

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Escuela Nacional de Estudios Profesionales "ARAGON"

INGENIERIA

ANALISIS DE MODELOS MATEMATICOS DE Prediccion de radiacion solar.

LORENZO ZAMBRANO SALGADO

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

T	R.P.	n	T	~	-
1	- IN	U	1	し	E

Pá	ág.
Introducción	1
Capítulo I LA RADIACION SOLAR	8
I.1 La Radiación Solar Extraterrestre	9
I.1.1 El Sistema Solar	9
I.1.2 Algunas Características del	
Scl 1	12
I.1.3 Radiación Emitida por el -	
Sol 1	15
I.1.4 El Sistema Sol - Tierra 1	15
I.1.5 El Tiempo Solar 1	18
I.1.6 La Constante Solar y su Dis	
tribución Espectral 1	19
I.2 Características Principales de la	14
Tierra 2	24
I.3 Influencia de la Atmósfera sobre -	
la Radiación Solar	26
I.4 Radiación Solar Incidente en la Su	
perficie de la Tierra	30
I.4.1 Factores que Determinan la	
Radiación Solar Instantánea	33
I.4.2 La Radiación Solar en México 3	33
I.5 Conclusión	38
Capítulo II MODELOS MATEMATICOS DE PREDICCION	39
II.1 Masa de Aire Atmosférica 4	41
II.2 Distribución Espectral de la Radi <u>a</u>	
ción Solar en la Superficie Terres	
tre.	44

•

	II.2.1 Dispersión Molecular de Ray-	
	leigh	44
	II.2.2 Absorción por el Ozono	45
	II.2.3 Absorción del Vapor de Agua	47
	II.2.4 Absorción por Mezcla de Gases	48
	II.2.5 Transmitancia por Aerosoles	48
II.3	Modelos de Predicción de Radiación -	
	Solar Directa	52
	II.3.1 Modelo de Allen	52
	II.3.2 Modelo de Atwater y Ball	52
	II.3.3 Modelo de Majumdar	53
	II.3.4 Modelo de Watt	54
	II.3.5 Modelo de Douglas V. Hoyt	56
	II.3.6 Modelos Bird	59
	II.3.7 Modelo de Hoyt C. Hottel	60
	II.3.8 Modelo de Moon	62
	II.3.9 Modelo de Paltridge	64
	II.3.10 Modelo de S. Bárbaro et-al	64
II.4	Modelos de Predicción de Radiación	
	Solar Difusa	66
	II.4.1 Modelo de Douglas V. Hoyt	66
	II.4.2 Modelo de S. Bárbaro et-al	66
	II.4.3 Modelo de Robert R. Morgan	
	et-al	67
	II.4.4 Modelo ASHRAE	70
II.5	Modelos de Predicción de Radiación	
	Solar Global	72
	II.5.1 Modelo de Rapp y Hoffman	72
	II.5.2 Modelo de Douglas V. Hoyt	73
	II.5.3 Modelo de S. Bárbaro et-al	75
II.6	Conclusión	76
ייתא דדן	TOTON DE VARIABLES METEODOLOGICAS V	
بطالبك فأراد المتدامين معنا	TOTOR OF ALMERICAN INTEROVOTORIZAD I	

DE INSOLACION

?

Capítulo

III.1	. Definición de Términos	78
III.2	Mediciones Meteorológicas	79
	III.2.1 Temperatura Ambiente	80
	III.2.2 Presión Atmosférica	83
	III.2.3 Humedad Relativa	87
	III.2.4 Precipitación Atmosféric	a 90
	III.2.5 La Nubosidad	93
III.3	Mediciones de Insolación	95
	III.3.1 Radiación Solar Directa	97
	III.3.2 Radiación Solar Global	99
	III.3.3 Radiación Solar Difusa	103
	III.3.4 El Albedo Terrestre	105
III.4	Aspectos a Considerar al Efectua	r
	las Mediciones	106
III.5	Consideraciones sobre los Paráme	
	tros Meteorológicos Empleados	107
III.6	Mediciones en las Instalaciones	
,	del IIE	108
III.7	Conclusión	1 11
OBTENC	ION DE LOS PARAMETROS DE LOS $MODE$	
LOS	, ,	113
IV.1	Modelo a Utilizar	114
IV.2	Datos Meteorológicos y de Insol <u>a</u>	
	ción Requeridos por el Modelo de	
	Allen	115
	IV.2.1 Presión Parcial del Vapor	
	de Agua y Presión Atmosf <u>é</u>	
	rica Local.	115
	IV.2.2 Radiación Solar Directa -	
	Normal	118

.

Capitulo IV

		TT7 2	Deceringión del Mótode de Timeslin sil	
		TV•0	de Estimosión de las Destrutura	101
		TT7 A	y de Estimación de los Parametros	121
		10.4	Influencia de las variaciones de la Hu-	4
		T17 C	medad Relativa	123
		T V • D	Influencia del vapor de Agua sobre el -	
		TT 7	Modelo de Allen	138
		1V.6	Promedios Mensuales y Anuales de los -	
			Parametros Estimados.	141
		IV.7	Recomendaciones para el Mejoramiento -	
			de la Predicción del Modelo de Insola-	
			ción Modificado	145
		IV.8	Conclusión	145
	_			
Capítulo	V	VALII	DACION DE LOS MODELOS DE PREDICCION	147
		TT 4		
		V.1	Requerimientos para la Evaluación de -	
			los Modelos de Predicción	148
4			V.1.1 Identificación de la Información	148
			V.1.2 Datos de Insolación	149
			V.1.3 Datos Meteorológicos	149
		V.2	Criterios para la Evaluación de un Mod <u>e</u>	
			lo.	150
		V.3	Validación del Modelo Modificado e Im-	
			plementado en el IIE	150
			V.3.1 Comparación de la Insolación In <u>s</u>	
			tantánea Directa de Incidencia -	
			Normal Medida y Calculada	153
			V.3.2 Comparación de los Promedios Men	
			suales de la Insolación Directa	
			de Incidencia Normal Medida y Ca <u>l</u>	•
			culada.	167
		V.4	Recomendaciones para el Uso del Modelo	170
		V.5	Conclusión	171

CONCLUSIONES

<u>i.</u>

APENDICES

Apéndice	"A"	176
Apéndice	"B"	180
Apéndice	"C"	183
Apéndice	"D"	186
Apéndice	"E"	193
Apéndice	"F"	194
REFERENCIAS		196

SIMBOLOGIA

172

INTRODUCCION

Las actuales necesidades energéticas de cualquier país son en general satisfechas por los combustibles fósiles – (carbón, petróleo y gas natural) y por lo tanto es sobre ellos que descansa la economía mundial. Su posible agotamiento ha motivado la búsqueda de nuevas fuentes de energía, como la nuclear, la solar, la geotérmia, la eólica, las caí das de agua y la biomasa. El propósito de este trabajo es hablar de la segunda fuente de energía que es la solar.

La energía solar (radiación solar) es abundante confiable y gratuita. El sol ha entregado su energía sobre la tierra por más de 4000 millones de años y continuará así por varios miles de millones de años más. La inconstancia del sol es regional y estacional; no es arbitraria ni política; por lo tanto su utilización puede predecirse y planearse.

En México existen diferentes instituciones como universidades, institutos de investigación, organismos decentralizados, etc, que participan en el estudio y desarrollo de la energía solar como son el Centro de Investigación de Estudios Avanzados (CIEA) del IPN, el Instituto de Ingenieria (IT) y el Instituto de Investigación de Materiales (IIM) de la UNAM, el Instituto de Investigaciones Eléctricas (IIE), Institutos tegnológicos, etc.

En el Instituto de Investigaciones Eléctricas (IIE) – dentro del Departamento de Fuentes no Convencionales de Ener gía, se están realizando investigaciones para establecer la posibilidad de construir plantas helioeléctricas ^(42, 43).

Entre estas investigaciones se realíza el proyecto ----"analisis de tecnologías helioeléctricas en los conceptos de receptor central y fotovoltaico". Actualmente este tipo de tegnologías se están investigando a nivel mundial (E.U, RU-SIA, JAPON, FRANCIA, etc.) con el objeto de desarrollar

sistemas de conversión de energía solar (energía no convencional) a energía térmica eléctrica ya que presenta una alta factibilidad técnica y económica y se contempla que para la década de los 90's esto podría ser llevado a la realidad teniéndose una tecnología madura y para el año 2025, esta opción podría satisfacer el 75% de las necesidades de energía consumida por el hombre*.

En México Existe el recurso solar en forma abundante ya que estudios efectuados en el país sobre la cantidad de rad<u>i</u> ación solar aprobechable, muestra que este recurso es grande con una insolación promedio obserbada de las más altas del mundo ⁽¹²⁾ (ver párrafo I.4.2 del capítulo I). Del mapa anual de insolación global, se dedujo que cerca del 70% del territorio nacional recibe más de 400 Langleys/día (1 Langley = 1 Cal/cm²), Además en nuestro país existen grandes extensiones de superficies con zonas desérticas y semidesérticas, y esto posibilita la captación de la radiación solar a gran escala, sin originar problemas respecto a la utilización de superficies donde se instalarían las plantas helioeléctricas.

El presente trabajo forma parte de las investigaciones que se realizan en el IIE y se concreta al estudio de los aspectos meteorológicos y de insolación. Sin embargo mencionaremos en una forma muy general los subsistemas de que estan compuestos una planta helioeléctrica.

Una planta helioeléctrica del tipo receptor central – (PHRC) la integran básicamente cinco subsistemas y son mostrados por las figuras a y b⁽⁴²⁾.

- Colector
- Receptor
- De almacenamiento
- De generación eléctrica
- De control maestro
- * La Perspectiva Solar, Denis Hayes, "<u>La "Dercera Transición</u>", <u>1977</u> (puntos de vista sobre el futuro de la energía).

Una planta Helioeléctrica de tipo fotovoltaico (PHF) la integran básicamente cuatro subsistemas y son mostrados porla figura e⁽⁴⁴⁾.

- Colector
- De almacenamiento
- De acondicionamiento de potencia

- De control

El objetivo principal de este trabajo es el de efectuar un análisis de los modelos de predicción instantánea de Ra-diación Solar Directa, Difusa y Global existentes, haciendoénfasis en los modelos de predicción de radiación solar directa de incidencia normal por el uso que se les da en las plantas helioeléctricas; e implementar uno de ellos a nues-tras condiciones locales y sentar las bases para aplicarlo en un futuro no lejano a la predicción en cualquier punto l<u>o</u> cal de la República Mexicana.

Esto es con el fin de conocer con más exactitud la cantidad de insolación (directa, difusa y global) que posee nue<u>s</u> tro territorio nacional, y de esta forma contribuir a la explotación de los lugares más favorables para la instalación de las plantas helioeléctricas.

En el capítulo I, se presentan los principios básicos de la radiación solar, la distribución espectral de la radia ción solar en función de su longitud de onda y se menciona la influencia de la atmósfera terrestre sobre la radiación solar extraterrestre. Se tratan los diferentes tipos de ra diación solar que llega a la superficie terrestre y se des criben algunos factores geofísicos que influyen sobre la dig ponibilidad de la radiación solar existente en un punto local de la tierra.

En el capítulo II, se analizan las propiedades de atenua ción de la atmósfera sobre la radiación solar y se hace el análisis de algunos modelos matemáticos de predicción instan

tánea de radiación solar directa, difusa y global.

En el capítulo III, se presentan las mediciones de algunas variables meteorológicas y de insolación, explicando con que instrumento y la forma en que se realizan, pues algunas de estas variables son utilizadas por algunos modelos matemáticos para su predicción. Además para las aplicaciones de nuestro interés (generación helioeléctrica) se menciona la necesidad de hacer este tipo de mediciones en el sitio local, y se mencionan algunas variables meteorológicas y de insolación que han sido y serán realizadas en el IIE.

En el capítulo IV, se presenta una metodología para la adaptación de los parámetros de un modelo de predicción ins tantánea de radiación solar directa. Los datos meteorológicos utilizados por el modelo, los problemas encontrados con las mediciones de insolación, y la influencia de la humedad relativa sobre la radiación solar directa incidente en el lugar de medición (TIE) son analizados en detalle.

En el capítulo V, se presenta como validar los modelos de predicción y se proporcionan los resultados obtenidos con el modelo retenido para estudio. Su validación se basa en el análisis de los errores entre medición y predicción, y final mente se dan algunas recomendaciones para utilizar el modelo adaptado.

Posteriormente se presentan las conclusiones generales de este trabajo. En los Apéndices se encuentran las demos-traciones de algunas de las ecuaciones utilizadas en este trabajo, y también la bibliografía y referencias utilizadas.

Finalmente la lista de todos los símbolos utilizados se encuentra al final de este trabajo.

្រុ

_ju li

Figura a Representación esquemática de una Planta Helioeléctrica de Receptor Central.

Figura b Representación de la interacción de los diferentes subsistemas de una PHRC .

6

Figura c Diagrama de bloques de una Planta Helioéléctrica Fotovoltaica de potencia.

CAPITULOI

LA RADIACION SOLAR

I.1 La Radiación Solar Extraterrestre

I.I.1 El Sistema Solar

I.I.2 Algunas Características del Sol

I.I.3 Radiación Emitida por el Sol

I.I.4 El Sistema Sol - Tierra

I.I.5 El Tiempo Solar

I.I.6 La Constante Solar y su Distribución Espectral

I.2 Características Principales de la Tierra

- ¹I.3 Influencia de la Atmósfera sobre la Radiación Solar
- I.4 Radiación Solar Incidente en la Superficie de la Tierra
 - I.4.1 Factores que Determinan la Radiación Solar Instantánea

1.4.2 La Radiación Solar en México

1.5 Conclusión

Para poder comprender apropiadamente los sistemas y procesos para captar, transformar y utilizar la energía solar, es necesario que primero entendamos la naturaleza y caracter rísticas de la misma.

En este capítulo se describen algunas consideraciones teóricas sobre la radiación solar.

Sé mencionan los principios básicos de la radiación so lar extraterrestre, además se dá a conocer la repartición es pectral de la radiación en función de la longitud de onda, se dan algunas características de la tierra y sus principales parámetros geofísicos, se menciona además el efecto de la atmósfera sobre la radiación solar extraterrestre, y se determinan los diferentes tipos de radiación solar que llegan a la superficie terrestre, así como la descripción de algunos de los parámetros que influyen sobre la disponibil<u>i</u> dad de la radiación solar.

Finalmente se menciona la distribución de radiación so lar global en euestro país.

I.1 La Radiación Solar Extraterrestre

I.1.1 El Sistema Solar

El universo está formado por un inmen so número de galaxias que son sistemas formados por millones de estrellas y que muestran diferentes tipos de estructuras, por ésta razón se clasifican principalmente en galaxias espirales, esféricas, elipsoidales e irregulares.

Nuestro sistema solar se encuentra en la galaxia llama da VIA LACTEA, que es del tipo espiral. Existen dos teorías principales acerca del origen del sistema solar⁽¹⁾ de las cuales no se hablará detalladamente; estas teorías son la hipótesis de la condensación y la teoría de la fracmenta- ción;

y han sido tan modificadas por los adelantos de la astronomía, que difícilmente podrían ser reconocidas por aquéllos que las propusieron.

Nuestro sistema solar está compuesto por una serie de planetas y satélites que giran en la misma dirección alrede dor del sol, describiendo una trayectoria elíptica partiendo del sol, la distribución de los planetas es: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno y Plutón; como se muestra en la figura I.1

Los planetas se han clasificado en dos grupos: Los interiores, como mercurio, venus, tierra y marte, por ser pequeños y densos y por contener poco hidrógeno y helio. Los exteriores como Júbiter, saturno, urano y neptuno, que son planetas grandes y ligeros que contienen en gran cantidad los dos elementos mencionados, al igual que el sol.

Algunas características son las distancias relativas entre el sol y los planetas, así como la variación de tamaño y composición de las partes del sistema, como se muestra en la tabla I.1

Figura I.1 El sistema solar y la distribución de los planetas⁽¹⁾.

CUERPO	DISTANCIA DEL SOL (U.A)	RADIC (}) MEDIO (m)	DI N ()	ENSIDAD 1EDIA cg/m ³)	NUMERO DE SATELITES
Sol		696	000	1	420	
Mercurio	0.39	2	490	4	800	0
Venus	0.72	6	200	4	900	0
Tierra	1.0	6	370	5	510	1
Marte	1.5	3	400	3	950	2
Jüpiter	5.2	71	300	1	340	12
Saturno	9.6	59	600	0	690	9
Urano	19.25	25	800	1	360	5
Neptuno	30.2	22	300	1	300	0
Plutón	39.6	2	900	-		0

Tabla I.1 Algunas características de los planetas ⁽¹⁾ U.A = Unidad Astronómica 1 U.A = 149.6 x 10⁶ km

I.1.2 Algunas Características del Sol

El sol, centro de nuestro sistema planetario, es una esfera gaseosa no homogénea de materia muy caliente y brillante, que gira alrededor de su propio eje y efectúa una revolución en aproximadamente cuatro semanas⁽³⁾, en la tabla I.2 se muestran algunos parámetros geofísicos del sol.

Radio Medio			6.960×10^5 km		
Masa			1.991 x 10 ³⁰ kg		
Densidad Med	ia		1.410 kg/m ³		
Rotación sobre su eje			25.33 días terrestres		
(Duración del día			= 27 días observados		
			desde la tierra		
Atmósfera	4.2.1		Hidrógeno (H ₂)		
			Helio (He)		

Tabla I.2 Algunos parámetros del sol ^(2,5)

Dado que el sol no es una esfera homogénea, la astrofísica ha dividido su estructura en tres zonas principales que son: La Solar Interior, La Fotósfera y la Atmósfera Solar y éstas a su vez constan de diferentes capas (3,4), como se - muestra a continuación en la figura I.2

		Núcleo (centro del sol)
Γ	Solar Interior	$\begin{cases} \text{Region intermedia o radiacti} \\ \text{va.} \end{cases}$
ESTRUCTURA		Zona Convectiva
DEL SOL	Fotósfera	{Capa reversible
	Atmósfera Solar	<pre>{Crom6sfera</pre>
Ĺ		LCorona

El sol es un horno atómico que convierte materia en energía y esta se genera constantemente por reacciones complejas de fusión nuclear producidas en el centro del sol o núcleo, a temperaturas del orden de 20 x 10^{6} °K⁽⁴⁾ y presio nes de 250 000 millones de atmósferas (una atmósfera es equi valente al peso de una atmósfera terrestre al nivel del mar*)

En la reacción de fusión, el hidrógeno se convierte en helio con emisión de rayos gama de alta energía y después de la zona convectiva se emiten rayos X, rayos extraultraviol<u>e</u> ta, rayos ultravioleta, luz visible, luz infrarroja y hertziana. La figura I.2 muestra la descomposición de la radiación solar. En la zona de convección la temperatura es de -5000 °K y la densidad de 10^{-5} kg/m³ aproximadamente⁽³⁾.

La energía generada en el núcleo del sol atraviesa gr<u>a</u> dualmente el cuerpo del mismo por radiación hasta la fotósf<u>e</u> ra, que tiene un espesor de 300 a 400 kilómetros, donde la temperatura efectiva de toda la capa emisora es de unos 6000 ° $K^{(6)}$ y la energía irradiada por ésta, constituye casi toda la energía emitida por el sol hacia el espacio y la longitud de onda corresponde principalmente a los rayos gama de luz visible.

La atmósfera solar consta de dos capas, la cromósfera y la corona, ambas son transparentes y pueden ser observadas con instrumentos especiales durante un eclipse solar total.

La cromósfera, que se encuentra en la parte superior de la fotósfera, adquiere una temperatura de 4 300°K y de ésta salen las masas de gases llamadas proturberancias que provienen de las regiones menos calientes de la fotósfera llamadas manchas solares. La corona forma la envoltura ext<u>e</u> rior del sol y es un gas cuya temperatura alcanza un valor de 1 x 10⁶ °K que se extiende a una distancia de 1.5 x 10⁸ km o más⁽⁶⁾.

* 1 Atmósfora (Atm) = 760 mmHq

Figura I.2 Representación esquemática del sol donde se muestra sus partes interiores y exteriores, asi como la descomposición de la radiación solar^(4,6).

.2

J.1.3 Radiación Emitida por el Sol

La superficie del sol es 12 000 veces mayor que la terrestre y emite energía a razón de 3.80 x 10^{33} – – erg/s = 1.05564 x 10^{20} kWh/s (3.80 x 10^{23} kW)⁽⁷⁾ y la energía que recibe la tierra en un ano alcanza un valor de 1.4892 – x 10^{18} kWh (1.7 x 10^{14} kW)^(6,7).

La potencia energética del sol, debida a sus reacciones termonucleares es inmensa, un gramo de hidrógeno al con vertirse en helio produce 170 000 kW, y cada segundo se con vierten 600 millones de toneladas de hidrógeno en 596 millo nes de toneladas de helio, los restantes 4 millones de tone ladas se convierten en energía y constituye la pérdida de masa del sol por radiación electromagnética descargada al espacio. Al abandonar la superficie solar, la radiación emi tida por el sol abarca a los diferentes tipos de longitudes de onda que se encuentran en el espectro electromagnético y esta radiación tarda aproximadamente 8 minutos y 19 segundos en llegar a la tierra, después de un recorrido de 150 x 10⁶ km viajando a la velocidad de la luz.

I.1.4 El Sistema Sol - Tierra

La tierra gira alrededor del sol describien do una trayectoria elíptica y el tiempo necesario para completar una revolución sobre su órbita es de aproximadamente 365 días, 5 horas, 48 minutos y 48 segundos. El eje geográfico de la tierra (Norte-Sur) se encuentra inclinado con respecto a la normai al plano de la órbita llamada eclíptica formando un ángulo aproximado de 23.45°⁽⁷⁾, (el plano eclíptico está engendrado por la línea que une el centro de la tierra con el centro del sol, al moverse la tierra al rededor de éste). La figura I.3 muestra el comportamiento del sistema sol - tierra.

Durante el movimiento de la tierra alrededor del sol, la tierra pasa por diferentes estaciones del año, en los equinoccios, la distancia entre la tierra y el sol es la más corta - (Rp), y es de aproximadamente 147.10 x 10^6 km, (perihelio), - en los solsticios se tiene la mayor distancia (Ra), y es igual a 152.10 x 10^6 km (afelio). La distancia media entre la tierra y el sol (Ro), es de 149.6 x 10^6 km⁽²⁾, y se utiliza como unidad astronómica (U.A) de medición y se obtiene por la ecua ción I.1

$$Ro = \frac{1}{2} (Ra + Rp) = 1 U.A$$
 (I.1)

Debido a la inclinación del eje geográfico de la tierra y al movimiento alrededor del sol; el sol describe un movi--miento aparente que determina lo que se llama DECLINACION SO LAR (δ) que se define como el ángulo que forman los rayos -del sol con respecto al plano ecuatorial de la tierra o bien el ángulo entre el plano eclíptico y el plano ecuatorial. La declinación varía dependiendo de la época del año, la máxima declinación del sol hacia el norte es de + 23.45° y se alcan za en el solsticio de verano que ocurre el 21 o el 22 de Junio, la mínima declinación del sol hacia el sur es de - 23.45° y ocurre en el solsticio de invierno que cs el 21 o el 22 de diciembre, la declinación es nula durante los equinoccios de primavera y otoño, que ocurren el 21 de marzo y el 22 de septiembre, como se muestra en la figura I.3

Para cualquier día del año, la declinación del sol puede calcularse mediante una fórmula empírica dada por Cooper⁽³⁾.

$$\delta = 23.45^{\circ} \text{ Sen } 360 \left(\frac{284 + N}{365}\right)$$
 (I.2)

Donde N, es el número del día del año a partir del día prime ro de enero. La derivación de la ecuación (I.2) se encuentra en el apéndice A.

Figura I.3 Representación esquemática del movimiento de la tierra alrededor del sol⁽⁷⁾.

I.1.5 El Tiempo Solar

Para un observador sobre la tierra, el sol se mueve aparentemente de Este a Oeste; describiendo un semicírculo en el cielo y el tiempo que transcurre entre la salida del sol (orto) en el horizonte y su ocaso, es lo que llamamos horas de sol. El día queda dividido en 24 horas, tiempo en que la tierra completa una revolución de 360 grados sobre su eje, y el sol en su movimiento aparente recorre rá 15 grados en una hora.

El tiempo se puede proporcionar de tres formas⁽⁷⁾: Tiempo Medio de Greenwich TMG o Tiempo Universal, es el que está sujeto a las longitudes de referencia (meridianos). Tiempo Medio Local TML o Tiempo Medio Solar (convencional), es el que generalmente marcan los relojes y es fijado por los países dependiendo de los meridianos a que corresponde y a su zona territorial.

El Tiempo Solar TS, es el tiempo del sistema astronómico el cual el sol siempre cruza el verdadero meridiano Norte - Sur a las 12 del día en tiempo solar. Este sistema difiere del tiempo local según la longitud, la zona de tiempo y la ecuación del tiempo.

La determinación del verdadero tiempo solar se logra a partir del tiempo medio local, ésto se hace mediante un fa<u>c</u> tor de corrección llamado ECUACION DEL TIEMPO,que se define como la cantidad que suma algebraicamente al tiempo medio local del verdadero tiempo solar, esta cantidad cambia día con día y puede ser positiva o negativa. La Ecuación del --Tiempo (EQT) puede calcularse mediante la ecuación siguiente:

$$EQT = 0.007 \cos\left(\frac{2\Pi N}{366}\right) - 0.05 \cos\left(\frac{4\Pi N}{366}\right) - 0.0015 \cos\left(\frac{6\Pi N}{366}\right) - 0.122$$
$$sen\left(\frac{2\Pi N}{366}\right) - 0.156 Sen\left(\frac{4\Pi N}{366}\right) - 0.005 Sen\left(\frac{6\Pi N}{366}\right) \quad (hr) \qquad (I.3)$$

Para determinar el verdadero tiempo solar en un lugar sobre la tierra y en algún día del año se puede lograr me-diante la siguiente expresión:

$$TS = TML + (LR - LL)/15 + E.Q.T$$

(I.4)

Donde:

TS Es el Tiempo Solar (hrs)
TML Es el Tiempo Medio Local Ó TL (hrs)
LR Es la Longitud de referencia
 (meridiano de la zona)
LL Es la Longitud Local
EQT Es la Ecuación del Tiempo (hrs)

En la figura I.4 se muestra el comportamiento gráfico de la ecuación del tiempo.

I.1.6 La Constante Solar y su Distribución Espectral

El concepto de una "Constante Solar" fué in troducida por A. Pouillet en 1837⁽¹¹⁾, con el objeto de faci litar los cálculos de la potencia radiada por el sol que es de 3.80 x 10^{23} kW⁽⁷⁾. El primer método para la determinación de dicho valor fué dado por Langley en 1881⁽¹¹⁾.

La "Constante Solar", Io, se define como la potencia por unidad de área en W/m^2 ó en Cal. cm^2/min , que incide no<u>r</u> malmente fuera de la atmósfera terrestre a la distancia media Ro, entre el sol y la tierra y puede ser calculada mediante la siguiente expresión:

$$ES = 4 \Pi RO^2 IO \tag{1.5}$$

Es = Radiación emitida por el sol 3.80 x 10^{23} kW Ro = Distancia media (Sol - Tierra) 149.6 x 10^9 m

IO = Constante Solar kW/m^2

La ecuación anterior nos sirve para calcular la constan te solar Io, pero en la práctica, el procedimiento es a la inversa. La constante solar Io, se determina experimentalmen te lo cual no ha sido algo fácil, incluso con el uso de saté lites, varios investigadores han obtenido resultados diferen tes y se ha llegado a dudar de que la constante solar sea en realidad una constante.

La figura I.5 muestra los diferentes valores de la cons tante solar medidos por globos sonda y por vehículos espacia les a diferentes altitudes de la atmósfera terrestre y las líneas horizontales muestran los intervalos de incertidumbre apreciados por cada autor. El valor de la constante solar aceptado por la NASA/ASTM, es de 1353 \pm 21 W/m² (8).

Los valores indicados en la figura I.5 se obtuvieron – para una distancia media diaria entre 1a tierra y el sol, – pero estas distancias varían en el transcurso del año⁽⁵⁾, d<u>e</u> bido a la trayectoria elíptica de 1a tierra alrededor del – sol. La radiación solar extraterrestre, Ion, para cualquier día del año captada en una superficie perpendicular a los – rayos del sol se calcula mediante la ecuación I.6⁽⁹⁾

Ion = Io (1 + 0.033 Cos (360
$$\frac{N}{365}$$
) I.6

La figura I.6 muestra la curva de la distribución espectral de la constante solar publicada por la NASA/ASTM⁽⁸⁾ en el rango de longitud de onda de 0.3 μ m a 2.6 μ m y la tabla I.3 da los valores numéricos de la irradiancia y su integración.

- $cero a \lambda$

Tabla I.3 Valores de la irradiancia espectral y de su integración solar (5,8).

