

Universidad Nacional Autónoma de México

FACULTAD DE QUIMICA

PROGRAMA DE CALCULO DE CALENTADORES Verticales de tubos aletados en Tanques de Almacenamiento

TESIS

Que para obtener el Título de INGENIERO QUIMICO

presenta

CARLOS MARISCAL JUAREZ

MEXICO, D. F.

1982

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. **TESIS CON FALLA DE ORIGEN**

JURADO ASIGNADO ORIGINALMENTE SEGUN EL CEMA

PRES	EIDENTE	PROF.	ALEJANDRO ANAYA DURAND
V0C4	λI.	"	CLAUDIO A. AGUILAR MARTINEZ
SECRETARIO		n	MANUEL VAZQUEZ ISLAS
ler.	SUPLENTE		GUILLERMO JOSE VALENZUELA
2 ⁰	SUPLENTE	11	SERGIO FCO. LARIOS Y SANTILLAN

SITIO DONDE SE DESARROLLO EL TEMA :

FAC. DE QUIMICA

UNAM

in a start and a

SUSTEVTANTE

CARLOS MARISCAL JUAREZ

ASESOR DEL TEMA

and the

ING. CLAUDIO A. AGUILAR MARTINEZ

CON MUCHO CARIÑO A AQUELLAS PERSONAS QUE CONTRIBUYERON DE ALGUNA MANERA A MI FORTALECIMIENTO MORAL,TECNICO, --ECONOMICO O SOCIAL.

A MI ESPOSA: MARIA ELENA

A LA UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

INDICE

CAPITULO I

INTRODUCCION

CAPITULO II

GENERALIDADES

- 2.1 Introducción
- 2.2 Conducción
- 2.3 Convección
- 2.4 Radiación
- 2.5 Introducción al lenguaje Fortran IV.

CAPITULO III

BASES DE CALCULD

- 3.1 Conducción (en estado estable)
 - 3.1.1 Paredes planas, conducción unidimensional
 - 3.1.2 Soluciones integrales de conducción de calor en dos y tres dimensiones.
- 3.2 Convección
 - 3.2.1 Convección natural Superficie plana vertical Superficie plana horizontal Expresiones simplificadas para convección natural en el aire Placas verticales paralelas
 - 3.2.2 Convección forzada Superficies planas Flujo cruzado Agitación mecánica

- 3.3 Radiación térmica
- 3.4 Condensación
- 3.5 Superficies extendidas
- 3.6 Ecuaciones complementarias de cálculo

Resistencia térmica de los tubos aletados

Caída de presión permisible para un vapor condensante.

Ecuaciones de cálculo de propiedades físicas para hi-drocarburos líquidos derivados del petróleo.

Ecuaciones de cálculo de propiedades físicas del vapor de agua (saturado).

Características de los tanques atmosféricos de techo - cónico.

Area lateral de un cono.

 Resúmen de ecuaciones utilizadas para el programa de cálculo.

CAPITULO IV DESARROLLO DEL PROGRAMA

- 4.1 Diagrama de flujo.
- 4.2 Codificación del programa: Opción No. 1 Opción No. 2
- 4.3 Cálculos

Datos de los calentadores verticales Ejemplo.- Opción 1 Ejemplo.- Opción 2 C A P I T U L O V ANALISIS DE RESULTADOS Y CONCLUSIONES

CAPITULO VI BIBLIOGRAFIA.

APENDICE A

INTRODUCCION.

Es importante reconocer, el papel que juega en la industria petrolera de nuestro país; en lo que se refiere a el almacenamiento de hidrocarburos líquidos viscosos, dificilmente manejables a temperatura ambie<u>n</u> te; mantener un rango de temperatura adecuado en el líquido almacenado,ya que el efecto del incremento de la temperatura produce la disminución de su viscosidad, es decir, aumenta su fluidez.

Por ejemplo, la potencia y costo de bombeo se verán reducidos, c<u>o</u> mo también puede ser reducido su tiempo de drenado del tanque de almacenamiento, si previamente ha sido elevada su temperatura.

Por lo tanto, se hace necesario en estos casos, un sistema interno de calentamiento que proporcione el calor necesario para mantener el ran go de temperatura requerido.

El equipo propuesto para este sistema interno de calentamiento estará representado por calentadores verticales de tubos aletados, ver figura 1.1, y la energía necesaria para el calentamiento deberá ser sumini<u>s</u> trada con vapor saturado.

La evaluación del flujo de calor a los alrededores está en relación directa a diversos factores tanto físicos como climatológicos del lugar, como son:

- a) El área expuesta del tanque a la atmósfera
- b) La diferencia de temperatura entre la pared del recipiente y del aire ambiente.
- c) La velocidad del viento, normal y crítica.
- d) La humedad relativa del aire.
- e) El espesor de la "placa de concreto" que sirve de cimiento a dicho recipiente.
- f) La humedad y conductividad del suelo
- g) Precipitación pluvial
- h) Agitación interna del líquido, etc.

FIGURA I.I CALENTADOR DE TUBOS VERTICALES Con Aletas Longitudinales.

.

La exactitud de los cálculos para determinar el flujo de calor en tre el contenido de el recipiente ver figura 1.2, y sus alrededores son a menudo complejos. Múltiples resistencias en serie están presen tes en la trayectoria del flujo de calor. Además, los diversos mecanismos de transferencia de calor como conducción, convección y radia ción pueden estar presentes simultáneamente.

Por tanto, las suposiciones y simplificaciones comprendidas en el método usado para calcular las pérdidas de calor y/o el área de - transferencia de calor de los tubos aletados debe ser entendido, y laexactitud del método debe ser consistente con el requerimiento en part<u>i</u> cular.

En la transferencia de calor como en otras ramas de la ingeniería la solución adecuada de un problema requiere hipótesis e idealizaciones. Es casi imposible descubrir los fenómenos físicos en forma exacta, y p<u>a</u> ra expresar un problema en forma de ecuación que pueda resolverse, es necesario hacer algunas aproximaciones. Por lo tanto, es importante r<u>e</u> cordar las hipótesis, idealizaciones y aproximaciones hechas durante el análisis del problema, cuando sean interpretados los resultados finales.

Cuando se considere necesario formular una hipótesis ó una aprox<u>i</u> mación en la solución del problema, será presentada en forma resumida – en el capítulo de "Análisis de resultados y conclusiones".

ίU

Τa

TANQUE DE ALMACENAMIENTO DE TECHO Conico, con calentadores verticales. (3'

CAPITULO II

GENERALIDADES.

2.1 INTRODUCCION.

Siempre que existe un gradiente de temperatura en un sistema, se transfiere energía. La termodinámica enseña que ésta transferencia de energía se define como calor. Desde un punto de vista termodinámico,el calor transferido durante un proceso, simplemente es igual a la diferencia entre el cambio de energía del sistema y el trabajo realizado. Es evidente que este tipo de análisis no considera ni el mecanismo de flujo de calor, ni el tiempo requerido para su transferencia. Simplemente, señala que cantidad de calor proporciona o rechaza un sistema durante un proceso, entre estados finales especificados,sin considerar cuando o cómo podría realizarse esto. La razón por la cual no se ob tiene esta información a partir de un análisis termodinámico, es por la ausencia del tiempo como variable.

Desde el punto de vista de ingeniería, la rapidéz de transferencia de calor a una diferencia de temperatura especificada constituye el problema principal.

La literatura sobre transferencia de calor generalmente reconoce tres modos distintos de transmisión de calor, que son: conducción, co<u>n</u> vección y radiación.

2.2. CONDUCCION.

La transferencia de calor por conducción se logra a través de dos mecanismos. El primero es la interacción molecular, en el cuál -las moléculas de niveles energéticos relativamente mayores (indicadospor su temperatura) ceden energía a moléculas adyacentes en niveles in feriores. Este tipo de transferencia sucede en los sistemas que tie nen moléculas de sólidos, líquidos o gases y en las que hay un gradien te de temperatura, sin desplazamiento apreciable de partículas. El segundo mecanismo de transferencia de calor por conducción es el de electrones "libres", los que se presentan principalmente en los sólidos metálicos puros. Muy variable en aleaciones metálicas y muy baja para los no metales. La facilidad que tienen los sólidos para conducir el calor varía directamente con la concentración de electrones libres.

La conducción es el único mecanismo por el cual puede fluir calor en los sólidos opacos. En sólidos transparentes, como el vidrioy el cuarzo, parte de la energía es transmitida por radiación y parte por conducción. En los fluidos a régimen laminar, la transferencia de calor se realiza en dirección perpendicular al movimiento del flu<u>i</u> do.

En los gases, el mecanismo de conducción térmica es muy simple. -De acuerdo con la teoría cinética, la temperatura de un elemento de materia es proporcional a la energía cinética media de sus constitu yentes moleculares. Cuando las moléculas de una región adquieren una energía cinética media mayor que las moléculas de una región adyacente, lo que se manifiesta por una diferencia de temperatura, las moléculas que poseen mayor energía distribuirán su exceso de energía en-tre las moléculas energéticamente más pobres, es decir, que se encuen tran a temperatura inferior. La distribución de la energía puede tener lugar debido a colisiones entre las moléculas.

El mecanismo físico de conducción de energía térmica en líquidos es cualitativamente el mismo que en gases; sin embargo, la situaciónes más compleja puesto que las moléculas están menos espaciadas y los campos de fuerza molecular ejercen una gran influencia sobre los in tercambios de energía en los procesos de choque.

Se atribuye a Fourier (1) una expresión cuantitativa que relaci<u>o</u> na el gradiente de temperatura con la naturaleza del medio conductory la razón de transferencia de calor, y que se expresa por

$$\frac{q_x}{A} = -k \frac{dT}{dx}$$
(2.1)

donde q_x es la razón de transferencia de calor en dirección de las x; -A es el área normal a la dirección de flujo de calor; dT/dx es el gra diente de temperatura en la dirección de las x; y k es la constante de proporcionalidad llamada conductividad térmica, que es una propiedad de un medio dado, y la ec. 2.1 es la relación que define esta cantidad.

El signo negativo se coloca para satisfacer la segunda ley de la termodinámica, es decir, el calor debe fluir en la dirección de un gradiente de temperatura decreciente.

El valor de la conductividad determina en gran parte, la adaptabilidad de un material para un uso determinado. En la figura 2.1 se mue<u>s</u> tran los valores de la conductividad térmica para varios metales comú nes (2).

La tabla 2.1 nos dá en orden descendente, el rango general de la conductividad térmica para distintas categorías de conductores (3).

MEDID	k (BTU/Hr-ft. ⁰ F) [·]
Metales puros	20 - 250
Aleaciones metálicas	10 - 100
Metales líquidos	5 - 50
Líquidos (no metálicos)	0.1 - 1.0
Sólidos (no metálicos)	0.01- 10
Materiales aislantes	0.01- 0.2
Gases	0.001- 0.1

TABLA 2.1. VALORES DE LA CONDUCTIVIDAD TERMICA PARA DISTINTAS CATEGORIAS DE MATERIALES.

Se ha encontrado para la mayoría de los gases, que la conductividad térmica es independiente de la presión hasta 10 atmósferas aproximada – mente. En los materiales sólidos y líquidos a diferencia de los gases, la conductividad térmica es independiente de la presión.

FIGURA 2.1 VARIACION EN LA CONDUCTIVIDAD TERMICA CON LA TEMPERATURA PARA DISTINTOS MATERIALES

(7

2.3 CONVECCION.

La convección involucra el intercambio de energía entre un fluído y una superficie o interfase. Hay dos clases de procesos convectivos, que son: la convección forzada y la convección natural ó libre.

Convección forzada, en este proceso se forza el movimiento de un fluído por una superficie debido al efecto de un agente externo tal co mo un ventilador o bomba, y la convección natural se desarrolla cuando un fluído se encuentra en contacto con una superficie de temperatura mayor que el mismo (por ejemplo), y los cambios de densidad debido a su expansión térmica a consecuencia del intercambio de energía provo can un movimiento natural del fluído.

Sin considerar el fenómeno de flujo involucrado, se sabe que la conducción es el mecanismo de transferencia de energía directamente a<u>d</u> yacente a una superficie, ver figura 2.2, es decir, la velocidad de la capa de fluído en la pared es cero (4). ¿Porque hablamos de convección, si el calor fluye por conducción en esta capa?. La respuesta es que el gradiente de temperatura depende de la razón a la cual el fluído d<u>i</u> sipa el calor, una velocidad alta produce un gradiente de temperaturamayor. Por lo tanto, el gradiente de temperatura en la pared dependedel campo de flujo.

Newton expresó por primera vez la ecuación básica que relaciona el efecto total para la transferencia convectiva del calor, conocida como lev de enfriamiento de Newton, es

donde q representa la rapidez de calor transferido por convección, A – es el área normal a la dirección del flujo de calor, (Tw – T₀₀) es la fuerza motriz de la temperatura y h es el coeficiente convectivo de – transferencia de calor, llamado algunas veces conductancia de película, debido a su relación con el proceso de conducción en la capa delgada – estacionaria de fluido en la superficie de la pared.

Fig. 2.2 Diagrama esquemático que muestra la transferencia de calor por convección en una placa.

(9

Se puede anticipar por lo tanto que, el coeficiente h tiene una dependencia respecto a la viscosidad del fluído, además de las propiedades térmicas del fluído (conductividad térmica, calor específico,de<u>n</u> sidad). Esto se anticipa debido a la influencia de la viscosidad en el perfil de velocidad y, de igual manera, en la razón de transferencia de energía en la región cercana a la pared.

La ecuación 2.2 también evalúa la transferencia de energía asoci<u>a</u> da con los cambios de fase. Por lo tanto, los fenómenos de ebullición y condensación quedan agrupados bajo el tópico general de transferen – cia de calor por convección (4). La tabla 2.2 da algunos límites apr<u>o</u> ximados de los coeficientes de transferencia de calor por convección – forzada y libre de distintos fluídos (5).

	TABLA 2.2	INTERVALO DE	VARIACION	DE	LOS hm	COMUNMENTE	EMPLEADOS
--	-----------	--------------	-----------	----	--------	------------	-----------

MECANISMO	h (BTU/	hr-	ft ^{2 o} F)
Vapor, con condensación en gotas	5,000	-	20,000
Vapor, con condensacion en pelí- cula ó lámina líquida.	1,000	-	3,000
Agua en ebullición	300	-	9,000
Vapores orgánicos saturados en el punto de condensación.	200	-	400
Agua, (calentamiento)	50	-	3,000
Aceites, (calentamiento ó enfria- miento).	10	-	300
Vapor, (sobrecalentamiento)	5	-	20
Aire, (calentamiento o enfriamie <u>n</u> to).	0.2	-	10

Pocos son los fenómenos de transporte que siguen sencillas rela ciones flujo-gradiente, todas las aplicaciones de la transferencia de calor, con excepción de la transferencia de calor debida a la radia -ción térmica, pueden ser analizados mediante sencillas ecuaciones de velocidad. En algunos casos, tienen lugar simultáneamente dos fenómenos de transporte. Por ejemplo en un tubo de un cambiador de calor, cuandoel fluído fluye dentro de él es aparente que la cantidad de movimiento se transfiere en forma simultánea de la pared al fluído. Para an<u>a</u> lizar el sistema completo es necesario cuando menos una ecuación de velocidad para el calor, otra para la cantidad de movimiento y otra para la masa.

En las primeras investigaciones de la conducta de transferenciade cantidad de movimiento, calor y masa, las similitudes que existían entre los tres fenómenos no fueron reconocidas. Las diversas formasde ecuación que se desarrollaron, no son exactamente similares, peroel contenido entre ellas puede correlacionarse y la ecuación generalde transporte que debe integrarse es (6a):

$$\Psi = - (\delta + E) \frac{d\Gamma}{dx}$$
(2.3)

donde Ψ = flujo de una propiedad para cualquier valor de X

δ = difusividad molecular

E = difusividad de los remolinos

C = concentración por volúmen de la propiedad transferente.

Para una geometría cilíndrica de radio r=D/2, (6a) se puede determinar el valor medio de la propiedad transferente que resulte de la integración de todo el ducto. Además, manteniendo una temperatura promedio resultante en el fluído, y definiendo una difusividad promedio (\overline{E}) de los remolinos. El coeficiente de transferencia (E) puede cefinirse como

$$E = -4 \frac{(\delta + \overline{E})}{\Gamma D}$$
(2.4)

Mediante los pasos adecuados, aplicados a la ecuación general – de transporte para nuestra forma cilíndrica, llegamos a la ecuación – de la siguiente forma:

$$(\Psi A)_{1} = - \frac{(\Gamma_{1} - \overline{\Gamma})}{\frac{1}{(EA_{1})}}$$
(2.5)

donde la integración del gradiente en la ecuación diferencial dá como resultado el término ($\Gamma_1 - \overline{\Gamma}$) en la ecuación 2.5, y la rapidez de – transferencia es proporcional a este término, que se llama gradiente-(ó más frecuentemente potencial de transferencia). El término del d<u>e</u> nominador (1/EA) es llamado resistencia a la transferencia. La ecuación 2.5 puede escribirse como

Notese la exacta analogía entre transferencia de calor, masa y cantidad de movimiento descrita por la ecuación 2.6, y la transferencia de corriente descrita por la ley de Ohm.

$$I_{E} = \frac{E_{e}}{R_{e}}$$
(2.7)

donde

I_e = corriente E_e = potencial eléctrico R_P = resistencia

El coeficiente de transferencia de calor h (para flujo turbulento en tubos) puede definirse como (6b)

$$\frac{h}{\rho c_{p}} = Eq = \frac{4 (-c + Eq)}{D q}$$
(2.8)

Si la definición del coeficiente de transferencia de calor (Ec. -2.8) se reacomoda y divide por k. El número de Nusselt puede definirse como

$$Nnu = \frac{h D}{k}$$
(2.9)

La relación entre la cantidad de movimiento por transporte turb<u>u</u> lento y la transferencia de cantidad de movimiento por transporte mol<u>e</u> cular es definido como número de Reynolds.

$$NRe = \frac{D \,\overline{v} \, f^{2}}{\mu} \tag{2.10}$$

El número de Nusselt es la relación de mecanismo que involucra la transferencia de calor, y el número de Reynolds es la relación de los mecanismos que involucran la transferencia de cantidad de movimie<u>n</u> to. La tercera relación necesariamente debe incluir el mecanismo de transferencia de calor y el mecanismo de transferencia de cantidad de movimiento. La relación de transferencia de cantidad de movimiento por transporte molecular a la transferencia de calor por transporte molecular ha sido definido como número de Prandtl.

$$NPr = \frac{Cp \mu}{k}$$
(2.11)

El número de Prandtl es una función de las propiedades del flu<u>í</u> do solamente y depende de las características del flujo.

