y)2α2fxx(x, y) + βρσ(y)fxy(x, y)

+ λ

∫ ∞
0

(f(x− z, y)− f(x, y))dQ(z).

con α∗(0, ·) = 0 y

α∗(x, y) = −b(y)fx(x, y) + βρσ(y)fxy(x, y)

σ2(y)fxx(x, y)
,

Probamos un Teorema de Verificación. El Teorema de Existencia se encuen-
tra aún en desarrollo.

EL trabajo se encuentra dividido de la siguiente forma: En el Caṕıtulo ??
presentamos los preliminares y varias de las principales ideas usadas a lo largo
del trabajo. Primero presentamos un panorama general sobre la teoŕıa de
control estocástico óptimo. Después discutimos algunas de las ideas generales
usadas para probar la existencia de soluciones para las ecuaciones diferen-
ciales parabólicas semilineales. Finalmente, revisamos la relación entre las
ecuaciones diferenciales parciales lineales y las ecuaciones diferenciales es-
tocásticas. El Caṕıtulo ?? presenta el resultado principal y las pruebas para
la existencia de una solución clásica del problema de Cauchy-Dirichlet para
una clase de ecuaciones parabólicas lineales con coeficientes no acotados en
un dominio no acotado. El Caṕıtulo ?? es dedicado a probar los resulta-
dos del problema semilineal. En la sección ?? de este caṕıtulo, aplicamos
los resultados probados a un problema de consumo óptimo. Este problema
muestra situaciones en las que los supuestos de este trabajo aparecen natu-
ralmente. En el Caṕıtulo ?? presentamos el problema de inversión óptima de
una compañ́ıa de seguros en un mercado incompleto cuando los coeficientes
de los instrumentos de inversión son estocásticos. Presentamos los resulta-
dos parciales de esta investigación. Finalmente, en el Apéndice ?? el lector
encontrará algunos de los resultados utilizados a lo largo del trabajo.



Preliminaries.

In this chapter we present an introduction to the problem of stochastic op-
timal control and some of the problems and techniques involved with it. We
are interested in providing a general view about this subject, for that, in
this chapter we present some general results without hypotheses and for the
proofs we only sketch the main ideas. In the following chapters we present
some particular problems with all the hypotheses needed and all the details
of the proofs.

0.1 Preliminaries.

Let (Ω,F ,P, {F}s≥0) be a complete filtered probability space and let {W} =
{Wi}di=1 be a d-dimensional brownian motion defined in it.

Let {θ(s)}s≥0, with θ(0) = 0 be a cadlag Levy process and define M as
the associated Poisson random measure defined as

M(t, U) =
∑
s∈(0,t]

1U(∆θ(s))

for t ≥ 0 and U ∈ B(R), where ∆θ(s) = θ(s) − θ(s−). Define the intensity
measure ν as

ν(U) := E [M(1, U)]

0.2 Stochastic optimal control problem.

Stochastic control is a relatively young branch of the mathematics. However,
thanks to the wide amount of applications that it present, this field has seen
a great development in the last sixty years.

1
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The concept of control can be described as a process that is influencing
the behavior of a dynamical system with the objective to get a desired goal.
If the goal is to optimize a given “utility” function, the problem is referred
as optimal control.

There exist many approaches to the optimal control problem depending
on the model considered for the dynamic of the system. We will focus in
the problem when the system is modeled by Ito’s diffusions and Stochastic
Differential Equations.

A stochastic control problem has the following elements:

• Let X = {X(s)}s∈T be a stochastic process representing the state of
the controlled system that takes values in Rd. We assume that the
process is controlled in some set D ⊂ Rd.

• Let A = {A(s)}s∈T be the control applied to the system. We assume
that the control takes values in the set Λ ⊂ Rm.

• Let A be the set of “admissible” controls.

We consider the problem in two main settings: finite and infinite horizon. In
the following we explain the main characteristic for both problems.

0.2.1 Finite time horizon.

In general, for a finite time horizon problem we assume that the system X
with control A, has the following dynamic

X(s) =x+

∫ s

0

b(t− s,X(s−), A(s))ds+

∫ s

0

σ(t− s,X(s−), A(s))dW (s)

+

∫
(0,s]

∫
Rn
γ(t− s,X(s−), A(s−), z)M(ds, dz).

(1)

Define the exit time of the controlled region as

τD := inf{s ≥ 0|XA(s) /∈ D}.
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We consider a performance criteria V defined as

V (t, x;A) :=Ex

[∫ t∧τD

0

e
R s
0 c(t−r,XA(r),A(r))drf(t− s,XA(s), A(s))ds

]
+ Ex

[
e

R t
0 c(t−r,XA(r),A(r))drh(XA(t))1τD≥t

]
+ Ex

[
e

R τD
0 c(t−r,XA(r),A(r))drg(t− τD, XA(τD))1τD<t

] (2)

where

• c represents a discounting factor,

• f represents a running utility function and

• g and h represent the final utility functions. For simplicity of notation,
let G denote both final utility functions.

In general, it is assumed that an utility function U : (0,∞) → R is strictly
increasing, strictly concave, continuous differentiable and satisfies the Inada’s
condition (U ′(0) = ∞ and U ′(∞) = 0). These properties reflects some eco-
nomic aspects about the subjective preferences of an agent. The introduction
to the utility functions go back to Daniel Bernoulli and the Saint Petersburg’s
paradox where a naive person would bet a large amount of money in order
to obtain a small profit. Despite these properties are rational in an econom-
ical sense, there exists some “utility” functions which fails to fulfil them and
nevertheless, are very interesting in other branches, like the probability of
ruin for the insurance mathematics.

Back to the optimal problem, the objective is to maximize the expected
utility function, that is, study the function V defined as

V (t, x) := sup
A∈A
{V (t, x;A)}. (3)

There are many aspects of the function V that we are interested in study:
the regularity of the function, an analytic expression, the existence of an op-
timal strategy, among others. One of the main techniques used to answer this
concerns is the Dynamic Programming Principle and the Hamilton-Jacobi-
Bellman equations (HJB equations). This consists in finding a differential
equation whose solution is the value function V .

Next, we present an “intuitive” argument to propose a HJB equation
for the value function. Consider an strategy A such that A(s) ≡ α for some
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α ∈ Λ, denote by Xα the respective controlled process. Thanks to the Markov
property, for 0 < h� 1 we can argue that,

V (t, x) ≥Ex

[∫ h

0

e
R s
0 c(t−r,Xα,α)drf(t− s,Xα, α)ds

]
+ Ex

[
e

R h
0 c(t−r,Xα(r),α)drV (t− h,Xα(h))

]
.

(4)

If we assume that V ∈ C1,2, applying Itô’s formula to e
R h
0 cV we get

e
R h
0 c(t−r,Xα(r),α)drV (t− h,Xα(h))− V (t, x)

=

∫ h

0

e
R s
0 c(t−r,Xα(r),α)dr(−Vt +Dα[V ])(t− s,Xα(s−))ds

+

∫ h

0

e
R s
0 c(t−r,Xα(r),α)drσ(t− s,Xα(s−), α)DV (t− s,Xα(s−)) · dW (s)

+

∫∫
(0,h]×Rn

[V (t− s,Xα(s−) + γ(t− s,Xα(s−), α, z))− V (t− s,Xα(s−))]M̃(ds, dz)

where M̃ := M − ν is the compensated Poisson random measure and D is
the integro-differential operator

Dα[u](r, x) :=
∑
ij

aij(r, x, α)Diju(r, x) +
∑
i

bi(r, x, α)Diu(r, x) + c(r, x, α)u(r, x)

+

∫
Rn

[u(r, x+ γ(r, x, α, z))− u(r, x)]ν(dz).

(5)

with {aij} = a = σσ′.
If we assume that the integrals with respect to the Brownian motion and

the compensated Poisson Random Measure are martingales, taking expecta-
tion and substituting back in equation (4) we get

V (t, x) ≥ V (t, x)+Ex

[∫ h

0

e
R s
0 c(t−r,Xα,α)dr [−Vt +Dα[V ] + f ] (t− s,Xα, α)ds

]
Dividing by h, letting h ↓ 0 and taking the supremum with respect to α,
suggest that V satisfies the following equation

−ut(t, x) + sup
α∈Λ
{Dα[u](t, x) + f(t, x, α)} =0, (t, x) ∈ (0,∞)×D

u(t, x) =G(t, x), (t, x) ∈ ∂((0,∞)×D)

(6)
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where D is defined as in equation (5). The boundary condition follows by
making t = 0 or x ∈ ∂D in equation (2).

To prove that the value function V is the solution to the HJB equation
(equation (6)), two main results are needed: a Verification Theorem and an
Existence Theorem. The Verification Theorem states that if a solution to
the HJB equation exists, then it has to be the optimal utility function and
so the solution is unique. The Existence Theorem proves the existence of a
solution to the HJB equation.

Next, we present a general formulation of a Verification Theorem and
give a sketch of the main ideas used in the proof. This theorem asserts that
in case of existing a classical solution to the HJB equation, this solution is
the value function. The significance of this theorem lies in the fact that with
it, the probabilistic problem is transformed into a deterministic one. The
supremum in equation (3) is taken over the set of admissible strategies. In
general these sets are made up of the class of predictable processes with some
general integration properties. This make the direct analysis of the value
function V a difficult task. Despite equation (6) is a nonlinear equation, and
hence is not an easy one to work with, the supremum in this case is taken
over a subset of Rm and in many cases is easier to work with the solution to
equation (6) than working directly with the value function V .

Depending on the control problem different hypotheses are needed, here
we only want to give a general formulation, so we omit them for this theorem.

Theorem 0.2.1 (Verification Theorem.). Assume there exists v ∈ C([0,∞)×
D) ∩ C1,2((0,∞)×D), solution to equation (6) + extra hypotheses. Let

α∗(t, x) = argmaxα∈Λ {Dα[v](t, x) + f(t, x, α)}

and assume that A∗(s) := α∗(t− s,X(s)) is an “admissible” strategy. Then,
for any A ∈ A we have that

V (t, x;A) ≤ v(t, x) = V (t, x;A∗)

In particular, the solution is unique and

v(t, x) = sup
A∈A
{V (t, x;A)} .

Sketch of the proof. The proof is divided in two main steps. In the first step
we consider an arbitrary admissible strategy and we prove that its expected
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utility function is a lower bound for the solution of the HJB equation. In the
second step we work with the optimal strategy and we prove that its expected
utility function is an upper bound for the solution of the HJB equation. In
both cases the main tools used are Ito’s formula and martingale arguments.
Step 1. Lower bound.
Let A ∈ A be any admissible process and denote by X(s) = X(s;A) the
controlled process with strategy A. Since v ∈ C1,2, applying Ito’s rule we get
for s ≤ t ∧ τD

e
R s
0 c(t−r,X(r),A(r))drv(t− s,X(s)) = v(t, x)

+

∫ s

0

e
R r
0 c(t−y,X(y−),A(y))dy(−vt +DA(s)[v])(t− r,X(r−))dr

+

∫ s

0

e
R r
0 c(t−y,X(y−),A(y))dyDv(t− r,X(r−))σ(t− r,X(r−))dW (r)

+

∫∫
(0,s]×Rn

[v(t− r,X(r−) + γ(t− r,X(r−), α, z))− v(t− r,X(r−))]M̃(dr, dz).

From here we conclude that

e
R s
0 c(t−r,X(r),A(r))drv(t− s,X(s))

−
∫ s

0

e
R r
0 c(t−y,X(y−),A(y))dy(−vt +DA(s)[v])(t− r,X(r−))dr

is a martingale for 0 ≤ s ≤ t.
Letting s ↑ t

v(t, x) ≥Ex

[∫ t∧τD

0

e
R s
0 c(t−r,X(r),A(r))drf(t− s,X(s), A(r))ds

]
+ Ex

[
e

R t
0 c(t−r,X(r),A(r))drh(X(t))1τD≥t

]
+ Ex

[
e

R τD
0 c(t−r,X(r),A(r))drg(t− τD, X(τD))1τD<t

]
.

(7)

And so V (t, x; a) ≤ v(t, x).
Step 2. Upper bound.
Repeating the same arguments with the optimal strategy A∗, we get an
equality in equation (7) instead of an inequality. So we get that

V (t, x;A∗) = v(t, x)

and the proof is complete.
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0.2.2 Infinite time horizon.

For an infinite time horizon problem, we consider that the dynamic of the
process X with control A is

X(s) =x+

∫ s

0

b(X(s−), A(s))ds+

∫ s

0

σ(X(s−), A(s))dW (s)

+

∫
(0,s]

∫
Rn
γ(X(s−), A(s−), z)M(ds, dz).

(8)

Again, the exit time is defined as

τD := inf{s ≥ 0|XA(s) /∈ D}.

In this case the performance criteria is

V (x;A) :=Ex

[∫ τD

0

e
R s
0 c(XA(r),A(r))drf(XA(s), A(s))ds

]
+ Ex

[
e

R τD
0 c(XA(r),A(r))drg(XA(τD))

] (9)

where

• c represents a discounting factor,

• f represents a running utility function and

• g represents the final utility function.

As in the finite horizon, the objective is to maximize the expected utility
function, that is, study the function V defined as

V (x) := sup
A∈A
{V (x;A)}.

Following similar arguments as the ones of the finite time horizon, we
propose as a HJB equation for this problem the following one

sup
α∈Λ
{Eα[u](x) + f(x, α)} =0, x ∈ D

u(x) =g(x), x ∈ ∂D
(10)
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where E is defined as

Eα[u](x) :=
∑
ij

aij(x, α)Diju(x) +
∑
i

bi(x, α)Diu(x) + c(x, α)u(x)

+

∫
Rn

[u(x+ γ(x, α, z))− u(x)]ν(dz).

(11)

with {aij} = a = σσ′.
As in the finite time horizon, we need to prove both, a Verification and

an Existence Theorem. A similar theorem as Theorem 0.2.1 can be stated in
this case. The discussion made is also valid for this problem.

0.3 Existence to the HJB equation.

Once the Verification Theorem is proved an existence result is needed. At
this stage, the original probabilistic problem has been transformed into a
deterministic differential one. In general, the existence of a classical solution
to equation (6) is a very difficult problem and so there exist many approaches
depending on the control problem (see e.g. [?], [?], [?], [?], [?] [?], [?] and the
references therein). In the next section we present a general method for a
simplified problem when the HJB equation can be reduced into a semilinear
differential equation.

0.3.1 Semilinear differential equation.

In many interesting problems (see e.g. [?], [?], [?], [?], [?], [?] and [?]) the
HJB equation can be reduced to an equation of the form

−ut(t, x) +
∑
ij

aij(t, x)Dij(t, x) + sup
α∈Λ
{Lα[u](t, x) + fα(t, x)} =0, in (0,∞)× Rd,

u(0, x) =h(x), x ∈ Rd,

(12)

where
Lα :=

∑
i

bi(t, x, α)Diu(t, x) + c(t, x, α)u(t, x)

and
fα(·) := f(·, α).



0.3. EXISTENCE TO THE HJB EQUATION. 9

In a more general case, we are interested in studying the following semi-
linear parabolic equation

−ut(t, x) +
∑
ij

aij(t, x)Dij(t, x)+ sup
α∈Λ
{Lα[u](t, x) + fα(t, x)} = 0, in (0,∞)×D,

u(0, x) =h(x), x ∈ D,
u(t, x) =g(t, x), (t, x) ∈ (0,∞)× ∂D.

(13)

This equation is the HJB equation for the following control problem: the
dynamic of the state process, X, with control A is given by

dX(s) = b(t− s,X(s), A(s))ds+ σ(t− s,X(s))dW (s), X(0) = x.

The utility function is defined as

V (t, x;A) :=Ex

[∫ t∧τD

0

e
R s
0 c(t−r,XA(r),A(r))drf(t− s,XA(s), A(s))ds

]
+ Ex

[
e

R t
0 c(t−r,XA(r),A(r))drh(XA(t))1τD≥t

]
+ Ex

[
e

R τD
0 c(t−r,XA(r),A(r))drg(t− τD, XA(τD))1τD<t

] (14)

and the value function is

V (t, x) := sup
A∈A
{V (t, x;A)}.

We are interested in the existence of a classical solution to equation (13).
Depending on the conditions of the coefficients and the domain, there exist
different approaches to solve this problem. One of this approaches is by
approximation with linear parabolic equations. Despite this technique is
standard (see [?], Appendix E), depending on the coefficients and the domain,
the existence of classical solutions to the linear problem is not trivial. For
this reason we are interested in study the existence of classical solutions to
linear parabolic equations under some broad assumptions on the coefficients
and the domain. Next, we present a general formulation of an Existence
Theorem and give a sketch of the ideas behind the linearization technique.
As in the Verification Theorem, depending on the control problem different
hypotheses are needed, since we only want to give a general formulation, we
omit them.
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Theorem 0.3.1 (Existence Theorem.). Consider the following equation

−ut(t, x) +
∑
ij

aij(t, x)Dij(t, x)+ sup
α∈Λ
{Lα[u](t, x) + fα(t, x)} = 0, in (0,∞)×D,

u(0, x) =h(x), x ∈ D,
u(t, x) =g(t, x), (t, x) ∈ (0,∞)× ∂D.

(15)

Then under hypotheses, there exists a classical solution to equation (15).

Sketch of the proof. Let L2[u] be defined as

L2[u] := −ut +
∑
ij

aijDiju.

Let α0 ∈ Λ and u(0) be the solution to

L2[u(0)] + Lα0
1 [u(0)] + fα0 = 0, (0,∞)×D
u(0)(t, x) = G(t, x), (t, x) ∈ ∂((0,∞)×D).

For n ≥ 1, let

A(n−1) := argmaxα∈Λ

{
Lα1 [u(n−1)] + fα

}
,

and u(n) be the solution to

L2[u(n)] + LA(n−1)

1 [u(n)] + fA
(n−1)

= 0, (0,∞)×D
u(n)(t, x) = G(t, x), (t, x) ∈ ∂((0,∞)×D).

Because

A(n) ∈ argmax
{
Lα1 [u(n)] + fα

}
using a form of the maximum principle for parabolic equations, we can prove
that

u(n) ≤ u(n+1).

The desired solution u of equation (15) is the limit of u(n) as n→∞.
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0.3.2 Linear differential equations.

We are interested in the existence and uniqueness of a classical solution to
the Cauchy-Dirichlet problem for a linear parabolic differential equation. Let
L be the differential operator

L[u](t, x) :=
d∑

i,j=1

aij(t, x)Diju(t, x) +
d∑
i=1

bi(t, x)Diu(t, x)

where {aij} = a = σσ′, Di = ∂
∂xi

and Dij = ∂2

∂xi∂xj
. The Cauchy-Dirichlet

problem is

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x), (t, x) ∈ (0,∞)×D,
u(0, x) = h(x), x ∈ D, (16)

u(t, x) = g(t, x), (t, x) ∈ (0,∞)× ∂D

where D ⊂ Rd is an open, connected set.
In the case of bounded domains, the Cauchy-Dirichlet problem is well

understood (see [?] and [?] for a detailed description of this problem). More-
over, when the domain is unbounded and the coefficients are bounded, the
existence of a classical solution to equation (16) is well known. For a survey
of this theory see [?] and [?] where the problem is studied with analytical
methods and [?] for a probabilistic approach.

In the case of general unbounded domains, many authors have consid-
ered unbounded coefficients, (b and σ) satisfying a Lyapunov type growth
assumption, and bounded data. Using the theory of semigroups, the exis-
tence of a classical solution to the Cauchy-Dirichlet problem has been studied
in [?], [?], [?], [?], among others. The main technique used in this papers is
to consider a sequence of nested bounded domains that approximate the do-
main D, solve the problem in the bounded domains and then prove that the
sequence of solutions converges to the solution of the original problem. This
construction impose some restrictions about the geometry of the domain and
the regularity of the functions. In all these cases the coefficients are at least
C1.

Our motivation for studying linear equations came from stochastic con-
trol problems. In the proof of Theorem 0.3.1 the coefficients of the linear
equations have some terms of the form

A(n−1) := argmaxα∈Λ

{
Lα1 [u(n−1)] + fα

}
.
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In general, this coefficients only satisfies a continuity regularity property,
hence we are interested in studying solutions to equation (16) with continuous
unbounded coefficients, not necessarily differentiable. A suitable approach
for this is a probabilistic one. In the following section we present some
results concerning the existence of classical solutions to parabolic problems
using probabilistic methods.

0.3.3 A probabilistic approach.

Consider the Cauchy problem for a linear parabolic differential equation, that
is,

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ (0,∞)× Rd,

u(0, x) = h(x) for x ∈ Rd.
(17)

This is a special case of the Cauchy-Dirichlet problem (16) when D = Rd.
A very well-known result, the Feynman-Kac’s Theorem, relates the solution
to the Cauchy problem with a functional of the solution to a stochastic
differential equation. We enounce it

Theorem 0.3.2 (Feynman-Kac’s Formula.). Let σ : [0,∞) × Rd and b :
[0,∞) × Rd be continuous functions, locally Lipschitz continuous in x with
the following growth condition: for all T > 0, exists K1(T ) such that

‖σ(t, x)‖2 + ‖b(t, x)‖2 ≤ K1(T )2(1 + ‖x‖2),

for all 0 ≤ t ≤ T , x ∈ Rd.
Let c : [0,∞) × Rd → [0,∞), f(t, x) : [0,∞) × Rd → R and h : Rd → R

be continuous functions such that for all T > 0, exists K2(T )

|h(x)|+ |f(t, x)| ≤ K3(T )(1 + ‖x‖2k)

for all (t, x) ∈ [0, T ]× Rd for some k ≥ 1.
Assume there exists a classical solution u ∈ C([0,∞)×Rd)∩C1,2((0,∞)×

Rd) to equation (17) with the polynomial growth condition

sup
0≤t≤T

|u(t, x)| ≤ C(1 + ‖x‖2µ), x ∈ Rd,

for some constants C > 0 and µ ≥ 1.
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Then u has the representation

u(t, x) = Ex

[∫ t

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds+ e

R t
0 c(t−r,X(r))drh(X(t))

]
,

(18)
where X is the solution to the stochastic differential equation

dX(s) = b(t− s,X(s))ds+ σ(t− s,X(s))dW (s), X(0) = x.

For a proof of this theorem see [?] section 6.3.
This theorem states that in case of existence of a classical solution u, then

it has the representation given in equation (18). The natural question is if
we can proceed in the other direction, that is, define v : [0,∞)× Rd as

v(t, x) =Ex

[∫ t

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R t
0 c(t−r,X(r))drh(X(t))

]
.

(19)

and then prove, that under some suitable assumptions about the coefficients,
the function v satisfies the Cauchy problem.

In order to understand this approach, in the following part we will explain
it considering only the Brownian motion and the Laplace operator.

0.3.4 Brownian motion and the Laplace operator.

Consider the Cauchy problem for the heat equation,

ut(t, x) =
1

2
∆u(t, x), (t, x) ∈ (0,∞)× Rd,

u(0, x) =h(x), x ∈ Rd.
(20)

In this section, we present a general procedure to construct a solution to
equation (20). In all the theorems we present only the main ideas used in
the proofs (see [?] chapter 4 for a detailed discussion).

The relation between the Brownian motion and the Laplace operator has
many approaches, one of them is the following: the Fundamental Theorem
of Calculus states that if g : [0,∞) × Rd → R is a function such that g ∈
C1,1([0,∞)× Rd) and γ : [0,∞)→ Rd is a differentiable curve, then

g(s, γ(s)) = g(0, γ(0)) +

∫ s

0

gt(r, γ(r))dr +

∫ s

0

Dg(r, γ(r)) · dγ(r).
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The Brownian motion has the characteristic that despite their sample paths
are continuous, they are nowhere differentiable with unbounded variation.
This requires a new form of integration (Ito’s integral), and so we get that if
g ∈ C1,2([0,∞)× Rd) and W (s) is a d-dimensional Brownian motion, then

g(s,W (s)) =g(0,W (0)) +

∫ s

0

gt(r,W (r))dr +

∫ s

0

Dg(r,W (r)) · dW (r)

+

∫ s

0

1

2
∆g(r,W (r))dr

=g(0,W (0)) +

∫ s

0

(
gt(r,W (r)) +

1

2
∆g(r,W (r))

)
dr

+

∫ s

0

Dg(r,W (r)) · dW (r).

The extra term (∆g) comes from the quadratic variation of the Brownian
motion. Hence, Ito’s formula and some martingale arguments are the funda-
mental tools needed in order to construct a solution to equation (20) with
the Brownian motion.

For simplicity, assume that h is a bounded function. The first step is to
find a martingale

Theorem 0.3.3. Assume u ∈ C1,2((0,∞)×Rd) satisfies equation (20). Then

M(s) := u(t− s,W (s)),

is a local martingale.