λ T_{h} T_{h-1} λ T_{h} T_{h-1} λ T_{h} T_{h-1}		•	0010	<u> </u>	•							
10 10 10 1007 10071 <th>1</th> <th>r,</th> <th>r.</th> <th>D</th> <th>X</th> <th>E,</th> <th>E</th> <th>D</th> <th>1</th> <th>r,</th> <th>E</th> <th>D₀-1</th>	1	r ,	r.	D	X	E ,	E	D	1	r,	E	D ₀ -1
130 .007 .0055 .0012 .510 .0012 .510 .0012 .510 .0012 .510 .0012 .510		1		1		1	1	1			1	
130 -0007 -0008 -00087	- 115	.007	.0025	.0001	.510	3882	324.976	24-815	1.55	267	1146.109	87.665
111 -200 -2012 -2012 -2015 -2012 -2	- 120	.400	.0048	- 0002	. 535	12423	334.234	25.374	1.60	222	12198.709	29.475
140 -0.073 .0005 .025 .0016 .0005 .025 .0016 .0005 .025	-120		.0071	.0005	.525	1852	352.591	26.059	1 1.70	202	1221-234	00.261
18.1 1970 <th< td=""><td>- 340</td><td>.030</td><td>.0073</td><td>.0005</td><td>.520</td><td>3842</td><td>361-826</td><td>26.742</td><td>1.75</td><td>180</td><td>1730.784</td><td>90.967</td></th<>	- 340	.030	.0073	.0005	.520	3842	361-826	26.742	1.75	180	1730.784	90.967
1.10 1.20 1.10 1.20 <th1< td=""><td>-150</td><td>.070</td><td>.0078</td><td>.0005</td><td>-525</td><td>1818</td><td>370-976</td><td>27.418</td><td>1.80</td><td>159</td><td>1739-259</td><td>91.593</td></th1<>	-150	.070	.0078	.0005	-525	1818	370-976	27.418	1.80	159	1739-259	91.593
1.250	-170	-630	.0092	-0001	.545	1756	368.671	28.737	1.90	146	1253-686	97.644
1.316 2.730 0.622 0.031 0.55 0.12 2.65 1.51 1.22 1.264 90 0.135 220 37.7 1.977 0.0001 5.65 1.51	- 100	1.250	.0230	.0016	.550	1725	.397.519	29.380	1.95	114	1259.484	93.088
2700 270- <th< td=""><td>- 190</td><td>2.730</td><td>.0428</td><td>.0031</td><td>.555</td><td>1720</td><td>406.131</td><td>30.017</td><td>2.00</td><td>103</td><td>1264.989</td><td>93.489</td></th<>	- 190	2.730	.0428	.0031	.555	1720	406.131	30.017	2.00	103	1264.989	93.489
2710 27.7 27.7 27.7 127.3 127	. 700	10.7	.1698	.0081	.500	1695	434.669	70.648	2.3	90 .	1274.559	94.2024
2/20 2/20 <th2 20<="" th=""> 2/20 2/20 <th2< td=""><td>- 210</td><td>22.9</td><td>.2776</td><td>-0205</td><td>.565</td><td>1705</td><td>473.169</td><td>31.276</td><td>2.2</td><td>79</td><td>1293-009</td><td>94.8269</td></th2<></th2>	- 210	22.9	.2776	-0205	.565	1705	473.169	31.276	2.2	79	1293-009	94.8269
2225 32.7 1.32.4 2.0911 2.00111 <th2.00111< th=""> <th2.00111< th=""> <th2.00111< <="" td=""><td>. 220</td><td>27.5</td><td></td><td></td><td>1.570</td><td>3712</td><td></td><td>21.907</td><td>2.3</td><td>£9</td><td>1290.409</td><td>95.3739</td></th2.00111<></th2.00111<></th2.00111<>	. 220	27.5			1.570	3712		21.907	2.3	£9	1290.409	95.3739
225 54.3 1.2214 555/22 1.57.46 51.05 2.6 1.807.493 41.6710 246 61.0 1.325.50 71.0 51.330 51.0 71.0 <th71.0< th=""> <th71.0< th=""> <th71.0< td="" th<=""><td>. 230</td><td>£6.7</td><td>1.2148</td><td>-0971</td><td>-5/7</td><td>1715</td><td>448.874</td><td>33.176</td><td>2.5</td><td>55</td><td>1307.809</td><td>96.2903</td></th71.0<></th71.0<></th71.0<>	. 230	£6.7	1.2148	-0971	-5/7	1715	448.874	33.176	2.5	55	1307.809	96.2903
-246 72.5 72.7 2.7<	.225	59.3	1.6298	.1204	. 58.5	1717	457.441	33.809	7.6	48	1307.959	96.6710
243 72-3 2.2733 1.366.00 555.102 74.476.756.75.064. 2.4 25 1316.00 57.310.3 253 104.3 2.656.1 1.394.4 1051165 4.7776 25.637.3 2.7 1372.000 97.6377 276 130.3 3.6566 1.226.2 2.7 1372.609 97.6777 276 135 4.657.16 4.65 1.655.107 3.1.27 3.2.2 72.6 1326.457 94.0374 277 727.5 5.4.66 5.557.5 5.1.379 3.7.107 3.1.51.0 1337.709 94.5744 94.774 94.5744 4.7.709 3.5 3.5 135.729 94.779 94.5744 94.5744 94.7714 94.5744 94.7714 94.5744 94.7714 94.5744 94.7714 94.5744 94.7714 94.5744 94.7714 94.5744 94.7714 94.7714 94.5744 94.7714 94.5744 94.7714 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744 94.7744	- 248	£3.D	1.9356	-3430	.540	1700	465.971	34.439	7.7	43	1312.509	97.0073
10 10 <t< td=""><td>-245</td><td>72.3</td><td>2.2738</td><td>-3680</td><td>-595</td><td>1682</td><td>474.476</td><td>75-064</td><td>2.9</td><td>29</td><td>1316.609</td><td>57.3103</td></t<>	-245	72.3	2.2738	-3680	-595	1682	474.476	75-064	2.9	29	1316.609	57.3103
210 320 3.4536 .226 103 1055 459.266 76.902 3.31 22.0 1326.269 96.337 210 225 5.453 .403 1602 551.469 36.969 3.22 22.6 1326.269 96.337 2710 225 5.453 .405 1602 551.469 16.969 3.22 22.6 1332.769 96.3547 2710 272 7.4366 .564 .654 1551.564 26.972 3.4 16.6 1332.769 96.5547 2710 2723 .4371 .663 .667 1554 42.657 3.4 13.45 1333.734 96.723 2715 .431 16.631 .6071 .467 166 .476 .3.7 12.3 1333.734 96.735 2715 .463 .477 .1335 .467 .444 .427 .1333.734 97.735 2716 .471 .471 .1335 .467 .444 .427	255	104.8	3.0500	. 1944	.600	1647	491.079	36.295	2.9	27	1370.309	97.8277
2763203.6536 $$			212030		<u> </u>	1				•		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-560	320	3.6516	.269	.61	3625	499.284	36.905	. 3.1	26.0	1326-459	98.0312
2.11 2.400 0.00 2.00 <th2.00< th=""> 2.00 2.00 <th< td=""><td>-715</td><td>185</td><td>4.4391</td><td>.378</td><td>.62</td><td>1602</td><td>515.469</td><td>36.098</td><td>3.2</td><td>22.6</td><td>1328-889</td><td>98.2179</td></th<></th2.00<>	-715	185	4.4391	.378	.62	1602	515.469	36.098	3.2	22.6	1328-889	98.2179
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	275	204	5.5716	- 485	.62	1570	516.800	123.270	3.3	17.7	1330-9/9	38.5047
225315 $a, 9791$.663.66 $b, 65$ $10, 67$ $15, 657$ 3.6 13.5 $13.5, 73.$ 91.723 22556413.6566 1.007 .67 1156 $594.$ $64.$ 3.6 13.1 $1336.$ $194.$ 22556413.6566 1.007 .67 1156 $62.04.64.010$ 3.6 113.1 $1336.$ $194.$ 300514 22.0441 1.655 .71 $1346.64.7.64.8$ $4.6.79$ 4.0 9.5 $1346.254.97.64.9$ 316667 22.0441 1.655 .71 $1346.64.7.64.8$ $4.2.2$ 7.00 $134.1.961.97.61.10$ 315744 22.0441 $1.655.7.7.159.64.64.77.607$ $4.2.2$ 7.00 $134.2.923.97.64.97.61.007.67.67.67.67.67.67.67.67.67.67.67.67.67$	-210	222	7.6366	.564	.65	1511	562.174	41.550	3.5	14.6	1334.329	98.6200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-215	315	8.9791	. 663	.65	SANE	577.159	42.657	3.6	13.5	1335.734	98.7238
$\begin{array}{c} -2.5 \\ -2$.710	4.82	10.9716	.810	.67	1456	591.869	43.744	3.7	12.3	1 337. 024	96.6192 .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 300	516	13.6366	1.007	•••	11427	500.284 670.178	44.510	3.8	13.1	3338-194	94.9075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 305	602	19.1741	3.417	.70	1369	634.284	46.479	4.0	9.5	1340.254	99.0579
357 76. 26.002 1.002 711 134 66.002 1.002 <th1.002< th=""> <th1.002< th=""> <th1.002< t<="" td=""><td>- 318</td><td>6.89</td><td></td><td></td><td>l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1.002<></th1.002<></th1.002<>	- 318	6.89			l							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 315	764	26.0366	1.974	1.72	1314	661.139	68.866		7.80	1341.9291	99.18£18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 320	870	30.0216	2.218	.72	1250	674.159	49.826	4.2	7.10	1342-7241	99.24124
335 34.6191 2.924 .75 12215 619.36651 6.5 5.87 134.6233 97.33705 236 3074 50.2566 3.721 .77 1115 772.595 5.46 4.6 1345.5103 91.41678 335 3164 51.535 53.45 5.426 4.64 4.41 134.6.3949 91.4578 335 1863 66.5591 4.91 .80 1109 757.994 56.123 6.0 3.79 1346.3949 91.4829 335 1865 77.4366 5.23 .82 100 77.945 56.123 6 1.4200 134.2049 94.7396 3376 3165 31.219 .50 .377 3346.3949 93.51219 -100 77.4366 5.23 .42 100.74 74.6401 6 1.4200 1350.474 94.7396 3161 10.57 79.4564 57.627 7 .9900 1350.3744 94.7396 94.2335 3170 13.52.716 .4100 774.644 57.627 7 .9900 1352.7749 <td>- 375</td> <td>975</td> <td>34.5341</td> <td>2-552</td> <td>.74</td> <td>12E D</td> <td>686.989</td> <td>50.769</td> <td>4.4</td> <td>E-50</td> <td>1343.4141</td> <td>99-29150</td>	- 375	975	34.5341	2-552	.74	12E D	686.989	50.769	4.4	E-50	1343.4141	99-29150
2.16 2.17 3.23 1.23	- 3/5	1079	39.6191	2.928	-75	11225	699.384	151.691	4.5	5.92	1344.0351	99.33740
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 248	1074	50.2356	3.721	.77	11.45	723.596	53.440	4.7	5.35	1345.1091	99.41678
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 345	3869	55.7141	4.117	.78	1159	735.314	54.346	4.9	4.47	1345.5757	99.45127
-325 1003 66.5591 4.919 .80 1109 757.994 56.023 5.0 3.79 1346.3943 94.51719 -100 3151 127 74.4366 5.723 .81 1026 779.636 57.027 7 9900 1350.079 94.62335 -375 1157 63.239 6.150 .82 1026 790.74 56.001 8 -5650 1351.374 94.62335 -375 1157 69.0641 6.567 .84 1026 790.74 56.001 8 -5650 1351.374 94.643734 94.63335 -315 1063 100.3016 7.431 80 94.756.07 910 .2410 1352.374 94.94328 -315 1048 105.7916 7.31 84 94.8274 60.622 11 .1557.35714 94.96462 -315 1149 111.5091 6.241 64 729.796 1335 .0551 1357.27914 94.96462 -315 1140 1155.016 627 1357.066 97.97758 .1357.0667 97.97758	- 350	1093	61.1191	4-517	.79	1124	746-779	55.194	4.9	4.11	1346.0049	99.48299
	• 322	1003	66.5591	4.919		1109	757.994	56-823	5.0	3.79	1346.3999	99.51719
$\begin{array}{c} .365 13122 & 77.4366 & 5.723 & .82 100 & 770.694 & 57.627 & 7 & .9900 & 1350.6791 & 94.82335 \\ .376 13121 & 6.3791 & 6.150 & .74 & 1012 & 800.419 & 59.158 & 9 & .5850 & 1351.3974 & 94.8355 \\ .376 13127 & 94.0643 & 6.567 & .84 & 1012 & 800.419 & 59.158 & 9 & .5850 & 1351.374 & 94.9372 \\ .380 1328 & 94.7566 & 7.003 & .65 & 970 & 810.434 & 59.699 & 10 & .7410 & 1352.5714 & 94.9322 \\ .395 1309 & 100.3016 & 7.413 & .84 & 94 & 670.274 & 60.627 & 11 & .1450 & 1352.5714 & 94.9456 \\ .395 1309 & 105.7916 & 7.619 & .87 & 947 & 829.799 & 61.330 & 12 & .1170 & 1352.5714 & 94.9566 \\ .395 1309 & 105.7916 & 7.619 & .87 & 947 & 829.799 & 61.330 & 12 & .1170 & 1352.5714 & 94.9566 \\ .395 1309 & 105.7916 & 7.619 & .87 & 947 & 829.799 & 61.330 & 12 & .1170 & 1352.6224 & 97.9756 \\ .405 1429 & 118.0541 & 6.725 & .94 & 90 & 466.334 & 62.700 & 14 & .0624 & 1352.6967 & 97.97756 \\ .405 1429 & 118.0541 & 6.725 & .97 & 90 & 848 & 334 & 62.700 & 14 & .0624 & 1352.6967 & 97.97756 \\ .405 1464 & 125.7366 & 9.793 & .91 & 893 & 657.329 & [3.365 & 15 & .0481 & 1352.7950 & 99.984.65 \\ .416 1774 & 134.274 & 9.928 & .91 & 872 & 646.55 & 15 & .0481 & 1352.9751 & 99.984.65 \\ .416 1774 & 134.274 & 9.928 & .91 & 872 & 964.655 & 17 & .079100 & 1352.6261 & 99.984.55 \\ .417 & 134.274 & 9.928 & .91 & 802 & 665.565 & 10 & .079100 & 1352.6751 & 99.984.65 \\ .418 1774 & 135.829 & 11.227 & .92 & 56 & 8A3.546 & 5.934 & 18 & .072100 & 1352.6751 & 99.9870 \\ .425 1633 & 160.429 & 11.458 & .94 & 47 & 992.089 & 65.555 & 20 & .01270 & 1352.6751 & 99.9870 \\ .425 1642 & 177.024 & 12.083 & .94 & 870 & 906.766 & 50 & .00178 & 1352.9154 & 99.9985 \\ .445 1972 & 195.036 & 14.415 & .97 & 932.916 & .975 & .001178 & 1352.917 & 99.9935 \\ .445 1972 & 135.2066 & 17.413 & .18 & 992 1007.109 & 74.425 & 40 & .000291 & 1352.9917 & 99.9936 \\ .476 7065 & 775.321 & 16.653 & 1.48 & 648 & 975.548 & 77.105 & 50 & .001791 & 1352.9914 & 99.9936 \\ .476 7023 & 725.321 & 16.653 & 1.48 & 648 & 975.548 & 77.105 & 50 & .0000291 & 1352.9914 & 99.9936 \\ .476 7066 & 775.321 & 16.653 & 1.48 & 975$	- 7EB	1868	71.9366	5.316	. 81	1085	768.966	56.434	6	1.4200	1349.2049	94.71950
$\begin{array}{c} 375 \\$	-365	11122	77.4366	5.723	- 6Z	1060	779.694	57.627	7	- 9900	1350.6199	49.82335
310 94,7566 7.003 .65 990 810.334,59.899 10 .7410 1352.3774 99.33928 .315 1096 100.3016 7.433 .85 962 870.274,60.622 11 .1650 1352.3714 99.43928 .315 1096 101.3016 7.433 .85 962 870.274,60.622 11 .1650 1352.3714 99.45426 .315 114 11.5093 8.241 .86 976 839.164,62.822 13 .0151 1352.6224 99.9728 .910 .485 114.5093 8.241 .86 976 839.164,62.822 13 .0151 1352.6224 99.9728 .9178 .485 1644 125.7366 9.293 .93 848 865.184 64.513 16 .037180 1352.755 99.98.98730 .418 1751 134.224 9.928 .91 848 865.184 64.534 18 .037180 1352.7559 99.94.94845 .425 1643 16.531 14.5222 .92 958 865.384 18 <t< td=""><td>- 375</td><td>1157</td><td>69.8641</td><td>6.150</td><td></td><td>1020</td><td>. / 90-3/4</td><td>59.158</td><td></td><td>- 3050</td><td>1 351.2974</td><td>99.93673</td></t<>	- 375	1157	69.8641	6.150		1020	. / 90-3/4	59.158		- 3050	1 351.2974	99.93673
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 300	1178	94.7566	7.003	. 85	1 990	810.434	59.699	10	.7410	1352.1774	99.93920
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 315	1098	100.3016	7.413	. 8t	968	870.274	60.622	11	-1650	1352.3AD4	99.95428
1400 111.0041 0.241 100 740 0.392 13 .0051 1352.024 77.760 140 125.7366 9.293 90 846.334 62.700 14 .0624 1352.0267 79.9756 .495 1644 125.7366 9.293 .90 81 846.334 62.700 14 .0624 1352.0267 79.9756 .410 1751 134.224 9.928 .91 848 866.384 64.853 16 .037180 1352.021 79.98730 .413 1774 151.029 11.222 .92 058 87.4929 64.665 17 .027100 1352.052 91.98730 .425 1693 166.73 11.058 .94 87.920 65.934 18 .012807 1352.071 9.98730 .425 1693 166.73 16.768 1352.071 9.98730 .012807 1352.071 9.98730 .425 1693 166.73 14 192.083 91.9976 .01280 1352.071 9.9763 .425 1693 16.	- 340	13 898	185.7916	7-819	1	947	829.799	161.330	12	-1170	1 352. 5714	99.96462
+1951644125.73669.243.48691657.329(2.365)15.04811352.757494.98178 $+419$ 1751134.7249.978.91848866.18464.01916.0371001352.426199.98485 $+419$ 1774143.03610.571.97846874.92964.66517.0291001352.426199.98730 -470 151.63911.222.920588A3.56465.30418.0221001352.854299.9873 -470 168.76912.473.978050.01 50965.93419.01 20011352.854299.9877 -475 168.76912.473.9780590.50965.93419.01 20011352.945499.9977 -475 168.76913.775.97803916.99967.76430.00 27711352.945499.9956 -445 195.05614.415.96767932.60964.9784.0.00 2911352.91791.99765 -455 196.77615.149.96767932.60964.9784.0.00 2911352.93793.99.97 -455 2057215.01415.6911.08.975.58477.10550.00 2911352.935793.99.97 -455 2066275.32116.6531.85648975.58472.105.00.00 29571352.936793.99.99 -455 2057215.01415.8911.08.975.584 </td <td>.488</td> <td>14 29</td> <td>118.0541</td> <td>8.725</td> <td></td> <td>976</td> <td></td> <td>62.700</td> <td>14</td> <td>.0051</td> <td>1352-6947</td> <td>99.97754</td>	.488	14 29	118.0541	8.725		976		62.700	14	.0051	1352-6947	99.97754
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$. 485	3644	125.7366	9.293	. 90	691	657.329	£3.365	15	.0481	1 357.7524	99.98178
4.15 1774 $14.3.036$ 10.571 $.97$ 8.55 874.076 874.0655 17 0.273100 1352.0201 19.98730 4.20 1747 151.029 11.227 $.92$ 058 $0.3.564$ 65.304 18 0.022100 1352.0201 99.98730 4.25 1693 160.429 11.450 $.94$ 847 992.089 55.934 19 0.012100 1352.0751 99.98730 4.25 162.79 168.769 12.473 $.95$ 837 992.089 56.934 19 0.012101 1352.0454 99.9927 4.25 1662 17.7024 12.083 $.916.909$ 66.556 20 $.015706$ 1352.9454 99.99796 4.40 105.706 13.725 $.97$ 803 916.909 67.768 30 $.002970$ 1352.9454 99.99796 4.45 197.024 12.083 $.96$ 785 97.609 63.355 35 $.001170$ 1352.9797 99.9979596 4.45 197.506 15.148 $.98$ $785.928.4766$ 56.000170 1352.9797 99.997967 4.45 295.501 15.892 107.109 74.435 68 $.000291$ 1352.9911 99.997966 4.45 275.321 16.653 1.85 668 975.584 77.105 69 69.97976 1352.9911 99.997966 4.45 275.321 16.653 1.85 668 975.584 77.105 <	. 419	1751	134.224	9.978			866-144	64.014	36		1352-7450	99. 98445
428 1747 151.829 11.222 $.92$ 058 $bA3.564$ $(5.30A)$ 18 $.022300$ 1352.8542 99.9673 475 1693 166.479 11.456 $.94$ 847 892.089 55.934 19 012607 1352.8751 99.99873 479 168.769 12.473 $.95$ 837 900.509 66.556 20 $D12607$ 1352.84751 99.99202 435 1662 17.024 12.473 $.95$ 837 900.509 66.556 20 $D1570f$ 1352.9454 99.99396 445 197.7024 12.673 $.95$ 837 900.509 66.556 20 $D01570f$ 1352.9454 99.99596 445 1975.036 14.415 $.96$ 976.764 36 $D02970$ 1352.9463 99.99765 445 1922 195.036 14.415 $.96$ 785.926 97.5684 72.105 000291 1352.9977 99.99765 452 2057 215.034 15.891 1.00 $746.975.564$ 77.105 60 000291 1352.9991 99.99366 $.478$ 2066 275.321 16.653 1.85 668 975.564 77.105 60 0000291 1352.9991 99.99946 $.478$ 2066 17.413 3.18 592 1007.109 74.435 60 00000577 1352.9991 99.99946 $.478$ 2066 17.413 3.18 592 10	-435	1774	143.036	10.571	1.92	445	874.924	64.665	17	.029100	1352-0201	99.98730
$\begin{array}{c} .472 \\ .472 \\ .473 \\ .473 \\ .673 \\ .473 \\ .673 \\ .473 \\ .673 \\ .475 \\ .475 \\ .475 \\ .475 \\ .461 \\ .4$	-420	3747	151.829	11.222	- 92	058	843.564	65.3DA	18	.072100	1352.8542	99.98973
-435 186.707 17.473 17.473 17.473 17.473 17.473 17.473 17.473 17.473 17.473 17.473 17.475	1.475	11633	368.439	11-458	1 . 24	1 147	892.089	155.934	19	.012t07	1352.4751	99.99877
4401010105,70613.725.97403916.90967.76630.0029711352.9(8394.9765-4451972195.03614.415.96765924.44964.35575.0016061352.977797.99856-4552066204.85615.148.95767932.60964.97840.0002911352.977797.99856-4552057215.01415.8911.80748940.18454.46458.0002911352.997799.9976-4552057215.01415.8911.80748940.18454.46458.0002911352.997799.9974-4782066275.32116.6531.85648975.56477.10559.0002911352.991199.99946-4782066275.32116.6531.85648975.56477.10559.0002911352.991199.9946-479235.2948235.60617.4133.18592807.10974.405108.00001651352.991199.9946-478274.4256.80118.4713.28425906.40974.404327.000007571352.991497.99979-475274.4256.80118.4713.28425906.40974.404327.000005221352.995797.9999-475274.4256.80118.9211.27428108.827.000005221352.995797.9999-4851976276.212<	1.435	lises	177.024	12.043	1.92	1 20	908-744	67.168	25	<u>+VJ.5295</u>	1 1 352- 9144	99.99596
-445 1972 195.036 14.415 .98 785 924.849 68.355 35 .001000 1352.9797 97.99458 .450 7806 784.846 15.148 .95 767 932.609 64.978 40 .000291 1352.9797 97.99458 .455 2057 215.014 15.891 1.80 748 94.0.164 49.484 58 .000291 1352.9977 99.9976 .445 275.321 16.653 1.85 648 975.584 77.105 50 .000291 1352.9927 99.99766 .445 275.321 16.653 1.85 648 975.584 77.105 50 .000291 1352.9917 99.99766 .445 275.44 235.606 17.413 3.18 592 807.109 74.435 60 .80006160 1352.9911 99.99967 .475 783 24.500 18.167 1.15 525 805.309 76.519 100 .00007570 1352.9911 99.99967 .475 7844 256.091 18.167 1.28 1		3610	145.706	13.725	.97	1 803	916.909	67.764	30	.002970	1352.9683	99.99765
	1-445	3922	195.036	14.415	1 . 25	785	924.049	68.355	35	.DEIEDE	1 352.9797	17. 79850
.478 2066 225.321 16.653 1.85 648 975.584 77.105 50 FRE:=anr 3 252.9927 79.79748 .485 2748 235.606 17.413 3.18 592 807.109 74.435 60 .8000231 1352.9927 79.79748 .485 2748 235.606 17.413 3.18 592 807.109 74.435 60 .80005160 1352.9921 99.99967 .475 7823 245.809 18.167 1.15 525 805.309 76.519 100 .0000757C 1352.9910 9.99967 .475 7844 256.091 18.921 3.28 465 9060.807 74.405 100 .0000757C 1352.9947 94.9977 94.9979 .488 2874 266.296 19.601 1.27 428 108.007 61.109 150 .00000572 1352.9947 94.9977 94.9977 .488 2874 266.296 19.601 1.27 428 108.07 150 .00000572 1352.9947 94.9977 94.9979 .485 1976 276.421 20.430 3.30 397 104.759 <	1.450	2057	215,014	15.891	1.80	767	937-609	108.978	<u> </u>		11357 0450	
.47872066 225.321 16.653 1.85 668 975.564 72.105 60 .6000160 1352.9956 40.99967 .4552248 235.606 17.413 3.18 592 207.109 74.435 60 .8000160 1352.9911 99.99967 .47872948 235.606 17.413 3.18 592 207.109 74.435 60 .8000160 1352.9911 99.99967 .4797833 245.809 18.167 3.15 525 205.309 76.519 100 .0000757C 1352.9911 99.99982 69.99979 .47577844 256.296 18.4671 3.28 4.85 2063.804 70.406 122 .000005722 1352.9957 99.99997 .488 2874 266.296 19.601 1.27 422 1083.844 70.109 150 .000005722 1352.9957 99.99997 .488 2874 276.421 20.430 3.30 397 104.759 61.652 200 .000005722 1352.9997 99.99999 .475 1352.9997 99.99999 .475 1352.9991 99.99	1					- <u></u> -	7-0-104	1				77.7778
.470 72 8007.107 .8037.107 .800 .80001560 1352.9981 19.79786 .470 72 8007.107 76.519 100 .00007570 1352.9981 19.79786 .475 754.801 18.167 1.15 525 1005.309 76.519 100 .00007570 1352.9994 99.99972 .475 754.801 18.471 1.28 426 1060.61974 128 .00000572 1352.9994 99.999972 .488 744 766.296 19.681 1.27 428 1083.864 N0.189 158 .000000572 1352.9957 99.99997 .488 745 1976 776.421 20.430 3.30 397 104.759 61.652 700 .000000572 1352.9957 99.99999 .495 1958 74.630 3.30 3.97 104.759 61.652 700 .000000165 1352.9999 99.99999 .495 1958 74.35 3.35 3.94 123.634 8.047 2550 .000000165 1352.9999 9.9999 .49599 .495	1.471	1786E 12968	225.321	16.653	1.15	668	975.584	72.105	-69		3252-3256	42. 77967
.475 7944 756.801 18.471 2.28 425 068.809 74.404 122 BDCC12/AC 1352.994 99.4994 99.4994 99.4994 99.4994 99.4994 99.4994 99.4995 1352.994 99.4994 99.4995 99.4995 99.4995 99.4995 99.4995 99.4995 99.4995 99.9994 99.9997	470	5023	245.804	18.167	6.15	572	8 807.309 h 835.30m	76.514	10.0	.00006160	3352.9983	73,97900 09,99942
.488/2874 266.296 19.681 1.27 428 1083.284 ND.189 158 .00000572:1352.9957 99.7 99.9997 .485/1976 276.421 20.430 3.30 397 104.759 61.652 200 .00000165:1352.9957 99.99999 .475 1958 296.236 21.155 1.35 356 123.634 83.047 258 .00000165:1352.9999 99.99999 .495 1958 296.236 21.155 1.35 356 123.634 83.047 258 .000000165:1352.9999 99.99999 .495 1958 296.236 21.157 1.48 337 143.869 84.331 308 .000000165:1352.9999 99.9999 .495 1942 305.766 72.594 1.45 317 157.234 65.530 408 .000000161:1352.9995 99.9999 .495 1942 315.421 73.312 9.59 788 172.734 65.439 1908 .00000000;1353.0000 100.00000 .495 192.972 315.421 73.312 9.59 788 172.734 66.439 <td>1 . 475</td> <td>2844</td> <td>256.001</td> <td>18.921</td> <td>4.20</td> <td>1425</td> <td>060.407</td> <td>78.404</td> <td>121</td> <td></td> <td>1252.9994</td> <td></td>	1 . 475	2844	256.001	18.921	4.20	1425	060.407	78.404	121		1252.9994	
-452 -750 276.421 70.430 0.30 397 104.759 61.652 200 .00000165 1352.9496 99.9999 99.9999 .455 1958 246.236 21.155 1.35 356 123.634 83.047 250 .00000165 1352.9999 99.9999 </td <td>1-12</td> <td>17876</td> <td>266.296</td> <td>19.681</td> <td>h. ?!</td> <td>428</td> <td>\$ 0 \$ 3. 244</td> <td>ND. 189</td> <td>150</td> <td>.00000573</td> <td>1352. 9997</td> <td>99.94997</td>	1-12	17876	266.296	19.681	h. ?!	428	\$ 0 \$ 3. 244	ND. 189	150	.00000573	1352. 9997	99.94997
.495 .999 .497.999 .9999 .9999 .9999	1.423	1958 -	776.421	21.155	p -30	397	1104-759	101.652	700	.00000164	1352.9996	1 99.99999
- 428 1942 305.766 72.599 3.45 312 9157.234 85.530 400	1.495	1968	296.011	21.474	h	337	8363-834	44.331	30.		3372.9799 3352.8944	44.44777
-555 1978 315.421 27-312 p.59 288 172-234 06.439 1888 .BBC08088 1353.8408 100.00808		1942	305.766	22.599	4.45	312	\$ 157.234	105.530	488	.000000011	1352. 7995	1 11. 11199
	. 535	2928	315.421	23-315	1.5	111	172.234	16.639	1000		1353.0408	100.00806

I.2 Características Principales de la Tierra

La tierra, planeta en que vivimos se encuentra aislada en el espacio, rotando sobre su eje una vez cada 24 horas y alrededor del sol una vez cada 365 días.

La tierra es de forma casi esférica ligeramente achatada en los polos y está dividida en dos hemisferios: Norte y Sur, separados por el Ecuador y cada uno de ellos dividido en dos zonas principales a diferentes latitudes como se mue<u>s</u> tra en la figura I.7. Los principales parámetros geofísicos de la tierra son^(1,2):

Radio Ecuatorial	Req	=	6	378.099	km
Radio Polar	Rp	=	6	356.631	km
Radio Medio	R	=	6	370	km
Rotación sobre su eje			23	horas, 56	5 min, 4 seg
Superficie	Area	a =	510	101 000	km ²

La tierra posee una envoltura gaseosa llamada atmósfera, que está constituída por una mezcla de gases y vapores cont<u>e</u> nidos en suspensión (O_2 , N_2 , CO_2 , H_2O , principalmente), mat<u>e</u> rias sólidas finamente divididas, así como Iones y hasta pa<u>r</u> tículas nucleares en las regiones más alejadas de la superf<u>i</u> cie terrestre. La atmósfera de la tierra protege de longitudes de onda de radiación solar dañina a las diferentes formas de vida terrestre, por ejemplo el Ozono absorbe la mayor pa<u>r</u> te de la radiación ultravioleta.

La estructura de la atmósfera, depende esencialmente de la altitud sobre el nivel del mar, su densidad decrece exponencialmente y además su composición cambia. La densidad del aire disminuye con la altitud y está relacionada con la presión, con la temperatura y en menor grado con la humedad. Por ejemplo, 1 m³ de aire a una altura de 6 km, pesa casi la mitad que en el suelo.

Figura I.7 Representación esquemática de las diferentes zonas trópicales en que se divide la tierra⁽⁷⁾

De acuerdo a la estructura térmica general de la atmós fera, ésta se puede dividir en 5 regiones principales (10).

- TROPOSFERA (0 12 km): La temperatura decrece con un gradiente medio de 1°C cada 180 m.
- ESTRATOSFERA INFERIOR (12 30 km): La temperatura se mantiene casi constante y en su parte inferior conti<u>e</u> ne al Ozono.

1

1

- 3) MESOSFERA (30 80 km): La temperatura asciende hasta un máximo que oscila alrededor de los + 80°C a los 50 55 km, y luego vuelve a descender hasta 80°C a los 80 km de altura.
- IONOSFERA (80 600 km): Se divide en varias capas (D, F1, F2, E) ^(1,6) cuyo espesor y densidad varía del
 día a la noche, según la estación del año y de la ac tividad solar y además reflejan la radiación solar de
 mayor longitud de onda.
- .5) EXOSFERA (600 1000 km): Es la región más elevada de la atmósfera y su densidad es tan pequeña, que las co lisiones entre las partículas no se producen con la frecuencia necesaria como para regresar a las regiones más bajas de mayor densidad, sin embargo para las partículas que llegan a esta región, están destinadas a caer, debido a la acción de la gravedad o a alejar se de la tierra si llevan suficiente velocidad.

I.3 Influencia de la Atmósfera sobre la Radiación Solar.

La radiación solar recibida en la superficie de la tierra es atenuada por la atmósfera terrestre, y en un día totalmente claro, la radiación solo sufre un 15% de at<u>e</u> nuación del valor original fuera de la atmósfera. La atenu<u>a</u> ción es causada por los siguientes fenómenos:

REFLEXION: Cuando la radiación solar incide en la atmósfera terrestre, parte de ella es reflejada por molécu las de aire, polvos, nubes y por la superficie de la tierra, hacia el espacio.

DISPERSION; Parte de la radiación solar extraterrestre es desviada de su dirección original en todas direc ciones por moléculas de aire, vapor de agua y ac rosoles, hasta su llegada a la superficie de la tierra, la cantidad de dispersión producida, la dirección con la cual la radiación solar es dis persada y la polarización, son funciones del ta maño de las partículas y de las longitudes de onda.

ABSORCION: Es presentada por los gases de la atmósfera y principalmente por el Ozono (O₃) en el ultravioleta, por el oxígeno (O₂), el vapor de agua (H₂O) y el dióxido de carbono (CO₂) en el infrarrojo, y por el polvo y cenizas, en las regiones Visible e Infrarroja. Este último fenómeno de absorción -(por aerosoles) recibe también el nombre de turbidez atmosférica.

La atenuación que sufre la radiación solar directa inci dente en una atmósfera seca y limpia es menor que en el caso de una atmósfera húmeda o contaminada, pues el vapor de agua, polvo y aerosoles influyen de una manera importante sobre el tipo y valor de la radiación solar final.

En la figura I.8 se muestra la distribución espectral de la radiación solar en la superficie terrestre y en la figura I.9 se muestran los valores de Reflexión, Absorción y Disper sión de la Radiación Solar incidente, a la tierra en un día claro.

Figura I.8 Curva de la Irradiancia Espectral del Sol⁽²⁾.

Figura I.9 Porcentajes de Absorción, Reflexión y disperción de la radiación solar directa que incide a la superficie de la tierra en una atmósfera de cielo claro⁽²⁾. Estos valores son típica mente para una musa de aire.
Las nubes son un factor que influye preponderantemente sobre la radiación solar incidente en la superficie terrestre, y de acuerdo a su altitud y forma, las nubes se clasifican en 3 grupos: ALTAS (8 - 12 km), MEDIAS (3 - 6 km) y -BAJAS (0.5 - 2 km), formando diferentes tipos como:

- a) CIRRUS: Nubes filamentosas o fibrosas que se encuentran en la parte superior de la tropósfera, donde las temperaturas son de 30 a 50°C bajo cero y están forma das por cristales de hielo, su espesor es mínimo y no producen sombra.
- b) CUMULOS: Son nubes redondas o globosas y son frecuen tes por la tarde en los meses cálidos, su color es -blanco, muy brillante en las partes expuestas al sol y gris oscuro en las partes sombreadas.
- c) ESTRATOS: Extendidas horizontalmente en capas de espesor uniforme y contínuo, y generalmente traen lluvia y llovizna.
- d) NIMBUS: Son formaciones densas, oscuras y confusas que constituyen por lo general un presagio de lluvia.

Dependiendo de su altitud, composición y tamaño, las n<u>u</u> bes reflejan, dispersan y absorben en mayor o menor grado la radiación solar incidente hacia la tierra. En el capítulo -III, se tratará de evaluar ésta influencia con mayor detalle.

I.4 <u>Radiación Solar Incidente en la Superficie</u> <u>de la Tierra.</u>

Se ha mencionado anteriormente que la radia-ción solar al atravesar las capas atmosféricas es sometida

a fenómenos de absorción, dispersión y reflexión, que modifican su intensidad y su distribución espectral, como se muestra en la figura I.10 dando lugar a tres tipos de radiación solar: Directa, Difusa y Global.

La radiación solar directa Ida, es aquélla que llega a la superficie terrestre como un haz unidireccional sin sufrir modificaciones substanciales a su naturaleza y se acostumbra medirla con sensores colocados sobre un plano perpendiculara los rayos del sol. La radiación solar Difusa D, está constituída por rayos omnidireccionales y llega a la tierra después de haber sufrido procesos de dispersión en las capas de la atmósfera, principalmente causados por las nubes y es medida sobre un plano horizontal. A la suma de éstos dos tipos de radiación, la directa corregida a plano horizontal más la difusa se le llama radiación global o total G, que puede tam bién ser medida directamente sobre un plano horizontal o pue de obtenerse de la siguiente expresión:

$$G = D + Idn Sen 2e$$
 (I.7)

Donde de es el ángulo de elevación solar.

A la fracción de radiación solar que nuevamente es refle jada por la tierra, se llama albedo terrestre y desempeña un papel muy importante en la determinación de los balances deenergía local y en los valores de la radiación global. El al bedo provoca cambios en la temperatura y modifica las masas de aire (10). (Que es otro efecto atmósferico que se estudiará en el capítulo II).

3.1

۰. با

Figura I.10 Tipos de radiación solar que llega a la superficie terrestre. $^{(7)}$.

1.4.1 <u>Factores que determinan la Radiación</u> Solar Instantánea.

La cantidad de radiación solar recibida por una superficie sobre la tierra depende de diversos factores que hacen variar la intensidad de la radiación directa, difusa y global, los principales factores son:

a) La época del año que depende de:

- La distancia sol tierra.
- La declinación solar (δ)
- El ángulo horario (τ)

b) Los factores geofísicos:

- Latitud (ϕ)
- Longitud (L)
- Altitud sobre el nivel del mar (A)
- La localidad (costas, ciudades, desiertos, etc)

c) Los factores meteorológicos:

- La nubosidad
- El albedo terrestre
- % de humedad

En las figuras I.11 y I.12 se representan algunos de estos factores y se da la explicación de cada uno de ellos.

I.4.2 La Radiación Solar en México

En nuestro país se han efectuado estudios s<u>o</u> bre la distribución de radiación selar global en el territorio nacional.

δ – Declinación Solar

- Angulo Es el medido en el plano ecuatorial horario: entre la proyección OP y la proyección de una linea desde el centro del sol al centro de la tierra, y está dadopor:
 - $τ = (12 TS)15^{\circ}$ en la mañana $τ = (TS - 12)15^{\circ}$ en la tarde TS es la hora del día en tiempo solar correspondiente a un tiempo medio local (TML).

Figura I.11 Representación de los ángulos δ , ϕ y τ .

