00521 97

VNIVERADAD NACIONAL AVFNMA DE MEXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

EUTÉCTICOS METÁLICOS BINARIOS

T E S I S QUE PARA OBTENER EL TÍTULO DE: INGENIERO QUÍMICO P R E S E N T A: SAÚL MONTEJANO ALONSO

MÉXICO, D. F.

2003

EXAMENES PROFESIONALES FACULTAD DE QUIMICA

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

Presidente: Vocal: Secretario: 1er Suplente 2do Suplente Prof. Noguez Amaya Ma. Eugenia Prof. Salas Banuet Guillermo F. Prof. Robert Nuñez Teresita Prof. Aramburo Pérez Gerardo Prof. García Galán Sergio

Sitio donde se desarrolló el tema:

Departamento de Ingeniería Metalurgica de la Facultad de Química, U.N.A.M.

Asesor del Tema:

I.Q.M. Guillermo Salas Banuet

Supervisor Técnico: José Ramírez Vieyra. 1.Q.M Sustentante -*= 40 ľ 20

Saúl Montejano Alonso

Simbología utilizada

Símbolo	Significado	Unidades
A Ao Ao	Relación de volúmenes molares Número de Avogadro	adimensional partículas / mol
B	Relación de densidades	adimensional
C	Constituyente o fase del eutéctico	
- C	Calculado	
D	Diagrama de fases	
е	Experimental	
EC	Estructura cristalina	
Id	Irregular Discontinuo	and the second
I	Ligeramente Irregular	and the second
Im	Medianamente Irregular	
It	Totalmente Irregular	
M	Tipo de Microestructura	
Mp	Peso molecular	g / mol
Nc	Número de átomos o moléculas por celda unitaria	átomos o moléculas / celda
N⁰	Número del sistema	
RI	Regular laminar	
Rv	Regular de varilla	Methoda and a state of the second state of the
Rm	Regular mixto	
Те	Temperatura eutéctica	°C
Τf	Temperatura de fusión	° C
Vc	Volumen de la celda unitaria.	cm ³ / celda
Vf	Fracción en volumen	adimensional
Vm	Volumen molar	cm ³ / mol
Xe	Composición del constituyente (al equilibrio)	peso
XL	Composición del punto eutéctico (al equilibrio)	peso
ΔS	Entropía de fusión	cal / átomo-gramo
ΔΤ	Diferencia de temperaturas de fusión	• • C • • • • • • •
ε	Proporción de fases	%mol / %mol
ρ	Densidad	q/cm^3
%p	Elemento al que corresponde la composición en pese	
F		The second seco second second sec

Advinto a la Dirección concerte de Hiblioteras do El Ilhate gaptimon de la constante de Hiblioteras do El Electronidad de la constante de constante Advinto a la constante de constante Electronidad de la constante de con

2

ÍNDICE

- I RESUMEN
- II INTRODUCCIÓN
- III ANTECEDENTES
- IV BASES TEÓRICAS
- V DESARROLLO
- VI RESULTADOS Y DISCUSIÓN
- VII CONCLUSIONES
- VIII BIBLIOGRAFÍA
- IX APÉNDICES

32

1

2

5

8

14

18

26

I RESUMEN

El presente trabajo estudia las características generales de los eutécticos metálicos binarios. A continuación se indican los objetivos propuestos y la forma en que se cubren.

 Encontrar los factores que permiten la formación de los eutécticos en las aleaciones binarias.

Se demuestra en forma estadística, que las densidades que presentan los constituyentes, son siempre muy parecidas; esta relación de densidades que tiende a 1, es altamente determinante para que el eutéctico pueda formarse.

2.- Buscar los factores que tienen un papel más preponderante en la formación de los diferentes tipos de microestructura eutéctica. Definir la relación que hay entre ellos.

Se encontró que el tipo de microestructura vendrá determinado, principalmente, por la entropia de fusión (ΔS), la fracción en volumen (Vf), la proporción de fases (ε) y la relación de volúmenes molares (A) de los constituyentes.

3.- Definir qué clasificación de microestructuras se ajusta mejor a la realidad; a partir de la revisión de las morfologías reportadas en la literatura.

Se propone una nueva clasificación, obtenida a partir de la microestructura de 152 eutécticos reportados y de la relación de sus valores de ∆S, Vf, ε y A.

 4.- Predecir el tipo de microestructura que presentará cualquier eutéctico binario, con constituyentes metálicos o metaloides.

Se presenta un sistema capaz de predecir la microestructura de cualquier eutéctico metálico binario. Para efectuar la predicción se necesitan los valores de entropla de fusión, la composición y los parámetros de red, de cada una de las fases. Se predice la microestructura para 1804 eutécticos.

II INTRODUCCIÓN

La palabra eutéctico proviene del griego "ευτεκτοσ", que significa fácil de fundir. Es una aleación que se forma a partir de una transformación isotérmica reversible, en la cual una solución líquida solidifica en dos fases que se intercalan a nivel microscópico. Una característica muy importante es que el punto de fusión de estas aleaciones es siempre más bajo que el de sus constituyentes puros.

Algunas aleaciones eutécticas se usaron desde épocas muy remotas. En la actualidad, muchas aleaciones de composición eutéctica o cercana a la eutéctica tienen un amplio campo de aplicación.

Entre las aleaciones eutécticas o cuasieutécticas de mayor importancia industrial podemos citar los hierros colados, las aleaciones aluminio-silicio y desde luego todas aquellas usadas en los procesos de soldadura, incluidas las soldaduras libres de plomo.

Los eutécticos también trabajan óptimamente a altas temperaturas y esfuerzos altos, como en las superaleaciones utilizadas en la fabricación de turbinas.

También existe una amplia gama de aplicaciones no estructurales para las aleaciones eutécticas, como pueden ser:

-Soldadura de microensamblaje para microchips, circuitos impresos, procesadores de alta velocidad y robótica.

-Superconductores, resistores, magnetoresistores, controladores de campo magnético, baterías, dispositivos piezoelécticos, sistemas microhidráulicos y conducción de iones.

-Dispositivos optoeléctrónicos, detectores de rayos infrarrojos, filtros polarizadores de infrarrojo y luz guiada.

-Fusibles para dispositivos mecánicos, como los de las puertas contra incendio y otros dispositivos de seguridad.

-Amalgamas dentales, electrodos, materiales cerámicos y automotivos.

-Amplificadores de sonido para teléfonos celulares y otros dispositivos de comunicación.

-Fabricación de reactores nucleares y sensores de presión de gran sensibilidad.

Otros sistemas eutécticos constituidos por sales inorgánicas o compuestos orgánicos se emplean en:

-Captación y almacenamiento de energía solar.

-Recuperación de energía, para producción de agua caliente, para uso industrial y comercial. Producción de aire caliente, aire acondicionado y secado de productos.

-Calefacción de alimentos, en hoteles y restaurantes.

-Recuperación de plásticos de deshecho. Elaboración de productos farmacéuticos, especialmente anestésicos. Biomedicina. Purificación de aguas residuales.

Para explicar la naturaleza de los sistemas eutécticos se han realizado numerosas investigaciones. Los avances que se han producido han sido muy notables, pero no se ha explicado totalmente como se forman.

Esta tesis trata de ayudar a comprender algunos de los mecanismos que permiten la formación de aleaciones eutécticas metálicas binarias, y de los diferentes tipos de microestructuras que presentan.

Se buscan los factores que intervienen en la formación del eutéctico. Con el objeto de hacer un estudio de tipo estadístico, se obtuvieron los valores de estas variables para el mayor número posible de aleaciones eutécticas binarias. Desafortunadamente, algunos factores tuvieron que descartarse porque sólo hay información disponible para un número muy limitado de sistemas.

Una vez concluida la revisión, los datos se correlacionan en busca de tendencias o comportamientos sistemáticos. Se trata de determinar que favorece la aparición de un eutéctico.

Al analizar los datos para la formación de eutécticos, se encuentra que, en la mayoría de los casos, no se presenta una relación blen definida. Sin embargo hay dos excepciones notables:

 Se confirma que la aparición de un eutéctico se favorece cuando los constituyentes presentan radios atómicos y estructuras cristalinas diferentes.

 Los eutécticos tienen fases sólidas que presentan valores de densidad prácticamente iguales entre sí. B es el coclente, que resulta de dividir el valor de densidad de una fase sólida entre el valor de densidad de la otra fase. Esta relación de densidades tiende a ser igual a 1.

Para definir porqué se presentan diferentes tipos de microestructuras, se revisan las propuestas presentadas a partir del siglo XIX y se contrastan los diferentes puntos de vista que cada una presenta.

Se seleccionan tres, a saber, las de Croker M.N. (1973), Kurtz W. (1984), y Dubey K.S. (1992). En forma individual, ninguna de la propuestas explica, en forma satisfactoria, el comportamiento de todas las microestructuras. Sin embargo presentan conceptos muy importantes. Combinándolas y ponderándolas adecuadamente, se propone una explicación más acorde con la realidad.

Se encuentra que los factores que más influyen en la formación de las microestructuras eutécticas son: la entropía de solución, la fracción en volumen, la proporción de fases y la relación de volúmenes molares de los constituyentes. Lo anterior se aplica para una estructura de colada enfriada lentamente. Si la velocidad de enfriamiento se incrementa o si se recurre a algún procedimiento de solidificación direccional, la microestructura se modifica notablemente. La contaminación, o la adición intencional de un tercer aleante, por lo general cambia drásticamente la microestructura, método utilizado para incrementar propiedades.

Para definir como deben de clasificarse las microestructuras eutécticas se hace una revisión bibliográfica de las clasificaciones existentes.

з

Además, se efectúa una revisión exhaustiva de la literatura para conocer el mayor numero posible de microestructuras publicadas. Se localizaron un total de 152 eutécticos con microestructura reportada. La información se encuentra en los Apéndices, en la tabla A. Se propone una nueva clasificación que engloba coherentemente a todas las microestructuras reportadas y que emplea una nomenclatura más adecuada para las mismas.

Aprovechando las bases anteriores, se elabora un método que permite predecir el tipo de microestructura que presentará cualquier eutéctico binario metálico. Par ello, se requirió conocer las composiciones de los constituyentes y del punto eutéctico, los parámetros de red y el punto de fusión de los constituyentes. Dicha información se encontró disponible en la literatura, para la mayoría de los casos.

La predicción de microestructura, para 1804 eutécticos, se presenta en los Apéndices, en la tabla B.

III ANTECEDENTES *

Los primeros indicios del uso de aleaciones eutécticas se fechan alrededor de unos 3500 años a. C. Se sabe con certeza que los primeros metalúrgicos tenían por costumbre recubrir los montones de carbón de leña en los cuales fundían el cobre. Supongamos obtenida la fusión. Después de apartar las cenizas, se recogía un cantidad mayor de cobre nativo que la que se había puesto a fundir. La explicación es sencilla: la tierra que se adhiere al cobre, llamada también ganga, tiene muchas posibilidades de ser óxido de cobre. El fuego de carbón de leña, reductor enérgico, reduce el óxido a metal. Además la mezcla aceleraba la fusión, por la presencia de la transformación eutéctica que involucra Cu y Cu₂O, y que se presenta a 1050° C, es decir a 34° C menos que el metal puro. Cuando se están buscando los últimos grados en un horno de rendimiento mediano, la diferencia es apreciable. Probablemente, sin saberlo, se empezaban a aprovechar las propiedades de las aleaciones eutécticas

Aunque los eutécticos eran ya conocidos y empleados en el tiempo de los romanos, no fue hasta que Rudorff en Alemania en 1864 y Guthrie en Inglaterra en 1875, redescubren que existe un mínimo en la curva de liquidus. Este mínimo fue denominado eutéctico por Guthrie en 1884. El hecho de que la aleación eutéctica este constituida por dos fases, fue descubierto por Ponsot en 1895 y es en 1909 que Rosenhain y Tucker establecen la naturaleza laminar del eutéctico Pb-Sn.

En 1912, Tamman proponen que las dos fases sólidas, van creciendo alternadamente en la aleación eutéctica. En tanto que, al mismo tiempo, Vogel pugna por un crecimiento simultáneo de ambas fases.

En 1914, Lamplough y Scott proponen un primer sistema de clasificación de estructuras eutécticas, las cuales dividen en tres tipos: esféricas, de contorno cristalino e irregulares.

Desch., en 1918, suglere siete tipos de microestructuras eutécticas y aduce que en algunos eutécticos la estructura está determinada por el constituyente que puede formar la estructura más voluminosa. El asume que las colonias y los granos son lo mismo.

Algunos de los términos que usamos hoy en día fueron acuñados por Brady en 1922. El nombra cuatro clases: globular, laminar, angular y cristalino, y sugiere que el factor que los determina es la tensión superficial. También indica que la tensión superficial es un factor determinante en la formación de las aleaciones eutécticas y descubre que una velocidad de enfriamiento mayor producía una estructura más fina.

Green en 1925, retoma la propuesta de Brady de que la tensión superficial es el factor determinante en la estructura eutéctica. Tamman y Morittz, en 1933, muestran que el crecimiento eutéctico es un proceso controlado por la difusión.

* La información hasta el año de 1966, proviene de la publicación de Kerr H.W.(1966), reportada en la bibliografía.

En 1934, Easrwood demuestra que un grano contiene varias colonias, marcando la diferencia entre ellos. En el mismo año, Buchvar propone diferentes tipos de estructuras para eutécticos orgánicos, las cuales dependían de la velocidad de enfriamiento.

Straumanis y Brakss, en 1935, consideran que la tensión superficial de ambas fases es un factor importante en el desarrollo de la estructura eutéctica, pero limitado a ciertos casos de orientación entre fases.

Scheil en 1946, 1949 , 1954) y Koefler 1950, 1954 establecen que la fracción en volumen de ambas fases y el enfriamiento con el que el eutéctico solidifica, son factores importantes.

Winegard, en 1951, demuestra que en el sistema Pb-Sn, ambas fases sólidas crecen simultáneamente.

En 1954 Fullman y Wood explican que la estructura espiral de algunos eutécticos, se debe al fenómeno de anisotropia.

Hogan, en 1961, y Koefler, en 1961, sugieren que la simetría relativa en las líneas de liquidus del diagrama de fases, de la aleación eutéctica (determinado por los puntos de fusión de los componentes); determinará o no el crecimiento acoplado de las fases.

Yue, a partir de 1962 demuestra, como Tiller, que las velocidades de enfriamiento altas propician la formación de estructuras tipo varilla y suglere que la presencia de impurezas favorece la formación de este mismo tipo de estructura.

Hunt y Clinton establecen, en 1962, que la transición de estructura de laminar a varilla, con el cambio de velocidad de enfriamiento, se debe a una interfase curvada.

El sistema de clasificación usado por Chadwick, a partir de 1963, fue: continuo, discontinuo y espiral; suglere que la energía interfacial es el factor que determina la microestructura de las aleaciones eutécticas.

Hacia 1958, Tiller propone que existen dos clases de eutécticos, los laminares y los anormales; que las estructuras laminares pueden cambiar a varilla o globular, dependiendo de la velocidad de enfriamiento. También establece que, en las estructuras anómalas, la segunda estructura nuclea en el líquido dando estructuras discontinuas con orientación aleatoria. Entonces el demuestra que el espacio interlaminar variará de acuerdo a la raíz cuadrada de la velocidad de crecimiento y sugiere que los eutécticos con una relación de volumen alta, forman fácilmente estructuras tipo varilla.

Chilton y Winegard establecen que las colonias se forman solo si hay un tercer elemento presente. Más tarde, Tiller, Weart y Mack demostraron que las colonias de eutécticos son resultado de la presencia de interfases.

Hacia 1965, Hogan y Koefler proponen que el mecanismo de crecimiento simultáneo es seguido por todos los sistemas eutécticos.

En 1966, Winegard pone en tela de juicio la existencia de estructuras globulares, en base a una exhaustiva revisión de la literatura existente.

Una clasificación basada en la morfología de la interfase sólido-líquido (parámetro α) es la base de la propuesta que presentan Hunt y Jackson en 1966. Dependiendo del valor de α se

producirán estructuras facetadas o no facetadas, cuyas combinaciones promoverán estructuras regulares o irregulares dependiendo del caso.

Crocker M.N. (1973) propone una clasificación en la que las microestructuras se dividen en laminares, fibrosas, irregulares, complejo-regulares, cuasirregulares y laminares discontínuas, basándose en los valores de entropía de solución y la fracción en volumen.

Kurz W. (1984) predice si la microestructura eutéctica será regular o irregular en base a los valores de entropia de fusión de sus componentes.

Dubey K.S. (1992) propone, que el tipo de microestructura, se verá condicionado por la relación de volúmenes molares de los constituyentes, la proporción de fases y la fracción en volumen.

IV BASES TEÓRICAS

a) Transformación Eutéctica

Existen aleaciones que, en determinadas condiciones de temperatura y concentración, producen una solidificación conjunta de dos o más constituyentes metalográficos. La estructura obtenida se llama eutéctica. Esto ocurre solamente para una determinada concentración de los componentes químicos de la aleación. La temperatura de solidificación es la más baja de toda la serie de aleaciones. Por ejemplo, en la aleación de los metales A y B, si la concentración que produce la solidificación del eutéctico de A y B es de 40 % A y 60 % B, todas las demás concentraciones imaginables de A y B solidificarán a temperaturas superiores a la temperatura de solidificación del eutéctico. Esta temperatura se llama eutéctica. La transformación eutéctica puede escribirse como:

Líguido⇔Sólido A + Sólido B

La solidificación eutéctica lleva un tiempo determinado (no es instantánea) pero, mientras se efectua, la temperatura permanece constante. Durante la solidificación, el crecimiento del eutéctico requiere de la remoción del calor latente de fusión. Puesto que la solidificación ocurre a temperatura constante, la curva de enfriamiento es similar a la de un metal puro; es aquí donde se presenta una meseta térmica. Avner S. (1994).

El líquido solidificará en dos fases diferentes, obteniéndose una yuxtaposición de los dos componentes. El producto de la solidificación es un arregio único y característico de las dos fases sólidas, llamado microestructura eutéctica.

Los granos eutécticos solidifican y crecen de manera independiente. Dentro de cada grano, la orientación de las láminas en el microconstituyente eutéctico es idéntica. La orientación varía al cambiar un límite de grano eutéctico. Se puede modificar el tipo de eutéctico y mejorar la resistencia de la aleación a través de la inoculación y el enfriamiento rápido.

El espaciamiento interlaminar de un eutéctico es la distancia del centro de una lámina al centro de la siguiente lámina. Un espaciamiento interlaminar pequeño indica que las láminas individuales son delgadas y en consecuencia el área de interfase es grande. Un espaciamiento interlaminar pequeño indica que la resistencia del eutéctico es alta. Se puede reducir el espaciamiento interlaminar incrementando la rapidez de enfriamiento.

Durante la solidificación, el crecimiento del eutéctico requiere tanto de la transferencia de calor latente de fusión, como de la redistribución de los átomos de los constituyentes por difusión. Askeland R. (1985).

b) Características de las Aleaciones Eutécticas

Las aleaciones eutécticas son muy importantes en la industria de la fundición, debido a sus características peculiares:

-Bajo punto de fusión comparado con sus componentes puros, lo cual simplifica la operación de fundición y moldeo e incide en un ahorro energético en el proceso.

-Excelentes propiedades de fluidez, para transferencia y alimentación de moldes, comparable a la de los metales puros, resultado de una interfase sólido-líquido más uniforme que en aleaciones proeutécticas, en las cuales la formación de dendritas obstruye los canales parcialmente solidificados.

-Un rango de solidificación que permite, que los defectos de fundición tales como segregación, porosidad y contracción se reduzcan.

-Solidificación, con una estructura fina y homogénea, de granos muy pequeños, lo cual promueve propiedades mecánicas tales como: ausencia de plasticidad, buena resistencia mecánica, gran tenacidad, mayor dureza que las aleaciones hipoeutécticas y gran resistencia al choque y a la fatiga; además pueden producirse aleaciones con gran resistencia a la abrasión.

-Formación de las aleaciones hipoeutécticas e hipereutécticas, lo cual permite variar la plasticidad y la resistencia mecánica, dependiendo de la cantidad relativa de cada microconstituyente.

-La posibilidad de formar in situ compósitos para obtener materiales que no sólo tengan gran resistencia, sino también gran estabilidad térmica. Lindenvald N. (1972).

c) Tipos de Microestructuras Eutécticas

Los eutécticos solidifican con diferentes tipos de microestructura. Para predecir de que tipo serán y presentar una clasificación de las mismas se han presentado diferentes propuestas. A continuación revisamos las más importantes.

Croker M.N. (1973), desarrolla un sistema de clasificación que divide las microestructuras en regulares e irregulares, en base a la entropía de solución y la fracción en volumen del componente con mayor entropía de solución. Cuando éste presenta un valor inferior a 5.5 cal / K mol hay regularidad. Si el valor es superior a 5.5 cal / K mol la microestructura es irregular. Divide a las estructuras regulares en : laminares, de varilla y laminar-varilla. Las estructuras irregulares se dividen en cuasirregulares, complejo-regulares, irregulares y laminar discontinuas. Sin embargo no toma en cuenta factores tales como la proporción de fases y el volumen molar.

Kurtz W. (1984), indica que la regularidad de la microestructura es determinada por la entropía de fusión adimensional (α), que es el cociente que resulta de dividir la entropía de fusión de la fase sólida entre la constante de los gases. Cuando uno de los constituyentes o

ambos tengan un valor α superior a 2, se presentará una estructura irregular. Si ambos constituyentes tienen un valor de α menor a 2 la microestructura será regular. Las estructuras regulares se presentarán en forma laminar cuando la fracción en volumen sea mayor de 0.25. Cuando la fracción en volumen es menor a 0.25 la microestructura es de varillas circulares. En el caso de las microestructuras irregulares, éstas son de varilla facetada cuando la fracción en volumen es menor de 0.25 y de láminas irregulares cuando la fracción es superior a 0.25. Su propuesta no toma en cuenta la proporción de fases ni el volumen molar.

Dubey K.S. (1992), propone que la microestructura es determinada por la relación de volúmenes molares, la fracción en volumen y la proporción relativa de las fases. Sin embargo no toman en consideración los valores de entropía de fusión o solución.

La fracción en volumen (Vf) de cualquiera de las fases, por ejemplo la de la fase β, puede expresarse por la ecuación:

$$\mathsf{V}\mathsf{f}^{\beta} = \frac{1}{1 + \left(\frac{\mathsf{V}^{\alpha}_m}{\mathsf{V}^{\beta}_m}\right) \left(\frac{\mathsf{X}^{\beta}_e - \mathsf{X}^{\mathsf{L}}_e}{\mathsf{X}^{\mathsf{L}}_e - \mathsf{X}^{\mathsf{L}}_e}\right)} = \frac{1}{1 + \mathsf{A}\epsilon}$$

donde Xe^a, Xe^a, Xe^a, Xe^L son las composiciones al equilibrio de las fases α , β , y líquida respectivamente. A es una constante adimensional, definida por la relación de volúmenes molares de los sólidos α y β ; ϵ es la proporción de fases definida por la relación de los dos brazos de la palanca, en la regla de la palanca convencional. La formula de la ecuación corresponde a una hipérbola, definida por cada valor de A. En base a las gráficas de estas hipérbolas, proponen una clasificación que divide a las morfologías eutécticas en tres tipos: laminar-varilla, laminar discontinuo y complejo regular. Consideran que para la clasificación de estas microestructuras el valor de A desempeña un papel preponderante, aunque no ponderan el valor de ϵ .

d) Cristalografía

Estructura cristalina. El arreglo de los átomos en el interior de un cristal se llama estructura cristalina. La celda unitaria es la unidad fundamental de este arreglo se repite a intervalos regulares; en tres dimensiones, a través del interior del cristal.

Celda unitaria. Una celda unitaria es un paralelepípedo cuyos ejes forman los ejes de un cristal. Es la menor subdivisión de una red, que mantiene las características generales de toda la retícula. Reuniendo celdas unitarias idénticas se construye toda la red. Se consideran 14 tipos de celdas unitarias o redes de Bravais, agrupadas en siete estructuras cristalinas. Estás estructuras se pueden encontrar en cualquier libro de cristalografía o ciencia de materiales. En este caso de toman del Askeland R. (1985) y se presentan en la Tabla 1. Los puntos reticulares están en las esquinas de las celdas unitarias y en algunos de los casos, en el centro de cada una de las caras o de toda la celda.

Tabla 1 Estructuras cristalinas

Estructura	Ejes	Ángulos entre los ejes
na an marangang parta sa butan sa ta		· · · · · · · · · · · · · · · · · · ·
Cúbica	a≃b≂c	Todos los ángulos son de 90°
Tetragonal	a≂b≠c	Todos los ángulos son de 90°
Ortorrómbica	a≠b≠c	Todos los ángulos son de 90°
Hexagonal	a=b≠c	Dos ángulos de 90° y uno de 120°
Romboédrica	a=b=c	Todos los ángulos son iguales y diferentes de 90 °
Monoclínica	a≠b≠c	Dos ángulos de 90° y uno diferente de 90°
Triclinica	a≠b≠c	Ángulos distintos entre sí y diferentes de 90°
		그는 것 같은 것 같

Arreglos espaciales. Hay básicamente cinco posibles disposiciones que pueden adoptar los átomos en las diferentes celdas unitarias:

1) Simple o primitivo.- con puntos reticulares sólo en las esquinas de la celda.

2) Centrado en la base.- con puntos reticulares situados en las caras extremas del cristal.

Centrado en las caras.- con puntos reticulares centrados en todas las caras.

 Centrado en el cuerpo.- con puntos reticulares situados en el centro del volumen de la celda unitaria

5) Romboédrica. la celda romboédrica tiene átomos sólo en las esquinas. En los cristales romboédricos puede considerarse que se trata de una celda hexagonal, que está constituida por tres celdas primitivas romboédricas.

Parámetros de red. Los parámetros reticulares, que describen el tamaño y la forma de la celda unitaria, son las dimensiones de los lados de la celda unitaria y los ángulos que forman. En un sistema cristalino cúbico, sólo la longitud de un lado del cubo es necesaria para describir completamente la celda (se suponen ángulos de 90°). La medida de esta longitud es el parámetro de red, cuyas unidades son generalmente nanómetros o angstroms.

Se requieren varios parámetros de red para definir el tamaño y la forma de celdas unitarias complejas. Para una celda ortorrómbica se deben especificar las medidas de los tres lados de la celda a, b y c. La celda unitaria hexagonal requiere de dos dimensiones, a y c, así como considerar el ángulo de 120º entre los ejes a y b y el ángulo de 90º entre a y c. La más compleja de las celdas unitarias, la triclínica, se define mediante tres lados y tres ángulos diferentes.

Número de átomos por celda unitaria. Un número específico de puntos de red define a cada una de las celdas unitarias. Por ejemplo las esquinas de las celdas son fácilmente identificables, al igual que las posiciones de centrado en el cuerpo y en las caras. Algunos puntos reticulares están compartidos por más de una celda unitaria. El número de átomos por celda unitaria, es el producto del número de átomos por punto reticular multiplicado por el número de puntos de red por celda unitaria. En la mayoría de los metales se localiza un átomo en cada punto de red, de modo que el número de átomos es igual al número de átomos

reticulares. En estructuras más complicadas muchos átomos pueden estar asociados a cada punto de red, formando celdas unitarias muy complejas.

Simbologia de Pearson. Nos indica el tipo de estructura, el arreglo espacial y el número de átomos de una celda unitaria. Su simbología se presenta en la Tabla 2.

Para el cobre, cuyo símbolo es cF4, se tendrá una celda unitaria cúbica centrada en las caras y que contiene 4 átomos. Para el Ag₂Ca, con símbolo ol12, se tiene una celda unitaria ortorrómbica centrada en el cuerpo, constituida por 12 átomos. Si se desea conocer el número de moléculas por celda, se divide el número de átomos por celda, entre el numero de átomos por molécula del constituyente. Por ejemplo para el Ag₂Ca se divide 12 entre 3 y obtenemos 4 moléculas por celda.

Una explicación más extensa del uso de la simbología de Pearson puede encontrarse en Barret C.S. (1973).

Tabla 2 Simbología de Pearson

Sistema	Estructura	Símbolo de Pearson
Triclínico Monoclínico	simple simple	aP mP
Ortorrómbico	centrado en la base simple	mC oP
	centrado en la base centrado en las caras	oC
Tetragonal	centrado en el cuerpo simple	ol tP
Hexagonal	centrado en el cuerpo simple	tl hP
Romboédrico Cúbico	simple simple	hR in Alteration cP
	centrado en la cara centrado en el cuerpo	CF Cl

Volumen de celda unitaria. Es el espacio que ocupa cada celda unitaria. Para calcularlo, según De la Fuente C. (1991), se emplea la siguiente fórmula:

 $V = abc (1 - cos^2 \alpha - cos^2 \beta - cos^2 \gamma + 2cos \alpha cos \beta cos \gamma)^{1/2}$

donde a, b, c, α , β , γ son parámetros de red.

Puede comprobarse para casos familiares y simplificarse de modo que el cálculo sea más sencillo, tal como se presenta en la Tabla 3.

Tabla 3 Volumen de celda unitaria

Sistema

Volumen

 $\begin{array}{ccc} C\dot{u}bico & a^3 \\ Tetragonal & a^2c \\ Hexagonal & a^2csen 60^{\circ} \\ Romboédrico & a^3 (1-3cos^2\alpha+2cos^3\alpha)^{1/2} \\ Otorrómbico & abc \\ Monoclínico & abcsen\beta \\ Triclínico & abc(1-cos^2\alpha-cos^2\beta-cos^2\gamma+2cos\alphacos\betacos\gamma)^{1/2} \end{array}$

Densidad. Se define como cantidad de masa por unidad de volumen. Askeland R. (1985), demuestra que los valores de densidad de los sólidos que presentan una estructura cristalina, pueden obtenerse a través de la siguiente expresión:

$$\rho = \frac{N_c * M_p}{V_c * A_o}$$

p = densidad

Nc = número de átomos o moléculas por celda unitaria

M_p = peso molecular

V_c = volumen de la celda unitaria

A_o = número de Avogadro

La densidad calculada será ligeramente mayor que la densidad medida experimentalmente, debido a la presencia de vacancias en la red cristalina de los componentes. Sin embargo esta diferencia es siempre muy pequeña, siendo por lo general cercana al 0.1 % en el caso de metales elementales y algo mayor para las fases intermedias.

Al calcular la densidad de una solución sólida, es importante considerar que los parámetros de red de la celda unitaria tenderán a variar, por la deformación que sufre la red cristalina al albergar a átomos con un tamaño más o menos diferente. Si la solubilidad es muy pequeña y si los radios atómicos de los elementos son muy similares, la red variará muy poco

Volumen molar. Es el espacio que ocupa una mol de un elemento o compuesto. Una vez conocida la densidad del componente de la aleación es muy sencillo obtener su volumen molar a partir de esta fórmula:

 $Vm = \frac{M_p}{Q}$

Vm = volumen molar M_p = peso molecular ρ = densidad

				۰.
r-			ه د زیو سعے	•
Ł				۰.
1	15.5			2
٦.				2
	T1A7 T A	- TOTA	$-\Omega B I C \ge 4$	2
- 2	SAL A	1114	A DURENTERS	۲
	ڪ ڪندن تي ت			÷.

V DESARROLLO

Es el procedimiento que se siguió para obtener y procesar la información de los sistemas eutécticos disponibles en la literatura.

El estudio de características se realizó para aleaciones metálicas binarias, ya que son los sistemas eutécticos de los que mayor información se dispone. Se incluyen también aleaciones que están constituidas por un metal y un elemento no metálico o metaloide y en algunos casos, inclusive por dos no metales.

La identificación de los puntos eutécticos con los que cuenta un sistema de aleación, se puede efectuar fácilmente mediante la observación del diagrama de fases al equilibrio. Por lo anterior, se revisan las publicaciones, donde estos aparecen, a saber las de: Massalski T.B. (1990), Brandes E.A. (1990), Moffat W.G. (1979), Hawkins D.T. (1973), Lindevald N. (1972), Shunk F.A. (1969), Elliot R.P. (1965), Hansen M. (1956), encontrandose 2970 diagramas de fase para aleaciones metálicas binarias. En ellos se localizan 2195 puntos eutécticos. Se registraron las composiciones del punto de equilibrio y de los constituyentes, así como la temperatura eutéctica y las temperaturas de fusión de las fases sólidas.

En cada diagrama de fases se encuentra anexo el tipo de estructura cristalina para cada fase sólida. De las diferentes simbologías cristalográficas, se utiliza la simbología Pearson, que nos indica directamente el número de átomos por celda y es la más empleada para definir los parámetros de las redes cristalinas.

A continuación, se emplea la segunda edición del "Pearson Handbook", de Villars H. (1994), para obtener los datos cristalográficos para metales puros y fases intermedias. De ella se obtienen los parámetros de red de la celda unitaria, para cada uno de los constituyentes. En las soluciones sólidas el tamaño de la celda unitaria puede sufrir pequeñas variaciones. Los parámetros de red para estas celdas pueden encontrarse en la primera edición Villars H. (1985).

Sobre la base de los datos anteriores, se procedió a calcular el volumen de la celda unitaria, el volumen molar y la densidad en estado sólido, para cada uno de los constituyentes de todos los sistemas. El cálculo se efectúa de acuerdo a las fórmulas que se presentan en las bases teóricas.

Para el cálculo de la fracción en volumen de cada constituyente de la aleación eutéctica, se empleó la fórmula simplificada propuesta por Dubey K.S. (1992).

Dado que no siempre se encontró toda la información necesaria para los cálculos, el número de eutécticos se redujo a 1804. Los datos que faltan con mayor frecuencia son la estructura cristalina de algunas fases sólidas y sus correspondientes parámetros de red.

En muchos casos, los diagramas de fases no cuentan un soporte experimental completo y se basan en cálculos y modelos especulativos. En la Tabla B que se encuentra en los Apéndices, se indica si el diagrama cuenta con un buen soporte experimental o si se ha obtenido mayoritariamente sobre la base de modelos y cálculos teóricos.

Una vez obtenida la información para caracterizar los sistemas, el trabajo de divide en dos partes principales.

La primera consiste en averiguar cuáles son los factores que permiten que la transformación eutéctica se presente.

En la segunda se investiga, que propicia que haya diferentes tipos de microestructura y cuál es la mejor forma de clasificarlas.

a) Factores en la Formación de Eutécticos

Para investigar cómo se forman los eutécticos, se comparan las características físicas y químicas de una fase con las de la otra, para cada sistema encontrado. Después se contrastan con los otros eutécticos para buscar correlaciones o comportamientos sistemáticos.

Se inicia con los sistemas constituidos por elementos y soluciones sólidas terminales. Se comparan radio atómico, electronegatividad, estructura cristalina, punto de fusión, densidad, volumen molar, y fracción en volumen de cada constituyente.

Para las aleaciones formadas por compuestos intermetálicos u otras fases intermedias, se comparan: estructura cristalina, punto de fusión, densidad, volumen molar y fracción en volumen. La información requerida se obtuvo de la tabla periódica Winter M. (2003) y de los libros de diagramas de fases y estructuras cristalinas antes mencionados.

b) Diferentes Tipos de Microestructuras Eutécticas y su Clasificación

Para estudiar la formación de los diferentes tipos de microestructuras eutécticas, se revisa la literatura y se registran las microestructuras reportadas.

Se da preferencia a los reportes que están soportados por la fotomicrografía del eutéctico. La vista que permite clasificar con mayor precisión la microestructura es la de la sección transversal al crecimiento, ya que en la sección longitudinal se pueden presentar más errores de apreciación de la morfología. En caso de que el reporte no cuente con imágenes de la microestructura, se da por buena la clasificación del autor.

La microestructura puede sufrir variaciones muy notables por la presencia de impurezas, la velocidad de enfriamiento y el método de solidificación. Liu H.Y (1992), Yoshida M. (1996), Wang Y. (1998), Liu X.R. (2002), Yao C.D. (2003), Pu J. (2003), Bei H. (2003), Yao W.J. (2003). Con el objetivo de trabajar con parámetros más uniformes, cuando un mismo eutéctico presenta diferentes microestructuras, se selecciona aquella que haya solidificado a la velocidad de enfriamiento más baja y sin solidificación unidireccional. De este modo se tienen las condiciones que se acercan más al equilibrio.

De las propuestas de clasificación de microestructuras eutécticas, se considera, que las que presentan aportes más importantes son las de Croker M.N. (1973), Kurtz W. (1984) y Dubey K.S (1992.)

Croker M.N. (1973), indica que la fracción en volumen juega un papel muy importante para determinar el tipo de microestructura eutéctica. Por otra parte su propuesta de clasificar las estructuras en regulares e irregulares en base a la entropia de solución es muy interesante.

Desafortunadamente la entropía de solución no se encuentra reportada para la mayoría de los sistemas. Además, su cálculo presenta el inconveniente de que las variables involucradas tampoco se encuentran disponibles para la mayoría de los sistemas.

Kurtz W. (1984) también refiere la importancia de la fracción en volumen y propone clasificar las estructuras en regulares e irregulares sobre la base de la entropla de fusión.

La entropía de fusión puede calcularse fácilmente para las fases que están constituidas por elementos o metales puros. Simplemente se requiere dividir el valor de entalpía de fusión entre su correspondiente temperatura de fusión. Estos valores pueden obtenerse de Winter M. (2003) y Kubaschewski O. (1979). En el caso de las soluciones sólidas se considera el valor correspondiente al elemento que está presente en mayor proporción.

Cuando se presentan fases intermedias se calcula su entropia de fusión mediante el método propuesto por Kubaschewski O. (1979). Los datos que emplea son: las entropias de fusión de los elementos que forman la fase intermedia y el factor de desorden o de la estructura cristalinal correspondiente a l dichal fase. Para estudiar el concepto de orden-desorden se recomienda revisar Porter D.A. (1981).

Dubey K.S. (1992) correlaciona la fracción en volumen (Vf), la proporción de fases (ɛ) y la relación de volúmenes molares (A). Este modelo se comporta muy adecuadamente para calcular las fracciones en volumen de las fases. Sin embargo, su aplicación para definir las microestructuras eutécticas presenta inconsistencias:

-Las microestructuras regulares e irregulares no se pueden discriminar empleando solamente las variables antes mencionadas, ya que hay sistemas eutécticos regulares e irregulares, con combinaciones de valores de Vf, e y A prácticamente iguales.

-Hay eutécticos con el mismo valor de A, que presentan diferentes tipos de microestructura. Por otro lado, el intervalo de A sugerido, de 1.09 a 1:76, es extremadamente pequeño, ya que en la realidad se presentan valores de A que fluctúan entre 1 y 86.2.

Una vez analizadas las propuestas, se ponderan las variables que intervienen en ellas y se hace una correlación con los reportes de microestructuras.

Como primer paso se calculan las entropias de fusión de cada una de las fases de los 152 eutécticos reportados. Revisando los resultados, se pueden clasificar los sistemas en regulares e irregulares en forma teórica. Acto seguido se compara esta clasificación con la microestructura reportada y se determina el grado de acierto.

Se grafican por separado los valores de microestructuras regulares e irregulares, siguiendo el modelo de Dubey (1992). En ambos casos se consideran los datos para la fase con menor fracción en volumen.

Ahora se delimita qué región de la gráfica ocupa cada subtipo de microestructura. Las microestructuras regulares se dividen en laminar, varilla y laminar-varilla. Las microestructuras irregulares se dividen en cuasiregulares, complejo-regular, irregulares y laminar discontinuo, de acuerdo a la nomenclatura de Croker M.N. (1973).

Se calculan los valores de Vf, ε y A para todos sistemas eutécticos encontrados, que no cuentan con reporte de microestructura. Se grafican los valores para los eutécticos regulares e irregulares, en la misma forma que el caso anterior y se establecen los límites para la totalidad de los sistemas eutécticos.

A partir del trabajo anterior, se hace la predicción para los 1652 eutécticos que no cuentan con reporte de microestructura.

Finalmente, se analiza la conformación de los diferentes tipos de microestructura eutéctica y se propone una nomenclatura que sea lo más apegada a la realidad.

VI RESULTADOS Y DISCUSIÓN

a) Factores en la Formación de Eutécticos

Se compararon los valores de diferentes propiedades físicas y químicas de las fases de los eutécticos estudiados. A continuación se muestran los resultados obtenidos.

Estructura cristalina.- Se pueden formar aleaciones eutécticas binarias con combinaciones de, prácticamente, todos los sistemas cristalinos. No se presenta ninguna combinación de estructuras cristalinas que favorezca más la formación del eutéctico. En la tabla B de los Anexos se presenta la estructura cristalina para todos las fases de los 1804 sistemas estudiados y en ella puede corroborarse la afirmación anterior

Radio atómico.- Este caso sólo se revisa para los sistemas cuyas fases son elementos o soluciones sólidas. Cuando la diferencia en el radio atómico es superior al 15 % se favorece la aparición de un eutéctico. Los valores de radios atómicos se obtienen de Winter C., (2003).

Electronegatividad -- Los sistemas eutécticos puros se forman con elementos que tienen electronegatividades similares, ya que si éstas fueran muy diferentes se propiciaría la formación de compuestos de tipo iónico.

Volumen molar.- Pueden formarse eutécticos con una gran disparidad de válores de volumen molar. En los sistemas estudiados se tienen relaciones de volumen molar que van desde A = 1.1 hasta A = 86.6. Al analizar los valores de a de la Tabla B, no se encontró alguna tendencia que favorezca la aparición de los eutécticos. Sin embargo los valores de A contribuirán a delimitar las zonas de cada microestructura eutéctica, como se verá más adelante.

Diferencia de temperaturas.- Mientras más cercanas sean las temperaturas de fusión de las fases, más se favorece la aparición de un punto eutéctico. El 87.2 % de los eutécticos se forma con un Δ T entre 0 y 600 ° C. Con un Δ T entre 600 y 1000 ° C tenemos un 8.9 % de los sistemas. Con una diferencia superior a los 1000 ° C existen sólo 3.8 % de los sistemas estudiados. Es probable que estos eutécticos que se forman a muy altas temperaturas vean favorecida su formación por el correspondiente incremento en los coeficientes de difusión.

Los eutécticos que se forman a partir de constituyentes con puntos de fusión muy diferentes, tienden a tener una proporción muy pequeña de la fase con mayor punto de fusión.

Densidad.- En la mayoría de los casos, las fases sólidas de los eutécticos presentan valores de densidad muy parecidos.

La relación de densidades B es el cociente que resulta de dividir el valor de la densidad de una fase sólida, entre el valor de la otra. Para obtener siempre valores enteros y facilitar el análisis, se divide siempre el valor de densidad mayor entre el de densidad menor. Así en el eutéctico BI-Cd el bismuto tendrá una densidad de $\rho_{BI} = 9.8$ g / cm³ y el cadmio tendrá una densidad de $\rho_{Cd} = 8.65$ g / cm³ por lo que su relación de densidades es B = 1.13

Los 1804 eutécticos estudiados se presentan en un intervalo de B que va desde 1 hasta 8.2

La distribución de valores de B se presenta en la tabla 4.

En el caso de los eutécticos que presentan los valores de B más elevados, podemos observar que están constituidos por elementos tales como C, B o Si, que se difunden instersticialmente y tienen coeficientes de difusión altos.

También se presentan coeficientes de difusión muy altos para la difusión substitucional como en los eutécticos Sc-W, Ag₄Ll₉-Li y Au₄Ll₁₅-Li . En el caso de estos dos últimos la difusión del litio en oro o plata se produce espontáneamente, aun a muy bajas temperaturas.

Es probable que cuando la formación del eutéctico no se favorezca por la relación de densidades de sus fases, esto se vea compensado por una alta difusividad entre las mismas. Esto podría revisarse con mayor detalle en un trabajo posterior.

Tabia 4

Relación de densidades de eutécticos

в	No. de eutécticos	Porcentaje
1 <b<2< td=""><td>1696</td><td>94 %</td></b<2<>	1696	94 %
2 <b<3< td=""><td>77</td><td>4.3 %</td></b<3<>	77	4.3 %
3 <b<4< td=""><td>23</td><td>1.3%</td></b<4<>	23	1.3%
4 <b<8.2< td=""><td>8</td><td>0.4%</td></b<8.2<>	8	0.4%
8.2 <b<42.6< td=""><td>0</td><td>0.0%</td></b<42.6<>	0	0.0%

El eutéctico reportado con mayor diferencia de densidades entre sus fases sólidas es el Au-Si. La densidad del oro es p_{Au} =19.3 g / cm³ y la densidad del silicio es p_{Si} =2.33 g / cm³. Su valor de relación de densidades es B = 8.2 . La formación de este eutéctico es verdaderamente excepcional, de acuerdo a la tabla anterior.

La mayor diferencia de densidades, que puede presentarse entre elementos, es la de litio con la del osmio. La densidades son $p_{Ll} = 0.53 \text{ g} / \text{cm}^3 \text{ y} p_{0s} = 22.6 \text{ g} / \text{cm}^3$, por lo que su relación de densidades es B = 42.6. En la realidad este eutéctico no se forma.

Es interesante ver que ningún eutéctico se forma con valores de B entre 8.2 y 42.6 y que el 94 % de los eutécticos se encuentra con valores de B entre 1.y 2.

Adicionalmente, se puede observar lo que sucede cuando se forma un eutéctico a partir de dos soluciones sólidas terminales. Aunque los metales puros tengan valores de densidad diferentes, las soluciones sólidas tienen valores de densidad más parecidos por el intercambio atómico que se produce. Se observó que mientras mayor rango de solubilidad es más fácil que se forme el eutéctico.

Por todo lo anterior podemos definir, desde un punto de vista estadístico, que mientras más parecidas sean las densidades de las fases sólidas, más fácilmente se presentará una transformación eutéctica. Es importante resaltar que esta afirmación no se había reportado con anterioridad.

Al efectuar la revisión de densidades para algunos eutécticos de compuestos orgánicos e inorgánicos y eutectoides se observa que sus valores de B se encuentran dentro de los límites enunciados anteriormente. Las densidades de las fases de los eutécticos ternarios son también muy similares entre sí. La información procede de Podolinsky V.V. (1989), Glasstone S. (1979), Reed-Hill R.E. (1994), Massalski. (1990) y Petzow G. (1991).

Tabla 5

Eutécticos de compuestos orgánicos e inorgánicos

C1	C ₂	P1	Ρ2	в ,
ácido benzoico	alcanfor	1.07	0.98	1.09
salol	alcanfor	1.26	0.98	1.28
bifenilo	alcanfor	0.86	0.98	1.14
pireno	bifenil	1.27	0.86	1.48
naftaleno	alcanfor	0.96	0.98	1.02
paradibromobenceno	naftalina	1.84	0.96	1.92
pireno	naftalina	1.27	0.96	1.32
paradibromobenceno	alcanfor	1.84	0.98	1.88
bifenilo	naftaleno	0.86	0.96	1.11
succionitrilo	alcanfor	1.09	0.98	1.12
pireno	paradibromobenceno	1.27	1.84	1.45
azobenceno	paradibromobenceno	1.1	1.84	1.67
bifenilo	ácido laúrico	0.86	0.87	1.01
bifenil	ácido mirístico	0.86	0.84	1.02
bifenil and the second second second	fenantreno	0.86	1.06	1.23
o nitrofenol	p toluidina	1.49	0.96	1.5
benceno	cloruro de metilo	0.87	1.32	1.5
d pineno	1 pineno	.85	.85	1
LICI	KCI	2.1	1.99	1.05
Na₂SO₄	NaCl	2.68	2.17	1.23
KCI	AgCI	2.1	5.6	2.6
Na ₂ CO ₃	K₂CO₃	2.54	2.43	1.04
KNO3	K₂CO₃	2.11	2.43	1.15
		(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	 A state of the state of the state 	

		Dei	nsidad de l	Eutectoides		
Sólido	↔	C1	C₂	Ρ1	ρ2	B
βNd	and sector a	aNd	v	7.0	6.1.	1.15
βΤί		αΤί	⊤i₃1r	6.8	8.91	1.3
OsV		Os	v	15.3	12.1	1.26
βΤί		αΤί	Ti₂Pd	4.5	7.0	1.55
γLa		αΤί	βLa	4.5	6.17	1.37
βPr		MgPr	αPr	6.77	4.71	1.43
γLa		In ₃ La	βLa	7.56	6.17	1.22
αΤί		Ti₃Al	TiAl	4.21	3.81	1.10
вть		MgTb	αTb	5.64	8.25	1.46
Au₄Be		Au ₂ Be	AuBe	13.45	15.9	1.18
αCo		AICo	єCo	8.45	8.9	1.05
βυ		αU	TiU₂	19.07	15.14	1.26
Ni ₁₉ Ge ₁₂		Ni ₅ Ge ₃	NiGe	9.5	8.14	1.17
Y₂Ge7		YGe ₂	Ge	6.88	5.32	1.29
γFe		αFe	Fe ₃ C	7.8	7.4	1.05
βZr		V₂Zr	αZr	6.21	6.49	1.04

Tabla 6

Tabla 7

Densidad de eutécticos ternarios

C ₁	C₂	C3	P1	P₂	ρ ₃
AI	Zn	Cd	3.93	7.13	5.14
Sb	AISb	CdSb	6.62	4.28	6.62
Ag	Cu	Рb	10.5	8.96	11.4
AI	Al₂Cu	Co ₂ Al ₉	3.1	4.36	3.59
Cr	NIAI	Ni	7.11	6.02	7.88
Al	Be	Si	2.6	1.85	2.33
AI	Al ₂ Cu	Al ₇ Cu₂Fe	2.8	4.36	4.13
Ni	Ni20B6Al3	Ni ₃ B	8.9	7.62	8.19
Ag ₂ Al	AI	Ge	8.06	5.13	5.32
Mg	Al ₇ Cu ₃ Mg ₆	Al ₁₂ Mg ₁₇	1.74	2.96	2.09
Al₄Ba	Al₂Nd	Ba	3.47	5.14	3.5
Al	MnAle	Co ₂ Al ₉	2.7	3.31	3.59
Al12Mg17	Mg₅Ga₂	Mg	2.09	2.99	1.8
Nb	Gd	Gd ₂ Al	8.4	7.89	7.1
Mg	Mg ₁₂ Ce	CeAl ₂	2.1	2.25	4.9

1			
	ግንድ)	010	(*************************************
1	1 100	230	1
Ì	FALLA	DF	ODIGUNI (
1	4 4 matules 1	<u></u>	OTTOPIE !

b) Tipos de Microestructuras eutécticas y su Clasificación

Aunque la revisión de la literatura fue exhaustiva, sólo se encontraron 152microestructuras reportadas. De ellas sólo 115 contaban con fotomicrografía. Sus datos se encuentran concentrados en la Tabla A de los Apéndices. En ella se indican el sistema eutéctico, su microestructura, y sus correspondientes valores de Vf, ε , A y de Δ S de fusión. Con base en esta información se obtienen los siguientes resultados:

-Las microestructuras eutécticas pueden clasificarse en regulares e irregulares a partir de los valores de entropia de fusión de sus constituyentes. Cuando las dos fases poseen una entropia de fusión baja, se produce una microestructura regular. Si una o ambas fases tienen entropias de fusión altas, la microestructura es irregular. Lo anterior valida la propuesta de Kurtz W. (1984). Sin embargo el valor límite de entropia que propone se ve modificado. El valor límite de $\alpha = 2$, que equivale a un $\Delta S = 4$ cal/ K átomo-g es en realidad más bajo.

-De acuerdo a las microestructuras reportadas, el valor de entropía de solución que separa las microestructuras regulares de las irregulares es ΔS= 3.6 cal/. K átomo-g. El acierto que se presenta en la distribución de microestructuras es de 99.34 %. De los 152 eutécticos reportados, sólo uno queda fuera de este límite. Se trata del Mg2Pb-Pb, que presenta entropías de fusión de 3.43 cal / K átomo-g para el Mg2Pb y de 1.91 cal / K átomo-g para el Pb. Con estos valores la microestructura debería de ser regular, pero la estructura reportada es irregular.

-Tanto las microestructuras regulares como las irregulares pueden subclasificarse en base a su fracción en volumen (Vf), su proporción de fases (ε), y su relación de volúmenes molares (A). Esto puede apreciarse en las Gráficas 1 y 2.

-En el caso de las estructuras regulares, los diferentes subtipos de microestructuras se agrupan en forma bastante ordenada. En las microestructuras irregulares la distribución resulta todavía más clara. Todas las microestructuras se agrupan adecuadamente dentro de los límites propuestos. Inclusive el eutéctico BI-Au₂Bi que tradicionalmente presentaba problemas de ubicación en las gráficas, se localiza adecuadamente.

-El principal factor que influye para que se presente el cambio en el tipo de microestructura es la fracción en volumen (Vf). La proporción de fases (ε) también ayuda a delimitar la zona correspondiente a cada tipo de microestructura; sobre todo nos da una referencia de la continuidad o discontinuidad de la microestructura. En general, mientras más grande sea el valor de ε, más aumenta la probabilidad de que la microestructura sea discontinua. Es importante hacer notar que esta observación no se había reportado.

El tipo de microestructura también se verá definido por la relación de volúmenes molares A. En las Gráficas 5 a 10 pueden encontrarse los valores límites de A que circunscriben cada tipo de microestructura.

Las microestructuras regulares se distribuyen de la siguiente forma:

a) Las microestructuras laminares se presentan principalmente cuando tenemos valores de fracción en volumen de 0.3 ó superiores.

b) Cuando la fracción en volumen es de 0.12, o menor, se presentan microestructuras de varilla que siempre son de tipo cilíndrico.

c) La fracción en volumen comprendida entre 0.12 y 0.3 es un área de transición en la que coexisten varias estructuras. Se pueden presentar microestructuras laminares, de varilla o bien la combinación laminar- varilla (mixta).

La distribución de las microestructuras regulares reportadas puede apreciarse en la Gráfica 1. Los valores de Vf, ε y A para cada zona de predominancia de microestructuras regulares se encuentran en las Gráficas 5 y 6 de los Apéndices.

Las microestructuras irregulares se distribuyen de la siguiente forma:

a) Cuando la fracción en volumen es de 0.38 ó superior, se presentan las microestructuras de tipo cuasirregular.

 b) En la fracción en volumen comprendida entre 0.22 a 0.38 se encuentran microestructuras de tipo complejo-regular.

c) Las microestructuras totalmente irregulares se presentan en dos áreas consecutivas. La primera se localiza con valores de Vf entre 0 y 0.22 y valores de c entre 0 y 10.6. La segunda se presenta con valores de c mayores de 10.86 y valores de Vf superiores a 0.12.

d) La microestructura conocida como laminar discontinuo se presenta con valores de ε mayores de 10.86 y valores de Vf menores de 0.12.

La distribución de las microestructuras irrregulares reportadas se presenta en la Gráfica. 2. Los valores de Vf, ε γ A para cada zona de predominancia de microestructuras irregulares reportadas se encuentran en la Gráfica 7 de los Apéndices.

La nomenclatura usada hasta aquí es la propuesta por Croker M.N. (1973).

Conjuntando la información anterior y los valores de Vf, e y A obtenidos para los 1652 eutécticos no reportados, se predice la microestructura para todos ellos y se establecen nuevos límites de predominancia. La información se localiza en la Tabla A y en las Gráficas 8, 9 y 10 que se encuentran en los Apéndices. Con todo esto se puede predecir la microestructura de cualquier eutéctico metálico binario, con sólo conocer las composiciones, los parámetros de red y las entropias de fusión de sus fases.

Al revisar las microestructuras reportadas podemos apreciar que la nomenclatura tradicional resulta poco exacta y en ocasiones hasta contradictoria, por lo cual en la tabla 8 se presenta una nueva propuesta.

Tabla 8 Clasificación Propuesta

Regulares Iaminares mixtos de varilla Irregulares ligeramente irregulares medianamente irregulares totalmente irregulares irregulares discontinuos

Influencia del tipo de solidificación

La velocidad de enfriamiento, la solidificación controlada y las impurezas afectan la forma de la microestructura eutéctica. En base a informes de la literatura, principalmente de Liu H.Y (1992), Yoshida M. (1996), Wang Y. (1998), Liu X.R. (2002), Yao C.D. (2003), Pu J. (2003), Bei H. (2003) y Yao W.J. (2003), se presenta un esquema de cómo cambian las microestructuras con la solidificación rápida, la solidificación unidireccional y con la presencia de impurezas.

En términos generales el comportamiento que se presenta es el siguiente:

a) Velocidad de enfriamiento.- Su incremento tiende a reducir el tamaño de grano y mientras más se aumente la velocidad , mayor será el grado de irregularidad de la microestructura. En la Tabla 9 se muestra como variará la microestructura al ir aumentando la velocidad de enfriamiento.

Tabla 9

Cambio de la microestructura al aumentar la velocidad de enfriamiento

Aumento de la velocidad de enfriamiento –

laminar ligeramente irregular transición medianamente irregular varilla totalmente irregular varilla irregular discontinuo ligeramente irregular medianamente irregular medianamente irregular totalmente irregular totalmente irregular totalmente irregular irregular discontinuo irregular discontinuo

medianamente irregular totalmente irregular totalmente irregular

totalmente irregular

b) Solidificación controlada.- Tiende a aumentar la regularidad de la microestructura. En la tabla 10 se indican en la primera columna diferentes tipos de microestructuras eutécticas coladas sin tratamiento y en la segunda las microestructuras que pueden obtenerse al colar el mismo eutéctico mediante a una solidificación controlada.

Tabla 10

Cambio de la microestructura con solidificación unidireccional

Estructura sin tratamiento

Solidificación unidireccional

Laminar	\rightarrow	láminas más regulares
aminar	→	varilla
transición	>	laminar
varilla	>	varilla más regular
varilla	\rightarrow	laminar
igeramente irregular	→ ¹	laminar
medianamente irregular	\rightarrow	ligeramente irregular
medianamente irregular	\rightarrow	laminar
totalmente irregular	\rightarrow	varilla
rregular discontinuo	_ →	varilla

c) Presencia de impurezas.- La adición de impurezas o de un tercer aleante tiende a aumentar la irregularidad de la microestructura eutéctica.

C) Formación de eutécticos a partir de sistemas con insolubilidad en el estado líquido

Al observar los diagramas de fases se aprecia que, un sistema binario que presenta insolubilidad en el estado líquido y que no tiene fases intermedias, presentará un punto eutéctico del lado de la fase con menor punto de fusión. Algunos ejemplos son los sistemas Ba-Ni, Ho-V, Nd-V, V-Y, Gd-V, Cr-Dy, K-Mg, Cr-Ho, K-Li, Li-Na, Cr-Er, Ag-U, Ba-Sc, Ca-Ce, Ag-Ni, Ag-Cr, Rb-Mg, Cu-TI, In-V, Bi-Zn.

VII CONCLUSIONES

1.- Usando la entropia de fusión (ΔS), la fracción en volumen (Vf), la proporción relativa de fases (ε), y la relación de volúmenes molares (A) de las fases de un sistema binario, es posible predecir el tipo de microestructura eutéctica y proponer una nueva clasificación más acorde.

2.-La regularidad de la microestructura eutéctica binaria, está definida por la entropia de fusión de sus constituyentes. Si ambas fases tienen un valor de entropia menor a 3.6 cal/ K at-gramo, la microestructura será regular. Si alguna de las dos o las dos fases tienen una entropia mayor a este valor, la microestructura será irregular.

3.--Tanto las microestructuras regulares como irregulares pueden clasificarse de acuerdo a sus valores de Vf, c y A. Ver Gráficas 5 - 10 en los Apéndices.

4.- Para que se forme un eutéctico metálico binario, su valor de relación de densidades (B), deberá encontrarse entre 1 y 8.2. El 94 % de los eutécticos estudiados presenta un valor de B entre 1 y 2. En forma estadística podemos decir que, mientras más parecidas sean las densidades de las fases, más se favorece la aparición del eutéctico.

Se hacen también las siguientes observaciones:

- Los eutécticos con valores de B altos tienden a presentar coeficientes de difusión con valores altos.

 Cuando dos elementos con densidades muy diferentes presentan gran solubilidad en ambos extremos del diagrama de fases, las densidades de las soluciones tiende a nivelarse. Si las soluciones sólidas son insolubles entre sí, se formará un eutéctico. Un fenómeno similar se presenta cuando hay gran solubilidad en un sólo extremo.

- Los eutectoides y los eutécticos de sales orgánicas e inorgánicas presentan valores de B entre 1 y 2. Las densidades de las fases de los eutécticos ternarios también son similares.

 El 87 % de los eutécticos binarios estudiados se forma con fases cuyo punto de fusión, presenta una diferencia de entre 0 y 600 ° C. Los eutécticos cuyos constituyentes tienen puntos de fusión muy diferentes tienden a tener una proporción muy pequeña de la fase con mayor punto de fusión.

 Cuando en un sistema binario se presenta insolubilidad en el estado líquido, se formará un eutéctico en el extremo del diagrama correspondiente a la fase con menor punto de fusión.

BIBLIOGRAFÍA

Aguilar M.R. 1996	M.R. Aguilar, Journal of Crystal Growth, vol. 166, issue 1-4, pages 398-401, Sep. 1996.
Arnold B., 1998	B. Arnold, Fresenius Journal of Analytical Chemistry, vol. 361, issue. 6-7, pages 656-659, July-Aug 1998.
Ambrozio F., 1978	F. Ambrozio, R. R . Vieira, Metal AMB, 34, (251), pp. 691-698, Oct. 1978.
Askeland R., 1985	R. Askeland, La Ciencia e Ingenieria de los Materiales, Primera Edición, Grupo Editorial Iberoamérica, México 1985.
Avner S.H., 1994	S.H. Avner, Introducción a la Metalurgia Física, Segunda Edición, McGraw Hill, México, 1994.
Barret C.S., 1973	C.S. Barret, Metals Handbook vol. 8 pages 233-241; A.S.M. International, U.S.A. 1973
Beghi G., 1971	G. Beghi et al, Journal of Materials Science, vol. 6, pages 118-125, Feb. 1971:
Bei H., 2003	H. Bei et al, intermetallics, vol. 11, issue. 4, pp. 1221-1228, Apr. 2003:
Bewlay B.P., 1994	B.P. Bewlay et al, Acta Metallurgica et Materialia, vol. 42, issue 8, pages 2869-2878, 1994.
Brandes E.A., 1990	E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, Butterworth Heinemann, Great Britain 1990.
Bromley J.F., 1983	J.F. Bromley et al, Journal of Materials Science, vol. 18, issue 10, pages 3143-3153, Oct 1983.
Сао С.D., 2000	C.D. Cao, Materials Science and Engineering, vol. 283, issue 1-2, May 2000, pages 86-93.
Champion Y., 1992	Y. Champion, Hageges S., Journal of Materials Science Letters, vol. 11, no.15, pages 290-293, Mar. 1992.
Clark J.B., 1988	J.B. Clark et al, Phase Diagrams of Binary Magnesium Alloys, A.S.M. International, pages 353-364, 1988.
Croker M.N., 1973	M.N. Crocker et al, Procedures of the Royal Society, London, vol. 335, pages 15-37, 1973.
Croker M.N., 1975	M.N. Croker et al, Journal of Crystal Growth, vol. 30, No. 2, pp. 198-212
Crossman F.W., 1971	F.W. Crossman, A. S. Yue, Metallurgical Transactions, vol. 2, no. 6, pp. 1545-1555, June 1971.
Currie P.D., 1992	P.D. Currie et al Journal of Alloys and Compounds, vol. 183, pages 188-302, 1992.
De Castro W.B.	W.B. De Castro, Materials Science and Engineering A, vol. 304-306, pp. 255-261, May 2001.

De la Fuente C.,1991	C. De la Fuente Cullel, Nociones Elementales de Cristaloquímica, EUNIBAR, Barcelona, España 1991.
Desforges C.D., 1971	C.D Desforges, A. Fordeux, Metallography, vol. 4, issue 6, pages 487- 501, 1971.
Ditchek B.M., 1986	B.M. Ditchek, Journal of Crystal Growth, vol. 75, issue 2, pages 264- 268, May 1986.
Ditchek B.M., 1990	B.M. Ditchek, Journal of Crystal Growth, vol. 102, issue 3, pages 401-412, 1990.
Doner M., 1974	M. Doner, Metallurgical Transactions, vol. 5, no. 2, pages 433-439, Feb 1974.
Dubey K.S., 1992	K.S. Dubey, P. Ramachandrarao, Scripta Metallurgica et Materialia, vol. 26, pages 709-710, 1992.
Dutkiewicz J., 1983	J. Dutkiewicz, Z. Meser, Bulletin of the Polish Academy of Science and Technology, vol. 31 No. 1-12, pp. 27-30, 1983.
Elliot R.P., 1965	R.P. Elliliot, Constitution of Binary Alloys, First Supplement, New York, 1965.
Elliot R., 1977	R. Elliot, International Metallurgical Review, vol. 22, pages 161-186, Sep 1977.
Favier J.J., 1979	J.J. Favier, M Turpin, Acta Metallurgica, vol. 27 issue 6, pages 1321-1330, June 1979.
Fischer H.E., 1994	H.E. Fischer, Materials Science and Engineering A, vol. 179-180, part 1, pages 396-400, May 1994.
Galasso F.S., 1990	F.S. Galasso, Practical Handbook of Materials Science, pp. 336-339, CRC Press, U.S.A. 1990.
Glasstone S., 1979	S. Glasstone, Tratado de Química Física, Editorial Aguilar, Madrid, 1979.
Han X.J., 2002	X.J. Han; B. Wei, Metallurgical and Materials Transactions A, vol. 33A, issue 4, pages 1221-1228.
Hansen M.,1958	M. Hansen, Constitution of Binary Alloys, Second Edition, McGraw Hill, New York, 1958.
Hayashi S., 1984	S. Hayashi, H. Komatsu, Journal of Crystal Growth, vol. 67, issue 1 pp. 37-41, June 1984.
Hawkins D.T., 1973	D.T. Hawkins, R. Hultgreen, Metals Handbook, V. 8 American Societ for Metals, Ohio, U.S.A., 1973.
Hensall G.A., 1997	G.A Hensall et al , Metallurgical and Materials Transactions A, vol. 28A, no. 12, pp. 2555-2564, Dec. 1997.
Herlach D.M., 1993	D.M. Herlach et al, Materials Science and Engineering A, vol. 173 A, issue 1-2, pages 355-359, Dec 1993.
Hill P.J., 1998	P. Hill et al, Journal of Alloys and Compounds, vol. 280, Issue 1-2, pages 240-250, October 1998.

llic, N., 2002	N. Ilic, Materials Science and Engineering A, vol. 329-331, pp. 38-44, June 2002.
Kanazawa S., 2002	S. Kanazawa et al, Intermetallics, vol. 10, no. 8, pp. 783-792, Aug 2002.
Kerr H.W., 1966	H.W. Kerr, W.C. Winegard, Journal of Metals, vol. 18, pp. 563-569, May. 1966.
Kossowsky R. 1970	R. Kossowsky, Metallurgical Transactions, no. 1 - 7. pp. 1909-1919. July 1970.
Kubaschewski,O 1979	O. Kubaschewski , C. B. Alcock, Metallurgical Termo-Chemistry, 5 th Edition, Pergamon Press Ltd, U.K. 1979.
Kumar K.S., 2000	K.S. Kumar et al, Acta Materialia, vol. 48, no. 4, pp. 911-923, Feb. 2000.
Kurz W.,1984	W. Kurz and K. Fisher, Fundamentals of Solidifications, Trans Tech Publications, Netherlands, 1984.
Lalit K., 1973	K. Lalit, Journal of Crystal Growth, vol. 20, Issue 2, pages 116-120, September 1973.
Liao. J.J., 1990	J.J. Liao, Scripta Metallurgica et Materialia, vol. 24, issue 9, pages 1647-1652, September 1990.
Lindevald N., 1972	N. Lindevald, La Estructura de los Metales, Segunda Edición, Buenos Aires, Argentina, 1972.
Liu H.Y., 1992	H. Y. Liu; H. Jones, Acta Metallurgica et Materialia, vol. 40, no. 2 pages 229-239, 1992.
Liu X.R., 2002	X.R. Liu, Scripta Materialia, vol. 46, Issue 1, pp.13-18, Jan. 2002.
Mason D.P., 1994	D.P. Mason et al, Dissertation Abstracts International, vol. 55, no. 4, pages 129-132, Oct 1994.
Massalski T.B. 1990	T.B. Massalski, Binary Alloy Phase Diagrams, Second Edition, 3 V AS.M. International, Materials Park, Ohio, U.S.A., 1990.
Mazur V.I., 1979	V.I Mazur et al, Fitz. Met. Metalloved, vol. 47, no 3, pages 562-567, Mar 1979.
Melnik A.V., 1974	B.A. Melnik, AV. Romanova, Izvest, Akad, Nauk SSSR Metally, vol. 4, pages. 165-168, July-Aug 1974.
Milenkovic S., 2002	S. Milenkovic, Journal of Crystal Growth, vol. 237-239, part 1, pages 95-100, April 2002.
Moffat W.G. 1979	W.G, Moffat, The Handbook of Binary Phase Diagrams, Second Edition, New York U.S.A. 1979.
Mourey M., 1973	M Mourey, F Dabosi, Comp. Rend., 277C, (18), pages 847-849, November 1973.
Norman A.F., 1998	A.F. Norman et al, Acta Materialia, vol. 46, no.16, pages 5715 5732, Oct 1998.
Pan Y., 1999	Y. Pan, G. Sun, Scripta Materialia, vol. 4, No 8, pages 803-807, 1999.

ELA BISLICS

TA TESIS NO 8 3 E

Pellegrini G., 1978	G. Pellegrini et al Materials Science and Engineering, vol. 34 issue 2 pp. 171-181, July 1978.
Peng D., 2002	D. Peng et al, Chinese Journal of Polymer Science vol. 20 , No. 1-3. Mar-Apr 2002.
Petzow G., 1991	G. Petzow, G Effenberg, Ternary Alloys, ASM International, USA, 1991.
Piatti G., 1976	G. Piatti, G. Pellegrini, Journal of Materials Science, vol. 11, no 5. pp. 913-924, May 1976.
Piatti G., 1980	G. Piatti et al, Journal of Materials Science, vol. 15, No. 9, pp. 2403-2408, Sep. 1980.
Podolinsky V.V., 1989	V.V. Podolinsky et al, Journal of Crystal Growth, vol. 96, pp. 445-449, 1989.
Porter D.A., 1981	D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand, Great Britain, 1981.
Pu J., 2003	J. Pu et al, Journal of Crystal Growth, vol. 256, issue 1-2, pp. 139-145, Aug., 2003.
Quinn, R.K., 1973	R.K. Quinn, R.T Johnson Jr., Journal of Non-Crystalline Solids, vol. 12 issue 2, pp. 213-231, July 1973.
Reed-Hill R.E., 1994,	R. E. Reed-Hill, Principlos de Metalurgia Física, C.E.C.S.A. , Segunda Edición, México 1994.
Rostoker W., 1992	W. Rostoker, J.R. Dvorak, Interpretation of Metallographic Structures, 2nd Edition, Academic Press Inc., London, U.K., 1992.
Saccone A., 2001	A: Saccone, Journal of Alloys and Compounds, vol. 317-318, pages 503-512, April 2001.
Sahoo M.,1980	M. Sahoo et al, Journal of Materials Science vol. 15, no. 5, pages 1097- 1103, May 1980.
Saitoh, 2001	Saltoh et al, Materials Science and Engineering A, vol. 318, no. 1,2, pages 87-93, Nov, 2001.
Savas M.A., 1990	M.A. Savas et al, Journal of Materials Science, vol. 25, no 2A, pages 909- 913, Feb. 1990.
Sekerka T.F, 1982	R.F. Sekerka, T.F. Marinis, The Metallurgical society AIME, pages 67-84,1982
Selke, 1988	H. Selke, P.L. Ryder, Acta Metallurgica, vol. 36, no 8, pp. 2387-2392, Aug. 1988.
Shunk 1969	F.A. Shunk, Constitution of Binary Alloy, Second Supplement, New York, 1969.
Stout M.G., 1977	M.G Stout et al, Metallurgical Transactions A, vol. 8A, issue 8, pages 1316-1318, Aug 1977.
Strong H.M., 1964	H.M. Strong, Acta Metallurgica, vol. 12, issue 12, pp. 1411-1419, dec. 1964.

Takasugi T., 1999	T. Takasugi, Materials Science and Engineering A, vol. 260, issue 1-2, pages 108-123, Feb. 1999.
Vieira R.R., 1990	R.R Vieira et al, Government Research Announcements and Index, page 12, 1990.
Villars H., 1985	H. Villars, Pearson, Handbook of Crystallographic Data, First Edition, 3V, A.S.M. International, Materials Park, Ohio, U.S.A., 1985.
Villars H., 1990	H. Villars, Pearson, Handbook of Crystallographic Data, Second Edition, 3V, A.S.M. International, Materials Park, Ohlo, U.S.A., 1990.
Vojtech D., 2003	D. Vojtech, Materials Science and Engineering A, vol. 361, issue 1-2, pages 50-57, November 2003.
Wang Y., 1998	Y. Wang et al, Journal of Materials Science, vol. 33 no. 21, pp.5205-5220, Nov 1998.
Winter, M., 2003	M. Winter, Periodic Table of the Elements, The University of Sheffield, U.K., 2003, http://www.webelements.com/
Yao W.J., 2003	W.J. Yao, Materials Science and Engineering A, vol. 283, Issue 1-2, pages 10-19, May 2003.
Yoshida M., 1996	M. Yoshida et al, Journal of the Japan Institute of Metals, vol. 60, no 5, pp. 482-489, May 1996.
Zhang Z., 2002	Z. Zhang et al, Journal of Crystal Growth, vol. 243 no. 3-4, pages 531- 538, Sep 2002.
Zhonghua Z.,2003	Z. Zhonghua et al, Journal of Alloys and Compounds, vol. 351, issue 1-2, pp. 184-189, 2003.
	그는 그는 것 같은 것 같은 것 같아요. 그는 것 같아요.
(1) An equilation of the second seco second sec

APÉNDICES

			_				_		
No	C1	C2	A1	E1	Vf ₁	ΔS,	∆S₂	м	Referencia
1	Cu	Cu₅Zr	6.8636	0.1484	0.4954	2.29	2.27	RI	Saitoh M., 2001
2	Cd	Cd ₃ Sn ₇	6.0189	0.2438	0.4053	2.58	3.15	Rİ	Galasso F.S., 1990
3	Co	Co ₃ Sn ₂	5.8753	0.2491	0.4059	2.1	2.62	RI	Herlach D.M., 1993
4	Cu	Cu ₃ P	4.1547	0.3339	0.4189	2.29	2.21	RI	Selke H., 1988
5	Cr	Cr ₂ Zr	3.9158	0.4379	0.3684	2.34	2.28	RI	Kanazawa S., 2002
6	РЬ	AuPb ₃	3.4845	0.4389	0.3953	1.91	2	RI	Croker M.N., 1973
7	Ni	Ni₃Sn	4.715	0.4628	0.3143	2.38	2.63	R	Galasso F.S., 1990
8	Ni	Ni ₃ B	3.4634	0.5313	0.3521	2.38	3.06	R	Galasso F.S., 1990
9	Biln ₂	Biln₄	1.6141	0.6869	0.4742	2.81	2.42	ณ	Currie P.D., 1992
10	SnSe	SnSe₂	1.4528	1.2864	0.3486	3.25	3.2	RI	Aguilar M.R., 1996
11 _	Co	Cr	1.0781	1.3506	0.4071	2.1	2.34	RI	Galasso F.S., 1990
12	Cr	NI	0.9608	1.5433	0.4028	2.34	2.38	RI _	Kossowsky R., 1970
13	Pb	Sn	0.8921	1.8536	0.3769	1.91	3.4	RI	Galasso F.S., 1990
14	NbAl ₃	Nb ₂ Al	0.8054	1.8861	0.397	2.65	2.43	RI	Arnold B., 1998
15	AILi	AI	0.512	2.9901	0.3943	2.14	2.68	RI	Peng D., 2002
16	CuAl ₂	AI	0.3708	3.07	0.467	3.48	2.68	RI	Croker M.N., 1973
17	Mg ₂ Cu	Mg	0.4251	3.9	0.3765	2.28	2.29	RI	Galasso F.S., 1990
18	Ag ₂ Al	Al	0.3372	4.0427	0.4232	2.33	2.68	RI	Galasso F.S., 1990
19	NiMo	NI	0.4362	4.1	0.3578	2.66	2.38	RI	Galasso F.S., 1990
20	Mg₂Pb	Mg	0.2911	4.9762	0.4084	3.43	2.28	RI	Croker M.N., 1973
21	NbCo ₃	Co	0.2252	5.4533	0.4484	2.16	2.1	RI	Galasso F.S., 1990
22	Cr ₂ Ta	Cr	0,2894	5,9346	0,3804	2.16	2.34	RI	Kumar K.S., 2000
23	Co	Co₂Ta	0.2894	6.1765	0,3588	2.1	2	RI	Desforges C.D., 1971
24	Ni₃Ta	Ni	0.2232	7.8073	0,3646	2.23	2.38	RI	Galasso F.S., 1990
25	Al₄Ca	AI	0.1583	14.003	0.3109	2.5	2.68	RI	Pellegrini G, 1978
26	Mo ₆ Co ₇	Co	0.0704	16.2521	0.4662	2.5	2.1	RI	Galasso F.S., 1990
27	Fe ₆ Zr ₂₃	Fe	0.0303	48.349	0.4052	2.04	2.01	RI	Galasso F.S., 1990
28	Mg ₂₃ Th _e	Mg	0.032	63.929	0.3284	2.2	2.28	RI	Rostoker W., 1992
29	Mg	Mg ₁₇ Al ₁₂	25.26	0.1	0.2837	2.28	2.44	Ri en AT	Galasso F.S., 1990
30	Ni	NI ₅ Sb ₂	8.7165	0.883	0.115	2.38	3.2	RI en AT	Han XJ., 2002
31	Mg	Mg ₇ Zn ₃	8.6596	2.445	0.0451	2.28	2.35	RI en AT	Clark J.B., 1988
32	AI	Zn	0.9741	2.5524	0.2868	2.68	2.51	RI en AT	Galasso F.S., 1990
33	Mg	Li	0.9593	4.1	0.2027	2.28	1.6	RI en AT	Mourey M., 1973
34	NiBe	Ni	0.6049	5.47	0.2322	2.11	2.38	RI en AT	Galasso F.S., 1990
35	NiaNb	Ni	0.2355	10.077	0.2964	2.37	2.38	RI en AT	Galasso F.S., 1990
36	AuSn.	Sn	0.2178	11.244	0.2899	3.18	3.4	RI en AT	Favier J.J., 1979
37	NIaTI	NI	0.2412	11.873	0.2594	2.32	2.38	RI en AT	Galasso F.S., 1990
38	Co ₇ We	Co	0,074	85,442	0.1366	2.2	2.1	RI en AT	Galasso F.S., 1990
39	Nb	Th	1.9313	5.0635	0.0928	2.36	1.89	Rv	Galasso F.S., 1990
40	Zn	Sn	1.7784	5.7114	0.0896	2.51	3.4	Rv	Lalit K., 1973
41	Ag	Pb	1.6609	21.792	0.0269	2.15	1.91	Rv	Galasso F.S., 1990
42	Ŵ	NI	0.69	25.087	0.0546	2.29	2.38	By	Galasso F.S., 1990
43	AI	Sn	1.6294	40.667	0.0149	2.68	3.4	Rv Rv	Galasso F.S., 1990
44	Co	Au	1.5081	41.611	0.0157	2.1	2.28	Ry	Galasso F.S., 1990
45	Zn	10	1.7205	52.889	0.0109	2.51	1.82	By S	Dutkiewicz J., 1983
46	Cu-O	<u> </u>	0.3148	55.746	0.0539	248	2.29	Russe	Galasso F S., 1990
47	Fo	FeO	1,6532	62.7	0.0006	2 01	2.8	Ry	Galasso F.S., 1990
48	Cu-S	<u> </u>	0 2737	65 471	0.0528	28	2.20	Rv Rv	Croker M N 1973
49	ALST		0.139	95	0.0328	2.52	2.68	By	Zbang Z 2002
50	7.	Zn-Sh-	0.1369		0.0714	3.55	2.00		Lalit K 1973
51	Cu ₂ Cd		0.0931	144 32	0.0692	2.00	2.52		Galaseo E S 1000
52	Cr		0.0331	146.33	0.0052	234	2.00	- RV	Galasso F.S., 1990
34		L Cu	0.9035	140.32	0.0009	1 2.34	2.29	I KV	Galasso F.S., 1990

Tabla A. Microestructuras Reportadas

33

-

.....

