

OPTIMIZACION DEL DISEÑO DEL PATRON DE RECARGA DE COMBUSTIBLE NUCLEAR DEL REACTOR DE AGUA EN EBULLICION DE LA CENTRAL NUCLEAR DE LAGUNA VERDE

Ε S S Т OBTENER EL TITULO DE: QUE PARA Ø С E E Ν T S A ł R PERUSQUIA MARIO RAUL DEL CUETO OLIVER GUTIERREZ ्यं MEXICO, D. F. 1995 FACULTAD DE CIERCLES SECCION DECOLAR

FALLA DE ORIGEN

⁻TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

VNIVEFIDAD NACIONAL AVPN°MA DE MEXICO

M. EN C. VIRGINIA ABRIN BATULE

Jefe de la División de Estudios Profesionales Facultad de Ciencias P r e s e n t e

Los abajo firmantes, comunicamos a Usted, realiz(ó)ron pasante(s) MAPIO_RAU	que habiendo revisado el trabajo de Tesis que L PERUSQUIA DEL CUETO
con número de cuenta <u>603577</u>	con el Título:
OFTIMIZACION DEL DISEÑO DEL	PATRON DE RECARGA DE COMPUSTIBLE
NUCLEAP DEL REACTOR DE AGUA	EN EBULLICION DE LA CENTRAL
NUCLEAR DE LAGUNA VERDE	

1

•••

Otorgamos nuestro Voto Aprobatorio y consideramos que a la brevedad deberá presentar su Examen Profesional para obtener el título de FISICO

GRADO	NOMBRE(S) APELLIDOS COMPLETOS	FIRMA
DRA .	ALICIA OLIVER GUTIERREZ	A.T.
Director de Tesis		
DR	ANGEL DACAL ALONSO	110000
DR.	JEAN PIERRE HENNART BOUDET	Jumpy S
DR.	ALIPIO GUSTANO CALLES MARTINEZ	THE -
Suplente M. EN C.	CARLOS FILIO LOPEZ	·. 16. B
Suplente		0

A mi esposa Rosa María

a mis hijos

Raúl Alejandro Rodrigo y Eloísa

.

.

-

A mis hermanos

Manuel, Beatriz, Renato y Clara Elena

A mi madre María Emma

.

-

Y en recuerdo de mi padre Luis Manuel Perusquía Camacho

i

AGRADECIMIENTOS

Deseo expresar mi más sincero agradecimiento a la Dr. Alicia Oliver Gutiérrez por su apoyo e infatigable impulso para hacer realidad esta tesis.

Al Instituto Nacional de Investigaciones Nuclear por la oportunidad, el apoyo económico y las facilidades de equipo de cómputo e instalaciones brindado para las desarrollo de la tesis.

A los compañeros del personal de la Gerencia de Energéticos y Tecnología Nuclear y en particular al M.en C. Guillermo Duque y Mojica, Gustavo Alonso Vargas, José Luis Montes Tadeo, Juan José Ortiz Servin y Mario Castro Berinstain por sus paciencia y valiosa ayuda.

Al Sindicato Unico de Trabajadores de la Industria Nuclear en especial al Ing. Héctor Cuapio Ortiz por la oportunidad de poder realizar esta tesis.

Finalmente reconocimiento al personal del Departamento de Gestión de Combustible en especial al M. en C. Luciano Sánchez Herrera, Fis. Carlos Alvarez Torres e Ing. Luis Fuentes Marqués por el aporte de conocimiento y selección del tema de este trabajo.

ii

CONTENIDO

٩.

L.

-

1

-

- Lista	de Figuras
- Lista	de Tablas
INTRODUCCION	Г
CAPÍTULO 1,	CONCEPTOS BÁSICOS DE REACTORES NUCLEARES DE FISIÓN 1
1.1	Reactores de agua ligera (LWR)
	1.1.1 Central Nuclear de Laguna Verde (CNLV)
	1.1.3 Reactor PWR
1.2	Conceptos Básicos
	1.2.1 Fisión Nuclear en Cadena
	1.2.3 Factor de Multiplicación y Reactividad 5
1.3	Tipos de Reactores
	1.3.1 Isótopos del Uranio Natural
	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos
	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos
1.4	<pre>1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos</pre>
1.4	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos
1.4	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos
1.4 Capítulo 2,	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos
1.4 CAPÍTULO 2, 2.1	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos
1.4 CAPÍTULO 2, 2.1	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos
1.4 CAPÍTULO 2, 2.1 2.2	1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos

iii

2.3	Ciclo de Combustible Nuclear
	 2.3.1 Comparación del Ciclo de Combustible de una Planta Convencional y una Planta Nuclear
2.4	Administración de Combustible
	2.4.1 Categorías de la Administración de Combustible 19 2.4.2 Administración del Combustible Pre-Irradiación 20
	2.4.2.1 Mina
	2.4.3 Administración del combustible post-irradiación (almacenamiento de combustible gastado, reprocesamiento y disposición final)
CAPITULO 3,	ADMINISTRACIÓN DEL COMBUSTIBLE DENTRO DEL NÚCLEO
3.1	Licenciamiento de Recargas
	3.1.1 Diseño del combustible de recarga
3.2	Diseño del núcleo de Recarga
	 3.2.1 Requerimientos para realizar el diseño de la recarga
	3.2.8 Filosofías de Operación y Administración de Combustible . 39 3.2.9 Metodología del diseño de Recargas para la CNLV 41
CAPITULO 4,	EL METODO DE GENERACION DE DISTRIBUCIONES RADIALES DE MALLA FINA PARA EL ANALISIS DE RECARGAS
4.1 4.2 4.3	Definición del método

iv

•

-

CAPITULO 5, LA TEORIA DE DIFUSION INVERSA. LA OBTENCION DE DISTRIBUCIONES RADIALES DE REACTIVIDAD OBJETO Y SU APLICACION EN EL DISEÑO DE

5.1 Deducción de la ecuación de difusión de dos grupos (rápido y 5.2 5.3 Cálculo de difusión inversa en l dimensión (radial) y el potencial 5.4 5.4.1 Método de generación de perfiles de potencia 79 5.4.2 Método de cálculos del Potencial de Combustible y de las potencia OPTIMA y de reactividad OBJETO para las recargas de 5.4.3.1 Resultados, análisis y conclusiones del ESTUDIO-100 5.4.3.2 5.5

Metodología de la generación de recargas para el ciclo 4 de la unidad 1 de la CNLV en base a la distribución de Kinf radial objeto 108

5.5.1 Estudio DB, recarga con ajuste libre a la distribución de reactividad OBJETO, resultados, análisis y conclusiones. 108 5.5.2 Estudio EB, recarga con ajuste a la distribución de reactividad OBJETO condivisión del núcleo BLANCO-NEGRO-GRIS. Resultados, análisis y conclusiones. 109

CAPITULO 6, METODO BIPARAMETRICO DE BURTE SU ADAPTACION. MODIFICACION Y APLICACION EN LA OPTIMIZACION DEL DISEÑO DE LA RECARGA DEL CICLO 4

Método Biparamétrico de Burte 6.1 120 6.2 6.2.1 Aplicación del Método Biparamétrico Adaptado al Ciclo 4 de la 6.2.4 Analisis de los resultados del estudio Al y conclusiones 143 6.2.5 Estudio BA

v

6.3	Método Biparamétrico Modificado (MBM) a la CNLV, aplicación al Ciclo 4 de la Unidad 1
	 6.3.1 Optimización del patrón de recarga con colocación de los combustibles frescos en posición oficial, método de busqueda por escalamiento de malla
CAPITULO 7,	CONCLUSIONES
BIBLIOGRAFI!	
APENDICES	
APENDICE A	CATEGORIAS DE LAS LOCALIDADES DEL NUCLEO Y REGLAS DE COLOCACION PARA LOS REACTORES DE LA CNLV
APENDICE B	CALCULO DE LOS PESOS DE MALLA FINA PARA EL NUCLEO DE LOS REACTORES DE LA CNLV
APENDICE C	PROGRAMA MAPATES
APENDICE	PROGRAMA UUPRI.M

vi

~

LISTA DE FIGURAS

~

•

.

-

A.

-

Figura 1.2	Arreglo del núcleo (vista de planta) del reactor BWR de la CNLV. 3
Figura 1.3	Configuración de una celda del núcleo BWR de la CNLV (Ref. 20) 11
Figura 1.4	Canal y ensamble de combustible GE5/6
Figura 3.1	Grupos de control del núcleo del rector BWR de la CNLV \ldots 32
Fig. 4.1.a	Distribución de K-infinita radial por regiones 48
Fig. 4.1.b	Distribución de K-infinita radial por malla fina
Fig. 4.2.a	Distribución de Potencia Promedio radial por regiones 50
Fig. 4.2.b	Distribución de Potencia Promedio radial por malla fina 51
Fig. 4.3.a	Distribución del MLHGR radial por regiones
Fig. 4.3.b	Distribución del MLHGR radial por malla fina
Figura 5.2	ESTUDIO-1: Familia de curvas de Potencial de Combustible contra posíción del pico máximo de potencia variando la potencia relativa en el centro del núcleo para Pmax=1.30
Figura 5.3	ESTUDIO-1: Distribución de potencia relativa radial y su correspondiente distribución radial de reactividad contra la posición del pico máximo de potencia, donde la reactividad máxima permitida es rebasada
Figura 5.4	ESTUDIO-2: Distribución de potencia relativa radial y su correspondiente distribución radial de reactividad contra la fracción radial con Pori=0.78, Pmax=1.20 rm=0.60 donde se muestra la formación de un segundo pico de potencia no deseable cerca de la periferia.
Figura 5.5	ESTUDIO-2: Familia de curvas de Potencial de Combustible contra posición del pico máximo de potencia variando la magnitud del pico de potencia relativa, caso Porí≅.78
Figura 5.6	Mapas de la recarga del ESTUDIO DB ajuste a distribución de Reactividad OBJETO
Figura 5.7	Distribución de reactividad radial OBJETO y Distribución de reactividad radial de la recarga del ESTUDIO DB condición BOC. Ajuste libre a la curva de reactividad. Vector de recarga combustibles del ciclo 4 de la Unldad 1 de la CNLV. La curva de reactividad consiste de dos reactas que semejan la reactividad OBJETO encontradas en el apartado 5.4.
Figura 5.8	Mapas de la recarga del ESTUDIO EB, ajuste a distribución de Reactividad OBJETO, núcleo dividido en Categorías BLANCO, NEGRO Y GRIS
Figura 5.9	Distribución de reactividad radial OBJETO y Distribución de reactividad radial de la recarga del ESTUDIO EB condición BOC. Ajuste a la curva de reactividad respetando la división del núcelo en categorias BLANCA-NEGRA-GRIS. Vector de recarga combustibles del ciclo 4 de la Unidad 1 de la CNLV. La curva de reactividad consiste de dos reactas que semejan la reactividad OBJETO encontradas en el apartado 5.4 113

Figura 5.10 Distribución de potencia promedio radial BOC de los caso OFICIAL, Figura 5.11 Distribución de reactividad promedio radial BOC de los caso OFICIAL, Figura 6.2 Mapa de las potencias relativas y número de importancia núcleo Figura 6.3 Mapas de un cuarto de núcleo de la Carga de Combustible OFICIALI36 Figura 6.4.a Figura 6,4.b MCPR de las recargas del estudio Al contra la longitud del Figura 6.4.c MLHGR de las recargas del estudio Al contra la longitud del Figura 6.5.a Figura 6.5.b MCPR de las recargas del estudio BA contra la longitud del Figura 6.5.c MLHGR de las recargas del estudio BA contra la longitud del Figura 6.6.a Mapas de la recarga básica del ESTUDIO A2 154 Figura 6.6.b MCPR de las recargas del estudio A2 contra la longitud del Figura 6.6.c MLHGR de las recargas del estudio A2 contra la longitud del Figura 6.7.c Mapas de la recarga básica de los ESTUDIOS FM y FL . . 166 Figura 6.7.b MCPR de las recargas del estudio FM contra la longitud del ciclo en días a plena potencia, parámetro M fijo. . . 167

viii

••

Figura 6.	7.c	MCPR de las recargas del estudio FM contra la longitud ciclo en días a plena potencia, parámetro N fijo	ರ್ಷ1 168
Figura 6.	7.d	MLHGR de las recargas del estudio FM contra la longitud ciclo en días a plena potencia, parámetro M fijo	del 169
Figura 6.	7.e	MLHGR de las recargas del estudio FM contra la longitud ciclo en días a plena potencia, parámetro N fijo	del 170
Figura 6.	8.a	MCPR de las recargas del estudio FL contra la longitud ciclo en días a plena potencia, parámetro M fijo	del 176
Figura 6.	8.b	MCPR de las recargas del estudio FL contra la longitud ciclo en días a plena potencia, parámetro N fijo	del 177
Figura 6.	8.c	MLHGR de las recargas del estudio FL contra la longitud ciclo en días a plena potencia, parámetro M fijo	del 178
Figura 6.	8.d	MLHGR de las recargas del estudio FL contra la longitud ciclo en días a plena potencia, parámetro N fijo	del 179
Figura 6.	9.a	Mapas de las recarga básica de los estudios GB y BC	186
Figura 6.	9.b	MCPR de las recargas del estudio GB contra la longitud ciclo en días a plena potencia, parámetro M fijo	del 187
Figura 6.	9.0	MCPR de las recargas del estudio GB contra la longitud ciclo en días a plena potencia, parámetro N fijo	del 188
Figura 6.	9.d	MLHGR de las recargas del estudio GB contra la longitud ciclo en días a plena potencia, parámetro M fijo	del 189
Figura 6.	9.e	MLHGR de las recargas del estudio GB contra la longitud ciclo en días a plena potencia, parámetro N fijo	del 190
Figura 6.	10.a	MCPR de las recargas del estudio GC contra la longitud ciclo en días a plena potencia, parámetro M fijo	del 195
Figura 6.	10.b	MCPR de las recargas del estudio GC contra la longitud ciclo en días a plena potencia, parámetro N fijo	del 196
Figura 6.	10.c	MLHGR de las recargas del estudio GC contra la longitud ciclo en días a plena potencia, parámetro M fijo	del 197
Figura 6.	10.d	MLHGR de las recargas del estudio GC contra la longitud ciclo en días a plena potencia, parámetro N fijo	del 198

ix

.

LISTA DE TABLAS

-

5

••

tabla	1.1 Pr	incipale	es ca	racter	isti	cas de	l reacto	r	BWR	de	18	Ch	1LV	,	•	•	•	•••	29
TABLA	5.1 E	STUDIO D	Y 80	EB DAT	ros B	OC Y E	oc	•	•••	•	• •	•	•	•	•	•	•	•	109
TABLA	6.1 V	ECTOR DE	CAF	RGA DE	COMB	USTIBL	E CICLO	4		•	• •	•	•	•	•	•	•	•	134
TABLA	6.2 E	STUDIO A	1 D#	ATOS BO	DC Y	EOC .		•		٠	• •	٠	•	•	•	•	•	•	139
TABLA	6.3 E	STUDIO B	A DZ	ATOS BO	юY	EOC .		•	•••	•	•	•	•	•	•	•	•	•	146
TABLA	6.4 ES	TUDIO A2	נאם ו	ros boo	YE	oc.		•			• •		•	٠	•	•	•	•	153
TABLA	6.5.a	ESTUDIO	FM,	DATOS	BOC	(MALLA	AMPLIA)			•		٠	•	•	•	•	٠	•	164
TABLA	6.5.b	ESTUDIO	FM,	DATOS	EOC	(MALLA	AMPLIA)			•	•	•	•	•	•	•	•	•	165
TABLA	6.6.a	estudio	FL,	DATOS	BOC	(MALLA	FINA)	•	•••	•	•	•	•	•	•	•	•	•	174
TABLA	6.6.b	ESTUDIO	FL,	DATOS	EOC	(MALLA	FINA)	•	• •	•	•	•	•	•	•	•	•	•	175
TABLA	6.7.a	ESTUDIO	G8,	DATOS	BOC	(MALLA	AMPLIA)		•••	•	• •	•	•	•	•	•	•	•	184
TABLA	6.7.b	estudio	GB,	datos	EOC	(MALLA	AMPLIA)		•••	•	•	•	•	•	•	•	•	•	185
TABLA	6.8.a	estudio	GC,	DATOS	BOC	(MALLA	FINA)	•		•	•	•	•	•	•	•	•	•	193
TABLA	6.8.b	ESTUDIO	GC,	DATOS	EOC	(MALLA	FINA)	•	•••	•	•	•	•	•	•	•	•	•	194
ESQUEM	IA A.1	MAPA CON LA CNLV	N LAS	S CATE	GORIA	S DE L	OS CANAI	ES.	DE:	L C	UAI	ato	DE	۰. ۱	1UC	LF	0	BWI	R DE 2XX

.

÷

х

INTRODUCCION

El diseño del patrón de recarga del núcleo de un reactor nuclear de agua en ebullición (BWR, Boling Water Reactor) como los encontrados en la Central Nuclear de Laguna Verde (CNLV), involucra la decisión de dónde colocar adecuadamente 444 ensambles combustibles dentro del núcleo del reactor. De éstos, una fracción, de 88 a 148, son combustibles frescos y el resto son combustibles parcialmente gastados en ciclos de operación previos. De acuerdo a un análisis combinatorio, en un núcleo con n combustibles en total, de los cuales r son combustibles nuevos idénticos, el número de patrones de recarga posibles vendría dado por n!/r!. En el mejor de los casos, el número de recargas posibles para la CNLV será de 444!/148!, número realmente gigantesco. Esto obviamente evita el poder realizar el examen de todos los esquemas de recarga para encontrar el más adecuado, es decir el óptimo.

Un patrón de recarga adecuado es aquél que cumple con ciertos requisitos que aseguren la integridad del combustible en todo momento. Esto se traduce usualmente en la exigencia de no sobrepasar ciertos límites térmicos en la operación del reactor a plena potencia. Por otro lado, el mayor beneficio económico se logra con esquemas de recarga a los que se les pueda extraer la mayor cantidad de energía, a plena potencia, durante el ciclo completo de operación. La experiencia (y de cierto modo la teoría) demuestran que los ciclos con mayor extensión, es decir los de mayor beneficio económico, son aquellos con menores márgenes de seguridad. Se presenta entonces un problema de optimización de recargas, donde se restringen los márgenes térmicos y se trata de maximizar la longitud del ciclo de operación (o un parámetro equivalente). En nuestro caso, la variable de. decisión es la colocación de los n ensambles combustibles en el núcleo del reactor (444 en los reactores de la CNLV).

El método tradicional para obtener el patrón de recarga es esencialmente de prueba y error. Se recurre a prácticas tales como tratar de seguir esquemas que anteriormente han tenido éxito y usar ciertas reglas derivadas de la experiencia. Las recargas así obtenidas si bien son seguras distan mucho de ser óptimas.

*

Traducción directa de Fuel Assembly y término usual en el lenguaje técnico para referirse a un conjunto combustible, combinación de combustible y materiales estructurales.

хi

Diversos investigadores desde hace años han intentado abordar el problema usando desde la metodología de optimización lineal y no lineal (complicada por el hecho de que las variables de decisión no son variables continuas sino discretas), hasta por medio de redes neuronales pasando por el método heurístico de base de conocimientos. Los artículos hechos al respecto indican que se han obtenido ciertos resultados alentadores; sin embargo, como lo expresa Downar en la Ref. 2, hasta el momento aún no existe una metodología aceptada por la comunidad de diseñadores de recargas.

El objetivo principal de esta tesis, además de presentar y revisar los conceptos básicos de la Administración de Combustible, es realizar estudios que permitan avanzar en el establecimiento de una metodología práctica de optimización de recargas de ensambles combustibles para reactores BWR, particularmente para la CNIV.

En los primeros tres capítulos se presentan y revisan los conceptos básicos relacionados con la Administración de Combustible y las estrategias, métodos y técnicas desarrolladas para la generación de recargas de combustible de los reactores nucleares de potencia.

La teoría de difusión inversa de neutrones, como se verá en la tesis, da los fundamentos para desarrollar una metodología de generación de patrones de recarga de combustibles óptimos, al minimizar el llamado potencial de combustible.

También se estudia y adapta el método biparamétrico de Burte, con el cual es posible buscar patrones de recarga biparamétricos óptimos. Ambos métodos se aplicaron a la recarga del ciclo 4 de la unidad 1 de la CNLV. El método biparamétrico en particular tuvo que ser adaptado y modificado sustancialmente. Los resultados, análisis y conclusiones de estos estudios se presentan en los últimos capítulos.

A continuación se describe el contenido de los capítulos que integran esta tesis.

En el capitulo 1, se proporcionan los conceptos y procesos básicos de los reactores de fisión, se describen los principales tipos de reactores en particular el BWR de la CNLV.

En el capítulo 2 se define qué se entiende por ciclo de combustible nuclear y las etapas de la administración del combustible. En particular se examinan los procesos de preirradiación y postirradiación.

En el capítulo 3, se examina la administración del combustible dentro del reactor y el diseño de núcleos de recarga. Se revisan las diferentes estrategias, técnicas y métodos de optimización relacionadas con la generación del patrón de recarga de un núcleo de reactor nuclear.

xii

En el capitulo 4 se presenta un método original para obtener distribuciones radiales detallados de los parámetros nucleares. Con éste método (además de visualizar en forma clara las distribuciones radiales de los parámetros nucleares) es posible formular un algoritmo que ajusta la colocación de los combustibles en el núcleo de un reactor a una curva de reactividad radial OBJETO y con esto optimizar la recarga del combustible.

En el capitulo 5 se presenta una serie de desarrollos relacionados con la optimización de recargas con base en la teoría de difusión inversa. Se parte de la ecuación de transporte de neutrones y paso por paso se deriva la ecuación de la distribución de reactividad en función de la distribución de potencia radial. Con base en esta ecuación se estudia qué tipo de distribución de potencia radial es óptima al minimizar el parámetro de potencial de combustible y determinar la distribución de reactividad OBJETO correspondiente.

Se realizaron estudios para determinar qué tipo de distribuciones de potencia radial son óptimas. Para esto se varió la posición y magnitud del pico de potencia así como la potencia en el centro del núcleo. Las características de las distribuciones de potencia se controlaron mediante un par de polínomios de cuarto grado. El análisis de los resultados obtenidos aportan una visión teórica de cómo se correlacionan las distribuciones de potencia y reactividad.

Se desarrolló un algoritmo de generación de candidatos de recarga de combustible (con base en el método del capitulo cuatro) donde la reactividad del núcleo del reactor se ajusta a que empate con la distribución de la reactividad OBJETO. Este algoritmo se aplica a los ensamble combustibles de la recarga del ciclo 4 de la unidad 1 de la CNLV. Los candidatos de recarga se evaluaron con el código de cómputo símulador de núcleos PRESTO.

En el capítulo 6 se presenta el método biparamétrico de búsqueda de patrones de recarga óptimos desarrollado por Burte. Se describe cómo se adaptó y modificó para su uso en los reactores de la CNLV. Para ésto se efectuaron una serie de estudios usando el simulador de núcleos PRESTO con el fin de poder determinar la eficacia del método. Finalmente se logró el llamado Método Biparamétrico Modificado complementado con la técnica rápida y confiable de búsqueda de patrones óptimos por escalamiento de mallas bidimensionales. El Método se aplicó en el ciclo 4 de la unidad 1 de la CNLV obteniéndose recargas biparaméticas óptimas que al compararse con la recarga de combustible OFICIAL resultaron con márgenes de seguridad mejores y a la vez con longitudes de ciclo de operación a plena potencia mayores en más de 13 días que la calculada para la recarga OFICIAL.

En el Capitulo 7 se dan las conclusiones y recomendaciones surgidas de los estudios efectuados.

xiii

CAPÍTULO 1

CONCEPTOS BÁSICOS DE REACTORES NUCLEARES DE FISIÓN.

1.1 Reactores de agua ligera (LWR)

En este capítulo se exponen los conceptos y procesos básicos de los reactores de fisión. Se describen los diferentes tipos de reactores, en particular al modelo GE BWR-6 empleado en México para la producción de electricidad.

1.1.1 Central Nuclear de Laguna Verde (CNLV)

Actualmente en la Central Nuclear de Laguna Verde (CNLV) en el Estado de Veracruz la Comisión Federal de Electricidad tiene dos unidades idénticas de reactores nucleares de potencia de agua ligera LWR (Ligth Water Reactor), cada uno con una potencia nominal de 1931 Megawatts térmicos (MWt). El propósito de estos reactores es la conversión de energía nuclear en energía térmica y de ahí a energía eléctrica vía un turbo-generador. La potencia eléctrica nominal es de 654 Megawatts eléctricos (MWe), por lo que la eficiencia es de 33%. Su sistema de generación de vapor es de ciclo abierto lo que implica que el agua empleada en la remoción del calor del núcleo del reactor es la misma que impulsa el turbogenerador de electricidad.

1.1.2 Reactor BWR

En reactores como los de Laguna Verde, el vapor es producido en el mismo núcleo del reactor por lo que son llamados reactores de agua en ebullición o reactores BWR (Boling Water Reactor). El fluido que se usa para remover el calor generado en el núcleo es a su vez el fluido de trabajo que mueve la turbina de vapor saturado, por lo que se trata de un sistema de vapor de ciclo abierto de un sólo circuito. Por todo esto el reactor BWR es un reactor de agua en ebullición de ciclo directo.

En la Figura 1.1 se muestra un esquema del Sistema de Suministro de Vapor Nuclear (NSSS por sus siglas en inglés). Como se muestra en el diagrama el núcleo está dentro de una vasija de presión que permite producir vapor saturado a una presión nominal de 7 MeagaPascal (MP). Una característica de los sistemas abiertos es que la temperatura y presión a la salida del reactor y a la entrada de la turbina es esencialmente la misma.

El Reactor de Agua en Ebullición

Figura 1.1.a Esquema de suministro de vapor de un BWR (Ref. 13)

Figura 1.1.b Corte transversal el reactor BWR (Ref. 20)

A la salida del núcleo el vapor saturado va mezclado con agua. Es indispensable que las turbinas trabajen con vapor seco para evitar daños a los álabes por el impacto de pequeñas gotas de agua. En los BWR esto se logra haciendo pasar al vapor húmedo por unos separadores y secadores de vapor localizados en la parte superior de la vasija de presión. El separador consiste en un arreglo de tubos verticales conteniendo aspas fijas que imprimen un movimiento de torbellino a la mezcla de vapor y agua, el cual fuerza al agua líquida a depositarse en la superficie de los tubos escurriendo por gravedad y retornando al núcleo del reactor. El vapor pasa a los secadores de vapor y de ahí a la entrada a la turbina. Una vez extraída la energía del vapor por la turbina fluye al condensador donde, por medio de un sistema de intercambiadores, se le extrae más energía calorífica y pasa a estado líquido. El circuito secundario del condensador, en el caso de los reactores de Laguna Verde, utiliza agua de mar. A la salida del condensador 🗼 fluido es bombeado de vuelta al reactor. El agua entra al núcleo del reactor donde remueve el calor generado por las fisiones nucleares y se genera nuevamente vapor saturado en la parte superior y de ahí a los sistemas de separación cerrándose el circuito.

En principio los reactores BWR pueden trabajar únicamente por el fluir del refrigerante en el núcleo del reactor por convección natural. Incluso algunos diseños avanzados de BWR así funcionan. En el caso de los reactores BWR de Laguna Verde, poseen dos circuitos, cada uno de los circuitos tiene una bomba de recirculación <u>tipo JET</u> que le imprimen una circulación forzada al refrigerante dentro del núcleo. Con esto se logran dos resultados importantes:

- 1- obtener respecto a un reactor de convección natural, una mayor producción volumétrica de energía y por lo tanto un menor tamaño de núcleo y vasija de presión para una potencia nominal dada, y
- 2- al aumentar (o disminuir) el caudal de las bombas JET se disminuye (o aumenta) el por ciento de los vacíos (vapor) dentro del núcleo y con esto aumentar (o disminuir) la potencia del reactor. Así se logra un control fino de la potencia del reactor.

1.1.3 Reactor PWR

El otro tipo de reactor de agua ligera (LWR), y el más popular de los reactores de potencia en el mundo occidental, es el llamado reactor de agua presurizada (PWR, Pressurized Water Reactor). En él, el NSSS está constituido por dos circuitos de fluidos en serie. El circuito primario remueve el calor del núcleo, siempre en fase líquida, y por medio de un intercambiador de calor en un segundo circuito se genera el vapor que mueve al sistema de turbinagenerador de electricidad. El uso de dos circuitos en los reactores

•

PWR le proporciona ciertas ventajas respecto a los reactores BWR; una de ellas es el aislamiento del sistema de turbina-generador del circuito primario del núcleo del reactor. Otra ventaja es que el reactor funciona en una sola fase (fase líquida), lo que facilita los cálculos de diseño y análisis.

La desventaja es una mayor presión de operación sobre la vasija, en el caso de los reactores PWR alcanzan presiones del orden de 15 MegaPascales. Por otro lado, las bombas de recirculación son sustancialmente de mayor potencia que las encontradas en los reactores BWR. Esto se debe a los grandes caudales que se necesita mover en los reactores PWR puesto que el calor adquirido por el refrigerante en el núcleo del reactor es calor sensible, mientras que en los reactores BWR se trata además con calor latente.

1.2 Conceptos Básicos

A continaución se presentan los conceptos básicos de teoría de reactores.

1.2.1 Fisión Nuclear en Cadena

La parte central de un reactor nuclear es sin duda su núcleo. En él se desarrollan los principales procesos que permiten convertir la energía nuclear en energía térmica. En el núcleo de un reactor se llevan a cabo, en forma controlada, las reacciones en cadena de la fisión nuclear. En este proceso ciertos núcleos pesados como los isótopos de uranio, al absorber un neutrón se dividen en dos núcleos y emiten dos o tres neutrones. Además, se liberan del orden de 200 Mega-electrón-volts (Mev) de energía. Los neutrones producto de la fisión y que poseen energías cinéticas de 1 a 2 Mev son llamados neutrones rápidos. Estos neutrones a su vez pueden inducir nuevas fisiones y así en cadena producir más y más fisiones. En el caso de controlarse adecuadamente las reacciones de fisión, se puede sustentar una producción continua de energía susceptible de aprovecharse lo que constituye un reactor nuclear de potencia.

1.2.2 Condición de Operación en Estado Estable

Para poder sostener un nivel de potencia constante en un reactor nuclear (condición de criticidad) es necesario que, en promedio, de los dos o tres neutrones producidos por fisión, uno de ellos llegue a producir una nueva fisión y no sea ya capturado por un material no fisionable ni escape por las fronteras físicas del reactor o, aún cuando sea absorbido por un núcleo fisionable, éste no quede como simple captura radiactiva. En síntesis, para operar un reactor en estado estable, es necesario que por cada fisión los neutrones produzcan en promedio otra fisión.

1.2.3 Factor de Multiplicación y Reactividad

En teoría de reactores, para poder expresar si un reactor está en estado estable (o no), se usa el concepto de **factor de** multiplicación. El factor de multiplicación se define como la razón del número de fisiones en una generación dada entre el número de fisiones de la generación inmediatamente anterior.

- número de fisiones de la generación N K = número de fisiones de la generación (N-1)
- K= factor de multiplicación

Cuando en un reactor la potencia está en estado estable, el factor de multiplicación del reactor es exactamente igual a 1.0 y se dice que el reactor está critico. Si el reactor está aumentando potencia a través del tiempo, el factor de multiplicación será mayor a uno y se dice que el reactor está **supercrítico**. Por último, si el valor es menor que 1.0 el reactor está en condición **subcrítica** y la potencia disminuirá paulatinamente.

Un concepto también muy usado en teoría de reactores y relacionado con el factor de multiplicación es el de **reactividad.** La reactividad mide qué tanto se desvía un reactor de la criticidad y se puede definir como:

K - 1RHO = -----, RHO= reactividad K

La reactividad de un reactor será igual a cero si es crítico, negativa si es subcrítico y positiva si el reactor es supercrítico.

En todo reactor nuclear es indispensable contar con una serie de dispositivos que permitan controlar de manera segura la operación del reactor.

1.3 Tipos de Reactores

Brevemente se comentan los principales tipos de reactores de potencia existentes.

1.3.1 Isótopos del Uranio Natural

El uranio natural posee dos isótopos: el uranio 238 que constituye el 99.29 % y el uranio 235, el .71% restante. Ambos isótopos al absorber neutrones de más de 1 Mev de energía pueden llegar a fisionarse, por este motivo se les llama fisionables.

1.3.2 Moderación de Neutrones

Se dice que los neutrones producto de la fisión se han termalizado, cuando por medio de colisiones con los núcleos del reactor, moderan su energía cinética y llegan a estar en equilibrio térmico con los materiales del núcleo. En estas circunstancias el neutrón puede alcanzar energías del orden de .025 ev. Al proceso de frenado de la velocidad de los neutrones se le llama moderación de neutrones.

1.3.3 Isótopos Fisiles

Experimentalmente se encuentra que los isótopos pesados llamados físiles, como el Uranio 235 y el Plutonio 239, son altamente susceptibles de fisonarse con neutrones de baja energía como es el caso de los neutrones en equilibrio térmico.

1.3.4 Tipos de Materiales Moderadores de Neutrones y Reactores Térmicos

El mejor material moderador de neutrones es aquél que posea elementos cuya masa sea igual o semejante a la masa del neutrón y que a su vez no absorba neutrones.

A los reactores de agua ligera, así como a los reactores de agua pesada y de grafito, se les llama reactores térmicos porque la mayor cantidad de las fisiones son producidas por neutrones termalizados absorbidos por isótopos físiles.

Estos reactores aprovechan el hecho de que los isótopos físiles como el uranio 235, único físil que se encuentra en estado natural, tienen una alta probabilidad de absorber un neutrón térmico y fisionarse. En contraste, al isótopo 238 del uranio se le denomina fisionable porque sólo se fisiona, a veces, al absorber neutrones rápidos de más de 1 Mev de energía. Al absorber neutrones de menor energía, y a veces mayor, el isótopo no se fisiona y eventualmente decae, por diferentes cadenas, en isótopos físiles del plutonio (Pu-239 y Pu-241). Por este motivo al uranio 238 se le llama fértil.

El hidrógeno prácticamente tiene la misma masa del neutrón y sin duda es el mejor moderador en el sentido de que, con relativamente pocas colisiones, del orden de 15, logra termalizar a los neutrones de fisión. Sin embargo es un absorbedor de neutrones que, aunque relativamente moderado, es suficiente para que sea imposible construir un reactor crítico con base en uranio natural y agua ligera.

El segundo candidato moderador es el isótopo del hidrógeno llamado deuterio; el agua pesada D2O es el compuesto idóneo del deuterio

para usarse en los reactores nucleares. El deuterio, aunque requiere del orden de 28 colisiones para termalizar la energía de los neutrones de fisión es un excelente moderador debido a que prácticamente no absorbe neutrones.

El tercer candidato e incluso el primero en utilizarse históricamente es el grafito muy puro (91 colisiones para termalizar los neutrones de fisión), que al igual que el deuterio, prácticamente no absorbe neutrones.

Tanto el grafito como el D2O permiten la construcción de reactores térmicos de potencia con combustibles de uranio natural. los reactores de grafito y uranio natural fueron usados ampliamente para la producción militar de plutonio, aunque actualmente su uso es muy restringido. La razón principal es que el uranio de los combustibles debe estar en forma metálica, lo que origina serios problemas de seguridad.

1.3.5 Reactores de Agua Pesada y Ligera

En los reactores térmicos de agua pesada o ligera los combustibles pueden fabricarse con pastillas cerámicas de dióxido de uranio enacamisadas en zircaloy. Este tipo de ensamble combustible ha demostrado ser, hasta ahora, la mejor opción debido a las propiedades neutrónicas, térmicas y mecánicas que se logran en dichos combustibles.

Otro gran beneficio en estos reactores es que el material moderador es el mismo medio que remueve el calor generado en el núcleo del reactor. Esta ventaja no es sólo de orden práctico sino que tiene importantes implicaciones en la seguridad inherente del reactor, en la eventualidad de que el reactor saliera de control y aumentara la generación de energía y calor en el núcleo. Esto originaría un aumento de vapor con la consiguiente disminución de neutrones moderados, lo cual traería como consecuencia la reducción de las fisiones y por ende de la generación de energía nuclear y con lo que se autocontrola el transitorio de potencia. El efecto de retroalimentación negativa es un elemento de seguridad de gran importancia y que promueve ampliamente el uso de rectores térmicos moderados con agua, principalmente los tipo BWR donde el efecto de retroalimentación negativa es mayor, lo que amplía el margen de seguridad inherente del reactor.

Los reactores de potencia de agua pesada y uranio natural son principalmente promovidos por Canadá con los modelos CANDU. Si bien estos reactores tienen la gran ventaja de usar uranio natural, tienen el inconveniente de que en la naturaleza sólo el 0.015 % del hidrógeno es deuterio. Los procesos de producción de agua pesada son costosos, así como los sistemas relacionados cuya función es evitar en todo momento el deterioro de la calidad del agua pesada dentro del reactor y el escape o merma de la misma. Por el otro lado, obviamente en los reactores de agua ligera la obtención del moderador (H₂O) no tiene mayor problema. Sin embargo procesos para lograr que el los uranio natural alcance enriquecimientos de uranio 235 del orden del 2 al 3 %, enriquecimientos promedio que necesitan estos reactores, son llevados a cabo en costosas instalaciones con elevado consumo de energía eléctrica. La tecnología involucrada en estos procesos de enriquecimiento es altamente restringida por cuestiones de orden político-militar.

1.3.6 Reactores Rápidos

Es posible construir reactores en los que la gran mayoría de las fisiones sea producida por neutrones rápidos. A estos reactores por ende se les llama reactores rápidos. Desde el punto de vista del mejor aprovechamiento de los recursos energéticos no renovables, los reactores rápidos poseen una gran ventaja derivada del hecho de que la captura de neutrones de materiales fisionables fértiles, como el Uranio 238 y el Torio 232, eventualmente produce isótopos físiles. Por este medio es posible, que por cada fisión inducida, se produzca un nuevo núcleo físil y aún más de uno. Los reactores rápidos que producen más de un núcleo físil por fisión son conocidos como reactores de cría (en caso contrario se les llama reactores rápidos convertidores). En los reactores rápidos es necesario que el núcleo no tenga materiales moderadores de neutrones, el tamaño de los núcleos suele ser de grandes proporciones y el enriquecimiento de uranio-235 superior al 26%. A pesar de su gran ventaja de aumentar la disponibilidad de material físil, la construcción de reactores rápidos tiene serios problemas de orden político-militar, aunados a problemas técnicos de seguridad.

1.4 Descripción del Núcleo del Reactor BWR de la CNLV

Para terminar con éste capítulo se verá con máyor detalle las diferentes partes del núcleo del reactor BWR de la CNLV.

1.4.1 Núcleo

En los reactores de Laguna Verde el núcleo del reactor está constituido por 444 ensambles de combustible. En la Figura 1.2 se muestra un corte transversal del núcleo en el medio plano. En él se puede apreciar que el centro del reactor lo ocupa una de las 109 barras de control de forma cruciforme. El contorno formado por los combustibles trata de seguir un círculo y en primera instancia, se puede supone que el núcleo es cilíndrico.

Figura 1.2 Arreglo del núcleo del reactor BWR de la CNLV, núcleo con simetría de espejo 1/4 (QSC)

La distribución de combustibles en el núcleo es tal que en toda la vida del reactor se trata de mantener una simetría espejo de 1/4 de núcleo. La Figura 1.2 muestra como el núcleo se divide en cuatro cuadrantes por los ejes X-Y; cada eje actúa como un espejo tal que el combustible F es simétrico a F'. Esto permite realizar el análisis de sólo 111 combustibles de uno de los cuadrantes. La longitud de los combustibles es de 144 pulgadas (365 cm).

Cada barra de control está rodeada de 4 ensambles combustibles constituyendo lo que se llama una celda de control. En la Figura 1.3 se muestra una sección transversal media de una celda de control constituida por cuatro combustibles junto con la barra de control asociada.

1.4.2 Combustibles

Los ensambles combustibles originales de los reactores de Laguna Verde son del tipo GE5/6 (ver figuras 1.3 y 1.4). Este tipo de combustible son arreglos regulares 8x8 de barras o elementos combustibles. Por medio de siete placas espaciadoras regularmente espaciadas a lo largo del ensamble, se mantienen estructuralmente unidos los elementos del ensamble.

Las barras de combustible son tubos de zircaloy conteniendo pastillas de dióxido de uranio (UO2). Los enriquecimientos de uranio 235 pueden fluctuar entre 0.71 % (enriquecimiento natural) y 3.9 %. Eventualmente y con el fin de controlar en el largo plazo el exceso de reactividad de los combustibles nuevos y lograr un quemado más uniforme, ciertos elementos combustibles contienen óxido de gadolinio que actúa como veneno quemable, el cual absorbe neutrones y se va quemando gradualmente con mayor rapidez que el uranio 235 lográndose con esto que la reactividad a lo largo de la vida del ensamble combustible se "aplane". Los tubos de los elementos se sellan en sus extremos con tapones de zircaloy. El tapón superior posee un resorte cuya función es mantener juntas las pastillas de UO2 y permitir la expansión térmica longitudinal de las mismas durante operación a potencia. Así mismo, permite la formación de la región del plenum dentro del elemento, que permite la acumulación de gases de fisión y evita el aumento de la presión dentro del elemento combustible.

El ensamble GE5/6 además de 62 elementos combustibles, posee dos tubos de sección circular cuyo objeto es contener agua en estado líquido que contribuya al proceso de moderación de los neutrones. Esta contribución es importante sobre todo en la parte superior del núcleo del reactor donde el refrigerante, durante la operación del reactor a potencia, está en mayor medida en forma de vapor. Esto produce un estado local de submoderación de neutrones que mitiga los dos tubos centrales con agua. Es tal la importancia de estos canales de agua que en combustibles más avanzados existen grandes canales de agua de moderación.

Figura 1.3 Configuración de una celda del núcleo del reactor (Ref. 20)

Cada uno de los ensambles combustibles se introduce dentro de un canal de Zircaloy de sección cuadrática. La función principal de este canal es la de encauzar el flujo del refrigerante a lo largo de todo el ensamble.

En condiciones de operación nominales el caudal de refrigeración entra en la parte inferior de la vasija en estado liquido. El refrigerante es introducido en el extremo inferior de los canales de los ensambles combustibles en donde, debido a la generación de calor nuclear, es calentado. El agua alcanza temperaturas de saturación y al salir el fluido en la parte superior del núcleo, 70% del agua es vapor.

1.4.3 Sistema de Barras de Control

En la parte inferior de la vasija de los reactores BWR de Laguna Verde entran 109 barras de control de forma cruciforme. Estas barras tienen cierto contenido de boro 10, un isótopo que absorbe eficazmente los neutrones térmicos. El uso de las barras de control tiene dos funciones fundamentales:

- 1- CONTROL DE PARADA. Todo reactor debe contar con un sistema que permita parar rápidamente la operación del reactor bajo cualquier circunstancia creíble. El sistema de barras de control de los reactores BWR cuenta con un dispositivo que introduce hidráulicamente las 109 barras de control dentro del núcleo, insertando a una velocidad suficientemente rápida una reactividad negativa suficientemente alta para hacer subcrítico el reactor sin que sufra daño apreciable bajo cualquier condición previsible.
- 2- REGULACION DE LA POTENCIA. Las barras de control de los reactores BWR se pueden introducir en el núcleo en 48 posiciones (o muescas) de altura axial diferentes (48 muescas -barra completamente extraída-, 48 muescas -barra totalmente insertada cubriendo la altura total del núcleo-). Con esto es posible colocar ciertas barras en ciertas posiciones y obtener el nivel de potencia deseado. Estos movimientos de barras también permiten compensar pequeños cambios de reactividad debidos a modificaciones en la demanda de electricidad, o cambios de temperatura y controlar el nivel de potencia de operación del reactor.

Figura 1.4 Canal y ensamble de combustible tipo GE5/6

CAPÍTULO 2

CICLO DE COMBUSTIBLE, ADMINISTRACIÓN DE COMBUSTIBLE

El ciclo de combustible nuclear está fuertemente relacionado con la administración del mismo. En éste capítulo se revisaran los procesos involucrados desde la extracción del mineral hasta la disposición final del combustible. Se tratan con mayor amplitud los procesos de pre-irradiación y post-irradiación ya que la irradiación del combustible (importante proceso para la tesis) se le dedica íntegro el capítulo tres.

2.1 Etapas de Conversión de Energía

Antes de tratar el tema del ciclo de combustible se examinará el proceso de conversión de energía en una planta nucleoeléctrica.

2.1.1 Conversión de Energía Nuclear a Energía Térmica

La conversión de energía nuclear en energía eléctrica en una planta nuclear de ebullición de agua ligera se lleva a cabo en tres etapas. En la primera etapa la energía nuclear se convierte en energía térmica. Esta energía térmica se origina principalmente en el proceso de frenamiento que sufren los núcleos producto de la fisión. El proceso se desarrolla prácticamente dentro del mismo material del elemento combustible. El calor de los combustibles es transferido por conducción a través del encamisado del elemento combustible hacia el fluido refrigerante. En el caso de los reactores BWR, gran parte de la energía térmica removida por el refrigerante es en forma de calor latente, por lo que se genera en el mismo núcleo del reactor vapor saturado.

2.1.2 Conversión de Energía Térmica a Energía Mecánica

En una segunda etapa, el vapor saturado y ya seco es conducido a la entrada de una turbina donde la energía térmica se transforma en energía mecánica. La eficiencia de esta etapa es la más baja del proceso de conversión, siendo para las plantas BWR del orden del 34%.

2.1.3 Conversión de Energía Mecánica a Energía Eléctrica

En la tercera y última etapa de conversión, la energía mecánica se convierte en energía eléctrica. Para esto se une mediante una flecha común la turbina con un generador eléctrico. La eficiencia de esta etapa es muy cercana al 100%.

Las plantas núcleoeléctricas BWR y las plantas termoeléctricas convencionales comparten las dos últimas etapas con una pequeña diferencia: las plantas de combustible fósil pueden alcanzar eficiencias globales mayores debido principalmente a que en lugar de vapor saturado se emplea vapor sobrecalentado.

2.2 Características Especiales del Combustible Nuclear

La gran cantidad de energía del combustible nuclear, aunado a su intensa actividad y potencial uso militar, tienen consecuencia muy particulares que a continuación se examinan.

2.2.1 Energía Específica del Combustible Nuclear

El combustible nuclear tiene características especiales que lo hacen muy diferente de los combustibles fósiles. La energía específica de los combustibles nucleares es miles de veces mayor a la de los combustibles fósiles. A modo de ejemplo un combustible tipo GE9B suele alcanzar quemados de 40,000 MWD/T, que equivalen a 3.45×10¹² Julio/Kg mientras que la energía específica del carbón (antracita) es 8200 caloría/g, lo que equivale a 3.43×10⁷ julio/Kg. Resulta pues que el combustible nuclear proporciona más de cien mil veces más energía que el carbón.

2.2.2 Beguridad y Salvaguardias Nuclear

Otras dos características notables del combustible nuclear es que en él existe material radioactivo y, se puede, en principio, elaborar una bomba nuclear primitiva con los subproductos del combustible gastado. Esto tiene como consecuencia que en todos los procesos involucrados en la obtención, fabricación, utilización y disposición final del combustible nuclear es necesario evitar:

- a) la liberación de radiactividad al ambiente (controles de seguridad nuclear) y,
- b) la sustracción indebida de los materiales susceptibles de usarse en dispositivos militares (controles de salvaguardias).

2.3 Ciclo de Combustible Nuclear

Se examiná el ciclo de combustible nuclear, en particular aquél de la CNLV, contrastándolo con el ciclo de combustible que se lleva a cabo en una planta convencional de generación de electricidad.

2.3.1 Comparación del Ciclo de Combustible de una Planta Convencional y una Planta Nuclear

La gran diferencia de energías específicas entre las plantas convencionales y nucleares tiene repercusiones operacionales importantes.

El ciclo de combustible de una planta termoeléctrica convencional consiste en la extracción del carbón (o de petróleo y su posterior refinación en combustóleo), su transporte, almacenamiento, alimentación, quemado y remoción de desechos. Esta tarea comprende primordialmente el movimiento de grandes cantidades de material combustible y de desechos en el caso del carbón.

Las etapas del ciclo de combustible que se desarrolla propiamente en una planta convencional son las de **alimentación de combustiblequemado-salida de desechos.** Este es usualmente un proceso continuo en el que la duración desde que entra el combustible se quema y salen los gases de combustión, es prácticamente instantánea.

El tiempo total del ciclo de combustible de una planta carboeléctrica varía y depende de la distancia entre la mina y la planta. Es usual que, para evitar el movimiento de grandes masas de carbón, las carboeléctricas usualmente se ponen prácticamente en la boca de la mina. En estos casos el tiempo de todo el ciclo de combustible es de unos cuantos días.

La vida total de una planta nuclear es de 30 a 40 años. Operacionalmente la vida del reactor se divide en **ciclos de administración del reactor** (o simplemente ciclos). La estrategia general se llama de recargas de combustibles por lotes lo que simplificado consiste en lo siguiente. El primer ciclo, que es especial por el hecho de que todos los combustibles son nuevos, opera en continuo por un lapso de aproximadamente dos años. Al término del primer ciclo el reactor se para y se inician las actividades de recarga de combustible, en donde se reemplazan de 1/3 a 1/6 de los combustibles del núcleo por un lote de combustibles nuevos y se vuelve a arrancar el reactor. El nuevo ciclo dura un año, iniciandose una serie de ciclos consecutivos en donde vuelven a reemplazarse lotes de combustibles anualmente. Un simple análisis nos indica que los combustibles deben permanecer dentro del reactor de uno a cuatro ciclos. En el caso usual de ciclos anuales, un combustible deberá permanecer de uno a cuatro años dentro del núcleo para poder extraer toda la energía aprovechable de él.

Resumiendo, mientras que en las plantas convencionales de combustible fósil la carga-quemado-descarga es un proceso casiinstantáneo, en los reactores nucleares es un proceso de años. Todo esto debido a la enorme energía específica de los combustibles nucleares. Con el fin de hacer aún más palpable el hecho anterior se proporciona el siguiente ejemplo comparativo.

En una planta carboeléctrica de capacidad semejante a una de las unidades de la Planta Nucleoeléctrica de Laguna Verde, de 1931 MWt, su alimentación de carbón promedio es de 56.6 Kg/s lo que equivale a 4,890 T/hora; es decir, en un año de operación es necesario mover del orden de ;un millón y medio de toneladas de carbón!. En comparación, la unidad de Laguna Verde después de un año normal de operación recarga del orden de 96 nuevos combustibles, lo que aproximadamente implica ;17.3 T/anuales de combustible fresco!.

A continuación se expondrá cómo el quemado de un combustible nuclear dentro de un reactor es un proceso que dura al menos un año. Cuando la administración del combustible se hace por lotes, que es lo usual, los combustibles suelen estar dos y tres ciclos más dentro del núcleo.

2.3.2 Ciclo de Combustible Nuclear, Ciclo de Combustible del Reactor

El ciclo del combustible nuclear es sustancialmente diferente y mucho más complejo que el ciclo de combustible de una planta fósil.

En el mejor de los casos, el tiempo que toma el ciclo de un lote de combustible es por lo menos de dos años.

En particular, la etapa del proceso de (alimentación de combustible)-quemado se le llama ciclo de combustible del reactor, y como se verá más adelante, es la etapa de actividades del ciclo de combustible denominada administración del combustible dentro del reactor.

Usualmente el ciclo de combustible del reactor de las recargas de reactores similares al de Laguna Verde, se programa en períodos anuales, aunque la tendencia actual es alargar estos períodos a 18 e inclusive a 24 meses, aprovechando las características avanzadas de nuevos tipos de combustible.

2.3.3 Descripción del Ciclo de Combustible del Reactor en la CNLV

A continuación se describe brevemente el desarrollo de las principales actividades que comprenden una recarga hasta llegar a la operación comercial en Laguna Verde. La descripción genérica se puede considerar representativa de las actividades de un **ciclo de combustible del reactor** de cualquier reactor tipo BWR.

Las actividades de recarga se inician al introducir totalmente todas las barras de control en el núcleo del reactor. Esto lo apaga y termina formalmente la operación comercial del ciclo anterior. Así comienzan las tareas de recarga física de combustible del nuevo ciclo.

La vasija del reactor se despresuriza y se deja enfriar gradualmente para evitar daños sobre la misma y los ensambles combustibles debido a los fuertes cambios de temperatura (ciclo térmico).

Posteriormente se procede a la apertura de la tapa de la vasija y se descarga parte del combustible gastado, todo de acuerdo a los patrones de carga de combustible estipulados en el Reporte de Administración del Ciclo elaborado previamente ex-profeso para el nuevo ciclo del reactor. Este reporte se le conoce como CMR por sus siglas en inglés (Cycle Management Report). Usualmente se descargan de 72 a 120 ensambles combustibles gastados de los 444 que comprenden el núcleo completo (obviamente se carga el mismo número de combustibles nuevos), es decir, **la fracción de recarga** (o descarga) es entre 1/3 y 1/6 aproximadamente respecto al total del núcleo. Los combustibles extraídos se depositan en las albercas dispuestas para almacenar los combustibles gastados.

İ

Se procede a intercambiar las posiciones dentro del núcleo de los combustibles gastados restantes, de acuerdo al patrón de recarga establecido en el CMR y a introducir los ensambles combustibles nuevos (frescos) en las posiciones predeterminadas, otra vez de acuerdo al CMR. Se debe encontrar experimentalmente en qué momento se llega a la condición de criticidad en frío y vasija abierta y verificar si cumple lo predicho a este respecto en el CMR. Se continúa introduciendo los combustibles nuevos hasta terminar de colocar todos los combustibles frescos, se coloca la tapa de la vasija de presión y se cierra.

Mientras tanto, una vez apagado el reactor y en paralelo, se realizan las tareas programadas de mantenimiento e inspección de los sistemas del reactor. A continuación del cierre de la vasija se procede a realizar las llamadas pruebas de **puesta en marcha**. Una vez concluidas las pruebas satisfactoriamente, se aumenta la potencia del reactor a su nivel nominal y se conecta el generador de electricidad a la red de distribución de energía eléctrica, con lo que terminan las tareas de recarga e inicia la operación comercial del nuevo ciclo de la planta.