- θ_s Cénit Angulo que forman los rayos del sol con respecto a la vertical local.
- $\boldsymbol{\theta}_{\mathbf{e}}$ Elevación Angulo que forman los rayos del sol con respecto a la horizontal.
- β_s Acimut Es el ángulo formado por la proyección de los rayos solares sobre el plano horizontal, medido con respecto al eje Sur.

Figura I.12 Representación de los ángulos $\theta_{\rm s}, \ \theta_{\rm e}$ y $\beta_{\rm s}$ tomando como origen el punto del observador P .

La evaluación es efectuada mediante la fotointerpretación de la nubosidad observada por los satélites meteorológi cos NIMBUS III y ESSA-8 durante tres años, de 1969-1971, los satélites reportaron los porcentajes mensuales de días despejados y parcialmente despejados, para 117 localidades de -México, representativas de una región de aproximadamente -130 km² cada una.

Los datos de nubosidad para los días señalados fueron empleados por un modelo que predice la insolación global⁽¹²⁾, media diaria (mensual y anual), y se hace notar que no son valores instantáneos.

Los resultados obtenidos por este procedimiento muestran una diferencia del 6% anual con respecto a una serie de datos experimentales de insolación del período 1969-1971, medidas en México, D.F.

Los mapas elaborados de los promedios de radiación solar global indican que las líneas de Iso-Radiación trazadas en las zonas fronterizas, se aproximan a aquéllas que han sidoobtenidas por investigadores norteamericanos con otros métodos ⁽¹³⁾, lo cual constituye una verificación del método empleado.

La figura I.13 muestra la distribución de Radiación Solar Global anual en nuestro país, y en el apéndice B, se -muestran algunos mapas de promedios mensuales.

Figura I.13 Distribución de la radiación solar global anual en nuestro país, (México).

I.5 Conclusion

El dimensionamiento de los diferentes siste mas solares requiere de los datos de Radiación Solar del lugar de implantación, por lo cual es necesario que primero entendamos la naturaleza y características de la misma.

En el presente capítulo se presentaron algunas características sobre la Radiación Solar Extraterrestre, conocien do su repartición espectral en función de la longitud de - onda.

Se mencionó también la importancia de conocer la Cons tante Solar Extraterrestre, el Tiempo Solar y su relación existente con el Tiempo Local.

Se conoció la influencia de la atmósfera sobre la Radiación Solar que incide a la tierra y los diferentes tipos de Radiación Solar que llegan a la Superficie Terrestre.

Dependiendo de la proporción entre los diferentes tipos de Radiación dependerá en gran parte de las condiciones geográficas en que se encuentre un lugar en estudio y además esta distribución para un mismo lugar dependerá de la época del año.

CAPITULO II

MODELOS MATEMATICOS DE PREDICCION

- II.1 Masa de Aire Atmosférica
- II.2 Distribución Espectral de la Radiación Solar en la Superficie Terrestre

II.2.1 Dispersión Molecular de Rayleigh

II.2.2 Absorción por el Ozono

II.2.3 Absorción del Vapor de Agua

II.2.4 Absorción por Mezcla de Gases

- II.2.5 Transmitancia por Aerosoles
- II.3 Modelos de Predicción de Radiación Solar Directa
 - II.3.1 Modelo de Allen II.3.2 Modelo de Atwater y Ball II.3.3 Modelo de Majumdar II.3.4 Modelo de Watt II.3.5 Modelo de Douglas V. Hoyt II.3.6 Modelos Bird II.3.7 Modelo de Hoyt C. Hottel II.3.8 Modelo de Moon II.3.9 Modelo de Paltridge II.3.10 Modelo de S. Bárbaro et-al
- II.4 Modelos de Predicción de Radiación Solar Difusa
 - II.4.1 Modelo de Douglas V. Hoyt

II.4.2 Modelo de S. Bárbaro et-al

II.4.3 Modelo de Robert R. Morgan et-al

II.4.4 Modelo ASHRAE

II.5 Modelos de Predicción de Radiación Solar Global

1.10

II.5.1 Modelo de Rapp y Hoffman

II.5.2 Modelo de Douglas V. Hoyt

II.5.3 Modelo de S. Bárbaro et-al

II.6 Conclusión

En el presente estudio son presentadas las propiedades de atenuación de la atmósfera, en una forma que permite calcular la irradiancia espectral en la superficie de la tierra. Posteriormente se hace el análisis de algunos modelos matemáticos de predicción instantánea de radiación solar directa, difusa y global (insolación). En estos modelos tas letras T significan Transmitancias y A significa Absortancia (a escepción de casos particulares) y los subíndices $r, o_3, w, mg, a, etc,$ son los componentes de la atmósfera influyendo sobre la transmitancia como resultado de la dispersión ó absorción de la luz solar.

En la mayoría de los modelos, las masas de aire (las que atravieza la luz solar según la hora del día) son calculadas de diferentes maneras. Nosotros utilizaremos una sola ecuación para evaluar estas masas de aire, ecuación ampliamente – aceptada en la literatura como de gran presición. Entonces, en todos los modelos, las masas de aire se calcularán con dicha ecuación. Además se hace mayor énfasis en los modelos de radi ación directa por el uso que se le dá en el estudio y diseño de plantas Helioélectricas de receptor central y en fotovolta ice en caso de usarse con concentración, pues estas solo apro vechan principalmente este tipo de radiación.

II.1 Masa de Aire Atmosférica

La cantidad de atenuación de la radiación so -lar depende exponencialmente de la trayectoria recorrida por los rayos del sol al atravezar la atmósfera, como se muestra en la figura II.1.

Se tiene que para una atmósfera homogénea en la que se desprecia el efecto de la refracción del aire:

$$m_r = \frac{1}{\operatorname{sen} \theta_e} = \operatorname{sec} \theta_e \qquad \text{II.1}$$

Donde m_r, representa la masa de aire relativa o simplemente masa de aire y θ_e , es el ángulo de elevación solar. m_r corresponde al número de atmósferas existentes entre el ob servador y el sol, tal que m_r=1 para $\theta_e=90^\circ$, m_r=2 para - $\theta_e=30^\circ$, etc.

Debido a la curvatura de la tierra la expresión II.1, no es muy precisa cuando 0_e es pequeño ($0_e < 15^\circ$); consideran do la curvatura de la tierra uniforme, como se muestra en la figura II.2, las masas de aire de una atmósfera homogénea, están dadas por la siguiente expresión.

$$m_{r} = \{ \left(\frac{R}{H} \operatorname{sen} \theta_{e} \right)^{2} + 2 \frac{R}{H} + 1 \}^{1/2} - \frac{R}{H} \operatorname{sen} \theta_{e}$$
 II.2

Donde R es el radio medio de la tierra (6370 km) y H es la profundidad del aire (8.430 km a 15°C) requeridos para – producir una presión de una atmósfera de referencia (760 –mmHg).

$$\theta_{e} = 90^{\circ} - 0_{s} \qquad \text{II.3}$$

 $\boldsymbol{\theta}_{s}$ es el ángulo del Cénit del sol y se determina por:

$$\theta_s = \cos^{-1}(\operatorname{sen}\phi \, \operatorname{sen}\delta + \cos\phi \, \cos\delta \, \cos\tau)$$
 II.4

Donde ϕ es la latitud del lugar, δ es la declinación solar y su valor diario se puede conocer por la ecuación I.2 τ es el ángulo horario en grados y se conoce por la ecuación I.8. La demostración de la ecuación II.2 se encuentra en el apéndice C.

La expresión de m_r (ecuación II.2) proporciona con una presición aceptable los valores obtenidos por Bemporat⁽¹⁴⁾ mediante radio sondeos y los proporcionados por Like⁽¹⁵⁾us<u>a</u> dos en la astronomía y en los que se toma en cuenta a la refracción del aire. Su precisión es de 5% para $\theta_e=1^\circ$ (para el sol en el horizonte m_r=34).

Figura II.2 Representación de las masas de aire m_r para una atmósfera homogénea en función del radio medio de la tierra R⁽⁹⁾.

Debido a la reducción de la masa de aire con la altitud del lugar, la presión atmosférica varía sobre todo para alti tudes mayores a los 1000 metros. En tales condiciones se aplica un factor de corrección altimétrico $\frac{Pb}{Po}$ y así se obti ene la llamada masa de aire verdadera m, también llamada masa absoluta (14) o masa de aire local (a diferencia de m_r que representa la masa de aire a nivel del mar).

$$m = m_r \left(\frac{Pb}{Po} \right)$$
 II.5

II.2 Distribución Espectral de la Radiación Solar en la Superficie Terrestre

La distribución espectral de la irradiancia solar directa I(λ), para cada longitud de onda λ (como se mu estra en la figura I.8), incidente sobre un plano perpendicu lar a los rayos del sol sobre la superficie de la tierra, está dada por la siguiente fórmula⁽¹⁶⁾.

 $I(\lambda) = Io(\lambda) \cdot Tr(\lambda) \cdot To_{3}(\lambda) \cdot Tw(\lambda) \cdot Tmg(\lambda) \cdot Ta(\lambda)$ II.6

En esta ecuación se consideran los siguientes fenómenos $Io(\lambda)$ es la irradiancia solar existente en el límite de la atmósfera terrestre, Tr, To₃, Tw, Tmg y Ta son las Transmi - tancias espectrales por dispersión molécular de Rayleigh (N₂ O₂, y otros componentes moleculares), absorción por Ozono, Vapor de agua, Mezcla de gases (Co₂, NO₂, CU₄, O₂) y absorsión y dispersión por aerosoles.

II.2.1 Dispersión Molecular de Ravleigh

La dispersión molécular de rayleigh es un coeficiente de extinción causado por Nitrógeno,Oxígeno y otros componentes moleculares contenidos en la atmósfera y

Y puede ser conocida por (17):

$$Tr(\lambda) = Exp \left\{-\frac{8\pi^2}{3} \frac{(n-1)^2}{N_1 \rho^2} \frac{P}{\lambda^4} \cdot m\right\}$$
 II.7

Donde N₁ es el número de moléculas por kg (para el aire $N_1 = 2.28 \times 10^{25}$)

ρ es la densidad del gas (para el aire ρ=1.29 kg/m³) η es el factor de refracción (para el aire η=0.00063) Ρ es la presión atmosférica (Po=10332 kg/m² al nivel del mar).

II.8

Obteniéndose:

$$Tr(\lambda) = Exp(-0.0089)^{-4}$$
.m)

II.2.2 Absorción por el Ozono

El ozono absorbe la radiación solar incidente sobre la superficie de la tierra principalmente en las llamadas bandas Hartley (17), en el rango ultravioleta de 0.18 a 0.34 µm. Dentro del rango visible de 0.44 a 0.74 µm (bandas Champpuis) el ozono produce una absorción muy débil de tal manera que la transmitancia del ozono en la trayectoria vertical a travéz de la atmósfera es (18):

 $To_{3}(\lambda) = Exp (- Ko_{3}(\lambda).L.m)$ II.9

Donde L es el espesor en cm del ozono contenido en la columna vertical, que varía con la latitud y época del año y se puede conocer mediante la tabla II.1 . Ko₃(λ) es el coeficiente de absorción espectral por cm de espesor de ozono dado en (1/cm) y sus valores son dados en la tabla II.2 - para una longitud de onda λ , que varía de 0.29 a 0.83 µm.

Lati					M	es						• • •
tud	Ene	Feb	Mar	Abr	Мау	Jun	Jul	Ago	Sep	Oct	Nov	Dic
90 N	0.33	0.39	0.46	0 42	6 39	0 74	1.32	0.30	0.27	0.26	0.28	0.30
NUN	0.34	6.40	0.46	0.43	0.40	0.36	0.33	0,30	0.28	0.27	0.29	0.31
70 N	0.34	0.40	0.45	042	0 0	0.36	0.14	0.11	6.29	0.28	0.29	0.31
60 N	0.33	6 39	0.42	0.49	C 39	0.36	47 14	9.32	$\cdots \cdot 0$	0.28	0.30	0.31
50 1	0.32	0.36	0.38	0.38	0/37	0.35	1 11	0.31	0.10	0.23	0.29	0.30
-40 N	0.30	0.32	0.33	0.34	6.34	0.33	1.31	0.30	0.55	0.27	0.25	0.29
1. 5	0.27	1. 2.	0.29	(\cdot, \cdot, \cdot)	1.20	$(\cdot, i)_i$	6 29	6.28	0.27	0.26	0 26	0.27
20 N	0.24	0.26	0.26	0.27	0.28	0 27	0.26	0.26	0.26	0.25	0.25	0.25
10 N	0.23	1:24	0.24	0.25	0.26	0.25	0.25	0.24	0.24	0.53	0.23	0.23
0	0.22	0.22	0.23	0.23	C 24	0.24	0.24	0.23	0.23	0.22	0.22	0.22
10 S	6 23	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	() 24	0.23
20/1S	0.24	0.25	0.24	0.25	C 25	0.25	0.25	0,26	0.26	0.26	0.26	0.25
30°S	0.27	0.28	0.26	0.27	0.28	0.28	0.29	0.31	0 32	0.32	0 29	0.29
40 [°] S	0.30	0.29	0.28	0.29	0.31	0.33	0.35	0.37	0.38	0.37	0.34	0.32
50 S	0.31	0.30	0.29	0.30	0.32	0.36	0.39	0.40	0.40	0.39	0.37	0.35
60 S	0.32	0.31	0.30	0.30	0.33	0.38	0.41	0.42	0.42	0.40	0,39	0.35
70° S	0.32	0.31	0.31	0.29	0.34	0.39	0.43	0.45	0.43	0.40	0,38	0.34
- 80 ° S	0.31	0.31	0.31	0.28	0.35	0.40	0.44	0.46	0,42	0.38	0.36	0.32
90 S	0.31	0.30	0.30	0.27	0.34	0.38	0.43	(1,45	0.41	0.37	0,34	0.31

Tabla II.1 Variación del espesor de ozono L (cm) A Presión y Temperatura Normal (PTN) Obtenidos por Goetz

λ	К0 ₃ і Л	Коз λ	Ко ₃ λ	Ko ₃ λ	Коз
+ 6.240	56.0.0 0.445	0.06: 0.515	0.64: 0.185	0.11e 6. 00	C. 0. 5.
0.295	20.000.0.210	0.003 0.520	0.045 0.590	0.115 0.710	C.01b
0.300	10.000 0.455	0.004 0.425	0.057 0.145	0.1.0 C. T.O	0.014
0.305	4.800,0.200	0.006-0.530	0.003 0.000	0.1.5 0.730	(.011
0.310	2.700 0.4:5	0.00: 0.135	200.0 0.005	0.170 0.700	6.610
0.315	1.35010.270	0.009 0.540	0.075 0.010	0.1:0 0.750	0.004
0.320	0.200/0.475	0.012 0.545	0.050 0.626	0.105 0.700	0.007
0.325	0.3:010.4:0	0.014 0.550	0.085 0.630	0.040 0.770	0.004
0.330	0.100.4	0.017 0.555	0.091 0.140	0.014 0.750	0.0
0.335	0.015 0.240	0.07110.560	0.103 0.650	0.017.0.740	0.0
0.340	0.010 0.244	0.025 0.565	0.110 0.110	0.0-7 000	0.0
10.345	0.01910.500	0.030.0.570	0.120 0.070	0.048 0.810	0.0
0.350	0.00210.505	0.03516.575	6.112 0.040	0.0.0.0.0.00	0.0
0.355	0.0 0.510	0.0016.000	0.120 0.650	0.025-0.030	0.0

Tabla II.2 Coeficientes de absorción espectral de ozono(18)(1/cm).

11.2.3 Absorción del Vapor de Agua

El vapor de agua absorbe la radiación solar en el rango de bandas de longitud de onda que van de 1.32 a 1.54 µm y la máxima absorción se efectúr a 1.4 µm, existe – también una débil absorción de la radiación solar en el rango de bandas de 0.85 a 0.98 µm y de 1.1 a 1.18 µm⁽¹⁷⁾. Según Me Clathey⁽¹⁸⁾ el factor de transmisión de vapor de agua en función de cada longitud de onda está dada por la fórmula – siguiente:

$$Tw(\lambda) = Exp(-\frac{0.3Kwi \cdot Xw.m}{(1+25.25Kwi \cdot Xw.m)^{0.45}})$$
 II.10

Donde Xw es la masa efectiva del vapor de agua en una columna vertical en g/cm^2 (humedad absoluta) y Kwi es el coeficiente de absorción para Xw=1 g/cm^2 . La tabla II.3 mues tra los valores de Kwi en función de la longitud de onda.

De acuerdo a los cálculos de Mc Clathey Xw está dada por:

$$X_W = 1.81 \rho_W = 0.795 W$$
 | kq/m^2 | II.11

Donde ρ_W es la densidad del vapor de agua a nivel de la superficie terrestre en kg/m³ y W es el espesor de agua condensable contenido en la trayectoria vertical de la atmósfera, medido por meteorología en cm.

En lugares donde se dispone de valores de la humedad re lativa Hr, y de la temperatura absoluta To, la densidad del vapor de agua se puede calcular mediante la siguiente expresión:

$$\rho_{\rm W} = \frac{\rm Hr \cdot Ps}{\rm R \cdot To} \qquad kg/m^3 \qquad II.12$$

Donde la constante del gas R=461.51 $\frac{N.m}{kg.^{\circ}K}$ y Ps es la presión de saturación del vapor de agua y se calcula mediante una expresión semiempírica⁽¹⁸⁾; que sólo es valida para rangos pequeños de temperatura ambiente del orden de 0°C a 50°C.

$$Ps = Exp \left(-\frac{5416}{To} + 26.23\right) N/m^2$$
 II.13

Para estimar el valor de W se utiliza la fórmula de Hann's ⁽¹⁹⁾ dada por la ecuación siguiente:

$$W = 0.17 P_{W}$$
 Cm II.14

donde P_w es la presión de vapor de agua en la superficie dada en mb y la constante 0.17 es un valor promedio anual que depende las condiciones locales. La tabla II.4 muestra la distribución geográfica del vapor de agua contenido en la atmósfera basado en datos publicados por Flohn, Valko y shand's .

II.2.4 Absorción por Mezcla de Gases

Se calcula de la misma forma que para la absorción del vapor de agua $^{(18)}$.

$$Tmg(\lambda) = Exp \left(-\frac{0.3 \text{ Kgi.Xgi.m}}{(1+25.25 \text{Kgi.Xgi.m})^{0.45}}\right)$$
 II.15

Donde Kgi=4.71 km es la longitud efectiva de la trayectoria de radiación solar a través del gas y Kgi es el coeficiente de absorción espectral del gas para una trayectoria de 1 km dado en 1/km. La tabla II.5 muestra los valores de Kgi en función de la longitud de onda.

II.2.5 Transmitancia por Aerosoles

La dispersión y absorción por los aeroso les es un fenómeno mucho más complejo de cuantificar que la dispersión molecular. Los efectos de los aerosoles dependen de sus propiedades ópticas y de sus dimensiones. La transmi-

tancia por los aerosoles es calculada usando la fórmula de Angstrom⁽¹⁸⁾:

$$Ta = Exp (-\beta \lambda^{-\alpha}.m)$$
 II.16

Donde β es el coeficiente de turbidez de Angstrom medido a una longitud de onda (λ) de 0.5 µm, se han determinado un valor de β =0.02 para una atmósfera relativamente clara -(cielo despejado) y un valor de 2=0.04 para una atmósfera turbia⁽⁵⁾. El exponente α de la longitud de onda varía se gún la naturaleza de los aerosoles y teóricamente varía de 0 a 4, y experimentalmente se han encontrado los valores de 0.5 a 3. Los valores más frecuentes de α estan en el inter valo de 0.8 $\leq \alpha \leq 2^{(20)}$, los valores más grandes son para las partículas más pequeñas e inversamente para las partículas más grandes.

Angstrom sugiere un valor de α constante de 1.3 para atmósferas de cielo claro y turbio⁽²⁰⁾. La figura II.3 muestra la absorción y extinción o dispersión de los aerosoles.

)		
Ŧ		1			1
	· · · · ·				•
0.19	0.160 -01 0.64	0.1511.40010.44	0.1/14 +66 1.70	0.1100.000.000.000	6.4.00 +03
6.20	0.2401-010.85	0.005-0211.00	00 07 1.75	0.400 +01 3.00	640.+630
0.71	0.1257 -01 0.84	0.30000.04 1.05	0.100 01 1.06	0.1.01.61.3.10	6.7.67.67
10.72	0.100-+01-0.87	6.106 (6 1.10	6.520 .01 1.25	00 +0: 3.20	0.100-+03
10.23	6.170-406-0.4%	6.270 -671.11	C +0: .L. 1. +.6	0.1.00.06 2.20	1.1.1.1.1
10.74	0.010-0110.64	0.1.0: 0111.70	0.1/05-01 1.95	0.1.0 +0740	6. 1915 . 62
0.75	6.1000-0210.90	000111.24	0.1-00-0.7.00	0.2 01 +03 3.40	C. ++ 01 +01
10.26	0.100 -00 0.91	B. 14.0= + 01 11. 10	0 0 +01 2.10	6	0 104 - 01
0.77	0.1001000.04 0.92	0.1.4.401 1.95	0	0 :0 .00 3.70	661
10.78	6. (601 -03 6.43	0.2 0: +62 1.40	6.110 ,64 7.10	0.1.00.00 3.80	C.1401+01
16.7%	0.1251-01 0.94	0. 10 1.02 1.44	0.100.000.46	0.16 - + 61 3.40	6.176.00
0.10	0. 4 0: -01 0.45	0.410 +0211.90	0.110: . 6. 7.40	6. 111 .01 4.00	C. C' U' - C.
0.61	00.10.0.14	0.1.0: .02 1.55	0.1.0: -0	0.111.05	
0.52	0.1535 +01 0.97	0.3102 +01 1.00	0.1007 0412.20	0.7.61.05	
0.63	0.+ 6 07 + 60 0.20	0.168 .01 1.15	0.1600-01 2.86	0.FC0F+04	1

Tabla	II.3	Coeficientes	de	absorción	espectral	de	vapor
		de agua, en (q/cr	3(18).			

Altit	Altitud (presión Atmosférica)		Latitud				
(bresi		didster (ca)	0°	30°	45°	60°	70°
Clíma d	cálido	o o humedo					
1000	clm	medio min max	5.0 2.0 10.0	4.0 2.0 7.0	2.5 1.0 4.0	2.0 0.7 4.0	1.8 0.7 4.0
900	cłm	medio min	3.0 1.0	1.9	1.6	1.25	1.1
800	dm	max medio min	7.0 2.0 1.0	4.0 0.5 0.7	4.0 1.0 0.4	2.0 0.8 0.4	2.0 0.7 0.2
700	clm	max medio min max	4.0 1.0 0.4 2.0	4.0 0.8 0.4 2.0	2.0 0.5 0.2 1.0	2.0 0.4 0.2 1.0	2.0 0.35 0.1 1.0
Clíma	frío	O SECO	······································				
1000	chu	medio min max	3.0 1.0 7.0	1.5 0.4 4.0	0.8 0.4 2.0	0.5 0.2 1.0	0.3 0.1 1.0
900	сłп	medio min max	2.0	1.0 0.4 2.0	0.5	0.35	0.2
800	mb	medio min max	1.0 0.4 2.0	0.6	0.3	0.2 0.1 0.7	0.1 0.05 0.2
700	chn	medio min max	0.6 0.2 1.0	$0.3 \\ 0.1 \\ 1.0$	0.15 0.1 0.4	0.1 0.05 0.2	0.05 0.02 0.1

Tabla II.4 Vapor de agua condensable W, contenido en la atmósfera (en cm de precipitación de agua) $\begin{array}{c} 0.20 & 0.300^{\circ} + 01 & 1.10 & 0.40^{\circ} + 03 & 1.40 & 0.200^{\circ} + 0.200 & 0.400^{\circ} + 03 & 3.40 & 0.440^{\circ} + 01 \\ 0.27 & 0.101^{\circ} + 00 & 1.5^{\circ} & 0.100^{\circ} + 01 & 1.95 & 0.200^{\circ} + 01 & 2.20 & 0.300^{\circ} + 0.100^{\circ} + 03 & 3.40 & 0.400^{\circ} + 01 \\ 1.25 & 0.200^{\circ} + 00^{\circ} & 1.25 & 0.145^{\circ} + 02^{\circ} & 2.10 & 0.440^{\circ} + 10^{\circ} & 2.90 & 0.140^{\circ} + 00^{\circ} & 3.40 & 0.140^{\circ} + 02 \\ 1.36 & 0.400^{\circ} + 03 & 1.26 & 0.140^{\circ} + 04^{\circ} & 2.30 & 0.140^{\circ} + 03^{\circ} & 3.00 & 0.400^{\circ} + 02^{\circ} & 3.40 & 0.400^{\circ} + 02^{\circ} & 3.20 & 0.400^{\circ} + 0.100^{\circ} + 0.100^{\circ} + 0.01^{\circ} & 0.100^{\circ} + 0.100^{\circ} + 0.01^{\circ} & 0.100^{\circ} + 0.100^{\circ} + 0.01^{\circ} & 0.100^{\circ} & 0.100^{\circ} + 0.01^{\circ} & 0.100^{\circ} + 0.01^{\circ} & 0.100^{\circ} & 0.01^{\circ} & 0.100^{\circ} & 0.00^{\circ} & 0.0$

Figura II.3 Coeficiente de atenuación por transmitancia de aerosoles α (absorción y dispersión total)⁽¹⁷⁾.

. .

II.3 <u>Modelos de Predicción de Radiación</u> Solar Directa

II.3.1 Modelo de Allen

Un modelo para captar la radiación solar directa incidente en una superficie sobre la tierra per pendicular a los rayos del sol, es propuesto por C.W.Allen⁽²¹⁾ y se describe en el siguiente cuadro:

MODELO	_	•
Idn = Io (1 - Absorción)	W/m^2	II.17
PARAMETROS		
Absorción = 0.263 $\left(\frac{W + 0.272}{W + 0.5}\right)$. m ^(alfa)		II.18
alfa = 0.367 $\left(\frac{W + 1.153}{W + 0.788}\right)$		II.19
W = Vapor de agua condensable (cm)		
Pb = Presión atmosférica local (mmHg)		

Este modelo es útil para una atmósfera de cielo despejado y limpio y fué aplicado en Inyokern California (latitud = 35.68°) en 1963 bajo las siguientes condiciones Po=760 mmHg y W=1.44 cm, los resultados obtenidos por el modelo fueron comparados con los medidos obteniéndose un error del -14.7% en el promedio anual.

II.3.2 Modelo de Atwater y Ball

Un modelo para la predicción de radiación solar directa fué publicado recientemente por Atwater y Ball⁽²²⁾ y este es una modificación de un modelo publicado anteriormente por Atwater y Brow⁽²³⁾, este último incluye una formulación para la radiación solar difusa y el efecto de la nubosidad, pero ninguno de estos aspectos es discutido en el modelo que acontinuación se muestra.

MODELO				
Idn = Io (Tmg - I)	\w) Ta	W/m ²	1	II.20
PARAMETROS				
Tmg = 1.041 - 0.15	5(m _r (949x10	$-6_{\rm Pb+0.051)}^{0.5}$	*	11.21
$\Lambda w = 0.077 (W.m_r)^0$).3 ¹			II.22
$Ta = Exp (-\alpha_o m)$)			II.23

Dode Aw es la absorción por vapor de agua y el término α_{\circ} es la profundidad óptica de banda amplia de los acrosoles (coeficiente de absorción volumétrico de aerosoles) y se determina teóricamente dependiendo de las condiciones loca les por lo que es algo difícil de determinar y se sugiere tomar el valor de τ_{a} dado por la ecuación II.53,del modelo Bird. El modelo propuesto por Atwater y Ball, fué aplicado en 50 estaciones de los Estados Unidos en 1972 dando errores de ±5 a ±30% y en 1977 fué aplicado en 35 estaciones.

El modelo es útil para una atmósfera de cielo claro.

II.3.3 Modelo de Majumdar

Un modelo para la predicción de radiación solar Directa en plano normal ha sido establecido por Majumdar⁽¹⁹⁾, este modelo es útil para condiciones de cielo claro y un contenido mínimo de acrosoles (humo y polvo),por lo que el efecto de turbidez atmosférica no se considera.

MODELO

Idn = Io((0.8644)^m . (0.8507)^{(W.m}r)^{0.25})
$$W/m^2$$
 II.24

* Atwater y Ball recientemente publicaron un ARRATA en la revista Solar Energy, Vol 23, Página 275, cambiando el coef<u>i</u> ciente 0.15 de la ecuación II.21 a 0.16.

Donde el modelo utiliza una constante solar Io=1331 W/m^2 y W se calcula por la ecuación II.14 . Este modelo fué aplicado en la India y las constantes de la ecuación fueron obt<u>e</u> nidas estadísticamente a partir de 161 mediciones de insolación precisas en tres estaciones a diferentes altitudes so bre el nivel del mar y bajo diferentes condiciones de hume dad, 94 mediciones fueron realizadas a una altitud de 0.22 km, 22 mediciones a 3.50 km y 45 mediciones a 4.13 km, las mediciones fueron analizadas por medio de regresión lineal obteniendo así las constantes del modelo.

Las precisiones de la predicción del modelo es de ±10% dentro de límites de confianza del 95% y la desviación están dar de los valores medidos es de 5.06%.

II.3.4 Modelo de Watt

Un modelo para la predicción de radiación solar Directa ha sido construído por Watt^(24,2), para condiciones de cielo claro y para cualquier localización.

MODELO		
Idn = Io.Tw.Tas.To ₃ .Tws.Tl.Tu <u>PARAMETROS</u>	w/m ²	II.25
$Tw = 0.93 - 0.033 \log(W.m_2)$	ę.	II.26
$Tas = 10^{-(0.045(\frac{Pb}{Po}.m_{1}))}$	191 1	II.27
$To_3 = 10^{-(0.0071 + 0.001 L. n)}$	n ₄)	II.28
$Tws = 10^{-(0.0095 \text{ W. m}_2)}$		II.29
$T_{L} = 10^{-T} L \cdot m_{2}^{m_{2}}$		II.30
$Tu = 10^{-T}u \cdot m_3$		II.31

Donde Tas es la transmitancia por dispersión y absorci-

On de aire seco, Tws es la transmitancia por dispersión de vapor de agua, Tl es la transmitancia por dispersión y abso<u>r</u> ción de aerosoles en la capa inferior, Tu es la transmitan cia por dispersión y absorción de aerosoles en la capa superior. De las ecuaciones II.30 a HI.31 τ_L y τ_u son los parámetros de turbidez atmosférica de banda amplia en las capas altas y bajas (profundidad optica) y se calculan mediante las siguientes ecuaciones:

$$\tau_{\rm L} = 0.6(\tau_{0.5} - 0.01W - 0.03)$$
 II.32

 $\tau_{0.5}$ es la turbidez atmosférica a una longitud de onda de 0.5µm y se tienen diferentes valores dependiendo de las condiciones atmosféricas. La tabla II.8 da los valores corres pondientes de $\tau_{0.5}$.

$$\tau_{11} = -\frac{\log \frac{100 \text{ s}}{10} - \tau_{1.} (\frac{m_2}{m_3})}{m_3}$$
II.33

Donde Iobs es la radiación solar directa observada o medida instantáneamente en las condiciones locales.

Para calcular los diferentes valores de las masas de aire m_i (i = 1,2,3,4) en función de las altitudes correspondientes a cada lugar y a cada elemento se calcula con la siguiente ecuación:

$$m_{i} = \frac{h_{2} F_{z2} - h_{1} F_{z1}}{h_{2} - h_{1}}$$
 II.34

 h_1 y h_2 son los límites inferiores y superiores donde se encuentra cada elemento y los valores correspondientes de h_i para cada elemento en una atmósfera no contaminada y de cielo claro son:

ELEMENTO	RANGO DE	ALTURAS
Contenido de polvo y vapor de agua en la capa inferior	h ₁ =0 km	h ₂ =3 km
Aire seco Contenido de polvo en la capa superior	h ₁ =0 km h ₁ =15 km	h ₂ =30 km h ₂ =25 km
Ozono	h ₁ =20 km	$h_2 = 40 \text{ km}$

El parámetro F que corresponde a la altura del elemento es calculada usando la siguiente expresión:

$$F_{zi} = ((\frac{R}{h_{i}} \cos \theta_{s})^{2} + 2\frac{R}{h_{i}} + 1)^{1/2} - \frac{R}{h_{i}} \cos \theta_{s}$$
 II.35

El modelo de Watt dado por la expresión II.25 ha sido aplicado en varias estaciones de los Estados Unidos principalmente en Albuquerque N.M y hadado variaciones con un buen grado de exactitud.

II.3.5 Modelo de Douglas V. Hoyt

La ecuación de predicción de radiación solar Directa es ⁽²⁵⁾:

MODELO	
Idn = Io (1 - Absorción) Ta.Tr W/m^2	II.36
PARAMETROS	
Absorción = $Aw + Aco_2 + Ao_3 + Ao_2 + Aa$	II.37
$Aw = 0.11 (Xw + 0.000631)^{0.3} - 0.0121$	11.38
$\Lambda_{CO_2} = 0.00235 (U_c + 0.0129)^{0.26} - 0.00075$	II.39
$\Lambda o_3 = 0.045 (I_1 + 0.000834)^{0.38} - 0.0031$	11.40

	1
$Ao_2 = 0.0075 (m)^{0.875}$	II.41
$Aa = 0.05 (g(\beta))^{m}$	LL.42
$Ta = (g(\beta))^{m}$	11.43
$Tr = (f(m))^{m}$	II.44

Donde Aco_2 es la absorción por el dióxido de carbono, Ao₃ es la absorción por el Ozono, Ao₂ es la absorción por el oxígeno y Aa por los aerosoles. En la ecuación II.39 el término U_c es la suma del Dióxido de carbono contenido en la trayectoria vertical en cm (U_c = 126 cm para masas de aire m = 1), en la ecuación II.42 el término g(ß) es una relación que varía en función de la dispersión por polvo y aerosoles y está relacionada con el coeficiente de turbidez de Angs trom β , y se obtiene de la tabla II.6, el término f(m) es otra relación que varía en función de la dispersión de aire puro y depende de las variaciones de las masas de aire como se muestra en la tabla II.7.