Proof. It follows from Ito’s formula

u(t− s,W (s)) =u(t,W (0)) +

∫ s

0

(
−ut(t− r,W (r)) +

1

2
∆u(t− r,W (r))

)
dr

+

∫ s

0

Dg(t− r,W (r)) · dW (r)

=local martingale

since −ut + 1
2
∆u = 0.

Next we prove that the solution is unique
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Theorem 0.3.4. Assume u ∈ C([0,∞)×Rd)∩C1,2((0,∞)×Rd) is a bounded
solution to equation (20). Then

u(t, x) = Ex [h(W (t))] .

Proof. Since u is bounded, then M(s) is an uniformly integrable martingale,
and so is closed. Thanks to the martingale property

u(t, x) = Ex [u(t− s,W (s))] .

Letting s ↑ t and using the boundary condition the proof is complete.

Let v : [0,∞)× Rd be defined as

v(t, x) := Ex [h(W (t))] . (21)

The next step is to prove that if v ∈ C1,2 then it fulfils equation (20) and so
we have existence.

Theorem 0.3.5. Let v be defined as in equation (21). Assume that v ∈
C([0,∞)× Rd) ∩ C1,2((0,∞)× Rd). Then v fulfils equation (20).

Proof. The Markov property implies that for any s < t

Ex [h(W (t))|Fs] = EW (s) [h(W (t− s))] = v(t− s,W (s))

and so Ms := v(t − s,W (s)) is a martingale. Again, using Ito’s formula we
get

v(t− s,W (s)) =v(t, x) +

∫ s

0

(
vs +

1

2
∆v

)
(t− r,W (r))dr

+ local martingale.

Combining both equations we get that{∫ s

0

(
−vt +

1

2
∆v

)
(t− r,W (r))dr

}
0≤s≤t

is a local martingale. Since it is continuous and locally of bounded variation,
then it has to be identically 0, and so

−vt(t, x) +
1

2
∆v(t, x) = 0

for all (t, x) ∈ (0,∞)× Rd.
The boundary condition is proved by letting t ↓ 0 and the Dominated

Convergence Theorem.
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The final part is to prove the regularity of v. This follows from the
continuity of the Brownian motion with respect to x and the integration with
respect to the Gaussian kernel. We enounce the theorem (see [?] section 4.1
for a proof).

Theorem 0.3.6. Assume that h is a bounded continuous function and let v
be defined as in equation (21). Then v ∈ C([0,∞)×Rd)∩C1,2((0,∞)×Rd)

In conclusion, we presented a method that constructs a solution to the
Heat Equation by means of a Brownian motion. In the next chapters, we
use similar ideas to construct a solution for some more general parabolic
problems using, instead of the Brownian motion, a stochastic process that
satisfies a stochastic differential equation.

0.4 Risk process.

0.4.1 Cramér-Lundberg model.

The theory of non-life risk has presented a great development since Lundberg
in 1903 introduced a collective risk model based on a Poisson claim process.
Lundberg proposed that the reserve capital of an insurance company has the
following dynamic

R(t) = x+ ct− S(t),

where

• x ≥ 0 is the initial capital,

• c > 0 stands for the premium income rate and

• S(t) =
∑N(t)

n=1 ξn, where {N(t)}t≥0 is a Poisson process with intensity
λ and jump times {ηn}∞n=1; {ξn}∞n=1 are i.i.d. positive random vari-
ables independent of the Poisson process, corresponding to the incom-
ing claims, with common distribution Q and mean µ <∞.

This process is one of the simplest models for the reserve capital. It only
considers three fundamental aspects: the original reserve, an income cor-
responding to the charged premiums and an outcome corresponding to the
paid claims. It assumes that the number of insured clients is large enough so
that the premium rate is constant independent of the claims received by the
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company. The exponential interarrival times (because of the Poisson pro-
cess), makes this process a suitable one for modeling non-life insurance due
to the lack of memory. Despite its simplicity, this model is not completely
understood and it is still studied in these days.

One of the main concerns for the company is to understand the possi-
bility of a default, that is, the probability that the reserve capital becomes
insufficient in order to face a claim. For that, define the ruin time as

τ := inf{t > 0|R(t) < 0}

and the ruin and survival probability as

ψ(x) := P [τ <∞|R(0) = x] ,

δ(x) := P [τ =∞|R(0) = x] .

The probability of ruin is not a classical utility function as we discussed in
Section 0.2.1, however it is a very important topic for the insurance math-
ematics. For a regulation agency it is important to study the probability
of ruin as a function of the reserve capital in order to demand a minimum
retention level for the insurance company to guarantee the non-default with
its clients.

The dynamic of the Cramér-Lundberg model is an special case of the
dynamic described in equation (8), when:

• b(x, α) ≡ c,

• σ(x, α) ≡ 0,

• γ(x, α, z) = −z and the Poisson measure is generated by the Levy
process {S(t)}t≥0.

The performance criteria (ruin probability) is an special case of function (9)
when:

• c(x, α) ≡ 0,

• f(x, α) ≡ 0,

• g(x) ≡ 1.

As in the general case, one of the main tools for the study of the properties
of the ruin probability is the HJB equations’ approach. For the survival
probability, we have the following theorem (for a proof see [?] section 5.3)
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Theorem 0.4.1. The survival probability δ(x) is continuous in R+. Let Q
denote the distribution function of the claim ξ. If Q admits a density function
then δ ∈ C1 and fulfils

0 = cδ′(x) + λ

∫ ∞
0

[δ(x− z)− δ(x)]dQ(z). (22)

Thanks to equation (22), if the claims has an exponential distribution
then

ψ(x) =
λµ

c
exp

{
−c− λµ

cµ
x

}
.

In the general case, thanks to equation (22), some bounds and the asymptotic
behavior for the ruin probability are known (see [?] section 5.4).

0.4.2 Ruin model with investment.

Since the introduction of the Cramér-Lundberg process, more complex mod-
els have been studied taking into account aspects of the insurance like invest-
ment, reinsurance, payment of dividends among other possibilities. There are
many authors for this problem (see [?], [?], [?], [?], [?], [?] and [?] and the
references therein). In all these cases, finding the ruin probability is one of
the main problems. In this section, we focus in the investment problem for
an insurance company, in particular in [?] and [?].

Consider the Cramér-Lundberg process,

R(t) = x+ ct− S(t),

and assume that additionally we let the insurance company to put their
reserve capital into some investment instruments: a non-risk bonus and a
risky asset, with the following dynamics

dZ0(t) =Z0(t)rdt,

dZ(t) =Z(t)µdt+ Z(t)σdW (t),

where µ > r ≥ 0, σ > 0 and {W (t)}t≥0 is an standard Brownian motion
independent of the claim process {S(t)}t≥0.

Let A denote the set of all admissible investment strategies and let A =
{At}t≥0 ∈ A where At denotes the amount of money invested in the risky
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asset at time t. The reserve process with investment strategy A is

X(t;A) =R(t) +

∫ t

0

As
dZ(s)

Z(s)
+

∫ t

0

(X(s−)− As)
dZ0(s)

Z0(s)

=x+

∫ t

0

[c+ bAs + rX(s−)]ds+

∫ t

0

σAsdW (s)− S(t),

(23)

where b := µ− r.
We define the ruin time as

τ(A) := inf{t > 0|X(t;A) < 0}

and the respective probability of ruin and survival

ψ(x;A) := P [τ(A) <∞|X(0;A) = x] ,

δ(x;A) := P [τ(A) =∞|X(0;A) = x] .

Let

δ(x) := sup
A∈A
{δ(x;A)}.

Our goal is to analyze the survival probability under an optimal investment
strategy A∗t , that is,

δ(x;A∗) = δ(x).

Again, this problem is an special case of the general problem presented
in section 0.2.2, considering:

• b(x, α) = c+ rx+ (µ− r)α,

• σ(x, α) = σα,

• γ(x, α, z) = −z and the Poisson measure is generated by the Levy
process {S(t)}t≥0,

• c(x, α) ≡ 0,

• f(x, α) ≡ 0,

• g(x) ≡ 1.
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Following a similar argument as the one used to propose equation (6), we
propose the following HJB equation for this problem

sup
α∈R

{
1

2
σ2α2f ′′(x) + (c+ bα + rx)f ′(x) + λ

∫ ∞
0

[δ(x− z)− δ(x)]dQ(z)

}
= 0.

(24)
If f ′′(x) < 0 then the supremum exists, and in this case

α∗(x) = − bf ′(x)

σ2f ′′(x)
. (25)

0.4.3 Verification and Existence Theorems.

In this section, we enounce the Verification and the Existence Theorems for
the Optimal Investment problem given in [?].

Theorem 0.4.2 (Verification Theorem.). Assume there exists a solution
f(x) of (24) with maximizing function α∗(x) with the following properties:

• f(0), f ′(0) > 0,

• f(x) = 0 for x < 0,

• limx→∞ f(x) = 1 and

• f(x) ∈ C2(0,∞).

• α∗(0) = 0

Then f ′(x) > 0 for x > 0, and if At is an arbitrary admissible investment
strategy for which the reserve process X(t;A), t ≥ 0 is defined, then the
corresponding survival probability satisfies

δ(x;A) ≤ f(x) = δ(x;A∗), x ≥ 0

where A∗t = α∗(X(t−)).

The main ideas are similar to the ones for Theorem 0.2.1, however there
exist some particular features of this problem that are worth to be mentioned.
The boundary conditions are not classical in a differential equation’s sense.
This happens because the risk process cannot reach the boundary in a con-
tinuous form (α∗(0) = 0). The other boundary condition is given in infinite,
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this leads to the extra problem of proving that the risk process defined in
equation (23) tends to infinite for any admissible strategy. These problems
modify the general procedure considered for a proof to a Verification The-
orem. In Chapter ?? we give a detailed proof of this Theorem for a more
general investment model.

Regarding the existence problem, substituting α∗ in equation (24) we get
that

λ

∫ ∞
0

f(x− z)dQ(z)− λf(x) + (c+ rx)f ′(x) =
1

2

µ2f ′(x)2

σ2f ′′(x)
. (26)

As we mentioned above there exist some difficulties with this equation: the
boundary condition, the integral part and the nonlinear part. Hipp and
Plum in [?] solve this problem by considering each problem separately. The
solution to equation (26) is constructed by approximation. There are two
main steps in the approximation: the first one approximates the integral
part

∫
fdQ and the second one approximates the nonlinearity f ′

f ′′
. Next, we

present the Existence Theorem and give a brief sketch of the proof.

Theorem 0.4.3 (Existence Theorem.). Assume that Q has a density q. Then
equation (24) has a solution f(x) with the properties required by the Verifi-
cation Theorem

Sketch of the proof. We consider two main steps:
Step 1. Approximation of the integral part.
Consider the following equation

λg(x)− λf(x) + (c+ rx)f ′(x) =
1

2

µ2f ′(x)2

σ2f ′′(x)
, (27)

and assume there exists a classical solution. Then let δ0 be the solution to
equation (6) and define fn for n ≥ 1 as the solution to

λ

∫ x

0

fn−1(x− z)dQ(z)− λfn(x) + (c+ rx)f ′n(x) =
1

2

µ2f ′n(x)2

σ2f ′′n(x)
.

Then it is proved that f := limn→∞ fn is the solution to equation (26).
Step 2. Approximation of the nonlinear part.
To find a solution to equation (27) the problem is transformed into the fol-
lowing equivalent system

λ(V (x)− u(x))− c(x)V ′(x) =
1

2

√
U(x)V ′(x), (28)
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and√
U(x)

[(
λ+

1

2
− c′(x)

)
V ′(x)− λg′(x)

]
+c(x)V ′(x) =

1

4
U ′(x)V ′(x), (29)

To find a solution to the system (28), (29) an approximation argument is
used again, that is, define V0 ≡ 0 and for n ≥ 0 solve the following equations
alternatively

1

4
U ′n+1 = c(x) +

√
Un+1(x)

[
λ+

1

2
− c′(x)−

g′(x)(c(x) + 1
2

√
Un+1(x))

λ(Vn(x)− g(x))

]
.

(30)
and then

V ′n+1(x) =
λ(Vn+1(x)− g(x))

c(x) + 1
2

√
Un+1(x)

(31)

It can be proved that (U, V ) = limn→∞(Un, Vn) is the solution to the system
(28), (29) and so there exists a solution to equation (27).

0.4.4 Risk process with stochastic volatility.

In recent years, different generalizations of the classical Black-Scholes model
for the dynamics of the asset prices have been studied. It has been considered
that the parameters of the model are stochastic and depend on external
factors. External factor can be: a leader interest rate, an exchange rate or
another asset price that have a strong influence in the market. We work with
generalized investment instruments.

We are interested in generalize the results of [?] and [?] when the market
has the following components:

• Let {W1(t),W2(t)}t≥0 be a two dimensional standard Brownian motion
independent of the process R(t).

• The external factor has the following dynamic

Y (t) = y +

∫ t

0

g(Y (s))ds+ β(ρW1(t) + εW2(t)),

with 0 ≤ ρ ≤ 1, ε =
√

1− ρ2.



0.4. RISK PROCESS. 23

• For investment we have a non-risk bonus and a risky asset, both de-
pending on the external factor

dZ0(t) =Z0(t)r(Y (t))dt,

dZ(t) =Z(t)µ(Y (t))dt+ Z(t)σ(Y (t))dW1(t),

The reserve process with investment strategy {At}t≥0 is

X(t;A) =R(t) +

∫ t

0

As
dZ(s)

Z(s)
+

∫ t

0

(X(s−)− As)
dZ0(s)

Z0(s)

=x+

∫ t

0

[c+ b(Y (s))As + r(Y (s))X(s−)]ds

+

∫ t

0

σ(Y (s))AsdW1(s)− S(t),

where b(·) := (µ− r)(·).
We define the ruin time as

τ(A) := inf{t > 0|X(t;A) < 0}

and the respective probability of ruin and survival

ψ(x, y;A) := P [τ(A) <∞|X(0;A) = x, Y (0) = y] ,

δ(x, y;A) := P [τ(A) =∞|X(0;A) = x, Y (0) = y] .

Our goal is to analyze the survival probability under an optimal investment
strategy A∗t that maximize it over all admissible strategies, that is,

δ(x, y;A∗) = sup
A∈A
{δ(x, y;A)}.

In Chapter ?? we present some of the partial results of this investigation.



Chapter 1

Linear parabolic differential
equations.

In this chapter we study the existence and uniqueness of a classical solution
to the Cauchy-Dirichlet problem for a linear parabolic differential equation
in a general unbounded domain. Let L be the differential operator

L[u](t, x) :=
d∑

i,j=1

aij(t, x)Diju(t, x) +
d∑
i=1

bi(t, x)Diu(t, x)

where {aij} = a = σσ′, Di = ∂
∂xi

and Dij = ∂2

∂xi∂xj
. The Cauchy-Dirichlet

problem is

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x), (t, x) ∈ (0,∞)×D,
u(0, x) = h(x), x ∈ D, (1.1)

u(t, x) = g(t, x), (t, x) ∈ (0,∞)× ∂D

where D ⊂ Rd is an unbounded, open, connected set with regular boundary.
As we mentioned in the introduction, when the domain is bounded or the

coefficients are bounded the problem is well understood (see [?], [?], [?], [?]
and [?])

In the last years, parabolic equations with unbounded coefficients in un-
bounded domains have been studied in great detail. Many authors have con-
sidered unbounded coefficients, (b and σ) satisfying a Lyapunov type growth
assumption, and bounded data. Using the theory of semigroups, the exis-
tence of a classical solution to the Cauchy-Dirichlet problem has been studied

1
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by Fornaro, Metafune and Priola (2004) in [?], Bertoldi and Fornaro (2005) in
[?], Bertoldi, Fornaro and Lorenzi (2007) in [?], Hieber, Lorenzi and Rhandi
(2007) in [?] among others.

We follow the same ideas presented in Section ??.

1.1 Preliminaries, hypotheses and notation.

In this section we present the hypotheses and the notation used in this chap-
ter.

We will consider D ⊂ Rd an unbounded, open, connected set with bound-
ary ∂D and closure D. We assume that D has a regular boundary, that is,
for any x ∈ ∂D , x is a regular point (see [?] Chapter III Section 4 or [?]
Chapter 2 Section 4, for a detailed discussion of regular points). We denote
the hypotheses on D as H0.

1.1.1 Stochastic differential equation.

Let (Ω,F ,P, {F}s≥0) be a complete filtered probability space and let {W} =
{Wi}di=1 be a d-dimensional brownian motion defined in it. For t ≥ 0 and
x ∈ D consider the stochastic differential equation

dX(s) = b(t− s,X(s))ds+ σ(t− s,X(s))dW (s), X(0) = x, (1.2)

where b = {bi}di=1 and σ = {σij}di,j=1. Despite this process is the natural
one for solving equation (1.1), it does not posses many good properties. The
continuity of the flow process does not imply the continuity with respect to
t. Furthermore, although this process is a strong Markov process, is not
homogeneous in time, a very useful property for proving the results in this
chapter.
To overcome these difficulties, we augment the dimension considering the
following process

dξ(s) = −ds, ξ(0) = t. (1.3)

Then the process {ξ(s), X(s)} is solution to

dξ(s) =− ds,
dX(s) =b(ξ(s), X(s))ds+ σ(ξ(s), X(s))dW (s),

(1.4)



1.1. PRELIMINARIES, HYPOTHESES AND NOTATION. 3

with (ξ(0), X(0)) = (t, x). Throughout this chapter we will use both pro-
cesses, X(s) and (ξ(s), X(s)), in order to simplify the exposition.
We need to define the following stopping times

τD := inf{s > 0|X(s) /∈ D} (1.5)

and
τ := τD ∧ t. (1.6)

Remark 1.1.1. Observe that τ is the exit time of the process (ξ(s), X(s))
from the set [0,∞)×D, i.e.

τ = inf{s > 0|(ξ(s), X(s)) /∈ [0,∞)×D}.

We can not guarantee that the process X(s) leaves the set D in a finite time,
however the process ξ(s) reaches the boundary s = 0 at time t. Thus, the
joint process (ξ(s), X(s)) leaves the set [0,∞)×D in a bounded time.

We assume the following hypotheses on the coefficients b and σ. We de-
note them by H1. The matrix norm considered is ‖σ‖2 := trσσ′ =

∑
i,j σ

2
ij.

H1:

Let

σ(r, x) :R× Rd →M(Rd × Rd)

b(r, x) :R× Rd → Rd,

be continuous functions such that

1. (Continuity.) Let λ ∈ (0, 1). For all T > 0, n ≥ 1 there exists
L1(T, n) such that

‖σ(r, x)−σ(s, y)‖2+‖b(r, x)−b(s, y)‖2 ≤ L1(T, n)2(|r−s|2λ+‖x−y‖2),

for all |r|, |s| ≤ T , ‖x‖ ≤ n, ‖y‖ ≤ n.

2. (Linear growth.) For each T > 0, there exists a constant K1(T ) such
that

‖σ(r, x)‖2 + ‖b(r, x)‖2 ≤ K1(T )2(1 + ‖x‖2),

for all |r| ≤ T , x ∈ Rd.
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3. (Local ellipticity.) Let A ⊂ D be any bounded, open, connected set
and T > 0. There exists λ(T,A) > 0 such that for all (r, x) ∈ [0, T ]×A
and η ∈ A ∑

i,j

aij(r, x)ηiηj ≥ λ(T,A)‖η‖2.

where {aij} = a = σσ′

Remark 1.1.2. Observe that the local ellipticity is only assumed on [0,∞)×
D. This condition is used to prove the existence of a classical solution to
equation (1.1) and so is only needed in that set. The local Lipschitz condition
and the linear growth are assumed on R × Rd to ensure the existence of a
strong solution to equation (1.4) for s ∈ [0,∞).

Remark 1.1.3. It follows from the non degeneracy (the local ellipticity) of
the process X(s), the regular boundary of the set D and Lemma 4.2, Chapter
2 in [?], that for any x ∈ D

Pt,x [τ = τ ′] = 1.

where τ ′ := inf{s > 0|(ξ(s), X(s)) /∈ (0,∞)×D} (see Remark 1.1.1).

The next proposition presents some of the properties of the process (ξ,X)
required in this work.

Proposition 1.1.1. As a consequence of H1, (ξ,X) has the following prop-
erties:

• for all (t, x) ∈ [0,∞) × Rd, there exists a unique strong solution to
equation (1.4),

• the process {ξ(s), X(s)}s≥0 is a strong homogeneous Markov process,

• the process {ξ(s), X(s)}s≥0 does not explode in finite time a.s.,

• the flow process {ξ(s, t), X(s, x)}s≥0,(t,x)∈[0,∞)×Rd is continuous a.s.,

• for all x ∈ Rd, T > 0 and r ≥ 1

Ex

[
sup

0≤s≤T
‖X(s)‖2r

]
≤ C(T,K1, r)(1 + ‖x‖2r). (1.7)
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Proof. See [?] chapter 6 or [?] chapter V for a proof of these properties.

Alternatively, we may assume these less restrictive assumptions. We de-
note them by H1’

H1’:

Let

σ(r, x) :[0,∞)× Rd →M(Rd × Rd)

b(r, x) :[0,∞)× Rd → Rd,

be continuous functions such that

1. (Continuity.) Let λ ∈ (0, 1). For all T > 0, n ≥ 1 there exists
L1(T, n) such that

‖σ(r, x)−σ(s, y)‖2+‖b(r, x)−b(s, y)‖2 ≤ L1(T, n)2(|r−s|2λ+‖x−y‖2),

for all 0 ≤ r, s ≤ T , ‖x‖ ≤ n, ‖y‖ ≤ n.

2. (Linear growth.) For each T > 0, there exists a constant K1(T ) such
that

‖σ(r, x)‖2 + ‖b(r, x)‖2 ≤ K1(T )2(1 + ‖x‖2),

for all 0 ≤ r ≤ T , x ∈ Rd.

3. (Local ellipticity.) Let A ⊂ D be any bounded, open, connected set
and T > 0. There exists λ(T,A) > 0 such that for all (r, x) ∈ [0, T ]×A
and η ∈ A ∑

i,j

aij(r, x)ηiηj ≥ λ(T,A)‖η‖2.

where {aij} = a = σσ′

Remark 1.1.4. If we assume H1’ we can extend the functions b(r, x) and
σ(r, x) to be defined for negative values of r as follows: let b̂ and σ̂ be defined
as

b̂(r, x) =

{
b(r, x), if r ≥ 0,
b(0, x), if r < 0,

and

σ̂(r, x) =

{
σ(r, x), if r ≥ 0,
σ(0, x), if r < 0.

It is easy to see that these functions satisfy H1 with the same constants L1

and K1.
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1.1.2 The Cauchy-Dirichlet problem.

Consider the following differential operator

L[u](t, x) :=
d∑

i,j=1

aij(t, x)Diju(t, x) +
d∑
i=1

bi(t, x)Diu(t, x)

where Di = ∂
∂xi

, Dij = ∂2

∂xi∂xj
and {aij}di,j=1 = a = σσ′. For the rest of the

chapter, we assume that the coefficients of L satisfies H1.
The Cauchy-Dirichlet problem for a linear parabolic equation is

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x), (t, x) ∈ (0,∞)×D,
u(0, x) = h(x), x ∈ D, (1.8)

u(t, x) = g(t, x), (t, x) ∈ (0,∞)× ∂D.

We assume the following hypotheses for the functions c, f , h and g. We
denote them by H2.

H2:

1. Let

c(r, x) :[0,∞)×D → R
f(r, x) :[0,∞)×D → R,

be continuous functions such that

• (Continuity.) Let λ ∈ (0, 1). For all T > 0, n ≥ 1 there exists a
constant L2(T, n) such that

‖f(r, x)−f(s, y)‖2+‖c(r, x)−c(s, y)‖2 ≤ L2(T, n)2(|r−s|2λ+‖x−y‖2),

for all 0 ≤ s, r ≤ T , x, y ∈ D with ‖x‖ ≤ n, ‖y‖ ≤ n.

• (Growth.) There exists c0 ≥ 0 such that

c(r, x) ≤ c0 for all (r, x) ∈ [0,∞)×D.

There exists k > 0, such that for all T > 0, a constant K2(T )
exists such that

|f(r, x)| ≤ K2(T )(1 + ‖x‖k),

for all 0 ≤ r ≤ T , x ∈ D
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2. Let

h(x) :D → R
g(r, x) :(0,∞)× ∂D → R,

be continuous functions such that

• (Growth.) There exists k > 0, such that for all T > 0, there
exists a constant K3(T ),

|h(x)|+ |g(r, x)| ≤ K3(T )(1 + ‖x‖k)

for all (r, x) ∈ [0, T ]×D.