Establecidas las relaciones para los mecanismos, puede establecerse una forma de ecuación:

NNu = constante
$$(N_{Re})^{a}(N_{Pr})^{b}$$
 + constante $(N_{Re})^{a^{1}}(N_{Pr})^{b^{1}}$ +....

La similitud entre los fenómenos de transporte molecular examinados presentan una dependencia similar de la actividad de los remol<u>i</u> nos en la masa, calor y cantidad de movimiento. Por lo tanto, hastael presente, parece existir una estrecha relación entre los tres fen<u>ó</u> menos de transferencia en los régimenes laminar y turbulento.

ANALOGIA DE REYNOLDS (6c).

La analogía de Reynolds es de importancia histórica como el pr<u>i</u> mer reconocimiento de la conducta análoga de las velocidades de tran<u>s</u> ferencia de calor y cantidad de movimiento.

Reynolds postuló que los mecanismos para la transferencia de c<u>a</u> lor y cantidad de movimiento son idénticos. El postulado puede escr<u>i</u> birse como sigue:

- -- ۱

$$\frac{4 (\alpha + \overline{E}q)}{\sqrt[3]{q} D} = \frac{4 (\mathcal{Y} + \overline{E}\gamma)}{\sqrt[3]{\gamma} D}$$
(2.13)

ó si se sustituyen los coeficientes

$$\frac{h}{C_{p}} = E \gamma$$
(2.14)

La ecuación 2.14 puede dividirse por \overline{v} , y el factor de fricción - sustituirse por E χ/\overline{v} , por lo tanto

$$\frac{h}{Cp}\frac{1}{p\sqrt{v}} = \frac{f}{8}$$
(2.15)

La ecuación anterior (Ec. 2.15) es la formulación matemática de – la analogía de Reynolds. El grupo $h/Cp \int v$ es el número de Stanton – – (Nst) y representa la relación adimensional.

> Transferencia de calor (molecular y turbulento) Transferencia turbulenta de cantidad de movimiento

El número de Stanton se relaciona a los números de Nusselt, Rey nolds y Prandtl como sigue

$$^{N}St = \frac{NN_{u}}{N_{Re} N_{Pr}}$$
(2.16)

6

$$N_{St} = \frac{f}{8}$$
(2.17)

se encontró experimentalmente que ésta ecuación correlaciona los datosen forma aproximada para gases en flujo turbulento.

OTROS COEFICIENTES DE TRANSFERENCIA (6d).

Hay algunas otras aplicaciones de transferencia que involucran el movimiento relativo de sólidos y fluídos, en los cuales la naturaleza del movimiento no está bien definida. Las aplicaciones son: (1) transferencia de calor en flujo laminar, (2) transferencia de calor en la -- cual el movimiento del fluído es originado por la convección natural, y (3) procesos de transferencia asociados con cambio de fase, como en la condensación o la ebullición.

Los análisis para la transferencia de calor en régimen laminar concluyen en una ecuación de la siguiente forma:

$$Nnu = \emptyset (N_{Pe}, L/D)$$
(2.18)

donde N_{Pe} = número de Peclet, DvCp/k

L/D = cociente longitud - diámetro.

Ø = función desconocida.,

Los datos experimentales de muchos investigadores revelan una – ecuación para convección natural que tienen la forma general.

NNu = constante (NGr Npr)^a (2.19)
donde NGr = número de Grashof,
$$\frac{L^3 f^2 g (3 (-\Delta T))}{4^2},$$

las propiedades del fluído calculadas a la temperatura promedio – – $(\overline{T} + T_1)/2$, \overline{T} es la temperatura ambiente del cuerpo principal del fluído, T_1 es la temperatura de la placa y β es el coeficiente volumétrico de expansión del fluído.

Para la convección natural se han postulado los siguientes meca nismos de transferencia:

- Transferencia de cantidad de movimiento mediante transporte molecular.
- 2.- Transferencia de calor mediante transporte molecular.
- 3.- Transferencia de cantidad de movimiento mediante transporte turbulento.
- 4.- Transferencia de calor mediante transporte turbulento.
- 5.- La fuerza que depende de la gravedad sobre un elemento de un fluído debido a las diferencias en la densidad.

El único origen de la velocidad es la fuerza de desplazamiento.-De manera que las fuerzas de desplazamiento pueden reemplazar a la vel<u>o</u> cidad. Esto indica que uno de los cinco mecanismos propuestos era re - dundante. El mecanismo redundante es por lo tanto el número 5. La – fuerza gravitacional no constituye por sí misma a la transferencia, – sino que actúa unicamente como un potencial de velocidad, y la veloc<u>i</u> dad está ya incluída en los mecanismos 3 y 4.

2.4 RADIACION (3,4,5).

La ecuación fundamental que rige la radiación total desde un radi<u>a</u> der ideal (el "cuerpo negro") fué descubierta empíricamente por Stefany deducida teóricamente por Boltzman de los principios termodinámicos:

$$dqr = \sigma dAT^4$$
 (2.20)

donde dqr representa el calor transferido por radiación desde un ladodel elemento "negro" de area dA, T es la temperatura absoluta de la superficie, y σ la constante dimensional de Stefan-Boltzman con un valorde 0.1714 x 10⁻⁸ BTU/hr-ft² °R⁴.

Por definición, el cuerpo negro absorbe la máxima energía posible sin importar la dirección ó longitud de onda, se sigue que su emisión – es igualmente un máximo en todas las longitudes de onda y en toda dire<u>c</u> ción.

Por lo tanto, de la ecuación 2.20 se deduce que la radiación total emitida por un cuerpo negro es una función solamente de la temperatura.

El mecanismo en este caso es radiación electromagnética, la cual se propaga como resultado de una diferencia de temperatura y se le llama radiación térmica (4b). La transferencia de energía se puede realizar a través de un medio, como puede ser transferido hacia regiones do<u>n</u> de existe un vacío perfecto. El intercambio de energía radiante puedeocurrir entre dos superficies, entre una superficie y un gas o medio -participante, ó entre varías superficies o fluídos participantes.

Cuando dos cuerpos intercambian calor por radiación, el intercam-. bio de calor es entonces proporcional a la diferencia en T⁴. Si el -cuerpo negro radía hacia una cubierta que lo envuelva completamente y cuya superficie es también negra (es decir, absorbe toda la energía radiante incidente en ella), la rapidéz neta de calor radiante transferido está dado por

$$q = \sigma A_1 (T_1^4 - T_2^4)$$
 (2.21)

donde T₂ es la temperatura absoluta de la superficie de la cubierta.

Otros tipos de superficies, como por ejemplo, una superficie barnizada ó una placa de metal pulida, nu radían tanta energía como la de un cuerpo negro. Para toma, en cuenta la naturaleza "gris" de tales superficies, se introdujo un nuevo factor llamado emisividad -(E), que es el coeficiente de la superficie gris, y es igual a la razón de emisión de la superficie gris a la emisión de un radiador perfecto a la misma temperatura.

Por la tanto la ecuación 2.21 quedaría expresada para el ejem - plo anterior como:

$$q = \mathbf{\sigma} \mathbf{E}_{1} \mathbf{A}_{1} (\mathbf{T}_{1}^{4} - \mathbf{T}_{2}^{4})$$
 (2.22)

La emisividad E de una superficie (más propiamente, la emisividad semiesférica total) varía con su temperatura, grado de rugosidad y, si es un metal en su estado de oxidación, ver tabla 2.3 (7a).

	Lon	gitud o	ie onda	y tempe	ratura	promedio
MATERIAL	9.3/ 100 ⁰ F	5.4/ [#] 500 [°] F	3.6 / ^µ 1000 F	1.8/ ⁴ 2500 ⁰ F	0.6ሥ SOLAR	
Fierro:						
Pulido	0.06	0.08	0.13	0.25	0.45	
Fundición,oxidado	0.63	0.66	0.76			
Galvanizado,nuevo	0.23			0.42	0.66	
Galvanizado,sucio	0.28			0.90	0.89	
Acero en placa r <u>u</u> gosa.	0.94	0.97	0.98			
Oxido	0.96		0.85		0.74	
Fundido				0.3-0.4		
Pinturas						
Laca Aluminizada	0.65	0.65				
Pinturas Lechosas	0.95	0.88	0.70	0.42	0.35	

TABLA 2.3 EMISIVIDADES DE VARIAS SUPERFICIES.

Así, para superficies metálicas limpias (5b) la emisividad es de 0.05 a 0.45 a bajas temperaturas, y de 0.4 a 0.7 a temperaturas altas. Para superficies oxidadas o rugosas es, a bajas temperaturas, de 0.6 a 0.95 y a altas, de 0.9 a 0.95.

Si ninguno de los dos cuerpos es un radiador perfecto y si los dos cuerpos poseen entre sí una relación geométrica dada, la transfe rencia neta de calor por radiación térmica entre ambos cuerpos está d<u>a</u> da por

$$q = \sigma A_1 F_{1-2} (T_1^4 - T_2^4)$$
 (2.23)

donde F₁₋₂ es un módulo que modifica la ecuación para radiadores per fectos de acuerdo con los coeficientes de emisión y las geometrías relativas de los cuerpos reales.

Muchos problemas prácticos involucran transferencia de calor por radiación a través de un medio que es absorvente y transmisor a la vez. Las diferentes sustancias de vidrio son un ejemplo de este tipo de medio; los gases son otro ejemplo.

La radiación en los gases difiere de la radiación en cuerpos sólidos en cierto aspecto. La emisión y absorción de energía radiante – son esencialmente fenómenos de superficie para un cuerpo sólido, pero en el cálculo de radiación emitida ó absorbida por una capa de gases,deben tomarse en cuenta su espesor, presión y forma, así como el áreade superficie.

Muchos de los gases comunes y mezclas de gases, tales como O_2, N_2 , H_2 , aire seco, etc., tienen moléculas simétricas y son prácticamente – transparentes a la radiación térmica, es decir, ni emiten ni absorben-cantidades apreciables de energía radiante a temperaturas de interés – práctico.

La radiación en gases heteropolares y vapores tales como CO_2 , -H₂O, SO₂, CO, NH₃, hidrocarburos y alcohóles es de importancia. Mientras los sólidos radían en todas las longitudes de onda del espectro,los gases emiten y absorben radiación únicamente entre angostas regiones de longitudes de onda llamadas bandas (7b).

2.5 INTRODUCCION AL LENGUAJE FORTRAN IV (8,9)

Cuando se quiere resolver un problema utilizando una computadora se debe seguir un proceso que se describe a continuación.

- a) Definir el problema que queremos resolver, es decir, conocercon claridad cuáles son los datos que se le suministrarán y los resultados que se desean obtener.
- b) Decidir el método que se utilizará para resolver el problema.
- c) Hacer un diagrama de flujo que describa el procedimiento a se guir.
- d) Escribir las instrucciones para la computadora. Se han desarrollado lenguajes que utilizan palabras en inglés que redu cen el número de instrucciones-conocidas como declaraciones-y son fáciles de leer y comprender.
- e) Añadir al programa las instrucciones operacionales particulares de la máquina, como son: clave del usuario.
- f) Pasar todo el conjunto: programa, datos e instrucciones opera cionales a un medio a partir del cual pueda leerlo la computa dora. Por ejemplo perforar tarjetas.
- g) Compilación y ejecución del programa. La compilación es un proceso llevado a cabo por un programa llamado compilador. Si no hay ningún error de sintaxis al compilarse el programa, és te será ejecutado.

ELEMENTOS DE DIAGRAMAS DE FLUJO

Los elementos que describen un algoritmo son:

i) Bloque inicial y final.

Este bloque se utiliza cada vez que se empieza o se termina la solución de un problema. Un diagrama de flujo debe tener un bloque -con la palabra "EMPIEZA", y por lo menos uno con la palabra "TERMINA". También se utiliza para la declaración STOP ("ALTO").

II) Flecha de flujo.

Esta flecha indica el órden en que los pasos para resolver el pr<u>o</u> blema deben de ser tomados. La dirección puede cambiar muchas veces, entonces se deben añadir flechas adicionales.

III) Variables. Letras que tienen el mismo significado que en algebra.

IV) Expresiones. Una expresión en un diagrama de flujo se construye a partir de variables previamente definidas (ésto es, que tengan valoresnuméricos asignados) y operadores algebraicos.

V) Bloque procesador.

En este símbolo se ponen los cálculos necesarios para resolver el problema. Este tipo de bloque debe de tener por lo menos una flecha de entrada y solo una de salida.

VI) Bloque de entrada y salida.

Este símbolo se utiliza siempre que se lea información o se impriman resultados por cualquiera de los medios mencionados. Este tipo de bloque debe tener por lo menos una flecha de entrada y sólo una salida.

VII) Bloque de decisión.

Este bloque plantea una pregunta que puede ser contestada "Si" ó "No". La pregunta en general se hace en términos de variables ya def<u>i</u> nidos en el diagrama de flujo. Debe tener por lo menos una flecha de entrada y exactamente dos de salida.

VIII) Anillo DO, se representa por el siguiente bloque.

Donde en el casillero superior se pone la inicialización de la v<u>a</u> riable de control, en el central se hace la comparación con el límite superior y en el inferior se incrementa la variable de control. BASES DE CALCULO.

El presente capítulo enfocará su desarrollo a presentar, esencial mente, las ecuaciones matemáticas que correlacionen aisladamente cada mecanismo de transferencia de calor presente en un tanque de almacena miento con calentamiento interno. Cuando se estime conveniente, dichas ecuaciones serán acompañadas por una breve descripción para lo cual fue ron desarrolladas. Solamente en los casos necesarios se implementaránecuaciones que por su complejidad y/o laboriosidad, conduzcan a simplificar el procedimiento de cálculo.

3.1 CONDUCCION (EN ESTADO ESTABLE)

Se le llama estado estable al caso de transferencia de calor en que el tiempo no es un factor (3b).

3.1.1. PAREDES PLANAS, CONDUCCION UNIDIMENSIONAL.

Se puede usar la ecuación de la razón de Fourier (Ec. 2.1) p<u>a</u> ra determinar el flujo de calor por una pared plana. Dado que en el caso de estado estable qx es constante, se puede separar e integrar directamente esta ecuación como.

$$qx \int_{0}^{L} dX = -k A \int_{T_{0}}^{T} dT$$

lo que dá

$$qx = \frac{k A}{L} (T_0 - T_L)$$
(3.1)

donde L/kA es la resistencia térmica R_t , y A/L es llamado fa<u>c</u> tor de forma.

3.1.2. SOLUCIONES INTEGRALES DE CONDUCCION DE CALOR EN DOS Y TRES DI-MENSIONES.

Cuando las fronteras de un sistema son irregulares o cuando la

temperatura a lo largo de una frontera no es uniforme, un tr<u>a</u> tamiento unidimensional puede no ser satisfactoric. En talcs casos, la temperatura es una función de dos y aún posiblemente de tres coordenadas.

Lus sistemas de conducción de calor en dos y tres dimensiones pueden tratarse por métodos analíticos,gráficos,analógicos y numéricos.

De los métodos anteriores solo serán presentadas las soluciones analíticas de algunos ejemplos reportados en la literatura. Los resultados para varios casos se dan en la tabla 3.1.

Una solución analítica de un problema de conducción de calor deberá satisfacer tanto la ecuación general de conducción de calor como las condiciones de frontera especificadas por las condiciones físicas del – problema particular.

En un sistema bidimensional donde únicamente dos temperaturas lím<u>i</u> tes son involucradas, podemos definir un factor de forma S tal que.

TABLA 3.1 FACTORES DE FORMA PARA LA CONDUCCION (5c).

CONFIGURACION	FACTOR DE FORMA S
Esfera de diámetro D con el centro a una distancia Z debajo de la su- perficie; Z positivo.	<u>2 Π D</u> (1 - D/4Z)
Cilindro horizontal de longitud L y diámetro D, con su eje a una dis tancia Z debajo de la superficie *	2 II L Ln (4Z/D)
Disco circular de poco espesor, de diámetro D, muy por debajo de la - _superficie. Aproximado en un 10% **	4 D
Tono horizontal de diámetro medio - Dm y espesor Y, con el eje a una - distancia Z debajo de la superficie	2 ∏ ² Dm Ln (4Z/Y) Z > Y , Dm ⅔ 20 Y
Rectángulo horizontal de poro espe sor,de lados mayor y menor D ₁ y D2, enterrado muy por debajo de la su- perficie.	$\frac{2 \text{ II } D_1}{\ln (2 \text{ IIZ}/D_2)}$ $D_1 \gg D_2, Z > 2 D_2$
* Una solución más exacta es.	2 II L Arg Ch(2Z/D) para L Z
** Una solución más exacta es	<u>4.44 D</u> 1 - <u>D</u> 5.66 Z

3.2 CONVECCION

3.2.1 CONVECCION NATURAL

Se mencionó que el fenómeno de convección natural involucra el inter cambio de calor entre un fluído y una frontera adyacente cuando ocurre mo vimiento del fluído debido a las diferencias de densidad como resultado – cel intercambio de energía (ver figuras 3.1 y 3.2). La orientación y la geometría del límite sólido son de primordial importancia.

SUPERFICIE PLANA VERTICAL:

El número medio de Nusselt para un fluído con Pr = 0.733, para una placa vertical calentada está dada por

$$Nu_{L} = 0.478 \ Gr_{L}^{1/4}$$
 (3.3)

y es la expresión para el parámetro local, desarrollada por Polhausen; donde (3c).

$$Gr_{L} = \underline{g L^{3} (T_{0} - T_{\infty})}{\sqrt{2} T_{\infty}}$$
(3.4)

To es la temperatura de la pared

T es la temperatura del fluído

v es la viscosidad cinemática.