TESIS CON

FALLA DE ORIGEN

Tabla A. Microestructuras Reportadas

No	C1	C ₂	A1	£1	Vf1	ΔS1	∆S₂	м	Referencia
53	Al₂Au	AL	0.3079	200.64	0.0159	2.68	2.41	Rv	Piatti G., 1976
54	CueSn₅	Sn	0.1283	450.03	0.017	3.5	3.4	Rv	Galasso F.S., 1990
55	Zn ₁₈ Ti	Zn	0.0585	494.97	0.0333	2.5	2.51	Rv	Galasso F.S., 1990
56	Al ₂₁ Pt ₆	AI	0.0357	1377.8	0.0199	2.68	2.6	Rv	Piatti G., 1980
57	NI	Ni ₁₇ Gd ₂	22.641	0.0478	0.4801	2.37	2.38	Rv en AT	Galasso F.S., 1990
58	Cr	Cr ₂₃ C ₆	25.157	0.0794	0.33	2.34	3.22	Rv en AT	Galasso F.S., 1990
59	Co Co	C017Y2	22.071	0.1052	0.3009	2.1	2.12	Rv en AT	Galasso F.S., 1990
60	Co	Co ₁₇ Gd ₂	22.148	0.3157	0.1251	2.1	2.12	Rv en AT	Hayashi S., 1984
61	Cr	Cr ₂ O ₃	3.9328	0.6	0.2976	2.34	2.43	Rv en AT	Galasso F.S., 1990
62	NI	NisP	3.8792	0.7795	0.2485	2.38	2.28	Rv en AT	Pu J., 2003
63	अन्त्र म ः य ले	1.8 ²⁷ .2 Th 192.81	1.8212	1.3529	0.2887	2,16	1.89	Rv en AT	Galasso F.S., 1990
64	Au David	the state of the s	1.6857	3.0469	0.163	2,28	1.78	Rv en AT	Melnik B.A., 1974
65	Cr ₂ Zr	nia Zriada	0.5	8.5529	0.1895	2.28	2.34	Rv en AT	Takasugi T., 1999
66	Arrent NI FIGS	Ni ₁₇ Th ₂	22.569	0,0697	0.3886	2.38	2.33	Rm	Galasso F.S., 1990
67	Non Cullera	MgCu ₂	3.6847	0.6953	0.2807	2.29	2.28	Rm	Croker M.N., 1973
68	Cu ····	A A Ag	1.4444	2.1154	0.2466	2.29	2.15	Rm	Galasso F.S., 1990
69	Zn	Cd	1.3992	3.1553	0.1847	2.51	2.58	Rm	Croker M.N., 1973
70	Cd	Pb	1.404	3,2228	0.181	2.58	1.91	Rm	Croker M.N., 1973
71	Mg ₂ Ni	Mg	0.4491	5.84	0.276	2.3	2.28	Řm	Galasso F.S., 1990
72	In₃Sn	InSn ₄	0.9912	6.9515	0.1267	2.2	3.08	Rm	Galasso F.S., 1990
73	TaFe₂	Fe	0.3174	12.6572	0.1993	1.94	2.01	Rm	Galasso F.S., 1990
74	Al ₃ Y	AI	0.2125	29.85	0.1361	2.58	2.68	Rm	Galasso F.S., 1990
75	Al 11Ce3	AI	0.0575	60.97	0.2215	2,53	2.68	Rm	Galasso F.S., 1990
76	Co	Co ₅ Ge ₃	7.9664	0.1335	0.4847	2.1	3,88	11	Liu X.R., 2002
77	Zn	Mg ₂ Zn ₁₁	13.71	0.0885	0.4519	2,51	3.7	1	Liu H.Y., 1992
78	V₃Si	v	3.8194	0.2659	0.4961	4.68	2.36	II	Henshall G.A., 1997
79	Ni	Ni ₃ Si	3.5533	0.3885	0.4201	2,38	3.6	11	Milenkovic S., 2002
80	CoSb	Co	3.0262	0,4909	0.4023	3.68	2.1	11	Cao C.D., 2000
81	Ru	AIRu	2.0616	0,6696	0.4201	2.57	3.95	II	1lic N., 2002
82	CoSi ₂	SI	1.9123	0.6943	0.4296	5.47	7.16	II	Yao W.J., 2003
83	AlSc	Al ₂ Sc	1.3302	0.8108	0.4811	3.65	2.4	11	Norman A.F., 1998
84	Cd	Bi	1.6379	0.8182	0.4273	2.58	4.8	11	Croker M.N., 1973
85	Co	AICo	1.5157	0.8349	0.4414	2.1	3.78	11	Stout M.G., 1977
86	Sb	InSb	1.6484	0.8744	0.4096	5.26	4.92	II	Croker M.N., 1973
87	Sb	ZnSb	1.6102	0.9711	0.3901	5.26	3.89	I	Croker M.N., 1973
88	Bi	Sn	1.3077	1.8971	0.4077	4.8	3.5	II	Croker M.N., 1973
89	Cu ₂ Sb	Sb	0.6181	2.4087	0.4018	3.28	5.26	II	Croker M.N., 1973
90	Fe ₂ B	Fe	0.4371	2.8754	0.4431	4.27	2.01	II	Fischer H.E., 1994
91	Mo ₅ Si ₃	MoSi ₂	0.3451	3.463	0.4555	4.52	5.75	II	Mason D.P., 1994
92	Fe ₃ C	Fe	0.3143	3.54	0.4733	4.27	2.01	11	Croker M.N., 1973
93	Ni ₅ Sb ₂	NISD	0.3605	4,5409	0.3792	3.2	3.82	11	Han XJ., 2002
94	Cr ₃ Si	Cr	0.2539	5.3846	0.4225	4.6	2.34	11	Bei H., 2003
95	Bi	Bi ₂ Pb ₃	4.2697	0.5964	0.282	4.8	3,06	Im	Croker M.N., 1973
96	Sb	Ag ₃ Sb	2.5069	1.0263	0.2799	5.26	3.18	Im	Croker M.N. 1973
97	Nb	Cr ₃ Nb	2.3793	1.0981	0.2768	2,36	3.6	Im	Bewlay B.P., 1994
98	Bi	BITI	2,6519	1,1434	0.248	4.8	3.8	Im	Croker M.N. 1973
99	NbO	NbO ₂	1,4076	1,1882	0.3742	3	4.4	Im	Rostoker W 1992
100	CoSi	CoSi-	1.7379	1.3521	0.2985	4.63	5.47	Im	Yao W.J. 2003
101	Gd Gd	GdCu	0.7798	2.6371	0.3272	2.33	3.7	1	Saccone A 2001
102	Ge	AI	0.7388	2.684	0.3352	2.68	6.85	100 Im	Croker M N 1973
103	6	Au	0.7492	2 8801	0.3167	6.85	2.00	1 Im	Galasso E C 1000
104	Most	Sh Sh	0.716	3 3941	0.2915	3.03	5.20	Im	Ban V 1000
104	1	<u> </u>	1 0.710	1.3841	L 0.2910	3.0	1 3.20	1 400	ran t., 1999

TESIS CON FALLA DE ORIGEN

No	C1	C ₂	A1	ει	Vf,	ΔS1	ΔS_2	м	Referencia
105	AI	Allr	0.5331	4.042	0.317	3,87	2.3	Im	Hill P.J. 1998
106	Mo ₂ C	Мо	0.5652	4.19	0.2968	4.16	2.94	Im	Liao J.J., 1990
107	Pr	PrZn	0,6999	4.5006	0.241	2.25	3.76	Im	Saccone A. 2001
108	GeTe	Те	0.6106	4.6667	0.2597	6.3	6.85	Im	Quinn R.K. 1973
109	Ta ₂ C	Та	0.4372	7.1412	0.2426	4.3	_1.8	Im	Galasso F.S., 1990
110	Cr ₂ Nb	Cr	0.2805	9.191	0.2793	3,6	2.34	Im	Bewlay B.P., 1994
111	Mg ₂ Sn	Mg	0.2997	9,2127	0.2659	3.9	2.28	Im	Croker M.N., 1973
112	Bi ₂ Te ₃	Те	0.2012	14.922	0.2498	4.6	5.8	Im	Galasso F.S., 1990
113	Ti ₅ Si3	Ti	0.1453	19.4	0.2616	4.05	2.16	Im	Vojtech D., 2003
114	Al21Pd8	AI	0.037	75.944	0.2625	3.73	2.68	Im	Galasso F.S., 1990
115	<u> </u>	B₄C	12.5633	0.9435	0.0778	6.62	5.4	It	Rostoker W., 1992
116	Fe	FeSb	3.0912	2.5374	0.1131	2.01	4.98	It .	Galasso F.S., 1990
117	Sb	CdSb	1.8824	3.5862	0.129	5.26	_5.3	It	Galasso F.S., 1990
118	Fe	FeS	2.4852	4.1296	0.0888	2.01	4.15	It	Galasso F.S., 1990
119	Si	Au	0.8469	4.4121	0.2111	7.16	2.28	It	Croker M.N., 1973
120	Ge	Ag	0,7547	5.509	0.1939	6.85	2.15	· · · It	Galasso F.S., 1990
121	Ge	Sb	1,3346	5.8966	0.1127	6.85	5.26	instit	Croker M.N., 1973
122	В	Cu	1.5392	6.3718	0.0925	5.1	2.29	It	Galasso F.S., 1990
123	Sb	РЬ	1.004	6,8667	0.1267	5.26	1.91	It	Croker M.N., 1973
124	Ag	Si	0.8517	8.0927	0.1267	2.15	7.16	Alf It	Croker M.N., 1973
125	Si	A1	0.8293	8.2092	0.1281	7.16	2.68	It	Croker M.N., 1973
126	Ge	Ge ₂ Ti	0.4728	8.2761	0.2035	6,85	5.28	It	Ditchek B.M., 1986
127	c	Fe	1.3779	9.5779	0.0704	6.62	2.01	It	Croker M.N., 1973
128	Nb ₂ C	<u>Nb</u>	0.4473	10.508	0.1649	5.14	2.56	It	Galasso F.S., 1990
129	CdSb		0.3799	12.286	0.1765	5.3	2.58	It	Galasso F.S., 1990
130	Mg ₂ Pb	Pb	0.3797	12,891	0.1696	3.43	2.15	It	Croker M.N., 1973
131	Mg ₂ Sn	Sn	0.3488	17.8538	0.1384	3.9	3.5	10	Croker M.N., 1973
132	AuzBi	<u> </u>	0.565	12.1589	0.1271	3.12	4.8		Croker M.N., 1973
133		<u>+</u>	0.8537	12./12	0.0844	5.01	2.16	10	Grössman F.W. 1971
134	B ₂ Zr	<u></u>	0.7653	13.8333	0.0863	4.12	2.17	<u></u>	ChampionY., 1992
135		Ge	0.6722	17.868	0.0769	2.51	6.85	10	Croker M.N., 1975
136	<u>Ag</u>	<u>ы</u>	2.0775	19.9444	0.0236	2.15	4.8		Groker M.N., 1973
13/		<u>Ga</u>	1,2866	32.601	0.0232	2.22	4.42	10	Groker M.N., 1973
138	AlaNI		0.2851	33.164	0.0956	3.75	2.68	10	Groker M.N., 1973
139	<u>2n</u>	81	2,3253	41.958	0.0101	2.51	4.8		Galasso F.S., 1990
140			0.1246	43.4345	0.0308	3.56	4.8	10	Savas M.A., 1990
147		Ai40	0.175	64 767	0.1024	2.08	3.65	10	Vieira K.K., 1990
142			1.2035	60./0/	0.05/4	3.28	4.8	10	Croker M.N., 1973
143		<u></u>	1.24	78 0650	0.0114	0.62	2.38	10	Strong H.M., 1964
144	Ag ₃ sn Ma Si		0.3658	10,9039	0.0343	3.65	3.5		Bromley J.F., 1983
145			0.3036	87 702	0.032	3.18	2.28	10	Galasso F.S., 1990
140			0.0091	06.062	0.1134	7.16	2.08	10	Ambrozio F., 1978
147	01 Ec		0.4019	90.903	0.0218	2.07	3.3/	10	
148	AIST0	<u> </u>	0.2049	249	0.0324	3.6/	2.68	10	Elliot R., 1977
149		<u> </u>	0.2076	240	0.0138	5.35	2.68		Zhonghua Z., 2003
150	AI380		0.2407	213.18	0.0149	3.6	2.68	10	Norman A.F., 1998
151		<u>Al</u>	0.0996	387.51	0.0252	3.6	2.68	1- 1-	Elliot R., 1977
152	Ge		0.9544	433,7826	0.0024	6.85	2.58	l Id	Sahoo M., 1980

	N°	C1	С,	Vm,	Vm ₂	A,	A ₂	Χ.,	X,	X,,2	%,	Tí,	Tf ₂	ΔĪ	T,	EC ₁	EC ₂	₽ı	ρ:	В	ε _l	τ,	Vf,	Vf ₂	ΔSt	ΔSz	DM
1	1	Ac	Aq	22.56	10.27	0.455	2,197	5E-05	0.9792	1	Ag	1051	961.9	89.1	870	cF4	cF4	10.1	10.5	1.044	98.997	0.0101	0.0217	0.9783	2.58	2.15	c Rv
	,	G	Ac	7.23	22.56	3.12	0.32	0	0.9106	1	Ac	1863	1051	812	700	cF4	cl2	7.19	10.1	1.399	2.3333	0.4286	0.1208	0.8792	2.34	2.58	c Rt
	3	Ac	Cu	22.56	7.11	0.315	3.173	0	0.763	0.9929	Cu	1051	1085	33.8	850	cF4	cF4	10.1	8.94	1.126	11.856	0.0843	0.2111	0.7889	2.58	2.29	c Rt
-	4	An-Al	Al	29.96	10.1	0.337	2.966	0.1528	0.2812	0.4488	A	690	600	90	567	hP2	cF4	8.1	4.55	1.779	4.0427	0.2474	0.4232	0.5768	2.33	2.68	e Rl
	5	An-As	As	103.8	12 962	0 125	8.008	0.0791	0.1904	1	As	961.9	582	379.9	540	hP2	hR2	10.1	5.78	1.743	1.9204	0.5207	0.8066	0.1934	2.54	6.08	e It
E. I	6	Δn	AnRe.	10.27	18 72	1.823	0.549	0.0003	0 0097	0 1843	Re	961.9	1010	48.1	880	cF4	cF24	10.5	6.73	1.562	0.0464	21.547	0.922	0.078	2.15	1.96	e Rv
AFI	7	 	Ri	10.27	21 307	2 075	0.482	0.0000	0.9752	1	Bi	960	271.4	688.6	262.5	cF4	hR2	10.5	9.81	1.071	19.944	0.0501	0.0236	0.9764	2.15	4.8	e Id
20		Y 	An Ca	10.27	142 53	13.88	0.102	0.010	0.057	0.0764	Ca	961.9	687	274 9	655	cF4	ci44	10.5	6.9	1.523	0.3239	3.0876	0.182	0.818	2.15	2.05	e Rt
국이	0	. 09 An Co	Ag[02]	A1 6A	22 704	0 788	1 27	0 1565	0 1952	0 2709	Ca	595	665	70	547	ol12	oC8	6.14	4.51	1.362	0.8855	1,1293	0.5892	0.4108	2.03	3.04	e RI
$\Box \circ$	10	Ag.Co	AnCe	42.05	32.66	0.700	1 287	0.1000	0 4949	0.565	Ce	855	870	15	780	ol12	cP2	8.46	7.59	1.115	2.0788	0.4811	0.3824	0.6176	2.1	3.6	еN
20	10		ngue Co	22.05	20.7	0.634	1 578	0.555	0.847	0 9845	Ce	870	798	72	508	cP2	cF4	7.59	6.77	1.122	3.6303	0.2755	0.3029	0.6971	3.6	1.98	e Im
EZ	11	. nyve	00	7 12	10.27	4 4 2	0.704	0.000	0.000	1	Δ.	1863	962	901	961	rF4	cl2	10.5	7.19	146	2130.9	0 0005	0.0003	0.9997	2.34	2.15	e Rv
4-4	12	<u> </u>	ny Cu	10.07	7 11	0.602	1 444	0.0975	0.0000	0.018	2	000	1060	160	780	cF4	cF4	99	9 25	1.07	0 4727	2 1153	0.7534	0 2466	2.15	2.29	e Rt
21	13	Ag		10.27	777 70	75 72	0.012	0.0075	0.202	0.310		061	000	20	802	cF4	hP65	10.5	10	1.051	0.0172	58 102	0 4341	0 5659	2.15	2 21	e Rt
	14	Ag	Ag ₅₁ Dy ₁₄	10.27	17 97	15.15	20.54	0.0193	0.1704	0.2521	Dy Dv	901	970	20	905	hP65	ti6	10.0	9.99	1.001	17,751	0.0563	0.5364	0.4636	2.21	2.25	e Rt
	15	Ag ₅₁ Dy ₁₄	Ag2Dy	111.0	31.01	0.049	4 220	0.0402	0.3703	0.4102	D	070	1182	212	050	11 00	cP2	0.00	0.55	1 045	0 3824	2 6151	0 7777	0 2223	2 25	37	e Im
	16	Ag ₂ Dy	Aguy	31.81	28.3	0.747	1.330	0.4402	0.4/40	0.001	Dy	9/0	1412	212	930	cP2	hP2	0.55	7.81	1 223	1 4483	0.6905	0 4844	0 5156	37	2 44	e II
	17	AgDy	Dy	28.3	20.803	0.735	1.30	0.001	0.7007	0.0004	Uy T-	1102	020	230	705	6F4	hD69	10.5	10.4	1.225	0.0110	83 027	0.4044	0.3130	2 15	2 39	e Ri
	18	Ag	Ag ₅₁ Er ₁₄	10.27	755.89	/3.6	0.014	0.0547	0.1677	0.2981	Er	920	930	10	195	5000	11-00	10.0	10.4	1.012	3 1248	03.321	0.0020	0.133	2 30	2.00	- Rł
	19	Ag ₅₁ Er ₁₄	Ag ₂ Er	755.9	37.11	0.049	20.37	0.3467	0.3565	0.4303	Er	930	1020	90 175	090	116	rD2	10.4	10.5	1.003	0 427	2 142	0.007	0.100	2.55	3.61	e Im
	20	Ag₂Er	AgEr	37.11	27.496	0./41	1.35	0.4363	0.4760	0.0079	EI	1020	1193	173	333		602	10.0	0.06	1.104	2 1667	0.4616	0.4075	0.5025	3.61	2.28	e II
	21	AgEr	Er	27.5	18.452	0.671	1.49	0.6079	0.8308	1	E	1195	1529	334 120.0	932	CP2	LIPE	10.5	9.00	1.104	0.4061	2 0158	0.4075	0.3523	2 15	2.20	e Rt
1	22	Ag	AgsEu	10.27	76.146	7.414	0.135	0	0.1675	0.2202	EU	901.9	122	239.9	649	0112	ADR	9.25	3.00	1 145	11 264	0.0888	0.2150	0.0002	21	2.08	e Rv
\mathcal{W}	23	Ag ₂ Eu	AgEu	44.59	36.084	0.809	1.236	0.4096	0.5653	0.5648	EU	192	0/3	119	040	10112	010	0.23	5.24	1.145	4 5009	0.0000	0.0000	0.5011	2.06	2.00	o Di
6	24	Ag ₂ Eu ₃	Ευ	97.34	28.98	0.298	3.359	0.6788	0.8413	1	Eu	570	822	252	429	(110	CIZ	0.9	3.24	1.310	4.02.00	0.0001	0.9201	0.0100	2.00	2.01	6 N
	25	Fe	Ag	7.3	1.027	0.141	7.108	8E-06	0.9988	0.9999	Fe	1538	961.9	576.1	961	CF4	CF4	10.5	7.00	1.373	9527.0	0.0001	0.0007	0.9993	2.01	2.13	
i	26	Ag ₇ Ga ₃	Ga	100.6	11.789	0.117	8.533	0.2456	0.9543	<u>. 1</u>	Ga	425	29.7	395.3	26	nPy	008	9.58	5.91	1.621	214.04	0.0047	0.0302	0.9010	2.03	9.42	
	27	Ag	Ag ₅₁ Gd ₁₄	10.27	781.37	76.08	0.013	0.0138	0.1527	0.2853	Gd	960	975	15	805	cF4	hP65	10.5	9.86	1.066	0.0147	68.211	0.4/2/	0.5273	2.13	2.19	e Ki
	28	Ag ₂ Gd	AgGd	38.99	29.82	0.765	1.308	0.4212	0.4613	0.5931	Gd	830	1100	270	825	t16	CP2	9.57	8.89	1.076	0.427	2.342	0.7538	0.2402	3.44	3.02	e in
	29	AgGd	Gđ	29.82	19.906	0.668	1.498	0.5931	0.8339	. 1	Gd	1100	1313	213	790	cP2	hP2	8.89	7.9	1.125	2.4444	0.4091	0.38	0.62	3.02	2.33	e 11
	30	Ge	Ag	13.63	10.287	0.755	1.325	0	0.8247	0.9333	Ag	938.3	840	98.3	651	cF8	CF4	5.33	9.73	1.827	5.509	0.1815	0.1939	0.8001	0.03	2.10	е II
F	31	Ag	Ag ₅₁ Ho ₁₄	10.27	767.52	74.73	0.013	0.0243	0.1657	0.2952	Но	940	920	20	795	cF4	hP65	10.5	10.2	1.032	0.0151	66.226	0.4698	0.5302	2.15	2.21	e KL
E	32	Ag ₅₁ Ho ₁₄	Ag ₂ Ho	767.5	37.464	0.049	20.49	0.2952	0.3554	0.4329	Ho	920	990	70	890	hP65	t16	10.2	10.2	1.001	15.932	0.0628	0.5625	0.43/5	2.21	2.23	e KL
المستعمل	33	Ag ₂ Ho	AgHo	37.46	27.914	0.745	1.342	0.322	0.4678	0.6046	Но	990	1165	175	970	t16	cP2	10.2	9.77	1.04	1.4866	0.6727	0.4/45	0.5255	2.25	3.7	e 1
D	34	AgHo	Ho	27.91	18.755	0.672	1.488	0.6046	0.867	1	Но	1165	1474	309	880	cP2	hP2	9.77	8.79	1.111	3.2632	0.3065	0.3132	0.6868	3.1	2.44	e Im
[*]	35	Agin _z	In	40.07	15.765	0.393	2.542	0.6807	0.9699	1	ln j	166	156.6	9.4	144	ti12	tl2	8.42	7.28	1.157	28.218	0.0354	0.0826	0.91/4	3.68	1.82	e la
0	36	Ag	AgsLa	10.27	73.422	7.149	0.14	0.0006	0.1252	0.2052	La	961.9	825	136.9	792	cF4	hP12	10.5	9.24	1.137	0.2475	4.0405	0.3611	0.6389	2.15	3	e Ki
ਸ਼	37	Ag ₂ La	AgLa	43.39	33.416	0.77	1.299	0.3913	0.4928	0.5629	La	860	880	20	800	ol12	cP2	8.17	7.39	1.107	2.0788	0.4811	0.3845	0.6155	2.1	3.48	e Ki
ā	38	AgLa	La	33.42	22.455	0.672	1.488	0.5629	0.8074	1	La	880	918	38	535	cP2	cF4	7.39	6.19	1.194	2.2553	0.4434	0.3975	0.6025	3.48	2.01	екі
Ε.	39	Aq	AgMg	10.5	21.684	2.065	0.484	0.0854	0.1016	0.1104	Mg	790	820	30	759.5	cF4	cP2	8.12	6.1	1.332	1.1809	0.8468	0.2908	0.7092	2.15	3.6	e Im
Z	40	Ag	Мо	10.27	9.386	0.914	1.094	0.0013	0.0034	1	Мо	961.9	2623	1661	958.5	cF4	cl2	10.5	10.2	1.028	0.0023	433.07	0.9979	0.0021	2.15	2.94	C RV
Fisher	41	Ag	Ag ₅₁ Nd ₁₄	10.27	807.82	78.66	0.013	0.0027	0.1356	0.2681	Nd	961.9	1025	63.1	806	cF4	hP65	10.5	9.31	1.128	0.0144	69.474	0.469	0.531	2.15	1.97	e Rt
	42	Ag ₂ Nd	AgNd	41.26	30.9	0.749	1.335	0.4003	0.4796	0.5721	Nd	825	852	27	810	hP3	cP2	8.73	8.16	1.069	1.2228	0.8178	0.5219	0.4781	1.87	3.1	e RI
1	43	AgNd	Nd	30.9	20.586	0.666	1.501	0.5721	0.8425	0.9902	Nd	952	1021	69	640	cP2	hP4	8.16	7.01	1.164	3.198	0.3127	0.3194	0.6806	3.1	1.32	e Ri
	44	Ni	Ag	6.59	10.27	1.558	0.642	0	0.9983	0.9996	Ag	1450	961.9	488.1	960	cF4	cF4	8.91	10.5	1.179	574.68	0.0017	0.0011	0.9989	2.38	2.15	e Kv
	45	Δn	No	10.27	13,134	1.279	0.782	0.0044	0.2634	1	Np	961.9	639	322.9	956	cF4	cl2	10.5	18	1.718	0.1601	6.2469	0.8301	0.1699	2.15	1.24	c Rt

1		N٩	C _t	C ₂	Vm,	Vm ₂	Α,	A ₂	X _{e1}	X _{eL}	X,,2	%ρ	Τf ₁	Tf ₂	M	T,	EC	EC2	ρ	ρ:	В	٤	£2	Vf,	Vf ₂	ΔS_1	ΛS_2	DM
į.		46	Aq	Pa	10.27	14.978	1.458	0.686	0.0006	0.0819	1	Ра	961.9	1572	610.1	920	cF4	ti2	10.5	15.4	1.468	0.0413	24.19	0.9431	0.0569	2.15	2.38	c Rv
		47	Aq	Pb	11	18.265	1.661	0.602	0.0153	0.9761	0.999	Pb	950	327	623	304	cF4	CF4	9.81	11.3	1.156	21.791	0.0459	0.0269	0.9731	2.15	1.91	e Rv
		48	AgiPr	AgPr	81.74	31.5	0.385	2.595	0.3915	0.4655	0.5664	Pr	847	932	85	804	hP3	cP2	4.36	7.9	1.81	1.051	0.9515	0.7117	0.2883	2.18	3.6	e Im
ł		49	AgPr	Pr	31.5	20.806	0.661	1.514	0.5664	0.8224	0.99	Pr	932	931	1	586	cP2	hP4	7.9	6.97	1.133	2.6209	0.3815	0.3661	0.6339	3.6	2.25	e Im
		50	An	An. Pit.	10.27	794 76	77.39	0.013	0	0.1852	0.3875	Ри	961.9	977	15.1	801	cF4	hP65	10.5	11.2	1.065	0.0111	90.029	0.5378	0.4622	2.15	1.77	e Ri
		51		Ru	10.27	8 175	0 796	1 256	 	0.0247	0.3456	Ru	961.9	2334	1372	920	cF4	hP2	10.5	12.4	1.177	0.0822	12.163	0.9386	0.0614	2.15	2.45	e Rv
	1	52	. <u>О</u> 9 Ап	An-S	10.27	34.5	3 359	0 298	0.0003	0 0097	0.1286	S	961.9	842	119.9	806	cF4	cl20	10.5	7.18	1.462	0.0344	29.044	0.8963	0.1037	2.15	2.54	e Rv
		53	Δn.S	s	34.25	12 305	0.359	2 783	0 1292	0 9998	1	S	842	119	723	115	mP12	mP64	7.24	2.61	2.777	40005	2E-05	7E-05	0.9999	2.62	1.05	e Rv
		53	An Sh	сь. Сь	45 61	18 103	0.000	2 507	0.1202	0.0000	:	Sh	558	630	72	485	nP4	hR2	9 76	6 69	1.459	0.9743	1.0263	0.7201	0.2799	3.18	5.26	e Im
		.04 CC	Aysou	An Co	40.01	52.26	E 000	0.106	0.2303	0.4000	0.0044	Se	061	036	25	926	cF4	110	97	8 95	1 084	0.04	25	0.8306	0.1694	2.15	2.1	e Rt
1		50	Ag	Aytoc	E9.96	33.20	0.440	0.150	0.0401	0.0000	0.0047	Sc	1165	1230	75	1130	116	cP2	4 89	6 10	1 305	1 0048	0 9953	0.689	0.311	2.05	3.38	e Ri
			Ag2SC	Aysc	00.00	23.924	0.449	2.220	0.1722	0.2174	0.2342	00	1133	12.00	211	020	cD2	602	6 30	2 00	2 137	1.00.0	0 3333	0 3465	0.6535	3 38	1.85	e Ri
		5/	AgSc	50	23.92	10.041	0.029	1.041	0.2942	0.0201	: !	30	1230	004	467	016	CFZ	054	2 22	10.5	4 500	8 0027	0.1236	0 1267	0.8733	5.61	2 15	e lt
		58	Si	Ag	12.06	10.27	0.852	1,1/4	0	0.9688	1	Ag	1414	901	453	030	CF8	CF4	2.33	10,3	4.009	0.0527	0.1230	0.1207	0.0733	2.15	2.10	, II
		59	Ag	Ag51Sm14	10.27	760.37	74.04	0.014	0.0139	0.1341	0.2763	Sm	955	935	20	100	CF4	IP00	10.5	7 57	1.00	2 5555	03.330	0.3257	0.4103	2.15	1 04	o Dt
		60	AgSm	Sm	29.84	20.003	0.67	1.492	0.5823	0.8639	1	mS	960	10/4	114	675	CP2	пкз	0.00	7.52	1.131	3.5550	0.2013	0.2930	0.7044	3.45	1.54	
		61	Ag ₃ Sn	Sn	44.54	16.294	0.366	2.734	0.2131	0.9536	0.9988	Sr	480	232	248	221	0P8	ti4	9.93	7.28	1.363	61.131	0.0164	0.0426	0.9572	3.03	3.4	e lu
		62	Ag	Ag ₅ Sr	10.27	77.592	7.555	0.132	. 0	0.0895	0.1288	Sr	961.9	783	178.9	747	C⊦4	hP6	10.5	8.08	1.3	0.3923	2.5493	0.2523	0.1411	2.13	2.11	e Ki
1		63	Ag _s Sr	Ag ₂ Sr	77.59	46.209	0.596	1.679	0.1688	0.231	0.2885	Sr	713	760	47	686	hP6	0112	8.08	6.56	1.231	2.2368	0.4471	0.4200	0.5/12	2.11	2.07	e Ri
		64	Ag ₂ Sr	AgSr	46.21	44.03	0.953	1.049	0.2885	0.3993	0.4482	Sr	760	680	80	638	ol12	oP8	6.56	4.44	1.47	3.5097	0.2849	0.2302	0.7698	2.07	2.03	e Kt
		65	AgSr	Ag ₂ Sr ₃	44.03	107.04	2.431	0.411	0.4482	0.4982	0.5492	Sr	680	665	15	645	oP8	hR15	4.44	4.47	1.01	0.4	2.5	0.507	0.493	2.03	2.01	еки
		66	Ag ₂ Sr ₃	Sr	107	33.909	0.317	3.157	0.5492	0.7256	1	Sr	665	769	104	436	hR15	cF4	4.47	2.58	1.73	3.5106	0.2848	0.4735	0.5265	2.01	1.92	екі
ļ	1	67	Ag	Ag ₅₁ Tb ₁₄	10.27	774.61	75.42	0.013	0.0161	0.154	0.2875	Tb	961.9	985	23.1	803	cF4	hP65	10.5	9.97	1.053	0.0144	69.311	0.4789	0.5211	2.15	2.2	e Kt
1	M	68	Ag ₅₁ Tb ₁₄	Ag ₂ Tb	774.6	38.328	0.049	20.21	0.3352	0.4039	0.4238	Tb	985	915	70	885	hP65	tl6	9.97	9.78	1.02	71.004	0.0141	0.2216	0.7784	2.2	2.23	e Rt
	3	69	Ag ₂ Tb	AgTb	38.33	28.738	0.75	1.334	0.4238	0.4424	0.5957	Tb	915	1145	230	900	116	cP2	9.78	9.28	1.053	0.17	5.8816	0.8869	0.1131	2.23	3.67	e li
1	T	70	AgTb	Tb	28.74	19.313	0.672	1.488	0.5957	0.8155	1	Tb	1145	1356	211	860	cP2	hP2	9.28	8.23	1.128	2	0.5	0.4266	0.5734	3.67	2.39	e II
i		71	Ag	Ag ₅₁ Th ₁₄	10.27	765.38	74.53	0.013	0	0.1521	0.4176	Th	961.9	1125	163.1	894	cF4	hP68	10.5	11.4	1.088	0.0071	141.52	0.6551	0.3449	2.15	2.1	e Ri
		72	AgsTh	Ag ₂ Th	765.4	40.932	0.053	18.7	0.4176	0.4973	0.5178	Th	1125	1040	85	1023	hP68	hP3	11.4	10.9	1.045	75.799	0.0132	0.1979	0.8021	2.1	2.06	e Rt
		73	Aq,Th	AgTh ₂	40.93	202.63	4.95	0.202	0.5178	0.7081	0.8116	Th	1040	1030	10	930	hP3	\$12	10.9	11.3	1.032	0.3597	2.7803	0.3596	0.6404	2.06	1.98	e Ri
		74	AaTh	Th	202.6	19.789	0.098	10.24	0.8116	0.8339	1	Th	1030	1755	725	1012	ti12	cF4	11.3	11.7	1.039	1.3197	0.7578	0.8858	0.1142	3.21	1.89	e Rt
F		75	Aq	TI	10.55	17.577	1.666	0.6	0.0924	0.9861	0.9947	TI.	961.9	304	657.9	291	cF4	cl2	10.7	11.6	1.088	57.415	0.0174	0.0103	0.9897	2.15	1.78	e Rv
ŀ	7	76	Aa	AqıTm	10.41	11.25	1.08	0.926	0.0698	0.1552	0.343	Tm	900	960	60	787	cF4	cP4	10.4	10.9	1.057	0.3986	2.5086	0.699	0.301	2.15	3.92	c Im
2	2	77	Aq.Tm	Ac ₂ Tm	45	36.711	0.816	1.226	0.349	0.3785	0.4388	Tm	960	1050	90	890	cP4	tl6	10.9	10.5	1.045	0.6273	1.5941	0.6615	0.3385	3.92	2.24	c Im
à		78	An-Tm	AnTm	36.71	26.78	0 729	1.371	0.4388	0.5003	0.6103	Tm	1050	1100	50	940	ti6	cP2	10.5	10.3	1.014	0.7774	1.2863	0.6381	0.3619	2.24	3.66	c Im
/5	> [+;]	70	AnTm	Tm	26 78	13 126	0.49	2.04	0.6103	0.7851	1	Tm	1100	1545	445	900	cP2	hP2	10.3	12.9	1.245	1.3333	0.75	0.6048	0.3952	3.66	2.42	c 11
-	-123	20	^g100 ^a		10 27	13 170	1 283	0 779	0.0088	0 0494	1	U	961.9	1135	173.1	950	cF4	ci2	10.5	18.1	1.72	0.0194	51.67	0.9758	0.0242	2.15	2.36	e Rv
Ē	- <u>1</u> (2)	00	 	An V	10.27	740 53	72 11	0.014	0.0108	0.0967	0 1842	Y.	961.9	940	21.9	799	cF4	hP68	10.5	9.11	1.153	0.0157	63.638	0.4688	0.5312	2.15	2.18	e Rt
	<u>, </u>	01	Ag V	An Y	740.6	27.05	0.051	10.51	0 1842	0.2519	0 2915	Ϋ́	940	960	20	900	hP65	tl6	9.11	8.03	1.135	37.79	0.0265	0.3405	0.6595	2.18	2.2	e Ri
-	20	02	A951 14	P1921	27.05	30.55	0.031	1 220	0.2015	0.2010	0.4518	v.	960	1160	200	945	116	cP2	8.03	6.89	1.165	0.17	5.8827	0.8866	0.1134	2.2	3.62	e It
Ē	팔피	83	Agzt	Ayr	37.93	10 802	0.755	1.325	0.4619	0.6848	1	v	1160	1522	362	885	cP2	hP2	6.89	4.47	1.542	1.6364	0.6111	0.4673	0.5327	3.62	2.3	e li
	4	84	Agy .;	1 A. M.	20.00	19.090	10.70	0.002	0.9310	0.0040	0 2604	Vh	020	727	193	685	cF4	hP18	10.5	9 94	1.057	0.2379	4.2031	0.2803	0.7197	2.15	2.12	e Rt
÷		85	Ag	AG7102	10.27	110.04	10.79	0.093	0.0304	0,1004	0.2004	Yh	740	661	88	646	hP18	ol12	9.94	10.3	1.033	15,499	0.0645	0.1588	0.8412	2,12	2.1	e Rt
Þ		86	Ag ₇ Yb ₂	Ag2YD	110.8	37.00/	0.342	2.920	0.314	0.4240	0.4447	Yh	661	774	63	589	ol12	oP8	10.3	8.75	1.172	0.8859	1.1288	0.5713	0.4287	2.1	2.08	e Ri
		87	Ag210	AGTO	31.09	32.092	0.470	5.000	0.7370	0.0110	1	Vh	652	819	267	446	tl32	cF4	8.41	6.96	1.208	6.2857	0.1591	0.4751	0.5249	2.08	2.01	e RI
	Í	88	Ag ₃ Yb ₅	YD	141.3	24.045	0.176	0.009	0.0009	0.0010	0 4422	70	061.0	1136	174 1	940	cF4	1P4	10.5	8.31	1.264	0.0262	38.232	0.9425	0.0575	2.15	3.54	c Rv
		89	Ag	AgZr	10.27	23.956	2.333	0.429	0.0008	0.0212	0.4400	4	501.3 CCD A	1060	200.6	650	cF4	cF12	27	7 73	2 863	0 005	200.64	0.9841	0.0159	2.68	2.55	e Rv
		an	A	AL-AL	10	32,461	J 240	0.300	U.U422	0.0731	0.1041	r\u	000.4	1000	000.0	000										_		_

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

T T

i	N⁰	C1	C ₂	Vm ₁	Vm ₂	A ₁	A ₂	X _{e1}	X _{eL}	X _{e2}	%ρ	Tf	Tf ₂	ΔT	T,	EC,	EC:	ρι	ρ2	В	¢,	ε,	Vf	Vf <u>1</u>	ΔS	ΔS_2	DM
	91	AlAu	AlAu,	20.37	30.036	1.475	0.678	0.8795	0.9163	0.9349	Au	625	624	1	569	mP8	tl6	11	14	1.275	1.0535	0.9492	0.3916	0.6084	2.48	2.41	e Ri
1	92	AlyAu	AlAu	109.1	51.2	0.469	2.131	0.9481	0.9638	0.9669	Au	565	545	20	525	hR44	cl2	15.2	15.9	1.048	10.523	0.095	0.1684	0.8316	2.39	2.36	e Rt
	93	Al	AIB2	10	15.234	1.523	0.656	0.0001	0.0002	0.4452	В	660.4	980	319.6	659.7	cF4	hP3	2.7	3.19	1.182	0.0002	6665.7	0.9998	0.0002	2.68	4.3	e id
	94	A)	Al₄Ba	10	70.63	7.063	0.142	0	0.021	0.56	Ba	660.4	1097	436.6	651	cF4	110	2.7	3.47	1.287	0.0043	233.1	0.9706	0.0294	2.3	2.51	c Rv
	95	Al ₅ Ba ₄	8a	172.1	38.159	0.222	4.51	0.8358	0.929	0.9889	Ba	718	727	9	528	hP18	ci2	3.98	3.6	1.105	7.7555	0.1289	0.3677	0.6323	2.68	1.83	C RI
	96	Al	Be	10	4.885	0.489	2.047	0.001	0.0085	0.9852	Ве	660.4	1289	628.6	644	cF4	hP2	2.7	1.84	1.463	0.023	43.568	0.9889	0.0111	2.68	1.87	CRV
	97	AJ	Bi	10	21.307	2.131	0.469	0	0.9994	. 1	Bi	660.4	271.4	389	270	cF4	hR2	2.7	9.81	3.635	199	0.005	0.0024	0.9976	2.68	4.8	C Id
	98	Al	Al₄Ca	10	63.17	6.317	0.158	0.0007	0.0768	0.2708	Ca	660.4	700	39.6	616	cF4	ti 10	2.7	2.34	1.152	0.0714	14.003	0.6891	0.3109	2.68	2.5	CRI
	99	Al ₂ Ca	Ca	39.05	7.078	0.181	5.518	0.4258	0.734	1	Ca	1079	842	237	545	cF24	cl2	2.41	5.66	2.352	2.7175	0.368	0.67	0.33	2.38	1./9	CK
	100	Al	Cd	10	13.009	1.301	0.769	8E-05	0.9995	: <u>1</u> _	Cd	660.4	321.1	339.3	320	cF4	hP2	2.7	8.64	3.202	498.96	0.002	0.0015	0.9985	2.68	2.58	CKV
	101	Al	Al ₁₁ Ce ₃	10	173.98	17.4	0.057	0	0.1779	0.5872	Ce	660.4	1020	359.6	640	cF4	ol28	2.7	4.12	1.528	0.0164	61.154	0.7785	0.2215	2.68	2.53	e Rt
	102	AICe	AICe ₃	30.87	74.612	2.417	0.414	0.8385	0.9238	0.9397	Ce	845	655	190	645	oC16	cP4	5.41	6	1.108	2	0.5	0.1714	0.8286	2.33	3.28	e Rt
1	103	AICe ₃	Ce	74.61	20.699	0.277	3.605	0.9397	0.9768	1	Ce	655	798	143	580	cP4	cF4	6	6.77	1.129	5.0909	0.1964	0.4145	0.5855	2.16	1.98	e Ri
	104	Al	Al ₉ Co ₂	10	100.36	10.04	0.1	0	0.0109	0.3256	Co	660.4	970	309.6	657	cF4	mP22	2.7	3.59	1.332	0.0026	387.51	0.9748	0.0252	2.68	3.6	e id
	105	AlCo	Co	10.16	6.706	0.66	1.516	0.8886	0.903	0.922	Co	1460	1430	30	1400	cP2	cF4	8.45	8.15	1.036	1.1977	0.8349	0.5586	0.4414	3.78	2.1	e II
1	106	A	Al ₂ Cu	10	26.967	2.697	0.371	0.0565	0.3269	0.5245	Cu	650	590	60	548.2	cF4	tl12	2.79	4.36	1.562	0.3249	3.0781	0.533	0.467	2.68	3.48	e: Ki
	107	Al	Al ₃ Dy	10	46.112	4.611	0.217	0	0.1338	0.6687	Dy	660.4	1090	429.6	636	cF4	hP16	2.7	5.28	1.957	0.0277	36.08	0.8867	0.1133	2.68	2.62	C RV
ł	108	AIDy ₂	Dy	46.98	15.661	0.333	3	0.9244	0.9601	1	Dy	1100	1412	312	930	oP12	hP2	7.49	10.4	1.385	1.9425	0.5148	0.607	0.393	2.52	2.44	CRI
	109	Al	Al₃Er	10	45.08	4.508	0.222	0	0.0589	0.6739	Er	660.4	1070	409.6	655	cF4	cP4	2.7	5.51	2.041	0.0104	96	0.9551	0.0449	2.68	3.7	e id
ł	110	AlEr	Al ₂ Er ₃	31.58	74.355	2.354	0.425	0.8611	0.8954	0.9029	Er	1065	1060	5	1045	oP16	tP20	6.15	7.47	1.215	1.5999	0.625	0.2098	0.7902	2.48	2.44	e Rt
1	111	AIEr ₂	Er	45.66	15.219	0.333	3	0.9255	0.9565	0.9975	Er	1030	1500	470	1005	oP12	hP2	7.92	11	1.388	1.6322	0.6127	0.6476	0.3524	2.41	2.28	e Ri
1	112	Al	Al ₄ Eu	10	64.715	6.472	0.155	0	0.2286	0.5847	Eu	660.4	800	139.6	625	cF4	ti 10	2.7	4.02	1.488	0.0667	15	0.6986	0.3014	2.68	2.6	CKI
IN	113	Al ₂ Eu	Eu	40.43	28.983	0.717	1.395	0.7377	0.9441	1	Eu	1250	822	428	650	cF24	cl2	5.09	5.24	1.029	5.007	0.1997	0.21/9	0.7821	2.55	2.3	CK
So !	114	FeAl ₃	Al	35.1	10	0.285	3.51	0.6126	0.9815	0.9994	Al	1160	660.4	499.6	655	mC102	cF4	3.9	2.7	1.445	104.9	0.0095	0.0324	0.9676	3.67	2.08	e la
ĺ.	115	Al	Ga	10.16	11.789	1.16	0.862	0.2035	0.9898	<u> </u>	Ga	620	29.7	590.3	26.6	cF4	oC8	3.03	5.91	1.95	33.993	0.0294	0.0247	0.9753	2.68	4.42	C 10
	116	Al	Al ₃ Gd	10	47.763	4.776	0.209	0	0.2347	0.6602	Gd	660.4	1125	464.6	650	cF4	oC8	2.7	4.99	1.848	0.0625	16	0.7701	0.2299	2.68	2.33	CRI
	117	AlGd ₂	Gd	48.08	19.906	0.414	2.415	0.9211	0.9512	. 1 .	Gd	950	1313	363	875	oP12	hP2	7.1	7.9	1.112	1.343	0./446	0.0427	0.35/3	2.43	2.33	CRI
	118	Al	Ge	10.07	13.632	1.353	0.739	0.052	0.5162	0.9959	Ge	650	935	285	420	cF4	cF8	2.77	5.32	1.974	0.3726	2.664	0.6648	0.3352	2.68	0.03	e m
	119	Hf	Hf ₃ Al ₂	13.41	59.285	4.421	0.226	0.0693	0.0784	0.0916	AI	1680	1590	90	1530	cl2	(P20	10.9	9.94	1.098	0.1708	5.8535	0.5697	0.4303	2.3	2.40	CKI
E	120	HfyAlz	HfAl	59.29	22.546	0.38	2.63	0.0916	0.1101	0.1313	A	1590	1800	210	1550	tP20	oC8	9.94	9,11	1.091	2.5	0.4	0.5126	0.48/4	2.45	2.49	CR
F	121	Hf ₂ Al ₃	HfAl ₂	53.9	20.822	0.386	2.589	0.1848	0.1978	0.2324	A	1640	1650	10	1495	oF40	hP12	8.12	11.2	1.374	0.7088	1.4109	0.7851	0.2149	2.53	3.73	C n
下日	122	HfAl ₂	HfAl,	31.23	41.048	1.314	0.761	0.2324	0.2901	0.312	Al	1650	1590	60	1540	hP12	t 16	7.44	6.32	1.178	2.364	0.423	0.2435	0./503	3.13	2.00	C III
1 5	123	Ai	Al ₃ Ho	10	45.644	4.564	0.219	0	0.1008	0.6708	Ho	660.4	1087	426.6	650	cF4	hR20	2.7	5.39	1.996	0.0194	51.556	0.9187	0.0813	2.00	2.02	e RV
DE	124	Al ₂ Ho ₃	AlHo ₂	78.86	46.425	0.589	1.699	0.9017	0.919	0.9245	Ho	994	1018	24	984	1P20	oP12	6.96	7.69	1.105	4.9039	0.2039	0.23/3	0.1421	2.34	2.52	e Ri
21 T	125	AlHo ₂	Ho	46.43	18.755	0.404	2.475	0.9245	0.9509	1	Но	1018	1474	456	976	oP12	hP2	7.69	8.79	1.144	1.1621	0.8605	0.6805	0.3195	2.52	2.44	ек
28	126	AL	ln	10	15.765	1.577	0.634	0.0019	. 1	. 1	In	660.4	156.6	503.8	156	cF4	ti2	2.7	7.28	2.699	9979.9	0.0001	6E-05	0.9999	2.66	1.62	e KV
21	127	AI	Alglr ₂	10	107.44	10.74	0.093	0	0.0007	0.6131	lr .	660.5	900	239.5	650	cF4	mP22	2.7	5.84	2.164	5E-05	19999	0.9995	0.0005	2.00	2.0	C IN
ີ ເ ຊີ	128	Allr	lr -	16.02	8.54	0.533	1.876	0.8853	0.9482	0.9701	ļ(2120	2350	230	1990	cP2	cF4	13.7	18.3	1.336	4.042	0.24/4	0.317	0.003	3.01	2.3	e In
<u>- 1</u>	129	AI	AlııLaı	10	177.67	17.77	0.056	0	0.1166	0.5836	La	660.4	1240	579.6	640	cF4	0128	2.7	4.02	1.488	0.0094	105.91	0.8303	0.1437	2.00	2.04	e ru 0 0
4	130	AliLa	AlsLaz	177.7	108.89	0.613	1.632	0.5836	0.6192	0.6809	La	1240	1240	0	1220	ol28	hP3	4.02	3.79	1.06	0.9953	1.0047	0.0211	0.3/09	2.04	2.45	C Dt
K11-07	131	AlLa	La	53.42	22.455	0.42	2.379	0.9392	0.9452	1	La	873	918	45	547	hP8	cF4	8.31	6.19	1.343	0.3478	2.8/5	0.8/24	0.12/0	2.10	2.01	0 Pl
	132	AI	AlLi	10	19.462	1.946	0.514	0.0402	0.0829	0.1738	Li	620	690	70	600	CF4	CF 16	2.42	1.74	1.30/	497 11	2.9901	0.0031	0.00479	1 93	16	e Rv
	133	Al ₄ Lig	L	134.2	13.015	0.097	10.31	0.3662	0.9265	. 1.	Li	519	180.6	338.4	175	mC26	CIZ	1.2/	0.53	2.301	107.11	46.001	0.0022	0.34/0	2.69	3 72	C 14
	134	Al	AljLu	10	44.336	4.434	0.226	. 0	0.1169	0.6837	Lu.	660.4	1350	689.6	650	CH4	CP4	2.1	D.11	2.14	1 5000	40.001	0.9121	0.0079	2.00	245	C Pt
	135	AlLu	Al ₂ Lu ₃	26.8	71.865	2.681	0.373	0.8664	0.8996	0.9068	Lu	1250	1200	50	1150	OP16	(P20	1.53	0.06		1.0999	0.020	0.1091	0.0109	2.0	4.40	<u> </u>

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

ļ	N⁰	C,	C,	Vm,	Vm,	Α,	Α,	X.,	Χ.,	χ.,	%,	Tf ₁	Tf,	۸T	Τ,	EC;	EC ₂	ρı	p.	В	εı	£2	Vf	Vf ₂	۵S,	۵Sz	DM
	136	Al	Al-Mo.	11.01	37 02	3 363	0 297	0 1707	0 3558	0 3606	. F. Ma	560	455	105	450	cF4	cF1832	2.41	3.5	1.455	7.7721	0.1287	0.0369	0.9631	2.68	2.52	e Rv
	137	Al-Mo-	AL-Mo-	37.02	352.93	9.533	0.105	0.3782	0.387	0.4244	Ma	455	470	15	450	cF1832	c158	3.5	2.09	1.676	0.0414	24.136	0.7169	0.2831	2.52	2.44	e Rt
	138	AL.Ma.	Mo	352.9	13 972	0.04	25.26	0.5982	0.6673	0.874	Ma	470	580	110	437	c158	hP2	2.09	1.76	1.185	10.003	0.1	0.7163	0.2837	2.44	2.28	e Rt
	130	A1	ALMo	10	65 597	6.56	0.152	0.0125	0.0202	0.252	Mn	660.4	705	44.6	658	cF4	oC28	2.7	3.31	1.225	0.0041	244.91	0.9739	0.0261	2.68	2.63	e Rv
	140	Nh-A1	NhAI.	30.8	38 248	1 242	0.805	0.1738	0.262	0.4656	A	1900	1680	220	1590	tP30	118	6.91	4.55	1.52	0.5302	1.8861	0.603	0.397	2.46	2.65	e Ri
	141	ΔI	A. Nd.	10	169.95	16.99	0.000	0.0005	0.3173	0 5928	Nd	660.4	1235	574.6	640	cF4	ol28	2.7	4.29	1.591	0.0425	23.505	0.5804	0.4196	2.68	2.39	e Ri
	142	AINH.	Nd	68.47	20 586	0.301	3 326	0.9146	0.968	1	Nd	675	1021	346	635	hP4	hP8	6.71	7.01	1.044	5.3315	0.1876	0.3842	0.6158	2.8	1.32	e Ri
	142	Δι	A1.Ni	10	35.076	3 508	0.020	0.0002	0.0569	0.4204	I Ni	660.4	854	193.6	639.9	cF4	oP16	2.7	3.98	1.476	0.0302	33.164	0.9044	0.0956	2.68	3.8	e Id
1	144	AINI.	Ni	27 44	6 59	0.000	A 164	0.861	0.8672	0 8958	Ni	1395	1440	45	1385	cP4	cF4	5.09	7.88	1.549	0.5807	1.722	0.8776	0.1224	3.93	2.38	e It
ţ	145	ΛI	Dh	10	18 265	1 827	0 547	0	0 9999	1	Pb	660.4	327.5	332.9	326.5	cF4	cF4	2.7	11.3	4.204	1665.4	0.0006	0.0003	0.9997	2.68	1.91	e Rv
	145	A1	AL Dd.	10	270 28	27 03	0.037		0 2475	0.6053	Pd	660.4	790	129.6	615	cF4	ti116	2.7	5.25	1.944	0.0132	75.944	0.7375	0.2625	3.7	2.54	e Im
	140		AL D4	25.66	67 502	2 635	0.007	0.8282	0.862	0.8679	Pd	1645	1418	227	1315	cP8	oP16	5.2	9.07	1.744	1.2387	0.8073	0.2345	0.7655	2.43	2.37	e Rt
	147			25.00	9.7	0.328	2 056	0.0201	0 0285	0.0000	Pd	1418	1555	137	1055	oP12	cF4	9.33	10.2	1.095	2.0748	0.482	0.5875	0.4125	2.35	2.19	e Ri
	140	AIPU2	AL Dr	20.71	172 46	17 25	0.058	0.3201	0.0205	0.5350	Pr	660 4	965	304.6	640	cF4	ol28	27	4.15	1.537	0.0218	45,949	0.726	0.274	2.68	2.58	e Rt
	149	AI AID-	All Pis	70.50	110.40	0.000	0.000	, v	0.2100	1	Dr	725	031	106	650	cP4	hP4	6 11	6.77	1 108	75 928	0.0132	0 0445	0 9555	3.47	2 25	e Rv
	150	AIPr	Pr	13.56	20.000	0.203	3.337		0.9097	0.6224		100 660 A	806	145.6	657	cE4	hP82	27	6.21	2 301	0 0007	1377 8	0 9801	0.0199	2 68	26	e Rv
	151	AI	Al21Pts	10	2/9.8	27.98	0.030	0 0000	0.0202	0.0321		4507	1664	143.0	1469	505	cD8	0.99	12 4	1 253	2 217	0.4511	0.5453	0.4547	25	3.87	o Il
	152	Al ₃ Pl ₂	AIPt	47.67	17.93	0.376	2.659	0.8282	0.8539	0.0703		1021	1004	21	1207	- IIF 0	oP16	12 1	15.1	1 266	0.0619	16 163	0.0400	0 1887	3.87	2 44	e It
	153	AIPt	Al ₃ Pts	18.38	69.088	3.758	0.266	0.9009	0.9066	0.9349		1004	1400	09	1007	- 012		47.4	10.0	1.200	2 0409	0.40	0.6574	0.2426	2.5	22	o Di
	154	AIPt ₃	Pt	35.11	8.966	0.255	3.916	0.959	0.9656	0.9774	Pt	1555	1640	064	1007	CP4	CF4	6 46	10.4	2 285	A1 018	0.45	0.0374	0.0420	2 22	2.5	O RV
1	155	PuAl ₄	Al	56.77	10	0.176	5.6//	0.4642	0.8/2/	0.9991		925	4003	204.0	1540	0120	-E4	0.10	12 4	1 524	1.310	0.0200	0.1155	0.5007	3.92	2.00	C II
1	156	AIRh	Rh	15.94	8.283	0.52	1.924	0.7923	0.9195	1	Kn	1850	1903	113	1040	-D2	609	0.13	42.4	1.527	1 4400	0.04	0.4000	0.0001	3.05	2 45	0 1
	157	AIRu	Ru	16.85	8,175	0.485	2.062	0.7601	0.8808	0.987	RD	2000	1059	334	1920	UT2	11FZ	1.0	12.4	1.027	0.004	248	0.0000	0.1138	2.68	5 35	h a
IN	158	Al	AISD	10	34.11	3.4//	0.288		0.0178	0.8186	50	4059	620.7	391.0	607	- CP4	600	4.78	4.20	1.564	64 667	0.0155	0.0002	0.0100	5 35	2.64	e Id
-0	159	AISD	Sb	34.77	18.193	0.523	1.911	0.8186	0.9966		50	1000	4000.7	421.3	021		aD4	9.20	2.03	1 122	0 0037	272 78	0.0201	0.0149	2.6R	36	e Id
	160	Al	Al ₃ Sc	10	41.54	4.154	0.241		0.006	0.35/1	50	660.4	1320	609.0	000	UF4	•D1	2.1	3.03	1.123	1 2333	0.8108	0.5051	0.0143	2.00	3 65	a TI
	161	Al ₂ Sc	AISc	31.16	23.422	0.752	1.33	0.4541	0.5569	0.6716	50	1420	1300	120	1150	CF 24	672	3.10	0.01	1.004	0.0574	0.0100	0.0100	0.7011	2.7	1.05	o Dr
	162	AISc ₂	Sc	38.32	15.042	0.393	2.548	0.7694	0.9177	0.9756	i Sc	1195	1541	346	945	nP6	nP2	3.05	2.99	1.021	0.0014	0.1502	0.2700	0.1232	2.13	2.02	e ni
	163	Al	Al ₂ Se ₃	10	84.793	8.479	0.118	. 0	0.0029	0.8145	Se	660.4	960	299.6	660	C⊦4	mC20	2.1	3.43	1.271	0.0003	2990	0.9972	0.0020	2.00	2.93	C RV
	164	Al ₂ Se ₃	Se	84.79	16.417	0.194	5.165	0.8145	0.9966	0.999	Se	960	221	739	220	mC20	nP3	3.43	4.81	1.402	210.02	0.0030	0.0102	0.5010	2.93	J.1	0 1
AL A	165	Al	Si	10	12.058	1.206	0.829	0.0156	0.1264	0.9998	Si	658	1414	756	5//	CF4	CF8	2.1	2.33	1.100	0.1210	0.2092	0.0719	0.1201	2.00	2.52	C II
-	166	Al	Al ₃ Sm	10	40.856	4.086	0.245	0	0.147	0.65	Sm	660.4	1066	405.6	633	CH4	nP8	2.1	5.00	2.090	0.0341	29.333	0.0777	0.1223	2.00	3.32	C Dt
11	167	Al ₁₁ Sm ₃	Al ₂ Sm	166.7	37.71	0.226	4.419	0.6027	0.6247	0.7356	5 Sm	1450	1500	50	1214	0128	CF 24	4.49	5.42	1.207	0.725	1.3/94	0.0091	0.1405	4.94	1 50	
· 8	168	AISm ₂	Sm	50.11	20.003	0.399	2.505	0.9178	0.9436	. 1	Sm	850	1074	224	740	0P12	hR3	6.54	7.52	1.149	0.9950	1.0044	0.7100	0.2044	1.94	1.50	
2	169	Al	Sn	10	16.294	1.629	0.614	0	0.9944	1	Sn	660.4	231.9	428.5	228	cF4	<u>tl4</u>	2.7	7.28	2.7	40.667	0.0246	0.0149	0.9851	2.08	3.4	e KV
1	170	AI	Al₄Sr	10	71.975	7.198	0.139	0	0.0318	0.4481	Sr	660.4	1040	379.6	654	cF4	ti 10	2.7	2,72	1.007	0.0105	95	0.9296	0.0704	2.08	2.53	e KV
> 吕	171	Al ₇ Sr ₈	Sr	312.3	34.783	0.111	8.979	0.7875	0.9357	1	Sr	666	769	103	590	cP60	cl2	2.85	2.52	1.131	23.392	0.0428	0.2774	0.7220	2.21	1.92	e KL
	172	Al	Al ₃ Tb	10	46.804	4.68	0.214	0	0.0974	0.2802	t Tb	660.4	1100	439.6	644	cF4	hR12	2.7	5.12	1.899	0.06	16.676	0.7808	0.2192	2.08	2.4	CKL
5	173	AITb ₂	Tb	47.91	19.313	0.403	2.481	0.9219	0.9543	1	Tb	880	1356	476	850	oP12	hP2	7.2	8.23	1.143	1.5403	0.6492	0.6169	0.3831	1.95	1.58	CKI
d	174	Al ₂ Te ₃	Te	75.21	20.45	0.272	3.678	0.8764	0.9745	1	Te	895	449.6	445.4	432	cF4	hP4	5.81	6.24	1.075	13.181	0.0759	0.2182	0.7818	4.0	5.8	С Ц
4	175	Th	Th ₂ Al	19.79	51.225	2.589	0.386	0.001	0.0282	0.0549	IA I	1755	1307	448	1243	cF4	1112	11.7	9.59	1.223	0.4838	2.067	0.444	0.556	2.21	3.79	e II
196 - 196	176	Th ₂ AI	Th ₃ Al ₂	51.23	84.1	1.642	0.609	0.0549	0.0589	0.0719	A	1307	1301	6	1296	ti 12	(P10	9.59	8.92	1.075	0.2039	4.904	0.7492	0.2508	3.79	2.4	e m
	177	Th ₃ Al ₂	ThAI	84.1	33.64	0.4	2.5	0.0719	0.0806	0.1042	AI	1301	1318	17	1290	tP10	oC8	8.92	7.7	1.158	1.0714	0.9333	0.7	0.3	2.4	2.47	e Ki
	178	Th ₂ Al ₇	AI	112.3	10	0.089	11.23	0.2895	0.7956	0.9351	A	876	660.4	215.6	630	oP18	cF4	5.81	2.7	2.155	81.198	0.0114	0.1134	0.0000	3.1	2.00	6 10
	179	Al	Al _J Tm	10	44.72	4.472	0.224	0	0.0998	0.6761	Tm	660.4	1240	579.6	645	cF4	cP4	2.7	5.59	2.071	0.0187	53.4/1	0.9228	0.0772	2.08	3.14	C 10
	180	AITm	Al.Tm.	27.15	73.51	2,708	0.369	0.8623	0.8963	0.9038	3 Tm	1200	1150	50	1100	oP16	: tP20	7.22	7.63	1.057	1.6	0.625	0.1875	0.8125	2.55	2.52	CK

i	N٥	С,	C ₂	Vm,	Vm ₂	A,	A ₂	X _{e1}	XeL	X _{e2}	%,	Tf ₁	Tf2	ΔT	T,	EC	EC ₂	ρι	ρ ₂	В	٤1	£2	Vfi	Vf ₂	ΔS_1	ΔS ₂	DΜ
1	181	U	UAI	13.18	35.454	2.69	0.372	0.0056	0.0072	0.185	A	1135	1620	485	1105	cl2	cF24	18.1	8.24	2.193	0.0074	134.34	0.9804	0.0196	2.38	2.58	e Rv
	182	UAI	A	57.15	10	0.175	5.715	0.353	0.8676	0.9994	AI	731	660.4	70.6	641	ol20	cF4	6.05	2.7	2.244	50.079	0.02	0.1024	0.8976	3.65	2.68	e ld
	183	Al	AlaY	10	47.068	4.707	0.212	0.0016	0.0925	0.5234	Ŷ	660.4	980	319.6	639	cF4	hP8	2.7	3.61	1.337	0.0335	29.865	0.8639	0.1361	2.68	3.5	e Rt
	184	AlY	Aly	29.72	78.17	2.63	0.38	0.7672	0.8198	0.8317	Y	1130	1100	30	1088	oC8	tP20	3.9	4.1	1.052	1.6	0.625	0.192	0.808	2.49	2.45	e Rt
	185	AlY	Ŷ	59.69	19.896	0.333	3	0.8684	0.9081	1	Ϋ́	985	1522	537	960	oP12	hP2	3.43	4,47	1.302	0.9957	1.0043	0.7508	0.2492	2.43	2.3	e Rt
	186	Al	Alyb	10	44.688	4 469	0.224	0	0.2109	0.6813	Yb	660.4	980	319.6	625	cF4	cP4	2.7	5.68	2.106	0.0476	21	0.8245	0.1755	2.68	3.62	e it
1	187	Al-Yb	Yb	35.51	24.845	0.7	1.429	0.762	0.9567	0.9989	Yb	1360	819	541	675	cF24	cF4	6.39	6.96	1.089	6.0505	0.1653	0.1911	0.8089	2.46	2.01	e Rt
	188	Al	7n	9 4 6 4	9.22	0 974	1 026	0.8311	0.95	0 9882	Zn	460	415	45	381	cF4	hP2	5.57	6.97	1.253	2,5524	0.3918	0.2868	0.7132	2.68	2.51	e Rt
1	189	7r	7r.Al.	14 16	82 943	5 859	0 171	0.0941	0.1101	0.1507	AI	1420	1395	25	1350	cl2	tl32	5.3	5.38	1.014	0.0664	15.071	0.7201	0.2799	2.17	2.36	e Rt
1	190	Zr.AL	Zr.Al.	108.1	56 335	0.521	1,919	0.1911	0.2213	0 3073	AI	1530	1595	65	1485	hP18	oF40	5.22	4.68	1.116	0.7524	1.3291	0.7184	0.2816	2.4	2.47	e Rt
	101	- 7rΔl.	-ι <u>ζ</u> ι,	22	41.8	1 306	0.766	0 372	0 4507	0 5773	AI	1645	1580	65	1490	hP12	tl16	4.54	4.12	1.101	0.5234	1.9104	0.5939	0.4061	3.74	2.55	e Il
	102	Δm	2,1733 Cu	17.65	7 111	0.403	2 482	0.072	0 7504	0.9924	Cu	1176	1085	91.13	850	cF4	cF4	13.8	8.94	1.541	11.861	0.0843	0.173	0.827	2.38	2.29	c Rt
	102	AmDt	Di Di	64.02	0.005	0.400	7 139	0 7067	0.1001	0.0021	Pt	1760	1769	9	1560	hP6	cF4	18.8	21.5	1.143	6.01	0.1664	0.5429	0.4571	2.3	2.3	c RI
	104	An	<u> </u>	12.06	10 212	0.14	1 260	0.1301	0.0000	1	Δ11	817	1064	247	636	hR2	cF4	5 78	19.3	3 337	0.7699	1 2989	0.6224	0.3776	6.08	2.28	c Im
1	105	As Ac	- <u>Au</u> - Di	12.50	21 307	1 644	0.608		0.0033	:	Δe	271 4	817	545.6	270.3	hR2	hR2	5 78	9.81	1.697	0.0018	555.07	0.997	0.003	6.08	2.2	e Id
;	195	Δε	10 b0.24	12.50	44 430	3 428	0.000	0	0.005	0 4282	Cd	817	621	196	620	hR2	tl12	5.78	5.9	1.021	10.765	0.0929	0.0264	0.9736	6.08	6.13	e, lt
	107	An Cd	As Cd	44 44	65 17	1 467	0.682	0 4304	0.541	0.6023	Cd	621	715	94	610	112	cF12	5.9	7.47	1.266	0.3935	2.5415	0.6341	0.3659	6.13	3.98	e Im
	197	AS2UU	A52003	44.44	12 000	1.407	5.002	0.5022	0.041	1	60	715	321	304	320	1P160	hP2	11	8 64	1 268	579.27	0.0017	0.0086	0.9914	3.98	2.58	e ld
	198	AS ₂ CO ₃		03.17	13.009	9.2	0.260	0.0323	0.3307	0 2274	Δe	1405	1020	475	997	rF4	hP84	8 79	17.8	2 027	6.031	0.1658	0.0427	0.9573	2.1	3.24	e Rv
	199	<u></u>	Cu As	7.000	24.940	3.12	0.209	0.0310	0.3300	0.3374	Δε	080	827	153	685	cF4	hP24	8 75	8.36	1.047	0.407	2.4567	0.3596	0.6404	2.29	3.23	e Ri
	200	- Cu	CU ₃ AS	1.202	31.772	4.313	0.229	0.0130	0.2010	0.2032	<u></u>	817	2500	1683	805	hR2	cF8	5 78	8 11	1 402	0.0102	98	0.9775	0.0225	6.08	3.84	c ld
-	201	AS	ASUY	12.90	19.000	2.20	1 542	0.6844	0.0214	0.0044	Dv.	2500	1412	1088	1390	cF8	cl2	8.11	8.56	1.056	46,747	0.0214	0.0319	0.9681	4.26	2.44	c ld
	202	ASUY	Uy	12.05	28 55	2 203	0.454	0.0044	0.5055	n 6006	Fr.	817	2520	1703	810	hR2	cF8	5.78	8.48	1.468	0.0102	98	0.978	0.022	6.08	4.7	c ld
5	203	As	F	29.55	18 452	0.646	1 547	A 600A 0	0.0221	0.0000	Fr	2520	1529	991	1460	cF8	hP2	8.48	9.06	1.069	46.741	0.0214	0.032	0.968	4.7	3.25	c ld
0	204	ASEI		12 06	27 626	2 124	0.471	0.0300	0.0000	0.3300	Fe	817	1020	203	800	hR2	oP6	5.78	7.47	1.293	0.0812	12.321	0.853	0.147	6.08	4.7	e It
	205	A5	Asto	12.50	16 229	0.60	1 605	0.0000	0.0010	0 4300	Fe	1020	1030	10	1008	oP6	oP8	7.47	8.05	1.078	1.6446	0.6081	0.5076	0.4924	4.7	4.05	e II
	200	AS2FE	Fo.	27.00	7 200	0.305	3 283	0.6114	0 7132	0.8882	Fe	930	1320	390	840	tP6	cl2	7.89	7.75	1.018	1.9457	0.514	0.6278	0.3722	4.72	2.01	e Im
	207	Gale	<u>Γ</u> Δe	23.00	12 962	0.000	21	0.518	0 9814	1	As	1238	817	421	810	hR2	cF8	5.78	5.31	1.088	56.777	0.0176	0.0357	0.9643	5.25	6.08	c ld
	200	Co	 	12.62	27 2RA	2 001	0.5	0.0010	0 4076	0 5079	As	938.8	762	176.8	754	cF8	mC24	5.32	5.41	1.015	1.9909	0.5023	0.2006	0.7994	7.26	6.67	e It
FΛ	209	CoAr	Gena	27 28	42.09	1 543	0.648	0.0010	0.6076	0.674	As	762	756	6	750	mC24	oP24	5.41	5.28	1.023	0.995	1.005	0.3945	0.6055	6.67	6.47	e II
Ë.	210	Cena	05/102	42.00	12.003	0.209	2 247	0.674	0 7263	0 7042	Δe	756	770	14	749	oP24	hR2	5.28	5.78	1.094	2.2892	0.4368	0.5865	0.4135	6.47	6.08	e Il
53	211	Gens	Aslia	42.09	29.0	0.000	0.440	0.014	0.1200	0.6876	Ho	817	2500	1683	760	hR2	cF8	5.78	8.3	1.436	0.0051	198	0.9889	0.0111	6.08	4.26	c ld
13	212	Action	NSI IU	12.50	18 755	0.640	1 541	0 6876	0 9954	1	Ho	2500	1474	1026	1400	cF8	hP2	8.3	8.79	1.06	97.985	0.0102	0.0155	0.9845	4.26	2.44	c ld
(코멾	213	ASITU	InAr	16 77	33 642	2 128	0.47	0.0010	7E-05	0 3949	As	156.6	942	785.4	155.2	tl2	cF8	7.28	5.66	1.288	0.0001	9998	0.9998	0.0002	1.82	5.33	c ld
王] ····	214	le Ar	Ae	33.54	12 062	0 386	2 588	0 3949	0.8271	1	As	942	817	125	731	cF8	hR2	5.66	5.78	1.022	6.3333	0.1579	0.2901	0.7099	3.95	6.08	e Im
그님	215	11075 Ac	Actu	12.06	27 502	2 120	0 47	0.0010	0.0023	0 7002	Lu-	817	2600	1783	750	hR2	CF8	5.78	9.06	1.567	0.001	998	0.9979	0.0021	6.08	4.19	c ld
$\mathbf{H} \geq \mathbf{I}$	210	Astu	ASLU L.	12.50	17 792	0.644	1 552	0 7002	0.9957	1	tu.	2600	1663	937	1550	cF8	hP2	9.06	9.84	1.086	98	0.0102	0.0156	0.9844	4.19	2.3	c ld
7 2	217	ASLU	LU Ma Ar	14	70.005	5 072	0 197	0.1002	0 3341	0 6209	As	650	1230	580	630	hP2	cl80	1.74	3.14	1.807	0.1271	7.8664	0.608	0.392	2.28	3.8	c II
শ্	210	My	14193752	C0 00	12 062	0.188	5 322	0 025	0.0011	1	As	800	817	17	750	tP20	hR2	4.7	5.78	1.231	4.0909	0.2444	0.5654	0.4346	5.32	6.08	c II
£ 1	219	AcMa	Ma	25.7	8.86	0.100	3 972	0.6875	0 7696	0.933	Mn	1029	1246	217	930	oP16	cF4	6.81	6.2	1.099	2.193	0.456	0.6443	0.3557	4.37	2.32	e Im
	220	Ni	Ni.As.	6 50	58 73	8 912	0.112	0.0629	0.2805	0.3327	As	1400	1000	400	897	cF4	hP42	8.91	7.55	1.18	0.5521	1.8111	0.1689	0.8311	2.38	3.44	e Rt
	221	Ni.As.	Ni. As-	58.3	154.19	2 645	0.378	0.3398	0.4305	0.4813	As	1000	830	170	804	hP42	1P76	7.6	8.08	1.062	0.6358	1.5728	0.3729	0.6271	3.44	4.1	e Im
	222	NiAs	NiAs	17 23	29 763	1 727	0.579	0.5734	0.638	0.7188	As	970	1020	50	853	hP4	oP6	7.76	7.01	1.107	0.5118	1.9538	0.5307	0.4693	5.61	4.85	e II
	223	Δς	Ph	12.96	18,265	1.409	0.71	0	0.9741	1	Pb	817	327.5	489.5	291	hR2	cF4	5.78	11.3	1.963	13.599	0.0735	0.0496	0.9504	6.08	1.91	e Id
	225	As.Pd	AsPd.	32 27	27.549	0.854	1.172	0.4149	0.6805	0.8693	Pd	780	728	52	610	cP12	hP9	7.94	10.4	1.315	1.2537	0.7977	0.4831	0.5169	4.78	3.5	e ll