• (Consistency.) There exists consistency in the intersection of
the space and the time boundaries, that is,

h(x) = g(0, x)

for x ∈ ∂D.

1.1.3 Additional notation.

If µ is a locally Lipschitz function defined in some set R, then for any bounded
open set A for which A ⊂ R, we denote by Kµ(A) and Lµ(A), the constants

Kµ(A) := sup
x∈A
‖µ(x)‖ <∞,

Lµ(A) := sup
x,y∈A,x6=y

‖µ(x)− µ(y)‖
‖x− y‖

<∞.

If ν : [0,∞)→ Rd, then for all T > 0

‖ν‖T := sup
0≤s≤T

‖ν(s)‖.

The space C1,2,λ
loc ((0,∞)×D) is the space of all functions such that they and

all their derivatives up to the second order in x and first order in t, are locally
Hölder of order λ,
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1.2 Main result.

In this section we present the main result of this chapter and some parts of
the proof.

Theorem 1.2.1. Assume H0, H1 and H2. Then there exists a unique
solution u ∈ C([0,∞) × D) ∩ C1,2,λ

loc ((0,∞) × D) to equation (1.8). The
solution has the representation

u(t, x) =Ex

[∫ τ

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R t
0 c(t−r,X(r))drh(X(t))1τD≥t

]
+ Ex

[
e

R τD
0 c(t−r,X(r))drg(t− τD, X(τD))1τD<t

]
where X is the solution to the stochastic differential equation

dX(s) = b(t− s,X(s))ds+ σ(t− s,X(s))dW (s), X(0) = x,

and τ := τD ∧ t, with

τD := inf{s > 0|X(s) /∈ D}.

Furthermore, for all T > 0

sup
0≤t≤T

|u(t, x)| ≤ C(T, c0, K1, K2, K3, k)(1 + ‖x‖k), x ∈ D, (1.9)

where c0, K1, K2, K3 and k are the constants defined in H1 and H2.

The proof of this Theorem is given by several Lemmas. The method we
will use has the following steps: first we define a functional of the process X
as a candidate solution. Let v : [0,∞)×D → R be defined as

v(t, x) :=Ex

[∫ t∧τD

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R t
0 c(t−r,X(r))drh(X(t))1τD≥t

]
+ Ex

[
e

R τD
0 c(t−r,X(r))drg(t− τD, X(τD))1τD<t

] (1.10)

If v ∈ C([0,∞)×D)∩C1,2((0,∞)×D), then there exists some standard ar-
guments (see [?] chapter 4) to prove that v is the unique solution to equation
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(1.8). The rest of this section is devoted to proving Theorem 1.2.1 in the
case when v is a “regular” function. The proof is divided into two lemmas:
the first one proves that if v ∈ C([0,∞)×D)∩C1,2((0,∞)×D), then v is a
solution to equation (1.8) and hence we get existence. The second one proves
that in case of existence of a classical solution, u, to equation (1.8), then it
is unique and has the form given by v in equation (1.10). The regularity of
v is proved in Section 1.3 below.

The next proposition gives an extension of the boundary data to all the
space [0,∞) × Rd. This extension is given to simplify the notation and is
required in the proofs to Lemmas 1.3.1 and 1.3.2 below.

Proposition 1.2.1. Assume H2. Then there exists a continuous function
G : [0,∞)× Rd → R such that

G(t, x) =g(t, x), (t, x) ∈ (0,∞)× ∂D
G(0, x) =h(x), x ∈ D.

Proof. Thanks to the consistency condition in H2 and the continuity of g
and h, we can extend by Tietze’s Extension Theorem (see [?] section 2.6)
the functions g, h from the closed set {0}×D∪ [0,∞)× ∂D to a continuous
function G defined in [0,∞)× Rd.

As a consequence of Proposition 1.2.1 we can write v in equation (1.10)
as follows

v(t, x) =Ex

[∫ τ

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R τ
0 c(t−r,X(r))drG(t− τ,X(τ))

]
.

(1.11)

We are ready to prove the existence and uniqueness of a solution to equation
(1.8) assuming v ∈ C1,2.

Lemma 1.2.1. Assume H0, H1 and H2. Let v be defined as in equation
(1.11) and assume that v ∈ C([0,∞)×D)∩C1,2((0,∞)×D). Then v fulfils
the following equation

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) =− f(t, x) (t, x) ∈ (0,∞)×D,
u(t, x) =G(t, x) (t, x) ∈ ∂((0,∞)×D).
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Furthermore, for all T > 0, there exists C such that

sup
0≤t≤T

|v(t, x)| ≤ C(T, c0, K1, K2, K3, k)(1 + ‖x‖k), x ∈ D,

where c0, K1, K2, K3 and k are the constants defined in H1 and H2.

Proof. Let 0 ≤ α ≤ t, then following the same argument used to prove
equation (1.46) in the proof of Theorem 1.3.2 in section 1.3 below we have
that

Ex

[∫ τ

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds+ e

R τ
0 c(t−r,X(r))drG(t− τ,X(τ))

∣∣∣∣Fα]
=

∫ α∧τD

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

+ e
R α∧τD
0 c(t−r,X(r))v(t− α ∧ τD, X(α ∧ τD)).

(1.12)

Because of H1 and H2 we have that the random variable inside the condi-
tional expectation is integrable and so the lefthand side of equation (1.12) is
a Fα-martingale, for α ∈ [0, t]. Since v ∈ C1,2 we can apply Ito’s formula to
e

R α
0 cdrv() to get

e
R α∧τD
0 c(t−r,X(r))drv(t− α ∧ τD, X(α ∧ τD)) = v(t, x)

+

∫ α∧τD

0

e
R s
0 c(t−r,X(r))dr(−vt + L[v] + cv)(t− s,X(s))ds

+

∫ α∧τD

0

Dv(t− s,X(s)) · σ(t− s,X(s))dW (s).

(1.13)

It follows from the continuity of Dv, σ and X(·) that

sup
0≤s≤α

‖Dv(t− s,X(s))‖‖σ(t− s,X(s))‖

is a.s. finite and then∫ α∧τD

0

Dv(t− s,X(s)) · σ(t− s,X(s))dW (s)



1.2. MAIN RESULT. 11

is a local martingale for 0 ≤ α ≤ t. So combining equations (1.12) and (1.13)
we get that

M(α) :=

∫ α∧τD

0

e
R s
0 c(t−r,X(r))dr(−vt + L[v] + cv + f)(t− s,X(s))ds

is a continuous local martingale for α ∈ [0, t]. Since M is locally of bounded
variation then M(α) ≡ 0. This implies that −vt + L[v] + cv + f = 0 for all
(t, x) ∈ (0,∞) × D. The boundary condition follows from the regularity of
the set D, the local ellipticity condition and the continuity of v in [0,∞)×D.

The second statement of the Theorem is proved with the same argument
used to prove equations (1.21) and (1.34) in the proofs of Lemmas 1.3.1 and
1.3.2 in Section 1.3 below.

The next Lemma proves the uniqueness of the solution.

Lemma 1.2.2. Assume H0, H1 and H2. Assume there exists a classical
solution u ∈ C([0,∞)×D) ∩ C1,2((0,∞) ∩D) to equation

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) =− f(t, x) (t, x) ∈ (0,∞)×D,
u(t, x) =G(t, x) (t, x) ∈ ∂((0,∞)×D),

(1.14)

such that for all T > 0, exists C for which

sup
0≤t≤T

|u(t, x)| ≤ C(T )(1 + ‖x‖µ) (1.15)

for some µ > 0. Then u has the following representation

u(t, x) =Ex

[∫ τ

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R τ
0 c(t−r,X(r))drG(t− τ,X(τ))

]
.

and hence the solution is unique.

Proof. Consider, for α ∈ [0, t], the process

e
R α∧τD
0 c(t−r,X(r))dru(t− α ∧ τD, X(α ∧ τD)).
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Applying Ito’s rule, we get

e
R α∧τD
0 c(t−r,X(r))dru(t− α ∧ τD, X(α ∧ τD)) = u(t, x)

+

∫ α∧τD

0

e
R s
0 c(t−r,X(r))dr(−ut + L[u] + cu)(t− s,X(s))ds

+

∫ α∧τD

0

Du(t− s,X(s)) · σ(t− s,X(s))dW (s).

A similar argument as the one used in the proof to Lemma 1.2.1 shows that∫ α∧τD

0

Du(t− s,X(s)) · σ(t− s,X(s))dW (s)

is a local martingale. Due to equation (1.14) we conclude that

M(α) :=e
R α∧τD
0 c(t−r,X(r))dru(t− α ∧ τD, X(α ∧ τD))

+

∫ α∧τD

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

is a local martingale for α ∈ [0, t]. Let {θn}n≥1 be a sequence of localization
times for M(α), i.e., θn ↑ ∞ a.s. as n → ∞ and M(α ∧ θn) is a martingale
for all n ≥ 1. Then for all n ≥ 1

u(t, x) =Ex

[
e

R α∧τD∧θn
0 c(t−r,X(r))dru(t− α ∧ τD ∧ θn, X(α ∧ τD ∧ θn))

]
+ Ex

[∫ α∧τD∧θn

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
.

Since 0 ≤ α ∧ τD ∧ θn ≤ t, using equation (1.15) we get

e
R α∧τD∧θn
0 c(t−r,X(r))dr|u(t− α ∧ τD ∧ θn, X(α ∧ τD ∧ θn))|

≤ec0tC(t) (1 + ‖X(α ∧ τD ∧ θn)‖µ)

≤ec0tC(t)

(
1 + sup

0≤s≤t
‖X(s)‖µ

)
.

And ∣∣∣∣∫ α∧τD∧θn

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

∣∣∣∣∣
≤
∫ α∧τD∧θn

0

ec0sK2(t)
(
1 + ‖X(s)‖k

)
ds

≤ec0ttK2(t)

(
1 + sup

0≤s≤t
‖X(s)‖k

)
.
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By equation (1.7) and the Dominated Convergence Theorem, letting n→∞
we get

u(t, x) =Ex

[
e

R α∧τD
0 c(t−r,X(r))dru(t− α ∧ τD, X(α ∧ τD))

]
+ Ex

[∫ α∧τD

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
.

Letting α ↑ t, a similar argument and the boundary condition proofs that

u(t, x) =Ex

[
e

R t∧τD
0 c(t−r,X(r))drG(t− t ∧ τD, X(t ∧ τD))

]
+ Ex

[∫ t∧τD

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
,

and the proof is complete.

1.3 Regularity of v.

In this section we prove that v ∈ C([0,∞)×D) ∩ C1,2,λ
loc ((0,∞)×D). First,

we prove using the continuity of the flow process X, that v is a continuous
function in [0,∞) × D. Since we are only assuming the continuity of the
coefficients, then the flow is not necessarily differentiable and so we can not
prove the regularity of v in terms of the regularity of the flow. To prove that
v ∈ C1,2, we show that v is the solution to a parabolic differential equation
in a bounded domain, for which we have the existence of a classical solution
and hence v ∈ C1,2.

1.3.1 Continuity of v.

Let (ξ,X) denote the solution to equation (1.4) and G be defined as in
Proposition 1.2.1, then v has the following form

v(t, x) =Et,x

[∫ τ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
+ Et,x

[
e

R τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

]
.

(1.16)

For simplicity, we write v = v1 + v2, where

v1(t, x) := Et,x

[∫ τ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
(1.17)
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and

v2(t, x) := Et,x

[
e

R τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

]
. (1.18)

Theorem 1.3.1. Assume H0, H1 and H2. Let v be defined as in equation
(1.16). Then v is continuous on [0,∞)×D.

The proof to this Theorem is divided into two lemmas.

Lemma 1.3.1. Assume H0, H1 and H2. Let v1 be defined as in equation
(1.17). Then v1 is continuous on [0,∞)×D.

Proof. First we prove the continuity on (0,∞)×D. For that, let

(tn, xn) −−−→
n→∞

(t, x)

in (0,∞)×D and ε > 0. We need to prove that there exists N(ε) ∈ N such
that for all n ≥ N

|v1(tn, xn)− v1(t, x)| < ε.

Denote by (ξ,X) and (ξn, Xn) the solutions to equation (1.4) with initial
conditions (t, x) and (tn, xn) respectively. Let τ and τn be their corresponding
exit times from [0,∞)×D.
Let α > 0, then there exists N1 ∈ N such that for all n ≥ N1

|(tn, xn)− (t, x)| < α. (1.19)

Observe that for all n ≥ N1, we get

τn ≤tn ≤ t+ α,

τ ≤t ≤ t+ α.
(1.20)

Define the random variables Yn as

Yn :=

∣∣∣∣∫ τn

0

e
R s
0 c(ξn(r),Xn(r))drf(ξn(s), Xn(s))ds

−
∫ τ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣ .
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The sequence {Yn}n≥N1 is uniformly integrable. To see that

E
[
Y 2
n

]
≤2E

[∣∣∣∣∫ τn

0

e
R s
0 c(ξn(r),Xn(r))drf(ξn(s), Xn(s))ds

∣∣∣∣2
]

+ 2E

[∣∣∣∣∫ τ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣2
]

≤2E

[∣∣∣∣∫ τn

0

ec0(t+α)K2(t+ α)(1 + ‖Xn(s)‖k)ds
∣∣∣∣2
]

+ Ct,x

≤2e2c0(t+α)K2
2(t+ α)E

[∣∣∣∣∫ τn

0

(
1 + sup

0≤r≤t+α
‖Xn(r)‖k

)
ds

∣∣∣∣2
]

+ Ct,x

≤4e2c0(t+α)K2
2(t+ α)(t+ α)2

(
1 + E

[
sup

0≤r≤t+α
‖Xn(r)‖2k

])
+ Ct,x

≤C(1 +K(1 + ‖xn‖2k)) + Ct,x

≤C(1 +K(1 + (‖x‖+ α)2k)) + Ct,x <∞,
(1.21)

where we use (1.19), (1.20), (1.7) and the polynomial growth of f .
Let M > 0, 0 < η < 1 and β > 0 and define the set

EM,n,η,β := {‖X‖t+α ≤M} ∩ {‖Xn −X‖t+α ≤ η} ∩ {|τn − τ | ≤ β}. (1.22)

Then

|v1(tn, xn)− v1(t, x)| ≤
∫

Ω

YndP

=

∫
EM,n,η,β

YndP +

∫
Ω\EM,n,η,β

YndP.

Since the sequence {Yn} is uniformly integrable, there exists δ(ε) such that
for any E ∈ F that satisfies P [E] < δ, we have

sup
n≥N1

∫
E

YndP <
ε

2
. (1.23)

It follows from Remark 1.1.3, Proposition 1.1.1 and Theorems ??, ?? in
Appendix ??, the existence of M and N2 such that

P [Ω \ EM,n,η,β] < δ(ε)
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for all n ≥ N2. Then for n ≥ N1 ∨N2 we get that

|v1(tn, xn)− v1(t, x)| ≤
∫
EM,n,η,β

YndP +
ε

2
.

For simplicity of notation, we write the set EM,n,η,β as E and define

A := [0, t+ α]× [−M − 1,M + 1]d (1.24)

and
Dt := [0, t+ α]×D. (1.25)

On the set E, for all n ≥ N1 and 0 ≤ s ≤ t+ α, it is satisfied that

(ξn(s), Xn(s)), (ξ(s), X(s)) ∈ A.

We have that∫
E

YndP ≤
∫
E

∫ τn∧τ

0

∣∣∣eR s
0 c(ξn(r),Xn(r)drf(ξn(s), Xn(s))

−e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))

∣∣∣dsdP (1.26)

+

∫
E

∫ τn∨τ

τn∧τ

(
e

R s
0 c(ξn(r),Xn(r))dr|f(ξn(s), Xn(s))|1τn>τ

+e
R s
0 c(ξ(r),X(r))dr|f(ξ(s), X(s))|1τn≤τ

)
dsdP. (1.27)

We first analyze (1.27).

(1.27) ≤
∫
E

∫ τn∨τ

τn∧τ
ec0(t+α)Kf (A ∩Dt)(1τn≤τ + 1τn>τ )dsdP

=ec0(t+α)Kf (A ∩Dt)

∫
E

|τn − τ |dP

≤ec0(t+α)Kf (A ∩Dt)β.

For (1.26) we get

(1.26) ≤
∫
E

∫ τn∧τ

0

e
R s
0 c(ξn(r),Xn(r))dr

×|f(ξn(s), Xn(s))− f(ξ(s), X(s))|dsdP (1.28)

+

∫
E

∫ τn∧τ

0

f(ξ(s), X(s))

×
∣∣∣eR s

0 c(ξn(r),Xn(r))dr − e
R s
0 c(ξ(r),X(r))dr

∣∣∣ dsdP. (1.29)
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Now

(1.28) ≤
∫
E

ec0(t+α)

∫ τn∧τ

0

Lf (A ∩Dt)(|tn − t|λ + ‖Xn(s)−X(s)‖)dsdP

≤ec0(t+α)(t+ α)Lf (A ∩Dt)(|tn − t|λ + η).

For (1.29) we need the following bound∣∣∣eR s
0 c(ξn(r),Xn(r))dr −e

R s
0 c(ξ(r),X(r))dr

∣∣∣ = e
R s
0 c(ξ(r),X(r))dr

×
∣∣∣∣exp

{∫ s

0

(c(ξn(r), Xn(r))− c(ξ(r), X(r)))dr

}
− 1

∣∣∣∣
≤ ec0s

(
exp

{∫ s

0

|c(ξn(r), Xn(r))− c(ξ(r), X(r))|dr
}
− 1

)
≤ ec0s

(
exp

{∫ s

0

Lc(A ∩Dt)(|tn − t|λ + ‖Xn(r)−X(r)‖)dr
}
− 1

)
≤ ec0s(exp{Lc(A ∩Dt)s(|tn − t|λ + η)} − 1).

(1.30)

since |ex−1| ≤ e|x|−1. If we choose N3 ∈ N such that |tn−t|λ ≤ 1
2Lc(A∩Dt)(t+α)

for all n ≥ N3 and η ≤ 1
2Lc(A∩Dt)(t+α)

, we get by the Mean Value Theorem
that∣∣∣eR s

0 c(ξn(r),Xn(r))dr − e
R s
0 c(ξ(r),X(r))dr

∣∣∣ ≤ ec0seLc(A∩Dt)s(|tn − t|λ + η). (1.31)

Then

(1.29) ≤ Kf (A ∩Dt)e
c0(t+α)eLc(A ∩Dt)(t+ α)2(|tn − t|λ + η).

Hence, to prove continuity we proceed as follows

• Let ε > 0 and 0 < α� 1.

• Let N1 ≥ N such that for all n ≥ N1

‖(tn, xn)− (t, x)‖ < α.

• Let δ(ε) > 0 that fulfils the uniformly integrable condition (1.23).

• Take M > 0 such that P [‖X‖t+α > M ] < δ(ε)
3

.
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• Define A := [0, t+ α]× [−M − 1,M + 1]d and Dt := [0, t+ α]×D.

• Let

η < min

{
1,

1

2Lc(A ∩Dt)(t+ α)
,

ε

16ec0(t+α)(t+ α)Lf (A ∩Dt)

,
ε

16Kf (A ∩Dt)ec0(t+α)eLc(A ∩Dt)(t+ α)

}
.

• Chose N2 ∈ N such that P [‖Xn −X‖t+α > η] ≤ δ(ε)
3

for all n ≥ N2

• Let N3 ∈ N such that

|tn − t|λ < min

{
1

2Lc(A ∩Dt)(t+ α)
,

ε

16ec0(t+α)(t+ α)Lf (A ∩Dt)

,
ε

16Kf (A ∩Dt)ec0(t+α)eLc(A ∩Dt)(t+ α)

}
.

for all n ≥ N3

• Let
β <

ε

4ec0(t+α)Kf (A ∩Dt)
,

and chose N4 ∈ N such that for all n ≥ N4, P [|τn − τ | > β] ≤ δ(ε)
3

.

Thus if N = N1 ∨N2 ∨N3 ∨N4, then for all n ≥ N

|v1(tn, xn)− v1(t, x)| < ε.

Therefore v1 is continuous in (0,∞)×D.
For the continuity at the boundary we make a similar argument. Let

(tn, xn) −−−→
n→∞

(t, x), where (tn, xn) ∈ (0,∞)×D and (t, x) ∈ ∂((0,∞)×D),

that is, either t = 0 or x ∈ ∂D. In both cases we get that τ = 0 a.s. and so
v1(t, x) = 0. Then we need to prove that

|v1(tn, xn)| −−−→
n→∞

0.

Let 0 < α� 1 and N1 ∈ N such that

‖(tn, xn)− (t, x)‖ < α.
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We get

τn ≤ tn < t+ α

for all n ≥ N1. For the continuity we have

|v1(tn, xn)| ≤E
[∫ τn

0

e
R s
0 c(ξn(r),Xn(r))dr|f(ξn(s), Xn(s))|ds

]
≤E

[∫ τn

0

ec0sK2(t+ α)(1 + ‖Xn(s)‖k)ds
]

≤ec0(t+α)K2(t+ α)E
[
τn

(
1 + sup

0≤r≤t+α
‖Xn(r)‖k

)]
−−−→
n→∞

0.

The convergence follows from the uniform integrability of

τn

(
1 + sup

0≤r≤t+α
‖Xn(r)‖k

)
for n ≥ N1, that τn

a.s.−−−→
n→∞

0 (see Theorem ?? in Appendix ??) and Theorem

5.2 in Chapter 5 of [?]. This completes the proof.

Lemma 1.3.2. Assume H0, H1 and H2. Let v2 be defined as in equation
(1.18). Then v2 is continuous on [0,∞)×D.

Proof. We use an analogous argument to the one in the proof of Lemma
1.3.1. First we prove the continuity in (0,∞)×D. Let

(tn, xn) −−−→
n→∞

(t, x),

with (tn, xn), (t, x) ∈ (0,∞)×D. Denote by (ξn, Xn) and (ξ,X) the solutions
to equation (1.4) with initial conditions (tn, xn) and (t, x) respectively, and
let τn and τ be its corresponding exit times from [0,∞)×D. Let 0 < α� 1
and N1 such that for all n ≥ N1

‖(tn, xn)− (t, x)‖ < α. (1.32)

This implies that

τn ≤ t+ α

τ ≤ t+ α.
(1.33)
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First we prove that the sequence of random variables

Yn :=
∣∣∣eR τn

0 c(ξn(r),Xn(r))drG(ξn(τn), Xn(τn))− e
R τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

∣∣∣
is uniformly integrable for all n ≥ N1.

E
[
Y 2
n

]
≤2E

[∣∣∣eR τn
0 c(ξn(r),Xn(r))drG(ξn(τn), Xn(τn))

∣∣∣2]
+ 2E

[∣∣∣eR τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

∣∣∣2]
≤2E

[
e2c0(t+α)K2

3(t+ α)(1 + ‖Xn(τn)‖k)2
]

+ Ct,x

≤2e2c0(t+α)K2
3(t+ α)E

[
(1 + sup

0≤r≤t+α
‖Xn(r)‖k)2

]
+ Ct,x

≤4e2c0(t+α)K2
3(t+ α)

(
1 + E

[
sup

0≤r≤t+α
‖Xn(r)‖2k

])
+ Ct,x

≤C(1 +K(1 + ‖xn‖2k)) + Ct,x

≤C(1 +K(1 + (‖x‖+ α)2k)) + Ct,x <∞,

(1.34)

where we use equations (1.32), (1.33), (1.7) and polynomial growth of G in
∂((0,∞)×D). As in Lemma 1.3.1, let ε > 0, then there exists δ(ε) > 0 such
that

sup
n≥N1

∫
E

YndP <
ε

2
(1.35)

for all E ∈ F , with P [E] < δ(ε).
Let EM,n,η,β be defined as in equation (1.22), and chose M > 0 and N2 ∈ N
such that

P [Ω \ EM,n,η,β] < δ(ε),

for all n ≥ N2.
For simplicity of notation, denote EM,n,η,β as E. Then

|v2(tn, xn)− v2(t, x)| ≤
∫
E

YndP +

∫
Ω\E

YndP

≤
∫
E

YndP +
ε

2
.

Let A and Dt be defined as in Lemma 1.3.1 (equations (1.24) and (1.25)).
Then on the set E we get that for all n ≥ N1 and 0 ≤ s ≤ t+ α,

(ξn(s), Xn(s)), (ξ(s), X(s)) ∈ A.
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So ∫
E

YndP ≤
∫
E

e
R τn
0 c(ξn(r),Xn(r))dr

× |G(ξn(τn), Xn(τn))−G(ξ(τ), X(τ))| dP (1.36)

+

∫
E

|G(ξ(τ), X(τ))|∣∣∣eR τn
0 c(ξn(r),Xn(r))dr − e

R τ
0 c(ξ(r),X(r))dr

∣∣∣ dP. (1.37)

We study each addend of the righthand side separately.