La secuencia de extracción de las barras de control para alcanzar criticidad, así como los patrones de barras de control y cambios de secuencias de estos patrones a lo largo del ciclo del reactor en operación a plena potencia (operación comercial) se establecen también en el Reporte de Administración del Ciclo (CMR).

Las tareas de recarga programadas duran usualmente del orden de 8 semanas (2 meses) y la operación comercial 10 meses, en el caso de ciclos de combustible del reactor anuales.

2.3.4 Ventaja Económica del Ciclo de Combustible Nuclear

Tradicionalmente se considera que la gran ventaja de los plantas núcleoeléctricas sobre las plantas termoeléctricas, es el hecho de que el costo del ciclo del combustible de las nucleares aventaja económicamente a las convencionales.

Tomando como base nuevamente una planta carboeléctrica equivalente a uno de los reactores de Laguna Verde y considerando que el precio por tonelada del carbón es de \$100 US y que el costo promedio de un combustible nuclear es del orden de \$250,000 US, encontramos que el costo del combustible de la carboeléctrica es del orden de 150 millones de dólares americanos, mientras que el de la planta nuclear es del orden de 25 millones de dólares americanos. Es decir, el costo del ciclo de combustible nuclear es seis veces menor al convencional. Desde luego este no es el único costo a considerar; por ejemplo el costo capital de inversión de una núcleoeléctrica es también mayor.

Otro aspecto importante en la comparación, que no es de índole económico, al menos en forma directa, es el impacto ambiental de ambas tecnologías el cual, sin entrar en detalles, suele ser ante la opinión publica más adverso, en general, para la tecnología nuclear.

2.4 Administración de Combustible

Se definen las divisiones de la administración de combustible y se describen las diferentes etapas que comprenden la pre y posirradiación del combustible.

2.4.1 Categorías de la Administración de Combustible

La administración de combustible nuclear incluye todas las actividades relacionadas con el ciclo de combustible nuclear y se

divide en tres categorías:

- a) Administración del Combustible Pre-Irradiación (en inglés Front-End o Head-End), comprende las actividades desde la extracción del mineral hasta la fabricación del ensamble combustible, pasando por los procesos de concentración, conversión y enriquecimiento.
- b) Administración de Combustible Dentro Del Núcleo (en inglés In-Core), son las actividades relacionadas con la irradiación o quamado del combustible dentro del núcleo del reactor y las más importantes para el presente trabajo. La finalidad de esta actividad es diseñar en forma óptima el núcleo del reactor en sus ciclos de combustible. Para esto deben observarse las restricciones nucleares, térmicas, hidráulicas, operacionales y económicas impuestas y además garantizar en todo momento que no se comprometa la seguridad del reactor. Finalmente, se deben minimizar los costos de generación de energía.
- c) Administración del Combustible Post-Irradiación (en inglés Back-End o Tail-End), son aquellas actividades posteriores a la irradiación del ensamble combustible y su remoción del núcleo. Incluyen, el almacenamiento de combustibles agotados, su transporte a la planta de reprocesamiento, reprocesamiento del combustible separando el uranio y transuránicos para su utilización posterior, concentración de desechos de alta y baja actividad, y disposición final de los desechos.

2.4.2 Administración del Combustible Pre-Irradiación

Vamos ahora a revisar brevemente las etapas de pre-irradiación.

2.4.2.1 Mina

El mineral que contiene mayores concentraciones de uranio es la pechblenda, que alcanza concentraciones de hasta 25%. Sin embargo lo usual, es que las concentraciones de uranio de los minerales extraídos esté por debajo del 1 %. En México no se han localizado grandes yacimientos de mineral de uranio y actualmente el mayor depósito de mineral uranífero recuperable económicamente se localiza en la localidad de la Nopalera, en el Estado de Chihuahua.

2.4.2.2 Concentración

Debido a las bajas concentraciones del mineral de uranio, debe molerse y disolverse en ácido para extraer las sales de uranio concentrado. Posteriormente se purifica y se obtiene la llamada torta amarilla que es un concentrado de U_iO_i al 70%.
2.4.2.3 Conversión

Por hidrogenación, se obtiene a partir de la torta amarilla UO_2 puro y de ahí, usando fluoruro de hidrógeno, se obtiene hexafloururo de uranio (UF_6). El hexafloururo de uranio, si bien es altamente corrosivo, es el compuesto de uranio que tiene la más baja temperatura en estado gaseoso.

2.4.2.4 Enriquecimiento

Debido a que los reactores BWR requieren de uranio enriquecido (del 1.7 al 4%), es necesario someter al gas de hexafloruro de uranio a uno de los costosos procesos de separación isotópica. En Estados Unidos, el proceso usado en escala industrial es el de difusión gaseosa, que se ha usado por más de 40 años. En este método se hace pasar el UF6 a través de membranas porosas y debido a la pequeña diferencia de los coeficientes de difusión entre el hexafloruro de Uranio-235 y el Uranio-238 se logra su separación. En una multitud de etapas de dispositivos unitarios de separación isotópica por difusión gaseosa dispuestos en cascada, paso a paso se va realizando el proceso de separación. Este proceso consume grandes cantidades de energía eléctrica, necesaria para mover los compresores de todo el sistema de unidades separativas.

En Europa actualmente se realiza la separación isotópica a escala industrial por medio de ultacentrifugas. Esta técnica se basa en centrifugar el hexafloruro de uranio a altísimas velocidades con lo que, debido a las pequeñas diferencias de masas de los dos isótopos de uranio, se va logrando la separación. Al igual que en la difusión gaseosa, la separación se logra a través de un sistema múltiple de unidades de ultracentrifugación dispuestas en cascada. Este método consume menos energía eléctrica que el proceso de difusión gaseosa.

2.4.2.5 Fabricación

El UF₆ enriquecido en el isótopo Uranio-235 es nuevamente convertido en UO₂ en forma de polvos, se troquela y prensa en pastillas cilíndricas de UO₂ y se sinterizan en un horno. Posteriormente las pastillas se esmerilan dándoles el tamaño y forma adecuados. Se redondean las esquinas y se forman pequeñas concavidades (dishes) para reducir los problemas de expansión térmica. Las pastillas se envainan en los tubos de zircaloy, se cierran los extremos con tapones sellados y finalmente se arman los ensambles combustibles. Actualmente el Instituto de Nacional de Investigaciones Nucleares está instalando una fábrica de combustibles nucleares con el fin de abastecer parcialmente a las recargas de los reactores de Laguna Verde.

2.4.3 Administración del combustible post-irradiación (almacenamiento de combustible gastado, reprocesamiento y disposición final)

Antes de abordar el tema de la administración del combustible dentro-del-reactor, etapa que sigue formalmente al de preirradiación, se expondrá brevemente la última etapa de la administración de combustible, es decir la post-irradiación para posteriormente dedicar íntegramente un capítulo a la Administración del Combustible Dentro del Reactor, tema central de esta tesis.

Los combustibles agotados son almacenados dentro del reactor en piscinas de agua diseñados para este tipo de combustible. Estos combustibles son altamente radiactivos y es necesario enfriarlos por meses hasta que el calor de decaimiento baje y no sea necesario un sistema de enfriamiento exterior. Se suponía que, de acuerdo a antiguos planes, actualmente debería contar el mundo con la capacidad para reprocesar los combustibles nucleares agotados de las actuales plantas comerciales y la de disponer de sitios adecuados para la deposición final de desechos de alta actividad. Técnicamente el problema está en principio resuelto, sin embargo económicamente y políticamente se ha complicado. Actualmente los combustibles gastados se acumulan en las mismas centrales donde fueron utilizados, lo que, junto con el desmantelamiento de las plantas que han terminado su ciclo útil, representa un gran reto a la industria nuclear mundial.

CAPITULO 3

ADMINISTRACIÓN DEL COMBUSTIBLE DENTRO DEL NÚCLEO.

El objetivo de la Administración del Combustible dentro del Núcleo, como ya se mencionó anteriormente es:

Diseñar en forma óptima los ciclos de combustible del reactor sujetándose a las restricciones nucleares, térmicas e hidráulicas y a las consideraciones operacionales y económicas impuestas, garantizando en todo momento que no se comprometa la seguridad del reactor y minimizando los costos de generación de energía.

En México, todo diseño de un patrón de recarga, para poder ser utilizado en una planta, deberá seguir un riguroso proceso de licenciamiento ante la Comisión Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). A continuación se describen las principales etapas del proceso de licenciamiento de recargas llevado a cabo por la Central de Laguna Verde. Posteriormente se revisan las estrategias y metodologías involucradas en el proceso de diseño del núcleo de recarga.

De aquí en adelante se particularizará la exposición a los casos relacionados con los reactores BWR de Laguna Verde específicamente al Ciclo 4 de la Unidad 1, ya que éste será el ciclo que se usará como referencia para los estudios presentados en esta tesis.

3.1 Licenciamiento de Recargas

Este inciso y sus sub-incisos están basados principalmente en el capítulo 19 de la Referencia 6.

Para fines ilustrativos llamemos Ciclo N+1 al ciclo que se pretende desarrollar, Ciclo N al ciclo vigente y Ciclo N-1 al ciclo previo. El proceso de licenciamientos del patrón de recarga del Ciclo N se divide en cuatro etapas:

- Diseño del combustible de recarga.
- Diseño del patrón de recarga de referencia (RLP, por la siglas en inglés de Reference Load Pattern).
- Análisis de licenciamiento de la recarga.
- Diseño del patrón de recarga final (CMR).

3.1.1 Diseño del combustible de recarga

El Departamento de Gestión de Combustible (DGC) de la Comisión Federal de Electricidad (CFE), con base en el Plan General de Producción de Energía del Sistema Eléctrico Nacional, emite el Programa Nacional de Utilización de Energía (PUE) para la CNLV en donde se especifican los principales parámetros de producción del Ciclo N+1 y fechas de las diferentes etapas del ciclo (Ref. 12). Con base en la información del PUE, el grupo de diseño desarrolla el ciclo de referencia del Ciclo N+1 determinando el tipo y el número de ensambles combustibles a ser usados. De aquí el personal del DGC, apoyado por el Instituto de Investigaciones Eléctricas (IIE) y el Instituto Nacional de Investigaciones Nucleares (ININ) (los cuales constituyen el grupo institucional de administración de combustible dentro del núcleo) formula una propuesta de diseño del ensamble combustible. DGC junto con el proveedor de combustibles, en el caso de la CNLV General Electric (GE), realiza el diseño de fabricación de los ensambles combustibles. Esta etapa de actividades se termina aproximadamente al finalizar el Ciclo N-1.

3.1.2 Diseño del patrón de recarga de referencia (RLP)

Una vez diseñado el combustible de recarga se inician las actividades del diseño de la recarga del Ciclo N+1. Nuevamente el grupo interinstitucional de Administración de Combustible formula un patrón de carga de combustible del Ciclo N+1 y posteriormente CFE junto con GE, realizan el diseño final de la recarga de combustible del ciclo N+1. Estas actividades se realizan cuando aún no ha terminado el ciclo N, por lo que los quemados de los combustibles a reutilizarse en el ciclo N+1 son solo estimaciones.

Al final de esta etapa se elaboran las primeras secciones del Informe Suplementario de Recarga (SRS, por sus siglas en inglés) el cual, una vez terminado, se pondrá a consideración de la CNSNS. En esta etapa de la formación del informe del ciclo N+1 se especifican, entre otras cosas:

- Keff BOC no controlada (todas las barras de control extraídas) en condición caliente (HOT).
- Keff BOC controlada (HOT).
- Keff BOC con la barra de control de mayor peso extraída, condición fría (COLD)
- Velocidad de inserción de reactividad durante el parado rápido
- Coeficiente de reactividad por vacíos.
- Coeficiente de reactividad por efecto Doppler (temperatura).

3.1.3 Análisis de licenciamiento de la recarga

Una vez establecido el Patrón de Recarga de Referencia y utilizando los datos de la primera parte del Informe Suplementario de Recarga, se inicia el análisis de los siguientes eventos:

- Error de carga del ensamble combustible.
- Respuesta del núcleo ante la caída accidental de barra de control. Se debe demostrar que el pico de entalpia del combustible no excede los 280 cal/gr.
- Respuesta del núcleo ante la extracción errónea de la barra de control. Se debe demostrar que la plasticidad del encamisado de las barras de combustible no excede el 1%.
- Ante oscilaciones de potencia, se analiza si el reactor es lo suficientemente estable para que no ocurran oscilaciones de potencia divergentes ni oscilaciones que sobrepasen los límites térmicos impuestos.

Para transitorios de moderada frecuencia tales como;

- Disparo de turbina o rechazo de carga del generador,
- Pérdida de precalentamiento del agua de alimentación y
- Falla del controlador de agua de alimentación a máxima demanda,

se debe demostrar que no se excede en ningún momento el límite de seguridad impuesto que preserva la integridad del encamisado de las barras de combustible.

Una vez concluido el análisis de licenciamiento de la recarga del Ciclo N+1, se termina el Informe Suplementario de la Recarga y se emite a la CNSNS para su eventual aprobación. En caso de aprobarlo la CNSNS otorga el licenciamiento de operación de la recarga.

3.1.4 Diseño del patrón de recarga final (CMR)

Una vez finalizado el ciclo N y teniendo los datos reales del fin de ciclo se procede a realizar el diseño final de la recarga. En esta etapa es posible realizar sólo ajustes y no grandes cambios con respecto al patrón de recargas de referencia (RLP) y a la estrategia de operación para el ciclo N+1. Para todo cambio deberá demostrarse ante CNSNS que no invalida los términos de la licencia otorgados con base en el patrón de recarga de referencia. Como ejemplo, si en la elaboración del RLP se postuló que el ciclo N terminaría con una exposición promedio del ciclo de 5,000 MWD/MT y en la realidad el ciclo N terminó 400 MWD/MT antes ó 600 MWD/MT después, muy probablemente la CNSNS exigiría que se realizaran nuevos estudios para el licenciamiento de la recarga N+1.

in and the northern provide the set of the

Al terminar este ajuste final de la recarga se elabora el informe final de administración del ciclo CMR que el grupo de operación del reactor deberá seguir. En él se especifica el patrón de recarga de combustible y el programa de patrones de barras de control para el ciclo, entre otras cosas.

3.2 Diseño del núcleo de Recarga

Este inciso sigue los pasos delineados en el capítulo 21 de la Referencia 6.

3.2.1 Requerimientos para realizar el diseño de la recarga

Para poder realizar el diseño de una recarga de combustible del ciclo N+1, debemos contar con ciertas herramientas e información indispensable como son:

1- Un sistema de programas de cómputo que nos permita simular adecuadamente el núcleo del reactor y realizar el seguimiento de la operación de la planta y el análisis de las propuesta de recarga de combustible del ciclo N+1.

Para esto se cuenta en el ININ con el Sistema de programas de cómputo de Administración de Combustible FMS, de la compañía Scandpower Inc. Los principales programas involucrados en el estudio que se realiza en la tesis y que pertenecen al sistema FMS son;

- los programas para la formación de los bancos de datos nucleares llamados RECORD/THERMOS/GADPOL y
- el programa PRESTO simulador nodal en tres dimensiones de núcleos de reactores BWR y PWR.

Una vez que se proporciona los datos geométricos del núcleo el nivel de detalle que maneja el código PRESTO es el siguiente: La sección transversal del núcleo la divide en canales de combustible y cada canal, en la opción de tres dimensiones, en el eje axial divide el núcleo en 24 nodos axiales. En el caso de la simulación del núcleo de alguno de los reactores de la CNLV PRESTO maneja un total de 444 x 24 = 10,656 nodos.

El código PRESTO (Ref. 7 y 8) posee modelos neutrónico y termohidráulico acoplados y es posible simular estados de quemado de un núcleo. El código proporciona en su salida información sobre potencias, reactividad, flujo neutrónico térmico, exposición (o quemado), razón de generación de calor lineal (LHGR), razón de potencia crítica (CPR), generación de calor lineal planar promedio (MAPLHGR), entre otros parámetros. Todo esto a nivel nodal, de canal de combustible, axial promedio del núcleo, promedio por región y global del núcleo. Las opciones de PRESTO incluyen cálculos de criticidad en condición caliente, tibios y fríos. Se pueden ejecutar pasos de quemado o exposición, transitorios de xenón, cálculos referentes a encontrar la barra de control más pesada, cálculos de margen de apagado y cálculos de quemado HALING (dado un paso de quemado o de búsqueda de criticidad). El código PRESTO tiene flexibilidad para simular diferentes configuraciones del núcleo y diferentes condiciones de operación, tanto nominal como fueran de lo nominal.

Los principales parámetros de operación que se deben proporcionar al código PRESTO son la potencia nominal, la tasa de flujo del refrigerante, el subenfriamiento del refrigerante a la entrada del núcleo, la presión nominal y el patrón de barras de control. El código, a través de los llamados archivos de reinicio (Restart File) permite ligar ciclos consecutivos del reactor, admitiendo la inserción de nuevos combustibles, la relocalización de combustibles, la reinserción de combustible y la descarga de combustibles gastados.

2- Las condiciones finales del ciclo N (ciclo previo). Esta información deberá provenir del seguimiento operacional de la planta y en caso de no contar con ella, de la mejor proyección disponible de fin del ciclo N.

En el estudio de la tesis se usó para este propósito el archivo de reinicio FINAL del seguimiento con el código PRESTO del Ciclo 3 de la Unidad 1 llamado L1PR027.RST (Ref. 9).

3- Especificar tipos de combustible nuevos (frescos) de la recarga.

En el Ciclo 4 de la Unidad 1 se cargaron 104 nuevos combustibles, 96 de ellos GE9B con 3.22% de enriquecimiento promedio de U-235 y 4 combustibles LTA de Siemens (Ref. 10). Los parámetros nucleares de las celdas de estos combustibles, junto con los de los recargados del Ciclo 4, están en el Banco de Datos L1F206 M (Ref. 11)

4- La energía planeada a producirse en el ciclo.

Para el Ciclo 4 de la Unidad 1, de acuerdo al PUE emitido por CFE (Ref. 12), es de 8046 MWD/MT, equivalentes a 334 días de operación a plena potencia o EFPD (Energy Full Power Days).

5- Los principales Parámetros de operación nominal del reactor tales como la potencia térmica nominal del núcleo, el caudal nominal del núcleo, la fracción de desvío del caudal (bypass), la entalpia de entrada al núcleo y la presión nominal. En la Tabla 3.1 (Ref. 13) se consignan los principales valores de operación nominal de la Unidad 1 de la CNLV.

- 6- Los límites térmicos y mecánicos a satisfacer en la recarga así como los valores de los parámetros base de diseño tales como (en paréntesis se proporciona los valores impuestos al Ciclo 4 de la Unidad 1):
 - MCPR, razón mínima de potencia crítica (1.39)
 - MLHGR, razón máximo razón de generación de calor lineal (430 w/cm 6 13.4 Kw/pie)
 - MAPLHGR, la generación máxima de calor lineal planar promedio.
 - Margen de Apagado en frío con la barra más pesada extraída (al menos de 1 % de deltaK/K).
 - Exceso de reactividad en caliente con venenos en equilibrio al inicio del ciclo (1% deltaK/K).

Este valor se impone para compensar la incertidumbre de los cálculos y para tener un exceso a compensar con las barras de control y así poder conformar los perfiles de potencia objeto.

- El pico de exposición de cualquier combustible no deberá ser mayor a 40,000 MWD/T. Esto se suele traducir en que el quemado promedio de un lote de combustible esté dentro del rango de 25,000 a 30,000 MWD/T.
- 7- Establecer el tipo de simetría del núcleo a usarse

Para el Ciclo 4 de la Unidad 1 se establece para la recarga de combustible la simetría de espejo de un cuarto de núcleo, propiciando en lo posible la simetría de un octavo al menos en las localidades del núcleo relacionadas con el monitoreo del núcleo.

TABLA 1.1 Principales características del reactor BWR de la CNLV

Tipo	BWR/5
Potencia eléctrica (MWe)	654
Potencia térmica (Mwt)	1931
Número de Ensamble	444
Número de barras de control	109
Altura activa del núcleo (cm)	381
Diámetro del núcleo (cm)	362
Generación de potencia lineal (kW/ft):	
promedio	5.4
máxima	13.4
Densidad de potencia promedio (kW/l)	49.15
Enriquecimiento promedio:	
núcleo inicial	1.86
recargas	2 a 4
Presión en el sistema en el núcleo (psia)	1035
Temperatura del moderador (°F)	549
Temperatura del combustible (°F):	
promedio	2143
máxima	3435
Fracción de vacios:	
promedio	0.40
máxima	0.70

3.2.2 Guías y recomendaciones para el diseño de la recarga

Para la formulación de un patrón de recarga de combustible se proporcionan las siguientes guías y recomendaciones:

- 1- Procurar que en la vida útil de un combustible, éste resida una sola vez en la periferia del núcleo.
- 2- En el caso de que un combustible resida más de una vez en la periferia, la cara que da al reflector radial deberá ser diferente.
- 3- Ningún combustible con tres ciclos en la periferia podrá introducirse en una localidad interna del núcleo.
- 4- Procurar mayores márgenes en la mínima razón de potencia crítica (MCPR) procurando aplanar radialmente la distribución de potencia radial.

- 5- El aplanamiento de la distribución de potencia radial se logra aumentando la Kinf del núcleo hacia la periferia respecto al centro del núcleo.
- 6- Procurar mayores márgenes en el MCPR minimizando las desigua lades entre combustibles adjuntos.
- 7- Procurar dispersar lo más posible en la región interna del núcleo los ensambles combustibles frescos y con esto mejorar el MAPLHGR y el LHGR de la recarga al evitar picos axiales de potencia debidos a no tener combustibles frescos adjuntos.
- 8- Deberá procurarse que los combustibles que van a ser descargados al término del ciclo ocupen localidades tales que el quemado de estos combustibles tienda a igualarse al final del ciclo.

Las recargas de combustible de un reactor se diseñan bajo ciertas estrategias operacionales establecidas, incluyendo la importante estrategia que determina la posición de las barras de control a plena potencia. En el diseño de las recargas también intervienen una serie de principios, criterios y reglas de diseño de recargas que se han ido formando con la experiencia y el estudio teórico de las mismas. Todo esto constituye la metodología de diseño de recarga implementada para satisfacer los objetivos fijados para la recarga, tanto por motivos de seguridad y de facilidad de operación como de ahorro económico.

1

A continuación se exponen las estrategias más importantes en la formación de recargas, principalmente las relacionadas con el Ciclo 4 de la Unidad 1 de la CNLV.

3.2.3 Estrategia de Baja Fuga Radial (Recarga tipo LLL)

La estrategia de baja fuga radial o recarga tipo LLL (de las siglas en inglés Low Leakage Loading), tiene como motivación la de tratar de prolongar la vida de la vasija de presión del reactor, disminuyendo la fluencia de neutrones sobre la misma.

Una de las estrategias, la más usada, es definir una zona en la periferia del núcleo y colocar en esta zona los combustibles menos reactivos disponibles para la recarga.

La recarga del ciclo 4 de la Unidad 1 de la CNLV fue realizada de acuerdo a la estrategia de baja fuga radial.

3.2.4 Estrategia de Núcleo de Celda de Control (Recarga CCC)

A continuación se presenta la operación del reactor a plena potencia bajo la estrategia de Núcleo de Celdas de Control o

recarga tipo CCC (de las siglas en inglés de Control Cell Core).

Para esto es necesario antes examinar las diferentes funciones que se le asignan a las barras de control y la estrategia convencional de control por barras del reactor.

Las funciones de las barras de control en un BWR son múltiples, las principales son:

- Apagar el reactor en cualquier momento al insertar rápidamente todas las barras de control (SCRAM).
- Llevar a criticidad al reactor al irse extrayendo paulatinamente las barras de control hasta alcanzar primero la criticidad a baja potencia y después la potencia nominal de operación.
- El patrón de barra a plena potencia permite configurar la distribución de potencia e ir compensando los cambios de reactividad debidos a la formación de venenos provenientes de los productos de la fisión (principalmente xenón y samario), a los cambios de potencia, al cambio de presión, de temperatura, al irse quemando los venenos consumibles (gadolinio), para ir compensando el consumo del uranio físil, para los cambios de reactividad debidos a la formación de plutonio, etc.

Para emplear la estrategia de operación CCC es necesario disponer de combustibles de baja reactividad. Esto no es lo usual en las primeras recargas de un reactor. Para la carga inicial en un reactor BWR, y en el pasado para los siguientes ciclos (antes de establecerse las recargas CCC), la estrategia del manejo de las barras de control del reactor a plena potencia denominada convencional, se basa en lo siguiente:

- Se dividen las barras de control en cuatro grupos designados A-1, A-2, B-1, B-2, tal como se muestra en la Figura 3.1.
- Si una barra de control está completamente insertada en el núcleo, se dice que está en la posición de 00 muescas. Si la barra de control está totalmente extraídas la posición es de 48 muescas. Las barras de control sólo pueden estacionarse en posiciones con un número par de muescas.
- Se definen tres tipos de inserción de barra de control, la llamada inserción somera o poco profunda, cuando la barra de control está en el intervalo de 48 a 32 muescas, inserción intermedia, ente 34 y 18 muescas e inserción profunda, entre 16 a 00 muescas
- En la operación a plena potencia más del 80% de las barras de control están extraídas totalmente; el resto se encuentra en

inserción profunda y/o somera y sirven como una reserva de reactividad ante eventuales cambios de reactividad.

- Si el reactor está operando a plena potencia bajo la secuencia de patrón de barras A1, las barras de control del grupo A1 deberán estar preferentemente insertadas profundamente y las del grupo A2 someramente. En la secuencia A2 se invierten los papeles de los grupos A. En las secuencias B1, las barras de control del grupo B1 están preferentemente insertadas profundamente y las del grupo B2 someramente e inversamente en la secuencia de control B2.
- Para el control del reactor a plena potencia, la secuencia de las barras de control se va intercambiando periódicamente (usualmente cada 1000 MWD/T) hasta terminar el ciclo. El orden en que se van cambiando cíclicamente las secuencias es Al, Bl, A2, B2.

		A1	B1	A1	B1	A1	B1	A1		
	A2	B2	A2	B2	A2	B2	A2	B2	A2	
A1	B1	A1	B1	A1	B1	A1	B1	A1	B1	A1
B2	A2	B2	A2	B2	A2	B2	A2	B2	A2	B2
A1	B1	A1	B1	A1	B1	A1	B1	A1	B1	A1
B2	A 2	B2	A2	B2	A 2	B2	A2	B2	A2	B2
A1	B1	A1	B1	A1	B1	A1	B1	A1	B1	A1
B2	A2	B2	A2	B2	A2	B2	A2	B2	A2	B2
A1	B1	A1	B1	A1	B1	A1 ·	B1	A1	B1	A1
	A2	B2	A2	B2	A2	B2	A2	B2	A2	
		A1	B1	A1	B1	A1	B1	A1		

ESQUEMA DE LOS GRUPOS DE CONTROL NUCLEO COMPLETO

Figura 3.1

Grupos de contro del núcleo del rector BWR de la CNLV

La filosofía detrás de la estrategia convencional de control, es la de alcanzar un quemado uniforme de los ensambles combustibles y de las barras de control al finalizar el ciclo, mitigando en lo más posible las distorsiones de quemado de los combustibles debido a la presencia de las barras de control.

Hace más de una década se probó en la Unidad 1 de la Planta Nuclear de Millstone (USA) un nuevo concepto de control de los reactores BWR a plena potencia. Este nuevo concepto se denominó CCC o de Núcleo de Celdas de Control y consiste en lo siguiente:

- En el concepto CCC los movimientos de barras de control para compensar cambios de reactividad en el reactor a potencia se restringen a un solo grupo de barras de control durante todo el ciclo. Este grupo de barras de control se escoge que sea, por cuestiones de simetría, las barras de la secuencia A2.
- Cada celda de control CCC está formada por la barra de control (perteneciente al grupo de la secuencia A2) y los cuatro combustibles que la rodean.
- Sólo se permite que ensambles combustibles de baja reactividad sean colocados en las celdas CCC. Con esto se logra que el movimiento de las barras de control a plena potencia sólo se realice en celdas con ensambles combustibles de baja potencia. Esto trae como consecuencia una serie de efectos benéficos.
- Aún cuando ya no es necesario realizar cambios de secuencia como en el control convencional, es recomendable una o dos veces por ciclo, intercambiar el papel de las barras someras a profundas y viceversa, para lograr un quemado axial más uniforme al final del ciclo.

Las principales diferencias entre los núcleos CCC y convencionales son:

- En un núcleo convencional siempre habrá movimientos de barras con ensambles combustibles adjuntos de alta reactividad y potencia. Esto suele producir altos picos de potencia nodal reduciéndose los márgenes en los límites térmicos. Se estima que el pico de potencia nodal en las celdas CCC es 16% más bajo que el correspondiente a un núcleo convencional y como consecuencia se produce una sustancial mejora de los márgenes de los parámetros MLHGR y MCPR.
- La operación con núcleos CCC se facilita puesto que se prescinde de los molestos cambios de secuencia de los núcleos convencionales y además los factores de capacidad de la planta se ven aumentados.

- Los efectos acumulativos de la presencia de barra de control sobre los ensambles combustibles son menores en los núcleos CCC. Esto evita deformaciones locales mayores en el quemado del gadolinio y del Uranio-235 así como de la conversión de plutonio debido a la presencia de la barra de control.
- En general el movimiento de las barra de control perturba menos las distribuciones de potencia en los núcleos CCC, facilitando la operación del reactor.

Obviamente el elegir núcleos CCC tiene fuertes repercusiones en la formación del patrón de recarga. Todos los núcleos de recarga de la Unidad 1 de la CNLV, incluyendo el ciclo 4, han sido núcleos CCC.

3.2.5 Estrategia de aplanamiento de la distribución radial de potencia (Esquema de Carga Zonal)

Las técnicas de aplanamiento de la potencia radial se basan en el siguiente principio:

Colocar los ensambles combustibles de una recarga de forma tal que se obtenga la densidad de potencia radial lo más uniforme posible con el fin de aumentar la potencia promedio del núcleo, obtener bajos factores de pico de potencia radial y lograr un quemado uniforme en todo el ciclo.

A continuación se ilustra con un ejemplo cómo la distribución uniforme de combustibles idénticos produce distribuciones de potencia muy alejadas de la uniformidad. Posteriormente se presenta la estrategia de carga ZONAL CICLADO IN-OUT, tendiente a aplanar la distribución de potencia radial.

Los primeros reactores nucleares fueron realizados con cargas uniformes de enriquecimiento y de las propiedades nucleares. Esto tenía la ventaja de la simplicidad tanto en el cálculo teórico como de la realización misma del reactor. Sin embargo las cargas uniformes de combustible tienen una desventaja intrínseca, la distribución de potencia "cae" del centro a la periferia cosenoidalmente, en el caso de reactores de geometría rectangular, o como la función de Bessel de primera clase grado cero en el caso de reactores cilíndricos. En ambos casos distan mucho de que la potencia sea uniforme como es de desearse para los reactores de potencia.

Como ejemplo calculemos qué potencia térmica nominal podría alcanzar un núcleo de las dimensiones del que poseen los reactores de la CNLV si se cargara uniformemente con combustible, es decir con combustibles de idénticas propiedades, imponiendo además, la restricción de que el nodo de mayor potencia tenga una razón de generación de calor lineal (MLHGR) de 430 watt/cm. En este ejemplo consideremos que el núcleo es cilíndrico desnudo (sin reflector);

se puede demostrar que el factor de canal caliente $F_{\rm R}^{\rm N}$ es de 3.633 (ver página 503 de la Referencia 14). Sea LHGR_{prom} la razón de generación promedio del núcleo desnudo, el cual se puede calcular como;

 $LHGR_{prom} = MLHGR / F_{R}^{N} = 430 / 3.638 = 118.2 watt/cm$

considerando que la longitud de los combustibles (H) es de 144 pulgadas (361.44 cm), el número de barras de combustible por ensamble de 62 (n) y que el núcleo esta constituido por 444 ensambles combustibles (N) podremos calcular la potencia total (P_{txt})

$$P_{tot} = LHGR_{mon} * H * n * N = 118.2 * 62 * 361.44 * 444 =$$

 $P_{lot} = 1,176$ MWth

La potencia térmica nominal de los reactores de Laguna Verde es de 1,931 MWth (P_{CNLV}). Obviamente es necesario que la potencia sea aplanada. Procediendo inversamente y bajo los mismos supuestos del ejemplo anterior se podría estimar el factor de canal caliente máximo para la CNLV ($F^{N}_{RmaxCNLV}$)

 $F_{RmaxCNLV}^{N} = (P_{iot} / P_{CNLV}) * F_{R}^{N} = (1, 176 / 1, 931) * 3.638$

 $F^{N}_{RmaxCNLV} = 2.21$

Las primeras técnicas para aplanar el flujo radial en un reactor consistieron en dividir en zonas el núcleo. En la zona central se ponían los combustibles más quemados, en la zona más periférica los más reactivos o frescos y en las zonas intermedias los de quemado intermedio.

Esta estrategia, que se denominó ZONAL CICLADO IN-OUT consiste en lo siguiente;

- Se divide el núcleo en M zonas radiales concentricas cada una conteniendo n canales,
- En cada ciclo se introducen un lote de n combustibles frescos en la zona más periférica,
- La carga anterior de combustibles que ocupaba la zona periférica (ahora con un ciclo de quemado) pasa a la siguiente zona contigua a la más periférica,
- el lote desplazado de los combustibles que en el ciclo anterior ocupaba la zona contigua a la periférica (ahora con dos ciclos de quemado) pasa a la zona próxima que esta más al centro del núcleo,

 el proceso continúa sucesivamente hasta llegar a la zona central donde el lote desplazado con M ciclos de quemado es extraído del núcleo.

Desafortunadamente, el esquema ZONAL CICLADO IN-OUT tropezó con grandes problemas de picos de potencia en las fronteras de las zonas sobre todo en los grandes núcleos con grandes quemados como es el caso de los reactores de potencia. En el ámbito de los reactores de potencia se desechó ésta primera versión de la estrategia ZONAL CICLADO IN-OUT. La realidad, como veremos después, es que los métodos actuales de recargas de reactores de potencia han adaptado tanto rasgos del esquema ZONAL CICLADO IN-OUT como de la estrategia de CARGA DISPERSA que a continuación examinamos.

3.2.6 Estrategia de máxima dispersión de combustible (Esquema de Recarga de Tablero de ajedrez)

El principio de los esquemas de máxima dispersión de ensambles combustibles se puede enunciar de la forma siguiente:

Dividir el lote de ensambles combustibles en categorías formando grupos de combustibles con propiedades nucleares afines y dispersar su colocación en el núcleo de forma tal que la distancia entre los combustibles de la misma categoría sean lo más equidistante posible entre sí. Con esto se logra minimizar al máximo los picos de potencia locales en los combustibles de alta reactividad.

Bajo este principio se han generado algoritmos que tratan de alcanzar la mayor dispersión generando recargas al azar con cierta preferencia a colocar combustibles de forma tal que se aplane radialmente la potencia. Por prueba y error se obtiene la recarga que cumpla con las restricciones y objetivos impuestos.

ł

ŧ

ł

ŧ

En base a la experiencia se encontró que resulta inconveniente el colocar en un núcleo combustibles frescos (o muy reactivos) en localizaciones adyacentes puesto que tienden a formarse picos de potencia local difíciles de mitigar. Este hecho es más pronunciado en el centro del reactor donde las potencias suelen ser mayores. De la experiencia anterior y siguiendo el principio de máxima dispersión se ha formulado el llamado ESQUEMA DE RECARGA DE TABLERO DE AJEDREZ el cual establece:

Dividir la carga de combustibles en dos categorías: frescos y parcialmente quemados. Colocar combustibles frescos en las posiciones "blancas" y los parcialmente quemados en las posiciones "negras" de un tablero de ajedrez en que supuestamente se divide el núcleo del reactor. Como se verá después, el método biparamétrico de BURTE se basa fuertemente en el esquema de tablero de ajedrez imponiendo dicho esquema (de tablero de ajedrez) a la región central del núcleo.

3.2.7 Estrategia de optimización HALING, técnicas de corrimiento espectral y tendencias futuras de la optimización de recargas

En los tiempos pioneros de la generación de potencia eléctrica por medio de reactores de ebullición R.K. Haling desarrolló la estrategia de optimización de recargas que lleva su nombre. En la planta Big Rock Point aplicó y demostró su metodología la cual hasta la fecha es la piedra angular en la optimización del diseño de cargas de combustible BWR en GE. El método Haling además proporciona las distribuciones de potencia objeto con las cuales los operadores se guían para llevar a cabo la operación adecuada del reactor en cualquier momento del ciclo y así poder garantizar terminar el ciclo en las condiciones previstas.

Respecto al diseño de recargas, la opción Haling permite estimar el estado de fin de ciclo sin necesidad de desarrollar los patrones de barras de control correspondientes. Esto proporciona la posibilidad de realizar análisis rápidos y confiables de propuestas de recarga ya que el método proporciona un medio de cálculo para poder comparar recargas y determina cuál de ellas es mejor.

El principio Haling al poseer la importante cualidad de poder desacoplar el control del ciclo del estado final del ciclo, permite que el estado final de la recarga sea independiente de los patrones de barras de control y de las distribuciones de los venenos quemables. Esto siempre y cuando al final del ciclo los combustibles estén libres del veneno quemable y la distribución de potencia a través del ciclo se haya apegado a la distribución Haling. Como consecuencia del desacoplamiento, es posible estudiar en detalle ciclos consecutivos (análisis de multiciclos) sin necesidad de desarrollar los patrones de barras de, control de cada uno de los ciclos ni preocuparse por la distribución de los venenos quemables en los combustibles.

Otra ventaja de seguir el método Haling es que en principio se puede inferir la distribución de los venenos quemables. Esto se logra comparando directamente la distribución de Kinf con combustibles sin venenos con aquella requerida por el perfil de potencia deseada.

El principio Haling establece: (Apéndice D de la Referencia 6)

Para cualquier conjunto dado de condiciones de fin de ciclo, el factor de pico de potencia se mantiene en un valor mínimo cuando el perfil de potencia no cambia durante el ciclo.

Una condición para que funcione este principio es que al final del

ciclo la reactividad del combustible sea una función decreciente de la exposición (o quemado). Este hecho se cumple en la generalidad de las recargas bien formadas y sólo al inicio del ciclo la reactividad de ciertos combustibles es una función creciente de la reactividad (debido a los venenos quemables y a fuertes conversiones iniciales locales de la producción de plutonio).

Haling también proporcionó el método para encontrar el perfil de potencia que cumpliera con su principio y demostró que dada una recarga, la solución es única. Enfatizamos que el perfil de potencia Haling se conserva igual a través de todo el ciclo; es a su vez el óptimo para la recarga en el sentido de que es el perfil que mantiene el factor de pico de potencia mínimo a través de todo el ciclo.

Una consecuencia importante de usar el método HALING es que también se obtiene la distribución de exposición de cada uno de los combustibles al final del ciclo así como la longitud del ciclo, suponiendo que se conoce el valor de la Keff_{EGC} al final del ciclo del simulador de núcleos utilizado. En principio el valor de Keff_{EGC} debe ser 1.0000 con todas las barras de control extraídas, sin embargo la incertidumbres de los códigos de simulación es tal que es necesario deducir estadísticamente qué valor deberá ser usado para obtener realmente la longitud del ciclo.

١.

El código PRESTO, como ya ha sido mencionado anteriormente, tiene la opción de realizar cálculos Haling y de hecho el desarrollo de los estudios de optimización de recargas realizados en esta tesis se basa fuertemente en el uso del método HALING, Todas las cargas de los reactores de la CNLV hasta la fecha han sido hechas utilizando el método de optimización Haling. Sin embargo la técnica de desplazamiento espectral (Spectral Shift) se ha comenzado a usar en los últimos diseños de recargas para la Unidad 1 de Laguna Verde. Esta técnica consiste en usar perfiles de potencia (no Haling) que sobrequemen la parte media inferior del núcleo en la primera mitad del ciclo. Esto con el fin de aumentar la conversión de plutonio y disminuir al final del ciclo la densidad de vacios global del núcleo y así extender la operación a plena potencia del ciclo. Esto es así puesto que habrá una mayor producción de plutonio y la menor densidad de vacíos, a su vez, proporcionará un mayor margen positivo de reactividad. Esto último en razón de que los vacíos tienen un coeficiente negativo de reactividad.

1

3

ł

El fundamento de la técnica de corrimiento espectral consiste en que a mayores flujos de neutrones rápidos, mayor es la conversión del uranio-238 en plutonio-239 y plutonio-241 (ambos físiles). Entonces, si al inicio del ciclo, cuando se cuenta con un exceso de reactividad importante, se colocan las barras de control de tal forma que globalmente el núcleo tenga una mayor densidad de vacíos (vapor), el aumento global de los vacíos conduce a una disminución de la moderación de neutrones corriéndose el espectro de neutrones

(la relación de neutrones rápidos a térmicos crecerá), trayendo como consecuencia un aumento en la conversión de isótopos físiles y extendiéndose la longitud del ciclo a plena potencia.

Aún cuando la anterior técnica aleja la realización del ciclo del concepto Haling, la magnitud de su uso es tal que resulta en una extrapolación del método Haling.

A pesar de todas las ventajas y virtudes del método Haling parece que el método tiene contados sus días, esto debido principalmente:

- al surgimiento de nuevos tipos de combustibles avanzados, con mayor cantidad de barras de combustible por ensamble, con mejor diseño termohidráulico y por ende con mejores límites térmicos y de seguridad. Estos combustibles son aptos para admitir mayores enriquecimientos de Uranio-235,
- a los sistemas de cómputo más rápidos y a la mejora de los códigos de cómputo simuladores de núcleos conteniendo modelos de cálculo más confiables y exactos (best estimate code),
- a la tendencia de usar intensivamente las técnicas que aumenten la conversión de plutonio tales como el corrimiento espectral, y
- a la demanda de ciclos mayores a 18 meses que tienen como objeto disminuir los costos derivados en el período de recarga.

El objetivo ya no es optimizar las distribuciones de potencia y asegurar mayores márgenes de los límites térmicos, como es el caso del método Haling, sino al contrario, tratar de realizar recargas más agresivas en donde a costa de reducir los márgenes, se extienden la longitudes del ciclo operando bajo estrategias que producen mayores conversiones de plutonio (técnicas de Shift Spectral). Lo anterior exige dejar el método Haling y en su lugar desarrollar sistemas de códigos de cómputo que realicen en forma automatizada e integral el diseño axial neutrónico de los combustibles (distribución del enriquecimiento de Uranio-235 y distribución de venenos quemables), el diseño de las recargas y el diseño de los patrones de barras de control de varios ciclos consecutivos (multiciclos), buscando la optimización al maximizar la extracción global de energía y minimizar los costos totales (ver Referencias 5 y 6).

3.2.8 Filosofías de Operación y Administración de Combustible

Antes de finalizar esta revizión de técnicas relacionadas con la Administración de Combustible, tratemos de examinar, bajo una perspectiva más amplia, las filosofías subyacentes en la administración integral de una planta nuclear. Un hecho fundamental de la administración de combutible nuclear, que lo diferencia de la convencional, es que la extracción total de energía de un combustible depende fuertemente de la trayectoria histórica que tuvo en su vida útil el ensamble combustible. El quemado máximo de un ensamble combustible, quemado de descarga, depende de cómo se desarrollaron los diferentes ciclos en donde el combustible residió dentro del núcleo. El inventario isotópico físil del ensamble combustible no sólo depende del quemado alcanzado sino también de las condiciones operacionales en que se quemó dicho ensamble. La cantidad de U-235 y de plutonios físiles que tenga un ensamble de combustible en su descarga final depende de la historia de presencia de barra y la distribución de vacíos a la que fue expuesto el ensamble.

Como consecuencia del hecho anterior, los responsables de la planta nuclear tienen que adoptar una línea de estrategia de operación, es decir, elegir bajo qué filosofía de Administración de Combustible se va operar la planta.

A continuación, tratando de clarificar, se esbozan tres filosofías de operación posibles:

 Filosofía de operación de corto plazo (optimización individual de la recarga de diseño)

Establecida la longitud del ciclo, diseñar la recarga de combustibles optimizando el número de combustibles y sus enriquecimientos promedio, que resulte más económica y cumpla con los márgenes de seguridad implantados.

En caso de estar fijo de antemano el número y tipo de combustibles de la recarga, diseñar la recarga maximizando la longitud del ciclo conservando los márgenes de seguridad implantados.

 Filosofía de operación de mediano plazo (optimización de la utilización del combustible -Análisis de Multiciclos-)

Obtener la recarga del ciclo por diseñar, estudiando los siguientes ciclos del reactor (análisis de multiciclos) con el fin de optimizar el diseño de la recarga en función de maximizar el aprovechamiento de los combustibles al lograr que los lotes alcancen el quemado de descarga máximo permisible, en particular el lote de combustibles frescos del ciclo de diseño. Un objetivo propio del análisis de multiciclos es proponer y procurar alcanzar los llamados ciclos de equilibrio en donde las recargas y la operación del ciclo son iguales ciclo tras ciclo.

Ł

Filosofía de operación de largo plazo (optimización del inventario de isótopos físiles) El objetivo es obtener la mayor extracción de energía por kg de uranio natural utilizado. Esto se logra al reprocesar los ensambles de combustible gastados, extrayendo, separando y concentrando tanto el plutonio como el uranio remanente. Estos son reutilizados en la fabricación de nuevos ensambles combustibles de óxidos mixtos (uranio-plutonio) llamados por su siglas en inglés MOX (Mixture Oxid). Es conveniente opera los ciclos del reactor bajo técnicas que aumente la conversión de plutonio como son; la de desplazamiento espectral y la llamadas ICF (Incresed Core Flux) de aumento del caudal de flujo de refrigerante.

Estas filosofías no se contraponen y pueden, en algunos aspectos, ser complementarias. Además en cualquier momento se puede redefinir la línea de acción a seguir en la planta nuclear. Sin embargo, una decisión clara, completa y oportuna de la filosofía, objetivos y metas a llevar a cabo, daría como consecuencia mejores desempeños globales de la planta. Lo anterior es fácil de proponer pero, la realidad, es que los responsables de la planta se tienen que enfrentar con problemas de toda índole todos los días cuya resolución tiene que ser tomada de inmediato. Ante este panorama es difícil realizar planes a futuro y la filosofía implícita que prevalece es la de corto plazo. Además, los adelantos en combustibles más avanzados, el surgimiento de nuevas técnicas de operación, y los imprevistos que modifican la ejecución de los ciclos hacen difícil el intentar lograr objetivos de mediano plazo como son, por ejemplo, el de alcanzar operación del reactor con ciclos en equilibrio. Lo anterior no invalida la conveniencia de realizar estos estudios de multiciclos a las recargas pues aún en el supuesto de no intentar llegar a ciclos de equilibrio,los resultados de estos estudios guían la formación de recargas.

ł

Actualmente en el ININ por contrato con CFE, se estudia la posibilidad y conveniencia de usar combustibles de óxidos mixtos (uranio-plutonio) en la CNLV. Este estudio puede servir a CFE para examinar la conveniencia de reprocesar los combustibles gastados de la CNLV.

3.2.9 Metodología del diseño de Recargas para la CNLV

Hasta ahora se han revizado diferentes estrategias y metodologías, recomendaciones, técnicas y reglas empleadas para obtener recargas de combustible que cumplan con las restricciones de seguridad, mitiguen la exposición de neutrones sobre la vasija de presión y propicien el óptimo aprovechamiento de los combustibles.

La tarea que a continuación se emprende es la de tratar de sintetizar las bases lógicas de diseño de las recargas de la CNLV. Definir bajo qué filosofía se opera, las estratégias, metodologías, recomendaciones, técnicas etc. que son empleadas en los diseño de recargas de la CNLV. Estas bases de diseño serán usadas al desarrollar los estudios de optimización de recargas de los siguientes capítulos.

Bases Lógicas de Diseño de recargas de la CNLV:

- 1- La filosofía de operación es la optimización individual de la recarga de diseño procurando guiarse por estudios de multiciclos. Establecer el número de combustibles frescos y su tipo optimizando la longitud de ciclo. El número de combustibles de recarga del ciclo 4 de la Unidad 1 es de 104, 96 tipo GE9B y 4 LTA.
- 2- Usar la estrategia de baja fuga radial (LLL) utilizando la técnica de colocar en la región periférica del núcleo combustibles de menor reactividad (localidades P en la Figura A.1).
- 3- Emplear la estrategia de operación del reactor de Núcleo de Celda de Control (CCC), colocando combustibles de la menor reactividad en los combustibles que rodean a las barras de control del grupo A2 de la región no periférica del núcleo (localidades CCC en la Figura A.1).
- 4- Utilizar las estrategias de aplaneamiento de la potencia radial y de máxima dispersión de los combustibles de características semejantes al usar el esquema de tablero de ajedrez en la región no-periférica del reactor.

La técnica consiste en colocar combustibles frescos y gastados de alta reactividad en las localidades blancas (localidades Blanca en la Figura A.1) y, en las localidades negras los combustibles de menor (o a lo más de mediana) reactividad (localidades Negra en la Figura A.1). Las reglas de colocación de los combustibles, dentro de cada una de las categorías blanca y negra, deberán seguir una técnica de colocación OUT-IN es decir los más reactivos hacia la periferia para lograra el aplanado radial de la potencia.

- 5- Minimizar los picos de potencia a través del ciclo de operación al seguir el principio Haling tanto en los cálculos de diseño de la recarga como en la obtención del programa de patrón de barras para el ciclo.
- 6- El tipo de simetría que se emplea es la de espejo de 1/4 de núcleo con ejes corriendo paralelos a las caras de los combustibles.

El núcleo deberá cargarse con simetría espejo de 1/4 de núcleo, tratándose de respetar la simetría de 1/8 particularmente en las localidades con monitores asociados (ver Fig. 1.2).

7- Establecer los combustibles del ciclo anterior que van a ser reutilizados y en su caso los de reinserción. Con esto al juntarlos con los combustibles frescos construir el vector de combustible de recarga del núcleo en diseño. En este vector se deberan proporcionar las principales variables que describen el estado de cada uno de los combustibles. Entre estas variables deberá darse como mínimo el quemado promedio, la reactividad infinita.

En el diagrama de la Figura A.1 (Apéndice A), se proporcionan las categorías definidas anteriormente para cada una de las localidades de un cuarto de núcleo. La base de diseño aquí descrita se usará en los estudios que se presentan en los siguientes capítulos.

En el Apéndice A se proporcionan con mayor detalle las categorías y subcategorías de las localidades del núcleo y las reglas de colocación que permiten una formación tradicional de las recargas de la CNLV.

CAPITULO 4

t

EL METODO DE GENERACION DE DISTRIBUCIONES RADIALES DE MALLA FINA PARA EL ANALISIS DE RECARGAS.

En este capítulo se presenta el desarrollo de una metodología para obtener distribuciones radiales de malla fina del núcleo de un reactor de agua en ebullición (BWR) como los que se encuentran en la Central Nucleoeléctrica de Laguna Verde. Estas distribuciones se forman a partir de los mapas de parámetros nucleares dados para cada canal de combustible, generados por el código de cómputo PRESTO.

Como se mencionó en el capítulo anterior, PRESTO es un código neutrónico-termohidráulico que permite simular en tres dimensiones núcleos de reactores BWR, con el que se pueden efectuar estudios relacionados con el diseño de recargas.

Las distribuciones radiales de malla fina de parámetros tales como;

- constante de Multiplicación Infinita (Kinf),
- potencia promedio relativa (POT),
- Razón Mínima de Potencia Crítica (MCPR por sus siglas en inglés), y
- Razón Máxima de Generación Lineal de Calor (MLHGR por sus siglas en inglés),

permiten el examen detallado del comportamiento y evolución del núcleo de los reactores. El estudio de estos resultados son de gran interés en el diseño de recargas y el análisis de propuestas de recargas de reactores tipo BWR, como los de la Central Nuclear de Laguna Verde (CNLV).

Usualmente las distribuciones radiales calculadas con el código PRESTO, son obtenidas a partir de la división del núcleo en regiones radiales, cada una de las cuales constituida por canales adjuntos completos. Típicamente el número de regiones utilizadas oscila entre 6 y 8, dependiendo de si se emplean las definidas por la computadora de proceso de la CNLV (6) o las que aceptan los códigos de multiciclos 1D del FMS (8). El máximo de regiones que permite PRESTO son 9.

PRESTO suministra valores promedio de los parámetros nucleares por región, con los que se puede obtener distribuciones radiales de estos parámetros. Esta técnica de aproximación radial plantea dos problemas básicos:

La malla presenta dimensiones superiores, o a lo más iguales,

a las correspondientes a un lado de los canales de combustible.

 Al considerar secciones transversales de canales completos, es necesario aproximar contornos de regiones poligonales cuadráticas para que representen contornos circulares.

Con el fin de superar estos problemas se planteó el siguiente procedimiento para generar distribuciones radiales de malla fina.

4.1 Definición del método

En primer término se debe suponer que:

- 1º El núcleo del reactor está formado por canales de combustible de sección cuadrada de lado 1.
- 2º El punto en el que se tocan los cuatro canales centrales coincide con el centro del núcleo.

En base a lo anterior se procede como sigue:

- 1- Se divide el núcleo por medio de círculos concéntricos centrados en el núcleo.
- 2- La REGION 1 (región más interna) se forma por las fracciones de área de los cuatro canales centrales delimitados por el circulo concéntrico de radio igual al lado del canal $(R_i=1)$.
- 3- La REGION 2, queda formada por las fracciones de área de los canales comprendidos entre los círculos de radio R_i y R_2 , en donde R_1 es el radio mayor de la circunferencia en cuyo interior sólo hay fracciones de canales ya incluidos en REGIONES más internas y de canales tocados puntualmente o tangencialmente por la circunferencia de radio R_1 .

į

- 4- La REGION i-ésima, se forma con las fracciones de área de los canales comprendidas entre los círculos de radio $\mathbf{R}_{i,i}$ y $\mathbf{R}_{i,j}$ donde \mathbf{R}_i es el radio mayor de la circunferencia en cuyo interior sólo se encuentran fracciones de canales incluidos en REGIONES más internas y de canales tocados puntualmente o tangencialmente por la circunferencia de radio $\mathbf{R}_{i,i}$.
- 5- El proceso de división continúa hasta que $\mathbf{R}_i = \mathbf{R}_{imax}$, donde \mathbf{R}_{imax} es el radio de la circunferencia que inscribe al núcleo completo.
- Se calculan las funciones de peso de cada REGION por canal. Si
 P_{ij} es la función de peso de la región, en donde i es el número de región y j el número de canal, entonces:

 $P_{i,j} = \frac{\text{área del canal i en la región j}}{\text{área de la región i}}$

7- Si \mathbf{V}_j es el valor de algún parámetro nuclear asociado a un canal de combustible j, entonces el valor medio $(\overline{V_j})$ de este parámetro, asociado a la región i estará dado por:

$$\overline{V_i} = \sum_{j=1, j \le x} (P_{i,j} * V_i)$$

en donde jmax es el número de canales de combustible. Con esto se obtiene una aproximación de la distribución radial de malla fina del parámetro nuclear.