228 AsPd, AsPd		N°	C1	C ₂	Vm ₁	Vm ₂	A,	A ₂	X _{e1}	Xel	X.e2 %	, Tf,	Tf2	Л	ī,	EC	EC2	ρι	ρ:	В	εı	£2	٧f ₁	Vf ₂	ΔS_1	۵S2	DМ
227 AP-D PI 533 865 0165 0537 757 770 C24 641 103 215 199 442 21 641 103 215 199 442 216 164 103 216 164 103 215 159 447 021 645 0237 135 030 031 032 031 035 031 030 031 0327 031 031 0327 032 031 031 0327 032 031 041 0010 0337 0327 033 0331 037 037 032 0431 0337 <td></td> <td>226</td> <td>AsPd,</td> <td>AsPds</td> <td>36.12</td> <td>53.532</td> <td>1.482</td> <td>0.675</td> <td>0.8099</td> <td>0.8503</td> <td>0.8763 P</td> <td>820</td> <td>800</td> <td>20</td> <td>715</td> <td>1132</td> <td>mC24</td> <td>10.9</td> <td>11.3</td> <td>1.039</td> <td>1.01</td> <td>0.9901</td> <td>0.4005</td> <td>0.5995</td> <td>3.16</td> <td>2.83</td> <td>e Rl</td>		226	AsPd,	AsPds	36.12	53.532	1.482	0.675	0.8099	0.8503	0.8763 P	820	800	20	715	1132	mC24	10.9	11.3	1.039	1.01	0.9901	0.4005	0.5995	3.16	2.83	e Rl
228 As,Pi Pi 3201 926 3241 327 247 326 199 4470 0241 0450 0451 0450 0451 0450 0451 0450 0451 0450 0451 0450 0451 0450 0451 0450 0450 0450 0450 0450 0450 0451 0450 0451 0450 0451 0450 0451 </td <td></td> <td>227</td> <td>AsPds</td> <td>Pd</td> <td>53.53</td> <td>8.865</td> <td>0.166</td> <td>6.039</td> <td>0.8763</td> <td>0.9048</td> <td>1 PC</td> <td>800</td> <td>1555</td> <td>755</td> <td>770</td> <td>mC24</td> <td>cF4</td> <td>11.3</td> <td>12</td> <td>1.059</td> <td>1.7079</td> <td>0.5855</td> <td>0.7795</td> <td>0.2205</td> <td>2.83</td> <td>2.19</td> <td>c Rt</td>		227	AsPds	Pd	53.53	8.865	0.166	6.039	0.8763	0.9048	1 PC	800	1555	755	770	mC24	cF4	11.3	12	1.059	1.7079	0.5855	0.7795	0.2205	2.83	2.19	c Rt
229 AsS AsS AsS Pass The 2 Pass Pa	1	228	As ₂ Pt	Pt	32.01	9.095	0.284	3.519	0.5652	0.8701	1 P	1520	1769	249	597	cP12	cF4	10.8	21.5	1.99	4.1479	0.2411	0.459	0.541	4.82	2.3	e II
220 As Ass E20 Title Color Color <td>1</td> <td>229</td> <td>AsS</td> <td>As₂S₃</td> <td>30.08</td> <td>70.415</td> <td>2.341</td> <td>0.427</td> <td>0.2997</td> <td>0.362</td> <td>0.391 S</td> <td>318</td> <td>310</td> <td>8</td> <td>295</td> <td>mP32</td> <td>mP20</td> <td>3.56</td> <td>3.49</td> <td>1.018</td> <td>0.9333</td> <td>1.0715</td> <td>0.314</td> <td>0.686</td> <td>4.7</td> <td>4.4</td> <td>e Im</td>	1	229	AsS	As ₂ S ₃	30.08	70.415	2.341	0.427	0.2997	0.362	0.391 S	318	310	8	295	mP32	mP20	3.56	3.49	1.018	0.9333	1.0715	0.314	0.686	4.7	4.4	e Im
121 As,Se, As,Si Se. As,Si 71.41 16117 0213 488 011 0115		230	As	AsSe	12.96	31.98	2.467	0.405	0	0.453	0.8624 Se	385	264	121	250	hR2	mP32	5.78	4.81	1.201	0.5387	1.8562	0.4293	0.5707	6.08	4.74	e Il
222 Asg.M As 41.38 1226 21.33 13.19 0.667 0.9 14.9 977 677 677 672 677 735 725 0.635 0.0359 0.0355 0.0335 0.0355 0.0335 0.0355 0.0335 0.035		231	As ₂ Se ₃	Se	77.14	16.417	0.213	4.698	0.6125	0.8083	1 Se	375	221	154	179	mP20	hP3	5.01	4.81	1.042	5	0.2	0.4845	0.5155	4.3	3.1	e ll
1233 Sm AsSm 2043 1026 1256 545 157 58 54 54 57 78 138 00005 1000 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00000 00005 00000 00005 00000 00005 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 000		232	As ₂ Si	As	41.38	12.962	0.313	3.193	0.667	0.9	1 A:	977	817	160	797	oP24	hR2	4.3	5.78	1.344	5.5334	0.1807	0.3659	0.6341	6.45	6.08	e Im
224 As As As 1265 212 2169 0431 0235 0337 0700 0501 0537 070 0550 057 070 075 0230 0703 0007 0001 00015 0587 053 0531 071 0531 071 0531 071		233	Sm	AsSm	20.45	31.082	1.52	0.658	0	0.0075	0.3326 A	1074	2100	1026	925	hP2	cF8	7.35	7.25	1.014	0.0155	64.667	0.977	0.023	1.58	5.2	c Id
235 As_SAR, As AsTb 1226 1024 11246 1024 0156 1238 1230 146.7 1238 147.2 1026 1237 1236 1236 1237		234	As	AsSn	12.96	28.12	2.169	0.461	0.2185	0.5053	0.613 Sr	750	595	155	579	hR2	cF8	6.22	6.89	1.107	1.1087	0.9019	0.2937	0.7063	6.08	4.74	e Im
236 As AsTb 126 2974 229 0.0105 0.0076 10 2500 1633 750 172 126 0.0015 0.0012 0.0115 0.0112		235	As ₃ Sn ₄	Sn	104.3	16.294	0.156	6.398	0.6951	0.9987	1 Sr	588	231.9	356.1	231.3	hR7	tl4	6.71	7.28	1.086	1416.5	0.0007	0.0045	0.9955	4.5	3.4	e ld
237 Arb D 29,75 195,46 0.668 1.70 2500 1356 1144 1226 268 22.86 23.86 23.86 23.85		236	As	AsTb	12.96	29.746	2.295	0.436	0	0.0105	0.6796 Tt	817	2500	1683	750	hR2	cF8	5.78	7.86	1.36	0.0051	198	0.9885	0.0115	6.08	2.55	C Id
238 As As_Tes 126 85.69 20.457 0.2613 0.487 0.0813 0.0813 </td <td></td> <td>237</td> <td>AsTb</td> <td>Tb</td> <td>29.75</td> <td>19.564</td> <td>0.658</td> <td>1.52</td> <td>0.6796</td> <td>0.9953</td> <td>1 Tt</td> <td>2500</td> <td>1356</td> <td>1144</td> <td>1225</td> <td>cF8</td> <td>cl2</td> <td>7.86</td> <td>8.12</td> <td>1.033</td> <td>98</td> <td>0.0102</td> <td>0.0153</td> <td>0.9847</td> <td>5.21</td> <td>1.58</td> <td>C Id</td>		237	AsTb	Tb	29.75	19.564	0.658	1.52	0.6796	0.9953	1 Tt	2500	1356	1144	1225	cF8	cl2	7.86	8.12	1.033	98	0.0102	0.0153	0.9847	5.21	1.58	C Id
239 As ₂ Te ₃ Te 858 0.239 0.216 1.539 0.65 0 0.022 0.241 As 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75 2720 1.75		238	As	As ₂ Te ₃	12.96	85.685	6.61	0.151	0	0.6843	0.7187 Te	817	381	436	380	hR2	mC20	5.78	6.22	1.075	2.8	0.3571	0.0513	0.9487	6.08	5.9	e It
240 Th ThAs 201 321.68 132.66 0 0.022 0.241 As Astm 11.95 0.113 0.0147 1338 0.0899 0.0113 227 4.17 C 241 As AsTm 12.96 28.956 2234 0.448 0 0.0112 0.683 756 H22 678 11.9 9.41 0.0102 0.016 0.984 422 2.42 1.07 9.0017 0.0108 0.094 423 2.42 1.07 9.0017 0.0108 0.0183 0.0012 0.016 0.014 0.113 1.03 0.0102 0.012 0.012 0.014 0.012	Ì	239	As ₂ Te ₃	Te	85.69	20.465	0.239	4.187	0.7187	0.8216	1 Te	381	449.5	68.5	363	mC20	hP3	6.22	6.24	1.003	2.4074	0.4154	0.6349	0.3651	5.9	5.8	e Im
241 As AsTm 1296 2856 2240 0483 0.00112 0.6828 1.07 2000 1637 570 R42 cF8 842 147 0.0016 0.984 0.0012 0.012 0.022 1.07 0.0016 0.984 423 2.42 c.101 243 AsTu U 2030 1.101 0.022 0.112 0.6220 1.07 0.022 1.07 0.0016 0.084 423 2.24 c.101 244 Yb AsyTu 245 1.02 0.025 0.55 1.00 0.681 0.022 0.78 1.007 0.683 0.037 3.75 4.05 1.007 0.683 0.037 3.75 4.05 1.007 0.683 0.037 3.75 4.05 1.007 0.683 0.037 3.75 4.014 0.010 0.017 0.023 1.007 1.022 1.67 1.007 1.027 1.015 4.95 5.95 4.916 1.011 1.011		240	Th	ThAs	20.91	32.168	1.539	0.65	0	0.022	0.2441 As	1755	2780	1025	1545	cl2	CF8	11.1	9.54	1.163	0.0747	13.383	0.8969	0.1031	2.27	4.17	C Id
242 AsTm Tm 2866 1597 06828 09955 1 Tm 2001 1545 955 1505 678 1505 678 152 678 152 678 152 678 152 678 152 678 152 168 164 1521 168 1683 159 154 855 159 154 855 159 154 855 159 154 855 159 154 855 159 1547 155 157 150 1660 422 678 8.9 1.007 16271 0.6446 6.683 1.337 3.46 128 1.117 1.224 1.117 1.234 0.237 0.235 1.118 1.295 1.113		241	As	AsTm	12.96	28.956	2.234	0.448	0	0.0112	0.6928 Tr	817	2500	1683	750	hR2	cF8	5.78	8.42	1.457	0.0051	198	0.9888	0.0112	6.08	4.14	C IO
243 AsU U 2403 14513 0.5 2 0.7666 0.9994 1 U 2705 2236 470 1125 678 621 10.8 16.4 1521 199 0.0051 0.011 0.99 4.23 2.246 170 Asyba Asyba Asyba Asyba Asyba 2.246 10.05 0.027 2.377 0.428 0.0688 0.2062 As 16.00 428 678 6.96 8.9 1.001 1.48 6.663 0.207 3.75 4.05 1.015 1.025 1.016 1.026 678 1.029 1.024 4.663 0.707 0.237 4.93 1.49 1.43 5.305 1.010 1.015 1.016 1.015 1.016 1.015		242	AsTm	Tm	28.96	18.126	0.626	1.597	0.6928	0.9955	1 Tn	2500	1545	955	1450	cF8	hP2	8.42	9.32	1.107	98	0.0102	0.016	0.984	4.25	2.42	C Id
244 Yb AsyNb, 248 130.55 2555 0.19 0 0.00680 0.002 As 819 1500 651 620 cf4 PPI6 656 635 1.19 0.114 80607 0.0223 0.037 3.75 4.05 c Image 246 As 2/n L256 1.304 3.187 0.314 0 0.1883 0.3034 7.77 170 47 7.72 1.72 1.72 1.735 0.5569 7.77 1015 245 750 mP24 6F12 5.27 5.21 1.019 0.0591 1.771 0.0569 7.771 1015 245 750 mP24 6F12 5.71 1.131 1.535 0.051 0.0124 0.015 0.0223 666 455 96 465 465 697 1.61 1.61 1.51 0.051 0.0223 1.011 0.022 0.2171 0.032 0.032 0.032 0.032 0.032 0.032 0.0114 0.02170		243	AsU	U	29.03	14.513	0.5	2	0.7606	0.9984	1 U	2705	2235	470	1125	cF8	cl2	10.8	16.4	1.521	198	0.0051	0.01	0.99	4.23	2.38	C: 10
245 AsyNa, AsyNa AsyNa 102.3 27.856 0.272 3.672 0.428 0.45 0.5 As 1000 2.50 1660 0.228 cF8 8.96 8.9 1.007 1.071 0.5145 0.993 0.007 1.7 4.85 C 1 1.90 4.85 C 1 1.00 0.5691 1.7571 0.5145 0.993 0.007 1.7 4.85 C 1 1.90 4.6501 1.7571 0.5545 0.540 6.44 6.08 4.99 e im 1.727 0.723 h.72 h.723 h.72 m.723 h.72 m.723 h.72 m.723 h.72 m.723 h.72 m.724 h.75 0.569 2.7 h.7 10 105 2.51 1.70 0.5145 0.993 0.007 1.7 0.229 h.89 3.94 e im 1.757 0.556 1.77 0.70 1015 2.75 0.556 1.75 0.1262 h.75 0.569 2.70 m.724 c 1.75 0.157 0.257 h.71 0.354 0.5446 0.084 0.998 1. 7.7 10 1015 4.19.5 59.5 4.19 P160 h.72 5.6 7.13 1.274 1995 0.0005 0.0034 0.9966 3.94 2.51 c 10 4.9 m. 1.75 m.72 m.725 m.72 m.72 m.72 m.72 m.72 m.72 m.72 m.72	1	244	Yb	As ₃ Yb ₅	24.85	130.55	5.255	0.19	0	0.0868	0.2062 As	819	1500	681	620	cF4	hP16	6.96	8.35	1.199	0.1154	8.6667	0.6225	0.3775	2.01	3.54	CKI
246 As AsZn 1296 41304 3.187 0.314 0 [0.1683 0.3064 2.7 817 770 47 723 ht? 27 ht? 27 1109 0.2651 1.751 0.5534 0.644 0.00 4.89 6 mt. 249 6 mt. 240 6 mt. 249 6 mt. 240 6 mt. 249 6 mt. 240 6 mt.		245	As ₃ Yb ₄	AsYb	102.3	27.856	0.272	3.672	0.428	0.45	0.5 As	1800	2350	550	1660	cl28	cF8	8.96	8.9	1.007	1.6271	0.6146	0.693	0.307	3.75	4.05	C IM
247 As,Zn As,Zn, A13 51.305 1.242 0.804 0.3775 0.5669 Zn 770 1015 245 750 mP24 C+12 2.21 6.47 1.29 0.0005 0.0005 0.0005 0.0036 0.348 0.348 c.148 6.74 0.596 5.935 419 P160 P26 6.73 1.274 1995 0.0005 0.0034 0.348 0.44 c.14 c.148 <		246	As	As ₂ Zn	12.96	41.304	3.187	0.314	0	0.1883	0.3034 Zr	817	770	. 47	723	hR2	mP24	5.78	5.21	1.109	0.5691	1.75/1	0.3554	0.0446	6.08	4.09	e im
2 4s.Zn. 24 2.7n 61.76 9.163 0.148 6.74 0.5669 0.999 1 7.1 115 595.5 591 61.76 9.163 0.0036 0.0346 2.34 2.10 0.015 0.0023 0.999 1 7.1 1.95 1.65 1.07 1.535 0.6512 0.1530 0.8417 2.28 2.18 c R 250 AuyBe Bit 37.71 1.395 0.655 1.77 0.436 0.0321 0.0321 0.0322 0.865 0.142 2.00 2.18 2.11 1.03 1.53 1.67 0.163 0.838 0.847 2.28 2.18 2.12 0.838 0.814 2.28 2.18 2.11 0.822 0.1271 0.822 0.123 0.838 0.847 2.28 2.18 4.81 1.31 1.51 1.037 0.0322 0.1633 0.3021 0.124 0.324 0.338 0.331 0.0323 0.309 0.2212 0.262 1.030	1	247	As ₂ Zn	As ₂ Zn ₃	41.3	51.305	1.242	0.805	0.3044	0.3775	0.5669 Zr	770	1015	245	750	mP24	CF12	5.21	6.74	1.294	0.24	4.1003	0.1103	0.2297	4.09	0.54	e 111
249 Au Au ₃ Be 1021 35.373 3.464 0.289 0 0.0124 0.015 be 1064 596 488.4 580 C+4 OP16 19.3 17 1.13 1.033 0.012 0.1022 0.112 0.012 0.0124 0.021 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.021 0.021 0.022 0.0221 0.022 0.0221 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 <td></td> <td>248</td> <td>As₂Zn₃</td> <td>Zn</td> <td>61.76</td> <td>9.163</td> <td>0.148</td> <td>6.74</td> <td>0.5669</td> <td>0.9989</td> <td>1 Zr</td> <td>1015</td> <td>419.5</td> <td>595.5</td> <td>419</td> <td>IP160</td> <td>hP2</td> <td>5.6</td> <td>7.13</td> <td>1.2/4</td> <td>1995</td> <td>0.0005</td> <td>0.0034</td> <td>0.9900</td> <td>3.94</td> <td>2.01</td> <td>C IU</td>		248	As ₂ Zn ₃	Zn	61.76	9.163	0.148	6.74	0.5669	0.9989	1 Zr	1015	419.5	595.5	419	IP160	hP2	5.6	7.13	1.2/4	1995	0.0005	0.0034	0.9900	3.94	2.01	C IU
250 Au,Be Au,Be 35.37 25.349 0.717 1.395 0.0157 0.0223 Re 596 645 49 595 6746 fib 17 1.59 1.007 0.162 0.163 0.0320 0.121 0.0223 0.121 0.0321 0.0321 0.0322 C 100 241 6724 182 146 0.163 12159 0.0822 0.1033 0.0321 0.0321 0.0321 0.0321 0.0321 0.0322 C 0.66 604 604 674 6724 183 146 0.133 0.063 0.0333 0.131 0.0321 0.0322 0.0392 0.1334 0.063 0.0334 0.0392 0.133 1.041 1.037 0.0042 0.033 0.381 0.0321 0.0332 0.0392 0.0392 0.0392 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 <	え	249	Au	Au ₃ Be	10.21	35.373	3.464	0.289	0	0.0124	0.015 Be	1064	596	468.4	580	CF4	0216	19.3	11	1.137	1.5357	0.0012	0.1000	0.0417	2.20	2.10	C Du
Z51 Au ₂ Bi Bi 37.71 21.307 0.565 1.77 0.3423 0.0874 1 Bi 371 271 100 241 CF24 163 16.3 12.153 0.0022 0.0123 0.0321 0.0321 0.0321 0.0321 0.0322 Ca 1064 880 184.4 804 CF4 CF24 19.3 14.6 1.318 0.7638 1.0392 0.1082 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.2297 0.27703 2.46 2.5 e.R 255 AuCd, Cd 38.79 1.009 0.335 0.9902 0.6501 0.8835 0.9402 Cd 531 133 520 CF4 0F12 6.77 9.22 1.362 0.3052 0.117 0.358 0.6412 1.12 1.91 8.13 1.	-	250	Au ₃ Be	Au ₂ Be	35.37	25.349	0.717	1.395	0.015	0.0157	0.0223 Be	596	645	49	595	0P16	116	1/	15.9	1.007	0.1022	0.1030	0.0930	0.1042	2.10	2.14	o Id
252 Au Au ₂ Ca 10.21 70.2 6.856 0.146 0.0327 0.		251	Au ₂ Bi	Bi	37.71	21.307	0.565	1.77	0.3463	0.8746	1 Bi	371	271	100	241	CF-24	nR2	10	9.81	1.03	12.139	1 2002	0.1271	0.0729	3.12	4.0	e lu
ZS3 Au ₂ Cd AuCd 60.39 22.12 0.439 2.278 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2328 0.2388 0.2328 0.238 0.238 0.238 0.		252	Au	Au _s Ca	10.21	70.02	6.856	0.146	0.0037	0.0321	0.0392 Ca	1064	880	184.4	804	CF4	Ch 24	19.3	14.0	1.310	10.082	1.3092	0.1003	0.0357	2.20	3.81	e It
254 Au;Cd, 151.9 49.108 0.323 3.094 0.5435 0.5711 0.500 Cd 35 495 Cl32 IP24 12.4 IO.91 14 0.5130 0.0124 <t< td=""><td></td><td>253</td><td>Au₂Cd</td><td>AuCd</td><td>50.39</td><td>22.12</td><td>0.439</td><td>2.278</td><td>0.2398</td><td>0.2924</td><td>0.3009 Co</td><td>627</td><td>629</td><td>2</td><td>026.6</td><td>NP2</td><td>CP2</td><td>10 4</td><td>10.0</td><td>1.392</td><td>10.002</td><td>0.0992</td><td>0.1043</td><td>0.0137</td><td>2.30</td><td>2.5</td><td>o Rt</td></t<>		253	Au ₂ Cd	AuCd	50.39	22.12	0.439	2.278	0.2398	0.2924	0.3009 Co	627	629	2	026.6	NP2	CP2	10 4	10.0	1.392	10.002	0.0992	0.1043	0.0137	2.30	2.5	o Rt
Z55 AuCd_1 Cd 38.79 13.009 0.335 2.992 0.8835 0.9402 Cu 0.835 0.534 0.5		254	AusCd	AuCd ₃	151.9	49.108	0.323	3.094	0.5435	0.5711	0.5805 CC	540	201 1	30	490	(152	NP24	12.4	8.64	1 504	10.570	0.0504	0 1324	0.8676	2.5	2.58	e Rt
P 256 Ce Ce_Au 20.7 51.75 2.5 0.4 0 0.2112 0.4124 Au 93 550 133 200 CF4 0F2 0.730 0.302 <td>F1</td> <td>255</td> <td>AuCd₃</td> <td>Cd</td> <td>38.79</td> <td>13.009</td> <td>0.335</td> <td>2.982</td> <td>0.6501</td> <td>0.8835</td> <td>0.9402 CC</td> <td>005</td> <td>321.1</td> <td>103.9</td> <td>509</td> <td>112</td> <td>-D12</td> <td>6 77</td> <td>0.07</td> <td>1 262</td> <td>0 2092</td> <td>3 3441</td> <td>0.5648</td> <td>0 4352</td> <td>1 17</td> <td>1 54</td> <td>o Ri</td>	F1	255	AuCd ₃	Cd	38.79	13.009	0.335	2.982	0.6501	0.8835	0.9402 CC	005	321.1	103.9	509	112	-D12	6 77	0.07	1 262	0 2092	3 3441	0.5648	0 4352	1 17	1 54	o Ri
257 CeAu CeAu2 31.08 39.81 1.281 0.781 0.583 0.6901 0.7379 Au 13/2 130 242 995 0L3 012 10.6 13.4 12.51 1.320 0.331 0.118 4.123 1.332 0.118 4.123 1.332 0.118 4.123 1.332 0.118 4.123 1.332 0.118 4.123 1.133 0.0118 4.123 1.133 0.0118 4.132 0.118 0.0118 0.118 0.0118 0.118 0.0118 <td></td> <td>256</td> <td>Ce</td> <td>Ce₂Au</td> <td>20.7</td> <td>51.75</td> <td>2.5</td> <td>0.4</td> <td>0</td> <td>0.2112</td> <td>0.4124 AL</td> <td>1 798</td> <td>605</td> <td>133</td> <td>520</td> <td>CF4</td> <td>0112</td> <td>10.0</td> <td>9.22</td> <td>1.302</td> <td>1 2052</td> <td>0.7167</td> <td>0.3698</td> <td>0.4552</td> <td>1 72</td> <td>1 91</td> <td>o Ri</td>		256	Ce	Ce ₂ Au	20.7	51.75	2.5	0.4	0	0.2112	0.4124 AL	1 798	605	133	520	CF4	0112	10.0	9.22	1.302	1 2052	0.7167	0.3698	0.4552	1 72	1 91	o Ri
258 CeAu ₅ CeAu ₅ 39.81 /50.1 18.84 00.53 0.7378 0.7378 0.829 Au 130 120 120 120 123 1.13 150 53.72 0.2827 0.6931 0.3069 2.12 2.28 R 259 CeAu ₆ Au 81.55 10.21 0.121 6.03 1.508 0.677 0.6931 0.3069 2.12 2.28 R 260 Au Co 10.21 6.767 0.663 1.508 0.082 0.0898 0.9392 Cu 100 1450 410 696.5 CF4 16.2 13.3 1.17 0.532 1.118 0.037 0.287 2.28 2.1 e.N 261 Dy Dy,Au 19.01 46.341 2.48 0.41 0.664 0.783 0.7662 0.7843 0.121 10.20 13.31 13.17 0.537 0.3156 0.6844 2.38 e.N 263 DyAu ₂ DyAu ₂		257	CeAu	CeAu ₂	31.08	39.81	1.281	0.781	0.5843	0.6901	0.7379 AL	113/2	1150	242	995	000	6012	13.4	16	1 103	0.0118	84 912	0.3300	0.1816	1.91	2.04	e Rt
CFA 259 CeAu ₆ Au 81.55 10.21 0.127 7.987 0.8939 0.9305 1 Au 900 1064 104 102 10.21 10.21 0.127 7.987 0.8939 0.9305 1 Au 900 1064 102 10.21 10.21 0.767 0.663 1.508 0.082 0.0888 0.9392 Co 1040 1450 410 996.5 cF4 cF4 162 9.3 1.742 0.024 41.611 0.9843 0.0157 2.28 2.1 e.Rv 260 Au Dy Dy ₂ Au 19.01 46.341 2.438 0.41 0 0.2437 0.3738 Au 1412 1065 347 935 hP2 0P12 8.55 11.3 1.317 0.5829 1.7154 0.413 0.587 2.33 e R R 262 DyAu DyAu_2 27.99 35.665 1.274 0.785 0.5479 0.6642 0.783	/> म	258	CeAu ₂	Ce ₁₄ Au ₅₁	39.81	750.1	18.84	0.053	0.7379	0.1010	0.6329 AL	1130	4004	404	000	mC.38	00 M	16.2	10.2	1 10	3 5372	0 2827	0.6931	0.3069	2 12	2.28	e Rl
E CA1 260 Au Co 1021 6.767 0.663 1.508 0.082 0.0838 0.0932 C 1040 1430 410 3953 Cr4 Cr4 Li2 Li2 Li32 0.002 1.715 0.0413 0.0567 2.44 2.39 R 261 Dy Dy_2Au 19.01 46.341 2.438 0.41 0 0.2437 0.3738 Au 1412 1065 347 935 hP2 0P12 8.55 1.13 1.317 0.5829 1.715 0.413 0.587 2.44 2.33 e R 262 DyAu DyAu 35.67 46.468 1.303 0.768 0.642 0.7083 0.4130 1.210 1.301 0.332 0.5875 0.3156 0.6844 2.33 2.32 e R 263 DyAu DyAu 35.67 46.468 1.303 0.768 0.542 0.783 1.130 1.20 1.31 1.317 0.5829 0.7188 0.233 2.32 e R 264 DyAu Au 40.65	18	259	CeAu ₆	Au	81.55	10.21	0.125	7.987	0.8939	0.9305	1 AL	1 900	1004	104	000	0020	054	16.2	13.0	1 742	0.0072	41 611	0.0001	0.0157	2 28	21	e Rv
261 Dy DyzAu 19.01 46.341 2.438 0.41 0 0.2437 0.3738 Au 1412 1005 347 935 III-2 0.122 0.537 1.131 0.502 0.5175 0.3156 0.502 0.5175 0.3156 0.502 0.5175 0.3156 0.502 0.5175 0.3156 0.502 0.5175 0.3156 0.502 0.5175 0.3156 0.502 0.5175 0.3156 0.502 0.7548 2.33 2.33 e R 263 DyAu DyAu DyAu 35.67 46.468 1.030 0.768 0.7682 0.	5 C3	260	Au	Co	10.21	6.767	0.663	1.508	0.082	0.0898	0.9392 Co	1040	1400	410	990.0	674	-D12	0.65	5.0	1 947	0.024	1 7154	0.0040	0 587	2 44	2 39	e Ri
262 DyAu DyAu2 27.99 35.665 1.274 0.785 0.642 0.7083 0.1662 0.7083 1.200 1.201 <t< td=""><td>20</td><td>261</td><td>Dy</td><td>Dy₂Au</td><td>19.01</td><td>46.341</td><td>2.438</td><td>0.41</td><td>0</td><td>0.2437</td><td>0.3738 AL</td><td>1412</td><td>1000</td><td>347</td><td>930</td><td>009</td><td>116</td><td>0.JJ</td><td>15.6</td><td>1 215</td><td>1 7022</td><td>0.5875</td><td>0.3156</td><td>0.6844</td><td>2 36</td><td>2.33</td><td>e Ri</td></t<>	20	261	Dy	Dy ₂ Au	19.01	46.341	2.438	0.41	0	0.2437	0.3738 AL	1412	1000	347	930	009	116	0.JJ	15.6	1 215	1 7022	0.5875	0.3156	0.6844	2 36	2.33	e Ri
263 DyAu ₂ DyAu ₃ 35.67 46.468 1.303 0.768 0.7003 0.7693	5 Q	262	DyAu	DyAu ₂	27.99	35.665	1.274	0.785	0.54/9	0.0042	0.7083 AU	1220	1220	00 00	1185	tif	oPR	15.6	16.2	1.039	2 3624	0.4233	0.2452	0.7548	2.33	2.32	e Rt
264 DyAue Au 40.85 10.213 0.225 4 0.879 0.9203 0.9203 0.943 Au 843 1064 219 606 1437 156 1438	3-4	263	DyAu ₂	DyAu ₃	35.67	46.468	1.303	0.768	0.7083	0.7662	0.7843 AU	1320	1004	90	000	10	cE4	32.0	10.2	1 706	4 4065	0 2269	0 4758	0 5242	23	2.28	e Ri
265 Er Er_Au 18.45 55.356 3 0.333 0 0.568 0.570 Au 1329 1132 0.11 113 0.3782 2.6439 0.6612 0.3388 3.66 2.28 c Im 267 ErAu ErAu 2 0.503	त्	264	DyAu ₆	Au	40.85	10.213	0.25	4	0.879	0.9203	0.9843 AU	1610	1125	219	1051	1F 30	oD12	90.6	9.6	1.059	0 7878	1 2693	0.2973	0.7027	2.28	2.28	c Rt
266 ErAu ErAu ₂ 26.6 36.024 1.354 0.738 0.5408 0.928 0.933 Au 1710 1242 406 1259 dr 2 406 12.5 dr 2 406 1.5 1.5 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5	265	Er	Er ₂ Au	18.45	55.356	3	0.333	U	0.2646	0.3702 AU	1029	1130	J94 409	1031	cD2	116	12.7	15.6	1 138	0.3782	2 6439	0.6612	0 3388	3.66	2.28	c Im
267 ErAu ₂ ErAu ₃ 30.02 45.636 1.267 0.789 0.7023 0.761 0.7956 Au 1242 1150 40 1173 100 010 103 1030 1030 1050 1050 1050 1		266	ErAu	ErAu ₂	26.6	36.024	1.354	0.738	0.5408	0.6928	0.9536 AU	1242	1106	400	1175	ti6	028	15.6	16.6	1.066	1.2469	0.802	0.3877	0.6123	2.28	2.28	c. RI
TE 07 40 010 0 195 5 000 0 0180 0 00180		267	ErAu ₂	ErAu ₃	36.02	45.636	1.267	0.789	0.7023	0./01	0.7930 AU	1024	1064	30	812	1110	cF4	17.3	19.3	1,112	13.697	0.073	0.2825	0.7175	2.28	2.28	c Rt
268 ErAu, AU 55.0/ 10.213 0.165 5.352 0.249 0.5162 0.512 AU 1054 0.05 0.2 110 0.4 115 1.51 1.261 0.2487 4.0203 0.3559 0.6441 2.28 2.28 e R		268	ErAu,	Au	55.07	10.213	0.105	0.392	0.0249	0.9102	0.9012 AU	1064	075	80.4	850	cF4	hP6	19.3	15.3	1,261	0.2487	4.0203	0.3559	0.6441	2.28	2.28	e Ri
269 AU AULEU 10/21 /4/22 / 2/0 0.137 0 0.079 0.134 EU 1004 979 0.54 0.05 0.09 0.1 102 0.127 2.6748 0.3739 0.3229 0.6771 2.28 2.29 e RI	ł	269	Au .	Auseu	10.21	14.292	1.210	1.13/	0 2701	0.079	0.104 CU	1004	1020	65	900	ol12	oP8	12.8	10.5	1.227	2.6748	0.3739	0.3229	0.6771	2.28	2.29	e Ri

i	1	N°	C,	С,	Vm,	Vm,	A ₁	A2	X.,	XeL	X.,2	%,	Tf ₁	Tf ₂	۵T	T,	EC,	EC:	Pi	ρ:	В	Ej	Ę.	Vf	Vf ₂	ΔS_1	ΔS_2	DΜ
i -		271	AuFu-	Fu	87.56	28.983	0.331	3.021	0.6983	0.7553	1	Eu	500	822	322	465	oP16	cl2	7.46	5.24	1.422	1	1	0.7513	0.2487	2.29	2.3	e Rt
		272	AuGa	. Lu AuGa-	20.89	33.771	1 617	0.619	0 2614	0.3063	0.4149	Ga	461	491	30	448.6	oP8	cF12	12.8	9.96	1.282	0.3273	3.0557	0.654	0.346	4.73	3.7	e Im
	j	273	Gd	Gd-Au	19.91	47.838	2.403	0.416	0	0.2475	0.3847	Au	1313	985	328	858	hP2	oP12	7.9	10.7	1.353	0.5546	1.803	0.4287	0.5713	2.33	2.31	c Ri
		274	GdAu	GdAu	28.1	37,791	1.345	0.744	0.5561	0.6771	0.715	Au	1585	1297	288	1216	cP2	t16	12.6	14.6	1.157	2.0489	0.4881	0.2663	0.7337	3.7	2.3	c Im
		275	GdAu-	GdAu-	37.79	47.32	1.252	0.799	0.715	0.746	0.8208	Au	1297	1262	35	1200	t16	oP8	14.6	15.8	1.084	0.3058	3.2701	0.7231	0.2769	2.3	2.29	c Rt
		276	GdAu	Au	78.16	10.213	0.131	7.653	0.8824	0.9235	0.9944	Au	920	1064	144.4	809	tP56	cF4	17.1	19.3	1.126	3.9371	0.254	0.6603	0.3397	2.28	2.28	c RI
		277	Au	Ge	10.21	13 632	1.335	0.749	0.0113	0.1254	1	Ge	1064	938.3	126.1	361	cF4	cF8	18.9	5.32	3.553	0.3472	2.8801	0.6833	0.3167	2.28	6.85	e Im
		278	Au-Hf	Au-Hf	42 16	32 364	0 768	1.303	0 232	0.299	0.3115	5 Hf	1560	1400	160	1380	oP8	116	18.3	17.7	1.032	7.1797	0.1393	0.1536	0.8464	2.29	2.29	c Rt
		270	An. Hf	AuHf	32 36	22 88R	0 707	1 414	0 3115	0 3962	0 4754	Hf	1400	1410	10	1300	t16	tP4	17.7	16.4	1.078	1.6312	0.613	0.4643	0.5357	2.28	3.67	c II
		210	ΔιιΗί	AuHf.	22.89	36 483	1 594	0.627	0 4754	0.5356	0 6448	Hf.	1410	1520	110	1260	tP4	t16	16.4	15.2	1.08	0.3738	2.6751	0.6266	0.3734	3.67	2.29	c Im
		200	AuHf	Hf	36 48	13 444	0.369	2 714	0.6448	0 6789	0 9451	Hf	1520	2231	711	1520	t16	hP2	15.2	13.3	1.144	0.3981	2.5122	0.8721	0.1279	2.29	2.3	c Rt
		201	Ho	Ho Au	18 76	45 780	2 441	0.41	0.01.0	0 2509	0.3739	Au	1474	1116	358	1000	hP2	oP12	8.79	11.5	1.308	0.6403	1.5617	0.3901	0.6099	2.44	2.39	c RI
		202	LaAu	HeAu	27.63	36 300	1 318	0.750	0 5443	0.6911	0 7052	Au	1698	1263	435	1257	oC8	tl6	13.1	15.4	1.172	6.7559	0.148	0.101	0.899	2.36	2.33	c Rv
		203	HeAu	HoAu	21.03	30.335 300 3N	1.010	0.70	0.0440	0.7516	0 7819	Au	1263	1217	46	1170	t16	oP8	15.4	16.4	1.068	1.1363	0.8801	0.41	0.59	2.33	2.32	c RI
		204	HoAu	riu/(U)	77.04	10 212	0 132	7.64	0.1052	0.8903	0.967	Au	821	1064	243.4	810	tP56	cF4	17.5	19.3	1.103	2.2067	0.4532	0.7736	0.2264	2.3	2.28	c Rt
i		285	HOAUs	Au	142.5	10.213	0.133	2 266	0.0774	0.0353	0.301	In	487	457	30	456.5	cP52	bP5	15.6	13.5	1.15	32.031	0.0312	0.0688	0.9312	2.14	2.1	e Rv
		200	Aula	Auging	143.3	15 765	0.423	2.000	0.2100	0.2009	1	in	540	156.6	383.4	156	cF12	cF4	10.3	7.28	1.413	9988.9	0.0001	0.0003	0.9997	1.97	1.82	e Rv
1		20/	AUID2		41.4/	10.100	0.30 F	2.0J	0.0007 N	0.0000	0.0393	K K	1064	1040	24.4	975	cF4	hP6	19.3	16.7	1.154	0.1947	5.1349	0.4612	0.5388	2.28	2.18	e Ri
		288	AU	AUSK	10.21	01.2/0	0	0.107		0.0193	0.0303	Διι	018	665	253	561	hP4	oP12	6 15	7	1.139	0.3082	3.2441	0.5196	0.4804	2.01	2.1	e Ri
		289	La	La ₂ Au	22.01	42 514	1 267	0.333	0 5064	0.2121	0.7306	Δυ	1325	1214	111	1148	oC8	ol12	10.5	12.2	1.161	2.1169	0.4724	0.2568	0.7432	2.15	2.19	e Rt
		290	LaAu	LaAu ₂	31.84	43.524	1.30/	0.732	0.0004	0.7044	0.7350	Au	1214	1214	10	1054	0112	bP68	14.9	15.5	1.039	0.0112	89,492	0.8051	0.1949	2.19	2.22	e Rt
	1	291	LaAuz	La14AU51	35.79	170.40	21.0/	0.040	0.7390	0.1094	0.0301	11	720	645	75	631	cF4	cP2	12.9	11.4	1.128	0.6246	1.601	0.4622	0.5378	2.28	3.34	e Ri
		292	AU	AULI	9.015	67 126	1.003	0.007	0.0229	0.0200	0.034		645	511	134	508	cP2	hP9	11.4	9.32	1.222	0.4681	2.1361	0.363	0.637	3.34	1.86	e Ri
		293	AULI	AtlyLis	17.91	07.130	3.149	0.201	0.0420	0.0322	0.0003		511	450	61	436	hP9	cF16	9.32	5.78	1.613	0.7912	1.2639	0.3752	0.6248	1.86	2.9	e Rl
-	2	294	AU3LIS	AULI	17.91	37.000	2.100	44.74	0.0027	0.0134	0.0330		278	180.6	97.4	155	c176	cl2	4 66	0.68	6.853	69.441	0.0144	0.1748	0.8252	1.74	1.6	e Rt
1 c	5	295	AU4LI15	u	191.4	13.015	0.000	14.11	<u>, u.i.i</u>	0.3003	0.1112	Δ	1663	1331	332	1176	hP2	oP12	9.84	12.6	1.275	0.5916	1.6902	0.4082	0.5918	2.3	2.3	c RI
	\sim	296	LU	Lu2Au	17.78	43.5/8	2.401	0.400	0 6029	0.2335	0.5550	Δu	1130	1082	4R	1047	ti6	oP8	16.2	17.1	1.055	1.3965	0.7161	0.3596	0.6404	2.29	2.28	c RI
		297	LUAU2	LUAU3	35.13	44.012	1.215	0.704	0.0920	0.1442	0.7710		1082	1030	52	1074	oP8	1110	17.1	17.7	1.036	1.7	0.5882	0.3264	0.6736	2.28	2.28	c RI
	- 1	298	LuAu ₃	LUAU	44.81	34.39	1.214	0.024 5.326	0.1110	0.8074	0.0103	Δ	1002	1064	34	742	110	cF4	17.7	19.3	1.089	11.522	0.0868	0.3161	0.6839	2.28	2.28	c RI
		299	LUAU4	AU	54.39	10.213	0.100	0.320	0.0103	0.0974	0.931	Δ	650	818	168	575	hP2	hP8	1.74	5.68	3.271	0.0965	10.368	0.7534	0.2466	2.28	3.4	e Rt
-	۱ ،	800	Mg	MgyAu	14	41.504	3.394	0.295	0 0010	0.0114	0.1250		702	1010	222	780	oP12	cP2	7 15	10.5	1.47	0.3186	3.1384	0.8366	0.1634	2.28	3.66	e It
2>	5	801	Mg ₂ Au	MgAu	34.35	21.06	0.613	1.031	0.0010	0.0220	0.0951	Au Au	100	860	20	827	cP2	cF4	10.5	19.3	1 836	0.9771	1.0234	0.6785	0.3215	3.66	2.28	e Im
1E		802	MgAu	Au	21.06	10.213	0.465	2.002	0.0001	0.9439	0.0005	Mu	1064	2623	1559	1054	cF4	cl2	19.3	10.2	1.887	0.0087	114.38	0.992	0.008	2.28	2.94	c Rv
15	F	803	Au	MO	10.21	9.366	0.919	1.000	0.0001	0.0103	0.9993	Na	1064	1002	62.4	887	cF4	cF24	19.3	11.4	1.685	0.3608	2.7719	0.4374	0.5626	2.28	2.09	e Ri
 -1	Ś	304	Au	AU ₂ Na	10.21	30.42	3.005	0.20		0.0220	0.0021	μια Δ	1004	818	207	651	hP4	oP12	7.01	9,63	1.375	0.3736	2.6764	0.5223	0.4777	1.32	1.64	e Ri
	۲7	305	Nd	Nd ₂ Au	20.59	50.4	2.448	0.408	0.5770	0.2200	0.4004	Au	1450	1107	200	1147	0C8	1P108	11.3	13.6	1,198	2.2634	0.4418	0.2512	0.7488	1.8	1.96	c Rt
~	d	306	NdAu	NdAu ₂	30.08	39.612	1.317	0.759	0.3//3	0.0984	0.1323		1400	1170	18	1060	1P108	hP68	13.6	16.1	1.184	0.0462	21.666	0.5336	0.4664	1.96	2.07	c RI
2	d	307	NdAu ₂	Nd14AU51	39.61	/50.04	18.93	0.053	0.1323	0.1033	0.0325	. Mu 	1101	1064	221	706	mC28	rF4	16.5	19.3	1,168	3,537	0.2827	0.6898	0.3102	2.14	2.28	c RI
Ĕ	12	308	NdAu ₆	Au	80.34	10.213	0.127	7.866	0.8911	0.9286	0.0004	AU	043	1004	106	212 6	11020	cF4	12.0	11.3	1,134	2,2783	0.4389	0.6047	0.3953	2	1.91	e Ri
12		309	AuPb ₃	Pb	63.64	18.265	0.287	3.484	0.7594	0.0467	0.411	10	221.J	710	221	619	hP4	0P12	6.77	9.37	1.384	0.7505	1.3324	0.3517	0.6483	2.25	2.26	e Rl
2		310	Pr	AuPr2	20.81	51.093	2.400	0.407	0.0017	0.2007	0.411	. Α.ι.	1415	1205	210	1140	0C8	(P108	11.1	13.3	1,206	3.4572	0.2893	0.1805	0.8195	2.27	2.27	e Rt
	·•·•	1311	PrAu	PrAu ₂	30.53	40.089	1.313	0.702	0.003	0.1131	0.1000		1205	1200	5	1040	IP108	hP68	13.3	15.9	1,191	0.1095	9.1364	0.3262	0.6738	2.27	2.27	e Rt
		312	PrAu ₂	Pr ₁₄ Au ₅₁	40.09	/56.51	18.87	0.053	0.7308	0.0075	0.0002	. Au	1203	1064	244 A	808	mC28	cF4	16.4	19.3	1.179	1.3526	0.7393	0.8541	0.1459	2.28	2.28	e Rt
		313	PrAu ₆	Au	80.86	10.213	0.126	7.918	0.8934	0.9111	0.9993	AU Ch	1055	460	£97.9	360	cF4	cP12	19.3	9 91	1.946	0.3681	2,7168	0.3843	0.6157	2.28	4.26	e II
	Ì	314	Au	AuSb ₂	10.21	44.448	4.352	0.23	0.0075	0.2538	0.0032	: 3D Ci	1000	1414	350	363	cF4	cF8	19.3	2 35	8 21	0.2266	4,4121	0.7889	0.2111	2.28	7.16	e It
		315	Ati	Si	10.21	12.058	1.181	U.847	0	0.0316	1	31	1004	1414	000	. 000 .												

	N°	C1	C ₂	Vm1	Vm ₂	A ₁	A ₂	X _{e1}	X _{el}	X _{e2}	%p	Tf ₁	Tf ₂	ΔT	T,	EC,	EC ₂	ρı	ρ:	В	C,	£2	Vf	Vf ₂	ΔS_1	ΔS ₂	DМ
	316	Sm	Sm ₂ Au	20	49.038	2.452	0.408	0.0026	0.2351	0.3954	Au	1074	865	209	705	hR3	oP12	7.52	10.1	1.35	0.4379	2.2835	0.4823	0.5177	1.94	1.81	e Ri
	317	Sm7Au10	SmAu ₂	135.3	37.869	0.28	3.574	0.6515	0.695	0.7241	Au	1105	1180	75	1080	tl136	tP108	22.3	14.4	1.554	8.3241	0.1201	0.3004	0.6996	1.99	2.05	e Rl
	318	SmAu ₂	SmAu ₃	37.87	48.484	1.28	0.781	0.7241	0.7711	0.7972	Au	1180	1135	45	1085	(P108	oP8	14.4	15.3	1.064	1.3249	0.7548	0.3709	0.6291	2.05	2.1	e Ri
	319	SmAu ₆	Au	79.57	10.213	0.128	7.791	0.887	0.9098	0.9977	Au	800	1064	264.4	770	tP56	cF4	16.7	19.3	1.152	1.7488	0.5718	0.8167	0.1833	2.23	2.28	e Rt
	320	Au ₁₇ Sn ₃	AuSn	213.9	26.91	0.126	7.95	0.1133	0.1975	0.376	Sn	519	419	100	278	hP2	hP4	17.3	11.7	1.476	5.5347	0.1807	0.5896	0.4104	2.45	4.22	e' Il
	321	AuSn₄	Sn	74.8	16.294	0.218	4.591	0.7068	0.8996	0.9967	Sn	252	231.9	20.1	217	oC20	tl4	8.98	7.28	1.233	11.244	0.0889	0.2899	0.7101	3.18	3.4	e Rt
	322	Au	AusSr	10.21	76.236	7.465	0.134	0	0.0324	0.0765	Sr	1064	1040	24	890	cF4	hP6	19.3	14.1	1.371	0.1349	7.4133	0.4983	0.5017	2.28	2.22	e Ri
	323	AlleSr	AusSr	76.24	43.641	0.572	1.747	0.0765	0.1144	0.1817	Sr	1040	1085	45	875	hP6	ol12	14.1	11	1.275	1.2521	0.7986	0.5825	0.4175	2.22	2.16	e Ri
	324	Au-Sr	AuSr	43 64	35.054	0.803	1.245	0.1817	0.259	0.3972	Sr	1085	970	115	850	ol12	mP40	11	8.12	1.359	0.9459	1.0572	0.5683	0.4317	2.16	2.2	e Ri
	325	Th	Tb-Au	19.31	40.284	2.086	0.479	0	0.2545	0.3822	Au	1356	1015	341	904	hP2	oP12	8.23	12.8	1.553	0.6153	1.6251	0.4379	0.5621	2.39	2.35	c Ri
	326	Thâu	ThAu	28.28	37 203	1 315	0.76	0.5534	0 6878	0.7128	Au	1623	1277	346	1252	oC8	tl6	12.6	14.9	1.181	3.457	0.2893	0.1803	0.8197	2.33	2.32	c Rt
	327	Thôn:	ThAu	37.2	46 848	1 259	0 794	0 7128	0 7576	0 7881	Au	1277	1242	35	1187	ti6	oP8	14.9	16	1.077	1.0808	0.9252	0.4235	0.5765	2.32	2.3	C RI
	220	ThAu	Δ	77.7	10 213	0 131	7 608	0.8813	8 9202	0 9879	An	853	1064	211.4	809	tP56	cF4	17.3	19.3	1.118	3.9156	0.2554	0.6602	0.3398	2.3	2.28	c Rl
	220	Au	AuTo	10.21	49.408	A 740	0 211	0.0010	0 4221	0 5648	Te	1064	464	600.4	447	cF4	mC6	19.3	9.32	2.069	1,2893	0.7756	0.1404	0.8596	2.28	4.63	e It
	329	AuTo	To	49.5	20 465	0.422	2 37	0 5648	0.8261	1	Te	464	449	15	416	mC6	hP3	9.32	6.24	1.495	5.3258	0.1878	0.3079	0.6921	4.63	5.8	e Im
	330	Aurez	IC Au Th	40.0	757 94	74.2	0.013	0.0040	0.0201	0 2439	Th	1064	1440	375.6	825	cF4	hP68	19.3	17.5	1.099	0.0134	74,755	0.5019	0.4981	2.28	2.28	e Ri
	331	AU	AU5111114	10.21	101.04	14.2	40.00	0 7470	0.1107	0.2433		1440	1405	25	1225	hDcg	hD3	17.5	15.6	1 127	31 598	0.0316	0 3736	0 6264	2 28	2 28	e Ri
	332	AU ₅₁ In ₁₄	Auzin	157.9	40.209	0.053	16.60	0.2439	0.3193	0.3703		1440	1400	- JJ - 15	1323	HD3	hD14	15.6	10.0	1.054	0 403	2 4815	0.4983	0.5017	2 28	2.28	e Ri
	333	Au210	AU ₄ IN ₃	40.21	100.47	2.499	0.4	0.3703	0.4193	0.4703	-111 Th	1400	1765	645	1050	tit2	cF4	13.2	11.7	1 174	1 2229	0.8177	0.6745	0.3255	3.5	1.14	e Ri
	334	Auin ₂		50.15	19.709	0.395	2.034	0.7052	0.7000	0.503		4450	1205	 	1267	c 2		6 45	8 59	1 320	A 375	2 6667	0 4223	0 5777	2 16	36	e li
1	335	Π	Ti ₃ Au	10.89	39.712	3.648	0.274	0.4205	0.5222	0.5/82	AU	1400	1393	55	1210	cD9	CP0	0.4J 8.58	0.00 11 R	1 376	2 7325	0.366	0.4119	0.5881	33	36	e II
i.	336	Ti _y Au	HAU	39.71	20.752	0.523	1.914	0.5/82	0.0095	0.7159	AU	1395	1400	- 40	1395	CP3	116	11.8	14.7	1 246	0 7774	1 2864	0.4704	0.5296	36	2 24	e 11
	337	TiAu	11AU2	20.75	30.054	1.448	0.69	0.8167	0.0000	0.6917	AU	1493	204	40	1303		110 hD2	10.2	11 0	1 625	3 0460	0 3282	0 163	0.837	2 28	1 78	c Rt
l.	338	Au	TI	10.21	17.216	1.686	0.593	0.0004	0.7598		<u></u> .	1060	304	100	147	LF4	-D12	13.3	11.5	1.025	0.0403	4 7677	0.100	0.5823	2 42	2 37	C PI
N	339	Tm	Tm ₂ Au	18.13	44.4	2.45	0.408	0	0.2366	0.3679	Au	1545	1225	320	1072	nP2	0112	9.32	12	1.292	1 1052	0.0266	0.4117	0.5025	2.72	2.01	C DI
1	340	TmAu ₂	TmAu ₃	35.57	45.412	1.277	0.783	0.7002	0.748	0.7777	Au	1189	1140	49	1099	10	010	10.0	10.7	1.057	1.1900	0.0300	0.3939	0.0041	2.33	2.02	c Pt
5	341	TmAu ₃	TmAu ₄	45.41	54.885	1.209	0.827	0.7777	0.8143	0.8234	AU.	1140	1040	100	1035	028		10.7	11.4	1.042	0.042	0.3123	0.2004	0.1340	2.32	2.01	C PI
	342	TmAu₄	Au	54.89	10.213	0.186	5.374	0.8234	0.9006	0.9437	Au	1035	1064	29.4	842	110	CF 4	17.4	19.3	1.100	0.0943	0.110	0.502	0.010	2.01	2.20	
	343	Au	Au ₅₁ U ₁₄	10.21	729.37	71.42	0.014	. 0	0.1184	0.2487	.υ.	1064	1340	275.6	840	CF4	hP68	19.3	18.3	1.051	0.0134	14.100	0.0007	0.4000	2.20	2.33	C RU
	344	AU51U14	Au₂U	729.4	36.681	0.05	19.88	0.2487	0.3412	0.3763	υ.	1340	1390	50	1257	hP68	hP3	18.3	1/.2	1.065	55.809	0.0179	0.2021	0.1313	2.33	2.4	e ru
	345	Yb	Yb ₇ Au ₃	24.85	182.76	7.356	0.136	0	0.2053	0.3279	Au	819	661	158	546	CF4	hP20	6.96	9.86	1,416	0.1609	6.2162	0.458	0.042	2.01	4.1	e ru
t=1	346	YbAu	YbAu ₂	27.73	35.307	1.273	0.785	0.5323	0.6161	0.6951	Au	1292	1240	52	1061	cP2	tl6	13.3	16.1	1.203	0.6911	1.447	0.5319	0.4681	2.14	3.0	e ti
/A	347	YbAu ₂	YbAu3	35.31	44.976	1.274	0.785	0.6951	0.7454	0.7735	Au	1240	1150	90	1131	tl6	oP8	16.1	17	1.058	1.3249	0.7547	0.3/21	0.6279	2.19	2.21	e Ki
É.	348	YbAu₄	Au	54.43	10.469	0.192	5.199	0.8199	0.9021	0.938	Au	989	940	49	817	1110	cF4	17.7	18.8	1.066	11.154	0.0897	0.3179	0.6821	2.23	2.20	e Ku
2 F	349	Au	AuZn	10.21	18.772	1.838	0.544	0.1432	0.1573	0.1781	Zn	700	740	40	683	cF4	cP2	15	14	1.071	0.3948	2.5329	0.5795	0.4205	2.28	3.78	e li
Ηž	350	AuZn	AuZn ₃	18.77	22.868	1.218	0.821	0.297	0.3465	0.3762	Zn	740	667	73	659	cP2	cl52	14	17.2	1.23	1.1125	0.8989	0.4246	0.5/54	3.18	2.43	e II
Ĕΰ	2 351	AuZr,	Au ₂ Zr	49.72	32.751	0.659	1.518	0.1337	0.1789	0.1878	Zr	1560	1480	80	1450	oP8	tl6	9.47	14.8	1.565	4.9545	0.2018	0.2345	0.7655	2.2	2.24	CKI
~ (352	BBe4	Be	24.1	4.885	0.203	4.933	0.7693	0.8651	1	Be	1140	1289	149	1120	tP10	hP2	1.94	1.84	1.054	3.6957	0.2706	0.5717	0.4283	1.95	1.87	ек
20	353	В	B₄C	4.62	66.579	14.41	0.069	0	0.0056	0.9091	C	2092	2380	288	2075	hR105	hR15	2.34	2.67	1,141	0.0004	2676	0.9946	0.0054	5.1	5.4	e Id
	1 354	B ₄ C	C	66.58	5.2995	0.08	12.56	0.2629	0.3121	1	C	2400	3827	1427	2375	hR15	hP4	2.67	2.27	1.178	1.0599	0.9435	0.9222	0.0778	5.4	6.62	e It
14.4 19.4	355	Ce	CeB,	21.06	31.869	1.513	0.661	0	0.0004	0.2358	В	798	2380	1582	790	cl2	tP20	6.65	5.75	1.156	0.0013	795.04	0.9981	0.0019	1.98	4.48	C IO
R.	356	CeBs	8	42.92	4.62	0.108	9.291	0.3162	0.8842	1	В	2550	2092	458	2025	cP7	hR105	4.78	2.34	2.04	93.043	0.0107	0.0908	0.9092	4.6	5.1	c id
	357	Co	Co ₃ B	6.706	23.096	3.444	0.29	0.0002	0.04	0.0576	В	1495	1125	370	1110	cF4	oP16	8.79	8,12	1.082	0.7083	1.4119	0.2908	0.7092	2.1	2.85	e Rt
	358	Co ₂ B	CoB	15.96	9.526	0.597	1.676	0.0839	0.0973	0.155	8	1280	1460	180	1250	ti12	oP8	8.06	7.32	1.101	0.4268	2.3432	0.797	0.203	4.33	3.6	e It
	359	CoB	В	9.526	4.62	0.485	2.062	0.155	0.223	1	В	1460	2092	632	1350	oP8	hR105	7.32	2.34	3.129	0.5641	1.7727	0.7852	0.2148	3.6	5.1	e It
	260	~	Cr.B	7 73	16 884	2 335	0 428	0.0226	0.0314	0.094	В	1863	1870	7	1630	cl2	oF48	7.19	6.8	1.058	0.064	15.622	0.87	0.13	2.34	3.26	. e. Rt

	N°	C ₁	C2	Vm,	Vm ₂	A,	A ₂	X _{e1}	X _{eL}	X _{e2}	%ρ	Tf	Tí ₂	A1	T,	EC,	EC:	ρ _t	ρ2	В	٤ţ	E2	Vf	Vf ₂	ΔS ₁	۸S2	DM
Ì	361	CrB	Cr ₃ B ₄	10.36	34.51	3.332	0.3	0.1721	0.193	0.2168	В	2100	2070	30	2050	oC8	ol14	6.06	5.77	1.051	0.278	3.5978	0.5191	0.4809	5.1	3.92	e II
	362	CrB ₂	В	14.1	4.62	0.328	3.051	0.294	0.5038	1	В	2200	2092	108	1830	hP3	hR105	5.22	2.34	2.232	2.8781	0.3474	0.5146	0.4854	4.18	5.1	e li
	363	Cu	В	7.111	4.6	0.647	1.546	0.0005	0.0254	0.8033	В	1085	2092	1007	1013	cF4	hR105	8.94	2.81	3.18	0.1569	6.3718	0.9075	0.0925	2.29	5.1	e It
	364	Dy	DyB ₂	18.99	21.669	1.141	0.876	0	0.0007	0.1176	В	1412	2100	688	1400	cl2	hP3	8.56	8.5	1.007	0.0051	197.26	0.9942	0.0058	2.44	4.2	c ld
	365	DyB ₆₆	В	276.4	4.62	0.017	59.84	0.7653	0.8682	1	Β.	2025	2092	67	2020	cF1880	hR105	3.17	2.34	1.354	63.275	0.0158	0.486	0.514	5.06	5.1	c II
	366	Er	ErB ₂	18.45	21.105	1.144	0.874	0	0.0007	0.1146	B	1529	2185	656	1500	hP2	hP3	9.06	8.95	1.013	0.0051	197.26	0.9942	0.0058	2.28	4.16	C Id
	367	ErB ₁₂	ErB ₆₆	63.06	276.04	4.377	0.228	0.4366	0.6764	0.76	B	2080	2070	10	2015	cF52	cF188(4.71	3.19	1.476	0.9665	1.0347	0.1912	0.8088	4.88	5.06	c It
1	368	ErB ₆₆	B	276	4.62	0.017	59.75	0.76	0.8648	1	В	2070	2092	22	2020	cF1880	hR108	3.19	2.34	1.364	63.185	0.0158	0.486	0.514	5.06	5.1	c II
	369	Eu	Eu8 ₆	28.98	44.303	1.529	0.654	0	0.0006	0.3041	В	1597	2580	983	817	ci2	cP7	5.24	4.89	1.071	0.0015	670.62	0.9977	0.0023	2.3	4.7	c ld
	370	EuB ₆	В	44.3	4.62	0.104	9.589	0.3225	0.934	1	B	2580	2092	488	2040	cP7	hR105	4.89	2.34	2.09	185.89	0.0054	0.0491	0.9509	4.7	5.1	c Id
i.	371	Fe	Fe ₂ B	7.302	16.707	2.288	0.437	0	0.0381	0.0881	B	1538	1389	149	1174	cF4	tl12	7.65	7.33	1.043	0.3478	2.8754	0.5569	0.4431	2.01	4.27	e II
ł	372	FeB	В	9.908	4.62	0.466	2.145	0.1622	0.256	0.883	В	1650	2080	430	1500	oP8	hR105	6.73	2.63	2.562	0.8227	1.2155	0.7227	0.2773	3.55	5.1	e Im
1	373	Gd	GdB ₂	19.91	22.608	1.136	0.88	0	0.0059	0.121	В	1313	2060	747	1180	cl2	hP3	7.9	7.91	1.002	0.0454	22.031	0.951	0.049	2.33	4.18	c ld
	374	GdB ₂	Gd ₂ B ₅	22.61	53.907	2.384	0.419	0.121	0.1327	0.1465	В	2060	2100	40	1950	hP3	mP28	7.91	6.84	1,157	0.4114	2.4309	0.5048	0.4952	4.18	4.3	CI
1	375	GdB ₆₆	В	277.6	4.62	0.017	60.1	0.7711	0.9856	1	B	2150	2092	58	2070	cF1880	hR105	3.14	2.34	1.34	1204.2	0.0008	0.0475	0.9525	5.06	5.1	c ld
	376	BHf	Hſ	7.424	13.44	1.81	0.552	0.9519	0.9925	0.999	Hf	2100	2231	131	1880	cF8	hP2	25.5	13.3	1.92	6.6628	0.1501	0.0766	0.9234	5.08	2.3	<u>cill</u>
	377	Ho	HoB ₂	18.76	21.411	1.142	0.876	0	0.0007	0.1161	В	1474	2200	726	1450	hP2	hP3	8.79	8.71	1.009	0.0051	197.26	0.9942	0.0058	2.44	4.2	c Id
	378	HoBes	В	276.4	4.62	0.017	59.84	0.7626	0.8665	1	В	2025	2092	67	2000	cF1880	hR105	3.18	2.34	1.358	63.23	0.0158	0.4862	0.5138	5.06	5.1	<u>c</u> II
4	379	В	B ₆ La	4.62	43.253	9.362	0.107	0	0.0013	0.6673	La	2092	2715	623	2092	hR105	cP7	2.34	4.71	2.013	0.0001	9781.4	0.999	0.001	5.1	4.66	c Id
	380	B ₄ La	La	33.77	23.28	0.689	1.451	0.7626	0.9999	1	La	1800	918	882	918	tP20	cl2	5.39	5.97	1.106	3995	0.0003	0.0004	0.9996	4.5	2.01	c Id
	381	LuBee	В	275.4	4.62	0.017	59.62	0.7517	0.8595	1	La	2100	2092	8	2060	cF1880	hR105	3.23	2.34	1.379	63.041	0.0159	0.486	0.514	5.06	5.1	c II
	382	Mn	Mn ₂ B	8.799	16.794	1.909	0.524	0	0.0336	0.0895	В	1246	1580	334	1207	cl2	tl12	6.24	7.19	1.151	0.2733	3.6587	0.6572	0.3428	2.32	4.48	e Im
	383	Mn ₂ B	MnB	16.79	10.334	0.615	1.625	0.0895	0.1118	0.1644	В	1580	1890	310	1510	ti12	oP8	7.19	6.36	1.129	0.777	1.287	0.6765	0.3235	4.48	3.71	eIm
	384	Mn ₃ B ₄	MnB ₂	34.73	16.554	0.477	2.098	0.2076	0.2392	0.2827	В	1827	1827	0	1750	ol14	hP3	5.99	4.62	1.295	1.972	0.5071	0.5155	0.4845	3.9	4.17	e ll
4	385	MnB ₂	В	16.55	4.62	0.279	3.583	0.2827	0.4404	1	В	1827	2092	265	1730	hP3	hR105	4.63	2.34	1.976	1.9962	0.5009	0.6422	0.3578	4.17	5.1	e Im
2	386	Мо	Mo ₂ B	9.386	21.957	2.339	0.427	0.0009	0.0326	0.0533	B	2600	2280	320	2175	cl2	tl12	10.2	9.23	1.107	0.7239	1.3814	0.3713	0.6287	2.94	4.9	e Im
	387	Mo ₂ B ₅	В	32.94	4.62	0.14	7.129	0.1932	0.6384	0.8467	В	2140	2092	48	1920	hR7	hR105	7.47	2.34	3.191	48.627	0.0206	0.1279	0.8721	4.48	5.1	e la
	388	B ₂ Nb ₃	Nb	37.8	10.826	0.286	3.492	0.928	0.9814	0.9988	Nb	1880	2469	589	1580	tP10	cl2	7.95	8.58	1.08	9.9116	0.1009	0.2605	0.7395	4.2	2.36	C IU
	389	Ni	Ni ₃ B	6.59	22.824	3.463	0.289	0	0.0363	0.0578	В	1455	1156	299	1093	cF4	oP16	8.91	8.19	1.088	0.5313	1.8824	0.3521	0.6479	2.38	3.06	e Ri
	390	Ni ₃ B	Ni ₂ B	22.82	15.93	0.698	1.433	0.0578	0.0731	0.0842	B	1156	1125	31	1111	oP16	ti12	8.19	8.05	1.018	2.021	0.4948	0.4148	0.5852	3.06	4.53	e ll
	391	Ni ₂ B	Ni ₄ B ₃	15.93	35.252	2.213	0.452	0.0842	0.1073	0.3881	B	1125	1031	94	1019	812	oP28	8.05	7.58	1.062	0.0395	25.303	0.9196	0.0804	4.53	3.55	e Id
Æ	392	Ni ₄ B ₃	NiB	35.93	9.654	0.269	3.722	0.1246	0.1323	0.1555	Np	1031	1035	4	1018	mC28	oC8	7.44	7.2	1.033	1.2779	0.7826	0.7444	0.2556	3.55	3.74	e Im
۲ <u>ـ</u>	393	B ₅₆ Np	B ₁₂ Np	331.9	62.972	0.19	5.27	0.2503	0.4774	0.6465	Np	2130	2150	20	2100	cF2064	cF52	2.86	5.82	2.033	3.4803	0.2873	0.6023	0.3977	5.06	4.9	e 11
- U.	394	B ₄ Np	B ₂ Np	30.22	20.718	0.686	1.459	0.8148	0.8778	0.8978	Os	2560	2250	310	2200	1P20	hP3	9.27	12.5	1.346	3.427	0.2918	0.2986	0.7014	4.6	4.22	e Im
DN	395	Pd	Pd _s B ₂	8.865	51.807	5.844	0.171	0.0228	0.0314	0.0391	В	1200	1115	85	1065	cF4	mC28	9.99	10.7	1.07	0.1785	5.6019	0.4894	0.5106	2.19	3.02	e Ri
E1 _	396	PrB ₄	В	42.99	4.62	0.107	9.305	0.315	0.8837	1	В	2610	2092	518	2025	cP7	hR105	4.79	2.34	2.046	93.043	0.0107	0.0909	0.9091	4.7	5.1	c ld
0	897	BPt	BPt ₁	21.34	25.108	1.176	0.85	0.9731	0.9779	0.9819	Pt	890	825	65	790	hP6	t*10	18.8	23.7	1.264	0.8059	1.2409	0.5133	0.4867	3.23	3	e Ri
끈질	898		PuB,	14.46	20.91	1.446	0.691	0	0.0005	0.0821	В	640	2200	1560	635	c112	hP3	16.7	12.6	1.328	0.0051	197.27	0.9927	0.0073	0.73	3.64	c id
ີດີ	300	PuBm	8	400.1	4.62	0.012	86.6	0.8156	0.8989	1	в	2100	2092	8	2088	cF1936	hR105	3.28	2.34	1.402	100	0.01	0.4641	0.5359	5.1	5.1	c II
	400	Re ₂ B ₁	ReB ₂	71.71	16.401	0.229	4.372	0.0243	0.0403	0.1042	8	2000	2400	400	1830	hP20	hP6	18.6	12.7	1.47	1.6181	0.618	0.7299	0.2701	3.15	4.17	e Im
Alme	101	Rh	Rh ₂ B ₄	8,283	69.54	8.396	0.119	0	0.0393	0.0431	В	1963	1140	823	1131	cF4	hP20	12.4	10.8	1.147	1.3994	0.7146	0.0784	0.9216	2.4	3.2	c Rt
A Rear Lotte Law	402	Ru-R.	RuB.	28.18	16,908	0.6	1.667	0.1383	0.1486	0.1764	В	1550	1600	50	1500	hP10	oP6	8.32	7.26	1.147	0.7087	1.411	0.7016	0.2984	4.04	4.2	e Im
	403	Sc	ScB.	15.04	18,174	1,208	0.828	0	0.0469	0.3281	В	1541	2250	709	1277	hP2	hP3	2.99	3.66	1.226	0.1128	8.869	0.8801	0.1199	1.85	4.01	e It
	403	ScB.	ScB.	18 17	78,754	4.333	0.231	0.3281	0.54	0.7344	В	2250	2040	210	1877	hP3	cF52	3.66	2.22	1.652	0.4156	2.4062	0.357	0.643	4.01	4.85	e Im
	405	Ci Ci	SiB.	12.06	32 41	2 688	0.372	0.0118	0.0324	0.6976	В	1400	1850	450	1385	cF8	oP340	2.33	2.87	1.231	0.0094	106.75	0.9754	0.0246	7.16	5.4	e Id
	403 :	: ان	0106	12.00	VE. 11	2,000																					

1	N⁰	C,	C2	Vm _t	Vm ₂	Α,	A2	X _{et}	Xel	X _{e2}	%,	Tf ₁	Tf ₂	M	T,	EC,	EC ³	ρı	ρ:	В	ει	£2	Vf	Vf2	ΔS ₁	72 ⁵	DМ
	406	SmB ₅₆	В	277.6	4.62	0.017	60.1	0.7789	0.9347	1	B	2150	2092	58	2080	cF1880) hR105	3.11	2.34	1.33	190.54	0.0052	0.2398	0.7602	5.06	5.1	c Im
	407	B ₂ Ta	B₄Ta,	16.15	34.741	2.152	0.465	0.9077	0.9145	0.9238	Та	3037	3030	7	2990	hP3	ol14	12.5	16.9	1.345	0.257	3.8911	0.6439	0.3561	4	3.68	e Im
	408	BTa ₂	Ta	24.5	10.852	0.443	2.258	0.975	0.9825	0.9975	Ta	2417	2840	423	2385	1112	cl2	15.2	16.7	1.096	1.0173	0.983	0.6894	0.3106	4.13	1.8	e Im
1	409	Tb	TbB ₂	19.31	21.99	1.139	0.878	0	0.0059	0.1199	В	1356	2100	744	1200	hP2	hP3	8.23	8.21	1.002	0.0454	22.031	0.9509	0.0491	2.39	4.2	c id
	410	TbB ₂	TbB4	21.99	30.855	1.403	0.713	0.1199	0.137	0.2139	В	2100	2600	500	2000	hP3	tP20	8.21	6.55	1.253	0.1982	5.0464	0.7824	0.2176	4.2	4.6	c It
	411	TbB ₆₆	В	277	4.62	0.017	59.97	0.7692	0.8707	1	В	2100	2092	8	2030	cF1880) hR105	3.15	2.34	1.346	63.345	0.0158	0.4863	0.5137	5.06	5.1	c II
	412	B,Tc	B ₁ Tc ₇	16.26	68.54	4.216	0.237	0.819	0.9315	0.9549	Tc	2450	1800	650	1550	hP6	hP20	7.36	10.5	1.425	0.8016	1.2475	0.2283	0.7717	4.18	3.17	c Im
	413	BTc.	Tc	34.36	8.589	0.25	4	0.9645	0.9809	1	Tc	1950	2155	205	1790	oC16	hP2	8.87	11.3	1.273	2.6942	0.3712	0.5975	0.4025	3.03	2.34	c RI
	414	Th	ThB ₄	20.91	36.49	1.745	0.573	0	0.0038	0.1571	B	1755	2475	720	1450	cl2	tP20	11.1	7.54	1.471	0.0207	48.333	0.9651	0.0349	1.89	4.46	c Id
	415	ThB,	ThB	36.49	41.51	1,138	0.879	0.1571	0.1853	0.2183	В	2475	2450	25	2400	tP20	cP7	7.54	7.15	1.055	0.7942	1.2591	0.5253	0.4747	4.46	4.64	C II
1	416	ThB ₄	ThBee	41.51	279.66	6.737	0.148	0.2183	0.4696	0.7537	в	2450	2180	270	2050	cP7	cF1880	7.15	3.38	2.115	0.2777	3.6006	0.3483	0.6517	4.64	5.06	c Im
	417	Tì	TiB	10.89	12.752	1.171	0.854	0.0011	0.0167	0.1782	В	1670	2200	530	1540	cl2	oP8	4.4	4.6	1.046	0.0787	12.712	0.9156	0.0844	2.16	5.01	e Id
	418	TiB	В	15.42	4.452	0.289	3.464	0.3113	0.9171	1	В	3225	2092	1133	2080	hP3	hR105	4.51	2.43	1.857	46.975	0.0213	0.0687	0.9313	4.12	5.1	c id
	419	Tm	TmB ₁	18.13	20.826	1.149	0.87	0	0.0006	0.1136	В	1545	2250	705	1500	hP2	hP3	9.32	9.15	1.019	0.0051	197.26	0.9942	0.0058	2.42	4.2	c id
1	420	TmBee	В	276.2	4.452	0.016	62.05	0.7582	0.8637	1	B	2100	2092	8	2050	cF1880) hR105	3.19	2.43	1.316	63.153	0.0158	0.4956	0.5044	5.06	5.1	c II
	421	B	8.11	4 452	62 894	14.13	0.071	0	0.1819	0.6475	U	2092	2145	53	2035	hR105	cF52	2.43	5.85	2.408	0.0115	87.046	0.8604	0.1396	5.1	4.9	c it
1	422	Bull	B.U	62.89	30.035	0.478	2.094	0.6475	0.7098	0.8463	U	2145	2495	350	2100	cF52	tP20	5.85	9.36	1.602	0.5976	1.6733	0.778	0.222	4.9	4.6	c Im
	423	B.U	B ₂ U	30.04	20.424	0.68	1.471	0.8463	0.8801	0.9166	U	2495	2385	110	2300	tP20	hP3	9.36	12.7	1.358	1.0031	0.9969	0.5945	0.4055	4.6	4.2	c Il
	424	B ₁ U		20.42	13.179	0.645	1.55	0.9166	0.9995	1	U	2385	1135	1250	1107	hP3	c12	12.7	18.1	1.421	197.27	0.0051	0.0078	0.9922	4.2	2.38	c Id
	425	v .	V ₁ B ₂	8.328	30.046	3.608	0.277	0	0.0361	0.1239	в	1910	1900	10	1737	cl2	tP10	6.12	5.81	1.054	0.12	8.3333	0.6979	0.3021	2.36	3.5	e Ri
	426	VB ₂	В	14.32	4.62	0.323	3.1	0.2983	0.9123	1	8	2742	2092	650	2035	hP3	hR105	5.07	2.34	2.165	46.977	0.0213	0.0619	0.9381	4.19	5.1	e Id
	427	Ŵ	W ₂ B	9.55	22.137	2.318	0.431	0.0003	0.0213	0.0269	В	3400	2670	730	2600	cì2	ti12	19.3	17.1	1.126	1.8075	0.5533	0.1927	0.8073	2.29	4.43	e it
	428	W ₂ B	WB	22.14	12.386	0.56	1.787	0.0294	0.0425	0.0505	В	2670	2665	5	2580	112	oC8	17.1	15.7	1.088	3.1623	0.3162	0.3611	0.6389	4.43	3.7	e Im
	429	WB	W ₂ B ₅	12.39	21.469	1.733	0.577	0.0599	0.091	0.1067	В	2620	2365	255	2337	oC8	hR7	15.7	19.6	1.25	0.9182	1.089	0.3859	0.6141	3.7	4.3	e II
人	430	Ŷ	YB,	19.9	21.651	1.088	0.919	0	0.04	0.1959	В	1522	2100	578	1290	hP2	hP3	4.47	5.1	1.142	0.2062	4.8505	0.8168	0.1832	2.3	4.17	Cit
	431	YB ₂	YB,	21.65	30.585	1.413	0.708	0.0565	0.221	0.3272	В	2100	2800	700	2000	hP3	tP20	5.1	4.32	1.182	1.2955	0.7719	0.3533	0.6467	4.17	4.54	c Im
01	432	YB ₁₂	YB ₆₆	63.54	276.44	4.35	0.23	0.5931	0.7448	0.8563	В	2200	2100	100	2050	cF52	cF1880	3.44	2.9	1.185	0.3707	2.6976	0.3827	0.6173	4.88	4.05	C II
	433	YB ₆₆	В	276.4	4.62	0.017	59.84	0.8563	0.9233	1	В	2100	2092	. 8	2030	cF1880) hR105	2.9	2.34	1.241	64.855	0.0154	0.4799	0.5201	5.05	5.1	C II
	434	Yb	YbB ₂	26.36	20.562	0.78	1.282	0	0.0006	0.1126	В	819	1350	531	800	ci2	hP3	6.56	9.47	1.442	0.005	199.66	0.9961	0.0039	2.01	4.07	C Id
	435	YbB66	В	275.8	4.62	0.017	59.69	0.7538	0.9256	1	B	2150	2092	58	2040	cF1880) hR108	3.21	2.34	1.374	189.23	0.0053	0.2398	0.7602	5.1	5.1	c tu
1	436	В	B ₁₂ Zr	4.62	61.776	13.37	0.075	0.0407	0.2601	0.4097	Zr	2092	2030	62	1975	. hR105	cF52	2.34	3.58	1.529	0.0718	13.93	0.5102	0.4898	5.1	4.9	6.11
En a	437	8 ₂ Zr	Zr	18.5	14.156	0.765	1.307	0.8082	0.9826	0.9982	Ва	3200	1855	1345	1680	hP3	. cl2	6.1	6.44	1.056	13.833	0.0723	0.0863	0.9137	4.12	2.17	C 10
20	438	Bi	Bi₃Ba	21.31	83.712	3.929	0.255	0	0.0092	0.1797	Ba	271.4	447	175.6	262	hR2	tP4	9.81	9.13	1.0/4	0.0148	67.429	0.9449	0.0551	4.0	0.10	e 10
문학	439	Ва	Ba ₂ Cd	38.16	83.52	2.189	0.457	0	0.1787	0.2901	Cd	727	409	318	380	Ci2	tl6	3.6	4.63	1.288	0.5691	1./5/	0.4403	0.3047	1.03	2.00	e Ki
Rice	440	BaCd	BaCd ₂	45.04	56.49	1.254	0.797	0.4501	0.488	0.6211	Cd	588	642	54	560	cP2	0112	5.54	6.41	1.156	0.1964	5.0925	0.8024	0.1970	3.0	2.33	e 11
-0	. 441	BaCd ₂	Ba7Cd31	56.49	568.86	10.07	0.099	0.6211	0.7106	0.784	Cd	642	620	22	554	0112	. hP41	6.41	7.82	1.219	0.0993	10.072	0.0	0.0	2.33	2.44	a Di
$\mathcal{L} \mathcal{O}$	442	Ba ₇ Cd ₃₁	BaCdn	568.9	168.94	0.297	3.367	0.784	0.8306	0.9004	Cd	620	672	52	610	hP41	1148	1.82	8.13	1.04	2.1030	0.4021	0.0000	0.0912	2.44	2.51	
	443	BaCd11	Cd	168.9	13.009	0.077	12.99	0.9004	0.9976	1	Cd	672	321.1	350.9	321	1148	hP2	8.13	0.64	1.003	400.04	0.0021	0.020	0.974	2.01	2.00	C INV
	: 444	Cu ₁₃ Ba	CuBa	122.3	42.838	0.35	2.854	0.1425	0.6388	0.6837	Ва	670	570	100	550	CF112	1148	7.88	4.69	1.08	33.000	0.0109	0.0011	0.9409	2.20	1.83	D DI
	445	CuBa	Ba	42.84	38.159	0.891	1.123	0.6837	0.8928	1	Ba	570	727	157	458	nP8	CI2	4.69	3.0	1.303	2.0044	1.0446	0.2023	0.7177	2.06	3.04	e Ri
1000 A	446	Ba ₁₀ Ga	Ba _s Ga,	325.2	330.05	1.015	0.985	0.0484	0.1421	0.3079	Ga	456	584	128	414	CF 175	CP60	6 17	9.01 5.01	1.003	405	0.002	0.031	0.045	39	4 47	bf 5
	447	BaGa,	Ga	67.5	11.789	0.175	5.726	0.67	0.9961	1	Ga	1016	29.7	986.3	29.5	u10	000	3.6	5	1 20		21 971	0.9235	0.0765	1.83	3.9	e id
	448	Ba	Ba2Ge	38.16	69.42	1.819	0.55	0	0.0215	0.2088	Ge	127	955	228	270		UF 12	3.0	502	1 621	0.0400	15 285	0 8774	0 1226	1.83	2.01	e Rt
	449	Ba	Ba ₂ Hg	38.16	81.465	2.135	0.468	0.1869	0.2303	0.4217	Hg	121	434	293	5/9	, CIZ	0112	3.0 7.0¢	0.03	1.021	0.0034	1 0049	0 4392	0.5608	3.48	2,19	e Ri
	450	BaHg	BaHg ₂	42.46	54.48	1.283	0.779	0.5936	0.6866	0.7453	Hg	622	120	90	: 000	UPZ	ULIZ	1.30	3.00	1.242	0.0001	1.0043	0.4002		5.15		<u> </u>