(1.36) ≤ ec0(t+α)

∫
E

|G(tn − τn, Xn(τn))−G(tn − τn, X(τn))|dP(1.38)

+ec0(t+α)

∫
E

|G(tn − τn, X(τn))−G(t− τ,X(τ))|dP. (1.39)

First we get a bound for (1.38). Since G is continuous, then it is uniformly
continuous on A. Then for ε > 0, there exists γ(c0, t, α, ε,M) such that

|G((t1, x1))−G(t2, x2))| < ε

8ec0(t+α)

for all (t1, x1), (t2, x2) ∈ A with ‖(t1, x1)− (t2, x2)‖ < γ(c0, t, α, ε,M). On the
set E, we have (tn − τn, Xn(τn)), (tn − τn, X(τn)) ∈ A and

‖(tn − τn, Xn(τn))− (tn − τn, X(τn))‖ < η.

So if we choose η < γ, we get

(1.38) <
ε

8ec0(t+α)
.

Next we study (1.39). Thanks to Theorem ?? we know that τn
a.s−−−→

n→∞
τ . This

and the continuity of X(·) and G implies that

G(tn − τn, X(τn))
a.s.−−−→
n→∞

G(t− τ,X(τ)).

On the set E we have that (tn − τn, X(τn)), (t− τ,X(τ)) ∈ A and so

|G(tn − τn, X(τn))−G(t− τ,X(τ))|1E ≤ 2KG(A).
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By the Dominated Convergence Theorem, there exists, N3 ∈ N such that

(1.39) <
ε

8ec0(t+α)

for all n ≥ N3.
To give a bound for (1.37) we observe that on the set E∣∣∣∣∫ τn

0

c(ξn(r), Xn(r))dr −
∫ τ

0

c(ξ(r), X(r))dr

∣∣∣∣
≤
∫ τn∧τ

0

|c(ξn(r), Xn(r))− c(ξ(r), X(r))|dr

+

∫ τn∨τ

τn∧τ
(|c(ξn(r), Xn(r))|1τn≥τ + |c(ξ(r), X(r))|1τn<τ ) dr

≤
∫ τn∧τ

0

Lc(A ∩Dt)(|tn − t|λ + ‖Xn(r)−X(r)‖)dr +Kc(A ∩Dt)|τn − τ |

≤Lc(A ∩Dt)(t+ α)(|tn − t|λ + η) +Kc(A ∩Dt)β.

Making a similar argument as the one made in equations (1.30) and (1.31)
we get∣∣∣eR τn

0 c(ξn(r),Xn(r))dr − e
R τ
0 c(ξ(r),X(r))dr

∣∣∣
≤ec0(t+α)e

[
Lc(A ∩Dt)(t+ α)(|tn − t|λ + η) +Kc(A ∩Dt)β

]
,

if |tn − t|λ < 1
3Lc(A∩Dt)(t+α)

, η < 1
3Lc(A∩Dt)(t+α)

and β < 1
3Kc(A∩Dt) . Then

(1.37) ≤ KG(A)ec0(t+α)e
[
Lc(A ∩Dt)(t+ α)(|tn − t|λ + η) +Kc(A ∩Dt)β

]
.

Hence, to prove continuity we proceed as follows

• Let ε > 0 and 0 < α� 1.

• Let N1 ∈ N such that for all n ≥ N1

‖(tn, xn)− (t, x)‖ < α.

• Let δ(ε) > 0 that fulfils the uniformly integrable condition (1.35).

• Take M > 0 such that P [‖X‖t+α > M ] < δ(ε)
3

.
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• Define A := [0, t+ α]× [−M − 1,M + 1]d and Dt := [0, t+ α]×D.

• Let

η < min

{
1, γ(c0, t, α, ε,M),

1

3Lc(A ∩Dt)(t+ α)

,
ε

12KG(A)ec0(t+α)eLc(A ∩Dt)(t+ α)

}
.

• Chose N2 ∈ N such that P [‖Xn −X‖t+α > η] < δ(ε)
3

for all n ≥ N2

• Let

β < min

{
1

3Kc(A ∩Dt)
,

ε

12KG(A)ec0(t+α)eKc(A ∩Dt)

}

• Chose N3 ∈ N such that P [|τn − τ | > β] < δ(ε)
3

for all n ≥ N3.

• Let N4 ∈ N such that

|tn − t|λ < min

{
1

3(Lc(A ∩Dt)(t+ α)

,
ε

12KG(A ∩Dt)ec0(t+α)eLc(A ∩Dt)(t+ α)

}
.

for all n ≥ N4.

• Let N5 ∈ N to get∫
E

|G(tn − τn, X(τn))−G(t− τ,X(τ))|dP <
ε

8ec0(t+α)
,

for all n ≥ N4.

So for N = N1 ∨N2 ∨N3 ∨N4 ∨N5, we have that if n ≥ N then

|v2(tn, xn)− v2(t, x)| < ε,

and we conclude that v2 is continuous over (0,∞)×D.
Next we prove the continuity in the boundary. Let (tn, xn) −−−→

n→∞
(t, x),
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where (tn, xn) ∈ (0,∞)×D and (t, x) ∈ ∂((0,∞)×D), that is, either t = 0
or x ∈ ∂D. In both cases we get that τ = 0 a.s.. We need to prove that

|v2(tn, xn)−G(t, x)| −−−→
n→∞

0.

Let 0 < α� 1 and N1 ∈ N such that

‖(tn, xn)− (t, x)‖ < α.

So, for all n ≥ N1,
τn ≤ tn < t+ α.

We have that

|v2(tn, xn)−G(t, x)| ≤ E
[
e

R τn
0 c(ξn(r),Xn(r))dr

×|G(tn − τn, Xn(τn))−G(t, x)|
]

(1.40)

+ E
[
|G(t, x)|

∣∣∣eR τn
0 c(ξn(r),X(r))dr − 1

∣∣∣] . (1.41)

Because
∣∣eR τn

0 c(ξn,Xn) − 1
∣∣ ≤ ec0(t+α) + 1 and

∫ τn
0
c(ξn(r), Xn(r))dr

a.s.−−−→
n→∞

0

(due to Theorem ??, that τ = 0 a.s. and the continuity of c in [0,∞)×D),
by the Dominated Convergence Theorem we get for (1.41)

E
[
|G(t, x)|

∣∣∣eR τn
0 c(ξn(r),X(r))dr − 1

∣∣∣] −−−→
n→∞

0.

Next we work with (1.40). As in equation (1.34) we can prove that the
sequence {

e
R τn
0 c(ξn(r),Xn(r))dr|G(tn − τn, Xn(τn))−G(t, x)|

}
n≥N1

is uniformly integrable. We have that

(1.40) ≤ ec0(t+α)E [|G(tn − τn, Xn(τn))−G(tn − τn, X(τn))|] (1.42)

+ec0(t+α)E [|G(tn − τn, X(τn))−G(t, x))|] . (1.43)

We repeat the same arguments made for the estimates to equations (1.38)
and (1.39) with equation (1.42) and (1.43) respectively. Then we can prove
that

E [|G(tn − τn, Xn(τn))−G(tn − τn, X(τn))|] −−−→
n→∞

0,

and
E [|G(tn − τn, X(τn))−G(t, x))|] −−−→

n→∞
0.

So v2 ∈ C([0,∞)×D) and the proof is complete.
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1.3.2 Differentiability of v.

Let 0 ≤ T0 < T1 and A ⊂ D be a bounded, open, connected set with C2

boundary. Consider the following parabolic differential equation

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ (T0, T1]× A,
u(T0, x) = v(T0, x) for x ∈ A,
u(t, x) = v(t, x) for (t, x) ∈ (T0, T1]× ∂A.

(1.44)

where the boundary data is v. If we assume H0, H1 and H2, by the conti-
nuity of v (Theorem 1.3.1) and Theorem ?? we can guarantee the existence
of a unique classical solution to equation (1.44). To prove the regularity of
v, we show that it coincides with the solution to equation (1.44) in the set
(T0, T1)× A and so v ∈ C1,2((T0, T1)× A). Since T0, T1 and A are arbitrary,
we get the desired regularity. We are ready to prove the next Theorem.

Theorem 1.3.2. Assume H0, H1 and H2. Let v be defined as in equation
(1.16). Then v ∈ C1,2,λ

loc ((0,∞)× Rd).

Proof. Let w be the solution to equation (1.44). Define the following stopping
times

θT := inf{s > 0|ξ(s) < T0}
θA := inf{s > 0|X(s) /∈ A},
θ :=θT ∧ θA.

Following the same arguments of Section 5 in Chapter 6 of [?], we can prove
that w has the following representation

w(t, x) =Ex

[∫ θ

0

e
R s
0 c(t−r,X(r))drf(t− s,X(s))ds

]
+ Ex

[
e

R θ
0 c(t−r,X(r))dsv(t− θ,X(θ))

]
.

(1.45)

Next we prove that v satisfies the following equality

v(t, x) =Et,x

[∫ θ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
+ Et,x

[
e

R θ
0 c(ξ(r),X(r))dsv(ξ(θ), X(θ))

]
.

(1.46)
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Let v1 and v2 be defined as in equations (1.17) and (1.18). We will use the
following representation of v1 and v2,

v1(t, x) = Et,x

[∫ τ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
and

v2(t, x) = Et,x

[
e

R τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

]
.

First we work with v1

v1(t, x) = Et,x

[
E
[∫ τ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣Fθ]]
= Et,x

[
E
[∫ θ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣Fθ]] (1.47)

+Et,x

[
E
[∫ τ

θ

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣Fθ]] (1.48)

We study the addends of the righthand side separately

(1.47) = Et,x

[∫ θ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
.

For (1.48) we make a couple of changes of variable to get

(1.48) =Et,x

[
E
[∫ τ−θ

0

e
R s+θ
0 c(ξ(r),X(r))drf(ξ(s+ θ), X(s+ θ))ds

∣∣∣∣Fθ]]
=Et,x

[
e

R θ
0 c(ξ(r),X(r))drE

[∫ τ−θ

0

e
R s
0 c(ξ(r+θ)),X(r+θ))drf(ξ(s+ θ), X(s+ θ))ds

∣∣∣∣Fθ]] .
Since θ < τD (see Remark 1.1.1) and θ is bounded, we get that

τ = inf{s > 0|(ξ(s), X(s)) /∈ [0,∞)×D}
=θ + inf{s > 0|(ξ(s+ θ), X(s+ θ)) /∈ [0,∞)×D},

so

τ − θ = Θθ ◦ τ (1.49)



1.3. REGULARITY OF V . 27

where Θ· denotes the shift operator. Since the process (ξ,X) is a homoge-
neous strong Markov process, we get that

E
[∫ Θθ◦τ

0

e
R s
0 c(Θθ◦(ξ,X)(r))drf(Θθ ◦ (ξ,X)(s))ds

∣∣∣∣Fθ
]

=Eξ(θ),X(θ)

[∫ τ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(r), X(s))ds

]
=v1(ξ(θ), X(θ)).

(1.50)

So

v1(t, x) =Et,x

[∫ θ

0

e
R s
0 c(ξ(r),X(r))drf(ξ(s), X(s))

]
+ Et,x

[
e

R θ
0 c(ξ(r),X(r))drv1(ξ(θ), X(θ))

]
.

(1.51)

Next we study v2. Again, for the integral we use a couple of changes of
variables to get

v2(t, x) =Et,x

[
E
[
e

R τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

∣∣∣Fθ]]
=Et,x

[
e

R θ
0 c(ξ(r),X(r))drE

[
e

R τ−θ
0 c(ξ(r+θ),X(r+θ))drG(ξ(τ), X(τ))

∣∣∣Fθ]] .
We write

G(ξ(τ), X(τ)) = G(ξ(τ − θ + θ), X(τ − θ + θ)).

Then, the argument of the conditional expectation can be written as

e
R Θθ◦τ
0 c(Θθ◦(ξ,X)(r))drG(Θθ ◦ (ξ,X)(Θθ ◦ τ))

Using a similar argument as the one in equations (1.49) and (1.50) we get

v2(t, x) =Et,x

[
e

R θ
0 c(ξ(r),X(r))dr

× Eξ(θ),X(θ)

[
e

R τ−θ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

] ]
=Et,x

[
e

R θ
0 c(ξ(r),X(r))drv2(ξ(θ), X(θ))

]
.

(1.52)

Combining equations (1.51) and (1.52) we prove that (1.46) holds.
So due to equations (1.45) and (1.46) we have that v = w. Since w ∈
C1,2,λ((T0, T1) × A) (see Theorem ?? below) and T0 T1 and A are arbitrary
we get that v ∈ C1,2((0,∞) × Rd) ∩ C1,2,λ

loc ((0,∞) × Rd) and the proof is
complete.
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We are ready to proof the Main Theorem

Proof of Theorem 1.2.1. The proof follows from Theorems 1.3.1 and 1.3.2
and Lemmas 1.2.1 and 1.2.2.



Chapter 2 

Linear parabolic differential 
equations. 

In this chapter we study the existence and uniqueness of a classical solution 
to the Cauchy-Dirichlet problern for a linear po.rabolic differential equation 
in o. general unbounded dornain. Let L be the differential operator 

d d 

L[U](t, x) := L aij(t, x)Diju(t, x) + L bi(t, x)D,u(t, x) 
i,j=l 

where {aij} = a = arr, Di = 8:¡ and Dij = 8X~8xj' The Cauchy-Dirichlet 
problem is 

-Ut(t, x) + L[U](t, x) + c(t, x)u(t, x) = - ¡(t, x), 
u(O, x) = h(x), 

u(t, x) = g(t, x), 

(t, x) E (0,00) x D, 

x E D, (2.1) 

(t, x) E (0,00) x 8D 

where D e ][{d is an unbounded, open, connected set with regular boundary. 
As we mentioned in the introduction, when the dornain is bounded or the 

coefficients are bounded the problern is well understood (see [41], [40], [26], 
[43] and [25]) 

In the last years, parabolic equations with unbounded coefficients in un
bounded domains have been studied in great detail. Many authors have con
sidered unboundcd coefficients, (b and 0") satisfying a Lyapunov type growth 
assurnption, and bounded data. Using the theory of sernigroups, the existence 
of a classical solution to the Cauchy-Dirichlet problern has been studied by 

53 
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Fornaro, Metafune and Priola (2004) in [24]' Bertoldi and Fornaro (2005) in 
[2], Bertoldi, Fornaro and Lorenzi (2007) in [3], Hieber, Lorenzi and Rhandi 
(2007) in [32) arnong others. 

We follow the same ideas presented in Section 1.3.4. 

2.1 Preliminaries, hypotheses and notation. 

In this section we present the hypotheses and the notation used in this chap
ter. 

We will consider D e ad an unbounded, open, connected set with bound
ary a D snd closure D. We 6BSume that D has a regular boundary, that is, 
for any x E 8D , x is a regular point (see [41] Chapter III Section 4 or [17] 
Chapter 2 Section 4, for a detailed discussion of regular points). We denote 
the hypotheses on D as HO. 

2.1.1 Stochastic differential equation. 

Let (O, F, P, {F}.';2:0) be a complete filtered probability space and let {W} = 

{Wi )1 ... 1 be a d-dimensional brownian motion defined in it. For t ::::: O and 
x E D consider the stochastic differential equation 

dX(s) = b(t - s, X(s»ds + l.1(t - s,X(s»dW(s), X(O) = x, _ (2.2) 

where b = {b¡ }1=1 and 1.1 = {l.1ij }t,j-l' Despite this process is the natural 
one for solving equation (2.1), it does not pOSBes many good properties. The 
continuity of the flow procesa does not imply the continuity with respect to 
t. Furthermore, although this process is a strong Markov procesa, is not 
homogeneoUB in time, a very useful property for proving the resulta in this 
chapter. 
To overcome these difficulties, we augment the dimension considering the 
following process 

d.;(s) = -ds, €(O) = t. (2.3) 

Then the process {~( s), X (s)} is Bolution to 

cJe(s) = - ds, 

dX(s) =b(~(s), X (s))ds + 1.1(~(s), X(s»dW(s), 
(2.4) 
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with (~(O),X(O» = (t,x). Throughout this chapter we will use both pro
cesses, X(s) and (~(s),X(s», in order to simplify the exposition. 
We need to define the following stopping times 

TD := inf{s > OIX(s) fj. D} (2.5) 

and 
T := TD /\ t. (2.6) 

Remark 2.1.1. Observe that T is the exit time 01 the procesa (((8), X(s» 
from the set [O, 00) x D, i. e. 

T = inf{s > 0l(€(s), X(s» fj. [0,00) x D}. 

We can not guarantee that the process X (s) [ea ves the set D in a finite time, 
however the process €(s) reaches the boundary s = O at time t. Thus, the 
joint process ({(s),X(s» [eaves the set [0,00) x D in a bounded time. 

We assume the following hypotheses on the coefficients b and 17. We de
note them by Hl. The matrix norm considered is 1117112 := traa' = Li,i a~j. 

Hl: 

Let 

a(r, x) :IR. x IRd --+ M(lRd 
X IRd

) 

b(r, x) :lR x IRd --+ }Rd, 

be continuous functions such that 

1. (Continuity.) Let A E (0,1). For aH T > O, n ~ 1 there exists 
L} (T, n) such that 

lIa(r, x) - a(s, y)1I 2 + IIb(r, x) -b(s, y)112 :::; L}(T, n)2(1r- 812>,+ Ilx _yIl2), 

for aH Irl, [si:::; T, IIxll ::; n, lIyll :::; n. 

2. (Linear growth.) For each T > O, there exists a constant }(l(T) such 
that 

lIa(r,x)1I2 + IIb(r,x)112:::; Kl(T)2(1 + IlxUZ), 

for aU Irl :::; T, x E IRd . 
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3. (Local ellipticity.) Let A e D be any bounded, open, connected set 
and T > O. There exists >"(T, A) > O such that for aIl (r, x) E [O, T] x A 
andr¡EA 

L aij(r, x)77i''1j ;::: >"(T, A)II77W· 
i,j 

where {aij} = a = uc! 

Remark 2.1.2~ Observe that the local ellipticity is OTÚY assumed on [0,00) x 
D. This condition Í3 used to prove the existence of a classical solution to 
equation (2.1) and so is only needed in that set. The local Lipschitz condition 
and the linear growth are assumed on lR x ]Rd to ensure the exístence of a 
strong solutíon to equation (2.4) far s E [0,00). 

Remark 2.1.3. Jt foUows from the non degeneracy (the local ellipticity) of 
the process X(s), the regular boundary ofthe set D and Lemma 4.2, Chapter 
2 in [17j, that for any x E D 

lP't,x [T = T'] = 1. 

where T':= inf{s > OI(~(s),X(s)) f/- (0,00) x D} (see Remark 2.1.1). 

The next proposition presents sorne of the properties of the process (€, X) 
required in this work. 

Proposition 2.1.1. As a consequence of Hl, (€, X) has the following prop
erties: 

• lor all (t, x) E [0,00) X lRd
, there exists a unique strong solution to 

equation (2.4), 

• the process {€ (s), X (s) }, 2:0 is a strong homogeneo'US M arkov process, 

• the process {€(s), X(s)},2:0 docs not explode in finite time a.s., 

• the flow p'rocess {((s, t), X(s, x)}~2:0,(t,x)EI0,oo)XRd is continuo'US a.s., 

• lor all x E lRd
, T > O and r ;::: 1 
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Proof- See [57] chapter 60r [39] chapter V for a proof of these properties. O 

Alternatively, we may assume these less restrictive assumptiOllS. We de
note them by Hl' 

Hl': 

Let 

a(r, x) :[0,(0) x]Rd _ M(]Rd X ]Rd) 

b(r, x) :[0,(0) x]Rd _lR.d, 

be continuous functions such that 

L (Continuity.) Let.\ E (0,1). For aH T > O, n 2: 1 there exista 
L1(T, n) such that 

Ila(r, x) -a(s, y)1I2+ IIb(r, x)-b(s, y)1I 2 ::; L1(T, n)2(lr_sI2>.+ IIx-yIl2), 

for all ° ::; r, s::; T, IIxll ::; n, lIyll ::; n. 

2. (Linear growth.) For each T > 0, there exists a constant Kl (T) Buch 
that 

lIo-(r, X)1I2 + Ilb(r, X)1I2 ::; Kl (T)2(1 + IIxI1 2
), 

for all O::; r ::; T, x E IRd . 

3. (Local ellipticity.) Let A e D be any bounded, open, connected set 
and T > O. There exists .\(T, A) > O such that for all (r, x) E [O, T] x A 
and r¡ E A 

i,j 

where {aij} = a = aer 
Rernark 2.1.4. Jf we assume Hl' we can extend the functions b(r, x) and 
a-(r, x) fo be defined for negative values ofr as follows: let b and a be defined 
as 

b( ) = { b(r,x), if r 2: O, 
r,x b(O,x), ifr < O, 

and 
~( ) _ { a(r, x), ifr ~ O, 
a- r,x - (O) ifr < O. a- ,x, 

Jt is easy to see that these functions satisfy Hl with the same constants Ll 
and K 1 . 
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2.1.2 The Cauchy-Dirichlet problem. 

Consider the following differential operator 

d d 

C[u](t,x):= L aij(t,x)Diju(t,x) + ¿bi(t,x)D¡u(t,x) 
',j=1 i=1 

where Di = -/;;, Dij = &, and {aij }tJ""1 = a = ua'. For the rest of the 
chapter, we assume that the coefficients of e satisfies Hl. 
The Cauchy-Dirichlet problem for a linear parabolic equation iB 

-Ut(t,x) + C[u](t, x) + c(t,x)u(t, x) = -J(t,x), 

u(O, x) = h(x), 
u(t, x) = g(t, x), 

(t, x) E (0,00) x D, 

x E D, (2.8) 

(t, x) E (O, (0) x an. 
We assume the following hypotheses for the functions e, J, h and g. We 
denote them by H2. 

H2: 

1. Let 

e(r, x) :[0, (0) x D ---+ lR. 

J(T, x) :[0,00) x D ---+ IR., 

be continuous functions such that 

• (Continuity.) Let ..\ E (0,1). For all T > O, n ~ 1 there exists a 
constant ~(T, n) such that 

IIJ(T, x)-J(s, y) 112+ 11 C(T, x)-c(s, y)1I2 ~ L2(T, n)2(IT_sI2A+llx_yIl2), 

for a11 O ~ 8, T ~ T, x, y E D with IIxll ~ n, lIyll ~ n . 

• (Growtb.) '!bere exists Ca ~ O such that 

c(r, x) ~ Ca for aH (T, x) E [0,00) x D. 

There exists k > O, such that for aIl T > O, a constant K 2 (T) 
exista such that 

IJ(T, x)1 ~ K 2(T)(l + IIxllk), 

for aIl O ~ T ~ T, x E D 
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2. Let 

h(x) :D -t lR 

g(r, x) :(0,00) x 8D -t lR, 

be continuous functions such that 

• (Growth.) There exists k > 0, such that for aIl T > 0, there 
exista a constant K3 (T), 

for aIl (r, x) E [O, T] x D. 

• (Consistency.) There exists consistency in the intersection of 
the space and the time boundaries, that is, 

h(x) = g(O, x) 

for x E aD. 

2.1.3 Additional notation. 

If f.l is a locally Lipschitz function defined in sorne set R, then for any bounded 
open set A far which A e R, we denote by KJ.I(A) and Ljt(A), the constants 

KJ.I(A) := supllf.l(X)11 < 00, 
xEA 

LJ«A):= sup 1If.l{x) - JL{Y) 11 < oo. 
x.yEA.x~1I IIx - yll 

If v: [0,00) -t lRd
, then for a.ll T > ° 

IIvIlT:= sup IIv(s)lI. 
09$T 

The space CI~''\(O, 00) x D) is the spa.ce of aH functions such that they and 
a11 their derivatives up to the second order in x and first arder in t, are locally 
Holder of order A, 
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2.2 Main resulto 

In this section we present the main result of this chapter and sorne parta of 
the proof. 

Theorem 2.2.1. Assume HO, Hl and H2. Then there exists a unique 
solution u E C([O,oo) x D) n C::""((O, 00) x D) to equation (2.8). The 
solution has the representation 

u(t,x) =E", [1r 
eJ;c(t-r,x(r»drf(t - S,X(8»dS] 

+ lE", [ef~c(t-r,X(r»drh(X(t»lrD2:t] 

+Ex [eJ~Dc(t-r,X(r»drg(t - TD,X(TD»lrD <t] 

where X is the solution to the stochastic differential equation 

dX(s) = b(t - s, X(s»ds + a(t - s, X(s»dW(s), X(O) = x, 

and T := TD 1\ t, with 

TD := inf{s > OIX(s) 1- D}. 