4.2 Aplicación del método al núcleo del reactor BWR de la CNLV

ŧ

T

1

I

I

Siguiendo el procedimiento escrito en el apartado anterior se elaboró un programa de cómputo en lenguaje QuikBasic que calculara los pesos de cada uno de las regiones radiales del núcleo de los reactores de BWR de Laguna Verde. En el apéndice B se proporciona información del proceso de cálculo de los pesos de malla fina radial que se efectuó para los núcleo de los reactores de la CNLV.

4.3 Formación de tablas de distribuciones radiales de malla fina con el código MAPATES

Una vez calculados los pesos de malla fina radial asociado a los núcleos de los reactores de Laguna Verde se llevó a cabo la elaboración de subrutinas para el programa de cómputo MAPATES. Estas permiten la opción de formar tablas de datos de las distribuciones radiales detalladas de los parámetros nucleares. Para esto MAPATES lee archivos de salida del código PRESTO y con base en la información de los mapas genera archivos con los datos de las distribuciones radiales de malla fina correspondientes a los mapas seleccionados. Estos archivos pueden ser importados por cualquier hoja de cálculo y generara gráficas de las distribuciones radiales detalladas. El programa MAPATES proporciona títulos de los gráficos que facilita la formación de los mismos.

En los apéndices C se da más información sobre el programa MAPATES.

En los próximos capítulos se usa ampliamente el programa MAPATES para el análisis de propuestas de recargas de combustible. Las gráficas de distribuciones radiales del capitulo 6 fueron realizadas con base en la opción de mallas radiales detalladas de MAPATES.

En las Gráficas de la Figura 4.1.a, 4.2.a y 4.3.a se muestra distribuciones radiales generadas con la información por regiones extraídas de las mismas salidas PRESTO con las que se realizaron las Figuras 4.1.b, 4.2.b y 4.3.b de malla fina o detallada. Es clara la mayor calidad de las distribuciones detalladas, por lo que se pude asegurar, que el examen de distribuciones radiales de malla fina constituyen una buena herramienta de análisis.

En el capitulo 5 se usa el método de malla fina para desarrollar un algoritmo de generación de recargas de combustible. En éste la reactividad radial de la recarga se empata lo más posible a una distribución de reactividad radial OBJETO suministrada.

87 K —INFINITA

ŧ

6

4-INFINITA

t

ŧ

1

τ

1

1

3

÷

ι

ণ্

ŧ

/

ŧ

t

CAPITULO 5

t

LA TEORIA DE DIFUSION INVERSA. LA OBTENCION DE DISTRIBUCIONES RADIALES DE REACTIVIDAD OBJETO Y SU APLICACION EN EL DISEÑO DE RECARGAS.

La ecuación de difusión de neutrones directa o usual está formulada para que:

Dada la distribución de combustible en el núcleo de un reactor (es decir la geometría y composición del núcleo) obtener (mediante la ecuación de difusión directa) las distribuciones de potencia y/o de flujo neutrónico correspondiente.

En contraste la ecuación de difusión inversa de neutrones (backward diffusion) se establece para que:

Dada la distribución de potencia (o de flujo neutrónico) y la geometría del núcleo de un reactor, encontrar la distribución de reactividad (o de Keff) correspondiente.

Yung-An Chao y colaboradores han elaborado la teoría de difusión inversa que en este capítulo será presentada. El desarrollo de esta teoría está tomado principalmente de las Referencias 1 y 14 y consta de las etapas siguentes:

- Partiendo de la ecuación general de transporte de neutrones mediante una serie de aproximaciones se obtiene la ecuación de difusión de dos grupos (rápido y térmico) de estado estacionario para reactores.
- Con la finalidad de desacoplar la ecuación de difusión de dos grupos se realizan transformaciones y aproximaciones que permiten alcanzar una ecuación autoconsitente denominada de difusión rápida efectiva.
- La ecuación de difusión rápida es aplicada sobre un núcleo cilíndrico y haciendo uso del método de la función de Green se obtiene la distribución de reactividad radial en función de la distribución de potencia radial. Con esto se alcanza el objetivo de la teoría de difusión inversa.
- Como complemento se formula la función del parámetro llamado de potencial de combustible. Este parámetro al minimizarse (sujetando a cierto valor el pico de potencia radial) permite optimizar la distribución de potencia radial. Esta distribución mediante los cálculos de difusión inversa se logra obtener la función de reactividad OBJETO con la cual es

posible formar candidatos "optimizados" de partones de recarga de combustible.

En el apartado 5.4 se presenta el estudio realizado para determinar la distribución de potencia radial con el mínimo Potencial de Combustible. Para esto se desarrollaron una serie de pequeños programas en lenguaje de el paquete MATLAB. El estudio consistió en lo siguiente;

- generar perfiles de potencia radiales en base a dos polinomios de tercer grado los cuales permiten contrloar;
 - la potencia realtiva en el centro del núcleo,
 - la magninitud del pico potencia relativa radial,
 - la localización radial del pico de potencia
- determinar el Potencial de Combustible total (de acuerdo a la teoría de difusión inversa de Chao) de las distribuciones de potencia radial antes generadas.
- generar las distribuciones de reactividad radial OBJETO correspondiente a la distribución de potencia radial.

٩.,

 selecciona la distribución de reactividad OBJETO a usarse para generar recargas para la recarga del ciclo 4 de la unidad 1 de la CNLV.

Como se verá después, se trató de reporoducir el resultado presentado por Chao en la Referencia 1, el cual se puede resumir;

"el mínimo de Potencia de Combustible para un perfil con pico de potencia relativo de 1.3 se da en la fracción radial de 0.6",

En el estudio realizado para esta tesis no se llegó a este resultado. Al contrario se encontró que invariablemete:

"el mínimo de potencia de combustible para un perfil con pico de potencia relativa de 1.3 invariablemente corresponde al del pico de potencia en el centro del núcleo."

El contar con la distribución de Keff OBJETO si bien constituye un gran paso hacia la obtención de una recarga todavía falta el método de como formar la recarga. La función de ésta metodología es:

Un vez asignados los combustibles de la recarga, se debe establecerse cómo colocar en el núcleo los ensambles combustibles para lograr que la distribución de las Keff de estos se ajusten lo más posible a la distribución de Keff OBJETO y que cumpla con las restricciones nucleares y los objetivos de longitud de ciclo requeridos. Con base en el método de malla fina presentado en el capítulo 4 se desarrolló un algoritmo de colocción de los combustibles de una recarga a empatar lo mejor posible a un perfil de reactividad OBJETO dado. Se probaron dos variantes de este algoritmo;

- MODELO 1, se impuso en el algoritmo seleccionar, con todos los grados de libertad, la colocación de los ensambles de combustibles a empatar con el perfil de reactividad radial dado.
- MODELO 2, con base a los esquemas de formación de recargas mostrados en el apartado 3.5.9, se dividió en dos grupos los combustibles de recarga. Un grupo formado por los combustibles destinados a ser colocados en localidades BLANCAS (combustibles frescos y más reactivos de los parcialmente gastados) y el otro por los combustibles destinados a ocupar localidades NEGRAS (combustibles menos reactivos).

Se usaron los dos modelos para formar candidatos de recargas para el ciclo 4 de la unidad 1 de la CNLV. El código PRESTO fue empleado para realizar las evaluaciones de los candidatos de recarga.

1

ł

1

La recarga del primer MODELO 1 dió como resultado una distribución radial de Keff empatada casi perfectamente con la distibución de reactividad radial OBJETO. Sin embargo, como era de esperarse, esto fue en detrimento de la distribución angular azimutal de los combustibles. Esto produjo grandes problemas de picos de potencia locales.

En la propuesta de recarga del MODELO 2 se mejoraron sustancialmente los resultados pero los márgenes de seguridad no fueron satisfactorios. Es conveniente profundizar aún más en estos estudios, sin embargo, los indicios de estos primeros resultados son en el sentido de que el método basado en la distribución de reactividad OBJETO en una sola dimensión radial es insuficiente. Es necesario emplear la ecuación de difusión inversa en dos dimensiones (radial y angular azimutal) que permitan generar perfiles de reactividad OBJETO completos y obtener recargas sin problemas con los picos de potencia no sólo radialmente sino también en la angular azimutal.

En lo que sigue de este capítulo se presenta en detalle lo expuesto anteriormente.
5.1 Deducción de la ecuación de difusión de dos grupos (rápido y térmico) de estado estacionario para reactores

La obtención de la ecuación de difusión de neutrones de dos grupos de energía a partir de la ecuación de transporte presentada a continuación fue tomada esencialmente de la referencia 14.

Mediante el balance de la pérdida y ganancia de neutrones se obtiene <u>la ecuación exacta de transporte de neutrones</u>:

 $\frac{1}{v} \frac{\partial \varphi}{\partial t} + \mathbf{\Omega} \cdot \nabla \varphi + \Sigma_{t}(\mathbf{r}, E) \varphi(\mathbf{r}, E, \mathbf{\Omega}, t) =$ $\int_{4\pi} d\mathbf{\Omega}' \int_{0}^{\infty} dE' \Sigma_{s}(E' \rightarrow E, \mathbf{\Omega}' \rightarrow \mathbf{\Omega}) \varphi(\mathbf{r}, E', \mathbf{\Omega}', t) + s(\mathbf{r}, E, \mathbf{\Omega}, t), \qquad [Ec.5.1.1]$ donde: $\varphi = \varphi(\mathbf{r}, E, \mathbf{\Omega}, t) = flujo \text{ angular de neutrones}$

 $(eutrones/cm^2/seg)/Mev/esterradián$ en el punto**r**de Energía E moviendose en la dirección**<math>\Omega**

 $s(\mathbf{r}, E, \mathbf{\Omega}, t) = razón de fuente volumétrica$ (neutrones/cm³/seg)/Mev/esterradián

Tratar de resolver la ecuación de transporte directamente no resulta práctico. Es necesario simplificar mediante una serie de aproximaciones y reducciones para llevar a la ecuación de transporte a una expresión donde la obtención de soluciones sea más accesible.

La ecuación de transporte tiene siete variables independientes: tres espaciales, la energía de los neutrones, dos para definir el sentido y dirección del movimiento de los neutrones y el tiempo.

Para simplificar la ecuación de transporte se supone lo siguiente:

- Sólo se tratará con casos de estado estacionario. Con esto se elimina la variable tiempo (t) reduciéndose la ecuación de transporte.
- Suponemos que el flujo angular de neutrones depende débilmente del ángulo y que la dispersión de neutrones por los núcleos del material del reactor es anisotrópicamente lineal. En el análisis de reactores esto es cierto si no se manejan regiones muy absorbentes de neutrones.

Con base en lo anterior es conveniente representar el flujo angular con la siguiente relación lineal:

$$\phi(\mathbf{r}, E, \mathbf{\Omega}, t) = (\frac{1}{4})\phi(\mathbf{r}, E) + \frac{3}{4\pi}J(\mathbf{r}, E)\cdot\mathbf{\Omega} \qquad [Ec.5.1.2]$$

donde:

 $\phi(\mathbf{r}, E) = flujo de neutrones (neurtones/cm²/seg)/Mev$ $J(\mathbf{r}, E) = densidad de corriente de neutrones (neutrones/cm²/seg)/Mev$

y de esta manera optar por la aproximación a la ley de Fick generalizada la cual establece que:

 $J(\mathbf{r}, E) = -D(\mathbf{r}, E) \nabla \phi(\mathbf{r}, E) \qquad [Ec.5.1.3] (a)$ donde: $D(\mathbf{r}, E) = Coeficiente de difusión generalizado (cm)$ $D(\mathbf{r}, E) = \frac{1}{3[\Sigma_{t}(\mathbf{r}, E) - \overline{\mu}_{0}\Sigma_{s}(\mathbf{r}, E)]} \qquad [Ec.5.1.3] (b)$ $\overline{\mu}_{0} = coseno del ángulo de dispersión promedio$

 $\Sigma_s(\mathbf{r}, E) = \text{secc. transv. macro. de dispersión(1/cm)/Mev}$

Sustituyendo lo anterior en la ecuación de transporte y efectuando una serie de operaciones (ver capitulo 4 apartado D de la Ref. 14) es posible llegar a <u>la ecuación de difusión dependiente de la</u> <u>energía de estado estacionario</u>:

 $-\nabla D(\mathbf{r}, E) \nabla \mathbf{\phi} + \Sigma_t(\mathbf{r}, E) \mathbf{\phi}(\mathbf{r}, E) = \int_0^{\infty} dE' \Sigma_g(E' \rightarrow E) \mathbf{\phi}(\mathbf{r}, E') + s(\mathbf{r}, E) , [EC, 5, 1, 4]$

donde:

 $\Sigma_t(E' \rightarrow E) = secc.$ trans. macro. de dispersión (1/cm)/Mev

s(r,E) = fuente volumétrica de neutrones (neutrones/cm³) /Mev

A continuación se suman las consideraciones siguientes:

- La "constante" de difusión de los neutrones (tomando el promedio de regiones volumétricas relativamente grandes llamadas nodos) no varía en forma apreciable en los grandes núcleos de los reactores de potencia. Lo anterior permite efectuar la siguiente operación; extraer, del primer término de la Ecuación 5.1.4, al coeficiente de difusión (D) fuera del operador de divergencia y con esto, lograr sustituir la divergencia del gradiente por el operador laplaciano.
- La generación de neutrones en un reactor es producto de la fisión de tal forma que la fuente neutrónica se puede expresar como:

$$s(\mathbf{x}, E) = \chi(E) \int_0^{\infty} dE' \nu(E') \Sigma_f(E') \Phi(\mathbf{x}, E') \qquad \{EC, 5, 1, 5\}$$

donde:

 $\chi(E)$ = espectro de fisión o distribución de energía de los neutrones de fisión (neutr./Mev) v(E) = número de neutrones por fisión(neutr./fis.)/Mev $\Sigma_f(E)$ = secc. trans. macro. de fisión (1/cm)/Mev

Introduciendo la ecuación 5.1.4 en la ecuación de difusión dependiente de la energía (Ec.5.1.5) y extrayendo la D, se obtendra la que podemos denominar como <u>la ecuación de difusión dependiente</u> <u>de la energía de estado estacionario para un reactor cuasi-</u> <u>homogéneo</u>:

$$-D(\mathbf{r}, E) \nabla^2 \boldsymbol{\varphi} + \boldsymbol{\Sigma}_t(\mathbf{r}, E) \boldsymbol{\varphi}(\mathbf{r}, E) = \int_0^{\infty} dE' \boldsymbol{\Sigma}_s(E' - E) \boldsymbol{\varphi}(\mathbf{r}, E') + \boldsymbol{\chi}(E) \int_0^{\infty} dE' \boldsymbol{\nu}(E') \boldsymbol{\Sigma}_f(E') \boldsymbol{\varphi}(\mathbf{r}, E'), \quad \{Ec.5.1.6\}$$

Ahora se procede a usar el método de multigrupos el cual consiste en:

 dividir la energía del neutrón en grupos y promediar las constantes y parámetros nucleares adecuadamente respecto a el flujo. Con esto se obtienen las denominadas constantes del grupo.

59

Tomando la ecuación de difusión dependiente de la energía (Ec.5.1.6) y aplicando el método de multiciclos se obtendrá un sistema de ecuaciones las cuales son sólo dependientes de las variables espaciales, es decir, obtenemos <u>la ecuación de difusión</u> <u>de multigrupos de estado estacionario para reactores cuasihomogéneos</u>:

$$\begin{aligned} &-D_g(\boldsymbol{x}) \, \nabla^2 \boldsymbol{\varphi}(\boldsymbol{x}) + \Sigma_{tg}(\boldsymbol{x}) \, \boldsymbol{\varphi}_g(\boldsymbol{x}) \; = \\ &\sum_{g'=1}^G \Sigma_{gg'g}(\boldsymbol{x}) \, \boldsymbol{\varphi}_{g'}(\boldsymbol{x}) \; + \; \chi_g \sum_{g'=1}^G v_{g'}(\boldsymbol{x}) \, \Sigma_{tg'}(\boldsymbol{x}) \, \boldsymbol{\varphi}_{g'}(\boldsymbol{x}) \; , \qquad [Ec.5.1.7] \end{aligned}$$

donde:

$$\phi_g(\mathbf{r}) = \int_{E_g}^{E_{g-1}} dE \, \phi(\mathbf{r}, E)$$

y donde las constantes de grupo son:

$$D_{g}(\mathbf{r}) = \frac{1}{\Phi_{g}} \int_{E_{g}}^{E_{g-1}} dE \ D(\mathbf{r}, E) \ \Phi(\mathbf{r}, E) \qquad [EC.5.1.8] (a)$$

$$\Sigma_{tg}(\mathbf{r}) = \frac{1}{\Phi_{g}} \int_{E_{g}}^{E_{g-1}} dE \ \Sigma_{t}(\mathbf{r}, E) \ \Phi(\mathbf{r}, E) \qquad [EC.5.1.8] (b)$$

$$\Sigma_{sg'g}(\mathbf{r}) = \frac{1}{\Phi_{g}'} \int_{E_{g}}^{E_{g-1}} dE \int_{E_{g}'}^{E_{g'-1}} dE' \ \Sigma_{s}(E' - E) \ \Phi(\mathbf{r}, E') \quad [EC.5.1.8] (c)$$

$$\mathbf{v}_{g'} \boldsymbol{\Sigma}_{fg'} = \frac{1}{\phi'_g} \int_{E_g}^{E_{g-1}} dE \, \mathbf{v} \left(E' \right) \boldsymbol{\Sigma}_{i} \boldsymbol{\phi} \left(\mathbf{x}, E' \right) \qquad \{EC.5.1.8\} \left(d \right)$$

$$\boldsymbol{\chi}_{g} = \int dE \, \boldsymbol{\chi} \left(E \right) \qquad [EC.5.1.8] \left(e \right)$$

Para:g = 1, 2, ..., G.

En la gran mayoría de los programas de cómputo utilizados en el análisis neutrónico de reactores emplean soluciones de "pocos grupos de energía". Como ejemplo, el código PRESTO usa un modelo de ecuación de difusión de 1+1/2 de grupos de energía. El uno y medio se debe a que el modelo parte de la ecuación de difusión de dos grupos de energía y se modifica de tal forma que se obtiene un sólo grupo de "energía efectivo". El cálculo de las constantes de grupo para PRESTO se realiza con los códigos de cálculo de celdas de muchos grupos de energía llamados RECORD, THERMOS y GADPLO. Para la obtención de la ecuación de difusión inversa se partirá de la ecuación de difusión de dos grupos de energía, así que, tomando la ecuación de multigrupos anterior (Ec.5.1.7) para dos grupos se obtiene <u>el sistema de ecuaciones general de difusión de dos grupos</u> <u>de energía de estado estacionario para reactores cuasi-homogéneos</u>:

 $\begin{array}{l} -D_{2}\left(\mathbf{r}\right)\nabla^{2}\varphi_{2}\left(\mathbf{r}\right)+\Sigma_{t2}\left(\mathbf{r}\right)\varphi_{2}\left(\mathbf{r}\right)=\left(\Sigma_{s12}\left(\mathbf{r}\right)\varphi_{1}\left(\mathbf{r}\right)+\Sigma_{22}\varphi_{2}\left(\mathbf{r}\right)\right)\\ +\chi_{2}\left(v_{1}\left(\mathbf{r}\right)\Sigma_{t1}\left(\mathbf{r}\right)\varphi_{1}\left(\mathbf{r}\right)+v_{2}\left(\mathbf{r}\right)\Sigma_{t2}\left(\mathbf{r}\right)\varphi_{2}\left(\mathbf{r}\right)\right) \qquad \qquad \left[Ec.5.1.9\right]\left(b\right) \end{array}$

Tradicionalmente el corte de energía entre los dos grupos se selecciona de forma tal que el grupo de menor energía represente los neutrones que están en equilibrio térmico con el material del núcleo. Estos neutrones, en primera aproximación tienen una distribución de energías de tipo maxweliano. El grupo de alta energía, en este caso estará constituido por los neutrones productos de la fisión que nacen muy energéticos y entran en el proceso de moderación, es decir aquéllos que por medio de una serie de colisiones elásticas e inelásticas llegan eventualmente a formar parte de los neutrones del grupo térmico.

A continuación se presentan las consideraciones para obtener la ecuación de difusión de dos grupo rápido/térmico:

- El corte de energía (E_c) se seleccioné de forma tal que la probabilidad de que los neutrones del grupo de energía baja o grupo 2 (llamado también grupo térmico) regresen por disperción al grupo de alta energía o grupo 1 (llamado también grupo rápido) sea despreciable. En el caso de los reactores térmicos de agua ligera $E_c \approx 1$ ev es un valor adoptado comúnmente.
- Puesto que prácticamente todos los neutrones de la fisión son de alta energía entonces los coeficientes del espectro de fisión rápida vendrá a ser igual a 1 y el térmico igual a cero.
- Para simplificar aún más la ecuación de dos grupos se usa la sección transversal de remoción macroscópica de un grupo, la que se difine cómo:

"la diferencia entre la sección transversal total macroscópica del grupo menos la sección transversal de auto dispersión en el grupo", o equivalentemente como,

"la suma de la sección transversal macroscópica de absorción del grupo más la secciones transversal macroscópica de transferencia que van desde el grupo hacia los otros grupos de energía".

Usando lo anteriormente mencionado se tendrá que: en base a consideraciones:

 $\chi_1 = 1$, $\chi_2 = 0$, $\Sigma_{12} = 0$ [Ec.5.1.10] (a)

sea:

1

1

1

i 1

~

 $\begin{array}{l} \Sigma_{s2} = Secc. trans.macro. total de disperción grupo térmico \\ \Sigma_{R2} = Secc. trans.macro. de remoción grupo térmico \\ \Sigma_{a2} = secc. trans.macro. de absorción grupo térmico \\ y sus correspondientes \\ \Sigma_{S1}, \\ \Sigma_{R1}, \\ \Sigma_{a1} \\ para el grupo rápido \\ \end{array}$

por Definición:

$$\begin{split} \boldsymbol{\Sigma}_{R2} &= \boldsymbol{\Sigma}_{L2} - \boldsymbol{\Sigma}_{22} \\ \boldsymbol{\Sigma}_{R1} &= \boldsymbol{\Sigma}_{L1} - \boldsymbol{\Sigma}_{11} \\ \boldsymbol{\Sigma}_{a2} &= \boldsymbol{\Sigma}_{t1} - \boldsymbol{\Sigma}_{S2} \end{split}$$

tomando en cuenta las consideraciones;

$$\Sigma_{R2} = \Sigma_{L2} - \Sigma_{S2} = \Sigma_{R2} \qquad [Ec, 5, 1, 10] (b)$$

Finalmente, introduciendo lo expresado en 5.1.10 en la Ecuación 5.1.9 se obtiene <u>el sistema de ecuación de difusión de dos grupos</u>, rápido y térmico, de estado estacionario para reactores nucleares cuasi-homogéneos:

 $-D_{2}(\mathbf{r}) \nabla^{2} \phi_{2}(\mathbf{r}) + \Sigma_{a2}(\mathbf{r}) \phi_{2}(\mathbf{r}) = \Sigma_{s12}(\mathbf{r}) \phi_{1}(\mathbf{r}) \qquad [Ec.5.1.11] (b)$

Es común simplificar aún más la notación prescindiendo de la referencia a la dependencia espacial tal que las ecuaciones 5.1.11 se transforman en:

 $\begin{array}{ll} -D_{1}\nabla^{2}\phi_{1}+\Sigma_{1}\phi_{1} = v_{1}\Sigma_{f1}\phi_{1} + v_{2}\Sigma_{f2}\phi_{2} & [EC.5.1.12] (a) \\ -D_{2}\nabla^{2}\phi_{2}+\Sigma_{2}\phi_{2} = \Sigma_{12}\phi_{1} & [EC.5.1.12] (b) \\ donde: & \\ \Sigma_{1} = \Sigma_{R1} & \\ \Sigma_{2} = \Sigma_{A2} & \end{array}$

Esta es la presentación tradicional de la ecuación de difusión de dos grupos para el análisis de reactores térmicos.

5.2 Obtención de la ecuación de difusión rápida efectiva

En este apartado se conseguirá la ecuación de difusión de un grupo de neutrones rápidos efectiva, la forma de la ecuación de difusión directa que es la base para alcanzar (de acuerdo a la teoría de difusión inversa de Chao) la expresión explícita de la distribución de la reactividad radial en función de la potencia.

Multiplicando la ecuación 5.1.12(a) por $1/\Sigma_1$ y la ecuación 5.1.12(b) por $1/\Sigma_2$, y tomando en cuenta que

por definición;

 $L_1^2 = Area \ de \ difusión \ rápida \ = D_1/L_1 \\ L_2^2 = Area \ de \ difusión \ térmica \ = D_2/L_2$

se tendrá que:

 $-L_{1}^{2}\nabla^{2}\phi_{1}+\phi_{1} = \frac{v_{1}\Sigma_{\ell 1}\phi_{1}}{\Sigma_{1}} + \frac{v_{2}\Sigma_{\ell 2}\phi_{2}}{\Sigma_{1}} \qquad [EC.5.2.1] (a)$ $-L_{2}^{2}\nabla^{2}\phi_{2}+\phi_{2} = \frac{\Sigma_{12}}{\Sigma_{2}}\phi_{1} \qquad [EC.5.2.1] (b)$

Despejando de Ec.5.2.1 (b) ϕ_2 de la forma siguiente:

$$\frac{\Sigma_{12}}{\Sigma_2} \phi_1 = \phi_2 - L_2^2 \nabla^2 \phi_2 = \phi_2 \left(1 - \frac{L_3^2 \nabla^2 \phi_2}{\phi_2}\right)$$

$$\phi_2 = \frac{\Sigma_{12}}{\Sigma_2} \left(\frac{1}{\left(1 - \frac{L_2^2 \nabla^2 \phi_2}{\phi_2}\right)}\right) \phi_1 \qquad [EC.5.2.2.]$$

Sustituyendo la ecuación 5.2.2 en Ec.5.2.1(a) se obtiene; $-L_{1}^{2}\nabla^{2}\phi_{1} + \phi_{1} = \frac{V_{1}\sum_{i}}{\Sigma_{1}} + \frac{V_{2}\sum_{f2}}{\Sigma_{2}} \left\{ \frac{\sum_{12}}{\sum_{2}} \left(\frac{1}{(1 - \frac{L_{2}^{2}\nabla^{2}\phi_{2}}{\phi_{2}})} \right) \phi_{1} \right\} \quad \{Ec.5.2.3\}$

Ahora en un medio infinito tenemos que:

 $\Sigma_{f1}/\Sigma_1 = \text{prob.de fisión rápida por reacción rápida}$ $\Sigma_{12}/\Sigma_1 = \text{prob.de que un neutrón rápido llegue a térmico}$ $\Sigma_{f2}/\Sigma_2 = \text{prob.de fisión térmica por reacción térmica}$

Por definición:

 $\begin{array}{l} K_{\mathbf{w}} = \text{No.de neutr.de fisión por reacción rápida o térmica} \\ \mathbf{e} = factor de fisión rápida \\ \mathbf{e} = \frac{(número de neutrones de fisión rápida y térmica)}{(número de neutrones de fisión térmica} \end{array}$

Por lo tanto:

$$K_{\infty} = v_{1} \frac{\Sigma_{f1}}{\Sigma_{1}} + v_{2} \frac{\Sigma_{f2}}{\Sigma_{2}} \frac{\Sigma_{12}}{\Sigma_{1}} \qquad [Ec. 5.2.3] (a)$$

$$\epsilon = \frac{v_{1} \frac{\Sigma_{f1}}{\Sigma_{1}} + v_{2} \frac{\Sigma_{f2}}{\Sigma_{2}} \frac{\Sigma_{12}}{\Sigma_{1}}}{v_{2} \frac{\Sigma_{f2}}{\Sigma_{2}} \frac{\Sigma_{12}}{\Sigma_{1}}} \qquad [Ec. 5.2.3] (b)$$

$$K_{\omega}/e = v_{2} \frac{\Sigma_{f2}}{\Sigma_{2}} \frac{\Sigma_{12}}{\Sigma_{1}} \qquad [Ec. 5.2.3] (c)$$

de la expresión de K_m (Ec.5.2.3.(a)) se obtiene;

$$\frac{\mathbf{v}_1 \mathbf{\Sigma}_{f1}}{\mathbf{\Sigma}_1} = K_{\bullet} - \mathbf{v}_2 \quad \frac{\mathbf{\Sigma}_{f2}}{\mathbf{\Sigma}_2} \frac{\mathbf{\Sigma}_{12}}{\mathbf{\Sigma}_1}$$

remplazando el último término por K_u/e (5.2.3(c))

$$\frac{\mathbf{v}_1 \Sigma_{f_1}}{\Sigma_1} = K_{\mathbf{o}} - \frac{K_{\mathbf{o}}}{\epsilon} = (1 - 1/\epsilon) K_{\mathbf{o}} \qquad [Ec. 5. 2. 3] (d)$$

por último definimos:

 $\delta_2 = probabilidad de escape térmico = -L_2^2 \nabla^2 \phi_2 / \phi_2$ [Ec.5.2.3](e)

Sustituyendo las diferentes expresiones de Ec.5.2.3 en la Ecuación 5.2.3;

$$-L_{1}^{2}\nabla^{2}\Phi_{1} + \Phi_{1} = \left[(1 - 1/\epsilon) K_{m}\Phi_{1} + \frac{K_{m}}{\epsilon} \frac{\Phi_{1}}{(1 + \delta^{2})} \right] = \left[1 - \frac{1}{\epsilon} + \frac{1}{\epsilon} \frac{1}{(1 + \delta^{2})} \right] K_{m}\Phi_{1} = \left[1 + \frac{1}{\epsilon} \left(\frac{1}{(1 + \delta^{2})} - 1 \right) \right] K_{m}\Phi_{1} = \left[1 + \frac{(-\delta^{2})}{\epsilon(1 + \delta^{2})} \right] K_{m}\Phi_{1} = \left[1 - (\delta_{2}/\epsilon) / (1 + \delta_{2}) \right] K_{m}\Phi_{1}$$

$$-L_{1}^{2}\nabla^{2}\Phi_{1} + \Phi_{1} = \left[1 - (\delta_{2}/\epsilon) / (1 + \delta_{2}) \right] K_{m}\Phi_{1} \qquad [Ec.5.2.4]$$

Puesto que el valor de la probabilidad de escape térmico δ_2 es completamente despreciable (Ref. 1, Pag. 80) entonces la ecuación 5.2.4 será:

$$-L_1^2 \nabla^2 \phi_1 + \phi_1 = K_{\omega} \phi_1 \qquad [EC.5.2.5]$$

Esta última ecuación (Ec.5.2.5) junto con la ecuación 5.2.1(b) constituyen el sistema de ecuaciones que se necesitan para desarrollar la teoría de difusión inversa. Chao todavía efectúa una serie de transformaciones para refinar más la ecuación del grupo rápido 5.2.5 (ver página 80 de la referencia 1), sustituye el factor de multiplicación infinita por uno que denomina factor de multiplicación efectiva del grupo rápido con lo que finalmente obtiene: <u>la ecuación de difusión de neutrones rápidos efectivo de</u> estado estacionario para reactores cuasi-homogéneos:

$$-L_1^2 \nabla^2 \phi_1 + \phi_1 \approx K^* \phi_1 \qquad [Ec.5.2.6] (a) -L_2^2 \nabla^2 \phi_2 + \phi_2 = (\frac{\Sigma_{12}}{\Sigma_2} \phi_2) \qquad [Ec.5.2.6] (b)$$

donde:

$$K^* = \left[\frac{1 + (L_2^2/L_1^2\epsilon)}{1 + (L_2^2/L_1^2\epsilon)K_{\mu}}\right]K_{\mu} \quad [Ec.5.2.6] (c)$$

Lo importante del anterior desarrollo es que se logró que la ecuación 5.2.6(a) sea auto-consistente, es decir sólo depende del flujo rápido y por lo tanto se encuentra desacoplada de la ecuación del grupo térmico (ec.5.17 (b)). Con esto, se está en condiciones de realizar el objetivo de la teoría de difusión inversa:

 obtener una expresión explícita de la reactividad radial en función del perfil de potencia radial.

En el siguiente apartado finalmente se alcanzará éste objetivo.

5.3 Cálculo de difusión inversa en 1 dimensión (radial) y el potencial de combustible total

En este apartado se obtiene la solución analítica de la ecuación de difusión en una dimensión (radial) de neutrones rápidos efectivo para un reactor cilíndrico de altura infinita y constantes nucleares homogéneas en el angulo azimutal. Posteriormente se proporciona el concepto de Potencial de Combustible y su formula para calcularla.

Se empieza por transformar y reducir la Ecuación 5.2.6(a). Con el objeto de poder analizar reactores de núcleo cilíndico cuyas propiedades varíen sólo en la dirección radial. Para lograr lo anterior, se realizan los pasos siguientes:

- El operador laplaciano es puesto en coordenadas cilíndricas (Pag. 612 de Ref. 14),
- Las unidades radiales se escogen de forma tal que la longitud de difusión rápida sea igual a 1.
- iii) El subinidice referente al grupo de energía rápido se elimina,
- iv) Se aplica el método de separación de variables,
- V) El núcleo de reactor se supone de dimensiones infinitas en el eje azimutal (z), y
- vi) Las propiedades nucleares del núcleo del reactor se asumen homogéneas respecto al ángulo azimutal (teta).

Procediendo:

se aplican las modificaciones i, ii e iii

$$\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial z}\phi(r,\theta,z) + \frac{1}{r^2}\frac{\partial^2\phi(r,\theta,z)}{\partial \theta^2} + \frac{\partial^2\phi(r,\theta,z)}{\partial z^2} + (K^*-1)\phi(r,\theta,z) = 0$$

sustituyendo:

 $\phi(r,\theta,z) = \phi_r(r)\phi_\theta(\theta)\phi_z(z) = \phi_r\phi_\theta\phi_z$

obtenemos:

1

ŧ

$$\frac{\Phi_0\Phi_z}{r}\frac{d}{dr}r\frac{d\Phi_r}{dr} + \frac{\Phi_r\Phi_z}{r^2}\frac{d^2\Phi_\theta}{d\theta^2} + \phi_r\phi_\theta\frac{d^2\Phi_z}{dz^2} + (K^*-1)\phi_i\phi_\theta\phi_z = 0$$

multiplicando por $1/\phi_r\phi_0\phi_z$, tendremos:

$$\frac{1}{\phi_r r} \frac{d}{dr} r \frac{d\phi_r}{dr} + \frac{1}{\phi_{\theta} r^2} \frac{d^2 \phi_{\theta}}{d\theta^2} + \frac{1}{\phi_z} \frac{d^2 \phi_z}{dz^2} + (K^* - 1) = 0$$

de acuerdo a las condiciones v y vi ϕ_{θ} = constante y ϕ_z = constante, por lo que, sus derivadas serán cero, tal que:

$$\frac{1}{\oint_r r} \frac{d}{dr} r \frac{d \oint_r}{dr} + \langle K^* - 1 \rangle = 0$$

finalmente, haciendo $\phi_r = \phi(r)$ obtenemos:

$$\frac{1}{r}\frac{d}{dr}r\frac{d}{dr}\phi(r) - \phi(r) = -K^{*}(r)\phi(r), \quad [Ec.5.3,1]$$

La EC.5.3.1 es una ecuación diferencial inhomogénea, ordinaria lineal, de segundo orden. Esta clase de ecuación es posible resolverla mediante el llamado método de la función de Green. Vamos a usar esta técnica para resolver la Ec. 5.3.1. Primero se mostrará como funciona dicho método. Para esto se define un operador M tal que:

sea el operador M:

$$M = \frac{1}{r} \frac{d}{dr} r \frac{d}{dr} - 1$$

la Ec. 5.3.1 se expresará como:

 $M\phi(r) = -K^*(r)\phi(r)$

Sea G(r, r') la función de Green para M tal que:

$$MG(r, r') = \delta(r, r') \qquad [EC.5.3.2] (a)
\frac{1}{r} \frac{d}{dr} r \frac{d}{dr} G(r, r') - G(r, r') = \delta(r, r') [EC.5.3.2] (b)$$

entonces la solución estará dada por:

 $\phi(r) = \int dV' \ G(r, r') \left(-K^*(r')\phi(r')\right) + Cte$

donde dV es la diferencial de volumen,Cte es una constante determinda por condiciones a la frontera y $\delta(r,r')$ es la función de dirac tal que:

 $funcion(r) = \int dV' \,\delta(r,r') \,funcion(r')$

la prueba es casi directa, aplicando el operador M(sobre r) a la solución

 $M\phi(\mathbf{r}) = \int dV' M G(\mathbf{r}, \mathbf{r}') \left(-K^*(\mathbf{r}')\phi(\mathbf{r}')\right) + M Cte$

sustituyendo MG(r, r') por $\delta(r, r')$

$$\begin{split} M \, \phi(r) &= \int dV' \, \delta(r, r') \, (-K^*(r') \phi(r')) \\ M \, \phi(r) &= -K^*(r) \phi(r) \end{split}$$

completándose la prueba

El problema ahora radica en construir la función de Green solución de la ecuación [Ec.5.3.2] y que cumpla con las condiciones a la frontera impuestas. Para esto, partiremos del teorema de Green en su forma de segunda identidad (Ref. 16 pag.14 y Ref. 14 pag. 612):

$$\int dV \left(\phi \nabla^2 \varphi - \varphi \nabla^2 \phi \right) = \int dS \, \hat{e}_s \, . \, (\phi \nabla \varphi - \varphi \nabla \phi)$$

donde dS es la diferencial de superficie, \hat{e}_g es el vector unitario perpendicular a dS.

sea $\phi = \phi(r) = el$ flujo y $\varphi = G(r, r') = función de Green del$ $operadorM para un reactor cilíndrico de radio <math>r_0$, altura infinita, homogéno en teta considerando una sección cilíndrica de altura unitaria, entonces las diferenciales dV, dS en coordenadas cilíndricas serán:

$$\int [] dV = \int_{0}^{r_{0}2\pi h^{-1}} \int_{0}^{[] rdr d\theta} dz = 2\pi \int_{0}^{[] rdr} dr$$
$$\int [] dS = \int_{0}^{2\pi} [] r_{0} d\theta = 2\pi r_{0} []$$

sustituyendo en el terorema de Green se tendrá:

$$2\pi \int_{0}^{r_{o}} dr' r' \left[\phi(r') \nabla^{2} G(r, r') - G(r, r') \nabla^{2} \phi(r') \right] =$$

$$2\pi r_{o} \left[\phi(r') \nabla G(r, r') - G(r, r') \nabla \phi(r') \right]_{r'=r_{o}}$$

ya que de las ecuaciones 5.2.6 y 5.3.1 tenemos que:

$$\nabla^2 \boldsymbol{\phi}(r) = (-K^{\bullet}(r) \boldsymbol{\phi}(r) + \boldsymbol{\phi}(r))$$

$$\nabla^2 G(r, r') = \boldsymbol{\delta}(r, r') + G(r, r')$$

ł

y por condición a la frontera: $G(r, r')|_{r'=r_0} = 0$ entonces:

$$2\pi \int_{0}^{r_{0}} dr' r' \phi(r') \delta(r, r') + 2\pi \int_{0}^{r_{0}} dr' r' \phi(r') G(r, r') - 2\pi \int_{0}^{r_{0}} dr' r' G(r, r') (-k^{*}(r') \phi(r')) - 2\pi \int_{0}^{r_{0}} dr' r' \phi(r') G(r, r') = 2\pi r_{0} \phi(r_{0}) \frac{dG(r, r')}{dr'} |_{r' = r_{0}}$$

en el primer miembro; el ler término es $\varphi(r)$ y los términos segundo y cuarto se eliminan. Despejando $\varphi(r)$:

$$\phi(r) = \int_{r_0}^{r_0} dr' r' G(r, r') K^*(r') \phi(r') + 2\pi r_0 \phi(r_0) \frac{dG(r, r')}{dr'} \Big|_{r'=r_0}, [EC, 5, 3, 3]$$

En este punto analicemos qué falta y qué pasos habrá que efectuar para obtener una relación explícita de la constante de mutiplicación rápida efectiva. Es necesario determinar la función de Green, los valores del flujo neutrónico y de la derivada de la función de Green en la supeficie del núcleo del reactor. Por lo tanto en esta etapa los pasos a seguir son:

- vii) Identificar qué tipo de ecuacion es Ec.5.3.1 y sus soluciones,
- viii) Construir en base a las soluciones anteriores la función de Green tal que;
 - sea solución de la ecuación Ec.5.3.2
 - cumpla con la condición a la frontera $G(r_0, r')=0$, (donde r_0 es el radio del núcleo del reactor)
 - cumpla con la condición de simetría tal que G(r,r')=G(r',r) (ésta importante propiedad de las funciones de Green se puede consultar en el apartado 5-12 de la Ref. 17 y página 327 de la Ref. 18).
- ix) Un vez determinada la función de Green se deriva respecto a r' (para r'>r) y obtener su valor para r'= r_0 ,
- x) obtener el valor de la derivada del flujo en la superficie del núcleo $(r=r_0)$ utilzando para tal el tratamiento de las condiciones a la frontera de una superficie reflejada por un medio reflector infinito

(vease paginas 165 y 166 de la Ref. 14):

Aplicando los pasos anteriores:

siguiendo el paso (vii)

multiplicando Ec.5.3.2(a) por r^2 y derivando:

$$\frac{d^2 G(r,r')}{dr^2} + \frac{1}{r} \frac{d G(r,r')}{dr} - r^2 G(r,r') = \delta(r,r')$$

comparando con la ecuación de la función de Bessel modificada(ec.[11.108]),Pag.396 de Ref. 18)

$$x^{2} \frac{d^{2} I_{v}(x)}{dx^{2}} + x \frac{d I_{v}(x)}{dx} - (x^{2} + v^{2}) I_{v}(x) = 0$$

cuyas solucines estan dadas por:

 $\begin{cases} I_v(x) = .Bessel Mod. primera clase \\ y(x) < \\ K_v(x) = .Bessel Mod. segunda clase \end{cases}$

Excepto en el punto r=r', I_0 ó K_0 ó combinaciones lineales de ellas son soluciones de la Ec.5.3.1.

De acuerdo al paso (viii) se propone la función de Green solución de la Ec.5.3.2 a la ecuación (20) proporcionada en la Referencia 1, y se muestra que cumple con las consideraciones ya mencionadas:

la función de Green para el operador M es:

 $G(r, r') = \left(\frac{1}{2\pi}\right) I_0(r) \left[K_0(r_0) I_0(r') / I_0(r_0) - K_0(r')\right]$ $para \ r < r' \qquad [Ec. 5.3.4] (a)$ $G(r, r') = \left(\frac{1}{2\pi}\right) I_0(r') \left[K_0(r_0) I_0(r) / I_0(r_0) - K_0(r')\right]$ $para \ r > r' \qquad [Ec. 5.3.4] (b)$

Se va a mostrar que la Ec.5.3.5(a) cumple con la Ec.5.3.2.(b). Se usará notación reducida, sea G la función de Green tal que:

$$\frac{1}{r}\frac{d}{dr}r\frac{dG}{dr} - G = \frac{1}{r}\frac{d(rG')}{dr} - G = G'' + \frac{1}{r}G' - G = 0$$

$$G = aI_0 - bK_0, G' = aI'_0 - bK'_0, G'' = aI''_0 - K''_0$$

sustituyendo:

 $aI_0'' - bK_0'' + aI_0'/r - bK_0'/r - aI_0 + bK_0 = 0$ $a(I_0'' + I_0'/r - I_0) + b(-K_0'-K_0'/r + K_0) = 0$

las fórmulas que relacionan a las funciones de Bessel que se van ausar son (Pag. 470, Ref.17):

(1)
$$I'_0 = I_1$$
 (2) $I''_0 = \frac{1}{2}I_0 + \frac{1}{2}I_2$ (3) $\frac{I_1}{r} = \frac{1}{2}I_0 - \frac{1}{2}I_2$
[EC.5.3.4]
(4) $K'_0 = -K_1$ (5) $K''_0 = \frac{1}{2}K_0 + \frac{1}{2}K_2$ (6) $\frac{K_1}{r} = -\frac{1}{2}K_0 - \frac{1}{2}K_2$

sustituyendo

 $\begin{aligned} a\left(\frac{1}{2}I_{0} + \frac{1}{2}I_{2} + \frac{1}{2}I_{0} - \frac{1}{2}I_{2} - I_{0}\right) + \\ b\left(-\frac{1}{2}K_{0} - \frac{1}{2}K_{2} - \frac{1}{2}K_{0} + \frac{1}{2}K_{2} + K_{0}\right) &= 0 \\ a(0) + b(0) &= 0 \\ por \ lo \ que \ queda \ demostrado \end{aligned}$

Ahora se examina si cumple la condición que establece que la función de Green en r=r $_0$ es cero para toda r.

(partiendo de la ecuación Ec.5.3.4(b) y haciendo $r=r_0$

$$G(r_0, r') = \left(\frac{1}{2\pi}\right) I_0(r') \left[K_0(r_0) I_0(r_0) / I_0(r_0) - K_0(r_0)\right]$$

la cual es obviamente cero para toda r'.

Por último, respecto al punto viii, se examinará si la función propuesta de Green cumple con el teorema de reciprocidad.

debemos comprobar que $G(r_1, r_2) = G(r_2, r_1)$, suponiendo, que $r_1 < r_2$, usemos la ecuación 5.3.4(a) para el miembro izquierdo y 5.3.4(b) para el derecho, tal que:

$$G(r_1, r_2) = \left(\frac{1}{2\pi}\right) I_0(r_1) \left[K_0(r_0) I_0(r_2) / I_0(r_0) - K_0(r_2)\right]$$

$$G(r_2, r_1) = \left(\frac{1}{2\pi}\right) I_0(r_1) \left[K_0(r_0) I_0(r_2) / I_0(r_0) - K_0(r_2)\right]$$

cumpliénodse la condición de simetría.

Pasando al punto ix, obtener la derivada de la función de Green repecto a r' y determiar el valor de ésta en r=r_o.

tomando la ecuación Ec.5.3.4(a) derivándola respecto a r^i y tomando, posteriormente el valor de $r^i=r_{g_i}$ tal que:

$$\frac{dG(r, r')}{dr'}\Big|_{r'=r_0} = \frac{1}{(\frac{1}{2\pi})}\frac{d}{dr'}(I_0(r) [K_0(r_0) I_0(r')/I_0(r_0) - K_0(r'))]_{r'=r_0} = \frac{1}{(\frac{1}{2\pi})}I_0(r) [K_0(r_0) \frac{dI'_0(r')}{dr'}/I_0(r_0) - \frac{dK_0(r')}{dr'}]_{r'=r_0}$$

usando las relaciones de Bessel (1) y (4) de la Ec.5.3.5;

$$\frac{dG(\mathbf{r} \cdot \mathbf{r}')}{d\mathbf{r}'}\Big|_{\mathbf{r}'=\mathbf{r}_{0}} = \frac{1}{(\frac{1}{2\pi})}I_{0}(\mathbf{r})\left[K_{0}(\mathbf{r}_{0})I_{1}(\mathbf{r}')/I_{0}(\mathbf{r}_{0})+K_{1}(\mathbf{r}')\right]\Big|_{\mathbf{r}'=\mathbf{r}_{0}} = \frac{1}{(\frac{1}{2\pi})}I_{1}(\mathbf{r})\left[\frac{I_{1}(\mathbf{r}_{0})K_{0}(\mathbf{r}_{0})+I_{0}(\mathbf{r}_{0})K_{1}(\mathbf{r}_{0})}{I_{0}(\mathbf{r}_{0})}\right]$$

de la relación de Bessel (II-67)Pag.570, Ref. 17:

$$I_1(z) K_0(z) + I_0(z) k_1(z) = \frac{1}{z}$$

por lo que:

.

ţ

1

1

$$\frac{dG(r,r')}{dr'}\Big|_{r' \cdot r_0} = \left(\frac{1}{2\pi r_0}\right) \left(\frac{I_0(r)}{I_0(r_0)}\right) \qquad [EC.5.3.6]$$

El último punto de esta etapa es determinar el valor del flujo neutrónico en la superficie del núcleo $\phi_1(r_0)$. En base a las

condiciones a la frontera impuestas al suponer que el núcleo del reactor está rodeado de un reflector de neutrones (agua) de espesor infinito.(ver, páginas 165 y 166 de la Ref. 14):

para el caso de que el radio r esté en unidades de L se tendrá:

$$-\frac{1}{\Phi} \langle D/L \rangle \frac{d\Phi}{dr} \Big|_{r=r_0} = \alpha = \frac{1}{2} (1 - \beta) / (1 + \beta) \quad [Ec.5.3.7] (a)$$

- $(D/L) \frac{\Phi'(r_0)}{\Phi(r_0)} = \alpha \quad [Ec.5.3.7] (b)$

donde:

 $\beta = \frac{1 - \frac{2D}{L}}{1 + \frac{2D}{L}}$ [Ec.5.3.7](c)

 β = albedo para un reflector de espesor infinito

despejando en Ec.5.3.7(b) a $\phi'(r_0)$;

$$\phi'(r_0) = -(\frac{L}{D})\phi(r_0) \qquad [Ec.5.3.7.](d)$$

En esta última etapa se obtienen la función de reactividad rápida efectiva y el potencial de combustible total. Ambas en forma explícita y en función de parámetros conocidos, entre estos la distribución de potencia radial. Para lograr lo anterior se procede de la forma siguiente:

- xi) Reemplazar en la ecuación de $\phi(r)$ (Ec.5.3.3) la derivada de la función de Green (Ec.5.3.6) y obtener una nueva relación de $\phi(r)$ (Ec.5.3.10).
- xii) Se deriva la nueva relación de $\phi(r)$ respecto a la variable r y obtener su valor en la superficie del núcleo, es decir en $r=r_0$. Esta derivada ($\phi'(r_0)$) se sustituye por la expresión de la ecuación 5.3.7(d) y se despeja $\phi(r_0)$. La expresión resultante de $\phi(r_0)$ etiquetar como Ec.5.3.11.
- xiii) Se sustituye en la relación de $\phi(r)$ (Ec.5.3.10) el valor de $\phi(r_0)$ encontrada en la ecuación 5.3.11. Etiquetar como Ec.5.3.12.
- xiv) Puesto que las fuentes de fisión y la potencia en un punto r del núcleo son proporcionales al producto de la reactividad por el flujo de neutrones en ese punto r. se puede establecer la siguiente relación:

 $P(r) = P_m K^*(r) \phi(r)$

[*EC*, 5, 3, 8]

donde:

 $P_m = constante de proporcionalidad$

Multiplicar por K'(r) la ecuación 5.3.11 y convertir a potencia (P(r)) de acuerdo a la relación Ec.5.3.8 y derivar una expresión de K'(r). Con esto se obtiene una expresión de K'(r) en función de parámetros conocidos y de la distribución de potencia radial (P(r)). Etiquetar el resultado como ecuación 5.3.13.

XV)

ļ

De acuerdo a la Referencia 1 página 85, la ecuación 27 se define como la potencia del combustible total (F) como:

$$F = 2\pi \int_{0}^{r_{0}} r \, dr \, K^{*}(r) \qquad [Ec.5.3.9]$$

reemplazando en la expresión anterior (Ec.5.3.9) la K*(r) por lo encontrado en Ec.5.3.11. Con esto se obtiene F en función de parámetros conocidos. Etiquetar Ec.5.3.14.

Empezando con el punto xi, en Ec.5.3.3 sustituimos $G'(r_0, r')$ por la expresión de Ec.5.3.6:

$$\Phi(r) = -2\pi \int_{0}^{r_{0}} dr' r' G(r, r') K^{*}(r') \Phi(r') + \Phi(r_{0}) (I_{0}(r) / I_{0}(r_{0})) [EC.5.3.10]$$

Ahora se deriva $\phi(r)$ respecto a r y realizando sustituciones y transformaciones obtener el valor de $\phi(r_0)$, tal como se especifica en el punto xii.

derivando respecto a r la ec.5.3.9 y tomando $r=r_0$:

.

•••

$$\frac{d\phi(r)}{dr}\Big|_{r=r_0} = -2\pi \left[\int_{0}^{r_0} dr' r' \frac{dG(r,r')}{dr} K^*(r')\phi(r') + \phi(r_0) \left(I'_0(r) / I_0(r_0)\right)\right]\Big|_{r=r_0}$$

como r se tomará como r_0 , se nesecita que r>r', para G(R, r') entonces, tomando la Ec.5.3.4(b) y derivándola:

$$\frac{dG(r,r')}{dr}\Big|_{r=r_0} = \left(\frac{1}{2\pi}\right) \frac{d}{dr} \left(I_0(r') \left[K_0(r_0) I_0(r) / I_0(r_0) - K_0(r)\right]\right|_{r=r_0}$$

examinando la deducción de Ec.5.3.6, fácilmente se concluye:

$$\frac{dG(r,r')}{dr'}\Big|_{r*r_0} = \left(\frac{1}{2\pi}\right) \left(\frac{I_0(r')}{I_0(r_0)}\right)$$

usando lo anterior y la relación de Bessel (1) de la Ec.5.3.5 $(I'_0=I_1)$

$$\frac{d\Phi(r_0)}{dr} = -2\pi \int_0^{r_0} dr' r' \left(\left(\frac{1}{2\pi} \right) \left(\frac{I_0(r')}{r_0 I_0(r_0)} \right) \right) K^*(r') \Phi(r') + \Phi(r_0) I_1(r_0) / I_0(r_0)$$

$$\Phi(r_0)' - \Phi(r_0) I_1(r_0) / I_0(r_0) = \left(\frac{-1}{r_0 I_0(r_0)} \right) \int_0^{r_0} dr' r' K^*(r') \Phi(r') I_0(r')$$

sustituyendo $\phi'(r_0)$ de la Ec.5.3.7(d), y despejando $\phi(r_0)$

$$\left(\frac{-L}{D}\right) \alpha \phi(r_{0}) - \phi(r_{0}) I_{1}(r_{0}) / I_{0}(r_{0}) = \left(\frac{-1}{r_{0}I_{0}(r_{0})}\right) \int_{0}^{r_{0}} dr' r' K^{*}(r') \phi(r') I_{0}(r')$$

$$\phi(r_{0}) \left[\frac{I_{1}(r_{0}) + \alpha\left(\frac{L}{D}\right) I_{0}(r_{0})}{I_{0}(r_{0})}\right] = \left(\frac{1}{r_{0}I_{0}(r_{0})}\right) \int_{0}^{r_{0}} dr' r' K^{*}(r') \phi(r') I_{0}(r')$$

$$\phi(r_{0}) = \frac{\int_{0}^{r_{0}} K^{*}(r') \phi(r') I_{0}(r') r' dr'}{r_{0}[I1(r_{0}) + \alpha(L/D) I_{0}(r_{0})]}, \qquad [Ec. 5.3.11]$$

Se sustituye en la ecuación 5.3.10 el valor de $\phi(r_0)$ encontrada en la ecuación 5.3.11.