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

• •	N°	C1	C ₂	Vm ₁	Vm ₂	A,	A ₂	Х,	X _{eL}	X,2	%p	Tf ₁	Tf ₂	\overline{M}	T,	EC,	EC:	ρι	P:	В	ει	62	Vf	Vf ₂	۵S	ΔS_2	DM
1	451	Bain ₂	Baln ₄	56.03	87.1	1.554	0.643	0.6261	0.7368	0.7543	in	965	842	123	835	ol12	t/10	6.55	6.85	1.046	3.8729	0.2582	0.1424	0.8576	1.82	1.82	e Rt
1	452	Baln ₄	In	87.1	15.765	0.181	5.525	0.7698	0.9988	1	ln j	842	156.6	685.4	156	ti10	tl2	6.85	7.28	1.063	995	0.001	0.0055	0.9945	1.82	1.82	e Rv
	453	Li	Li,Ba	13.02	93.967	7.22	0.139	0	0.699	0.8319	Ва	180.6	156	24.6	143	cl2	hP30	0.53	1.76	3.296	0.221	4.5239	0.3852	0.6148	1.6	1.65	e Ri
	454	Mg	Mg ₁₇ Ba ₂	14	307.38	21.96	0.046	0.0001	0.1265	0.3993	Ва	650	707	57	634	hP2	hR19	1.74	2.24	1.289	0.0164	61.076	0.7355	0.2645	2.28	2.23	e Rt
	455	Mg ₂₃ Ba ₆	Mg ₂ Ba	535.3	61.2	0.114	8.747	0.5957	0.6763	0.7382	Ba	598	607	9	589	cF116	hP12	2.58	3.04	1.176	9.676	0.1033	0.4748	0.5252	2.18	2.13	e Ri
í	456	Mo ₂ Ba	Ba	61.2	38,159	0.624	1.604	0.7382	0.913	. 1	Ba	607	727	120	358	hP12	cl2	3.04	3.6	1.184	2.7188	0.3678	0.371	0.629	3.36	1.83	e RI
	457	Ba	Ba-Pb	38.16	78.81	2.065	0.484	0	0.2488	0.3927	Pb	727	928	201	595	cl2	oP12	3.6	6.11	1.699	0.4928	2.0294	0.4956	0.5044	1.83	1.85	e Rl
	458	BaPb	BaPb.	48.42	79.52	1.642	0.609	0.6014	0.7747	0.819	Pb	850	617	233	583	oC8	hR12	7.11	9.54	1.341	1.7727	0.5641	0.2557	0.7443	1.83	1.89	e Rt
i.	459	BaPh.	Ph	79.52	18 265	0.23	4 354	0.819	0 9525	0 9947	Ph	617	327	290	293	bR12	cF4	9.54	11.3	1 189	11 582	0 0863	0 2732	0.7268	1.89	1.91	e Rt
	460	BaPt.	BaPt.	37.68	68 64	1 822	n 549	0 7399	0.8263	0.8763	Pt	1820	1850	30	1770	cF24	hP6	14	16.2	1 158	0.8173	1 2236	0 4018	0.5982	2.14	2.22	e Ri
	461	RaPt.	Pł	68 64	9 095	0 133	7 547	0.8763	0 9643	1	Pt	1850	1769	81	1730	hPA	rF4	16.2	21.5	1 323	14 041	0.0712	0 3496	0.6504	2.22	2.3	e Rl
İ	462	- Cui 13 - Da	50	39.16	15 042	0.100	2 6 2 7	0.0700	0.0000	0.0642	Se	727	1541	R14	726	c12	502	26	2 00	1 204	0.001	063.25	0 0006	0.0004	1.83	1.85	e Rv
1	402	Ra	BaSe Base	38 16	43.14	1 121	0.885	0	0.0003	0.3042	Sa	727	1780	1053	710	c12	cF8	3.0	5.01	1 202	0.001	109 11	0.0000	0.0103	1.83	2 46	c Rv
	403	0a5a	Co	67.92	16 417	0.242	4 122	0677	0.0032	4	Co	1790	221	1650	210	109	hD3	5.62	4 91	1 147	765 23	0.0013	0.0054	0 9946	2 78	31	c Rv
i	404	Dabej	DeCi	20 10	07 CA	0.000	4.132	0.033	0.0307	0 1609	00	707	840	112	630	013	009	2.52	4.01	1.177	0 1757	5 6023	0.0004	0.3340	1.83	51	0 11
1	405	Dd D+Ci	Daoi	30.10	37.04	0.900	1.014	0	0.0297	0.1090	0	121	040	004	4000	-024	000	3.0	4.00	1.221	4 4774	0.677	0.0323	0.1417	1.00	5.61	
	400	Basiz	5I Dete	52.38	12.00	0.23	4.343	0.2906	0.4064	0.9400	51 To	707	1414	234	1020	0124	000	3.09	2.33	1.300	0.0122	74 022	0.1402	0.2330	1.83	5.1R	e Ini
	407	ва	Bale	38.10	51.70	1.355	0.737	0 0004	0.0121	0.4010	Ie De	121	14/0	143	714	502	- CFO	3.0	0.12	1.422	40070	200.05	0.9022 CE 00	1	2 16	1.02	o Du
	468	"	Ва	10.63	38.159	3.588	0.279	0.0004	1	1	ва	1008	121	941	121	nrz	CIZ	4.3	3.0	1.202	49910	22-00	00-30	0.0700	4.00	1.00	C IV
	469	Ba	Ba ₂ Zn	38.16	78.528	2.058	0.486	0	0.1369	0.192	Zn	727	360	367	350	CI2	116	3.6	4.33	1.203	1.0042	0.9958	0.3201	0.4970	1.03	2.05	ек
	470	Ba ₂ Zn	BaZn	78.53	41.298	0.526	1.901	0.192	0.2885	0.657	Zn	360	340	20	330	116	CP2	4.33	4.91	1.134	0.4392	2.2//1	0.0124	0.10/0	2.00	3.0	е. п
	471	BaZn	BaZn ₂	41.3	47.676	1.154	0.866	0.3225	0.3538	0.4881	Zn	340	380	40	325	CP2	0112	4.91	5.62	1.146	0.1/6/	5.6587	0.8306	0.1694	3.0	2.28	eu
	472	BaZn ₁₃	Zn	142.1	9.163	0.064	15.51	0.8616	0.9998	1	Zn	885	419.6	465.4	419.5	cF112	hP2	6.95	7.13	1.027	9930.3	0.0001	0.0016	0.9984	2.46	2.51	e Kv
	473	Be ₁₃ Ca	Ca	82.56	27.078	0.328	3.049	0.2548	0.9936	0.9954	Ca	1270	842	428	833	c⊦112	CIZ	1.9	1.48	1.287	1551.7	0.0006	0.002	0.998	1.00	1.79	CKV
	474	Cr	CrBe ₂	7.112	16.536	2.325	0.43	0.0173	0.0787	0.2577	Be	1750	1840	90	1514	C12	hP12	6.64	4.23	1.569	0.2314	4.3222	0.6502	0.3498	2.34	3.26	еки
12	475	CrBe ₂	CrBe ₁₂	16.54	68.858	4.164	0.24	0.2577	0.5597	0.6751	Be	1840	1338	502	1247	hP12	tl26	4.23	2.33	1.821	1.1441	0.874	0.1735	0.8265	3.26	1.91	e Kt
5	476	CrBe ₁₂	Be	68.86	4.885	0.071	14.1	0.6751	0.8711	0.9954	Be	1338	1289	49	1222	t126	hP2	2.33	1.84	1.261	28.033	0.0357	0.3346	0.6654	1.91	1.87	e Ki
0	477	Be ₃ Cu	Be	21.54	5.002	0.232	4.306	0.3452	0.3925	0.4041	Be	1219	1270	51	1199	cF24	cl2	4.21	3.69	1.14	20.125	0.0497	0.1763	0.8237	1.97	1.87	e Kt
	478	Be	Be₅Fe	5.002	30.534	6.104	0.164	0.1434	0.2353	0.3776	Fe	1289	1375	86	1215	cl2	cF24	1.8	3.3	1.834	0.0577	17.339	0.7396	0.2604	1.87	1.89	e Rt
1	479	Be ₂ Fe	Fe	15.88	6.519	0.411	2.435	0.7932	0.9207	0.9384	Fe	1420	1250	170	1165	hP12	cl2	4.65	6.41	1.378	12.719	0.0786	0.1607	0.8393	3.15	2.01	e Rt
	480	Be ₂ Hf	Hf	23.66	13.444	0.568	1.76	0.9082	0.9647	1	Hf	1390	2231	841	1125	hP3	hP2	8.31	13.3	1.599	1.7658	0.5663	0.4992	0.5008	2.01	2.3	e Ri
23	481	Be ₁₂ Mo	Be ₂ Mo	58.06	18.858	0.325	3.079	0.4704	0.5419	0.8416	Mo	1700	2027	327	1690	t126	hP12	3.52	6.04	1.719	0.4272	2.3406	0.8781	0.1219	1.95	3.45	C Rt
F.	482	Be ₂ Mo	Мо	18.86	9.386	0.498	2.009	0.8416	0.9338	1	Мо	2027	2623	596	1827	hP12	cl2	6.04	10.2	1.691	1.6548	0.6043	0.5484	0.4516	3.46	2.94	c Ri
5.3	483	Be ₁₇ Nb ₂	Be ₃ Nb	103.5	25.38	0.245	4.076	0.5474	0.6453	0.7746	Nb	1800	1920	120	1620	hR19	hR12	3.28	4.73	1.442	2.1401	0.4673	0.6557	0.3443	1.92	1.99	e Ri
- CO	484	Be ₂ Nb	Be ₂ Nb ₃	21.08	42.495	2.016	0.496	0.8373	0.8861	0.9393	Nb	1520	1590	70	1440	cF24	tP10	5.26	6.98	1.327	0.3426	2.9188	0.5915	0.4085	2.03	2.16	e Ri
JE	485	BeNi	Ni	10.89	6.59	0.605	1.653	0.8741	0.9542	0.9736	Ni	1605	1300	305	1150	cP2	cF4	6.22	7.77	1.25	5.4674	0.1829	0.2322	0.7678	3.49	2.38	e Rt
F) -	486	Be	Si	4.885	12.058	2.468	0.405	0	0.6368	1	Si	1289	1414	125	1090	hP2	cF8	1.84	2.33	1.263	0.5625	1.7778	0.4187	0.5813	1.87	5.61	e li
эR	487	ті [.]	TiBe ₂	10.62	20.232	1.905	0.525	0.015	0.0746	0.2737	Be	1530	1350	180	980	cl2	cF24	4.24	3.26	1.3	0.2042	4.8963	0.7199	0.2801	2.16	1.97	e Rt
$\Xi \subseteq$	488	TiBe ₁₂	Be	66.77	5.136	0.077	13	0.6928	0.9995	1	Be	1660	1289	371	1285	ti26	ci2	2.34	1.75	1.332	9994.5	0.0001	0.0013	0.9987	1.89	1.87	c Rv
57	489	Be ₂ W	w	19.88	9.521	0.479	2.087	0.9198	0.9684	0.9974	w	2250	3300	1050	2100	hP12	cl2	10.2	18.4	1.81	1.9237	0.5198	0.5204	0.4796	3.24	2.29	c RI
A.	490	Ŷ	YBen	19.9	79.436	3.993	0.25	0	0.0599	0.6981	Be	1522	1920	398	1070	hP2	cF112	4.47	2.59	1.723	0.0405	24.69	0.8608	0.1392	2.3	1.9	c Rt
2	491	Be ₂ Zr	Zr	24.59	14.156	0.576	1.737	0.8348	0.9495	0.9959	Zr	1235	1855	620	965	hP3	cl2	4.44	6.21	1.398	3.0701	0.3257	0.3613	0.6387	1.97	2.17	c RI
A.164 Mar. 4 13	492	Bi	Cd	21.31	13.009	0.611	1.638	0	0.3966	1	Cd	271.4	321.1	49.7	146	hR2	hP2	9.81	8.64	1.135	1.2222	0.8182	0.5727	0.4273	4.8	2.58	e II
	493	Bi	Bi ₂ Cs	21.31	70.017	3.286	0.304	0	0.0128	0.241	Cs	442	595	153	267	hR2	cF24	9.81	7.87	1.247	0.0213	46.944	0.9346	0.0654	4.8	1.79	e ld
	494	Cu	Bi	7.111	21.307	2.996	0.334	0	0.9985	1	Bi	1085	271.4	813.4	270.6	cF4	hR2	8.94	9.81	1.098	199	0.005	0.0017	0.9983	2.29	4.8	e Id
	495	Dv	Dv ₆ Bi ₁	19.01	138.15	7.268	0.138	0	0.2433	0.4355	Dy	1412	1515	103	1130	hP2	oP32	8.55	10.4	1.219	0.1429	7	0.4906	0.5094	2.44	3.3	c Ri

	NI ⁰	<u>C.</u>	C.	Vm	Vm.	Α.	Α.	Χ.,	Χ.,	X.,	%.	Tf.	Th	11	T.	EC,	EC,	0,	p,	В	٤,	٤,	Vf ₁	Vf2	AS1	ΔS_2	DM
1	100			10.04	140.20	7050	. ~?? 	 	0 1524	0.415	. ~ P.	1212	1275	าต่	975	hP2	hP16	70	10.1	1 274	0.0653	15 321	0.684R	0.3152	2.33	3.26	c RI
	496		Gaigela	19.91	140.39	1.003	4 770	0.5700	0.1004	0.413	. DI .	1010 201E	271 4	1744	271 4	CE8	hR2	9.68	9.81	1.014	998	0.001	0.0018	0.9982	3.6	4.8	c ld
	497	GdBi	. 81	37.84	21.307	0.563	1.110	0.5706	0.9992	·	. <u></u> .	2010	271.4	1144	271.4	600	-E9	0.00	5.01	1.017	000	0.001	0.0016	0 9984	48	6.85	e id
1	498	Bi	Ge	21.31	13.632	0.64	1.563		0.9971	1	Ge	938.3	271.4	000.9	211.4	IRZ	. UFO	9.01	0.32	1.042	333	0.001	0.0010	0.0004	4.9	2 27	14
	499	Bi	Hg	21.31	13.897	0.652	. 1.533	. 0	0.999	0.9994	Hg	271.4	-38.8	310.2	-38.8	nR2	. 11	9.81	14.4	1.472	2497.0	0.0004	0.0000	0.9554	4.0	4.7	
	500	Bi	Biln	21.31	36.136	1.696	0.59	. 0	0.3258	0.3546	In	271.4	110	161.4	110	hR2	tP4	9.81	8.96	1.095	7.3125	0.1308	0.0746	0.9204	4.0	4.7	e n
	501	BisIns	Biln ₂	139.4	50.46	0.362	2.762	0.4791	0.505	0.525	In	89	89.5	0.5	88.7	t132	hP6	8.62	8.69	1.009	3.5547	0.2813	0.43/3	0.5627	2.93	2.01	e Ri
	502	Biln ₂	Biln ₄	50.46	81.445	1.614	0.62	0.5273	0.6673	0.8012	In	89.5	93.5	4	72.7	hP6	ti2	8.69	8.21	1.059	0.6869	1.4559	0.4742	0.5258	2.81	2.42	ек
	503	Bi	Bi ₂ K	21.31	64.569	3.03	0.33	0	0.0048	0.0854	K	271.4	565	293.6	265	hR2	cF24	9.81	7.08	1.386	0.0271	36.946	0.9242	0.0758	4.8	3.77	e ld
1	504	La	La,Bi	22.61	61.815	2.735	0.366	0	0.304	0.4289	Bi	900	1252	352	820	hP4	ti 12	6.15	7.88	1.282	0.6943	1.4402	0.345	0.655	2.01	4.32	e Im
	505	Bi	BiLi	21.31	28.894	1.356	0.737	0	0.0054	0.0321	Li	271.4	415	143.6	243	hR2	tP4	9.81	7.47	1.312	0.1944	5.1429	0.7913	0.2087	4.8	4.58	e It
	506	Ma	Ma-Bi-	14	84.045	6.004	0.167	0.0887	0.5892	0.8223	Bi	650	688	38	553	hP2	hP5	1.89	5.29	2.8	0.1274	7.8487	0.5666	0.4334	2.28	3.28	e Ri
1	507	Ma Ri	Ri	84.05	21 307	0 254	3 944	0.8514	0.9948	1	Bi	688	271.4	416.6	260	hP5	hR2	5.84	9.81	1.679	64.767	0.0154	0.0574	0.9426	3.28	4.8	e ld
	100	mg3Di2	Dillo	01.00	20 404	1 20	0.725	0.00.	0.0050	0 2082	Mn	2714	355	83.6	262	hR2	hP4	9.81	8.98	1.093	0.023	43.455	0.9692	0.0308	4.8	4.7	e, Id
	508	DI	DINII	21.31	29.404	1.00	0.120		0.0000	0.2002	Na	271 4	444	172.6	216	hR2	tP4	9.81	6.71	1 462	0.3929	2.5455	0.6108	0.3892	4.8	3.25	e Il
	509	BI	BINA	21.31	34.000	1.022	0.010	0.0144	0.0001	0.0331	Di	1020	1150	130	ARD	c12	1112	6.8	8 88	1 307	0 0836	11.963	0.8192	0.1808	1.32	3.71	c It
	510	NG	N02BI	21.21	22.998	2.04	0.319	0.0144	0.1001	0.413/	DI Di	400	174 4	107.6	270.2	AD16	hD2	10.0	0 R1	1 11	196	0.0051	0 0149	0 9851	4.2	4.8	e id
	511	NiBi₃	Bi	63	21.307	0.338	2.957	0.9144	0.9986	1	BI	469	2/1.4	197.0	270.3	0010	11146	10.5	0.01	1.10	1 6767	0.5064	0.718	0.282	3.06	48	e Im
	512	Bi ₂ Pb ₃	Bi	90.98	21.307	0.234	4.27	0.4	0.55	0.995	В	18/	2/0	83	125.5	nr2	IIR2	11.4	9.01	1.100	0.0702	14 004	0.0702	0.1002	4.8	2 03	a Id
	513	Bi	Bi ₂ Pd	21.31	45.141	2.119	0.472	0	0.0304	0.2027	Pd	271.4	380	108.6	256	hR2	mC12	9.81	11.6	1,164	0.0703	14.221	0.0703	0.1287	4.0	2.55	c Id
	514	BiPr ₂	Pr	57.07	21.214	0.372	2.69	0.5746	0.9533	0.9882	Pr	1100	931	169	894	112	hP4	8.25	6.64	1.242	30.230	0.0270	0.0091	0.9309	4.00	2.23	
	515	Bi	Bi ₂ Pt	21.31	45.957	2.157	0.464	0	0.0845	0.3179	Pt	271.4	640	368.6	270	hR2	0P24	9.81	13.3	1.36	0.1235	8.0998	0.7897	0.2103	4.0	3.90	e
	516	BiPt	Pt	26.66	9.095	0.341	2.931	0.4828	0.5531	1	Pt	765	1769	1004	730	hP4	cF4	15.2	21.5	1.415	0.3256	3.0/14	0.9	0.3	4.93	2.3	6 H
	517	Bi	Bi ₂ Rb	21.31	66.63	3.127	0.32	0	0.0066	0.1696	Rb	271.4	610	338.6	268	hR2	cF24	9.81	7.56	1.298	0.0168	59.423	0.95	0.00	4.0	3.70	C IU
	518	Bi	Bi₄Rh	21.31	83.485	3.918	0.255	0	0.0125	0.1096	Rh	271.4	460	188.6	269	hR2	cl120	9.81	11.2	1.147	0.0286	35	0.8993	0.1007	4.0	4.32	CIU
	519	Bi	Bi ₂ S ₃	21.31	75.54	3.545	0.282	0	0.001	0.1871	S	271.4	775	503.6	270	hR2	oP20	9.81	6.81	1.441	0.0022	456.54	0.9923	0.0077	4.8	3.9	C 10
1.	520	Bi	Bi ₇ Se ₃	21.31	210.31	9.87	0.101	0	0.0004	0.1611	Se	540	271.4	268.6	271	hR2	hR20	9.81	8.08	1.214	0.0003	3457.9	0.9972	0.0028	4.8	4.29	e 10
1-	521	Bi	Bi ₂ Sm	21.31	62.6	2.938	0.34	0	0.0145	0.0203	Sm	271.4	1412	1141	252	hR2	oP12	9.81	9.08	1.08	0.9121	1.0963	0.2718	0.7282	4.8	3.85	c im
ーイ	522	BiSm.	Sm	61.5	20.5	0.333	3	0.5903	0.7784	0.9724	Sm	1297	1074	223	897	t16	cl2	8.29	7.33	1.13	3.2856	0.3044	0.4773	0.5227	2.9	1.94	CRI
1	523	Sn	Bi	16 29	21.307	1.308	0.765	0.2098	0.5705	0.9989	Bi	205	271	66	139	tl4	hR2	8.03	9.81	1.222	0.5271	1.8971	0.592	0.408	3.4	4.8	ell
	624	Ri	Bi.Sr	21.31	76 88	3 608	0.277	0	0.0042	0.0189	Sr	271.4	630	358.6	265	hR2	cP4	9.81	9.29	1.055	0.0838	11.93	0.7678	0.2322	4.8	4.1	e Im
	575	Pi To	То	101 7	20 465	0.201	4 969	0 4801	0.846	0.9999	Те	586	449.5	136.5	413	hR5	hP3	7.87	6.24	1.263	14.922	0.067	0.2498	0.7502	4.6	5.8	c Im
	1200	Digites Digites	Th	169.0	10 780	0.125	8 027	0 6492	0.8162	1	Th	1700	1755	55	1350	hP16	cF4	11.3	11.7	1.042	7	0.1429	0.5342	0.4658	2.98	2.27	e Ri
E	020	DI31115	D: T)	01 21	56 505	2 652	0.377	0.0102	0.236	0 3052	π	271.4	213	58.4	198	hR2	hP3	9.81	11	1.123	1.1434	0.8745	0.248	0.752	4.8	3.8	e Im
E.	121	DI TI	Digit	21.31	00.000	4 507	0.62	0 4545	0.5244	0.5946	т	205	220	15	188	hP3	cF4	11	11.4	1.039	0.6044	1.6545	0.5104	0.4896	3.8	2.38	e Il
/ [-] ,.	-1 528	Bizil	BIII4	00.01	09.000	1.007	0.00	0.4040	0.0244	4	Ri .	1010	271 4	738.6	270	tP6	hR2	12.4	9.81	1.262	4992.2	0.0002	0.0005	0.9995	4.08	4.8	c Id
12 E	529	UBI ₂	Ві	53.01	21.307	0.402	2.400	0.0375	0.9990	0.0004		1010	1520		1145	hD2	oP32	4 47	77	1 724	0.1136	8.803	0.5573	0.4427	2.3	3.23	e Ri
E H	530	<u> </u>	Y ₅ Bi ₃	19.9	139.11	6.992	0.143	0.0232	0.3479	0.5651		1322	705	472 6	250	hD2	of 02	0.81	12 1	1 229	0 0733	13 649	0.8558	0.1442	4.8	3.87	e lt
ы	2 531	Bi	Bi ₂ Yb	21.31	49.017	2.301	0.435	0	0.0502	0.2925	YD	2/1.4	700	433.0	200	074	cE4	7 30	6.96	1.061	21 503	0.0465	0.2453	0.7547	2.8	2.01	e Rt
20	532	Bi ₂ Yb ₅	Yb	173.7	24.845	0.143	6.99	0.675	0.9167]	TD	1239	619	420	000	50724	602	0.91	7 13	1 375	0.0238	41 958	0 9899	0.0101	4.8	2.51	e ld
20	5 533	Bi	Zn	21.31	9.163	0.43	2.325	0.0196	0.0268		Zn	2/1.4	419	147.0	204.0	0172	1164	3.01	0.15	1.010	0.0200	12 042	0.846	0 154	1 98	48	c II
22	534	Ce	Ce ₂ C ₃	20.7	45.376	2.192	0.456	0.0036	0.021	0.1139	C	1505	798	707	660	CH4	CI4U	6.11	0.97	1.03	0.000	12.043	0.040	0.6664	2 34	3 22	c Rt
44	535	Cr	Cr23C6	7.23	181.89	25.16	0.04	0.0007	0.0362	0.0546	C	1863	1576	287	1532	Cl2	CF 116	7.19	6.97	1.032	0.0/94	12.092	0.3330	0.0004	2.57	4.05	c Im
	536	Cr ₇ C ₃	Cr ₃ C ₂	58.01	27.038	0.466	2.145	0.0901	0.1005	0.1334	С	1766	1811	45	1729	oP40	oP20	6.9	6.66	1.036	0.7027	1.4231	0.1000	0.2407	3.02	6.67	о II
	537	Fe	C	7.302	5.2995	0.726	1.378	0.021	0.0425	1	C	1538	3727	2189	1153	cF4	hP4	7.11	2.27	3,136	0.1044	9.5119	0.9230	0.0104	2.01	4 27	ວ່າ
	538	Fe	Fe ₃ C	7.302	23.233	3.182	0.314	0.0214	0.0431	0.0669	С	1538	1252	286	1147	cF4	oP16	7.65	7.73	1.01	0.2825	3.54	0.526/	0.4/33	2.01	4.21	الا ت ۱۰۰۰۰
	539	La	La,C,	22.46	51.59	2.297	0.435	0.003	0.0219	0.0922	C	918	1415	497	806	cF4	cl40	6.19	6.08	1.017	0.1192	8.39	0.785	0.215	2.01	4.0	e ()
	540	Mo	Mo-C	9 386	16,605	1.769	0.565	0.0152	0.025	0.0443	C	2620	2500	120	2205	cl2	hP3	10.2	12.3	1.201	0.2386	4.1911	0.7032	0.2968	2.94	4.10	e m

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

	1	N⁰	C,	С,	Vm,	Vm ₂	A,	A ₂	X _{e1}	X _{ei}	X _{e2}	%,	Tf ₁	Tf ₂	۸Ţ	T,	EC,	EC:	Pi	ρ:	B	٤	Ę	Vf	Vf ₂	ΔS_1	ΔSz	DM
		541	Nb	Nb ₂ C	10.83	21.894	2.022	0.494	0.0078	0.0149	0.0479	C	2460	3000	540	2340	cl2	hP4	8.18	9.04	1.105	0.0952	10.508	0.8351	0.1649	2.56	5.14	e It
		542	Pr	Pr-C-	20.5	47.72	2.328	0.43	0.0074	0.0148	0.091	c	900	1545	645	800	cl2	cl40	6.27	6.66	1.062	0.0397	25.216	0.9155	0.0845	2.25	4.8	e Id
i		543	Та	Ta C	10.85	24 819	2 287	0.437	0.005	0.009	0.0228	Ċ	3000	3330	. 330	2843	ci2	hP3	16.7	15.1	1.107	0.14	7.1412	0.7574	0.2426	1.8	4.42	e Im
		544	v	V.C	8 328	14,923	1.792	0.558	0.0105	0.0399	0.0802	Ċ	1900	2050	150	1650	cl2	hP3	6.12	7.63	1.248	0.3273	3.0555	0.6303	0.3697	1.84	3.78	e Im
		545	71	7rC	14 16	15 562	1 099	0.91	0.0027	0.0034	0.0609	Ċ	1850	3540	1690	1805	cl2	cF8	6.44	6.63	1.029	0.0105	95.077	0.9886	0.0114	2.17	4.4	c ld
		545	6	C2.C4	26.28	. QA RR	3.61	0 277	0.0021	0 4416	D 8262	Cd	842	527	315	408	cF4	tP20	1.55	3.64	2.35	0.1356	7.3763	0.6714	0.3286	1.79	2.11	e Rl
		547	CaCd	CaCq.	34.05	45 258	1 329	0 752	0 7371	0 7777	0 8489	Cd	685	701	16	624	cP2	hP12	4.48	5.85	1.307	0.3275	3.0537	0.6967	0.3033	3.6	2.32	e Im
		041 E40	CaCd	Ca Cd	45.00	884 72	10 55	0.051	0.7611	0.8963	0.911	Cd	701	622	79	614	hP12	hP68	5.85	7.11	1.215	0.1354	7.3863	0.2742	0.7258	3.6	2.41	e Im
	l	040	CaCd	CditCust	. 4J.20 . 00.22	12 000	0 147	6 70	0.0405	0.0000	. 1	Cd.	565	321.1	243.9	316	c 184	hP2	8.09	8.64	1.068	33.043	0.0303	0.1705	0.8295	2.47	2.58	e Rt
ł	1	549	Cacue		- 00.33		7 774	0.13	0.5450	0.0000	n 1173	<u> </u>	1084	950	134	917	cF4	hP6	8 94	6 47	1.38	0.2487	4.0205	0.341	0.659	2.29	2.2	e Rl
1	l	550	UU .	ClisCa		. 33.20	. 1.111	0.129		0.0000	0.1120		042	545	207	517	c17	0178	1 51	2.56	1 679	0.0389	25 695	0 4779	0 5221	1.79	2.53	e Rt
ł		551	Ca	Ca ₂₈ Ga ₁₁	26.28	131.8	28.08	0.030		0.2027	0.4005	Ua Ua	042	672	210	496	CIZ CEA	oP16	1.53	3 77	2 47	0.6429	1 5556	0 3243	0.6757	5 16	6.85	e Im
		552	Ca	Ca ₃ Hg	26.28	85.164	3.241	0.309		0.0230	0.0232	, riy	042	010 1	109.2	700	hD6	01 10	4.45	6 32	1 107	1 1623	0.8604	0.02 10	0 2756	1 79	37	e îm
1		552	CaGe ₂	Ge	41.65	13.632	0.327	3.055	0.7839	0.8515	. 1	Ge	830	938.3	108.3	740		LLO PD3	4.40	0.02	1.197	0.0054	1.0046	0.1244	0.5913	3.46	2 18	D DI
1		554	CaHg	CaHg ₂	31.99	44.613	1.395	0.717	0.8335	0.8825	0.9093	нg	901	740	210	114	-12 -12	1150	4 49	3.03	0 170	0.3534	1.0040	0.4107	0.0010	1 70	2.10	o Pl
		555	Ca	Ca ₃ In	27.08	73.116	, 2.7	0.37	0	0.2904	0.4885	In	842	765		632	CIZ	CF 10	1.40	3.21	4.205	1 4492	9	0.097	0.405	1.79	1.52	e N
		556	Ca ₃ In	Caln	73.12	34.532	0.472	2.117	0.4885	0.6119	0.7413	In	765	895	130	660	CF-16	CPZ	3.21	4.49	1.395	1.4403	4 202	0.0930	0.4002	2 10	1.0	e N
		557	Caln	Caln ₂	34.53	48.429	1.402	0.713	0.7413	0.8048	0.8516	In	895	835	60	783	CPZ	NPb	4.49	5.57	1.242	0.7794	1.203	0.4/10	0.0222	1.04	1.01	e Ru
		558	Caln ₂	In	48.43	15.765	0.326	3.072	0.8516	0.9997	<u>,</u> 1	۱n.	835	156.6	678.4	156	hP6	1112	5.57	1.28	1.308	995.72	0.001	0.0031	0.9909	1.01	3.03	e RV
		559	Ca	CaLi ₂	26.28	52.077	1.982	0.505	0.0189	0.2062	0.2575	Li	842	240	602	230	cF4	hP12	1.53	1.04	1.472	2.7101	0.369	0.15/	0.843	1.79	3.44	E KL
		560	CaLi₂	Li	52.08	13.015	0.25	4.001	0.2575	0.6657	0.9449	Ľ.	240	180.6	59.4	141	hP12	cl2	1.04	0.53	1.943	11.368	0.088	0.2603	0.7397	3.44	1.0	e KL
		561	Mg	Mg ₂ Ca	14	51.441	3.675	0.272	0.0134	0.1621	0.4515	Ca	640	715	75	516.5	hP2	hP12	1.74	1.72	1.007	0.1407	7.105	0.6591	0.3409	2.20	3.30	e ru
		562	Mg ₂ Ca	Ca	51.44	26.279	0.511	1.957	0.4515	0.8168	. 1	Ca	715	842	127	445	hP12	cF4	1.72	1.53	1.131	4.4119	0.2267	0.3073	0.6927	3.32	1.79	e Ki
		563	Ca	Na	27.08	23.787	0.878	1.138	0.0444	0.9983	1	Na	842	97.8	744.2	97.5	cl2	cl2	1.48	0.97	1.531	954.53	0.001	0.0012	0.9988	1.79	1./	CKV
		564	CaPb	CaPb ₃	35.43	70.86	2	0.5	0.8379	0.8999	0.9394	Pb	968	666	302	638	tP4	cP4	6.98	9.34	1.338	0.587	1.7037	0.46	0.54	3.23	3	e Ki
1	$\boldsymbol{\lambda}$	565	CaPb ₃	Pb	70.86	18.265	0 258	3.88	0.9394	0.9989	0.9993	Pb	666	327.5	338.5	326.2	cP4	cF4	9.34	11.3	1.215	464.44	0.0022	0.0083	0.9917	3	1.91	e KV
6	Ŕ	566	Ca ₃ Pd ₂	CaPd	78.27	26.046	0.333	3.005	0.639	0.6485	0.7264	Pđ	765	910	145	750	hR15	cP2	4.26	5.62	1.322	0.2778	3.6	0.9154	0.0846	1.95	2	e KV
1		567	CaPd	CaPd ₂	26.05	33.732	1.295	0.772	0.7264	0.7571	0.8417	Pd	910	1305	395	850	cP2	cF24	5.62	7.5	1.333	0.21	4.7613	0.7862	0.2138	3.38	2.06	e Kt
		568	CaPd,	Pd	33.73	8.865	0.263	3.805	0.8417	0.9331	1	Pd	1305	1555	250	1095	cF24	cF4	7.5	12	1.601	3.2429	0.3084	0.5399	0.4601	2.06	2.19	e Ri
		569	Ca	Ca,Pt,	27.08	122.46	4.522	0.221	0	0.4621	0.661	Pt	842	850	8	585	cl2	mC28	1.48	4.82	3.258	0.1576	6.3433	0.5838	0.4162	1.79	1.94	c Ri
		570	Ca	Ca.Sb.	27.08	122.46	4.522	0.221	0.1071	0.3026	0.6457	Sb	800	825	25	650	cl2	hP16	1.6	4.62	2.88	0.0436	22.914	0.8352	0.1648	1.79	3.09	e Rt
•		571	CaSb	Sb	52.05	19.067	0.366	2.73	0.8588	0.9159	0.9801	Sb	730	620	110	585	mP6	hR2	5.45	6.14	1.126	2.1556	0.4639	0.5588	0.4412	4.1	5.26	e II
		572	CaSi	Si	39.53	12.058	0.305	3.279	0.584	0.6138	1	Si	1040	1414	374	1030	hR6	cF8	2.43	2.33	1.045	0.2647	3.7773	0.9253	0.0747	5.37	7.16	e It
Ā		673	CaSn.	Sn	63.82	16 294	0 255	3.917	0.8988	0.9986	. 1	Sn	630	231.9	398.1	230	cP4	tl4	6.2	7.28	1.174	245.91	0.0041	0.0157	0.9843	4.11	3.4	e Id
12		574	Ca	Ca.Tl	27 08	72 84	2.69	0 372	D	0.4927	0.6296	TI	842	625	217	550	cl2	cF16	1.48	4.46	3.011	0.4444	2.25	0.4555	0.5445	1.79	1.8	e Ri
	<u> </u>	574	Co 7-	Co 7o	04 20	147 11	1 743	0 574	0 3522	0.381	0 4946	7n	394	414	20	391	oC16	t132	2.2	2.7	1.225	0.1188	8.4167	0.8284	0.1716	1.97	2.06	e Rt
	22	5/5	Cajcii	CoZo	40.15	62 744	1 688	0.61	0.0022	0.001	0.8905	70	642	695	53	638	hP32	hP6	5.88	5.76	1.022	0.1352	7.3939	0.8232	0.1768	2.33	2.4	e Rt
Ľ	5	5/6	CaZily CaZa	CoZo	40.13	117 72	1 847	0.541	0.0000	0.0100	0.9474	Zn	695	724	29	690	hP6	t148	5.76	6.45	1.12	0.2925	3.4184	0.6493	0.3507	2.4	2.45	e Ri
Τ.	~	5//	Cazns	Cazinii	03.14	117.72	0.041	0.041	0.0000	0.6126	0.6589	Cd	547	563	16	544	cF1124	cl52	9.1	9.09	1.001	0.4598	2.1747	0.5135	0.4865	2.4	2.47	e Ri
\supset	3	578	Cu,Cd,	CULCO	64.95	133.05	2.001	0,400	0.0700	0.0130	0.0009	24	307	321.1	75.9	314	hP28	hP2	9.41	8.64	1.089	144.33	0.0069	0.0692	0.9308	2.5	2.58	e Rv
π	$ \geq $	579	CU3Cd10	Ca	139.7	13.009	0.093	0 775	0.0041	0.900	0.3303		822	760	62	445	cl2	cP2	5.24	7.07	1.348	0.618	1.6182	0.5563	0.4437	2.3	3.8	e Il
5		580	Eu	EUCd	28.98	37.402	1.29	0.775	0 0040	0.1970	0.3010	- Cu	760	720	40	670	cP2	ol12	7 07	7.4	1.047	1.0428	0.959	0.4134	0.5866	3.8	2.5	e Il
×1		581	EuCd	EuCd ₂	37.4	50.901	1.361	0.735	0.3818	0.0104	0.597	67	100	207	201 4	29.38	hP2	0C8	8.64	5,91	1,461	999	0.001	0.0011	0.9989	2.58	4.42	e ld
2		582 .	Cđ	Ga	13.01	11.769	0.906	1,103	0 4070	0.9904	0.4169	04	1212	1170	143	937	cl2	cP2	7.4	8.62	1.166	0.1099	9.0978	0.8543	0.1457	2.33	2.45	e Rt
		583	Gd	GdCd	20.15	31.282	1.552	0.644	0.10/8	0.2091	0.4100	Cd.	716	221.1	201.0	316	c 169	hP2	R 86	8 64	1 025	33 038	0.0303	0.1793	0.8207	2.54	2.58	e Rt
	- (584	GdCd ₆	Cd	93.89	13.009	0.139	1.217	0.8107	0.9654		CG.	110	J21.1	394.9	200	CE0	hP2	5 22	8 64	1 622	433 7R	0.0023	0.0024	0.9976	6.85	2.58	c ld
	ł	695	Go	Cd	13.63	13 009	0.954	1.048	0	0.9985	1	C.O	930.3	: 321.1	017.2	320	uro	08.4	0.00	0.04							<u> </u>	

	N°	C1	C2	Vm,	Vm ₂	A ₁	A ₂	X _{e1}	X _{el}	Xe2	%p	Tf ₁	Tf ₂	ΔT	Ť,	EC1	EC1	ρ ₁	Ρ:	В	ε,	£2	Vf	Vf ₂	۸S ₁	.\S2	DM
1	586	La	LaCd	23.28	35.84	1.54	0.65	0.177	0.1947	0.4473	Cd	918	946	28	23	cl2	cP2	5.97	7.01	1.175	0.0386	25.918	0.9439	0.0561	2.01	3.7	e Id
1	587	LaCd	LaCd-	35.84	48.06	1.341	0.746	0.4473	0.5277	0.6184	Cď	946	953	7	891	cP2	hP3	7.01	7.57	1.079	0.613	1.6314	0.5489	0.4511	3.7	2.4	e II
	588	LaCd-	laCd	48.06	1023.B	21.3	0.047	0.6184	0.7171	0.7832	Cd	953	874	79	826	hP3	hP142	7.57	8.13	1.074	0.0652	15.344	0.4187	0.5813	2.4	2.48	e Rt
i	580	Cd	Cd. Na-	13.01	177 84	13 67	0.073	0	0.0107	0.0359	Na	321.1	364	42.9	288	hP2	cP39	8.64	7.21	1.198	0.037	27.044	0.6642	0.3358	2.58	2.45	e Ri
	500	Cd No.	Cd No.	177.9	. A3 26	0.243	A 111	0 0359	0.053	0.0927	Na	364	384	20	348	cP39	cF1192	7.21	5.73	1.259	2.2412	0.4462	0.6472	0.3528	2.45	2.28	e Ri
İ	590	Cutting	Cd Ni	12.04	70 500	6 497	0.194		0.000	0.0021	Ni	321.1	495	173.9	318	hP2	cP48	8 64	8 79	1.018	0.0069	145.88	0.9641	0.0359	2.58	2.55	e Rv
{	591			12.01	70.330	. J.421	0.104		0.0000	0.0505	D	321.1	740	418.9	318	hP2	1P40	8.64	5.64	1.532	0 0025	395	0.9864	0.0136	2.58	2.3	c Rv
i i	592		UU3P2	13.01	10.77	. 0.44 1.404	0.104	. U	0.0014	0.1552	Dh	321.1	305	16.1	248	hP2	rF4	8 64	11.1	1 284	3 2228	0 3103	0 181	0.819	2.58	1.91	e Rt
	593		PD	13.01	10.200	1.404	0.712	. v	0.0231	0.5071	Ch	331.1	456	134.0	200	hP2	oP16	8 64	6.84	1 264	0.0814	12 286	0.8235	0 1765	2 58	5.3	e It
1	594	Ca	Caso	13.01	J4.240	2.032	0.30	. U	0.0704	0.52	Ch.	456	620.7	174.7	445	oP16	hp2	6.84	6 69	1 022	0 2788	3 5862	0.871	0 129	3 92	5 26	e lt
1	595	COSD	SD	34.25	18.193	0.531	1.662	0.5299	0.0090	0.4070	30	4074	4022	E1	700	60110	-D2	7.50	8.05	1.076	1 0625	0.0412	8336.0	0.6332	1 58	3.64	c Im
	596	Sm	SmCd	20	32.5	1.625	0.615	. 0	0.278	0.4278	UQ.	10/4	1023		100	into - D0	UP2	1.02	0.00	1.070	4 702	0.0412	0.3000	0.0002	2.64	2 37	a Im
	597	SmCd	SmCd ₂	32.5	44.67	1.374	0.728	0.4278	0.5495	0.5996	Cd	1023	910	113	865	CPZ	nP3	8.08	0.4	1.039	1.702	0.0070	0.2995	0.7003	3.04	2.51	6 III
	598	SmCd _z	Sm11Cd45	44.67	206.1	4.614	0.217	0.5996	0.6916	0.7541	Cd	910	728	182	780	hP3	cF448	8.4	10.2	1.215	0.2627	3.8062	0.452	0.548	2.31	2.43	e Ku
i	599	Cd	Cd ₃ Sn ₇	13.01	78.3	6.019	0.166	0.0025	0.6775	0.944	Sn	321.4	223	98.4	176	hP2	hP2	8.64	14.9	1.727	0.2438	4.102	0.4053	0.5947	2.58	3.15	ек
1	600	Cd ₃ Sr ₅	Sr	190.9	33.91	0.178	5.629	0.5651	0.7572	1	Sr	430	769	339	384	tl32	cF4	4.06	2.58	1.572	. 7	0:1429	0.4457	0.5543	2.17	1.92	e Ki
	601	Cd	CdTe	13.01	41.008	3.152	0.317	0	0.0001	0.5317	Te	1098	321.1	776.9	321	hP2	cF8	8.64	5.85	1.476	0.0001	9998	0.9997	0.0003	2.58	4.19	e Id
	602	CdTe	Te	41.01	20.465	0.499	2.004	0.5317	0.9877	1	Te	1098	449.6	648.4	449.6	cF8	hP3	5.85	6.24	1.065	69.942	0.0143	0.0279	0.9721	4.19	5.8	e ld
	603	Cd	Cd.,Th	13.01	160.2	12.31	0.081	0	0.0103	0,158	Th	321.1	525	203.9	315	hP2	cP36	8.64	9.17	1.061	0.0053	187.93	0.9385	0.0615	2.58	2.52	e Rv
ļ	604	CdTh	Th	35.42	19.78	0.558	1.791	0.6737	0.7037	1	Th	930	1755	825	910	oP24	cF4	9.72	11.7	1.206	0.1505	6.6429	0.9225	0.0775	2.23	1.89	e Rv
	605	TiCd	Cd	22.74	13.009	0.572	1.748	0.7012	0.9996	1	Cd	620	321.1	298.9	321	tP4	hP2	7.05	8.64	1.226	998	0.001	0.0017	0.9983	3.75	2.58	c ld
ļ	606	Cd	П	13.01	17.58	1.351	0.74	0	0.831	0.9747	TI	321.1	285	36.1	203.5	hP2	ci2	8.64	11.6	1.345	3.1787	0.3146	0.1888	0.8112	2.58	1.78	e Rt
	607	Vh	YbCd	24 85	33 254	1.338	0.747	0.0091	0.1571	0.3938	Cd	819	796	23	462	cF4	cP2	6.96	8.58	1.232	0.3791	2.6377	0.6634	0.3366	2.01	3.7	e Im
	608	YhCd	YhCda	33 25	44,889	1.35	0.741	0.3938	0.5061	0.5654	Cd	796	703	93	680	cP2	hP12	8.58	8.86	1.033	1.3574	0.7367	0.3531	0.6469	3.7	3.63	e Im
	600	Vh. Cd.	YhCd.	869 7	91 609	0 105	9.494	0.7034	0.7538	0.7877	Cd	655	636	19	627	hP68	cl176	9.38	9.25	1.014	14.332	0.0698	0.3985	0.6015	2.16	2.5	e Ri
	610	VhCd.	Cd	91 61	13 009	N 142	7 042	0.7956	0.9847	1	Cd	614	321.1	292.9	317	cl176	hP2	9.25	8.64	1.071	93.093	0.0107	0.0703	0.9297	2.5	2.58	e Rv
X	611	1000g	7n	12.89	9.21	0 715	1.399	0 0258	0.1741	0.9787	Zn	310	415	105	266	hP2	hP2	8.72	7.1	1.229	0.3169	3.1553	0.8153	0.1847	2.58	2.51	e Rt
2	011	00	<u></u>	20.7	20.02	1 445	0.692	0.0200	0 1172	0.1614	Со	798	446	352	424	cF4	hP70	6.77	7.66	1.132	1.622	0.6165	0.299	0.701	1.98	2.02	e Rt
	012		00240011	20.7	20.02	0 030	1 065	0 1614	0 1781	0 4572	Co	446	1036	590	443	hP70	cF24	7.66	9,18	1.198	0.053	18.875	0.9526	0.0474	2.02	2.06	e Rv
	613	Ce24C011	CeCO2	29.92	7 12	0.335	2 013	0.0056	0.0102	1	Cr	798	1863	1065	785	cl2	cl2	6.65	7.19	1.081	0.0372	26.887	0.9874	0.0126	1.98	2.34	c Rv
1	614	Ce	UT	21.00	1.23	0.040	2.913	0.0000	0.0152	0.260	6	1085	038	146.9	876	cF4	oP28	8 94	8 24	1.085	0.2426	4.1216	0.3165	0.6835	2.29	2.25	e RI
	615	Cu	Cu ₆ Ce	7.111	03.20	0.099	0.112	0.0554	0.179	0.205	00	700	817	10.0	756	oP20	0112	7 75	7 62	1.017	1 3695	0.7302	0.5144	0.4856	2.23	2.19	e Ri
1	616	Cu4Ce	Cu2Ce	50.89	35.082	0.689	1.45	0.3004	0.4300	0.524	Ce	730 64C	709	262	424	01 20	cF4	7 02	6 77	1 037	1 5714	0 6364	0.4714	0.5286	2.14	1.98	e Ri
\geq	617	CuCe	Ce	29	20.699	0./14	1.401	0.688	0.8501		Ce	510	790	400	502	-E24	6E4	86	6 77	1 27	8 985	0 1113	0 1361	0.8639	2	1.98	e Rt
	618	Fe ₂ Ce	Ce	29.29	20.699	0.707	1.415	0.5561	0.926	1	Ce	925	795	130	092	ur24	4014	5.01	6.61	1 119	1E-05	100080	0 0000	7E-05	4 42	4.07	e id
AF	619	Ga	Ga ₆ Ce	11.79	84.469	7.165	0.14	0	2E-05	0.2511	Ce	29.7	637	607.3	29	000	(P 14	5.51	0.01	4 94	1 5556	0.6420	0.5555	0 2535	26	1 98	e Rt
5	620	GaCe ₃	Ce	94.84	20.699	0.218	4.582	0.8577	0.9015	1	Ce	557	798	241	495	CP4	Cr4	5.17	6.77	1.31	1.5500	0.0423	0.7400	0.2000	4.4	6.43	o Id
20	621	CeGe	CeGe ₂	30.98	38.856	1.254	0.797	0.3413	0.3503	0.4486	Ge	1433	1513	80	1340	0P8	U12	6.87	7.34	1.069	0.0660	14.074	0.9200	0.0192	6 42	5.61	с IU о 11
ر سار. سر	622	CeGez	Ge	38.86	13.632	0.351	2.85	0.4593	0.7312	0.9904	Ge	1513	938.3	574.7	810	112	C⊦8	7.34	5.32	1.3/9	4.1215	0.2420	0.4000	0.0912	1.09	3.06	o Pt
\circ	623	Ce	Ce ₃ In	21.06	73.496	3.49	0.287	0.0835	0.1091	0.2056	In	798	910	112	730	cl2	CP4	6.65	1.28	1.094	0.0690	14.3/0	0.0047	0.1533	1.50		e int
2	624	Celny	Celn,	48.98	61.46	1.255	0.797	0.6214	0.6352	0.7108	In	1130	1180	50	1120	0112	cP4	7.55	7.88	1.044	0.1393	7.179	0.8512	0.1488	1.8/	3	e KL
6	625	Cein	In	61.46	15.765	0.257	3.899	0.7108	0.9988	1	In.	1180	156.6	1023	156	cP4	ti2	7.88	7.28	1.083	996	0.001	0.0039	0.9961	1.86	1.82	e KV
1	626	Celly	Ceire	94.87	63.78	0.672	1.487	0.8278	0.862	0.8725	lr .	2020	1960	60	1885	hR18	cF24	17.1	17.3	1.008	4.8454	0.2064	0.2349	0.7651	2.23	2.24	C Rt
	627	Celr	lr I	63.78	8.521	0.134	7.485	0.8725	0.886	1	lr :	1960	2447	487	1880	cF24	cF4	17.3	22.6	1.307	0.6801	1.4704	0.9167	0.0833	2.24	2.3	C Rt
B	628	Ma	ManCe	14	191.53	13.68	0.073	0.0052	0.2057	0.3244	Ce	650	611	39	592	hP2	t126	1.74	2.25	1.298	0.0951	10.514	0.4345	0.5655	2.28	2.26	e Rt
	629	MoCe	Ce	35,73	21.061	0.589	1.696	0.8521	0.9146	0.9245	Ce	711	720	9	688	cP2	c12	4.6	4.91	1.066	9.9747	0.1003	0.1454	0.8546	3.5	1.17	e Rt
	630	Co	Mn	20.7	7.352	0.355	2.815	0.0079	0.07	0.9873	Mn	798	1246	448	622	cF4	cl58	6.77	7.47	1.104	0.1725	5.798	0.9423	0.0577	1.98	2.32	e Kv

	N°	C1	C2	Vm ₁	Vm ₂	Α,	A ₂	X _{e1}	X _{et}	X _{e2}	%p	Tí,	Tf ₂	Л	T,	EC,	EC2	ρı	ρ:	В	٤	8 <u>1</u>	Vf	Vf ₂	ΔS ₁	AS ₂	DM
	631	Ce	Ce ₇ Ni ₃	20.95	162.17	7.741	0.129	0.0042	0.1057	0.1522	Ni	798	500	298	477	hP4	hP20	6.69	7.13	1.067	0.264	3.7874	0.3285	0.6715	1.98	2.1	e Ri
ł	632	Ce7Ni3	CeNi	162.2	26.158	0.161	6.2	0.1522	0.1711	0.2953	Ni	500	680	180	495	hP20	oC8	7.13	7.6	1.065	0.8824	1.1333	0.8754	0.1246	2.1	2.18	e Rt
ļ	633	CeNi	CeNi ₂	26.16	28.395	1.086	0.921	0.2953	0.3387	0.4563	Ni	680	830	150	655	oC8	cF24	7.6	9.07	1.193	0.2848	3.5111	0.7638	0.2362	2.18	2.25	e Rt
	634	CeNis	Ni	49.59	6.59	0.133	7.525	0.6764	0.809	1	Ni	1340	1455	115	1210	hP6	cF4	8.75	8.91	1.019	5.1314	0.1949	0.5946	0.4054	2.3	2.38	e'RI
	635	Ce ₃ Pd ₅	CePd ₃	83.86	42.304	0.504	1.982	0.5586	0.5745	0.6949	Pd	1037	1437	400	992	hP6	cP4	11.4	10.9	1.046	0.2727	3.6667	0.8791	0.1209	2.11	2.14	c Rt
	636	CePd ₃	CePds	42.3	59.484	1.406	0.711	0.6949	0.7523	0.7911	Pd	1437	1340	97	1228	cP4	cF4	10.9	11.3	1.041	1.0102	0.9899	0.4131	0.5869	2.14	2.16	c Ri
ļ	637	CePd ₉	Pd	96.08	8.865	0.092	10.84	0.8417	0.9098	0.9288	Pd	1543	1555	12	1265	cF4	cF4	11.4	12	1.051	37.021	0.027	0.2265	0.7735	2.17	2.19	c Rt
	638	Ce	Ce,Pt3	20.7	200.65	9.694	0.103	0	0.1972	0.3737	Pt	798	975	177	580	cF4	hP20	6.77	7.81	1.153	0.1	10	0.5078	0.4922	1.98	2.1	c RI
	639	Ce ₃ Pt ₄	CePt ₂	93.74	34.707	0.37	2.701	0.6495	0.6762	0.7361	Pt	1600	2200	600	1550	hR14	cF24	12.8	15.3	1.193	1.0102	0.9899	0.7278	0.2722	2.16	2.2	c Rt
1	640	CePts	Pt	65.74	9.095	0.138	7.228	0.8741	0.9412	1	Pt	1800	1769	31	1575	hP6	cF4	17	21.5	1.264	6.5256	0.1532	0.5255	0.4745	2.25	2.3	C RI
	641	Pu	Ce	14.46	19.049	1.318	0.759	0.0927	0.1027	0.5292	Ce	640	798	158	625	cl2	cF4	15.7	10.4	1.501	0.0266	37.572	0.9661	0.0339	0.73	1.17	e Rv
	642	CeS	Ce ₃ S ₄	28.87	96.614	3.347	0.299	0.1862	0.2077	0.2151	S	2450	2050	400	2000	cF8	cl28	5.96	5.68	1.05	0.9153	1.0925	0.2461	0.7539	2.64	2.7	e Rt
	643	Ce	Ce ₂ Sb	21.06	55.662	2.643	0.378	0.0174	0.0349	0.3026	Sb	798	1250	452	790	cl2	ti12	6.65	7.22	1.086	0.0228	43.833	0.9431	0.0569	1.98	4.3	c Id
1	644	Ce	Ce ₅ Si ₃	20.7	127.98	6.183	0.162	0	0.0171	0.1074	Si	798	1400	602	650	cF4	t132	6.77	6.13	1.104	0.0339	29.5	0.8267	0.1733	1.98	4.2	<u>c; It</u>
	645	Ce _s Si ₃	Ce ₃ Si ₂	128	78.68	0.615	1.627	0.1074	0.1115	0.1179	Si	1400	1390	10	1270	tl32	tP10	6.13	6.06	1.013	1.0667	0.9375	0.604	0.396	3.92	4.05	c II
	646	Ce ₃ Si ₂	Ce ₅ Si ₄	78.68	143.22	1.82	0.549	0.1179	0.1268	0.138	Si	1390	1440	50	1360	tP10	tP36	6.06	5.68	1.067	0.4632	2.1588	0.5425	0.4575	4.05	4.28	c 11
	647	Ce ₄ Si ₄	CeSi	143.2	29.56	0.206	4.845	0.138	0.1458	0.167	Si	1440	1470	30	1390	tP36	0P8	5.68	5.69	1.002	1.799	0.5559	0.7292	0.2708	4.28	4.6	c Im
	648	CeSi	Ce ₃ Si ₅	29.56	96.223	3.255	0.307	0.167	0.1844	0.2504	Si	1470	1560	90	1400	oP8	ol12	5.69	5.83	1.02	0.0789	12.667	0.7956	0.2044	4.6	5.21	c It
	649	CeSi ₂	Si	36.89	12.058	0.327	3.059	0.2865	0.5729	1	Si	1620	1414	206	1200	tl12	cF8	5.32	2.33	2.284	4.6873	0.2133	0.3949	0.6051	6.63	7.16	c Ii
	650	Ce	Ce ₃ Sn	21.06	72.036	3.42	0.292	0	0.0427	0.2202	Sn	798	940	142	725	ci2	cP4	6.65	7.48	1.125	0.0625	16	0.8239	0.1761	1.98	3.95	c It
	651	CeSn ₃	Sn	63.42	16.294	0.257	3.892	0.7176	0.9823	1	Sn	1162	232	930	230	cP4	ti4	7.82	7.28	1.074	62.667	0.016	0.0585	0. 9 415	3.95	3.4	c ld
	652	Ce	CeTe	21.06	38.736	1.839	0.544	0.0091	0.0182	0.4766	Te	798	1820	1022	760	cl2	cF8	6.65	6.91	1.039	0.0104	95.914	0.9812	0.0188	1.98	5.27	c Id
	653	CeTe ₃	Te	75.7	20.465	0.27	3.699	0.732	0.989	1	Te	607	449.5	157.5	435	oC16	hP3	6.91	6.24	1.108	96	0.0104	0.0371	0.9629	4.8	5.8	c id
	654	Ti	Ce	10.63	21.061	1.981	0.505	0.023	0.9959	1	Ce	1670	798	872	790	hP2	ci2	4.5	6.65	1.477	80.428	0.0124	0.0062	0.9938	2.16	1.17	e Rv
	655	Ce	Ce3TI	21.06	73.052	3.469	0.288	0.1261	0.1659	0.3213	TI	798	780	18	685	cl2	cP4	6.95	8.55	1.231	0.06	16.658	0.8277	0.1723	1.98	3.05	e Rt
0	656	CeTI	Ce ₁ TI,	36.53	136.53	3.738	0.268	0.6029	0.6863	0.7041	TI	1210	1100	110	1090	cP2	oC32	8.34	10.6	1.267	0.9889	1.0112	0.2129	0.7871	3.28	1.85	e Rt
0	657	Ce ₃ Tl ₅	CeTI,	136.5	65.328	0.478	2.09	0.7129	0.7645	0.814	TI	1100	1060	40	1040	oC32	cP4	10.6	11.5	1.091	1.9964	0.5009	0.5114	0.4886	1.85	2.95	e Ri
	658	CeTl ₁	Π	63.33	17.577	0.278	3.603	0.814	0.9993	1	TI	1060	304	756	303	cP4	cl2	11.9	11.6	1.023	996	0.001	0.0036	0.9964	2.95	1.78	e Rv
	659	Ce	CeZn	20.7	30.508	1.474	0.678	0	0.0929	0.3181	Zn	798	825	27	495	cF4	cP2	6.77	6.74	1.005	0.2813	3.5556	0.7069	0.2931	1.98	3.62	e Im
	660	CeZn	CeZn,	30.51	39.618	1.299	0.77	0.3181	0.3697	0.4831	Zn	825	875	50	795	cP2	ol12	6.74	6.84	1.015	0.3454	2.8955	0.6904	0.3096	3.62	2.33	e Im
	661	CeZn ₂	CeZn ₃	39.62	48.312	1.219	0.82	0.4831	0.5603	0.5833	Zn	875	820	55	810	ol12	oC16	6.84	6.96	1.018	2.7091	0.3691	0.2324	0.7676	2.33	2.38	e Rt
E	662	Ce	Zr	21.06	14.02	0.666	1.502	0.0065	0.0131	0.9107	Zr	798	1855	1057	798	cl2	hP2	6.65	6.51	1.023	0.0113	88.822	0.9926	0.0074	1.98	2.17	c:Rv
,F	663	Cr	Cm	7.23	18.059	2.498	0.4	0	0.8728	1	Cm	1863	1277	586	860	cl2	hP4	7.19	5.32	1.353	3.7175	0.269	0.0972	0.9028	2.34	2.22	c Rv
12-	664	Co	Cr	6.706	7.23	1.078	0.928	0.3704	0.4094	0.439	Cr	1420	1440	20	1400	cF4	cl2	8.48	7.7	1.102	1.3506	0.7404	0.4071	0.5929	2.1	2.34	e Ri
	665	Co	Co ₁₇ Dy ₇	6.706	147.71	22.03	0.045	0	0.1719	0.2444	Dy	1495	1390	105	1365	cF4	hP38	8.79	8.98	1.022	0.1052	9.5037	0.3014	0.6986	2.1	2.13	e Rt
υĔ	666	Co ₄ Dy	Co,Dy,	50.42	78.471	1.556	0.643	0.356	0.423	0.4403	Dy	1360	1350	10	1345	hP6	hR18	9.07	9.4	1.037	2.3871	0.4189	0.2121	0.7879	2.16	2.17	e Rt
	667	Co ₂ Dv	Co,Dv,	87.31	259.69	2.974	0.336	0.7859	0.8053	0.8256	Dy	1275	765	510	745	hP22	mP38	9.47	9.1	1.041	0.3341	2.9929	0.5016	0.4984	2.3	2.3	e Ri
00	668	CopDyn	CoDv	259.7	61.06	0.235	4.253	0.8256	0.8542	0.8921	Dy	765	875	110	755	mP38	oP16	9.1	8.95	1.017	3.256	0.3071	0.5664	0.4336	2.3	3.48	e Ri
H C	669	CourFra	Co.Er	146.1	49.92	0.342	2.926	0.2498	0.279	0.3626	Er	1345	1355	10	1335	hP38	hP6	9.15	9.25	1.011	1.0115	0.9886	0.7431	0.2569	2.12	2.13	e Rt
6	670	Co.Er	Co,Er,	49.92	77.139	1.545	0.647	0.3626	0.415	0.4475	Er	1355	1345	10	1330	hP6	hR18	9.25	9.68	1.047	0.9992	1.0008	0.3931	0.6069	2.13	2.14	e Ri
ਸ਼ਿੰਹ	671	Co.Fr	Co.Fr.	27.59	254.43	9,222	0.108	0.5863	0.8161	0.8298	Er	1355	810	545	795	cF24	mP38	10.3	9.51	1.087	1.9895	0.5026	0.0517	0.9483	2.21	2.21	e Rt
2	672	Co.Fr	CoEr	254.4	59.116	0.232	4.304	0.8298	0.8578	0.8949	Er	810	900	90	800	mP38	oP16	9.51	9.48	1.003	3.256	0.3071	0.5693	0.4307	2.21	2.23	e Ri
	673	Co	ConGd	6,706	148.52	22.15	0.045	0	0.2088	0.2384	Gd	1495	1385	110	1365	cF4	hP38	8.79	8.86	1.009	0.3157	3.1678	0.1251	0.8749	2.1	2.12	e Rt
	674	Co-Gd	Co-Gd-	90.56	266.4	2.942	0.34	0.7803	0.8321	0.8501	Gd	665	650	15	620	hP22	mP38	8.9	8.63	1.031	1.0087	0.9914	0.2521	0.7479	2.23	2.25	e Rt
	675	Co	Co.Ge	6.67	53.136	7.966	0.126	0.2128	0.2966	0.3723	Ge	1280	1200	80	1108	hP2	hP6	9.27	9.64	1.04	0.1335	7.4923	0.4847	0.5153	2.1	4.27	e II

		N٥	C,	C ₂	Vm ₁	Vm ₂	A	A ₂	X _{e1}	X _{eL}	X _{e2}	%,	Tf ₁	Tf ₂	71	T,	EC	EC2	ρı	ρ:	В	El	£2	Vf ₁	Vf ₂	ΔS1	ΔS2	DM
i		676	CoGe,	Ge	26.13	13.632	0.522	1.917	0.7116	0.7691	1	Ge	832	938	106	817	oC24	cF8	7.81	5.32	1.467	0.7	1.4287	0.7325	0.2675	5.27	6.85	e Im
		677	Co	Co ₇ HI	6.706	60.2	8.977	0.111	0.006	0.2724	0.302	Hſ	1495	1250	245	1230	cF4	tP32	8.79	9.82	1.117	0.8964	1.1156	0.1105	0.8895	2.1	2.12	e Rt
		678	Co ₂ Hf	CoHf	24.71	19.078	0.772	1.295	0.6019	0.6999	0.7518	s Hr	1650	1620	30	1550	cF24	cP2	12	12.4	1.038	2.3548	0.4247	0.3549	0.6451	2.17	3.6	e Im
		679	CoHf ₂	H	33.11	14.168	0.428	2.337	0.8961	0.949	0.9665	5 Hf	1315	2231	916	1270	cF96	cl2	12.6	12.6	1.003	7.0454	0.1419	0.2491	0.7509	2.23	2.3	e Rt
		680	Co	Co ₁₇ Ho ₂	6.706	107.08	15.97	0.063	0	0.174	0.2472	2 Ho	1495	1370	125	1345	cF4	hP52	8.79	12.4	1.415	0.1052	9.5037	0.3731	0.6269	2.1	2.14	e Rt
		681	CosHo	Co7Ho2	50.06	77.742	1.553	0.644	0.3594	0.3963	0.444	Но	1355	1365	10	1340	hP6	hR18	9.18	9.55	1.04	0.4788	2.0885	0.5736	0.4264	2.16	2.18	e Ri
		682	Co ₂ Ho	Co7HO12	27.75	256.41	9.24	0.108	0.5828	0.8076	0.8278	B Ho	1330	795	535	775	cF24	mP38	10.2	9.33	1.093	1.3184	0.7585	0.0759	0.9241	2.21	2.3	e Rt
		683	Co ₇ Ho ₁₂	CoHo ₃	256.4	60.16	0.235	4.262	0.8278	0.8503	0.8936	5 Ho	795	895	100	770	mP38	oP16	9.33	9.2	1.013	2.2555	0.4434	0.6539	0.3461	2.3	2.36	e Ri
		684	Coln ₃	In	49.89	15.765	0.316	3.164	0.8539	0.9999	1	្រា	490	156.6	333.4	156	IP16	tl2	8.09	7.28	1.11	9996	0.0001	0.0003	0.9997	1.9	1.82	CRV
		685	CoLa,	La	72.19	22.455	0.311	3.215	0.8761	0.9041	1	La	545	918	373	520	oP16	cF4	6.59	6.19	1.065	1	1	0.7627	0.2373	2.03	3.13	CK
		686	Co3Lu4	CoLu	81.75	57.352	0.702	1.425	0.798	0.8465	0.8991	Lu	730	890	160	660	hP22	oP16	10.7	10.2	1.053	1.383	0.723	0.5076	0.4924	2.21	2.25	CKI
		687	Co	Mn	6.904	7.223	1.046	0.956	0.5729	0.5983	0.6033	8 Mn	1180	1170	10	1161	cF4	cP20	8.19	7.82	1.048	4.9982	0.2001	0.1605	0.8395	2.1	2.32	e Kt
		688	Co7Mo8	Co	100.8	7.102	0.07	14.2	0.4671	0.6006	0.7237	Co	1510	1420	90	1335	hR13	cF4	9.8	9.29	1.055	16.252	0.0615	0.4662	0.5338	2.5	2.1	e Ri
i		689	Nb	Nb ₆ Co ₇	10.83	104.56	9.658	0.104	0.0257	0.2885	0.3628	Co	2410	1402	1008	1374	cl2	hR13	8.58	9.28	1.081	0.339	2.9498	0.234	0.766	2.36	2.22	e Kt
		690	Nb ₆ Co ₇	NbCo ₂	104.6	23.928	0.229	4.37	0.3834	0.4527	0.5629	OO (1402	1480	78	1378	hR13	hP12	9.28	8.81	1.053	2.8963	0.3453	0.6014	0.3986	2.22	3.42	e Ki
Ì		691	NbCo ₁	Co	29.73	6.706	0.226	4.434	0.6555	0.7971	0.916	Co	1247	1495	248	1237	hP24	cF4	9.07	8.79	1.032	5.4533	0.1834	0.4484	0.5516	2.16	2.1	e Ri
		692	Co17Nd20	Co ₃ Nd ₇	522.6	151.39	0.29	3.452	0.7426	0.8131	0.851	Nd	599	596	3	566	hP4	hP20	5.47	5.46	1.002	6.4416	0.1552	0.3489	0.6511	2.68	1.55	C RI
1		693	Co	Co ₂ P	6.706	19.704	2.938	0.34	0	0.1098	0.2079	P	1495	1386	109	1023	cF4	oP12	8.79	7.55	1.163	0.443	2.2575	0.4345	0.5655	2.1	2.06	e Ri
		694	Co ₂ P	CoP	19.7	13.902	0.706	1.417	0.2206	0.3093	0.3445	i P	1386	1080	306	1030	oP12	oP8	7.55	6.47	1.168	4.1641	0.2401	0.2539	0.7461	2.06	2.05	CR
		695	CoPr ₃	Pr	67.43	20.806	0.309	3.241	0.8776	0.908	1	Pr	588	931	343	570	oP16	hP4	7.14	6.77	1.055	1.1282	0.8864	0.7418	0.2582	2.2	2.25	e Rt
		696	Co ₁₇ Pu ₂	Co ₃ Pu	146.6	35.424	0.242	4.139	0.3367	0.4906	0.5778	B Pu	1210	1230	20	1170	hP38	hR12	10.1	11.8	1.166	6.2639	0.1596	0.3978	0.6022	1.96	1./6	e Ki
		697	CoPu ₃	Pu	53.67	15.014	0.28	3.575	0.9249	0.9679	1	Pu	442	640	198	405	oC16	cF4	14.6	16.3	1.111	4.2978	0.2327	0.4541	0.5459	1.07	0.73	e Ki
		698	Co	CoSb	6.706	20.294	3.026	0.33	0.0138	0.157	0.3343	S	1440	1202	238	1113	cF4	hP4	8.79	8.9	1.013	0.2635	3.7957	U.5564	0.4436	2.1	5.00	e II
÷		699	CoSb ₃	Sb	55.59	18.193	0.327	3.056	0.8611	0.9853	1	Sb	876	630.7	245.3	623	cl32	hR2	7.63	6.69	1.14	29.333	0.0341	0.0943	0.905/	4.4/	3.20	0 01
		700	Co	Co ₂ Sc	6.706	25.056	3.736	0.268	0.0046	0.108	0.2552	Sc	1495	1520	25	1140	cF4	cF24	8.79	6.5	1.352	0.2543	3.9326	0.5128	0.48/2	4.02	2.01	C RI
Ι.	r x	701	CoSc	CoSc ₂	19.01	34.401	1.81	0.552	0.4132	0.565	0.6044	Sc	1050	840	210	820	cP2	1112	5.47	4.33	1.263	2.000	0.372	0.1705	0.0295	1.90	J. 10 4 01	
	\sim	702	CoSc ₂	CoSc ₃	34.4	49.588	1.441	0.694	0.6044	0.6568	0.722	Sc	840	870	30	770	ti12	oP32	4.33	3.91	1.107	0.6166	1.021/	0.0234	0.0062	3.10	1.91	
	-	703	Co	CoSe	6.706	18.025	2.688	0.372	0	0.5179	0.5795	Se Se	1495	1078	417	910	cF4	hP4	8.79	7.65	1.149	3.5961	0.2781	0.0938	0.9002	2.1	3.03	U II
		704	Co	Co ₁ Si	6.67	26.276	3.939	0.254	0.097	0.1252	0.1371	Si	1320	1220	100	1204	hP2	hP8	7.98	7.8	1.024	0.6184	1.61/	0.291	0.709	2.1	4.41	¢ 100
-		705	Co ₂ Si	CoSi	17.32	13.268	0.766	1.306	0.21	0.2388	0.3141	Si	1334	1460	126	1286	0P12	CP8	8.43	0.56	1.285	0.0430	1.0039	0.0096	0.3302	3.19	4.03	e In
7.7	<u>e</u>	706	CoSi	CoSi ₂	13.27	23.058	1.738	0.575	0.3405	0.4353	0.4884	Si	1460	1326	134	1310	cP8	cF 12	6.56	4.99	1.314	1.3521	0.7396	0.2905	0.7015	4.0J	0.4/ 7.16	
F	7	707	CoSi ₂	Si	23.06	12.058	0.523	1.912	0.4884	0.6214	1	Si	1326	1414	88	1259	cF12	cF8	4.99	2.33	2.143	1.4404	10.0943	0.0704	0.4290	0.47	2.10	o Dh
侄	-' ,	708	Co	Co ₁₇ Sm ₂	6.706	198.17	29.55	0.034	0.0374	0.1611	0.2304	Sm	1480	1335	145	1325	cF4	nP38	8.79	6.57	1.337	0.0608	12.3/1	0.2902	0.1040	2.1	2.00	
j),	~ 년	709	Co ₁₇ Sm ₂	Co _s Sm	155.2	51.732	0.333	3	0.2304	0.276	0.6681	Sm	1335	1325	10	1300	hP38	hP6	8.39	8.6	1.025	0.340/	2.934/	0.090	0.102	2.00 2.0F	2.01	a Di
t	793	710	Co ₂ Sm	Co ₄ Sm ₉	43.29	145.7	3.366	0.297	0.5602	0.8193	0.8989	Sm	1074	605	469	575	hR4	0 52	6.2	10.9	1.76	0.5501	1.01/9	0.000/	0.0493	1.00	1 04	
þ	4 VA	711	CoSm,	Sm	64.7	19.78	0.306	3.271	0.8844	0.9257	1	Sm	695	1074	379	595	oP16	hR3	7.88	7.6	1.037	1.8824	0.5313	0.034/	0.3033	1.90	1.94	
-	20	712	Co	Co ₃ Sn ₂	6.706	39.4	5.875	0.17	0.0395	0.3418	0.5203	Sn Sn	1470	1170	300	1112	cF4	hP6	9.08	10.5	1.158	0.2491	4.0144	0.4059	0.0921	4.1	2.02	6 N
ž	5 2	713	CoSn ₂	Sn	28.81	16.294	0.566	1.768	0.8014	0.995	1	Sn	525	232	293	229	ti12	114	10.3	7.28	1.412	96.68	0.0103	0.01/9	0.9021	4.4 2.4	J.4 2	C DI
5	5	714	Co	Co ₂ Ta	6.706	23.175	3.456	0.289	0.1134	0.324	0.6052	2 Ta	1495	1593	98	1276	cF4	cF24	9.64	12.9	1.338	0.1619	0.1/05	0.0412	0.3000	2.1	2 12	o Ri
3	ų į	715	Co	Co17Tb2	6.706	147.67	22.02	0.045	0	0.1794	0.2403	5 Tb	1495	1380	115	1355	cF4	hP38	8.79	8.94	1.017	0.1315	1.6029	0.200/	0.1433	2.1	2.13 2.28	e Rv
2	\$	716	Co ₃ Tb ₄	Co7Tb12	87.75	263.19	2.999	0.333	0.7821	0.818	0.8218	3 Tb	1185	700	485	695	hP22	mP38	9.26	8.61	1.051	3.3154	0.3010	0.0914	0.9000	2.20	5.52	
g	·	717	Co	Co ₂ Te ₃	6.706	51.895	7.739	0.129	0	0.6392	0.7258	B Te	1495	1015	480	980	cF4	hP4	8.79	9.65	1.098	0.0091	1.1000	0.1234	0.0700	21	2.02	e'Rt
		718	Co	Co ₁₇ Th ₂	6.706	151.89	22.65	0.044	0	0.1717	0.316	Th	1495	1460	35	1410	cF4	nR19	8.79	9.05	1.098	0.0470	20.912	0.4001	0.0139	2.08	2.00	e Bl
		719	Co ₁₇ Th ₂	Co₅Th	151.9	52.158	0.343	2.912	0.316	0.3704	0.4411	Th	1460	1425	35	1300	hR19	nP6	9.65	10.1	1.046	2.1423	0.4000	0.0701	0.4239	2.00	2.00	e Rt
		720	Co ₇ Th ₂	CoTh	81.7	25.448	0.311	3.211	0.5262	0.7241	0.7975	5 Th	1100	1125	25	960	hP36	008	10.7	11.4	1.000	0.1321	0.123	0.2031	0.1109	2.03		<u>.</u>