El modelo propuesto por Douglas V, Hoyt (25) es para un día de cielo claro y ha sido aplicado en 26 estaciones de la red piranométrica de la National Weather Service (NWS) que dispone además de los valores reales de transmisión atmosférica al medio día solar. Para 3 de estas estaciones en las que se dispone de la radiación solar directa al medio día solar y de valores de transmisión confiables, se compararon las observaciones con los cálculos del modelo. En 18 localidades fueron comparadas las insolaciones medias calculadas y medidas para días claros y en una estación fueron comparados estos valores de igual forma bajo las mismas condiciones y se encontró que lab diferencias no han sido mayores al 2.7%, valor dentro del rango de la precisión de medición (± 5%) de los piranómetros.

-1.

	٤.
β	g (β)
0.00	1.000
0.02	0.972
0.04	0.945
0.06	0.919
0.08	0.894
0.10	0.870
0.12	0.846
0.14	0.824
0.16	0.802
0.18	0.780
0.20	0.758
0.24	0.714
0.28	0.670
0.32	0.626

m	f(m)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	1.000 0.909 0.917 0.921 0.925 0.929 0.929 0.932 0.935 0.937

Tabla	II.7	Varia	ción	de	la	funció	on f	(m)	para
		aire	puro	, er	n fu 5∖	nción	de	las	masas
		de ai	re I	n (2	•				•

-: .

II.3.6 Modelos Bird

Richar Bird y Roland L. Hulstrom⁽²⁴⁾ formularon dos modelos que formalizan el uso de los modelos que se desarrollaron anteriormente. El primer modelo de predicci ón de radiación solar Directa Normal está dado por:

MODELO	
$Idn = Io(0.9662) (Tr.To_3.Tmg - Aw) Ta$	W/m ² II.45
PARAMETROS	
$Tr = Exp (-0.0903(m)^{0.84} (1+m-m^{1.01}))$	11.46
$\dot{To}_3 = 1 - 0.1611 \text{ Xo} (1 + 139.48 \text{ Xo})^{-0.30}$	35
$-0.002715 \times (1+0.044 \times 0.0003 \times 0^2)$	-1 II.47
$Xo = L.m_r$	II.48
$Tmg = Exp (-0.0127 (m)^{0.26})$	II.49
$Aw = 2.4959 \text{ Zo } ((1+79.034\text{ Zo})^{0.6828} + 6.38)$	5ZO) ⁻¹ II.50
$Zo = W \cdot r_r$	II.51
$Ta = Exp \left(-\tau_{a}^{0.873} (1+\tau_{a} - \tau_{a}^{0.7088}).m_{\mu}\right)$	0.9108 II.52
$\tau_a = 0.2758\tau_{(0.38)} + 0.35 \tau_{(0.5)}$	II.53

De la ecuación II.53 los términos $\tau_{0.38}$ y $\tau_{0.5}$ son valores de turbidez atmosférica a longitudes de onda indicadas por los subíndices.y son obtenidos en la práctica con un medidor de turbidez.

El National Weather Service (NWS) hizo mediciones de tur bidez a 0.38µm y 0.5µm respectivamente, considerando dos estados de condiciones atmosféricas, Latitud Media en Verano (LMS) y Subártico Invierno (SAW) y cada uno de estas con ran go de visibilidad V, de 23 km para una atmósfera de cielo claro y 5 km para una atmósfera turbia, ambas al nivel del mar. La tabla II.8 muetra los valores de $T_{0.38}$ y $T_{0.5}$

bajo las condiciones mencionadas.

	(L.M	S)	(SA	W)
	V=23 km	V=5 km	V=2.3 km	V=5 km
0.38	0.3469	1.1727	0.3469	1.1727
⁰ .5	0.2733	0.9243	0.2733	0.9243

Tabla II.8 Valores de turbidez atmosférica a 0.38 µm y 0.5 µm obtenidos por la NWS, bajo dos condí ciones atmosféricas.

Los valores de 1 $_0.38$ y T $_{0.5}$ han sido aplicados en varios modelos y han dado buenos resultados ⁽²⁴⁾.

El segundo modelo está dado en el siguiente cuadro.

MODELO	
$Idn = Io (0.9662) (Tmg - Aw) Ta W/m^2$	II.54
PARAMETROS	
Aw y Ta son igual a las ecuaciones II.22 y	II.23 .
$Tmg = 1.041 - 0.15 (m_r (9.368 \times 10^{-4} Pb + 0.051))^{0.5}$	II.55

Estos modelos han sido comparados contra otros modelos de predicción y han dado buenos resultados con diferencias muy pequeñas, pero no han sido comparados contra mediciones.

II.3.7 Modelo de Hoyt C. Hottel

Hottel⁽²⁶⁾ propone un modelo simple para la estimación de la radiación solar Directa normal en fun ción de la transmitancia de la radiación solar directa T_d para'un cielo claro, produciendo un error de 0.4%.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	dn = To T					
$\begin{array}{rrrr} T_{d} = a_{0} + \tilde{a}_{1} \ \mbox{Exp}^{-k} o^{-m} & (1.55) \\ \hline PARAMETROS & para un rango de visibilidad V-23 km \\ a_{0}^{*} = 0.4237 - 0.00821 \ (6 - \Lambda)^{2} & (1.59) \\ a_{1}^{*} = 0.5055 + 0.00595 \ (6.5 - \Lambda)^{2} & (1.59) \\ k_{0}^{*} = 0.2711 + 0.01858 \ (2.5 - \Lambda)^{2} & 11.60 \\ \hline PARAMETROS & para un rango de visibilidad V=5 km \\ a_{0}^{*} = 0.2539 - 0.0063 \ (6 - \Lambda)^{2} & 11.61 \\ a_{1}^{*} = 0.7678 + 0.0010 \ (6.5 - \Lambda)^{2} & 11.62 \\ k_{0}^{*} = 0.249 + 0.081 \ (2.5 - \Lambda)^{2} & 11.62 \\ \hline Factores de corrección r_{0}, r_{1} \vee r_{k} & para cada tipo de \\ clima. & \hline Tropical & 0.95 \ 0.92 \ 0.98 \ 1.02 \\ \hline Altitud Media en verano \ 0.97 \ 0.96 \ 0.99 \ 1.02 \\ \hline Verano & Subártico & 0.99 \ 0.98 \ 0.98 \ 1.01 \\ \hline Altitud Media en invierno \ 1.03 \ 1.04 \ 1.01 \ 1.00 \\ \hline El cálculo de a_{0}, a_{1} \vee k_{0} se determina por: \\ a_{0} = r_{0} \ a_{0}^{*} & I1.64 \\ a_{1} = r_{1} \ a_{1}^{*} & I1.67 \\ k_{0} = r_{k} \ k_{0}^{*} & I1.67 \\ \hline \end{array}$			W/m ²		11."	56
PARAMETROS para un rango de visibilidad V-23 km $a_0^* = 0.4237 - 0.00821 (6 - A)^2$ 11.58 $a_1^* = 0.5055 + 0.00595 (6.5 - A)^2$ 11.59 $k_0^* = 0.2711 + 0.01858 (2.5 - A)^2$ 11.60 PARAMETROS para un rango de visibilidad V=5 km $a_0^* = 0.2539 - 0.0063 (6 - A)^2$ 11.61 $a_1^* = 0.7678 + 0.0010 (6.5 - A)^2$ 11.62 $a_1^* = 0.7678 + 0.0010 (6.5 - A)^2$ 11.62 $k_0^* = 0.249 + 0.081 (2.5 - A)^2$ 11.62 Factores de corrección r_0 , r_1 y r_k para cada tipo de clima. 11.62 Tripo de clima r_0 r_1 r_k V=23 km V=5 km 10.2 Altitud Media en verano 0.97 0.98 0.99 1.02 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: $a_0 = r_0 a_0^*$ II.64 $a_1 = r_1 a_1^*$ 11.65 II.64 $k_0 = r_k k_0^*$ II.64 II.65	$r_d = a_0 + a_1 Exp^{-k}o \cdot m$				11.5	57
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PARAMETROS para un ranc	jo de vis	sibilidad	V-23 ku	ī)	
$a_{1}^{*} = 9.5055 + 0.00595 (6.5 - \Lambda)^{2}$ $k_{0}^{*} = 0.2711 + 0.01858 (2.5 - \Lambda)^{2}$ II.60 <u>PARAMETROS</u> para un rango de visibilidad V=5 km $a_{0}^{*} = 0.2539 - 0.0063 (6 - \Lambda)^{2}$ II.61 $a_{1}^{*} = 0.7678 + 0.0010 (6.5 - \Lambda)^{2}$ II.62 $k_{0}^{*} = 0.249 + 0.081 (2.5 - \Lambda)^{2}$ II.62 Eactores de corrección r ₀ , r ₁ y r _k para cada tipo de clima. Tipo de clima r ₀ r ₁ r _k <u>V=23 km V=5 km</u> Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a ₀ , a ₁ y k ₀ se determina por: a ₀ = r ₀ a ₀ [*] a ₁ = r ₁ a ₁ [*] k ₀ = r _k k ₀ [*] II.65	$a_{\Omega}^{*} = 0.4237 - 0.00821$	(6 – A) ²				58
$k_{0}^{*} = 0.2711 + 0.01858 (2.5 - \Lambda)^{2}$ II.60 <u>PARAMETROS</u> para un rango de visibilidad V=5 km $a_{0}^{*} = 0.2538 - 0.0063 (6 - \Lambda)^{2}$ II.61 $a_{1}^{*} = 0.7678 + 0.0010 (6.5 - \Lambda)^{2}$ II.62 $k_{0}^{*} = 0.249 + 0.081 (2.5 - \Lambda)^{2}$ II.65 Factores de corrección r ₀ , r ₁ v r _k para cada tipo de clima. <u>Tipo de clima</u> r ₀ r ₁ r _k <u>V=23 km V=5 km</u> <u>Tropical</u> 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a ₀ , a ₁ y k ₀ se determina por: $a_{0} = r_{0} a_{0}^{*}$ II.65 $k_{0}^{*} = r_{k} k_{0}^{*}$ II.66	$n_1^* = 0.5055 + 0.00595$	(6.5 - A)	2		11.9	59
PARAMETROS para un rango de visibilidad V=5 km $a_0^* = 0.2538 - 0.0063 (6 - A)^2$ II.61 $a_1^* = 0.7678 + 0.0010 (6.5 - A)^2$ II.62 $k_0^* = 0.249 + 0.081 (2.5 - A)^2$ II.62 k_0^* = 0.249 + 0.081 (2.5 - A)^2 II.62 Factores de corrección r_0 , r_1 v r_k para cada tipo de clima. II.62 Tipo de clima r_0 r_1 r_k V=23 km V=5 km II.62 Altitud Media en verano 0.95 0.92 0.98 1.02 Altitud Media en invierno 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: II.64 11.65 $a_0 = r_0 a_0^*$ II.65 II.66 II.66 $a_1 = r_1 a_1^*$ II.65 II.66	< = 0.2711 + 0.01858	(2.5 - A)	2		11.6	50
$a_{0}^{*} = 0.2539 - 0.0063 (6 - A)^{2}$ II.61 $a_{1}^{*} = 0.7678 + 0.0010 (6.5 - A)^{2}$ II.62 $k_{0}^{*} = 0.249 + 0.081 (2.5 - A)^{2}$ II.62 Factores de corrección r_{0} , r_{1} v r_{k} para cada tipo de clima. Tipo de clima r_{0} r_{1} r_{k} V=23 km V=5 km Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_{0} , a_{1} y k_{0} se determina por: $a_{0} = r_{0} a_{0}^{*}$ II.62 $a_{1} = r_{1} a_{1}^{*}$ II.62	PARAMETROS para un ranç	jo de vis	sibilidad	V=5 km		
$a_{1}^{*} = 0.7678 + 0.0010 (6.5 - A)^{2}$ II.62 $k_{0}^{*} = 0.249 + 0.081 (2.5 - A)^{2}$ II.63 Factores de corrección r_{0} , r_{1} v r_{k} para cada tipo de clima. Tipo de clima r_{0} r_{1} r_{k} V=23 km V=5 km Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_{0} , a_{1} y k_{0} se determina por: $a_{0} = r_{0} a_{0}^{*}$ II.62 $a_{1} = r_{1} a_{1}^{*}$ II.65	$a_{2}^{*} = 0.2538 - 0.0063$ (6	$(5 - A)^2$			11.6	51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a^* = 0.7678 \pm 0.0010$ ((5 - A	2		TT 6	50
$k_{O}^{*} = 0.249 + 0.081 (2.5 - \Lambda)^{2}$ II.63 Factores de corrección r_{O} , r_{1} y r_{k} para cada tipo de clima. Tipo de clima r_{O} r_{1} r_{k} V=23 km $V=5 kmTropical 0.95 0.92 0.98 1.02Altitud Media en verano 0.97 0.96 0.99 1.02Verano Subártico 0.99 0.98 0.98 1.01Altitud Media en invierno 1.03 1.04 1.01 1.00El cálculo de a_{O}, a_{1} y k_{O} se determina por:a_{O} = r_{O} a_{O}^{*}a_{1} = r_{1} a_{1}^{*}k_{O} = r_{k} k_{O}^{*}II.64$		2				52
Factores de corrección r_0 , r_1 y r_k para cada tipo de clima. Tipo de clima r_0 r_1 r_k V=23 km V=5 km Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: $a_0 = r_0 a_0^*$ II.64 $a_1 = r_1 a_1^*$ II.64 $k_0 = r_k k_0^*$ II.66	0					
clima. Tipo de clima r_0 r_1 r_k V=23 km V=5 km Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: $a_0 = r_0 a_0^*$ 11.64 $a_1 = r_1 a_1^*$ 11.66	Pactores de corrección	r_{0}, r_{1}	r, para	dada ti	ipo de	
Tipo de clima r_{0} r_{1} r_{k} V=23 km V=5 km Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_{0} , a_{1} Y k_{0} se determina por: II.64 a_{1} r_{1} a_{0} II.64 k_{0} r_{k} II.66	clima.	0 1	ĸ			
To $1 + 1 + k$ V=23 km V=5 km Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: $a_0 = r_0 a_0^*$ II.64 $a_1 = r_1 a_1^*$ II.65 $k_0 = r_k k_0^*$ II.66	fling de pline					
Tropical 0.95 0.92 0.98 1.02 Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: 11.64 $a_0 = r_0 a_0^*$ 11.65 $a_1 = r_1 a_1^*$ 11.65 $k_0 = r_k k_0^*$ 11.66	Tipo de clima		γ-	·····	۲.	1
Altitud Media en verano 0.97 0.96 0.99 1.02 Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: $a_0 = r_0 a_0^*$ 11.64 $a_1 = r_1 a_1^*$ 11.64 $k_0 = r_k k_0^*$ 11.64	Tipo de clima	V=23 kr	r _o n V=5 km	r _l	r _k	T
Verano Subártico 0.99 0.98 0.98 1.01 Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: II.64 $a_0 = r_0 a_0^*$ II.64 $a_1 = r_1 a_1^*$ II.65 $k_0 = r_k k_0^*$ II.66	Tipo de clima Tropical	V=23 kr	r _o n V=5 kn 0.92	r ₁ 1 0.98	r _k 1.02	
Altitud Media en invierno 1.03 1.04 1.01 1.00 El cálculo de a_0 , a_1 y k_0 se determina por: $a_0 = r_0 a_0^*$ $a_1 = r_1 a_1^*$ $k_0 = r_k k_0^*$ II.60	Tipo de clima Tropical Altitud Media en verano	V=23 kr 0.95 0.97	r ₀ m <u>V=5 km</u> 0.92 0.96	r ₁ 0.98 0.99	^r k 1.02 1.02	
El cálculo de a_0 , a_1 y k_0 se determina por: $a_0 = r_0 a_0^*$ $a_1 = r_1 a_1^*$ $k_0 = r_k k_0^*$ II.60	Tipo de clima Tropical Altitud Media en verano Verano Subártico	V=23 kr 0.95 0.97 0.99	r ₀ m <u>V=5 km</u> 0.92 0.96 0.98	r ₁ 0.98 0.99 0.98	r _k 1.02 1.02 1.01	
$a_{0} = r_{0} a_{0}^{*}$ $a_{1} = r_{1} a_{1}^{*}$ $k_{0} = r_{k} k_{0}^{*}$ II.60	Tipo de clima Tropical Altitud Media en verano Verano Subártico Altitud Media en invierno	V=23 kr 0.95 0.97 0.99 1.03	r ₀ <u>N V=5 kn</u> 0.92 0.96 0.98 1.04	r ₁ 0.98 0.99 0.98 1.01	r _k 1.02 1.02 1.01 1.00	
$a_1 = r_1 a_1^*$ 11.65 $k_0 = r_k k_0^*$ II.66	Tipo de clima Tropical Altitud Media en verano Verano Subártico Altitud Media en invierno El cálculo de a _o , a ₁ y	$\frac{V=23 \text{ km}}{0.95}$ 0.97 0.99 1.03 y k _o se	r ₀ n <u>V=5 km</u> 0.92 0.96 0.98 1.04 determin	r ₁ 0.98 0.99 0.98 1.01	rk 1.02 1.02 1.01 1.00	
$k_{o} = r_{k} \frac{k^{\star}}{o} $ II.60	Tipo de clima Tropical Altitud Media en verano Verano Subártico Altitud Media en invierno El cálculo de a _o , a ₁ y a ₀ = r ₀ a [*] ₀	V=23 km 0.95 0.97 0.99 1.03	r ₀ <u>N V=5 km</u> 0.92 0.96 0.98 1.04 determin	r ₁ 0.98 0.99 0.98 1.01	rk 1.02 1.02 1.01 1.00	64
	Tipo de clima Tropical Altitud Media en verano Verano Subártico Altitud Media en invierno El cálculo de a_0, a_1 $a_0 = r_0 a_0^*$ $a_1 = r_1 a_1^*$	$\frac{V=23 \text{ km}}{0.95}$ 0.97 0.99 1.03 $\frac{1.03}{2}$	r ₀ <u>V=5 km</u> 0.92 0.96 0.98 1.04 determin	r ₁ 0.98 0.99 0.98 1.01	rk 1.02 1.02 1.01 1.00 II.00	64

Las constantes a_0 , a_1 y k_0 son funciones de la altitud sobre el nivel de mar de la turbidez atmosférica (rango de visivilidad) y del tipo de clima. La figura II.4 muestra las variaciones de las constan – tes a_0^* , a_1^* y k_0^* en función de la altitud sobre el nivel del mar y la figura II.5 muestra el comportamiento gráfico de la transmitancia de radiación solar diracta T_d en función de las masas de aire y de la altitud.

II.3.8 Modelo de Moon

El modelo presentado por p.moon (21,27) calcula la radiación solar para una atmósfera limpia para cualquier localización, y para cualquier contenido de vapor de agua, ozono y polvo contenido en la atmósfera. las constan tes del modelo han sido calculadas bajo las siguientes cond<u>i</u> ciones:

> $p_0 = 760 \text{ mmhg}$ W = 0.20 cm $d = 300 \text{ Partículas/cm}^3$ (contenido de aerosoles) L = 0.28 cm

La ecuación del modelo es la siguiente:

MODELO

Idn =
$$I_0(0.183 \text{ Exp}(-m/0.48) + 0.715 \text{ Exp}(-m/4.15) + 0.102)$$
 W/m² II.67

Este modelo ha sido comparado con los modelos de Allen, Gates y Paltridge $\binom{(21)}{y}$ y sus resultados son muy aproximados a ambos, pero no ha sido comparado con datos experimentales por lo que su validación no es del todo satisfactoria.

Figura II.5 Relación de la transmitancia solar directa T con las masas de aire m, para tres Altitudes con rango de visibilidad de 23 km⁽²⁶⁾.

11.3.9 Modelo de Paltridge

Paltridge $\binom{(21)}{2}$ propone un modelo para el cálculo de rediación solar directa, para una atmósfera de cielo claro (cuando el coeficiente de turbidez β sea menor que 0.2) y solo depende del ángulo de elevación θ_{α} .

MODELO

 $Idn = Io (1 - Exp(-0/13.13^{\circ})) W/m^2$ II.68

Este modelo utiliza una constante solar Io = 1030 W/m^2 y ha sido comparado con los modelos de Getes, Moon y Allen y sus resultados son muy aproximados a los valores obtenidos por estos modelos.

El interés por este modelo es la sencilles del calculo pero necesita de su validación experimental.

II.3.10 Modelo de S.Parbaro et.al

Los autores ⁽²⁸⁾ describen un modelo de pre dicción de radiación solar directa, basado en el modelo atmosférico de Cole´s. este modelo es útil para un cielo tur bio, e incorpora de una manera simple los efectos de los pro cesos de atenuación (absorción y dispersión) de la radiación solar en la atmósfera y además forma parte de un metodo para el cálculo de radiación solar difusa el cual de describirá posteríormente.

El modelo de S.Barbaro et.al de describe en el siguiente cuadro:

MODELO

 $Idn = Ion \{ Exp(A_1 + B_1W - A_3(d - 400)) \}$

Exp (- $(A_2 + B_2W + B_3(d - 400))$ m)} W/m² 11.69 PARAMETROS

Ion esta dada por la ecuación I.6 (capitulo I)

Los coeficientes de A y B tienen los valores sigui entes.

 $\Lambda_1 = -0.13491 \qquad \Lambda_2 = 0.13708 \qquad \Lambda_3 = 0.368 \times 10^{-4}$ $B_1 = -0.00428 \qquad B_2 = 0.00261 \qquad B_3 = 1.131 \times 10^{-4}$

Este modelo fue propuesto en 1978 y sus resultados fueron comparados con datos experimentales del periodo de 1970 a 1974 obtenidos por el Instituto de Hidraulica Agraria de la Universidad de Palermo Italia, dando una desviación media no mayor al 10% . d es el número de particulas/ cm³.
11.4 <u>Modelos de Predicción de Radiación</u> Solar Difusa

II.4.1 Modelo de Douglas V. Hoyt

Douglas V. Hoyt⁽²⁵⁾ propone también un modelo teórico para obtener la radiación solar Dífusa incidente en una suparficie horizontal a partir de la ecuación siguiente.

 $\frac{\text{MODELO}}{\text{D} = \text{Io} (1 - \text{Absorción}) \{(1 - \text{Tr})0.5 + (1 - \text{Ta})0.75\} \text{Cos0}_{\text{s}} \\ ----- W/m^2 II.70 \\ \frac{\text{PARAMETROS}}{\text{Absorción}} \\ \text{Absorción} \quad \text{está dada por la ecuación II.37} \\ \text{Ta y Tr son igual a las ecuaciones II.43 y II.44} \end{cases}$

El modelo mostrado es útil para una atmósfera con cielo claro y ha sido aplicado junto con el modelo de radiación solar directa propuesto por el mismo Hoyt dado por la ecua ción II.36, a las mismas estaciones y bajo las mismas condiciones.

II.4.2 Modelo de S.Barbaro Et.Al

La radiación solar difusa instantánea med<u>i</u> da sobre una superficie horizontal puede ser calculada por la siguiente relación propuesta por S.Barbaro⁽²⁸⁾.

MODELO		
D = Kz ($Iwz - Idn$)	W/m^2	11.71
PARAMETROS		
$Kz = 0.5 \cos^{1/3}(0_s)$		TT.72
Iwz = Ion(0.938 Exp(-0.0154))	m.W))+ 0.004(m.W) ^{2.1}	
$-1.1086 \times 10^{-5} (m.W)^{3}$		
+ (121.948(1 + m.W))/	$(1 + 10 (m.W)^2) W/m^2$	II.73
Ion esta dada por la ecuaci	ón I.6 (Capitulo I)	
Idn es dada por la ecuación	11.69	

Kz es un coeficinte empírico que depende de la altitud solar.

Iwz es la radiación solar directa instantánea en ausencia de la dispersión y solo depende de la absorción atmosférica que se debe principalmente al vapor de agua.

El modelo propuesto ha sido aplicado bajo las mismas condiciones del modelo de radiación solar directa propuesto por s.barbaro dado por la ecuación II.69.

II.4.3 Modelo de Robert R. Morgan Et.Al

El modelo propuesto por Morgan Et.Al⁽²⁾es utilizable en una atmósfera de cielo claro y turbio o brumoso y esta basado en 7 principales componentes de la atmósfera como se muestra en la figura IT.6.

La ecuación que se propone se muestra en el siguiente cuadro.

MODELO $D = Io \{0.8 A_{s}(1+A_{q}(A_{s}+0.7 S_{c}))(1-0.7 S_{c})(1+sen\theta_{c})^{1/2}$ + 0.5 $\alpha_{sc} (\Lambda_{q} (\Lambda_{s} + 0.7S_{c})) (1 - 0.7 S_{c}) sen \theta_{c}$ + 0.5 A (1 - S) $sen\theta_{c}$ + 0.3 $a_{sc} S_{c} (1-S_{c}^{4}) (sen \theta_{e})^{1/2}$ W/m^2 11.74 PARAMETROS $A_{s} = \alpha_{sc} (1 - 10^{-(0.003(\frac{Pb}{Po}) + 0.001W + 0.4T)})$ II.75 $\alpha_{sc} = (0.93 - 0.033 \log W) 10^{-(0.006 (pb/po))} + 0.4T)$ **II.76** $T = \tau_L + \tau_U$ II.77 $A_{\mathbf{q}}$ es el albedo causado por la superficie terrestre y tiene los siguientes valores en función del lugar geográfico:

Bosque	0.03	•	0.1
Campo Silvestre	0.03		0.2
Desiertos	0.2		0.3
Campo de Nieve	0.7	-	0.8
Bosque con Nieve	0.3	-	0.5
Ciudades	0.1		0.3

- A es el albedo causado por el cielo, y los valores de reflexión para un cielo claro son de un 5 a un 9% dependiendo de la altitud, vapor de agua y turbidez atmosférica.
- S_c es la capa o espesor del cielo verdadoro y está dado por:

 $S_c = 1 - %$ de claridad del brillo del sol (sunshine) Componentes de la radiación solar Difusa.

- (1) difusión por cielo claro.
- (2) primera reflexión por cielo claro del primer término difuso despues de la reflexión por el suelo.
- (3) primera reflexión por nubes del primer término difuso despues de la reflexión por el suelo.
- ('4) término reflejado por el cielo del término directo de la reflexión por el suelo.
- (5) término reflejado por las nubes del término directo de la reflexión por el suelo.
- (6) término circumsolar (seguido por el sol).

Figura II.6 Componentes que influyen en la radiación solar Difusa del modelo propuesto por Morgan et.al⁽²⁾.

T es la Turbidez total causada por el polvo en la capa superior (τ_u) e inferior (τ_L), las cuales se conocen por las ecuaciones II.32 y II.33. Generalmente τ_u es de 0.02 para un cielo claro.

De la figura TI.6 el componente Λ_c es la reflexión por nubes y se sugiere un valor de 0.2 para nubes Tenues y un valor de 0.6 a 0.8 para nubes gruesas. El modelo propuesto or Morgan utiliza un valor de 0.7 .

II.4.4 Modelo ASHRAE

La "American Society de Heating Refrigeratión and Air conditioning Engineers" (ASHRAE) ⁽³⁰⁾ publicó un modelo simple para la estimación de la radiación solar difusa captada en una superficie horizontal y en plano inclínado. Este método es útil para condiciones de cielo claro y además solo es aplicable para localizaciones en el hemísferio norte.

8
79
30
5

Los valores de A, B y C varían durante el año por los cambios de polvo, vapor de aqua contenido en la atmósfera y por la distancia sol - tierra. Estos valores son promedios mensuales tomados los días 21 de cada mes y están dados en la tabla II.9.

	where the statement was been and the statement of the						
Mes	IO ₂ (W/m ²)	EQT (min)	ð (grad)	\dot{A} (W/m ²)	В	С	
Ene	1395.611	-11.2	-20.0	1229.47	0.142	0.058	
Feb	1384.262	-13.9	-10.8	1213.71	0.144	0.060	
Mar	1363.456	- 7.5	0.0	1185.34	0.156	0.071	
Abr	1340.758	+ 1.1	+11.6	1134.90	0.180	0.097	
Мау	1320.582	+ 3.3	+20.0	1103.37	0.196	0.121	
Jun	1309.863	- 1.4	+23.45	1087.61	0.205	0.134	Ξ
Jul	1311.124	- 6.2	+20.6	1084.46	0.207	0.136	
Лgo	1324.050	- 2.4	+12.3	1106.52	0.201	0.122	
Sep	1344.541	+ 7.5	0.0	1150.66	0.177	0.092	
Oct	1366.924	+15.4	-10.5	1191.64	0.160	0.073	
Nov	1387.730	+13.8	-19.8	1220.01	0.149	0.063	
Dic	1398.44	+ 1.6	-23.45	1232.62	0.142	0.057	
<u>,</u>							

Tabla II.9 Intensidad de la radiación solar extraterrestre y datos relacionados por los primeros 20 días de cada mes tomados en el año de 1964⁽³⁰⁾.

II.5 <u>Modelos de Predicción de Radiación</u> Solar Global

II.5.1 Modelo de Rapp y Hoffman

La intensidad de radiación global captada en una superficie horizontal puede der predicha por un modelo de insolación propuesto por Rapp y Hoffman⁽²⁹⁾ el cual ha sido aplicado en diferentes lugares de los Estados Unidos el paso Texas, Fort Worth Texas, fort Hood Texas y Albuquerque Nuevo México. El modelo predice valores instant<u>a</u> neos y para un cielo claro.

_	MODELO	
	$G = I_H F_I W/m^2$	
	$I_{\rm H} = \{ \Lambda_1 + \Lambda_2 \text{sen} (180 - \frac{D_s}{365}) + \Lambda_3 \text{ Ex}$	$xp(-A_4(D_s - A_5)^2)$
	$x \{ \cos((TS - 12)(A_6 - A_7 d_s)) \}$	} II.82

D_s es el día del año solar (de 1 a 365 días) contando a partir del día 21 de diciembre y se puede conocer mediante las siguientes ecuaciones:

 $D_s = (N + 11) - 365$ del 21 al 31 de diciembre $D_s = \cdot (N + 11)$ del 1 de enero al 20 de diciembre

d_s es el menor múmero de días transcurridos o por transcurrir referidos al día 1 del año solar (21 de diciem bre) y se puede coner mediante las ecuaciones siguientes:

 $d_s = D_s$ del 21 de diciembre al 21 de junio $d'_s = 365 - D_s$ del 22 de junio al 20 de diciembre. Los valores de $A_1 \neq A_2$ son determinados principalmente por la latitud del lugar y para latitudes altas Λ_2 se incremente mientras que Λ_1 disminuye. Los parámetros Λ_6 y Λ_7 son valores promedio para los 4 lugares en los que fué aplicado el modelo tomando los siguientes valores:

$$\Lambda_6 = 0.34$$
 y $\Lambda_7 = 0.00056$

los valores de las otras constantes son dados en la tabla II.10.

 F_{I} es un factor empírico que depende del % de nubosidad C, contenido en la atmósfera y del rango de visibilidad V, a diferentes altitudes.

a).-
$$V \ge 11 \text{ km}$$

 $F_{I} = 1.008 - 0.0008C - 0.008 \text{ Exp}^{0.039C}$ II.83
b).- $10 \ge V \ge 6 \text{ km}$
 $F_{I} = 0.97 - 0.002C - 0.01 \text{ Exp}^{0.39C}$ II.84
c). $V \le 5 \text{ km}$
 $F_{I} = 0.15$ II.85

Para un rango de visibilidad ilimitado V \ge 11 km F_{I} varía gradualmente de 0.91 a 1 con una capa de nubosidad de 0 a 50%, estas funciones son dadas en la figura II.7.

El modelo propuesto por Rapp y Hoffman predice con una desviación estandar de ±5% con respecto al medido.

II.5.2 Modelo de Douglas V. Hoyt

Hoyt (25) también propone un modelo de predicción de radiación solar global captada sobre una superficie horizontal y es simplemente la suma algebraica de la radiación solar directa corregida a plano horizontal más la difusa (ver párrafos II.3.5 y II.4.1) y ha sido aplicado bajo las mismas condiciones que se mencionaron en dichos párrafos.

Localización T	El Paso	Albuquerque	Ft.Hcod	Ft.Worth
(Langleys/hr)	56	53	52	54
(Langleys/hr)	34	39	35	30
$\frac{2}{3}$ (Langleys/hr)	9	7	0	9
3 A	0.0009	0.0009		0.0009
، ۲.	123	123		123

Tabla II.10 Constantes de la ecuación II.82, que dependen de la Latitud,Altitud y Humedad⁽²⁹⁾. 1 Langley/hr = 11.638733 W/m²

١,

MODELO		
$G = Idn \cos\theta_{s} + D$	W/m^2	11.86
Donde:		
Idn está dada p	por la ecuación II.36	
D está dada po	or la ecuación 11.70	

Las diferencias entre la predicha y la medida no han sido mayores al 2.7% .

II.5.3 Modelo de S.Barbaro Et.Al

Como en el caso anterior el modelo de S.Barbaro⁽²⁸⁾se obtiene como :

 $\frac{\text{MODELO}}{\text{G} = 1 \text{dn} \cdot \cos \theta_{s} + D} \qquad \text{W/m}^{2} \qquad \text{II.87}$ En donde Idn se conoce mediante la ecuación II.69 D se conoce mediante la ecuación II.71

El modelo ha sido aplicado bajo las mismas condiciones que ha sido aplicado el modelo de radiación solar directa y Difusa propuesto por el autor, dando una desviación media no mayor al 10%.

II.6 Conclusion

En este capítulo se presentaron 10 modelos de predicción instantánea de radiación solar directa, 4 de radiación solar difusa y 3 de radiación solar global.

Se hizo énfasis en los modelos de radiación solar direc ta, pues es este tipo de radiación la que puede aprovecharse en el caso de las plantas helioeléctricas, de receptor central y en el fotovoltaico en caso de usarse con concentra ción, siendo estos dos sistemas los estudiados actualmente en el IIE.

De los modelos podemos decir que son de mayor interés aquéllos que fueron validados experimentalmente (como el de Allen, Douglas V. Hoyt, S. Bárbaro, Rapp y Hoffman, etc).

Es también importante considerar la complejidad matemá tica de los modelos y la accesibilidad a la estimación de los parámetros que involucran, pues en general será necesario un ajuste de los mismos, para cada lugar geográfico endonde se pretendan aplicar.

Derivado de lo anterior, se presentan necesidades muy variadas, como la de instrumentación requerida para medir los diferentes tipos de radiación solar directa, difusa y global, así como para la medición de algunos parámetros meteorológicos.

Es muy importante considerar este tipo de necesidades, pues no siempre se podrá disponer del instrumental requerido y este criterio también influirá en la selección de los mod<u>e</u> los más viables a estudiar.