Sustituyendo $\phi(r_0)$ de la Ec.5.3.11 en la Ec.5.3.10

$$\phi(r) = -2\pi \int_{0}^{r_{0}} dr' r' G(r, r') [K^{*}(r') \phi(r')] + \frac{\int_{0}^{r_{0}} [K^{*}(r') \phi(r')] I_{0}(r') r' dr'}{r_{0} [II(r_{0}) + \alpha (L/D) I_{0}(r_{0})]}, \frac{I_{0}(r)}{I_{0}(r_{0})}, \qquad [Ec. 5.3.12]$$

De acuerdo al punto xiv, multiplicar la ecuación anterior por K*(r) y reemplazar por la potencia el producto de la constante de multiplicación por flujo. Despejar la K*(r) y con esto obtener finalmente una expresión explícita de la reactividad efectiva radial. Objetivo principal de la teoría de difusión inversa.

Multiplicando por K*(r) la ec.5.3.12:

$$\begin{bmatrix} K^{\bullet}(r)\phi(r) \end{bmatrix} = K^{\bullet}(r) \begin{bmatrix} -2\pi K^{\bullet}(r) \int_{0}^{r_{0}} dr' r' G(r,r') \begin{bmatrix} K^{\bullet}(r')\phi(r') \end{bmatrix} + \\ \int_{0}^{r_{0}} \begin{bmatrix} K^{\bullet}(r')\phi(r') \end{bmatrix} I_{0}(r') r' dr' \\ \frac{I_{0}(r)}{r_{0} \begin{bmatrix} II(r_{0}) + \alpha(L/D) I_{0}(r_{0}) \end{bmatrix}} \cdot \frac{I_{0}(r)}{I_{0}(r_{0})} \end{bmatrix}.$$

Remplazando por $P(r)/P_m$ a los productos $[K^*(r)\phi(r)]$ de acuerdo a la ecuación 5,3,8:

$$[P(r)/P_m] = K^*(r) \left[-2\pi K^*(r) \int_0^{r_0} dr' r' G(r, r') \left[P(r')/P_m \right] + \frac{\int_0^{r_0} \left[P(r')/P_m \right] I_0(r') r' dr'}{r_0 \left[I_1(r_0) + \alpha (L/D) I_0(r_0) \right]} \cdot \frac{I_0(r)}{I_0(r_0)} \right].$$

Eliminando P_m , y despejando $K^*(r)$:

$$K^{*}(r) = \frac{P(r)}{\sum_{x_{0}}^{x_{0}} \int_{0}^{x_{0}} P(r') I_{0}(r') r' dr'} + \frac{\int_{0}^{x_{0}} P(r') I_{0}(r') r' dr'}{\sum_{x_{0}} [II(r_{0}) + \alpha(L/D) I_{0}(r_{0})]} \cdot \frac{I_{0}(r)}{I_{0}(r_{0})}$$

Sea la constante A igual a:

- -----

$$A = \frac{1}{r_0 I_0(r_0) [I_1(r_0) + \alpha (L/D) I_0(r_0)]}$$

introduciendo A en la ecuación anterior:
$$K^*(r) = \frac{P(r)}{r_0}$$

[EC.5.3.13].
A I_0(r) $\int_0^r dr' r' P(r') I_0(r') - 2\pi \int_0^r dr' r' G(r, r') P(r')$

.....

Por último derivemos la ecuación para el potencial de combustible total, de acuerdo a la ecuación 5.3.9 del paso xv.

1

Sustituyendo K $^{*}(r)$ en la relación 5.3.9 con el valor encontrado en la ecuación 5.3.12, setendrá:

$$F = 2\pi \int_{0}^{r_{0}} dr r K^{*}(r) =$$

$$2\pi \int_{0}^{r_{0}} dr \frac{P(r)}{A I_{0}(r) \int_{0}^{r_{0}} dr' r' P(r') I_{0}(r') - 2\pi \int_{0}^{r_{0}} dr' r' G(r, r') P(r')} [EC.5.3.14]$$

Esta última relación permite determinar, bajo ciertas restricciones impuestas al pico de potencia radial, qué distribución de reactividad radial es óptima al minimizar el valor de la potencia del combustible (F).

5.4 Estudio de la curva de distribución de Kinf radial objeto para la CNLV optimizando el potencial de combustible

the second to be an exactly and the

El objetivo de este apartado es lograr generar recargas con distribuciones de potencia lo más planas posibles y con la máxima economía del ciclo. Por máxima economía del ciclo se pueden establecer dos variantes:

- Si los combustibles de recarga se fijan con anticipación entonces obtener la máxima extensión del ciclo.
- Si la longitud de ciclo está fijada entonces procurar el costo de recarga de combustible fresco mínimos.

Chao establece una tercera posibilidad y es la siguiente:

ŝ

1

ţ

i.

4

14 J 40

- La carga con máxima economía de ciclo es la que tiene la Potencia de Combustible Total mínima.

Esta opción tiene la ventaja de que se puede cuantificar directamente a través de las ecuaciones presentadas en el apartado anterior.

Ahora se revisa el concepto de distribución de potencia radial "plana". La pregunte básica es: ¿ cómo medir lo plano de un perfil de potencia?.

Lo ideal es tener la potencia absolutamente plana en todo el núcleo. Esto es imposible y siempre se presentará un pico de potencia máximo (lo varios!, por simplicidad sólo se intentará tratar con un pico). Ahora se consideran distribuciones de potencia radiales suaves, exentas de cambios bruscos de potencia al variar el radio, entonces el pico de potencia <u>relativa</u> máxima será una medida de lo plano de un perfil tal que:

Una distribución de potencia relativa radial será más plana entre menor sea la magnitud del pico máximo de potencia.

Con base en lo anteriormente se establece como meta para este apartado:

Determinar (estableciendo la magnitud del pico de potencia relativa máxima) la distribución de potencia radial OPTIMA minimizando el Potencial de Combustible de un núcleo representativo de los reactores de la CNLV y así obtener la correspondiente distribución de la K radial que será la distribución de reactividad OBJETO.

Las ecuaciones involucradas en la realización del objetivo son:

Obtención de la reactividad radial (K'): Ec.5.3.13
Obtención del Potencial de Combustible (F): Ec.5.3.14
Ecuación de Green del operador M (G(r,r')): Ec.5.3.4
Condición a la frontera (alfa) Ec.5.3.7

Los parámetros representativos de los reactores de la CNLV:

-	Radio del núcleo (r _o)	1.02 m
	Coeficiente de difusión de neutrones (D)	0.4392 cm
	Longitud de difusión de neutrones (L)	7.525 cm
	alfa (albedo radial)	0.44

Las funciones de Bessel involucradas son:

-	Bessel	modificado	de	primera	clase	orden	cero	Ι _υ	, (X	:)
---	--------	------------	----	---------	-------	-------	------	----------------	-------	----

- Bessel modificado de primera clase orden uno I₁(x)

- Bessel modificado de segunda clase orden cero $K_{u}(x)$

El desarrollo de las actividades de este apartado se llevaron a cabo en tres partes :

- Establecimiento del método de generación de perfiles de potencia P(r) con características controladas.
- Establecimiento del método de cálculo de la Potencia de Combustible y de la distribución de reactividad radial correspondiente a la distribución de las potencias generadas.
- Estudio para determinar la distribuciones de potencia OPTIMA y de la distribución OBJETO recomendable para las recargas de la CNLV.

5.4.1 Método de generación de perfiles de potencia

En el estudio realizado por Chao (Ref.1) se utilizó un polinomio de tercer grado para simular las distribuciones radiales de potencia P(r) de un núcleo de un reactor PWR. La magnitud y la ubicación del pico de potencia radial era controlado al variar las condiciones impuestas al polinomio. Con este tipo de polinomio se realizó el estudio para determinar el perfil de potencia con menor Potencial de Combustible. Chao reporta el resultado siguiente:

El mínimo de Potencial de Combustible para un perfil de pico

ESTA TESIS MO DEBE Salir de la biblioteca

de potencia relativo de 1.3 se da en la fracción de radio de 0.6 $\,$

La meta para este apartado en un principio fue tratar de reproducir el resultado anteriormente mencionado. Para esto se utilizó, al igual que en el estudio de Chao, para describir la potencia un polinomio de tercer grado aplicado a un núcleo representativo de un reactor BWR. Pronto se presentaron problemas en la obtención de perfiles adecuados. Por ejemplo si se establecían las siguientes condiciones:

 P(r_m)=Pmax, P(r_q)=0, y la integral P(r) en todo el núcleo igual a 1

Donde r_m es el radio donde se ubica el pico de potencia, r_0 es el radio del núcleo, y Pmax la magnitud del pico de la potencia relativa radial.

Al no haber control de la potencia en el centro del reactor esto puede producir valores inadecuados e inclusive negativos cerca del centro del reactor.

Otro ejemplo, si se utiliza las condiciones siguientes:

- $P(r_m) = Pmax$, $P(r_m) = 0$ y $P(0) = P_{mi}$

ł

Į

1

1

y no tener control sobre la integral de la potencia en general ésta no será igual a uno perdiéndose la relatividad necesaria para que el pico Pmax se conserve tal como se establece en las condiciones.

Después de varios intentos de realizar el estudio con un polinomio de tercer grado se optó por aumentar la complejidad de la generación del perfil de potencia. Se consideraron polinomios de mayor grado pero se desechó esta alternativa ya que al aumentar el grado crece la posibilidad de producir perfiles de potencia oscilantes. Se decidió finalmente utilizar dos polinomios de tercer grado para generar los perfiles de potencia.

Las características impuestas al sistema de dos polinomios para la generación de perfiles de potencia relativa radial son:

- Polinomio PA(r) de tercer grado. Se usa para describir la potencia del centro del núcleo hasta el punto de máxima potencia [0,Pmax(rm)].
- Polinomio PB(r) de tercer grado. Se usa para describir la potencia del punto de máxima potencia a la frontera radial del núcleo [Pmax(r_m),r₀]].

Analistic Ast 1

Estos polinomios se determinan bajo las siguientes condiciones:

- a) La magnitud y ubicación del pico de potencia relativa radial se controla al imponer P(rm) = Pmax.
- b) La magnitud de la potencia relativa radial en el centro del reactor se controla al imponer P(0) = Pori
- c) Por condiciones a la frontera se impone que la derivada de la potencia sea cero en el centro del núcleo P' $(r_0) = 0$.
- d) Por condiciones a la frontera se impone que la potencia sea cero en la periferia del núcleo $P(r_0) = 0$.
- e) Para lograr que el polinomio represente un perfil de potencia radial <u>relativo</u> se impone que la integral de la potencia en el núcleo sea igual a 1.

$$\int_0^{r_0} dr P(r) = 1$$

f) Para evitar singularidades en el punto de unión de los dos polinomios (r = r_m) la derivada de ambos polinomios debe ser cero, PA'(r_m) = 0 y PB'(r_m)0=0.

donde Pmax es el pico de potencia y $r_{\rm m}$ es el radio donde Pmax ocurre y $r_{\rm 0}$ es el radio del núcleo.

A continuación se dan los sistema de ecuaciones obtenidos bajo las consideraciones anteriormente expresadas:

Sea: $PA(r) = a_1r^3 + a_2r^2 + a_3r + a_4$

Bajo las condiciones:

 $PA(0) = P_{ori}, PA'(0) = 0$ PA(rm) = Pmax, PA'(rm) = 0 $Area_A + Area_B = 1$

Puesto que:

$$PA'(r) = 3a_1r^2 + 2a_2r + a_3$$

$$\int_{0}^{r_a} dr PB(r) = \left[\frac{a_4}{4}r^4 + \frac{a_3}{3}r^3 + \frac{a_2}{2}r^2 + a_1r\right]\Big|_{0}^{r_a}$$

se tendrá el siguiente sistemas de ecuaciones:

$a_4 = P_{ori} \dots	Ec.5.4.1(a)
$a_3 = 0 \dots	$E_{C.5.4.1(b)}$
$a_1 r_m^3 + a_2 r_m^2 + a_3 r_m + a_4 = P_{\max} \dots \dots \dots$	EC.5.4.1(C)
$3a_1r_m^2+2a_2r_m+a_3r_m=0$	EC.5.4.1(d)
$Area_{A} = \frac{1}{4}a_{1}r_{m}^{4} + \frac{1}{3}a_{2}r_{m}^{3} + \frac{1}{2}a_{3}r_{m}^{2} + a_{4}r_{m}$	Ec.5.4.1(e)
$Area_B = Area_A - 1 \dots$	Ec.5.4.1(f)

se tendrá el siguiente sistemas de ecuaciones;

$b_1 r_0^3 + b_2 r_0^2 + b_3 r_0 + 1$	=	0								•	•••						,		•		•		•		Ec.5.4.2(a)
$b_1 r_m^3 + b_2 r_m^2 + b_3 r_m + 1$	=	Pr	na:	ĸ					•			•			•		•		•		•		,		EC.5.4.2(b)	
$3b_1r_m^2+2b_2r_m+b_3 =$	0		•		•							• •	,	•				,	•	•		•		,	Ec.5.4.2(c)	
$\frac{1}{4}b_1(r_0^4 - r_m^4) + \frac{1}{3}b_2$	(z	- ³ 0 -	r _m) +	12	ł	7 3	(z	2	- 1	2 m) +	b	4	(<i>r</i>	^	r	_m)	3	-	A.	r e	a	B	EC.5.4.2(d)	I
$Area_A + Area_B =$	1				,				•				•												Ec.5.4.2(e)

Se elaboró el programa uupol1.m para la generación controlada de los perfiles de potencia de acuerdo al sistema de ecuaciones establecido arriba. Este se realizó en el lenguaje de programación del paquete MATLAB (véase el Apéndice D).

En la serie de Figuras 5.1 se presentan gráficas de potencia relativa radial generadas con el programa uupol1.m. Estas constituyen una muestra representativa de las distribuciones de potencia generadas en el estudio. Estos perfíles de potencia, se puede asegurar, resultaron mucho más apropiadas que el usar un simple polinomio de tercer grado. Sin embargo, como se verá más adelante, el rango de uso de estos polinomios es también limitado.

Al tratar de producir perfiles de potencia con valores de Pmax debajo a 1.3 estos producen picos secundarios pegados a la periferia del núcleo y cuando el pico de potencia esta arriba de 1.45 y la ubicación del pico está cerca de la periferia del núcleo se presentan potencias negativas.

A pesar de lo anterior se dispuso de la flexibilidad suficiente para generar más de 200 perfiles bien formados y dentro de los intervalos de los valores de la potencia máxima y de localización radial del pico que fueron requisito para realizar un estudio adecuado de la distribución de potencia óptimo.

Figura 5.1.a Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.01.

1

A set of the set of

ŧ

1

а: ...

ł

.

ι

с: ...

Figura 5.1.a Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.01.

1

Figura 5.1.b Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=10.

ن د

١.

Figura 5.1.c Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.20.

35

t

Figura 5.1.d Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.30.

/

Figura 5.1.e Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.40.

37

ŧ

E

ŧ

ŧ

Figura 5.1.f Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.45

τ

4

Figura 5.1.g Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.50.

t

Figura 5.1.h Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.55.

ŧ

ŧ

Figura 5.1.i Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.60.

Figura 5.1.j Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.65.

92

٤

1

.

ŧ.

distacia radial fraccional

Figura 5.1.k Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radíal con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.70.

ι

ŧ

Figura 5.1.1 Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.75.

1

Figura 5.1.m Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de

ŧ

potencia rm=0.80.

ŧ

٤

distacia radial fraccional

Figura 5.1.n Distribuciones de potencia relativa radial y su correspondiente distribución de reactividad contra la fracción radial con Pori=0.78 y Pmax=1.30 para el caso donde la posición del pico máximo de potencia rm=0.85.

5.4.2 Método de cálculos del Potencial de Combustible y de las distribuciones de reactividad.

En esta segunda etapa se desarrollaron una serie de programas de cómputo UUPRIX.M y UUPOSTX.M (para mayor información consultar el Apéndice D). Estos programas permitieron calcular tanto la distribución de reactividad como el valor del Potencial de Combustible asociada a cada una de las distribuciones de potencia generadas en la etapa anterior.

Como se observa en las ecuaciones 5.3.13 y 5.3.14, tanto el cálculo de la distribución de reactividad radial como el del Potencial de Combustible están involucradas integrales. Para calcular estas se usó el método numérico tradicional de integración de Simpson (tomado de la Referencia 19 página 108) el cual se puede expresar como:

 $\int_{x_0}^{x_n} y(x) \, dx \sim (h/3) \left[y_0 + 4y_1 + 2y_2 + 4y_3 + \ldots + 2y_{n-2} + 4Y_{n-1} + Y_n \right]$

Donde:

$$\begin{split} h &= \frac{x_n - x_0}{n} \\ n &= n \text{imero de intervalos} \\ y_0 &= y(x_0), \ y_1 = y(x_0 + h), \ y_2 = y(x_0 + 2h), \dots \\ y_{n-1} &= y(x_0 + (n-1)h), \ y_n = y(x_N) \end{split}$$

el Error de truncamiento está dado por:

Error = $-(x_n - x_0)h^4 y^{(4)}(\xi)$

donde:

 $y^{(4)}$ es la cuarta derivada de y respecto a x

En el estudio se utilizaron 100 intervalos radiales para el cálculo de las integrales lo que da un error de truncamiento muy pequeño.

El paquete MATLAB tiene entre sus módulos de programación las funciones de Bessel siguientes:

Función	de	Bessel	de	primera	clase	orden	n	Jn (:	X)
Función	de	Henkel						Hn (:	x)

Se usaron las relaciones:

In(x) = iⁿ Jn(ix) (Ref. 17, ec II-38 pag. 568) Kn(x) = $\pi/2$ iⁿ⁺¹ Hn(ix) (Ref. 18 pag. 399) donde i es el número imaginario unitario (i = $(-1)^{1/2}$)

.

En base a estas relaciones se construyeron las funciones en lenguaje MATLAB para poder calcular $I_0(x)$, $I_1(x)$ y $K_0(x)$ (ver Apéndice D). Estas funciones son las necesarias para llevar a cabo el cálculo de la distribución de reactividad radial de acuerdo a la ecuación Ec.5.3.13.

En las gráficas de la Figura 5.1 se muestran juntas las distribuciones de potencia y sus correspondientes distribuciones de reactividad para los casos en que el pico máximo de potencia se conservó constante a 1.30. Los perfiles de reactividad fueron calculadas con los programas antes descritos.

5.4.3 Estudio para la obtención de la distribuciones radiales de potencia OPTIMA y de reactividad OBJETO para las recargas de la CNLV.

Una vez probados los programas de cómputo comentados en los dos apartados anteriores se inició el proceso de estudio relacionado con la meta fijada en el apartado 5.3.

El estudio se dividió en dos de la forma siguiente:

- 1.- ESTUDIO-1, POTENCIA MAXIMA FIJA, Calcular el Potencial de Combustible Total y las distribuciones de reactividad radial correspondientes a las distribuciones de potencia relativa radial teniendo las siguientes características;
 - Pico de potencia radial máxima fija, Pmax=1.3 .
 - variar la potencia en el centro del núcleo Pori, tomando los siguientes valores de potencia relativa;
 [.70 .71 .72 .73 .74 .75 .76 .77 .78 .79 .80 .81 .82 .83]
 - variar también la localización radial del pico de potencia, rm toma los valores (en unidades fracción de radio del núcleo); {.01 .10 .20 .30 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85]
- 2.- ESTUDIO-2 POTENCIA CENTRAL FIJA, Calcular la Potencia de Combustible Total y las distribuciones de reactividad radial correspondientes a las distribuciones de potencia relativa radial con las siguientes características;

- Potencia en el centro del núcleo fija, Pori=.76
- variar la magnitud del pico de potencia radial máxima, tomando los siguientes valores (potencia relativa);
 (1.05 1.10 1.15 1.20 1.30 1.35 1.40 1.45 1.5)
- variando también la localización radial del pico de potencia, rm toma los valores (en unidades fracción de radio del núcleo); [.01 .10 .20 .30 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85]

Se tienen problemas en el método de cálculo del perfil de reactividad si se introduce el pico de potencia en el centro (rm=0) por lo que en lugar de poner rm=0 se tuvo que poner rm=.01 pero para cuestiones prácticas este punto representa, sin problemas al caso de la potencia máxima en el centro.

El primer estudio trata de forma exhaustiva los diferentes posibles perfiles de potencia manteniendo el pico de potencia en 1.30 al variar la posición del pico de potencia y la potencia en el centro del reactor. Este estudio proporcionará información que probablemente permita mejorar las técnicas de recarga actuales de ciclos anuales. Es por esto que se eligió la potencia máxima fija igual a 1.3 ya que éste es un valor representativo de las recargas de combustible reales en los ciclos anuales. Sin embargo, actualmente las propuestas para ciclos avanzados más agresivos y de longitudes bianuale es en el sentido de formar recargas con picos de potencia mayores (ver, Referencia 4 y 5). El segundo estudio está pensado en investigar que pasa al variar el pico de potencia tanto arriba como abajo del valor usual de las recargas. La meta es determinar si efectivamente:

Al aumentar el pico de potencia se obtienen mejores recargas, es decir con menor Potencial de Combustible.

Recordemos que el aumento del pico de potencia trae como consecuencia la disminución de los márgenes a los l'ímites térmicos. Esta disminución es compensada con nuevos diseños de combustible capaces de funcionar bajo condiciones más restrictivas, alcanzar mayores quemados de descarga del combustible y con probabilidades de fallo muy bajas (casi cero). Estos combustibles avanzados también permiten mayores enriquecimientos lo que permite tener recargas con menor número de combustibles frescos. En el futuro gracias a los nuevos combustibles las recargas serán más largas y esto exige recargas con mayores picos de potencia máxima. El segundo estudio está, por lo tanto, más relacionado con las posibilidades de ciclos avanzados.

El objetivo al hacer estos dos estudios complementarios es tener un panorama teórico amplio respecto a la formación de recargas.

5.4.3.1 Resultados, análisis y conclusiones del ESTUDIO-1:

Se generaron los 196 perfiles de potencia del Estudio 1 y se obtuvieron para cada uno su correspondiente valor del Potencial de Combustible Total y de distribución de reactividad radial.

Los resultados obtenidos en el Estudio 1 se resumen al reunir los datos obtenidos en una sola gráfica mostrada en la Figura 5.2. Esta gráfica representa los casos en donde el pico de potencia se fijó en 1.3, en ella se trazan curvas conservando el valor del potencia en el centro del núcleo fijo, cada curva representa un valor dado de potencia en el centro del reactor y permite observar cómo varía el Potencial de Combustible al irse moviendo la posición del pico de potencia. En la gráfica también se trazó la curva con los valores reportados por Chao. Del examen de la gráfica se encuentra que las curvas crecen o presentan un máximo a diferencia de la curva de Chao la cual presenta un mínimo. Es evidente que <u>no</u> se logró confirmar lo concluido por Chao referente a:

El mínimo de Potencia de Combustible para un perfil de pico de potencia relativo de 1.3 se da en la fracción de radio de .6

y en lugar de esto se observa lo siguientes:

Ł

- 1- Para el pico de potencia relativa de 1.30 el Potencial de Combustible Total es mínimo para la distribución de potencia con el pico localizado en el centro del núcleo.
- 2- El Potencial de Combustible crece al aumentar la posición radial del pico de potencia para potencia en el centro del núcleo menores a .80
- 3- El potencial de Combustible presenta un máximo para potencias en el centro del núcleo mayores a 0.80. estos máximos ocurren para posiciones del pico de potencia muy cercanas a la periferia.

De la gráfica y analizando la conclusión 3 se detecta la posibilidad de que:

"al aumentar Pori a más de .83 y manteniendo la posiciones del pico de potencia máxima lo más cercano de la periferia se logre obtener Potenciales de Combustible menores a los de las recargas con pico de potencia en el centro del núcleo.

La realidad es que esta aproximación requiere tener distribuciones de reactividad con picos en la periferia como en los mostrados en la Figura 5.3. en esta gráfica de la distribución de reactividad radial contra la posición radial de pico de potencia corresponde al caso de la potencia en el origen Pori=.83 y con pico de potencia máxima de Pmax=1.3.

En un reactor nuclear la reactividad no puede ni debe ser mayor a cierto límite el cual vamos ahora a establecer, (conservadoramente grande) que sea de:

 $Keff_{iim} = constante$ de multiplicación efectiva limite = 1.15

Volviendo a examinar la gráfica 5.3 se puede apreciar que el pico de reactividad sobre pasa el valor límite de reactividad máxima radial lo cual lo inhabilita para usarse como distribución objeto de las recargas.

En el estudio 2 se vuelve a presentar una situación parecida y ahí se examinaran con mayor amplitud los posibles mínimos del Potencial de Combustible surgidos en los casos de picos de potencia cerca de la periferia.

Ł

£

Figura 5.2 ESTUDIO-1: Familia de curvas de Potencial de Combustible contra posición del pico máximo de potencia variando la potencia relativa en el centro del núcleo para Pmax=1.30.

t

1

y su correspondiente distribución radial de reactividad contra la posición del pico máximo de potencia, donde la reactividad máxima permítida es rebasada.

the second s

5.4.3.2 Resultados, análisis y conclusiones del ESTUDIO 2:

Al intentar realizar el estudio 2 se encontró que el sistema de generación de la potencia relativa, mediante el sistema de dos polinomios fallaba cuando el valor del pico de potencia es menor a 1.25. El problema consiste en la formación de un segundo pico de potencia cerca de la periferia del núcleo cuya magnitud es mayor a Pmax (ver Fig. 5.4). Esto obviamente impide el uso de los dos polinomios cuando se pretende perfiles de potencia con pico máximo por debajo a 1.25.

En la Figura 5.5 se muestra el resumen gráfico del estudio-2. La gráfica consistente en una familia de curvas de Potencia de Combustible Total contra la posición del pico de potencia radial para diferentes valores del pico de potencia relativa máxima para Pmax 1.25, 1.30, 1.35, 1.40, 1.45 y 1.50. El valor de la potencia en el centro del núcleo no se varió dejándola fija (Pori=.78). En esta gráfica se vuelve a trazar los datos correspondientes al estudio de Chao y se reafirma la no concordancia con los datos obtenidos en este estudio. También se incluye una curva correspondiente al pico de reactividad máxima permitida (Keff_{lim}=1.15) la cual divide el plano de la gráfica en dos regiones;

- a la izquierda la región de perfiles de reactividad, en teoría, posibles de llevar a la práctica, y
- a la derecha la región de distribuciones de reactividad con picos demasiado grandes para generar recargas.

El examen de las curvas relacionadas con el potencial de combustible generadas en el estudio 2 se puede observar que:

- 4- El potencial de combustible es mínimo cuando el pico de potencia máximo está en el centro del núcleo cuando el pico de potencia relativa máxima se encuentra entre los valores de 1.25 a 1.45.
- 5- Al aumentar el pico de potencia el potencial de combustible disminuye cuando el pico de potencia relativa máxima se encuentra entre los valores de 1.25 a 1.45.

remarcando, a menor potencial de combustible mayor economía de ciclo.

Haciendo un examen de las curvas de reactividad correspondiente a los casos estudiados se puede observar que:

6- Para los casos dónde la potencia pico máxima se encuentra en el centro del reactor la distribución de reactividad radial crece linealmente del centro del núcleo hacia la periferia والمراجب المراجب والمراجب
hasta una fracción radial de alrededor de 0.88 para caer rápidamente a cero en la superficie radial del núcleo. Al aumentar la pendiente de la reactividad radial disminuye el pico de potencia hasta un límite, en donde comienza a surgir un segundo pico de potencia en la mismo posición radial del pico de reactividad.

7- Para los casos donde el pico de potencia no está en el centro del núcleo se encuentra un pico de reactividad en la misma posición radial del pico de potencia. Los valles de reactividad provocan mayores picos de potencia.

Recordando que la economía del ciclo es máxima cuando el potencial del combustible es mínima y tratando de resumir las observaciones de los estudios 1 y 2 se puede concluir:

- 1- La economía del ciclo aumenta cuando;
 - el pico máximo de potencia relativa crece y,
 - la posición radial del pico de potencia está en el centro del reactor.
- 2- Los núcleos con el pico máximo de potencia en el centro del reactor tiene una distribución de reactividad radial con las características siguientes;
 - la reactividad crece linealmente del centro hacia la periferia del núcleo hasta una fracción de radio de alrededor de 0.88, para caer rápidamente a cero en la superficie del núcleo.
 - Cuando la pendiente de reactividad lineal radial crece el pico máximo de potencia relativa disminuye, hasta un límite, en el cual surge un segundo pico de potencia en el mismo radio donde se da el pico de reactividad, es decir, alrededor de 0.88 de la fracción radial.

Figura 5.4 ESTUDIO-2: Dístribución de potencia relativa radial y su correspondiente distribución radial de reactividad contra la fracción radial con Pori=0.78, Pmax=1.20 rm=0.60 donde se muestra la formación de un segundo pico de potencia no deseable cerca de la periferia.

Figura 5.5 ESTUDIO-2: Familia de curvas de Potencial de Combustille contra posición del pico máximo de potencia variando la magnitud del pico de potencia relativa, caso Porim,78.

5.5 Metodología de la generación de recargas para el ciclo 4 de la unidad 1 de la CVLV en base a la distribución de Kinf radial objeto y su evaluación con PRESTO

Para aplicar lo establecido en el capitulo anterior respecto al uso de perfiles de reactividad radial OBJETO para conformar recargas se elaboró, un algoritmo de cómputo el cual se incluyó en el programa MAPATES (Ver Apéndice C). Para lograr esto se utilizó el método de malla fina, desarrollado en el capitulo 4. Se tomó ventaja de que cada región está constituida por un conjunto de combustibles simétricos de los cuales uno de los conjuntos no está en la región radial adjunta más cercana al centro del núcleo. Esto permite el procedimiento de formación de patrón de recarga siguiente:

- 1- Ordene los combustibles de recarga de más a menos reactividad (o de menos a más quemado) formando el vector de ensambles combustibles de RECARGA.
- 2- Seleccione la distribución de reactividad radial OBJETO y calcule la reactividad de cada uno de las 64 regiones de malla fina en que se dividió el núcleo de los reactores de la CNLV obteniendo el vector de reactividad por región radial OBJETO(ver capitulo 4).
- 3- Comenzando en la región más central (Región 1) de la malla fina, coloque el combustible cuya reactividad este más cercana a la reactividad OBJETO de la región más central.
- 4- Calcule en la región 2 (de acuerdo a los pesos asociados a la malla fina y la reactividad asignada a la región 2 en el vector de reactividad OBJETO) la reactividad del combustible considerado en la región 2 pero no en la región 1. Seleccione el ensamble combustible, de los que resten en el vector de RECARGA, con reactividad más cercana al valor calculado y colóquelo en la región 2.
- 5- Calcule en la región R_i (de acuerdo a los pesos asociados a la malla fina y a la reactividad asignada a la región Ri en el vector de reactividad OBJETO) la reactividad del combustible considerado en la región R_i pero no en la región $R_{i,i}$ y seleccione el ensamble combustible, de los que resten en el vector de RECARGA, con reactividad más cercana al valor calculado y colóquelo en la región Ri.
- 6- Prosiga hasta llenar todas las localidades del núcleo y obtener el patrón de recarga de combustible.

Se realizó una subrutina de cómputo para el programa MAPATES bajo el procedimiento antes mencionado y se aplicó a la recarga del ciclo 4 de la unidad 1 de la CNLV. Para la evaluación de la recarga formada se utilizó el simulador de núcleos PRESTO, los resultados fueron comparados con aquellos alcanzados con la carga OFICIAL. En

el apartado 5.5.1 se presentan los resultados de este estudio que se denominó DB. En el apartado 5.5.2 se modifica el procedimiento con la intención de mejorar la distribución de los combustibles en el ángulo azimutal y con éste se realiza un nuevo estudio etiquetado EB.

La curva de reactividad radial OBJETO seleccionada para los dos estudios consistió de dos rectas que tratan de semejar las reactividades radiales obtenidas en el capítulo anterior.

5.5.1 Estudio DB, recarga con ajuste libre a la distribución de reactividad OBJETO, resultados, análisis y conclusiones.

El procedimiento establecido en el apartado anterior se aplicó a la recarga del ciclo 4 de la unidad 1 de la CNLV conformándose el estudio DB. En la Tabla 5.1 se muestran los principales resultados. En la Figura 5.6 se presentan los mapas de 1/4 de núcleo con los identificadores PRESTO, la Kinf y el quemado (BOC) en MWD/MT de cada uno los ensambles combustibles.

En la figura 5.7 se presentan las distribuciones de reactividad de la recarga OFICIAL, la curva de reactividad OBJETO seleccionada y de la carga DB. El ajuste logrado con la recarga resulta casi exacto sobre todo en el centro del núcleo, lo cual avala el método de ajuste propuesto.

Examinando la Tabla de resultados 5.1 y de acuerdo a los criterios de comparación para lograr una carga mejor que la oficial mencionadas al final del apartado 6.2, se encuentra que la recarga DB es peor a la carga OFICIAL en todos los parámetros (Keff, MCPR, MLHGR) tanto en el BOC como en el EOC. El análisis de las figuras 5.9 al 5.17 nos indican que el problema radica en un exceso de reactividad en el centro del núcleo en la recarga DB. El exceso de reactividad lo producen dos combustibles frescos colocados adjuntos cara a cara como se puede ver en el tercer mapa de la Figura 5.6 y esto es debido a que;

en el método de generación de recargas por ajuste libre a una distribución de reactividad OBJETO, la colocación de combustible sobre estima la optimización radial de los combustibles en perjuicio de la distribución en el ángulo azimutal.

Con base en esta conclusión se trató de mejorar la distribución no radial de los combustibles modificando el procedimiento establecido en el apartado 5.5 poniendo la siguiente regla adicional:

dividir el núcleo de la CNLV en categorías BLANCA-NEGRA-GRIS de acuerdo a lo establecido en el Apéndice A y a su vez el vector de RECARGA dividirlo en tres partes, los 46 ensambles más reactivos asignarlos a las localidades BLANCAS, los siguientes 44 a las localidades NEGRAS y el resto a las GRISES (21).

•

Con esta categorización complementaria introducida en el programa MAPATES se generó una nueva recarga que se le llamó EB. en el siguiente apartado se comentan los resultados alcanzados con esta nueva recarga.

5.5.2 Estudio EB, recarga con ajuste libre a la distribución de reactividad OBJETO con división del núcleo BLANCO-NEGRO-GRIS. Resultados, análisis y conclusiones.

El procedimiento modificado y comentado en el apartado anterior e introducido en el programa MAPATES (ver Apéndice C) se aplicó a la recarga del ciclo 4 de la unidad 1 de la CNLV conformándose el estudio EB. En la Figura 5.8 se muestran los mapas de 1/4 de núcleo con los identificadores PRESTO, la Kinf y el quemado (BOC) en MWD/MT de cada uno de los ensambles combustibles.

Aún cuando los resultados de la recarga EB mejoró respecto a los resultados de la recarga DB al ser comparados con la recarga OFICIAL no la superó en ninguno de los parámetros tanto en el BOC como en el EOC. Es posible que mediante un proceso de ajuste del procedimiento se puedan lograr mejoras en las recargas obtenidas pero el problema de fondo de no atacar la distribución de los combustibles no sólo radialmente sino también en el ángulo azimutal persistiría por lo que se concluye:

La evaluación del método de generación de una recarga óptima con base a una distribución de reactividad OBJETO no podrá ser evaluada adecuadamente hasta que se tenga una distribución de reactividad OBJETO radial bi-dimensional (radial y en el ángulo azimutal).

RECARGA	ESTADO	Keff	MCPR	MLHGR w/cm
OFICIAL	вос	1.0078	1.6217	453.44
ESTUDIO DB	вос	1.0116	1.1240	545.09
ESTUDIO EB	вос	1.0135	1.1417	524.61
OFICIAL	EOC	0.99400	1.5269	375.58
ESTUDIO DB	EOC	0.96635	1.2096	366.74
ESTUDIO EB	EOC	0.99132	1.4661	379.29

TABLA 5.1 ESTUDIO DB Y EB DATOS BOC Y EOC

MAPAS CUARTO DE NUCLEO Recarga estudio db

.

Carga BASICA DB I [23] [25] [23] [25] [24] 83003 51183 [20] 93749 41243 [16] 51179 51187 [14] 51207 51211 [10] 73284 51171 [10] 30473 42310 [06] 62402 20388 [02] 73224 73240	OSISIN Intercambios V CUADRANTE Identifica (27) [29] [31] 41251 51203 51191 41227 51203 51191 41227 51199 51195 20322 41215 42330 41259 203082 73292 42322 41247 62334 41255 20305 62300 30447 62338 20368 42298 62346 20286 62370 20294 62362 30394 73204 73212 20364 20277 20322	EVAl(Diseño/Oficial) dores de Combustiles [33] [35] [37] 73288 (4231) 3056 51175 (42326 42314 41219 30.001 20347 30632 (62366 62342 62358 20288 73280 42302 62354 62374 62394 20333 30461 62406 30.427 73226 62382 73228 20350 30641 30629 73268	= 1.001974 PRESTO [139] [41] [43] 20360 62350 73236 30404 62378 73244 62386 20281 30422 30503] 73208 30585 42294 73216 30512 73200 20365 73252 73232 73276 73272 30634 73264 73256 73272 30634 73264 73276 73272 30634 73264 73256 73272 30634 73264 73276 73272 30634 73264 73276 73277 30634 73264 73276 73277 30634 73264 73276 73277 30634 73264 73276 73277 30634 73264 73256 73277 73257 73277 73277 73277 73277 73276 73277 73256 73277 73276 73277 73256 73277 73277 73276 73277 73276 73277 73256 73277 73256 737777 73256 7377777 73256 7377777777777777777777777777777777777
Carga BASICA DB 11 [23] [25] [22]1.0253 1.0358 [20]1.0307 1.0076 [16]1.0587 1.0076 [16]1.0422 1.0585 [12]1.0425 1.0870 [10].98788 1.0696 [08].91212 1.0880 [06]1.1184 .97823 [06]1.1184 .97828 [06]2.98788 .98788	V CUADRANTE Constante [27] [29] [31] 1.0458 1.0691 1.0432 1.0370 1.0374 1.0695 97555 1.0379 1.0907 1.0034 .90595 .98788 1.0908 1.0033 1.1507 1.0431 .97636 1.1503 .93159 1.1369 .90885 1.1073 1.1272 .97844 1.1184 .91017 1.1208 .91076 .98788 .98788 .91452 .91921 .92094	de Multipicacion Inf [33] [35] [37] .98788 [.0556.91277 .0698 [.0878].0578 [.1071 .0549 [93 157.97702 .93601 1.1273 [.1272 .1370 .90911.98788 .1011 [.1231 [.1208 .1270 .90997.91093 .1229 .91078 .98788 .98788 .98788	inita(Kinf)(-=Huevo) [39] [41] [43] .97735 1.1196 .98788 .97726 1.1190 .98788 .91726 1.1190 .98788 .91055 .98788 .92044 1.1196 .98788 .92044 1.1196 .98788 .92044 98788 .91861 .98788 .98788 .98788 .98788 .98788 .98788 .98788 .98788 .98788
Carga BASICA DB 11 [23] (25; [20] 21168 [18] 16447 21193 [16] 17855 19929 [14] 19522 17879 [12] 17295 13472 [10] 16682 [08] 23939 13354 [06] 14172 13021 [06] 9993 14108 [02]	/ CUADRANTE Quemado por (27) (29) (31) 16984 16729 19525 17868 19953 16686 13359 17766 13127 21717 24406 13116 21718 10473 17238 13261 10515 21003 12108 19621 11327 13189 13055 14152 19430 13844 23783	 combustible en MWD (33) (35) (37) (354,9) (356,3) (353,4) (336,4) /ul>	/MT(+=Nuevo) (39) (41) (43) 13100 13982 23117 14104 14146 18951 23953 23008 23428 9987 22965 18406 23411 2448 18406

1

Figura 5.6 Mapas de la recarga del ESTUDIO DB ajuste a distribución de Reactividad OBJEID

110

.

-

Figura 5.7 Distribución de reactividad radial OBJETO y Distribución de reactividad radial de la recarga del ESTUDIO DB condición BOC. Ajuste libre a la curva de reactividad. Vector de recarga combustibles del ciclo 4 de la Unidad 1 de la CNLV. La curva de reactividad consiste de dos reactas que semejan la reactividad OBJETO encontradas en el apartado 5.4.

MAPAS CUARTO DE NUCLEO Recarga estudio eb

CANGIOS:Sin Intercambios EVAl(Diseño/Oficial)= 1.004383 Carga BASICA EB IV CUADRANTE Identificadores de Combustiles PRESTO [23] [25] [27] [29] [31] [33] [35] [37] [39] [41] [43] (22] 41215 93749 41239 41259 62358 30632 41219 73212 51171 73236 20350 [20] 83003 51199 41235 51191 41247 62346 20305 62362 73272 42318 20368

[20]	83003	51199	41235	51191	41247	62346	2D305	62362	73272	42318	20368	
(18)	51187	41243	62334	30512	41251	73288	51211	73220	62382	73256	20333	
[16]	51183	41255	20322	62338	30447	62354	73204	51203	73228	42314	30503	
C14j	62390	41227	51207	30401	62342	20360	42306	73276	62402	73244	30473	
(12)	30629	62366	73292	62394	20347	62374	20286	62386	73248	42310	20277	
[10]	41223	20332	41231	73200	42294	20338	62378	73260	42330	20281	20364	
[08]	73208	62406	73216	51179	73280	62398	73264	42302	30427	30404		
(06)	51195	73284	62350	73224	62370	73252	42322	30394	20365			
[04]	73232	51175	73268	42298	73240	42326	30556	3D641				
[02]	30634	30382	20288	20294	30461	30585	30422	Fighterin :				

Carge BASICA EB IV CUADRANTE Constante de Multipicacion infinita(Kinf)(-=Nuevo) [23] [25] [27] [29] [31] [33] [35] [37] [39] [41] [43] [22]1.0379 1.0307 1.0425 1.0034 1.1370 .93601 1.0549 .98788 1.0696 .98788 .92056 [20]1.0253 1.0394 1.0076 1.0432 1.0033 1.1272 .97336 1.1208 .98788 1.0870 .90885 [18]1.0396 1.0076 1.1507 .92408 1.0458 .98788 1.0655 .98788 1.1195 .98788 1.0870 .90885 [14]1.0358 1.0431 .92094 1.1369 .93159 1.1231 .98788 1.0651 .98788 1.1195 .98788 1.071 .91055 [14]1.0350 1.0370 1.0432 .93157 1.1272 .97735 1.1197 .98788 1.1195 .98788 1.071 .91055 [14]1.0350 1.1279 .98788 1.1270 .97702 1.1208 .97844 1.1184 .98788 1.0800 .91921 [10]1.0507 .97555 1.0556 .98788 1.1198 .97823 1.1190 .98788 1.0077 .91405 .91452 [06]1.0495 .98788 1.1196 .98788 1.1184 .98788 1.0076 .91861 [06]1.0495 .98788 1.1196 .98788 1.1184 .98788 1.0076 .91861 [04].98788 1.0698 .98788 1.11073 .98788 1.0878 .9277 [02].92088 .90595 .90911 .91017 .91093 .92044 .91464

 Carge BASICA EB IV CUADRANTE Quenado por combustible en HMD/HT(-=Huevo)

 [23]
 [25]
 [27]
 [29]
 [31]
 [33]
 [35]
 [37]
 [39]
 [41]
 [43]

 [22]
 17766
 17295
 21717
 12099
 21413
 16019
 16622
 13642
 13672
 19621

 [10]
 19973
 21193
 19525
 21718
 13189
 13261
 13864
 13772
 19621

 [10]
 19073
 21073
 19525
 21718
 13189
 13261
 13864
 13772
 19621

 [11]
 19073
 21063
 13167
 13100
 9993
 114172
 13356
 19522
 22093

 [12]
 2151
 13177
 13187
 13135
 13672
 14172
 13354
 18271

 [13]
 19525
 21008
 13167
 13055
 14166
 13127
 18051
 18202

 [13]
 16335
 1549
 17855
 9987
 13021
 14104
 13177
 13177</td

Figura 5.8 Mapas de la recarga del ESTUDIO EB, ajuste a distribución de Reactividad OBJETO, núcleo dividido en Categorías BLANCO, NEGRO Y GRIS

Figura 5.9 Distribución de reactividad radial OBJETO y Distribución de reactividad radial de la recarga del ESTUDIO EB condición BOC. Ajuste a la curva de reactividad respetando la división del núcelo en categorias BLANCA-NEGRA-GRIS. Vector de recarga combustibles del ciclo 4 de la Unidad 1 de la CNLV. La curva de reactividad consiste de dos reactas que semejan la reactividad OBJETO encontradas en el apartado 5.4.

.....

Figura 5.10 Distribución de potencia promedio radial BOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO).

Figura 5.11 Distribución de reactividad promedio radial BOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO).

. 114

.

Figura 5.12 Distribución del CPR promedio radial BOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO).

Figura 5.13 Distribución del LHGR promedio radial BOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO).

.-

Figura 5.14 Distribución de potencia promedio radial EOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO).

•

Figura 5.15 Distribución de reactividad promedio radial EOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO):

Figura 5.16 Distribución del CPR promedio radial EOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO).

Figura 5.17 Distribución del LHGR promedio radial EOC de los caso OFICIAL, estudio DB y estudio EB (Salida PRESTO).

CAPITULO 6

METODO BIPARAMETRICO DE BURTE. SU ADAPTACION. MODIFICACION Y APLICACION EN LA OPTIMIZACION DEL DISEÑO DE LA RECARGA DEL CICLO 4 DE LA UNIDAD 1 DE LA CNLV

En este capitulo se presenta el método biparamétrico desarrollado por D.P. Burte y S.G. Vaidya de la división de física teórica del centro de investigaciones atómicas de la India. (Ref. 2). Este método fue desarrollado con el objeto de optimizar las recargas del reactor BWR de la estación de potencia de Tarapur. El núcleo de este reactor está constituido por 284 ensambles combustibles.

El Método Biparamétrico original de Burte consiste, como se verá en detalle en el apartado 6.1, en:

- Dividir el núcleo en una región no-periférica y otra periférica (catalogada como región gris).
- A cada localidad del núcleo se le asocia un número de importancia obtenido al simular un núcleo homogéneo. El canal con mayor potencia relativa se le asigna el número 1, al siguiente con mayor potencia el 2 y así sucesivamente.
- En la región no-periférica se catalogan las localidades de los combustibles en posiciones blancas y negras como en un tablero de ajedrez. En las posiciones blancas se colocan los combustibles frescos y en las posiciones negras, bajo el esquema OUT-IN, los combustibles gastados más reactivos (o menos expuestos) guiándose para ésto por el número de importancia de cada canal.
- En la región periférica o gris, bajo el esquema IN-OUT, se colocan los combustibles menos reactivos (o más gastados) guiándose para ésto por el número de importancia de cada canal.
- Al seguir el procedimiento anterior se forma el Patrón de Recarga Básico (PRB).
- A partir del PRB, se definen dos parámetros (N y M) que permiten alterar el orden del vector de recarga de modo tal que es posible, al manipular éstos, buscar en forma controlada el patrón de recarga que cumpla la restricción impuesta al pico de potencia radial y maximice la longitud del ciclo.

La estrategia de operación del reactor de Tarapur es de bajo escape radial al igual que en los reactores de la CNLV pero difiere, entre otras, en que no sigue el concepto de control CCC (ver apartado 3.2.4). Además la dimensión de los núcleos y el número de combustibles difiere significativamente ente uno y otro reactor. Debido a lo anterior fue necesario adaptar el método original de Burte a la estrategia de operación de la CNLV. A esta adaptación la denominamos Método Biparamétrico Adaptado (MBA) y se presenta en el apartado 6.2.

El Método Biparamétrico Adaptado se aplicó a la búsqueda de patrones de recargas del Ciclo 4 de la Unidad 1 del Centro Nuclear de Laguna Verde. Los resultados son reportados en el apartado 6.2.1. El análisis de éstos indicaron que no se obtuvo un patrón básico lo suficientemente reactivo por lo que al variar los parámetros N y M y formarse nuevos patrones éstos resultaron aún menos reactivos y con márgenes de seguridad menores que aquéllos del patrón básico. Ante esto fue necesario modificar el Método Biparamétrico Adaptado desarrollándose lo que se denominó Método Biparamétrico Modificado (MBM). El MBM respetó el fundamento del método original que establece:

"Iniciar con un patrón básico de arranque más reactivo que el óptimo a alcanzar."

Para lograr lo anterior, el esquema para llenar las posiciones negras con combustibles gastados más reactivos se cambió del esquema original OUT IN al IN-OUT. Esto trajo como consecuencia la necesidad de modificar la definición de los dos parámetros de variación del vector de recarga.

En el apartado tres de este capítulo se reportan los resultados obtenidos al aplicar el Método Biparamétrico Modificado a la formación de recargas del Ciclo 4 de la Unidad 1 de la CNLV.

Al realizar el estudio con el método MBM se usó la técnica de formar la recarga básica y fijar la colocación de las regiones blanca y gris, y sólo cambiar la colocación de los combustibles de la categoría negra al variar los parámetros N y M en el proceso de búsqueda del patrón de recarga óptimo. Esto fue posible debido a la nueva forma de definir los parámetros. Esta técnica permite encontrar recargas óptimas sin perturbar la colocación de los combustibles periféricos. Con ésto se evita aumentar directamente la fluencia en la vasija al tratar de conseguir ciclos más extensos, técnica implícita en el método original de Burte.

Se examinaron dos técnicas complementarias para buscar el patrón de recarga óptimo. La primera llamada de Técnica de Exploración Lineal (TEL) consiste en:

 fijar uno de los parámetros (ejemplo N) y generar varios patrones de recarga variando el otro (M) consecutivamente.

- Evaluar los patrones de recarga con PRESTO y seleccionar el mejor de ellos.
- fijar en base al mejor patrón el otro parámetro (M) y ahora variar el otro (N) consecutivamente.
- Y así consecutivamente hasta alcanzar el patrón de recarga deseado.

La otra técnica de búsqueda se denominó Técnica de Búsqueda por Escalamiento de Malla la que consiste en:

- Fijar los valores máximos de N y M a utilizar y construir una malla amplia bidimensional de N y M con pasos mayores a uno y así formar una malla amplia que cubra todo el espacio de solución que se elija. Generar todos los patrones de recargas de las permutaciones N x M correspondientes.
- Evaluar con el código PRESTO los candidatos de patrones de recarga generados y seleccionar el cuadrante con mejores perspectivas de acuerdo a las metas establecidas de márgenes de seguridad y longitud de ciclo.
- Formar una malla fina de mayor detalle dentro del cuadrante seleccionado y repetir el procedimiento hasta alcanzar el mejor patrón de recarga.

En esta tesis solo se presentan los resultados usando la técnica de búsqueda por escalamiento de malla.

Las mejores recargas alcanzadas con el Método Biparamétrico Modificado cuando se compararon los márgenes de seguridad y extensiones de ciclo con las correspondientes de la recarga oficial indican que se había logrado obtener una excelente recarga. El método, aún cuando es del tipo de búsqueda, resulta lo suficientemente rápido y práctico para ser usado en la generación de candidatos de patrones de recarga.

6.1 Método Biparamétrico de Burte

En este apartado se proporciona un resumen del desarrollo del Método Biparamétrico de Búsqueda de Patrones de Recarga que presentó D.P. Burte en la Referencia 2.

La optimización del patrón de barras involucra decidir qué función objeto se va a extremizar y qué constricciones se van a considerar. La finalidad es: la utilización eficiente del combustible y la reducción de la fluencia en la vasija del reactor.

Los candidatos tradicionales para función objeto son;

- la minimización del enriquecimiento,
- la minimización del escape de neutrones (LLL),
- la maximización de la energía del ciclo,
- la maximización de la Keff en el EOC,
- la maximización del quemado de descarga,
- la minimización del pico de potencia Haling.

Diferentes autores han demostrado que la extremización de estas funciones objeto son mutuamente consistentes, es decir, al cumplirse una se cumplen las demás, excepto la minimización del pico de potencia. Se tiene, por lo tanto, un problema de optimización. Es posible establecer varios esquemas de optimización pero el más práctico para el presente estudio es el siguiente:

- Constreñir el pico de potencia Haling,
- Maximizar la Keff EOC Haling (función objeto),
- Las variables de decisión son los n ensambles combustibles del núcleo.

Como ejemplo, suponiendo que en la recarga de un núcleo consista de r combustibles frescos, el número de valores de las variables de decisión sería de n!/r!, por lo que es indispensable reducir el número de las variables de decisión.

El reto es reducir el número de las variables de decisión sin comprometer la complejidad del problema de optimización de las recargas de combustible.

Las guías tradicionales para la optimización de las recargas tomadas en cuenta en el Método Biparamétrico de Burte (MBB) son:

- baja fuga radial (LLL),
- máxima dispersión de combustibles y aplanamiento radial de la potencia.

Estas se traducen en las reglas siguientes:

- Los combustibles frescos deben de alejarse de la periferia del núcleo.
- La zona periférica del núcleo deberá ser ocupada preferentemente por combustibles de alto quemado.
- Dividir la carga de combustibles en dos categorías: frescos y parcialmente quemados,

colocar combustibles frescos en las posiciones "blancas" y los parcialmente quemados en las posiciones "negras" de un tablero de ajedrez en que supuestamente se divide el núcleo del reactor (ESQUEMA DE TABLERO DE AJEDREZ).