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

	Nº	С,		Vm,	Vm,	A,	Α,	χ.,	Xei	X., %	, Tf	Tf ₂	M.	T,	EC,	EC:	Pi	ρ:	В	٤ı	ε2	٧f	Vf ₂	721	AS2 (рмi
i	721	CoTh	Co Th	25.45	156.81	6 162	0 162	0 7975	0.8653	0 9018 T	h 1125	1130	. 5	1025	oC8	hP20	11.4	11.5	1.005	0.3	3.3333	0.3511	0.6489	2	1.95	e Ri
	702	Coth	. C031117 . Th	166.8	10 780	0.102	7 074	0.1010	0.0000	1 T	h 1130	1755	625	1100	hP20	cF4	11.5	11.7	1.021	5	0.2	0.6131	0.3869	1.95	1.89	e Ri
	700			10 00	. 13.703	3 /02	0.401	0.1726	0.271	0 3805 0	0 1280	1058	222	1020	rl2	rF96	4 66	5.7	1.224	0.2943	3.3982	0.577	0.423	2.16	2.14	e Rl
	123		T_2C0	. 10.09	21.123	2.432	0.401	0.1120	0.201	0.0003 0	0 1200	1100	30	1170	hP24	cP4	7 37	7.81	1 059	2.023	0.4943	0.2787	0.7213	2.12	3.22	e Rt
	/24	TIC02	11003	22.40	20.70	1.279	0.102	0.7090	0.794	0.0004 0	U 1220	1120	265	1120	cE4	hD18	8 70	10.8	1 232	2 8855	0 3466	0.0219	0.9781	2.1	2.14	c Rt
	725	Co	C011U2	6.706	103.82	15.48	0.065		0.4161	0.4237 0	J 1493	1130	300	1000	6010	AE24	11 4	12.8	1 200	1 1305	0.8846	0 5874	0 4126	2.16	2.19	c RI
	726	Co₄U	Co₂U	41.43	25.734	0.621	1.61	0.5024	0.5468	0.599 1	1120	1100	03	1090	11712	UF24	45.4	10.0	1 225	0.1636	6 1123	0.618	0.382	2 74	2.34	c Ri
	727	CoU	CoU6	19.3	72.919	3.778	0.265	0.8015	0.8731	0.9603 (J 805	826	21	/34	CI 16	1120	13.4	7.62	1.323	0.1000	2 634	0.010 N 3327	0.6673	21	2.25	e Ri
	728	Co	Co ₂ V ₃	6.802	. 35.93	, 5.282	0.189	0.3176	0.3801	0.4143	/ 1320	1290	30	1248	CF4	1P30	8.25	1.00	1.095	0.0117	05 204	0.0021	0.1283	21	22	e Rt
	729	Co	Co ₇ W ₆	6.905	86.775	12.57	0.08	0.3982	0.4533	0.7043 V	V 1505	1689	184	1471	cF4	hR13	11.7	17.5	1.491	0.0117	00.001	0.0/1/	0.1203	2.1	2.2	o Dt
	730	Y ₃ Co	Y ₈ Co ₅	63.6	191.37	3.009	0.332	0.181	0.2802	0.2929 C	o 880	740	140	735	oP16	mP52	5.12	5.26	1.027	2.529	0.3934	0.1101	0.0039	2.23	2.62	
	731	YCos	Y2C017	50.65	148.01	2.922	0.342	0.7963	0.816	0.8361 C	0 1350	1362	12	1330	hP6	hP38	7.57	7.97	1.052	0.3205	3.1198	0.5164	0.4836	2.13	2.12	e Ki
	732	Y2C017	Co	148	6.706	0.045	22.07	0.8496	0.898	1 0	0 1362	1495	133	1340	hP38	cF4	7.97	8.79	1.103	9.5012	0.1052	0.6991	0.3009	2.12	2.1	e Kt
	733	Co	ConZie	6,706	229.97	. 34.29	0.029	0.0139	0.1398	0.2211 2	r 1490	1272	218	1232	cF4	cF116	8.79	8.27	1.062	0.0479	20.865	0.3783	0.6217	2.1	2.1	CR
1	714	Co.7r	Co7r	25 28	19.386	0.767	1.304	0.4546	0.5746	0.6075 2	r 1600	1400	200	1312	cF24	cP2	8.27	7.75	1.068	5.0784	0.1969	0.2043	0.7957	2.12	3.5	c Rt
1	726	Co7r	Co7r.	10 30	33.81	1 744	0 573	0 6075	0.7419	0.7561 2	r 1400	1120	280	1061	cP2	tl12	7.75	7.14	1.085	5.8831	0.17	0.0888	0.9112	3.5	2.15	c Rv
	705	Co7r	7,	32.81	14 156	0 4 19	2 388	0 7561	0 8497	0.9671 Z	r 1120	1855	735	981	ti12	cl2	7.14	6.44	1.108	2.1072	0.4746	0.5313	0.4687	3.4	2.17	c RI
	130	00212	<u></u>	7 444	7 23	1 017	0.084	0.0073	0.0128	0 9976 (r 1085	1863	778.1	1077	cF4	ci2	8.94	7.19	1.242	0.0068	146.32	0.9931	0.0069	2.29	2.34	e Rv
	131	CU		7.00	10.007	2 620	0.504	0.0010	0.0120	0.0035 0	1860	1412	448	1180	ci2	hP2	7.19	8.55	1.189	3.4889	0.2866	0.0983	0.9017	2.34	2.44	c Rv
	738	Ur	Uy	7.23	19.007	2.029	0.30	0 0206	0.0102	0.0037 F	r 1860	1529	331	1220	ci2	hP2	7.19	9.06	1.26	3.3103	0.3021	0.1058	0.8942	2.34	2.28	c Rv
	739	Ur	Er	1.23	10.432	2.332	0.392	0.0200	0.0102	0.0052 0	4 1967	1313	550	1170	cl2	hP2	7.19	7.9	1.098	8.9763	0.1114	0.0389	0.9611	2.34	2.33	c Rv
	740	Cr	Gd	1.23	19.906	2.753	0.363	0 7000	0.90	0.9953 0	0.000	028.2	10.2	805	IP120	cFR	7 45	5.32	1 399	44,166	0.0226	0.3031	0.6969	5.2	6.85	e Im
	741	Cr11Ge19	Ge	261.8	13.632	0.052	19.21	0.7069	0.8878	0.9976 G	e 920	1930.3	29	1665	c12	hP12	7 19	10.2	1 42	0 2157	4.6361	0.5479	0.4521	2.34	3.45	e Ri
I.	742	Cr	Cr ₂ Hf	7.23	27.663	3.826	0.261	U	0.339	0.0204 F	1000	1020	125	1600	hD12	c12	10.2	11.6	1 137	7 0547	0.1417	0.2168	0.7832	3.45	2.3	e Rt
	743	Cr ₂ Hf	Hľ	27.66	14.168	0.512	1.952	0.6489	0.889	0.94/4 F	1823	1930	123	1400	117 14	- UIZ -	7 10	8 70	1 222	4 9585	0 2017	0.0721	0 9279	2.34	2.44	e Rv
	744	Cr	Ho	7.23	18.755	2.594	0.385	0	0.9311	0.9903 H	0 1860	14/4	360	1190	UIZ	-00	1.19	11.2	1 201	0 3267	3.0611	0 4208	0 5792	2 34	3 45	e Ri
	745	Cr	Cr3lr	7.35	30.968	4.213	0.237	0.3351	0.3948	0.4309	r 1750	1700	50	1680	CIZ	CPO	9.30	11.2	1.201	0.3207	0.0252	0.4200	0.0102	2 24	2.01	o Rv
	746	Cr	La	7.23	22.625	3.129	0.32	0	0.987	1 L	a 1840	918	922	865	CI2	nP4	7.19	0.14	1.1/1	20.412	0.0302	0.0111	0.3003	2.04	2.01	Dt
0	747	Cr	Lu	7.23	17.782	2.459	0.407	0.123	0.8964	0.9909 L	u 1860	1660	200	1250	C12	hP2	7.19	9.84	1.368	2.4323	0.4111	0.1432	0.0000	2.04	2.5	0 100
1 N	748	Cr	Cr ₂ Nb	7.23	25.755	3.562	0.281	0.1024	0.1959	0.4337 N	b 1760	1750	10	1620	cl2	hP12	7.53	7.65	1.015	0.1088	9.191	0.7207	0.2793	2.34	3.0	- 1
V	749	Cr-Nb	Nb	25.76	10.826	0.42	2.379	0.5332	0.6412	0.9101 N	b 1750	1940	190	1650	hP12	cl2	7.65	8.01	1.049	0.9107	1.0981	0.7232	0.2768	3.0	2.30	e In
	750	Cr	Nd	7.23	21.214	2.934	0.341	0.0273	0.922	0.9736 N	d 1860	1015	845	965	cl2	ci2	7.19	6.8	1.058	6.2572	0.1598	0.0517	0.9483	2.34	1.32	e KV
	7751	Ni	Cr	6 87	7.15	1.041	0.961	0.4697	0.54	0.653 C	r 1340	1520	180	1345	cF4	cl2	8.06	7.57	1.064	0.648	1.5433	0.5972	0.4028	2.38	2.34	e Ki
न्न ।	752		Cr.O.	7 23	28.434	3.933	0.254	0	0.2011	0.3158 0) 1863	639	1224	1660	cl2	hR10	7.19	5.35	1.345	0.6	1.6667	0.2976	0.7024	2.34	2.43	e Rt
P.	757		01203	7 59	7 65	1 008	0.992	0.6105	0.6431	0.6633 0	s 1860	1850	10	1843	cl2	hP2	12.3	13.1	1.065	1.4996	0.6668	0.3982	0.6018	2.34	2.06	e RI
	100		COP	7 23	30 13	5 412	0 185	0	0.0817	0.1657 F	1863	1510	353	1370	cl2	tl32	7.19	4.78	1.505	0.2708	3.6923	0.4056	0.5944	2.34	2.25	e RI
$\geq \mathbb{E}$	154		UI3F DL	7.00	10 285	2 526	0.100	n	0 9997	1 P	h 1863	327.5	1536	327	cl2	cF4	7.19	11.3	1.577	999	0.001	0.0004	0.9996	2.34	1.91	e Rv
10	/55	Ur .	P0	7.23	0.015	4 402	0.330	0 0202	0.6165	0.6805 P	d 1860	1360	500	1315	cl2	cF4	7.21	9.26	1.284	6.095	0.1641	0,121	0.879	2.34	2.19	e Rt
Ξ S	756	Cr	20	1,23	0.010	1.192	0.039	0.0203	0.0100	0.0005	1670	1500	20	1500	cl2	cP8	9.17	11.3	1.237	0.163	6.1333	0.589	0.411	2.34	3.45	c RI
	757	Cr	Cr3Pt	7.23	30.948	4.28	0.234	0.2942	0.3392	0.4345 6	1 1500	1000	10	1530	cP8	rF4	11.3	10.5	1.079	3.484	0.287	0.4997	0.5003	3.45	2.3	c RI
23	758	Cr ₃ Pt	Pt	30.95	8.893	0.287	3.48	0.484	0.5423	0.6051 P	1 1090	1000		1475	610	hD7	8 34	10	1 201	0.6172	1 6203	0.4386	0.5614	2.34	2.35	c RI
R 5	759	Cr	CrRh	7.451	15.451	2.074	0.482	0.331	0.4226	0.4822 H	n 1560	1000	110	1410	c17	. HF 2	9.04	0.60	1 034	0 4421	2 2619	0.6771	0.3229	2.34	2.45	e Rl
Q	760	Cr	Ru	7.23	7.8	1.079	0.927	0.4362	0.4912	0.6028 R	u 1650	1/60	110	1010	42	. INT 4	7 10	3.03	1 44R	3 6667	0 2727	0.1044	0.8956	2.34	4.01	e It
20	761	Cr	CrS	7.23	16.92	2.34	0.427	. 0	0.3264	0.3814 \$	5 1863	1565	298	1350	CIZ	11F4	7.19	4.9/	1.004	3 3830	0.2055	0.0809	0.9191	2.34	5.18	c II
1 .	762	Cr	CrSb	7.23	24.258	3.355	0.298	0.1097	0.629	0.6749 S	b 1800	1113	687	1102	CIZ	1124	1.19	1.10	1.004	10 105	0.0521	0.10/5	0.8955	43	5.26	e Id
14. (************************************	763	CrSb ₂	Sb	40.74	18.193	0.447	2.239	0.8243	0.9803	្រា្ទ	b 718	630.7	87.3	620	040	nR2	1.25	0.09	1.004	13.133	0.0021	0.1040	0.0000	220	1.85	c Rt
	764	Cr	Sc	7.23	15.628	2.162	0.463	0.0876	0.6162	0.8872 S	c 1860	1541	319	1090	ci2	ci2	1.1	3.1	2.29	2.0005	0.4039	0.1029	0.01/1	2.04	3.05	с. #
ĺ	765	Cr	CrSe	7.23	21.404	2.96	0.338	0	0.564	0.603 S	e 1863	1550	313	1400	cl2	hP4	7.19	6.12	1.175	5.75	0.1739	0.0555	0.9945	2.34	3.53	<u> </u>

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

									- <u>v</u>		0/	71	TI	17	Ŧ	F.C.							14	M	19	15	D M
	_N° .	С ₁	C ₂	۷m;	vm ₂	A,	H2	A _{e1}	N _{eL}	×2	76p	14	112		. 'e .		. EC-	PI	P2 .	D.	41	5			301	302	۲. <u>۳</u>
	766	Cr ₂ Se ₃	Se	58.86	16.417	0 279	3.585	0.6967	0.9993	1	Se	1500	221	1279	220	hR10	hP3	5.79	4.81	1.204	1983.4	0.0005	0.0018	0.9982	2.8	3.1	C RV
	767	Cr	Cr ₃ Si	7.23	28.48	3.939	0.254	0.0537	0.087	0.1356	Si	1800	1770	30	1705	c12	cP8	6.88	6.46	1.064	0.1857	5.3846	0.5775	0.4225	2.34	4.6	e Il
	768	Cr ₃ Si	CrsSiz	28.48	58.48	2.053	0.487	0.1623	0.2253	0 233	Si	1770	1680	90	1660	cP8	t132	6.46	5.89	1.098	4.3676	0.229	0.1003	0.8997	3.5	4.15	e It
	769	CrSi	CrSi,	14.94	22.479	1.505	0.664	0.3507	0.4074	0.5197	Si	1413	1490	77	1390	cP8	hP9	5.36	4.81	1.114	0.3737	2.6756	0.64	0.36	4.45	5.55	e Im
(770	CrSi-	Si	22.48	12.058	0.536	1.864	0.5229	0.711	. 1	Si	1490	1414	76	1305	hP9	cF8	4.81	2.33	2.066	2.5073	0.3988	0.4264	0.5736	5.55	7.16	e II
	774	0,0,7 Cr	Cm	7 22	20.5	2 835	0 353	0	0.003	1	Sm	1863	1074	. 789	1035	ci2	cl2	7.19	7.33	1.02	49	0.0204	0.0071	0.9929	2.34	1.94	e Rv
	770		- 011 C-	7 12	16 204	2.000	0.000	0.0336	0.000 n		Sn	1850	212	1618	231	cl2	tt4	7 38	7 28	1.013	990 19	0.001	0 0004	0 9996	2 34	34	e Rv
	112	Ur	ରା ସା	7.23	00.234	2.2.34	0.9974	0.0000	0.3330	0 5096		1940	2020	180	1760	c12	hP12	7 01	10.8	1 368	0 1685	5 9346	0.6196	0 3804	2 34	34	e Ri
	773	Cr	Cr21a	1.23	20.343	3.644	0.2/4	0.1200	0.3421	0.5900	10	1040	2020	100	1/00	5040	-10	1.01	10.0	1.000	4 4710	0.6704	0.0100	0.0004	24	1.9	DI
	774	Cr2Ta	Ta	26.34	10.5	0.399	2.509	0.6808	0.7768	0.9039	<u> </u>	2020	2410	400	COEL	IIPIZ	CIZ	10.0	13.9	1.200	1.4/19	0.0794	0.0302	0.0050	3.4	1.0	
	775	Cr	Tb	7.23	19.564	2.706	0.37	0.0299	0.9454	0.9546	Tb	1840	1260	580	1165	CI2	CI2	7.19	7.56	1.052	35.151	0.0284	0.0104	0.9896	2.34	2.4	e kv
	776	Cr	Th	7.23	19.789	2.737	0.365	0	0.9305	. 1	Th.	1863	1755	108	1236	cl2	cF4	7.19	11.7	1.63	3	0.3333	0.1086	0.8914	2.34	1.89	CRV
	777	Cr	Tm	7.23	18.126	2.507	0.399	0.0471	0.8883	0.9873	Tm	1850	1530	320	1230	cl2	hP2	7.2	9.07	1.26	2.69	0.3718	0.1291	0.8709	2.34	2.42	c Rt
	778	Cr	<u> u</u>	7.23	13,179	1.823	0.549	0	0.9513	0.991	U	1863	1100	763	860	ci2	cl2	7.19	17.1	2.37	5.5382	0.1806	0.0901	0.9099	2.34	2.38	e Rv
	770	Cr	Y	7 23	19,896	2,752	0.363	0.1446	0.8584	0.9959	Y	1860	1522	338	1241	cl2	hP2	7.19	4.47	1.609	3.0361	0.3294	0.1069	0.8931	2.34	2.3	e Rv
	700	7,	7.00	14 16	28 311	2	0.5	0 0472	0.1385	0.5033	Zr	1720	1562	158	1332	cl2	cF24	6.44	6.9	1.07	0.1169	8.5529	0.8105	0.1895	2.17	2.28	e Rt
	100	4	21012	14.10	7.02	0.955	2 016	0.6607	0 722	0.0805	0	1673	1863	100	1592	hP24	ci2	6.9	7 19	1.043	2 2836	0.4379	0.6316	0.3684	2.28	2.34	e RI
	781	ZrCr ₂		28.31	1.23	0.200	3.910	0.0092	0.722	0.5055		20.20	660	671.6	20.2	c 2	hD2	10	1 74	1 002	0.001	008.83	0 0008	0 0002	1.65	2 28	e Rv
	782	Cs	Mg	69.95	13.97	0.2	5.007		0.0002	1	My	20.39	000	021.0	20.3	- 12	6012	1.0	4.7	1 1092	0.001	6 5226	0.0000	0.1877	1.65	20	a Di
	783	Cs	CsNa ₂	69.74	105.26	1.509	0.663	0	0.044	0.2573	Na	28.39	-7.9	36.29	-31.0	CIZ	IP 12	1.91	1.1	1.121	0.1001	0.0320	0.0123	0.1017	1.05	2.5	C IN
	784	Cs	Cs ₇ O	69.74	429.53	6.159	0.162	0	0.0125	0.0169	0	4.33	-0.36	4.69	-0.36	CI2	hP24	1.91	2.2	1.156	0.3958	2.5263	0.2909	0.7091	1.00	2.51	e ru
	785	Cs ₂ Se ₃	Cs ₂ Se ₅	140.5	149.86	1.066	0.938	0.4712	0.5694	0.5973	Se	338	242	96	213	oC20	oP28	3.58	4.41	1.232	2.6/9	0.3/33	0.2593	0./40/	2.52	21	e KL
1	786	Cs-Se.	Se	149.9	16.417	0.11	9.129	0.5973	0.7572	1	Se	242	221	21	170	oP28	hP3	4.41	4.81	1.091	5.5116	0.1814	0.6235	0.3765	2.7	3.1	e Ri
	787	Cs	Cs.Te	69.47	92.43	1.33	0.752	0	0.0038	0.324	Te	28.4	820	791.6	27	cl2	oP12	1.91	4.26	2.225	0.0041	246.75	0.9946	0.0054	1.65	4.26	e id
:	700	Co To	CeTa	175.0	121 74	0.692	1 445	0 7056	0.7576	0.7934	Te	235	263	28	215	oC28	mP20	5.14	5.28	1.028	2.04	0.4902	0.4146	0.5854	4.6	4.97	e II
	700	Costics	Culler	7 4 4 1	53 739	7 415	0 135	00	0 2213	0 2676	Dv	1085	860	224.8	855	cF4	hP8	8.94	11.5	1.289	0.5	2	0.2124	0.7876	2.29	2.31	e Rt
	789	<u>u</u>	CuiDy	20.40	34.040	0 777	4 700	0 5609	0.6254	0 7180	Dv	800	955	65	840	0112	cP2	9.01	9.06	1.005	0.886	1,1286	0.5924	0.4076	2.34	3.74	e II
	790	Cu ₂ Dy	CUDY	32.12	24.940	0.111	1.200	0.0000	0.02.04	0.1103	0,	050	1100	225	700	cD2	hP2	30.0	8 55	1.06	1 3333	0.75	0.4961	0.5039	3.74	2.44	e Il
	791	CuDy	Dy	24.95	19.007	0.762	1.313	0.7189	0.8000		Uy	933	1100	225	100		•E24	9.00	0.00	1 040	0 2208	4 5282	0 3837	0.6163	2 29	2 29	e Ri
5	792	Cu	CusEr	7.111	51.714	7.272	0.138	0	0.2165	0.3449	E	1084	1010	/4	090	-140	-D2	0.54	9.00	1.045	0.2200	1 4728	0.6574	0 3426	22	3.67	e Im
15	793	Cu₂Er	CuEr	31.5	24.198	0.768	1.302	0.5679	0.6223	0.7247	Er	935	1055	120	905	OLIZ	CPZ	9.34	9.04	1.021	0.0703	1.4730	0.0014	0.0420	2.0	0.01	
	794	CuEr	Er	24.2	18.452	0.763	1.311	0.7247	0.8571	0.9981	Er	1055	1529	474	880	cP2	hP2	9.54	9.06	1.052	1.296	0.7716	0.503	0.491	3.07	2.20	е п р
	795	Си	CusEu	7.111	56.964	8.011	0.125	0	0.2633	0.3236	Eu	1084	847	237	842	cF4	hP6	8.94	8.24	1.084	0.5904	1.6938	0.1745	0.8255	2.29	2.29	ек
	796	CuEu-	Еи	61.18	28.983	0.474	2.111	0.8273	0.8719	1	Eu	442	822	380	437	oP12	cl2	6.01	5.24	1.146	0.8421	1.1875	0.7148	0.2852	2.3	2.3	e Kt
i	707	CuGa.	Ga	28 17	11 789	0 419	2.389	0.6873	0.9999	1	Ga	254	29.7	224.3	29.6	tP3	oC8	7.21	5.91	1.219	9986.7	0.0001	0.0002	0.9998	3.71	4.42	e ld
Ă	709	00000	Cu Cd	7 111	61 033	8 583	0 117	n	0 2062	0 2921	Gd	1084	865	219	860	cF4	oP28	8.94	8.82	1.013	0.2833	3.5293	0.2914	0.7086	2.29	2.29	e Rt
[790		Ougou Ougou	1 20.04	35 940	0.000	1 260	0 5527	0 6604	0 7122	Gd	860	830	30	770	o112	cP2	8.67	8.54	1.014	2.6759	0.3737	0.3218	0.6782	2.3	3.7	eIm
	1,48	CU2GO	CuGa	32.01	23.040	0.700	1.205	0.3321	0.0004	0.7122	2	920	1060	230	675	cP2	cl2	8 54	7.18	1.189	2.6371	0.3792	0.3272	0.6728	3.7	2.33	e Im
- F	800	CuGd	Gd	25.85	20.154	0.78	1.282	0.7122	0.0024	0.9334	Gu	030	000	200	010		•D9	5 22	9.65	1 624	1 5008	0.6286	0 2197	0 7803	6.85	3.43	e it
JH	801	Ge	Cu ₃ Ge	13.63	30.444	2.233	0.448	0_	0.6036	0.7083	Cu	938.3	698	240.3	044	- 00	UF0	0.02	0.00	1.024	0 10/1	6 1526	0 7764	0 2236	4 54	3.05	e Im
E C	802	Cu ₃ Ge	Cu₅Ge	30.44	45.168	1.484	0.674	0.77	0.7805	0.817	Cu	747	824		/43.5	040	000	0.03	0.04	1.001	0.1241	0.2602	0.1720	0.8261	23	23	e Rt
$\neg \alpha$	803	Cu ₈ Hf ₃	Cu ₁₀ Hf7	94.79	162.21	1.711	0.584	0.5159	0.6385	0.6629	,Hf,	990	1025	35	970	0244	0008	<u>. 11</u> .,	11.0	1.000	2.1103	0.3002	0.1139	0.0201	2.0	22	O Dt
품이	804	Cu ₁₀ Hf,	CuHf ₂	162.2	33.63	0.207	4.823	0.6629	0.6847	0.8491	Hf.	1025	1310	285	980	oC68	tl6	11.6	12.5	1.076	0.5938	1.6641	0.8904	0.1090	2.29	2.J	
$\Xi \ge$	805	CuHf	H	33.63	13.444	0.4	2.501	0.8489	0.8847	0.9989	Hf	1310	2231	921	1295	116	hP2	12.5	13.3	1.062	0.7378	1.3554	0.7722	0.2278	2.3	2.3	eĸ
님	806	Cu	CuaHo	7.111	52.002	7.313	0.137	0.0005	0.2141	0.3418	Ho	1084	990	94	875	cF4	cF24	8.94	9.28	1.039	0.2203	4.5392	0.383	0.617	2.29	2.3	CKI
<u> </u>	807	CuiHo	CuHe	31.76	24 518	0.772	1.295	0.5648	0.5851	0.7219	Ho	915	1010	95	875	ol12	cP2	9.19	9.32	1.013	0.1895	5.2761	0.8724	0.1276	2.34	3.74	c it
,,	000	Cullo	La	24 52	18 756	0 765	1.307	0.7219	0.8583	1	Ho	1010	1474	464	830	cP2	hP2	9.32	8.79	1.06	1.3333	0.75	0.4951	0.5049	3.74	2.44	c II
	000	Curio	10	27.02	15 764	0.703	1 479	0.5116	n 9911	1	In	667	156.6	510.4	153	hP6	tl2	10.4	7.28	1.426	113.26	0.0088	0.0129	0.9871	2.13	1.82	e Rv
	809	Cu ₂ In	in i	23.3	10.700	0.011	0.400	0.0110	0.0011	0 2672		1084	905	179	865	cF4	oP28	8,94	7.97	1.121	0.2426	4.1216	0.31	0.69	2.29	2.25	e Ri
	Q10	Cu	Culla	/ 111	n5 233	91/4	U. (U9)	U	0.1//0	0.2013	LØ	1004													_		

FALLA DE ORIGEN

	N⁰	С,	С,	Vm ₁	Vm ₂	A,	A ₂	X _{e1}	XeL	X _{e2}	%,	Tf,	Tf ₂	ΔT	T,	EC,	EC2	ρι	ρ:	В	٤ _I	E2	Vf	Vf ₂	∆S ₁	۵S2	DΜ
	811	CuLa	СњLа	57.52	37.536	0.653	1.532	0.3047	0.415	0.5219	9 La	805	830	25	745	hP6	hP3	7.94	7.09	1.12	1.7716	0.5644	0.4638	0.5362	2.24	2.2	e RI
	812	Cula	, La	30.01	22.455	0.748	1.336	0.6861	0.8426	1	La	525	918	393	475	oP8	cF4	6.75	6.19	1.091	1.4483	0.6905	0.4799	0.5201	2.15	2.01	e Ri
	813	Cu	Culu	7.111	50.988	7.17	0.139	0	0.1932	0.3552	2 Lu	1085	995	89.9	920	cF4	cF24	8.94	9.66	1.081	0.1538	6.5022	0.4756	0.5244	2.29	2.3	c Rl
	814	Ma	Ma ₂ Cu	14	32.925	2.352	0.425	0.0003	0.3071	0.5661	l Cu	650	568	82	485	hP2	oF48	1.74	3.41	1.961	0.2567	3.8953	0.6235	0.3765	2.28	2.28	e Ri
	815	Mo-Cu	MaCu	32.93	26.202	0.796	1.257	0.5665	0.6543	0.8272	2 Cu	568	797	229	552	oF48	cF24	3.41	5.78	1.696	0.3764	2.6569	0.7695	0.2305	2.28	2.29	e Rt
	816	MoCu	Cu	26.2	7.111	0.271	3.685	0.8533	0.8969	0.9723	3 Cu	797	995	198	725	cF24	cF4	5.78	8.57	1.484	1.4382	0.6953	0.7193	0.2807	2.28	2.29	e Rt
1	917	Cu	Mo	7 /19	9 405	1 327	0.754	0 0009	0.001	· · · · · ·	Мо	1085	2623	1538	1083	cF4	cl2	8.96	10.2	1.138	6E-05	16663	0.9999	8E-05	2.29	2.94	c Rv
	017	Cu	Nb	7 111	10.826	1 522	0.657	0.0015	0.0029	0.9918	Nb	1085	2465	1380	1080	cF4	cl2	8.94	8.58	1.041	0.001	990.21	0.9985	0.0015	2.36	2.36	c Rv
	910	Cu	Cu.Nd	7 111	62 475	8 786	0 114	0.00.0	0 1833	0.2746	Nd	1085	910	174.9	865	cF4	oP28	8.94	8.41	1.062	0.2431	4.1143	0.3189	0.6811	2.36	2.15	e RI
	013	CuNd	Nd	28.02	20 586	0.735	1 361	0 6942	0 8412	1	Nd	675	1021	346	520	oP8	hP4	7.41	7.01	1.058	1.3333	0.75	0.5052	0.4948	1.8	1.32	e Ri
	020	Cuito		7 111	20.000	2 176	0.215	0.001.2	0.0043	0 1117	10	1085	1230	145.1	1066	cF4	cP6	8.94	6.34	1.41	0.0179	55.746	0.9461	0.0539	2.29	2.48	e Rv
	021	Cu		7 4 4 4	22.304	4 466	0.010	0.0174	0.0040	0 1308	P.	1085	1022	62.9	714	cF4	hP24	8.94	7.5	1.191	0.3339	2.9945	0.4189	0.5811	2.29	2.21	e Ri
	822		Cup	20.64	29.044	4.155	1 014	0.0174	0.0002	0.1350	P	1022	891	131	833	hP24	mP12	7.5	4.31	1.742	1.4051	0.7117	0.4191	0.5809	2.21	2.1	e RI
	823	CU3P	CUP2	29.04	29.143	0.500	0.000	0.1157	0.010	0.000	Dh	1085	127 5	757 4	326	cF4	cF4	8 94	11.3	1,269	554.37	0.0018	0.0007	0.9993	2.29	1.91	e Rv
	824	Cu	10	1.111	18.200	2.009	0.309	· • · ·	0.9994	0.9995	De	1005	062	122 9	870	cF4	oP28	8 94	8 31	1.075	0.1578	6.3371	0.4177	0.5823	2.29	2.28	c Ri
	825	Cu	CU6Pr	. 7.111	. 62.832	8.830	0.113		0.1524	0.2095		974	DA1	47	770	0P28	0117	8 31	7 75	1.073	2 4468	0 4087	0.426	0.574	2.28	2.28	c RI
	826	Cu ₆ Pr	Cu2Pr	62.83	34.599	0.551	1.610	0.3307	0.4500	0.5254		562	031	368	472	0F20	hP4	6.87	6 77	1 015	1.125	0.8889	0.5596	0.4404	2.27	2.25	c RI
	827	CuPr	Pr	29.74	20.806	0.7	1.429	0.0092	0.0249	0.000	- FI - Du	1095	040	144.0	855	cF4	0P28	8 94	10.2	1 138	0 1815	5 5109	0.3901	0.6099	2.29	2.07	c RI
	828	Cu	Cu ₆ Pu	7.111	61.2/1	8.616	0.116		0.2400	0.3000) ru	1000	020	20	945	0.20	0120	10	11.5	1 147	2 5145	0.3977	0 3802	0.6198	1.98	1.8	c RI
	829	Cu ₄ Pu	Cu₂Pu	49.61	32.169	0.648	1.542	0.48//	0.597	0.6553	5. PU	920	920	200	625	0112	cl2	11.5	16.9	1 471	25 388	0.0394	0.0806	0.9194	1.77	0.73	c Rv
	830	Cu ₂ Pu	Pu	32.17	14.456	0.449	2.225	0.6553	0.9000		PU	320	1094	1250	1050	cF4	hP2	8 94	12.4	1 384	0.0211	47.481	0.9764	0.0236	2.29	2.45	c Rv
	831	Cu	Ru	7.111	8.1/5	1.15	0.87	0.4055	0.0324	0.0470	RU	1000	692	217	645	cF4	oF16	9.44	8 65	1 092	6 5693	0 1522	0.0242	0.9758	2.29	2.9	e Rv
	832	Cu	Cu₄Sb	7.09	43.478	6.132	0.163	0.1055	0.3101	0.3150	0.00	500	000	317	526	+DG	hD2	8.45	6.60	1 263	2 4087	0 4152	0.4018	0.5982	3.28	5.26	e li
i.	833	Cu ₂ Sb	Sb	29.43	18,193	0.618	1.618	0.4889	0.7654	1	50	000	4475	44.7	900	116	cD2	6 20	5.00	1 206	0 3555	2 8128	0 7872	0.2128	2.14	3.45	e Rt
1	834	Cu ₂ Sc	CuSc	27.34	20.79	0.76	1.315	0.261	0.2891	0.4144	50	990	1125	446	976	~02	hD2	5.22	2 00	1 746	1 5062	0.6639	0.4785	0.5215	3.45	1.85	e Ri
•	835	CuSc	Sc	20.79	15.042	0.724	1.382	0.4144	0.634	0.9859	SC .	1123	1041	410	1002	6E4	cE12	ROA	7 16	1 247	0.019	52 504	0.9285	0.0715	2.29	2.56	e Rv
1	836	Cu	Cu ₂ Se	7.111	28.761	4.045	0.247	0	0.0223	0.3825	y se	1085	1130	404.0	1003		0729	8.04	8.67	1.036	0.2426	4 1215	0 3223	0 6777	2 29	2.24	c Ri
en	837	Cu	Cu ₆ Sm	7.111	61.635	8.668	0.115	0	0.1896	0.2831	Sm	1085	900	104.9	720	6112	0F20	8.27	8.002	1 023	2 9741	0 3362	0 2989	0.7011	2.17	3.6	c Im
<u> </u>	838	Cu ₂ Sm	CuSm	33.53	26.448	0.789	1.268	0.5416	0.6539	0.7025	1 Sm 	705	1074	120	507	0112 cP2	6FZ	8.00	7 52	1.025	1 4483	0.6905	0 4772	0.5228	3.6	1.94	c II
-	839	CuSm	Sm	26.45	20.003	0.756	1.322	0.7029	0.8528]-	Sm	/35	1074	339	097			7.60	7.28	1.054	450.03	0.00000	0.017	0 983	3.5	3.4	e Rv
	840	Cu ₆ Sn ₅	Sn	127	16.294	0.128	7.792	0.6093	0.993	<u> </u>	Sn	415	231.9	183.1	221	11P4	. 114	1.00	2.69	1.648	2 878	0.3475	0 2792	0 7208	3.5	1.92	e Rt
	841	CuSr	Sr	37.79	33.909	0.897	1.115	0.5797	0.8425	1	Sr	586	169	183	100	IIP0	CF4	4	2.30	1.040	0.0209	4 5292	0.2700	0.6201	2 29	23	c RI
E	842	Cu	Cu₅Tb	7.111	52.56	7.391	0.135	0	0.208	0.3335) Ib	1085	950	134.9	000	CF4	CF 24	0.94	9.07	1.010	0.2200	1 863	0.0100	0.296	2 32	3.72	c Im
E.	843	Cu ₂ Tb	CuTb	32.4	25.38	0.783	1.277	0.5553	0.6022	0.7144	Tb	870	900	30	810	0112	CPZ	0.03	0.11	1.007	1 2222	0.75	0.104	0.5036	3.72	2.39	c 1
	844	CuTb	Tb	25.38	19.31	0.761	1.314	0.7144	0.8537	1	ID	900	1355	450	730	CPZ	02	0.11	0.23	1.000	1 7027	0.597	0.4001	0 5752	3 37	5.8	e 11
PE	845	CuTe	Te	25,74	20.46	0.795	1.258	0.6676	0.8445	1	Te	407	449.6	42.6	340	024	nrs	1.43	0.24	1.191	0 1207	7 21 10	0.4240	0.5499	2 29	2 23	e Ri
JH	846	Cu	Cu ₆ Th	7.111	62.65	8.81	0.114	0	0.2156	0.3767	Th	1085	1055	29.87	935	CF4	0P28	8.94	9.79	1.090	0.1307	0 2200	0.4001	0.5455	2.23	22	o Rt
E CA	847	Cu₅Th	Cu ₅₁ Th ₁₄	62.65	615.23	9.82	0.102	0.3784	0.4449	0.5036	Th	1055	1052	3	1020	0P28	hP68	9.79	10.5	1.0//	0.1072	9.3290	0.4012	0.0120	2.20	2 16	e Rt
20	848	Cu ₅₁ Th ₁₄	Cu ₂ Th	615.2	34.632	0.056	17.76	0.5036	0.562	0.6458	Th	1052	1015	37	980	hP68	hP3	10.5	10.4	1.017	12.595	0.0794	0.0001	0.4149	2.2	3.26	n Ri
⊇ ¤	849	Cu ₂ Th	CuTh ₂	34.63	46.977	1.356	0.737	0.6458	0.7782	0.8797	Th	1015	1007	8	880	hP3	112	10.4	11.2	1.083	0.00//	1.1200	0.433/	0.0403	2.10	1.80	o Dt
5	850	CuTh ₂	Th	46.98	19.789	0.421	2.374	0.8797	0.895	1	Th	1007	1775	768	1000	t 12	cF4	11.2	11.7	1.044	0.3299	3.0313	0.070	0.6411	3.20	1.05	
17	851	Ti ₂ Cu	TiCu	28.19	17.396	0.617	1.62	0.3984	0.5002	0.5505	i Cu	1005	982	23	960	116	tP4	5.65	6.41	1.133	2.8939	1 2200	0.3069	0.0411	2.2	2.0	e Ri
2	852	TiCu ₂	TiCu	23.6	38.31	1.623	0.616	0.7266	0.782	0.8247	Cu	890	885	5	875	0C12	0P20	/.41	1.88	1.003	0.752	1.0290	0.4000	0.0401	2 20	1 78	r Rv
	853	Cu	Ti	7.111	17.577	2.472	0.405	0	0.9998	. 1	, TI -	1085	304	780.9	302	CF4	CIZ	8.94	11.6	1.301	1999	0.0005	0.0002	0.0000	2.20	21	r DI
	854	Cu	Cu _s Tm	7.111	51.45	7.235	0.138	0	0.1667	0.3472	Tm	1085	1000	84.9	900	cF4	cF24	8.94	9.46	1.059	0.1207	0.2002	0.0339	0.9129	2.23	2.5	,
	330	Cu Tm	CuTm	31 32	23 798	0.76	1.316	0.5703	0.6045	0.7267	Tm	960	1100	140	930	ol12	cP2	9.45	9.77	1.034	0.3557	2.8115	0.7872	0.2120	2.33	3.13	- 6- II

	N⁰	C,	C ₂	Vm ₁	Vm ₂	A ₁	A ₂	X _{e1}	X _{el}	X _{e2}	% _p	Tf ₁	Tf2	M	T,	EC	EC2	Ρı	P2	B	£1	£ <u>2</u>	Vf	Vf ₂	ΛS_1	ΔS_2	DΜ
1	856	CuTm	Tm	23.8	18.126	0.762	1.313	0.7267	0.8437	່ 1	Τm	1100	1545	445	925	cP2	hP2	9.77	9.32	1.048	1.0303	0.9706	0.5603	0.4397	3.73	2.42	c II
	857	Cu	Cu₅U	7.111	52.314	7.357	0.136	0	0.2457	0.4307	U	1085	1053	31.9	950	cF4	cF24	8.94	10.6	1.189	0.1519	6.5835	0.4723	0.5277	2.29	2.7	e Ri
	858	Cu₂Y	CuY	32.92	25.318	0.769	1.3	0.4113	0.5033	0.5832	Ŷ	935	935	0	830	ol12	cP2	6.56	6.02	1.09	1.6314	0.613	0.4435	0.5565	2.29	3.69	c II
1	859	CuY	Ŷ	25.32	19.896	0.786	1.273	0.5832	0.7396	0.9993	Y	935	1522	587	770	cP2	hP2	6.02	4.47	1.347	1.0331	0.9679	0.5519	0.4481	3.69	2.3	c Il
	860	Cu	Cu₅Yb	7.111	53.676	7.548	0.132	0	0.2323	0.3527	Yb	1085	937	147.9	859	cF4	hP6	8.94	9.14	1.023	0.2499	4.0018	0.3465	0.6535	2.29	2.29	e Ri
	861	CuYb	Yb	27.94	24.845	0.889	1.125	0.7314	0.8831	1	Yb	628	819	191	472	oP8	cF4	8.47	6.96	1.216	1.7736	0.5638	0.3881	0.6119	2.29	2.01	e Ri
	862	Cu	Cu _s Zr	7.111	48.822	6.866	0.146	0.0017	0.119	0.2418	Zr	1085	1012	72.9	972	cF4	cF24	8.94	8.38	1.067	0.1484	6.7404	0.4954	0.5046	2.29	2.27	e Rl
	863	Cu ₈ Zr ₃	Cu ₁₀ Zr ₇	96.48	166.14	1.722	0.581	0.3499	0.4702	0.5013	Zr	975	895	80	885	oP44	oC68	8.11	7.67	1.057	2.3733	0.4213	0.1966	0.8034	2.26	2.24	e Rt
1	864	Cu ₁₀ Zr,	CuZr	166.1	20.906	0.126	7.947	0.5013	0.5301	0.5894	Zr	895	935	40	890	oC68	cP2	7.67	7.4	1.036	3.9949	0.2503	0.6655	0.3345	2.24	3.63	e Im
	865	CuZr	CuZr ₂	20.91	34.926	1.671	0.599	0.5894	0.6304	0.742	Zr	935	1000	65	928	cP2	tl6	7.4	7.04	1.051	0.2312	4.3251	0.7214	0.2786	3.63	2.21	e Im
	866	CuZr ₂	Zr	34.93	14.156	0.405	2.467	0.7417	0.7902	0.9596	Zr	1000	1580	580	995	tl6	cl2	7.04	6.44	1.093	0.7713	1.2964	0.7618	0.2382	2.21	2.17	e Rt
	867	Fe	Fe ₁₇ Dy ₂	7.302	153.94	21.08	0.047	0	0.2235	0.2545	Dy	1538	1375	163	1360	cF4	hP38	7.65	8.28	1.082	0.3157	3.168	0.1306	0.8694	2.01	2.05	e Rt
1	868	Fe ₂₃ Dy ₆	Fe ₃ Dy	263.9	37.412	0.142	7.053	0.4361	0.4508	0.4924	Dy	1290	1305	15	1285	cF116	hR12	8.56	8.82	1.03	2.4064	0.4156	0.7456	0.2544	2.1	2.12	e Rt
1	869	Fe ₂ Dy	Dy	29.63	19.007	0.642	1.559	0.5923	0.8795	1	Dy	1270	1412	142	890	cF24	hP2	9.26	8.55	1.083	4.0226	0.2486	0.2793	0.7207	2.15	2.44	e Rt
1	870	Ga,Dy,	Dy	122.9	19.007	0.155	6.466	0.7953	0.9031	1	Dy	1210	1412	202	940	t132	hP2	8.31	8.55	1.028	7	0.1429	0.4802	0.5198	3.18	2.44	e Rl
	871	Dv	Dy ₅ Ge ₃	19.01	120.73	6.352	0.157	0	0.0523	0.2114	Ge	1412	1825	413	1215	hP2	hP16	8.55	8.53	1.002	0.0519	19.273	0.7521	0.2479	2.44	4.09	e Im
1	872	Dv	Dy ₂ in	18.99	49.809	2.623	0.381	0.1343	0.1501	0.2608	In	1412	1260	152	1100	cl2	hP6	8.56	8.83	1.032	0.0529	18.894	0.8781	0.1219	2.44	2.23	e Rt
	873	Dy ₂ In	Dy ₅ In ₃	49.81	131.82	2.647	0.378	0.2608	0.2756	0.2977	In	1260	1210	50	1190	hP6	t132	8.83	8.78	1.006	0.255	3.922	0.5971	0.4029	2.23	2.2	e Ri
	874	DyIn	Dy ₃ In ₅	32.82	121.4	3.699	0.27	0.414	0.5145	0.5408	tn .	1300	1140	160	1120	cP2	oC32	8.45	8.74	1.035	1	1	0.2128	0.7872	3.6	2.05	e It
	875	Dy _s in _s	Dyin	121.4	57.712	0.475	2.104	0.5408	0.5675	0.6795	în.	1140	1150	10	1110	oC32	cP4	8.74	8.78	1.005	0.5	2	0.808	0.192	2.05	1.97	e Rt
	876	Dyin ₃	În	57.71	15.765	0.273	3.661	0.6795	0.9995	1	In	1150	156.6	993.4	156	cP4	ti2	8.78	7.28	1.206	3121	0.0003	0.0012	0.9988	3.1	1.82	e Rv
	877	Mg	Mg ₂₄ Dy ₅	14	428.33	30.6	0.033	0.2533	0.4599	0.582	Dy	650	640	10	561	hP2	cl58	2.22	3.26	1.47	0.0376	26.609	0.4651	0.5349	2.28	2.3	e Rt
	878	Dy	DyMn ₂	19.01	32.724	1.722	0.581	0	0.1198	0.4038	Mn	1412	930	482	855	hP2	cF24	8.55	8.32	1.027	0.2517	3.9737	0.6977	0.3023	2.44	2.36	e Ri
	879	Dy ₃ Ni	Dy ₃ Ni ₂	62	67.255	1.085	0.922	0.1075	0.1397	0.1941	Ni	762	928	166	693	oP16	mC20	8.81	8.99	1.021	0.5333	1.875	0.6335	0.3665	2.42	2.4	e Ri
;	880	DyNi	DyNi ₂	24.01	27.636	1.151	0.869	0.2654	0.315	0.4198	Ni	1300	1258	42	1173	oP8	cF24	9.21	10.1	1.099	0.3737	2.676	0.6993	0.3007	2.41	2.4	eRI
1	881	Dy ₂ Ni ₁₇	Ni	144.4	6.59	0.046	21.91	0.7549	0.8276	1	Ni	1400	1455	55	1279	hP38	cF4	9.16	8.91	1.029	9.5037	0.1052	0.6974	0.3026	2.38	2.38	e Rt
	882	Dy	Dy ₅ Pb ₃	19.01	137.56	7.237	0.138	0	0.1636	0.4334	Pb	1412	1695	283	1200	hP2	hP16	8.55	8.06	1.06	0.0888	11.258	0.6087	0.3913	2.44	2.24	e Ki
101	883	DyPb ₃	Pb	66.86	18.265	0.273	3.661	0.7927	0.9992	1	Pb	880	327.5	552.5	326	cP4	cF4	6.87	11.3	1.652	583.15	0.0017	0.0062	0.9938	2.04	1.91	e KV
10	884	Dy	Dy ₅ Pd ₂	19.01	107.08	5.634	0.178	0	0.1675	0.2078	Pd	1412	895	517	863	hP2	t 49	8.55	9.58	1.12	0.6582	1.5193	0.2124	0.7876	2.44	2.37	e Kt
1	885	Dy ₅ Pd ₂	Dy ₃ Pd ₂	107.1	70.725	0.66	1.514	0.2078	0.2273	0.3039	Pd	895	950	55	880	t149	tP10	9.58	9.9	1.034	0.3734	2.6783	0.8022	0.1978	2.37	2.34	e Rt
	886	DyPd	Dy ₃ Pd ₄	25.51	85.288	3.343	0.299	0.3957	0.4247	0.4657	Pđ	1450	1400	50	1365	cP2	hR14	10.5	10.7	1.016	0.2091	4.7825	0.5886	0.4114	3.71	2.3	e ll
/ haged	1887	DyPd ₁	Pd	40.7	8.865	0.218	4.591	0.7112	0.7877	0.8236	Pd	1710	1555	155	1217	cP4	cF4	11.8	12	1.014	9.6451	0.1037	0.3225	0.6775	2.25	2.19	e Ki
A	888	Dv	Dy ₁ Ru	19.01	54.376	2.861	0.35	0	0.1035	0.1492	Ru	1412	1115	297	990	hP2	oP16	8.55	10.8	1.266	0.6258	1.5979	0.3584	0.6416	2.44	3.6	e Im
E	889	DyRu,	Ru	32.13	8.175	0.254	3.93	0.513	0.6643	1	Ru	1750	2334	584	1701	hP12	hP2	11.3	12.4	1.089	1.6253	0.6153	0.7074	0.2926	3.7	2.45	c Im
AH	1890	Dv	Dy _s Sb ₁	19.01	128.22	6.746	0.148	0	0.1127	0.3101	Sb	1412	1680	268	1160	hP2	hP16	8.55	9.19	1.074	0.0788	12.69	0.6529	0.3471	2.44	3.5	e Ri
_ 2	891	DySb	Sb	35.11	18.193	0.518	1.93	0.4283	0.988	1	Sb	2170	630.7	1539	622	cF8	hR2	8.1	6.69	1.21	109.11	0.0092	0.0174	0.9826	3.85	5.26	e Id
25	892	Dv	Dv ₄ Sn ₃	19.01	133.46	7.022	0.142	0.037	0.1158	0.2672	Sn	1380	1237	143	1105	hP2	hP16	8.55	8.76	1.024	0.0723	13.83	0.6633	0.3367	2.44	2.8	e Ri
100	893	Dv.Sn.	Dv.Sn.	133.5	129.49	0.97	1.031	0.3047	0.3404	0.3684	Sп	1140	1160	20	1120	hP16	oP36	8.76	9.94	1.135	1.1557	0.8653	0.4714	0.5286	2.8	2.9	e Ri
2	894	Dv	DvTe	19.01	34,212	1.8	0.556	0	0.0237	0.4398	Te	1412	1850	438	1385	hP2	cF8	8.55	8.48	1.008	0.0319	31.333	0.9457	0.0543	2.44	4.12	e ld
RI	895	DvTe	Dv Te	34.21	102.91	3.008	0.332	0.4398	0.4797	0.511	Te	1850	1570	280	1540	cF8	oF80	8.48	6.88	1.233	0.5198	1.9237	0.3901	0.6099	4.12	1.46	e Il
3	896	Dv	Dy-TI	18.99	48.75	2.568	0.389	0.0621	0.2449	0.3857	TI	1080	1190	110	1015	cl2	hP6	8.65	10.9	1.255	0.4027	2.4831	0.4916	0.5084	2.44	2.22	e RI
ζ.Ν.	897	DveTle	DvTI	135.8	31.944	0.235	4.252	0.4353	0.5122	0.5472	П	1340	1300	40	1230	hP16	cP2	10.5	11.5	1.094	8.5418	0.1171	0.3323	0.6677	2.19	3.5	e Rl
inal The sales area	808	Dv.TL	DvTI.	124.3	61.46	0.495	2.022	0.6817	0.7816	0.7905	TI	1000	940	60	930	oC32	cP4	12.1	12.6	1.039	21.976	0.0455	0.0843	0.9157	2.02	3.06	e Rv
	899	Dv	V	19.03	8.35	0.439	2.279	0	0.0563	0.0946	v	1412	1910	498	1910	ct2	cl2	8.54	6.1	1.4	4.6983	0.2128	0.3266	0.6734	2.44	2.36	e Ri
	000	. ריי. Dv	7r	19.01	14.156	0.745	1.343	0.0085	0.3001	0.6999	Zr	1410	1740	330	1280	hP2	cl2	8.49	7.42	1.145	1.1206	0.8923	0.5451	0.4549	2.44	2.17	e Ri
	1 200		1-1																								

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

	N ⁰	С.	C,	Vm,	Vm,	Α,	Α,	X.,	Xai	X.,	%.	Tf,	Tf,	71	T,	EC ₁	EC.	PL	ρ.	В	E _t	£2	Vf,	VI.	۸S,	۸S2	DM
		En Fr	Fo. Fr.	154.4	260.91	1.69	0 592	0.26	0 3802	0 4388	Fr	1355	1330	25	1315	hP38	cF116	8.32	8.77	1.055	1.1516	0.8683	0 3394	0.6606	2.04	2.06	e RI
	00		 	20.00	18 452	0.634	1 576	n 5002	A008.0	1	Fr	1360	1529	169	915	cE24	hP2	9 59	9.06	1 058	3.4562	0 2893	0 3132	0 6868	2.1	2.28	e Ri
	904	2 FE2EI		. 00 76	. 07 75	0.004	2 550	0.0000	0.0000	0 7058		1300	1340	40	1250	nP32		8.61	8 54	1.008	3 1429	0.3182	0.531	0.469	36	4.7	e II
	90	Gasers	GaEr	90.73	21.10	0.201	0.005	0.0301	0.0991	0.7000		1340	1120	20	1200	00.02	hP16	8 54	8 77	1 027	0.0789	12 667	0 7467	0 2533	47	3.08	e.Im
	90-	GaEr	GasErs	. 21.15	119.20	4.290	0.233	0.7000	0.7301	0.7999	EI	1040	1020	20	1040	hD1C	11-10	9 77	0.07	1.021	7	0 1420	D 4801	0 5100	4 18	2 28	e II
-	90	5 GasErs	Er	119.3	18.452	0.155	6.463	0.7999	0.9056	1	Er	1320	1029	209	1040	IIP IO	IPZ	0.11	9.00	1.034	1	0.1423	0 7001	0.0000	7.10	L.LU	6 II
	90	Er 6	ErsGe3	18.45	, 114.02	6.179	0.162	. 0	0.0559	0.2066	Ge	1529	1950	421	1322	nPZ	NP16	9.00	9.24	1.02	0.0000		0.7334	0.2000	2.20	4	E III
	90	7 ErGe ₃	Ge	48.42	13.632	0.282	3.552	0.5656	0.7109	1	Ge	890	938.3	48.3	6//	0016	Cr8	1.95	5.32	1.493	2.0007	0.3/5	0.0/12	0.4200	0.7	0.00	6 U
1	90	B. Hf	Er	13.44	18.452	1.373	0.729	0.0706	0.7273	0.9734	Er	2231	1529	702	1447	hP2	hP2	13	9.06	1.438	2.7968	0.35/5	0.2067	0.7933	2.3	2.20	CKI
	90	9 Er	Er ₂ in	18.2	48.114	2.644	0.378	0.1465	0.1702	0.2552	In	1529	1230	299	1140	hP2	hP6	8.61	9.34	1.084	0.0971	. 10.299	0.7957	0.2043	2.28	2.13	e Rt
	910) Ersina	Erin	135.1	31.634	0.234	4.272	0.3597	0.3974	0.407	In	1270	1220	50	1210	hP16	cP2	8.74	8.92	1.021	16.438	0.0608	0.2063	0.7937	2.1	2.05	e Rt
	91	Erin	Eralna	31.63	119.95	3.792	0.264	0.407	0.4764	0.5336	In	1220	1070	150	1060	cP2	oC32	8.92	8.97	1.006	0.3182	3.1429	0.4532	0.5468	3.43	2	e Ri
	912	2 Eralna	Erlo	120	56.848	0.474	2.11	0.5336	0.5604	0.6731	In	1070	1090	20	1050	oC32	cP4	8.97	9	1.004	0.5	2	0.8084	0.1916	2	3.05	e Rt
	91	Frin.	ln l	56.85	15,765	0.277	3.606	0.6731	0.9996	1	In	1090	156.6	933.4	156	cP4	tl2	9	7.28	1.236	3842.2	0.0003	0.0009	0.9991	3.05	1.82	e Rv
,	01/	Ma	MaEr.	14	426.5	30.47	0.033	0.3377	0.522	0.589	Er	650	640	10	584	hP2	cl58	2.44	3.33	1.364	0.0662	15.1	0.3314	0.6686	2.28	2.28	e Rt
1	01	, 1119 C. C.	Edilo	19 46	32 042	1 737	0.576		0 1098	0 3968	Mn	1529	990	539	940	hP2	hP12	9.06	8.65	1.048	0.2309	4.3314	0.7138	0.2862	2.28	3.53	e Rt
1	913		EIWIN	10.40	0.200	0.500	1 000	0 0000	0.1000	0.0000	Mo	1520	2623	1004	1477	hP2	c12	9.06	10.2	1 128	0.0366	27 336	0.9817	0.0183	2.28	2.94	c Rv
1	910	b Er	MO	18.45	9.300	0.509	1,900	0.0029	0.0233	0.5500	NIU	046	800	45	765	oD16	hP6	0.00	941	1 013	0 5333	1 875	0.6322	0.3678	3.42	2.32	e Ri
1	91	Er ₃ Ni	Er3Ni2	60.34	65.811	1.091	0.917	0.1047	0.1302	0.1090	INI NE	040	1055	40	103	0110	cE24	0.63	10.4	1.010	0.2848	3 5113	0 7514	0 2486	2 33	2.34	e Rt
1	918	B ErNi	ErNi ₂	23.46	27.255	1.162	0.861	0.2598	0.3002	0.4128	NI	1100	1200	100	1023	UP0	UF24	9.03	0.01	1.004	6.0200	0.1694	0.1014	0.2400	2.00	2 38	e Rt
1	919) Er ₂ Ni ₁₇	Ni	143.2	6.59	0.046	21.73	0.7495	0.8015	1	N	1315	1455	140	1260	nP38	CF4	9.3	0.91	1.044	1.0005	0.1004	0.0000	0.0001	2.7	2.00	a Dt
	920) Er	ErsPd2	18.45	102.44	5.552	0.18	. 0	0.1866	0.2031	Pd	1529	940	589	915	nP2	1149	9.06	10.2	1.13	1.6020	0.0004	0.0909	0.9091	2.20	2.23	
	92	ErsPd2	Er3Pd2	102.4	94.2	0.92	1.087	0.2031	0.2263	0.2978	Pd	940	991	51	923	ti49	tP10	10.2	7.59	1.35	0.4///	2.0934	0.6948	0.3052	2.20	2.24	
	922	2 ErPd	Er ₃ Pd ₄	24.93	83.321	3.343	0.299	0.3888	0.4226	0.4585	Pđ	1540	1450	90	1430	cP2	hR14	11	11.1	1.014	0.2778	3.5993	0.5185	0.4815	3.03	2.23	e II
	923	B ErPd,	Pd	40.34	8.989	0.223	4.55	0.7116	0.7962	0.8098	Pd	1710	1555	155	1280	cP4	cF4	12.1	12.7	1.054	26.599	0.0376	0.1443	0.8557	3.32	2.19	e: Kt
1	924	Er Er	Er ₃ Pt	18.45	63.044	3.417	0.293	0	0.2258	0.28	Pt	1529	1160	369	1045	hP2	oP16	9.06	11.1	1.219		. 1	0.2264	0.7736	3.4	2.28	e kt
1	92	5 Er Pt	ErPt,	67.1	32.724	0.488	2.051	0.6082	0.6555	0.7003	Pt	1630	1740	110	1610	hR14	cF24	19.1	17	1.122	2.4329	0.411	0.4574	0.5426	2.3	2.3	e Ri
	926	ErPt.	Pt	63.21	9.095	0.144	6.95	0.8533	0.9218	1	Pt	1690	1769	79	1540	o 72	cF4	18.1	21.5	1.187	5.1336	0.1948	0.5752	0.4248	2.3	2.3	e Ri
1.	927	Fr	ErRe-	18.45	32.997	1.788	0.559	0	0.0333	0.6904	Re	1529	2450	921	1440	hP2	hP12	9.06	16.4	1.804	0.0157	63.7	0.9727	0.0273	2.28	3.53	C Rv
L XI	928	R Fr	Fr-Rh	18.45	61.172	3.315	0.302	0	0.0508	0.2588	Rh	1529	1080	449	1020	hP2	oP16	9.06	9.89	1.091	0.0675	14.807	0.8171	0.1829	3.4	2.3	c Rt
11	020	FrRh	FrRh.	23.2	30 732	1.325	0.755	0.3809	0.4799	0.5443	Rh	1500	1640	140	1240	cP2	cF24	11.6	12.1	1.042	1.1149	0.8969	0.4037	0.5963	3.74	2.36	c II
	020	CrDh	Er8h.	30.73	58 638	1 908	0.524	0 5894	0.6983	0.7502	Rh	1640	1760	120	1500	cF24	hP6	12.1	11.6	1.044	1.1469	0.8719	0.3136	0.6864	2.36	2.38	c Ri
	33	ErOh	Dh	58 64	8 283	0 141	7 079	0 7502	0.847	1	Rh	1760	1963	203	1540	hP6	cF4	11.6	12.4	1.069	4.1921	0.2385	0.6281	0.3719	2.38	2.4	c Ri
1	93	Erris		40.45	61 226	2 224	0 201	A.	0 1000	0 1455	Ru	1579	1180	349	1065	hP2	oP16	9.06	9.83	1.084	0.6263	1.5968	0.3245	0.6755	3.4	2.32	e Ri
	-1934	EI	EIJTU C-C-	10.40	101.000	1 510	0.001		0.1005	0.1100	Sa	1529	1630	101	1310	hP2	cF8	9.06	8.78	1.032	0.2143	4.6667	0.7544	0.2456	2.28	4.08	e Im
R	93	5 Er	FL26	18.45	28.032	1.519	0.000	0.0007	0.0103	0.3201	00	1020	1440	100	1270	~E9	0.580	8 78	6.02	1 269	1 4058	0 7113	0 1946	0.8054	4.08	2.8	e It
F	934	ErSe	Er ₂ Se ₃	28.03	82.545	2.945	0.34	0.3207	0.3700	0.3039	36	1030	1990	100	10/0	600	6010	0.06	8 14	1 114	0.0822	12 17	0.665	0.335	2 28	4.11	c Im
5-	3 93	i Er	Er ₅ Si ₃	18.45	113.14	6.131	0.163	0.002	0.0299	0.0915	<u>୍</u> ଧା	1529	1000	121	1290	HF2	11-10	9.00	40.14	4 020	0.0011	226.27	0.0074	0.0026	2.28	18	C Rv
اتيا مهمة	-1 936	Er Er	Ta	18.45	10.852	0.588	1.7	0	0.0048	1	Та	1529	3020	1491	1490	nPZ	CIZ	9.00	10.7	1.039	0.0044	£ 20.21	0.3314	0.0020	2.20	4.04	e Im
\Box	- 937	Er	ErTe	18.45	33.626	1.822	0.549	0	0.1023	0.4327	Te	1529	1500	29	1270	nP2	CF-9	9.06	8.//	1.034	0.1/5/	3.0923	0.7575	0.2420	4.04	4.04	
E C	2 938	ErTe	Er2Te3	33.63	100.86	2.999	0.333	0.4327	0.4977	0.5337	Te	1500	1213	287	56.5	cF8	oF20	8.77	7.11	1.233	0.7429	1.3462	0.3098	0.0902	4.04	4.4	e m
~ 0	2 939	ErTe,	Te	71.18	20.465	0.287	3.478	0.6959	0.9869	1	Te	680	449.6	230.4	445	oC16	hP3	7.73	6.24	1.239	96	0.0104	0.035	0.905	3.91	9.90	0 0
Ξ	3 940) Ti	Er	10.89	18.452	1.695	0.59	0.0307	0.9086	0.99	Er	1665	1529	136	1320	cl2	hP2	4.63	8.85	1.91	3.3287	0.3004	0.1506	0.8494	2.10	2.28	e KL
32	941	Er	Er ₅ TI ₁	18.45	133.03	7.21	0.139	0.0723	0.2452	0.4178	TI	1510	1420	90	1100	hP2	hP16	9.17	10.9	1.188	0.1169	8.5558	0.5427	0.4573	2.28	2.1	e Kl
÷	942	ErTh	TI	61.11	17.577	0.288	3.477	0.7857	0.9959	1	TI	850	304	546	303	cP4	cl2	12.8	11.6	1.098	196	0.0051	0.0174	0.9826	3.02	1.78	e Rv
11	94	Er	v	18,45	8.328	0.451	2.216	0.0012	0.0135	1	۷	1529	1910	381	1480	hP2	cl2	9.06	, 6.12	1.482	0.0409	24.47	0.9819	0.0181	2.28	2.36	e Rv
	- 944	Fr	ErZn	18.45	26.538	1.438	0.695	0	0.1319	0.281	Zn	1529	1160	369	880	hP2	cP2	9.06	8.77	1.034	0.6364	1.5714	0.5221	0.4779	2.28	2.4	C RI
	045	Er7n	Fr7n.	26.54	35.595	1.341	0.746	0.281	0.3696	0.4391	Zn	1160	1150	10	1000	cP2	ol12	8.77	8.37	1.047	0.9947	1.0053	0.4284	0.5716	3.8	2.4	c II

ł		N°	C1	C2	Vm,	Vm ₂	At	A ₂	X _{e1}	XeL	X _{e2}	%ρ	Tft	Tf ₂	<u>vi</u>	Te	EC,	EC:	Pi	₽:	Β.	ει	E2	Vf	. Vf.	1S1	ΔS2	D M
1		946	Er	Zr	17.54	16	0.912	1.096	0.12	0.2201	0.4097	Zr	1440	1620	180	1300	hP2	cl2	8.67	7.79	1.112	0.6439	1.5531	0.63	0.37	2.28	2.17	c RI
1		947	EuGe2	Ge	43.84	13.632	0.311	3.216	0.489	0.6692	1	Ge	1030	938	92	723	hP3	cF8	6.78	5.32	1.273	2.231	0.4482	0.5904	0.4096	5.3	6.85	e II
		948	Mg	Mg ₁₇ Eu ₂	14	296.53	21.18	0.047	0	0.2852	0.4238	Eu	650	591	59	571	hP2	hP38	1.74	2.42	1.393	0.0697	14.343	0.4037	0.5963	2.28	2.28	e Rt
1		949	Mg ₁₇ Eu ₂	MgsEu	296.5	101.42	0.342	2.924	0.4238	0.5085	0.5556	Eu	591	573	18	569	hP38	hP36	2.42	2.7	1.115	4.705	0.2125	0.3833	0.6167	2.28	2.28	e Rl
-		950	Eu	Eu ₂ Pb	28.98	64.716	2.233	0.448	0	0.0735	0.4018	Pb	822	1250	428	770	cl2	oP12	5.24	7.9	1.506	0.0666	15.016	0.8706	0.1294	2.3	2.17	e Rt
i		951	Eu	Eu _s Pd ₂	28.98	142.93	4.932	0.203	0	0.1293	0.2182	Pd	822	610	212	545	cl2	mC28	5.24	6.8	1.298	0.2273	4.399	0.4715	0.5285	2.3	2.27	e Rl
		952	Eu,Pd,	EuPd	85.35	31.896	0.374	2.676	0.3182	0.3364	0.4118	Pd	810	855	45	775	hR15	oC8	7.83	8.1	1.034	0.625	1.6	0.8107	0.1893	2.26	2.25	e Rt
		953	EuPo,	Pd	54.58	8.865	0.162	6.157	0.7774	0.8305	0.863	Pd	1105	1180	75	1080	o 72	cF4	12.5	12.5	1.001	10.081	0.0992	0.3792	0.6208	2.2	2.19	e Rl
÷		954	Fe ₂ Gd	Gd	30.38	11.789	0.388	2.577	0.5843	0.8679	0.9964	Gd	1080	1313	233	845	cF24	0C8	8.85	13.3	1.507	3.7735	0.265	0.4058	0.5942	2.1	2.33	c RI
1		955	Fe ₃ Ge	Fe,Ge	29.42	116.82	3.971	0.252	0.3102	0.3578	0.3957	Ge	1122	1145	23	1105	hP8	hP4	8.16	5.83	1.4	0.4424	2.2602	0.3627	0.6373	4.33	5	e Im
		956	FeGe,	Ge	26.05	13.632	0.523	1.911	0.7225	0.752	1	Ge	840	938.5	98.5	838	tl12	cF8	7.72	5.32	1.449	0.33	3.0306	0.8528	0.1472	6.47	6.85	e It
		957	Fe	Fe ₂ Hf	7.587	26.064	3.435	0.291	0.0612	0.2152	0.5158	Hf	1538	1720	182	1390	cl2	hP12	7.36	11.1	1.513	0.0985	10.149	0.7471	0.2529	2.01	3.3	c Rt
		958	Fe ₃ Hf	Hf	26.02	14.168	0.545	1.836	0.6147	0.8498	0.9838	Hf	1640	2050	410	1300	hP24	cl2	11.2	12.6	1.129	2.8516	0.3507	0.3917	0.6083	2.01	2.3	c Rl
i		959	Fe	Fe,,Ho,	7.302	153.9	21.08	0.047	0	0.2261	0.2573	Ho	1538	1343	195	1338	cF4	hP38	7.65	8.31	1.087	0.3157	3.168	0.1307	0.8693	2.01	2.05	e Rt
		960	Fe ₁₇ Ho ₁	Fe ₂₁ H04	153.9	262.07	1.703	0.587	0.2573	0.3933	0.4353	Но	1343	1332	11	1285	hP38	cF116	8.31	8.68	1.044	1.821	0.5492	0.2439	0.7561	2.05	2.1	e Rt
!		961	Fe ₃ Ho	Ho	29.35	18.755	0.639	1.565	0.5959	0.8365	1	Но	1288	1474	186	875	cF24	hP2	9.43	8.79	1.072	2.4682	0.4052	0.388	0.612	2.15	2.44	e Rl
ł		962	Fe	. In	7.093	15.765	2.223	0.45	0.0061	0.9995	1	ln -	1538	156.6	1381	156	cl2	ti2	7.87	7.28	1.081	992.85	0.001	0.0005	0.9995	2.01	1.82	e Rv
1		963	Fe		7,093	22.455	3.166	0.316	0	0.964	1	La	1538	918	620	780	cl2	cF4	7.87	6.19	1.273	10.765	0.0929	0.0285	0.9715	2.01	2.01	e Rv
		964	Fealur	Fentur	79.86	256.94	3.217	0.311	0.2688	0.4075	0.4499	Lu	1320	1290	30	1275	hP80	cF116	13.7	9.09	1.504	1.5291	0.654	0.1689	0.8311	2.25	2.07	e Rt
		965	FesLu	Lu	28.37	17.782	0.627	1.595	0.61	0.9038	1	Lu	1345	1663	318	970	cF24	hP2	10.1	9.84	1.027	5.0061	0.1998	0.2417	0.7583	2.1	2.3	e Rt
		966	Fe	Mn	7,26	7.4	1.019	0.981	0.9012	0.9075	0.9102	Mn	1240	1246	6	1235	cF4	cl2	7.58	7.44	1.019	2.3845	0.4194	0.2915	0.7085	2.01	2.32	e Rt
	ł	967	Fe	Fe-Mo	7.621	22.863	3	0.333	0.3567	0.3764	0.4805	Мо	1500	1488	12	1449	ci2	hR53	7.33	9.08	1.239	0.0509	19.641	0.8675	0.1325	2.01	2.32	e Rt
		968	Fe	Fe-Nh	7.587	24,162	3.185	0.314	0.0521	0.1863	0.3809	Nb	1538	1627	89	1373	cl2	hP12	7.36	8.47	1.15	0.1883	5.3119	0.6252	0.3748	2.01	3.35	e RI
		969	FeNb	Nb	17.43	10.826	0.621	1.61	0.6151	0.7473	0.9529	Nb	1605	2060	455	1400	hR13	cl2	8.54	8.58	1.005	1.0294	0.9714	0.61	0.39	2.18	2.36	c RI
ł		970	Nd ₁ Fe.	Nđ	159	20.586	0.129	7.724	0.2325	0.9092	1	Nd	1210	1021	189	685	hR19	hP4	7.78	7.01	1.111	63.974	0.0156	0.1077	0.8923	1.93	1.32	e Rv
		971	Fe	FeO	7.302	12.072	1.653	0.605	3E-05	0.229	0.2318	0	1538	1424	114	1371	cF4	cF8	7.65	5.95	1.285	62.7	0.0159	0.0096	0.9904	2.01	2.8	e Rv
i	18	972	Fe	Fe ₁ P	7.093	27.856	3.927	0.255	0.0284	0.102	0.156	Ρ	1440	1166	274	1048	cl2	tl32	7.69	7.13	1.078	0.3744	2.6712	0.4048	0.5952	2.01	2	e Ri
	-21	973	Fe-P	FeP	20.66	14,402	0.697	1,435	0.2222	0.2699	0.3568	P	1370	1450	80	1262	hP9	oP8	6.9	6.03	1.145	0.9031	1.1072	0.6137	0.3863	2.01	2	e RI
	7	974	Fe-Pr	Pr	31.32	20 806	0.664	1.505	0.5679	0.9083	0.9962	Pm	1030	931	99	620	cF24	hP4	8.07	6.77	1.191	6.9421	0.144	0.1782	0.8218	2.1	2.25	c Rt
		975	FePu	Pu	87.2	15.014	0.172	5.808	0.9629	0.9803	1	Pu	428	640	212	410	t128	cF4	17.3	16.3	1.064	5.468	0.1829	0.5151	0.4849	0.9	0.73	e Ri
		976	Fe	FeS	7.302	18.147	2.485	0.402	0	0.3161	0.3647	S	1538	1188	350	988	cF4	hP4	7.65	4.84	1.579	4.1296	0.2422	0.0888	0.9112	2.01	4.15	e It
Ĵ,		1977	Fe	FeSb	7.15	22,102	3.091	0.324	0.1029	0.5356	0.5924	Sb	1480	1019	461	996	cl2	hP4	8.27	8.04	1.029	2.5374	0.3941	0.1131	0.8869	2.01	4.98	e It
j		079	FeSh-	Sh	37 53	18 193	0.485	2.063	0.8137	0.9963	1	Sb	738	630.7	107.3	628	oP6	hR2	7.98	6.69	1.192	121.85	0.0082	0.0166	0.9834	4.18	5.26	e Id
/	El	070	Fo	Fo.Sr	7 302	25 986	3 550	0 281	0.0081	0.0737	0,2867	Sc	1538	1600	62	1200	cF4	hP12	7.65	6.03	1.269	0.11	9.0941	0.7187	0.2813	2.01	3.2	e Rt
	53	1000	FG En Se	- C200	25 00	15 629	0.000	1 663	0 2867	0.763	0 9508	Sc	1600	1541	59	910	hP12	cl2	6.03	3.05	1.97	8.338	0.1199	0.1663	0.8337	3.2	1.85	e Rt
	- B	1900	FC200	Fasa	7 302	74 889	3 408	0.293	0 0141	0.5363	0.5711	Se	1538	1075	463	960	cF4	tP4	7.65	5.42	1.412	6.2276	0.1606	0.045	0.955	2.01	3.93	e It
1	03	301	Fe .	Co Co	20.01	16 417	0.547	1 828	0 739	0.9999	1	Se	585	221	364	221	oP6	hP3	7.12	4.81	1.481	9985.9	0.0001	0.0002	0.9998	2.73	3.1	e Rv
1	[4]	902	reaty	OC Fefti	30.01	12 070	0.071	1.020	0.700	0 2205	0 3346	C:	1220	1212	8	1203	hP6	cP8	6.42	6.05	1.061	0.2892	3.4575	0.8443	0.1557	3.73	4.6	e lt
	oЯ	983	Fe2SI	FeSt	21.11	10.0/8	1 299	1.509	0.2007	0.4403	0.5340	Si	1410	1220	190	1212	cP8	tP3	6.05	5.04	1.201	4.9088	0.2037	0.1279	0.8721	4.6	5.4	e It
1	핀岃	984	Fe5i	reoly	10.00	13.209	0.620	1 609	0.5910	0.5052	1	Si	1220	1414	194	1207	tP3	cF8	4.9	2.33	2.102	0.0512	19.54	0.969	0.031	5.4	7.16	e ld
Ì	ត្តា	985	FeSI2	51	19.27	10.79	0.020	1.595	0.0024	0.0007	: •	Sm	900	1074	174	720	cF24	hR3	8.53	7.6	1.123	4.2779	0.2338	0.2663	0.7337	1.98	1.94	e Rt
1	ES	986 .	re ₂ Sm	SM C-	30.71	16 204	0.044	1.002	0.0734	0.0100	· -	Sn	513	212	281	231 9	1112	tl4	8.54	7.28	1.173	9984.9	0.0001	0.0002	0.9998	4.17	3.4	e id
	4	1981	reon ₂	50	J4.J2	10.294	0.4/0	2.100	0.0030	0 2175	0.5575	Та	1538	1775	237	1442	cl2	hP12	7.36	12.2	1.663	0.079	12.657	0.8007	0.1993	2.01	3.17	e Rt
1		-988 .	10	rezia	1.08/	23.90/	3.131	1.400	0.0101	0.2110	0.00772	Ta	1860	2600	740	1670	hR13	cl2	14.6	15.8	1.081	0.8529	1,1725	0.6354	0.3646	1.9	1.8	c Ri
		989	Feta	. <u>la</u>	16.2	10.9	0.673	1.460	0.1910	0.0020	0.9113	Th	1197	1356	160	847	cF24	hP2	9.09	8 23	1.105	4,2737	0.234	0.2651	0.7349	2.14	2.39	e Rt
		000	Fe.Th	Th	29.77	19.313	0.649	1.542	0.0009	0.0190	0.9903	10	110/	1000	103					0.00						<u> </u>		