1.5

CAPITULO III

MEDICION DE VARIABLES METEOROLOGICAS Y DE INSOLACION

III.1 Definición de Términos

III.2 Mediciones Meteorológicas

III.2.1	Temperatura Ambiente
III.2.2	Presión Atmosférica

III.2.3 Humedad Relativa

III.2.4 Precipitación Atmosférica

III.2.5 La Nubosidad

III.3 Mediciones de Insolación

III.3.1 Radiación Solar Directa

III.3.2 Radiación Solar Global

III.3.3 Radiación Solar Difusa

III.3.4 El Albedo Terrestre

III.4 Aspectos a Considerar al Efectuar las Mediciones

III.5 Consideraciones Sobre los Parámetros Meteorológi cos Empleados

III.6 Mediciones en las Instalaciones del IIE

III.7 Conclusión

١,

.

En este capítulo se presenta un estudio sobre mediciones de variables meteorológicas y de insolación. Dadas las grandes perspectivas que ofrèce la conversión fototérmica y fotovoltaica de la radiación solar, como sustituto y/o complemento de las fuentes convencionales de energía que cada día son más escasos y costosos, conocer cuantitativamente este récurso del país se hace cada vez más necesario.

III.1 Definición de Términos

LEGIBILIDAD, éste término indica la facili dad con la cual puede leerse la escala de un instrumento.

Se entiende por DISCRIMINACION a la menor diferencia entre dos indicaciones que se puedan detectar en la escala del instrumento. Tanto la legibilidad como la discriminación dependen de la longitud de la escala del espaciamiento de las graduaciones, del tamaño del indicador (o pluma si se utiliza un graficador) y de los efectos de paralaje.

La SENSIBILIDAD es la capacidad del instrumento para de tectar cambios pequeños en el valor de la variable medida.

Se dice que un instrumento presenta histéresis cuando para un mismo valor de la excitación, existe una diferencia en las lecturas debida a que el proceso de medición se haya realizado en forma ascendente o descendente. La histéresis puede ser el resultado de fricción mecánica, efectos magné ticos, deformación elástica o efectos térmicos.

La EXACTITUD de un instrumento, indica la desviación de la lectura respecto a una entrada conocida. Comúnmente la exactitud se expresa como un porcentaje de la lectura a escala plena.

La PRECISION de un instrumento indica la habilidad para reproducir las lecturas con una exactitud dada.

La exactitud puede mejorarse por medio de la calibración pero no más allá de la precisión del instrumento $^{(31)}$.

III.2 Mediciones Meteorológicas

La meteorología es una ciencia que estudia la atmósfera y sus fenómenos y especialmente el tiempo y su predicción.

Las variaciones de temperatura, humedad del aire, presión atmosférica, nubosidad, lluvia y demás fenómenos atmos féricos fueron conocidos empíricamente por el hombre desde los tiempos más primitivos, y la observación distemática de los mismos pudo ser comenzada hasta que fueron avanzando las más remotas civilizaciones.

En la actualidad la meteorología es una ciencia muy ex tensa que desde el punto de vista teórico, está estrechamen te relacionada con la física, la química, la estadística, la geofísica y la oceanografía. Desde el punto de vista de aplicaciones presta su ayuda a la geografía, la botánica, la minerología, la agricultura, la industria, la medicina, la marina, la aeronaútica, la aerología, el turismo y la eco nomía.

Como teoría puede dividirse en dos ramas principales, que son:

- La Dinámica, se ocupa de los movimientos de la atmósfera del calor y de la humedad de la misma.
- 2).- La Física del aire o Meteorología Física, abarca el estudio de la radiación solar, de la irradiación terrestre, de la temperatura, de la evaporación, de la conden sación, de las nubes, de las precipitaciones (lluvia,nieve y granizo) etc, así como también de los fenómenos acústicos, ópticos y eléctricos de la atmósfera. Son muy crecientes y variadas las aplicaciones de la -

meteorología, pero principalmente es útil para la predicción del tiempo, tomando en cuenta que la variación diaria y anual de las condiciones meteorológicas depende de la radiación solar, de la época del año y de los factores geográficos.

III.2.1 Temperatura Ambiente

Ya hemos explicado con anterioridad que la radiación solar es absorbida por la atmósfera en una pequeña porción, y que el resto de ella llega hasta la superf<u>i</u> cie de la tierra que la recibe y la transforma en calor.

Este calor a su vez, se transmite hacia las capas profundas de la tierra o del agua y se radía hacia el aire.

Las transmisiones en cada elemento se realizan principalmente por estos medios: En la tierra por CONDUCTIVIDAD, en el agua por conductividad y además por CONVECCION y TURBU LENCIAS y en el aire por éstos tres medios y por radiación.

El fenómeno de convección se presenta en el aire, por ejemplo cuando se calienta una superficie que lo limita entonces las partículas calientes, ascienden por ser más lig<u>e</u> ras, y las frías descienden, las cuales a su vez, se calien tan y también ascienden, ésto produce una serie de corrien tes de origen térmico, mediante las cuales se va transmitien do el calor por toda la masa de aire, elevando su temperatu ra.

El termómetro por expansión de líquido, es uno de los dispositivos más comunes para medir temperatura⁽³²⁾ como se muestra en la figura III.1, la parte inferior del termómetro consta de un bulbo que contiene la mayor parte del líqui do que se expande a medida que se calienta y asciende por el tubo capilar, en el cual se ha marcado una escala apropiada que proporciona el valor de la temperatura.

Los líquidos generalmente utilizados para esta aplica-

ción son alcohol y mercurio. El alcohol tiene la desventaja de poseer mayor coeficiente de expansión que el mercurio y su uso se limita a mediciones de baja temperatura, pues su punto de ebullición es bajo 66°C, por otro lado, el mercurio no puede utilizarse a temperaturas menores que las de su pun to de fusión - 38.5°C. Las dimensiones del tubo capilar d<u>e</u> penden del tamaño del bulbo del líquido empleado y del rango deseado.

Las escalas de temperatura más usuales son la Fahren heit y la Celsius. Estas escalas se obtienen al dividir en un número de partes iguales, el intervalo de temperatura com prendido entre los puntos de fusión y ebullición del agua a la presión atmosférica estandar.

La escala centigrada asigna 100 unidades entre ambos puntos, mientras que la Fahrenheit asigna 180 unidades. La escala centigrada absoluta recibe el nombre de escala Kelvin mientras que la escala Fahrenheit absoluta se denomina Rankine, el cero en ambas escalas absolutas representa el mismo estado físico, además el cociente de dos valores de tempera tura equivalentes en ambas escalas es el mismo independient<u>e</u> mente de la escala utilizada, es decir:

$$\begin{pmatrix} \frac{T_2}{2} \end{pmatrix} = \begin{pmatrix} \frac{T_2}{2} \end{pmatrix}$$

T₁ Rankine T₁ Kelvin III.1

El punto de ebulhición del agúa se considera como 100° en la escala centígrada, y 212°en la escala Fahrenheit. La relación entre ambas escalas se muéstra en la figura III.2, o bien se obtiene de las siguientes relaciones:

$$^{\circ}F = 32.0 + \frac{9}{5} ^{\circ}C$$

 $^{\circ}R = \frac{9}{5} ^{\circ}K$
 $^{\circ}R = ^{\circ}F + 459.69$
 $^{\circ}K = ^{\circ}C + 273.16$

III.2

bulbo de seguridad tubo capilar tubo de vidrio bulbo sensor de temperatura

Figura III.2 Relación entre la escala Fahrenheit y la Centigrada.

Para observar la temperatura constantemente se recurre a medios mecánicos y eléctricos. El termógrafo, es un instrumento que registra contínua y precisamente la temperatura del aire, del agua o del suelo, está formado por una caja me tálica y opera con un bulbo capilar lleno de mercurio cuya expansión y contracción se convierte en movimiento mecánico por medio de una unidad sensible consistente en un tubo de -Bourdón.

Este movimiento mecánico acciona una pluma que escribe sobre una banda de papel enrrollada a un tambor que da una vuelta diaria o cada semana, mediante un aparato de relojería.

Otro método para medir la temperatura ambiente o del aire consiste en colocar un termómetro o termógrafo en el centro de una casilla de madera (garita) cuya función es la de aislar de la radiación, procurando que el aire exterior circule libremente por la casilla poniéndose en coutacto con el termómetro o termógrafo.

La temperatura experimenta cambios en cada capa de aire del suelo hasta 1.50 - 2 metros de altura los valores varían y a partir de esta altura hasta aproximadamente 10 metros de elevación escasi constante. Por esta razón se ha establecido situar todos los termómetros a 1.50 m., del nivel del suelo.

II1.2.2 Presión Atmosférica

La presión es la fuerza por unidad de área que ejerce un fluído sobre una envolvente. La presión absoluta se refiere al valor absoluto de la fuerza que por unidad de área ejerce un fluído sobre una pared. La presión manométrica representa la diferencia entre la presión absoluta y la presión atmosférica local. El vacío parcial repre senta la cantidad excedente de la presión atmosférica sobre la presión absoluta. A partir de estas definiciones vemos -

que la presión absoluta no puede ser negativa y que el vacío no puede ser mayor a la presión atmosférica local. Los tres términos definidos se ilustran gráficamente en la tigura --III.3

Para nuestro propósito definiremos a la presión atmosfé rica como la fuerza por unidad de área que ejerce la masa de aire (N_2, O_2, CO_2, H_2O) que rodea la tierra, sobre el nivel del suelo. Es de importancia mencionar que la presión atmos férica local depende de muchas variables, siendo las más im portantes, la elevación sobre el nivel del mar, la velocidad del viento, la densidad y la temperatura del aire.

La presión atmosférica local se mide con un barómetro de mercurio, que consiste en un tubo de vidrio cerrado en un extremo y lleno de mercurio colocado de manera que el extre mo abierto esté sumergido en un recipiente con mercurio, co mo se muestra en la figura III.4. Este tubo tiene inscrita una escala para que pueda medirse la altura de la columna Rx.

En la parte superior del tubo aparece el llamado vacío de Torricelli ocupado por un pequeño residuo de aire y vapor de mercurio que ejerce una presión insignificante.

Al nivel del mar Rx es La más alta y disminuye conforme a la altitud, el método más usado para medir presión atmosfé rica es el Barógrafo, como se muestra en la figura 117.5, que consiste en un cilindro de paredes elásticas en cuyo in terior se ha hecho el vacío, el cual tiende a aplastarse por efecto de las variaciones de la presión atmosférica ejercien do un movimiento y transmitiéndolo mediante un juego de palancas a una aguja que lleva en su extremo una pluma y frente a ésta hay un tambor giratorio, en el que la pluma marca sobre una banda de papel (gráfica) las variaciones de la presión atmosférica. Además el juego de palancas tiene un anillo bimetálico que opera como compensador ⁽¹⁰⁾, de los cambios de temperatura sobre el cilindro.

Figura III.3 Unidades y escalas para medir la presión así como la relación entre los diferentes términos de presión.

Figura III.4 Barómetro de mercurio

Figura III.5 Representación esquemática de un barógrafo.

TII.2.3 Humedad Relativa

La absorción y dispersión de radiación so lar depende en parte de la humedad o contenido de vapor de agua del aire. En esta sección discutiremos algunas técnicas básicas para la medición de este parámetro e introduciremos las siguientes definiciones:

Humedad Específica o Relación de Humedad, es la masa de vapor de agua por unidad de masa de aire seco.

Temperatura de Bulbo Seco, es la temperatura que mide un termómetro expuesto a la mezcla aire - vapor de agua.

Temperatura de Bulbo Húmedo, es la temperatura que indica un termómetro, cuyo bulbo está rodeado de una cubierta de tela saturada de liquido, una vez que al arregto se le ha permitido alcanzar el equilibrio de evaporación con la mezcla como se indica en la figura III.6

Punto de Rocio de la mezcla, es la temperatura a la -cual el vapor empieza a condensarse cuando la mezcla se enfria a presión constante.

La Humedad Relativa Hr, se define como el cociente de la masa de vapor del agua entre la masa de vapor que se requiere para producir una mezcla saturada a la misma tempera tura. Si el vapor se comporta como un gas ideal entonces:

$$Hr = \frac{m}{m_s} = \frac{P_W V / R_W T}{P_S V / R_W T} = \frac{P_W}{P_S}$$
 111.3

Conde P es la presión parcial del vapor de agua y Ps, es la presión de saturación a la temperatura de la mezcla. La humedad específica es:

$$\omega = \frac{m_w}{m_a}$$
 III.4

Figura III.6 Medición de las temperaturas de bulbo seco y bulbo húmedo.

.....

Donde m_a es la masa de aire, la cual para comportamien to de gases ideales se vuelve:

 $\omega = 0.622 \frac{P_w}{Pa}$ 111.5

Donde Pa es la presión parcial del aire.

El método primario para medir la humedad es de tipo gr<u>a</u> vimétrico y es el que emplea la Oficina Nacional de Normas para propósitos de calibración. El procedimiento consiste en exponer una muestra de La mezcla de aire - vapor de agua a substancias adecuadas hasta que el agua se absorba.

A continuación las substancias se pesan y se determinan la cantidad de vapor absorbida. Con este método se pueden al canzar incertidumbres tan bajas como 0.1%

Existe una relación analítica definida entre la tempera tura de bulbo seco, bulbo húmedo, punto de rocío de una mez cla y su humedad, así, si se determinan dos cualesquiera de estas temperaturas, se puede calcular la humedad. El método clásico que se utiliza para determinar la humedad relativa en espacios abiertos y amplios, consiste en medir la temperatura de bulbo seco y bulbo húmedo con un Psicrómetro de ca dena, el cual consta de dos termómetros que se hacen girar a una velocidad aproximada de 5.08 m/s, y se registran ambas temperaturas. De esta forma se puede calcular la presión de de vapor de la mezcla de acuerdo con la ecuación de Carrier,

dada por:

$$P_{w} = Ps - \frac{(Pt - Ps) (T_{db} - T_{wb})}{2800 - T_{wb}}$$
III.6

Donde:

 $P_W = Presión del vapor de agua (Psia)$

Ps = Presión de saturación correspondiente a la temperatura de bulbo seco, obtenida de - - tablas de vapor⁽³³⁾ (Psia)
Pt= Presión total de la mezcla (Psia)
T_{db} = Temperatura de bulbo seco °F
Twb = Temperatura de bulbo húmedo °F

Con estos datos se calcula la humedad relativa y la es pecífica usando las ecuaciones III.3 y III.5 respectivamente.

Existe también el Psicrómetro registrador que es de do ble elemento bimetálico y registra simultáneamente la tempe ratura de bulbo seco y bulbo húmedo para así calcular la humedad con toda precisión, por medio de fórmulas o tablas.

Existen aparatos un poco menos precisos, éstos son lla mados Higrómetros de cabello o simitares. En estos aparatos se logra una medida aproximada sobre el estado higroscópico de la atmósfera circulante, obtenida por un indicador en for ma de aguja unida a un cabello o a cualquier substancia hi-groscópica y cuya longitud dependa de la cantidad de agua absorbida. Estos aparatos deben calibrarse previamente de mo do que a cada posición del sistema indicador corresponda un determinado valor de humedad relativa.

111.2.4 Precipitación Atmosférica

El conjunto de aguas meteóricas recogidas en la alta atmosféra por condensación del vapor de agua en forma de nubes, caen a la superficie de la tierra en varias formas: lluvia, nieve y granizo. Este fenómeno es llamado precipitación pluvial o atmosférica.

Se ha calculado que solo una quinta parte de las nubes dá lugar a fenómenos de precipitación. Así pues, únicamente en condiciones especiales las gotas de agua en una nube (o las agujas de hielo) mantenidas en suspensión por efectos de la turbulencia del aire, adquieren dimensiones adecuadas --

para la precipitación, sobre todo, para llegar a la tierra pese a la evaporación a que están sujetas en su descenso.

Los movimientos verticales del aire tienen una importan cia en la génesis de las precipitaciones, tanto de origen térmico (convección), como dinámico; por lo que las precipitaciones están siempre vinculadas al grado de inestabilidad del aire. Si se examina su distribución zonal sobre la tierra vemos que se dá un máximo en la franja ecuatorial, o sea en la región de más elevada inestabilidad atmosférica y de maxi mo desarrollo de los movimientos ascensionales. Más allá de esta zona los valores van disminuyendo cada vez más hacia los polos, en una forma irregular, de hecho se tiene un mínimo tropical es decir en latitudes donde la presión es alta y luc go un máximo secundario en latitudes medias, y finalmente -otro mínimo que corresponde a los casquetes polares.

El vapor de agua precipitable en forma de lluvia, nieve o granizo, es útil para el estudio del clima de un lugar e intervieñe en modelos de predicción de radiación solar.

Es importante conocer la cantidad anual de precipitaciones y también su frecuencia, es decir practicamente el número de días lluviosos por año. Interesa asímismo su intensidad (relación entre el espesor de agua y el tiempo en que ha caído) y su régimen, o sea la repartición en el curso del -año.

Para medir la cantidad de agua que llega a la superficie de la tierra se emplean los aparatos llamados pluviómetros – como se muestra en la figura III.7, este instrumento está – formado por un tubo cilíndrico que tiene en la parte superior un anillo receptor con un área circular de 200 cm², perfecta mente limitada por un anillo de bronce.

El agua recogida por la parte receptora cae mediante un embudo a un recipiente interior que queda aislada del cilindro exterior por una capa de aire intermedia, evitándose de

Figura III.7 Pluviómetro de Hellmann.

esta forma La evaporación del aqua recogida.

El agua recogida se mide con una probeta graduada y se da en milimetros de agua. El pluviometro debe estar colocado a cierta distancia de los edificios y de los árboles para que la lluvia no sea interceptada por estos obstáculos. Por ejemplo, la instalación de los pluviómetros en terrazas de edificios, no es recomendable debido a que los remolinos del aire que se forman en los bordes de los techos alejan las gotas de lluvia.

Dado que la lluvia cae en ocasiones con una cierta inclinación por la acción del viento, se han diseñado pluviôme tros con anillo de recepción inclinado y orientado con una veleta o provistos de anillos de recepción en varias direcciones. La menor cantidad de lluvia que mide un pluviômetro es de 0.1 mm; y si no se alcanza este valor se dice que la lluvia es inapreciable.

Para determinar la precipitación durante un cierto período de tiempo se emplean los pluviógrafos, uno de los más empleados es el de sifón, como se muestra en la figura III.8 y opera de la siguiente forma; conforme va cayendo la lluvia va llenando un depósito, y en éste hay un flotador unido a una plumilla que marca sobre un tambor giratorio, movido por un aparato de relojería, cuando el depósito se ha llenado, éste se vacía por un sifón, hacia un recipiente colector.

III.2.5 La Nubosidad

La nubosidad es un fenómeno atmosférico cuya génesis radica en el enfriamiento de una masa de aire, este enfriamiento puede producirse a raíz de movimientos de convección de origen termico o mecánico o bien por mezclas de masas de aire a temperaturas distintas.

Las variaciones de la presión y de la radiación solar, pueden ser finalmente otras causas de condensación del vapor

Figura III.8

Pluviógrafo de sifón

+ 4

atmosférico y por tanto de la formación de nubes y de niebla.

En nuestro país se han realizado estudios sobre la dis tribúción de la nubosidad a escala nacional, mediante la fotointerpretación de datos proporcionados por los satélites meteorológicos NIMBUS III Y ESSA-8 durante un período de -tres años (1969-1971).

Las variaciones latitudinales y longitudinales de la n<u>u</u> bosidad pueden ser observadas a partir de los mapas que co<u>n</u> tienen los valores medios mensuales, estacionales y anua les ⁽³⁴⁾. La figura III.9 muestra la distribución de la nub<u>o</u> sidad media anual.

Un conocimiento más completo de la nubosidad es de importancia porque permite la evaluación de los coeficientes de transmisión, reflexión y absorción de la radiación solar en su trayecto atmosférico desde la estratósfera hasta la superficie terrestre, con lo cual se puede avanzar un poco más en el conocimiento de los balances de radiación solar. Estos balances son importantes ya que son los que finalmen te determinan las características de clima de cada región.

III.3 Mediciones de insolación

En el capítulo I párrafo I.4 se introdujeron los diferentes tipos de radiación solar incidente en la superficie terrestre así como la forma en que se miden. En esta sección se tratan con mayor detalle los métodos de medición e instrumentos con que se mide a la radiación solar directa, difusa y global.

Los instrumentos comúnmente usados para determinar la disponibilidad de radiación solar (flujo de potencia) recibida en cualquier punto local de la tierra son los piranómetros y los pirheliómetros, estos instrumentos usan sensores de captación de radiación que pueden ser de dos tipos: detectores térmicos y fotodetectores.

Figura III.9 Representación gráfica de la distribución de la nubosidad media anual de México.

La medición de la radiación térmica es basicamente una medición de flujo de energía radiante. La detección de este flujo de energía puede llevarse acabo por medio de medición de la temperatura de una tira de metal delgada que se exponga a la radiación, la tira generalmente se ennegrese para que absorba la mayor parte de rádiación incidente y se construye lo más delgada posible para mininizar su inercia térmi ca. Dentro de los detectores térmicos se encuentran los sensores como el termopar, termopilas, el bolómetro de metal, termistores y bimetáles, y dentro de los fotodetectores se encuentran los sensores como el fotovoltaico, fotoconductivo o fotoemisivo, etc.

III.3.1 Radiación Solar Directa

La intensidad de radiación solar directa normal al plano de incidencia, generalmente es medida con un pirheliómetro. Este instrumento posee un tubo por el cual p<u>e</u> netran los rayos solares e inciden perpendicularmente sobre un sensor a base de termopilas que genera un potencial a la intensidad de radiación solar directa. El sensor tiene una vista de captación o de campo de 5.7°, en la figura III.10 se muestra un esquema de este tipo de pirheliómetro.

Existen varias clases de pirheliómetros y son clasificados por la comisión de instrumentos y métodos de observación de la World Meteorológical Organizatión (WMO) en instrumen tos de tipo estándar, primera clase y segunda clase ⁽³⁵⁾de acu erdo a los siguientes criterios, como se muestra en la tabla III.1.

97 -

Figura III.10 Diagrama esquemático de un pirheliómetro de incidencia normal.

	estándar	Primera clase	segunda clase
Sersibilidad (nW/cm^2)	' 0.2	• 0.4	0.5
Estabilidad (% cambio por año)	+ 0.2	• 1.0	+ 2.0
Temperatura (máximo error debido a cambios de temperatura ambiente %)	+ 0.2	· 1.0	+ 2.0
Selectividad (moximperror debido a desviación asumida por respuesta espectral %)	la ' 1.0	· 1.0	- 2.0
Linealidad (máximo error debido a la no linealidad %)	± 0.5	1.0	+ 2.0
Tienpo de respuesta (máximo)	25 s eg	25 seg	1 min

Tabla III.1 Criterios para la clasificación de Pirheliómetros⁽³⁵⁾.

III.3.2 Radiación Solar Global

La radiación solar global o total es medida con un Piranónetro que tiene una vista de captación o de campo de 180°y recibe radiación solar del hemisferio celeste en todas direcciones como se muestra en la figura III.11.

La mayoria de los piranómetros tiene un sensor de termo pilas especialmente diseñadas y herméticamente selladas den tro de una semiesfera de cristal o cúpula cuya función es la de refractar los rayos solares a cualquier parte centrica de las termopilas. El piranómetro se complementa con un integra dor y un registrador de los datos medidos, la banda de longi tudes de onda medidas por un piranómetro de termopilas es de 0.3 a 3 µm, como se indica en la figura III.13, que cubre prácticamente a todo el espectro solar.

Existe otro piranómetro con sensor de celda fotovoltaica de silicio como se muestra en la figura III.12 y en este caso la respuesta espectral es de 0.35 a 1.2 µm como se in dica en la figura III.13, y es necesario introducir un fac -

tor de corrección obtenido de un piranómetro patron a base de termopilas. Por lo tanto son menos precisos, sin embargo son aproximadamente cinco veces más económicos que los piranómetros de termopilas. Los piranómetros fotovoltaicos pro porcionan prácticamente las mismas medidas que los de termopilas en condiciones de cielo claro, pero el fotovoltaico se vuelve menos confiable conforme la nubosidad aumenta.

Existen varias clases de piránómetros y son clasificados por la comisión de instrumentos y metodos de observación de la WMO, en instrumentos de primera, segunda y tercera cla se⁽³⁵⁾ deacuerdo a los criterios dados en la tabla III.2

	Primera clase	segunda clase	tercera clase
Sensibilidad (mW/cm ²)	+ 0.1	+ 0 5	1 0
Estabilidad (% cambio por año)	± 1.0	+ 2.0	1.50
Temperatura (máximo error debido a cambios de temperatura ambiente %)	+ 1.0	± 2.0	± 5.0
Selectividad (máximo error debido a la desviación asumida por respuesta espectral %)	± 1.0	. 2.0	1 5.0
Linealidad (máximo error debido a La no linealidad %)	± 1.0	± 2.0	± 3.0
Tiempo de respuesta (máxima)	25 seg	1 min	4 min
Respuesta Coseno (desviación que se asume tomando un ángulo de eleva- ción (0 _e) de 10°,para un día claro %)	± 3.0	1 5-7	± 10.0
Respuesta Azimuth (desviación que se asume tomando un día claro %)	+ 3.0	+ 5-7	• 10.0

Tabla III.2 Criterios para la clasificación de piranómetros⁽³⁵⁾.

Para registrar la radiación solar global en plano hori zontal, se utiliza también el piranómetro bimetálico llamado Actinógrafo⁽³⁵⁾, como se muestra en la figura III.14, este aparato funciona por el activamiento de dos elementos bimetá

Cúpula Sensor de trasparete termopilas Radiación solar

Figura III.11 Diagrama esquemático de un piranómetro de termopilas, usado para medir radiación solar global.

Figura III.12 Representación esquemática de un piranómetro de celda fotovoltaica.

Figura III.14 Actinógrafo o piranógrafo bimetálico.

licos idénticos uno de ellos pintado de negro y el otro de blanco con una pintura especial altamente reflejante, el el<u>e</u> mento negro se expone a la temperatura ambiente y a la radi<u>a</u> ción solar, mientras que el otro solo se expone a la temper<u>a</u> tura del medio ambiente pero protegida de la radiación solar. Los dos elementos bimetálicos estan conectados entre sí de tal forma que la diferencia de temperaturas produce un movim<u>i</u> ento en la plumilla quedando registrados estos movimientos en la gráfica que se encuentra en el cilindro giratorio.

Este instrumento capta radiaciónes de longitudes de onda de 0.36 a 2.0 μ m y su retrazo es de 2 minutos, su preci sión esta dentro del ±5% y su sensibilidad es de 0.1 Caloria gramo por centimetro cuadrado por minuto. Este instrumento es muy utilizado en lugares aislados (campo) donde no se dis pone de energía eléctrica.

III.3.3 Radiación Solar Difusa

De la medición de radiación solar difusa se puede obtener la componente de radiación solar directa incidiendo sobre una superficie horizontal, conociendo la global. Los Piranómetros también se usan para este tipo de medición (difusa en plano horizontal), pero es necesario blo quear la componente directa de la radiación con un "Anillo de sombra^(2,35)" que evita que la radiación solar directa llegue al sensor, de esta manera el piranómetro solo captará la radiación solar difundida en todas direcciones por la atmósfera.

El anillo de sombra es un aro de ancho y diámetro espe cificos, sostenido por un soporte en el que es logrado el ajuste de la latitud local y declinación solar, como se mue<u>s</u> tra en la figura III.15. La sombra producida por el aro sobre el sensor forma un ángulo aproximadamente de 5° y además el aro debe estar orientado de Este a Oeste⁽²⁾.

Ajuste para la latitud local

Figura III.15

Representación esquemática de un piranémetro con sensor de termopilas y su anillo de sombra para medir la radiación solar difusa (Difusómetro).

-1

La ventaja que se tiene al medir la radiación solar di fusa en plano horizontal junto con la global, es el de obtener por diferencia de Global menos Dífusa la radiación solar Directa en plano horizontal,trasformando está última a plano normal, evitando asi medir la radiación solar directa en pla no de incidencia normal, pues esta requiere de un poco más de atención si no se cuenta con un pirheliómetro con motor de seguimiento del sol.

III.3.4 El Albedo Terrestre

La determinación de la radiación solar re flejada por la superficie de la tierra, se efectua colocando un piranómetro en posición horizontal con el sensor hacia el suelo y otro en la misma posición pero con el sensor inverti . do (hacia el cielo), la diferencia de este ultimo valor medi do menos el primero determina el Albedo terrestre. La medición varia con la longitud de onda, con el calor, con el conte nido de humedad de la superficie y con el ángulo de incidencia de los rayos solares sobre el sensor, es de hacer notar que el Albedo influye sobre el valor de la radiación solar global sobre un plano horizontal, pues la radiación refleja da por la tierra puede una vez más ser redirigida hacia la tierra por obstáculos o nubes y de esta forma contribuir a la medición, transformando la radiación visible o lumonosa en radiación infrarroja o calorífica.

La superficie terrestre refleja la radiación solar según sea su naturaleza, por ejemplo la nieve refleja de 80% a 90% de la radiación solar incidente, la superficie acuosa re fleja solamente el 40%, la arena entre el 10% y el 20%, los bosques y tierras de cultivo alrededor de un 5%. el albedo interviene en parte en la evapotranspiración y en la fotosín tesis de las plantas.

111.4 <u>Aspectos a Considerar al Efectuar las</u> Mediciones

Algunos meteorólogos han encontrado que las mediciones de insolación realizadas en sus diferentes formas (directa, difusa y global) procedentes de buenos observatori os y siguiendo procedimientos muy cuidadosos, son de una pre cisión de \pm 5% respecto a las mediciones estándar, mientras que en la práctica los errores más usuales son de \pm 10%.

Para obtener una calidad aceptable en el lugar donde se realizan las mediciones se deben tomar en cuenta las siguientes condiciones de trabajo:

- -- El lugar donde se realicen las mediciones de insolación y de algunas variables meteorológicas debe estar libre de obstáculos.
- -- Los piranómetros y pirheliómetros asi como algunos instrumentos meteorológicos deben estar correctamente nive lados.
- La superficie de cristal u otro material de exposición de todos los instrumentos debe limpiarse cuidadosamente y constantemente.
- Las lecturas de los instrumentos deben compararse perío dicamente con los de instrumentos estándar o patrones y en particular los de medición de insolación deben ser calibrados una o dos veces al año.
- Se sugiere que las mediciones de insolación se efectuen en zonas fuera de las ciudades, pues la nubosidad es de 5% a 10% mayor sobre las ciudades que en las afueras de la misma.

La calibración de los instrumentos tiene por objetivo verificar la precisión de las mediciones con respecto a un estándar o patrón conocido y por lo tanto reducir los posibles errores o desviaciones por uso y envejecimiento. El pro cedimiento de la calibración involucra una comparación del

instrumento en particular con:

- 1.- Un patrón primario proporcionado por una institución oficial reconocida para tales fines.
- 2.- Un patrón secundario con una mayor precisión que la del instrumento que va a calibrarse (la precisión del medidor debe estar certificada por una institución reconocida).
- 3.- Una exitación conocida (se refiere a la exactitud del medidor que debe ser especificada por una fuente respetable).

III.5 <u>Consideraciones Sobre los Parámetros</u> <u>Meteorológicos empleados</u>

Como consecuencia de la irregularidad dro-gráfica de nuestro país, existen gran variedad de climas que en muchos casos varían en distancias muy cortas. Por consiguiente, una localidad específica podria caracterizarse por un microclima particular. El microclima no excede por lo general a superficies mayores de 1 km², mientras que el meso-clima o clima regional, comprende superficies más extensas.

Dado a este hecho, los datos empleados en los modelos como nubosidad, temperatura, humedad relativa, presión atmos férica, precipitación pluvial,etc, no corresponden a localidades específicas sino a regiones donde se ha designado una localidad de referencia y como consecuencia los resultados obtenidos deberán ser considerados de la misma forma, es de cir regionales. Estos datos pueden obtenerse por ejemplo del Atlas del Agua de la República Mexicana⁽³⁶⁾.

Por este motivo en las aplicaciones de nuestro interés (generación helioeléctrica) es necesario hacer mediciones me teorológicas y de insolación en el sitio local, para poder seleccionar los sitios más favorables para desarrollar esta nueva tecnología. Obviamente también se obtiene un mayor co-

1.07

nocimiento de la climatología solar en esos lugares de utili dad para otras aplicaciones.

III.6 Mediciones en las Instalaciones del IIE

En el Instituto de Investigaciones Electricas (IIE) se estudian las tecnologías helioelóctricas en el departamento de fuentes no convencionales de energía. Una de las actividades de este proyecto consiste en efectuar medici<u>o</u> nes meteorológicas y de insolación.

Dentro de las mediciones meteorológicas y de insolación que han sido realizadas durante el período 1980-1981 se encuentran las siguientes:

- 1.- Temperatura y Humedad Relativa, se midieron con un higro termógrafo, quedando los datos registrados en forma con tinua en una gráfica durante las 24 horas del día.
- 2.- Insolación Directa Normal, realizadas con un pirhelióme tro Reflex Insolar modelo XZK (distribuido por la casa de instrumentos Insolar de México) con sensor de termopilas, realizando el seguimiento del sol manualmente y tomando este tipo de mediciones cada hora del día. Las especificaciones de este instrumento se indican en el cuadro siguiente:

	Dos termopilas de "película delgada" con 20 pares
	cada una acoplada en "Push - Pull".
	Sensibilidad nominal 50 milivolts por Langley/minuto
	Tiempo de respuesta 1.2 seg, para 2/3 de la amplitud
	total.
	Ambito de medición: 4 Langleys/minuto
~-	constante de calibración 32.93 milivolts/langley/min
	•

3.- Insolación Global en plano horizontal, realizadas con

un piranómetro compensado Insolar modelo ZKC (distribuido por la casa de instrumentos Insolar de México) con sensor de termopilas, montado sobre una base horizontal a nível, t<u>o</u> mando estas mediciones durante cada hora del día. Las espec<u>i</u> ficaciones de este instrumento se indican en el cuadro sigu<u>i</u> ente:

 los termopilas de película delgada
 20 elementos por termopila
 Sensibilidad nominal 50 mv.ly/min
 Tiempo de respuesta 1.2 Sog para 2/3 de la
amplitud total
 Ambito de mediciones 4 langley/minuto
 Constante de calibración 50.3 milivolts/ly/min
 Las termopilas estan cubiertas por un domo de vidrio
transparente a la radiación de longitudes de onda de
0.3 hasta 3.0 µm

Sin embargo se cuenta ya con una estación meteorologica automática CLIMATRONICS mostrada esquemáticamente en la figura III.16, la cual tendrá por objeto realizar este tipo de mediciones con mayor detalle, registrando los datos en forma continua.