Purthermore, for all T > O 

sup lu(t, x)1 ::; C(T, Co, Kt, K 2 , K 3 , k)(1 + l/xl/k), X E D, (2.9) 
O::;t::;T 

where C-o, Kl, K 2 , K3 and k are the constants defined in Hl and H2. 

The proof of this Theorem is given by several Lemmas. The method we 
wiIl use has the foIlowing steps: first we define a functional of the process X 
as a candidate solution. Let v : [O, 00) x D --t 1R be defined as 

v(t,x) :=Ex [l t
t\T

D 
eJ;c(t-r,X(r»drf(t - S,X(S»ds] 

+ E", [eJ~C(t-r,x(r»drh(X(t»lTD2:t] (2.10) 

+ Ex [eJ;D c(t-r,X(r))dr g(t - rá, X (rD»lTD <t] 

If v E C([O, oo) x D) n C1,2((0, 00) x D), then there exista sorne standard 
arguments (see [16] chapter 4) to prove that v is the unique solution to 

1 
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equatiún (2.8). The rest of this section is devoted tú proving Theorem 2.2.1 
in the case when v is a "regular" function. The proof is divided into two 
lemmas: the first one proves that if v E C([O, (0) x D) n C1,2(0, 00) x D), 
then v is a solution to equation (2.8) and hence we get existence. The second 
one proves that in case of existence of a classical solution, u, to equation 
(2.8), then it is unique and has the fonn given by v in equation (2.10). The 
regularity of v is proved in Section 2.3 below. 

The next proposition gives sn extension of the boundary da.ta to all the 
spoce [0,00) x lRd . This extension is given tú simplify the notation and is 
required in the proofs to Lemmas 2.3.1 and 2.3.2 below. 

Proposition 2.2.1. Assume H2. Then there exista a continuous function 
C : [O, 00) X IRd ----+ IR such that 

C(t, x) =g(t, x), (t, x) E (0,00) x 8D 
C(O, x) =h(x), x E D. 

Proo/. Thanks to the consistency condition in H2 and the continuity of 9 
and h, we can extend by Tietze's Extension Theorern (see [15] section 2.6) 
the functions g, h frorn the closed set {O} x D U [0,00) X 8D to a continuous 
function G defiiled in [0,00) X IRd. O 

As a consequence of Proposition 2.2.1 we can write v in equation (2.10) 
as follows 

v(t,x) =lEx [l T 

eJ;c(t-r,X(r»drf(t - s,X(S))dsJ 

+ Ex [eJ: c(t-r,X(r))drC(t - T, X(T»] . 
(2.11) 

We are ready to prove the existence and uniqueness of a solution to equation 
(2.8) assuming v E C1,2. 

Lemma 2.2.1. Assume HO, H1 and H2. Let v be defined as in equation 
(2.11) and assume that v E C([O, 00) x D) n C1,2((0, 00) x D). Then v fulfils 
the following equation 

-Ut(t, x) + .c[u](t, x) + c(t, x)u(t, x) = - f(t, x) (t,x) E (O~ 00) x D, 

u(t, x) =C(t, x) (t, x) E 8(0,00) x D). 
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Furthermore, for all T > O, there exísts C s'lJ.ch that 

sup Iv(t, x)1 :5 C(T, C{), K 1 , K 2 , K3 , k)(l + IIxllk), X E D, 
O:-:;t:-:;T 

where Co, K 1, K2 , K:J and k are the constants defined ín Hl and H2. 

Proaf. Let O :5 o: ::s: t, then following the sarue argument used to prove 
equation (2.46) in the proof of Theorem 2.3.2 in section 2.3 below we have 
that 

lE", [11' eJC:c(t-r,X(r»dr f(t - s, X(s»ds + ero c(t-r,X(r»drC(t - T, X(T»I Fa] 
¡OI./\1'D 

= Jo eJC: c(t-r,x(r»dr f(t - s, X(s»ds 

+ eI;'''''D c(t-r,x(r»v(t - o: 1\ TD, X(o: /\ TD»' 

(2.12) 

Because of Hl and H2 we have that the random variable inside the condi
tional expectation is integrable and so the lefthand side of equation (2.12) is 
a. Fo.-martingale, for o: E [O, t]. Since v E Cl,2 we can apply 1to's formula to 
eIo" cdrvO to get 

efo"/IT"D c(t-r,X(r»drv(t - o: 1\ TD, X(o /\ TD» = v(t, x) 

(o./\TD 

+ Jo eJC:c(t-r,X(r»dr( -Vt + C[V] + CV)(t - S, X(s»ds 

1
0./\TD 

+ o Dv(t - s, X(S»' a(t - s, X(s»dW(s). 

(2.13) 

It follows from the continuity of Dv, a and X (.) that 

sup IIDv(t - s, X(s»IIIIa(t - s,X(s»II 
0:::; .. :-:;0. 

is a.s. finite and then 

¡o./VTD 

Jo Dv(t - s, X(s» . a(t - s, X(s»dW(s) 
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is a local martingale for O :-:; a S; t. So combining equations (2.12) and (2.13) 
we get that 

(o./\rD 

M(a):= Jo eJ;c(t-r,X(r»dr( -Vt + C[v] + cv + f)(t - s, X(s))ds 

is a continuous local martingale for a E [O, t). Since M is locally of bounded 
variation then M(a) ::::= O. This implies that -Vt + C[v] + cv + f = O for a11 
(t, x) E (0,00) x D. The boundary condition follows from the regularity of 
the set D, the local ellipticity condition and the continuity of v in [0,00) x D. 

The second statement of the Theorem is proved with the same argument 
used to prove equations (2.21) and (2.34) in the proofs of Lemmas 2.3.1 and 
2.3.2 in Section 2.3 below. O 

The next Lernma proves the uniqueness of the solution. 

Leroma 2.2.2. Assume HO, H1 and H2. Assume there exists a classical 
solution u E C([O, 00) x D) n C 1,2( (0,00) n D) to equation 

-Ut(t, x) + C[u](t, x) + c(t, x)u(t, x) = - f(t, x) (t, x) E (0,00) X D, 

'Il(l, x) =G(t, :t) (t, :r) E 8(0,00) x D), 
(2.14) 

s'Uch that f07' all T > O, exists C for which 

sup lu(t, x)1 :-:; C(T)(l + IIxW') 
O::;t~T 

for sorne jj > O. Then 11 has the following representation 

u(t, x) =E", [11' eJ'; c(t-r,X(r))dr f(t - s, X (s ))dS] 

+ E", [ef;C(t-r,X(r»dTG(t_T,X(T))]. 

and hence the solution is unique. 

Proo! Consider, for a E [O, t], the process 

(2.15) 
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Applying Ito's rule, we get 

efoOATD c(t-r,X(r»dr u(t - a 1\ TD, X (a A TD)) = u(t, x) 
{O/ATD 

+ Jo . ef;C<t-r,X(r))dr(_Ut+C[u}+cu)(t-s,X(s))ds 

(O/IITD 
+ Jo Du(t - s, X(s)) . a(t - s, X(s))dW(s). 

A similar argument as the one used in the proof to Lémm80 2.2.1 shows that 
(CtATD 

Jo Du(t - s, X(s» . cr(t - s, X(s})dW(s) 

is a local martingale. Due to equ8otion (2.14) we conclude that 

M (a) :=ekATD c(t-r,X(r»dr u( t - a A Tn, X (a A TD») 

+ 10/ArD 
efrJC(I-r,X(r»dr J(t - s,X(s»ds 

is a local martingale for a E [O, tJ. Let {9n}n~1 be a sequence of localization 
times for M(a), Le., (}n i 00 a.s. as n - 00 and M(a 1\ (}n) is a martingaIe 
for aIl n ~ 1. Then for all n ~ 1 

u(t, x) =Ex [efo''''I~DA9n c(t-r,X(r»dru(t - a A TD 1\ 9n,X(a A TD 1\ (}n»] 

+ Ex llO//lT
D

J\lJn ef; c(t-r,X(r»dr J(t - s, X (s ))dS] . 

Since O :-:; a 1\ TD 1\ (}n ::; t, using equation (2.15) we get 

And 

efoQMDI\9n c(t-r,X(r))drlu(t - a 1\ Tn 1\ (}n, X(a 1\ TD A (}n))! 

:-:;eC{)tC(t) (1 + IIX(a ATn A 9n )W') 

:-:;eC{)tC(t) (1 + o~~~t IIX(s)W') . 

I 
(O/ATDAfJn Jo ef; c(t-r,X(r»dr J(t - s, X(s»ds 

:::; lCt
I\T

D

AfJn eCo6 Kz(t) (1 + IIX(s)lIk ) ds 

:::;eCottKz(t) (1 + sup IIX(s)ll k
) • 

0:569 
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By equation (2.7) and the Dominated Convergence Theorem, letting n - 00 
we get 

u( t, x) =Ex [eIo"""-D c(t-r,X (r»dr u( t - Ú' /\ TD, X (a /\ TD» ] 

+lEx [¡M'D eI;c(t-r,x(r»drf(t _ s,X(S»dS] . 

Letting a i t, a similar argument and the boundary condition proofs that 

. u(t, x) =Ex [ef~I\1"D c(t-r,X(r»drG(t - t /\ TD, X(t /\ TD))] 

+ lE", [¡t/\'D ef;c(t-r,X(r»dr f(t _ s, X(S»dS] , 

and the proof is complete. o 

2.3 Regularity of v. 

In this section we prove that v E C([O, 00) x D) n Cl~~,A((O, 00) x D). First, 
we prove using the continuity of the ftow process X, that v is a continuous 
function in [0,00) x D. Sincc we are only assuming the continuity of the 
coefficients, then the ftow is not necessarily differentiable and so we can not 
prove the regularity of 11 in terms of the regularity of the B.ow. To prove that 
v E C1,2, we show that v is the solution to a parabolic differential equation 
in a bounded doma.in, for which we have the existence of a classicru solution 
and henee v E C1,2. 

2.3.1 Continuity of v. 

Let (e, X) denote the solution to equation (2.4) and G be defined as in 
Proposition 2.2.1, then v has the following form 

v(t, x) =Et,x [1' eI; c({(r),X(r»dr f(~(s), X(S»dS] 

+ IEt,x [eJ; c({(r),x(r))drC(';(T), X(T»] . 

For simplicity, we write 11 = VI + 112, where 

Vl(t, x) := lEt,x [1' eJ;C(~(r),x(r»drf(.;(s),X(S»dS] 

(2.16) 

(2.17) 
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and 

Theorem 2.3.1. Assume HO, HI and H2. Let v be defined as in equation 
(2.16). Then v is continuous on [0,00) x D. 

The proof to thís Theorem is divided into two lemmas. 

Lemma 2.3.1. Assume HO, Hl and H2. Let VI be defined as in equation 
(2.17). Then v] is continuous on [0,00) x D. 

Proa! First we prove the continuity on (0,00) x D. For that, let 

(tn, Xn) - (t, x) 
n->OQ 

in (0,00) x D and t' > O. We need to prove that there exists N(t') E N such 
that for sIl n ;::: N 

Iv¡(tn,Xn ) - 'UI(t,x)1 < L 

Denote by (~, X) snd (~n, X n ) the solutions to equation (2.4) with initial 
conditions (t, x) snd (tn, Xn) respectively. Let T and Tn be their corresponding 
exit times froro [O, 00) x D. 
Let a > O, then there exists NI E N such that for aIl n ;::: N] 

Observe that for aH n ~ NI, we get 

Tn -::;tn -::; t + a, 

T -::;t :S t + n. 

Define the random variables Yn as 

Yn := 111''' eJ; c(("(r).X,, (r»dr f(€n(s), Xn (s) )ds 

-11' eJ; c(((r).X(r»dr f(€( s), X (s) )ds l. 

(2.19) 

(2.20) 
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The sequence {Yn}n~Nl is uniformly integrable. To see that 

E [Y.?l :<:2E [\ [' ef~ <(<.( < ),X.«))"," f (~n (s), X n (s ))dS!'] 

+ 21E [\[ ef~ q«<),X«))"," f( ~(s), X (s lldS\'] 
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:<:2E [\[' e"'('+<» K,(t + 0)(1 + IIXn(s)II')dS\'] + e" 

~2e2co(t+a) Ki(t + a)lE [1 rn (1 + sup IIXn(r)lIk
) dsl2] + Ct,x Jo O~r~t+a 

::;4e2C¡¡(t+<» Ki(t + a)( t + a)2 (1 + lE [ sup 11 X .. (r) I12kJ) + Ct,x 
0~r9+a 

:::;C(1 + K(1 + !!Xn Il 2k )) + Ct•x 

:::;C(1 + K(1 + (\Ix!! + a)2k)) + C t•x < 00, 

where we use (2.19), (2.20), (2.7) and the polynomial growth of f. 
Let M > O, 0< TJ < 1 and j3 > O and define the set 

(2.21) 

EM ... ,r¡,~ := {IIX!lHa :o:; Al} n {IIX .. - X lit+<> ::; TJ} n {IT .. - TI :::; ,e}. (2.22) 

Then 

IVl(l .. ,xn ) - Vl(t,x)1 ::; 10 Yr,dlP 

= 1 Y .. dP + ¡ YndlP. 
EM, ... .,,{} O\EM ,n,.,,/3 

Since the sequence {Yn} is uniformly integrable, there exists 8(1':) such tha.t 
for any E E :F that satisfies lP [El < 8, we have 

(2.23) 

It follows from Remark 2.1.3, Proposition 2.1.1 and Theorems A.1.2, A.3.1 
in Appendix A, the existence of M and N2 such that 
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for a11 n 2': N2 • Then for n 2': NI V N2 we get that 

IVI(tn,xn) - VI(t,X)l ~ 1 YndP+~. 
EM ,n,'1,1J 

For simplicity of notation, we write the set EM ,n,1JJ3 6S E and define 

A:= [O,t+a] x [-M -1,M + l]d 

and 
D, := [O, t + al x D. 

On the set E, for aU n 2': NI and O ~ s ~ t + a, it is satisfied that 

We have tha.t 

L YndlP < fe l Tn

l\T leJ; ~(~,,(r),Xn(r)dr f(E.n(s), Xn(s» 

(2.24) 

(2.25) 

_eJ;c(e(r),X(r»dr f(f.(s), X(s))ldsdIP (2.26) 

+ { r" Vr (eJ~ C(€n(r),X" (r»dr 1!(E.n (s), Xn(s »11T.,>r 
lE lrn/\T 
+eJ; c(e(r),X(r»<1rlf(E.( s), X (s ))11r"ST ) dsd1P'. (2.27) 

We first analyze (2.27). 

(2.27) :::::: ( l rnVT 

éo(t+a) K¡(A n Dt)(trnSr + tTn>r)dsdlP' 
lE rnllr 

=eCo(t+et) K¡(A n Dt) fe IrOl - rldP 

::::::eCo(t+et) K,(A n Dt){3. 

For (2.26) we get 

(2.26) < {¡rnllr eJ; c(€" (r),X,,(r))dr 
lE o 
x I!(~n(s), Xn(s» - J(E.(s), X(s»ldsdlP (2.28) 

+ ll rn
/\T f(E.(s), X(s» 

x I eJ; c(€,,(r),Xn(r»dr - eJo" c({(r),X(r»dr I dsdlP. (2.29) 
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Now 

(2.28) ::; fe eC{)(t+a) l Tn
/\T L,(A n Dt)(ltn - ti>' + IIXn(s) - X(s)lI)dsdP 

::;eco(t+o)(t + a)L,(A n Dt)(ltn - tI"~ +1]). 

For (2.29) we need the following bound 

lef; e(t;n(r),Xn(r»dr ~ef; e({(r),X(r»dr I = efr: c({(r),X(r»dr 

X lexp {fo" (c(€n(r), Xn(r» ~ c(e(r), X(r»)dr} ~ 11 

::; eco" (exp {18Ic(en(r), Xn(r» - c(e(r), X(r»ldr } - 1) 
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S eC~8 (exp {18 

Le(A n Dt)(ltn - ti>' + IIXn(r) - X(r)IDdr} - 1) 
::; eCo"(exp{Lc(A n Dt)s(ltn - ti>' + 1])} - 1). 

(2.30) 

since lex -11 ::; e1xl-1. If we choose N3 E N such that Iln -ti>' S 2Lc(Anb.)(t+a) 

for aU n ~ N3 and TI ::; 2LdAnb.)(t+o)' we get by the Mean Value Theorem 
that . 

leJ;C({n(r),Xn(r»dr _ef;C({(T),X(T»drl::; eCMeLc(AnDt)s(ltn -ti>' +1]). (2.31) 

Then 

Hence, to prove continuity we proceed as follows 

• Let ( > O and O < o: « 1. 

• Let NI ~ N such that for aH n ~ NI 

lI(tn, Xn) - (t, X) 11 < 0;. 

• Let 8(f) > O that fulfils the uniformly integrable conclition (2.23). 

• Take M > O such that lP [IIXIlt+o > M] < ~. 
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• Define A := [O, t + a] x [-M - 1, M + l]d and Dt := [O, t + a] x D. 

• Let 

. {1 1 E 
1] < mm , 2Lc(A n Dt)(t + a)' 16eCO (Ha)(t + a)L,(A n Dt) 

, 16K¡(A n Dt)eCO(H:)eLc(A n Dt)(t + a)}' 
• Chose N 2 E N such that P [IIXn - Xlkra > 1]] :S: ~ for aU n ~ N2 

• Let Ns E N such that 

{
lE 

t -t.\<min I n I 2Lc(A n Dt)(t + a)' 16eco(t+a)(t + a)L¡(A n Dt) 

, 16K¡(A n Dt)eCo(t+:)eLc(A n Dt)(t + a)} . 

. • Let 
1: 

(.J < 4eco(t+a)K¡(A n Dt)' 

and chose N 4 E N such that for all n ~ N4 , lP' [lTn - TI > j1] :s: ~. 
Thus if N = NI V N2 V N3 V N4 , then for all n 2': N 

Therefore V¡ is continuous in (0,00) x D. 
For the continuity at the boundary we make a similar argumento Let 

(tn,xn) ----t (t,x), where (tn,xn) E (0,00) x D and (t,x) E 8«0,00) x D), 
n->oo 

that is, either t = O or x E 8D. In both cases we get that T = O a.s. and 80 

V1 (t, x) = O. Then we need to prove that 

I Vl (tn , In) I "----------4 O. 
n--+OO 

Let O < a « 1 and NI E N such that 
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Weget 
Tn ~ tn < t + a 

for all n 2: NI' For the continuity we have 

IVI (tn, xn)1 ::;E [iTn 

eJ; C(€n(r),Xn(r»drlf(~n(s), Xn ( s) )ldS] 

::;E [iTn 

eco" Kz(t + a)(1 + IIXn(s)lIk)dS] 
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::;ec.o(t+<» Kz(t + a)E [Tn (1 + sup IIXn(r)lIk
)] -----+ O. 

O~r~t+<> n ..... oo 

The convergence foHows hom the uniform integrability of 

for n 2: NI, that Tn ~ O (see Theorem A.1.2 in Appendix A) and Theorem 
n .... oo 

5.2 in Chapter 5 of [29]. This completes the proof. O 

LeJDIlla 2.3.2. Assume HO, Hl and H2. Let Vz be defined as in equation 
(2.18). Then Vz is continuous on [0,00) x D. 

Proof. We use an analogous argument to the one in the proof of Lemma 
2.3.1. First we prove the continuity in (0,00) x D. Let 

with (tn, Xn), (t, x) E (0,00) x D. Denote by (~n, X n) and (€, X) the solutions 
to equation (2.4) with initial conditions (tn, Xn) and (t, x) respectively, and 
Jet Tn and T be its corresponding exit times from [0,00) x D. Let O < a -«: 1 
and NI such that for aH n ~ NI 

This implies that 

lI(tn, Xn) - (t, x)1I < a. 

Tn ::; t + a 

T ::; t + a. 

(2.32) 

(2.33) 
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First we prove that the sequence of random variables 

Y
n 

:= le!;n C({n(r),Xn(r»drG(~n(rn), Xn(rn)) - ero c({(r),X(r»drC(c;(r), X(r)) I 
is uniformly integrable for aH n ;::: NI. 

lE [Y;] ~2lE [Ief;n c(En(r),X" (r»drG(€n(rn), Xn(rn))n 
+ 2E [le!; c(E(r),x(r»drC(€(r), X(r)) n 

~2E [e2co(t+
a) Kj(t + a)(1 + IIXn(rn)lIk)2] + Ct,x 

~2e2co(t+a) K;(t + a)lE [(1 + sup IIXn(r)lIk)2] + Ct,x 
O~r9+a 

~4e2co(t+a) Ki(t + a) (1 + lE [ sup IIxn(r)1I 2k]) + Ct,x 
O$r9+a 

~C(l + K(l + IIxn ll2k )) + Ct,x 

~C(l + K(l + (lIxlI + a)2k)) + Ct,x < 00, 

(2.34) 

where we use equations (2.32), (2.33), (2.7) and polynomíal growth of G in 
8((0, (0) x D). As in Lemma 2.3.1, Jet { > O, then there exista Ó(f) > O such 
that 

sup ( YndIP < ~ (2.35) 
n'?N] lE 2 

for all E E F , with lP'[EJ < 8(f). 
Let EM,n;,¡,(J be defined as in equation (2.22), and chose M > O and N 2 E N 
such that 

for aH n ~ N 2 • 

For simplicity of notation, denote EM.n;'I,/J as E. Then 

IV2(tn, Xn) - V2(t, X)I ~ f YndP + { YndlP' 
lE ln\E 

~ !eYndP+~. 
Let A and Dt be defined as in Lemma 2.3.1 (equations (2.24) and (2.25)). 
Then on the set E we get that for all n ~ NI and O ~ s ::::: t + a, 
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So 

fe YndlP' < fe el;" c({" (r),Xn(r»dr 

X IG(€n(Tn), Xn(Tn» -G(€(T), X(T»I dP (2.36) 

+ lIG(€(T), X(T»I 

lel';-" c({,,(r),X,,(r»dr - el; c({(r),x(r»drl dP. (2.37) 

We study each addend of the righthand side sepsra.tely. 

(2.36) :-:; eco(t+a) llG(tn - Tn,Xn(Tn» - G(t" - T",X(Tn »1dlP(2.38) 

+eco(t+a) llG(tn - Tn, X(Tn» -G(t - 1', X(T»ldP.(2.39) 

First we get a bound for (2.38). Since G is continuous, then it is uniformIy 
continuous on A. Then for f. > 0, there exists ,(eo, t, a, lO, M) such that 

lO 

IG«t}, xt}) - G(t2 , x2»1 < Beco(t+a) 

for aIl (it, xd, (t 2 , X2) E A with 11(t),xl) - (t2 , x2)1I < ,(eo, t, a, f., M). On the 
set E, we have (t" - Tn , Xn(T,,», (tn - Tn, X(Tn» E A snd 

So if we choose 7] < r, we get 

f. 

(2.38) < 8eco(t+a)' 

Next we study (2.39). Thanks to Theorem A.1.2 we know that Tn ~ T. 
n ..... oo 

This and the continuity of X (.) and G implies that 

G(tn - Tn , X(Tn» ~ G(t - T, X(T». 
n ..... oo 

On the set E we llave that (tn - Tn,X(Tn », (t - T, X(T» E A and so 

IG(tn - Tn, X(Tn» - G(t - 1', X(T»IIE :-:; 2Kc(A). 
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By the Dominated Convergence Theorem, there exists, N3 E N such that 

for a11 n ~ N3. 

[ 

(2.39) < 8eCo(I+a) 

To give a bound for (2.37) we observe that on the set E 

11TH 

c(cEn(r), Xn(r»dr - 1T 
c(~(r), x(r»drl 

~ 1T

"/\r IC(€n(r), Xn(r» - c(€(r), X(r))ldr 

+ [~~:T (IC(€n(r), Xn(r»IIT,,~T + Ic(€(r), X (r))llrn<r) dr 

::; 1T

"I\T Le(A n D,)(ltn - tl-X + IIXn(r) - X(r)ll)dr + Kc(A n D t )ITlI - TI 

~Lc(A n Dt)(t + a)(ltn - tl-X + r¡) + Ke(A n Dt)/3. 