		N٥	C1	C2	Vmt	Vm ₂	Α,	A ₂	X _{e1}	Xei	X _{e2}	%p	Tf ₁	Tf ₂	AT	T,	EC,	EC2	$\boldsymbol{\rho}_{1}$	ρ:	В	٤	t ₂	Vf	Ví2	ΔS_1	72 ⁵⁵	DM
		991	FeTe ₂	Te	38.48	20.465	0.532	1.88	0.8253	1	1	Te	649	449.6	199.4	448	oP6	hP3	8.08	6.24	1.296	9727.6	0.0001	0.0002	0.9998	4.5	5.8	e Id
		992	Fe	Fe ₁₇ Th ₂	7.302	158.99	21.77	0.046	0	0 2382	0.3277	Th	1538	1462	76	1412	cF4	hR19	7.65	8.89	1.162	0.1052	9.5059	0.3039	0.6961	2.01	2	e Rt
l		993	Fe ₃ Th	Fe ₃ Th,	39.61	156.27	3.945	0.253	0.5807	0.8299	0.9065	Th	1100	940	160	850	hR12	hP20	10.1	11.5	1.137	0.725	1.3793	0.259	0.741	1.98	1.9	e Rt
		994	Ti	TiFe	10.89	15.92	1.462	0.684	0.2462	0.3395	0.5264	Fe	1220	1317	97	1085	cl2	cP2	4.67	6.52	1.394	0.245	4.0815	0.7362	0.2638	2.16	3.46	e Rt
		995	TiFe ₂	Fe	23.29	7.21	0.31	3.23	0.7632	0.8658	0.9171	Fe	1427	1395	32	1289	hP12	cl2	6.85	7.64	1.114	5.7981	0.1725	0.3577	0.6423	3.29	2.01	e RI
		996	Fe ₁₇ Tm ₂	Fe ₂₃ Tm ₆	153.2	263.44	1.719	0.582	0.2619	0.3656	0.4412	? Tm	1300	1270	30	1255	hP38	cF114	8.4	8.72	1.038	0.7671	1.3035	0.4312	0.5688	2.05	2.1	e RI
		997	Fe ₂ Tm	Tm	28.66	18.126	0.633	1.581	0.6016	0.8911	<u>1</u>	Tm	1300	1545	245	937	cF24	hP2	9.79	9.32	1.051	4.4129	0.2266	0.2638	0.7362	2.15	2.42	e Rt
		998	Fe	Fe ₂ U	7.302	26.526	3.633	0.275	0	0.4696	0.6803	U	1538	1228	310	1080	cF4	cF24	7.65	13.2	1.724	0.3559	2.8096	0.4361	0.5639	2.01	2.22	e Ri
		999	Fe ₂ U	FeUs	26.53	83.314	3.141	0.318	0.6803	0.8922	0.9623	3 U	1228	795	433	725	cF24	tl28	13.2	17.8	1.351	0.7117	1.4051	0.3091	0.6909	2.22	2.33	e Ri
1		1000	Fe	Fe ₁₇ Y ₂	7.302	155.14	21.25	0.047	0.0095	0.1245	0.1574	Y	1538	1400	138	1350	cF4	hP38	7.65	7.27	1.053	0.1733	5.7713	0.2136	0.7864	2.01	2.04	e Rt
		1001	Fe ₁₇ Y ₂	Fe ₂₃ Y ₆	155.1	265.7	1.713	0.584	0.1574	0.1908	0.2973	Y	1400	1300	100	1280	hP38	cF116	7.27	6.84	1.062	0.1945	5.1421	0.7501	0.2499	2.04	2.07	e Rt
		1002	FenYs	Fe ₁ Y	265.7	25.028	0.094	10.62	0.2973	0.3309	0.3467	Y	1300	1340	40	1250	cF116	hR12	6.84	10.2	1.498	15.033	0.0665	0.4139	0.5861	2.07	2.08	e RI
İ		1003	Fe ₃ Y	Ŷ	30.04	19.896	0.662	1.51	0.4428	0.7555	0.9899	Y	1125	1522	397	900	cF24	hP2	6.68	4.47	1.494	3.0103	0.3322	0.334	0.666	2,1	2.3	e Rl
		1004	71	ZraFe	14.16	34,134	2.411	0.415	0.0429	0.1692	0.2247	Fe	1600	974	626	928	cl2	tl12	6.44	6.98	1.083	0.8719	1.147	0.3223	0.6777	2.17	2.1	e RI
		1005	Zr.Fem	Fe	240.6	7.302	0.03	32.94	0.6593	0.8559	0.9892	Fe	1482	1538	56	1337	cF116	cF4	7.61	7.65	1.004	48.349	0.0207	0.4052	0.5948	2.04	2.01	e RI
		1006	Ga	Ga-Gd	11.79	82.523	7	0.143	0	0.0023	0.2734	Gd	29.7	406	376.3	29	oC8	tP14	5.91	6.97	1.179	0.001	993.85	0.993	0.007	4.42	4.12	e Id
ļ		1007	Ga.Gd.	Gd	127.4	19 906	0 156	6 398	0 7899	0 9002	1	Gd	1010	1313	303	850	t 32	hP2	7.82	7.9	1.011	7	0.1429	0.4775	0.5225	3.1	2.33	e Ri
1		1009	Ga	Ga	13.65	11 797	0.865	1 157	0	0 9999	1	Ga	938.3	29 77	908 5	29.77	cF8	oC8	5.32	5.91	1.111	16666	6E-05	7E-05	0.9999	6.85	4.42	e ld
		1000	Ca Hf.		94.66	14 168	0.000	6 682	0.8101	0.0333	0 9757	7 Hf	1740	2000	260	1480	hP16	cl2	11.6	12.6	1.083	9.6169	0.104	0.4099	0.5901	3.1	2.3	c RI
		1005	Ga, Ho	GaHo	37.07	28 152	0.15	1 317	0.5415	0.6409	0 7029	Ho	1300	1280	20	1210	hP3	oC8	8.21	8.34	1.015	2.0792	0.4809	0.3877	0.6123	3.76	3.43	e Il
		1011	Ga Ho	Ho	121 3	18 755	0 155	6 467	0.7977	0 0044	1	Hn	1230	1474	244	950	hP16	hP2	8.52	8.79	1.032	7	0.1429	0.4802	0.5198	3.18	2.44	e Ri
ļ		1011	Gagnius	I0	11 70	15 765	1 337	0.407	0.1077	0 2142	0 986	In	29 77	156.6	126.8	15.3	0C8	t12	5.91	7 28	1,232	0.1696	5.8957	0.8151	0.1849	4.42	1.82	e It
		1012	Ga	Gala	11.79	R6 457	7 334	0.136	·	0.2142	0.000	1.1.2	29.7	477	447.3	29	0C8	tP14	5.91	6.45	1.09	1E-04	10002	0.9993	0.0007	4.42	4.07	e Id
Ì		1013	Gala	Uagua	100.2	27 202	0.25	0.100 A	0 2200	0.0002	1	11	615	918	303	550	cP4	cF4	4 45	5.09	1.142	0 2684	3 7258	0.9371	0.0629	4.6	2.01	e It
		1014	Gala	Cali	11 70	178 22	15.12		0.22.55	0.2047	0.0208		29.7	288	258.3	27.5	0C8	hR20	5.91	5 59	1.057	0.0063	158.92	0.9131	0.0869	4.42	4.06	e Id
		1010	Ga	UdjąLij	14	87 102	6 220	0.000	0.0851	0.0017	0.0200) [] []	630	456	174	422.7	hP2	0128	1 74	2.99	1,723	0.2286	4 375	0.4126	0.5874	2.28	2.9	e Ri
-	• •	1010	My Ma Ca	Nigsoa2	70.60	11 790	0.225	6.76	0.0001	1	1	Ga	203	29 77	173.2	27 75	1128	0C8	4 98	5.91	1.186	19992	5E-05	0.0003	0.9997	3.8	4.42	e ld
	Uγ	1017	Mg2Gas	Callb	19.09	41 76	0.140	1.025	0.6041	0 7470	0 7000	Nh	1050	1860	00	1740	1132	cP8	8 34	8.34	1 001	1 9973	0.5007	0 4921	0.5079	3.13	4	e II
	∞	1018	GagiNOs	Galvos	00.02	91.70	7.007	1.933	0.0541	0.1473	0.7555	Md	20.7	456	426.3	27	002	iP14	5.01	6.81	1 152	0.001	993 87	0.993	0.007	4 42	3.98	e id
		1019	Ga	NiCo	07.75	14 479	0.522	1 017	0 2012	0.0021	0.2300	Ga	1210	1220	10	1207	cP4	rP2	8.86	8.87	1 001	8 1504	0 1227	0.1904	0.8096	4.02	4.78	e li
		1020	NI3Ga		40 42	14.4/0	4 602	1.917	0.2912	0.552	0.6565		1045	1020	25	060	cP8	cP2	9.56	9.77	1 023	1 8522	0.5399	0 1071	0 8929	4.68	4.4	e lt
-		1021	Garo	Ga4P05	10.40	76.02	4.002	1.070	0.0041	0.001	0.0303	Dd	1075	1020	40	080	cP2	oP16	0.77	0.64	1 014	0.5999	1 667	0.6426	0 3574	3 68	4 33	e Im
1	<u>1</u>	1022	GayPos	GajPaş	02.91	10.92	0.927	1.019	0.0000	0.0702	0.000		1100	1200	200	1020	oD12	cF4	10.0	12	1 102	0.4316	2 3169	0.8714	0 1286	2.93	2.19	e Rt
1	AI	1023	GaPo ₂	P0	25.94	0.000	0.342	2.920	0.0207	0.0303	0.932	L D4	1100	1142	200	1020	-D9	0016	14.0	16.7	1 122	0.7214	1 3861	0.258	0 742	4 74	31	e Im
1		1024	GaPt	GajPis	17.82	71.04	3.980	7.014	0.7307	0.7000	0.7944	PL	1974	1560	- JO 196	1361	cP4	cE4	18.4	10.7	1.059	3	0.3333	0 7225	0 2775	2.83	23	e Rt
;	े म	1025	GaPt ₃	1	/1.04	9.095	0.128	7.811	0.8930	0.9004	0.945	FI.	13/4	1000	100	1301	-F0	602	5 61	6 60	1 102	6 4746	0.1545	0.7245	0 7755	4 85	5 26	e Im
÷		1026	GaSb	Sb	34.09	18.193	0.534	1.8/4	0.6359	0.9288	1	50	111.7	030.7	01	209.3	UF0	11112	5.02	0.09	1.102	3 0040	0.1343	0.2020	0.0001	2.66	5 14	a Ti
Ê	팔려	1027	Ga₂Sc	GaSc	32.63	24.088	0.738	1.355	0.2435	0.3272	0.392	SC	1140	1090	50	1070	0112	008	3.00	4.70	1.191	2.0040	0.4/9/	0.3939	0.0001	2.91	1.85	o Di
	- 0	1028	Ga _s Sc _s	Sc	101.2	15.042	0.149	6.726	0.518	0.7206	<u>1</u>	SC	1430	1541	111	1060	nP16	nP2	4.29	2.99	1.430	·	0.1429	0.49	0.01	2.01	1.03	0 1
	20	029	GaSe	Ga ₂ Se ₃	29.18	60.805	2.084	0.48	0.5311	0.5806	0.6295	Se	938	1005	6/	880	NK4	CF8	5.09	0.19	1.213	0.4	2.J	0.0404	0.4040	7 46	J.02	0 14
5	3 3	1030	Si	Ga	12.06	11.789	0.978	1.023	0	0.9999	1	Ga	1414	29.77	1384	29.77	CF 8	008	2.33	5.91	2.539	3043.2	0.0003	0.0003	0.9997	1.10	4.42	
5	, 15	1031	GaSm ₃	Sm	94.32	20.003	0.212	4.715	0.8661	0.8961	1	Sm	875	1074	199	735	CP4	nR3	5.52	7.52	1.301	1	10.465	0.025	0.1/3	2.00	1.94	
3	2	1032	Ga	Sn	11.79	16.294	1.382	0.724	0	0.135	0.9614	Sn	29.7	231.9	202.2	20.5	008	U4	5.91	1.11	1.203	0.0504	10.100	0.0003	0.119/	4.46	3.07	o in
		1033	Ga	Ga₄Sr	11.79	63.295	5.369	0.186	0	0.0743	0.2391	Sr	29.7	767	737.3	29 29	008	110	5.91	0.19	1.021	0.0007	11.00/	0.0040	0.3132	4.42	1.02	e un
		1034	Ga ₇ Sr ₈	Sr	293	33.909	0.116	8.64	0.5892	0.8462	1	Sr	710	769	59	503	cP60	cF4	4.06	2.58	1.571	22.663	0.0441	0.276	0.724	3.1	1.92	e KI
		1035	Ga ₁ Tb ₄	Tb	125.3	19.313	0.154	6.489	0.7916	0.9012	- 1	Tb	1130	1356	226	880	tl32	hP2	6.34	8.23	1.298	5.5414	0.1805	0.5394	0.4606	3.15	2.39	.e Kl

	№	C,	C ₂	Vm ₁	Vm ₂	A ₁	A ₂	Xei	Xel	X _{e2}	%ρ	Tŕ,	Tf2	Л	T,	ËC,	EC2	ρ	ρ.	В	ε ₁	£2	Vf1	Vf ₂	ΔS_1	S_2	DM
	1036	GaTe	Ga ₃ Te,	36.05	123.42	3.423	0.292	0.6467	0.6996	0.709	Te	835	784	51	776	mC24	hP14	5.47	5.83	1.065	1.5581	0.6418	0.1579	0.8421	5.11	5.2	e It
	1037	Ga ₂ Te ₅	Te	129.7	20.465	0.158	6.335	0.8212	0.9307	1	Te	484	449.6	34.4	431	tl14	hP3	6	6.24	1.04	9.6214	0.1039	0.397	0.603	5.4	5.8	e II
	1038	Ti	Ti ₂ Ga	10.89	29.175	2.68	0.373	0.3149	0.3954	0.4209	Ga	1500	1435	65	1420	cl2	hP6	4.4	3.28	1.34	1.5799	0.633	0.1911	0.8089	2.16	2.16	e Rt
	1039	Ga	TI	11.79	17.216	1.46	0.685	0	0.0055	1	T	29,7	304	274.3	29.51	oC8	hP2	5.91	11.9	2	0.0019	525.32	0.9972	0.0028	4.42	1.78	e id
	1040	GaTm	Ga ₃ Tm ₅	27.3	117.74	4.313	0.232	0.7079	0.7399	0.7842	Tm	1320	1340	20	1290	oC8	hP16	8.74	8.95	1.024	0.1635	6.1151	0.5864	0.4136	4.45	3.17	e Il
	1041	Ga ₃ Tm ₅	Tm	117.7	18.126	0.154	6.496	0.8015	0.9065	1	Tm	1340	1545	205	1020	hP16	hP2	8.95	9.32	1.041		0.1429	0.4813	0.5187	3.17	2.42	e Ri
	1042	Ga ₃ U ₂	U	62.92	13.179	0.209	4.774	0.6948	0.9237	0.9941	U	1260	1135	125	1030	oC32	cl2	10.9	18.1	1.658	9.3657	0.1068	0.3376	0.6624	3.6	2.38	e Im
-	1043	Ga ₂ Y	GaY	38.03	28.63	0.753	1.328	0.389	0.4903	0.5605	Y	1350	1385	35	1270	hP3	oC8	6	5.54	1.084	2.0787	0.4811	0.3899	0.6101	3.7	2.36	e II
	1044	Ga ₃ Y ₅	Y	124	19.896	0.16	6.233	0.68	0.8361	1	Y	1295	1522	227	1015	hP16	hP2	5.27	4.47	1.18		0.1429	0.471	0.529	3.1	2.3	e Ri
	1045	Ga ₂ Yb	GaYb	37.26	27.68	0.743	1.346	0.5534	0.6833	0.7128	Yb	1100	895	205	880	hP6	tP4	8.39	8.77	1.046	5.659	0.1767	0.1921	0.8079	3.6	4.58	e <u>lt</u>
	1046	GaYb	GaYb ₂	27.68	50.631	1.829	0.547	0.7128	0.8281	0.8325	Yb	895	655	240	650	tP4	oP12	8.77	8.21	1.068	15.242	0.0656	0.0346	0.9654	4.58	2.8	e Id
	1047	GaYb,	Yb	50.63	24.845	0.491	2.038	0.8325	0.9006	1	Yb	655	819	164	605	oP12	cF4	8.21	6.96	1.179	1.6461	0.6075	0.5532	0.4468	2.8	2.01	e Ri
	1048	Ga	Zn	11.79	9.163	0.777	1.287	0.0094	0.0364	0.9749	Zn	29.7	419.6	389.9	24.67	oC8	hP2	5.91	7.13	1.206	0.0307	32.601	0.9767	0.0233	4.42	2.51	e ld
Ì	1049	Ga ₃ Zr ₅	Zr	97.74	14.156	0.145	6.904	0.6856	0.8311	0.9377	Zr	1570	1680	110	1275	hP16	cl2	6.81	6.37	1.069	10.082	0.0992	0.4065	0.5935	3	2.17	CRI
1	1050	Gd	Gd.Ge.	19.91	122.02	6.13	0.163	0	0.054	0.2169	Ge	1313	1790	477	1113	hP2	hP16	7.9	8.23	1.042	0.0519	19.273	0.7587	0.2413	2.33	4.02	e Im
	1051	GdGe,	Ge	34.93	13.632	0.39	2.562	0.5428	0.7234	1	Ge	890	938.3	48.3	860	ti12	cF8	8.66	5.32	1.626	2.7219	0.3674	0.4849	0.5151	6.57	6.85	e li
	1052	Gd	Gd,In	20.15	51.531	2.557	0.391	0.1141	0.1503	0.2557	In	1150	1180	30	1023	ci2	hP6	7.57	8.33	1.101	0.1218	8.2085	0.7625	0.2375	2.33	2.16	e Rt
	1053	Gd ₂ In	Gd _s in,	51.53	139.18	2.701	0.37	0.2733	0.2867	0.2956	In	1180	1155	25	1125	hP6	t132	8.33	8.12	1.025	0.5653	1.769	0.3958	0.6042	2.16	2.14	e Ri
	1054	GdIn	Gd ₃ In,	32.92	124.67	3.787	0.264	0.4123	0.4868	0.5384	In	1250	1155	95	1130	cP2	oC32	8.26	8.39	1.015	0.375	2.6663	0.4132	0.5868	3.46	2.01	e RI
	1055	Gd,In,	GdIn	124.7	59.008	0.473	2.113	0.5542	0.5972	0.6866	In	1155	1175	20	1125	oC32	cP4	8.39	8.5	1.014	1.0016	0.9984	0.6784	0.3216	2.01	3.07	e Ki
1	1056	GdIn	In	59.01	15.765	0.267	3.743	0.6866	0.9932	1	In	1175	156.6	1018	154	cP4	tl2	8.5	7.28	1.167	196	0.0051	0.0187	0.9813	3.07	1.82	e Rv
1	1057	Mg	Mg ₅ Gd	14	89.982	6.428	0.156	0.2348	0.3843	0.5641	Gd	630	658	28	548	hP2	cF448	2.17	2.63	1.21	0.1069	9.3576	0.5928	0.4072	2.28	2.28	e Ki
1	1058	Gd	GdMn ₂	19.91	35.154	1.766	0.566	0	0.1601	0.4117	Mn	1313	950	363	830	hP2	cF24	7.9	7.6	1.04	0.3746	2.6696	0.6019	0.3981	4.42	2.32	6. TI
1	1059	Gd ₃ Ni	Gd ₃ Ni ₂	64.43	68.71	1.066	0.938	0.1107	0.1494	0.1993	Ni	735	690	45	635	oP16	t 20	8.23	8.57	1.041	0.7	1.4286	0.5726	0.4274	2.34	2.35	e Ki
1	1060	GdNi	GdNi ₂	24.6	28.254	1.149	0.871	0.2719	0.2963	0.4279	Ni	1280	1010	270	880	oC8	cF24	8.78	9,72	1.107	0.1459	6.8525	0.8565	0.1435	2.35	2.36	e KI
	1061	Gd ₂ Ni ₁₇	Ni	149.2	6.59	0.044	22.64	0.7609	0.8764	1	Ni	1285	1455	170	1275	hP38	cF4	8.8	8.91	1.013	20.908	0.0478	0.5199	0.4801	2.37	2.38	e Kt
(V	1062	Gd	Gd ₃ Pb ₃	19.91	142.62	7.164	0.14	0	0.1826	0.4415	Pb	1313	1670	357	1120	hP2	hP16	7.9	9.87	1.25	0.0788	12.69	0.6391	0.3609	2.33	2.17	e Ki
1	1063	Gd	Gd ₇ Pd ₃	19.91	163.31	8.204	0.122	0.0136	0.1761	0.2248	Pd	1280	812	468	785	hP2	hP20	7.9	8.69	1.101	0.3691	2.7096	0.2483	0.7517	2.33	2.32	e Kt
	1064	GdPd	Gd ₃ Pd ₄	27.24	87.381	3.208	0.312	0.4036	0.4328	0.4738	Pd	1380	1355	25	1305	oC8	hR14	9.68	10.3	1.061	0.2091	4.7825	0.5985	0.4015	2.26	2.25	. e . Ki
ł	1065	GdPd,	Pd	41.36	9.21	0.223	4.491	0.7179	0.8061	0.8323	Pd	1540	1240	300	1128	cP4	cF4	11.5	12.2	1.06	14.243	0.0702	0.2397	0.7603	3.34	2.19	e Ki
L	1066	Gd	Gd ₃ Pt	19.91	67.06	3.369	0.297	0	0.1796	0.2926	Ρl	1313	1250	63	1040	hP2	oP16	7.9	9.94	1.259	0.375	2.6667	0.4418	0.5582	2.33	3.44	CKI
×1	1067	Gd-Pt.	GdPt,	86.96	267.96	3.081	0.325	0.6228	0.6314	0.7131	Pt	1600	2050	450	1550	hR14	cF24	14.4	16.3	1.135	0.0302	33.138	0.9149	0.0851	2.3	2.3	CKV
	1068	GdPt.	Pt	63.64	9.095	0.143	6.997	0.1992	0.9345	0.9952	Pt	1650	1769	119	1630	o 72	cF4	17.8	21.5	1.205	70.383	0.0142	0.0904	0.9096	2.3	2.3	CKV
Ξ.	1069	Gd	Gd ₃ Rh	19.91	65,404	3.286	0.304	0	0.1182	0.1791	Rh	1313	980	333	920	hP2	oP16	7.9	8.79	1.112	0.5312	1.8825	0.3643	0.6357	2.33	3.47	e Ki
	1070	GdRb	GdRh	24.41	31.941	1.308	0.764	0.3956	0.4246	0.5672	Rh	1470	1750	280	1395	cP2	cF24	10.7	11.4	1.067	0.146	6.8515	0.8397	0.1603	3.74	2.37	e It
- 0	1071	GdRh.	GdRb	14.46	59,988	4.149	0.241	0.6625	0.7236	0.7655	Rh	1560	1560	0	1460	hP24	hP6	11.2	11.2	1.002	0.3519	2.8421	0.4066	0.5934	2.38	2.38	e Ri
1 T	1072	GdRh.	Rh	59 99	8 283	0.138	7.242	0.7655	0.8008	1	Rh	1560	1963	403	1470	hP6	cF4	11.2	12.4	1.109	1.157	0.8643	0.8623	0.1377	2.39	2.4	e Rt
	1072	Gd	Gd_Ru	19.91	66.36	3.334	0.3	0	0.0875	0.1534	Ru	1313	1055	258	917	hP2	oP16	7.9	8.63	1.093	0.3648	2.7413	0.4512	0.5488	2.33	2.36	e Ri
28	1074	Gd	Gd.Sh.	19.91	132.62	6.662	0.15	0.0078	0.1037	0.3172	Sb	1313	1640	327	1120	hP2	hP16	7.9	8.68	1.099	0.0614	16.296	0.7098	0.2902	2.33	3.43	c Rt
42	1075	CdSh	Sh	47 27	18 193	0 385	2 598	0.608	0.9871	. 1	Sb	780	630.7	149.3	624	oC6	hR2	8.48	6.69	1.267	96.909	0.0103	0.0261	0.9739	4.28	5.26	e Id
5	1075	CdSo	Cd Se	20.01	81 065	2 795	0 358	0.3343	0.3996	0.4095	Se	2170	1700	470	1550	cF8	oP20	8.14	4.86	1.675	3.9728	0.2517	0.0826	0.9174	2.72	2.8	c Rv
4-) 19-	1070	Cd	Cd.Si	10.01	120.51	6 054	0.165	0.0014	0.0313	0.0968	Si	1313	1650	337	1070	hP2	hP16	7.9	7.22	1.094	0.0822	12.168	0.6678	0.3322	2.33	4.14	c Im
	10/1	CAR	Cd Si	120.6	128 10	1 064	0.94	0.0968	0.1104	0.1257	Si	1650	1680	30	1060	hP16	oP36	7.22	7.01	1.03	0.8625	1.1595	0.5215	0.4785	4.14	4.48	c II
-	1078	045013	00501	120,0	73 240	3 625	0.276	0	0 1257	0 201	Sn	1313	1173	140	1103	cl2	cP8	7.89	8.17	1.036	0.4444	2.2501	0.383	0.617	2.3	3.98	e II
	1079	GO	60350	19.93	12.240	1.044	0.210	0.201	0.2444	0 3117	Sn	1173	1243	70	1141	cP8	hP16	8.17	8.28	1.013	0.3333	3	0.6109	0.3891	3.98	2.73	e li
	1080	Gd ₃ Sn	Gassus	12.25	130.04	1.911	0.323	0.201	0.2444	0.0111												_					

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

i	Г	Nº	C,	C,	Vm.	Vm-	Α,	A,	X.,	Χ.,	X.,	%,	Tf,	Tf,	М	Τ.	EC,	EC,	01	ρ.	В	٤	E,	Vf	VI2	AS,	ΔS_2	DΜ
		1081	Gd	GdTe	20.15	34 838	1 720	0.570	0	0.0245	0.448	Te	1313	1825	512	1290	cl2	cF8	7.8	8.18	1.048	0.0319	31.333	0.9477	0.0523	2.33	4.06	e id
		1001	Ті	Cd.	10.80	20 154	1 851	0.54	0.0628	0.9637	0 9875	Gd	1650	1295	355	1240	cl2	cl2	4 72	7.67	1.627	12.597	0.0794	0.0411	0.9589	2.16	2.33	e Rv
		1082	C4	Gd.T	20.15	50 202	2 4 9 1	0.401	0.0020	0 2796	0.3935	Ті	1313	1055	258	920	cl2	hP6	8 27	10.3	1.25	0.2291	4.3657	0.6367	0.3633	2.33	2.15	e RI
		1003	Gd.TI	GdTI	142 1	32 556	0 220	4 365	0 4434	0 4642	0.5454	ті	1220	1270	50	1200	hP16	cP2	9.85	11.1	1,128	0.9934	1.0066	0.8146	0.1854	2.12	2.05	e Rt
		1004	Call	GaTI	407.0	62.000	0.225	2.043	0.6998	0.7653	0.0404	т	1050	990	60	970	0032	cP4	11 7	12.4	1 054	4 851	0.2061	0.2963	0.7037	1.99	1.9	e Rt
		1000	Cd	- Ouris	10.01	02.232	0.45	2.045	0.0000	0.1000	1	w.	1313	1010	507	1289	hP2	. <u>r17</u> .	79	6 12	1 291	0.0092	108.45	0.9962	0.0038	2.33	2.36	c Rv
		1080	Gu	7.	10.01	14 156	0.410	1.406	0.0023	0.0000	0.8805	71	1310	1800	490	1220	hP2	cl2	7 81	6.83	1.143	0 3802	2,6299	0.7871	0.2129	2.33	2.17	e Rt
		1007		4	12.44	49.66	2 610	0.276	0.0147	0.1004	0.0000	G	2200	1980	220	1775	hP2	tP32	13.3	12.5	1 062	0.1667	6	0.6237	0.3763	2.3	3.43	c RI
		1000		111300	04 00	12 522	0.013	2 220	0 4490	0.0522	1	60	1744	018 1	805.7	930	nC12	cF8	10.2	5.32	1 907	46.965	0.0213	0.0474	0.9526	5.3	6.85	c Id
1	- 1	1089	HiGe ₂	Ue Co	31.00	115 50	0.420	0.125	0.4403	0.0566	0 2080	Go	1474	1950	476	1250	hP2	hP16	114	9.02	1 266	0.0588	17	0.68	0.32	2.44	4.09	c Im
		1090	10	HU5063	42.62	16 765	0 .	0.125	. U.	1	1	In	P 850	156.6	781 7	156.3	cF8	tl2	5 32	7.28	1 368	15872	6E-05	5E-05	0.9999	6.85	1.82	e Id
	1	1091	Ge	:	13.03	10.700	1.100	0.000	0 2522	0 3615	0 4544	Go	1371	1500	129	1340	oP8	#112	6.54	7 24	1.107	0.0736	13.59	0.918	0.082	4.43	6.47	e id
		1092	Lage	Lacez	32.32	39.213	1.210	0.024	0.3323	0.3013	0.5772	1.0	028.2	1065	126 7	RED	cE9	oC12	5 32	89	1 671	0 1726	5 7935	0.6871	0.3129	6.85	5.3	e Im
		1093	Ge	Ge ₂ LU	13.63	35.97	2.639	0.3/9	0.0007	0.24/4	0.0120	LU 1	930.3	1003	277	1400	60 G	hD2	10	0.0	1.02	19 273	0.0519	0 241	0 759	4	2.3	e Im
		1094	GesLus	LU	108.8	17.782	0.163	0.119	0.8007	0.9012	0 5005	LU	2040	1005	311 467 A	625.6	11F 10	cE12	1 74	3.04	1 785	0.0119	83 903	0 9678	0.0322	2.28	3.8	e idi
		1095	Mg	Mg ₂ Ge	14	39.102	2.793	0.358	0 5005	0.0330	0.0900	Ge	1117	030.2	407.4	606.7	CE12	cE8	3.14	5 32	1 718	2 6061	0 3837	0 524	0.476	3.8	6.85	e Il
		1096	Mg ₂ Ge	Ge	39.1	13.632	0.349	2.868	0.5965	0.0432	0.0770	Ge	1010	930.3	200	030.7	0F12	5D9	6.2	7 38	1 10	21 166	0 0472	0.0128	0 9872	2 32	4 56	e ld
1		1097	Mn	Mn ₃ Ge	8.86	32.18	3.632	0.2/5	0.1/1	0.2/61	0.2113	Ge	1240	940	300	910	600	HF0	7 28	7.30	1 010	0.0716	13 961	0.8857	0 1143	4 56	36	e ld
1		1098	Mn₃Ge	Mn ₅ Ge ₂	32.18	57.974	1.802	0.555	0.2887	0.2944	0.3394	Ge	940	970	30	912	11170	hD6	7.30	7.62	1 052	0.0715	1 2961	0 7583	0 2417	3.6	3.83	e Im
1		1099	Mn ₅ Ge ₂	Mn ₂ Ge	57.97	23.946	0.413	2.421	0.3615	0.367	0.3834	Ge	9/0	905	3	933	HF 120	hD16	7.62	8 53	1 110	0 3622	2 7608	0 4925	0 5075	3.83	4.01	e 1
		1100	Mn ₂ Ge	Mn ₅ Ge ₃	23.95	68.112	2.844	0.352	0.405	0.4221	0.4369	Ge	790	930.3	142.3	940		oP12	5.22	8.52	1 601	0.0022	11 273	0 8445	0 1555	6.85	5.34	e It
		1101	Ge	Ge ₂ Mo	13.63	28.287	2.075	0.482	_ 0	0.0905	0.3975	Ge	938.3	1146	141.7	935	CER	oF 12	5.32	4 76	1 118	0.0007	28 333	0.8545	0 1455	6.85	5.82	e It
		1102	Ge	Ge ₄ Na	13.63	65.785	4.826	0.207	0	0.0097	0.0734	Na	930.3	1140	207.1	930	CF0	mP32	4 76	31	1 534	1 6667	0.6	0.5618	0.4382	5.82	4.27	e Il
		1103	Ge₄Na	GeNa	65.79	30.785	0.466	2.13/	0.0734	0.1297	0.2405	INd	1000	2190	280	1965	cD8	1132	863	8 54	1.011	0 1993	5 0172	0.7188	0.2812	4.86	4.04	e Im
		1104	Nb ₃ Ge	Nb ₅ Ge ₃	40.73	79.936	1.963	0.51	0.1892	0.2242	0.5145	Ge	21900	1680	500	1580	1132	hPq	8 54	8 12	1 051	5 2761	0.1895	0.3407	0.6593	4.04	5.35	e Im
1	1	1105	Nb ₅ Ge ₃	NbGe ₂	79.94	29.325	0.367	2.120	0.3804	0.5293	0.0101	Ge	1011	1590	560	825	hD4	hP16	7.01	7.05	1 006	0.0479	20 887	0,7635	0.2365	1.32	4.1	e Im
	- 1	1106	Nd	Nd₅Ge₃	20.59	133.18	6.469	0.155	U	0.053	0.2229	Ge	1021	1497	00	1200	008	1112	7 18	7 76	1.000	0 1749	5 7169	0 8223	0.1777	4.1	6.23	e It
0		1107	NdGe	NdGe ₂	30.19	37.299	1.235	0.809	0.3348	0.3328	0.4302	Ge	1397	019.7	54R 7	878	112	rF8	7 76	5.32	1 457	4,1989	0 2382	0.3945	0.6055	6.23	6.85	e Il
0		1108	NdGe2	Ge	37.3	13.632	0.365	2.730	0.4407	0.7204	0.9901	Ge	1907	1140	190.7	1124	cF4	cP4	92	9.08	1 014	5 9232	0 1688	0.0399	0.9601	2.38	4.61	e It
		1109	Ni	Ni ₃ Ge	6.75	27.404	4.05	0.240	0.1906	0.2097	0.273	Ge	1405	1105	00	1000	hDRA	hP6	13.9	9.61	1 4 5	0 1505	6 6436	0.7581	0.2419	3.65	4.05	e Im
		1110	Ni ₅ Ge ₂	Ni ₅ Ge ₃	25.11	53.216	2.119	0.472	0.3247	0.3350	0.3049	Ge	960	028.3	88.3	762	0P8	cF8	8 14	5.32	1 528	1.0303	0.9706	0.5347	0.4653	4.6	6.85	e Il
4	7	1111	NiGe	Ge	16.14	13.032	0.840	1.104	0.3329	0.7131		Db	030	107.5	610.8	327	oFR	cF4	5.32	11.3	2 13	1427.6	0.0007	0.0005	0.9995	6.85	1.91	e Id
Þ		1112	Ge	Pb	13.63	18.265	1.34	0.740		0.9990	0 5044	FU Dd	930.3 029.2	920	108.3	725	cFR	oP8	5.32	9.44	1 772	1,2857	0.7778	0.3586	0.6414	6.85	4.52	e Im
12		1113	Ge	GePd	13.63	18.968	1.391	0./19	0	0.4519	0.5944	10	930.3	1205	100.0	815	0.00	6/0	0.02	10.7	1 133	0 146	6 8492	0.8296	0.1704	4.52	3.74	e It
Þ.	긝	1114	GePd	GePd ₂	18.97	26.694	1.407	0.711	0.5944	0.0231	0.7409	PO	070	129J 840	130	760	hP34	mC24	11.1	11.4	1.027	16.895	0.0592	0.2498	0.7502	3.42	2.97	e Rt
i.	ñ	1115	GegPd ₂₅	GePds	298.9	53.13	0.1/8	5.020	0.8147	0.002	0.0714	Fu Co	1400	1260	40	1320	008	oPR	6 94	7 07	1 019	2,9693	0.3368	0.2554	0.7446	4.55	4.55	e Im
23	5	1116	PrGe	PrGe	30.77	30.208	0.982	1.019	0.34	0.3509	0.3545	Ge	1400	1300	40	820	112	cE8	6.97	5.32	1 299	4 5148	0 2215	0.402	0.598	6.54	6.85	e. Il
- <u>1</u>	\neg	1117	PrGe ₂	Ge	41.37	13.632	0.33	3.035	0.463	0.73/4	0.977	Ge	1000	930.3	110.2	770	CER	oP6	5 32	10.9	2 046	0 6487	1.5415	0.4022	0.5978	6.85	5.3	e I
23	-51	1118	Ge	Ge ₂ Pt	13.63	31.236	2.291	0.436	0	0.4312	0.573	PL	930.3	705	110.0	783	oP40	hPQ	15 3	16.9	1 103	1 8234	0 5484	0.4884	0.5116	4.12	3.8	e Il
R	2	1119	Ge ₂ Pt ₃	GePt ₂	47.68	27.387	0.574	1.741	0.8012	0.8238	0.6433	PL Db	007	1000	F1 7	850	rF8	11156	5 32	9.02	1 694	0.0288	34,772	0.561	0.439	6.85	4.9	e II
2		1120	Ge	GezzRh17	13.63	370.97	27.21	0.037	U	0.2975	0.5219	RO	4600	1000	363	1100	0012	cF4	11.2	12.4	1 107	1.5407	0.649	0.6603	0.3397	4.2	2.4	c Im
N R	1	1121	GeRh ₂	Rh	24.8	8.283	0.334	2.994	0./395	0.0341	1	R/I D/I	1000	1303	303	1200	cPR	hP2	10.1	12.4	1.22	0.4079	2.4516	0.8371	0.1629	4.65	2.45	c It
		1122	GeRu	Ru	17.14	8.175	0.477	2.096	0.5407	0.0289	0.4004	ru c	14/0	2004 RAN	175	600	0P8	oF72	4.24	3.11	1.363	0.9947	1.0053	0.3609	0.6391	5.08	4.48	e Im
		1123	GeS	GeS ₂	24.67	43.92	1.781	0.502	0.3004	0.0900	0.4034	Sh	000	630.7	307.6	592	cF8	hR2	5.32	6.69	1.257	5.8966	0.1696	0.1127	0.8873	6.85	5.26	e It
	- (1124	Ge	Sb	13.63	18,193	1.335	0.749	U	0.9082	0 4044	00	5JO.J	2065	574	1274	hP2	hP16	3 R4	4.73	1,231	0.0464	21.533	0.7291	0.2709	1.85	3.7	e Im
	- 1	1125	Sc	SciGe	· 11.71	93.656	8	0.125	0.0429	0.1005	0.4014	90	1341	2001	924	1614	18.4									<u> </u>		

		N٥	C,	C2	Vm ₁	Vm ₂	A,	A ₂	X _{e1}	X _{eL}	X,,2	%p	Tf ₁	Tí ₂	ΔT	T,	EC ₁	EC ₂	Pi	P:	В	ει	<u>د</u> ء	Vfi	Vf ₂	∆S ₁	ΔS_2	DM
		1126	ScGe ₂	Ge	33.05	13.632	0.413	2.424	0.7638	0.9015	1	Ge	1116	938.3	177.7	892	oC12	cF8	5.75	5.32	1.081	3.6595	0.2733	0.3985	0.6015	5.18	6.85	e II
1		1127	GeSe	GeSe ₂	27.41	48.123	1.755	0.57	0.5235	0.5806	0.6854	Se	675	742	67	586	oP8	tl12	5.53	4.79	1.154	0.3582	2.7918	0.614	0.386	4.98	5.6	e II
		1128	GeSez	Se	48.12	16.417	0.341	2.931	0.6854	0.926	1	Se	742	221	521	485	ti 12	hP3	4.79	4.81	1.004	9.4872	0.1054	0.236	0.764	5.58	3.1	e Im
		1129	Sm	Sm _s Ge ₃	20.45	145.91	7.134	0.14	0	0.0563	0.2246	Ge	1074	1700	626	890	hP2	hP16	7.35	6.64	1.106	0.0519	19.273	0.7298	0.2702	1.94	4.9	e Im
1		1130	Sm2Ge3	Ge	91.2	18.239	0.2	5	0.42	0.7323	. 1	Ge	1355	938.3	416.7	820	hP16	cF8	5.69	3.98	1.428	8.3333	0.12	0.375	0.625	4.9	6.85	e Im
		1131	Ge	Sn	13.63	16.294	1.195	0.837	0.0162	0.9984	1	Sn	938.3	231.9	706.4	231.1	cF8	tl4	5.32	7.28	1.368	377.37	0.0026	0.0022	0.9978	6.85	3.4	e ld
		1132	Sr	Sr ₂ Ge	34.78	60.837	1.749	0.572	0	0.03	0.2926	Ge	769	972	203	714	cl2	oP12	2.52	4.07	1.617	0.0404	24.748	0.934	0.066	1.92	4.1	e ld
		1133	SrGe ₂	Ge	49.26	13.632	0.277	3.614	0.624	0.776	1	Ge	1015	938.3	76.7	755	oP24	cF8	4.73	5.32	1.127	2.1763	0.4595	0.6241	0.3759	5.2	6.85	e Im
		1134	Ge	Ge ₂ Tb	13.63	37.056	2.718	0.368	0	0.2628	0.4474	Tb	938.5	940	1.5	850	cF8	oC24	5.32	8.21	1.541	0.3396	2.9445	0.52	0.48	6.85	5.36	e II
		1135	Ge ₃ Tb ₅	Tb	119.8	19.313	0.161	6.204	0.7849	0.9414	1	Tb	1900	1356	544	1160	hP16	hP3	8.45	8.23	1.027	17	0.0588	0.2674	0.7326	4.06	2.39	e Im
		1136	Th	Th ₂ Ge	20.91	50.238	2.403	0.416	0	0.0725	0.1351	Ge	1755	1750	5	1500	cl2	tl12	11.1	10.7	1.039	0.5014	1.9944	0.4536	0.5464	1.89	4.77	e II
		1137	ThGe	Th ₃ Ge ₅	33.28	96.584	2.902	0.345	0.2383	0.2848	0.3427	Ge	1700	1600	100	1550	cF8	hP3	9.15	11	1.198	0.2308	4.3333	0.5989	0.4011	4.37	4.99	e Il
		1138	ThGe ₂	Ge	43.57	13.632	0.313	3.196	0.3852	0.9388	1	Ge	1600	938.5	661.5	920	oC12	cF8	8.66	5.32	1.626	46.97	0.0213	0.0637	0.9363	5.2	6.85	e id
		1139	Ti	Ti _s Ge ₃	10.89	77.992	7.164	0.14	0.1164	0.2097	0.4762	Ge	1520	1980	460	1325	cl2	hP16	4.7	5.86	1.249	0.0391	25.565	0.7811	0.2189	2.16	3.78	e It
		1140	TiGe ₂	Ge	28.83	13.632	0.473	2.115	0.7522	0.9246	0.98	Ge	1075	930	145	900	oF24	cF8	6.7	5.32	1.258	8.2761	0.1208	0.2035	0.7965	5.28	6.85	e it
		1141	Ge	TI	13.63	17.577	1.289	0.776	0	0.9997	1	, TI	938.3	304	634.3	303.4	cF8	cl2	5.32	11.6	2.184	1110.1	0.0009	0.0007	0.9993	6.85	1.78	e Id
i i		1142	Ge	Ge ₂ Tm	13.63	36.555	2.682	0.373	0	0.2911	0.5111	Tm	938.3	885	53.3	870	cF8	oC12	5.32	8.59	1.614	0.3058	3.2702	0.5495	0.4505	6.85	5.37	e Il
		1143	Ge ₃ Tm ₅	Tm	111.5	18.126	0.163	6.149	0.795	0.9372	1	Tm	1960	1545	415	1342	hP16	hP2	9.53	9.32	1.023	14.222	0.0703	0.3019	0.6981	5.3	2.42	e Im
		1144	Ge	Ge ₃ U	13.63	44.816	3.288	0.304	0	0.0321	0.5222	U	938.3	1475	536.7	931	cF8	cP4	5.32	10.2	1.91	0.0104	96	0.9669	0.0331	6.85	6.82	c ld
		1145	Ge ₃ U	Ge ₂ U	44.82	37.284	0.832	1.202	0.5222	0.5957	0.6208	U	1475	1450	25	1430	cP4	oC12	10.2	10.3	1.011	3.4768	0.2876	0.2569	0.7431	6.82	5.36	c Im
		1146	Ge ₂ U	Ge ₄ U ₃	37.28	91.49	2.454	0.408	0.6208	0.6771	0.7113	U	1450	1440	10	1400	oC12	o 24	10.3	. 11	1.068	0.627	1.595	0.3939	0.6061	5.36	4.9	C II
		1147	Ge ₃ U ₅	U	111.2	13.179	0.119	8.435	0.8453	0.9875	0.9938	U	1670	1135	535	1072	hP16	cl2	12.7	18.1	1.426	132.14	0.0076	0.06	0.94	4.04	2.38	e Id
ł		1148	٧	V ₃ Ge	8.328	32.54	3.907	0.256	0.0629	0.2009	0.3103	Ge	1890	1920	30	1760	ci2	cP8	6.12	6.93	1.132	0.2851	3.5076	0.473	0.527	4.6	4.6	e II
		1149	V ₃ Ge	V ₅ Ge ₃	32.54	70.704	2.173	0.46	0.3103	0.4233	0.4662	Ge	1920	1965	45	1800	cP8	t132	6.93	6.68	1.037	1.2571	0.7955	0.268	0.732	3.5	4.04	C IM
!		1150	V17Ge31	Ge	439.1	13.632	0.031	32.21	0.7258	0.9859	. 1	Ge	1620	938.3	681.7	930	tP192	cF8	7.1	5.32	1.333	790.9	0.0013	0.0391	0.9609	5.26	6.85	C Id
5	\mathbf{i}	1151	Y	Y₅Ge₃	19.9	118.84	5.973	0.167	0.0049	0.1002	0.3288	Ge	1522	1965	443	1280	hP2	hP16	4.47	5.57	1.247	0.0559	17.875	0.7495	0.2505	2.3	4.01	e Im
-	~	1152	Y2Ge7	Ge	99.28	13.632	0.137	7.283	0.7408	0.8569	0.9939	Ge	910	938.5	28.5	820	oC18	C⊦8	6.91	5.32	1.298	8.0073	0.1249	0.4763	0.5231	0.0	0.00	e 11
	- 1	1153	Ge	Ge _s Yb ₃	13.63	102.12	7.491	0.133	0	0.3879	0.6138	Yb	938.3	1080	141.7	735	cF8	hP8	5.32	8.64	1.622	0.1413	1.0/69	0.4000	0.5142	0.00	0.3	e. 11
		1154	Ge	Zn	13.63	9.163	0.672	1.488	0	0.9415	1	Zn	938.3	419.6	518.7	394	cF8	hP2	5.32	7.13	1.34	17.868	0.056	0.0769	0.9231	0.60	2.51	e 10
		1155	Zr	ZrGe	14.16	25.266	1.785	0.56	0.0072	0.0771	0.2096	Ge	1850	1587	263	1537	cl2	tP32	6.44	6.48	1.006	0.2937	3.4044	0.6561	0.3439	2.11	4.51	C IU
27		1156	ZrGe ₂	Ge	32.58	13.632	0.418	2.39	0.6134	0.9837	1_	Ge	1522	938.3	583.7	934	oC12	cF8	7.26	5.32	1.363	74.065	0.0135	0.0313	0.9687	5.3	0.00	C 10
E		1157	Hſ	Hfzlr	13.63	35.196	2.583	0.387	0.1069	0.1807	0.3496	h.	1790	1720	70	1425	cl2	cF96	13.2	15.6	1.182	0.1431	6.9859	0.73	0.27	2.3	2.3	e Kt
, -		1158	Hftr ₃	lr	38.4	8.73	0.227	4.399	0.8211	0.8781	0.9347	lr	2360	2340	20	2250	cP4	cF4	19.7	21.9	1.114	3.9826	0.2511	0.5248	0.4/52	3.42	2.3	еки
(? >		1159	HfMn ₂	Mo	26.93	8.799	0.327	3.06	0.4868	0.8808	0.9745	Mn	1730	1246	484	1200	hP12	cl2	10.7	6.24	1.715	22.07	0.0453	0.1218	0.8782	3.53	2.32	e Ki
\Box		1160	Ni	Ni₅Hſ	6.59	44.88	6.81	0.147	0.0298	0.3028	0.3787	Hf	1450	1240	210	1190	cF4	cF24	8.91	6.54	1.362	0.7195	1.3898	0.1695	0.8305	2.30	2.31	e RL
[T]	ωą	1161	Hf	HI54OS17	13.63	857.47	62.93	0.016	0	0.1896	0.2414	Os	1760	1660	100	1580	cl2	ol142	13.3	15	1.128	0.0515	19.423	0.2358	0.7642	2.5	2.24	CKL
-	\bigcirc	1162	HfOs ₂	Os	34.84	9.15	0.263	3.807	0.7326	0.7907	0.8961	Os	2700	2800	100	2600	cF96	hP2	16	20.6	1.187	1.6309	0.6132	0.7001	0.2999	2.14	2.06	CKI
×		1163	Hf	Hf₂Pd	13.44	40.332	3	0.333	0.0242	0.1807	0.2294	Pd	2140	1415	725	1325	hP2	116	13.3	11.5	1.156	1.2371	0.8083	0.2123	0.78/7	2.3	2.20	e KL
0		164	Hf	HfRe	13.63	22.85	1.677	0.596	0.1297	0.2427	0.5106	Re	2080	2445	365	1840	¢12	1 58	13.2	15.9	1.21	0.2079	4.8104	0./415	0.2565	2.3	2.31	CKU
2		165	HfRes	Re	57.09	8.862	0.155	6.442	0.8989	0.9231	0.9981	Re	3088	3186	98	2930	c158	hP2	19.4	21	1.081	1.9181	0.5214	0.7706	0.2294	2.31	2.32	CKL
2	- (1166	Hf	Hf ₂ Rh	13.63	34.779	2.553	0.392	0.1349	0.1863	0.3293	Re	1550	1520	30	1350	cl2	cF96	13.3	13.2	1.006	0.142	7.0438	0.734	0.200	2.3	2.33	C RL
194 MAY 11	~~-	1167	Hf3Rh5	HfRh ₃	76.63	36.06	0.471	2.125	0.5062	0.5506	0.5853	Rh	2040	2130	90	1950	oP16	CP4	13.7	13.5	1.014	2./505	0.3628	0.4303	0.004/	2.00	2.31	C DI
		1168	HiRh ₃	Rh	36.06	8.283	0.23	4.353	0.7242	0.8235	0.9326	Rh	2130	1963	167	1880	CP4	CF4	13.5	12.8	1.059	4.1909	0.2300	0.0095	0.4900	3.52	2.4	0 TI
		1169	Hf	HfRu	13.63	20.202	1.483	0.674	0	0.1251	0.2815	Ru	2070	2400	330	1710	CI2	CP2	12.5	13.8	1.109	0.4000	2.0002	0.0009	0.9191	2.J	5.10	ຸບຸມ
		1170	H	Hf-Si	13.63	33.531	2.461	0.406	0.0016	0.021	0.0728	Si	2231	2083	148	1831	cl2	1112	13.1	11.5	1.141	0.1/3/	5./58	0.7006	0.2994	2.3	9.10	C III

	Nº Nº	С.	С,	Vm.	Vm,	A,	Α,	Χ.,	X,	X.,	%	Tf,	Tí2	M	T,	EC ₁	EC2	Pi	ρ:	В	C1	£2	Vf	Vf.	$\Im S^1$	ΔS_2	DΜ
	1171	HfSi-	Si	29.33	12.058	0.411	2.432	0.2396	0.6288	. 1	Si	1543	1414	129	1330	oC12	cF8	8	2.33	3.435	8.7586	0.1142	0.2174	0.7826	5.54	7.16	c It
	1172	H	Hf.Sn-	13.63	104.08	7.639	0.131	0.0291	0.039	0.0863	Si	1850	1900	50	1725	cl2	hP16	12.6	12	1.05	0.0288	34.756	0.8198	0.1802	2.3	2.7	c Rt
	1173	HfSn.		27 95	16.294	0.583	1,715	0.5712	0.985	1	Sn	1900	232	1668	230	hP9	t14	14.9	7.28	2.043	96.914	0.0103	0.0174	0.9826	3.03	3.4	c Rv
	1174	Hf	Th	13 44	19.832	1.475	0.678	0.0194	0.7378	0.8639	Th	2200	1650	550	1450	hP2	cl2	13.3	11.2	1.181	4.5617	0.2192	0.1294	0.8706	2.3	1.89	c Rt
	1175		. ну.	14 17	30 228	2 134	0 469	0.0806	0.1772	0.3415	v	1900	1550	350	1456	cl2	cF24	10.9	9.28	1.175	0.3237	3.0896	0.5915	0.4085	2.3	2.34	e RI
	1175	- Di ЦАЛ.	. 10V2 	10.21	R 178	0 276	3.63	0.3669	0 3885	0.8726	v	1550	1910	360	1520	cF24	cl2	9.28	6.71	1.382	0.2239	4.4672	0.9419	0.0581	2.34	2.36	e Rv
	1177		HN.	13.63	32 919	2 4 16	0 414	0 1385	0.1844	0.6617	w	2231	2512	281	1950	cl2	cF24	13.2	16.6	1.261	0.0316	31.678	0.9291	0.0709	2.3	2.29	e Rv
	1470		V	13.44	10 896	1 48	0.676	0.0203	0 7835	0 9801	Y Y	2210	1522	688	1425	hP2	hP2	12.8	4.52	2.843	7.4556	0.1341	0.0831	0.9169	2.3	2.3	c Rv
	1170		Hain	60.87	20 212	0.418	2 192	0.0200	0 2277	0.3278	In	-15	-19.2	4.2	-36.8	oF8	hR2	13.1	10.8	1.216	2.5785	0.3878	0.4812	0.5188	2.26	2.1	e Ri
1	1100	Halo	Hata	20.21	155 57	5 326	0 188	0 3828	0 4745	0 6699	Ini	-19.2	80	99.2	-30.6	hR2	cF4	10.8	7.93	1.361	0.12	8.3358	0.6102	0.3898	2.1	1.88	eRI
	1100	Light Light	Lighty Light	23.21	44.25	0.020	6 202	0.0020	0 1525	0 1631	к	230	180	50	175	oP48	aP8	6.7	5.42	1.236	18.886	0.0529	0.2221	0.7779	2.1	2.1	e Rt
	1101	rig ₇ n ₅	nyn.	230.0	44.25	1 025	0.0075	0.1631	0.7566	1	ĸ	180	63 71	116.3	47.55	aP8	cl2	3.16	0.86	3.663	8.7123	0.1148	0.1007	0.8993	2.1	1.7	e Rv
	1162	ngr	n Lette	44.20	40.009	1.023	0.515	0.1031	0.7500	0 5908	Нл	810	1080	270	620	c12	cP2	6.15	9.77	1.59	0.1284	7.7904	0.8352	0.1648	2.01	3.6	c, lt
	1183		Lang	22.01	34.140	1.001	0.001	0.000	0.6761	0.000	Ha	1080	1060	20	980	cP2	hP3	9 77	11.6	1,186	0.7793	1.2832	0.489	0.511	2.19	2.25	c RI
	1184	LaHg	Lang	34.75	40.590	1.341	0.740	0.5900	0.0101	0.1401	••9	20 02	225	272.9	.42	hP1	hP8	14.4	12.5	1 154	0 2008	4 9804	0 5871	0.4129	2.37	3.5	e Ri
	1185	Hg	Hg ₃ Li	13.9	48.684	3.503	0.285		0.0003	0.0009		-30.03	200	213.0	-42 AAR	hD2	hD8	1 74	5 22	3 003	0 4998	2 0006	D 3481	0.6519	2 28	3 42	e Ri
	1186	Mg	Mg ₃ Hg	14	52.448	3./4/	0.267	0.0911	0.0304	0.7333	i ng	04J	562	140	558	oP12	hP16	6.55	6.86	1 046	0.8371	1 1946	0 301	0.699	2.31	2.3	e Ri
	1187	Mg ₂ Hg	Mg ₅ Hg ₃	38.04	105.51	2.113	0.361	0.8047	0.024	0.0019	, ny	500	627	65	560	hP16	cP2	6.86	9.11	1 329	1	1	0.8104	0.1896	2.3	3.7	e It
	1188	Mg ₅ Hg ₃	MgHg	105.5	24.69	0.234	4.2/3	0.8319	0.0402	0.0919	ny ung	170	20.0	209.9		116	hR1	0.00	14.4	1 585	51 197	0 0195	0.0335	0 9665	2.32	2.37	e Rv
	1189	MgHg	Hg	24.69	13.897	0.563	1.///	0.9429	0.9988	1	ng Lla	990	1160	200.0	720	c12	cP2	68	10.7	1 569	0.2143	4 6667	0.7539	0.2461	1.32	3.23	c Rt
	1190	Nd	NdHg	21.21	32.324	1.524	0.656	0	0.19/1	0.3017	ПУ	1100	1100	200	1040	cD2	hP3	16.7	12.4	1 158	0 9951	1 0049	0.4238	0.5762	3.23	2.02	c Ri
	1191	NdHg	NdHg ₂	32.32	44.157	1.366	0.732	0.5817	0.076	0.7350	ny fo	700	221	579	221	CF8	hP3	8 26	4.81	1 717	495 15	0.002	0 0041	0.9959	2.74	3.1	c Rv
	1192	HgSe	Se	33.84	16.417	0.485	2.061	0.2605	0.9949	0.004	36	799	221	79	604	0112	cP2	9.82	7 74	1 27	2 0781	0 4812	0.3912	0.6088	2.22	3.53	e Ri
	1193	Hg ₂ Sr	HgSr	49.76	37.26	0.749	1.336	0.179	0.24/9	0.304	0	112	760	314	442	oP16	cF4	44	2.58	1 703	1.5556	0.6429	0.6662	0.3338	2.03	1.92	e Ri
	1194	HgSr ₃	Sr .	105.3	33.909	0.322	3.105	0.55/2	0.0000	0.0044	SI To	400	109	214	410 0	cE8	hP3	10.9	6.24	1 752	5 5701	0 1795	0.2086	0.7914	4.09	5.8	c II
	1195	HgTe	Te	30.04	20.465	0.681	1.468	0.3888	0.7962	0.9044	TI	20.0	145	62.2	-60	5.01	cF4	14.4	13.2	1 093	0 0753	13 281	0.5471	0.4529	2.37	2.2	c RI
6	1196	Hg	Hg7TI3	13.9	152.77	10.99	0.091	U	0.0875	0.203		-30.0	14.0	00.0 005.5	00-	cE4	cl2	13.2	11.8	1 118	1 7874	0 5595	0 8294	0.1706	2.2	1.78	c Rt
N	1197	Hg ₇ Tl ₃	TI	152.8	17.577	0.115	8.691	0.33/2	0.4095	0.803		14.0	1240	220.0	1120	602	hD8	8 70	9.05	1 029	0.0628	15 918	0 8587	0.1413	2.44	2.23	e Rt
	1198	Ho	Ho ₂ In	18.76	49.122	2.619	0.382	0.1482	0.1641	0.25/9	i in	1240	1240	10	1230	hP6	hP16	9.05	8.51	1 064	2.7747	0.3604	0.1141	0.8859	2.23	2.2	e Rt
	1199	Ho2In	Hosina	49.12	137.44	2.798	0.357	0.25/9	0.2902	0.2940		1240	1200	10	1230	hD16	cP2	8 51	8 64	1.016	1 4439	0 6926	0.7462	0.2538	2.2	2.13	e Rt
	1200	Ho ₅ In ₃	Holn	137.4	32.376	0.236	4.245	0.2946	0.317	0.301/	10	1200	12/0	170	1000	(D)	0032	8.62	8.83	1 024	0.6415	1 5589	0.2942	0.7058	3.5	2.05	e Rt
71	1201	Holn	Ho3In5	32.38	121.09	3.74	0.267	0.4104	0.5005	0.5371	. m	12/0	1100	110	1050	002	cP4	8.83	8 84	1 002	0 7778	1 2857	0 7299	0.2701	2.05	3.1	e Rt
A	1202	Hosins	Holna	121.1	57.6	0.476	2.102	0.53/1	0.5/4/	0.6/62	: 0 1	1100	1130	072.4	150	0032	112	8.94	7 28	1 214	3229.3	0.0003	0.0011	0 9989	3.1	3.05	e Rv
/=	1203	Holn ₃	ln	57.6	15.765	0.274	3.654	0.6762	0.9996	1	IN	1130	100.0	9/3.4	100	6074	412	0.04	1.20	1 445	0.0217	46 032	0.6015	0 3985	2.2R	2.3	e Ri
× ₽	1204	Mg	Mg ₂₄ Ho ₅	14	426.82	30.49	0.033	0.2807	0.4298	0.5856	HO	640	600	40	202	112	CI30	8 70	9.50 9.60	1 024	0.2266	4 4120	0 7212	0 2788	2.44	2.36	e Rt
- SI	1205	Ho	HoMn ₂	18.76	31.992	1.706	0.586	0	U.1097	0.4002	MO	1474	905	509	0/0	102	d/2	0.19	10.00	1 162	0.0248	40 272	0 9877	0.0123	2 44	2 94	c Rv
ы М	1206	Ho	Мо	18.76	9.386	0.5	1.998	0.0035	0.0177	0.999	Мо	1474	2623	1149	1432	NP2	CIZ	0.19	14.2	1,102	0.0240	1 1716	0 2322	0.7677	2 44	24	e Rt
20	1207	Ho	Ho ₅ Pd ₂	18.76	72.611	3.872	0.258	0	0.1731	0.2053	Pd	1474	925	549	900	nP2	1149	0./9	10.0	1.023	0.0000	4 7824	0.5938	0 4062	23	23	e Ri
ਜ ਼	1208	HoPd	Ho3Pd4	25.77	84.308	3.272	0.306	0.3921	0.4211	0.462	Pd	1480	1430	50	1398	020	nr(14	10.0	10.9	1.03/	17 721	0.0564	0.0000	0.704	3 37	2 10	e Rt
32	1209	HoPd,	Pd	40.77	8.865	0.217	4.599	0.7144	0.7985	0.8187	Pd	1640	1120	520	1255	CP4	CF4	11.9	12.0	1.00	11.122	12	D.200	0.784	2 44	47	c Im
17	1210	Ho	Ho ₅ Sb ₃	18.76	127.37	6.791	0.147	0	0.1153	0.307	Sb	1474	1680	206	1170	02	0110	0.79	7.00	1.002	83 033	0.012	0.0340	0.9651	4 33	5 26	c ld
2	1211	HoSb ₂	Sb	45.7	15.233	0.333	3	0.5965	0.9865	1	Sb	670	630.7	39.3	024	DUD	IIKZ	1.00	1.99	1.044	03.023	2 3479	0.5642	0.3001	2 44	4 83	c II
ليستنبعن	1212	Ho	HoTe	18.76	34.01	1.813	0.551	0	0.1877	0.4362	Te	1474	1370	104	1110	nP2	Cho	0./9	0.0	1.022	0.4209	8 6274	0.5042	0.4546	2.44	22	e Ri
	1213	Ho	Ho ₅ TI ₃	18.76	134.86	7.19	0.139	0.0612	0.2422	0.4212	1	1415	1360	55	1065	nPZ	-02	0.19	11.0	1.412	17 0/2	0.0214	0 1051	0.9049	22	2 11	e Rt
	1214	HosTls	HoTI	134.9	31.006	0.23	4.349	0.4316	0.5235	0.5435	i Tl	1360	1230	130	1210	nP16	CP2	10.7	11.9	1.117	11.342	0.0001	0.1301	0.0049	2 02	1.93	e Rv
	1215	HoTL	HoTI.	123.9	61.264	0.494	2.023	0.6738	0.7791	0.788	TI	960	910	50	900	oC32	CP4	12.2	12.7	1.038		0.0435	0.0000	0.9132	2.02	1.33	5 10

الد الوريد الوالية الدارية المعام الد

ļ.		N°	C ₁	C ₂	Vm ₁	Vm ₂	A ₁	A ₂	X _{e1}	X,eL	X.2	%,	Tf ₁	Tf ₂	ΔT	Te -	EC	EC:	ρı	Ρ:	B	ε	٤,	Vf	Vf ₂	ΔS	ΔS_2	DM
		1216	HoTI	ΤI	61.26	17.577	0.287	3.485	0.788	0.9919	. 1	π	910	304	606	303	cP4	cl2	12.7	11.6	1.092	96	0.0104	0.035	0.965	3.07	1.78	e Rv
		1217	Но	· v	18.76	8.328	0.444	2.252	0.0012	0.0111	1	٧	1474	1910	436	1430	hP2	cl2	8.79	6.12	1.438	0.0322	31.043	0.9859	0.0141	2.44	2.36	c Rv
1		1218	Se	· .	16.42	15.765	0.96	1.041	0	0.6164	1	1	221	113.6	107.4	57	hP3	oC8	4.81	4.94	1.03	1.6295	0.6137	0.3899	0.6101	3.1	4.72	e Il
1		1219	KI		53.04	25.7	0.485	2.064	0.7645	0.9633	1	1	678.5	113.6	564.9	80	cF8	0C8	3.13	4.94	1.578	7.0876	0.1411	0.2255	0.7745	2.1	4.72	e Im
1		1220	Tel	Tel,	44.77	117.57	2.626	0.381	0.4986	0.5787	0.7991	1	185	280	95	178	oC64	t180	5.69	5.4	1.052	0.1454	6.8754	0.7236	0.2764	4.6	4.7	e Im
i		1221	In	In-La	15.77	63.9	4.053	0.247	0	0.006	0.2874	La	156.6	1140	983.4	155	112	cP4	7.28	7.56	1.039	0.0051	196	0.9797	0.0203	1.82	1.87	e Rv
		1222	in La	In,La	63.9	50.133	0.785	1.275	0.2874	0.3286	0.3766	La	1140	1153	13	1120	cP4	ol12	7.56	7.35	1.029	1.1259	0.8882	0.531	0.469	1.87	3	e Ri
		1223	In La	tnLa	139.4	38.116	0.274	3.656	0.431	0.5075	0.5475	La	1185	1125	60	1086	oC32	cP2	7.11	6.66	1.068	7.4854	0.1336	0.3282	0.6718	1.9	3.3	e Ri
1		1224	InLa	La	78.49	23.281	0.297	3.372	0.784	0.8857	0.9142	La	816	803	13	742	cP4	cl2	6.77	5.97	1.135	13.693	0.073	0.1976	0.8024	3.3	2.01	e Rt
		1225	Lu	Lusin	17.78	46.98	2.642	0.379	0.1639	0.1874	0.2468	In	1260	1190	70	1170	cl2	hP6	9.84	9.89	1.005	0.1488	6.7219	0.7179	0.2821	2.3	2.14	e Rt
		1226	1 uln	Ludine	30.81	113.2	3.674	0.272	0.3962	0.4754	0.5224	In	1080	950	130	920	cP2	oC32	9.41	9.71	1.032	0.4444	2.25	0.3798	0.6202	3.44	2	e RI
		1227	lu.lo.	1 uln	1132	56,508	0.499	2.003	0.5224	0.5712	0.6631	In	950	960	10	940	oC32	cP4	9.71	9.19	1.056	1.125	0.8889	0.6404	0.3596	2	3.06	e RI
-		1228	Luin.	In	56 51	15,765	0.279	3.584	0.6631	0.9985	1	In	960	156.6	803.4	156	cP4	tl2	9.19	7.28	1.262	996	0.001	0.0036	0.9964	3.06	1.82	e Rv
1		1229	Nd	NdsIn	21.21	72.608	3.423	0.292	0.0979	0.1232	0.2097	In	920	930	10	880	ci2	cP4	6.83	7.54	1.104	0.0772	12.951	0.791	0.209	1.32	1.45	e Rt
1		1230	Ndin	Ndalna	33.85	128,89	3.808	0.263	0.4432	0.4931	0.5702	In	1230	1190	40	1130	cP2	oC32	7.65	7.81	1.021	0.1667	6.0006	0.6118	0.3882	2.95	1.63	e Ri
1		1231	Nd.In.	Ndin	128.9	60 168	0.467	2.142	0.5702	0.5965	0.7048	In	1190	1220	30	1150	oC32	cP4	7.81	8.12	1.04	0.5	2	0.8108	0.1892	1.63	2.82	e Rt
		1232	Ndin	in	60.17	15.765	0.262	3.817	0.7048	0.9987	1	în :	1220	156.6	1063	156	cP4	tl2	8.12	7.28	1.115	996	0.001	0.0038	0.9962	2.82	1.82	e Rv
		1233	Ni	(n ₂ Ni ₂	6.59	45.135	6.849	0.146	0.2491	0.4135	0.5659	In	200	1000	800	910	cF4	mP22	8.91	8.99	1.009	0.1561	6.4045	0.4832	0.5168	2.38	2.16	e RI
í		1234	In Ni.	tnNi	45.14	17.258	0.382	2.615	0.4	0.466	0.5	In	1000	960	40	918	mP22	cP2	8.99	10.1	1.118	4.5391	0.2203	0.3656	0.6344	2.15	3.5	e RI
		1235	InPd-	InPd-	29.37	37.884	1.29	0.775	0.6529	0.6735	0.7147	Pd	1323	1365	42	1303	oP12	tP4	11.2	11.5	1.027	0.3757	2.6619	0.6736	0.3264	2.06	3.22	e RI
		1236	InPd.	Pd	37.88	8.865	0.234	4.273	0.7354	0.7458	0.798	Pđ	1365	1430	65	1357	1P4	cF4	11.5	12.2	1.063	0.8002	1.2497	0.8423	0.1577	3.22	2.19	e Rt
		1237	Pr	Prin	21.21	74.836	3.528	0.283	0.0813	0.1	0.2136	In	860	930	70	825	ci2	cP4	6.64	7.18	1.081	0.0431	23.208	0.8681	0.1319	2.25	3.26	e Rt
-		1238	Prin	Pralns	37.26	130.8	3.51	0.285	0.4097	0.4889	0.55	In	1170	1190	20	1110	cP2	oC32	6.86	7.62	1.11	0.3324	3.0087	0.4615	0.5385	3.41	1.98	e Rl
		1239	Prains	Prin ₁	130.8	61.364	0.469	2.132	0.5916	0.6021	0.7097	In	1190	1210	20	1130	oC32	cP4	7.62	7.91	1.038	0.2006	4.9843	0.914	0.086	1.98	1.92	e Rv
		1240	In	In ₇ Pt ₃	15.77	126.47	8.022	0.125	0	0.0017	0.4214	Pt	156.6	894	737.4	154	112	c140	7.28	11	1.508	0.0003	2990	0.9973	0.0027	1.82	1.96	e Rv
1.	5	1241	In,Pt,	InPl	58.98	22.26	0.377	2.65	0.5311	0.6011	0.6107	Pt	1064	1035	29	993	hP5	mC20	12.5	13.9	1.118	17.319	0.0577	0.1327	0.8673	2.01	2.06	e Rt
	~	1242	ln l	InSb	15.77	29.99	1.902	0.526	0	0.0059	0.5146	Sb	156.6	525.7	369.1	153.9	112	cF8	7.28	7.89	1.083	0.0057	176.57	0.9893	0.0107	1.82	4.92	e Id
	5	1243	InSb	Sb	29.99	18.193	0.607	1.648	0.5146	0.6945	1	Sb	525.7	630.7	105	492.5	cF8	hR2	7.89	6.69	1.179	1.1437	0.8744	0.5904	0.4096	3.54	5.26	e II
		1244	Sc	Sc ₃ In	15.11	55.116	3.647	0.274	0.3897	0.4187	0.4599	In	1330	1340	10	1320	cl2	hP8	3.9	4.53	1.162	0.1667	6.0001	0.6219	0.3781	1.85	1.84	e Ri
-		1245	Sm	Sm ₂ In	20.5	52.8	2.576	0.388	0.1106	0.1311	0.2644	In	950	1090	140	905	cl2	hP6	7.33	7.87	1.073	0.0558	17.923	0.8744	0.1256	1.94	1.9	e Rt
1	1	1246	Sm ₂ In	Smin	52.8	33.442	0.633	1.579	0.2823	0.2914	0.375	In	1090	1210	120	1080	hP6	cP2	7.87	7.93	1.008	0.1696	5.895	0.903	0.097	1.9	3.26	e Rv
F	4	1247	Smin	Sm3ln5	33.44	127.4	3.81	0.262	0.4232	0.5287	0.5548	ln i	1210	1110	100	1090	cP2	oC32	7.93	8.05	1.015	1.0486	0.9536	0.2002	0.7998	1.88	1.86	e Rt
Æ	"~-7	1248	Sm ₃ in ₅	Smin ₃	127.4	59.704	0.469	2.134	0.5653	0.6079	0.6961	In	1110	1130	20	1079	oC32	cP4	8.05	8.29	1.03	1.0014	0.9986	0.6806	0.3194	1.86	3	e Ri
	<u>, Ed</u>	1249	in _s Sn	InSn.	63.62	64.188	1.009	0.991	0.4482	0.4913	0.7266	Sn	125	182	57	120	tl2	hP1	7.28	9.19	1.262	0.1439	6.9515	0.8733	0.1267	2.2	3.08	e Rt
	, E	1250	InSr ₃	Sr	87.98	33.909	0.385	2.594	0.696	0.8122	1	Sr	558	769	211	517	cF16	cF4	4.29	2.58	1.661	2.6667	0.375	0.4931	0.5069	3	1.92	e Ri
.24	1 01	1251	Tb	Tb ₂ In	19.56	50.217	2.567	0.39	0.1289	0.153	0.2651	In	1150	1180	30	1040	ci2	hP6	8.12	8.62	1.061	0.0789	12.671	0.8316	0.1684	2.39	2.2	e Rt
, 	S	1252	Tb ₂ In	Tb _s ln ₃	50.22	135.58	2.7	0.37	0.2651	0.2801	0.3024	In	1180	1190	10	1150	hP6	t132	8.62	8.4	1.025	0.255	3.922	0.5923	0.4077	2.2	2.17	e Ri
X		1253	Tb ₃ In ₅	Tbiny	122.5	57.9	0.473	2.116	0.5463	0.6166	0.6843	ln (1140	1140	0	1110	oC32	cP4	8.58	8.69	1.014	2.1667	0.4615	0.4941	0.5059	2.17	1.96	e' Ri
	اینے۔ ا	1254	InTe	In ₃ Te ₄	38.31	129.66	3.385	0.295	0.5363	0.5878	0.5966	Te	696	667	29	649	ti16	hR7	6.33	6.59	1.042	1.649	0.6064	0.1519	0.8481	3.82	4.1	eilt
×	1	1255	In,Te,	Te	146.4	20.465	0.14	7.155	0.7351	0.9091	1	Te	467	449.5	17.5	427	mC28	hP3	5.93	6.24	1.052	13.02	0.0768	0.3546	0.6454	4.66	5.8	e im
đ.	1	1256	tn ₃ Th	insTh3	62.29	130.64	2.097	0.477	0.4025	0.4817	0.548	Th	1310	1335	25	1275	cP4	oC32	9.25	9.72	1.051	0.5417	1.8462	0.4682	0.5318	2.92	1.85	еК
3.44	e ; - 10 = - 40	1257	In ₅ Th ₃	InTh	130.6	35.2	0.269	3.711	0.548	0.6555	0.669	Th	335	1280	945	1265	oC32	oP24	9.72	9.85	1.013	29.333	0.0341	0.1123	0.8877	1.85	1.85	e KV
		1258	InTh ₂	Th	55.29	19.789	0.358	2.794	0.8019	0.8519	0.9533	Th	1130	1510	380	1095	tl12	cF4	10.5	11.2	1.067	1.2908	0.7747	0.684	0.316	J.]	1.89	e Kl
	l	1259	Tm	Tm ₂ In	18.13	48.006	2.648	0.378	0.1452	0.1688	0.2534	In	1220	1200	20	1140	ci2	hP6	8.73	9.43	1.08	0.0972	10.288	0.7953	0.2047	2.42	2.22	e K(
		1260	Y	Ysin	19.89	71.608	3.6	0.278	0.1737	0.2092	0.3009	In.	1200	1330	130	1060	cl2	hP8	4.65	5.33	1.232	0.0937	10.667	0.7476	0.2524	2.3	3.3	e Kl