Schuh (10) extendió los resultados de Polhausen para valores de Pr hasta 1000, ver tabla 3.2

TABLA 3.2 NUm.PARA CONVECCION NATURAL ADVACENTE A UNA PLACA VERTICAL CALENTADA.

Pr	Nu _L / Gr _L ^{1/4}	Nu _L / Gr _L ^{1/4} Pr ^{1/4}
0.73	0.478	0.517
10	1.09	0.612
100	2.06	0.652
1000	3.67	0.653

Eckert y Jackson (11) sugirieron las siguientes relaciones de correlación para placas verticales como para cilindros son:

$$Nu_{L} = 0.555 (Gr Pr)^{1/4}$$
 (3.5)
para Gr Pr $< 10^9$

FIGURA 3.1 PERFILES DE VELOCIDAD EN EL AIRE ADYACENTE A UNA PLACA VERTICAL CALENTADA

FIGURA 3.2 PERFILES DE TEMPERATURA EN EL AIRE ADYACENTE A UNA PLACA VERTICAL CALENTADA

(25

y
$$Nu_{L} = 0.0210 (Gr Pr)^{2/5}$$
 (3.6)
para Gr Pr > 10^{9}

ίŤ.

Las ecuaciones para placas verticales también pueden usarse para calcular coeficientes de transferencia de calor por convección libre des de superficies verticales de cilindros, con suficiente aproximación.

SUPERFICIES PLANAS HORIZONTALES (5,3d)

Para placas calientes hacia arriba o placas frías dirigidas hacia - abajo, en el rango 10⁵ \leq Gr_l Pr_l \leq 2 x 10⁷ (laminar)

$$Nu_{L} = 0.54 (Gr_{L} Pr)^{1/4}$$
(3.7)
y, en el rango 2 × 10⁷ $\langle Gr_{L} Pr \langle 3 \times 10^{10} (turbulento)$

$$Nu_{L} = 0.14 (Gr_{L} Pr)^{1/3}$$
(3.8)

La longitud característica es la longitud de un lado de una superf<u>i</u> cie cuadrada, la media de una superficie rectangular, ó 0.9 por el diám<u>e</u> tro de un área circular.

EXPRESIONES SIMPLIFICADAS PARA LA CONVECCION NATURAL EN EL AIRE (5,3c).

Para distintas orientaciones, geometrías y condiciones de flujo según se indica por la magnitud Gr Pr, Mc Adams sugirió los siguientes valores, ver tabla 3.3, simplificados para el aire, de acuerdo con la si guiente ecuación.

$$h = A \left(\frac{\Delta T}{L}\right)^{b}$$
(3.9)

en donde A y b son constantes, dependiendo de la geometría y condiciones de flujo, y L es la longitud significativa en Ft,que también es funciónde la geometría y del flujo.

TABLA 3.3

GEDMETRIA	RANGO APLICABLE	А	Ь	L
Superficies Verticales (Planos y Cilindros)	10 ⁴ < Gr _L Pr < 10 ⁹ 10 ⁹ < Gr _L Pr < 10 ¹²	0.29 0.19	1/4 1/3	Altura 1
Planos Horizontales (Placas calientes hacía				
arriba)	10 ⁵ (Gr _L Pr (2×10 ⁷	0.24	1/4	Longitud del lado
	10 ⁷ < Gr _L Pr < 3×10 ¹⁰	0.27	1/3	1
ó (placas frias hacía abajo).	2×10 ⁷ (Gr _L Pr (3×10 ¹⁰	. 0.22	1/3	1
(Placas frías hacía – arriba ó placas calie <u>n</u> tes hacía abajo).	ع×10 ⁵ ⟨ Gr _L Pr ⟨ 3×10 ¹⁰	0.12	1/4	Longitud del lado

Los valores de h determinados usando los valores de la tabla 3.3 - en la ecuación 3.9, tienen las dimensiones de BTU/Hr ft²-^OF. La diferencia de temperaturas es la que hay entre la pared y el aire en ^OF.

CONVECCION NATURAL EN PLACAS VERTICALES PARALELAS (3,4,5 y 7).

Las nervaduras de enfriamiento de algunos dispositivos industria – les tales como transformadores, radiadores de calentamiento, etc., pue – den frecuentemente idealizarse por placas planas, paralelas, separadas – por la distancia δ , ver figura 3.3.

FIGURA 3.3

Cuando una diferencia de temperatura $\Delta T \omega^{\prime} = T_1 - T_2$ se impone sobre el fluído, se experimentará transferencia de calor. En ésta figura (Fig. 3.3), el número de Grashof se calcula como:

$$Gr = \frac{g /3 (T_1 - T_2) S^3}{\sqrt{2}}$$
(3.10)

donde g es la aceleración de la gravedad, β es el coeficiente de expansión térmico, (T₁ - T₂) es el gradiente de temperatura y $\sqrt{}$ es la viscosidad cinemática.

A números de Grashof muy bajos, la transferencia de calor ocurre principalmente por conducción a través de la capa de fluído. Cuando el número de Grashof aumenta, se encuentran diferentes regímenes de flujo, con un aumento progresivo de transferencia de calor como se expresa a través del número de Nusselt

$$Nu = \frac{h \delta}{k}$$
(3.11)

Mc Gregor y Emery (15) obtuvieron las siguientes correlaciones empíricas, para predecir la transferencia de calor a un número de líquidos en condiciones de flujo de calor por unidad de área constante.

Flujo en capa límite laminar:

Nu = 0.42 (Gr
$$\beta$$
 Pr)^{1/4}Pr^{0.012} ($\frac{L}{\delta}$)^{-0.30} (3.12)

çara qw = constante

$$10^{4} < Gr_{\$} Pr < 10^{7}$$

1 < Pr < 20,000
10 < L/{\\$} < 40

Flujo en capa límite turbulenta:

$$Nu = 0.046 (Gr Pr)^{1/3} (3.13)$$

para qw = constante
La transferencia de calor por convección libre laminar entre dos placas verticales ha sido investigada por Elenbaas (16), sus resultados se muestran en la figura 3.4.

La ordenada es Nu, el número promedio de Nusselt hcb/k y la ab<u>s</u> cisa es el número de Grashof Gr_b, el número de Prandtl y la razón de la distancia entre las placas b y su altura L.Todas las propiedadesfísicas excepto /3 están evaluadas a la temperatura de superficie Ts. El coeficiente de expansión térmica /3 está evaluado en Tg .

La curva de la figura 3.4 puede ser correlacionada aproximadamen te por las siguientes ecuaciones:

$$\overline{Nu}_{b} = 0.0716 (Gr_{b} Pr b/L)^{0.985} (3.14)$$

$$0.1 \langle Gr_{b} Pr b/L \langle 10$$

$$\overline{Nu}_{b} = 0.1960 Gr_{b} Pr b/L)^{0.5528} (3.15)$$

$$10 \langle Gr_{b} Pr b/L \langle 100$$

$$\overline{Nu}_{b} = 1.0952 Gr_{b} Pr b/L)^{0.2036} (3.16)$$

$$10^{2} \langle Gr_{b} Pr b/L \langle 10^{5}$$

_ _ _ _

Las tres ecuaciones anteriores 3.14, 3.15 y 3.16, han sido seleccionadas para calcular el coeficiente en las aletas.

Sin embargo, desde un punto de vista ideal, las aletas se encuentran ordenadas en forma simétrica; en cualquier punto de la aleta, de su base al extremo de ella misma, la temperatura de una aleta es iguala la temperatura de la aleta adyacente en ese mismo punto. Lo cuál nos conduce a un gradiente de temperatura igual a cero, ver figura 3.6.

Por lo tanto, para ser congruentes con la figura 3.4, siguiendo – que la dirección del flujo de calor es en la dirección de temperatura – decreciente y la separación entre los planos sigue el mismo sentido que los movimientos de convección natural entre las aletas. Tomaremos qué, la magnitud B ó altura de aleta, así llamada (ver inciso 3.5); puede – ser referida a la separación que existe entre dos planos, uno real formado por la pared del tubo, y uno imaginario formado por la sección – –

Figura, 3.4 Fransferencia de calor por convección libre desde dos placas verticales paralelas, separadas una distancia b. En P la rapidez de transferencia de calor por unidad de área es la máxima. W. Elenbaas, N.Y. Philips Gloeilampenfabrieken.

FIGURA 3.5 PERFILES DE TEMPERATURA Y VELOCIDAD EN LA CONVECCION NATURAL ENTRE DOS PAREDES VERTICALES PLANAS achurada en la figura 3.6. Donde, la temperatura mayor es la de la b<u>a</u> se (tubo-aleta) y, la del plano imaginario es la del líquido circunda<u>n</u> te.

Por lo tanto, el gradiente de temperatura que origina los movi mientos de convección natural, deberá ser la diferencia de temperatura que exista entre los dos planos de referencia. Y, qué el movimiento de convección natural "perpendicular" al tubo y a su vez "paralelo" a las aletas, es mayor, como se tratará de demostrar (caso I); que el mo vimiento originado entre las aletas perpendicularmente a ellas, debido a un gradiente de temperatura entre la aleta y el fluído entre ellas -(caso II).

Partiendo de que, para los dos casos anteriores el gradiente de temperatura es el máximo disponible, y la temperatura promedio de la aleta es igual a la temperatura de su base. Para el modelo de dos pl<u>a</u> cas verticales paralelas tenemos:

la ecuación general es

donde nuestra única variable es b y Gr que depende de b, analizando el lado derecho de la ec. dentro del paréntesis.

Si b = B (caso I)

$$Gr = \underline{g / 3 \Delta T máx B^3}$$

de esta forma se vé que el producto Gr.8 se debe analizar.

Si b = X/2 (caso II)

$$Gr = \frac{g/3 \Delta T \max (X/2)^3}{\sqrt{2}}$$

Si B > X/2, como usualmente ocurre entre los tubos aletados ver - tabla 3.4, entonces:

$$\frac{\operatorname{Gr}_{B} \cdot B}{\operatorname{Gr}_{X/2} \cdot X/2} > 1$$

(33

TABLA No. 3.4

TUBO 6		ESPESOR		SUPER	FICIE D	EL TUB	O ALETA	DO (ft ²	/ft lin	≥al)
TUBERIA	TUBO Ft2/Ft		ALETAS	ALTUR	A DE LA	ALETA	LONGIT	UDINAL,	PULG.	
		rocu.		1/4"	3/8"	1/2"	3/4"	1"	1-1/4	' 1-1/2"
3/4 in.OD	.196	.083	12	.696	.946	1.196	1.696	2.196	2.696	3.196
7/8 in 00	. 229	.083	16 12	.863	979	1.229	2.196	2.863	2.729	4.196
//0 10:00			16	.896	1,229	1.562	2,229	2.896	3.562	4.229
			20	1.062	1,479	1.895	2.729	3,562	4,395	5.229
1 in. OD	.262	.083	12	.762	1,012	1,262	1.762	2.262	2.762	3,262
			16	.928	1.262	1.595	2,262	2.928	3.595	4.262
			20	1.095	1.512	1.928	2.762	3.595	4.428	5.262
1-1/2 in.I.P.5	.497	.109	24	1.497	1,997	2.497	3.497	4.497	5.497	6.497
1.9 DD			28	1.664	2.247	2.831	3.997	5.164	6.331	7.497
			36	1.997	2.747	3.497	4.997	6.497	7.997	0.497
2 In.I.P.S.	.622	.154	24	1.622	2.122	2.622	3.622	4.622	5.622	6.622
2.375 DD			36	2.122	2.872	3.622	5.122	6.622	8.122	9.622
			40	2.288	3.122	3.955	5.622	7.288	8.955	10.622
2-1/21n.I.P.S.	.753	.203	24	1.753	2.253	2.753	3.753	4.753	5.753	6.753
2.875 00			36	2.253	3.003	3.753	5.253	6.753	8.253	9.753
			48	2.753	3.753	4.753	6.753	8.753	10.753	12.753
3 in.1.P.5.	.916	.216	24	1.916	2.416	2.916	3.916	4.916	5.916	6.916
3,500 00			48	2.916	3.916	4.916	6.916	8,916	10.916	12.916
	4.010	000	56	3.250	4.416	5.583	7.916	10.250	12.583	14.916
3-1/21n.1.P.S.	1.047	.226	36	2.547	5.297	4.047	5.547	7.047	8.547	10.047
4,000 00			48	3.047	4.047	5.047	7.047	9.047	11.047	13. 347
	4 170	070	56	2.280	4.34/	5./14	8.047	10.380	12.714	15.047
4 10.1.7.5.	1.1/0	.257	40	2.1/0	4.1/0	5.1/8	7.178	9.170	10.0/5	15.170
4,500 00			56	3.511	4.6/8	5.845	8.178	10.511	12.845	15.178
	4 971	200	64	3.845	5.1/8	6.511	9.173	11.845	14.511	17.178
6 10.1.P.5.	1./34	.200	40	2./24	4./JD 5 /.DE	6 725	1.735	9.735	11. 735	10.734
0,020 00.			22	4.235	2.402	כנ/.ם	3.234	11./35	14.234	10./33
	2 250	377	/2 CD	4.755	6 00P	7 250	10.754	12./54	10./22	17.75
D 10.1.00	2.200	. 226	50	4./28	2 260	1.400	3./28	12.200	14./20	1/.420
8,625 00.			80	5.591	/.255	0.924	12.258	15.591	10.924	27258

reduciendo los términos iguales (constantes), nos queda

$$\frac{B^{3} \cdot B}{(X/2)^{3} \cdot X/2} > 1$$

$$\frac{B^{4}}{(X/2)^{4}} > 1$$

ó

Por lo tanto, el movimiento de convección natural que determina el cceficiente en las aletas es el que comprende a b = B; donde B es la altura de la aleta.

٢

Por ejemplo para un tubo de 3/4 de pulgada D.E. con 12 aletas,de altura a) 1/4 in., b) 1 1/2 in. Despreciando el espesor de las ale cas.

a)
$$\frac{(0.25)^4}{(\Pi \times 0.75/12 \times 2)^4} = 42.05$$
 > 1

b)
$$\frac{(1.5)^4}{(\Pi \times 0.75 / 12 \times 2)^4} = 54496.1 \gg 1$$

NOTA: Un análisis teórico se desarrolló en el apéndice A, al final de esta tesis; como alternativa de calculo del coeficiente de película por convección natural a partir de una ecuación de convección forzada para el lado externo de tubos con aletas longitudinales.

3.2.2 CONVECCION FORZADA

Transferencia de calor con flujo alrededor de superficies planas (3f, 7c y d). $\hfill \cdot$

Para el flujo de capa límite laminar (ver figura 3.7) en una placa plana isotérmica, los números local y medio de Nusselt están dados por:

$$Nu_{X} = 0.332 \operatorname{Re}_{X}^{1/2} \operatorname{Pr}^{1/3}$$
(3.17)
$$Nu_{L} = 0.664 \operatorname{Re}_{L}^{1/2} \operatorname{Pr}^{1/3}$$
(3.18)

respectivamente, usando la temperatura de la película para la evaluaciónde la propiedad. Estas ecuaciones son válidas para fluídos con números de Prandtl en el rango de 0.6 < Pr < 50.

Para la capa límite turbulenta en una capa plana, los números local y medio de Nusselt se pueden expresar por

$$Nu_{\chi} = 0.0288 \text{ Re}_{\chi}^{4/5} \text{ Pr}^{1/3}$$
 (3.19)

У

v

$$Nu_{L} = 0.036 Re_{L}^{4/5} Pr^{1/3} \qquad (3.20)$$

Cuando se considera una superficie sobre la que el flujo de capa l<u>í</u> mite es tanto laminar como turbulento (fig. 3.8) se debe usar una combinación de las ecuaciones anteriores 3.18 y 3.20. La transición entre flujolaminar y flujo turbulento dentro de la capa límite ocurre en donde el número local de Reynolds Re_x llega a un valor de aproximadamente de 1x10⁶(3f)

Para una placa determinada de longitud L y ancho W, L es la longi tud característica. Y para un área circular se recomienda que L = 0.9 por el diámetro.

FLUJO CRUZADO (3g, 7e).

FLUJO CRUZADO A UN CILINDRO UNICO.

La variación de la conductancia por unidad de superficie, alrededor de un cilindro ó de un esfera, depende de la posición angular alrededor de dicho cuerpo, (ver figuras 3.9, 3.10 y 3.11). Tes (TEMPERATURA DE LA CORRIENTE LIBRE)

FIGURA 3.7 LA CAPA LIMITE TERMICA PARA EL FLUJO LAMINAR EN UNA PLACA ISOTERMICA

FIGURA 3.8 CONSIDERACIONES DE FLUJO PARALELO A UNA SUPERFICIE PLANA

FIGURA 3.9 NUMEROS LOCALES DE NUSSELT PARA UN SOLO CILINDRO CON FLUJO CRUZADO A NUMEROS DE REYNOLDS BAJOS. DE E. R. ECKERT Y E. SOEHNGEN, TRANS A.S.M.E.74 (1952):346

FIGURA 3.10 NUMEROS MEDIOS DE NUSSLET CONTRA RE PARA EL FLUJO NORMAL A CILINDROS SOLOS. (DE W. H. Mc. ADAMS, HEAT TRANSMISION, 3a. EDICION (NUEVA YORK: Mc. GRAW-HILL BOOK Co. 1954) PAG. 259

FIG.3.11 NUMEROS LOCALES DE NUSSELT ALREDEDOR DE UN SOLO CILINDRO DE FLUJO CRUZADO A ALTOS NUMEROS DE REYNOLDS. DE W. H. GIEDET, TRANS A.S. M. E 71 (1940) 378. Para nuestras aplicaciones prácticas, no es necesario conocer el valor local de hco, sino que es suficiente evaluar el valor promedio de la conductancia alrededor del cuerpo.