Los datos geográficos del lugar son:

Longitud	99.23°	Este		
Latitud	18.88°	Norte		
Altitud	1350	metros sobre	el	nivel
		del mar		

0

Dentro de las mediciones meteorológicas a realizar se encuentran las siguientes:

- a). Humedad Relativa
- b). Temperatura Ambiente

c). Precipitación Atmosférica o Pluvial

Figura III.16 Estación Meteorológica automática.

- d). Presión Atmosférica
- e). Velocidad y Dirección del Viento
- f). Otras variables (punto de rocío, etc)
- Dentro de las mediciones de insolación a realizar se encuentran las siguientes:
 - a). Radiación Solar Directa en plano normal (se cuenta con un pirheliómetro)
 - b). Radiación Solar Global en plano horizontal (se cuenta con tres piranómetros):
 - 1 con sensor de termopilas
 - 2 con sensor fotovoltaico
 - 1 actinógrafo con sensor bimetálico
 - c). Radiación Solar Difusa en plano horizontal (se cuenta con una banda de sombra y un piranómetro con sensor fotovoltaico.

La realización de estas mediciones tiene por objeto:

- Contar con datos experimentales del sitio
- Desarrollar modelos matemáticos de predicción de radiación solar.
- Utilizar estos modelos y/o los datos para estudios de diseño y operación de plantas helioeléctricas de receptor central y fotovoltaicas.

III.7 Conclusión

El propósito de este capítulo fué el de proporcionar la forma en que se deben medir algunas de las variables meteorológicas utilizadas por los modelos de predicción y las formas más usuales que se utilizan para medir la radiación solar.

Recientemente se ha incrementado el interés para reali zar mediciones de insolación global, difusa y directa, en -

superficies inclinadas u horizontales. En ciertos países la falta de mediciones confiables crea dificultades a los inve<u>s</u> tigadores e ingenieros, que se ven obligados a sobredimensi<u>o</u> nar los diferentes sistemas solares para evitar riesgos, y esto es origen de un sobreprecio no justificado en muchas de las aplicaciones.

Varios países reconocen la necesidad inmediata de información más completa sobre estas mediciones y se están pro moviendo programas amplios con los siguientes objetivos:

Aumentar el número de observatorios meteorológicos y de insolación en todo el mundo.

0

Obtener mediciones de insolación en superficies inclina das.

Además se requiere de trabajo en la producción y tratamiento y presentación de datos como por ejemplo:

La publicación de anuarios meteorológicos de consulta. Esto supone la recopilación de datos de radiación solar directa, difusa y global durante varios años y sobre una base horaria. También se necesitan los datos <u>a</u> nuales de todos los climas. (variables meteorológicas). Estos datos de pueden utilizar para simular por comput<u>a</u> dora el funcionamiento y rendimiento de todo el sistema solar y también pueden aplicarse en algunos modelos matemáticos de predicción de Radiación Solar.

Es de mencionar que los datos para superficies inclinadas pueden calcularse a partir de los datos de radiación sobre superficies horizontales. Sin embargo, es necesario extender la actual Red de medición de la Radiación Solar, tal que puedan verificarse estos cálculos.

CAPITULO IV

OBTENCION DE LOS PARAMETROS DE LOS MODELOS

- IV.1 Modelo a Utilizar
- IV.2 Datos Meteorológicos y de Insolación Requeridos
 por el Modelo de Allen
 - IV.2.1 Presión Parcial del Vapor de Agua y Presión Atmosférica Local.

IV.2.2 Radiación Solar Directa Normal

- IV.3 Descripción del Método de Linealización y de Estimación de los Parámetros
- IV.4 Influencia de las Variaciones de la Humedad Relativa
- IV.5 Influencia del Vapor de Agua sobre el Modelo de Allen
- IV.6 Promedios Mensuales y Anuales de los Parámetros Estimados
- IV.7 Recomendaciones para el Mejoramiento de la Predicción del Modelo de Insolación Modificado
- IV.8 Conclusión

Los modelos de predicción de radiación solar directa, difusa y global, son generalmente aplicables bajo condicio nes particulares de localización, por lo tanto es necesario adecuarlos al sitio que se pretende estudiar y en este capí tulo se hace un esfuerzo en esta dirección.

Nuestro interés recae en el análisis y modificación de un modelo de radiación solar directa debido a la importan-cia y aplicación que tiene este tipo de radiación como fuen te energética primaria de las plantas helioeléctricas de re ceptor central y fotovoltaicas (en caso de usarse con concen tración de radiación solar). La forma en que es analizado este modelo dá idea de como se pueden estudiar otros diferen tes modelos de radiación solar directa, difusa y global (ver capítulo II). El ajuste de parámetros se realiza linealizan do al modelo empleando un método de regresión lineal.

No se hace presentación extensa del método de regresión lineal, aunque sí indicaremos algunas de las pruebas más im portantes para validar los resultados, como por ejemplo la determinación de la desviación estándar, sin embargo no se ha sido exhaustivo con estas pruebas estadísticas en este trabajo y el lector interesado puede consultar la referencia (37) en la cual el tema es tratado ampliamente. Finalmente el modelo analizado se adecuó a las condiciones locales del IIE (Instituto de Investigaciones Eléctricas, Cuernavaca, Mo relos) usando datos experimentales de insolación directa obtenidos durante un año en estas instalaciones.

IV.1 Modelo a Utilizar

Los modelos de predicción instantánea de r<u>a</u> diación solar directa descritos en el capítulo II párrafo -II.3 han sido aplicados en lugares específicos y bajo ciertas condiciones atmosféricas y para poder utilizar un modelo en otras condiciones locales (geográficas y atmosféricas)

puede ser necesario modificar algunos de los parámetros usados en el modelo.

Se seleccionó el modelo de Allen (capitulo II Párrafo II.3.1) por varias razones:

- 1). Predice la radiación solar directa normal instantánea
- 2). Es relativamente sencillo implementarlo
- Requiere de los parámetros meteorológicos facilmente obtenibles; Presión parcial del vapor de Agua y presión atmosférica.
- 4). Ya fué aplicado e inclusive en la simulación númerica del funcionamiento de la planta piloto de receptor central construyendose en Barstow California.

Lo anterior no implica que todos los otros modelos no sean interesantes, pero fué necesario tomar una decisión de estudiar sólo uno de ellos dentro del contexto de este trabajo.

IV.2 Datos Meteorológicos y de Insolación Requeridos por el Modelo de Allen

El estudio se hace para los días despejados con cielo claro de cada mes, siempre y cuando se disponga de los datos necesarios. El lugar donde se efectuaron las mediciones es en el IIE en Cuernavaca Morelos, que corresponde con una latitud de 18.88° Norte y una altitud sobre el nivel del mar de 1350 metros.

IV.2.1 Presión Parcial del Vapor de Agua y Presión Atmosférica Local

La expresión dada por Allen como ya se men ciono requiere de los datos de presión parcial del vapor de agua P_W y de la presión atmosférica local Pb. En la tabla IV.1 se representan los datos mensuales de Pb, Humedad rela-

tiva Hr y de temperatura T, obtenidos del Atlas del Agua de la República Mexicana ⁽³⁶⁾ y de Normales Climatológicas del Servicio Meteorológico Nacional ⁽³⁸⁾. Se proporcionan también los datos mensuales de la presión parcial del vapor de agua P_w , de la presión de saturasión Ps y del vapor de agua condensable contenido en la atmósfera W. Estos tres últimos datos (P_w , Ps y W) fueron obtenidos por las ecuaciones siguientes:

 $Ps = Exp(-\frac{5416}{To} + 26.23) \qquad N/m^2 \qquad IV.1$

 $P_w = Hr \cdot Ps$ mb IV.2

 $W = 0.17 P_{W}$ Cm IV.3

Donde: Ps es sustituida en la ecuación IV.3 en mb Hr es la humedad relativa en fracciones de 1 To es la temperatura absoluta en grados Kelvin

 $To = T(^{\circ}C) + 273.16$ °K

Es muy importante notar que una pequeña variación de temperatura y humedad, afectan el cálculo de Ps, P_w y W por lo que estas variaciones en cuanto al valor a introducir en el modelo condicionara los resultados que se obtengan.

Sin embargo lo importante es que se dispondrá de una metodología y que una vez instalados los instrumentos de medición de T, Hr, P_w , en el IIE, al volver aplicarse permitira mejorar substancialmente las estimaciones de los paráme-tros de interés.

Mes	Presión atmosférica Pb (mmHg)	Humedad relativa Hr (%)	Temperatura T (°C)	Presión de saturasión Ps (N/m ²)	Presión parcial dél vapor de agua P _w (mb)	vapor de agua condensable W (cm)
enero febrero marzo abril mayo junio julio agosto septiembre octubre noviembre	641.86 641.86 641.86 641.86 641.86 641.86 641.86 641.86 641.86 641.86 641.86	45 40 30 40 40 40 50 50 50 60 50 40	18.9 20.2 22.2 23.4 23.2 21.9 20.9 20.8 20.2 19.9 19.8	2177.35 2363.84 2678.62 2884.92 2849.59 2629.14 2470.04 2454.61 2363.84 2319.58 2305.00	9.7967 9.4542 8.0346 11.5388 11.3975 13.1450 12.3492 12.2719 14.1819 11.5975 9.2196	1.665 1.607 1.365 1.961 1.937 2.234 2.099 2.086 2.410 1.971 1.567
diciembre	641.86	45	19.1	2205.16	9.9220	1.686

Tabla IV.1 Diferentes valores de Pb, Hr, T, Ps y W (36,38)

IV.2.2 Radiación Solar Directa Normal

Los datos de radiación solar directa, fue ron tomados cada hora en tiempo local y son utilizables solo aquéllos que corresponden a los días con cielo claro y limpio que supone el modelo de Allen.

a).- Datos Disponibles

Se dispone de algunas mediciones de radiación solar directa medidas cada hora a partir de una hora después de que salió el sol (θ_e =15°) hasta su ocaso, otras solamente fueron toma das hasta el medio día en tiempo local (12 horas) y se considerará que las mediciones faltantes son simétricas. En am bos casos se tienen disponibles estos datos que correspon den a un año de mediciones (aproximadamente).

b).-, Problemas Encontrados

Una consideración muy importante es que los datos de insola ción fueron medidos con un pirhelimetro insolar (ver párrafo III.6 del capítulo III) y que en ocasiones se hicieron r<u>e</u> paraciones debido a descomposturas, por lo tanto y puesto que no se dispone de un instrumento patrón, la precisión y repetividad de las mediciones queda sujeta a comprobación, además debido a tantas descomposturas a partir de la última, se decidió no reparar al instrumento y no fué posible seguir realizando las mediciones de radiación solar directa normal. En adelante la radiación solar directa se obtendrá por dif<u>e</u> rencia entre la global y la difusa por lo cual se adquirieron dos piranómetros.

c).- Decisiones Tomadas

Respecto a los días claros en los que se tienen pocos datos de insolación directa normal se buscó obtenerlos indirectamente para los días de los que no se cuenta con mediciones de radiación solar directa normal tratándolos de obtener a partir de las curvas continuas de un actinógrafo Rosbach -

que mide radiación global en plano horizontal, se procedió de la siguiente manera; se escogió un día en el que se tienen mediciones de radiación solar directa normal transformándolos a su valor en plano horizontal mediante la relación siguiente:

$$I_{dh} = I_{dn} Sen 0e$$
 IV.4

y se comparó con los datos de radiación global obtenidos por el actinógrafo, la tabla IV.2 y la figura IV.1 muestran los resultados.

Como se observa solo de 10 A.M a 3 P.M las diferencias son – aceptables (< $\pm 10\%$), y en otras horas se llega a más de 50% de diferencia, por lo tanto se descartó esta alternativa pa ra generar datos de insolación directa y se decidió utili--

26 - Noviembre - 1980									
Hora (TL)	Medición de Idn en Plano Normal W/m ²	θ _e (°)	Plano Horizontal Idh W/m ²	Medición de G del Actinógr <u>a</u> fo _{W/m} 2	% de error G/Idh - 1				
7:00	0.0	0.986	0.0	0.0	0.0				
8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00	587.415 790.996 797.358 835.529 858.856 880.062 842.253 805.840 746.462 551.364 0.0	13.75 25.71 36.32 44.62 49.16 48.67 43.33 34.51 23.59 11.44 0.0	139.62 343.18 472.33 586.91 654.28 660.93 582.08 456.54 298.72 109.43 0.0	205.02 397.24 512.56 589.45 653.52 640.71 563.82 461.31 358.74 166.58 12.81	$\begin{array}{r} 46.84 \\ 15.75 \\ 8.51 \\ 0.43 \\ - 0.11 \\ - 3.05 \\ - 3.13 \\ 1.04 \\ 20.09 \\ 52.22 \\ 0.0 \end{array}$				

Tabla IV.2 Resultados medidos de Idn, transformados a plano horizontal Idh, y comparados con la radiación global G en plano horizontal del Actinógrafo.

1.

Figura IV.1 Comportamiento gráfico de la radiación global (actinógrafo) y la radiación diracta en plano horizontal.

zar sólo las pocas mediciones de Idn de que se disponian'y enfocarse a establecer la metodología a seguir, estando concientes de las limitaciones en cuanto a resultados obtenibles.

IV.3 Descripción del Método de Linealización y de Estimación de los Parámetros

El modelo original de predicción instantánea de radiación solar directa de incidencia normal propuesto por Allen $^{(21)}$ es :

Idn = Io (1 - 0.263(
$$\frac{W + 0.272}{W + 0.5}$$
).m 0.367($\frac{W+1.153}{W+0.788}$)
siendo: Io = La constante solar (1353 W/m²)
W = Vapor de agua condensable (cm)
m = Masas de aire absolutas (calculadas con la
ecuación II.5 del Capítulo II)

Considerando que $K_1 = 0.263$ y $K_2 = 0.367$, son los parámetros ó coeficientes a modificar entonces la ecuación IV.5 queda de la siguiente forma:

$$Idn = Io (1 - K_1 (\frac{W + 0.272}{W + 0.5}) \cdot m^{-K_2} (\frac{W + 1.153}{W + 0.788}) IV.6$$

sean:

$$Z = 1 - \frac{Idn}{Io}$$
 IV.7

$$P_{1} = K_{1} \left(\frac{W + 0.272}{W + 0.5} \right)$$
 IV.8

$$P_2 = K_2 \left(\frac{W + 1.153}{W + 0.788} \right)$$
 IV.9

quedando la ecuación IV.6 en la forma:

$$Z = P_1 \cdot m^2$$
 IV.10

Obteniendo el logaritmo en base 10 se tiene que:

$$Log Z = log P_1 + P_2 log m IV.11$$

que es de la forma:

$$Y = a + bX IV.12$$

Donde:

	•	
log Z	Variable dependiente	IV.13
log P ₁	Ordenada al origen (constante	IV.14
	de regresión)	
P ₂	Pendiente (coeficiente de	IV.15
5	regresión)	
log m	Variable independiente	IV.16
	log Z log P ₁ P ₂ log m	<pre>log Z Variable dependiente log P₁ Ordenada al origen (constante</pre>

Para la obtención de los parámetros de K_1 y K_2 se desarrolló un programa principal en lenguaje Fortran IV en el que se calculan los valores de X,Y, para n valores medidos de radiación solar directa Idn, en el día especificado. Los valores de X,Y se utilizan como datos de entrada en un subprograma, en el que se aplica el método de regresión lineal del cual se obtiene la pendiente y la ordenada al origen de la recta de la ecuación IV.12.

El subprograma utilizado (clave GO2CAF) para este análisis forma parte de un paquete estadístico de la computadora VAX (Digital Equipment Corporation) que se encuentra en el IIE. Los calculos que realiza y los resultados que entrega son mencionados más ampliamente en el apéndice D . De las estimaciones de la pendiente y de la ordenada al origen se obtienen fácilmente los parámetros K_1 y K_2 :

IV.18

 $K_2 = \frac{b}{(\frac{W+1.153}{W+0.788})}$

 $\frac{\operatorname{antilog}}{(\frac{W+0.272}{W+0.5})}$

la figura IV.2 muestra el diagrama de bloques del programa que fué desarrollado para efectuar todos los calculos y las variables que intervienen se encuentran definidas en la lista de simbolos al final de este trabajo; en el apéndice D se mu estra el listado de este programa de computación.

IV.4 Influencia de las Variaciones de la Humedad Relativa

a).- Condiciones de Experimentación

Cielo claro y limpio presión atmosférica local: 641.86 mmHg vapor de agua condensable: 1.567 cm (promedios mensuales del mes de noviembre)

La humedad relativa es un indicador del contenido del vapor de agua en la atmósfera y por lo tanto de la influencia de este parámetro sobre la radiación solar absorbida.

En el sitio de medición (IIE) se han observado variaciones muy importantes del valor de humedad en períodos cortos (en un mismo día y entre 1-3 días). En la figura IV.3 se mues tran las evoluciones de la humedad para los días 13 y 14 de noviembre de 1980, se nota que en las horas de experimentación (8-17 hrs) hay diferencias hasta del 20% de humedad y que esta decrece de 60% y 55% a 38% y 18% conforme el día avanza para volver a aumentar al final del día. También se observa una diferencia en las pendientes de la humedad; por la mañana la disminución es lenta y por la tarde el aumento es mucho más rapído. Es de notar que estas variaciones reper-

Inicio del programa principal REGLIN.FOR Datos de entrada ϕ , N, W, Po, Pb, Io, TL, R, H, LL, LR, Idn (medidos) Se calculan las masas de aire m_r , m TS, θ_{e} , τ , δ , EQT, y se calcula X,Y se inyectan los valores de X,Y al, subprograma GO2CAF (VAX) Dentro del subprograma GO2CAF con los valores de X,Y calcula los valores de a y b (Y = a + bx)'y todas las pruebas estadísticas que se indican en el apendice "d" Continua el programa principal calculando K₁ y K₂ diarios para días despejados

Finalmente el programa termina modificando el modelo de Allen, sustituyendo $K_1 \ y \ K_2$ (ver ecuación IV.6) y prediciendo, comparando sus resultados con los medidos, que son los datos de entrada.

Figura IV.2 Diagrama de bloques del programa de simulación.

Figura IV.3 Comportamiento gráfico de la humedad relativa para los días 13 y 14 de noviembre de 1980.

cuten primero en la atmósfera y con retardo se registran.al nivel del suelo.

En la figura IV.4 se muestra la evolución de la humedad relativa para los días 18 y 19 de noviembre de 1980, aquí se nota que en las horas de experimentación (8-17 hrs) las dif<u>e</u> rencias son pequeñas hasta un 6% y la humedad decrece de un 73% y 78% a un 31% y 34% conforme el día avanza y vuelve a aumentar al final del día.

b).- Aplicación del Método de Linealización

Inicialmente se efectuaron 30 experimentos escogiendo diferentes días del año con cielo despejado y se encontro que cerca del 90% de estos experimentos la correlación era aceptable $0.8 \pm r \leq 1$ no así en el resto r<0.8. Se presenta un experimento de cada caso.

Para las condiciones del día 14 de noviembre de 1980 los resultados obtenidos al aplicar el método de estimación de parámetros se muestran en la figura IV.5; se notan diferen cias hasta de -37% entre medición y predicción de Idn como se muestra en la tabla IV.3. La falta de simetría de los valores medidos de Idn respecto alas 12 horas solar (aproximadamente 12.36 tiempo local), es notoria, observándose una fu ente de atenuación después del medio día. En esta figura apa rece tambien la evolución de la humedad relativa y se observa el fuerte incremento registrado a partir de las 16 horas locales. La parte más plana de la evolución de la humedad, considerando un retardo se presentaría en los momentos de ma yor insolación registrada. Esta discrepancia se manifiesta en los parámetros estadísticos que entrega el programa de computación.

•	Valor	medio	đe	la	variable	independiente	Х	X		0.2179
•	Valor	medio	de	la	variable	dependiente Y		\overline{Y}	=	0.2895
۹	Coefic	ciente	de	co	rrelación			r	==	0.7368
•	Coefic	ciente	de	ree	gresión			b	=	0.4131

Figura IV.4 Comportamiento gráfico de la humedad ralativa para los días 18 y 19 de noviembre de 1980.

-1.

127

.

Figura IV.5 Comportamiento gráfico de la radiación solar directa medida y calculada para el día 14 de noviembre de 1980.

•	Constante de regr	esión	a = -0.3795
•	Error estándar de	b	Se(b) = 0.1340
•	Error estándar de	a	Se(a) = 0.0388

De tal forma que el modelo equivalente en forma linealizada queda como:

$$Y = -0.3795 + 0.4131 X$$
 IV.19

14 - Noviembre - 1980									
Hora (TL)	Idn (medida) W/m ²	Idn (calculada) W/m ²	% de error						
8:00	665.878	445.652	-33.07						
9:00	763.427	630.197	-17.45						
10:00	805.840	712.709	-11.55						
11:00	799.478	753.963	- 5.69						
12:00	793.116	770.700	- 2.82						
13:00	727.377	768.073	5.59						
14:00	653.155	745.286	14.10						
15:00	581.053	695.006	19.61						
16:00	432.609	594.023	-37.31						
17:00	127.238	345.662	-171.66						

Tabla IV.3 Valores de insolación directa normal medida y calculada para el día 14 de noviembre de 1980. Siendo el coeficiente de correlación r = 0.7368 no se puede esperar que los puntos experimentales estén muy proximos a la recta de regresión como se muestra en la figura IV.6 en donde se gráfica la ecuación IV.19.

Con los valores obtenidos de a y b encontrados anteriormente y de la ecuación IV.17 y IV.18 se obtienen los valores de K₁ y K₂ :

> $K_1 = 0.469096$ $K_2 = 0.537628$

quedando el modelo de Allen modificado para el día analizado (14-nov-1980) con los siguientes valores:

Idn = Io
$$(1 - 0.469096(\frac{W + 0.272}{W + 0.5}).m$$
 0.357628 $(\frac{W+1.153}{W+0.788})$ IV.20

que es el que se utilizó para generar los valores ya mostrados en la tabla IV.3 .

Considerando una distribución normal, (Gaussiana) para los parámetros estimados a y b , con una probabilidad del -0.95, los valores verdaderos de a y b se encontrarán en el rango:

$$Ra = a + 2 se(a)$$

 $Rb = b + 2 se(b)$

Esto es:

Ra= -0.3795 ± 0.0776 (Pa=0.95/a $\epsilon(-0.4571, -0.3019)$) Rb= 0.4131 \pm 0.2680 (Pb=0.95/b $\epsilon(0.6810, 0.1451)$)

Se nota que las variaciones son grandes y por lo tanto la incertidumbre sobre estos valores estimados.

* 3.4

para el día 14-Noviembre-1980.

En la figura IV.7 se muestra como segundo caso los resultados obtenidos al aplicar el método de estimación de p<u>a</u> rámetros al día 19 de noviembre de 1980.

Se observa que existen diferencias pequeñas, máximo de +5.21% entre medición y predicción como se muestra en la ta bla IV.4 y se nota que existe una mejor simetría de los va lores medidos respecto a las 12 horas solar (aproximadamente 12.37 tiempo local), sin embargo se observa que la fuente de atenuación después del medio día continúa existiendo aunque es mucho menor que en el primer caso (ver figura -IV.5)

En la misma figura IV.7 aparece también la evolución de la humedad relativa y se observa que los valores registrados de las 13 horas a las 17 horas locales permanecen c<u>a</u> si constantes, esta puede ser la razón por la que la atenu<u>a</u> ción es menor, mejorando la simetría (comparan fig. IV.5 y IV.7)

El mejoramiento entre predicción y medición lo indican también los parámetros estadísticos que entrega el programa de computación.

•	valor medio de	la variable	independiente	$x \bar{x} = 0.2268$
•	valor medio de	la variable	dependiente y	- y =−0.3986
•	coeficiente de	correlación		$r_{i} = 0.9620$
•	coeficiente de	regresión		b = 0.3833
•	constante de re	egresión		a =-0.4855
•	error estandar	de b		se(b) = 0.0384
•	error estandar	de a		se(a)= 0.0115

De tal forma que y = a + bx queda como:

$$Y = -0.4855 + 0.3833 X$$
 IV.21

Figura IV.7 Comportamiento gráfico de la radiación solar directa medida y calculada para el día 19 de noviembre de 1980.

- 1,

Siendo el coeficiente de correlación r = 0.9620 se puede esperar que los puntos experimentales estén muy proximos a la recta de regresión como lo muestra la figura IV.8 en donde se grafica la ecuación IV.21 (compárese con la figu ra IV.6).

Con los valores de a y b encontrados anteriormente y aplicando las ecuaciones IV.17 y IV.18 como en el caso anterior se obtiene que los valores de K_1 y K_2 son:

$$K_1 = 0.367484$$

 $K_2 = 0.331863$

quedando el modelo de Allen en su forma modificada para el día analizado (19-nov-1980) con los siguientes valores:

$$Idn = Io (1-0.367484 (\frac{W+0.272}{W+0.5}) . m \qquad 0.331863 (\frac{W+1.153}{W+0.788}) IV.22$$

y esta ecuación es la que se utilizó para generar los valores ya mostrados en la tabla IV.4 .

Existe una gran variedad de pruebas estadísticas que se pueden realizar (37, 39) como indicativas de la confiabilidad de nuestro análisis de regresión. Como en el caso anterior únicamente analizaremos la variación del coeficiente de regresión b (pendiente) y la variación de la constante de regresión a (ordenada al origen). Es importante mencionar que el error de medición del instrumento (pirheliómetro) es del \pm 5% y de la tabla IV.4 la diferencia entre medición y predicción es de ese mismo orden, lo cual ya indica que se obtendrán rangos de variación reducidos.

Considerando una distribución normal (gaussiana) para los parámetros estimados a y b se obtiene que su rango de variación es :

•{;

$$Ra = a \pm 2 se(a)$$

$$Rb = b \pm 2 se(b)$$

Figura IV.8 Comportamiento gráfico del análisis de puntos de X,Y para el día 19 - noviembre - 1980.

135

1.

19 - Noviembre -1980									
Hora	Idn (medida)	Idn (calculada	% de error -						
(TL)	W/m ²	W/m ²							
'8 : 00	678.602	654.225	-3.59						
9:00	805.840	790.870	-1.85						
10:00	890.665	851.909	-4.35						
11:00	901.269	882.539	-2.07						
12:00	911.872	895.101	-1.83						
13:00	877.942	893.386	1.75						
14:00	848.253	876.910	3.37						
15:00	810.081	840.456	3.74						
16:00	729.497	767.560	5.21						
17:00	583.174	589.975	1.16						

1

١

•

Tabla IV.4 Valores de insolación directa normal medida y calculada para el día 19 de noviembre de 1980 Para que con una probabilidad del 0.95 se encuentren los valores verdaderos de a y b en esos rangos se obtienen:

 $Ra = -0.4855 \pm 0.0230, (P_a = 0.95/a \epsilon(-0.5085, -0.4625))$ Rb = 0.3833 \pm 0.0768, (P_b = 0.95/b \epsilon(0.3065, 0.4601))

Para comprobar lo anterior también en este último caso se realiza la prueba t de la distribución de student y es la siguiente (39):

$$t = \frac{b - bh}{Syx/Sx} \sqrt{n - 2}$$
 IV.23

Donde en este caso (19-Nov-80) se tiene:

Desviación e	standar	de	х	Sx	=	0.2036
Desviación e	standar	de	У	Sy	Ξ	0.0811
n es el núme	ro de pu	intc	s	n	=	10

Syx es la covarianza de Y sobre X, y se calcula de la siguiente forma:

Syx = Sy
$$\sqrt{1 - r^2} = 0.0221443$$
 IV.24

Si ensayamos la hipótesis de que b=0.3833 sea tan bajo como de 0.3 para una probabilidad del 0.95, entonces aplican do la ecuación IV.23 se tiene:

$$t = \frac{0.3833 - 0.3}{.0221443/0.2036} \sqrt{10 - 2} = 2.166 \text{ IV.25}$$

De la tabla E-1 del apéndice E se obtiene que $t_{0.95} =$ 1.86 y $t_{0.975} =$ 2.31 para (10-2)=8 grados de libertad.

Así pues, si tomamos t $_{0.95}$ =1.86 y encontramos los rangos de confianza de a y b, se obtiene:

$$Ra = a + (t_{0.95}) (se(a))$$

$$Rb = b + (t_{0.95}) (se(b))$$
entonces se tiene que el valor verdadero de a y b con una probabilidad del 0.95 se encontrarán en los rangos siguientes:

 $Ra = -0.4855 \pm 0.02139, (P_a = 0.95/a \epsilon(-0.5069, -0.4641))$ Rb= 0.3833 ± 0.07142, (P_b = 0.95/b \epsilon(0.3118, 0.4547))

queda demostrado que tanto para la distribución normal Gaussiana y la distribución de Student, se obtienen aproximadamente los mismos resultados de los rangos de confianza de a y b.

Se nota que las variaciónes de a y b son pequeñas en ambas pruebas y por lo tanto la incertidumbre es mucho menor en este caso que en el anteriormente expuesto.

De acuerdo a lo anterior se optó por tomar en cuenta s<u>ó</u> lo aquéllos días en los que se tuviera un cielo totalmente claro y limpio y que al analizarlos por el método de regres<u>i</u> ón los resultados correspondieran a coeficientes de correlación mayores ó igual a 0.9.

IV.5 Influencia del Vapor de Agua Sobre el Modelo de Allen

Una prueba que se considera intere ante es la determinación de la sensibilidad de los parámetros K_1 y K_2 , en función del vapor de agua condensable (W), contenido en la atmósfera.

Las figuras IV.9 y IV.10 muestran el comportamiento gráfico de los parámetros K_1 y K_2 . En estas figuras se nota que para valores de 0< W <5 cm, los parámetros son muy sensi bles a las variaciones de W y para valores de W >6 cm permanecen casi constante. Esto demuestra que la radiación solar directa de incidencia normal Idn, calculada por el modelo de Allen es sensible a los cambios de W de 0 a 5 cm y poco sensible a los valores de W >6 cm.

+1

de la variación de $\ensuremath{\mathbb{W}}$.

÷€.,

.

En el lugar de medición (IIE) los meses de todo el año (desde enero hasta diciembre) corresponden a la zona sensible (ver los valores de W de la tabla IV.1). Es por lo tan to importante el disponer de mediciones precisas de W para mejorar la estimación de radiación solar en este sitio.

IV.6 <u>Promedios Mensuales y Anuales de los</u> Parámetros Estimados

Como se menciono en el párrafo IV.3 el método utilizado es una aproximación lineal simple de la forma X = a + b X y utilizando el programa y subprograma como lo muestra la figura IV.2 se obtuvieron los valores díarios de $K_1 y K_2$ reteniéndose sólo los días en que r > 0.9 como se mu estra en la tabla IV.5. Se nota que son muy pocos los días analizados por mes, sin embargo erán los únicos datos con que se contaba a la fecha

Sin embargo se describe como proceder para estimar ade cuadamente a los parámetros, aplicando el método para los d<u>a</u> tos de que se dispone.

a). Promedio Mensual

La tabla IV.6 muestra los promedios mensuales obtenidos de la tabla IV.5 con la siguiente fórmula:

$$P_{m} = \frac{1}{n} \sum_{i=1}^{n} K_{1,2} (i)$$
 IV.26

n = número de puntos por mes

Promediandose también el coeficiente de correlación r. Es de notarse en la tabla IV.6 que los valores promedios de K_1 per manecen casi constantes mientras que los valores promedios de K_2 son casi constantes para los meses de octubre, noviembre, diciembre, enero y febrero y para los meses de julio, agosto y septiembre son bajos. Las variaciones de estos últ<u>i</u>

mos meses se debe a la epoca de lluvias.

b). Promedio Anual

Para obtener el promedio anual de $K_1 ext{ y } ext{ K}_2$ se podrían emplear dos formas:

$$P_{a1} = \frac{1}{N_{m}} \sum_{j=1}^{N_{m}} P_{m} (j)$$
 IV.27

$$P_{a2} = \frac{1}{N_d} \sum_{k=1}^{N_d} K_{1,2} (k)$$
 IV.28

 $N_m = n \text{ fumero de meses}$ $P_m = \text{ promedio mensual de K}_1 \text{ G K}_2$ $N_d = n \text{ fumero de días}$

La tabla IV.7 muestra los resultados obtenidos y en esta se nota que los promedios anuales de K₁ y K₂ obtenidos por las dos formas antes mencionadas son semejantes así como su desvi ación estándar. Nuestra decisión fué tomar los promedios anuales de K₁ y K₂ obtenidos por la segunda forma P_{a2} .

c). Modelo Modificado Retenido.

Con base en los valores de K_1 y K_2 con su desviación estándar obtenidos en promedio anual mostrados por la t<u>a</u> bla IV.7,el modelo de Allen original dado por la ecuación IV.1 queda de la forma siguiente:

$$Idn = Io(1 - 0.406694(\frac{W + 0.272}{W + 0.5}).m^{0.32659(\frac{W+1.153}{W+0.788})}) IV.29$$

esta ecuación es la que se retiene inicialmente como la aplicable a las condiciones del lugar de medición (IIE) y deberá actualizarse conforme se aumenten el número de observaciones.

Mes	Día	۸ño	Parámetros		Coeficien
ine 5	del	Ano	K ₁	K ₂	rrelación
			L.	۷	r
julio	3	1980	0.421325	0.130930	0.9726
julio	11	1980	0.409780	0.248181	0.9671
agosto	21	1980	0.404020	0.248870	0.9875
agosto	25	1980	0.400841	0.386813	0.9448
septiembre	12	1980	0.471472	0.248240	0.9305
septiembre	19	1980	0.416473	0.130170	0.9801
octubre	2	1980	0.423301	0.325999	0.9216
octubre	6	1980	0.374978	0.351824	0.9858
octubre	9	1980	0.444364	0.350697	0.9985
noviembre	19	1980	0.367484	0.331863	0.9620
noviembre	20	1980	0.346875	0.375986	0.9241
noviembre	26	1980	0.389235	0.321297	0.9844
diciembre	4	1980	0.391357	0.396187	0.9507
diciembre	11	1980	0.428102	0.429717	0.9523
diciembre	19	1980	0.387271	0.391921	0.9448
enero	5	1981	0.479513	0.330551	0.9353
enero	7	1981	0.414246	0.388676	0.9601
enero	14	1981	0.405034	0.350524	0.9144
enero	26	1981	0.301654	0.340691	0.9305
enero	30	1981	0.423426	0.301446	0.9010
febrero	2	1981	0.426553	0.395481	0.9730
febrero	4	1981	0.358470	0.474669	0.9797
febrero	20	1981	0.468207	0.261036	0.9460
	6				

Tabla IV.5 Valores diarios de K_1 y K_2 , calculados por el programa de simulación.