Making a similar argument as the one made in equations (2.30) and (2.31) 
we get 

le!;" e(en(r),x,,(r))dr - e!; c(e(r),x(r»drl 

::;eco(t+u)e [Le(A n Dt)(t + a)(ltn - tl-X + 1]) + Kc(A n Dt)/3J ' 

Hence, to prove continuity we proceed as follows 

• Let f. > O and O < a « 1. 

• Let N) E N such that for al] n ~ N) 

• Let ó( [) > O that fulfils the uniformly integrable condition (2.35). 

• Take M > O such that 1P' [IIX IIt+u > M] < ~. 
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• Define A:= [O, t + al x [-M - 1, M + l]d and Dt := [O, t + al x D. 

• Let 

17 < min { 1, ,(({J, t, a, E, M), 3Lc(A n ~t)(t + a) 

, 12Kc(A)eCo(t+a)e~c(A n Dt)(t + a)} . 
• Chose N2 E N such that P [IIXn - XIlt+Q > 111 < ~ for all n 2: N2 

• Let 

• Chose N3 E N such that lP' [lTn - TI > ,6] < ~ for all n 2: N3· 

• Let N4 E N such that 

lin - W' < min {3(Lc(A n ~d(t + a) 

, 12Kc (A n Dt)eCo(t+=)eLc(A n Dt)(i + a)} . 
for all n 2: N4 . 

• Let N5 E N to get 

for all n ~ N4 . 

So for N = NI V Nz V N3 V N4 V N5 , we have that if n 2: N then 

and we condude that 112 is continuous over (0,00) x D. 

75 

Next we prove the continuity in the boundary. Let (in, X n) -- (t, x), 
n---+oo 
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where (tn, xn) E (0,00) x D snd (t, x) E a«o, 00) X D), thst is, either t = O 
or x E aD. In both cases we get that T = O a.s .. We need to prove that 

IV2(tnlXn) - G(t,x)l- O. 
"---+00 

Let O < o « 1 and NI E N BUch that 

lI(tn , Xn) - (t, x)1I < o. 

So, for aIl n ;::: NI, 

We have that 

IV2(t,.,X,.) - G(t,x)1 < lE [e.Ío" C({n (r),xn (T»dT 

xlG(t,. - Tn,Xn(Tn )) - G(t,x)l] (2.40) 

+ E [IG(t,x)lle!.;nc({n(r),X(r»dr -11]. (2.41) 

Because le!;" c({n,X,,) - 11 :$ eco(t+a) + 1 and f;" c(en(r), X,. (r))dr ~ O 
,.-+00 

(due to Theorem A1.2, that T = O a.s. and the continuity of c in [0,00) x D), 
by the Dominated Convergence Theorem we get for (2.41) 

lE [IG(t, x)lle!.;n C({n(r),X(r»~r - 11] ~ O. 

Next we work with (2.40). AB in equation (2.34) we can prove that the 
sequence 

is unifonnly integrable. We have that 

(2.40) ~ eco(t+a)1E [lG(t,. - T,., X,. (Tn» - G(t,. - Tn ,X(T,.))1l (2.42) 
+eco(t+a)E[lG(t,. - T,.,X(T,.» - G(t,x»l]. (2.43) 

We repeat the same arguments marle for the estimates to equations (2.38) 
snd (2.39) with equation (2.42) and (2.43) respectively. Then we can prove 
tha.t 

and 

SO V2 E C([O, 00) x D) and the proof is complete. o 
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2.3.2 Differentiability of v. 

Let O :::; To < TI and A e D be a bounded, open, connected set with (}'2 
boundary. Consider the following parabolic differential equation 

-Ut(t, x) + .L:[u](t, x) + c(t, x)u(t, x) = - J(t, x) (t, x) E (To, T¡) x A, 
u(To, x) = v(To, x) for x E A, 

u(t, x) = v(t, x) for (t, x) E (To, T¡) x aA. 
(2.44) 

where the boundary data is v. If we assume HO, Hl and H2, by the continu
ity of v (Theorem 2.3.1) and Theorem A.3.2 we can guarantee the existence 
of a unique classical solution to equation (2.44). To prove the regularity of 
v, we show that it coincides with the solutioIl to equation (2.44) in the set 
(To, T¡) x A and so v E C 1,2«To, T¡) x A). Since To, TI and A are arbitrary, 
we get the desired regularity. We are ready to prove the next Theorem. 

Theorem 2.3.2. A.'tSume HO, H1 and H2. Let v be defined as in equation 
(2.16). Then v E cl~'>'«O, 00) x ]Rd). 

Proof. Let w be the solution to equation (2.44). Define the following stopping 
times 

By :=inf{s > Ol~(s) < To} 

()A :=inf{s > 0IX(s) r¡. A}, 
() :=BT /\ ()A. 

Following the same arguments of Section 5 in Chapter 6 of [27J, we can prove 
that w h8o.'3 the following representation 

w(t, x) =IE", [1° eJ; c(t-r,X(r»dr f(t - s, X(s))ds J 

+ E" [eJ~ c(t-r,X(r))Mv(t - (), X(B))] . 

Next we prove that v satisfies the following equality 

v(t, x) =lEt,,, [1° eJ; c(~(r),X(r))dr f(E(s), X(s))ds J 

+ lEt ,,, [cJ: c(<,;(r),X(r))dsV (';«()) , X(B))] . 

(2.45) 

(2.46) 
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Let Vl and V2 be defined as in equations (2.17) and (2.18). We wiIl use the 
foIlowing representation of Vl and V2, 

and 
V2(t,X) =F4,x [ef,;c({(r),x(T))drC({(T),X(T))]. 

First we work with Vl 

Vl(t,X) = E/,x [E [foT ef;c(~(r),X(r))dT /«((8), X(B»ds/ Fo]] 

EI,x [E ll° ef;C({(Tl,X(r»dr/«((S),X(S»dS/FtI]] (2.47) 

+Et,x lE [iT eJ;c({(r),X(r))dr /«((s), X(s»)dsl FtI]] (2.48) 

We study the addends of the righthand side separately 

For (2.48) we make a couple of changes of variable to get 

(2.48) =F4,x lE [foT-O ef;+9 c({(r),X(r))dr /«(.(s + O), X(s + O»dS/ FtI]] 

=Et,x [eto' c({(r),X(r))drE llr

-

tI 
ef; c({(r+8»,X(r+8»dr f«((s + O), X(s + O»dS/ Fo]] 

Since O < TD (see Remark 2.1.1) and O is bounded, we get that 

T =inf{s > Ol({(s), X(s» ti-- [0,(0) x D} 

=0 + inf{s > Ol«('(s + O), X(B + O)) ti-- [O, (0) x D}, 

so 

T - 0= 6 0 o T (2.49) 
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where 8. denotes the shift operator. Since the process (~, X) is a homoge
neous strong Markov process, we get that 

So 

lE [1.6

'°' eJ: 0(6, 0«('>:) (r))'" f( S, o (~, X)( s))ds Ir.] 
=E{(o),x(O) [l T 

eI; c({(r),X(r»dr f(~(r), X(S»dS] 

=Vl(~(O), X(O». 

Vl(t, x) =lEt,x [1/1 eI; c({(r),X(r»dr f(€(s), X(s»] 

+ Er,x [el: c({(r),X(r»dr Vi (~( O), X( O»] . 

(2.50) 

(2.51) 

Next we study VZ. Again, for the integralwe use a couple of changes of 
variables to get 

V2(t,X) =lEt,x [E [eÍoC({(r),X(r»drG(€(T), X(T»I Fo]] 
=lEt,x [el: c({(r),X(r»drE [ eI;-9 c({(r+O),X(r+O»dr G(€( T), X( T» 1.F0]] . 

We write 
G(€(T), X(T» = G(~(T - O + O), X(T - O + O». 

Then, the argument of the conditional expectation can be written as 

elo8(Jo~ c(99 o({,X)(r» drG(80 o (e, X)(80 o T» 

Using a similar argument as the one in equations (2.49) and (2.50) we get 

V2 (t, x) =lEt,x [el: c({(r),X(r»dr 

X E{(Q),x(Q) [eJo-
9 
c({(r),x(r»drC(€(T) , X(T»] ] (2.52) 

=lEt,x [el: c({(r).X(r»drV2 (e( O), X (O»] . 

Combining equations (2.51) and (2.52) we prove that (2.46) holds. 
So due to equations (2.45) and (2.46) we have that v = w. Since W E 

C i ,2,X«To, Ti) x A) (see Theorem A.3.2 below) and To TI and A are arbitrary 
we get that v E C I •2 «0,00) x IRd) n CI~~''\«O, 00) x IRd) and the proof is 
complete. O 
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We are ready to proof the Main Theorem 

Proalol Theorem 2.2.1. The proof follows from Theorems 2.3.1 snd 2.3.2 
and Lernmas 2.2.1 and 2.2.2. O 



Chapter 1

Semilinear parabolic differential
equations.

In this chapter we consider the Cauchy problem for a semilinear parabolic
equation that arises in some stochastic optimal control problems

−ut(t, x) +
∑
ij

aij(t, x)Dij(t, x) + sup
α∈Λ
{Lα1 [u](t, x) + f(t, x, α)} =0, in (0,∞)× Rd

u(0, x) =h(x), x ∈ Rd.

(1.1)

where a = σσ′ and

Lα1 [u](t, x) :=
∑
i

bi(t, x, α)Diu(t, x) + c(t, x, α)u(t, x).

Additionally, we apply these results to an stochastic optimal consumption
problem.

We recall that many papers consider semilinear equations of this form
(see e.g. [?], [?], [?], [?], [?], [?] and [?]). In all these cases, the basis for the
solution to the HJB equation is a result proved by Fleming (see [?] Theorem
VI.6.2). It is assumed that the control set Λ is compact, c ≡ 0, the functions
b, σ ∈ C1,2 with σ, σx and bx bounded. The data functions f and h are
assumed to have a polynomial growth and C2 regularity.

We study the existence and uniqueness of a solution to equation (1.1).
The existence’s theorem is based on a linearization technique and the results
proved in Chapter ??. For the uniqueness part we prove that the solution to
equation (1.1) has a probabilistic representation via a Verification Theorem.

1
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1.1 Hypotheses and notation.

We assume the following hypotheses on the coefficients, we denote them by
H3.

H3:

1. Λ ⊂ Rm is a compact set.

2. σ follows the same hypotheses made in H1’.

3. Let h(x) : Rd → R be a locally Hölder continuous function of order β
such that for some k > 0 and K3 > 0 we have

|h(x)| ≤ K3(1 + ‖x‖k),

for all x ∈ Rd.

4. Let

b :[0,∞)× Rd × Λ→ Rd

c :[0,∞)× Rd × Λ→ R
f :[0,∞)× Rd × Λ→ R

be continuous functions such that

• (Continuity.) b, c and f have the following continuity. For all
T > 0, M ≥ 1, there exists L3(T,M) such that for all t, s ∈ [0, T ],
‖x‖, ‖y‖ ≤M and α, γ ∈ Λ,

– (Locally Lipschitz.)

‖ψ(t, x, α)− ψ(t, y, γ)‖ ≤ L3(T,M)(‖x− y‖+ ‖α− γ‖).

– (Locally Hölder.)

‖ψ(t, x, α)− ψ(s, x, α)‖ ≤ L3(T,M)|t− s|β.

• (Growth.) There exists c0 ≥ 0 such that

c(t, x) ≤ c0 for all (t, x, α) ∈ [0,∞)× Rd × Λ.
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There exists k such that for T > 0, exists a constant K4(T )

‖b(t, x, α)‖ ≤K4(T )(1 + ‖x‖)
|f(t, x, α)| ≤K4(T )(1 + ‖x‖k),

for all 0 ≤ t ≤ T , α ∈ Λ and x ∈ Rd

5. For all ψ ∈ HL0,1,β0,β1((0,∞)× Rd), β0, β1 ∈ (0, 1], let

Aψ(t, x) := argmaxα∈Λ {Lα1 [ψ](t, x) + f(t, x, α)} .

Then Aψ ∈ HL0,0,β0,β1((0,∞)× Rd).

1.1.1 Additional notation.

The space C1,2,β
loc ((0,∞) × Rd) is the space of all functions such that they

and all their derivatives up to the second order in x and first order in t, are
locally Hölder of order β.

We denote by HLk,m,β0,β1((0,∞)×D) ⊂ Ck,m((0,∞)×D), with β0, β1 ∈
(0, 1], the space of all continuous function such that all their derivatives up
to order k in t and order m in x, are locally Hölder continuous of order β0

in t and locally Hölder continuous of order β1 in x. If β1 = 1 we denote by
HLk,m,β0((0,∞)×D).

We use the following notation for the Sobolev and Hölder norms. Let
R ⊂ [0,∞) × Rd, f : R → R be an arbitrary function, α ∈ (0, 1] and
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1 < p <∞, then

‖f‖R := sup
(t,z)∈R

|f(t, z)|,

|f |αR :=‖f‖R + sup
(t,z1)6=(t,z2)∈R

|f(t, z1)− f(t, z2)|
|z1 − z2|α

+ sup
(t1,z)6=(t2,z)∈R

|f(t, z1)− f(t, z2)|
|t1 − t2|α/2

,

|f |1,αR :=|f |αR +
∑
i

|Dif |αR,

|f |2,αR :=|f |1,αR + |ft|αR +
∑
i,j

|Dijf |αR,

‖f‖p;R :=

(∫
R

|f |pdz
) 1

p

,

‖f‖2,p;R :=‖f‖p;R + ‖ft‖p;R +
∑
i

‖Dif‖p;R +
∑
i,j

‖Dijf‖p;R.

1.2 Main result.

We are ready to prove the main Theorem of this chapter. The proof is based
in Theorem ??, the ideas made in Appendix E for Theorem 6.1 of Chapter
VI in [?] and some standard arguments for Verification Theorems.

Theorem 1.2.1. Assume H3. Then there exists a unique classical solution
u ∈ C([0,∞) × Rd) ∩ C1,2,λ

loc ((0,∞) × Rd) for some λ ∈ (0, 1), to equation
(1.1). The solution has the representation

u(t, x) = sup
a∈A
{u(t, x; a)} ,

where

u(t, x; a) :=Ex

[∫ t

0

e
R s
0 c(t−r,X(r;a),ar)drf(t− s,X(s; a), ar)ds

]
+ Ex

[
e

R t
0 c(t−r,X(r;a),ar)drh(X(t; a))

]
,

A is the set of all predictable processes, as, defined in some probability space
(Ω,F ,P, {Fs}s≥0), such that

P [for all s ≥ 0; as ∈ Λ] = 1,
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and X(s; a) is the solution to the stochastic differential equation

dX(s; a) = b(t− s,X(s), as)ds+ σ(t− s,X(s))dW (s), X(0) = x. (1.2)

Furthermore, for all T > 0,

sup
0≤t≤T

|u(t, x)| ≤ C(T, c0, K1, K2, K3, K4)(1 + ‖x‖k), x ∈ Rd,

where c0, k, Ki, i = 1, . . . , 4 are the constants defined in H1, H2 and H3.

The proof is divided in two Theorems: a Verification Theorem and an
Existence one.

1.2.1 Verification Theorem.

Theorem 1.2.2 (Verification Theorem.). Assume H3. Assume also there
exists v ∈ C([0,∞)× Rd) ∩ C1,2,λ

loc ((0,∞)× Rd) for some λ ∈ (0, 1), solution
to equation (1.1) such that for all T > 0

sup
0≤t≤T

|v(t, x)| ≤ C(T )(1 + ‖x‖µ), x ∈ Rd, (1.3)

for some µ > 0. Let a ∈ A, then

u(t, x; a) ≤ v(t, x) = u(t, x; a∗)

where a∗s := Av(s,X(s)) ∈ A. In particular, the solution is unique and

v(t, x) = sup
a∈A
{u(t, x; a)} .

Proof. Let L2 and Lα1 be the differential operators

L2[u] := −ut +
∑
ij

aijDiju, (1.4)

and
Lα1 [u] :=

∑
i

bi(·, α) + c(·, α)u (1.5)

and denote
fα = f(·, α). (1.6)
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Let a ∈ A be any admissible process and denote by X(s) = X(s; a) the
solution to equation (1.2). Since v ∈ C1,2, applying Ito’s rule we get for s ≤ t

e
R s
0 c(t−r,X(r),ar)drv(t− s,X(s)) = v(t, x)

+

∫ s

0

e
R r
0 c(t−y,X(y),ay)dy (L2 + Las1 ) [v](t− r,X(r))dr

+

∫ s

0

e
R r
0 c(t−y,X(y),ay)dyDv(t− r,X(r))σ(t− r,X(r))dW (r),

Since e
R r
0 cdyDv(·)σ(·) is locally bounded, we conclude that{

e
R s
0 c(t−r,X(r),ar)drv(t− s,X(s))−

∫ s

0

e
R r
0 c(t−y,X(y),ay)dy (L2 + Las1 ) [v](t− r,X(r))dr

}
0≤s≤t

is a local martingale. Let {τn}n≥1 be a sequence of localization times for the
local martingale. Hence, using equation (1.1)

v(t, x) =Ex

[
e

R s∧τn
0 c(t−r,X(r),ar)drv((t− ·, X)(s ∧ τn))

]
− Ex

[∫ s∧τn

0

e
R r
0 c(t−y,X(y),ay)dy (L2 + Las1 ) [v](t− r,X(r))dr

]
≥Ex

[
e

R s∧τn
0 c(t−r,X(r),ar)drv((t− ·, X)(s ∧ τn))

]
+ Ex

[∫ s∧τn

0

e
R r
0 c(t−y,X(y),ay)dyf(t− r,X(r), ar)dr

]
.

For all n ∈ N and s ≤ t, using (1.3) we get

|e
R s∧τn
0 c(t−r,X(r),ar)drv((t− ·, X)(s ∧ τn))| ≤ ec0tC(t)(1 + sup

r∈[0,t]

{‖X(r)‖µ}),

and ∫ s∧τn

0

e
R r
0 c(t−y,X(y),ay)dyf(t− r,X(r), ar)dr

≤
∫ s∧τn

0

erc0K4(t)(1 + ‖X(s)‖)kds

≤tetc0K4(t)(1 + sup
r∈[0,t]

{‖X(r)‖k}).
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Hence by the Dominated Convergence Theorem letting n→∞ and s ↑ t

v(t, x) ≥Ex

[∫ t

0

e
R s
0 c(t−r,X(r),ar)drf(t− s,X(s), ar)ds

]
+ Ex

[
e

R t
0 c(t−r,X(r),ar)drh(X(t))

]
.

And so u(t, x; a) ≤ v(t, x).
Since v ∈ C1,2,λ

loc ((0,∞)×Rd), it follows from H3 that Av is locally Hölder
in t and locally Lipschitz in x and so equation (1.2) admits a strong solution
with a∗s := Av(s,X(s)). This implies that the strategy a∗s ∈ A. Repeating
the same arguments made with the arbitrary process we get that for a∗s

u(t, x; a∗) = v(t, x)

and the proof is complete.

1.2.2 Existence Theorem.

Theorem 1.2.3 (Existence Theorem.). Assume H3. Then there exists a
unique classical solution u ∈ C([0,∞) × Rd) ∩ C1,2,λ

loc ((0,∞) × Rd) for some
λ ∈ (0, 1), to equation (1.1). Furthermore, for all T > 0,

sup
0≤t≤T

|u(t, x)| ≤ C(T, c0, K1, K2, K3, K4)(1 + ‖x‖k), x ∈ Rd, (1.7)

where c0, k, Ki, i = 1, . . . , 4 are the constants defined in H1, H2 and H3.

Proof. The proof is divided in three main steps: First we construct a candi-
date solution to equation (1.1) by approximation with linear parabolic equa-
tions. Second we prove that this function is a weak solution to equation (1.1)
and finally we prove that it is a classical solution.

Let L2, Lα1 and fα be defined as in equations (1.4), (1.5) and (1.6),
respectively.
Let α0 ∈ Λ and u(0) be the solution to

L2[u(0)] + Lα0
1 [u(0)] + fα0 =0, (0,∞)× Rd

u(0)(0, x) =h(x), x ∈ Rd.

For n ≥ 1, let

A(n−1) := argmaxα∈Λ

{
Lα1 [u(n−1)] + fα

}
,
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and u(n) be the solution to

L2[u(n)] + LA(n−1)

1 [u(n)] + fA
(n−1)

=0, (0,∞)× Rd

u(n)(0, x) =h(x), x ∈ Rd.
(1.8)

If u(n−1) ∈ C1,2,β then Du(n−1) ∈ C0,1,β and so u(n−1) ∈ HL0,1,β. Hence by
hypothesis, A(n−1) ∈ HL0,0,β. This and H3 implies that the coefficients of
equation (1.8) satisfies the hypotheses of Theorem ?? and so the sequence
{u(n)} is well defined and each u(n) ∈ C1,2,β.

Next, we prove that u(n) ≤ u(n+1) for all n ∈ N. Because

A(n) ∈ argmax
{
Lα1 [u(n)] + fα

}
we have that

0 =L2[u(n)] + LA(n−1)

1 [u(n)] + fA
(n−1)

≤L2[u(n)] + LA(n)

1 [u(n)] + fA
(n)

.

Subtracting this to equation (1.8) for n+ 1 we get

0 ≤ L2[u(n+1) − u(n)] + LA(n)

1 [u(n+1) − u(n)] (1.9)

in (0,∞) × Rd. Thanks to the Maximum Principle Theorem 1.2 in [?] we
prove that

u(n) ≤ u(n+1).

Since K4 does not depend on α, then using equation (??) in Theorem ?? we
get that for all n ∈ N

sup
0≤t≤T

{|u(n)(t, x)|} ≤ C(T )(1 + ‖x‖k), x ∈ Rd (1.10)

where the constant C(T ) is independent of n. Then the sequence {u(n)(t, x)}
is bounded from above and increasing. For each (t, x) ∈ [0,∞)× Rd, let

u∗(t, x) := lim
n→∞

u(n)(t, x),

and let R be a bounded, open, connected subset of (0,∞)×Rd with smooth
boundary. Since all the coefficients of equation (1.8) are locally bounded,
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with bound independent of n, it follows from Theorem 7.22 in [?] that for all
p > 1

‖u(n)‖2,p,R ≤M1.

where M1 does not depend on n. Since the Sobolev space W 2,p(R) is embed-
ded in the Hölder space C0,1,λ(R), for some 0 < λ < 1, there exists M2 such
that for all n ∈ N

|u(n)|1,λR ≤M2.

So we get that on R, Du(n) converges uniformly to Du∗, and u
(n)
t and D2u(n)

converge weakly in Lp(R) to u∗t and D2u∗ respectively. To argue this, we use
the fact that the space W 2,p(R) is compactly embedded in W 2,q(R) for some
q > p. So there exists a subsequence of {u(n)} convergent in W 2,q(R) to some
function v. Since u(n) converges pointwisely to u∗, then u∗ = v.
For (t, x) ∈ R, let

A∗(t, x) := argmaxα∈Λ{Lα2 [u∗](t, x) + fα(t, x)}.

Since u∗ and Du∗ are Hölder continuous then by hypotheses, A∗ ∈ C0,0,λ(R).
We have the following inequalities

L2[u∗] + LA∗1 [u∗] + fA
∗ ≥L2[u∗] + LA(n)

1 [u∗] + fA
(n)

=L2[u∗ − u(n)] + LA(n)

1 [u∗ − u(n)].
(1.11)

The righthand side converges weakly to 0, this implies that that u∗ satisfies
weakly

L2[u∗] + LA∗1 [u∗] + fA
∗ ≥ 0. (1.12)

On the other side,

L2[u(n)] + LA∗1 [u(n)] + fA
∗ ≤L2[u(n)] + LA(n)

1 [u(n)] + fA
(n)

=L2[u(n) − u(n+1)] + LA(n)

1 [u(n) − u(n+1)].

Again the righthand side converges weakly to 0 in R and so we prove that

L2[u∗] + LA∗1 [u∗] + fA
∗ ≤ 0. (1.13)

Combining equations (1.12) and (1.13) we prove that u∗ satisfies weakly in
R

L2[u∗] + LA∗1 [u∗] + fA
∗

= 0
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It follows from Theorem 4.9 in [?] and the Hölder continuity of LA∗1 [u∗]+fA
∗

that

|u∗|2,λR ≤ C
(
‖u∗‖R +

∣∣LA∗1 [u∗] + fA
∗∣∣λ
R

)
,

where C depends on the Hölder norm of the coefficients of L2 and the lo-
cal ellipticity in R. So u∗ ∈ C1,2,λ(R). Since R is arbitrary, then u∗ ∈
C1,2,λ

loc ((0,∞) × Rd) and satisfies (1.1). The boundary condition is fulfilled
since u(n)(0, x) = h(x) and h is locally Hölder.

Finally, equation (1.10) proves that (1.7) is true and the proof is complete.