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

		C1	С,	Vm,	Vm ₂	A ₁	A ₂	X _{e1}	XeL	X _{e2}	%p	Tf ₁	Tf ₂	Л	T,	EC	EC:	ρι	P:	В	£1	ε ₂	Vf,	Vf ₂	ΔS_1	ΔS2	DM
	1261	Y₅ln	Yeln	51.07	140.49	2.751	0.363	0.392	0.3995	0.4366	In	1335	1340	5	1330	hP6	hP16	5.73	5.62	1.02	0.075	13.332	0.8289	0.1711	2.14	2.12	e Rt
	1262	Yin	Yalna	33.31	123.99	3.722	0.269	0.5636	0.6217	0.6828	In	1220	1140	80	1090	cP2	oC32	6.12	6.78	1.109	0.2308	4.3333	0.5379	0.4621	2.06	3.38	e Ri
	1263	Yalos	Yin	124	57.864	0.467	2.143	0.6828	0.7329	0.7948	In	1140	1110	30	1080	oC32	cP4	6.78	7.49	1.104	1.5714	0.6364	0.5769	0.4231	2	3.06	e Ri
	1264	In-Yb	InYb	47.66	33.248	0.698	1.434	0.4294	0.4695	0.6011	Yb	890	1067	177	875	hP6	cP2	8.45	8.66	1.025	0.427	2.342	0.7705	0.2295	1.9	3.3	e. Rt
	1265	In-Yh-	Yb	134.1	24.845	0.185	5.397	0.79	0.9206	0.9933	Yb	810	800	10	690	hR44	hP2	8.17	6.96	1.172	11.363	. 0.088	0.322	0.678	1.95	2.01	e Ri
	1266	In	Zn	15 76	9 16	0.581	1.721	0.0115	0.022	0.9982	Zn	150	419.6	269.6	143.5	ti2	hP2	7.29	7.14	1.021	0.0189	52.889	0.9891	0.0109	1.82	2.51	e Rv
	1267	lr Ir	Ir-Nh	8 521	35 452	4 161	0.24	0.0843	0.0872	0,1078	Nb	2447	2435	12	2400	cF4	cP4	21.1	18.9	1.117	0.0375	26.68	0.8651	0.1349	2.3	3.42	c Rt
	1268	IrNh	Ir-Nh-	18 85	49 055	2 603	0 384	0.3085	0.3714	0.4053	Nb	1900	1960	60	1840	tP4	tP30	15.1	13.5	1.119	0.7979	1.2533	0.325	0.675	3.7	2.34	c Im
	1260	IrNh.	Nh	40.74	10 826	0.266	3 763	0.6315	0.6591	0.78	Nb	2125	2280	155	2110	cP8	cl2	11.6	9.48	1.22	1.0482	0.9541	0.7821	0.2179	3.42	2.36	c Rt
	1205	1rTo	IrTa.	18 64	40.836	2 191	0 456	0 4809	0 5401	0 5753	Та	2100	2160	60	1953	oP12	tP30	20	18	1.112	0.8509	1.1752	0.3491	0.6509	2.05	1.92	c Ri
	1271	. 11 U	tr.Th	8 521	63 294	7 428	0 135	0	0 1528	0 1949	Th	2447	2260	187	2080	cF4	hP6	22.6	18.8	1,197	0.5856	1.7076	0.1869	0.8131	2.3	2.23	e Rt
	1070		- ц <u>5</u> ть	10.521	10 790	0 110	8 424	A 738	0 8725	1	Th	1550	1755	205	1337	hP20	cF4	13.2	11.7	1.126	10	0.1	0.4572	0.5428	2.01	1.89	e RI
	1212	1131177		10.0.7	19.709	2 462	0.929	0.130	0.0720	0 5722	Ir	1500	1515	15	1468	cl2	cP8	6.55	8 91	1.361	0.0641	15.61	0.8185	0.1815	2.16	3.32	e Rt
	12/3		- 11311 - Tile	10.09	37.092	0.757	1 221	0.4140	0.771	0.0726		2130	2115	15	2000	cP2	cP4	13.3	18.2	1.374	0.147	6.8028	0.8999	0.1001	3.6	3.38	c II
	12/4	II2113	11113	40.3	20 620	1.0.737	0.215	0.2322	0.2721	0.4020		2300	2005	295	1950	cF4	cP4	22.6	20.6	1.097	0.1967	5.0835	0.5222	0.4778	2.3	3.44	c Ri
	12/5		II30	0.521	39.020	4.001	0.213	0.0000	0.1734	0.5522	- .	1000	1470	420	1450	cF24	mP16	19.6	20.4	1.037	23 552	0.0425	0.0599	0.9401	2.33	2.34	e Rv
	1276	Ir ₂ U	Iru	31.7	21.136	0.667	1.0	0.3021	0.0434	0.0000	:	1000	1970	420	1950	0.24	cD9	14.8	10.4	1 414	0.5122	1 9524	0 4932	0 5068	2 33	3.46	C RI
1	1277	- Vil	IrV ₃	16.47	33.048	2.006	0.498	0.2095	0.2447	0.2931	v	1040	1010	20	1000	000 cP8	c12	10.4	9 74	1 072	2 0507	0 4876	0.6624	0.3376	3.46	2.36	c RI
1	1278	IrV ₃	V	33.05	8.212	0.248	4.024	0.4496	0.4032	0.4910	- <u>v</u>	1940	2216	25	2310	cFA	hP2	22.3	21.1	1.072	1 0099	0.9902	0.3215	0.6785	2.3	2.3	c RI
	1279	, II	Irw	8.521	17.808	2.09	0.478	0.1833	0.2027	0.2120		2340	2010	2J 10	2110	cE4	cD4	21.7	18.1	1 108	0 2584	3 8695	0 4717	0 5283	23	2 27	c Ri
	1280		lr ₃ Zr	8.521	36.924	4.333	0.231	0.0345	0.0662	0.1002	21	22/0	2200	10	1970	cE24	rD2	15.0	12.0	1 231	1 8772	0.5327	0 4208	0 5792	2 26	3.61	c II
	1281	lr ₂ Zr	lrZr	30	22	0.733	1.364	0.1916	0.2558	0.3132	2r 7-	12053	2000	30	1240	+132	c12	0.30	6.85	1 371	2 1386	0.4676	0.621	0 379	22	2.17	C RI
	1282	lrZr3	Zr	49.61	14.156	0.285	3.505	0.58/4	0.6638	0.9002	.Zr	1305	6.02	443	1240	c 2	612 hD12	0.86	0.00	1 103	0 277	3 6104	D 6466	0.3534	17	2.9	e Ri
	1283	K	KNa ₂	45.37	89.523	1.973	0.507	0.0239	0.2183	0.5408	Na	21	0.92	44.00	-12.0	012	11-12	4.06	6.24	1.536	4 0909	0 2444	0.5756	0 4744	4 16	58	c II
	1284	K ₂ Te ₃	Te	113.5	20.456	0.18	5.548	0.8304	0.9204	1	16	429	449.0	20.0	712	0F20	c12	4.00	4 60	1.077	6 0105	0.1664	0.2497	0 7503	3.52	2.01	e Rt
	1285	MgLa	La	37.46	18,729	0.5	2	0.851	0.9139	0.9333	La	/40	100	10	704	054	0159	4.JU 6 10	7.47	1 208	0.0100	4 8824	0.0372	0.0628	2.01	2 32	e Rv
5	1286	La	Mn	22.46	7.352	0.327	3.054	0	0.0749	1	MN	918	1240	320	701 517	674 6D10	000	6.71	7 12	1.061	0.2010	1 1331	0.8748	0 1252	2 12	22	e Rt
2	1287	La ₇ Ni ₃	LaNi	171.2	27.752	0.162	6.167	0.1534	0.1/23	0.29/1	NI	916	532 600	300	517	009	000	7 12	7.66	1.001	0.0010	1 6667	0.4384	0.5616	22	2 23	e Ri
-	1288	LaNi	La ₂ Ni ₃	27.75	59.25	2.135	0.468	0.29/1	0.3498	0.388		/10	090	23	4070	LCC	0020	9.95	9.01	1.010	8 3112	0 1203	0.489	0.511	2 32	2 38	e Ri
	1289	LaNis	Ni	52.41	6.59	0.126	7.953	0.6783	0.8488	1	NI	1350	1400	105	12/0	nP0	1014	6.20	3.76	1.00	0.0112	10 767	0.400	0.011	2.01	1 97	e Ri
	1290	La	La _s Pb ₃	22.46	165.49	7.37	0.136	0.0148	0.1489	0.4/23	PD	915	1450	535	710	CP4	10	6.10	5.70 8.58	1 297	0.0525 A 1	10.707	0.5529	0.4004	2.01	21	e Ri
1	1291	La	La,Pt ₃	22.46	181.55	8.085	0.124	0	0.1986	0.3757	Pl	918	1050	132	/10	CF4	nP20	0.19	0,00	1.307	1.0102	0 0000	0.3323	0.2483	2.01	22	o Pt
P	1292	La,PL	LaPt ₂	108.5	35.46	0.327	3.059	0.6515	0.6781	0.7377	Pt	1600	2200	600	1500	NK14	CF-24	10.0	14.9	1.332	14.041	0.9099	0.7415	0.2400	2.11	23	a DI
A way	1293	LaPts	Pl	66.22	9.095	0.137	7.28	0.8751	0.9639	1	Pl	1850	1/69	81	1640	nP6	CF4	0.0	21.3	1.213	0 2208	1 2222	0.5415	0.0303	2.25	21	e Ri
2 St.	1294	La	La,Rh	22.46	79,144	3.525	0.284	0	0.0918	0.198	Rh	918	860	58	695	CF4	0.04	0.19	0.07	1.001	0.2300	2 2656	0.6365	0.4405	21	2 18	c. RI
	1295	La ₃ Rh	La,Rh	79.14	106.94	1.351	0.74	0.198	0.2585	0.3445	Rh	860	1030	1/0	820	0 64	CI20	0.57	0.00	1.231	4 2202	2.0000	0.0000	0.0000	2.1	2.4	c Dt
E C	1296	La ₂ Rh ₇	Rh	95.56	8.283	0.087	11.54	0.7219	0.8076	1	Rh	1600	1963	363	1500	hP36	CF4	10.4	12.4	1.189	4.3203	0.2315	0.1210	0.2724	2.5	2.4	c Rt
- 0	1297	LaS	La ₂ S ₃	30.3	70.63	2.331	0.429	0.1875	0.2	0.235	. <mark>S</mark> .	2300	2110	190	1/16	CF-8	CI28	5.04	5.3	1.000	0.1004	25 642	0.7242	0.2130	1.67	4 33	e ld
\tilde{T}	1298	La	La _z Sb	22.46	58.2	2.592	0.386	0	0.0308	0.3044	Sb	918	1460	542	845	CF4	1112	0.19	16.0	1.11	0.0392	20.042	0.5075	0.0321	A 19	5.26	0 Id
E -	1299	LaSb ₂	Sb	54.54	18.193	0.334	2.998	0.6371	0.9886	. 1	Sb	1110	630.7	479.3	630	oC24	hR2	7.01	6.69	1.048	96.904	0.0103	0.03	0.97	4.10	3.20	e iu
	1300	La	LaSe	22.46	33.5	1.492	0.67	0	0.041	0.3624	Se	918	1980	1062	895	cF4	cF8	6.19	6.5	1.051	0.0814	12.285	0.8917	0.1003	1.0/	2.5	C RV
2	1301	LaSe	La ₃ Se ₄	33.5	111.51	3.329	0.3	0.3624	0.4198	0.4317	Se	1980	1800	180	1650	cF8	C128	0.5	0.57	1.01	1.4201	10.7002	0.1/30	0.0202	2.0	2.0	
fa matanatana a di	1302	La	La ₅ Sn ₃	22.46	153.36	6.83	0.146	0	0.0999	0.3389	Sn	918	1500	582	747	cF4	1132	6.19	0.85	1.107	0.0503	18.007	0.1209	0.2141	1.01	2.00	C DI
	1303	LaSn	La ₃ Sn ₅	38	137.07	3.607	0.277	0.4608	0.526	0.5875	Sn	1295	1240	55	1200	0C8	oC32	6.78	7.37	1.087	0.2708	3.0923	0.0008	0.4942	21	4 16	c Im
	1304	La ₃ Sn ₅	LaSn ₃	137.1	65.36	0.477	2.097	0.5875	0.6713	0.7194	Sn	1240	1155	85	1113	oC32	CP4	1.37	1.57	1.028	3.0000	0.2013	0.3/1	0.029	4 67	5.20	с M 2 ли
	1205	1.	l aTo	23.28	39.88	1 713	0 584	0	0.0184	0.4788	Te	918	1720	802	: 895	ci2	CF 8	5.97	6.68	1.12	0.0208	40	0.9035	0.0340	1.07	J.40	⊎ .101

1	1	NI ⁰	C.	Ċ.	\/m	Vm.	Δ.	Δ.	Χ.	¥.	Χ.	%	Tf.	Th	AT	T.	EC.	EC.	0.	0-	В	Eı	E,	Vf ₁	Vf.	ΔS ₁	ΔS_2	DM
ĺ		14.	ч 	~2 T-	vinit.	- vill2	0.000	- 12	/v1	^eL	. ne2	лор Т-	015	440.6	205 4	400	1010		7 89	6.24	1 764	20 333	0 0341	0 0003	0 9007	4 85	5.8	c 1d
ł		1305	Lale ₃	1e	. 66.2	20.400	0.309	. 3.235	0.7337	0.9674		. ie	033	449.0	300.4	400		. 11FJ 	0.25	10.24	1.204	0.435	2 2086	0.0000	0.6262	19	1.87	c Ri
		1307	Lall	Lasils	36.72	141.4	3.851	0.26	0.6049	0.6702	0.7059	.".	1220	1120	100	1100	-CPZ	0032	9.00	10.2	1.000	2 7040	0.2570	0.0700	0.0202	1.5	1.8	C DI
		1308	LasTis	LaTI	141.4	66.72	0.472	2.119	0.7147	0.7744	0.8153	. <u></u> .	1120	1060	60	1045	0032	. CP4	10.2	11.3	1.100	2.1949	0.3370	0.4313	0.0007	2.28	2 24	a Di
1		1309	LaZn	LaZn ₂	32.02	40.95	1.279	0.782	0.32	0.3842	0.4852	Zn	815	855	40	/60	CPZ	0112	0.30	0.30	1.314	0.3119	2.0402	0.0742	0.3230	3.30	2.04	
		1310	LaZn ₂	LaZn,	40.95	59.925	1.463	0.683	0.4852	0.5725	0.6531	Zn	855	872	. 17	782	0112	0C20	8.38	7.91	1.06	0.7851	1.2/3/	0.4003	0.5347	2.34	2.41	e Ri
		1311	Mg	Li	13.64	13.09	0.96	1.042	0.0552	0.0786	0.0848	Ľi.	610	590	20	588	hP2	, cl2	1.48	1.41	1.05	4.0979	0.244	0.2027	0.7973	2.26	1.0	e Kt
		1312	Li	Na	13.02	23.787	1.828	0.547	0	0.9908	1	Na	180.6	97.8	82.8	92.15	cl2	cl2	0.53	0.97	1.813	32.333	0.0309	0.0166	0.9834	1.6	1.7	e Kv
		1313	LiaPba	LiPb	126.1	27.2	0.216	4.636	0.9228	0.9482	0.9636	Pb	642	482	160	464	mC22	cP2	5.37	7.87	1.466	5.1977	0.1924	0.4715	0.5285	2.31	3.13	e Ri
÷.		1314	LiPb	Pb	27.2	18.26	0.671	1.49	0.9676	0.9932	0.999	Pb	482	327.5	154.5	235	cP2	cF4	7.87	11.1	1.406	4.6924	0.2131	0.241	0.759	3.13	1.91	e Rt
i.		1315	LinSia	Li ₇ Si,	162.1	88.59	0.546	1.83	0.5542	0.5756	0.6343	Si	722	752	30	709	oP34	hR7	1.25	1.5	1.2	0.5554	1.8005	0.7672	0.2328	2.9	3.27	c Rt
1		1316	LiuSi	Si	183.9	12.058	0.066	15.25	0.7021	0.7533	1	Si	648	1414	766	592	oP152	cF8	1.52	2.33	1.53	2.0683	0.4835	0.8806	0.1194	3.65	7.16	c It
i		1317	LinSo	Li _s Sn.	291.3	96,723	0.332	3.012	0.7952	0.8152	0.83	Sn	765	783	18	752	cF432	oC36	2.56	2.96	1.154	3.5293	0.2833	0.4605	0.5395	1.93	2	e Ri
1		1210	Li.So.	LiSn	110.6	24 734	0 224	4 47	0.88	0 9281	0.9448	Sn	508	486	22	469	mP20	mP6	3.66	5.08	1.388	9.2857	0.1077	0.325	0.675	2.14	2.5	e Rl
		4040	110113	Co	00.24	46 204	0.164	6 007	0.00771	0.0060	1	Sn	326	231 9	94 1	222	tP14	114	6.11	7.28	1,191	33.052	0.0303	0.1557	0.8443	2.88	3.4	e Rt
		1319	Lizons	30	99.34	10.294	0.104	0.097	0.5771	0.5505	0 7672	Cri	190.6	152	28.6	134	cl2	cF116	0.53	15	2 812	0 0476	21 018	0.3744	0.6256	1.6	1.66	e Rt
i		1320	LL	Li ₂₃ Sr ₆	13.02	457.04	35.12	0.028	0.0040	0.0320	0.7072	- 01 To	100.0	460	20.0	134	CE12	hD48	3.41	5 51	1 619	2 095	0 4773	0 2191	0 7809	3	4.75	c It
ļ		1321	Lizle	Lile3	41.43	/0.48	1.701	0.588	0.9018	0.9703	0.9022	10	450	400	10.4	440	hD4R	hD3	5.53	6.24	1 128	5 5238	0 181	0.384	0.616	4 75	58	e Il
1		1322	LiTe ₃	Te	70.48	20.465	0.29	3.444	0.9822	0.9937	1	16	400	449.0	10.4	420	-E40	1153	5.33 E 04	5.07	1 116	0.4276	2 2285	0.5600	0.4301	1.65	1.65	e' Pi
i		1323	LijTl	LisTlz	44.7	78.89	1.765	0.567	0.9076	0.9139	0.9215		441	448	1	430	6710	-00	5.04	0.02	1.00	2 266	0.0071	0.0000	0.4301	1.65	1.66	o Di
		1324	LisTlz	LITI	78.89	24.476	0.31	3.223	0.9215	0.9382	0.9486	П	448	4/0	22	435	<u>n</u> R/	CP2	0.02	0.03	1.030	3.300	0.29/1	0.4032	0.3100	2.00	1.00	
ł		1325	LiTI	Tl	24.48	17.58	0.718	1.392	0.9672	0.9938	0.9991	TI	505	304	201	211	CP2	CI2	8.63	11.6	1.347	5.1251	0.1951	0.2130	0.7804	3.00	1.10	e Ri
÷		1326	Мо	Lu	9.386	17.782	1.895	0.528	0.027	0.9486	0.9833	Lu	2623	1663	960	1545	CI2	hP2	10.2	9.64	1.039	14.535	0.0688	0.035	0.900	2.94	2.3	C RV
		1327	Lu	LusPb3	17.78	129.2	7.266	0.138	0.0118	0.2008	0.4154	Pb	1663	1695	32	1285	hP2	hP16	9.84	11.6	1.177	0.1029	9./148	0.5721	0.4219	2.3	2.1	e Ki
		1328	LuPb ₂	Pb	54.27	18.26	0.336	2.972	0.7034	0.9915	1	Pb	570	327.5	242.5	324	116	cF4	10.9	11.3	1.045	96.895	0.0103	0.0298	0.9702	2.04	1.91	e KV
		1329	Lu	Pu	17.78	12.2	0.686	1.457	0.2569	0.9781	0.9855	Pu	1600	640	960	634	hP2	cl2	10.6	19.7	1.863	76.966	0.013	0.0186	0.9814	2.3	2.3	CKV
į.		1330	Lu	Ti	17.78	10.886	0.612	1.633	0.0028	0.105	0.9306	Ti	1663	1670	7	1370	hP2	cl2	9.65	4.6	2.097	0.4244	2.3564	0.7938	0.2062	2.3	2.16	e Rt
ł		1331	Lu	Lu ₅ Tl ₃	17.78	130.48	7.338	0.136	0.1931	0.2587	0.412	TI	1340	1447	107	1167	hP6	hP16	10.1	11.4	1.127	0.0517	19.333	0.7249	0.2751	2.3	2.1	e Rt
	0	1332	Lu	٧	17.78	8.328	0.468	2.135	0.0015	0.0208	1	۷	1663	1910	247	1570	hP2	cl2	9.84	6.12	1.609	0.0678	14.741	0.9692	0.0308	2.3	2.36	e Rv
		1333	Ma	Ma-Ni	14	31.17	2.227	0.449	0	0.2353	0.5466	Ni	650	760	110	506	hP2	hP18	1.74	3.44	1.983	0.1712	5.8426	0.724	0.276	2.28	2.3	e Rt
ł	\mathcal{O}	1334	MaNis	Ni	24	6.59	0.275	3.642	0.8325	0.9078	1	Ni	1147	1455	308	1097	hP24	cF4	5.91	8.91	1.509	1.9706	0.5075	0.6489	0.3511	2.34	2.38	e Ri
÷		1335	Ma	Ma-Ph	14	48.09	3 4 3 5	0.291	0.4172	0.668	0.856	Pb	600	549	51	466	hP2	cF12	2.75	5.32	1.93	0.201	4.9762	0.5916	0.4084	2.28	3.43	e Ri
		1333	Ma Dh	Dh	48.00	18 26	0.100	2 634	0.8097	0 9765	0 9935	Pb	549	310	239	248.7	cF12	cF4	5.32	10.7	2	12.891	0.0776	0.1696	0.8304	3.43	1.91	elt
1-		1227	Nggr D	Mo.Pd	14	86 52	6 181	0 162	0.01	0 2702	0.389	Pd	650	700	50	540	hP2	cF396	1.74	2.92	1.679	0.2111	4.7373	0.4339	0.5661	2.28	2.27	e Ri
Ĩ		1007		Niy6r u Dal	100 7	9 265	0.047	21 28	0.8425	0.8848	0 9292	Pd	1350	1400	50	1280	tP4	cF4	7.36	9.69	1.315	15.401	0.0649	0.5802	0.4198	3.53	2.19	e Rt
-	~	1338	Mg ₉ PO ₁₁	P0	100.7	0.00J	40.047	0.072	0.0423	0.0040	0.3256	Dr	650	635	15	575	hP2	t126	1.74	2.25	1.294	0.0937	10.671	0.4369	0.5631	2.28	2.27	e Rt
Ē	i Ha	1339	Mg	Mg ₁₂ Pr	14	192.53	13.70	0.075	0.00	0.2223	0.0200	- De	780	700	10	752	cP2	cl2	4 71	5 09	1.081	6	0.1667	0.2194	0.7806	3.64	2.25	e It
2	~ E3	1340	MgPr	Pr	35.1	20.813	0.593	1.000	0.0520	0.910	0.9311	. ГІ СЬ	100	1040	600	620	hD3	hD5	1 74	4.01	2 31	0.0832	12 017	0 6808	0.3192	2.28	4.5	e Im
-	ゴ戸	1341	Mg	Mg ₃ Sb ₂	14	78.855	5.633	0.1/8	0	0.3942	0.7582	50	000	020.7	090	570	605	11 J	1.14	6.60	1 668	16 429	0.0609	0 2088	0.7912	3.47	5.26	e lt
7	5.01	1342	Mg ₃ Sb ₂	Sb	78.86	18.193	0.231	4.334	0.7695	0.9685	1	50	1240	030.7	009.3	019	11-0	6E12	4.01	1 00	1 147	0.012	83 125	0.968	0.032	2 28	39	e ld
-	$\sim \odot$	1343	Mg	Mg ₂ Si	14	38.49	2.75	0.364	. 0	0.0134	0.3658	. SI	650	1085	430	037.0	0010		1.14	1.33	1.150	1 2675	0 7052	0 7174	0 2826	39	7 19	e Im
5	a⊆	1344	Mg ₂ Si	Si	38.49	12.058	0.313	3.192	0.3658	0.5657	1	Si	1085	1414	329	945.0	CF12	010	1.99	2.33	1.105	0.0400	20.025	0.7174	0.2020	2 28	2 74	e Rt
-	7 ***	1345	Mg	Mg ₄₁ Sm ₅	14	683.1	. 48.8	0.02	0.0588	0.3497	0.4307	Sm	650	540	110	530	-504		1.74	2.00	1 9/9	0.0433	A 2012	0.8613	0 1387	2 17	3 48	e Rt
25		1346	Mg₂Sm	MgSm	48.54	34.32	0.707	1.414	0.7553	0.7729	0.8608	Sm	750	800	50	135	CF24	CPZ	4,1	5.09	1.242	0.2211	4.0312	0.0010	0.1007	2 40	1.04	o Di
	ž I	1347	MgSm	Sm	34.32	20.5	0.597	1.674	0.8608	0.8832	0.9262	Sm	800	860	60	785	CP2	cl2	5.09	5.45	1.0/2	0.0100	1.233/	0.0730	0.3202	0.40	3.04	
	-111 HB 1 - P	1348	Mg	Mg ₂ Sn	14	46.71	3.337	0.3	0.1447	0.3691	0.7091	Sn	625	770.5	145.5	561.2	hP2	cF12	1.97	3.58	1.822	0.1085	9.2127	0./041	0.2009	2.20	3.5	e 100
		1349	Mg ₂ Sn	Sn	46.72	16.294	0.349	2.867	0.7091	0.9787	1	Sn	770.5	231.9	538.6	203.5	cF12	tl4	3.58	7.28	2	17.854	0.056	0.1384	0.0010	3.9	3.4	ย 11
		1350	Mq	Mg ₁₇ Sr ₂	- 14	300.96	21.5	0.047	0.0011	0.1843	0.2978	Sr	650	606	44	585	hP2	hP38	1.74	1.96	1,126	0.0667	14.997	0.4109	0.5891	2.28	2.24	e. Ki
						_	_						-	-														

	N°	С,	C2	Vm ₁	Vm ₂	A,	A ₂	X _{et}	Xel	X _{e2}	.%p	Tf _t	Tf ₂	۸T	T,	EC1	EC ₂	ρι	Ρ2	В	٤,	62	Vf	Vf ₂	ΔS_1	ΔS_2	DM
	1351	Mg ₁₇ Sr,	Mg ₂₃ Sr ₆	301	508.08	1.688	0.592	0.2978	0.3906	0.4846	Sr	606	603	3	599	hP38	cF116	1.96	2.14	1.092	0.5356	1.8671	0.5252	0.4748	2.24	2.2	e RI
	1352	Mg ₂ Sr	Sr	57.02	33.909	0.595	1.682	0.6428	0.8937	0.9944	Sr	680	760	80	426	hP12	cF4	2.39	2.58	1.081	3.8771	0.2579	0.3025	0.6975	3.43	1.92	e Ri
	1353	Mg	Mg ₂₄ Tb ₅	14	432.39	30.89	0.032	0.2397	0.4097	0.5766	Tb	642	640	2	559	hP2	cl58	2.18	3.19	1.46	0.0226	44.232	0.5888	0.4112	2.28	2.3	e Ri
	1354	Mg	Mg ₂₃ Th ₆	. 14	437.55	31.26	0.032	0.0475	0.4105	0.7135	Th	650	772	122	582	hP2	cF116	1.82	4.46	2.45	0.0156	63.929	0.6716	0.3284	2.28	2.2	e Ri
	1355	Mg	Mg ₅ Tl ₂	13.94	97.65	7.006	0.143	0.6048	0.737	0.7708	TI	530	413	117	405.3	hP2	cl28	3.73	5.43	1.45	0.3838	2.6056	0.2711	0.7289	2.28	2.14	e Rt
1	1356	Mg ₂ TI	MgTl	41.79	28.762	0.688	1.453	0.8076	0.8614	0.8937	П	400	358	42	353	hP9	cP2	6.05	7.95	1.313	1.8413	0.5431	0.4411	0.5589	2.1	3.41	e Ri
	1357	MgTI	π	28.76	17.577	0.611	1.636	0.8937	0.9711	0.994	TI	358	304	54	202	cP2	ci2	7.95	11.3	1.425	3.8869	0.2573	0.2963	0.7037	3.41	1.78	e Rt
	1358	Mg	Mg ₂₄ Tm ₅	14	424.01	30.29	0.033	0.3184	0.46	0.5873	Tm	650	640	10	592	hP2	cl58	1.74	3.37	1.94	0.0189	52.857	0.6357	0.3643	2.28	2.3	e Ri
	1359	Mg	Mg ₂₄ Y ₅	14	431.98	30.86	0.032	0.1247	0.2632	0.7291	Y	650	605	45	566	hP2	c158	1.91	2.38	1.244	0.0077	129.11	0.8071	0.1929	2.28	2.3	e Rt
1	1360	Mg	Mg ₂ Yb	14	51.06	3.648	0.274	0.0796	0.4603	0.7468	Yb	645	718	73	509	hP2	hP12	1.87	4.34	2.3	0.1569	6.3733	0.636	0.364	2.28	3.43	e Ri
i	1361	Mg ₂ Yb	Yb	51.06	26.359	0.516	1.937	0.8015	0.9393	0.9874	Yb	718	798	80	496	hP12	ci2	4.34	6.1	1.4	3.9491	0.2532	0.3291	0.6709	3.43	2.01	e Ri
	1362	Mg	Mg ₇ Zn ₃	14	121.36	8.67	0.115	0.062	0.5124	0.5246	Zn	635	347	288	340	hP2	ol142	1.74	3.02	1.738	2.445	0.409	0.0451	0.9549	2.28	2.35	e Rt
	1363	Mg ₂ Zn ₁₁	Zn	125.6	9.16	0.073	13.71	0.9416	0.9695	0.9985	Zn	381	419.6	38.6	364	cP39	hP2	6.11	7.14	1.167	11.305	0.0885	0.5481	0.4519	3.7	2.51	e Il
	1364	Mn	Mn ₂ Nb	8.799	24.75	2.813	0.356	0.0334	0.0578	0.3967	Nb	1246	1460	214	1200	cl2	hP12	6.24	8.19	1.312	0.0195	51.211	0.9479	0.0521	2.32	2.3	e Rv
	1365	Mn ₂ Nd	Nd	24.75	20.586	0.832	1.202	0.5672	0.8765	1	Nd	920	1021	101	700	hP12	hP4	8.19	7.01	1.169	3.5213	0.284	0.2545	0.7455	3.2	1.32	e Rt
	1366	Mn	Mn ₃ P	7.585	29.224	3.853	0.26	0	0.0783	0.1582	P	1246	1105	141	960	cP20	t132	7.43	6.7	1.081	0.2823	3.5421	0.479	0.521	2.32	2.24	e Ri
	1367	Mn ₃ P	MnP	29.22	14.882	0.509	1.964	0.2732	0.295	0.3605	P	1090	1147	57	1085	t132	oP8	6.7	5.77	1.161	0.7584	1.3186	0.7214	0.2786	2.24	2.15	e Rt
	1368	Mn	MnPd	8.66	12.294	1.42	0.704	0.3533	0.4417	0.5428	Pd	1180	1360	180	1147	cF4	cP2	8.96	13.1	1.464	0.4206	2.3776	0.6261	0.3739	2.32	2.25	e Ri
	1369	MnPd	Pd	12.29	8.865	0.721	1.387	0.7899	0.8045	0.8153	Pd	1380	1360	20	1350	cP2	cF4	13.1	10.2	1.283	2.4201	0.4132	0.3643	0.6357	3.63	2,19	e Im
1	1370	Mn ₂₃ Pr ₆	Pr	310.3	21.214	0.068	14.63	0.401	0.885	0.9672	Pr	790	931	141	660	cF116	cl2	6.8	6.44	1.056	90.87	0.011	0.1386	0.8614	2.3	2.25	e Rt
1	1371	Мп	MnPt	8.86	16.612	1.875	0.533	0.6091	0.6147	0.631	Pt	1130	1160	30	1120	cF4	tP4	11	15.1	1.36	0.134	7.4647	0.7992	0.2008	2.32	3.7	c It
	1372	MnPt	Pt	16.61	9.095	0.547	1.826	0.8363	0.8474	0.8528	Pl	1430	1440	10	1400	tP4	cF4	15.1	15.6	1.036	3.6334	0.2752	0.3345	0.6655	3.7	2.3	c Im
	1373	Pu	PuMn ₂	14.46	29.16	2.017	0.496	0	0.0227	0.3126	Mn	640	1050	410	510	cl2	cF24	16.9	12.1	1.391	0.0541	18.479	0.9016	0.0984	0.73	1.8	e Rv
	1374	PuMn ₂	Mn	29.16	7.585	0.26	3.844	0.3126	0.4967	1	Mn	1050	1246	196	1000	cF24	cP20	12.1	7.24	1.676	2.3568	0.4243	0.6199	0.3801	1.8	2.32	e Ri
	1375	Mn	MnS	7.352	21.54	2.93	0.341	0	0.0059	0.3685	S	1246	1655	409	1242	ci2	cF8	7.47	4.04	1.85	0.0102	98	0.971	0.029	2.32	2.81	e Kv
	1376	Мп	Mn ₂ Sb	7.585	21.54	2.84	0.352	0.1045	0.4504	0.5253	Sb	1246	948	298	922	cP20	tP6	7.24	10.8	1.485	1.097	0.9116	0.243	0.757	2.32	4.2	e lm
~	1377	MnSb	Sb	25.41	18.193	0.716	1.397	0.6804	0.9043	1	Sb	840	630.7	209.3	570	hP4	hR2	6.95	6.69	1.039	3.3941	0.2946	0.2915	0.7085	5.18	5.26	e Im
1	1378	Mn₄Si	Mn ₃ Si	36.68	28.18	0.768	1.302	0.1009	0.1196	0.139	Si	1060	1070	10	1040	ol186	cF16	6.76	6.85	1.013	1.2435	0.8042	0.5114	0.4886	3.28	4.64	e II
γ	1379	Mn ₅ Si ₃	MnSi	56.36	14.26	0.253	3.952	0.2347	0.3	0.3383	Si	1300	1276	24	1234	hP16	cP8	6.37	5.82	1.094	7.3636	0.1358	0.3493	0.6507	4.14	6.12	e Im
	1380	Mn11Si19	Si	221.1	12.058	0.055	18.34	0.4697	0.5196	1	Si	1155	1414	259	1150	tP120	cF8	5.15	2.33	2.209	4.2076	0.2377	0.8134	0.1866	5.38	7.16	e It
	1381	Mn ₂ Sm	Sm	35.19	19.78	0.562	1.779	0.5774	0.8533	1	Sm	930	1074	144	795	hP12	hR3	7.39	7.6	1.028	3.2543	0.3073	0.3535	0.6465	2.65	1.94	e Ri
/	1382	MnSn ₂	Sn	36.36	16.294	0.448	2.231	0.8123	0.9963	1	Sn	549	231.9	317.1	231	t 12	ti2	8.04	7.28	1.104	121.85	0.0082	0.018	0.982	4.27	3.4	e ld
۲. ۲	1383	Mn	Mn ₂ Ta	8.66	24.54	2.834	0.353	0.0536	0.1032	0.65	TI	1246	1670	424	1175	cF4	hP12	6.34	11.9	1.868	0.0171	58.399	0.9537	0.0463	2.32	3.4	c Rv
-	1384	Mn ₂ Tb	Tb	33.71	19.313	0.573	1.745	0.5909	0.8601	1	Tb	912	1356	444	768	cF24	hP2	7.98	8.23	1.032	3.2544	0.3073	0.3491	0.6509	2.2	2.39	e Ri
1-1	1385	Mn ₂ Th	Th	34.9	19.789	0.567	1.764	0.6783	0.9441	0.9927	Th	1160	1620	460	911	hP12	cF4	9.8	11.7	1.197	8.0567	0.1241	0.1796	0.8204	3.4	1.89	c Rt
P Ed	1386	Ti	TiMn	9.712	14.382	1.481	0.675	0.3296	0.4251	0.5541	Mn	1290	1200	90	1180	ci2	tP30	5.15	7.15	1.389	0.3603	2.7753	0.6521	0.3479	2.16	2.24	e RI
5 2	1387	U.Mn	UMn ₂	72.87	27.333	0.375	2.666	0.0371	0.0595	0.3161	Mn	725	1120	395	716	ti28	ol12	20.4	12.7	1.599	0.3715	2.6916	0.8777	0.1223	2.58	2.42	e Rt
N 03	1388	UMn	Mn	27.33	7.585	0.278	3.604	0.3161	0.5479	1	Mn	1120	1246	126	1035	ol12	cP20	12.7	7.24	1.757	3.2455	0.3081	0.5261	0.4739	2.42	2.32	e Ri
20	1389	Moury	Mn ₂₂ Ye	106	293.65	2.77	0.361	0.1189	0.1794	0.297	Ŷ	1100	1125	25	1075	tl26	cF116	7.06	6.12	1.153	0.214	4.6739	0.6279	0.3721	2.32	2.31	e Ri
រ ្	1390	Mnay	Mn-Y	293.7	34.08	0.116	8.617	0.297	0.3909	0.6944	Y	1125	1107	18	1100	cF116	cF24	6.12	5.83	1.049	2.7998	0.3572	0.7548	0.2452	2.3	2.3	e Rt
5	1301	Mn-Y	Y	34.08	19.896	0.584	1,713	0.4469	0.7479	1	Ŷ	1107	1522	415	878	cF24	hP2	5.83	4.47	1.305	2.669	0.3747	0.3909	0.6091	2.3	2.3	e Rl
5	1392	Mn7n	7n	126.3	9,163	0.073	13.78	0.9396	0.9882	0.9916	Zn	440	419.6	20.4	417.3	mC28	hP2	7.17	7.13	1.004	199.17	0.005	0.0647	0.9353	2.5	2.51	e Rv
E1	1302	Mn	Mn.7r	8 744	27,201	3.091	0.323	0.0206	0.0804	0.2933	Zr	1240	1370	130	1160	cl2	hP12	6.24	7.39	1.184	0.0767	13.04	0.8084	0.1916	2.32	3.5	e Rt
ليعتددون	1303	Mn.7r	71	27.2	14 156	0.52	1,922	0.5254	0.7752	0.936	Zr	1430	1650	220	1090	hP12	cl2	7.39	6.23	1.187	3.5453	0.2821	0.3515	0.6485	3.5	2.17	e Rl
	1394	Mo	Nd	9.386	21 214	2 26	0.442	0	0.9984	1	Nd	2623	1021	1602	1012	cl2	cl2	10.2	6.8	1.503	415.67	0.0024	0.0011	0.9989	2.94	1.32	c. Rv
	1999	ano	190	3.000							_									_							

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

	Nº	С.	C,	Vm.	Vm,	A,	Α,	X.,	Χ.,	χ.,	%	Tf ₁	Tf ₂	AL	T,	EC,	EC,	ρι	P2	В	ε	£:	Vf	Ví .	γS^{1}	72 ⁷	DМ
	1396	Ni	NiMo	6 824	15 644	2 292	0436	0 3886	0 4768	0 639	Mo	1355	1362	7	1317	cF4	oP56	10.1	9.89	1.025	0.243	4.1145	0.6422	0.3578	2.38	2.66	e Ri
	1307	Mo	Nn	0 386	12 167	1 296	0 771	0.0123	0.966	0 998	Nn	2623	639	1984	497	cl2	tP4	10.2	19.5	1.906	12.075	0.0828	0.0601	0.9399	2.94	2.46	c Rv
1	1209	Mo	Ma Or	0.386	27 512	2 031	0.341	0 3244	0.000	n 4594		2435	2430	5	2380	cl2	1P30	12.2	13.9	1.143	0.0541	18.495	0.8632	0.1368	2.94	2.65	e Rt
	1300	Mo	Do Do	0.296	16 656	1 774	0.541	0.0603	0.0401	0.4004		2623	1572	1051	1467	cl2	cl2	10.6	13.9	1.305	33.046	0.0303	0.0168	0.9832	2.94	2.38	e Rv
	1299	MO	- Pa	9.300	0.000	. 1.714 	. 0.004	0.0093	0.6551	0.5035		1755	1760	5	1700	hP2	cF4	11.4	11.5	1 007	1 3307	0.7515	0.6005	0.3995	2.6	2.19	e Ri
1	1400	MOPO	20	11.13	0.000	0.5	·	0.5458	0.0000	0.5952		0500	2510	- 10	2505	-11 Z	1020	1/ 3	15.2	1.007	0 5836	1 7134	0.4656	0 5344	2 94	2.63	e Ri
1	1401	Mo	MoRe	9.386	18.45	1.967	0.508	0.5843	0.65	0.7034	.Re	2020	2010	10	2000		602	19.5	11.3	1.072	4 0719	0 2011	0.4050	0.0074	2 94	2 67	o Rv
	1402	Mo	MoRh	9.258	17.524	1.893	0.528	0.2114	0.4169	0.4372	.Kn	2140	2000	140	1940		501	10.0	11.3	1 146	1 4541	0.2011	0.0501	0.5035	2.04	2.01	e Pl
EJ	1403	Мо	Ru	9.386	8.175	0.871	. 1.148	0.2992	0.3921	0.4562	Ru	2100	2040	60	1955	CIZ	nP2	10,4	11.9	1.140	1.4341	0.0011	0.4412	0.0000	2.04	2.45	
	1404	Mo	Mo ₂ S ₃	9.386	49.635	5.288	0.189	0.0102	0.2505	0.3248	. <mark>S</mark> .	2550	1800	750	1550	CIZ	mP10	10	5.8	1.722	1.0036	0.949	0.1021	0.04/9	2.94	3.10	e Ri
7-1	1405	Mo ₃ Si	Mo ₅ Si ₃	35.36	68.864	1.948	0.513	0.0889	0.095	0.1494	Si	2025	2180	155	2025	CH8	t132	8.93	8.19	1.091	0.0631	15.857	0.8906	0.1094	3.12	4.52	, C 10
> 머니	1406	Mo ₅ Si ₃	MoSi ₂	68.86	23.769	0.345	2.897	0.1494	0.2558	0.3696	Si	2180	2020	160	1900	t132	hP9	8.19	6.4	1.28	3.463	0.2888	0.4555	0.5445	4.52	5.75	C 11
12	1407	MoSi ₂	Si	24.29	12.058	0.497	2.014	0.3696	0.9442	1	Si	2020	1414	606	1400	tl6	cF8	6.26	2.33	2.689	55.79	0.0179	0.0348	0.9652	5.75	1.16	C 10
E w	1408	Mo	Tb	9.386	19.564	2.084	0.48	0	0.9878	1	Tb	2623	1356	1267	1327	ci2	cl2	10.2	8.12	1.258	49	0.0204	0.0097	0.9903	2.94	2.39	CRV
i o	1409	Мо	MonTc.	9.05	89.77	9,919	0.101	0.5053	0.5752	0.6558	Tc	2100	2080	20	2027	cl2	tP30	10.6	10.8	1.023	0.0854	11.708	0.5413	0.4587	2.94	2.52	c RI
20	1410	Mo	Th	9.386	19,789	2.108	0.474	0.047	0.9369	0.9916	Th	2623	1755	868	1380	ci2	cF4	10.2	11.7	1.147	6.727	0.1487	0.0659	0.9341	2.94	1.89	c Rv
$\frac{2}{2}$	1411	Mo	Ŷ	9 386	19 896	2.12	0.472	0	0.9036	1	Y	2623	1522	1101	1430	cl2	hP2	10.2	4.47	2.287	10.111	0:0989	0.0446	0.9554	2.94	2.3	c Rv
8	1412	Mo 7r	7r	32.88	10.96	0.333	3	0 3682	0 5074	0.5777	Zr	1880	1620	260	1550	cF24	cl2	8.61	8.32	1.034	6.1416	0.1628	0.3282	0.6718	2.7	2.17	e Ri
	1412	DF	Dh Ma	19 27	70.32	3.85	0.26	0.0159	0.027	0 0394	Na	330	320	10	307	cF4	cP4	10.1	9.17	1.103	0.256	3.9059	0.5036	0.4964	1.91	3	e Ri
15 ml	1413		Dhila	70.27	27.28	0.00	1 991	0.0541	0.06	0.0999	Na	320	372	52	300	cP4	t164	9.17	6.16	1.489	0.4128	2.4222	0.82	0.18	3	1.8	e Rt
	1414	Pojna	PUNd Dh.No	10.32	37.30	0.332 E 047	0.165	0.0041	0.00	0.0000	Na	372	403	31	333	1164	hP26	6.16	4.58	1.34	0.133	7.5171	0.5542	0.4458	1.8	1.76	e Ri
	1415	PDNa	PO4Nag	37.30	220.03	0.047	0.100	0.0333	0.1372	0.1000	Ma	201	386	- <u></u> -	375	hR7	c176	4 285	3.53	1 213	1.0292	0.9716	0.2653	0.7347	1.76	1.74	e Rt
ì	1416	Pb ₂ Na ₅	PD4Na15	123.5	332.31	5.69	0.372	0.2109	0.2709	0.2543	Db	07.8	20 48	59 32		cl2	cl2	0.97	1 53	1 581	4 7143	0 2121	0.0828	0.9172	1.7	1.68	e Rv
	1417	Na	Rb	23.79	55.918	2.351	0.425	0	0.946		RD	91.0	39.40	100	-4.J 225	602	+149	2.05	1.00	1 452	8 5008	0 1163	0.0482	0.9518	25	28	e Rv
1	1418	NaS	NaS ₂	26.83	61.668	2.298	0.435	0.5824	0,7364	0.14//	. <u>.</u> .	4/5	203	190	233	1140	0029	1.41	2.41	1 404	0.0000 0.2850	3 4077	0.6881	0 3119	28	2 84	e Ri
	1419	NaS ₂	Na ₂ S ₅	61.67	97.762	1.585	0.631	0.7477	0.7649	0.7904	5	285	258	21	231	U40	0P20	1.41	4.02	1.434	6 0205	0.4011	0.0001	0.7770	2.0	42	e Im
	1420	Na ₃ Sb	NaSb	71	35.9	0.506	1.978	0.6384	0.8088	0.8412	Sb	860	465	395	435	nP8	mP IG	2.09	4.03	1.001	0.9200	4 0204	0.2221	0.1119	2.0	5.26	0 11
	1421	NaSb	Sb	35.9	18.179	0.506	1.975	0.8412	0.8911	. 1_	Sb	465	630.7	165.7	400	mP16	hR2	4.03	6.7	1.661	0.5445	1.8364	0.7839	0.0100	J.40	1.07	e il
0	1422	Na	Sr	23.7	33.909	1.431	0.699	0	0.0243	0.9642	Sr	97.8	769	671.2	94.8	CI2	CF4	0.97	2.35	2.42	0.0075	133.74	0.9694	0.0106	1.7	1.92	e rv
21	1423	NaTe	NaTe ₃	36.41	77.78	2.136	0.468	0.8473	0.8825	0.9433	Te	349	436	87	318	oP48	hP48	4.14	5.22	1.262	0.2143	4.6667	0.666	0.314	3.75	4.0	
7	1424	NaTe ₃	Te	77.78	20.465	0.263	3.801	0.9433	0.9749	1	Te	436	449.6	13.6	403	hP48	hP3	5.22	6.24	1.195	4	0.25	0.48/2	0.5128	4.11	0.0	e II
	1425	Na	Na _s TI	23.79	144.21	6.062	0.165	0.09	0.4045	0.5973	TI	97.8	77.4	20.4	63.9	cl2	cF412	1.06	2.37	2.25	0.1196	8.3586	0.5796	0.4204	1.1	1./1	екі
	1426	NaTI	TI	31.1	17.246	0.555	1.803	0.9119	0.937	0.9581	T	305	255	50	238	cF16	cl2	7.31	8.91	1.218	1.7654	0.5664	0.5053	0.4947	1.74	1.78	e Ri
h-rj	1427	Ni	Ni	7.056	29.96	4.246	0.236	0.1912	0.2316	0.3271	Nb	1360	1400	40	1282	cF4	oP8	8.95	8.98	1.003	0.0992	10.077	0.7036	0.2964	2.38	2.37	e Rt
5	1428	Ni.Nh	Ni-Nh-	29.96	124.15	4.144	0.241	0.3633	0.5186	0.6128	Nb	1400	1290	110	1175	oP8	hR13	8.98	8.08	1.112	0.4423	2.2607	0.353	0.647	2.4	2.37	e RI
E	1429	Nh	NbO	10.83	15.002	1.386	0.722	0.0167	0.1049	0,1469	0	2340	1945	395	1915	cl2	cP6	7.77	7.26	1.071	1.6228	0.6162	0.3078	0.6922	2.36	3	e Ri
50	1420	AlbO	NhO.	15	21 117	1 408	0.71	0.1469	0 2101	0.2565	0	1945	1915	30	1810	cP6	t196	7.26	5.91	1.227	1.1882	0.8416	0.3742	0.6258	3	4.4	e Im
	1400	NIL	Mb Oe	11.06	40.08	4 519	0 221	0.3244	0 4 1 8 4	0.4554	Os	2280	2200	80	2175	ci2	tP30	10.1	13.2	1.309	0.4288	2.3323	0.3404	0.6596	2.36	2.24	e Ri
DI .	1431		NILOs	40.09	10.30	0.296	2 599	0.6356	0.6448	0.663	0s	2130	2150	20	2120	tP30	cl58	13.2	14.7	1.112	1.1888	0.8412	0.6853	0.3147	2.24	2.21	e Ri
ز -می	1432	ND ₃ US ₂	NUUS	49.90	19.01	0.000	0.552	0.0000	0.0440	0.000	Pd	1800	1540	260	1520	cl2	cF4	9.03	10.2	1,128	2.7461	0.3641	0.1677	0.8323	2.36	2.27	e Rt
0	1433	ND	NDPd	10.83	19.50	1.007	0.000	0.3910	0.0000	0.5255	- U	1900	1750	50	1700	1P30	oP4	13.2	15	1,131	1.598	0.6258	0.6217	0.3783	2.34	2.33	e Ri
LS.	1434	Nb ₃ Pl ₂	NDPt	50.51	19.230	0.381	2.020	0.0021	0.013	0.0001	. <u>Г</u> .	2460	2560	100	2435	cl2	1P30	12.3	14.2	1.154	0.2151	4.6497	0.7235	0.2765	2.36	2.34	e Rt
Γ.	1435	Nb	NbRe	11.05	19.65	1.///	0.563	0.0209	0.0491	0.1011	R¢ Du	1900	1020	20	1870	cl2	cP2	R 74	9 98	1 142	0 4945	2.0221	0.5336	0.4664	2.36	2.4	e RI
E	1436	Nb	NbRu	11	19.44	1.767	0.566	0.3/03	0.3002	0.39	rtu D.	1040	1000	10	1774	cP3	hP2	9.09	11 5	1.154	2,2678	0.441	0.5001	0.4999	3.8	2.45	e li
A.	1437	NbRu	Ru	19.44	8.57	0.441	2.268	0.5596	0.0308	0.0920	Ru	1942	1544	74	1600	C12	1012	82	7 52	1.09	0 5904	1.6937	0.3101	0.6899	2.36	3.56	e Ri
97.414E. 4444	1438	Nb	Nb ₃ Si	10.83	40.8	3.769	0.265	0.0108	0.065	0.0915	51	2409	1041	920	1000	1132	hPO	4 48	5.6	1 251	4 6664	0 2143	0.4968	0.5032	4,16	4.7	e II
	1439	Nb ₅ Si ₃	NbSi ₂	122.6	26.616	0.217	4.606	0.1707	0.2861	0.3771	51	2520	1940	500	1400	600	112.9	4.40 6.6	3.0 3.22	2 405	46 97	0.0213	0.0449	0.9551	47	7,16	e ld
	1440	NhSi-	Si	26.62	12.058	0.453	2.207	0.3771	0.9368	1	SI	1940	1414	520	1400	1164	ULLO	0.0	2.33	2.403	-10.01	0.02.10	0.0110	5.0001			
N N	N٥	C,	C2	Vm ₁	Vm ₂	A,	A ₂	Х,,	Xel	X _{e2}	%,	Tf ₁	Tí ₂	71	Τ,	EC,	EC:	ρı	ρ:	В	ε,	£;	Vf ₁	Vf ₂	ΔS_1	۵Sz	DM
--------------	-------------	----------------------------------	---------------------------------	-----------------	-----------------	-------	----------------	--------	--------	-----------------	-------	-----------------	-----------------	------	------	------	-------	------	------	-------	--------	--------	-----------------	-----------------	--------------	------	-------
14	441	Th	Nb	20.91	10.826	0.518	1.931	0.0081	0.0808	1	Nb	1755	2469	714	1435	cl2	cl2	11.1	8.58	1.293	0.1975	5.0635	0.9072	0.0928	1.89	2.36	c Rv
14	442	Nb	Y	10.83	19.896	1.838	0.544	0	0.9375	1	Y	2469	1522	947	1470	cl2	hP2	8.58	4.47	1.921	15.667	0.0638	0.0336	0.9664	2.36	2.3	c Rv
14	443	Nd	Nd ₃ Ni	20.59	67.2	3.264	0.306	0	0.0872	0.1195	Ni	1021	590	431	570	hP4	oP16	7.01	7.31	1.044	0.7917	1.2632	0.279	0.721	1.32	2.72	e Rt
14	444	Nd ₃ Ni	Nd7Ni3	67.2	160.1	2.382	0.42	0.1195	0.1308	0.1485	Ni	590	616	26	565	oP16	hP20	7.31	7.41	1.013	0.2667	3.75	0.6115	0.3885	1.6	1.64	e Ri
14	445	Nd7Ni3	NdNi	160.1	25.98	0.162	6.162	0.1485	0.1798	0.2893	Ni	616	780	164	540	hP20	_ oC8	7.41	7.81	1.055	1.6667	0.6	0.7871	0.2129	1.64	1.85	e Rt
14	446	NdNi	NdNi ₂	25.98	28.869	1.111	0.9	0.2893	0.3413	0.4491	Ni	780	940	160	720	oC8	cF24	7.81	9.06	1.16	0.3737	2.6759	0.7066	0.2934	1.85	2.03	e Rt
14	447	Nd ₂ Ni ₁₇	Ni	148.2	7.798	0.053	19	0.7757	0.8045	์ 1	Ni	1300	1455	155	1290	hP38	cF4	8.68	7.53	1.153	3.2298	0.3096	0.8547	0.1453	2.27	2.38	e Rt
14	448	Nd	Nd,Pd,	20.59	205.86	10	0.1	0.0148	0.1232	0.1974	Pd	1021	690	331	620	hP4	hP20	7.01	6.46	1.085	0.1586	6.3051	0.3867	0.6133	1.32	1.58	e Ri
14	449	NdPd,	Pd	75.26	8.865	0.118	8.489	0.7863	0.9465	0.9731	Pd	1145	1555	410	1080	mP12	cF4	8.99	12	1.336	38.367	0.0261	0.1812	0.8188	2.05	2.19	e Rt
14	450	Nd	Nd ₇ Pt ₃	20.59	168.93	8.206	0.122	0.0135	0.2527	0.367	Pt	1021	1030	9	750	hP4	hP20	7.01	9.44	1.347	0.1893	5.2817	0.3916	0.6084	1.32	1.61	e Ri
14	451	Nd ₃ Pt ₄	NdPt ₂	91.44	34.224	0.374	2.672	0.6429	0.6606	0.7304	Pl	1420	2020	600	1400	hR14	cF24	13.3	15.6	1.177	0.5759	1.7365	0.8227	0.1773	1.88	1.97	c Rt
14	452	NdPt _s	Pt	65.44	9.095	0.139	7.195	0.8709	0.9388	0.9851	Pt	1730	1769	39	1580	hP6	cF4	17.1	21.5	1.254	8.4157	0.1188	0.4609	0.5391	2.14	2.3	e RI
14	453	Nd₄Rh	Nd ₂ Rh ₃	86.45	163.81	1.895	0.528	0.1514	0.1839	0.2342	Rh	800	920	120	730	oP16	hP20	7.86	8.05	1.023	0.3333	3	0.6129	0.3871	1.54	1.64	e Ri
14	454	Nd ₇ Rh ₃	Nd ₃ Rh ₂	163.8	74.02	0.452	2.213	0.2342	0.2513	0.3223	Rh	920	1140	220	890	hP20	hR15	8.05	8.63	1.072	0.5	2	0.8157	0.1843	1.65	1.75	e Rt
14	455	NdRh	NdRh,	26.97	32.58	1.208	0.828	0.3875	0.5485	0.5807	Rh	1270	1380	110	1240	oC8	cF24	9.17	10.7	1.172	3.5285	0.2834	0.19	0.81	1.86	2.04	e Rt
14	456	NdRh,	NdRh ₃	32.58	42.492	1.304	0.767	0.6081	0.6136	0.6816	Rh	1400	1600	200	1380	cF24	hP24	10.7	10.7	1.008	0.0629	15.896	0.9242	0.0758	2.04	2.13	e Rv
14	457	NdRh,	Rh	42.49	8.283	0.195	5.13	0.6816	0.8017	1	Rh	1600	1963	363	1410	hP24	cF4	10.7	12.4	1.165	2.6667	0.375	0.658	0.342	2.13	2.4	e Ri
14	458	Nd	Nd.Sb.	21.21	142.07	6.697	0.149	0.0144	0.0362	0.2997	Rh	1010	1690	680	955	cl2	hP16	7	7.65	1.093	0.0113	88.294	0.9295	0.0705	1.32	2.8	c Rv
14	459	NdSb ₂	Sb	50.87	18.193	0.358	2.796	0.6283	0.9647	0.9764	Sb	1650	630.7	1019	600	oC24	hR2	7.62	6.69	1.139	91.241	0.011	0.0297	0.9703	3.95	5.26	c' ld
14	460	Nd	Nd.Sin	20.59	125.14	6.079	0.165	0	0.0271	0.1026	Si	1021	1477	456	792	hP4	tl32	7.01	6.44	1.089	0.0641	15.59	0.7195	0.2805	1.32	4.1	e Im
14	461	NdSi	NdSi,	28.33	35.331	1.247	0.802	0.163	0.1986	0.2571	Si	1677	1757	80	1577	oP8	tl12	6.08	5.67	1.072	0.5232	1.9114	0.6052	0.3948	4.24	6.44	e Il
14	462	NdSi	Si	35.33	12.058	0.341	2.93	0.2814	0.4874	. 1	Si	1757	1414	343	1197	112	cF8	5.67	2.33	2.435	2.8667	0.3488	0.5055	0.4945	6.44	7.16	e Il
140	463	Nd	Nd ₄ Sn ₁	21.21	148.53	7.001	0.143	0.0583	0.1009	0.3305	Sn	940	1660	720	870	cl2	hP16	6.8	7.25	1.067	0.0248	40.294	0.852	0.148	1.32	2.1	e Rt
146	464	Nd	NdTe	21.21	37.186	1.753	0.57	0	0.0895	0.4694	Те	1021	2025	1004	948	cl2	cF8	6.8	7.31	1.075	0.125	8	0.8203	0.1797	1.32	4.94	c lt
14	465	Ti	Nd	10.87	21.214	1.952	0.512	0.0149	0.9828	0.9967	Nd	1650	1021	629	960	cl2	cl2	4.41	6.8	1.542	23.234	0.043	0.0216	0.9784	2.16	1.32	e Rv
14	466	Nd	NdiTI	21.21	71.82	3.386	0.295	0.1619	0.2311	0.3208	TI	890	795	95	785	cl2	cP4	7.35	8.87	1.207	0.1887	5.2983	0.6101	0.3899	1.32	2.55	e Ri
14	467	Nd ₁ TI.	NdTI,	132.1	64.021	0.485	2.063	0.707	0.7635	0.8095	TI	1100	1065	35	1045	oC32	cP4	11	11.8	1.074	2.3597	0.4238	0.4665	0.5335	1.6	2.8	e Ri
14	468	Nd	v	21.21	8.328	0.393	2.547	0.0013	0.2104	1	v	1021	1910	889	1020	cl2	cl2	6.8	6.12	1.112	0.7497	1.3339	0.7726	0.2274	1.32	2.36	c Rt
S 14	469	Nd	Yb	20.61	24,791	1.203	0.831	0.0239	0.9749	0.9833	Yb	1021	819	202	810	hP4	cl2	7.03	6.96	1.01	95.012	0.0105	0.0087	0.9913	1.32	2.01	c Rv
14	470	Nd	NdZn	21.21	29.554	1.393	0.718	0.0404	0.1198	0.3119	Zn	880	923	43	630	cl2	cP2	6.68	7.09	1.063	0.2794	3.5791	0.7198	0.2802	1.32	1.91	e Rt
14	471	NdZn	NdZn-	29.55	38.826	1.314	0.761	0.3119	0.3801	0.4758	Zn	923	926	3	868	cP2	ol12	7.09	7.08	1.001	0.5433	1.8405	0.5835	0.4165	3.3	2.1	e Ri
	472	NdZn-	NdZn-	38.83	47.264	1.217	0.821	0.4758	0.5595	0.5697	Zn	926	854	72	849	ol12	oP16	7.08	7.2	1.017	6.5948	0.1516	0.1108	0.8892	2.11	3.3	e Rv
	473	Ni	NiO	6.59	11 111	1 686	0.593	0.0001	0.0027	0.2142	0	1455	1957	502	1440	cF4	cF8	8.91	6.72	1.325	0.0097	103.12	0.9839	0.0161	2.38	2.4	c Rv
	474	Ni	Nip	6.59	25.564	3.879	0.258	0.0017	0.1101	0.1496	P	1455	880	575	870	cF4	tl32	8.91	8.1	1.1	0.7795	1.2829	0.2485	0.7515	2.38	2.28	e Rt
014	475	Ni-Pr	Ni P	114.1	20.121	0.176	5.673	0.1801	0.1916	0.2085	P	1120	1100	20	1100	t 34	hP9	7.53	7.38	1.021	3.9425	0.2536	0.59	0.41	2.26	2.25	e RI
	476	Ni	Dh.	6 59	18 265	2 772	0 361	0 0174	0 9987	1	Ph	1430	327.5	1103	324	cF4	cF4	8.91	11.3	1.273	212.62	0.0047	0.0017	0.9983	2.38	1.91	c Rv
C 14	410 A77	Pr .	Pr-Ni	20.81	68 812	3 307	0.302	0	0.089	0.1219	Ni	931	525	406	460	ci2	oP16	6.77	7	1.033	0.7917	1.2632	0.2764	0.7236	2.25	2.28	c Rt
201	478 .	Pr.Ni	Pr.Ni.	68.81	161 73	2 35	0 425	0.1219	0.1335	0.1515	Ni	525	535	10	490	oP16	hP20	7	7.19	1.027	0.2667	3.75	0.6147	0.3853	2.28	2.29	e RI
- 3 E	A70	Dr.Ni.	PrNi	161 7	26 276	n 162	6 155	0 1515	0.1671	0 2941	Ni	535	730	195	510	hP20	oC8	7.19	7.6	1.057	0.7143	1.4	0.896	0.104	2.29	2.3	e Rt
2	479. 480	PrNiz	Ni	51 13	6.59	0.129	7.759	0.6751	0.7712	1	Ni	1385	1455	70	1280	hP6	cF4	8.5	8.91	1.049	3.1079	0.3218	0.714	0.286	2.36	2.38	e Rt
2	481	- Pu	PuNi	14 46	23 508	1 626	0.615	0.0108	0.0335	0.1952	Ni	640	800	160	465	cl2	oC8	16.9	12.9	1.311	0.1132	8.8343	0.8445	0.1555	0.73	1.6	e Rt
	482	Pil-Ni	Ni .	143.7	6.59	0.046	21.81	0.674	0.7361	0.9298	Ni	1235	1455	220	1200	hP38	cF4	10.3	8.91	1.161	8.1187	0.1232	0.7287	0.2713	2.2	2.38	e Rt
+.40	402	Ni	Ni.S.	6.50	40 665	6 171	0.162	0	0.212	0.2405	S	1455	800	655	637	cF4	hR5	8.91	5.91	1.508	1.8164	0.5505	0.0819	0.9181	2.38	2.75	e Rt
140	-03	MiC	NIS.	16 48	27 687	1.68	0.595	0 3727	0.383	0.5224	S	1000	1020	20	985	hP4	cP12	5.51	4.44	1.241	0.055	18.186	0.9154	0.0846	4.22	2.8	e id
1 1 4 6	A M A				- I.UUI	1.00			2.2.2		· • ·											•••••					

		N٥	C,	C,	Vm ₁	Vm ₂	Α,	A ₂	X _{e1}	Xei	X _{e2}	%ρ	Tft	Tf ₂	M	T,	EC,	EC,	ρι	ρ2	В	ε	٤2	Vf	Vf ₂	72 ¹	AS2	DM
ł		1486	Ni	Ni _s Sb ₂	6 59	57 442	8.717	0.115	0.1702	0.3825	0.4113	Sb	1360	1161	199	1097	cF4	mC28	9.76	9.35	1.044	0.883	1.1325	0.115	0.885	2.38	3.2	e Rt
	į	1487	Ni _s Sb ₂	NISb	57.44	20.71	0.361	2.774	0.4562	0.5491	0.61	Sb	1161	1147	14	1072	mC28	hP4	9.35	8.71	1.073	4.5409	0.2202	0.3792	0.6208	3.2	5.2	e Im
ļ		1488	NiSb ₂	Sb	38.49	18,193	0.473	2 1 1 6	0.9853	0.999	1	Sb	621	630.7	9.7	621	oP6	hR2	7.85	6.69	1.173	35.299	0.0283	0.0565	0.9435	4.3	5.26	e Id
		1489	Ni	NisSc	6 59	44.598	6 768	0.148	0.0115	0.0986	0.1331	Sc	1450	1180	270	1140	cF4	hP6	8.91	7.59	1.174	0.438	2.283	0.2523	0.7477	2.38	2.3	e Rt
		1490	Ni ₂ Sc ₂	Ni ₂ Sc	66.2	24.798	0.375	2 669	0.1793	0.2033	0.256	Sc	1300	1340	40	1270	hP36	cF24	7.57	5.34	1.417	1.7274	0.5789	0.6071	0.3929	2.26	2.2	e RI
1		1491	Ni ₂ Sc	NiSc	24.8	19.204	0.774	1.291	0.2919	0.338	0.4337	Sc	1340	1320	20	1120	cF24	cP2	6.55	5.4	1.213	0.7532	1.3277	0.6316	0.3684	2.2	3.5	c Ri
		1492	NiSc	NISc2	19.2	33.51	1.745	0.573	0.4337	0.5659	0.6053	Sc	1320	1000	320	860	cP2	cF96	5.4	4.44	1.217	2.3421	0.427	0.1966	0.8034	2.11	2.03	c Rt
1		1493	Ni	Ni ₁ Se ₂	6.59	45.805	6.951	0.144	0	0.4093	0.4644	Se	1455	785	670	750	cF4	hR5	8.91	7.29	1.222	1.3045	0.7666	0.0993	0.9007	2.38	2.75	e Rt
		1494	NiSe,	Se	32.09	16.417	0.512	1.955	0.7293	0.9996	0.9999	Se	586	221	365	217	cP12	hP3	6.75	4.81	1.404	2493.5	0.0004	0.0008	0.9992	4.09	3.1	c Id
		1495	Ni	Nisi	6.59	23.416	3.553	0.281	0.0824	0.1152	0.1375	Si	1270	1170	100	1143	cF4	oP16	8.17	8.72	1.068	0.3885	2.5742	0.4201	0.5799	2.38	4.72	e Il
1		1496	NinSin	Ni ₂ Si	360.6	20.049	0.056	17.99	0.1562	0.1688	0.1928	Si	1240	1255	15	1215	hP14	oP12	8.45	7.26	1.16	10.997	0.0909	0.6206	0.3794	3.7	4.2	e Il
		1497	NisSi	NISi	18.99	13.71	0.722	1.385	0.2495	0.2895	0.3236	Si	1130	990	140	964	hP6	oP8	7.66	6.33	1.21	1.9704	0.5075	0.4128	0.5872	3.97	4.77	e Il
		1498	NiSi	NiSi	13.71	23.79	1.735	0.576	0.3236	0.3804	0.4893	Si	990	993	3	966	oP8	cF12	6.33	4.83	1.311	0.3935	2.541	0.5942	0.4058	4.77	5.6	e II
	i	1499	Sm.Ni	SmNi	65 17	25 08	0 385	2 598	0.1152	0.1552	0 2808	Ni Ni	664	1079	415	570	oP16	oC8	7.82	8.34	1.066	0.7778	1.2857	0.7696	0.2304	2.05	2.11	e Rt
		1500	SmNi	SmNia	25.08	28,392	1.132	0.883	0.2808	0.31	0.4389	Ni	1079	1031	48	809	oC8	cF24	8.34	9.43	1.131	0.1767	5.6591	0.8333	0.1667	2.1	2.23	e Rt
		1501	Sm-Ni.	Ni	150.6	6 59	0.044	22.86	0 769	0.8595	1	Ni	1288	1455	167	1280	hP38	cF4	8.62	8.91	1.033	14.255	0.0702	0.6159	0.3841	2.24	2.38	e Rt
		1502	Ni	Ni.Sn	6.59	31 072	4 715	0.212	0 1934	0 3174	0 3765	Sn	1300	1170	130	1130	cF4	hP8	9.86	9.49	1.04	0.4628	2.1607	0.3143	0.6857	2.38	2.63	e Ri
		1502	Ni.So	Ni.Sn.	31 07	39.25	1 263	0 792	0 4077	0 4153	0 5523	Sn	1170	1260	90	1160	hP8	hP6	9.49	10.5	1.11	0.0396	25.257	0.9524	0.0476	3.75	2.8	e id
		1504	Ni	Ni.Ta	6.59	29.52	4 48	0 223	0.3341	0.3903	0.4835	Та	1420	1550	130	1360	cF4	mP48	11.5	12.1	1.127	0.1281	7.8073	0.6354	0.3646	2.38	2.23	e Ri
1		1505	Ni.Ta	NiTa	29.52	17 424	0.59	1 694	0.624	0.6342	0 755	Та	1405	1570	165	1350	mP48	hR13	12.1	13.8	1.137	0.1257	7.9585	0.931	0.069	2.23	2.1	e Rv
		1505	NiTo	NiTo.	21.02	40 557	1 846	0 542	0 6484	0.6805	0 716	Te	880	900.5	20.5	873	hP4	hP3	8.48	7.74	1.096	0.539	1.8553	0.5012	0.4988	5.32	4.66	e ll
		1507	NiTe.	То	40.56	20 465	0 505	1 982	0.8132	0 9988	1	Te	900.5	449.5	451	448.5	hP3	hP3	7.74	6.24	1.241	396.51	0.0025	0.005	0.995	4.66	5.8	e Id
		1508	Th	Th.Ni.	10.00	158 85	8 027	0 125	0.0.01	0.0856	0 0978	Th	1755	1112	643	1062	cF4	hP20	11.7	11.3	1.035	0.9	1.1111	0.1216	0.8784	1.89	2.03	e Rt
1		1500	ТЪЛБ	ThNi.	26.13	31 443	1 203	0.831	0 2019	0 2751	0 3056	Ni	1187	1062	125	1037	oP16	hP3	11.1	11.1	1.001	1.9945	0.5014	0.2941	0.7059	2.13	2.22	e Rt
		1510	Th.Ni.	Ni	148 7	6 59	0 044	22 57	0.6825	0 7985	1	Ni	1350	1455	105	1312	hP38	cF4	9.83	8.91	1.103	14.344	0.0697	0.6114	0.3886	2.33	2.38	e Rt
		1511	Ti	Ti-Ni	10.89	27 33	2 511	0.398	0 1199	0 279	0 3796	Ni	1470	984	486	942	cl2	cF96	4.61	5.65	1.226	0.5143	1.9444	0.4365	0.5635	2.16	2.23	e Ri
		1512	TINI	TINK	16 38	28 088	1 715	0.583	0.619	0.6572	0 7862	Ni	1310	1380	70	1118	cP2	hP16	6.51	7.98	1.225	0.1409	7.0994	0.8054	0.1946	3.65	2.32	e It
16		1512	TiNi	Mi	28.00	6 776	0.241	4 145	0.7862	0.8612	0.8853	Ni	1380	1330	50	1304	hP16	cF4	7.98	8.66	1.086	11.837	0.0845	0.2594	0.7406	2.32	2.38	e Rt
12	0	1513	1003	i ti	47.03	6 50	0.14	7 137	0.5516	0 7138	0.9308	Ni	1305	1440	135	1110	cF24	cF4	11.3	8.91	1.269	6.7649	0.1478	0.5134	0.4866	2.42	2.38	e Ri
		1014	Mi Ni	Na/	6.92	14 75	2 163	0.462	0.0010	0.4745	0.5147	v	1280	1250	30	1202	cF4	cl2	8.12	7.43	1.092	0.9928	1.0072	0.3177	0.6823	2.38	2.37	e Ri
		1515		1414	0.02 C 60	0.65	1 440	0.402	0.0000	0 4498	0.014	w	1500	3422	1922	1495	cF4	cl2	12	19.2	1.596	0.0399	25.087	0.9454	0.0546	2.38	2.29	e Rv
		1510	NI	VV	0.09	3.JJ	1.443	0.05	0.3331	0.1130	0.000		1455	1330	125	1285	cF4	hP38	8 91	8 11	1 098	0.0928		0.3288	0.6712	2.38	2.37	e Rt
E		1517		NI17T2	0.09	144.97 94 48	0.979	1 1 20	0 4305	0.0301	0.1005	ζ, <u>†</u> ί γ	1106	1070	36	950	cF24	oP8	7.4	6.03	1.227	1.8403	0.5434	0.3824	0.6176	2.35	2.34	e Ri
片		1518	NI2T	NET	21.09	C2 000	0.010	1.105	0.4303	0.5201	0.0020	v.	820	902	82	820	1P80	oP16	5 53	5.17	1.069	0.6633	1.5077	0.6246	0.3754	2.33	3.5	e Ri
2		1519	NI2T3	NIT3	09.00	02.900	0.900	1.104	0.0545	0.7004	0.0130		1455	1245	210	1230	cF4	hP38	8 91	9 38	1 053	0.1683	5.94	0.2146	0,7854	2.38	2.34	e Rt
\triangleright	너	1520	NI	NI17YD2	6.59	143.20	21.74	0.040	0 6054	0.204	0.2000	7 10 7 Vh	1955	1035	200	000	cF24	0P8	8.65	8.02	1 079	5.1238	0.1952	0.1961	0.8039	2.26	2.2	e Rt
-	12	1521	NI2YD	NIYD	36.09	28.885	0.8	1.23	0.0904	0.7152	0.1401	10.	1420	1200	120	1170	cE4	cF24	8.00	8 49	1.05	0 1897	5 2704	0 4338	0 5662	2.38	2.34	e Rl
지	53	1522	Ni	NisZr	6.59	45.33	6.8/9	0.145	0.0274	0.1304	0.2132	2 21	1100	1170	10	1070	1070	0068	11.6	7 79	1 491	2 8634	0.3492	0 2728	0.7272	2.32	2.29	e Rt
~	C)	1523	Ni ₂₁ Zr ₈	Ni ₁₀ Zr ₇	169	157.34	0.931	1.074	0.3/2	0.4064	0.5192	: 2r 1 7e	100	1120	160	1010	008	#12	7 40	7 23	1 036	3.4573	0.2892	0.1479	0.8521	2.3	3,47	e Rt
τ	\square	1524	NíZr	NIZr ₂	20.01	33.333	1.006	0.0	0.0004	0.1342	0.7000	. <u>4</u> . 7r	1120	1800	680	960	#12	ci2	7 23	6 42	1.127	1.319	0.7582	0.641	0.359	3.47	2.17	e RI
5	2	1525	NIZrz	Zr	33.33	14.105	0.425	2.305	0.1000	0.0311	0.9000	10	30 49	.11	50 49	-11	cl2	hP28	1.53	1.89	1,236	0,4761	2.1003	0.2956	0.7044	1.68	1.68	e Rt
E		1526	KD	KD6O	55.92	2/9.86	0.005	0.2		0.0220	0.0303		1755	3300	1635	1735		cF12	11 1	10	1.11	0.0076	130.93	0.9904	0.0096	1.89	1.89	c Rv
E	1	1527	Th	ThO ₂	20.91	25.407	1.263	0.792		0.001	0.1130		3033	1730	1303	1720	hP2	cP8	22.6	13.8	1.64	4.5	0.2222	0.1056	0.8944	2.06	4.61	c lt
TRA	sa	1528	US .	USSI	8.422	15.654	1.882	0.531	0 2707	0.10/8	U.120/	01 Ci	1640	1414	226	1360	0C48	cF8	9.68	2.33	4,157	5.3285	0.1877	0.2837	0.7163	5.46	7.16	e Im
		1529	OsSi ₂	Si	25.44	12.058	0.474	2.11	0.2283	0.5199	0.6477	ы т.	1040	2500	220	1300	, 0040 , 159	1030	19.00	17.9	1 076	D 1684	5 937	0.7364	0.2636	1.93	1.86	c Rt
		1530	OsTa	OsTa	19.35	41.124	2.126	0.47	0.00/5	0.31/6	0.34//	l I d	2420	2000	00	2000	000	11 00	10.2	11.0								