 Hilpert, midió exactamente las conductancias promedio para aire, fluyendo sobre cilindros con diámetros comprendidos de 0.008" hasta cer ca de 6", relacionándose por medio de la siguiente ecuación.

$$\frac{\overline{hc} D_0}{k_f} = C \left(\frac{V_{\infty} D_0}{\sqrt{f}} \right)^n$$
(3.21)

donde C y n son constantes empíricas cuyos valores numéricos varían con el número de Reynolds, como se muestra, ver tabla 3.5.

ReDf	C	п
0.4 - 4	0.891	0.330
4 - 40	0.821	0.385
40 - 4,000	0.615	0.466
4000 - 40000	0.174	0.618
40000 - 400000	0.0239	0.805

TABLA 3.5

se deben evaluar las propiedades del fluído a la temperatura de película.

FLUJO CRUZADO EN CILINDROS VERTICALES (12).

Las pérdidas de calor por convección para una superficie aislada y el aire, y la velocidad a la cual pasa sobre dicha superficie se tiene la siguiente ecuación.

$$\frac{q}{A} = Q_{CV} = C \left(\frac{1}{d}\right)^{D.2} \left(\frac{1}{\tau_{av}}\right)^{D.1B1} \Delta T \left(1 + 1.277v\right)^{1/2} (3.22)$$

donde C es una constante que depende de la forma de la superficie. Losvalores de esta constante son: 1.016 para cilindros horizontales, 1.235para grandes cilindros verticales, 1.394 para planos verticales, 1.79 p<u>a</u> ra planos horizontales hacia arriba, y 0.89 para planos horizontales hacia abajo. Una ecuación más simple, pero también más inexacta es la ecuación de Langmuir.

$$Q_{CV} = 0.296 (T_{s} - T_{a})^{5/4} (1+1.277 v)^{1/2} (3.23)$$

donde Ts es la temperatura de la superficie ${}^{O}F$, Ta es la temperatura del aire ${}^{O}F$, y v es la velocidad del viento en millas por hora.

CONVECCION CON AGITACION MECANICA (13)

El movimiento de un líquido producido por un agitador puede ser us<u>a</u> do para homogenizar la temperatura de el líquido calentado internamente dentro de un recipiente, como para incrementar la velocidad efectiva de transferencia de calor. El calor puede ser suministrado o absorbido del fluído de proceso por contacto con una superficie que es calentada o en friada respectivamente. La configuración de la superficie y la operación del agitador son ambos influencia para la velocidad de transferencia de calor.

Han sido publicadas diversas correlaciones de transferencia de ca lor, pero la relación más general encontrada para el número de Nusselt en recipientes enchaquetados es

$$\frac{h_{jT}}{k} = 0.85 \left(\frac{D^2 N}{\mu}\right)^{0.66} \left(\frac{C p \mu}{k}\right)^{0.33} \left(\frac{Z}{T}\right)^{-0.56} \left(\frac{D}{T}\right)^{0.13} \left(\frac{\mu}{\mu}\right)^{0.14}$$
(3.24)

3.3 RADIACION TERMICA.

Las pérdidas de calor por una superficie caliente al aire, con una relación geométrica (factor de forma) unidad y con una emisividad E, se - expresa por la siguiente relación.

$$\frac{q_{R}}{A} = 0.1713 E \left[\left(\frac{T_{s}+460}{100} \right)^{4} - \left(\frac{T_{a}+460}{100} \right)^{4} \right], \frac{BTU}{Hr ft^{2}}$$
(3.25)

considerando al medio ambiente completamente absorbente, y excluyendo laposibilidad de alguna superficie reflectiva cercana a nuestro objeto radi<u>a</u> dor. 3.4 CONDENSACION (3,4,5,7,14).

La condensación ocurre cuando se mantiene una superficie a una temperatura inferior a la de saturación de un vapor adyacente; el líquido – que se condensa se recoje en una superficie horizontal plana o fluye bajo la influencia de la gravedad si la superficie y su orientación lo permi – ten.

El líquido condensado se extiende y forma una película mojando toda la superficie. A este tipo de condensación se le conoce como <u>condensación</u> <u>de película</u>. Cuando el líquido no moja la superficie, la condensación se forma por medio de gotitas que corren a lo largo de una superficie inclinada, incorporándose con otras gotitas que tocan. Esta es la <u>condensa --</u> <u>ción por goteo</u>. Es difícil lograr la condensación por goteo y mantenerla durante periodos extendidos; "normalmente" se diseña al equipo que involu cra el fenómeno de condensación en base a que ocurre la condensación de película donde el calor se transfiere de la superficie intermedia vapor líquido hacia la superficie, solamente por conducción. Por lo tanto, la rapidéz del flujo depende principalmente del grueso de la película de con densado, que a su vez, depende de la rapidéz a que el vapor se está con censando y de la rapidéz con que el condensado se aleje.

El valor promedio de la conductancia h, para un vapor condensandose sobre una placa vertical de altura L y anchura unidad en régimen laminary condensación tipo película es:

$$\overline{hc} = 0.943 \left[\frac{\int_{1} (\int_{1-}^{0} v) g h f g k^{3}}{\mu 1 L (Tsv - Ts)} \right]$$
(3.26)

donde: h'fg = hfg + ³/₈ Cp (Tsv - Ts) (3.27)

Suponiendo que el gradiente de temperatura es lineal, las propiedades físicas de la película del líqui**do** deben evaluarse en el promedio aritmético de la temperatura del vapor y de la pared.

Aunque la ecuación anterior se hizo específicamente para una placa plana vertical, es también válida para superficies interiores o exterio res de tubos verticales, si el diámetro del tubo es grande comparado conel espesor de la película. El flujo turbulento, puede establecerse en la parte inferior de una superficie vertical, cuando su número de Reynolds del condensado excede a un valor crítico de alrededor de 2100; (ver figura 3.12).

El coeficiente de transferencia de calor local para flujo turbule<u>n</u> to, puede evaluarse con la ecuación.

hx = 0.056
$$\left(\frac{4}{\mu_{f}}\right)^{0.2} \left(\frac{k^{3} p^{2} q}{\mu^{2}}\right)^{1/3} \Pr_{f}$$
 (3.28)

donde el número de Reynolds de la película de condensado puede escribirse como:

$$Re = \frac{4 c}{r}$$
(3.29)

donde

 $\Gamma_{c} = \frac{\mathbf{f}_{e} (\mathbf{f}_{e} - \mathbf{f}_{v}) \mathbf{\mathcal{F}} \mathbf{\mathcal{F}}^{3}}{3\mathcal{M}_{e}}$ (3.30)

y 🖌 es el grueso de la placa de condensado.

$$\delta = \left(\frac{4 \mu_{e \ k \ X} (T_{sv} - T_s)}{9 \rho_e (\rho_e - \rho_v) \ h'fg}\right)^{1/4}$$
(3.31)

sustituyendo las ecuaciones 3.30 y 3.31 en hx, e integrando para $L_1 = X - con un Re = 2100 a L = L y dividiendo entre el área, se puede obtener el coeficiente promedio de transferencia de calor para el régimen turbulento.$

$$\overline{hc} = \int_{\underline{L=x \ hx \ dx}}^{\underline{L=L}} (3.32)$$

Un coeficiente conservador para hc, ampliamente utilizado por Kern-(14) de 1500 BTU/Hr Ft^{2 o}F para vapor de agua, es también utilizado en el presente trabajo.

Figura. 3.12 Efecto de la turbulencia en la película sobre la transferencia de calor con la condensación.

3.5 SUPERFICIES EXTENDIDAS (14)

El uso de superficies extendidas en equipos industriales es part<u>i</u> cularmente importante porque estas extienden la superficie disponible,aumentando la transmisión total de calor. A las tiras de metal que se emplean para extender las superficies de transferencia de calor se lesconoce genéricamente como aletas.

Dada ésta característica de las aletas de aumentar la transmisión del calor, la diferencia de temperatura efectiva entre el fluído y la aleta es menor que la del fluído y el tubo.

Existen diversos tipos de aletas como son: 1).- Aletas longitud<u>i</u> nales (estudiadas aquí), 2).- Aletas transversales, 3).- Aletas dis contínuas, 4).- Dientes o espigas, 5).- espinas.

Los materiales comunes de fabricación (17), tanto para el tubo,co mo para las aletas ó incluso una combinación de materiales de tubo y -aleta diferente pueden ser:

Acero al carbón	niquel
Molibdeno al carbón	Monel
Aleaciones de Acero al bajo	
cromo.	Inconel.
Acero inox. (serie 300 ó 400)	Hastelloy.

Los espesores de aleta longitudinal más común varía de 0.035" - hasta 0.05".

Las aletas longitudinales se emplean más comunmente en problemas que involucran gases y líquidos viscosos ó cuando en el reducido flujode uno de los medios de transferencia se originan flujos laminares.

Para obtener el calor total removido por el tubo aletado, el calor que fluye de la aleta con un coeficiente h, debe ser finalmente com binado con el que fluye del tubo sin aletas considerando el diámetro ex terior. Debido a que no existen temperaturas simples de referencia en la parte exterior de los tubos aletados, es conveniente usar el diámetro interior del tubo como superficie de referencia a la que los coeficientes locales se corrigen para el mismo flujo térmico.

Una ecuación que dá directamente el coeficiente de transferenciade calor en el interior de un tubo de superficie extendida que es equivalente al valor del coeficiente de transferencia de calor combinado en la superficie exterior del tubo es:

$$h_{fi} = (\Omega A_{f} + A_{a}) \frac{h_{f}}{A_{Di}}$$
(3.33).

donde:

 Ω es la eficiencia balanceada, aplicada únicamente a la aleta y nó a la porción del tubo entre ellas.

perímetro de una aleta. Ft/Ft lineal. Z Z = 2 ft/ft lineal de aleta longitudinal. conductividad térmica de la aleta. BTU/Hrft² (^OF/Ft). kz área transversal de una aleta, ft²/ft lineal. Δ7 Az = Ez . ft^2/ft lineal de aleta longitudinal. Ez espesor de la aleta longitudinal, ft. Area de las aletas long., ft²/ft lineal. F.F $A_{f} = 2Nb$ N número de aletas por tubo altura de la aleta, ft Ь área lisa externa del tubo, ft²/ft lineal. Ao $Ao = II Do - NE_{T}$ diámetro externo del tubo, ft. Do A_{Di} superficie interna del tubo, ft²/ft lineal diámetro interno del tubo, ft. Di coeficiente (extr.) de transferencia de calor de la aleta. h

El valor del coeficiente hfi así corregido representa el coeficien te hf para el tubo liso y las aletas, referido al diámetro interno

De acuerdo con la configuración aleta-tubo, se propone calcular el coeficiente "compuesto" tanto para la aleta como para el tubo liso de la siguiente manera, es decir:

$$h_{f} = ((h aleta + h tubo)^{-1} + RDØ)^{-1}$$
 (3.34)

donde RDØ es el coeficiente de ensuciamiento externo; las propiedades físicas para el coeficiente hf se evalúan a la temperatura del film.

327

3.6 ECUACIONES COMPLEMENTARIAS DE CALCULO

RESISTENCIA TERMICA DE LOS TUBOS ALETADOS.

La resistencia térmica de los tubos aletados puede ser resuelta por analogía de resistencias eléctricas. Para la conducción, la resis tencia se define como:

$$R = \frac{E}{A k}$$
(3.35)

donde E representa el espesor de la placa, ka la conductividad térmica jel material por el cual fluye calor, y A el área perpendicularmente al flujo de calor. Por lo tanto la resistencia de una aleta quedará expresada por:

$$R_{A} = \frac{\text{Altura de aleta}}{A_{A} \cdot K_{A}}$$
(3.36)

Para un tubo de poco espesor comparado con su diámetro

$$R_{T} = \frac{D\not{0} - DI}{2 \cdot A_{T} \cdot k_{T}}$$
(3.37)

Nuestro problema en este sentido, reside en que nó existe una superficie de referencia en la superficie exterior. Por lo tanto, la resistencia térmica del metal, así como la debida al coeficiente de p<u>e</u> lícula y al factor de obstrucción externo deberán referirse a una su perficie común (14), y ésta es la superficie interna del tubo (ADI).

Partiendo del hecho anterior, la ecuación de flujo de calor para este tipo de problema puede escribirse:

$$Q = \frac{T_{\text{Total}} \cdot A_{\text{DI}}^{\text{lotal}}}{R'_{i}}$$
(3.38)

conde $R_{TOTAL} = R'_i + \cdots + R'_N = \sum R'_i$ (3.39)

Combinando las resistencias del tubo y aleta, como resistencia - serie - paralelo:

$$R'_{metal} = \frac{1}{\frac{1+1}{R'_{T}}} en paralelo \qquad (3.41)$$

i

Las demás resistencias R' quedarán como se indica:

$$R'Liq = 1/H_{ri}$$
 (3.43)

$$R^{\dagger}DD = RDD \cdot A_{DT} / (A_{A} + A_{T})$$
 (3.44)

$$R'_{\text{DI}} = R_{\text{DI}}$$
(3.45)

. El coeficiente total de diseño U_{DI} referido al diámetro inte<u>r</u> no es igual al inverso de R_{TOTAL}.

CAIDA DE PRESION PERMISIBLE PARA UN VAPOR CONDENSANTE 14.

En la condensación de un vapor puro saturado, el vapor entra al condensador a su temperatura de saturación y lo deja como líquido. La caída de presión es obviamente menor que la que resultaría de calcularla para un gas a la gravedad específica del vapor de entrada y mayor que la que se computaría usando la gravedad específica del condensado a la sal<u>i</u> da. La velocidad masa del vapor de entrada y del líquido que sale son,sin embargo, las mismas. En ausencia de correlaciones más extensivas se obtienen buenos resultados usando para la velocidad masa el peso total del flujo y la gravedad específica promedio entre la entrada y la salida. Este método puede simplificarse más todavía como sucede en la condensa ción de vapor de agua, tomando la mitad de la caída de presión convenci<u>o</u> nal computada enteramente de las condiciones de entrada. Esto es, para condensación en tubos (14).

$$\Delta P_{t} = \frac{1}{2} \frac{F \ Gt^{2} \ Ln}{5.22 \times 10^{10} \ De \ S}$$
(3.46)

donde S es la gravedad específica para el vapor, f es el factor de fricción en el tubo en $\operatorname{Ft}^2/\operatorname{PLg}^2$, L es la longitud del tubo en Ft, es el núm<u>e</u> ro de pasos por los tubos (en este caso n=1), De es el diámetro interno en Ft; la gravedad específica del vapor se calcula como S=densidad vapor/ densidad agua; Gt es la masa velocidad del fluído, ΔP_t en LB/Pulg². Laecuación anterior está del lado seguro, puesto que la masa velocidad del vapor disminuye casi linealmente en presencia de grandes Δt desde la entrada a la salida, mientras que la caída de presión disminuye con el cu<u>a</u> drado de la velocidad. El factor de fricción de calculó de acuerdo a las siguientes ecua - ciones, correlacionadas para este caso 14 .

para
$$N_{Re} \langle 1000$$

 $f = 0.5/Re , Ft^2/in^2$ (3.47)
para $N_{Re} \rangle / 1000$
 $f = 3.82 \times 10^{-5} + 5.69 \times 10^{-3} Re^{-0.343} , \frac{Ft^2}{in^2}$ (3.48)

donde el N_{Re} se calculó a las condiciones de entrada.

ECUACIONES DE CALCULO DE PROPIEDADES FISICAS PARA HIDROCARBUROS LIQUI DOS DERIVADOS DEL PETROLEO.

1.- Conductividad térmica, BTU/Hr-Ft². (^OF/Ft).

Los siguientes datos fueron extraidos de la figura (14) No. 1 - (pg. 108), D.A. Kern, PROCESOS DE TRANSFERENCIA DE CALOR, C.E.C.S.A., - 1a. Impresión.

	K	BTU/Hr Temperat	ft ² ura	(⁰ F/Ft). ⁰ F
DAPI		0 ⁰ F		600 ⁰ F
70		0.097		0.08
60		0.0925		0.076
50		0.088		0.0725
40		0.083		0.0685
30		0.078		0.0642
20		0.0735		0.06
10		0.0685		0.056

Para la cual, fué correlacionada la siguiente ecuación:

 $k_{API} = 0.063857 + 4.7678 \times 10^{-4} \circ API - 1.95476 \times 10^{-5} T - 1.26190 \times 10^{-70} API - T$ (3.49)

su coeficiente de correlación promedio es r = 0.9964. La temperatura se expresa en ^oF.

2.- Densidad; Lb/ft³

Los siguientes datos fueron extraidos de: Fig. s/n, apéndice - A-7, CRANE, Technickal paper No. 410, para temperatura vs. gravedad específica.

			Sp.	Gr. (T°F/60°F)
°API	(60°F)	Temp.°F.	100	500
10			0.985	0.844
20			0.92	0.772
30			0.86	0.713
40			0.81	0.654
50			0.76	0.59
60			0.72	0.54

Sus correlaciones individuales son:

Sp.gr.	10API	= 1.0203	-	3.525	$x 10^{-4}$ T
	20API	= 0.9570	-	3.70	$x 10^{-4}T$
	30API	= 0.89675	-	3.680	x 10 ⁻⁴ T
	40API	= 0.8490	-	3.90	$x \ 10^{-4} T$
	50API	= 0.8025	-	4.25	$x 10^{-4}$ T
	60API	= 0.7650	-	4.5	$x 10^{-4}T$
		$r_1 = 0.995$	55	$r_2 = o$.9584

```
Por lo tanto la ecuación general es:
Sp.gr=(1.06053-5.10786x10<sup>-3</sup>API)-3.2513x10<sup>-4</sup>T-1.92714x10<sup>-6</sup>API.T
(3.50)
```

si multiplicamos Sp.gr por la densidad del agua a 60°F obtenemos la ecuación para la densidad, en función de los °API y la temperatura en °F.

3.- Capacidad calorífica, BTU/Lb^OF.