Existen dos formas extremas de colocar el vector de combustibles de recarga ordenados de menos a más quemados (o de más a menos reactividad):

ESQUEMA OUT-IN: el vector de combustibles se coloca secuencialmente de la periferia hacia el centro del núcleo. Esto tiene las siguientes implicaciones:

- La potencia radial tiende a aplanarse

- Baja energía del ciclo, la mínima de todas las posibles cargas dado un vector de combustible.
- Alta fluencia sobre la vasija del reactor.
- ESQUEMA IN-OUT: el vector de combustibles se coloca secuencialmente partiendo del centro hacia la periferia del núcleo. Esto tiene las siguientes implicaciones:
 - Gran pico de potencia en el centro del núcleo, el máximo pico de todas las cargas posibles dado un vector de combustibles.
 - Alta energía del ciclo, la máxima energía de todas las posibles cargas dado un vector de combustibles.
 - Mínima fluencia sobre la vasija del reactor.
- El método de Burte propone un esquema intermedio:
- ESQUEMA OUT-IN/IN-OUT: dividir el núcleo en una región central y otra periférica, colocar los combustibles secuencialmente comenzando en la parte más periférica de la región central y llenar hacia el centro. De ahí brincar a la región periférica iniciando en las posiciones más cercanas al centro y terminar la colocación en los canales más periféricos del núcleo. Esto produce las consecuencias siguientes:
 - La potencia radial tiende a aplanarse en el centro y a decaer rápidamente en la periferia, el pico de potencia radial tiende ha estar en la frontera entre la región central OUT-IN y la región periférica IN-OUT.
 - Media energía del ciclo, en comparación con los dos esquemas anteriores.

- Media fluencia sobre la vasija del reactor, en comparación con los dos esquemas anteriores.

Ahora se examinaran las coordenadas y simetrías del núcleo involucradas en la optimización de recargas.

- COORDENADA RADIAL Es la coordenada más relevante para la distribución de la exposición de las recargas. Puesto que los núcleos de los reactores sólo son aproximadamente cilíndricos la importancia de una posición no depende únicamente de la distancia al centro del núcleo sino también de la distancia a la periferia. Con el fin de determinar la importancia de las posiciones en el núcleo BURTE propone:
 - La importancia de las posiciones de los combustibles en el núcleo se determina calculando la distribución de potencia de un núcleo cargado con combustibles idénticos por medio de un simulador de núcleos.
- COORDENADA 2 (AXIAL) Puesto que axialmente los combustibles no pueden ser intercambiados axialmente esta coordenada puede ser ignorada en los cálculos de optimización de recargas.
- COORDENADA ANGULO AZIMUTAL Se recomienda que las propiedades de los combustibles en los núcleos sean lo más simétricos posible respecto al ángulo azimutal. Esto para evitar picos de potencia indeseables y para simplificar los cálculos.

Tradicionalmente para asegurar la simetría azimutal se recurre a núcleos simétricos de un cuarto de núcleo. Esta estrategia además reduce el número de variables de decisión a una cuarta parte siempre. La técnica de simetría exige que sistemáticamente los sublotes de cuatro combustibles simétricos siempre se coloquen en posiciones simétricas durante los ciclos de exposición del sublote y que los patrones de operación de las barras de control sean a su vez simétricos.

Los reactores de Laguna Verde, que tienen en el centro del núcleo una barra de control, se operan bajo la estrategia de simetría de espejo o reflectiva de un cuarto de núcleo o simetría de cuadrante (QSC, Quadrant Simmetric Cores), ver Fig 1.2 Esto tiene dos consecuencias:

- La simetría de espejo obliga que combustibles adjuntos sean semejantes, reduciendo la posibilidad de dispersión y de lograr una mayor uniformidad en la simetría angular azimutal. En el centro del núcleo los combustibles frescos están demasiado cerrados esto produce un pico en la distribución radial Haling. Lo que evita el poder colocar combustibles frescos cerca del centro del núcleo y ya que el concepto LLL evita que combustibles frescos se coloquen en la periferia esto obligaría dividir el núcleo en tres regiones (central, anular, periférica) aumentando las variables de decisión respecto al Esquema OUT-IN/IN-OUT (central, periférico).

- Lo anterior viola las reglas del arreglo de tablero de ajedrez.

_ _ _ _ _ _ _ _ _ _ _ _ _

Burte propone el uso de simetría SSC (Sector Symmetric Core) o de simetría sectorial del núcleo (ver, Fig. 6.1) el cual tiene las siguientes ventajas sobre la simetría QSC:

- Una mayor uniformidad en la simetría angular azimutal ya que, por ejemplo, permite que los cuatro combustibles del centro del núcleo sean dos frescos y dos parcialmente quemados.
- Es posible dividir el núcleo en dos regiones central y periférica de acuerdo al Esquema OUT-IN/IN-OUT reduciendo sustancialmente las variables de decisión.
- Permite en forma natural el uso de arreglos de núcleo del tipo de tablero de ajedrez.

El procedimiento de búsqueda de recargas biparamétrica de recarga de BURTE consiste en lo siguiente:

Reglas de asignación de categorías a las localidades del núcleo.

- 1- Se sectoriza el núcleo de acuerdo a la simetría sectorial del núcleo SSC y se trabaja sólo con el cuarto de núcleo seleccionado.
- 2- Se divide el núcleo en dos regiones: la periférica y la noperiférica.
- 3- La región no-periférica de L localidades se arregla en forma de tablero de ajedrez donde L/2 localidades se categorizan como Blancas y L/2 como Negras.
- 4- A la región periférica, por completés, se le da la categoría de localidades Grises.

El total de los L/2 combustibles frescos que forman la recarga son puestos en las casillas Blancas, el resto es llenado con combustibles de la categoría parcialmente quemada.

5- A cada localidad del núcleo se le asigna un número consecutivo de importancia obtenido al simular un núcleo con idénticos combustibles. Al canal con mayor potencia se le asigna el número 1, al siguiente de mayor potencia el número 2 y así sucesivamente hasta completar todo el núcleo.

Reglas de colocación de los combustibles de recarga:

- 6- El vector de los combustibles de recarga son ordenados de menos a más quemados.
- 7- Los n combustibles de la recarga se dividen en dos categorías; L/2 son combustibles frescos y el resto n + L/2 son parcialmente quemado.
- 8- Se forma el Patrón Básico de Recarga:
 - 8.1- los combustible frescos se colocan en las localidades Blancas,
 - 8.2- las localidades Grises (en esquema IN-OUT en el Patrón Básico) son llenados con los combustibles parcialmente gastados. El ensamble combustible parcialmente quemado con número de orden mayor colocarlo en la localidad Gris de menor importancia, el segundo ensamble combustible de mayor número de orden se coloca en la localidad Gris siguiente de menor importancia y así sucesivamente hasta agotar las localidades Grises.
 - 8.3- las localidades Negras (en esquema OUT-IN en el patrón básico) son llenadas con los combustibles parcialmente gastados. El ensamble combustible parcialmente quemado con número de orden menor colocarlo en la localidad Negra de menor importancia, el segundo ensamble combustible de menor número de orden se coloca en la localidad Negra siguiente de menor importancia y así sucesivamente hasta agotar las localidades Negras.
- 9- Para formar candidatos de patrones de recarga a partir del Patrón Básico se definen dos parámetros N y M que modifique el orden en el vector de recarga de la forma siguiente:
 - 9.1- tomar un sector (S1) de N ensambles combustibles empezando en el ensamble de número secuencial L-M+1 hasta el L-M+N+1, extraerlo, empujar hacia arriba los siguientes M ensambles combustibles y en el espacio que se produce introducir los N ensambles del sector S1.
 - 9.2- Mapear el combustible con el vector de recarga modificado de la forma descrita en los pasos 8.1, 8.2 y 8.3.
- 10- Generar candidatos de patrones de recarga variando M y N (exhaustiva o por búsqueda sistemática) hasta alcanzar el patrón de recargas que cumpla con las exigencias y expectativas deseadas.

Ahora las variables de decisión son N y M. Considerando n combustibles en el sector SSC seleccionado de los cuales r son combustibles frescos, entonces el número de patrones de recarga del método biparamétrico de Burte vendría dado por las permutaciones de

los valores que pueden tomar N y M, no considerando los valores triviales de 0 para N y M que conducen a la recarga básica. Al analizar se encuentra que M puede tomar valores de 1 a r mientras que N de 1 a (n-2r) por lo que el número de patrones de recarga generados por el Método Biparamétrico de Burte será de r(n-r), número significativamente menor a n!/r!

En general r(n-r) es lo suficientemente bajo como para efectuar una búsqueda exhaustiva para encontrar el patrón de recarga óptimo (biparamétrico).

El procedimiento para la obtención del patrón de recarga óptimo biparamétrico de Burte (exhaustivo) es el siguiente:

- Generar todos los patrones de recarga empleando el Método Biparamétrico de Burte.
- Simular con un sistema de programas de cómputo apropiado, cada uno de los patrones de recargas y determinar el pico de potencia radial Haling y la longitud de ciclo al EOC correspondientes.
- Seleccionar el mejor patrón de recarga que satisfaga las restricciones al pico de potencia radial y tenga la longitud de ciclo máximo.

Existe una forma alternativa para encontrar un candidato de recarga de combustible "óptimo". Este consiste en determinar el comportamiento de las recargas al variar los parámetros N y M. Burte desarrolló algoritmos de búsqueda de patrón de recarga "óptimo" fundados en las siguientes observaciones obtenidas de los estudios exhaustivos:

- Cuando M se incrementa, el factor de pico de potencia radial Haling pasa a través de su valor mínimo para grandes valores de M.
- La energía del ciclo se reduce monotónicamente con M así como también con N.

Burte extendió su método a sistemas de búsqueda multiparamétrica el cual utilizó para generar algoritmos de búsqueda multiparamétrica y con estos evaluar el método biparamétrico. Encontró que los patrones óptimos biparamétricos estan muy cercanos a los óptimos multiparamétricos. Para fines prácticos es suficiente el uso de algoritmos biparamétricos para la obtención de recargas cercanas al óptimo total.

6.2 Método Biapramétrico Adaptado (MBA) a la CNLV.

.

La aplicación directa del Método Biparamétrico de Burte a la búsqueda de patrones de recarga para la CNLV no es viable principalmente por las razones siguientes:

- Los núcleos de los reactores de la CNLV funcionan bajo el sistema de simetría de cuadrante QSC. El cambio a la simetría sectorial implicaría realizar una serie de estudios para ver la factibilidad y conveniencia de poder llevar a cabo el cambio de simetría. Por lo pronto se impone que los núcleos de los reactores de la CNLV operen bajo simetría de cuadrante.
- Los reactores de la CNLV están operando bajo el concepto de control CCC que exige combustibles poco reactivos y prohíbe la colocación de combustibles fresco o de alta reactividad parcialmente quemados en los canales adjuntos a una barra de control del grupo A2 (ver apartado 3.2.4).

El número de combustibles del núcleo de los reactores de la CNLV es mayor que los del reactor de Tarapur (444 contra 284)

Las dos primeras consideraciones rompen con el concepto de tablero de ajedrez impuesto en la región no periférica en el procedimiento de Burte.

El tercer punto, como se concluye en el siguiente apartado, no permite contar con un Patrón Básico adecuado para el Ciclo 4 de la Unidad 1 de la CNLV. El patrón básico resulta menos reactivo que el patrón de recarga óptimo y es necesario lo inverso para el funcionamiento del Método Biparamétrico de Burte.

Con el fin de adaptar el método a la CNLV en general y en **parti**cular al Ciclo 4 de la Unidad 1 se desarrolló el Método **Biparamét**rico Adaptado el cual establece:

Reglas de asignación de categorías a las localidades del núcleo.

- 1- Se parte el núcleo en cuatro cuadrantes de acuerdo a la simetría QSC y se trabaja sólo con el cuarto de núcleo seleccionado. (111 localidades)
- 2- Se divide el núcleo en dos regiones: la periférica y la noperiférica tal como se propuso en el apartado 3.2.9 y se muestra en la Figura A.1 del Apéndice A.
- 3- La región no-periférica de L de (90) localidades se arregla en forma que recuerdan un tablero de ajedrez donde (46), más o menos la mitad, se catalogan como localidades Blancas y el resto (44) como localidades Negras tal como se muestra en la Figura A.1 del Apéndice A. Las localidades Blancas se

subdividen en dos: las pertenecientes a celdas CCC centrales o no pertenecientes a celdas CCC centrales.

- 4- A la región periférica, por completés, se le da la categoría de localidades Grises (21 localidades).
- 5- A cada localidad del núcleo se le asigna un número consecutivo de importancia obtenido al simular un núcleo con idénticos combustibles. Al canal con mayor potencia se le asigna el número 1, al siguiente de mayor potencia el número 2 y así sucesivamente hasta completar todo el núcleo.

Reglas de colocación de los combustibles de recarga

- 6- El vector de los combustibles de recarga son ordenados de menos a más quemados.
- 7- Los n (111) combustibles de la recarga se dividen en dos categorías: (26) son combustibles frescos y el resto (85) son parcialmente quemados.
- 8- Se forma el Patrón Básico de Recarga:

8.1- las localidades Blancas se llenan como sigue;

- los ensambles combustibles frescos (26) son colocados en las localidades no CCC centrales procurando conservar una simetría de 1/8.
- los ensambles de los menos reactivos en las localidades CCC centrales,
- el resto de las localidades Blancas se llenan con los ensambles combustibles más reactivos de los parcialmente quemados.
- formar un patrón de recarga de las localidades blancas el cual quedará fija durante la búsqueda.
- 8.2- las localidades Grises (en esquema IN-OUT en el Patrón Básico) son llenados con los combustibles parcialmente gastados restantes. El ensamble combustible parcialmente quemado con número de orden mayor se colocará en la localidad Gris de menor importancia, el segundo ensamble combustible de mayor número de orden se coloca en la localidad Gris siguiente de menor importancia y así sucesivamente hasta agotar las localidades Grises.
- 8.3- las localidades Negras (en esquema OUT-IN en el patrón básico) son llenadas con los combustibles parcialmente gastados que restan en el vector de recarga. El ensamble combustible parcialmente quemado con número de orden

menor se coloca en la localidad Negra de menor importancia, el segundo ensamble combustible de menor número de orden se coloca en la localidad Negra siguiente de menor importancia y así sucesivamente hasta agotar las localidades Negras.

- 9- Para formar candidatos de patrones de recarga a partir del Patrón Básico se definen dos parámetros N y M que modifiquen el orden en el vector de recarga de la forma siguiente:
 - 9.1- tomar un sector (S1) de N ensambles combustibles empezando en el ensamble de número secuencial L-M+1 hasta el L-M+N+1 extraerlo, empujar hacia arriba los siguientes M ensambles combustibles y en el espacio que dejan introducir los N ensambles del sector S1.
 - 9.2- Mapear el combustible con el vector de recarga modificado de la forma descrita en los pasos 8.1, 8.2 y 8.3.
- 10- Generar candidatos de patrones de recarga variando M y N (exhaustiva o por búsqueda sistemática) hasta alcanzar el patrón de recargas que cumpla con las exigencias y expectativas deseadas.

A diferencia del método original donde el patrón de combustibles de las localidades Blancas es único en el Método Biparamétrico Adaptado esto ya no se cumple. Existen por lo menos P!/r! patrones blancos diferentes donde P es el número de localidades blancas no CCC centrales, menos el número r de combustibles frescos. Esto obviamente rompe la filosofía fundamental del Método de Burte y abre todo un capítulo de investigación para intentar abordar correctamente el problema. En la tesis se evita el problema al sólo considerar dos patrones de la localidades Blancas para el Ciclo 4:

- La primera consiste en tomar la colocación de ensambles combustibles de la recarga oficial correspondientes a las localidades Blancas del MBA.
- La segunda es una modificación de la anterior que resulta en un patrón de localidades Blancas MBA un poco más reactiva.

La diversidad en los patrones de combustible debida a la forma de llenar las localidades blancas si bien complica, por un lado, la posibilidad de encontrar el patrón de recarga "óptimo", por otro lado, amplía la posibilidad de poder alcanzar patrones de recarga con longitudes de ciclo significativamente más extensos que aquéllos logrados por los métodos tradicionales.

Con el fin de obtener el número de importancia de cada uno de los canales en un cuarto de núcleo y como se estipula en el paso 5 del procedimiento MBA se llevó a cabo una ejecución del código PRESTO con un un núcleo cargado con un sólo tipo de combustible (GE9B) bajo las condiciones siguientes:

 El banco de datos usado en la ejecución de PRESTO conteniendo el tipos de combustibles GE9B fue el L1F106_M (Ref. 11).

.

- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la Unidad 1 fue el PBHCHH01.C4 (Ref. 15).
- Se corrió un caso de 1/4 de núcleo, el nombre de la ejecución PRESTO fue 1PAHH03.

Los resultados obtenidos de la potencia relativa por canal son mostrados en el MAPA de la Fig. 6.2 junto con los números de importancia asignados a cada canal. Puesto que no se admitió asignar número de importancias iguales a dos o más canales fue necesario, para los casos en que se obtuvieron igual potencia en dos canales diferentes, romper artificialmente estos empates. Se procuró distribuir los números de importancia desempatados de forma tal de evitar producir concentraciones locales. Los empates fueron frecuentes debido a la simetría de 1/8 implícita de la recarga.

Para terminar, tomando en consideración las prácticas vigentes en el ININ y las facilidades de cálculo con los que se cuenta el procedimiento de búsqueda del patrón de recarga óptima biparamétrica que establecemos para el Método Biparamétrico Adaptado es el siguiente:

- Generar patrones de recarga en una malla bidimensional amplia de valores de N y M que emplean el Método Biparamétrico Adaptado.
- Simular con el programa PRESTO cada uno de los patrones de recargas bajo la opción Haling EOC con longitud de ciclo fijo de 8046 MWD/T (longitud del ciclo oficial) y determinar el valor MCPR y MLHGR (ver apartado 3.2.1) y Keff Haling EOC.
- Seleccionar el mejor patrón de recarga que tenga los mayores márgenes de seguridad respecto a los límites de los parámetros MCPR y MLHGR y se obtenga el valor de Keff Haling EOC máxima.
- Para que un candidato patrón de carga sea mejor que el patrón de carga oficial se establece que:

-	en el BOC la Keff sea igual o menor que 1.0078
-	en el BOC el MCPR mayor o igual que 1.6217 y
-	en el BOC el MLHGR menor igual a 453.44 w/cm,
-	en el EOC la keff sea mayor o igual a 0.9940
~	en el EOC el MCPR mayor o igual, y 1.5269
-	en el EOC el MLHGR sea menor o igual 375.58 w/cm.

NAPA POTENCIAS RELATIVAS Y NUMERO DE IMPORTANCIA CUARTO DE NUCLEO REACTOR NOMOGENEO

-

1

t

ŧ

ł

ł

┌╾┤ュ┠──┐				∤₅		{-}	<u></u> ╡ <u>श</u> ├ ₇			
1.439	1.433	1.415	1.391	1.358	1.307	1.237	1.137	1.000	0.805	0.520
1	2	6	11	16	25	34	47	60	76	96
			15			18				
1.431	1,424	1.410	1.386	1.348	1.298	1.227	1.130	0.994	0.799	0.511
3	4	7	12	19	28	37	50	63	79	97
								31		
1.418	1.408	1.394	1,369	1.335	1.284	1.211	1.113	0.978	0.783	0.508
5	8	9	15	21	29	41	51	67	80	100
								42	43	
1.393	1.384	1.371	1.345	24	1.256	1.186	1.086	0.950	0,759	480
10	13	14	20	24	33	42	55	68	84	10
45										
1.356	1.350	1.333	1.310	1.271	1.220	1.145	1.047	0.911	0.728	0.451
17	18	22	23	31	38	46	58	71	88	
1.306	1.300	1.282	1.258	1.218	1.164	1.090	0.986	0.848	0.656	398
26	27	.10	32	39	44	54	64	75	89	109
								75	76	
1.235 35 	1.229 36 	1.213 40 	1. 194 43 	1.147 45 	1.088 53 	1.018 59 	0.908 72 	0.752 85 	0.559 93 87	0.339 110
1.138 48 	1.129 49 	1.115 52 	1.088 54 	1.045 57 	0.988 65 	0.902 73 	0.779 82 	0.613 92 96	0.425 106	
1.001 61 	0.992 62 	8.975 66 	0.952 64 	0.909 70 101	0.845 74 	0.754 86 	0.611 91 	0.148 105		
0.805 77 	0.798 78 106	0.784 81 	0.758 83 	0.719 87 	0.458 90 	0.560 94 111	0.426 107			
0.519 95	0.512 98	99 0.199	0.481 102	0.450 103	0.396 108	0.340	(···POTE	NCIA REL Ro de im	ATIVA Portanci	*

Figura 6.2

•

Mapa de las potencias relativas y número de importancia núcleo homogéneo

6.2.1 Aplicación del Método Biparamétrico Adaptado al Ciclo 4 de la Unidad 1

Todas las corridas de este estudio fueron realizadas en el sistema de cómputo de la Gerencia de Sistemas Nucleares del ININ, en particular las ejecuciones del programa PRESTO se llevaron a cabo en el sistema VAX-3100 de la Gerencia.

Para realizar el estudio de aplicar el Método Biparamétrico de Burte se creó un programa en lenguaje Quick-basic que se llamó MAPATES. Este programa permite generar patrones de recarga bajo el procedimiento biparamétrico para diferentes valores de los parámetros N y M. El programa forma archivos de salida con los datos de las recargas con el formato de las tarjetas 330000 (véase Ref. 7) adecuadas para ser leídas por el programa PRESTO. En el programa MAPATES se introdujeron los datos del mapa de la Figura 6.2 comentada en el apartado anterior. Con estos datos se desarrolló en MAPATES un evaluador rápido de la Keff global de una recarga dada al inicio del ciclo (BOC). Esta evaluación de Keff se calcula integrando los valores de Keff asociados a cada uno de los combustibles de recarga pesado por la potencia relativa normalizada asociada al canal donde fue colocado cada uno de los combustibles, dividido por el número de canales considerados tal que:

Sea Keff_e la constante de multiplicación efectiva al inicio del ciclo de evaluación rápido:

$$Keff_E = \frac{\sum_{i=1}^{n} P_i * Keff_i}{n}$$

[Ec.6.1]

Donde:

n = número de canales en 1/4 de núcleo = 111 P_i = potencia relativa en el canal i del núcleo Keff_i = Const. de Mult. Effect. del combustible colocado en el canal i del núcleo.

Las potencias normalizadas de los canales simplemente son aquéllas que se obtuvieron al simular un núcleo con sólo combustibles idénticos. Para mayor información sobre el programa MAPATES consultar el Apéndice C.

En la Tabla 6.1 se proporcionan para un cuarto de núcleo el estado de quemado y la Keff de cada uno de los ensambles combustibles que constituyen el vector de carga del combustible del Ciclo 4. En los mapas de la Figura 6.3 se proporcionan los principales datos relacionados con el patrón de recargas OFICIAL del Ciclo 4. Los resultados de los cálculos de simulación del ciclo con el código PRESTO de la recarga OFICIAL se usaran como referencia para la evaluación de las recargas generadas con los diferentes, métodos biparamétricos que en los próximos apartados se estudiaran.

No.	láni. PRESTO	Keff	Exposie. (Mwd/f)	No.	kleni. PRESTO	Kell	Exposic. (Mwd/T)	Nu.	klent. PRESTO	Kell	Exposic. (Mwd/T)
<u> </u>	30382	0.90595	24405.79	41	73264	0.98788	0	BI	51171	1.06965	16681.62
2	20368	0.90885	19621.30	42	13260	0,96788	o	82	51175	1.06989	16652.81
3	20204	0.90711	19606.54	43	73256	0.98783	U	83	42318	1.06709	1 3472.33
1	30333	0.90997	19455.13	44	73252	0.98788	0	R4	42326	1.08789	13363.73
3	30294	0.91017	19429.82	45	73248	0.98768	0	83	42310	1.06803	13354.25
6	30503	0.91055	23407.73	46	73244	0.98798	n	86	42330	1.0/07	13126.99
,	30394	0.91076	23782.56	47	73240	0.967%8	0	87	42322	1.09085	13115.63
-	30427	0.91078	23707.28	48	73236	0.98788	٥	**	42302	1.10116	11961.28
,	30461	0.91093	23685.17	49	73232	0.96788	0	B9	42314	1.10712	11348.4
10	30473	0.91212	23938.51	50	73228	0.9N1788	0	90	42298	1.10731	11327.46
п	30336	8.91 277	23866.57	· 51	73224	0.96788	0	91	62402	1.11141	14172.19
12	2028)	0,91405	18950-63	52	73220	0.9417148	U	92	62370	1.11842	14151.62
ы	20364	0.91452	18681.92	53	73216	0.96740	a	43	62386	1.11844	14146.22
- 14	30422	0.91646	23953.05	54	7321.2	0.96788	0	Ŕ	623 4 #	1.11893	14107.BH
15	30404	0.91726	23117.22	55	73208	0.98768	0	45	62378	F.1190)	14104.24
16	30641	0.91782	23080.24	56	73204	0.94788	0	96	62.3#2	1.11958	13907.02
17	20365	0.91861	16405.89	57	73300	0.98768	0	97	62350	1.11964	13981.66
10	20277	0.91921	18290.58	58	41247	1.00339	21 718.07	94	42306	1.11975	9992.818
(9	30565	0.92044	23428.11	59	41259	1.00342	21718.91	99	47294	1.11989	9987.039
<u>a</u>	20350	0.92056	18155.37	60	41235	1.00763	21193.36	100	62362	1.1204	13684.14

1

ţ

.

;

		т	ABL	A 6.1		
VECTOR	DE	CARGA	DE	COMBUSTIBLE	CICLO	4

· · ·

•

Na.	klenk. PRESTO	Kell	Exposic. (Mwd/T)	Nu	fdent. PRESTO	Kell	Exposite. (Mwd/F)	No.	klent. PRESTO	Kell	tapmic. (Mwd/T)
21	30634	0.92068	23410.71	61	41243	1.00713	21108.35	101	62374	1.12003	13879.32
22	20322	0.92094	18161.45	62	83003	1.02535	0	102	62406	1.12294	13632.3
21	30512	0.92406	22%4.88	63	91749	1.03076	0	103	62354	1.12314	13631.53
24	30629	0.43059	22150.57	ស	51183	1.03587	30333.29	(04	62394	1.12706	11187.42
25	30401	0.93157	21(3)7, 74	65	41227	1.03704	17666.11	184	62142	1.12723	13166.71
26	315447	0.93159	21003.37	50	41215	1.03798	177633	196	62146	1.32724	13189.24
27	30632	0.9360)	2(4)3.45	67	51199	1.0394	19953-17	107	62366	1.12734	13176.58
28	203.12	0.97555	13158.65	AR .	51187	1.0396	19929.4	108	62338	1.13699	12107.86
29	20303	0.97636	13261.08	64	4(239	1.04257	17294.92	107	62358	1.13704	E.6001
30	30547	0.47702	(31,3).59	7()	41255	1.0431	1 1237.12	110	62390	1.1.5038	10514.53
31	20360	0.97735	13(80,67	71	51191	1.04327	19524.67	m	62334	t 1507x	(047).27
32	20,138	0.97423	1.30.31.72	72	51207	1.04329	19521.NF				
>>	3)286	U.97844	13054-38	n	41251	1.84584	16984.11			L	
ы	71292	0.96768	ø	74	41223	1 (1507	16446.83				
35	73288	U.987NN	ú	В	41219	1.0549	1/018.72				
36	73284	0.96768	()	76	41231	1.05566	(5949-22				
11	73560	8).9K7KK	u	17	51211	1 05852	17878.74				
З¥	73276	6.98788	0	78	\$1179	1.05875	17854.52				
39	73272	1). YH 7% H	0	79	\$1307	1.06919	16728.9)				
40	73268	(1, 98) 7944	0	ю	51195	1.06953	16685,96				

ł

I

ł

1

1

~

TABLA 6.1 (continución)

.

-

5

...

MAPAS CUARTO DE NUCLEO CARGA OFICIAL

****	******	+ CAMBI	OS:Sin	Interca	mibios	EVA1(Di	seño/0f	(cial):	.99750	064	
Carga	DIJO N	AL IV C	UADRANT	É Ident	ificado	res de	Combust	iles PF	ESTO		
- 1	(23)	(25)	[27]	[29]	[31]]	[33]	(35)	(37)	[39]	[41]]	[43]
(221	30473	42326	73292	41227	51203	42306	73288	41235	51211	62366	30422
[20]	42310	20305	51207	73284	41259	73280	30641	73276	42314	62378	20288
[18]	73272	51191	73268	42330	73264	62398	73260	41239	73256	62394	20281
[16]	41215	73252	42322	20332	30447	73248	62386	20338	51195	62358	20333
[14]	51171	41247	73244	30401	51183	42318	73240	51199	41223	62406	20365
[12]	42294	73236	62350	73232	42302	73228	41219	73224	20286	62374	30585
[10]	73220	30427	73216	62402	73212	41231	30382	62390	83003	30556	20322
[08]	41243	73208	41255	20347	51187	73204	62334	62370	30461	30632	CHIRAL CONTRACTOR
[06]	51179	42298	73200	51175	41251	20360	93749	30394	30404		
[04]	62346	62382	62342	62338	62354	62362	30503	30629			
[02]	30634	20368	20364	20294	20277	30512	20350				
		•						1410.0000000000000000000000000000000000	In the second second	Dourner and I	
Carga	B OF[C]	AL IV C	UADRANT	E Const	ante de	Hultip	icacion	Infini	ta(Kini	Ð	
1	(23)	[25]	[27]	[29]	(31)	[33]	(35)	(37)	[39]	641)	[43]
[22]	201 42310 20305 51207 73284 41259 73280 30641 73276 42314 62378 20288 181 73272 51191 73264 42330 73284 42399 73260 41239 73276 42314 62378 20288 181 73272 51191 73264 42330 73284 42389 73260 41239 73256 62394 20281 161 1217 73224 30401 51183 42318 73240 51199 41223 62406 20365 121 42294 73216 62302 73212 42302 73224 41219 73224 62366 62374 30565 20322 08103 30556 20325 62356 203										

								1110200		.,,,,,,,,
[20] 1.0881	.99084	1.0434	1.19	1.0035	1.19	.91796	1.19	1.1072	1.1191	.90923
[18] 1.19	1.0434	1.19	1.0908	1.19	1.1190	1.19	1.0427	1.19	1.1272	.91418
(16) 1.0381	1.19	1.0909	.99265	.93171	1,19	1.1185	.99083	1.0696	1.1371	.91009
[14] 1.0697	1.0035	1.19	.93171	1.0360	1.0872	1.19	1.0395	1.0508	1.1230	.91873
(12) 1.1200	1,19	1.1197	1,19	1.1012	1.19	1.0550	1.19	.99378	1.1209	.92058
[10] 1.19	.91092	1.19	1.1185	1.19	1.0557	.90609	1,1505	1.19	.91291	.92106
(08) 1.0079	1.19	1.0432	.99459	1.0397	1,19	1.1509	1.1185	.91107	.93615	
[06] 1.0588	1.1074	1.19	1.0700	1.0459	.99378	1.19	.9109	.9174	Den serie	
(04) 1.1273	1.1197	1.1273	1.1371	1.1232	1.1209	.91069	.93073			
[02].92082	.90879	.91465	.9103	.91933	.92422	.92068				
								****************		***************

Carga OFICIAL IV	CUADRANTE Quer	nado por combu	stible en MWD/M	IT	
[[23] [[25]	[[27] [[29]	(31) (33)	(35) (37)	(39)	(41) [(43)
[22] 23938 13364	17868	3 16729 999	3 2119:	5 17879 1	3177 23953
(20) 13354 11889	19522	21717	23080	11348 1	4104 19606
[18] 19525	13127	7 1410	8 17295	i	3187 18951
[16] 17766	13116 11686	5 21003	14146 11890	16686 1	2099 19455
[14] 16682 21718	21008	20353 1347	2 1995	5 16447 1	3652 18406
[12] 9987	13982	1 1961	16019	11516 1	3879 23428
[10] 23707	14172	2 1594	9 24406 1051		3867 18161
[08] 21168	17238 11419	19929	10473 1415	23685 2	1413
[06] 17855 11327	16653	5 16984 1151	6 2378	32117	
[04] 13189] 13987	13167 12108	3 13632 1388	4 23808 2215		
[02] 23411 19621	18882 19430	18291 2296	5 18155		
•			I Internet sum	. Leasternander Lann	ennen leenninger

Figura 6.3 Napas de un cuarto de núcleo de la Carga de Combustible OFICIAL

.

6.2.2 Estudio A1

El programa MAPTES se ejecutó bajo las siguientes condiciones:

- 1- Se suministró el vector con los datos de los combustibles de recarga de un cuarto de núcleo correspondientes al ciclo 4 de la unidad 1 de acuerdo a las referencias 9, 10 y 11 (ver Tabla 6.1).
- 2- La formación de recargas realizadas por MAPATES fueron hechas de acuerdo al procedimiento para el MBA dado en el apartado 6.2
- 3- La carga en las posiciones de las localidades Blancas fue idéntica a la carga oficial del ciclo 4 de la unidad 1 de la CNLV.
- 4- Se generaron, además de la recarga oficial, 25 patrones de recarga para una malla amplia de valores de los parámetros M y N. Los valores de la variable M fueron [1, 6, 11, 16 y 21] y para N [1, 6, 11,16, 21]. La intención era formar una malla que cubriera el espacio de solución del movimiento de combustibles de la región gris del patrón básico hacia la región de localidades negras, el patrón de carga M=1, N=1 representa el patrón de recarga básico.
- 5- El archivo de salida del programa MAPATES conteniendo los datos esenciales de las 26 recargas en formato de tarjeta 330000 de PRESTO se denominó A1BOC.DDD para los casos BOC y A1EOC.DDD para los casos EOC.
- El programa PRESTO fue ejecutado bajo las siguientes condiciones:
- 6- El banco de datos usado en la ejecución de PRESTO y conteniendo la información de todos los tipos de combustibles involucrados en el ciclo 4 de la unidad 1 fue el L1F106_M. (Ref. 11)
- 7- El archivo de reinicio PRESTO (conteniendo toda la información del estado de quemado de cada uno de los combustibles de la recarga) y que corresponde al seguimiento que se realiza con PRESTO de la operación de la unidad 1 de la CNLV hasta el ciclo 3 fue el L1PRE027.RST (Ref. 9).
- 8- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la Unidad 1 durante el ciclo 4 fue el PBHCHH01.C4 (Ref. 15).
- 9- Primero se ejecutó PRESTO bajo las condiciones BOC para cada uno de los patrones de recarga contenidos en el archivo

A1BOC.DDD. El nombre de la corrida fue 1PAHH4A1.

10- Segundo, se ejecutó PRESTO bajo la opción de simulación HALING EOC con una longitud de ciclo de 8046 MWD/MT para cada uno de los patrones de recarga contenidos en el archivo A1EOC.DDD. El nombre de la corrida fue 1PBHH4A1.

6.2.3 Resultados del estudio A1

En la Tabla 6.2 se consignan los valores de MCPR, MLHGR y Keff en el inicio de ciclo (BOC) y al final de ciclo (EOC) de cada uno de las 25 recargas generadas bajo el MBA junto con los datos del patrón de carga oficial del ciclo 4 que se usará como patrón de recarga de referencia. En la tabla con datos BOC también se consignan los valores del evaluador rápido Keff BOC integrado en el programa MAPATES (ver Ec.6.1).

En los mapas de la Figura 6.4.a se proporcionan los principales datos relacionados con el patrón básico del estudio Al.

En la Figura 6.4.b se muestra la gráfica de los MCPR contra los días a plena potencia del ciclo de las 25 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial.

En la Figura 6.4.c se muestra la gráfica de los MLHGR contra los días a plena potencia del ciclo de las 25 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial.

RESULTAD	OS DE I	РАНИАТ У ГРВІ	ilijal					
BOC IPAIN	1441					EOC IPRIMI	IA1	
М	N	Kell	Kell	MCPR	MLIRG R	Kell	MCPR	MLIIGR
		MAPANC	PRESTO			PRENLO		
OFICIAI.			E.007x	1.6217	453	0.994	1.5269	375
1	1	0.997462	1.0075	1.707)	476	0.99361	1.5236	375
	6	0.997427	1.0075	E.7066	476	0.99361	[.5284	375
1	11	0.997391	1,0074	1.7067	475	0.99361	1.5236	375
	16	0.99736	1.0074	1.7067	475	0.99361	1.5236	375
1	21	0.997341	1.0074	1.7065	475	0.99361	1.5236	375
6		0.99705	1.0072	4 7037	477	16(44.0	1.5236	175
6	6	0.996222	1.0008	1.7919	479	0.99161	1.5236	175
6	"	0,984054	1.0068	1 701	480	0.99361	1.5236	375
6	16	0.995813	1.0066	1.7018	482	0.99361	1.5236	375
6	21	0.993689	1.0065	1.7012	482	0.99361	1.5236	375
		0.9%79	1.0068	1.6983	488)	0.9933	1.4817	376
	6	0.993978	1,0046	1.6836	444	0.99336	1.4737	378
	11	0.993008	1.004	1.6752	503	0.99336	1.4737	171
<u> </u>	16	9.992638	1.0039	1.6734	503	0.9336	1 4737	378
	21	0.9723	1.0037	1.6714	505	0.99336	1.4737	378
16		0.996756	1.0067	1.0993	479	0.9935	1.48(7	376
16	6	0.992819	1.0032	1.6855	500	0.99344	1.4749	378
16		0.989894	1.001	1.6791	530	(1,99326	1.3882	340
16	16	0,988722	1.0004	1.6653	\$35	0.99326	1.3882	340
16	21	0.968251	1.0001	1.6536	536	0.99326	1.3882	340
21		0.996625	1.0065	1.7032	478	0.9435	1.4817	376
21	•	0.992438	1.0021	1.668)	499	0.99344	1.4749	171
21		0.988447	0.99916	1.4400	542	0.99335	1.3688	MI
21	16	0,985382	d.9968	1.6078	554	0.99336	1.1947	2142
21	21	0,914135	0.99599	1.4615	558	0.99336	1.3447	3#2

TABLA 6.2 ESTUDIO A1 DATOS BOC Y EOC

.

FIGURA 6.4.0 NAPAS CUARTO DE NUCLEO CARGA A1

- -

****	******	* CAMBI	OS:Sin	Interca	mibios	EVATO	seño/Ot	icial)=	.99750	164	
Carga	BASIC	A IV CU	ADRANTE	Identi	ficador	es de C	ombusti	les PRE	510		
1 T	(23)	(25)	(27)	[29]	(31)	(33)	(35)	(37)	(39)	[41]	[43]
1223	30473	306291	73292	203601	51203	51199	73288	42318	51211	62394	20277
(20)	30401	20305	30447	73284	41243	73280	51207	73276	62386	62378	20365
[18]	73272	30632	73268	41259	73264	41239	73260	42310	73256	62346	30422
1161	20286	73252	41247	20332	41215	73248	51195	20338	62398	62358	20364
1141	51171	61235	73244	41227	51183	41219	73240	42298	41223	62334	30461
(121	51187	73236	41255	73232	41231	73228	42302	73224	62354	62374	20333
(101	73220	51101	73216	51175	71212	42322	30382	42306	83003	30634	20288
1081	42324	73208	62330	20347	42314	73204	42294	62370	20322	30394	ndentanti
1061	51170	62602	73200	623501	41251	62406	03740	30512	30427	un hohm)	alter Conter 14
1021	A2342	42382	42344	A2338	42300	42342	20350	30503	RIGHTER COL	fiteritentu.	letter state H
1021	30585	30641	30404	20281	30556	20204	20368	MARKARA		ingen stat	
1061	202021	200411	20404	torail	10110	F0F145	103001	anngenan	300033300	comment.	nin ossan

Carga BASICA IV CUADRANTE Constante de Multipicacion [nfinita(Kinf)(-=Nuevo) [23] [25] [27] [29] [31] [33] [35] [37] [39] [41] [43] [22] 91226 93073 1.19 99378 1.0693 1.0395 1.19 1.0872 1.0586 1.1272 91933 [20] 93171 99084 93171 1.19 1.0079 1.19 1.0434 1.19 1.188 1.1191 91873 [18] 1.19 93615 1.19 1.0035 1.19 1.0434 1.19 1.188 1.1191 .91873 [18] 1.19 1.0355 1.19 1.0035 1.19 1.0696 99083 1.1190 1.1371 91665 [14] 1.0677 1.0077 1.19 1.0432 1.19 1.0550 1.19 1.0628 1.1500 1.1571 91665 [14] 1.0677 1.0077 1.19 1.0432 1.19 1.0557 1.19 1.0026 1.19 1.1023 1.190 0.9107 [10] 1.19 1.0434 1.19 1.0700 1.19 1.0909 90609 1.1198 .92106 9100 [10] 1.19 1.0434 1.19 1.0700 1.19 1.0909 90609 1.1198 .92106 9100 [10] 1.19 1.0638 1.191 1.177 1.0559 1.1200 1.1185 92106 9100 [10] 1.19 1.0638 1.1197 1.0175 1.19 1.2008 1.19 0.9222 .90923 [06] 1.0588 1.1197 1.1274 1.1371 1.1505 1.1209 .92068 .91069 [02] 92058 91796 9174 91418 91291 .9103 .90879

Carga BASICA IV CUADRANTE Quemado por combustible en MWD/MT(-=Nuevo)

	(23)	(25)	{ (27)	(29)	(31)	(33)	[[35]	[[37]]	(39)	(41)	(43)
[22]	23938	22151		11516	16729	19953		13472	17879	13187	18291
(20)	21008	11889	21003		21168		19522		14146	14104	18406
[18]		21413		21717		17295	0,00,000	13354		13189	23953
[16]	11516		21718	11686	17766		16686	11890	14108	12099	18882
[14]	16682	21193		17868	20353	16019		11327	16447	10473	23685
(12)	19929		17238		15949		11961		13632	13879	19455
[10]		19525		16653		13116	24406	9993		23411	19606
[08]	13364		13127	11419	11348		9987	14152	18161	23783	
[06]	17855	14172		13982	16984	13652		22965	23707		
[04]	13167	13987	13177	12108	10515	13884	18155	23808			
(02)	23428	23080	32117	18951	23867	19430	19621				

Figura 6.4,a Mapas de la recarga básica del ESTIDIO A1

-

141

-

6.2.4 Análisis de los resultados del estudio A1 y conclusiones.

щ. г.

.

El examen de los resultados en el BOC, muestra que en todos las 25 recargas candidato se tiene:

- la Keff BOC es menor que el de la recarga oficial.
- el MCPR en el BOC es menor que aquél de la carga oficial por lo que el MCPR empeoró.
- el MLHGR BOC es mayor que aquél de la carga oficial por lo que el MLHGR empeoró.
- Al crecer M y N los datos en el BOC el MCPR y MLHGR empeora.

El examen de los resultados en el EOC, muestra que en todas las 25 recargas candidato se tiene:

- la Keff Haling EOC es menor que la de la recarga oficial por lo que la longitud de ciclo es baja.
- el MCPR en el Haling EOC es menor que aquel de la carga oficial por lo que el MCPR empeoró.
- el MLHGR en el Haling EOC es mayor que aquél de la carga oficial por lo que el MLHGR empeoró.
- Al crecer M y N los datos Haling de Keff, MCPR y MLHGR empeoran.

Aún cuando es posible que al detallar más la malla de los puntos N y M pudiesen surgir candidatos de patrones de carga que pudieran superar al patrón oficial esto se consideró muy improbable. Por lo que habría que realizar modificaciones al proceso con el fin de lograr mejoras en los resultados y ante esto se concluyó:

Es necesario modificar la asignación de los combustibles de las canales de categoría Blanca tendiendo a aumentar la reactividad global del núcleo.

Esto , se pensó, conduciría a obtener mejores resultados. El estudio siguiente nombrado BA se realizó en base a la conclusión anterior.

6.2.5 Estudio BA

Con el fin de aumentar la reactividad del núcleo se realizaron los siguientes intercambios de combustibles en el patrón básico:

- Se intercambiaron los combustibles de los canales: el 1 por el 85, el 73 por el 75 y el 13 por el 19.
- El programa MAPATES se ejecutó bajo las siguientes condiciones:
- 1- Se suministró el vector con los datos de los combustibles de recarga de un cuarto de núcleo correspondientes al ciclo 4 de la unidad 1.
- 2- La formación de recargas realizadas por MAPATES fueron hechas de acuerdo al procedimiento para el MBA dado en el apartado 6.2.
- 3- La carga en las posiciones de las localidades Blancas fue idéntica a la carga oficial del ciclo 4 de la unidad 1 de la CNLV EXCEPTO QUE SE REALIZO SOBRE EL PARTRON BASICO CON LOS SIGUIENTES INTERCAMBIOS; EL 1 POR EL 85, EL 73 POR EL 75 Y EL 13 POR EL 19.
- 4- Se generaron, además de la recarga oficial, 9 patrones de recarga para una malla amplia de valores de los parámetros M y N. Los valores de la variable M fueron [1, 11, y 21] y para N [1, 11, 21]. La intención era formar una malla que cubriera el espacio de solución del movimiento de combustibles de la región gris del patrón básico hacia la región de localidades negras, el patrón de carga M=1, N=1 representa el patrón de recarga básico.
- 5- El archivo de salida del programa MAPATES conteniendo los datos esenciales de las 10 recargas en formato de tarjeta 330000 de PRESTO se denominó BABOC.DDD para los casos BOC y BAEOC.DDD para los casos EOC.
- El programa PRESTO fue ejecutado bajo las siguientes condiciones:
- 6- El banco de datos usado en la ejecución de PRESTO y conteniendo la información de todos los tipos de combustibles involucrados en el ciclo 4 de la unidad 1 fue el L1F106_M.
- 7- El archivo de reinicio PRESTO (conteniendo toda la información del estado de quemado de cada uno de los combustibles de la recarga) y que corresponde al seguimiento que se realiza con PRESTO de la operación de la unidad 1 de la CNLV hasta el ciclo 3 fue el L1PRE027.RST.

8- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la Unidad 1 durante el ciclo 4 fue el PBHCHH01.C4.

- 9- Primero se ejecutó PRESTO bajo las condiciones BOC para cada uno de los patrones de recarga contenidos en el archivo BABOC.DDD. El nombre de la corrida fue 1PAHH4BA.
- 10- Segundo, se ejecutó PRESTO bajo la opción de simulación HALING EOC con una longitud de ciclo de 8046 MWD/MT para cada uno de los patrones de recarga contenidos en el archivo BAEOC.DDD. El nombre de la corrida fue 1PBHH4BA.

6.2.6 Resultados estudio BA

En la tabla 6.3 se consignan los valores de MCPR, MLHGR y Keff en el inicio de ciclo BOC y al final de ciclo EOC respectivamente de cada uno de las 9 recargas generadas bajo el MBA junto con los datos del patrón de carga oficial del ciclo 4 que se usará como recarga de referencia. En la tabla con datos BOC también se consignan los valores del evaluador rápido Keff BOC integrado en el programa MAPATES.

En los mapas de la Figura 6.5.a se proporcionan los principales datos relacionados con el patrón básico del estudio BA.

En la Figura 6.5,b se muestra la gráfica de los MCPR contra los días a plena potencia del ciclo de las 9 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial.

En la Figura 6.5.c se muestra la gráfica de los MLHGR contra los días a plena potencia del ciclo de las 9 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial.

RESULTAD	os de l	іраннава у ірві	ШЧВА						
BOC IPAIN	4BA					ЕОС ТРВНИНАВА			
м	N	Keff	Kell	мсря	MLHG R	Kelt	меря	MLHGR	
		MAPANC	PRESTO			PRENTO			
OFICIAL			1.0071	1.6217	453	0.994	1.5269	375	
	1	1.00323	I.COR6	1.7171	468	0.99316	1.5199	376	
1	н	1.600251	1.0986	1.7(69	448	0.99316	1.5199	376	
	21	1.000202	I.QURS	1.7163	468	0.91316	1,5199	376	
	1	0.999651	1.0077	1.7069	473	0.99303	1.4747	317	
	н	0.995869	1.0044	1.6802	497	0.99292	1.4706	379	
11	21	0.993161	1.0039	1.6775	499	0.99292	1.47%	379	
21	.1	0.979486	1.0074	1.7133	472	0.99303	1,4787	317	
21	"	0.991304	0.99922	1.7047	530	0.9929	1.3856	382	
21	21	0.986996	0.99568	H.CHJH	531	0.99291	1.3942	383	

ł

TABLA 6.3 ESTUDIO BA DATOS BOC Y EOC

-

b

-

FIGURA 6.2.a MAPAS CUARTO DE NUCLEO CARGA ESTUDIO BA

....

.

**

100000 IPAHH4BA Est.Bipa.BA[M1 21 10 N1 21 10]BANIN1 EIR=1.000323 09-08-1994								
[23] [25] [27] [1291 (31) (33) (Compustiles PRESID 351 1371 1391	(41) { (43)					
(22) 62370 30512 73292	20360 51203 51199 7	3288 42318 51211	62394 20277					
	73284 41243 73280 5		62378 20365					
(16) 732721 306321 73268	20332 61215 73268 5	1105 20338 62308	62358 20364					
[14] 51171 41235 73244	41227 51183 41219 7	3240 42298 41223	62334 30461					
[12] 51187 73236 41255	73232 41231 73228 4	2302 73224 62354	62374 20333					
(10) 73220 51191 73216	51175 73212 42322 8	3003 42306 30382	30634 20288					
1061 51179 62402 73200	62350 41251 62406 2	0305 30629 30427	20394					
(04) 62342 62382 62366	62338 62390 62362 2	0350 30503						
(02) 30585 30641 30404	20281 30556 20294 2	0368						
Carga de DISEÑO IV CUADRAN	ITE Constante de Multip	icacion Infinita(Ki	nf)					
[23] (25) (27]	(29) (31) (33) (35] (37) (39)	[41] [43]					
	99378 1.0693 1.0395	1.19 1.0872 1.0586	1,1272 .91933					
(18) 1.19.936151 1.1911	1.0035 1.1911.0427	1.1911.08811 1.19	1.1273 .9166					
[16].99378 1.19 1.0035	99265 1.0381 1.19 1.	0696 .99083 1.1190	1.1371 .91465					
[14]1.0697 1.0077 1.19 1	.0371 1.0360 1.0550	1.19 1.1074 1.0508	1.1509 .91107					
	1.1911.05571 1.1911.	1012 1.19 1.1232	1.12091.91009					
(0811.0880 1.19 1.0908)	.99459 1.1072 1.19 1.	1200 91226 92106	.9109					
(06) 1.0588 1.1185 1.19 1	1.1197 1.0459 1.1230 .9	9084 .93073 .91092						
(04) 1.1273 1.1197 1.1274 1	1.1371 1.1505 1.1209 .9	2068 .91069						
(051-450281-411401 -41141	aieistraisait 'ainstra	0814						
Carga de DISEÑO IV CUADRAM	ITE Quemado por combust	ible en MWD/MT						
1231 14152 22065	11516 16720 10053	351 [37] [39]	[41] [[43] 13187 18201					
(201 21008 21003	21168	9522 14146	14104 18406					
(18) 21413	21717 17295	13354	13189 23953					
[16] 11516 21718	11686 17766	6686 11890 14108	12099 18882					
(12) 10002 (1)73	1/508 20333 10019	1061 1327 10647	13870 10/55					
19525	16653	9993 24406	234111 19606					
(08) 13364 13127	11419 11348	9987 23938 18161	23783					
[06] 17855 14172	13982 16984 13652	1889 22151 23707						
1043 1310/ 1390/ 131//	18951 23867 19430	9621						
	and month thank	····· (unescuence (contribuied of)						
Figura 6.5.a Ma	pas de la reca	irga basica	ael ESTUDIO BA					

ţ.

i ł

I

•

Figura 6.5.b MCPR de las recargas del estudio BA contra la longitud del ciclo en días a plena potencia

149

٩.

ſ

6.2.7 Análisis de los resultados del estudio BA y conclusiones.

.

. .

El examen de los resultados en el BOC muestra que: en todos las 9 recargas candidato se tiene:

- la Keff BOC es menor que el de la recarga oficial para M=11 y 21
- el MCPR en el BOC , para todos los casos, es mayor que aquél de la carga oficial por lo que el MCPR mejoró.
- el MLHGR BOC, para todos los casos, es mayor que aquél de la carga oficial por lo que el MLHGR empeoró.

El examen de los resultados en el EOC muestra que:

- la Keff Haling EOC es mayor al de la recarga oficial en todos los casos con M=1 y/o N=1. Es decir, solo en los casos relativamente cercanos al básico el resultado mejoraba.
- el MCPR en el Haling EOC, para todos los casos, es menor que aquel de la carga oficial por lo que el MCPR mejoró.
- el MLHGR en el Haling EOC, para todos los casos, es mayor que aquél de la carga oficial por lo que el MLHGR empeoró.

El análisis de éste y de otros estudios similares no reportados aquí nos llevaron a la siguiente conclusión:

aún cuando al modificar el patrón de recarga básico pudiese conducir a alcanzar mejores resultados esto no dejaba de ser un proceso de búsqueda tradicional de prueba y error.

Era necesario realizar una modificación más drástica así que se decidió:

cambiar el procedimiento de cómo colocar los combustibles en las localidades Negras de un esquema de colocación OUT-IN a uno IN-OUT.

En el siguiente estudio etiquetado A2 se presenta el desarrollo de esta idea.

6.2.8 Estudio A2

Se modificó el paso 8.3 del procedimiento MBA (de las reglas de colocación) quedando como sigue:

8.3- las localidades Negras (en esquema IN-OUT en el patrón básico) se llenan con los combustibles parcialmente gastados que restan en el vector de recarga. El ensamble combustible parcialmente quemado con número de orden menor se coloca en la localidad Negra de MAYOR importancia, el segundo ensamble combustible de menor número de orden se coloca en la localidad Negra siguiente de MAYOR importancia y así sucesivamente hasta agotar las localidades Negras.

Esta modificación fue introducida en el programa MAPATES y se procedió a realizar el estudio A2. En el estudio A2, al igual que el estudio A1 y a diferencia del BA, la colocación de los combustibles en las localidades BLANCAS fue idéntica a la del patrón oficial.