1.3 Optimal consumption model.

In this section we present an stochastic optimal consumption model. We
consider the wealth of an individual which is dynamically allocated in two
investment instruments: a non-risk bonus and a risky asset, both depending
on a external factor. The investment strategy is fixed. Our problem is
to maximize a logarithmic utility function over all admissible consumption
strategies. This kind of problems have been studied in [?], [?] and [?] where
they consider a HARA utility function and the optimization is made over the
investment and consumption strategies. Our approach is via a HJB equation.
This problem shows situations in which the hypotheses of the present chapter
appear naturally.

1.3.1 The model.

Let (Ω,F ,P, {Fs}s≥0) be a complete filtered probability space and let
{W1(s),W2(s)}s≥0 be a two dimensional Brownian motion defined in it.
We consider an incomplete market with an external factor

Y (s) = y +

∫ s

0

g(Y (r))dr + β(ρW1(s) + εW2(s)),

with 0 ≤ ρ ≤ 1, ε =
√

1− ρ2, and investment instruments

dZ0(s) =Z0(s)r(Y (s))ds,

dZ(s) =Z(s)µ(Y (s))ds+ Z(s)ν(Y (s))dW1(s),



1.3. OPTIMAL CONSUMPTION MODEL. 11

We assume that g, µ, ν, r : R → R are locally Lipschitz with µ, ν and r
bounded, ν strictly positive and g with at most linear growth.
Let A denote the set of all admissible investment strategies. We select them
over all predictable process As with respect to Fs, such that

P [for all s ≥ 0;As ∈ [0, 1]] = 1

that is, As denotes the proportion of the wealth consumed at time s.
Let m : R2 → R be a bounded, strictly positive, locally Lipschitz function
that represents the proportion of the wealth invested in the risky asset.
For A ∈ A, the wealth process X(s) has the following dynamic

dX(s) =− AsX(s)ds+X(s)(1−m(X(s), Y (s)))
dZ0(s)

Z0(s)

+X(s)m(X(s), Y (s))
dZ(s)

Z(s)

=X(s)[−As + r(Y (s))(1−m(X(s), Y (s))) + µ(Y (s))m(X(s), Y (s))]ds

+X(s)m(X(s), Y (s))ν(Y (s))dW1(s),

(1.14)

with X(0) = x > 0. This process is strictly positive and has the following
representation

X(t) = x exp

{∫ t

0

(
r(1−m) + µm− As −

1

2
m2ν2

)
ds+

∫ t

0

mνdW1(s)

}
.

1.3.2 The value function and the HJB equation.

The objective is to maximize the expected consumption utility

V (t, x, y;A) := Ex,y

[∫ t

0

ln(AsX(s) + 1)ds

]
(1.15)

in a finite horizon, over the set of admissible strategies. Let V be the value
function

V (t, x, y) := sup
A∈A
{V (t, x, y;A)}.
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To study the regularity of V and the existence of an optimal consumption
strategy we consider the following HJB equation

−ut +
1

2
x2m(x, y)2ν(y)2uxx + βρxm(x, y)ν(y)uxy +

1

2
β2uyy

+ x[r(y)(1−m(x, y)) + µ(y)m(x, y)]ux + g(y)uy

+ sup
α∈[0,1]

{−αxux + ln(αx+ 1)} = 0 (t, x, y) ∈ (0,∞)× (0,∞)× R,

u(0, x, y) = 0 (x, y) ∈ (0,∞)× Rd.

(1.16)

For simplicity, we omit the (t, x, y) variables in the functions’ notation. For
any (x, z) ∈ (0,∞)×Rd, the function −xzα+ln(xα+1) is strictly concave in
α and has a unique maximum. Then for α ∈ [0, 1] the supremum is attained
at

ψ(x, z) :=


0, if 1−z

xz
≤ 0,

1−z
xz
, if 0 < 1−z

xz
< 1,

1, if 1 ≤ 1−z
xz
.

(1.17)

Equation (1.16) is written as

−ut +
1

2
x2m2ν2uxx + βρxmνuxy +

1

2
β2uyy

+x[−ψ(x, ux) + r(1−m) + µm]ux + guy

+ ln(ψ(x, ux)x+ 1) =0 (t, x, y) ∈ (0,∞)× (0,∞)× R,
u(0, x, y) =0 (x, y) ∈ (0,∞)× R.

(1.18)

The coefficients of this equation do not fulfil the ellipticity condition at x = 0.
However, thanks to the kind of degeneracy, we will be able to prove the
existence of a classical solution to equation (1.18).

1.3.3 Verification Theorem.

In this section we propose and prove a Verification Theorem. This Theorem
asserts that, in case of existing a classical solution to (1.18), it has to be the
value function and hence is unique. Also, this Theorem proves the existence
of an optimal consumption strategy.
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Theorem 1.3.1 (Verification Theorem.). Let g, µ, ν, r : R → R be locally
Lipschitz functions such that, µ, ν and r are bounded, ν is strictly positive
and g has a linear growth. Let m : R2 → R be a bounded, strictly positive and
locally Lipschitz function. Assume also there exists v ∈ C([0,∞)× [0,∞)×
R) ∩ C1,2,β

loc ((0,∞) × (0,∞) × Rd) for some β ∈ (0, 1), solution to equation
(1.18) such that for all T > 0

sup
0≤t≤T

|v(t, x, y)| ≤ C(T )(1 + ‖(x, y)‖), (x, y) ∈ [0,∞)× Rd. (1.19)

Let A ∈ A be any admissible strategy, then

V (t, x, y;A) ≤ v(t, x, y) = V (t, x, y;A∗),

where A∗s = ψ(X(s), vx(t − s,X(s), Y (s))). In particular, the solution is
unique and v(t, x, y) = V (t, x, y).

Proof. The proof is similar as the one of Theorem 1.2.2 observing that the
process X(s;A) is strictly positive and hence we can repeat our analysis
restricted to the set (0,∞)× (0,∞)× Rd.

1.3.4 Existence of a classical solution.

In this section we prove the existence of a solution to equation (1.18) with
the properties required by the Verification Theorem.

Theorem 1.3.2. Assume the hypotheses on the functions r, µ, ν, g and
m made in the Verification Theorem. Then, there exists a unique solution
u ∈ C([0,∞)× [0,∞)×Rd)∩C1,2,β

loc ((0,∞)×(0,∞)×Rd) for some β ∈ (0, 1),
to equation (1.18) such that for all T > 0

sup
0≤t≤T

|u(t, x, y)| ≤ C(T )(1 + ‖(x, y)‖), (x, y) ∈ [0,∞)× Rd. (1.20)

Proof. Let D2 and Dγ1 be the differential operators

D2[u] := −ut +
1

2
x2m2ν2uxx + βρxmνuxy +

1

2
β2uyy

and
Dγ1 [u] := x[r(1−m) + µm− γ]ux + guy.
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We cannot apply Theorem 1.2.3 because of the degeneracy of the differential
operator D2 at x = 0, however we can proceed as in its proof.
Equation (1.18) can be written as

D2[u] +Dψ(x,ux)
1 [u] + ln(ψ(x, ux)x+ 1)} =0 in (0,∞)× (0,∞)× R

u(0, x, y) =0 in (0,∞)× R.

Let u(0) be a solution to equation

D2[u(0)] +D1/2
1 [u(0)] + ln

(
1

2
x+ 1

)
=0 in (0,∞)× (0,∞)× R

u(0)(0, x, y) =0 in (0,∞)× R.

For n = 1, 2, . . . let u(n) be a solution to

D2[u(n)] +Dψ(x,u
(n−1)
x )

1 [u(n)] + ln(ψ(x, u(n−1)
x )x+ 1) =0 in (0,∞)× (0,∞)× R
u(n)(0, x, y) =0 in (0,∞)× R.

(1.21)

If u(n−1) ∈ C1,2,β
loc then u

(n−1)
x ∈ C0,1,β

loc and so is locally Hölder in t and locally
Lipschitz in (x, y). Since the function

H(x) =


0, if x ≤ 0,
x, if 0 < x < 1,
1, if 1 ≤ x,

is Lipschitz, then ψ(x, u
(n−1)
x ) = H

(
1−u(n−1)

x

xu
(n−1)
x

)
is locally Hölder in t and locally

Lipschitz in (x, y) whenever u(n−1) is a classical solution.
The differential operator D2 is degenerated for x = 0, so we cannot apply
Theorem ?? exactly as it is. However the kind of degeneracy (a11, a12, b1 = 0)
implies that the stochastic process X(s) associated to these equations is
strictly positive and hence never reaches the set x = 0 in a finite time. This
allows us to repeat the same arguments made in this paper to prove that on
the set (0,∞) × (0,∞) × R we have a classical solution to equation (1.21)
for all n ∈ N. On this set, since m and ν are strictly positives, the matrix(

x2m2ν2 2βρxmν
2βρxmν β2

)
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satisfies a local ellipticity condition. Let

u(n)(t, x, y) = Ex,y

[∫ t

0

ln(ψ(Xn(s), u(n−1)
x )Xn(s) + 1)ds

]
where Xn is the solution to

dXn(s) = Xn(s)[−ψ(Xn(s), u(n−1)
x ) + r(1−m) + µm]ds+Xn(s)mνdW1(s),

with Xn(0) = x, that is,

Xn(t) =x exp

{∫ t

0

(r(1−m) + µm− ψds
}

× exp

{∫ t

0

mνdW1(s)−
∫ t

0

1

2
m2ν2ds

}
.

(1.22)

As in Lemma ??, we can prove that u(n) is continuous and repeating the same
argument made in the proof to Theorem ?? we can prove that u(n) ∈ C1,2,β

loc

on the set (0,∞)×(0,∞)×R. Using equation (1.22), a martingale argument
and the boundedness of r, µ, ν, m and ψ, we can prove that u(n) is continuous
at x = 0,

0 ≤ u(n)(t, x, y) ≤
∫ t

0

Ex,y

[
ψ(Xn(s), u(n−1)

x )Xn(s)
]
ds

≤
∫ t

0

Ex,y

[
xeCs exp

{∫ s

0

mνdW1(r)−
∫ s

0

1

2
m2ν2dr

}]
ds

=x

∫ t

0

eCsEx,y

[
exp

{∫ s

0

mνdW1(r)−
∫ s

0

1

2
m2ν2dr

}]
ds

=x

∫ t

0

eCsds −−→
x→0

0.

Hence, for all n ∈ N, u(n) is a classical solution to equation (1.21).
We repeat the argument in the proof of Theorem 1.2.3 to prove that u :=
limn→∞ u

(n) is a classical solution to equation (1.18) and the proof is com-
plete.



Risk process.

In this chapter we focus in the problem when an insurance company puts its
reserve capital in some investment instruments: a non-risk bonus and a risky
asset. We are interested in the analysis of the probability of survival when
the investment instruments depend in an external factor. Our goal is to max-
imize the survival probability over all admissible investment strategies. This
problem was solved by Hipp and Plum in [?] and [?] when the non-risk rate is
constant and the risky asset is a Geometric Brownian motion. Schmidli in [?]
solved the same problem with both investment and proportional reinsurance.

Other problems such as investment, reinsurance, payment of dividends,
severity of the ruin and combinations of them have been studied by many
authors, e.g. [?], [?], [?], [?], [?], [?], [?] (see [?] for a very nice survey of this
theory).

In this chapter we propose a HJB equation for the optimal survival prob-
ability and prove a Verification Theorem.

0.1 The model.

The model has the following parts: First the classical Cramér-Lundberg
process

R(t) = x+ ct− S(t).

where x ≥ 0 is the initial capital, c > 0 stands for the premium income rate
and S(t) =

∑N(t)
n=1 ξn, where {N(t)}t≥0 is a Poisson process with intensity λ

and jump times {ηn}∞n=1; {ξn}∞n=1 are i.i.d. positive random variables inde-
pendent of the Poisson process, corresponding to the incoming claims, with
common distribution Q and mean µ <∞.
Also let {W1(t),W2(t)}t≥0 be a two dimensional standard Brownian motion
independent of the process R(t).

1
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We work on a complete filtered probability space (Ω,F ,P, {Ft}), where
{Ft}t≥0 is the smallest augmented right continuous filtration such that the
process {R(t),W1(t),W2(t)}t≥0 is measurable.
The external factor has the following dynamic

Y (t) = y +

∫ t

0

g(Y (s))ds+ β(ρW1(t) + εW2(t)), (1)

with 0 ≤ ρ ≤ 1, ε =
√

1− ρ2.
For investment we have a non-risk bonus and a risky asset, both depending
on the external factor

dZ0(t) =Z0(t)r(Y (t))dt,

dZ(t) =Z(t)µ(Y (t))dt+ Z(t)σ(Y (t))dW1(t),
(2)

Let A denote the set of all admissible investment strategies. We select them
over all predictable process At with respect to Ft, such that

P
[∫ t

0

A2
sds <∞

]
= 1, for all t > 0.

We consider two cases: r ≡ 0 and r “arbitrary”. We assume either one of
the following Hypothesis and denote them by H0 and H1 respectively.

1. H0

• r ≡ 0.

• g is Lipschitz continuous with linear growth and satisfies∫ x

0

exp

{
−
∫ z

0

g(u)du

}
dz −−−−→

x→±∞
∞.

• µ, σ : R → R are bounded Lipschitz continuous and satisfies 0 <
σ0 ≤ σ(·) ≤ σ1, 0 < µ0 ≤ µ(·) for some constants µ0, σ0, σ1.

2. H1

• g is Lipschitz continuous with linear growth and satisfies∫ x

0

exp

{
−
∫ z

0

g(u)du

}
dz −−−−→

x→±∞
∞.



0.1. THE MODEL. 3

• r, µ, σ : R → R are bounded Lipschitz continuous and satisfies
0 < σ0 ≤ σ(·) and 0 < r0 ≤ r(·) < µ(·) for some constants r0, σ0.

Remark 0.1.1. The condition made on g makes the process Y (t) recurrent,
that is, for all a, b ∈ R

Pa[Y (t) = b i.o.] = 1.

Since its diffusion coefficient never vanishes, then the process satisfies

P
[
sup
t>0

Y (t) =∞
]

= P
[
inf
t<0

Y (t) = −∞
]

= 1.

(See [?] Proposition 5.22). Processes like the mean-reverting
Ornstein-Ullenbeck fulfil this condition.

The reserve process with investment strategy {At}t≥0 is

X(t;A) =R(t) +

∫ t

0

As
dZ(s)

Z(s)
+

∫ t

0

(X(s−)− As)
dZ0(s)

Z0(s)

=x+

∫ t

0

[c+ b(Y (s))As + r(Y (s))X(s−)]ds

+

∫ t

0

σ(Y (s))AsdW1(s)− S(t),

(3)

where b(·) := (µ− r)(·).
We define the ruin time as

τ(A) := inf{t > 0|X(t;A) < 0}

and the respective probability of ruin and survival

ψ(x, y;A) := P [τ(A) <∞|X(0;A) = x, Y (0) = y] ,

δ(x, y;A) := P [τ(A) =∞|X(0;A) = x, Y (0) = y] .

Also let
δ(x, y) := sup

A∈A
{δ(x, y;A)}.

Our goal is to analyze the survival probability under an optimal investment
strategy A∗t that maximize it over all admissible strategies, that is,

δ(x, y;A∗) = δ(x, y)
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0.2 HJB equation.

In this section we present an argument to propose a HJB equation which
solution is the optimal probability of survival. Let α ∈ R and define the
process (X, Y ) as

dX(t) =(c+ b(Y (t))α) + r(Y (t))X(t−))dt

+ σ(Y (t))αdW1(t)− dS(t)

dY (t) =g(Y (t))dt+ βdW̃ (t),

where W̃ (t) := ρW1(t) + εW2(t). Since this is a Markov process, for 0 < h�
1,

δ(x, y;α) =Ex,y

[
I{τ(α)=∞}

]
=Ex,y

[
E
[
I{τ(α)=∞}|Fh

]]
=Ex,y

[
EX(h),Y (h)

[
I{τ(α)=∞}

]]
=Ex,y [δ(X(h), Y (h);α)] .

(4)

For simplicity of the notation we drop the index α and the arguments of
the functions. If we suppose that δ ∈ C2, the integrals with respect to the
Brownian motion and the Compensated Poisson process are martingales and
all the interchanges between limits and integrals can be made, we get by Itô’s
rule

δ(X(h), Y (h)) = δ(x, y) +

∫ h

0

gδyds+

∫ h

0

(c+ bα + rX)δxds

+
1

2

[∫ h

0

β2ρ2δyyds+

∫ h

0

β2ε2δyyds+

∫ h

0

σ2α2δxxds+

∫ h

0

2βρσαδxyds

]
+

∫ h

0

σαδxdW1(s) +

∫ h

0

βρδydW1(s) +

∫ h

0

βεδydW2(s)

+
∑

{n≥1,ηn≤h}

[δ(X(ηn−)− ξn, Y (ηn))− δ(X(ηn−), Y (ηn))].

(5)

Now let M be the Poisson Random Measure over (0,∞)× (0,∞) associated
with the Lévy Process S(t), with intensity measure ν(·) := λQ(·), and let
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M̃ = M − ν be the compensated Poisson Random Measure. Hence∑
{n≥1,ηn≤h}

[δ(X(ηn−)− ξn, Y (ηn))− δ(X(ηn−), Y (ηn))]

=

∫∫
[0,h]×(0,∞)

[δ(X(s−)− z, Y (s))− δ(X(s−), Y (s))]M(ds, dz)

=

∫∫
[0,h]×(0,∞)

[δ(X(s−)− z, Y (s))− δ(X(s−), Y (s))]M̃(ds, dz)

+

∫∫
[0,h]×(0,∞)

[δ(X(s−)− z, Y (s))− δ(X(s−), Y (s))]λdsdQ(z).

Now taking expectations in (5), substituting in (4), dividing by h, letting
h→ 0 and taking supremum over all α ∈ R we get

sup
α∈R
{Lα[f ](x, y)} = 0 (6)

where

Lα[f ](x, y) := g(y)fy(x, y) + (c+ b(y)α + xr(y))fx(x, y)

+
1

2
β2fyy(x, y) +

1

2
σ(y)2α2fxx(x, y) + βρσ(y)fxy(x, y)

+ λ

∫ ∞
0

(f(x− z, y)− f(x, y))dQ(z).

(7)

If fxx < 0, the supremum is attained at

α∗(x, y) = −b(y)fx(x, y) + βρσ(y)fxy(x, y)

σ2(y)fxx(x, y)
. (8)

0.3 Verification theorem.

In this section we propose and prove a Verification Theorem. This theorem
asserts that, in case of existing a solution to (6), this solution has to be
the optimal probability of survival. To be optimal, this solution has to be
strictly increasing and concave in x. Because of the oscillatory of the paths of
the Brownian motion, if we have that α∗(0, y) 6= 0 then immediate ruin will
occur, and so the strategy won’t be optimal (because no investment would
be better). Hence the boundary condition must be that α∗(0, y) = 0 for all
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y ∈ R. If we assume this, we have that between jumps the “derivative” of
the process X(t) in 0 is given by dX(t) = cdt and so the process will not ruin
by investment. In fact the following Lemma asserts this observation (see [?]
Theorem 9.4.1).

Lemma 0.3.1. Consider a stochastic differential equation in Rn

dξ(t) = b(ξ(t))dt+ σ(ξ(t))dW (t),

with strong solution. Denote a := σ ∗ σt
Let G ⊂ Rn be an open set. Also let ν(x) = (ν1, . . . , νn) denote the inward
normal at x to ∂G, and ρ(x) := dist(x, ∂G).
If for all x ∈ ∂G

n∑
i,j=1

aijνiνj = 0,

and
n∑
i=1

biνi +
1

2

n∑
i,j=1

aij
∂2ρ

∂xi∂xj
≥ 0,

then
Py [ξ(t) ∈ G for all t > 0] = 1

if y ∈ G.

We present the main result of this chapter.

Theorem 0.3.1 (Verification theorem.). Assume H0 or H1. Assume also
there exists a solution f(x, y) of Equation (6) with maximizing function α∗

locally Lipschitz continuous, with the following properties

1. f(x, y) = 0 for (x, y) ∈ (−∞, 0)× R.

2. f ∈ C2[(0,∞)× R] ∩ C[[0,∞)× R].

3. fx > 0 and fxx < 0.

4. α∗(0, ·) = 0

Then f is bounded, furthermore f(∞, y) is constant and for any admissible
strategy A it’s satisfied

δ(x, y;A) ≤ f(x, y)

f(∞, y)
≤ δ(x, y;A∗),

where A∗t = α∗(X(t−), Y (t)). And hence we get the equality for this strategy.
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To prove the Theorem we need the following lemmas (for the proofs see
Section ?? in Appendix ??).

Lemma 0.3.2. Consider stochastic processes γ(t), µ(t) and σ(t) such that
0 < µ0 ≤ µ(t), 0 < σ0 ≤ σ(t) ≤ σ1 for some constants µ0, σ0, σ1. Also
assume that µ(t) and σ(t) are continuous processes. For a, b, c > 0 define the
process

π(t) := γ(t) + a+ b

∫ t

0

µ(s)ds+ c

∫ t

0

σ(s)dW (s)

If γ(t) ≥ 0 for some A ∈ F then

π(t) −−−→
t→∞

∞,

over the set A.

Lemma 0.3.3. Let π(t) = x+α
∫ t

0
µ(s)ds+β

∫ t
0
σ(s)dW (s), with 0 < σ ≤ σ1

and 0 < µ0 ≤ µ, then

P [for some t;π(t) < 0] ≤ exp

{
−2αµ0

β2σ2
1

x

}
.

We proceed to the proof of the Verification Theorem

Proof of the Verification Theorem. We prove the theorem in two cases. In
the first one we assume H0, that is r ≡ 0. In the second case we assume
H1 and so we have an “arbitrary” r. Both cases are divided in two main
steps. In the first step we consider an arbitrary admissible strategy, and we
proof that its probability of survival is a lower bound for the solution of the
HJB equation. In the second step we work with the optimal strategy and we
prove that its probability of survival is an upper bound for the solution of
the HJB equation.
Case 1. Assume H0.
Step 1. Lower bound.
Let A = {At}t≥0 be any admissible strategy. Let (X, Y )(t) be the risk process
defined in equations (3) and (1), with investment strategy A, (X, Y )(0) =
(x, y) and τ its ruin time. To prove the boundness of f we need to prove
that over the set {τ = ∞}, the process X(t) −−−→

t→∞
∞. Instead of this we

consider a family {Xε} of risk processes asymptotically close to the process
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X, with the property that Xε(t) −−−→
t→∞

∞ over the set {τ = ∞}. This idea

was proposed by Hipp and Plum in [?] and [?]. Let Aε be defined as

Aεt := At + ε,

and Xε(0) = x+ ε and τ ε its ruin time.
We analyze the process (Xε, Y ).

Xε(t) =x+ ε+

∫ t

0

(c+ µ(Y (s))(As + ε2))ds

+

∫ t

0

σ(Y (s))(As + ε2)dW1(s)− S(t)

=X(t) + ε+ ε2
∫ t

0

µ(Y (s))ds+ ε2
∫ t

0

σ(Y (s))W1(s).

(9)

Hence the following contain its true

{τ ε < τ} ⊂
{

for some t, ε+ ε2
∫ t

0

µ(Y (s))ds+ ε2
∫ t

0

σ(Y (s))dW1(s) < 0

}
By Lemma 0.3.3, we see that

P[τ ε < τ ]

≤ P
[
for some t > 0; ε+ ε2

∫ t

0

µ(Y (s))ds+ ε2
∫ t

0

σ(Y (s))W1(t) < 0

]
≤ exp

(
−2µ0

σ2
1ε

)
.

(10)

Also, we have that over the set {τ = ∞}, the process X(t) ≥ 0. Then,
thanks to Equation (9) and Lemma 0.3.2 we have

Xε(t) −−−→
t→∞

∞ (11)

over {τ =∞}. So (Xε, Y ) has the asserted properties.
Following the idea made by Schmidli in [?] we propose the following stopping
times. This stopping times are used to prove the boundness of f .
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Let a ∈ R, n,m,M ∈ N. For the process (Xε, Y ) let

αεn := inf{t > 0|Xε
t /∈ [0, n]}

γM := inf{t > 0|Y (t) /∈ [−M,M ]}
νam := inf{t > m|Y (t) = a}

It follows from the non-explosion in finite time of the process Y and from
Remark 0.1.1 that

γM
a.s.−−−−→

M→∞
∞,

νam <∞ a.s. and

νam
a.s.−−−→

m→∞
∞.

We also have that

αεn
a.s.−−−→
n→∞

τ ε.