La siguiente ecuación fué recomendada por Fallon y Watson; Natl.P<u>e</u> trol. Nerus, Tech. Sectión, Junio 7,1944, para hidrocarburos líquidos yfracciones del petróleo a temperaturas entre O^OF y temperaturas reduci das de 0.85

$$C\rho = ((0.355 + 0.128 \times 10^{-2} \ ^{0}\text{API}) + (0.503 + 0.117 \times 10^{-2} \ ^{0}\text{API}) \times 10^{-3}\text{T})$$

$$(0.05K + 0.41) \qquad (3.51)$$
donde T en ⁰F y K [10 - 13]

Para los efectos del programa de cálculo se consideró que:

$$0.005K + 0.41 = 1$$

4.- Coeficiente de expansión térmico, ^OF⁻¹

0	API		Coeficiente
	14	.9	0.00035
14	-	34.9	0.0004
35	-	50.9	0.0005
51	-	63.9	0.0006
64	-	78.9	0.0007
79	-	88.9	0.0008
89	-	93.9	0.00085
94	-	100	0.0009

Los datos anteriores recomendados por ASTM-I.P. Petroleum Mesure - ment Tables (ASTM D-1250 ó I.P. 200).

La ecuación correlacionada, para los ^OAPI promedio, fué:

$$C.E.T. = 0.000208616 + 7.0113 \times 10^{-6} \text{ }^{O}\text{API}$$
 (3.52)

~

su coeficiente de correlación fué:

r = 0.9983

5.- Viscosidad. centipoises.

T ^D F				^O AP]	[•
	20	23	26	30	32.6	35.6	40	48	57
100	1500	465	110	28	9	6	4	1.7	0.49
200	80	35	13	5.3	2.6	1.7	1.4	0.74	0.32
300	16.5	8	3.8	1	1.25	0.8	0.7	0.45	0.23

Los datos anteriores leídos de: Apéndice A, fig. 3 tabla 1 pg. -A-7, Crane, Technical Paper No. 410; y adaptados para sus diferentes densidades.

La ecuación correlacionada es: Rango calculado de 20 a 32.6° API. Ln(VISC) = $51.5658 - 1.2517^{\circ}$ API - (7.8669 - 0.1842°API)Ln(T) (3.53) $r_1 = -0.9984$ $r_2 = 0.9977$ Y, de 32.6 a 48 °API Ln(VISC) = $20.4805 - 0.2974^{\circ}$ API - (3.2311 - 0.04165°API)Ln(T) (3.54)

 $r_1 = -0.9904$ API = (3.2311 = 0.04165 API) (3.54) $r_1 = -0.9904$ $r_2 = -0.9937$

donde VISC está expresada en centipoises y T en ^OF.

ECUACIONES DE CALCULO DE PROPIEDADES FISICAS DEL VAPJR DE AGUA A SU TEMPERATURA DE SATURACION.

1.- Viscosidad, centipoises.

τ ^ο F	VISC, cp .
250	0.014
300	0.0155
400	0.0174
450	0.022
500	0.0254
550	0.030
600	0.036
650	0.044

La ecuación correlacionada es: con rango de 250 a 400 ^OF.

VISC =
$$-0.012875 + 0.00678 \times T^{1/4}$$
 (3.55)
r = 0.99706
y de 400 a 550 ^DF.
VISC = $-0.01544 + 0.000824 \times T$ (3.56)
r = 0.9983

donde la T se expresa en ^OF

Los datos anteriores fueron extraidos de: Apéndice A, fig. 2, CR<u>A</u> NE Technical Paper No. 410.

2.- Volúmen específico, ft³/Lb.

Rango calculado de 15 a 165 psía. Vesp. = EXP [5.82167 - 0.94124 ln Pv] (3.57) r = -0.9999946

3.- Calor latente, BTU/Lb

Rango calculado de 15 a 165 psía.

C.L. = EXP (7.005477 + 0.015974 ln Pv) (3.58).

Los datos para correlacionar las dos ecuaciones anteriores fuerón extraídos de CRANE, Technical Paper No. 410. CARACTERISTICAS DE LOS TANQUES ATMOSFERICOS DE TECHO CONICO (18).

Las dimensiones de los tanques de almacenamiento se tomarán de la tabla 3.6.

Las planchas del fondo deberán tener como mínimo un espesor nominal de 6 mm (1/4"), o un peso de 49.8 Kg/m² (10.2 Lb/pie²), sin incluirla tolerancia por corrosión.

El espesor nominal de las planchas de la envolvente, no deberá - ser menor que el siguiente:

DIAMETRO NOMINAL DEL TANQUE	ESPESOR NOMINAL DE PLANCHA
(D) en m (pies)	(t) en mm (pulg).
D <15.24 (D < 50)	4.76 (3/16)
15.24 ≤ D ≤ 36.58 (50 ≤ S ≤ 120)	6.35 (1/4)
36.58 ≤ D ≤ 60.96 (120 ≤ D ≤ 200)	7.94 (5/16)
D > 60.96 (D>200)	9.53 (3/8)

Las planchas del techo tendrán un espesor nominal mínimo de 4.8 mm (3/16"), (37.5 Kg/m²) (7.65 Lb/pie²), 4.5 mm (0.180") ó lámina calibradade 4.57 mm (0.1799")).

La pendiente en los techos cónicos, soportados por una estructura, será de 1:16 o mayor cuando se especifique.

CAPACIDAD													
NOMINAL		R	EAL		D	TAMF.	TRO		AL	TURA	PESO	PESO VACIO	
BLS		BLS	MET	S.CUBS.	PIES		METROS	PIES		METROS	LBS	TÓN.	
500		502		79.89	15 '	0"	4.572	16'	0"	4.877	13228	6	
1,000	1	011		160.80	20 '	0"	6.096	18'	0"	5.486	19842	9	
2,000	2	019		321.00	24'	۳۵	7.468	24'	0"	7.015	28660	د ۱	
3,000	3	028		481.48	30 י	0"	9.144	24 '	0"	7.315	35274	16	
5,000	5	043		801.88	31 י	8"	9,652	36'	0"	10.973	48502	22	
10,000	10	105	1	606.78	42'	6"	12,954	40'	0"	12.192	85980	39	
15,000	15	036	2	390.70	58'	0"	17.678	32'	0"	9.754	127868	58	
20,000	20	359	³ 3	237.03	60'	0"	18,288	40 '	0"	12.192	171961	78	
30,000	30	083	4	783.17	73 י	4"	22.352	40 '	0"	12.192	244713	111	
40,000	39	930	6	348.91	85'	0"	25,908	40'	0"	12.192	317466	144	
55,000	55	940	8	894.54	100'	0"	30.480	40'	0"	12.192	418878	190	
80,000	80	560	12	808.98	120'	0"	36.576	40 '	0"	12.192	604066	274	
103,000	100	438	15	969.66	1341	0"	40.843	40'	0"	12.192	760595	345	
150,000	149	111	23	708.63	150 '	0"	45.720	48'	0"	14.630	1 005308	456	
200,000	214	713	34	139.43	180 '	0"	54.864	48'	0"	14.630	1 593942	723	
500,000	525	625	83	574.38	280 '	0"	85.344	481	0"	14.630	3 300,000	1500	
CONVERSION	IES	BARRIL	_ = 159	LTS.									

TABLA 3.6 DIMENSIONES DE TANQUES CILINDRICOS VERTICALES

•

AREA LATERAL DE UN CONO

Al =
$$\Pi r g$$
 1
 $\frac{h}{r} = PDTE.$ 2
h = r. PDTE 3
g = $(h^2 + r^2)^{1/2}$ 4
sust. 3 en 4
g = $(r^2 \cdot PDTE \cdot r^2 + r^2)^{1/2}$ 5"
g = $(r^2(1 + PDTE^2))^{1/2}$ 5"
g = r (1 + PDTE²) 1/2 5
sust. 5 en 1
Al = $\Pi r \cdot r (1 + PDTE^2)^{1/2}$ 6"
Al = $\Pi r^2(1 + PDTE^2)^{1/2}$ 6 (3.59)

De esta manera, con la ecuación 3.59 se calculará la superficie del techo del tanque atmosférico.

3.7 RESUMEN DE ECUACIONES.

Las ecuaciones con las que será implementado el algorítmo de cálculo son:

CONDUCCION

qx =
$$\frac{k A}{L}$$
 (To - T_L) (3.1)
donde: k = conductividad term., BTU/Hr Ft²(^OF/ft).
A = área expuesta en el sentido de conducción
del calor, ft².
L = espesor de la placa, ft.
qx = flujo de calor, BTU/Hr.
T = Temperatura, ^OF.
q = k S Δ T_{Total}.
donde: S = factor de forma (tabla 3.1).
= 4 D para disco circular de poco espesor
de diámetro D, dos caras expuestas.
s = 2 D , una sola cara expuesta.
 Δ T_{TOTAL} = gradiente de temperatura, ^OF.
q = flujo de calor, BTU/Hr.

CONVECCION NATURAL.

Para placas verticales como para cilindros en régimen laminar.

$$Nu_{L} = 0.555 (Gr Pr)^{1/4}$$
 (3.5)

en régimen turbulento.

$$Nu_{L} = 0.0210 (Gr Pr)^{2/5}$$
 (3.6)

donde:

 μ = viscosidad Cp = capacidad calorífica Gr = número de Grashof, adim. $= \frac{g L^3 (T_0 - T_{\infty}) / 3}{v^2}$ g = aceleración de la gravedad To = temp. de la pared T_{ee} = temp. del fluído V = viscosidad cinemática β = coef. expansión térmico, evaluado en T

$$h = A \left(\frac{\Delta T}{L}\right)^{b}$$
(3.9)

en placas frías hacia abajo A = 0.22, b = 1/3 y L = 1. en placas calien tes hacia arriba (régimen laminar) A = 0.24 b = 1/4 y L = longitud del lado; (en régimen turbulento) A = 0.27, b = 1/3 y L = 1.

Placas verticales paralelas.

$$\bar{N}_{u_{L}} = 0.0716 (Grb Pr b/L)^{0.985}$$
 (3.14)

$$\overline{N}u_{b} = 0.0716 (Grb Pr b/L)^{0.5528} (3.14)$$

$$\overline{N}u_{b} = 0.1960 (Grb Pr b/L)^{0.5528} (3.15)$$

$$\overline{N}_{u_{b}} = 1.0952 (Grb Pr b/L)^{0.2036}$$
 (3.16)

donde la longitud característica b = altura de la aleta.

CONVECCION FORZADA.

Superficies planas:

en régimen laminar.

$$Nu_{L} = 0.664 \ \text{Re}_{L}^{1/2} \ \text{Pr}^{1/3} \tag{3.18}$$

en régimen turbulento.

$$Nu_{L} = 0.036 \text{ Re}_{L}^{4/5} \text{Pr}^{1/3} \qquad (3.20).$$

donde: $Nu_L = \frac{hL}{k}$ y $Re_L = \frac{L\overline{V}}{V}$; L = longitud - característica y \overline{V} = velocidad del aire, Re_l = Núm. de Reynolds.

Flujo cruzado a un cilindro.

$$\frac{\overline{hc} D_{D}}{h_{f}} = G \left(\frac{\overline{V} D_{D}}{Vf}\right)^{n}$$
(3.21)

donde:

Do = diámetro del cilindro hc = coef. T. C. promedio kf = cond. térmica a temp. de película √f - viscosidad cinemática a temp. de película.

Radiación térmica.

donde:

Superficies extendidas.

$$hfi = (\Omega Af + A_0) \frac{hf}{A_{Di}}$$
(3.33)

ver inciso 3.5 de éste capítulo, para las demás literales y fórmulas asociadas a la ecuación (3.33)

Ecuación de diseño: para cálculo del área de transferencia de ca lor de los calentadores.

$$Q = \frac{T_{TOTAL} \cdot A_{DI}^{TOTAL}}{UD_{I}}$$

$$UD_{I} = R_{TOTAL} \cdot \frac{-1}{1}$$

$$R_{TOTAL} = f (3.41, 3.42, 3.43, 3.44, 3.45).$$
(3.38)

Resistencia térmica del metal (conjunto tubo-aleta) ver ecuaciones -3.36 y 3.37, combinadas en serie, la resultante en paralelo con la resis tencia del tubo (corregidas para la misma área de flujo de calor).

$$R' metal = \frac{1}{\frac{1}{R'_{I}} + \frac{1}{R'_{T}}}$$
(3.41)

Coeficiente lotal de diseño referido al diámetro interno del tubo.

$$UD_{I} = R_{TOTAL}$$

caída de presión, vapor condensante...

$$\Delta P_{t} = \frac{1}{2} \frac{f G t^{2} Ln}{5.22 \times 10^{10} De S}$$
(3.46)

Propiedades físicas de hidrocs. líquidos, ver correlaciones de la ec.3.49 a la 3.54.

Propiedades físicas del vapor, ver correlaciones de la ecuación 3.55 a la 3.58.

CAPITULO IV .DESARROLLO DEL PROGRAMA

4.1 DIAGRAMAS DE FLUJO

La estructura del algorítmo de cálculo está dividido en un programa principal y cinco subrutinas de cálculo, como se mues tra en los diagramas de flujo correspondientes.

PROGRAMA TESIS

Calcula la carga total de calor y el número de calentado--res requeridos .

SUBRUTINA DATOS.

Calcula las propiedades físicas del hidrocarburo almacenado

SUBRUTINA PFVAP

Calcula las propiedades físicas del vapor de agua.

SUBRUTINA DELTAP

Calcula la caída de presión en Lb/pulg.2, para el vapor con densante.

SUBRUTINA AIRE 1

Calcula el coeficiente de película por convección del aire en la envolvelte.

SUBRUTINA AIRE 2

Calcula el coeficiente de película por convección del aire en el techo del recipiente.

4.2 CODIFICACION DEL PROGRAMA

OPCION 1.

.

	PROGNAM TES IL (INPUT) OUTPUT)	600010
	CUNNJI, /ALTUFA/HXL	JJJJ4-)
	COMMON DERVSVISV	((0)))
	REAL NTPC # TEI	000060
	PKINT *** INDIQUE SI ELTA LILTI DANDI UN HUMERCH	0 000 70
	$\mathbf{F} \mathbf{E} \mathbf{r} \mathbf{L} + \mathbf{r} \mathbf{L}$	000000
	FKINT 590	000000
590	FORMAT(//T2C/#PROPORCIONE LOG SIGUIENTES DATOS DE CALCULO #/)	000130
	FN INT OUD	606_76
6C (*	FURMAT(/)T2C)#LUG GRADBE API DEL FLUIDD ALNAMENADE#,T90;#LFT = 4)	0.00220
	F.EAD +> HPI	000250
	PKII,T 610	JJ0290
610	FORMAT(7)T26)#LA TEMPERATURA DE ALLACENAMIENTO EN GEUSA FAMPENNEIT	000330
	1≠, T9∪, ≠_TL = ≠)	000570
	READ *, TL	000410
	PKINT 620	000450
620	FURIAT(/)T20)#LA TEMPERATURA LEL AITE EN GELS. FAHLENHEIT#, T90,# T	000470
		161351
		000070
(20		000010
0 30	T DEMINIARY FIZZYFEA VELACIDAD TEL TIENDU EN NILLAU FUL HURAF; (*******	000330
		0.00090
		010:37
640	FRAME OFO FRAME OF AND TRADERATING DEL V DUE LE THAFAA EN COMP. F.U. END	000.0
040	I TITA TO AS TV = 3	10000 <u>10</u>
	$\mathbf{F} \mathbf{F} \mathbf{A} \mathbf{O} \mathbf{A}$	0.00.00
	FAINT 650	0.007 3.0
650	FURMAT (/ +T20++LA PRESILG DEL VAPINEN LICENS/PLLG+++2 +BC+++ T90+	033770
	1# FV = #)	0.1.1.0
	READ * PV	001050
	PLINT 670	001390
670	FUNNAT(/)T20)#EL DIAMETRU DEL TANQUE DE ALMACENAMIENTO EN PICO#)	001130
	1T90; ≠ D = ≠)	001170
	READ +, J	001.210
	PKINT 630	031250
680	FURNAT(/)TZOJ#ALTUKA DEL TALQUE EL PIES#)T90)# HXL = #)	001290
		001350
600	FRINE OVU E RENT 1. T21 JUEEN TENTE TENTER HEN (LENTER AND HENDER TENAL 4. TOO JA DD TE	001610
0 70	$1 \approx \pm 1$	001410
		0014-00
	PRINT 7CC	(117 3 -
700	FOR MATCHATCHATERIDICAD DE LA CUPELFICIE EXTERIA LEL TANQUE ADIMENS	001 370
	111/L = 1790, = E = #)	001510
	READ *>E	601650
	PRINT 710	00100)
710	FORMAT(/)T2()#ALTURA DEL HIVEL DEL LIQUIDL(HAXINU) EN PIES#JT90J	001730
	1# XL = #)	0)177)
	READ +, XL	001310
	PRINT 720	001320
720	FUR NAT (/) TZ() #ESFESTER DE LAL PLACAL DE LA ENVOLVENTEJEN PULGADAS#)	0.013.00
	LIYUJF CY = F] DCAD + CD	0.0143)
	NCAU TJCF DDTNT 720	1.0.2.1.1
720	FRANKE FOR FRANKETTIN TOO AND FRANKE FRANKEN AND DEL TEENER FN DID GARARNING TOO.	012150
130	- TORNALYZZEGZEGGEGGE DE EME TEMNOLMG DEG TEGNES EN FOLGMENSAJIYOJ - 12 FE a 2)	002171
	READ *•FF	1.2.21
	PRINT 735	0.12.51
735	FURMAT(/, T2(, 4. ULERC DE TUBUL POL (LENTADLR#, T90, #NTPC =#)	0021 55