El programa MAPATES se ejecutó bajo las siguientes condiciones:

- 1- Se suministró el vector con los datos de los combustibles de recarga de un cuarto de núcleo correspondientes al ciclo 4, ver Fig. 6.3.
- 2- La formación de recargas realizadas por MAPATES fueron hechas de acuerdo al procedimiento para el MBA dado en el apartado 6.2 CON EL PASO 8.3 MODIFICADO COMO SE EXPUSO AL INICIO DEL PRESENTE APARTADO.
- 3- La carga en las posiciones de las localidades Blancas fue idéntica a la carga oficial del ciclo 4 de la unidad 1 de la CNLV.
- 4- Se generaron, además de la recarga oficial, 25 patrones de recarga para una malla amplia de valores de los parámetros M y N. Los valores de la variable M fueron [1, 6, 11, 16 y 21] y para N [1, 6, 11, 16, 21]. La intención era formar una malla que cubriera el espacio de solución del movimiento de combustibles de la región gris del patrón básico hacia la región de localidades negras, el patrón de carga M=1, N=1 representa el patrón de recarga básico.
- 5- El archivo de salida del programa MAPATES conteniendo los datos esenciales de las 26 recargas en formato de tarjeta 330000 de PRESTO se denominó A2BOC.DDD para los casos BOC y A2EOC.DDD para los casos EOC.

El programa PRESTO fue ejecutado bajo las siguientes condiciones:

- 6- El banco de datos usado en la ejecución de PRESTO y conteniendo la información de todos los tipos de combustibles involucrados en el ciclo 4 de la unidad 1 fue el L1F106_M.
- 7- El archivo de reinicio PRESTO (conteniendo toda la información del estado de quemado de cada uno de los combustibles de la recarga) y que corresponde al seguimiento que se realiza con

PRESTO de la operación de la unidad 1 de la CNLV hasta el ciclo 3 fue el L1PRE027.RST.

- 8- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la unidad 1 durante el ciclo 4 fue el PBHCHH01.C4.
- 9- Primero se ejecutó PRESTO bajo las condiciones BOC para cada uno de los patrones de recarga contenidos en el archivo A2BOC.DDD. El nombre de la corrida fue 1PAHH4A2.
- 10- Segundo se ejecutó PRESTO bajo la opción de simulación HALING EOC con una longitud de ciclo de 8046 MWD/MT para cada uno de los patrones de recarga contenidos en el archivo A2EOC.DDD. El nombre de la corrida fue 1PBHH4A2.

6.2.9 Resultados del estudio A2

En la tabla 6.4 se consignan los valores de MCPR, MLHGR y Keff en el inicio de ciclo BOC y al final de ciclo EOC respectivamente de cada uno de las 25 recargas generadas bajo el MBA junto con los datos del patrón de carga oficial del ciclo 4 que se usará como recarga de referencia. En la tabla con datos BOC también se consignan los valores del evaluador rápido Keff BOC integrado en el programa MAPATES.

En los mapas de la Figura 6.6.a se proporcionan los principales datos relacionados con el patrón básico del estudio BA.

En la Figura 6.6.b se muestra la gráfica de los MCPR contra los días a plena potencia del ciclo de las 9 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial.

En la Figura 6.6.c se muestra la gráfica de los MLHGR contra los días a plena potencia del ciclo de las 9 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial.

RESULTADOS DE (PAINI4A2 Y (PRIM4A2									
100 (FAR	442					EDC 3PBHHAA2			
м	8	Kalf	Keli	мери	MELINJ B	Kell	ME 28	MIADAR	
		MAPASC PRESTO				PRESTO			
OFICIAL			1,007a	1.6217	451	0.994	1.5269	175	
1	1	1.00705	1 (10)73	1.2251	67B	1.040	1.3541	421	
1	6	1.00705	1.0175	1.2251	698	0,000	1.3549	423	
· · ·	<u>u</u>	t.02705	1.0075	1.2252	647K	1.0039	1.3540	423	
	16	0.00205	1 0075	1.2251 678		1.0119) 1.3539		423	
· · ·	21		1.0075	1.2250	f+M	1.61339	1.114	42)	
6	1		1 0314).2241	693	1.18879	1.3540	423	
6	ŀ,		1.0302	1.2214	701	Eann	u	421	
•	0		1.0302	1.23/7	202	Lunz	1.3327	424	
6	16		1.0201	L.219K	302	0.006	4.3524	424	
6	21		1.939	1 2191	703	1 19096	1 3519	124	
	1	0.94679	1.0302	1.234	712	1000	1.3324	423	
11	6	0 99 <u>19</u> 78	1.0188	1.3923	719	0.99929	1.3444	426	
	11	0.993488	1.0184	1.144	124	0.99877	1.1407	427	
53	18	0.992638) DIX1	1.1933	725	9.99865	1 3197	428	
11	21	0.9921	1.0182	1 1932	121	(L995-17	1,1384	428	
16	1	Q.946756	0.0200	6.230	1 17	(,4KB)7	1.1521	424	
16	٨	9.492449	1.01.7K	0.002	751	8/0829	1.0402	428	
16	11	0.989894	1 (916)	1.1738	7653	8,9808	1 3,174	433	
16	16	12 1968722	1.0154	1.1639	767	0.99388	1.1127	434	
10	Ð	0.968231	1.0132	1.1628	771	8.49579	1.3307	435	
21	1	0.946625	1.0149	1.2179	703	1.9145	1.3518	424	
21	6	0.992438	1.9173	1.1844	735	11 947KS	1,3378	429	
21		9.9KK443	1.0143	1.1674	7140	13,99454	1.3291	436	
31	16	0.965382	1.002)	1.1.189	H)7	H(C(4)()	1.3232	н:	
21	21,	0.984133	1.0110	1.1286	N XI	0.97D4	1.3176	43	

*** **

ŧ

TABLA 6.4 ESTUDIO A2 DATOS BOC Y EOC

. **.** .

.

153

. . .

FIGURA 6.6.a MAPAS CUARTO DE NUCLEO CARGA ESTUDIO A2

*****	******	* CAMBI	OS:Sin	Interca	mibios	EVA1(Di	seño/0	ficial)=	: 1.0066	577	
Carga	BASIC	A IV CL	ADRANTE	Identi	ficador	es de (combust i	les PRE	STO		
Ĩ	[23]	[25]	[27]	[29]	(31)	(33)	[35]	[37]	[39]	[41]	[43]
(22j	30473	62334	73292	62394	51203	62386	73288	51175	51211	20360	20277
[20]	62390	20305	62366	73284	42306	73280	42322	73276	51199	62378	20365
(18)	73272	62346	73268	62406	73264	42298	73260	41231	73256	30632	30422
(16)	62342	73252	62354	20332	62398	73248	42326	20338	41215	62358	20364
Č143	51171	42294	73244	62350	51183	42330	73240	41239	41223	30629	30461
[12]	62402	73236	42314	73232	42310	73228	51191	73224	41247	62374	20333
(10)	73220	42302	73216	42318	73212	51207	30382	41243	83003	30634	20288
[08]	51195	73208	41219	20347	41255	73204	41235	62370	20322	30394	
[06]	51179	51187	73200	41227	41251	41259	93749	30512	30427		
[04]	20286	62382	30447	62338	30401	62362	20350	30503			
(02)	30585	30641	30404	20281	30556	20294	20368				
Carga	BASIC	A IV CL	ADRANT	Consta	nte de	Multip	cacion	Infinit	a(Kinf)	(-=Nue	(0)
Carga	BASIC (23)	A IV CL [25]	ADRANTE	Consta [29]	nte de (31)	Multipi [33]	icacion (35)	Infinit [37]	a(Kinf) (39)	(-=Nue [41]	/0) [43]
Carga (22).	BASIC (23) 91226	A IV CL [25] 1.1509	ADRANTI [27] 1.19	Consta [29] 1,1272	nte de [31] 1.0693	Multip [33] 1.1185	icacion [35] 1.19	Infini [37] 1,0700	a(Kinf) [39] 1.0586	(+=Nue [41] .99378	(0) [43] .91933
Carga (22). (20) 1	BASIC (23) 91226 .1505	A IV CL [25] 1.1509 .99084	ADRANTI [27] 1.19 1.1274	Consta [29] 1.1272 1.19	nte de [31] 1.0693 1.1198	Multip [33] 1.1185 1.19	(235) (35) 1,19 1,0909	Infini [37] 1.0700 1.19	a(Kinf) [39] 1.0586 1.0395	(*=Nue [41] .99378 1.1191	(0) [43] .91933 .91873
Carga (22). (20) 1 (18)	BASIC [23] 91226 .1505 1.19	A IV CU [25] 1.1509 .99084 1.1273	ADRANTE [27] 1.19 1.1274 1.19	Consta [29] 1.1272 1.19 1.1230	inte de [31] 1.0693 1.1198 1.19	Multip [33] 1.1185 1.19 1.1074	(235) (35) 1.19 1.0909 1.19	Infinii [37] 1.0700 1.19 1.0557	a(Kinf) [39] 1.0586 1.0395 1.19	(*=Nue [41] .99378 1.1191 .93615	(0) [43] .91933 .91873 .9166
Carga (22). (20) 1 (18) (16) 1	BASIC (23) 91226 .1505 1.19 .1273	A IV CL [25] 1.1509 .99084 1.1273 1.19	ADRANTE [27] 1.19 1.1274 1.19 1.1232	Consta [29] 1.1272 1.19 1.1230 .99265	nte de [31] 1.0693 1.1198 1.19 1.1190	Multip [33] 1.1185 1.19 1.1074 1.19	(35) (35) 1.19 1.0909 1.19 1.0880	Infini [37] 1.0700 1.19 1.0557 .99083	a(Kinf) [39] 1.0586 1.0395 1.19 1.0381	(*=Nue [41] .99378 1.1191 .93615 1.1371	(0) [43] .91933 .91873 .9166 .91465
Carga [22]. [20]1 [18] [16]1 [14]1	BASIC [23] 91226 .1505 1.19 .1273 .0697	A IV CL [25] 1.1509 .99084 1.1273 1.19 1.1200	ADRANTE [27] 1.19 1.1274 1.19 1.1232 1.19	Consta [29] 1.1272 1.19 1.1230 .99265 1.1197	nte de [31] 1.0693 1.1198 1.19 1.1190 1.0360	Multip [33] 1.1185 1.19 1.1074 1.19 1.0908	(35) (35) 1.19 1.0909 1.19 1.0880 1.19	Infini [37] 1.0700 1.19 1.0557 .99083 1.0427	a(Kinf) [39] 1.0586 1.0395 1.19 1.0381 1.0508	(*=Nue [41] .99378 1.1191 .93615 1.1371 .93073	/0) [43] .91933 .91873 .9166 .91465 .91107
Carga (22). (20)1 (18) (16)1 (14)1 (14)1 (12)1	BASIC (23) 91226 .1505 1.19 .1273 .0697 .1185	A IV CL [25] 1.1509 .99084 1.1273 1.19 1.1200 1.19	ADRANTE [27] 1.19 1.1274 1.19 1.1232 1.19 1.1072	Consta [29] 1.1272 1.19 1.1230 .99265 1.1197 1.19	nte de [31] 1.0693 1.1198 1.19 1.1190 1.0360 1.0881	Multip [33] 1.1185 1.19 1.1074 1.19 1.0908 1.19	(35) (35) 1.19 1.0909 1.19 1.0880 1.19 1.0434	Infini [37] 1.0700 1.19 1.0557 .99083 1.0427 1.19	a(Kinf [39] 1.0586 1.0395 1.19 1.0381 1.0508 1.0035	(-=Nue [41] .99378 1.1191 .93615 1.1371 .93073 1.1209	/0) [43] .91933 .91873 .9166 .91465 .91107 .91009
Carga [22]. [20]1 [18] [16]1 [14]1 [12]1 [10]	BASIC [23] 91226 .1505 1.19 .1273 .0697 .1185 1.19	A IV CL [25] 1.1509 .99084 1.1273 1.19 1.1200 1.19 1.1012	ADRANTI [27] 1.19 1.1274 1.19 1.1232 1.19 1.1072 1.19	Consta [29] 1.1272 1.19 1.1230 .99265 1.1197 1.19 1.0872	nte de [31] 1.0693 1.1198 1.199 1.1190 1.0360 1.0881 1.19	Multip [33] 1.1185 1.19 1.1074 1.19 1.0908 1.19 1.0434	(35) 1.19 1.0909 1.19 1.0880 1.19 1.0434 .90609	Infini [37] 1.0700 1.19 1.0557 .99083 1.0427 1.19 1.0079	a(Kinf) (39) 1.0586 1.0395 1.19 1.0381 1.0508 1.0035 1.19	(*=Nue [41] .99378 1.1191 .93615 1.1371 .93073 1.1209 .92082	/0) [43] .91933 .91873 .9166 .91465 .91107 .91009 .90923
Carga (22). (20)1 (18) (16)1 (14)1 (12)1 (10) (08)1	BASIC (23) 91226 .1505 1.19 .1273 .0697 .1185 1.19 .0696	A IV CL [25] 1.1509 .99084 1.1273 1.19 1.1200 1.19 1.1012 1.19	ADRANTI [27] 1.19 1.1274 1.19 1.1232 1.19 1.1072 1.19 1.0550	Consta [29] 1.1272 1.19 1.1230 .99265 1.1197 1.19 1.0872 .99459	nte de [31] 1.0693 1.1198 1.19 1.0360 1.0881 1.19 1.0432	Multip [33] 1.1185 1.19 1.1074 1.19 1.0908 1.19 1.0434 1.19	(acion (35) 1.19 1.0909 1.19 1.0880 1.19 1.0434 .90609 1.0077	Infini [37] 1.0700 1.19 1.0557 .99083 1.0427 1.19 1.0079 1.1185	a(Kinf) [39] 1.0586 1.0395 1.19 1.0381 1.0508 1.0035 1.19 .92106	(-=Nue) [41] .99378 1.1191 .93615 1.1371 .93073 1.1209 .92082 .9109	/0) [43] .91933 .91873 .9166 .91465 .91107 .91009 .90923
Carga [22]. (20]1 (18) (16)1 (14)1 (12)1 (10) (08)1 (06)1	BASIC (23) 91226 .1505 1.19 .1273 .0697 .1185 1.19 .0696 .0588	A IV CL [25] 1.1509 .99084 1.1273 1.19 1.1200 1.19 1.1012 1.19 1.0397	ADRANTE [27] 1.19 1.1274 1.19 1.1232 1.19 1.1072 1.19 1.0550 1.19	Constz [29] 1.1272 1.19 1.1230 .99265 1.1197 1.19 1.0872 .99459 1.0371	nte de [31] 1.0693 1.1198 1.19 1.0360 1.0881 1.19 1.0432 1.0459	Multip [33] 1.1185 1.19 1.1074 1.19 1.0908 1.19 1.0434 1.19 1.0035	(235) (35) 1.0909 1.0909 1.0880 1.19 1.0434 .90609 1.0077 1.19	Infini [37] 1.0700 1.19 1.0557 .99083 1.0427 1.19 1.0079 1.1185 .92422	a(Kinf) [39] 1.0586 1.0395 1.19 1.0381 1.0508 1.0035 1.19 .92106 .91092	(-=Nue) [41] .99378 1.1191 .93615 1.1371 .93073 1.1209 .92082 .9109	/0) [43] .91933 .91873 .9166 .91465 .91107 .91009 .90923
Carga [22]. (20]1 [18] [16]1 [14]1 [12]1 [10] [08]1 [06]1 [04].	BASIC [23] 91226 1505 1.19 .1273 .0697 .1185 1.19 .0696 .0588 99378	A IV CL [25] 1.1509 .99084 1.1273 1.19 1.1200 1.19 1.1012 1.19 1.0397 1.1197	ADRANTI [27] 1.19 1.1274 1.1232 1.19 1.1072 1.19 1.0550 1.19 .93171	Consta [29] 1.1272 1.19 1.230 .99265 1.1197 1.19 1.0872 .99459 1.0371 1.1371	inte de [31] 1.0693 1.1198 1.1190 1.0360 1.0881 1.19 1.0432 1.0459 .93171	Multip [33] 1.1185 1.19 1.1074 1.19 1.0908 1.19 1.0434 1.19 1.0434 1.19 1.0035 1.1209	(35) (35) (35) (1,0909) (1,19) (1,0880) (1,19) (1,0434) (1,0077) (1,092068)	Infinit [37] 1.0700 1.19 1.0557 .99083 1.0427 1.19 1.0079 1.1185 .92422 .91069	a(Kinf) [39] 1.0586 1.0395 1.19 1.0381 1.0508 1.0035 1.19 .92106 .91092	(-=Nue (41) .99378 1.1191 .93615 1.1371 .93073 1.1209 .92082 .9109	/0) [43] .91933 .91873 .9166 .91465 .91107 .91009 .90923

Carga BASICA IV CUADRANTE Quemado por combustible en HWD/HT(-=Nuevo)

Carga BASI	CA IV C	UAORANTI	E Quemao	do por e	combust	ible en	HWD/HT	(-=Nuevo)	
į (23)	(25)	[[27]	[29]	(31)	[[33]	[35]	[[37]	[39]	[41]	[43]
[22] 23938	10473		13187	16729	14146		16653	17879	11516	18291
(20) 10515	11889	13177		9993		13116		19953	14104	18406
(18)	13189	ditter from	13652		11327		15949		21413	23953
[16] 13167		13632	11686	14108		13364	11890	17766	12099	18882
(14) 16682	9987		13982	20353	13127		17295	16447	22151	23685
(12) 14172	HERMAN	11348		13354		19525		21718	13879	19455
(10)	11961		13472	(filterdidg)	19522	24406	21168		23411	19606
(08) 16686		16019	11419	17238		21193	14152	18161	23783	
1061 17855	19929	Maine	17868	16984	21717		22965	23707		
1041 11516	13987	21003	12108	21008	13884	18155	23808			
(02) 23428	23080	32117	18951	23867	19430	19621				
		•		•	•	•				

Figura 6.6.a Mapas de la recarga básica del ESTUDIO A2

Figura 6.6.b

i.

ì

5.b MCPR de las recargas del estudio A2 contra la longitud del ciclo en días a plena potencia

6.2.10 Análisis de los resultados del estudio A2 y conclusiones.

El examen de los resultados en el BOC muestra que en todas las 25 recargas candidato se tiene:

- la Keff BOC es mayor que la de la recarga oficial, por lo que ninguna recarga cumple con la condición para ser mejor que la oficial.
- el MCPR en el BOC es menor que aquél de la carga oficial por lo que el MCPR empeoró absolutamente.
- el MLHGR BOC es mayor que aquél de la carga oficial por lo que el MLHGR empeoró totalmente.
- Al crecer M y N los datos en el BOC el MCPR y MLHGR empeora.

El examen de los resultados en el EOC muestra que en todos las 25 recargas candidato se tiene:

- la Keff Haling EOC es MAYOR que el de la recarga oficial por lo que la longitud de ciclo MEJORO sustancialmente.
- el MCPR en el Haling EOC es menor que aquél de la carga oficial por lo que el MCPR empeoró totalmente.
- el MLHGR en el Haling EOC es mayor que aquél de la carga oficial por lo que el MLHGR empeoró.
- Al crecer M y N los datos Haling de Keff, MCPR y MLHGR empeoran.

Un análisis detallado de estos resultados (a primera vista pésimos) indicaron que el patrón básico reunía las condiciones deseadas para tener una reactividad mayor y como se muestra en la Fig. 9.a la distribución radial de Keff es siempre mayor, en todos los puntos radiales, que la de la carga oficial. Este mismo comportamiento se presenta en las distribuciones radiales del MCPR (Fig. 9.b) y del MLHGR (Fig. 9.c). Además, aún cuando las recargas formadas al variar los parámetros M y N en general empeoran radicalmente los valores del MCPR y MLHGR tanto en el BOC como en el EOC. Estos comportamientos son los deseados que posea el método biparamétrico pero exactamente al revés. Como resultado del análisis anterior se revisaron las definiciones de los parámetros M y N y se concluyó:

Manteniendo el procedimiento de colocación IN-OUT de los combustibles en las localidades Negras, como se impuso en el estudio A2, y redefiniendo adecuadamente los parámetros N y M se tendría un procedimiento efectivo para la búsqueda de patrones de recarga para la CNLV.

El desarrollo de la idea anterior se desarrolla en el próximo apartado.

6.3 Método Biparamétrico Modificado (MBM) a la CNLV, aplicación al Ciclo 4 de la Unidad 1

Los resultados de aplicar el Método Biparamétrico Adaptado al Ciclo 4 de la Unidad 1 de la CNLV como se analizó en el apartado anterior, son que al generar patrones de recargas con diferentes parámetros N y M estos tenían Keff Haling EOC menores que el patrón básico (y el patrón de recarga oficial) y/o menores márgenes de seguridad de los parámetros MCPR y MLHGR. En general estos patrones de recarga resultaron de mala calidad. Se intentó solucionar el problema aumentando la reactividad general del núcleo al modificar la colocación de los combustibles en las localidades Blancas pero el problema persistió.

Para solucionar esta falla fundamental del Método Biparamétrico Adaptado fue necesario re-analizar el método original. Se encontró que un principio básico del método de Burte es:

"El patrón básico debe ser más reactivo que el patrón de recarga óptimo a buscar,"

Este principio no se cumplió al utilizar el método adaptado en el Ciclo 4. El motivo tal vez deba atribuirse al mayor número de combustibles del núcleo de los reactores de Laguna Verde con respecto al reactor de Tarapur en el que trabajó Burte.

Independientemente de la causa se analizó el Método Biparamétrico Adaptado para determinar qué cambios realizar con el fin de cumplir con el principio antes enunciado. Una forma de lograrlo era invertir el orden de colocación de los combustibles en las localidades negras. En lugar del esquema OUT-IN utilizado, originalmente, se usa el esquema IN-OUT, tal como se hizo en el estudio A2 presentado en el apartado anterior.

Esto en principio pudiera traer problemas con el aplanado de la potencia radial. Afortunadamente esto no fue importante como se verá después. Además la definición original de los parámetros N y M ya no aplicaba, como se concluyó en el estudio A2, por lo que fue necesario redefinir estos parámetros.

A continuación se proporciona el procedimiento del que ahora llamamos Método Biparamétrico Modificado donde se incorporan los cambios anteriormente expresados:

Reglas de asignación de categorías a las localidades del núcleo.

1- Se parte el núcleo en cuatro cuadrantes de acuerdo a la simetría QSC y se trabaja sólo con el cuarto de núcleo seleccionado. (111 localidades)

- 2- Se divide el núcleo en dos regiones: la periférica y la noperiférica tal como se propuso en el apartado 3.2.9. Esto se muestra en la Figura A.1 (Apéndice A).
- 3- La región no-periférica de L de (90) localidades se arregla en forma que recuerdan un tablero de ajedrez donde (46) (más o menos la mitad), se catalogan como localidades Blancas y el resto (44) como localidades Negras tal como se muestra en la Figura A.1 (Apéndice A). Las localidades Blancas se subdividen en dos: las pertenecientes a celdas CCC centrales o no pertenecientes a Celdas CCC centrales.
- 4- A la región periférica, por completés, se le da la categoría de localidades Grises (21 localidades).
- 5- A cada localidad del núcleo se le asigna un número consecutivo de importancia obtenido al simular un núcleo con idénticos combustibles. Al canal con mayor potencia se le asigna el número 1, al siguiente de mayor potencia el número 2 y así sucesivamente hasta completar todo el núcleo.

Reglas de colocación de los combustibles de recarga

- 6- El vector de los combustibles de recarga son ordenados de menos a más quemados.
- 7- Los n (111) combustibles de la recarga se dividen en dos categorías: (26) son combustibles frescos y el resto (85) son parcialmente quemados.
- 8- Se forma el Patrón Básico de Recarga:

i.

8.1- las localidades Blancas se llenan como sigue:

- los ensambles combustibles frescos (26) son colocados en las localidades no CCC centrales procurando conservar una simetría de 1/8.
- los ensambles menos reactivos en las localidades CCC centrales,
- el resto de las localidades Blancas se llenan con los ensambles combustibles más reactivos de los parcialmente quemados.
- se forma un patrón de recarga de las localidades blancas el cual quedará fijo durante la búsqueda.
- 8.2- las localidades Grises (en esquema IN-OUT en el Patrón Básico) son llenadas con los combustibles parcialmente

gastados restantes. El ensamble combustible parcialmente quemado con número de orden mayor colocarlo en la localidad Gris de menor importancia. El segundo ensamble combustible de mayor número de orden se coloca en la localidad Gris siguiente de menor importancia y así sucesivamente hasta agotar las localidades Grises.

- 8.3- las localidades Negras (en esquema IN-OUT en el patrón básico) son llenan con los combustibles parcialmente gastados que restan en el vector de recarga. El ensamble combustible parcialmente quemado con número de orden mayor se coploca en la localidad Negra de menor importancia, el segundo ensamble combustible de mayor número de orden se coloca en la localidad Negra siguiente de menor importancia y así sucesivamente hasta agotar las localidades Negras.
- 9- Para formar candidatos de patrones de recarga a partir del Patrón Básico se definen dos parámetros N y M que modifique el orden en el vector de recarga de la forma siguiente:
 - 9.1- TOMAR UN SECTOR (S1) DE N ENSAMBLES COMBUSTIBLES EMPEZANDO EN EL ENSAMBLE DE NÚMERO SECUENCIAL L+1 HASTA EL L+N+1 Y EXTRAERLO, EMPUJAR HACIA ARRIBA LOS SIGUIENTES M ENSAMBLES COMBUSTIBLES Y EN EL ESPACIO QUE DEJAN INTRODUCIR LOS N ENSAMBLES DEL SECTOR S1.
 - 9.2- Mapear el combustible con el vector de recarga modificado de la forma descrita en los pasos 8.1, 8.2 y 8.3.
- 10- Generar candidatos de patrones de recarga variando M y N (exhaustiva o por búsqueda sistemática) hasta alcanzar el patrón de recargas que cumpla con las exigencias y expectativas deseadas.

Se modificó el programa MAPATES conforme a lo indicado en el procedimiento anterior.

Para terminar es valioso hacer las siguientes observaciones:

- El parámetro M al igual que en el método original de Burte representa la extensión de la zona central que se va afectar.
- Si M es menor o igual a 44 la única zona afectada por los cambios son las localidades Negras.
- Si M es mayor a 44 se efectúan cambios que afectan tanto a las localidades Negras como a las Grises.
- Con el objeto de mantener la menor fuga neutrónica radial es preferible no afectar la zona periférica y esto implica que el parámetro M no sea mayor a 44. En este punto es conveniente

indicar que en este aspecto el MBM es superior al método original de Burte pues en éste todos los patrones con M mayor modificaban la región periférica.

- Al igual que en el método original de Burte N representa con qué intensidad se desea realizar el cambio.
- El valor de N debe ser menor a M, (el caso N=M conduce al patrón básico por lo que hay que evitarlo). Esto reduce a la mitad los casos a investigar respecto al método original.

6.3.1 Optimización del patrón de recarga con colocación de los combustibles frescos en posición oficial. Método de búsqueda por escalamiento de malla.

Con el patrón de recarga idéntico al de la recarga oficial en las localidades Blancas y siguiendo el nuevo procedimiento Método Biparamétrico Modificado para la CNLV, descrito en al apartado anterior, se realizaron una serie de estudios sobre el ciclo 4 de la unidad 1. La finalidad era determinar la eficacia del nuevo método.

En esta tesis reportamos dos de los estudios secuenciales realizados con el MBM, sin embargo, esto es más que suficiente para mostrar la eficiencia del MBM para localizar patrones de recarga "óptimos" bajo la técnica que llamamos Método de Búsqueda por Escalamiento de Mallas.

El primero de estos estudios, el etiquetado FM, consiste en el uso de una malla amplia 8x8 (36 casos) de los parámetros M y N que abarca todo el espacio de solución inclusive en puntos más allá de M=44. Recordamos que para valores ígual o menor de M=44 sólo se involucran intercambios de combustible correspondientes localidades Negras y para valores mayores a 44 también se involucran combustibles de las localidades Grises.

Una vez analizados los resultados del estudio FM se escogió el patrón de recarga con mejores características y se llevó a cabo el estudio FL que consistió en aplicar una malla detallada de 5x5 (con pasos de uno en uno tanto para M como para N) alrededor del patrón de recarga seleccionado. De esta forma se encontraron un conjunto de candidatos de patrones de recarga con características superiores al patrón de recarga oficial.

6.3.2 Estudio FM

El programa MAPATES se ejecutó bajo las siguientes condiciones:

1- Se suministró el vector con los datos de los combustibles de recarga de un cuarto de núcleo correspondiente al ciclo 4 de

la unidad 1 (ver Fig. 6.3)

- 2- La formación de recargas realizadas por MAPATES fueron hechas de acuerdo al procedimiento para el MBM dado en el apartado 6.3.
- 3- La carga en las localidades Blancas fue idéntica a la carga oficial del ciclo 4 de la unidad 1 de la CNLV.
- 4- Se generaron, además de la recarga oficial, 36 patrones de recarga para una malla amplia de valores de los parámetros M y N. Los valores de la variable M fueron [8, 16, 24, 32, 40, 48, 56, 64] y para N [4, 12, 20, 28, 36, 44, 52, 60]. Se recuerda que N debe ser menor que M así que los casos con N>M no se crean.
- 5- El archivo de salida del programa MAPATES conteniendo los datos esenciales de las 37 recargas en formato de tarjeta 330000 de PRESTO se denominó FMBOC.DDD para los casos BOC y FMEOC.DDD para los casos EOC.

El programa PRESTO fue ejecutado bajo las siguientes condiciones:

- 6- El banco de datos usado en la ejecución de PRESTO y conteniendo la información de todos los tipos de combustibles involucrados en el ciclo 4 de la unidad 1 fue el L1F106 M.
- 7- El archivo de reinicio PRESTO (conteniendo toda la información del estado de quemado de cada uno de los combustibles de la recarga) y que corresponde al seguimiento que se realiza con PRESTO de la operación de la unidad 1 de la CNLV hasta el ciclo 3 fue el L1PRE027.RST.
- 8- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la Unidad 1 durante el ciclo 4 fue el PBHCHH01,C4.
- 9- Primero se ejecutó PRESTO bajo las condiciones BOC para cada uno de los patrones de recarga contenidos en el archivo FMBOC.DDD. El nombre de la corrida fue 1PAHH4FM.
- 10- Segundo, se ejecutó PRESTO bajo la opción de simulación HALING EOC con una longitud de ciclo de 8046 MWD/MT para cada uno de los patrones de recarga contenidos en el archivo FMEOC.DDD. El nombre de la corrida fue 1PBHH4FM.

6.3.3 Resultados del estudio FM

En las tablas 6.5.a y 6.5.b se consignan los valores de MCPR, MLHGR y Keff en el inicio de ciclo (BOC) y al final de ciclo (EOC) respectivamente de cada uno de los 36 recargas generadas bajo el
MBM junto con los datos del patrón de carga oficial del ciclo 4 que se usará como recarga de referencia. En la tabla con datos BOC también se consignan los valores del evaluador rápido Keff BOC integrado en el programa MAPATES.

En los mapas de la Figura 6.7.a se proporcionan los principales datos relacionados con el patrón básico del estudio FM.

En las Figuras 6.7.b y 6.7.c se muestran gráficas del MCPR contra los días a plena potencia del ciclo de las 36 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.7.b se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.7.c se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

En las Figuras 6.7.d y 6.7.e se muestran gráficas del MLHGR contra los días a plena potencia del ciclo de las 36 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.7.d se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.7.e se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M. En la Fig 6.7.e se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

ESTUDIO FI	ESTUDIO FM. DATOS BOC, MUNGR en wien,										
OFICIAL	Keft MCPR MCHGH	1,0078 1,6217 453,49									
		N=4	N=12	N = 31	N = 28	N = 36	N=41	N = 52	N = 61		
Мин	Kett MCPH MLHGR	1.0205 (.3075 726.44									
M-16	Kelt MCPR MLHGR	1.0202 1.2005 661.19	1.0205 1.2218 710.44								
M - 24	Keff MCPR MLIIGR	1.0188 1.2906 659.54	1.0187 1.3489 629.16	1.0198 1.2201 673 13							
M = 32	Kest MCPR MEMOR	1.0175 1.2861 650.09	1.0346 1.4184 452 (8	1.4165 1.4946 582.67	1 (1)95 1 (1)94 634,34						
M = 40	net Mepr Milkir	1.0153 1.2589 667.62	£.0806 1.3763 568.90).00396).65936 448.68	1.0(27 1.418) 566,44	0.0(70 1,3983 601.84					
M ≫ 4H	Nelf Mi ^r Ph Milliffh	1.0120 1.2261 689.18	1.0045 1.2632 612.52	1.0097 4.5661 440.91	1.0924 1.7304 468.08	F.0075 F.5524 559.48	1,0161 1,4511 586,85				
M ~ 56	Neff MUPR MEDIGR	1.0128 1.2243 701.45	1.0002 0.2263 269 KK	.99350 1.4452 495.83	.99334 5.7145 457.87	.99815 1.6240 539.12	1,00/9 1,5501 563,05	1.0159 1.4514 585 44			
M∘oi	Keff MCPR MLHGR	1 01 30 3 21 40 710 83	92886 1.3962 496.11	.98770 1-3419 554.02	.98848 1.6723 437.93	.98845 1.5055 543.15	.9977) 1.6510 549.07	1,50966 1,5551 567,78	3,00138 1,4521 586,53		

TABLA 6.5.a ESTUDIO FM, DATOS BOC (MALLA AMPLIA)

ESTUDIO I	ESTUDIO EM DATOS EDU, MUNER en Norm									
UFICIAL	Kell MCPK MLHGR	.99400 1.5264 375.58							T	
		N=4	N=12	5 = 30	N - 28	N = 36	8-44	N - 52	N=60	
M = B	Keff MCPR MLHGR	1.0008 1.0493 425.38 365								
M = 16	keft MCPR MLHGR	1 (90)7 1.3635 420.45 365	1 0006 1.3577 423.00 365							
M = 24	Keff MCPR MLHUR	.99987 1.3738 417:32 363	1.0003 1.4013 478.11 363	1.0008 1.3839 478.09 365						
M + 12	Kell MCPR MLAIGR	.99994 F.3752 416,81 357	.99888 1.4470 390.37 356	1.4002 1.4018 414.57 163	1.08813 1.4035 417.57 367					
Mis-40	K#IT MCPK MD.HGR	.99882 1.3631 420.08 347	.99480 1.4322 394.39 337	.99568 5.5477 375.58 J41	.97839 1 4468 (15.45 354	1.0003 1.4070 417.68 363				
M + 4X	Keff MCPK MENGR	.99490 1.3490 424.06 338	.98924 1.3904 405.12 31.7	.98824 1.5302 366.39 307	.99083 1.6847 364.57 319	.99496 1.4506 417.10 338	.99999 1.4107 417.21 361			
M = 16	Kelt MCPK MLEUJK	.99348 1.3484 428.(0) 331	.9K397 13693 417.82 295	.94033 1.4733 381.75 271	-98178 1.6210 153.83 277	.98613 1.6297 378.14 297	.97384 1.4498 418.37 333	.99982 1.4103 497.10 365		
Мам	Kelf MCPR MLHGR	.99279 1.3429 429.58 328	98(17) 1.3223 437.25 286	.97446 1.4433 396.53 244	.97133 1.5616 369.39 239	.9767) 1.7269 342.72 254	.98479 1.6342 3.71.72 2.91	. 9)548 1.4%X) 4(8.7) 13)	.99937.3 1.4107 417.37 360	

TABLA 6.5.5 ESTUDIO FM. DATOS EOC (MALLA AMPLIA)

.....

	FIGURA	6.7	.a
MAPAS	CUARTO	DE	NUCLEO
CARGA	ESTUDI	DS	FN y FL

- -----

. .

************* CAMBIOS:Sin Intercambios E	VA1(Diseño/Oficial)= 1.007059
Carga BASICA IV CUADRANTE Identificadore	s de Combustiles PRESTO
(23) (25) (27) (29) (31)	(33) (35) (37) (39) (41) (43)
(22) 30473 62334 73292 62394 51203	62386 73288 51175 51211 20286 20277
[20] 62390 20305 62366 73284 42306	73280 42322 73276 51199 62378 20365
[18] 73272 62346 73268 62406 73264	42298 73260 41231 73256 30632 30422
(16) 623421 732521 623541 203321 623981	73248 42326 20338 41215 62358 20364
(14) 511/11 422941 /32441 623501 511851	423301 732401 412391 412231 306291 30461
1101 732201 /23021 73216 /2318 73212	132201 311911 132241 412471 023741 20333 513071 303831 413431 930031 304341 30389
1081 511051 732081 (1210) 203/7 (1256)	7320/ /1235 /2370 20322 3020/
1061 51179 51187 73200 41227 41251	L1250 03740 30512 30427
(041 20360) 62382 30447 62338 30401	62362 20350 30503
(021 30585 30641 30404 20281 30556	20294 20368
	If Language Landane Landare and Landare and
Carga BASICA IV CUADRANTE Constante de M	ultipicacion Infinita(Kinf)(+=Nuevo)
[23] [25] [27] [29] [31]	(33) (35) (37) (39) (41) (43)
[22].91212[1.1507].98788[1.1270]1.0691]1	.1184 .98788 1.0698 1.0585 .97844 .91921
[20]1.1505[.97656]1.1273[.98788[1.1197].	98788 1.0908 .98788 1.0394 1.1190 .91861
	10/3 98/88 1.0556 98/88 93601 91646
11011.12121.9010011.12311.9122211.11091.	V0/00 1.00/01.9/023 1.03/911.13/01.9/452
11211 1184 QA788 1 1071 OR788 1 0880	0878811 04331 0878811 003311 13081 00007
(10) 08788 1 10111 08788 1 0870 08788 1	0432 00505 1 0078 1 0253 02048 00011
10811.0695 98788 1.0549 97702 1.0431	98788 1.0076 1.1184 92094 91076
(06) 1.0587 1.0396 .98788 1.0370 1.0458 1	.003411.03071.924081.91078
(041,97735 1,1195 93159 1,1369 93157 1	1,1208 ,92056 ,91055
(02).92044 .91782 .91726 .91405 .91277 .	91017 .90885
	Construction of an or a first or and first or and the second
Carga BASICA IV CUADRANTE Quemado por co	mbustible en MWD/HT(-=Nuevo)
	(35) (35) (37) (39) (41) (43)
(20) 10515 13241 17177 1010/ 10/24	
1181 13180 13177 13775	11237
1141 13167 13107 13632 13350 14108	113271 2343 2343
1141 16682 9987 13052 13982 20353	13127
(121 14172) 11368 13354	19525
(10) 11961 13472	19522 24406 21168 23411 19606
[08] 16686 16019 13134 17238	21193 14152 18161 23783
[06] 17855 19929 17868 16984	21717 22965 23707
(04) 13100 13987 21003 12108 21008	13884 18155 23808
[02] 23428] 23080] 23117] 18951] 23867]	19430 19621

Figura 6.7.c Mapas de la recarga básica de los ESTUDIOS FM y FL

i,

Figura 6.7.b MCPR de las recargas del estudio FM contra la longitud del cíclo en días a plena potencia, parámetro M fijo.

Figura 6.7.c MCPR de las recargas del estudio FM contra la longitud del ciclo en días a plena potencia, parámetro N fijo.

Figura 6.7.d MLHGR de las recargas del estudio FM contra la longitud del ciclo en días a plena potencia, parámetro M fijo.

~

Figura 6.7.e MLHGR de las recargas del estudio FM contra la longitud del ciclo en días a plena potencia, parámetro N fijo.

6.3.4 Análisis de los resultados del estudio FM y conclusiones.

El examen de los resultados en el BOC muestra que:

- la Keff BOC decrece monotónicamente al crecer M, al crecer N decrece Keff y pasa por un mínimo y vuelve a crecer.
- el MCPR en el BOC muestra un comportamiento ligeramente osilatorio en lo global. Al crecer N y M crece el valor del MCPR pasando por un máximo y decreciendo posteriormente.
- el MLHGR BOC al crecer N y M decrece, pasando por un mínimo, volviendo a crecer después.

El examen de los resultados en el EDC, muestran que el comportamiento es completamente equivalente al caso BOC tal que;

- la Keff EOC decrece monotónicamente al crecer M, al crecer N decrece Keff pasa por un mínimo y después, vuelve a crecer.
- el MCPR en el EOC muestra un comportamiento ligeramente osilatorio en lo global. Al crecer N y M crece el valor del MCPR pasando por un máximo y decreciendo posteriormente.
- el MLHGR EOC al crecer N y M decrece pasando por un mínimo volviendo a crecer después.

El comportamiento es casi ideal para este tipo de procesos de búsqueda ya que se presta a la creación de algoritmos que aceleren eficientemente la búsqueda. Para casos de análisis de una recarga donde la posición de los combustibles nuevos y de los combustibles más reactivos esté previamente determinado, como hasta ahora ha sido el caso, el procedimiento aquí usado es práctico y lo suficientemente rápido. Para el caso de estudios de multiciclos o de búsqueda variando también el patrón de recarga de las localidades blancas, sería de gran utilidad desarrollar algoritmos eficientes de búsqueda.

Examinando los resultados rápidamente se encuentra que varias recargas poseen mayores o casi iguales márgenes de seguridad que la recarga oficial pero sólo uno de ellos posee mejor Keff Haling EOC (mayor al oficial); este caso es la recarga [M=40 N=20]. La mejora respecto a la carga oficial es de 0.00168 $\Delta k/k$ o lo que es equivalente a 168 pcm (pcm es una unidad de reactividad y son milésimas de por ciento o 10⁻⁵ $\Delta k/k$) o traduciendo a EFPD (días de plena potencia) se ganan 7 días de operación a plena potencia, lo que representa una mejora significativa.

Con la finalidad de buscar la posibilidad de detectar candidatos de patrones de recargas aún mejores y a su vez examinar el

comportamiento del método se realizó un segundo estudio donde la recarga [M=40 N=20] se tomo como centro de una malla detallada 5x5 tal como se desarrolla en el estudio siguiente.

6.3.5 Estudio FL

El programa MAPATES se ejecutó bajo las siguientes condiciones:

- 1- Se suministró el vector con los datos de los combustibles de recarga de un cuarto de núcleo correspondientes al cíclo 4 de la unidad 1.
- 2- La formación de recargas realizadas por MAPATES fueron hechas de acuerdo al procedimiento para el MBM dado en el apartado 6.3.
- 3- La carga en las localidades Blancas fue idéntica a la carga oficial del ciclo 4 de la unidad 1 de la CNLV.
- 4- Se generaron, además de la recarga oficial, 25 patrones de recarga para una malla detallada de valores de los parámetros M y N. Los valores de la variable M fueron [38, 39, 40, 41, 42] y para N [18, 19, 20, 21, 22]. Se recuerda que N debe ser menor que M, así que los casos con N>=M no se generan.
- 5- El archivo de salida del programa MAPATES conteniendo los datos esenciales de las 26 recargas en formato de tarjeta 330000 de PRESTO se denominó FLBOC.DDD para los casos BOC y FLEOC.DDD para los casos EOC.

El programa PRESTO fue ejecutado bajo las siguientes condiciones:

- 6- El banco de datos usado en la ejecución de PRESTO y conteniendo la información de todos los tipos de combustibles involucrados en el ciclo 4 de la unidad 1 fue el L1F106_M.
- 7- El archivo de reínicio PRESTO (conteniendo toda la información del estado de quemado de cada uno de los combustibles de la recarga) y que corresponde al seguimiento que se realiza con PRESTO de la operación de la unidad i de la CNLV hasta el ciclo 3 fue el L1PRE027.RST.
- 8- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la Unidad 1 durante el ciclo 4 fue el PBHCHN01.C4.
- 9- Primero se ejecutó PRESTO bajo las condiciones BOC para cada uno de los patrones de recarga contenidos en el archivo FLBOC.DDD, El nombre de la corrida fue 1PAHH4FL.
- 10- Segundo, se ejecuto PRESTO bajo la opción de simulación HALING

172

EOC con una longitud de ciclo de 8046 MWD/MT para cada uno de los patrones de recarga contenidos en el archivo FLEOC.DDD. El nombre de la corrida fue 1PBHH4FL.

6.3.6 Resultados del estudio FL

1

ł

De los resultados obtenidos en el estudio FL se presenta en las Tablas 6.6.a y 6.6.b los valores de MCPR, MLHGR y Keff en el inicio de ciclo (BOC) y al final de ciclo (EOC) respectivamente, de cada uno de los 25 recargas generadas bajo el MBM junto con los datos del patrón de carga oficial del ciclo 4 que se usará como recarga de referencia. En la tabla con datos BOC también se consigna los valores del evaluador rápido Keff BOC integrado en el programa MAPATES.

En los mapas de la Figura 6.7.a se proporcionan los principales datos relacionados con el patrón básico del estudio FL que es el mismo del estudio FM.

En las Figuras 6.8.a y 6.8.b se muestran gráficas del MCPR contra los días a plena potencia del ciclo de las 25 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.8.a se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.8.b se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

En las Figuras 6.8.c y 6.8.d se muestran gráficas del MLHGR contra los días a plena potencia del ciclo de las 25 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.8.c se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.8.d se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

ESTUDIO FL DATOS BOC, MEDRIR en worn,										
OFICIAL	Keff MCPR MLHGR	1 0078 1.6217 453.49								
	N	N = 18	N=19	N = 30	N=2)	N + 22				
M = 38	Keff	1.0116	1.0117	0.0119	1.012)	1.0124				
	MCPR	1.3819	1.6172	1.5446	1.5924	1.6248				
	MLHGR	453.42	460.04	490.41	491.40	477.09				
M = 39	Keff	1.0108	1.0108	1.0109	1.0112	1.01)6				
	MCPR	1.5768	1.6126	1.6394	1.5917	1.5672				
	MLHGR	480-12	454,04	461.62	493.59	505.42				
M = 40	Keff	1.0097	1.0097	1 (2726	1.0007	1.0102				
	MCPR	1.5663	1.6020	1.6596	1.6677	5.6058				
	MLHGR	491.23	474.39	448.58	463.07	493.51				
M~41	Kelf	1.62066	1.0mcl	1.00x6	E (8966	1.(KHO)				
	MCPR	6.55866	1.5600	1.6302	5.6/154	1.fe(f)				
	MLHGR	492.27	567.92	490.93	467.07	463.88				
M = 42	Kell	1.0075	1.0017	1.0017	1,0077	1.0978				
	MCPR	1.5510	1.5663).1011	1.6515	1.3142				
	MLHGR	462.17	530.11	501.37	484.13	461.63				

TABLA 6.6.a ESTUDIO FL, DATOS BOC (MALLA FINA)

174

••

ESTUDIO I	ESTUDIO FL DATOS EOC, MLHGR en w/sm, EFPD en días									
OFICIAI.	Keff MCPR MLHGR EFPD	.99400 1.5269 375.58 334								
	N	N = 18	N = 19	N - 30	N = 21	N + 22				
M =)H	Keff	.997(0)	.99727	.99749	.99773	.98814				
	MCPR	1.5347	1.5488	1.5377	1.5057	1.5185				
	MLIIGR	373.35	372.28	383.79	392,61	389,35				
	EFPD	347	348	349	350	351				
M = 34	Keff	.92644	.99657	.99678	.99702	.9974)				
	MCPR	1.5323	1.4553	1.5485	1.5389	.494()				
	MLHGR	377.42	375,41	373.91	384.63	395.16				
	EFPD	344	345	346	347	348				
M=43	Keff	.99507	.99553	.99568	.99590	.99628				
	SICPR	1.5285	1.5373	1.5477	1.5525	1.5432				
	ML4GR	379.99	377.96	375.50	371.58	384.81				
	EFPD	340	340	34)	342	344				
M7-41	Keff	.99464	.9934703	.99488	99505	- 9954)				
	MCPR	1.5240	1.5278	1.5439	1 5552	1.5591				
	MLHGR	380,59	3180.801	378.30	373.32	371.73				
	EFPD	334	334	334	339	340				
M = 42	Keff	.99391	.99397	-91417	.99438	.99458				
	MCPR	1.5223	1.5192	1.5139	1.4856	1.5591				
	MLJRGR	367.69	383.73	389.26	374.13	373.09				
	EFPD	367	334	334	334	334				

TABLA 6.6 b ESTUDIO FL, DATOS EOC (MALLA FINA)

Figura 6.8.b MCPR de las recargas del estudio FL contra la longitud del ciclo en días a plena potencia, parámetro N fijo.

I.

ł

Figura 6.8.d MLHGR de las recargas del estudio FL contra la longitud del ciclo en días a plena potencia, parámetro N fijo.

179

-

Figura 6.8.c MLHGR de las recargas del estudio FL contra la longitud del ciclo en días a plena potencia, parámetro M fijo.

6.3.7 Análisis de los resultados del estudio FL y conclusiones.

El examen de los resultados en el BOC y en el EOC muestra que el único caso que estrictamente cumple con las condiciones muy conservadores del apartado 6.2.2 es la recarga [M=40 N=20]. Si reconsideramos las condiciones impuestas y las suavizamos ligeramente tal que:

- Para que un candidato patrón de carga sea mejor que el patrón de carga oficial se establece que:
 - en el EOC la keff sea mayor, el MCPR mayor o igual, y el MLHGR sea menor o igual.

es decir, no exigimos que se cumplan las restricciones en el BOC y sólo exigimos que los datos en el EOC sean mejores que los oficiales. Es valioso señalar que las condiciones BOC se pueden mejorar si se permite un ligero ajuste en el diseño de los combustibles frescos. Tomando las condiciones únicamente en el EOC es fácil detectar que el patrón de recarga generado con los parámetros [M=38, N=18] resulta ser el mejor de los casos del estudio FL. Esta mejora, respecto a la carga oficial, es de 0.00310 $\Delta k/k$ o lo que es equivalente a 310 pcm o traduciendo a EFPD (días de plena potencia) se ganan 13 días de operación a plena potencia, doblando prácticamente la mejora con respecto al patrón de recarga [M=40, N=20].

Esta nueva condición es aún conservadora ya que los límites de diseño con cálculos Haling del MCPR suelen ser de 1.45 y de 390 w/cm para el MLHGR, lo que nos llevaría a candidatos de recargas con longitudes de ciclo realmente mayores. Sin embargo, debemos ser cautelosos, como se vió en el capitulo 3, para que una recarga sea licenciable debe de pasar todavía una serie de pruebas que no se han considerado en estos estudios. De cualquier manera el MBM se presenta como una prometedora técnica para optimizar la obtención de patrones de recarga.

Queda por tratar el problema central de cómo generar el patrón de recarga de las localidades Blancas. El método original de Burte no tiene semejante problema pues el uso de la simetría sectorial SSC le permite colocar todos lo combustibles fresco de una forma única. En los estudios realizados con el MBM (que sí tiene el problema de como colocar los combustibles frescos) hemos copiado la colocación del recarga de combustible oficial del ciclo 4.

Si realmente deseamos tener un método completo de búsqueda de patrón de recarga óptimo se deberá inventar un procedimiento de colocación de combustibles en las localidades Blancas. Sin embargo el tratar de cumplir con esta meta, la de tener un método completo de obtención de recargas, sobrepasa los alcances del presente

trabajo puesto que la colocación óptima de los combustibles frescos realmente está intimamente ligado al diseño neutrónico óptimo de los combustibles frescos de recarga, optimizar uno es optimizar el otro.

Ahora si bajamos la mira y sólo usamos el MBM como una herramienta de búsqueda de mejores recarga (no la óptima) por la tradicional técnica de prueba y error se pueden ir proponiendo patrones de carga de combustibles en las localidades blancas y así una vez fijada la posición de los combustibles frescos, emplear el MBM para encontrar la recarga "óptima" del método y de la colocación de los combustibles de las localidades Blancas. Es conveniente señalar que el uso de la técnica de prueba y error en el procedimiento esbozado no nos lleva otra vez a la misma situación inicial tradicional de prueba y error. Usando el MBM se puede asegurar de una forma localidades Blancas es mejor uno respecto del otro, respuesta que no puede suministrar un método que utilice sólo la técnica de

En el siguiente apartado se va usar una recarga de los combustibles frescos que produce una mayor reactividad en el patrón básico del Método Biparamétrico Modificado. Se usará, al igual que en los estudios FM/FL el Método de Búsqueda por Escalamiento de Malla.

6.3.8 Optimización del patrón de recarga con colocación de los combustibles frescos en posiciones de mayor reactividad que la oficial.

Con el patrón de recarga idéntico al de la recarga oficial en las localidades Blancas, con ciertos intercambios de combustibles para obtener un patrón básico más reactivo [1 por 85 y 73 por 75] y, siguiendo el procedimiento Método Biparamétrico Modificado junto con el Método de Búsqueda por Escalamiento de Mallas, se pretende explorar si es posible mejorar la recarga de combustible de los estudios anteriores.

6.3.9 Estudio GB

£

τ

El programa MAPATES se ejecutó bajo las siguientes condiciones:

- 1- Se suministró el vector con los datos de los combustibles de recarga de un cuarto de núcleo correspondiente al ciclo 4 de la unidad 1.
- 2- La formación de recargas realizadas por MAPATES fueron hechas de acuerdo al procedimiento para el MBM dado en el apartado 6.3.
- 3- La carga en las localidades Blancas fue idéntica a la carga

oficial del ciclo 4 de la unidad 1 de la CNLV excepto que en la carga básica se intercambiaron los combustibles de los canales [1 por 85 y 73 por 75].

- 4- Se generaron, además de la recarga oficial, 36 patrones de recarga para una malla amplia de valores de los parámetros M y N. Los valores de la variable M fueron [8, 16, 24, 32, 40, 48, 56, 64] y para N [4, 12, 20, 28, 36, 44, 52, 60]. Se recuerda que N debe ser menor que M así que los casos con N>M no se crean.
- 5- El archivo de salida del programa MAPATES conteniendo los datos esenciales de las 37 recargas en formato de tarjeta 330000 de PRESTO se denominó GBBOC.DDD para los casos BOC y GBEOC.DDD para los casos EOC.

El programa PRESTO fue ejecutado bajo las siguientes condiciones:

- 6- El banco de datos usado en la ejecución de PRESTO y conteniendo la información de todos los tipos de combustibles involucrados en el ciclo 4 de la unidad 1 fue el L1F106_M.
- 7- El archivo de reinicio PRESTO (conteniendo toda la información del estado de quemado de cada uno de los combustibles de la recarga) y que corresponde al seguimiento que se realiza con PRESTO de la operación de la unidad 1 de la CNLV hasta el ciclo 3 fue el L1PRE027.RST.
- 8- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la Unidad 1 durante el ciclo 4 fue el PBHCHH01.C4.