**	7.50	Días analiza dos (con	Parámetros		Correla- ción
Mes	ΜΡΟ	cielo limpio)	^K 1	к2	r
julio agosto septiembre octubre noviembre diciembre enero febrero	1980 1980 1980 1980 1980 1980 1981 1981	2 2 2 3 3 3 5 3	0.415552 0.402430 0.443972 0.414214 0.367864 0.402243 0.404774 0.417743	0.189555 0.317841 0.189205 0.342840 0.343048 0.405941 0.302377 0.377062	0.9698 0.9661 0.9553 0.9686 0.9568 0.9492 0.9282 0.9656
merzo abril mavo	1981 1981 1981	*	-	-	
junio	1981	*	_		

NOTA:

** valores utilizados de W y Pb de la tabla IV.1
* no se cuenta con mediciones de Idn

Tabla IV.6 Promedios mensuales de K₁ y K₂ obtenidos de la tabla IV.5 .

Promedio	Número de	Parámet	Parámetros	
anual	días ó meses	K ₁	к2	r
Pal -	8	0.408599 $\sigma_{k_1}=0.021$	0.313483 ^o k ₂ =0.081	0.957
P _{a2} .	23.	0.406694 $\sigma_{k_1=0.041}$	0.326598 ⁰ k ₂ =0.084	0.954

Tabla IV.7 Promedios anuales de $K_1 ext{ y } ext{ K}_2$ obtenidos de la tabla IV.5 y IV.6 .

IV.7 <u>Recomendaciones para el Mejoramiento</u> <u>de la Predicción del Modelo de Insolación</u> Modificado

Como consecuencia de la experiencia adquirida, las sugerencias que se recomiendan para mejorar aún más el modelo retenido son las siguientes:

- Incrementar el número de datos de radiación solar direc ta, realizando las mediciones de Idn en tiempos más cor tos, cada 10 6 15 minutos.
- 2). Continuar con estas mediciones por un periodo minimo de
 3 6 5 años para dar validez estadística a los resultados.
- 3). Hacer mediciones meteorológicas como la presión parcial del vapor de agua (P_W), presión atmosférica (Pb), temperatura (T) y humedad relativa (Hr) en la localidad.
- 4). Incluir en el modelo de Allen la variación de la constante solar diaria Ion (ver ecuación I.6 del capitulo I) y no el valor promedio anual Io = 1353 W/m^2 .

IV.8 Conclusion

El objetivo principal de este capítulo fué el de proporcionar un modelo utilizando el método de regresión lineal simple de la forma Y=a+bX para adaptar los parámetros K₁ y K₂ del modelo original de predicción instantánea de radiación solar directa normal a condiciones locales.

La campaña de mediciones de radiación solar directa normal en nuestras condiciones locales fué de ocho meses y se seleccionaron ciertos días por mes para analizarlos en de talle ecogióndose principalmente aquéllos con cielo claro y limpio. Se demostro la importancia de realizar otro tipo de

médiciones como son las de humedad relativa y las de tempera tura, que dado el caso pueden auxiliar para explicar discrepancias posibles entre la radiación solar directa normal medida y calculada. Se encontró que en nuestro sítio de medición (IIE Cuernavaca Morelos) siempre se tiene un aumento pronunciado de la humedad relativa por las tardes y se cree que esta es la razón a la falta de simetría, respecto al medio día solar en las mediciones como se mencionó en el párra fo IV.4 .

Se demuestra que pese a los pocos datos disponibles de insolación directa normal, los resultados obtenidos son alen tadores pues la diferencia entre medición y predicción del modelo fueron incluso menor a ± 5 % que es el rango de medición del instrumento utilizado (pirheliómetro).

Por último se elaboró una metodología que puede emplearse para la modificación de los parámetros K_1 y K_2 bajo cualquier condición local. Una validación satisfactoria del modelo estudiado para las condiciones locales del IIE, requi ere todavia de un mayor número de mediciones y esta actividad esta desarrollándose actualmente.

CAPITULO V

VALIDACION DE LOS MODELOS DE PREDICCION

V.1 Requerimientos para la Evaluación de los Modelos de Predicción

V.1.1 Identificación de la Información

V.1.2 Datos de Insolación

V.1.3 Datos Meteorológicos

- V.2 Criterios para la Evaluación de un Modelo
- V.3 Validación del Modelo Modificado e Implementado en el IIE
 - V.3.1 Comparación de la Insolación Instantánea Directa de Incidencia Normal Medida y -Calculada
 - V.3.2 Comparación de los Promedios Mensuales de la Insolación Directa de Incidencia Normal Medida y Calculada
- V.4 Recomendaciones para el Uso del Modelo

V.5 Conclusión

En este capítulo se presentan los requerimientos y cri terios con que debe cumplir un modelo de predicción instantá nea de la radiación solar (directa, difusa y global) para su validación. Entre mayor sea el número de requerimientos sobre mediciones meteorológicas satisfechos mejor será la validación de los modelos que necesiten de estos datos.

Se presenta la validación del modelo de Allen estudiado en el capítulo anterior, pero los lineamientos generales son aplicables a otros casos.

V.1 <u>Requerimientos para la Validación de</u> los Modelos de Predicción

Ilemos dicho con anterioridad que los modelos de predicción de insolación son aplicables a un lugar específico, sin embargo para darle validez a un modelo, es caracterizar cualitativamente y cuantitativamente a las varia bles meteorológicas y de insolación. La información podemos separarla en tres categorías: Su identificación, los datos de insolación y los datos meteorológicos.

V.1.1 Identificación de la Información

Esta categoría incluye a los factores que intervienen en el cálculo de la insolación de un modelo y algunos de ellos son obtenidos por fórmulas. Esta categoría se integra por:

- El número de estación de medición
- La fecha del año, mes y día
- La hora local
- El número del día del año (juliano)
- ° La hora solar
- ° La Latitud

- ° La longitud de referencia y local
- La altitud sobre el nivel del mar
- ° El ángulo de elevación
- ° El ángulo de azimuth
- ° La declinación solar

V.1.2 Datos de Insolación

En función del tipo de modelo de predicción se requiere de:

- La Radiación extraterrestre (constante solar) en su valor constante (1353 W/m²) o su valor diario que se conoce mediante la ecuación I.6 del capítulo I.
- ^o Medición de la Radiación solar global o total, captada en una superficie horizontal.
- Medición de la radiación solar difusa, captada en una superficie horizontal.
- Medición de la radiación solar directa con incidencia nor mal o bien obtenerla, por diferencia entre global y difusa.

V.1.3 Datos Meteorológicos

Los datos meteorológicos necesarios dependen de cada modelo y listamos la mayoría de ellos. En nuestro caso sólo se hace uso del vapor de agua condensable contenido en la atmósfera, de la presión atmosférica y de la humedad relativa.

Las principales variables de este grupo son⁽⁴⁰⁾

- ° Capa de nieve
- ° Turbidez atmosférica
- ° Rango de visibilidad
- Pronóstico del tiempo y obstrucciones (lluvia, bruma, etc)
 Temperatura de bulbo seco y húmedo

- ° Capa de nubosidad
- Presión atmosférica
- Precipitación pluvial
- ° Velocidad y dirección del viento
- Humedad relativa
- ° Porcentaje de claridad del brillo del sol
- ° Capa de ozono
- Otras variables (como presión parcial del vapor de agua, oxigeno, nitrógeno, dióxido de carbono, etc).

V.2 Criterios para la Evaluación de un Modelo

La adaptación de un modelo de predicción se decide después de un proceso de evaluación que tiene por ob jeto revisar ciertos criterios. Los criterios típicos usados para este efecto son⁽⁴¹⁾:

- ° Precisión del modelo
- ° Complejidad de utilización
- ° Costo de explotación que depende entre otras cosas de los datos meteorológicos requeridos
- Disponibilidad de datos poco comunes (contenido de ozono en la atmósfera, etc)
- Aplicabilidad geográfica

V.3 Validación del Modelo Modificado e Implementado en el IIE.

El modelo de Allen modificado analizado en el capítulo IV y dado por la ecuación V.1, es el que se estudiará.

Idn = Io
$$(1 - 0.407(\frac{W + 0.272}{W + 0.5}) \cdot m^{0.327}(\frac{W + 1.153}{W + 0.788})$$
 V.1.

Este modelo cumple satisfactoriamente con los requeri-

mientos para la validación de un modelo. En la categoría de la identificación de la información, el modelo modificado , cuenta con los datos locales como son; latitud, longitud de referencia y local, y la altitud sobre el nivel del mar,-con estos datos se calculan los demás factores indicados en esta categoría.

También cumple con los requerimientos de la segunda ca tegoría que son los datos de insolación. Para nuestro interés se requiere de valores medidos de radiación solar direc ta con incidencia normal, por lo que fueron realizados en el lugar de experimentación y también se midió la radiación solar global en plano horizontal.

Dentro de la tercera categoría que son los datos meteorológicos el modelo modificado sólo requiere del vapor de agua condensable y de la presión atmosférica local, y se dispone de estos datos para su uso.

Posteriormente el modelo se evalúa de acuerdo a los criterios dados por el parrafo V.2 esto es:

- La complejidad del modelo modificado a utilizar es mínima
 Se cuenta con los datos meteorológicos requeridos por el modelo y su costo tambien es mínimo.
- Su aplicabilidad geográfica es para un cielo limpio y cla ro y se está utilizando bajo este criterio.
- Finalmente su precisión se mencionará al final de este capítulo, pues se presenta en forma detallada, el estudio de la precisión de la predicción de este modelo.

Se hace uso de un programa de computadora para la predicción de valores instantáneos de Idn. El programa está concebido en lengua je Fortran IV y fué implementado en una microcomputadora CROMEMCO que pertenece al Departamento de Fuentes no Convencionales de Energia del IIE. La figura V.1 muestra el diagra ma de bloque del programa utilizado y en el apéndice F se muestra el listado de este programa.

· (.

Figura V.1 Diagrama de bloques del algoritmo usado para el cálculo de los valores instantáneos de Idn (ver lista de símbolos).

V.3.1 <u>Comparación de la Insolación Instantánea</u> <u>Directa de Incidencia Normal Medida y</u> Calculada

Sc recuerda que algunas de las mediciones de insolación directa normal en el lugar de interés (ver pá rrafo IV.2.2 del capítulo IV) fueron tomadas cada hora del día a partir de una hora despues de que salió el sol hasta el medio día en tiempo local y otras hasta su ocaso, realizando estas mediciones durante el periódo de 1980 - 1981 .

Las tablas V.1 a la V.4 muestran un día de cada mes los valores de Idn instantáneos que fueron medidos hasta el medio día, comparándolos con los valores de Idn calcul<u>a</u> dos por la ecuación V.1 .

El comportamiento gráfico de cada uno de estos días es mostrado por las figuras V.2 a la V.5 .

De igual forma las tablas V.5 a la V.8 muestran un día de cada mes los valores de Idn instantáneos que fueron medi dos durante algunos meses hasta su ocaso (todo el día) comparándolos con los valores de Idn calculados por la ecuación V.1 y el comportamiento gráfico de estos días se muestran en las figuras V.6 a la V.9.

En todas las figuras (de la V.2 a la V.9) se indica con una línea contínua el comportamiento gráfico de los valores de Idn medidos, y con una línea punteada los valores de Idn calculados. Tanto los valores medidos como los calculados se encuentran en tiempo local (TL) pero se presenta también la hora solar (TS) para observar la simetría de las curvas.

En cada una de las tablas mencionadas anteriormente -(de la V.1 a la V.8) se muestra el porcentaje de error ins tantáneo entre medición y predicción de Idn, así como el error promedió máximo y filtrado por día.

Es de mencionar que de las curvas de Idn medida o cal culada dadas en sus valores instantáneos por las figuras, se puede sacar la energía (área bajo la curva), este - -

procedimiento aquí no se menciona y únicamente nos ubicaremos a sacar la densidad de potencia W/m^2 . En estas figuras de la V.2 a la V.9, se muestra un día de cada mes.

El error instantáneo es obtenido de la siguiente forma:

$$\varepsilon_{i} = \left(\frac{\text{Idn (calculada)}}{\text{Idn (medida)}} - 1\right) \times 100 \quad \% \qquad V.2$$

El error promedio máximo por día se obtiene con la fór mula siguiente:

$$\varepsilon_{\max} = \frac{1}{n} \frac{\Sigma}{i=1} \varepsilon_{i}$$
V.3

El error promedio filtrado por día se obtiene con la misma ecuación anterior, pero eliminando los errores instan táneos que sobrepasan a un ± 10 % y son marcados con un *, es to es por considerar que se tuvo un error de medición debido a perturbaciones en la alta atmósfera, afectando la medi ción en el momento de realizarse.

En las tablas se nota que el porcentaje de error prome dio máximo encontrado por día es de -4.87% y +9.92% y los errores promedios filtrados son del -0.035%. Es de notarse también que se encuentran errores instantáneos entre calcula do y medido hasta de un -0.23% lo cual ya justifica que el modelo modificado y retenido es bueno.Para los días en los que muestran las curvas completas de Idn medidos, se observa una fuente de atenuación después del medio día. Esta discr<u>e</u> pancia se debe a la influencia de la humedad relativa sobre los valores de Idn medidos.

NOTA: Las denotaciones # y & utilizadas en las tablas de la V.1 a la V.8 indican lo siguiente: # No se cuenta con mediciones de Radiación Solar Directa Idn & Se eliminan los valores marcados con *

	N=185		
TL (Hora)	Idn (medida) W/m ²	Idn (calculada) W/m ²	l de error ε
7:00 $8:00$ $9:00$ $10:00$ $11:00$ $12:00$ $13:00$ $14:00$ $15:00$ $16:00$ $17:00$ $18:00$	# 735.85 829.16 850.37 890.66 850.37 848.25 # # # #	502.431 704.878 791.561 838.707 865.246 878.117 879.983 871.167 849.948 811.331 742.366 599.853	$ \begin{array}{r} -1.20 \\ -4.53 \\ -1.37 \\ -2.85 \\ +3.26 \\ +3.74 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
% de error promedio máximo			-0.99 %
[%] de error promedio filtrado ^{&}			-0.99 %

1

Tabla V.1 Valores de Insolación Directa Normal medidos y calculados para un día del mes de julio.

÷

	21 - a	N=234		
TL (Hora)	Idn (medida) W/m ²	Idn (calculada) W/m ²	^g de error ε	
7:00 8:00 9:00 10:00 11:00 12:00 13:00 13:00 14:00 15:00 16:00 17:00 18:00	# 721.015 816.443 848.253 858.856 869.459 # # # # #	398.594 680.229 782.060 834.556 863.399 877.176 879.097 869.521 846.380 803.478 723.631 539.493		
<pre>% de error promedio máximo</pre>			-2.014 %	
१ de er	<pre>% de error promedio filtrado^{&} -2.014 %</pre>			

Tabla V.2 Valores de Insolación Directa Normal medidos y calculados para un día del mes de agosto.

	19 - septiembre - 1980					
TL (Hora)	Idn (medida) W/m ²	Idn (calculada) W/m ²	ያ de error ε			
7:00 $8:00$ $9:00$ $10:00$ $11:00$ $12:00$ $13:00$ $14:00$ $15:00$ $16:00$ $17:00$ $18:00$	# 763.427 805.840 831.288 827.046 844.011 # # # #	335.397 661.224 769.045 822.962 851.762 864.654 864.858 852.387 824.201 771.343 666.219 356.914	$ \begin{array}{r} -13.38 \\ -4.56 \\ -1.00 \\ +2.98 \\ +2.44 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$			
% de erm	cor promedio ma	-4.87 %				
% de eri	for promedio f	iltrado&	-0.035 %			

· · · · ·

Tabla V.3 Valores de Insolación Directa Normal medidos y calculados para un día del mes de septiembre.

	2 - 00	ctubre - 1980	N=276
TL	Idn (medida)	Idn (calculada)	% de error
(Hora)	W/m ²	W/m^2	ε
$7:00 \\ 8:00 \\ 9:00 \\ 10:00 \\ 11:00 \\ 12:00 \\ 13:00 \\ 14:00 \\ 15:00 \\ 16:00 \\ 17:00 \\ 18:00 \\ 18:00 \\ 0$	# 636.190 721.015 827.046 869.459 805.840 # # # # #	304.642 658.538 770.203 825.106 853.967 866.408 865.640 851.481 820.206 760.884 637.294 191.004	+3.51 +6.82 -0.23 -1.78 +7.51 - - -
و de e	ror promedio	+3.16 %	
% de ei	rror promedio	filtrado&	+3.16 %

Tabla V.4 Valores de Insolación Directa Normal medidos y calculados para un día del mes de octubre.

-÷.,

Figura V.2 Comportamiento gráfico de la Insolación directa normal medida y calculada en el día 9 de julio de 1980.

-÷.,

Figura V.3 Comportamiento gráfico de la Insolación directa normal medida y calculada en el día 21 de agosto de 1980.

• •

Figura V.5 Comportamiento gráfico de la Insolación directa normal medida v calculada en el día 2 de octubre de 1980 .

	26 – r	N=331			
TL	Idn (medida)	Idn (calculada)	8 de error		
(Hora)	W/m ²	W/m^2	ε		
7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00	# 587.415 790.996 797.358 835.529 858.856 880.062 848.253 805.840 746.840 551.364 #	564.882 723.498 793.069 827.878 842.362 840.940 823.233 783.588 704.125 510.677	$\begin{array}{r} - 3.83 \\ - 8.53 \\ - 0.53 \\ - 0.91 \\ - 1.92 \\ - 4.44 \\ - 2.94 \\ - 2.76 \\ - 5.71 \\ - 7.37 \end{array}$		
% de er	ror promedio	- 3.90 %			
१ de ei	cror promedio	filtrado ^{&}	- 3.90 %		

Tabla V.5 Valores de Insolación Directa Normal medidos y calculados para un día del mes de noviembre.

	19 - 0	N=354	
TL (Hora)	Idn (medida) W/m ²	% de error ε	
7:00 $8:00$ $9:00$ $10:00$ $11:00$ $12:00$ $13:00$ $14:00$ $15:00$ $16:00$ $17:00$ $18:00$	# 534.399 727.377 810.081 860.977 873.700 848.253 827.046 733.739 644.672 398.679 #	- 493.904 693.278 774.232 814.358 832.085 833.106 817.745 781.165 707.586 535.198	$\begin{array}{r} - & 7.57 \\ - & 4.68 \\ - & 4.42 \\ - & 5.41 \\ - & 4.76 \\ - & 1.78 \\ - & 1.12 \\ + & 6.46 \\ + & 9.75 \\ + & 34.24 \\ \end{array}$
% de e	rror promedio	+ 2.071 %	
ταθ θ	rror promedio	- 1.50 %	

Tabla V.6 Valores de Insolación Directa Normal medidos y calculados para un día del mes de diciembre.

· .

	7 - e	N=7	
TL (Hora)	Idn (medida) Idn (calculada) W/m ² W/m ²		[%] de error ε
7:00 $8:00$ $9:00$ $10:00$ $11:00$ $12:00$ $13:00$ $14:00$ $15:00$ $16:00$ $17:00$ $18:00$	# 286.285 564.088 687.085 778.272 801.599 837.650 827.046 812.202 704.050 587.415 #	- 451.679 681.950 770.438 814.132 834.302 837.604 824.991 792.640 727.637 583.360	$ \begin{array}{r} - \\ +57.67 \\ +20.89 \\ +12.13 \\ +12.13 \\ +4.60 \\ +4.07 \\ -0.55 \\ -0.24 \\ -2.40 \\ +3.35 \\ -0.69 \\ -\end{array} $
% de error promedio máximo			+9.92 %
% de error promedio filtrado ^{&}			+1.21 %

Tabla V.7 Valores de Insolación Directa Normal medidos y calculados para un día del mes de enero.

	4 - f	N=35	
TL (Hora)	Idn (medida) Idn (calculada) W/m ² W/m ²		% de error ε
7:00 $8:00$ $9:00$ $10:00$ $11:00$ $12:00$ $13:00$ $14:00$ $15:00$ $16:00$ $17:00$ $18:00$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{r} - \\ +23.91 \\ + \\ 0.28 \\ + \\ 1.13 \\ -10.77 \\ - \\ 6.37 \\ - \\ 4.48 \\ - \\ 4.65 \\ - \\ 6.11 \\ - \\ 5.62 \\ +13.23 \\ \end{array}$
% de error promedio máximo			+0.055 %
% de er	ror promedio f	-3.68 %	

Tabla V.8Valores de Insolación Directa Normal medidosy calculados para un día del mes de febrero.

Figura V.6 Comportamiento gráfico de la Insolación directa normal medida y calculada en el día 26 de noviembre de 1980 .

Figura V.7 Comportamiento gráfico de la Insolación directa normal medida y calculada en el día 19 de diciembre de 1980.

ť.

Figura V.8 Comportamiento gráfico de la Insolación directa normal medida v calculada en el día 7 de enero de 1981 .

Figura V.9

Comportamiento gráfico de la Insolación directa normal medida y calculada en el día 4 de febrero de 1981 .

V.3.2 <u>Comparación de los Promedios Mensuales de</u> <u>la Insolación Directa de Incidencia Normal</u> <u>Medida y Calculada</u>

Es de importancia también obtener la canti dad de insolación directa normal que se tiene en promedio mensual y anual de las mediciones y predicciones. La tabla -V.9, muestra los promedios mensuales de Idn medidos y calcu lados y el porcentaje de error promedio mensual y anual. El promedio mensual de Idn medido y calculado se obtuvo aplican do la fórmula siguiente:

 $Idn_{(mes)} = \frac{1}{n} \sum_{i=1}^{n} Idn_{(dia)} V.4$

Donde Idn_(día) es el promedio diario de la insolación directa de incidencia normal de los días despejados de cada mes.

El promedio anual de Idn, se obtuvo aplicando la misma ecuación anterior sumando la Idn de cada mes y dividida entre el número de meses.

El error promedio mensual y anual se obtuvo aplicando las ecuaciones V.2 y V.3 y la desviación estándar del error promedio anual es obtenida por la fórmula siguiente:

$$\sigma_{\varepsilon} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon_{medio})^{2}}$$
 V.5

La figura V.10 muestra el comportamiento gráfico de los valores promedios mensuales de Idn, en esta figura se nota que se tiene errores promedios mensuales del orden del ±5%.

El error promedio anual obtenido es del +1.366% con una desviación del error de ±3.54%, puesto que el aparato de me

Mes año	р у		Promedio Mensual	Promedio Mensua	l % de error
Días despejados		Idn (medida)	Idn (calculada)	ε	
			W/m ²	W/m ²	
Julio	-1980	(6)	808.189	819.537	+ 1.40
Agosto	-1980	(2)	813.686	807.081	- 0.81
Septiembr	e-1980	(2)	768.728	795.255	+ 3.45
Octubre	-1980	(3)	778.862	792.479	+ 1.74
Noviembre	-1980	(3)	796.579	745.198	- 6.45
Diciembre	-1980	(3)	696.698	730.460	+ 4.84
Enero	-1981	(6)	729.214	737.646	+ 1.15
Febrero	-1981	(4)	723.097	763.691	+ 5.61
Marzo	-1981		#	_	-
Abril	-1981		ļ #	-	-
Mayo	-1981		#	-	-
Junio	1981		#	-	-
	• _				
Promedio	Anual		764.382	773.718	+ 1.366 %

Tabla V.9 Promedios mensuales y anuales de Idn medidos y calculados en el lugar de experimentación (IIE) .

Figura V.10 Comportamiento gráfico de los promedios mensuales y anual de la Insolación Directa normal obtenidos en el lugar de exper<u>i</u> mentación (IIE).

·1.

dición tiene una precisión especificada del ±5% por el febri cante. Los resultados obtenidos son muy alentadores pues el error obtenido está dentro de este criterio y sería mucho más factible con más datos de Idn en el año. En la tabla IV.1 mostrada en el capítulo IV, se nota que para los meses del año (de enero a diciembre) los valores del vapor de agua con densable W, son bajos, menores a 2.4 cm lo cual corrobora que el modelo es sinsible a valores pequeños de W, como se dijo en el capítulo IV párrafi IV.5.

Finalmente es de notar también que podemos esperar una insolación directa de incidencia normal mayor que 764.382 W/m^2 en promedio anual en el lugar de experimentación.

V.4 Recomendaciones para el Uso del Modelo

Al utilizar el modelo, es necesario tomar en cuenta que:

- Sirve para predecir la radiación solar directa de in cidencia normal para un cielo totalmente claro y con diciones climatológicas y geográficas similares al sitio de experimentación.
- Para cualquier lugar que no cumpla con lo anterior será necesario aplicar la metodología para el ajuste de parámetros.
- Es preferible utilizar valores de W y Pb precisos debido a las variaciones del microclima.
- 4) En caso de demasiada divergencia entre predicción y medición, es importante realizar otras mediciones como por ejemplo, turbidez atmosférica y humedad relativa; tal que pueda verificarse si se tienen días claros

V.5 Conclusión

En el presente capítulo se mencionaron algunos de los criterios y requerimientos con que debe cumplir un modelo de predicción.

Se mostraron los porcentajes de error instantáneo, pro medios diarios, mensuales y anuales que existen entre medición y predicción del modelo modificado. Se observa que los resultados obtenidos son bastante alentadores y satisfactorios pues el error máximo obtenido en promedio anual es de 1.366% con una desviación estándar de \pm 3.54%.

La precisión del instrumento de medición (pirheliómetro) especificado por el fabricante es de ± 5%, lo cual indica que nuestros resultados están dentro de este criterio.

Sin embargo, la estadística mejoraría aún más si se t<u>u</u> viera un mayor número de datos de Idn, medidos en el lugar de experimentación.

CONCLUSIONES

En el presente trabajo se hizo el análisis de algunos modelos matemáticos de predicción instantánea de Radiación Solar Directa, Difusa y Global, con el fin de conocer la complejidad matemática, los parámetros que intervienen y sus requerimientos en cuanto a mediciones tanto para el uso del modelo como para lograr estimar los parámetros del mismo.

De lo anterior se dedujo que es necesario realizar mediciones de variables meteorológicas y de insolación, pues algunas de estas variables son utilizadas por los modelos y las mediciones de insolación sirven para modificar algunos parámetros usados por los modelos y para comparar los valores de insolación medidos y calculados. Al mostrar estas necesidades de medición con el presente trabajo, se logró motivar la adquisición de una estación meteorológica automática - -(climatronics). Sin embargo en el período de 1980-1981 se realizó solamente una serie de mediciones en el IIE y que incluyó algunas mediciones meteorológicas como temperatura y humedad relativa y algunas mediciones de insolación, como radiación solar directa de incidencia normal y radiación so lar global en plano horizontal, pues la estación automática no se recibió sino hasta fines de 1981. Una vez realizado el análisis de los modelos, se optó por seleccionar uno de predicción instantánea de radiación solar directa de incidencia normal pues las investigaciones sobre plantas helioeléctricas que se realizan en el IIE, requerían de un modelo de este tipo, sobre todo para efectuar simulaciones.

Se seleccionó el modelo de Allen por su facilidad de implementación y porque utiliza variables meteorológicas que pueden ser fácilmente medibles: presión atmosférica local y vapor de agua condensable W , o bien pueden est<u>i</u> marse a partir de datos publicados por los servicios meteo-

rológicos del país. Además es un modelo que ya fué utiliza do en el análisis por simulación numérica de la planta helioeléctrica piloto de receptor central construyéndose en -Barstow California.

Por otro lado los costos asociados a la utilización del modelo son mínimos.

Al modelo escogido (Allen), se le modificaron algunos de sus parámetros para su adaptación en nuestras condiciones locales utilizando una metodología de regresión lineal simple y se realizaron algunas pruebas estadísticas para la v<u>a</u> lidación.

Es importante mencionar que esta metodología puede ut<u>i</u> lizarse para la adaptación de parámetros de cualquier modelo de insolación, siempre y cuando se pueda obtener una fo<u>r</u> ma lineal del mismo.

La implementación de la metodología fué realizada en una computadora digital VAX y en otra microcomputadora CRO-MEMCO que se encuentran en el IIE.

Los resultados obtenidos por el modelo modificado ya validado, son bastante satisfactorios y alentadores pese a los pocos datos de insolación directa normal disponibles, pues se obtuvo un error promedio anual del +1.366% con una desviación estándar del ± 3.54%.

Además la precisión del pirheliómetro con que se realizaron las mediciones de insolación es de <u>+</u> 5% lo cual indica que nuestros resultados al estar dentro de este rango no son imprecisos, pues difícilmente un modelo podrá predecir mejor que la precisión del instrumento.

De los problemas que se encontraron para el análisis del modelo antes mencionado, podemos resaltar los siguientes:

-í.
- Se dispone de pocos datos de radiación solar en el tiempo y además algunos corresponden a días completos tomándolos cada hora y otros solamente a medios días.
- 2) Se tuvieron algunas fallas en los instrumentos de me dición de Radiación Solar disponibles, lo cual impli ca que hubo períodos donde no se realizaron estas me diciones.

Para mejorar aún más el modelo retenido, se pueden dar las siguientes recomendaciones:

- Obtener datos de insolación directa en todo el año y por varios años, tal que la validación estadística sea más con fiable.
- Efectuar mediciones precisas de presión atmosférica local, Presión parcial del vapor de agua y del vapor de agua condensable.
- Continuar con otras mediciones que pueden ser de utilidad al analizar modelos como por ejemplo: temperatura y humedad relativa.

El conocimiento del recurso solar local es determinante para el dimensionamiento de los diferentes sistemas sol<u>a</u> res y existen dos alternativas posibles:

- Efectuar mediciones de insolación durante un tiempo razonable, mínimo de un año a tres años.
- 2) Predecir los valores de insolación con modelos matemáticos.

Puede ser mejor la primera alternativa, sin embargo; el tiem po necesario la hace inoperante. La segunda alternativa permite efectuar rápidamente los cálculos, y con datos suficien tes de por ejemplo variables meteorológicas es posible predecir con precisiones adecuadas los valores de la radiación solar. Estas características motivaron el interés por conocer la radiación solar cuantitativamente a través de mode los en países en donde no se cuenta con suficiente historial

en mediciones de insolación como es el caso de México.

El tiempo con que se realizó este trabajo no permitió abordar el estudio de otros modelos bajo nuestras condiciones locales y es importante que se continúen estos trabajos.

De esta forma se contará con una base de comparación entre varios modelos y se podrá definir con mejores argumen tos, cuales son los mejores modelos de predicción de radiación solar en sus diferentes formas.

APENDICE "A"

La Declinación Solar

La declinación solar se define como el ángulo que forman los rayos solares con el plano ecuatorial y se encuen tra tabulada en la gráfica de la figura Λ -1. Los valores de la declinación para algunos dias del año; se presentan en la tabla Λ -1. El propósito de este apendice es derivar una ecua ción que nos permita evaluar la declinación en cualquier día del año⁽⁴⁵⁾.

La gráfica de la declinación (figura A-1) tiene una forma sinusoidal, por lo cual se propone la ecuación siguien te:

$$\delta = C \operatorname{Sen}(K, \theta_{r}) \qquad A-1$$

En donde δ es la declinación, C y K son constantes por determinar y θ_r es el ángulo entre el radio vector de la δr -bita y el afelio.

Como se quiere obtener la declinación para cualquier día del año es necesario expresar a θ_r en función del día del año (Juliano) de tal manera que se propone:

 $\theta_r = M + N$ A-2

Donde M es una constante por determinar y N es el núme ro del día del año, por lo tanto la declinación solar en fun ción del día del año se puede expresar de la forma siguiente:

$$\delta (N) = C \operatorname{Sen} \{ K (M + N) \}$$
 A-3

El factor K, es el número de grados que se desplaza el radio vector sobre la órbita del día de tal manera que se puede expresar como:

$$K = 360^{\circ}/365$$

Sustituyendo la ecuación A-4 en la A-3 obtenemos

$$\delta(N) = C \operatorname{Sen} \left\{ \frac{360^{\circ}(M+N)}{365} \right\}$$
 A-5

Se sabe que en un año bisiesto, la declinación es cero el 21 de Marzo y para un año no bisiesto aproximadamente es el 22 de Marzo (N = 81); por lo cual:

$$\delta(81) = C \operatorname{sen} \left\{ \frac{360^{\circ}(M+81)}{365} \right\} = 0$$
 A-6

Obteniendose así el valor de M

M = 284

De la tabla A-1 v la figura A-1 observamos que la maxi ma declinación se obtiene el 21 de Junio y tiene un valor de + 23.45°. El valor maximo de la ecuación A-5 se obtiene cuando la función seno se hace igual a la unidad; por lo cual

$$C = 23.45^{\circ}$$

Finalmente podemos expresar la ecuación de la declinaci-n solar de la menera siguiente:

$$\delta(N) = 23.45^{\circ} \text{Sen} \left\{ \frac{360^{\circ}(284 + N)}{365} \right\}$$
 A-7

En donde N es el número del día del año.

مرد الافغانية المحودات محملة م

Figura A-1 Gráfica de la Declinación Solar en función del día del año.

178

ю

Declinación Solar

Mes	Dí	a o	S	Mes	Día	č	S	Mes	Día	ć	S	
Enero	1	+ 23	.1	Febrer	1	- 17	19	Marzo	1	- 7	51	
	5	22	42		~ <	16	10	14120	•	6	21	
	9	22	13		9	14	55		Q.	1	45	
	13	21	37		13	13	37		13		14	1
	17	20	54		17	12	15		71	1	50	1
	21	20	٩,		21	10	5()		21	0	5	
	25	19	9		25	9	23		25	+ 1	3()	
	29	18	8						29	;	4	
Abril	١	- 4	14	Mayo	1	+ 14	50	Junio	1	+ 21	57	
	٢	5	46	1	5	16	2		5	22	28	
	9	7	17		9	17	9		9	22	52	
	13	8	46		13	18	11		13	23	10	
	17	10	12		17	19	9		17	23	22	
	21	11	35	1	21	20	2		21	23	27	1
	25	12	26		25	20	49		23	23	25	
	29	14	13	ı	24-	21	30		29	23	17	
Julio	ł	+ 23	10,	Agosto	1	+ 18	14	Sentia	m 1	+ 8	35	
•••====	5	22	52	1.90000	5	17	12	by	<u> </u>	7	٦	
	9	22	28		9	17	6	bre	9	2	37	
-1-	13	21	57		13	14	55		13	4	6	
	17	21	21		17	13	41		17	2	34	
	21	20	38		21	12	23		21	1	1	
	25	19	50		25	11	2		24	- 0	32	
	29	18	57		29	ų	39		24	2	0	
Octubre		?	4:	Normiem	!	- 14	11		•	.	: ;	
Occupie	<u>ار</u>	4	20	NOVIEM	- 5	15	27	Diciem	- ·	2:	16	i
	9	5	58	bro	9	16		bre	9	22	45	
	13	7	29	nre	13	17	45		13	22	45	
	17	8	58		17	18	48		17	23	20	
	21	10	25		21	19	45		21	23	26	
	25	11	50		25	20	36		25	23	25	
	29	13	12		<u>-</u> : 29	21	21		29	23	17	

Tabla A-1 Valores de la declinación solar δ (en grados y minutos) para diferentes días del año.