,

1

	•	
•		
•		
•		

	F IAD T IF C	0)2:00
	P.LINT 740	iv?v
740	FURMAT(/JT20J#LIZMETROLEXTERNE DEL TUBL ALETHOL EN PULGHUNDAJT)	いいことの
	1≠ DO = ≠)	()2259
		0 322 79
	PLINT 750	602331
75	FURMAT(/.TO) ANTA METRI INTERNE DEL TURE ALET.DELEN PLIGAD. CALTON	11:171
1.20	$1 \neq 0$ $T = 4$	1.1.410
	ar da firi	0.126 3.1
		012400
	P (1N) 760	002+70
760	$FJRMAI(7, TZC) \neq LUNGINUD CE LLS TUSUS EN PIES \neq JUG , \neq EL = \neq J$	11212
	READ FEL	C 3257)
	PXIHT 770	002510
770	FJEHAT(/)T20)#LUNGITUD DE LAS ALETAS EN PIEC#>T90)# BL = #)	0.05,220
	READ *JBL	002690
	PSINT 78G	UU2*30
780	FORMAT(/+T2L+FALTURA OF LL ALETA, FA FULGAEADF+T9(++RZ = #)	0 12779
		0.023.0
	PUTNT 790	1.0235.0
7 Cr	FORMAT($/$, T2, while FC DE ALETAS DUE TUR(\neq , T0(\neq , Y4) = 4)	11401
1 10	ternety (legradener berretter (d) (tob) (d) (d) (d)	117731
	READ TO AN	012733
		013141
810	I UNNA (/) 1209#ESPECER DE LAS /LETAS EN PELGADAS#) 1709# EZ = #)	11121
	READ = JEZ	C03_70
	PRINT 82C	113; ⁻ 0
820	FORMATC/JTZCJZCLPDUCTEVILAD TERMILA DE LAS ALETASJEM DTU/ (MR+FT#+)	2003250
	1(GĽ□. F/FT))≠∍T90;≠ YKZ = ≠)	003290
	₽EAD ★≠ XKZ	CC0021
	PKINT 83C	-JJ33 °O
830	FORMAT(/> T2() #CUEFICIENTE DE ENLUCIANIENTO DOL FLUIDO ALMACOMADO#A	0003410
-	1790,≠ KDD = ≠)	0 33 5 2 3
	READ ** PLU	00347
	PRINT 84C	1.037 30
840	FUENCE ALL ACCEPTOTEMENT OF EVENTLE DEL V. POL DE CALENT, ME	0.03570
040	1) TOL TOL & LT E X	013.13
		4.13550
		0.13.1.5
51.4	FRANT 200 FRANT 777, 2000 FRANT WITH THIS AF THE WAY A DEN THE VERTHARE THE FRANT AND	
900	T AVERT - A	0033330
		103970
		0.13
	LU 100 J=1,20	CC33 - 1
	"P=[P]	uu se se
	TF=TF1	113300
	CALL SIKEI (TPISTASV)CSPCHH)	003,95
	kH=0.1713*E*(((TP+46).C)/100.0)**4-((TA+46C.C)/1C0.C	0)4)90
	2)**4)/(TP-TA)	LC4_J)
	CALL DATUS (TF97 PI9DEH196LK19 VSC1967P19B1A)	0.4270
	G=32.2	004213
	CK=G*XL*+3*(TL-TP)+BTA*[EN1**2/V2C1*+2	0) 4 2 5)
	Fk=V3c1+c/P1/CDK1+3630.0	664-30
	G RP R=G P + P k	0.443.4.7
	IF (G+PK.LE.1E9) XHUL=(.555+6RPR**0.25	3043.0
	IF (GEPE .GT.1F9) XI UL= 0.C210+CEPI +=0.4	0.04 - 1.0
		3)++ 10
		(1)+4 30
		0.04530
	17 4 - VIDENTIC - REAL AUTOR / A VIDENTICA (A VIDENTICA) / A VIDENTICA	0.145 70
	11 - 11 - 11 / 16 / 16 / 16 / 16 / 16 /	1.4
•	FRENE J707174 FRENET/100.20 4 1 4 4.*2.27.4 TP = 4.50 //)	
3	FUKNATI 103387 J = \$3123387 1, = \$3179477	

	1F (ADS(1P1-1P), 11, 0, 1) GG (1) 30	0.4570
100		0.04:30
• •	PRIME FOR LE VALCE DE PPI OU CONVERGIOANALIZET EUL FEGULTED DE	00113.
36	CONTINUE	5.042 51
Ç	CALCULU EN LA SUPERFICIE SEC.	004336
	TPS 1= (TP 1+ TA) / 2.0	(+)4730
	LEP=EL/12.0	004935
	EU 300 K=1,20	LL4757
	TP S= TP S1	004739
	$TV_{R}P=(TL+TPS)/2$,C	0)4)4]
	HVS=0.22*(TVAP-TP3)**(1.0/3.)	004943
	HVI=.27+(TL-TVAP)++.333	114945
	¿DT=3.1416*(**2/4.	0.34747
	∧S=/L T+3QKT(1.+9LTE+*2)	U 14 14 7
	XKX=26.	034951
	HLS=。1713≠E≠(((TF:++460。)/100。)★★4-((TA+460。)/100。)★★4)/(TP:-TA)	(04213
	CALL AIRE2 (TPS, TA, V, D, HCHS)	(.)47
	HLEWS=HLS+HCWS	004.007
C CAL	OR DISTRADE FL FL AFFA SECA	0.149 59
• ••••	$\partial \Delta = (11 - 14) / (12) / (2017 + 14) / ($	014951
	$TV_{A}P_{2}T$ = $2e^{i}(A)T_{A}T_{A}$	1
	TO STATUS $\mathcal{I}_{\mathcal{I}}$ and $\mathcal{I}_{\mathcal{I}}$ and $\mathcal{I}_{\mathcal{I}}$	004005
		015010
5	- NATH - 2017 FEAL ENEMA TRING AV - K	
5	FURIA (LARVESAJE), - FELZESAJE (FELZE) TE L.BS/TRE-TASIA (F. 0.1) CO. T. 200	0.0000
		0 0 0 0 0 0 0
300		007.30
	PRACT ### EL VALUM DE TACINO I UNVENDE##ALIZE LUS RECOLTADOS	≠000777)
40	(DULT NOE	11.10
C .		112:91
C	CALOF DISIPADE FOR EL ATTE EN EL AREA HUMEDA	00593)
C		0.059 ? ü
	۲H= 3• 1416+XL+C	0000010
	QH=,,H*HCKWH*(TP1-TA)	J)(J,()
	91= 9H+9A	000)))
_	XKG=0-2	606_39
C	CALUR PERDICL FUR EL FUNCL DEL TALQUE	しいしゅぞう
	92=2•L*D*XKG*(1u-TA)	6002_i
C	CALOR TUTAL TRANSFERIDO AL HEDIG ANLIENTE	006237
	QT= Q1+Q2	006299
	PKII.T 6, AT	606333
6	$FORM_{A}T(1HC_{3}X_{3}\neq T)T = \neq F11.1/)$	vu 33 79
C	SECCION DE TUBES ALETADES	UU64_(
C	TEMPERATURA INICEAL TUBD - ALETAS SUPUESTAS:	006400
	TPT&=TV	006191
	DDT=TV-TL	UULISU
	D0 4JC L=1,20	د?زدري
	TPA=TP Te	0060_0
	$TFA=(TL+TP_{H})/2.0$	005550
	(ALL DATUE (TEA: 4): +) E1:2 + CDK2 + VSC2 + CA ?2 + BTA)	(2027)
	37= 37 2/12.0	الذر دارا
C	-	016320
Ċ	CALCULOS DEL COEFICIENTEL EN LAS ALETAS	0 165 30
č		000373
	GKB=G#ETA*(TPA-T_)*BZ**3*(LEL2/V0C2)**2	3 36930
	PRB=VSC2+CAP2/LDK2+36(C.C	00 5970
	GPBL=GL3*PKD*BZ/BL	0.070_0
	IF (GPEL + GE + O + 1 + IK + C PEL + L E + 10 + C) XI'I'B = 0 + C71 6 + G PEL + + 0 + 985	027153
	IF(GPB1.GT.10.0	0 17 17 1
	IF (GPB: _GT, _O(_() XNUP = 1.0952*GPBI ++(.2036	067.30
	TE (GPBL.GT. 165) PRINT + # GPBL ES DAYOR DE DEF#	00717
	HAT ANY NUR AC DE 2/8 7	0.1711.0
		· · · · · · · · ·

(??

,

С	CALIFIE D.1 CETTICLERT: (N 51 TUBE LIS)	0.0715.0
v		11773
		. 7
	UTIEURITERS NUMERITE SCON VIETE/ EFEACTING SC	
		1122.00
))(+_)
	HULT=XNUT=CDK273L	01-410
C	CHEFICIENTE COMBLAZED TURI-/LETZIJ ITM/(NA-FT+2*GPC. F)	007471
		(1772)
	12 E = 1 + (1 + (1 + (1 + (1 + (1 + (1 + (1	
c	THE THE CONTRACT OF A DECEMPTION OF A DAVID AND AN AND A DAVID AND A	117.01
v		117771
~		0,17, 50
L	SECCEPTER FRANSVERGAL LE UNA ALLEADER ##1771 LE LEAD	
	A?=EZ/12.3	u:,72 _ r
	E 1E=(1:X*Z7(X1:Z*AZ))**v=5	.JJ *3_ ()
	山466年(12341(186432))/(116462)	637733
C	AREA LE ALETACHPIEL UUGELADUS / PIELLINEAL	(1.72.70
•	/ F= 2 + XN + 9.7	L.J. 77 3.J
	- 1=2 - 74 1 - 52 - 1 - 2 - C = YH = 57 / 3 - 2 - (
	N 0 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	033320
	HPF 1= COLE (F, 1+, C) PHPF 7. C.	(38) 39
	RIPET=1.6/HPET	しいじょりう
	トTUDJ=(DU -S1)/(12.2 * *X.KT)	113-01
	RALETI=62/(M12*2.)	00))
	KALET=KTUBG + KALETI	1022-"
	F ME T_1 = 1 + 07 (1 + 4 / F_1 F_1 + - 1 + / F_1 F_1 F_1)	U-1E . 3
	111=1500-0	1137
		0.00.00
	HP1=1./KHP	005351
	ULI=I+C/(K+RDI+F/METAL+RMPFI+RDD¥ADI/(AF+A_))	9133 W
	ATEI = QT / (UL 1 +LDT)	00.10
	TÜBS=ATL1/(ALL+EL)	168410
	NTU30 S=TU80 + (.7	635492
	ALLERTENTUS SZLTPL 4C + 7	0) 100
	TOTAL THREE AND A TRACED F. ALLER DIVERSION (CONTACT CONTACT CONTACT)	212527
-	$\mathbf{F}_{\mathbf{M}}^{\mathbf{M}} \mathbf{F}_{\mathbf{M}}^{\mathbf{M}} = \mathbf{F}_{\mathbf{M}}^{\mathbf{M}} \mathbf{F}_{M$	0.000
(- トロビロレービングスタチーレーデーディングスタッチ ビレーデーデリア・コングステチョアドム ディアド・シュー・コング	
	エンズタデジアゼピューデタンズターパビュンションスタデッアー・ディンズターパンパコンションシテリーパーション	11.12
	12PF9.63/1),), _,
	1F (ABS(T)T/-TP/)+LT+L+1) GL TL 30	1.00
400	LONTINUE	1. X. K
	FRINT ★J≠EL VALUE, DE TRA RECULTVELCE JURGELZAN, LUL FILLE DUR DUR	. #1 . ? _) *
50	CONTINUE	0 39 .7)
	(411 - PEVAP(TY, PY, 1+4T))	1. 7 1
	CALL DELIAR (E1) ELITTECCU TARTES DE LOCUT	
	PRIM TOWARD IN A STRUCTURE AND A DESCRIPTION OF THE AND A DESCRIPTION OF THE ADDRESS OF THE ADDR	039330
9.00	FULMATCHOJOXIFLA TEMI - DE LA PAREL EN LA LUTERTALE AJOLLA EL L	• • • • • • • • • • • • • • • • • • • •
	LUGULE FF//IZOFF IM E FF/V-4//OXFED, ILEMPE FROMELLE EL EN DOMLNES	
	LE SECA EN GDUS. F#//	1))+1)
	-1T2OJ≠ TPS = ≠JF9+4/76YJ≠L2 TCMP+ DE L2 PARED TUBL-ALETAJ E3 JUG+	. 000 +00
	1F#//T2up# TFTA = #j[9.4/)	(0252)
	PRINT 905 HULWHANCRYSAHUNHARVEI))/57)
905	FOR MATCHHORE XARE L CERTICLENTE CONVECCINPERALISCING FALLS IN	13377123
	11 A SUPERF 70 7F 1 12 DZ FN 1 TU/(10.#FT*#2#600. F)#//	1119 . 11
	TTO A SHORWING A STOLEN AND ALL THE CONTRACT AND	
	The second secon	1 N. 7 2 1
	THE MARKE BY LA COLLAR FLEE CLEEPED AND CONTRACT CONTROLS IN 1999	
	LICUPENDANUE = FEFYA4//6//FLUUDENLUNE DUCALUNE DUCALUNE SUUDENLUNE S	
	IGATURAL EL LA SUPERIALLE ME J.L. EL STUP (HATELT VEGUE +) #//	1.991 - 0
	- ITZCJ#HCHH = #JE9+4//6%J#EL_CHEFICCIENFE_LEEUCHVECCIIIF_HAFIZHL+TAJT	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

	16. F.E. GB: TEUCOLER: DELITUDO: HALIETACI 47	(ر. بز(ن
	16X;#EFER_LO AL MARETKE INTITIONED TEL TUBD EN PTU/(HUMFT#2#0100)	1317130
	1#//T20## HFFT = #579.4/)	160 1170
	PRINT 91020H261220T	(1(UIC)
910	FOR ALT (ING) 6X9#CALDE EISIPALE POR LE AIRS IN LA CUPER FACTE HUNDER	010333
	IEN BTU/HE#//T20; BAH = #;FI1.1//6X;#UALUF LIC:PADE POR EL ADE EN	C070000
	IA SUFERFICIE SEC, EN LTH/HK#//T2()# QA = #J5_1.1//0XJ#CALLE SUBJU	2010-30
	1106 FUR EL FHICH CEL TANQUE IN 3TU/HE#//T201# C2 = #JF11+1/56 40	1.1.1.2.7.7.7.7.7
	ILOF TOTAL TRANSFORTED AL HELLO AMBIENTE EN ETMARA//TRODAM DT = 44	1010310
	111.1/)	وزاريان
	PEIRT 915000000000000000000000000000000000000	6162.70
915	FORMAT(INO,EX,#DIFERENCIA VENDADERA DE TERPERATURA EN GERCA F#//	010330
	1T20;≠UUT = ≠;F9.4//6X;≠UGEFILIENTE FUTAL DE DICEED UDHREDIUH DALA	3013373
	16 EN+/CX/FEL DIAMETRU INTERRU LEE NUBB EN OTU/ (MUHEFT++2+6CG+ T)#/	バニレーニビ
	1T207# UDI = #FF9+4776X7#KU4EAU DE TUBLIS ALFTADÚS RECUBLILIEL PALA	L010450
	14CONSERVACION#/6>;#DE LA TELPERATURA DE DISE≣0#//T20;# TUBIC	¥070⊁1J
	1, [[/]	61000
	PLINT 321, NCALE T)4(/
321	FURANT(1HC)もXy#UNERD DE CALORTADURED FERQUERDOS///yT20y# CALORTA	= 71 724 2
	1 ≠263/)	010100
_	FRIIT 920, VAFUR, DATUSS	010076
920	FURMATCHIC, CX, #VAPTH, HEQUERIDE FARA LA CLUDEF VACION DE LA TEMPENZ	TC LCC 10
	10RA DE DILEER EN LOS/HEF//T2094 V.PDR = #9F9.2//6X9#C.10A DE 98.5	1010101
	10H EN LUS TUBLO EN LOUVEVLG.**2//	07.000
	$1T20j \neq \text{ DFTUBS} = \neq j \text{FL}(-6/)$	و د ۲ نامده
	STUP	010770
		0.01.1
~	CONSTRUCTIONE DATE: LE AN LE	110300
L	LEUSIDAU EL LESTITATS DELAS VITAVES ARTA ANTA ANTARA ANTARA ANTARA ANTARA	1 20 30 3
r		0_0/01
C I	CONCOULY VIDAD TOPALLA CH DIGATHAMMALA CHLY FATAA CONCOULY VIDAD TOPALAXAA DIGATHAMMALA CHLY TAATAA	1.1111
c		011110
•	TE (LPILE, 32.6) VIS(= FXF (5) = FASB-1, 2517*425	1
	1 - (7, 8, 6, 6, 9, -(6, 2, 8, 4, 2, 3, 3, 2, 1) + (1, 6, (1, 1))	
	IF (4,P1+6T+32+6) VISL=EXP(2C+48CF-C+2974+AFI	(
	$1-(3.2311-0.(416*,P_{2})*ALCG(T))$	011210
	VSC = V1SC * c .72L - 4	011230
C	CAPACIDAD CALGRIFICE EN OTU/(LO*GOO. F)	(112)
	CAP=J.355+1.28E-2+/PI+(C.5/3+C.117E-2+/PI)*1E-3+T	ا د د ۲ ۲ ۲
C	COEFIGLENTE DE EXPANSION TERNICO, DIF. VOLZVUL. F	J11370
	BTA=2.0362E-4+7.(113E-6#API	011410
	E E TUEL!	011420
	ELD	577.55
	SUBROUTINE PFV, P(TV)PV)CLATAT)	011120
	COMMUN DENVJVISV	021270
C	VULUMEN ESPECIFICO DEL VAFOR EN FT**CZLB; KANGL DE 15 R 145 (ULU	01.51)
	VESP= CXP (5, 82 107-), 941 24*, LUG (PV))	011150
		(11090)
C	VISUSIDAU DEL VA CH SKICHADLIVISUER CPSIVISVER ESTREAM	
	- AF - AT VALE AGA AGA AT VISTON AGA AGA AGA AGA AGA AGA AGA AGA AGA AG	01110
	ムビス 1 ¥ 6 0 1 6 TK C 6 C 6 C (K 6 C 7 6 C C 6 C 7 7 Y 2 C C 7 TT C 6 C C 7 Z T C 6 C C 0 C C C 7 Y 2 T C 6 C C C 7 T V V 7 S V= V 1 S(V = 2 , Z 2	011030
c	CALON LATENTE DEL VUPON EN STIVIN	(330
•	CLATNT=EXP(7.6055+0.(16*.LuG(PV))	1 _ 19 0
	FETURN	J
	ENL	022020
	SUBROLTINE DELTAP(D1, EL, NTUCUS, VAPOR, DPTU2S)	012050