.

- 9- Primero se ejecutó PRESTO bajo las condiciones BOC para cada uno de los patrones de recarga contenidos en el archivo GBBOC.DDD. El nombre de la corrida fue 1PAHH4GB.
- 10- Segundo, se ejecutó PRESTO bajo la opción de simulación HALING EOC con una longitud de ciclo de 8046 MWD/MT para cada uno de los patrones de recarga contenidos en el archivo GBEOC.DDD. El nombre de la corrida fue 1PBHH4GB.

6.3.10 Resultados del estudio GB

En las tablas 6.7.a y 6.7.b se consignan los valores de MCPR, MLHGR y Keff en el inicio de ciclo (BOC) y al final de ciclo (EOC) respectivamente de cada uno de los 36 recargas generadas bajo el MBM junto con los datos del patrón de carga oficial del ciclo 4 que se usará como recarga de referencia. En la tabla con datos BOC también se consigna los valores del evaluador rápido Keff BOC integrado en el programa MAPATES. En los mapas de la Figura 6.9.a se proporcionan los principales datos relacionados con el patrón básico del estudio GB.

En las Figuras 6.9.b y 6.9.c se muestran gráficas del MCPR contra los días a plena potencia del ciclo de las 36 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.9.b se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.9.c se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

En las Figuras 6.9.d y 6.9.e se muestran gráficas del MLHGR contra los días a plena potencia del ciclo de las 36 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.9.d se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.9.e se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

ESTUDIO G	ESTUDIO GR. DATOS BOC, MEBUR en worn.										
OFICIAL	Kalf Mi'ph MLIfiik	1.007x 2.6217 453.49									
		N=4	N=12	N + 30	N = 28	N = 36	N -44	N = 52	N = f()		
М-н	Kelf MCPR MLHtijk	1.0241 1.0628 877.43									
M=16	Keff MCPH MLHQR	1.0236 1.0785 859.45	1.0239 1.0907 835.59								
M = 24	Kell MCPR MLIKSR	1.0222).0793 857.12	1.023) 1.1423 762.24	1.0230 1.3333 726.75							
M • 32	Kett MCPR MLHGR	1.9399 1.0799 863.99	1.01169 1.1497 765.99	4 4193 1 3256 613.35) 8225 1.2752 569.43						
M = 40	Kelt MCPR MLHGR	1.6188 1.0489 877.37	1.0137 1.1011 106,43	1.0123 1.3101 610.95	1.0151 1.4382 563.94	1.0194 1.3512 621.18					
M = 48	Neft MCPR MLHGR	1.0158 1.0158 922.52	1.0072 1.315 H74.72	1.0028 1.2143 676.94	1.0040 1.3031 486.69	1,00017 1,5315 356.68	1.11179 1.4246 594.93				
M - 36	Kell MCPR MLSIGR	1 0165 1 59269 932-26	1.0032 .99056 956.67	.9959) 1.1273 768.65	.99478 1.1439 550.67	.998089 1.6846 524.56	1.0075 1.5432 362.17	1.0176 4.4305 569,52			
M=64	Kali MCPR MLNGR	1.01156 1.0256 944.36	6.0022 .98328 989.27	.98969 1.0519 871-30	98648 1.2633 645.91	.914859 1.6150 530.01	.94774 4.6637 339.05	1.0072 3.5475 563.28	1.00)7 3.4358 590.04		

;

TABLA 6.7.a ESTUDIO GB, DATOS BOC (MALLA AMPLIA)

دير

ESTUDIO GB DATOS EOC', MI-IIGR en w.sm.									
OFICIAL	Kelf MCPR MLHGR	.994810 1.5209 375.58							
		N=4	N = 12	N + 31	N+ 38	N = 36	8-44	N = 92	N - 60
M=8	Kell MCPR MEASTR	1.0033 1.3309 429.82 376							
M ≈16	Kelf MCPR MLHGR	1.0031 (.3485 423.81 376	1.0832 1.3459 423.87 376						
M = 24	Nett MCPR MLHGR	1 0023 1 3511 422.49 372	F (9)27 1 3997 414.99 374	1.0032 1.3790 415/20 176					
M - 32	Kelt MCPR MLBGR	1,0014 1,3490 423,16 368	1.0013 1.4186 349.88 367	1.0025 1.4417 410.72 373	1.0035 1.4949 414.59 377				
M = 40	Keff MCPR MDDIJR	.97898 (+134) 427.48 356	.98889 1.3932 407.29 347	.99872 1.5302 372.00 355	1.0005 1.4583 432,09 364	1.0124 1.4160 414.41 372			
M = 48	Nett MSPR MLNGK	.9966) 1.3154 432 43 364	299035 1.3445 419 56 317	.98932 1.4616 379.52 313	.9424) 1 ff83) 365.38 326	.99659 1.4576 414.78 346	1.0019 1.4184 414 89 320		
M = 36	Kett MCPR StR.Disk	99595 1.3214 434 77 343	98551 (3255 432 24 295	08151 (4133 126.83 276	98284 1.5486 466.55 282	.98159 1-6392 372-42 304	.993533 11:4548 416:46 3463	8.0017 1.4187 414 M3 369	
M = 64	Keff MCPR MLDGR	.995(3 1.3157 136,60 339	.98367 1.0225 407.25 286	247536 1-3842 413.81 248	.97427 1.4893 384,53 243	.98(753 1.7501 348.40 3(4	эжеці 1.6183 376.96 297	.99492 1-4554 416.8¥ 538	E.0016 1-4183 415.09 369

TABLA 6.7.5 ENTUDIO GR. DATOS LOC (MALLA AMPLIA)

•--

FIGURA 6.9.8 Mapas cuarto de nucleo Carga Estudios gr y gc

.

_ _ - -

-

х,

...

***************** CAMBIOS: 1 85 73 75 13	94 EVA1(Diseño/C	oficial)= 1.00885	
Carga BASICA IV CUADRANIE Identifica	dores de Combustil	es PRESTO	
[23] [25] [27] [29] [31) [33] [35]	(37) 1 (39) 1 (4	1) (43)
[22] 62370 62334 73292 62394 512	03 62386 73288	51175 51211 20	286 20277
[20] 62390 93749 62366 73284 423	06 73280 42322	73276 51199 62	378 20365
[18] 73272 62346 73268 62406 732	64 42298 73260	41231 73256 30	632 30422
(16) 62342 73252 62354 20332 623	98 73248 42326	20338 41215 62	358 20364
(14) 51171 42294 73244 62350 511	83 42330 73240	41230 41223 30	629 30461
1121 62402 73236 42314 73232 421	10 71228 51191	73224 41247 62	374 20333
(10) 73220 42302 73216 42318 732	12 51207 83003	41243 30382 30	634 2028B
(08) 51195 73208 41219 20347 412	55 73204 41235	30/ 73 20322 30	30/
(06) 51179 51187 73200 61227 612	511 (1250) 20305	30512 30427	inter Material
(04) 20360 62382 30467 62338 304	01 67362 20350	305/3	
1021 305851 306411 304041 202811 305	56 20201 20368		det en la secto mente
tort 202021 200411 204041 505011 202	1001 202341 203001#	a shahan (nagbaha a (nagb	anne l'annaisseach
Condo BARICA IV CUADDANTE Conchoute	de Multiplander (
Large Desite IV CONDERNIE CONSTANCE	de Multipleación i		NUEVOI
			11 1431
	9111.1184 .98788 1	1.069811.05851.97	844 .91921
	971.9878811.0908	.98/8811.059411.1	190 .91861
1101.90/08 1.12/21.98/88 1.1229 .98/	8811.10731.9878811	1.05561.987881.95	601 .91646
(10) 1.12/2(.98/88) 1.1231(.9/55)1.11	891.9878811.08781	.9782311.037911.1	370 .91452
[14]1.0696[1.1198].98/88[1.1196[1.03	58 1.0907 .98788	1.0425 1.0507 .93	059 .91093
[12]1.1184 .48/88 1.10/11.48/88 1.08	80 .98788 1.0432	.98788 1.0033 1.1	208 ,90997
[10].98788[1.1011].98788[1.0870].987	8811.043211.02531	1.0078 .90595 .92	068 .90911
[08/1.0695].98788 1.0549 .97702 1.04	311.9878811.0076	.91212 .92094 .91	076
[06]1.0587[1.0396].98788[1.0370]1.04	58 1.0034 .97636	.92408 .91078	
[04] .97735 1.1195 .93159 1.1369 .931	57 1.1208 .92056	.91055	
[02].92044[.91782[.91726].91405[.912	77 . 91017 . 90885		
Carga BASICA IV CUADRANTE Quemado po	r combustible en M	WD/MT(-=Nuevo)	
[23] [25] [27] [29] [31] [33] [35]	(37) (39) (4	1] { [43]
[22] 14152 10473 13187 167	29 14146	16653 17879 13	055 18291
(20) 10515 99	93 13116	19953 14	104 18406
[18] 13189 13652	11327	15949 21	413 23953
[16] 13167 13632 13359 141	08 13364	13021 17766 12	099 18882
[14] 16682 9987 13982 203	53 13127	17295 16447 22	151 23685
(12) 14172 11348 133	54 19525	21718 13	879 19455
(10) 11961 13472	19522	21168 24406 23	411 19606
(08) 16686 16019 13134 172	38 21193	23939 18161 23	783
(06) 17855 19929 17868 169	84 21717 13261	22965 23707	
(04) 13100 13987 21003 12108 210	08 13884 18155	23808	
(02) 23428 23080 23117 18951 238	67 19430 19621	un de la complete de	chindi (Anniani Saf
the second se		anadoosoo Lenadassana Labura	notren (Metagnegensi

Figura 6.9.a mapas de las recarga básica de los estudios GB y BC

186

-

- 4

·· ••

Figura 6.9.b MCPR de las recargas del estudio GB contra la longitud del ciclo en días a plena potencia, parámetro M fijo.

Figura 6.9.c MCPR de las recargas del estudio GB contra la longitud del ciclo en días a plena potencia, parámetro N fijo.

Figura 6.9.d MLHGR de las recargas del estudio GB contra la longitud del cíclo en días a plena potencia, parámetro M fijo.

. . .

Figura 6.9.e MLHGR de las recargas del estudio GB contra la longitud del ciclo en días a plena potencia, parámetro N fijo.

6.3.11 Análisis de los resultados del estudio GB y conclusiones.

El examen de los resultados en el BOC muestra que se confirma lo encontrado en el Estudio FM.

El examen de los resultados en el EOC muestra que también se confirma lo encontrado en el Estudio FM: que la mejor la recarga [M=40 N=20] ; idéntico al caso FM !. La mejora respecto a la carga oficial es de 0.00382 $\Delta k/k$ o lo que es equivalente a 382 pcm o traduciendo a EFPD (días de plena potencia) se ganan 16 días de operación a plena potencia, lo que representa una mejora significativa y más del doble de la obtenida en el Estudio FM.

Siguiendo el método de búsqueda por escalamiento de malla se realizó un segundo estudio, el GC, donde la recarga [M=40 N=20] se tomó como centro de una malla detallada 5x5.

6.3.12 Estudio GC

El programa MAPATES se ejecutó bajo las siguientes condiciones:

- 1- Se suministró el vector con los datos de los combustibles de recarga de un cuarto de núcleo correspondientes al ciclo 4 de la unidad 1 (ver Fig. 6.3).
- 2- La formación de recargas realizadas por MAPATES fueron hechas de acuerdo al procedimiento para el MBM dado en el apartado 6,3.
- 3- La carga en las localidades Blancas fue idéntica a la carga oficial del ciclo 4 de la unidad 1 de la CNLV, excepto que en la carga básica se intercambiaron los combustibles de los canales [1 por 85 y 73 por 75].
- 4- Se generaron, además de la recarga oficial, 25 patrones de recarga para una malla detallada de valores de los parámetros M y N. Los valores de la variable M fueron [38, 39, 40, 41, 42] y para N [18, 19, 20, 21, 22]. Se recuerda que N debe ser menor que M así que los casos con N>=M no se crean.
- 5- El archivo de salida del programa MAPATES conteniendo los datos esenciales de las 26 recargas en formato de tarjeta 330000 de PRESTO se denominó GCBOC.DDD para los casos BOC y GCEOC.DDD para los casos EOC.
- El programa PRESTO fue ejecutado bajo las siguientes condiciones:
- 6- El banco de datos usado en la ejecución de PRESTO y conteniendo la información de todos los tipos de combustibles involucrados en el ciclo 4 de la unidad 1 fue el L1F106 M.

- 7- El archivo de reinicio PRESTO (conteniendo toda la información del estado de quemado de cada uno de los combustibles de la recarga) y que corresponde al seguimiento que se realiza con PRESTO de la operación de la unidad 1 de la CNLV hasta el ciclo 3 fue el L1PRE027.RST.
- 8- El archivo básico de PRESTO con la información sobre las condiciones de operación del reactor de la Unidad 1 durante el ciclo 4 fue el PBHCHH01.C4.
- 9- Primero se ejecutó PRESTO bajo las condiciones BOC para cada uno de los patrones de recarga contenidos en el archivo GCBOC.DDD. El nombre de la corrida fue 1PAHH4GC.
- 10- Segundo, se ejecutó PRESTO bajo la opción de simulación HALING EOC con una longitud de ciclo de 8046 MWD/MT para cada uno de los patrones de recarga contenidos en el archivo GCEOC.DDD. El nombre de la corrida fue 1PBHH4GC.

6.3.13 Resultados del estudio GC

En este estudio de malla fina en las tablas 6.8.a y 6.8.b se consignan los valores de MCPR, MLHGR y Keff en el inicio de ciclo (BOC) y al final de ciclo (EOC) respectivamente de cada uno de las 25 recargas generadas bajo el MBM junto con los datos del patrón de carga oficial del ciclo 4 que se usará como recarga de referencia. En la tabla con datos BOC también se consigna los valores del evaluador rápido Keff BOC integrado en el programa MAPATES.

En los mapas de la Figura 6.9.a se proporcionan los principales datos relacionados con el patrón básico del estudio GC que es el mismo del estudio GB).

En las Figuras 6.10.a y 610.b se muestran gráficas del MCPR contra los días a plena potencia del ciclo de las 25 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.10.a se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.10.b se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M. En la Fig 6.10.b se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

En las Figuras 6.10.c y 6.10.d se muestran gráficas del MLHGR contra los días a plena potencia del ciclo de las 25 recargas generadas de malla amplia junto con los correspondientes al patrón de recarga oficial. En la Fig 6.10.c se fija el parámetro M y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.10.d se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro N. En la Fig 6.10.d se fija el parámetro N y se muestra cómo evolucionan los resultados de las recargas al variar el parámetro M.

ESTUDIO G	ESTUDIO GO DATOS BOC, MEDICK en wism.									
OFICIAL	Keff MCPh MLHGR	1.0078 1.6217 453.49								
	N	N = 1H	N=19	N = 30	N = 21	N - 22				
M = 38	Keff	1.0145	1.0)46	1.0147	1.0148	1.0149				
	MCPR	1.2608	1.2832	1.3315	1.3740	1.4035				
	MLIIGR	652.36	635.84	597.96	510.93	543.75				
M = 39	Keff	1.0137	1.0137	1.0137	1.0138	1.0142				
	MCPR	1.2545	1.2764	1.3226	1.3706	1.4019				
	MLHGR	657.03	649.76	602.88	562,40	544.34				
NEwall	Keff	1.0125	1.0125	1.0123	1 0123	1.0127				
	MCPR	1.2437	1.2653	1.3101	1.3555	1.3927				
	MLHIR	665 29	648.77	610.95	570.31	546 co				
M-41	Keff	1.0115	1 0F16	1.0113	1.9112	1.0114				
	MCPk	1.2353	1.2586	1.3031	1.3476	1.3823				
	MLHGR	671.55	654.96	616.77	575.76	554.77				
M = 42	Keff	1.0104	1.0105	1.0104	1.0103	1.0104				
	MCPR	1.2270	1.2501	1.2967	1.3411	1.3747				
	MLHGR	677.62	660.72	622.04	580.35	559,67				

į

TABLA 6.8.a ESTUDIO GC, DATOS BOC (MALLA FINA)

193

ESTUDIO G	ESTINNO GC DATOS EOC, MLIIGR en wirm, EFPD en dias									
OFICIAL	Kaff MCPR MLHGR EFPD	.99403 1.5269 375.58 334								
	N	N=18	N=19	N = 20	N = 21	N=22				
M = 38	Keff	.99928	.99945	.99966	.99988	1.0003				
	MCPR	1.4972	1.5128	1.5316	1.5185	1.5333				
	MLIIGR	374.96	376.43	393.32	389.95	385.67				
	EFPD	358	359	359	360	362				
M = 39	Kelt	.99859	.9987)	.99892	,99915	.99954				
	MCPR	1.4931	1.5087	1.5272	1,5337	1.5087				
	MLIIGR	375.70	371.48	377.75	394.22	191.35				
	EFPD	353	355	356	357	359				
M = 40	Keff	.99750	.99767	.99782	.99802	.99849				
	MCPR	1.4853	1.5086	1.5202	1.5438	1.5327				
	ML4IGR	377.63	374.61	372.00	375.85	394.46				
	EFPD	350	351	352	352	354				
M = 41	Keff	.99676	.99687	.990999	.99715	,94750				
	MCPR	1.4807	1.4967	1.5167	1.5396	1.5535				
	ML{IGR	577.97	376.91	374.30	369.87	376.59				
	EFPD	346	347	347	348	350				
M - 42	Keff	.99001	,99608	.99616	.99635	.99666				
	MCPR	1.4781	1.4908	1.5111	1.5340	1.3492				
	MLHQR	379.34	340.93	376.40	371.65	371.02				
	EFPD	343	343	343	344	345				

١,

ŧ

•

TABLA 6.8.6 ESTUDIO GC, DATOS EOC (MALLA FINA)

- -

....

-

....

.

-

. .

Figura 6.10.b MCPR de las recargas del estudio GC contra la longitud del ciclo en días a plena potencia, parámetro N fijo.

1

!

- -----

Figura 6.10.c MLHGR de las recargas del estudio GC contra la longitud del ciclo en días a plena potencia, parámetro M fijo.

Figura 6.10.d MLHGR de las recargas del estudio GC contra la longitud del ciclo en días a plena potencia, parámetro N fijo.
6.3.14 Análisis de los resultados del estudio GC y conclusiones

El examen de los resultados en el BOC y EOC muestra que el único caso que cumple con las condiciones más suaves consistente en sólo considerando el caso EOC, es la recarga [M=40 N=20]. Si imponemos que los márgenes de seguridad sean un 1% menos restrictivos, encontramos que el patrón de recarga [M=39, N=19] fácilmente cumple con las nuevas restricciones, aunque hay que hacer notar que los datos en el BOC son muy alejados de lo que se puede considerado como razonable. Sin embargo, como ya se ha expresado anteriormente mediante modificaciones en el diseño de los combustibles de recarga es posible resolver problemas con los límites encontrados en el BOC. Tomando en cuenta las consideraciones anteriores y con mucha reserva la viabilidad de esta recarga cuantifiquemos la mejora. La mejora, respecto a la carga oficial, es de 0.00545 Ak/k o lo que es equivalente a 545 pcm o traduciendo a EFPD (días de plena potencia) se ganan 23 días de operación a plena potencia ; casi un mes de operación !, este dato repetimos debemos tomarlo con muchas reservas.

6.3.14 Análisis de los resultados del estudio GC y conclusiones

El examen de los resultados en el BOC y EOC muestra que el único caso que cumple con las condiciones en el EOC es la recarga [M=40 N=20]. Con el fin de intentar de obtener un patrón de recarga con una longitud de ciclo mayor un candidato sería el patrón de recaraga [M=39, N=19]. Este patrón en el EOC los márgenes de seguridad disminuyen del orden del 1% respecto a la carga OFICIAL, esto se puede tolerar. Sin embargo esta recarga en el inicio del ciclo presenta valores dificiles de aceptar, sería necesario realizar un ajuste en el diseño del combustible de recarga con el objeto de mejorar las condiciones en el BOC y demostrar la viablidad de la recarga. La experiencia es de que el ajuste del diseño tiene probabildades de resultar exitoso y aún cuando esta técnica de busqueda complica la obtención de recargas y sobre pasa los alcances de la presente trabajo, creemos que es valioso intentarlo puesto que la mejora, respecto a la carga oficial, es de 0.00545 $\Delta k/k$ o lo que es equivalente a 545 pcm o traduciendo a EFPD (días de plena potencia) se ganan 23 días de operación a plena potencia ; casi un mes de operación !, este dato debemos tomarlo con muchas reservas y solo como una guía para tratar de mejorar el diseño de los ensambles de combustibles frescos de recarga.

CAPITULO 7

CONCLUSIONES

TEORIA DE DIFUSION INVERSA

. . .

Con base en la teoría de difusión inversa y usando las distribuciones de potencia con parámetros controlados se logró establecer guías generales para obtener recargas seguras y a la vez con utilización óptima del combustible. Las distribuciones de potencia radiales se produjeron mediante el uso de dos polinomios de cuarto grado. Las guías obtenidas se pueduen enunciar de la forma siguiente:

La economía del ciclo aumenta cuando: el pico máximo de potencia relativa crece y la posición radial del pico de potencia está en el centro del reactor.

Los núcleos con el pico máximo de potencia en el centro del reactor tienen una distribución de reactividad radial con las características siguientes;

- la reactividad crece linealmente del centro hacia la periferia del núcleo hasta una fracción de radio de alrededor de 0.88, para caer rápidamente a cero en la superficie del núcleo.
- Cuando la pendiente de reactividad lineal radial crece el pico máximo de potencia relativa disminuye, hasta un límite, en el cual surge un segundo pico de potencía en el mismo radio donde se da el pico de reactividad, es decir, alrededor de 0.88 de la fracción radial.

Estas guías nos indican que no se debe evitar en lo posible "valles" y picos de reactividad ya que estos producen picos de potencia no deseables.

APLICACION DE LA DISTRIBUCION DE REACTIVIDAD OBJETO

Se aplicó al ciclo 4 de la unidad 1 de la CNLV el algoritmo de ajuste de la reactividad radial de la recarga a una distribución de reactividad radial OBJETO. La distribución OBJETO se obtuvo de los estudios teóricos realizados con la ecuación de difusión inversa. El ajuste de la reactividad radial de la recarga fue satisfactoria. Sin embargo los resultados de la simulación del ciclo con estas recargas no cumplieron con los márgenes de seguridad. El motivo de esto se atribuye a que el método "descuida" la colocación de los combustibles en el núcleo en el ángulo azimutal. Se intentó mejorar

la generación de la recarga, al incluir en el algoritmo de generación de recargas la estrategia de núcleo dividido en categorías BLANCA-NEGRAS-GRISES. Esto con el objeto de mejorar la distribución azimutal del combustible pero no se logró mayor mejoría. La recarga resultante siguió no satisfaciendo los márgenes de seguridad.

La recomendación es obtener una distribución de reactividad OBJETO no sólo radial sino también azimutal. Con esto, se cree, es posible obtener recargas óptimas y que cumplan con los márgenes de seguridad. Para lograr ésto es necesario desarrollar las ecuaciones de difusión inversa en dos dimensiones usando para su solución métodos numéricos.

METODO BIPARAMETRICO MODIFICADO

Se logró desarrollar un Método Biparamétrico de búsqueda controlada de recargas de combustible optimizado práctico y eficiente.

El Método Biparamétrico Modificado junto con el Método de Búsqueda por escalamiento de Malla dió excelentes resultados al aplicarse a la recarga del ciclo 4 de la unidad 1.

La mejora de las recargas obtenidas respecto a la recarga oficial del ciclo 4 de la unidad 1 de la CNLV fue la extensión del ciclo en casi dos semanas y con mejores márgenes de seguridad. Esto implica, en teoría, un ahorro de varios millones de dólares americanos. Sin embargo el estudio no es concluyente y deben realizarse más pruebas para comprobar que las recargas generadas bajo el método biparamétrico son técnicamente licenciables. Por otra parte, el método resulta práctico y de fácil aplicación y suficientemente rápido. Además las características del mismo permite afirmar que se presta para intentar elaborar algoritmos de búsqueda rápidas y corriendo relativamente muy pocos casos de simulación del núcleo.

La idea de volver más eficiente el proceso de búsqueda de un patrón de recarga "óptimo" es con el fin de que forme parte de un sistema automatizado de programas de cómputo que permita realizar diseños de recargas con análisis de multiciclos y donde se integre el diseño neutrónico de los combustibles frescos. Estos sistemas de diseño integrales, los cuales contemplan todas las fases de diseño (combustible, recarga, patrones de barras, todo bajo un análisis de multiciclos) están siendo desarrollados actualmente por diferentes grupos internacionales (Ref. 4 y 5). El objetivo es lograr mejores normas de diseño del ciclo de combustible y mayor eficiencia de producción de energía para los reactores nucleares de potencia.

Para terminar se espera que lo realizado en este estudio contribuya en el establecimiento de un método de generación práctico de recargas de combustible, en particular para la CNLV.

BIBLIOGRAFÍA.

. . . .

- 1- Yung-An Chao, Chauan-Wen Hu, Chang-An Suo, "A theory of Fuel Management via Backward Diffusion Calculation", Nuclear Science and Engineering: 93, 78-87, (1986)
- 2- D.P. Burte, S.G. Vaidya "Parametrization for optimization of reload patterns for boiling water reactors", Ann. Nucl. Energy, Vol. 20, No.4, pp. 237-249, (1993).
- 3- R. Houland, "The CORFU Program for BWR Reload Design", IAEA Technical Committee Meeting on In-Core Fuel Management - Reloading Techniques, Vienna, (1992).
- 4- Kazuki Hida, "Burnup Shape Optimization for BWR Cores by Enrichement and Gadolinia Zoning", Topical Meeting on Advances in Reactor Physics, Knoxvillie, Tn april 11-15, 1994, Vol II.
- 5- Kenneth D. Hartley "BWR 24-Month Cycle Analysis Using Multi-Cycle Techniques", Siemens Power Corporation - Nuclear Division Richland, WA, USA (1994).
- 6- "Nucelar Station Engineering", Genearl Electri Co., (1988).
- 7- S. Borresen, L. Moberg, T.O. Sauer, "User Manual for PRESTO FMS VOLUMEN II", Scandpower A/S sk/akn/es (1983).
- 8- S. Borresen, L. Moberg, J. Rasmussen, "Methods of PRESTO-B a threedimesinal, BWR core simulation code", Scandpower A/S sk/akn/es (1983).
- 9- Reporte interno ININ, "Seguimiento de operación Ciclo 3 de la Unidad 1 de la CNLV", (1994).
- 10- CMR C4 U1, Cycel Management Report C-4 CNLV", General Electric Co. (1993).
- 11- IIE, "Banco de Datos Nucleares del Combustible GE98-P8CWB322-9G2-8DM-150-T Para el Ciclo 4 de la CNLV-1 en condiciones en caliente, a 100% de potencia, en Frío, a 0% de potencia y colapsado, a 100% de potencia", IIE/13/5051/I09/P6F3/1/CN0D/93/R2 (1993)
- 12- Luciano Sánchez Herrera, "Program de Utilización de la Energía para la CNLV", DGC de la CFE, (1994).
- 13- Carlos Cortés Campos, "Aplicación del Modelo de Reactividad Lineal en La administración de Combustible para un reactor tipo BWR", Tesis Profesional para obtener el Título de Licenciado en Física y Matemáticas, Instituto Politécnico Nacional, (1991).
- 14- James J. Duderstadt, Louis J. Hamilton "Nuclear Reactor Analysis", Jhon Wiley & Sons, Inc., (1976).
- 15- Reporte interno del ININ "formación del archivo básico para el ciclo 4 de la unidad 1 de la CNLV" (1994)
- 16- John David Jackson, "Classical Electrodynamica", John Wiley & Sons, Inc., (1962).
- 17- John R. Lamarsh "Introduction to Nuclear Reactor Theory", Addison-Wesley Publishing Company, Inc., (1966).

- 18- George Arfken "Mathematical Methods for Physicists", Academic Press, (1968).
- 19- Melville Clark, Jr., Kent F. Hansen "Numerical Methods of Reactor Analysis", Academic Press, (1964).
- 20- José Luis Montes Tadeo, "Obtención de los Patrones de Barras de Control a Potencia para un Ciclo de Operación de un BWR", Tesis Profesional para obtener el Título de Licenciado en Física y Matemáticas, Instituto Politécnico Nacional, (1994).
- 21- Hearvey W. Graves, Jr. "Nuclear Fuel Management", John Wiley & Sons, Inc., (1979).
- 22- M. J. Driscoll, T.J. Downar "The Linear Reactivity Model for Nuclear Fuel Management", American Nuclear Society., (1990).
- 23- Samuel Glasstone y A. Sesonske "Ingeniería de Reactores Nucleares", Editorial Reverté, S.A., (1978).
- 24- Samuel Glasstone, Milton C. Edlund "The Elements of Nuclear Theory", D. Van Nostrand Company, Inc., (1954).
- 25- James J. Duderstadt, William R. Martin "Teoría de Transporte" Compañía Editorial Continental, S.A. de C.V., (1983).
- 26- Irving Kaplan "Nuclear Physics", Addison-Wesley Publishing Company, Inc., (1958).
- 27- Philip M. Morese, Herman Feshbach "Methods of Theorical Physics", McGraw-Hill Book Company, Inc., (1953).
- 2B- Francisco Marcellan, Luis Casasus, Alejandro Zarzo "Ecuaciones Diferenciales, Problemas Lineales y Aplicaciones", McGraw-Hill/Interamericana de España, (1990).
- 29- Francis Scheid, "Análisis Numérico", Serie de Compendios SCHAUM, McGraw-Hill, (1972)
- 30- Javier L. Collazo, "Diccionario Enciclopédico de Términos Técnicos Inglés-Español", McGraw-Hill Book Company, (1981).
- 31- Jhon Littel, Cleve Moler, "PC-MATLAB User's Guide", The MathWorks, Inc., (1985)

203

. The second of the second of the second s

APENDICE A

.

CATEGORIAS DE LAS LOCALIDADES DEL NUCLEO Y REGLAS DE COLOCACION PARA Los reactores de la CNLV

A continuación se proporciona una descripción de las diferentes categorías y regiones que pueden ser usadas en el diseño de las recargas en la CNLV. También se dan las reglas de colocación de los combustibles. El diagrama de la Figura A.1 se muestra las categorías y regiones relacionadas con la presente descripción.

División del núcleo en zona no-periférica (Tablero de Ajedrez) y no-periférica.

- 1- CATEGORIA BLANCO: Posiciones del núcleo no-periférica donde se colocan los combustibles más reactivos incluyendo los combustibles frescos (En 1/4 de núcleo 46, núcleo completo 184).
- 2- CATEGORIA NEGRA: Posiciones del núcleo no-periféricas donde se colocan los combustibles de reactividad intermedia [44, 176].
- 3- CATEGORIA GRIS: Posiciones del núcleo periféricas deonde se colocan los ensambles combustibles menos reactivos [21, 84].

División del núcleo en celdas de combustibles asociadas a los grupos de barras de control.

- 4- CATEGORIA CELDAS A2: Posiciones del núcleo de los canales ajuntas a las barras de control A2, ver Fig. 3.1 [25, 100].
- 5- CATEGORIA CELDAS A1: Posiciones del núcleo de los canales ajuntas a las barras de control A1, ver Fig. 3.1 [32, 128].
- 6- CATEGORIA CELDAS B2: Posiciones del núcleo de los canales ajuntas a las barras de control B2, ver Fig. 3.1 [27, 108].
- 7- CATEGORIA CELDAS B1: Posiciones del núcleo de los canales ajuntas a las barras de control B1, ver Fig. 3.1 [27, 108].

División del Núcleo en Celda CCC (Celdas del Grupo A2) Celdas Ajuntas a la Celdas CCC (Celdas B1 y B2) y Celdas Diagonales a la Celda CCC (Celdas A1).

8- CATEGORIA CELDAS CCC: Celdas A2 donde se colocan los ensambles combustibles menos reactivos y cuyas barras asociadas controlaran a potencia el reactor [25,100].

204

. . .

- 9- CATEGORIA CELDAS Cadj: Celdas B1 y B2 donde se colocan de preferencia ensambles combustibles no-frescos o no muy reactivos [54, 216].
- 10- CATEGORIA CELDAS Cdia: Celdas A1 donde se colocan de preferencia los ensambles combustibles más reactivos y frescos [32, 128].

División del núcleo en Diagonales

- 11- CATEGORIA DIAGONAL PRINCIPAL (D0): Posiciónes del núcleo donde puede ponerse ensambles combustibles los más reactivos incluyendo frescos. Estos Posiciones están en el eje de simetría de un octavo y sólo tienen 4 simétricos en el núcleo (9, 36).
- 12- CATEGORIA DIAGONAL PARES (D0, D2, D4, D6, D8, D10): Posiciónes del núcleo donde puede ponerse ensambles combustibles los más reactivos incluyendo frescos (57, 228).
- 13- CATEGORIA DIAGONAL IMPARES (D1, D3, D5, D7, D9): Posiciónes del núcleo donde deben ponerse ensambles combustibles menor o intermedia reactividad (no-reactivos ni frescos) [54, 216].

Diferentes regiones del núcleo que tienen relación con el diseño de recargas.

- 14- REGION EJE DE SIMETRIA X: Posiciones del núcleo adjuntas al eje de simetría X, en sismetría espejo (como en la CNLV) el combustible colocado en estas posiciones tendrán un combustible semejante (de otro cuarto de núcleo) adjunto a el por lo que no se recomienda poner combustibles muy reactivos o frescos en estas posiciones [10, 40].
- 15- REGION EJE DE SIMETRIA Y: Posiciones del núcleo adjuntas al eje de simetría Y, en sismetría espejo (como en la CNLV) el combustible colocado en estas posiciones tendrán un combustible semejante (de otro cuarto de núcleo) adjunto a el por lo que no se recomienda poner combustibles muy reactivos o frescos en estas posiciones {10, 40}.
- 16- REGION ANILLO DE FUEGO: Esta posiciones adjuntas a las posiciones más periféricas del núcleo (localidades GRICES) conforman el llamado anillo de fuego. En estas localidades tradicionalmente se colocan combustibles de lo más reactivos incluyendo frescos con el objeto de aplanar la distribución de potencia. En esta región se permite poner en cierta estrategías combustibles frescos cara a cara (FFA Fuel Face Adjunt) [15 60].

Las Reglas generales de colocación de combustibles para el patrón de recarga:

• ...

·· •

- 1- De acuerdo al principio de control de celdas CCC no debe colocarse combustibles frescos ni de **un quemado**, preferentemente deben colocarse combustibles de lo más quemados.
- 2- De acuerdo al principio de baja fuga radial los combustibles de lo más quemados preferentemente deben de estar en la periferia es decir en las posiciones GRISES.
- 3- Los combustibles nuevos deberán ser colocados preferentemente en las posiciones de categoría BLANCA no CCC y en caso de que el lote de combustibles frescos excediera a las posiciones de estos canales usar las posiciones de la categoría NEGRA Cadj y en caso extremo en las posiciones del ANILLO de FUEGO.
- 4- Los combustibles con un quemado (o parcialmente quemado más reactivo) deberán ser colocados en las posiciones no llenadas con combustibles frescos de las posiciones de categoría BLANCA

. .

Image Image <th< th=""><th></th><th></th><th>1.71</th><th></th><th>le l</th><th>141</th><th>171</th><th>(81</th><th>101</th><th>I tol</th><th></th><th></th></th<>			1.71		le l	141	171	(81	101	I tol		
Barto Negro Blanco Vegro Blanco Vegro Blanco Vegro Blanco Vegro Gris Celdas Al 2 27 123 - 124 - 125 - 126 - 127 - 128 - 129 - 121 - 122 - 1221 - 1221 - 1221 - 1221 - 1221 - 1221 - 1221 - 121 - 112 - 111 - 1221 - 1211 - 111 - 1221 - 121 - 121 - 111 - 121 -		121-121-		Negeo	BLanco	Nearo	BLanco	Nearo	Blanco	Hearo	Gris	Blancas = 46
Acticing Disk	10100CCp	a2Cadi	B2Cadi	A2rrrs	A2000s	B2Cadi	B2Cadi	A2CCCD	A2CCCD	B2Cadi	B2Cadi	Negras = 44
0.00000000000000000000000000000000000	Dasc	In 1sy	0254	D35x	DASX	055×	D6Sx	D7Sx	DBSx	D9Sx	D SXP1	Grises = 21
Negro Blanco Ne	12	1131-	L-II4-		16-				-1201-	-121-	221-	Total = 111
Bicadj Aicdia Bicadj	Nearo	Blanco	Negro	Blanco	Negro	Blanco	Negro	Blanco	Negro	Blanco	Gris	
Diss Diss <thdiss< th=""> Diss Diss</thdiss<>	B1Cadi	AlCdia	AlCdia	BlCadi	BlCadj	AlCdia	A1Čdia	BlCadj	B1Cadj	AtCdia	(A1Cdia	Celdas A2 = 25
123 124 125 126 127 128 128 130 131 331 Celdas B2 = 27 Blanco Wegro Blanco Negro Blanco N	DISY	D058	01	02	D3	D4	D5	D6	07	08	D9 P1	Celdas A1 = 32
Bianco kegro Bianco kegro Bianco Negro Bianco Negro Bianco kegro Cris Celdas B1 = 27 BiCadj AlCdia AlCdia BiCadj AlCdia BlCadj AlCCC BZCAJ AZCCC BZCAJ BZCAJ AZCCC SZ BZ	-123 -			26						32	33	Celdas B2 = 27
B1Cadj A1Cdia A1Cdia A1Cdia A1Cdia A1Cdia A1Cdia A1Cdia Total = 111 D22y D1 D058 D1 D02 D3 D4 O5 D7 D8 D4 Magro Blanco Negro Blanco Negro Blanco Negro Blanco Gris CCCp Profundasz 9 A2CCCs B2Cadj B2Cadj B2Cadj B2Cadj B2Cadj B2Cadj CCCs Somras 12 A2CCS B2Cadj B2Cadj <td>Blanco</td> <td>Negro</td> <td>Blanco</td> <td>Negro</td> <td>Blanco</td> <td>Negro</td> <td>Blanco</td> <td>Negro</td> <td>Blanco</td> <td>Negro</td> <td>Gris</td> <td>Celdas B1 = 27</td>	Blanco	Negro	Blanco	Negro	Blanco	Negro	Blanco	Negro	Blanco	Negro	Gris	Celdas B1 = 27
D2Sy D1 D0S8 D1 D2 D3 D4	B1Cadj	AlCdia	A1Cdia	BlCadj	B1Cadj	A1Cdia	AlCdia	BlCadj	B1Cad)	AICdia	AlCdia	fotal = 111
136 137 136 137 136 137 140 140 140 142 143 144 1	D2Sy	101	DOSB	101	102	03	04	05	00	07	1 17, 801	CCCo Decturdada 0
Negro Blanco	{34}-			-13()-			401-			1010000	6.014	CCCe Somerse = 12
Actics Bickady	Negro	18tanco	Negro	Abcccn	AZCCCD	Blancu B2Cadi	Negro 1070 addi	A2000e	ADCCCe	B2Carli	B2Cadi	CCC Derif = 4
145 147 148 149 151 152 153 154 154 155 No CCC's = 86 Blanco Negro Blanco Secol B2Cadj B2	Dicul	1020301	02000	Inner	n1		DZCAUJ DZ	n4	105	06	07 P1	Total CCC's = 25
Blanco Negro Blanco Negro Blanco Negro Blanco Negro Blanco Negro Gris Total =111 A2CCCS B2Cadj B2Ccccp A2CCCS B2Cadj CCC's = 25 Starco Negro Blanco	100391	146	47		40	50-	-151L	52	-153-	-156-	1551-1	No CCC's = 86
A2CCCS B2Cadj D3 D4 D5 D6 P1 CCC's E25 150 157 -158 159 160 161 D2 D3 D4 D5 D6 P1 CCC's E25 Negro Blanco Negro Blanco Negro Blanco Negro Blanco Gris Cdia diagonal = 32 1620 AlCdia AlCdia Blanco Negro Blanco No P2 Lado agua = 12 P0 Escadj No P2 Lado agua = 12 P1 P2	Blanco	Nearo	Blanco	Wearo	Blanco	Negro	Blanco	Negro	Blanco	Nearo	Gris'	Total =111
04 03 04 05 06 01 02 02 01 0058 01 02 03 04 05 06 01 02 02 01 02 04 05 06 01 04 05 04 <	A2CCCs	B2Cadi	B2Cadi	A2CCCD	A2CCCp	82Cadi	82Cadi	A2CCCs	A2CCCs	82Cadj	B2Cadj	
	D4Sy1	03	02	DI	DOSB	D1	D2	03	04	05	D6 P1	CCC's = 25
Negro Blánco Negro No No P2 Idáda agua= 1 No No No P2 Idáda agua= 1 No No <t< td=""><td></td><td></td><td> 58 </td><td></td><td></td><td></td><td></td><td> 63-</td><td></td><td></td><td></td><td>Cadj adjunta = 54</td></t<>			58					63-				Cadj adjunta = 54
B1Cadj A1Cdia A1Cdia A1Cdia B1Cadj A1Cdia B1Cadj A1Cdia	Negro	Blanco	Negro	Blanco	Negro	Blanco	Negro	Blanco	Negro	Blanco	Gris	Cdia diagonal = 32
D5Sy D4 D3 D2 D1 D058 D1 D2 D3 D4 D5 P1	BlCadj	AlCdia	AlCdia	B1Cadj	BlCadj	AlCdia	AlCdia	B1Cadj	B1Cadj	AlCdia	AlCdia	Total =111
	DSSy	D4	03	02	D1	DOS8	01	D2	D3	04	D5 P1	
Blanco Negro Blanco Secolaria Secolari Secolaria Secolaria Secolaria Secol				<u>+</u> {70 -	<u>+-</u> - 71⊢				-121-	1-1/61-	1-111-1	PU Esquina agua= 4
B1Cadj A1Cd1a	Blanco	Negro	Blanco	Negro	Blanco	Hegro	Blanco	Negro	Blanco		Gris	PII tado agua = 12
Dosy Dos	BICad	AICdia	AICOIA	181Cad)	Bicadj	AICOIA	AICOLA	181Ca0]	101(40)		AICOIA	Total Derferia = 21
Negro Blanco Negro Blanco Negro Blanco Gris Gris Gris Total 111 A2CCCp B2Cadj B2Cadj<	10059	בטן		1911	102					103 071-	04 FE	No periféricas = 90
Accccp Bccadj		RI ADCO			Nonco	101 000	Nanco	RI anco	Gris	[c,];'		Total =111
DSy1 D6 D5 D4 D3 D2 D1 D088 D1 D0 D2 P2 Sc Sim. Central= 1 -188 -189 -190 -191 -192 -193 -196 -196 Sc Sim. central= 1 Sk1 Sk Sim. central= 1 Sk Sim. central= 1 Sk Sim. central= 1 Sk Sim. central= 1 Blanco Negro Blanco Negro Blanco Gris Gris Sr Sim. central= 1 A2CCCp B2Cadj A2CCCs B2Cadj A2CCCs B2Cadj A2CCC S8 Sim. central= 1 A2CCCp B2Cadj A2CCCs B2Cadj A2Cccs B2Cadj A2Cccs S8 Sim. central= 1 M2CCD B2Cadj A2Cccs B2Cadj A2Cccs B2Cadj Sc Sim. central= 1 M2CCD B2Cadj A2Cccs B2Cadj A2Cccs B2Cadj Sc Sim. central= 1 M2CCD D4 D3 D2 D1 P0 D088P2 Total Total M2Gro Blanco Regro Blanco Gris Gris B1Cadj B1Cadj B1Cadj <td>A2CCCD</td> <td>R2Cadi</td> <td>R2Cadi</td> <td>12000s</td> <td>AZCCCG</td> <td>82Cadi</td> <td>B2Cadi</td> <td>A2000</td> <td>A2CCC</td> <td>B2Cadi</td> <td>1</td> <td>10.00</td>	A2CCCD	R2Cadi	R2Cadi	12000s	AZCCCG	82Cadi	B2Cadi	A2000	A2CCC	B2Cadi	1	10.00
181 189 190 191 192 193 194 195 196 5x Sim. eje X = 10 Blanco Negro Blanco Negro Blanco Caris Caris Cadj B2Cadj B1Cadj D2 103 104 Sx Sim. eje X = 10 107 198 109 101 101 102 103 104 Sx Sim. eje X = 10 108 107 108 100 101 102 103 104 No Simétricas = 82 108 107 106 B1Cadj B1Cadj B1Cadj A1Cdia B1Cadj B1Cadj B1Cadj D3 104 104 Total =111 105 106 107 106 107 108 109 102 100 103 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 102 103 101 102 103 102 102 103	1075-1	106	105	n4	03	02	01	D058	D1 P0	DZ P2	1	Sc Sim. Central= 1
Blanco Negro Blanco Negro Blanco Negro Blanco Gris Gris Gris Sy Sim. eje Y = 10 A2CCCp B2Cadj B2Cadj <td>-188 L</td> <td>189-</td> <td>-190</td> <td>1911-</td> <td>-1921-</td> <td></td> <td> 1941-</td> <td></td> <td>-1961-</td> <td></td> <td>1</td> <td>Sx Sim. eje X = 10</td>	-188 L	189-	-190	1911-	-1921-		1941-		-1961-		1	Sx Sim. eje X = 10
A2CCCD B2Cadj B2Cadj A2CCCS A2CCCS B2Cadj B1Cadj	Blanco	Negro	Blanco	Negro	Blanco	Negro	Blanco	Gris	Gris			Sy Sim, eje Y = 10
DBSy1 D7 D6 D5 D4 D3 D2 D1 PD D0S8P2 Total Simetrica= 29 197 198 199 100 101 102 103 104 No Simetrica= 29 197 198 199 100 101 102 103 104 No Simetrica= 29 No Simetricas B1Cadj B1Cadj A1Cdia B1Cadj A1Cdia B1Cadj 111 =111 D9sy D8 D7 D6 D5 D4 D3 P0 D2 P2 D0 Diagonal Principal = 9 =111 105 106 107 108 109 110 111 D1 Primera Diagonal = 16 Gris Gris Gris Gris Gris D2 Segunda Diagonal = 16 B1Cadj A1Cdia A1Cdia A1Cdia D3 P0 D2 Segunda Diagonal = 16 S1Cadj A1Cdia A1Cdia A1Cdia D4 Cuarta Diagonal = 14 D4 Cuarta Diagonal = 14 O SyP1 D8 P1 D5 P1 D4 P2 D4 Cuarta Diagonal = 16	A2CCCp	82Cadj	B2Cad j	A2CCCs	A2CCCs	B2Cadj	B2 Cadj	A2C CC	A2CCC	1		S8 Sim. eje 1/8≖ 8
	D8Sy1	07	06	05	04	03	02	D1 P0	D0s8P2	}		Total Simetrica= 29
Negro Blanco Negro Blanco Negro Blanco Gris Gris Total =111 B1Cadj A1Cdia A1Cadia A1Cdia A1Cdia B1Cadj B1C	H-197-		 99 -	<u>+-</u> 100}		<u>+-</u> 102}		-1104-		1		No Simetricas = 82
B1Cadj A1Cdia A1Cdia A1Cdia B1Cadj B1Cadj B1Cadj B1Cadj B1Cadj D0 D1 D1 <td< td=""><td>Negro</td><td>Blanco</td><td>Negro</td><td>Slanco</td><td>Negro</td><td>Blanco</td><td>Gris</td><td>Gris</td><td>1</td><td></td><td></td><td>rotal =111</td></td<>	Negro	Blanco	Negro	Slanco	Negro	Blanco	Gris	Gris	1			rotal =111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BiCadj	AICdia	AICdia	BiCadj	BiCadj	ATCOLA	Alcdia	BICad)	00.0-	const n-	incinal -	0
Gris Gris Gris Gris Gris Gris Gris Gris	UVSY	108	1107	11001	2100	11101	1111	VC 72		gonat Pr mers Dis	incipat =	16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	105-								D2 Son	unda Dia	gonat = nonal =	16
0 SyP1 09 P1 08 P1 07 P1 06 P1 05 P1 04 P2 D5 Quinta Diagonal = 14 D5 Quinta Diagonal = 12 D6 Supta Diagonal = 12	D1Codi	LAICHIA	A1Cdia	le1Cadi	B1Cadi	A1Cdia	Alcdia		DX Ter	cera Dia	oonat z	14
D5 Quinta Diagonal = 12 D6 Sexta Diagonal = 10			ID8 P1	07 P1	06 P1	05 P1	D4 P2	1	D4 Cua	rta Dia	gonal =	14
D6 Sexta Diagonal # 10	L	<u> </u>	L		<u> </u>]	D5 Qui	nta Dia	gonal =	12
									D6 Se	xta Di	agonal	= 10

ESQUEMA A.1 MAPA CON LAS CATEGORIAS DE LOS CANALES DEL CUARTO DE NUCLEO BWR DE LA CNLV

a a prata
En Negitas Región Anillo de Fuego = 15

-

٩

DO SERIA Diagonal = 10 O7 Septima Diagonal = 8 D8 Dotava Diagonal = 6 D9 Novena Diagonal = 4 D Décima Diagonal = 2 Total = 111

ς.

-

APENDICE B

CALCULO DE LOS PESOS DE MALLA FINA PARA EL NUCLEO DE LOS REACTORES DE LA CNLV

El program AREAS.BAS fue elaborado para genera los pesos de la malla fina de cada una de las 64 anillos en que se dividió el núcleo de los reactores de la CNLV. Para la realización de este se siguió el procedimiento descrito en el capitulo 4. El programa escribe un archivo llamado AREAS.DAT con los pesos de la malla fina calculados y listos para se leido por el program MAPATES.BAS (Ver Apéndice C). A continuación se da el listado del programa en lenguaje Quick-Basic versión 4.5 del programa AREAS.BAS.