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

1	Nº.	C,	C,	Vm.	Vm,	A,	Α,	Χ.,	X	χ.,	%	Tf ₁	Tf,	71	T,	EC ₁	EC:	Pi	ρ:	В	ε _l	£2	Vf	Vf ₂	ΔS_1	ΔS_2	DΜ
ļ	1531	05	Os-Th	8 422	34 41	4 086	0 245	0	0 2891	0 3785	Th	3033	2480	553	2220	hP2	cF24	22.6	17.8	1.269	1.0039	0.9961	0.196	0.804	2.06	2	c Rt
	1532	Os Th	Th	165.2	19 789	0 12	8 349	0.74	0.8909	1	Th	1550	1755	205	1287	hP20	cF4	13.3	11.7	1.133	13.077	0.0765	0.3897	0.6103	1.94	1.89	e Ri
	1533	TiOs	05	17 62	8 653	0 491	2 036	0 8052	0 8806	0 9373	Os	2160	2500	340	2100	cP2	hP2	13.5	18.5	1.371	1.9761	0.506	0.5074	0.4926	2.11	2.06	e Ri
	1534	Os	Os-U	8 422	31.941	3 793	0.264	0.0125	0.3274	0.376	U	3000	2280	720	2170	hP2	cF24	22.6	19.4	1.166	1.9911	0.5022	0.1169	0.8831	2.06	2.25	c Rt
	1535	05	v	8 4 2 2	8 328	0.989	1 011	0 1982	0 2782	0 3132	v	2425	2260	165	2240	hP2	cl2	14.7	12.3	1.19	2.7508	0.3635	0.2688	0.7312	2.06	2.36	e Rt
	1536	05	0sW.	8 422	28.32	3 363	0 297	0.5316	0.5818	0.6321	w	2775	2900	125	2725	hP2	tP30	22.2	19.7	1.126	0.3336	2.9973	0.4713	0.5287	2.06	2.21	e Ri
	1537	05	05.Y	8 422	32 31	3 836	0 261	0	0.029	0.1892	Y	3033	2500	533	2100	hP2	hP12	22.6	14.5	1.555	0.0733	13.647	0.7806	0.2194	2.06	3.4	c Rt
1	1538	0sY.	Ϋ́Υ	64.7	19 896	0.308	3 252	0 5837	0.7742	1	Ŷ	1290	1522	232	1150	oP16	hP2	7.06	4.47	1.58	4.3333	0.2308	0.4287	0.5713	2.24	2.3	c RI
	1530	0513	0s7r	8 4 2 2	20.924	2 484	0.403	0.04	0 1011	0.3241	Zr	2840	2660	180	2440	hP2	cP2	21.6	13.4	1.609	0.1774	5.6365	0.6941	0.3059	2.06	3.5	c RI
Í	1535	0s.7r.	71	181 7	14 156	0.078	12.84	0 5709	0.6573	0 7466	Zr	1350	1480	130	1260	cF120	cl2	9.71	7.42	1.308	16.273	0.0615	0.441	0.559	2.14	2.17	c Rl
	1540	DDd		33 12	RR 000	2.66	0 376	0.0100	0.9407	0.943	Pd	800	780	20	771	oP16	mP24	10.6	11.6	1.095	0.8146	1.2277	0.3158	0.6842	2.14	2.15	e Rl
	1091	D Dd		99.12	62.062	0 704	1 42	0.30000	0.9475	0.9137	Pd	780	792	12	771	mP24	mP28	11.6	10.8	1.073	1.1003	0.9088	0.5633	0.4367	2.15	2.16	e Ri
1	1042	F2FUg Du	10.0	9 175	23 640	2 202	0 346	0.040	0.1161	0.0001	P	2334	1500	834	1480	hP2	oP12	12.4	9.86	1.254	3.0312	0.3299	0.1024	0.8976	2.45	2.3	e Rv
	1543	RU Du D	RujP	0.173	23.049	2.093	1 468	0 1227	0.1101	0.1321	P	1500	1550	50	1400	oP12	oP8	9.86	8.19	1.203	1.2829	0.7795	0.5336	0.4664	2.3	2.22	e Ri
	1344	Ru2F		20.00	07.004	0.001	0.000	0.1527	0.0000	0 1777		1670	1760	۹۸	1495	rl2	(P32	44	4.68	1.065	0.1485	6.732	0.6628	0.3372	2.16	2.12	e Ri
	1545		1131	10.09	31.204	3.420	4 562	0.0015	0.0000	0.0710	. . .	1173	1040	133	980	1P40	tP24	4 59	3.54	1,298	2,1362	0.4681	0.4224	0.5776	2.3	2.17	e Ri
	1546	2032		10.19	. 30.97 . 41 471	0.04	0.44	0.2401	0.0007	0.4003	Pd	327.5	474	146.5	260	cF4	tl12	11.3	12.6	1.107	0.1125	8.8911	0.7966	0.2034	1.91	3.23	e Rt
	1547		PozPu	. 10.21	41.472	0.2271	A 463	0 6064	0.6590	0.204	Pd	474	501	27	1197	cP4	cF4	13.3	13.6	1.022	2.2862	0.4374	0.6613	0.3387	3.24	2.19	e Ri
	1548	POPO3	. Pa	. 39.00	0.000	0.224	2 420	0.0004	0.0009	0.1000	Pr	1220	1340	120	824	cP4	cl2	8.63	6.64	1.3	11.006	0.0909	0.2381	0.7619	3.28	2.25	e Rt
1	1549	POPI	- FI Db	. 12.90	18 265	0.291	3.504	0.0111	0.003		Ph	360	327.5	32.5	290	tP10	cF4	16	11.3	1.41	13.868	0.0721	0.2017	0.7983	1.99	1.91	e Rt
	1550	PIPU4	PU DuDb	- 60 2	66 004	0.203	0.752	0.0000	0.5455	0 709	Pb	1129	1138	9	1124	t124	cP4	13.1	12.9	1.012	0.3036	3.2937	0.7124	0.2876	1.52	2.73	e Rt
	1001	PUPO2	05 05	19.07	20.304	2 141	0.467	0.0011	0.0001	0.1987	Rh	327.5	640	312.5	320	cF4	tl12	11.3	13.2	1.166	0.033	30.294	0.934	0.066	1.91	3.3	e Rv
	1002	-D	FU2RIA Ch	10.21	18 103	0.006	1 004	0.0349	0.0108	0.9681	Sb	320	630.7	310.7	251.7	cF4	hR2	11.1	6.79	1.638	0.1456	6.8667	0.8733	0.1267	1.91	5.26	e It
	1553	PU Db	DhSa	18.27	34 268	1 876	0.533	0.0040	8E-06	0 2759	Se	327.5	1079	751.5	327	cF4	cF8	11.3	8.35	1.358	2E-05	49998	1	4E-05	1.91	2.5	c Rv
	1004	DhCo	- F000	34 27	16 417	n 479	2 087	0 2759	0 9998	1	Se	1079	221	858	220	cF8	hP3	8.35	4.81	1.736	12498	8E-05	0.0002	0.9998	2.5	3.1	c Rv
	1000	FUSC Db		19 27	16 204	0.475	1 121	0 1829	0.6186	0 9775	Sn	285	228	57	183	cF4	t14	10	7.36	1.36	1.8536	0.5395	0.3769	0.6231	1.91	3.4	e. Ri
	1000	DEC	. 30 . Cr	60.5	34 783	0.052	1 998	0.4586	0 7475	1	Sr	1155	769	386	725	oP12	cl2	5.5	2.6	2.1	4.8381	0.2067	0.2923	0.7077	1.92	1.92	e Rt
2	1007	PUOI2	DhTo	10 27	40.482	2 216	0.451	0.1000	2E-05	0 3811	Te	327.5	924	596.5	326.8	cF4	cF8	11.3	8.27	1.372	4E-05	24998	0.9999	9E-05	1.91	3.85	e ld
	1000	PhTo	To	10.27	20.465	0.506	1 978	0 3811	0.8343	1	Te	924	449.6	474.4	410.9	cF8	hP3	8.27	6.24	1.326	7.1743	0.1394	0.2161	0.7839	3.85	5.8	e It
U	1559	PUIC	Dh.Th	18 27	68.84	3 769	0 265	0.0011	0.0223	0 2718	Th	327.5	1100	772.5	310	cF4	cP4	11.3	12.4	1.093	0.0217	46	0.9243	0.0757	1.91	1.9	c Rv
	1500	г. ОБ ТБ	ть. Т	150.6	20 908	0.139	7 204	0.6511	0 9097	1	Th	1900	1755	145	1415	hP16	cl2	11.8	11.1	1.066	22	0.0455	0.2467	0.7533	1.9	1.89	c Rt
	1001	r by i lig	VDh	10.0	138.82	6 977	B 143	0.0564	0 2914	0.583	Pb	1500	1760	260	1240	hP2	hP16	4.62	7.68	1.663	0.0695	14.394	0.6735	0.3265	2.3	2.15	e Rl
Ľ	1502	I Dh.Vh	DhVh	60.1	34 508	0.501	1 997	0 2178	0 2821	0.4551	Yb	740	1116	376	717	cP4	tP4	11.5	11	1.046	0.7778	1.2857	0.7197	0.2803	3.05	3.34	e Rt
	1503	DPA	Dh.Vh.	34.6	157 14	4 542	0.22	0.4551	0.5102	0.5819	Yb	1116	1150	34	1086	tP4	hP16	11	9.46	1.162	0.1964	5.0909	0.5285	0.4715	3.34	1.97	e' Ri
2-1	1004	DEVE		56 18	24 845	0 442	2 261	0 6259	0.9395	0.9976	Yb	1246	819	427	769	oP12	cF4	9.85	6.96	1.414	17.273	0.0579	0.1158	0.8842	1.98	2.01	e Rv
PE	1505	70	. 10 Dh	0 165	19 175	1 985	0 504	0	0 9949	1	Pb	2469	2565	96	2435	cl2	tP30	7.14	11.4	1.597	61.495	0.0163	0.0081	0.9919	2.51	1.91	e Rv
JH	1000	20 0	LA D4	41.26	9 965	0.000	4 666	0.6162	0.6977	0 7298	Pd	1480	1320	160	1240	cP4	cF4	13.6	14.1	1.042	11.385	0.0878	0.2907	0.7093	1.82	2.19	e Rt
20 C	1567	PUPO3	FU DaiSh	41.30	20.000	4 263	0 235	0.146	0 2332	0 2761	Sb	1340	1200	140	1070	cF4	cF16	11.8	11.2	1.048	0.5	2.0001	0.3193	0.6807	2.19	4.07	e Im
- 2	1568		Pajou	9.217	39.200	4.203	2 878	0.140	0 4562	0.5336	Sh	845	805	40	730	hP42	hP4	11.1	9.42	1.181	2.1552	0.464	0.5718	0.4282	3.07	5.11	e II
퍼드	1509	1,022 D46P	Sh	40.50	18 103	0 448	2 231	0.6962	0.9025	1	Sb	678	630.7	47.3	590	cP12	hR2	8.62	6.69	1.288	6.0816	0.1644	0.2684	0.7316	4.24	5.26	e Im
54	1570	Puolo Dd So	Dd.So.	93.83	113 29	1 351	0.74	0 1932	0.25	0.2981	Se	430	415	15	385	mP18	oP22	10.8	9.36	1.15	1.0059	0.9941	0.4238	0.5762	2.4	2.52	e RI
7	1571	Pd	Pd.Si	8 865	52 074	5 874	0.17	0	0 0445	0.0503	Si	1555	835	720	821	cF4	mP24	12	10.8	1.116	1.4702	0.6802	0.1038	0.8962	2.19	3.02	e Rt
	1572	D4 Ci	Dd.Si	52 07	94 369	1 812	0 552	0 0503	0.052	0 0555	Si	835	823	12	816	mP24	oP16	10.8	10.7	1.001	0.2728	3.6662	0.6692	0.3308	3.02	4.01	e Im
-19329-181-1711	1573	rugoi Da Si	Pd.S	34.07	25 188	0 734	1 362	0 0809	0.0849	0.1151	Si	1070	1394	324	1050	oP16	hP9	10.1	9.56	1.058	0.1911	5.233	0.877	0.123	4.52	3.84	e li
	1574	DdSi	Si	17.61	12 058	0.685	1.46	0.2088	0.2224	1	Si	901	1414	513	892	oP8	cF8	7.64	2.33	3.279	0.0833	12	0.946	0.054	4.7	7.16	e Id

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

	N°	C ₁	C ₂	Vm ₁	Vm ₂	A,	Ā2	X _{e1}	X _{eL}	X _{e2}	%p	Tf ₁	Tf ₂	AT	T,	EC;	EC:	ρι	P2	В	ε,	Ej	Vf,	Vf ₂	∇S^1	.\S ₂	DM
	1576	Pd	Pd₅Sm	8.865	43.944	4.957	0.202	0.1396	0.1807	0 2208	Sm	1240	1120	120	1078	cF4	o 10	12.5	15.5	1.241	0.1667	6.0004	0.5476	0.4524	2.19	2.15	e RI
	1577	Pd ₂₁ Sm ₁₀	Pd ₄ Sm ₃	356.1	89.705	0.252	3.97	0.4027	0.4641	0.515	Sm	1160	1260	100	1080	mC124	hR14	10.5	9.77	1.074	5.1516	0.1941	0.4352	0.5648	2.1	2.08	e RI
	1578	Pd ₃ Sm ₇	Sm	164.8	20.003	0.121	8.238	0.7673	0.8497	1	Sm	730	1074	344	692	hP20	hR3	8.32	. 7.52	1.107	5	0.2	0.6223	0.3777	2.01	1.94	e RI
	1579	Pd	Pd ₃ Sn	8.865	37.856	4.27	0.234	0.186	0.2308	0.2605	Sn	1370	1326	44	1280	cF4	cP4	12.2	11.6	1.058	0.3745	2.6701	0.3847	0.6153	2.19	2.5	e Rl
	1580	Pd ₃ Sn	Pd ₃ Sn ₂	37.86	47.75	1.261	0.793	0.2816	0.3255	0.3442	Sn	1326	1287	39	1215	cP4	hP6	11.6	11.7	1.008	1.8481	0.5411	0.3002	0.6998	3.62	2.7	e Im
	1581	PdSn ₄	Sn	70.93	16.294	0.23	4.353	0.8169	0.991	1	Sn	295	231.9	63.1	230	oC20	ti4	8.19	7.28	1.125	95	0.0105	0.0438	0.9562	3.16	3.4	e Rv
	1582	PdTa	PdTa ₃	19.36	41.64	2.151	0.465	0.6482	0.6663	0.8139	Ta	1720	2240	520	1700	cF4	tP30	14.8	15.6	1.05	0.0542	18.441	0.8955	0.1045	2	1.9	c Rv
	1583	Pd	Pd ₃ Te	8.865	40.444	4.562	0.219	0.1291	0.2583	0.278	Te	1260	785	475	780	cF4	ci2	12.3	. 11	1.11	1.5949	0.627	0.1208	0.8792	2.19	4.2	e It
-	1584	Pd ₉ Te ₄	Pd ₃ Te ₂	138.3	58.22	0.421	2.375	0.3501	0.4133	0.4443	Te	900	507	393	503	mP52	oC20	10.6	9.87	1.076	5.1977	0.1924	0.3136	0.6864	3.3	4.1	e Im
	1585	PdTe	PdTe ₂	26.64	43.566	1.635	0.611	0.609	0.6331	0.6854	Te	746	752	6	730	hP4	hP3	8.78	8.3	1.058	0.2984	3.3516	0.6721	0.3279	5.38	4.6	e Im
	1586	Pd.Th.	Pd,Th	103.9	94.654	0.911	1.098	0.5668	0.572	0.6171	Th	1387	1412	25	1212	hP8	hR14	11.8	11.9	1.003	0.1266	7.8971	0.8966	0.1034	3.38	2.06	c Rv
	1587	PdTh	PdTh ₂	29.22	47.85	1.638	0.611	0.6856	0.795	0.8137	Th	1412	1162	250	1137	oP8	ti 12	11.6	11.9	1.029	3.4576	0.2892	0.1501	0.8499	2.04	3.22	c Rt
	1588	PdTh ₂	Th	47.85	19.789	0.414	2.418	0.8137	0.8795	0.9954	Th	1162	1700	538	1112	t112	cF4	11.9	11.7	1.017	1.3966	0.716	0.6339	0.3661	3.22	1.88	c RI
1	1589	TiPd	Ti,Pd,	18.73	46.155	2.464	0.406	0.7147	0.7541	0.7692	Pd	1400	1320	80	1280	oP4	oC20	8.23	8.99	1.093	0.9767	1.0238	0.2935	0.7065	2.18	2.18	e Rt
1	1590	PdTI,	П	38.43	17.577	0.457	2.187	0.7937	0.9842	1	TI	538	302	236	293	tl12	cl2	13.4	11.6	1.153	30.294	0.033	0.0673	0.9327	3.15	1.78	e Rv
	1591	Pd	v	8.865	8.328	0.939	1.064	0.398	0.418	0.4438	۷	1360	1400	40	1340	cF4	cl2	8.37	8.61	1.03	0.7996	1.2506	0.571	0.429	2.19	2.36	e Ri
	1592	Pd	Pd ₁ Y	9.021	40.548	4.495	0.222	0.111	0.1285	0.1773	Y.	1240	1700	460	1205	cF4	cP4	11.5	10.1	1.147	0.0916	10.916	0.7083	0.2917	2.19	3.3	e Rt
	1593	Pd ₂ Y ₃	Pd ₂ Y ₅	73.08	74.053	1.013	0.987	0.5562	0.661	0.676	Y	960	915	45	903	hR15	cF144	6.56	8.88	1.353	5.1023	0.196	0.1621	0.8379	2.26	2.27	e Rt
	1594	Pd-Y.	Ŷ	74.05	19.896	0.269	3.722	0.676	0.7148	1	Y	915	1522	607	907	cF144	hP2	8.88	4.47	1.986	1.0079	0.9921	0.7869	0.2131	2.27	2.3	e Rt
	1595	Pd	Pd.Yb	8.865	39.892	4.5	0.222	0.0194	0.2365	0.3018	Pd	1450	1620	170	1350	cF4	cP4	12	12.3	1.028	0.7186	1.3917	0.2362	0.7638	2.19	3.27	c Rt
	1596	Pd Yb	PdYb	82.15	25.002	0.304	3.286	0.5509	0.561	0.5905	Yb	1415	1460	45	1390	hR14	oP8	11.5	11.2	1.029	1.1492	0.8702	0.7409	0.2591	2.11	2.1	e Rt
	1597	PdYb ₁	Yb	72.6	24.845	0.342	2.922	0.8299	0.9021	1	Yb	670	819	149	615	oP16	cF4	8.62	6.96	1.237	2.6667	0.375	0.5228	0.4772	2.05	2.01	e Ri
1	1598	PdZr,	Zr	35.89	14.156	0.394	2.535	0.632	0.7254	0.8684	Zr	1085	1420	335	1030	ti6	cl2	8.05	6.61	1.217	2.0165	0.4959	0.557	0.443	2.18	2.17	c RI
	1599	Pm	٧	20.5	8.328	0.406	2.462	0.001	0.0017	0.9971	۷	1042	1910	868	1038	ci2	cl2	7.07	6.12	1.156	0.002	501.92	0.9992	0.0008	2.29	2.36	c Rv
i.	1600	Pr	Pr ₂ Pt ₃	20.81	170.87	8.213	0.122	0.0612	0.1764	0.3724	Pt	931	1050	119	718	hP4	hP20	6.77	9.2	1.358	0.0527	18.974	0.6979	0.3021	2.25	2.26	C RI
	1601	Pr	Pr ₂ Sb	21.21	55.551	2.619	0.382	0	0.0435	0.3014	Sb	931	1470	539	835	cl2	1112	6.64	7.26	1.094	0.0589	16.979	0.8664	0.1336	3.48	3.25	e Rt
1.5	1602	PrSb ₂	Sb	52.38	17.46	0.333	3	0.6338	0.9884	1	Sb	1100	630.7	469.3	620	oC24	hR2	10	6.97	1.438	132.43	0.0076	0.0222	0.9778	4.25	5.26	e 10
-	1603	PrSe	Pr ₃ Se ₄	31.59	106.29	3.365	0.297	0.3591	0.4065	0.4222	Se	2100	1800	300	1645	cF8	cl28	6.96	6.95	1.002	0.8957	1.1164	0.2491	0.7509	2.68	2.73	e Rt
	1604	Pr	Pr.Si,	20,81	126.32	6.071	0.165	0	0.024	0.1068	Si	931	1417	486	732	hP4	t 32	6.77	6.24	1.085	0.0519	19.273	0.7604	0.2396	2.25	4.09	e Im
1	1605	PrSi	PrSi ₂	28.95	38.133	1.317	0.759	0.1662	0.2158	0.2642	Si	1657	1712	55	1542	oP8	t132	5.84	5.17	1.13	0.881	1.1351	0.4629	0.5371	4.7	5.52	e II
1	1606	PrSi-	Si	38,13	12.058	0.316	3.162	0.2642	0.4932	1	Si	1712	1414	298	1212	ti12	cF8	5.17	2.33	2.219	3.1711	0.3153	0.4993	0.5007	6.75	7.16	e II
,	11607	Pr	Pr ₁ Sn	18,71	74.836	4	0.25	0.0254	0.0856	0.2192	Sπ	890	942	52	794	hP4	cP4	7.53	7.23	1.041	0.1172	8.5309	0.6808	0.3192	2.25	3.65	e Im
1	1608	Pr ₁ Sn ₄	PrSn ₃	132.6	62.92	0.474	2.108	0.584	0.631	0.7165	Sn	1159	1180	21	1152	oC32	cP4	7.66	7.9	1.031	1.125	0.8889	0.652	0.348	2.97	4.21	e Im
2	1609	Pr	PrTe	21.21	37.92	1.787	0.559	0	0.0455	0.4752	Te	931	950	19	895	c12	cF8	6.64	7.08	1.066	0.0556	18	0.9097	0.0903	2.25	4.03	c ld
1-	1610	PrTe	Pr-Te-	37.92	128.49	3.388	0.295	0.4752	0.5253	0.5465	Te	1950	1700	250	1560	cF8	cl28	7.08	7.26	1.026	0.6803	1.4699	0.3026	0.6974	4.03	4.28	e Im
ΑE	1611	PrTe	Te	73.66	20.465	0.278	3.599	0.7309	0.978	1	Te	455	449.6	5.4	440	tP16	hP3	7.11	6.24	1.14	46	0.0217	0.0726	0.9274	4.9	5.8	e Id
ЪË	1612	Pr	Pr-TI	20.81	72.608	3.49	0.287	0.1254	0.1897	0.32	Π	860	800	60	767	hP4	cP4	7.04	8.64	1.226	0.1153	8.6735	0.7131	0.2869	2.25	3.25	e Rt
Ĕ	1613	PrTi	ProTIs	35,59	134.95	3.792	0.264	0.6015	0.667	0.7029	TI	1260	1120	140	1090	cP2	oC32	9.7	10.7	1.103	0.4351	2.2982	0.3774	0.6226	3.4	1.96	e Ri
02	1614	PriTic	PrTh	135	64.672	0.479	2.087	0.7118	0.7635	0.8131	TI	1120	1065	55	1035	oC32	cP4	10.7	11.7	1.089	1.9965	0.5009	0.511	0.489	1.96	1.9	e RI
<u> </u>	1615	Pr	v	20.81	8.35	0.401	2.492	0.0009	0.0009	1	V.	931	1910	979	930	ci2	cl2	6.77	6.1	1.11	0.0002	4979.5	0.9999	8E-05	2.25	2.36	C RV
82	1616	Pr	PrZn	21.21	30.31	1.429	0.7	0.0542	0.1187	0.3169	Zn	770	882	112	576	cl2	cP2	6.64	6.81	1.025	0.2222	4.5006	0.759	0.241	2.25	3.76	e Im
	1617	Pr7n	Pr7n-	30.31	39,009	1.287	0.777	0.3169	0.3895	0.4817	Zn	882	898	16	833	cl2	ol12	6.81	6.96	1.023	0.5983	1.6714	0.565	0.435	2.38	2.42	e Ri
1	1618	Pr7n	Pr7n-	39.01	47.808	1.226	0.816	0.4817	0.5678	0.5819	Zn	898	833	65	830	o112	oP16	6.96	7.05	1.012	4.9105	0.2036	0.1425	0 8575	2.42	3.6	e It
#1100-28-34"		Di	PI.Pu	9 095	63 444	6 976	0.143	0	0.1223	0.1992	Pu	1769	1410	359	1395	cF4	hP6	21.5	19.2	1.116	0.2547	3 9269	0 3602	0.6398	2.3	2.04	c Ri
	1620	FL .	rışru Du	44 27	14 456	0.327	3.062	0.713	0.9879	0.9919	Pu	840	640	200	622	oP12	cl2	15.4	16.9	1.094	189.97	0.0053	0 0159	0.9841	1.25	0.73	e Rv
	1020	r ir uz	10	17.44																							

	N⁰	C,	C ₂	Vm ₁	Vm ₂	A ₁	A ₂	X _{e1}	X _{eL}	X _{e2}	%,	Tf,	Tf ₂	AT	T,	EC,	EC2	p 1	ρ2	В	ε _i	εı	Vf1	Vf ₂	ΔS_1	ΔS_2	DΜ
1	1621	Pt ₃ Sb	Pt ₃ Sb ₂	39.75	56.475	1.421	0.704	0.1722	0.219	0.2938	Sb	682	732	50	31	ti 16	o120	17.8	14.7	1.212	0.5333	1.875	0.5689	0.4311	3.04	4.3	e Il
	1622	Pl	Pt ₃ Si	9.095	35.692	3.924	0.255	0.002	0.0412	0.0458	Si	1760	860	900	830	cF4	oP16	21.5	17.2	1.248	2.7328	0.3659	0.0853	0.9147	2.3	3.5	e Rt
	1623	Pt ₂ Si	Pt₅Si₅	26.67	100.33	3.762	0.266	0.0671	0.0843	0.1054	Si	1100	1229	129	983	hP9	mP22	15.7	13.1	1.2	0.2606	3.8368	0.5049	0.4951	3.92	4.5	e Il
	1624	PISi	Si	19.82	12.058	0.608	1.644	0.1258	0.2262	1	Si	1229	1414	185	979	oP8	cF8	11.3	2.33	4.834	1.0303	0.9706	0.6147	0.3853	4.73	7.16	e Il
	1625	Pt	Pt ₃ Sn	9.095	38.548	4.238	0.236	0.0833	0.1538	0.1686	Sn	1560	1420	140	1365	cF4	cP4	20.4	18.3	1.115	1.25	0.8	0.1588	0.8412	2.3	3.69	c II
	1626	Pt ₃ Sn	PiSn	38.55	23.878	0.619	1.614	0.1686	0.2886	0.3596	Sn	1420	1305	115	1070	cP4	hP4	18.3	13.1	1.39	3.7865	0.2641	0.2989	0.7011	2.6	4.23	c Im
	1627	PtSn.	Sn	70.12	16.294	0.232	4.303	0.7088	0.9918	1	Sn	522	232	290	228	oC20	ti4	9.55	7.28	1.312	195	0.0051	0.0216	0.9784	3.18	3.4	c Rv
	1628	Pt ₁ Sr ₇	PtSr.	206.2	170.1	0.825	1.212	0.5117	0.6006	0.8017	Sr	715	720	5	670	oP40	cF8	5.81	5.78	1.005	0.5385	1.8571	0.6924	0.3076	2.03	1.96	e Ri
	1629	Pl	PtTe	9.095	27.28	2.999	0.333	0.0198	0.2605	0.3954	Te	1760	935	825	870	cF4	mC8	21.5	11.8	1.813	1.0779	0.9278	0.2362	0.7638	2.3	4.1	c Im
	1630	Th	Th ₂ Pt ₁	19.79	169.97	8.589	0.116	0.0084	0.1469	0.2649	Pt	1720	1362	358	1237	cF4	hP20	11.7	13	1.109	0.1233	8.1121	0.4857	0.5143	1.89	2.01	c Ri
	1631	Ti	TivPt	10.89	38.324	3.52	0.284	0.0395	0.4369	0.5758	Pt	1460	1370	90	1310	cl2	cP8	5.75	8.84	1.537	0.5284	1.8924	0.3496	0.6504	2.16	2.2	e Ri
1	1632	TLPt	TiPt	38.32	18.378	0.48	2.085	0.5758	0.6772	0.7692	Pt	1370	1830	460	1320	cP8	oP4	8.84	13.2	1.496	1.5372	0.6505	0.5756	0.4244	2.2	2.23	e Ri
	1633	PITI	т <u>т</u>	39	17.577	0 451	2,219	0.6772	0.9904	1	TI	480	304	176	291	ti12	cl2	15.5	11.6	1.332	96.899	0.0103	0.0224	0.9776	3.18	1.78	e Rv
	1634	Pt	Pt.U	9.095	61.44	6.755	0.148	0.0544	0.1484	0.1965	υ	1660	1460	200	1345	cF4	cF24	21.5	19.8	1.086	0.3144	3.181	0.3201	0.6799	2.3	2.36	e Ri
	1635	Pt-II	· · · · ·	33.63	13,179	0 392	2.552	0.3785	0.8995	0.9586	U	1370	1135	235	1005	oC12	cl2	18.7	18.1	1.034	23.233	0.043	0.099	0.901	2.4	2.63	e Rv
	1636	Pt	PtV.	9 095	25 245	2 776	0.36	0.2571	0.3078	0.3364	V	1760	1780	20	1720	cF4	cP8	12.4	13.8	1.11	0.5748	1.7399	0.3853	0.6147	2.3	3.42	e Ri
	1637	Pł	Pt.Y	9 095	63 654	6 999	0.143	0	0.0332	0.0837	Y	1769	1840	71	1550	cF4	o 72	21.5	16.7	1.283	0.1203	8.3159	0.543	0.457	2.3	2.3	c Ri
	1638	Pt.Vh.	Vh	116.4	24 R45	0.213	4 685	0 6889	0 8613	1	Yb	745	819	74	655	mC28	cF4	10.8	6.96	1.549	9.0157	0.1109	0.3419	0.6581	2.1	2.01	e Ri
	1630	Pt.7r	P17r	38.26	21 842	0.571	1.752	0.1047	0 2931	0.3186	Zr	2154	2104	50	2004	cP4	cP2	17.7	13.1	1.349	17.464	0.0573	0.0912	0.9088	3.4	3.61	e ld
	1640	Pt.7r.	71	94.81	14 156	0 149	6 697	0.4539	0.6403	0.8432	Zr	1727	1855	128	1160	hP16	cl2	11	7.03	1.56	9.6163	0.104	0.4105	0.5895	2.22	2.17	e Ri
	1641	PuRh.	Rh	39.78	8 283	0 208	4 802	0.5738	0.6986	1	Rh	1495	1963	468	1400	cP4	cF4	13.9	12.4	1.118	2.224	0.4496	0.6835	0.3165	3.1	2.4	C RI
1	1642	Du	Po.Po	14 46	52 448	3 628	0 276	0.0182	0.0378	0.1053	Ru	630	600	30	525	cl2	oP16	16.9	15.9	1.063	0.0846	11.823	0.7652	0.2348	0.73	2.28	e Rt
	1643	PuRu-	Ru	31 41	8 175	0.026	3 842	0.4143	0.5855	1	Ru	1650	2334	684	1500	cF24	hP2	14.2	12.4	1.149	1.8234	0.5484	0.6781	0.3219	1.88	2.45	c Ri
	1644	Du	Du Ci	14 16	106 78	7 543	0.133	0.0012	0.0043	0.0651	Si	640	1377	737	590	cl2	tl32	17.2	12.2	1.411	0.0097	103.33	0.932	0.068	0.73	3.75	c Id
1	1645	PuSi.	Si	32 30	12 058	0 372	2 686	0 1886	0 3717	1	Si	1600	1414	186	1232	tl12	cF8	9.27	2.33	3.979	3.1144	0.3211	0.4631	0.5369	5.21	7.16	c 11
	1045	Du	Du Th	14 45	154 32	10.68	0 004	0.0538	0.0673	0 2912	Th	640	980	340	615	cl2	o 20	16.9	15.6	1.083	0.0061	163.52	0.9387	0.0613	0.73	1.08	e Rv
	1647	 	- Wing	14.46	8 328	0.576	1 736	0.0000	0.0016	1	v	640	1910	1270	625	ci2	cl2	16.9	6.12	2.759	0.0076	131.25	0.9956	0.0044	0.73	2.36	c Rv
4	1047	FU Du7n	0. 7n	25.18	767 87	21.83	0.046	0 3511	0 4476	0 5272	70	935	879	56	827	cF24	hP142	10.7	9.07	1,175	0.0653	15.32	0.4124	0.5876	1.92	2.18	e Rt
2	1040	Puchy Dh Co	50	125.9	16 417	0 121	R 275	0.6076	0.7766	1	Se	254	221	33	165	oP28	hP3	4.16	4.81	1.155	2.5333	0.3947	0.7656	0.2344	2.7	3.1	e Rt
	1049	Th To	Je	164.2	20.465	0.121	8 025	0 7885	0 8642	1	Te	270	4496	179.6	241	mC14	hP3	4.93	6.24	1.266	3.5372	0.2827	0.6941	0.3059	3.67	5.8	e Im
	1050	Ruzies		0 000	20.403	2 272	0.020	0.0000	0.0012	0 2014	Ta	3100	2790	310	2775	hP2	cl58	21	19.1	1.1	0.9001	1.111	0.2534	0.7466	2.32	2.15	e Rt
ļ	1001	Re D. T-	rtegia	47.54	40.052	0.210	4 379	0.0450	0.1001	0.5300	Та	2740	2720	20	2690	tP30	cl2	19.4	16.9	1.147	8.2037	0.1219	0.3479	0.6521	2.11	1.8	e Ri
1	1652	Resta ₂	1a T-	47.01	10.032	0.220	4.310	0.4001	0.4050	0.0000	То	080	449.6	530.4	430	oP84	hP3	8 42	6 24	1 351	56.36	0.0177	0.0942	0.9058	3.85	5.8	c ld
251	1653	Ke ₂ 1e ₅	ThDa	20.01	20.400	1 712	0.594	0.0495	0.9300	0.6165	Ro	1740	2520	780	1389	cl2	hP12	11.1	16.9	1.521	0.0882	11.334	0.8687	0.1313	1.89	3.65	e Id
Þ	1004		THINE ₂	20.91	33.003	1.713	4.04	0.0101	0.1200	1.0100	Do	2620	2196	666	2316	hP12	hP2	16.9	21	1 245	0 7001	1.4285	0.8523	0.1477	3.65	2.32	c It
	1655	ThRez	Ke	35.81	8.602	0.240	4.04	0.0100	0.0040	0.2006	11	2320	3100	000	2160	hP2	hP12	21	18.5	1 139	1 0039	0.9961	0 2106	0.7894	2.32	3.65	c It
> H	1656	ке	Re₂U	8.862	40.470	3.733	0.200	U 2000	0.2900	0.0000		2200	1135	1065	1112	5P12	ci2	18.5	18.1	1 022	16.642	0.0601	0.1311	0.8689	3.65	2.63	e Id
_ 7	1657	Ke ₂ U		33.00	13.1/9	0.390	2.01	0.0000	0.0077	0.3230		2460	2400	60	2380	1P30	cl2	17.4	16.3	1 07	5 1582	0.1939	0.4489	0.5511	2.33	2.36	e Ri
25	1658	Re ₃ V	V	35	8.328	0.238	4.202	0.0030	0.1049	0.1233		2400	2850	50	2825	hP2	1P30	21	19.6	1 068	1.0027	0.9973	0.319	0.681	2.32	2.3	e Ri
0	1659	Re	Rew	8.862	18.804	2.129	0.47	0.190	0.2070	0.2014	¥¥.	2500	1522	008	1450	5P12	c12	13.7	4 62	2 97	23 387	0 0428	0.045	0.955	3.54	2.3	c Rv
23	1660	Re ₂ Y	<u>.</u>	22.39	20.303	0.907	1.103	0.1920	0.9007	0 0000	7.	1040	1830	100	1530	+P30	c 2	11	6 91	1 595	1,7822	0.5611	0.5699	0.4301	2.22	2.17	e Ri
	1661	ReZr ₂	<u></u>	33.43	14.100	0.423	2.302	0.4903	0.0140	0.0000	41 Ch	000	630 7	260.2	610	cl32	hR2	79	6.69	1.18	31,197	0.0321	0.0945	0.9055	4.5	5.26	e Id
2	1662	RhSb ₃	SD	59.24	18.193	0.307	3.200	0.1100	0.9/04	0.1100	00	1000	1650	205.5	1420	cF4	nP12	12 4	9.00	1.244	0.5518	1,8123	0.3906	0.6094	2.4	4	e II
2	1663	Rh	Rh ₂ Si	8.283	23.418	2.82/	0.354	0.0004	0.0090	0.1199	Si	1470	1450	200	1250	0P16	cP8	9.48	8.49	1.117	1.4348	0.697	0.7405	0.2595	4.19	6.16	e Im
	1664	Rh ₅ Si ₃	RNSI	03.18	10.434	0.244	4.094	0.1407	0.1003	1.2194	а Сі	1450	1414	36	1060	cP8	cF8	8.49	2.33	3.644	1.1746	0.8514	0.5215	0.4785	6.16	7.16	e II
	1665	RhSi	St	15.43	12.058	0.701	1.20	U.2144	0.3123		3	1400	1414		1000			5.15									

	Nº	C ₁	C2	Vm ₁	Vm ₂	Α,	A ₂	X _{e1}	X _{eL}	X, _{e2}	%p	Tft	Tf ₂	۵Ť	T,	EC,	EC2	ρι	ρ:	В	E,	ε2	Vf	Vf ₂	۸Sı	ΔS_2	DM
1	1666	URh,	Rh	38.2	8.283	0.217	4.612	0.5646	0.7431	0.9549	Rh	1700	1963	263	1393	cP4	cF4	14.3	12.7	1.125	4.3718	0.2287	0.5134	0.4866	2.45	2.4	e Ri
	1667	Zr	Zr ₂ Rh	14.02	35.574	2.537	0.394	0.1224	0.252	0.3603	Rh	1500	1170	330	1070	hP2	ti12	6.6	8.02	1.215	0.3884	2.5744	0.5036	0.4964	2.17	3.48	c Rl
	1668	Zr ₃ Rh,	ZrRh ₁	78.57	36.504	0.465	2.152	0.6528	0.6961	0.7436	Rh	1780	1900	120	1720	oC32	cP4	10	11	1.092	1.7937	0.5575	0.5454	0.4546	2.31	2.34	c Rl
	1669	ZrRh,	Rh	36.5	8.523	0.233	4.283	0.8371	0.8647	0.9013	Rh	1900	1840	60	1730	cP4	cF4	11	11.9	1.083	2.9894	0.3345	0.5889	0.4111	2.34	2.4	c Rl
	1670	Ru	Ru ₂ Sc	8.175	29.187	3.57	0.28	0.0067	0.0781	0.1817	Sc	2280	1840	440	1790	hP2	hP12	12.4	8.47	1.46	0.2818	3.5487	0.4985	0.5015	2.45	3.5	c RI
1	1671	Ru ₄ Sc ₁₁	Sc	179.8	15.042	0.084	11.95	0.5498	0.7654	0.9778	Sc	1510	1541	31	1100	cF120	hP2	5	2.99	1.672	20.289	0.0493	0.3708	0.6292	2.01	1.85	c Ri
	1672	Ru	Ru ₂ Si	8.175	23.634	2.891	0.346	0	0.1064	0.1218	Si	2334	1545	789	1505	hP2	oP12	12.4	9.74	1.269	3.0313	0.3299	0.1024	0.8976	2.45	4.02	c II
	1673	RuSi	Ru ₂ Si ₃	15.71	41.15	2.62	0.382	0.2175	0.2613	0.2942	Si	1695	1710	15	1690	cP8	oP40	8.22	6.96	1.181	0.6	1.6667	0.3888	0.6112	6.18	5.28	e II
	1674	Ru ₂ Si ₃	Si	41.15	12.058	0.293	3.413	0.2942	0.5757	0.8998	Si	1710	1414	296	1370	oP40	cF8	6.96	2.33	2.988	8.8547	0.1129	0.2782	0.7218	5.28	7.16	e Im
	1675	Ru	RuTa	8.284	16.476	1.989	0.503	0.3225	0.4224	0.5232	Та	2150	2100	50	1970	hP2	1P2	14.2	17.1	1.203	0.4142	2.4142	0.5483	0.4517	2.45	3.51	e Ri
	1676	Ru	Ru ₂ Th	8.175	33.732	4.126	0.242	0	0.4592	0.5341	Th	2334	1700	634	1500	hP2	cF24	12.4	12.9	1.041	1.4281	0.7002	0.1451	0.8549	2.45	2.26	c Rt
	1677	Ru,Th	RuTh	33.73	26.76	0.793	1.261	0.5341	0.634	0.6966	Th	1700	1462	238	1438	cF24	oC8	12.9	12.4	1.034	2.0789	0.481	0.3775	0.6225	2.26	2.17	c Ri
	1678	RuTh	Ru ₂ Th ₃	26.76	73.308	2.739	0.365	0.6966	0.7676	0.775	Th	1462	1425	37	1388	oC8	1P10	12.5	12.3	1.016	3.6006	0.2777	0.092	0.908	2.17	2.11	c Rv
	1679	Ru,Th	Ru ₃ Th,	73.31	163.04	2.224	0.45	0.775	0.7963	0.8427	Th	1425	1412	13	1387	tP10	hP20	12.3	11.8	1.036	0.2143	4.6667	0.6772	0.3228	2.11	2.06	c Ri
	1680	Ru ₃ Th ₇	Th	163	19.789	0.121	8.239	0.8427	0.9234	1	Th	1412	1755	343	1262	hP20	cF4	11.8	11.7	1.008	8.75	0.1143	0.485	0.515	2.06	1.89	c Ri
	1681	TiRu	Ru	17.31	8.175	0.472	2.117	0.668	0.8283	0.9164	Ru	2130	2280	150	1825	cP2	hP2	10.3	11.5	1.108	3.4787	0.2875	0.3783	0.6217	3.7	2.45	c Im
	1682	U	U ₂ Ru	13.18	34.119	2.589	0.386	0.0166	0.0754	0.152	Ru	1100	937	163	886	cl2	mP12	18.1	16.9	1.068	0.316	3.1647	0.55	0.45	2.63	2.57	e Ri
	1683	Ru	v	8.175	8.328	1.019	0.982	0.1846	0.2515	0.292	۷	2040	1840	200	1790	hP2	cl2	10.5	10.6	1.017	1.5947	0.6271	0.381	0.619	2.45	2.36	e Ri
	1684	Ru	Ru ₂ W ₃	8.175	45.56	5.573	0.179	0.6267	0.6898	0.7318	W	2225	2300	75	2205	hP2	tP30	17.2	16.5	1.041	0.28	3.5714	0.3906	0.6094	2.45	2.35	c Ri
	1685	Ru	Ru ₂ Y	8.175	32.115	3.928	0.255	0	0.1803	0.3052	Ϋ́	2334	1950	384	1840	hP2	hP12	12.4	9.06	1.364	0.5013	1.9949	0.3368	0.6632	2.45	4.83	c Im
1	1686	Ru	Ru ₂ Zr	8.175	28.704	3.511	0.285	0.0172	0.2029	0.3106	Zr	2300	1825	475	1715	hP2	hP12	12.4	10.2	1.21	0.594	1.6834	0.3241	0.6759	2.45	3.6	e Im
	1687	RuZr	Zr	20.73	14.156	0.683	1.465	0.4944	0.7725	0.8796	Zr	2130	1600	530	1240	cP2	cl2	9.27	6.52	1.422	5.4115	0.1848	0.213	0.787	3.7	2.17	e It
-	1688	Te	S	20.47	15.5	0.757	1.32	0.0409	0.9465	0.9804	S	430	115.2	314.8	109	hP3	mP48	5.56	2.65	2.65	74.105	0.0135	0.0175	0.9825	4.46	1.05	e Id
	1689	Sb	Sb ₂ Se ₁	18.19	82.43	4.531	0.221	0	0.3934	0.4931	Se	630.7	590	40.7	541	hR2	oP20	6.69	5.83	1.148	1	1	0.1808	0.8192	5.26	3.96	e It
	1690	Si	Sb	12.06	18.193	1.509	0.663	0	0.9993	1	Sb	1414	630.7	783.3	629.6	cF8	hR2	2.33	6.6	2.873	336.97	0.003	0.002	0.998	7.16	5.26	e Id
	1691	Sb	Sb ₂ Sm	18.19	50.334	2.767	0.361	0	0.0489	0.3814	Sm	630.7	1372	741.3	602	hR2	oC24	6.69	7.82	1.169	0.0455	21.977	0.8882	0.1118	5.26	4.15	e id
	1692	Sb ₃ Sm ₅	Sm	140.7	20.5	0.146	6.861	0.673	0.9259	0.9591	Sm	1732	1050	682	1027	hP16	cl2	5.8	7.33	1.264	41.259	0.0242	0.1426	0.8574	3.18	1.94	e Rt
14	1693	SbSr ₂	Sr	65.57	21.857	0.333	3	0.5904	0.9319	0.9493	Sr	840	740	100	710	tl12	cl2	4.53	4.01	1.13	66.257	0.0151	0.0433	0.9567	4.26	1.92	e ld
$\langle 0 \rangle$	1694	Sb	Sb ₂ Tb	18.19	48.759	2.68	0.373	0	0.013	0.3946	Tb	630.7	740	109.3	623	hR2	oC24	6.69	8.25	1.233	0.0103	96.909	0.9731	0.0269	5.26	4.3	e id
	1695	Sb ₃ Tb ₅	Tb	130.9	19.313	0.148	6.776	0.6851	0.8891	0.9846	Tb	1650	1330	320	1130	hP16	hP2	8.86	8.23	1.077	15.593	0.0641	0.3029	0.6971	4.2	2.39	e Im
1	1696	Sb ₂ Te ₃	Te	96.29	20.465	0.213	4.705	0.6112	0.9292	1	Te	617.7	449.6	168.1	422	hR5	hP3	6.5	6.24	1.043	22.027	0.0454	0.176	0.824	5.6	5.8	e It
میں ایست میں دیا ہو	1697	Y	Y ₁ Sb	19.9	71.092	3.573	0.28	0.0136	0.1885	0.3134	Sb	1500	1240	260	1220	hP2	tP32	4.47	5.46	1.223	0.3202	3.1226	0.4664	0.5336	2.3	3.04	e Ri
125	698	YSb	Sb	35.28	18.193	0.516	1.939	0.578	0.9927	1	Sb	2310	630.7	1679	629	cF8	hR2	5.97	6.69	1.121	98	0.0102	0.0194	0.9806	3.78	5.26	e ld
1	1699	Sb	SbZn	18.4	29.628	1.61	0.621	่่่	0.2091	0.3493	Zn	630.7	546	84.7	505	hR2	oP16	6.69	6.32	1.06	0.9711	1.0298	0.3901	0.6099	5.26	5.27	e II
Ē.,	1700	Sb ₂ Zn ₃	Zn	66.95	9.163	0.137	7.306	0.4461	0.9634	1	Zn	455	419.6	35.4	411	oP30	hP2	6.57	7.13	1.086	95	0.0105	0.0714	0.9286	3.6	2.51	e Rv
12	1701	SbZr ₁	Zr	54.6	14.156	0.259	3.857	0.6921	0.7794	0.896	Zr	1900	1700	200	1430	t132	cl2	7.24	6.44	1.124	3.2424	0.3084	0.5433	0.4567	2.94	2.17	c RI
υĥ	1702	Sc	٧	15.63	8.328	0.533	1.877	0.0226	0.147	0.9823	۷	1520	1880	360	1419	cl2	cl2	3	6.1	2.033	0.1374	7.2763	0.9318	0.0682	1.85	2.36	e Rv
E	1703	Sc	W	15.63	9.55	0.611	1.636	0	0.077	1	W	1541	3422	1881	1510	cl2	c12	3.2	19.2	6	0.0228	43.931	0.9863	0.0137	1.85	2.29	CRV
50	1704	SnSe	SnSe,	31.97	46.443	1.453	0.688	0.3995	0.5099	0.5713	Se	880	657	223	628	oP8	hP3	6.18	5.96	1.038	1.2864	0.7774	0.3486	0.6514	3.25	3.2	e Ki
	1705	SeSr	Sr	36.64	34,783	0.949	1.053	0.526	0.9819	1	Sr	1600	769	831	760	cF8	cl2	4.55	2.6	1.749	46.505	0.0215	0.0222	0.9778	2.51	1.92	e Kv
57	1706	Tl ₂ Se ₁	TISe	84.97	33.898	0.399	2.507	0.1915	0.2257	0.2787	Se	390	360	30	314	tP32	1116	7.6	8.36	1.1	1.4713	0.6797	0.6301	0.3699	2.57	2.44	e Ki
2-1	1707	U	USe	13.18	28.536	2.165	0.462	0	0.0102	0.2491	Se	1135	1990	855	1450	cl2	cF8	18.1	11.1	1.626	0.0319	31.333	0.9354	0.0646	2.63	2.9	C'KV
Z	1708	U3Se1	U2Se3	103.3	75.645	0.732	1.366	0.3054	0.3231	0.3323	Se	1680	1610	70	1580	cl28	oP20	9.97	9.42	1.058	2.7957	0.3577	0.3282	0.6718	2.9	2.92	e Kl
A	1709	U ₁ Se ₅	USe ₂	123.3	45.174	0.366	2.73	0.356	0.371	0.3843	Se	1560	1460	100	1410	oP32	oP12	8.99	8.77	1.025	3.1276	0.3197	0.4661	0.5339	2.92	2.94	e Kl
	1710	SeV	v	20.92	8.328	0.398	2.512	0.4037	0.5671	1	٧	1700	1910	210	1550	hP4	cl2	6.21	6.12	1.015	0.9626	1.0389	0.723	0.277	4.17	2.3	<u>c</u> tu

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

	LI0	C C	<u>C.</u>	Vm	Vm.	Δ.	Δ.	Χ.,	X.	X	%.	Tf.	Tfs	M	T.	EC.	EC,	0ı	p,	В	٤,	<u> </u>	Vf,	Vf ₂	JS,	AS2	DΜ
	111	- 01	0,2		174.44	C 240	0.464		0 0221	0 1000	Ci	1074	1520	. 446	880		hP16	7 52	6.72	1 119	0.0881	11 355	0 6461	0 3539	1 94	4.63	c Im
[11/1	i Sm	5m5013	. 20	124.41	0.219	0.101	0.0700	0.0001	0.1000	. OI	1014	1320	. 406	1260		~E9	7.04	2 22	3 024	6 0854	0 1643	0 2855	0 7145	6.65	7 16	c Im
	171	2 SmSi ₂	SI	29.33	12.058	0.411	2.432	0.2723	0.0010		. 01 . C.	1020	4400		1000			2.22	2.00	1 460	0.0004	1 0058	0.2000	0.6350	7 16	54	c Im
	171	3 Si	Si ₂ Sr	. 12.06	42.024	3.485	0.287		0.4382	0.609	Sr.	1414	1100	0.014	1040	. UFO		2.33	2.40	1.403	1.09	0.6051	0.0011	0.0003	5.4	A 54	۵ II
	171	1 Si ₂ Sr	SiSr	42.02	. 33.152	0.789	1.268	0.609	0.7001	0.7573	Sr.	1100	1100	00	1040	UP 12	-10	3.42	0.49	1.02	5 6063	0.3031	0.3303	0.0037	2 69	1 02	
	171	5 SiSr ₂	Sr	60.26	34.783	0.577	1.732	0.862	0.96	. 1	Sr	1010	769	241	700	0012	CIZ	3.31	2.52	1.339	0.0000	0.1759	0.2330	0.7004	3.00	1.92	e III
	171	6 Ta	Ta ₃ Si	10.85	40.472	3.729	0.268	0.0115	0.0308	0.0492	Si	2820	2340	480	2260	CI2	1P32	16.3	14.1	1.154	0.3243	3.0832	0.4526	0.04/4	1.0	3.14	ек
	171	7 Ta _s Si ₃	TaSi ₂	75.96	26.103	0.344	2.91	0.0852	0.2021	0.2372	Si	2550	2040	510	1960	1132	hP9	13	9.08	1.433	13.892	0.072	0.1732	0.8268	3.8	5.37	еп
	171	3 TaSi ₂	Si	26.1	12.058	0.462	2.165	0.2372	0.9389	1	Si	2040	1414	626	1400	hP9	cF8	9.08	2.33	3.9	96.963	0.0103	0.0218	0.9782	5.37	7.16	e Id
	171	SizTe3	Te	48.53	20.465	0.422	2.371	0.872	0.9626	1	Te	885	449.5	435.5	407	hP40	hP3	9.05	6.24	1.451	8.3333	0.12	0.2215	0.7785	6.3	5.8	e Im
	172) Th	Th ₃ Si ₂	20.91	78.335	3.747	0.267	0	0.0133	0.0747	Si	1755	1900	145	1438	cl2	tP10	11.1	9.6	1.156	0.0667	15	0.8001	0.1999	1.89	. 4	e It
	172	1 ThSi	Th-Si.	37.85	92.952	2.456	0.407	0.108	0.1432	0.1679	Si	1780	1750	30	1720	oP8	hP3	6.87	9	1.31	0.4444	2.25	0.4782	0.5218	4.5	5.18	e II
	172	7 ThSi.	Si	35.74	12.058	0.337	2.964	0.1951	0.7965	1	Si	1850	1414	436	1370	112	cF8	8.06	2.33	3.462	30.321	0.033	0.089	0.911	6.63	7.16	e Id
1	172	х ті	Ti-Si.	10.87	74 776	6 882	0.145	0.0281	0.0838	0.244	Si	1600	2130	530	1330	cl2	hP16	4.41	4.33	1.018	0.0515	19.421	0.7384	0.2616	2.16	4.05	e Im
	172	TiCi	TiCi	18 11	25 545	1 41	0 709	0 3696	0 5126	0.5401	Si	1570	1490	80	1480	oP8	oF24	4.2	4.07	1.03	3.7859	0.2641	0.1577	0.8423	4.66	5.5	e It
	170		10g Ci	25.55	12 058	0 472	2 1 1 9	0 5401	0 7521	: 1	Si	1490	1414	76	1330	oF24	cF8	4.07	2.33	1.749	3.1673	0.3157	0.4008	0.5992	5.5	7.16	e Il
	470		01	12.00	20.500	3 384	0 305	0.01075	0 5798	0 7386	ц.	1410	1510	100	1315	cF8	cP4	2.33	8.14	3.494	0.2373	4.2148	0.5621	0.4379	7.16	7.1	e li
	1/2	5 SI	5130	12.00	53.550	0.204	0.505	0.1415	0.0087	0.0271	л.	1580	1665	85	1540	oP8	1P10	10.5	12.2	1.158	0.2667	3.75	0.6	0.4	4.77	4.3	e II
	1/2	r SiU	Si2U3	23.24	03.11	2.0	4 700	0.0040	0.0007	0.0057		1665	1135	530	985	1P10	rl2	12.2	18.1	1.48	27.312	0.0366	0.1492	0.8508	4.3	2.38	e II
	172	S SI2U3	U	63.11	13.179	0.209	4./09	0.9271	0.9000	0.9907	Ci	1900	1000	10	1870	c12	cP8	6 12	5 69	1.075	0 2659	3,7604	0.4961	0.5039	2.36	4.68	e II
	172	J V	V ₃ Si	8.328	31.808	3.819	0.202	0.0390	0.0701	0.1140	0	1000	2010	00	1805	cD8	+122	5 60	5 32	1.068	0 2064	4 8449	0 7076	0.2924	4.68	4.16	e Im
	173) V ₃ Si	V ₅ Si ₃	31.81	63.6/2	2.002	0.5	0.1568	0.1830	0.2400	31	1920	2010	30	1035	010		5.00	4 65	1.006	6 6492	0 1504	0 3637	0.6363	45	5.56	e îm
	173	V ₆ Si ₅	VSi ₂	87.6	23.049	0.263	3.801	0.3109	0.4424	0.5248	51	1670	10//	1	1040	600	058	4.65	7.00	1.050	30 306	0.1304	0.5057	0 9407	5.56	7.16	e Id
1	173	2 VSi ₂	Si	23.05	12.058	0.523	1.912	0.5248	0,9469	1	51	10//	1414	203	4200	-0	alc alc	9.00	0.70	1 202	0.0082	121 05	0.0000	0.0164	7 16	55	c Id
i	173	3 Si	Si ₂ W	12.06	24.519	2.033	0.492	0	0.0501	0.7657	W	1414	2160	(40	1390	010	10	2.33	9.19	4.203	0.0002	7 1721	0.3030	0.2836	5.5	41	c im
	173	Si ₂ W	Si ₃ W ₅	24.52	69.616	2.839	0.352	0.7657	0.8179	0.9076	W	2160	2320	160	2010	116	1132	9.79	14.4	1.473	4 0460	0 5417	0.7104	0.2030	11	7.1	C 11
1	173	5 Si₃W₅	W	69.62	9.55	0.137	7.29	0.916	0.9344	0.9912	<u>W</u> .	2320	3300	980	2180	1132	CIZ	14.4	18.4	1.213	1.0402	0.0417	0.7979	0.2021	9.1	4 12	
	173	6 Y	Y ₅ Si3	19.9	118.08	5.935	0.168	0	0.0451	0.1537	Si	1522	1850	328	1260	hPZ	hP16	4.47	4.48	1.002	0.0698	14.33	0.7071	0.2929	2.3	4.12	e un
11	173	Y ₅ Si ₃	Y ₅ Si4	118.1	123.44	1.045	0.957	0.1651	0.18	0.2021	Si	1850	1840	10	710	hP16	oP36	4.48	4.51	1.007	0.6405	1.5614	0.599	0.401	4.12	4.40	е п - т
1	173	YSi2	Si	32.98	12.058	0.366	2.735	0.3962	0.59	1	Si	1520	1414	106	1215	tl12	cF8	4.4	2.33	1.888	2.4423	0.4095	0.5283	0.4/1/	0.//	7.10	6 H
1	173) Si	Zn	12.06	9.163	0.76	1.316	0	1	1	Zn	1414	419.6	994.4	419.3	cF8	hP2	2.33	7.13	3.063	99993	1E-05	1E-05	1	7.16	2.51	e ia
	1740) Si	Si ₂ Zr	12.06	30.363	2.518	0.397	0	0.2652	0.6185	Zr	1414	1620	206	1370	cF8	oC12	2.33	4.85	2.084	0.143	6.993	0.7352	0.2648	7.16	5.5	e imi
	174	SiZr	Zr	49.74	14.156	0.285	3.514	0.9069	0.9711	0.9981	Zr	1650	1840	190	1570	tP32	cl2	6.07	6.44	1.062	7.8696	0.1271	0.3087	0.6913	3.4	2.17	e Ri
1	174	Sm	Sm.Sn.	20.45	142.41	6.963	0.144	0	0.0889	0.3214	Sn	1074	1505	431	906	hP2	hP16	7.35	7.78	1.058	0.0519	19.273	0.7346	0.2654	1.94	2.5	e Rt
/		Sm.	Sm-Ti	20.5	52,599	2.566	0.39	0.1564	0.2298	0.4043	TI	950	1030	80	840	cl2	hP6	7.33	9.6	1.309	0.1253	7.9807	0.7567	0.2433	1.94	1.9	e Rt
12		Sm.TL	SmTi.	129.8	63 032	0 486	2.059	0.6983	0.7775	0.8031	TI	940	870	70	860	oC32	cP4	11.4	12.1	1.067	5.9912	0.1669	0.2557	0.7443	1.84	1.82	r Rt
1			V	10 04	8 328	0.418	2 394	0 0007	0.002	1	V	1074	1910	836	1069	cl2	cl2	7.33	6.12	1.199	0.0039	255.14	0.9984	0.0016	1.94	1.94	c Rv
12-) - Oli		10.04	20 720	1 441	100.0	0.056	0 1201	0 203	7n	860	960	100	680	cl2	cP2	7.03	7.51	1.068	0.228	4.3864	0.7527	0.2473	1.94	3.6	e Im
12>) 5m	Sm2n	10.04	20.100	1 221	0.054	0.000	0.36	0 4522	Zn	960	905	55	890	cP2	ol12	7.51	7.4	1.014	0.4738	2.1105	0.615	0.385	2.22	2.32	e RI
1-1	<u> 114</u>	SmZn	SmZn ₂	20.74	450 40	1.321	0.707	0.000	0.50	0.6140	7n	855	870	15	850	oP16	o128	7.47	7.49	1.003	0.1099	9,1026	0.7299	0.2701	2.4	2.4	e Rt
1ET	· 7]/40	Sm2n ₃	Sm3Zn11	40.30	100.10	3.300	0.231	0.000	0.0100	0.5516	Cr.	1140	1205	65	1080	nC8	#132	5.02	4.42	1.135	0.1176	8.5	0.6605	0.3395	2.66	2.47	e Ri
a	749	SnSr	Sn ₃ Sr ₅	41.1	1/9.62	4.37	0.229	0.4241	0.4043	0.5066	Cr	1205	1255	50	1170	1132	oP12	4.42	2.82	1.565	1.2629	0.7918	0.6744	0.3256	2.47	2.4	e Ri
Fri	1750	Sn ₃ Sr ₅	SnSr ₂	1/9.6	68.652	0.382	2.010	0.5510	0.0022	0.0900	ы Ст	1203	760	486	745	oP12	cl2	4 28	2.52	1.7	36,964	0.0271	0.0507	0.9493	2.4	1.92	e Rv
E	2 75	SnSr ₂	Sr	68.65	34.783	0.507	1.9/4	0.5966	0.9004	! .	JI To	1200	109	356 4	401	cE8	hP3	6.47	6 24	1.038	4.6667	0.2143	0.285	0.715	3.93	5.8	e Im
ц.) р::	752	SnTe	Te	38.06	20.465	0.538	1.86	0.5181	0.659	0 7240	re Co	1765	1900	330.4	1600	cl2	hP16	11.1	10.3	1.077	0.1429	7	0.4987	0.5013	1.89	2.45	c RI
	753	Th	Th ₅ Sn ₃	20.91	147.1	7.036	0.142	0	0.1134	0.2340	011	1010	1000	60 60	1605	cl2	hPR	5.68	6.03	1 062	0.0556	17.983	0.8178	0.1822	2.16	2.47	e Rt
27-12-12-	754	Ti Ti	Ti₃Sn	10.87	43.54	4.007	0.25	U.3445	0.36	0.4253	งก	1010	10/0	00	1475	hD10	10 0	6.40	6.03	1.074	0 9354	1 069	0.437	0.563	2.6	2.72	e Ri
	1759	Ti.Sn.	Ti-Sn-	92 15	126.92	: 1.377	0.726	0.5979	0.6421	U.6741	SN	1520	1490	. 30	14/0	(12.10	11722	0.40	0.34	1.014	0.0004	. 1.005					تشييف

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

	Nº	C1	C,	Vm,	Vm ₂	A,	A ₂	X _{e1}	Xel	X.,2	%,	Tf ₁	Tf2	M	T,	EC,	EC2	ρı	ρ2	B	٤	£2	Vf	Vf ₂	ΔS_1	ΔS_2	DM
1	1756	Ti.Sn.	Sn	126.9	16 294	0 128	7 789	0 6741	0 998	1	Sn	1490	232	1258	231	0144	t14	6.94	7.28	1.05	1187.5	0.0008	0.0065	0.9935	2.72	3.4	e Rv
	1757	5n	SnTi	16 20	34.43	2 113	0 473	0	0 4362	0.6326	TI	232	179	53	168	ti4	tP4	7.28	9.38	1.288	0.8158	1.2258	0.3671	0.6329	3.4	3.98	e Im
	1758	Sn	Sn-Y	16 29	61.184	3 755	0.266	Ō	0.0151	0.1998	Ŷ	232	515	283	229	tl4	cP4	7.28	7.27	1.002	0.0217	46	0.9245	0.0755	3.4	3.1	e Rv
	1750	Sn.V.	v	133.0	19 896	0.149	6 732	0 5552	0.846	1	Ŷ	1940	1520	420	1260	hP16	hP2	5.98	4.51	1.324	16.838	0.0594	0.2856	0.7144	2.7	2.3	e Rt
1	1760	5	So.Vh	16 20	61 856	3 796	0.263	0	0.0073	0 327	Yh	232	805	573	230	tl4	cP4	7.28	8.55	1.174	0.0051	196	0.981	0.019	3.4	4.16	e Id
	1700	Cn Vh	CaVb	61.86	32 508	0.527	1 898	0 327	0.4506	0.5932	Yb	805	1065	260	750	cP4	tP4	8.55	8.95	1.046	1.5714	0.6364	0.547	0.453	4.16	4.08	e II
	1/01	Cayb	- OILIU - VL	52.14	24 485	0.321	2 17	0.021	0.4300	1	Yh	1385	819	566	804	hP6	cF4	8 75	7 07	1,238	30,296	0.033	0.0668	0.9332	2.47	2.01	e Rv
•	1702	31102	<u> </u>	0.14	16 20	1 778	0.662	0.1440	0.012		Sn	419.6	230	189.6	198.5	hP2	ti4	7 14	7 29	1.021	5.7114	0.1751	0.0896	0.9104	2.51	3.4	e Rv
	1/03	2/1	311 7- 6-	9.10	109.25	1.110 7 EAT	0.002	0.2104	0.312	0 4645	Sn	1620	1088	368	1592	cl2	5P16	677	7.5	1,108	0.0126	79.082	0.9118	0.0882	2.17	2.6	e Rv
l	1/64	2r	215013	22.01	20 024	1.047	0.131	0.2104	0.200	0.4040	7n	760	434	335	369	cF4	oP8	2.58	3 94	1 525	0 9286	1.0769	0.4846	0.5154	1.92	2.21	e Ri
1	1765	SI	51211	33.91	70.52	1.145	0.013	0 6001	0.2043	0.4273	7.0	575	650	75	554	0112	oP24	4 95	5.88	1 186	0 2686	3,7234	0.6994	0.3006	2.31	2.41	e Ri
	1/66	SrZn ₂	Srzns	44.07	10.55	1.0	0.020	0.0331	0.0025	0.0002	Th	2000	1730	1270	1565	cl2	c12	16.6	11.8	1 407	31 998	0.0313	0.016	0.984	1.8	1.89	e Rv
ļ	1767	18	In	10.85	20.908	1.927	0.519	0.0120	0.9704	0.9904		4000	4005	205	1000	012	012	9 12	A A1	1 843	0 3225	3 1006	0.8481	0 1519	2 39	2 16	c Rt
	1768	ТЪ	П	19.56	10.866	0.555	1.8	0.0061	0.0913	0.9676	<u></u>	1330	1040	333	000	CI2	LIZ	0.1Z 8 30	8.1	1.045	0.3223	2 1076	0.0401	0.61	2.39	2.19	e Ri
:	1769	Tb	Tb ₂ TI	19.56	64.5	3.297	0.303	0.0634	0.2605	0.391	11	1200	1040	10	1210	6016	cP2	10.05	11.2	1 111	3 0848	0.251	0 5194	0 4806	2 16	2.1	e Ri
	1770	Tb ₅ Tl ₃	тьті	137.9	32.016	0.232	4.307	0.4408	0.49/5	0.0027		1290	1300	10 60	020	0033	4F2	11.0	12.5	1.046	9.0070	0 1001	0 1689	0.8311	2	1.93	e Rt
	1771	TbsIls	TbTi ₃	125.5	61.816	0.493	2.03	0.6865	0.7766	0.7941	- <u></u>	1000	940	00	930	0032	-12	0.10	6 12	1 220	0.0113	88 305	0.0052	0.0048	2 39	2.36	c Rv
	1772	Tb	V	19.56	8.328	0.426	2.349	0.0032	0.0068	1	V	1289	1910	621	1320	CIZ	-UZ	0.12	0.12	1.074	6.0646	00.333	0.3332	0.5751	23	2 29	C RI
	1773	Tc₃W	W	35.74	9.55	0.267	3.742	0.4218	0.5242	0.6055	W	1900	1950	50	1800	1930	CIZ	10.4	14.3	1.074	0.6990	1 4516	0.4245	0.8206	5.8	4 01	e II
}	1774	Te	Te ₃ Tl ₂	20.47	135.89	6.64	0.151	0	0.4185	0.5164		449.6	235	214.6	224	nP3	muzu	0.24	5.03	1.07	1.0003	0.7000	0.1134	0.0200	2.16	1 80	o Dt
	1775	Ti	Th	10.87	19.789	1.821	0.549	0	0.8676	1	Th	1670	1755	85	1190	CI2	CF4	4.41	11.7	2.66	1.3029	0.7592	0.2007	0.4916	1.00	1.03	
	1776	Th	Th ₂ Tl	20.91	55.572	2.658	0.376	0.1163	0.2083	0.3054	TI	1360	1350	10	1080	CIZ	612	11.8	12	1.019	0.3495	2.001	0.0104	0.4010	1.05	1.00	
1	1777	ThTI	Th ₃ Tl ₅	35.19	132.82	3.774	0.265	0.4683	0.5692	0.5948	L TI	1305	1195	110	1180	oP24	0C32	12.4	12.9	1.043		4 0004	0.2094	0.7900	1.04	1.02	e ni
	1778	Th	V	20.91	8.328	0.398	2.511	0.0045	0.053	0.956	۷.	1750	1900	150	1441	cl2	cl2	11.1	6.12	1.814	0.2446	4.0881	0.9112	0.0000	1.09	2.30	e Rv
1	1779	Th	W	20.91	9.55	0.457	2.189	0	0.0095	1	W	1755	3422	1667	1695	cl2	cl2	11.1	19.3	1.735	0.0121	82.333	0.9940	0.0035	1.09	2.29	C RV
	1780	Th ₂ Zn	ThZn ₂	49.39	39.219	0.794	1.259	0.1233	0.2103	0.3607	Zn	1055	1105	50	945	ti12	hP3	10.7	9.25	1.159	0.8446	1.1839	0.5985	0.4015	3.3	2.3	e Ku
	1781	ThZn ₂	ThZn	39.22	56.96	1.452	0.689	0.3607	0.4502	0.5298	Zn	1105	1095	10	1045	hP3	1110	9.25	8.66	1.068	0.8254	1.2116	0.4548	0.5452	2.3	2.4	e Ki
4	1782	ThZn4	Th ₂ Zn ₁₇	56.96	188.88	3.316	0.302	0.5298	0.6494	0.706	Zn	1095	1015	80	995	1110	hR19	8.66	8.34	1.039	0.6624	1.5096	0.3128	0.68/2	2.4	2.44	e Ki
(1783	Ti	Tm	10.87	18.126	1.668	0.599	0.0344	0.9094	0.9957	Tm	1660	1540	120	1330	cl2	hP2	4.63	9.22	1.99	3.0523	0.3276	0.1642	0.8358	2.10	2.42	e Kt
	1784	Ti	Y	10.87	19.896	1.831	0.546	0.0184	0.8813	0.9891	Y:	1660	1500	160	1355	ci2	hP2	4.41	4.47	1.014	4.3115	0.2319	0.1124	0.8876	2.16	2.3	CKV
	1785	Zn	Zn _{ia} Ti	9.163	156.44	17.07	0.059	4E-06	0.0015	0.047	TI	419.6	420	0.4	418.6	hP2	oC68	7.13	6.99	1.02	0.002	494.97	0.9667	0.0333	2.51	2.5	CKV
	1786	Yb	Yb _a Tl _a	24.79	22.238	0.897	1.115	0.1613	0.1836	0.3069	TI	680	812	132	647	cl2	aP22	7.16	8.17	1.141	0.1775	5.6349	0.8627	0.1373	2.01	1.94	e Kt
	1787	YbTl	TI	29.56	17.577	0.595	1.682	0.7981	0.9932	1	Π	577	304	273	287	cP4	cl2	12.8	11.6	1.098	53.119	0.0188	0.0307	0.9693	3	1.78	e Rv
(tarj	1788	Zn	TI	9,163	17.577	1.918	0.521	0	0.9657	1	TI	419.6	304	115.6	292	hP2	ci2	7.13	11.6	1.63	9	0.1111	0.0548	0.9452	2.51	1.78	e Kv
P	1789	- U	v	13.18	8.328	0.632	1.582	0.0284	0.0449	0.837	۷	1070	1880	810	1040	cl2	cl2	16	7.02	2.27	0.075	13.327	0.9547	0.0453	2.63	2.36	e Rv
	1790	<u> </u>	U.Zn.,	13.18	184.91	14.03	0.071	0	0.5851	0.7	Zn	1135	970	165	942	cl2	hP38	18.1	8.58	2.104	0.7635	1.3097	0.0854	0.9146	2.63	2.52	e Rt
27 [73]	1791	v	Y	8.328	19.896	2.389	0.419	0	0.9587	0.9983	Y	1910	1522	388	1450	cl2	hP2	6.12	4.47	1.369	13.863	0.0721	0.0293	0.9707	2.36	2.36	C RV
12	1702	V.7r	71	31.11	14,156	0.455	2.197	0.4909	0.7036	0.9006	Zr	1300	1660	360	1265	cF24	ci2	6.21	6.02	1.032	2.4473	0.4086	0.4731	0.5269	2.3	2.17	e Ri
Sig	1703	W.7r	7r	33 22	14.055	0.423	2.364	0.1985	0.8338	0.9225	Zr	2210	1810	400	1735	cF24	cl2	13.8	6.75	2.046	34.612	0.0289	0.0639	0.9361	2.25	2.17	e Rv
- 0	1704	V	V7n	19.9	27 588	1 387	0.721	0	0.231	0.4237	Zn	1522	1105	417	875	hP2	cP2	4.47	5.59	1.251	0.6905	1.4483	0.5109	0.4891	2.3	3.78	e II
25	1705	V7n	¥7n.	27 59	35 133	1 273	0.785	0.4237	0.5038	0.5956	Zn	1105	1180	75	1015	cP2	ol12	5.59	6.25	1.118	0.613	1.6314	0.5616	0.4384	2.4	2.44	e Ri
N N	1706	12() VZn.	V.7n	63 19	277.04	4.384	0.228	0,7858	0.8311	0.8624	Zn	870	890	20	860	hP36	hP38	6.58	4.65	1.414	0.4673	2.1401	0.328	0.672	2.47	2.5	e Rl
61	1707	V	7+	10.0	14 156	0.711	1,406	0.0502	0.4102	0.962	Zr	1480	1800	320	1363	cl2	ci2	4.47	6.44	1.439	0.6373	1.569	0.6881	0.3119	2.3	2.17	e Ri
N	1700	Vh	ے Vh7n	24 85	28 786	1,159	0.863	0	0.1199	0.2742	Zn	819	650	169	491	cF4	cP2	6.96	8.28	1.189	0.5638	1.7736	0.6049	0.3951	2.01	3.64	e II
Protosolo al	1700	Vh7n	Vh7n	28.70	37 935	1 318	0.759	0.2742	0.3203	0.4307	Zn	650	751	101	645	cP2	ol12	8.28	8.01	1.034	0.3273	3.0556	0.6987	0.3013	3.64	2.34	e Im
	4000	7.7.	7,	22.26	13 679	0.612	1 635	0 5825	0.8497	1	Zr	1110	1320	210	750	cP2	cl2	7	6.67	1.05	3.0505	0.3278	0.3489	0.6511	3.72	2.17	.c lm

Tabla B Eutécticos. Datos de cada Sistema. Predicción de Microestructuras.

N°	C1	C2	Vm ₁	Vm ₂	A,	A ₂	X _{e1}	XeL	X _{e2}	%р	Tf,	Tf ₂	ΔŤ	T,	EC,	EC2	ρι	Ρ2	В	٤ı	<u>د</u> ي	Vf	Vf ₂	ΔS,	۵S2	DΜ
1801	Cu	Cu ₂ S	7.1	25.937	3.653	0.274	0.0001	0.0075	0.2012	S	1085	1130	45.13	1067	cF4	cF12	8.95	6.14	1.46	0.0153	65.471	0.9472	0.0528	2.29	2.6	e Rv
1802	Ni	C	6.59	5.2995	0.804	1.244	0.0012	0.0042	1	C	1455	3827	2372	1326	cF4	hP4	8.91	2.26	3.942	0.0144	69.672	0.9886	0.0114	6.62	2.38	e id
1803	GeTe	Te	33.5	20.465	0.611	1.637	0.6374	0.9088	1	Te	720	449.5	270.5	375	hR2	hP3	5.98	6.24	1.043	4.6667	0.2143	0.2597	0.7403	6.32	5.8	e Im
1804	Ag ₄ Li ₉	Li	133.3	13.1	0.098	10.18	0.2832	0.3423	0.3941	Li	155	180.6	25.6	145.5	cl52	ci2	3.71	1.22	3.029	35.164	0.0284	0.2244	0.7756	1.8	1.6	e Rt

TESIS CON

Gráfica 4. Predicción de eutécticos irregulares

Gráfica 5. Diagrama de zonas de predominancia para eutécticos regulares reportados

.