	CUREJA DE AVIXIEV	·)'
	, FDI= 3. 1416+[I++2/4 .L	ر د ـ ـ ـ ـ ـ ـ
	T=HTUBUS#AFC1/144.C	J_2_?u
	CTEV. 264 / T	012210
	LF=0/*=CT/(////////	(
	TELDE 1 E 16.1 / 1 E-/ 1 /EF	
	コビンドビットビッチング パー・シング ビーン クラブビーディア ふりつビーつきり デキャノーイ・ウムつ とうしょう マングレー・シング	10.2001
	1F (K2+01+14,00) / =3+0278-3+1+0031-3+K1++(-++0-407	
	LPGK=LEAV/62.J	0123 0
	[PTU65=F*CT**2*12.0/(2*5.22E1C*01*2°GK)*EC	t
	FETURI	(
	EN	6124 X
	SUBROUTINE AIRSI (TPIJTAJVJOJPONU)	(121)
	COMMON ACTURATES.	0 L25 VS
	C=32+2	012120
	T = (TP1 + TA)/2.0	C
	PET I = 1 (11461 + T)	1.2111
	VTC/=1 COR4F-F+1 755/F-P#T	1. 2530
	$V_{JJK} = 10000 T_{U} + 11000 T_{U} + 1000 T_{U}$	0.24
	DEHA-39673 / (1) + 40067	1 26.01
	EKA=0.01323 + 2.392=03 * 1	02000
	KEFULKA FVFLFL +400//VISF	0_2.00
	GK=G *3ETA *(TP1-TA)*06NA**2*0XL**3/V13A**2	00
	FACTJI.=I.E ++2/GI.	
	IF (FE .EQ. C.O) GL TL 200	012740
	IF (PE .LE. 4.) GU TU 20	012767
	JF (1.8 .LE. 4(.) 60 TU 4(01_132U
	IF (RE .LE. 4000.0) GU TO NO	(1236)
	1F (KE .LL. 40000.0) CO TO 20	012773
	B= 0, J239)_2)4)
	F =0 . 305	612080
	G(1 T), 3.5(.	1-1-1-1
86	CO 10 100	i latet
		013.11
). 3. 60
BV		5-5-05
		· · · · · · · · · · · · · · · · · · ·
		0
40	E=U.821	113300
	E=(1,385	ا د د د ا
	GO TO 150	L
20	G=0.891	013+20
	E=0.33	L_3+0 ·
150	CFURZ=B=PE=+EEK; / D	ا ا ر ا ر ا
200	LNAT=0.19*(TP1 -TA)**(.333	0.3.30
	IF (FACTED ALT. 1.C) HOWHEDFOLZ + CHAT	013595
	IF (FACTUR GE. 1.0) HEWHELFURZ	013-0.)
2 5 0	FETUEN	(1362)
	FND	د د د _ د
	THREATTY DE LIVER (TPLITALY, D.PCNI)	01.3 1.1
	CH20 2	0137:0
	5-3242 Te/TD: A TA1/2 ()	013740
	$P_{T} = 1 \ O(1/440 \ O + T)$	
	1754-1 0004 C-217 755-C-2#T	
	VIDAFI.00070771.720007071 07.50 01222 x 2 250-0547	
	ENA-U.01323 7 20305-0371	لا د د د د
	DEMA=39./3/(1/, +400.0)	0.3003
	DLAD J=5 JE (3.141640**2/4.0)	(/ ·)
	GK=G#UET##(TFS-T/)#DEN###2#EL#C(!##2/V15/##2	
	Pk 3=(* • 892	J 3740
	RE=[L/.00+V+LLN.4*1.4667/VILA	(ز:220
	FACTUR = 1 L ++2/Gi	ن <u>ہ</u> ے ک

ĺ	
---	--

	1F (RE .EQ. (.) 31 TO 200 IF (NE .LT. 1600) GU TO 100 ZLIM=165*VI5A/(V≭16NA*1.4607) HLAM=EKA*592.3/ZLIN HTUKB=0.036*RE**0.0*FF13*ENA/(CLADO - ZLIN)	01200020 6124000 612420 012410 612410
100	CFURZ=(ZLIP+FL,M + (CLACE - ZLIP)+HOUE3)/CL/DO GU TU 200 CFORZ=06664+SQUT(NE)+PRE CFORZ=06664+SQUT(NE)+PRE	J_4223 J_4250 J_4330
200	UN_T=0.27*(1PC = 1A)**0.333 IF (F/CTUL .LT. 1.0) HCKS=0FDFZ + CHAT IF (FACTLF .GE. 1.() HCKC=0FLFZ NETURN END	:(19+1) く 二時まで リニマサブリ い 14:7() モニキ(+)

OPCION No. 2

La variación al método de cálculo (DPCION 1) presentado, será el siguiente:

-

-

	CALL DATES (TEASAPISE ENDS COVES VSCESCAPES STA)	Sec. 21.
C	CALCULA FEL CAEFICIENTE EN EL TUDO LICO	1.01
	PK3=V562+05P 2/0 DK2+3600 +0	0.00 100
	GRT=G #6L ##3#1.51 2#9 2#8Ta* (TP, -71)/V: C2## 3	(2911)
	GPT=GFT+PFB	1.1.7.
	TE(GPT, E., TE9)Y1.10 = (55 # 460 T##C. 25	11.1.1
	TE (GPT, GT, TE G) X(1) = 0. (2) (EGPT +	606351
		116.11
		1 1 1 1 1 1
6	CRECTES TEL COEFIC ENTE EN LAS $FLETAS$	10.5090
	GF.BZ=G*SIA+(IPA+IL)+82+*5*(LEEZ/VJC2)**2	
	GRB=SGRT(GFBZ*GFT)	(-)(73)
	G PBL= GR B*F RB= 32/81.	(: (-((
	IF (GPLL.GE.O.1.0K.GPBL.LE.10.0)X(KB=C.G716#GPCL**C.995	(00)
	IF(GPBL.GT.10.00.0F.GPBL.LE.100.0)X JB=0.190+020L++0.0528	1 990 00
	TE(GPPL.GT.100.)) 21.00 =1.(952 *GP3) ** 0.2036	0.1711_1
	TE (G2RL . GT. 1F5) P. I TY, # G2RL F: N. YI I: D. 115#	017120
	Here $X = X = 10$ and $C = 10$ and $T = 10$	0 17 1 5 1
r	COLECTORENTE COMPTING THECH. (CTA), DTH/(H) = C(**2*C)(, E)	1 1 7 4 9 4
L.	UPT ATA A DOLLARY	. 7:1:
		11.131
	$HPI = I \cdot O / (I \cdot O / (I \cup L + H \cup I + H \cup I))$	
C	PERIMETRICHE UNA ALETA EN MIEL GLADRADES ZEIT LINEAL	021022

4.3 CALCULOS

DATOS:

Las características principales del calentador (19) calculado por el programa son:

superficie externa:	265 ft ²
tubos:	18 de 1" O.D. 10 Ga. sin costura, A. Carbón
Aletas longitudinales:	espesor 0.035" acero
	altura 1"
	número 20 por tubo
	longitud 4'
Presión permisible:	600 psi a 650 ^O F basado en 1/16" de corrosión permisible.
Cabezales:	1 1/2" Cd.80 S. Costura.

Los resultados se observan a continuación, de acuerdo con los datos suministrados.

- OPCION 1 -

PROFURCIONE LOS SIGUIENTES DATOS DE CALCULO

LOS GRADOS API DEL FLUIDO ALMACENADO	API =12
LA TEMPERATURA DE ALMACENAMIENTO EN ODOS. FAHRENHEIT	TE -150
LA TEMPEKATUKA DEL ATRE EN ODUS. FAHKENHEIT	TA =85
LA VELUCIDAD DEL VIENIO EN MILLAS PUR HOKA	V =0
LA TEMPERATURA DEL VAPOR (SATURADOJ EN GDOST FAHRENHEIT	TV 2430
LA PRESION DEL VAPOR EN LIBRAS/PULG.**2 ABS.	PV =420
LL DIAMETRU DEL TANQUE DE ALMACENAMIENTO EN FIES	U =143
ALTUKA DEL TARQUE EN PIES	HXL =40
PENDIENTE DEL TECHU CUNICO,ADIMENSIONAL	PUTE =0.0615
ENISIDAD DE LA SUPERFICIE EXTERNA DEL TANGUE,ADIMENSNAL	t =0.85
ALTURA DEL NIVEL DEL LIQUIDO(MAXIMO) EN PIES	XL =39.5
ESPEJOR DE LAS FLALAS DE LA ENVOLVENTE,EN PULUADAS	EF =0.4375
ESPESOR DE LAS PLANCHAS DEL 121HO, EN POLOADAS	EE =0.18
NUMERO DE IUBOS PUR CALENTADOR	NIPC =18
DIAMETRO EXTERNO DEL IUDU ALETADO EN PULGADAS	<u>ا</u> – ا
DIAHETRO INTERNO DEL TUBO ALETADO EN PULGADAS	DI =0.732
LUNGITUD DE LOS TUBOS EN PIES	EL -4
LUNGITUD DE LAS ALETAS EN PIES	BL =4
ALTURA DE LAS ALETAS EN PULGADAS	BZ2 =1
NUMERG DE ALETAS FUR 1080	λ π -20
ESPESOR DE LAS ALETAS EN PULGADAS	EZ =0.035
CONDUCTIVIDAD (ERNICA DE LAS ALETAS,EN BTU/(HR+FT++2(GDO. F/FT))	XKZ =26
CUEFICIENTE DE ENSUCIAMIENTO DEL FLUIDO ALMACENADO	KDU =0.005
COEFICIENTE DE ENSUCIAMIENTO DEL VAPOR DE CALENTAMIENTO	RU1 =0.0005
CONDUCTIVIDAD TERMICA BEL TUBU,BTU/HFT2(F/FT)	XK1 =26

J = 1 if = i.u.u.i?

J = 2 TP = 115.8042

J = 3 TP = 115.7623

K = 1 TPS = /101.8286

к 2 IFS - 101.6234

K = 3 IFS = 101.6520

QT - 1191292.7

DBT = 300.000 3.458E+11 OMEG,EN X 470.032172 TETA GPBL = L = 1 338.727 6.513E+04 6F1 = L = 2 300.000 TPIA = 376.776 UPBL = 1.742E+04 GFï -9.248E+10 UHED,EN % -74.576984 = זעע 2.3106+04 ·L = 3 DDT = 300.000 TPTe = 373.104 ú⊦BL = GPT = 1.226E+11 OMEG.EN % =73.629435 L = 4 300.000 DDT = TPTA = 373.800 2.182E+04 GFBL -GFI -1.1586411 GAEG.EN % =73.821924 L = 5 300.000 IFTA -373.700 orf ∸ 1.1/26+11 OMEG.EN % -/3.7825/6 <u> 1</u>44 UPBL = 2.208E+04 TPIA = 3/3./31 GPBL = 1.107E+11 OnE0.EN % -/3.290611 L = 6 DD1 = 300.000 2.203E+04 OFT =

LA TEMP. DE LA FARED EN LA SUPERFICIE MOJADA ES EN GODS. F

TP = 115.7623

LA TEMP. PRONEDIO DE LA SUPERFICIE SECA EN GDOS. F

115 - 101.6520

.

LA TEAM. DE LA MAKED IDBO-ALETAS EN GDUS. F

IFTA - 373./310

EL CUÉFICIENTE CONVECCION-RADIACIÓN MARA EL AIRE ENLA SUPERFICIE NOJADA EN BIU/(HR+F[++2+880. F)

HCRWH = 1.6207

EL COEFICIENTE CONVECCION-KADIACIO PARA EL AIRE EN LA SUPERFICIE SECA EN BTU/(NR+FT++2+6DU. F)

HCKWS = 1.6753

EL COEFICIENTE DEL FLUIDO POR CONVECCION NATURAL EN LA SUPERFICIE MOJADA EN BTU/(HR*FT**2*GDO. F)

HCNH = 1.4562

EL COEFICIENTE DE CONVECCION MATURAL-FACTUR DE USSTRUCCIUR DE TUDUS-ALETAS Referijo al diametro interno del tudo er bru/(HR+Ff++2+600. F)

AFF1 = 199.2288

CALUK DISIPADU PUR EL AIRE EN LA SUFERFICIE MUNEDA EN BTU/HA

WH = 884732.6

CALOR DISIFADO POR EL AINE EN LA SUPERFICIE SECA EN BTU/HR

QA = 302842.2

CALOR CONDUCIDO POR EL FONDO DEL TANQUE EN BTU/HR

62 = 3718.0

CALOR TOTAL TRANSFERIDU AL MEDIO AMBIENTE EN BTU/HR

QT = 1191292.7

DIFERENCIA VERUADERA DE TEMPERATURA EN GUOS. F

DDI = 300.0000

.....

٢

COEFICIENTE TOTAL DE DISEMO CORREGIDO BASADO EN El Dianetro Interno del tudo en diu/(Arttitt2000. F)

₩1 = 140.9699

NUMERU DE TUBOS ALETADOS REQUERIDOS PARA LACONSERVACION De la temperatura de diseno

TUBOS = 37

NCALENT = 2

CUN SEUDERIDU MAA LA CONSERVALIUN DE LA TERFENATUNA DE DISERU EN LOS/HR

VAPUK - 780.84

DA LE PRESIDR EN LUS TUBUS EN LBS/POLG.**2

Uriuso - .002/79

V Ovv maximum EvecUliOn FL. Sea in Secunds caeculiOn line.

- OPCION 2 -

PROFUNCIONE CON SCIENCES SAIDS BE CALCULA

цоз скавоз агі все корізо Асласскаво	Atı -12
LA TENFENATURA JE ALMACENAMIENTU EN ODUS. FANKENHELT	16 -150
LA (CATEÀNIURA DEL AIRE ER ODUS, FANKEMMEL).	ia =85
LA VELOLIDAD DEL VIENTO EN MICLAS PUR MUKA	V ÷v
LA FLAFENA (UNA DEL VAPUR (SATUKADU) EN UDUS, FANKENNEIT	10
LA ENCULUE DEL VATUR EN LIBRÁDUTULU.X+2 ABB.	ŕv -4∠0
EL DIANEIKU DEL IHRUGE DE ALMAGEMANIERIU ÉK Piés	มั – เพื่อ
ÁLÍGRÁ BÉL IHRDUC ÉR FILS	n⊼L –40
FENDLENTE DEL TECNO CONICO,ADIMENSIONAL	PDIC =.0010

ENISIDAD DE LA SUPERFICIE EXTERNA DEL TANQUE,ADINENSNAL	Ēou
ALTONA DIE NIVEE DEL LIQUÍDO(MAXIMO) EN PIES	XL -37.J
ESFESUR DE LAS FLAUAS DE LA ENVOLVENTE,EN FOLGADÀS	Éř43/J
LOPEOUR DE LHO PLÁNCHAO DEL TELHO, EN PULGADAS	Ēć18
NUMERO DE TUBOS POR CALENTADOR	NTPC =15
DIAHETKG EXTERNO BEL TUBU ALETADU EN PULBADAS	មិលី ÷ដ
DIAMEIKU INTEKNO DEL TODO ALETÁDU EN POLGADAS	D1 ÷.732
LUNGITUD DE LUS TUBUS EN FIES	EL -4
LÓNDIÌUD DE LÀS ALEIAS EN PIES	Ď∟ -4
ALTURA DE LAS ALETAS EN FULGADAS	BZ2 =1
NUMERO DE ALETAS POR TUBU	XN -20
ESPESOR DE LAS ALÉIÀS EN POLOADAS	EZ055
CONDUCTIVIDAD TERMICA DE LAS ALEIAS,EN BIU/(HR+FT++2(GDO. F/F())	XKZ =26
CUÉFICIÈNTE DE ERSOCTAMIENTO DEL FLOIDÒ ALMACÉNADO	kúú003
COEFICIENTE DE ENSUCIAMIENTO DEL VAPOR DE CALENTAMIENTO	RbI =.0005
CONDUCTIVIDAD TERNICA DEL 1000,BIO/HFT2(F/FI)	XKI -20

- J = 1 (F = 110.0117
- u = 2 ii = i10.0042
- 3 3 TP 115.7623
- K = 1 TPS = 101.8286
- K = 2 1P3 101.3234
- K = 3 ind 101.6020
- ui 1171272.7

UFBL ES MATON DE 120 (Fin - 348.622 6P8L = 2.166±+07 0FT L - 1 Dbi - 300.000 3.458E+11 OMEG,EN % =47.200656 GPBL ES MAYUR DE 1ES 4.8711+06 001 i = 2 BDT - 300.000 10°1A //د.ماند uibL -7.6071410 UMEB.EN & -12.0/2000 GFBL ES NATUR DE 165 9.280E+10 OME0,EN & =51.215252 µµ∫ - 300.000 6.127E+06 L - 3 iria - 360.344 Uibi∟ – GP1 = GPBL ES MAYOR DE LES 7.402E+10 UNED, EN & -01.00/0 0 5.720E+06 Ut I L = 4 ມີມີໂ → 300.000 171A - 300.640 UFBL -GPBL ES MAYOR DE TES L = 5 DbT = 300.000 TPTA = 360.602 GPBL = 5.95/E+06 GPT = 9.508E+10 OMEG,EN % =51.819815 LA ILAP. DE LA PARED EN LA SUPERFICIE MUJADA ES EN GDUS. P ir = 110./625 LA TEMP. PROMEDIO DE LA SUPERFICIE SECA EN ODUS. F TFS = 101.6020 LA TEMP. DE LA PARED TUBU-ALETAS EN UDUS. F 1116 = 360.0010 EL CUEFICIENTE CUNVECCIUN-MADIACIÓN FANA EL AIRE ENLA SUFERFICIE MOJADA EN BIU/(HR#FI++2+860. F)

HCRWH = 1.6207

EL COEFICIENTE CONVECCIÓN-RADIACIO PARA EL AIRE EN LA SUPERFICIE SEUA EN BIUZ(HARFIRRESGU, FZ

1

HCKW5 = 1.6703

EL SUELLENNE, DEL FLUIDU FUN CUNVELLIUM MATUKAL EN LA SURENFICIE RUJADA EN 510/(HR#F14#2+600. F)

HUNH - 1.4562

EL CUEFIL:EXTE DE CUNVECCIUN MATORAL-FACTUR DE OBSTRUCCIUM DE TUDOS-ALCIAS Reféribu al Diantino intendo del tudo en Bidzinkafiaalicodo e)

hrFi - 201.4103

CALOR DIGIFADU POR EL AIRE EN LA SUPERFICIE HUMEDA EN BIUZHA

CALOR DIS.FADD FOR EL AIRE EN LA SUPERFICIE SECA EN BIU/AR

um - 302042.2

CALON CONDULIDO FOR EL FONDO DEL TANADE EN BIU/HR

42 - 3718.0

CHLUR IVIAL IRANSFERIOU AL MEDIU AMBIENTE EN BIO/HR

41 - 1171252.7

Birénéhulm Vekumbénm pe lénréhAluñA em opús. r

DD: = 300.0000

COEFICIENTE TOTAL DE DISENO CORREGIDO BASADO EN El Diametro interno del tubo en Btu/(hr+ft+12+000.1)

UJI - 105.2307

NUMERU DE TUBUS ALETADUS KENDERTDUS FALA LACONSERVACION De la Tepperatura de Disenu

(dB05 - 32

NUMERO IE CALENTADUKES REQUERIBUS

NUALENI -

VAPUR REQUERIBU FANA LA COMBERVACIÓN DE LA TENFENATÚRA DE DIJERU EN LOBANN

VAr 08 - 980.04

LATUA DE PRESIGN EN LOS TUBOS EN LBS/PULG.442

DPTUDS - .003237

STOP SJUTE AMAINUM CARCUTION PL. .385 CF SECONDS EXELUTION TIME.