Because f ∈ C2, applying Ito’s rule we get

f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam))−
∫ t∧αεn∧γM∧νam

0

LAεs(Xε(s−), Y (s))ds =

f(x+ ε, y) +

∫ t∧αεn∧γM∧νam

0

σ(Y (s))Aεsfx(X
ε(s−), Y (s))dW1(s)

+

∫ t∧αεn∧γM∧νam

0

βfy(X
ε(s−), Y (s))dW̃ (s)

+

∫∫
(0,t∧αεn∧γM∧νam)×(0,∞)

[f(Xε(s−)− z, Y (s))− f(X(s−), Y (s))]M̃(ds, dz).

where Lα is defined as in equation (7). For 0 < s < t ∧ αεn ∧ γM ∧ νam we
have that (Xε, Y )(s) ∈ [0, n] × [−M,M ]. Over this set f , fx and fy are
bounded and since Aε is admissible we have that the integrals with respect
to the Brownian motions and the compensated Poisson process are local
martingales. Hence we get that

{
f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam))−

∫ t∧αεn∧γM∧νam

0

LAεs(Xε(s−), Y (s))ds

}
t≥0

is a local martingale.
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Let {πk}∞k=1 be a sequence of localization times such that limk→∞ πk =∞
a.s. For 0 < s < t ∧ αεn ∧ γM ∧ νam ∧ πk, we get that LAεs(Xε(s−), Y (s)) ≤ 0.
Then for all t ≥ 0, n,m,M, k ∈ N

E [f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam ∧ πk))] ≤ f(x+ ε, y).

Over the set (−∞, n] × [−M,M ], f is bounded, so by the Dominated Con-
vergence Theorem we have

f(x+ ε, y) ≥ lim
k→∞

E [f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam ∧ πk))]

= E
[

lim
k→∞

f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam ∧ πk))
]

= E [f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam))] .

Because f ≥ 0 we apply Fatou’s Lemma for n→∞ to get

f(x+ ε, y) ≥ lim inf
n→∞

E [f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam))]

≥ E
[
lim inf
n→∞

f((Xε, Y )(t ∧ αεn ∧ γM ∧ νam))
]

= E [f((Xε, Y )(t ∧ τ ε ∧ γM ∧ νam))] .

Repeating the same argument for M →∞ we get

f(x+ ε, y) ≥ E [f((Xε, Y )(t ∧ τ ε ∧ νam))] .

Letting t→∞, since νam <∞ a.s., and multiplying by I{τε=∞}

f(x+ ε, y) ≥ lim inf
t→∞

E
[
f((Xε, Y )(t ∧ τ ε ∧ νam))I{τε=∞}

]
≥ E

[
lim inf
t→∞

f((Xε, Y )(t ∧ τ ε ∧ νam))I{τε=∞}
]

= E
[
f((Xε, Y )(τ ε ∧ νam))I{τε=∞}

]
= E

[
f(Xε(νam), a)I{τε=∞}

]
,

since we are over the set {τ ε =∞}.
Since 0 ≤ I{τ=∞} ≤ 1

f(x+ ε, y) ≥ E
[
f(Xε(νam), a)I{τε=∞,τ=∞}

]
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for all m ∈ N. Letting m→∞, thanks to equation (11), we get

f(x+ ε, y) ≥ lim inf
m→∞

E
[
f(Xε(νam), a)I{τε=∞,τ=∞}

]
≥ E

[
lim inf
m→∞

f(Xε(νam), a)I{τε=∞,τ=∞}
]

= f(∞, a)P [τ ε =∞, τ =∞]

≥ f(∞, a)

(
P [τ =∞]− exp

{
−2µ0

σ1ε

})
.

The last inequality follows from equation (10) and

P [τ =∞] = P [τ =∞, τ ε =∞] + P [τ =∞, τ ε < τ ]

≤ P [τ =∞, τ ε =∞] + P [τ ε < τ ] .

Letting ε ↓ 0

f(x, y) ≥ f(∞, a)P [τ =∞] .

For the strategy A ≡ 0 we have that P [τ(0) =∞] > 0, and since f(x, y) is
finite, we have that for all a ∈ R, f(∞, a) is finite. So

0 < P [τ(0) =∞] ≤ f(x, y)

f(∞, a)

implies that lim supa→±∞ f(∞, a) < ∞. So f(∞, a) is a bounded function.
Now since f is increasing in x we have that f(x, y) ≤ f(∞, y) and hence f is
a bounded function. Finally we get that for any admissible strategy A and
a ∈ R

δ(x, y;A) ≤ f(x, y)

f(∞, a)
.

Step 2. Upper bound.
Let (X∗, Y ) be the risk process with investment strategy A∗(t) (this strategy
is admissible since α∗ is locally Lipschitz) and
(X∗, Y )(0) = (x, y). For this process we define the following stopping times

α∗n := inf{t > 0|X∗t /∈ [0, n]}
γM := inf{t > 0|Y (t) /∈ [−M,M ]}
νam := inf{t > m|Y (t) = a}
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For f(X∗, Y ), by Ito’s rule we have

f((X∗, Y )(t ∧ α∗n ∧ γM ∧ νam))−
∫ t∧α∗n∧γM∧νam

0

LA∗
s(X∗(s−), Y (s))ds =

f(x, y) +

∫ t∧α∗n∧γM∧νam

0

σ(Y (s))A∗sfx(X
∗(s−), Y (s))dW1(s)

+

∫ t∧α∗n∧γM∧νam

0

βfy(X
∗(s−), Y (s))dW̃ (s)

+

∫∫
(0,t∧α∗n∧γM∧νam)×(0,∞)

[f(X∗(s−)− z, Y (s))− f(X(s−), Y (s))]M̃(ds, dz).

For 0 < s < t∧α∗n∧γM∧νam we have that (X∗, Y )(s) ∈ [0, n]×[−M,M ]. Over
this set f , fx, fy and A∗ are bounded, hence the integrals with respect to
the Brownian motions and the compensated Poisson process are martingales.
Also we have that LA∗

s(X∗(s−), Y (s)) = 0. Hence we get that

{f((X∗, Y )(t ∧ α∗n ∧ γM ∧ νam))}t≥0

is a martingale. Then for all t ≥ 0, n,m,M ∈ N

f(x, y) = E [f((X∗, Y )(t ∧ α∗n ∧ γM ∧ νam))] .

Now since f is bounded, by the Dominated Convergence Theorem we get

f(x, y) = lim
n→∞

E [f((X∗, Y )(t ∧ α∗n ∧ γM ∧ νam))]

= E
[

lim
n→∞

f((X∗, Y )(t ∧ α∗n ∧ γM ∧ νam))
]

= E [f((X∗, Y )(t ∧ τ ∗ ∧ γM ∧ νam))] .

By the same argument, since γM
a.s.−−−−→

M→∞
∞, we get

f(x, y) = E [f((X∗, Y )(t ∧ τ ∗ ∧ νam))] .

Letting t→∞, since νam <∞ a.s.,

f(x, y) = E [f((X∗, Y )(τ ∗ ∧ νam))] .

Now

f(x, y) =E
[
f((X∗, Y )(τ ∗ ∧ νam))(I{τ∗=∞} + I{τ∗<∞})

]
=E

[
f((X∗, Y )(νam))I{τ∗=∞}

]
+ E

[
f((X∗, Y )(τ ∗ ∧ νam))I{τ∗<∞}

]
=E

[
f(X∗(νam), a)I{τ∗=∞}

]
+ E

[
f((X∗, Y )(τ ∗ ∧ νam))I{τ∗<∞}

]
≤f(∞, a)P [τ ∗ =∞] + E

[
f((X∗, Y )(τ ∗ ∧ νam))I{τ∗<∞}

]
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because f is increasing in x. Since νam
a.s.−−−→

m→∞
∞, letting m → ∞ in the

second integral we get

f(x, y) ≤f(∞, a)P [τ ∗ =∞] + lim
m→∞

E
[
f((X∗, Y )(τ ∗ ∧ νam))I{τ∗<∞}

]
=f(∞, a)P [τ ∗ =∞] + E

[
f((X∗, Y )(τ ∗))I{τ∗<∞}

]
=f(∞, a)P [τ ∗ =∞] + E

[
f(0, Y (τ ∗))I{τ∗<∞,X∗(τ∗)=0}

]
,

because f(x, y) = 0 for x < 0.
We have that

P [X∗(τ ∗) = 0, τ ∗ <∞] = 0. (12)

This is true: since the process (X∗, Y ) is a strong Markov process, then
between any two jump times [ηn, ηn+1) the process has the following dynamic

dX∗(t) =(c+ b(Y (t))A∗(X∗(t), Y (t)) + r(Y (t))X∗(t))dt

+ σ(Y (t))A∗(X(t), Y (t))dW1(t),

dY (t) =g(Y (t))dt+ β(ρdW1(t) + εdW2(t)).

Now since A∗(0, ·) = 0, the process degenerates on the boundary {0} × R.
Following the notation in Lemma 0.3.1 we have that∑

aij(0, y)νiνj = σ(y)2A∗(0, y)2 = 0

and ∑
biνi +

1

2

∑
aij

∂2ρ

∂xi∂xj
= c+ b(y)A∗(0, y) = c > 0,

hence (X∗, Y ) cannot cross the boundary continuously and so (12) follows.
So for all a ∈ R.

δ(x, y;A) ≤ f(x, y)

f(∞, a)
≤ δ(x, y;A∗).

Since A∗ is an admissible strategy we get the equality for this strategy and
so f(∞, a) has to be constant. Substituting y for a we finally conclude

δ(x, y;A) ≤ f(x, y)

f(∞, y)
= δ(x, y;A∗).

Case 2. Assume H1.
We now proceed to the case with non risk bonus, that is, 0 < r0 ≤ r(·). In
this case we don’t further have the assumption σ(·) ≤ σ1. We follow again
the idea proposed by Hipp and Plum [?] for the auxiliary process Xε. In this
case we work with the following processes.
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Process Strategy Initial State Ruin time

(X, Y )(t) At (x, y) τ
(Xε, Y )(t) At (x+ ε, y) τ ε

(X∗, Y )(t) A∗t (x, y) τ ∗

We have that

Xε(t)−X(t) = ε+

∫ t

0

r(Y (s))(Xε(s)−X(s))ds

and solving the equation we get

Xε(t) = X(t) + ε exp

{∫ t

0

r(Y (s))ds

}
.

So over the set {τ =∞} we have that X(t) ≥ 0 and so

Xε(t) =X(t) + ε exp

{∫ t

0

r(Y (s))ds

}
≥ε exp

{∫ t

0

r(Y (s))ds

}
≥ε exp{r0t} −−−→

t→∞
∞

Also we get that for all t > 0, Xε(t) ≥ X(t) a.s., and so

P [τ ε < τ ] = 0.

From here the proof follows exactly the same as in the case without bonus.
We only rest to prove that in this case, there exists an strategy A such that
P [τ(A) =∞] > 0, an argument used to prove the boundness of f . For this
we consider again the case A ≡ 0. We work with the following processes

X0(t) = x− ε+ ct− S(t)

and

X1(t) = x+

∫ t

0

(c+ r(Y (s))X(s−))ds− S(t).

Since the jumps of the processes are the same we have that the process
{X0(t)−X1(t)}t≥0 has continuous paths. Now over the set {τ0 =∞}, we get

X0(t)−X1(t) =− ε+

∫ t

0

r(Y (s))(−X1(s))ds

≤− ε+

∫ t

0

r(Y (s))(X0(s)−X1(s))ds.
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By Gronwall’s Lemma (Lemma ??), over the set {τ0 =∞} we have

X0(t)−X1(t) ≤ −x exp

{
−
∫ t

0

r(Y (s))ds

}
,

so

X1(t) ≥X0(t) + ε exp

{
−
∫ t

0

r(Y (s))ds

}
≥X0(t)

And so we conclude

P [τ1 =∞] ≥ P [τ0 =∞] > 0,

which finish the proof.



Auxiliary results.

.1 Continuity of the stopping times.

Theorem .1.1. Let {Z(t)}t≥0 be a stochastic process with continuous paths
a.s., A ⊂ Rd an open, connected set with regular boundary. Let

τ := inf{t > 0|Z(t) /∈ A}.

Assume that P [τ <∞|Z(0) = z] = 1 and P [τ = τ ′|Z(0) = z] = 1 for all
z ∈ A, where

τ ′ := inf{t > 0|Z(t) /∈ A}.

For a > 0, define

Aa := {x ∈ Rd|d(x, ∂A) < a}

and

Aa+ :=A ∪ Aa,
Aa− :=A \ Aa

and the corresponding exit times

τa+ := inf{t > 0|Z(t) /∈ Aa+},
τa− := inf{t > 0|Z(t) /∈ Aa−}.

Then, if Z(0) = z ∈ A,

τa+
a.s.−−→
a↓0

τ,

τa−
a.s.−−→
a↓0

τ.

1



2

Proof. Let Z(0) = z ∈ A and

Bz := {Z(t) is continuous} ∩ {τ = τ ′} ∩ {τ <∞}.

By the hypotheses we have that P [Bz] = 1. Observe that τa− ≤ τ ≤ τa+ for
all a > 0, then we need to prove that for all ω ∈ Bz and α > 0, there exists
γ(ω, α) > 0 such that for all 0 < a < γ

0 ≤ τa+(ω)− τ(ω) < α

and
0 ≤ τ(ω)− τa−(ω) < α.

Let ω ∈ Bz and α > 0, then Z(t, ω) is continuous and τ(ω) < ∞. We first
prove the continuity for τa+. Define

γ+(α, ω) := sup
{t∈[τ(ω),τ(ω)+α),Z(t,ω)/∈A}

{d(Z(t, ω), ∂A)}.

Since Z(t, ω) is continuous, then γ+(α, ω) > 0. So there exists t+ ∈ [τ(ω), τ(ω)+
α) such that Z(t+, ω) /∈ Aa+ for all 0 < a ≤ γ+

2
. Let γ := γ+

2
, then for all

0 < a ≤ γ we get that τa+(ω) ∈ [τ(ω), τ(ω) + α) and so

0 ≤ τa+(ω)− τ(ω) < α.

For τa− we proceed in a similar way. Let

β(ω) := inf
t≤τ(ω)−α

{d(Z(t, ω), ∂A)}.

Since τ(ω) = τ ′(ω) and Z(t, ω) is continuous, we get that β(ω) > 0. Define

γ−(α, ω) := sup
t∈(τ(ω)−α,τ(ω)]

{d(Z(t, ω), ∂A)}.

Again, it follows from the continuity of Z(t, ω) that γ−(α, ω) > 0. So there
exists t− ∈ (τ(ω) − α, τ(ω)] such that Z(t−, ω) /∈ Aa− for all 0 < a ≤ β∧γ−

2
.

Let γ := β∧γ−
2

, then for all 0 < a ≤ γ we get that τa−(ω) ∈ (τ(ω)− α, τ(ω)]
and so

0 ≤ τ(ω)− τa−(ω) < α

and the proof is complete.
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Theorem .1.2. Let {Z(t)}t≥0 be a stochastic process with Z(0) = z ∈ Rd

and A ⊂ Rd an open, connected set with regular boundary. Let {zn} be a
sequence such that

zn −−−→
n→∞

z0

with zn, z0 ∈ A. Denote by Z0 and Zn the stochastic processes with initial
conditions z0 and zn, respectively. Define

τ := inf{t > 0|Z0(t) /∈ A},
τn := inf{t > 0|Zn(t) /∈ A}.

Assume that τ <∞ and τ = τ ′ a.s., where

τ ′ := inf{t > 0|Z0(t) /∈ A}.

Let {Σ(t, z)}t≥0,z∈Rd denote the flow process of Z. If Σ(t, z) is continuous
a.s., then

τn
a.s.−−−→
n→∞

τ.

Proof. Let

B := {Σ(t, z) is continuous} ∩ {τ <∞} ∩ {τ = τ ′}.

As a consequence of the hypotheses we get that P [B] = 1. We need to prove
that for all ω ∈ B and ε > 0, there exists N(ε, ω) ∈ N such that for all
n ≥ N(ε, ω)

|τ(ω)− τn(ω)| < ε.

Let ω ∈ B and ε > 0. For the process Z0 define Aa+, Aa−, τa+ and τa− as in
Theorem .1.1. Since τa+

a.s.−−→
a↓0

τ and τ(ω) < ∞, then there exists a0(ω) > 0

such that M(ω) := τa0(ω) <∞. So, for all 0 < a < a0 we get that

τa−(ω) ≤ τ(ω) ≤ τa+(ω) ≤M(ω). (1)

Let a1(ω, ε) > 0 such that for all 0 < a ≤ a1

τa+(ω) ≤τ(ω) + ε,

τa−(ω) ≥τ(ω)− ε.
(2)

Let r > 0 and N1(r) ∈ N such that for all n ≥ N1, zn ∈ [z0 − r, z0 + r]d.
Since Σ(t, x)(ω) is continuous on [0,∞) × Rd, then over the compact set
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C(r, ω) := [0,M(ω)] × [z0 − r, z0 + r]d, Σ(t, x)(ω) is uniformly continuous.

Define a2(ω, ε) := a0(ω)∧a1(ω,ε)
2

. Then there exists γ(Cr, ω, a2) > 0 such that
if |zn − z0| < γ, then

sup
0≤t≤M(ω)

|Σ(t, zn)−Σ(t, z0)| = sup
0≤t≤M(ω)

|Zn(t)(ω)−Z0(t)(ω)| < a2(ω, ε). (3)

Let N2(ω) ∈ N such that |zn − z0| < γ for all n ≥ N2. Then for all n ≥ N2,
thanks to equations (1) and (3)

τa2−(ω) ≤ τn(ω) ≤ τa2+(ω).

Let N(ω, ε) := N1∨N2, then for all n ≥ N(ω, ε), combining the last equation
and equation (2) we get

τ(ω)− ε ≤ τn(ω) ≤ τ(ω) + ε.

So we conclude that for all ω ∈ B, τn(ω)→ τ(ω), and hence τn
a.s.−−→ τ .

.2 Lemmas for the Risk Process.

In this section we present and prove the Lemmas needed in the proof of the
Verification Theorem for the Risk Process.

Lemma .2.1. Consider stochastic processes γ(t), µ(t) and σ(t) such that
0 < µ0 ≤ µ(t), 0 < σ0 ≤ σ(t) ≤ σ1 for some constants µ0, σ0, σ1. Also
assume that µ(t) and σ(t) are continuous processes. For a, b, c > 0 define the
process

π(t) := γ(t) + a+ b

∫ t

0

µ(s)ds+ c

∫ t

0

σ(s)dW (s)

If γ(t) ≥ 0 for some A ∈ F then

π(t) −−−→
t→∞

∞,

over the set A.

Proof. Notice that
∫ t

0
σ(s)dW (s) is a martingale thanks to the boundness of

σ. We use the fact that for any continuous local martingale M that vanishes
at 0 we get

M(t)

〈M〉(t)
a.s.−−−→
t→∞

0
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over the set {〈M〉(∞) =∞} (see [?] page 186). Since σ is bounded we have
no explosions in finite time. Besides we know that〈∫ ·

0

σ(s)dW (s)

〉
(t) =

∫ t

0

σ2(s)ds.

Over the set A we have γ(t) ≥ 0, so

π(t) = γ(t) + a+ b

∫ t

0

µ(s)ds+ c

∫ t

0

σ(s)W (s)

≥ a+ b

∫ t

0

µ(s)ds+ c

∫ t

0

σ(s)dW (s)

≥ a+ bµ0t+ c

∫ t

0

σ(s)dW (s)

= t

(
a

t
+ bµ0 + c

∫ t
0
σ(s)dW (s)〈∫ ·

0
σ(s)dW (s)

〉
(t)

∫ t
0
σ2(s)ds

t

)
−−−→
t→∞

∞

since for all t > 0

σ2
0 ≤

∫ t
0
σ2(s)ds

t
≤ σ2

1.

Lemma .2.2. Let π(t) = x+α
∫ t

0
µ(s)ds+ β

∫ t
0
σ(s)dW (s), with 0 < σ ≤ σ1

and 0 < µ0 ≤ µ, then

P [for some t;π(t) < 0] ≤ exp

{
−2αµ0

β2σ2
1

x

}
.

Proof. Let

κ(t) = −α
∫ t

0

µ(s)ds− β
∫ t

0

σ(s)dW (s).

For r > 0 define

γ(t; r) = exp

{
rκ(t) + rα

∫ t

0

µ(s)ds− r2β2

2

∫ t

0

σ2(s)ds

}
= exp

{
−rβ

∫ t

0

σ2(s)dW (s)− r2β2

2

∫ t

0

σ2(s)ds

}
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and

θ(r) := αµ0r −
β2σ2

1

2
r2

Hence

P[for some t;π(t) < 0] = P [for some t;κ(t) > x]

=P
[
for some t > 0; γ(t; r) > exp

{
rx+ rα

∫ t

0

µ(s)ds− r2β2

2

∫ t

0

σ2(s)ds

}]
≤P
[
for some t > 0; γ(t; r) > exp

{
rx+ rαµ0t−

r2β2σ2
1

2
t

}]
=P [for some t > 0; γ(t; r) > exp {rx+ θ(r)t}]

For r̂ := 2αµ0

β2σ2
1
, we have that θ(r̂) = 0, so

P [for some t;π(t) < 0] ≤P [for some t > 0; γ(t; r̂) > exp{r̂x}]

=P
[
sup
t>0
{γ(t; r̂)} > exp{r̂x}

]
.

On the other hand we have by Novikov’s criteria (see [?] page 351) that
γ(t; r) is a martingale since〈∫ ·

0

(−rβσ(s))dW (s)

〉
(t) =

∫ t

0

r2β2σ2(s)ds.

Using Doob’s inequality for positive supermartingales we get

P [for some t; π(t) < 0] ≤E [γ(0; r̂)]

exp{r̂x}
= exp{−r̂x}.

which finishes the proof.

.3 Additional results.

Theorem .3.1. Let {(tn, xn)}n∈N ⊂ [0,∞) × Rd be a sequence such that
(tn, xn) −−−→

n→∞
(t, x). Denote by Xn and X the solutions of the following

equations

dXn(s) = b(tn − s,Xn(s))ds+ σ(tn − s,Xn(s))dW (s), Xn(0) = xn,
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and

dX(s) = b(t− s,X(s))ds+ σ(t− s,X(s))dW (s), X(0) = x.

Then for all T > 0

‖Xn −X‖T
P−−−→

n→∞
0.

Proof. This Theorem is consequence of Theorem 1.5 in Chapter V of [?].

The following theorem is Theorem 9 of Chapter 3 in [?]. Let 0 ≤ T0 < T1

and let A ⊂ Rd be a bounded open set with C2 boundary. Since σ, b, c and
f are locally Lipschitz, then they are locally Hölder of any order β ∈ (0, 1)

Theorem .3.2. Assume H1 and H2. Consider the following differential
equation

−ut(t, x) + L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ [T0, T1]× A,
u(T0, x) = g(T0, x) for x ∈ A,
u(t, x) = g(t, x) for (t, x) ∈ (T0, T1]× ∂A.

(4)

If g is continuous then there exists a classical solution w ∈ C([T0, T1)×A)∩
C1,2,β((T0, T1)× A) of equation (4).

Remark .3.1. Let w be the solution of equation (4) and define z as w(t, x) =
ec0tz(t, x) in [T0, T1] × A. Then z fulfils equation (4) with c′ = c − c0 and
f ′(t, x) = ec0tf(t, x). And so the hypotheses of Theorem 9 of Chapter 3 in
[?] are satisfied.

Lemma .3.1 (Gronwall’s Lemma.). Let α ∈ R, k(t) ≥ 0 continuous and
γ ∈ C(R). If

γ(t) ≤ α +

∫ t

0

k(s)γ(s)ds

then

γ(t) ≤ α exp

{∫ t

0

k(s)ds

}
.

Proof. Let

η(t) := α +

∫ t

0

k(s)γ(s)ds.
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Since k(s)γ(s) is continuous, then η(t) is differentiable and η′(t) = k(t)γ(t)
(see [?] page 349). Hence

η′(t) = k(t)γ(t)

≤ k(t)

(
α +

∫ t

0

k(s)γ(s)ds

)
= k(t)η(t).

Multiplying by exp
{
−
∫ t

0
k(s)ds

}
we get

η′(t) exp

{
−
∫ t

0

k(s)ds

}
− k(t)η(t) exp

{
−
∫ t

0

k(s)ds

}
≤ 0

from which (
η(t) exp

{
−
∫ t

0

k(s)ds

})′
≤ 0.

This implies that it is a decreasing function and so

η(t) exp

{
−
∫ t

0

k(s)ds

}
≤ η(0) = α,

which finish the proof.
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