APENDICE "B"

Distribución de la Radiación Solar Global en Mexico

Los resultados obtenidos de la distribución media diaria anual y mensual de la radiación solar global en México efectuada mediante el estudio realizado por la fotointerpretación de la nubosidad obserbada por los satélites meteorológicos NIMBUS III y ESSA-8, se presentan en los siguien tes mapas que corresponden principalmente a los Solsticios de Verano e Invierno y Equinoccios de Primavera y Otoño⁽¹²⁾.

APENDICE "C"

Masas de Aire Atmosféricas

El propósito de este apéndice es el de demostrar la expresión II.2 del capítulo II, párrafo II.1 que nos permite evaluar las masas de aire m_r para cualquier variación del ángulo de elevación 0_e , en función del radio medio de la tierra R y de la profundidad del aire H,como se muestra en la figura C-1.

Figura C-1 Representación de las masas de aire m $_{\rm r}$ en función de H, R y $\theta_{\rm e}$, considerando una atmósfera homogenéa .

En la figura C-1 se observa que las distancias BC y CA permanecen constantes y que sólo varia la distancia $BA = m_r$ como una función de θ_o .

Para poder determinar la ecuación de m_r es necesario determinar las coordenados (x_1, y_1) que tiene el punto de inter-sección de la recta BA con el círculo exterior (límite de la atmósfera terrestre).

$$A = (x_1, y_1)$$
$$B = (0, R)$$
$$C = (0, 0)$$

La ecuación del círculo de la la atmósfera es :

$$x_1^2 + y_1^2 = (R + H)^2$$
 C-1

La ecuación de la recta BA se determina mediante :

$$\tan \theta_{e} = \frac{(y_{1} - R)}{x_{1}}$$
 C-2

 $y_1 = \tan \theta_e x_1 + R$ C-3

Sustituyendo la ecuación C-3 en C-1 e igualando a cero se tiene :

$$x_{\perp}^{2} + (\tan \theta_{e} x_{\perp} + R)^{2} - (R + H)^{2} = 0$$
 C-4

$$x_1^2 + (1+\tan^2\theta_e) + x_1(2R\tan\theta_e) + 2RH + H^2 = 0$$
 C-5

La ecuación anterior (C-5) es una expresión cuadrática y se puede solucionar por :

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 C-6

tomando x_1 positiva como se muestra en la figura C-1

$$x_{1} = \frac{-2R \tan \theta_{e}}{2(1+\tan^{2}\theta_{e})} + \frac{\sqrt{4(R\tan \theta_{e})^{2}+4(1+\tan^{2}\theta_{e})(2RH+H^{2})}}{2(1+\tan^{2}\theta_{e})} C-7$$

$$x_{1} = \frac{-R \frac{sen\theta_{e}}{cos\theta_{e}}}{1/cos^{2}\theta_{e}} + \frac{2\sqrt{R^{2} \frac{sen^{2}\theta_{e}}{cos^{2}\theta_{e}} + \frac{2RII + H^{2}}{cos^{2}\theta_{e}}}}{2(1/cos^{2}\theta_{e})} C-8$$

$$x_1 = -R \sec \theta_e \cos \theta_e + \cos \theta_e \sqrt{R^2 \sin^2 \theta_e + H(2R+H)}$$
 C-9

$$x_1 = \cos\theta_e (-R \sin\theta_e + \sqrt{R^2 \sin^2\theta_e + II(2R+II)}) \qquad C-10$$

De la figura C-1 se obtiene que :

$$\cos\theta_{c} = \frac{x_{1}}{m_{r}}$$
C-11

Por lo tanto

$$m_r = \frac{x_1}{\cos\theta_e} \qquad C-12$$

Sustituyendo C-10 en C-12 obtenemos que :

$$m_{r} = \sqrt{(R \operatorname{sen}\theta_{e})^{2} + H (2R + H)} - R \operatorname{sen}\theta_{e} C-13$$

Finalmente dividiendo la ecuacuón C-13 por H podemos expresar la ecuación de las masas de aire de la siguiente forma:

$$m_r = ((\frac{R}{H} \text{ sen}\theta_e)^2 + 2R + 1)^{1/2} - \frac{R}{H} \text{ sen}\theta_e$$
 C-14

La expresión C-14 es igual a la ecuación II.2 del capítulo II, la cual queda demostrada .

APENDICE "D"

Regresión Lineal Simple

El propósito de este apendice es considerar el problema de la correlación o el grado de relación entre dos variables, atravez de una ecuación lineal.

Cuando solamente se trata de dos variables se habla de correlación y regresión lineal simple, y cuando se trata de analizar más de dos variables se habla de correlación y regresión multiple. En este apendice solo se consideran algunas pruebas estadistícas de correlación y regresión simple que son las más importantes y que son calculadas por el sub programa GO2CAF de la computadora VAX del IIE.

. ESPECIFICACIONES

El programa principal <u>REGLIN</u> y la SUBROUTINA GO2CAF se encuentran el lenguaje fortran IV.

DESCRIPCION

La rutina ó subroutina analiza la relación lineal entre un conjunto de pares de datos (x_i , y_i). La rutina calcula el coeficiente de regresión b, la constante de regresión a y otros parámetros estadísticos por minimización del error cuadrático (método de los minimos cuadrados).

$$\sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{m} - y_{p})^{2}$$

Los datos de entrada consisten en n pares de observaciones

$$(x_1, y_1), (x_2, y_2) - - - - - - - - (x_n, y_n)$$

donde X es la variable independiente y Y es la variable dependiente.

· (.).

. Las pruebas estadísticas calculadas son:

a). medias

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

$$d-1$$

$$d-2$$

b). Desviación estándar de la media.

$$Sx = \sqrt{\frac{1}{n-1}} \frac{n}{i = 1} (x_i - \bar{x})^2$$
 d-3

$$sy = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 d-4

c). Coeficiente de correlación r

$$r = \frac{\prod_{i=1}^{n} (x_{i} - \overline{x}) (y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}} d-5$$

d). Coeficiente de regresión b y constante de regresión a n

$$b = \frac{\sum_{i \equiv 1}^{\infty} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} d-6$$

$$a = \overline{y} - b \overline{x} \qquad d-7$$

 e). Suma de los cuadrados atribuíble debido a la regresión SSR, suma de los cuadrados de las desviaciones debido a la regresión SSD, suma total de los cuadrados SST.

$$SSR = SST - SSD \qquad d-8$$

$$SSD = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \qquad d-9$$

$$n \qquad 2$$

$$SST = \sum_{i=1}^{\Sigma} (y_i - \overline{y})^2 d-10$$

f). Grados de libertad atribuibles debido a la regresión DFR, grados de libertad de las desviaciones debido a la regresión DFD y grados de libertad totales.

$$DFR = 1 d-11$$

$$DFD = n - 2 \qquad d-12$$

$$DFT = n - 1$$
 d-13

g). Media cuadrática atribuible debido a la regresión MSR y la media cuadrática de las desviaciones debido a la regresisón MSD.

MSR = SSR/DFR d-14

$$MSD = SSD/DFD$$
 d-15

h). El valor F para el análisis de la variancia

$$F = MSR/MSD$$
 d-16

 i). Error estándar del coeficiente de regresión Se(b) error estándar de la constante de regresión se(a)

Se(b) =
$$\sqrt{\frac{MSD}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$
 d-17
Se(a) = $\sqrt{\frac{MSD}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$ d-18

j). Valor t para el coeficiente de regresión t(b) valor t para la constante de regresión t(a)

$$t(b) = b/Se(b) \qquad d-19$$

t(a) = a/Se(a) d-20

189

PROGRAMA FARA CALCULAR LOS COEFICIENTES DEL MODELO DE ALLEN. REAL*8 IH(20), H(20), IDH(20), X(20), Y(20), RESULT(20) INTEGER IFAIL, I REAL M1, N, LL, LR, IO, K1, K2 DIMENSION TETAE(20), TAOH(20), ABS(20), TL(20),TS(20),TSV(20),TLV(20) 1 'ASIGNACION DE DATOS' OPEN(UNIT=6,NAME='RES.SIL',TYPE='NEW',DISPOSE='SAVE') READ(5,100)(IH(J),J=1,5),N,W 100 FORMAT(F8.4) LL=99,23 LR=90. FI=18.88 FR=641.86 PO 760. R=6370. H=8.430 10=1353. FRAD=3.141592/180. E=(360*(284.+N)/365.)*FRAD DELTA=23.45*SIN(E) DELTA:=DELTA%FRAD X1=R*P0/(H*PR) D1=180.*N/366. FI=FI*FRAD D=D1≱FSAD DA=2.*D DB=4.*DIIC=6.*D ERT=0.007*COS(IA)-0.05*COS(IB)-0.0015*COS(DC) -0.122*SIN(DA)-0.156*SIN(DB)-0.005*SIN(PC) 1 TL1::7. TS1=7. F1=(W+0.272)/(W+0.5)P2=(W+1.153)/(W+0.788) WRITE(6,20) WRITE(8,20) IIO 10 J=1,5 TSV(J)=TS1+JTL(J)=TL1+JTS(J)=TL(J)+(LR-LL)/15+EQTTLV(J) = TSV(J) - (LR - LL) / 15 - EQTTAOH1 = (TS(J) - 12) * 15.TAOH(J)=TAOH1*FRAD TET=SIN(FI)*SIN(DELTA)+COS(FI)*COS(DELTA)*COS(TAOH(J)) TETAE(J)=ASIN(TET)

С

С

С

		IF (TETAE(J).GE.0.) GOTO 30
		IDN(J)=0.
		GOTO 40
30		H1=X2-(X1¥SIN(TETAE(J)))
		H(J)=(H1*PR)/PO
		X(J)=L0G10(H(J))
		FC=21,206317
		Th(.1)=TH(.1)*FC
		Y(.) = 10610(1(1M(.))/10))
		TETAF(.1) = TETAF(.1) / FRAD
20		FORMAT(/.15Y./TSU())/.3Y./TLU())/.3X./TL())=/.3Y./TS())=/.
20	1	5(+150H(1) = (+3)(+1EEE(1) = (+5)(+10)(1) + (+6)(+10)(1) = (+8)(+1)(1) = (+6)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
	1	AX · 'TH(I)=')
40	•	WRITE(A.21)ISV(1).TLV(1).TL(1).TS(1).TADH1.TETAE(1).M(1).
10	1	X(1),Y(1),TH(1)
	•	WRITE(8.21)TSU(1).TU(1).TU(1).TS(1).TSOH1.TETAE(1).H(1).
	4	
21	*	
<i>x</i> . <i>x</i>	1	$= 7 \cdot 7 \cdot 7 \cdot 5 $
10	*	
10		
		WRIIE(0)2J/EU////EL/H/N/W
25		$= \frac{1}{2} $
20	•	FURTHIN TO DE U = $(E7 A)$
	T	$\frac{10x}{10x} = \frac{10x}{10x} = $
		\$\$\$1\$E(0\$28)
		WKI1E(8728)
28		
L		SE LLAMA A LA SUBRUUTINE GUZUAR
		1FAIL=V
C		CHLL DV2CHF (NUT)X)TIKESULTITHIL
с С		TERT TEAT
L		TE ATEATLY EN ON EN
50		IF (IFHIL) JUIDIN URITE(/ DONIEAN
20		WRIIE(0)70/1FALL
~~		
80		
		WRITE(6/92)RESULT(2)
		WRITE(8,92)RESULT(2)
		WRITE(6,93)RESULT(3)
		WRITE(8,93)RESULT(3)
		WRITE(6,94)RESULT(1)
		WRITE(8,94)RESULT(4)
		WRITE(6,93)RESULT(5)
		WRITE(8,95)RESULT(5)

	WRITE(6,96)RESULT(6)	
	WRITE(8,96)RESULT(6)	
	WRITE(6,97)RESULT(7)	
	WRITE(8,97)RESULT(7)	
	WRITE(6,98)RESULT(8)	
	WRITE(8,98)RESULT(8)	
	WRITE(6,99)RESHUT(9)	
200		
00	$EDEHAT/20X_{TEAT} = (TD)$	
7V 01	FORBHITZONY (INTO A FUTO A A A A A A A A A A A A A A A A A A A	
71	FORMAT(20X) VALUE MEDIO VAR, INDEFENDIENTE	X = (r + 8 + 4)
72	FURNAT (20X) VALUE REDIU VAR, DEFENDIENTE	Y= (,F8.4)
73	FURMAT(20X) DESVIAUIUN STANDAR DE X	SX= ',F8,4)
94	FURMAT(20%) DESVIACION STANDAR DE Y	SY= (,F8.4)
95	FORMAT(20X) COEFICIENTE DE CORRELACION	E= 'rF8.4)
96	FORMAT(20%, COEFICIENTE DE REGRESION	B= (,F8,4)
97	FORMAT(20X, CONSTANTE DE REGRESION	` A= (,F8.4)
9 8	FORMAT(20X, 'ERROR ESTANDAR DE B	SE(B) = (,F8,4)
99	FORMAT(20X, 'ERROR ESTANDAR DE A	SE(A) = (,F8.4)
	WRITE(6,29)	
	WRITE(8,29)	
29	FORMAT(/,5X,110('3'))	
С	CONTINUA EL PROGRAMA PRINCIPAL PARA EL CALCH	
	K2=RESULT(6)/F2	
	K1 = (10 * * RESULT(7)) / P1	
	ABOS=K1%P1	10
	AL FA=K2±F2	
	NRTTE(A.500)K1.K2	
	URITE(8,500) K1 K2	
500	ENDMAT($/.5Y$, (E) UALOR DE KI = $/.ED / EV (N)$	· · · · · · · · · · · · · · · · · · ·
500	$\frac{1}{10000000000000000000000000000000000$	NZ = (118.6)
	WAILENDIJJU/	
	V TA (J) X KALFA	
	ABS(J)=ABDS*V	
	IDN(J)=IOI(1,-ABS(J))	- t -
550	FDRMAT(/,50X'ABS(J)=',3X,'IDN(J)=')	
	WRITE(6,70)ABS(J),IDN(J)	1
	WRITE(8,70)AES(J),IDN(J)	
70	FORMAT(50X,F8.3,3X,F8.3)	
400	CONTINUE	÷
	CLOSE(UNIT=8)	
	STOP	
	END	

192

-1.

APE.NDICE "E"

Distribución t de Student

D	10,443	10.94	10 475	10 45	10 90	10 80	10.25	16 16	10 40	1
1	63,66	31.82	12,71	6.31	3,08	1.376	1.(24)	0.727	0.325	6348
2	9,92	6,96	4.30	2,92	1,89	1.061	0,816	0.617	(9	6 142
3	5,84	4,54	3,18	2.35	1,64	0.978	0.765	0.554	0.2.7	0.137
4	4,60	3.75	2,78	2.13	1.53	0.941	0,741	0,569	0.271	0.134
Λ										
\ 5	4,03	3,36	- 2,57	2.02	1.48	0.920	0,727	0,559	0,267	0.132
3,6	3,71	3,14	2,45	1,94	1,44	0,906	0,718	0,553	0.265	0,131
7	3,50	3, (X)	2,36	1.90	1,42	0,896	0,711	0.549	0.263	0.130
8	3,36	2,90	2,31	1,86	1,40	0,889	0,706	0,546	0.262	0,130
y	3,25	2.82	2,26	1,83	1,38	0,883	0,703	0,543	0,261	0,129
10	3,17	2,76	2.23	1,81	1,37	0,879	0,700	0,542	0,260	0,129
11	· 3,11	2,72	2.20	1,80	1,36	0.876	0.697	0,540	0,260	0,129
12	3,06	2,68	2,18	1,78	1,36	0.873	0,695	0,5 39	0.259	0.128
13	3,01	2,65	2,16	1,77	1,35	0.870	0,694	0,538	0.259	0.128
14	2,98	2,62	2,14	1,76	1,34	0,868	0,692	0.537	0,258	0,128
15	· 2.95	2,60	2,13	1,75	1,34	0.866	0,691	0.536	0.258	0,128
16	2:92	2,58	2.12	1.75	1.34	0.865	0,690	0.535	0,258	0,128
17	2,90	2,57	2,11	1,74	1,33	0.863	0,689	0,534	0,257	0.128
18	2,88	2,55	2.10	1,73	1,33	0,862	0,688	0.534	0,257	0.127
19	2,86	2,54	2.09	1.73	1.33	0,861	0,688	0,533	0,257	0,127
20	2.84	2.53	2,09	1.72	1,32	0.860	0.687	0.533	0.257	0.127
21	2,83	2,52	2.08	1,72	1,32	0,859	0,686	0,532	0,257	0,127
22	2,82	2,51	2,07	1,72	1,32	0,858	0,686	0.532	0.256	0.127
23	2,81	2,50	2,07	1,71	1,32	0,858	0,685	0,532	0.256	0.127
24	2,80	2,49	2,06	1,71	1.32	0,857	0,685	0.531	0.256	0.127
25	2 79	2 48	2.06	1 71	1 37	0.856	0.684	0 531	0 256	0 127
26	2 78	7.48	2,00	1 71	1,32	0.856	0.684	0.531	0.256	0.127
27	2,77	2.10	2.00	1 70	1,52	0.855	0.684	0.531	0,2,56	0.127
28	2.76	2.47	2.05	1,70	1 31	0.855	0.683	0.530	0.256	0.127
29	2,76	2.46	2,04	1,70	1,31	0.854	0.683	0,530	0,256	0,127
30	2.75	∠. 46	2.04	1.70	131	0.854	0.683	0.530	0.256	0.127
40	2.70	2,42	2,02	1.68	1.30	0.851	0.681	0.529	0.255	0.126
60	2.66	2.39	2,00	1.67	1 30	0.848	0.679	0.527	0.254	0.126
120	2.62	2,36	1.98	1.66	1.29	0.545	0.677	0.526	0.254	0.126
ĸ	2,58	2,33	1,96	1,(45	1.28	0,842	0,674	0,524	0.253	0,126

Tabla E-1 Valores de t_p de la distribución t de Student para D grados de libertad (area sombreada = p)

APENDICE "F"

C		HODELO DE PREDICCION DE RADI	ACION SOLAR DIRECTA DE	
C		INCLUENCIA NURMAL - ALLEN-LZ		
		REAL $M1_{j}M(20)_{j}N_{j}LL_{j}LR_{j}I0_{j}IIN$	(20)	
		DIMENSION TETAE(20), TAOH(20)	1AB5(20),TL(20),TS(20),	
_	1	TSV(20),TLV(20),EQT(35),DELT	A(35)	
С		ASIGNACION DE DATOS		
		OFEN(UNIT=6,NAME='RES.LOR',T	YPE='NEW', DISPOSE: 'SAVE')	
		READ(3,200)N,W		
200		FORMAT(F8.4)		
		LL=99.23		
		LR=90.		
		PR=611.86		
		P0=760.		
		R=6370.		
		H=8.430		
		10=1353.		
		N=N-1.		
		FRAD=3.141592/180.		
		1001 - 001 - 1001		
		N-N11		
		R-RT1+ E-/7/A #/304 1313/7/E \#E6AD		
		DELIH(1)-(23+33451R(E))#FRHD		
		ABUS=0,40/*(W+0,2/2)/(W+0,3)		
		ALFA=0.32/*(W+1.153)/(W+0.78	38)	
		D1=:180.XN/366.		
		FI=18.88		
		FI=FI*FRAD		
		II=II1*FRAD		
		DA=2.*D		
		IIB=4.*D		
		DC=6.*D		
		EQT(I)=0.007*COS(DA)-0.05*CC	DS(DE)-0,0015#COS(DC)	
	1	-0.122#SIN(BA)-0.136#SIN(DB))-0.005*SIN(DC)	
		TL1=6.		
		TS1=6.		
		WRITE(6,20)		
		WRITE(8,20)		
		TID 10 .l=1+12		
		TSV(.1)=TS1+.1		
		$TI_{(1)}=TI_{1}I_{1}$		
		TS(1)=T1(1)+(1R-11)/15.+F0T(1)	(1)	
			יאי דו דר	
		TABH1=(TS(I)=10)*15	G 1 / K /	
		TANU(1)-TANU1488AD		
				、
		TETAE(1)-ACTU/TET)	U3(F1)#UU3(IELIA(1))#UU5(IAUH(J).	,
		16186(J/~8318(16))		

		IF (TETAE(J).GE.0) GOTO 30)	
		IDN(J)=0.		
		GOTD 40		
30		X2=((X1*SIN(TETAE(J)))**2.	+2.*X1+1.)**0.5	
		M1=X2-(X1#SIH(TETAE(J)))	· - · · · · · · · · · · · · · · · · · ·	
		H(J)=(H1*PR)/PO		
		V-H(J)**FLFA		
		ARS(J)=ABOS*V		
		TETAE(J)=TETAE(J)/FRAD	7	
		IIIN(J)=IO*(1 - ABS(J))	÷	
40		WRITE(6,21)TSV(J),TLV(J),T	[L(J),TS(J),TADH1,TETAF(J),M(J),
	1	ABS(J), IDN(J)		
	-	WRITE(8,21)TSV(J),TLV(J),	(L(J),TS(J),TADH1,TFTAE(J)•M(.1)•
	1	ABS(J), IDH(J)		
20	-	FORMAT(/,15X,'TSV(J)',3X,'	'TLV(J)',3X,'TL(J)=',3X,'	TS(J)='•5X•
	1	(TANH(.1):: (+3X) (TETAE(.1):: ()	•5X•1M(.)=1•3X•1ABS(.)=1•	4X+'TTIN(1):')
21	•	FORMAT (15X+E6.3+3X+E6.3+3)	(+FA.3+3X+FA.3+5X+F8.2+5X	•E6.3•3X•
	1	F9.3 ,3X, F 6.3,3X, F 11.3)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
10	-	CONTINUE		
			· · ·	
		$FOT(I) = FOT(I) \pm 50$		
).N.U	
) . 13 _ 13	
25		FORMAT(/.20X.'FOT(I) = '.FOT(I)	2.4.5X.(DELTA(I)= (.E7.2.	32.
LU	1	FL DIA No (+E7.2003-(E1.9)	(1, 1, 2, 3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	37,7
50	•	WRITE (6,28)		
00		$\forall RITE(8,28)$		
28		FORMAT(/.10X.110('*'))		-
20				
		STOP		
		ENTI		

-:,

REFERENCIAS

- (1) Benjamín F. Howell, Jr. INTRODUCCION Λ LA GEOFISICA -Ediciones Omega S.A. Barcelona 1962.
- (2) U.S. Deparment of Commerce National Technical Information Service ON THE NATURE AND DISTRIBUTION ON SOLAR -RADIATION Hep/T2552-01 March, 1978.
- (3) John A. Duffie and William A Beckman, SOLAR ENERGY THERMAL PROCESSES John Wiley & Sons, 1974
- (4) Frank Kreith / Jan F. Kreider, PRINCIPLES OF SOLAR -ENGINEERING, McGraw - Hill Book Company 1978.
- (5) A.A.M Sayigh SOLAR ENERGY ENGINEERING, Academic Press 1977.
- (6) Arq. Héctor Galván Duque y Arq. Eduardo Peña Tomé -PRINCIPIOS BASICOS DE LA ENERGIA SOLAR Y SU APLICACION EN LOS EDIFICIOS ESCOLARES, Conescal 44, Julio - Diciem bre 1977.
- (7) William C. Dickinson Paul N. Cheremisinoff, SOLAR -ENERGY TECHNOLOGY HANDBOOK, Parte A Engineering Funda mentals Marcel Dekker Inc. New York, 1980
- (8) M.P. Thekaekara SOLAR RADIATION MEASUREMENT TECHNIQUES AND INSTRUMENTATION, Solar Energy Vol. 18 PP 309-325 -(1976).

- (9) Dr. Djvad Fouladgar (Tesis) CONTRIBUTION A L' ANALYSE ET LA MODELISATION TEMPORELLE DU RAYONNEMENT SOLAIRE -DIRECT, Devant L' Universite Paul Sabatier de Tdulouse (Sciences) 1980.
- (10) R. Candel Vila ATLAS DE METEOROLOGIA, Ediciones Jover S.A. (1978).
- (11) Encyclopedia Británica Vol. 6, Vol. 8 1979.
- (12) Everardo Hernández H. DISTRIBUCION DE LA RADIACION GLO BAL EN MEXICO MEDIANTE LA FOTOINTERPRETACION DE LA NU-BOSIDAD OBSERVADA POR SATELITES METEOROLOGICOS, Centro de Investigación de Materiales UNAM Marzo 1976.
- (13) Bennett I. MONTHLY MAPS OF MEAN DAILY INSOLATION FOR OF UNITED STATES, Solar Energy Vol. 9 No. 3 1965.
- (14) E. Hernández y R. Martínez, LA VARIACION ANUAL EN MEXI CO DE LA RADIACION SOLAR DIRECTA SOBRE PLANOS VERTICA-LES ORIENTADOS HACIA LOS CUATRO PUNTOS CARDINALES, Cen tro de Investigación de Materiales UNAM 1977.
- (15) F. Like, DIE SONNENSTRAHLUNG UND ;HRE SHWAEHUNG IN DER ATMOSPHARE, in Handbueh der Geopaysik, Borntrager, Ber lin Vol. 8 PP. 239-332 (1942)
- (16) Rolando Rizzi, Carmine Serio, SOLAR DIRECT IRRADIANCE AT THE GROUND A PARAMETRIC APPROACH, Solar Energy Vol. 25 PP. 15-20 (1980).

- (17) K. W. BOER, THE SOLAR SPECTRUM AT TYPICAL CLEAR -WEATHER DAYS, Solar Energy Vol. 19 No. 5 PP. 525-538 (1977).
- (18) BO. Leckner, THE SPECTRAL DISTRIBUTION OF SOLAR RADIA TION AT THE EARTH'S SURFACE - ELEMENTS OF A MODEL, So lar Energy Vol. 20 PP. 143-150 (1978).
- (19) N.C. Majumdar B.L Mathur and S.B Kaushik, PREDICTION OF DIRECT SOLAR RADIATION FOR LOW ATMOSPHERIC TURBITY, Solar Energy Vol. 13 No. 4 PP. 383-394 (1972).
- (20) G.W Sadler, TURBITY OF THE ATMOSPHERE AT SOLAR NOON -FOR EDMONTON, ALBERTA, CANADA; Solar Energy Vol. 21 No. PP. 339-342 (1978).
- (21) Joint Conference: SHARING THE SUN, American Section -International Solar Energy Society and Solar Energy -Society of Canada - Inc. (1976) Vol.1
- (22) M.A Atwater and J.T. Ball: A NUMERICAL SOLAR RADIATION MODEL BASED ON STANDARD METEOROLOGICAL OBSERVATIONS,-Solar Energy Vol. 21 No. 3 PP. 163-170 (1978).
- (23) Atwater, M. A.; Brown, P.S. NUMERICAL COMPUTATIONS OF THE LATITUDINAL VARIATION OF SOLAR RADIATION FOR AN -ATMOSPHERE OF VARYING OPACITY, J. Applied Meteorology, Vol. 13: PP. 289-297; 1974.
- (24) Richard Bird, Roland L. Hulstrom: DIRECT INSOLATION -MODELS, Solar Energy Research Institute SERI/TR-335-334 (1980).

(25) Douglas V. Hoyt: A MODEL FOR THE CALCULATION OF SOLAR GLOBAL INSOLATION, Solar Energy Vol. 21 No. 1, PP. -27-35 (1978).

۲. .

- (26) Hoyt C. Hottel: A SIMPLE MODEL FOR ESTIMATING THE -TRANSMITTANCE OF DIRECT SOLAR RADIATION THROUGH CLEAR ATMOSPHERES, Solar Energy Vol. 18 No. 2, PP. 129-134 (1976).
- (27) Perry Moon, PROPOSED STANDARD SOLAR RADIATION CUR VES FOR ENGINEERING USE, Journal of Franklin Institu te, 230 No. 1379, November 1940.
- (28) S. Bárbaro, S. Coppolino, C. Leone; and E. Sinagra, -AN ATMOSPHERIC MODEL FOR COMPUTING DIRECT AND DIFFUSE SOLAR RADIATION, Solar Energy Vol. 22 No. 3 PP.225-278 (1979).
- (29) Donald Rapp and A.A.J. Hoffman, ON THE RELATION -BETWEEN INSOLATION AND CLIMATOLOGICAL VARIABLES - V. ESTIMATION OF AVAILABILITY OF SOLAR ENERGY, Energy conversion Vol. 18 PP. 31-37 (1978).
- (30) Ashrae, HANDBOOK OF FUNDAMENTALS, (1977), Chapter 26 The American Society of Heating Refrigeration and Air Conditioning Engineers.
- (31) J.P. Holman, METODOS EXPERIMENTALES PARA INGENIEROS McGraw Hill, 1977.
- (32) J.M. Lorente, METEOROLOGIA, Editorial Labor, S.A. -1961.

- (33) Joseph H. Keenan y Frederick G. Keyes, TERMODYNAMIC PROPERTIES OF STEAM, John Wiley & Sons, Inc. 1936.
- (34) E. Hernández, E. Regalado, DISTRIBUCION REGIONAL DE LA NUBOSIDAD EN MEXICO, Centro de Investigación de -Materiales UNAM, 1972.
- (35) Kinsell L. Coulson and Yvonne Howell, SOLAR RADIATION INSTRUMENTS, Sunworld, Vol. 4, No. 3, 1980.

in the set

- (36) ATLAS DEL AGUA DE LA REPUBLICA MEXICANA, Secretaríade Recursos Hidráulicos, 1976.
- (37) William Volk, APPLIED STATISTICS FOR ENGINEERS, McGraw Hill, Book Company, Inc. 1958.
- (38) NORMALES CLIMATOLOGICAS, Secretaría de Agricultura y Ganadería, Dirección General de Geografía y Meteorolo gía, Servicio Meteorológico Nacional, 1976.
- (39) Marruy R. Spiegel, ESTADISTICA, Serie, Schaum McGraw-Hill, 1970.
- (40) Aerospace Corporation SOLAR THERMAL CONVERSION MISSION ANALYSIS? Vol II, Southerm California insolation Clima tologia NTIS/ PB - 232 - 670, january 1974.
- (41) Roland L. Hulstrom, INSOLATION MODELS DATA AND ALGO-RITHMS, Anual Report FY78 SERI/ TR - 36 - 110 , december 1978 .

- (42) E. Gleason, C. Ramos, ANALISIS DE SISTEMAS DE TECNO_ LOGIAS HELIOELECTRICAS: CONCEPTO DE RECEPTOR CENTRAL Y FOTOVOLTAICO. Instituto de Investigaciones Eléctri cas, Volumen 2 "Sistema Receptor Central", 1980.
- (43) J.M. Huacuz, J.J. Castañeda, ANALISIS DE SISTEMAS DE TECNOLOGIAS HELIOELECTRICAS: CONCEPTO DE RECEPTOR CENTRAL Y FOTOVOLTAICO. Instituto de Investigaciones Eléctricas, Volumen 3 "Helióstatos: Materiales y Taxonomía", 1980.
 - (44) E. Gleason, M. Acosta, ANALISIS DE SISTEMAS DE TEC-NOLOGIAS HELIOELECTRICAS: CONCEPTO RECEPTOR CENTRAL Y FOTOVOLTAICO. Instituto de Investigaciones Eléctricas, Volumen 2 "Sistema Fotovoltaico", 1979.
 - (45) J.Jesus. Castañeda Avila, ANALISIS DE HELIOSTATOS PARA PLANTAS HELIOELECTRICAS DE RECEPTOR CENTRAL, (TESIS). Instituto de Investigaciones Electricas 1981.

SIMBOLOGIA

a line of

Α	=	Altitud sobre el nivel del mar. (m 6 km)
Aw	=	Absorción del vapor de agua.
С	=	Capa de nubosidad (%)
d	=	Contenido de Aerosoles (partículas/cm ³)
D	=	Radiación solar difusa en plano horizontal (W/m ²)
EQT	=	Ecuación del tiempo (hrs)
Exp		Función exponencial (e)
G	=	Radiación solar global en plano horizontal (W/m ²)
Н	=	Profundidad de la atmósfera terrestre (8.340 km)
Hr	=	Humedad relativa
Idn	=	Radiación solar directa en plano normal (W/m ²)
Io	= ·	Constante solar (1353 W/m ²) (anual)
Ion	=	.Constante solar diaria (W/m ²)
L	=	Espesor de ozono (cm)
LL	=	Longitud local
LR	=	Longitud de referencia
mr	=	Masas de aire relativas (a ni ve l del mar)
m	=	Masas de aire absolutas (locales)
N	=	Número del día del año (juliano)
Ps	=	Presión de saturación del vapor de agua
Pw	=	Presión parcial del vapor de agua (mmHg)
Po	=	Presión atmosférica a nivel del mar (760 mmHg)
Pb	=	Presión atmosférica local (mmHg)
R	=	Radio medio de la tierra (6370 km)
Ro	=	Distancia media del sol-tierra (1U.A=149.6 x 10 ⁶ km)
\mathtt{TL}	=	Tiempo local δ Tiempo Medio Local (TML) (hrs)
TS	=	Tiempo solar (hrs)
Ta	=	Transmitancia por dispersión de aerosoles
Tr	=	Transmitancia por dispersión de Rayleigh
TO 3	=	Transmitancia por absorción de ozono
Tw	=	Transmitancia por absorción del vapor de agua
Tmg	=	Transmitancia por mezcla de gases excepto la absorción
		del vapor de agua.

Tas	=	Transmitancia por dispersión y absorción de aire seco.
V	=	Rango de visibilidad (km)
W	=	Contenido del vapor de agua condensable en la
		atmósfera (cm)
δ	=	Declinación solar
φ	=	Latitud
τ	. =	Angulo horario
θs	. =	Angulo de cénit del sol
θe	=	Angulo de elevación del sol
βs	=	Angulo de azimuth del sol
λ	. =	Longitud de onda
\Xw	<u>;</u> =	Masa de vapor de agua contenido en la atmósfera
		(gr/cm^2)