CAPITULO V

ANALISIS DE RESULTADOS Y CONCLUSIONES

COMENTARIOS AL PROGRAMA.

El objetivo principal del programa es calcular la cantidad de ca lentadores necesarios para la conservación de la temperatura del fluído almacenado; calculando para el nivel máximo de llenado.

El programa cumple el objetivo para el que fué creado, cuando se mo difican las características específicas de un calentador, por ejemplo:

- a) Altura de aleta
- b) Número de aletas por tubo
- c) Longitud del conjunto tubo-aletas.
- d) Diámetro y espesor del tubo
- e) Número de tubos por calentador
- f) Material del tubo
- g) Material de las aletas
- h) Espesor de las aletas.

Tal flexibilidad sitúa al Ingeniero en posición de poder comparar desde cualquier punto de vista, diversos modelos de calentadores e incluso, contra algún otro tipo de medio de calentamiento (por ej. serpentines).

Un análisis de los resultados obtenidos para el producto Gr_APr 8/Ly el producto Gr_TPr nos conduce a la siguiente discrepancia:

- a) La película de fluído adyacente a la pared del tubo está en régimen turbulento y,
- b) La película de fluído adyacente a las aletas en régimen laminar

La diferencia encontrada se explica por sí sola si tomamos en cuenta que la ecuación (gráfica 3.4) que se seleccionó para calcular el coeficiente en las aletas, representa a un sistema físico diferente, es de cir, un sistema de transferencia de calor de un fluído encerrado entre dos paredes verticales paralelas, donde el flujo de calor es perpendicu lar a las placas en el sentido decreciente de temperatura y su perfil de velocidad se comporta como se muestra en la figura 3.5, cuando debido a la configuración de las aletas debería mostrar un perfil de velocidad p<u>a</u> recido al de la figura 3.1.

Por lo tanto, se estableció que se debía modular de alguna manerala diferencia encontrada en los puntos 1 y 2; para lo cual se propuso -(OPCION 2) obtener un número de Grashof en las aletas modificado de - acuerdo con la siguiente ecuación.

con la cual se calculó el coeficiente de las aletas para la misma ecua - ción seleccionada inicialmente.

El número de calentadores calculados de ésta manera se parece más a los calculados con la gráfica 5.1 (21), editada por Brown Finetube Co., fabricante de calentadores verticales de tubos aletados para el modelo de calentador calculado por el programa, ver tabla 5.1.

Por lo tanto se recomienda emplear la secuencia de cálculo modificada para el Grashof de las aletas (OPCION 2). Se debe señalar qué, lafracción de calentador calculado que se aproximó a un calentador adicional era de 0.3.

El número de calentadores calculados con la gráfica 5.1, requierede los siguientes datos:

> Carga térmica total, en miles de BTU/Hr. T máxima = Tvapor - TFluído, en ^OF. viscosidad del fluído a temp. promedio, en cp.

DATOS RESULTADOS											
, CASO METODO		DENSIDAD °API A 60°F.	TEMPERATURA DE AL- MACENAMIENTO, °F.	TEMPERATURA DEL VA POR, °F.	VISCOSIDAD A LA TEM PERATURA PROMD. FLŪI DO/VAPOR,CENTIPOSES.	TEMPERATURA DEL AI RE, °F.	VELOCIDAD DEL VIENTO, MPH.	CARGA TERMICA EN MILES DE BTU/Hr.	NO. DE CALENTADORES REQUERIDO.	No. DE TUBOS MINIMO REQUERIDOS.	EFICIENCIA DE ALE TA, EN %
1	OPCION 1	12	150	450	72.4	85	0	1,191.3	2	37	73.79
	OPCION 2	12	150	450	72.4	85	0	1,191.3	2	32	51.82
	GRAF.5 1	12	150	450	72.4	85	0	1,191.3	1	18	-
2	OPCION 1	12	150	350	203	80	10	1,486	5	84	77.43
	OPCION 2	12	150	350	203	80	10	1,486	4	66	56.09
	GRAF.5.1	12	150	350	203	80	10	1,486	3	54	-
3	OPCION 1	12	150	290	418	70	20	1,891.3	10	181	80.12
	OPCION 2	12	150	290	418	70	20	1,891.3	8	133	59.49
	GRAF.5.1	12	150	290	418	70	20	1,891.3	7	126	-
4	OPCION 1	12	150	230	959	60	30	2,230.7	27	476	83.43
4	OPCION 2	12	150	230	959	60	30	2,230.7	18	316	64.04
4	GRAF.5.1	12	150	230	959	60	30	2,230.7	16	288	-

TABLA 5.1

Un análisis comparativo de la tabla 5.1 puede arrojar a la luz las diferencias del número de calentadores calculado por cada uno de los mé todos.

Y se pueden observar ciertas discrepancias como, las eficiencias calculadas por las dos opciones resultan muy diferentes, y dan idea (e<u>s</u> trictamente la opción 2) del orden de la eficiencia de las aletas de los calentadores calculados con la gráfica del fabricante ²¹ (fig.5.1).

Por lo tanto, por lo parecido de los resultados calculados por laopción 2 a los de la gráfica, se recomienda para efectos preliminares utilizar la versión modificada para el Grashof de las aletas, ya que la técnica de cálculo generalmente es propiedad del fabricante.

Como puede verse en la tabla 5.1, la opción 1 presenta gran discre pancia con respecto a los dos métodos restantes a ∆T pequeña, es decir, se vé fuertemente afectado por la viscosidad del fluído. Sin embargo,las pequeñas diferencias de la opción 2 con la gráfica pueden deberse a tres cosas por ejemplo: a los coeficientes de ensuciamiento del fluídoy vapor escogidoc, a la fracción de calentador aproximada a la unidad y, a la dificultad para leer los valores calculados con dicha gráfica.

CONCLUSION.

- I.- Un aumento en el número de Grashof en las aletas reflejó los si guientes cambios notorios:
 - a) La temperatura de la pared del tubo disminuyó.
 - b) Aumentó el número de Grashof de la película de fluído adyacente a las aletas, y se posiciona en régimen turbulento, mismorégimen de transferencia de calor de la película de fluído advacente del tubo.
 - c) Disminuyó el número de Grashof de la película de fluído adyacente al tubo como consecuencia del inciso a).
 - d) Disminuyó la eficiencia de la aleta para la versión modificada.
- II.- Se espera que el trabajo desarrollado en la presente tesis aporte, como principio de un análisis más profundo, la idea general para cal cular el coeficiente de convección natural para tubos verticales con aletas longitudinales; dado que, en la literatura existenteno se indica en forma precisa como calcular el coeficiente globaldel lado externo del tubo; y mucho menos se indica en que forma -

se ven afectados recíprocamente los coeficientes de película para las aletas y el tubo.

III- La contribución del presente trabajo fué elaborar un algorítmo de cálculo de la transferencia de calor de un tanque de almacenamiento con calentamiento interno hacia sus alrededores. Incluyendo un br<u>e</u> ve estudio de cada mecanismo de transmisión de calor, aplicable para el desarrollo del presente trabajo, apoyándonos en "herramientas" de cálculo como la programación.

Donde se consideró práctico, se incluyó una bibliografía suficient<u>e</u> mente completa para ayudar al analista a seguir su interés especial. Si<u>m</u> plemente se ha intentado recopilar el material apropiado y presentarlo – en una forma sencilla para su análisis.

ί...

CAPITULO VI

BIBLIDGRAFIA

- J.B.J. FOURIER, "Theorie Analytique de la Chaleur" Gouthier-Villars, 1822. (Extracto de Holman, ver ref.4).
- M, Jakob y B.A. Hawkins, Elements of Heat Transfer, N.Y. Mc Graw-Hill Book Co., 1958.
- James R. Welty, Transferencia de calor aplicada a la Ingeniería LIMUSA, 1a. ED. 1978. a) pg. b) pg.71, c) pg. 250, d)pg.258, e) pg.264, f) pg.284, g) pg.277.
- 4.- J.P. Holman, Transferencia de calor,CECSA, 4a. Impresión, Junio de 1980. a) pq. b) pq. 32.
- W.H. Mc Adams, Transmisión de calor, Mc Graw-Hill
 3a. Edición. a) pg. 5, b) pg.65, c) pg. 26.
- 6.- A.S. Foust, Principles of Unit Operations, Wiley Toppan,a) pg. 166, b) pg. 167, c) pg. 180, d) pg. 184.
- 7.- Frank Kreith, Principios de Transferencia de calor, HERRERO HNOS. 1a. Ed. en español 1970; a) pg.229, b) pg.250,
 c) pg. 317, d) pg. 335, e) pg. 437.
- 8.- Fortran Extended Version 4, Reference Manual. Control Data Co.
- D.D. McCracken, Programación Fortran IV, LIMUSA, 1978,
 2a. Edición.
- H. Schlichting, Boundary Layer Theory, 4 Ed. (N.Y. Mc.Graw-Hill 1960) pg. 335.
- 11.- E.R.G. Eckert y T.W. Jackson, NACA Rept. 1015 (1951).
- 12.- Alan R. Koening, Choosing economic insulation thickness; Chem. Engr. Sept-8, 1980.

- E.E. Ludwig ; Applied Process Design for Chemical and Petrochemical Plants, V.I., 1964.
- 14.- Donald Q. Kern; Procesos de Transferencia de Calor CECSA 11a. impresión.
- 15.- Mc.Gregor, R.K. y A.P. Emery: Free Convection Trough Vertical plane Layers-Moderate and High Prandtl Number Fluids, J. Heat transfer, Vol. 91, pag. 391, 1969.
- 16.- W. Elenbaas, "Dissipation of Heat by Free Convection", Parts-I y II, Philips Research Report 3, N.V. Philips' Floeilampern fabrieken, Eindhoben, Netherlands, 1948, pp. 338-360 y 450-465.
- 17.- Bulletin 900, Brown Fintube Co., pg. 2.
- 18.- Norma No. 3.612.04 de Fabricación de tanques atmosféricos, Pe tróleos Mexicanos. 1979, 1a. edición.
- 19.- Bulletin 300, Brown Fintube, pg. 4.
- 20.- R.G. Colwell y J. R. Welty, pub. ASME 73-HT-52, presentada en la 14 Conferencia Nacional de la Transferencia de Calor,Atlan ta, Georgia, Agosto 1973.
- 21.- Heat transfer topics, ISSUE No. 5, Brown Fintube Co.,

Una solución alternativa para calcular el coeficiente de película por convección natural en el lado externo de los tubos se estudia aquí.

El análisis dimensional* ha mostrado que se pueden representar los datos de transferencia de calor por convección natural en formaadimensional como:

$$Nu = f (Gr. Pr)$$
 A-1

Para el caso de la transferencia de calor por convección forzada el análisis dimensional condujo a una relación de la forma.

Nu = f(Re, Pr)

A-2

La ecuación (A-1) para la convección natural es muy semejantea la ecuación (A-2), que se aplica a la convección forzada. La velocidad del fluído se representa adicionalmente por medio del número de Reynolds, que aparece en los análisis de la convección forzada. -En la convección natural, el flujo es el resultado de los efectos de boyantes consecuencia de la diferencia en la temperatura. Estos efe<u>c</u> tos están incluídos en el número de Grashof, y este parámetro reem-plaza el número de Reynolds en el caso de la convección natural.

 * James R. Welty, Transferencia de Calor Aplicada a la Ingeniería; Limusa, 1978. Por lo tanto se podría pensar, que mediante los arreglos ade-cuados se puede calcular el coeficiente de película para convección natural, utilizando una ecuación para convección forzada. Lo que se interntará demostrar como sigue.

1.-En la convección natural el flujo es el resultado de la transferen-cia de energía entre una superficie a la temperatura To y el fluído a la temperatura ambiente T

Por lo tanto no hay una velocidad especificada.

Las propiedades de interés del fluído son \mathcal{P}, \mathcal{H} , Cp, K, y B. <u>La</u>última propiedad mencionada es el coeficiente de dilatación térmica.usado para representar la variación en la densidad del flujo con latemperatura de acuerdo con:

$$\int = \int_{0}^{0} \left(1 + B \frac{\Delta T}{2} \right)$$
 A-3

en donde ρ o es la densidad de referencia dentro de la capa caliente y ΔT es la diferencia de temperaturas entre el fluído en la superficie de la placa y la correspondiente lejos de la placa.

2.-Se puede escribir la fuerza de boyantez por volúmen unitario, $F_{B, co}$ como:

y, con la sustitución de la ecuación (A-3) dá:

$$F_B = \int_0^\infty Bg \Delta T$$
 A-4

3.-Aplicado a una distancia e igualando a la energía cinética adquirida por el fluído **

$$\int O Bg \frac{\Delta T L}{gc^2} = \int \frac{O v^2}{2gc} A-5$$

A-6

simplificando:

 $v^2 = gB L \Delta T$

representa la velocidad promedio ascencional del fluído en la convec-

· ción natural.

4.- La ecuación para convección forzada fuera de tubos con aletas longitudinales puede ser representado por ***

$$Jf = \frac{H_f D_e}{k} \left(\frac{C_p \mu}{k}\right)^{-1/3} \left(\frac{\mu}{\mu w}\right)^{-0.14} A-7$$

donde:

$$J_{f} = 0.30315 N_{Re}^{0.349}$$
 A-8
 $N_{Re} \stackrel{\prime}{=} 2000$

para

su coeficiente de correlación r =-0.99947

- ** A. Anaya D., Notas del curso de transferencia de calor, Facultad de Química, UNAM.
- *** D. Kern. Procesos de Transferencia de calor, CECSA, Figura 6.10

$$J_{f} = 2.9380 \times 10^{-5} N_{Re}^{1.5769} A-9$$

$$2000 \leq N_{Re} \leq 4000$$

$$r = 0.9994$$

$$J_{f} = 4.0586 \times 10^{-3} N_{Re} 0.9918 A-10$$

$$4000 \leq N_{Re} \leq 10,000$$

$$r = 0.9984$$

$$J_{f} = 0.0211 N_{Re}^{0.8172}$$
 A-11
10,000 $\angle N_{Re} \angle 500,000$
 $N_{Re} = De V \rho /\mu$

dónde:

5.-Elevando el término del número de Reynolds al cuadrado en las ecuaciones A-8, A-9, A-10 y A-11 y multiplicando por 1/2 el exponente, y sustituyendo al diámetro equivalente De, por la dimensión caracterí<u>s</u> tica L (altura del tubo).

Por ejemplo

$$Jf = a \left(\frac{Lv \rho}{\mu} \right)^b \qquad A-12$$

$$Jf = a \left(\underbrace{L^2 \quad V^2 \quad \rho^2}_{\mu^2} \right)^{b/2}$$
 A-13

sustituyendo la ecuación A-6 en A-13

$$J_{f} = a \left(\frac{L^{2} g B L \Delta T \rho^{2}}{\mu^{2}} \right)^{b/2}$$

rearreglando términos

$$J_{f} = a \left(\frac{L^{3} g B p^{2} \Delta T}{\mu^{2}} \right)^{b/2} \qquad A-14$$

dónde el término entre paréntesis representa el número de Grashof. Aplicando el mismo criterio a nuestras ecuaciones A-7 a la A-11, se transforman respectivamente en:

$$J_{f} = \frac{H_{f}L}{k} \left(\frac{C_{p}}{k}\right)^{-1/3} \left(\frac{\mu}{\mu m}\right)^{-0.14}$$

$$J_{a} = 0.30315 \quad Gr \qquad A-16$$

$$f = \frac{4 \times 10^6}{Gr} = 4 \times 10^6$$

$$J_{f} = 2.938 \times 10^{-5} \text{ Gr}^{0.78845}$$
 A-17
 $4 \times 10^{6} \leq \text{Gr} \leq 1.6 \times 10^{7}$

$$J_{f} = 4.0586 \times 10^{-3} \text{ Gr}^{0.496}$$

1.6×10⁷ \leq Gr \leq 1×10⁸ A-18

$$J_{f} = 0.0211 \text{ Gr} \stackrel{0.4086}{=} 1 \times 10^{8} \leq \text{Gr} \leq 2.5 \times 10^{11}$$
 A-19

Por lo tanto las ecuaciones A-15 a la A-19, representan la alter nativa de cálculo del coeficiente de película h_f , por convección natural para el lado externo del tubo aletado.