**************** INICIA LISTADO PROGRAMA AREAS.BAS

DECLARE SUB FRAC () DECLARE SUB FRAC () DECLARE FUNCTION SUMA! (J!, 11!, 12!) DECLARE FUNCTION AREA! (OPS, R!, T!) DECLARE FUNCTION AREA! () DECLARE FUNCTION AREAS! () DIM SHARED FF(70, 16), AA(64, 16), AAT(64), UUNOIJ(16, 11) DIM SHARED FK(70), Y(70), RR(0 TD 70), OOPS(70), 11(70), JJ(70), AAR(10) DIM SHARED NEWL(2, 64) COMMON SHARED NEWL(2, 64) COMMON SHARED PI, R1, T1, X1, Y1, R2, T2, X2, Y2 COMMON SHARED IN, AAREASS PI = 3.141593 P1 = 3.141593 CLS 1X = 58 TO IS READ XX(1), YY(1): X = XX(1): Y = YY(1) IF Y = 0 THEN RR(1) = X ELSE RR(1) = SQR(X * X + Y * Y) IF Y = 0 THEN RH(1) = X ELSE KH(1) = SUBLA - A + T + , HEXT I DATA 1,0, 1,1, 2,0, 2,1, 2,2, 3,0, 3,1, 3,2, 4,0, 4,1 DATA 3,3, 4,2, 5,0, 5,1, 5,2, 4,4, 5,3, 6,0, 6,1, 6,2 DATA 5,4, 6,3, 7,D, 5,5, 6,4, 7,2, 7,3, 6,5, 8,0, 7,4 DATA 8,2, 6,6, 8,3, 7,5, 8,4, 9,D, 9,1, 7,6, 8,5, 9,3 DATA 9,4, 7,7, 8,6, 1D,1, 10,2, 9,5, 10,3, 8,7, 10,4, 9,6 DATA 11,0, 11,1, 10,5, 8,8, 9,7, 10,6, 9,8, 11,7 REM DATA 11,0, 11,1, 10,5, 8,8, 9,7, 10,6, 11,4, 9,8, 11,5, 10,7 REM DATA 11,0, 11,1, 10,5, 8,8, 9,7, 10,6, 11,4, 9,8, 11,5, 10,7 REM DATA 11,6, 9,9, 10,8, 11,7, 10,9, 11,8, 10,10,11,9, 11,10,11,11 FOR 1 = 1 TO 1X: READ 00P\$(1), NNEW(1, 1), NNEW(2, 1): NEXT 1 DATA "010112", 1,0 DATA "0201131010157", 1,0 DATA "020113502012", 2,0 DATA "030113020157020245", 1,0 DATA "030134030213020257", 2,0 OATA "030145030234030322", 3,0 DATA "04013300157030245030322", 1,0 OATA "040134040213030257030345", 2,0 DATA "040145040234040312030356", 3,0 DATA "0501131040157040245040322030366", 1,0 REM FUE 10 DATA "050113040157040245040322030366",1,0 REM FUE 10 DATA "050134050212040256040323030367",2,0 DATA "050144050223040267040335040412",5,0 DATA "050145050234050313040357040445",3,0 DATA "060113050157050245050334050412040456",1,5 DATA "060134060231050257050345050423040456",1,5 DATA "060144060234060312050356050423040456",3,0 DATA "06014406024406033205036705043505012",6,0 DATA "0601450602440603320503645050423040467",4,0 DATA "070113060157060245060344060422050466050522",1,0 DATA "07013060157060245060344060422050466050524",2,0 REM FUE 20 REM FUE 20 DATA "070144070234070312060356060423050467050545", 3,0

DATA "D70144070244070323060367060435060512050556", 6, D DATA "D701450702440703340704120604560605220505667, 4, 0 DATA "08011307015707024507034407042206046060523050567", 1, 0 DATA "0801130808021207026607034070423060647060535060612", 2, B DATA "08014408022307026707034507044070512060556060622", 6, 0 DATA "080144080234080313070367070445070523060556060622", 4, 0 DATA "08014408024080341807412070465070523060556060622", 4, 0 DATA "0801440802440803460412070465070523060557060645", 4, 0 DATA "090114080244080344080422070466070534070612060656", 7, 0 OATA "090113080157080245080344080423070467070545070622060666", 1, 0 REM FUE 30 REM FUE 30 DATA "090134090213080257080345080434080512070556070622060666", 2,6 DATA "090144090234090312080356080444080522070566070623060667",3,0 DATA "090144090234090312080356080444080522070566070634070712",9,0 DATA "090144090244090323080367080445080522070566070634070712",9,0 DATA "090144090244090344090423080450405230701570705507052", 7, 0 0ATA "090145090244090344090423080457080556080622070666070722", 7, 0 0ATA "100113090 1 57090245090344090512080556080622070666070722", 1, 0 0ATA "100113090 1 570902450903440905220805608062207066070722", 1, 0 0ATA "10014410021309025709034509044409052208056080623070667070745", 2, 0 0ATA "100144100231090356090444090523080567080635080712070756", 3, 9 0ATA "100144100244100323090367090445090534090612080656080722070766", 7, 0 REM FUE 40 DATA "110144110244110344110434110512100556100623090667090745090822080866", 5,0 REM FUE 5D REM FVE 50 DATA "110145110244110344110444110512100566100634100712090756090822080866", 8,0 DATA "120113110157110245110344110444110522100566100644100722090766090822080866", -1,0 DATA "120134120213110257110345110444110523100567100465100722090766090822080866", -2,0 DATA "120144120234120312110556110444110534110612100656100722090766090823080867", 7,0 DATA "120144120234120312110556110445110544110622100666100722090766090823080867", 7,0 DATA "12014412023412033110367110445110544110622100666100723090767090845090912", 12,0 DATA "1201441202341203412034120456110566110623100667100735100812090856090912", 10,0 DATA "110411105821106A3110784100785100886090887090988", 4,0 DATA "1104811105921106A3110784100785100886090887090988", -4,0 DATA "1104811105921063110784100785100886090887090988", -4,0 DATA "1104811105921063110784100785100886090887090988", -4,0 DATA "1104811105921063110784100785100886090887090988", -4,0 DATA "10048110592106311078410785100886090887090788", -4,0 DATA "10048110592106311078410785100886090887090988", -4,0 DATA "100481105921063110784107851008860908870909887090988", -4,0 DATA "10048110592106311078410785100886090887090988", -4,0 DATA "10048110592106311078410785100886090887090988", -4,0 DATA "100481105921063110784107851008860908870909887090988", -4,0 DATA "1004801059210680110784107851008860908870909887090988", -4,0 DATA "10048010592106311078410785100886090887090988", -4,0 DATA "100480105921068011078410785100886090887090988", -4,0 DATA "100480105921068011078410785100886090887090988", -4,0 DATA "100480105921068011078410785100886090887090988", -4,0 DATA "100480105921068011078410785100886090887090988", -4,0 DATA "100480105921068011078410785100886090887009888", -4,00 DATA "100480105921068011078410785100880008870080887008088700808870080887008080088700808870080880080 REM DATA "120144120244120344120423110467110545110634110712100756100822090866090922" CLS : INPUT "1= FORMA AREAS.DAT"; AAREASS IF AAREASS = "1" THEN PRINT "GENERA ARCHIVOS AREAS.DAT" OPEN "AREAS.DAT" FOR OUTPUT AS #3 FND IF FOR 11N = 1 10 1X: CALL FRAC: NEXT 11N: CLOSE #3 INPUT DUS PRINT FOR J = 1 TO 11: A\$ = STR\$(J) + "; ": AC = 0 FOR I = 1 TO 16 A = UUNOIJ(I, J): IF (ABS(1 - A) > .I) ANO (I <> J) THEN GOTO PPNEXTIO A\$ = A\$ + ";" + STR\$(A): AC = AC + A NEXT 1 PPNEXTIO: PRINT AS; " AC="; AC NEXT J R2 = 1; T2 = P1 / 4AA(1, 1) = AREA("S", R2, T2) FNA FUNCTION AREA (OPS, R, 1) If OPS = "S" THEN AREA = R * R * T / 2 IF OPS = "T" THEN AREA = R * T / 2 IF OPS = "C" THEN AREA = R * T END FUNCTION

FUNCTION AREAS.

```
AREAS1 = AREA("S", R2, T2)
AREAS2 = AREAS1 + AREA("T", X2, Y2)
AREAS3 = AREAS2 - AREA("S", R1, T1)
AREAS = AREAS3 - AREA("T", X1, Y1)
END FUNCTION
SUB FILE (RI, RF)

FOR R = RI TO RF

AT = 0

FOR S = 1 TO 16

IF AA(R, S) = 0 THEN GOTO FI10

AT = AT + AA(R, S)

NEXT S

F110:
NEXT S

F110:

AAT(R) = AT + AT

NEXT R

OPEN "C:\TES\MAPA\AREA.OUT" FOR OUTPUT AS #1

FOR R = 1 TO 64

AT = AAT(R)

IE AT = 0 THEN CLOSE #1. EXIT CHP
         IF AT = O THEN CLOSE #1: EXIT SUB
AS = ""
         AS = 44

FOR S = 1 TO 16;

IF AA(R, S) = 0 THEN GOTO F120

FA = AA(R, S) / AT: IF AA(R, (S + 1)) = 0 1HEN FA = FA + FA

AS = AS + "," + STRS(FA)
         NEXT S
 F120:
AS = STRS(R) + "," + S1RS(S - 1) + AS: PRINT #1, AS
NEXT R: CLOSE #1
 END SUB
 SUB FRAC
WX = LEH(QOP$(IIN)) \ 6: AT = 0

fOR N = 1 TO NX: GOSUB FRASACA

IF (OPO$ = "A") OR (OPO$ = "B") THEN GOSUB FRAPER1: GOTO FRASALTA

IF (OPO$ = "A") OR (OPO$ FRA12

IF OP$ = "12" THEN GOSUB FRA12

IF OP$ = "13" THEN GOSUB FRA12

IF OP$ = "2" THEN GOSUB FRA23

IF OP$ = "2" THEN GOSUB FRA23

IF OP$ = "35" THEN GOSUB FRA23

IF OP$ = "35" THEN GOSUB FRA35

IF OP$ = "44" THEN GOSUB FRA35

IF OP$ = "45" THEN GOSUB FRA44

IF OP$ = "45" THEN GOSUB FRA44

IF OP$ = "55" THEN GOSUB FRA56

IF OP$ = "57" THEN GOSUB FRA57

IF OP$ = "66" THEN GOSUB FRA57

IF OP$ = "66" THEN GOSUB FRA67

FRASALTA:
 NX = LEN(00P$(11N)) \ 6: AT = 0
 \begin{array}{l} 1 & 0 & 0 & 0 \\ \text{FRSALTA:} \\ \text{AT = AT + AA(IIN, N) + 2} \\ \text{UUNQIJ(ISA, JSA) = UUNQIJ(ISA, JSA) + AA(IIN, N) \end{array}
 NEXT N
 NEAT N

IF (OPDS = "A") OR (OPDS = "B") THEN

AT = 2 * P1 * (RR(IIN) ^ 2 · RR(IIN · 1) ^ 2) / 8: 'AT = 1

END IF

GOSUB FRAMUESTRA
  EXIT SUB
 FRASACA:
         ASACA:

[1] = (N - 1) * 6 + 1: OP$ = OOP$(IIN)

ISA = VAL(MID$(OP$, 11, 2)): II(N) = ISA: I1 = I1 + 2

JSA = VAL(MID$(OP$, 11, 2)): JJ(N) = JSA: I1 = I1 + 2

OP$ = MID$(OP$, 1, 2)

OP$ = MID$(OP$, 1, 1)
 RETURN
 FRADIAGONAL:

R2 = RR(jiN): T2 = Pi / 4

R1 = RR(jiN - 1): T1 = T2
           AA(11N, N) = AREA("S", R2, T2) - AREA("S", R1, T1) - SUMA(11N, 1, (N - 1))
 RETURN
 FRA12:
```

~

- 100

. ...

```
R2 = RR(IIN): X2 = ISA - 1: Y2 = PITA("Y", R2, X2): T2 = ATN(Y2 / X2)
R1 = R2: Y1 = JSA - 1: X1 = PITA("X", R1, Y1): T1 = ATN(Y1 / X1)
AA(IIN, N) = AREAS - X2 = (Y2 - Y1)
 RETURN
 FRA13:
      RZ = RR(IIN): Y2 = JSA: X2 = PITA("X", R2, Y2): T2 = ATN(Y2 / X2)
R1 = R2: Y1 = Y2 - 1: X1 = PITA("X", R1, Y1): T1 = ATN(Y1 / X1)
AA(IIN, N) = AREAS - X2
RETURN
 FRA22:
      R2 = RR(IIN): X2 = ISA · 1: Y2 = PITA("Y", R2, X2): T2 = ATN(Y2 / X2)
R1 = RR(IIN · 1): X1 = X2: Y1 = PITA("Y", R1, X1): T1 = ATN(Y1 / X1)
AA(IIN, N) = AREAS · (Y2 · Y1) * X1 · SUMA(IIN, 1, (N · 1))
RETURN
FRA23:
GOSUB FRA22
RETURN
FRA34:
GOSUB FRA44
RETURN
FRA35:
      GOSUB FRA44
RETURN
FRA44:
     R2 = RR(IIN); Y2 = JSA: X2 = PITA("X", R2, Y2); T2 = ATN(Y2 / X2)
R1 = RR(IIN · 1); Y1 = Y2; X1 = PITA("X", R1, Y1); T1 = ATN(Y1 / X1)
AA(IIN, N) = AREAS · SUNA(IIN, 1, (N · 1))
RETURN
FRA45:
GOSUB FRA44
RETURN
FRA56:
GOSUB FRAGG
FRA57:
     R2 = RR(IIN - 1): Y2 = JSA - 1: X2 = PITA("X", R2, Y2): T2 = ATN(Y2 / X2)
R1 = R2: Y1 = JSA: X1 = PITA("X", R1, Y1): T1 = ATN(Y1 / X1)
AA(IIN, N) = X2 + AREAS
RETURN
FRAGG:
     NDO:
R2 = RR(IIN): Y2 = JSA: X2 = PITA("X", R2, Y2): T2 = ATN(Y2 / X2)
R1 = RR(IIN • 1): Y1 = JSA: X1 = PITA("X", R1, Y1): T1 = ATN(Y1 / X1)
AA(IIN, N) = AREAS • SUMA(IIN, 1, (N • 1))
"TAN
RETURN
FRA67:
GOSUB FRA66
RETURN
FRAMUESTRA:
     AMULESTRA:

AC = 0

AS = STR$(RR(IIN)) + "," + STR$(2 * NX - 1)

FOR N = 1 TO NX

A = AA(IIN, N) / AT: IF N = NX THEN A = A + A

FF(IIN, N) = A: AC = AC + A

AS = AS + "," + STR$(II(N)) + "," + STR$(JJ(N)) + "," + STR$(A)

Not M
```

. ..

- --

•

```
PRINT A$; " IIN"; IIN; " AC="; AC; : 'INPUT DU$
IF AAREAS$ = "1" THEN PRINT #3, A$
 RETURN
FRAPERI:

IF DPOS = "B" THEN AA(IIN, N) = AAR(N): RETURN

IF (DPS = "A1") THEN

R1 = RR(IIN - 1): X1 = ISA: Y1 = PITA("Y", R1, X1)

R2 = R1: Y2 = JSA: X2 = PITA("X", R2, Y2)

AR = ABS(X2 - X1) * ABS(Y2 - Y1) / 21

AA(IN, N) = AR

AAR(N) = 0

END IF
           END IF

IF (OPS = "A2") OR (OPS = "A5") THEN

R1 = RR(IIN): X1 = ISA: Y1 = PITA("Y", R1, X1)

R2 = R1: Y2 = JSA: X2 = PITA("X", R2, Y2)

AR = ABS(X2 - X1) * ABS(Y2 - Y1) / 2!

AA(IIN, N) = 1 - UUNOIJ(ISA, JSA) - AR

AAR(N) = AR

END IF

IF OPS = "A3" THEN

R1 = RR(IIN): Y1 = JSA - 1: X1 = PITA("X", R1, Y1)

R2 = R1: Y2 = JSA: X2 = PITA("X", R2, Y2)

AR = (ISA - X1) + ABS(X2 - X1) * ABS(Y2 - Y1) / 2!

AA(IIN, N) = 1 - UUNOIJ(ISA, JSA) - AR

AAR(N) = AR

END IF
          AAR(N) = AX

END IF

IF OPS = "A4" THEN

R1 = RR(11N): Y1 = JSA - 1: X1 = PITA("X", R1, Y1)

R2 = R1: X2 = ISA - 1: Y2 = PITA("X", R2, X2)

AR = ABS(X2 - X1) * ABS(Y2 - Y1) / 2!

AA(IIN, N) = AR

AAR(N) = 1! - AR

END IF

END IF
                       OPS = "A6" THEN

R1 = RF(11N): Y1 = JSA - 1: X1 = PiTA("X", R1, Y1)

X2 = ISA - 1: Y2 = JSA

AR = ABS(X2 - X1) * ABS(Y2 - Y1) / 2!

AA(IN, N) = AR - UUNOIJ(ISA, JSA)

AAR(N) = 1! - AR
           AAR(17, - ..
END IF
IF OPS = "A7" THEN
AA(1N, N) = 1 - UUNOIJ(ISA, JSA)
AAR(N) = D
             END IF
IF OPS = "AB" THEN
                       AR = .25
AA(IIN, N) = .5 - UUNOIJ(ISA, JSA) - AR
AAR(N) = AR
             END IF
 RETURN
```

END SUB

į

-

٠

L.

FUNCTION PITA (OP\$, A, B) IF (OP\$ = "X") OR (OP\$ = "Y") THEN PITA = SQR((A * A) - (B * B)) END FUNCTION FUNCTION SUMA (J, 11, 12) S = 0 FOR I = 11 TO 12: S = S + AA(J, I): NEXT I SUMA = S END FUNCTION

*************** FIN LISTADO PROGRAMA AREAS.BAS

.

1

**

APENDICE C

PROGRAMA MAPATES

El programa MAPATES produce al ejecutarse un archivo de salida con la información más importante relacionada con los datos de entrada y salida. A continuación se reproduce el archivo de salida FEMEUS.DOC generado al desarrollarse el estudio FE

1

CAMBIOSISIS Intercambios FR = LAE DES. .480C+.480C,MEGRAS 10-007,BURYE HODIFICADO TABLA DE DESCARGA PRESTO: (PROMIDIO)C:\TESIMAPA\C4\BA\DABOC.SU2 C:\TESIMAPA\C4\

- -

٠.

-

البود الد فيت الب

1 0.	MICHIDAD	IDETIFICADOR	CANAL	KININITA	QUEED DO	CULCULUTE
1	63	93749	94	1.106402	0.	0
2	62	83003	75	1.104658	Q.	0
1	111	62334	84	1.100578	10473.2	0
1	119	62390	74	1.099788	10514.5	0
5	100	62338	100	1.093726	12107.8	0
6	109	62358	43	1.093696	32099.3	0
1	100	62362	102	1.045112	17894.1	Q
1	101	62374	65	1.0646	13479.3	0
9	103	62354	101	1.00354	13631.5	Q
10	56	73204	13	1.003196	٥.	0
11	102	62406	- 54	1.083154	13652.5	Q
12	51	73224	63	1.043124	0.	0
11	57	73200	90	1,042956	Q.	0
14	43	73256	31	1.002944	ð.	Ð
15	107	62366	10	1.082868	11176.5	0
16	106	62346	\$7	1.003034	13189.2	0
17	105	62342	9 9	1.002250	13166.7	Q
11	104	62394	32	1.062024	13107.1	Q
1)	38	73276	19	1.07854	Ô.	0
20	55	73208	79	1.078520	Q.	0
21	47	7 3 2 4 0	51	1.077266	Ô.	8
22	54	73212	n	1.077196	0.	0
21	50	73228	61	1.078374	q.	0
24	52	62379	15	1.076	14151.6	0
25	96	62382	- 54	1.075168	13987.0	0
26	42	73263	29	1.074546	Q.	0
27	53	73216	69	1.07455	0.	0
2	95	62378	21	1.074470	14104.2	0
8	35	73288	1	1.074274	٥.	Q
30	52	73220	67	1.074262	٥.	0
31	45	73248	39	1.073944	Q.	0
32	34	73293	3	1,07389	٥.	0
1)	39	73272	23	1.073866	٥.	0
н	45	73232	59	1.073842	Û.	Q
35	41	73264	27	1,073092	0.	0
16	46	73244	47	1,473062	Q.	0
37	34	73284	15	1.073014	0.	0
ม	4	71252	35	1.072984	Q.	Q
39	44	73268	25	1.072708	٥.	0

40	37	73280	17	1.072588	٥.	đ
41	43	73236	57	1.072558	ů.	
42	91	62386	40	1.056982	14126 2	0
1	91	62402	70	1 856856	14173 1	0
ü	97	62350	54	1 05439	13011 6	Ň
45	01	1000	12	1 66391	3,3 101,0	, v
16	60	42304		3.033/3	3410/18	U I
49	33	46634	20	1,034344	9987.G	0
	70	96300		1.052526	9992,8	D
48	10	42298	89	1.05196	11327.4	0
	83	42314	20	1.051759	11348.4	Q
20		42382	60	1.038052	11961.2	8
51	85	42310	12	1.82935	11154.2	0
52	- 14	42326	1	1.02924	11363.7	0
53	87	42322	36	1.026948	13115.6	0
- 54	36	42330	26	1.026442	13126.9	8
55	83	62318	50	1.025878	11472.1	0
56	82	51175	91	1.822004	16652.8	ň
57	80	51195	42	1.021604	16685.0	ň
- 51	78	51179	15	1.010042	17454 5	6
59	- ii	51171	15	1 004844	14481 4	Å
60	77	41311		1 003001	19001.9	
41	70	51941	2	1.000448	11010,1	U A
53	74	51203	2	1,009000	10/28.9	0
06	11	41223	21	1.006041	26446.8	0
63	14	41251	97	1.001884	16984.1	Ç
04	74	41231	72	1.001744	15949.2	Ç
65	75	41219	62	1.00108	16018.7	0
- 66	64	51287	- 82	,991054	19929.4	0
67	67	51199	52	.990794	19953.1	8
68	70	41255	80	.98982	17237.7	8
69	69	41219	30	.989344	13294.9	Ó
70	72	52207	11	.986620	19521.8	Ď
71	71	51191	24	.986588	19524.6	Å
72	64	53183	49	.882612	20151.2	ň
11	66	41 21 5	ŭ	.980902	17766 0	Ň
74	45	42 2 27	7	.980134	17858 1	¥ م
75	61	41241	74	0580184	11040,1 91128 9	
76	40	41215		480004	\$1100,J	U.
77	50	41260	14	* 737970	#119J.J	v
		41433	10	193031	21/10,9	ų
18	20	41247	40	. 950004	21718.0	0
	11	20286	64	.947078	13054.5	0
80	11	20360	93	.94642	[]100.0	0
11	12	20110	41	.94112	13020.7	0
12	36	20347	81	.\$40084	13133.5	0
1)	29	20305	11	.936694	13261.0	8
84	28	20332	37	.935784	33358.6	0
85	27	30632	87	.918846	21411.4	0
86	24	30629	104	.913034	22150.5	0
87	23	30512	110	908402	22964.8	Ď
8	22	20122	11	.907608	18161.4	Ň
69	20	20350	m	.907426	18155.1	4
90	19	10585	66	.4046.1	27439 1	ň
91	18	20177	100	.0013/0	19700 5	ů.
65	17	20346	6E	00010	1047V.3	v
34 D1	21	60303	33	.70047	10403.0	v
74 6/	61 16	30034	343	100311	43410.7	a
94 M	13	19494	yo	1999734	13117.2	Ç
33	20	30447	28	1898052	11003.3	0
96	25	30401	68	,896626	21007.7	0
97	14	30422	31	.496132	23953.8	0

214

-

•

-

•

98	11	30556	76	,895358	23866.5	0
99	13	20364	107	894228	18581.9	٥
100	12	20281	33	.893698	18950.6	0
101	6	30503	103	. 893394	23807.7	0
102	1	30394	95	.892148	23782.5	0
103	9	30461	\$6	. 891964	23685.1	0
104	5	20294	108	.890892	19429.8	0
105	4	20333	44	, 89085	19455.2	0
106	3	20288	22	. 888865	19606.0	0
107	2	20368	206	. 608618	19621.4	6
108	16	30641	18	.888982	23080.2	0
109	18	30473	1	.883158	23938.5	8
110	1	30382	71	.878764	24405.7	8
m	8	39427	68	.878448	23707.2	0

-

ESTRANGULANIENTOS TARINTAS PRESTO 330000, ARCHIVO:C:\TES\VAPA\C4\GEC40PH4.T33

Identificador PNESTO Tipo de Combustible	Asignacio Katrangu	on PRESTO Lauiento
Quinto Digito	Interno	Externo
1	0	6
2	1	2
j	1	2
i	j	0
5	3	8
6	j	Ġ
1	3	à
i i	i	Ğ
9	i	0
10	ō	8
n	0	Ó
12	å	ò
13	Ó	ŝ
14	ß	ò
15	Å	å
16	8	Ď
17	å	6
15	0	'n
19	6	ň
28	õ	Ď

...

POT.NUCLEO HOMOGENEO. Secuencia: Slancas(GUT-IN), Negras(IN-OUT), Grises(IN-OUT)

BD. Sec	chiai Nac.	Poth: 1000	por Ord.	BO. Sec.	CANAL Nuc.	POTx 1090	POT Ord.	MO. Sec.	CANAL Buc.	Potu 1000	por ard.	NO. Sec.	RC,	POTX 1000	POT Ord,
1	1 102	658	90	318	59	1254	32	61	1 28	1286	29	916	95	611	91
2	8 65	- 556	89	325	49	1271	11	621	1 58	1282	10	926	- \$4	613	82
3	8 94	754	66	1 338	17	1290	28	63	68	1229	16	1 9 36	76	559	91
	1 75	752	85	348	57	1300	21	64)	1 18	1227	37	94G	103	560	94
5	8 43	759	84	358	47	1333	22	65	50	1220	18	95G	105	519	95
6	100	758	83	368	27	1335	21	6	60	1218	39	96G	11	520	96
?	8 85	779	82	37	1 37	1345	20	671	i 40	1146	42	97G	22	511	97
8	3 21	799	79	338	45	1356	17	68)	1 70	1184	13) 94G	106	512	98
9	3 98	798	78	198	5	1358	16	69	1 1	1137	47	996	107	499	99

216/

31	Blanco	59	1258	32	1.073842	34	1.073842	34
32	Blanco	49	1271	31	.982632	72	.982632	72
11	Blanco	17	1298	28	1.072588	40	1.072588	40
34	Blanco	57	1100	27	1.072558	41	1.072558	41
35	Bianco	47	1333	22	1.073062	36	1.073062	36
36	Blanco	27	1335	21	1.871092	15	1.071092	15
17	Blanco	37	1145	20	.935704	. M	915704	RÍ
34	Alanco	45	1156	17	1.009884	54	1.009884	59
14	Blanco	5	1158	ŭ	1 009504	61	1 009500	61
40	El anon	15	1384	11	1 072984	18	1 077684	18
- 41	Bimon	15	1 184	17	1 072014	12	1 072014	17
	Blanco	36	1104		1 072708	10	1.073708	37
41	Blanco	- 42	1414	2	1 07280	13	1.01126	,,, 11
	810000		1410		1.0/307		1.0/303	36
44	Blanco	43	1410	2	1.0/1000	11	1.0/3000	11
42		- 11	14/4	1	. 3300 74	100	.930094	
- 40	DINICO		1413	-	- 86 J1 DE	10.3	86 IL 88.	109
			1433	- 4	1.02924	22	1.100578	1
- 18		12	1431	1	1.02935	51	1.899788	1
- 17	New O	- 14	1410	1	.986620	70	1.00354	3
50	Negr o	- 24	1498		.966588	71	1.003154	11
51	logro	H	1 3 9 3	10	.980902	73	1.082868	15
52	Ling ro		1391	11	.900124	74	1.082834	18
53	Num to	- 34	1371	14	1.026944	53	1.082254	17
54	lingto	26	1369	15	1.026842	я	1.082024	18
55	Nejt o	46	1350	1	, 950884	71	1.056982	12
56	legr o	16	1348	19	.95092	11	1.056854	13
57	lingro	4	1310	23	. 196626	*	1,05439	44
50	legro	30	1306	24	.196652	95	1.05371	45
59	ligro	6	1307	25	1.852526	47	1.052582	46
60	logo	56	1306	26	1.852582	46	1.052526	47
61	lingro	21	1284	29	1.05371	65	1.05196	48
62	Logo	58	1282	30	1.05439	- 64	1.051758	49
63	ling o	4	1229	36	.878446	111	1.838052	50
64	liegro	18	1227	37	.884982	108	1,02935	51
65	letto	50	1220	38	1.025878	55	1.02924	52
"	lero -	60	1318	39	1.838052	50	1.026944	53
47	letto	40	1186	42	1.056982	42	1.026842	54
4	lero	70	1184	43	1.056856	43	1.025878	55
0	lant	1	1137	47	.959996	76	1.022004	5
70		71	111	4	.954278	75	1.021604	57
71	lanto	30	1111	51	.949344	69	1.001744	64
72	lingto	10	1115	\$2	.98982	61	1.00108	65
11	lerro	72	1044	51	1.001744	64	.991054	"
74	lanto	62	1090	ų.	3.00108	65	. 990784	67
75	liner o	12	1045	57	.001854	66	. 9994 2	68
76		62	1047	Q.	.940794	67	989144	60
π	fierro.	84	992	67	1.85196	Å.	986630	20
28	leant	x	044	41	1.661768	44	006539	71
N	Sec.14	47	954	61	1.031444	47	- 04040	'n
80		1 1	44.7	64	1.022004	ű	080134	74
n	Lagra	74	900	77	1 004784	7	050370	74
91 #1	Hanna V	14	990 603	74	1 100574		, 337610	10
#1	Mage U	89 01	7V4 844	74	81(1J	10	.737V76	/Q 77
1J	Hereiter 1	35 61	090 818	74	179096 847874	90 90	, 73072	11 98
94 95	Nega V Nega V	14	040 604	13	1 049644	19	.330884	74
62 64	Nega U	10	603 604	10	1.082014	13	•34\0\0	/7
49 87	U Land	3/	0V9 941	11	1.464444	10	194042	8V AK
₩/ 84		36 80	783	8Ú	1.044044	10	. 718046	83
	and the second	77	7 H	41	1.002254	17	.913034	86

217/

218/

Carge OFICIAL IV CULINANTE Queenedo por combustible en NHD/NT | [23] | [25] | [27] | [23] | [31] | [33] | [35] | [37] | [39] | [41] | [43]

-				the Transit		~~~~			1014		
	[23]	(25)	(27)	(29)	[31]	[[11]]	{35	[]]7[1191	[41]	[43]
[22]	30473	42326	73292	41227	51203	42106	73288	41235	51211	62366	30422
(20)	42310	20305	51207	73284	01259	73280	30641	73276	42314	62378	20208
[11]	73272	51191	71260	42330	73264	62399	73260	41239	73256	62394	20281
116	41235	73252	42322	20332	30447	73240	62386	20338	51195	62358	20333
[14]	51171	41.247	72244	30401	51142	42310	72240	51199	41223	62406	20365
[13]	42254	73236	82350	73232	42302	73228	41219	73224	20286	62274	30585
(10)	71220	30427	73210	62402	73212	41231	10302	62390	\$3003	30556	20322
104	43283	73200	41255	20347	51187	73204	62336	62370	30461	30632	1.4
(06)	51179	42214	73200	51175	(1251	20360	93749	30394	20404	1	
[04]	62346	62282	62362	62338	62354	62362	30503	30629	1		<u>, 1</u>
(02)	30634	20368	20384	20294	20277	30512	20350			· 1	

eccesses chilles:Sin Intercabios EVA1(Disefo/Oficial)= 2.007346 Caron OFICIAL IV COMMANY'S Identificad

	In the second	24	/40		11063136		+ 74/848	00
91	Gris	95	611	91	.882148	102	.907426	89
92	Gris	- 16	613	92	.891964	103	.90463	90
93	Qii	76	559	9)	,895358	98	.901108	91
94	Qi.	103	560	94	.893396	101	.90049	92
95	Qris	105	519	95	.900286	93	,900286	93
- 16	Gris	11	520	96	.896132	97	.899734	94
17	Qis	22	511	97		106	.896652	95
90	Qris	106	512	9	.080610	107	.896626	96
**	Gris	107	499	99	.894228	99	.896132	97
100	Gis	33	500	100	. 893698	100	.895358	98
101	Qis	- 44	440	101	.89065	105	.894228	99
102	Quis	108	41	102	.890892	104	.893698	100
103	œis.	109	150	103	.901108	91	893396	101
104	Qis	55	451	104	,90049	92	.892144	102
105	Qis		- 44	305	.899734	94	, 891964	103
106	Qis .	87	825	106	.918046	15	490892	104
107	œis -	104	42	107	.913034	16	.89065	105
100	Quis	110	JN	108	.908402	17	.864866	106
109	Qis	66	394	109	.90463	90	.444614	107
111	@is	77	330	110	907608	H	.884982	104
111	Gris	111	340	111	.907426	81	.878446	111
WAL	OACTON	Einf DE	. 100	2 0:	1.014138		1.021588	
(Lio	f besio	a)/Kiaf	ofici	al)=	1.007346			

89 Bogto 101 719 87 1.08354

.908402 87

[20] 13361 15522 21717 23040 11348 14104 15666 [18] 19525 13127 14104 17295 13187 18951 [16] 17646 13216 13352 12127 14104 13295 13187 18951 [16] 17764 13316 13352 12003 14144 13021 16406 12099 19455 [12] 1042 11961 14041 13021 16401 13072 14442 13021 16401 13072 14461 13072 14461 13072 14461 13072 14461 13072 12428 13042 1417 14152 1414	[22]	23334	13364	1	17868	16729	9993	<i></i>	21193	17879	13177	23953
118 19525 13127 14104 17255 13187 18951 148 17744 13115 13107 14104 17255 13187 18951 148 16422 12718 21003 14144 1021 16436 12099 19455 128 16422 21718 21004 11951 14019 13055 13079 22428 120 9407 13142 1261 16401 13055 13079 22428 100 21707 14172 15698 10473 23783 23167 18161 1061 17555 11327 16653 16984 13000 23783 23167 18161 1061 19527 19632 13642 23608 23131	[20]	1054	13261	19522	·	21717		23080	1.	11348	14104	19606
116 17764 12116 12353 21003 14146 11021 16686 12099 19455 [18] 16422 21718 21003 2053 12472 19933 16647 13452 18406 [12] 9977 13402 12961 14019 13035 13079 21428 [10] 21707 14172 15949 24606 10313 23667 18161 [06] 11641 13127 16653 16949 10473 14152 23667 18151 [06] 17655 11377 16653 16949 13406 23183 23117 [06] 17655 11377 16653 16946 13400 23183 23117 [06] 13621 13632 13642 23408 2315 14141 443 [07] 13167 12106 13632 13646 23408 2315 1417 [06] 1795 13137 1206 1691	ini		19525		11127	- · {	14108	· .	17295		11117	18951
114 16422 21718 21004 20753 12472 1953 16447 13652 18406 [12] 9407 13942 11961 16019 13055 13179 22428 [10] 21707 14172 - 15949 24406 10515 23867 18161 [06] 21164 17218 13134 19929 10473 4132 23468 21413 [06] 17555 11127 16651 16948 13100 23181 23183 21117 [04] 13139 1367 13161 12108 13642 23608 23181 23117 [04] 13139 1367 13632 13644 23608 23117 -	110	17766		11116	13359	2100)	1	14144	13021	16686	12099	19455
[12] 947 13482 12461 14019 13055 13079 23428 [10] 23707 14172 15949 24406 10515 23667 18161 [06] 2185 11327 16453 16992 10473 14152 23467 18161 [06] 17855 11327 16453 16992 10473 14152 23467 18161 [06] 17855 11327 16453 16944 13100 23783 23117 14152 13447 24405 13137 1317 14152 13447 21117 14152 13447 23131 1417 14152 13447 21117 141 1417 1417 1417 1417 1417 141 1417 1417 141 1417 1417 1417 1417 141 1417 141 1417 141 1417 141 1417 141 1417 141 1417 141 1417 141 141 <t< td=""><td>ini</td><td>16612</td><td>21718</td><td>{. {</td><td>21000</td><td>20353</td><td>13472</td><td></td><td>19953</td><td>16447</td><td>13652</td><td>18406</td></t<>	ini	16612	21718	{. {	21000	20353	13472		19953	16447	13652	18406
110 2170.7 14172 15949 24406 10515 23867 10161 108 21144 177218 13134 19929 10473 14152 23483 21117 106 17055 11327 16653 16944 13100 23783 21117 104 13153 13967 166451 16944 13100 23783 21117 104 13159 13161 16944 13100 23783 21117 14172 14171 14172 14171 1499 14114 1431 140 141 1431 140 141 1431 140 141 1431 140 141 1431 146 142 140 145<	[12]	H67		13002	.	11961		14019		11055	13879	23428
108 21144 17218 13134 19929 10473 14152 22465 21412 106 17955 11377 16651 16984 13100 23781 23117 106 17955 11377 13167 12108 13632 13804 23808 23117 102 23111 15621 14842 13432 13804 23808 23117 102 23111 15621 14842 13432 13804 23808 23151	110)		23707	1	14172	a .	15949	24406	10515		23867	10161
[06] 17855 11327 16651 16984 13100 23783 23117 [04] 13189 13587 13167 12108 13612 13884 23808 23131 [02] 23111 15627 13167 12108 13612 13884 23808 23131 [02] 23111 15627 118791 22965 18155	100)	21168		17210	13134	19929		10473	14152	23685	21413	
[06] 11199 13507 13167 12108 13632 13644 23608 23151 [02] 23411 15621 14832 13432 13644 23608 23151 [02] 23411 15621 14832 13432 12055 10155 Carpa OFICIAL IV CUADAMYS Ordam de Reyor a Nemor Kinf Buc. C. [12] [23] [25] [27] [39] [41] [43] [22] 102 28 78 47 33 16 77 52 5 96 [20] 27 83 40 76 53 75 96 74 23 17 189 [18] 73 41 72 26 71 18 70 43 69 8 1000 [18] 46 67 44 29 65 45 34 10 95 [14] 13 44 15 63 24 62 37 61 <	[06]	17855	11127		16651	16984	13100	(\cdot, \cdot)	23783	21117		
[02] 21411 19621 18492 19291 22965 18155 1 [21] [25] [27] [29] [13] [13] [15] [17] [19] [41] [43] [22] 102 20 76 47 31 77 52 35 58 [20] 20 76 47 31 77 52 35 58 [20] 27 83 40 76 53 75 96 74 21 17 109 [18] 70 41 72 26 71 18 70 43 69 8 100 [16] 46 68 23 84 66 71 30 12 100 [14] 31 46 67 42 26 45 34 10 95 [12] 13 64 15 63 24 62 17 61	[04]	11189	13587	13167	12104	13612	1384	23404	22151		1.	
Carra GFICILI, IV CIRGULATT Ortion do Buyor a Humor Sinf Ruc. C. [23] [25] [27] [29] [41] [43] [23] 102 27] [29] [41] [43] [23] 102 28 78 47 33 16 77 52 55 56 [20] 27 83 40 75 75 56 74 23 17 109 [18] 70 41 72 26 71 18 70 43 65 8 100 [18] 70 41 72 26 71 18 70 43 69 8 100 [18] 46 68 23 84 86 67 29 80 32 3 100 [14] 31 34 66 67 42 28 65 34 10 95 [12] 13 16 17 61 79	[02]	23411	19621	18682	39430	18291	2265	10155	1.1			÷.,
Carga OF[CIA] IV CORDANTS Ordan de Buyer a Bunter Sinf Bac. C. [12] [25] [27] [29] [13] [33] [35] [37] [39] [41] [43] [22] 102 28 78 47 33 38 77 52 15 5 96 [20] 7 30 40 76 35 77 96 74 23 17 109 [18] 73 41 72 26 71 18 70 43 69 8 100 [14] 14 72 26 71 18 70 43 69 8 100 [14] 13 46 68 22 84 86 67 25 80 32 3 100 [14] 14 31 34 66 87 48 29 65 45 38 10 95 [12] 13 64 15 63 224 62 37 61 79 11 93 [10] 60 104 59 21 58 36 111 2 50 101 90 [06] 51 57 42 42 64 56 3 28 149 105 97 100 [06] 51 57 49 12 109 107 94 89 92 100												
$ \begin{bmatrix} 123 \\ 123 \\ 122 \\ 12$	Carry	a ofic	ul IV i		n Order	a de Nay	ne a Mi	nor Li	f Bc.	с.		
122 102 28 78 47 33 36 77 52 35 5 96 120 27 83 40 76 53 75 96 74 21 17 109 120 27 83 40 76 53 75 96 74 21 17 109 120 73 41 72 26 71 18 70 43 69 8 100 143 44 64 67 19 60 12 3 100 114 31 34 64 67 48 20 65 45 34 10 95 121 13 64 15 63 24 62 37 61 79 11 93 100 60 104 55 21 58 36 111 2 50 101 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
203 27 83 40 76 53 75 96 74 23 17 109 [18] 73 41 72 26 71 18 70 63 69 8 100 [18] 44 68 25 84 86 67 19 80 12 3 100 [14] 31 84 64 67 42 26 65 45 34 10 95 [12] 13 64 15 63 24 62 37 61 79 11 93 [10] 60 104 55 21 58 36 111 2 50 101 90 [08] 51 57 42 62 64 56 3 20 103 85 ************************************	- {	[2]	[25]	1 [27]	[29]	(11)	[13]	[35]	(37)	[39]	[41]	[[43]
[18] 73 41 72 26 71 18 70 43 69 8 100 [16] 46 68 25 84 86 67 25 80 32 3 100 [14] 31 34 66 87 44 29 65 45 36 10 95 [12] 13 64 15 63 24 62 37 61 79 11 93 [10] 60 104 51 21 58 36 111 2 50 101 90 [06] 51 57 42 42 64 56 3 20 103 85 45 [06] 34 22 55 30 19 81 49 105 97 40 [04] 46 7 9 12 105 97 40 40 [04] 31 59 107 94 89 92 40 40 40	(22)	[23] 102	[25] 28	[17] 71	[29] - 47	(11) 	[33] 34	{35} 77	(37) 52	[39] 35	{41} 5	[43] 98
116 44 68 25 84 86 67 19 80 12 3 108 [14] 31 34 66 87 44 29 65 45 34 10 95 [12] 13 64 15 63 24 62 17 61 79 11 97 [10] 60 104 59 21 58 36 111 2 50 101 90 [60] 51 57 62 62 46 56 3 20 101 90 [60] 51 57 62 62 46 56 3 20 101 90 [60] 34 22 55 30 39 81 49 105 97 [64] 46 7 9 12 106 88 49 49 49 49 49 49 49	(22) (20)	[23] 102 27	(25) 20 0)	[27] 78 40	[29] 47 76	(11) 33 53	(33) 34 75	(25) 77 %	(37) 52 74	[39] 35 21	(41) 5 17	(43) 98 109
[14] 31 34 66 87 44 29 65 45 34 10 95 [12] 13 64 15 63 24 62 17 61 79 11 92 [10] 60 104 55 21 58 36 111 2 50 101 90 [06] 51 57 62 82 64 56 3 20 101 95 [06] 34 22 55 30 39 61 69 97 4 [04] 416 7 4 91 12 106 88 4 4 [02] 93 110 99 107 94 89 92 4 4	(22) (20) (10)	[23] 102 27 7)	(25) 28 83 41	[27] 78 40 72	[29] 47 76 26	(11) 23 53 71	(33) 34 75 18	{35} 77 % 70	(37) 52 74 43	[39] 35 21 69	{41} 5 17	(43) 98 109 100
112 13 64 15 63 24 62 37 61 79 11 92 100 60 104 55 21 58 36 111 2 50 101 90 100 51 57 42 82 64 56 3 20 103 85 72 106 34 22 55 30 39 81 49 105 97 72 102 93 310 99 107 94 89 92 22 53	(22) (20) (10) (16)	[23] 103 27 7) 46	[25] 28 83 41 68	[27] 78 40 72 25	[29] 47 76 26 84	(33) 33 53 71 86	[33] 34 75 18 67	[35] 77 96 70 19	(37) 52 74 63 80	[39] 35 21 69 12	[41] 5 17 8 3	[43] 98 109 100 100
101 60 104 59 21 58 36 111 2 50 101 90 [00] 51 57 42 62 64 56 3 20 103 85 ************************************	(22) (20) (18) (16) (14)	[23] 102 27 7) 44 31	[25] 20 03 41 68 34	[27] 78 40 72 25 64	[29] 47 76 26 84 87	(11))) 50 71 86 44	[33] 34 75 18 67 29	[35] 77 96 70 19 65	[37] 52 74 43 80 45	[39] 25 21 69 12 34	[41] 5 17 8 3 10	(43) 98 109 100 108 95
[06] 51 57 42 62 44 56 3 20 103 65 \sim [06] 34 22 55 30 39 81 49 105 97 \sim <	(22) (20) (10) (14) (14) (12)	[23] 102 27 7) 46 31 13	[25] 28 83 41 68 54 64	[27] 78 40 73 25 64 15	[29] 47 26 84 87 63	(11) 33 53 71 86 44 24	[33] 34 75 18 67 29 62	[35] 77 96 70 19 65 17	[37] 52 74 43 80 45 61	[39] 35 21 69 12 14 79	[41] 5 17 8 3 10 11	(43) 98 109 100 108 95 93
106 34 22 55 30 39 81 49 105 97 106 106 [04] 4 16 7 4 9 12 106 88 107 106 107 100 <td>(22) (20) (10) (14) (14) (12) (10)</td> <td>[23] 102 27 7) 46 31 13 60</td> <td>[25] 28 03 41 68 54 64 104</td> <td>[27] 78 40 73 25 66 15 59</td> <td>[29] 47 26 84 87 63 21</td> <td>()))) 50 71 86 44 24 58</td> <td>[33] 34 75 18 67 89 62 89</td> <td>[35] 77 96 70 19 65 17 111</td> <td>(37) 52 74 43 80 45 61 2</td> <td>(39) 35 23 69 32 34 70 50</td> <td>(41) 5 17 8 3 10 11 101</td> <td>(43) 96 109 100 100 95 93 90</td>	(22) (20) (10) (14) (14) (12) (10)	[23] 102 27 7) 46 31 13 60	[25] 28 03 41 68 54 64 104	[27] 78 40 73 25 66 15 59	[29] 47 26 84 87 63 21	()))) 50 71 86 44 24 58	[33] 34 75 18 67 89 62 89	[35] 77 96 70 19 65 17 111	(37) 52 74 43 80 45 61 2	(39) 35 23 69 32 34 70 50	(41) 5 17 8 3 10 11 101	(43) 96 109 100 100 95 93 90
[04] 4 16 7 4 9 12 206 86 4 10 [02] 93 310 99 107 54 89 92 2 4 9 12 100 86 4 10 <td>(22) (20) (18) (14) (14) (12) (10) (08)</td> <td>[23] 102 27 7) 46 91 13 60 51</td> <td>[25] 28 03 41 68 54 64 104 57</td> <td>{27} 78 40 72 25 66 15 59 42</td> <td>[29] 47 76 84 87 63 21 82</td> <td>())))) 5) 71 86 44 24 54 54 54</td> <td>[13] 34 75 18 67 89 62 84 84</td> <td>[35] 77 96 70 19 65 17 111 3</td> <td>(37) 52 74 43 80 45 61 2 20</td> <td>[39] 25 21 69 12 14 79 50 103</td> <td>[41] 5 17 8 3 10 11 101 85</td> <td>(43) 98 109 100 108 95 93 90</td>	(22) (20) (18) (14) (14) (12) (10) (08)	[23] 102 27 7) 46 91 13 60 51	[25] 28 03 41 68 54 64 104 57	{27} 78 40 72 25 66 15 59 42	[29] 47 76 84 87 63 21 82	())))) 5) 71 86 44 24 54 54 54	[13] 34 75 18 67 89 62 84 84	[35] 77 96 70 19 65 17 111 3	(37) 52 74 43 80 45 61 2 20	[39] 25 21 69 12 14 79 50 103	[41] 5 17 8 3 10 11 101 85	(43) 98 109 100 108 95 93 90
[02] 91 110 99 107 94 89 92 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(22) (20) (18) (16) (14) (12) (10) (06) (06)	[23] 102 27 7) 46 31 13 60 51 34	[25] 28 83 41 68 54 64 104 57 22	[27] 78 40 72 25 66 15 59 42 55	[29] 47 76 84 87 63 21 62 30	())))) 50 71 86 44 24 54 54 54 54 39	[13] 34 75 18 67 29 62 82 84 84	[35] 77 96 70 19 65 17 111 1 1 49	(37) 52 74 40 45 61 2 20 105	 [39] 35 21 69 12 14 70 50 101 97 	(41) 5 17 8 3 10 11 101 65	[43] 98 109 100 108 95 93 90
	(22) (20) (18) (16) (14) (12) (10) (06) (06) (06) (06)	[23] 102 27 7) 46 91 13 60 51 34 4	[25] 28 83 41 68 54 64 104 57 22 16	27) 78 40 73 25 64 15 55 42 55 7	[29] 47 76 84 87 63 21 62 30 4	(33) 53 53 71 86 44 24 54 54 54 54 9 9	[13] 34 75 18 67 29 62 36 56 81 12	[35] 77 96 70 19 65 17 111 1 49 106	[37] 52 74 40 45 61 2 20 105 84	[39] 35 21 69 12 34 79 50 103 97	[41] 5 17 8 3 10 11 101 65	[43] 98 109 100 108 95 91 90

sessessesses CAMBIOS:Sim Intercombine BVA1(Diamic/Oficial)= 1.607346 Caren BASICA TV COADBANYE Identificatores de Combustiles PMSSTO

	_		_				_				
	[23]	(23)	27]	[29]	111	[13]	[35]	[37]	[]9]	- [41]	[43]
122	30473	62334	73292	62746	51200	12214	73280	51175	51211	20266	30404
20	62390	20105	62354	73244	62402	73200	42310	71276	31191	62271	30647
	21272	62405	73268	62394	73264	42254	73260	41231	71256	20632	30556
1:6	62366	73252	62342	20332	62398	73244	42330	20334	41215	62158	20364
İ₩	51171	62386	71244	62354	51183	42324	71240	41239	41223	24322	30334
112	42366	73236	42314	73232	42322	73228	53399	73224	41247	62374	20368
11	73236	42362	73216	4331	73212	51187	30382	41243	83083	20277	30641
i	51195	7338	61219	20347	41255	73204	(1135	63370	30505	20254	
ÌM	51175	51267	73298	41227	41251	41259	\$3745	20350	30461	1. 14. j. 1. j.	44 - 1 1
186	20360	62382	30625	62338	30512	62362	20165	20333			
112	3634	30601	30422	20201	30503	20286	30427		$\mathcal{A}^{(1)}$		

Carro 845[CA TF CDAMBAPYE Comtante do Baltipicarian Infinita[81s6]--Maevo] [12] [23] [27] [27] [28] [31] [11] [13] [17] [18] [41] [41] [22].68315 1.1005 [.0738].0281 [.0099].0575].0742].0220].0404 [.420] [21].0077 .93449].0831 [.1710 [.0564].0728].0291 [.0728].9453].0704 [.4865 [10].0778].0409].0831 [.1710 [.0564].0728].0291 [.0758].0714 [.4865 [10].0778].0409].0831 [.1710 [.0564].0728].0291 [.0728].0290].0763].0444 [.4865 [10].0778].0611 [.4727].0822].0537 [.0739].0519].0763].0017].0829].0600 [.4936 .4865 [10].0730].0011 [.4727].0822].0537 [.0739].0519].0763].0901 [.0936].0900].0936].0942 [.0710].0525 [.0735].0517].0736].0269].0763].9907].0911].9506].0463].0464].0464].0464].0464].0464].0464].0464].0464].0475].0000].0992].0031].9909].1026].0076].0976].0976].0916].08490 [0].08490 [0].0849].0000].0992].1001].9909].1076].9976].0976].0916].08490 [0].0849].0010].0849].0900].0800].0992].1051].0976].0976].0916].0849].0010].0849].0010].0849].0010].0849].0010].0849].0000].0992].1001].9909].076].0976].0916].0849].0010]

Cargo MASICA IV CHARAFTE Quessio per conductible en MO/MT(--Maevo)

219/

APENDICE D

PROGRAMA UUPRI.M

El programa UUPRI.M y sus subrutinas se escribieron en el lenguaje del paquete MATLAB. Este programa genera las distribuciones de potencia radial controlando sus características en base a dos polinomios bajo las condiciones discutidas en el capítulo 5. Una vez calculada al distribución de potencia, el sistema de programas calcula la distribución de reactividad radial correspondiente así como el Potencial de Combustible. A continuación se lista el programa UUPRI.M y las subrutinas que permiten los cálculos de difusión inversa relatados en el Capítulo 5.

********** INICIA LISTADO PROGRAMA PRINCIPAL, UUPRI.M

- -- ----

```
potori=.78, potmax=1.50 % est. (17/nov/94),
pausa=0
ro=0;rf=1;
radiocm=102;
11=7.525;d1=1.46612;beta1=.44
radf=radiocm/11;alfa1=(1/2)*(1-beta1)*(1+beta1);
iOradf=besseliO(radf); ilradf=besselil(radf);
a0=radf*iOradf*(ilradf+(alfa1*11/d1)*iOradf);
n=100;h=(rf/n);R=0:h:rf;indrmax=max(size(R));
RAD=R.*radf
IO=besseliO(RAD);KO=besselkO(RAD);
RMV={.01 .10 .20 .30 .40 .45 .50};
%RMV={.55 .60 .65 .70 .75 .80 .85};
grid
for case = 1:7
 rm=RMV(caso)
 [AC, BC, araa]=uupolil(pausa, rm, potori, potmax);
 AREAA(caso)=araa
 indrm=min(find((R>=rm) & (R<=(rm+h)))),R(indrm);</pre>
 if pausa==1, pause, end
POLA=polyval(AC,R(1:indrm));POLB=polyval(BC,R((indrm+1):indrmax));
 POL= (POLA, POLB); areatest=uusim(POL, h)
 PM=[PM, POL']
 if pausa==1, pause , end
S1=POL.*(IO.*RAD);
 if pausa==1, pause , end
isl=uusim(Sl,h);axsl=isl/a0;
 for indrk=2:(n-1);
  KFAST(indrk)=uukfast(pausa,POL,IO,KO,RAD,h,axs1,indrk);
 end
 KFAST(1)=KFAST(2);KFAST(n)=0;KFAST(n+1)=0;kmean1=mean(KFAST(2:(n-1)));
% KFAST=KFAST./kmean1
 KMEAN(caso)=kmean1;
 plot (RAD, KFAST, '0');
 if pausa==1, disp('kfast pri'), pause, end
KM=(KM,KFAST');
 KR=(KFAST.*R);FUELP(caso)=(2*pi)*uusim(KR,h)
end
```

********* FIN LISTADO PROGRAMA PRINCIPAL, UUPRI.M

********** INICIA LISTADO DE LA SUBRUTINA QUE CALCULA LA FUNCION DE BESSEL IO(z) function y = besseli0(z)& BESSEL MODIFICADA DE PRIMERA CLASE ORDEN CERO IO(2) i=sqrt(-1); y=besseln(0,i*z); ********** FIN LISTADO DE LA SUBRUTINA QUE CALCULA LA FUNCION DE BESSEL IO(2) ****** INICIA LISTADO DE LA SUBRUTINA QUE CALCULA LA FUNCION DE BESSEL Ko(z) function y = besselkO(z)BESSEL MODIFICADA DE SEGUNDA CLASE ORDEN CERO KO(2) i=sqrt(-1); y=besselh(0,i*z)*pi*i/2; ********* FIN LISTADO DE LA SUBRUTINA QUE CALCULA LA FUNCION DE BESSEL $K_{\mu}(z)$ ************ INICIA LISTADO DE LA SUBRUTINA QUE GENERA LA DISTRIBUCION DE POTENCIA RADIAL (Biplolinomial) function {AC,BC,areaa}=uupolil(pausa,rm,potori,potmax) r0=0;rf=1; AM={0 0 0 1; 0 0 1 0; rm^3 rm^2 rm 1; 3*rm^2 2*rm 1 0} AR=[potori 0 potmax 0]'; AC=AM\AR; areaa= 1/4*(rm^4)*AC(1)+1/3*(rm^3)*AC(2)+1/2*(rm^2)*AC(3)+rm*AC(4) if pausa==1, pause, end areab=1.-areaa BM=[rf^3 rf^2 rf 1; rm^3 rm^2 rm 1; 3*rm^2 2*rm 1 0 1/4*(rf*4-rm*4) 1/3*(rf*3-rm*3) 1/2*(rf*2-rm*2) (rf-rm)); BR=[0 potmax O areab]'; BC=BM\BR; RAG=[r0:.01:rm]';PAG=polyval(AC,RAG); RBG=[rm:.01:rf]';PBG=polyval(BC,RBG); plot(RAG,PAG,'o',RBG,PBG,'+'); title('polimomio central y periferico'); if pausa==1, pause, end ********** INICIA LISTADO DE LA SUBRUTINA QUE GENERA LA DISTRIBUCION DE POTENCIA RADIAL (Biplolinomial) ********** INICIA LISTADO DE LA SUBRUTINA QUE CALCULA LA DISTRIBUCION DE Keff RADIAL. function k=uukfast(pausa,POL,I0,K0,RAD,h,axs1,indrk) runction k=uuktast(pausa,POL,10,K0,KAD,n,axs1,Indrk) indrmax=max(size(POL)); if pausa==1, disp('fast 1'),pause, end c1=-K0(indrk)/(2*pi);GM(1:indrk)=I0(1:indrk).*c1; c2=-I0(indrk)/(2*pi);GM((indrk+1):indrmax)=K0((indrk+1):indrmax).*c2; if pausa==1, disp('fast 2'),pause, end GM=(GM.*POL).*RAD; if pausa==1, disp('fast 3'),pause, end c2=2*n'stuusim(GM,b); s2=2*pi*uusim(GN,h); if pausa==1, disp('fast 4'),pause, end % p9=POL(indrk),ax9=axs1,i09=I0(indrk),s29=s2 if pausa==1, disp('fast 5'), pause, end k=POL(indrk)/(axs1*IO(indrk)-s2); if pausa==1, disp('fast 6'), pause, end ********* FIN LISTADO DE LA SUBRUTINA QUE CALCULA LA DISTRIBUCION DE Keff RADIAL.
